]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
Removed.
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
1581f2d7 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
29448168 27with Casing; use Casing;
ee6ba406 28with Debug; use Debug;
29with Einfo; use Einfo;
7b8fa048 30with Elists; use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
ee6ba406 33with Exp_Ch2; use Exp_Ch2;
df40eeb0 34with Exp_Ch4; use Exp_Ch4;
05fcfafb 35with Exp_Pakd; use Exp_Pakd;
ee6ba406 36with Exp_Util; use Exp_Util;
4fb5f0a0 37with Expander; use Expander;
ee6ba406 38with Freeze; use Freeze;
9dfe12ae 39with Lib; use Lib;
ee6ba406 40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
9dfe12ae 43with Output; use Output;
c2b56224 44with Restrict; use Restrict;
1e16c51c 45with Rident; use Rident;
ee6ba406 46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
d60c9ff7 48with Sem_Aux; use Sem_Aux;
00f91aef 49with Sem_Ch3; use Sem_Ch3;
9dfe12ae 50with Sem_Ch8; use Sem_Ch8;
7b8fa048 51with Sem_Eval; use Sem_Eval;
ee6ba406 52with Sem_Res; use Sem_Res;
53with Sem_Util; use Sem_Util;
54with Sem_Warn; use Sem_Warn;
55with Sinfo; use Sinfo;
9dfe12ae 56with Sinput; use Sinput;
ee6ba406 57with Snames; use Snames;
9dfe12ae 58with Sprint; use Sprint;
ee6ba406 59with Stand; use Stand;
bb569db0 60with Stringt; use Stringt;
f15731c4 61with Targparm; use Targparm;
ee6ba406 62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
ee6ba406 64with Validsw; use Validsw;
65
66package body Checks is
67
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
72 -- execution anyway.
73
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
78
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
85
20cf157b 86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
88
9dfe12ae 89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
92
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
99
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
104
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
107
108 -- First, we need to know for certain that the previous expression has
6fb3c314 109 -- been executed. This is done principally by the mechanism of calling
9dfe12ae 110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
118
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
123
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
131
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
134
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
140
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
144
145 type Saved_Check is record
146 Killed : Boolean;
147 -- Set True if entry is killed by Kill_Checks
148
149 Entity : Entity_Id;
150 -- The entity involved in the expression that is checked
151
152 Offset : Uint;
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
157
158 Check_Type : Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
162
163 Target_Type : Entity_Id;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
6fb3c314 166 -- it has the same target type (or more accurately one with a
9dfe12ae 167 -- range that is smaller or equal to the stored target type of a
168 -- saved check).
169 end record;
170
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table. We just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
175
176 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
177 -- Array of saved checks
178
179 Num_Saved_Checks : Nat := 0;
180 -- Number of saved checks
181
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
187
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
191
192 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
193 Saved_Checks_TOS : Nat := 0;
194
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
ee6ba406 198
0df9d43f 199 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
3cce7f32 200 -- Used to apply arithmetic overflow checks for all cases except operators
691fe9e0 201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
0df9d43f 202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
3cce7f32 205
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
0df9d43f 208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
3cce7f32 212
2fe22c69 213 procedure Apply_Division_Check
214 (N : Node_Id;
215 Rlo : Uint;
216 Rhi : Uint;
217 ROK : Boolean);
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
222
223 procedure Apply_Float_Conversion_Check
224 (Ck_Node : Node_Id;
225 Target_Typ : Entity_Id);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
230
ee6ba406 231 procedure Apply_Selected_Length_Checks
232 (Ck_Node : Node_Id;
233 Target_Typ : Entity_Id;
234 Source_Typ : Entity_Id;
235 Do_Static : Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
240
241 procedure Apply_Selected_Range_Checks
242 (Ck_Node : Node_Id;
243 Target_Typ : Entity_Id;
244 Source_Typ : Entity_Id;
245 Do_Static : Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
249 -- to be done.
250
2af58f67 251 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 252 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
258 --
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
262 --
263 -- if Var = 0 or else Q / Var > 12 then
264 -- ...
265 -- end if;
266 --
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
269 -- such as:
270 --
271 -- if Var = 0 or Q / Var > 12 then
272 -- ...
273 -- end if;
274
9dfe12ae 275 procedure Find_Check
276 (Expr : Node_Id;
277 Check_Type : Character;
278 Target_Type : Entity_Id;
279 Entry_OK : out Boolean;
280 Check_Num : out Nat;
281 Ent : out Entity_Id;
282 Ofs : out Uint);
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
293 -- is located.
294
ee6ba406 295 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
0577b0b1 301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
304 -- bound itself.
ee6ba406 305 -- To be cleaned up???
306
307 function Guard_Access
308 (Cond : Node_Id;
309 Loc : Source_Ptr;
314a23b6 310 Ck_Node : Node_Id) return Node_Id;
ee6ba406 311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
314
315 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
318
3cce7f32 319 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
0326b4d4 321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
691fe9e0 324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
3cce7f32 325
0577b0b1 326 function Range_Or_Validity_Checks_Suppressed
327 (Expr : Node_Id) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
331
ee6ba406 332 function Selected_Length_Checks
333 (Ck_Node : Node_Id;
334 Target_Typ : Entity_Id;
335 Source_Typ : Entity_Id;
314a23b6 336 Warn_Node : Node_Id) return Check_Result;
ee6ba406 337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
340
341 function Selected_Range_Checks
342 (Ck_Node : Node_Id;
343 Target_Typ : Entity_Id;
344 Source_Typ : Entity_Id;
314a23b6 345 Warn_Node : Node_Id) return Check_Result;
ee6ba406 346 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
347 -- just returns a list of nodes as described in the spec of this package
348 -- for the Range_Check function.
349
350 ------------------------------
351 -- Access_Checks_Suppressed --
352 ------------------------------
353
354 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
355 begin
9dfe12ae 356 if Present (E) and then Checks_May_Be_Suppressed (E) then
357 return Is_Check_Suppressed (E, Access_Check);
358 else
fafc6b97 359 return Scope_Suppress.Suppress (Access_Check);
9dfe12ae 360 end if;
ee6ba406 361 end Access_Checks_Suppressed;
362
363 -------------------------------------
364 -- Accessibility_Checks_Suppressed --
365 -------------------------------------
366
367 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
368 begin
9dfe12ae 369 if Present (E) and then Checks_May_Be_Suppressed (E) then
370 return Is_Check_Suppressed (E, Accessibility_Check);
371 else
fafc6b97 372 return Scope_Suppress.Suppress (Accessibility_Check);
9dfe12ae 373 end if;
ee6ba406 374 end Accessibility_Checks_Suppressed;
375
00c403ee 376 -----------------------------
377 -- Activate_Division_Check --
378 -----------------------------
379
380 procedure Activate_Division_Check (N : Node_Id) is
381 begin
382 Set_Do_Division_Check (N, True);
383 Possible_Local_Raise (N, Standard_Constraint_Error);
384 end Activate_Division_Check;
385
386 -----------------------------
387 -- Activate_Overflow_Check --
388 -----------------------------
389
390 procedure Activate_Overflow_Check (N : Node_Id) is
391 begin
b8446e0d 392 -- Nothing to do for unconstrained floating-point types (the test for
393 -- Etype (N) being present seems necessary in some cases, should be
394 -- tracked down, but for now just ignore the check in this case ???)
395
396 if Present (Etype (N))
397 and then Is_Floating_Point_Type (Etype (N))
398 and then not Is_Constrained (Etype (N))
399
400 -- But do the check after all if float overflow checking enforced
401
402 and then not Check_Float_Overflow
403 then
404 return;
d32ceaf3 405 end if;
b8446e0d 406
407 -- Nothing to do for Rem/Mod/Plus (overflow not possible)
408
409 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
410 return;
411 end if;
412
413 -- Otherwise set the flag
414
415 Set_Do_Overflow_Check (N, True);
416 Possible_Local_Raise (N, Standard_Constraint_Error);
00c403ee 417 end Activate_Overflow_Check;
418
419 --------------------------
420 -- Activate_Range_Check --
421 --------------------------
422
423 procedure Activate_Range_Check (N : Node_Id) is
424 begin
425 Set_Do_Range_Check (N, True);
426 Possible_Local_Raise (N, Standard_Constraint_Error);
427 end Activate_Range_Check;
428
0577b0b1 429 ---------------------------------
430 -- Alignment_Checks_Suppressed --
431 ---------------------------------
432
433 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
434 begin
435 if Present (E) and then Checks_May_Be_Suppressed (E) then
436 return Is_Check_Suppressed (E, Alignment_Check);
437 else
fafc6b97 438 return Scope_Suppress.Suppress (Alignment_Check);
0577b0b1 439 end if;
440 end Alignment_Checks_Suppressed;
441
2d70530c 442 ----------------------------------
443 -- Allocation_Checks_Suppressed --
444 ----------------------------------
445
fa771c05 446 -- Note: at the current time there are no calls to this function, because
447 -- the relevant check is in the run-time, so it is not a check that the
448 -- compiler can suppress anyway, but we still have to recognize the check
449 -- name Allocation_Check since it is part of the standard.
450
2d70530c 451 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
452 begin
453 if Present (E) and then Checks_May_Be_Suppressed (E) then
454 return Is_Check_Suppressed (E, Allocation_Check);
455 else
456 return Scope_Suppress.Suppress (Allocation_Check);
457 end if;
458 end Allocation_Checks_Suppressed;
459
ee6ba406 460 -------------------------
461 -- Append_Range_Checks --
462 -------------------------
463
464 procedure Append_Range_Checks
465 (Checks : Check_Result;
466 Stmts : List_Id;
467 Suppress_Typ : Entity_Id;
468 Static_Sloc : Source_Ptr;
469 Flag_Node : Node_Id)
470 is
9dfe12ae 471 Internal_Flag_Node : constant Node_Id := Flag_Node;
472 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
473
ee6ba406 474 Checks_On : constant Boolean :=
b6341c67 475 (not Index_Checks_Suppressed (Suppress_Typ))
476 or else (not Range_Checks_Suppressed (Suppress_Typ));
ee6ba406 477
478 begin
479 -- For now we just return if Checks_On is false, however this should
480 -- be enhanced to check for an always True value in the condition
481 -- and to generate a compilation warning???
482
483 if not Checks_On then
484 return;
485 end if;
486
487 for J in 1 .. 2 loop
488 exit when No (Checks (J));
489
490 if Nkind (Checks (J)) = N_Raise_Constraint_Error
491 and then Present (Condition (Checks (J)))
492 then
493 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
494 Append_To (Stmts, Checks (J));
495 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
496 end if;
497
498 else
499 Append_To
f15731c4 500 (Stmts,
501 Make_Raise_Constraint_Error (Internal_Static_Sloc,
502 Reason => CE_Range_Check_Failed));
ee6ba406 503 end if;
504 end loop;
505 end Append_Range_Checks;
506
507 ------------------------
508 -- Apply_Access_Check --
509 ------------------------
510
511 procedure Apply_Access_Check (N : Node_Id) is
512 P : constant Node_Id := Prefix (N);
513
514 begin
13dbf220 515 -- We do not need checks if we are not generating code (i.e. the
516 -- expander is not active). This is not just an optimization, there
517 -- are cases (e.g. with pragma Debug) where generating the checks
518 -- can cause real trouble).
284faf8b 519
a33565dd 520 if not Expander_Active then
13dbf220 521 return;
9dfe12ae 522 end if;
ee6ba406 523
84d0d4a5 524 -- No check if short circuiting makes check unnecessary
9dfe12ae 525
84d0d4a5 526 if not Check_Needed (P, Access_Check) then
527 return;
ee6ba406 528 end if;
9dfe12ae 529
cc60bd16 530 -- No check if accessing the Offset_To_Top component of a dispatch
531 -- table. They are safe by construction.
532
040277b1 533 if Tagged_Type_Expansion
534 and then Present (Etype (P))
cc60bd16 535 and then RTU_Loaded (Ada_Tags)
536 and then RTE_Available (RE_Offset_To_Top_Ptr)
537 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
538 then
539 return;
540 end if;
541
84d0d4a5 542 -- Otherwise go ahead and install the check
9dfe12ae 543
fa7497e8 544 Install_Null_Excluding_Check (P);
ee6ba406 545 end Apply_Access_Check;
546
547 -------------------------------
548 -- Apply_Accessibility_Check --
549 -------------------------------
550
55dc6dc2 551 procedure Apply_Accessibility_Check
552 (N : Node_Id;
553 Typ : Entity_Id;
554 Insert_Node : Node_Id)
555 is
ee6ba406 556 Loc : constant Source_Ptr := Sloc (N);
1a9cc6cd 557 Param_Ent : Entity_Id := Param_Entity (N);
ee6ba406 558 Param_Level : Node_Id;
559 Type_Level : Node_Id;
560
561 begin
47d210a3 562 if Ada_Version >= Ada_2012
563 and then not Present (Param_Ent)
564 and then Is_Entity_Name (N)
565 and then Ekind_In (Entity (N), E_Constant, E_Variable)
566 and then Present (Effective_Extra_Accessibility (Entity (N)))
567 then
568 Param_Ent := Entity (N);
569 while Present (Renamed_Object (Param_Ent)) loop
1a9cc6cd 570
47d210a3 571 -- Renamed_Object must return an Entity_Name here
572 -- because of preceding "Present (E_E_A (...))" test.
573
574 Param_Ent := Entity (Renamed_Object (Param_Ent));
575 end loop;
576 end if;
577
ee6ba406 578 if Inside_A_Generic then
579 return;
580
6ffc64fc 581 -- Only apply the run-time check if the access parameter has an
582 -- associated extra access level parameter and when the level of the
583 -- type is less deep than the level of the access parameter, and
584 -- accessibility checks are not suppressed.
ee6ba406 585
586 elsif Present (Param_Ent)
587 and then Present (Extra_Accessibility (Param_Ent))
47d210a3 588 and then UI_Gt (Object_Access_Level (N),
1a9cc6cd 589 Deepest_Type_Access_Level (Typ))
ee6ba406 590 and then not Accessibility_Checks_Suppressed (Param_Ent)
591 and then not Accessibility_Checks_Suppressed (Typ)
592 then
593 Param_Level :=
594 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
595
1a9cc6cd 596 Type_Level :=
597 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
ee6ba406 598
bf3e1520 599 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 600 -- parameter is deeper than the level of the target access type.
ee6ba406 601
55dc6dc2 602 Insert_Action (Insert_Node,
ee6ba406 603 Make_Raise_Program_Error (Loc,
604 Condition =>
605 Make_Op_Gt (Loc,
606 Left_Opnd => Param_Level,
f15731c4 607 Right_Opnd => Type_Level),
608 Reason => PE_Accessibility_Check_Failed));
ee6ba406 609
610 Analyze_And_Resolve (N);
611 end if;
612 end Apply_Accessibility_Check;
613
0577b0b1 614 --------------------------------
615 -- Apply_Address_Clause_Check --
616 --------------------------------
617
618 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
d950dc79 619 pragma Assert (Nkind (N) = N_Freeze_Entity);
620
0577b0b1 621 AC : constant Node_Id := Address_Clause (E);
622 Loc : constant Source_Ptr := Sloc (AC);
623 Typ : constant Entity_Id := Etype (E);
624 Aexp : constant Node_Id := Expression (AC);
c2b56224 625
c2b56224 626 Expr : Node_Id;
0577b0b1 627 -- Address expression (not necessarily the same as Aexp, for example
628 -- when Aexp is a reference to a constant, in which case Expr gets
7b8fa048 629 -- reset to reference the value expression of the constant).
0577b0b1 630
0577b0b1 631 procedure Compile_Time_Bad_Alignment;
632 -- Post error warnings when alignment is known to be incompatible. Note
633 -- that we do not go as far as inserting a raise of Program_Error since
634 -- this is an erroneous case, and it may happen that we are lucky and an
d6da7448 635 -- underaligned address turns out to be OK after all.
0577b0b1 636
637 --------------------------------
638 -- Compile_Time_Bad_Alignment --
639 --------------------------------
640
641 procedure Compile_Time_Bad_Alignment is
642 begin
d6da7448 643 if Address_Clause_Overlay_Warnings then
0577b0b1 644 Error_Msg_FE
cb97ae5c 645 ("?o?specified address for& may be inconsistent with alignment",
0577b0b1 646 Aexp, E);
647 Error_Msg_FE
cb97ae5c 648 ("\?o?program execution may be erroneous (RM 13.3(27))",
0577b0b1 649 Aexp, E);
83f8f0a6 650 Set_Address_Warning_Posted (AC);
0577b0b1 651 end if;
652 end Compile_Time_Bad_Alignment;
c2b56224 653
2af58f67 654 -- Start of processing for Apply_Address_Clause_Check
5c61a0ff 655
c2b56224 656 begin
d6da7448 657 -- See if alignment check needed. Note that we never need a check if the
658 -- maximum alignment is one, since the check will always succeed.
659
660 -- Note: we do not check for checks suppressed here, since that check
661 -- was done in Sem_Ch13 when the address clause was processed. We are
662 -- only called if checks were not suppressed. The reason for this is
663 -- that we have to delay the call to Apply_Alignment_Check till freeze
664 -- time (so that all types etc are elaborated), but we have to check
665 -- the status of check suppressing at the point of the address clause.
666
667 if No (AC)
668 or else not Check_Address_Alignment (AC)
669 or else Maximum_Alignment = 1
670 then
671 return;
672 end if;
673
674 -- Obtain expression from address clause
9dfe12ae 675
0577b0b1 676 Expr := Expression (AC);
677
678 -- The following loop digs for the real expression to use in the check
679
680 loop
681 -- For constant, get constant expression
682
683 if Is_Entity_Name (Expr)
684 and then Ekind (Entity (Expr)) = E_Constant
685 then
686 Expr := Constant_Value (Entity (Expr));
687
688 -- For unchecked conversion, get result to convert
689
690 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
691 Expr := Expression (Expr);
692
693 -- For (common case) of To_Address call, get argument
694
695 elsif Nkind (Expr) = N_Function_Call
696 and then Is_Entity_Name (Name (Expr))
697 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
698 then
699 Expr := First (Parameter_Associations (Expr));
700
701 if Nkind (Expr) = N_Parameter_Association then
702 Expr := Explicit_Actual_Parameter (Expr);
703 end if;
704
705 -- We finally have the real expression
706
707 else
708 exit;
709 end if;
710 end loop;
711
d6da7448 712 -- See if we know that Expr has a bad alignment at compile time
c2b56224 713
714 if Compile_Time_Known_Value (Expr)
f2a06be9 715 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 716 then
f2a06be9 717 declare
718 AL : Uint := Alignment (Typ);
719
720 begin
721 -- The object alignment might be more restrictive than the
722 -- type alignment.
723
724 if Known_Alignment (E) then
725 AL := Alignment (E);
726 end if;
727
728 if Expr_Value (Expr) mod AL /= 0 then
0577b0b1 729 Compile_Time_Bad_Alignment;
730 else
731 return;
f2a06be9 732 end if;
733 end;
c2b56224 734
0577b0b1 735 -- If the expression has the form X'Address, then we can find out if
736 -- the object X has an alignment that is compatible with the object E.
d6da7448 737 -- If it hasn't or we don't know, we defer issuing the warning until
738 -- the end of the compilation to take into account back end annotations.
c2b56224 739
0577b0b1 740 elsif Nkind (Expr) = N_Attribute_Reference
741 and then Attribute_Name (Expr) = Name_Address
d6da7448 742 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
0577b0b1 743 then
d6da7448 744 return;
0577b0b1 745 end if;
c2b56224 746
6fb3c314 747 -- Here we do not know if the value is acceptable. Strictly we don't
748 -- have to do anything, since if the alignment is bad, we have an
749 -- erroneous program. However we are allowed to check for erroneous
750 -- conditions and we decide to do this by default if the check is not
751 -- suppressed.
0577b0b1 752
753 -- However, don't do the check if elaboration code is unwanted
754
755 if Restriction_Active (No_Elaboration_Code) then
756 return;
757
758 -- Generate a check to raise PE if alignment may be inappropriate
759
760 else
761 -- If the original expression is a non-static constant, use the
762 -- name of the constant itself rather than duplicating its
00c403ee 763 -- defining expression, which was extracted above.
0577b0b1 764
00c403ee 765 -- Note: Expr is empty if the address-clause is applied to in-mode
766 -- actuals (allowed by 13.1(22)).
767
768 if not Present (Expr)
769 or else
770 (Is_Entity_Name (Expression (AC))
771 and then Ekind (Entity (Expression (AC))) = E_Constant
772 and then Nkind (Parent (Entity (Expression (AC))))
773 = N_Object_Declaration)
0577b0b1 774 then
775 Expr := New_Copy_Tree (Expression (AC));
776 else
777 Remove_Side_Effects (Expr);
c2b56224 778 end if;
c2b56224 779
d950dc79 780 if No (Actions (N)) then
781 Set_Actions (N, New_List);
782 end if;
783
784 Prepend_To (Actions (N),
0577b0b1 785 Make_Raise_Program_Error (Loc,
786 Condition =>
787 Make_Op_Ne (Loc,
788 Left_Opnd =>
789 Make_Op_Mod (Loc,
790 Left_Opnd =>
791 Unchecked_Convert_To
792 (RTE (RE_Integer_Address), Expr),
793 Right_Opnd =>
794 Make_Attribute_Reference (Loc,
d950dc79 795 Prefix => New_Occurrence_Of (E, Loc),
0577b0b1 796 Attribute_Name => Name_Alignment)),
797 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7b8fa048 798 Reason => PE_Misaligned_Address_Value));
799
800 Warning_Msg := No_Error_Msg;
d950dc79 801 Analyze (First (Actions (N)), Suppress => All_Checks);
cd309f05 802
7b8fa048 803 -- If the address clause generated a warning message (for example,
804 -- from Warn_On_Non_Local_Exception mode with the active restriction
805 -- No_Exception_Propagation).
806
807 if Warning_Msg /= No_Error_Msg then
808
809 -- If the expression has a known at compile time value, then
810 -- once we know the alignment of the type, we can check if the
811 -- exception will be raised or not, and if not, we don't need
812 -- the warning so we will kill the warning later on.
813
814 if Compile_Time_Known_Value (Expr) then
815 Alignment_Warnings.Append
816 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
817 end if;
818
819 -- Add explanation of the warning that is generated by the check
cd309f05 820
78be29d1 821 Error_Msg_N
7b8fa048 822 ("\address value may be incompatible with alignment "
823 & "of object?X?", AC);
cd309f05 824 end if;
78be29d1 825
0577b0b1 826 return;
827 end if;
9dfe12ae 828
829 exception
0577b0b1 830 -- If we have some missing run time component in configurable run time
831 -- mode then just skip the check (it is not required in any case).
832
9dfe12ae 833 when RE_Not_Available =>
834 return;
0577b0b1 835 end Apply_Address_Clause_Check;
c2b56224 836
ee6ba406 837 -------------------------------------
838 -- Apply_Arithmetic_Overflow_Check --
839 -------------------------------------
840
3cce7f32 841 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
842 begin
843 -- Use old routine in almost all cases (the only case we are treating
21a55437 844 -- specially is the case of a signed integer arithmetic op with the
0df9d43f 845 -- overflow checking mode set to MINIMIZED or ELIMINATED).
3cce7f32 846
0df9d43f 847 if Overflow_Check_Mode = Strict
3cce7f32 848 or else not Is_Signed_Integer_Arithmetic_Op (N)
849 then
0df9d43f 850 Apply_Arithmetic_Overflow_Strict (N);
3cce7f32 851
21a55437 852 -- Otherwise use the new routine for the case of a signed integer
853 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
854 -- mode is MINIMIZED or ELIMINATED.
3cce7f32 855
856 else
857 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
858 end if;
859 end Apply_Arithmetic_Overflow_Check;
860
0df9d43f 861 --------------------------------------
862 -- Apply_Arithmetic_Overflow_Strict --
863 --------------------------------------
3cce7f32 864
f40f9731 865 -- This routine is called only if the type is an integer type, and a
866 -- software arithmetic overflow check may be needed for op (add, subtract,
867 -- or multiply). This check is performed only if Software_Overflow_Checking
868 -- is enabled and Do_Overflow_Check is set. In this case we expand the
869 -- operation into a more complex sequence of tests that ensures that
870 -- overflow is properly caught.
ee6ba406 871
0df9d43f 872 -- This is used in CHECKED modes. It is identical to the code for this
873 -- cases before the big overflow earthquake, thus ensuring that in this
874 -- modes we have compatible behavior (and reliability) to what was there
875 -- before. It is also called for types other than signed integers, and if
876 -- the Do_Overflow_Check flag is off.
3cce7f32 877
878 -- Note: we also call this routine if we decide in the MINIMIZED case
879 -- to give up and just generate an overflow check without any fuss.
880
0df9d43f 881 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
21a55437 882 Loc : constant Source_Ptr := Sloc (N);
883 Typ : constant Entity_Id := Etype (N);
884 Rtyp : constant Entity_Id := Root_Type (Typ);
ee6ba406 885
886 begin
0df9d43f 887 -- Nothing to do if Do_Overflow_Check not set or overflow checks
888 -- suppressed.
889
890 if not Do_Overflow_Check (N) then
891 return;
892 end if;
893
f40f9731 894 -- An interesting special case. If the arithmetic operation appears as
895 -- the operand of a type conversion:
896
897 -- type1 (x op y)
898
899 -- and all the following conditions apply:
900
901 -- arithmetic operation is for a signed integer type
902 -- target type type1 is a static integer subtype
903 -- range of x and y are both included in the range of type1
904 -- range of x op y is included in the range of type1
905 -- size of type1 is at least twice the result size of op
906
907 -- then we don't do an overflow check in any case, instead we transform
908 -- the operation so that we end up with:
909
910 -- type1 (type1 (x) op type1 (y))
911
912 -- This avoids intermediate overflow before the conversion. It is
913 -- explicitly permitted by RM 3.5.4(24):
914
915 -- For the execution of a predefined operation of a signed integer
916 -- type, the implementation need not raise Constraint_Error if the
917 -- result is outside the base range of the type, so long as the
918 -- correct result is produced.
919
920 -- It's hard to imagine that any programmer counts on the exception
921 -- being raised in this case, and in any case it's wrong coding to
922 -- have this expectation, given the RM permission. Furthermore, other
923 -- Ada compilers do allow such out of range results.
924
925 -- Note that we do this transformation even if overflow checking is
926 -- off, since this is precisely about giving the "right" result and
927 -- avoiding the need for an overflow check.
928
8eb4a5eb 929 -- Note: this circuit is partially redundant with respect to the similar
930 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
931 -- with cases that do not come through here. We still need the following
932 -- processing even with the Exp_Ch4 code in place, since we want to be
933 -- sure not to generate the arithmetic overflow check in these cases
934 -- (Exp_Ch4 would have a hard time removing them once generated).
935
f40f9731 936 if Is_Signed_Integer_Type (Typ)
937 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 938 then
f32c377d 939 Conversion_Optimization : declare
f40f9731 940 Target_Type : constant Entity_Id :=
b6341c67 941 Base_Type (Entity (Subtype_Mark (Parent (N))));
f40f9731 942
943 Llo, Lhi : Uint;
944 Rlo, Rhi : Uint;
945 LOK, ROK : Boolean;
946
947 Vlo : Uint;
948 Vhi : Uint;
949 VOK : Boolean;
950
951 Tlo : Uint;
952 Thi : Uint;
953
954 begin
955 if Is_Integer_Type (Target_Type)
956 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
957 then
958 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
959 Thi := Expr_Value (Type_High_Bound (Target_Type));
960
9c486805 961 Determine_Range
962 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
963 Determine_Range
964 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 965
966 if (LOK and ROK)
967 and then Tlo <= Llo and then Lhi <= Thi
968 and then Tlo <= Rlo and then Rhi <= Thi
969 then
9c486805 970 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 971
972 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
973 Rewrite (Left_Opnd (N),
974 Make_Type_Conversion (Loc,
975 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
976 Expression => Relocate_Node (Left_Opnd (N))));
977
978 Rewrite (Right_Opnd (N),
979 Make_Type_Conversion (Loc,
980 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
981 Expression => Relocate_Node (Right_Opnd (N))));
982
780bfb21 983 -- Rewrite the conversion operand so that the original
984 -- node is retained, in order to avoid the warning for
985 -- redundant conversions in Resolve_Type_Conversion.
986
987 Rewrite (N, Relocate_Node (N));
988
f40f9731 989 Set_Etype (N, Target_Type);
780bfb21 990
f40f9731 991 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
992 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
993
994 -- Given that the target type is twice the size of the
995 -- source type, overflow is now impossible, so we can
996 -- safely kill the overflow check and return.
997
998 Set_Do_Overflow_Check (N, False);
999 return;
1000 end if;
1001 end if;
1002 end if;
f32c377d 1003 end Conversion_Optimization;
ee6ba406 1004 end if;
1005
f40f9731 1006 -- Now see if an overflow check is required
1007
1008 declare
1009 Siz : constant Int := UI_To_Int (Esize (Rtyp));
1010 Dsiz : constant Int := Siz * 2;
1011 Opnod : Node_Id;
1012 Ctyp : Entity_Id;
1013 Opnd : Node_Id;
1014 Cent : RE_Id;
ee6ba406 1015
f40f9731 1016 begin
1017 -- Skip check if back end does overflow checks, or the overflow flag
df40eeb0 1018 -- is not set anyway, or we are not doing code expansion, or the
1019 -- parent node is a type conversion whose operand is an arithmetic
1020 -- operation on signed integers on which the expander can promote
bbbed24b 1021 -- later the operands to type Integer (see Expand_N_Type_Conversion).
ee6ba406 1022
f40f9731 1023 -- Special case CLI target, where arithmetic overflow checks can be
1024 -- performed for integer and long_integer
ee6ba406 1025
f40f9731 1026 if Backend_Overflow_Checks_On_Target
1027 or else not Do_Overflow_Check (N)
a33565dd 1028 or else not Expander_Active
df40eeb0 1029 or else (Present (Parent (N))
1030 and then Nkind (Parent (N)) = N_Type_Conversion
1031 and then Integer_Promotion_Possible (Parent (N)))
f40f9731 1032 or else
1033 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
1034 then
1035 return;
1036 end if;
ee6ba406 1037
f40f9731 1038 -- Otherwise, generate the full general code for front end overflow
1039 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 1040
f40f9731 1041 -- x op y
ee6ba406 1042
f40f9731 1043 -- is expanded into
ee6ba406 1044
f40f9731 1045 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 1046
f40f9731 1047 -- where Typ is the type of the original expression, and Checktyp is
1048 -- an integer type of sufficient length to hold the largest possible
1049 -- result.
ee6ba406 1050
f40f9731 1051 -- If the size of check type exceeds the size of Long_Long_Integer,
1052 -- we use a different approach, expanding to:
ee6ba406 1053
f40f9731 1054 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 1055
f40f9731 1056 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 1057
f40f9731 1058 -- Find check type if one exists
1059
1060 if Dsiz <= Standard_Integer_Size then
1061 Ctyp := Standard_Integer;
ee6ba406 1062
f40f9731 1063 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1064 Ctyp := Standard_Long_Long_Integer;
1065
c9f84db7 1066 -- No check type exists, use runtime call
ee6ba406 1067
1068 else
f40f9731 1069 if Nkind (N) = N_Op_Add then
1070 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 1071
f40f9731 1072 elsif Nkind (N) = N_Op_Multiply then
1073 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 1074
f40f9731 1075 else
1076 pragma Assert (Nkind (N) = N_Op_Subtract);
1077 Cent := RE_Subtract_With_Ovflo_Check;
1078 end if;
1079
1080 Rewrite (N,
1081 OK_Convert_To (Typ,
1082 Make_Function_Call (Loc,
83c6c069 1083 Name => New_Occurrence_Of (RTE (Cent), Loc),
f40f9731 1084 Parameter_Associations => New_List (
1085 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1086 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 1087
f40f9731 1088 Analyze_And_Resolve (N, Typ);
1089 return;
1090 end if;
ee6ba406 1091
f40f9731 1092 -- If we fall through, we have the case where we do the arithmetic
1093 -- in the next higher type and get the check by conversion. In these
1094 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 1095
f40f9731 1096 Opnod := Relocate_Node (N);
ee6ba406 1097
f40f9731 1098 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 1099
f40f9731 1100 Analyze (Opnd);
1101 Set_Etype (Opnd, Ctyp);
1102 Set_Analyzed (Opnd, True);
1103 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 1104
f40f9731 1105 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 1106
f40f9731 1107 Analyze (Opnd);
1108 Set_Etype (Opnd, Ctyp);
1109 Set_Analyzed (Opnd, True);
1110 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 1111
f40f9731 1112 -- The type of the operation changes to the base type of the check
1113 -- type, and we reset the overflow check indication, since clearly no
1114 -- overflow is possible now that we are using a double length type.
1115 -- We also set the Analyzed flag to avoid a recursive attempt to
1116 -- expand the node.
ee6ba406 1117
f40f9731 1118 Set_Etype (Opnod, Base_Type (Ctyp));
1119 Set_Do_Overflow_Check (Opnod, False);
1120 Set_Analyzed (Opnod, True);
ee6ba406 1121
f40f9731 1122 -- Now build the outer conversion
ee6ba406 1123
f40f9731 1124 Opnd := OK_Convert_To (Typ, Opnod);
1125 Analyze (Opnd);
1126 Set_Etype (Opnd, Typ);
9dfe12ae 1127
f40f9731 1128 -- In the discrete type case, we directly generate the range check
1129 -- for the outer operand. This range check will implement the
1130 -- required overflow check.
9dfe12ae 1131
f40f9731 1132 if Is_Discrete_Type (Typ) then
1133 Rewrite (N, Opnd);
1134 Generate_Range_Check
1135 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 1136
f40f9731 1137 -- For other types, we enable overflow checking on the conversion,
1138 -- after setting the node as analyzed to prevent recursive attempts
1139 -- to expand the conversion node.
9dfe12ae 1140
f40f9731 1141 else
1142 Set_Analyzed (Opnd, True);
1143 Enable_Overflow_Check (Opnd);
1144 Rewrite (N, Opnd);
1145 end if;
1146
1147 exception
1148 when RE_Not_Available =>
1149 return;
1150 end;
0df9d43f 1151 end Apply_Arithmetic_Overflow_Strict;
3cce7f32 1152
1153 ----------------------------------------------------
1154 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1155 ----------------------------------------------------
1156
1157 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1158 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
3cce7f32 1159
1160 Loc : constant Source_Ptr := Sloc (Op);
1161 P : constant Node_Id := Parent (Op);
1162
49b3a812 1163 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1164 -- Operands and results are of this type when we convert
1165
3cce7f32 1166 Result_Type : constant Entity_Id := Etype (Op);
1167 -- Original result type
1168
db415383 1169 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 1170 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1171
1172 Lo, Hi : Uint;
1173 -- Ranges of values for result
1174
1175 begin
1176 -- Nothing to do if our parent is one of the following:
1177
0326b4d4 1178 -- Another signed integer arithmetic op
3cce7f32 1179 -- A membership operation
1180 -- A comparison operation
1181
1182 -- In all these cases, we will process at the higher level (and then
1183 -- this node will be processed during the downwards recursion that
0df9d43f 1184 -- is part of the processing in Minimize_Eliminate_Overflows).
3cce7f32 1185
1186 if Is_Signed_Integer_Arithmetic_Op (P)
b8a17a21 1187 or else Nkind (P) in N_Membership_Test
1188 or else Nkind (P) in N_Op_Compare
aa4b16cb 1189
70a2dff4 1190 -- This is also true for an alternative in a case expression
1191
1192 or else Nkind (P) = N_Case_Expression_Alternative
1193
1194 -- This is also true for a range operand in a membership test
aa4b16cb 1195
b8a17a21 1196 or else (Nkind (P) = N_Range
1197 and then Nkind (Parent (P)) in N_Membership_Test)
3cce7f32 1198 then
1199 return;
1200 end if;
1201
0326b4d4 1202 -- Otherwise, we have a top level arithmetic operation node, and this
21a55437 1203 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1204 -- modes. This is the case where we tell the machinery not to move into
1205 -- Bignum mode at this top level (of course the top level operation
1206 -- will still be in Bignum mode if either of its operands are of type
1207 -- Bignum).
3cce7f32 1208
0df9d43f 1209 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
3cce7f32 1210
1211 -- That call may but does not necessarily change the result type of Op.
1212 -- It is the job of this routine to undo such changes, so that at the
1213 -- top level, we have the proper type. This "undoing" is a point at
1214 -- which a final overflow check may be applied.
1215
f32c377d 1216 -- If the result type was not fiddled we are all set. We go to base
1217 -- types here because things may have been rewritten to generate the
1218 -- base type of the operand types.
3cce7f32 1219
f32c377d 1220 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
3cce7f32 1221 return;
1222
1223 -- Bignum case
1224
49b3a812 1225 elsif Is_RTE (Etype (Op), RE_Bignum) then
3cce7f32 1226
d94b5da2 1227 -- We need a sequence that looks like:
3cce7f32 1228
1229 -- Rnn : Result_Type;
1230
1231 -- declare
d94b5da2 1232 -- M : Mark_Id := SS_Mark;
3cce7f32 1233 -- begin
49b3a812 1234 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
3cce7f32 1235 -- SS_Release (M);
1236 -- end;
1237
1238 -- This block is inserted (using Insert_Actions), and then the node
1239 -- is replaced with a reference to Rnn.
1240
1241 -- A special case arises if our parent is a conversion node. In this
1242 -- case no point in generating a conversion to Result_Type, we will
1243 -- let the parent handle this. Note that this special case is not
1244 -- just about optimization. Consider
1245
1246 -- A,B,C : Integer;
1247 -- ...
49b3a812 1248 -- X := Long_Long_Integer'Base (A * (B ** C));
3cce7f32 1249
1250 -- Now the product may fit in Long_Long_Integer but not in Integer.
21a55437 1251 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1252 -- overflow exception for this intermediate value.
3cce7f32 1253
1254 declare
49b3a812 1255 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3cce7f32 1256 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1257 RHS : Node_Id;
1258
1259 Rtype : Entity_Id;
1260
1261 begin
1262 RHS := Convert_From_Bignum (Op);
1263
1264 if Nkind (P) /= N_Type_Conversion then
49b3a812 1265 Convert_To_And_Rewrite (Result_Type, RHS);
3cce7f32 1266 Rtype := Result_Type;
1267
1268 -- Interesting question, do we need a check on that conversion
1269 -- operation. Answer, not if we know the result is in range.
1270 -- At the moment we are not taking advantage of this. To be
1271 -- looked at later ???
1272
1273 else
49b3a812 1274 Rtype := LLIB;
3cce7f32 1275 end if;
1276
1277 Insert_Before
1278 (First (Statements (Handled_Statement_Sequence (Blk))),
1279 Make_Assignment_Statement (Loc,
1280 Name => New_Occurrence_Of (Rnn, Loc),
1281 Expression => RHS));
1282
1283 Insert_Actions (Op, New_List (
1284 Make_Object_Declaration (Loc,
1285 Defining_Identifier => Rnn,
1286 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1287 Blk));
1288
1289 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1290 Analyze_And_Resolve (Op);
1291 end;
1292
412f75eb 1293 -- Here we know the result is Long_Long_Integer'Base, of that it has
1294 -- been rewritten because the parent operation is a conversion. See
0df9d43f 1295 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
3cce7f32 1296
1297 else
f32c377d 1298 pragma Assert
1299 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
3cce7f32 1300
1301 -- All we need to do here is to convert the result to the proper
1302 -- result type. As explained above for the Bignum case, we can
1303 -- omit this if our parent is a type conversion.
1304
1305 if Nkind (P) /= N_Type_Conversion then
1306 Convert_To_And_Rewrite (Result_Type, Op);
1307 end if;
1308
1309 Analyze_And_Resolve (Op);
1310 end if;
1311 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
ee6ba406 1312
ee6ba406 1313 ----------------------------
1314 -- Apply_Constraint_Check --
1315 ----------------------------
1316
1317 procedure Apply_Constraint_Check
1318 (N : Node_Id;
1319 Typ : Entity_Id;
1320 No_Sliding : Boolean := False)
1321 is
1322 Desig_Typ : Entity_Id;
1323
1324 begin
7aafae1c 1325 -- No checks inside a generic (check the instantiations)
1326
ee6ba406 1327 if Inside_A_Generic then
1328 return;
7aafae1c 1329 end if;
ee6ba406 1330
6fb3c314 1331 -- Apply required constraint checks
7aafae1c 1332
1333 if Is_Scalar_Type (Typ) then
ee6ba406 1334 Apply_Scalar_Range_Check (N, Typ);
1335
1336 elsif Is_Array_Type (Typ) then
1337
05fcfafb 1338 -- A useful optimization: an aggregate with only an others clause
5f260d20 1339 -- always has the right bounds.
1340
1341 if Nkind (N) = N_Aggregate
1342 and then No (Expressions (N))
1343 and then Nkind
1344 (First (Choices (First (Component_Associations (N)))))
1345 = N_Others_Choice
1346 then
1347 return;
1348 end if;
1349
ee6ba406 1350 if Is_Constrained (Typ) then
1351 Apply_Length_Check (N, Typ);
1352
1353 if No_Sliding then
1354 Apply_Range_Check (N, Typ);
1355 end if;
1356 else
1357 Apply_Range_Check (N, Typ);
1358 end if;
1359
4fb5f0a0 1360 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
ee6ba406 1361 and then Has_Discriminants (Base_Type (Typ))
1362 and then Is_Constrained (Typ)
1363 then
1364 Apply_Discriminant_Check (N, Typ);
1365
1366 elsif Is_Access_Type (Typ) then
1367
1368 Desig_Typ := Designated_Type (Typ);
1369
1370 -- No checks necessary if expression statically null
1371
2af58f67 1372 if Known_Null (N) then
00c403ee 1373 if Can_Never_Be_Null (Typ) then
1374 Install_Null_Excluding_Check (N);
1375 end if;
ee6ba406 1376
1377 -- No sliding possible on access to arrays
1378
1379 elsif Is_Array_Type (Desig_Typ) then
1380 if Is_Constrained (Desig_Typ) then
1381 Apply_Length_Check (N, Typ);
1382 end if;
1383
1384 Apply_Range_Check (N, Typ);
1385
1386 elsif Has_Discriminants (Base_Type (Desig_Typ))
1387 and then Is_Constrained (Desig_Typ)
1388 then
1389 Apply_Discriminant_Check (N, Typ);
1390 end if;
fa7497e8 1391
bf3e1520 1392 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1393 -- this check if the constraint node is illegal, as shown by having
1394 -- an error posted. This additional guard prevents cascaded errors
1395 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1396
fa7497e8 1397 if Can_Never_Be_Null (Typ)
1398 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1399 and then not Error_Posted (N)
fa7497e8 1400 then
1401 Install_Null_Excluding_Check (N);
1402 end if;
ee6ba406 1403 end if;
1404 end Apply_Constraint_Check;
1405
1406 ------------------------------
1407 -- Apply_Discriminant_Check --
1408 ------------------------------
1409
1410 procedure Apply_Discriminant_Check
1411 (N : Node_Id;
1412 Typ : Entity_Id;
1413 Lhs : Node_Id := Empty)
1414 is
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Do_Access : constant Boolean := Is_Access_Type (Typ);
1417 S_Typ : Entity_Id := Etype (N);
1418 Cond : Node_Id;
1419 T_Typ : Entity_Id;
1420
7be5088a 1421 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1422 -- A heap object with an indefinite subtype is constrained by its
1423 -- initial value, and assigning to it requires a constraint_check.
