]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
2009-04-09 Robert Dewar <dewar@adacore.com>
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
ce7498d3 9-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
29with Errout; use Errout;
30with Exp_Ch2; use Exp_Ch2;
00c403ee 31with Exp_Ch11; use Exp_Ch11;
05fcfafb 32with Exp_Pakd; use Exp_Pakd;
ee6ba406 33with Exp_Util; use Exp_Util;
34with Elists; use Elists;
5329ca64 35with Eval_Fat; use Eval_Fat;
ee6ba406 36with Freeze; use Freeze;
9dfe12ae 37with Lib; use Lib;
ee6ba406 38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
9dfe12ae 41with Output; use Output;
c2b56224 42with Restrict; use Restrict;
1e16c51c 43with Rident; use Rident;
ee6ba406 44with Rtsfind; use Rtsfind;
45with Sem; use Sem;
46with Sem_Eval; use Sem_Eval;
00f91aef 47with Sem_Ch3; use Sem_Ch3;
9dfe12ae 48with Sem_Ch8; use Sem_Ch8;
ee6ba406 49with Sem_Res; use Sem_Res;
50with Sem_Util; use Sem_Util;
51with Sem_Warn; use Sem_Warn;
52with Sinfo; use Sinfo;
9dfe12ae 53with Sinput; use Sinput;
ee6ba406 54with Snames; use Snames;
9dfe12ae 55with Sprint; use Sprint;
ee6ba406 56with Stand; use Stand;
f15731c4 57with Targparm; use Targparm;
ee6ba406 58with Tbuild; use Tbuild;
59with Ttypes; use Ttypes;
60with Urealp; use Urealp;
61with Validsw; use Validsw;
62
63package body Checks is
64
65 -- General note: many of these routines are concerned with generating
66 -- checking code to make sure that constraint error is raised at runtime.
67 -- Clearly this code is only needed if the expander is active, since
68 -- otherwise we will not be generating code or going into the runtime
69 -- execution anyway.
70
71 -- We therefore disconnect most of these checks if the expander is
72 -- inactive. This has the additional benefit that we do not need to
73 -- worry about the tree being messed up by previous errors (since errors
74 -- turn off expansion anyway).
75
76 -- There are a few exceptions to the above rule. For instance routines
77 -- such as Apply_Scalar_Range_Check that do not insert any code can be
78 -- safely called even when the Expander is inactive (but Errors_Detected
79 -- is 0). The benefit of executing this code when expansion is off, is
80 -- the ability to emit constraint error warning for static expressions
81 -- even when we are not generating code.
82
9dfe12ae 83 -------------------------------------
84 -- Suppression of Redundant Checks --
85 -------------------------------------
86
87 -- This unit implements a limited circuit for removal of redundant
88 -- checks. The processing is based on a tracing of simple sequential
89 -- flow. For any sequence of statements, we save expressions that are
90 -- marked to be checked, and then if the same expression appears later
91 -- with the same check, then under certain circumstances, the second
92 -- check can be suppressed.
93
94 -- Basically, we can suppress the check if we know for certain that
95 -- the previous expression has been elaborated (together with its
96 -- check), and we know that the exception frame is the same, and that
97 -- nothing has happened to change the result of the exception.
98
99 -- Let us examine each of these three conditions in turn to describe
100 -- how we ensure that this condition is met.
101
102 -- First, we need to know for certain that the previous expression has
103 -- been executed. This is done principly by the mechanism of calling
104 -- Conditional_Statements_Begin at the start of any statement sequence
105 -- and Conditional_Statements_End at the end. The End call causes all
106 -- checks remembered since the Begin call to be discarded. This does
107 -- miss a few cases, notably the case of a nested BEGIN-END block with
108 -- no exception handlers. But the important thing is to be conservative.
109 -- The other protection is that all checks are discarded if a label
110 -- is encountered, since then the assumption of sequential execution
111 -- is violated, and we don't know enough about the flow.
112
113 -- Second, we need to know that the exception frame is the same. We
114 -- do this by killing all remembered checks when we enter a new frame.
115 -- Again, that's over-conservative, but generally the cases we can help
116 -- with are pretty local anyway (like the body of a loop for example).
117
118 -- Third, we must be sure to forget any checks which are no longer valid.
119 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
120 -- used to note any changes to local variables. We only attempt to deal
121 -- with checks involving local variables, so we do not need to worry
122 -- about global variables. Second, a call to any non-global procedure
123 -- causes us to abandon all stored checks, since such a all may affect
124 -- the values of any local variables.
125
126 -- The following define the data structures used to deal with remembering
127 -- checks so that redundant checks can be eliminated as described above.
128
129 -- Right now, the only expressions that we deal with are of the form of
130 -- simple local objects (either declared locally, or IN parameters) or
131 -- such objects plus/minus a compile time known constant. We can do
132 -- more later on if it seems worthwhile, but this catches many simple
133 -- cases in practice.
134
135 -- The following record type reflects a single saved check. An entry
136 -- is made in the stack of saved checks if and only if the expression
137 -- has been elaborated with the indicated checks.
138
139 type Saved_Check is record
140 Killed : Boolean;
141 -- Set True if entry is killed by Kill_Checks
142
143 Entity : Entity_Id;
144 -- The entity involved in the expression that is checked
145
146 Offset : Uint;
147 -- A compile time value indicating the result of adding or
148 -- subtracting a compile time value. This value is to be
149 -- added to the value of the Entity. A value of zero is
150 -- used for the case of a simple entity reference.
151
152 Check_Type : Character;
153 -- This is set to 'R' for a range check (in which case Target_Type
154 -- is set to the target type for the range check) or to 'O' for an
155 -- overflow check (in which case Target_Type is set to Empty).
156
157 Target_Type : Entity_Id;
158 -- Used only if Do_Range_Check is set. Records the target type for
159 -- the check. We need this, because a check is a duplicate only if
160 -- it has a the same target type (or more accurately one with a
161 -- range that is smaller or equal to the stored target type of a
162 -- saved check).
163 end record;
164
165 -- The following table keeps track of saved checks. Rather than use an
166 -- extensible table. We just use a table of fixed size, and we discard
167 -- any saved checks that do not fit. That's very unlikely to happen and
168 -- this is only an optimization in any case.
169
170 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
171 -- Array of saved checks
172
173 Num_Saved_Checks : Nat := 0;
174 -- Number of saved checks
175
176 -- The following stack keeps track of statement ranges. It is treated
177 -- as a stack. When Conditional_Statements_Begin is called, an entry
178 -- is pushed onto this stack containing the value of Num_Saved_Checks
179 -- at the time of the call. Then when Conditional_Statements_End is
180 -- called, this value is popped off and used to reset Num_Saved_Checks.
181
182 -- Note: again, this is a fixed length stack with a size that should
183 -- always be fine. If the value of the stack pointer goes above the
184 -- limit, then we just forget all saved checks.
185
186 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
187 Saved_Checks_TOS : Nat := 0;
188
189 -----------------------
190 -- Local Subprograms --
191 -----------------------
ee6ba406 192
5329ca64 193 procedure Apply_Float_Conversion_Check
194 (Ck_Node : Node_Id;
195 Target_Typ : Entity_Id);
196 -- The checks on a conversion from a floating-point type to an integer
197 -- type are delicate. They have to be performed before conversion, they
198 -- have to raise an exception when the operand is a NaN, and rounding must
199 -- be taken into account to determine the safe bounds of the operand.
200
ee6ba406 201 procedure Apply_Selected_Length_Checks
202 (Ck_Node : Node_Id;
203 Target_Typ : Entity_Id;
204 Source_Typ : Entity_Id;
205 Do_Static : Boolean);
206 -- This is the subprogram that does all the work for Apply_Length_Check
207 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
208 -- described for the above routines. The Do_Static flag indicates that
209 -- only a static check is to be done.
210
211 procedure Apply_Selected_Range_Checks
212 (Ck_Node : Node_Id;
213 Target_Typ : Entity_Id;
214 Source_Typ : Entity_Id;
215 Do_Static : Boolean);
216 -- This is the subprogram that does all the work for Apply_Range_Check.
217 -- Expr, Target_Typ and Source_Typ are as described for the above
218 -- routine. The Do_Static flag indicates that only a static check is
219 -- to be done.
220
2af58f67 221 type Check_Type is new Check_Id range Access_Check .. Division_Check;
13dbf220 222 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
223 -- This function is used to see if an access or division by zero check is
224 -- needed. The check is to be applied to a single variable appearing in the
225 -- source, and N is the node for the reference. If N is not of this form,
226 -- True is returned with no further processing. If N is of the right form,
227 -- then further processing determines if the given Check is needed.
228 --
229 -- The particular circuit is to see if we have the case of a check that is
230 -- not needed because it appears in the right operand of a short circuited
231 -- conditional where the left operand guards the check. For example:
232 --
233 -- if Var = 0 or else Q / Var > 12 then
234 -- ...
235 -- end if;
236 --
237 -- In this example, the division check is not required. At the same time
238 -- we can issue warnings for suspicious use of non-short-circuited forms,
239 -- such as:
240 --
241 -- if Var = 0 or Q / Var > 12 then
242 -- ...
243 -- end if;
244
9dfe12ae 245 procedure Find_Check
246 (Expr : Node_Id;
247 Check_Type : Character;
248 Target_Type : Entity_Id;
249 Entry_OK : out Boolean;
250 Check_Num : out Nat;
251 Ent : out Entity_Id;
252 Ofs : out Uint);
253 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
254 -- to see if a check is of the form for optimization, and if so, to see
255 -- if it has already been performed. Expr is the expression to check,
256 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
257 -- Target_Type is the target type for a range check, and Empty for an
258 -- overflow check. If the entry is not of the form for optimization,
259 -- then Entry_OK is set to False, and the remaining out parameters
260 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
261 -- entity and offset from the expression. Check_Num is the number of
262 -- a matching saved entry in Saved_Checks, or zero if no such entry
263 -- is located.
264
ee6ba406 265 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
266 -- If a discriminal is used in constraining a prival, Return reference
267 -- to the discriminal of the protected body (which renames the parameter
268 -- of the enclosing protected operation). This clumsy transformation is
269 -- needed because privals are created too late and their actual subtypes
270 -- are not available when analysing the bodies of the protected operations.
0577b0b1 271 -- This function is called whenever the bound is an entity and the scope
272 -- indicates a protected operation. If the bound is an in-parameter of
273 -- a protected operation that is not a prival, the function returns the
274 -- bound itself.
ee6ba406 275 -- To be cleaned up???
276
277 function Guard_Access
278 (Cond : Node_Id;
279 Loc : Source_Ptr;
314a23b6 280 Ck_Node : Node_Id) return Node_Id;
ee6ba406 281 -- In the access type case, guard the test with a test to ensure
282 -- that the access value is non-null, since the checks do not
283 -- not apply to null access values.
284
285 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
286 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
287 -- Constraint_Error node.
288
0577b0b1 289 function Range_Or_Validity_Checks_Suppressed
290 (Expr : Node_Id) return Boolean;
291 -- Returns True if either range or validity checks or both are suppressed
292 -- for the type of the given expression, or, if the expression is the name
293 -- of an entity, if these checks are suppressed for the entity.
294
ee6ba406 295 function Selected_Length_Checks
296 (Ck_Node : Node_Id;
297 Target_Typ : Entity_Id;
298 Source_Typ : Entity_Id;
314a23b6 299 Warn_Node : Node_Id) return Check_Result;
ee6ba406 300 -- Like Apply_Selected_Length_Checks, except it doesn't modify
301 -- anything, just returns a list of nodes as described in the spec of
302 -- this package for the Range_Check function.
303
304 function Selected_Range_Checks
305 (Ck_Node : Node_Id;
306 Target_Typ : Entity_Id;
307 Source_Typ : Entity_Id;
314a23b6 308 Warn_Node : Node_Id) return Check_Result;
ee6ba406 309 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
310 -- just returns a list of nodes as described in the spec of this package
311 -- for the Range_Check function.
312
313 ------------------------------
314 -- Access_Checks_Suppressed --
315 ------------------------------
316
317 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
318 begin
9dfe12ae 319 if Present (E) and then Checks_May_Be_Suppressed (E) then
320 return Is_Check_Suppressed (E, Access_Check);
321 else
322 return Scope_Suppress (Access_Check);
323 end if;
ee6ba406 324 end Access_Checks_Suppressed;
325
326 -------------------------------------
327 -- Accessibility_Checks_Suppressed --
328 -------------------------------------
329
330 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
331 begin
9dfe12ae 332 if Present (E) and then Checks_May_Be_Suppressed (E) then
333 return Is_Check_Suppressed (E, Accessibility_Check);
334 else
335 return Scope_Suppress (Accessibility_Check);
336 end if;
ee6ba406 337 end Accessibility_Checks_Suppressed;
338
00c403ee 339 -----------------------------
340 -- Activate_Division_Check --
341 -----------------------------
342
343 procedure Activate_Division_Check (N : Node_Id) is
344 begin
345 Set_Do_Division_Check (N, True);
346 Possible_Local_Raise (N, Standard_Constraint_Error);
347 end Activate_Division_Check;
348
349 -----------------------------
350 -- Activate_Overflow_Check --
351 -----------------------------
352
353 procedure Activate_Overflow_Check (N : Node_Id) is
354 begin
355 Set_Do_Overflow_Check (N, True);
356 Possible_Local_Raise (N, Standard_Constraint_Error);
357 end Activate_Overflow_Check;
358
359 --------------------------
360 -- Activate_Range_Check --
361 --------------------------
362
363 procedure Activate_Range_Check (N : Node_Id) is
364 begin
365 Set_Do_Range_Check (N, True);
366 Possible_Local_Raise (N, Standard_Constraint_Error);
367 end Activate_Range_Check;
368
0577b0b1 369 ---------------------------------
370 -- Alignment_Checks_Suppressed --
371 ---------------------------------
372
373 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
374 begin
375 if Present (E) and then Checks_May_Be_Suppressed (E) then
376 return Is_Check_Suppressed (E, Alignment_Check);
377 else
378 return Scope_Suppress (Alignment_Check);
379 end if;
380 end Alignment_Checks_Suppressed;
381
ee6ba406 382 -------------------------
383 -- Append_Range_Checks --
384 -------------------------
385
386 procedure Append_Range_Checks
387 (Checks : Check_Result;
388 Stmts : List_Id;
389 Suppress_Typ : Entity_Id;
390 Static_Sloc : Source_Ptr;
391 Flag_Node : Node_Id)
392 is
9dfe12ae 393 Internal_Flag_Node : constant Node_Id := Flag_Node;
394 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
395
ee6ba406 396 Checks_On : constant Boolean :=
397 (not Index_Checks_Suppressed (Suppress_Typ))
398 or else
399 (not Range_Checks_Suppressed (Suppress_Typ));
400
401 begin
402 -- For now we just return if Checks_On is false, however this should
403 -- be enhanced to check for an always True value in the condition
404 -- and to generate a compilation warning???
405
406 if not Checks_On then
407 return;
408 end if;
409
410 for J in 1 .. 2 loop
411 exit when No (Checks (J));
412
413 if Nkind (Checks (J)) = N_Raise_Constraint_Error
414 and then Present (Condition (Checks (J)))
415 then
416 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
417 Append_To (Stmts, Checks (J));
418 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
419 end if;
420
421 else
422 Append_To
f15731c4 423 (Stmts,
424 Make_Raise_Constraint_Error (Internal_Static_Sloc,
425 Reason => CE_Range_Check_Failed));
ee6ba406 426 end if;
427 end loop;
428 end Append_Range_Checks;
429
430 ------------------------
431 -- Apply_Access_Check --
432 ------------------------
433
434 procedure Apply_Access_Check (N : Node_Id) is
435 P : constant Node_Id := Prefix (N);
436
437 begin
13dbf220 438 -- We do not need checks if we are not generating code (i.e. the
439 -- expander is not active). This is not just an optimization, there
440 -- are cases (e.g. with pragma Debug) where generating the checks
441 -- can cause real trouble).
284faf8b 442
84d0d4a5 443 if not Expander_Active then
13dbf220 444 return;
9dfe12ae 445 end if;
ee6ba406 446
84d0d4a5 447 -- No check if short circuiting makes check unnecessary
9dfe12ae 448
84d0d4a5 449 if not Check_Needed (P, Access_Check) then
450 return;
ee6ba406 451 end if;
9dfe12ae 452
cc60bd16 453 -- No check if accessing the Offset_To_Top component of a dispatch
454 -- table. They are safe by construction.
455
456 if Present (Etype (P))
457 and then RTU_Loaded (Ada_Tags)
458 and then RTE_Available (RE_Offset_To_Top_Ptr)
459 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
460 then
461 return;
462 end if;
463
84d0d4a5 464 -- Otherwise go ahead and install the check
9dfe12ae 465
fa7497e8 466 Install_Null_Excluding_Check (P);
ee6ba406 467 end Apply_Access_Check;
468
469 -------------------------------
470 -- Apply_Accessibility_Check --
471 -------------------------------
472
55dc6dc2 473 procedure Apply_Accessibility_Check
474 (N : Node_Id;
475 Typ : Entity_Id;
476 Insert_Node : Node_Id)
477 is
ee6ba406 478 Loc : constant Source_Ptr := Sloc (N);
479 Param_Ent : constant Entity_Id := Param_Entity (N);
480 Param_Level : Node_Id;
481 Type_Level : Node_Id;
482
483 begin
484 if Inside_A_Generic then
485 return;
486
487 -- Only apply the run-time check if the access parameter
488 -- has an associated extra access level parameter and
489 -- when the level of the type is less deep than the level
490 -- of the access parameter.
491
492 elsif Present (Param_Ent)
493 and then Present (Extra_Accessibility (Param_Ent))
494 and then UI_Gt (Object_Access_Level (N),
495 Type_Access_Level (Typ))
496 and then not Accessibility_Checks_Suppressed (Param_Ent)
497 and then not Accessibility_Checks_Suppressed (Typ)
498 then
499 Param_Level :=
500 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
501
502 Type_Level :=
503 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
504
bf3e1520 505 -- Raise Program_Error if the accessibility level of the access
84d0d4a5 506 -- parameter is deeper than the level of the target access type.
ee6ba406 507
55dc6dc2 508 Insert_Action (Insert_Node,
ee6ba406 509 Make_Raise_Program_Error (Loc,
510 Condition =>
511 Make_Op_Gt (Loc,
512 Left_Opnd => Param_Level,
f15731c4 513 Right_Opnd => Type_Level),
514 Reason => PE_Accessibility_Check_Failed));
ee6ba406 515
516 Analyze_And_Resolve (N);
517 end if;
518 end Apply_Accessibility_Check;
519
0577b0b1 520 --------------------------------
521 -- Apply_Address_Clause_Check --
522 --------------------------------
523
524 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
525 AC : constant Node_Id := Address_Clause (E);
526 Loc : constant Source_Ptr := Sloc (AC);
527 Typ : constant Entity_Id := Etype (E);
528 Aexp : constant Node_Id := Expression (AC);
c2b56224 529
c2b56224 530 Expr : Node_Id;
0577b0b1 531 -- Address expression (not necessarily the same as Aexp, for example
532 -- when Aexp is a reference to a constant, in which case Expr gets
533 -- reset to reference the value expression of the constant.
534
535 Size_Warning_Output : Boolean := False;
536 -- If we output a size warning we set this True, to stop generating
537 -- what is likely to be an unuseful redundant alignment warning.
538
539 procedure Compile_Time_Bad_Alignment;
540 -- Post error warnings when alignment is known to be incompatible. Note
541 -- that we do not go as far as inserting a raise of Program_Error since
542 -- this is an erroneous case, and it may happen that we are lucky and an
543 -- underaligned address turns out to be OK after all. Also this warning
544 -- is suppressed if we already complained about the size.
545
546 --------------------------------
547 -- Compile_Time_Bad_Alignment --
548 --------------------------------
549
550 procedure Compile_Time_Bad_Alignment is
551 begin
552 if not Size_Warning_Output
553 and then Address_Clause_Overlay_Warnings
554 then
555 Error_Msg_FE
556 ("?specified address for& may be inconsistent with alignment ",
557 Aexp, E);
558 Error_Msg_FE
2af58f67 559 ("\?program execution may be erroneous (RM 13.3(27))",
0577b0b1 560 Aexp, E);
83f8f0a6 561 Set_Address_Warning_Posted (AC);
0577b0b1 562 end if;
563 end Compile_Time_Bad_Alignment;
c2b56224 564
2af58f67 565 -- Start of processing for Apply_Address_Clause_Check
5c61a0ff 566
c2b56224 567 begin
0577b0b1 568 -- First obtain expression from address clause
9dfe12ae 569
0577b0b1 570 Expr := Expression (AC);
571
572 -- The following loop digs for the real expression to use in the check
573
574 loop
575 -- For constant, get constant expression
576
577 if Is_Entity_Name (Expr)
578 and then Ekind (Entity (Expr)) = E_Constant
579 then
580 Expr := Constant_Value (Entity (Expr));
581
582 -- For unchecked conversion, get result to convert
583
584 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
585 Expr := Expression (Expr);
586
587 -- For (common case) of To_Address call, get argument
588
589 elsif Nkind (Expr) = N_Function_Call
590 and then Is_Entity_Name (Name (Expr))
591 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
592 then
593 Expr := First (Parameter_Associations (Expr));
594
595 if Nkind (Expr) = N_Parameter_Association then
596 Expr := Explicit_Actual_Parameter (Expr);
597 end if;
598
599 -- We finally have the real expression
600
601 else
602 exit;
603 end if;
604 end loop;
605
606 -- Output a warning if we have the situation of
607
608 -- for X'Address use Y'Address
609
610 -- and X and Y both have known object sizes, and Y is smaller than X
611
612 if Nkind (Expr) = N_Attribute_Reference
613 and then Attribute_Name (Expr) = Name_Address
614 and then Is_Entity_Name (Prefix (Expr))
9dfe12ae 615 then
0577b0b1 616 declare
617 Exp_Ent : constant Entity_Id := Entity (Prefix (Expr));
618 Obj_Size : Uint := No_Uint;
619 Exp_Size : Uint := No_Uint;
620
621 begin
622 if Known_Esize (E) then
623 Obj_Size := Esize (E);
624 elsif Known_Esize (Etype (E)) then
625 Obj_Size := Esize (Etype (E));
626 end if;
627
628 if Known_Esize (Exp_Ent) then
629 Exp_Size := Esize (Exp_Ent);
630 elsif Known_Esize (Etype (Exp_Ent)) then
631 Exp_Size := Esize (Etype (Exp_Ent));
632 end if;
633
634 if Obj_Size /= No_Uint
635 and then Exp_Size /= No_Uint
636 and then Obj_Size > Exp_Size
ce7498d3 637 and then not Has_Warnings_Off (E)
0577b0b1 638 then
639 if Address_Clause_Overlay_Warnings then
640 Error_Msg_FE
641 ("?& overlays smaller object", Aexp, E);
642 Error_Msg_FE
643 ("\?program execution may be erroneous", Aexp, E);
644 Size_Warning_Output := True;
83f8f0a6 645 Set_Address_Warning_Posted (AC);
0577b0b1 646 end if;
647 end if;
648 end;
c2b56224 649 end if;
650
0577b0b1 651 -- See if alignment check needed. Note that we never need a check if the
652 -- maximum alignment is one, since the check will always succeed.
c2b56224 653
0577b0b1 654 -- Note: we do not check for checks suppressed here, since that check
2af58f67 655 -- was done in Sem_Ch13 when the address clause was processed. We are
0577b0b1 656 -- only called if checks were not suppressed. The reason for this is
657 -- that we have to delay the call to Apply_Alignment_Check till freeze
658 -- time (so that all types etc are elaborated), but we have to check
659 -- the status of check suppressing at the point of the address clause.
c2b56224 660
0577b0b1 661 if No (AC)
662 or else not Check_Address_Alignment (AC)
663 or else Maximum_Alignment = 1
c2b56224 664 then
0577b0b1 665 return;
c2b56224 666 end if;
667
0577b0b1 668 -- See if we know that Expr is a bad alignment at compile time
c2b56224 669
670 if Compile_Time_Known_Value (Expr)
f2a06be9 671 and then (Known_Alignment (E) or else Known_Alignment (Typ))
c2b56224 672 then
f2a06be9 673 declare
674 AL : Uint := Alignment (Typ);
675
676 begin
677 -- The object alignment might be more restrictive than the
678 -- type alignment.
679
680 if Known_Alignment (E) then
681 AL := Alignment (E);
682 end if;
683
684 if Expr_Value (Expr) mod AL /= 0 then
0577b0b1 685 Compile_Time_Bad_Alignment;
686 else
687 return;
f2a06be9 688 end if;
689 end;
c2b56224 690
0577b0b1 691 -- If the expression has the form X'Address, then we can find out if
692 -- the object X has an alignment that is compatible with the object E.
c2b56224 693
0577b0b1 694 elsif Nkind (Expr) = N_Attribute_Reference
695 and then Attribute_Name (Expr) = Name_Address
696 then
697 declare
698 AR : constant Alignment_Result :=
699 Has_Compatible_Alignment (E, Prefix (Expr));
700 begin
701 if AR = Known_Compatible then
702 return;
703 elsif AR = Known_Incompatible then
704 Compile_Time_Bad_Alignment;
705 end if;
706 end;
707 end if;
c2b56224 708
0577b0b1 709 -- Here we do not know if the value is acceptable. Stricly we don't have
710 -- to do anything, since if the alignment is bad, we have an erroneous
711 -- program. However we are allowed to check for erroneous conditions and
712 -- we decide to do this by default if the check is not suppressed.
713
714 -- However, don't do the check if elaboration code is unwanted
715
716 if Restriction_Active (No_Elaboration_Code) then
717 return;
718
719 -- Generate a check to raise PE if alignment may be inappropriate
720
721 else
722 -- If the original expression is a non-static constant, use the
723 -- name of the constant itself rather than duplicating its
00c403ee 724 -- defining expression, which was extracted above.
0577b0b1 725
00c403ee 726 -- Note: Expr is empty if the address-clause is applied to in-mode
727 -- actuals (allowed by 13.1(22)).
728
729 if not Present (Expr)
730 or else
731 (Is_Entity_Name (Expression (AC))
732 and then Ekind (Entity (Expression (AC))) = E_Constant
733 and then Nkind (Parent (Entity (Expression (AC))))
734 = N_Object_Declaration)
0577b0b1 735 then
736 Expr := New_Copy_Tree (Expression (AC));
737 else
738 Remove_Side_Effects (Expr);
c2b56224 739 end if;
c2b56224 740
0577b0b1 741 Insert_After_And_Analyze (N,
742 Make_Raise_Program_Error (Loc,
743 Condition =>
744 Make_Op_Ne (Loc,
745 Left_Opnd =>
746 Make_Op_Mod (Loc,
747 Left_Opnd =>
748 Unchecked_Convert_To
749 (RTE (RE_Integer_Address), Expr),
750 Right_Opnd =>
751 Make_Attribute_Reference (Loc,
752 Prefix => New_Occurrence_Of (E, Loc),
753 Attribute_Name => Name_Alignment)),
754 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
755 Reason => PE_Misaligned_Address_Value),
756 Suppress => All_Checks);
757 return;
758 end if;
9dfe12ae 759
760 exception
0577b0b1 761 -- If we have some missing run time component in configurable run time
762 -- mode then just skip the check (it is not required in any case).
763
9dfe12ae 764 when RE_Not_Available =>
765 return;
0577b0b1 766 end Apply_Address_Clause_Check;
c2b56224 767
ee6ba406 768 -------------------------------------
769 -- Apply_Arithmetic_Overflow_Check --
770 -------------------------------------
771
f40f9731 772 -- This routine is called only if the type is an integer type, and a
773 -- software arithmetic overflow check may be needed for op (add, subtract,
774 -- or multiply). This check is performed only if Software_Overflow_Checking
775 -- is enabled and Do_Overflow_Check is set. In this case we expand the
776 -- operation into a more complex sequence of tests that ensures that
777 -- overflow is properly caught.
ee6ba406 778
779 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
780 Loc : constant Source_Ptr := Sloc (N);
f40f9731 781 Typ : Entity_Id := Etype (N);
782 Rtyp : Entity_Id := Root_Type (Typ);
ee6ba406 783
784 begin
f40f9731 785 -- An interesting special case. If the arithmetic operation appears as
786 -- the operand of a type conversion:
787
788 -- type1 (x op y)
789
790 -- and all the following conditions apply:
791
792 -- arithmetic operation is for a signed integer type
793 -- target type type1 is a static integer subtype
794 -- range of x and y are both included in the range of type1
795 -- range of x op y is included in the range of type1
796 -- size of type1 is at least twice the result size of op
797
798 -- then we don't do an overflow check in any case, instead we transform
799 -- the operation so that we end up with:
800
801 -- type1 (type1 (x) op type1 (y))
802
803 -- This avoids intermediate overflow before the conversion. It is
804 -- explicitly permitted by RM 3.5.4(24):
805
806 -- For the execution of a predefined operation of a signed integer
807 -- type, the implementation need not raise Constraint_Error if the
808 -- result is outside the base range of the type, so long as the
809 -- correct result is produced.
810
811 -- It's hard to imagine that any programmer counts on the exception
812 -- being raised in this case, and in any case it's wrong coding to
813 -- have this expectation, given the RM permission. Furthermore, other
814 -- Ada compilers do allow such out of range results.
815
816 -- Note that we do this transformation even if overflow checking is
817 -- off, since this is precisely about giving the "right" result and
818 -- avoiding the need for an overflow check.
819
820 if Is_Signed_Integer_Type (Typ)
821 and then Nkind (Parent (N)) = N_Type_Conversion
ee6ba406 822 then
f40f9731 823 declare
824 Target_Type : constant Entity_Id :=
825 Base_Type (Entity (Subtype_Mark (Parent (N))));
826
827 Llo, Lhi : Uint;
828 Rlo, Rhi : Uint;
829 LOK, ROK : Boolean;
830
831 Vlo : Uint;
832 Vhi : Uint;
833 VOK : Boolean;
834
835 Tlo : Uint;
836 Thi : Uint;
837
838 begin
839 if Is_Integer_Type (Target_Type)
840 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
841 then
842 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
843 Thi := Expr_Value (Type_High_Bound (Target_Type));
844
9c486805 845 Determine_Range
846 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
847 Determine_Range
848 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
f40f9731 849
850 if (LOK and ROK)
851 and then Tlo <= Llo and then Lhi <= Thi
852 and then Tlo <= Rlo and then Rhi <= Thi
853 then
9c486805 854 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
f40f9731 855
856 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
857 Rewrite (Left_Opnd (N),
858 Make_Type_Conversion (Loc,
859 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
860 Expression => Relocate_Node (Left_Opnd (N))));
861
862 Rewrite (Right_Opnd (N),
863 Make_Type_Conversion (Loc,
864 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
865 Expression => Relocate_Node (Right_Opnd (N))));
866
867 Set_Etype (N, Target_Type);
868 Typ := Target_Type;
869 Rtyp := Root_Type (Typ);
870 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
871 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
872
873 -- Given that the target type is twice the size of the
874 -- source type, overflow is now impossible, so we can
875 -- safely kill the overflow check and return.
