]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
2013-02-06 Hristian Kirtchev <kirtchev@adacore.com>
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
301d5ec3 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
29with Errout; use Errout;
30with Exp_Ch2; use Exp_Ch2;
df40eeb0 31with Exp_Ch4; use Exp_Ch4;
00c403ee 32with Exp_Ch11; use Exp_Ch11;
05fcfafb 33with Exp_Pakd; use Exp_Pakd;
301d5ec3 34with Exp_Tss; use Exp_Tss;
ee6ba406 35with Exp_Util; use Exp_Util;
36with Elists; use Elists;
4fb5f0a0 37with Expander; use Expander;
5329ca64 38with Eval_Fat; use Eval_Fat;
ee6ba406 39with Freeze; use Freeze;
9dfe12ae 40with Lib; use Lib;
ee6ba406 41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
9dfe12ae 44with Output; use Output;
c2b56224 45with Restrict; use Restrict;
1e16c51c 46with Rident; use Rident;
ee6ba406 47with Rtsfind; use Rtsfind;
48with Sem; use Sem;
d60c9ff7 49with Sem_Aux; use Sem_Aux;
ee6ba406 50with Sem_Eval; use Sem_Eval;
00f91aef 51with Sem_Ch3; use Sem_Ch3;
9dfe12ae 52with Sem_Ch8; use Sem_Ch8;
ee6ba406 53with Sem_Res; use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sem_Warn; use Sem_Warn;
56with Sinfo; use Sinfo;
9dfe12ae 57with Sinput; use Sinput;
ee6ba406 58with Snames; use Snames;
9dfe12ae 59with Sprint; use Sprint;
ee6ba406 60with Stand; use Stand;
f15731c4 61with Targparm; use Targparm;
ee6ba406 62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
64with Urealp; use Urealp;
65with Validsw; use Validsw;
66
67package body Checks is
68
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
74
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
79
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
86
9dfe12ae 87 -------------------------------------
88 -- Suppression of Redundant Checks --
89 -------------------------------------
90
91 -- This unit implements a limited circuit for removal of redundant
92 -- checks. The processing is based on a tracing of simple sequential
93 -- flow. For any sequence of statements, we save expressions that are
94 -- marked to be checked, and then if the same expression appears later
95 -- with the same check, then under certain circumstances, the second
96 -- check can be suppressed.
97
98 -- Basically, we can suppress the check if we know for certain that
99 -- the previous expression has been elaborated (together with its
100 -- check), and we know that the exception frame is the same, and that
101 -- nothing has happened to change the result of the exception.
102
103 -- Let us examine each of these three conditions in turn to describe
104 -- how we ensure that this condition is met.
105
106 -- First, we need to know for certain that the previous expression has
6fb3c314 107 -- been executed. This is done principally by the mechanism of calling
9dfe12ae 108 -- Conditional_Statements_Begin at the start of any statement sequence
109 -- and Conditional_Statements_End at the end. The End call causes all
110 -- checks remembered since the Begin call to be discarded. This does
111 -- miss a few cases, notably the case of a nested BEGIN-END block with
112 -- no exception handlers. But the important thing is to be conservative.
113 -- The other protection is that all checks are discarded if a label
114 -- is encountered, since then the assumption of sequential execution
115 -- is violated, and we don't know enough about the flow.
116
117 -- Second, we need to know that the exception frame is the same. We
118 -- do this by killing all remembered checks when we enter a new frame.
119 -- Again, that's over-conservative, but generally the cases we can help
120 -- with are pretty local anyway (like the body of a loop for example).
121
122 -- Third, we must be sure to forget any checks which are no longer valid.
123 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
124 -- used to note any changes to local variables. We only attempt to deal
125 -- with checks involving local variables, so we do not need to worry
126 -- about global variables. Second, a call to any non-global procedure
127 -- causes us to abandon all stored checks, since such a all may affect
128 -- the values of any local variables.
129
130 -- The following define the data structures used to deal with remembering
131 -- checks so that redundant checks can be eliminated as described above.
132
133 -- Right now, the only expressions that we deal with are of the form of
134 -- simple local objects (either declared locally, or IN parameters) or
135 -- such objects plus/minus a compile time known constant. We can do
136 -- more later on if it seems worthwhile, but this catches many simple
137 -- cases in practice.
138
139 -- The following record type reflects a single saved check. An entry
140 -- is made in the stack of saved checks if and only if the expression
141 -- has been elaborated with the indicated checks.
142
143 type Saved_Check is record
144 Killed : Boolean;
145 -- Set True if entry is killed by Kill_Checks
146
147 Entity : Entity_Id;
148 -- The entity involved in the expression that is checked
149
150 Offset : Uint;
151 -- A compile time value indicating the result of adding or
152 -- subtracting a compile time value. This value is to be
153 -- added to the value of the Entity. A value of zero is
154 -- used for the case of a simple entity reference.
155
156 Check_Type : Character;
157 -- This is set to 'R' for a range check (in which case Target_Type
158 -- is set to the target type for the range check) or to 'O' for an
159 -- overflow check (in which case Target_Type is set to Empty).
160
161 Target_Type : Entity_Id;
162 -- Used only if Do_Range_Check is set. Records the target type for
163 -- the check. We need this, because a check is a duplicate only if
6fb3c314 164 -- it has the same target type (or more accurately one with a
9dfe12ae 165 -- range that is smaller or equal to the stored target type of a
166 -- saved check).
167 end record;
168
169 -- The following table keeps track of saved checks. Rather than use an
170 -- extensible table. We just use a table of fixed size, and we discard
171 -- any saved checks that do not fit. That's very unlikely to happen and
172 -- this is only an optimization in any case.
173
174 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
175 -- Array of saved checks
176
177 Num_Saved_Checks : Nat := 0;
178 -- Number of saved checks
179
180 -- The following stack keeps track of statement ranges. It is treated
181 -- as a stack. When Conditional_Statements_Begin is called, an entry
182 -- is pushed onto this stack containing the value of Num_Saved_Checks
183 -- at the time of the call. Then when Conditional_Statements_End is
184 -- called, this value is popped off and used to reset Num_Saved_Checks.
185
186 -- Note: again, this is a fixed length stack with a size that should
187 -- always be fine. If the value of the stack pointer goes above the
188 -- limit, then we just forget all saved checks.
189
190 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
191 Saved_Checks_TOS : Nat := 0;
192
193 -----------------------
194 -- Local Subprograms --
195 -----------------------
ee6ba406 196
0df9d43f 197 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
3cce7f32 198 -- Used to apply arithmetic overflow checks for all cases except operators
691fe9e0 199 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
0df9d43f 200 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
201 -- signed integer arithmetic operator (but not an if or case expression).
202 -- It is also called for types other than signed integers.
3cce7f32 203
204 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
205 -- Used to apply arithmetic overflow checks for the case where the overflow
0df9d43f 206 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
207 -- arithmetic op (which includes the case of if and case expressions). Note
208 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
209 -- we have work to do even if overflow checking is suppressed.
3cce7f32 210
2fe22c69 211 procedure Apply_Division_Check
212 (N : Node_Id;
213 Rlo : Uint;
214 Rhi : Uint;
215 ROK : Boolean);
216 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
217 -- division checks as required if the Do_Division_Check flag is set.
218 -- Rlo and Rhi give the possible range of the right operand, these values
219 -- can be referenced and trusted only if ROK is set True.
220
221 procedure Apply_Float_Conversion_Check
222 (Ck_Node : Node_Id;
223 Target_Typ : Entity_Id);
224 -- The checks on a conversion from a floating-point type to an integer
225 -- type are delicate. They have to be performed before conversion, they
226 -- have to raise an exception when the operand is a NaN, and rounding must
227 -- be taken into account to determine the safe bounds of the operand.
228
ee6ba406 229 procedure Apply_Selected_Length_Checks
230 (Ck_Node : Node_Id;
231 Target_Typ : Entity_Id;
232 Source_Typ : Entity_Id;
233 Do_Static : Boolean);
234 -- This is the subprogram that does all the work for Apply_Length_Check
235 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
236 -- described for the above routines. The Do_Static flag indicates that
237 -- only a static check is to be done.
238
239 procedure Apply_Selected_Range_Checks
240 (Ck_Node : Node_Id;
241 Target_Typ : Entity_Id;
242 Source_Typ : Entity_Id;
243 Do_Static : Boolean);
244 -- This is the subprogram that does all the work for Apply_Range_Check.
245 -- Expr, Target_Typ and Source_Typ are as described for the above
246 -- routine. The Do_Static flag indicates that only a static check is
247 -- to be done.
248
2af58f67 249 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 250 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
251 -- This function is used to see if an access or division by zero check is
252 -- needed. The check is to be applied to a single variable appearing in the
253 -- source, and N is the node for the reference. If N is not of this form,
254 -- True is returned with no further processing. If N is of the right form,
255 -- then further processing determines if the given Check is needed.
256 --
257 -- The particular circuit is to see if we have the case of a check that is
258 -- not needed because it appears in the right operand of a short circuited
259 -- conditional where the left operand guards the check. For example:
260 --
261 -- if Var = 0 or else Q / Var > 12 then
262 -- ...
263 -- end if;
264 --
265 -- In this example, the division check is not required. At the same time
266 -- we can issue warnings for suspicious use of non-short-circuited forms,
267 -- such as:
268 --
269 -- if Var = 0 or Q / Var > 12 then
270 -- ...
271 -- end if;
272
9dfe12ae 273 procedure Find_Check
274 (Expr : Node_Id;
275 Check_Type : Character;
276 Target_Type : Entity_Id;
277 Entry_OK : out Boolean;
278 Check_Num : out Nat;
279 Ent : out Entity_Id;
280 Ofs : out Uint);
281 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
282 -- to see if a check is of the form for optimization, and if so, to see
283 -- if it has already been performed. Expr is the expression to check,
284 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
285 -- Target_Type is the target type for a range check, and Empty for an
286 -- overflow check. If the entry is not of the form for optimization,
287 -- then Entry_OK is set to False, and the remaining out parameters
288 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
289 -- entity and offset from the expression. Check_Num is the number of
290 -- a matching saved entry in Saved_Checks, or zero if no such entry
291 -- is located.
292
ee6ba406 293 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
294 -- If a discriminal is used in constraining a prival, Return reference
295 -- to the discriminal of the protected body (which renames the parameter
296 -- of the enclosing protected operation). This clumsy transformation is
297 -- needed because privals are created too late and their actual subtypes
298 -- are not available when analysing the bodies of the protected operations.
0577b0b1 299 -- This function is called whenever the bound is an entity and the scope
300 -- indicates a protected operation. If the bound is an in-parameter of
301 -- a protected operation that is not a prival, the function returns the
302 -- bound itself.
ee6ba406 303 -- To be cleaned up???
304
305 function Guard_Access
306 (Cond : Node_Id;
307 Loc : Source_Ptr;
314a23b6 308 Ck_Node : Node_Id) return Node_Id;
ee6ba406 309 -- In the access type case, guard the test with a test to ensure
310 -- that the access value is non-null, since the checks do not
311 -- not apply to null access values.
312
313 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
314 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
315 -- Constraint_Error node.
316
3cce7f32 317 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
318 -- Returns True if node N is for an arithmetic operation with signed
0326b4d4 319 -- integer operands. This includes unary and binary operators, and also
320 -- if and case expression nodes where the dependent expressions are of
321 -- a signed integer type. These are the kinds of nodes for which special
691fe9e0 322 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
3cce7f32 323
0577b0b1 324 function Range_Or_Validity_Checks_Suppressed
325 (Expr : Node_Id) return Boolean;
326 -- Returns True if either range or validity checks or both are suppressed
327 -- for the type of the given expression, or, if the expression is the name
328 -- of an entity, if these checks are suppressed for the entity.
329
ee6ba406 330 function Selected_Length_Checks
331 (Ck_Node : Node_Id;
332 Target_Typ : Entity_Id;
333 Source_Typ : Entity_Id;
314a23b6 334 Warn_Node : Node_Id) return Check_Result;
ee6ba406 335 -- Like Apply_Selected_Length_Checks, except it doesn't modify
336 -- anything, just returns a list of nodes as described in the spec of
337 -- this package for the Range_Check function.
338
339 function Selected_Range_Checks
340 (Ck_Node : Node_Id;
341 Target_Typ : Entity_Id;
342 Source_Typ : Entity_Id;
314a23b6 343 Warn_Node : Node_Id) return Check_Result;
ee6ba406 344 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
345 -- just returns a list of nodes as described in the spec of this package
346 -- for the Range_Check function.
347
348 ------------------------------
349 -- Access_Checks_Suppressed --
350 ------------------------------
351
352 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
353 begin
9dfe12ae 354 if Present (E) and then Checks_May_Be_Suppressed (E) then
355 return Is_Check_Suppressed (E, Access_Check);
356 else
fafc6b97 357 return Scope_Suppress.Suppress (Access_Check);
9dfe12ae 358 end if;
ee6ba406 359 end Access_Checks_Suppressed;
360
361 -------------------------------------
362 -- Accessibility_Checks_Suppressed --
363 -------------------------------------
364
365 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
366 begin
9dfe12ae 367 if Present (E) and then Checks_May_Be_Suppressed (E) then
368 return Is_Check_Suppressed (E, Accessibility_Check);
369 else
fafc6b97 370 return Scope_Suppress.Suppress (Accessibility_Check);
9dfe12ae 371 end if;
ee6ba406 372 end Accessibility_Checks_Suppressed;
373
00c403ee 374 -----------------------------
375 -- Activate_Division_Check --
376 -----------------------------
377
378 procedure Activate_Division_Check (N : Node_Id) is
379 begin
380 Set_Do_Division_Check (N, True);
381 Possible_Local_Raise (N, Standard_Constraint_Error);
382 end Activate_Division_Check;
383
384 -----------------------------
385 -- Activate_Overflow_Check --
386 -----------------------------
387
388 procedure Activate_Overflow_Check (N : Node_Id) is
389 begin
d32ceaf3 390 if not Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
391 Set_Do_Overflow_Check (N, True);
392 Possible_Local_Raise (N, Standard_Constraint_Error);
393 end if;
00c403ee 394 end Activate_Overflow_Check;
395
396 --------------------------
397 -- Activate_Range_Check --
398 --------------------------
399
400 procedure Activate_Range_Check (N : Node_Id) is
401 begin
402 Set_Do_Range_Check (N, True);
403 Possible_Local_Raise (N, Standard_Constraint_Error);
404 end Activate_Range_Check;
405
0577b0b1 406 ---------------------------------
407 -- Alignment_Checks_Suppressed --
408 ---------------------------------
409
410 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
411 begin
412 if Present (E) and then Checks_May_Be_Suppressed (E) then
413 return Is_Check_Suppressed (E, Alignment_Check);
414 else
fafc6b97 415 return Scope_Suppress.Suppress (Alignment_Check);
0577b0b1 416 end if;
417 end Alignment_Checks_Suppressed;
418
ee6ba406 419 -------------------------
420 -- Append_Range_Checks --
421 -------------------------
422
423 procedure Append_Range_Checks
424 (Checks : Check_Result;
425 Stmts : List_Id;
426 Suppress_Typ : Entity_Id;
427 Static_Sloc : Source_Ptr;
428 Flag_Node : Node_Id)
429 is
9dfe12ae 430 Internal_Flag_Node : constant Node_Id := Flag_Node;
431 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
432
ee6ba406 433 Checks_On : constant Boolean :=
b6341c67 434 (not Index_Checks_Suppressed (Suppress_Typ))
435 or else (not Range_Checks_Suppressed (Suppress_Typ));
ee6ba406 436
437 begin
438 -- For now we just return if Checks_On is false, however this should
439 -- be enhanced to check for an always True value in the condition
440 -- and to generate a compilation warning???
441
442 if not Checks_On then
443 return;
444 end if;
445
446 for J in 1 .. 2 loop
447 exit when No (Checks (J));
448
449 if Nkind (Checks (J)) = N_Raise_Constraint_Error
450 and then Present (Condition (Checks (J)))
451 then
452 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
453 Append_To (Stmts, Checks (J));
454 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
455 end if;
456
457 else
458 Append_To
f15731c4 459 (Stmts,
460 Make_Raise_Constraint_Error (Internal_Static_Sloc,
461 Reason => CE_Range_Check_Failed));
ee6ba406 462 end if;
463 end loop;
464 end Append_Range_Checks;
465
466 ------------------------
467 -- Apply_Access_Check --
468 ------------------------
469
470 procedure Apply_Access_Check (N : Node_Id) is
471 P : constant Node_Id := Prefix (N);
472
473 begin
13dbf220 474 -- We do not need checks if we are not generating code (i.e. the
475 -- expander is not active). This is not just an optimization, there
476 -- are cases (e.g. with pragma Debug) where generating the checks
477 -- can cause real trouble).
284faf8b 478
6dbcfcd9 479 if not Full_Expander_Active then
13dbf220 480 return;
9dfe12ae 481 end if;
ee6ba406 482
84d0d4a5 483 -- No check if short circuiting makes check unnecessary
9dfe12ae 484
84d0d4a5 485 if not Check_Needed (P, Access_Check) then
486 return;
ee6ba406 487 end if;
9dfe12ae 488
cc60bd16 489 -- No check if accessing the Offset_To_Top component of a dispatch
490 -- table. They are safe by construction.
491
040277b1 492 if Tagged_Type_Expansion
493 and then Present (Etype (P))
cc60bd16 494 and then RTU_Loaded (Ada_Tags)
495 and then RTE_Available (RE_Offset_To_Top_Ptr)
496 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
497 then
498 return;
499 end if;
500
84d0d4a5 501 -- Otherwise go ahead and install the check
9dfe12ae 502
fa7497e8 503 Install_Null_Excluding_Check (P);
ee6ba406 504 end Apply_Access_Check;
505
506 -------------------------------
507 -- Apply_Accessibility_Check --
508 -------------------------------
509
55dc6dc2 510 procedure Apply_Accessibility_Check
511 (N : Node_Id;
512 Typ : Entity_Id;
513 Insert_Node : Node_Id)
514 is
ee6ba406 515 Loc : constant Source_Ptr := Sloc (N);
1a9cc6cd 516 Param_Ent : Entity_Id := Param_Entity (N);
ee6ba406 517 Param_Level : Node_Id;
518 Type_Level : Node_Id;
519
520 begin
47d210a3 521 if Ada_Version >= Ada_2012
522 and then not Present (Param_Ent)
523 and then Is_Entity_Name (N)
524 and then Ekind_In (Entity (N), E_Constant, E_Variable)
525 and then Present (Effective_Extra_Accessibility (Entity (N)))
526 then
527 Param_Ent := Entity (N);
528 while Present (Renamed_Object (Param_Ent)) loop
1a9cc6cd 529
47d210a3 530 -- Renamed_Object must return an Entity_Name here
531 -- because of preceding "Present (E_E_A (...))" test.
532
533 Param_Ent := Entity (Renamed_Object (Param_Ent));
534 end loop;
535 end if;
536
ee6ba406 537 if Inside_A_Generic then
538 return;
539
6ffc64fc 540 -- Only apply the run-time check if the access parameter has an
541 -- associated extra access level parameter and when the level of the
542 -- type is less deep than the level of the access parameter, and
543 -- accessibility checks are not suppressed.
ee6ba406 544
545 elsif Present (Param_Ent)
546 and then Present (Extra_Accessibility (Param_Ent))
47d210a3 547 and then UI_Gt (Object_Access_Level (N),
1a9cc6cd 548 Deepest_Type_Access_Level (Typ))
ee6ba406 549 and then not Accessibility_Checks_Suppressed (Param_Ent)
550 and then not Accessibility_Checks_Suppressed (Typ)
551 then
552 Param_Level :=
553 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
554
1a9cc6cd 555 Type_Level :=
556 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
ee6ba406 557
bf3e1520 558 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 559 -- parameter is deeper than the level of the target access type.
ee6ba406 560
55dc6dc2 561 Insert_Action (Insert_Node,
ee6ba406 562 Make_Raise_Program_Error (Loc,
563 Condition =>
564 Make_Op_Gt (Loc,
565 Left_Opnd => Param_Level,
f15731c4 566 Right_Opnd => Type_Level),
567 Reason => PE_Accessibility_Check_Failed));
ee6ba406 568
569 Analyze_And_Resolve (N);
570 end if;
571 end Apply_Accessibility_Check;
572
0577b0b1 573 --------------------------------
574 -- Apply_Address_Clause_Check --
575 --------------------------------
576
577 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
d950dc79 578 pragma Assert (Nkind (N) = N_Freeze_Entity);
579
0577b0b1 580 AC : constant Node_Id := Address_Clause (E);
581 Loc : constant Source_Ptr := Sloc (AC);
582 Typ : constant Entity_Id := Etype (E);
583 Aexp : constant Node_Id := Expression (AC);
c2b56224 584
c2b56224 585 Expr : Node_Id;
0577b0b1 586 -- Address expression (not necessarily the same as Aexp, for example
587 -- when Aexp is a reference to a constant, in which case Expr gets
588 -- reset to reference the value expression of the constant.
589
0577b0b1 590 procedure Compile_Time_Bad_Alignment;
591 -- Post error warnings when alignment is known to be incompatible. Note
592 -- that we do not go as far as inserting a raise of Program_Error since
593 -- this is an erroneous case, and it may happen that we are lucky and an
d6da7448 594 -- underaligned address turns out to be OK after all.
0577b0b1 595
596 --------------------------------
597 -- Compile_Time_Bad_Alignment --
598 --------------------------------
599
600 procedure Compile_Time_Bad_Alignment is
601 begin
d6da7448 602 if Address_Clause_Overlay_Warnings then
0577b0b1 603 Error_Msg_FE
cb97ae5c 604 ("?o?specified address for& may be inconsistent with alignment",
0577b0b1 605 Aexp, E);
606 Error_Msg_FE
cb97ae5c 607 ("\?o?program execution may be erroneous (RM 13.3(27))",
0577b0b1 608 Aexp, E);
83f8f0a6 609 Set_Address_Warning_Posted (AC);
0577b0b1 610 end if;
611 end Compile_Time_Bad_Alignment;
c2b56224 612
2af58f67 613 -- Start of processing for Apply_Address_Clause_Check
5c61a0ff 614
c2b56224 615 begin
d6da7448 616 -- See if alignment check needed. Note that we never need a check if the
617 -- maximum alignment is one, since the check will always succeed.
618
619 -- Note: we do not check for checks suppressed here, since that check
620 -- was done in Sem_Ch13 when the address clause was processed. We are
621 -- only called if checks were not suppressed. The reason for this is
622 -- that we have to delay the call to Apply_Alignment_Check till freeze
623 -- time (so that all types etc are elaborated), but we have to check
624 -- the status of check suppressing at the point of the address clause.
625
626 if No (AC)
627 or else not Check_Address_Alignment (AC)
628 or else Maximum_Alignment = 1
629 then
630 return;
631 end if;
632
633 -- Obtain expression from address clause
9dfe12ae 634
0577b0b1 635 Expr := Expression (AC);
636
637 -- The following loop digs for the real expression to use in the check
638
639 loop
640 -- For constant, get constant expression
641
642 if Is_Entity_Name (Expr)
643 and then Ekind (Entity (Expr)) = E_Constant
644 then
645 Expr := Constant_Value (Entity (Expr));
646
647 -- For unchecked conversion, get result to convert
648
649 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
650 Expr := Expression (Expr);
651
652 -- For (common case) of To_Address call, get argument
653
654 elsif Nkind (Expr) = N_Function_Call
655 and then Is_Entity_Name (Name (Expr))
656 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
657 then
658 Expr := First (Parameter_Associations (Expr));
659
660 if Nkind (Expr) = N_Parameter_Association then
661 Expr := Explicit_Actual_Parameter (Expr);
662 end if;
663
664 -- We finally have the real expression
665
666 else
667 exit;
668 end if;
669 end loop;
670
d6da7448 671 -- See if we know that Expr has a bad alignment at compile time
c2b56224 672
673 if Compile_Time_Known_Value (Expr)
f2a06be9 674 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 675 then
f2a06be9 676 declare
677 AL : Uint := Alignment (Typ);
678
679 begin
680 -- The object alignment might be more restrictive than the
681 -- type alignment.
682
683 if Known_Alignment (E) then
684 AL := Alignment (E);
685 end if;
686
687 if Expr_Value (Expr) mod AL /= 0 then
0577b0b1 688 Compile_Time_Bad_Alignment;
689 else
690 return;
f2a06be9 691 end if;
692 end;
c2b56224 693
0577b0b1 694 -- If the expression has the form X'Address, then we can find out if
695 -- the object X has an alignment that is compatible with the object E.
d6da7448 696 -- If it hasn't or we don't know, we defer issuing the warning until
697 -- the end of the compilation to take into account back end annotations.
c2b56224 698
0577b0b1 699 elsif Nkind (Expr) = N_Attribute_Reference
700 and then Attribute_Name (Expr) = Name_Address
d6da7448 701 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
0577b0b1 702 then
d6da7448 703 return;
0577b0b1 704 end if;
c2b56224 705
6fb3c314 706 -- Here we do not know if the value is acceptable. Strictly we don't
707 -- have to do anything, since if the alignment is bad, we have an
708 -- erroneous program. However we are allowed to check for erroneous
709 -- conditions and we decide to do this by default if the check is not
710 -- suppressed.
0577b0b1 711
712 -- However, don't do the check if elaboration code is unwanted
713
714 if Restriction_Active (No_Elaboration_Code) then
715 return;
716
717 -- Generate a check to raise PE if alignment may be inappropriate
718
719 else
720 -- If the original expression is a non-static constant, use the
721 -- name of the constant itself rather than duplicating its
00c403ee 722 -- defining expression, which was extracted above.
0577b0b1 723
00c403ee 724 -- Note: Expr is empty if the address-clause is applied to in-mode
725 -- actuals (allowed by 13.1(22)).
726
727 if not Present (Expr)
728 or else
729 (Is_Entity_Name (Expression (AC))
730 and then Ekind (Entity (Expression (AC))) = E_Constant
731 and then Nkind (Parent (Entity (Expression (AC))))
732 = N_Object_Declaration)
0577b0b1 733 then
734 Expr := New_Copy_Tree (Expression (AC));
735 else
736 Remove_Side_Effects (Expr);
c2b56224 737 end if;
c2b56224 738
d950dc79 739 if No (Actions (N)) then
740 Set_Actions (N, New_List);
741 end if;
742
743 Prepend_To (Actions (N),
0577b0b1 744 Make_Raise_Program_Error (Loc,
745 Condition =>
746 Make_Op_Ne (Loc,
747 Left_Opnd =>
748 Make_Op_Mod (Loc,
749 Left_Opnd =>
750 Unchecked_Convert_To
751 (RTE (RE_Integer_Address), Expr),
752 Right_Opnd =>
753 Make_Attribute_Reference (Loc,
d950dc79 754 Prefix => New_Occurrence_Of (E, Loc),
0577b0b1 755 Attribute_Name => Name_Alignment)),
756 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
d950dc79 757 Reason => PE_Misaligned_Address_Value));
758 Analyze (First (Actions (N)), Suppress => All_Checks);
0577b0b1 759 return;
760 end if;
9dfe12ae 761
762 exception
0577b0b1 763 -- If we have some missing run time component in configurable run time
764 -- mode then just skip the check (it is not required in any case).
765
9dfe12ae 766 when RE_Not_Available =>
767 return;
0577b0b1 768 end Apply_Address_Clause_Check;
c2b56224 769
ee6ba406 770 -------------------------------------
771 -- Apply_Arithmetic_Overflow_Check --
772 -------------------------------------
773
3cce7f32 774 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
775 begin
776 -- Use old routine in almost all cases (the only case we are treating
21a55437 777 -- specially is the case of a signed integer arithmetic op with the
0df9d43f 778 -- overflow checking mode set to MINIMIZED or ELIMINATED).
3cce7f32 779
0df9d43f 780 if Overflow_Check_Mode = Strict
3cce7f32 781 or else not Is_Signed_Integer_Arithmetic_Op (N)
782 then
0df9d43f 783 Apply_Arithmetic_Overflow_Strict (N);
3cce7f32 784
21a55437 785 -- Otherwise use the new routine for the case of a signed integer
786 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
787 -- mode is MINIMIZED or ELIMINATED.
3cce7f32 788
789 else
790 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
791 end if;
792 end Apply_Arithmetic_Overflow_Check;
793
0df9d43f 794 --------------------------------------
795 -- Apply_Arithmetic_Overflow_Strict --
796 --------------------------------------
3cce7f32 797
f40f9731 798 -- This routine is called only if the type is an integer type, and a
799 -- software arithmetic overflow check may be needed for op (add, subtract,
800 -- or multiply). This check is performed only if Software_Overflow_Checking
801 -- is enabled and Do_Overflow_Check is set. In this case we expand the
802 -- operation into a more complex sequence of tests that ensures that
803 -- overflow is properly caught.
ee6ba406 804
0df9d43f 805 -- This is used in CHECKED modes. It is identical to the code for this
806 -- cases before the big overflow earthquake, thus ensuring that in this
807 -- modes we have compatible behavior (and reliability) to what was there
808 -- before. It is also called for types other than signed integers, and if
809 -- the Do_Overflow_Check flag is off.
3cce7f32 810
811 -- Note: we also call this routine if we decide in the MINIMIZED case
812 -- to give up and just generate an overflow check without any fuss.
813
0df9d43f 814 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
21a55437 815 Loc : constant Source_Ptr := Sloc (N);
816 Typ : constant Entity_Id := Etype (N);
817 Rtyp : constant Entity_Id := Root_Type (Typ);
ee6ba406 818
819 begin
0df9d43f 820 -- Nothing to do if Do_Overflow_Check not set or overflow checks
821 -- suppressed.
822
823 if not Do_Overflow_Check (N) then
824 return;
825 end if;
826
f40f9731 827 -- An interesting special case. If the arithmetic operation appears as
828 -- the operand of a type conversion:
829
830 -- type1 (x op y)
831
832 -- and all the following conditions apply:
833
834 -- arithmetic operation is for a signed integer type
835 -- target type type1 is a static integer subtype
836 -- range of x and y are both included in the range of type1
837 -- range of x op y is included in the range of type1
838 -- size of type1 is at least twice the result size of op
839
840 -- then we don't do an overflow check in any case, instead we transform
841 -- the operation so that we end up with:
842
843 -- type1 (type1 (x) op type1 (y))
844
845 -- This avoids intermediate overflow before the conversion. It is
846 -- explicitly permitted by RM 3.5.4(24):
847
848 -- For the execution of a predefined operation of a signed integer
849 -- type, the implementation need not raise Constraint_Error if the
850 -- result is outside the base range of the type, so long as the
851 -- correct result is produced.
852
853 -- It's hard to imagine that any programmer counts on the exception
854 -- being raised in this case, and in any case it's wrong coding to
855 -- have this expectation, given the RM permission. Furthermore, other
856 -- Ada compilers do allow such out of range results.
857
858 -- Note that we do this transformation even if overflow checking is
859 -- off, since this is precisely about giving the "right" result and
860 -- avoiding the need for an overflow check.
861
8eb4a5eb 862 -- Note: this circuit is partially redundant with respect to the similar
863 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
864 -- with cases that do not come through here. We still need the following
865 -- processing even with the Exp_Ch4 code in place, since we want to be
866 -- sure not to generate the arithmetic overflow check in these cases
867 -- (Exp_Ch4 would have a hard time removing them once generated).
868
f40f9731 869 if Is_Signed_Integer_Type (Typ)
870 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 871 then
f32c377d 872 Conversion_Optimization : declare
f40f9731 873 Target_Type : constant Entity_Id :=
b6341c67 874 Base_Type (Entity (Subtype_Mark (Parent (N))));
f40f9731 875
876 Llo, Lhi : Uint;
877 Rlo, Rhi : Uint;
878 LOK, ROK : Boolean;
879
880 Vlo : Uint;
881 Vhi : Uint;
882 VOK : Boolean;
883
884 Tlo : Uint;
885 Thi : Uint;
886
887 begin
888 if Is_Integer_Type (Target_Type)
889 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
890 then
891 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
892 Thi := Expr_Value (Type_High_Bound (Target_Type));
893
9c486805 894 Determine_Range
895 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
896 Determine_Range
897 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 898
899 if (LOK and ROK)
900 and then Tlo <= Llo and then Lhi <= Thi
901 and then Tlo <= Rlo and then Rhi <= Thi
902 then
9c486805 903 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 904
905 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
906 Rewrite (Left_Opnd (N),
907 Make_Type_Conversion (Loc,
908 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
909 Expression => Relocate_Node (Left_Opnd (N))));
910
911 Rewrite (Right_Opnd (N),
912 Make_Type_Conversion (Loc,
913 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
914 Expression => Relocate_Node (Right_Opnd (N))));
915
780bfb21 916 -- Rewrite the conversion operand so that the original
917 -- node is retained, in order to avoid the warning for
918 -- redundant conversions in Resolve_Type_Conversion.
919
920 Rewrite (N, Relocate_Node (N));
921
f40f9731 922 Set_Etype (N, Target_Type);
780bfb21 923
f40f9731 924 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
925 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
926
927 -- Given that the target type is twice the size of the
928 -- source type, overflow is now impossible, so we can
929 -- safely kill the overflow check and return.
930
931 Set_Do_Overflow_Check (N, False);
932 return;
933 end if;
934 end if;
935 end if;
f32c377d 936 end Conversion_Optimization;
ee6ba406 937 end if;
938
f40f9731 939 -- Now see if an overflow check is required
940
941 declare
942 Siz : constant Int := UI_To_Int (Esize (Rtyp));
943 Dsiz : constant Int := Siz * 2;
944 Opnod : Node_Id;
945 Ctyp : Entity_Id;
946 Opnd : Node_Id;
947 Cent : RE_Id;
ee6ba406 948
f40f9731 949 begin
950 -- Skip check if back end does overflow checks, or the overflow flag
df40eeb0 951 -- is not set anyway, or we are not doing code expansion, or the
952 -- parent node is a type conversion whose operand is an arithmetic
953 -- operation on signed integers on which the expander can promote
bbbed24b 954 -- later the operands to type Integer (see Expand_N_Type_Conversion).
ee6ba406 955
f40f9731 956 -- Special case CLI target, where arithmetic overflow checks can be
957 -- performed for integer and long_integer
ee6ba406 958
f40f9731 959 if Backend_Overflow_Checks_On_Target
960 or else not Do_Overflow_Check (N)
6dbcfcd9 961 or else not Full_Expander_Active
df40eeb0 962 or else (Present (Parent (N))
963 and then Nkind (Parent (N)) = N_Type_Conversion
964 and then Integer_Promotion_Possible (Parent (N)))
f40f9731 965 or else
966 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
967 then
968 return;
969 end if;
ee6ba406 970
f40f9731 971 -- Otherwise, generate the full general code for front end overflow
972 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 973
f40f9731 974 -- x op y
ee6ba406 975
f40f9731 976 -- is expanded into
ee6ba406 977
f40f9731 978 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 979
f40f9731 980 -- where Typ is the type of the original expression, and Checktyp is
981 -- an integer type of sufficient length to hold the largest possible
982 -- result.
ee6ba406 983
f40f9731 984 -- If the size of check type exceeds the size of Long_Long_Integer,
985 -- we use a different approach, expanding to:
ee6ba406 986
f40f9731 987 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 988
f40f9731 989 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 990
f40f9731 991 -- Find check type if one exists
992
993 if Dsiz <= Standard_Integer_Size then
994 Ctyp := Standard_Integer;
ee6ba406 995
f40f9731 996 elsif Dsiz <= Standard_Long_Long_Integer_Size then
997 Ctyp := Standard_Long_Long_Integer;
998
999 -- No check type exists, use runtime call
ee6ba406 1000
1001 else
f40f9731 1002 if Nkind (N) = N_Op_Add then
1003 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 1004
f40f9731 1005 elsif Nkind (N) = N_Op_Multiply then
1006 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 1007
f40f9731 1008 else
1009 pragma Assert (Nkind (N) = N_Op_Subtract);
1010 Cent := RE_Subtract_With_Ovflo_Check;
1011 end if;
1012
1013 Rewrite (N,
1014 OK_Convert_To (Typ,
1015 Make_Function_Call (Loc,
1016 Name => New_Reference_To (RTE (Cent), Loc),
1017 Parameter_Associations => New_List (
1018 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1019 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 1020
f40f9731 1021 Analyze_And_Resolve (N, Typ);
1022 return;
1023 end if;
ee6ba406 1024
f40f9731 1025 -- If we fall through, we have the case where we do the arithmetic
1026 -- in the next higher type and get the check by conversion. In these
1027 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 1028
f40f9731 1029 Opnod := Relocate_Node (N);
ee6ba406 1030
f40f9731 1031 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 1032
f40f9731 1033 Analyze (Opnd);
1034 Set_Etype (Opnd, Ctyp);
1035 Set_Analyzed (Opnd, True);
1036 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 1037
f40f9731 1038 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 1039
f40f9731 1040 Analyze (Opnd);
1041 Set_Etype (Opnd, Ctyp);
1042 Set_Analyzed (Opnd, True);
1043 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 1044
f40f9731 1045 -- The type of the operation changes to the base type of the check
1046 -- type, and we reset the overflow check indication, since clearly no
1047 -- overflow is possible now that we are using a double length type.
1048 -- We also set the Analyzed flag to avoid a recursive attempt to
1049 -- expand the node.
ee6ba406 1050
f40f9731 1051 Set_Etype (Opnod, Base_Type (Ctyp));
1052 Set_Do_Overflow_Check (Opnod, False);
1053 Set_Analyzed (Opnod, True);
ee6ba406 1054
f40f9731 1055 -- Now build the outer conversion
ee6ba406 1056
f40f9731 1057 Opnd := OK_Convert_To (Typ, Opnod);
1058 Analyze (Opnd);
1059 Set_Etype (Opnd, Typ);
9dfe12ae 1060
f40f9731 1061 -- In the discrete type case, we directly generate the range check
1062 -- for the outer operand. This range check will implement the
1063 -- required overflow check.
9dfe12ae 1064
f40f9731 1065 if Is_Discrete_Type (Typ) then
1066 Rewrite (N, Opnd);
1067 Generate_Range_Check
1068 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 1069
f40f9731 1070 -- For other types, we enable overflow checking on the conversion,
1071 -- after setting the node as analyzed to prevent recursive attempts
1072 -- to expand the conversion node.
9dfe12ae 1073
f40f9731 1074 else
1075 Set_Analyzed (Opnd, True);
1076 Enable_Overflow_Check (Opnd);
1077 Rewrite (N, Opnd);
1078 end if;
1079
1080 exception
1081 when RE_Not_Available =>
1082 return;
1083 end;
0df9d43f 1084 end Apply_Arithmetic_Overflow_Strict;
3cce7f32 1085
1086 ----------------------------------------------------
1087 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1088 ----------------------------------------------------
1089
1090 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1091 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
3cce7f32 1092
1093 Loc : constant Source_Ptr := Sloc (Op);
1094 P : constant Node_Id := Parent (Op);
1095
49b3a812 1096 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1097 -- Operands and results are of this type when we convert
1098
3cce7f32 1099 Result_Type : constant Entity_Id := Etype (Op);
1100 -- Original result type
1101
db415383 1102 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 1103 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1104
1105 Lo, Hi : Uint;
1106 -- Ranges of values for result
1107
1108 begin
1109 -- Nothing to do if our parent is one of the following:
1110
0326b4d4 1111 -- Another signed integer arithmetic op
3cce7f32 1112 -- A membership operation
1113 -- A comparison operation
1114
1115 -- In all these cases, we will process at the higher level (and then
1116 -- this node will be processed during the downwards recursion that
0df9d43f 1117 -- is part of the processing in Minimize_Eliminate_Overflows).