1424 -- The target may be an explicit dereference, or a renaming of one.
1425
ee6ba406 1426 function Is_Aliased_Unconstrained_Component return Boolean;
1427 -- It is possible for an aliased component to have a nominal
1428 -- unconstrained subtype (through instantiation). If this is a
1429 -- discriminated component assigned in the expansion of an aggregate
1430 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1431 -- situation requires a predicate of its own.
ee6ba406 1432
7be5088a 1433 ----------------------------------
1434 -- Denotes_Explicit_Dereference --
1435 ----------------------------------
1436
1437 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1438 begin
1439 return
1440 Nkind (Obj) = N_Explicit_Dereference
1441 or else
1442 (Is_Entity_Name (Obj)
1443 and then Present (Renamed_Object (Entity (Obj)))
9474aa9c 1444 and then Nkind (Renamed_Object (Entity (Obj))) =
1445 N_Explicit_Dereference);
7be5088a 1446 end Denotes_Explicit_Dereference;
1447
ee6ba406 1448 ----------------------------------------
1449 -- Is_Aliased_Unconstrained_Component --
1450 ----------------------------------------
1451
1452 function Is_Aliased_Unconstrained_Component return Boolean is
1453 Comp : Entity_Id;
1454 Pref : Node_Id;
1455
1456 begin
1457 if Nkind (Lhs) /= N_Selected_Component then
1458 return False;
1459 else
1460 Comp := Entity (Selector_Name (Lhs));
1461 Pref := Prefix (Lhs);
1462 end if;
1463
1464 if Ekind (Comp) /= E_Component
1465 or else not Is_Aliased (Comp)
1466 then
1467 return False;
1468 end if;
1469
1470 return not Comes_From_Source (Pref)
1471 and then In_Instance
1472 and then not Is_Constrained (Etype (Comp));
1473 end Is_Aliased_Unconstrained_Component;
1474
1475 -- Start of processing for Apply_Discriminant_Check
1476
1477 begin
1478 if Do_Access then
1479 T_Typ := Designated_Type (Typ);
1480 else
1481 T_Typ := Typ;
1482 end if;
1483
1484 -- Nothing to do if discriminant checks are suppressed or else no code
1485 -- is to be generated
1486
a33565dd 1487 if not Expander_Active
ee6ba406 1488 or else Discriminant_Checks_Suppressed (T_Typ)
1489 then
1490 return;
1491 end if;
1492
feff2f05 1493 -- No discriminant checks necessary for an access when expression is
1494 -- statically Null. This is not only an optimization, it is fundamental
1495 -- because otherwise discriminant checks may be generated in init procs
1496 -- for types containing an access to a not-yet-frozen record, causing a
1497 -- deadly forward reference.
ee6ba406 1498
feff2f05 1499 -- Also, if the expression is of an access type whose designated type is
1500 -- incomplete, then the access value must be null and we suppress the
1501 -- check.
ee6ba406 1502
2af58f67 1503 if Known_Null (N) then
ee6ba406 1504 return;
1505
1506 elsif Is_Access_Type (S_Typ) then
1507 S_Typ := Designated_Type (S_Typ);
1508
1509 if Ekind (S_Typ) = E_Incomplete_Type then
1510 return;
1511 end if;
1512 end if;
1513
0577b0b1 1514 -- If an assignment target is present, then we need to generate the
1515 -- actual subtype if the target is a parameter or aliased object with
1516 -- an unconstrained nominal subtype.
1517
1518 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1519 -- subtype to the parameter and dereference cases, since other aliased
1520 -- objects are unconstrained (unless the nominal subtype is explicitly
7be5088a 1521 -- constrained).
ee6ba406 1522
1523 if Present (Lhs)
1524 and then (Present (Param_Entity (Lhs))
de54c5ab 1525 or else (Ada_Version < Ada_2005
0577b0b1 1526 and then not Is_Constrained (T_Typ)
ee6ba406 1527 and then Is_Aliased_View (Lhs)
0577b0b1 1528 and then not Is_Aliased_Unconstrained_Component)
de54c5ab 1529 or else (Ada_Version >= Ada_2005
0577b0b1 1530 and then not Is_Constrained (T_Typ)
7be5088a 1531 and then Denotes_Explicit_Dereference (Lhs)
0577b0b1 1532 and then Nkind (Original_Node (Lhs)) /=
1533 N_Function_Call))
ee6ba406 1534 then
1535 T_Typ := Get_Actual_Subtype (Lhs);
1536 end if;
1537
feff2f05 1538 -- Nothing to do if the type is unconstrained (this is the case where
1539 -- the actual subtype in the RM sense of N is unconstrained and no check
1540 -- is required).
ee6ba406 1541
1542 if not Is_Constrained (T_Typ) then
1543 return;
05fcfafb 1544
1545 -- Ada 2005: nothing to do if the type is one for which there is a
1546 -- partial view that is constrained.
1547
de54c5ab 1548 elsif Ada_Version >= Ada_2005
0d78d2d4 1549 and then Object_Type_Has_Constrained_Partial_View
d41a3f41 1550 (Typ => Base_Type (T_Typ),
1551 Scop => Current_Scope)
05fcfafb 1552 then
1553 return;
ee6ba406 1554 end if;
1555
00f91aef 1556 -- Nothing to do if the type is an Unchecked_Union
1557
1558 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1559 return;
1560 end if;
1561
8d11916f 1562 -- Suppress checks if the subtypes are the same. The check must be
feff2f05 1563 -- preserved in an assignment to a formal, because the constraint is
1564 -- given by the actual.
ee6ba406 1565
1566 if Nkind (Original_Node (N)) /= N_Allocator
1567 and then (No (Lhs)
8143bf7c 1568 or else not Is_Entity_Name (Lhs)
1569 or else No (Param_Entity (Lhs)))
ee6ba406 1570 then
1571 if (Etype (N) = Typ
1572 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1573 and then not Is_Aliased_View (Lhs)
1574 then
1575 return;
1576 end if;
1577
feff2f05 1578 -- We can also eliminate checks on allocators with a subtype mark that
1579 -- coincides with the context type. The context type may be a subtype
1580 -- without a constraint (common case, a generic actual).
ee6ba406 1581
1582 elsif Nkind (Original_Node (N)) = N_Allocator
1583 and then Is_Entity_Name (Expression (Original_Node (N)))
1584 then
1585 declare
9dfe12ae 1586 Alloc_Typ : constant Entity_Id :=
b6341c67 1587 Entity (Expression (Original_Node (N)));
ee6ba406 1588
1589 begin
1590 if Alloc_Typ = T_Typ
1591 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1592 and then Is_Entity_Name (
1593 Subtype_Indication (Parent (T_Typ)))
1594 and then Alloc_Typ = Base_Type (T_Typ))
1595
1596 then
1597 return;
1598 end if;
1599 end;
1600 end if;
1601
feff2f05 1602 -- See if we have a case where the types are both constrained, and all
1603 -- the constraints are constants. In this case, we can do the check
1604 -- successfully at compile time.
ee6ba406 1605
8d11916f 1606 -- We skip this check for the case where the node is rewritten as
d7ec9a29 1607 -- an allocator, because it already carries the context subtype,
1608 -- and extracting the discriminants from the aggregate is messy.
ee6ba406 1609
1610 if Is_Constrained (S_Typ)
1611 and then Nkind (Original_Node (N)) /= N_Allocator
1612 then
1613 declare
1614 DconT : Elmt_Id;
1615 Discr : Entity_Id;
1616 DconS : Elmt_Id;
1617 ItemS : Node_Id;
1618 ItemT : Node_Id;
1619
1620 begin
1621 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1622 -- private type completed by a default discriminated type. In that
8d11916f 1623 -- case, we need to get the constraints from the underlying type.
feff2f05 1624 -- If the underlying type is unconstrained (i.e. has no default
1625 -- discriminants) no check is needed.
ee6ba406 1626
1627 if Has_Discriminants (S_Typ) then
1628 Discr := First_Discriminant (S_Typ);
1629 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1630
1631 else
1632 Discr := First_Discriminant (Underlying_Type (S_Typ));
1633 DconS :=
1634 First_Elmt
1635 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1636
1637 if No (DconS) then
1638 return;
1639 end if;
fccb5da7 1640
1641 -- A further optimization: if T_Typ is derived from S_Typ
1642 -- without imposing a constraint, no check is needed.
1643
1644 if Nkind (Original_Node (Parent (T_Typ))) =
1645 N_Full_Type_Declaration
1646 then
1647 declare
5c61a0ff 1648 Type_Def : constant Node_Id :=
b6341c67 1649 Type_Definition (Original_Node (Parent (T_Typ)));
fccb5da7 1650 begin
1651 if Nkind (Type_Def) = N_Derived_Type_Definition
1652 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1653 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1654 then
1655 return;
1656 end if;
1657 end;
1658 end if;
ee6ba406 1659 end if;
1660
86594966 1661 -- Constraint may appear in full view of type
1662
1663 if Ekind (T_Typ) = E_Private_Subtype
1664 and then Present (Full_View (T_Typ))
1665 then
d7ec9a29 1666 DconT :=
86594966 1667 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
86594966 1668 else
d7ec9a29 1669 DconT :=
1670 First_Elmt (Discriminant_Constraint (T_Typ));
86594966 1671 end if;
ee6ba406 1672
1673 while Present (Discr) loop
1674 ItemS := Node (DconS);
1675 ItemT := Node (DconT);
1676
00c403ee 1677 -- For a discriminated component type constrained by the
1678 -- current instance of an enclosing type, there is no
1679 -- applicable discriminant check.
1680
1681 if Nkind (ItemT) = N_Attribute_Reference
1682 and then Is_Access_Type (Etype (ItemT))
1683 and then Is_Entity_Name (Prefix (ItemT))
1684 and then Is_Type (Entity (Prefix (ItemT)))
1685 then
1686 return;
1687 end if;
1688
cc60bd16 1689 -- If the expressions for the discriminants are identical
1690 -- and it is side-effect free (for now just an entity),
1691 -- this may be a shared constraint, e.g. from a subtype
1692 -- without a constraint introduced as a generic actual.
1693 -- Examine other discriminants if any.
1694
1695 if ItemS = ItemT
1696 and then Is_Entity_Name (ItemS)
1697 then
1698 null;
1699
1700 elsif not Is_OK_Static_Expression (ItemS)
1701 or else not Is_OK_Static_Expression (ItemT)
1702 then
1703 exit;
ee6ba406 1704
cc60bd16 1705 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1706 if Do_Access then -- needs run-time check.
1707 exit;
1708 else
1709 Apply_Compile_Time_Constraint_Error
cb97ae5c 1710 (N, "incorrect value for discriminant&??",
f15731c4 1711 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1712 return;
1713 end if;
1714 end if;
1715
1716 Next_Elmt (DconS);
1717 Next_Elmt (DconT);
1718 Next_Discriminant (Discr);
1719 end loop;
1720
1721 if No (Discr) then
1722 return;
1723 end if;
1724 end;
1725 end if;
1726
1727 -- Here we need a discriminant check. First build the expression
1728 -- for the comparisons of the discriminants:
1729
1730 -- (n.disc1 /= typ.disc1) or else
1731 -- (n.disc2 /= typ.disc2) or else
1732 -- ...
1733 -- (n.discn /= typ.discn)
1734
1735 Cond := Build_Discriminant_Checks (N, T_Typ);
1736
3cce7f32 1737 -- If Lhs is set and is a parameter, then the condition is guarded by:
1738 -- lhs'constrained and then (condition built above)
ee6ba406 1739
1740 if Present (Param_Entity (Lhs)) then
1741 Cond :=
1742 Make_And_Then (Loc,
1743 Left_Opnd =>
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1746 Attribute_Name => Name_Constrained),
1747 Right_Opnd => Cond);
1748 end if;
1749
1750 if Do_Access then
1751 Cond := Guard_Access (Cond, Loc, N);
1752 end if;
1753
1754 Insert_Action (N,
f15731c4 1755 Make_Raise_Constraint_Error (Loc,
1756 Condition => Cond,
1757 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1758 end Apply_Discriminant_Check;
1759
2fe22c69 1760 -------------------------
1761 -- Apply_Divide_Checks --
1762 -------------------------
ee6ba406 1763
2fe22c69 1764 procedure Apply_Divide_Checks (N : Node_Id) is
ee6ba406 1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 Left : constant Node_Id := Left_Opnd (N);
1768 Right : constant Node_Id := Right_Opnd (N);
1769
db415383 1770 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
2fe22c69 1771 -- Current overflow checking mode
1772
ee6ba406 1773 LLB : Uint;
1774 Llo : Uint;
1775 Lhi : Uint;
1776 LOK : Boolean;
1777 Rlo : Uint;
1778 Rhi : Uint;
2fe22c69 1779 ROK : Boolean;
96da3284 1780
1781 pragma Warnings (Off, Lhi);
1782 -- Don't actually use this value
ee6ba406 1783
1784 begin
0df9d43f 1785 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1786 -- operating on signed integer types, then the only thing this routine
1787 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1788 -- procedure will (possibly later on during recursive downward calls),
1789 -- ensure that any needed overflow/division checks are properly applied.
2fe22c69 1790
1791 if Mode in Minimized_Or_Eliminated
2fe22c69 1792 and then Is_Signed_Integer_Type (Typ)
1793 then
1794 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1795 return;
1796 end if;
1797
1798 -- Proceed here in SUPPRESSED or CHECKED modes
1799
a33565dd 1800 if Expander_Active
13dbf220 1801 and then not Backend_Divide_Checks_On_Target
1802 and then Check_Needed (Right, Division_Check)
ee6ba406 1803 then
9c486805 1804 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1805
2fe22c69 1806 -- Deal with division check
ee6ba406 1807
2fe22c69 1808 if Do_Division_Check (N)
1809 and then not Division_Checks_Suppressed (Typ)
1810 then
1811 Apply_Division_Check (N, Rlo, Rhi, ROK);
ee6ba406 1812 end if;
1813
2fe22c69 1814 -- Deal with overflow check
1815
0df9d43f 1816 if Do_Overflow_Check (N)
1817 and then not Overflow_Checks_Suppressed (Etype (N))
1818 then
f3ccbbb3 1819 Set_Do_Overflow_Check (N, False);
1820
2fe22c69 1821 -- Test for extremely annoying case of xxx'First divided by -1
1822 -- for division of signed integer types (only overflow case).
ee6ba406 1823
ee6ba406 1824 if Nkind (N) = N_Op_Divide
1825 and then Is_Signed_Integer_Type (Typ)
1826 then
9c486805 1827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1828 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1829
1830 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
2fe22c69 1831 and then
1832 ((not LOK) or else (Llo = LLB))
ee6ba406 1833 then
1834 Insert_Action (N,
1835 Make_Raise_Constraint_Error (Loc,
1836 Condition =>
1837 Make_And_Then (Loc,
2fe22c69 1838 Left_Opnd =>
1839 Make_Op_Eq (Loc,
1840 Left_Opnd =>
1841 Duplicate_Subexpr_Move_Checks (Left),
1842 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
ee6ba406 1843
2fe22c69 1844 Right_Opnd =>
1845 Make_Op_Eq (Loc,
1846 Left_Opnd => Duplicate_Subexpr (Right),
1847 Right_Opnd => Make_Integer_Literal (Loc, -1))),
ee6ba406 1848
f15731c4 1849 Reason => CE_Overflow_Check_Failed));
ee6ba406 1850 end if;
1851 end if;
1852 end if;
1853 end if;
2fe22c69 1854 end Apply_Divide_Checks;
1855
1856 --------------------------
1857 -- Apply_Division_Check --
1858 --------------------------
1859
1860 procedure Apply_Division_Check
1861 (N : Node_Id;
1862 Rlo : Uint;
1863 Rhi : Uint;
1864 ROK : Boolean)
1865 is
1866 pragma Assert (Do_Division_Check (N));
1867
1868 Loc : constant Source_Ptr := Sloc (N);
1869 Right : constant Node_Id := Right_Opnd (N);
1870
1871 begin
a33565dd 1872 if Expander_Active
2fe22c69 1873 and then not Backend_Divide_Checks_On_Target
1874 and then Check_Needed (Right, Division_Check)
1875 then
1876 -- See if division by zero possible, and if so generate test. This
1877 -- part of the test is not controlled by the -gnato switch, since
1878 -- it is a Division_Check and not an Overflow_Check.
1879
1880 if Do_Division_Check (N) then
f3ccbbb3 1881 Set_Do_Division_Check (N, False);
1882
2fe22c69 1883 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1884 Insert_Action (N,
1885 Make_Raise_Constraint_Error (Loc,
1886 Condition =>
1887 Make_Op_Eq (Loc,
1888 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1889 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1890 Reason => CE_Divide_By_Zero));
1891 end if;
1892 end if;
1893 end if;
1894 end Apply_Division_Check;
ee6ba406 1895
5329ca64 1896 ----------------------------------
1897 -- Apply_Float_Conversion_Check --
1898 ----------------------------------
1899
feff2f05 1900 -- Let F and I be the source and target types of the conversion. The RM
1901 -- specifies that a floating-point value X is rounded to the nearest
1902 -- integer, with halfway cases being rounded away from zero. The rounded
1903 -- value of X is checked against I'Range.
1904
1905 -- The catch in the above paragraph is that there is no good way to know
1906 -- whether the round-to-integer operation resulted in overflow. A remedy is
1907 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1908
5329ca64 1909 -- (1) The bounds may not be known at compile time
2af58f67 1910 -- (2) The check must take into account rounding or truncation.
5329ca64 1911 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1912 -- (4) For the rounding case, The end-points I'First - 0.5 and
1913 -- I'Last + 0.5 may or may not be in range, depending on the
1914 -- sign of I'First and I'Last.
5329ca64 1915 -- (5) X may be a NaN, which will fail any comparison
1916
2af58f67 1917 -- The following steps correctly convert X with rounding:
feff2f05 1918
5329ca64 1919 -- (1) If either I'First or I'Last is not known at compile time, use
1920 -- I'Base instead of I in the next three steps and perform a
1921 -- regular range check against I'Range after conversion.
1922 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1923 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1924 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1925 -- In other words, take one of the closest floating-point numbers
1926 -- (which is an integer value) to I'First, and see if it is in
1927 -- range or not.
5329ca64 1928 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1929 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1930 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1931 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1932 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1933
2af58f67 1934 -- For the truncating case, replace steps (2) and (3) as follows:
1935 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1936 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1937 -- Lo_OK be True.
1938 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1939 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
141d591a 1940 -- Hi_OK be True.
2af58f67 1941
5329ca64 1942 procedure Apply_Float_Conversion_Check
1943 (Ck_Node : Node_Id;
1944 Target_Typ : Entity_Id)
1945 is
feff2f05 1946 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1947 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1948 Loc : constant Source_Ptr := Sloc (Ck_Node);
1949 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1950 Target_Base : constant Entity_Id :=
b6341c67 1951 Implementation_Base_Type (Target_Typ);
feff2f05 1952
2af58f67 1953 Par : constant Node_Id := Parent (Ck_Node);
1954 pragma Assert (Nkind (Par) = N_Type_Conversion);
1955 -- Parent of check node, must be a type conversion
1956
1957 Truncate : constant Boolean := Float_Truncate (Par);
1958 Max_Bound : constant Uint :=
b6341c67 1959 UI_Expon
1960 (Machine_Radix_Value (Expr_Type),
1961 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
2af58f67 1962
5329ca64 1963 -- Largest bound, so bound plus or minus half is a machine number of F
1964
feff2f05 1965 Ifirst, Ilast : Uint;
1966 -- Bounds of integer type
1967
1968 Lo, Hi : Ureal;
1969 -- Bounds to check in floating-point domain
5329ca64 1970
feff2f05 1971 Lo_OK, Hi_OK : Boolean;
1972 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 1973
feff2f05 1974 Lo_Chk, Hi_Chk : Node_Id;
1975 -- Expressions that are False iff check fails
1976
1977 Reason : RT_Exception_Code;
5329ca64 1978
1979 begin
41f06abf 1980 -- We do not need checks if we are not generating code (i.e. the full
1981 -- expander is not active). In SPARK mode, we specifically don't want
1982 -- the frontend to expand these checks, which are dealt with directly
1983 -- in the formal verification backend.
1984
a33565dd 1985 if not Expander_Active then
41f06abf 1986 return;
1987 end if;
1988
5329ca64 1989 if not Compile_Time_Known_Value (LB)
1990 or not Compile_Time_Known_Value (HB)
1991 then
1992 declare
feff2f05 1993 -- First check that the value falls in the range of the base type,
1994 -- to prevent overflow during conversion and then perform a
1995 -- regular range check against the (dynamic) bounds.
5329ca64 1996
5329ca64 1997 pragma Assert (Target_Base /= Target_Typ);
5329ca64 1998
46eb6933 1999 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
5329ca64 2000
2001 begin
2002 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2003 Set_Etype (Temp, Target_Base);
2004
2005 Insert_Action (Parent (Par),
2006 Make_Object_Declaration (Loc,
2007 Defining_Identifier => Temp,
2008 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2009 Expression => New_Copy_Tree (Par)),
2010 Suppress => All_Checks);
2011
2012 Insert_Action (Par,
2013 Make_Raise_Constraint_Error (Loc,
2014 Condition =>
2015 Make_Not_In (Loc,
2016 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2017 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2018 Reason => CE_Range_Check_Failed));
2019 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2020
2021 return;
2022 end;
2023 end if;
2024
7d86aa98 2025 -- Get the (static) bounds of the target type
5329ca64 2026
2027 Ifirst := Expr_Value (LB);
2028 Ilast := Expr_Value (HB);
2029
7d86aa98 2030 -- A simple optimization: if the expression is a universal literal,
2031 -- we can do the comparison with the bounds and the conversion to
2032 -- an integer type statically. The range checks are unchanged.
2033
2034 if Nkind (Ck_Node) = N_Real_Literal
2035 and then Etype (Ck_Node) = Universal_Real
2036 and then Is_Integer_Type (Target_Typ)
2037 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2038 then
2039 declare
2040 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2041
2042 begin
2043 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2044
4309515d 2045 -- Conversion is safe
7d86aa98 2046
2047 Rewrite (Parent (Ck_Node),
2048 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2049 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2050 return;
2051 end if;
2052 end;
2053 end if;
2054
5329ca64 2055 -- Check against lower bound
2056
2af58f67 2057 if Truncate and then Ifirst > 0 then
2058 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2059 Lo_OK := False;
2060
2061 elsif Truncate then
2062 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2063 Lo_OK := True;
2064
2065 elsif abs (Ifirst) < Max_Bound then
5329ca64 2066 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2067 Lo_OK := (Ifirst > 0);
2af58f67 2068
5329ca64 2069 else
2070 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2071 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2072 end if;
2073
2074 if Lo_OK then
2075
2076 -- Lo_Chk := (X >= Lo)
2077
2078 Lo_Chk := Make_Op_Ge (Loc,
2079 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2080 Right_Opnd => Make_Real_Literal (Loc, Lo));
2081
2082 else
2083 -- Lo_Chk := (X > Lo)
2084
2085 Lo_Chk := Make_Op_Gt (Loc,
2086 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2087 Right_Opnd => Make_Real_Literal (Loc, Lo));
2088 end if;
2089
2090 -- Check against higher bound
2091
2af58f67 2092 if Truncate and then Ilast < 0 then
2093 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
b2c42753 2094 Hi_OK := False;
2af58f67 2095
2096 elsif Truncate then
2097 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2098 Hi_OK := True;
2099
2100 elsif abs (Ilast) < Max_Bound then
5329ca64 2101 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2102 Hi_OK := (Ilast < 0);
2103 else
2104 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2105 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2106 end if;
2107
2108 if Hi_OK then
2109
2110 -- Hi_Chk := (X <= Hi)
2111
2112 Hi_Chk := Make_Op_Le (Loc,
2113 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2114 Right_Opnd => Make_Real_Literal (Loc, Hi));
2115
2116 else
2117 -- Hi_Chk := (X < Hi)
2118
2119 Hi_Chk := Make_Op_Lt (Loc,
2120 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2121 Right_Opnd => Make_Real_Literal (Loc, Hi));
2122 end if;
2123
feff2f05 2124 -- If the bounds of the target type are the same as those of the base
2125 -- type, the check is an overflow check as a range check is not
2126 -- performed in these cases.
5329ca64 2127
2128 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2129 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2130 then
2131 Reason := CE_Overflow_Check_Failed;
2132 else
2133 Reason := CE_Range_Check_Failed;
2134 end if;
2135
2136 -- Raise CE if either conditions does not hold
2137
2138 Insert_Action (Ck_Node,
2139 Make_Raise_Constraint_Error (Loc,
05fcfafb 2140 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 2141 Reason => Reason));
2142 end Apply_Float_Conversion_Check;
2143
ee6ba406 2144 ------------------------
2145 -- Apply_Length_Check --
2146 ------------------------
2147
2148 procedure Apply_Length_Check
2149 (Ck_Node : Node_Id;
2150 Target_Typ : Entity_Id;
2151 Source_Typ : Entity_Id := Empty)
2152 is
2153 begin
2154 Apply_Selected_Length_Checks
2155 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2156 end Apply_Length_Check;
2157
3b045963 2158 -------------------------------------
2159 -- Apply_Parameter_Aliasing_Checks --
2160 -------------------------------------
b73adb97 2161
3b045963 2162 procedure Apply_Parameter_Aliasing_Checks
2163 (Call : Node_Id;
2164 Subp : Entity_Id)
2165 is
bb569db0 2166 Loc : constant Source_Ptr := Sloc (Call);
2167
3b045963 2168 function May_Cause_Aliasing
2169 (Formal_1 : Entity_Id;
2170 Formal_2 : Entity_Id) return Boolean;
2171 -- Determine whether two formal parameters can alias each other
2172 -- depending on their modes.
2173
2174 function Original_Actual (N : Node_Id) return Node_Id;
2175 -- The expander may replace an actual with a temporary for the sake of
2176 -- side effect removal. The temporary may hide a potential aliasing as
2177 -- it does not share the address of the actual. This routine attempts
2178 -- to retrieve the original actual.
2179
bb569db0 2180 procedure Overlap_Check
2181 (Actual_1 : Node_Id;
2182 Actual_2 : Node_Id;
2183 Formal_1 : Entity_Id;
2184 Formal_2 : Entity_Id;
2185 Check : in out Node_Id);
2186 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2187 -- If detailed exception messages are enabled, the check is augmented to
2188 -- provide information about the names of the corresponding formals. See
2189 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2190 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2191 -- Check contains all and-ed simple tests generated so far or remains
2192 -- unchanged in the case of detailed exception messaged.
2193
3b045963 2194 ------------------------
2195 -- May_Cause_Aliasing --
2196 ------------------------
b73adb97 2197
3b045963 2198 function May_Cause_Aliasing
4a9e7f0c 2199 (Formal_1 : Entity_Id;
3b045963 2200 Formal_2 : Entity_Id) return Boolean
2201 is
2202 begin
2203 -- The following combination cannot lead to aliasing
2204
2205 -- Formal 1 Formal 2
2206 -- IN IN
2207
2208 if Ekind (Formal_1) = E_In_Parameter
a45d946f 2209 and then
2210 Ekind (Formal_2) = E_In_Parameter
3b045963 2211 then
2212 return False;
2213
2214 -- The following combinations may lead to aliasing
2215
2216 -- Formal 1 Formal 2
2217 -- IN OUT
2218 -- IN IN OUT
2219 -- OUT IN
2220 -- OUT IN OUT
2221 -- OUT OUT
2222
2223 else
2224 return True;
2225 end if;
2226 end May_Cause_Aliasing;
2227
2228 ---------------------
2229 -- Original_Actual --
2230 ---------------------
2231
2232 function Original_Actual (N : Node_Id) return Node_Id is
2233 begin
2234 if Nkind (N) = N_Type_Conversion then
2235 return Expression (N);
2236
2237 -- The expander created a temporary to capture the result of a type
2238 -- conversion where the expression is the real actual.
2239
2240 elsif Nkind (N) = N_Identifier
2241 and then Present (Original_Node (N))
2242 and then Nkind (Original_Node (N)) = N_Type_Conversion
2243 then
2244 return Expression (Original_Node (N));
2245 end if;
2246
2247 return N;
2248 end Original_Actual;
2249
bb569db0 2250 -------------------
2251 -- Overlap_Check --
2252 -------------------
2253
2254 procedure Overlap_Check
2255 (Actual_1 : Node_Id;
2256 Actual_2 : Node_Id;
2257 Formal_1 : Entity_Id;
2258 Formal_2 : Entity_Id;
2259 Check : in out Node_Id)
2260 is
29448168 2261 Cond : Node_Id;
2262 ID_Casing : constant Casing_Type :=
2263 Identifier_Casing (Source_Index (Current_Sem_Unit));
bb569db0 2264
2265 begin
2266 -- Generate:
2267 -- Actual_1'Overlaps_Storage (Actual_2)
2268
2269 Cond :=
2270 Make_Attribute_Reference (Loc,
2271 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2272 Attribute_Name => Name_Overlaps_Storage,
2273 Expressions =>
2274 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2275
2276 -- Generate the following check when detailed exception messages are
2277 -- enabled:
2278
2279 -- if Actual_1'Overlaps_Storage (Actual_2) then
2280 -- raise Program_Error with <detailed message>;
2281 -- end if;
2282
2283 if Exception_Extra_Info then
2284 Start_String;
2285
2286 -- Do not generate location information for internal calls
2287
2288 if Comes_From_Source (Call) then
2289 Store_String_Chars (Build_Location_String (Loc));
2290 Store_String_Char (' ');
2291 end if;
2292
2293 Store_String_Chars ("aliased parameters, actuals for """);
29448168 2294
2295 Get_Name_String (Chars (Formal_1));
2296 Set_Casing (ID_Casing);
2297 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2298
bb569db0 2299 Store_String_Chars (""" and """);
29448168 2300
2301 Get_Name_String (Chars (Formal_2));
2302 Set_Casing (ID_Casing);
2303 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2304
bb569db0 2305 Store_String_Chars (""" overlap");
2306
2307 Insert_Action (Call,
2308 Make_If_Statement (Loc,
2309 Condition => Cond,
2310 Then_Statements => New_List (
2311 Make_Raise_Statement (Loc,
2312 Name =>
83c6c069 2313 New_Occurrence_Of (Standard_Program_Error, Loc),
bb569db0 2314 Expression => Make_String_Literal (Loc, End_String)))));
2315
2316 -- Create a sequence of overlapping checks by and-ing them all
2317 -- together.
2318
2319 else
2320 if No (Check) then
2321 Check := Cond;
2322 else
2323 Check :=
2324 Make_And_Then (Loc,
2325 Left_Opnd => Check,
2326 Right_Opnd => Cond);
2327 end if;
2328 end if;
2329 end Overlap_Check;
2330
3b045963 2331 -- Local variables
2332
3b045963 2333 Actual_1 : Node_Id;
2334 Actual_2 : Node_Id;
2335 Check : Node_Id;
3b045963 2336 Formal_1 : Entity_Id;
2337 Formal_2 : Entity_Id;
2338
2339 -- Start of processing for Apply_Parameter_Aliasing_Checks
2340
2341 begin
bb569db0 2342 Check := Empty;
3b045963 2343
2344 Actual_1 := First_Actual (Call);
2345 Formal_1 := First_Formal (Subp);
2346 while Present (Actual_1) and then Present (Formal_1) loop
2347
2348 -- Ensure that the actual is an object that is not passed by value.
2349 -- Elementary types are always passed by value, therefore actuals of
2350 -- such types cannot lead to aliasing.
2351
2352 if Is_Object_Reference (Original_Actual (Actual_1))
2353 and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
2354 then
2355 Actual_2 := Next_Actual (Actual_1);
2356 Formal_2 := Next_Formal (Formal_1);
2357 while Present (Actual_2) and then Present (Formal_2) loop
2358
2359 -- The other actual we are testing against must also denote
2360 -- a non pass-by-value object. Generate the check only when
2361 -- the mode of the two formals may lead to aliasing.
2362
2363 if Is_Object_Reference (Original_Actual (Actual_2))
2364 and then not
2365 Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
2366 and then May_Cause_Aliasing (Formal_1, Formal_2)
2367 then
bb569db0 2368 Overlap_Check
2369 (Actual_1 => Actual_1,
2370 Actual_2 => Actual_2,
2371 Formal_1 => Formal_1,
2372 Formal_2 => Formal_2,
2373 Check => Check);
3b045963 2374 end if;
2375
2376 Next_Actual (Actual_2);
2377 Next_Formal (Formal_2);
2378 end loop;
2379 end if;
2380
2381 Next_Actual (Actual_1);
2382 Next_Formal (Formal_1);
2383 end loop;
2384
bb569db0 2385 -- Place a simple check right before the call
3b045963 2386
bb569db0 2387 if Present (Check) and then not Exception_Extra_Info then
3b045963 2388 Insert_Action (Call,
2389 Make_Raise_Program_Error (Loc,
bb569db0 2390 Condition => Check,
2391 Reason => PE_Aliased_Parameters));
3b045963 2392 end if;
2393 end Apply_Parameter_Aliasing_Checks;
2394
2395 -------------------------------------
2396 -- Apply_Parameter_Validity_Checks --
2397 -------------------------------------
2398
2399 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2400 Subp_Decl : Node_Id;
b73adb97 2401
4a9e7f0c 2402 procedure Add_Validity_Check
2403 (Context : Entity_Id;
2404 PPC_Nam : Name_Id;
2405 For_Result : Boolean := False);
2406 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2407 -- of Context. PPC_Nam denotes the pre or post condition pragma name.
2408 -- Set flag For_Result when to verify the result of a function.
b73adb97 2409
4a9e7f0c 2410 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id);
2411 -- Create a pre or post condition pragma with name PPC_Nam which
2412 -- tests expression Check.
b73adb97 2413
b73adb97 2414 ------------------------
2415 -- Add_Validity_Check --
2416 ------------------------
2417
2418 procedure Add_Validity_Check
2419 (Context : Entity_Id;
4a9e7f0c 2420 PPC_Nam : Name_Id;
b73adb97 2421 For_Result : Boolean := False)
2422 is
4a9e7f0c 2423 Loc : constant Source_Ptr := Sloc (Subp);
2424 Typ : constant Entity_Id := Etype (Context);
b73adb97 2425 Check : Node_Id;
2426 Nam : Name_Id;
2427
2428 begin
9916a361 2429 -- For scalars, generate 'Valid test
b73adb97 2430
2431 if Is_Scalar_Type (Typ) then
2432 Nam := Name_Valid;
9916a361 2433
2434 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2435
2436 elsif Scalar_Part_Present (Typ) then
b73adb97 2437 Nam := Name_Valid_Scalars;
9916a361 2438
2439 -- No test needed for other cases (no scalars to test)
2440
b73adb97 2441 else
2442 return;
2443 end if;
2444
2445 -- Step 1: Create the expression to verify the validity of the
2446 -- context.
2447
83c6c069 2448 Check := New_Occurrence_Of (Context, Loc);
b73adb97 2449
2450 -- When processing a function result, use 'Result. Generate
2451 -- Context'Result
2452
2453 if For_Result then
2454 Check :=
2455 Make_Attribute_Reference (Loc,
2456 Prefix => Check,
2457 Attribute_Name => Name_Result);
2458 end if;
2459
2460 -- Generate:
2461 -- Context['Result]'Valid[_Scalars]
2462
2463 Check :=
2464 Make_Attribute_Reference (Loc,
2465 Prefix => Check,
2466 Attribute_Name => Nam);
2467
4a9e7f0c 2468 -- Step 2: Create a pre or post condition pragma
2469
2470 Build_PPC_Pragma (PPC_Nam, Check);
2471 end Add_Validity_Check;
2472
2473 ----------------------
2474 -- Build_PPC_Pragma --
2475 ----------------------
b73adb97 2476
4a9e7f0c 2477 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id) is
7c443ae8 2478 Loc : constant Source_Ptr := Sloc (Subp);
2479 Decls : List_Id;
2480 Prag : Node_Id;
4a9e7f0c 2481
2482 begin
2483 Prag :=
2484 Make_Pragma (Loc,
2485 Pragma_Identifier => Make_Identifier (Loc, PPC_Nam),
2486 Pragma_Argument_Associations => New_List (
2487 Make_Pragma_Argument_Association (Loc,
2488 Chars => Name_Check,
2489 Expression => Check)));
2490
2491 -- Add a message unless exception messages are suppressed
2492
2493 if not Exception_Locations_Suppressed then
2494 Append_To (Pragma_Argument_Associations (Prag),
2495 Make_Pragma_Argument_Association (Loc,
2496 Chars => Name_Message,
2497 Expression =>
2498 Make_String_Literal (Loc,
2499 Strval => "failed " & Get_Name_String (PPC_Nam) &
2500 " from " & Build_Location_String (Loc))));
2501 end if;
2502
2503 -- Insert the pragma in the tree
2504
2505 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2506 Add_Global_Declaration (Prag);
7c443ae8 2507 Analyze (Prag);
2508
2509 -- PPC pragmas associated with subprogram bodies must be inserted in
2510 -- the declarative part of the body.
2511
2512 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2513 Decls := Declarations (Subp_Decl);
2514
2515 if No (Decls) then
2516 Decls := New_List;
2517 Set_Declarations (Subp_Decl, Decls);
2518 end if;
2519
1bd93de5 2520 Prepend_To (Decls, Prag);
7c443ae8 2521
2522 -- Ensure the proper visibility of the subprogram body and its
2523 -- parameters.
2524
2525 Push_Scope (Subp);
2526 Analyze (Prag);
2527 Pop_Scope;
2528
2529 -- For subprogram declarations insert the PPC pragma right after the
2530 -- declarative node.
2531
b73adb97 2532 else
7c443ae8 2533 Insert_After_And_Analyze (Subp_Decl, Prag);
b73adb97 2534 end if;
4a9e7f0c 2535 end Build_PPC_Pragma;
2536
2537 -- Local variables
2538
2539 Formal : Entity_Id;
4a9e7f0c 2540 Subp_Spec : Node_Id;
2541
3b045963 2542 -- Start of processing for Apply_Parameter_Validity_Checks
b73adb97 2543
2544 begin
4a9e7f0c 2545 -- Extract the subprogram specification and declaration nodes
b73adb97 2546
4a9e7f0c 2547 Subp_Spec := Parent (Subp);
a45d946f 2548
4a9e7f0c 2549 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2550 Subp_Spec := Parent (Subp_Spec);
2551 end if;
a45d946f 2552
4a9e7f0c 2553 Subp_Decl := Parent (Subp_Spec);
9e58d7ed 2554
b73adb97 2555 if not Comes_From_Source (Subp)
4a9e7f0c 2556
2557 -- Do not process formal subprograms because the corresponding actual
2558 -- will receive the proper checks when the instance is analyzed.
2559
2560 or else Is_Formal_Subprogram (Subp)
2561
a45d946f 2562 -- Do not process imported subprograms since pre and post conditions
2563 -- are never verified on routines coming from a different language.
4a9e7f0c 2564
b73adb97 2565 or else Is_Imported (Subp)
2566 or else Is_Intrinsic_Subprogram (Subp)
4a9e7f0c 2567
a45d946f 2568 -- The PPC pragmas generated by this routine do not correspond to
2569 -- source aspects, therefore they cannot be applied to abstract
2570 -- subprograms.
4a9e7f0c 2571
7c443ae8 2572 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
4a9e7f0c 2573
a45d946f 2574 -- Do not consider subprogram renaminds because the renamed entity
2575 -- already has the proper PPC pragmas.
1bd93de5 2576
2577 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2578
a45d946f 2579 -- Do not process null procedures because there is no benefit of
2580 -- adding the checks to a no action routine.
4a9e7f0c 2581
2582 or else (Nkind (Subp_Spec) = N_Procedure_Specification
a45d946f 2583 and then Null_Present (Subp_Spec))
b73adb97 2584 then
2585 return;
2586 end if;
2587
4a9e7f0c 2588 -- Inspect all the formals applying aliasing and scalar initialization
2589 -- checks where applicable.
b73adb97 2590
2591 Formal := First_Formal (Subp);
2592 while Present (Formal) loop
4a9e7f0c 2593
2594 -- Generate the following scalar initialization checks for each
2595 -- formal parameter:
2596
2597 -- mode IN - Pre => Formal'Valid[_Scalars]
2598 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2599 -- mode OUT - Post => Formal'Valid[_Scalars]
2600
2601 if Check_Validity_Of_Parameters then
2602 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2603 Add_Validity_Check (Formal, Name_Precondition, False);
2604 end if;
2605
2606 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2607 Add_Validity_Check (Formal, Name_Postcondition, False);
2608 end if;
b73adb97 2609 end if;
2610
b73adb97 2611 Next_Formal (Formal);
2612 end loop;
2613
a45d946f 2614 -- Generate following scalar initialization check for function result:
4a9e7f0c 2615
2616 -- Post => Subp'Result'Valid[_Scalars]
b73adb97 2617
a45d946f 2618 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
4a9e7f0c 2619 Add_Validity_Check (Subp, Name_Postcondition, True);
b73adb97 2620 end if;
3b045963 2621 end Apply_Parameter_Validity_Checks;
b73adb97 2622
7aafae1c 2623 ---------------------------
2624 -- Apply_Predicate_Check --
2625 ---------------------------
2626
2627 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
301d5ec3 2628 S : Entity_Id;
9e58d7ed 2629
7aafae1c 2630 begin
701d57a4 2631 if Present (Predicate_Function (Typ)) then
301d5ec3 2632
301d5ec3 2633 S := Current_Scope;
9e58d7ed 2634 while Present (S) and then not Is_Subprogram (S) loop
301d5ec3 2635 S := Scope (S);
2636 end loop;
2637
ea822fd4 2638 -- A predicate check does not apply within internally generated
2639 -- subprograms, such as TSS functions.