876
877 Set_Do_Overflow_Check (N, False);
878 return;
879 end if;
880 end if;
881 end if;
882 end;
ee6ba406 883 end if;
884
f40f9731 885 -- Now see if an overflow check is required
886
887 declare
888 Siz : constant Int := UI_To_Int (Esize (Rtyp));
889 Dsiz : constant Int := Siz * 2;
890 Opnod : Node_Id;
891 Ctyp : Entity_Id;
892 Opnd : Node_Id;
893 Cent : RE_Id;
ee6ba406 894
f40f9731 895 begin
896 -- Skip check if back end does overflow checks, or the overflow flag
897 -- is not set anyway, or we are not doing code expansion.
ee6ba406 898
f40f9731 899 -- Special case CLI target, where arithmetic overflow checks can be
900 -- performed for integer and long_integer
ee6ba406 901
f40f9731 902 if Backend_Overflow_Checks_On_Target
903 or else not Do_Overflow_Check (N)
904 or else not Expander_Active
905 or else
906 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
907 then
908 return;
909 end if;
ee6ba406 910
f40f9731 911 -- Otherwise, generate the full general code for front end overflow
912 -- detection, which works by doing arithmetic in a larger type:
ee6ba406 913
f40f9731 914 -- x op y
ee6ba406 915
f40f9731 916 -- is expanded into
ee6ba406 917
f40f9731 918 -- Typ (Checktyp (x) op Checktyp (y));
ee6ba406 919
f40f9731 920 -- where Typ is the type of the original expression, and Checktyp is
921 -- an integer type of sufficient length to hold the largest possible
922 -- result.
ee6ba406 923
f40f9731 924 -- If the size of check type exceeds the size of Long_Long_Integer,
925 -- we use a different approach, expanding to:
ee6ba406 926
f40f9731 927 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
ee6ba406 928
f40f9731 929 -- where xxx is Add, Multiply or Subtract as appropriate
ee6ba406 930
f40f9731 931 -- Find check type if one exists
932
933 if Dsiz <= Standard_Integer_Size then
934 Ctyp := Standard_Integer;
ee6ba406 935
f40f9731 936 elsif Dsiz <= Standard_Long_Long_Integer_Size then
937 Ctyp := Standard_Long_Long_Integer;
938
939 -- No check type exists, use runtime call
ee6ba406 940
941 else
f40f9731 942 if Nkind (N) = N_Op_Add then
943 Cent := RE_Add_With_Ovflo_Check;
ee6ba406 944
f40f9731 945 elsif Nkind (N) = N_Op_Multiply then
946 Cent := RE_Multiply_With_Ovflo_Check;
ee6ba406 947
f40f9731 948 else
949 pragma Assert (Nkind (N) = N_Op_Subtract);
950 Cent := RE_Subtract_With_Ovflo_Check;
951 end if;
952
953 Rewrite (N,
954 OK_Convert_To (Typ,
955 Make_Function_Call (Loc,
956 Name => New_Reference_To (RTE (Cent), Loc),
957 Parameter_Associations => New_List (
958 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
959 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
ee6ba406 960
f40f9731 961 Analyze_And_Resolve (N, Typ);
962 return;
963 end if;
ee6ba406 964
f40f9731 965 -- If we fall through, we have the case where we do the arithmetic
966 -- in the next higher type and get the check by conversion. In these
967 -- cases Ctyp is set to the type to be used as the check type.
ee6ba406 968
f40f9731 969 Opnod := Relocate_Node (N);
ee6ba406 970
f40f9731 971 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
ee6ba406 972
f40f9731 973 Analyze (Opnd);
974 Set_Etype (Opnd, Ctyp);
975 Set_Analyzed (Opnd, True);
976 Set_Left_Opnd (Opnod, Opnd);
ee6ba406 977
f40f9731 978 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
ee6ba406 979
f40f9731 980 Analyze (Opnd);
981 Set_Etype (Opnd, Ctyp);
982 Set_Analyzed (Opnd, True);
983 Set_Right_Opnd (Opnod, Opnd);
ee6ba406 984
f40f9731 985 -- The type of the operation changes to the base type of the check
986 -- type, and we reset the overflow check indication, since clearly no
987 -- overflow is possible now that we are using a double length type.
988 -- We also set the Analyzed flag to avoid a recursive attempt to
989 -- expand the node.
ee6ba406 990
f40f9731 991 Set_Etype (Opnod, Base_Type (Ctyp));
992 Set_Do_Overflow_Check (Opnod, False);
993 Set_Analyzed (Opnod, True);
ee6ba406 994
f40f9731 995 -- Now build the outer conversion
ee6ba406 996
f40f9731 997 Opnd := OK_Convert_To (Typ, Opnod);
998 Analyze (Opnd);
999 Set_Etype (Opnd, Typ);
9dfe12ae 1000
f40f9731 1001 -- In the discrete type case, we directly generate the range check
1002 -- for the outer operand. This range check will implement the
1003 -- required overflow check.
9dfe12ae 1004
f40f9731 1005 if Is_Discrete_Type (Typ) then
1006 Rewrite (N, Opnd);
1007 Generate_Range_Check
1008 (Expression (N), Typ, CE_Overflow_Check_Failed);
9dfe12ae 1009
f40f9731 1010 -- For other types, we enable overflow checking on the conversion,
1011 -- after setting the node as analyzed to prevent recursive attempts
1012 -- to expand the conversion node.
9dfe12ae 1013
f40f9731 1014 else
1015 Set_Analyzed (Opnd, True);
1016 Enable_Overflow_Check (Opnd);
1017 Rewrite (N, Opnd);
1018 end if;
1019
1020 exception
1021 when RE_Not_Available =>
1022 return;
1023 end;
ee6ba406 1024 end Apply_Arithmetic_Overflow_Check;
1025
ee6ba406 1026 ----------------------------
1027 -- Apply_Constraint_Check --
1028 ----------------------------
1029
1030 procedure Apply_Constraint_Check
1031 (N : Node_Id;
1032 Typ : Entity_Id;
1033 No_Sliding : Boolean := False)
1034 is
1035 Desig_Typ : Entity_Id;
1036
1037 begin
1038 if Inside_A_Generic then
1039 return;
1040
1041 elsif Is_Scalar_Type (Typ) then
1042 Apply_Scalar_Range_Check (N, Typ);
1043
1044 elsif Is_Array_Type (Typ) then
1045
05fcfafb 1046 -- A useful optimization: an aggregate with only an others clause
5f260d20 1047 -- always has the right bounds.
1048
1049 if Nkind (N) = N_Aggregate
1050 and then No (Expressions (N))
1051 and then Nkind
1052 (First (Choices (First (Component_Associations (N)))))
1053 = N_Others_Choice
1054 then
1055 return;
1056 end if;
1057
ee6ba406 1058 if Is_Constrained (Typ) then
1059 Apply_Length_Check (N, Typ);
1060
1061 if No_Sliding then
1062 Apply_Range_Check (N, Typ);
1063 end if;
1064 else
1065 Apply_Range_Check (N, Typ);
1066 end if;
1067
1068 elsif (Is_Record_Type (Typ)
1069 or else Is_Private_Type (Typ))
1070 and then Has_Discriminants (Base_Type (Typ))
1071 and then Is_Constrained (Typ)
1072 then
1073 Apply_Discriminant_Check (N, Typ);
1074
1075 elsif Is_Access_Type (Typ) then
1076
1077 Desig_Typ := Designated_Type (Typ);
1078
1079 -- No checks necessary if expression statically null
1080
2af58f67 1081 if Known_Null (N) then
00c403ee 1082 if Can_Never_Be_Null (Typ) then
1083 Install_Null_Excluding_Check (N);
1084 end if;
ee6ba406 1085
1086 -- No sliding possible on access to arrays
1087
1088 elsif Is_Array_Type (Desig_Typ) then
1089 if Is_Constrained (Desig_Typ) then
1090 Apply_Length_Check (N, Typ);
1091 end if;
1092
1093 Apply_Range_Check (N, Typ);
1094
1095 elsif Has_Discriminants (Base_Type (Desig_Typ))
1096 and then Is_Constrained (Desig_Typ)
1097 then
1098 Apply_Discriminant_Check (N, Typ);
1099 end if;
fa7497e8 1100
bf3e1520 1101 -- Apply the 2005 Null_Excluding check. Note that we do not apply
00c403ee 1102 -- this check if the constraint node is illegal, as shown by having
1103 -- an error posted. This additional guard prevents cascaded errors
1104 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1105
fa7497e8 1106 if Can_Never_Be_Null (Typ)
1107 and then not Can_Never_Be_Null (Etype (N))
00c403ee 1108 and then not Error_Posted (N)
fa7497e8 1109 then
1110 Install_Null_Excluding_Check (N);
1111 end if;
ee6ba406 1112 end if;
1113 end Apply_Constraint_Check;
1114
1115 ------------------------------
1116 -- Apply_Discriminant_Check --
1117 ------------------------------
1118
1119 procedure Apply_Discriminant_Check
1120 (N : Node_Id;
1121 Typ : Entity_Id;
1122 Lhs : Node_Id := Empty)
1123 is
1124 Loc : constant Source_Ptr := Sloc (N);
1125 Do_Access : constant Boolean := Is_Access_Type (Typ);
1126 S_Typ : Entity_Id := Etype (N);
1127 Cond : Node_Id;
1128 T_Typ : Entity_Id;
1129
1130 function Is_Aliased_Unconstrained_Component return Boolean;
1131 -- It is possible for an aliased component to have a nominal
1132 -- unconstrained subtype (through instantiation). If this is a
1133 -- discriminated component assigned in the expansion of an aggregate
1134 -- in an initialization, the check must be suppressed. This unusual
2af58f67 1135 -- situation requires a predicate of its own.
ee6ba406 1136
1137 ----------------------------------------
1138 -- Is_Aliased_Unconstrained_Component --
1139 ----------------------------------------
1140
1141 function Is_Aliased_Unconstrained_Component return Boolean is
1142 Comp : Entity_Id;
1143 Pref : Node_Id;
1144
1145 begin
1146 if Nkind (Lhs) /= N_Selected_Component then
1147 return False;
1148 else
1149 Comp := Entity (Selector_Name (Lhs));
1150 Pref := Prefix (Lhs);
1151 end if;
1152
1153 if Ekind (Comp) /= E_Component
1154 or else not Is_Aliased (Comp)
1155 then
1156 return False;
1157 end if;
1158
1159 return not Comes_From_Source (Pref)
1160 and then In_Instance
1161 and then not Is_Constrained (Etype (Comp));
1162 end Is_Aliased_Unconstrained_Component;
1163
1164 -- Start of processing for Apply_Discriminant_Check
1165
1166 begin
1167 if Do_Access then
1168 T_Typ := Designated_Type (Typ);
1169 else
1170 T_Typ := Typ;
1171 end if;
1172
1173 -- Nothing to do if discriminant checks are suppressed or else no code
1174 -- is to be generated
1175
1176 if not Expander_Active
1177 or else Discriminant_Checks_Suppressed (T_Typ)
1178 then
1179 return;
1180 end if;
1181
feff2f05 1182 -- No discriminant checks necessary for an access when expression is
1183 -- statically Null. This is not only an optimization, it is fundamental
1184 -- because otherwise discriminant checks may be generated in init procs
1185 -- for types containing an access to a not-yet-frozen record, causing a
1186 -- deadly forward reference.
ee6ba406 1187
feff2f05 1188 -- Also, if the expression is of an access type whose designated type is
1189 -- incomplete, then the access value must be null and we suppress the
1190 -- check.
ee6ba406 1191
2af58f67 1192 if Known_Null (N) then
ee6ba406 1193 return;
1194
1195 elsif Is_Access_Type (S_Typ) then
1196 S_Typ := Designated_Type (S_Typ);
1197
1198 if Ekind (S_Typ) = E_Incomplete_Type then
1199 return;
1200 end if;
1201 end if;
1202
0577b0b1 1203 -- If an assignment target is present, then we need to generate the
1204 -- actual subtype if the target is a parameter or aliased object with
1205 -- an unconstrained nominal subtype.
1206
1207 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1208 -- subtype to the parameter and dereference cases, since other aliased
1209 -- objects are unconstrained (unless the nominal subtype is explicitly
1210 -- constrained). (But we also need to test for renamings???)
ee6ba406 1211
1212 if Present (Lhs)
1213 and then (Present (Param_Entity (Lhs))
0577b0b1 1214 or else (Ada_Version < Ada_05
1215 and then not Is_Constrained (T_Typ)
ee6ba406 1216 and then Is_Aliased_View (Lhs)
0577b0b1 1217 and then not Is_Aliased_Unconstrained_Component)
1218 or else (Ada_Version >= Ada_05
1219 and then not Is_Constrained (T_Typ)
1220 and then Nkind (Lhs) = N_Explicit_Dereference
1221 and then Nkind (Original_Node (Lhs)) /=
1222 N_Function_Call))
ee6ba406 1223 then
1224 T_Typ := Get_Actual_Subtype (Lhs);
1225 end if;
1226
feff2f05 1227 -- Nothing to do if the type is unconstrained (this is the case where
1228 -- the actual subtype in the RM sense of N is unconstrained and no check
1229 -- is required).
ee6ba406 1230
1231 if not Is_Constrained (T_Typ) then
1232 return;
05fcfafb 1233
1234 -- Ada 2005: nothing to do if the type is one for which there is a
1235 -- partial view that is constrained.
1236
1237 elsif Ada_Version >= Ada_05
1238 and then Has_Constrained_Partial_View (Base_Type (T_Typ))
1239 then
1240 return;
ee6ba406 1241 end if;
1242
00f91aef 1243 -- Nothing to do if the type is an Unchecked_Union
1244
1245 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1246 return;
1247 end if;
1248
feff2f05 1249 -- Suppress checks if the subtypes are the same. the check must be
1250 -- preserved in an assignment to a formal, because the constraint is
1251 -- given by the actual.
ee6ba406 1252
1253 if Nkind (Original_Node (N)) /= N_Allocator
1254 and then (No (Lhs)
1255 or else not Is_Entity_Name (Lhs)
9dfe12ae 1256 or else No (Param_Entity (Lhs)))
ee6ba406 1257 then
1258 if (Etype (N) = Typ
1259 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1260 and then not Is_Aliased_View (Lhs)
1261 then
1262 return;
1263 end if;
1264
feff2f05 1265 -- We can also eliminate checks on allocators with a subtype mark that
1266 -- coincides with the context type. The context type may be a subtype
1267 -- without a constraint (common case, a generic actual).
ee6ba406 1268
1269 elsif Nkind (Original_Node (N)) = N_Allocator
1270 and then Is_Entity_Name (Expression (Original_Node (N)))
1271 then
1272 declare
9dfe12ae 1273 Alloc_Typ : constant Entity_Id :=
1274 Entity (Expression (Original_Node (N)));
ee6ba406 1275
1276 begin
1277 if Alloc_Typ = T_Typ
1278 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1279 and then Is_Entity_Name (
1280 Subtype_Indication (Parent (T_Typ)))
1281 and then Alloc_Typ = Base_Type (T_Typ))
1282
1283 then
1284 return;
1285 end if;
1286 end;
1287 end if;
1288
feff2f05 1289 -- See if we have a case where the types are both constrained, and all
1290 -- the constraints are constants. In this case, we can do the check
1291 -- successfully at compile time.
ee6ba406 1292
9dfe12ae 1293 -- We skip this check for the case where the node is a rewritten`
ee6ba406 1294 -- allocator, because it already carries the context subtype, and
1295 -- extracting the discriminants from the aggregate is messy.
1296
1297 if Is_Constrained (S_Typ)
1298 and then Nkind (Original_Node (N)) /= N_Allocator
1299 then
1300 declare
1301 DconT : Elmt_Id;
1302 Discr : Entity_Id;
1303 DconS : Elmt_Id;
1304 ItemS : Node_Id;
1305 ItemT : Node_Id;
1306
1307 begin
1308 -- S_Typ may not have discriminants in the case where it is a
feff2f05 1309 -- private type completed by a default discriminated type. In that
1310 -- case, we need to get the constraints from the underlying_type.
1311 -- If the underlying type is unconstrained (i.e. has no default
1312 -- discriminants) no check is needed.
ee6ba406 1313
1314 if Has_Discriminants (S_Typ) then
1315 Discr := First_Discriminant (S_Typ);
1316 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1317
1318 else
1319 Discr := First_Discriminant (Underlying_Type (S_Typ));
1320 DconS :=
1321 First_Elmt
1322 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1323
1324 if No (DconS) then
1325 return;
1326 end if;
fccb5da7 1327
1328 -- A further optimization: if T_Typ is derived from S_Typ
1329 -- without imposing a constraint, no check is needed.
1330
1331 if Nkind (Original_Node (Parent (T_Typ))) =
1332 N_Full_Type_Declaration
1333 then
1334 declare
5c61a0ff 1335 Type_Def : constant Node_Id :=
fccb5da7 1336 Type_Definition
1337 (Original_Node (Parent (T_Typ)));
1338 begin
1339 if Nkind (Type_Def) = N_Derived_Type_Definition
1340 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1341 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1342 then
1343 return;
1344 end if;
1345 end;
1346 end if;
ee6ba406 1347 end if;
1348
1349 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1350
1351 while Present (Discr) loop
1352 ItemS := Node (DconS);
1353 ItemT := Node (DconT);
1354
00c403ee 1355 -- For a discriminated component type constrained by the
1356 -- current instance of an enclosing type, there is no
1357 -- applicable discriminant check.
1358
1359 if Nkind (ItemT) = N_Attribute_Reference
1360 and then Is_Access_Type (Etype (ItemT))
1361 and then Is_Entity_Name (Prefix (ItemT))
1362 and then Is_Type (Entity (Prefix (ItemT)))
1363 then
1364 return;
1365 end if;
1366
cc60bd16 1367 -- If the expressions for the discriminants are identical
1368 -- and it is side-effect free (for now just an entity),
1369 -- this may be a shared constraint, e.g. from a subtype
1370 -- without a constraint introduced as a generic actual.
1371 -- Examine other discriminants if any.
1372
1373 if ItemS = ItemT
1374 and then Is_Entity_Name (ItemS)
1375 then
1376 null;
1377
1378 elsif not Is_OK_Static_Expression (ItemS)
1379 or else not Is_OK_Static_Expression (ItemT)
1380 then
1381 exit;
ee6ba406 1382
cc60bd16 1383 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
ee6ba406 1384 if Do_Access then -- needs run-time check.
1385 exit;
1386 else
1387 Apply_Compile_Time_Constraint_Error
f15731c4 1388 (N, "incorrect value for discriminant&?",
1389 CE_Discriminant_Check_Failed, Ent => Discr);
ee6ba406 1390 return;
1391 end if;
1392 end if;
1393
1394 Next_Elmt (DconS);
1395 Next_Elmt (DconT);
1396 Next_Discriminant (Discr);
1397 end loop;
1398
1399 if No (Discr) then
1400 return;
1401 end if;
1402 end;
1403 end if;
1404
1405 -- Here we need a discriminant check. First build the expression
1406 -- for the comparisons of the discriminants:
1407
1408 -- (n.disc1 /= typ.disc1) or else
1409 -- (n.disc2 /= typ.disc2) or else
1410 -- ...
1411 -- (n.discn /= typ.discn)
1412
1413 Cond := Build_Discriminant_Checks (N, T_Typ);
1414
1415 -- If Lhs is set and is a parameter, then the condition is
1416 -- guarded by: lhs'constrained and then (condition built above)
1417
1418 if Present (Param_Entity (Lhs)) then
1419 Cond :=
1420 Make_And_Then (Loc,
1421 Left_Opnd =>
1422 Make_Attribute_Reference (Loc,
1423 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1424 Attribute_Name => Name_Constrained),
1425 Right_Opnd => Cond);
1426 end if;
1427
1428 if Do_Access then
1429 Cond := Guard_Access (Cond, Loc, N);
1430 end if;
1431
1432 Insert_Action (N,
f15731c4 1433 Make_Raise_Constraint_Error (Loc,
1434 Condition => Cond,
1435 Reason => CE_Discriminant_Check_Failed));
ee6ba406 1436 end Apply_Discriminant_Check;
1437
1438 ------------------------
1439 -- Apply_Divide_Check --
1440 ------------------------
1441
1442 procedure Apply_Divide_Check (N : Node_Id) is
1443 Loc : constant Source_Ptr := Sloc (N);
1444 Typ : constant Entity_Id := Etype (N);
1445 Left : constant Node_Id := Left_Opnd (N);
1446 Right : constant Node_Id := Right_Opnd (N);
1447
1448 LLB : Uint;
1449 Llo : Uint;
1450 Lhi : Uint;
1451 LOK : Boolean;
1452 Rlo : Uint;
1453 Rhi : Uint;
96da3284 1454 ROK : Boolean;
1455
1456 pragma Warnings (Off, Lhi);
1457 -- Don't actually use this value
ee6ba406 1458
1459 begin
1460 if Expander_Active
13dbf220 1461 and then not Backend_Divide_Checks_On_Target
1462 and then Check_Needed (Right, Division_Check)
ee6ba406 1463 then
9c486805 1464 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
ee6ba406 1465
1466 -- See if division by zero possible, and if so generate test. This
1467 -- part of the test is not controlled by the -gnato switch.
1468
1469 if Do_Division_Check (N) then
ee6ba406 1470 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1471 Insert_Action (N,
1472 Make_Raise_Constraint_Error (Loc,
1473 Condition =>
1474 Make_Op_Eq (Loc,
0577b0b1 1475 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
f15731c4 1476 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1477 Reason => CE_Divide_By_Zero));
ee6ba406 1478 end if;
1479 end if;
1480
1481 -- Test for extremely annoying case of xxx'First divided by -1
1482
1483 if Do_Overflow_Check (N) then
ee6ba406 1484 if Nkind (N) = N_Op_Divide
1485 and then Is_Signed_Integer_Type (Typ)
1486 then
9c486805 1487 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
ee6ba406 1488 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1489
1490 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1491 and then
1492 ((not LOK) or else (Llo = LLB))
1493 then
1494 Insert_Action (N,
1495 Make_Raise_Constraint_Error (Loc,
1496 Condition =>
1497 Make_And_Then (Loc,
1498
1499 Make_Op_Eq (Loc,
9dfe12ae 1500 Left_Opnd =>
1501 Duplicate_Subexpr_Move_Checks (Left),
ee6ba406 1502 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1503
1504 Make_Op_Eq (Loc,
9dfe12ae 1505 Left_Opnd =>
1506 Duplicate_Subexpr (Right),
ee6ba406 1507 Right_Opnd =>
f15731c4 1508 Make_Integer_Literal (Loc, -1))),
1509 Reason => CE_Overflow_Check_Failed));
ee6ba406 1510 end if;
1511 end if;
1512 end if;
1513 end if;
1514 end Apply_Divide_Check;
1515
5329ca64 1516 ----------------------------------
1517 -- Apply_Float_Conversion_Check --
1518 ----------------------------------
1519
feff2f05 1520 -- Let F and I be the source and target types of the conversion. The RM
1521 -- specifies that a floating-point value X is rounded to the nearest
1522 -- integer, with halfway cases being rounded away from zero. The rounded
1523 -- value of X is checked against I'Range.
1524
1525 -- The catch in the above paragraph is that there is no good way to know
1526 -- whether the round-to-integer operation resulted in overflow. A remedy is
1527 -- to perform a range check in the floating-point domain instead, however:
5329ca64 1528
5329ca64 1529 -- (1) The bounds may not be known at compile time
2af58f67 1530 -- (2) The check must take into account rounding or truncation.
5329ca64 1531 -- (3) The range of type I may not be exactly representable in F.
2af58f67 1532 -- (4) For the rounding case, The end-points I'First - 0.5 and
1533 -- I'Last + 0.5 may or may not be in range, depending on the
1534 -- sign of I'First and I'Last.
5329ca64 1535 -- (5) X may be a NaN, which will fail any comparison
1536
2af58f67 1537 -- The following steps correctly convert X with rounding:
feff2f05 1538
5329ca64 1539 -- (1) If either I'First or I'Last is not known at compile time, use
1540 -- I'Base instead of I in the next three steps and perform a
1541 -- regular range check against I'Range after conversion.
1542 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1543 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
2af58f67 1544 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1545 -- In other words, take one of the closest floating-point numbers
1546 -- (which is an integer value) to I'First, and see if it is in
1547 -- range or not.
5329ca64 1548 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1549 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
2af58f67 1550 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
5329ca64 1551 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1552 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1553
2af58f67 1554 -- For the truncating case, replace steps (2) and (3) as follows:
1555 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1556 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1557 -- Lo_OK be True.
1558 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1559 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1560 -- Hi_OK be False
1561
5329ca64 1562 procedure Apply_Float_Conversion_Check
1563 (Ck_Node : Node_Id;
1564 Target_Typ : Entity_Id)
1565 is
feff2f05 1566 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1567 HB : constant Node_Id := Type_High_Bound (Target_Typ);
5329ca64 1568 Loc : constant Source_Ptr := Sloc (Ck_Node);
1569 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
feff2f05 1570 Target_Base : constant Entity_Id :=
1571 Implementation_Base_Type (Target_Typ);
1572
2af58f67 1573 Par : constant Node_Id := Parent (Ck_Node);
1574 pragma Assert (Nkind (Par) = N_Type_Conversion);
1575 -- Parent of check node, must be a type conversion
1576
1577 Truncate : constant Boolean := Float_Truncate (Par);
1578 Max_Bound : constant Uint :=
1579 UI_Expon
1580 (Machine_Radix (Expr_Type),
1581 Machine_Mantissa (Expr_Type) - 1) - 1;
1582
5329ca64 1583 -- Largest bound, so bound plus or minus half is a machine number of F
1584
feff2f05 1585 Ifirst, Ilast : Uint;
1586 -- Bounds of integer type
1587
1588 Lo, Hi : Ureal;
1589 -- Bounds to check in floating-point domain
5329ca64 1590
feff2f05 1591 Lo_OK, Hi_OK : Boolean;
1592 -- True iff Lo resp. Hi belongs to I'Range
5329ca64 1593
feff2f05 1594 Lo_Chk, Hi_Chk : Node_Id;
1595 -- Expressions that are False iff check fails
1596
1597 Reason : RT_Exception_Code;
5329ca64 1598
1599 begin
1600 if not Compile_Time_Known_Value (LB)
1601 or not Compile_Time_Known_Value (HB)
1602 then
1603 declare
feff2f05 1604 -- First check that the value falls in the range of the base type,
1605 -- to prevent overflow during conversion and then perform a
1606 -- regular range check against the (dynamic) bounds.
5329ca64 1607
5329ca64 1608 pragma Assert (Target_Base /= Target_Typ);
5329ca64 1609
1610 Temp : constant Entity_Id :=
1611 Make_Defining_Identifier (Loc,
1612 Chars => New_Internal_Name ('T'));
1613
1614 begin
1615 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1616 Set_Etype (Temp, Target_Base);
1617
1618 Insert_Action (Parent (Par),
1619 Make_Object_Declaration (Loc,
1620 Defining_Identifier => Temp,
1621 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1622 Expression => New_Copy_Tree (Par)),
1623 Suppress => All_Checks);
1624
1625 Insert_Action (Par,
1626 Make_Raise_Constraint_Error (Loc,
1627 Condition =>
1628 Make_Not_In (Loc,
1629 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1630 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1631 Reason => CE_Range_Check_Failed));
1632 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1633
1634 return;
1635 end;
1636 end if;
1637
7d86aa98 1638 -- Get the (static) bounds of the target type
5329ca64 1639
1640 Ifirst := Expr_Value (LB);
1641 Ilast := Expr_Value (HB);
1642
7d86aa98 1643 -- A simple optimization: if the expression is a universal literal,
1644 -- we can do the comparison with the bounds and the conversion to
1645 -- an integer type statically. The range checks are unchanged.
1646
1647 if Nkind (Ck_Node) = N_Real_Literal
1648 and then Etype (Ck_Node) = Universal_Real
1649 and then Is_Integer_Type (Target_Typ)
1650 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1651 then
1652 declare
1653 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1654
1655 begin
1656 if Int_Val <= Ilast and then Int_Val >= Ifirst then
1657
4309515d 1658 -- Conversion is safe
7d86aa98 1659
1660 Rewrite (Parent (Ck_Node),
1661 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1662 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1663 return;
1664 end if;
1665 end;
1666 end if;
1667
5329ca64 1668 -- Check against lower bound
1669
2af58f67 1670 if Truncate and then Ifirst > 0 then
1671 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1672 Lo_OK := False;
1673
1674 elsif Truncate then
1675 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1676 Lo_OK := True;
1677
1678 elsif abs (Ifirst) < Max_Bound then
5329ca64 1679 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1680 Lo_OK := (Ifirst > 0);
2af58f67 1681
5329ca64 1682 else
1683 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1684 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1685 end if;
1686
1687 if Lo_OK then
1688
1689 -- Lo_Chk := (X >= Lo)
1690
1691 Lo_Chk := Make_Op_Ge (Loc,
1692 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1693 Right_Opnd => Make_Real_Literal (Loc, Lo));
1694
1695 else
1696 -- Lo_Chk := (X > Lo)
1697
1698 Lo_Chk := Make_Op_Gt (Loc,
1699 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1700 Right_Opnd => Make_Real_Literal (Loc, Lo));
1701 end if;
1702
1703 -- Check against higher bound
1704
2af58f67 1705 if Truncate and then Ilast < 0 then
1706 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
1707 Lo_OK := False;
1708
1709 elsif Truncate then
1710 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
1711 Hi_OK := True;
1712
1713 elsif abs (Ilast) < Max_Bound then
5329ca64 1714 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1715 Hi_OK := (Ilast < 0);
1716 else
1717 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1718 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1719 end if;
1720
1721 if Hi_OK then
1722
1723 -- Hi_Chk := (X <= Hi)
1724
1725 Hi_Chk := Make_Op_Le (Loc,
1726 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1727 Right_Opnd => Make_Real_Literal (Loc, Hi));
1728
1729 else
1730 -- Hi_Chk := (X < Hi)
1731
1732 Hi_Chk := Make_Op_Lt (Loc,
1733 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1734 Right_Opnd => Make_Real_Literal (Loc, Hi));
1735 end if;
1736
feff2f05 1737 -- If the bounds of the target type are the same as those of the base
1738 -- type, the check is an overflow check as a range check is not
1739 -- performed in these cases.
