]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_aggr.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
abcd9db2 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
07fc65c4 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
58fda84d 31with Errout; use Errout;
70482933
RK
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3; use Exp_Ch3;
35with Exp_Ch7; use Exp_Ch7;
c45b6ae0 36with Exp_Ch9; use Exp_Ch9;
cefce34c 37with Exp_Disp; use Exp_Disp;
615cbd95 38with Exp_Tss; use Exp_Tss;
7f4c1903 39with Fname; use Fname;
70482933 40with Freeze; use Freeze;
70482933 41with Itypes; use Itypes;
07fc65c4 42with Lib; use Lib;
0f95b178 43with Namet; use Namet;
70482933
RK
44with Nmake; use Nmake;
45with Nlists; use Nlists;
c5ee5ad2 46with Opt; use Opt;
70482933 47with Restrict; use Restrict;
6e937c1c 48with Rident; use Rident;
70482933 49with Rtsfind; use Rtsfind;
07fc65c4 50with Ttypes; use Ttypes;
70482933 51with Sem; use Sem;
9f90d123 52with Sem_Aggr; use Sem_Aggr;
a4100e55 53with Sem_Aux; use Sem_Aux;
70482933
RK
54with Sem_Ch3; use Sem_Ch3;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
6465b6a7 61with Targparm; use Targparm;
70482933
RK
62with Tbuild; use Tbuild;
63with Uintp; use Uintp;
64
65package body Exp_Aggr is
66
67 type Case_Bounds is record
68 Choice_Lo : Node_Id;
69 Choice_Hi : Node_Id;
70 Choice_Node : Node_Id;
71 end record;
72
73 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
74 -- Table type used by Check_Case_Choices procedure
75
df3e68b1
HK
76 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
77 -- N is an aggregate (record or array). Checks the presence of default
78 -- initialization (<>) in any component (Ada 2005: AI-287).
79
80 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
81 -- Returns true if N is an aggregate used to initialize the components
82 -- of an statically allocated dispatch table.
83
3cf3e5c6
AC
84 function Must_Slide
85 (Obj_Type : Entity_Id;
86 Typ : Entity_Id) return Boolean;
87 -- A static array aggregate in an object declaration can in most cases be
88 -- expanded in place. The one exception is when the aggregate is given
89 -- with component associations that specify different bounds from those of
90 -- the type definition in the object declaration. In this pathological
91 -- case the aggregate must slide, and we must introduce an intermediate
92 -- temporary to hold it.
93 --
94 -- The same holds in an assignment to one-dimensional array of arrays,
95 -- when a component may be given with bounds that differ from those of the
96 -- component type.
97
70482933
RK
98 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
99 -- Sort the Case Table using the Lower Bound of each Choice as the key.
100 -- A simple insertion sort is used since the number of choices in a case
101 -- statement of variant part will usually be small and probably in near
102 -- sorted order.
103
104 ------------------------------------------------------
105 -- Local subprograms for Record Aggregate Expansion --
106 ------------------------------------------------------
107
df3e68b1
HK
108 function Build_Record_Aggr_Code
109 (N : Node_Id;
110 Typ : Entity_Id;
111 Lhs : Node_Id;
112 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
113 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
114 -- aggregate. Target is an expression containing the location on which the
115 -- component by component assignments will take place. Returns the list of
116 -- assignments plus all other adjustments needed for tagged and controlled
117 -- types. Is_Limited_Ancestor_Expansion indicates that the function has
118 -- been called recursively to expand the limited ancestor to avoid copying
119 -- it.
120
121 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
122 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
123 -- aggregate (which can only be a record type, this procedure is only used
124 -- for record types). Transform the given aggregate into a sequence of
125 -- assignments performed component by component.
126
70482933
RK
127 procedure Expand_Record_Aggregate
128 (N : Node_Id;
129 Orig_Tag : Node_Id := Empty;
130 Parent_Expr : Node_Id := Empty);
131 -- This is the top level procedure for record aggregate expansion.
132 -- Expansion for record aggregates needs expand aggregates for tagged
133 -- record types. Specifically Expand_Record_Aggregate adds the Tag
134 -- field in front of the Component_Association list that was created
135 -- during resolution by Resolve_Record_Aggregate.
136 --
137 -- N is the record aggregate node.
138 -- Orig_Tag is the value of the Tag that has to be provided for this
139 -- specific aggregate. It carries the tag corresponding to the type
140 -- of the outermost aggregate during the recursive expansion
141 -- Parent_Expr is the ancestor part of the original extension
142 -- aggregate
143
fbf5a39b
AC
144 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
145 -- Return true if one of the component is of a discriminated type with
146 -- defaults. An aggregate for a type with mutable components must be
147 -- expanded into individual assignments.
148
07fc65c4
GB
149 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
150 -- If the type of the aggregate is a type extension with renamed discrimi-
151 -- nants, we must initialize the hidden discriminants of the parent.
152 -- Otherwise, the target object must not be initialized. The discriminants
153 -- are initialized by calling the initialization procedure for the type.
154 -- This is incorrect if the initialization of other components has any
155 -- side effects. We restrict this call to the case where the parent type
156 -- has a variant part, because this is the only case where the hidden
157 -- discriminants are accessed, namely when calling discriminant checking
158 -- functions of the parent type, and when applying a stream attribute to
159 -- an object of the derived type.
160
70482933 161 -----------------------------------------------------
07fc65c4 162 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
163 -----------------------------------------------------
164
58fda84d 165 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
841dd0f5
AC
166 -- Very large static aggregates present problems to the back-end, and are
167 -- transformed into assignments and loops. This function verifies that the
168 -- total number of components of an aggregate is acceptable for rewriting
74e7891f
RD
169 -- into a purely positional static form. Aggr_Size_OK must be called before
170 -- calling Flatten.
171 --
841dd0f5
AC
172 -- This function also detects and warns about one-component aggregates that
173 -- appear in a non-static context. Even if the component value is static,
174 -- such an aggregate must be expanded into an assignment.
643a0839 175
df3e68b1
HK
176 function Backend_Processing_Possible (N : Node_Id) return Boolean;
177 -- This function checks if array aggregate N can be processed directly
178 -- by the backend. If this is the case True is returned.
179
180 function Build_Array_Aggr_Code
181 (N : Node_Id;
182 Ctype : Entity_Id;
183 Index : Node_Id;
184 Into : Node_Id;
185 Scalar_Comp : Boolean;
186 Indexes : List_Id := No_List) return List_Id;
187 -- This recursive routine returns a list of statements containing the
188 -- loops and assignments that are needed for the expansion of the array
189 -- aggregate N.
190 --
191 -- N is the (sub-)aggregate node to be expanded into code. This node has
192 -- been fully analyzed, and its Etype is properly set.
193 --
194 -- Index is the index node corresponding to the array sub-aggregate N
195 --
196 -- Into is the target expression into which we are copying the aggregate.
197 -- Note that this node may not have been analyzed yet, and so the Etype
198 -- field may not be set.
199 --
200 -- Scalar_Comp is True if the component type of the aggregate is scalar
201 --
202 -- Indexes is the current list of expressions used to index the object we
203 -- are writing into.
204
6f639c98
ES
205 procedure Convert_Array_Aggr_In_Allocator
206 (Decl : Node_Id;
207 Aggr : Node_Id;
208 Target : Node_Id);
209 -- If the aggregate appears within an allocator and can be expanded in
210 -- place, this routine generates the individual assignments to components
211 -- of the designated object. This is an optimization over the general
212 -- case, where a temporary is first created on the stack and then used to
213 -- construct the allocated object on the heap.
214
07fc65c4
GB
215 procedure Convert_To_Positional
216 (N : Node_Id;
fbf5a39b 217 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
218 Handle_Bit_Packed : Boolean := False);
219 -- If possible, convert named notation to positional notation. This
3cf3e5c6
AC
220 -- conversion is possible only in some static cases. If the conversion is
221 -- possible, then N is rewritten with the analyzed converted aggregate.
222 -- The parameter Max_Others_Replicate controls the maximum number of
223 -- values corresponding to an others choice that will be converted to
224 -- positional notation (the default of 5 is the normal limit, and reflects
225 -- the fact that normally the loop is better than a lot of separate
226 -- assignments). Note that this limit gets overridden in any case if
227 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
228 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
229 -- not expect the back end to handle bit packed arrays, so the normal case
230 -- of conversion is pointless), but in the special case of a call from
231 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
232 -- these are cases we handle in there.
07fc65c4 233
70482933
RK
234 procedure Expand_Array_Aggregate (N : Node_Id);
235 -- This is the top-level routine to perform array aggregate expansion.
236 -- N is the N_Aggregate node to be expanded.
237
70482933
RK
238 function Late_Expansion
239 (N : Node_Id;
240 Typ : Entity_Id;
df3e68b1
HK
241 Target : Node_Id) return List_Id;
242 -- This routine implements top-down expansion of nested aggregates. In
243 -- doing so, it avoids the generation of temporaries at each level. N is a
244 -- nested (record or array) aggregate that has been marked with 'Delay_
245 -- Expansion'. Typ is the expected type of the aggregate. Target is a
246 -- (duplicable) expression that will hold the result of the aggregate
247 -- expansion.
70482933
RK
248
249 function Make_OK_Assignment_Statement
250 (Sloc : Source_Ptr;
251 Name : Node_Id;
0f95b178 252 Expression : Node_Id) return Node_Id;
70482933
RK
253 -- This is like Make_Assignment_Statement, except that Assignment_OK
254 -- is set in the left operand. All assignments built by this unit
255 -- use this routine. This is needed to deal with assignments to
256 -- initialized constants that are done in place.
257
df3e68b1
HK
258 function Number_Of_Choices (N : Node_Id) return Nat;
259 -- Returns the number of discrete choices (not including the others choice
260 -- if present) contained in (sub-)aggregate N.
261
07fc65c4
GB
262 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
263 -- Given an array aggregate, this function handles the case of a packed
264 -- array aggregate with all constant values, where the aggregate can be
265 -- evaluated at compile time. If this is possible, then N is rewritten
266 -- to be its proper compile time value with all the components properly
267 -- assembled. The expression is analyzed and resolved and True is
268 -- returned. If this transformation is not possible, N is unchanged
269 -- and False is returned
270
271 function Safe_Slice_Assignment (N : Node_Id) return Boolean;
70482933
RK
272 -- If a slice assignment has an aggregate with a single others_choice,
273 -- the assignment can be done in place even if bounds are not static,
274 -- by converting it into a loop over the discrete range of the slice.
275
643a0839
ES
276 ------------------
277 -- Aggr_Size_OK --
278 ------------------
279
58fda84d 280 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
643a0839
ES
281 Lo : Node_Id;
282 Hi : Node_Id;
283 Indx : Node_Id;
284 Siz : Int;
285 Lov : Uint;
286 Hiv : Uint;
287
5c34e9cd
AC
288 -- The following constant determines the maximum size of an array
289 -- aggregate produced by converting named to positional notation (e.g.
290 -- from others clauses). This avoids running away with attempts to
291 -- convert huge aggregates, which hit memory limits in the backend.
292
293 -- The normal limit is 5000, but we increase this limit to 2**24 (about
294 -- 16 million) if Restrictions (No_Elaboration_Code) or Restrictions
295 -- (No_Implicit_Loops) is specified, since in either case, we are at
296 -- risk of declaring the program illegal because of this limit.
643a0839
ES
297
298 Max_Aggr_Size : constant Nat :=
299 5000 + (2 ** 24 - 5000) *
300 Boolean'Pos
301 (Restriction_Active (No_Elaboration_Code)
5c34e9cd 302 or else
643a0839
ES
303 Restriction_Active (No_Implicit_Loops));
304
305 function Component_Count (T : Entity_Id) return Int;
306 -- The limit is applied to the total number of components that the
307 -- aggregate will have, which is the number of static expressions
308 -- that will appear in the flattened array. This requires a recursive
16b05213 309 -- computation of the number of scalar components of the structure.