2640
2641 if Within_Internal_Subprogram then
301d5ec3 2642 return;
22631b41 2643
96a2d100 2644 -- If the check appears within the predicate function itself, it
2645 -- means that the user specified a check whose formal is the
2646 -- predicated subtype itself, rather than some covering type. This
2647 -- is likely to be a common error, and thus deserves a warning.
22631b41 2648
0e9014a7 2649 elsif Present (S) and then S = Predicate_Function (Typ) then
96a2d100 2650 Error_Msg_N
2651 ("predicate check includes a function call that "
cb97ae5c 2652 & "requires a predicate check??", Parent (N));
96a2d100 2653 Error_Msg_N
cb97ae5c 2654 ("\this will result in infinite recursion??", Parent (N));
96a2d100 2655 Insert_Action (N,
61016a7a 2656 Make_Raise_Storage_Error (Sloc (N),
2657 Reason => SE_Infinite_Recursion));
22631b41 2658
64cc9e5d 2659 -- Here for normal case of predicate active
e6281d47 2660
61016a7a 2661 else
b04165c4 2662 -- If the type has a static predicate and the expression is known
2663 -- at compile time, see if the expression satisfies the predicate.
3a75f20b 2664
2665 Check_Expression_Against_Static_Predicate (N, Typ);
e6281d47 2666
301d5ec3 2667 Insert_Action (N,
2668 Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
2669 end if;
7aafae1c 2670 end if;
2671 end Apply_Predicate_Check;
2672
ee6ba406 2673 -----------------------
2674 -- Apply_Range_Check --
2675 -----------------------
2676
2677 procedure Apply_Range_Check
2678 (Ck_Node : Node_Id;
2679 Target_Typ : Entity_Id;
2680 Source_Typ : Entity_Id := Empty)
2681 is
2682 begin
2683 Apply_Selected_Range_Checks
2684 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2685 end Apply_Range_Check;
2686
2687 ------------------------------
2688 -- Apply_Scalar_Range_Check --
2689 ------------------------------
2690
feff2f05 2691 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2692 -- off if it is already set on.
ee6ba406 2693
2694 procedure Apply_Scalar_Range_Check
2695 (Expr : Node_Id;
2696 Target_Typ : Entity_Id;
2697 Source_Typ : Entity_Id := Empty;
2698 Fixed_Int : Boolean := False)
2699 is
2700 Parnt : constant Node_Id := Parent (Expr);
2701 S_Typ : Entity_Id;
2702 Arr : Node_Id := Empty; -- initialize to prevent warning
2703 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2704 OK : Boolean;
2705
2706 Is_Subscr_Ref : Boolean;
2707 -- Set true if Expr is a subscript
2708
2709 Is_Unconstrained_Subscr_Ref : Boolean;
2710 -- Set true if Expr is a subscript of an unconstrained array. In this
2711 -- case we do not attempt to do an analysis of the value against the
2712 -- range of the subscript, since we don't know the actual subtype.
2713
2714 Int_Real : Boolean;
feff2f05 2715 -- Set to True if Expr should be regarded as a real value even though
2716 -- the type of Expr might be discrete.
ee6ba406 2717
2718 procedure Bad_Value;
2719 -- Procedure called if value is determined to be out of range
2720
9dfe12ae 2721 ---------------
2722 -- Bad_Value --
2723 ---------------
2724
ee6ba406 2725 procedure Bad_Value is
2726 begin
2727 Apply_Compile_Time_Constraint_Error
cb97ae5c 2728 (Expr, "value not in range of}??", CE_Range_Check_Failed,
ee6ba406 2729 Ent => Target_Typ,
2730 Typ => Target_Typ);
2731 end Bad_Value;
2732
9dfe12ae 2733 -- Start of processing for Apply_Scalar_Range_Check
2734
ee6ba406 2735 begin
2af58f67 2736 -- Return if check obviously not needed
ee6ba406 2737
2af58f67 2738 if
2739 -- Not needed inside generic
ee6ba406 2740
2af58f67 2741 Inside_A_Generic
2742
2743 -- Not needed if previous error
2744
2745 or else Target_Typ = Any_Type
2746 or else Nkind (Expr) = N_Error
2747
2748 -- Not needed for non-scalar type
2749
2750 or else not Is_Scalar_Type (Target_Typ)
2751
2752 -- Not needed if we know node raises CE already
2753
2754 or else Raises_Constraint_Error (Expr)
ee6ba406 2755 then
2756 return;
2757 end if;
2758
2759 -- Now, see if checks are suppressed
2760
2761 Is_Subscr_Ref :=
2762 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2763
2764 if Is_Subscr_Ref then
2765 Arr := Prefix (Parnt);
2766 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
cce84b09 2767
a3a76ccc 2768 if Is_Access_Type (Arr_Typ) then
245e87df 2769 Arr_Typ := Designated_Type (Arr_Typ);
a3a76ccc 2770 end if;
ee6ba406 2771 end if;
2772
2773 if not Do_Range_Check (Expr) then
2774
2775 -- Subscript reference. Check for Index_Checks suppressed
2776
2777 if Is_Subscr_Ref then
2778
2779 -- Check array type and its base type
2780
2781 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 2782 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 2783 then
2784 return;
2785
2786 -- Check array itself if it is an entity name
2787
2788 elsif Is_Entity_Name (Arr)
9dfe12ae 2789 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 2790 then
2791 return;
2792
2793 -- Check expression itself if it is an entity name
2794
2795 elsif Is_Entity_Name (Expr)
9dfe12ae 2796 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 2797 then
2798 return;
2799 end if;
2800
2801 -- All other cases, check for Range_Checks suppressed
2802
2803 else
2804 -- Check target type and its base type
2805
2806 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 2807 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 2808 then
2809 return;
2810
2811 -- Check expression itself if it is an entity name
2812
2813 elsif Is_Entity_Name (Expr)
9dfe12ae 2814 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 2815 then
2816 return;
2817
feff2f05 2818 -- If Expr is part of an assignment statement, then check left
2819 -- side of assignment if it is an entity name.
ee6ba406 2820
2821 elsif Nkind (Parnt) = N_Assignment_Statement
2822 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 2823 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 2824 then
2825 return;
2826 end if;
2827 end if;
2828 end if;
2829
9dfe12ae 2830 -- Do not set range checks if they are killed
2831
2832 if Nkind (Expr) = N_Unchecked_Type_Conversion
2833 and then Kill_Range_Check (Expr)
2834 then
2835 return;
2836 end if;
2837
2838 -- Do not set range checks for any values from System.Scalar_Values
39a0c1d3 2839 -- since the whole idea of such values is to avoid checking them.
9dfe12ae 2840
2841 if Is_Entity_Name (Expr)
2842 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2843 then
2844 return;
2845 end if;
2846
ee6ba406 2847 -- Now see if we need a check
2848
2849 if No (Source_Typ) then
2850 S_Typ := Etype (Expr);
2851 else
2852 S_Typ := Source_Typ;
2853 end if;
2854
2855 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2856 return;
2857 end if;
2858
2859 Is_Unconstrained_Subscr_Ref :=
2860 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2861
b40670e1 2862 -- Special checks for floating-point type
ee6ba406 2863
b40670e1 2864 if Is_Floating_Point_Type (S_Typ) then
2865
2866 -- Always do a range check if the source type includes infinities and
2867 -- the target type does not include infinities. We do not do this if
2868 -- range checks are killed.
2869
2870 if Has_Infinities (S_Typ)
2871 and then not Has_Infinities (Target_Typ)
2872 then
2873 Enable_Range_Check (Expr);
2874
2875 -- Always do a range check for operators if option set
2876
2877 elsif Check_Float_Overflow and then Nkind (Expr) in N_Op then
2878 Enable_Range_Check (Expr);
2879 end if;
ee6ba406 2880 end if;
2881
feff2f05 2882 -- Return if we know expression is definitely in the range of the target
2883 -- type as determined by Determine_Range. Right now we only do this for
2884 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 2885
f2a06be9 2886 -- The additional less-precise tests below catch these cases
ee6ba406 2887
feff2f05 2888 -- Note: skip this if we are given a source_typ, since the point of
2889 -- supplying a Source_Typ is to stop us looking at the expression.
2890 -- We could sharpen this test to be out parameters only ???
ee6ba406 2891
2892 if Is_Discrete_Type (Target_Typ)
2893 and then Is_Discrete_Type (Etype (Expr))
2894 and then not Is_Unconstrained_Subscr_Ref
2895 and then No (Source_Typ)
2896 then
2897 declare
2898 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2899 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2900 Lo : Uint;
2901 Hi : Uint;
2902
2903 begin
2904 if Compile_Time_Known_Value (Tlo)
2905 and then Compile_Time_Known_Value (Thi)
2906 then
9dfe12ae 2907 declare
2908 Lov : constant Uint := Expr_Value (Tlo);
2909 Hiv : constant Uint := Expr_Value (Thi);
ee6ba406 2910
9dfe12ae 2911 begin
2912 -- If range is null, we for sure have a constraint error
2913 -- (we don't even need to look at the value involved,
2914 -- since all possible values will raise CE).
2915
2916 if Lov > Hiv then
2917 Bad_Value;
2918 return;
2919 end if;
2920
2921 -- Otherwise determine range of value
2922
9c486805 2923 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
9dfe12ae 2924
2925 if OK then
2926
2927 -- If definitely in range, all OK
ee6ba406 2928
ee6ba406 2929 if Lo >= Lov and then Hi <= Hiv then
2930 return;
2931
9dfe12ae 2932 -- If definitely not in range, warn
2933
ee6ba406 2934 elsif Lov > Hi or else Hiv < Lo then
2935 Bad_Value;
2936 return;
9dfe12ae 2937
2938 -- Otherwise we don't know
2939
2940 else
2941 null;
ee6ba406 2942 end if;
9dfe12ae 2943 end if;
2944 end;
ee6ba406 2945 end if;
2946 end;
2947 end if;
2948
2949 Int_Real :=
2950 Is_Floating_Point_Type (S_Typ)
2951 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2952
2953 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 2954 -- range of the target type. Note that if S_Typ is within the bounds
2955 -- of Target_Typ then this must be the case. This check is meaningful
2956 -- only if this is not a conversion between integer and real types.
ee6ba406 2957
2958 if not Is_Unconstrained_Subscr_Ref
b40670e1 2959 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
ee6ba406 2960 and then
7a1dabb3 2961 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ee6ba406 2962 or else
9c486805 2963 Is_In_Range (Expr, Target_Typ,
2964 Assume_Valid => True,
b40670e1 2965 Fixed_Int => Fixed_Int,
2966 Int_Real => Int_Real))
ee6ba406 2967 then
2968 return;
2969
9c486805 2970 elsif Is_Out_Of_Range (Expr, Target_Typ,
2971 Assume_Valid => True,
2972 Fixed_Int => Fixed_Int,
2973 Int_Real => Int_Real)
2974 then
ee6ba406 2975 Bad_Value;
2976 return;
2977
b40670e1 2978 -- Floating-point case
feff2f05 2979 -- In the floating-point case, we only do range checks if the type is
2980 -- constrained. We definitely do NOT want range checks for unconstrained
2981 -- types, since we want to have infinities
ee6ba406 2982
9dfe12ae 2983 elsif Is_Floating_Point_Type (S_Typ) then
b40670e1 2984
2985 -- Normally, we only do range checks if the type is constrained. We do
2986 -- NOT want range checks for unconstrained types, since we want to have
2987 -- infinities. Override this decision in Check_Float_Overflow mode.
2988
2989 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
9dfe12ae 2990 Enable_Range_Check (Expr);
2991 end if;
ee6ba406 2992
9dfe12ae 2993 -- For all other cases we enable a range check unconditionally
ee6ba406 2994
2995 else
2996 Enable_Range_Check (Expr);
2997 return;
2998 end if;
ee6ba406 2999 end Apply_Scalar_Range_Check;
3000
3001 ----------------------------------
3002 -- Apply_Selected_Length_Checks --
3003 ----------------------------------
3004
3005 procedure Apply_Selected_Length_Checks
3006 (Ck_Node : Node_Id;
3007 Target_Typ : Entity_Id;
3008 Source_Typ : Entity_Id;
3009 Do_Static : Boolean)
3010 is
3011 Cond : Node_Id;
3012 R_Result : Check_Result;
3013 R_Cno : Node_Id;
3014
3015 Loc : constant Source_Ptr := Sloc (Ck_Node);
3016 Checks_On : constant Boolean :=
b6341c67 3017 (not Index_Checks_Suppressed (Target_Typ))
4098232e 3018 or else (not Length_Checks_Suppressed (Target_Typ));
ee6ba406 3019
3020 begin
4098232e 3021 -- Note: this means that we lose some useful warnings if the expander
3022 -- is not active, and we also lose these warnings in SPARK mode ???
3023
a33565dd 3024 if not Expander_Active then
ee6ba406 3025 return;
3026 end if;
3027
3028 R_Result :=
3029 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3030
3031 for J in 1 .. 2 loop
ee6ba406 3032 R_Cno := R_Result (J);
3033 exit when No (R_Cno);
3034
3035 -- A length check may mention an Itype which is attached to a
3036 -- subsequent node. At the top level in a package this can cause
3037 -- an order-of-elaboration problem, so we make sure that the itype
3038 -- is referenced now.
3039
3040 if Ekind (Current_Scope) = E_Package
3041 and then Is_Compilation_Unit (Current_Scope)
3042 then
3043 Ensure_Defined (Target_Typ, Ck_Node);
3044
3045 if Present (Source_Typ) then
3046 Ensure_Defined (Source_Typ, Ck_Node);
3047
3048 elsif Is_Itype (Etype (Ck_Node)) then
3049 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3050 end if;
3051 end if;
3052
feff2f05 3053 -- If the item is a conditional raise of constraint error, then have
3054 -- a look at what check is being performed and ???
ee6ba406 3055
3056 if Nkind (R_Cno) = N_Raise_Constraint_Error
3057 and then Present (Condition (R_Cno))
3058 then
3059 Cond := Condition (R_Cno);
3060
0577b0b1 3061 -- Case where node does not now have a dynamic check
ee6ba406 3062
0577b0b1 3063 if not Has_Dynamic_Length_Check (Ck_Node) then
3064
3065 -- If checks are on, just insert the check
3066
3067 if Checks_On then
3068 Insert_Action (Ck_Node, R_Cno);
3069
3070 if not Do_Static then
3071 Set_Has_Dynamic_Length_Check (Ck_Node);
3072 end if;
3073
3074 -- If checks are off, then analyze the length check after
3075 -- temporarily attaching it to the tree in case the relevant
6fb3c314 3076 -- condition can be evaluated at compile time. We still want a
0577b0b1 3077 -- compile time warning in this case.
3078
3079 else
3080 Set_Parent (R_Cno, Ck_Node);
3081 Analyze (R_Cno);
ee6ba406 3082 end if;
ee6ba406 3083 end if;
3084
3085 -- Output a warning if the condition is known to be True
3086
3087 if Is_Entity_Name (Cond)
3088 and then Entity (Cond) = Standard_True
3089 then
3090 Apply_Compile_Time_Constraint_Error
cb97ae5c 3091 (Ck_Node, "wrong length for array of}??",
f15731c4 3092 CE_Length_Check_Failed,
ee6ba406 3093 Ent => Target_Typ,
3094 Typ => Target_Typ);
3095
3096 -- If we were only doing a static check, or if checks are not
3097 -- on, then we want to delete the check, since it is not needed.
3098 -- We do this by replacing the if statement by a null statement
3099
3100 elsif Do_Static or else not Checks_On then
00c403ee 3101 Remove_Warning_Messages (R_Cno);
ee6ba406 3102 Rewrite (R_Cno, Make_Null_Statement (Loc));
3103 end if;
3104
3105 else
3106 Install_Static_Check (R_Cno, Loc);
3107 end if;
ee6ba406 3108 end loop;
ee6ba406 3109 end Apply_Selected_Length_Checks;
3110
3111 ---------------------------------
3112 -- Apply_Selected_Range_Checks --
3113 ---------------------------------
3114
3115 procedure Apply_Selected_Range_Checks
3116 (Ck_Node : Node_Id;
3117 Target_Typ : Entity_Id;
3118 Source_Typ : Entity_Id;
3119 Do_Static : Boolean)
3120 is
ee6ba406 3121 Loc : constant Source_Ptr := Sloc (Ck_Node);
3122 Checks_On : constant Boolean :=
f9bcba0d 3123 not Index_Checks_Suppressed (Target_Typ)
5372d110 3124 or else
3125 not Range_Checks_Suppressed (Target_Typ);
f9bcba0d 3126
3127 Cond : Node_Id;
3128 R_Cno : Node_Id;
3129 R_Result : Check_Result;
ee6ba406 3130
3131 begin
5372d110 3132 if not Expander_Active or not Checks_On then
ee6ba406 3133 return;
3134 end if;
3135
3136 R_Result :=
3137 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3138
3139 for J in 1 .. 2 loop
ee6ba406 3140 R_Cno := R_Result (J);
3141 exit when No (R_Cno);
3142
f9bcba0d 3143 -- The range check requires runtime evaluation. Depending on what its
3144 -- triggering condition is, the check may be converted into a compile
3145 -- time constraint check.
ee6ba406 3146
3147 if Nkind (R_Cno) = N_Raise_Constraint_Error
3148 and then Present (Condition (R_Cno))
3149 then
3150 Cond := Condition (R_Cno);
3151
f9bcba0d 3152 -- Insert the range check before the related context. Note that
3153 -- this action analyses the triggering condition.
ee6ba406 3154
f9bcba0d 3155 Insert_Action (Ck_Node, R_Cno);
3156
3157 -- This old code doesn't make sense, why is the context flagged as
3158 -- requiring dynamic range checks now in the middle of generating
3159 -- them ???
3160
3161 if not Do_Static then
3162 Set_Has_Dynamic_Range_Check (Ck_Node);
ee6ba406 3163 end if;
3164
f9bcba0d 3165 -- The triggering condition evaluates to True, the range check
3166 -- can be converted into a compile time constraint check.
ee6ba406 3167
3168 if Is_Entity_Name (Cond)
3169 and then Entity (Cond) = Standard_True
3170 then
feff2f05 3171 -- Since an N_Range is technically not an expression, we have
3172 -- to set one of the bounds to C_E and then just flag the
3173 -- N_Range. The warning message will point to the lower bound
3174 -- and complain about a range, which seems OK.
ee6ba406 3175
3176 if Nkind (Ck_Node) = N_Range then
3177 Apply_Compile_Time_Constraint_Error
5372d110 3178 (Low_Bound (Ck_Node),
3179 "static range out of bounds of}??",
f15731c4 3180 CE_Range_Check_Failed,
ee6ba406 3181 Ent => Target_Typ,
3182 Typ => Target_Typ);
3183
3184 Set_Raises_Constraint_Error (Ck_Node);
3185
3186 else
3187 Apply_Compile_Time_Constraint_Error
5372d110 3188 (Ck_Node,
1581f2d7 3189 "static value out of range of}??",
f15731c4 3190 CE_Range_Check_Failed,
ee6ba406 3191 Ent => Target_Typ,
3192 Typ => Target_Typ);
3193 end if;
3194
3195 -- If we were only doing a static check, or if checks are not
3196 -- on, then we want to delete the check, since it is not needed.
3197 -- We do this by replacing the if statement by a null statement
3198
f9bcba0d 3199 -- Why are we even generating checks if checks are turned off ???
3200
ee6ba406 3201 elsif Do_Static or else not Checks_On then
00c403ee 3202 Remove_Warning_Messages (R_Cno);
ee6ba406 3203 Rewrite (R_Cno, Make_Null_Statement (Loc));
3204 end if;
3205
f9bcba0d 3206 -- The range check raises Constrant_Error explicitly
3207
ee6ba406 3208 else
3209 Install_Static_Check (R_Cno, Loc);
3210 end if;
ee6ba406 3211 end loop;
ee6ba406 3212 end Apply_Selected_Range_Checks;
3213
3214 -------------------------------
3215 -- Apply_Static_Length_Check --
3216 -------------------------------
3217
3218 procedure Apply_Static_Length_Check
3219 (Expr : Node_Id;
3220 Target_Typ : Entity_Id;
3221 Source_Typ : Entity_Id := Empty)
3222 is
3223 begin
3224 Apply_Selected_Length_Checks
3225 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3226 end Apply_Static_Length_Check;
3227
3228 -------------------------------------
3229 -- Apply_Subscript_Validity_Checks --
3230 -------------------------------------
3231
3232 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3233 Sub : Node_Id;
3234
3235 begin
3236 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3237
3238 -- Loop through subscripts
3239
3240 Sub := First (Expressions (Expr));
3241 while Present (Sub) loop
3242
feff2f05 3243 -- Check one subscript. Note that we do not worry about enumeration
3244 -- type with holes, since we will convert the value to a Pos value
3245 -- for the subscript, and that convert will do the necessary validity
3246 -- check.
ee6ba406 3247
3248 Ensure_Valid (Sub, Holes_OK => True);
3249
3250 -- Move to next subscript
3251
3252 Sub := Next (Sub);
3253 end loop;
3254 end Apply_Subscript_Validity_Checks;
3255
3256 ----------------------------------
3257 -- Apply_Type_Conversion_Checks --
3258 ----------------------------------
3259
3260 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3261 Target_Type : constant Entity_Id := Etype (N);
3262 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 3263 Expr : constant Node_Id := Expression (N);
f4532fe1 3264
3265 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
141d591a 3266 -- Note: if Etype (Expr) is a private type without discriminants, its
3267 -- full view might have discriminants with defaults, so we need the
3268 -- full view here to retrieve the constraints.
ee6ba406 3269
3270 begin
3271 if Inside_A_Generic then
3272 return;
3273
f15731c4 3274 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 3275 -- situations of incomplete trees that blow things up.
3276
f15731c4 3277 elsif Serious_Errors_Detected > 0 then
ee6ba406 3278 return;
3279
ea822fd4 3280 -- Never generate discriminant checks for Unchecked_Union types
3281
3282 elsif Present (Expr_Type)
3283 and then Is_Unchecked_Union (Expr_Type)
3284 then
3285 return;
3286
feff2f05 3287 -- Scalar type conversions of the form Target_Type (Expr) require a
3288 -- range check if we cannot be sure that Expr is in the base type of
3289 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3290 -- are not quite the same condition from an implementation point of
3291 -- view, but clearly the second includes the first.
ee6ba406 3292
3293 elsif Is_Scalar_Type (Target_Type) then
3294 declare
3295 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 3296 -- If the Conversion_OK flag on the type conversion is set and no
ea822fd4 3297 -- floating-point type is involved in the type conversion then
3298 -- fixed-point values must be read as integral values.
ee6ba406 3299
5329ca64 3300 Float_To_Int : constant Boolean :=
b6341c67 3301 Is_Floating_Point_Type (Expr_Type)
3302 and then Is_Integer_Type (Target_Type);
5329ca64 3303
ee6ba406 3304 begin
ee6ba406 3305 if not Overflow_Checks_Suppressed (Target_Base)
0df9d43f 3306 and then not Overflow_Checks_Suppressed (Target_Type)
e254d721 3307 and then not
7a1dabb3 3308 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 3309 and then not Float_To_Int
ee6ba406 3310 then
00c403ee 3311 Activate_Overflow_Check (N);
ee6ba406 3312 end if;
3313
3314 if not Range_Checks_Suppressed (Target_Type)
3315 and then not Range_Checks_Suppressed (Expr_Type)
3316 then
5329ca64 3317 if Float_To_Int then
3318 Apply_Float_Conversion_Check (Expr, Target_Type);
3319 else
3320 Apply_Scalar_Range_Check
3321 (Expr, Target_Type, Fixed_Int => Conv_OK);
798afddc 3322
3323 -- If the target type has predicates, we need to indicate
ea822fd4 3324 -- the need for a check, even if Determine_Range finds that
3325 -- the value is within bounds. This may be the case e.g for
3326 -- a division with a constant denominator.
798afddc 3327
3328 if Has_Predicates (Target_Type) then
3329 Enable_Range_Check (Expr);
3330 end if;
5329ca64 3331 end if;
ee6ba406 3332 end if;
3333 end;
3334
3335 elsif Comes_From_Source (N)
f40f9731 3336 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 3337 and then Is_Record_Type (Target_Type)
3338 and then Is_Derived_Type (Target_Type)
3339 and then not Is_Tagged_Type (Target_Type)
3340 and then not Is_Constrained (Target_Type)
9dfe12ae 3341 and then Present (Stored_Constraint (Target_Type))
ee6ba406 3342 then
141d591a 3343 -- An unconstrained derived type may have inherited discriminant.
9dfe12ae 3344 -- Build an actual discriminant constraint list using the stored
ee6ba406 3345 -- constraint, to verify that the expression of the parent type
ea822fd4 3346 -- satisfies the constraints imposed by the (unconstrained) derived
3347 -- type. This applies to value conversions, not to view conversions
3348 -- of tagged types.
ee6ba406 3349
3350 declare
9dfe12ae 3351 Loc : constant Source_Ptr := Sloc (N);
3352 Cond : Node_Id;
3353 Constraint : Elmt_Id;
3354 Discr_Value : Node_Id;
3355 Discr : Entity_Id;
3356
3357 New_Constraints : constant Elist_Id := New_Elmt_List;
3358 Old_Constraints : constant Elist_Id :=
b6341c67 3359 Discriminant_Constraint (Expr_Type);
ee6ba406 3360
3361 begin
9dfe12ae 3362 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 3363 while Present (Constraint) loop
3364 Discr_Value := Node (Constraint);
3365
3366 if Is_Entity_Name (Discr_Value)
3367 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3368 then
3369 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3370
3371 if Present (Discr)
3372 and then Scope (Discr) = Base_Type (Expr_Type)
3373 then
3374 -- Parent is constrained by new discriminant. Obtain
feff2f05 3375 -- Value of original discriminant in expression. If the
3376 -- new discriminant has been used to constrain more than
3377 -- one of the stored discriminants, this will provide the
3378 -- required consistency check.
ee6ba406 3379
55868293 3380 Append_Elmt
3381 (Make_Selected_Component (Loc,
3382 Prefix =>
9dfe12ae 3383 Duplicate_Subexpr_No_Checks
3384 (Expr, Name_Req => True),
ee6ba406 3385 Selector_Name =>
3386 Make_Identifier (Loc, Chars (Discr))),
55868293 3387 New_Constraints);
ee6ba406 3388
3389 else
3390 -- Discriminant of more remote ancestor ???
3391
3392 return;
3393 end if;
3394
feff2f05 3395 -- Derived type definition has an explicit value for this
3396 -- stored discriminant.
ee6ba406 3397
3398 else
3399 Append_Elmt
9dfe12ae 3400 (Duplicate_Subexpr_No_Checks (Discr_Value),
3401 New_Constraints);
ee6ba406 3402 end if;
3403
3404 Next_Elmt (Constraint);
3405 end loop;
3406
3407 -- Use the unconstrained expression type to retrieve the
3408 -- discriminants of the parent, and apply momentarily the
3409 -- discriminant constraint synthesized above.
3410
3411 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3412 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3413 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3414
3415 Insert_Action (N,
f15731c4 3416 Make_Raise_Constraint_Error (Loc,
3417 Condition => Cond,
3418 Reason => CE_Discriminant_Check_Failed));
ee6ba406 3419 end;
3420
175a6969 3421 -- For arrays, checks are set now, but conversions are applied during
3422 -- expansion, to take into accounts changes of representation. The
3423 -- checks become range checks on the base type or length checks on the
3424 -- subtype, depending on whether the target type is unconstrained or
8e802312 3425 -- constrained. Note that the range check is put on the expression of a
3426 -- type conversion, while the length check is put on the type conversion
3427 -- itself.
175a6969 3428
3429 elsif Is_Array_Type (Target_Type) then
3430 if Is_Constrained (Target_Type) then
3431 Set_Do_Length_Check (N);
3432 else
3433 Set_Do_Range_Check (Expr);
3434 end if;
ee6ba406 3435 end if;
ee6ba406 3436 end Apply_Type_Conversion_Checks;
3437
3438 ----------------------------------------------
3439 -- Apply_Universal_Integer_Attribute_Checks --
3440 ----------------------------------------------
3441
3442 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3443 Loc : constant Source_Ptr := Sloc (N);
3444 Typ : constant Entity_Id := Etype (N);
3445
3446 begin
3447 if Inside_A_Generic then
3448 return;
3449
3450 -- Nothing to do if checks are suppressed
3451
3452 elsif Range_Checks_Suppressed (Typ)
3453 and then Overflow_Checks_Suppressed (Typ)
3454 then
3455 return;
3456
3457 -- Nothing to do if the attribute does not come from source. The
3458 -- internal attributes we generate of this type do not need checks,
3459 -- and furthermore the attempt to check them causes some circular
3460 -- elaboration orders when dealing with packed types.
3461
3462 elsif not Comes_From_Source (N) then
3463 return;
3464
9dfe12ae 3465 -- If the prefix is a selected component that depends on a discriminant
3466 -- the check may improperly expose a discriminant instead of using
3467 -- the bounds of the object itself. Set the type of the attribute to
3468 -- the base type of the context, so that a check will be imposed when
3469 -- needed (e.g. if the node appears as an index).
3470
3471 elsif Nkind (Prefix (N)) = N_Selected_Component
3472 and then Ekind (Typ) = E_Signed_Integer_Subtype
3473 and then Depends_On_Discriminant (Scalar_Range (Typ))
3474 then
3475 Set_Etype (N, Base_Type (Typ));
3476
feff2f05 3477 -- Otherwise, replace the attribute node with a type conversion node
3478 -- whose expression is the attribute, retyped to universal integer, and
3479 -- whose subtype mark is the target type. The call to analyze this
3480 -- conversion will set range and overflow checks as required for proper
3481 -- detection of an out of range value.
ee6ba406 3482
3483 else
3484 Set_Etype (N, Universal_Integer);
3485 Set_Analyzed (N, True);
3486
3487 Rewrite (N,
3488 Make_Type_Conversion (Loc,
3489 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3490 Expression => Relocate_Node (N)));
3491
3492 Analyze_And_Resolve (N, Typ);
3493 return;
3494 end if;
ee6ba406 3495 end Apply_Universal_Integer_Attribute_Checks;
3496
07c191b0 3497 -------------------------------------
3498 -- Atomic_Synchronization_Disabled --
3499 -------------------------------------
3500
3501 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3502 -- using a bogus check called Atomic_Synchronization. This is to make it
3503 -- more convenient to get exactly the same semantics as [Un]Suppress.
3504
3505 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3506 begin
b444f81d 3507 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3508 -- looks enabled, since it is never disabled.
3509
3510 if Debug_Flag_Dot_E then
3511 return False;
3512
3513 -- If debug flag d.d is set then always return True, i.e. all atomic
3514 -- sync looks disabled, since it always tests True.
3515
3516 elsif Debug_Flag_Dot_D then
3517 return True;
3518
3519 -- If entity present, then check result for that entity
3520
3521 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
07c191b0 3522 return Is_Check_Suppressed (E, Atomic_Synchronization);
b444f81d 3523
3524 -- Otherwise result depends on current scope setting
3525
07c191b0 3526 else
fafc6b97 3527 return Scope_Suppress.Suppress (Atomic_Synchronization);
07c191b0 3528 end if;
3529 end Atomic_Synchronization_Disabled;
3530
ee6ba406 3531 -------------------------------
3532 -- Build_Discriminant_Checks --
3533 -------------------------------
3534
3535 function Build_Discriminant_Checks
3536 (N : Node_Id;
314a23b6 3537 T_Typ : Entity_Id) return Node_Id
ee6ba406 3538 is
3539 Loc : constant Source_Ptr := Sloc (N);
3540 Cond : Node_Id;
3541 Disc : Elmt_Id;
3542 Disc_Ent : Entity_Id;
9dfe12ae 3543 Dref : Node_Id;
ee6ba406 3544 Dval : Node_Id;
3545
84d0d4a5 3546 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3547
3548 ----------------------------------
3549 -- Aggregate_Discriminant_Value --
3550 ----------------------------------
3551
3552 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3553 Assoc : Node_Id;
3554
3555 begin
feff2f05 3556 -- The aggregate has been normalized with named associations. We use
3557 -- the Chars field to locate the discriminant to take into account
3558 -- discriminants in derived types, which carry the same name as those
3559 -- in the parent.
84d0d4a5 3560
3561 Assoc := First (Component_Associations (N));
3562 while Present (Assoc) loop
3563 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3564 return Expression (Assoc);
3565 else
3566 Next (Assoc);
3567 end if;
3568 end loop;
3569
3570 -- Discriminant must have been found in the loop above
3571
3572 raise Program_Error;
3573 end Aggregate_Discriminant_Val;
3574
3575 -- Start of processing for Build_Discriminant_Checks
3576
ee6ba406 3577 begin
84d0d4a5 3578 -- Loop through discriminants evolving the condition
3579
ee6ba406 3580 Cond := Empty;
3581 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3582
9dfe12ae 3583 -- For a fully private type, use the discriminants of the parent type
ee6ba406 3584
3585 if Is_Private_Type (T_Typ)
3586 and then No (Full_View (T_Typ))
3587 then
3588 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3589 else
3590 Disc_Ent := First_Discriminant (T_Typ);
3591 end if;
3592
3593 while Present (Disc) loop
ee6ba406 3594 Dval := Node (Disc);
3595
3596 if Nkind (Dval) = N_Identifier
3597 and then Ekind (Entity (Dval)) = E_Discriminant
3598 then
3599 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3600 else
9dfe12ae 3601 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 3602 end if;
3603
00f91aef 3604 -- If we have an Unchecked_Union node, we can infer the discriminants
3605 -- of the node.
9dfe12ae 3606
00f91aef 3607 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3608 Dref := New_Copy (
3609 Get_Discriminant_Value (
3610 First_Discriminant (T_Typ),
3611 T_Typ,
3612 Stored_Constraint (T_Typ)));
3613
84d0d4a5 3614 elsif Nkind (N) = N_Aggregate then
3615 Dref :=
3616 Duplicate_Subexpr_No_Checks
3617 (Aggregate_Discriminant_Val (Disc_Ent));
3618
00f91aef 3619 else
3620 Dref :=
3621 Make_Selected_Component (Loc,
20cf157b 3622 Prefix =>
00f91aef 3623 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
20cf157b 3624 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
00f91aef 3625
3626 Set_Is_In_Discriminant_Check (Dref);
3627 end if;
9dfe12ae 3628
ee6ba406 3629 Evolve_Or_Else (Cond,
3630 Make_Op_Ne (Loc,
20cf157b 3631 Left_Opnd => Dref,
ee6ba406 3632 Right_Opnd => Dval));
3633
3634 Next_Elmt (Disc);
3635 Next_Discriminant (Disc_Ent);
3636 end loop;
3637
3638 return Cond;
3639 end Build_Discriminant_Checks;
3640
13dbf220 3641 ------------------
3642 -- Check_Needed --
3643 ------------------
3644
3645 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3646 N : Node_Id;
3647 P : Node_Id;
3648 K : Node_Kind;
3649 L : Node_Id;
3650 R : Node_Id;
3651
9b2068d4 3652 function Left_Expression (Op : Node_Id) return Node_Id;
3653 -- Return the relevant expression from the left operand of the given
3654 -- short circuit form: this is LO itself, except if LO is a qualified
3655 -- expression, a type conversion, or an expression with actions, in
3656 -- which case this is Left_Expression (Expression (LO)).
3657
3658 ---------------------
3659 -- Left_Expression --
3660 ---------------------
3661
3662 function Left_Expression (Op : Node_Id) return Node_Id is
3663 LE : Node_Id := Left_Opnd (Op);
3664 begin
20cf157b 3665 while Nkind_In (LE, N_Qualified_Expression,
3666 N_Type_Conversion,
3667 N_Expression_With_Actions)
9b2068d4 3668 loop
3669 LE := Expression (LE);
3670 end loop;
3671
3672 return LE;
3673 end Left_Expression;
3674
3675 -- Start of processing for Check_Needed
3676
13dbf220 3677 begin
3678 -- Always check if not simple entity
3679
3680 if Nkind (Nod) not in N_Has_Entity
3681 or else not Comes_From_Source (Nod)
3682 then
3683 return True;
3684 end if;
3685
3686 -- Look up tree for short circuit
3687
3688 N := Nod;
3689 loop
3690 P := Parent (N);
3691 K := Nkind (P);
3692
7b17e51b 3693 -- Done if out of subexpression (note that we allow generated stuff
3694 -- such as itype declarations in this context, to keep the loop going
3695 -- since we may well have generated such stuff in complex situations.
3696 -- Also done if no parent (probably an error condition, but no point
39a0c1d3 3697 -- in behaving nasty if we find it).
7b17e51b 3698
3699 if No (P)
3700 or else (K not in N_Subexpr and then Comes_From_Source (P))
3701 then
13dbf220 3702 return True;
3703
7b17e51b 3704 -- Or/Or Else case, where test is part of the right operand, or is
3705 -- part of one of the actions associated with the right operand, and
3706 -- the left operand is an equality test.
13dbf220 3707
7b17e51b 3708 elsif K = N_Op_Or then
13dbf220 3709 exit when N = Right_Opnd (P)
9b2068d4 3710 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 3711
7b17e51b 3712 elsif K = N_Or_Else then
3713 exit when (N = Right_Opnd (P)
3714 or else
3715 (Is_List_Member (N)
3716 and then List_Containing (N) = Actions (P)))
9b2068d4 3717 and then Nkind (Left_Expression (P)) = N_Op_Eq;
13dbf220 3718
7b17e51b 3719 -- Similar test for the And/And then case, where the left operand
3720 -- is an inequality test.
3721
3722 elsif K = N_Op_And then
13dbf220 3723 exit when N = Right_Opnd (P)
9b2068d4 3724 and then Nkind (Left_Expression (P)) = N_Op_Ne;
7b17e51b 3725
3726 elsif K = N_And_Then then
3727 exit when (N = Right_Opnd (P)
3728 or else
3729 (Is_List_Member (N)
20cf157b 3730 and then List_Containing (N) = Actions (P)))
9b2068d4 3731 and then Nkind (Left_Expression (P)) = N_Op_Ne;
13dbf220 3732 end if;
3733
3734 N := P;
3735 end loop;
3736
3737 -- If we fall through the loop, then we have a conditional with an
9b2068d4 3738 -- appropriate test as its left operand, so look further.
3739
3740 L := Left_Expression (P);
3741
3742 -- L is an "=" or "/=" operator: extract its operands
13dbf220 3743
13dbf220 3744 R := Right_Opnd (L);
3745 L := Left_Opnd (L);
3746
3747 -- Left operand of test must match original variable
3748
20cf157b 3749 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
13dbf220 3750 return True;
3751 end if;
3752
2af58f67 3753 -- Right operand of test must be key value (zero or null)
13dbf220 3754
3755 case Check is
3756 when Access_Check =>
2af58f67 3757 if not Known_Null (R) then
13dbf220 3758 return True;
3759 end if;
3760
3761 when Division_Check =>
3762 if not Compile_Time_Known_Value (R)
3763 or else Expr_Value (R) /= Uint_0
3764 then
3765 return True;
3766 end if;
2af58f67 3767
3768 when others =>
3769 raise Program_Error;
13dbf220 3770 end case;
3771
3772 -- Here we have the optimizable case, warn if not short-circuited
3773
3774 if K = N_Op_And or else K = N_Op_Or then
c4968aa2 3775 Error_Msg_Warn := SPARK_Mode /= On;
4098232e 3776
13dbf220 3777 case Check is
3778 when Access_Check =>
4098232e 3779 if GNATprove_Mode then
3780 Error_Msg_N
3781 ("Constraint_Error might have been raised (access check)",
3782 Parent (Nod));
3783 else
3784 Error_Msg_N
3785 ("Constraint_Error may be raised (access check)??",
3786 Parent (Nod));
3787 end if;
3788
13dbf220 3789 when Division_Check =>
4098232e 3790 if GNATprove_Mode then
3791 Error_Msg_N
3792 ("Constraint_Error might have been raised (zero divide)",
3793 Parent (Nod));
3794 else
3795 Error_Msg_N
3796 ("Constraint_Error may be raised (zero divide)??",
3797 Parent (Nod));
3798 end if;
2af58f67 3799
3800 when others =>
3801 raise Program_Error;
13dbf220 3802 end case;
3803
3804 if K = N_Op_And then
e977c0cf 3805 Error_Msg_N -- CODEFIX
cb97ae5c 3806 ("use `AND THEN` instead of AND??", P);
13dbf220 3807 else
e977c0cf 3808 Error_Msg_N -- CODEFIX
cb97ae5c 3809 ("use `OR ELSE` instead of OR??", P);
13dbf220 3810 end if;
3811
6fb3c314 3812 -- If not short-circuited, we need the check
13dbf220 3813
3814 return True;
3815
3816 -- If short-circuited, we can omit the check
3817
3818 else
3819 return False;
3820 end if;
3821 end Check_Needed;
3822
ee6ba406 3823 -----------------------------------
3824 -- Check_Valid_Lvalue_Subscripts --
3825 -----------------------------------
3826
3827 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3828 begin
3829 -- Skip this if range checks are suppressed
3830
3831 if Range_Checks_Suppressed (Etype (Expr)) then
3832 return;
3833
feff2f05 3834 -- Only do this check for expressions that come from source. We assume
3835 -- that expander generated assignments explicitly include any necessary
3836 -- checks. Note that this is not just an optimization, it avoids
39a0c1d3 3837 -- infinite recursions.
ee6ba406 3838
3839 elsif not Comes_From_Source (Expr) then
3840 return;
3841
3842 -- For a selected component, check the prefix
3843
3844 elsif Nkind (Expr) = N_Selected_Component then
3845 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3846 return;
3847
3848 -- Case of indexed component
3849
3850 elsif Nkind (Expr) = N_Indexed_Component then
3851 Apply_Subscript_Validity_Checks (Expr);
3852
feff2f05 3853 -- Prefix may itself be or contain an indexed component, and these
3854 -- subscripts need checking as well.
ee6ba406 3855
3856 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3857 end if;
3858 end Check_Valid_Lvalue_Subscripts;
3859
fa7497e8 3860 ----------------------------------
3861 -- Null_Exclusion_Static_Checks --
3862 ----------------------------------
3863
3864 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
0577b0b1 3865 Error_Node : Node_Id;
3866 Expr : Node_Id;
3867 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3868 K : constant Node_Kind := Nkind (N);
3869 Typ : Entity_Id;
fa7497e8 3870
13dbf220 3871 begin
0577b0b1 3872 pragma Assert
ea822fd4 3873 (Nkind_In (K, N_Component_Declaration,
3874 N_Discriminant_Specification,
3875 N_Function_Specification,
3876 N_Object_Declaration,
3877 N_Parameter_Specification));
0577b0b1 3878
3879 if K = N_Function_Specification then
3880 Typ := Etype (Defining_Entity (N));
3881 else
3882 Typ := Etype (Defining_Identifier (N));
3883 end if;
fa7497e8 3884
13dbf220 3885 case K is
13dbf220 3886 when N_Component_Declaration =>
3887 if Present (Access_Definition (Component_Definition (N))) then
0577b0b1 3888 Error_Node := Component_Definition (N);
13dbf220 3889 else
0577b0b1 3890 Error_Node := Subtype_Indication (Component_Definition (N));
13dbf220 3891 end if;
5329ca64 3892
0577b0b1 3893 when N_Discriminant_Specification =>
3894 Error_Node := Discriminant_Type (N);
3895
3896 when N_Function_Specification =>
3897 Error_Node := Result_Definition (N);
3898
3899 when N_Object_Declaration =>
3900 Error_Node := Object_Definition (N);
3901
3902 when N_Parameter_Specification =>
3903 Error_Node := Parameter_Type (N);
3904
13dbf220 3905 when others =>
3906 raise Program_Error;
3907 end case;
5329ca64 3908
0577b0b1 3909 if Has_Null then
5329ca64 3910
0577b0b1 3911 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3912 -- applied to an access [sub]type.