5329ca64 1740
1741 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1742 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1743 then
1744 Reason := CE_Overflow_Check_Failed;
1745 else
1746 Reason := CE_Range_Check_Failed;
1747 end if;
1748
1749 -- Raise CE if either conditions does not hold
1750
1751 Insert_Action (Ck_Node,
1752 Make_Raise_Constraint_Error (Loc,
05fcfafb 1753 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
5329ca64 1754 Reason => Reason));
1755 end Apply_Float_Conversion_Check;
1756
ee6ba406 1757 ------------------------
1758 -- Apply_Length_Check --
1759 ------------------------
1760
1761 procedure Apply_Length_Check
1762 (Ck_Node : Node_Id;
1763 Target_Typ : Entity_Id;
1764 Source_Typ : Entity_Id := Empty)
1765 is
1766 begin
1767 Apply_Selected_Length_Checks
1768 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1769 end Apply_Length_Check;
1770
1771 -----------------------
1772 -- Apply_Range_Check --
1773 -----------------------
1774
1775 procedure Apply_Range_Check
1776 (Ck_Node : Node_Id;
1777 Target_Typ : Entity_Id;
1778 Source_Typ : Entity_Id := Empty)
1779 is
1780 begin
1781 Apply_Selected_Range_Checks
1782 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1783 end Apply_Range_Check;
1784
1785 ------------------------------
1786 -- Apply_Scalar_Range_Check --
1787 ------------------------------
1788
feff2f05 1789 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
1790 -- off if it is already set on.
ee6ba406 1791
1792 procedure Apply_Scalar_Range_Check
1793 (Expr : Node_Id;
1794 Target_Typ : Entity_Id;
1795 Source_Typ : Entity_Id := Empty;
1796 Fixed_Int : Boolean := False)
1797 is
1798 Parnt : constant Node_Id := Parent (Expr);
1799 S_Typ : Entity_Id;
1800 Arr : Node_Id := Empty; -- initialize to prevent warning
1801 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1802 OK : Boolean;
1803
1804 Is_Subscr_Ref : Boolean;
1805 -- Set true if Expr is a subscript
1806
1807 Is_Unconstrained_Subscr_Ref : Boolean;
1808 -- Set true if Expr is a subscript of an unconstrained array. In this
1809 -- case we do not attempt to do an analysis of the value against the
1810 -- range of the subscript, since we don't know the actual subtype.
1811
1812 Int_Real : Boolean;
feff2f05 1813 -- Set to True if Expr should be regarded as a real value even though
1814 -- the type of Expr might be discrete.
ee6ba406 1815
1816 procedure Bad_Value;
1817 -- Procedure called if value is determined to be out of range
1818
9dfe12ae 1819 ---------------
1820 -- Bad_Value --
1821 ---------------
1822
ee6ba406 1823 procedure Bad_Value is
1824 begin
1825 Apply_Compile_Time_Constraint_Error
f15731c4 1826 (Expr, "value not in range of}?", CE_Range_Check_Failed,
ee6ba406 1827 Ent => Target_Typ,
1828 Typ => Target_Typ);
1829 end Bad_Value;
1830
9dfe12ae 1831 -- Start of processing for Apply_Scalar_Range_Check
1832
ee6ba406 1833 begin
2af58f67 1834 -- Return if check obviously not needed
ee6ba406 1835
2af58f67 1836 if
1837 -- Not needed inside generic
ee6ba406 1838
2af58f67 1839 Inside_A_Generic
1840
1841 -- Not needed if previous error
1842
1843 or else Target_Typ = Any_Type
1844 or else Nkind (Expr) = N_Error
1845
1846 -- Not needed for non-scalar type
1847
1848 or else not Is_Scalar_Type (Target_Typ)
1849
1850 -- Not needed if we know node raises CE already
1851
1852 or else Raises_Constraint_Error (Expr)
ee6ba406 1853 then
1854 return;
1855 end if;
1856
1857 -- Now, see if checks are suppressed
1858
1859 Is_Subscr_Ref :=
1860 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1861
1862 if Is_Subscr_Ref then
1863 Arr := Prefix (Parnt);
1864 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1865 end if;
1866
1867 if not Do_Range_Check (Expr) then
1868
1869 -- Subscript reference. Check for Index_Checks suppressed
1870
1871 if Is_Subscr_Ref then
1872
1873 -- Check array type and its base type
1874
1875 if Index_Checks_Suppressed (Arr_Typ)
9dfe12ae 1876 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
ee6ba406 1877 then
1878 return;
1879
1880 -- Check array itself if it is an entity name
1881
1882 elsif Is_Entity_Name (Arr)
9dfe12ae 1883 and then Index_Checks_Suppressed (Entity (Arr))
ee6ba406 1884 then
1885 return;
1886
1887 -- Check expression itself if it is an entity name
1888
1889 elsif Is_Entity_Name (Expr)
9dfe12ae 1890 and then Index_Checks_Suppressed (Entity (Expr))
ee6ba406 1891 then
1892 return;
1893 end if;
1894
1895 -- All other cases, check for Range_Checks suppressed
1896
1897 else
1898 -- Check target type and its base type
1899
1900 if Range_Checks_Suppressed (Target_Typ)
9dfe12ae 1901 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
ee6ba406 1902 then
1903 return;
1904
1905 -- Check expression itself if it is an entity name
1906
1907 elsif Is_Entity_Name (Expr)
9dfe12ae 1908 and then Range_Checks_Suppressed (Entity (Expr))
ee6ba406 1909 then
1910 return;
1911
feff2f05 1912 -- If Expr is part of an assignment statement, then check left
1913 -- side of assignment if it is an entity name.
ee6ba406 1914
1915 elsif Nkind (Parnt) = N_Assignment_Statement
1916 and then Is_Entity_Name (Name (Parnt))
9dfe12ae 1917 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
ee6ba406 1918 then
1919 return;
1920 end if;
1921 end if;
1922 end if;
1923
9dfe12ae 1924 -- Do not set range checks if they are killed
1925
1926 if Nkind (Expr) = N_Unchecked_Type_Conversion
1927 and then Kill_Range_Check (Expr)
1928 then
1929 return;
1930 end if;
1931
1932 -- Do not set range checks for any values from System.Scalar_Values
1933 -- since the whole idea of such values is to avoid checking them!
1934
1935 if Is_Entity_Name (Expr)
1936 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1937 then
1938 return;
1939 end if;
1940
ee6ba406 1941 -- Now see if we need a check
1942
1943 if No (Source_Typ) then
1944 S_Typ := Etype (Expr);
1945 else
1946 S_Typ := Source_Typ;
1947 end if;
1948
1949 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1950 return;
1951 end if;
1952
1953 Is_Unconstrained_Subscr_Ref :=
1954 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1955
feff2f05 1956 -- Always do a range check if the source type includes infinities and
1957 -- the target type does not include infinities. We do not do this if
1958 -- range checks are killed.
ee6ba406 1959
1960 if Is_Floating_Point_Type (S_Typ)
1961 and then Has_Infinities (S_Typ)
1962 and then not Has_Infinities (Target_Typ)
1963 then
1964 Enable_Range_Check (Expr);
1965 end if;
1966
feff2f05 1967 -- Return if we know expression is definitely in the range of the target
1968 -- type as determined by Determine_Range. Right now we only do this for
1969 -- discrete types, and not fixed-point or floating-point types.
ee6ba406 1970
f2a06be9 1971 -- The additional less-precise tests below catch these cases
ee6ba406 1972
feff2f05 1973 -- Note: skip this if we are given a source_typ, since the point of
1974 -- supplying a Source_Typ is to stop us looking at the expression.
1975 -- We could sharpen this test to be out parameters only ???
ee6ba406 1976
1977 if Is_Discrete_Type (Target_Typ)
1978 and then Is_Discrete_Type (Etype (Expr))
1979 and then not Is_Unconstrained_Subscr_Ref
1980 and then No (Source_Typ)
1981 then
1982 declare
1983 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1984 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1985 Lo : Uint;
1986 Hi : Uint;
1987
1988 begin
1989 if Compile_Time_Known_Value (Tlo)
1990 and then Compile_Time_Known_Value (Thi)
1991 then
9dfe12ae 1992 declare
1993 Lov : constant Uint := Expr_Value (Tlo);
1994 Hiv : constant Uint := Expr_Value (Thi);
ee6ba406 1995
9dfe12ae 1996 begin
1997 -- If range is null, we for sure have a constraint error
1998 -- (we don't even need to look at the value involved,
1999 -- since all possible values will raise CE).
2000
2001 if Lov > Hiv then
2002 Bad_Value;
2003 return;
2004 end if;
2005
2006 -- Otherwise determine range of value
2007
9c486805 2008 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
9dfe12ae 2009
2010 if OK then
2011
2012 -- If definitely in range, all OK
ee6ba406 2013
ee6ba406 2014 if Lo >= Lov and then Hi <= Hiv then
2015 return;
2016
9dfe12ae 2017 -- If definitely not in range, warn
2018
ee6ba406 2019 elsif Lov > Hi or else Hiv < Lo then
2020 Bad_Value;
2021 return;
9dfe12ae 2022
2023 -- Otherwise we don't know
2024
2025 else
2026 null;
ee6ba406 2027 end if;
9dfe12ae 2028 end if;
2029 end;
ee6ba406 2030 end if;
2031 end;
2032 end if;
2033
2034 Int_Real :=
2035 Is_Floating_Point_Type (S_Typ)
2036 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2037
2038 -- Check if we can determine at compile time whether Expr is in the
9dfe12ae 2039 -- range of the target type. Note that if S_Typ is within the bounds
2040 -- of Target_Typ then this must be the case. This check is meaningful
2041 -- only if this is not a conversion between integer and real types.
ee6ba406 2042
2043 if not Is_Unconstrained_Subscr_Ref
2044 and then
2045 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2046 and then
7a1dabb3 2047 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
ee6ba406 2048 or else
9c486805 2049 Is_In_Range (Expr, Target_Typ,
2050 Assume_Valid => True,
2051 Fixed_Int => Fixed_Int,
2052 Int_Real => Int_Real))
ee6ba406 2053 then
2054 return;
2055
9c486805 2056 elsif Is_Out_Of_Range (Expr, Target_Typ,
2057 Assume_Valid => True,
2058 Fixed_Int => Fixed_Int,
2059 Int_Real => Int_Real)
2060 then
ee6ba406 2061 Bad_Value;
2062 return;
2063
feff2f05 2064 -- In the floating-point case, we only do range checks if the type is
2065 -- constrained. We definitely do NOT want range checks for unconstrained
2066 -- types, since we want to have infinities
ee6ba406 2067
9dfe12ae 2068 elsif Is_Floating_Point_Type (S_Typ) then
2069 if Is_Constrained (S_Typ) then
2070 Enable_Range_Check (Expr);
2071 end if;
ee6ba406 2072
9dfe12ae 2073 -- For all other cases we enable a range check unconditionally
ee6ba406 2074
2075 else
2076 Enable_Range_Check (Expr);
2077 return;
2078 end if;
ee6ba406 2079 end Apply_Scalar_Range_Check;
2080
2081 ----------------------------------
2082 -- Apply_Selected_Length_Checks --
2083 ----------------------------------
2084
2085 procedure Apply_Selected_Length_Checks
2086 (Ck_Node : Node_Id;
2087 Target_Typ : Entity_Id;
2088 Source_Typ : Entity_Id;
2089 Do_Static : Boolean)
2090 is
2091 Cond : Node_Id;
2092 R_Result : Check_Result;
2093 R_Cno : Node_Id;
2094
2095 Loc : constant Source_Ptr := Sloc (Ck_Node);
2096 Checks_On : constant Boolean :=
2097 (not Index_Checks_Suppressed (Target_Typ))
2098 or else
2099 (not Length_Checks_Suppressed (Target_Typ));
2100
2101 begin
f15731c4 2102 if not Expander_Active then
ee6ba406 2103 return;
2104 end if;
2105
2106 R_Result :=
2107 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2108
2109 for J in 1 .. 2 loop
ee6ba406 2110 R_Cno := R_Result (J);
2111 exit when No (R_Cno);
2112
2113 -- A length check may mention an Itype which is attached to a
2114 -- subsequent node. At the top level in a package this can cause
2115 -- an order-of-elaboration problem, so we make sure that the itype
2116 -- is referenced now.
2117
2118 if Ekind (Current_Scope) = E_Package
2119 and then Is_Compilation_Unit (Current_Scope)
2120 then
2121 Ensure_Defined (Target_Typ, Ck_Node);
2122
2123 if Present (Source_Typ) then
2124 Ensure_Defined (Source_Typ, Ck_Node);
2125
2126 elsif Is_Itype (Etype (Ck_Node)) then
2127 Ensure_Defined (Etype (Ck_Node), Ck_Node);
2128 end if;
2129 end if;
2130
feff2f05 2131 -- If the item is a conditional raise of constraint error, then have
2132 -- a look at what check is being performed and ???
ee6ba406 2133
2134 if Nkind (R_Cno) = N_Raise_Constraint_Error
2135 and then Present (Condition (R_Cno))
2136 then
2137 Cond := Condition (R_Cno);
2138
0577b0b1 2139 -- Case where node does not now have a dynamic check
ee6ba406 2140
0577b0b1 2141 if not Has_Dynamic_Length_Check (Ck_Node) then
2142
2143 -- If checks are on, just insert the check
2144
2145 if Checks_On then
2146 Insert_Action (Ck_Node, R_Cno);
2147
2148 if not Do_Static then
2149 Set_Has_Dynamic_Length_Check (Ck_Node);
2150 end if;
2151
2152 -- If checks are off, then analyze the length check after
2153 -- temporarily attaching it to the tree in case the relevant
2154 -- condition can be evaluted at compile time. We still want a
2155 -- compile time warning in this case.
2156
2157 else
2158 Set_Parent (R_Cno, Ck_Node);
2159 Analyze (R_Cno);
ee6ba406 2160 end if;
ee6ba406 2161 end if;
2162
2163 -- Output a warning if the condition is known to be True
2164
2165 if Is_Entity_Name (Cond)
2166 and then Entity (Cond) = Standard_True
2167 then
2168 Apply_Compile_Time_Constraint_Error
2169 (Ck_Node, "wrong length for array of}?",
f15731c4 2170 CE_Length_Check_Failed,
ee6ba406 2171 Ent => Target_Typ,
2172 Typ => Target_Typ);
2173
2174 -- If we were only doing a static check, or if checks are not
2175 -- on, then we want to delete the check, since it is not needed.
2176 -- We do this by replacing the if statement by a null statement
2177
2178 elsif Do_Static or else not Checks_On then
00c403ee 2179 Remove_Warning_Messages (R_Cno);
ee6ba406 2180 Rewrite (R_Cno, Make_Null_Statement (Loc));
2181 end if;
2182
2183 else
2184 Install_Static_Check (R_Cno, Loc);
2185 end if;
ee6ba406 2186 end loop;
ee6ba406 2187 end Apply_Selected_Length_Checks;
2188
2189 ---------------------------------
2190 -- Apply_Selected_Range_Checks --
2191 ---------------------------------
2192
2193 procedure Apply_Selected_Range_Checks
2194 (Ck_Node : Node_Id;
2195 Target_Typ : Entity_Id;
2196 Source_Typ : Entity_Id;
2197 Do_Static : Boolean)
2198 is
2199 Cond : Node_Id;
2200 R_Result : Check_Result;
2201 R_Cno : Node_Id;
2202
2203 Loc : constant Source_Ptr := Sloc (Ck_Node);
2204 Checks_On : constant Boolean :=
2205 (not Index_Checks_Suppressed (Target_Typ))
2206 or else
2207 (not Range_Checks_Suppressed (Target_Typ));
2208
2209 begin
2210 if not Expander_Active or else not Checks_On then
2211 return;
2212 end if;
2213
2214 R_Result :=
2215 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2216
2217 for J in 1 .. 2 loop
2218
2219 R_Cno := R_Result (J);
2220 exit when No (R_Cno);
2221
feff2f05 2222 -- If the item is a conditional raise of constraint error, then have
2223 -- a look at what check is being performed and ???
ee6ba406 2224
2225 if Nkind (R_Cno) = N_Raise_Constraint_Error
2226 and then Present (Condition (R_Cno))
2227 then
2228 Cond := Condition (R_Cno);
2229
2230 if not Has_Dynamic_Range_Check (Ck_Node) then
2231 Insert_Action (Ck_Node, R_Cno);
2232
2233 if not Do_Static then
2234 Set_Has_Dynamic_Range_Check (Ck_Node);
2235 end if;
2236 end if;
2237
2238 -- Output a warning if the condition is known to be True
2239
2240 if Is_Entity_Name (Cond)
2241 and then Entity (Cond) = Standard_True
2242 then
feff2f05 2243 -- Since an N_Range is technically not an expression, we have
2244 -- to set one of the bounds to C_E and then just flag the
2245 -- N_Range. The warning message will point to the lower bound
2246 -- and complain about a range, which seems OK.
ee6ba406 2247
2248 if Nkind (Ck_Node) = N_Range then
2249 Apply_Compile_Time_Constraint_Error
2250 (Low_Bound (Ck_Node), "static range out of bounds of}?",
f15731c4 2251 CE_Range_Check_Failed,
ee6ba406 2252 Ent => Target_Typ,
2253 Typ => Target_Typ);
2254
2255 Set_Raises_Constraint_Error (Ck_Node);
2256
2257 else
2258 Apply_Compile_Time_Constraint_Error
2259 (Ck_Node, "static value out of range of}?",
f15731c4 2260 CE_Range_Check_Failed,
ee6ba406 2261 Ent => Target_Typ,
2262 Typ => Target_Typ);
2263 end if;
2264
2265 -- If we were only doing a static check, or if checks are not
2266 -- on, then we want to delete the check, since it is not needed.
2267 -- We do this by replacing the if statement by a null statement
2268
2269 elsif Do_Static or else not Checks_On then
00c403ee 2270 Remove_Warning_Messages (R_Cno);
ee6ba406 2271 Rewrite (R_Cno, Make_Null_Statement (Loc));
2272 end if;
2273
2274 else
2275 Install_Static_Check (R_Cno, Loc);
2276 end if;
ee6ba406 2277 end loop;
ee6ba406 2278 end Apply_Selected_Range_Checks;
2279
2280 -------------------------------
2281 -- Apply_Static_Length_Check --
2282 -------------------------------
2283
2284 procedure Apply_Static_Length_Check
2285 (Expr : Node_Id;
2286 Target_Typ : Entity_Id;
2287 Source_Typ : Entity_Id := Empty)
2288 is
2289 begin
2290 Apply_Selected_Length_Checks
2291 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2292 end Apply_Static_Length_Check;
2293
2294 -------------------------------------
2295 -- Apply_Subscript_Validity_Checks --
2296 -------------------------------------
2297
2298 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2299 Sub : Node_Id;
2300
2301 begin
2302 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2303
2304 -- Loop through subscripts
2305
2306 Sub := First (Expressions (Expr));
2307 while Present (Sub) loop
2308
feff2f05 2309 -- Check one subscript. Note that we do not worry about enumeration
2310 -- type with holes, since we will convert the value to a Pos value
2311 -- for the subscript, and that convert will do the necessary validity
2312 -- check.
ee6ba406 2313
2314 Ensure_Valid (Sub, Holes_OK => True);
2315
2316 -- Move to next subscript
2317
2318 Sub := Next (Sub);
2319 end loop;
2320 end Apply_Subscript_Validity_Checks;
2321
2322 ----------------------------------
2323 -- Apply_Type_Conversion_Checks --
2324 ----------------------------------
2325
2326 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2327 Target_Type : constant Entity_Id := Etype (N);
2328 Target_Base : constant Entity_Id := Base_Type (Target_Type);
9dfe12ae 2329 Expr : constant Node_Id := Expression (N);
2330 Expr_Type : constant Entity_Id := Etype (Expr);
ee6ba406 2331
2332 begin
2333 if Inside_A_Generic then
2334 return;
2335
f15731c4 2336 -- Skip these checks if serious errors detected, there are some nasty
ee6ba406 2337 -- situations of incomplete trees that blow things up.
2338
f15731c4 2339 elsif Serious_Errors_Detected > 0 then
ee6ba406 2340 return;
2341
feff2f05 2342 -- Scalar type conversions of the form Target_Type (Expr) require a
2343 -- range check if we cannot be sure that Expr is in the base type of
2344 -- Target_Typ and also that Expr is in the range of Target_Typ. These
2345 -- are not quite the same condition from an implementation point of
2346 -- view, but clearly the second includes the first.
ee6ba406 2347
2348 elsif Is_Scalar_Type (Target_Type) then
2349 declare
2350 Conv_OK : constant Boolean := Conversion_OK (N);
feff2f05 2351 -- If the Conversion_OK flag on the type conversion is set and no
2352 -- floating point type is involved in the type conversion then
2353 -- fixed point values must be read as integral values.
ee6ba406 2354
5329ca64 2355 Float_To_Int : constant Boolean :=
2356 Is_Floating_Point_Type (Expr_Type)
2357 and then Is_Integer_Type (Target_Type);
2358
ee6ba406 2359 begin
ee6ba406 2360 if not Overflow_Checks_Suppressed (Target_Base)
e254d721 2361 and then not
7a1dabb3 2362 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
5329ca64 2363 and then not Float_To_Int
ee6ba406 2364 then
00c403ee 2365 Activate_Overflow_Check (N);
ee6ba406 2366 end if;
2367
2368 if not Range_Checks_Suppressed (Target_Type)
2369 and then not Range_Checks_Suppressed (Expr_Type)
2370 then
5329ca64 2371 if Float_To_Int then
2372 Apply_Float_Conversion_Check (Expr, Target_Type);
2373 else
2374 Apply_Scalar_Range_Check
2375 (Expr, Target_Type, Fixed_Int => Conv_OK);
2376 end if;
ee6ba406 2377 end if;
2378 end;
2379
2380 elsif Comes_From_Source (N)
f40f9731 2381 and then not Discriminant_Checks_Suppressed (Target_Type)
ee6ba406 2382 and then Is_Record_Type (Target_Type)
2383 and then Is_Derived_Type (Target_Type)
2384 and then not Is_Tagged_Type (Target_Type)
2385 and then not Is_Constrained (Target_Type)
9dfe12ae 2386 and then Present (Stored_Constraint (Target_Type))
ee6ba406 2387 then
9dfe12ae 2388 -- An unconstrained derived type may have inherited discriminant
2389 -- Build an actual discriminant constraint list using the stored
ee6ba406 2390 -- constraint, to verify that the expression of the parent type
2391 -- satisfies the constraints imposed by the (unconstrained!)
2392 -- derived type. This applies to value conversions, not to view
2393 -- conversions of tagged types.
2394
2395 declare
9dfe12ae 2396 Loc : constant Source_Ptr := Sloc (N);
2397 Cond : Node_Id;
2398 Constraint : Elmt_Id;
2399 Discr_Value : Node_Id;
2400 Discr : Entity_Id;
2401
2402 New_Constraints : constant Elist_Id := New_Elmt_List;
2403 Old_Constraints : constant Elist_Id :=
2404 Discriminant_Constraint (Expr_Type);
ee6ba406 2405
2406 begin
9dfe12ae 2407 Constraint := First_Elmt (Stored_Constraint (Target_Type));
ee6ba406 2408 while Present (Constraint) loop
2409 Discr_Value := Node (Constraint);
2410
2411 if Is_Entity_Name (Discr_Value)
2412 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2413 then
2414 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2415
2416 if Present (Discr)
2417 and then Scope (Discr) = Base_Type (Expr_Type)
2418 then
2419 -- Parent is constrained by new discriminant. Obtain
feff2f05 2420 -- Value of original discriminant in expression. If the
2421 -- new discriminant has been used to constrain more than
2422 -- one of the stored discriminants, this will provide the
2423 -- required consistency check.
ee6ba406 2424
2425 Append_Elmt (
2426 Make_Selected_Component (Loc,
2427 Prefix =>
9dfe12ae 2428 Duplicate_Subexpr_No_Checks
2429 (Expr, Name_Req => True),
ee6ba406 2430 Selector_Name =>
2431 Make_Identifier (Loc, Chars (Discr))),
2432 New_Constraints);
2433
2434 else
2435 -- Discriminant of more remote ancestor ???
2436
2437 return;
2438 end if;
2439
feff2f05 2440 -- Derived type definition has an explicit value for this
2441 -- stored discriminant.
ee6ba406 2442
2443 else
2444 Append_Elmt
9dfe12ae 2445 (Duplicate_Subexpr_No_Checks (Discr_Value),
2446 New_Constraints);
ee6ba406 2447 end if;
2448
2449 Next_Elmt (Constraint);
2450 end loop;
2451
2452 -- Use the unconstrained expression type to retrieve the
2453 -- discriminants of the parent, and apply momentarily the
2454 -- discriminant constraint synthesized above.
2455
2456 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2457 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2458 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2459
2460 Insert_Action (N,
f15731c4 2461 Make_Raise_Constraint_Error (Loc,
2462 Condition => Cond,
2463 Reason => CE_Discriminant_Check_Failed));
ee6ba406 2464 end;
2465
feff2f05 2466 -- For arrays, conversions are applied during expansion, to take into
2467 -- accounts changes of representation. The checks become range checks on
2468 -- the base type or length checks on the subtype, depending on whether
2469 -- the target type is unconstrained or constrained.
ee6ba406 2470
2471 else
2472 null;
2473 end if;
ee6ba406 2474 end Apply_Type_Conversion_Checks;
2475
2476 ----------------------------------------------
2477 -- Apply_Universal_Integer_Attribute_Checks --
2478 ----------------------------------------------
2479
2480 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2481 Loc : constant Source_Ptr := Sloc (N);
2482 Typ : constant Entity_Id := Etype (N);
2483
2484 begin
2485 if Inside_A_Generic then
2486 return;
2487
2488 -- Nothing to do if checks are suppressed
2489
2490 elsif Range_Checks_Suppressed (Typ)
2491 and then Overflow_Checks_Suppressed (Typ)
2492 then
2493 return;
2494
2495 -- Nothing to do if the attribute does not come from source. The
2496 -- internal attributes we generate of this type do not need checks,
2497 -- and furthermore the attempt to check them causes some circular
2498 -- elaboration orders when dealing with packed types.
2499
2500 elsif not Comes_From_Source (N) then
2501 return;
2502
9dfe12ae 2503 -- If the prefix is a selected component that depends on a discriminant
2504 -- the check may improperly expose a discriminant instead of using
2505 -- the bounds of the object itself. Set the type of the attribute to
2506 -- the base type of the context, so that a check will be imposed when
2507 -- needed (e.g. if the node appears as an index).
2508
2509 elsif Nkind (Prefix (N)) = N_Selected_Component
2510 and then Ekind (Typ) = E_Signed_Integer_Subtype
2511 and then Depends_On_Discriminant (Scalar_Range (Typ))
2512 then
2513 Set_Etype (N, Base_Type (Typ));
2514
feff2f05 2515 -- Otherwise, replace the attribute node with a type conversion node
2516 -- whose expression is the attribute, retyped to universal integer, and
2517 -- whose subtype mark is the target type. The call to analyze this
2518 -- conversion will set range and overflow checks as required for proper
2519 -- detection of an out of range value.
ee6ba406 2520
2521 else
2522 Set_Etype (N, Universal_Integer);
2523 Set_Analyzed (N, True);
2524
2525 Rewrite (N,
2526 Make_Type_Conversion (Loc,
2527 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2528 Expression => Relocate_Node (N)));
2529
2530 Analyze_And_Resolve (N, Typ);
2531 return;
2532 end if;
ee6ba406 2533 end Apply_Universal_Integer_Attribute_Checks;
2534
2535 -------------------------------
2536 -- Build_Discriminant_Checks --
2537 -------------------------------
2538
2539 function Build_Discriminant_Checks
2540 (N : Node_Id;
314a23b6 2541 T_Typ : Entity_Id) return Node_Id
ee6ba406 2542 is
2543 Loc : constant Source_Ptr := Sloc (N);
2544 Cond : Node_Id;
2545 Disc : Elmt_Id;
2546 Disc_Ent : Entity_Id;
9dfe12ae 2547 Dref : Node_Id;
ee6ba406 2548 Dval : Node_Id;
2549
84d0d4a5 2550 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
2551
2552 ----------------------------------
2553 -- Aggregate_Discriminant_Value --
2554 ----------------------------------
2555
2556 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
2557 Assoc : Node_Id;
2558
2559 begin
feff2f05 2560 -- The aggregate has been normalized with named associations. We use
2561 -- the Chars field to locate the discriminant to take into account
2562 -- discriminants in derived types, which carry the same name as those
2563 -- in the parent.
84d0d4a5 2564
2565 Assoc := First (Component_Associations (N));
2566 while Present (Assoc) loop
2567 if Chars (First (Choices (Assoc))) = Chars (Disc) then
2568 return Expression (Assoc);
2569 else
2570 Next (Assoc);
2571 end if;
2572 end loop;
2573
2574 -- Discriminant must have been found in the loop above
2575
2576 raise Program_Error;
2577 end Aggregate_Discriminant_Val;
2578
2579 -- Start of processing for Build_Discriminant_Checks
2580
ee6ba406 2581 begin
84d0d4a5 2582 -- Loop through discriminants evolving the condition
2583
ee6ba406 2584 Cond := Empty;
2585 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2586
9dfe12ae 2587 -- For a fully private type, use the discriminants of the parent type
ee6ba406 2588
2589 if Is_Private_Type (T_Typ)
2590 and then No (Full_View (T_Typ))
2591 then
2592 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2593 else
2594 Disc_Ent := First_Discriminant (T_Typ);
2595 end if;
2596
2597 while Present (Disc) loop
ee6ba406 2598 Dval := Node (Disc);
2599
2600 if Nkind (Dval) = N_Identifier
2601 and then Ekind (Entity (Dval)) = E_Discriminant
2602 then
2603 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2604 else
9dfe12ae 2605 Dval := Duplicate_Subexpr_No_Checks (Dval);
ee6ba406 2606 end if;
2607
00f91aef 2608 -- If we have an Unchecked_Union node, we can infer the discriminants
2609 -- of the node.
