]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_aggr.adb
tree.h: Update documentation on nothrow_flag.
[thirdparty/gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
fbf5a39b 9-- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Checks; use Checks;
07fc65c4 29with Debug; use Debug;
70482933
RK
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3; use Exp_Ch3;
35with Exp_Ch7; use Exp_Ch7;
c45b6ae0 36with Exp_Ch9; use Exp_Ch9;
70482933
RK
37with Freeze; use Freeze;
38with Hostparm; use Hostparm;
39with Itypes; use Itypes;
07fc65c4 40with Lib; use Lib;
70482933
RK
41with Nmake; use Nmake;
42with Nlists; use Nlists;
43with Restrict; use Restrict;
44with Rtsfind; use Rtsfind;
07fc65c4 45with Ttypes; use Ttypes;
70482933
RK
46with Sem; use Sem;
47with Sem_Ch3; use Sem_Ch3;
48with Sem_Eval; use Sem_Eval;
49with Sem_Res; use Sem_Res;
50with Sem_Util; use Sem_Util;
51with Sinfo; use Sinfo;
52with Snames; use Snames;
53with Stand; use Stand;
54with Tbuild; use Tbuild;
55with Uintp; use Uintp;
56
57package body Exp_Aggr is
58
59 type Case_Bounds is record
60 Choice_Lo : Node_Id;
61 Choice_Hi : Node_Id;
62 Choice_Node : Node_Id;
63 end record;
64
65 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
66 -- Table type used by Check_Case_Choices procedure
67
68 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
69 -- Sort the Case Table using the Lower Bound of each Choice as the key.
70 -- A simple insertion sort is used since the number of choices in a case
71 -- statement of variant part will usually be small and probably in near
72 -- sorted order.
73
65356e64 74 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
19f0526a
AC
75 -- N is an aggregate (record or array). Checks the presence of default
76 -- initialization (<>) in any component (Ada0Y: AI-287)
65356e64 77
70482933
RK
78 ------------------------------------------------------
79 -- Local subprograms for Record Aggregate Expansion --
80 ------------------------------------------------------
81
82 procedure Expand_Record_Aggregate
83 (N : Node_Id;
84 Orig_Tag : Node_Id := Empty;
85 Parent_Expr : Node_Id := Empty);
86 -- This is the top level procedure for record aggregate expansion.
87 -- Expansion for record aggregates needs expand aggregates for tagged
88 -- record types. Specifically Expand_Record_Aggregate adds the Tag
89 -- field in front of the Component_Association list that was created
90 -- during resolution by Resolve_Record_Aggregate.
91 --
92 -- N is the record aggregate node.
93 -- Orig_Tag is the value of the Tag that has to be provided for this
94 -- specific aggregate. It carries the tag corresponding to the type
95 -- of the outermost aggregate during the recursive expansion
96 -- Parent_Expr is the ancestor part of the original extension
97 -- aggregate
98
99 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
100 -- N is an N_Aggregate of a N_Extension_Aggregate. Typ is the type of
101 -- the aggregate. Transform the given aggregate into a sequence of
102 -- assignments component per component.
103
104 function Build_Record_Aggr_Code
65356e64
AC
105 (N : Node_Id;
106 Typ : Entity_Id;
107 Target : Node_Id;
108 Flist : Node_Id := Empty;
109 Obj : Entity_Id := Empty;
d05ef0ab 110 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
70482933
RK
111 -- N is an N_Aggregate or a N_Extension_Aggregate. Typ is the type
112 -- of the aggregate. Target is an expression containing the
113 -- location on which the component by component assignments will
114 -- take place. Returns the list of assignments plus all other
115 -- adjustments needed for tagged and controlled types. Flist is an
116 -- expression representing the finalization list on which to
117 -- attach the controlled components if any. Obj is present in the
118 -- object declaration and dynamic allocation cases, it contains
119 -- an entity that allows to know if the value being created needs to be
120 -- attached to the final list in case of pragma finalize_Storage_Only.
65356e64
AC
121 -- Is_Limited_Ancestor_Expansion indicates that the function has been
122 -- called recursively to expand the limited ancestor to avoid copying it.
70482933 123
fbf5a39b
AC
124 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
125 -- Return true if one of the component is of a discriminated type with
126 -- defaults. An aggregate for a type with mutable components must be
127 -- expanded into individual assignments.
128
07fc65c4
GB
129 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
130 -- If the type of the aggregate is a type extension with renamed discrimi-
131 -- nants, we must initialize the hidden discriminants of the parent.
132 -- Otherwise, the target object must not be initialized. The discriminants
133 -- are initialized by calling the initialization procedure for the type.
134 -- This is incorrect if the initialization of other components has any
135 -- side effects. We restrict this call to the case where the parent type
136 -- has a variant part, because this is the only case where the hidden
137 -- discriminants are accessed, namely when calling discriminant checking
138 -- functions of the parent type, and when applying a stream attribute to
139 -- an object of the derived type.
140
70482933 141 -----------------------------------------------------
07fc65c4 142 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
143 -----------------------------------------------------
144
07fc65c4
GB
145 procedure Convert_To_Positional
146 (N : Node_Id;
fbf5a39b 147 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
148 Handle_Bit_Packed : Boolean := False);
149 -- If possible, convert named notation to positional notation. This
150 -- conversion is possible only in some static cases. If the conversion
151 -- is possible, then N is rewritten with the analyzed converted
152 -- aggregate. The parameter Max_Others_Replicate controls the maximum
153 -- number of values corresponding to an others choice that will be
154 -- converted to positional notation (the default of 5 is the normal
155 -- limit, and reflects the fact that normally the loop is better than
156 -- a lot of separate assignments). Note that this limit gets overridden
157 -- in any case if either of the restrictions No_Elaboration_Code or
158 -- No_Implicit_Loops is set. The parameter Handle_Bit_Packed is usually
159 -- set False (since we do not expect the back end to handle bit packed
160 -- arrays, so the normal case of conversion is pointless), but in the
161 -- special case of a call from Packed_Array_Aggregate_Handled, we set
162 -- this parameter to True, since these are cases we handle in there.
163
70482933
RK
164 procedure Expand_Array_Aggregate (N : Node_Id);
165 -- This is the top-level routine to perform array aggregate expansion.
166 -- N is the N_Aggregate node to be expanded.
167
168 function Backend_Processing_Possible (N : Node_Id) return Boolean;
169 -- This function checks if array aggregate N can be processed directly
170 -- by Gigi. If this is the case True is returned.
171
172 function Build_Array_Aggr_Code
173 (N : Node_Id;
c45b6ae0 174 Ctype : Entity_Id;
70482933
RK
175 Index : Node_Id;
176 Into : Node_Id;
177 Scalar_Comp : Boolean;
178 Indices : List_Id := No_List;
d05ef0ab 179 Flist : Node_Id := Empty) return List_Id;
70482933
RK
180 -- This recursive routine returns a list of statements containing the
181 -- loops and assignments that are needed for the expansion of the array
182 -- aggregate N.
183 --
fbf5a39b
AC
184 -- N is the (sub-)aggregate node to be expanded into code. This node
185 -- has been fully analyzed, and its Etype is properly set.
70482933
RK
186 --
187 -- Index is the index node corresponding to the array sub-aggregate N.
188 --
189 -- Into is the target expression into which we are copying the aggregate.
fbf5a39b
AC
190 -- Note that this node may not have been analyzed yet, and so the Etype
191 -- field may not be set.
70482933
RK
192 --
193 -- Scalar_Comp is True if the component type of the aggregate is scalar.
194 --
195 -- Indices is the current list of expressions used to index the
196 -- object we are writing into.
197 --
198 -- Flist is an expression representing the finalization list on which
199 -- to attach the controlled components if any.
200
201 function Number_Of_Choices (N : Node_Id) return Nat;
202 -- Returns the number of discrete choices (not including the others choice
203 -- if present) contained in (sub-)aggregate N.
204
205 function Late_Expansion
206 (N : Node_Id;
207 Typ : Entity_Id;
208 Target : Node_Id;
209 Flist : Node_Id := Empty;
d05ef0ab 210 Obj : Entity_Id := Empty) return List_Id;
70482933
RK
211 -- N is a nested (record or array) aggregate that has been marked
212 -- with 'Delay_Expansion'. Typ is the expected type of the
213 -- aggregate and Target is a (duplicable) expression that will
214 -- hold the result of the aggregate expansion. Flist is the
215 -- finalization list to be used to attach controlled
216 -- components. 'Obj' when non empty, carries the original object
217 -- being initialized in order to know if it needs to be attached
218 -- to the previous parameter which may not be the case when
219 -- Finalize_Storage_Only is set. Basically this procedure is used
220 -- to implement top-down expansions of nested aggregates. This is
221 -- necessary for avoiding temporaries at each level as well as for
222 -- propagating the right internal finalization list.
223
224 function Make_OK_Assignment_Statement
225 (Sloc : Source_Ptr;
226 Name : Node_Id;
d05ef0ab 227 Expression : Node_Id) return Node_Id;
70482933
RK
228 -- This is like Make_Assignment_Statement, except that Assignment_OK
229 -- is set in the left operand. All assignments built by this unit
230 -- use this routine. This is needed to deal with assignments to
231 -- initialized constants that are done in place.
232
07fc65c4
GB
233 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
234 -- Given an array aggregate, this function handles the case of a packed
235 -- array aggregate with all constant values, where the aggregate can be
236 -- evaluated at compile time. If this is possible, then N is rewritten
237 -- to be its proper compile time value with all the components properly
238 -- assembled. The expression is analyzed and resolved and True is
239 -- returned. If this transformation is not possible, N is unchanged
240 -- and False is returned
241
242 function Safe_Slice_Assignment (N : Node_Id) return Boolean;
70482933
RK
243 -- If a slice assignment has an aggregate with a single others_choice,
244 -- the assignment can be done in place even if bounds are not static,
245 -- by converting it into a loop over the discrete range of the slice.
246
247 ---------------------------------
248 -- Backend_Processing_Possible --
249 ---------------------------------
250
251 -- Backend processing by Gigi/gcc is possible only if all the following
252 -- conditions are met:
253
254 -- 1. N is fully positional
255
256 -- 2. N is not a bit-packed array aggregate;
257
258 -- 3. The size of N's array type must be known at compile time. Note
259 -- that this implies that the component size is also known
260
261 -- 4. The array type of N does not follow the Fortran layout convention
262 -- or if it does it must be 1 dimensional.
263
264 -- 5. The array component type is tagged, which may necessitate
265 -- reassignment of proper tags.
266
267 function Backend_Processing_Possible (N : Node_Id) return Boolean is
268 Typ : constant Entity_Id := Etype (N);
269 -- Typ is the correct constrained array subtype of the aggregate.
270
271 function Static_Check (N : Node_Id; Index : Node_Id) return Boolean;
272 -- Recursively checks that N is fully positional, returns true if so.
273
274 ------------------
275 -- Static_Check --
276 ------------------
277
278 function Static_Check (N : Node_Id; Index : Node_Id) return Boolean is
279 Expr : Node_Id;
280
281 begin
282 -- Check for component associations
283
284 if Present (Component_Associations (N)) then
285 return False;
286 end if;
287
288 -- Recurse to check subaggregates, which may appear in qualified
289 -- expressions. If delayed, the front-end will have to expand.
290
291 Expr := First (Expressions (N));
292
293 while Present (Expr) loop
294
295 if Is_Delayed_Aggregate (Expr) then
296 return False;
297 end if;
298
299 if Present (Next_Index (Index))
300 and then not Static_Check (Expr, Next_Index (Index))
301 then
302 return False;
303 end if;
304
305 Next (Expr);
306 end loop;
307
308 return True;
309 end Static_Check;
310
311 -- Start of processing for Backend_Processing_Possible
312
313 begin
314 -- Checks 2 (array must not be bit packed)
315
316 if Is_Bit_Packed_Array (Typ) then
317 return False;
318 end if;
319
320 -- Checks 4 (array must not be multi-dimensional Fortran case)
321
322 if Convention (Typ) = Convention_Fortran
323 and then Number_Dimensions (Typ) > 1
324 then
325 return False;
326 end if;
327
328 -- Checks 3 (size of array must be known at compile time)
329
330 if not Size_Known_At_Compile_Time (Typ) then
331 return False;
332 end if;
333
334 -- Checks 1 (aggregate must be fully positional)
335
336 if not Static_Check (N, First_Index (Typ)) then
337 return False;
338 end if;
339
340 -- Checks 5 (if the component type is tagged, then we may need
341 -- to do tag adjustments; perhaps this should be refined to
342 -- check for any component associations that actually
343 -- need tag adjustment, along the lines of the test that's
344 -- done in Has_Delayed_Nested_Aggregate_Or_Tagged_Comps
345 -- for record aggregates with tagged components, but not
346 -- clear whether it's worthwhile ???; in the case of the
347 -- JVM, object tags are handled implicitly)
348
349 if Is_Tagged_Type (Component_Type (Typ)) and then not Java_VM then
350 return False;
351 end if;
352
353 -- Backend processing is possible
354
355 Set_Compile_Time_Known_Aggregate (N, True);
356 Set_Size_Known_At_Compile_Time (Etype (N), True);
357 return True;
358 end Backend_Processing_Possible;
359
360 ---------------------------
361 -- Build_Array_Aggr_Code --
362 ---------------------------
363
364 -- The code that we generate from a one dimensional aggregate is
365
366 -- 1. If the sub-aggregate contains discrete choices we
367
368 -- (a) Sort the discrete choices
369
370 -- (b) Otherwise for each discrete choice that specifies a range we
371 -- emit a loop. If a range specifies a maximum of three values, or
372 -- we are dealing with an expression we emit a sequence of
373 -- assignments instead of a loop.
374
375 -- (c) Generate the remaining loops to cover the others choice if any.
376
377 -- 2. If the aggregate contains positional elements we
378
379 -- (a) translate the positional elements in a series of assignments.
380
381 -- (b) Generate a final loop to cover the others choice if any.
382 -- Note that this final loop has to be a while loop since the case
383
384 -- L : Integer := Integer'Last;
385 -- H : Integer := Integer'Last;
386 -- A : array (L .. H) := (1, others =>0);
387
388 -- cannot be handled by a for loop. Thus for the following
389
390 -- array (L .. H) := (.. positional elements.., others =>E);
391
392 -- we always generate something like:
393
07fc65c4
GB
394 -- J : Index_Type := Index_Of_Last_Positional_Element;
395 -- while J < H loop
396 -- J := Index_Base'Succ (J)
397 -- Tmp (J) := E;
70482933
RK
398 -- end loop;
399
400 function Build_Array_Aggr_Code
401 (N : Node_Id;
c45b6ae0 402 Ctype : Entity_Id;
70482933
RK
403 Index : Node_Id;
404 Into : Node_Id;
405 Scalar_Comp : Boolean;
406 Indices : List_Id := No_List;
d05ef0ab 407 Flist : Node_Id := Empty) return List_Id
70482933
RK
408 is
409 Loc : constant Source_Ptr := Sloc (N);
410 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
411 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
412 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
413
414 function Add (Val : Int; To : Node_Id) return Node_Id;
415 -- Returns an expression where Val is added to expression To,
416 -- unless To+Val is provably out of To's base type range.
417 -- To must be an already analyzed expression.
418
419 function Empty_Range (L, H : Node_Id) return Boolean;
420 -- Returns True if the range defined by L .. H is certainly empty.
421
422 function Equal (L, H : Node_Id) return Boolean;
423 -- Returns True if L = H for sure.
424
425 function Index_Base_Name return Node_Id;
426 -- Returns a new reference to the index type name.
427
428 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
fbf5a39b
AC
429 -- Ind must be a side-effect free expression. If the input aggregate
430 -- N to Build_Loop contains no sub-aggregates, then this function
431 -- returns the assignment statement:
70482933
RK
432 --
433 -- Into (Indices, Ind) := Expr;
434 --
435 -- Otherwise we call Build_Code recursively.
c45b6ae0
AC
436 --
437 -- Ada0Y (AI-287): In case of default initialized component, Expr is
438 -- empty and we generate a call to the corresponding IP subprogram.
70482933
RK
439
440 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
441 -- Nodes L and H must be side-effect free expressions.
442 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
443 -- This routine returns the for loop statement
444 --
445 -- for J in Index_Base'(L) .. Index_Base'(H) loop
446 -- Into (Indices, J) := Expr;
447 -- end loop;
448 --
449 -- Otherwise we call Build_Code recursively.
450 -- As an optimization if the loop covers 3 or less scalar elements we
451 -- generate a sequence of assignments.
452
453 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
454 -- Nodes L and H must be side-effect free expressions.
455 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
456 -- This routine returns the while loop statement
457 --
07fc65c4
GB
458 -- J : Index_Base := L;
459 -- while J < H loop
460 -- J := Index_Base'Succ (J);
461 -- Into (Indices, J) := Expr;
70482933
RK
462 -- end loop;
463 --
fbf5a39b 464 -- Otherwise we call Build_Code recursively
70482933
RK
465
466 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
467 function Local_Expr_Value (E : Node_Id) return Uint;
468 -- These two Local routines are used to replace the corresponding ones
469 -- in sem_eval because while processing the bounds of an aggregate with
470 -- discrete choices whose index type is an enumeration, we build static
471 -- expressions not recognized by Compile_Time_Known_Value as such since
472 -- they have not yet been analyzed and resolved. All the expressions in
473 -- question are things like Index_Base_Name'Val (Const) which we can
474 -- easily recognize as being constant.
475
476 ---------
477 -- Add --
478 ---------
479
480 function Add (Val : Int; To : Node_Id) return Node_Id is
481 Expr_Pos : Node_Id;
482 Expr : Node_Id;
483 To_Pos : Node_Id;
fbf5a39b
AC
484 U_To : Uint;
485 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
486
487 begin
488 -- Note: do not try to optimize the case of Val = 0, because
489 -- we need to build a new node with the proper Sloc value anyway.
490
491 -- First test if we can do constant folding
492
493 if Local_Compile_Time_Known_Value (To) then
494 U_To := Local_Expr_Value (To) + Val;
495
496 -- Determine if our constant is outside the range of the index.
497 -- If so return an Empty node. This empty node will be caught
498 -- by Empty_Range below.
499
500 if Compile_Time_Known_Value (Index_Base_L)
501 and then U_To < Expr_Value (Index_Base_L)
502 then
503 return Empty;
504
505 elsif Compile_Time_Known_Value (Index_Base_H)
506 and then U_To > Expr_Value (Index_Base_H)
507 then
508 return Empty;
509 end if;
510
511 Expr_Pos := Make_Integer_Literal (Loc, U_To);
512 Set_Is_Static_Expression (Expr_Pos);
513
514 if not Is_Enumeration_Type (Index_Base) then
515 Expr := Expr_Pos;
516
517 -- If we are dealing with enumeration return
518 -- Index_Base'Val (Expr_Pos)
519
520 else
521 Expr :=
522 Make_Attribute_Reference
523 (Loc,
524 Prefix => Index_Base_Name,
525 Attribute_Name => Name_Val,
526 Expressions => New_List (Expr_Pos));
527 end if;
528
529 return Expr;
530 end if;
531
532 -- If we are here no constant folding possible
533
534 if not Is_Enumeration_Type (Index_Base) then
535 Expr :=
536 Make_Op_Add (Loc,
537 Left_Opnd => Duplicate_Subexpr (To),
538 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
539
540 -- If we are dealing with enumeration return
541 -- Index_Base'Val (Index_Base'Pos (To) + Val)
542
543 else
544 To_Pos :=
545 Make_Attribute_Reference
546 (Loc,
547 Prefix => Index_Base_Name,
548 Attribute_Name => Name_Pos,
549 Expressions => New_List (Duplicate_Subexpr (To)));
550
551 Expr_Pos :=
552 Make_Op_Add (Loc,
553 Left_Opnd => To_Pos,
554 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
555
556 Expr :=
557 Make_Attribute_Reference
558 (Loc,
559 Prefix => Index_Base_Name,
560 Attribute_Name => Name_Val,
561 Expressions => New_List (Expr_Pos));
562 end if;
563
564 return Expr;
565 end Add;
566
567 -----------------
568 -- Empty_Range --
569 -----------------
570
571 function Empty_Range (L, H : Node_Id) return Boolean is
572 Is_Empty : Boolean := False;
573 Low : Node_Id;
574 High : Node_Id;
575
576 begin
577 -- First check if L or H were already detected as overflowing the
578 -- index base range type by function Add above. If this is so Add
579 -- returns the empty node.
580
581 if No (L) or else No (H) then
582 return True;
583 end if;
584
585 for J in 1 .. 3 loop
586 case J is
587
588 -- L > H range is empty
589
590 when 1 =>
591 Low := L;
592 High := H;
593
594 -- B_L > H range must be empty
595
596 when 2 =>
597 Low := Index_Base_L;
598 High := H;
599
600 -- L > B_H range must be empty
601
602 when 3 =>
603 Low := L;
604 High := Index_Base_H;
605 end case;
606
607 if Local_Compile_Time_Known_Value (Low)
608 and then Local_Compile_Time_Known_Value (High)
609 then
610 Is_Empty :=
611 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
612 end if;
613
614 exit when Is_Empty;
615 end loop;
616
617 return Is_Empty;
618 end Empty_Range;
619
620 -----------
621 -- Equal --
622 -----------
623
624 function Equal (L, H : Node_Id) return Boolean is
625 begin
626 if L = H then
627 return True;
628
629 elsif Local_Compile_Time_Known_Value (L)
630 and then Local_Compile_Time_Known_Value (H)
631 then
632 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
633 end if;
634
635 return False;
636 end Equal;
637
638 ----------------
639 -- Gen_Assign --
640 ----------------
641
642 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
fbf5a39b 643 L : constant List_Id := New_List;
70482933
RK
644 F : Entity_Id;
645 A : Node_Id;
646
647 New_Indices : List_Id;
648 Indexed_Comp : Node_Id;
649 Expr_Q : Node_Id;
650 Comp_Type : Entity_Id := Empty;
651
652 function Add_Loop_Actions (Lis : List_Id) return List_Id;
653 -- Collect insert_actions generated in the construction of a
654 -- loop, and prepend them to the sequence of assignments to
655 -- complete the eventual body of the loop.