5329ca64 3913
0577b0b1 3914 if not Is_Access_Type (Typ) then
503f7fd3 3915 Error_Msg_N
00c403ee 3916 ("`NOT NULL` allowed only for an access type", Error_Node);
5329ca64 3917
feff2f05 3918 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 3919 -- be applied to a [sub]type that does not exclude null already.
3920
3921 elsif Can_Never_Be_Null (Typ)
d16989f1 3922 and then Comes_From_Source (Typ)
0577b0b1 3923 then
503f7fd3 3924 Error_Msg_NE
00c403ee 3925 ("`NOT NULL` not allowed (& already excludes null)",
3926 Error_Node, Typ);
0577b0b1 3927 end if;
13dbf220 3928 end if;
5329ca64 3929
cc60bd16 3930 -- Check that null-excluding objects are always initialized, except for
3931 -- deferred constants, for which the expression will appear in the full
3932 -- declaration.
13dbf220 3933
3934 if K = N_Object_Declaration
84d0d4a5 3935 and then No (Expression (N))
cc60bd16 3936 and then not Constant_Present (N)
feff2f05 3937 and then not No_Initialization (N)
13dbf220 3938 then
feff2f05 3939 -- Add an expression that assigns null. This node is needed by
3940 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3941 -- a Constraint_Error node.
13dbf220 3942
3943 Set_Expression (N, Make_Null (Sloc (N)));
3944 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
5329ca64 3945
13dbf220 3946 Apply_Compile_Time_Constraint_Error
3947 (N => Expression (N),
cb97ae5c 3948 Msg =>
3949 "(Ada 2005) null-excluding objects must be initialized??",
13dbf220 3950 Reason => CE_Null_Not_Allowed);
3951 end if;
5329ca64 3952
cc60bd16 3953 -- Check that a null-excluding component, formal or object is not being
3954 -- assigned a null value. Otherwise generate a warning message and
2c145f84 3955 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 3956
0577b0b1 3957 if K /= N_Function_Specification then
3958 Expr := Expression (N);
5329ca64 3959
2af58f67 3960 if Present (Expr) and then Known_Null (Expr) then
13dbf220 3961 case K is
0577b0b1 3962 when N_Component_Declaration |
3963 N_Discriminant_Specification =>
7189d17f 3964 Apply_Compile_Time_Constraint_Error
0577b0b1 3965 (N => Expr,
4098232e 3966 Msg => "(Ada 2005) null not allowed "
3967 & "in null-excluding components??",
0577b0b1 3968 Reason => CE_Null_Not_Allowed);
5329ca64 3969
0577b0b1 3970 when N_Object_Declaration =>
7189d17f 3971 Apply_Compile_Time_Constraint_Error
0577b0b1 3972 (N => Expr,
4098232e 3973 Msg => "(Ada 2005) null not allowed "
1581f2d7 3974 & "in null-excluding objects??",
0577b0b1 3975 Reason => CE_Null_Not_Allowed);
5329ca64 3976
0577b0b1 3977 when N_Parameter_Specification =>
7189d17f 3978 Apply_Compile_Time_Constraint_Error
0577b0b1 3979 (N => Expr,
4098232e 3980 Msg => "(Ada 2005) null not allowed "
3981 & "in null-excluding formals??",
0577b0b1 3982 Reason => CE_Null_Not_Allowed);
13dbf220 3983
3984 when others =>
3985 null;
5329ca64 3986 end case;
3987 end if;
0577b0b1 3988 end if;
fa7497e8 3989 end Null_Exclusion_Static_Checks;
3990
9dfe12ae 3991 ----------------------------------
3992 -- Conditional_Statements_Begin --
3993 ----------------------------------
3994
3995 procedure Conditional_Statements_Begin is
3996 begin
3997 Saved_Checks_TOS := Saved_Checks_TOS + 1;
3998
feff2f05 3999 -- If stack overflows, kill all checks, that way we know to simply reset
4000 -- the number of saved checks to zero on return. This should never occur
4001 -- in practice.
9dfe12ae 4002
4003 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4004 Kill_All_Checks;
4005
feff2f05 4006 -- In the normal case, we just make a new stack entry saving the current
4007 -- number of saved checks for a later restore.
9dfe12ae 4008
4009 else
4010 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4011
4012 if Debug_Flag_CC then
4013 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4014 Num_Saved_Checks);
4015 end if;
4016 end if;
4017 end Conditional_Statements_Begin;
4018
4019 --------------------------------
4020 -- Conditional_Statements_End --
4021 --------------------------------
4022
4023 procedure Conditional_Statements_End is
4024 begin
4025 pragma Assert (Saved_Checks_TOS > 0);
4026
feff2f05 4027 -- If the saved checks stack overflowed, then we killed all checks, so
4028 -- setting the number of saved checks back to zero is correct. This
4029 -- should never occur in practice.
9dfe12ae 4030
4031 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4032 Num_Saved_Checks := 0;
4033
feff2f05 4034 -- In the normal case, restore the number of saved checks from the top
4035 -- stack entry.
9dfe12ae 4036
4037 else
4038 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
20cf157b 4039
9dfe12ae 4040 if Debug_Flag_CC then
4041 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4042 Num_Saved_Checks);
4043 end if;
4044 end if;
4045
4046 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4047 end Conditional_Statements_End;
4048
3cce7f32 4049 -------------------------
4050 -- Convert_From_Bignum --
4051 -------------------------
4052
4053 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4054 Loc : constant Source_Ptr := Sloc (N);
4055
4056 begin
4057 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4058
4059 -- Construct call From Bignum
4060
4061 return
4062 Make_Function_Call (Loc,
4063 Name =>
4064 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4065 Parameter_Associations => New_List (Relocate_Node (N)));
4066 end Convert_From_Bignum;
4067
4068 -----------------------
4069 -- Convert_To_Bignum --
4070 -----------------------
4071
4072 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4073 Loc : constant Source_Ptr := Sloc (N);
4074
4075 begin
0326b4d4 4076 -- Nothing to do if Bignum already except call Relocate_Node
3cce7f32 4077
4078 if Is_RTE (Etype (N), RE_Bignum) then
4079 return Relocate_Node (N);
4080
21a55437 4081 -- Otherwise construct call to To_Bignum, converting the operand to the
4082 -- required Long_Long_Integer form.
3cce7f32 4083
4084 else
4085 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4086 return
4087 Make_Function_Call (Loc,
4088 Name =>
4089 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4090 Parameter_Associations => New_List (
4091 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4092 end if;
4093 end Convert_To_Bignum;
4094
ee6ba406 4095 ---------------------
4096 -- Determine_Range --
4097 ---------------------
4098
6af1bdbc 4099 Cache_Size : constant := 2 ** 10;
ee6ba406 4100 type Cache_Index is range 0 .. Cache_Size - 1;
39a0c1d3 4101 -- Determine size of below cache (power of 2 is more efficient)
ee6ba406 4102
7ac8c2b1 4103 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4104 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4105 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4106 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4107 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4108 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
feff2f05 4109 -- The above arrays are used to implement a small direct cache for
7ac8c2b1 4110 -- Determine_Range and Determine_Range_R calls. Because of the way these
4111 -- subprograms recursively traces subexpressions, and because overflow
4112 -- checking calls the routine on the way up the tree, a quadratic behavior
4113 -- can otherwise be encountered in large expressions. The cache entry for
4114 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4115 -- by checking the actual node value stored there. The Range_Cache_V array
4116 -- records the setting of Assume_Valid for the cache entry.
ee6ba406 4117
4118 procedure Determine_Range
9c486805 4119 (N : Node_Id;
4120 OK : out Boolean;
4121 Lo : out Uint;
4122 Hi : out Uint;
4123 Assume_Valid : Boolean := False)
ee6ba406 4124 is
e254d721 4125 Typ : Entity_Id := Etype (N);
4126 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 4127
4128 Lo_Left : Uint;
4129 Hi_Left : Uint;
4130 -- Lo and Hi bounds of left operand
ee6ba406 4131
ee6ba406 4132 Lo_Right : Uint;
ee6ba406 4133 Hi_Right : Uint;
8880be85 4134 -- Lo and Hi bounds of right (or only) operand
4135
4136 Bound : Node_Id;
4137 -- Temp variable used to hold a bound node
4138
4139 Hbound : Uint;
4140 -- High bound of base type of expression
4141
4142 Lor : Uint;
4143 Hir : Uint;
4144 -- Refined values for low and high bounds, after tightening
4145
4146 OK1 : Boolean;
4147 -- Used in lower level calls to indicate if call succeeded
4148
4149 Cindex : Cache_Index;
4150 -- Used to search cache
ee6ba406 4151
094ed68e 4152 Btyp : Entity_Id;
4153 -- Base type
4154
ee6ba406 4155 function OK_Operands return Boolean;
4156 -- Used for binary operators. Determines the ranges of the left and
4157 -- right operands, and if they are both OK, returns True, and puts
341bd953 4158 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
ee6ba406 4159
4160 -----------------
4161 -- OK_Operands --
4162 -----------------
4163
4164 function OK_Operands return Boolean is
4165 begin
9c486805 4166 Determine_Range
4167 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 4168
4169 if not OK1 then
4170 return False;
4171 end if;
4172
9c486805 4173 Determine_Range
4174 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4175 return OK1;
4176 end OK_Operands;
4177
4178 -- Start of processing for Determine_Range
4179
4180 begin
e12b2502 4181 -- Prevent junk warnings by initializing range variables
4182
4183 Lo := No_Uint;
4184 Hi := No_Uint;
4185 Lor := No_Uint;
4186 Hir := No_Uint;
4187
87bdc21d 4188 -- For temporary constants internally generated to remove side effects
4189 -- we must use the corresponding expression to determine the range of
e12b2502 4190 -- the expression. But note that the expander can also generate
4191 -- constants in other cases, including deferred constants.
87bdc21d 4192
4193 if Is_Entity_Name (N)
4194 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4195 and then Ekind (Entity (N)) = E_Constant
4196 and then Is_Internal_Name (Chars (Entity (N)))
4197 then
e12b2502 4198 if Present (Expression (Parent (Entity (N)))) then
4199 Determine_Range
4200 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
87bdc21d 4201
e12b2502 4202 elsif Present (Full_View (Entity (N))) then
4203 Determine_Range
4204 (Expression (Parent (Full_View (Entity (N)))),
4205 OK, Lo, Hi, Assume_Valid);
ee6ba406 4206
e12b2502 4207 else
4208 OK := False;
4209 end if;
4210 return;
4211 end if;
ee6ba406 4212
a781c0fc 4213 -- If type is not defined, we can't determine its range
ee6ba406 4214
a781c0fc 4215 if No (Typ)
4216
4217 -- We don't deal with anything except discrete types
4218
4219 or else not Is_Discrete_Type (Typ)
4220
4221 -- Ignore type for which an error has been posted, since range in
4222 -- this case may well be a bogosity deriving from the error. Also
4223 -- ignore if error posted on the reference node.
4224
4225 or else Error_Posted (N) or else Error_Posted (Typ)
ee6ba406 4226 then
4227 OK := False;
4228 return;
4229 end if;
4230
4231 -- For all other cases, we can determine the range
4232
4233 OK := True;
4234
feff2f05 4235 -- If value is compile time known, then the possible range is the one
39a0c1d3 4236 -- value that we know this expression definitely has.
ee6ba406 4237
4238 if Compile_Time_Known_Value (N) then
4239 Lo := Expr_Value (N);
4240 Hi := Lo;
4241 return;
4242 end if;
4243
4244 -- Return if already in the cache
4245
4246 Cindex := Cache_Index (N mod Cache_Size);
4247
9c486805 4248 if Determine_Range_Cache_N (Cindex) = N
4249 and then
4250 Determine_Range_Cache_V (Cindex) = Assume_Valid
4251 then
ee6ba406 4252 Lo := Determine_Range_Cache_Lo (Cindex);
4253 Hi := Determine_Range_Cache_Hi (Cindex);
4254 return;
4255 end if;
4256
feff2f05 4257 -- Otherwise, start by finding the bounds of the type of the expression,
4258 -- the value cannot be outside this range (if it is, then we have an
4259 -- overflow situation, which is a separate check, we are talking here
4260 -- only about the expression value).
ee6ba406 4261
341bd953 4262 -- First a check, never try to find the bounds of a generic type, since
4263 -- these bounds are always junk values, and it is only valid to look at
4264 -- the bounds in an instance.
4265
4266 if Is_Generic_Type (Typ) then
4267 OK := False;
4268 return;
4269 end if;
4270
9c486805 4271 -- First step, change to use base type unless we know the value is valid
e254d721 4272
9c486805 4273 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4274 or else Assume_No_Invalid_Values
4275 or else Assume_Valid
e254d721 4276 then
9c486805 4277 null;
4278 else
4279 Typ := Underlying_Type (Base_Type (Typ));
e254d721 4280 end if;
4281
094ed68e 4282 -- Retrieve the base type. Handle the case where the base type is a
4283 -- private enumeration type.
4284
4285 Btyp := Base_Type (Typ);
4286
4287 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4288 Btyp := Full_View (Btyp);
4289 end if;
4290
feff2f05 4291 -- We use the actual bound unless it is dynamic, in which case use the
4292 -- corresponding base type bound if possible. If we can't get a bound
4293 -- then we figure we can't determine the range (a peculiar case, that
4294 -- perhaps cannot happen, but there is no point in bombing in this
4295 -- optimization circuit.
8880be85 4296
4297 -- First the low bound
ee6ba406 4298
4299 Bound := Type_Low_Bound (Typ);
4300
4301 if Compile_Time_Known_Value (Bound) then
4302 Lo := Expr_Value (Bound);
4303
094ed68e 4304 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4305 Lo := Expr_Value (Type_Low_Bound (Btyp));
ee6ba406 4306
4307 else
4308 OK := False;
4309 return;
4310 end if;
4311
8880be85 4312 -- Now the high bound
4313
ee6ba406 4314 Bound := Type_High_Bound (Typ);
4315
8880be85 4316 -- We need the high bound of the base type later on, and this should
4317 -- always be compile time known. Again, it is not clear that this
4318 -- can ever be false, but no point in bombing.
ee6ba406 4319
094ed68e 4320 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4321 Hbound := Expr_Value (Type_High_Bound (Btyp));
ee6ba406 4322 Hi := Hbound;
4323
4324 else
4325 OK := False;
4326 return;
4327 end if;
4328
feff2f05 4329 -- If we have a static subtype, then that may have a tighter bound so
4330 -- use the upper bound of the subtype instead in this case.
8880be85 4331
4332 if Compile_Time_Known_Value (Bound) then
4333 Hi := Expr_Value (Bound);
4334 end if;
4335
feff2f05 4336 -- We may be able to refine this value in certain situations. If any
4337 -- refinement is possible, then Lor and Hir are set to possibly tighter
4338 -- bounds, and OK1 is set to True.
ee6ba406 4339
4340 case Nkind (N) is
4341
4342 -- For unary plus, result is limited by range of operand
4343
4344 when N_Op_Plus =>
9c486805 4345 Determine_Range
4346 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4347
4348 -- For unary minus, determine range of operand, and negate it
4349
4350 when N_Op_Minus =>
9c486805 4351 Determine_Range
4352 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 4353
4354 if OK1 then
4355 Lor := -Hi_Right;
4356 Hir := -Lo_Right;
4357 end if;
4358
4359 -- For binary addition, get range of each operand and do the
4360 -- addition to get the result range.
4361
4362 when N_Op_Add =>
4363 if OK_Operands then
4364 Lor := Lo_Left + Lo_Right;
4365 Hir := Hi_Left + Hi_Right;
4366 end if;
4367
feff2f05 4368 -- Division is tricky. The only case we consider is where the right
4369 -- operand is a positive constant, and in this case we simply divide
4370 -- the bounds of the left operand
ee6ba406 4371
4372 when N_Op_Divide =>
4373 if OK_Operands then
4374 if Lo_Right = Hi_Right
4375 and then Lo_Right > 0
4376 then
4377 Lor := Lo_Left / Lo_Right;
4378 Hir := Hi_Left / Lo_Right;
ee6ba406 4379 else
4380 OK1 := False;
4381 end if;
4382 end if;
4383
feff2f05 4384 -- For binary subtraction, get range of each operand and do the worst
4385 -- case subtraction to get the result range.
ee6ba406 4386
4387 when N_Op_Subtract =>
4388 if OK_Operands then
4389 Lor := Lo_Left - Hi_Right;
4390 Hir := Hi_Left - Lo_Right;
4391 end if;
4392
feff2f05 4393 -- For MOD, if right operand is a positive constant, then result must
4394 -- be in the allowable range of mod results.
ee6ba406 4395
4396 when N_Op_Mod =>
4397 if OK_Operands then
9dfe12ae 4398 if Lo_Right = Hi_Right
4399 and then Lo_Right /= 0
4400 then
ee6ba406 4401 if Lo_Right > 0 then
4402 Lor := Uint_0;
4403 Hir := Lo_Right - 1;
4404
9dfe12ae 4405 else -- Lo_Right < 0
ee6ba406 4406 Lor := Lo_Right + 1;
4407 Hir := Uint_0;
4408 end if;
4409
4410 else
4411 OK1 := False;
4412 end if;
4413 end if;
4414
feff2f05 4415 -- For REM, if right operand is a positive constant, then result must
4416 -- be in the allowable range of mod results.
ee6ba406 4417
4418 when N_Op_Rem =>
4419 if OK_Operands then
9dfe12ae 4420 if Lo_Right = Hi_Right
4421 and then Lo_Right /= 0
4422 then
ee6ba406 4423 declare
4424 Dval : constant Uint := (abs Lo_Right) - 1;
4425
4426 begin
4427 -- The sign of the result depends on the sign of the
4428 -- dividend (but not on the sign of the divisor, hence
4429 -- the abs operation above).
4430
4431 if Lo_Left < 0 then
4432 Lor := -Dval;
4433 else
4434 Lor := Uint_0;
4435 end if;
4436
4437 if Hi_Left < 0 then
4438 Hir := Uint_0;
4439 else
4440 Hir := Dval;
4441 end if;
4442 end;
4443
4444 else
4445 OK1 := False;
4446 end if;
4447 end if;
4448
4449 -- Attribute reference cases
4450
4451 when N_Attribute_Reference =>
4452 case Attribute_Name (N) is
4453
4454 -- For Pos/Val attributes, we can refine the range using the
ddbf7f2e 4455 -- possible range of values of the attribute expression.
ee6ba406 4456
4457 when Name_Pos | Name_Val =>
9c486805 4458 Determine_Range
4459 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4460
4461 -- For Length attribute, use the bounds of the corresponding
4462 -- index type to refine the range.
4463
4464 when Name_Length =>
4465 declare
4466 Atyp : Entity_Id := Etype (Prefix (N));
4467 Inum : Nat;
4468 Indx : Node_Id;
4469
4470 LL, LU : Uint;
4471 UL, UU : Uint;
4472
4473 begin
4474 if Is_Access_Type (Atyp) then
4475 Atyp := Designated_Type (Atyp);
4476 end if;
4477
4478 -- For string literal, we know exact value
4479
4480 if Ekind (Atyp) = E_String_Literal_Subtype then
4481 OK := True;
4482 Lo := String_Literal_Length (Atyp);
4483 Hi := String_Literal_Length (Atyp);
4484 return;
4485 end if;
4486
4487 -- Otherwise check for expression given
4488
4489 if No (Expressions (N)) then
4490 Inum := 1;
4491 else
4492 Inum :=
4493 UI_To_Int (Expr_Value (First (Expressions (N))));
4494 end if;
4495
4496 Indx := First_Index (Atyp);
4497 for J in 2 .. Inum loop
4498 Indx := Next_Index (Indx);
4499 end loop;
4500
9116df93 4501 -- If the index type is a formal type or derived from
c8da6114 4502 -- one, the bounds are not static.
4503
4504 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4505 OK := False;
4506 return;
4507 end if;
4508
ee6ba406 4509 Determine_Range
9c486805 4510 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4511 Assume_Valid);
ee6ba406 4512
4513 if OK1 then
4514 Determine_Range
9c486805 4515 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4516 Assume_Valid);
ee6ba406 4517
4518 if OK1 then
4519
4520 -- The maximum value for Length is the biggest
4521 -- possible gap between the values of the bounds.
4522 -- But of course, this value cannot be negative.
4523
9c486805 4524 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 4525
4526 -- For constrained arrays, the minimum value for
4527 -- Length is taken from the actual value of the
9116df93 4528 -- bounds, since the index will be exactly of this
4529 -- subtype.
ee6ba406 4530
4531 if Is_Constrained (Atyp) then
9c486805 4532 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 4533
4534 -- For an unconstrained array, the minimum value
4535 -- for length is always zero.
4536
4537 else
4538 Lor := Uint_0;
4539 end if;
4540 end if;
4541 end if;
4542 end;
4543
4544 -- No special handling for other attributes
9116df93 4545 -- Probably more opportunities exist here???
ee6ba406 4546
4547 when others =>
4548 OK1 := False;
4549
4550 end case;
4551
feff2f05 4552 -- For type conversion from one discrete type to another, we can
4553 -- refine the range using the converted value.
ee6ba406 4554
4555 when N_Type_Conversion =>
9c486805 4556 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 4557
4558 -- Nothing special to do for all other expression kinds
4559
4560 when others =>
4561 OK1 := False;
4562 Lor := No_Uint;
4563 Hir := No_Uint;
4564 end case;
4565
9116df93 4566 -- At this stage, if OK1 is true, then we know that the actual result of
4567 -- the computed expression is in the range Lor .. Hir. We can use this
4568 -- to restrict the possible range of results.
ee6ba406 4569
4570 if OK1 then
4571
9116df93 4572 -- If the refined value of the low bound is greater than the type
7ac8c2b1 4573 -- low bound, then reset it to the more restrictive value. However,
9116df93 4574 -- we do NOT do this for the case of a modular type where the
4575 -- possible upper bound on the value is above the base type high
4576 -- bound, because that means the result could wrap.
ee6ba406 4577
4578 if Lor > Lo
9116df93 4579 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
ee6ba406 4580 then
4581 Lo := Lor;
4582 end if;
4583
9116df93 4584 -- Similarly, if the refined value of the high bound is less than the
4585 -- value so far, then reset it to the more restrictive value. Again,
4586 -- we do not do this if the refined low bound is negative for a
4587 -- modular type, since this would wrap.
ee6ba406 4588
4589 if Hir < Hi
9116df93 4590 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
ee6ba406 4591 then
4592 Hi := Hir;
4593 end if;
4594 end if;
4595
4596 -- Set cache entry for future call and we are all done
4597
4598 Determine_Range_Cache_N (Cindex) := N;
9c486805 4599 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 4600 Determine_Range_Cache_Lo (Cindex) := Lo;
4601 Determine_Range_Cache_Hi (Cindex) := Hi;
4602 return;
4603
9116df93 4604 -- If any exception occurs, it means that we have some bug in the compiler,
4605 -- possibly triggered by a previous error, or by some unforeseen peculiar
ee6ba406 4606 -- occurrence. However, this is only an optimization attempt, so there is
4607 -- really no point in crashing the compiler. Instead we just decide, too
4608 -- bad, we can't figure out a range in this case after all.
4609
4610 exception
4611 when others =>
4612
4613 -- Debug flag K disables this behavior (useful for debugging)
4614
4615 if Debug_Flag_K then
4616 raise;
4617 else
4618 OK := False;
4619 Lo := No_Uint;
4620 Hi := No_Uint;
4621 return;
4622 end if;
ee6ba406 4623 end Determine_Range;
4624
7ac8c2b1 4625 -----------------------
4626 -- Determine_Range_R --
4627 -----------------------
4628
4629 procedure Determine_Range_R
4630 (N : Node_Id;
4631 OK : out Boolean;
4632 Lo : out Ureal;
4633 Hi : out Ureal;
4634 Assume_Valid : Boolean := False)
4635 is
4636 Typ : Entity_Id := Etype (N);
4637 -- Type to use, may get reset to base type for possibly invalid entity
4638
4639 Lo_Left : Ureal;
4640 Hi_Left : Ureal;
4641 -- Lo and Hi bounds of left operand
4642
4643 Lo_Right : Ureal;
4644 Hi_Right : Ureal;
4645 -- Lo and Hi bounds of right (or only) operand
4646
4647 Bound : Node_Id;
4648 -- Temp variable used to hold a bound node
4649
4650 Hbound : Ureal;
4651 -- High bound of base type of expression
4652
4653 Lor : Ureal;
4654 Hir : Ureal;
4655 -- Refined values for low and high bounds, after tightening
4656
4657 OK1 : Boolean;
4658 -- Used in lower level calls to indicate if call succeeded
4659
4660 Cindex : Cache_Index;
4661 -- Used to search cache
4662
4663 Btyp : Entity_Id;
4664 -- Base type
4665
4666 function OK_Operands return Boolean;
4667 -- Used for binary operators. Determines the ranges of the left and
4668 -- right operands, and if they are both OK, returns True, and puts
4669 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4670
4671 function Round_Machine (B : Ureal) return Ureal;
4672 -- B is a real bound. Round it using mode Round_Even.
4673
4674 -----------------
4675 -- OK_Operands --
4676 -----------------
4677
4678 function OK_Operands return Boolean is
4679 begin
4680 Determine_Range_R
4681 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4682
4683 if not OK1 then
4684 return False;
4685 end if;
4686
4687 Determine_Range_R
4688 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4689 return OK1;
4690 end OK_Operands;
4691
4692 -------------------
4693 -- Round_Machine --
4694 -------------------
4695
4696 function Round_Machine (B : Ureal) return Ureal is
4697 begin
4698 return Machine (Typ, B, Round_Even, N);
4699 end Round_Machine;
4700
4701 -- Start of processing for Determine_Range_R
4702
4703 begin
4704 -- Prevent junk warnings by initializing range variables
4705
4706 Lo := No_Ureal;
4707 Hi := No_Ureal;
4708 Lor := No_Ureal;
4709 Hir := No_Ureal;
4710
4711 -- For temporary constants internally generated to remove side effects
4712 -- we must use the corresponding expression to determine the range of
4713 -- the expression. But note that the expander can also generate
4714 -- constants in other cases, including deferred constants.
4715
4716 if Is_Entity_Name (N)
4717 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4718 and then Ekind (Entity (N)) = E_Constant
4719 and then Is_Internal_Name (Chars (Entity (N)))
4720 then
4721 if Present (Expression (Parent (Entity (N)))) then
4722 Determine_Range_R
4723 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4724
4725 elsif Present (Full_View (Entity (N))) then
4726 Determine_Range_R
4727 (Expression (Parent (Full_View (Entity (N)))),
4728 OK, Lo, Hi, Assume_Valid);
4729
4730 else
4731 OK := False;
4732 end if;
4c1c7f3f 4733
7ac8c2b1 4734 return;
4735 end if;
4736
4737 -- If type is not defined, we can't determine its range
4738
4739 if No (Typ)
4740
4741 -- We don't deal with anything except IEEE floating-point types
4742
4743 or else not Is_Floating_Point_Type (Typ)
4744 or else Float_Rep (Typ) /= IEEE_Binary
4745
4746 -- Ignore type for which an error has been posted, since range in
4747 -- this case may well be a bogosity deriving from the error. Also
4748 -- ignore if error posted on the reference node.
4749
4750 or else Error_Posted (N) or else Error_Posted (Typ)
4751 then
4752 OK := False;
4753 return;
4754 end if;
4755
4756 -- For all other cases, we can determine the range
4757
4758 OK := True;
4759
4760 -- If value is compile time known, then the possible range is the one
4761 -- value that we know this expression definitely has.
4762
4763 if Compile_Time_Known_Value (N) then
4764 Lo := Expr_Value_R (N);
4765 Hi := Lo;
4766 return;
4767 end if;
4768
4769 -- Return if already in the cache
4770
4771 Cindex := Cache_Index (N mod Cache_Size);
4772
4773 if Determine_Range_Cache_N (Cindex) = N
4774 and then
4775 Determine_Range_Cache_V (Cindex) = Assume_Valid
4776 then
4777 Lo := Determine_Range_Cache_Lo_R (Cindex);
4778 Hi := Determine_Range_Cache_Hi_R (Cindex);
4779 return;
4780 end if;
4781
4782 -- Otherwise, start by finding the bounds of the type of the expression,
4783 -- the value cannot be outside this range (if it is, then we have an
4784 -- overflow situation, which is a separate check, we are talking here
4785 -- only about the expression value).
4786
4787 -- First a check, never try to find the bounds of a generic type, since
4788 -- these bounds are always junk values, and it is only valid to look at
4789 -- the bounds in an instance.
4790
4791 if Is_Generic_Type (Typ) then
4792 OK := False;
4793 return;
4794 end if;
4795
4796 -- First step, change to use base type unless we know the value is valid
4797
4798 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4799 or else Assume_No_Invalid_Values
4800 or else Assume_Valid
4801 then
4802 null;
4803 else
4804 Typ := Underlying_Type (Base_Type (Typ));
4805 end if;
4806
4807 -- Retrieve the base type. Handle the case where the base type is a
4808 -- private type.
4809
4810 Btyp := Base_Type (Typ);
4811
4812 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4813 Btyp := Full_View (Btyp);
4814 end if;
4815
4816 -- We use the actual bound unless it is dynamic, in which case use the
4817 -- corresponding base type bound if possible. If we can't get a bound
4818 -- then we figure we can't determine the range (a peculiar case, that
4819 -- perhaps cannot happen, but there is no point in bombing in this
4820 -- optimization circuit).
4821
4822 -- First the low bound
4823
4824 Bound := Type_Low_Bound (Typ);
4825
4826 if Compile_Time_Known_Value (Bound) then
4827 Lo := Expr_Value_R (Bound);
4828
4829 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4830 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
4831
4832 else
4833 OK := False;
4834 return;
4835 end if;
4836
4837 -- Now the high bound
4838
4839 Bound := Type_High_Bound (Typ);
4840
4841 -- We need the high bound of the base type later on, and this should
4842 -- always be compile time known. Again, it is not clear that this
4843 -- can ever be false, but no point in bombing.
4844
4845 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4846 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
4847 Hi := Hbound;
4848
4849 else
4850 OK := False;
4851 return;
4852 end if;
4853
4854 -- If we have a static subtype, then that may have a tighter bound so
4855 -- use the upper bound of the subtype instead in this case.
4856
4857 if Compile_Time_Known_Value (Bound) then
4858 Hi := Expr_Value_R (Bound);
4859 end if;
4860
4861 -- We may be able to refine this value in certain situations. If any
4862 -- refinement is possible, then Lor and Hir are set to possibly tighter
4863 -- bounds, and OK1 is set to True.
4864
4865 case Nkind (N) is
4866
4867 -- For unary plus, result is limited by range of operand
4868
4869 when N_Op_Plus =>
4870 Determine_Range_R
4871 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4872
4873 -- For unary minus, determine range of operand, and negate it
4874
4875 when N_Op_Minus =>
4876 Determine_Range_R
4877 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4878
4879 if OK1 then
4880 Lor := -Hi_Right;
4881 Hir := -Lo_Right;
4882 end if;
4883
4884 -- For binary addition, get range of each operand and do the
4885 -- addition to get the result range.
4886
4887 when N_Op_Add =>
4888 if OK_Operands then
4889 Lor := Round_Machine (Lo_Left + Lo_Right);
4890 Hir := Round_Machine (Hi_Left + Hi_Right);
4891 end if;
4892
4893 -- For binary subtraction, get range of each operand and do the worst
4894 -- case subtraction to get the result range.
4895
4896 when N_Op_Subtract =>
4897 if OK_Operands then
4898 Lor := Round_Machine (Lo_Left - Hi_Right);
4899 Hir := Round_Machine (Hi_Left - Lo_Right);
4900 end if;
4901
4902 -- For multiplication, get range of each operand and do the
4903 -- four multiplications to get the result range.
4904
4905 when N_Op_Multiply =>
4906 if OK_Operands then
4907 declare
4908 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
4909 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
4910 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
4911 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
4912 begin
4913 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
4914 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
4915 end;
4916 end if;
4917
4918 -- For division, consider separately the cases where the right
4919 -- operand is positive or negative. Otherwise, the right operand
4920 -- can be arbitrarily close to zero, so the result is likely to
4921 -- be unbounded in one direction, do not attempt to compute it.
4922
4923 when N_Op_Divide =>
4924 if OK_Operands then
4925
4926 -- Right operand is positive
4927
4928 if Lo_Right > Ureal_0 then
4929
4930 -- If the low bound of the left operand is negative, obtain
4931 -- the overall low bound by dividing it by the smallest
4932 -- value of the right operand, and otherwise by the largest
4933 -- value of the right operand.
4934
4935 if Lo_Left < Ureal_0 then
4936 Lor := Round_Machine (Lo_Left / Lo_Right);
4937 else
4938 Lor := Round_Machine (Lo_Left / Hi_Right);
4939 end if;
4940
4941 -- If the high bound of the left operand is negative, obtain
4942 -- the overall high bound by dividing it by the largest
4943 -- value of the right operand, and otherwise by the
4944 -- smallest value of the right operand.
4945
4946 if Hi_Left < Ureal_0 then
4947 Hir := Round_Machine (Hi_Left / Hi_Right);
4948 else
4949 Hir := Round_Machine (Hi_Left / Lo_Right);
4950 end if;
4951
4952 -- Right operand is negative
4953
4954 elsif Hi_Right < Ureal_0 then
4955
4956 -- If the low bound of the left operand is negative, obtain
4957 -- the overall low bound by dividing it by the largest
4958 -- value of the right operand, and otherwise by the smallest
4959 -- value of the right operand.
4960
4961 if Lo_Left < Ureal_0 then
4962 Lor := Round_Machine (Lo_Left / Hi_Right);
4963 else
4964 Lor := Round_Machine (Lo_Left / Lo_Right);
4965 end if;
4966
4967 -- If the high bound of the left operand is negative, obtain
4968 -- the overall high bound by dividing it by the smallest
4969 -- value of the right operand, and otherwise by the
4970 -- largest value of the right operand.
4971
4972 if Hi_Left < Ureal_0 then
4973 Hir := Round_Machine (Hi_Left / Lo_Right);
4974 else
4975 Hir := Round_Machine (Hi_Left / Hi_Right);
4976 end if;
4977
4978 else
4979 OK1 := False;
4980 end if;
4981 end if;
4982
4983 -- For type conversion from one floating-point type to another, we
4984 -- can refine the range using the converted value.
4985
4986 when N_Type_Conversion =>
4987 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
4988
4989 -- Nothing special to do for all other expression kinds
4990
4991 when others =>
4992 OK1 := False;
4993 Lor := No_Ureal;
4994 Hir := No_Ureal;
4995 end case;
4996
4997 -- At this stage, if OK1 is true, then we know that the actual result of
4998 -- the computed expression is in the range Lor .. Hir. We can use this
4999 -- to restrict the possible range of results.
5000
5001 if OK1 then
5002
5003 -- If the refined value of the low bound is greater than the type
5004 -- low bound, then reset it to the more restrictive value.
5005
5006 if Lor > Lo then
5007 Lo := Lor;
5008 end if;
5009
5010 -- Similarly, if the refined value of the high bound is less than the
5011 -- value so far, then reset it to the more restrictive value.
5012
5013 if Hir < Hi then
5014 Hi := Hir;
5015 end if;
5016 end if;
5017
5018 -- Set cache entry for future call and we are all done
5019
5020 Determine_Range_Cache_N (Cindex) := N;
5021 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5022 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5023 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5024 return;
5025
5026 -- If any exception occurs, it means that we have some bug in the compiler,
5027 -- possibly triggered by a previous error, or by some unforeseen peculiar
5028 -- occurrence. However, this is only an optimization attempt, so there is
5029 -- really no point in crashing the compiler. Instead we just decide, too
5030 -- bad, we can't figure out a range in this case after all.
5031
5032 exception
5033 when others =>
5034
5035 -- Debug flag K disables this behavior (useful for debugging)
5036
5037 if Debug_Flag_K then
5038 raise;
5039 else
5040 OK := False;
5041 Lo := No_Ureal;
5042 Hi := No_Ureal;
5043 return;
5044 end if;
5045 end Determine_Range_R;
5046
ee6ba406 5047 ------------------------------------
5048 -- Discriminant_Checks_Suppressed --
5049 ------------------------------------
5050
5051 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5052 begin
9dfe12ae 5053 if Present (E) then
5054 if Is_Unchecked_Union (E) then
5055 return True;
5056 elsif Checks_May_Be_Suppressed (E) then
5057 return Is_Check_Suppressed (E, Discriminant_Check);
5058 end if;
5059 end if;
5060
fafc6b97 5061 return Scope_Suppress.Suppress (Discriminant_Check);
ee6ba406 5062 end Discriminant_Checks_Suppressed;
5063
5064 --------------------------------
5065 -- Division_Checks_Suppressed --
5066 --------------------------------
5067
5068 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5069 begin
9dfe12ae 5070 if Present (E) and then Checks_May_Be_Suppressed (E) then
5071 return Is_Check_Suppressed (E, Division_Check);
5072 else
fafc6b97 5073 return Scope_Suppress.Suppress (Division_Check);
9dfe12ae 5074 end if;
ee6ba406 5075 end Division_Checks_Suppressed;
5076
fa771c05 5077 --------------------------------------
5078 -- Duplicated_Tag_Checks_Suppressed --
5079 --------------------------------------
5080
5081 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5082 begin
5083 if Present (E) and then Checks_May_Be_Suppressed (E) then
5084 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5085 else
5086 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5087 end if;
5088 end Duplicated_Tag_Checks_Suppressed;
5089
ee6ba406 5090 -----------------------------------
5091 -- Elaboration_Checks_Suppressed --
5092 -----------------------------------
5093
5094 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5095 begin
38f5559f 5096 -- The complication in this routine is that if we are in the dynamic
5097 -- model of elaboration, we also check All_Checks, since All_Checks
5098 -- does not set Elaboration_Check explicitly.
5099
9dfe12ae 5100 if Present (E) then
5101 if Kill_Elaboration_Checks (E) then
5102 return True;
38f5559f 5103
9dfe12ae 5104 elsif Checks_May_Be_Suppressed (E) then
38f5559f 5105 if Is_Check_Suppressed (E, Elaboration_Check) then
5106 return True;
5107 elsif Dynamic_Elaboration_Checks then
5108 return Is_Check_Suppressed (E, All_Checks);
5109 else
5110 return False;
5111 end if;
9dfe12ae 5112 end if;
5113 end if;
5114
fafc6b97 5115 if Scope_Suppress.Suppress (Elaboration_Check) then
38f5559f 5116 return True;
5117 elsif Dynamic_Elaboration_Checks then
fafc6b97 5118 return Scope_Suppress.Suppress (All_Checks);
38f5559f 5119 else
5120 return False;
5121 end if;
ee6ba406 5122 end Elaboration_Checks_Suppressed;
5123
9dfe12ae 5124 ---------------------------
5125 -- Enable_Overflow_Check --
5126 ---------------------------
5127
5128 procedure Enable_Overflow_Check (N : Node_Id) is
4c1c7f3f 5129 Typ : constant Entity_Id := Base_Type (Etype (N));
db415383 5130 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 5131 Chk : Nat;
5132 OK : Boolean;
5133 Ent : Entity_Id;
5134 Ofs : Uint;
5135 Lo : Uint;
5136 Hi : Uint;
ee6ba406 5137
f3ccbbb3 5138 Do_Ovflow_Check : Boolean;
5139
ee6ba406 5140 begin
9dfe12ae 5141 if Debug_Flag_CC then
5142 w ("Enable_Overflow_Check for node ", Int (N));
5143 Write_Str (" Source location = ");
5144 wl (Sloc (N));
00c403ee 5145 pg (Union_Id (N));
ee6ba406 5146 end if;
ee6ba406 5147
75209ec5 5148 -- No check if overflow checks suppressed for type of node
5149
0df9d43f 5150 if Overflow_Checks_Suppressed (Etype (N)) then
75209ec5 5151 return;
5152
49260fa5 5153 -- Nothing to do for unsigned integer types, which do not overflow
5154
5155 elsif Is_Modular_Integer_Type (Typ) then
5156 return;
3cce7f32 5157 end if;
5158
0df9d43f 5159 -- This is the point at which processing for STRICT mode diverges
21a55437 5160 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5161 -- probably more extreme that it needs to be, but what is going on here
5162 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
0df9d43f 5163 -- to leave the processing for STRICT mode untouched. There were
21a55437 5164 -- two reasons for this. First it avoided any incompatible change of
0df9d43f 5165 -- behavior. Second, it guaranteed that STRICT mode continued to be
21a55437 5166 -- legacy reliable.
3cce7f32 5167
0df9d43f 5168 -- The big difference is that in STRICT mode there is a fair amount of
3cce7f32 5169 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5170 -- know that no check is needed. We skip all that in the two new modes,
5171 -- since really overflow checking happens over a whole subtree, and we
5172 -- do the corresponding optimizations later on when applying the checks.