9dfe12ae 2610
00f91aef 2611 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2612 Dref := New_Copy (
2613 Get_Discriminant_Value (
2614 First_Discriminant (T_Typ),
2615 T_Typ,
2616 Stored_Constraint (T_Typ)));
2617
84d0d4a5 2618 elsif Nkind (N) = N_Aggregate then
2619 Dref :=
2620 Duplicate_Subexpr_No_Checks
2621 (Aggregate_Discriminant_Val (Disc_Ent));
2622
00f91aef 2623 else
2624 Dref :=
2625 Make_Selected_Component (Loc,
2626 Prefix =>
2627 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2628 Selector_Name =>
2629 Make_Identifier (Loc, Chars (Disc_Ent)));
2630
2631 Set_Is_In_Discriminant_Check (Dref);
2632 end if;
9dfe12ae 2633
ee6ba406 2634 Evolve_Or_Else (Cond,
2635 Make_Op_Ne (Loc,
9dfe12ae 2636 Left_Opnd => Dref,
ee6ba406 2637 Right_Opnd => Dval));
2638
2639 Next_Elmt (Disc);
2640 Next_Discriminant (Disc_Ent);
2641 end loop;
2642
2643 return Cond;
2644 end Build_Discriminant_Checks;
2645
13dbf220 2646 ------------------
2647 -- Check_Needed --
2648 ------------------
2649
2650 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
2651 N : Node_Id;
2652 P : Node_Id;
2653 K : Node_Kind;
2654 L : Node_Id;
2655 R : Node_Id;
2656
2657 begin
2658 -- Always check if not simple entity
2659
2660 if Nkind (Nod) not in N_Has_Entity
2661 or else not Comes_From_Source (Nod)
2662 then
2663 return True;
2664 end if;
2665
2666 -- Look up tree for short circuit
2667
2668 N := Nod;
2669 loop
2670 P := Parent (N);
2671 K := Nkind (P);
2672
7b17e51b 2673 -- Done if out of subexpression (note that we allow generated stuff
2674 -- such as itype declarations in this context, to keep the loop going
2675 -- since we may well have generated such stuff in complex situations.
2676 -- Also done if no parent (probably an error condition, but no point
2677 -- in behaving nasty if we find it!)
2678
2679 if No (P)
2680 or else (K not in N_Subexpr and then Comes_From_Source (P))
2681 then
13dbf220 2682 return True;
2683
7b17e51b 2684 -- Or/Or Else case, where test is part of the right operand, or is
2685 -- part of one of the actions associated with the right operand, and
2686 -- the left operand is an equality test.
13dbf220 2687
7b17e51b 2688 elsif K = N_Op_Or then
13dbf220 2689 exit when N = Right_Opnd (P)
2690 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2691
7b17e51b 2692 elsif K = N_Or_Else then
2693 exit when (N = Right_Opnd (P)
2694 or else
2695 (Is_List_Member (N)
2696 and then List_Containing (N) = Actions (P)))
2697 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
13dbf220 2698
7b17e51b 2699 -- Similar test for the And/And then case, where the left operand
2700 -- is an inequality test.
2701
2702 elsif K = N_Op_And then
13dbf220 2703 exit when N = Right_Opnd (P)
38f5559f 2704 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
7b17e51b 2705
2706 elsif K = N_And_Then then
2707 exit when (N = Right_Opnd (P)
2708 or else
2709 (Is_List_Member (N)
2710 and then List_Containing (N) = Actions (P)))
2711 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
13dbf220 2712 end if;
2713
2714 N := P;
2715 end loop;
2716
2717 -- If we fall through the loop, then we have a conditional with an
2718 -- appropriate test as its left operand. So test further.
2719
2720 L := Left_Opnd (P);
13dbf220 2721 R := Right_Opnd (L);
2722 L := Left_Opnd (L);
2723
2724 -- Left operand of test must match original variable
2725
2726 if Nkind (L) not in N_Has_Entity
2727 or else Entity (L) /= Entity (Nod)
2728 then
2729 return True;
2730 end if;
2731
2af58f67 2732 -- Right operand of test must be key value (zero or null)
13dbf220 2733
2734 case Check is
2735 when Access_Check =>
2af58f67 2736 if not Known_Null (R) then
13dbf220 2737 return True;
2738 end if;
2739
2740 when Division_Check =>
2741 if not Compile_Time_Known_Value (R)
2742 or else Expr_Value (R) /= Uint_0
2743 then
2744 return True;
2745 end if;
2af58f67 2746
2747 when others =>
2748 raise Program_Error;
13dbf220 2749 end case;
2750
2751 -- Here we have the optimizable case, warn if not short-circuited
2752
2753 if K = N_Op_And or else K = N_Op_Or then
2754 case Check is
2755 when Access_Check =>
2756 Error_Msg_N
2757 ("Constraint_Error may be raised (access check)?",
2758 Parent (Nod));
2759 when Division_Check =>
2760 Error_Msg_N
2761 ("Constraint_Error may be raised (zero divide)?",
2762 Parent (Nod));
2af58f67 2763
2764 when others =>
2765 raise Program_Error;
13dbf220 2766 end case;
2767
2768 if K = N_Op_And then
2769 Error_Msg_N ("use `AND THEN` instead of AND?", P);
2770 else
2771 Error_Msg_N ("use `OR ELSE` instead of OR?", P);
2772 end if;
2773
2774 -- If not short-circuited, we need the ckeck
2775
2776 return True;
2777
2778 -- If short-circuited, we can omit the check
2779
2780 else
2781 return False;
2782 end if;
2783 end Check_Needed;
2784
ee6ba406 2785 -----------------------------------
2786 -- Check_Valid_Lvalue_Subscripts --
2787 -----------------------------------
2788
2789 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2790 begin
2791 -- Skip this if range checks are suppressed
2792
2793 if Range_Checks_Suppressed (Etype (Expr)) then
2794 return;
2795
feff2f05 2796 -- Only do this check for expressions that come from source. We assume
2797 -- that expander generated assignments explicitly include any necessary
2798 -- checks. Note that this is not just an optimization, it avoids
2799 -- infinite recursions!
ee6ba406 2800
2801 elsif not Comes_From_Source (Expr) then
2802 return;
2803
2804 -- For a selected component, check the prefix
2805
2806 elsif Nkind (Expr) = N_Selected_Component then
2807 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2808 return;
2809
2810 -- Case of indexed component
2811
2812 elsif Nkind (Expr) = N_Indexed_Component then
2813 Apply_Subscript_Validity_Checks (Expr);
2814
feff2f05 2815 -- Prefix may itself be or contain an indexed component, and these
2816 -- subscripts need checking as well.
ee6ba406 2817
2818 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2819 end if;
2820 end Check_Valid_Lvalue_Subscripts;
2821
fa7497e8 2822 ----------------------------------
2823 -- Null_Exclusion_Static_Checks --
2824 ----------------------------------
2825
2826 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
0577b0b1 2827 Error_Node : Node_Id;
2828 Expr : Node_Id;
2829 Has_Null : constant Boolean := Has_Null_Exclusion (N);
2830 K : constant Node_Kind := Nkind (N);
2831 Typ : Entity_Id;
fa7497e8 2832
13dbf220 2833 begin
0577b0b1 2834 pragma Assert
2835 (K = N_Component_Declaration
2836 or else K = N_Discriminant_Specification
2837 or else K = N_Function_Specification
2838 or else K = N_Object_Declaration
2839 or else K = N_Parameter_Specification);
2840
2841 if K = N_Function_Specification then
2842 Typ := Etype (Defining_Entity (N));
2843 else
2844 Typ := Etype (Defining_Identifier (N));
2845 end if;
fa7497e8 2846
13dbf220 2847 case K is
13dbf220 2848 when N_Component_Declaration =>
2849 if Present (Access_Definition (Component_Definition (N))) then
0577b0b1 2850 Error_Node := Component_Definition (N);
13dbf220 2851 else
0577b0b1 2852 Error_Node := Subtype_Indication (Component_Definition (N));
13dbf220 2853 end if;
5329ca64 2854
0577b0b1 2855 when N_Discriminant_Specification =>
2856 Error_Node := Discriminant_Type (N);
2857
2858 when N_Function_Specification =>
2859 Error_Node := Result_Definition (N);
2860
2861 when N_Object_Declaration =>
2862 Error_Node := Object_Definition (N);
2863
2864 when N_Parameter_Specification =>
2865 Error_Node := Parameter_Type (N);
2866
13dbf220 2867 when others =>
2868 raise Program_Error;
2869 end case;
5329ca64 2870
0577b0b1 2871 if Has_Null then
5329ca64 2872
0577b0b1 2873 -- Enforce legality rule 3.10 (13): A null exclusion can only be
2874 -- applied to an access [sub]type.
5329ca64 2875
0577b0b1 2876 if not Is_Access_Type (Typ) then
2877 Error_Msg_N
00c403ee 2878 ("`NOT NULL` allowed only for an access type", Error_Node);
5329ca64 2879
feff2f05 2880 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
0577b0b1 2881 -- be applied to a [sub]type that does not exclude null already.
2882
2883 elsif Can_Never_Be_Null (Typ)
d16989f1 2884 and then Comes_From_Source (Typ)
0577b0b1 2885 then
00c403ee 2886 Error_Msg_NE
2887 ("`NOT NULL` not allowed (& already excludes null)",
2888 Error_Node, Typ);
0577b0b1 2889 end if;
13dbf220 2890 end if;
5329ca64 2891
cc60bd16 2892 -- Check that null-excluding objects are always initialized, except for
2893 -- deferred constants, for which the expression will appear in the full
2894 -- declaration.
13dbf220 2895
2896 if K = N_Object_Declaration
84d0d4a5 2897 and then No (Expression (N))
cc60bd16 2898 and then not Constant_Present (N)
feff2f05 2899 and then not No_Initialization (N)
13dbf220 2900 then
feff2f05 2901 -- Add an expression that assigns null. This node is needed by
2902 -- Apply_Compile_Time_Constraint_Error, which will replace this with
2903 -- a Constraint_Error node.
13dbf220 2904
2905 Set_Expression (N, Make_Null (Sloc (N)));
2906 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
5329ca64 2907
13dbf220 2908 Apply_Compile_Time_Constraint_Error
2909 (N => Expression (N),
2910 Msg => "(Ada 2005) null-excluding objects must be initialized?",
2911 Reason => CE_Null_Not_Allowed);
2912 end if;
5329ca64 2913
cc60bd16 2914 -- Check that a null-excluding component, formal or object is not being
2915 -- assigned a null value. Otherwise generate a warning message and
2c145f84 2916 -- replace Expression (N) by an N_Constraint_Error node.
13dbf220 2917
0577b0b1 2918 if K /= N_Function_Specification then
2919 Expr := Expression (N);
5329ca64 2920
2af58f67 2921 if Present (Expr) and then Known_Null (Expr) then
13dbf220 2922 case K is
0577b0b1 2923 when N_Component_Declaration |
2924 N_Discriminant_Specification =>
7189d17f 2925 Apply_Compile_Time_Constraint_Error
0577b0b1 2926 (N => Expr,
2af58f67 2927 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2928 "in null-excluding components?",
2929 Reason => CE_Null_Not_Allowed);
5329ca64 2930
0577b0b1 2931 when N_Object_Declaration =>
7189d17f 2932 Apply_Compile_Time_Constraint_Error
0577b0b1 2933 (N => Expr,
2af58f67 2934 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2935 "in null-excluding objects?",
2936 Reason => CE_Null_Not_Allowed);
5329ca64 2937
0577b0b1 2938 when N_Parameter_Specification =>
7189d17f 2939 Apply_Compile_Time_Constraint_Error
0577b0b1 2940 (N => Expr,
2af58f67 2941 Msg => "(Ada 2005) null not allowed " &
0577b0b1 2942 "in null-excluding formals?",
2943 Reason => CE_Null_Not_Allowed);
13dbf220 2944
2945 when others =>
2946 null;
5329ca64 2947 end case;
2948 end if;
0577b0b1 2949 end if;
fa7497e8 2950 end Null_Exclusion_Static_Checks;
2951
9dfe12ae 2952 ----------------------------------
2953 -- Conditional_Statements_Begin --
2954 ----------------------------------
2955
2956 procedure Conditional_Statements_Begin is
2957 begin
2958 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2959
feff2f05 2960 -- If stack overflows, kill all checks, that way we know to simply reset
2961 -- the number of saved checks to zero on return. This should never occur
2962 -- in practice.
9dfe12ae 2963
2964 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2965 Kill_All_Checks;
2966
feff2f05 2967 -- In the normal case, we just make a new stack entry saving the current
2968 -- number of saved checks for a later restore.
9dfe12ae 2969
2970 else
2971 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2972
2973 if Debug_Flag_CC then
2974 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2975 Num_Saved_Checks);
2976 end if;
2977 end if;
2978 end Conditional_Statements_Begin;
2979
2980 --------------------------------
2981 -- Conditional_Statements_End --
2982 --------------------------------
2983
2984 procedure Conditional_Statements_End is
2985 begin
2986 pragma Assert (Saved_Checks_TOS > 0);
2987
feff2f05 2988 -- If the saved checks stack overflowed, then we killed all checks, so
2989 -- setting the number of saved checks back to zero is correct. This
2990 -- should never occur in practice.
9dfe12ae 2991
2992 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2993 Num_Saved_Checks := 0;
2994
feff2f05 2995 -- In the normal case, restore the number of saved checks from the top
2996 -- stack entry.
9dfe12ae 2997
2998 else
2999 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
3000 if Debug_Flag_CC then
3001 w ("Conditional_Statements_End: Num_Saved_Checks = ",
3002 Num_Saved_Checks);
3003 end if;
3004 end if;
3005
3006 Saved_Checks_TOS := Saved_Checks_TOS - 1;
3007 end Conditional_Statements_End;
3008
ee6ba406 3009 ---------------------
3010 -- Determine_Range --
3011 ---------------------
3012
6af1bdbc 3013 Cache_Size : constant := 2 ** 10;
ee6ba406 3014 type Cache_Index is range 0 .. Cache_Size - 1;
3015 -- Determine size of below cache (power of 2 is more efficient!)
3016
3017 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
9c486805 3018 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
ee6ba406 3019 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
3020 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
feff2f05 3021 -- The above arrays are used to implement a small direct cache for
3022 -- Determine_Range calls. Because of the way Determine_Range recursively
3023 -- traces subexpressions, and because overflow checking calls the routine
3024 -- on the way up the tree, a quadratic behavior can otherwise be
3025 -- encountered in large expressions. The cache entry for node N is stored
3026 -- in the (N mod Cache_Size) entry, and can be validated by checking the
9c486805 3027 -- actual node value stored there. The Range_Cache_V array records the
3028 -- setting of Assume_Valid for the cache entry.
ee6ba406 3029
3030 procedure Determine_Range
9c486805 3031 (N : Node_Id;
3032 OK : out Boolean;
3033 Lo : out Uint;
3034 Hi : out Uint;
3035 Assume_Valid : Boolean := False)
ee6ba406 3036 is
e254d721 3037 Typ : Entity_Id := Etype (N);
3038 -- Type to use, may get reset to base type for possibly invalid entity
8880be85 3039
3040 Lo_Left : Uint;
3041 Hi_Left : Uint;
3042 -- Lo and Hi bounds of left operand
ee6ba406 3043
ee6ba406 3044 Lo_Right : Uint;
ee6ba406 3045 Hi_Right : Uint;
8880be85 3046 -- Lo and Hi bounds of right (or only) operand
3047
3048 Bound : Node_Id;
3049 -- Temp variable used to hold a bound node
3050
3051 Hbound : Uint;
3052 -- High bound of base type of expression
3053
3054 Lor : Uint;
3055 Hir : Uint;
3056 -- Refined values for low and high bounds, after tightening
3057
3058 OK1 : Boolean;
3059 -- Used in lower level calls to indicate if call succeeded
3060
3061 Cindex : Cache_Index;
3062 -- Used to search cache
ee6ba406 3063
3064 function OK_Operands return Boolean;
3065 -- Used for binary operators. Determines the ranges of the left and
3066 -- right operands, and if they are both OK, returns True, and puts
3067 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
3068
3069 -----------------
3070 -- OK_Operands --
3071 -----------------
3072
3073 function OK_Operands return Boolean is
3074 begin
9c486805 3075 Determine_Range
3076 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
ee6ba406 3077
3078 if not OK1 then
3079 return False;
3080 end if;
3081
9c486805 3082 Determine_Range
3083 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 3084 return OK1;
3085 end OK_Operands;
3086
3087 -- Start of processing for Determine_Range
3088
3089 begin
3090 -- Prevent junk warnings by initializing range variables
3091
3092 Lo := No_Uint;
3093 Hi := No_Uint;
3094 Lor := No_Uint;
3095 Hir := No_Uint;
3096
feff2f05 3097 -- If the type is not discrete, or is undefined, then we can't do
3098 -- anything about determining the range.
ee6ba406 3099
3100 if No (Typ) or else not Is_Discrete_Type (Typ)
3101 or else Error_Posted (N)
3102 then
3103 OK := False;
3104 return;
3105 end if;
3106
3107 -- For all other cases, we can determine the range
3108
3109 OK := True;
3110
feff2f05 3111 -- If value is compile time known, then the possible range is the one
3112 -- value that we know this expression definitely has!
ee6ba406 3113
3114 if Compile_Time_Known_Value (N) then
3115 Lo := Expr_Value (N);
3116 Hi := Lo;
3117 return;
3118 end if;
3119
3120 -- Return if already in the cache
3121
3122 Cindex := Cache_Index (N mod Cache_Size);
3123
9c486805 3124 if Determine_Range_Cache_N (Cindex) = N
3125 and then
3126 Determine_Range_Cache_V (Cindex) = Assume_Valid
3127 then
ee6ba406 3128 Lo := Determine_Range_Cache_Lo (Cindex);
3129 Hi := Determine_Range_Cache_Hi (Cindex);
3130 return;
3131 end if;
3132
feff2f05 3133 -- Otherwise, start by finding the bounds of the type of the expression,
3134 -- the value cannot be outside this range (if it is, then we have an
3135 -- overflow situation, which is a separate check, we are talking here
3136 -- only about the expression value).
ee6ba406 3137
9c486805 3138 -- First step, change to use base type unless we know the value is valid
e254d721 3139
9c486805 3140 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
3141 or else Assume_No_Invalid_Values
3142 or else Assume_Valid
e254d721 3143 then
9c486805 3144 null;
3145 else
3146 Typ := Underlying_Type (Base_Type (Typ));
e254d721 3147 end if;
3148
feff2f05 3149 -- We use the actual bound unless it is dynamic, in which case use the
3150 -- corresponding base type bound if possible. If we can't get a bound
3151 -- then we figure we can't determine the range (a peculiar case, that
3152 -- perhaps cannot happen, but there is no point in bombing in this
3153 -- optimization circuit.
8880be85 3154
3155 -- First the low bound
ee6ba406 3156
3157 Bound := Type_Low_Bound (Typ);
3158
3159 if Compile_Time_Known_Value (Bound) then
3160 Lo := Expr_Value (Bound);
3161
3162 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
3163 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
3164
3165 else
3166 OK := False;
3167 return;
3168 end if;
3169
8880be85 3170 -- Now the high bound
3171
ee6ba406 3172 Bound := Type_High_Bound (Typ);
3173
8880be85 3174 -- We need the high bound of the base type later on, and this should
3175 -- always be compile time known. Again, it is not clear that this
3176 -- can ever be false, but no point in bombing.
ee6ba406 3177
8880be85 3178 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
ee6ba406 3179 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
3180 Hi := Hbound;
3181
3182 else
3183 OK := False;
3184 return;
3185 end if;
3186
feff2f05 3187 -- If we have a static subtype, then that may have a tighter bound so
3188 -- use the upper bound of the subtype instead in this case.
8880be85 3189
3190 if Compile_Time_Known_Value (Bound) then
3191 Hi := Expr_Value (Bound);
3192 end if;
3193
feff2f05 3194 -- We may be able to refine this value in certain situations. If any
3195 -- refinement is possible, then Lor and Hir are set to possibly tighter
3196 -- bounds, and OK1 is set to True.
ee6ba406 3197
3198 case Nkind (N) is
3199
3200 -- For unary plus, result is limited by range of operand
3201
3202 when N_Op_Plus =>
9c486805 3203 Determine_Range
3204 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3205
3206 -- For unary minus, determine range of operand, and negate it
3207
3208 when N_Op_Minus =>
9c486805 3209 Determine_Range
3210 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
ee6ba406 3211
3212 if OK1 then
3213 Lor := -Hi_Right;
3214 Hir := -Lo_Right;
3215 end if;
3216
3217 -- For binary addition, get range of each operand and do the
3218 -- addition to get the result range.
3219
3220 when N_Op_Add =>
3221 if OK_Operands then
3222 Lor := Lo_Left + Lo_Right;
3223 Hir := Hi_Left + Hi_Right;
3224 end if;
3225
feff2f05 3226 -- Division is tricky. The only case we consider is where the right
3227 -- operand is a positive constant, and in this case we simply divide
3228 -- the bounds of the left operand
ee6ba406 3229
3230 when N_Op_Divide =>
3231 if OK_Operands then
3232 if Lo_Right = Hi_Right
3233 and then Lo_Right > 0
3234 then
3235 Lor := Lo_Left / Lo_Right;
3236 Hir := Hi_Left / Lo_Right;
3237
3238 else
3239 OK1 := False;
3240 end if;
3241 end if;
3242
feff2f05 3243 -- For binary subtraction, get range of each operand and do the worst
3244 -- case subtraction to get the result range.
ee6ba406 3245
3246 when N_Op_Subtract =>
3247 if OK_Operands then
3248 Lor := Lo_Left - Hi_Right;
3249 Hir := Hi_Left - Lo_Right;
3250 end if;
3251
feff2f05 3252 -- For MOD, if right operand is a positive constant, then result must
3253 -- be in the allowable range of mod results.
ee6ba406 3254
3255 when N_Op_Mod =>
3256 if OK_Operands then
9dfe12ae 3257 if Lo_Right = Hi_Right
3258 and then Lo_Right /= 0
3259 then
ee6ba406 3260 if Lo_Right > 0 then
3261 Lor := Uint_0;
3262 Hir := Lo_Right - 1;
3263
9dfe12ae 3264 else -- Lo_Right < 0
ee6ba406 3265 Lor := Lo_Right + 1;
3266 Hir := Uint_0;
3267 end if;
3268
3269 else
3270 OK1 := False;
3271 end if;
3272 end if;
3273
feff2f05 3274 -- For REM, if right operand is a positive constant, then result must
3275 -- be in the allowable range of mod results.
ee6ba406 3276
3277 when N_Op_Rem =>
3278 if OK_Operands then
9dfe12ae 3279 if Lo_Right = Hi_Right
3280 and then Lo_Right /= 0
3281 then
ee6ba406 3282 declare
3283 Dval : constant Uint := (abs Lo_Right) - 1;
3284
3285 begin
3286 -- The sign of the result depends on the sign of the
3287 -- dividend (but not on the sign of the divisor, hence
3288 -- the abs operation above).
3289
3290 if Lo_Left < 0 then
3291 Lor := -Dval;
3292 else
3293 Lor := Uint_0;
3294 end if;
3295
3296 if Hi_Left < 0 then
3297 Hir := Uint_0;
3298 else
3299 Hir := Dval;
3300 end if;
3301 end;
3302
3303 else
3304 OK1 := False;
3305 end if;
3306 end if;
3307
3308 -- Attribute reference cases
3309
3310 when N_Attribute_Reference =>
3311 case Attribute_Name (N) is
3312
3313 -- For Pos/Val attributes, we can refine the range using the
3314 -- possible range of values of the attribute expression
3315
3316 when Name_Pos | Name_Val =>
9c486805 3317 Determine_Range
3318 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3319
3320 -- For Length attribute, use the bounds of the corresponding
3321 -- index type to refine the range.
3322
3323 when Name_Length =>
3324 declare
3325 Atyp : Entity_Id := Etype (Prefix (N));
3326 Inum : Nat;
3327 Indx : Node_Id;
3328
3329 LL, LU : Uint;
3330 UL, UU : Uint;
3331
3332 begin
3333 if Is_Access_Type (Atyp) then
3334 Atyp := Designated_Type (Atyp);
3335 end if;
3336
3337 -- For string literal, we know exact value
3338
3339 if Ekind (Atyp) = E_String_Literal_Subtype then
3340 OK := True;
3341 Lo := String_Literal_Length (Atyp);
3342 Hi := String_Literal_Length (Atyp);
3343 return;
3344 end if;
3345
3346 -- Otherwise check for expression given
3347
3348 if No (Expressions (N)) then
3349 Inum := 1;
3350 else
3351 Inum :=
3352 UI_To_Int (Expr_Value (First (Expressions (N))));
3353 end if;
3354
3355 Indx := First_Index (Atyp);
3356 for J in 2 .. Inum loop
3357 Indx := Next_Index (Indx);
3358 end loop;
3359
3360 Determine_Range
9c486805 3361 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
3362 Assume_Valid);
ee6ba406 3363
3364 if OK1 then
3365 Determine_Range
9c486805 3366 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
3367 Assume_Valid);
ee6ba406 3368
3369 if OK1 then
3370
3371 -- The maximum value for Length is the biggest
3372 -- possible gap between the values of the bounds.
3373 -- But of course, this value cannot be negative.
3374
9c486805 3375 Hir := UI_Max (Uint_0, UU - LL + 1);
ee6ba406 3376
3377 -- For constrained arrays, the minimum value for
3378 -- Length is taken from the actual value of the
3379 -- bounds, since the index will be exactly of
3380 -- this subtype.
3381
3382 if Is_Constrained (Atyp) then
9c486805 3383 Lor := UI_Max (Uint_0, UL - LU + 1);
ee6ba406 3384
3385 -- For an unconstrained array, the minimum value
3386 -- for length is always zero.
3387
3388 else
3389 Lor := Uint_0;
3390 end if;
3391 end if;
3392 end if;
3393 end;
3394
3395 -- No special handling for other attributes
3396 -- Probably more opportunities exist here ???
3397
3398 when others =>
3399 OK1 := False;
3400
3401 end case;
3402
feff2f05 3403 -- For type conversion from one discrete type to another, we can
3404 -- refine the range using the converted value.
ee6ba406 3405
3406 when N_Type_Conversion =>
9c486805 3407 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
ee6ba406 3408
3409 -- Nothing special to do for all other expression kinds
3410
3411 when others =>
3412 OK1 := False;
3413 Lor := No_Uint;
3414 Hir := No_Uint;
3415 end case;
3416
3417 -- At this stage, if OK1 is true, then we know that the actual
3418 -- result of the computed expression is in the range Lor .. Hir.
3419 -- We can use this to restrict the possible range of results.
3420
3421 if OK1 then
3422
3423 -- If the refined value of the low bound is greater than the
3424 -- type high bound, then reset it to the more restrictive
3425 -- value. However, we do NOT do this for the case of a modular
3426 -- type where the possible upper bound on the value is above the
3427 -- base type high bound, because that means the result could wrap.
3428
3429 if Lor > Lo
3430 and then not (Is_Modular_Integer_Type (Typ)
3431 and then Hir > Hbound)
3432 then
3433 Lo := Lor;
3434 end if;
3435
3436 -- Similarly, if the refined value of the high bound is less
3437 -- than the value so far, then reset it to the more restrictive
3438 -- value. Again, we do not do this if the refined low bound is
3439 -- negative for a modular type, since this would wrap.
3440
3441 if Hir < Hi
3442 and then not (Is_Modular_Integer_Type (Typ)
3443 and then Lor < Uint_0)
3444 then
3445 Hi := Hir;
3446 end if;
3447 end if;
3448
3449 -- Set cache entry for future call and we are all done
3450
3451 Determine_Range_Cache_N (Cindex) := N;
9c486805 3452 Determine_Range_Cache_V (Cindex) := Assume_Valid;
ee6ba406 3453 Determine_Range_Cache_Lo (Cindex) := Lo;
3454 Determine_Range_Cache_Hi (Cindex) := Hi;
3455 return;
3456
3457 -- If any exception occurs, it means that we have some bug in the compiler
3458 -- possibly triggered by a previous error, or by some unforseen peculiar
3459 -- occurrence. However, this is only an optimization attempt, so there is
3460 -- really no point in crashing the compiler. Instead we just decide, too
3461 -- bad, we can't figure out a range in this case after all.
3462
3463 exception
3464 when others =>
3465
3466 -- Debug flag K disables this behavior (useful for debugging)
3467
3468 if Debug_Flag_K then
3469 raise;
3470 else
3471 OK := False;
3472 Lo := No_Uint;
3473 Hi := No_Uint;
3474 return;
3475 end if;
ee6ba406 3476 end Determine_Range;
3477
3478 ------------------------------------
3479 -- Discriminant_Checks_Suppressed --
3480 ------------------------------------
3481
3482 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3483 begin
9dfe12ae 3484 if Present (E) then
3485 if Is_Unchecked_Union (E) then
3486 return True;
3487 elsif Checks_May_Be_Suppressed (E) then
3488 return Is_Check_Suppressed (E, Discriminant_Check);
3489 end if;
3490 end if;
3491
3492 return Scope_Suppress (Discriminant_Check);
ee6ba406 3493 end Discriminant_Checks_Suppressed;
3494
3495 --------------------------------
3496 -- Division_Checks_Suppressed --
3497 --------------------------------
3498
3499 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3500 begin
9dfe12ae 3501 if Present (E) and then Checks_May_Be_Suppressed (E) then
3502 return Is_Check_Suppressed (E, Division_Check);
3503 else
3504 return Scope_Suppress (Division_Check);
3505 end if;
ee6ba406 3506 end Division_Checks_Suppressed;
3507
3508 -----------------------------------
3509 -- Elaboration_Checks_Suppressed --
3510 -----------------------------------
3511
3512 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3513 begin
38f5559f 3514 -- The complication in this routine is that if we are in the dynamic
3515 -- model of elaboration, we also check All_Checks, since All_Checks
3516 -- does not set Elaboration_Check explicitly.