3cce7f32 1118
1119 if Is_Signed_Integer_Arithmetic_Op (P)
b8a17a21 1120 or else Nkind (P) in N_Membership_Test
1121 or else Nkind (P) in N_Op_Compare
aa4b16cb 1122
70a2dff4 1123 -- This is also true for an alternative in a case expression
1124
1125 or else Nkind (P) = N_Case_Expression_Alternative
1126
1127 -- This is also true for a range operand in a membership test
aa4b16cb 1128
b8a17a21 1129 or else (Nkind (P) = N_Range
1130 and then Nkind (Parent (P)) in N_Membership_Test)
3cce7f32 1131 then
1132 return;
1133 end if;
1134
0326b4d4 1135 -- Otherwise, we have a top level arithmetic operation node, and this
21a55437 1136 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1137 -- modes. This is the case where we tell the machinery not to move into
1138 -- Bignum mode at this top level (of course the top level operation
1139 -- will still be in Bignum mode if either of its operands are of type
1140 -- Bignum).
3cce7f32 1141
0df9d43f 1142 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
3cce7f32 1143
1144 -- That call may but does not necessarily change the result type of Op.
1145 -- It is the job of this routine to undo such changes, so that at the
1146 -- top level, we have the proper type. This "undoing" is a point at
1147 -- which a final overflow check may be applied.
1148
f32c377d 1149 -- If the result type was not fiddled we are all set. We go to base
1150 -- types here because things may have been rewritten to generate the
1151 -- base type of the operand types.
3cce7f32 1152
f32c377d 1153 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
3cce7f32 1154 return;
1155
1156 -- Bignum case
1157
49b3a812 1158 elsif Is_RTE (Etype (Op), RE_Bignum) then
3cce7f32 1159
d94b5da2 1160 -- We need a sequence that looks like:
3cce7f32 1161
1162 -- Rnn : Result_Type;
1163
1164 -- declare
d94b5da2 1165 -- M : Mark_Id := SS_Mark;
3cce7f32 1166 -- begin
49b3a812 1167 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
3cce7f32 1168 -- SS_Release (M);
1169 -- end;
1170
1171 -- This block is inserted (using Insert_Actions), and then the node
1172 -- is replaced with a reference to Rnn.
1173
1174 -- A special case arises if our parent is a conversion node. In this
1175 -- case no point in generating a conversion to Result_Type, we will
1176 -- let the parent handle this. Note that this special case is not
1177 -- just about optimization. Consider
1178
1179 -- A,B,C : Integer;
1180 -- ...
49b3a812 1181 -- X := Long_Long_Integer'Base (A * (B ** C));
3cce7f32 1182
1183 -- Now the product may fit in Long_Long_Integer but not in Integer.
21a55437 1184 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1185 -- overflow exception for this intermediate value.
3cce7f32 1186
1187 declare
49b3a812 1188 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3cce7f32 1189 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1190 RHS : Node_Id;
1191
1192 Rtype : Entity_Id;
1193
1194 begin
1195 RHS := Convert_From_Bignum (Op);
1196
1197 if Nkind (P) /= N_Type_Conversion then
49b3a812 1198 Convert_To_And_Rewrite (Result_Type, RHS);
3cce7f32 1199 Rtype := Result_Type;
1200
1201 -- Interesting question, do we need a check on that conversion
1202 -- operation. Answer, not if we know the result is in range.
1203 -- At the moment we are not taking advantage of this. To be
1204 -- looked at later ???
1205
1206 else
49b3a812 1207 Rtype := LLIB;
3cce7f32 1208 end if;
1209
1210 Insert_Before
1211 (First (Statements (Handled_Statement_Sequence (Blk))),
1212 Make_Assignment_Statement (Loc,
1213 Name => New_Occurrence_Of (Rnn, Loc),
1214 Expression => RHS));
1215
1216 Insert_Actions (Op, New_List (
1217 Make_Object_Declaration (Loc,
1218 Defining_Identifier => Rnn,
1219 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1220 Blk));
1221
1222 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1223 Analyze_And_Resolve (Op);
1224 end;
1225
412f75eb 1226 -- Here we know the result is Long_Long_Integer'Base, of that it has
1227 -- been rewritten because the parent operation is a conversion. See
0df9d43f 1228 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
3cce7f32 1229
1230 else
f32c377d 1231 pragma Assert
1232 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
3cce7f32 1233
1234 -- All we need to do here is to convert the result to the proper
1235 -- result type. As explained above for the Bignum case, we can
1236 -- omit this if our parent is a type conversion.
1237
1238 if Nkind (P) /= N_Type_Conversion then
1239 Convert_To_And_Rewrite (Result_Type, Op);
1240 end if;
1241
1242 Analyze_And_Resolve (Op);
1243 end if;
1244 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
ee6ba406 1245
ee6ba406 1246 ----------------------------
1247 -- Apply_Constraint_Check --
1248 ----------------------------
1249
1250 procedure Apply_Constraint_Check
1251 (N : Node_Id;
1252 Typ : Entity_Id;
1253 No_Sliding : Boolean := False)
1254 is
1255 Desig_Typ : Entity_Id;
1256
1257 begin
7aafae1c 1258 -- No checks inside a generic (check the instantiations)
1259
ee6ba406 1260 if Inside_A_Generic then
1261 return;
7aafae1c 1262 end if;
ee6ba406 1263
6fb3c314 1264 -- Apply required constraint checks
7aafae1c 1265
1266 if Is_Scalar_Type (Typ) then
ee6ba406 1267 Apply_Scalar_Range_Check (N, Typ);
1268
1269 elsif Is_Array_Type (Typ) then
1270
05fcfafb 1271 -- A useful optimization: an aggregate with only an others clause
5f260d20 1272 -- always has the right bounds.
1273
1274 if Nkind (N) = N_Aggregate
1275 and then No (Expressions (N))
1276 and then Nkind
1277 (First (Choices (First (Component_Associations (N)))))
1278 = N_Others_Choice
1279 then
1280 return;
1281 end if;
1282
ee6ba406 1283 if Is_Constrained (Typ) then
1284 Apply_Length_Check (N, Typ);
1285
1286 if No_Sliding then
1287 Apply_Range_Check (N, Typ);
1288 end if;
1289 else
1290 Apply_Range_Check (N, Typ);
1291 end if;
1292
4fb5f0a0 1293 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
ee6ba406 1294 and then Has_Discriminants (Base_Type (Typ))
1295 and then Is_Constrained (Typ)
1296 then
1297 Apply_Discriminant_Check (N, Typ);
1298
1299 elsif Is_Access_Type (Typ) then
1300
1301 Desig_Typ := Designated_Type (Typ);
1302
1303 -- No checks necessary if expression statically null
1304
2af58f67 1305 if Known_Null (N) then
00c403ee 1306 if Can_Never_Be_Null (Typ) then
1307 Install_Null_Excluding_Check (N);
1308 end if;
ee6ba406 1309
1310 -- No sliding possible on access to arrays
1311
1312 elsif Is_Array_Type (Desig_Typ) then
1313 if Is_Constrained (Desig_Typ) then
1314 Apply_Length_Check (N, Typ);
1315 end if;
1316
1317 Apply_Range_Check (N, Typ);
1318
1319 elsif Has_Discriminants (Base_Type (Desig_Typ))
1320 and then Is_Constrained (Desig_Typ)
1321 then
1322 Apply_Discriminant_Check (N, Typ);
1323 end if;
fa7497e8 1324
bf3e1520 1325 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1326 -- this check if the constraint node is illegal, as shown by having
1327 -- an error posted. This additional guard prevents cascaded errors
1328 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1329
fa7497e8 1330 if Can_Never_Be_Null (Typ)
1331 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1332 and then not Error_Posted (N)
fa7497e8 1333 then
1334 Install_Null_Excluding_Check (N);
1335 end if;
ee6ba406 1336 end if;
1337 end Apply_Constraint_Check;
1338
1339 ------------------------------
1340 -- Apply_Discriminant_Check --
1341 ------------------------------
1342
1343 procedure Apply_Discriminant_Check
1344 (N : Node_Id;
1345 Typ : Entity_Id;
1346 Lhs : Node_Id := Empty)
1347 is
1348 Loc : constant Source_Ptr := Sloc (N);
1349 Do_Access : constant Boolean := Is_Access_Type (Typ);
1350 S_Typ : Entity_Id := Etype (N);
1351 Cond : Node_Id;
1352 T_Typ : Entity_Id;
1353
7be5088a 1354 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1355 -- A heap object with an indefinite subtype is constrained by its
1356 -- initial value, and assigning to it requires a constraint_check.
1357 -- The target may be an explicit dereference, or a renaming of one.
1358
ee6ba406 1359 function Is_Aliased_Unconstrained_Component return Boolean;
1360 -- It is possible for an aliased component to have a nominal
1361 -- unconstrained subtype (through instantiation). If this is a
1362 -- discriminated component assigned in the expansion of an aggregate
1363 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1364 -- situation requires a predicate of its own.
ee6ba406 1365
7be5088a 1366 ----------------------------------
1367 -- Denotes_Explicit_Dereference --
1368 ----------------------------------
1369
1370 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1371 begin
1372 return
1373 Nkind (Obj) = N_Explicit_Dereference
1374 or else
1375 (Is_Entity_Name (Obj)
1376 and then Present (Renamed_Object (Entity (Obj)))
9474aa9c 1377 and then Nkind (Renamed_Object (Entity (Obj))) =
1378 N_Explicit_Dereference);
7be5088a 1379 end Denotes_Explicit_Dereference;
1380
ee6ba406 1381 ----------------------------------------
1382 -- Is_Aliased_Unconstrained_Component --
1383 ----------------------------------------
1384
1385 function Is_Aliased_Unconstrained_Component return Boolean is
1386 Comp : Entity_Id;
1387 Pref : Node_Id;
1388
1389 begin
1390 if Nkind (Lhs) /= N_Selected_Component then
1391 return False;
1392 else
1393 Comp := Entity (Selector_Name (Lhs));
1394 Pref := Prefix (Lhs);
1395 end if;
1396
1397 if Ekind (Comp) /= E_Component
1398 or else not Is_Aliased (Comp)
1399 then
1400 return False;
1401 end if;
1402
1403 return not Comes_From_Source (Pref)
1404 and then In_Instance
1405 and then not Is_Constrained (Etype (Comp));
1406 end Is_Aliased_Unconstrained_Component;
1407
1408 -- Start of processing for Apply_Discriminant_Check
1409
1410 begin
1411 if Do_Access then
1412 T_Typ := Designated_Type (Typ);
1413 else
1414 T_Typ := Typ;
1415 end if;
1416
1417 -- Nothing to do if discriminant checks are suppressed or else no code
1418 -- is to be generated
1419
6dbcfcd9 1420 if not Full_Expander_Active
ee6ba406 1421 or else Discriminant_Checks_Suppressed (T_Typ)
1422 then
1423 return;
1424 end if;
1425
feff2f05 1426 -- No discriminant checks necessary for an access when expression is
1427 -- statically Null. This is not only an optimization, it is fundamental
1428 -- because otherwise discriminant checks may be generated in init procs
1429 -- for types containing an access to a not-yet-frozen record, causing a
1430 -- deadly forward reference.
ee6ba406 1431
feff2f05 1432 -- Also, if the expression is of an access type whose designated type is
1433 -- incomplete, then the access value must be null and we suppress the
1434 -- check.
ee6ba406 1435
2af58f67 1436 if Known_Null (N) then
ee6ba406 1437 return;
1438
1439 elsif Is_Access_Type (S_Typ) then
1440 S_Typ := Designated_Type (S_Typ);
1441
1442 if Ekind (S_Typ) = E_Incomplete_Type then
1443 return;
1444 end if;
1445 end if;
1446
0577b0b1 1447 -- If an assignment target is present, then we need to generate the
1448 -- actual subtype if the target is a parameter or aliased object with
1449 -- an unconstrained nominal subtype.
1450
1451 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1452 -- subtype to the parameter and dereference cases, since other aliased
1453 -- objects are unconstrained (unless the nominal subtype is explicitly
7be5088a 1454 -- constrained).
ee6ba406 1455
1456 if Present (Lhs)
1457 and then (Present (Param_Entity (Lhs))
de54c5ab 1458 or else (Ada_Version < Ada_2005
0577b0b1 1459 and then not Is_Constrained (T_Typ)
ee6ba406 1460 and then Is_Aliased_View (Lhs)
0577b0b1 1461 and then not Is_Aliased_Unconstrained_Component)
de54c5ab 1462 or else (Ada_Version >= Ada_2005
0577b0b1 1463 and then not Is_Constrained (T_Typ)
7be5088a 1464 and then Denotes_Explicit_Dereference (Lhs)
0577b0b1 1465 and then Nkind (Original_Node (Lhs)) /=
1466 N_Function_Call))
ee6ba406 1467 then
1468 T_Typ := Get_Actual_Subtype (Lhs);
1469 end if;
1470
feff2f05 1471 -- Nothing to do if the type is unconstrained (this is the case where
1472 -- the actual subtype in the RM sense of N is unconstrained and no check
1473 -- is required).
ee6ba406 1474
1475 if not Is_Constrained (T_Typ) then
1476 return;
05fcfafb 1477
1478 -- Ada 2005: nothing to do if the type is one for which there is a
1479 -- partial view that is constrained.
1480
de54c5ab 1481 elsif Ada_Version >= Ada_2005
d41a3f41 1482 and then Effectively_Has_Constrained_Partial_View
1483 (Typ => Base_Type (T_Typ),
1484 Scop => Current_Scope)
05fcfafb 1485 then
1486 return;
ee6ba406 1487 end if;
1488
00f91aef 1489 -- Nothing to do if the type is an Unchecked_Union
1490
1491 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1492 return;
1493 end if;
1494
feff2f05 1495 -- Suppress checks if the subtypes are the same. the check must be
1496 -- preserved in an assignment to a formal, because the constraint is
1497 -- given by the actual.
ee6ba406 1498
1499 if Nkind (Original_Node (N)) /= N_Allocator
1500 and then (No (Lhs)
1501 or else not Is_Entity_Name (Lhs)
9dfe12ae 1502 or else No (Param_Entity (Lhs)))
ee6ba406 1503 then
1504 if (Etype (N) = Typ
1505 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1506 and then not Is_Aliased_View (Lhs)
1507 then
1508 return;
1509 end if;
1510
feff2f05 1511 -- We can also eliminate checks on allocators with a subtype mark that
1512 -- coincides with the context type. The context type may be a subtype
1513 -- without a constraint (common case, a generic actual).
ee6ba406 1514
1515 elsif Nkind (Original_Node (N)) = N_Allocator
1516 and then Is_Entity_Name (Expression (Original_Node (N)))
1517 then
1518 declare
9dfe12ae 1519 Alloc_Typ : constant Entity_Id :=
b6341c67 1520 Entity (Expression (Original_Node (N)));
ee6ba406 1521
1522 begin
1523 if Alloc_Typ = T_Typ
1524 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1525 and then Is_Entity_Name (
1526 Subtype_Indication (Parent (T_Typ)))
1527 and then Alloc_Typ = Base_Type (T_Typ))
1528
1529 then
1530 return;
1531 end if;
1532 end;
1533 end if;
1534
feff2f05 1535 -- See if we have a case where the types are both constrained, and all
1536 -- the constraints are constants. In this case, we can do the check
1537 -- successfully at compile time.
ee6ba406 1538
9dfe12ae 1539 -- We skip this check for the case where the node is a rewritten`
ee6ba406 1540 -- allocator, because it already carries the context subtype, and
1541 -- extracting the discriminants from the aggregate is messy.
1542
1543 if Is_Constrained (S_Typ)
1544 and then Nkind (Original_Node (N)) /= N_Allocator
1545 then
1546 declare
1547 DconT : Elmt_Id;
1548 Discr : Entity_Id;
1549 DconS : Elmt_Id;
1550 ItemS : Node_Id;
1551 ItemT : Node_Id;
1552
1553 begin
1554 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1555 -- private type completed by a default discriminated type. In that
1556 -- case, we need to get the constraints from the underlying_type.
1557 -- If the underlying type is unconstrained (i.e. has no default
1558 -- discriminants) no check is needed.
ee6ba406 1559
1560 if Has_Discriminants (S_Typ) then
1561 Discr := First_Discriminant (S_Typ);
1562 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1563
1564 else
1565 Discr := First_Discriminant (Underlying_Type (S_Typ));
1566 DconS :=
1567 First_Elmt
1568 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1569
1570 if No (DconS) then
1571 return;
1572 end if;
fccb5da7 1573
1574 -- A further optimization: if T_Typ is derived from S_Typ
1575 -- without imposing a constraint, no check is needed.
1576
1577 if Nkind (Original_Node (Parent (T_Typ))) =
1578 N_Full_Type_Declaration
1579 then
1580 declare
5c61a0ff 1581 Type_Def : constant Node_Id :=
b6341c67 1582 Type_Definition (Original_Node (Parent (T_Typ)));
fccb5da7 1583 begin
1584 if Nkind (Type_Def) = N_Derived_Type_Definition
1585 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1586 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1587 then
1588 return;
1589 end if;
1590 end;
1591 end if;
ee6ba406 1592 end if;
1593
1594 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1595
1596 while Present (Discr) loop
1597 ItemS := Node (DconS);
1598 ItemT := Node (DconT);
1599
00c403ee 1600 -- For a discriminated component type constrained by the
1601 -- current instance of an enclosing type, there is no
1602 -- applicable discriminant check.
1603
1604 if Nkind (ItemT) = N_Attribute_Reference
1605 and then Is_Access_Type (Etype (ItemT))
1606 and then Is_Entity_Name (Prefix (ItemT))
1607 and then Is_Type (Entity (Prefix (ItemT)))
1608 then
1609 return;
1610 end if;
1611
cc60bd16 1612 -- If the expressions for the discriminants are identical
1613 -- and it is side-effect free (for now just an entity),
1614 -- this may be a shared constraint, e.g. from a subtype
1615 -- without a constraint introduced as a generic actual.
1616 -- Examine other discriminants if any.
1617
1618 if ItemS = ItemT
1619 and then Is_Entity_Name (ItemS)
1620 then
1621 null;
1622
1623 elsif not Is_OK_Static_Expression (ItemS)
1624 or else not Is_OK_Static_Expression (ItemT)
1625 then
1626 exit;
ee6ba406 1627
cc60bd16 1628 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1629 if Do_Access then -- needs run-time check.
1630 exit;
1631 else
1632 Apply_Compile_Time_Constraint_Error
cb97ae5c 1633 (N, "incorrect value for discriminant&??",
f15731c4 1634 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1635 return;
1636 end if;
1637 end if;
1638
1639 Next_Elmt (DconS);
1640 Next_Elmt (DconT);
1641 Next_Discriminant (Discr);
1642 end loop;
1643
1644 if No (Discr) then
1645 return;
1646 end if;
1647 end;
1648 end if;
1649
1650 -- Here we need a discriminant check. First build the expression
1651 -- for the comparisons of the discriminants:
1652
1653 -- (n.disc1 /= typ.disc1) or else
1654 -- (n.disc2 /= typ.disc2) or else
1655 -- ...
1656 -- (n.discn /= typ.discn)
1657
1658 Cond := Build_Discriminant_Checks (N, T_Typ);
1659
3cce7f32 1660 -- If Lhs is set and is a parameter, then the condition is guarded by:
1661 -- lhs'constrained and then (condition built above)
ee6ba406 1662
1663 if Present (Param_Entity (Lhs)) then
1664 Cond :=
1665 Make_And_Then (Loc,
1666 Left_Opnd =>
1667 Make_Attribute_Reference (Loc,
1668 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1669 Attribute_Name => Name_Constrained),
1670 Right_Opnd => Cond);
1671 end if;
1672
1673 if Do_Access then
1674 Cond := Guard_Access (Cond, Loc, N);
1675 end if;
1676
1677 Insert_Action (N,
f15731c4 1678 Make_Raise_Constraint_Error (Loc,
1679 Condition => Cond,
1680 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1681 end Apply_Discriminant_Check;
1682
2fe22c69 1683 -------------------------
1684 -- Apply_Divide_Checks --
1685 -------------------------
ee6ba406 1686
2fe22c69 1687 procedure Apply_Divide_Checks (N : Node_Id) is
ee6ba406 1688 Loc : constant Source_Ptr := Sloc (N);
1689 Typ : constant Entity_Id := Etype (N);
1690 Left : constant Node_Id := Left_Opnd (N);
1691 Right : constant Node_Id := Right_Opnd (N);
1692
db415383 1693 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
2fe22c69 1694 -- Current overflow checking mode
1695
ee6ba406 1696 LLB : Uint;
1697 Llo : Uint;
1698 Lhi : Uint;
1699 LOK : Boolean;
1700 Rlo : Uint;
1701 Rhi : Uint;
2fe22c69 1702 ROK : Boolean;
96da3284 1703
1704 pragma Warnings (Off, Lhi);
1705 -- Don't actually use this value
ee6ba406 1706
1707 begin
0df9d43f 1708 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1709 -- operating on signed integer types, then the only thing this routine
1710 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1711 -- procedure will (possibly later on during recursive downward calls),
1712 -- ensure that any needed overflow/division checks are properly applied.
2fe22c69 1713
1714 if Mode in Minimized_Or_Eliminated
2fe22c69 1715 and then Is_Signed_Integer_Type (Typ)
1716 then
1717 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1718 return;
1719 end if;
1720
1721 -- Proceed here in SUPPRESSED or CHECKED modes
1722
6dbcfcd9 1723 if Full_Expander_Active
13dbf220 1724 and then not Backend_Divide_Checks_On_Target
1725 and then Check_Needed (Right, Division_Check)
ee6ba406 1726 then
9c486805 1727 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1728
2fe22c69 1729 -- Deal with division check
ee6ba406 1730
2fe22c69 1731 if Do_Division_Check (N)
1732 and then not Division_Checks_Suppressed (Typ)
1733 then
1734 Apply_Division_Check (N, Rlo, Rhi, ROK);
ee6ba406 1735 end if;
1736
2fe22c69 1737 -- Deal with overflow check
1738
0df9d43f 1739 if Do_Overflow_Check (N)
1740 and then not Overflow_Checks_Suppressed (Etype (N))
1741 then
2fe22c69 1742
1743 -- Test for extremely annoying case of xxx'First divided by -1
1744 -- for division of signed integer types (only overflow case).
ee6ba406 1745
ee6ba406 1746 if Nkind (N) = N_Op_Divide
1747 and then Is_Signed_Integer_Type (Typ)
1748 then
9c486805 1749 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1750 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1751
1752 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
2fe22c69 1753 and then
1754 ((not LOK) or else (Llo = LLB))
ee6ba406 1755 then
1756 Insert_Action (N,
1757 Make_Raise_Constraint_Error (Loc,
1758 Condition =>
1759 Make_And_Then (Loc,
2fe22c69 1760 Left_Opnd =>
1761 Make_Op_Eq (Loc,
1762 Left_Opnd =>
1763 Duplicate_Subexpr_Move_Checks (Left),
1764 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
ee6ba406 1765
2fe22c69 1766 Right_Opnd =>
1767 Make_Op_Eq (Loc,
1768 Left_Opnd => Duplicate_Subexpr (Right),
1769 Right_Opnd => Make_Integer_Literal (Loc, -1))),
ee6ba406 1770
f15731c4 1771 Reason => CE_Overflow_Check_Failed));
ee6ba406 1772 end if;
1773 end if;
1774 end if;
1775 end if;
2fe22c69 1776 end Apply_Divide_Checks;
1777
1778 --------------------------
1779 -- Apply_Division_Check --
1780 --------------------------
1781
1782 procedure Apply_Division_Check
1783 (N : Node_Id;
1784 Rlo : Uint;
1785 Rhi : Uint;
1786 ROK : Boolean)
1787 is
1788 pragma Assert (Do_Division_Check (N));
1789
1790 Loc : constant Source_Ptr := Sloc (N);
1791 Right : constant Node_Id := Right_Opnd (N);
1792
1793 begin
1794 if Full_Expander_Active
1795 and then not Backend_Divide_Checks_On_Target
1796 and then Check_Needed (Right, Division_Check)
1797 then
1798 -- See if division by zero possible, and if so generate test. This
1799 -- part of the test is not controlled by the -gnato switch, since
1800 -- it is a Division_Check and not an Overflow_Check.
1801
1802 if Do_Division_Check (N) then
1803 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1804 Insert_Action (N,
1805 Make_Raise_Constraint_Error (Loc,
1806 Condition =>
1807 Make_Op_Eq (Loc,
1808 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1809 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1810 Reason => CE_Divide_By_Zero));
1811 end if;
1812 end if;
1813 end if;
1814 end Apply_Division_Check;
ee6ba406 1815
5329ca64 1816 ----------------------------------
1817 -- Apply_Float_Conversion_Check --
1818 ----------------------------------
1819
feff2f05 1820 -- Let F and I be the source and target types of the conversion. The RM
1821 -- specifies that a floating-point value X is rounded to the nearest
1822 -- integer, with halfway cases being rounded away from zero. The rounded
1823 -- value of X is checked against I'Range.
1824
1825 -- The catch in the above paragraph is that there is no good way to know
1826 -- whether the round-to-integer operation resulted in overflow. A remedy is
1827 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1828
5329ca64 1829 -- (1) The bounds may not be known at compile time
2af58f67 1830 -- (2) The check must take into account rounding or truncation.
5329ca64 1831 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1832 -- (4) For the rounding case, The end-points I'First - 0.5 and
1833 -- I'Last + 0.5 may or may not be in range, depending on the
1834 -- sign of I'First and I'Last.
5329ca64 1835 -- (5) X may be a NaN, which will fail any comparison
1836
2af58f67 1837 -- The following steps correctly convert X with rounding:
feff2f05 1838
5329ca64 1839 -- (1) If either I'First or I'Last is not known at compile time, use
1840 -- I'Base instead of I in the next three steps and perform a
1841 -- regular range check against I'Range after conversion.
1842 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1843 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1844 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1845 -- In other words, take one of the closest floating-point numbers
1846 -- (which is an integer value) to I'First, and see if it is in
1847 -- range or not.
5329ca64 1848 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1849 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1850 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1851 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1852 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1853
2af58f67 1854 -- For the truncating case, replace steps (2) and (3) as follows:
1855 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1856 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1857 -- Lo_OK be True.
1858 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1859 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
141d591a 1860 -- Hi_OK be True.
2af58f67 1861
5329ca64 1862 procedure Apply_Float_Conversion_Check
1863 (Ck_Node : Node_Id;
1864 Target_Typ : Entity_Id)
1865 is
feff2f05 1866 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1867 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1868 Loc : constant Source_Ptr := Sloc (Ck_Node);
1869 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1870 Target_Base : constant Entity_Id :=
b6341c67 1871 Implementation_Base_Type (Target_Typ);
feff2f05 1872
2af58f67 1873 Par : constant Node_Id := Parent (Ck_Node);
1874 pragma Assert (Nkind (Par) = N_Type_Conversion);
1875 -- Parent of check node, must be a type conversion
1876
1877 Truncate : constant Boolean := Float_Truncate (Par);
1878 Max_Bound : constant Uint :=
b6341c67 1879 UI_Expon
1880 (Machine_Radix_Value (Expr_Type),
1881 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
2af58f67 1882
5329ca64 1883 -- Largest bound, so bound plus or minus half is a machine number of F
1884
feff2f05 1885 Ifirst, Ilast : Uint;
1886 -- Bounds of integer type
1887
1888 Lo, Hi : Ureal;
1889 -- Bounds to check in floating-point domain
5329ca64 1890
feff2f05 1891 Lo_OK, Hi_OK : Boolean;
1892 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 1893
feff2f05 1894 Lo_Chk, Hi_Chk : Node_Id;
1895 -- Expressions that are False iff check fails
1896
1897 Reason : RT_Exception_Code;
5329ca64 1898
1899 begin
1900 if not Compile_Time_Known_Value (LB)
1901 or not Compile_Time_Known_Value (HB)
1902 then
1903 declare
feff2f05 1904 -- First check that the value falls in the range of the base type,
1905 -- to prevent overflow during conversion and then perform a
1906 -- regular range check against the (dynamic) bounds.
5329ca64 1907
5329ca64 1908 pragma Assert (Target_Base /= Target_Typ);
5329ca64 1909
46eb6933 1910 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
5329ca64 1911
1912 begin
1913 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1914 Set_Etype (Temp, Target_Base);
1915
1916 Insert_Action (Parent (Par),
1917 Make_Object_Declaration (Loc,
1918 Defining_Identifier => Temp,
1919 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1920 Expression => New_Copy_Tree (Par)),
1921 Suppress => All_Checks);
1922
1923 Insert_Action (Par,
1924 Make_Raise_Constraint_Error (Loc,
1925 Condition =>
1926 Make_Not_In (Loc,
1927 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1928 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1929 Reason => CE_Range_Check_Failed));
1930 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1931
1932 return;
1933 end;
1934 end if;
1935
7d86aa98 1936 -- Get the (static) bounds of the target type
5329ca64 1937
1938 Ifirst := Expr_Value (LB);
1939 Ilast := Expr_Value (HB);
1940
7d86aa98 1941 -- A simple optimization: if the expression is a universal literal,
1942 -- we can do the comparison with the bounds and the conversion to
1943 -- an integer type statically. The range checks are unchanged.
1944
1945 if Nkind (Ck_Node) = N_Real_Literal
1946 and then Etype (Ck_Node) = Universal_Real
1947 and then Is_Integer_Type (Target_Typ)
1948 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1949 then
1950 declare
1951 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1952
1953 begin
1954 if Int_Val <= Ilast and then Int_Val >= Ifirst then
1955
4309515d 1956 -- Conversion is safe
7d86aa98 1957
1958 Rewrite (Parent (Ck_Node),
1959 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1960 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1961 return;
1962 end if;
1963 end;
1964 end if;
1965
5329ca64 1966 -- Check against lower bound
1967
2af58f67 1968 if Truncate and then Ifirst > 0 then
1969 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1970 Lo_OK := False;
1971
1972 elsif Truncate then
1973 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1974 Lo_OK := True;
1975
1976 elsif abs (Ifirst) < Max_Bound then
5329ca64 1977 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1978 Lo_OK := (Ifirst > 0);
2af58f67 1979
5329ca64 1980 else
1981 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1982 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1983 end if;
1984
1985 if Lo_OK then
1986
1987 -- Lo_Chk := (X >= Lo)
1988
1989 Lo_Chk := Make_Op_Ge (Loc,
1990 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1991 Right_Opnd => Make_Real_Literal (Loc, Lo));
1992
1993 else
1994 -- Lo_Chk := (X > Lo)
1995
1996 Lo_Chk := Make_Op_Gt (Loc,
1997 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1998 Right_Opnd => Make_Real_Literal (Loc, Lo));
1999 end if;
2000
2001 -- Check against higher bound
2002
2af58f67 2003 if Truncate and then Ilast < 0 then
2004 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
b2c42753 2005 Hi_OK := False;
2af58f67 2006
2007 elsif Truncate then
2008 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2009 Hi_OK := True;
2010
2011 elsif abs (Ilast) < Max_Bound then
5329ca64 2012 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2013 Hi_OK := (Ilast < 0);
2014 else
2015 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2016 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2017 end if;
2018
2019 if Hi_OK then
2020
2021 -- Hi_Chk := (X <= Hi)
2022
2023 Hi_Chk := Make_Op_Le (Loc,
2024 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2025 Right_Opnd => Make_Real_Literal (Loc, Hi));
2026
2027 else
2028 -- Hi_Chk := (X < Hi)
2029
2030 Hi_Chk := Make_Op_Lt (Loc,
2031 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2032 Right_Opnd => Make_Real_Literal (Loc, Hi));
2033 end if;
2034
feff2f05 2035 -- If the bounds of the target type are the same as those of the base
2036 -- type, the check is an overflow check as a range check is not
2037 -- performed in these cases.
5329ca64 2038
2039 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2040 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2041 then
2042 Reason := CE_Overflow_Check_Failed;
2043 else
2044 Reason := CE_Range_Check_Failed;
2045 end if;
2046
2047 -- Raise CE if either conditions does not hold
2048
2049 Insert_Action (Ck_Node,
2050 Make_Raise_Constraint_Error (Loc,
05fcfafb 2051 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 2052 Reason => Reason));
2053 end Apply_Float_Conversion_Check;
2054
ee6ba406 2055 ------------------------
2056 -- Apply_Length_Check --
2057 ------------------------
2058
2059 procedure Apply_Length_Check
2060 (Ck_Node : Node_Id;
2061 Target_Typ : Entity_Id;
2062 Source_Typ : Entity_Id := Empty)
2063 is
2064 begin
2065 Apply_Selected_Length_Checks
2066 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2067 end Apply_Length_Check;
2068
3b045963 2069 -------------------------------------
2070 -- Apply_Parameter_Aliasing_Checks --
2071 -------------------------------------
b73adb97 2072
3b045963 2073 procedure Apply_Parameter_Aliasing_Checks
2074 (Call : Node_Id;
2075 Subp : Entity_Id)
2076 is
2077 function May_Cause_Aliasing
2078 (Formal_1 : Entity_Id;
2079 Formal_2 : Entity_Id) return Boolean;
2080 -- Determine whether two formal parameters can alias each other
2081 -- depending on their modes.
2082
2083 function Original_Actual (N : Node_Id) return Node_Id;
2084 -- The expander may replace an actual with a temporary for the sake of
2085 -- side effect removal. The temporary may hide a potential aliasing as
2086 -- it does not share the address of the actual. This routine attempts
2087 -- to retrieve the original actual.
2088
2089 ------------------------
2090 -- May_Cause_Aliasing --
2091 ------------------------
b73adb97 2092
3b045963 2093 function May_Cause_Aliasing
4a9e7f0c 2094 (Formal_1 : Entity_Id;
3b045963 2095 Formal_2 : Entity_Id) return Boolean
2096 is
2097 begin
2098 -- The following combination cannot lead to aliasing
2099
2100 -- Formal 1 Formal 2
2101 -- IN IN
2102
2103 if Ekind (Formal_1) = E_In_Parameter
a45d946f 2104 and then
2105 Ekind (Formal_2) = E_In_Parameter
3b045963 2106 then
2107 return False;
2108
2109 -- The following combinations may lead to aliasing
2110
2111 -- Formal 1 Formal 2
2112 -- IN OUT
2113 -- IN IN OUT
2114 -- OUT IN
2115 -- OUT IN OUT
2116 -- OUT OUT
2117
2118 else
2119 return True;
2120 end if;
2121 end May_Cause_Aliasing;
2122
2123 ---------------------
2124 -- Original_Actual --
2125 ---------------------
2126
2127 function Original_Actual (N : Node_Id) return Node_Id is
2128 begin
2129 if Nkind (N) = N_Type_Conversion then
2130 return Expression (N);
2131
2132 -- The expander created a temporary to capture the result of a type
2133 -- conversion where the expression is the real actual.
2134
2135 elsif Nkind (N) = N_Identifier
2136 and then Present (Original_Node (N))
2137 and then Nkind (Original_Node (N)) = N_Type_Conversion
2138 then
2139 return Expression (Original_Node (N));
2140 end if;
2141
2142 return N;
2143 end Original_Actual;
2144
2145 -- Local variables
2146
2147 Loc : constant Source_Ptr := Sloc (Call);
2148 Actual_1 : Node_Id;
2149 Actual_2 : Node_Id;
2150 Check : Node_Id;
2151 Cond : Node_Id;
2152 Formal_1 : Entity_Id;
2153 Formal_2 : Entity_Id;
2154
2155 -- Start of processing for Apply_Parameter_Aliasing_Checks
2156
2157 begin
2158 Cond := Empty;
2159
2160 Actual_1 := First_Actual (Call);
2161 Formal_1 := First_Formal (Subp);
2162 while Present (Actual_1) and then Present (Formal_1) loop
2163
2164 -- Ensure that the actual is an object that is not passed by value.
2165 -- Elementary types are always passed by value, therefore actuals of
2166 -- such types cannot lead to aliasing.
2167
2168 if Is_Object_Reference (Original_Actual (Actual_1))
2169 and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
2170 then
2171 Actual_2 := Next_Actual (Actual_1);
2172 Formal_2 := Next_Formal (Formal_1);
2173 while Present (Actual_2) and then Present (Formal_2) loop
2174
2175 -- The other actual we are testing against must also denote
2176 -- a non pass-by-value object. Generate the check only when
2177 -- the mode of the two formals may lead to aliasing.
2178
2179 if Is_Object_Reference (Original_Actual (Actual_2))
2180 and then not
2181 Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
2182 and then May_Cause_Aliasing (Formal_1, Formal_2)
2183 then
2184 -- Generate:
2185 -- Actual_1'Overlaps_Storage (Actual_2)
2186
2187 Check :=
2188 Make_Attribute_Reference (Loc,
2189 Prefix =>
2190 New_Copy_Tree (Original_Actual (Actual_1)),
2191 Attribute_Name => Name_Overlaps_Storage,
2192 Expressions =>
2193 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2194
2195 if No (Cond) then
2196 Cond := Check;
2197 else
2198 Cond :=
2199 Make_And_Then (Loc,
2200 Left_Opnd => Cond,
2201 Right_Opnd => Check);
2202 end if;
2203 end if;
2204
2205 Next_Actual (Actual_2);
2206 Next_Formal (Formal_2);
2207 end loop;
2208 end if;
2209
2210 Next_Actual (Actual_1);
2211 Next_Formal (Formal_1);
2212 end loop;
2213
2214 -- Place the check right before the call
2215
2216 if Present (Cond) then
2217 Insert_Action (Call,
2218 Make_Raise_Program_Error (Loc,
2219 Condition => Cond,
2220 Reason => PE_Explicit_Raise));
2221 end if;
2222 end Apply_Parameter_Aliasing_Checks;
2223
2224 -------------------------------------
2225 -- Apply_Parameter_Validity_Checks --
2226 -------------------------------------
2227
2228 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2229 Subp_Decl : Node_Id;
b73adb97 2230
4a9e7f0c 2231 procedure Add_Validity_Check
2232 (Context : Entity_Id;
2233 PPC_Nam : Name_Id;
2234 For_Result : Boolean := False);
2235 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2236 -- of Context. PPC_Nam denotes the pre or post condition pragma name.
2237 -- Set flag For_Result when to verify the result of a function.
b73adb97 2238
4a9e7f0c 2239 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id);
2240 -- Create a pre or post condition pragma with name PPC_Nam which
2241 -- tests expression Check.
b73adb97 2242
b73adb97 2243 ------------------------
2244 -- Add_Validity_Check --
2245 ------------------------
2246
2247 procedure Add_Validity_Check
2248 (Context : Entity_Id;
4a9e7f0c 2249 PPC_Nam : Name_Id;
b73adb97 2250 For_Result : Boolean := False)
2251 is
4a9e7f0c 2252 Loc : constant Source_Ptr := Sloc (Subp);
2253 Typ : constant Entity_Id := Etype (Context);
b73adb97 2254 Check : Node_Id;
2255 Nam : Name_Id;
2256
2257 begin
2258 -- Pick the proper version of 'Valid depending on the type of the
2259 -- context. If the context is not eligible for such a check, return.
2260
2261 if Is_Scalar_Type (Typ) then
2262 Nam := Name_Valid;
2263 elsif not No_Scalar_Parts (Typ) then
2264 Nam := Name_Valid_Scalars;
2265 else
2266 return;
2267 end if;
2268
2269 -- Step 1: Create the expression to verify the validity of the
2270 -- context.