5173
5174 if Mode in Minimized_Or_Eliminated then
0df9d43f 5175 if not (Overflow_Checks_Suppressed (Etype (N)))
5176 and then not (Is_Entity_Name (N)
5177 and then Overflow_Checks_Suppressed (Entity (N)))
5178 then
5179 Activate_Overflow_Check (N);
5180 end if;
3cce7f32 5181
5182 if Debug_Flag_CC then
5183 w ("Minimized/Eliminated mode");
5184 end if;
5185
5186 return;
5187 end if;
5188
0df9d43f 5189 -- Remainder of processing is for STRICT case, and is unchanged from
691fe9e0 5190 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
49260fa5 5191
feff2f05 5192 -- Nothing to do if the range of the result is known OK. We skip this
5193 -- for conversions, since the caller already did the check, and in any
5194 -- case the condition for deleting the check for a type conversion is
cc60bd16 5195 -- different.
ee6ba406 5196
3cce7f32 5197 if Nkind (N) /= N_Type_Conversion then
9c486805 5198 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 5199
cc60bd16 5200 -- Note in the test below that we assume that the range is not OK
5201 -- if a bound of the range is equal to that of the type. That's not
5202 -- quite accurate but we do this for the following reasons:
ee6ba406 5203
9dfe12ae 5204 -- a) The way that Determine_Range works, it will typically report
5205 -- the bounds of the value as being equal to the bounds of the
5206 -- type, because it either can't tell anything more precise, or
5207 -- does not think it is worth the effort to be more precise.
ee6ba406 5208
9dfe12ae 5209 -- b) It is very unusual to have a situation in which this would
5210 -- generate an unnecessary overflow check (an example would be
5211 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 5212 -- literal value one is added).
ee6ba406 5213
9dfe12ae 5214 -- c) The alternative is a lot of special casing in this routine
5215 -- which would partially duplicate Determine_Range processing.
ee6ba406 5216
f3ccbbb3 5217 if OK then
5218 Do_Ovflow_Check := True;
5219
5220 -- Note that the following checks are quite deliberately > and <
5221 -- rather than >= and <= as explained above.
5222
5223 if Lo > Expr_Value (Type_Low_Bound (Typ))
5224 and then
5225 Hi < Expr_Value (Type_High_Bound (Typ))
5226 then
5227 Do_Ovflow_Check := False;
5228
5229 -- Despite the comments above, it is worth dealing specially with
5230 -- division specially. The only case where integer division can
5231 -- overflow is (largest negative number) / (-1). So we will do
5232 -- an extra range analysis to see if this is possible.
5233
5234 elsif Nkind (N) = N_Op_Divide then
5235 Determine_Range
5236 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5237
5238 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5239 Do_Ovflow_Check := False;
5240
5241 else
5242 Determine_Range
5243 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5244
5245 if OK and then (Lo > Uint_Minus_1
5246 or else
5247 Hi < Uint_Minus_1)
5248 then
5249 Do_Ovflow_Check := False;
5250 end if;
5251 end if;
9dfe12ae 5252 end if;
5253
f3ccbbb3 5254 -- If no overflow check required, we are done
5255
5256 if not Do_Ovflow_Check then
5257 if Debug_Flag_CC then
5258 w ("No overflow check required");
5259 end if;
5260
5261 return;
5262 end if;
9dfe12ae 5263 end if;
5264 end if;
5265
feff2f05 5266 -- If not in optimizing mode, set flag and we are done. We are also done
5267 -- (and just set the flag) if the type is not a discrete type, since it
5268 -- is not worth the effort to eliminate checks for other than discrete
5269 -- types. In addition, we take this same path if we have stored the
5270 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5271 -- but we do not want to blow up).
9dfe12ae 5272
5273 if Optimization_Level = 0
5274 or else not Is_Discrete_Type (Etype (N))
5275 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5276 then
00c403ee 5277 Activate_Overflow_Check (N);
9dfe12ae 5278
5279 if Debug_Flag_CC then
5280 w ("Optimization off");
5281 end if;
5282
ee6ba406 5283 return;
9dfe12ae 5284 end if;
ee6ba406 5285
9dfe12ae 5286 -- Otherwise evaluate and check the expression
5287
5288 Find_Check
5289 (Expr => N,
5290 Check_Type => 'O',
5291 Target_Type => Empty,
5292 Entry_OK => OK,
5293 Check_Num => Chk,
5294 Ent => Ent,
5295 Ofs => Ofs);
5296
5297 if Debug_Flag_CC then
5298 w ("Called Find_Check");
5299 w (" OK = ", OK);
5300
5301 if OK then
5302 w (" Check_Num = ", Chk);
5303 w (" Ent = ", Int (Ent));
5304 Write_Str (" Ofs = ");
5305 pid (Ofs);
5306 end if;
5307 end if;
ee6ba406 5308
9dfe12ae 5309 -- If check is not of form to optimize, then set flag and we are done
5310
5311 if not OK then
00c403ee 5312 Activate_Overflow_Check (N);
ee6ba406 5313 return;
9dfe12ae 5314 end if;
ee6ba406 5315
9dfe12ae 5316 -- If check is already performed, then return without setting flag
5317
5318 if Chk /= 0 then
5319 if Debug_Flag_CC then
5320 w ("Check suppressed!");
5321 end if;
ee6ba406 5322
ee6ba406 5323 return;
9dfe12ae 5324 end if;
ee6ba406 5325
9dfe12ae 5326 -- Here we will make a new entry for the new check
5327
00c403ee 5328 Activate_Overflow_Check (N);
9dfe12ae 5329 Num_Saved_Checks := Num_Saved_Checks + 1;
5330 Saved_Checks (Num_Saved_Checks) :=
5331 (Killed => False,
5332 Entity => Ent,
5333 Offset => Ofs,
5334 Check_Type => 'O',
5335 Target_Type => Empty);
5336
5337 if Debug_Flag_CC then
5338 w ("Make new entry, check number = ", Num_Saved_Checks);
5339 w (" Entity = ", Int (Ent));
5340 Write_Str (" Offset = ");
5341 pid (Ofs);
5342 w (" Check_Type = O");
5343 w (" Target_Type = Empty");
5344 end if;
ee6ba406 5345
feff2f05 5346 -- If we get an exception, then something went wrong, probably because of
20cf157b 5347 -- an error in the structure of the tree due to an incorrect program. Or
5348 -- it may be a bug in the optimization circuit. In either case the safest
feff2f05 5349 -- thing is simply to set the check flag unconditionally.
9dfe12ae 5350
5351 exception
5352 when others =>
00c403ee 5353 Activate_Overflow_Check (N);
9dfe12ae 5354
5355 if Debug_Flag_CC then
5356 w (" exception occurred, overflow flag set");
5357 end if;
5358
5359 return;
5360 end Enable_Overflow_Check;
5361
5362 ------------------------
5363 -- Enable_Range_Check --
5364 ------------------------
5365
5366 procedure Enable_Range_Check (N : Node_Id) is
5367 Chk : Nat;
5368 OK : Boolean;
5369 Ent : Entity_Id;
5370 Ofs : Uint;
5371 Ttyp : Entity_Id;
5372 P : Node_Id;
5373
5374 begin
feff2f05 5375 -- Return if unchecked type conversion with range check killed. In this
39a0c1d3 5376 -- case we never set the flag (that's what Kill_Range_Check is about).
9dfe12ae 5377
5378 if Nkind (N) = N_Unchecked_Type_Conversion
5379 and then Kill_Range_Check (N)
ee6ba406 5380 then
5381 return;
9dfe12ae 5382 end if;
ee6ba406 5383
55e8372b 5384 -- Do not set range check flag if parent is assignment statement or
5385 -- object declaration with Suppress_Assignment_Checks flag set
5386
5387 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5388 and then Suppress_Assignment_Checks (Parent (N))
5389 then
5390 return;
5391 end if;
5392
0577b0b1 5393 -- Check for various cases where we should suppress the range check
5394
5395 -- No check if range checks suppressed for type of node
5396
20cf157b 5397 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
0577b0b1 5398 return;
5399
5400 -- No check if node is an entity name, and range checks are suppressed
5401 -- for this entity, or for the type of this entity.
5402
5403 elsif Is_Entity_Name (N)
5404 and then (Range_Checks_Suppressed (Entity (N))
20cf157b 5405 or else Range_Checks_Suppressed (Etype (Entity (N))))
0577b0b1 5406 then
5407 return;
5408
5409 -- No checks if index of array, and index checks are suppressed for
5410 -- the array object or the type of the array.
5411
5412 elsif Nkind (Parent (N)) = N_Indexed_Component then
5413 declare
5414 Pref : constant Node_Id := Prefix (Parent (N));
5415 begin
5416 if Is_Entity_Name (Pref)
5417 and then Index_Checks_Suppressed (Entity (Pref))
5418 then
5419 return;
5420 elsif Index_Checks_Suppressed (Etype (Pref)) then
5421 return;
5422 end if;
5423 end;
5424 end if;
5425
9dfe12ae 5426 -- Debug trace output
ee6ba406 5427
9dfe12ae 5428 if Debug_Flag_CC then
5429 w ("Enable_Range_Check for node ", Int (N));
5430 Write_Str (" Source location = ");
5431 wl (Sloc (N));
00c403ee 5432 pg (Union_Id (N));
9dfe12ae 5433 end if;
5434
feff2f05 5435 -- If not in optimizing mode, set flag and we are done. We are also done
5436 -- (and just set the flag) if the type is not a discrete type, since it
5437 -- is not worth the effort to eliminate checks for other than discrete
5438 -- types. In addition, we take this same path if we have stored the
5439 -- maximum number of checks possible already (a very unlikely situation,
39a0c1d3 5440 -- but we do not want to blow up).
9dfe12ae 5441
5442 if Optimization_Level = 0
5443 or else No (Etype (N))
5444 or else not Is_Discrete_Type (Etype (N))
5445 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 5446 then
00c403ee 5447 Activate_Range_Check (N);
9dfe12ae 5448
5449 if Debug_Flag_CC then
5450 w ("Optimization off");
5451 end if;
5452
ee6ba406 5453 return;
9dfe12ae 5454 end if;
ee6ba406 5455
9dfe12ae 5456 -- Otherwise find out the target type
ee6ba406 5457
9dfe12ae 5458 P := Parent (N);
ee6ba406 5459
9dfe12ae 5460 -- For assignment, use left side subtype
5461
5462 if Nkind (P) = N_Assignment_Statement
5463 and then Expression (P) = N
5464 then
5465 Ttyp := Etype (Name (P));
5466
5467 -- For indexed component, use subscript subtype
5468
5469 elsif Nkind (P) = N_Indexed_Component then
5470 declare
5471 Atyp : Entity_Id;
5472 Indx : Node_Id;
5473 Subs : Node_Id;
5474
5475 begin
5476 Atyp := Etype (Prefix (P));
5477
5478 if Is_Access_Type (Atyp) then
5479 Atyp := Designated_Type (Atyp);
f07ea091 5480
5481 -- If the prefix is an access to an unconstrained array,
feff2f05 5482 -- perform check unconditionally: it depends on the bounds of
5483 -- an object and we cannot currently recognize whether the test
5484 -- may be redundant.
f07ea091 5485
5486 if not Is_Constrained (Atyp) then
00c403ee 5487 Activate_Range_Check (N);
f07ea091 5488 return;
5489 end if;
7189d17f 5490
feff2f05 5491 -- Ditto if the prefix is an explicit dereference whose designated
5492 -- type is unconstrained.
7189d17f 5493
5494 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
5495 and then not Is_Constrained (Atyp)
5496 then
00c403ee 5497 Activate_Range_Check (N);
7189d17f 5498 return;
9dfe12ae 5499 end if;
5500
5501 Indx := First_Index (Atyp);
5502 Subs := First (Expressions (P));
5503 loop
5504 if Subs = N then
5505 Ttyp := Etype (Indx);
5506 exit;
5507 end if;
5508
5509 Next_Index (Indx);
5510 Next (Subs);
5511 end loop;
5512 end;
5513
5514 -- For now, ignore all other cases, they are not so interesting
5515
5516 else
5517 if Debug_Flag_CC then
5518 w (" target type not found, flag set");
5519 end if;
5520
00c403ee 5521 Activate_Range_Check (N);
9dfe12ae 5522 return;
5523 end if;
5524
5525 -- Evaluate and check the expression
5526
5527 Find_Check
5528 (Expr => N,
5529 Check_Type => 'R',
5530 Target_Type => Ttyp,
5531 Entry_OK => OK,
5532 Check_Num => Chk,
5533 Ent => Ent,
5534 Ofs => Ofs);
5535
5536 if Debug_Flag_CC then
5537 w ("Called Find_Check");
5538 w ("Target_Typ = ", Int (Ttyp));
5539 w (" OK = ", OK);
5540
5541 if OK then
5542 w (" Check_Num = ", Chk);
5543 w (" Ent = ", Int (Ent));
5544 Write_Str (" Ofs = ");
5545 pid (Ofs);
5546 end if;
5547 end if;
5548
5549 -- If check is not of form to optimize, then set flag and we are done
5550
5551 if not OK then
5552 if Debug_Flag_CC then
5553 w (" expression not of optimizable type, flag set");
5554 end if;
5555
00c403ee 5556 Activate_Range_Check (N);
9dfe12ae 5557 return;
5558 end if;
5559
5560 -- If check is already performed, then return without setting flag
5561
5562 if Chk /= 0 then
5563 if Debug_Flag_CC then
5564 w ("Check suppressed!");
5565 end if;
5566
5567 return;
5568 end if;
5569
5570 -- Here we will make a new entry for the new check
5571
00c403ee 5572 Activate_Range_Check (N);
9dfe12ae 5573 Num_Saved_Checks := Num_Saved_Checks + 1;
5574 Saved_Checks (Num_Saved_Checks) :=
5575 (Killed => False,
5576 Entity => Ent,
5577 Offset => Ofs,
5578 Check_Type => 'R',
5579 Target_Type => Ttyp);
5580
5581 if Debug_Flag_CC then
5582 w ("Make new entry, check number = ", Num_Saved_Checks);
5583 w (" Entity = ", Int (Ent));
5584 Write_Str (" Offset = ");
5585 pid (Ofs);
5586 w (" Check_Type = R");
5587 w (" Target_Type = ", Int (Ttyp));
00c403ee 5588 pg (Union_Id (Ttyp));
9dfe12ae 5589 end if;
5590
feff2f05 5591 -- If we get an exception, then something went wrong, probably because of
5592 -- an error in the structure of the tree due to an incorrect program. Or
5593 -- it may be a bug in the optimization circuit. In either case the safest
5594 -- thing is simply to set the check flag unconditionally.
9dfe12ae 5595
5596 exception
5597 when others =>
00c403ee 5598 Activate_Range_Check (N);
9dfe12ae 5599
5600 if Debug_Flag_CC then
5601 w (" exception occurred, range flag set");
5602 end if;
5603
5604 return;
5605 end Enable_Range_Check;
5606
5607 ------------------
5608 -- Ensure_Valid --
5609 ------------------
5610
5611 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
5612 Typ : constant Entity_Id := Etype (Expr);
5613
5614 begin
5615 -- Ignore call if we are not doing any validity checking
5616
5617 if not Validity_Checks_On then
5618 return;
5619
0577b0b1 5620 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 5621
0577b0b1 5622 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 5623 return;
5624
feff2f05 5625 -- No check required if expression is from the expander, we assume the
5626 -- expander will generate whatever checks are needed. Note that this is
39a0c1d3 5627 -- not just an optimization, it avoids infinite recursions.
9dfe12ae 5628
5629 -- Unchecked conversions must be checked, unless they are initialized
5630 -- scalar values, as in a component assignment in an init proc.
5631
5632 -- In addition, we force a check if Force_Validity_Checks is set
5633
5634 elsif not Comes_From_Source (Expr)
5635 and then not Force_Validity_Checks
5636 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5637 or else Kill_Range_Check (Expr))
5638 then
5639 return;
5640
5641 -- No check required if expression is known to have valid value
5642
5643 elsif Expr_Known_Valid (Expr) then
5644 return;
5645
feff2f05 5646 -- Ignore case of enumeration with holes where the flag is set not to
5647 -- worry about holes, since no special validity check is needed
9dfe12ae 5648
5649 elsif Is_Enumeration_Type (Typ)
5650 and then Has_Non_Standard_Rep (Typ)
5651 and then Holes_OK
5652 then
5653 return;
5654
f2a06be9 5655 -- No check required on the left-hand side of an assignment
9dfe12ae 5656
5657 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5658 and then Expr = Name (Parent (Expr))
5659 then
5660 return;
5661
6fb3c314 5662 -- No check on a universal real constant. The context will eventually
38f5559f 5663 -- convert it to a machine number for some target type, or report an
5664 -- illegality.
5665
5666 elsif Nkind (Expr) = N_Real_Literal
5667 and then Etype (Expr) = Universal_Real
5668 then
5669 return;
5670
6fb3c314 5671 -- If the expression denotes a component of a packed boolean array,
0577b0b1 5672 -- no possible check applies. We ignore the old ACATS chestnuts that
5673 -- involve Boolean range True..True.
5674
5675 -- Note: validity checks are generated for expressions that yield a
5676 -- scalar type, when it is possible to create a value that is outside of
5677 -- the type. If this is a one-bit boolean no such value exists. This is
5678 -- an optimization, and it also prevents compiler blowing up during the
5679 -- elaboration of improperly expanded packed array references.
5680
5681 elsif Nkind (Expr) = N_Indexed_Component
5682 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
5683 and then Root_Type (Etype (Expr)) = Standard_Boolean
5684 then
5685 return;
5686
737e8460 5687 -- For an expression with actions, we want to insert the validity check
5688 -- on the final Expression.
5689
5690 elsif Nkind (Expr) = N_Expression_With_Actions then
5691 Ensure_Valid (Expression (Expr));
5692 return;
5693
9dfe12ae 5694 -- An annoying special case. If this is an out parameter of a scalar
5695 -- type, then the value is not going to be accessed, therefore it is
5696 -- inappropriate to do any validity check at the call site.
5697
5698 else
5699 -- Only need to worry about scalar types
5700
5701 if Is_Scalar_Type (Typ) then
ee6ba406 5702 declare
5703 P : Node_Id;
5704 N : Node_Id;
5705 E : Entity_Id;
5706 F : Entity_Id;
5707 A : Node_Id;
5708 L : List_Id;
5709
5710 begin
5711 -- Find actual argument (which may be a parameter association)
5712 -- and the parent of the actual argument (the call statement)
5713
5714 N := Expr;
5715 P := Parent (Expr);
5716
5717 if Nkind (P) = N_Parameter_Association then
5718 N := P;
5719 P := Parent (N);
5720 end if;
5721
feff2f05 5722 -- Only need to worry if we are argument of a procedure call
5723 -- since functions don't have out parameters. If this is an
5724 -- indirect or dispatching call, get signature from the
5725 -- subprogram type.
ee6ba406 5726
5727 if Nkind (P) = N_Procedure_Call_Statement then
5728 L := Parameter_Associations (P);
9dfe12ae 5729
5730 if Is_Entity_Name (Name (P)) then
5731 E := Entity (Name (P));
5732 else
5733 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5734 E := Etype (Name (P));
5735 end if;
ee6ba406 5736
feff2f05 5737 -- Only need to worry if there are indeed actuals, and if
5738 -- this could be a procedure call, otherwise we cannot get a
5739 -- match (either we are not an argument, or the mode of the
5740 -- formal is not OUT). This test also filters out the
5741 -- generic case.
ee6ba406 5742
20cf157b 5743 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
5744
feff2f05 5745 -- This is the loop through parameters, looking for an
5746 -- OUT parameter for which we are the argument.
ee6ba406 5747
5748 F := First_Formal (E);
5749 A := First (L);
ee6ba406 5750 while Present (F) loop
5751 if Ekind (F) = E_Out_Parameter and then A = N then
5752 return;
5753 end if;
5754
5755 Next_Formal (F);
5756 Next (A);
5757 end loop;
5758 end if;
5759 end if;
5760 end;
5761 end if;
5762 end if;
5763
fa6a6949 5764 -- If this is a boolean expression, only its elementary operands need
90a07d4c 5765 -- checking: if they are valid, a boolean or short-circuit operation
5766 -- with them will be valid as well.
784d4230 5767
5768 if Base_Type (Typ) = Standard_Boolean
7af38999 5769 and then
fa6a6949 5770 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
784d4230 5771 then
5772 return;
5773 end if;
5774
0577b0b1 5775 -- If we fall through, a validity check is required
ee6ba406 5776
5777 Insert_Valid_Check (Expr);
ce7498d3 5778
5779 if Is_Entity_Name (Expr)
5780 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5781 then
5782 Set_Is_Known_Valid (Entity (Expr));
5783 end if;
ee6ba406 5784 end Ensure_Valid;
5785
5786 ----------------------
5787 -- Expr_Known_Valid --
5788 ----------------------
5789
5790 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5791 Typ : constant Entity_Id := Etype (Expr);
5792
5793 begin
feff2f05 5794 -- Non-scalar types are always considered valid, since they never give
5795 -- rise to the issues of erroneous or bounded error behavior that are
5796 -- the concern. In formal reference manual terms the notion of validity
5797 -- only applies to scalar types. Note that even when packed arrays are
5798 -- represented using modular types, they are still arrays semantically,
5799 -- so they are also always valid (in particular, the unused bits can be
5800 -- random rubbish without affecting the validity of the array value).
ee6ba406 5801
a88a5773 5802 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
ee6ba406 5803 return True;
5804
5805 -- If no validity checking, then everything is considered valid
5806
5807 elsif not Validity_Checks_On then
5808 return True;
5809
5810 -- Floating-point types are considered valid unless floating-point
5811 -- validity checks have been specifically turned on.
5812
5813 elsif Is_Floating_Point_Type (Typ)
5814 and then not Validity_Check_Floating_Point
5815 then
5816 return True;
5817
feff2f05 5818 -- If the expression is the value of an object that is known to be
5819 -- valid, then clearly the expression value itself is valid.
ee6ba406 5820
5821 elsif Is_Entity_Name (Expr)
5822 and then Is_Known_Valid (Entity (Expr))
985fe5d6 5823
5824 -- Exclude volatile variables
5825
5826 and then not Treat_As_Volatile (Entity (Expr))
ee6ba406 5827 then
5828 return True;
5829
0577b0b1 5830 -- References to discriminants are always considered valid. The value
5831 -- of a discriminant gets checked when the object is built. Within the
5832 -- record, we consider it valid, and it is important to do so, since
5833 -- otherwise we can try to generate bogus validity checks which
feff2f05 5834 -- reference discriminants out of scope. Discriminants of concurrent
5835 -- types are excluded for the same reason.
0577b0b1 5836
5837 elsif Is_Entity_Name (Expr)
feff2f05 5838 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 5839 then
5840 return True;
5841
feff2f05 5842 -- If the type is one for which all values are known valid, then we are
5843 -- sure that the value is valid except in the slightly odd case where
5844 -- the expression is a reference to a variable whose size has been
5845 -- explicitly set to a value greater than the object size.
ee6ba406 5846
5847 elsif Is_Known_Valid (Typ) then
5848 if Is_Entity_Name (Expr)
5849 and then Ekind (Entity (Expr)) = E_Variable
5850 and then Esize (Entity (Expr)) > Esize (Typ)
5851 then
5852 return False;
5853 else
5854 return True;
5855 end if;
5856
5857 -- Integer and character literals always have valid values, where
5858 -- appropriate these will be range checked in any case.
5859
20cf157b 5860 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
ee6ba406 5861 return True;
5862
91e47010 5863 -- Real literals are assumed to be valid in VM targets
5864
20cf157b 5865 elsif VM_Target /= No_VM and then Nkind (Expr) = N_Real_Literal then
91e47010 5866 return True;
5867
ee6ba406 5868 -- If we have a type conversion or a qualification of a known valid
5869 -- value, then the result will always be valid.
5870
20cf157b 5871 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
ee6ba406 5872 return Expr_Known_Valid (Expression (Expr));
5873
1eb1395f 5874 -- Case of expression is a non-floating-point operator. In this case we
5875 -- can assume the result is valid the generated code for the operator
5876 -- will include whatever checks are needed (e.g. range checks) to ensure
5877 -- validity. This assumption does not hold for the floating-point case,
5878 -- since floating-point operators can generate Infinite or NaN results
5879 -- which are considered invalid.
5880
5881 -- Historical note: in older versions, the exemption of floating-point
5882 -- types from this assumption was done only in cases where the parent
5883 -- was an assignment, function call or parameter association. Presumably
5884 -- the idea was that in other contexts, the result would be checked
5885 -- elsewhere, but this list of cases was missing tests (at least the
5886 -- N_Object_Declaration case, as shown by a reported missing validity
5887 -- check), and it is not clear why function calls but not procedure
5888 -- calls were tested for. It really seems more accurate and much
5889 -- safer to recognize that expressions which are the result of a
5890 -- floating-point operator can never be assumed to be valid.
5891
5892 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
5893 return True;
1d90d657 5894
feff2f05 5895 -- The result of a membership test is always valid, since it is true or
5896 -- false, there are no other possibilities.
0577b0b1 5897
5898 elsif Nkind (Expr) in N_Membership_Test then
5899 return True;
5900
ee6ba406 5901 -- For all other cases, we do not know the expression is valid
5902
5903 else
5904 return False;
5905 end if;
5906 end Expr_Known_Valid;
5907
9dfe12ae 5908 ----------------
5909 -- Find_Check --
5910 ----------------
5911
5912 procedure Find_Check
5913 (Expr : Node_Id;
5914 Check_Type : Character;
5915 Target_Type : Entity_Id;
5916 Entry_OK : out Boolean;
5917 Check_Num : out Nat;
5918 Ent : out Entity_Id;
5919 Ofs : out Uint)
5920 is
5921 function Within_Range_Of
5922 (Target_Type : Entity_Id;
314a23b6 5923 Check_Type : Entity_Id) return Boolean;
9dfe12ae 5924 -- Given a requirement for checking a range against Target_Type, and
5925 -- and a range Check_Type against which a check has already been made,
5926 -- determines if the check against check type is sufficient to ensure
5927 -- that no check against Target_Type is required.
5928
5929 ---------------------
5930 -- Within_Range_Of --
5931 ---------------------
5932
5933 function Within_Range_Of
5934 (Target_Type : Entity_Id;
314a23b6 5935 Check_Type : Entity_Id) return Boolean
9dfe12ae 5936 is
5937 begin
5938 if Target_Type = Check_Type then
5939 return True;
5940
5941 else
5942 declare
5943 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5944 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5945 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5946 Chi : constant Node_Id := Type_High_Bound (Check_Type);
5947
5948 begin
5949 if (Tlo = Clo
5950 or else (Compile_Time_Known_Value (Tlo)
5951 and then
5952 Compile_Time_Known_Value (Clo)
5953 and then
5954 Expr_Value (Clo) >= Expr_Value (Tlo)))
5955 and then
5956 (Thi = Chi
5957 or else (Compile_Time_Known_Value (Thi)
5958 and then
5959 Compile_Time_Known_Value (Chi)
5960 and then
5961 Expr_Value (Chi) <= Expr_Value (Clo)))
5962 then
5963 return True;
5964 else
5965 return False;
5966 end if;
5967 end;
5968 end if;
5969 end Within_Range_Of;
5970
5971 -- Start of processing for Find_Check
5972
5973 begin
ed195555 5974 -- Establish default, in case no entry is found
9dfe12ae 5975
5976 Check_Num := 0;
5977
5978 -- Case of expression is simple entity reference
5979
5980 if Is_Entity_Name (Expr) then
5981 Ent := Entity (Expr);
5982 Ofs := Uint_0;
5983
5984 -- Case of expression is entity + known constant
5985
5986 elsif Nkind (Expr) = N_Op_Add
5987 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5988 and then Is_Entity_Name (Left_Opnd (Expr))
5989 then
5990 Ent := Entity (Left_Opnd (Expr));
5991 Ofs := Expr_Value (Right_Opnd (Expr));
5992
5993 -- Case of expression is entity - known constant
5994
5995 elsif Nkind (Expr) = N_Op_Subtract
5996 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5997 and then Is_Entity_Name (Left_Opnd (Expr))
5998 then
5999 Ent := Entity (Left_Opnd (Expr));
6000 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6001
6002 -- Any other expression is not of the right form
6003
6004 else
6005 Ent := Empty;
6006 Ofs := Uint_0;
6007 Entry_OK := False;
6008 return;
6009 end if;
6010
feff2f05 6011 -- Come here with expression of appropriate form, check if entity is an
6012 -- appropriate one for our purposes.
9dfe12ae 6013
6014 if (Ekind (Ent) = E_Variable
cc60bd16 6015 or else Is_Constant_Object (Ent))
9dfe12ae 6016 and then not Is_Library_Level_Entity (Ent)
6017 then
6018 Entry_OK := True;
6019 else
6020 Entry_OK := False;
6021 return;
6022 end if;
6023
6024 -- See if there is matching check already
6025
6026 for J in reverse 1 .. Num_Saved_Checks loop
6027 declare
6028 SC : Saved_Check renames Saved_Checks (J);
9dfe12ae 6029 begin
6030 if SC.Killed = False
6031 and then SC.Entity = Ent
6032 and then SC.Offset = Ofs
6033 and then SC.Check_Type = Check_Type
6034 and then Within_Range_Of (Target_Type, SC.Target_Type)
6035 then
6036 Check_Num := J;
6037 return;
6038 end if;
6039 end;
6040 end loop;
6041
6042 -- If we fall through entry was not found
6043
9dfe12ae 6044 return;
6045 end Find_Check;
6046
6047 ---------------------------------
6048 -- Generate_Discriminant_Check --
6049 ---------------------------------
6050
6051 -- Note: the code for this procedure is derived from the
feff2f05 6052 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 6053
6054 procedure Generate_Discriminant_Check (N : Node_Id) is
6055 Loc : constant Source_Ptr := Sloc (N);
6056 Pref : constant Node_Id := Prefix (N);
6057 Sel : constant Node_Id := Selector_Name (N);
6058
6059 Orig_Comp : constant Entity_Id :=
b6341c67 6060 Original_Record_Component (Entity (Sel));
9dfe12ae 6061 -- The original component to be checked
6062
6063 Discr_Fct : constant Entity_Id :=
b6341c67 6064 Discriminant_Checking_Func (Orig_Comp);
9dfe12ae 6065 -- The discriminant checking function
6066
6067 Discr : Entity_Id;
6068 -- One discriminant to be checked in the type
6069
6070 Real_Discr : Entity_Id;
6071 -- Actual discriminant in the call
6072
6073 Pref_Type : Entity_Id;
6074 -- Type of relevant prefix (ignoring private/access stuff)
6075
6076 Args : List_Id;
6077 -- List of arguments for function call
6078
6079 Formal : Entity_Id;
feff2f05 6080 -- Keep track of the formal corresponding to the actual we build for
6081 -- each discriminant, in order to be able to perform the necessary type
6082 -- conversions.
9dfe12ae 6083
6084 Scomp : Node_Id;
6085 -- Selected component reference for checking function argument
6086
6087 begin
6088 Pref_Type := Etype (Pref);
6089
6090 -- Force evaluation of the prefix, so that it does not get evaluated
6091 -- twice (once for the check, once for the actual reference). Such a
20cf157b 6092 -- double evaluation is always a potential source of inefficiency, and
6093 -- is functionally incorrect in the volatile case, or when the prefix
6094 -- may have side-effects. A non-volatile entity or a component of a
6095 -- non-volatile entity requires no evaluation.
9dfe12ae 6096
6097 if Is_Entity_Name (Pref) then
6098 if Treat_As_Volatile (Entity (Pref)) then
6099 Force_Evaluation (Pref, Name_Req => True);
6100 end if;
6101
6102 elsif Treat_As_Volatile (Etype (Pref)) then
20cf157b 6103 Force_Evaluation (Pref, Name_Req => True);
9dfe12ae 6104
6105 elsif Nkind (Pref) = N_Selected_Component
6106 and then Is_Entity_Name (Prefix (Pref))
6107 then
6108 null;
6109
6110 else
6111 Force_Evaluation (Pref, Name_Req => True);
6112 end if;
6113
6114 -- For a tagged type, use the scope of the original component to
6115 -- obtain the type, because ???
6116
6117 if Is_Tagged_Type (Scope (Orig_Comp)) then
6118 Pref_Type := Scope (Orig_Comp);
6119
feff2f05 6120 -- For an untagged derived type, use the discriminants of the parent
6121 -- which have been renamed in the derivation, possibly by a one-to-many
d1a2e31b 6122 -- discriminant constraint. For untagged type, initially get the Etype
feff2f05 6123 -- of the prefix
9dfe12ae 6124
6125 else
6126 if Is_Derived_Type (Pref_Type)
6127 and then Number_Discriminants (Pref_Type) /=
6128 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6129 then
6130 Pref_Type := Etype (Base_Type (Pref_Type));
6131 end if;
6132 end if;
6133
6134 -- We definitely should have a checking function, This routine should
6135 -- not be called if no discriminant checking function is present.
6136
6137 pragma Assert (Present (Discr_Fct));
6138
6139 -- Create the list of the actual parameters for the call. This list
6140 -- is the list of the discriminant fields of the record expression to
6141 -- be discriminant checked.
6142
6143 Args := New_List;
6144 Formal := First_Formal (Discr_Fct);
6145 Discr := First_Discriminant (Pref_Type);
6146 while Present (Discr) loop
6147
6148 -- If we have a corresponding discriminant field, and a parent
6149 -- subtype is present, then we want to use the corresponding
6150 -- discriminant since this is the one with the useful value.
6151
6152 if Present (Corresponding_Discriminant (Discr))
6153 and then Ekind (Pref_Type) = E_Record_Type
6154 and then Present (Parent_Subtype (Pref_Type))
6155 then
6156 Real_Discr := Corresponding_Discriminant (Discr);
6157 else
6158 Real_Discr := Discr;
6159 end if;
6160
6161 -- Construct the reference to the discriminant
6162
6163 Scomp :=
6164 Make_Selected_Component (Loc,
6165 Prefix =>
6166 Unchecked_Convert_To (Pref_Type,
6167 Duplicate_Subexpr (Pref)),
6168 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6169
6170 -- Manually analyze and resolve this selected component. We really
6171 -- want it just as it appears above, and do not want the expander
feff2f05 6172 -- playing discriminal games etc with this reference. Then we append
6173 -- the argument to the list we are gathering.
9dfe12ae 6174
6175 Set_Etype (Scomp, Etype (Real_Discr));
6176 Set_Analyzed (Scomp, True);
6177 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6178
6179 Next_Formal_With_Extras (Formal);
6180 Next_Discriminant (Discr);
6181 end loop;
6182
6183 -- Now build and insert the call
6184
6185 Insert_Action (N,
6186 Make_Raise_Constraint_Error (Loc,
6187 Condition =>
6188 Make_Function_Call (Loc,
20cf157b 6189 Name => New_Occurrence_Of (Discr_Fct, Loc),
9dfe12ae 6190 Parameter_Associations => Args),
6191 Reason => CE_Discriminant_Check_Failed));
6192 end Generate_Discriminant_Check;
6193
5c99c290 6194 ---------------------------
6195 -- Generate_Index_Checks --
6196 ---------------------------
9dfe12ae 6197
6198 procedure Generate_Index_Checks (N : Node_Id) is
05f3e139 6199
6200 function Entity_Of_Prefix return Entity_Id;
6201 -- Returns the entity of the prefix of N (or Empty if not found)
6202
3f42e2a7 6203 ----------------------
6204 -- Entity_Of_Prefix --
6205 ----------------------
6206
05f3e139 6207 function Entity_Of_Prefix return Entity_Id is
e5d38095 6208 P : Node_Id;
6209
05f3e139 6210 begin
e5d38095 6211 P := Prefix (N);
05f3e139 6212 while not Is_Entity_Name (P) loop
6213 if not Nkind_In (P, N_Selected_Component,
6214 N_Indexed_Component)
6215 then
6216 return Empty;
6217 end if;
6218
6219 P := Prefix (P);
6220 end loop;
6221
6222 return Entity (P);
6223 end Entity_Of_Prefix;
6224
6225 -- Local variables
6226
6227 Loc : constant Source_Ptr := Sloc (N);
6228 A : constant Node_Id := Prefix (N);
6229 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6230 Sub : Node_Id;
9dfe12ae 6231
3f42e2a7 6232 -- Start of processing for Generate_Index_Checks
6233
9dfe12ae 6234 begin
05f3e139 6235 -- Ignore call if the prefix is not an array since we have a serious
6236 -- error in the sources. Ignore it also if index checks are suppressed
6237 -- for array object or type.
0577b0b1 6238
05f3e139 6239 if not Is_Array_Type (Etype (A))
20cf157b 6240 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
0577b0b1 6241 or else Index_Checks_Suppressed (Etype (A))
6242 then
6243 return;
df9fba45 6244
6245 -- The indexed component we are dealing with contains 'Loop_Entry in its
6246 -- prefix. This case arises when analysis has determined that constructs
6247 -- such as
6248
6249 -- Prefix'Loop_Entry (Expr)
6250 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6251
6252 -- require rewriting for error detection purposes. A side effect of this
6253 -- action is the generation of index checks that mention 'Loop_Entry.
6254 -- Delay the generation of the check until 'Loop_Entry has been properly
6255 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6256
6257 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6258 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6259 then
6260 return;
0577b0b1 6261 end if;
6262
05f3e139 6263 -- Generate a raise of constraint error with the appropriate reason and
6264 -- a condition of the form:
6265
3f42e2a7 6266 -- Base_Type (Sub) not in Array'Range (Subscript)
05f3e139 6267
6268 -- Note that the reason we generate the conversion to the base type here
6269 -- is that we definitely want the range check to take place, even if it
6270 -- looks like the subtype is OK. Optimization considerations that allow
6271 -- us to omit the check have already been taken into account in the
6272 -- setting of the Do_Range_Check flag earlier on.
0577b0b1 6273
9dfe12ae 6274 Sub := First (Expressions (N));
05f3e139 6275
6276 -- Handle string literals
6277
6278 if Ekind (Etype (A)) = E_String_Literal_Subtype then
9dfe12ae 6279 if Do_Range_Check (Sub) then
6280 Set_Do_Range_Check (Sub, False);
6281
05f3e139 6282 -- For string literals we obtain the bounds of the string from the
6283 -- associated subtype.
9dfe12ae 6284
05f3e139 6285 Insert_Action (N,
094ed68e 6286 Make_Raise_Constraint_Error (Loc,
6287 Condition =>
6288 Make_Not_In (Loc,
6289 Left_Opnd =>
6290 Convert_To (Base_Type (Etype (Sub)),
6291 Duplicate_Subexpr_Move_Checks (Sub)),
6292 Right_Opnd =>
6293 Make_Attribute_Reference (Loc,
83c6c069 6294 Prefix => New_Occurrence_Of (Etype (A), Loc),
094ed68e 6295 Attribute_Name => Name_Range)),
6296 Reason => CE_Index_Check_Failed));
05f3e139 6297 end if;
9dfe12ae 6298
05f3e139 6299 -- General case
9dfe12ae 6300
05f3e139 6301 else
6302 declare
6303 A_Idx : Node_Id := Empty;
6304 A_Range : Node_Id;
6305 Ind : Nat;
6306 Num : List_Id;
6307 Range_N : Node_Id;
9dfe12ae 6308
05f3e139 6309 begin
6310 A_Idx := First_Index (Etype (A));
6311 Ind := 1;
6312 while Present (Sub) loop
6313 if Do_Range_Check (Sub) then
6314 Set_Do_Range_Check (Sub, False);
9dfe12ae 6315
05f3e139 6316 -- Force evaluation except for the case of a simple name of
6317 -- a non-volatile entity.
9dfe12ae 6318
05f3e139 6319 if not Is_Entity_Name (Sub)
6320 or else Treat_As_Volatile (Entity (Sub))
6321 then
6322 Force_Evaluation (Sub);
6323 end if;
9dfe12ae 6324
05f3e139 6325 if Nkind (A_Idx) = N_Range then
6326 A_Range := A_Idx;
6327
6328 elsif Nkind (A_Idx) = N_Identifier
6329 or else Nkind (A_Idx) = N_Expanded_Name
6330 then
6331 A_Range := Scalar_Range (Entity (A_Idx));
6332
6333 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6334 A_Range := Range_Expression (Constraint (A_Idx));
6335 end if;
6336
6337 -- For array objects with constant bounds we can generate
6338 -- the index check using the bounds of the type of the index
6339
6340 if Present (A_Ent)
6341 and then Ekind (A_Ent) = E_Variable
6342 and then Is_Constant_Bound (Low_Bound (A_Range))
6343 and then Is_Constant_Bound (High_Bound (A_Range))
6344 then
6345 Range_N :=
6346 Make_Attribute_Reference (Loc,
3f42e2a7 6347 Prefix =>
83c6c069 6348 New_Occurrence_Of (Etype (A_Idx), Loc),
05f3e139 6349 Attribute_Name => Name_Range);
6350
6351 -- For arrays with non-constant bounds we cannot generate
6352 -- the index check using the bounds of the type of the index
6353 -- since it may reference discriminants of some enclosing
6354 -- type. We obtain the bounds directly from the prefix
6355 -- object.
6356
6357 else
6358 if Ind = 1 then
6359 Num := No_List;
6360 else
6361 Num := New_List (Make_Integer_Literal (Loc, Ind));
6362 end if;
6363
6364 Range_N :=
6365 Make_Attribute_Reference (Loc,
6366 Prefix =>
6367 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6368 Attribute_Name => Name_Range,
6369 Expressions => Num);
6370 end if;
6371
6372 Insert_Action (N,
094ed68e 6373 Make_Raise_Constraint_Error (Loc,
6374 Condition =>
6375 Make_Not_In (Loc,
6376 Left_Opnd =>
6377 Convert_To (Base_Type (Etype (Sub)),
6378 Duplicate_Subexpr_Move_Checks (Sub)),
6379 Right_Opnd => Range_N),
6380 Reason => CE_Index_Check_Failed));
05f3e139 6381 end if;
6382
6383 A_Idx := Next_Index (A_Idx);
6384 Ind := Ind + 1;
6385 Next (Sub);
6386 end loop;
6387 end;
6388 end if;
9dfe12ae 6389 end Generate_Index_Checks;
6390
6391 --------------------------
6392 -- Generate_Range_Check --
6393 --------------------------
6394
6395 procedure Generate_Range_Check
6396 (N : Node_Id;
6397 Target_Type : Entity_Id;
6398 Reason : RT_Exception_Code)
6399 is
6400 Loc : constant Source_Ptr := Sloc (N);
6401 Source_Type : constant Entity_Id := Etype (N);
6402 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6403 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6404
6405 begin
feff2f05 6406 -- First special case, if the source type is already within the range
6407 -- of the target type, then no check is needed (probably we should have
6408 -- stopped Do_Range_Check from being set in the first place, but better
cda40848 6409 -- late than never in preventing junk code and junk flag settings.