3517
9dfe12ae 3518 if Present (E) then
3519 if Kill_Elaboration_Checks (E) then
3520 return True;
38f5559f 3521
9dfe12ae 3522 elsif Checks_May_Be_Suppressed (E) then
38f5559f 3523 if Is_Check_Suppressed (E, Elaboration_Check) then
3524 return True;
3525 elsif Dynamic_Elaboration_Checks then
3526 return Is_Check_Suppressed (E, All_Checks);
3527 else
3528 return False;
3529 end if;
9dfe12ae 3530 end if;
3531 end if;
3532
38f5559f 3533 if Scope_Suppress (Elaboration_Check) then
3534 return True;
3535 elsif Dynamic_Elaboration_Checks then
3536 return Scope_Suppress (All_Checks);
3537 else
3538 return False;
3539 end if;
ee6ba406 3540 end Elaboration_Checks_Suppressed;
3541
9dfe12ae 3542 ---------------------------
3543 -- Enable_Overflow_Check --
3544 ---------------------------
3545
3546 procedure Enable_Overflow_Check (N : Node_Id) is
3547 Typ : constant Entity_Id := Base_Type (Etype (N));
3548 Chk : Nat;
3549 OK : Boolean;
3550 Ent : Entity_Id;
3551 Ofs : Uint;
3552 Lo : Uint;
3553 Hi : Uint;
ee6ba406 3554
ee6ba406 3555 begin
9dfe12ae 3556 if Debug_Flag_CC then
3557 w ("Enable_Overflow_Check for node ", Int (N));
3558 Write_Str (" Source location = ");
3559 wl (Sloc (N));
00c403ee 3560 pg (Union_Id (N));
ee6ba406 3561 end if;
ee6ba406 3562
75209ec5 3563 -- No check if overflow checks suppressed for type of node
3564
3565 if Present (Etype (N))
3566 and then Overflow_Checks_Suppressed (Etype (N))
3567 then
3568 return;
3569
feff2f05 3570 -- Nothing to do if the range of the result is known OK. We skip this
3571 -- for conversions, since the caller already did the check, and in any
3572 -- case the condition for deleting the check for a type conversion is
cc60bd16 3573 -- different.
ee6ba406 3574
75209ec5 3575 elsif Nkind (N) /= N_Type_Conversion then
9c486805 3576 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
ee6ba406 3577
cc60bd16 3578 -- Note in the test below that we assume that the range is not OK
3579 -- if a bound of the range is equal to that of the type. That's not
3580 -- quite accurate but we do this for the following reasons:
ee6ba406 3581
9dfe12ae 3582 -- a) The way that Determine_Range works, it will typically report
3583 -- the bounds of the value as being equal to the bounds of the
3584 -- type, because it either can't tell anything more precise, or
3585 -- does not think it is worth the effort to be more precise.
ee6ba406 3586
9dfe12ae 3587 -- b) It is very unusual to have a situation in which this would
3588 -- generate an unnecessary overflow check (an example would be
3589 -- a subtype with a range 0 .. Integer'Last - 1 to which the
cc60bd16 3590 -- literal value one is added).
ee6ba406 3591
9dfe12ae 3592 -- c) The alternative is a lot of special casing in this routine
3593 -- which would partially duplicate Determine_Range processing.
ee6ba406 3594
9dfe12ae 3595 if OK
3596 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3597 and then Hi < Expr_Value (Type_High_Bound (Typ))
3598 then
3599 if Debug_Flag_CC then
3600 w ("No overflow check required");
3601 end if;
3602
3603 return;
3604 end if;
3605 end if;
3606
feff2f05 3607 -- If not in optimizing mode, set flag and we are done. We are also done
3608 -- (and just set the flag) if the type is not a discrete type, since it
3609 -- is not worth the effort to eliminate checks for other than discrete
3610 -- types. In addition, we take this same path if we have stored the
3611 -- maximum number of checks possible already (a very unlikely situation,
3612 -- but we do not want to blow up!)
9dfe12ae 3613
3614 if Optimization_Level = 0
3615 or else not Is_Discrete_Type (Etype (N))
3616 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 3617 then
00c403ee 3618 Activate_Overflow_Check (N);
9dfe12ae 3619
3620 if Debug_Flag_CC then
3621 w ("Optimization off");
3622 end if;
3623
ee6ba406 3624 return;
9dfe12ae 3625 end if;
ee6ba406 3626
9dfe12ae 3627 -- Otherwise evaluate and check the expression
3628
3629 Find_Check
3630 (Expr => N,
3631 Check_Type => 'O',
3632 Target_Type => Empty,
3633 Entry_OK => OK,
3634 Check_Num => Chk,
3635 Ent => Ent,
3636 Ofs => Ofs);
3637
3638 if Debug_Flag_CC then
3639 w ("Called Find_Check");
3640 w (" OK = ", OK);
3641
3642 if OK then
3643 w (" Check_Num = ", Chk);
3644 w (" Ent = ", Int (Ent));
3645 Write_Str (" Ofs = ");
3646 pid (Ofs);
3647 end if;
3648 end if;
ee6ba406 3649
9dfe12ae 3650 -- If check is not of form to optimize, then set flag and we are done
3651
3652 if not OK then
00c403ee 3653 Activate_Overflow_Check (N);
ee6ba406 3654 return;
9dfe12ae 3655 end if;
ee6ba406 3656
9dfe12ae 3657 -- If check is already performed, then return without setting flag
3658
3659 if Chk /= 0 then
3660 if Debug_Flag_CC then
3661 w ("Check suppressed!");
3662 end if;
ee6ba406 3663
ee6ba406 3664 return;
9dfe12ae 3665 end if;
ee6ba406 3666
9dfe12ae 3667 -- Here we will make a new entry for the new check
3668
00c403ee 3669 Activate_Overflow_Check (N);
9dfe12ae 3670 Num_Saved_Checks := Num_Saved_Checks + 1;
3671 Saved_Checks (Num_Saved_Checks) :=
3672 (Killed => False,
3673 Entity => Ent,
3674 Offset => Ofs,
3675 Check_Type => 'O',
3676 Target_Type => Empty);
3677
3678 if Debug_Flag_CC then
3679 w ("Make new entry, check number = ", Num_Saved_Checks);
3680 w (" Entity = ", Int (Ent));
3681 Write_Str (" Offset = ");
3682 pid (Ofs);
3683 w (" Check_Type = O");
3684 w (" Target_Type = Empty");
3685 end if;
ee6ba406 3686
feff2f05 3687 -- If we get an exception, then something went wrong, probably because of
3688 -- an error in the structure of the tree due to an incorrect program. Or it
3689 -- may be a bug in the optimization circuit. In either case the safest
3690 -- thing is simply to set the check flag unconditionally.
9dfe12ae 3691
3692 exception
3693 when others =>
00c403ee 3694 Activate_Overflow_Check (N);
9dfe12ae 3695
3696 if Debug_Flag_CC then
3697 w (" exception occurred, overflow flag set");
3698 end if;
3699
3700 return;
3701 end Enable_Overflow_Check;
3702
3703 ------------------------
3704 -- Enable_Range_Check --
3705 ------------------------
3706
3707 procedure Enable_Range_Check (N : Node_Id) is
3708 Chk : Nat;
3709 OK : Boolean;
3710 Ent : Entity_Id;
3711 Ofs : Uint;
3712 Ttyp : Entity_Id;
3713 P : Node_Id;
3714
3715 begin
feff2f05 3716 -- Return if unchecked type conversion with range check killed. In this
3717 -- case we never set the flag (that's what Kill_Range_Check is about!)
9dfe12ae 3718
3719 if Nkind (N) = N_Unchecked_Type_Conversion
3720 and then Kill_Range_Check (N)
ee6ba406 3721 then
3722 return;
9dfe12ae 3723 end if;
ee6ba406 3724
0577b0b1 3725 -- Check for various cases where we should suppress the range check
3726
3727 -- No check if range checks suppressed for type of node
3728
3729 if Present (Etype (N))
3730 and then Range_Checks_Suppressed (Etype (N))
3731 then
3732 return;
3733
3734 -- No check if node is an entity name, and range checks are suppressed
3735 -- for this entity, or for the type of this entity.
3736
3737 elsif Is_Entity_Name (N)
3738 and then (Range_Checks_Suppressed (Entity (N))
3739 or else Range_Checks_Suppressed (Etype (Entity (N))))
3740 then
3741 return;
3742
3743 -- No checks if index of array, and index checks are suppressed for
3744 -- the array object or the type of the array.
3745
3746 elsif Nkind (Parent (N)) = N_Indexed_Component then
3747 declare
3748 Pref : constant Node_Id := Prefix (Parent (N));
3749 begin
3750 if Is_Entity_Name (Pref)
3751 and then Index_Checks_Suppressed (Entity (Pref))
3752 then
3753 return;
3754 elsif Index_Checks_Suppressed (Etype (Pref)) then
3755 return;
3756 end if;
3757 end;
3758 end if;
3759
9dfe12ae 3760 -- Debug trace output
ee6ba406 3761
9dfe12ae 3762 if Debug_Flag_CC then
3763 w ("Enable_Range_Check for node ", Int (N));
3764 Write_Str (" Source location = ");
3765 wl (Sloc (N));
00c403ee 3766 pg (Union_Id (N));
9dfe12ae 3767 end if;
3768
feff2f05 3769 -- If not in optimizing mode, set flag and we are done. We are also done
3770 -- (and just set the flag) if the type is not a discrete type, since it
3771 -- is not worth the effort to eliminate checks for other than discrete
3772 -- types. In addition, we take this same path if we have stored the
3773 -- maximum number of checks possible already (a very unlikely situation,
3774 -- but we do not want to blow up!)
9dfe12ae 3775
3776 if Optimization_Level = 0
3777 or else No (Etype (N))
3778 or else not Is_Discrete_Type (Etype (N))
3779 or else Num_Saved_Checks = Saved_Checks'Last
ee6ba406 3780 then
00c403ee 3781 Activate_Range_Check (N);
9dfe12ae 3782
3783 if Debug_Flag_CC then
3784 w ("Optimization off");
3785 end if;
3786
ee6ba406 3787 return;
9dfe12ae 3788 end if;
ee6ba406 3789
9dfe12ae 3790 -- Otherwise find out the target type
ee6ba406 3791
9dfe12ae 3792 P := Parent (N);
ee6ba406 3793
9dfe12ae 3794 -- For assignment, use left side subtype
3795
3796 if Nkind (P) = N_Assignment_Statement
3797 and then Expression (P) = N
3798 then
3799 Ttyp := Etype (Name (P));
3800
3801 -- For indexed component, use subscript subtype
3802
3803 elsif Nkind (P) = N_Indexed_Component then
3804 declare
3805 Atyp : Entity_Id;
3806 Indx : Node_Id;
3807 Subs : Node_Id;
3808
3809 begin
3810 Atyp := Etype (Prefix (P));
3811
3812 if Is_Access_Type (Atyp) then
3813 Atyp := Designated_Type (Atyp);
f07ea091 3814
3815 -- If the prefix is an access to an unconstrained array,
feff2f05 3816 -- perform check unconditionally: it depends on the bounds of
3817 -- an object and we cannot currently recognize whether the test
3818 -- may be redundant.
f07ea091 3819
3820 if not Is_Constrained (Atyp) then
00c403ee 3821 Activate_Range_Check (N);
f07ea091 3822 return;
3823 end if;
7189d17f 3824
feff2f05 3825 -- Ditto if the prefix is an explicit dereference whose designated
3826 -- type is unconstrained.
7189d17f 3827
3828 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3829 and then not Is_Constrained (Atyp)
3830 then
00c403ee 3831 Activate_Range_Check (N);
7189d17f 3832 return;
9dfe12ae 3833 end if;
3834
3835 Indx := First_Index (Atyp);
3836 Subs := First (Expressions (P));
3837 loop
3838 if Subs = N then
3839 Ttyp := Etype (Indx);
3840 exit;
3841 end if;
3842
3843 Next_Index (Indx);
3844 Next (Subs);
3845 end loop;
3846 end;
3847
3848 -- For now, ignore all other cases, they are not so interesting
3849
3850 else
3851 if Debug_Flag_CC then
3852 w (" target type not found, flag set");
3853 end if;
3854
00c403ee 3855 Activate_Range_Check (N);
9dfe12ae 3856 return;
3857 end if;
3858
3859 -- Evaluate and check the expression
3860
3861 Find_Check
3862 (Expr => N,
3863 Check_Type => 'R',
3864 Target_Type => Ttyp,
3865 Entry_OK => OK,
3866 Check_Num => Chk,
3867 Ent => Ent,
3868 Ofs => Ofs);
3869
3870 if Debug_Flag_CC then
3871 w ("Called Find_Check");
3872 w ("Target_Typ = ", Int (Ttyp));
3873 w (" OK = ", OK);
3874
3875 if OK then
3876 w (" Check_Num = ", Chk);
3877 w (" Ent = ", Int (Ent));
3878 Write_Str (" Ofs = ");
3879 pid (Ofs);
3880 end if;
3881 end if;
3882
3883 -- If check is not of form to optimize, then set flag and we are done
3884
3885 if not OK then
3886 if Debug_Flag_CC then
3887 w (" expression not of optimizable type, flag set");
3888 end if;
3889
00c403ee 3890 Activate_Range_Check (N);
9dfe12ae 3891 return;
3892 end if;
3893
3894 -- If check is already performed, then return without setting flag
3895
3896 if Chk /= 0 then
3897 if Debug_Flag_CC then
3898 w ("Check suppressed!");
3899 end if;
3900
3901 return;
3902 end if;
3903
3904 -- Here we will make a new entry for the new check
3905
00c403ee 3906 Activate_Range_Check (N);
9dfe12ae 3907 Num_Saved_Checks := Num_Saved_Checks + 1;
3908 Saved_Checks (Num_Saved_Checks) :=
3909 (Killed => False,
3910 Entity => Ent,
3911 Offset => Ofs,
3912 Check_Type => 'R',
3913 Target_Type => Ttyp);
3914
3915 if Debug_Flag_CC then
3916 w ("Make new entry, check number = ", Num_Saved_Checks);
3917 w (" Entity = ", Int (Ent));
3918 Write_Str (" Offset = ");
3919 pid (Ofs);
3920 w (" Check_Type = R");
3921 w (" Target_Type = ", Int (Ttyp));
00c403ee 3922 pg (Union_Id (Ttyp));
9dfe12ae 3923 end if;
3924
feff2f05 3925 -- If we get an exception, then something went wrong, probably because of
3926 -- an error in the structure of the tree due to an incorrect program. Or
3927 -- it may be a bug in the optimization circuit. In either case the safest
3928 -- thing is simply to set the check flag unconditionally.
9dfe12ae 3929
3930 exception
3931 when others =>
00c403ee 3932 Activate_Range_Check (N);
9dfe12ae 3933
3934 if Debug_Flag_CC then
3935 w (" exception occurred, range flag set");
3936 end if;
3937
3938 return;
3939 end Enable_Range_Check;
3940
3941 ------------------
3942 -- Ensure_Valid --
3943 ------------------
3944
3945 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3946 Typ : constant Entity_Id := Etype (Expr);
3947
3948 begin
3949 -- Ignore call if we are not doing any validity checking
3950
3951 if not Validity_Checks_On then
3952 return;
3953
0577b0b1 3954 -- Ignore call if range or validity checks suppressed on entity or type
9dfe12ae 3955
0577b0b1 3956 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
9dfe12ae 3957 return;
3958
feff2f05 3959 -- No check required if expression is from the expander, we assume the
3960 -- expander will generate whatever checks are needed. Note that this is
3961 -- not just an optimization, it avoids infinite recursions!
9dfe12ae 3962
3963 -- Unchecked conversions must be checked, unless they are initialized
3964 -- scalar values, as in a component assignment in an init proc.
3965
3966 -- In addition, we force a check if Force_Validity_Checks is set
3967
3968 elsif not Comes_From_Source (Expr)
3969 and then not Force_Validity_Checks
3970 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3971 or else Kill_Range_Check (Expr))
3972 then
3973 return;
3974
3975 -- No check required if expression is known to have valid value
3976
3977 elsif Expr_Known_Valid (Expr) then
3978 return;
3979
feff2f05 3980 -- Ignore case of enumeration with holes where the flag is set not to
3981 -- worry about holes, since no special validity check is needed
9dfe12ae 3982
3983 elsif Is_Enumeration_Type (Typ)
3984 and then Has_Non_Standard_Rep (Typ)
3985 and then Holes_OK
3986 then
3987 return;
3988
f2a06be9 3989 -- No check required on the left-hand side of an assignment
9dfe12ae 3990
3991 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3992 and then Expr = Name (Parent (Expr))
3993 then
3994 return;
3995
38f5559f 3996 -- No check on a univeral real constant. The context will eventually
3997 -- convert it to a machine number for some target type, or report an
3998 -- illegality.
3999
4000 elsif Nkind (Expr) = N_Real_Literal
4001 and then Etype (Expr) = Universal_Real
4002 then
4003 return;
4004
0577b0b1 4005 -- If the expression denotes a component of a packed boolean arrray,
4006 -- no possible check applies. We ignore the old ACATS chestnuts that
4007 -- involve Boolean range True..True.
4008
4009 -- Note: validity checks are generated for expressions that yield a
4010 -- scalar type, when it is possible to create a value that is outside of
4011 -- the type. If this is a one-bit boolean no such value exists. This is
4012 -- an optimization, and it also prevents compiler blowing up during the
4013 -- elaboration of improperly expanded packed array references.
4014
4015 elsif Nkind (Expr) = N_Indexed_Component
4016 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
4017 and then Root_Type (Etype (Expr)) = Standard_Boolean
4018 then
4019 return;
4020
9dfe12ae 4021 -- An annoying special case. If this is an out parameter of a scalar
4022 -- type, then the value is not going to be accessed, therefore it is
4023 -- inappropriate to do any validity check at the call site.
4024
4025 else
4026 -- Only need to worry about scalar types
4027
4028 if Is_Scalar_Type (Typ) then
ee6ba406 4029 declare
4030 P : Node_Id;
4031 N : Node_Id;
4032 E : Entity_Id;
4033 F : Entity_Id;
4034 A : Node_Id;
4035 L : List_Id;
4036
4037 begin
4038 -- Find actual argument (which may be a parameter association)
4039 -- and the parent of the actual argument (the call statement)
4040
4041 N := Expr;
4042 P := Parent (Expr);
4043
4044 if Nkind (P) = N_Parameter_Association then
4045 N := P;
4046 P := Parent (N);
4047 end if;
4048
feff2f05 4049 -- Only need to worry if we are argument of a procedure call
4050 -- since functions don't have out parameters. If this is an
4051 -- indirect or dispatching call, get signature from the
4052 -- subprogram type.
ee6ba406 4053
4054 if Nkind (P) = N_Procedure_Call_Statement then
4055 L := Parameter_Associations (P);
9dfe12ae 4056
4057 if Is_Entity_Name (Name (P)) then
4058 E := Entity (Name (P));
4059 else
4060 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
4061 E := Etype (Name (P));
4062 end if;
ee6ba406 4063
feff2f05 4064 -- Only need to worry if there are indeed actuals, and if
4065 -- this could be a procedure call, otherwise we cannot get a
4066 -- match (either we are not an argument, or the mode of the
4067 -- formal is not OUT). This test also filters out the
4068 -- generic case.
ee6ba406 4069
4070 if Is_Non_Empty_List (L)
4071 and then Is_Subprogram (E)
4072 then
feff2f05 4073 -- This is the loop through parameters, looking for an
4074 -- OUT parameter for which we are the argument.
ee6ba406 4075
4076 F := First_Formal (E);
4077 A := First (L);
ee6ba406 4078 while Present (F) loop
4079 if Ekind (F) = E_Out_Parameter and then A = N then
4080 return;
4081 end if;
4082
4083 Next_Formal (F);
4084 Next (A);
4085 end loop;
4086 end if;
4087 end if;
4088 end;
4089 end if;
4090 end if;
4091
0577b0b1 4092 -- If we fall through, a validity check is required
ee6ba406 4093
4094 Insert_Valid_Check (Expr);
ce7498d3 4095
4096 if Is_Entity_Name (Expr)
4097 and then Safe_To_Capture_Value (Expr, Entity (Expr))
4098 then
4099 Set_Is_Known_Valid (Entity (Expr));
4100 end if;
ee6ba406 4101 end Ensure_Valid;
4102
4103 ----------------------
4104 -- Expr_Known_Valid --
4105 ----------------------
4106
4107 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
4108 Typ : constant Entity_Id := Etype (Expr);
4109
4110 begin
feff2f05 4111 -- Non-scalar types are always considered valid, since they never give
4112 -- rise to the issues of erroneous or bounded error behavior that are
4113 -- the concern. In formal reference manual terms the notion of validity
4114 -- only applies to scalar types. Note that even when packed arrays are
4115 -- represented using modular types, they are still arrays semantically,
4116 -- so they are also always valid (in particular, the unused bits can be
4117 -- random rubbish without affecting the validity of the array value).
ee6ba406 4118
fa814356 4119 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
ee6ba406 4120 return True;
4121
4122 -- If no validity checking, then everything is considered valid
4123
4124 elsif not Validity_Checks_On then
4125 return True;
4126
4127 -- Floating-point types are considered valid unless floating-point
4128 -- validity checks have been specifically turned on.
4129
4130 elsif Is_Floating_Point_Type (Typ)
4131 and then not Validity_Check_Floating_Point
4132 then
4133 return True;
4134
feff2f05 4135 -- If the expression is the value of an object that is known to be
4136 -- valid, then clearly the expression value itself is valid.
ee6ba406 4137
4138 elsif Is_Entity_Name (Expr)
4139 and then Is_Known_Valid (Entity (Expr))
4140 then
4141 return True;
4142
0577b0b1 4143 -- References to discriminants are always considered valid. The value
4144 -- of a discriminant gets checked when the object is built. Within the
4145 -- record, we consider it valid, and it is important to do so, since
4146 -- otherwise we can try to generate bogus validity checks which
feff2f05 4147 -- reference discriminants out of scope. Discriminants of concurrent
4148 -- types are excluded for the same reason.
0577b0b1 4149
4150 elsif Is_Entity_Name (Expr)
feff2f05 4151 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
0577b0b1 4152 then
4153 return True;
4154
feff2f05 4155 -- If the type is one for which all values are known valid, then we are
4156 -- sure that the value is valid except in the slightly odd case where
4157 -- the expression is a reference to a variable whose size has been
4158 -- explicitly set to a value greater than the object size.
ee6ba406 4159
4160 elsif Is_Known_Valid (Typ) then
4161 if Is_Entity_Name (Expr)
4162 and then Ekind (Entity (Expr)) = E_Variable
4163 and then Esize (Entity (Expr)) > Esize (Typ)
4164 then
4165 return False;
4166 else
4167 return True;
4168 end if;
4169
4170 -- Integer and character literals always have valid values, where
4171 -- appropriate these will be range checked in any case.
4172
4173 elsif Nkind (Expr) = N_Integer_Literal
4174 or else
4175 Nkind (Expr) = N_Character_Literal
4176 then
4177 return True;
4178
4179 -- If we have a type conversion or a qualification of a known valid
4180 -- value, then the result will always be valid.
4181
4182 elsif Nkind (Expr) = N_Type_Conversion
4183 or else
4184 Nkind (Expr) = N_Qualified_Expression
4185 then
4186 return Expr_Known_Valid (Expression (Expr));
4187
38f5559f 4188 -- The result of any operator is always considered valid, since we
4189 -- assume the necessary checks are done by the operator. For operators
4190 -- on floating-point operations, we must also check when the operation
4191 -- is the right-hand side of an assignment, or is an actual in a call.
ee6ba406 4192
0577b0b1 4193 elsif Nkind (Expr) in N_Op then
1d90d657 4194 if Is_Floating_Point_Type (Typ)
4195 and then Validity_Check_Floating_Point
4196 and then
4197 (Nkind (Parent (Expr)) = N_Assignment_Statement
4198 or else Nkind (Parent (Expr)) = N_Function_Call
4199 or else Nkind (Parent (Expr)) = N_Parameter_Association)
4200 then
4201 return False;
4202 else
4203 return True;
4204 end if;
4205
feff2f05 4206 -- The result of a membership test is always valid, since it is true or
4207 -- false, there are no other possibilities.
0577b0b1 4208
4209 elsif Nkind (Expr) in N_Membership_Test then
4210 return True;
4211
ee6ba406 4212 -- For all other cases, we do not know the expression is valid
4213
4214 else
4215 return False;
4216 end if;
4217 end Expr_Known_Valid;
4218
9dfe12ae 4219 ----------------
4220 -- Find_Check --
4221 ----------------
4222
4223 procedure Find_Check
4224 (Expr : Node_Id;
4225 Check_Type : Character;
4226 Target_Type : Entity_Id;
4227 Entry_OK : out Boolean;
4228 Check_Num : out Nat;
4229 Ent : out Entity_Id;
4230 Ofs : out Uint)
4231 is
4232 function Within_Range_Of
4233 (Target_Type : Entity_Id;
314a23b6 4234 Check_Type : Entity_Id) return Boolean;
9dfe12ae 4235 -- Given a requirement for checking a range against Target_Type, and
4236 -- and a range Check_Type against which a check has already been made,
4237 -- determines if the check against check type is sufficient to ensure
4238 -- that no check against Target_Type is required.
4239
4240 ---------------------
4241 -- Within_Range_Of --
4242 ---------------------
4243
4244 function Within_Range_Of
4245 (Target_Type : Entity_Id;
314a23b6 4246 Check_Type : Entity_Id) return Boolean
9dfe12ae 4247 is
4248 begin
4249 if Target_Type = Check_Type then
4250 return True;
4251
4252 else
4253 declare
4254 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
4255 Thi : constant Node_Id := Type_High_Bound (Target_Type);
4256 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
4257 Chi : constant Node_Id := Type_High_Bound (Check_Type);
4258
4259 begin
4260 if (Tlo = Clo
4261 or else (Compile_Time_Known_Value (Tlo)
4262 and then
4263 Compile_Time_Known_Value (Clo)
4264 and then
4265 Expr_Value (Clo) >= Expr_Value (Tlo)))
4266 and then
4267 (Thi = Chi
4268 or else (Compile_Time_Known_Value (Thi)
4269 and then
4270 Compile_Time_Known_Value (Chi)
4271 and then
4272 Expr_Value (Chi) <= Expr_Value (Clo)))
4273 then
4274 return True;
4275 else
4276 return False;
4277 end if;
4278 end;
4279 end if;
4280 end Within_Range_Of;
4281
4282 -- Start of processing for Find_Check
4283
4284 begin
f2a06be9 4285 -- Establish default, to avoid warnings from GCC
9dfe12ae 4286
4287 Check_Num := 0;
4288
4289 -- Case of expression is simple entity reference
4290
4291 if Is_Entity_Name (Expr) then
4292 Ent := Entity (Expr);
4293 Ofs := Uint_0;
4294
4295 -- Case of expression is entity + known constant
4296
4297 elsif Nkind (Expr) = N_Op_Add
4298 and then Compile_Time_Known_Value (Right_Opnd (Expr))
4299 and then Is_Entity_Name (Left_Opnd (Expr))
4300 then
4301 Ent := Entity (Left_Opnd (Expr));
4302 Ofs := Expr_Value (Right_Opnd (Expr));
4303
4304 -- Case of expression is entity - known constant
4305
4306 elsif Nkind (Expr) = N_Op_Subtract
4307 and then Compile_Time_Known_Value (Right_Opnd (Expr))
4308 and then Is_Entity_Name (Left_Opnd (Expr))
4309 then
4310 Ent := Entity (Left_Opnd (Expr));
4311 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
4312
4313 -- Any other expression is not of the right form
4314
4315 else
4316 Ent := Empty;
4317 Ofs := Uint_0;
4318 Entry_OK := False;
4319 return;
4320 end if;
4321
feff2f05 4322 -- Come here with expression of appropriate form, check if entity is an
4323 -- appropriate one for our purposes.
9dfe12ae 4324
4325 if (Ekind (Ent) = E_Variable
cc60bd16 4326 or else Is_Constant_Object (Ent))
9dfe12ae 4327 and then not Is_Library_Level_Entity (Ent)
4328 then
4329 Entry_OK := True;
4330 else
4331 Entry_OK := False;
4332 return;
4333 end if;
4334
4335 -- See if there is matching check already
4336
4337 for J in reverse 1 .. Num_Saved_Checks loop
4338 declare
4339 SC : Saved_Check renames Saved_Checks (J);
4340
4341 begin
4342 if SC.Killed = False
4343 and then SC.Entity = Ent
4344 and then SC.Offset = Ofs
4345 and then SC.Check_Type = Check_Type
4346 and then Within_Range_Of (Target_Type, SC.Target_Type)
4347 then
4348 Check_Num := J;
4349 return;
4350 end if;
4351 end;
4352 end loop;
4353
4354 -- If we fall through entry was not found
4355
4356 Check_Num := 0;
4357 return;
4358 end Find_Check;
4359
4360 ---------------------------------
4361 -- Generate_Discriminant_Check --
4362 ---------------------------------
4363
4364 -- Note: the code for this procedure is derived from the
feff2f05 4365 -- Emit_Discriminant_Check Routine in trans.c.
9dfe12ae 4366
4367 procedure Generate_Discriminant_Check (N : Node_Id) is
4368 Loc : constant Source_Ptr := Sloc (N);
4369 Pref : constant Node_Id := Prefix (N);
4370 Sel : constant Node_Id := Selector_Name (N);
4371
4372 Orig_Comp : constant Entity_Id :=
4373 Original_Record_Component (Entity (Sel));
4374 -- The original component to be checked
4375
4376 Discr_Fct : constant Entity_Id :=
4377 Discriminant_Checking_Func (Orig_Comp);
4378 -- The discriminant checking function
4379
4380 Discr : Entity_Id;
4381 -- One discriminant to be checked in the type
4382
4383 Real_Discr : Entity_Id;
4384 -- Actual discriminant in the call
4385
4386 Pref_Type : Entity_Id;
4387 -- Type of relevant prefix (ignoring private/access stuff)
4388
4389 Args : List_Id;
4390 -- List of arguments for function call
4391
4392 Formal : Entity_Id;
feff2f05 4393 -- Keep track of the formal corresponding to the actual we build for
4394 -- each discriminant, in order to be able to perform the necessary type
4395 -- conversions.