2271
2272 Check := New_Reference_To (Context, Loc);
2273
2274 -- When processing a function result, use 'Result. Generate
2275 -- Context'Result
2276
2277 if For_Result then
2278 Check :=
2279 Make_Attribute_Reference (Loc,
2280 Prefix => Check,
2281 Attribute_Name => Name_Result);
2282 end if;
2283
2284 -- Generate:
2285 -- Context['Result]'Valid[_Scalars]
2286
2287 Check :=
2288 Make_Attribute_Reference (Loc,
2289 Prefix => Check,
2290 Attribute_Name => Nam);
2291
4a9e7f0c 2292 -- Step 2: Create a pre or post condition pragma
2293
2294 Build_PPC_Pragma (PPC_Nam, Check);
2295 end Add_Validity_Check;
2296
2297 ----------------------
2298 -- Build_PPC_Pragma --
2299 ----------------------
b73adb97 2300
4a9e7f0c 2301 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id) is
7c443ae8 2302 Loc : constant Source_Ptr := Sloc (Subp);
2303 Decls : List_Id;
2304 Prag : Node_Id;
4a9e7f0c 2305
2306 begin
2307 Prag :=
2308 Make_Pragma (Loc,
2309 Pragma_Identifier => Make_Identifier (Loc, PPC_Nam),
2310 Pragma_Argument_Associations => New_List (
2311 Make_Pragma_Argument_Association (Loc,
2312 Chars => Name_Check,
2313 Expression => Check)));
2314
2315 -- Add a message unless exception messages are suppressed
2316
2317 if not Exception_Locations_Suppressed then
2318 Append_To (Pragma_Argument_Associations (Prag),
2319 Make_Pragma_Argument_Association (Loc,
2320 Chars => Name_Message,
2321 Expression =>
2322 Make_String_Literal (Loc,
2323 Strval => "failed " & Get_Name_String (PPC_Nam) &
2324 " from " & Build_Location_String (Loc))));
2325 end if;
2326
2327 -- Insert the pragma in the tree
2328
2329 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2330 Add_Global_Declaration (Prag);
7c443ae8 2331 Analyze (Prag);
2332
2333 -- PPC pragmas associated with subprogram bodies must be inserted in
2334 -- the declarative part of the body.
2335
2336 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2337 Decls := Declarations (Subp_Decl);
2338
2339 if No (Decls) then
2340 Decls := New_List;
2341 Set_Declarations (Subp_Decl, Decls);
2342 end if;
2343
1bd93de5 2344 Prepend_To (Decls, Prag);
7c443ae8 2345
2346 -- Ensure the proper visibility of the subprogram body and its
2347 -- parameters.
2348
2349 Push_Scope (Subp);
2350 Analyze (Prag);
2351 Pop_Scope;
2352
2353 -- For subprogram declarations insert the PPC pragma right after the
2354 -- declarative node.
2355
b73adb97 2356 else
7c443ae8 2357 Insert_After_And_Analyze (Subp_Decl, Prag);
b73adb97 2358 end if;
4a9e7f0c 2359 end Build_PPC_Pragma;
2360
2361 -- Local variables
2362
2363 Formal : Entity_Id;
4a9e7f0c 2364 Subp_Spec : Node_Id;
2365
3b045963 2366 -- Start of processing for Apply_Parameter_Validity_Checks
b73adb97 2367
2368 begin
4a9e7f0c 2369 -- Extract the subprogram specification and declaration nodes
b73adb97 2370
4a9e7f0c 2371 Subp_Spec := Parent (Subp);
a45d946f 2372
4a9e7f0c 2373 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2374 Subp_Spec := Parent (Subp_Spec);
2375 end if;
a45d946f 2376
4a9e7f0c 2377 Subp_Decl := Parent (Subp_Spec);
9e58d7ed 2378
b73adb97 2379 if not Comes_From_Source (Subp)
4a9e7f0c 2380
2381 -- Do not process formal subprograms because the corresponding actual
2382 -- will receive the proper checks when the instance is analyzed.
2383
2384 or else Is_Formal_Subprogram (Subp)
2385
a45d946f 2386 -- Do not process imported subprograms since pre and post conditions
2387 -- are never verified on routines coming from a different language.
4a9e7f0c 2388
b73adb97 2389 or else Is_Imported (Subp)
2390 or else Is_Intrinsic_Subprogram (Subp)
4a9e7f0c 2391
a45d946f 2392 -- The PPC pragmas generated by this routine do not correspond to
2393 -- source aspects, therefore they cannot be applied to abstract
2394 -- subprograms.
4a9e7f0c 2395
7c443ae8 2396 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
4a9e7f0c 2397
a45d946f 2398 -- Do not consider subprogram renaminds because the renamed entity
2399 -- already has the proper PPC pragmas.
1bd93de5 2400
2401 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2402
a45d946f 2403 -- Do not process null procedures because there is no benefit of
2404 -- adding the checks to a no action routine.
4a9e7f0c 2405
2406 or else (Nkind (Subp_Spec) = N_Procedure_Specification
a45d946f 2407 and then Null_Present (Subp_Spec))
b73adb97 2408 then
2409 return;
2410 end if;
2411
4a9e7f0c 2412 -- Inspect all the formals applying aliasing and scalar initialization
2413 -- checks where applicable.
b73adb97 2414
2415 Formal := First_Formal (Subp);
2416 while Present (Formal) loop
4a9e7f0c 2417
2418 -- Generate the following scalar initialization checks for each
2419 -- formal parameter:
2420
2421 -- mode IN - Pre => Formal'Valid[_Scalars]
2422 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2423 -- mode OUT - Post => Formal'Valid[_Scalars]
2424
2425 if Check_Validity_Of_Parameters then
2426 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2427 Add_Validity_Check (Formal, Name_Precondition, False);
2428 end if;
2429
2430 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2431 Add_Validity_Check (Formal, Name_Postcondition, False);
2432 end if;
b73adb97 2433 end if;
2434
b73adb97 2435 Next_Formal (Formal);
2436 end loop;
2437
a45d946f 2438 -- Generate following scalar initialization check for function result:
4a9e7f0c 2439
2440 -- Post => Subp'Result'Valid[_Scalars]
b73adb97 2441
a45d946f 2442 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
4a9e7f0c 2443 Add_Validity_Check (Subp, Name_Postcondition, True);
b73adb97 2444 end if;
3b045963 2445 end Apply_Parameter_Validity_Checks;
b73adb97 2446
7aafae1c 2447 ---------------------------
2448 -- Apply_Predicate_Check --
2449 ---------------------------
2450
2451 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
301d5ec3 2452 S : Entity_Id;
9e58d7ed 2453
7aafae1c 2454 begin
701d57a4 2455 if Present (Predicate_Function (Typ)) then
301d5ec3 2456
2457 -- A predicate check does not apply within internally generated
2458 -- subprograms, such as TSS functions.
2459
2460 S := Current_Scope;
9e58d7ed 2461 while Present (S) and then not Is_Subprogram (S) loop
301d5ec3 2462 S := Scope (S);
2463 end loop;
2464
9e58d7ed 2465 if Present (S) and then Get_TSS_Name (S) /= TSS_Null then
301d5ec3 2466 return;
22631b41 2467
96a2d100 2468 -- If the check appears within the predicate function itself, it
2469 -- means that the user specified a check whose formal is the
2470 -- predicated subtype itself, rather than some covering type. This
2471 -- is likely to be a common error, and thus deserves a warning.
22631b41 2472
2473 elsif S = Predicate_Function (Typ) then
96a2d100 2474 Error_Msg_N
2475 ("predicate check includes a function call that "
cb97ae5c 2476 & "requires a predicate check??", Parent (N));
96a2d100 2477 Error_Msg_N
cb97ae5c 2478 ("\this will result in infinite recursion??", Parent (N));
96a2d100 2479 Insert_Action (N,
61016a7a 2480 Make_Raise_Storage_Error (Sloc (N),
2481 Reason => SE_Infinite_Recursion));
22631b41 2482
61016a7a 2483 -- Here for normal case of predicate active.
e6281d47 2484
61016a7a 2485 else
e6281d47 2486 -- If the predicate is a static predicate and the operand is
2487 -- static, the predicate must be evaluated statically. If the
cac18f71 2488 -- evaluation fails this is a static constraint error. This check
2489 -- is disabled in -gnatc mode, because the compiler is incapable
2490 -- of evaluating static expressions in that case.
e6281d47 2491
2492 if Is_OK_Static_Expression (N) then
61016a7a 2493 if Present (Static_Predicate (Typ)) then
a45d946f 2494 if Operating_Mode < Generate_Code
2495 or else Eval_Static_Predicate_Check (N, Typ)
cac18f71 2496 then
e6281d47 2497 return;
2498 else
2499 Error_Msg_NE
2500 ("static expression fails static predicate check on&",
61016a7a 2501 N, Typ);
e6281d47 2502 end if;
2503 end if;
2504 end if;
2505
301d5ec3 2506 Insert_Action (N,
2507 Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
2508 end if;
7aafae1c 2509 end if;
2510 end Apply_Predicate_Check;
2511
ee6ba406 2512 -----------------------
2513 -- Apply_Range_Check --
2514 -----------------------
2515
2516 procedure Apply_Range_Check
2517 (Ck_Node : Node_Id;
2518 Target_Typ : Entity_Id;
2519 Source_Typ : Entity_Id := Empty)
2520 is
2521 begin
2522 Apply_Selected_Range_Checks
2523 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2524 end Apply_Range_Check;
2525
2526 ------------------------------
2527 -- Apply_Scalar_Range_Check --
2528 ------------------------------
2529
feff2f05 2530 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2531 -- off if it is already set on.
ee6ba406 2532
2533 procedure Apply_Scalar_Range_Check
2534 (Expr : Node_Id;
2535 Target_Typ : Entity_Id;
2536 Source_Typ : Entity_Id := Empty;
2537 Fixed_Int : Boolean := False)
2538 is
2539 Parnt : constant Node_Id := Parent (Expr);
2540 S_Typ : Entity_Id;
2541 Arr : Node_Id := Empty; -- initialize to prevent warning
2542 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2543 OK : Boolean;
2544
2545 Is_Subscr_Ref : Boolean;
2546 -- Set true if Expr is a subscript
2547
2548 Is_Unconstrained_Subscr_Ref : Boolean;
2549 -- Set true if Expr is a subscript of an unconstrained array. In this
2550 -- case we do not attempt to do an analysis of the value against the
2551 -- range of the subscript, since we don't know the actual subtype.
2552
2553 Int_Real : Boolean;
feff2f05 2554 -- Set to True if Expr should be regarded as a real value even though
2555 -- the type of Expr might be discrete.
ee6ba406 2556
2557 procedure Bad_Value;
2558 -- Procedure called if value is determined to be out of range
2559
9dfe12ae 2560 ---------------
2561 -- Bad_Value --
2562 ---------------
2563
ee6ba406 2564 procedure Bad_Value is
2565 begin
2566 Apply_Compile_Time_Constraint_Error
cb97ae5c 2567 (Expr, "value not in range of}??", CE_Range_Check_Failed,
ee6ba406 2568 Ent => Target_Typ,
2569 Typ => Target_Typ);
2570 end Bad_Value;
2571
9dfe12ae 2572 -- Start of processing for Apply_Scalar_Range_Check
2573
ee6ba406 2574 begin
2af58f67 2575 -- Return if check obviously not needed
ee6ba406 2576
2af58f67 2577 if
2578 -- Not needed inside generic
ee6ba406 2579
2af58f67 2580 Inside_A_Generic
2581
2582 -- Not needed if previous error
2583
2584 or else Target_Typ = Any_Type
2585 or else Nkind (Expr) = N_Error
2586
2587 -- Not needed for non-scalar type
2588
2589 or else not Is_Scalar_Type (Target_Typ)
2590
2591 -- Not needed if we know node raises CE already
2592
2593 or else Raises_Constraint_Error (Expr)
ee6ba406 2594 then
2595 return;
2596 end if;
2597
2598 -- Now, see if checks are suppressed
2599
2600 Is_Subscr_Ref :=
2601 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2602
2603 if Is_Subscr_Ref then
2604 Arr := Prefix (Parnt);
2605 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
cce84b09 2606
a3a76ccc 2607 if Is_Access_Type (Arr_Typ) then
245e87df 2608 Arr_Typ := Designated_Type (Arr_Typ);
a3a76ccc 2609 end if;
ee6ba406 2610 end if;
2611
2612 if not Do_Range_Check (Expr) then
2613
2614 -- Subscript reference. Check for Index_Checks suppressed
2615
2616 if Is_Subscr_Ref then
2617
2618 -- Check array type and its base type
2619
2620 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 2621 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 2622 then
2623 return;
2624
2625 -- Check array itself if it is an entity name
2626
2627 elsif Is_Entity_Name (Arr)
9dfe12ae 2628 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 2629 then
2630 return;
2631
2632 -- Check expression itself if it is an entity name
2633
2634 elsif Is_Entity_Name (Expr)
9dfe12ae 2635 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 2636 then
2637 return;
2638 end if;
2639
2640 -- All other cases, check for Range_Checks suppressed
2641
2642 else
2643 -- Check target type and its base type
2644
2645 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 2646 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 2647 then
2648 return;
2649
2650 -- Check expression itself if it is an entity name
2651
2652 elsif Is_Entity_Name (Expr)
9dfe12ae 2653 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 2654 then
2655 return;
2656
feff2f05 2657 -- If Expr is part of an assignment statement, then check left
2658 -- side of assignment if it is an entity name.
ee6ba406 2659
2660 elsif Nkind (Parnt) = N_Assignment_Statement
2661 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 2662 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 2663 then
2664 return;
2665 end if;
2666 end if;
2667 end if;
2668
9dfe12ae 2669 -- Do not set range checks if they are killed
2670
2671 if Nkind (Expr) = N_Unchecked_Type_Conversion
2672 and then Kill_Range_Check (Expr)
2673 then
2674 return;
2675 end if;
2676
2677 -- Do not set range checks for any values from System.Scalar_Values
2678 -- since the whole idea of such values is to avoid checking them!
2679
2680 if Is_Entity_Name (Expr)
2681 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2682 then
2683 return;
2684 end if;
2685
ee6ba406 2686 -- Now see if we need a check
2687
2688 if No (Source_Typ) then
2689 S_Typ := Etype (Expr);
2690 else
2691 S_Typ := Source_Typ;
2692 end if;
2693
2694 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2695 return;
2696 end if;
2697
2698 Is_Unconstrained_Subscr_Ref :=
2699 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2700
b40670e1 2701 -- Special checks for floating-point type
ee6ba406 2702
b40670e1 2703 if Is_Floating_Point_Type (S_Typ) then
2704
2705 -- Always do a range check if the source type includes infinities and
2706 -- the target type does not include infinities. We do not do this if
2707 -- range checks are killed.
2708
2709 if Has_Infinities (S_Typ)
2710 and then not Has_Infinities (Target_Typ)
2711 then
2712 Enable_Range_Check (Expr);
2713
2714 -- Always do a range check for operators if option set
2715
2716 elsif Check_Float_Overflow and then Nkind (Expr) in N_Op then
2717 Enable_Range_Check (Expr);
2718 end if;
ee6ba406 2719 end if;
2720
feff2f05 2721 -- Return if we know expression is definitely in the range of the target
2722 -- type as determined by Determine_Range. Right now we only do this for
2723 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 2724
f2a06be9 2725 -- The additional less-precise tests below catch these cases
ee6ba406 2726
feff2f05 2727 -- Note: skip this if we are given a source_typ, since the point of
2728 -- supplying a Source_Typ is to stop us looking at the expression.
2729 -- We could sharpen this test to be out parameters only ???
ee6ba406 2730
2731 if Is_Discrete_Type (Target_Typ)
2732 and then Is_Discrete_Type (Etype (Expr))
2733 and then not Is_Unconstrained_Subscr_Ref
2734 and then No (Source_Typ)
2735 then
2736 declare
2737 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2738 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2739 Lo : Uint;
2740 Hi : Uint;
2741
2742 begin
2743 if Compile_Time_Known_Value (Tlo)
2744 and then Compile_Time_Known_Value (Thi)
2745 then
9dfe12ae 2746 declare
2747 Lov : constant Uint := Expr_Value (Tlo);
2748 Hiv : constant Uint := Expr_Value (Thi);
ee6ba406 2749
9dfe12ae 2750 begin
2751 -- If range is null, we for sure have a constraint error
2752 -- (we don't even need to look at the value involved,
2753 -- since all possible values will raise CE).
2754
2755 if Lov > Hiv then
2756 Bad_Value;
2757 return;
2758 end if;
2759
2760 -- Otherwise determine range of value
2761
9c486805 2762 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
9dfe12ae 2763
2764 if OK then
2765
2766 -- If definitely in range, all OK
ee6ba406 2767
ee6ba406 2768 if Lo >= Lov and then Hi <= Hiv then
2769 return;
2770
9dfe12ae 2771 -- If definitely not in range, warn
2772
ee6ba406 2773 elsif Lov > Hi or else Hiv < Lo then
2774 Bad_Value;
2775 return;
9dfe12ae 2776
2777 -- Otherwise we don't know
2778
2779 else
2780 null;
ee6ba406 2781 end if;
9dfe12ae 2782 end if;
2783 end;
ee6ba406 2784 end if;
2785 end;
2786 end if;
2787
2788 Int_Real :=
2789 Is_Floating_Point_Type (S_Typ)
2790 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2791
2792 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 2793 -- range of the target type. Note that if S_Typ is within the bounds
2794 -- of Target_Typ then this must be the case. This check is meaningful
2795 -- only if this is not a conversion between integer and real types.
ee6ba406 2796
2797 if not Is_Unconstrained_Subscr_Ref
b40670e1 2798 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
ee6ba406 2799 and then
7a1dabb3 2800 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ee6ba406 2801 or else
9c486805 2802 Is_In_Range (Expr, Target_Typ,
2803 Assume_Valid => True,
b40670e1 2804 Fixed_Int => Fixed_Int,
2805 Int_Real => Int_Real))
ee6ba406 2806 then
2807 return;
2808
9c486805 2809 elsif Is_Out_Of_Range (Expr, Target_Typ,
2810 Assume_Valid => True,
2811 Fixed_Int => Fixed_Int,
2812 Int_Real => Int_Real)
2813 then
ee6ba406 2814 Bad_Value;
2815 return;
2816
b40670e1 2817 -- Floating-point case
feff2f05 2818 -- In the floating-point case, we only do range checks if the type is
2819 -- constrained. We definitely do NOT want range checks for unconstrained
2820 -- types, since we want to have infinities
ee6ba406 2821
9dfe12ae 2822 elsif Is_Floating_Point_Type (S_Typ) then
b40670e1 2823
2824 -- Normally, we only do range checks if the type is constrained. We do
2825 -- NOT want range checks for unconstrained types, since we want to have
2826 -- infinities. Override this decision in Check_Float_Overflow mode.
2827
2828 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
9dfe12ae 2829 Enable_Range_Check (Expr);
2830 end if;
ee6ba406 2831
9dfe12ae 2832 -- For all other cases we enable a range check unconditionally
ee6ba406 2833
2834 else
2835 Enable_Range_Check (Expr);
2836 return;
2837 end if;
ee6ba406 2838 end Apply_Scalar_Range_Check;
2839
2840 ----------------------------------
2841 -- Apply_Selected_Length_Checks --
2842 ----------------------------------
2843
2844 procedure Apply_Selected_Length_Checks
2845 (Ck_Node : Node_Id;
2846 Target_Typ : Entity_Id;
2847 Source_Typ : Entity_Id;
2848 Do_Static : Boolean)
2849 is
2850 Cond : Node_Id;
2851 R_Result : Check_Result;
2852 R_Cno : Node_Id;
2853
2854 Loc : constant Source_Ptr := Sloc (Ck_Node);
2855 Checks_On : constant Boolean :=
b6341c67 2856 (not Index_Checks_Suppressed (Target_Typ))
2857 or else (not Length_Checks_Suppressed (Target_Typ));
ee6ba406 2858
2859 begin
6dbcfcd9 2860 if not Full_Expander_Active then
ee6ba406 2861 return;
2862 end if;
2863
2864 R_Result :=
2865 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2866
2867 for J in 1 .. 2 loop
ee6ba406 2868 R_Cno := R_Result (J);
2869 exit when No (R_Cno);
2870
2871 -- A length check may mention an Itype which is attached to a
2872 -- subsequent node. At the top level in a package this can cause
2873 -- an order-of-elaboration problem, so we make sure that the itype
2874 -- is referenced now.
2875
2876 if Ekind (Current_Scope) = E_Package
2877 and then Is_Compilation_Unit (Current_Scope)
2878 then
2879 Ensure_Defined (Target_Typ, Ck_Node);
2880
2881 if Present (Source_Typ) then
2882 Ensure_Defined (Source_Typ, Ck_Node);
2883
2884 elsif Is_Itype (Etype (Ck_Node)) then
2885 Ensure_Defined (Etype (Ck_Node), Ck_Node);
2886 end if;
2887 end if;
2888
feff2f05 2889 -- If the item is a conditional raise of constraint error, then have
2890 -- a look at what check is being performed and ???
ee6ba406 2891
2892 if Nkind (R_Cno) = N_Raise_Constraint_Error
2893 and then Present (Condition (R_Cno))
2894 then
2895 Cond := Condition (R_Cno);
2896
0577b0b1 2897 -- Case where node does not now have a dynamic check
ee6ba406 2898
0577b0b1 2899 if not Has_Dynamic_Length_Check (Ck_Node) then
2900
2901 -- If checks are on, just insert the check
2902
2903 if Checks_On then
2904 Insert_Action (Ck_Node, R_Cno);
2905
2906 if not Do_Static then
2907 Set_Has_Dynamic_Length_Check (Ck_Node);
2908 end if;
2909
2910 -- If checks are off, then analyze the length check after
2911 -- temporarily attaching it to the tree in case the relevant
6fb3c314 2912 -- condition can be evaluated at compile time. We still want a
0577b0b1 2913 -- compile time warning in this case.
2914
2915 else
2916 Set_Parent (R_Cno, Ck_Node);
2917 Analyze (R_Cno);
ee6ba406 2918 end if;
ee6ba406 2919 end if;
2920
2921 -- Output a warning if the condition is known to be True
2922
2923 if Is_Entity_Name (Cond)
2924 and then Entity (Cond) = Standard_True
2925 then
2926 Apply_Compile_Time_Constraint_Error
cb97ae5c 2927 (Ck_Node, "wrong length for array of}??",
f15731c4 2928 CE_Length_Check_Failed,
ee6ba406 2929 Ent => Target_Typ,
2930 Typ => Target_Typ);
2931
2932 -- If we were only doing a static check, or if checks are not
2933 -- on, then we want to delete the check, since it is not needed.
2934 -- We do this by replacing the if statement by a null statement
2935
2936 elsif Do_Static or else not Checks_On then
00c403ee 2937 Remove_Warning_Messages (R_Cno);
ee6ba406 2938 Rewrite (R_Cno, Make_Null_Statement (Loc));
2939 end if;
2940
2941 else
2942 Install_Static_Check (R_Cno, Loc);
2943 end if;
ee6ba406 2944 end loop;
ee6ba406 2945 end Apply_Selected_Length_Checks;
2946
2947 ---------------------------------
2948 -- Apply_Selected_Range_Checks --
2949 ---------------------------------
2950
2951 procedure Apply_Selected_Range_Checks
2952 (Ck_Node : Node_Id;
2953 Target_Typ : Entity_Id;
2954 Source_Typ : Entity_Id;
2955 Do_Static : Boolean)
2956 is
2957 Cond : Node_Id;
2958 R_Result : Check_Result;
2959 R_Cno : Node_Id;
2960
2961 Loc : constant Source_Ptr := Sloc (Ck_Node);
2962 Checks_On : constant Boolean :=
b6341c67 2963 (not Index_Checks_Suppressed (Target_Typ))
2964 or else (not Range_Checks_Suppressed (Target_Typ));
ee6ba406 2965
2966 begin
6dbcfcd9 2967 if not Full_Expander_Active or else not Checks_On then
ee6ba406 2968 return;
2969 end if;
2970
2971 R_Result :=
2972 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2973
2974 for J in 1 .. 2 loop
2975
2976 R_Cno := R_Result (J);
2977 exit when No (R_Cno);
2978
feff2f05 2979 -- If the item is a conditional raise of constraint error, then have
2980 -- a look at what check is being performed and ???
ee6ba406 2981
2982 if Nkind (R_Cno) = N_Raise_Constraint_Error
2983 and then Present (Condition (R_Cno))
2984 then
2985 Cond := Condition (R_Cno);
2986
2987 if not Has_Dynamic_Range_Check (Ck_Node) then
2988 Insert_Action (Ck_Node, R_Cno);
2989
2990 if not Do_Static then
2991 Set_Has_Dynamic_Range_Check (Ck_Node);
2992 end if;
2993 end if;
2994
2995 -- Output a warning if the condition is known to be True
2996
2997 if Is_Entity_Name (Cond)
2998 and then Entity (Cond) = Standard_True
2999 then
feff2f05 3000 -- Since an N_Range is technically not an expression, we have
3001 -- to set one of the bounds to C_E and then just flag the
3002 -- N_Range. The warning message will point to the lower bound
3003 -- and complain about a range, which seems OK.
ee6ba406 3004
3005 if Nkind (Ck_Node) = N_Range then
3006 Apply_Compile_Time_Constraint_Error
cb97ae5c 3007 (Low_Bound (Ck_Node), "static range out of bounds of}??",
f15731c4 3008 CE_Range_Check_Failed,
ee6ba406 3009 Ent => Target_Typ,
3010 Typ => Target_Typ);
3011
3012 Set_Raises_Constraint_Error (Ck_Node);
3013
3014 else
3015 Apply_Compile_Time_Constraint_Error
3016 (Ck_Node, "static value out of range of}?",
f15731c4 3017 CE_Range_Check_Failed,
ee6ba406 3018 Ent => Target_Typ,
3019 Typ => Target_Typ);
3020 end if;
3021
3022 -- If we were only doing a static check, or if checks are not
3023 -- on, then we want to delete the check, since it is not needed.
3024 -- We do this by replacing the if statement by a null statement
3025
3026 elsif Do_Static or else not Checks_On then
00c403ee 3027 Remove_Warning_Messages (R_Cno);
ee6ba406 3028 Rewrite (R_Cno, Make_Null_Statement (Loc));
3029 end if;
3030
3031 else
3032 Install_Static_Check (R_Cno, Loc);
3033 end if;
ee6ba406 3034 end loop;
ee6ba406 3035 end Apply_Selected_Range_Checks;
3036
3037 -------------------------------
3038 -- Apply_Static_Length_Check --
3039 -------------------------------
3040
3041 procedure Apply_Static_Length_Check
3042 (Expr : Node_Id;
3043 Target_Typ : Entity_Id;
3044 Source_Typ : Entity_Id := Empty)
3045 is
3046 begin
3047 Apply_Selected_Length_Checks
3048 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3049 end Apply_Static_Length_Check;
3050
3051 -------------------------------------
3052 -- Apply_Subscript_Validity_Checks --
3053 -------------------------------------
3054
3055 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3056 Sub : Node_Id;
3057
3058 begin
3059 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3060
3061 -- Loop through subscripts
3062
3063 Sub := First (Expressions (Expr));
3064 while Present (Sub) loop
3065
feff2f05 3066 -- Check one subscript. Note that we do not worry about enumeration
3067 -- type with holes, since we will convert the value to a Pos value
3068 -- for the subscript, and that convert will do the necessary validity
3069 -- check.
ee6ba406 3070
3071 Ensure_Valid (Sub, Holes_OK => True);
3072
3073 -- Move to next subscript
3074
3075 Sub := Next (Sub);
3076 end loop;
3077 end Apply_Subscript_Validity_Checks;
3078
3079 ----------------------------------
3080 -- Apply_Type_Conversion_Checks --
3081 ----------------------------------
3082
3083 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3084 Target_Type : constant Entity_Id := Etype (N);
3085 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 3086 Expr : constant Node_Id := Expression (N);
f4532fe1 3087
3088 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
141d591a 3089 -- Note: if Etype (Expr) is a private type without discriminants, its
3090 -- full view might have discriminants with defaults, so we need the
3091 -- full view here to retrieve the constraints.
ee6ba406 3092
3093 begin
3094 if Inside_A_Generic then
3095 return;
3096
f15731c4 3097 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 3098 -- situations of incomplete trees that blow things up.
3099
f15731c4 3100 elsif Serious_Errors_Detected > 0 then
ee6ba406 3101 return;
3102
feff2f05 3103 -- Scalar type conversions of the form Target_Type (Expr) require a
3104 -- range check if we cannot be sure that Expr is in the base type of
3105 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3106 -- are not quite the same condition from an implementation point of
3107 -- view, but clearly the second includes the first.
ee6ba406 3108
3109 elsif Is_Scalar_Type (Target_Type) then
3110 declare
3111 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 3112 -- If the Conversion_OK flag on the type conversion is set and no
3113 -- floating point type is involved in the type conversion then
3114 -- fixed point values must be read as integral values.
ee6ba406 3115
5329ca64 3116 Float_To_Int : constant Boolean :=
b6341c67 3117 Is_Floating_Point_Type (Expr_Type)
3118 and then Is_Integer_Type (Target_Type);
5329ca64 3119
ee6ba406 3120 begin
ee6ba406 3121 if not Overflow_Checks_Suppressed (Target_Base)
0df9d43f 3122 and then not Overflow_Checks_Suppressed (Target_Type)
e254d721 3123 and then not
7a1dabb3 3124 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 3125 and then not Float_To_Int
ee6ba406 3126 then
00c403ee 3127 Activate_Overflow_Check (N);
ee6ba406 3128 end if;
3129
3130 if not Range_Checks_Suppressed (Target_Type)
3131 and then not Range_Checks_Suppressed (Expr_Type)
3132 then
5329ca64 3133 if Float_To_Int then
3134 Apply_Float_Conversion_Check (Expr, Target_Type);
3135 else
3136 Apply_Scalar_Range_Check
3137 (Expr, Target_Type, Fixed_Int => Conv_OK);
798afddc 3138
3139 -- If the target type has predicates, we need to indicate
3140 -- the need for a check, even if Determine_Range finds
3141 -- that the value is within bounds. This may be the case
3142 -- e.g for a division with a constant denominator.
3143
3144 if Has_Predicates (Target_Type) then
3145 Enable_Range_Check (Expr);
3146 end if;
5329ca64 3147 end if;
ee6ba406 3148 end if;
3149 end;
3150
3151 elsif Comes_From_Source (N)
f40f9731 3152 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 3153 and then Is_Record_Type (Target_Type)
3154 and then Is_Derived_Type (Target_Type)
3155 and then not Is_Tagged_Type (Target_Type)
3156 and then not Is_Constrained (Target_Type)
9dfe12ae 3157 and then Present (Stored_Constraint (Target_Type))
ee6ba406 3158 then
141d591a 3159 -- An unconstrained derived type may have inherited discriminant.
9dfe12ae 3160 -- Build an actual discriminant constraint list using the stored
ee6ba406 3161 -- constraint, to verify that the expression of the parent type
3162 -- satisfies the constraints imposed by the (unconstrained!)
3163 -- derived type. This applies to value conversions, not to view
3164 -- conversions of tagged types.
3165
3166 declare
9dfe12ae 3167 Loc : constant Source_Ptr := Sloc (N);
3168 Cond : Node_Id;
3169 Constraint : Elmt_Id;
3170 Discr_Value : Node_Id;
3171 Discr : Entity_Id;
3172
3173 New_Constraints : constant Elist_Id := New_Elmt_List;
3174 Old_Constraints : constant Elist_Id :=
b6341c67 3175 Discriminant_Constraint (Expr_Type);
ee6ba406 3176
3177 begin
9dfe12ae 3178 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 3179 while Present (Constraint) loop
3180 Discr_Value := Node (Constraint);
3181
3182 if Is_Entity_Name (Discr_Value)
3183 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3184 then
3185 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3186
3187 if Present (Discr)
3188 and then Scope (Discr) = Base_Type (Expr_Type)
3189 then
3190 -- Parent is constrained by new discriminant. Obtain
feff2f05 3191 -- Value of original discriminant in expression. If the
3192 -- new discriminant has been used to constrain more than
3193 -- one of the stored discriminants, this will provide the
3194 -- required consistency check.
ee6ba406 3195
55868293 3196 Append_Elmt
3197 (Make_Selected_Component (Loc,
3198 Prefix =>
9dfe12ae 3199 Duplicate_Subexpr_No_Checks
3200 (Expr, Name_Req => True),
ee6ba406 3201 Selector_Name =>
3202 Make_Identifier (Loc, Chars (Discr))),
55868293 3203 New_Constraints);
ee6ba406 3204
3205 else
3206 -- Discriminant of more remote ancestor ???
3207
3208 return;
3209 end if;
3210
feff2f05 3211 -- Derived type definition has an explicit value for this
3212 -- stored discriminant.
ee6ba406 3213
3214 else
3215 Append_Elmt
9dfe12ae 3216 (Duplicate_Subexpr_No_Checks (Discr_Value),
3217 New_Constraints);
ee6ba406 3218 end if;
3219
3220 Next_Elmt (Constraint);
3221 end loop;
3222
3223 -- Use the unconstrained expression type to retrieve the
3224 -- discriminants of the parent, and apply momentarily the
3225 -- discriminant constraint synthesized above.
3226
3227 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3228 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3229 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3230
3231 Insert_Action (N,
f15731c4 3232 Make_Raise_Constraint_Error (Loc,
3233 Condition => Cond,
3234 Reason => CE_Discriminant_Check_Failed));
ee6ba406 3235 end;
3236
feff2f05 3237 -- For arrays, conversions are applied during expansion, to take into
3238 -- accounts changes of representation. The checks become range checks on
3239 -- the base type or length checks on the subtype, depending on whether
3240 -- the target type is unconstrained or constrained.
ee6ba406 3241
3242 else
3243 null;
3244 end if;
ee6ba406 3245 end Apply_Type_Conversion_Checks;
3246
3247 ----------------------------------------------
3248 -- Apply_Universal_Integer_Attribute_Checks --
3249 ----------------------------------------------
3250
3251 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3252 Loc : constant Source_Ptr := Sloc (N);
3253 Typ : constant Entity_Id := Etype (N);
3254
3255 begin
3256 if Inside_A_Generic then
3257 return;
3258
3259 -- Nothing to do if checks are suppressed
3260
3261 elsif Range_Checks_Suppressed (Typ)
3262 and then Overflow_Checks_Suppressed (Typ)
3263 then
3264 return;
3265
3266 -- Nothing to do if the attribute does not come from source. The
3267 -- internal attributes we generate of this type do not need checks,
3268 -- and furthermore the attempt to check them causes some circular
3269 -- elaboration orders when dealing with packed types.
3270
3271 elsif not Comes_From_Source (N) then
3272 return;
3273
9dfe12ae 3274 -- If the prefix is a selected component that depends on a discriminant
3275 -- the check may improperly expose a discriminant instead of using
3276 -- the bounds of the object itself. Set the type of the attribute to
3277 -- the base type of the context, so that a check will be imposed when
3278 -- needed (e.g. if the node appears as an index).
3279
3280 elsif Nkind (Prefix (N)) = N_Selected_Component
3281 and then Ekind (Typ) = E_Signed_Integer_Subtype
3282 and then Depends_On_Discriminant (Scalar_Range (Typ))
3283 then
3284 Set_Etype (N, Base_Type (Typ));
3285
feff2f05 3286 -- Otherwise, replace the attribute node with a type conversion node
3287 -- whose expression is the attribute, retyped to universal integer, and
3288 -- whose subtype mark is the target type. The call to analyze this
3289 -- conversion will set range and overflow checks as required for proper
3290 -- detection of an out of range value.
ee6ba406 3291
3292 else
3293 Set_Etype (N, Universal_Integer);
3294 Set_Analyzed (N, True);
3295
3296 Rewrite (N,
3297 Make_Type_Conversion (Loc,
3298 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3299 Expression => Relocate_Node (N)));
3300
3301 Analyze_And_Resolve (N, Typ);
3302 return;
3303 end if;
ee6ba406 3304 end Apply_Universal_Integer_Attribute_Checks;
3305
07c191b0 3306 -------------------------------------
3307 -- Atomic_Synchronization_Disabled --
3308 -------------------------------------
3309
3310 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3311 -- using a bogus check called Atomic_Synchronization. This is to make it
3312 -- more convenient to get exactly the same semantics as [Un]Suppress.
3313
3314 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3315 begin
b444f81d 3316 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3317 -- looks enabled, since it is never disabled.
3318
3319 if Debug_Flag_Dot_E then
3320 return False;
3321
3322 -- If debug flag d.d is set then always return True, i.e. all atomic
3323 -- sync looks disabled, since it always tests True.
3324
3325 elsif Debug_Flag_Dot_D then
3326 return True;
3327
3328 -- If entity present, then check result for that entity
3329
3330 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
07c191b0 3331 return Is_Check_Suppressed (E, Atomic_Synchronization);
b444f81d 3332
3333 -- Otherwise result depends on current scope setting
3334
07c191b0 3335 else
fafc6b97 3336 return Scope_Suppress.Suppress (Atomic_Synchronization);
07c191b0 3337 end if;
3338 end Atomic_Synchronization_Disabled;
3339
ee6ba406 3340 -------------------------------
3341 -- Build_Discriminant_Checks --
3342 -------------------------------
3343
3344 function Build_Discriminant_Checks
3345 (N : Node_Id;
314a23b6 3346 T_Typ : Entity_Id) return Node_Id
ee6ba406 3347 is
3348 Loc : constant Source_Ptr := Sloc (N);
3349 Cond : Node_Id;
3350 Disc : Elmt_Id;
3351 Disc_Ent : Entity_Id;
9dfe12ae 3352 Dref : Node_Id;
ee6ba406 3353 Dval : Node_Id;
3354
84d0d4a5 3355 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3356
3357 ----------------------------------
3358 -- Aggregate_Discriminant_Value --
3359 ----------------------------------
3360
3361 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3362 Assoc : Node_Id;
3363
3364 begin
feff2f05 3365 -- The aggregate has been normalized with named associations. We use
3366 -- the Chars field to locate the discriminant to take into account
3367 -- discriminants in derived types, which carry the same name as those
3368 -- in the parent.
84d0d4a5 3369
3370 Assoc := First (Component_Associations (N));
3371 while Present (Assoc) loop
3372 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3373 return Expression (Assoc);
3374 else
3375 Next (Assoc);
3376 end if;
3377 end loop;
3378
3379 -- Discriminant must have been found in the loop above
3380
3381 raise Program_Error;
3382 end Aggregate_Discriminant_Val;
3383
3384 -- Start of processing for Build_Discriminant_Checks
3385
ee6ba406 3386 begin
84d0d4a5 3387 -- Loop through discriminants evolving the condition
3388
ee6ba406 3389 Cond := Empty;
3390 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3391
9dfe12ae 3392 -- For a fully private type, use the discriminants of the parent type
ee6ba406 3393
3394 if Is_Private_Type (T_Typ)
3395 and then No (Full_View (T_Typ))
3396 then
3397 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3398 else
3399 Disc_Ent := First_Discriminant (T_Typ);
3400 end if;
3401
3402 while Present (Disc) loop
ee6ba406 3403 Dval := Node (Disc);
3404
3405 if Nkind (Dval) = N_Identifier
3406 and then Ekind (Entity (Dval)) = E_Discriminant
3407 then
3408 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3409 else
9dfe12ae 3410 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 3411 end if;
3412
00f91aef 3413 -- If we have an Unchecked_Union node, we can infer the discriminants
3414 -- of the node.
9dfe12ae 3415
00f91aef 3416 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3417 Dref := New_Copy (
3418 Get_Discriminant_Value (
3419 First_Discriminant (T_Typ),
3420 T_Typ,
3421 Stored_Constraint (T_Typ)));
3422
84d0d4a5 3423 elsif Nkind (N) = N_Aggregate then
3424 Dref :=
3425 Duplicate_Subexpr_No_Checks
3426 (Aggregate_Discriminant_Val (Disc_Ent));
3427
00f91aef 3428 else
3429 Dref :=
3430 Make_Selected_Component (Loc,
3431 Prefix =>
3432 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3433 Selector_Name =>
3434 Make_Identifier (Loc, Chars (Disc_Ent)));
3435
3436 Set_Is_In_Discriminant_Check (Dref);
3437 end if;
9dfe12ae 3438
ee6ba406 3439 Evolve_Or_Else (Cond,
3440 Make_Op_Ne (Loc,
9dfe12ae 3441 Left_Opnd => Dref,
ee6ba406 3442 Right_Opnd => Dval));
3443
3444 Next_Elmt (Disc);
3445 Next_Discriminant (Disc_Ent);
3446 end loop;
3447
3448 return Cond;
3449 end Build_Discriminant_Checks;
3450
13dbf220 3451 ------------------
3452 -- Check_Needed --
3453 ------------------
3454
3455 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3456 N : Node_Id;
3457 P : Node_Id;
3458 K : Node_Kind;
3459 L : Node_Id;
3460 R : Node_Id;
3461
3462 begin
3463 -- Always check if not simple entity
3464
3465 if Nkind (Nod) not in N_Has_Entity
3466 or else not Comes_From_Source (Nod)
3467 then
3468 return True;
3469 end if;
3470
3471 -- Look up tree for short circuit
3472
3473 N := Nod;
3474 loop
3475 P := Parent (N);
3476 K := Nkind (P);
3477
7b17e51b 3478 -- Done if out of subexpression (note that we allow generated stuff
3479 -- such as itype declarations in this context, to keep the loop going
3480 -- since we may well have generated such stuff in complex situations.