643a0839
ES
310
311 ---------------------
312 -- Component_Count --
313 ---------------------
314
315 function Component_Count (T : Entity_Id) return Int is
316 Res : Int := 0;
317 Comp : Entity_Id;
318
319 begin
320 if Is_Scalar_Type (T) then
321 return 1;
322
323 elsif Is_Record_Type (T) then
324 Comp := First_Component (T);
325 while Present (Comp) loop
326 Res := Res + Component_Count (Etype (Comp));
327 Next_Component (Comp);
328 end loop;
329
330 return Res;
331
332 elsif Is_Array_Type (T) then
333 declare
334 Lo : constant Node_Id :=
335 Type_Low_Bound (Etype (First_Index (T)));
336 Hi : constant Node_Id :=
337 Type_High_Bound (Etype (First_Index (T)));
338
339 Siz : constant Int := Component_Count (Component_Type (T));
340
341 begin
342 if not Compile_Time_Known_Value (Lo)
343 or else not Compile_Time_Known_Value (Hi)
344 then
345 return 0;
346 else
347 return
348 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
349 end if;
350 end;
351
352 else
353 -- Can only be a null for an access type
354
355 return 1;
356 end if;
357 end Component_Count;
358
359 -- Start of processing for Aggr_Size_OK
360
361 begin
362 Siz := Component_Count (Component_Type (Typ));
643a0839 363
5277cab6 364 Indx := First_Index (Typ);
643a0839
ES
365 while Present (Indx) loop
366 Lo := Type_Low_Bound (Etype (Indx));
367 Hi := Type_High_Bound (Etype (Indx));
368
369 -- Bounds need to be known at compile time
370
371 if not Compile_Time_Known_Value (Lo)
372 or else not Compile_Time_Known_Value (Hi)
373 then
374 return False;
375 end if;
376
377 Lov := Expr_Value (Lo);
378 Hiv := Expr_Value (Hi);
379
380 -- A flat array is always safe
381
382 if Hiv < Lov then
383 return True;
384 end if;
385
86038a88
RD
386 -- One-component aggregates are suspicious, and if the context type
387 -- is an object declaration with non-static bounds it will trip gcc;
388 -- such an aggregate must be expanded into a single assignment.
58fda84d
ES
389
390 if Hiv = Lov
391 and then Nkind (Parent (N)) = N_Object_Declaration
392 then
393 declare
394 Index_Type : constant Entity_Id :=
86038a88
RD
395 Etype
396 (First_Index
397 (Etype (Defining_Identifier (Parent (N)))));
398 Indx : Node_Id;
399
58fda84d
ES
400 begin
401 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
402 or else not Compile_Time_Known_Value
403 (Type_High_Bound (Index_Type))
404 then
405 if Present (Component_Associations (N)) then
406 Indx :=
407 First (Choices (First (Component_Associations (N))));
408 if Is_Entity_Name (Indx)
409 and then not Is_Type (Entity (Indx))
410 then
411 Error_Msg_N
412 ("single component aggregate in non-static context?",
413 Indx);
414 Error_Msg_N ("\maybe subtype name was meant?", Indx);
415 end if;
416 end if;
417
418 return False;
419 end if;
420 end;
421 end if;
422
643a0839
ES
423 declare
424 Rng : constant Uint := Hiv - Lov + 1;
425
426 begin
427 -- Check if size is too large
428
429 if not UI_Is_In_Int_Range (Rng) then
430 return False;
431 end if;
432
433 Siz := Siz * UI_To_Int (Rng);
434 end;
435
436 if Siz <= 0
437 or else Siz > Max_Aggr_Size
438 then
439 return False;
440 end if;
441
442 -- Bounds must be in integer range, for later array construction
443
444 if not UI_Is_In_Int_Range (Lov)
445 or else
446 not UI_Is_In_Int_Range (Hiv)
447 then
448 return False;
449 end if;
450
451 Next_Index (Indx);
452 end loop;
453
454 return True;
455 end Aggr_Size_OK;
456
70482933
RK
457 ---------------------------------
458 -- Backend_Processing_Possible --
459 ---------------------------------
460
461 -- Backend processing by Gigi/gcc is possible only if all the following
462 -- conditions are met:
463
464 -- 1. N is fully positional
465
466 -- 2. N is not a bit-packed array aggregate;
467
468 -- 3. The size of N's array type must be known at compile time. Note
469 -- that this implies that the component size is also known
470
471 -- 4. The array type of N does not follow the Fortran layout convention
472 -- or if it does it must be 1 dimensional.
473
0f95b178
JM
474 -- 5. The array component type may not be tagged (which could necessitate
475 -- reassignment of proper tags).
70482933 476
0f95b178
JM
477 -- 6. The array component type must not have unaligned bit components
478
479 -- 7. None of the components of the aggregate may be bit unaligned
480 -- components.
481
482 -- 8. There cannot be delayed components, since we do not know enough
483 -- at this stage to know if back end processing is possible.
484
485 -- 9. There cannot be any discriminated record components, since the
486 -- back end cannot handle this complex case.
91b1417d 487
7f4c1903 488 -- 10. No controlled actions need to be generated for components
a8f59a33 489
477b99b6 490 -- 11. For a VM back end, the array should have no aliased components
6465b6a7 491
70482933
RK
492 function Backend_Processing_Possible (N : Node_Id) return Boolean is
493 Typ : constant Entity_Id := Etype (N);
3cf3e5c6 494 -- Typ is the correct constrained array subtype of the aggregate
70482933 495
0f95b178
JM
496 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
497 -- This routine checks components of aggregate N, enforcing checks
498 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
499 -- performed on subaggregates. The Index value is the current index
500 -- being checked in the multi-dimensional case.
70482933 501
0f95b178
JM
502 ---------------------
503 -- Component_Check --
504 ---------------------
70482933 505
0f95b178 506 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
70482933
RK
507 Expr : Node_Id;
508
509 begin
0f95b178 510 -- Checks 1: (no component associations)
70482933
RK
511
512 if Present (Component_Associations (N)) then
513 return False;
514 end if;
515
0f95b178
JM
516 -- Checks on components
517
70482933
RK
518 -- Recurse to check subaggregates, which may appear in qualified
519 -- expressions. If delayed, the front-end will have to expand.
5277cab6
ES
520 -- If the component is a discriminated record, treat as non-static,
521 -- as the back-end cannot handle this properly.
70482933
RK
522
523 Expr := First (Expressions (N));
70482933 524 while Present (Expr) loop
0f95b178
JM
525
526 -- Checks 8: (no delayed components)
527
70482933
RK
528 if Is_Delayed_Aggregate (Expr) then
529 return False;
530 end if;
531
0f95b178
JM
532 -- Checks 9: (no discriminated records)
533
5277cab6
ES
534 if Present (Etype (Expr))
535 and then Is_Record_Type (Etype (Expr))
536 and then Has_Discriminants (Etype (Expr))
537 then
538 return False;
539 end if;
540
0f95b178
JM
541 -- Checks 7. Component must not be bit aligned component
542
543 if Possible_Bit_Aligned_Component (Expr) then
544 return False;
545 end if;
546
547 -- Recursion to following indexes for multiple dimension case
548
70482933 549 if Present (Next_Index (Index))
0f95b178 550 and then not Component_Check (Expr, Next_Index (Index))
70482933
RK
551 then
552 return False;
553 end if;
554
0f95b178
JM
555 -- All checks for that component finished, on to next
556
70482933
RK
557 Next (Expr);
558 end loop;
559
560 return True;
0f95b178 561 end Component_Check;
70482933
RK
562
563 -- Start of processing for Backend_Processing_Possible
564
565 begin
a8f59a33 566 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
70482933 567
a8f59a33 568 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
70482933
RK
569 return False;
570 end if;
571
a38ff9b1
ES
572 -- If component is limited, aggregate must be expanded because each
573 -- component assignment must be built in place.
574
40f07b4b 575 if Is_Immutably_Limited_Type (Component_Type (Typ)) then
a38ff9b1
ES
576 return False;
577 end if;
578
91b1417d 579 -- Checks 4 (array must not be multi-dimensional Fortran case)
70482933
RK
580
581 if Convention (Typ) = Convention_Fortran
582 and then Number_Dimensions (Typ) > 1
583 then
584 return False;
585 end if;
586
587 -- Checks 3 (size of array must be known at compile time)
588
589 if not Size_Known_At_Compile_Time (Typ) then
590 return False;
591 end if;
592
0f95b178 593 -- Checks on components
70482933 594
0f95b178 595 if not Component_Check (N, First_Index (Typ)) then
70482933
RK
596 return False;
597 end if;
598
0f95b178
JM
599 -- Checks 5 (if the component type is tagged, then we may need to do
600 -- tag adjustments. Perhaps this should be refined to check for any
601 -- component associations that actually need tag adjustment, similar
602 -- to the test in Component_Not_OK_For_Backend for record aggregates
3cf3e5c6
AC
603 -- with tagged components, but not clear whether it's worthwhile ???;
604 -- in the case of the JVM, object tags are handled implicitly)
70482933 605
1f110335
AC
606 if Is_Tagged_Type (Component_Type (Typ))
607 and then Tagged_Type_Expansion
608 then
70482933
RK
609 return False;
610 end if;
611
91b1417d
AC
612 -- Checks 6 (component type must not have bit aligned components)
613
614 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
615 return False;
616 end if;
617
6465b6a7
AC
618 -- Checks 11: Array aggregates with aliased components are currently
619 -- not well supported by the VM backend; disable temporarily this
620 -- backend processing until it is definitely supported.
621
622 if VM_Target /= No_VM
623 and then Has_Aliased_Components (Base_Type (Typ))
624 then
625 return False;
626 end if;
627
70482933
RK
628 -- Backend processing is possible
629
70482933
RK
630 Set_Size_Known_At_Compile_Time (Etype (N), True);
631 return True;
632 end Backend_Processing_Possible;
633
634 ---------------------------
635 -- Build_Array_Aggr_Code --
636 ---------------------------
637
638 -- The code that we generate from a one dimensional aggregate is
639
640 -- 1. If the sub-aggregate contains discrete choices we
641
642 -- (a) Sort the discrete choices
643
644 -- (b) Otherwise for each discrete choice that specifies a range we
645 -- emit a loop. If a range specifies a maximum of three values, or
646 -- we are dealing with an expression we emit a sequence of
647 -- assignments instead of a loop.
648
3cf3e5c6 649 -- (c) Generate the remaining loops to cover the others choice if any
70482933
RK
650
651 -- 2. If the aggregate contains positional elements we
652
3cf3e5c6 653 -- (a) translate the positional elements in a series of assignments
70482933
RK
654
655 -- (b) Generate a final loop to cover the others choice if any.
656 -- Note that this final loop has to be a while loop since the case
657
658 -- L : Integer := Integer'Last;
659 -- H : Integer := Integer'Last;
660 -- A : array (L .. H) := (1, others =>0);
661
662 -- cannot be handled by a for loop. Thus for the following
663
664 -- array (L .. H) := (.. positional elements.., others =>E);
665
666 -- we always generate something like:
667
07fc65c4
GB
668 -- J : Index_Type := Index_Of_Last_Positional_Element;
669 -- while J < H loop
670 -- J := Index_Base'Succ (J)
671 -- Tmp (J) := E;
70482933
RK
672 -- end loop;
673
674 function Build_Array_Aggr_Code
675 (N : Node_Id;
c45b6ae0 676 Ctype : Entity_Id;
70482933
RK
677 Index : Node_Id;
678 Into : Node_Id;
679 Scalar_Comp : Boolean;
df3e68b1 680 Indexes : List_Id := No_List) return List_Id
70482933
RK
681 is
682 Loc : constant Source_Ptr := Sloc (N);
683 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
684 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
685 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
686
687 function Add (Val : Int; To : Node_Id) return Node_Id;
3cf3e5c6
AC
688 -- Returns an expression where Val is added to expression To, unless
689 -- To+Val is provably out of To's base type range. To must be an
690 -- already analyzed expression.
70482933
RK
691
692 function Empty_Range (L, H : Node_Id) return Boolean;
3cf3e5c6 693 -- Returns True if the range defined by L .. H is certainly empty
70482933
RK
694
695 function Equal (L, H : Node_Id) return Boolean;
3cf3e5c6 696 -- Returns True if L = H for sure
70482933
RK
697
698 function Index_Base_Name return Node_Id;
3cf3e5c6 699 -- Returns a new reference to the index type name
70482933
RK
700
701 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
fbf5a39b
AC
702 -- Ind must be a side-effect free expression. If the input aggregate
703 -- N to Build_Loop contains no sub-aggregates, then this function
704 -- returns the assignment statement:
70482933 705 --
deeb1604 706 -- Into (Indexes, Ind) := Expr;
70482933 707 --
3cf3e5c6 708 -- Otherwise we call Build_Code recursively
c45b6ae0 709 --
0ab80019
AC
710 -- Ada 2005 (AI-287): In case of default initialized component, Expr
711 -- is empty and we generate a call to the corresponding IP subprogram.
70482933
RK
712
713 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
714 -- Nodes L and H must be side-effect free expressions.
715 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
716 -- This routine returns the for loop statement
717 --
718 -- for J in Index_Base'(L) .. Index_Base'(H) loop
deeb1604 719 -- Into (Indexes, J) := Expr;
70482933
RK
720 -- end loop;
721 --
722 -- Otherwise we call Build_Code recursively.
723 -- As an optimization if the loop covers 3 or less scalar elements we
724 -- generate a sequence of assignments.
725
726 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
727 -- Nodes L and H must be side-effect free expressions.