656
657 ----------------------
658 -- Add_Loop_Actions --
659 ----------------------
660
661 function Add_Loop_Actions (Lis : List_Id) return List_Id is
662 Res : List_Id;
663
664 begin
c45b6ae0
AC
665 -- Ada0Y (AI-287): Do nothing else in case of default initialized
666 -- component
667
668 if not Present (Expr) then
669 return Lis;
670
671 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
672 and then Present (Loop_Actions (Parent (Expr)))
673 then
674 Append_List (Lis, Loop_Actions (Parent (Expr)));
675 Res := Loop_Actions (Parent (Expr));
676 Set_Loop_Actions (Parent (Expr), No_List);
677 return Res;
678
679 else
680 return Lis;
681 end if;
682 end Add_Loop_Actions;
683
684 -- Start of processing for Gen_Assign
685
686 begin
687 if No (Indices) then
688 New_Indices := New_List;
689 else
690 New_Indices := New_Copy_List_Tree (Indices);
691 end if;
692
693 Append_To (New_Indices, Ind);
694
695 if Present (Flist) then
696 F := New_Copy_Tree (Flist);
697
698 elsif Present (Etype (N)) and then Controlled_Type (Etype (N)) then
699 if Is_Entity_Name (Into)
700 and then Present (Scope (Entity (Into)))
701 then
702 F := Find_Final_List (Scope (Entity (Into)));
70482933
RK
703 else
704 F := Find_Final_List (Current_Scope);
705 end if;
706 else
c45b6ae0 707 F := Empty;
70482933
RK
708 end if;
709
710 if Present (Next_Index (Index)) then
711 return
712 Add_Loop_Actions (
713 Build_Array_Aggr_Code
c45b6ae0
AC
714 (N => Expr,
715 Ctype => Ctype,
716 Index => Next_Index (Index),
717 Into => Into,
718 Scalar_Comp => Scalar_Comp,
719 Indices => New_Indices,
720 Flist => F));
70482933
RK
721 end if;
722
723 -- If we get here then we are at a bottom-level (sub-)aggregate
724
fbf5a39b
AC
725 Indexed_Comp :=
726 Checks_Off
727 (Make_Indexed_Component (Loc,
728 Prefix => New_Copy_Tree (Into),
729 Expressions => New_Indices));
70482933
RK
730
731 Set_Assignment_OK (Indexed_Comp);
732
c45b6ae0
AC
733 -- Ada0Y (AI-287): In case of default initialized component, Expr
734 -- is not present (and therefore we also initialize Expr_Q to empty)
735
736 if not Present (Expr) then
737 Expr_Q := Empty;
738 elsif Nkind (Expr) = N_Qualified_Expression then
70482933
RK
739 Expr_Q := Expression (Expr);
740 else
741 Expr_Q := Expr;
742 end if;
743
744 if Present (Etype (N))
745 and then Etype (N) /= Any_Composite
746 then
747 Comp_Type := Component_Type (Etype (N));
c45b6ae0 748 pragma Assert (Comp_Type = Ctype); -- AI-287
70482933
RK
749
750 elsif Present (Next (First (New_Indices))) then
751
c45b6ae0
AC
752 -- Ada0Y (AI-287): Do nothing in case of default initialized
753 -- component because we have received the component type in
754 -- the formal parameter Ctype.
755 -- ??? I have added some assert pragmas to check if this new
756 -- formal can be used to replace this code in all cases.
70482933 757
c45b6ae0 758 if Present (Expr) then
70482933 759
c45b6ae0
AC
760 -- This is a multidimensional array. Recover the component
761 -- type from the outermost aggregate, because subaggregates
762 -- do not have an assigned type.
70482933 763
c45b6ae0
AC
764 declare
765 P : Node_Id := Parent (Expr);
70482933 766
c45b6ae0
AC
767 begin
768 while Present (P) loop
769
770 if Nkind (P) = N_Aggregate
771 and then Present (Etype (P))
772 then
773 Comp_Type := Component_Type (Etype (P));
774 exit;
775
776 else
777 P := Parent (P);
778 end if;
779 end loop;
780 pragma Assert (Comp_Type = Ctype); -- AI-287
781 end;
782 end if;
70482933
RK
783 end if;
784
c45b6ae0
AC
785 -- Ada0Y (AI-287): We only analyze the expression in case of non
786 -- default initialized components (otherwise Expr_Q is not present)
787
788 if Present (Expr_Q)
789 and then (Nkind (Expr_Q) = N_Aggregate
790 or else Nkind (Expr_Q) = N_Extension_Aggregate)
70482933 791 then
70482933
RK
792 -- At this stage the Expression may not have been
793 -- analyzed yet because the array aggregate code has not
794 -- been updated to use the Expansion_Delayed flag and
795 -- avoid analysis altogether to solve the same problem
796 -- (see Resolve_Aggr_Expr) so let's do the analysis of
797 -- non-array aggregates now in order to get the value of
798 -- Expansion_Delayed flag for the inner aggregate ???
799
800 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
801 Analyze_And_Resolve (Expr_Q, Comp_Type);
802 end if;
803
804 if Is_Delayed_Aggregate (Expr_Q) then
805 return
806 Add_Loop_Actions (
807 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
808 end if;
809 end if;
810
c45b6ae0
AC
811 -- Ada0Y (AI-287): In case of default initialized component, call
812 -- the initialization subprogram associated with the component type
70482933 813
c45b6ae0 814 if not Present (Expr) then
70482933 815
c45b6ae0
AC
816 Append_List_To (L,
817 Build_Initialization_Call (Loc,
818 Id_Ref => Indexed_Comp,
819 Typ => Ctype,
820 With_Default_Init => True));
70482933 821
c45b6ae0 822 else
70482933 823
c45b6ae0
AC
824 -- Now generate the assignment with no associated controlled
825 -- actions since the target of the assignment may not have
826 -- been initialized, it is not possible to Finalize it as
827 -- expected by normal controlled assignment. The rest of the
828 -- controlled actions are done manually with the proper
829 -- finalization list coming from the context.
70482933 830
70482933
RK
831 A :=
832 Make_OK_Assignment_Statement (Loc,
c45b6ae0
AC
833 Name => Indexed_Comp,
834 Expression => New_Copy_Tree (Expr));
70482933 835
c45b6ae0
AC
836 if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
837 Set_No_Ctrl_Actions (A);
838 end if;
70482933
RK
839
840 Append_To (L, A);
70482933 841
c45b6ae0
AC
842 -- Adjust the tag if tagged (because of possible view
843 -- conversions), unless compiling for the Java VM
844 -- where tags are implicit.
70482933 845
c45b6ae0
AC
846 if Present (Comp_Type)
847 and then Is_Tagged_Type (Comp_Type)
848 and then not Java_VM
849 then
850 A :=
851 Make_OK_Assignment_Statement (Loc,
852 Name =>
853 Make_Selected_Component (Loc,
854 Prefix => New_Copy_Tree (Indexed_Comp),
855 Selector_Name =>
856 New_Reference_To (Tag_Component (Comp_Type), Loc)),
857
858 Expression =>
859 Unchecked_Convert_To (RTE (RE_Tag),
860 New_Reference_To (
861 Access_Disp_Table (Comp_Type), Loc)));
862
863 Append_To (L, A);
864 end if;
865
866 -- Adjust and Attach the component to the proper final list
867 -- which can be the controller of the outer record object or
868 -- the final list associated with the scope
869
870 if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
871 Append_List_To (L,
872 Make_Adjust_Call (
873 Ref => New_Copy_Tree (Indexed_Comp),
874 Typ => Comp_Type,
875 Flist_Ref => F,
876 With_Attach => Make_Integer_Literal (Loc, 1)));
877 end if;
70482933
RK
878 end if;
879
880 return Add_Loop_Actions (L);
881 end Gen_Assign;
882
883 --------------
884 -- Gen_Loop --
885 --------------
886
887 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 888 L_J : Node_Id;
70482933
RK
889
890 L_Range : Node_Id;
891 -- Index_Base'(L) .. Index_Base'(H)
892
893 L_Iteration_Scheme : Node_Id;
07fc65c4 894 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
895
896 L_Body : List_Id;
897 -- The statements to execute in the loop
898
fbf5a39b
AC
899 S : constant List_Id := New_List;
900 -- List of statements
70482933
RK
901
902 Tcopy : Node_Id;
903 -- Copy of expression tree, used for checking purposes
904
905 begin
906 -- If loop bounds define an empty range return the null statement
907
908 if Empty_Range (L, H) then
909 Append_To (S, Make_Null_Statement (Loc));
910
c45b6ae0
AC
911 -- Ada0Y (AI-287): Nothing else need to be done in case of
912 -- default initialized component
70482933 913
c45b6ae0
AC
914 if not Present (Expr) then
915 null;
916
917 else
918 -- The expression must be type-checked even though no component
919 -- of the aggregate will have this value. This is done only for
920 -- actual components of the array, not for subaggregates. Do
921 -- the check on a copy, because the expression may be shared
922 -- among several choices, some of which might be non-null.
923
924 if Present (Etype (N))
925 and then Is_Array_Type (Etype (N))
926 and then No (Next_Index (Index))
927 then
928 Expander_Mode_Save_And_Set (False);
929 Tcopy := New_Copy_Tree (Expr);
930 Set_Parent (Tcopy, N);
931 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
932 Expander_Mode_Restore;
933 end if;
70482933
RK
934 end if;
935
936 return S;
937
938 -- If loop bounds are the same then generate an assignment
939
940 elsif Equal (L, H) then
941 return Gen_Assign (New_Copy_Tree (L), Expr);
942
943 -- If H - L <= 2 then generate a sequence of assignments
944 -- when we are processing the bottom most aggregate and it contains
945 -- scalar components.
946
947 elsif No (Next_Index (Index))
948 and then Scalar_Comp
949 and then Local_Compile_Time_Known_Value (L)
950 and then Local_Compile_Time_Known_Value (H)
951 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
952 then
c45b6ae0 953
70482933
RK
954 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
955 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
956
957 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
958 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
959 end if;
960
961 return S;
962 end if;
963
07fc65c4 964 -- Otherwise construct the loop, starting with the loop index L_J
70482933 965
07fc65c4 966 L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
70482933
RK
967
968 -- Construct "L .. H"
969
970 L_Range :=
971 Make_Range
972 (Loc,
973 Low_Bound => Make_Qualified_Expression
974 (Loc,
975 Subtype_Mark => Index_Base_Name,
976 Expression => L),
977 High_Bound => Make_Qualified_Expression
978 (Loc,
979 Subtype_Mark => Index_Base_Name,
980 Expression => H));
981
07fc65c4 982 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
983
984 L_Iteration_Scheme :=
985 Make_Iteration_Scheme
986 (Loc,
987 Loop_Parameter_Specification =>
988 Make_Loop_Parameter_Specification
989 (Loc,
07fc65c4 990 Defining_Identifier => L_J,
70482933
RK
991 Discrete_Subtype_Definition => L_Range));
992
993 -- Construct the statements to execute in the loop body
994
07fc65c4 995 L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
70482933
RK
996
997 -- Construct the final loop
998
999 Append_To (S, Make_Implicit_Loop_Statement
1000 (Node => N,
1001 Identifier => Empty,
1002 Iteration_Scheme => L_Iteration_Scheme,
1003 Statements => L_Body));
1004
1005 return S;
1006 end Gen_Loop;
1007
1008 ---------------
1009 -- Gen_While --
1010 ---------------
1011
1012 -- The code built is
1013
07fc65c4
GB
1014 -- W_J : Index_Base := L;
1015 -- while W_J < H loop
1016 -- W_J := Index_Base'Succ (W);
70482933
RK
1017 -- L_Body;
1018 -- end loop;
1019
1020 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1021 W_J : Node_Id;
70482933
RK
1022
1023 W_Decl : Node_Id;
07fc65c4 1024 -- W_J : Base_Type := L;
70482933
RK
1025
1026 W_Iteration_Scheme : Node_Id;
07fc65c4 1027 -- while W_J < H
70482933
RK
1028
1029 W_Index_Succ : Node_Id;
07fc65c4 1030 -- Index_Base'Succ (J)
70482933 1031
fbf5a39b 1032 W_Increment : Node_Id;
07fc65c4 1033 -- W_J := Index_Base'Succ (W)
70482933 1034
fbf5a39b 1035 W_Body : constant List_Id := New_List;
70482933
RK
1036 -- The statements to execute in the loop
1037
fbf5a39b 1038 S : constant List_Id := New_List;
70482933
RK
1039 -- list of statement
1040
1041 begin
1042 -- If loop bounds define an empty range or are equal return null
1043
1044 if Empty_Range (L, H) or else Equal (L, H) then
1045 Append_To (S, Make_Null_Statement (Loc));
1046 return S;
1047 end if;
1048
07fc65c4 1049 -- Build the decl of W_J
70482933 1050
07fc65c4 1051 W_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
70482933
RK
1052 W_Decl :=
1053 Make_Object_Declaration
1054 (Loc,
07fc65c4 1055 Defining_Identifier => W_J,
70482933
RK
1056 Object_Definition => Index_Base_Name,
1057 Expression => L);
1058
1059 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1060 -- that in this particular case L is a fresh Expr generated by
1061 -- Add which we are the only ones to use.
1062
1063 Append_To (S, W_Decl);
1064
fbf5a39b 1065 -- Construct " while W_J < H"
70482933
RK
1066
1067 W_Iteration_Scheme :=
1068 Make_Iteration_Scheme
1069 (Loc,
1070 Condition => Make_Op_Lt
1071 (Loc,
07fc65c4 1072 Left_Opnd => New_Reference_To (W_J, Loc),
70482933
RK
1073 Right_Opnd => New_Copy_Tree (H)));
1074
1075 -- Construct the statements to execute in the loop body
1076
1077 W_Index_Succ :=
1078 Make_Attribute_Reference
1079 (Loc,
1080 Prefix => Index_Base_Name,
1081 Attribute_Name => Name_Succ,
07fc65c4 1082 Expressions => New_List (New_Reference_To (W_J, Loc)));
70482933
RK
1083
1084 W_Increment :=
1085 Make_OK_Assignment_Statement
1086 (Loc,
07fc65c4 1087 Name => New_Reference_To (W_J, Loc),
70482933
RK
1088 Expression => W_Index_Succ);
1089
1090 Append_To (W_Body, W_Increment);
1091 Append_List_To (W_Body,
07fc65c4 1092 Gen_Assign (New_Reference_To (W_J, Loc), Expr));
70482933
RK
1093
1094 -- Construct the final loop
1095
1096 Append_To (S, Make_Implicit_Loop_Statement
1097 (Node => N,
1098 Identifier => Empty,
1099 Iteration_Scheme => W_Iteration_Scheme,
1100 Statements => W_Body));
1101
1102 return S;
1103 end Gen_While;
1104
1105 ---------------------
1106 -- Index_Base_Name --
1107 ---------------------
1108
1109 function Index_Base_Name return Node_Id is
1110 begin
1111 return New_Reference_To (Index_Base, Sloc (N));
1112 end Index_Base_Name;
1113
1114 ------------------------------------
1115 -- Local_Compile_Time_Known_Value --
1116 ------------------------------------
1117
1118 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1119 begin
1120 return Compile_Time_Known_Value (E)
1121 or else
1122 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1123 and then Attribute_Name (E) = Name_Val
1124 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1125 end Local_Compile_Time_Known_Value;
1126
1127 ----------------------
1128 -- Local_Expr_Value --
1129 ----------------------
1130
1131 function Local_Expr_Value (E : Node_Id) return Uint is
1132 begin
1133 if Compile_Time_Known_Value (E) then
1134 return Expr_Value (E);
1135 else
1136 return Expr_Value (First (Expressions (E)));
1137 end if;
1138 end Local_Expr_Value;
1139
1140 -- Build_Array_Aggr_Code Variables
1141
1142 Assoc : Node_Id;
1143 Choice : Node_Id;
1144 Expr : Node_Id;
fbf5a39b 1145 Typ : Entity_Id;
70482933 1146
c45b6ae0
AC
1147 Others_Expr : Node_Id := Empty;
1148 Others_Mbox_Present : Boolean := False;
70482933
RK
1149
1150 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1151 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1152 -- The aggregate bounds of this specific sub-aggregate. Note that if
1153 -- the code generated by Build_Array_Aggr_Code is executed then these
1154 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1155
fbf5a39b
AC
1156 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1157 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
70482933
RK
1158 -- After Duplicate_Subexpr these are side-effect free.
1159
c45b6ae0
AC
1160 Low : Node_Id;
1161 High : Node_Id;
70482933
RK
1162
1163 Nb_Choices : Nat := 0;
1164 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1165 -- Used to sort all the different choice values
1166
1167 Nb_Elements : Int;
1168 -- Number of elements in the positional aggregate
1169
fbf5a39b 1170 New_Code : constant List_Id := New_List;
70482933
RK
1171
1172 -- Start of processing for Build_Array_Aggr_Code
1173
1174 begin
fbf5a39b
AC
1175 -- First before we start, a special case. if we have a bit packed
1176 -- array represented as a modular type, then clear the value to
1177 -- zero first, to ensure that unused bits are properly cleared.
1178
1179 Typ := Etype (N);
1180
1181 if Present (Typ)
1182 and then Is_Bit_Packed_Array (Typ)
1183 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1184 then
1185 Append_To (New_Code,
1186 Make_Assignment_Statement (Loc,
1187 Name => New_Copy_Tree (Into),
1188 Expression =>
1189 Unchecked_Convert_To (Typ,
1190 Make_Integer_Literal (Loc, Uint_0))));
1191 end if;
1192
1193 -- We can skip this
70482933 1194 -- STEP 1: Process component associations
fbf5a39b
AC
1195 -- For those associations that may generate a loop, initialize
1196 -- Loop_Actions to collect inserted actions that may be crated.
70482933
RK
1197
1198 if No (Expressions (N)) then
1199
1200 -- STEP 1 (a): Sort the discrete choices
1201
1202 Assoc := First (Component_Associations (N));
1203 while Present (Assoc) loop
70482933
RK
1204 Choice := First (Choices (Assoc));
1205 while Present (Choice) loop
70482933 1206 if Nkind (Choice) = N_Others_Choice then
fbf5a39b 1207 Set_Loop_Actions (Assoc, New_List);
c45b6ae0
AC
1208
1209 if Box_Present (Assoc) then
1210 Others_Mbox_Present := True;
1211 else
1212 Others_Expr := Expression (Assoc);
1213 end if;
70482933
RK
1214 exit;
1215 end if;
1216
1217 Get_Index_Bounds (Choice, Low, High);
1218
fbf5a39b
AC
1219 if Low /= High then
1220 Set_Loop_Actions (Assoc, New_List);
1221 end if;
1222
70482933 1223 Nb_Choices := Nb_Choices + 1;
c45b6ae0
AC
1224 if Box_Present (Assoc) then
1225 Table (Nb_Choices) := (Choice_Lo => Low,
1226 Choice_Hi => High,
1227 Choice_Node => Empty);
1228 else
1229 Table (Nb_Choices) := (Choice_Lo => Low,
1230 Choice_Hi => High,
1231 Choice_Node => Expression (Assoc));
1232 end if;
70482933
RK
1233 Next (Choice);
1234 end loop;
1235
1236 Next (Assoc);
1237 end loop;
1238
1239 -- If there is more than one set of choices these must be static
1240 -- and we can therefore sort them. Remember that Nb_Choices does not
1241 -- account for an others choice.
1242
1243 if Nb_Choices > 1 then
1244 Sort_Case_Table (Table);
1245 end if;
1246
1247 -- STEP 1 (b): take care of the whole set of discrete choices.
1248
1249 for J in 1 .. Nb_Choices loop
1250 Low := Table (J).Choice_Lo;
1251 High := Table (J).Choice_Hi;
1252 Expr := Table (J).Choice_Node;
70482933
RK
1253 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1254 end loop;
1255
1256 -- STEP 1 (c): generate the remaining loops to cover others choice
1257 -- We don't need to generate loops over empty gaps, but if there is
1258 -- a single empty range we must analyze the expression for semantics
1259
c45b6ae0 1260 if Present (Others_Expr) or else Others_Mbox_Present then
70482933
RK
1261 declare
1262 First : Boolean := True;
1263
1264 begin
1265 for J in 0 .. Nb_Choices loop
70482933
RK
1266 if J = 0 then
1267 Low := Aggr_Low;
1268 else
1269 Low := Add (1, To => Table (J).Choice_Hi);
1270 end if;
1271
1272 if J = Nb_Choices then
1273 High := Aggr_High;
1274 else
1275 High := Add (-1, To => Table (J + 1).Choice_Lo);
1276 end if;
1277
fbf5a39b 1278 -- If this is an expansion within an init proc, make
c84700e7
ES
1279 -- sure that discriminant references are replaced by
1280 -- the corresponding discriminal.
1281
1282 if Inside_Init_Proc then
1283 if Is_Entity_Name (Low)
1284 and then Ekind (Entity (Low)) = E_Discriminant
1285 then
1286 Set_Entity (Low, Discriminal (Entity (Low)));
1287 end if;
1288
1289 if Is_Entity_Name (High)
1290 and then Ekind (Entity (High)) = E_Discriminant
1291 then
1292 Set_Entity (High, Discriminal (Entity (High)));
1293 end if;
1294 end if;
1295
70482933
RK
1296 if First
1297 or else not Empty_Range (Low, High)
1298 then
1299 First := False;
1300 Append_List
1301 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1302 end if;
1303 end loop;
1304 end;
1305 end if;
1306
1307 -- STEP 2: Process positional components
1308
1309 else
1310 -- STEP 2 (a): Generate the assignments for each positional element
1311 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1312 -- Aggr_L is analyzed and Add wants an analyzed expression.
1313
1314 Expr := First (Expressions (N));
1315 Nb_Elements := -1;
1316
1317 while Present (Expr) loop
1318 Nb_Elements := Nb_Elements + 1;
1319 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1320 To => New_Code);
1321 Next (Expr);
1322 end loop;
1323
1324 -- STEP 2 (b): Generate final loop if an others choice is present
1325 -- Here Nb_Elements gives the offset of the last positional element.