9dfe12ae 6410
7a1dabb3 6411 if In_Subrange_Of (Source_Type, Target_Type)
b40670e1 6412
6413 -- We do NOT apply this if the source node is a literal, since in this
6414 -- case the literal has already been labeled as having the subtype of
6415 -- the target.
6416
9dfe12ae 6417 and then not
b40670e1 6418 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
9dfe12ae 6419 or else
b40670e1 6420 (Is_Entity_Name (N)
6421 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6422
6423 -- Also do not apply this for floating-point if Check_Float_Overflow
6424
6425 and then not
6426 (Is_Floating_Point_Type (Source_Type) and Check_Float_Overflow)
9dfe12ae 6427 then
cda40848 6428 Set_Do_Range_Check (N, False);
9dfe12ae 6429 return;
6430 end if;
6431
cda40848 6432 -- Here a check is needed. If the expander is not active, or if we are
6433 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6434 -- are done. In both these cases, we just want to see the range check
6435 -- flag set, we do not want to generate the explicit range check code.
6436
6437 if GNATprove_Mode or else not Expander_Active then
6438 Set_Do_Range_Check (N, True);
6439 return;
6440 end if;
6441
6442 -- Here we will generate an explicit range check, so we don't want to
6443 -- set the Do_Range check flag, since the range check is taken care of
6444 -- by the code we will generate.
6445
6446 Set_Do_Range_Check (N, False);
6447
6448 -- Force evaluation of the node, so that it does not get evaluated twice
6449 -- (once for the check, once for the actual reference). Such a double
6450 -- evaluation is always a potential source of inefficiency, and is
6451 -- functionally incorrect in the volatile case.
9dfe12ae 6452
b40670e1 6453 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
9dfe12ae 6454 Force_Evaluation (N);
6455 end if;
6456
feff2f05 6457 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6458 -- the same since in this case we can simply do a direct check of the
6459 -- value of N against the bounds of Target_Type.
9dfe12ae 6460
6461 -- [constraint_error when N not in Target_Type]
6462
6463 -- Note: this is by far the most common case, for example all cases of
6464 -- checks on the RHS of assignments are in this category, but not all
6465 -- cases are like this. Notably conversions can involve two types.
6466
6467 if Source_Base_Type = Target_Base_Type then
99ed4b4c 6468
6469 -- Insert the explicit range check. Note that we suppress checks for
6470 -- this code, since we don't want a recursive range check popping up.
6471
9dfe12ae 6472 Insert_Action (N,
6473 Make_Raise_Constraint_Error (Loc,
6474 Condition =>
6475 Make_Not_In (Loc,
6476 Left_Opnd => Duplicate_Subexpr (N),
6477 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
99ed4b4c 6478 Reason => Reason),
6479 Suppress => All_Checks);
9dfe12ae 6480
6481 -- Next test for the case where the target type is within the bounds
6482 -- of the base type of the source type, since in this case we can
6483 -- simply convert these bounds to the base type of T to do the test.
6484
6485 -- [constraint_error when N not in
6486 -- Source_Base_Type (Target_Type'First)
6487 -- ..
6488 -- Source_Base_Type(Target_Type'Last))]
6489
f2a06be9 6490 -- The conversions will always work and need no check
9dfe12ae 6491
a9b57347 6492 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6493 -- of converting from an enumeration value to an integer type, such as
6494 -- occurs for the case of generating a range check on Enum'Val(Exp)
6495 -- (which used to be handled by gigi). This is OK, since the conversion
6496 -- itself does not require a check.
6497
7a1dabb3 6498 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
99ed4b4c 6499
6500 -- Insert the explicit range check. Note that we suppress checks for
6501 -- this code, since we don't want a recursive range check popping up.
6502
9dfe12ae 6503 Insert_Action (N,
6504 Make_Raise_Constraint_Error (Loc,
6505 Condition =>
6506 Make_Not_In (Loc,
6507 Left_Opnd => Duplicate_Subexpr (N),
6508
6509 Right_Opnd =>
6510 Make_Range (Loc,
6511 Low_Bound =>
a9b57347 6512 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 6513 Make_Attribute_Reference (Loc,
6514 Prefix =>
6515 New_Occurrence_Of (Target_Type, Loc),
6516 Attribute_Name => Name_First)),
6517
6518 High_Bound =>
a9b57347 6519 Unchecked_Convert_To (Source_Base_Type,
9dfe12ae 6520 Make_Attribute_Reference (Loc,
6521 Prefix =>
6522 New_Occurrence_Of (Target_Type, Loc),
6523 Attribute_Name => Name_Last)))),
99ed4b4c 6524 Reason => Reason),
6525 Suppress => All_Checks);
9dfe12ae 6526
feff2f05 6527 -- Note that at this stage we now that the Target_Base_Type is not in
6528 -- the range of the Source_Base_Type (since even the Target_Type itself
6529 -- is not in this range). It could still be the case that Source_Type is
6530 -- in range of the target base type since we have not checked that case.
9dfe12ae 6531
feff2f05 6532 -- If that is the case, we can freely convert the source to the target,
6533 -- and then test the target result against the bounds.
9dfe12ae 6534
7a1dabb3 6535 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
9dfe12ae 6536
feff2f05 6537 -- We make a temporary to hold the value of the converted value
6538 -- (converted to the base type), and then we will do the test against
6539 -- this temporary.
9dfe12ae 6540
6541 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6542 -- [constraint_error when Tnn not in Target_Type]
6543
6544 -- Then the conversion itself is replaced by an occurrence of Tnn
6545
99ed4b4c 6546 -- Insert the explicit range check. Note that we suppress checks for
6547 -- this code, since we don't want a recursive range check popping up.
6548
9dfe12ae 6549 declare
46eb6933 6550 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 6551
6552 begin
6553 Insert_Actions (N, New_List (
6554 Make_Object_Declaration (Loc,
6555 Defining_Identifier => Tnn,
6556 Object_Definition =>
6557 New_Occurrence_Of (Target_Base_Type, Loc),
6558 Constant_Present => True,
6559 Expression =>
6560 Make_Type_Conversion (Loc,
6561 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6562 Expression => Duplicate_Subexpr (N))),
6563
6564 Make_Raise_Constraint_Error (Loc,
6565 Condition =>
6566 Make_Not_In (Loc,
6567 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6568 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6569
99ed4b4c 6570 Reason => Reason)),
6571 Suppress => All_Checks);
9dfe12ae 6572
6573 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
2af58f67 6574
6575 -- Set the type of N, because the declaration for Tnn might not
6576 -- be analyzed yet, as is the case if N appears within a record
6577 -- declaration, as a discriminant constraint or expression.
6578
6579 Set_Etype (N, Target_Base_Type);
9dfe12ae 6580 end;
6581
6582 -- At this stage, we know that we have two scalar types, which are
6583 -- directly convertible, and where neither scalar type has a base
6584 -- range that is in the range of the other scalar type.
6585
6586 -- The only way this can happen is with a signed and unsigned type.
6587 -- So test for these two cases:
6588
6589 else
6590 -- Case of the source is unsigned and the target is signed
6591
6592 if Is_Unsigned_Type (Source_Base_Type)
6593 and then not Is_Unsigned_Type (Target_Base_Type)
6594 then
6595 -- If the source is unsigned and the target is signed, then we
6596 -- know that the source is not shorter than the target (otherwise
6597 -- the source base type would be in the target base type range).
6598
feff2f05 6599 -- In other words, the unsigned type is either the same size as
6600 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 6601
6602 pragma Assert
6603 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6604
6605 -- We only need to check the low bound if the low bound of the
6606 -- target type is non-negative. If the low bound of the target
6607 -- type is negative, then we know that we will fit fine.
6608
6609 -- If the high bound of the target type is negative, then we
6610 -- know we have a constraint error, since we can't possibly
6611 -- have a negative source.
6612
6613 -- With these two checks out of the way, we can do the check
6614 -- using the source type safely
6615
39a0c1d3 6616 -- This is definitely the most annoying case.
9dfe12ae 6617
6618 -- [constraint_error
6619 -- when (Target_Type'First >= 0
6620 -- and then
6621 -- N < Source_Base_Type (Target_Type'First))
6622 -- or else Target_Type'Last < 0
6623 -- or else N > Source_Base_Type (Target_Type'Last)];
6624
6625 -- We turn off all checks since we know that the conversions
6626 -- will work fine, given the guards for negative values.
6627
6628 Insert_Action (N,
6629 Make_Raise_Constraint_Error (Loc,
6630 Condition =>
6631 Make_Or_Else (Loc,
6632 Make_Or_Else (Loc,
6633 Left_Opnd =>
6634 Make_And_Then (Loc,
6635 Left_Opnd => Make_Op_Ge (Loc,
6636 Left_Opnd =>
6637 Make_Attribute_Reference (Loc,
6638 Prefix =>
6639 New_Occurrence_Of (Target_Type, Loc),
6640 Attribute_Name => Name_First),
6641 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6642
6643 Right_Opnd =>
6644 Make_Op_Lt (Loc,
6645 Left_Opnd => Duplicate_Subexpr (N),
6646 Right_Opnd =>
6647 Convert_To (Source_Base_Type,
6648 Make_Attribute_Reference (Loc,
6649 Prefix =>
6650 New_Occurrence_Of (Target_Type, Loc),
6651 Attribute_Name => Name_First)))),
6652
6653 Right_Opnd =>
6654 Make_Op_Lt (Loc,
6655 Left_Opnd =>
6656 Make_Attribute_Reference (Loc,
6657 Prefix => New_Occurrence_Of (Target_Type, Loc),
6658 Attribute_Name => Name_Last),
6659 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
6660
6661 Right_Opnd =>
6662 Make_Op_Gt (Loc,
6663 Left_Opnd => Duplicate_Subexpr (N),
6664 Right_Opnd =>
6665 Convert_To (Source_Base_Type,
6666 Make_Attribute_Reference (Loc,
6667 Prefix => New_Occurrence_Of (Target_Type, Loc),
6668 Attribute_Name => Name_Last)))),
6669
6670 Reason => Reason),
6671 Suppress => All_Checks);
6672
6673 -- Only remaining possibility is that the source is signed and
fc75802a 6674 -- the target is unsigned.
9dfe12ae 6675
6676 else
6677 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
20cf157b 6678 and then Is_Unsigned_Type (Target_Base_Type));
9dfe12ae 6679
feff2f05 6680 -- If the source is signed and the target is unsigned, then we
6681 -- know that the target is not shorter than the source (otherwise
6682 -- the target base type would be in the source base type range).
9dfe12ae 6683
feff2f05 6684 -- In other words, the unsigned type is either the same size as
6685 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 6686
feff2f05 6687 -- Clearly we have an error if the source value is negative since
6688 -- no unsigned type can have negative values. If the source type
6689 -- is non-negative, then the check can be done using the target
6690 -- type.
9dfe12ae 6691
6692 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6693
6694 -- [constraint_error
6695 -- when N < 0 or else Tnn not in Target_Type];
6696
feff2f05 6697 -- We turn off all checks for the conversion of N to the target
6698 -- base type, since we generate the explicit check to ensure that
6699 -- the value is non-negative
9dfe12ae 6700
6701 declare
46eb6933 6702 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9dfe12ae 6703
6704 begin
6705 Insert_Actions (N, New_List (
6706 Make_Object_Declaration (Loc,
6707 Defining_Identifier => Tnn,
6708 Object_Definition =>
6709 New_Occurrence_Of (Target_Base_Type, Loc),
6710 Constant_Present => True,
6711 Expression =>
a9b57347 6712 Make_Unchecked_Type_Conversion (Loc,
9dfe12ae 6713 Subtype_Mark =>
6714 New_Occurrence_Of (Target_Base_Type, Loc),
6715 Expression => Duplicate_Subexpr (N))),
6716
6717 Make_Raise_Constraint_Error (Loc,
6718 Condition =>
6719 Make_Or_Else (Loc,
6720 Left_Opnd =>
6721 Make_Op_Lt (Loc,
6722 Left_Opnd => Duplicate_Subexpr (N),
6723 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6724
6725 Right_Opnd =>
6726 Make_Not_In (Loc,
6727 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6728 Right_Opnd =>
6729 New_Occurrence_Of (Target_Type, Loc))),
6730
20cf157b 6731 Reason => Reason)),
9dfe12ae 6732 Suppress => All_Checks);
6733
feff2f05 6734 -- Set the Etype explicitly, because Insert_Actions may have
6735 -- placed the declaration in the freeze list for an enclosing
6736 -- construct, and thus it is not analyzed yet.
9dfe12ae 6737
6738 Set_Etype (Tnn, Target_Base_Type);
6739 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6740 end;
6741 end if;
6742 end if;
6743 end Generate_Range_Check;
6744
2af58f67 6745 ------------------
6746 -- Get_Check_Id --
6747 ------------------
6748
6749 function Get_Check_Id (N : Name_Id) return Check_Id is
6750 begin
6751 -- For standard check name, we can do a direct computation
6752
6753 if N in First_Check_Name .. Last_Check_Name then
6754 return Check_Id (N - (First_Check_Name - 1));
6755
6756 -- For non-standard names added by pragma Check_Name, search table
6757
6758 else
6759 for J in All_Checks + 1 .. Check_Names.Last loop
6760 if Check_Names.Table (J) = N then
6761 return J;
6762 end if;
6763 end loop;
6764 end if;
6765
6766 -- No matching name found
6767
6768 return No_Check_Id;
6769 end Get_Check_Id;
6770
ee6ba406 6771 ---------------------
6772 -- Get_Discriminal --
6773 ---------------------
6774
6775 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6776 Loc : constant Source_Ptr := Sloc (E);
6777 D : Entity_Id;
6778 Sc : Entity_Id;
6779
6780 begin
0577b0b1 6781 -- The bound can be a bona fide parameter of a protected operation,
6782 -- rather than a prival encoded as an in-parameter.
6783
6784 if No (Discriminal_Link (Entity (Bound))) then
6785 return Bound;
6786 end if;
6787
2af58f67 6788 -- Climb the scope stack looking for an enclosing protected type. If
6789 -- we run out of scopes, return the bound itself.
6790
6791 Sc := Scope (E);
6792 while Present (Sc) loop
6793 if Sc = Standard_Standard then
6794 return Bound;
2af58f67 6795 elsif Ekind (Sc) = E_Protected_Type then
6796 exit;
6797 end if;
6798
6799 Sc := Scope (Sc);
6800 end loop;
6801
ee6ba406 6802 D := First_Discriminant (Sc);
2af58f67 6803 while Present (D) loop
6804 if Chars (D) = Chars (Bound) then
6805 return New_Occurrence_Of (Discriminal (D), Loc);
6806 end if;
ee6ba406 6807
ee6ba406 6808 Next_Discriminant (D);
6809 end loop;
6810
2af58f67 6811 return Bound;
ee6ba406 6812 end Get_Discriminal;
6813
2af58f67 6814 ----------------------
6815 -- Get_Range_Checks --
6816 ----------------------
6817
6818 function Get_Range_Checks
6819 (Ck_Node : Node_Id;
6820 Target_Typ : Entity_Id;
6821 Source_Typ : Entity_Id := Empty;
6822 Warn_Node : Node_Id := Empty) return Check_Result
6823 is
6824 begin
20cf157b 6825 return
6826 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
2af58f67 6827 end Get_Range_Checks;
6828
ee6ba406 6829 ------------------
6830 -- Guard_Access --
6831 ------------------
6832
6833 function Guard_Access
6834 (Cond : Node_Id;
6835 Loc : Source_Ptr;
314a23b6 6836 Ck_Node : Node_Id) return Node_Id
ee6ba406 6837 is
6838 begin
6839 if Nkind (Cond) = N_Or_Else then
6840 Set_Paren_Count (Cond, 1);
6841 end if;
6842
6843 if Nkind (Ck_Node) = N_Allocator then
6844 return Cond;
20cf157b 6845
ee6ba406 6846 else
6847 return
6848 Make_And_Then (Loc,
6849 Left_Opnd =>
6850 Make_Op_Ne (Loc,
9dfe12ae 6851 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 6852 Right_Opnd => Make_Null (Loc)),
6853 Right_Opnd => Cond);
6854 end if;
6855 end Guard_Access;
6856
6857 -----------------------------
6858 -- Index_Checks_Suppressed --
6859 -----------------------------
6860
6861 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6862 begin
9dfe12ae 6863 if Present (E) and then Checks_May_Be_Suppressed (E) then
6864 return Is_Check_Suppressed (E, Index_Check);
6865 else
fafc6b97 6866 return Scope_Suppress.Suppress (Index_Check);
9dfe12ae 6867 end if;
ee6ba406 6868 end Index_Checks_Suppressed;
6869
6870 ----------------
6871 -- Initialize --
6872 ----------------
6873
6874 procedure Initialize is
6875 begin
6876 for J in Determine_Range_Cache_N'Range loop
6877 Determine_Range_Cache_N (J) := Empty;
6878 end loop;
2af58f67 6879
6880 Check_Names.Init;
6881
6882 for J in Int range 1 .. All_Checks loop
6883 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6884 end loop;
ee6ba406 6885 end Initialize;
6886
6887 -------------------------
6888 -- Insert_Range_Checks --
6889 -------------------------
6890
6891 procedure Insert_Range_Checks
6892 (Checks : Check_Result;
6893 Node : Node_Id;
6894 Suppress_Typ : Entity_Id;
6895 Static_Sloc : Source_Ptr := No_Location;
6896 Flag_Node : Node_Id := Empty;
6897 Do_Before : Boolean := False)
6898 is
6899 Internal_Flag_Node : Node_Id := Flag_Node;
6900 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6901
6902 Check_Node : Node_Id;
6903 Checks_On : constant Boolean :=
b6341c67 6904 (not Index_Checks_Suppressed (Suppress_Typ))
6905 or else (not Range_Checks_Suppressed (Suppress_Typ));
ee6ba406 6906
6907 begin
feff2f05 6908 -- For now we just return if Checks_On is false, however this should be
6909 -- enhanced to check for an always True value in the condition and to
6910 -- generate a compilation warning???
ee6ba406 6911
ac9184ed 6912 if not Expander_Active or not Checks_On then
ee6ba406 6913 return;
6914 end if;
6915
6916 if Static_Sloc = No_Location then
6917 Internal_Static_Sloc := Sloc (Node);
6918 end if;
6919
6920 if No (Flag_Node) then
6921 Internal_Flag_Node := Node;
6922 end if;
6923
6924 for J in 1 .. 2 loop
6925 exit when No (Checks (J));
6926
6927 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6928 and then Present (Condition (Checks (J)))
6929 then
6930 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
6931 Check_Node := Checks (J);
6932 Mark_Rewrite_Insertion (Check_Node);
6933
6934 if Do_Before then
6935 Insert_Before_And_Analyze (Node, Check_Node);
6936 else
6937 Insert_After_And_Analyze (Node, Check_Node);
6938 end if;
6939
6940 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
6941 end if;
6942
6943 else
6944 Check_Node :=
f15731c4 6945 Make_Raise_Constraint_Error (Internal_Static_Sloc,
6946 Reason => CE_Range_Check_Failed);
ee6ba406 6947 Mark_Rewrite_Insertion (Check_Node);
6948
6949 if Do_Before then
6950 Insert_Before_And_Analyze (Node, Check_Node);
6951 else
6952 Insert_After_And_Analyze (Node, Check_Node);
6953 end if;
6954 end if;
6955 end loop;
6956 end Insert_Range_Checks;
6957
6958 ------------------------
6959 -- Insert_Valid_Check --
6960 ------------------------
6961
6962 procedure Insert_Valid_Check (Expr : Node_Id) is
6963 Loc : constant Source_Ptr := Sloc (Expr);
70580828 6964 Typ : constant Entity_Id := Etype (Expr);
8b718dab 6965 Exp : Node_Id;
ee6ba406 6966
6967 begin
06ad5813 6968 -- Do not insert if checks off, or if not checking validity or
6969 -- if expression is known to be valid
ee6ba406 6970
0577b0b1 6971 if not Validity_Checks_On
6972 or else Range_Or_Validity_Checks_Suppressed (Expr)
06ad5813 6973 or else Expr_Known_Valid (Expr)
ee6ba406 6974 then
8b718dab 6975 return;
6976 end if;
ee6ba406 6977
42c57d55 6978 -- Do not insert checks within a predicate function. This will arise
6979 -- if the current unit and the predicate function are being compiled
6980 -- with validity checks enabled.
70580828 6981
6982 if Present (Predicate_Function (Typ))
6983 and then Current_Scope = Predicate_Function (Typ)
6984 then
6985 return;
6986 end if;
6987
310c1cde 6988 -- If the expression is a packed component of a modular type of the
6989 -- right size, the data is always valid.
6990
6991 if Nkind (Expr) = N_Selected_Component
6992 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
6993 and then Is_Modular_Integer_Type (Typ)
6994 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
6995 then
6996 return;
6997 end if;
6998
8b718dab 6999 -- If we have a checked conversion, then validity check applies to
7000 -- the expression inside the conversion, not the result, since if
7001 -- the expression inside is valid, then so is the conversion result.
ee6ba406 7002
8b718dab 7003 Exp := Expr;
7004 while Nkind (Exp) = N_Type_Conversion loop
7005 Exp := Expression (Exp);
7006 end loop;
7007
0577b0b1 7008 -- We are about to insert the validity check for Exp. We save and
7009 -- reset the Do_Range_Check flag over this validity check, and then
7010 -- put it back for the final original reference (Exp may be rewritten).
7011
7012 declare
7013 DRC : constant Boolean := Do_Range_Check (Exp);
23abd64d 7014 PV : Node_Id;
7015 CE : Node_Id;
05fcfafb 7016
0577b0b1 7017 begin
7018 Set_Do_Range_Check (Exp, False);
7019
06ad5813 7020 -- Force evaluation to avoid multiple reads for atomic/volatile
7021
fa771c05 7022 -- Note: we set Name_Req to False. We used to set it to True, with
7023 -- the thinking that a name is required as the prefix of the 'Valid
7024 -- call, but in fact the check that the prefix of an attribute is
7025 -- a name is in the parser, and we just don't require it here.
7026 -- Moreover, when we set Name_Req to True, that interfered with the
7027 -- checking for Volatile, since we couldn't just capture the value.
7028
06ad5813 7029 if Is_Entity_Name (Exp)
7030 and then Is_Volatile (Entity (Exp))
7031 then
fa771c05 7032 -- Same reasoning as above for setting Name_Req to False
7033
7034 Force_Evaluation (Exp, Name_Req => False);
06ad5813 7035 end if;
7036
23abd64d 7037 -- Build the prefix for the 'Valid call
7038
fa771c05 7039 PV := Duplicate_Subexpr_No_Checks (Exp, Name_Req => False);
0577b0b1 7040
443bdccb 7041 -- A rather specialized test. If PV is an analyzed expression which
7042 -- is an indexed component of a packed array that has not been
7043 -- properly expanded, turn off its Analyzed flag to make sure it
5f46de53 7044 -- gets properly reexpanded. If the prefix is an access value,
7045 -- the dereference will be added later.
23abd64d 7046
7047 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7048 -- an analyze with the old parent pointer. This may point e.g. to
7049 -- a subprogram call, which deactivates this expansion.
7050
7051 if Analyzed (PV)
7052 and then Nkind (PV) = N_Indexed_Component
5f46de53 7053 and then Is_Array_Type (Etype (Prefix (PV)))
a88a5773 7054 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
23abd64d 7055 then
7056 Set_Analyzed (PV, False);
7057 end if;
7058
fa771c05 7059 -- Build the raise CE node to check for validity. We build a type
7060 -- qualification for the prefix, since it may not be of the form of
7061 -- a name, and we don't care in this context!
23abd64d 7062
7063 CE :=
0577b0b1 7064 Make_Raise_Constraint_Error (Loc,
7065 Condition =>
7066 Make_Op_Not (Loc,
7067 Right_Opnd =>
7068 Make_Attribute_Reference (Loc,
23abd64d 7069 Prefix => PV,
0577b0b1 7070 Attribute_Name => Name_Valid)),
23abd64d 7071 Reason => CE_Invalid_Data);
7072
7073 -- Insert the validity check. Note that we do this with validity
7074 -- checks turned off, to avoid recursion, we do not want validity
39a0c1d3 7075 -- checks on the validity checking code itself.
23abd64d 7076
7077 Insert_Action (Expr, CE, Suppress => Validity_Check);
0577b0b1 7078
6fb3c314 7079 -- If the expression is a reference to an element of a bit-packed
0577b0b1 7080 -- array, then it is rewritten as a renaming declaration. If the
7081 -- expression is an actual in a call, it has not been expanded,
7082 -- waiting for the proper point at which to do it. The same happens
7083 -- with renamings, so that we have to force the expansion now. This
7084 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7085 -- and exp_ch6.adb.
7086
7087 if Is_Entity_Name (Exp)
7088 and then Nkind (Parent (Entity (Exp))) =
20cf157b 7089 N_Object_Renaming_Declaration
0577b0b1 7090 then
7091 declare
7092 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7093 begin
7094 if Nkind (Old_Exp) = N_Indexed_Component
7095 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7096 then
7097 Expand_Packed_Element_Reference (Old_Exp);
7098 end if;
7099 end;
7100 end if;
7101
7102 -- Put back the Do_Range_Check flag on the resulting (possibly
7103 -- rewritten) expression.
7104
7105 -- Note: it might be thought that a validity check is not required
7106 -- when a range check is present, but that's not the case, because
7107 -- the back end is allowed to assume for the range check that the
7108 -- operand is within its declared range (an assumption that validity
39a0c1d3 7109 -- checking is all about NOT assuming).
0577b0b1 7110
00c403ee 7111 -- Note: no need to worry about Possible_Local_Raise here, it will
7112 -- already have been called if original node has Do_Range_Check set.
7113
0577b0b1 7114 Set_Do_Range_Check (Exp, DRC);
7115 end;
ee6ba406 7116 end Insert_Valid_Check;
7117
3cce7f32 7118 -------------------------------------
7119 -- Is_Signed_Integer_Arithmetic_Op --
7120 -------------------------------------
7121
7122 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7123 begin
7124 case Nkind (N) is
7125 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
7126 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
7127 N_Op_Rem | N_Op_Subtract =>
7128 return Is_Signed_Integer_Type (Etype (N));
7129
92f1631f 7130 when N_If_Expression | N_Case_Expression =>
0326b4d4 7131 return Is_Signed_Integer_Type (Etype (N));
7132
3cce7f32 7133 when others =>
7134 return False;
7135 end case;
7136 end Is_Signed_Integer_Arithmetic_Op;
7137
fa7497e8 7138 ----------------------------------
7139 -- Install_Null_Excluding_Check --
7140 ----------------------------------
7141
7142 procedure Install_Null_Excluding_Check (N : Node_Id) is
9f294c82 7143 Loc : constant Source_Ptr := Sloc (Parent (N));
84d0d4a5 7144 Typ : constant Entity_Id := Etype (N);
7145
7b31b357 7146 function Safe_To_Capture_In_Parameter_Value return Boolean;
7147 -- Determines if it is safe to capture Known_Non_Null status for an
7148 -- the entity referenced by node N. The caller ensures that N is indeed
7149 -- an entity name. It is safe to capture the non-null status for an IN
7150 -- parameter when the reference occurs within a declaration that is sure
7151 -- to be executed as part of the declarative region.
7870823d 7152
84d0d4a5 7153 procedure Mark_Non_Null;
7870823d 7154 -- After installation of check, if the node in question is an entity
7155 -- name, then mark this entity as non-null if possible.
7156
7b31b357 7157 function Safe_To_Capture_In_Parameter_Value return Boolean is
7870823d 7158 E : constant Entity_Id := Entity (N);
7159 S : constant Entity_Id := Current_Scope;
7160 S_Par : Node_Id;
7161
7162 begin
7b31b357 7163 if Ekind (E) /= E_In_Parameter then
7164 return False;
7165 end if;
7870823d 7166
7167 -- Two initial context checks. We must be inside a subprogram body
7168 -- with declarations and reference must not appear in nested scopes.
7169
7b31b357 7170 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7870823d 7171 or else Scope (E) /= S
7172 then
7173 return False;
7174 end if;
7175
7176 S_Par := Parent (Parent (S));
7177
7178 if Nkind (S_Par) /= N_Subprogram_Body
7179 or else No (Declarations (S_Par))
7180 then
7181 return False;
7182 end if;
7183
7184 declare
7185 N_Decl : Node_Id;
7186 P : Node_Id;
7187
7188 begin
7189 -- Retrieve the declaration node of N (if any). Note that N
7190 -- may be a part of a complex initialization expression.
7191
7192 P := Parent (N);
7193 N_Decl := Empty;
7194 while Present (P) loop
7195
7b31b357 7196 -- If we have a short circuit form, and we are within the right
7197 -- hand expression, we return false, since the right hand side
7198 -- is not guaranteed to be elaborated.
7199
7200 if Nkind (P) in N_Short_Circuit
7201 and then N = Right_Opnd (P)
7202 then
7203 return False;
7204 end if;
7205
92f1631f 7206 -- Similarly, if we are in an if expression and not part of the
7207 -- condition, then we return False, since neither the THEN or
7208 -- ELSE dependent expressions will always be elaborated.
7b31b357 7209
92f1631f 7210 if Nkind (P) = N_If_Expression
7b31b357 7211 and then N /= First (Expressions (P))
7212 then
7213 return False;
e977c0cf 7214 end if;
7215
20cf157b 7216 -- If within a case expression, and not part of the expression,
7217 -- then return False, since a particular dependent expression
7218 -- may not always be elaborated
e977c0cf 7219
7220 if Nkind (P) = N_Case_Expression
7221 and then N /= Expression (P)
7222 then
7223 return False;
7b31b357 7224 end if;
7225
20cf157b 7226 -- While traversing the parent chain, if node N belongs to a
7227 -- statement, then it may never appear in a declarative region.
7870823d 7228
7229 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7230 or else Nkind (P) = N_Procedure_Call_Statement
7231 then
7232 return False;
7233 end if;
7234
7b31b357 7235 -- If we are at a declaration, record it and exit
7236
7870823d 7237 if Nkind (P) in N_Declaration
7238 and then Nkind (P) not in N_Subprogram_Specification
7239 then
7240 N_Decl := P;
7241 exit;
7242 end if;
7243
7244 P := Parent (P);
7245 end loop;
7246
7247 if No (N_Decl) then
7248 return False;
7249 end if;
7250
7251 return List_Containing (N_Decl) = Declarations (S_Par);
7252 end;
7b31b357 7253 end Safe_To_Capture_In_Parameter_Value;
84d0d4a5 7254
7255 -------------------
7256 -- Mark_Non_Null --
7257 -------------------
7258
7259 procedure Mark_Non_Null is
7260 begin
7870823d 7261 -- Only case of interest is if node N is an entity name
7262
84d0d4a5 7263 if Is_Entity_Name (N) then
7870823d 7264
7265 -- For sure, we want to clear an indication that this is known to
39a0c1d3 7266 -- be null, since if we get past this check, it definitely is not.
7870823d 7267
84d0d4a5 7268 Set_Is_Known_Null (Entity (N), False);
7269
7870823d 7270 -- We can mark the entity as known to be non-null if either it is
7271 -- safe to capture the value, or in the case of an IN parameter,
7272 -- which is a constant, if the check we just installed is in the
7273 -- declarative region of the subprogram body. In this latter case,
7b31b357 7274 -- a check is decisive for the rest of the body if the expression
7275 -- is sure to be elaborated, since we know we have to elaborate
7276 -- all declarations before executing the body.
7277
7278 -- Couldn't this always be part of Safe_To_Capture_Value ???
7870823d 7279
7280 if Safe_To_Capture_Value (N, Entity (N))
7b31b357 7281 or else Safe_To_Capture_In_Parameter_Value
7870823d 7282 then
7283 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 7284 end if;
7285 end if;
7286 end Mark_Non_Null;
7287
7288 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 7289
7290 begin
84d0d4a5 7291 pragma Assert (Is_Access_Type (Typ));
fa7497e8 7292
46e32b5e 7293 -- No check inside a generic, check will be emitted in instance
fa7497e8 7294
84d0d4a5 7295 if Inside_A_Generic then
fa7497e8 7296 return;
84d0d4a5 7297 end if;
7298
7299 -- No check needed if known to be non-null
7300
7301 if Known_Non_Null (N) then
05fcfafb 7302 return;
84d0d4a5 7303 end if;
fa7497e8 7304
84d0d4a5 7305 -- If known to be null, here is where we generate a compile time check
7306
7307 if Known_Null (N) then
d16989f1 7308
20cf157b 7309 -- Avoid generating warning message inside init procs. In SPARK mode
7310 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
46e32b5e 7311 -- since it will be turned into an error in any case.
d16989f1 7312
46e32b5e 7313 if (not Inside_Init_Proc or else SPARK_Mode = On)
7314
28d5d68f 7315 -- Do not emit the warning within a conditional expression,
7316 -- where the expression might not be evaluated, and the warning
7317 -- appear as extraneous noise.
46e32b5e 7318
7319 and then not Within_Case_Or_If_Expression (N)
7320 then
d16989f1 7321 Apply_Compile_Time_Constraint_Error
4098232e 7322 (N, "null value not allowed here??", CE_Access_Check_Failed);
46e32b5e 7323
7324 -- Remaining cases, where we silently insert the raise
7325
d16989f1 7326 else
7327 Insert_Action (N,
7328 Make_Raise_Constraint_Error (Loc,
7329 Reason => CE_Access_Check_Failed));
7330 end if;
7331
84d0d4a5 7332 Mark_Non_Null;
7333 return;
7334 end if;
7335
7336 -- If entity is never assigned, for sure a warning is appropriate
7337
7338 if Is_Entity_Name (N) then
7339 Check_Unset_Reference (N);
fa7497e8 7340 end if;
84d0d4a5 7341
7342 -- No check needed if checks are suppressed on the range. Note that we
7343 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7344 -- so, since the program is erroneous, but we don't like to casually
7345 -- propagate such conclusions from erroneosity).
7346
7347 if Access_Checks_Suppressed (Typ) then
7348 return;
7349 end if;
7350
2af58f67 7351 -- No check needed for access to concurrent record types generated by
7352 -- the expander. This is not just an optimization (though it does indeed
7353 -- remove junk checks). It also avoids generation of junk warnings.
7354
7355 if Nkind (N) in N_Has_Chars
7356 and then Chars (N) = Name_uObject
7357 and then Is_Concurrent_Record_Type
7358 (Directly_Designated_Type (Etype (N)))
7359 then
7360 return;
7361 end if;
7362
228836e8 7363 -- No check needed in interface thunks since the runtime check is
7364 -- already performed at the caller side.
7365
7366 if Is_Thunk (Current_Scope) then
7367 return;
7368 end if;
7369
472ea160 7370 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7371 -- the expander within exception handlers, since we know that the value
7372 -- can never be null.
7373
7374 -- Is this really the right way to do this? Normally we generate such
7375 -- code in the expander with checks off, and that's how we suppress this
7376 -- kind of junk check ???
7377
7378 if Nkind (N) = N_Function_Call
7379 and then Nkind (Name (N)) = N_Explicit_Dereference
7380 and then Nkind (Prefix (Name (N))) = N_Identifier
7381 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7382 then
7383 return;
7384 end if;
7385
84d0d4a5 7386 -- Otherwise install access check
7387
7388 Insert_Action (N,
7389 Make_Raise_Constraint_Error (Loc,
7390 Condition =>
7391 Make_Op_Eq (Loc,
7392 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7393 Right_Opnd => Make_Null (Loc)),
7394 Reason => CE_Access_Check_Failed));
7395
7396 Mark_Non_Null;
fa7497e8 7397 end Install_Null_Excluding_Check;
7398
ee6ba406 7399 --------------------------
7400 -- Install_Static_Check --
7401 --------------------------
7402
7403 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
cda40848 7404 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
ee6ba406 7405 Typ : constant Entity_Id := Etype (R_Cno);
7406
7407 begin
f15731c4 7408 Rewrite (R_Cno,
7409 Make_Raise_Constraint_Error (Loc,
7410 Reason => CE_Range_Check_Failed));
ee6ba406 7411 Set_Analyzed (R_Cno);
7412 Set_Etype (R_Cno, Typ);
7413 Set_Raises_Constraint_Error (R_Cno);
7414 Set_Is_Static_Expression (R_Cno, Stat);
840ab274 7415
7416 -- Now deal with possible local raise handling
7417
7418 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
ee6ba406 7419 end Install_Static_Check;
7420
3cce7f32 7421 -------------------------
7422 -- Is_Check_Suppressed --
7423 -------------------------
7424
7425 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
7426 Ptr : Suppress_Stack_Entry_Ptr;
7427
7428 begin
7429 -- First search the local entity suppress stack. We search this from the
7430 -- top of the stack down so that we get the innermost entry that applies
7431 -- to this case if there are nested entries.
7432
7433 Ptr := Local_Suppress_Stack_Top;
7434 while Ptr /= null loop
7435 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7436 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7437 then
7438 return Ptr.Suppress;
7439 end if;
7440
7441 Ptr := Ptr.Prev;
7442 end loop;
7443
7444 -- Now search the global entity suppress table for a matching entry.
7445 -- We also search this from the top down so that if there are multiple
7446 -- pragmas for the same entity, the last one applies (not clear what
7447 -- or whether the RM specifies this handling, but it seems reasonable).
7448
7449 Ptr := Global_Suppress_Stack_Top;
7450 while Ptr /= null loop
7451 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7452 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7453 then
7454 return Ptr.Suppress;
7455 end if;
7456
7457 Ptr := Ptr.Prev;
7458 end loop;
7459
7460 -- If we did not find a matching entry, then use the normal scope
7461 -- suppress value after all (actually this will be the global setting
7462 -- since it clearly was not overridden at any point). For a predefined
7463 -- check, we test the specific flag. For a user defined check, we check
7464 -- the All_Checks flag. The Overflow flag requires special handling to
7465 -- deal with the General vs Assertion case
7466
7467 if C = Overflow_Check then
7468 return Overflow_Checks_Suppressed (Empty);
7469 elsif C in Predefined_Check_Id then
7470 return Scope_Suppress.Suppress (C);
7471 else
7472 return Scope_Suppress.Suppress (All_Checks);
7473 end if;
7474 end Is_Check_Suppressed;
7475
9dfe12ae 7476 ---------------------
7477 -- Kill_All_Checks --
7478 ---------------------
7479
7480 procedure Kill_All_Checks is
7481 begin
7482 if Debug_Flag_CC then
7483 w ("Kill_All_Checks");
7484 end if;
7485
feff2f05 7486 -- We reset the number of saved checks to zero, and also modify all
7487 -- stack entries for statement ranges to indicate that the number of
7488 -- checks at each level is now zero.
9dfe12ae 7489
7490 Num_Saved_Checks := 0;
7491
96da3284 7492 -- Note: the Int'Min here avoids any possibility of J being out of
7493 -- range when called from e.g. Conditional_Statements_Begin.
7494
7495 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 7496 Saved_Checks_Stack (J) := 0;
7497 end loop;
7498 end Kill_All_Checks;
7499
7500 -----------------
7501 -- Kill_Checks --
7502 -----------------
7503
7504 procedure Kill_Checks (V : Entity_Id) is
7505 begin
7506 if Debug_Flag_CC then
7507 w ("Kill_Checks for entity", Int (V));
7508 end if;
7509
7510 for J in 1 .. Num_Saved_Checks loop
7511 if Saved_Checks (J).Entity = V then
7512 if Debug_Flag_CC then
7513 w (" Checks killed for saved check ", J);
7514 end if;
7515
7516 Saved_Checks (J).Killed := True;
7517 end if;
7518 end loop;
7519 end Kill_Checks;
7520
ee6ba406 7521 ------------------------------
7522 -- Length_Checks_Suppressed --
7523 ------------------------------
7524
7525 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
7526 begin
9dfe12ae 7527 if Present (E) and then Checks_May_Be_Suppressed (E) then
7528 return Is_Check_Suppressed (E, Length_Check);
7529 else
fafc6b97 7530 return Scope_Suppress.Suppress (Length_Check);
9dfe12ae 7531 end if;
ee6ba406 7532 end Length_Checks_Suppressed;
7533
3cce7f32 7534 -----------------------
7535 -- Make_Bignum_Block --
7536 -----------------------
7537
7538 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
7539 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
3cce7f32 7540 begin
7541 return
7542 Make_Block_Statement (Loc,
97c15ab0 7543 Declarations =>
7544 New_List (Build_SS_Mark_Call (Loc, M)),
3cce7f32 7545 Handled_Statement_Sequence =>
7546 Make_Handled_Sequence_Of_Statements (Loc,
97c15ab0 7547 Statements => New_List (Build_SS_Release_Call (Loc, M))));
3cce7f32 7548 end Make_Bignum_Block;
7549
0df9d43f 7550 ----------------------------------
7551 -- Minimize_Eliminate_Overflows --
7552 ----------------------------------
3cce7f32 7553
f32c377d 7554 -- This is a recursive routine that is called at the top of an expression
7555 -- tree to properly process overflow checking for a whole subtree by making
7556 -- recursive calls to process operands. This processing may involve the use
7557 -- of bignum or long long integer arithmetic, which will change the types
7558 -- of operands and results. That's why we can't do this bottom up (since
21a55437 7559 -- it would interfere with semantic analysis).
f32c377d 7560
21a55437 7561 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
0df9d43f 7562 -- the operator expansion routines, as well as the expansion routines for
7563 -- if/case expression, do nothing (for the moment) except call the routine
7564 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7565 -- routine does nothing for non top-level nodes, so at the point where the
7566 -- call is made for the top level node, the entire expression subtree has
7567 -- not been expanded, or processed for overflow. All that has to happen as
7568 -- a result of the top level call to this routine.
f32c377d 7569
7570 -- As noted above, the overflow processing works by making recursive calls
7571 -- for the operands, and figuring out what to do, based on the processing
7572 -- of these operands (e.g. if a bignum operand appears, the parent op has
7573 -- to be done in bignum mode), and the determined ranges of the operands.