728 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
729 -- This routine returns the while loop statement
730 --
07fc65c4
GB
731 -- J : Index_Base := L;
732 -- while J < H loop
733 -- J := Index_Base'Succ (J);
deeb1604 734 -- Into (Indexes, J) := Expr;
70482933
RK
735 -- end loop;
736 --
fbf5a39b 737 -- Otherwise we call Build_Code recursively
70482933
RK
738
739 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
740 function Local_Expr_Value (E : Node_Id) return Uint;
741 -- These two Local routines are used to replace the corresponding ones
742 -- in sem_eval because while processing the bounds of an aggregate with
743 -- discrete choices whose index type is an enumeration, we build static
744 -- expressions not recognized by Compile_Time_Known_Value as such since
745 -- they have not yet been analyzed and resolved. All the expressions in
746 -- question are things like Index_Base_Name'Val (Const) which we can
747 -- easily recognize as being constant.
748
749 ---------
750 -- Add --
751 ---------
752
753 function Add (Val : Int; To : Node_Id) return Node_Id is
754 Expr_Pos : Node_Id;
755 Expr : Node_Id;
756 To_Pos : Node_Id;
fbf5a39b
AC
757 U_To : Uint;
758 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
759
760 begin
761 -- Note: do not try to optimize the case of Val = 0, because
762 -- we need to build a new node with the proper Sloc value anyway.
763
764 -- First test if we can do constant folding
765
766 if Local_Compile_Time_Known_Value (To) then
767 U_To := Local_Expr_Value (To) + Val;
768
769 -- Determine if our constant is outside the range of the index.
770 -- If so return an Empty node. This empty node will be caught
771 -- by Empty_Range below.
772
773 if Compile_Time_Known_Value (Index_Base_L)
774 and then U_To < Expr_Value (Index_Base_L)
775 then
776 return Empty;
777
778 elsif Compile_Time_Known_Value (Index_Base_H)
779 and then U_To > Expr_Value (Index_Base_H)
780 then
781 return Empty;
782 end if;
783
784 Expr_Pos := Make_Integer_Literal (Loc, U_To);
785 Set_Is_Static_Expression (Expr_Pos);
786
787 if not Is_Enumeration_Type (Index_Base) then
788 Expr := Expr_Pos;
789
790 -- If we are dealing with enumeration return
791 -- Index_Base'Val (Expr_Pos)
792
793 else
794 Expr :=
795 Make_Attribute_Reference
796 (Loc,
797 Prefix => Index_Base_Name,
798 Attribute_Name => Name_Val,
799 Expressions => New_List (Expr_Pos));
800 end if;
801
802 return Expr;
803 end if;
804
805 -- If we are here no constant folding possible
806
807 if not Is_Enumeration_Type (Index_Base) then
808 Expr :=
809 Make_Op_Add (Loc,
810 Left_Opnd => Duplicate_Subexpr (To),
811 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
812
813 -- If we are dealing with enumeration return
814 -- Index_Base'Val (Index_Base'Pos (To) + Val)
815
816 else
817 To_Pos :=
818 Make_Attribute_Reference
819 (Loc,
820 Prefix => Index_Base_Name,
821 Attribute_Name => Name_Pos,
822 Expressions => New_List (Duplicate_Subexpr (To)));
823
824 Expr_Pos :=
825 Make_Op_Add (Loc,
826 Left_Opnd => To_Pos,
827 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
828
829 Expr :=
830 Make_Attribute_Reference
831 (Loc,
832 Prefix => Index_Base_Name,
833 Attribute_Name => Name_Val,
834 Expressions => New_List (Expr_Pos));
835 end if;
836
837 return Expr;
838 end Add;
839
840 -----------------
841 -- Empty_Range --
842 -----------------
843
844 function Empty_Range (L, H : Node_Id) return Boolean is
845 Is_Empty : Boolean := False;
846 Low : Node_Id;
847 High : Node_Id;
848
849 begin
850 -- First check if L or H were already detected as overflowing the
851 -- index base range type by function Add above. If this is so Add
852 -- returns the empty node.
853
854 if No (L) or else No (H) then
855 return True;
856 end if;
857
858 for J in 1 .. 3 loop
859 case J is
860
861 -- L > H range is empty
862
863 when 1 =>
864 Low := L;
865 High := H;
866
867 -- B_L > H range must be empty
868
869 when 2 =>
870 Low := Index_Base_L;
871 High := H;
872
873 -- L > B_H range must be empty
874
875 when 3 =>
876 Low := L;
877 High := Index_Base_H;
878 end case;
879
880 if Local_Compile_Time_Known_Value (Low)
881 and then Local_Compile_Time_Known_Value (High)
882 then
883 Is_Empty :=
884 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
885 end if;
886
887 exit when Is_Empty;
888 end loop;
889
890 return Is_Empty;
891 end Empty_Range;
892
893 -----------
894 -- Equal --
895 -----------
896
897 function Equal (L, H : Node_Id) return Boolean is
898 begin
899 if L = H then
900 return True;
901
902 elsif Local_Compile_Time_Known_Value (L)
903 and then Local_Compile_Time_Known_Value (H)
904 then
905 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
906 end if;
907
908 return False;
909 end Equal;
910
911 ----------------
912 -- Gen_Assign --
913 ----------------
914
915 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
fbf5a39b 916 L : constant List_Id := New_List;
70482933
RK
917 A : Node_Id;
918
deeb1604 919 New_Indexes : List_Id;
70482933
RK
920 Indexed_Comp : Node_Id;
921 Expr_Q : Node_Id;
922 Comp_Type : Entity_Id := Empty;
923
924 function Add_Loop_Actions (Lis : List_Id) return List_Id;
925 -- Collect insert_actions generated in the construction of a
926 -- loop, and prepend them to the sequence of assignments to
927 -- complete the eventual body of the loop.
928
929 ----------------------
930 -- Add_Loop_Actions --
931 ----------------------
932
933 function Add_Loop_Actions (Lis : List_Id) return List_Id is
934 Res : List_Id;
935
936 begin
0ab80019 937 -- Ada 2005 (AI-287): Do nothing else in case of default
6e937c1c 938 -- initialized component.
c45b6ae0 939
d8f7b976 940 if No (Expr) then
c45b6ae0
AC
941 return Lis;
942
943 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
944 and then Present (Loop_Actions (Parent (Expr)))
945 then
946 Append_List (Lis, Loop_Actions (Parent (Expr)));
947 Res := Loop_Actions (Parent (Expr));
948 Set_Loop_Actions (Parent (Expr), No_List);
949 return Res;
950
951 else
952 return Lis;
953 end if;
954 end Add_Loop_Actions;
955
956 -- Start of processing for Gen_Assign
957
958 begin
deeb1604
AC
959 if No (Indexes) then
960 New_Indexes := New_List;
70482933 961 else
deeb1604 962 New_Indexes := New_Copy_List_Tree (Indexes);
70482933
RK
963 end if;
964
deeb1604 965 Append_To (New_Indexes, Ind);
70482933 966
70482933
RK
967 if Present (Next_Index (Index)) then
968 return
969 Add_Loop_Actions (
970 Build_Array_Aggr_Code
c45b6ae0
AC
971 (N => Expr,
972 Ctype => Ctype,
973 Index => Next_Index (Index),
974 Into => Into,
975 Scalar_Comp => Scalar_Comp,
df3e68b1 976 Indexes => New_Indexes));
70482933
RK
977 end if;
978
979 -- If we get here then we are at a bottom-level (sub-)aggregate
980
fbf5a39b
AC
981 Indexed_Comp :=
982 Checks_Off
983 (Make_Indexed_Component (Loc,
984 Prefix => New_Copy_Tree (Into),
deeb1604 985 Expressions => New_Indexes));
70482933
RK
986
987 Set_Assignment_OK (Indexed_Comp);
988
0ab80019 989 -- Ada 2005 (AI-287): In case of default initialized component, Expr
6e937c1c 990 -- is not present (and therefore we also initialize Expr_Q to empty).
c45b6ae0 991
d8f7b976 992 if No (Expr) then
c45b6ae0
AC
993 Expr_Q := Empty;
994 elsif Nkind (Expr) = N_Qualified_Expression then
70482933
RK
995 Expr_Q := Expression (Expr);
996 else
997 Expr_Q := Expr;
998 end if;
999
1000 if Present (Etype (N))
1001 and then Etype (N) /= Any_Composite
1002 then
1003 Comp_Type := Component_Type (Etype (N));
c45b6ae0 1004 pragma Assert (Comp_Type = Ctype); -- AI-287
70482933 1005
deeb1604 1006 elsif Present (Next (First (New_Indexes))) then
70482933 1007
0ab80019 1008 -- Ada 2005 (AI-287): Do nothing in case of default initialized
c45b6ae0
AC
1009 -- component because we have received the component type in
1010 -- the formal parameter Ctype.
6e937c1c
AC
1011
1012 -- ??? Some assert pragmas have been added to check if this new
c45b6ae0 1013 -- formal can be used to replace this code in all cases.
70482933 1014
c45b6ae0 1015 if Present (Expr) then
70482933 1016
c45b6ae0
AC
1017 -- This is a multidimensional array. Recover the component
1018 -- type from the outermost aggregate, because subaggregates
1019 -- do not have an assigned type.
70482933 1020
c45b6ae0 1021 declare
5277cab6 1022 P : Node_Id;
70482933 1023
c45b6ae0 1024 begin
5277cab6 1025 P := Parent (Expr);
c45b6ae0 1026 while Present (P) loop
c45b6ae0
AC
1027 if Nkind (P) = N_Aggregate
1028 and then Present (Etype (P))
1029 then
1030 Comp_Type := Component_Type (Etype (P));
1031 exit;
1032
1033 else
1034 P := Parent (P);
1035 end if;
1036 end loop;
6e937c1c 1037
c45b6ae0
AC
1038 pragma Assert (Comp_Type = Ctype); -- AI-287
1039 end;
1040 end if;
70482933
RK
1041 end if;
1042
0ab80019 1043 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
6e937c1c 1044 -- default initialized components (otherwise Expr_Q is not present).
c45b6ae0
AC
1045
1046 if Present (Expr_Q)
d7f94401 1047 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
70482933 1048 then
d7f94401
AC
1049 -- At this stage the Expression may not have been analyzed yet
1050 -- because the array aggregate code has not been updated to use
1051 -- the Expansion_Delayed flag and avoid analysis altogether to
1052 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1053 -- the analysis of non-array aggregates now in order to get the
1054 -- value of Expansion_Delayed flag for the inner aggregate ???
70482933
RK
1055
1056 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1057 Analyze_And_Resolve (Expr_Q, Comp_Type);
1058 end if;
1059
1060 if Is_Delayed_Aggregate (Expr_Q) then
3cf3e5c6 1061
308e6f3a 1062 -- This is either a subaggregate of a multidimensional array,
3cf3e5c6
AC
1063 -- or a component of an array type whose component type is
1064 -- also an array. In the latter case, the expression may have
1065 -- component associations that provide different bounds from
1066 -- those of the component type, and sliding must occur. Instead
1067 -- of decomposing the current aggregate assignment, force the
1068 -- re-analysis of the assignment, so that a temporary will be
1069 -- generated in the usual fashion, and sliding will take place.
1070
1071 if Nkind (Parent (N)) = N_Assignment_Statement
1072 and then Is_Array_Type (Comp_Type)
1073 and then Present (Component_Associations (Expr_Q))
1074 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1075 then
1076 Set_Expansion_Delayed (Expr_Q, False);
1077 Set_Analyzed (Expr_Q, False);
1078
1079 else
1080 return
1081 Add_Loop_Actions (
df3e68b1 1082 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
3cf3e5c6 1083 end if;
70482933
RK
1084 end if;
1085 end if;
1086
0ab80019 1087 -- Ada 2005 (AI-287): In case of default initialized component, call
6e937c1c 1088 -- the initialization subprogram associated with the component type.
3b9fa2df
ES
1089 -- If the component type is an access type, add an explicit null
1090 -- assignment, because for the back-end there is an initialization
1091 -- present for the whole aggregate, and no default initialization
1092 -- will take place.
1093
1094 -- In addition, if the component type is controlled, we must call
1095 -- its Initialize procedure explicitly, because there is no explicit
1096 -- object creation that will invoke it otherwise.