1326
1327 if Present (Component_Associations (N)) then
1328 Assoc := Last (Component_Associations (N));
70482933 1329
c45b6ae0
AC
1330 -- Ada0Y (AI-287)
1331 if Box_Present (Assoc) then
1332 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1333 Aggr_High,
1334 Empty),
1335 To => New_Code);
1336 else
1337 Expr := Expression (Assoc);
1338
1339 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1340 Aggr_High,
1341 Expr), -- AI-287
1342 To => New_Code);
1343 end if;
70482933
RK
1344 end if;
1345 end if;
1346
1347 return New_Code;
1348 end Build_Array_Aggr_Code;
1349
1350 ----------------------------
1351 -- Build_Record_Aggr_Code --
1352 ----------------------------
1353
1354 function Build_Record_Aggr_Code
65356e64
AC
1355 (N : Node_Id;
1356 Typ : Entity_Id;
1357 Target : Node_Id;
1358 Flist : Node_Id := Empty;
1359 Obj : Entity_Id := Empty;
d05ef0ab 1360 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
70482933
RK
1361 is
1362 Loc : constant Source_Ptr := Sloc (N);
1363 L : constant List_Id := New_List;
1364 Start_L : constant List_Id := New_List;
1365 N_Typ : constant Entity_Id := Etype (N);
1366
1367 Comp : Node_Id;
1368 Instr : Node_Id;
1369 Ref : Node_Id;
1370 F : Node_Id;
1371 Comp_Type : Entity_Id;
1372 Selector : Entity_Id;
1373 Comp_Expr : Node_Id;
70482933
RK
1374 Expr_Q : Node_Id;
1375
1376 Internal_Final_List : Node_Id;
1377
1378 -- If this is an internal aggregate, the External_Final_List is an
1379 -- expression for the controller record of the enclosing type.
1380 -- If the current aggregate has several controlled components, this
1381 -- expression will appear in several calls to attach to the finali-
1382 -- zation list, and it must not be shared.
1383
1384 External_Final_List : Node_Id;
1385 Ancestor_Is_Expression : Boolean := False;
1386 Ancestor_Is_Subtype_Mark : Boolean := False;
1387
1388 Init_Typ : Entity_Id := Empty;
1389 Attach : Node_Id;
1390
1391 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1392 -- Returns the first discriminant association in the constraint
1393 -- associated with T, if any, otherwise returns Empty.
1394
1395 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1396 -- Returns the value that the given discriminant of an ancestor
1397 -- type should receive (in the absence of a conflict with the
1398 -- value provided by an ancestor part of an extension aggregate).
1399
1400 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1401 -- Check that each of the discriminant values defined by the
1402 -- ancestor part of an extension aggregate match the corresponding
1403 -- values provided by either an association of the aggregate or
1404 -- by the constraint imposed by a parent type (RM95-4.3.2(8)).
1405
1406 function Init_Controller
1407 (Target : Node_Id;
1408 Typ : Entity_Id;
1409 F : Node_Id;
1410 Attach : Node_Id;
d05ef0ab 1411 Init_Pr : Boolean) return List_Id;
70482933
RK
1412 -- returns the list of statements necessary to initialize the internal
1413 -- controller of the (possible) ancestor typ into target and attach
1414 -- it to finalization list F. Init_Pr conditions the call to the
fbf5a39b 1415 -- init proc since it may already be done due to ancestor initialization
70482933
RK
1416
1417 ---------------------------------
1418 -- Ancestor_Discriminant_Value --
1419 ---------------------------------
1420
1421 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1422 Assoc : Node_Id;
1423 Assoc_Elmt : Elmt_Id;
1424 Aggr_Comp : Entity_Id;
1425 Corresp_Disc : Entity_Id;
1426 Current_Typ : Entity_Id := Base_Type (Typ);
1427 Parent_Typ : Entity_Id;
1428 Parent_Disc : Entity_Id;
1429 Save_Assoc : Node_Id := Empty;
1430
1431 begin
1432 -- First check any discriminant associations to see if
1433 -- any of them provide a value for the discriminant.
1434
1435 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1436 Assoc := First (Component_Associations (N));
1437 while Present (Assoc) loop
1438 Aggr_Comp := Entity (First (Choices (Assoc)));
1439
1440 if Ekind (Aggr_Comp) = E_Discriminant then
1441 Save_Assoc := Expression (Assoc);
1442
1443 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1444 while Present (Corresp_Disc) loop
1445 -- If found a corresponding discriminant then return
1446 -- the value given in the aggregate. (Note: this is
1447 -- not correct in the presence of side effects. ???)
1448
1449 if Disc = Corresp_Disc then
1450 return Duplicate_Subexpr (Expression (Assoc));
1451 end if;
fbf5a39b 1452
70482933
RK
1453 Corresp_Disc :=
1454 Corresponding_Discriminant (Corresp_Disc);
1455 end loop;
1456 end if;
1457
1458 Next (Assoc);
1459 end loop;
1460 end if;
1461
1462 -- No match found in aggregate, so chain up parent types to find
1463 -- a constraint that defines the value of the discriminant.
1464
1465 Parent_Typ := Etype (Current_Typ);
1466 while Current_Typ /= Parent_Typ loop
1467 if Has_Discriminants (Parent_Typ) then
1468 Parent_Disc := First_Discriminant (Parent_Typ);
1469
1470 -- We either get the association from the subtype indication
1471 -- of the type definition itself, or from the discriminant
1472 -- constraint associated with the type entity (which is
1473 -- preferable, but it's not always present ???)
1474
1475 if Is_Empty_Elmt_List (
1476 Discriminant_Constraint (Current_Typ))
1477 then
1478 Assoc := Get_Constraint_Association (Current_Typ);
1479 Assoc_Elmt := No_Elmt;
1480 else
1481 Assoc_Elmt :=
1482 First_Elmt (Discriminant_Constraint (Current_Typ));
1483 Assoc := Node (Assoc_Elmt);
1484 end if;
1485
1486 -- Traverse the discriminants of the parent type looking
1487 -- for one that corresponds.
1488
1489 while Present (Parent_Disc) and then Present (Assoc) loop
1490 Corresp_Disc := Parent_Disc;
1491 while Present (Corresp_Disc)
1492 and then Disc /= Corresp_Disc
1493 loop
1494 Corresp_Disc :=
1495 Corresponding_Discriminant (Corresp_Disc);
1496 end loop;
1497
1498 if Disc = Corresp_Disc then
1499 if Nkind (Assoc) = N_Discriminant_Association then
1500 Assoc := Expression (Assoc);
1501 end if;
1502
1503 -- If the located association directly denotes
1504 -- a discriminant, then use the value of a saved
1505 -- association of the aggregate. This is a kludge
1506 -- to handle certain cases involving multiple
1507 -- discriminants mapped to a single discriminant
1508 -- of a descendant. It's not clear how to locate the
1509 -- appropriate discriminant value for such cases. ???
1510
1511 if Is_Entity_Name (Assoc)
1512 and then Ekind (Entity (Assoc)) = E_Discriminant
1513 then
1514 Assoc := Save_Assoc;
1515 end if;
1516
1517 return Duplicate_Subexpr (Assoc);
1518 end if;
1519
1520 Next_Discriminant (Parent_Disc);
1521
1522 if No (Assoc_Elmt) then
1523 Next (Assoc);
1524 else
1525 Next_Elmt (Assoc_Elmt);
1526 if Present (Assoc_Elmt) then
1527 Assoc := Node (Assoc_Elmt);
1528 else
1529 Assoc := Empty;
1530 end if;
1531 end if;
1532 end loop;
1533 end if;
1534
1535 Current_Typ := Parent_Typ;
1536 Parent_Typ := Etype (Current_Typ);
1537 end loop;
1538
1539 -- In some cases there's no ancestor value to locate (such as
1540 -- when an ancestor part given by an expression defines the
1541 -- discriminant value).
1542
1543 return Empty;
1544 end Ancestor_Discriminant_Value;
1545
1546 ----------------------------------
1547 -- Check_Ancestor_Discriminants --
1548 ----------------------------------
1549
1550 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
1551 Discr : Entity_Id := First_Discriminant (Base_Type (Anc_Typ));
1552 Disc_Value : Node_Id;
1553 Cond : Node_Id;
1554
1555 begin
1556 while Present (Discr) loop
1557 Disc_Value := Ancestor_Discriminant_Value (Discr);
1558
1559 if Present (Disc_Value) then
1560 Cond := Make_Op_Ne (Loc,
1561 Left_Opnd =>
1562 Make_Selected_Component (Loc,
1563 Prefix => New_Copy_Tree (Target),
1564 Selector_Name => New_Occurrence_Of (Discr, Loc)),
1565 Right_Opnd => Disc_Value);
1566
07fc65c4
GB
1567 Append_To (L,
1568 Make_Raise_Constraint_Error (Loc,
1569 Condition => Cond,
1570 Reason => CE_Discriminant_Check_Failed));
70482933
RK
1571 end if;
1572
1573 Next_Discriminant (Discr);
1574 end loop;
1575 end Check_Ancestor_Discriminants;
1576
1577 --------------------------------
1578 -- Get_Constraint_Association --
1579 --------------------------------
1580
1581 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
1582 Typ_Def : constant Node_Id := Type_Definition (Parent (T));
1583 Indic : constant Node_Id := Subtype_Indication (Typ_Def);
1584
1585 begin
1586 -- ??? Also need to cover case of a type mark denoting a subtype
1587 -- with constraint.
1588
1589 if Nkind (Indic) = N_Subtype_Indication
1590 and then Present (Constraint (Indic))
1591 then
1592 return First (Constraints (Constraint (Indic)));
1593 end if;
1594
1595 return Empty;
1596 end Get_Constraint_Association;
1597
1598 ---------------------
1599 -- Init_controller --
1600 ---------------------
1601
1602 function Init_Controller
1603 (Target : Node_Id;
1604 Typ : Entity_Id;
1605 F : Node_Id;
1606 Attach : Node_Id;
d05ef0ab 1607 Init_Pr : Boolean) return List_Id
70482933 1608 is
fbf5a39b 1609 L : constant List_Id := New_List;
70482933 1610 Ref : Node_Id;
70482933
RK
1611
1612 begin
fbf5a39b
AC
1613 -- Generate:
1614 -- init-proc (target._controller);
70482933
RK
1615 -- initialize (target._controller);
1616 -- Attach_to_Final_List (target._controller, F);
1617
fbf5a39b
AC
1618 Ref :=
1619 Make_Selected_Component (Loc,
1620 Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
1621 Selector_Name => Make_Identifier (Loc, Name_uController));
70482933
RK
1622 Set_Assignment_OK (Ref);
1623
19f0526a
AC
1624 -- Ada0Y (AI-287): Give support to default initialization of limited
1625 -- types and components
70482933 1626
65356e64 1627 if (Nkind (Target) = N_Identifier
c45b6ae0 1628 and then Present (Etype (Target))
65356e64
AC
1629 and then Is_Limited_Type (Etype (Target)))
1630 or else (Nkind (Target) = N_Selected_Component
c45b6ae0 1631 and then Present (Etype (Selector_Name (Target)))
65356e64
AC
1632 and then Is_Limited_Type (Etype (Selector_Name (Target))))
1633 or else (Nkind (Target) = N_Unchecked_Type_Conversion
c45b6ae0 1634 and then Present (Etype (Target))
65356e64 1635 and then Is_Limited_Type (Etype (Target)))
c45b6ae0
AC
1636 or else (Nkind (Target) = N_Unchecked_Expression
1637 and then Nkind (Expression (Target)) = N_Indexed_Component
1638 and then Present (Etype (Prefix (Expression (Target))))
1639 and then Is_Limited_Type
1640 (Etype (Prefix (Expression (Target)))))
65356e64
AC
1641 then
1642
1643 if Init_Pr then
1644 Append_List_To (L,
1645 Build_Initialization_Call (Loc,
1646 Id_Ref => Ref,
1647 Typ => RTE (RE_Limited_Record_Controller),
1648 In_Init_Proc => Within_Init_Proc));
1649 end if;
1650
1651 Append_To (L,
1652 Make_Procedure_Call_Statement (Loc,
1653 Name =>
1654 New_Reference_To
1655 (Find_Prim_Op (RTE (RE_Limited_Record_Controller),
1656 Name_Initialize), Loc),
1657 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
1658
1659 else
1660 if Init_Pr then
1661 Append_List_To (L,
1662 Build_Initialization_Call (Loc,
1663 Id_Ref => Ref,
1664 Typ => RTE (RE_Record_Controller),
1665 In_Init_Proc => Within_Init_Proc));
1666 end if;
1667
1668 Append_To (L,
1669 Make_Procedure_Call_Statement (Loc,
1670 Name =>
1671 New_Reference_To (Find_Prim_Op (RTE (RE_Record_Controller),
1672 Name_Initialize), Loc),
1673 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
1674
1675 end if;
70482933
RK
1676
1677 Append_To (L,
1678 Make_Attach_Call (
1679 Obj_Ref => New_Copy_Tree (Ref),
1680 Flist_Ref => F,
1681 With_Attach => Attach));
1682 return L;
1683 end Init_Controller;
1684
1685 -- Start of processing for Build_Record_Aggr_Code
1686
1687 begin
70482933
RK
1688 -- Deal with the ancestor part of extension aggregates
1689 -- or with the discriminants of the root type
1690
1691 if Nkind (N) = N_Extension_Aggregate then
1692 declare
1693 A : constant Node_Id := Ancestor_Part (N);
1694
1695 begin
70482933 1696 -- If the ancestor part is a subtype mark "T", we generate
fbf5a39b
AC
1697
1698 -- init-proc (T(tmp)); if T is constrained and
1699 -- init-proc (S(tmp)); where S applies an appropriate
70482933
RK
1700 -- constraint if T is unconstrained
1701
1702 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
70482933
RK
1703 Ancestor_Is_Subtype_Mark := True;
1704
1705 if Is_Constrained (Entity (A)) then
1706 Init_Typ := Entity (A);
1707
1708 -- For an ancestor part given by an unconstrained type
1709 -- mark, create a subtype constrained by appropriate
1710 -- corresponding discriminant values coming from either
1711 -- associations of the aggregate or a constraint on
1712 -- a parent type. The subtype will be used to generate
1713 -- the correct default value for the ancestor part.
1714
1715 elsif Has_Discriminants (Entity (A)) then
1716 declare
fbf5a39b
AC
1717 Anc_Typ : constant Entity_Id := Entity (A);
1718 Anc_Constr : constant List_Id := New_List;
1719 Discrim : Entity_Id;
70482933
RK
1720 Disc_Value : Node_Id;
1721 New_Indic : Node_Id;
1722 Subt_Decl : Node_Id;
fbf5a39b 1723
70482933 1724 begin
fbf5a39b 1725 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
1726 while Present (Discrim) loop
1727 Disc_Value := Ancestor_Discriminant_Value (Discrim);
1728 Append_To (Anc_Constr, Disc_Value);
1729 Next_Discriminant (Discrim);
1730 end loop;
1731
1732 New_Indic :=
1733 Make_Subtype_Indication (Loc,
1734 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
1735 Constraint =>
1736 Make_Index_Or_Discriminant_Constraint (Loc,
1737 Constraints => Anc_Constr));
1738
1739 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
1740
1741 Subt_Decl :=
1742 Make_Subtype_Declaration (Loc,
1743 Defining_Identifier => Init_Typ,
1744 Subtype_Indication => New_Indic);
1745
1746 -- Itypes must be analyzed with checks off
07fc65c4
GB
1747 -- Declaration must have a parent for proper
1748 -- handling of subsidiary actions.
70482933 1749
07fc65c4 1750 Set_Parent (Subt_Decl, N);
70482933
RK
1751 Analyze (Subt_Decl, Suppress => All_Checks);
1752 end;
1753 end if;
1754
1755 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
1756 Set_Assignment_OK (Ref);
1757
c45b6ae0
AC
1758 if Has_Default_Init_Comps (N)
1759 or else Has_Task (Base_Type (Init_Typ))
1760 then
1761 Append_List_To (Start_L,
1762 Build_Initialization_Call (Loc,
1763 Id_Ref => Ref,
1764 Typ => Init_Typ,
1765 In_Init_Proc => Within_Init_Proc,
1766 With_Default_Init => True));
1767 else
1768 Append_List_To (Start_L,
1769 Build_Initialization_Call (Loc,
1770 Id_Ref => Ref,
1771 Typ => Init_Typ,
1772 In_Init_Proc => Within_Init_Proc));
1773 end if;
70482933
RK
1774
1775 if Is_Constrained (Entity (A))
1776 and then Has_Discriminants (Entity (A))
1777 then
1778 Check_Ancestor_Discriminants (Entity (A));
1779 end if;
1780
19f0526a
AC
1781 -- Ada0Y (AI-287): If the ancestor part is a limited type, a
1782 -- recursive call expands the ancestor.
65356e64
AC
1783
1784 elsif Is_Limited_Type (Etype (A)) then
1785 Ancestor_Is_Expression := True;
1786
1787 Append_List_To (Start_L,
1788 Build_Record_Aggr_Code (
1789 N => Expression (A),
1790 Typ => Etype (Expression (A)),
1791 Target => Target,
1792 Flist => Flist,
1793 Obj => Obj,
1794 Is_Limited_Ancestor_Expansion => True));
1795
70482933
RK
1796 -- If the ancestor part is an expression "E", we generate
1797 -- T(tmp) := E;
1798
1799 else
1800 Ancestor_Is_Expression := True;
1801 Init_Typ := Etype (A);
1802
1803 -- Assign the tag before doing the assignment to make sure
1804 -- that the dispatching call in the subsequent deep_adjust
1805 -- works properly (unless Java_VM, where tags are implicit).
1806
1807 if not Java_VM then
1808 Instr :=
1809 Make_OK_Assignment_Statement (Loc,
1810 Name =>
1811 Make_Selected_Component (Loc,
1812 Prefix => New_Copy_Tree (Target),
1813 Selector_Name => New_Reference_To (
1814 Tag_Component (Base_Type (Typ)), Loc)),
1815
1816 Expression =>
1817 Unchecked_Convert_To (RTE (RE_Tag),
1818 New_Reference_To (
1819 Access_Disp_Table (Base_Type (Typ)), Loc)));
1820
1821 Set_Assignment_OK (Name (Instr));
1822 Append_To (L, Instr);
1823 end if;
1824
1825 -- If the ancestor part is an aggregate, force its full
1826 -- expansion, which was delayed.
1827
1828 if Nkind (A) = N_Qualified_Expression
1829 and then (Nkind (Expression (A)) = N_Aggregate
1830 or else
1831 Nkind (Expression (A)) = N_Extension_Aggregate)
1832 then
1833 Set_Analyzed (A, False);
1834 Set_Analyzed (Expression (A), False);
1835 end if;
1836
1837 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
1838 Set_Assignment_OK (Ref);
1839 Append_To (L,
1840 Make_Unsuppress_Block (Loc,
1841 Name_Discriminant_Check,
1842 New_List (
1843 Make_OK_Assignment_Statement (Loc,
1844 Name => Ref,
1845 Expression => A))));
1846
1847 if Has_Discriminants (Init_Typ) then
1848 Check_Ancestor_Discriminants (Init_Typ);
1849 end if;
1850 end if;
1851 end;
1852
fbf5a39b
AC
1853 -- Normal case (not an extension aggregate)
1854
70482933
RK
1855 else
1856 -- Generate the discriminant expressions, component by component.
1857 -- If the base type is an unchecked union, the discriminants are
1858 -- unknown to the back-end and absent from a value of the type, so
1859 -- assignments for them are not emitted.
1860
1861 if Has_Discriminants (Typ)
1862 and then not Is_Unchecked_Union (Base_Type (Typ))
1863 then
70482933
RK
1864 -- ??? The discriminants of the object not inherited in the type
1865 -- of the object should be initialized here
1866
1867 null;
1868
1869 -- Generate discriminant init values
1870
1871 declare
1872 Discriminant : Entity_Id;
1873 Discriminant_Value : Node_Id;
1874
1875 begin
fbf5a39b 1876 Discriminant := First_Stored_Discriminant (Typ);
70482933
RK
1877
1878 while Present (Discriminant) loop
1879
1880 Comp_Expr :=
1881 Make_Selected_Component (Loc,
1882 Prefix => New_Copy_Tree (Target),
1883 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
1884
1885 Discriminant_Value :=
1886 Get_Discriminant_Value (
1887 Discriminant,
1888 N_Typ,
1889 Discriminant_Constraint (N_Typ));
1890
1891 Instr :=
1892 Make_OK_Assignment_Statement (Loc,
1893 Name => Comp_Expr,
1894 Expression => New_Copy_Tree (Discriminant_Value));
1895
1896 Set_No_Ctrl_Actions (Instr);
1897 Append_To (L, Instr);
1898
fbf5a39b 1899 Next_Stored_Discriminant (Discriminant);
70482933
RK
1900 end loop;
1901 end;
1902 end if;
1903 end if;
1904
1905 -- Generate the assignments, component by component
1906
1907 -- tmp.comp1 := Expr1_From_Aggr;
1908 -- tmp.comp2 := Expr2_From_Aggr;
1909 -- ....
1910
1911 Comp := First (Component_Associations (N));
1912 while Present (Comp) loop
1913 Selector := Entity (First (Choices (Comp)));
1914
c45b6ae0 1915 -- Ada0Y (AI-287): Default initialization of a limited component
65356e64
AC
1916
1917 if Box_Present (Comp)
1918 and then Is_Limited_Type (Etype (Selector))
1919 then
c45b6ae0
AC
1920
1921 -- Ada0Y (AI-287): If the component type has tasks then generate
1922 -- the activation chain and master entities (except in case of an
1923 -- allocator because in that case these entities are generated
1924 -- by Build_Task_Allocate_Block_With_Init_Stmts)
1925
1926 declare
1927 Ctype : Entity_Id := Etype (Selector);
1928 Inside_Allocator : Boolean := False;
1929 P : Node_Id := Parent (N);
1930
1931 begin
1932 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
1933 while Present (P) loop
1934 if Nkind (P) = N_Allocator then
1935 Inside_Allocator := True;
1936 exit;
1937 end if;
1938
1939 P := Parent (P);
1940 end loop;
1941
1942 if not Inside_Init_Proc and not Inside_Allocator then
1943 Build_Activation_Chain_Entity (N);
1944 Build_Master_Entity (Etype (N));
1945 end if;
1946 end if;
1947 end;
1948
65356e64
AC
1949 Append_List_To (L,
1950 Build_Initialization_Call (Loc,
1951 Id_Ref => Make_Selected_Component (Loc,
1952 Prefix => New_Copy_Tree (Target),
1953 Selector_Name => New_Occurrence_Of (Selector,
c45b6ae0
AC
1954 Loc)),
1955 Typ => Etype (Selector),
1956 With_Default_Init => True));
65356e64
AC
1957
1958 goto Next_Comp;
1959 end if;
1960
fbf5a39b
AC
1961 -- ???