7574
7575 -- After possible rewriting of a constituent subexpression node, a call is
4fb5f0a0 7576 -- made to either reexpand the node (if nothing has changed) or reanalyze
21a55437 7577 -- the node (if it has been modified by the overflow check processing). The
7578 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7579 -- a recursive call into the whole overflow apparatus, an important rule
0df9d43f 7580 -- for this call is that the overflow handling mode must be temporarily set
7581 -- to STRICT.
f32c377d 7582
0df9d43f 7583 procedure Minimize_Eliminate_Overflows
61016a7a 7584 (N : Node_Id;
7585 Lo : out Uint;
7586 Hi : out Uint;
7587 Top_Level : Boolean)
3cce7f32 7588 is
0326b4d4 7589 Rtyp : constant Entity_Id := Etype (N);
7590 pragma Assert (Is_Signed_Integer_Type (Rtyp));
7591 -- Result type, must be a signed integer type
3cce7f32 7592
db415383 7593 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
3cce7f32 7594 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
7595
7596 Loc : constant Source_Ptr := Sloc (N);
7597
7598 Rlo, Rhi : Uint;
0326b4d4 7599 -- Ranges of values for right operand (operator case)
3cce7f32 7600
7601 Llo, Lhi : Uint;
0326b4d4 7602 -- Ranges of values for left operand (operator case)
3cce7f32 7603
49b3a812 7604 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
7605 -- Operands and results are of this type when we convert
7606
0326b4d4 7607 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
7608 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
3cce7f32 7609 -- Bounds of Long_Long_Integer
7610
7611 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
7612 -- Indicates binary operator case
7613
7614 OK : Boolean;
7615 -- Used in call to Determine_Range
7616
61016a7a 7617 Bignum_Operands : Boolean;
7618 -- Set True if one or more operands is already of type Bignum, meaning
7619 -- that for sure (regardless of Top_Level setting) we are committed to
0326b4d4 7620 -- doing the operation in Bignum mode (or in the case of a case or if
21a55437 7621 -- expression, converting all the dependent expressions to Bignum).
0326b4d4 7622
7623 Long_Long_Integer_Operands : Boolean;
21a55437 7624 -- Set True if one or more operands is already of type Long_Long_Integer
0326b4d4 7625 -- which means that if the result is known to be in the result type
7626 -- range, then we must convert such operands back to the result type.
0df9d43f 7627
7628 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
7629 -- This is called when we have modified the node and we therefore need
7630 -- to reanalyze it. It is important that we reset the mode to STRICT for
7631 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
39a0c1d3 7632 -- we would reenter this routine recursively which would not be good.
0df9d43f 7633 -- The argument Suppress is set True if we also want to suppress
7634 -- overflow checking for the reexpansion (this is set when we know
7635 -- overflow is not possible). Typ is the type for the reanalysis.
7636
7637 procedure Reexpand (Suppress : Boolean := False);
7638 -- This is like Reanalyze, but does not do the Analyze step, it only
7639 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7640 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7641 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7642 -- Note that skipping reanalysis is not just an optimization, testing
7643 -- has showed up several complex cases in which reanalyzing an already
7644 -- analyzed node causes incorrect behavior.
4fb5f0a0 7645
0326b4d4 7646 function In_Result_Range return Boolean;
7647 -- Returns True iff Lo .. Hi are within range of the result type
61016a7a 7648
2fe22c69 7649 procedure Max (A : in out Uint; B : Uint);
21a55437 7650 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
2fe22c69 7651
7652 procedure Min (A : in out Uint; B : Uint);
21a55437 7653 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
2fe22c69 7654
0326b4d4 7655 ---------------------
7656 -- In_Result_Range --
7657 ---------------------
7658
7659 function In_Result_Range return Boolean is
7660 begin
f32c377d 7661 if Lo = No_Uint or else Hi = No_Uint then
7662 return False;
7663
cda40848 7664 elsif Is_OK_Static_Subtype (Etype (N)) then
0326b4d4 7665 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
7666 and then
7667 Hi <= Expr_Value (Type_High_Bound (Rtyp));
f32c377d 7668
0326b4d4 7669 else
7670 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
7671 and then
7672 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
7673 end if;
7674 end In_Result_Range;
7675
2fe22c69 7676 ---------
7677 -- Max --
7678 ---------
7679
7680 procedure Max (A : in out Uint; B : Uint) is
7681 begin
7682 if A = No_Uint or else B > A then
7683 A := B;
7684 end if;
7685 end Max;
7686
7687 ---------
7688 -- Min --
7689 ---------
7690
7691 procedure Min (A : in out Uint; B : Uint) is
7692 begin
7693 if A = No_Uint or else B < A then
7694 A := B;
7695 end if;
7696 end Min;
7697
0df9d43f 7698 ---------------
7699 -- Reanalyze --
7700 ---------------
7701
7702 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
db415383 7703 Svg : constant Overflow_Mode_Type :=
7704 Scope_Suppress.Overflow_Mode_General;
7705 Sva : constant Overflow_Mode_Type :=
7706 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 7707 Svo : constant Boolean :=
7708 Scope_Suppress.Suppress (Overflow_Check);
7709
7710 begin
db415383 7711 Scope_Suppress.Overflow_Mode_General := Strict;
7712 Scope_Suppress.Overflow_Mode_Assertions := Strict;
0df9d43f 7713
7714 if Suppress then
7715 Scope_Suppress.Suppress (Overflow_Check) := True;
7716 end if;
7717
7718 Analyze_And_Resolve (N, Typ);
7719
7720 Scope_Suppress.Suppress (Overflow_Check) := Svo;
db415383 7721 Scope_Suppress.Overflow_Mode_General := Svg;
7722 Scope_Suppress.Overflow_Mode_Assertions := Sva;
0df9d43f 7723 end Reanalyze;
7724
4fb5f0a0 7725 --------------
7726 -- Reexpand --
7727 --------------
7728
0df9d43f 7729 procedure Reexpand (Suppress : Boolean := False) is
db415383 7730 Svg : constant Overflow_Mode_Type :=
7731 Scope_Suppress.Overflow_Mode_General;
7732 Sva : constant Overflow_Mode_Type :=
7733 Scope_Suppress.Overflow_Mode_Assertions;
0df9d43f 7734 Svo : constant Boolean :=
7735 Scope_Suppress.Suppress (Overflow_Check);
7736
4fb5f0a0 7737 begin
db415383 7738 Scope_Suppress.Overflow_Mode_General := Strict;
7739 Scope_Suppress.Overflow_Mode_Assertions := Strict;
4fb5f0a0 7740 Set_Analyzed (N, False);
0df9d43f 7741
7742 if Suppress then
7743 Scope_Suppress.Suppress (Overflow_Check) := True;
7744 end if;
7745
4fb5f0a0 7746 Expand (N);
0df9d43f 7747
7748 Scope_Suppress.Suppress (Overflow_Check) := Svo;
db415383 7749 Scope_Suppress.Overflow_Mode_General := Svg;
7750 Scope_Suppress.Overflow_Mode_Assertions := Sva;
4fb5f0a0 7751 end Reexpand;
7752
0df9d43f 7753 -- Start of processing for Minimize_Eliminate_Overflows
2fe22c69 7754
3cce7f32 7755 begin
0326b4d4 7756 -- Case where we do not have a signed integer arithmetic operation
3cce7f32 7757
7758 if not Is_Signed_Integer_Arithmetic_Op (N) then
7759
7760 -- Use the normal Determine_Range routine to get the range. We
7761 -- don't require operands to be valid, invalid values may result in
7762 -- rubbish results where the result has not been properly checked for
39a0c1d3 7763 -- overflow, that's fine.
3cce7f32 7764
7765 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
7766
21a55437 7767 -- If Determine_Range did not work (can this in fact happen? Not
3cce7f32 7768 -- clear but might as well protect), use type bounds.
7769
7770 if not OK then
7771 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
7772 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
7773 end if;
7774
7775 -- If we don't have a binary operator, all we have to do is to set
20cf157b 7776 -- the Hi/Lo range, so we are done.
3cce7f32 7777
7778 return;
7779
0326b4d4 7780 -- Processing for if expression
7781
92f1631f 7782 elsif Nkind (N) = N_If_Expression then
0326b4d4 7783 declare
7784 Then_DE : constant Node_Id := Next (First (Expressions (N)));
7785 Else_DE : constant Node_Id := Next (Then_DE);
7786
7787 begin
7788 Bignum_Operands := False;
7789
0df9d43f 7790 Minimize_Eliminate_Overflows
0326b4d4 7791 (Then_DE, Lo, Hi, Top_Level => False);
7792
7793 if Lo = No_Uint then
7794 Bignum_Operands := True;
7795 end if;
7796
0df9d43f 7797 Minimize_Eliminate_Overflows
0326b4d4 7798 (Else_DE, Rlo, Rhi, Top_Level => False);
7799
7800 if Rlo = No_Uint then
7801 Bignum_Operands := True;
7802 else
7803 Long_Long_Integer_Operands :=
7804 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7805
7806 Min (Lo, Rlo);
7807 Max (Hi, Rhi);
7808 end if;
7809
21a55437 7810 -- If at least one of our operands is now Bignum, we must rebuild
7811 -- the if expression to use Bignum operands. We will analyze the
0326b4d4 7812 -- rebuilt if expression with overflow checks off, since once we
39a0c1d3 7813 -- are in bignum mode, we are all done with overflow checks.
0326b4d4 7814
7815 if Bignum_Operands then
7816 Rewrite (N,
92f1631f 7817 Make_If_Expression (Loc,
0326b4d4 7818 Expressions => New_List (
7819 Remove_Head (Expressions (N)),
7820 Convert_To_Bignum (Then_DE),
7821 Convert_To_Bignum (Else_DE)),
7822 Is_Elsif => Is_Elsif (N)));
7823
0df9d43f 7824 Reanalyze (RTE (RE_Bignum), Suppress => True);
0326b4d4 7825
7826 -- If we have no Long_Long_Integer operands, then we are in result
7827 -- range, since it means that none of our operands felt the need
7828 -- to worry about overflow (otherwise it would have already been
4fb5f0a0 7829 -- converted to long long integer or bignum). We reexpand to
7830 -- complete the expansion of the if expression (but we do not
7831 -- need to reanalyze).
0326b4d4 7832
7833 elsif not Long_Long_Integer_Operands then
7834 Set_Do_Overflow_Check (N, False);
0df9d43f 7835 Reexpand;
0326b4d4 7836
7837 -- Otherwise convert us to long long integer mode. Note that we
7838 -- don't need any further overflow checking at this level.
7839
7840 else
7841 Convert_To_And_Rewrite (LLIB, Then_DE);
7842 Convert_To_And_Rewrite (LLIB, Else_DE);
7843 Set_Etype (N, LLIB);
f32c377d 7844
7845 -- Now reanalyze with overflow checks off
7846
0326b4d4 7847 Set_Do_Overflow_Check (N, False);
0df9d43f 7848 Reanalyze (LLIB, Suppress => True);
0326b4d4 7849 end if;
7850 end;
7851
7852 return;
7853
7854 -- Here for case expression
7855
7856 elsif Nkind (N) = N_Case_Expression then
7857 Bignum_Operands := False;
7858 Long_Long_Integer_Operands := False;
0326b4d4 7859
7860 declare
f32c377d 7861 Alt : Node_Id;
0326b4d4 7862
7863 begin
7864 -- Loop through expressions applying recursive call
7865
7866 Alt := First (Alternatives (N));
7867 while Present (Alt) loop
7868 declare
7869 Aexp : constant Node_Id := Expression (Alt);
7870
7871 begin
0df9d43f 7872 Minimize_Eliminate_Overflows
0326b4d4 7873 (Aexp, Lo, Hi, Top_Level => False);
7874
7875 if Lo = No_Uint then
7876 Bignum_Operands := True;
7877 elsif Etype (Aexp) = LLIB then
7878 Long_Long_Integer_Operands := True;
7879 end if;
7880 end;
7881
7882 Next (Alt);
7883 end loop;
7884
7885 -- If we have no bignum or long long integer operands, it means
7886 -- that none of our dependent expressions could raise overflow.
7887 -- In this case, we simply return with no changes except for
7888 -- resetting the overflow flag, since we are done with overflow
4fb5f0a0 7889 -- checks for this node. We will reexpand to get the needed
7890 -- expansion for the case expression, but we do not need to
21a55437 7891 -- reanalyze, since nothing has changed.
0326b4d4 7892
f32c377d 7893 if not (Bignum_Operands or Long_Long_Integer_Operands) then
0326b4d4 7894 Set_Do_Overflow_Check (N, False);
0df9d43f 7895 Reexpand (Suppress => True);
0326b4d4 7896
7897 -- Otherwise we are going to rebuild the case expression using
7898 -- either bignum or long long integer operands throughout.
7899
7900 else
f32c377d 7901 declare
7902 Rtype : Entity_Id;
7903 New_Alts : List_Id;
7904 New_Exp : Node_Id;
7905
7906 begin
7907 New_Alts := New_List;
7908 Alt := First (Alternatives (N));
7909 while Present (Alt) loop
7910 if Bignum_Operands then
7911 New_Exp := Convert_To_Bignum (Expression (Alt));
7912 Rtype := RTE (RE_Bignum);
7913 else
7914 New_Exp := Convert_To (LLIB, Expression (Alt));
7915 Rtype := LLIB;
7916 end if;
0326b4d4 7917
f32c377d 7918 Append_To (New_Alts,
7919 Make_Case_Expression_Alternative (Sloc (Alt),
7920 Actions => No_List,
7921 Discrete_Choices => Discrete_Choices (Alt),
7922 Expression => New_Exp));
0326b4d4 7923
f32c377d 7924 Next (Alt);
7925 end loop;
0326b4d4 7926
f32c377d 7927 Rewrite (N,
7928 Make_Case_Expression (Loc,
7929 Expression => Expression (N),
7930 Alternatives => New_Alts));
0326b4d4 7931
0df9d43f 7932 Reanalyze (Rtype, Suppress => True);
f32c377d 7933 end;
0326b4d4 7934 end if;
7935 end;
7936
7937 return;
7938 end if;
7939
7940 -- If we have an arithmetic operator we make recursive calls on the
3cce7f32 7941 -- operands to get the ranges (and to properly process the subtree
20cf157b 7942 -- that lies below us).
3cce7f32 7943
0df9d43f 7944 Minimize_Eliminate_Overflows
0326b4d4 7945 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
3cce7f32 7946
0326b4d4 7947 if Binary then
0df9d43f 7948 Minimize_Eliminate_Overflows
0326b4d4 7949 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
3cce7f32 7950 end if;
7951
f32c377d 7952 -- Record if we have Long_Long_Integer operands
7953
7954 Long_Long_Integer_Operands :=
7955 Etype (Right_Opnd (N)) = LLIB
7956 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
7957
7958 -- If either operand is a bignum, then result will be a bignum and we
7959 -- don't need to do any range analysis. As previously discussed we could
7960 -- do range analysis in such cases, but it could mean working with giant
7961 -- numbers at compile time for very little gain (the number of cases
21a55437 7962 -- in which we could slip back from bignum mode is small).
3cce7f32 7963
7964 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
7965 Lo := No_Uint;
7966 Hi := No_Uint;
61016a7a 7967 Bignum_Operands := True;
3cce7f32 7968
7969 -- Otherwise compute result range
7970
7971 else
61016a7a 7972 Bignum_Operands := False;
7973
3cce7f32 7974 case Nkind (N) is
7975
7976 -- Absolute value
7977
7978 when N_Op_Abs =>
7979 Lo := Uint_0;
de922300 7980 Hi := UI_Max (abs Rlo, abs Rhi);
3cce7f32 7981
7982 -- Addition
7983
7984 when N_Op_Add =>
7985 Lo := Llo + Rlo;
7986 Hi := Lhi + Rhi;
7987
7988 -- Division
7989
7990 when N_Op_Divide =>
2fe22c69 7991
5f4275e1 7992 -- If the right operand can only be zero, set 0..0
2fe22c69 7993
5f4275e1 7994 if Rlo = 0 and then Rhi = 0 then
7995 Lo := Uint_0;
7996 Hi := Uint_0;
2fe22c69 7997
5f4275e1 7998 -- Possible bounds of division must come from dividing end
7999 -- values of the input ranges (four possibilities), provided
8000 -- zero is not included in the possible values of the right
8001 -- operand.
8002
8003 -- Otherwise, we just consider two intervals of values for
8004 -- the right operand: the interval of negative values (up to
8005 -- -1) and the interval of positive values (starting at 1).
8006 -- Since division by 1 is the identity, and division by -1
8007 -- is negation, we get all possible bounds of division in that
8008 -- case by considering:
8009 -- - all values from the division of end values of input
8010 -- ranges;
8011 -- - the end values of the left operand;
8012 -- - the negation of the end values of the left operand.
2fe22c69 8013
5f4275e1 8014 else
8015 declare
8016 Mrk : constant Uintp.Save_Mark := Mark;
8017 -- Mark so we can release the RR and Ev values
2fe22c69 8018
5f4275e1 8019 Ev1 : Uint;
8020 Ev2 : Uint;
8021 Ev3 : Uint;
8022 Ev4 : Uint;
2fe22c69 8023
5f4275e1 8024 begin
8025 -- Discard extreme values of zero for the divisor, since
8026 -- they will simply result in an exception in any case.
2fe22c69 8027
5f4275e1 8028 if Rlo = 0 then
8029 Rlo := Uint_1;
8030 elsif Rhi = 0 then
8031 Rhi := -Uint_1;
2fe22c69 8032 end if;
2fe22c69 8033
5f4275e1 8034 -- Compute possible bounds coming from dividing end
8035 -- values of the input ranges.
2fe22c69 8036
5f4275e1 8037 Ev1 := Llo / Rlo;
8038 Ev2 := Llo / Rhi;
8039 Ev3 := Lhi / Rlo;
8040 Ev4 := Lhi / Rhi;
2fe22c69 8041
5f4275e1 8042 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8043 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
2fe22c69 8044
5f4275e1 8045 -- If the right operand can be both negative or positive,
8046 -- include the end values of the left operand in the
8047 -- extreme values, as well as their negation.
2fe22c69 8048
5f4275e1 8049 if Rlo < 0 and then Rhi > 0 then
8050 Ev1 := Llo;
8051 Ev2 := -Llo;
8052 Ev3 := Lhi;
8053 Ev4 := -Lhi;
2fe22c69 8054
5f4275e1 8055 Min (Lo,
8056 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8057 Max (Hi,
8058 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
2fe22c69 8059 end if;
2fe22c69 8060
5f4275e1 8061 -- Release the RR and Ev values
2fe22c69 8062
5f4275e1 8063 Release_And_Save (Mrk, Lo, Hi);
8064 end;
8065 end if;
3cce7f32 8066
8067 -- Exponentiation
8068
8069 when N_Op_Expon =>
de922300 8070
8071 -- Discard negative values for the exponent, since they will
8072 -- simply result in an exception in any case.
8073
8074 if Rhi < 0 then
8075 Rhi := Uint_0;
8076 elsif Rlo < 0 then
8077 Rlo := Uint_0;
8078 end if;
8079
8080 -- Estimate number of bits in result before we go computing
8081 -- giant useless bounds. Basically the number of bits in the
8082 -- result is the number of bits in the base multiplied by the
8083 -- value of the exponent. If this is big enough that the result
8084 -- definitely won't fit in Long_Long_Integer, switch to bignum
8085 -- mode immediately, and avoid computing giant bounds.
8086
8087 -- The comparison here is approximate, but conservative, it
8088 -- only clicks on cases that are sure to exceed the bounds.
8089
8090 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8091 Lo := No_Uint;
8092 Hi := No_Uint;
8093
8094 -- If right operand is zero then result is 1
8095
8096 elsif Rhi = 0 then
8097 Lo := Uint_1;
8098 Hi := Uint_1;
8099
8100 else
8101 -- High bound comes either from exponentiation of largest
5f4275e1 8102 -- positive value to largest exponent value, or from
8103 -- the exponentiation of most negative value to an
8104 -- even exponent.
de922300 8105
8106 declare
8107 Hi1, Hi2 : Uint;
8108
8109 begin
5f4275e1 8110 if Lhi > 0 then
de922300 8111 Hi1 := Lhi ** Rhi;
8112 else
8113 Hi1 := Uint_0;
8114 end if;
8115
8116 if Llo < 0 then
8117 if Rhi mod 2 = 0 then
de922300 8118 Hi2 := Llo ** Rhi;
5f4275e1 8119 else
8120 Hi2 := Llo ** (Rhi - 1);
de922300 8121 end if;
8122 else
8123 Hi2 := Uint_0;
8124 end if;
8125
8126 Hi := UI_Max (Hi1, Hi2);
8127 end;
8128
8129 -- Result can only be negative if base can be negative
8130
8131 if Llo < 0 then
21a55437 8132 if Rhi mod 2 = 0 then
de922300 8133 Lo := Llo ** (Rhi - 1);
8134 else
8135 Lo := Llo ** Rhi;
8136 end if;
8137
21a55437 8138 -- Otherwise low bound is minimum ** minimum
de922300 8139
8140 else
8141 Lo := Llo ** Rlo;
8142 end if;
8143 end if;
3cce7f32 8144
8145 -- Negation
8146
8147 when N_Op_Minus =>
8148 Lo := -Rhi;
8149 Hi := -Rlo;
8150
8151 -- Mod
8152
8153 when N_Op_Mod =>
2fe22c69 8154 declare
5f4275e1 8155 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 8156 -- This is the maximum absolute value of the result
8157
8158 begin
8159 Lo := Uint_0;
8160 Hi := Uint_0;
8161
8162 -- The result depends only on the sign and magnitude of
8163 -- the right operand, it does not depend on the sign or
8164 -- magnitude of the left operand.
8165
8166 if Rlo < 0 then
8167 Lo := -Maxabs;
8168 end if;
8169
8170 if Rhi > 0 then
8171 Hi := Maxabs;
8172 end if;
8173 end;
3cce7f32 8174
8175 -- Multiplication
8176
8177 when N_Op_Multiply =>
49b3a812 8178
8179 -- Possible bounds of multiplication must come from multiplying
8180 -- end values of the input ranges (four possibilities).
8181
8182 declare
8183 Mrk : constant Uintp.Save_Mark := Mark;
8184 -- Mark so we can release the Ev values
8185
8186 Ev1 : constant Uint := Llo * Rlo;
8187 Ev2 : constant Uint := Llo * Rhi;
8188 Ev3 : constant Uint := Lhi * Rlo;
8189 Ev4 : constant Uint := Lhi * Rhi;
8190
8191 begin
8192 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8193 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8194
8195 -- Release the Ev values
8196
8197 Release_And_Save (Mrk, Lo, Hi);
8198 end;
3cce7f32 8199
8200 -- Plus operator (affirmation)
8201
8202 when N_Op_Plus =>
8203 Lo := Rlo;
8204 Hi := Rhi;
8205
8206 -- Remainder
8207
8208 when N_Op_Rem =>
2fe22c69 8209 declare
5f4275e1 8210 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
2fe22c69 8211 -- This is the maximum absolute value of the result. Note
5f4275e1 8212 -- that the result range does not depend on the sign of the
8213 -- right operand.
2fe22c69 8214
8215 begin
8216 Lo := Uint_0;
8217 Hi := Uint_0;
8218
8219 -- Case of left operand negative, which results in a range
8220 -- of -Maxabs .. 0 for those negative values. If there are
8221 -- no negative values then Lo value of result is always 0.
8222
8223 if Llo < 0 then
8224 Lo := -Maxabs;
8225 end if;
8226
8227 -- Case of left operand positive
8228
8229 if Lhi > 0 then
8230 Hi := Maxabs;
8231 end if;
8232 end;
3cce7f32 8233
8234 -- Subtract
8235
8236 when N_Op_Subtract =>
8237 Lo := Llo - Rhi;
8238 Hi := Lhi - Rlo;
8239
8240 -- Nothing else should be possible
8241
8242 when others =>
8243 raise Program_Error;
3cce7f32 8244 end case;
8245 end if;
8246
4fb5f0a0 8247 -- Here for the case where we have not rewritten anything (no bignum
21a55437 8248 -- operands or long long integer operands), and we know the result.
8249 -- If we know we are in the result range, and we do not have Bignum
8250 -- operands or Long_Long_Integer operands, we can just reexpand with
8251 -- overflow checks turned off (since we know we cannot have overflow).
8252 -- As always the reexpansion is required to complete expansion of the
8253 -- operator, but we do not need to reanalyze, and we prevent recursion
8254 -- by suppressing the check.
f32c377d 8255
8256 if not (Bignum_Operands or Long_Long_Integer_Operands)
8257 and then In_Result_Range
8258 then
8259 Set_Do_Overflow_Check (N, False);
0df9d43f 8260 Reexpand (Suppress => True);
f32c377d 8261 return;
8262
8263 -- Here we know that we are not in the result range, and in the general
21a55437 8264 -- case we will move into either the Bignum or Long_Long_Integer domain
8265 -- to compute the result. However, there is one exception. If we are
8266 -- at the top level, and we do not have Bignum or Long_Long_Integer
8267 -- operands, we will have to immediately convert the result back to
8268 -- the result type, so there is no point in Bignum/Long_Long_Integer
8269 -- fiddling.
f32c377d 8270
8271 elsif Top_Level
8272 and then not (Bignum_Operands or Long_Long_Integer_Operands)
b6a8f264 8273
8274 -- One further refinement. If we are at the top level, but our parent
8275 -- is a type conversion, then go into bignum or long long integer node
8276 -- since the result will be converted to that type directly without
8277 -- going through the result type, and we may avoid an overflow. This
8278 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8279 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8280 -- but does not fit in Integer.
8281
8282 and then Nkind (Parent (N)) /= N_Type_Conversion
f32c377d 8283 then
0df9d43f 8284 -- Here keep original types, but we need to complete analysis
f32c377d 8285
8286 -- One subtlety. We can't just go ahead and do an analyze operation
21a55437 8287 -- here because it will cause recursion into the whole MINIMIZED/
8288 -- ELIMINATED overflow processing which is not what we want. Here
f32c377d 8289 -- we are at the top level, and we need a check against the result
39a0c1d3 8290 -- mode (i.e. we want to use STRICT mode). So do exactly that.
4fb5f0a0 8291 -- Also, we have not modified the node, so this is a case where
8292 -- we need to reexpand, but not reanalyze.
f32c377d 8293
0df9d43f 8294 Reexpand;
f32c377d 8295 return;
8296
8297 -- Cases where we do the operation in Bignum mode. This happens either
3cce7f32 8298 -- because one of our operands is in Bignum mode already, or because
de922300 8299 -- the computed bounds are outside the bounds of Long_Long_Integer,
8300 -- which in some cases can be indicated by Hi and Lo being No_Uint.
3cce7f32 8301
8302 -- Note: we could do better here and in some cases switch back from
8303 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8304 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8305 -- Failing to do this switching back is only an efficiency issue.
8306
f32c377d 8307 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
3cce7f32 8308
61016a7a 8309 -- OK, we are definitely outside the range of Long_Long_Integer. The
f32c377d 8310 -- question is whether to move to Bignum mode, or stay in the domain
61016a7a 8311 -- of Long_Long_Integer, signalling that an overflow check is needed.
8312
8313 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8314 -- the Bignum business. In ELIMINATED mode, we will normally move
8315 -- into Bignum mode, but there is an exception if neither of our
8316 -- operands is Bignum now, and we are at the top level (Top_Level
8317 -- set True). In this case, there is no point in moving into Bignum
8318 -- mode to prevent overflow if the caller will immediately convert
8319 -- the Bignum value back to LLI with an overflow check. It's more
0df9d43f 8320 -- efficient to stay in LLI mode with an overflow check (if needed)
61016a7a 8321
8322 if Check_Mode = Minimized
8323 or else (Top_Level and not Bignum_Operands)
8324 then
0df9d43f 8325 if Do_Overflow_Check (N) then
8326 Enable_Overflow_Check (N);
8327 end if;
3cce7f32 8328
0df9d43f 8329 -- The result now has to be in Long_Long_Integer mode, so adjust
8330 -- the possible range to reflect this. Note these calls also
8331 -- change No_Uint values from the top level case to LLI bounds.
61016a7a 8332
8333 Max (Lo, LLLo);
8334 Min (Hi, LLHi);
8335
8336 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
3cce7f32 8337
8338 else
8339 pragma Assert (Check_Mode = Eliminated);
8340
8341 declare
8342 Fent : Entity_Id;
8343 Args : List_Id;
8344
8345 begin
8346 case Nkind (N) is
8347 when N_Op_Abs =>
8348 Fent := RTE (RE_Big_Abs);
8349
8350 when N_Op_Add =>
8351 Fent := RTE (RE_Big_Add);
8352
8353 when N_Op_Divide =>
8354 Fent := RTE (RE_Big_Div);
8355
8356 when N_Op_Expon =>
8357 Fent := RTE (RE_Big_Exp);
8358
8359 when N_Op_Minus =>
8360 Fent := RTE (RE_Big_Neg);
8361
8362 when N_Op_Mod =>
8363 Fent := RTE (RE_Big_Mod);
8364
8365 when N_Op_Multiply =>
8366 Fent := RTE (RE_Big_Mul);
8367
8368 when N_Op_Rem =>
8369 Fent := RTE (RE_Big_Rem);
8370
8371 when N_Op_Subtract =>
8372 Fent := RTE (RE_Big_Sub);
8373
8374 -- Anything else is an internal error, this includes the
8375 -- N_Op_Plus case, since how can plus cause the result
8376 -- to be out of range if the operand is in range?
8377
8378 when others =>
8379 raise Program_Error;
8380 end case;
8381
8382 -- Construct argument list for Bignum call, converting our
8383 -- operands to Bignum form if they are not already there.
8384
8385 Args := New_List;
8386
8387 if Binary then
8388 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
8389 end if;
8390
8391 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
8392
8393 -- Now rewrite the arithmetic operator with a call to the
8394 -- corresponding bignum function.
8395
8396 Rewrite (N,
8397 Make_Function_Call (Loc,
8398 Name => New_Occurrence_Of (Fent, Loc),
8399 Parameter_Associations => Args));
0df9d43f 8400 Reanalyze (RTE (RE_Bignum), Suppress => True);
61016a7a 8401
8402 -- Indicate result is Bignum mode
8403
8404 Lo := No_Uint;
8405 Hi := No_Uint;
de922300 8406 return;
3cce7f32 8407 end;
8408 end if;
8409
8410 -- Otherwise we are in range of Long_Long_Integer, so no overflow
de922300 8411 -- check is required, at least not yet.
3cce7f32 8412
8413 else
de922300 8414 Set_Do_Overflow_Check (N, False);
8415 end if;
3cce7f32 8416
f32c377d 8417 -- Here we are not in Bignum territory, but we may have long long
8418 -- integer operands that need special handling. First a special check:
8419 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8420 -- it means we converted it to prevent overflow, but exponentiation
8421 -- requires a Natural right operand, so convert it back to Natural.
8422 -- This conversion may raise an exception which is fine.
0326b4d4 8423
f32c377d 8424 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
8425 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
0326b4d4 8426 end if;
8427
de922300 8428 -- Here we will do the operation in Long_Long_Integer. We do this even
8429 -- if we know an overflow check is required, better to do this in long
39a0c1d3 8430 -- long integer mode, since we are less likely to overflow.
3cce7f32 8431
de922300 8432 -- Convert right or only operand to Long_Long_Integer, except that
8433 -- we do not touch the exponentiation right operand.
3cce7f32 8434
de922300 8435 if Nkind (N) /= N_Op_Expon then
8436 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
8437 end if;
3cce7f32 8438
de922300 8439 -- Convert left operand to Long_Long_Integer for binary case
49b3a812 8440
de922300 8441 if Binary then
8442 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
8443 end if;
8444
8445 -- Reset node to unanalyzed
8446
8447 Set_Analyzed (N, False);
8448 Set_Etype (N, Empty);
8449 Set_Entity (N, Empty);
8450
2fe22c69 8451 -- Now analyze this new node. This reanalysis will complete processing
8452 -- for the node. In particular we will complete the expansion of an
8453 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8454 -- we will complete any division checks (since we have not changed the
8455 -- setting of the Do_Division_Check flag).
3cce7f32 8456
0df9d43f 8457 -- We do this reanalysis in STRICT mode to avoid recursion into the
39a0c1d3 8458 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
3cce7f32 8459
0df9d43f 8460 declare
db415383 8461 SG : constant Overflow_Mode_Type :=
8462 Scope_Suppress.Overflow_Mode_General;
8463 SA : constant Overflow_Mode_Type :=
8464 Scope_Suppress.Overflow_Mode_Assertions;
de922300 8465
0df9d43f 8466 begin
db415383 8467 Scope_Suppress.Overflow_Mode_General := Strict;
8468 Scope_Suppress.Overflow_Mode_Assertions := Strict;
de922300 8469
0df9d43f 8470 if not Do_Overflow_Check (N) then
8471 Reanalyze (LLIB, Suppress => True);
8472 else
8473 Reanalyze (LLIB);
8474 end if;
8475
db415383 8476 Scope_Suppress.Overflow_Mode_General := SG;
8477 Scope_Suppress.Overflow_Mode_Assertions := SA;
0df9d43f 8478 end;
8479 end Minimize_Eliminate_Overflows;
3cce7f32 8480
8481 -------------------------
8482 -- Overflow_Check_Mode --
8483 -------------------------
8484
db415383 8485 function Overflow_Check_Mode return Overflow_Mode_Type is
ee6ba406 8486 begin
724d2bd8 8487 if In_Assertion_Expr = 0 then
db415383 8488 return Scope_Suppress.Overflow_Mode_General;
9dfe12ae 8489 else
db415383 8490 return Scope_Suppress.Overflow_Mode_Assertions;
9dfe12ae 8491 end if;
3cce7f32 8492 end Overflow_Check_Mode;
8493
8494 --------------------------------
8495 -- Overflow_Checks_Suppressed --
8496 --------------------------------
8497
8498 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
8499 begin
0df9d43f 8500 if Present (E) and then Checks_May_Be_Suppressed (E) then
8501 return Is_Check_Suppressed (E, Overflow_Check);
8502 else
8503 return Scope_Suppress.Suppress (Overflow_Check);
8504 end if;
ee6ba406 8505 end Overflow_Checks_Suppressed;
fc75802a 8506
37baba83 8507 ---------------------------------
8508 -- Predicate_Checks_Suppressed --
8509 ---------------------------------
8510
8511 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
8512 begin
8513 if Present (E) and then Checks_May_Be_Suppressed (E) then
8514 return Is_Check_Suppressed (E, Predicate_Check);
8515 else
8516 return Scope_Suppress.Suppress (Predicate_Check);
8517 end if;
8518 end Predicate_Checks_Suppressed;
8519
ee6ba406 8520 -----------------------------
8521 -- Range_Checks_Suppressed --
8522 -----------------------------
8523
8524 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
8525 begin
9dfe12ae 8526 if Present (E) then
ce4d14c4 8527 if Kill_Range_Checks (E) then
9dfe12ae 8528 return True;
5f46de53 8529
9dfe12ae 8530 elsif Checks_May_Be_Suppressed (E) then
8531 return Is_Check_Suppressed (E, Range_Check);
8532 end if;
8533 end if;
ee6ba406 8534
fafc6b97 8535 return Scope_Suppress.Suppress (Range_Check);
ee6ba406 8536 end Range_Checks_Suppressed;
8537
0577b0b1 8538 -----------------------------------------
8539 -- Range_Or_Validity_Checks_Suppressed --
8540 -----------------------------------------
8541
8542 -- Note: the coding would be simpler here if we simply made appropriate
8543 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8544 -- duplicated checks which we prefer to avoid.
8545
8546 function Range_Or_Validity_Checks_Suppressed
8547 (Expr : Node_Id) return Boolean
8548 is
8549 begin
8550 -- Immediate return if scope checks suppressed for either check
8551
fafc6b97 8552 if Scope_Suppress.Suppress (Range_Check)
8553 or
8554 Scope_Suppress.Suppress (Validity_Check)
8555 then
0577b0b1 8556 return True;
8557 end if;
8558
8559 -- If no expression, that's odd, decide that checks are suppressed,
8560 -- since we don't want anyone trying to do checks in this case, which
8561 -- is most likely the result of some other error.
8562
8563 if No (Expr) then
8564 return True;
8565 end if;
8566
8567 -- Expression is present, so perform suppress checks on type
8568
8569 declare
8570 Typ : constant Entity_Id := Etype (Expr);
8571 begin
ce4d14c4 8572 if Checks_May_Be_Suppressed (Typ)
0577b0b1 8573 and then (Is_Check_Suppressed (Typ, Range_Check)
8574 or else
8575 Is_Check_Suppressed (Typ, Validity_Check))
8576 then
8577 return True;
8578 end if;
8579 end;
8580
8581 -- If expression is an entity name, perform checks on this entity
8582
8583 if Is_Entity_Name (Expr) then
8584 declare
8585 Ent : constant Entity_Id := Entity (Expr);
8586 begin
8587 if Checks_May_Be_Suppressed (Ent) then
8588 return Is_Check_Suppressed (Ent, Range_Check)
8589 or else Is_Check_Suppressed (Ent, Validity_Check);
8590 end if;
8591 end;
8592 end if;
8593
8594 -- If we fall through, no checks suppressed
8595
8596 return False;
8597 end Range_Or_Validity_Checks_Suppressed;
8598
226494a3 8599 -------------------
8600 -- Remove_Checks --
8601 -------------------
8602
8603 procedure Remove_Checks (Expr : Node_Id) is
226494a3 8604 function Process (N : Node_Id) return Traverse_Result;
8605 -- Process a single node during the traversal
8606
8f6e4fd5 8607 procedure Traverse is new Traverse_Proc (Process);
8608 -- The traversal procedure itself
226494a3 8609
8610 -------------
8611 -- Process --
8612 -------------
8613
8614 function Process (N : Node_Id) return Traverse_Result is
8615 begin
8616 if Nkind (N) not in N_Subexpr then
8617 return Skip;
8618 end if;
8619
8620 Set_Do_Range_Check (N, False);
8621
8622 case Nkind (N) is
8623 when N_And_Then =>
8f6e4fd5 8624 Traverse (Left_Opnd (N));
226494a3 8625 return Skip;
8626
8627 when N_Attribute_Reference =>
226494a3 8628 Set_Do_Overflow_Check (N, False);
8629
226494a3 8630 when N_Function_Call =>
8631 Set_Do_Tag_Check (N, False);
8632
226494a3 8633 when N_Op =>
8634 Set_Do_Overflow_Check (N, False);
8635
8636 case Nkind (N) is
8637 when N_Op_Divide =>
8638 Set_Do_Division_Check (N, False);
8639
8640 when N_Op_And =>
8641 Set_Do_Length_Check (N, False);
8642
8643 when N_Op_Mod =>
8644 Set_Do_Division_Check (N, False);
8645
8646 when N_Op_Or =>
8647 Set_Do_Length_Check (N, False);
8648
8649 when N_Op_Rem =>
8650 Set_Do_Division_Check (N, False);
8651
8652 when N_Op_Xor =>
8653 Set_Do_Length_Check (N, False);
8654
8655 when others =>
8656 null;
8657 end case;
8658
8659 when N_Or_Else =>
8f6e4fd5 8660 Traverse (Left_Opnd (N));
226494a3 8661 return Skip;
8662
8663 when N_Selected_Component =>
226494a3 8664 Set_Do_Discriminant_Check (N, False);
8665
226494a3 8666 when N_Type_Conversion =>
9dfe12ae 8667 Set_Do_Length_Check (N, False);
8668 Set_Do_Tag_Check (N, False);
226494a3 8669 Set_Do_Overflow_Check (N, False);
226494a3 8670
8671 when others =>
8672 null;
8673 end case;
8674
8675 return OK;
8676 end Process;
8677
8678 -- Start of processing for Remove_Checks
8679
8680 begin
8f6e4fd5 8681 Traverse (Expr);
226494a3 8682 end Remove_Checks;
8683
ee6ba406 8684 ----------------------------
8685 -- Selected_Length_Checks --
8686 ----------------------------
8687
8688 function Selected_Length_Checks
8689 (Ck_Node : Node_Id;
8690 Target_Typ : Entity_Id;
8691 Source_Typ : Entity_Id;
314a23b6 8692 Warn_Node : Node_Id) return Check_Result
ee6ba406 8693 is
8694 Loc : constant Source_Ptr := Sloc (Ck_Node);
8695 S_Typ : Entity_Id;
8696 T_Typ : Entity_Id;
8697 Expr_Actual : Node_Id;
8698 Exptyp : Entity_Id;
8699 Cond : Node_Id := Empty;
8700 Do_Access : Boolean := False;
8701 Wnode : Node_Id := Warn_Node;
8702 Ret_Result : Check_Result := (Empty, Empty);
8703 Num_Checks : Natural := 0;
8704
8705 procedure Add_Check (N : Node_Id);
8706 -- Adds the action given to Ret_Result if N is non-Empty
8707
8708 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
8709 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 8710 -- Comments required ???
ee6ba406 8711
8712 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
8713 -- True for equal literals and for nodes that denote the same constant
5f260d20 8714 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 8715 -- case of a discriminal reference within an init proc. Removes some
5f260d20 8716 -- obviously superfluous checks.
ee6ba406 8717
8718 function Length_E_Cond
8719 (Exptyp : Entity_Id;
8720 Typ : Entity_Id;
314a23b6 8721 Indx : Nat) return Node_Id;
ee6ba406 8722 -- Returns expression to compute:
8723 -- Typ'Length /= Exptyp'Length
8724
8725 function Length_N_Cond
8726 (Expr : Node_Id;
8727 Typ : Entity_Id;
314a23b6 8728 Indx : Nat) return Node_Id;
ee6ba406 8729 -- Returns expression to compute:
8730 -- Typ'Length /= Expr'Length
8731
8732 ---------------
8733 -- Add_Check --
8734 ---------------
8735
8736 procedure Add_Check (N : Node_Id) is
8737 begin
8738 if Present (N) then
8739
20cf157b 8740 -- For now, ignore attempt to place more than two checks ???