3481 -- Also done if no parent (probably an error condition, but no point
3482 -- in behaving nasty if we find it!)
3483
3484 if No (P)
3485 or else (K not in N_Subexpr and then Comes_From_Source (P))
3486 then
13dbf220 3487 return True;
3488
7b17e51b 3489 -- Or/Or Else case, where test is part of the right operand, or is
3490 -- part of one of the actions associated with the right operand, and
3491 -- the left operand is an equality test.
13dbf220 3492
7b17e51b 3493 elsif K = N_Op_Or then
13dbf220 3494 exit when N = Right_Opnd (P)
3495 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
3496
7b17e51b 3497 elsif K = N_Or_Else then
3498 exit when (N = Right_Opnd (P)
3499 or else
3500 (Is_List_Member (N)
3501 and then List_Containing (N) = Actions (P)))
3502 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
13dbf220 3503
7b17e51b 3504 -- Similar test for the And/And then case, where the left operand
3505 -- is an inequality test.
3506
3507 elsif K = N_Op_And then
13dbf220 3508 exit when N = Right_Opnd (P)
38f5559f 3509 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
7b17e51b 3510
3511 elsif K = N_And_Then then
3512 exit when (N = Right_Opnd (P)
3513 or else
3514 (Is_List_Member (N)
3515 and then List_Containing (N) = Actions (P)))
3516 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
13dbf220 3517 end if;
3518
3519 N := P;
3520 end loop;
3521
3522 -- If we fall through the loop, then we have a conditional with an
3523 -- appropriate test as its left operand. So test further.
3524
3525 L := Left_Opnd (P);
13dbf220 3526 R := Right_Opnd (L);
3527 L := Left_Opnd (L);
3528
3529 -- Left operand of test must match original variable
3530
3531 if Nkind (L) not in N_Has_Entity
3532 or else Entity (L) /= Entity (Nod)
3533 then
3534 return True;
3535 end if;
3536
2af58f67 3537 -- Right operand of test must be key value (zero or null)
13dbf220 3538
3539 case Check is
3540 when Access_Check =>
2af58f67 3541 if not Known_Null (R) then
13dbf220 3542 return True;
3543 end if;
3544
3545 when Division_Check =>
3546 if not Compile_Time_Known_Value (R)
3547 or else Expr_Value (R) /= Uint_0
3548 then
3549 return True;
3550 end if;
2af58f67 3551
3552 when others =>
3553 raise Program_Error;
13dbf220 3554 end case;
3555
3556 -- Here we have the optimizable case, warn if not short-circuited
3557
3558 if K = N_Op_And or else K = N_Op_Or then
3559 case Check is
3560 when Access_Check =>
3561 Error_Msg_N
cb97ae5c 3562 ("Constraint_Error may be raised (access check)??",
13dbf220 3563 Parent (Nod));
3564 when Division_Check =>
3565 Error_Msg_N
cb97ae5c 3566 ("Constraint_Error may be raised (zero divide)??",
13dbf220 3567 Parent (Nod));
2af58f67 3568
3569 when others =>
3570 raise Program_Error;
13dbf220 3571 end case;
3572
3573 if K = N_Op_And then
e977c0cf 3574 Error_Msg_N -- CODEFIX
cb97ae5c 3575 ("use `AND THEN` instead of AND??", P);
13dbf220 3576 else
e977c0cf 3577 Error_Msg_N -- CODEFIX
cb97ae5c 3578 ("use `OR ELSE` instead of OR??", P);
13dbf220 3579 end if;
3580
6fb3c314 3581 -- If not short-circuited, we need the check
13dbf220 3582
3583 return True;
3584
3585 -- If short-circuited, we can omit the check
3586
3587 else
3588 return False;
3589 end if;
3590 end Check_Needed;
3591
ee6ba406 3592 -----------------------------------
3593 -- Check_Valid_Lvalue_Subscripts --
3594 -----------------------------------
3595
3596 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3597 begin
3598 -- Skip this if range checks are suppressed
3599
3600 if Range_Checks_Suppressed (Etype (Expr)) then
3601 return;
3602
feff2f05 3603 -- Only do this check for expressions that come from source. We assume
3604 -- that expander generated assignments explicitly include any necessary
3605 -- checks. Note that this is not just an optimization, it avoids
3606 -- infinite recursions!
ee6ba406 3607
3608 elsif not Comes_From_Source (Expr) then
3609 return;
3610
3611 -- For a selected component, check the prefix
3612
3613 elsif Nkind (Expr) = N_Selected_Component then
3614 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3615 return;
3616
3617 -- Case of indexed component
3618
3619 elsif Nkind (Expr) = N_Indexed_Component then
3620 Apply_Subscript_Validity_Checks (Expr);
3621
feff2f05 3622 -- Prefix may itself be or contain an indexed component, and these
3623 -- subscripts need checking as well.
ee6ba406 3624
3625 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3626 end if;
3627 end Check_Valid_Lvalue_Subscripts;
3628
fa7497e8 3629 ----------------------------------
3630 -- Null_Exclusion_Static_Checks --
3631 ----------------------------------
3632
3633 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
0577b0b1 3634 Error_Node : Node_Id;
3635 Expr : Node_Id;
3636 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3637 K : constant Node_Kind := Nkind (N);
3638 Typ : Entity_Id;
fa7497e8 3639
13dbf220 3640 begin
0577b0b1 3641 pragma Assert
3642 (K = N_Component_Declaration
3643 or else K = N_Discriminant_Specification
3644 or else K = N_Function_Specification
3645 or else K = N_Object_Declaration
3646 or else K = N_Parameter_Specification);
3647
3648 if K = N_Function_Specification then
3649 Typ := Etype (Defining_Entity (N));
3650 else
3651 Typ := Etype (Defining_Identifier (N));
3652 end if;
fa7497e8 3653
13dbf220 3654 case K is
13dbf220 3655 when N_Component_Declaration =>
3656 if Present (Access_Definition (Component_Definition (N))) then
0577b0b1 3657 Error_Node := Component_Definition (N);
13dbf220 3658 else
0577b0b1 3659 Error_Node := Subtype_Indication (Component_Definition (N));
13dbf220 3660 end if;
5329ca64 3661
0577b0b1 3662 when N_Discriminant_Specification =>
3663 Error_Node := Discriminant_Type (N);
3664
3665 when N_Function_Specification =>
3666 Error_Node := Result_Definition (N);
3667
3668 when N_Object_Declaration =>
3669 Error_Node := Object_Definition (N);
3670
3671 when N_Parameter_Specification =>
3672 Error_Node := Parameter_Type (N);
3673
13dbf220 3674 when others =>
3675 raise Program_Error;
3676 end case;
5329ca64 3677
0577b0b1 3678 if Has_Null then
5329ca64 3679
0577b0b1 3680 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3681 -- applied to an access [sub]type.
5329ca64 3682
0577b0b1 3683 if not Is_Access_Type (Typ) then
503f7fd3 3684 Error_Msg_N
00c403ee 3685 ("`NOT NULL` allowed only for an access type", Error_Node);
5329ca64 3686
feff2f05 3687 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 3688 -- be applied to a [sub]type that does not exclude null already.
3689
3690 elsif Can_Never_Be_Null (Typ)
d16989f1 3691 and then Comes_From_Source (Typ)
0577b0b1 3692 then
503f7fd3 3693 Error_Msg_NE
00c403ee 3694 ("`NOT NULL` not allowed (& already excludes null)",
3695 Error_Node, Typ);
0577b0b1 3696 end if;
13dbf220 3697 end if;
5329ca64 3698
cc60bd16 3699 -- Check that null-excluding objects are always initialized, except for
3700 -- deferred constants, for which the expression will appear in the full
3701 -- declaration.
13dbf220 3702
3703 if K = N_Object_Declaration
84d0d4a5 3704 and then No (Expression (N))
cc60bd16 3705 and then not Constant_Present (N)
feff2f05 3706 and then not No_Initialization (N)
13dbf220 3707 then
feff2f05 3708 -- Add an expression that assigns null. This node is needed by
3709 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3710 -- a Constraint_Error node.
13dbf220 3711
3712 Set_Expression (N, Make_Null (Sloc (N)));
3713 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
5329ca64 3714
13dbf220 3715 Apply_Compile_Time_Constraint_Error
3716 (N => Expression (N),
cb97ae5c 3717 Msg =>
3718 "(Ada 2005) null-excluding objects must be initialized??",
13dbf220 3719 Reason => CE_Null_Not_Allowed);
3720 end if;
5329ca64 3721
cc60bd16 3722 -- Check that a null-excluding component, formal or object is not being
3723 -- assigned a null value. Otherwise generate a warning message and
2c145f84 3724 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 3725
0577b0b1 3726 if K /= N_Function_Specification then
3727 Expr := Expression (N);
5329ca64 3728
2af58f67 3729 if Present (Expr) and then Known_Null (Expr) then
13dbf220 3730 case K is
0577b0b1 3731 when N_Component_Declaration |
3732 N_Discriminant_Specification =>
7189d17f 3733 Apply_Compile_Time_Constraint_Error
0577b0b1 3734 (N => Expr,
2af58f67 3735 Msg => "(Ada 2005) null not allowed " &
cb97ae5c 3736 "in null-excluding components??",
0577b0b1 3737 Reason => CE_Null_Not_Allowed);
5329ca64 3738
0577b0b1 3739 when N_Object_Declaration =>
7189d17f 3740 Apply_Compile_Time_Constraint_Error
0577b0b1 3741 (N => Expr,
2af58f67 3742 Msg => "(Ada 2005) null not allowed " &
0577b0b1 3743 "in null-excluding objects?",
3744 Reason => CE_Null_Not_Allowed);
5329ca64 3745
0577b0b1 3746 when N_Parameter_Specification =>
7189d17f 3747 Apply_Compile_Time_Constraint_Error
0577b0b1 3748 (N => Expr,
2af58f67 3749 Msg => "(Ada 2005) null not allowed " &
cb97ae5c 3750 "in null-excluding formals??",
0577b0b1 3751 Reason => CE_Null_Not_Allowed);
13dbf220 3752
3753 when others =>
3754 null;
5329ca64 3755 end case;
3756 end if;
0577b0b1 3757 end if;
fa7497e8 3758 end Null_Exclusion_Static_Checks;
3759
9dfe12ae 3760 ----------------------------------
3761 -- Conditional_Statements_Begin --
3762 ----------------------------------
3763
3764 procedure Conditional_Statements_Begin is
3765 begin
3766 Saved_Checks_TOS := Saved_Checks_TOS + 1;
3767
feff2f05 3768 -- If stack overflows, kill all checks, that way we know to simply reset
3769 -- the number of saved checks to zero on return. This should never occur
3770 -- in practice.
9dfe12ae 3771
3772 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3773 Kill_All_Checks;
3774
feff2f05 3775 -- In the normal case, we just make a new stack entry saving the current
3776 -- number of saved checks for a later restore.
9dfe12ae 3777
3778 else
3779 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
3780
3781 if Debug_Flag_CC then
3782 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
3783 Num_Saved_Checks);
3784 end if;
3785 end if;
3786 end Conditional_Statements_Begin;
3787
3788 --------------------------------
3789 -- Conditional_Statements_End --
3790 --------------------------------
3791
3792 procedure Conditional_Statements_End is
3793 begin
3794 pragma Assert (Saved_Checks_TOS > 0);
3795
feff2f05 3796 -- If the saved checks stack overflowed, then we killed all checks, so
3797 -- setting the number of saved checks back to zero is correct. This
3798 -- should never occur in practice.
9dfe12ae 3799
3800 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3801 Num_Saved_Checks := 0;
3802
feff2f05 3803 -- In the normal case, restore the number of saved checks from the top
3804 -- stack entry.
9dfe12ae 3805
3806 else
3807 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
3808 if Debug_Flag_CC then
3809 w ("Conditional_Statements_End: Num_Saved_Checks = ",
3810 Num_Saved_Checks);
3811 end if;
3812 end if;
3813
3814 Saved_Checks_TOS := Saved_Checks_TOS - 1;
3815 end Conditional_Statements_End;
3816
3cce7f32 3817 -------------------------
3818 -- Convert_From_Bignum --
3819 -------------------------
3820
3821 function Convert_From_Bignum (N : Node_Id) return Node_Id is
3822 Loc : constant Source_Ptr := Sloc (N);
3823
3824 begin
3825 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
3826
3827 -- Construct call From Bignum
3828
3829 return
3830 Make_Function_Call (Loc,
3831 Name =>
3832 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3833 Parameter_Associations => New_List (Relocate_Node (N)));
3834 end Convert_From_Bignum;
3835
3836 -----------------------
3837 -- Convert_To_Bignum --
3838 -----------------------
3839
3840 function Convert_To_Bignum (N : Node_Id) return Node_Id is
3841 Loc : constant Source_Ptr := Sloc (N);
3842
3843 begin
0326b4d4 3844 -- Nothing to do if Bignum already except call Relocate_Node
3cce7f32 3845
3846 if Is_RTE (Etype (N), RE_Bignum) then
3847 return Relocate_Node (N);
3848
21a55437 3849 -- Otherwise construct call to To_Bignum, converting the operand to the
3850 -- required Long_Long_Integer form.
3cce7f32 3851
3852 else
3853 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
3854 return
3855 Make_Function_Call (Loc,
3856 Name =>
3857 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
3858 Parameter_Associations => New_List (
3859 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
3860 end if;
3861 end Convert_To_Bignum;
3862
ee6ba406 3863 ---------------------
3864 -- Determine_Range --
3865 ---------------------
3866
6af1bdbc 3867 Cache_Size : constant := 2 ** 10;
ee6ba406 3868 type Cache_Index is range 0 .. Cache_Size - 1;
3869 -- Determine size of below cache (power of 2 is more efficient!)
3870
3871 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
9c486805 3872 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
ee6ba406 3873 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
3874 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
feff2f05 3875 -- The above arrays are used to implement a small direct cache for
3876 -- Determine_Range calls. Because of the way Determine_Range recursively
3877 -- traces subexpressions, and because overflow checking calls the routine
3878 -- on the way up the tree, a quadratic behavior can otherwise be
3879 -- encountered in large expressions. The cache entry for node N is stored
3880 -- in the (N mod Cache_Size) entry, and can be validated by checking the
9c486805 3881 -- actual node value stored there. The Range_Cache_V array records the
3882 -- setting of Assume_Valid for the cache entry.
ee6ba406 3883
3884 procedure Determine_Range
9c486805 3885 (N : Node_Id;
3886 OK : out Boolean;
3887 Lo : out Uint;
3888 Hi : out Uint;
3889 Assume_Valid : Boolean := False)
ee6ba406 3890 is
e254d721 3891 Typ : Entity_Id := Etype (N);
3892 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 3893
3894 Lo_Left : Uint;
3895 Hi_Left : Uint;
3896 -- Lo and Hi bounds of left operand
ee6ba406 3897
ee6ba406 3898 Lo_Right : Uint;
ee6ba406 3899 Hi_Right : Uint;
8880be85 3900 -- Lo and Hi bounds of right (or only) operand
3901
3902 Bound : Node_Id;
3903 -- Temp variable used to hold a bound node
3904
3905 Hbound : Uint;
3906 -- High bound of base type of expression
3907
3908 Lor : Uint;
3909 Hir : Uint;
3910 -- Refined values for low and high bounds, after tightening
3911
3912 OK1 : Boolean;
3913 -- Used in lower level calls to indicate if call succeeded
3914
3915 Cindex : Cache_Index;
3916 -- Used to search cache
ee6ba406 3917
094ed68e 3918 Btyp : Entity_Id;
3919 -- Base type
3920
ee6ba406 3921 function OK_Operands return Boolean;
3922 -- Used for binary operators. Determines the ranges of the left and
3923 -- right operands, and if they are both OK, returns True, and puts
341bd953 3924 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
ee6ba406 3925
3926 -----------------
3927 -- OK_Operands --
3928 -----------------
3929
3930 function OK_Operands return Boolean is
3931 begin
9c486805 3932 Determine_Range
3933 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 3934
3935 if not OK1 then
3936 return False;
3937 end if;
3938
9c486805 3939 Determine_Range
3940 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 3941 return OK1;
3942 end OK_Operands;
3943
3944 -- Start of processing for Determine_Range
3945
3946 begin
87bdc21d 3947 -- For temporary constants internally generated to remove side effects
3948 -- we must use the corresponding expression to determine the range of
3949 -- the expression.
3950
3951 if Is_Entity_Name (N)
3952 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3953 and then Ekind (Entity (N)) = E_Constant
3954 and then Is_Internal_Name (Chars (Entity (N)))
3955 then
3956 Determine_Range
3957 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
3958 return;
3959 end if;
3960
ee6ba406 3961 -- Prevent junk warnings by initializing range variables
3962
3963 Lo := No_Uint;
3964 Hi := No_Uint;
3965 Lor := No_Uint;
3966 Hir := No_Uint;
3967
a781c0fc 3968 -- If type is not defined, we can't determine its range
ee6ba406 3969
a781c0fc 3970 if No (Typ)
3971
3972 -- We don't deal with anything except discrete types
3973
3974 or else not Is_Discrete_Type (Typ)
3975
3976 -- Ignore type for which an error has been posted, since range in
3977 -- this case may well be a bogosity deriving from the error. Also
3978 -- ignore if error posted on the reference node.
3979
3980 or else Error_Posted (N) or else Error_Posted (Typ)
ee6ba406 3981 then
3982 OK := False;
3983 return;
3984 end if;
3985
3986 -- For all other cases, we can determine the range
3987
3988 OK := True;
3989
feff2f05 3990 -- If value is compile time known, then the possible range is the one
3991 -- value that we know this expression definitely has!
ee6ba406 3992
3993 if Compile_Time_Known_Value (N) then
3994 Lo := Expr_Value (N);
3995 Hi := Lo;
3996 return;
3997 end if;
3998
3999 -- Return if already in the cache
4000
4001 Cindex := Cache_Index (N mod Cache_Size);
4002
9c486805 4003 if Determine_Range_Cache_N (Cindex) = N
4004 and then
4005 Determine_Range_Cache_V (Cindex) = Assume_Valid
4006 then
ee6ba406 4007 Lo := Determine_Range_Cache_Lo (Cindex);
4008 Hi := Determine_Range_Cache_Hi (Cindex);
4009 return;
4010 end if;
4011
feff2f05 4012 -- Otherwise, start by finding the bounds of the type of the expression,
4013 -- the value cannot be outside this range (if it is, then we have an
4014 -- overflow situation, which is a separate check, we are talking here
4015 -- only about the expression value).
ee6ba406 4016
341bd953 4017 -- First a check, never try to find the bounds of a generic type, since
4018 -- these bounds are always junk values, and it is only valid to look at
4019 -- the bounds in an instance.
4020
4021 if Is_Generic_Type (Typ) then
4022 OK := False;
4023 return;
4024 end if;
4025
9c486805 4026 -- First step, change to use base type unless we know the value is valid
e254d721 4027
9c486805 4028 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4029 or else Assume_No_Invalid_Values
4030 or else Assume_Valid
e254d721 4031 then
9c486805 4032 null;
4033 else
4034 Typ := Underlying_Type (Base_Type (Typ));
e254d721 4035 end if;
4036
094ed68e 4037 -- Retrieve the base type. Handle the case where the base type is a
4038 -- private enumeration type.
4039
4040 Btyp := Base_Type (Typ);
4041
4042 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4043 Btyp := Full_View (Btyp);
4044 end if;
4045
feff2f05 4046 -- We use the actual bound unless it is dynamic, in which case use the
4047 -- corresponding base type bound if possible. If we can't get a bound
4048 -- then we figure we can't determine the range (a peculiar case, that
4049 -- perhaps cannot happen, but there is no point in bombing in this
4050 -- optimization circuit.
8880be85 4051
4052 -- First the low bound
ee6ba406 4053
4054 Bound := Type_Low_Bound (Typ);
4055
4056 if Compile_Time_Known_Value (Bound) then
4057 Lo := Expr_Value (Bound);
4058
094ed68e 4059 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4060 Lo := Expr_Value (Type_Low_Bound (Btyp));
ee6ba406 4061
4062 else
4063 OK := False;
4064 return;
4065 end if;
4066
8880be85 4067 -- Now the high bound
4068
ee6ba406 4069 Bound := Type_High_Bound (Typ);
4070
8880be85 4071 -- We need the high bound of the base type later on, and this should
4072 -- always be compile time known. Again, it is not clear that this
4073 -- can ever be false, but no point in bombing.
ee6ba406 4074
094ed68e 4075 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4076 Hbound := Expr_Value (Type_High_Bound (Btyp));
ee6ba406 4077 Hi := Hbound;
4078
4079 else
4080 OK := False;
4081 return;
4082 end if;
4083
feff2f05 4084 -- If we have a static subtype, then that may have a tighter bound so
4085 -- use the upper bound of the subtype instead in this case.
8880be85 4086
4087 if Compile_Time_Known_Value (Bound) then
4088 Hi := Expr_Value (Bound);
4089 end if;
4090
feff2f05 4091 -- We may be able to refine this value in certain situations. If any
4092 -- refinement is possible, then Lor and Hir are set to possibly tighter
4093 -- bounds, and OK1 is set to True.
ee6ba406 4094
4095 case Nkind (N) is
4096
4097 -- For unary plus, result is limited by range of operand
4098
4099 when N_Op_Plus =>
9c486805 4100 Determine_Range
4101 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4102
4103 -- For unary minus, determine range of operand, and negate it
4104
4105 when N_Op_Minus =>
9c486805 4106 Determine_Range
4107 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4108
4109 if OK1 then
4110 Lor := -Hi_Right;
4111 Hir := -Lo_Right;
4112 end if;
4113
4114 -- For binary addition, get range of each operand and do the
4115 -- addition to get the result range.
4116
4117 when N_Op_Add =>
4118 if OK_Operands then
4119 Lor := Lo_Left + Lo_Right;
4120 Hir := Hi_Left + Hi_Right;
4121 end if;
4122
feff2f05 4123 -- Division is tricky. The only case we consider is where the right
4124 -- operand is a positive constant, and in this case we simply divide
4125 -- the bounds of the left operand
ee6ba406 4126
4127 when N_Op_Divide =>
4128 if OK_Operands then
4129 if Lo_Right = Hi_Right
4130 and then Lo_Right > 0
4131 then
4132 Lor := Lo_Left / Lo_Right;
4133 Hir := Hi_Left / Lo_Right;
4134
4135 else
4136 OK1 := False;
4137 end if;
4138 end if;
4139
feff2f05 4140 -- For binary subtraction, get range of each operand and do the worst
4141 -- case subtraction to get the result range.
ee6ba406 4142
4143 when N_Op_Subtract =>
4144 if OK_Operands then
4145 Lor := Lo_Left - Hi_Right;
4146 Hir := Hi_Left - Lo_Right;
4147 end if;
4148
feff2f05 4149 -- For MOD, if right operand is a positive constant, then result must
4150 -- be in the allowable range of mod results.
ee6ba406 4151
4152 when N_Op_Mod =>
4153 if OK_Operands then
9dfe12ae 4154 if Lo_Right = Hi_Right
4155 and then Lo_Right /= 0
4156 then
ee6ba406 4157 if Lo_Right > 0 then
4158 Lor := Uint_0;
4159 Hir := Lo_Right - 1;
4160
9dfe12ae 4161 else -- Lo_Right < 0
ee6ba406 4162 Lor := Lo_Right + 1;
4163 Hir := Uint_0;
4164 end if;
4165
4166 else
4167 OK1 := False;
4168 end if;
4169 end if;
4170
feff2f05 4171 -- For REM, if right operand is a positive constant, then result must
4172 -- be in the allowable range of mod results.
ee6ba406 4173
4174 when N_Op_Rem =>
4175 if OK_Operands then
9dfe12ae 4176 if Lo_Right = Hi_Right
4177 and then Lo_Right /= 0
4178 then
ee6ba406 4179 declare
4180 Dval : constant Uint := (abs Lo_Right) - 1;
4181
4182 begin
4183 -- The sign of the result depends on the sign of the
4184 -- dividend (but not on the sign of the divisor, hence
4185 -- the abs operation above).
4186
4187 if Lo_Left < 0 then
4188 Lor := -Dval;
4189 else
4190 Lor := Uint_0;
4191 end if;
4192
4193 if Hi_Left < 0 then
4194 Hir := Uint_0;
4195 else
4196 Hir := Dval;
4197 end if;
4198 end;
4199
4200 else
4201 OK1 := False;
4202 end if;
4203 end if;
4204
4205 -- Attribute reference cases
4206
4207 when N_Attribute_Reference =>
4208 case Attribute_Name (N) is
4209
4210 -- For Pos/Val attributes, we can refine the range using the
ddbf7f2e 4211 -- possible range of values of the attribute expression.
ee6ba406 4212
4213 when Name_Pos | Name_Val =>
9c486805 4214 Determine_Range
4215 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4216
4217 -- For Length attribute, use the bounds of the corresponding
4218 -- index type to refine the range.
4219
4220 when Name_Length =>
4221 declare
4222 Atyp : Entity_Id := Etype (Prefix (N));
4223 Inum : Nat;
4224 Indx : Node_Id;
4225
4226 LL, LU : Uint;
4227 UL, UU : Uint;
4228
4229 begin
4230 if Is_Access_Type (Atyp) then
4231 Atyp := Designated_Type (Atyp);
4232 end if;
4233
4234 -- For string literal, we know exact value
4235
4236 if Ekind (Atyp) = E_String_Literal_Subtype then
4237 OK := True;
4238 Lo := String_Literal_Length (Atyp);
4239 Hi := String_Literal_Length (Atyp);
4240 return;
4241 end if;
4242
4243 -- Otherwise check for expression given
4244
4245 if No (Expressions (N)) then
4246 Inum := 1;
4247 else
4248 Inum :=
4249 UI_To_Int (Expr_Value (First (Expressions (N))));
4250 end if;
4251
4252 Indx := First_Index (Atyp);
4253 for J in 2 .. Inum loop
4254 Indx := Next_Index (Indx);
4255 end loop;
4256
9116df93 4257 -- If the index type is a formal type or derived from
c8da6114 4258 -- one, the bounds are not static.
4259
4260 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4261 OK := False;
4262 return;
4263 end if;
4264
ee6ba406 4265 Determine_Range
9c486805 4266 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4267 Assume_Valid);
ee6ba406 4268
4269 if OK1 then
4270 Determine_Range
9c486805 4271 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4272 Assume_Valid);
ee6ba406 4273
4274 if OK1 then
4275
4276 -- The maximum value for Length is the biggest
4277 -- possible gap between the values of the bounds.
4278 -- But of course, this value cannot be negative.
4279
9c486805 4280 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 4281
4282 -- For constrained arrays, the minimum value for
4283 -- Length is taken from the actual value of the
9116df93 4284 -- bounds, since the index will be exactly of this
4285 -- subtype.
ee6ba406 4286
4287 if Is_Constrained (Atyp) then
9c486805 4288 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 4289
4290 -- For an unconstrained array, the minimum value
4291 -- for length is always zero.
4292
4293 else
4294 Lor := Uint_0;
4295 end if;
4296 end if;
4297 end if;
4298 end;
4299
4300 -- No special handling for other attributes
9116df93 4301 -- Probably more opportunities exist here???
ee6ba406 4302
4303 when others =>
4304 OK1 := False;
4305
4306 end case;
4307
feff2f05 4308 -- For type conversion from one discrete type to another, we can
4309 -- refine the range using the converted value.
ee6ba406 4310
4311 when N_Type_Conversion =>
9c486805 4312 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4313
4314 -- Nothing special to do for all other expression kinds
4315
4316 when others =>
4317 OK1 := False;
4318 Lor := No_Uint;
4319 Hir := No_Uint;
4320 end case;
4321
9116df93 4322 -- At this stage, if OK1 is true, then we know that the actual result of
4323 -- the computed expression is in the range Lor .. Hir. We can use this
4324 -- to restrict the possible range of results.
ee6ba406 4325
4326 if OK1 then
4327
9116df93 4328 -- If the refined value of the low bound is greater than the type
4329 -- high bound, then reset it to the more restrictive value. However,
4330 -- we do NOT do this for the case of a modular type where the
4331 -- possible upper bound on the value is above the base type high
4332 -- bound, because that means the result could wrap.
ee6ba406 4333
4334 if Lor > Lo
9116df93 4335 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
ee6ba406 4336 then
4337 Lo := Lor;
4338 end if;
4339
9116df93 4340 -- Similarly, if the refined value of the high bound is less than the
4341 -- value so far, then reset it to the more restrictive value. Again,
4342 -- we do not do this if the refined low bound is negative for a
4343 -- modular type, since this would wrap.
ee6ba406 4344
4345 if Hir < Hi
9116df93 4346 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
ee6ba406 4347 then
4348 Hi := Hir;
4349 end if;
4350 end if;
4351
4352 -- Set cache entry for future call and we are all done
4353
4354 Determine_Range_Cache_N (Cindex) := N;
9c486805 4355 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 4356 Determine_Range_Cache_Lo (Cindex) := Lo;
4357 Determine_Range_Cache_Hi (Cindex) := Hi;
4358 return;
4359
9116df93 4360 -- If any exception occurs, it means that we have some bug in the compiler,
4361 -- possibly triggered by a previous error, or by some unforeseen peculiar
ee6ba406 4362 -- occurrence. However, this is only an optimization attempt, so there is
4363 -- really no point in crashing the compiler. Instead we just decide, too
4364 -- bad, we can't figure out a range in this case after all.
4365
4366 exception
4367 when others =>
4368
4369 -- Debug flag K disables this behavior (useful for debugging)
4370
4371 if Debug_Flag_K then
4372 raise;
4373 else
4374 OK := False;
4375 Lo := No_Uint;
4376 Hi := No_Uint;
4377 return;
4378 end if;
ee6ba406 4379 end Determine_Range;
4380
4381 ------------------------------------
4382 -- Discriminant_Checks_Suppressed --
4383 ------------------------------------
4384
4385 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
4386 begin
9dfe12ae 4387 if Present (E) then
4388 if Is_Unchecked_Union (E) then
4389 return True;
4390 elsif Checks_May_Be_Suppressed (E) then
4391 return Is_Check_Suppressed (E, Discriminant_Check);
4392 end if;
4393 end if;
4394
fafc6b97 4395 return Scope_Suppress.Suppress (Discriminant_Check);
ee6ba406 4396 end Discriminant_Checks_Suppressed;
4397
4398 --------------------------------
4399 -- Division_Checks_Suppressed --
4400 --------------------------------
4401
4402 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
4403 begin
9dfe12ae 4404 if Present (E) and then Checks_May_Be_Suppressed (E) then
4405 return Is_Check_Suppressed (E, Division_Check);
4406 else
fafc6b97 4407 return Scope_Suppress.Suppress (Division_Check);
9dfe12ae 4408 end if;
ee6ba406 4409 end Division_Checks_Suppressed;
4410
4411 -----------------------------------
4412 -- Elaboration_Checks_Suppressed --
4413 -----------------------------------
4414
4415 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
4416 begin
38f5559f 4417 -- The complication in this routine is that if we are in the dynamic
4418 -- model of elaboration, we also check All_Checks, since All_Checks
4419 -- does not set Elaboration_Check explicitly.
4420
9dfe12ae 4421 if Present (E) then
4422 if Kill_Elaboration_Checks (E) then
4423 return True;
38f5559f 4424
9dfe12ae 4425 elsif Checks_May_Be_Suppressed (E) then
38f5559f 4426 if Is_Check_Suppressed (E, Elaboration_Check) then
4427 return True;
4428 elsif Dynamic_Elaboration_Checks then
4429 return Is_Check_Suppressed (E, All_Checks);
4430 else
4431 return False;
4432 end if;
9dfe12ae 4433 end if;
4434 end if;
4435
fafc6b97 4436 if Scope_Suppress.Suppress (Elaboration_Check) then
38f5559f 4437 return True;
4438 elsif Dynamic_Elaboration_Checks then
fafc6b97 4439 return Scope_Suppress.Suppress (All_Checks);
38f5559f 4440 else
4441 return False;
4442 end if;
ee6ba406 4443 end Elaboration_Checks_Suppressed;
4444
9dfe12ae 4445 ---------------------------
4446 -- Enable_Overflow_Check --
4447 ---------------------------
4448
4449 procedure Enable_Overflow_Check (N : Node_Id) is
3cce7f32 4450 Typ : constant Entity_Id := Base_Type (Etype (N));
db415383 4451 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 4452 Chk : Nat;
4453 OK : Boolean;
4454 Ent : Entity_Id;
4455 Ofs : Uint;
4456 Lo : Uint;
4457 Hi : Uint;
ee6ba406 4458
ee6ba406 4459 begin
9dfe12ae 4460 if Debug_Flag_CC then
4461 w ("Enable_Overflow_Check for node ", Int (N));
4462 Write_Str (" Source location = ");
4463 wl (Sloc (N));
00c403ee 4464 pg (Union_Id (N));
ee6ba406 4465 end if;
ee6ba406 4466
75209ec5 4467 -- No check if overflow checks suppressed for type of node
4468
0df9d43f 4469 if Overflow_Checks_Suppressed (Etype (N)) then
75209ec5 4470 return;
4471
49260fa5 4472 -- Nothing to do for unsigned integer types, which do not overflow
4473
4474 elsif Is_Modular_Integer_Type (Typ) then
4475 return;
3cce7f32 4476 end if;
4477
0df9d43f 4478 -- This is the point at which processing for STRICT mode diverges
21a55437 4479 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
4480 -- probably more extreme that it needs to be, but what is going on here
4481 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
0df9d43f 4482 -- to leave the processing for STRICT mode untouched. There were
21a55437 4483 -- two reasons for this. First it avoided any incompatible change of
0df9d43f 4484 -- behavior. Second, it guaranteed that STRICT mode continued to be
21a55437 4485 -- legacy reliable.
3cce7f32 4486
0df9d43f 4487 -- The big difference is that in STRICT mode there is a fair amount of
3cce7f32 4488 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
4489 -- know that no check is needed. We skip all that in the two new modes,
4490 -- since really overflow checking happens over a whole subtree, and we
4491 -- do the corresponding optimizations later on when applying the checks.
4492
4493 if Mode in Minimized_Or_Eliminated then
0df9d43f 4494 if not (Overflow_Checks_Suppressed (Etype (N)))
4495 and then not (Is_Entity_Name (N)
4496 and then Overflow_Checks_Suppressed (Entity (N)))
4497 then
4498 Activate_Overflow_Check (N);
4499 end if;
3cce7f32 4500
4501 if Debug_Flag_CC then
4502 w ("Minimized/Eliminated mode");
4503 end if;
4504
4505 return;
4506 end if;
4507
0df9d43f 4508 -- Remainder of processing is for STRICT case, and is unchanged from
691fe9e0 4509 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
49260fa5 4510
feff2f05 4511 -- Nothing to do if the range of the result is known OK. We skip this
4512 -- for conversions, since the caller already did the check, and in any
4513 -- case the condition for deleting the check for a type conversion is
cc60bd16 4514 -- different.
ee6ba406 4515
3cce7f32 4516 if Nkind (N) /= N_Type_Conversion then
9c486805 4517 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 4518
cc60bd16 4519 -- Note in the test below that we assume that the range is not OK
4520 -- if a bound of the range is equal to that of the type. That's not
4521 -- quite accurate but we do this for the following reasons:
ee6ba406 4522
9dfe12ae 4523 -- a) The way that Determine_Range works, it will typically report
4524 -- the bounds of the value as being equal to the bounds of the
4525 -- type, because it either can't tell anything more precise, or
4526 -- does not think it is worth the effort to be more precise.
ee6ba406 4527
9dfe12ae 4528 -- b) It is very unusual to have a situation in which this would
4529 -- generate an unnecessary overflow check (an example would be
4530 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 4531 -- literal value one is added).
ee6ba406 4532
9dfe12ae 4533 -- c) The alternative is a lot of special casing in this routine
4534 -- which would partially duplicate Determine_Range processing.
ee6ba406 4535
9dfe12ae 4536 if OK
4537 and then Lo > Expr_Value (Type_Low_Bound (Typ))
4538 and then Hi < Expr_Value (Type_High_Bound (Typ))
4539 then
4540 if Debug_Flag_CC then
4541 w ("No overflow check required");
4542 end if;
4543
4544 return;
4545 end if;
4546 end if;
4547
feff2f05 4548 -- If not in optimizing mode, set flag and we are done. We are also done
4549 -- (and just set the flag) if the type is not a discrete type, since it
4550 -- is not worth the effort to eliminate checks for other than discrete
4551 -- types. In addition, we take this same path if we have stored the
4552 -- maximum number of checks possible already (a very unlikely situation,
4553 -- but we do not want to blow up!)
9dfe12ae 4554
4555 if Optimization_Level = 0
4556 or else not Is_Discrete_Type (Etype (N))
4557 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 4558 then
00c403ee 4559 Activate_Overflow_Check (N);
9dfe12ae 4560
4561 if Debug_Flag_CC then
4562 w ("Optimization off");
4563 end if;
4564
ee6ba406 4565 return;
9dfe12ae 4566 end if;
ee6ba406 4567
9dfe12ae 4568 -- Otherwise evaluate and check the expression
4569
4570 Find_Check
4571 (Expr => N,
4572 Check_Type => 'O',
4573 Target_Type => Empty,
4574 Entry_OK => OK,
4575 Check_Num => Chk,
4576 Ent => Ent,
4577 Ofs => Ofs);
4578
4579 if Debug_Flag_CC then
4580 w ("Called Find_Check");
4581 w (" OK = ", OK);
4582
4583 if OK then
4584 w (" Check_Num = ", Chk);
4585 w (" Ent = ", Int (Ent));
4586 Write_Str (" Ofs = ");
4587 pid (Ofs);
4588 end if;
4589 end if;
ee6ba406 4590
9dfe12ae 4591 -- If check is not of form to optimize, then set flag and we are done
4592
4593 if not OK then
00c403ee 4594 Activate_Overflow_Check (N);
ee6ba406 4595 return;
9dfe12ae 4596 end if;
ee6ba406 4597
9dfe12ae 4598 -- If check is already performed, then return without setting flag
4599
4600 if Chk /= 0 then
4601 if Debug_Flag_CC then
4602 w ("Check suppressed!");
4603 end if;
ee6ba406 4604
ee6ba406 4605 return;
9dfe12ae 4606 end if;
ee6ba406 4607
9dfe12ae 4608 -- Here we will make a new entry for the new check
4609
00c403ee 4610 Activate_Overflow_Check (N);
9dfe12ae 4611 Num_Saved_Checks := Num_Saved_Checks + 1;
4612 Saved_Checks (Num_Saved_Checks) :=
4613 (Killed => False,
4614 Entity => Ent,
4615 Offset => Ofs,
4616 Check_Type => 'O',
4617 Target_Type => Empty);
4618
4619 if Debug_Flag_CC then
4620 w ("Make new entry, check number = ", Num_Saved_Checks);
4621 w (" Entity = ", Int (Ent));
4622 Write_Str (" Offset = ");
4623 pid (Ofs);
4624 w (" Check_Type = O");
4625 w (" Target_Type = Empty");
4626 end if;
ee6ba406 4627
feff2f05 4628 -- If we get an exception, then something went wrong, probably because of
4629 -- an error in the structure of the tree due to an incorrect program. Or it
4630 -- may be a bug in the optimization circuit. In either case the safest
4631 -- thing is simply to set the check flag unconditionally.