1962
70482933
RK
1963 if Ekind (Selector) /= E_Discriminant
1964 or else Nkind (N) = N_Extension_Aggregate
1965 then
1966 Comp_Type := Etype (Selector);
70482933
RK
1967 Comp_Expr :=
1968 Make_Selected_Component (Loc,
1969 Prefix => New_Copy_Tree (Target),
1970 Selector_Name => New_Occurrence_Of (Selector, Loc));
1971
1972 if Nkind (Expression (Comp)) = N_Qualified_Expression then
1973 Expr_Q := Expression (Expression (Comp));
1974 else
1975 Expr_Q := Expression (Comp);
1976 end if;
1977
1978 -- The controller is the one of the parent type defining
1979 -- the component (in case of inherited components).
1980
1981 if Controlled_Type (Comp_Type) then
1982 Internal_Final_List :=
1983 Make_Selected_Component (Loc,
1984 Prefix => Convert_To (
1985 Scope (Original_Record_Component (Selector)),
1986 New_Copy_Tree (Target)),
1987 Selector_Name =>
1988 Make_Identifier (Loc, Name_uController));
fbf5a39b 1989
70482933
RK
1990 Internal_Final_List :=
1991 Make_Selected_Component (Loc,
1992 Prefix => Internal_Final_List,
1993 Selector_Name => Make_Identifier (Loc, Name_F));
1994
1995 -- The internal final list can be part of a constant object
1996
1997 Set_Assignment_OK (Internal_Final_List);
fbf5a39b 1998
70482933
RK
1999 else
2000 Internal_Final_List := Empty;
2001 end if;
2002
fbf5a39b
AC
2003 -- ???
2004
70482933
RK
2005 if Is_Delayed_Aggregate (Expr_Q) then
2006 Append_List_To (L,
2007 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
2008 Internal_Final_List));
fbf5a39b 2009
70482933
RK
2010 else
2011 Instr :=
2012 Make_OK_Assignment_Statement (Loc,
2013 Name => Comp_Expr,
2014 Expression => Expression (Comp));
2015
2016 Set_No_Ctrl_Actions (Instr);
2017 Append_To (L, Instr);
2018
2019 -- Adjust the tag if tagged (because of possible view
2020 -- conversions), unless compiling for the Java VM
2021 -- where tags are implicit.
2022
2023 -- tmp.comp._tag := comp_typ'tag;
2024
2025 if Is_Tagged_Type (Comp_Type) and then not Java_VM then
2026 Instr :=
2027 Make_OK_Assignment_Statement (Loc,
2028 Name =>
2029 Make_Selected_Component (Loc,
2030 Prefix => New_Copy_Tree (Comp_Expr),
2031 Selector_Name =>
2032 New_Reference_To (Tag_Component (Comp_Type), Loc)),
2033
2034 Expression =>
2035 Unchecked_Convert_To (RTE (RE_Tag),
2036 New_Reference_To (
2037 Access_Disp_Table (Comp_Type), Loc)));
2038
2039 Append_To (L, Instr);
2040 end if;
2041
2042 -- Adjust and Attach the component to the proper controller
2043 -- Adjust (tmp.comp);
2044 -- Attach_To_Final_List (tmp.comp,
2045 -- comp_typ (tmp)._record_controller.f)
2046
2047 if Controlled_Type (Comp_Type) then
2048 Append_List_To (L,
2049 Make_Adjust_Call (
2050 Ref => New_Copy_Tree (Comp_Expr),
2051 Typ => Comp_Type,
2052 Flist_Ref => Internal_Final_List,
2053 With_Attach => Make_Integer_Literal (Loc, 1)));
2054 end if;
2055 end if;
fbf5a39b
AC
2056
2057 -- ???
2058
2059 elsif Ekind (Selector) = E_Discriminant
2060 and then Nkind (N) /= N_Extension_Aggregate
2061 and then Nkind (Parent (N)) = N_Component_Association
2062 and then Is_Constrained (Typ)
2063 then
2064 -- We must check that the discriminant value imposed by the
2065 -- context is the same as the value given in the subaggregate,
2066 -- because after the expansion into assignments there is no
2067 -- record on which to perform a regular discriminant check.
2068
2069 declare
2070 D_Val : Elmt_Id;
2071 Disc : Entity_Id;
2072
2073 begin
2074 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2075 Disc := First_Discriminant (Typ);
2076
2077 while Chars (Disc) /= Chars (Selector) loop
2078 Next_Discriminant (Disc);
2079 Next_Elmt (D_Val);
2080 end loop;
2081
2082 pragma Assert (Present (D_Val));
2083
2084 Append_To (L,
2085 Make_Raise_Constraint_Error (Loc,
2086 Condition =>
2087 Make_Op_Ne (Loc,
2088 Left_Opnd => New_Copy_Tree (Node (D_Val)),
2089 Right_Opnd => Expression (Comp)),
2090 Reason => CE_Discriminant_Check_Failed));
2091 end;
70482933
RK
2092 end if;
2093
65356e64
AC
2094 <<Next_Comp>>
2095
70482933
RK
2096 Next (Comp);
2097 end loop;
2098
2099 -- If the type is tagged, the tag needs to be initialized (unless
2100 -- compiling for the Java VM where tags are implicit). It is done
2101 -- late in the initialization process because in some cases, we call
fbf5a39b 2102 -- the init proc of an ancestor which will not leave out the right tag
70482933
RK
2103
2104 if Ancestor_Is_Expression then
2105 null;
2106
2107 elsif Is_Tagged_Type (Typ) and then not Java_VM then
2108 Instr :=
2109 Make_OK_Assignment_Statement (Loc,
2110 Name =>
2111 Make_Selected_Component (Loc,
2112 Prefix => New_Copy_Tree (Target),
2113 Selector_Name =>
2114 New_Reference_To (Tag_Component (Base_Type (Typ)), Loc)),
2115
2116 Expression =>
2117 Unchecked_Convert_To (RTE (RE_Tag),
2118 New_Reference_To (Access_Disp_Table (Base_Type (Typ)), Loc)));
2119
2120 Append_To (L, Instr);
2121 end if;
2122
2123 -- Now deal with the various controlled type data structure
2124 -- initializations
2125
2126 if Present (Obj)
2127 and then Finalize_Storage_Only (Typ)
2128 and then (Is_Library_Level_Entity (Obj)
2129 or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
2130 = Standard_True)
2131 then
2132 Attach := Make_Integer_Literal (Loc, 0);
2133
2134 elsif Nkind (Parent (N)) = N_Qualified_Expression
2135 and then Nkind (Parent (Parent (N))) = N_Allocator
2136 then
2137 Attach := Make_Integer_Literal (Loc, 2);
2138
2139 else
2140 Attach := Make_Integer_Literal (Loc, 1);
2141 end if;
2142
2143 -- Determine the external finalization list. It is either the
2144 -- finalization list of the outer-scope or the one coming from
2145 -- an outer aggregate. When the target is not a temporary, the
2146 -- proper scope is the scope of the target rather than the
2147 -- potentially transient current scope.
2148
2149 if Controlled_Type (Typ) then
2150 if Present (Flist) then
2151 External_Final_List := New_Copy_Tree (Flist);
2152
2153 elsif Is_Entity_Name (Target)
2154 and then Present (Scope (Entity (Target)))
2155 then
2156 External_Final_List := Find_Final_List (Scope (Entity (Target)));
2157
2158 else
2159 External_Final_List := Find_Final_List (Current_Scope);
2160 end if;
2161
2162 else
2163 External_Final_List := Empty;
2164 end if;
2165
fbf5a39b 2166 -- Initialize and attach the outer object in the is_controlled case
70482933
RK
2167
2168 if Is_Controlled (Typ) then
2169 if Ancestor_Is_Subtype_Mark then
2170 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2171 Set_Assignment_OK (Ref);
2172 Append_To (L,
2173 Make_Procedure_Call_Statement (Loc,
2174 Name => New_Reference_To (
2175 Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2176 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2177 end if;
2178
fbf5a39b 2179 if not Has_Controlled_Component (Typ) then
70482933
RK
2180 Ref := New_Copy_Tree (Target);
2181 Set_Assignment_OK (Ref);
2182 Append_To (Start_L,
2183 Make_Attach_Call (
2184 Obj_Ref => Ref,
2185 Flist_Ref => New_Copy_Tree (External_Final_List),
2186 With_Attach => Attach));
2187 end if;
2188 end if;
2189
fbf5a39b 2190 -- In the Has_Controlled component case, all the intermediate
70482933
RK
2191 -- controllers must be initialized
2192
65356e64
AC
2193 if Has_Controlled_Component (Typ)
2194 and not Is_Limited_Ancestor_Expansion
2195 then
70482933
RK
2196 declare
2197 Inner_Typ : Entity_Id;
2198 Outer_Typ : Entity_Id;
2199 At_Root : Boolean;
2200
2201 begin
2202
2203 Outer_Typ := Base_Type (Typ);
2204
fbf5a39b 2205 -- Find outer type with a controller
70482933
RK
2206
2207 while Outer_Typ /= Init_Typ
2208 and then not Has_New_Controlled_Component (Outer_Typ)
2209 loop
2210 Outer_Typ := Etype (Outer_Typ);
2211 end loop;
2212
fbf5a39b 2213 -- Attach it to the outer record controller to the
70482933
RK
2214 -- external final list
2215
2216 if Outer_Typ = Init_Typ then
2217 Append_List_To (Start_L,
2218 Init_Controller (
2219 Target => Target,
2220 Typ => Outer_Typ,
2221 F => External_Final_List,
2222 Attach => Attach,
2223 Init_Pr => Ancestor_Is_Expression));
fbf5a39b
AC
2224
2225 At_Root := True;
70482933
RK
2226 Inner_Typ := Init_Typ;
2227
2228 else
2229 Append_List_To (Start_L,
2230 Init_Controller (
2231 Target => Target,
2232 Typ => Outer_Typ,
2233 F => External_Final_List,
2234 Attach => Attach,
2235 Init_Pr => True));
2236
2237 Inner_Typ := Etype (Outer_Typ);
2238 At_Root :=
2239 not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
2240 end if;
2241
fbf5a39b
AC
2242 -- The outer object has to be attached as well
2243
2244 if Is_Controlled (Typ) then
2245 Ref := New_Copy_Tree (Target);
2246 Set_Assignment_OK (Ref);
2247 Append_To (Start_L,
2248 Make_Attach_Call (
2249 Obj_Ref => Ref,
2250 Flist_Ref => New_Copy_Tree (External_Final_List),
2251 With_Attach => New_Copy_Tree (Attach)));
2252 end if;
2253
70482933
RK
2254 -- Initialize the internal controllers for tagged types with
2255 -- more than one controller.
2256
2257 while not At_Root and then Inner_Typ /= Init_Typ loop
2258 if Has_New_Controlled_Component (Inner_Typ) then
2259 F :=
2260 Make_Selected_Component (Loc,
2261 Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
2262 Selector_Name =>
2263 Make_Identifier (Loc, Name_uController));
fbf5a39b
AC
2264 F :=
2265 Make_Selected_Component (Loc,
2266 Prefix => F,
2267 Selector_Name => Make_Identifier (Loc, Name_F));
2268
70482933
RK
2269 Append_List_To (Start_L,
2270 Init_Controller (
2271 Target => Target,
2272 Typ => Inner_Typ,
2273 F => F,
2274 Attach => Make_Integer_Literal (Loc, 1),
2275 Init_Pr => True));
2276 Outer_Typ := Inner_Typ;
2277 end if;
2278
2279 -- Stop at the root
2280
2281 At_Root := Inner_Typ = Etype (Inner_Typ);
2282 Inner_Typ := Etype (Inner_Typ);
2283 end loop;
2284
fbf5a39b 2285 -- If not done yet attach the controller of the ancestor part
70482933
RK
2286
2287 if Outer_Typ /= Init_Typ
2288 and then Inner_Typ = Init_Typ
2289 and then Has_Controlled_Component (Init_Typ)
2290 then
2291 F :=
2292 Make_Selected_Component (Loc,
2293 Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
2294 Selector_Name => Make_Identifier (Loc, Name_uController));
fbf5a39b
AC
2295 F :=
2296 Make_Selected_Component (Loc,
2297 Prefix => F,
2298 Selector_Name => Make_Identifier (Loc, Name_F));
70482933
RK
2299
2300 Attach := Make_Integer_Literal (Loc, 1);
2301 Append_List_To (Start_L,
2302 Init_Controller (
2303 Target => Target,
2304 Typ => Init_Typ,
2305 F => F,
2306 Attach => Attach,
2307 Init_Pr => Ancestor_Is_Expression));
2308 end if;
2309 end;
2310 end if;
2311
2312 Append_List_To (Start_L, L);
2313 return Start_L;
2314 end Build_Record_Aggr_Code;
2315
2316 -------------------------------
2317 -- Convert_Aggr_In_Allocator --
2318 -------------------------------
2319
2320 procedure Convert_Aggr_In_Allocator (Decl, Aggr : Node_Id) is
2321 Loc : constant Source_Ptr := Sloc (Aggr);
2322 Typ : constant Entity_Id := Etype (Aggr);
2323 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
2324
2325 Occ : constant Node_Id :=
2326 Unchecked_Convert_To (Typ,
2327 Make_Explicit_Dereference (Loc,
2328 New_Reference_To (Temp, Loc)));
70482933
RK
2329
2330 Access_Type : constant Entity_Id := Etype (Temp);
2331
2332 begin
c45b6ae0
AC
2333 if Has_Default_Init_Comps (Aggr) then
2334 declare
2335 L : constant List_Id := New_List;
2336 Init_Stmts : List_Id;
2337
2338 begin
2339 Init_Stmts := Late_Expansion (Aggr, Typ, Occ,
2340 Find_Final_List (Access_Type),
2341 Associated_Final_Chain (Base_Type (Access_Type)));
2342
2343 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
2344 Insert_Actions_After (Decl, L);
2345 end;
2346
2347 else
2348 Insert_Actions_After (Decl,
2349 Late_Expansion (Aggr, Typ, Occ,
2350 Find_Final_List (Access_Type),
2351 Associated_Final_Chain (Base_Type (Access_Type))));
2352 end if;
70482933
RK
2353 end Convert_Aggr_In_Allocator;
2354
2355 --------------------------------
2356 -- Convert_Aggr_In_Assignment --
2357 --------------------------------
2358
2359 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
fbf5a39b 2360 Aggr : Node_Id := Expression (N);
70482933
RK
2361 Typ : constant Entity_Id := Etype (Aggr);
2362 Occ : constant Node_Id := New_Copy_Tree (Name (N));
2363
2364 begin
2365 if Nkind (Aggr) = N_Qualified_Expression then
2366 Aggr := Expression (Aggr);
2367 end if;
2368
2369 Insert_Actions_After (N,
2370 Late_Expansion (Aggr, Typ, Occ,
2371 Find_Final_List (Typ, New_Copy_Tree (Occ))));
2372 end Convert_Aggr_In_Assignment;
2373
2374 ---------------------------------
2375 -- Convert_Aggr_In_Object_Decl --
2376 ---------------------------------
2377
2378 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
2379 Obj : constant Entity_Id := Defining_Identifier (N);
fbf5a39b 2380 Aggr : Node_Id := Expression (N);
70482933
RK
2381 Loc : constant Source_Ptr := Sloc (Aggr);
2382 Typ : constant Entity_Id := Etype (Aggr);
2383 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
2384
fbf5a39b
AC
2385 function Discriminants_Ok return Boolean;
2386 -- If the object type is constrained, the discriminants in the
2387 -- aggregate must be checked against the discriminants of the subtype.
2388 -- This cannot be done using Apply_Discriminant_Checks because after
2389 -- expansion there is no aggregate left to check.
2390
2391 ----------------------
2392 -- Discriminants_Ok --
2393 ----------------------
2394
2395 function Discriminants_Ok return Boolean is
2396 Cond : Node_Id := Empty;
2397 Check : Node_Id;
2398 D : Entity_Id;
2399 Disc1 : Elmt_Id;
2400 Disc2 : Elmt_Id;
2401 Val1 : Node_Id;
2402 Val2 : Node_Id;
2403
2404 begin
2405 D := First_Discriminant (Typ);
2406 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
2407 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
2408
2409 while Present (Disc1) and then Present (Disc2) loop
2410 Val1 := Node (Disc1);
2411 Val2 := Node (Disc2);
2412
2413 if not Is_OK_Static_Expression (Val1)
2414 or else not Is_OK_Static_Expression (Val2)
2415 then
2416 Check := Make_Op_Ne (Loc,
2417 Left_Opnd => Duplicate_Subexpr (Val1),
2418 Right_Opnd => Duplicate_Subexpr (Val2));
2419
2420 if No (Cond) then
2421 Cond := Check;
2422
2423 else
2424 Cond := Make_Or_Else (Loc,
2425 Left_Opnd => Cond,
2426 Right_Opnd => Check);
2427 end if;
2428
2429 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
2430 Apply_Compile_Time_Constraint_Error (Aggr,
2431 Msg => "incorrect value for discriminant&?",
2432 Reason => CE_Discriminant_Check_Failed,
2433 Ent => D);
2434 return False;
2435 end if;
2436
2437 Next_Discriminant (D);
2438 Next_Elmt (Disc1);
2439 Next_Elmt (Disc2);
2440 end loop;
2441
2442 -- If any discriminant constraint is non-static, emit a check.
2443
2444 if Present (Cond) then
2445 Insert_Action (N,
2446 Make_Raise_Constraint_Error (Loc,
2447 Condition => Cond,
2448 Reason => CE_Discriminant_Check_Failed));
2449 end if;
2450
2451 return True;
2452 end Discriminants_Ok;
2453
2454 -- Start of processing for Convert_Aggr_In_Object_Decl
2455
70482933
RK
2456 begin
2457 Set_Assignment_OK (Occ);
2458
2459 if Nkind (Aggr) = N_Qualified_Expression then
2460 Aggr := Expression (Aggr);
2461 end if;
2462
fbf5a39b
AC
2463 if Has_Discriminants (Typ)
2464 and then Typ /= Etype (Obj)
2465 and then Is_Constrained (Etype (Obj))
2466 and then not Discriminants_Ok
2467 then
2468 return;
2469 end if;
2470
70482933
RK
2471 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
2472 Set_No_Initialization (N);
07fc65c4 2473 Initialize_Discriminants (N, Typ);
70482933
RK
2474 end Convert_Aggr_In_Object_Decl;
2475
2476 ----------------------------
2477 -- Convert_To_Assignments --
2478 ----------------------------
2479
2480 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
2481 Loc : constant Source_Ptr := Sloc (N);
2482 Temp : Entity_Id;
2483
fbf5a39b
AC
2484 Instr : Node_Id;
2485 Target_Expr : Node_Id;
2486 Parent_Kind : Node_Kind;
2487 Unc_Decl : Boolean := False;
2488 Parent_Node : Node_Id;
70482933
RK
2489
2490 begin
70482933
RK
2491 Parent_Node := Parent (N);
2492 Parent_Kind := Nkind (Parent_Node);
2493
2494 if Parent_Kind = N_Qualified_Expression then
2495
2496 -- Check if we are in a unconstrained declaration because in this
2497 -- case the current delayed expansion mechanism doesn't work when
2498 -- the declared object size depend on the initializing expr.
2499
2500 begin
2501 Parent_Node := Parent (Parent_Node);
2502 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 2503
70482933
RK
2504 if Parent_Kind = N_Object_Declaration then
2505 Unc_Decl :=
2506 not Is_Entity_Name (Object_Definition (Parent_Node))
fbf5a39b
AC
2507 or else Has_Discriminants
2508 (Entity (Object_Definition (Parent_Node)))
2509 or else Is_Class_Wide_Type
2510 (Entity (Object_Definition (Parent_Node)));
70482933
RK
2511 end if;
2512 end;
2513 end if;
2514
2515 -- Just set the Delay flag in the following cases where the
2516 -- transformation will be done top down from above
fbf5a39b 2517
70482933
RK
2518 -- - internal aggregate (transformed when expanding the parent)
2519 -- - allocators (see Convert_Aggr_In_Allocator)
2520 -- - object decl (see Convert_Aggr_In_Object_Decl)
2521 -- - safe assignments (see Convert_Aggr_Assignments)
fbf5a39b 2522 -- so far only the assignments in the init procs are taken
70482933
RK
2523 -- into account
2524
2525 if Parent_Kind = N_Aggregate
2526 or else Parent_Kind = N_Extension_Aggregate
2527 or else Parent_Kind = N_Component_Association
2528 or else Parent_Kind = N_Allocator
2529 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
2530 or else (Parent_Kind = N_Assignment_Statement
2531 and then Inside_Init_Proc)
2532 then
2533 Set_Expansion_Delayed (N);
2534 return;
2535 end if;
2536
2537 if Requires_Transient_Scope (Typ) then
2538 Establish_Transient_Scope (N, Sec_Stack =>
2539 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
2540 end if;
2541
2542 -- Create the temporary
2543
2544 Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
2545
2546 Instr :=
2547 Make_Object_Declaration (Loc,
2548 Defining_Identifier => Temp,
2549 Object_Definition => New_Occurrence_Of (Typ, Loc));
2550
2551 Set_No_Initialization (Instr);
2552 Insert_Action (N, Instr);
07fc65c4 2553 Initialize_Discriminants (Instr, Typ);
70482933
RK
2554 Target_Expr := New_Occurrence_Of (Temp, Loc);
2555
2556 Insert_Actions (N, Build_Record_Aggr_Code (N, Typ, Target_Expr));
2557 Rewrite (N, New_Occurrence_Of (Temp, Loc));
2558 Analyze_And_Resolve (N, Typ);
2559 end Convert_To_Assignments;
2560
07fc65c4
GB
2561 ---------------------------
2562 -- Convert_To_Positional --
2563 ---------------------------
2564
2565 procedure Convert_To_Positional
2566 (N : Node_Id;
fbf5a39b 2567 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
2568 Handle_Bit_Packed : Boolean := False)
2569 is
fbf5a39b 2570 Typ : constant Entity_Id := Etype (N);
07fc65c4 2571
fbf5a39b 2572 function Flatten
d05ef0ab
AC
2573 (N : Node_Id;
2574 Ix : Node_Id;
2575 Ixb : Node_Id) return Boolean;
fbf5a39b
AC
2576 -- Convert the aggregate into a purely positional form if possible.