70482933 1097
d8f7b976 1098 if No (Expr) then
3b9fa2df 1099 if Present (Base_Init_Proc (Base_Type (Ctype)))
615cbd95
AC
1100 or else Has_Task (Base_Type (Ctype))
1101 then
1102 Append_List_To (L,
c45b6ae0
AC
1103 Build_Initialization_Call (Loc,
1104 Id_Ref => Indexed_Comp,
1105 Typ => Ctype,
1106 With_Default_Init => True));
3b9fa2df
ES
1107
1108 elsif Is_Access_Type (Ctype) then
1109 Append_To (L,
1110 Make_Assignment_Statement (Loc,
1111 Name => Indexed_Comp,
1112 Expression => Make_Null (Loc)));
1113 end if;
1114
048e5cef 1115 if Needs_Finalization (Ctype) then
df3e68b1 1116 Append_To (L,
3b9fa2df 1117 Make_Init_Call (
df3e68b1
HK
1118 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1119 Typ => Ctype));
615cbd95 1120 end if;
70482933 1121
c45b6ae0 1122 else
c45b6ae0 1123 -- Now generate the assignment with no associated controlled
3b9fa2df
ES
1124 -- actions since the target of the assignment may not have been
1125 -- initialized, it is not possible to Finalize it as expected by
1126 -- normal controlled assignment. The rest of the controlled
1127 -- actions are done manually with the proper finalization list
1128 -- coming from the context.
70482933 1129
70482933
RK
1130 A :=
1131 Make_OK_Assignment_Statement (Loc,
c45b6ae0
AC
1132 Name => Indexed_Comp,
1133 Expression => New_Copy_Tree (Expr));
70482933 1134
048e5cef 1135 if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
c45b6ae0 1136 Set_No_Ctrl_Actions (A);
7b9d0d69
ES
1137
1138 -- If this is an aggregate for an array of arrays, each
3b9fa2df 1139 -- sub-aggregate will be expanded as well, and even with
7b9d0d69
ES
1140 -- No_Ctrl_Actions the assignments of inner components will
1141 -- require attachment in their assignments to temporaries.
1142 -- These temporaries must be finalized for each subaggregate,
1143 -- to prevent multiple attachments of the same temporary
1144 -- location to same finalization chain (and consequently
1145 -- circular lists). To ensure that finalization takes place
1146 -- for each subaggregate we wrap the assignment in a block.
1147
1148 if Is_Array_Type (Comp_Type)
1149 and then Nkind (Expr) = N_Aggregate
1150 then
1151 A :=
1152 Make_Block_Statement (Loc,
1153 Handled_Statement_Sequence =>
1154 Make_Handled_Sequence_Of_Statements (Loc,
1155 Statements => New_List (A)));
1156 end if;
c45b6ae0 1157 end if;
70482933
RK
1158
1159 Append_To (L, A);
70482933 1160
c45b6ae0 1161 -- Adjust the tag if tagged (because of possible view
1f110335 1162 -- conversions), unless compiling for a VM where
3b9fa2df 1163 -- tags are implicit.
70482933 1164
c45b6ae0
AC
1165 if Present (Comp_Type)
1166 and then Is_Tagged_Type (Comp_Type)
1f110335 1167 and then Tagged_Type_Expansion
c45b6ae0 1168 then
38171f43
AC
1169 declare
1170 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1171
1172 begin
1173 A :=
1174 Make_OK_Assignment_Statement (Loc,
1175 Name =>
1176 Make_Selected_Component (Loc,
1177 Prefix => New_Copy_Tree (Indexed_Comp),
1178 Selector_Name =>
1179 New_Reference_To
1180 (First_Tag_Component (Full_Typ), Loc)),
1181
1182 Expression =>
1183 Unchecked_Convert_To (RTE (RE_Tag),
1184 New_Reference_To
1185 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1186 Loc)));
1187
1188 Append_To (L, A);
1189 end;
c45b6ae0
AC
1190 end if;
1191
0f95b178
JM
1192 -- Adjust and attach the component to the proper final list, which
1193 -- can be the controller of the outer record object or the final
1194 -- list associated with the scope.
c45b6ae0 1195
0f95b178
JM
1196 -- If the component is itself an array of controlled types, whose
1197 -- value is given by a sub-aggregate, then the attach calls have
1198 -- been generated when individual subcomponent are assigned, and
fc534c1c
ES
1199 -- must not be done again to prevent malformed finalization chains
1200 -- (see comments above, concerning the creation of a block to hold
1201 -- inner finalization actions).
0f95b178
JM
1202
1203 if Present (Comp_Type)
048e5cef 1204 and then Needs_Finalization (Comp_Type)
3b9fa2df 1205 and then not Is_Limited_Type (Comp_Type)
32beb1f3
AC
1206 and then not
1207 (Is_Array_Type (Comp_Type)
1208 and then Is_Controlled (Component_Type (Comp_Type))
1209 and then Nkind (Expr) = N_Aggregate)
0f95b178 1210 then
df3e68b1 1211 Append_To (L,
c45b6ae0 1212 Make_Adjust_Call (
df3e68b1
HK
1213 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1214 Typ => Comp_Type));
c45b6ae0 1215 end if;
70482933
RK
1216 end if;
1217
1218 return Add_Loop_Actions (L);
1219 end Gen_Assign;
1220
1221 --------------
1222 -- Gen_Loop --
1223 --------------
1224
1225 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1226 L_J : Node_Id;
70482933 1227
240fe2a4
AC
1228 L_L : Node_Id;
1229 -- Index_Base'(L)
1230
1231 L_H : Node_Id;
1232 -- Index_Base'(H)
1233
70482933
RK
1234 L_Range : Node_Id;
1235 -- Index_Base'(L) .. Index_Base'(H)
1236
1237 L_Iteration_Scheme : Node_Id;
07fc65c4 1238 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
1239
1240 L_Body : List_Id;
1241 -- The statements to execute in the loop
1242
fbf5a39b
AC
1243 S : constant List_Id := New_List;
1244 -- List of statements
70482933
RK
1245
1246 Tcopy : Node_Id;
1247 -- Copy of expression tree, used for checking purposes
1248
1249 begin
1250 -- If loop bounds define an empty range return the null statement
1251
1252 if Empty_Range (L, H) then
1253 Append_To (S, Make_Null_Statement (Loc));
1254
0ab80019 1255 -- Ada 2005 (AI-287): Nothing else need to be done in case of
6e937c1c 1256 -- default initialized component.
70482933 1257
d8f7b976 1258 if No (Expr) then
c45b6ae0
AC
1259 null;
1260
1261 else
1262 -- The expression must be type-checked even though no component
1263 -- of the aggregate will have this value. This is done only for
1264 -- actual components of the array, not for subaggregates. Do
1265 -- the check on a copy, because the expression may be shared
1266 -- among several choices, some of which might be non-null.
1267
1268 if Present (Etype (N))
1269 and then Is_Array_Type (Etype (N))
1270 and then No (Next_Index (Index))
1271 then
1272 Expander_Mode_Save_And_Set (False);
1273 Tcopy := New_Copy_Tree (Expr);
1274 Set_Parent (Tcopy, N);
1275 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1276 Expander_Mode_Restore;
1277 end if;
70482933
RK
1278 end if;
1279
1280 return S;
1281
1282 -- If loop bounds are the same then generate an assignment
1283
1284 elsif Equal (L, H) then
1285 return Gen_Assign (New_Copy_Tree (L), Expr);
1286
3b9fa2df
ES
1287 -- If H - L <= 2 then generate a sequence of assignments when we are
1288 -- processing the bottom most aggregate and it contains scalar
1289 -- components.
70482933
RK
1290
1291 elsif No (Next_Index (Index))
1292 and then Scalar_Comp
1293 and then Local_Compile_Time_Known_Value (L)
1294 and then Local_Compile_Time_Known_Value (H)
1295 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1296 then
c45b6ae0 1297
70482933
RK
1298 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1299 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1300
1301 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1302 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1303 end if;
1304
1305 return S;
1306 end if;
1307
07fc65c4 1308 -- Otherwise construct the loop, starting with the loop index L_J
70482933 1309
191fcb3a 1310 L_J := Make_Temporary (Loc, 'J', L);
70482933 1311
240fe2a4
AC
1312 -- Construct "L .. H" in Index_Base. We use a qualified expression
1313 -- for the bound to convert to the index base, but we don't need
1314 -- to do that if we already have the base type at hand.
1315
1316 if Etype (L) = Index_Base then
1317 L_L := L;
1318 else
1319 L_L :=
1320 Make_Qualified_Expression (Loc,
1321 Subtype_Mark => Index_Base_Name,
1322 Expression => L);
1323 end if;
1324
1325 if Etype (H) = Index_Base then
1326 L_H := H;
1327 else
1328 L_H :=
1329 Make_Qualified_Expression (Loc,
1330 Subtype_Mark => Index_Base_Name,
1331 Expression => H);
1332 end if;
70482933
RK
1333
1334 L_Range :=
240fe2a4
AC
1335 Make_Range (Loc,
1336 Low_Bound => L_L,
1337 High_Bound => L_H);
70482933 1338
07fc65c4 1339 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
1340
1341 L_Iteration_Scheme :=
1342 Make_Iteration_Scheme
1343 (Loc,
1344 Loop_Parameter_Specification =>
1345 Make_Loop_Parameter_Specification
1346 (Loc,
07fc65c4 1347 Defining_Identifier => L_J,
70482933
RK
1348 Discrete_Subtype_Definition => L_Range));
1349
1350 -- Construct the statements to execute in the loop body
1351
07fc65c4 1352 L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
70482933
RK
1353
1354 -- Construct the final loop
1355
1356 Append_To (S, Make_Implicit_Loop_Statement
1357 (Node => N,
1358 Identifier => Empty,
1359 Iteration_Scheme => L_Iteration_Scheme,
1360 Statements => L_Body));
1361
3b9fa2df
ES
1362 -- A small optimization: if the aggregate is initialized with a box
1363 -- and the component type has no initialization procedure, remove the
1364 -- useless empty loop.
0f95b178
JM
1365
1366 if Nkind (First (S)) = N_Loop_Statement
1367 and then Is_Empty_List (Statements (First (S)))
1368 then
1369 return New_List (Make_Null_Statement (Loc));
1370 else
1371 return S;
1372 end if;
70482933
RK
1373 end Gen_Loop;
1374
1375 ---------------
1376 -- Gen_While --
1377 ---------------
1378
1379 -- The code built is
1380
07fc65c4
GB
1381 -- W_J : Index_Base := L;
1382 -- while W_J < H loop
1383 -- W_J := Index_Base'Succ (W);
70482933
RK
1384 -- L_Body;
1385 -- end loop;
1386
1387 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1388 W_J : Node_Id;
70482933
RK
1389
1390 W_Decl : Node_Id;
07fc65c4 1391 -- W_J : Base_Type := L;
70482933
RK
1392
1393 W_Iteration_Scheme : Node_Id;
07fc65c4 1394 -- while W_J < H
70482933
RK
1395
1396 W_Index_Succ : Node_Id;
07fc65c4 1397 -- Index_Base'Succ (J)
70482933 1398
fbf5a39b 1399 W_Increment : Node_Id;
07fc65c4 1400 -- W_J := Index_Base'Succ (W)
70482933 1401
fbf5a39b 1402 W_Body : constant List_Id := New_List;
70482933
RK
1403 -- The statements to execute in the loop
1404
fbf5a39b 1405 S : constant List_Id := New_List;
70482933
RK
1406 -- list of statement
1407
1408 begin
1409 -- If loop bounds define an empty range or are equal return null
1410
1411 if Empty_Range (L, H) or else Equal (L, H) then
1412 Append_To (S, Make_Null_Statement (Loc));
1413 return S;
1414 end if;
1415
07fc65c4 1416 -- Build the decl of W_J
70482933 1417
191fcb3a 1418 W_J := Make_Temporary (Loc, 'J', L);
70482933
RK
1419 W_Decl :=
1420 Make_Object_Declaration
1421 (Loc,
07fc65c4 1422 Defining_Identifier => W_J,
70482933
RK
1423 Object_Definition => Index_Base_Name,
1424 Expression => L);
1425
1426 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1427 -- that in this particular case L is a fresh Expr generated by
1428 -- Add which we are the only ones to use.