9dfe12ae 4632
4633 exception
4634 when others =>
00c403ee 4635 Activate_Overflow_Check (N);
9dfe12ae 4636
4637 if Debug_Flag_CC then
4638 w (" exception occurred, overflow flag set");
4639 end if;
4640
4641 return;
4642 end Enable_Overflow_Check;
4643
4644 ------------------------
4645 -- Enable_Range_Check --
4646 ------------------------
4647
4648 procedure Enable_Range_Check (N : Node_Id) is
4649 Chk : Nat;
4650 OK : Boolean;
4651 Ent : Entity_Id;
4652 Ofs : Uint;
4653 Ttyp : Entity_Id;
4654 P : Node_Id;
4655
4656 begin
feff2f05 4657 -- Return if unchecked type conversion with range check killed. In this
4658 -- case we never set the flag (that's what Kill_Range_Check is about!)
9dfe12ae 4659
4660 if Nkind (N) = N_Unchecked_Type_Conversion
4661 and then Kill_Range_Check (N)
ee6ba406 4662 then
4663 return;
9dfe12ae 4664 end if;
ee6ba406 4665
55e8372b 4666 -- Do not set range check flag if parent is assignment statement or
4667 -- object declaration with Suppress_Assignment_Checks flag set
4668
4669 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
4670 and then Suppress_Assignment_Checks (Parent (N))
4671 then
4672 return;
4673 end if;
4674
0577b0b1 4675 -- Check for various cases where we should suppress the range check
4676
4677 -- No check if range checks suppressed for type of node
4678
4679 if Present (Etype (N))
4680 and then Range_Checks_Suppressed (Etype (N))
4681 then
4682 return;
4683
4684 -- No check if node is an entity name, and range checks are suppressed
4685 -- for this entity, or for the type of this entity.
4686
4687 elsif Is_Entity_Name (N)
4688 and then (Range_Checks_Suppressed (Entity (N))
4689 or else Range_Checks_Suppressed (Etype (Entity (N))))
4690 then
4691 return;
4692
4693 -- No checks if index of array, and index checks are suppressed for
4694 -- the array object or the type of the array.
4695
4696 elsif Nkind (Parent (N)) = N_Indexed_Component then
4697 declare
4698 Pref : constant Node_Id := Prefix (Parent (N));
4699 begin
4700 if Is_Entity_Name (Pref)
4701 and then Index_Checks_Suppressed (Entity (Pref))
4702 then
4703 return;
4704 elsif Index_Checks_Suppressed (Etype (Pref)) then
4705 return;
4706 end if;
4707 end;
4708 end if;
4709
9dfe12ae 4710 -- Debug trace output
ee6ba406 4711
9dfe12ae 4712 if Debug_Flag_CC then
4713 w ("Enable_Range_Check for node ", Int (N));
4714 Write_Str (" Source location = ");
4715 wl (Sloc (N));
00c403ee 4716 pg (Union_Id (N));
9dfe12ae 4717 end if;
4718
feff2f05 4719 -- If not in optimizing mode, set flag and we are done. We are also done
4720 -- (and just set the flag) if the type is not a discrete type, since it
4721 -- is not worth the effort to eliminate checks for other than discrete
4722 -- types. In addition, we take this same path if we have stored the
4723 -- maximum number of checks possible already (a very unlikely situation,
4724 -- but we do not want to blow up!)
9dfe12ae 4725
4726 if Optimization_Level = 0
4727 or else No (Etype (N))
4728 or else not Is_Discrete_Type (Etype (N))
4729 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 4730 then
00c403ee 4731 Activate_Range_Check (N);
9dfe12ae 4732
4733 if Debug_Flag_CC then
4734 w ("Optimization off");
4735 end if;
4736
ee6ba406 4737 return;
9dfe12ae 4738 end if;
ee6ba406 4739
9dfe12ae 4740 -- Otherwise find out the target type
ee6ba406 4741
9dfe12ae 4742 P := Parent (N);
ee6ba406 4743
9dfe12ae 4744 -- For assignment, use left side subtype
4745
4746 if Nkind (P) = N_Assignment_Statement
4747 and then Expression (P) = N
4748 then
4749 Ttyp := Etype (Name (P));
4750
4751 -- For indexed component, use subscript subtype
4752
4753 elsif Nkind (P) = N_Indexed_Component then
4754 declare
4755 Atyp : Entity_Id;
4756 Indx : Node_Id;
4757 Subs : Node_Id;
4758
4759 begin
4760 Atyp := Etype (Prefix (P));
4761
4762 if Is_Access_Type (Atyp) then
4763 Atyp := Designated_Type (Atyp);
f07ea091 4764
4765 -- If the prefix is an access to an unconstrained array,
feff2f05 4766 -- perform check unconditionally: it depends on the bounds of
4767 -- an object and we cannot currently recognize whether the test
4768 -- may be redundant.
f07ea091 4769
4770 if not Is_Constrained (Atyp) then
00c403ee 4771 Activate_Range_Check (N);
f07ea091 4772 return;
4773 end if;
7189d17f 4774
feff2f05 4775 -- Ditto if the prefix is an explicit dereference whose designated
4776 -- type is unconstrained.
7189d17f 4777
4778 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
4779 and then not Is_Constrained (Atyp)
4780 then
00c403ee 4781 Activate_Range_Check (N);
7189d17f 4782 return;
9dfe12ae 4783 end if;
4784
4785 Indx := First_Index (Atyp);
4786 Subs := First (Expressions (P));
4787 loop
4788 if Subs = N then
4789 Ttyp := Etype (Indx);
4790 exit;
4791 end if;
4792
4793 Next_Index (Indx);
4794 Next (Subs);
4795 end loop;
4796 end;
4797
4798 -- For now, ignore all other cases, they are not so interesting
4799
4800 else
4801 if Debug_Flag_CC then
4802 w (" target type not found, flag set");
4803 end if;
4804
00c403ee 4805 Activate_Range_Check (N);
9dfe12ae 4806 return;
4807 end if;
4808
4809 -- Evaluate and check the expression
4810
4811 Find_Check
4812 (Expr => N,
4813 Check_Type => 'R',
4814 Target_Type => Ttyp,
4815 Entry_OK => OK,
4816 Check_Num => Chk,
4817 Ent => Ent,
4818 Ofs => Ofs);
4819
4820 if Debug_Flag_CC then
4821 w ("Called Find_Check");
4822 w ("Target_Typ = ", Int (Ttyp));
4823 w (" OK = ", OK);
4824
4825 if OK then
4826 w (" Check_Num = ", Chk);
4827 w (" Ent = ", Int (Ent));
4828 Write_Str (" Ofs = ");
4829 pid (Ofs);
4830 end if;
4831 end if;
4832
4833 -- If check is not of form to optimize, then set flag and we are done
4834
4835 if not OK then
4836 if Debug_Flag_CC then
4837 w (" expression not of optimizable type, flag set");
4838 end if;
4839
00c403ee 4840 Activate_Range_Check (N);
9dfe12ae 4841 return;
4842 end if;
4843
4844 -- If check is already performed, then return without setting flag
4845
4846 if Chk /= 0 then
4847 if Debug_Flag_CC then
4848 w ("Check suppressed!");
4849 end if;
4850
4851 return;
4852 end if;
4853
4854 -- Here we will make a new entry for the new check
4855
00c403ee 4856 Activate_Range_Check (N);
9dfe12ae 4857 Num_Saved_Checks := Num_Saved_Checks + 1;
4858 Saved_Checks (Num_Saved_Checks) :=
4859 (Killed => False,
4860 Entity => Ent,
4861 Offset => Ofs,
4862 Check_Type => 'R',
4863 Target_Type => Ttyp);
4864
4865 if Debug_Flag_CC then
4866 w ("Make new entry, check number = ", Num_Saved_Checks);
4867 w (" Entity = ", Int (Ent));
4868 Write_Str (" Offset = ");
4869 pid (Ofs);
4870 w (" Check_Type = R");
4871 w (" Target_Type = ", Int (Ttyp));
00c403ee 4872 pg (Union_Id (Ttyp));
9dfe12ae 4873 end if;
4874
feff2f05 4875 -- If we get an exception, then something went wrong, probably because of
4876 -- an error in the structure of the tree due to an incorrect program. Or
4877 -- it may be a bug in the optimization circuit. In either case the safest
4878 -- thing is simply to set the check flag unconditionally.
9dfe12ae 4879
4880 exception
4881 when others =>
00c403ee 4882 Activate_Range_Check (N);
9dfe12ae 4883
4884 if Debug_Flag_CC then
4885 w (" exception occurred, range flag set");
4886 end if;
4887
4888 return;
4889 end Enable_Range_Check;
4890
4891 ------------------
4892 -- Ensure_Valid --
4893 ------------------
4894
4895 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
4896 Typ : constant Entity_Id := Etype (Expr);
4897
4898 begin
4899 -- Ignore call if we are not doing any validity checking
4900
4901 if not Validity_Checks_On then
4902 return;
4903
0577b0b1 4904 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 4905
0577b0b1 4906 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 4907 return;
4908
feff2f05 4909 -- No check required if expression is from the expander, we assume the
4910 -- expander will generate whatever checks are needed. Note that this is
4911 -- not just an optimization, it avoids infinite recursions!
9dfe12ae 4912
4913 -- Unchecked conversions must be checked, unless they are initialized
4914 -- scalar values, as in a component assignment in an init proc.
4915
4916 -- In addition, we force a check if Force_Validity_Checks is set
4917
4918 elsif not Comes_From_Source (Expr)
4919 and then not Force_Validity_Checks
4920 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
4921 or else Kill_Range_Check (Expr))
4922 then
4923 return;
4924
4925 -- No check required if expression is known to have valid value
4926
4927 elsif Expr_Known_Valid (Expr) then
4928 return;
4929
feff2f05 4930 -- Ignore case of enumeration with holes where the flag is set not to
4931 -- worry about holes, since no special validity check is needed
9dfe12ae 4932
4933 elsif Is_Enumeration_Type (Typ)
4934 and then Has_Non_Standard_Rep (Typ)
4935 and then Holes_OK
4936 then
4937 return;
4938
f2a06be9 4939 -- No check required on the left-hand side of an assignment
9dfe12ae 4940
4941 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
4942 and then Expr = Name (Parent (Expr))
4943 then
4944 return;
4945
6fb3c314 4946 -- No check on a universal real constant. The context will eventually
38f5559f 4947 -- convert it to a machine number for some target type, or report an
4948 -- illegality.
4949
4950 elsif Nkind (Expr) = N_Real_Literal
4951 and then Etype (Expr) = Universal_Real
4952 then
4953 return;
4954
6fb3c314 4955 -- If the expression denotes a component of a packed boolean array,
0577b0b1 4956 -- no possible check applies. We ignore the old ACATS chestnuts that
4957 -- involve Boolean range True..True.
4958
4959 -- Note: validity checks are generated for expressions that yield a
4960 -- scalar type, when it is possible to create a value that is outside of
4961 -- the type. If this is a one-bit boolean no such value exists. This is
4962 -- an optimization, and it also prevents compiler blowing up during the
4963 -- elaboration of improperly expanded packed array references.
4964
4965 elsif Nkind (Expr) = N_Indexed_Component
4966 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
4967 and then Root_Type (Etype (Expr)) = Standard_Boolean
4968 then
4969 return;
4970
9dfe12ae 4971 -- An annoying special case. If this is an out parameter of a scalar
4972 -- type, then the value is not going to be accessed, therefore it is
4973 -- inappropriate to do any validity check at the call site.
4974
4975 else
4976 -- Only need to worry about scalar types
4977
4978 if Is_Scalar_Type (Typ) then
ee6ba406 4979 declare
4980 P : Node_Id;
4981 N : Node_Id;
4982 E : Entity_Id;
4983 F : Entity_Id;
4984 A : Node_Id;
4985 L : List_Id;
4986
4987 begin
4988 -- Find actual argument (which may be a parameter association)
4989 -- and the parent of the actual argument (the call statement)
4990
4991 N := Expr;
4992 P := Parent (Expr);
4993
4994 if Nkind (P) = N_Parameter_Association then
4995 N := P;
4996 P := Parent (N);
4997 end if;
4998
feff2f05 4999 -- Only need to worry if we are argument of a procedure call
5000 -- since functions don't have out parameters. If this is an
5001 -- indirect or dispatching call, get signature from the
5002 -- subprogram type.
ee6ba406 5003
5004 if Nkind (P) = N_Procedure_Call_Statement then
5005 L := Parameter_Associations (P);
9dfe12ae 5006
5007 if Is_Entity_Name (Name (P)) then
5008 E := Entity (Name (P));
5009 else
5010 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5011 E := Etype (Name (P));
5012 end if;
ee6ba406 5013
feff2f05 5014 -- Only need to worry if there are indeed actuals, and if
5015 -- this could be a procedure call, otherwise we cannot get a
5016 -- match (either we are not an argument, or the mode of the
5017 -- formal is not OUT). This test also filters out the
5018 -- generic case.
ee6ba406 5019
5020 if Is_Non_Empty_List (L)
5021 and then Is_Subprogram (E)
5022 then
feff2f05 5023 -- This is the loop through parameters, looking for an
5024 -- OUT parameter for which we are the argument.
ee6ba406 5025
5026 F := First_Formal (E);
5027 A := First (L);
ee6ba406 5028 while Present (F) loop
5029 if Ekind (F) = E_Out_Parameter and then A = N then
5030 return;
5031 end if;
5032
5033 Next_Formal (F);
5034 Next (A);
5035 end loop;
5036 end if;
5037 end if;
5038 end;
5039 end if;
5040 end if;
5041
fa6a6949 5042 -- If this is a boolean expression, only its elementary operands need
90a07d4c 5043 -- checking: if they are valid, a boolean or short-circuit operation
5044 -- with them will be valid as well.
784d4230 5045
5046 if Base_Type (Typ) = Standard_Boolean
7af38999 5047 and then
fa6a6949 5048 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
784d4230 5049 then
5050 return;
5051 end if;
5052
0577b0b1 5053 -- If we fall through, a validity check is required
ee6ba406 5054
5055 Insert_Valid_Check (Expr);
ce7498d3 5056
5057 if Is_Entity_Name (Expr)
5058 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5059 then
5060 Set_Is_Known_Valid (Entity (Expr));
5061 end if;
ee6ba406 5062 end Ensure_Valid;
5063
5064 ----------------------
5065 -- Expr_Known_Valid --
5066 ----------------------
5067
5068 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5069 Typ : constant Entity_Id := Etype (Expr);
5070
5071 begin
feff2f05 5072 -- Non-scalar types are always considered valid, since they never give
5073 -- rise to the issues of erroneous or bounded error behavior that are
5074 -- the concern. In formal reference manual terms the notion of validity
5075 -- only applies to scalar types. Note that even when packed arrays are
5076 -- represented using modular types, they are still arrays semantically,
5077 -- so they are also always valid (in particular, the unused bits can be
5078 -- random rubbish without affecting the validity of the array value).
ee6ba406 5079
fa814356 5080 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
ee6ba406 5081 return True;
5082
5083 -- If no validity checking, then everything is considered valid
5084
5085 elsif not Validity_Checks_On then
5086 return True;
5087
5088 -- Floating-point types are considered valid unless floating-point
5089 -- validity checks have been specifically turned on.
5090
5091 elsif Is_Floating_Point_Type (Typ)
5092 and then not Validity_Check_Floating_Point
5093 then
5094 return True;
5095
feff2f05 5096 -- If the expression is the value of an object that is known to be
5097 -- valid, then clearly the expression value itself is valid.
ee6ba406 5098
5099 elsif Is_Entity_Name (Expr)
5100 and then Is_Known_Valid (Entity (Expr))
5101 then
5102 return True;
5103
0577b0b1 5104 -- References to discriminants are always considered valid. The value
5105 -- of a discriminant gets checked when the object is built. Within the
5106 -- record, we consider it valid, and it is important to do so, since
5107 -- otherwise we can try to generate bogus validity checks which
feff2f05 5108 -- reference discriminants out of scope. Discriminants of concurrent
5109 -- types are excluded for the same reason.
0577b0b1 5110
5111 elsif Is_Entity_Name (Expr)
feff2f05 5112 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 5113 then
5114 return True;
5115
feff2f05 5116 -- If the type is one for which all values are known valid, then we are
5117 -- sure that the value is valid except in the slightly odd case where
5118 -- the expression is a reference to a variable whose size has been
5119 -- explicitly set to a value greater than the object size.
ee6ba406 5120
5121 elsif Is_Known_Valid (Typ) then
5122 if Is_Entity_Name (Expr)
5123 and then Ekind (Entity (Expr)) = E_Variable
5124 and then Esize (Entity (Expr)) > Esize (Typ)
5125 then
5126 return False;
5127 else
5128 return True;
5129 end if;
5130
5131 -- Integer and character literals always have valid values, where
5132 -- appropriate these will be range checked in any case.
5133
5134 elsif Nkind (Expr) = N_Integer_Literal
5135 or else
5136 Nkind (Expr) = N_Character_Literal
5137 then
5138 return True;
5139
91e47010 5140 -- Real literals are assumed to be valid in VM targets
5141
5142 elsif VM_Target /= No_VM
5143 and then Nkind (Expr) = N_Real_Literal
5144 then
5145 return True;
5146
ee6ba406 5147 -- If we have a type conversion or a qualification of a known valid
5148 -- value, then the result will always be valid.
5149
5150 elsif Nkind (Expr) = N_Type_Conversion
5151 or else
5152 Nkind (Expr) = N_Qualified_Expression
5153 then
5154 return Expr_Known_Valid (Expression (Expr));
5155
38f5559f 5156 -- The result of any operator is always considered valid, since we
5157 -- assume the necessary checks are done by the operator. For operators
5158 -- on floating-point operations, we must also check when the operation
5159 -- is the right-hand side of an assignment, or is an actual in a call.
ee6ba406 5160
0577b0b1 5161 elsif Nkind (Expr) in N_Op then
1d90d657 5162 if Is_Floating_Point_Type (Typ)
5163 and then Validity_Check_Floating_Point
5164 and then
5165 (Nkind (Parent (Expr)) = N_Assignment_Statement
5166 or else Nkind (Parent (Expr)) = N_Function_Call
5167 or else Nkind (Parent (Expr)) = N_Parameter_Association)
5168 then
5169 return False;
5170 else
5171 return True;
5172 end if;
5173
feff2f05 5174 -- The result of a membership test is always valid, since it is true or
5175 -- false, there are no other possibilities.
0577b0b1 5176
5177 elsif Nkind (Expr) in N_Membership_Test then
5178 return True;
5179
ee6ba406 5180 -- For all other cases, we do not know the expression is valid
5181
5182 else
5183 return False;
5184 end if;
5185 end Expr_Known_Valid;
5186
9dfe12ae 5187 ----------------
5188 -- Find_Check --
5189 ----------------
5190
5191 procedure Find_Check
5192 (Expr : Node_Id;
5193 Check_Type : Character;
5194 Target_Type : Entity_Id;
5195 Entry_OK : out Boolean;
5196 Check_Num : out Nat;
5197 Ent : out Entity_Id;
5198 Ofs : out Uint)
5199 is
5200 function Within_Range_Of
5201 (Target_Type : Entity_Id;
314a23b6 5202 Check_Type : Entity_Id) return Boolean;
9dfe12ae 5203 -- Given a requirement for checking a range against Target_Type, and
5204 -- and a range Check_Type against which a check has already been made,
5205 -- determines if the check against check type is sufficient to ensure
5206 -- that no check against Target_Type is required.
5207
5208 ---------------------
5209 -- Within_Range_Of --
5210 ---------------------
5211
5212 function Within_Range_Of
5213 (Target_Type : Entity_Id;
314a23b6 5214 Check_Type : Entity_Id) return Boolean
9dfe12ae 5215 is
5216 begin
5217 if Target_Type = Check_Type then
5218 return True;
5219
5220 else
5221 declare
5222 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5223 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5224 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5225 Chi : constant Node_Id := Type_High_Bound (Check_Type);
5226
5227 begin
5228 if (Tlo = Clo
5229 or else (Compile_Time_Known_Value (Tlo)
5230 and then
5231 Compile_Time_Known_Value (Clo)
5232 and then
5233 Expr_Value (Clo) >= Expr_Value (Tlo)))
5234 and then
5235 (Thi = Chi
5236 or else (Compile_Time_Known_Value (Thi)
5237 and then
5238 Compile_Time_Known_Value (Chi)
5239 and then
5240 Expr_Value (Chi) <= Expr_Value (Clo)))
5241 then
5242 return True;
5243 else
5244 return False;
5245 end if;
5246 end;
5247 end if;
5248 end Within_Range_Of;
5249
5250 -- Start of processing for Find_Check
5251
5252 begin
ed195555 5253 -- Establish default, in case no entry is found
9dfe12ae 5254
5255 Check_Num := 0;
5256
5257 -- Case of expression is simple entity reference
5258
5259 if Is_Entity_Name (Expr) then
5260 Ent := Entity (Expr);
5261 Ofs := Uint_0;
5262
5263 -- Case of expression is entity + known constant
5264
5265 elsif Nkind (Expr) = N_Op_Add
5266 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5267 and then Is_Entity_Name (Left_Opnd (Expr))
5268 then
5269 Ent := Entity (Left_Opnd (Expr));
5270 Ofs := Expr_Value (Right_Opnd (Expr));
5271
5272 -- Case of expression is entity - known constant
5273
5274 elsif Nkind (Expr) = N_Op_Subtract
5275 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5276 and then Is_Entity_Name (Left_Opnd (Expr))
5277 then
5278 Ent := Entity (Left_Opnd (Expr));
5279 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
5280
5281 -- Any other expression is not of the right form
5282
5283 else
5284 Ent := Empty;
5285 Ofs := Uint_0;
5286 Entry_OK := False;
5287 return;
5288 end if;
5289
feff2f05 5290 -- Come here with expression of appropriate form, check if entity is an
5291 -- appropriate one for our purposes.
9dfe12ae 5292
5293 if (Ekind (Ent) = E_Variable
cc60bd16 5294 or else Is_Constant_Object (Ent))
9dfe12ae 5295 and then not Is_Library_Level_Entity (Ent)
5296 then
5297 Entry_OK := True;
5298 else
5299 Entry_OK := False;
5300 return;
5301 end if;
5302
5303 -- See if there is matching check already
5304
5305 for J in reverse 1 .. Num_Saved_Checks loop
5306 declare
5307 SC : Saved_Check renames Saved_Checks (J);
5308
5309 begin
5310 if SC.Killed = False
5311 and then SC.Entity = Ent
5312 and then SC.Offset = Ofs
5313 and then SC.Check_Type = Check_Type
5314 and then Within_Range_Of (Target_Type, SC.Target_Type)
5315 then
5316 Check_Num := J;
5317 return;
5318 end if;
5319 end;
5320 end loop;
5321
5322 -- If we fall through entry was not found
5323
9dfe12ae 5324 return;
5325 end Find_Check;
5326
5327 ---------------------------------
5328 -- Generate_Discriminant_Check --
5329 ---------------------------------
5330
5331 -- Note: the code for this procedure is derived from the
feff2f05 5332 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 5333
5334 procedure Generate_Discriminant_Check (N : Node_Id) is
5335 Loc : constant Source_Ptr := Sloc (N);
5336 Pref : constant Node_Id := Prefix (N);
5337 Sel : constant Node_Id := Selector_Name (N);
5338
5339 Orig_Comp : constant Entity_Id :=
b6341c67 5340 Original_Record_Component (Entity (Sel));
9dfe12ae 5341 -- The original component to be checked
5342
5343 Discr_Fct : constant Entity_Id :=
b6341c67 5344 Discriminant_Checking_Func (Orig_Comp);
9dfe12ae 5345 -- The discriminant checking function
5346
5347 Discr : Entity_Id;
5348 -- One discriminant to be checked in the type
5349
5350 Real_Discr : Entity_Id;
5351 -- Actual discriminant in the call
5352
5353 Pref_Type : Entity_Id;
5354 -- Type of relevant prefix (ignoring private/access stuff)
5355
5356 Args : List_Id;
5357 -- List of arguments for function call
5358
5359 Formal : Entity_Id;
feff2f05 5360 -- Keep track of the formal corresponding to the actual we build for
5361 -- each discriminant, in order to be able to perform the necessary type
5362 -- conversions.
9dfe12ae 5363
5364 Scomp : Node_Id;
5365 -- Selected component reference for checking function argument
5366
5367 begin
5368 Pref_Type := Etype (Pref);
5369
5370 -- Force evaluation of the prefix, so that it does not get evaluated
5371 -- twice (once for the check, once for the actual reference). Such a
5372 -- double evaluation is always a potential source of inefficiency,
5373 -- and is functionally incorrect in the volatile case, or when the
5374 -- prefix may have side-effects. An entity or a component of an
5375 -- entity requires no evaluation.
5376
5377 if Is_Entity_Name (Pref) then
5378 if Treat_As_Volatile (Entity (Pref)) then
5379 Force_Evaluation (Pref, Name_Req => True);
5380 end if;
5381
5382 elsif Treat_As_Volatile (Etype (Pref)) then
5383 Force_Evaluation (Pref, Name_Req => True);
5384
5385 elsif Nkind (Pref) = N_Selected_Component
5386 and then Is_Entity_Name (Prefix (Pref))
5387 then
5388 null;
5389
5390 else
5391 Force_Evaluation (Pref, Name_Req => True);
5392 end if;
5393
5394 -- For a tagged type, use the scope of the original component to
5395 -- obtain the type, because ???
5396
5397 if Is_Tagged_Type (Scope (Orig_Comp)) then
5398 Pref_Type := Scope (Orig_Comp);
5399
feff2f05 5400 -- For an untagged derived type, use the discriminants of the parent
5401 -- which have been renamed in the derivation, possibly by a one-to-many
5402 -- discriminant constraint. For non-tagged type, initially get the Etype
5403 -- of the prefix
9dfe12ae 5404
5405 else
5406 if Is_Derived_Type (Pref_Type)
5407 and then Number_Discriminants (Pref_Type) /=
5408 Number_Discriminants (Etype (Base_Type (Pref_Type)))
5409 then
5410 Pref_Type := Etype (Base_Type (Pref_Type));
5411 end if;
5412 end if;
5413
5414 -- We definitely should have a checking function, This routine should
5415 -- not be called if no discriminant checking function is present.
5416
5417 pragma Assert (Present (Discr_Fct));
5418
5419 -- Create the list of the actual parameters for the call. This list
5420 -- is the list of the discriminant fields of the record expression to
5421 -- be discriminant checked.
5422
5423 Args := New_List;
5424 Formal := First_Formal (Discr_Fct);
5425 Discr := First_Discriminant (Pref_Type);
5426 while Present (Discr) loop
5427
5428 -- If we have a corresponding discriminant field, and a parent
5429 -- subtype is present, then we want to use the corresponding
5430 -- discriminant since this is the one with the useful value.
5431
5432 if Present (Corresponding_Discriminant (Discr))
5433 and then Ekind (Pref_Type) = E_Record_Type
5434 and then Present (Parent_Subtype (Pref_Type))
5435 then
5436 Real_Discr := Corresponding_Discriminant (Discr);
5437 else
5438 Real_Discr := Discr;
5439 end if;
5440
5441 -- Construct the reference to the discriminant
5442
5443 Scomp :=
5444 Make_Selected_Component (Loc,
5445 Prefix =>
5446 Unchecked_Convert_To (Pref_Type,
5447 Duplicate_Subexpr (Pref)),
5448 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
5449
5450 -- Manually analyze and resolve this selected component. We really
5451 -- want it just as it appears above, and do not want the expander
feff2f05 5452 -- playing discriminal games etc with this reference. Then we append
5453 -- the argument to the list we are gathering.
9dfe12ae 5454
5455 Set_Etype (Scomp, Etype (Real_Discr));
5456 Set_Analyzed (Scomp, True);
5457 Append_To (Args, Convert_To (Etype (Formal), Scomp));
5458
5459 Next_Formal_With_Extras (Formal);
5460 Next_Discriminant (Discr);
5461 end loop;
5462
5463 -- Now build and insert the call
5464
5465 Insert_Action (N,
5466 Make_Raise_Constraint_Error (Loc,
5467 Condition =>
5468 Make_Function_Call (Loc,
5469 Name => New_Occurrence_Of (Discr_Fct, Loc),
5470 Parameter_Associations => Args),
5471 Reason => CE_Discriminant_Check_Failed));
5472 end Generate_Discriminant_Check;
5473
5c99c290 5474 ---------------------------
5475 -- Generate_Index_Checks --
5476 ---------------------------
9dfe12ae 5477
5478 procedure Generate_Index_Checks (N : Node_Id) is
05f3e139 5479
5480 function Entity_Of_Prefix return Entity_Id;
5481 -- Returns the entity of the prefix of N (or Empty if not found)
5482
3f42e2a7 5483 ----------------------
5484 -- Entity_Of_Prefix --
5485 ----------------------
5486
05f3e139 5487 function Entity_Of_Prefix return Entity_Id is
e5d38095 5488 P : Node_Id;
5489
05f3e139 5490 begin
e5d38095 5491 P := Prefix (N);
05f3e139 5492 while not Is_Entity_Name (P) loop
5493 if not Nkind_In (P, N_Selected_Component,
5494 N_Indexed_Component)
5495 then
5496 return Empty;
5497 end if;
5498
5499 P := Prefix (P);
5500 end loop;
5501
5502 return Entity (P);
5503 end Entity_Of_Prefix;
5504
5505 -- Local variables
5506
5507 Loc : constant Source_Ptr := Sloc (N);
5508 A : constant Node_Id := Prefix (N);
5509 A_Ent : constant Entity_Id := Entity_Of_Prefix;
5510 Sub : Node_Id;
9dfe12ae 5511
3f42e2a7 5512 -- Start of processing for Generate_Index_Checks
5513
9dfe12ae 5514 begin
05f3e139 5515 -- Ignore call if the prefix is not an array since we have a serious
5516 -- error in the sources. Ignore it also if index checks are suppressed
5517 -- for array object or type.
0577b0b1 5518
05f3e139 5519 if not Is_Array_Type (Etype (A))
5520 or else (Present (A_Ent)
e5d38095 5521 and then Index_Checks_Suppressed (A_Ent))
0577b0b1 5522 or else Index_Checks_Suppressed (Etype (A))
5523 then
5524 return;
df9fba45 5525
5526 -- The indexed component we are dealing with contains 'Loop_Entry in its
5527 -- prefix. This case arises when analysis has determined that constructs
5528 -- such as
5529
5530 -- Prefix'Loop_Entry (Expr)
5531 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
5532
5533 -- require rewriting for error detection purposes. A side effect of this
5534 -- action is the generation of index checks that mention 'Loop_Entry.
5535 -- Delay the generation of the check until 'Loop_Entry has been properly
5536 -- expanded. This is done in Expand_Loop_Entry_Attributes.
5537
5538 elsif Nkind (Prefix (N)) = N_Attribute_Reference
5539 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
5540 then
5541 return;
0577b0b1 5542 end if;
5543
05f3e139 5544 -- Generate a raise of constraint error with the appropriate reason and
5545 -- a condition of the form:
5546
3f42e2a7 5547 -- Base_Type (Sub) not in Array'Range (Subscript)
05f3e139 5548
5549 -- Note that the reason we generate the conversion to the base type here
5550 -- is that we definitely want the range check to take place, even if it
5551 -- looks like the subtype is OK. Optimization considerations that allow
5552 -- us to omit the check have already been taken into account in the
5553 -- setting of the Do_Range_Check flag earlier on.
0577b0b1 5554
9dfe12ae 5555 Sub := First (Expressions (N));
05f3e139 5556
5557 -- Handle string literals
5558
5559 if Ekind (Etype (A)) = E_String_Literal_Subtype then
9dfe12ae 5560 if Do_Range_Check (Sub) then
5561 Set_Do_Range_Check (Sub, False);
5562
05f3e139 5563 -- For string literals we obtain the bounds of the string from the
5564 -- associated subtype.
9dfe12ae 5565
05f3e139 5566 Insert_Action (N,
094ed68e 5567 Make_Raise_Constraint_Error (Loc,
5568 Condition =>
5569 Make_Not_In (Loc,
5570 Left_Opnd =>
5571 Convert_To (Base_Type (Etype (Sub)),
5572 Duplicate_Subexpr_Move_Checks (Sub)),
5573 Right_Opnd =>
5574 Make_Attribute_Reference (Loc,
5575 Prefix => New_Reference_To (Etype (A), Loc),
5576 Attribute_Name => Name_Range)),
5577 Reason => CE_Index_Check_Failed));
05f3e139 5578 end if;
9dfe12ae 5579
05f3e139 5580 -- General case
9dfe12ae 5581
05f3e139 5582 else
5583 declare
5584 A_Idx : Node_Id := Empty;
5585 A_Range : Node_Id;
5586 Ind : Nat;
5587 Num : List_Id;
5588 Range_N : Node_Id;
9dfe12ae 5589
05f3e139 5590 begin
5591 A_Idx := First_Index (Etype (A));
5592 Ind := 1;
5593 while Present (Sub) loop
5594 if Do_Range_Check (Sub) then
5595 Set_Do_Range_Check (Sub, False);
9dfe12ae 5596
05f3e139 5597 -- Force evaluation except for the case of a simple name of
5598 -- a non-volatile entity.
9dfe12ae 5599
05f3e139 5600 if not Is_Entity_Name (Sub)
5601 or else Treat_As_Volatile (Entity (Sub))
5602 then
5603 Force_Evaluation (Sub);
5604 end if;
9dfe12ae 5605
05f3e139 5606 if Nkind (A_Idx) = N_Range then
5607 A_Range := A_Idx;
5608
5609 elsif Nkind (A_Idx) = N_Identifier
5610 or else Nkind (A_Idx) = N_Expanded_Name
5611 then
5612 A_Range := Scalar_Range (Entity (A_Idx));
5613
5614 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
5615 A_Range := Range_Expression (Constraint (A_Idx));
5616 end if;
5617
5618 -- For array objects with constant bounds we can generate
5619 -- the index check using the bounds of the type of the index
5620
5621 if Present (A_Ent)
5622 and then Ekind (A_Ent) = E_Variable
5623 and then Is_Constant_Bound (Low_Bound (A_Range))
5624 and then Is_Constant_Bound (High_Bound (A_Range))
5625 then
5626 Range_N :=
5627 Make_Attribute_Reference (Loc,
3f42e2a7 5628 Prefix =>
5629 New_Reference_To (Etype (A_Idx), Loc),
05f3e139 5630 Attribute_Name => Name_Range);
5631
5632 -- For arrays with non-constant bounds we cannot generate
5633 -- the index check using the bounds of the type of the index
5634 -- since it may reference discriminants of some enclosing
5635 -- type. We obtain the bounds directly from the prefix
5636 -- object.
5637
5638 else
5639 if Ind = 1 then
5640 Num := No_List;
5641 else
5642 Num := New_List (Make_Integer_Literal (Loc, Ind));
5643 end if;
5644
5645 Range_N :=
5646 Make_Attribute_Reference (Loc,
5647 Prefix =>
5648 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
5649 Attribute_Name => Name_Range,
5650 Expressions => Num);
5651 end if;
5652
5653 Insert_Action (N,
094ed68e 5654 Make_Raise_Constraint_Error (Loc,
5655 Condition =>
5656 Make_Not_In (Loc,
5657 Left_Opnd =>
5658 Convert_To (Base_Type (Etype (Sub)),
5659 Duplicate_Subexpr_Move_Checks (Sub)),
5660 Right_Opnd => Range_N),
5661 Reason => CE_Index_Check_Failed));
05f3e139 5662 end if;
5663
5664 A_Idx := Next_Index (A_Idx);
5665 Ind := Ind + 1;
5666 Next (Sub);
5667 end loop;
5668 end;
5669 end if;
9dfe12ae 5670 end Generate_Index_Checks;
5671
5672 --------------------------
5673 -- Generate_Range_Check --
5674 --------------------------
5675
5676 procedure Generate_Range_Check
5677 (N : Node_Id;
5678 Target_Type : Entity_Id;
5679 Reason : RT_Exception_Code)
5680 is
5681 Loc : constant Source_Ptr := Sloc (N);
5682 Source_Type : constant Entity_Id := Etype (N);
5683 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
5684 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
5685
5686 begin
feff2f05 5687 -- First special case, if the source type is already within the range
5688 -- of the target type, then no check is needed (probably we should have
5689 -- stopped Do_Range_Check from being set in the first place, but better
b40670e1 5690 -- late than never in preventing junk code!
9dfe12ae 5691
7a1dabb3 5692 if In_Subrange_Of (Source_Type, Target_Type)
b40670e1 5693
5694 -- We do NOT apply this if the source node is a literal, since in this
5695 -- case the literal has already been labeled as having the subtype of
5696 -- the target.
5697
9dfe12ae 5698 and then not
b40670e1 5699 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
9dfe12ae 5700 or else
b40670e1 5701 (Is_Entity_Name (N)
5702 and then Ekind (Entity (N)) = E_Enumeration_Literal))
5703
5704 -- Also do not apply this for floating-point if Check_Float_Overflow
5705
5706 and then not
5707 (Is_Floating_Point_Type (Source_Type) and Check_Float_Overflow)
9dfe12ae 5708 then
5709 return;
5710 end if;
5711
5712 -- We need a check, so force evaluation of the node, so that it does
5713 -- not get evaluated twice (once for the check, once for the actual
5714 -- reference). Such a double evaluation is always a potential source
5715 -- of inefficiency, and is functionally incorrect in the volatile case.
5716
b40670e1 5717 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
9dfe12ae 5718 Force_Evaluation (N);
5719 end if;
5720
feff2f05 5721 -- The easiest case is when Source_Base_Type and Target_Base_Type are
5722 -- the same since in this case we can simply do a direct check of the
5723 -- value of N against the bounds of Target_Type.
9dfe12ae 5724
5725 -- [constraint_error when N not in Target_Type]
5726
5727 -- Note: this is by far the most common case, for example all cases of
5728 -- checks on the RHS of assignments are in this category, but not all
5729 -- cases are like this. Notably conversions can involve two types.
5730
5731 if Source_Base_Type = Target_Base_Type then
5732 Insert_Action (N,
5733 Make_Raise_Constraint_Error (Loc,
5734 Condition =>
5735 Make_Not_In (Loc,
5736 Left_Opnd => Duplicate_Subexpr (N),
5737 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5738 Reason => Reason));
5739
5740 -- Next test for the case where the target type is within the bounds
5741 -- of the base type of the source type, since in this case we can
5742 -- simply convert these bounds to the base type of T to do the test.
5743
5744 -- [constraint_error when N not in
5745 -- Source_Base_Type (Target_Type'First)
5746 -- ..
5747 -- Source_Base_Type(Target_Type'Last))]
5748
f2a06be9 5749 -- The conversions will always work and need no check
9dfe12ae 5750
a9b57347 5751 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
5752 -- of converting from an enumeration value to an integer type, such as
5753 -- occurs for the case of generating a range check on Enum'Val(Exp)
5754 -- (which used to be handled by gigi). This is OK, since the conversion
5755 -- itself does not require a check.
5756
7a1dabb3 5757 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
9dfe12ae 5758 Insert_Action (N,
5759 Make_Raise_Constraint_Error (Loc,
5760 Condition =>
5761 Make_Not_In (Loc,
5762 Left_Opnd => Duplicate_Subexpr (N),
5763
5764 Right_Opnd =>
5765 Make_Range (Loc,
5766 Low_Bound =>
a9b57347 5767 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 5768 Make_Attribute_Reference (Loc,
5769 Prefix =>
5770 New_Occurrence_Of (Target_Type, Loc),
5771 Attribute_Name => Name_First)),
5772
5773 High_Bound =>
a9b57347 5774 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 5775 Make_Attribute_Reference (Loc,
5776 Prefix =>
5777 New_Occurrence_Of (Target_Type, Loc),
5778 Attribute_Name => Name_Last)))),
5779 Reason => Reason));
5780
feff2f05 5781 -- Note that at this stage we now that the Target_Base_Type is not in
5782 -- the range of the Source_Base_Type (since even the Target_Type itself
5783 -- is not in this range). It could still be the case that Source_Type is
5784 -- in range of the target base type since we have not checked that case.