2577
2578 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
2579 -- Non trivial for multidimensional aggregate.
2580
2581 -------------
2582 -- Flatten --
2583 -------------
2584
2585 function Flatten
d05ef0ab
AC
2586 (N : Node_Id;
2587 Ix : Node_Id;
2588 Ixb : Node_Id) return Boolean
fbf5a39b
AC
2589 is
2590 Loc : constant Source_Ptr := Sloc (N);
2591 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
2592 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
2593 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
2594 Lov : Uint;
2595 Hiv : Uint;
2596
2597 -- The following constant determines the maximum size of an
2598 -- aggregate produced by converting named to positional
2599 -- notation (e.g. from others clauses). This avoids running
2600 -- away with attempts to convert huge aggregates.
2601
2602 -- The normal limit is 5000, but we increase this limit to
2603 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
2604 -- or Restrictions (No_Implicit_Loops) is specified, since in
2605 -- either case, we are at risk of declaring the program illegal
2606 -- because of this limit.
2607
2608 Max_Aggr_Size : constant Nat :=
2609 5000 + (2 ** 24 - 5000) * Boolean'Pos
2610 (Restrictions (No_Elaboration_Code)
2611 or else
2612 Restrictions (No_Implicit_Loops));
2613 begin
07fc65c4 2614
fbf5a39b
AC
2615 if Nkind (Original_Node (N)) = N_String_Literal then
2616 return True;
2617 end if;
07fc65c4 2618
fbf5a39b 2619 -- Bounds need to be known at compile time
07fc65c4 2620
fbf5a39b
AC
2621 if not Compile_Time_Known_Value (Lo)
2622 or else not Compile_Time_Known_Value (Hi)
2623 then
2624 return False;
2625 end if;
07fc65c4 2626
fbf5a39b
AC
2627 -- Get bounds and check reasonable size (positive, not too large)
2628 -- Also only handle bounds starting at the base type low bound
2629 -- for now since the compiler isn't able to handle different low
2630 -- bounds yet. Case such as new String'(3..5 => ' ') will get
2631 -- the wrong bounds, though it seems that the aggregate should
2632 -- retain the bounds set on its Etype (see C64103E and CC1311B).
07fc65c4 2633
fbf5a39b
AC
2634 Lov := Expr_Value (Lo);
2635 Hiv := Expr_Value (Hi);
07fc65c4 2636
fbf5a39b
AC
2637 if Hiv < Lov
2638 or else (Hiv - Lov > Max_Aggr_Size)
2639 or else not Compile_Time_Known_Value (Blo)
2640 or else (Lov /= Expr_Value (Blo))
2641 then
2642 return False;
2643 end if;
07fc65c4 2644
fbf5a39b 2645 -- Bounds must be in integer range (for array Vals below)
07fc65c4 2646
fbf5a39b
AC
2647 if not UI_Is_In_Int_Range (Lov)
2648 or else
2649 not UI_Is_In_Int_Range (Hiv)
2650 then
2651 return False;
2652 end if;
07fc65c4 2653
fbf5a39b
AC
2654 -- Determine if set of alternatives is suitable for conversion
2655 -- and build an array containing the values in sequence.
07fc65c4 2656
fbf5a39b
AC
2657 declare
2658 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
2659 of Node_Id := (others => Empty);
2660 -- The values in the aggregate sorted appropriately
07fc65c4 2661
fbf5a39b
AC
2662 Vlist : List_Id;
2663 -- Same data as Vals in list form
07fc65c4 2664
fbf5a39b
AC
2665 Rep_Count : Nat;
2666 -- Used to validate Max_Others_Replicate limit
07fc65c4 2667
fbf5a39b
AC
2668 Elmt : Node_Id;
2669 Num : Int := UI_To_Int (Lov);
2670 Choice : Node_Id;
2671 Lo, Hi : Node_Id;
07fc65c4 2672
fbf5a39b
AC
2673 begin
2674 if Present (Expressions (N)) then
2675 Elmt := First (Expressions (N));
2676
2677 while Present (Elmt) loop
2678 if Nkind (Elmt) = N_Aggregate
2679 and then Present (Next_Index (Ix))
2680 and then
2681 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
2682 then
2683 return False;
2684 end if;
07fc65c4 2685
fbf5a39b
AC
2686 Vals (Num) := Relocate_Node (Elmt);
2687 Num := Num + 1;
07fc65c4 2688
fbf5a39b
AC
2689 Next (Elmt);
2690 end loop;
2691 end if;
07fc65c4 2692
fbf5a39b
AC
2693 if No (Component_Associations (N)) then
2694 return True;
2695 end if;
07fc65c4 2696
fbf5a39b 2697 Elmt := First (Component_Associations (N));
07fc65c4 2698
fbf5a39b
AC
2699 if Nkind (Expression (Elmt)) = N_Aggregate then
2700 if Present (Next_Index (Ix))
2701 and then
2702 not Flatten
2703 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
2704 then
2705 return False;
2706 end if;
2707 end if;
07fc65c4 2708
fbf5a39b
AC
2709 Component_Loop : while Present (Elmt) loop
2710 Choice := First (Choices (Elmt));
2711 Choice_Loop : while Present (Choice) loop
2712
2713 -- If we have an others choice, fill in the missing elements
2714 -- subject to the limit established by Max_Others_Replicate.
2715
2716 if Nkind (Choice) = N_Others_Choice then
2717 Rep_Count := 0;
2718
2719 for J in Vals'Range loop
2720 if No (Vals (J)) then
2721 Vals (J) := New_Copy_Tree (Expression (Elmt));
2722 Rep_Count := Rep_Count + 1;
2723
2724 -- Check for maximum others replication. Note that
2725 -- we skip this test if either of the restrictions
2726 -- No_Elaboration_Code or No_Implicit_Loops is
2727 -- active, or if this is a preelaborable unit.
2728
2729 declare
2730 P : constant Entity_Id :=
2731 Cunit_Entity (Current_Sem_Unit);
2732
2733 begin
2734 if Restrictions (No_Elaboration_Code)
2735 or else Restrictions (No_Implicit_Loops)
2736 or else Is_Preelaborated (P)
2737 or else (Ekind (P) = E_Package_Body
2738 and then
2739 Is_Preelaborated (Spec_Entity (P)))
2740 then
2741 null;
2742 elsif Rep_Count > Max_Others_Replicate then
2743 return False;
2744 end if;
2745 end;
2746 end if;
2747 end loop;
07fc65c4 2748
fbf5a39b 2749 exit Component_Loop;
07fc65c4 2750
fbf5a39b 2751 -- Case of a subtype mark
07fc65c4 2752
fbf5a39b
AC
2753 elsif Nkind (Choice) = N_Identifier
2754 and then Is_Type (Entity (Choice))
2755 then
2756 Lo := Type_Low_Bound (Etype (Choice));
2757 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 2758
fbf5a39b 2759 -- Case of subtype indication
07fc65c4 2760
fbf5a39b
AC
2761 elsif Nkind (Choice) = N_Subtype_Indication then
2762 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
2763 Hi := High_Bound (Range_Expression (Constraint (Choice)));
2764
2765 -- Case of a range
2766
2767 elsif Nkind (Choice) = N_Range then
2768 Lo := Low_Bound (Choice);
2769 Hi := High_Bound (Choice);
2770
2771 -- Normal subexpression case
2772
2773 else pragma Assert (Nkind (Choice) in N_Subexpr);
2774 if not Compile_Time_Known_Value (Choice) then
2775 return False;
2776
2777 else
2778 Vals (UI_To_Int (Expr_Value (Choice))) :=
2779 New_Copy_Tree (Expression (Elmt));
2780 goto Continue;
07fc65c4 2781 end if;
fbf5a39b
AC
2782 end if;
2783
2784 -- Range cases merge with Lo,Hi said
2785
2786 if not Compile_Time_Known_Value (Lo)
2787 or else
2788 not Compile_Time_Known_Value (Hi)
2789 then
2790 return False;
2791 else
2792 for J in UI_To_Int (Expr_Value (Lo)) ..
2793 UI_To_Int (Expr_Value (Hi))
2794 loop
2795 Vals (J) := New_Copy_Tree (Expression (Elmt));
2796 end loop;
2797 end if;
07fc65c4 2798
fbf5a39b
AC
2799 <<Continue>>
2800 Next (Choice);
2801 end loop Choice_Loop;
07fc65c4 2802
fbf5a39b
AC
2803 Next (Elmt);
2804 end loop Component_Loop;
07fc65c4 2805
fbf5a39b 2806 -- If we get here the conversion is possible
07fc65c4 2807
fbf5a39b
AC
2808 Vlist := New_List;
2809 for J in Vals'Range loop
2810 Append (Vals (J), Vlist);
2811 end loop;
07fc65c4 2812
fbf5a39b
AC
2813 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
2814 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
2815 return True;
2816 end;
2817 end Flatten;
07fc65c4 2818
fbf5a39b
AC
2819 -------------
2820 -- Is_Flat --
2821 -------------
07fc65c4 2822
fbf5a39b
AC
2823 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
2824 Elmt : Node_Id;
07fc65c4 2825
fbf5a39b
AC
2826 begin
2827 if Dims = 0 then
2828 return True;
07fc65c4 2829
fbf5a39b
AC
2830 elsif Nkind (N) = N_Aggregate then
2831 if Present (Component_Associations (N)) then
2832 return False;
07fc65c4 2833
fbf5a39b
AC
2834 else
2835 Elmt := First (Expressions (N));
2836
2837 while Present (Elmt) loop
2838 if not Is_Flat (Elmt, Dims - 1) then
2839 return False;
07fc65c4 2840 end if;
07fc65c4 2841
fbf5a39b
AC
2842 Next (Elmt);
2843 end loop;
07fc65c4 2844
fbf5a39b
AC
2845 return True;
2846 end if;
2847 else
2848 return True;
2849 end if;
2850 end Is_Flat;
07fc65c4 2851
fbf5a39b 2852 -- Start of processing for Convert_To_Positional
07fc65c4 2853
fbf5a39b 2854 begin
c45b6ae0
AC
2855 -- Ada0Y (AI-287): Do not convert in case of default initialized
2856 -- components because in this case will need to call the corresponding
2857 -- IP procedure.
2858
2859 if Has_Default_Init_Comps (N) then
2860 return;
2861 end if;
2862
fbf5a39b
AC
2863 if Is_Flat (N, Number_Dimensions (Typ)) then
2864 return;
2865 end if;
2866
2867 if Is_Bit_Packed_Array (Typ)
2868 and then not Handle_Bit_Packed
2869 then
2870 return;
2871 end if;
07fc65c4 2872
fbf5a39b
AC
2873 -- Do not convert to positional if controlled components are
2874 -- involved since these require special processing
07fc65c4 2875
fbf5a39b
AC
2876 if Has_Controlled_Component (Typ) then
2877 return;
2878 end if;
07fc65c4 2879
fbf5a39b 2880 if Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ))) then
07fc65c4 2881 Analyze_And_Resolve (N, Typ);
fbf5a39b 2882 end if;
07fc65c4
GB
2883 end Convert_To_Positional;
2884
70482933
RK
2885 ----------------------------
2886 -- Expand_Array_Aggregate --
2887 ----------------------------
2888
2889 -- Array aggregate expansion proceeds as follows:
2890
2891 -- 1. If requested we generate code to perform all the array aggregate
2892 -- bound checks, specifically
2893
2894 -- (a) Check that the index range defined by aggregate bounds is
2895 -- compatible with corresponding index subtype.
2896
2897 -- (b) If an others choice is present check that no aggregate
2898 -- index is outside the bounds of the index constraint.
2899
2900 -- (c) For multidimensional arrays make sure that all subaggregates
2901 -- corresponding to the same dimension have the same bounds.
2902
fbf5a39b
AC
2903 -- 2. Check for packed array aggregate which can be converted to a
2904 -- constant so that the aggregate disappeares completely.
2905
2906 -- 3. Check case of nested aggregate. Generally nested aggregates are
2907 -- handled during the processing of the parent aggregate.
2908
2909 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
2910 -- case pass it as is to Gigi. Note that a necessary condition for
2911 -- static processing is that the aggregate be fully positional.
2912
fbf5a39b 2913 -- 5. If in place aggregate expansion is possible (i.e. no need to create
70482933
RK
2914 -- a temporary) then mark the aggregate as such and return. Otherwise
2915 -- create a new temporary and generate the appropriate initialization
2916 -- code.
2917
2918 procedure Expand_Array_Aggregate (N : Node_Id) is
2919 Loc : constant Source_Ptr := Sloc (N);
2920
2921 Typ : constant Entity_Id := Etype (N);
2922 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 2923 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
2924 -- Ctyp is the corresponding component type.
2925
2926 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
2927 -- Number of aggregate index dimensions.
2928
2929 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
2930 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
2931 -- Low and High bounds of the constraint for each aggregate index.
2932
2933 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
2934 -- The type of each index.
2935
2936 Maybe_In_Place_OK : Boolean;
2937 -- If the type is neither controlled nor packed and the aggregate
2938 -- is the expression in an assignment, assignment in place may be
2939 -- possible, provided other conditions are met on the LHS.
2940
07fc65c4
GB
2941 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
2942 (others => False);
2943 -- If Others_Present (J) is True, then there is an others choice
2944 -- in one of the sub-aggregates of N at dimension J.
70482933
RK
2945
2946 procedure Build_Constrained_Type (Positional : Boolean);
2947 -- If the subtype is not static or unconstrained, build a constrained
2948 -- type using the computable sizes of the aggregate and its sub-
2949 -- aggregates.
2950
2951 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
2952 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
2953 -- by Index_Bounds.
2954
2955 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
2956 -- Checks that in a multi-dimensional array aggregate all subaggregates
2957 -- corresponding to the same dimension have the same bounds.
2958 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
2959 -- corresponding to the sub-aggregate.
2960
2961 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
2962 -- Computes the values of array Others_Present. Sub_Aggr is the
2963 -- array sub-aggregate we start the computation from. Dim is the
2964 -- dimension corresponding to the sub-aggregate.
2965
70482933
RK
2966 function Has_Address_Clause (D : Node_Id) return Boolean;
2967 -- If the aggregate is the expression in an object declaration, it
2968 -- cannot be expanded in place. This function does a lookahead in the
2969 -- current declarative part to find an address clause for the object
2970 -- being declared.
2971
2972 function In_Place_Assign_OK return Boolean;
2973 -- Simple predicate to determine whether an aggregate assignment can
2974 -- be done in place, because none of the new values can depend on the
2975 -- components of the target of the assignment.
2976
fbf5a39b
AC
2977 function Must_Slide (N : Node_Id; Typ : Entity_Id) return Boolean;
2978 -- A static aggregate in an object declaration can in most cases be
2979 -- expanded in place. The one exception is when the aggregate is given
2980 -- with component associations that specify different bounds from those
2981 -- of the type definition in the object declaration. In this rather
2982 -- pathological case the aggregate must slide, and we must introduce
2983 -- an intermediate temporary to hold it.
2984
70482933
RK
2985 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
2986 -- Checks that if an others choice is present in any sub-aggregate no
2987 -- aggregate index is outside the bounds of the index constraint.
2988 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
2989 -- corresponding to the sub-aggregate.
2990
2991 ----------------------------
2992 -- Build_Constrained_Type --
2993 ----------------------------
2994
2995 procedure Build_Constrained_Type (Positional : Boolean) is
fbf5a39b
AC
2996 Loc : constant Source_Ptr := Sloc (N);
2997 Agg_Type : Entity_Id;
2998 Comp : Node_Id;
2999 Decl : Node_Id;
3000 Typ : constant Entity_Id := Etype (N);
3001 Indices : constant List_Id := New_List;
3002 Num : Int;
3003 Sub_Agg : Node_Id;
70482933
RK
3004
3005 begin
3006 Agg_Type :=
3007 Make_Defining_Identifier (
3008 Loc, New_Internal_Name ('A'));
3009
3010 -- If the aggregate is purely positional, all its subaggregates
3011 -- have the same size. We collect the dimensions from the first
3012 -- subaggregate at each level.
3013
3014 if Positional then
3015 Sub_Agg := N;
3016
3017 for D in 1 .. Number_Dimensions (Typ) loop
3018 Comp := First (Expressions (Sub_Agg));
3019
3020 Sub_Agg := Comp;
3021 Num := 0;
3022
3023 while Present (Comp) loop
3024 Num := Num + 1;
3025 Next (Comp);
3026 end loop;
3027
3028 Append (
3029 Make_Range (Loc,
3030 Low_Bound => Make_Integer_Literal (Loc, 1),
3031 High_Bound =>
3032 Make_Integer_Literal (Loc, Num)),
3033 Indices);
3034 end loop;
3035
3036 else
70482933
RK
3037 -- We know the aggregate type is unconstrained and the
3038 -- aggregate is not processable by the back end, therefore
3039 -- not necessarily positional. Retrieve the bounds of each
3040 -- dimension as computed earlier.
3041
3042 for D in 1 .. Number_Dimensions (Typ) loop
3043 Append (
3044 Make_Range (Loc,
3045 Low_Bound => Aggr_Low (D),
3046 High_Bound => Aggr_High (D)),
3047 Indices);
3048 end loop;
3049 end if;
3050
3051 Decl :=
3052 Make_Full_Type_Declaration (Loc,
3053 Defining_Identifier => Agg_Type,
3054 Type_Definition =>
3055 Make_Constrained_Array_Definition (Loc,
3056 Discrete_Subtype_Definitions => Indices,
3057 Subtype_Indication =>
3058 New_Occurrence_Of (Component_Type (Typ), Loc)));
3059
3060 Insert_Action (N, Decl);
3061 Analyze (Decl);
3062 Set_Etype (N, Agg_Type);
3063 Set_Is_Itype (Agg_Type);
3064 Freeze_Itype (Agg_Type, N);
3065 end Build_Constrained_Type;
3066
3067 ------------------
3068 -- Check_Bounds --
3069 ------------------
3070
3071 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
3072 Aggr_Lo : Node_Id;
3073 Aggr_Hi : Node_Id;
3074
3075 Ind_Lo : Node_Id;
3076 Ind_Hi : Node_Id;
3077
3078 Cond : Node_Id := Empty;
3079
3080 begin
3081 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
3082 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
3083
3084 -- Generate the following test:
3085 --
3086 -- [constraint_error when
3087 -- Aggr_Lo <= Aggr_Hi and then
3088 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3089 --
3090 -- As an optimization try to see if some tests are trivially vacuos
3091 -- because we are comparing an expression against itself.
3092
3093 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
3094 Cond := Empty;
3095
3096 elsif Aggr_Hi = Ind_Hi then
3097 Cond :=
3098 Make_Op_Lt (Loc,
fbf5a39b
AC
3099 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3100 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
70482933
RK
3101
3102 elsif Aggr_Lo = Ind_Lo then
3103 Cond :=
3104 Make_Op_Gt (Loc,
fbf5a39b
AC
3105 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3106 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
70482933
RK
3107
3108 else
3109 Cond :=
3110 Make_Or_Else (Loc,
3111 Left_Opnd =>
3112 Make_Op_Lt (Loc,
fbf5a39b
AC
3113 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3114 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
70482933
RK
3115
3116 Right_Opnd =>
3117 Make_Op_Gt (Loc,
3118 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
3119 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
3120 end if;
3121
3122 if Present (Cond) then
3123 Cond :=
3124 Make_And_Then (Loc,
3125 Left_Opnd =>
3126 Make_Op_Le (Loc,
fbf5a39b
AC
3127 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3128 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
70482933
RK
3129
3130 Right_Opnd => Cond);
3131
3132 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
3133 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
3134 Insert_Action (N,
07fc65c4
GB
3135 Make_Raise_Constraint_Error (Loc,
3136 Condition => Cond,
3137 Reason => CE_Length_Check_Failed));
70482933
RK
3138 end if;
3139 end Check_Bounds;
3140
3141 ----------------------------
3142 -- Check_Same_Aggr_Bounds --
3143 ----------------------------
3144
3145 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
3146 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
3147 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
3148 -- The bounds of this specific sub-aggregate.
3149
3150 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
3151 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3152 -- The bounds of the aggregate for this dimension
3153
3154 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3155 -- The index type for this dimension.
3156
fbf5a39b 3157 Cond : Node_Id := Empty;
70482933 3158
fbf5a39b
AC
3159 Assoc : Node_Id;
3160 Expr : Node_Id;
70482933
RK
3161
3162 begin
3163 -- If index checks are on generate the test
3164 --
3165 -- [constraint_error when
3166 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3167 --
3168 -- As an optimization try to see if some tests are trivially vacuos
3169 -- because we are comparing an expression against itself. Also for
3170 -- the first dimension the test is trivially vacuous because there
3171 -- is just one aggregate for dimension 1.