8741 -- This is really worrisome, are we really discarding checks ???
ee6ba406 8742
8743 if Num_Checks = 2 then
8744 return;
8745 end if;
8746
8747 pragma Assert (Num_Checks <= 1);
8748 Num_Checks := Num_Checks + 1;
8749 Ret_Result (Num_Checks) := N;
8750 end if;
8751 end Add_Check;
8752
8753 ------------------
8754 -- Get_E_Length --
8755 ------------------
8756
8757 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 8758 SE : constant Entity_Id := Scope (E);
ee6ba406 8759 N : Node_Id;
8760 E1 : Entity_Id := E;
ee6ba406 8761
8762 begin
8763 if Ekind (Scope (E)) = E_Record_Type
8764 and then Has_Discriminants (Scope (E))
8765 then
8766 N := Build_Discriminal_Subtype_Of_Component (E);
8767
8768 if Present (N) then
8769 Insert_Action (Ck_Node, N);
8770 E1 := Defining_Identifier (N);
8771 end if;
8772 end if;
8773
8774 if Ekind (E1) = E_String_Literal_Subtype then
8775 return
8776 Make_Integer_Literal (Loc,
8777 Intval => String_Literal_Length (E1));
8778
00c403ee 8779 elsif SE /= Standard_Standard
8780 and then Ekind (Scope (SE)) = E_Protected_Type
8781 and then Has_Discriminants (Scope (SE))
8782 and then Has_Completion (Scope (SE))
ee6ba406 8783 and then not Inside_Init_Proc
8784 then
ee6ba406 8785 -- If the type whose length is needed is a private component
8786 -- constrained by a discriminant, we must expand the 'Length
8787 -- attribute into an explicit computation, using the discriminal
8788 -- of the current protected operation. This is because the actual
8789 -- type of the prival is constructed after the protected opera-
8790 -- tion has been fully expanded.
8791
8792 declare
8793 Indx_Type : Node_Id;
8794 Lo : Node_Id;
8795 Hi : Node_Id;
8796 Do_Expand : Boolean := False;
8797
8798 begin
8799 Indx_Type := First_Index (E);
8800
8801 for J in 1 .. Indx - 1 loop
8802 Next_Index (Indx_Type);
8803 end loop;
8804
2af58f67 8805 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 8806
8807 if Nkind (Lo) = N_Identifier
8808 and then Ekind (Entity (Lo)) = E_In_Parameter
8809 then
8810 Lo := Get_Discriminal (E, Lo);
8811 Do_Expand := True;
8812 end if;
8813
8814 if Nkind (Hi) = N_Identifier
8815 and then Ekind (Entity (Hi)) = E_In_Parameter
8816 then
8817 Hi := Get_Discriminal (E, Hi);
8818 Do_Expand := True;
8819 end if;
8820
8821 if Do_Expand then
8822 if not Is_Entity_Name (Lo) then
9dfe12ae 8823 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 8824 end if;
8825
8826 if not Is_Entity_Name (Hi) then
9dfe12ae 8827 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 8828 end if;
8829
8830 N :=
8831 Make_Op_Add (Loc,
8832 Left_Opnd =>
8833 Make_Op_Subtract (Loc,
8834 Left_Opnd => Hi,
8835 Right_Opnd => Lo),
8836
8837 Right_Opnd => Make_Integer_Literal (Loc, 1));
8838 return N;
8839
8840 else
8841 N :=
8842 Make_Attribute_Reference (Loc,
8843 Attribute_Name => Name_Length,
8844 Prefix =>
8845 New_Occurrence_Of (E1, Loc));
8846
8847 if Indx > 1 then
8848 Set_Expressions (N, New_List (
8849 Make_Integer_Literal (Loc, Indx)));
8850 end if;
8851
8852 return N;
8853 end if;
8854 end;
8855
8856 else
8857 N :=
8858 Make_Attribute_Reference (Loc,
8859 Attribute_Name => Name_Length,
8860 Prefix =>
8861 New_Occurrence_Of (E1, Loc));
8862
8863 if Indx > 1 then
8864 Set_Expressions (N, New_List (
8865 Make_Integer_Literal (Loc, Indx)));
8866 end if;
8867
8868 return N;
ee6ba406 8869 end if;
8870 end Get_E_Length;
8871
8872 ------------------
8873 -- Get_N_Length --
8874 ------------------
8875
8876 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8877 begin
8878 return
8879 Make_Attribute_Reference (Loc,
8880 Attribute_Name => Name_Length,
8881 Prefix =>
9dfe12ae 8882 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 8883 Expressions => New_List (
8884 Make_Integer_Literal (Loc, Indx)));
ee6ba406 8885 end Get_N_Length;
8886
8887 -------------------
8888 -- Length_E_Cond --
8889 -------------------
8890
8891 function Length_E_Cond
8892 (Exptyp : Entity_Id;
8893 Typ : Entity_Id;
314a23b6 8894 Indx : Nat) return Node_Id
ee6ba406 8895 is
8896 begin
8897 return
8898 Make_Op_Ne (Loc,
8899 Left_Opnd => Get_E_Length (Typ, Indx),
8900 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 8901 end Length_E_Cond;
8902
8903 -------------------
8904 -- Length_N_Cond --
8905 -------------------
8906
8907 function Length_N_Cond
8908 (Expr : Node_Id;
8909 Typ : Entity_Id;
314a23b6 8910 Indx : Nat) return Node_Id
ee6ba406 8911 is
8912 begin
8913 return
8914 Make_Op_Ne (Loc,
8915 Left_Opnd => Get_E_Length (Typ, Indx),
8916 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 8917 end Length_N_Cond;
8918
feff2f05 8919 -----------------
8920 -- Same_Bounds --
8921 -----------------
8922
ee6ba406 8923 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
8924 begin
8925 return
8926 (Nkind (L) = N_Integer_Literal
8927 and then Nkind (R) = N_Integer_Literal
8928 and then Intval (L) = Intval (R))
8929
8930 or else
8931 (Is_Entity_Name (L)
8932 and then Ekind (Entity (L)) = E_Constant
8933 and then ((Is_Entity_Name (R)
8934 and then Entity (L) = Entity (R))
8935 or else
8936 (Nkind (R) = N_Type_Conversion
8937 and then Is_Entity_Name (Expression (R))
8938 and then Entity (L) = Entity (Expression (R)))))
8939
8940 or else
8941 (Is_Entity_Name (R)
8942 and then Ekind (Entity (R)) = E_Constant
8943 and then Nkind (L) = N_Type_Conversion
8944 and then Is_Entity_Name (Expression (L))
5f260d20 8945 and then Entity (R) = Entity (Expression (L)))
8946
8947 or else
8948 (Is_Entity_Name (L)
8949 and then Is_Entity_Name (R)
8950 and then Entity (L) = Entity (R)
8951 and then Ekind (Entity (L)) = E_In_Parameter
8952 and then Inside_Init_Proc);
ee6ba406 8953 end Same_Bounds;
8954
8955 -- Start of processing for Selected_Length_Checks
8956
8957 begin
a33565dd 8958 if not Expander_Active then
ee6ba406 8959 return Ret_Result;
8960 end if;
8961
8962 if Target_Typ = Any_Type
8963 or else Target_Typ = Any_Composite
8964 or else Raises_Constraint_Error (Ck_Node)
8965 then
8966 return Ret_Result;
8967 end if;
8968
8969 if No (Wnode) then
8970 Wnode := Ck_Node;
8971 end if;
8972
8973 T_Typ := Target_Typ;
8974
8975 if No (Source_Typ) then
8976 S_Typ := Etype (Ck_Node);
8977 else
8978 S_Typ := Source_Typ;
8979 end if;
8980
8981 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8982 return Ret_Result;
8983 end if;
8984
8985 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8986 S_Typ := Designated_Type (S_Typ);
8987 T_Typ := Designated_Type (T_Typ);
8988 Do_Access := True;
8989
2af58f67 8990 -- A simple optimization for the null case
ee6ba406 8991
2af58f67 8992 if Known_Null (Ck_Node) then
ee6ba406 8993 return Ret_Result;
8994 end if;
8995 end if;
8996
8997 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
8998 if Is_Constrained (T_Typ) then
8999
92f1631f 9000 -- The checking code to be generated will freeze the corresponding
9001 -- array type. However, we must freeze the type now, so that the
9002 -- freeze node does not appear within the generated if expression,
9003 -- but ahead of it.
ee6ba406 9004
9005 Freeze_Before (Ck_Node, T_Typ);
9006
9007 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 9008 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 9009
9010 if Is_Access_Type (Exptyp) then
9011 Exptyp := Designated_Type (Exptyp);
9012 end if;
9013
9014 -- String_Literal case. This needs to be handled specially be-
9015 -- cause no index types are available for string literals. The
9016 -- condition is simply:
9017
9018 -- T_Typ'Length = string-literal-length
9019
9dfe12ae 9020 if Nkind (Expr_Actual) = N_String_Literal
9021 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9022 then
ee6ba406 9023 Cond :=
9024 Make_Op_Ne (Loc,
9025 Left_Opnd => Get_E_Length (T_Typ, 1),
9026 Right_Opnd =>
9027 Make_Integer_Literal (Loc,
9028 Intval =>
9029 String_Literal_Length (Etype (Expr_Actual))));
9030
9031 -- General array case. Here we have a usable actual subtype for
9032 -- the expression, and the condition is built from the two types
9033 -- (Do_Length):
9034
9035 -- T_Typ'Length /= Exptyp'Length or else
9036 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9037 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9038 -- ...
9039
9040 elsif Is_Constrained (Exptyp) then
9041 declare
9dfe12ae 9042 Ndims : constant Nat := Number_Dimensions (T_Typ);
9043
9044 L_Index : Node_Id;
9045 R_Index : Node_Id;
9046 L_Low : Node_Id;
9047 L_High : Node_Id;
9048 R_Low : Node_Id;
9049 R_High : Node_Id;
ee6ba406 9050 L_Length : Uint;
9051 R_Length : Uint;
9dfe12ae 9052 Ref_Node : Node_Id;
ee6ba406 9053
9054 begin
feff2f05 9055 -- At the library level, we need to ensure that the type of
9056 -- the object is elaborated before the check itself is
9057 -- emitted. This is only done if the object is in the
9058 -- current compilation unit, otherwise the type is frozen
9059 -- and elaborated in its unit.
9dfe12ae 9060
9061 if Is_Itype (Exptyp)
9062 and then
9063 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9064 and then
9065 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 9066 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 9067 then
9068 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9069 Set_Itype (Ref_Node, Exptyp);
9070 Insert_Action (Ck_Node, Ref_Node);
9071 end if;
9072
ee6ba406 9073 L_Index := First_Index (T_Typ);
9074 R_Index := First_Index (Exptyp);
9075
9076 for Indx in 1 .. Ndims loop
9077 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 9078 or else
9079 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 9080 then
9081 Get_Index_Bounds (L_Index, L_Low, L_High);
9082 Get_Index_Bounds (R_Index, R_Low, R_High);
9083
9084 -- Deal with compile time length check. Note that we
9085 -- skip this in the access case, because the access
9086 -- value may be null, so we cannot know statically.
9087
9088 if not Do_Access
9089 and then Compile_Time_Known_Value (L_Low)
9090 and then Compile_Time_Known_Value (L_High)
9091 and then Compile_Time_Known_Value (R_Low)
9092 and then Compile_Time_Known_Value (R_High)
9093 then
9094 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9095 L_Length := Expr_Value (L_High) -
9096 Expr_Value (L_Low) + 1;
9097 else
9098 L_Length := UI_From_Int (0);
9099 end if;
9100
9101 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9102 R_Length := Expr_Value (R_High) -
9103 Expr_Value (R_Low) + 1;
9104 else
9105 R_Length := UI_From_Int (0);
9106 end if;
9107
9108 if L_Length > R_Length then
9109 Add_Check
9110 (Compile_Time_Constraint_Error
cb97ae5c 9111 (Wnode, "too few elements for}??", T_Typ));
ee6ba406 9112
9113 elsif L_Length < R_Length then
9114 Add_Check
9115 (Compile_Time_Constraint_Error
cb97ae5c 9116 (Wnode, "too many elements for}??", T_Typ));
ee6ba406 9117 end if;
9118
9119 -- The comparison for an individual index subtype
9120 -- is omitted if the corresponding index subtypes
9121 -- statically match, since the result is known to
9122 -- be true. Note that this test is worth while even
9123 -- though we do static evaluation, because non-static
9124 -- subtypes can statically match.
9125
9126 elsif not
9127 Subtypes_Statically_Match
9128 (Etype (L_Index), Etype (R_Index))
9129
9130 and then not
9131 (Same_Bounds (L_Low, R_Low)
9132 and then Same_Bounds (L_High, R_High))
9133 then
9134 Evolve_Or_Else
9135 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9136 end if;
9137
9138 Next (L_Index);
9139 Next (R_Index);
9140 end if;
9141 end loop;
9142 end;
9143
9144 -- Handle cases where we do not get a usable actual subtype that
9145 -- is constrained. This happens for example in the function call
9146 -- and explicit dereference cases. In these cases, we have to get
9147 -- the length or range from the expression itself, making sure we
9148 -- do not evaluate it more than once.
9149
9150 -- Here Ck_Node is the original expression, or more properly the
feff2f05 9151 -- result of applying Duplicate_Expr to the original tree, forcing
9152 -- the result to be a name.
ee6ba406 9153
9154 else
9155 declare
9dfe12ae 9156 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 9157
9158 begin
9159 -- Build the condition for the explicit dereference case
9160
9161 for Indx in 1 .. Ndims loop
9162 Evolve_Or_Else
9163 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9164 end loop;
9165 end;
9166 end if;
9167 end if;
9168 end if;
9169
9170 -- Construct the test and insert into the tree
9171
9172 if Present (Cond) then
9173 if Do_Access then
9174 Cond := Guard_Access (Cond, Loc, Ck_Node);
9175 end if;
9176
f15731c4 9177 Add_Check
9178 (Make_Raise_Constraint_Error (Loc,
9179 Condition => Cond,
9180 Reason => CE_Length_Check_Failed));
ee6ba406 9181 end if;
9182
9183 return Ret_Result;
ee6ba406 9184 end Selected_Length_Checks;
9185
9186 ---------------------------
9187 -- Selected_Range_Checks --
9188 ---------------------------
9189
9190 function Selected_Range_Checks
9191 (Ck_Node : Node_Id;
9192 Target_Typ : Entity_Id;
9193 Source_Typ : Entity_Id;
314a23b6 9194 Warn_Node : Node_Id) return Check_Result
ee6ba406 9195 is
9196 Loc : constant Source_Ptr := Sloc (Ck_Node);
9197 S_Typ : Entity_Id;
9198 T_Typ : Entity_Id;
9199 Expr_Actual : Node_Id;
9200 Exptyp : Entity_Id;
9201 Cond : Node_Id := Empty;
9202 Do_Access : Boolean := False;
9203 Wnode : Node_Id := Warn_Node;
9204 Ret_Result : Check_Result := (Empty, Empty);
9205 Num_Checks : Integer := 0;
9206
9207 procedure Add_Check (N : Node_Id);
9208 -- Adds the action given to Ret_Result if N is non-Empty
9209
9210 function Discrete_Range_Cond
9211 (Expr : Node_Id;
314a23b6 9212 Typ : Entity_Id) return Node_Id;
ee6ba406 9213 -- Returns expression to compute:
9214 -- Low_Bound (Expr) < Typ'First
9215 -- or else
9216 -- High_Bound (Expr) > Typ'Last
9217
9218 function Discrete_Expr_Cond
9219 (Expr : Node_Id;
314a23b6 9220 Typ : Entity_Id) return Node_Id;
ee6ba406 9221 -- Returns expression to compute:
9222 -- Expr < Typ'First
9223 -- or else
9224 -- Expr > Typ'Last
9225
9226 function Get_E_First_Or_Last
3cb12758 9227 (Loc : Source_Ptr;
9228 E : Entity_Id;
ee6ba406 9229 Indx : Nat;
314a23b6 9230 Nam : Name_Id) return Node_Id;
79212397 9231 -- Returns an attribute reference
ee6ba406 9232 -- E'First or E'Last
79212397 9233 -- with a source location of Loc.
f73ee678 9234 --
79212397 9235 -- Nam is Name_First or Name_Last, according to which attribute is
9236 -- desired. If Indx is non-zero, it is passed as a literal in the
9237 -- Expressions of the attribute reference (identifying the desired
9238 -- array dimension).
ee6ba406 9239
9240 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9241 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9242 -- Returns expression to compute:
9dfe12ae 9243 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 9244
9245 function Range_E_Cond
9246 (Exptyp : Entity_Id;
9247 Typ : Entity_Id;
9248 Indx : Nat)
9249 return Node_Id;
9250 -- Returns expression to compute:
9251 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9252
9253 function Range_Equal_E_Cond
9254 (Exptyp : Entity_Id;
9255 Typ : Entity_Id;
314a23b6 9256 Indx : Nat) return Node_Id;
ee6ba406 9257 -- Returns expression to compute:
9258 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9259
9260 function Range_N_Cond
9261 (Expr : Node_Id;
9262 Typ : Entity_Id;
314a23b6 9263 Indx : Nat) return Node_Id;
ee6ba406 9264 -- Return expression to compute:
9265 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9266
9267 ---------------
9268 -- Add_Check --
9269 ---------------
9270
9271 procedure Add_Check (N : Node_Id) is
9272 begin
9273 if Present (N) then
9274
9275 -- For now, ignore attempt to place more than 2 checks ???
9276
9277 if Num_Checks = 2 then
9278 return;
9279 end if;
9280
9281 pragma Assert (Num_Checks <= 1);
9282 Num_Checks := Num_Checks + 1;
9283 Ret_Result (Num_Checks) := N;
9284 end if;
9285 end Add_Check;
9286
9287 -------------------------
9288 -- Discrete_Expr_Cond --
9289 -------------------------
9290
9291 function Discrete_Expr_Cond
9292 (Expr : Node_Id;
314a23b6 9293 Typ : Entity_Id) return Node_Id
ee6ba406 9294 is
9295 begin
9296 return
9297 Make_Or_Else (Loc,
9298 Left_Opnd =>
9299 Make_Op_Lt (Loc,
9300 Left_Opnd =>
9dfe12ae 9301 Convert_To (Base_Type (Typ),
9302 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 9303 Right_Opnd =>
9304 Convert_To (Base_Type (Typ),
3cb12758 9305 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
ee6ba406 9306
9307 Right_Opnd =>
9308 Make_Op_Gt (Loc,
9309 Left_Opnd =>
9dfe12ae 9310 Convert_To (Base_Type (Typ),
9311 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 9312 Right_Opnd =>
9313 Convert_To
9314 (Base_Type (Typ),
3cb12758 9315 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
ee6ba406 9316 end Discrete_Expr_Cond;
9317
9318 -------------------------
9319 -- Discrete_Range_Cond --
9320 -------------------------
9321
9322 function Discrete_Range_Cond
9323 (Expr : Node_Id;
314a23b6 9324 Typ : Entity_Id) return Node_Id
ee6ba406 9325 is
9326 LB : Node_Id := Low_Bound (Expr);
9327 HB : Node_Id := High_Bound (Expr);
9328
9329 Left_Opnd : Node_Id;
9330 Right_Opnd : Node_Id;
9331
9332 begin
9333 if Nkind (LB) = N_Identifier
feff2f05 9334 and then Ekind (Entity (LB)) = E_Discriminant
9335 then
ee6ba406 9336 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9337 end if;
9338
ee6ba406 9339 Left_Opnd :=
9340 Make_Op_Lt (Loc,
9341 Left_Opnd =>
9342 Convert_To
9dfe12ae 9343 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 9344
9345 Right_Opnd =>
9346 Convert_To
3cb12758 9347 (Base_Type (Typ),
9348 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
ee6ba406 9349
ba9b1a39 9350 if Nkind (HB) = N_Identifier
9351 and then Ekind (Entity (HB)) = E_Discriminant
ee6ba406 9352 then
ba9b1a39 9353 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
ee6ba406 9354 end if;
9355
9356 Right_Opnd :=
9357 Make_Op_Gt (Loc,
9358 Left_Opnd =>
9359 Convert_To
9dfe12ae 9360 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 9361
9362 Right_Opnd =>
9363 Convert_To
9364 (Base_Type (Typ),
3cb12758 9365 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
ee6ba406 9366
9367 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9368 end Discrete_Range_Cond;
9369
9370 -------------------------
9371 -- Get_E_First_Or_Last --
9372 -------------------------
9373
9374 function Get_E_First_Or_Last
3cb12758 9375 (Loc : Source_Ptr;
9376 E : Entity_Id;
ee6ba406 9377 Indx : Nat;
314a23b6 9378 Nam : Name_Id) return Node_Id
ee6ba406 9379 is
3cb12758 9380 Exprs : List_Id;
ee6ba406 9381 begin
3cb12758 9382 if Indx > 0 then
9383 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
ee6ba406 9384 else
3cb12758 9385 Exprs := No_List;
ee6ba406 9386 end if;
9387
3cb12758 9388 return Make_Attribute_Reference (Loc,
9389 Prefix => New_Occurrence_Of (E, Loc),
9390 Attribute_Name => Nam,
9391 Expressions => Exprs);
ee6ba406 9392 end Get_E_First_Or_Last;
9393
9394 -----------------
9395 -- Get_N_First --
9396 -----------------
9397
9398 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
9399 begin
9400 return
9401 Make_Attribute_Reference (Loc,
9402 Attribute_Name => Name_First,
9403 Prefix =>
9dfe12ae 9404 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 9405 Expressions => New_List (
9406 Make_Integer_Literal (Loc, Indx)));
ee6ba406 9407 end Get_N_First;
9408
9409 ----------------
9410 -- Get_N_Last --
9411 ----------------
9412
9413 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
9414 begin
9415 return
9416 Make_Attribute_Reference (Loc,
9417 Attribute_Name => Name_Last,
9418 Prefix =>
9dfe12ae 9419 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 9420 Expressions => New_List (
9421 Make_Integer_Literal (Loc, Indx)));
ee6ba406 9422 end Get_N_Last;
9423
9424 ------------------
9425 -- Range_E_Cond --
9426 ------------------
9427
9428 function Range_E_Cond
9429 (Exptyp : Entity_Id;
9430 Typ : Entity_Id;
314a23b6 9431 Indx : Nat) return Node_Id
ee6ba406 9432 is
9433 begin
9434 return
9435 Make_Or_Else (Loc,
9436 Left_Opnd =>
9437 Make_Op_Lt (Loc,
3cb12758 9438 Left_Opnd =>
9439 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9440 Right_Opnd =>
9441 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 9442
9443 Right_Opnd =>
9444 Make_Op_Gt (Loc,
3cb12758 9445 Left_Opnd =>
9446 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9447 Right_Opnd =>
9448 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 9449 end Range_E_Cond;
9450
9451 ------------------------
9452 -- Range_Equal_E_Cond --
9453 ------------------------
9454
9455 function Range_Equal_E_Cond
9456 (Exptyp : Entity_Id;
9457 Typ : Entity_Id;
314a23b6 9458 Indx : Nat) return Node_Id
ee6ba406 9459 is
9460 begin
9461 return
9462 Make_Or_Else (Loc,
9463 Left_Opnd =>
9464 Make_Op_Ne (Loc,
3cb12758 9465 Left_Opnd =>
9466 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9467 Right_Opnd =>
9468 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9469
ee6ba406 9470 Right_Opnd =>
9471 Make_Op_Ne (Loc,
3cb12758 9472 Left_Opnd =>
9473 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9474 Right_Opnd =>
9475 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 9476 end Range_Equal_E_Cond;
9477
9478 ------------------
9479 -- Range_N_Cond --
9480 ------------------
9481
9482 function Range_N_Cond
9483 (Expr : Node_Id;
9484 Typ : Entity_Id;
314a23b6 9485 Indx : Nat) return Node_Id
ee6ba406 9486 is
9487 begin
9488 return
9489 Make_Or_Else (Loc,
9490 Left_Opnd =>
9491 Make_Op_Lt (Loc,
3cb12758 9492 Left_Opnd =>
9493 Get_N_First (Expr, Indx),
9494 Right_Opnd =>
9495 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
ee6ba406 9496
9497 Right_Opnd =>
9498 Make_Op_Gt (Loc,
3cb12758 9499 Left_Opnd =>
9500 Get_N_Last (Expr, Indx),
9501 Right_Opnd =>
9502 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
ee6ba406 9503 end Range_N_Cond;
9504
9505 -- Start of processing for Selected_Range_Checks
9506
9507 begin
a33565dd 9508 if not Expander_Active then
ee6ba406 9509 return Ret_Result;
9510 end if;
9511
9512 if Target_Typ = Any_Type
9513 or else Target_Typ = Any_Composite
9514 or else Raises_Constraint_Error (Ck_Node)
9515 then
9516 return Ret_Result;
9517 end if;
9518
9519 if No (Wnode) then
9520 Wnode := Ck_Node;
9521 end if;
9522
9523 T_Typ := Target_Typ;
9524
9525 if No (Source_Typ) then
9526 S_Typ := Etype (Ck_Node);
9527 else
9528 S_Typ := Source_Typ;
9529 end if;
9530
9531 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9532 return Ret_Result;
9533 end if;
9534
9535 -- The order of evaluating T_Typ before S_Typ seems to be critical
9536 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9537 -- in, and since Node can be an N_Range node, it might be invalid.
9538 -- Should there be an assert check somewhere for taking the Etype of
9539 -- an N_Range node ???
9540
9541 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9542 S_Typ := Designated_Type (S_Typ);
9543 T_Typ := Designated_Type (T_Typ);
9544 Do_Access := True;
9545
2af58f67 9546 -- A simple optimization for the null case
ee6ba406 9547
2af58f67 9548 if Known_Null (Ck_Node) then
ee6ba406 9549 return Ret_Result;
9550 end if;
9551 end if;
9552
9553 -- For an N_Range Node, check for a null range and then if not
9554 -- null generate a range check action.
9555
9556 if Nkind (Ck_Node) = N_Range then
9557
9558 -- There's no point in checking a range against itself
9559
9560 if Ck_Node = Scalar_Range (T_Typ) then
9561 return Ret_Result;
9562 end if;
9563
9564 declare
9565 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
9566 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
eefa141b 9567 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
9568 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
ee6ba406 9569
eefa141b 9570 LB : Node_Id := Low_Bound (Ck_Node);
9571 HB : Node_Id := High_Bound (Ck_Node);
9572 Known_LB : Boolean;
9573 Known_HB : Boolean;
9574
9575 Null_Range : Boolean;
ee6ba406 9576 Out_Of_Range_L : Boolean;
9577 Out_Of_Range_H : Boolean;
9578
9579 begin
eefa141b 9580 -- Compute what is known at compile time
9581
9582 if Known_T_LB and Known_T_HB then
9583 if Compile_Time_Known_Value (LB) then
9584 Known_LB := True;
9585
9586 -- There's no point in checking that a bound is within its
9587 -- own range so pretend that it is known in this case. First
9588 -- deal with low bound.
9589
9590 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
9591 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
9592 then
9593 LB := T_LB;
9594 Known_LB := True;
9595
9596 else
9597 Known_LB := False;
9598 end if;
9599
9600 -- Likewise for the high bound
9601
9602 if Compile_Time_Known_Value (HB) then
9603 Known_HB := True;
9604
9605 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
9606 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
9607 then
9608 HB := T_HB;
9609 Known_HB := True;
eefa141b 9610 else
9611 Known_HB := False;
9612 end if;
9613 end if;
9614
9615 -- Check for case where everything is static and we can do the
9616 -- check at compile time. This is skipped if we have an access
9617 -- type, since the access value may be null.
9618
9619 -- ??? This code can be improved since you only need to know that
9620 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9621 -- compile time to emit pertinent messages.
9622
9623 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
9624 and not Do_Access
ee6ba406 9625 then
9626 -- Floating-point case
9627
9628 if Is_Floating_Point_Type (S_Typ) then
9629 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
9630 Out_Of_Range_L :=
9631 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
eefa141b 9632 or else
ee6ba406 9633 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
9634
9635 Out_Of_Range_H :=
9636 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
eefa141b 9637 or else
ee6ba406 9638 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
9639
9640 -- Fixed or discrete type case
9641
9642 else
9643 Null_Range := Expr_Value (HB) < Expr_Value (LB);
9644 Out_Of_Range_L :=
9645 (Expr_Value (LB) < Expr_Value (T_LB))
eefa141b 9646 or else
ee6ba406 9647 (Expr_Value (LB) > Expr_Value (T_HB));
9648
9649 Out_Of_Range_H :=
9650 (Expr_Value (HB) > Expr_Value (T_HB))
eefa141b 9651 or else
ee6ba406 9652 (Expr_Value (HB) < Expr_Value (T_LB));
9653 end if;
9654
9655 if not Null_Range then
9656 if Out_Of_Range_L then
9657 if No (Warn_Node) then
9658 Add_Check
9659 (Compile_Time_Constraint_Error
9660 (Low_Bound (Ck_Node),
cb97ae5c 9661 "static value out of range of}??", T_Typ));
ee6ba406 9662
9663 else
9664 Add_Check
9665 (Compile_Time_Constraint_Error
9666 (Wnode,
cb97ae5c 9667 "static range out of bounds of}??", T_Typ));
ee6ba406 9668 end if;
9669 end if;
9670
9671 if Out_Of_Range_H then
9672 if No (Warn_Node) then
9673 Add_Check
9674 (Compile_Time_Constraint_Error
9675 (High_Bound (Ck_Node),
cb97ae5c 9676 "static value out of range of}??", T_Typ));
ee6ba406 9677
9678 else
9679 Add_Check
9680 (Compile_Time_Constraint_Error
9681 (Wnode,
cb97ae5c 9682 "static range out of bounds of}??", T_Typ));
ee6ba406 9683 end if;
9684 end if;
ee6ba406 9685 end if;
9686
9687 else
9688 declare
9689 LB : Node_Id := Low_Bound (Ck_Node);
9690 HB : Node_Id := High_Bound (Ck_Node);
9691
9692 begin
feff2f05 9693 -- If either bound is a discriminant and we are within the
9694 -- record declaration, it is a use of the discriminant in a
9695 -- constraint of a component, and nothing can be checked
9696 -- here. The check will be emitted within the init proc.
9697 -- Before then, the discriminal has no real meaning.
9698 -- Similarly, if the entity is a discriminal, there is no
9699 -- check to perform yet.
9700
9701 -- The same holds within a discriminated synchronized type,
9702 -- where the discriminant may constrain a component or an
9703 -- entry family.
ee6ba406 9704
9705 if Nkind (LB) = N_Identifier
0577b0b1 9706 and then Denotes_Discriminant (LB, True)
ee6ba406 9707 then
0577b0b1 9708 if Current_Scope = Scope (Entity (LB))
9709 or else Is_Concurrent_Type (Current_Scope)
9710 or else Ekind (Entity (LB)) /= E_Discriminant
9711 then
ee6ba406 9712 return Ret_Result;
9713 else
9714 LB :=
9715 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9716 end if;
9717 end if;
9718
9719 if Nkind (HB) = N_Identifier
0577b0b1 9720 and then Denotes_Discriminant (HB, True)
ee6ba406 9721 then
0577b0b1 9722 if Current_Scope = Scope (Entity (HB))
9723 or else Is_Concurrent_Type (Current_Scope)
9724 or else Ekind (Entity (HB)) /= E_Discriminant
9725 then
ee6ba406 9726 return Ret_Result;
9727 else
9728 HB :=
9729 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9730 end if;
9731 end if;
9732
9733 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
9734 Set_Paren_Count (Cond, 1);
9735
9736 Cond :=
9737 Make_And_Then (Loc,
9738 Left_Opnd =>
9739 Make_Op_Ge (Loc,
86d32751 9740 Left_Opnd =>
9741 Convert_To (Base_Type (Etype (HB)),
9742 Duplicate_Subexpr_No_Checks (HB)),
9743 Right_Opnd =>
9744 Convert_To (Base_Type (Etype (LB)),
9745 Duplicate_Subexpr_No_Checks (LB))),
ee6ba406 9746 Right_Opnd => Cond);
9747 end;
ee6ba406 9748 end if;
9749 end;
9750
9751 elsif Is_Scalar_Type (S_Typ) then
9752
9753 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9754 -- except the above simply sets a flag in the node and lets
9755 -- gigi generate the check base on the Etype of the expression.
9756 -- Sometimes, however we want to do a dynamic check against an
9757 -- arbitrary target type, so we do that here.
9758
9759 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
9760 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9761
9762 -- For literals, we can tell if the constraint error will be
9763 -- raised at compile time, so we never need a dynamic check, but
9764 -- if the exception will be raised, then post the usual warning,
9765 -- and replace the literal with a raise constraint error
9766 -- expression. As usual, skip this for access types
9767
20cf157b 9768 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
ee6ba406 9769 declare
9770 LB : constant Node_Id := Type_Low_Bound (T_Typ);
9771 UB : constant Node_Id := Type_High_Bound (T_Typ);
9772
9773 Out_Of_Range : Boolean;
9774 Static_Bounds : constant Boolean :=
b6341c67 9775 Compile_Time_Known_Value (LB)
9776 and Compile_Time_Known_Value (UB);
ee6ba406 9777
9778 begin
9779 -- Following range tests should use Sem_Eval routine ???
9780
9781 if Static_Bounds then
9782 if Is_Floating_Point_Type (S_Typ) then
9783 Out_Of_Range :=
9784 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
9785 or else
9786 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
9787
eefa141b 9788 -- Fixed or discrete type
9789
9790 else
ee6ba406 9791 Out_Of_Range :=
9792 Expr_Value (Ck_Node) < Expr_Value (LB)
9793 or else
9794 Expr_Value (Ck_Node) > Expr_Value (UB);
9795 end if;
9796
eefa141b 9797 -- Bounds of the type are static and the literal is out of
9798 -- range so output a warning message.
ee6ba406 9799
9800 if Out_Of_Range then
9801 if No (Warn_Node) then
9802 Add_Check
9803 (Compile_Time_Constraint_Error
9804 (Ck_Node,
cb97ae5c 9805 "static value out of range of}??", T_Typ));
ee6ba406 9806
9807 else
9808 Add_Check
9809 (Compile_Time_Constraint_Error
9810 (Wnode,
cb97ae5c 9811 "static value out of range of}??", T_Typ));
ee6ba406 9812 end if;
9813 end if;
9814
9815 else
9816 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9817 end if;
9818 end;
9819
9820 -- Here for the case of a non-static expression, we need a runtime
9821 -- check unless the source type range is guaranteed to be in the
9822 -- range of the target type.
9823
9824 else
7a1dabb3 9825 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 9826 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9827 end if;
9828 end if;
9829 end if;
9830
9831 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9832 if Is_Constrained (T_Typ) then
9833
9834 Expr_Actual := Get_Referenced_Object (Ck_Node);
9835 Exptyp := Get_Actual_Subtype (Expr_Actual);
9836
9837 if Is_Access_Type (Exptyp) then
9838 Exptyp := Designated_Type (Exptyp);
9839 end if;
9840
9841 -- String_Literal case. This needs to be handled specially be-
9842 -- cause no index types are available for string literals. The
9843 -- condition is simply:
9844
9845 -- T_Typ'Length = string-literal-length
9846
9847 if Nkind (Expr_Actual) = N_String_Literal then
9848 null;
9849
9850 -- General array case. Here we have a usable actual subtype for
9851 -- the expression, and the condition is built from the two types
9852
9853 -- T_Typ'First < Exptyp'First or else
9854 -- T_Typ'Last > Exptyp'Last or else
9855 -- T_Typ'First(1) < Exptyp'First(1) or else
9856 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9857 -- ...
9858
9859 elsif Is_Constrained (Exptyp) then
9860 declare
9dfe12ae 9861 Ndims : constant Nat := Number_Dimensions (T_Typ);
9862
ee6ba406 9863 L_Index : Node_Id;
9864 R_Index : Node_Id;
ee6ba406 9865
9866 begin
9867 L_Index := First_Index (T_Typ);
9868 R_Index := First_Index (Exptyp);
9869
9870 for Indx in 1 .. Ndims loop
9871 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 9872 or else
9873 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 9874 then
ee6ba406 9875 -- Deal with compile time length check. Note that we
9876 -- skip this in the access case, because the access
9877 -- value may be null, so we cannot know statically.
9878
9879 if not
9880 Subtypes_Statically_Match
9881 (Etype (L_Index), Etype (R_Index))
9882 then
9883 -- If the target type is constrained then we
9884 -- have to check for exact equality of bounds
9885 -- (required for qualified expressions).
9886
9887 if Is_Constrained (T_Typ) then
9888 Evolve_Or_Else
9889 (Cond,
9890 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 9891 else
9892 Evolve_Or_Else
9893 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9894 end if;
9895 end if;
9896
9897 Next (L_Index);
9898 Next (R_Index);
ee6ba406 9899 end if;
9900 end loop;
9901 end;
9902
9903 -- Handle cases where we do not get a usable actual subtype that
9904 -- is constrained. This happens for example in the function call
9905 -- and explicit dereference cases. In these cases, we have to get
9906 -- the length or range from the expression itself, making sure we
9907 -- do not evaluate it more than once.
9908
9909 -- Here Ck_Node is the original expression, or more properly the
9910 -- result of applying Duplicate_Expr to the original tree,
9911 -- forcing the result to be a name.
9912
9913 else
9914 declare
9dfe12ae 9915 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 9916
9917 begin
9918 -- Build the condition for the explicit dereference case
9919
9920 for Indx in 1 .. Ndims loop
9921 Evolve_Or_Else
9922 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
9923 end loop;
9924 end;
ee6ba406 9925 end if;
9926
9927 else
feff2f05 9928 -- For a conversion to an unconstrained array type, generate an
9929 -- Action to check that the bounds of the source value are within
9930 -- the constraints imposed by the target type (RM 4.6(38)). No
9931 -- check is needed for a conversion to an access to unconstrained
9932 -- array type, as 4.6(24.15/2) requires the designated subtypes
9933 -- of the two access types to statically match.
9934
9935 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
9936 and then not Do_Access
9937 then
ee6ba406 9938 declare
9939 Opnd_Index : Node_Id;
9940 Targ_Index : Node_Id;
00c403ee 9941 Opnd_Range : Node_Id;
ee6ba406 9942
9943 begin
feff2f05 9944 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 9945 Targ_Index := First_Index (T_Typ);
00c403ee 9946 while Present (Opnd_Index) loop
9947
9948 -- If the index is a range, use its bounds. If it is an
9949 -- entity (as will be the case if it is a named subtype
9950 -- or an itype created for a slice) retrieve its range.
9951
9952 if Is_Entity_Name (Opnd_Index)
9953 and then Is_Type (Entity (Opnd_Index))
9954 then
9955 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
9956 else
9957 Opnd_Range := Opnd_Index;
9958 end if;
9959
9960 if Nkind (Opnd_Range) = N_Range then
9c486805 9961 if Is_In_Range
9962 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9963 Assume_Valid => True)
ee6ba406 9964 and then
9965 Is_In_Range
9c486805 9966 (High_Bound (Opnd_Range), Etype (Targ_Index),
9967 Assume_Valid => True)
ee6ba406 9968 then
9969 null;
9970
feff2f05 9971 -- If null range, no check needed
f2a06be9 9972
9dfe12ae 9973 elsif
00c403ee 9974 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 9975 and then
00c403ee 9976 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 9977 and then
00c403ee 9978 Expr_Value (High_Bound (Opnd_Range)) <
9979 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 9980 then
9981 null;
9982
ee6ba406 9983 elsif Is_Out_Of_Range
9c486805 9984 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9985 Assume_Valid => True)
ee6ba406 9986 or else
9987 Is_Out_Of_Range
9c486805 9988 (High_Bound (Opnd_Range), Etype (Targ_Index),
9989 Assume_Valid => True)
ee6ba406 9990 then
9991 Add_Check
9992 (Compile_Time_Constraint_Error
cb97ae5c 9993 (Wnode, "value out of range of}??", T_Typ));
ee6ba406 9994
9995 else
9996 Evolve_Or_Else
9997 (Cond,
9998 Discrete_Range_Cond
00c403ee 9999 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 10000 end if;
10001 end if;
10002
10003 Next_Index (Opnd_Index);
10004 Next_Index (Targ_Index);
10005 end loop;
10006 end;
10007 end if;
10008 end if;
10009 end if;
10010
10011 -- Construct the test and insert into the tree
10012
10013 if Present (Cond) then
10014 if Do_Access then
10015 Cond := Guard_Access (Cond, Loc, Ck_Node);
10016 end if;
10017
f15731c4 10018 Add_Check
10019 (Make_Raise_Constraint_Error (Loc,
eefa141b 10020 Condition => Cond,
10021 Reason => CE_Range_Check_Failed));
ee6ba406 10022 end if;
10023
10024 return Ret_Result;
ee6ba406 10025 end Selected_Range_Checks;
10026
10027 -------------------------------
10028 -- Storage_Checks_Suppressed --
10029 -------------------------------
10030
10031 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10032 begin
9dfe12ae 10033 if Present (E) and then Checks_May_Be_Suppressed (E) then
10034 return Is_Check_Suppressed (E, Storage_Check);
10035 else
fafc6b97 10036 return Scope_Suppress.Suppress (Storage_Check);
9dfe12ae 10037 end if;
ee6ba406 10038 end Storage_Checks_Suppressed;
10039
10040 ---------------------------
10041 -- Tag_Checks_Suppressed --
10042 ---------------------------
10043
10044 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10045 begin
89f1e35c 10046 if Present (E)
10047 and then Checks_May_Be_Suppressed (E)
10048 then
10049 return Is_Check_Suppressed (E, Tag_Check);
20cf157b 10050 else
10051 return Scope_Suppress.Suppress (Tag_Check);
9dfe12ae 10052 end if;
ee6ba406 10053 end Tag_Checks_Suppressed;
10054
7b8fa048 10055 ---------------------------------------
10056 -- Validate_Alignment_Check_Warnings --
10057 ---------------------------------------
10058
10059 procedure Validate_Alignment_Check_Warnings is
10060 begin
10061 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10062 declare
10063 AWR : Alignment_Warnings_Record
10064 renames Alignment_Warnings.Table (J);
10065 begin
10066 if Known_Alignment (AWR.E)
10067 and then AWR.A mod Alignment (AWR.E) = 0
10068 then
10069 Delete_Warning_And_Continuations (AWR.W);
10070 end if;
10071 end;
10072 end loop;
10073 end Validate_Alignment_Check_Warnings;
10074
0577b0b1 10075 --------------------------
10076 -- Validity_Check_Range --
10077 --------------------------
10078
10079 procedure Validity_Check_Range (N : Node_Id) is
10080 begin
10081 if Validity_Checks_On and Validity_Check_Operands then
10082 if Nkind (N) = N_Range then
10083 Ensure_Valid (Low_Bound (N));
10084 Ensure_Valid (High_Bound (N));
10085 end if;
10086 end if;
10087 end Validity_Check_Range;
10088
10089 --------------------------------
10090 -- Validity_Checks_Suppressed --
10091 --------------------------------
10092
10093 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10094 begin
10095 if Present (E) and then Checks_May_Be_Suppressed (E) then
10096 return Is_Check_Suppressed (E, Validity_Check);
10097 else
fafc6b97 10098 return Scope_Suppress.Suppress (Validity_Check);
0577b0b1 10099 end if;
10100 end Validity_Checks_Suppressed;
10101
ee6ba406 10102end Checks;