9dfe12ae 5785
feff2f05 5786 -- If that is the case, we can freely convert the source to the target,
5787 -- and then test the target result against the bounds.
9dfe12ae 5788
7a1dabb3 5789 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
9dfe12ae 5790
feff2f05 5791 -- We make a temporary to hold the value of the converted value
5792 -- (converted to the base type), and then we will do the test against
5793 -- this temporary.
9dfe12ae 5794
5795 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
5796 -- [constraint_error when Tnn not in Target_Type]
5797
5798 -- Then the conversion itself is replaced by an occurrence of Tnn
5799
5800 declare
46eb6933 5801 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 5802
5803 begin
5804 Insert_Actions (N, New_List (
5805 Make_Object_Declaration (Loc,
5806 Defining_Identifier => Tnn,
5807 Object_Definition =>
5808 New_Occurrence_Of (Target_Base_Type, Loc),
5809 Constant_Present => True,
5810 Expression =>
5811 Make_Type_Conversion (Loc,
5812 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
5813 Expression => Duplicate_Subexpr (N))),
5814
5815 Make_Raise_Constraint_Error (Loc,
5816 Condition =>
5817 Make_Not_In (Loc,
5818 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
5819 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5820
5821 Reason => Reason)));
5822
5823 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
2af58f67 5824
5825 -- Set the type of N, because the declaration for Tnn might not
5826 -- be analyzed yet, as is the case if N appears within a record
5827 -- declaration, as a discriminant constraint or expression.
5828
5829 Set_Etype (N, Target_Base_Type);
9dfe12ae 5830 end;
5831
5832 -- At this stage, we know that we have two scalar types, which are
5833 -- directly convertible, and where neither scalar type has a base
5834 -- range that is in the range of the other scalar type.
5835
5836 -- The only way this can happen is with a signed and unsigned type.
5837 -- So test for these two cases:
5838
5839 else
5840 -- Case of the source is unsigned and the target is signed
5841
5842 if Is_Unsigned_Type (Source_Base_Type)
5843 and then not Is_Unsigned_Type (Target_Base_Type)
5844 then
5845 -- If the source is unsigned and the target is signed, then we
5846 -- know that the source is not shorter than the target (otherwise
5847 -- the source base type would be in the target base type range).
5848
feff2f05 5849 -- In other words, the unsigned type is either the same size as
5850 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 5851
5852 pragma Assert
5853 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
5854
5855 -- We only need to check the low bound if the low bound of the
5856 -- target type is non-negative. If the low bound of the target
5857 -- type is negative, then we know that we will fit fine.
5858
5859 -- If the high bound of the target type is negative, then we
5860 -- know we have a constraint error, since we can't possibly
5861 -- have a negative source.
5862
5863 -- With these two checks out of the way, we can do the check
5864 -- using the source type safely
5865
5866 -- This is definitely the most annoying case!
5867
5868 -- [constraint_error
5869 -- when (Target_Type'First >= 0
5870 -- and then
5871 -- N < Source_Base_Type (Target_Type'First))
5872 -- or else Target_Type'Last < 0
5873 -- or else N > Source_Base_Type (Target_Type'Last)];
5874
5875 -- We turn off all checks since we know that the conversions
5876 -- will work fine, given the guards for negative values.
5877
5878 Insert_Action (N,
5879 Make_Raise_Constraint_Error (Loc,
5880 Condition =>
5881 Make_Or_Else (Loc,
5882 Make_Or_Else (Loc,
5883 Left_Opnd =>
5884 Make_And_Then (Loc,
5885 Left_Opnd => Make_Op_Ge (Loc,
5886 Left_Opnd =>
5887 Make_Attribute_Reference (Loc,
5888 Prefix =>
5889 New_Occurrence_Of (Target_Type, Loc),
5890 Attribute_Name => Name_First),
5891 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5892
5893 Right_Opnd =>
5894 Make_Op_Lt (Loc,
5895 Left_Opnd => Duplicate_Subexpr (N),
5896 Right_Opnd =>
5897 Convert_To (Source_Base_Type,
5898 Make_Attribute_Reference (Loc,
5899 Prefix =>
5900 New_Occurrence_Of (Target_Type, Loc),
5901 Attribute_Name => Name_First)))),
5902
5903 Right_Opnd =>
5904 Make_Op_Lt (Loc,
5905 Left_Opnd =>
5906 Make_Attribute_Reference (Loc,
5907 Prefix => New_Occurrence_Of (Target_Type, Loc),
5908 Attribute_Name => Name_Last),
5909 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
5910
5911 Right_Opnd =>
5912 Make_Op_Gt (Loc,
5913 Left_Opnd => Duplicate_Subexpr (N),
5914 Right_Opnd =>
5915 Convert_To (Source_Base_Type,
5916 Make_Attribute_Reference (Loc,
5917 Prefix => New_Occurrence_Of (Target_Type, Loc),
5918 Attribute_Name => Name_Last)))),
5919
5920 Reason => Reason),
5921 Suppress => All_Checks);
5922
5923 -- Only remaining possibility is that the source is signed and
fc75802a 5924 -- the target is unsigned.
9dfe12ae 5925
5926 else
5927 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
5928 and then Is_Unsigned_Type (Target_Base_Type));
5929
feff2f05 5930 -- If the source is signed and the target is unsigned, then we
5931 -- know that the target is not shorter than the source (otherwise
5932 -- the target base type would be in the source base type range).
9dfe12ae 5933
feff2f05 5934 -- In other words, the unsigned type is either the same size as
5935 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 5936
feff2f05 5937 -- Clearly we have an error if the source value is negative since
5938 -- no unsigned type can have negative values. If the source type
5939 -- is non-negative, then the check can be done using the target
5940 -- type.
9dfe12ae 5941
5942 -- Tnn : constant Target_Base_Type (N) := Target_Type;
5943
5944 -- [constraint_error
5945 -- when N < 0 or else Tnn not in Target_Type];
5946
feff2f05 5947 -- We turn off all checks for the conversion of N to the target
5948 -- base type, since we generate the explicit check to ensure that
5949 -- the value is non-negative
9dfe12ae 5950
5951 declare
46eb6933 5952 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 5953
5954 begin
5955 Insert_Actions (N, New_List (
5956 Make_Object_Declaration (Loc,
5957 Defining_Identifier => Tnn,
5958 Object_Definition =>
5959 New_Occurrence_Of (Target_Base_Type, Loc),
5960 Constant_Present => True,
5961 Expression =>
a9b57347 5962 Make_Unchecked_Type_Conversion (Loc,
9dfe12ae 5963 Subtype_Mark =>
5964 New_Occurrence_Of (Target_Base_Type, Loc),
5965 Expression => Duplicate_Subexpr (N))),
5966
5967 Make_Raise_Constraint_Error (Loc,
5968 Condition =>
5969 Make_Or_Else (Loc,
5970 Left_Opnd =>
5971 Make_Op_Lt (Loc,
5972 Left_Opnd => Duplicate_Subexpr (N),
5973 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5974
5975 Right_Opnd =>
5976 Make_Not_In (Loc,
5977 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
5978 Right_Opnd =>
5979 New_Occurrence_Of (Target_Type, Loc))),
5980
5981 Reason => Reason)),
5982 Suppress => All_Checks);
5983
feff2f05 5984 -- Set the Etype explicitly, because Insert_Actions may have
5985 -- placed the declaration in the freeze list for an enclosing
5986 -- construct, and thus it is not analyzed yet.
9dfe12ae 5987
5988 Set_Etype (Tnn, Target_Base_Type);
5989 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
5990 end;
5991 end if;
5992 end if;
5993 end Generate_Range_Check;
5994
2af58f67 5995 ------------------
5996 -- Get_Check_Id --
5997 ------------------
5998
5999 function Get_Check_Id (N : Name_Id) return Check_Id is
6000 begin
6001 -- For standard check name, we can do a direct computation
6002
6003 if N in First_Check_Name .. Last_Check_Name then
6004 return Check_Id (N - (First_Check_Name - 1));
6005
6006 -- For non-standard names added by pragma Check_Name, search table
6007
6008 else
6009 for J in All_Checks + 1 .. Check_Names.Last loop
6010 if Check_Names.Table (J) = N then
6011 return J;
6012 end if;
6013 end loop;
6014 end if;
6015
6016 -- No matching name found
6017
6018 return No_Check_Id;
6019 end Get_Check_Id;
6020
ee6ba406 6021 ---------------------
6022 -- Get_Discriminal --
6023 ---------------------
6024
6025 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6026 Loc : constant Source_Ptr := Sloc (E);
6027 D : Entity_Id;
6028 Sc : Entity_Id;
6029
6030 begin
0577b0b1 6031 -- The bound can be a bona fide parameter of a protected operation,
6032 -- rather than a prival encoded as an in-parameter.
6033
6034 if No (Discriminal_Link (Entity (Bound))) then
6035 return Bound;
6036 end if;
6037
2af58f67 6038 -- Climb the scope stack looking for an enclosing protected type. If
6039 -- we run out of scopes, return the bound itself.
6040
6041 Sc := Scope (E);
6042 while Present (Sc) loop
6043 if Sc = Standard_Standard then
6044 return Bound;
6045
6046 elsif Ekind (Sc) = E_Protected_Type then
6047 exit;
6048 end if;
6049
6050 Sc := Scope (Sc);
6051 end loop;
6052
ee6ba406 6053 D := First_Discriminant (Sc);
2af58f67 6054 while Present (D) loop
6055 if Chars (D) = Chars (Bound) then
6056 return New_Occurrence_Of (Discriminal (D), Loc);
6057 end if;
ee6ba406 6058
ee6ba406 6059 Next_Discriminant (D);
6060 end loop;
6061
2af58f67 6062 return Bound;
ee6ba406 6063 end Get_Discriminal;
6064
2af58f67 6065 ----------------------
6066 -- Get_Range_Checks --
6067 ----------------------
6068
6069 function Get_Range_Checks
6070 (Ck_Node : Node_Id;
6071 Target_Typ : Entity_Id;
6072 Source_Typ : Entity_Id := Empty;
6073 Warn_Node : Node_Id := Empty) return Check_Result
6074 is
6075 begin
6076 return Selected_Range_Checks
6077 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
6078 end Get_Range_Checks;
6079
ee6ba406 6080 ------------------
6081 -- Guard_Access --
6082 ------------------
6083
6084 function Guard_Access
6085 (Cond : Node_Id;
6086 Loc : Source_Ptr;
314a23b6 6087 Ck_Node : Node_Id) return Node_Id
ee6ba406 6088 is
6089 begin
6090 if Nkind (Cond) = N_Or_Else then
6091 Set_Paren_Count (Cond, 1);
6092 end if;
6093
6094 if Nkind (Ck_Node) = N_Allocator then
6095 return Cond;
6096 else
6097 return
6098 Make_And_Then (Loc,
6099 Left_Opnd =>
6100 Make_Op_Ne (Loc,
9dfe12ae 6101 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 6102 Right_Opnd => Make_Null (Loc)),
6103 Right_Opnd => Cond);
6104 end if;
6105 end Guard_Access;
6106
6107 -----------------------------
6108 -- Index_Checks_Suppressed --
6109 -----------------------------
6110
6111 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6112 begin
9dfe12ae 6113 if Present (E) and then Checks_May_Be_Suppressed (E) then
6114 return Is_Check_Suppressed (E, Index_Check);
6115 else
fafc6b97 6116 return Scope_Suppress.Suppress (Index_Check);
9dfe12ae 6117 end if;
ee6ba406 6118 end Index_Checks_Suppressed;
6119
6120 ----------------
6121 -- Initialize --
6122 ----------------
6123
6124 procedure Initialize is
6125 begin
6126 for J in Determine_Range_Cache_N'Range loop
6127 Determine_Range_Cache_N (J) := Empty;
6128 end loop;
2af58f67 6129
6130 Check_Names.Init;
6131
6132 for J in Int range 1 .. All_Checks loop
6133 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6134 end loop;
ee6ba406 6135 end Initialize;
6136
6137 -------------------------
6138 -- Insert_Range_Checks --
6139 -------------------------
6140
6141 procedure Insert_Range_Checks
6142 (Checks : Check_Result;
6143 Node : Node_Id;
6144 Suppress_Typ : Entity_Id;
6145 Static_Sloc : Source_Ptr := No_Location;
6146 Flag_Node : Node_Id := Empty;
6147 Do_Before : Boolean := False)
6148 is
6149 Internal_Flag_Node : Node_Id := Flag_Node;
6150 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6151
6152 Check_Node : Node_Id;
6153 Checks_On : constant Boolean :=
b6341c67 6154 (not Index_Checks_Suppressed (Suppress_Typ))
6155 or else (not Range_Checks_Suppressed (Suppress_Typ));
ee6ba406 6156
6157 begin
feff2f05 6158 -- For now we just return if Checks_On is false, however this should be
6159 -- enhanced to check for an always True value in the condition and to
6160 -- generate a compilation warning???
ee6ba406 6161
6dbcfcd9 6162 if not Full_Expander_Active or else not Checks_On then
ee6ba406 6163 return;
6164 end if;
6165
6166 if Static_Sloc = No_Location then
6167 Internal_Static_Sloc := Sloc (Node);
6168 end if;
6169
6170 if No (Flag_Node) then
6171 Internal_Flag_Node := Node;
6172 end if;
6173
6174 for J in 1 .. 2 loop
6175 exit when No (Checks (J));
6176
6177 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6178 and then Present (Condition (Checks (J)))
6179 then
6180 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
6181 Check_Node := Checks (J);
6182 Mark_Rewrite_Insertion (Check_Node);
6183
6184 if Do_Before then
6185 Insert_Before_And_Analyze (Node, Check_Node);
6186 else
6187 Insert_After_And_Analyze (Node, Check_Node);
6188 end if;
6189
6190 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
6191 end if;
6192
6193 else
6194 Check_Node :=
f15731c4 6195 Make_Raise_Constraint_Error (Internal_Static_Sloc,
6196 Reason => CE_Range_Check_Failed);
ee6ba406 6197 Mark_Rewrite_Insertion (Check_Node);
6198
6199 if Do_Before then
6200 Insert_Before_And_Analyze (Node, Check_Node);
6201 else
6202 Insert_After_And_Analyze (Node, Check_Node);
6203 end if;
6204 end if;
6205 end loop;
6206 end Insert_Range_Checks;
6207
6208 ------------------------
6209 -- Insert_Valid_Check --
6210 ------------------------
6211
6212 procedure Insert_Valid_Check (Expr : Node_Id) is
6213 Loc : constant Source_Ptr := Sloc (Expr);
8b718dab 6214 Exp : Node_Id;
ee6ba406 6215
6216 begin
06ad5813 6217 -- Do not insert if checks off, or if not checking validity or
6218 -- if expression is known to be valid
ee6ba406 6219
0577b0b1 6220 if not Validity_Checks_On
6221 or else Range_Or_Validity_Checks_Suppressed (Expr)
06ad5813 6222 or else Expr_Known_Valid (Expr)
ee6ba406 6223 then
8b718dab 6224 return;
6225 end if;
ee6ba406 6226
8b718dab 6227 -- If we have a checked conversion, then validity check applies to
6228 -- the expression inside the conversion, not the result, since if
6229 -- the expression inside is valid, then so is the conversion result.
ee6ba406 6230
8b718dab 6231 Exp := Expr;
6232 while Nkind (Exp) = N_Type_Conversion loop
6233 Exp := Expression (Exp);
6234 end loop;
6235
0577b0b1 6236 -- We are about to insert the validity check for Exp. We save and
6237 -- reset the Do_Range_Check flag over this validity check, and then
6238 -- put it back for the final original reference (Exp may be rewritten).
6239
6240 declare
6241 DRC : constant Boolean := Do_Range_Check (Exp);
23abd64d 6242 PV : Node_Id;
6243 CE : Node_Id;
05fcfafb 6244
0577b0b1 6245 begin
6246 Set_Do_Range_Check (Exp, False);
6247
06ad5813 6248 -- Force evaluation to avoid multiple reads for atomic/volatile
6249
6250 if Is_Entity_Name (Exp)
6251 and then Is_Volatile (Entity (Exp))
6252 then
6253 Force_Evaluation (Exp, Name_Req => True);
6254 end if;
6255
23abd64d 6256 -- Build the prefix for the 'Valid call
6257
6258 PV := Duplicate_Subexpr_No_Checks (Exp, Name_Req => True);
0577b0b1 6259
23abd64d 6260 -- A rather specialized kludge. If PV is an analyzed expression
6261 -- which is an indexed component of a packed array that has not
6262 -- been properly expanded, turn off its Analyzed flag to make sure
6263 -- it gets properly reexpanded.
6264
6265 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
6266 -- an analyze with the old parent pointer. This may point e.g. to
6267 -- a subprogram call, which deactivates this expansion.
6268
6269 if Analyzed (PV)
6270 and then Nkind (PV) = N_Indexed_Component
6271 and then Present (Packed_Array_Type (Etype (Prefix (PV))))
6272 then
6273 Set_Analyzed (PV, False);
6274 end if;
6275
6276 -- Build the raise CE node to check for validity
6277
6278 CE :=
0577b0b1 6279 Make_Raise_Constraint_Error (Loc,
6280 Condition =>
6281 Make_Op_Not (Loc,
6282 Right_Opnd =>
6283 Make_Attribute_Reference (Loc,
23abd64d 6284 Prefix => PV,
0577b0b1 6285 Attribute_Name => Name_Valid)),
23abd64d 6286 Reason => CE_Invalid_Data);
6287
6288 -- Insert the validity check. Note that we do this with validity
6289 -- checks turned off, to avoid recursion, we do not want validity
6290 -- checks on the validity checking code itself!
6291
6292 Insert_Action (Expr, CE, Suppress => Validity_Check);
0577b0b1 6293
6fb3c314 6294 -- If the expression is a reference to an element of a bit-packed
0577b0b1 6295 -- array, then it is rewritten as a renaming declaration. If the
6296 -- expression is an actual in a call, it has not been expanded,
6297 -- waiting for the proper point at which to do it. The same happens
6298 -- with renamings, so that we have to force the expansion now. This
6299 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
6300 -- and exp_ch6.adb.
6301
6302 if Is_Entity_Name (Exp)
6303 and then Nkind (Parent (Entity (Exp))) =
6304 N_Object_Renaming_Declaration
6305 then
6306 declare
6307 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
6308 begin
6309 if Nkind (Old_Exp) = N_Indexed_Component
6310 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
6311 then
6312 Expand_Packed_Element_Reference (Old_Exp);
6313 end if;
6314 end;
6315 end if;
6316
6317 -- Put back the Do_Range_Check flag on the resulting (possibly
6318 -- rewritten) expression.
6319
6320 -- Note: it might be thought that a validity check is not required
6321 -- when a range check is present, but that's not the case, because
6322 -- the back end is allowed to assume for the range check that the
6323 -- operand is within its declared range (an assumption that validity
6324 -- checking is all about NOT assuming!)
6325
00c403ee 6326 -- Note: no need to worry about Possible_Local_Raise here, it will
6327 -- already have been called if original node has Do_Range_Check set.
6328
0577b0b1 6329 Set_Do_Range_Check (Exp, DRC);
6330 end;
ee6ba406 6331 end Insert_Valid_Check;
6332
3cce7f32 6333 -------------------------------------
6334 -- Is_Signed_Integer_Arithmetic_Op --
6335 -------------------------------------
6336
6337 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
6338 begin
6339 case Nkind (N) is
6340 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
6341 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
6342 N_Op_Rem | N_Op_Subtract =>
6343 return Is_Signed_Integer_Type (Etype (N));
6344
92f1631f 6345 when N_If_Expression | N_Case_Expression =>
0326b4d4 6346 return Is_Signed_Integer_Type (Etype (N));
6347
3cce7f32 6348 when others =>
6349 return False;
6350 end case;
6351 end Is_Signed_Integer_Arithmetic_Op;
6352
fa7497e8 6353 ----------------------------------
6354 -- Install_Null_Excluding_Check --
6355 ----------------------------------
6356
6357 procedure Install_Null_Excluding_Check (N : Node_Id) is
9f294c82 6358 Loc : constant Source_Ptr := Sloc (Parent (N));
84d0d4a5 6359 Typ : constant Entity_Id := Etype (N);
6360
7b31b357 6361 function Safe_To_Capture_In_Parameter_Value return Boolean;
6362 -- Determines if it is safe to capture Known_Non_Null status for an
6363 -- the entity referenced by node N. The caller ensures that N is indeed
6364 -- an entity name. It is safe to capture the non-null status for an IN
6365 -- parameter when the reference occurs within a declaration that is sure
6366 -- to be executed as part of the declarative region.
7870823d 6367
84d0d4a5 6368 procedure Mark_Non_Null;
7870823d 6369 -- After installation of check, if the node in question is an entity
6370 -- name, then mark this entity as non-null if possible.
6371
7b31b357 6372 function Safe_To_Capture_In_Parameter_Value return Boolean is
7870823d 6373 E : constant Entity_Id := Entity (N);
6374 S : constant Entity_Id := Current_Scope;
6375 S_Par : Node_Id;
6376
6377 begin
7b31b357 6378 if Ekind (E) /= E_In_Parameter then
6379 return False;
6380 end if;
7870823d 6381
6382 -- Two initial context checks. We must be inside a subprogram body
6383 -- with declarations and reference must not appear in nested scopes.
6384
7b31b357 6385 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7870823d 6386 or else Scope (E) /= S
6387 then
6388 return False;
6389 end if;
6390
6391 S_Par := Parent (Parent (S));
6392
6393 if Nkind (S_Par) /= N_Subprogram_Body
6394 or else No (Declarations (S_Par))
6395 then
6396 return False;
6397 end if;
6398
6399 declare
6400 N_Decl : Node_Id;
6401 P : Node_Id;
6402
6403 begin
6404 -- Retrieve the declaration node of N (if any). Note that N
6405 -- may be a part of a complex initialization expression.
6406
6407 P := Parent (N);
6408 N_Decl := Empty;
6409 while Present (P) loop
6410
7b31b357 6411 -- If we have a short circuit form, and we are within the right
6412 -- hand expression, we return false, since the right hand side
6413 -- is not guaranteed to be elaborated.
6414
6415 if Nkind (P) in N_Short_Circuit
6416 and then N = Right_Opnd (P)
6417 then
6418 return False;
6419 end if;
6420
92f1631f 6421 -- Similarly, if we are in an if expression and not part of the
6422 -- condition, then we return False, since neither the THEN or
6423 -- ELSE dependent expressions will always be elaborated.
7b31b357 6424
92f1631f 6425 if Nkind (P) = N_If_Expression
7b31b357 6426 and then N /= First (Expressions (P))
6427 then
6428 return False;
e977c0cf 6429 end if;
6430
6fb3c314 6431 -- If we are in a case expression, and not part of the
e977c0cf 6432 -- expression, then we return False, since a particular
92f1631f 6433 -- dependent expression may not always be elaborated
e977c0cf 6434
6435 if Nkind (P) = N_Case_Expression
6436 and then N /= Expression (P)
6437 then
6438 return False;
7b31b357 6439 end if;
6440
7870823d 6441 -- While traversing the parent chain, we find that N
6442 -- belongs to a statement, thus it may never appear in
6443 -- a declarative region.
6444
6445 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
6446 or else Nkind (P) = N_Procedure_Call_Statement
6447 then
6448 return False;
6449 end if;
6450
7b31b357 6451 -- If we are at a declaration, record it and exit
6452
7870823d 6453 if Nkind (P) in N_Declaration
6454 and then Nkind (P) not in N_Subprogram_Specification
6455 then
6456 N_Decl := P;
6457 exit;
6458 end if;
6459
6460 P := Parent (P);
6461 end loop;
6462
6463 if No (N_Decl) then
6464 return False;
6465 end if;
6466
6467 return List_Containing (N_Decl) = Declarations (S_Par);
6468 end;
7b31b357 6469 end Safe_To_Capture_In_Parameter_Value;
84d0d4a5 6470
6471 -------------------
6472 -- Mark_Non_Null --
6473 -------------------
6474
6475 procedure Mark_Non_Null is
6476 begin
7870823d 6477 -- Only case of interest is if node N is an entity name
6478
84d0d4a5 6479 if Is_Entity_Name (N) then
7870823d 6480
6481 -- For sure, we want to clear an indication that this is known to
6482 -- be null, since if we get past this check, it definitely is not!
6483
84d0d4a5 6484 Set_Is_Known_Null (Entity (N), False);
6485
7870823d 6486 -- We can mark the entity as known to be non-null if either it is
6487 -- safe to capture the value, or in the case of an IN parameter,
6488 -- which is a constant, if the check we just installed is in the
6489 -- declarative region of the subprogram body. In this latter case,
7b31b357 6490 -- a check is decisive for the rest of the body if the expression
6491 -- is sure to be elaborated, since we know we have to elaborate
6492 -- all declarations before executing the body.
6493
6494 -- Couldn't this always be part of Safe_To_Capture_Value ???
7870823d 6495
6496 if Safe_To_Capture_Value (N, Entity (N))
7b31b357 6497 or else Safe_To_Capture_In_Parameter_Value
7870823d 6498 then
6499 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 6500 end if;
6501 end if;
6502 end Mark_Non_Null;
6503
6504 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 6505
6506 begin
84d0d4a5 6507 pragma Assert (Is_Access_Type (Typ));
fa7497e8 6508
84d0d4a5 6509 -- No check inside a generic (why not???)
fa7497e8 6510
84d0d4a5 6511 if Inside_A_Generic then
fa7497e8 6512 return;
84d0d4a5 6513 end if;
6514
6515 -- No check needed if known to be non-null
6516
6517 if Known_Non_Null (N) then
05fcfafb 6518 return;
84d0d4a5 6519 end if;
fa7497e8 6520
84d0d4a5 6521 -- If known to be null, here is where we generate a compile time check
6522
6523 if Known_Null (N) then
d16989f1 6524
6525 -- Avoid generating warning message inside init procs
6526
6527 if not Inside_Init_Proc then
6528 Apply_Compile_Time_Constraint_Error
6529 (N,
cb97ae5c 6530 "null value not allowed here??",
d16989f1 6531 CE_Access_Check_Failed);
6532 else
6533 Insert_Action (N,
6534 Make_Raise_Constraint_Error (Loc,
6535 Reason => CE_Access_Check_Failed));
6536 end if;
6537
84d0d4a5 6538 Mark_Non_Null;
6539 return;
6540 end if;
6541
6542 -- If entity is never assigned, for sure a warning is appropriate
6543
6544 if Is_Entity_Name (N) then
6545 Check_Unset_Reference (N);
fa7497e8 6546 end if;
84d0d4a5 6547
6548 -- No check needed if checks are suppressed on the range. Note that we
6549 -- don't set Is_Known_Non_Null in this case (we could legitimately do
6550 -- so, since the program is erroneous, but we don't like to casually
6551 -- propagate such conclusions from erroneosity).
6552
6553 if Access_Checks_Suppressed (Typ) then
6554 return;
6555 end if;
6556
2af58f67 6557 -- No check needed for access to concurrent record types generated by
6558 -- the expander. This is not just an optimization (though it does indeed
6559 -- remove junk checks). It also avoids generation of junk warnings.
6560
6561 if Nkind (N) in N_Has_Chars
6562 and then Chars (N) = Name_uObject
6563 and then Is_Concurrent_Record_Type
6564 (Directly_Designated_Type (Etype (N)))
6565 then
6566 return;
6567 end if;
6568
472ea160 6569 -- No check needed for the Get_Current_Excep.all.all idiom generated by
6570 -- the expander within exception handlers, since we know that the value
6571 -- can never be null.
6572
6573 -- Is this really the right way to do this? Normally we generate such
6574 -- code in the expander with checks off, and that's how we suppress this
6575 -- kind of junk check ???
6576
6577 if Nkind (N) = N_Function_Call
6578 and then Nkind (Name (N)) = N_Explicit_Dereference
6579 and then Nkind (Prefix (Name (N))) = N_Identifier
6580 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
6581 then
6582 return;
6583 end if;
6584
84d0d4a5 6585 -- Otherwise install access check
6586
6587 Insert_Action (N,
6588 Make_Raise_Constraint_Error (Loc,
6589 Condition =>
6590 Make_Op_Eq (Loc,
6591 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
6592 Right_Opnd => Make_Null (Loc)),
6593 Reason => CE_Access_Check_Failed));
6594
6595 Mark_Non_Null;
fa7497e8 6596 end Install_Null_Excluding_Check;
6597
ee6ba406 6598 --------------------------
6599 -- Install_Static_Check --
6600 --------------------------
6601
6602 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
6603 Stat : constant Boolean := Is_Static_Expression (R_Cno);
6604 Typ : constant Entity_Id := Etype (R_Cno);
6605
6606 begin
f15731c4 6607 Rewrite (R_Cno,
6608 Make_Raise_Constraint_Error (Loc,
6609 Reason => CE_Range_Check_Failed));
ee6ba406 6610 Set_Analyzed (R_Cno);
6611 Set_Etype (R_Cno, Typ);
6612 Set_Raises_Constraint_Error (R_Cno);
6613 Set_Is_Static_Expression (R_Cno, Stat);
840ab274 6614
6615 -- Now deal with possible local raise handling
6616
6617 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
ee6ba406 6618 end Install_Static_Check;
6619
3cce7f32 6620 -------------------------
6621 -- Is_Check_Suppressed --
6622 -------------------------
6623
6624 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
6625 Ptr : Suppress_Stack_Entry_Ptr;
6626
6627 begin
6628 -- First search the local entity suppress stack. We search this from the
6629 -- top of the stack down so that we get the innermost entry that applies
6630 -- to this case if there are nested entries.
6631
6632 Ptr := Local_Suppress_Stack_Top;
6633 while Ptr /= null loop
6634 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6635 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6636 then
6637 return Ptr.Suppress;
6638 end if;
6639
6640 Ptr := Ptr.Prev;
6641 end loop;
6642
6643 -- Now search the global entity suppress table for a matching entry.
6644 -- We also search this from the top down so that if there are multiple
6645 -- pragmas for the same entity, the last one applies (not clear what
6646 -- or whether the RM specifies this handling, but it seems reasonable).
6647
6648 Ptr := Global_Suppress_Stack_Top;
6649 while Ptr /= null loop
6650 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6651 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6652 then
6653 return Ptr.Suppress;
6654 end if;
6655
6656 Ptr := Ptr.Prev;
6657 end loop;
6658
6659 -- If we did not find a matching entry, then use the normal scope
6660 -- suppress value after all (actually this will be the global setting
6661 -- since it clearly was not overridden at any point). For a predefined
6662 -- check, we test the specific flag. For a user defined check, we check
6663 -- the All_Checks flag. The Overflow flag requires special handling to
6664 -- deal with the General vs Assertion case
6665
6666 if C = Overflow_Check then
6667 return Overflow_Checks_Suppressed (Empty);
6668 elsif C in Predefined_Check_Id then
6669 return Scope_Suppress.Suppress (C);
6670 else
6671 return Scope_Suppress.Suppress (All_Checks);
6672 end if;
6673 end Is_Check_Suppressed;
6674
9dfe12ae 6675 ---------------------
6676 -- Kill_All_Checks --
6677 ---------------------
6678
6679 procedure Kill_All_Checks is
6680 begin
6681 if Debug_Flag_CC then
6682 w ("Kill_All_Checks");
6683 end if;
6684
feff2f05 6685 -- We reset the number of saved checks to zero, and also modify all
6686 -- stack entries for statement ranges to indicate that the number of
6687 -- checks at each level is now zero.
9dfe12ae 6688
6689 Num_Saved_Checks := 0;
6690
96da3284 6691 -- Note: the Int'Min here avoids any possibility of J being out of
6692 -- range when called from e.g. Conditional_Statements_Begin.
6693
6694 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 6695 Saved_Checks_Stack (J) := 0;
6696 end loop;
6697 end Kill_All_Checks;
6698
6699 -----------------
6700 -- Kill_Checks --
6701 -----------------
6702
6703 procedure Kill_Checks (V : Entity_Id) is
6704 begin
6705 if Debug_Flag_CC then
6706 w ("Kill_Checks for entity", Int (V));
6707 end if;
6708
6709 for J in 1 .. Num_Saved_Checks loop
6710 if Saved_Checks (J).Entity = V then
6711 if Debug_Flag_CC then
6712 w (" Checks killed for saved check ", J);
6713 end if;
6714
6715 Saved_Checks (J).Killed := True;
6716 end if;
6717 end loop;
6718 end Kill_Checks;
6719
ee6ba406 6720 ------------------------------
6721 -- Length_Checks_Suppressed --
6722 ------------------------------
6723
6724 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
6725 begin
9dfe12ae 6726 if Present (E) and then Checks_May_Be_Suppressed (E) then
6727 return Is_Check_Suppressed (E, Length_Check);
6728 else
fafc6b97 6729 return Scope_Suppress.Suppress (Length_Check);
9dfe12ae 6730 end if;
ee6ba406 6731 end Length_Checks_Suppressed;
6732
3cce7f32 6733 -----------------------
6734 -- Make_Bignum_Block --
6735 -----------------------
6736
6737 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
6738 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
ee6ba406 6739
3cce7f32 6740 begin
6741 return
6742 Make_Block_Statement (Loc,
6743 Declarations => New_List (
6744 Make_Object_Declaration (Loc,
6745 Defining_Identifier => M,
6746 Object_Definition =>
6747 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
6748 Expression =>
6749 Make_Function_Call (Loc,
6750 Name => New_Reference_To (RTE (RE_SS_Mark), Loc)))),
6751
6752 Handled_Statement_Sequence =>
6753 Make_Handled_Sequence_Of_Statements (Loc,
6754 Statements => New_List (
6755 Make_Procedure_Call_Statement (Loc,
6756 Name => New_Occurrence_Of (RTE (RE_SS_Release), Loc),
6757 Parameter_Associations => New_List (
6758 New_Reference_To (M, Loc))))));
6759 end Make_Bignum_Block;
6760
0df9d43f 6761 ----------------------------------
6762 -- Minimize_Eliminate_Overflows --
6763 ----------------------------------
3cce7f32 6764
f32c377d 6765 -- This is a recursive routine that is called at the top of an expression
6766 -- tree to properly process overflow checking for a whole subtree by making
6767 -- recursive calls to process operands. This processing may involve the use
6768 -- of bignum or long long integer arithmetic, which will change the types
6769 -- of operands and results. That's why we can't do this bottom up (since
21a55437 6770 -- it would interfere with semantic analysis).
f32c377d 6771
21a55437 6772 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
0df9d43f 6773 -- the operator expansion routines, as well as the expansion routines for
6774 -- if/case expression, do nothing (for the moment) except call the routine
6775 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
6776 -- routine does nothing for non top-level nodes, so at the point where the
6777 -- call is made for the top level node, the entire expression subtree has
6778 -- not been expanded, or processed for overflow. All that has to happen as
6779 -- a result of the top level call to this routine.
f32c377d 6780
6781 -- As noted above, the overflow processing works by making recursive calls
6782 -- for the operands, and figuring out what to do, based on the processing
6783 -- of these operands (e.g. if a bignum operand appears, the parent op has
6784 -- to be done in bignum mode), and the determined ranges of the operands.
6785
6786 -- After possible rewriting of a constituent subexpression node, a call is
4fb5f0a0 6787 -- made to either reexpand the node (if nothing has changed) or reanalyze
21a55437 6788 -- the node (if it has been modified by the overflow check processing). The
6789 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
6790 -- a recursive call into the whole overflow apparatus, an important rule
0df9d43f 6791 -- for this call is that the overflow handling mode must be temporarily set
6792 -- to STRICT.
f32c377d 6793
0df9d43f 6794 procedure Minimize_Eliminate_Overflows
61016a7a 6795 (N : Node_Id;
6796 Lo : out Uint;
6797 Hi : out Uint;
6798 Top_Level : Boolean)
3cce7f32 6799 is
0326b4d4 6800 Rtyp : constant Entity_Id := Etype (N);
6801 pragma Assert (Is_Signed_Integer_Type (Rtyp));
6802 -- Result type, must be a signed integer type
3cce7f32 6803
db415383 6804 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 6805 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
6806
6807 Loc : constant Source_Ptr := Sloc (N);
6808
6809 Rlo, Rhi : Uint;
0326b4d4 6810 -- Ranges of values for right operand (operator case)
3cce7f32 6811
6812 Llo, Lhi : Uint;
0326b4d4 6813 -- Ranges of values for left operand (operator case)
3cce7f32 6814
49b3a812 6815 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
6816 -- Operands and results are of this type when we convert
6817
0326b4d4 6818 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
6819 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
3cce7f32 6820 -- Bounds of Long_Long_Integer
6821
6822 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
6823 -- Indicates binary operator case
6824
6825 OK : Boolean;
6826 -- Used in call to Determine_Range
6827
61016a7a 6828 Bignum_Operands : Boolean;
6829 -- Set True if one or more operands is already of type Bignum, meaning
6830 -- that for sure (regardless of Top_Level setting) we are committed to
0326b4d4 6831 -- doing the operation in Bignum mode (or in the case of a case or if
21a55437 6832 -- expression, converting all the dependent expressions to Bignum).
0326b4d4 6833
6834 Long_Long_Integer_Operands : Boolean;
21a55437 6835 -- Set True if one or more operands is already of type Long_Long_Integer
0326b4d4 6836 -- which means that if the result is known to be in the result type
6837 -- range, then we must convert such operands back to the result type.
0df9d43f 6838
6839 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
6840 -- This is called when we have modified the node and we therefore need
6841 -- to reanalyze it. It is important that we reset the mode to STRICT for
6842 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
6843 -- we would reenter this routine recursively which would not be good!
6844 -- The argument Suppress is set True if we also want to suppress
6845 -- overflow checking for the reexpansion (this is set when we know
6846 -- overflow is not possible). Typ is the type for the reanalysis.
6847
6848 procedure Reexpand (Suppress : Boolean := False);
6849 -- This is like Reanalyze, but does not do the Analyze step, it only
6850 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
6851 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
6852 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
6853 -- Note that skipping reanalysis is not just an optimization, testing
6854 -- has showed up several complex cases in which reanalyzing an already
6855 -- analyzed node causes incorrect behavior.