3172
3173 if Index_Checks_Suppressed (Ind_Typ) then
3174 Cond := Empty;
3175
3176 elsif Dim = 1
3177 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
3178 then
3179 Cond := Empty;
3180
3181 elsif Aggr_Hi = Sub_Hi then
3182 Cond :=
3183 Make_Op_Ne (Loc,
fbf5a39b
AC
3184 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3185 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
3186
3187 elsif Aggr_Lo = Sub_Lo then
3188 Cond :=
3189 Make_Op_Ne (Loc,
fbf5a39b
AC
3190 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3191 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
3192
3193 else
3194 Cond :=
3195 Make_Or_Else (Loc,
3196 Left_Opnd =>
3197 Make_Op_Ne (Loc,
fbf5a39b
AC
3198 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3199 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
3200
3201 Right_Opnd =>
3202 Make_Op_Ne (Loc,
3203 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
3204 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
3205 end if;
3206
3207 if Present (Cond) then
3208 Insert_Action (N,
07fc65c4
GB
3209 Make_Raise_Constraint_Error (Loc,
3210 Condition => Cond,
3211 Reason => CE_Length_Check_Failed));
70482933
RK
3212 end if;
3213
3214 -- Now look inside the sub-aggregate to see if there is more work
3215
3216 if Dim < Aggr_Dimension then
3217
3218 -- Process positional components
3219
3220 if Present (Expressions (Sub_Aggr)) then
3221 Expr := First (Expressions (Sub_Aggr));
3222 while Present (Expr) loop
3223 Check_Same_Aggr_Bounds (Expr, Dim + 1);
3224 Next (Expr);
3225 end loop;
3226 end if;
3227
3228 -- Process component associations
3229
3230 if Present (Component_Associations (Sub_Aggr)) then
3231 Assoc := First (Component_Associations (Sub_Aggr));
3232 while Present (Assoc) loop
3233 Expr := Expression (Assoc);
3234 Check_Same_Aggr_Bounds (Expr, Dim + 1);
3235 Next (Assoc);
3236 end loop;
3237 end if;
3238 end if;
3239 end Check_Same_Aggr_Bounds;
3240
3241 ----------------------------
3242 -- Compute_Others_Present --
3243 ----------------------------
3244
3245 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
3246 Assoc : Node_Id;
3247 Expr : Node_Id;
70482933
RK
3248
3249 begin
3250 if Present (Component_Associations (Sub_Aggr)) then
3251 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 3252
70482933
RK
3253 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3254 Others_Present (Dim) := True;
3255 end if;
3256 end if;
3257
3258 -- Now look inside the sub-aggregate to see if there is more work
3259
3260 if Dim < Aggr_Dimension then
3261
3262 -- Process positional components
3263
3264 if Present (Expressions (Sub_Aggr)) then
3265 Expr := First (Expressions (Sub_Aggr));
3266 while Present (Expr) loop
3267 Compute_Others_Present (Expr, Dim + 1);
3268 Next (Expr);
3269 end loop;
3270 end if;
3271
3272 -- Process component associations
3273
3274 if Present (Component_Associations (Sub_Aggr)) then
3275 Assoc := First (Component_Associations (Sub_Aggr));
3276 while Present (Assoc) loop
3277 Expr := Expression (Assoc);
3278 Compute_Others_Present (Expr, Dim + 1);
3279 Next (Assoc);
3280 end loop;
3281 end if;
3282 end if;
3283 end Compute_Others_Present;
3284
fbf5a39b
AC
3285 ------------------------
3286 -- Has_Address_Clause --
3287 ------------------------
70482933
RK
3288
3289 function Has_Address_Clause (D : Node_Id) return Boolean is
fbf5a39b 3290 Id : constant Entity_Id := Defining_Identifier (D);
70482933
RK
3291 Decl : Node_Id := Next (D);
3292
3293 begin
3294 while Present (Decl) loop
70482933
RK
3295 if Nkind (Decl) = N_At_Clause
3296 and then Chars (Identifier (Decl)) = Chars (Id)
3297 then
3298 return True;
3299
3300 elsif Nkind (Decl) = N_Attribute_Definition_Clause
3301 and then Chars (Decl) = Name_Address
3302 and then Chars (Name (Decl)) = Chars (Id)
3303 then
3304 return True;
3305 end if;
3306
3307 Next (Decl);
3308 end loop;
3309
3310 return False;
3311 end Has_Address_Clause;
3312
3313 ------------------------
3314 -- In_Place_Assign_OK --
3315 ------------------------
3316
3317 function In_Place_Assign_OK return Boolean is
3318 Aggr_In : Node_Id;
3319 Aggr_Lo : Node_Id;
3320 Aggr_Hi : Node_Id;
3321 Obj_In : Node_Id;
3322 Obj_Lo : Node_Id;
3323 Obj_Hi : Node_Id;
3324
07fc65c4
GB
3325 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
3326 -- Aggregates that consist of a single Others choice are safe
3327 -- if the single expression is.
3328
70482933
RK
3329 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
3330 -- Check recursively that each component of a (sub)aggregate does
3331 -- not depend on the variable being assigned to.
3332
3333 function Safe_Component (Expr : Node_Id) return Boolean;
3334 -- Verify that an expression cannot depend on the variable being
3335 -- assigned to. Room for improvement here (but less than before).
3336
07fc65c4
GB
3337 -------------------------
3338 -- Is_Others_Aggregate --
3339 -------------------------
3340
3341 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
3342 begin
3343 return No (Expressions (Aggr))
3344 and then Nkind
3345 (First (Choices (First (Component_Associations (Aggr)))))
3346 = N_Others_Choice;
3347 end Is_Others_Aggregate;
3348
70482933
RK
3349 --------------------
3350 -- Safe_Aggregate --
3351 --------------------
3352
3353 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
3354 Expr : Node_Id;
3355
3356 begin
3357 if Present (Expressions (Aggr)) then
3358 Expr := First (Expressions (Aggr));
3359
3360 while Present (Expr) loop
3361 if Nkind (Expr) = N_Aggregate then
3362 if not Safe_Aggregate (Expr) then
3363 return False;
3364 end if;
3365
3366 elsif not Safe_Component (Expr) then
3367 return False;
3368 end if;
3369
3370 Next (Expr);
3371 end loop;
3372 end if;
3373
3374 if Present (Component_Associations (Aggr)) then
3375 Expr := First (Component_Associations (Aggr));
3376
3377 while Present (Expr) loop
3378 if Nkind (Expression (Expr)) = N_Aggregate then
3379 if not Safe_Aggregate (Expression (Expr)) then
3380 return False;
3381 end if;
3382
3383 elsif not Safe_Component (Expression (Expr)) then
3384 return False;
3385 end if;
3386
3387 Next (Expr);
3388 end loop;
3389 end if;
3390
3391 return True;
3392 end Safe_Aggregate;
3393
3394 --------------------
3395 -- Safe_Component --
3396 --------------------
3397
3398 function Safe_Component (Expr : Node_Id) return Boolean is
3399 Comp : Node_Id := Expr;
3400
3401 function Check_Component (Comp : Node_Id) return Boolean;
3402 -- Do the recursive traversal, after copy.
3403
fbf5a39b
AC
3404 ---------------------
3405 -- Check_Component --
3406 ---------------------
3407
70482933
RK
3408 function Check_Component (Comp : Node_Id) return Boolean is
3409 begin
3410 if Is_Overloaded (Comp) then
3411 return False;
3412 end if;
3413
3414 return Compile_Time_Known_Value (Comp)
3415
3416 or else (Is_Entity_Name (Comp)
3417 and then Present (Entity (Comp))
3418 and then No (Renamed_Object (Entity (Comp))))
3419
3420 or else (Nkind (Comp) = N_Attribute_Reference
3421 and then Check_Component (Prefix (Comp)))
3422
3423 or else (Nkind (Comp) in N_Binary_Op
3424 and then Check_Component (Left_Opnd (Comp))
3425 and then Check_Component (Right_Opnd (Comp)))
3426
3427 or else (Nkind (Comp) in N_Unary_Op
3428 and then Check_Component (Right_Opnd (Comp)))
3429
3430 or else (Nkind (Comp) = N_Selected_Component
3431 and then Check_Component (Prefix (Comp)));
3432 end Check_Component;
3433
fbf5a39b 3434 -- Start of processing for Safe_Component
70482933
RK
3435
3436 begin
3437 -- If the component appears in an association that may
3438 -- correspond to more than one element, it is not analyzed
3439 -- before the expansion into assignments, to avoid side effects.
3440 -- We analyze, but do not resolve the copy, to obtain sufficient
3441 -- entity information for the checks that follow. If component is
3442 -- overloaded we assume an unsafe function call.
3443
3444 if not Analyzed (Comp) then
3445 if Is_Overloaded (Expr) then
3446 return False;
07fc65c4
GB
3447
3448 elsif Nkind (Expr) = N_Aggregate
3449 and then not Is_Others_Aggregate (Expr)
3450 then
3451 return False;
3452
3453 elsif Nkind (Expr) = N_Allocator then
3454 -- For now, too complex to analyze.
3455
3456 return False;
70482933
RK
3457 end if;
3458
3459 Comp := New_Copy_Tree (Expr);
07fc65c4 3460 Set_Parent (Comp, Parent (Expr));
70482933
RK
3461 Analyze (Comp);
3462 end if;
3463
07fc65c4
GB
3464 if Nkind (Comp) = N_Aggregate then
3465 return Safe_Aggregate (Comp);
3466 else
3467 return Check_Component (Comp);
3468 end if;
70482933
RK
3469 end Safe_Component;
3470
3471 -- Start of processing for In_Place_Assign_OK
3472
3473 begin
3474 if Present (Component_Associations (N)) then
3475
3476 -- On assignment, sliding can take place, so we cannot do the
3477 -- assignment in place unless the bounds of the aggregate are
3478 -- statically equal to those of the target.
3479
3480 -- If the aggregate is given by an others choice, the bounds
3481 -- are derived from the left-hand side, and the assignment is
3482 -- safe if the expression is.
3483
07fc65c4 3484 if Is_Others_Aggregate (N) then
70482933
RK
3485 return
3486 Safe_Component
3487 (Expression (First (Component_Associations (N))));
3488 end if;
3489
3490 Aggr_In := First_Index (Etype (N));
3491 Obj_In := First_Index (Etype (Name (Parent (N))));
3492
3493 while Present (Aggr_In) loop
3494 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
3495 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
3496
3497 if not Compile_Time_Known_Value (Aggr_Lo)
3498 or else not Compile_Time_Known_Value (Aggr_Hi)
3499 or else not Compile_Time_Known_Value (Obj_Lo)
3500 or else not Compile_Time_Known_Value (Obj_Hi)
3501 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
3502 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
3503 then
3504 return False;
3505 end if;
3506
3507 Next_Index (Aggr_In);
3508 Next_Index (Obj_In);
3509 end loop;
3510 end if;
3511
3512 -- Now check the component values themselves.
3513
3514 return Safe_Aggregate (N);
3515 end In_Place_Assign_OK;
3516
fbf5a39b
AC
3517 ----------------
3518 -- Must_Slide --
3519 ----------------
3520
3521 function Must_Slide (N : Node_Id; Typ : Entity_Id) return Boolean
3522 is
3523 Obj_Type : Entity_Id := Etype (Defining_Identifier (Parent (N)));
3524
3525 L1, L2, H1, H2 : Node_Id;
3526
3527 begin
3528 -- No sliding if the type of the object is not established yet, if
3529 -- it is an unconstrained type whose actual subtype comes from the
3530 -- aggregate, or if the two types are identical.
3531
3532 if not Is_Array_Type (Obj_Type) then
3533 return False;
3534
3535 elsif not Is_Constrained (Obj_Type) then
3536 return False;
3537
3538 elsif Typ = Obj_Type then
3539 return False;
3540
3541 else
3542 -- Sliding can only occur along the first dimension
3543
3544 Get_Index_Bounds (First_Index (Typ), L1, H1);
3545 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
3546
3547 if not Is_Static_Expression (L1)
3548 or else not Is_Static_Expression (L2)
3549 or else not Is_Static_Expression (H1)
3550 or else not Is_Static_Expression (H2)
3551 then
3552 return False;
3553 else
3554 return Expr_Value (L1) /= Expr_Value (L2)
3555 or else Expr_Value (H1) /= Expr_Value (H2);
3556 end if;
3557 end if;
3558 end Must_Slide;
3559
70482933
RK
3560 ------------------
3561 -- Others_Check --
3562 ------------------
3563
3564 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
3565 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
3566 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3567 -- The bounds of the aggregate for this dimension.
3568
3569 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3570 -- The index type for this dimension.
3571
3572 Need_To_Check : Boolean := False;
3573
3574 Choices_Lo : Node_Id := Empty;
3575 Choices_Hi : Node_Id := Empty;
3576 -- The lowest and highest discrete choices for a named sub-aggregate
3577
3578 Nb_Choices : Int := -1;
3579 -- The number of discrete non-others choices in this sub-aggregate
3580
3581 Nb_Elements : Uint := Uint_0;
3582 -- The number of elements in a positional aggregate
3583
3584 Cond : Node_Id := Empty;
3585
3586 Assoc : Node_Id;
3587 Choice : Node_Id;
3588 Expr : Node_Id;
3589
3590 begin
3591 -- Check if we have an others choice. If we do make sure that this
3592 -- sub-aggregate contains at least one element in addition to the
3593 -- others choice.
3594
3595 if Range_Checks_Suppressed (Ind_Typ) then
3596 Need_To_Check := False;
3597
3598 elsif Present (Expressions (Sub_Aggr))
3599 and then Present (Component_Associations (Sub_Aggr))
3600 then
3601 Need_To_Check := True;
3602
3603 elsif Present (Component_Associations (Sub_Aggr)) then
3604 Assoc := Last (Component_Associations (Sub_Aggr));
3605
3606 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
3607 Need_To_Check := False;
3608
3609 else
3610 -- Count the number of discrete choices. Start with -1
3611 -- because the others choice does not count.
3612
3613 Nb_Choices := -1;
3614 Assoc := First (Component_Associations (Sub_Aggr));
3615 while Present (Assoc) loop
3616 Choice := First (Choices (Assoc));
3617 while Present (Choice) loop
3618 Nb_Choices := Nb_Choices + 1;
3619 Next (Choice);
3620 end loop;
3621
3622 Next (Assoc);
3623 end loop;
3624
3625 -- If there is only an others choice nothing to do
3626
3627 Need_To_Check := (Nb_Choices > 0);
3628 end if;
3629
3630 else
3631 Need_To_Check := False;
3632 end if;
3633
3634 -- If we are dealing with a positional sub-aggregate with an
07fc65c4 3635 -- others choice then compute the number or positional elements.
70482933
RK
3636
3637 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
3638 Expr := First (Expressions (Sub_Aggr));
3639 Nb_Elements := Uint_0;
3640 while Present (Expr) loop
3641 Nb_Elements := Nb_Elements + 1;
3642 Next (Expr);
3643 end loop;
3644
3645 -- If the aggregate contains discrete choices and an others choice
3646 -- compute the smallest and largest discrete choice values.
3647
3648 elsif Need_To_Check then
3649 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 3650
70482933
RK
3651 Table : Case_Table_Type (1 .. Nb_Choices);
3652 -- Used to sort all the different choice values
3653
07fc65c4 3654 J : Pos := 1;
70482933
RK
3655 Low : Node_Id;
3656 High : Node_Id;
3657
3658 begin
3659 Assoc := First (Component_Associations (Sub_Aggr));
3660 while Present (Assoc) loop
3661 Choice := First (Choices (Assoc));
3662 while Present (Choice) loop
3663 if Nkind (Choice) = N_Others_Choice then
3664 exit;
3665 end if;
3666
3667 Get_Index_Bounds (Choice, Low, High);
07fc65c4
GB
3668 Table (J).Choice_Lo := Low;
3669 Table (J).Choice_Hi := High;
70482933 3670
07fc65c4 3671 J := J + 1;
70482933
RK
3672 Next (Choice);
3673 end loop;
3674
3675 Next (Assoc);
3676 end loop;
3677
3678 -- Sort the discrete choices
3679
3680 Sort_Case_Table (Table);
3681
3682 Choices_Lo := Table (1).Choice_Lo;
3683 Choices_Hi := Table (Nb_Choices).Choice_Hi;
3684 end Compute_Choices_Lo_And_Choices_Hi;
3685 end if;
3686
3687 -- If no others choice in this sub-aggregate, or the aggregate
3688 -- comprises only an others choice, nothing to do.
3689
3690 if not Need_To_Check then
3691 Cond := Empty;
3692
3693 -- If we are dealing with an aggregate containing an others
3694 -- choice and positional components, we generate the following test:
3695 --
3696 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
3697 -- Ind_Typ'Pos (Aggr_Hi)
3698 -- then
3699 -- raise Constraint_Error;
3700 -- end if;
3701
3702 elsif Nb_Elements > Uint_0 then
3703 Cond :=
3704 Make_Op_Gt (Loc,
3705 Left_Opnd =>
3706 Make_Op_Add (Loc,
3707 Left_Opnd =>
3708 Make_Attribute_Reference (Loc,
3709 Prefix => New_Reference_To (Ind_Typ, Loc),
3710 Attribute_Name => Name_Pos,
3711 Expressions =>
fbf5a39b
AC
3712 New_List
3713 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
70482933
RK
3714 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
3715
3716 Right_Opnd =>
3717 Make_Attribute_Reference (Loc,
3718 Prefix => New_Reference_To (Ind_Typ, Loc),
3719 Attribute_Name => Name_Pos,
fbf5a39b
AC
3720 Expressions => New_List (
3721 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
70482933
RK
3722
3723 -- If we are dealing with an aggregate containing an others
3724 -- choice and discrete choices we generate the following test:
3725 --
3726 -- [constraint_error when
3727 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
3728
3729 else
3730 Cond :=
3731 Make_Or_Else (Loc,
3732 Left_Opnd =>
3733 Make_Op_Lt (Loc,
fbf5a39b
AC
3734 Left_Opnd =>
3735 Duplicate_Subexpr_Move_Checks (Choices_Lo),
3736 Right_Opnd =>
3737 Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
3738
3739 Right_Opnd =>
3740 Make_Op_Gt (Loc,
fbf5a39b
AC
3741 Left_Opnd =>
3742 Duplicate_Subexpr (Choices_Hi),
3743 Right_Opnd =>
3744 Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
3745 end if;
3746
3747 if Present (Cond) then
3748 Insert_Action (N,
07fc65c4
GB
3749 Make_Raise_Constraint_Error (Loc,
3750 Condition => Cond,
3751 Reason => CE_Length_Check_Failed));
70482933
RK
3752 end if;
3753
3754 -- Now look inside the sub-aggregate to see if there is more work
3755
3756 if Dim < Aggr_Dimension then
3757
3758 -- Process positional components
3759
3760 if Present (Expressions (Sub_Aggr)) then
3761 Expr := First (Expressions (Sub_Aggr));
3762 while Present (Expr) loop
3763 Others_Check (Expr, Dim + 1);
3764 Next (Expr);
3765 end loop;
3766 end if;
3767
3768 -- Process component associations
3769
3770 if Present (Component_Associations (Sub_Aggr)) then
3771 Assoc := First (Component_Associations (Sub_Aggr));
3772 while Present (Assoc) loop
3773 Expr := Expression (Assoc);
3774 Others_Check (Expr, Dim + 1);
3775 Next (Assoc);
3776 end loop;
3777 end if;
3778 end if;
3779 end Others_Check;
3780
3781 -- Remaining Expand_Array_Aggregate variables
3782
3783 Tmp : Entity_Id;
fbf5a39b 3784 -- Holds the temporary aggregate value
70482933
RK
3785
3786 Tmp_Decl : Node_Id;
fbf5a39b 3787 -- Holds the declaration of Tmp
70482933
RK
3788
3789 Aggr_Code : List_Id;
3790 Parent_Node : Node_Id;
3791 Parent_Kind : Node_Kind;
3792
3793 -- Start of processing for Expand_Array_Aggregate
3794
3795 begin
3796 -- Do not touch the special aggregates of attributes used for Asm calls
3797
3798 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
3799 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
3800 then
3801 return;
3802 end if;
3803
07fc65c4
GB
3804 -- If the semantic analyzer has determined that aggregate N will raise
3805 -- Constraint_Error at run-time, then the aggregate node has been
3806 -- replaced with an N_Raise_Constraint_Error node and we should
3807 -- never get here.
70482933
RK
3808
3809 pragma Assert (not Raises_Constraint_Error (N));
3810
fbf5a39b
AC
3811 -- STEP 1a.
3812
3813 -- Check that the index range defined by aggregate bounds is
3814 -- compatible with corresponding index subtype.
70482933
RK
3815
3816 Index_Compatibility_Check : declare
3817 Aggr_Index_Range : Node_Id := First_Index (Typ);
3818 -- The current aggregate index range
3819
3820 Index_Constraint : Node_Id := First_Index (Etype (Typ));
3821 -- The corresponding index constraint against which we have to
3822 -- check the above aggregate index range.
3823
3824 begin
3825 Compute_Others_Present (N, 1);
3826
3827 for J in 1 .. Aggr_Dimension loop
3828 -- There is no need to emit a check if an others choice is
3829 -- present for this array aggregate dimension since in this
3830 -- case one of N's sub-aggregates has taken its bounds from the
3831 -- context and these bounds must have been checked already. In
3832 -- addition all sub-aggregates corresponding to the same
3833 -- dimension must all have the same bounds (checked in (c) below).
3834
3835 if not Range_Checks_Suppressed (Etype (Index_Constraint))
3836 and then not Others_Present (J)
3837 then
3838 -- We don't use Checks.Apply_Range_Check here because it
3839 -- emits a spurious check. Namely it checks that the range
3840 -- defined by the aggregate bounds is non empty. But we know
3841 -- this already if we get here.
3842
3843 Check_Bounds (Aggr_Index_Range, Index_Constraint);
3844 end if;
3845
3846 -- Save the low and high bounds of the aggregate index as well
3847 -- as the index type for later use in checks (b) and (c) below.
3848
3849 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
3850 Aggr_High (J) := High_Bound (Aggr_Index_Range);
3851
3852 Aggr_Index_Typ (J) := Etype (Index_Constraint);
3853
3854 Next_Index (Aggr_Index_Range);
3855 Next_Index (Index_Constraint);
3856 end loop;
3857 end Index_Compatibility_Check;
3858
fbf5a39b
AC
3859 -- STEP 1b.