9dfe12ae 4396
4397 Scomp : Node_Id;
4398 -- Selected component reference for checking function argument
4399
4400 begin
4401 Pref_Type := Etype (Pref);
4402
4403 -- Force evaluation of the prefix, so that it does not get evaluated
4404 -- twice (once for the check, once for the actual reference). Such a
4405 -- double evaluation is always a potential source of inefficiency,
4406 -- and is functionally incorrect in the volatile case, or when the
4407 -- prefix may have side-effects. An entity or a component of an
4408 -- entity requires no evaluation.
4409
4410 if Is_Entity_Name (Pref) then
4411 if Treat_As_Volatile (Entity (Pref)) then
4412 Force_Evaluation (Pref, Name_Req => True);
4413 end if;
4414
4415 elsif Treat_As_Volatile (Etype (Pref)) then
4416 Force_Evaluation (Pref, Name_Req => True);
4417
4418 elsif Nkind (Pref) = N_Selected_Component
4419 and then Is_Entity_Name (Prefix (Pref))
4420 then
4421 null;
4422
4423 else
4424 Force_Evaluation (Pref, Name_Req => True);
4425 end if;
4426
4427 -- For a tagged type, use the scope of the original component to
4428 -- obtain the type, because ???
4429
4430 if Is_Tagged_Type (Scope (Orig_Comp)) then
4431 Pref_Type := Scope (Orig_Comp);
4432
feff2f05 4433 -- For an untagged derived type, use the discriminants of the parent
4434 -- which have been renamed in the derivation, possibly by a one-to-many
4435 -- discriminant constraint. For non-tagged type, initially get the Etype
4436 -- of the prefix
9dfe12ae 4437
4438 else
4439 if Is_Derived_Type (Pref_Type)
4440 and then Number_Discriminants (Pref_Type) /=
4441 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4442 then
4443 Pref_Type := Etype (Base_Type (Pref_Type));
4444 end if;
4445 end if;
4446
4447 -- We definitely should have a checking function, This routine should
4448 -- not be called if no discriminant checking function is present.
4449
4450 pragma Assert (Present (Discr_Fct));
4451
4452 -- Create the list of the actual parameters for the call. This list
4453 -- is the list of the discriminant fields of the record expression to
4454 -- be discriminant checked.
4455
4456 Args := New_List;
4457 Formal := First_Formal (Discr_Fct);
4458 Discr := First_Discriminant (Pref_Type);
4459 while Present (Discr) loop
4460
4461 -- If we have a corresponding discriminant field, and a parent
4462 -- subtype is present, then we want to use the corresponding
4463 -- discriminant since this is the one with the useful value.
4464
4465 if Present (Corresponding_Discriminant (Discr))
4466 and then Ekind (Pref_Type) = E_Record_Type
4467 and then Present (Parent_Subtype (Pref_Type))
4468 then
4469 Real_Discr := Corresponding_Discriminant (Discr);
4470 else
4471 Real_Discr := Discr;
4472 end if;
4473
4474 -- Construct the reference to the discriminant
4475
4476 Scomp :=
4477 Make_Selected_Component (Loc,
4478 Prefix =>
4479 Unchecked_Convert_To (Pref_Type,
4480 Duplicate_Subexpr (Pref)),
4481 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4482
4483 -- Manually analyze and resolve this selected component. We really
4484 -- want it just as it appears above, and do not want the expander
feff2f05 4485 -- playing discriminal games etc with this reference. Then we append
4486 -- the argument to the list we are gathering.
9dfe12ae 4487
4488 Set_Etype (Scomp, Etype (Real_Discr));
4489 Set_Analyzed (Scomp, True);
4490 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4491
4492 Next_Formal_With_Extras (Formal);
4493 Next_Discriminant (Discr);
4494 end loop;
4495
4496 -- Now build and insert the call
4497
4498 Insert_Action (N,
4499 Make_Raise_Constraint_Error (Loc,
4500 Condition =>
4501 Make_Function_Call (Loc,
4502 Name => New_Occurrence_Of (Discr_Fct, Loc),
4503 Parameter_Associations => Args),
4504 Reason => CE_Discriminant_Check_Failed));
4505 end Generate_Discriminant_Check;
4506
5c99c290 4507 ---------------------------
4508 -- Generate_Index_Checks --
4509 ---------------------------
9dfe12ae 4510
4511 procedure Generate_Index_Checks (N : Node_Id) is
4512 Loc : constant Source_Ptr := Sloc (N);
4513 A : constant Node_Id := Prefix (N);
4514 Sub : Node_Id;
4515 Ind : Nat;
4516 Num : List_Id;
4517
4518 begin
0577b0b1 4519 -- Ignore call if index checks suppressed for array object or type
4520
4521 if (Is_Entity_Name (A) and then Index_Checks_Suppressed (Entity (A)))
4522 or else Index_Checks_Suppressed (Etype (A))
4523 then
4524 return;
4525 end if;
4526
4527 -- Generate the checks
4528
9dfe12ae 4529 Sub := First (Expressions (N));
4530 Ind := 1;
4531 while Present (Sub) loop
4532 if Do_Range_Check (Sub) then
4533 Set_Do_Range_Check (Sub, False);
4534
feff2f05 4535 -- Force evaluation except for the case of a simple name of a
4536 -- non-volatile entity.
9dfe12ae 4537
4538 if not Is_Entity_Name (Sub)
4539 or else Treat_As_Volatile (Entity (Sub))
4540 then
4541 Force_Evaluation (Sub);
4542 end if;
4543
4544 -- Generate a raise of constraint error with the appropriate
4545 -- reason and a condition of the form:
4546
4547 -- Base_Type(Sub) not in array'range (subscript)
4548
feff2f05 4549 -- Note that the reason we generate the conversion to the base
4550 -- type here is that we definitely want the range check to take
4551 -- place, even if it looks like the subtype is OK. Optimization
4552 -- considerations that allow us to omit the check have already
4553 -- been taken into account in the setting of the Do_Range_Check
4554 -- flag earlier on.
9dfe12ae 4555
4556 if Ind = 1 then
4557 Num := No_List;
4558 else
4559 Num := New_List (Make_Integer_Literal (Loc, Ind));
4560 end if;
4561
4562 Insert_Action (N,
4563 Make_Raise_Constraint_Error (Loc,
4564 Condition =>
4565 Make_Not_In (Loc,
4566 Left_Opnd =>
4567 Convert_To (Base_Type (Etype (Sub)),
4568 Duplicate_Subexpr_Move_Checks (Sub)),
4569 Right_Opnd =>
4570 Make_Attribute_Reference (Loc,
cc60bd16 4571 Prefix =>
4572 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
9dfe12ae 4573 Attribute_Name => Name_Range,
4574 Expressions => Num)),
4575 Reason => CE_Index_Check_Failed));
4576 end if;
4577
4578 Ind := Ind + 1;
4579 Next (Sub);
4580 end loop;
4581 end Generate_Index_Checks;
4582
4583 --------------------------
4584 -- Generate_Range_Check --
4585 --------------------------
4586
4587 procedure Generate_Range_Check
4588 (N : Node_Id;
4589 Target_Type : Entity_Id;
4590 Reason : RT_Exception_Code)
4591 is
4592 Loc : constant Source_Ptr := Sloc (N);
4593 Source_Type : constant Entity_Id := Etype (N);
4594 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4595 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4596
4597 begin
feff2f05 4598 -- First special case, if the source type is already within the range
4599 -- of the target type, then no check is needed (probably we should have
4600 -- stopped Do_Range_Check from being set in the first place, but better
4601 -- late than later in preventing junk code!
9dfe12ae 4602
feff2f05 4603 -- We do NOT apply this if the source node is a literal, since in this
4604 -- case the literal has already been labeled as having the subtype of
4605 -- the target.
9dfe12ae 4606
7a1dabb3 4607 if In_Subrange_Of (Source_Type, Target_Type)
9dfe12ae 4608 and then not
4609 (Nkind (N) = N_Integer_Literal
4610 or else
4611 Nkind (N) = N_Real_Literal
4612 or else
4613 Nkind (N) = N_Character_Literal
4614 or else
4615 (Is_Entity_Name (N)
4616 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4617 then
4618 return;
4619 end if;
4620
4621 -- We need a check, so force evaluation of the node, so that it does
4622 -- not get evaluated twice (once for the check, once for the actual
4623 -- reference). Such a double evaluation is always a potential source
4624 -- of inefficiency, and is functionally incorrect in the volatile case.
4625
4626 if not Is_Entity_Name (N)
4627 or else Treat_As_Volatile (Entity (N))
4628 then
4629 Force_Evaluation (N);
4630 end if;
4631
feff2f05 4632 -- The easiest case is when Source_Base_Type and Target_Base_Type are
4633 -- the same since in this case we can simply do a direct check of the
4634 -- value of N against the bounds of Target_Type.
9dfe12ae 4635
4636 -- [constraint_error when N not in Target_Type]
4637
4638 -- Note: this is by far the most common case, for example all cases of
4639 -- checks on the RHS of assignments are in this category, but not all
4640 -- cases are like this. Notably conversions can involve two types.
4641
4642 if Source_Base_Type = Target_Base_Type then
4643 Insert_Action (N,
4644 Make_Raise_Constraint_Error (Loc,
4645 Condition =>
4646 Make_Not_In (Loc,
4647 Left_Opnd => Duplicate_Subexpr (N),
4648 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4649 Reason => Reason));
4650
4651 -- Next test for the case where the target type is within the bounds
4652 -- of the base type of the source type, since in this case we can
4653 -- simply convert these bounds to the base type of T to do the test.
4654
4655 -- [constraint_error when N not in
4656 -- Source_Base_Type (Target_Type'First)
4657 -- ..
4658 -- Source_Base_Type(Target_Type'Last))]
4659
f2a06be9 4660 -- The conversions will always work and need no check
9dfe12ae 4661
7a1dabb3 4662 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
9dfe12ae 4663 Insert_Action (N,
4664 Make_Raise_Constraint_Error (Loc,
4665 Condition =>
4666 Make_Not_In (Loc,
4667 Left_Opnd => Duplicate_Subexpr (N),
4668
4669 Right_Opnd =>
4670 Make_Range (Loc,
4671 Low_Bound =>
4672 Convert_To (Source_Base_Type,
4673 Make_Attribute_Reference (Loc,
4674 Prefix =>
4675 New_Occurrence_Of (Target_Type, Loc),
4676 Attribute_Name => Name_First)),
4677
4678 High_Bound =>
4679 Convert_To (Source_Base_Type,
4680 Make_Attribute_Reference (Loc,
4681 Prefix =>
4682 New_Occurrence_Of (Target_Type, Loc),
4683 Attribute_Name => Name_Last)))),
4684 Reason => Reason));
4685
feff2f05 4686 -- Note that at this stage we now that the Target_Base_Type is not in
4687 -- the range of the Source_Base_Type (since even the Target_Type itself
4688 -- is not in this range). It could still be the case that Source_Type is
4689 -- in range of the target base type since we have not checked that case.
9dfe12ae 4690
feff2f05 4691 -- If that is the case, we can freely convert the source to the target,
4692 -- and then test the target result against the bounds.
9dfe12ae 4693
7a1dabb3 4694 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
9dfe12ae 4695
feff2f05 4696 -- We make a temporary to hold the value of the converted value
4697 -- (converted to the base type), and then we will do the test against
4698 -- this temporary.
9dfe12ae 4699
4700 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4701 -- [constraint_error when Tnn not in Target_Type]
4702
4703 -- Then the conversion itself is replaced by an occurrence of Tnn
4704
4705 declare
4706 Tnn : constant Entity_Id :=
4707 Make_Defining_Identifier (Loc,
4708 Chars => New_Internal_Name ('T'));
4709
4710 begin
4711 Insert_Actions (N, New_List (
4712 Make_Object_Declaration (Loc,
4713 Defining_Identifier => Tnn,
4714 Object_Definition =>
4715 New_Occurrence_Of (Target_Base_Type, Loc),
4716 Constant_Present => True,
4717 Expression =>
4718 Make_Type_Conversion (Loc,
4719 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4720 Expression => Duplicate_Subexpr (N))),
4721
4722 Make_Raise_Constraint_Error (Loc,
4723 Condition =>
4724 Make_Not_In (Loc,
4725 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4726 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4727
4728 Reason => Reason)));
4729
4730 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
2af58f67 4731
4732 -- Set the type of N, because the declaration for Tnn might not
4733 -- be analyzed yet, as is the case if N appears within a record
4734 -- declaration, as a discriminant constraint or expression.
4735
4736 Set_Etype (N, Target_Base_Type);
9dfe12ae 4737 end;
4738
4739 -- At this stage, we know that we have two scalar types, which are
4740 -- directly convertible, and where neither scalar type has a base
4741 -- range that is in the range of the other scalar type.
4742
4743 -- The only way this can happen is with a signed and unsigned type.
4744 -- So test for these two cases:
4745
4746 else
4747 -- Case of the source is unsigned and the target is signed
4748
4749 if Is_Unsigned_Type (Source_Base_Type)
4750 and then not Is_Unsigned_Type (Target_Base_Type)
4751 then
4752 -- If the source is unsigned and the target is signed, then we
4753 -- know that the source is not shorter than the target (otherwise
4754 -- the source base type would be in the target base type range).
4755
feff2f05 4756 -- In other words, the unsigned type is either the same size as
4757 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 4758
4759 pragma Assert
4760 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4761
4762 -- We only need to check the low bound if the low bound of the
4763 -- target type is non-negative. If the low bound of the target
4764 -- type is negative, then we know that we will fit fine.
4765
4766 -- If the high bound of the target type is negative, then we
4767 -- know we have a constraint error, since we can't possibly
4768 -- have a negative source.
4769
4770 -- With these two checks out of the way, we can do the check
4771 -- using the source type safely
4772
4773 -- This is definitely the most annoying case!
4774
4775 -- [constraint_error
4776 -- when (Target_Type'First >= 0
4777 -- and then
4778 -- N < Source_Base_Type (Target_Type'First))
4779 -- or else Target_Type'Last < 0
4780 -- or else N > Source_Base_Type (Target_Type'Last)];
4781
4782 -- We turn off all checks since we know that the conversions
4783 -- will work fine, given the guards for negative values.
4784
4785 Insert_Action (N,
4786 Make_Raise_Constraint_Error (Loc,
4787 Condition =>
4788 Make_Or_Else (Loc,
4789 Make_Or_Else (Loc,
4790 Left_Opnd =>
4791 Make_And_Then (Loc,
4792 Left_Opnd => Make_Op_Ge (Loc,
4793 Left_Opnd =>
4794 Make_Attribute_Reference (Loc,
4795 Prefix =>
4796 New_Occurrence_Of (Target_Type, Loc),
4797 Attribute_Name => Name_First),
4798 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4799
4800 Right_Opnd =>
4801 Make_Op_Lt (Loc,
4802 Left_Opnd => Duplicate_Subexpr (N),
4803 Right_Opnd =>
4804 Convert_To (Source_Base_Type,
4805 Make_Attribute_Reference (Loc,
4806 Prefix =>
4807 New_Occurrence_Of (Target_Type, Loc),
4808 Attribute_Name => Name_First)))),
4809
4810 Right_Opnd =>
4811 Make_Op_Lt (Loc,
4812 Left_Opnd =>
4813 Make_Attribute_Reference (Loc,
4814 Prefix => New_Occurrence_Of (Target_Type, Loc),
4815 Attribute_Name => Name_Last),
4816 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4817
4818 Right_Opnd =>
4819 Make_Op_Gt (Loc,
4820 Left_Opnd => Duplicate_Subexpr (N),
4821 Right_Opnd =>
4822 Convert_To (Source_Base_Type,
4823 Make_Attribute_Reference (Loc,
4824 Prefix => New_Occurrence_Of (Target_Type, Loc),
4825 Attribute_Name => Name_Last)))),
4826
4827 Reason => Reason),
4828 Suppress => All_Checks);
4829
4830 -- Only remaining possibility is that the source is signed and
fc75802a 4831 -- the target is unsigned.
9dfe12ae 4832
4833 else
4834 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4835 and then Is_Unsigned_Type (Target_Base_Type));
4836
feff2f05 4837 -- If the source is signed and the target is unsigned, then we
4838 -- know that the target is not shorter than the source (otherwise
4839 -- the target base type would be in the source base type range).
9dfe12ae 4840
feff2f05 4841 -- In other words, the unsigned type is either the same size as
4842 -- the target, or it is larger. It cannot be smaller.
9dfe12ae 4843
feff2f05 4844 -- Clearly we have an error if the source value is negative since
4845 -- no unsigned type can have negative values. If the source type
4846 -- is non-negative, then the check can be done using the target
4847 -- type.
9dfe12ae 4848
4849 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4850
4851 -- [constraint_error
4852 -- when N < 0 or else Tnn not in Target_Type];
4853
feff2f05 4854 -- We turn off all checks for the conversion of N to the target
4855 -- base type, since we generate the explicit check to ensure that
4856 -- the value is non-negative
9dfe12ae 4857
4858 declare
4859 Tnn : constant Entity_Id :=
4860 Make_Defining_Identifier (Loc,
4861 Chars => New_Internal_Name ('T'));
4862
4863 begin
4864 Insert_Actions (N, New_List (
4865 Make_Object_Declaration (Loc,
4866 Defining_Identifier => Tnn,
4867 Object_Definition =>
4868 New_Occurrence_Of (Target_Base_Type, Loc),
4869 Constant_Present => True,
4870 Expression =>
4871 Make_Type_Conversion (Loc,
4872 Subtype_Mark =>
4873 New_Occurrence_Of (Target_Base_Type, Loc),
4874 Expression => Duplicate_Subexpr (N))),
4875
4876 Make_Raise_Constraint_Error (Loc,
4877 Condition =>
4878 Make_Or_Else (Loc,
4879 Left_Opnd =>
4880 Make_Op_Lt (Loc,
4881 Left_Opnd => Duplicate_Subexpr (N),
4882 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4883
4884 Right_Opnd =>
4885 Make_Not_In (Loc,
4886 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4887 Right_Opnd =>
4888 New_Occurrence_Of (Target_Type, Loc))),
4889
4890 Reason => Reason)),
4891 Suppress => All_Checks);
4892
feff2f05 4893 -- Set the Etype explicitly, because Insert_Actions may have
4894 -- placed the declaration in the freeze list for an enclosing
4895 -- construct, and thus it is not analyzed yet.
9dfe12ae 4896
4897 Set_Etype (Tnn, Target_Base_Type);
4898 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4899 end;
4900 end if;
4901 end if;
4902 end Generate_Range_Check;
4903
2af58f67 4904 ------------------
4905 -- Get_Check_Id --
4906 ------------------
4907
4908 function Get_Check_Id (N : Name_Id) return Check_Id is
4909 begin
4910 -- For standard check name, we can do a direct computation
4911
4912 if N in First_Check_Name .. Last_Check_Name then
4913 return Check_Id (N - (First_Check_Name - 1));
4914
4915 -- For non-standard names added by pragma Check_Name, search table
4916
4917 else
4918 for J in All_Checks + 1 .. Check_Names.Last loop
4919 if Check_Names.Table (J) = N then
4920 return J;
4921 end if;
4922 end loop;
4923 end if;
4924
4925 -- No matching name found
4926
4927 return No_Check_Id;
4928 end Get_Check_Id;
4929
ee6ba406 4930 ---------------------
4931 -- Get_Discriminal --
4932 ---------------------
4933
4934 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4935 Loc : constant Source_Ptr := Sloc (E);
4936 D : Entity_Id;
4937 Sc : Entity_Id;
4938
4939 begin
0577b0b1 4940 -- The bound can be a bona fide parameter of a protected operation,
4941 -- rather than a prival encoded as an in-parameter.
4942
4943 if No (Discriminal_Link (Entity (Bound))) then
4944 return Bound;
4945 end if;
4946
2af58f67 4947 -- Climb the scope stack looking for an enclosing protected type. If
4948 -- we run out of scopes, return the bound itself.
4949
4950 Sc := Scope (E);
4951 while Present (Sc) loop
4952 if Sc = Standard_Standard then
4953 return Bound;
4954
4955 elsif Ekind (Sc) = E_Protected_Type then
4956 exit;
4957 end if;
4958
4959 Sc := Scope (Sc);
4960 end loop;
4961
ee6ba406 4962 D := First_Discriminant (Sc);
2af58f67 4963 while Present (D) loop
4964 if Chars (D) = Chars (Bound) then
4965 return New_Occurrence_Of (Discriminal (D), Loc);
4966 end if;
ee6ba406 4967
ee6ba406 4968 Next_Discriminant (D);
4969 end loop;
4970
2af58f67 4971 return Bound;
ee6ba406 4972 end Get_Discriminal;
4973
2af58f67 4974 ----------------------
4975 -- Get_Range_Checks --
4976 ----------------------
4977
4978 function Get_Range_Checks
4979 (Ck_Node : Node_Id;
4980 Target_Typ : Entity_Id;
4981 Source_Typ : Entity_Id := Empty;
4982 Warn_Node : Node_Id := Empty) return Check_Result
4983 is
4984 begin
4985 return Selected_Range_Checks
4986 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4987 end Get_Range_Checks;
4988
ee6ba406 4989 ------------------
4990 -- Guard_Access --
4991 ------------------
4992
4993 function Guard_Access
4994 (Cond : Node_Id;
4995 Loc : Source_Ptr;
314a23b6 4996 Ck_Node : Node_Id) return Node_Id
ee6ba406 4997 is
4998 begin
4999 if Nkind (Cond) = N_Or_Else then
5000 Set_Paren_Count (Cond, 1);
5001 end if;
5002
5003 if Nkind (Ck_Node) = N_Allocator then
5004 return Cond;
5005 else
5006 return
5007 Make_And_Then (Loc,
5008 Left_Opnd =>
5009 Make_Op_Ne (Loc,
9dfe12ae 5010 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
ee6ba406 5011 Right_Opnd => Make_Null (Loc)),
5012 Right_Opnd => Cond);
5013 end if;
5014 end Guard_Access;
5015
5016 -----------------------------
5017 -- Index_Checks_Suppressed --
5018 -----------------------------
5019
5020 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
5021 begin
9dfe12ae 5022 if Present (E) and then Checks_May_Be_Suppressed (E) then
5023 return Is_Check_Suppressed (E, Index_Check);
5024 else
5025 return Scope_Suppress (Index_Check);
5026 end if;
ee6ba406 5027 end Index_Checks_Suppressed;
5028
5029 ----------------
5030 -- Initialize --
5031 ----------------
5032
5033 procedure Initialize is
5034 begin
5035 for J in Determine_Range_Cache_N'Range loop
5036 Determine_Range_Cache_N (J) := Empty;
5037 end loop;
2af58f67 5038
5039 Check_Names.Init;
5040
5041 for J in Int range 1 .. All_Checks loop
5042 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
5043 end loop;
ee6ba406 5044 end Initialize;
5045
5046 -------------------------
5047 -- Insert_Range_Checks --
5048 -------------------------
5049
5050 procedure Insert_Range_Checks
5051 (Checks : Check_Result;
5052 Node : Node_Id;
5053 Suppress_Typ : Entity_Id;
5054 Static_Sloc : Source_Ptr := No_Location;
5055 Flag_Node : Node_Id := Empty;
5056 Do_Before : Boolean := False)
5057 is
5058 Internal_Flag_Node : Node_Id := Flag_Node;
5059 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
5060
5061 Check_Node : Node_Id;
5062 Checks_On : constant Boolean :=
5063 (not Index_Checks_Suppressed (Suppress_Typ))
5064 or else
5065 (not Range_Checks_Suppressed (Suppress_Typ));
5066
5067 begin
feff2f05 5068 -- For now we just return if Checks_On is false, however this should be
5069 -- enhanced to check for an always True value in the condition and to
5070 -- generate a compilation warning???
ee6ba406 5071
5072 if not Expander_Active or else not Checks_On then
5073 return;
5074 end if;
5075
5076 if Static_Sloc = No_Location then
5077 Internal_Static_Sloc := Sloc (Node);
5078 end if;
5079
5080 if No (Flag_Node) then
5081 Internal_Flag_Node := Node;
5082 end if;
5083
5084 for J in 1 .. 2 loop
5085 exit when No (Checks (J));
5086
5087 if Nkind (Checks (J)) = N_Raise_Constraint_Error
5088 and then Present (Condition (Checks (J)))
5089 then
5090 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
5091 Check_Node := Checks (J);
5092 Mark_Rewrite_Insertion (Check_Node);
5093
5094 if Do_Before then
5095 Insert_Before_And_Analyze (Node, Check_Node);
5096 else
5097 Insert_After_And_Analyze (Node, Check_Node);
5098 end if;
5099
5100 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
5101 end if;
5102
5103 else
5104 Check_Node :=
f15731c4 5105 Make_Raise_Constraint_Error (Internal_Static_Sloc,
5106 Reason => CE_Range_Check_Failed);
ee6ba406 5107 Mark_Rewrite_Insertion (Check_Node);
5108
5109 if Do_Before then
5110 Insert_Before_And_Analyze (Node, Check_Node);
5111 else
5112 Insert_After_And_Analyze (Node, Check_Node);
5113 end if;
5114 end if;
5115 end loop;
5116 end Insert_Range_Checks;
5117
5118 ------------------------
5119 -- Insert_Valid_Check --
5120 ------------------------
5121
5122 procedure Insert_Valid_Check (Expr : Node_Id) is
5123 Loc : constant Source_Ptr := Sloc (Expr);
8b718dab 5124 Exp : Node_Id;
ee6ba406 5125
5126 begin
5127 -- Do not insert if checks off, or if not checking validity
5128
0577b0b1 5129 if not Validity_Checks_On
5130 or else Range_Or_Validity_Checks_Suppressed (Expr)
ee6ba406 5131 then
8b718dab 5132 return;
5133 end if;
ee6ba406 5134
8b718dab 5135 -- If we have a checked conversion, then validity check applies to
5136 -- the expression inside the conversion, not the result, since if
5137 -- the expression inside is valid, then so is the conversion result.
ee6ba406 5138
8b718dab 5139 Exp := Expr;
5140 while Nkind (Exp) = N_Type_Conversion loop
5141 Exp := Expression (Exp);
5142 end loop;
5143
0577b0b1 5144 -- We are about to insert the validity check for Exp. We save and
5145 -- reset the Do_Range_Check flag over this validity check, and then
5146 -- put it back for the final original reference (Exp may be rewritten).
5147
5148 declare
5149 DRC : constant Boolean := Do_Range_Check (Exp);
05fcfafb 5150
0577b0b1 5151 begin
5152 Set_Do_Range_Check (Exp, False);
5153
5154 -- Insert the validity check. Note that we do this with validity
5155 -- checks turned off, to avoid recursion, we do not want validity
5156 -- checks on the validity checking code itself!
5157
5158 Insert_Action
5159 (Expr,
5160 Make_Raise_Constraint_Error (Loc,
5161 Condition =>
5162 Make_Op_Not (Loc,
5163 Right_Opnd =>
5164 Make_Attribute_Reference (Loc,
5165 Prefix =>
5166 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
5167 Attribute_Name => Name_Valid)),
5168 Reason => CE_Invalid_Data),
5169 Suppress => Validity_Check);
5170
5171 -- If the expression is a a reference to an element of a bit-packed
5172 -- array, then it is rewritten as a renaming declaration. If the
5173 -- expression is an actual in a call, it has not been expanded,
5174 -- waiting for the proper point at which to do it. The same happens
5175 -- with renamings, so that we have to force the expansion now. This
5176 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
5177 -- and exp_ch6.adb.
5178
5179 if Is_Entity_Name (Exp)
5180 and then Nkind (Parent (Entity (Exp))) =
5181 N_Object_Renaming_Declaration
5182 then
5183 declare
5184 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
5185 begin
5186 if Nkind (Old_Exp) = N_Indexed_Component
5187 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
5188 then
5189 Expand_Packed_Element_Reference (Old_Exp);
5190 end if;
5191 end;
5192 end if;
5193
5194 -- Put back the Do_Range_Check flag on the resulting (possibly
5195 -- rewritten) expression.
5196
5197 -- Note: it might be thought that a validity check is not required
5198 -- when a range check is present, but that's not the case, because
5199 -- the back end is allowed to assume for the range check that the
5200 -- operand is within its declared range (an assumption that validity
5201 -- checking is all about NOT assuming!)
5202
00c403ee 5203 -- Note: no need to worry about Possible_Local_Raise here, it will
5204 -- already have been called if original node has Do_Range_Check set.
5205
0577b0b1 5206 Set_Do_Range_Check (Exp, DRC);
5207 end;
ee6ba406 5208 end Insert_Valid_Check;
5209
fa7497e8 5210 ----------------------------------
5211 -- Install_Null_Excluding_Check --
5212 ----------------------------------
5213
5214 procedure Install_Null_Excluding_Check (N : Node_Id) is
84d0d4a5 5215 Loc : constant Source_Ptr := Sloc (N);
5216 Typ : constant Entity_Id := Etype (N);
5217
7870823d 5218 function In_Declarative_Region_Of_Subprogram_Body return Boolean;
5219 -- Determine whether node N, a reference to an *in* parameter, is
5220 -- inside the declarative region of the current subprogram body.
5221
84d0d4a5 5222 procedure Mark_Non_Null;
7870823d 5223 -- After installation of check, if the node in question is an entity
5224 -- name, then mark this entity as non-null if possible.
5225
5226 ----------------------------------------------
5227 -- In_Declarative_Region_Of_Subprogram_Body --
5228 ----------------------------------------------
5229
5230 function In_Declarative_Region_Of_Subprogram_Body return Boolean is
5231 E : constant Entity_Id := Entity (N);
5232 S : constant Entity_Id := Current_Scope;
5233 S_Par : Node_Id;
5234
5235 begin
5236 pragma Assert (Ekind (E) = E_In_Parameter);
5237
5238 -- Two initial context checks. We must be inside a subprogram body
5239 -- with declarations and reference must not appear in nested scopes.
5240
5241 if (Ekind (S) /= E_Function
5242 and then Ekind (S) /= E_Procedure)
5243 or else Scope (E) /= S
5244 then
5245 return False;
5246 end if;
5247
5248 S_Par := Parent (Parent (S));
5249
5250 if Nkind (S_Par) /= N_Subprogram_Body
5251 or else No (Declarations (S_Par))
5252 then
5253 return False;
5254 end if;
5255
5256 declare
5257 N_Decl : Node_Id;
5258 P : Node_Id;
5259
5260 begin
5261 -- Retrieve the declaration node of N (if any). Note that N
5262 -- may be a part of a complex initialization expression.