4fb5f0a0 6856
0326b4d4 6857 function In_Result_Range return Boolean;
6858 -- Returns True iff Lo .. Hi are within range of the result type
61016a7a 6859
2fe22c69 6860 procedure Max (A : in out Uint; B : Uint);
21a55437 6861 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
2fe22c69 6862
6863 procedure Min (A : in out Uint; B : Uint);
21a55437 6864 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
2fe22c69 6865
0326b4d4 6866 ---------------------
6867 -- In_Result_Range --
6868 ---------------------
6869
6870 function In_Result_Range return Boolean is
6871 begin
f32c377d 6872 if Lo = No_Uint or else Hi = No_Uint then
6873 return False;
6874
6875 elsif Is_Static_Subtype (Etype (N)) then
0326b4d4 6876 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
6877 and then
6878 Hi <= Expr_Value (Type_High_Bound (Rtyp));
f32c377d 6879
0326b4d4 6880 else
6881 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
6882 and then
6883 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
6884 end if;
6885 end In_Result_Range;
6886
2fe22c69 6887 ---------
6888 -- Max --
6889 ---------
6890
6891 procedure Max (A : in out Uint; B : Uint) is
6892 begin
6893 if A = No_Uint or else B > A then
6894 A := B;
6895 end if;
6896 end Max;
6897
6898 ---------
6899 -- Min --
6900 ---------
6901
6902 procedure Min (A : in out Uint; B : Uint) is
6903 begin
6904 if A = No_Uint or else B < A then
6905 A := B;
6906 end if;
6907 end Min;
6908
0df9d43f 6909 ---------------
6910 -- Reanalyze --
6911 ---------------
6912
6913 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
db415383 6914 Svg : constant Overflow_Mode_Type :=
6915 Scope_Suppress.Overflow_Mode_General;
6916 Sva : constant Overflow_Mode_Type :=
6917 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 6918 Svo : constant Boolean :=
6919 Scope_Suppress.Suppress (Overflow_Check);
6920
6921 begin
db415383 6922 Scope_Suppress.Overflow_Mode_General := Strict;
6923 Scope_Suppress.Overflow_Mode_Assertions := Strict;
0df9d43f 6924
6925 if Suppress then
6926 Scope_Suppress.Suppress (Overflow_Check) := True;
6927 end if;
6928
6929 Analyze_And_Resolve (N, Typ);
6930
6931 Scope_Suppress.Suppress (Overflow_Check) := Svo;
db415383 6932 Scope_Suppress.Overflow_Mode_General := Svg;
6933 Scope_Suppress.Overflow_Mode_Assertions := Sva;
0df9d43f 6934 end Reanalyze;
6935
4fb5f0a0 6936 --------------
6937 -- Reexpand --
6938 --------------
6939
0df9d43f 6940 procedure Reexpand (Suppress : Boolean := False) is
db415383 6941 Svg : constant Overflow_Mode_Type :=
6942 Scope_Suppress.Overflow_Mode_General;
6943 Sva : constant Overflow_Mode_Type :=
6944 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 6945 Svo : constant Boolean :=
6946 Scope_Suppress.Suppress (Overflow_Check);
6947
4fb5f0a0 6948 begin
db415383 6949 Scope_Suppress.Overflow_Mode_General := Strict;
6950 Scope_Suppress.Overflow_Mode_Assertions := Strict;
4fb5f0a0 6951 Set_Analyzed (N, False);
0df9d43f 6952
6953 if Suppress then
6954 Scope_Suppress.Suppress (Overflow_Check) := True;
6955 end if;
6956
4fb5f0a0 6957 Expand (N);
0df9d43f 6958
6959 Scope_Suppress.Suppress (Overflow_Check) := Svo;
db415383 6960 Scope_Suppress.Overflow_Mode_General := Svg;
6961 Scope_Suppress.Overflow_Mode_Assertions := Sva;
4fb5f0a0 6962 end Reexpand;
6963
0df9d43f 6964 -- Start of processing for Minimize_Eliminate_Overflows
2fe22c69 6965
3cce7f32 6966 begin
0326b4d4 6967 -- Case where we do not have a signed integer arithmetic operation
3cce7f32 6968
6969 if not Is_Signed_Integer_Arithmetic_Op (N) then
6970
6971 -- Use the normal Determine_Range routine to get the range. We
6972 -- don't require operands to be valid, invalid values may result in
6973 -- rubbish results where the result has not been properly checked for
6974 -- overflow, that's fine!
6975
6976 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
6977
21a55437 6978 -- If Determine_Range did not work (can this in fact happen? Not
3cce7f32 6979 -- clear but might as well protect), use type bounds.
6980
6981 if not OK then
6982 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
6983 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
6984 end if;
6985
6986 -- If we don't have a binary operator, all we have to do is to set
6987 -- the Hi/Lo range, so we are done
6988
6989 return;
6990
0326b4d4 6991 -- Processing for if expression
6992
92f1631f 6993 elsif Nkind (N) = N_If_Expression then
0326b4d4 6994 declare
6995 Then_DE : constant Node_Id := Next (First (Expressions (N)));
6996 Else_DE : constant Node_Id := Next (Then_DE);
6997
6998 begin
6999 Bignum_Operands := False;
7000
0df9d43f 7001 Minimize_Eliminate_Overflows
0326b4d4 7002 (Then_DE, Lo, Hi, Top_Level => False);
7003
7004 if Lo = No_Uint then
7005 Bignum_Operands := True;
7006 end if;
7007
0df9d43f 7008 Minimize_Eliminate_Overflows
0326b4d4 7009 (Else_DE, Rlo, Rhi, Top_Level => False);
7010
7011 if Rlo = No_Uint then
7012 Bignum_Operands := True;
7013 else
7014 Long_Long_Integer_Operands :=
7015 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7016
7017 Min (Lo, Rlo);
7018 Max (Hi, Rhi);
7019 end if;
7020
21a55437 7021 -- If at least one of our operands is now Bignum, we must rebuild
7022 -- the if expression to use Bignum operands. We will analyze the
0326b4d4 7023 -- rebuilt if expression with overflow checks off, since once we
7024 -- are in bignum mode, we are all done with overflow checks!
7025
7026 if Bignum_Operands then
7027 Rewrite (N,
92f1631f 7028 Make_If_Expression (Loc,
0326b4d4 7029 Expressions => New_List (
7030 Remove_Head (Expressions (N)),
7031 Convert_To_Bignum (Then_DE),
7032 Convert_To_Bignum (Else_DE)),
7033 Is_Elsif => Is_Elsif (N)));
7034
0df9d43f 7035 Reanalyze (RTE (RE_Bignum), Suppress => True);
0326b4d4 7036
7037 -- If we have no Long_Long_Integer operands, then we are in result
7038 -- range, since it means that none of our operands felt the need
7039 -- to worry about overflow (otherwise it would have already been
4fb5f0a0 7040 -- converted to long long integer or bignum). We reexpand to
7041 -- complete the expansion of the if expression (but we do not
7042 -- need to reanalyze).
0326b4d4 7043
7044 elsif not Long_Long_Integer_Operands then
7045 Set_Do_Overflow_Check (N, False);
0df9d43f 7046 Reexpand;
0326b4d4 7047
7048 -- Otherwise convert us to long long integer mode. Note that we
7049 -- don't need any further overflow checking at this level.
7050
7051 else
7052 Convert_To_And_Rewrite (LLIB, Then_DE);
7053 Convert_To_And_Rewrite (LLIB, Else_DE);
7054 Set_Etype (N, LLIB);
f32c377d 7055
7056 -- Now reanalyze with overflow checks off
7057
0326b4d4 7058 Set_Do_Overflow_Check (N, False);
0df9d43f 7059 Reanalyze (LLIB, Suppress => True);
0326b4d4 7060 end if;
7061 end;
7062
7063 return;
7064
7065 -- Here for case expression
7066
7067 elsif Nkind (N) = N_Case_Expression then
7068 Bignum_Operands := False;
7069 Long_Long_Integer_Operands := False;
0326b4d4 7070
7071 declare
f32c377d 7072 Alt : Node_Id;
0326b4d4 7073
7074 begin
7075 -- Loop through expressions applying recursive call
7076
7077 Alt := First (Alternatives (N));
7078 while Present (Alt) loop
7079 declare
7080 Aexp : constant Node_Id := Expression (Alt);
7081
7082 begin
0df9d43f 7083 Minimize_Eliminate_Overflows
0326b4d4 7084 (Aexp, Lo, Hi, Top_Level => False);
7085
7086 if Lo = No_Uint then
7087 Bignum_Operands := True;
7088 elsif Etype (Aexp) = LLIB then
7089 Long_Long_Integer_Operands := True;
7090 end if;
7091 end;
7092
7093 Next (Alt);
7094 end loop;
7095
7096 -- If we have no bignum or long long integer operands, it means
7097 -- that none of our dependent expressions could raise overflow.
7098 -- In this case, we simply return with no changes except for
7099 -- resetting the overflow flag, since we are done with overflow
4fb5f0a0 7100 -- checks for this node. We will reexpand to get the needed
7101 -- expansion for the case expression, but we do not need to
21a55437 7102 -- reanalyze, since nothing has changed.
0326b4d4 7103
f32c377d 7104 if not (Bignum_Operands or Long_Long_Integer_Operands) then
0326b4d4 7105 Set_Do_Overflow_Check (N, False);
0df9d43f 7106 Reexpand (Suppress => True);
0326b4d4 7107
7108 -- Otherwise we are going to rebuild the case expression using
7109 -- either bignum or long long integer operands throughout.
7110
7111 else
f32c377d 7112 declare
7113 Rtype : Entity_Id;
7114 New_Alts : List_Id;
7115 New_Exp : Node_Id;
7116
7117 begin
7118 New_Alts := New_List;
7119 Alt := First (Alternatives (N));
7120 while Present (Alt) loop
7121 if Bignum_Operands then
7122 New_Exp := Convert_To_Bignum (Expression (Alt));
7123 Rtype := RTE (RE_Bignum);
7124 else
7125 New_Exp := Convert_To (LLIB, Expression (Alt));
7126 Rtype := LLIB;
7127 end if;
0326b4d4 7128
f32c377d 7129 Append_To (New_Alts,
7130 Make_Case_Expression_Alternative (Sloc (Alt),
7131 Actions => No_List,
7132 Discrete_Choices => Discrete_Choices (Alt),
7133 Expression => New_Exp));
0326b4d4 7134
f32c377d 7135 Next (Alt);
7136 end loop;
0326b4d4 7137
f32c377d 7138 Rewrite (N,
7139 Make_Case_Expression (Loc,
7140 Expression => Expression (N),
7141 Alternatives => New_Alts));
0326b4d4 7142
0df9d43f 7143 Reanalyze (Rtype, Suppress => True);
f32c377d 7144 end;
0326b4d4 7145 end if;
7146 end;
7147
7148 return;
7149 end if;
7150
7151 -- If we have an arithmetic operator we make recursive calls on the
3cce7f32 7152 -- operands to get the ranges (and to properly process the subtree
7153 -- that lies below us!)
7154
0df9d43f 7155 Minimize_Eliminate_Overflows
0326b4d4 7156 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
3cce7f32 7157
0326b4d4 7158 if Binary then
0df9d43f 7159 Minimize_Eliminate_Overflows
0326b4d4 7160 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
3cce7f32 7161 end if;
7162
f32c377d 7163 -- Record if we have Long_Long_Integer operands
7164
7165 Long_Long_Integer_Operands :=
7166 Etype (Right_Opnd (N)) = LLIB
7167 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
7168
7169 -- If either operand is a bignum, then result will be a bignum and we
7170 -- don't need to do any range analysis. As previously discussed we could
7171 -- do range analysis in such cases, but it could mean working with giant
7172 -- numbers at compile time for very little gain (the number of cases
21a55437 7173 -- in which we could slip back from bignum mode is small).
3cce7f32 7174
7175 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
7176 Lo := No_Uint;
7177 Hi := No_Uint;
61016a7a 7178 Bignum_Operands := True;
3cce7f32 7179
7180 -- Otherwise compute result range
7181
7182 else
61016a7a 7183 Bignum_Operands := False;
7184
3cce7f32 7185 case Nkind (N) is
7186
7187 -- Absolute value
7188
7189 when N_Op_Abs =>
7190 Lo := Uint_0;
de922300 7191 Hi := UI_Max (abs Rlo, abs Rhi);
3cce7f32 7192
7193 -- Addition
7194
7195 when N_Op_Add =>
7196 Lo := Llo + Rlo;
7197 Hi := Lhi + Rhi;
7198
7199 -- Division
7200
7201 when N_Op_Divide =>
2fe22c69 7202
5f4275e1 7203 -- If the right operand can only be zero, set 0..0
2fe22c69 7204
5f4275e1 7205 if Rlo = 0 and then Rhi = 0 then
7206 Lo := Uint_0;
7207 Hi := Uint_0;
2fe22c69 7208
5f4275e1 7209 -- Possible bounds of division must come from dividing end
7210 -- values of the input ranges (four possibilities), provided
7211 -- zero is not included in the possible values of the right
7212 -- operand.
7213
7214 -- Otherwise, we just consider two intervals of values for
7215 -- the right operand: the interval of negative values (up to
7216 -- -1) and the interval of positive values (starting at 1).
7217 -- Since division by 1 is the identity, and division by -1
7218 -- is negation, we get all possible bounds of division in that
7219 -- case by considering:
7220 -- - all values from the division of end values of input
7221 -- ranges;
7222 -- - the end values of the left operand;
7223 -- - the negation of the end values of the left operand.
2fe22c69 7224
5f4275e1 7225 else
7226 declare
7227 Mrk : constant Uintp.Save_Mark := Mark;
7228 -- Mark so we can release the RR and Ev values
2fe22c69 7229
5f4275e1 7230 Ev1 : Uint;
7231 Ev2 : Uint;
7232 Ev3 : Uint;
7233 Ev4 : Uint;
2fe22c69 7234
5f4275e1 7235 begin
7236 -- Discard extreme values of zero for the divisor, since
7237 -- they will simply result in an exception in any case.
2fe22c69 7238
5f4275e1 7239 if Rlo = 0 then
7240 Rlo := Uint_1;
7241 elsif Rhi = 0 then
7242 Rhi := -Uint_1;
2fe22c69 7243 end if;
2fe22c69 7244
5f4275e1 7245 -- Compute possible bounds coming from dividing end
7246 -- values of the input ranges.
2fe22c69 7247
5f4275e1 7248 Ev1 := Llo / Rlo;
7249 Ev2 := Llo / Rhi;
7250 Ev3 := Lhi / Rlo;
7251 Ev4 := Lhi / Rhi;
2fe22c69 7252
5f4275e1 7253 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7254 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
2fe22c69 7255
5f4275e1 7256 -- If the right operand can be both negative or positive,
7257 -- include the end values of the left operand in the
7258 -- extreme values, as well as their negation.
2fe22c69 7259
5f4275e1 7260 if Rlo < 0 and then Rhi > 0 then
7261 Ev1 := Llo;
7262 Ev2 := -Llo;
7263 Ev3 := Lhi;
7264 Ev4 := -Lhi;
2fe22c69 7265
5f4275e1 7266 Min (Lo,
7267 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
7268 Max (Hi,
7269 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
2fe22c69 7270 end if;
2fe22c69 7271
5f4275e1 7272 -- Release the RR and Ev values
2fe22c69 7273
5f4275e1 7274 Release_And_Save (Mrk, Lo, Hi);
7275 end;
7276 end if;
3cce7f32 7277
7278 -- Exponentiation
7279
7280 when N_Op_Expon =>
de922300 7281
7282 -- Discard negative values for the exponent, since they will
7283 -- simply result in an exception in any case.
7284
7285 if Rhi < 0 then
7286 Rhi := Uint_0;
7287 elsif Rlo < 0 then
7288 Rlo := Uint_0;
7289 end if;
7290
7291 -- Estimate number of bits in result before we go computing
7292 -- giant useless bounds. Basically the number of bits in the
7293 -- result is the number of bits in the base multiplied by the
7294 -- value of the exponent. If this is big enough that the result
7295 -- definitely won't fit in Long_Long_Integer, switch to bignum
7296 -- mode immediately, and avoid computing giant bounds.
7297
7298 -- The comparison here is approximate, but conservative, it
7299 -- only clicks on cases that are sure to exceed the bounds.
7300
7301 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
7302 Lo := No_Uint;
7303 Hi := No_Uint;
7304
7305 -- If right operand is zero then result is 1
7306
7307 elsif Rhi = 0 then
7308 Lo := Uint_1;
7309 Hi := Uint_1;
7310
7311 else
7312 -- High bound comes either from exponentiation of largest
5f4275e1 7313 -- positive value to largest exponent value, or from
7314 -- the exponentiation of most negative value to an
7315 -- even exponent.
de922300 7316
7317 declare
7318 Hi1, Hi2 : Uint;
7319
7320 begin
5f4275e1 7321 if Lhi > 0 then
de922300 7322 Hi1 := Lhi ** Rhi;
7323 else
7324 Hi1 := Uint_0;
7325 end if;
7326
7327 if Llo < 0 then
7328 if Rhi mod 2 = 0 then
de922300 7329 Hi2 := Llo ** Rhi;
5f4275e1 7330 else
7331 Hi2 := Llo ** (Rhi - 1);
de922300 7332 end if;
7333 else
7334 Hi2 := Uint_0;
7335 end if;
7336
7337 Hi := UI_Max (Hi1, Hi2);
7338 end;
7339
7340 -- Result can only be negative if base can be negative
7341
7342 if Llo < 0 then
21a55437 7343 if Rhi mod 2 = 0 then
de922300 7344 Lo := Llo ** (Rhi - 1);
7345 else
7346 Lo := Llo ** Rhi;
7347 end if;
7348
21a55437 7349 -- Otherwise low bound is minimum ** minimum
de922300 7350
7351 else
7352 Lo := Llo ** Rlo;
7353 end if;
7354 end if;
3cce7f32 7355
7356 -- Negation
7357
7358 when N_Op_Minus =>
7359 Lo := -Rhi;
7360 Hi := -Rlo;
7361
7362 -- Mod
7363
7364 when N_Op_Mod =>
2fe22c69 7365 declare
5f4275e1 7366 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 7367 -- This is the maximum absolute value of the result
7368
7369 begin
7370 Lo := Uint_0;
7371 Hi := Uint_0;
7372
7373 -- The result depends only on the sign and magnitude of
7374 -- the right operand, it does not depend on the sign or
7375 -- magnitude of the left operand.
7376
7377 if Rlo < 0 then
7378 Lo := -Maxabs;
7379 end if;
7380
7381 if Rhi > 0 then
7382 Hi := Maxabs;
7383 end if;
7384 end;
3cce7f32 7385
7386 -- Multiplication
7387
7388 when N_Op_Multiply =>
49b3a812 7389
7390 -- Possible bounds of multiplication must come from multiplying
7391 -- end values of the input ranges (four possibilities).
7392
7393 declare
7394 Mrk : constant Uintp.Save_Mark := Mark;
7395 -- Mark so we can release the Ev values
7396
7397 Ev1 : constant Uint := Llo * Rlo;
7398 Ev2 : constant Uint := Llo * Rhi;
7399 Ev3 : constant Uint := Lhi * Rlo;
7400 Ev4 : constant Uint := Lhi * Rhi;
7401
7402 begin
7403 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7404 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
7405
7406 -- Release the Ev values
7407
7408 Release_And_Save (Mrk, Lo, Hi);
7409 end;
3cce7f32 7410
7411 -- Plus operator (affirmation)
7412
7413 when N_Op_Plus =>
7414 Lo := Rlo;
7415 Hi := Rhi;
7416
7417 -- Remainder
7418
7419 when N_Op_Rem =>
2fe22c69 7420 declare
5f4275e1 7421 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 7422 -- This is the maximum absolute value of the result. Note
5f4275e1 7423 -- that the result range does not depend on the sign of the
7424 -- right operand.
2fe22c69 7425
7426 begin
7427 Lo := Uint_0;
7428 Hi := Uint_0;
7429
7430 -- Case of left operand negative, which results in a range
7431 -- of -Maxabs .. 0 for those negative values. If there are
7432 -- no negative values then Lo value of result is always 0.
7433
7434 if Llo < 0 then
7435 Lo := -Maxabs;
7436 end if;
7437
7438 -- Case of left operand positive
7439
7440 if Lhi > 0 then
7441 Hi := Maxabs;
7442 end if;
7443 end;
3cce7f32 7444
7445 -- Subtract
7446
7447 when N_Op_Subtract =>
7448 Lo := Llo - Rhi;
7449 Hi := Lhi - Rlo;
7450
7451 -- Nothing else should be possible
7452
7453 when others =>
7454 raise Program_Error;
3cce7f32 7455 end case;
7456 end if;
7457
4fb5f0a0 7458 -- Here for the case where we have not rewritten anything (no bignum
21a55437 7459 -- operands or long long integer operands), and we know the result.
7460 -- If we know we are in the result range, and we do not have Bignum
7461 -- operands or Long_Long_Integer operands, we can just reexpand with
7462 -- overflow checks turned off (since we know we cannot have overflow).
7463 -- As always the reexpansion is required to complete expansion of the
7464 -- operator, but we do not need to reanalyze, and we prevent recursion
7465 -- by suppressing the check.
f32c377d 7466
7467 if not (Bignum_Operands or Long_Long_Integer_Operands)
7468 and then In_Result_Range
7469 then
7470 Set_Do_Overflow_Check (N, False);
0df9d43f 7471 Reexpand (Suppress => True);
f32c377d 7472 return;
7473
7474 -- Here we know that we are not in the result range, and in the general
21a55437 7475 -- case we will move into either the Bignum or Long_Long_Integer domain
7476 -- to compute the result. However, there is one exception. If we are
7477 -- at the top level, and we do not have Bignum or Long_Long_Integer
7478 -- operands, we will have to immediately convert the result back to
7479 -- the result type, so there is no point in Bignum/Long_Long_Integer
7480 -- fiddling.
f32c377d 7481
7482 elsif Top_Level
7483 and then not (Bignum_Operands or Long_Long_Integer_Operands)
b6a8f264 7484
7485 -- One further refinement. If we are at the top level, but our parent
7486 -- is a type conversion, then go into bignum or long long integer node
7487 -- since the result will be converted to that type directly without
7488 -- going through the result type, and we may avoid an overflow. This
7489 -- is the case for example of Long_Long_Integer (A ** 4), where A is
7490 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
7491 -- but does not fit in Integer.
7492
7493 and then Nkind (Parent (N)) /= N_Type_Conversion
f32c377d 7494 then
0df9d43f 7495 -- Here keep original types, but we need to complete analysis
f32c377d 7496
7497 -- One subtlety. We can't just go ahead and do an analyze operation
21a55437 7498 -- here because it will cause recursion into the whole MINIMIZED/
7499 -- ELIMINATED overflow processing which is not what we want. Here
f32c377d 7500 -- we are at the top level, and we need a check against the result
0df9d43f 7501 -- mode (i.e. we want to use STRICT mode). So do exactly that!
4fb5f0a0 7502 -- Also, we have not modified the node, so this is a case where
7503 -- we need to reexpand, but not reanalyze.
f32c377d 7504
0df9d43f 7505 Reexpand;
f32c377d 7506 return;
7507
7508 -- Cases where we do the operation in Bignum mode. This happens either
3cce7f32 7509 -- because one of our operands is in Bignum mode already, or because
de922300 7510 -- the computed bounds are outside the bounds of Long_Long_Integer,
7511 -- which in some cases can be indicated by Hi and Lo being No_Uint.
3cce7f32 7512
7513 -- Note: we could do better here and in some cases switch back from
7514 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
7515 -- 0 .. 1, but the cases are rare and it is not worth the effort.
7516 -- Failing to do this switching back is only an efficiency issue.
7517
f32c377d 7518 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
3cce7f32 7519
61016a7a 7520 -- OK, we are definitely outside the range of Long_Long_Integer. The
f32c377d 7521 -- question is whether to move to Bignum mode, or stay in the domain
61016a7a 7522 -- of Long_Long_Integer, signalling that an overflow check is needed.
7523
7524 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
7525 -- the Bignum business. In ELIMINATED mode, we will normally move
7526 -- into Bignum mode, but there is an exception if neither of our
7527 -- operands is Bignum now, and we are at the top level (Top_Level
7528 -- set True). In this case, there is no point in moving into Bignum
7529 -- mode to prevent overflow if the caller will immediately convert
7530 -- the Bignum value back to LLI with an overflow check. It's more
0df9d43f 7531 -- efficient to stay in LLI mode with an overflow check (if needed)
61016a7a 7532
7533 if Check_Mode = Minimized
7534 or else (Top_Level and not Bignum_Operands)
7535 then
0df9d43f 7536 if Do_Overflow_Check (N) then
7537 Enable_Overflow_Check (N);
7538 end if;
3cce7f32 7539
0df9d43f 7540 -- The result now has to be in Long_Long_Integer mode, so adjust
7541 -- the possible range to reflect this. Note these calls also
7542 -- change No_Uint values from the top level case to LLI bounds.
61016a7a 7543
7544 Max (Lo, LLLo);
7545 Min (Hi, LLHi);
7546
7547 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
3cce7f32 7548
7549 else
7550 pragma Assert (Check_Mode = Eliminated);
7551
7552 declare
7553 Fent : Entity_Id;
7554 Args : List_Id;
7555
7556 begin
7557 case Nkind (N) is
7558 when N_Op_Abs =>
7559 Fent := RTE (RE_Big_Abs);
7560
7561 when N_Op_Add =>
7562 Fent := RTE (RE_Big_Add);
7563
7564 when N_Op_Divide =>
7565 Fent := RTE (RE_Big_Div);
7566
7567 when N_Op_Expon =>
7568 Fent := RTE (RE_Big_Exp);
7569
7570 when N_Op_Minus =>
7571 Fent := RTE (RE_Big_Neg);
7572
7573 when N_Op_Mod =>
7574 Fent := RTE (RE_Big_Mod);
7575
7576 when N_Op_Multiply =>
7577 Fent := RTE (RE_Big_Mul);
7578
7579 when N_Op_Rem =>
7580 Fent := RTE (RE_Big_Rem);
7581
7582 when N_Op_Subtract =>
7583 Fent := RTE (RE_Big_Sub);
7584
7585 -- Anything else is an internal error, this includes the
7586 -- N_Op_Plus case, since how can plus cause the result
7587 -- to be out of range if the operand is in range?
7588
7589 when others =>
7590 raise Program_Error;
7591 end case;
7592
7593 -- Construct argument list for Bignum call, converting our
7594 -- operands to Bignum form if they are not already there.
7595
7596 Args := New_List;
7597
7598 if Binary then
7599 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
7600 end if;
7601
7602 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
7603
7604 -- Now rewrite the arithmetic operator with a call to the
7605 -- corresponding bignum function.
7606
7607 Rewrite (N,
7608 Make_Function_Call (Loc,
7609 Name => New_Occurrence_Of (Fent, Loc),
7610 Parameter_Associations => Args));
0df9d43f 7611 Reanalyze (RTE (RE_Bignum), Suppress => True);
61016a7a 7612
7613 -- Indicate result is Bignum mode
7614
7615 Lo := No_Uint;
7616 Hi := No_Uint;
de922300 7617 return;
3cce7f32 7618 end;
7619 end if;
7620
7621 -- Otherwise we are in range of Long_Long_Integer, so no overflow
de922300 7622 -- check is required, at least not yet.
3cce7f32 7623
7624 else
de922300 7625 Set_Do_Overflow_Check (N, False);
7626 end if;
3cce7f32 7627
f32c377d 7628 -- Here we are not in Bignum territory, but we may have long long
7629 -- integer operands that need special handling. First a special check:
7630 -- If an exponentiation operator exponent is of type Long_Long_Integer,
7631 -- it means we converted it to prevent overflow, but exponentiation
7632 -- requires a Natural right operand, so convert it back to Natural.
7633 -- This conversion may raise an exception which is fine.
0326b4d4 7634
f32c377d 7635 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
7636 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
0326b4d4 7637 end if;
7638
de922300 7639 -- Here we will do the operation in Long_Long_Integer. We do this even
7640 -- if we know an overflow check is required, better to do this in long
7641 -- long integer mode, since we are less likely to overflow!
3cce7f32 7642
de922300 7643 -- Convert right or only operand to Long_Long_Integer, except that
7644 -- we do not touch the exponentiation right operand.
3cce7f32 7645
de922300 7646 if Nkind (N) /= N_Op_Expon then
7647 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
7648 end if;
3cce7f32 7649
de922300 7650 -- Convert left operand to Long_Long_Integer for binary case
49b3a812 7651
de922300 7652 if Binary then
7653 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
7654 end if;
7655
7656 -- Reset node to unanalyzed
7657
7658 Set_Analyzed (N, False);
7659 Set_Etype (N, Empty);
7660 Set_Entity (N, Empty);
7661
2fe22c69 7662 -- Now analyze this new node. This reanalysis will complete processing
7663 -- for the node. In particular we will complete the expansion of an
7664 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
7665 -- we will complete any division checks (since we have not changed the
7666 -- setting of the Do_Division_Check flag).
3cce7f32 7667
0df9d43f 7668 -- We do this reanalysis in STRICT mode to avoid recursion into the
7669 -- MINIMIZED/ELIMINATED handling, since we are now done with that!
3cce7f32 7670
0df9d43f 7671 declare
db415383 7672 SG : constant Overflow_Mode_Type :=
7673 Scope_Suppress.Overflow_Mode_General;
7674 SA : constant Overflow_Mode_Type :=
7675 Scope_Suppress.Overflow_Mode_Assertions;
de922300 7676
0df9d43f 7677 begin
db415383 7678 Scope_Suppress.Overflow_Mode_General := Strict;
7679 Scope_Suppress.Overflow_Mode_Assertions := Strict;
de922300 7680
0df9d43f 7681 if not Do_Overflow_Check (N) then
7682 Reanalyze (LLIB, Suppress => True);
7683 else
7684 Reanalyze (LLIB);
7685 end if;
7686
db415383 7687 Scope_Suppress.Overflow_Mode_General := SG;
7688 Scope_Suppress.Overflow_Mode_Assertions := SA;
0df9d43f 7689 end;
7690 end Minimize_Eliminate_Overflows;
3cce7f32 7691
7692 -------------------------
7693 -- Overflow_Check_Mode --
7694 -------------------------
7695
db415383 7696 function Overflow_Check_Mode return Overflow_Mode_Type is
ee6ba406 7697 begin
724d2bd8 7698 if In_Assertion_Expr = 0 then
db415383 7699 return Scope_Suppress.Overflow_Mode_General;
9dfe12ae 7700 else
db415383 7701 return Scope_Suppress.Overflow_Mode_Assertions;
9dfe12ae 7702 end if;
3cce7f32 7703 end Overflow_Check_Mode;
7704
7705 --------------------------------
7706 -- Overflow_Checks_Suppressed --
7707 --------------------------------
7708
7709 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
7710 begin
0df9d43f 7711 if Present (E) and then Checks_May_Be_Suppressed (E) then
7712 return Is_Check_Suppressed (E, Overflow_Check);
7713 else
7714 return Scope_Suppress.Suppress (Overflow_Check);
7715 end if;
ee6ba406 7716 end Overflow_Checks_Suppressed;
fc75802a 7717
ee6ba406 7718 -----------------------------
7719 -- Range_Checks_Suppressed --
7720 -----------------------------
7721
7722 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
7723 begin
9dfe12ae 7724 if Present (E) then
7725
7726 -- Note: for now we always suppress range checks on Vax float types,
7727 -- since Gigi does not know how to generate these checks.
7728
7729 if Vax_Float (E) then
7730 return True;
7731 elsif Kill_Range_Checks (E) then
7732 return True;
7733 elsif Checks_May_Be_Suppressed (E) then
7734 return Is_Check_Suppressed (E, Range_Check);
7735 end if;
7736 end if;
ee6ba406 7737
fafc6b97 7738 return Scope_Suppress.Suppress (Range_Check);
ee6ba406 7739 end Range_Checks_Suppressed;
7740
0577b0b1 7741 -----------------------------------------
7742 -- Range_Or_Validity_Checks_Suppressed --
7743 -----------------------------------------
7744
7745 -- Note: the coding would be simpler here if we simply made appropriate
7746 -- calls to Range/Validity_Checks_Suppressed, but that would result in
7747 -- duplicated checks which we prefer to avoid.
7748
7749 function Range_Or_Validity_Checks_Suppressed
7750 (Expr : Node_Id) return Boolean
7751 is
7752 begin
7753 -- Immediate return if scope checks suppressed for either check
7754
fafc6b97 7755 if Scope_Suppress.Suppress (Range_Check)
7756 or
7757 Scope_Suppress.Suppress (Validity_Check)
7758 then
0577b0b1 7759 return True;
7760 end if;
7761
7762 -- If no expression, that's odd, decide that checks are suppressed,
7763 -- since we don't want anyone trying to do checks in this case, which
7764 -- is most likely the result of some other error.
7765
7766 if No (Expr) then
7767 return True;
7768 end if;
7769
7770 -- Expression is present, so perform suppress checks on type
7771
7772 declare
7773 Typ : constant Entity_Id := Etype (Expr);
7774 begin
7775 if Vax_Float (Typ) then
7776 return True;
7777 elsif Checks_May_Be_Suppressed (Typ)
7778 and then (Is_Check_Suppressed (Typ, Range_Check)
7779 or else
7780 Is_Check_Suppressed (Typ, Validity_Check))
7781 then
7782 return True;
7783 end if;
7784 end;
7785
7786 -- If expression is an entity name, perform checks on this entity
7787
7788 if Is_Entity_Name (Expr) then
7789 declare
7790 Ent : constant Entity_Id := Entity (Expr);
7791 begin
7792 if Checks_May_Be_Suppressed (Ent) then
7793 return Is_Check_Suppressed (Ent, Range_Check)
7794 or else Is_Check_Suppressed (Ent, Validity_Check);
7795 end if;
7796 end;
7797 end if;
7798
7799 -- If we fall through, no checks suppressed
7800
7801 return False;
7802 end Range_Or_Validity_Checks_Suppressed;
7803
226494a3 7804 -------------------
7805 -- Remove_Checks --
7806 -------------------
7807
7808 procedure Remove_Checks (Expr : Node_Id) is
226494a3 7809 function Process (N : Node_Id) return Traverse_Result;
7810 -- Process a single node during the traversal
7811
8f6e4fd5 7812 procedure Traverse is new Traverse_Proc (Process);
7813 -- The traversal procedure itself
226494a3 7814
7815 -------------
7816 -- Process --
7817 -------------
7818
7819 function Process (N : Node_Id) return Traverse_Result is
7820 begin
7821 if Nkind (N) not in N_Subexpr then
7822 return Skip;
7823 end if;
7824
7825 Set_Do_Range_Check (N, False);
7826
7827 case Nkind (N) is
7828 when N_And_Then =>
8f6e4fd5 7829 Traverse (Left_Opnd (N));
226494a3 7830 return Skip;
7831
7832 when N_Attribute_Reference =>
226494a3 7833 Set_Do_Overflow_Check (N, False);
7834
226494a3 7835 when N_Function_Call =>
7836 Set_Do_Tag_Check (N, False);
7837
226494a3 7838 when N_Op =>
7839 Set_Do_Overflow_Check (N, False);
7840
7841 case Nkind (N) is
7842 when N_Op_Divide =>
7843 Set_Do_Division_Check (N, False);
7844
7845 when N_Op_And =>
7846 Set_Do_Length_Check (N, False);
7847
7848 when N_Op_Mod =>
7849 Set_Do_Division_Check (N, False);
7850
7851 when N_Op_Or =>
7852 Set_Do_Length_Check (N, False);
7853
7854 when N_Op_Rem =>
7855 Set_Do_Division_Check (N, False);
7856
7857 when N_Op_Xor =>
7858 Set_Do_Length_Check (N, False);
7859
7860 when others =>
7861 null;
7862 end case;
7863
7864 when N_Or_Else =>
8f6e4fd5 7865 Traverse (Left_Opnd (N));
226494a3 7866 return Skip;
7867
7868 when N_Selected_Component =>
226494a3 7869 Set_Do_Discriminant_Check (N, False);
7870
226494a3 7871 when N_Type_Conversion =>
9dfe12ae 7872 Set_Do_Length_Check (N, False);
7873 Set_Do_Tag_Check (N, False);
226494a3 7874 Set_Do_Overflow_Check (N, False);
226494a3 7875
7876 when others =>
7877 null;
7878 end case;
7879
7880 return OK;
7881 end Process;
7882
7883 -- Start of processing for Remove_Checks
7884
7885 begin
8f6e4fd5 7886 Traverse (Expr);
226494a3 7887 end Remove_Checks;
7888
ee6ba406 7889 ----------------------------
7890 -- Selected_Length_Checks --
7891 ----------------------------
7892
7893 function Selected_Length_Checks
7894 (Ck_Node : Node_Id;
7895 Target_Typ : Entity_Id;
7896 Source_Typ : Entity_Id;
314a23b6 7897 Warn_Node : Node_Id) return Check_Result
ee6ba406 7898 is
7899 Loc : constant Source_Ptr := Sloc (Ck_Node);
7900 S_Typ : Entity_Id;
7901 T_Typ : Entity_Id;
7902 Expr_Actual : Node_Id;
7903 Exptyp : Entity_Id;
7904 Cond : Node_Id := Empty;
7905 Do_Access : Boolean := False;
7906 Wnode : Node_Id := Warn_Node;
7907 Ret_Result : Check_Result := (Empty, Empty);
7908 Num_Checks : Natural := 0;
7909
7910 procedure Add_Check (N : Node_Id);
7911 -- Adds the action given to Ret_Result if N is non-Empty
7912
7913 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
7914 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 7915 -- Comments required ???
ee6ba406 7916
7917 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
7918 -- True for equal literals and for nodes that denote the same constant
5f260d20 7919 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 7920 -- case of a discriminal reference within an init proc. Removes some
5f260d20 7921 -- obviously superfluous checks.
ee6ba406 7922
7923 function Length_E_Cond
7924 (Exptyp : Entity_Id;
7925 Typ : Entity_Id;
314a23b6 7926 Indx : Nat) return Node_Id;
ee6ba406 7927 -- Returns expression to compute:
7928 -- Typ'Length /= Exptyp'Length
7929
7930 function Length_N_Cond
7931 (Expr : Node_Id;
7932 Typ : Entity_Id;
314a23b6 7933 Indx : Nat) return Node_Id;
ee6ba406 7934 -- Returns expression to compute:
7935 -- Typ'Length /= Expr'Length
7936
7937 ---------------
7938 -- Add_Check --
7939 ---------------
7940
7941 procedure Add_Check (N : Node_Id) is
7942 begin
7943 if Present (N) then
7944
7945 -- For now, ignore attempt to place more than 2 checks ???
7946
7947 if Num_Checks = 2 then
7948 return;
7949 end if;
7950
7951 pragma Assert (Num_Checks <= 1);
7952 Num_Checks := Num_Checks + 1;
7953 Ret_Result (Num_Checks) := N;
7954 end if;
7955 end Add_Check;
7956
7957 ------------------
7958 -- Get_E_Length --
7959 ------------------
7960
7961 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 7962 SE : constant Entity_Id := Scope (E);
ee6ba406 7963 N : Node_Id;
7964 E1 : Entity_Id := E;
ee6ba406 7965
7966 begin
7967 if Ekind (Scope (E)) = E_Record_Type
7968 and then Has_Discriminants (Scope (E))
7969 then
7970 N := Build_Discriminal_Subtype_Of_Component (E);
7971
7972 if Present (N) then
7973 Insert_Action (Ck_Node, N);
7974 E1 := Defining_Identifier (N);
7975 end if;
7976 end if;
7977
7978 if Ekind (E1) = E_String_Literal_Subtype then
7979 return
7980 Make_Integer_Literal (Loc,
7981 Intval => String_Literal_Length (E1));
7982
00c403ee 7983 elsif SE /= Standard_Standard
7984 and then Ekind (Scope (SE)) = E_Protected_Type
7985 and then Has_Discriminants (Scope (SE))
7986 and then Has_Completion (Scope (SE))
ee6ba406 7987 and then not Inside_Init_Proc
7988 then
ee6ba406 7989 -- If the type whose length is needed is a private component
7990 -- constrained by a discriminant, we must expand the 'Length
7991 -- attribute into an explicit computation, using the discriminal
7992 -- of the current protected operation. This is because the actual
7993 -- type of the prival is constructed after the protected opera-
7994 -- tion has been fully expanded.