3860
3861 -- If an others choice is present check that no aggregate
3862 -- index is outside the bounds of the index constraint.
70482933
RK
3863
3864 Others_Check (N, 1);
3865
fbf5a39b
AC
3866 -- STEP 1c.
3867
3868 -- For multidimensional arrays make sure that all subaggregates
3869 -- corresponding to the same dimension have the same bounds.
70482933
RK
3870
3871 if Aggr_Dimension > 1 then
3872 Check_Same_Aggr_Bounds (N, 1);
3873 end if;
3874
3875 -- STEP 2.
3876
fbf5a39b
AC
3877 -- Here we test for is packed array aggregate that we can handle
3878 -- at compile time. If so, return with transformation done. Note
3879 -- that we do this even if the aggregate is nested, because once
3880 -- we have done this processing, there is no more nested aggregate!
3881
3882 if Packed_Array_Aggregate_Handled (N) then
3883 return;
3884 end if;
3885
3886 -- At this point we try to convert to positional form
70482933
RK
3887
3888 Convert_To_Positional (N);
3889
fbf5a39b
AC
3890 -- if the result is no longer an aggregate (e.g. it may be a string
3891 -- literal, or a temporary which has the needed value), then we are
3892 -- done, since there is no longer a nested aggregate.
3893
70482933
RK
3894 if Nkind (N) /= N_Aggregate then
3895 return;
3896
fbf5a39b
AC
3897 -- We are also done if the result is an analyzed aggregate
3898 -- This case could use more comments ???
3899
70482933
RK
3900 elsif Analyzed (N)
3901 and then N /= Original_Node (N)
3902 then
3903 return;
3904 end if;
3905
fbf5a39b
AC
3906 -- Now see if back end processing is possible
3907
70482933
RK
3908 if Backend_Processing_Possible (N) then
3909
3910 -- If the aggregate is static but the constraints are not, build
3911 -- a static subtype for the aggregate, so that Gigi can place it
3912 -- in static memory. Perform an unchecked_conversion to the non-
3913 -- static type imposed by the context.
3914
3915 declare
3916 Itype : constant Entity_Id := Etype (N);
3917 Index : Node_Id;
3918 Needs_Type : Boolean := False;
3919
3920 begin
3921 Index := First_Index (Itype);
3922
3923 while Present (Index) loop
3924 if not Is_Static_Subtype (Etype (Index)) then
3925 Needs_Type := True;
3926 exit;
3927 else
3928 Next_Index (Index);
3929 end if;
3930 end loop;
3931
3932 if Needs_Type then
3933 Build_Constrained_Type (Positional => True);
3934 Rewrite (N, Unchecked_Convert_To (Itype, N));
3935 Analyze (N);
3936 end if;
3937 end;
3938
3939 return;
3940 end if;
3941
fbf5a39b
AC
3942 -- STEP 3.
3943
70482933
RK
3944 -- Delay expansion for nested aggregates it will be taken care of
3945 -- when the parent aggregate is expanded
3946
3947 Parent_Node := Parent (N);
3948 Parent_Kind := Nkind (Parent_Node);
3949
3950 if Parent_Kind = N_Qualified_Expression then
3951 Parent_Node := Parent (Parent_Node);
3952 Parent_Kind := Nkind (Parent_Node);
3953 end if;
3954
3955 if Parent_Kind = N_Aggregate
3956 or else Parent_Kind = N_Extension_Aggregate
3957 or else Parent_Kind = N_Component_Association
3958 or else (Parent_Kind = N_Object_Declaration
3959 and then Controlled_Type (Typ))
3960 or else (Parent_Kind = N_Assignment_Statement
3961 and then Inside_Init_Proc)
3962 then
3963 Set_Expansion_Delayed (N);
3964 return;
3965 end if;
3966
fbf5a39b 3967 -- STEP 4.
70482933
RK
3968
3969 -- Look if in place aggregate expansion is possible
3970
3971 -- For object declarations we build the aggregate in place, unless
3972 -- the array is bit-packed or the component is controlled.
3973
3974 -- For assignments we do the assignment in place if all the component
3975 -- associations have compile-time known values. For other cases we
3976 -- create a temporary. The analysis for safety of on-line assignment
3977 -- is delicate, i.e. we don't know how to do it fully yet ???
3978
3979 if Requires_Transient_Scope (Typ) then
3980 Establish_Transient_Scope
3981 (N, Sec_Stack => Has_Controlled_Component (Typ));
3982 end if;
3983
c45b6ae0
AC
3984 if Has_Default_Init_Comps (N) then
3985 Maybe_In_Place_OK := False;
3986 else
3987 Maybe_In_Place_OK :=
3988 Comes_From_Source (N)
3989 and then Nkind (Parent (N)) = N_Assignment_Statement
3990 and then not Is_Bit_Packed_Array (Typ)
3991 and then not Has_Controlled_Component (Typ)
3992 and then In_Place_Assign_OK;
3993 end if;
70482933 3994
c45b6ae0
AC
3995 if not Has_Default_Init_Comps (N)
3996 and then Comes_From_Source (Parent (N))
70482933 3997 and then Nkind (Parent (N)) = N_Object_Declaration
fbf5a39b 3998 and then not Must_Slide (N, Typ)
70482933
RK
3999 and then N = Expression (Parent (N))
4000 and then not Is_Bit_Packed_Array (Typ)
4001 and then not Has_Controlled_Component (Typ)
4002 and then not Has_Address_Clause (Parent (N))
4003 then
70482933
RK
4004 Tmp := Defining_Identifier (Parent (N));
4005 Set_No_Initialization (Parent (N));
4006 Set_Expression (Parent (N), Empty);
4007
4008 -- Set the type of the entity, for use in the analysis of the
4009 -- subsequent indexed assignments. If the nominal type is not
4010 -- constrained, build a subtype from the known bounds of the
4011 -- aggregate. If the declaration has a subtype mark, use it,
4012 -- otherwise use the itype of the aggregate.
4013
4014 if not Is_Constrained (Typ) then
4015 Build_Constrained_Type (Positional => False);
4016 elsif Is_Entity_Name (Object_Definition (Parent (N)))
4017 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
4018 then
4019 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
4020 else
4021 Set_Size_Known_At_Compile_Time (Typ, False);
4022 Set_Etype (Tmp, Typ);
4023 end if;
4024
4025 elsif Maybe_In_Place_OK
4026 and then Is_Entity_Name (Name (Parent (N)))
4027 then
4028 Tmp := Entity (Name (Parent (N)));
4029
4030 if Etype (Tmp) /= Etype (N) then
4031 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
4032
4033 if Nkind (N) = N_Raise_Constraint_Error then
4034
4035 -- Static error, nothing further to expand
4036
4037 return;
4038 end if;
70482933
RK
4039 end if;
4040
07fc65c4
GB
4041 elsif Maybe_In_Place_OK
4042 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4043 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4044 then
4045 Tmp := Name (Parent (N));
4046
4047 if Etype (Tmp) /= Etype (N) then
4048 Apply_Length_Check (N, Etype (Tmp));
4049 end if;
4050
70482933
RK
4051 elsif Maybe_In_Place_OK
4052 and then Nkind (Name (Parent (N))) = N_Slice
07fc65c4 4053 and then Safe_Slice_Assignment (N)
70482933 4054 then
07fc65c4 4055 -- Safe_Slice_Assignment rewrites assignment as a loop
70482933
RK
4056
4057 return;
4058
fbf5a39b
AC
4059 -- Step 5
4060
4061 -- In place aggregate expansion is not possible
4062
70482933 4063 else
07fc65c4 4064 Maybe_In_Place_OK := False;
70482933
RK
4065 Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4066 Tmp_Decl :=
4067 Make_Object_Declaration
4068 (Loc,
4069 Defining_Identifier => Tmp,
4070 Object_Definition => New_Occurrence_Of (Typ, Loc));
4071 Set_No_Initialization (Tmp_Decl, True);
4072
4073 -- If we are within a loop, the temporary will be pushed on the
4074 -- stack at each iteration. If the aggregate is the expression for
4075 -- an allocator, it will be immediately copied to the heap and can
4076 -- be reclaimed at once. We create a transient scope around the
4077 -- aggregate for this purpose.
4078
4079 if Ekind (Current_Scope) = E_Loop
4080 and then Nkind (Parent (Parent (N))) = N_Allocator
4081 then
4082 Establish_Transient_Scope (N, False);
4083 end if;
4084
4085 Insert_Action (N, Tmp_Decl);
4086 end if;
4087
4088 -- Construct and insert the aggregate code. We can safely suppress
4089 -- index checks because this code is guaranteed not to raise CE
4090 -- on index checks. However we should *not* suppress all checks.
4091
07fc65c4
GB
4092 declare
4093 Target : Node_Id;
4094
4095 begin
4096 if Nkind (Tmp) = N_Defining_Identifier then
4097 Target := New_Reference_To (Tmp, Loc);
4098
4099 else
c45b6ae0
AC
4100
4101 if Has_Default_Init_Comps (N) then
4102
4103 -- Ada0Y (AI-287): This case has not been analyzed???
4104
4105 pragma Assert (False);
4106 null;
4107 end if;
4108
07fc65c4
GB
4109 -- Name in assignment is explicit dereference.
4110
4111 Target := New_Copy (Tmp);
4112 end if;
4113
4114 Aggr_Code :=
4115 Build_Array_Aggr_Code (N,
c45b6ae0 4116 Ctype => Ctyp,
07fc65c4
GB
4117 Index => First_Index (Typ),
4118 Into => Target,
4119 Scalar_Comp => Is_Scalar_Type (Ctyp));
4120 end;
70482933
RK
4121
4122 if Comes_From_Source (Tmp) then
4123 Insert_Actions_After (Parent (N), Aggr_Code);
4124
4125 else
4126 Insert_Actions (N, Aggr_Code);
4127 end if;
4128
07fc65c4
GB
4129 -- If the aggregate has been assigned in place, remove the original
4130 -- assignment.
4131
70482933 4132 if Nkind (Parent (N)) = N_Assignment_Statement
07fc65c4 4133 and then Maybe_In_Place_OK
70482933
RK
4134 then
4135 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933
RK
4136
4137 elsif Nkind (Parent (N)) /= N_Object_Declaration
4138 or else Tmp /= Defining_Identifier (Parent (N))
4139 then
4140 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
4141 Analyze_And_Resolve (N, Typ);
4142 end if;
4143 end Expand_Array_Aggregate;
4144
4145 ------------------------
4146 -- Expand_N_Aggregate --
4147 ------------------------
4148
4149 procedure Expand_N_Aggregate (N : Node_Id) is
4150 begin
4151 if Is_Record_Type (Etype (N)) then
4152 Expand_Record_Aggregate (N);
4153 else
4154 Expand_Array_Aggregate (N);
4155 end if;
fbf5a39b
AC
4156
4157 exception
4158 when RE_Not_Available =>
4159 return;
70482933
RK
4160 end Expand_N_Aggregate;
4161
4162 ----------------------------------
4163 -- Expand_N_Extension_Aggregate --
4164 ----------------------------------
4165
4166 -- If the ancestor part is an expression, add a component association for
4167 -- the parent field. If the type of the ancestor part is not the direct
4168 -- parent of the expected type, build recursively the needed ancestors.
4169 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
4170 -- ration for a temporary of the expected type, followed by individual
4171 -- assignments to the given components.
4172
4173 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
4174 Loc : constant Source_Ptr := Sloc (N);
4175 A : constant Node_Id := Ancestor_Part (N);
4176 Typ : constant Entity_Id := Etype (N);
4177
4178 begin
fbf5a39b 4179 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
4180 -- on the resulting object which thus has to be materialized in
4181 -- the front-end
4182
4183 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
4184 Convert_To_Assignments (N, Typ);
4185
4186 -- The extension aggregate is transformed into a record aggregate
4187 -- of the following form (c1 and c2 are inherited components)
4188
4189 -- (Exp with c3 => a, c4 => b)
4190 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
4191
4192 else
4193 Set_Etype (N, Typ);
4194
4195 -- No tag is needed in the case of Java_VM
4196
4197 if Java_VM then
4198 Expand_Record_Aggregate (N,
4199 Parent_Expr => A);
4200 else
4201 Expand_Record_Aggregate (N,
4202 Orig_Tag => New_Occurrence_Of (Access_Disp_Table (Typ), Loc),
4203 Parent_Expr => A);
4204 end if;
4205 end if;
fbf5a39b
AC
4206
4207 exception
4208 when RE_Not_Available =>
4209 return;
70482933
RK
4210 end Expand_N_Extension_Aggregate;
4211
4212 -----------------------------
4213 -- Expand_Record_Aggregate --
4214 -----------------------------
4215
4216 procedure Expand_Record_Aggregate
4217 (N : Node_Id;
4218 Orig_Tag : Node_Id := Empty;
4219 Parent_Expr : Node_Id := Empty)
4220 is
fbf5a39b
AC
4221 Loc : constant Source_Ptr := Sloc (N);
4222 Comps : constant List_Id := Component_Associations (N);
4223 Typ : constant Entity_Id := Etype (N);
4224 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933
RK
4225
4226 function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean;
4227 -- Checks the presence of a nested aggregate which needs Late_Expansion
4228 -- or the presence of tagged components which may need tag adjustment.
4229
4230 --------------------------------------------------
4231 -- Has_Delayed_Nested_Aggregate_Or_Tagged_Comps --
4232 --------------------------------------------------
4233
4234 function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean is
fbf5a39b 4235 C : Node_Id;
70482933
RK
4236 Expr_Q : Node_Id;
4237
4238 begin
4239 if No (Comps) then
4240 return False;
4241 end if;
4242
4243 C := First (Comps);
4244 while Present (C) loop
70482933
RK
4245 if Nkind (Expression (C)) = N_Qualified_Expression then
4246 Expr_Q := Expression (Expression (C));
4247 else
4248 Expr_Q := Expression (C);
4249 end if;
4250
4251 -- Return true if the aggregate has any associations for
4252 -- tagged components that may require tag adjustment.
4253 -- These are cases where the source expression may have
4254 -- a tag that could differ from the component tag (e.g.,
4255 -- can occur for type conversions and formal parameters).
4256 -- (Tag adjustment is not needed if Java_VM because object
4257 -- tags are implicit in the JVM.)
4258
4259 if Is_Tagged_Type (Etype (Expr_Q))
4260 and then (Nkind (Expr_Q) = N_Type_Conversion
4261 or else (Is_Entity_Name (Expr_Q)
4262 and then Ekind (Entity (Expr_Q)) in Formal_Kind))
4263 and then not Java_VM
4264 then
4265 return True;
4266 end if;
4267
4268 if Is_Delayed_Aggregate (Expr_Q) then
4269 return True;
4270 end if;
4271
4272 Next (C);
4273 end loop;
4274
4275 return False;
fbf5a39b 4276 end Has_Delayed_Nested_Aggregate_Or_Tagged_Comps;
70482933
RK
4277
4278 -- Remaining Expand_Record_Aggregate variables
4279
4280 Tag_Value : Node_Id;
4281 Comp : Entity_Id;
4282 New_Comp : Node_Id;
4283
4284 -- Start of processing for Expand_Record_Aggregate
4285
4286 begin
fbf5a39b
AC
4287 -- If the aggregate is to be assigned to an atomic variable, we
4288 -- have to prevent a piecemeal assignment even if the aggregate
4289 -- is to be expanded. We create a temporary for the aggregate, and
4290 -- assign the temporary instead, so that the back end can generate
4291 -- an atomic move for it.
4292
4293 if Is_Atomic (Typ)
4294 and then (Nkind (Parent (N)) = N_Object_Declaration
4295 or else Nkind (Parent (N)) = N_Assignment_Statement)
4296 and then Comes_From_Source (Parent (N))
4297 then
4298 Expand_Atomic_Aggregate (N, Typ);
4299 return;
4300 end if;
4301
70482933
RK
4302 -- Gigi doesn't handle properly temporaries of variable size
4303 -- so we generate it in the front-end
4304
4305 if not Size_Known_At_Compile_Time (Typ) then
4306 Convert_To_Assignments (N, Typ);
4307
4308 -- Temporaries for controlled aggregates need to be attached to a
4309 -- final chain in order to be properly finalized, so it has to
4310 -- be created in the front-end
4311
4312 elsif Is_Controlled (Typ)
4313 or else Has_Controlled_Component (Base_Type (Typ))
4314 then
4315 Convert_To_Assignments (N, Typ);
4316
19f0526a
AC
4317 -- Ada0Y (AI-287): In case of default initialized components we convert
4318 -- the aggregate into assignments.
4319
65356e64
AC
4320 elsif Has_Default_Init_Comps (N) then
4321 Convert_To_Assignments (N, Typ);
4322
70482933
RK
4323 elsif Has_Delayed_Nested_Aggregate_Or_Tagged_Comps then
4324 Convert_To_Assignments (N, Typ);
4325
4326 -- If an ancestor is private, some components are not inherited and
4327 -- we cannot expand into a record aggregate
4328
4329 elsif Has_Private_Ancestor (Typ) then
4330 Convert_To_Assignments (N, Typ);
4331
4332 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
4333 -- is not able to handle the aggregate for Late_Request.
4334
4335 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
4336 Convert_To_Assignments (N, Typ);
4337
fbf5a39b
AC
4338 -- If some components are mutable, the size of the aggregate component
4339 -- may be disctinct from the default size of the type component, so
4340 -- we need to expand to insure that the back-end copies the proper
4341 -- size of the data.
4342
4343 elsif Has_Mutable_Components (Typ) then
4344 Convert_To_Assignments (N, Typ);
4345
70482933
RK
4346 -- In all other cases we generate a proper aggregate that
4347 -- can be handled by gigi.
4348
4349 else
07fc65c4 4350 -- If no discriminants, nothing special to do
70482933 4351
07fc65c4 4352 if not Has_Discriminants (Typ) then
70482933
RK
4353 null;
4354
07fc65c4
GB
4355 -- Case of discriminants present
4356
70482933
RK
4357 elsif Is_Derived_Type (Typ) then
4358
fbf5a39b
AC
4359 -- For untagged types, non-stored discriminants are replaced
4360 -- with stored discriminants, which are the ones that gigi uses
07fc65c4 4361 -- to describe the type and its components.
70482933 4362
07fc65c4 4363 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 4364 Constraints : constant List_Id := New_List;
70482933
RK
4365 First_Comp : Node_Id;
4366 Discriminant : Entity_Id;
07fc65c4
GB
4367 Decl : Node_Id;
4368 Num_Disc : Int := 0;
4369 Num_Gird : Int := 0;
4370
fbf5a39b
AC
4371 procedure Prepend_Stored_Values (T : Entity_Id);
4372 -- Scan the list of stored discriminants of the type, and
07fc65c4
GB
4373 -- add their values to the aggregate being built.
4374
4375 ---------------------------
fbf5a39b 4376 -- Prepend_Stored_Values --
07fc65c4
GB
4377 ---------------------------
4378
fbf5a39b 4379 procedure Prepend_Stored_Values (T : Entity_Id) is
07fc65c4 4380 begin
fbf5a39b 4381 Discriminant := First_Stored_Discriminant (T);
07fc65c4
GB
4382
4383 while Present (Discriminant) loop
4384 New_Comp :=
4385 Make_Component_Association (Loc,
4386 Choices =>
4387 New_List (New_Occurrence_Of (Discriminant, Loc)),
4388
4389 Expression =>
4390 New_Copy_Tree (
4391 Get_Discriminant_Value (
4392 Discriminant,
4393 Typ,
4394 Discriminant_Constraint (Typ))));
4395
4396 if No (First_Comp) then
4397 Prepend_To (Component_Associations (N), New_Comp);
4398 else
4399 Insert_After (First_Comp, New_Comp);
4400 end if;
4401
4402 First_Comp := New_Comp;
fbf5a39b 4403 Next_Stored_Discriminant (Discriminant);
07fc65c4 4404 end loop;
fbf5a39b 4405 end Prepend_Stored_Values;
07fc65c4
GB
4406
4407 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
4408
4409 begin
07fc65c4
GB
4410 -- Remove the associations for the discriminant of
4411 -- the derived type.
70482933
RK
4412
4413 First_Comp := First (Component_Associations (N));
4414
4415 while Present (First_Comp) loop
4416 Comp := First_Comp;
4417 Next (First_Comp);
4418
4419 if Ekind (Entity (First (Choices (Comp)))) =
4420 E_Discriminant
4421 then
4422 Remove (Comp);
07fc65c4 4423 Num_Disc := Num_Disc + 1;
70482933
RK
4424 end if;
4425 end loop;
4426
fbf5a39b
AC
4427 -- Insert stored discriminant associations in the correct
4428 -- order. If there are more stored discriminants than new
07fc65c4 4429 -- discriminants, there is at least one new discriminant
fbf5a39b
AC
4430 -- that constrains more than one of the stored discriminants.
4431 -- In this case we need to construct a proper subtype of
4432 -- the parent type, in order to supply values to all the
4433 -- components. Otherwise there is one-one correspondence
4434 -- between the constraints and the stored discriminants.
70482933
RK
4435
4436 First_Comp := Empty;
70482933 4437
fbf5a39b 4438 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
70482933 4439
07fc65c4
GB
4440 while Present (Discriminant) loop
4441 Num_Gird := Num_Gird + 1;
fbf5a39b 4442 Next_Stored_Discriminant (Discriminant);
70482933 4443 end loop;
07fc65c4 4444
fbf5a39b 4445 -- Case of more stored discriminants than new discriminants
07fc65c4
GB
4446
4447 if Num_Gird > Num_Disc then
4448
4449 -- Create a proper subtype of the parent type, which is
4450 -- the proper implementation type for the aggregate, and
4451 -- convert it to the intended target type.