1429
1430 Append_To (S, W_Decl);
1431
fbf5a39b 1432 -- Construct " while W_J < H"
70482933
RK
1433
1434 W_Iteration_Scheme :=
1435 Make_Iteration_Scheme
1436 (Loc,
1437 Condition => Make_Op_Lt
1438 (Loc,
07fc65c4 1439 Left_Opnd => New_Reference_To (W_J, Loc),
70482933
RK
1440 Right_Opnd => New_Copy_Tree (H)));
1441
1442 -- Construct the statements to execute in the loop body
1443
1444 W_Index_Succ :=
1445 Make_Attribute_Reference
1446 (Loc,
1447 Prefix => Index_Base_Name,
1448 Attribute_Name => Name_Succ,
07fc65c4 1449 Expressions => New_List (New_Reference_To (W_J, Loc)));
70482933
RK
1450
1451 W_Increment :=
1452 Make_OK_Assignment_Statement
1453 (Loc,
07fc65c4 1454 Name => New_Reference_To (W_J, Loc),
70482933
RK
1455 Expression => W_Index_Succ);
1456
1457 Append_To (W_Body, W_Increment);
1458 Append_List_To (W_Body,
07fc65c4 1459 Gen_Assign (New_Reference_To (W_J, Loc), Expr));
70482933
RK
1460
1461 -- Construct the final loop
1462
1463 Append_To (S, Make_Implicit_Loop_Statement
1464 (Node => N,
1465 Identifier => Empty,
1466 Iteration_Scheme => W_Iteration_Scheme,
1467 Statements => W_Body));
1468
1469 return S;
1470 end Gen_While;
1471
1472 ---------------------
1473 -- Index_Base_Name --
1474 ---------------------
1475
1476 function Index_Base_Name return Node_Id is
1477 begin
1478 return New_Reference_To (Index_Base, Sloc (N));
1479 end Index_Base_Name;
1480
1481 ------------------------------------
1482 -- Local_Compile_Time_Known_Value --
1483 ------------------------------------
1484
1485 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1486 begin
1487 return Compile_Time_Known_Value (E)
1488 or else
1489 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1490 and then Attribute_Name (E) = Name_Val
1491 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1492 end Local_Compile_Time_Known_Value;
1493
1494 ----------------------
1495 -- Local_Expr_Value --
1496 ----------------------
1497
1498 function Local_Expr_Value (E : Node_Id) return Uint is
1499 begin
1500 if Compile_Time_Known_Value (E) then
1501 return Expr_Value (E);
1502 else
1503 return Expr_Value (First (Expressions (E)));
1504 end if;
1505 end Local_Expr_Value;
1506
1507 -- Build_Array_Aggr_Code Variables
1508
1509 Assoc : Node_Id;
1510 Choice : Node_Id;
1511 Expr : Node_Id;
fbf5a39b 1512 Typ : Entity_Id;
70482933 1513
d8f7b976
ES
1514 Others_Expr : Node_Id := Empty;
1515 Others_Box_Present : Boolean := False;
70482933
RK
1516
1517 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1518 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1519 -- The aggregate bounds of this specific sub-aggregate. Note that if
1520 -- the code generated by Build_Array_Aggr_Code is executed then these
1521 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1522
fbf5a39b
AC
1523 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1524 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
7324bf49 1525 -- After Duplicate_Subexpr these are side-effect free
70482933 1526
c45b6ae0
AC
1527 Low : Node_Id;
1528 High : Node_Id;
70482933
RK
1529
1530 Nb_Choices : Nat := 0;
1531 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1532 -- Used to sort all the different choice values
1533
1534 Nb_Elements : Int;
1535 -- Number of elements in the positional aggregate
1536
fbf5a39b 1537 New_Code : constant List_Id := New_List;
70482933
RK
1538
1539 -- Start of processing for Build_Array_Aggr_Code
1540
1541 begin
fbf5a39b
AC
1542 -- First before we start, a special case. if we have a bit packed
1543 -- array represented as a modular type, then clear the value to
1544 -- zero first, to ensure that unused bits are properly cleared.
1545
1546 Typ := Etype (N);
1547
1548 if Present (Typ)
1549 and then Is_Bit_Packed_Array (Typ)
1550 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1551 then
1552 Append_To (New_Code,
1553 Make_Assignment_Statement (Loc,
1554 Name => New_Copy_Tree (Into),
1555 Expression =>
1556 Unchecked_Convert_To (Typ,
1557 Make_Integer_Literal (Loc, Uint_0))));
1558 end if;
1559
0e08f7ab
ES
1560 -- If the component type contains tasks, we need to build a Master
1561 -- entity in the current scope, because it will be needed if build-
1562 -- in-place functions are called in the expanded code.
1563
1564 if Nkind (Parent (N)) = N_Object_Declaration
1565 and then Has_Task (Typ)
1566 then
1567 Build_Master_Entity (Defining_Identifier (Parent (N)));
1568 end if;
1569
70482933 1570 -- STEP 1: Process component associations
3b9fa2df 1571
fbf5a39b
AC
1572 -- For those associations that may generate a loop, initialize
1573 -- Loop_Actions to collect inserted actions that may be crated.
70482933 1574
3b9fa2df
ES
1575 -- Skip this if no component associations
1576
70482933
RK
1577 if No (Expressions (N)) then
1578
1579 -- STEP 1 (a): Sort the discrete choices
1580
1581 Assoc := First (Component_Associations (N));
1582 while Present (Assoc) loop
70482933
RK
1583 Choice := First (Choices (Assoc));
1584 while Present (Choice) loop
70482933 1585 if Nkind (Choice) = N_Others_Choice then
fbf5a39b 1586 Set_Loop_Actions (Assoc, New_List);
c45b6ae0
AC
1587
1588 if Box_Present (Assoc) then
d8f7b976 1589 Others_Box_Present := True;
c45b6ae0
AC
1590 else
1591 Others_Expr := Expression (Assoc);
1592 end if;
70482933
RK
1593 exit;
1594 end if;
1595
1596 Get_Index_Bounds (Choice, Low, High);
1597
fbf5a39b
AC
1598 if Low /= High then
1599 Set_Loop_Actions (Assoc, New_List);
1600 end if;
1601
70482933 1602 Nb_Choices := Nb_Choices + 1;
c45b6ae0
AC
1603 if Box_Present (Assoc) then
1604 Table (Nb_Choices) := (Choice_Lo => Low,
1605 Choice_Hi => High,
1606 Choice_Node => Empty);
1607 else
1608 Table (Nb_Choices) := (Choice_Lo => Low,
1609 Choice_Hi => High,
1610 Choice_Node => Expression (Assoc));
1611 end if;
70482933
RK
1612 Next (Choice);
1613 end loop;
1614
1615 Next (Assoc);
1616 end loop;
1617
1618 -- If there is more than one set of choices these must be static
1619 -- and we can therefore sort them. Remember that Nb_Choices does not
1620 -- account for an others choice.
1621
1622 if Nb_Choices > 1 then
1623 Sort_Case_Table (Table);
1624 end if;
1625
3cf3e5c6 1626 -- STEP 1 (b): take care of the whole set of discrete choices
70482933
RK
1627
1628 for J in 1 .. Nb_Choices loop
1629 Low := Table (J).Choice_Lo;
1630 High := Table (J).Choice_Hi;
1631 Expr := Table (J).Choice_Node;
70482933
RK
1632 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1633 end loop;
1634
1635 -- STEP 1 (c): generate the remaining loops to cover others choice
1636 -- We don't need to generate loops over empty gaps, but if there is
1637 -- a single empty range we must analyze the expression for semantics
1638
d8f7b976 1639 if Present (Others_Expr) or else Others_Box_Present then
70482933
RK
1640 declare
1641 First : Boolean := True;
1642
1643 begin
1644 for J in 0 .. Nb_Choices loop
70482933
RK
1645 if J = 0 then
1646 Low := Aggr_Low;
1647 else
1648 Low := Add (1, To => Table (J).Choice_Hi);
1649 end if;
1650
1651 if J = Nb_Choices then
1652 High := Aggr_High;
1653 else
1654 High := Add (-1, To => Table (J + 1).Choice_Lo);
1655 end if;
1656
fbf5a39b 1657 -- If this is an expansion within an init proc, make
c84700e7
ES
1658 -- sure that discriminant references are replaced by
1659 -- the corresponding discriminal.
1660
1661 if Inside_Init_Proc then
1662 if Is_Entity_Name (Low)
1663 and then Ekind (Entity (Low)) = E_Discriminant
1664 then
1665 Set_Entity (Low, Discriminal (Entity (Low)));
1666 end if;
1667
1668 if Is_Entity_Name (High)
1669 and then Ekind (Entity (High)) = E_Discriminant
1670 then
1671 Set_Entity (High, Discriminal (Entity (High)));
1672 end if;
1673 end if;
1674
70482933
RK
1675 if First
1676 or else not Empty_Range (Low, High)
1677 then
1678 First := False;
1679 Append_List
1680 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1681 end if;
1682 end loop;
1683 end;
1684 end if;
1685
1686 -- STEP 2: Process positional components
1687
1688 else
1689 -- STEP 2 (a): Generate the assignments for each positional element
1690 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1691 -- Aggr_L is analyzed and Add wants an analyzed expression.
1692
1693 Expr := First (Expressions (N));
1694 Nb_Elements := -1;
70482933
RK
1695 while Present (Expr) loop
1696 Nb_Elements := Nb_Elements + 1;
1697 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1698 To => New_Code);
1699 Next (Expr);
1700 end loop;
1701
1702 -- STEP 2 (b): Generate final loop if an others choice is present
1703 -- Here Nb_Elements gives the offset of the last positional element.
1704
1705 if Present (Component_Associations (N)) then
1706 Assoc := Last (Component_Associations (N));
70482933 1707
0ab80019 1708 -- Ada 2005 (AI-287)
6e937c1c 1709
c45b6ae0
AC
1710 if Box_Present (Assoc) then
1711 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1712 Aggr_High,
1713 Empty),
1714 To => New_Code);
1715 else
1716 Expr := Expression (Assoc);
1717
1718 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1719 Aggr_High,
1720 Expr), -- AI-287
1721 To => New_Code);
1722 end if;
70482933
RK
1723 end if;
1724 end if;
1725
1726 return New_Code;
1727 end Build_Array_Aggr_Code;
1728
1729 ----------------------------
1730 -- Build_Record_Aggr_Code --
1731 ----------------------------
1732
1733 function Build_Record_Aggr_Code
65356e64
AC
1734 (N : Node_Id;
1735 Typ : Entity_Id;
0f95b178 1736 Lhs : Node_Id;
df3e68b1 1737 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
70482933
RK
1738 is
1739 Loc : constant Source_Ptr := Sloc (N);
1740 L : constant List_Id := New_List;
70482933
RK
1741 N_Typ : constant Entity_Id := Etype (N);
1742
1743 Comp : Node_Id;
1744 Instr : Node_Id;
1745 Ref : Node_Id;
0f95b178 1746 Target : Entity_Id;
70482933
RK
1747 Comp_Type : Entity_Id;
1748 Selector : Entity_Id;
1749 Comp_Expr : Node_Id;
70482933
RK
1750 Expr_Q : Node_Id;
1751
70482933
RK
1752 -- If this is an internal aggregate, the External_Final_List is an
1753 -- expression for the controller record of the enclosing type.
3b9fa2df 1754
70482933
RK
1755 -- If the current aggregate has several controlled components, this
1756 -- expression will appear in several calls to attach to the finali-
1757 -- zation list, and it must not be shared.
1758
70482933
RK
1759 Ancestor_Is_Expression : Boolean := False;
1760 Ancestor_Is_Subtype_Mark : Boolean := False;
1761
1762 Init_Typ : Entity_Id := Empty;
5277cab6 1763
df3e68b1
HK
1764 Finalization_Done : Boolean := False;
1765 -- True if Generate_Finalization_Actions has already been called; calls
0f95b178 1766 -- after the first do nothing.
70482933 1767
70482933 1768 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
3b9fa2df
ES
1769 -- Returns the value that the given discriminant of an ancestor type
1770 -- should receive (in the absence of a conflict with the value provided
1771 -- by an ancestor part of an extension aggregate).
70482933
RK
1772
1773 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
3b9fa2df
ES
1774 -- Check that each of the discriminant values defined by the ancestor
1775 -- part of an extension aggregate match the corresponding values
1776 -- provided by either an association of the aggregate or by the
1777 -- constraint imposed by a parent type (RM95-4.3.2(8)).
70482933 1778
d8f7b976
ES
1779 function Compatible_Int_Bounds
1780 (Agg_Bounds : Node_Id;
1781 Typ_Bounds : Node_Id) return Boolean;
1782 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1783 -- assumed that both bounds are integer ranges.
1784
df3e68b1 1785 procedure Generate_Finalization_Actions;
0f95b178
JM
1786 -- Deal with the various controlled type data structure initializations
1787 -- (but only if it hasn't been done already).
d8f7b976
ES
1788
1789 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1790 -- Returns the first discriminant association in the constraint
1791 -- associated with T, if any, otherwise returns Empty.
1792
3e582869
AC
1793 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1794 -- If Typ is derived, and constrains discriminants of the parent type,
1795 -- these discriminants are not components of the aggregate, and must be
1796 -- initialized. The assignments are appended to List.
1797
d8f7b976
ES
1798 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1799 -- Check whether Bounds is a range node and its lower and higher bounds
1800 -- are integers literals.