7995
7996 declare
7997 Indx_Type : Node_Id;
7998 Lo : Node_Id;
7999 Hi : Node_Id;
8000 Do_Expand : Boolean := False;
8001
8002 begin
8003 Indx_Type := First_Index (E);
8004
8005 for J in 1 .. Indx - 1 loop
8006 Next_Index (Indx_Type);
8007 end loop;
8008
2af58f67 8009 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 8010
8011 if Nkind (Lo) = N_Identifier
8012 and then Ekind (Entity (Lo)) = E_In_Parameter
8013 then
8014 Lo := Get_Discriminal (E, Lo);
8015 Do_Expand := True;
8016 end if;
8017
8018 if Nkind (Hi) = N_Identifier
8019 and then Ekind (Entity (Hi)) = E_In_Parameter
8020 then
8021 Hi := Get_Discriminal (E, Hi);
8022 Do_Expand := True;
8023 end if;
8024
8025 if Do_Expand then
8026 if not Is_Entity_Name (Lo) then
9dfe12ae 8027 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 8028 end if;
8029
8030 if not Is_Entity_Name (Hi) then
9dfe12ae 8031 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 8032 end if;
8033
8034 N :=
8035 Make_Op_Add (Loc,
8036 Left_Opnd =>
8037 Make_Op_Subtract (Loc,
8038 Left_Opnd => Hi,
8039 Right_Opnd => Lo),
8040
8041 Right_Opnd => Make_Integer_Literal (Loc, 1));
8042 return N;
8043
8044 else
8045 N :=
8046 Make_Attribute_Reference (Loc,
8047 Attribute_Name => Name_Length,
8048 Prefix =>
8049 New_Occurrence_Of (E1, Loc));
8050
8051 if Indx > 1 then
8052 Set_Expressions (N, New_List (
8053 Make_Integer_Literal (Loc, Indx)));
8054 end if;
8055
8056 return N;
8057 end if;
8058 end;
8059
8060 else
8061 N :=
8062 Make_Attribute_Reference (Loc,
8063 Attribute_Name => Name_Length,
8064 Prefix =>
8065 New_Occurrence_Of (E1, Loc));
8066
8067 if Indx > 1 then
8068 Set_Expressions (N, New_List (
8069 Make_Integer_Literal (Loc, Indx)));
8070 end if;
8071
8072 return N;
ee6ba406 8073 end if;
8074 end Get_E_Length;
8075
8076 ------------------
8077 -- Get_N_Length --
8078 ------------------
8079
8080 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8081 begin
8082 return
8083 Make_Attribute_Reference (Loc,
8084 Attribute_Name => Name_Length,
8085 Prefix =>
9dfe12ae 8086 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 8087 Expressions => New_List (
8088 Make_Integer_Literal (Loc, Indx)));
ee6ba406 8089 end Get_N_Length;
8090
8091 -------------------
8092 -- Length_E_Cond --
8093 -------------------
8094
8095 function Length_E_Cond
8096 (Exptyp : Entity_Id;
8097 Typ : Entity_Id;
314a23b6 8098 Indx : Nat) return Node_Id
ee6ba406 8099 is
8100 begin
8101 return
8102 Make_Op_Ne (Loc,
8103 Left_Opnd => Get_E_Length (Typ, Indx),
8104 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 8105 end Length_E_Cond;
8106
8107 -------------------
8108 -- Length_N_Cond --
8109 -------------------
8110
8111 function Length_N_Cond
8112 (Expr : Node_Id;
8113 Typ : Entity_Id;
314a23b6 8114 Indx : Nat) return Node_Id
ee6ba406 8115 is
8116 begin
8117 return
8118 Make_Op_Ne (Loc,
8119 Left_Opnd => Get_E_Length (Typ, Indx),
8120 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 8121 end Length_N_Cond;
8122
feff2f05 8123 -----------------
8124 -- Same_Bounds --
8125 -----------------
8126
ee6ba406 8127 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
8128 begin
8129 return
8130 (Nkind (L) = N_Integer_Literal
8131 and then Nkind (R) = N_Integer_Literal
8132 and then Intval (L) = Intval (R))
8133
8134 or else
8135 (Is_Entity_Name (L)
8136 and then Ekind (Entity (L)) = E_Constant
8137 and then ((Is_Entity_Name (R)
8138 and then Entity (L) = Entity (R))
8139 or else
8140 (Nkind (R) = N_Type_Conversion
8141 and then Is_Entity_Name (Expression (R))
8142 and then Entity (L) = Entity (Expression (R)))))
8143
8144 or else
8145 (Is_Entity_Name (R)
8146 and then Ekind (Entity (R)) = E_Constant
8147 and then Nkind (L) = N_Type_Conversion
8148 and then Is_Entity_Name (Expression (L))
5f260d20 8149 and then Entity (R) = Entity (Expression (L)))
8150
8151 or else
8152 (Is_Entity_Name (L)
8153 and then Is_Entity_Name (R)
8154 and then Entity (L) = Entity (R)
8155 and then Ekind (Entity (L)) = E_In_Parameter
8156 and then Inside_Init_Proc);
ee6ba406 8157 end Same_Bounds;
8158
8159 -- Start of processing for Selected_Length_Checks
8160
8161 begin
6dbcfcd9 8162 if not Full_Expander_Active then
ee6ba406 8163 return Ret_Result;
8164 end if;
8165
8166 if Target_Typ = Any_Type
8167 or else Target_Typ = Any_Composite
8168 or else Raises_Constraint_Error (Ck_Node)
8169 then
8170 return Ret_Result;
8171 end if;
8172
8173 if No (Wnode) then
8174 Wnode := Ck_Node;
8175 end if;
8176
8177 T_Typ := Target_Typ;
8178
8179 if No (Source_Typ) then
8180 S_Typ := Etype (Ck_Node);
8181 else
8182 S_Typ := Source_Typ;
8183 end if;
8184
8185 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8186 return Ret_Result;
8187 end if;
8188
8189 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8190 S_Typ := Designated_Type (S_Typ);
8191 T_Typ := Designated_Type (T_Typ);
8192 Do_Access := True;
8193
2af58f67 8194 -- A simple optimization for the null case
ee6ba406 8195
2af58f67 8196 if Known_Null (Ck_Node) then
ee6ba406 8197 return Ret_Result;
8198 end if;
8199 end if;
8200
8201 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
8202 if Is_Constrained (T_Typ) then
8203
92f1631f 8204 -- The checking code to be generated will freeze the corresponding
8205 -- array type. However, we must freeze the type now, so that the
8206 -- freeze node does not appear within the generated if expression,
8207 -- but ahead of it.
ee6ba406 8208
8209 Freeze_Before (Ck_Node, T_Typ);
8210
8211 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 8212 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 8213
8214 if Is_Access_Type (Exptyp) then
8215 Exptyp := Designated_Type (Exptyp);
8216 end if;
8217
8218 -- String_Literal case. This needs to be handled specially be-
8219 -- cause no index types are available for string literals. The
8220 -- condition is simply:
8221
8222 -- T_Typ'Length = string-literal-length
8223
9dfe12ae 8224 if Nkind (Expr_Actual) = N_String_Literal
8225 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
8226 then
ee6ba406 8227 Cond :=
8228 Make_Op_Ne (Loc,
8229 Left_Opnd => Get_E_Length (T_Typ, 1),
8230 Right_Opnd =>
8231 Make_Integer_Literal (Loc,
8232 Intval =>
8233 String_Literal_Length (Etype (Expr_Actual))));
8234
8235 -- General array case. Here we have a usable actual subtype for
8236 -- the expression, and the condition is built from the two types
8237 -- (Do_Length):
8238
8239 -- T_Typ'Length /= Exptyp'Length or else
8240 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
8241 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
8242 -- ...
8243
8244 elsif Is_Constrained (Exptyp) then
8245 declare
9dfe12ae 8246 Ndims : constant Nat := Number_Dimensions (T_Typ);
8247
8248 L_Index : Node_Id;
8249 R_Index : Node_Id;
8250 L_Low : Node_Id;
8251 L_High : Node_Id;
8252 R_Low : Node_Id;
8253 R_High : Node_Id;
ee6ba406 8254 L_Length : Uint;
8255 R_Length : Uint;
9dfe12ae 8256 Ref_Node : Node_Id;
ee6ba406 8257
8258 begin
feff2f05 8259 -- At the library level, we need to ensure that the type of
8260 -- the object is elaborated before the check itself is
8261 -- emitted. This is only done if the object is in the
8262 -- current compilation unit, otherwise the type is frozen
8263 -- and elaborated in its unit.
9dfe12ae 8264
8265 if Is_Itype (Exptyp)
8266 and then
8267 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
8268 and then
8269 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 8270 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 8271 then
8272 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
8273 Set_Itype (Ref_Node, Exptyp);
8274 Insert_Action (Ck_Node, Ref_Node);
8275 end if;
8276
ee6ba406 8277 L_Index := First_Index (T_Typ);
8278 R_Index := First_Index (Exptyp);
8279
8280 for Indx in 1 .. Ndims loop
8281 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 8282 or else
8283 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 8284 then
8285 Get_Index_Bounds (L_Index, L_Low, L_High);
8286 Get_Index_Bounds (R_Index, R_Low, R_High);
8287
8288 -- Deal with compile time length check. Note that we
8289 -- skip this in the access case, because the access
8290 -- value may be null, so we cannot know statically.
8291
8292 if not Do_Access
8293 and then Compile_Time_Known_Value (L_Low)
8294 and then Compile_Time_Known_Value (L_High)
8295 and then Compile_Time_Known_Value (R_Low)
8296 and then Compile_Time_Known_Value (R_High)
8297 then
8298 if Expr_Value (L_High) >= Expr_Value (L_Low) then
8299 L_Length := Expr_Value (L_High) -
8300 Expr_Value (L_Low) + 1;
8301 else
8302 L_Length := UI_From_Int (0);
8303 end if;
8304
8305 if Expr_Value (R_High) >= Expr_Value (R_Low) then
8306 R_Length := Expr_Value (R_High) -
8307 Expr_Value (R_Low) + 1;
8308 else
8309 R_Length := UI_From_Int (0);
8310 end if;
8311
8312 if L_Length > R_Length then
8313 Add_Check
8314 (Compile_Time_Constraint_Error
cb97ae5c 8315 (Wnode, "too few elements for}??", T_Typ));
ee6ba406 8316
8317 elsif L_Length < R_Length then
8318 Add_Check
8319 (Compile_Time_Constraint_Error
cb97ae5c 8320 (Wnode, "too many elements for}??", T_Typ));
ee6ba406 8321 end if;
8322
8323 -- The comparison for an individual index subtype
8324 -- is omitted if the corresponding index subtypes
8325 -- statically match, since the result is known to
8326 -- be true. Note that this test is worth while even
8327 -- though we do static evaluation, because non-static
8328 -- subtypes can statically match.
8329
8330 elsif not
8331 Subtypes_Statically_Match
8332 (Etype (L_Index), Etype (R_Index))
8333
8334 and then not
8335 (Same_Bounds (L_Low, R_Low)
8336 and then Same_Bounds (L_High, R_High))
8337 then
8338 Evolve_Or_Else
8339 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
8340 end if;
8341
8342 Next (L_Index);
8343 Next (R_Index);
8344 end if;
8345 end loop;
8346 end;
8347
8348 -- Handle cases where we do not get a usable actual subtype that
8349 -- is constrained. This happens for example in the function call
8350 -- and explicit dereference cases. In these cases, we have to get
8351 -- the length or range from the expression itself, making sure we
8352 -- do not evaluate it more than once.
8353
8354 -- Here Ck_Node is the original expression, or more properly the
feff2f05 8355 -- result of applying Duplicate_Expr to the original tree, forcing
8356 -- the result to be a name.
ee6ba406 8357
8358 else
8359 declare
9dfe12ae 8360 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 8361
8362 begin
8363 -- Build the condition for the explicit dereference case
8364
8365 for Indx in 1 .. Ndims loop
8366 Evolve_Or_Else
8367 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
8368 end loop;
8369 end;
8370 end if;
8371 end if;
8372 end if;
8373
8374 -- Construct the test and insert into the tree
8375
8376 if Present (Cond) then
8377 if Do_Access then
8378 Cond := Guard_Access (Cond, Loc, Ck_Node);
8379 end if;
8380
f15731c4 8381 Add_Check
8382 (Make_Raise_Constraint_Error (Loc,
8383 Condition => Cond,
8384 Reason => CE_Length_Check_Failed));
ee6ba406 8385 end if;
8386
8387 return Ret_Result;
ee6ba406 8388 end Selected_Length_Checks;
8389
8390 ---------------------------
8391 -- Selected_Range_Checks --
8392 ---------------------------
8393
8394 function Selected_Range_Checks
8395 (Ck_Node : Node_Id;
8396 Target_Typ : Entity_Id;
8397 Source_Typ : Entity_Id;
314a23b6 8398 Warn_Node : Node_Id) return Check_Result
ee6ba406 8399 is
8400 Loc : constant Source_Ptr := Sloc (Ck_Node);
8401 S_Typ : Entity_Id;
8402 T_Typ : Entity_Id;
8403 Expr_Actual : Node_Id;
8404 Exptyp : Entity_Id;
8405 Cond : Node_Id := Empty;
8406 Do_Access : Boolean := False;
8407 Wnode : Node_Id := Warn_Node;
8408 Ret_Result : Check_Result := (Empty, Empty);
8409 Num_Checks : Integer := 0;
8410
8411 procedure Add_Check (N : Node_Id);
8412 -- Adds the action given to Ret_Result if N is non-Empty
8413
8414 function Discrete_Range_Cond
8415 (Expr : Node_Id;
314a23b6 8416 Typ : Entity_Id) return Node_Id;
ee6ba406 8417 -- Returns expression to compute:
8418 -- Low_Bound (Expr) < Typ'First
8419 -- or else
8420 -- High_Bound (Expr) > Typ'Last
8421
8422 function Discrete_Expr_Cond
8423 (Expr : Node_Id;
314a23b6 8424 Typ : Entity_Id) return Node_Id;
ee6ba406 8425 -- Returns expression to compute:
8426 -- Expr < Typ'First
8427 -- or else
8428 -- Expr > Typ'Last
8429
8430 function Get_E_First_Or_Last
3cb12758 8431 (Loc : Source_Ptr;
8432 E : Entity_Id;
ee6ba406 8433 Indx : Nat;
314a23b6 8434 Nam : Name_Id) return Node_Id;
79212397 8435 -- Returns an attribute reference
ee6ba406 8436 -- E'First or E'Last
79212397 8437 -- with a source location of Loc.
f73ee678 8438 --
79212397 8439 -- Nam is Name_First or Name_Last, according to which attribute is
8440 -- desired. If Indx is non-zero, it is passed as a literal in the
8441 -- Expressions of the attribute reference (identifying the desired
8442 -- array dimension).
ee6ba406 8443
8444 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
8445 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
8446 -- Returns expression to compute:
9dfe12ae 8447 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 8448
8449 function Range_E_Cond
8450 (Exptyp : Entity_Id;
8451 Typ : Entity_Id;
8452 Indx : Nat)
8453 return Node_Id;
8454 -- Returns expression to compute:
8455 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
8456
8457 function Range_Equal_E_Cond
8458 (Exptyp : Entity_Id;
8459 Typ : Entity_Id;
314a23b6 8460 Indx : Nat) return Node_Id;
ee6ba406 8461 -- Returns expression to compute:
8462 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
8463
8464 function Range_N_Cond
8465 (Expr : Node_Id;
8466 Typ : Entity_Id;
314a23b6 8467 Indx : Nat) return Node_Id;
ee6ba406 8468 -- Return expression to compute:
8469 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
8470
8471 ---------------
8472 -- Add_Check --
8473 ---------------
8474
8475 procedure Add_Check (N : Node_Id) is
8476 begin
8477 if Present (N) then
8478
8479 -- For now, ignore attempt to place more than 2 checks ???
8480
8481 if Num_Checks = 2 then
8482 return;
8483 end if;
8484
8485 pragma Assert (Num_Checks <= 1);
8486 Num_Checks := Num_Checks + 1;
8487 Ret_Result (Num_Checks) := N;
8488 end if;
8489 end Add_Check;
8490
8491 -------------------------
8492 -- Discrete_Expr_Cond --
8493 -------------------------
8494
8495 function Discrete_Expr_Cond
8496 (Expr : Node_Id;
314a23b6 8497 Typ : Entity_Id) return Node_Id
ee6ba406 8498 is
8499 begin
8500 return
8501 Make_Or_Else (Loc,
8502 Left_Opnd =>
8503 Make_Op_Lt (Loc,
8504 Left_Opnd =>
9dfe12ae 8505 Convert_To (Base_Type (Typ),
8506 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 8507 Right_Opnd =>
8508 Convert_To (Base_Type (Typ),
3cb12758 8509 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
ee6ba406 8510
8511 Right_Opnd =>
8512 Make_Op_Gt (Loc,
8513 Left_Opnd =>
9dfe12ae 8514 Convert_To (Base_Type (Typ),
8515 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 8516 Right_Opnd =>
8517 Convert_To
8518 (Base_Type (Typ),
3cb12758 8519 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
ee6ba406 8520 end Discrete_Expr_Cond;
8521
8522 -------------------------
8523 -- Discrete_Range_Cond --
8524 -------------------------
8525
8526 function Discrete_Range_Cond
8527 (Expr : Node_Id;
314a23b6 8528 Typ : Entity_Id) return Node_Id
ee6ba406 8529 is
8530 LB : Node_Id := Low_Bound (Expr);
8531 HB : Node_Id := High_Bound (Expr);
8532
8533 Left_Opnd : Node_Id;
8534 Right_Opnd : Node_Id;
8535
8536 begin
8537 if Nkind (LB) = N_Identifier
feff2f05 8538 and then Ekind (Entity (LB)) = E_Discriminant
8539 then
ee6ba406 8540 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
8541 end if;
8542
ee6ba406 8543 Left_Opnd :=
8544 Make_Op_Lt (Loc,
8545 Left_Opnd =>
8546 Convert_To
9dfe12ae 8547 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 8548
8549 Right_Opnd =>
8550 Convert_To
3cb12758 8551 (Base_Type (Typ),
8552 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
ee6ba406 8553
ba9b1a39 8554 if Nkind (HB) = N_Identifier
8555 and then Ekind (Entity (HB)) = E_Discriminant
ee6ba406 8556 then
ba9b1a39 8557 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
ee6ba406 8558 end if;
8559
8560 Right_Opnd :=
8561 Make_Op_Gt (Loc,
8562 Left_Opnd =>
8563 Convert_To
9dfe12ae 8564 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 8565
8566 Right_Opnd =>
8567 Convert_To
8568 (Base_Type (Typ),
3cb12758 8569 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
ee6ba406 8570
8571 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
8572 end Discrete_Range_Cond;
8573
8574 -------------------------
8575 -- Get_E_First_Or_Last --
8576 -------------------------
8577
8578 function Get_E_First_Or_Last
3cb12758 8579 (Loc : Source_Ptr;
8580 E : Entity_Id;
ee6ba406 8581 Indx : Nat;
314a23b6 8582 Nam : Name_Id) return Node_Id
ee6ba406 8583 is
3cb12758 8584 Exprs : List_Id;
ee6ba406 8585 begin
3cb12758 8586 if Indx > 0 then
8587 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
ee6ba406 8588 else
3cb12758 8589 Exprs := No_List;
ee6ba406 8590 end if;
8591
3cb12758 8592 return Make_Attribute_Reference (Loc,
8593 Prefix => New_Occurrence_Of (E, Loc),
8594 Attribute_Name => Nam,
8595 Expressions => Exprs);
ee6ba406 8596 end Get_E_First_Or_Last;
8597
8598 -----------------
8599 -- Get_N_First --
8600 -----------------
8601
8602 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
8603 begin
8604 return
8605 Make_Attribute_Reference (Loc,
8606 Attribute_Name => Name_First,
8607 Prefix =>
9dfe12ae 8608 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 8609 Expressions => New_List (
8610 Make_Integer_Literal (Loc, Indx)));
ee6ba406 8611 end Get_N_First;
8612
8613 ----------------
8614 -- Get_N_Last --
8615 ----------------
8616
8617 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
8618 begin
8619 return
8620 Make_Attribute_Reference (Loc,
8621 Attribute_Name => Name_Last,
8622 Prefix =>
9dfe12ae 8623 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 8624 Expressions => New_List (
8625 Make_Integer_Literal (Loc, Indx)));
ee6ba406 8626 end Get_N_Last;
8627
8628 ------------------
8629 -- Range_E_Cond --
8630 ------------------
8631
8632 function Range_E_Cond
8633 (Exptyp : Entity_Id;
8634 Typ : Entity_Id;
314a23b6 8635 Indx : Nat) return Node_Id
ee6ba406 8636 is
8637 begin
8638 return
8639 Make_Or_Else (Loc,
8640 Left_Opnd =>
8641 Make_Op_Lt (Loc,
3cb12758 8642 Left_Opnd =>
8643 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8644 Right_Opnd =>
8645 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 8646
8647 Right_Opnd =>
8648 Make_Op_Gt (Loc,
3cb12758 8649 Left_Opnd =>
8650 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8651 Right_Opnd =>
8652 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 8653 end Range_E_Cond;
8654
8655 ------------------------
8656 -- Range_Equal_E_Cond --
8657 ------------------------
8658
8659 function Range_Equal_E_Cond
8660 (Exptyp : Entity_Id;
8661 Typ : Entity_Id;
314a23b6 8662 Indx : Nat) return Node_Id
ee6ba406 8663 is
8664 begin
8665 return
8666 Make_Or_Else (Loc,
8667 Left_Opnd =>
8668 Make_Op_Ne (Loc,
3cb12758 8669 Left_Opnd =>
8670 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8671 Right_Opnd =>
8672 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8673
ee6ba406 8674 Right_Opnd =>
8675 Make_Op_Ne (Loc,
3cb12758 8676 Left_Opnd =>
8677 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8678 Right_Opnd =>
8679 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 8680 end Range_Equal_E_Cond;
8681
8682 ------------------
8683 -- Range_N_Cond --
8684 ------------------
8685
8686 function Range_N_Cond
8687 (Expr : Node_Id;
8688 Typ : Entity_Id;
314a23b6 8689 Indx : Nat) return Node_Id
ee6ba406 8690 is
8691 begin
8692 return
8693 Make_Or_Else (Loc,
8694 Left_Opnd =>
8695 Make_Op_Lt (Loc,
3cb12758 8696 Left_Opnd =>
8697 Get_N_First (Expr, Indx),
8698 Right_Opnd =>
8699 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 8700
8701 Right_Opnd =>
8702 Make_Op_Gt (Loc,
3cb12758 8703 Left_Opnd =>
8704 Get_N_Last (Expr, Indx),
8705 Right_Opnd =>
8706 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 8707 end Range_N_Cond;
8708
8709 -- Start of processing for Selected_Range_Checks
8710
8711 begin
6dbcfcd9 8712 if not Full_Expander_Active then
ee6ba406 8713 return Ret_Result;
8714 end if;
8715
8716 if Target_Typ = Any_Type
8717 or else Target_Typ = Any_Composite
8718 or else Raises_Constraint_Error (Ck_Node)
8719 then
8720 return Ret_Result;
8721 end if;
8722
8723 if No (Wnode) then
8724 Wnode := Ck_Node;
8725 end if;
8726
8727 T_Typ := Target_Typ;
8728
8729 if No (Source_Typ) then
8730 S_Typ := Etype (Ck_Node);
8731 else
8732 S_Typ := Source_Typ;
8733 end if;
8734
8735 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8736 return Ret_Result;
8737 end if;
8738
8739 -- The order of evaluating T_Typ before S_Typ seems to be critical
8740 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
8741 -- in, and since Node can be an N_Range node, it might be invalid.
8742 -- Should there be an assert check somewhere for taking the Etype of
8743 -- an N_Range node ???
8744
8745 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8746 S_Typ := Designated_Type (S_Typ);
8747 T_Typ := Designated_Type (T_Typ);
8748 Do_Access := True;
8749
2af58f67 8750 -- A simple optimization for the null case
ee6ba406 8751
2af58f67 8752 if Known_Null (Ck_Node) then
ee6ba406 8753 return Ret_Result;
8754 end if;
8755 end if;
8756
8757 -- For an N_Range Node, check for a null range and then if not
8758 -- null generate a range check action.
8759
8760 if Nkind (Ck_Node) = N_Range then
8761
8762 -- There's no point in checking a range against itself
8763
8764 if Ck_Node = Scalar_Range (T_Typ) then
8765 return Ret_Result;
8766 end if;
8767
8768 declare
8769 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
8770 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
eefa141b 8771 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
8772 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
ee6ba406 8773
eefa141b 8774 LB : Node_Id := Low_Bound (Ck_Node);
8775 HB : Node_Id := High_Bound (Ck_Node);
8776 Known_LB : Boolean;
8777 Known_HB : Boolean;
8778
8779 Null_Range : Boolean;
ee6ba406 8780 Out_Of_Range_L : Boolean;
8781 Out_Of_Range_H : Boolean;
8782
8783 begin
eefa141b 8784 -- Compute what is known at compile time
8785
8786 if Known_T_LB and Known_T_HB then
8787 if Compile_Time_Known_Value (LB) then
8788 Known_LB := True;
8789
8790 -- There's no point in checking that a bound is within its
8791 -- own range so pretend that it is known in this case. First
8792 -- deal with low bound.
8793
8794 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
8795 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
8796 then
8797 LB := T_LB;
8798 Known_LB := True;
8799
8800 else
8801 Known_LB := False;
8802 end if;
8803
8804 -- Likewise for the high bound
8805
8806 if Compile_Time_Known_Value (HB) then
8807 Known_HB := True;
8808
8809 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
8810 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
8811 then
8812 HB := T_HB;
8813 Known_HB := True;
8814
8815 else
8816 Known_HB := False;
8817 end if;
8818 end if;
8819
8820 -- Check for case where everything is static and we can do the
8821 -- check at compile time. This is skipped if we have an access
8822 -- type, since the access value may be null.
8823
8824 -- ??? This code can be improved since you only need to know that
8825 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
8826 -- compile time to emit pertinent messages.
8827
8828 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
8829 and not Do_Access
ee6ba406 8830 then
8831 -- Floating-point case
8832
8833 if Is_Floating_Point_Type (S_Typ) then
8834 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
8835 Out_Of_Range_L :=
8836 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
eefa141b 8837 or else
ee6ba406 8838 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
8839
8840 Out_Of_Range_H :=
8841 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
eefa141b 8842 or else
ee6ba406 8843 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
8844
8845 -- Fixed or discrete type case
8846
8847 else
8848 Null_Range := Expr_Value (HB) < Expr_Value (LB);
8849 Out_Of_Range_L :=
8850 (Expr_Value (LB) < Expr_Value (T_LB))
eefa141b 8851 or else
ee6ba406 8852 (Expr_Value (LB) > Expr_Value (T_HB));
8853
8854 Out_Of_Range_H :=
8855 (Expr_Value (HB) > Expr_Value (T_HB))
eefa141b 8856 or else
ee6ba406 8857 (Expr_Value (HB) < Expr_Value (T_LB));
8858 end if;
8859
8860 if not Null_Range then
8861 if Out_Of_Range_L then
8862 if No (Warn_Node) then
8863 Add_Check
8864 (Compile_Time_Constraint_Error
8865 (Low_Bound (Ck_Node),
cb97ae5c 8866 "static value out of range of}??", T_Typ));
ee6ba406 8867
8868 else
8869 Add_Check
8870 (Compile_Time_Constraint_Error
8871 (Wnode,
cb97ae5c 8872 "static range out of bounds of}??", T_Typ));
ee6ba406 8873 end if;
8874 end if;
8875
8876 if Out_Of_Range_H then
8877 if No (Warn_Node) then
8878 Add_Check
8879 (Compile_Time_Constraint_Error
8880 (High_Bound (Ck_Node),
cb97ae5c 8881 "static value out of range of}??", T_Typ));
ee6ba406 8882
8883 else
8884 Add_Check
8885 (Compile_Time_Constraint_Error
8886 (Wnode,
cb97ae5c 8887 "static range out of bounds of}??", T_Typ));
ee6ba406 8888 end if;
8889 end if;
ee6ba406 8890 end if;
8891
8892 else
8893 declare
8894 LB : Node_Id := Low_Bound (Ck_Node);
8895 HB : Node_Id := High_Bound (Ck_Node);
8896
8897 begin
feff2f05 8898 -- If either bound is a discriminant and we are within the
8899 -- record declaration, it is a use of the discriminant in a
8900 -- constraint of a component, and nothing can be checked
8901 -- here. The check will be emitted within the init proc.
8902 -- Before then, the discriminal has no real meaning.
8903 -- Similarly, if the entity is a discriminal, there is no
8904 -- check to perform yet.
8905
8906 -- The same holds within a discriminated synchronized type,
8907 -- where the discriminant may constrain a component or an
8908 -- entry family.
ee6ba406 8909
8910 if Nkind (LB) = N_Identifier
0577b0b1 8911 and then Denotes_Discriminant (LB, True)
ee6ba406 8912 then
0577b0b1 8913 if Current_Scope = Scope (Entity (LB))
8914 or else Is_Concurrent_Type (Current_Scope)
8915 or else Ekind (Entity (LB)) /= E_Discriminant
8916 then
ee6ba406 8917 return Ret_Result;
8918 else
8919 LB :=
8920 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
8921 end if;
8922 end if;
8923
8924 if Nkind (HB) = N_Identifier
0577b0b1 8925 and then Denotes_Discriminant (HB, True)
ee6ba406 8926 then
0577b0b1 8927 if Current_Scope = Scope (Entity (HB))
8928 or else Is_Concurrent_Type (Current_Scope)
8929 or else Ekind (Entity (HB)) /= E_Discriminant
8930 then
ee6ba406 8931 return Ret_Result;
8932 else
8933 HB :=
8934 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
8935 end if;
8936 end if;
8937
8938 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
8939 Set_Paren_Count (Cond, 1);
8940
8941 Cond :=
8942 Make_And_Then (Loc,
8943 Left_Opnd =>
8944 Make_Op_Ge (Loc,
9dfe12ae 8945 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
8946 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 8947 Right_Opnd => Cond);
8948 end;
ee6ba406 8949 end if;
8950 end;
8951
8952 elsif Is_Scalar_Type (S_Typ) then
8953
8954 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
8955 -- except the above simply sets a flag in the node and lets
8956 -- gigi generate the check base on the Etype of the expression.
8957 -- Sometimes, however we want to do a dynamic check against an
8958 -- arbitrary target type, so we do that here.
8959
8960 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
8961 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
8962
8963 -- For literals, we can tell if the constraint error will be
8964 -- raised at compile time, so we never need a dynamic check, but
8965 -- if the exception will be raised, then post the usual warning,
8966 -- and replace the literal with a raise constraint error
8967 -- expression. As usual, skip this for access types
8968
8969 elsif Compile_Time_Known_Value (Ck_Node)
8970 and then not Do_Access
8971 then
8972 declare
8973 LB : constant Node_Id := Type_Low_Bound (T_Typ);
8974 UB : constant Node_Id := Type_High_Bound (T_Typ);
8975
8976 Out_Of_Range : Boolean;
8977 Static_Bounds : constant Boolean :=
b6341c67 8978 Compile_Time_Known_Value (LB)
8979 and Compile_Time_Known_Value (UB);
ee6ba406 8980
8981 begin
8982 -- Following range tests should use Sem_Eval routine ???
8983
8984 if Static_Bounds then
8985 if Is_Floating_Point_Type (S_Typ) then
8986 Out_Of_Range :=
8987 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
8988 or else
8989 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
8990
eefa141b 8991 -- Fixed or discrete type
8992
8993 else
ee6ba406 8994 Out_Of_Range :=
8995 Expr_Value (Ck_Node) < Expr_Value (LB)
8996 or else
8997 Expr_Value (Ck_Node) > Expr_Value (UB);
8998 end if;
8999
eefa141b 9000 -- Bounds of the type are static and the literal is out of
9001 -- range so output a warning message.
ee6ba406 9002
9003 if Out_Of_Range then
9004 if No (Warn_Node) then
9005 Add_Check
9006 (Compile_Time_Constraint_Error
9007 (Ck_Node,
cb97ae5c 9008 "static value out of range of}??", T_Typ));
ee6ba406 9009
9010 else
9011 Add_Check
9012 (Compile_Time_Constraint_Error
9013 (Wnode,
cb97ae5c 9014 "static value out of range of}??", T_Typ));
ee6ba406 9015 end if;
9016 end if;
9017
9018 else
9019 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9020 end if;
9021 end;
9022
9023 -- Here for the case of a non-static expression, we need a runtime
9024 -- check unless the source type range is guaranteed to be in the
9025 -- range of the target type.
9026
9027 else
7a1dabb3 9028 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 9029 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9030 end if;
9031 end if;
9032 end if;
9033
9034 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9035 if Is_Constrained (T_Typ) then
9036
9037 Expr_Actual := Get_Referenced_Object (Ck_Node);
9038 Exptyp := Get_Actual_Subtype (Expr_Actual);
9039
9040 if Is_Access_Type (Exptyp) then
9041 Exptyp := Designated_Type (Exptyp);
9042 end if;
9043
9044 -- String_Literal case. This needs to be handled specially be-
9045 -- cause no index types are available for string literals. The
9046 -- condition is simply:
9047
9048 -- T_Typ'Length = string-literal-length
9049
9050 if Nkind (Expr_Actual) = N_String_Literal then
9051 null;
9052
9053 -- General array case. Here we have a usable actual subtype for
9054 -- the expression, and the condition is built from the two types
9055
9056 -- T_Typ'First < Exptyp'First or else
9057 -- T_Typ'Last > Exptyp'Last or else
9058 -- T_Typ'First(1) < Exptyp'First(1) or else
9059 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9060 -- ...
9061
9062 elsif Is_Constrained (Exptyp) then
9063 declare
9dfe12ae 9064 Ndims : constant Nat := Number_Dimensions (T_Typ);
9065
ee6ba406 9066 L_Index : Node_Id;
9067 R_Index : Node_Id;
ee6ba406 9068
9069 begin
9070 L_Index := First_Index (T_Typ);
9071 R_Index := First_Index (Exptyp);
9072
9073 for Indx in 1 .. Ndims loop
9074 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 9075 or else
9076 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 9077 then
ee6ba406 9078 -- Deal with compile time length check. Note that we
9079 -- skip this in the access case, because the access
9080 -- value may be null, so we cannot know statically.
9081
9082 if not
9083 Subtypes_Statically_Match
9084 (Etype (L_Index), Etype (R_Index))
9085 then
9086 -- If the target type is constrained then we
9087 -- have to check for exact equality of bounds
9088 -- (required for qualified expressions).
9089
9090 if Is_Constrained (T_Typ) then
9091 Evolve_Or_Else
9092 (Cond,
9093 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 9094 else
9095 Evolve_Or_Else
9096 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9097 end if;
9098 end if;
9099
9100 Next (L_Index);
9101 Next (R_Index);
ee6ba406 9102 end if;
9103 end loop;
9104 end;
9105
9106 -- Handle cases where we do not get a usable actual subtype that
9107 -- is constrained. This happens for example in the function call
9108 -- and explicit dereference cases. In these cases, we have to get
9109 -- the length or range from the expression itself, making sure we
9110 -- do not evaluate it more than once.
9111
9112 -- Here Ck_Node is the original expression, or more properly the
9113 -- result of applying Duplicate_Expr to the original tree,
9114 -- forcing the result to be a name.
9115
9116 else
9117 declare
9dfe12ae 9118 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 9119
9120 begin
9121 -- Build the condition for the explicit dereference case
9122
9123 for Indx in 1 .. Ndims loop
9124 Evolve_Or_Else
9125 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
9126 end loop;
9127 end;
ee6ba406 9128 end if;
9129
9130 else
feff2f05 9131 -- For a conversion to an unconstrained array type, generate an
9132 -- Action to check that the bounds of the source value are within
9133 -- the constraints imposed by the target type (RM 4.6(38)). No
9134 -- check is needed for a conversion to an access to unconstrained
9135 -- array type, as 4.6(24.15/2) requires the designated subtypes
9136 -- of the two access types to statically match.
9137
9138 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
9139 and then not Do_Access
9140 then
ee6ba406 9141 declare
9142 Opnd_Index : Node_Id;
9143 Targ_Index : Node_Id;
00c403ee 9144 Opnd_Range : Node_Id;
ee6ba406 9145
9146 begin
feff2f05 9147 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 9148 Targ_Index := First_Index (T_Typ);
00c403ee 9149 while Present (Opnd_Index) loop
9150
9151 -- If the index is a range, use its bounds. If it is an
9152 -- entity (as will be the case if it is a named subtype
9153 -- or an itype created for a slice) retrieve its range.
9154
9155 if Is_Entity_Name (Opnd_Index)
9156 and then Is_Type (Entity (Opnd_Index))
9157 then
9158 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
9159 else
9160 Opnd_Range := Opnd_Index;
9161 end if;
9162
9163 if Nkind (Opnd_Range) = N_Range then
9c486805 9164 if Is_In_Range
9165 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9166 Assume_Valid => True)
ee6ba406 9167 and then
9168 Is_In_Range
9c486805 9169 (High_Bound (Opnd_Range), Etype (Targ_Index),
9170 Assume_Valid => True)
ee6ba406 9171 then
9172 null;
9173
feff2f05 9174 -- If null range, no check needed
f2a06be9 9175
9dfe12ae 9176 elsif
00c403ee 9177 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 9178 and then
00c403ee 9179 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 9180 and then
00c403ee 9181 Expr_Value (High_Bound (Opnd_Range)) <
9182 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 9183 then
9184 null;
9185
ee6ba406 9186 elsif Is_Out_Of_Range
9c486805 9187 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9188 Assume_Valid => True)
ee6ba406 9189 or else
9190 Is_Out_Of_Range
9c486805 9191 (High_Bound (Opnd_Range), Etype (Targ_Index),
9192 Assume_Valid => True)
ee6ba406 9193 then
9194 Add_Check
9195 (Compile_Time_Constraint_Error
cb97ae5c 9196 (Wnode, "value out of range of}??", T_Typ));
ee6ba406 9197
9198 else
9199 Evolve_Or_Else
9200 (Cond,
9201 Discrete_Range_Cond
00c403ee 9202 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 9203 end if;
9204 end if;
9205
9206 Next_Index (Opnd_Index);
9207 Next_Index (Targ_Index);
9208 end loop;
9209 end;
9210 end if;
9211 end if;
9212 end if;
9213
9214 -- Construct the test and insert into the tree
9215
9216 if Present (Cond) then
9217 if Do_Access then
9218 Cond := Guard_Access (Cond, Loc, Ck_Node);
9219 end if;
9220
f15731c4 9221 Add_Check
9222 (Make_Raise_Constraint_Error (Loc,
eefa141b 9223 Condition => Cond,
9224 Reason => CE_Range_Check_Failed));
ee6ba406 9225 end if;
9226
9227 return Ret_Result;
ee6ba406 9228 end Selected_Range_Checks;
9229
9230 -------------------------------
9231 -- Storage_Checks_Suppressed --
9232 -------------------------------
9233
9234 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
9235 begin
9dfe12ae 9236 if Present (E) and then Checks_May_Be_Suppressed (E) then
9237 return Is_Check_Suppressed (E, Storage_Check);
9238 else
fafc6b97 9239 return Scope_Suppress.Suppress (Storage_Check);
9dfe12ae 9240 end if;
ee6ba406 9241 end Storage_Checks_Suppressed;
9242
9243 ---------------------------
9244 -- Tag_Checks_Suppressed --
9245 ---------------------------
9246
9247 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
9248 begin
89f1e35c 9249 if Present (E)
9250 and then Checks_May_Be_Suppressed (E)
9251 then
9252 return Is_Check_Suppressed (E, Tag_Check);
9dfe12ae 9253 end if;
9254
fafc6b97 9255 return Scope_Suppress.Suppress (Tag_Check);
ee6ba406 9256 end Tag_Checks_Suppressed;
9257
0577b0b1 9258 --------------------------
9259 -- Validity_Check_Range --
9260 --------------------------
9261
9262 procedure Validity_Check_Range (N : Node_Id) is
9263 begin
9264 if Validity_Checks_On and Validity_Check_Operands then
9265 if Nkind (N) = N_Range then
9266 Ensure_Valid (Low_Bound (N));
9267 Ensure_Valid (High_Bound (N));
9268 end if;
9269 end if;
9270 end Validity_Check_Range;
9271
9272 --------------------------------
9273 -- Validity_Checks_Suppressed --
9274 --------------------------------
9275
9276 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
9277 begin
9278 if Present (E) and then Checks_May_Be_Suppressed (E) then
9279 return Is_Check_Suppressed (E, Validity_Check);
9280 else
fafc6b97 9281 return Scope_Suppress.Suppress (Validity_Check);
0577b0b1 9282 end if;
9283 end Validity_Checks_Suppressed;
9284
ee6ba406 9285end Checks;