4452
fbf5a39b 4453 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
07fc65c4
GB
4454
4455 while Present (Discriminant) loop
4456 New_Comp :=
4457 New_Copy_Tree (
4458 Get_Discriminant_Value (
4459 Discriminant,
4460 Typ,
4461 Discriminant_Constraint (Typ)));
4462 Append (New_Comp, Constraints);
fbf5a39b 4463 Next_Stored_Discriminant (Discriminant);
07fc65c4
GB
4464 end loop;
4465
4466 Decl :=
4467 Make_Subtype_Declaration (Loc,
4468 Defining_Identifier =>
4469 Make_Defining_Identifier (Loc,
4470 New_Internal_Name ('T')),
4471 Subtype_Indication =>
4472 Make_Subtype_Indication (Loc,
4473 Subtype_Mark =>
4474 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
4475 Constraint =>
4476 Make_Index_Or_Discriminant_Constraint
4477 (Loc, Constraints)));
4478
4479 Insert_Action (N, Decl);
fbf5a39b 4480 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
4481
4482 Set_Etype (N, Defining_Identifier (Decl));
4483 Set_Analyzed (N);
4484
4485 Rewrite (N, Unchecked_Convert_To (Typ, N));
4486 Analyze (N);
4487
4488 -- Case where we do not have fewer new discriminants than
fbf5a39b
AC
4489 -- stored discriminants, so in this case we can simply
4490 -- use the stored discriminants of the subtype.
07fc65c4
GB
4491
4492 else
fbf5a39b 4493 Prepend_Stored_Values (Typ);
07fc65c4
GB
4494 end if;
4495 end Generate_Aggregate_For_Derived_Type;
70482933
RK
4496 end if;
4497
4498 if Is_Tagged_Type (Typ) then
4499
4500 -- The tagged case, _parent and _tag component must be created.
4501
4502 -- Reset null_present unconditionally. tagged records always have
4503 -- at least one field (the tag or the parent)
4504
4505 Set_Null_Record_Present (N, False);
4506
4507 -- When the current aggregate comes from the expansion of an
4508 -- extension aggregate, the parent expr is replaced by an
4509 -- aggregate formed by selected components of this expr
4510
4511 if Present (Parent_Expr)
4512 and then Is_Empty_List (Comps)
4513 then
4514 Comp := First_Entity (Typ);
4515 while Present (Comp) loop
4516
4517 -- Skip all entities that aren't discriminants or components
4518
4519 if Ekind (Comp) /= E_Discriminant
4520 and then Ekind (Comp) /= E_Component
4521 then
4522 null;
4523
4524 -- Skip all expander-generated components
4525
4526 elsif
4527 not Comes_From_Source (Original_Record_Component (Comp))
4528 then
4529 null;
4530
4531 else
4532 New_Comp :=
4533 Make_Selected_Component (Loc,
4534 Prefix =>
4535 Unchecked_Convert_To (Typ,
4536 Duplicate_Subexpr (Parent_Expr, True)),
4537
4538 Selector_Name => New_Occurrence_Of (Comp, Loc));
4539
4540 Append_To (Comps,
4541 Make_Component_Association (Loc,
4542 Choices =>
4543 New_List (New_Occurrence_Of (Comp, Loc)),
4544 Expression =>
4545 New_Comp));
4546
4547 Analyze_And_Resolve (New_Comp, Etype (Comp));
4548 end if;
4549
4550 Next_Entity (Comp);
4551 end loop;
4552 end if;
4553
4554 -- Compute the value for the Tag now, if the type is a root it
4555 -- will be included in the aggregate right away, otherwise it will
4556 -- be propagated to the parent aggregate
4557
4558 if Present (Orig_Tag) then
4559 Tag_Value := Orig_Tag;
4560 elsif Java_VM then
4561 Tag_Value := Empty;
4562 else
4563 Tag_Value := New_Occurrence_Of (Access_Disp_Table (Typ), Loc);
4564 end if;
4565
4566 -- For a derived type, an aggregate for the parent is formed with
4567 -- all the inherited components.
4568
4569 if Is_Derived_Type (Typ) then
4570
4571 declare
4572 First_Comp : Node_Id;
4573 Parent_Comps : List_Id;
4574 Parent_Aggr : Node_Id;
4575 Parent_Name : Node_Id;
4576
4577 begin
4578 -- Remove the inherited component association from the
4579 -- aggregate and store them in the parent aggregate
4580
4581 First_Comp := First (Component_Associations (N));
4582 Parent_Comps := New_List;
4583
4584 while Present (First_Comp)
4585 and then Scope (Original_Record_Component (
4586 Entity (First (Choices (First_Comp))))) /= Base_Typ
4587 loop
4588 Comp := First_Comp;
4589 Next (First_Comp);
4590 Remove (Comp);
4591 Append (Comp, Parent_Comps);
4592 end loop;
4593
4594 Parent_Aggr := Make_Aggregate (Loc,
4595 Component_Associations => Parent_Comps);
4596 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
4597
4598 -- Find the _parent component
4599
4600 Comp := First_Component (Typ);
4601 while Chars (Comp) /= Name_uParent loop
4602 Comp := Next_Component (Comp);
4603 end loop;
4604
4605 Parent_Name := New_Occurrence_Of (Comp, Loc);
4606
4607 -- Insert the parent aggregate
4608
4609 Prepend_To (Component_Associations (N),
4610 Make_Component_Association (Loc,
4611 Choices => New_List (Parent_Name),
4612 Expression => Parent_Aggr));
4613
4614 -- Expand recursively the parent propagating the right Tag
4615
4616 Expand_Record_Aggregate (
4617 Parent_Aggr, Tag_Value, Parent_Expr);
4618 end;
4619
4620 -- For a root type, the tag component is added (unless compiling
4621 -- for the Java VM, where tags are implicit).
4622
4623 elsif not Java_VM then
4624 declare
4625 Tag_Name : constant Node_Id :=
4626 New_Occurrence_Of (Tag_Component (Typ), Loc);
4627 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
4628 Conv_Node : constant Node_Id :=
4629 Unchecked_Convert_To (Typ_Tag, Tag_Value);
4630
4631 begin
4632 Set_Etype (Conv_Node, Typ_Tag);
4633 Prepend_To (Component_Associations (N),
4634 Make_Component_Association (Loc,
4635 Choices => New_List (Tag_Name),
4636 Expression => Conv_Node));
4637 end;
4638 end if;
4639 end if;
4640 end if;
4641 end Expand_Record_Aggregate;
4642
65356e64
AC
4643 ----------------------------
4644 -- Has_Default_Init_Comps --
4645 ----------------------------
4646
4647 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
d05ef0ab
AC
4648 Comps : constant List_Id := Component_Associations (N);
4649 C : Node_Id;
c45b6ae0 4650 Expr : Node_Id;
65356e64
AC
4651 begin
4652 pragma Assert (Nkind (N) = N_Aggregate
c45b6ae0
AC
4653 or else Nkind (N) = N_Extension_Aggregate);
4654
65356e64
AC
4655 if No (Comps) then
4656 return False;
4657 end if;
4658
c45b6ae0
AC
4659 -- Check if any direct component has default initialized components
4660
65356e64
AC
4661 C := First (Comps);
4662 while Present (C) loop
4663 if Box_Present (C) then
4664 return True;
4665 end if;
4666
4667 Next (C);
4668 end loop;
c45b6ae0
AC
4669
4670 -- Recursive call in case of aggregate expression
4671
4672 C := First (Comps);
4673 while Present (C) loop
4674 Expr := Expression (C);
4675
4676 if Present (Expr)
4677 and then (Nkind (Expr) = N_Aggregate
4678 or else Nkind (Expr) = N_Extension_Aggregate)
4679 and then Has_Default_Init_Comps (Expr)
4680 then
4681 return True;
4682 end if;
4683
4684 Next (C);
4685 end loop;
4686
65356e64
AC
4687 return False;
4688 end Has_Default_Init_Comps;
4689
70482933
RK
4690 --------------------------
4691 -- Is_Delayed_Aggregate --
4692 --------------------------
4693
4694 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
fbf5a39b 4695 Node : Node_Id := N;
70482933 4696 Kind : Node_Kind := Nkind (Node);
fbf5a39b 4697
70482933
RK
4698 begin
4699 if Kind = N_Qualified_Expression then
4700 Node := Expression (Node);
4701 Kind := Nkind (Node);
4702 end if;
4703
4704 if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
4705 return False;
4706 else
4707 return Expansion_Delayed (Node);
4708 end if;
4709 end Is_Delayed_Aggregate;
4710
4711 --------------------
4712 -- Late_Expansion --
4713 --------------------
4714
4715 function Late_Expansion
4716 (N : Node_Id;
4717 Typ : Entity_Id;
4718 Target : Node_Id;
fbf5a39b 4719 Flist : Node_Id := Empty;
c45b6ae0 4720 Obj : Entity_Id := Empty) return List_Id is
70482933
RK
4721 begin
4722 if Is_Record_Type (Etype (N)) then
4723 return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
c45b6ae0 4724 elsif Is_Array_Type (Etype (N)) then
70482933
RK
4725 return
4726 Build_Array_Aggr_Code
c45b6ae0
AC
4727 (N => N,
4728 Ctype => Component_Type (Etype (N)),
4729 Index => First_Index (Typ),
4730 Into => Target,
4731 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
4732 Indices => No_List,
4733 Flist => Flist);
4734 else
4735 pragma Assert (False);
4736 return New_List;
70482933
RK
4737 end if;
4738 end Late_Expansion;
4739
4740 ----------------------------------
4741 -- Make_OK_Assignment_Statement --
4742 ----------------------------------
4743
4744 function Make_OK_Assignment_Statement
4745 (Sloc : Source_Ptr;
4746 Name : Node_Id;
d05ef0ab 4747 Expression : Node_Id) return Node_Id
70482933
RK
4748 is
4749 begin
4750 Set_Assignment_OK (Name);
4751 return Make_Assignment_Statement (Sloc, Name, Expression);
4752 end Make_OK_Assignment_Statement;
4753
4754 -----------------------
4755 -- Number_Of_Choices --
4756 -----------------------
4757
4758 function Number_Of_Choices (N : Node_Id) return Nat is
4759 Assoc : Node_Id;
4760 Choice : Node_Id;
4761
4762 Nb_Choices : Nat := 0;
4763
4764 begin
4765 if Present (Expressions (N)) then
4766 return 0;
4767 end if;
4768
4769 Assoc := First (Component_Associations (N));
4770 while Present (Assoc) loop
4771
4772 Choice := First (Choices (Assoc));
4773 while Present (Choice) loop
4774
4775 if Nkind (Choice) /= N_Others_Choice then
4776 Nb_Choices := Nb_Choices + 1;
4777 end if;
4778
4779 Next (Choice);
4780 end loop;
4781
4782 Next (Assoc);
4783 end loop;
4784
4785 return Nb_Choices;
4786 end Number_Of_Choices;
4787
07fc65c4
GB
4788 ------------------------------------
4789 -- Packed_Array_Aggregate_Handled --
4790 ------------------------------------
4791
4792 -- The current version of this procedure will handle at compile time
4793 -- any array aggregate that meets these conditions:
4794
4795 -- One dimensional, bit packed
4796 -- Underlying packed type is modular type
4797 -- Bounds are within 32-bit Int range
4798 -- All bounds and values are static
4799
4800 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
4801 Loc : constant Source_Ptr := Sloc (N);
4802 Typ : constant Entity_Id := Etype (N);
4803 Ctyp : constant Entity_Id := Component_Type (Typ);
4804
4805 Not_Handled : exception;
4806 -- Exception raised if this aggregate cannot be handled
4807
4808 begin
4809 -- For now, handle only one dimensional bit packed arrays
4810
4811 if not Is_Bit_Packed_Array (Typ)
4812 or else Number_Dimensions (Typ) > 1
4813 or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
4814 then
4815 return False;
4816 end if;
4817
4818 declare
4819 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
4820
4821 Lo : Node_Id;
4822 Hi : Node_Id;
4823 -- Bounds of index type
4824
4825 Lob : Uint;
4826 Hib : Uint;
4827 -- Values of bounds if compile time known
4828
4829 function Get_Component_Val (N : Node_Id) return Uint;
4830 -- Given a expression value N of the component type Ctyp, returns
4831 -- A value of Csiz (component size) bits representing this value.
4832 -- If the value is non-static or any other reason exists why the
4833 -- value cannot be returned, then Not_Handled is raised.
4834
4835 -----------------------
4836 -- Get_Component_Val --
4837 -----------------------
4838
4839 function Get_Component_Val (N : Node_Id) return Uint is
4840 Val : Uint;
4841
4842 begin
4843 -- We have to analyze the expression here before doing any further
4844 -- processing here. The analysis of such expressions is deferred
4845 -- till expansion to prevent some problems of premature analysis.
4846
4847 Analyze_And_Resolve (N, Ctyp);
4848
4849 -- Must have a compile time value
4850
4851 if not Compile_Time_Known_Value (N) then
4852 raise Not_Handled;
4853 end if;
4854
4855 Val := Expr_Rep_Value (N);
4856
4857 -- Adjust for bias, and strip proper number of bits
4858
4859 if Has_Biased_Representation (Ctyp) then
4860 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
4861 end if;
4862
4863 return Val mod Uint_2 ** Csiz;
4864 end Get_Component_Val;
4865
4866 -- Here we know we have a one dimensional bit packed array
4867
4868 begin
4869 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
4870
4871 -- Cannot do anything if bounds are dynamic
4872
4873 if not Compile_Time_Known_Value (Lo)
4874 or else
4875 not Compile_Time_Known_Value (Hi)
4876 then
4877 return False;
4878 end if;
4879
4880 -- Or are silly out of range of int bounds
4881
4882 Lob := Expr_Value (Lo);
4883 Hib := Expr_Value (Hi);
4884
4885 if not UI_Is_In_Int_Range (Lob)
4886 or else
4887 not UI_Is_In_Int_Range (Hib)
4888 then
4889 return False;
4890 end if;
4891
4892 -- At this stage we have a suitable aggregate for handling
4893 -- at compile time (the only remaining checks, are that the
4894 -- values of expressions in the aggregate are compile time
4895 -- known (check performed by Get_Component_Val), and that
4896 -- any subtypes or ranges are statically known.
4897
4898 -- If the aggregate is not fully positional at this stage,
4899 -- then convert it to positional form. Either this will fail,
4900 -- in which case we can do nothing, or it will succeed, in
4901 -- which case we have succeeded in handling the aggregate,
4902 -- or it will stay an aggregate, in which case we have failed
4903 -- to handle this case.
4904
4905 if Present (Component_Associations (N)) then
4906 Convert_To_Positional
4907 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
4908 return Nkind (N) /= N_Aggregate;
4909 end if;
4910
4911 -- Otherwise we are all positional, so convert to proper value
4912
4913 declare
4914 Lov : constant Nat := UI_To_Int (Lob);
4915 Hiv : constant Nat := UI_To_Int (Hib);
4916
4917 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
4918 -- The length of the array (number of elements)
4919
4920 Aggregate_Val : Uint;
4921 -- Value of aggregate. The value is set in the low order
4922 -- bits of this value. For the little-endian case, the
4923 -- values are stored from low-order to high-order and
4924 -- for the big-endian case the values are stored from
4925 -- high-order to low-order. Note that gigi will take care
4926 -- of the conversions to left justify the value in the big
4927 -- endian case (because of left justified modular type
4928 -- processing), so we do not have to worry about that here.
4929
4930 Lit : Node_Id;
4931 -- Integer literal for resulting constructed value
4932
4933 Shift : Nat;
4934 -- Shift count from low order for next value
4935
4936 Incr : Int;
4937 -- Shift increment for loop
4938
4939 Expr : Node_Id;
4940 -- Next expression from positional parameters of aggregate
4941
4942 begin
4943 -- For little endian, we fill up the low order bits of the
4944 -- target value. For big endian we fill up the high order
4945 -- bits of the target value (which is a left justified
4946 -- modular value).
4947
4948 if Bytes_Big_Endian xor Debug_Flag_8 then
4949 Shift := Csiz * (Len - 1);
4950 Incr := -Csiz;
4951 else
4952 Shift := 0;
4953 Incr := +Csiz;
4954 end if;
4955
4956 -- Loop to set the values
4957
fbf5a39b
AC
4958 if Len = 0 then
4959 Aggregate_Val := Uint_0;
4960 else
4961 Expr := First (Expressions (N));
4962 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
4963
4964 for J in 2 .. Len loop
4965 Shift := Shift + Incr;
4966 Next (Expr);
4967 Aggregate_Val :=
4968 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
4969 end loop;
4970 end if;
07fc65c4
GB
4971
4972 -- Now we can rewrite with the proper value
4973
4974 Lit :=
4975 Make_Integer_Literal (Loc,
4976 Intval => Aggregate_Val);
4977 Set_Print_In_Hex (Lit);
4978
4979 -- Construct the expression using this literal. Note that it is
4980 -- important to qualify the literal with its proper modular type
4981 -- since universal integer does not have the required range and
4982 -- also this is a left justified modular type, which is important
4983 -- in the big-endian case.
4984
4985 Rewrite (N,
4986 Unchecked_Convert_To (Typ,
4987 Make_Qualified_Expression (Loc,
4988 Subtype_Mark =>
4989 New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
4990 Expression => Lit)));
4991
4992 Analyze_And_Resolve (N, Typ);
4993 return True;
4994 end;
4995 end;
4996
4997 exception
4998 when Not_Handled =>
4999 return False;
5000 end Packed_Array_Aggregate_Handled;
5001
fbf5a39b
AC
5002 ----------------------------
5003 -- Has_Mutable_Components --
5004 ----------------------------
5005
5006 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
5007 Comp : Entity_Id;
5008
5009 begin
5010 Comp := First_Component (Typ);
5011
5012 while Present (Comp) loop
5013 if Is_Record_Type (Etype (Comp))
5014 and then Has_Discriminants (Etype (Comp))
5015 and then not Is_Constrained (Etype (Comp))
5016 then
5017 return True;
5018 end if;
5019
5020 Next_Component (Comp);
5021 end loop;
5022
5023 return False;
5024 end Has_Mutable_Components;
5025
07fc65c4
GB
5026 ------------------------------
5027 -- Initialize_Discriminants --
5028 ------------------------------
5029
5030 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
5031 Loc : constant Source_Ptr := Sloc (N);
5032 Bas : constant Entity_Id := Base_Type (Typ);
5033 Par : constant Entity_Id := Etype (Bas);
5034 Decl : constant Node_Id := Parent (Par);
5035 Ref : Node_Id;
5036
5037 begin
5038 if Is_Tagged_Type (Bas)
5039 and then Is_Derived_Type (Bas)
5040 and then Has_Discriminants (Par)
5041 and then Has_Discriminants (Bas)
5042 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
5043 and then Nkind (Decl) = N_Full_Type_Declaration
5044 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
5045 and then Present
5046 (Variant_Part (Component_List (Type_Definition (Decl))))
5047 and then Nkind (N) /= N_Extension_Aggregate
5048 then
5049
fbf5a39b 5050 -- Call init proc to set discriminants.
07fc65c4
GB
5051 -- There should eventually be a special procedure for this ???
5052
5053 Ref := New_Reference_To (Defining_Identifier (N), Loc);
5054 Insert_Actions_After (N,
5055 Build_Initialization_Call (Sloc (N), Ref, Typ));
5056 end if;
5057 end Initialize_Discriminants;
5058
70482933
RK
5059 ---------------------------
5060 -- Safe_Slice_Assignment --
5061 ---------------------------
5062
07fc65c4 5063 function Safe_Slice_Assignment (N : Node_Id) return Boolean is
70482933
RK
5064 Loc : constant Source_Ptr := Sloc (Parent (N));
5065 Pref : constant Node_Id := Prefix (Name (Parent (N)));
5066 Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
5067 Expr : Node_Id;
07fc65c4 5068 L_J : Entity_Id;
70482933
RK
5069 L_Iter : Node_Id;
5070 L_Body : Node_Id;
5071 Stat : Node_Id;
5072
5073 begin
07fc65c4 5074 -- Generate: for J in Range loop Pref (J) := Expr; end loop;
70482933
RK
5075
5076 if Comes_From_Source (N)
5077 and then No (Expressions (N))
5078 and then Nkind (First (Choices (First (Component_Associations (N)))))
5079 = N_Others_Choice
5080 then
5081 Expr :=
5082 Expression (First (Component_Associations (N)));
07fc65c4 5083 L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
70482933
RK
5084
5085 L_Iter :=
5086 Make_Iteration_Scheme (Loc,
5087 Loop_Parameter_Specification =>
5088 Make_Loop_Parameter_Specification
5089 (Loc,
07fc65c4 5090 Defining_Identifier => L_J,
70482933
RK
5091 Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
5092
5093 L_Body :=
5094 Make_Assignment_Statement (Loc,
5095 Name =>
5096 Make_Indexed_Component (Loc,
5097 Prefix => Relocate_Node (Pref),
07fc65c4 5098 Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
70482933
RK
5099 Expression => Relocate_Node (Expr));
5100
5101 -- Construct the final loop
5102
5103 Stat :=
5104 Make_Implicit_Loop_Statement
5105 (Node => Parent (N),
5106 Identifier => Empty,
5107 Iteration_Scheme => L_Iter,
5108 Statements => New_List (L_Body));
5109
fbf5a39b
AC
5110 -- Set type of aggregate to be type of lhs in assignment,
5111 -- to suppress redundant length checks.
5112
5113 Set_Etype (N, Etype (Name (Parent (N))));
5114
70482933
RK
5115 Rewrite (Parent (N), Stat);
5116 Analyze (Parent (N));
5117 return True;
5118
5119 else
5120 return False;
5121 end if;
5122 end Safe_Slice_Assignment;
5123
5124 ---------------------
5125 -- Sort_Case_Table --
5126 ---------------------
5127
5128 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
5129 L : constant Int := Case_Table'First;
5130 U : constant Int := Case_Table'Last;
70482933
RK
5131 K : Int;
5132 J : Int;
5133 T : Case_Bounds;
5134
5135 begin
5136 K := L;
5137
5138 while K /= U loop
5139 T := Case_Table (K + 1);
5140 J := K + 1;
5141
5142 while J /= L
5143 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
5144 Expr_Value (T.Choice_Lo)
5145 loop
5146 Case_Table (J) := Case_Table (J - 1);
5147 J := J - 1;
5148 end loop;
5149
5150 Case_Table (J) := T;
5151 K := K + 1;
5152 end loop;
5153 end Sort_Case_Table;
5154
5155end Exp_Aggr;