7b9d0d69 1801
70482933
RK
1802 ---------------------------------
1803 -- Ancestor_Discriminant_Value --
1804 ---------------------------------
1805
1806 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1807 Assoc : Node_Id;
1808 Assoc_Elmt : Elmt_Id;
1809 Aggr_Comp : Entity_Id;
1810 Corresp_Disc : Entity_Id;
1811 Current_Typ : Entity_Id := Base_Type (Typ);
1812 Parent_Typ : Entity_Id;
1813 Parent_Disc : Entity_Id;
1814 Save_Assoc : Node_Id := Empty;
1815
1816 begin
3b9fa2df
ES
1817 -- First check any discriminant associations to see if any of them
1818 -- provide a value for the discriminant.
70482933
RK
1819
1820 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1821 Assoc := First (Component_Associations (N));
1822 while Present (Assoc) loop
1823 Aggr_Comp := Entity (First (Choices (Assoc)));
1824
1825 if Ekind (Aggr_Comp) = E_Discriminant then
1826 Save_Assoc := Expression (Assoc);
1827
1828 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1829 while Present (Corresp_Disc) loop
3b9fa2df
ES
1830
1831 -- If found a corresponding discriminant then return the
1832 -- value given in the aggregate. (Note: this is not
1833 -- correct in the presence of side effects. ???)
70482933
RK
1834
1835 if Disc = Corresp_Disc then
1836 return Duplicate_Subexpr (Expression (Assoc));
1837 end if;
fbf5a39b 1838
70482933
RK
1839 Corresp_Disc :=
1840 Corresponding_Discriminant (Corresp_Disc);
1841 end loop;
1842 end if;
1843
1844 Next (Assoc);
1845 end loop;
1846 end if;
1847
1848 -- No match found in aggregate, so chain up parent types to find
1849 -- a constraint that defines the value of the discriminant.
1850
1851 Parent_Typ := Etype (Current_Typ);
1852 while Current_Typ /= Parent_Typ loop
9013065b
AC
1853 if Has_Discriminants (Parent_Typ)
1854 and then not Has_Unknown_Discriminants (Parent_Typ)
1855 then
70482933
RK
1856 Parent_Disc := First_Discriminant (Parent_Typ);
1857
1858 -- We either get the association from the subtype indication
1859 -- of the type definition itself, or from the discriminant
1860 -- constraint associated with the type entity (which is
1861 -- preferable, but it's not always present ???)
1862
1863 if Is_Empty_Elmt_List (
1864 Discriminant_Constraint (Current_Typ))
1865 then
1866 Assoc := Get_Constraint_Association (Current_Typ);
1867 Assoc_Elmt := No_Elmt;
1868 else
1869 Assoc_Elmt :=
1870 First_Elmt (Discriminant_Constraint (Current_Typ));
1871 Assoc := Node (Assoc_Elmt);
1872 end if;
1873
1874 -- Traverse the discriminants of the parent type looking
1875 -- for one that corresponds.
1876
1877 while Present (Parent_Disc) and then Present (Assoc) loop
1878 Corresp_Disc := Parent_Disc;
1879 while Present (Corresp_Disc)
1880 and then Disc /= Corresp_Disc
1881 loop
1882 Corresp_Disc :=
1883 Corresponding_Discriminant (Corresp_Disc);
1884 end loop;
1885
1886 if Disc = Corresp_Disc then
1887 if Nkind (Assoc) = N_Discriminant_Association then
1888 Assoc := Expression (Assoc);
1889 end if;
1890
3b9fa2df
ES
1891 -- If the located association directly denotes a
1892 -- discriminant, then use the value of a saved
1893 -- association of the aggregate. This is a kludge to
1894 -- handle certain cases involving multiple discriminants
1895 -- mapped to a single discriminant of a descendant. It's
1896 -- not clear how to locate the appropriate discriminant
1897 -- value for such cases. ???
70482933
RK
1898
1899 if Is_Entity_Name (Assoc)
1900 and then Ekind (Entity (Assoc)) = E_Discriminant
1901 then
1902 Assoc := Save_Assoc;
1903 end if;
1904
1905 return Duplicate_Subexpr (Assoc);
1906 end if;
1907
1908 Next_Discriminant (Parent_Disc);
1909
1910 if No (Assoc_Elmt) then
1911 Next (Assoc);
1912 else
1913 Next_Elmt (Assoc_Elmt);
1914 if Present (Assoc_Elmt) then
1915 Assoc := Node (Assoc_Elmt);
1916 else
1917 Assoc := Empty;
1918 end if;
1919 end if;
1920 end loop;
1921 end if;
1922
1923 Current_Typ := Parent_Typ;
1924 Parent_Typ := Etype (Current_Typ);
1925 end loop;
1926
1927 -- In some cases there's no ancestor value to locate (such as
1928 -- when an ancestor part given by an expression defines the
1929 -- discriminant value).
1930
1931 return Empty;
1932 end Ancestor_Discriminant_Value;
1933
1934 ----------------------------------
1935 -- Check_Ancestor_Discriminants --
1936 ----------------------------------
1937
1938 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
5277cab6 1939 Discr : Entity_Id;
70482933
RK
1940 Disc_Value : Node_Id;
1941 Cond : Node_Id;
1942
1943 begin
5277cab6 1944 Discr := First_Discriminant (Base_Type (Anc_Typ));
70482933
RK
1945 while Present (Discr) loop
1946 Disc_Value := Ancestor_Discriminant_Value (Discr);
1947
1948 if Present (Disc_Value) then
1949 Cond := Make_Op_Ne (Loc,
1950 Left_Opnd =>
1951 Make_Selected_Component (Loc,
1952 Prefix => New_Copy_Tree (Target),
1953 Selector_Name => New_Occurrence_Of (Discr, Loc)),
1954 Right_Opnd => Disc_Value);
1955
07fc65c4
GB
1956 Append_To (L,
1957 Make_Raise_Constraint_Error (Loc,
1958 Condition => Cond,
1959 Reason => CE_Discriminant_Check_Failed));
70482933
RK
1960 end if;
1961
1962 Next_Discriminant (Discr);
1963 end loop;
1964 end Check_Ancestor_Discriminants;
1965
d8f7b976
ES
1966 ---------------------------
1967 -- Compatible_Int_Bounds --
1968 ---------------------------
1969
1970 function Compatible_Int_Bounds
1971 (Agg_Bounds : Node_Id;
1972 Typ_Bounds : Node_Id) return Boolean
1973 is
1974 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
1975 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
1976 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
1977 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
1978 begin
1979 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
1980 end Compatible_Int_Bounds;
1981
70482933
RK
1982 --------------------------------
1983 -- Get_Constraint_Association --
1984 --------------------------------
1985
1986 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
1987 Typ_Def : constant Node_Id := Type_Definition (Parent (T));
1988 Indic : constant Node_Id := Subtype_Indication (Typ_Def);
1989
1990 begin
1991 -- ??? Also need to cover case of a type mark denoting a subtype
1992 -- with constraint.
1993
1994 if Nkind (Indic) = N_Subtype_Indication
1995 and then Present (Constraint (Indic))
1996 then
1997 return First (Constraints (Constraint (Indic)));
1998 end if;
1999
2000 return Empty;
2001 end Get_Constraint_Association;
2002
3e582869
AC
2003 -------------------------------
2004 -- Init_Hidden_Discriminants --
2005 -------------------------------
2006
2007 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2008 Btype : Entity_Id;
2009 Parent_Type : Entity_Id;
2010 Disc : Entity_Id;
2011 Discr_Val : Elmt_Id;
2012
2013 begin
2014 Btype := Base_Type (Typ);
2015 while Is_Derived_Type (Btype)
e917aec2 2016 and then Present (Stored_Constraint (Btype))
3e582869
AC
2017 loop
2018 Parent_Type := Etype (Btype);
2019
2020 Disc := First_Discriminant (Parent_Type);
2021 Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
2022 while Present (Discr_Val) loop
2023
2024 -- Only those discriminants of the parent that are not
2025 -- renamed by discriminants of the derived type need to
2026 -- be added explicitly.
2027
2028 if not Is_Entity_Name (Node (Discr_Val))
2029 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2030 then
2031 Comp_Expr :=
2032 Make_Selected_Component (Loc,
2033 Prefix => New_Copy_Tree (Target),
2034 Selector_Name => New_Occurrence_Of (Disc, Loc));
2035
2036 Instr :=
2037 Make_OK_Assignment_Statement (Loc,
2038 Name => Comp_Expr,
2039 Expression => New_Copy_Tree (Node (Discr_Val)));
2040
2041 Set_No_Ctrl_Actions (Instr);
2042 Append_To (List, Instr);
2043 end if;
2044
2045 Next_Discriminant (Disc);
2046 Next_Elmt (Discr_Val);
2047 end loop;
2048
2049 Btype := Base_Type (Parent_Type);
2050 end loop;
2051 end Init_Hidden_Discriminants;
2052
d8f7b976
ES
2053 -------------------------
2054 -- Is_Int_Range_Bounds --
2055 -------------------------
2056
2057 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2058 begin
2059 return Nkind (Bounds) = N_Range
2060 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2061 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2062 end Is_Int_Range_Bounds;
2063
df3e68b1
HK
2064 -----------------------------------
2065 -- Generate_Finalization_Actions --
2066 -----------------------------------
0f95b178 2067
df3e68b1 2068 procedure Generate_Finalization_Actions is
7b9d0d69 2069 begin
0f95b178
JM
2070 -- Do the work only the first time this is called
2071
df3e68b1 2072 if Finalization_Done then
5277cab6
ES
2073 return;
2074 end if;
2075
df3e68b1 2076 Finalization_Done := True;
7b9d0d69
ES
2077
2078 -- Determine the external finalization list. It is either the
2079 -- finalization list of the outer-scope or the one coming from
df3e68b1 2080 -- an outer aggregate. When the target is not a temporary, the
7b9d0d69
ES
2081 -- proper scope is the scope of the target rather than the
2082 -- potentially transient current scope.
2083
df3e68b1
HK
2084 if Is_Controlled (Typ)
2085 and then Ancestor_Is_Subtype_Mark
7b9d0d69 2086 then
df3e68b1
HK
2087 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2088 Set_Assignment_OK (Ref);
2089
2090 Append_To (L,
2091 Make_Procedure_Call_Statement (Loc,
2092 Name =>
2093 New_Reference_To
2094 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2095 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
7b9d0d69 2096 end if;
df3e68b1 2097 end Generate_Finalization_Actions;
7b9d0d69 2098
f2abc637 2099 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
7b4db06c
JM
2100 -- If default expression of a component mentions a discriminant of the
2101 -- type, it must be rewritten as the discriminant of the target object.
f2abc637 2102
0f95b178 2103 function Replace_Type (Expr : Node_Id) return Traverse_Result;
acf63f8c
ES
2104 -- If the aggregate contains a self-reference, traverse each expression
2105 -- to replace a possible self-reference with a reference to the proper
2106 -- component of the target of the assignment.
0f95b178 2107
f2abc637
AC
2108 --------------------------
2109 -- Rewrite_Discriminant --
2110 --------------------------
2111
2112 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2113 begin
5087048c 2114 if Is_Entity_Name (Expr)
f2abc637
AC
2115 and then Present (Entity (Expr))
2116 and then Ekind (Entity (Expr)) = E_In_Parameter
2117 and then Present (Discriminal_Link (Entity (Expr)))
61441c18
TQ
2118 and then Scope (Discriminal_Link (Entity (Expr)))
2119 = Base_Type (Etype (N))
f2abc637
AC
2120 then
2121 Rewrite (Expr,
2122 Make_Selected_Component (Loc,
61441c18 2123 Prefix => New_Copy_Tree (Lhs),
f2abc637
AC
2124 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2125 end if;
2126 return OK;
2127 end Rewrite_Discriminant;
2128
0f95b178
JM
2129 ------------------
2130 -- Replace_Type --
2131 ------------------
2132
2133 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2134 begin
acf63f8c
ES
2135 -- Note regarding the Root_Type test below: Aggregate components for
2136 -- self-referential types include attribute references to the current
2137 -- instance, of the form: Typ'access, etc.. These references are
2138 -- rewritten as references to the target of the aggregate: the
2139 -- left-hand side of an assignment, the entity in a declaration,
2140 -- or a temporary. Without this test, we would improperly extended
2141 -- this rewriting to attribute references whose prefix was not the
2142 -- type of the aggregate.