5263
5264 P := Parent (N);
5265 N_Decl := Empty;
5266 while Present (P) loop
5267
5268 -- While traversing the parent chain, we find that N
5269 -- belongs to a statement, thus it may never appear in
5270 -- a declarative region.
5271
5272 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
5273 or else Nkind (P) = N_Procedure_Call_Statement
5274 then
5275 return False;
5276 end if;
5277
5278 if Nkind (P) in N_Declaration
5279 and then Nkind (P) not in N_Subprogram_Specification
5280 then
5281 N_Decl := P;
5282 exit;
5283 end if;
5284
5285 P := Parent (P);
5286 end loop;
5287
5288 if No (N_Decl) then
5289 return False;
5290 end if;
5291
5292 return List_Containing (N_Decl) = Declarations (S_Par);
5293 end;
5294 end In_Declarative_Region_Of_Subprogram_Body;
84d0d4a5 5295
5296 -------------------
5297 -- Mark_Non_Null --
5298 -------------------
5299
5300 procedure Mark_Non_Null is
5301 begin
7870823d 5302 -- Only case of interest is if node N is an entity name
5303
84d0d4a5 5304 if Is_Entity_Name (N) then
7870823d 5305
5306 -- For sure, we want to clear an indication that this is known to
5307 -- be null, since if we get past this check, it definitely is not!
5308
84d0d4a5 5309 Set_Is_Known_Null (Entity (N), False);
5310
7870823d 5311 -- We can mark the entity as known to be non-null if either it is
5312 -- safe to capture the value, or in the case of an IN parameter,
5313 -- which is a constant, if the check we just installed is in the
5314 -- declarative region of the subprogram body. In this latter case,
5315 -- a check is decisive for the rest of the body, since we know we
5316 -- must complete all declarations before executing the body.
5317
5318 if Safe_To_Capture_Value (N, Entity (N))
5319 or else
5320 (Ekind (Entity (N)) = E_In_Parameter
5321 and then In_Declarative_Region_Of_Subprogram_Body)
5322 then
5323 Set_Is_Known_Non_Null (Entity (N));
84d0d4a5 5324 end if;
5325 end if;
5326 end Mark_Non_Null;
5327
5328 -- Start of processing for Install_Null_Excluding_Check
fa7497e8 5329
5330 begin
84d0d4a5 5331 pragma Assert (Is_Access_Type (Typ));
fa7497e8 5332
84d0d4a5 5333 -- No check inside a generic (why not???)
fa7497e8 5334
84d0d4a5 5335 if Inside_A_Generic then
fa7497e8 5336 return;
84d0d4a5 5337 end if;
5338
5339 -- No check needed if known to be non-null
5340
5341 if Known_Non_Null (N) then
05fcfafb 5342 return;
84d0d4a5 5343 end if;
fa7497e8 5344
84d0d4a5 5345 -- If known to be null, here is where we generate a compile time check
5346
5347 if Known_Null (N) then
d16989f1 5348
5349 -- Avoid generating warning message inside init procs
5350
5351 if not Inside_Init_Proc then
5352 Apply_Compile_Time_Constraint_Error
5353 (N,
5354 "null value not allowed here?",
5355 CE_Access_Check_Failed);
5356 else
5357 Insert_Action (N,
5358 Make_Raise_Constraint_Error (Loc,
5359 Reason => CE_Access_Check_Failed));
5360 end if;
5361
84d0d4a5 5362 Mark_Non_Null;
5363 return;
5364 end if;
5365
5366 -- If entity is never assigned, for sure a warning is appropriate
5367
5368 if Is_Entity_Name (N) then
5369 Check_Unset_Reference (N);
fa7497e8 5370 end if;
84d0d4a5 5371
5372 -- No check needed if checks are suppressed on the range. Note that we
5373 -- don't set Is_Known_Non_Null in this case (we could legitimately do
5374 -- so, since the program is erroneous, but we don't like to casually
5375 -- propagate such conclusions from erroneosity).
5376
5377 if Access_Checks_Suppressed (Typ) then
5378 return;
5379 end if;
5380
2af58f67 5381 -- No check needed for access to concurrent record types generated by
5382 -- the expander. This is not just an optimization (though it does indeed
5383 -- remove junk checks). It also avoids generation of junk warnings.
5384
5385 if Nkind (N) in N_Has_Chars
5386 and then Chars (N) = Name_uObject
5387 and then Is_Concurrent_Record_Type
5388 (Directly_Designated_Type (Etype (N)))
5389 then
5390 return;
5391 end if;
5392
84d0d4a5 5393 -- Otherwise install access check
5394
5395 Insert_Action (N,
5396 Make_Raise_Constraint_Error (Loc,
5397 Condition =>
5398 Make_Op_Eq (Loc,
5399 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
5400 Right_Opnd => Make_Null (Loc)),
5401 Reason => CE_Access_Check_Failed));
5402
5403 Mark_Non_Null;
fa7497e8 5404 end Install_Null_Excluding_Check;
5405
ee6ba406 5406 --------------------------
5407 -- Install_Static_Check --
5408 --------------------------
5409
5410 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
5411 Stat : constant Boolean := Is_Static_Expression (R_Cno);
5412 Typ : constant Entity_Id := Etype (R_Cno);
5413
5414 begin
f15731c4 5415 Rewrite (R_Cno,
5416 Make_Raise_Constraint_Error (Loc,
5417 Reason => CE_Range_Check_Failed));
ee6ba406 5418 Set_Analyzed (R_Cno);
5419 Set_Etype (R_Cno, Typ);
5420 Set_Raises_Constraint_Error (R_Cno);
5421 Set_Is_Static_Expression (R_Cno, Stat);
5422 end Install_Static_Check;
5423
9dfe12ae 5424 ---------------------
5425 -- Kill_All_Checks --
5426 ---------------------
5427
5428 procedure Kill_All_Checks is
5429 begin
5430 if Debug_Flag_CC then
5431 w ("Kill_All_Checks");
5432 end if;
5433
feff2f05 5434 -- We reset the number of saved checks to zero, and also modify all
5435 -- stack entries for statement ranges to indicate that the number of
5436 -- checks at each level is now zero.
9dfe12ae 5437
5438 Num_Saved_Checks := 0;
5439
96da3284 5440 -- Note: the Int'Min here avoids any possibility of J being out of
5441 -- range when called from e.g. Conditional_Statements_Begin.
5442
5443 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
9dfe12ae 5444 Saved_Checks_Stack (J) := 0;
5445 end loop;
5446 end Kill_All_Checks;
5447
5448 -----------------
5449 -- Kill_Checks --
5450 -----------------
5451
5452 procedure Kill_Checks (V : Entity_Id) is
5453 begin
5454 if Debug_Flag_CC then
5455 w ("Kill_Checks for entity", Int (V));
5456 end if;
5457
5458 for J in 1 .. Num_Saved_Checks loop
5459 if Saved_Checks (J).Entity = V then
5460 if Debug_Flag_CC then
5461 w (" Checks killed for saved check ", J);
5462 end if;
5463
5464 Saved_Checks (J).Killed := True;
5465 end if;
5466 end loop;
5467 end Kill_Checks;
5468
ee6ba406 5469 ------------------------------
5470 -- Length_Checks_Suppressed --
5471 ------------------------------
5472
5473 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
5474 begin
9dfe12ae 5475 if Present (E) and then Checks_May_Be_Suppressed (E) then
5476 return Is_Check_Suppressed (E, Length_Check);
5477 else
5478 return Scope_Suppress (Length_Check);
5479 end if;
ee6ba406 5480 end Length_Checks_Suppressed;
5481
5482 --------------------------------
5483 -- Overflow_Checks_Suppressed --
5484 --------------------------------
5485
5486 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
5487 begin
9dfe12ae 5488 if Present (E) and then Checks_May_Be_Suppressed (E) then
5489 return Is_Check_Suppressed (E, Overflow_Check);
5490 else
5491 return Scope_Suppress (Overflow_Check);
5492 end if;
ee6ba406 5493 end Overflow_Checks_Suppressed;
fc75802a 5494
ee6ba406 5495 -----------------------------
5496 -- Range_Checks_Suppressed --
5497 -----------------------------
5498
5499 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
5500 begin
9dfe12ae 5501 if Present (E) then
5502
5503 -- Note: for now we always suppress range checks on Vax float types,
5504 -- since Gigi does not know how to generate these checks.
5505
5506 if Vax_Float (E) then
5507 return True;
5508 elsif Kill_Range_Checks (E) then
5509 return True;
5510 elsif Checks_May_Be_Suppressed (E) then
5511 return Is_Check_Suppressed (E, Range_Check);
5512 end if;
5513 end if;
ee6ba406 5514
9dfe12ae 5515 return Scope_Suppress (Range_Check);
ee6ba406 5516 end Range_Checks_Suppressed;
5517
0577b0b1 5518 -----------------------------------------
5519 -- Range_Or_Validity_Checks_Suppressed --
5520 -----------------------------------------
5521
5522 -- Note: the coding would be simpler here if we simply made appropriate
5523 -- calls to Range/Validity_Checks_Suppressed, but that would result in
5524 -- duplicated checks which we prefer to avoid.
5525
5526 function Range_Or_Validity_Checks_Suppressed
5527 (Expr : Node_Id) return Boolean
5528 is
5529 begin
5530 -- Immediate return if scope checks suppressed for either check
5531
5532 if Scope_Suppress (Range_Check) or Scope_Suppress (Validity_Check) then
5533 return True;
5534 end if;
5535
5536 -- If no expression, that's odd, decide that checks are suppressed,
5537 -- since we don't want anyone trying to do checks in this case, which
5538 -- is most likely the result of some other error.
5539
5540 if No (Expr) then
5541 return True;
5542 end if;
5543
5544 -- Expression is present, so perform suppress checks on type
5545
5546 declare
5547 Typ : constant Entity_Id := Etype (Expr);
5548 begin
5549 if Vax_Float (Typ) then
5550 return True;
5551 elsif Checks_May_Be_Suppressed (Typ)
5552 and then (Is_Check_Suppressed (Typ, Range_Check)
5553 or else
5554 Is_Check_Suppressed (Typ, Validity_Check))
5555 then
5556 return True;
5557 end if;
5558 end;
5559
5560 -- If expression is an entity name, perform checks on this entity
5561
5562 if Is_Entity_Name (Expr) then
5563 declare
5564 Ent : constant Entity_Id := Entity (Expr);
5565 begin
5566 if Checks_May_Be_Suppressed (Ent) then
5567 return Is_Check_Suppressed (Ent, Range_Check)
5568 or else Is_Check_Suppressed (Ent, Validity_Check);
5569 end if;
5570 end;
5571 end if;
5572
5573 -- If we fall through, no checks suppressed
5574
5575 return False;
5576 end Range_Or_Validity_Checks_Suppressed;
5577
226494a3 5578 -------------------
5579 -- Remove_Checks --
5580 -------------------
5581
5582 procedure Remove_Checks (Expr : Node_Id) is
226494a3 5583 function Process (N : Node_Id) return Traverse_Result;
5584 -- Process a single node during the traversal
5585
8f6e4fd5 5586 procedure Traverse is new Traverse_Proc (Process);
5587 -- The traversal procedure itself
226494a3 5588
5589 -------------
5590 -- Process --
5591 -------------
5592
5593 function Process (N : Node_Id) return Traverse_Result is
5594 begin
5595 if Nkind (N) not in N_Subexpr then
5596 return Skip;
5597 end if;
5598
5599 Set_Do_Range_Check (N, False);
5600
5601 case Nkind (N) is
5602 when N_And_Then =>
8f6e4fd5 5603 Traverse (Left_Opnd (N));
226494a3 5604 return Skip;
5605
5606 when N_Attribute_Reference =>
226494a3 5607 Set_Do_Overflow_Check (N, False);
5608
226494a3 5609 when N_Function_Call =>
5610 Set_Do_Tag_Check (N, False);
5611
226494a3 5612 when N_Op =>
5613 Set_Do_Overflow_Check (N, False);
5614
5615 case Nkind (N) is
5616 when N_Op_Divide =>
5617 Set_Do_Division_Check (N, False);
5618
5619 when N_Op_And =>
5620 Set_Do_Length_Check (N, False);
5621
5622 when N_Op_Mod =>
5623 Set_Do_Division_Check (N, False);
5624
5625 when N_Op_Or =>
5626 Set_Do_Length_Check (N, False);
5627
5628 when N_Op_Rem =>
5629 Set_Do_Division_Check (N, False);
5630
5631 when N_Op_Xor =>
5632 Set_Do_Length_Check (N, False);
5633
5634 when others =>
5635 null;
5636 end case;
5637
5638 when N_Or_Else =>
8f6e4fd5 5639 Traverse (Left_Opnd (N));
226494a3 5640 return Skip;
5641
5642 when N_Selected_Component =>
226494a3 5643 Set_Do_Discriminant_Check (N, False);
5644
226494a3 5645 when N_Type_Conversion =>
9dfe12ae 5646 Set_Do_Length_Check (N, False);
5647 Set_Do_Tag_Check (N, False);
226494a3 5648 Set_Do_Overflow_Check (N, False);
226494a3 5649
5650 when others =>
5651 null;
5652 end case;
5653
5654 return OK;
5655 end Process;
5656
5657 -- Start of processing for Remove_Checks
5658
5659 begin
8f6e4fd5 5660 Traverse (Expr);
226494a3 5661 end Remove_Checks;
5662
ee6ba406 5663 ----------------------------
5664 -- Selected_Length_Checks --
5665 ----------------------------
5666
5667 function Selected_Length_Checks
5668 (Ck_Node : Node_Id;
5669 Target_Typ : Entity_Id;
5670 Source_Typ : Entity_Id;
314a23b6 5671 Warn_Node : Node_Id) return Check_Result
ee6ba406 5672 is
5673 Loc : constant Source_Ptr := Sloc (Ck_Node);
5674 S_Typ : Entity_Id;
5675 T_Typ : Entity_Id;
5676 Expr_Actual : Node_Id;
5677 Exptyp : Entity_Id;
5678 Cond : Node_Id := Empty;
5679 Do_Access : Boolean := False;
5680 Wnode : Node_Id := Warn_Node;
5681 Ret_Result : Check_Result := (Empty, Empty);
5682 Num_Checks : Natural := 0;
5683
5684 procedure Add_Check (N : Node_Id);
5685 -- Adds the action given to Ret_Result if N is non-Empty
5686
5687 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5688 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
314a23b6 5689 -- Comments required ???
ee6ba406 5690
5691 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5692 -- True for equal literals and for nodes that denote the same constant
5f260d20 5693 -- entity, even if its value is not a static constant. This includes the
9dfe12ae 5694 -- case of a discriminal reference within an init proc. Removes some
5f260d20 5695 -- obviously superfluous checks.
ee6ba406 5696
5697 function Length_E_Cond
5698 (Exptyp : Entity_Id;
5699 Typ : Entity_Id;
314a23b6 5700 Indx : Nat) return Node_Id;
ee6ba406 5701 -- Returns expression to compute:
5702 -- Typ'Length /= Exptyp'Length
5703
5704 function Length_N_Cond
5705 (Expr : Node_Id;
5706 Typ : Entity_Id;
314a23b6 5707 Indx : Nat) return Node_Id;
ee6ba406 5708 -- Returns expression to compute:
5709 -- Typ'Length /= Expr'Length
5710
5711 ---------------
5712 -- Add_Check --
5713 ---------------
5714
5715 procedure Add_Check (N : Node_Id) is
5716 begin
5717 if Present (N) then
5718
5719 -- For now, ignore attempt to place more than 2 checks ???
5720
5721 if Num_Checks = 2 then
5722 return;
5723 end if;
5724
5725 pragma Assert (Num_Checks <= 1);
5726 Num_Checks := Num_Checks + 1;
5727 Ret_Result (Num_Checks) := N;
5728 end if;
5729 end Add_Check;
5730
5731 ------------------
5732 -- Get_E_Length --
5733 ------------------
5734
5735 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
00c403ee 5736 SE : constant Entity_Id := Scope (E);
ee6ba406 5737 N : Node_Id;
5738 E1 : Entity_Id := E;
ee6ba406 5739
5740 begin
5741 if Ekind (Scope (E)) = E_Record_Type
5742 and then Has_Discriminants (Scope (E))
5743 then
5744 N := Build_Discriminal_Subtype_Of_Component (E);
5745
5746 if Present (N) then
5747 Insert_Action (Ck_Node, N);
5748 E1 := Defining_Identifier (N);
5749 end if;
5750 end if;
5751
5752 if Ekind (E1) = E_String_Literal_Subtype then
5753 return
5754 Make_Integer_Literal (Loc,
5755 Intval => String_Literal_Length (E1));
5756
00c403ee 5757 elsif SE /= Standard_Standard
5758 and then Ekind (Scope (SE)) = E_Protected_Type
5759 and then Has_Discriminants (Scope (SE))
5760 and then Has_Completion (Scope (SE))
ee6ba406 5761 and then not Inside_Init_Proc
5762 then
ee6ba406 5763 -- If the type whose length is needed is a private component
5764 -- constrained by a discriminant, we must expand the 'Length
5765 -- attribute into an explicit computation, using the discriminal
5766 -- of the current protected operation. This is because the actual
5767 -- type of the prival is constructed after the protected opera-
5768 -- tion has been fully expanded.
5769
5770 declare
5771 Indx_Type : Node_Id;
5772 Lo : Node_Id;
5773 Hi : Node_Id;
5774 Do_Expand : Boolean := False;
5775
5776 begin
5777 Indx_Type := First_Index (E);
5778
5779 for J in 1 .. Indx - 1 loop
5780 Next_Index (Indx_Type);
5781 end loop;
5782
2af58f67 5783 Get_Index_Bounds (Indx_Type, Lo, Hi);
ee6ba406 5784
5785 if Nkind (Lo) = N_Identifier
5786 and then Ekind (Entity (Lo)) = E_In_Parameter
5787 then
5788 Lo := Get_Discriminal (E, Lo);
5789 Do_Expand := True;
5790 end if;
5791
5792 if Nkind (Hi) = N_Identifier
5793 and then Ekind (Entity (Hi)) = E_In_Parameter
5794 then
5795 Hi := Get_Discriminal (E, Hi);
5796 Do_Expand := True;
5797 end if;
5798
5799 if Do_Expand then
5800 if not Is_Entity_Name (Lo) then
9dfe12ae 5801 Lo := Duplicate_Subexpr_No_Checks (Lo);
ee6ba406 5802 end if;
5803
5804 if not Is_Entity_Name (Hi) then
9dfe12ae 5805 Lo := Duplicate_Subexpr_No_Checks (Hi);
ee6ba406 5806 end if;
5807
5808 N :=
5809 Make_Op_Add (Loc,
5810 Left_Opnd =>
5811 Make_Op_Subtract (Loc,
5812 Left_Opnd => Hi,
5813 Right_Opnd => Lo),
5814
5815 Right_Opnd => Make_Integer_Literal (Loc, 1));
5816 return N;
5817
5818 else
5819 N :=
5820 Make_Attribute_Reference (Loc,
5821 Attribute_Name => Name_Length,
5822 Prefix =>
5823 New_Occurrence_Of (E1, Loc));
5824
5825 if Indx > 1 then
5826 Set_Expressions (N, New_List (
5827 Make_Integer_Literal (Loc, Indx)));
5828 end if;
5829
5830 return N;
5831 end if;
5832 end;
5833
5834 else
5835 N :=
5836 Make_Attribute_Reference (Loc,
5837 Attribute_Name => Name_Length,
5838 Prefix =>
5839 New_Occurrence_Of (E1, Loc));
5840
5841 if Indx > 1 then
5842 Set_Expressions (N, New_List (
5843 Make_Integer_Literal (Loc, Indx)));
5844 end if;
5845
5846 return N;
ee6ba406 5847 end if;
5848 end Get_E_Length;
5849
5850 ------------------
5851 -- Get_N_Length --
5852 ------------------
5853
5854 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5855 begin
5856 return
5857 Make_Attribute_Reference (Loc,
5858 Attribute_Name => Name_Length,
5859 Prefix =>
9dfe12ae 5860 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 5861 Expressions => New_List (
5862 Make_Integer_Literal (Loc, Indx)));
ee6ba406 5863 end Get_N_Length;
5864
5865 -------------------
5866 -- Length_E_Cond --
5867 -------------------
5868
5869 function Length_E_Cond
5870 (Exptyp : Entity_Id;
5871 Typ : Entity_Id;
314a23b6 5872 Indx : Nat) return Node_Id
ee6ba406 5873 is
5874 begin
5875 return
5876 Make_Op_Ne (Loc,
5877 Left_Opnd => Get_E_Length (Typ, Indx),
5878 Right_Opnd => Get_E_Length (Exptyp, Indx));
ee6ba406 5879 end Length_E_Cond;
5880
5881 -------------------
5882 -- Length_N_Cond --
5883 -------------------
5884
5885 function Length_N_Cond
5886 (Expr : Node_Id;
5887 Typ : Entity_Id;
314a23b6 5888 Indx : Nat) return Node_Id
ee6ba406 5889 is
5890 begin
5891 return
5892 Make_Op_Ne (Loc,
5893 Left_Opnd => Get_E_Length (Typ, Indx),
5894 Right_Opnd => Get_N_Length (Expr, Indx));
ee6ba406 5895 end Length_N_Cond;
5896
feff2f05 5897 -----------------
5898 -- Same_Bounds --
5899 -----------------
5900
ee6ba406 5901 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5902 begin
5903 return
5904 (Nkind (L) = N_Integer_Literal
5905 and then Nkind (R) = N_Integer_Literal
5906 and then Intval (L) = Intval (R))
5907
5908 or else
5909 (Is_Entity_Name (L)
5910 and then Ekind (Entity (L)) = E_Constant
5911 and then ((Is_Entity_Name (R)
5912 and then Entity (L) = Entity (R))
5913 or else
5914 (Nkind (R) = N_Type_Conversion
5915 and then Is_Entity_Name (Expression (R))
5916 and then Entity (L) = Entity (Expression (R)))))
5917
5918 or else
5919 (Is_Entity_Name (R)
5920 and then Ekind (Entity (R)) = E_Constant
5921 and then Nkind (L) = N_Type_Conversion
5922 and then Is_Entity_Name (Expression (L))
5f260d20 5923 and then Entity (R) = Entity (Expression (L)))
5924
5925 or else
5926 (Is_Entity_Name (L)
5927 and then Is_Entity_Name (R)
5928 and then Entity (L) = Entity (R)
5929 and then Ekind (Entity (L)) = E_In_Parameter
5930 and then Inside_Init_Proc);
ee6ba406 5931 end Same_Bounds;
5932
5933 -- Start of processing for Selected_Length_Checks
5934
5935 begin
5936 if not Expander_Active then
5937 return Ret_Result;
5938 end if;
5939
5940 if Target_Typ = Any_Type
5941 or else Target_Typ = Any_Composite
5942 or else Raises_Constraint_Error (Ck_Node)
5943 then
5944 return Ret_Result;
5945 end if;
5946
5947 if No (Wnode) then
5948 Wnode := Ck_Node;
5949 end if;
5950
5951 T_Typ := Target_Typ;
5952
5953 if No (Source_Typ) then
5954 S_Typ := Etype (Ck_Node);
5955 else
5956 S_Typ := Source_Typ;
5957 end if;
5958
5959 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5960 return Ret_Result;
5961 end if;
5962
5963 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5964 S_Typ := Designated_Type (S_Typ);
5965 T_Typ := Designated_Type (T_Typ);
5966 Do_Access := True;
5967
2af58f67 5968 -- A simple optimization for the null case
ee6ba406 5969
2af58f67 5970 if Known_Null (Ck_Node) then
ee6ba406 5971 return Ret_Result;
5972 end if;
5973 end if;
5974
5975 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5976 if Is_Constrained (T_Typ) then
5977
5978 -- The checking code to be generated will freeze the
5979 -- corresponding array type. However, we must freeze the
5980 -- type now, so that the freeze node does not appear within
5981 -- the generated condional expression, but ahead of it.
5982
5983 Freeze_Before (Ck_Node, T_Typ);
5984
5985 Expr_Actual := Get_Referenced_Object (Ck_Node);
84d0d4a5 5986 Exptyp := Get_Actual_Subtype (Ck_Node);
ee6ba406 5987
5988 if Is_Access_Type (Exptyp) then
5989 Exptyp := Designated_Type (Exptyp);
5990 end if;
5991
5992 -- String_Literal case. This needs to be handled specially be-
5993 -- cause no index types are available for string literals. The
5994 -- condition is simply:
5995
5996 -- T_Typ'Length = string-literal-length
5997
9dfe12ae 5998 if Nkind (Expr_Actual) = N_String_Literal
5999 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
6000 then
ee6ba406 6001 Cond :=
6002 Make_Op_Ne (Loc,
6003 Left_Opnd => Get_E_Length (T_Typ, 1),
6004 Right_Opnd =>
6005 Make_Integer_Literal (Loc,
6006 Intval =>
6007 String_Literal_Length (Etype (Expr_Actual))));
6008
6009 -- General array case. Here we have a usable actual subtype for
6010 -- the expression, and the condition is built from the two types
6011 -- (Do_Length):
6012
6013 -- T_Typ'Length /= Exptyp'Length or else
6014 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
6015 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
6016 -- ...
6017
6018 elsif Is_Constrained (Exptyp) then
6019 declare
9dfe12ae 6020 Ndims : constant Nat := Number_Dimensions (T_Typ);
6021
6022 L_Index : Node_Id;
6023 R_Index : Node_Id;
6024 L_Low : Node_Id;
6025 L_High : Node_Id;
6026 R_Low : Node_Id;
6027 R_High : Node_Id;
ee6ba406 6028 L_Length : Uint;
6029 R_Length : Uint;
9dfe12ae 6030 Ref_Node : Node_Id;
ee6ba406 6031
6032 begin
feff2f05 6033 -- At the library level, we need to ensure that the type of
6034 -- the object is elaborated before the check itself is
6035 -- emitted. This is only done if the object is in the
6036 -- current compilation unit, otherwise the type is frozen
6037 -- and elaborated in its unit.
9dfe12ae 6038
6039 if Is_Itype (Exptyp)
6040 and then
6041 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
6042 and then
6043 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
d66aa9f6 6044 and then In_Open_Scopes (Scope (Exptyp))
9dfe12ae 6045 then
6046 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
6047 Set_Itype (Ref_Node, Exptyp);
6048 Insert_Action (Ck_Node, Ref_Node);
6049 end if;
6050
ee6ba406 6051 L_Index := First_Index (T_Typ);
6052 R_Index := First_Index (Exptyp);
6053
6054 for Indx in 1 .. Ndims loop
6055 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 6056 or else
6057 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 6058 then
6059 Get_Index_Bounds (L_Index, L_Low, L_High);
6060 Get_Index_Bounds (R_Index, R_Low, R_High);
6061
6062 -- Deal with compile time length check. Note that we
6063 -- skip this in the access case, because the access
6064 -- value may be null, so we cannot know statically.
6065
6066 if not Do_Access
6067 and then Compile_Time_Known_Value (L_Low)
6068 and then Compile_Time_Known_Value (L_High)
6069 and then Compile_Time_Known_Value (R_Low)
6070 and then Compile_Time_Known_Value (R_High)
6071 then
6072 if Expr_Value (L_High) >= Expr_Value (L_Low) then
6073 L_Length := Expr_Value (L_High) -
6074 Expr_Value (L_Low) + 1;
6075 else
6076 L_Length := UI_From_Int (0);
6077 end if;
6078
6079 if Expr_Value (R_High) >= Expr_Value (R_Low) then
6080 R_Length := Expr_Value (R_High) -
6081 Expr_Value (R_Low) + 1;
6082 else
6083 R_Length := UI_From_Int (0);
6084 end if;
6085
6086 if L_Length > R_Length then
6087 Add_Check
6088 (Compile_Time_Constraint_Error
6089 (Wnode, "too few elements for}?", T_Typ));
6090
6091 elsif L_Length < R_Length then
6092 Add_Check
6093 (Compile_Time_Constraint_Error
6094 (Wnode, "too many elements for}?", T_Typ));
6095 end if;
6096
6097 -- The comparison for an individual index subtype
6098 -- is omitted if the corresponding index subtypes
6099 -- statically match, since the result is known to
6100 -- be true. Note that this test is worth while even
6101 -- though we do static evaluation, because non-static
6102 -- subtypes can statically match.
6103
6104 elsif not
6105 Subtypes_Statically_Match
6106 (Etype (L_Index), Etype (R_Index))
6107
6108 and then not
6109 (Same_Bounds (L_Low, R_Low)
6110 and then Same_Bounds (L_High, R_High))
6111 then
6112 Evolve_Or_Else
6113 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
6114 end if;
6115
6116 Next (L_Index);
6117 Next (R_Index);
6118 end if;
6119 end loop;
6120 end;
6121
6122 -- Handle cases where we do not get a usable actual subtype that
6123 -- is constrained. This happens for example in the function call
6124 -- and explicit dereference cases. In these cases, we have to get
6125 -- the length or range from the expression itself, making sure we
6126 -- do not evaluate it more than once.