2143
0f95b178 2144 if Nkind (Expr) = N_Attribute_Reference
acf63f8c 2145 and then Is_Entity_Name (Prefix (Expr))
0f95b178 2146 and then Is_Type (Entity (Prefix (Expr)))
acf63f8c 2147 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
0f95b178
JM
2148 then
2149 if Is_Entity_Name (Lhs) then
2150 Rewrite (Prefix (Expr),
2151 New_Occurrence_Of (Entity (Lhs), Loc));
2152
2153 elsif Nkind (Lhs) = N_Selected_Component then
2154 Rewrite (Expr,
2155 Make_Attribute_Reference (Loc,
2156 Attribute_Name => Name_Unrestricted_Access,
2157 Prefix => New_Copy_Tree (Prefix (Lhs))));
2158 Set_Analyzed (Parent (Expr), False);
2159
2160 else
2161 Rewrite (Expr,
2162 Make_Attribute_Reference (Loc,
2163 Attribute_Name => Name_Unrestricted_Access,
2164 Prefix => New_Copy_Tree (Lhs)));
2165 Set_Analyzed (Parent (Expr), False);
2166 end if;
2167 end if;
2168
2169 return OK;
2170 end Replace_Type;
2171
2172 procedure Replace_Self_Reference is
2173 new Traverse_Proc (Replace_Type);
2174
f2abc637
AC
2175 procedure Replace_Discriminants is
2176 new Traverse_Proc (Rewrite_Discriminant);
2177
70482933
RK
2178 -- Start of processing for Build_Record_Aggr_Code
2179
2180 begin
0f95b178
JM
2181 if Has_Self_Reference (N) then
2182 Replace_Self_Reference (N);
2183 end if;
2184
2185 -- If the target of the aggregate is class-wide, we must convert it
2186 -- to the actual type of the aggregate, so that the proper components
2187 -- are visible. We know already that the types are compatible.
2188
2189 if Present (Etype (Lhs))
26a43556 2190 and then Is_Class_Wide_Type (Etype (Lhs))
0f95b178
JM
2191 then
2192 Target := Unchecked_Convert_To (Typ, Lhs);
2193 else
2194 Target := Lhs;
2195 end if;
2196
3b9fa2df
ES
2197 -- Deal with the ancestor part of extension aggregates or with the
2198 -- discriminants of the root type.
70482933
RK
2199
2200 if Nkind (N) = N_Extension_Aggregate then
2201 declare
df3e68b1
HK
2202 Ancestor : constant Node_Id := Ancestor_Part (N);
2203 Assign : List_Id;
70482933
RK
2204
2205 begin
70482933 2206 -- If the ancestor part is a subtype mark "T", we generate
fbf5a39b 2207
df3e68b1
HK
2208 -- init-proc (T (tmp)); if T is constrained and
2209 -- init-proc (S (tmp)); where S applies an appropriate
2210 -- constraint if T is unconstrained
70482933 2211
df3e68b1
HK
2212 if Is_Entity_Name (Ancestor)
2213 and then Is_Type (Entity (Ancestor))
2214 then
70482933
RK
2215 Ancestor_Is_Subtype_Mark := True;
2216
df3e68b1
HK
2217 if Is_Constrained (Entity (Ancestor)) then
2218 Init_Typ := Entity (Ancestor);
70482933 2219
3b9fa2df
ES
2220 -- For an ancestor part given by an unconstrained type mark,
2221 -- create a subtype constrained by appropriate corresponding
2222 -- discriminant values coming from either associations of the
2223 -- aggregate or a constraint on a parent type. The subtype will
2224 -- be used to generate the correct default value for the
2225 -- ancestor part.
70482933 2226
df3e68b1 2227 elsif Has_Discriminants (Entity (Ancestor)) then
70482933 2228 declare
df3e68b1 2229 Anc_Typ : constant Entity_Id := Entity (Ancestor);
fbf5a39b
AC
2230 Anc_Constr : constant List_Id := New_List;
2231 Discrim : Entity_Id;
70482933
RK
2232 Disc_Value : Node_Id;
2233 New_Indic : Node_Id;
2234 Subt_Decl : Node_Id;
fbf5a39b 2235
70482933 2236 begin
fbf5a39b 2237 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
2238 while Present (Discrim) loop
2239 Disc_Value := Ancestor_Discriminant_Value (Discrim);
2240 Append_To (Anc_Constr, Disc_Value);
2241 Next_Discriminant (Discrim);
2242 end loop;
2243
2244 New_Indic :=
2245 Make_Subtype_Indication (Loc,
2246 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2247 Constraint =>
2248 Make_Index_Or_Discriminant_Constraint (Loc,
2249 Constraints => Anc_Constr));
2250
2251 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2252
2253 Subt_Decl :=
2254 Make_Subtype_Declaration (Loc,
2255 Defining_Identifier => Init_Typ,
2256 Subtype_Indication => New_Indic);
2257
3b9fa2df
ES
2258 -- Itypes must be analyzed with checks off Declaration
2259 -- must have a parent for proper handling of subsidiary
2260 -- actions.
70482933 2261
07fc65c4 2262 Set_Parent (Subt_Decl, N);
70482933
RK
2263 Analyze (Subt_Decl, Suppress => All_Checks);
2264 end;
2265 end if;
2266
2267 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2268 Set_Assignment_OK (Ref);
2269
64425dff 2270 if not Is_Interface (Init_Typ) then
3bb3f6d6
AC
2271 Append_List_To (L,
2272 Build_Initialization_Call (Loc,
2273 Id_Ref => Ref,
2274 Typ => Init_Typ,
2275 In_Init_Proc => Within_Init_Proc,
2276 With_Default_Init => Has_Default_Init_Comps (N)
2277 or else
2278 Has_Task (Base_Type (Init_Typ))));
2279
df3e68b1
HK
2280 if Is_Constrained (Entity (Ancestor))
2281 and then Has_Discriminants (Entity (Ancestor))
3bb3f6d6 2282 then
df3e68b1 2283 Check_Ancestor_Discriminants (Entity (Ancestor));
3bb3f6d6 2284 end if;
70482933
RK
2285 end if;
2286
11795185
JM
2287 -- Handle calls to C++ constructors
2288
df3e68b1
HK
2289 elsif Is_CPP_Constructor_Call (Ancestor) then
2290 Init_Typ := Etype (Ancestor);
11795185
JM
2291 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2292 Set_Assignment_OK (Ref);
2293
2294 Append_List_To (L,
2295 Build_Initialization_Call (Loc,
2296 Id_Ref => Ref,
2297 Typ => Init_Typ,
2298 In_Init_Proc => Within_Init_Proc,
2299 With_Default_Init => Has_Default_Init_Comps (N),
df3e68b1 2300 Constructor_Ref => Ancestor));
11795185 2301
c5ee5ad2
BD
2302 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2303 -- limited type, a recursive call expands the ancestor. Note that
2304 -- in the limited case, the ancestor part must be either a
19590d70
GD
2305 -- function call (possibly qualified, or wrapped in an unchecked
2306 -- conversion) or aggregate (definitely qualified).
39f346aa
ES
2307 -- The ancestor part can also be a function call (that may be
2308 -- transformed into an explicit dereference) or a qualification
2309 -- of one such.
65356e64 2310
df3e68b1
HK
2311 elsif Is_Limited_Type (Etype (Ancestor))
2312 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2313 N_Extension_Aggregate)
c5ee5ad2 2314 then
65356e64
AC
2315 Ancestor_Is_Expression := True;
2316
3b9fa2df
ES
2317 -- Set up finalization data for enclosing record, because
2318 -- controlled subcomponents of the ancestor part will be
2319 -- attached to it.
2320
df3e68b1 2321 Generate_Finalization_Actions;
3b9fa2df 2322
7b9d0d69 2323 Append_List_To (L,
65356e64 2324 Build_Record_Aggr_Code (
df3e68b1
HK
2325 N => Unqualify (Ancestor),
2326 Typ => Etype (Unqualify (Ancestor)),
2327 Lhs => Target,
65356e64
AC
2328 Is_Limited_Ancestor_Expansion => True));
2329
70482933 2330 -- If the ancestor part is an expression "E", we generate
3b9fa2df 2331
df3e68b1 2332 -- T (tmp) := E;
3b9fa2df 2333
c5ee5ad2
BD
2334 -- In Ada 2005, this includes the case of a (possibly qualified)
2335 -- limited function call. The assignment will turn into a
3b9fa2df 2336 -- build-in-place function call (for further details, see
c5ee5ad2 2337 -- Make_Build_In_Place_Call_In_Assignment).
70482933
RK
2338
2339 else
2340 Ancestor_Is_Expression := True;
df3e68b1 2341 Init_Typ := Etype (Ancestor);
70482933 2342
7b9d0d69
ES
2343 -- If the ancestor part is an aggregate, force its full
2344 -- expansion, which was delayed.
2345
df3e68b1
HK
2346 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2347 N_Extension_Aggregate)
7b9d0d69 2348 then
df3e68b1
HK
2349 Set_Analyzed (Ancestor, False);
2350 Set_Analyzed (Expression (Ancestor), False);
7b9d0d69
ES
2351 end if;
2352
2353 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2354 Set_Assignment_OK (Ref);
2355
2356 -- Make the assignment without usual controlled actions since
2357 -- we only want the post adjust but not the pre finalize here
acf63f8c 2358 -- Add manual adjust when necessary.
7b9d0d69
ES
2359
2360 Assign := New_List (
2361 Make_OK_Assignment_Statement (Loc,
2362 Name => Ref,
df3e68b1 2363 Expression => Ancestor));
7b9d0d69
ES
2364 Set_No_Ctrl_Actions (First (Assign));
2365
2366 -- Assign the tag now to make sure that the dispatching call in
0f95b178 2367 -- the subsequent deep_adjust works properly (unless VM_Target,
7b9d0d69 2368 -- where tags are implicit).
70482933 2369
1f110335 2370 if Tagged_Type_Expansion then
70482933
RK
2371 Instr :=
2372 Make_OK_Assignment_Statement (Loc,
2373 Name =>
2374 Make_Selected_Component (Loc,
2375 Prefix => New_Copy_Tree (Target),
a9d8907c
JM
2376 Selector_Name =>
2377 New_Reference_To
2378 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
2379
2380 Expression =>
2381 Unchecked_Convert_To (RTE (RE_Tag),
a9d8907c
JM
2382 New_Reference_To
2383 (Node (First_Elmt
2384 (Access_Disp_Table (Base_Type (Typ)))),
2385 Loc)));
70482933
RK
2386
2387 Set_Assignment_OK (Name (Instr));
7b9d0d69 2388 Append_To (Assign, Instr);
0f95b178
JM
2389
2390 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2391 -- also initialize tags of the secondary dispatch tables.
2392
ce2b6ba5 2393 if Has_Interfaces (Base_Type (Typ)) then
0f95b178
JM
2394 Init_Secondary_Tags
2395 (Typ => Base_Type (Typ),
2396 Target => Target,
2397 Stmts_List => Assign);
2398 end if;
70482933
RK
2399 end if;
2400
7b9d0d69 2401 -- Call Adjust manually
70482933 2402
df3e68b1
HK
2403 if Needs_Finalization (Etype (Ancestor))
2404 and then not Is_Limited_Type (Etype (Ancestor))
3b9fa2df 2405 then
df3e68b1 2406 Append_To (Assign,
7b9d0d69 2407 Make_Adjust_Call (
df3e68b1
HK
2408 Obj_Ref => New_Copy_Tree (Ref),
2409 Typ => Etype (Ancestor)));
70482933
RK
2410 end if;
2411
70482933 2412 Append_To (L,
7b9d0d69 2413 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
70482933
RK
2414
2415 if Has_Discriminants (Init_Typ) then
2416 Check_Ancestor_Discriminants (Init_Typ);
2417 end if;
2418 end if;
2419 end;
2420
3e582869
AC
2421 -- Generate assignments of hidden assignments. If the base type is an
2422 -- unchecked union, the discriminants are unknown to the back-end and
2423 -- absent from a value of the type, so assignments for them are not
2424 -- emitted.
2425
2426 if Has_Discriminants (Typ)
2427 and then not Is_Unchecked_Union (Base_Type (Typ))
2428 then
2429 Init_Hidden_Discriminants (Typ, L);
2430 end if;
2431
fbf5a39b
AC
2432 -- Normal case (not an extension aggregate)
2433
70482933
RK
2434 else
2435 -- Generate the discriminant expressions, component by component.
2436 -- If the base type is an unchecked union, the discriminants are
2437 -- unknown to the back-end and absent from a value of the type, so
2438 -- assignments for them are not emitted.