6127
6128 -- Here Ck_Node is the original expression, or more properly the
feff2f05 6129 -- result of applying Duplicate_Expr to the original tree, forcing
6130 -- the result to be a name.
ee6ba406 6131
6132 else
6133 declare
9dfe12ae 6134 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 6135
6136 begin
6137 -- Build the condition for the explicit dereference case
6138
6139 for Indx in 1 .. Ndims loop
6140 Evolve_Or_Else
6141 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
6142 end loop;
6143 end;
6144 end if;
6145 end if;
6146 end if;
6147
6148 -- Construct the test and insert into the tree
6149
6150 if Present (Cond) then
6151 if Do_Access then
6152 Cond := Guard_Access (Cond, Loc, Ck_Node);
6153 end if;
6154
f15731c4 6155 Add_Check
6156 (Make_Raise_Constraint_Error (Loc,
6157 Condition => Cond,
6158 Reason => CE_Length_Check_Failed));
ee6ba406 6159 end if;
6160
6161 return Ret_Result;
ee6ba406 6162 end Selected_Length_Checks;
6163
6164 ---------------------------
6165 -- Selected_Range_Checks --
6166 ---------------------------
6167
6168 function Selected_Range_Checks
6169 (Ck_Node : Node_Id;
6170 Target_Typ : Entity_Id;
6171 Source_Typ : Entity_Id;
314a23b6 6172 Warn_Node : Node_Id) return Check_Result
ee6ba406 6173 is
6174 Loc : constant Source_Ptr := Sloc (Ck_Node);
6175 S_Typ : Entity_Id;
6176 T_Typ : Entity_Id;
6177 Expr_Actual : Node_Id;
6178 Exptyp : Entity_Id;
6179 Cond : Node_Id := Empty;
6180 Do_Access : Boolean := False;
6181 Wnode : Node_Id := Warn_Node;
6182 Ret_Result : Check_Result := (Empty, Empty);
6183 Num_Checks : Integer := 0;
6184
6185 procedure Add_Check (N : Node_Id);
6186 -- Adds the action given to Ret_Result if N is non-Empty
6187
6188 function Discrete_Range_Cond
6189 (Expr : Node_Id;
314a23b6 6190 Typ : Entity_Id) return Node_Id;
ee6ba406 6191 -- Returns expression to compute:
6192 -- Low_Bound (Expr) < Typ'First
6193 -- or else
6194 -- High_Bound (Expr) > Typ'Last
6195
6196 function Discrete_Expr_Cond
6197 (Expr : Node_Id;
314a23b6 6198 Typ : Entity_Id) return Node_Id;
ee6ba406 6199 -- Returns expression to compute:
6200 -- Expr < Typ'First
6201 -- or else
6202 -- Expr > Typ'Last
6203
6204 function Get_E_First_Or_Last
6205 (E : Entity_Id;
6206 Indx : Nat;
314a23b6 6207 Nam : Name_Id) return Node_Id;
ee6ba406 6208 -- Returns expression to compute:
6209 -- E'First or E'Last
6210
6211 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
6212 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
6213 -- Returns expression to compute:
9dfe12ae 6214 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
ee6ba406 6215
6216 function Range_E_Cond
6217 (Exptyp : Entity_Id;
6218 Typ : Entity_Id;
6219 Indx : Nat)
6220 return Node_Id;
6221 -- Returns expression to compute:
6222 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
6223
6224 function Range_Equal_E_Cond
6225 (Exptyp : Entity_Id;
6226 Typ : Entity_Id;
314a23b6 6227 Indx : Nat) return Node_Id;
ee6ba406 6228 -- Returns expression to compute:
6229 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
6230
6231 function Range_N_Cond
6232 (Expr : Node_Id;
6233 Typ : Entity_Id;
314a23b6 6234 Indx : Nat) return Node_Id;
ee6ba406 6235 -- Return expression to compute:
6236 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
6237
6238 ---------------
6239 -- Add_Check --
6240 ---------------
6241
6242 procedure Add_Check (N : Node_Id) is
6243 begin
6244 if Present (N) then
6245
6246 -- For now, ignore attempt to place more than 2 checks ???
6247
6248 if Num_Checks = 2 then
6249 return;
6250 end if;
6251
6252 pragma Assert (Num_Checks <= 1);
6253 Num_Checks := Num_Checks + 1;
6254 Ret_Result (Num_Checks) := N;
6255 end if;
6256 end Add_Check;
6257
6258 -------------------------
6259 -- Discrete_Expr_Cond --
6260 -------------------------
6261
6262 function Discrete_Expr_Cond
6263 (Expr : Node_Id;
314a23b6 6264 Typ : Entity_Id) return Node_Id
ee6ba406 6265 is
6266 begin
6267 return
6268 Make_Or_Else (Loc,
6269 Left_Opnd =>
6270 Make_Op_Lt (Loc,
6271 Left_Opnd =>
9dfe12ae 6272 Convert_To (Base_Type (Typ),
6273 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 6274 Right_Opnd =>
6275 Convert_To (Base_Type (Typ),
6276 Get_E_First_Or_Last (Typ, 0, Name_First))),
6277
6278 Right_Opnd =>
6279 Make_Op_Gt (Loc,
6280 Left_Opnd =>
9dfe12ae 6281 Convert_To (Base_Type (Typ),
6282 Duplicate_Subexpr_No_Checks (Expr)),
ee6ba406 6283 Right_Opnd =>
6284 Convert_To
6285 (Base_Type (Typ),
6286 Get_E_First_Or_Last (Typ, 0, Name_Last))));
6287 end Discrete_Expr_Cond;
6288
6289 -------------------------
6290 -- Discrete_Range_Cond --
6291 -------------------------
6292
6293 function Discrete_Range_Cond
6294 (Expr : Node_Id;
314a23b6 6295 Typ : Entity_Id) return Node_Id
ee6ba406 6296 is
6297 LB : Node_Id := Low_Bound (Expr);
6298 HB : Node_Id := High_Bound (Expr);
6299
6300 Left_Opnd : Node_Id;
6301 Right_Opnd : Node_Id;
6302
6303 begin
6304 if Nkind (LB) = N_Identifier
feff2f05 6305 and then Ekind (Entity (LB)) = E_Discriminant
6306 then
ee6ba406 6307 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6308 end if;
6309
6310 if Nkind (HB) = N_Identifier
feff2f05 6311 and then Ekind (Entity (HB)) = E_Discriminant
6312 then
ee6ba406 6313 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6314 end if;
6315
6316 Left_Opnd :=
6317 Make_Op_Lt (Loc,
6318 Left_Opnd =>
6319 Convert_To
9dfe12ae 6320 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 6321
6322 Right_Opnd =>
6323 Convert_To
6324 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
6325
6326 if Base_Type (Typ) = Typ then
6327 return Left_Opnd;
6328
6329 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
6330 and then
6331 Compile_Time_Known_Value (High_Bound (Scalar_Range
6332 (Base_Type (Typ))))
6333 then
6334 if Is_Floating_Point_Type (Typ) then
6335 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
6336 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
6337 then
6338 return Left_Opnd;
6339 end if;
6340
6341 else
6342 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
6343 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
6344 then
6345 return Left_Opnd;
6346 end if;
6347 end if;
6348 end if;
6349
6350 Right_Opnd :=
6351 Make_Op_Gt (Loc,
6352 Left_Opnd =>
6353 Convert_To
9dfe12ae 6354 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
ee6ba406 6355
6356 Right_Opnd =>
6357 Convert_To
6358 (Base_Type (Typ),
6359 Get_E_First_Or_Last (Typ, 0, Name_Last)));
6360
6361 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
6362 end Discrete_Range_Cond;
6363
6364 -------------------------
6365 -- Get_E_First_Or_Last --
6366 -------------------------
6367
6368 function Get_E_First_Or_Last
6369 (E : Entity_Id;
6370 Indx : Nat;
314a23b6 6371 Nam : Name_Id) return Node_Id
ee6ba406 6372 is
6373 N : Node_Id;
6374 LB : Node_Id;
6375 HB : Node_Id;
6376 Bound : Node_Id;
6377
6378 begin
6379 if Is_Array_Type (E) then
6380 N := First_Index (E);
6381
6382 for J in 2 .. Indx loop
6383 Next_Index (N);
6384 end loop;
6385
6386 else
6387 N := Scalar_Range (E);
6388 end if;
6389
6390 if Nkind (N) = N_Subtype_Indication then
6391 LB := Low_Bound (Range_Expression (Constraint (N)));
6392 HB := High_Bound (Range_Expression (Constraint (N)));
6393
6394 elsif Is_Entity_Name (N) then
6395 LB := Type_Low_Bound (Etype (N));
6396 HB := Type_High_Bound (Etype (N));
6397
6398 else
6399 LB := Low_Bound (N);
6400 HB := High_Bound (N);
6401 end if;
6402
6403 if Nam = Name_First then
6404 Bound := LB;
6405 else
6406 Bound := HB;
6407 end if;
6408
6409 if Nkind (Bound) = N_Identifier
6410 and then Ekind (Entity (Bound)) = E_Discriminant
6411 then
9dfe12ae 6412 -- If this is a task discriminant, and we are the body, we must
6413 -- retrieve the corresponding body discriminal. This is another
6414 -- consequence of the early creation of discriminals, and the
6415 -- need to generate constraint checks before their declarations
6416 -- are made visible.
6417
6418 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
6419 declare
6420 Tsk : constant Entity_Id :=
6421 Corresponding_Concurrent_Type
6422 (Scope (Entity (Bound)));
6423 Disc : Entity_Id;
6424
6425 begin
6426 if In_Open_Scopes (Tsk)
6427 and then Has_Completion (Tsk)
6428 then
6429 -- Find discriminant of original task, and use its
6430 -- current discriminal, which is the renaming within
6431 -- the task body.
6432
6433 Disc := First_Discriminant (Tsk);
6434 while Present (Disc) loop
6435 if Chars (Disc) = Chars (Entity (Bound)) then
6436 Set_Scope (Discriminal (Disc), Tsk);
6437 return New_Occurrence_Of (Discriminal (Disc), Loc);
6438 end if;
6439
6440 Next_Discriminant (Disc);
6441 end loop;
6442
6443 -- That loop should always succeed in finding a matching
6444 -- entry and returning. Fatal error if not.
6445
6446 raise Program_Error;
6447
6448 else
6449 return
6450 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
6451 end if;
6452 end;
6453 else
6454 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
6455 end if;
ee6ba406 6456
6457 elsif Nkind (Bound) = N_Identifier
6458 and then Ekind (Entity (Bound)) = E_In_Parameter
6459 and then not Inside_Init_Proc
6460 then
6461 return Get_Discriminal (E, Bound);
6462
6463 elsif Nkind (Bound) = N_Integer_Literal then
18563cef 6464 return Make_Integer_Literal (Loc, Intval (Bound));
6465
feff2f05 6466 -- Case of a bound rewritten to an N_Raise_Constraint_Error node
6467 -- because it is an out-of-range value. Duplicate_Subexpr cannot be
6468 -- called on this node because an N_Raise_Constraint_Error is not
6469 -- side effect free, and we may not assume that we are in the proper
6470 -- context to remove side effects on it at the point of reference.
18563cef 6471
6472 elsif Nkind (Bound) = N_Raise_Constraint_Error then
6473 return New_Copy_Tree (Bound);
ee6ba406 6474
6475 else
9dfe12ae 6476 return Duplicate_Subexpr_No_Checks (Bound);
ee6ba406 6477 end if;
6478 end Get_E_First_Or_Last;
6479
6480 -----------------
6481 -- Get_N_First --
6482 -----------------
6483
6484 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
6485 begin
6486 return
6487 Make_Attribute_Reference (Loc,
6488 Attribute_Name => Name_First,
6489 Prefix =>
9dfe12ae 6490 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 6491 Expressions => New_List (
6492 Make_Integer_Literal (Loc, Indx)));
ee6ba406 6493 end Get_N_First;
6494
6495 ----------------
6496 -- Get_N_Last --
6497 ----------------
6498
6499 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
6500 begin
6501 return
6502 Make_Attribute_Reference (Loc,
6503 Attribute_Name => Name_Last,
6504 Prefix =>
9dfe12ae 6505 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
ee6ba406 6506 Expressions => New_List (
6507 Make_Integer_Literal (Loc, Indx)));
ee6ba406 6508 end Get_N_Last;
6509
6510 ------------------
6511 -- Range_E_Cond --
6512 ------------------
6513
6514 function Range_E_Cond
6515 (Exptyp : Entity_Id;
6516 Typ : Entity_Id;
314a23b6 6517 Indx : Nat) return Node_Id
ee6ba406 6518 is
6519 begin
6520 return
6521 Make_Or_Else (Loc,
6522 Left_Opnd =>
6523 Make_Op_Lt (Loc,
6524 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
6525 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6526
6527 Right_Opnd =>
6528 Make_Op_Gt (Loc,
6529 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
6530 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
ee6ba406 6531 end Range_E_Cond;
6532
6533 ------------------------
6534 -- Range_Equal_E_Cond --
6535 ------------------------
6536
6537 function Range_Equal_E_Cond
6538 (Exptyp : Entity_Id;
6539 Typ : Entity_Id;
314a23b6 6540 Indx : Nat) return Node_Id
ee6ba406 6541 is
6542 begin
6543 return
6544 Make_Or_Else (Loc,
6545 Left_Opnd =>
6546 Make_Op_Ne (Loc,
6547 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
6548 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6549 Right_Opnd =>
6550 Make_Op_Ne (Loc,
6551 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
6552 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6553 end Range_Equal_E_Cond;
6554
6555 ------------------
6556 -- Range_N_Cond --
6557 ------------------
6558
6559 function Range_N_Cond
6560 (Expr : Node_Id;
6561 Typ : Entity_Id;
314a23b6 6562 Indx : Nat) return Node_Id
ee6ba406 6563 is
6564 begin
6565 return
6566 Make_Or_Else (Loc,
6567 Left_Opnd =>
6568 Make_Op_Lt (Loc,
6569 Left_Opnd => Get_N_First (Expr, Indx),
6570 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6571
6572 Right_Opnd =>
6573 Make_Op_Gt (Loc,
6574 Left_Opnd => Get_N_Last (Expr, Indx),
6575 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6576 end Range_N_Cond;
6577
6578 -- Start of processing for Selected_Range_Checks
6579
6580 begin
6581 if not Expander_Active then
6582 return Ret_Result;
6583 end if;
6584
6585 if Target_Typ = Any_Type
6586 or else Target_Typ = Any_Composite
6587 or else Raises_Constraint_Error (Ck_Node)
6588 then
6589 return Ret_Result;
6590 end if;
6591
6592 if No (Wnode) then
6593 Wnode := Ck_Node;
6594 end if;
6595
6596 T_Typ := Target_Typ;
6597
6598 if No (Source_Typ) then
6599 S_Typ := Etype (Ck_Node);
6600 else
6601 S_Typ := Source_Typ;
6602 end if;
6603
6604 if S_Typ = Any_Type or else S_Typ = Any_Composite then
6605 return Ret_Result;
6606 end if;
6607
6608 -- The order of evaluating T_Typ before S_Typ seems to be critical
6609 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6610 -- in, and since Node can be an N_Range node, it might be invalid.
6611 -- Should there be an assert check somewhere for taking the Etype of
6612 -- an N_Range node ???
6613
6614 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6615 S_Typ := Designated_Type (S_Typ);
6616 T_Typ := Designated_Type (T_Typ);
6617 Do_Access := True;
6618
2af58f67 6619 -- A simple optimization for the null case
ee6ba406 6620
2af58f67 6621 if Known_Null (Ck_Node) then
ee6ba406 6622 return Ret_Result;
6623 end if;
6624 end if;
6625
6626 -- For an N_Range Node, check for a null range and then if not
6627 -- null generate a range check action.
6628
6629 if Nkind (Ck_Node) = N_Range then
6630
6631 -- There's no point in checking a range against itself
6632
6633 if Ck_Node = Scalar_Range (T_Typ) then
6634 return Ret_Result;
6635 end if;
6636
6637 declare
6638 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
6639 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
6640 LB : constant Node_Id := Low_Bound (Ck_Node);
6641 HB : constant Node_Id := High_Bound (Ck_Node);
6642 Null_Range : Boolean;
6643
6644 Out_Of_Range_L : Boolean;
6645 Out_Of_Range_H : Boolean;
6646
6647 begin
6648 -- Check for case where everything is static and we can
6649 -- do the check at compile time. This is skipped if we
6650 -- have an access type, since the access value may be null.
6651
6652 -- ??? This code can be improved since you only need to know
6653 -- that the two respective bounds (LB & T_LB or HB & T_HB)
6654 -- are known at compile time to emit pertinent messages.
6655
6656 if Compile_Time_Known_Value (LB)
6657 and then Compile_Time_Known_Value (HB)
6658 and then Compile_Time_Known_Value (T_LB)
6659 and then Compile_Time_Known_Value (T_HB)
6660 and then not Do_Access
6661 then
6662 -- Floating-point case
6663
6664 if Is_Floating_Point_Type (S_Typ) then
6665 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
6666 Out_Of_Range_L :=
6667 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
6668 or else
6669 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6670
6671 Out_Of_Range_H :=
6672 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
6673 or else
6674 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6675
6676 -- Fixed or discrete type case
6677
6678 else
6679 Null_Range := Expr_Value (HB) < Expr_Value (LB);
6680 Out_Of_Range_L :=
6681 (Expr_Value (LB) < Expr_Value (T_LB))
6682 or else
6683 (Expr_Value (LB) > Expr_Value (T_HB));
6684
6685 Out_Of_Range_H :=
6686 (Expr_Value (HB) > Expr_Value (T_HB))
6687 or else
6688 (Expr_Value (HB) < Expr_Value (T_LB));
6689 end if;
6690
6691 if not Null_Range then
6692 if Out_Of_Range_L then
6693 if No (Warn_Node) then
6694 Add_Check
6695 (Compile_Time_Constraint_Error
6696 (Low_Bound (Ck_Node),
6697 "static value out of range of}?", T_Typ));
6698
6699 else
6700 Add_Check
6701 (Compile_Time_Constraint_Error
6702 (Wnode,
6703 "static range out of bounds of}?", T_Typ));
6704 end if;
6705 end if;
6706
6707 if Out_Of_Range_H then
6708 if No (Warn_Node) then
6709 Add_Check
6710 (Compile_Time_Constraint_Error
6711 (High_Bound (Ck_Node),
6712 "static value out of range of}?", T_Typ));
6713
6714 else
6715 Add_Check
6716 (Compile_Time_Constraint_Error
6717 (Wnode,
6718 "static range out of bounds of}?", T_Typ));
6719 end if;
6720 end if;
6721
6722 end if;
6723
6724 else
6725 declare
6726 LB : Node_Id := Low_Bound (Ck_Node);
6727 HB : Node_Id := High_Bound (Ck_Node);
6728
6729 begin
feff2f05 6730 -- If either bound is a discriminant and we are within the
6731 -- record declaration, it is a use of the discriminant in a
6732 -- constraint of a component, and nothing can be checked
6733 -- here. The check will be emitted within the init proc.
6734 -- Before then, the discriminal has no real meaning.
6735 -- Similarly, if the entity is a discriminal, there is no
6736 -- check to perform yet.
6737
6738 -- The same holds within a discriminated synchronized type,
6739 -- where the discriminant may constrain a component or an
6740 -- entry family.
ee6ba406 6741
6742 if Nkind (LB) = N_Identifier
0577b0b1 6743 and then Denotes_Discriminant (LB, True)
ee6ba406 6744 then
0577b0b1 6745 if Current_Scope = Scope (Entity (LB))
6746 or else Is_Concurrent_Type (Current_Scope)
6747 or else Ekind (Entity (LB)) /= E_Discriminant
6748 then
ee6ba406 6749 return Ret_Result;
6750 else
6751 LB :=
6752 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6753 end if;
6754 end if;
6755
6756 if Nkind (HB) = N_Identifier
0577b0b1 6757 and then Denotes_Discriminant (HB, True)
ee6ba406 6758 then
0577b0b1 6759 if Current_Scope = Scope (Entity (HB))
6760 or else Is_Concurrent_Type (Current_Scope)
6761 or else Ekind (Entity (HB)) /= E_Discriminant
6762 then
ee6ba406 6763 return Ret_Result;
6764 else
6765 HB :=
6766 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6767 end if;
6768 end if;
6769
6770 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6771 Set_Paren_Count (Cond, 1);
6772
6773 Cond :=
6774 Make_And_Then (Loc,
6775 Left_Opnd =>
6776 Make_Op_Ge (Loc,
9dfe12ae 6777 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6778 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
ee6ba406 6779 Right_Opnd => Cond);
6780 end;
ee6ba406 6781 end if;
6782 end;
6783
6784 elsif Is_Scalar_Type (S_Typ) then
6785
6786 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6787 -- except the above simply sets a flag in the node and lets
6788 -- gigi generate the check base on the Etype of the expression.
6789 -- Sometimes, however we want to do a dynamic check against an
6790 -- arbitrary target type, so we do that here.
6791
6792 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6793 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6794
6795 -- For literals, we can tell if the constraint error will be
6796 -- raised at compile time, so we never need a dynamic check, but
6797 -- if the exception will be raised, then post the usual warning,
6798 -- and replace the literal with a raise constraint error
6799 -- expression. As usual, skip this for access types
6800
6801 elsif Compile_Time_Known_Value (Ck_Node)
6802 and then not Do_Access
6803 then
6804 declare
6805 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6806 UB : constant Node_Id := Type_High_Bound (T_Typ);
6807
6808 Out_Of_Range : Boolean;
6809 Static_Bounds : constant Boolean :=
6810 Compile_Time_Known_Value (LB)
6811 and Compile_Time_Known_Value (UB);
6812
6813 begin
6814 -- Following range tests should use Sem_Eval routine ???
6815
6816 if Static_Bounds then
6817 if Is_Floating_Point_Type (S_Typ) then
6818 Out_Of_Range :=
6819 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6820 or else
6821 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6822
6823 else -- fixed or discrete type
6824 Out_Of_Range :=
6825 Expr_Value (Ck_Node) < Expr_Value (LB)
6826 or else
6827 Expr_Value (Ck_Node) > Expr_Value (UB);
6828 end if;
6829
6830 -- Bounds of the type are static and the literal is
6831 -- out of range so make a warning message.
6832
6833 if Out_Of_Range then
6834 if No (Warn_Node) then
6835 Add_Check
6836 (Compile_Time_Constraint_Error
6837 (Ck_Node,
6838 "static value out of range of}?", T_Typ));
6839
6840 else
6841 Add_Check
6842 (Compile_Time_Constraint_Error
6843 (Wnode,
6844 "static value out of range of}?", T_Typ));
6845 end if;
6846 end if;
6847
6848 else
6849 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6850 end if;
6851 end;
6852
6853 -- Here for the case of a non-static expression, we need a runtime
6854 -- check unless the source type range is guaranteed to be in the
6855 -- range of the target type.
6856
6857 else
7a1dabb3 6858 if not In_Subrange_Of (S_Typ, T_Typ) then
ee6ba406 6859 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6860 end if;
6861 end if;
6862 end if;
6863
6864 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6865 if Is_Constrained (T_Typ) then
6866
6867 Expr_Actual := Get_Referenced_Object (Ck_Node);
6868 Exptyp := Get_Actual_Subtype (Expr_Actual);
6869
6870 if Is_Access_Type (Exptyp) then
6871 Exptyp := Designated_Type (Exptyp);
6872 end if;
6873
6874 -- String_Literal case. This needs to be handled specially be-
6875 -- cause no index types are available for string literals. The
6876 -- condition is simply:
6877
6878 -- T_Typ'Length = string-literal-length
6879
6880 if Nkind (Expr_Actual) = N_String_Literal then
6881 null;
6882
6883 -- General array case. Here we have a usable actual subtype for
6884 -- the expression, and the condition is built from the two types
6885
6886 -- T_Typ'First < Exptyp'First or else
6887 -- T_Typ'Last > Exptyp'Last or else
6888 -- T_Typ'First(1) < Exptyp'First(1) or else
6889 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6890 -- ...
6891
6892 elsif Is_Constrained (Exptyp) then
6893 declare
9dfe12ae 6894 Ndims : constant Nat := Number_Dimensions (T_Typ);
6895
ee6ba406 6896 L_Index : Node_Id;
6897 R_Index : Node_Id;
ee6ba406 6898
6899 begin
6900 L_Index := First_Index (T_Typ);
6901 R_Index := First_Index (Exptyp);
6902
6903 for Indx in 1 .. Ndims loop
6904 if not (Nkind (L_Index) = N_Raise_Constraint_Error
f15731c4 6905 or else
6906 Nkind (R_Index) = N_Raise_Constraint_Error)
ee6ba406 6907 then
ee6ba406 6908 -- Deal with compile time length check. Note that we
6909 -- skip this in the access case, because the access
6910 -- value may be null, so we cannot know statically.
6911
6912 if not
6913 Subtypes_Statically_Match
6914 (Etype (L_Index), Etype (R_Index))
6915 then
6916 -- If the target type is constrained then we
6917 -- have to check for exact equality of bounds
6918 -- (required for qualified expressions).
6919
6920 if Is_Constrained (T_Typ) then
6921 Evolve_Or_Else
6922 (Cond,
6923 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
ee6ba406 6924 else
6925 Evolve_Or_Else
6926 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6927 end if;
6928 end if;
6929
6930 Next (L_Index);
6931 Next (R_Index);
6932
6933 end if;
6934 end loop;
6935 end;
6936
6937 -- Handle cases where we do not get a usable actual subtype that
6938 -- is constrained. This happens for example in the function call
6939 -- and explicit dereference cases. In these cases, we have to get
6940 -- the length or range from the expression itself, making sure we
6941 -- do not evaluate it more than once.
6942
6943 -- Here Ck_Node is the original expression, or more properly the
6944 -- result of applying Duplicate_Expr to the original tree,
6945 -- forcing the result to be a name.
6946
6947 else
6948 declare
9dfe12ae 6949 Ndims : constant Nat := Number_Dimensions (T_Typ);
ee6ba406 6950
6951 begin
6952 -- Build the condition for the explicit dereference case
6953
6954 for Indx in 1 .. Ndims loop
6955 Evolve_Or_Else
6956 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6957 end loop;
6958 end;
6959
6960 end if;
6961
6962 else
feff2f05 6963 -- For a conversion to an unconstrained array type, generate an
6964 -- Action to check that the bounds of the source value are within
6965 -- the constraints imposed by the target type (RM 4.6(38)). No
6966 -- check is needed for a conversion to an access to unconstrained
6967 -- array type, as 4.6(24.15/2) requires the designated subtypes
6968 -- of the two access types to statically match.
6969
6970 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
6971 and then not Do_Access
6972 then
ee6ba406 6973 declare
6974 Opnd_Index : Node_Id;
6975 Targ_Index : Node_Id;
00c403ee 6976 Opnd_Range : Node_Id;
ee6ba406 6977
6978 begin
feff2f05 6979 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
ee6ba406 6980 Targ_Index := First_Index (T_Typ);
00c403ee 6981 while Present (Opnd_Index) loop
6982
6983 -- If the index is a range, use its bounds. If it is an
6984 -- entity (as will be the case if it is a named subtype
6985 -- or an itype created for a slice) retrieve its range.
6986
6987 if Is_Entity_Name (Opnd_Index)
6988 and then Is_Type (Entity (Opnd_Index))
6989 then
6990 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
6991 else
6992 Opnd_Range := Opnd_Index;
6993 end if;
6994
6995 if Nkind (Opnd_Range) = N_Range then
9c486805 6996 if Is_In_Range
6997 (Low_Bound (Opnd_Range), Etype (Targ_Index),
6998 Assume_Valid => True)
ee6ba406 6999 and then
7000 Is_In_Range
9c486805 7001 (High_Bound (Opnd_Range), Etype (Targ_Index),
7002 Assume_Valid => True)
ee6ba406 7003 then
7004 null;
7005
feff2f05 7006 -- If null range, no check needed
f2a06be9 7007
9dfe12ae 7008 elsif
00c403ee 7009 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9dfe12ae 7010 and then
00c403ee 7011 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9dfe12ae 7012 and then
00c403ee 7013 Expr_Value (High_Bound (Opnd_Range)) <
7014 Expr_Value (Low_Bound (Opnd_Range))
9dfe12ae 7015 then
7016 null;
7017
ee6ba406 7018 elsif Is_Out_Of_Range
9c486805 7019 (Low_Bound (Opnd_Range), Etype (Targ_Index),
7020 Assume_Valid => True)
ee6ba406 7021 or else
7022 Is_Out_Of_Range
9c486805 7023 (High_Bound (Opnd_Range), Etype (Targ_Index),
7024 Assume_Valid => True)
ee6ba406 7025 then
7026 Add_Check
7027 (Compile_Time_Constraint_Error
7028 (Wnode, "value out of range of}?", T_Typ));
7029
7030 else
7031 Evolve_Or_Else
7032 (Cond,
7033 Discrete_Range_Cond
00c403ee 7034 (Opnd_Range, Etype (Targ_Index)));
ee6ba406 7035 end if;
7036 end if;
7037
7038 Next_Index (Opnd_Index);
7039 Next_Index (Targ_Index);
7040 end loop;
7041 end;
7042 end if;
7043 end if;
7044 end if;
7045
7046 -- Construct the test and insert into the tree
7047
7048 if Present (Cond) then
7049 if Do_Access then
7050 Cond := Guard_Access (Cond, Loc, Ck_Node);
7051 end if;
7052
f15731c4 7053 Add_Check
7054 (Make_Raise_Constraint_Error (Loc,
7055 Condition => Cond,
7056 Reason => CE_Range_Check_Failed));
ee6ba406 7057 end if;
7058
7059 return Ret_Result;
ee6ba406 7060 end Selected_Range_Checks;
7061
7062 -------------------------------
7063 -- Storage_Checks_Suppressed --
7064 -------------------------------
7065
7066 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
7067 begin
9dfe12ae 7068 if Present (E) and then Checks_May_Be_Suppressed (E) then
7069 return Is_Check_Suppressed (E, Storage_Check);
7070 else
7071 return Scope_Suppress (Storage_Check);
7072 end if;
ee6ba406 7073 end Storage_Checks_Suppressed;
7074
7075 ---------------------------
7076 -- Tag_Checks_Suppressed --
7077 ---------------------------
7078
7079 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
7080 begin
9dfe12ae 7081 if Present (E) then
7082 if Kill_Tag_Checks (E) then
7083 return True;
7084 elsif Checks_May_Be_Suppressed (E) then
7085 return Is_Check_Suppressed (E, Tag_Check);
7086 end if;
7087 end if;
7088
7089 return Scope_Suppress (Tag_Check);
ee6ba406 7090 end Tag_Checks_Suppressed;
7091
0577b0b1 7092 --------------------------
7093 -- Validity_Check_Range --
7094 --------------------------
7095
7096 procedure Validity_Check_Range (N : Node_Id) is
7097 begin
7098 if Validity_Checks_On and Validity_Check_Operands then
7099 if Nkind (N) = N_Range then
7100 Ensure_Valid (Low_Bound (N));
7101 Ensure_Valid (High_Bound (N));
7102 end if;
7103 end if;
7104 end Validity_Check_Range;
7105
7106 --------------------------------
7107 -- Validity_Checks_Suppressed --
7108 --------------------------------
7109
7110 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
7111 begin
7112 if Present (E) and then Checks_May_Be_Suppressed (E) then
7113 return Is_Check_Suppressed (E, Validity_Check);
7114 else
7115 return Scope_Suppress (Validity_Check);
7116 end if;
7117 end Validity_Checks_Suppressed;
7118
ee6ba406 7119end Checks;