2439
2440 if Has_Discriminants (Typ)
2441 and then not Is_Unchecked_Union (Base_Type (Typ))
2442 then
3e582869 2443 Init_Hidden_Discriminants (Typ, L);
d8f7b976
ES
2444
2445 -- Generate discriminant init values for the visible discriminants
70482933
RK
2446
2447 declare
2448 Discriminant : Entity_Id;
2449 Discriminant_Value : Node_Id;
2450
2451 begin
fbf5a39b 2452 Discriminant := First_Stored_Discriminant (Typ);
70482933 2453 while Present (Discriminant) loop
70482933
RK
2454 Comp_Expr :=
2455 Make_Selected_Component (Loc,
2456 Prefix => New_Copy_Tree (Target),
2457 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2458
2459 Discriminant_Value :=
2460 Get_Discriminant_Value (
2461 Discriminant,
2462 N_Typ,
2463 Discriminant_Constraint (N_Typ));
2464
2465 Instr :=
2466 Make_OK_Assignment_Statement (Loc,
2467 Name => Comp_Expr,
2468 Expression => New_Copy_Tree (Discriminant_Value));
2469
2470 Set_No_Ctrl_Actions (Instr);
2471 Append_To (L, Instr);
2472
fbf5a39b 2473 Next_Stored_Discriminant (Discriminant);
70482933
RK
2474 end loop;
2475 end;
2476 end if;
2477 end if;
2478
28541488
JM
2479 -- For CPP types we generate an implicit call to the C++ default
2480 -- constructor to ensure the proper initialization of the _Tag
2481 -- component.
2482
cefce34c
JM
2483 if Is_CPP_Class (Root_Type (Typ))
2484 and then CPP_Num_Prims (Typ) > 0
2485 then
2486 Invoke_Constructor : declare
2487 CPP_Parent : constant Entity_Id :=
2488 Enclosing_CPP_Parent (Typ);
2489
2490 procedure Invoke_IC_Proc (T : Entity_Id);
2491 -- Recursive routine used to climb to parents. Required because
2492 -- parents must be initialized before descendants to ensure
2493 -- propagation of inherited C++ slots.
2494
2495 --------------------
2496 -- Invoke_IC_Proc --
2497 --------------------
2498
2499 procedure Invoke_IC_Proc (T : Entity_Id) is
2500 begin
2501 -- Avoid generating extra calls. Initialization required
2502 -- only for types defined from the level of derivation of
2503 -- type of the constructor and the type of the aggregate.
2504
2505 if T = CPP_Parent then
2506 return;
2507 end if;
2508
2509 Invoke_IC_Proc (Etype (T));
2510
2511 -- Generate call to the IC routine
2512
2513 if Present (CPP_Init_Proc (T)) then
2514 Append_To (L,
2515 Make_Procedure_Call_Statement (Loc,
2516 New_Reference_To (CPP_Init_Proc (T), Loc)));
2517 end if;
2518 end Invoke_IC_Proc;
2519
2520 -- Start of processing for Invoke_Constructor
2521
2522 begin
2523 -- Implicit invocation of the C++ constructor
2524
2525 if Nkind (N) = N_Aggregate then
2526 Append_To (L,
2527 Make_Procedure_Call_Statement (Loc,
2528 Name =>
2529 New_Reference_To
2530 (Base_Init_Proc (CPP_Parent), Loc),
2531 Parameter_Associations => New_List (
2532 Unchecked_Convert_To (CPP_Parent,
2533 New_Copy_Tree (Lhs)))));
2534 end if;
2535
2536 Invoke_IC_Proc (Typ);
2537 end Invoke_Constructor;
28541488
JM
2538 end if;
2539
70482933
RK
2540 -- Generate the assignments, component by component
2541
2542 -- tmp.comp1 := Expr1_From_Aggr;
2543 -- tmp.comp2 := Expr2_From_Aggr;
2544 -- ....
2545
2546 Comp := First (Component_Associations (N));
2547 while Present (Comp) loop
b7e429ab 2548 Selector := Entity (First (Choices (Comp)));
70482933 2549
236fecbf
JM
2550 -- C++ constructors
2551
2552 if Is_CPP_Constructor_Call (Expression (Comp)) then
2553 Append_List_To (L,
2554 Build_Initialization_Call (Loc,
1c612f29
RD
2555 Id_Ref => Make_Selected_Component (Loc,
2556 Prefix => New_Copy_Tree (Target),
2557 Selector_Name =>
2558 New_Occurrence_Of (Selector, Loc)),
2559 Typ => Etype (Selector),
2560 Enclos_Type => Typ,
236fecbf 2561 With_Default_Init => True,
1c612f29 2562 Constructor_Ref => Expression (Comp)));
236fecbf 2563
3b9fa2df 2564 -- Ada 2005 (AI-287): For each default-initialized component generate
52739835 2565 -- a call to the corresponding IP subprogram if available.
65356e64 2566
236fecbf 2567 elsif Box_Present (Comp)
52739835 2568 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
65356e64 2569 then
5277cab6 2570 if Ekind (Selector) /= E_Discriminant then
df3e68b1 2571 Generate_Finalization_Actions;
5277cab6
ES
2572 end if;
2573
0ab80019
AC
2574 -- Ada 2005 (AI-287): If the component type has tasks then
2575 -- generate the activation chain and master entities (except
2576 -- in case of an allocator because in that case these entities
2577 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
c45b6ae0
AC
2578
2579 declare
91b1417d 2580 Ctype : constant Entity_Id := Etype (Selector);
1c612f29
RD
2581 Inside_Allocator : Boolean := False;
2582 P : Node_Id := Parent (N);
c45b6ae0
AC
2583
2584 begin
2585 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2586 while Present (P) loop
2587 if Nkind (P) = N_Allocator then
2588 Inside_Allocator := True;
2589 exit;
2590 end if;
2591
2592 P := Parent (P);
2593 end loop;
2594
2595 if not Inside_Init_Proc and not Inside_Allocator then
2596 Build_Activation_Chain_Entity (N);
c45b6ae0
AC
2597 end if;
2598 end if;
2599 end;
2600
65356e64
AC
2601 Append_List_To (L,
2602 Build_Initialization_Call (Loc,
1c612f29
RD
2603 Id_Ref => Make_Selected_Component (Loc,
2604 Prefix => New_Copy_Tree (Target),
2605 Selector_Name =>
2606 New_Occurrence_Of (Selector, Loc)),
2607 Typ => Etype (Selector),
2608 Enclos_Type => Typ,
c45b6ae0 2609 With_Default_Init => True));
65356e64 2610
7b9d0d69 2611 -- Prepare for component assignment
fbf5a39b 2612
236fecbf 2613 elsif Ekind (Selector) /= E_Discriminant
70482933
RK
2614 or else Nkind (N) = N_Extension_Aggregate
2615 then
7b9d0d69 2616 -- All the discriminants have now been assigned
3b9fa2df 2617
7b9d0d69
ES
2618 -- This is now a good moment to initialize and attach all the
2619 -- controllers. Their position may depend on the discriminants.
2620
5277cab6 2621 if Ekind (Selector) /= E_Discriminant then
df3e68b1 2622 Generate_Finalization_Actions;
7b9d0d69
ES
2623 end if;
2624
38171f43 2625 Comp_Type := Underlying_Type (Etype (Selector));
70482933
RK
2626 Comp_Expr :=
2627 Make_Selected_Component (Loc,
2628 Prefix => New_Copy_Tree (Target),
2629 Selector_Name => New_Occurrence_Of (Selector, Loc));
2630
2631 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2632 Expr_Q := Expression (Expression (Comp));
2633 else
2634 Expr_Q := Expression (Comp);
2635 end if;
2636
7b9d0d69
ES
2637 -- Now either create the assignment or generate the code for the
2638 -- inner aggregate top-down.
fbf5a39b 2639
70482933 2640 if Is_Delayed_Aggregate (Expr_Q) then
d8f7b976
ES
2641
2642 -- We have the following case of aggregate nesting inside
2643 -- an object declaration:
2644
2645 -- type Arr_Typ is array (Integer range <>) of ...;
3b9fa2df 2646
d8f7b976
ES
2647 -- type Rec_Typ (...) is record
2648 -- Obj_Arr_Typ : Arr_Typ (A .. B);
2649 -- end record;
3b9fa2df 2650
d8f7b976
ES
2651 -- Obj_Rec_Typ : Rec_Typ := (...,
2652 -- Obj_Arr_Typ => (X => (...), Y => (...)));
2653
2654 -- The length of the ranges of the aggregate and Obj_Add_Typ
2655 -- are equal (B - A = Y - X), but they do not coincide (X /=
2656 -- A and B /= Y). This case requires array sliding which is
2657 -- performed in the following manner:
2658
2659 -- subtype Arr_Sub is Arr_Typ (X .. Y);
2660 -- Temp : Arr_Sub;
2661 -- Temp (X) := (...);
2662 -- ...
2663 -- Temp (Y) := (...);
2664 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2665
5277cab6 2666 if Ekind (Comp_Type) = E_Array_Subtype
d8f7b976
ES
2667 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2668 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2669 and then not
5277cab6
ES
2670 Compatible_Int_Bounds
2671 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2672 Typ_Bounds => First_Index (Comp_Type))
d8f7b976 2673 then
5277cab6
ES
2674 -- Create the array subtype with bounds equal to those of
2675 -- the corresponding aggregate.
d8f7b976 2676
5277cab6 2677 declare
191fcb3a 2678 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
d8f7b976
ES
2679
2680 SubD : constant Node_Id :=
2681 Make_Subtype_Declaration (Loc,
124e3829 2682 Defining_Identifier => SubE,
d8f7b976
ES
2683 Subtype_Indication =>
2684 Make_Subtype_Indication (Loc,
124e3829
RD
2685 Subtype_Mark =>
2686 New_Reference_To
2687 (Etype (Comp_Type), Loc),
d8f7b976 2688 Constraint =>
124e3829
RD
2689 Make_Index_Or_Discriminant_Constraint
2690 (Loc,
2691 Constraints => New_List (
2692 New_Copy_Tree
2693 (Aggregate_Bounds (Expr_Q))))));
d8f7b976
ES
2694
2695 -- Create a temporary array of the above subtype which
2696 -- will be used to capture the aggregate assignments.
2697
faf387e1 2698 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
d8f7b976
ES
2699
2700 TmpD : constant Node_Id :=
2701 Make_Object_Declaration (Loc,
ae525aa8 2702 Defining_Identifier => TmpE,
d8f7b976
ES
2703 Object_Definition =>
2704 New_Reference_To (SubE, Loc));
2705
2706 begin
2707 Set_No_Initialization (TmpD);
2708 Append_To (L, SubD);
2709 Append_To (L, TmpD);
2710
5277cab6 2711 -- Expand aggregate into assignments to the temp array
d8f7b976
ES
2712
2713 Append_List_To (L,
2714 Late_Expansion (Expr_Q, Comp_Type,
df3e68b1 2715 New_Reference_To (TmpE, Loc)));
d8f7b976
ES
2716
2717 -- Slide
2718
2719 Append_To (L,
2720 Make_Assignment_Statement (Loc,
2721 Name => New_Copy_Tree (Comp_Expr),
2722 Expression => New_Reference_To (TmpE, Loc)));
d8f7b976
ES
2723 end;
2724
2725 -- Normal case (sliding not required)
2726
2727 else
2728 Append_List_To (L,
df3e68b1 2729 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
d8f7b976 2730 end if;
fbf5a39b 2731
5277cab6
ES
2732 -- Expr_Q is not delayed aggregate
2733
70482933 2734 else
f2abc637
AC
2735 if Has_Discriminants (Typ) then
2736 Replace_Discriminants (Expr_Q);
2737 end if;
2738
70482933
RK
2739 Instr :=
2740 Make_OK_Assignment_Statement (Loc,
2741 Name => Comp_Expr,
7b4db06c 2742 Expression => Expr_Q);
70482933
RK
2743
2744 Set_No_Ctrl_Actions (Instr);
2745 Append_To (L, Instr);
2746
2747 -- Adjust the tag if tagged (because of possible view
0f95b178
JM
2748 -- conversions), unless compiling for a VM where tags are
2749 -- implicit.
70482933
RK
2750
2751 -- tmp.comp._tag := comp_typ'tag;
2752
1f110335
AC
2753 if Is_Tagged_Type (Comp_Type)
2754 and then Tagged_Type_Expansion
2755 then
70482933
RK
2756 Instr :=
2757 Make_OK_Assignment_Statement (Loc,
2758 Name =>
2759 Make_Selected_Component (Loc,
2760 Prefix => New_Copy_Tree (Comp_Expr),
2761 Selector_Name =>
a9d8907c
JM
2762 New_Reference_To
2763 (First_Tag_Component (Comp_Type), Loc)),
70482933
RK
2764
2765 Expression =>
2766 Unchecked_Convert_To (RTE (RE_Tag),
a9d8907c
JM
2767 New_Reference_To
2768 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2769 Loc)));
70482933
RK
2770
2771 Append_To (L, Instr);
2772 end if;
2773
df3e68b1
HK
2774 -- Generate:
2775 -- Adjust (tmp.comp);
70482933 2776
048e5cef 2777 if Needs_Finalization (Comp_Type)
3b9fa2df
ES
2778 and then not Is_Limited_Type (Comp_Type)
2779 then
df3e68b1 2780 Append_To (L,
70482933 2781 Make_Adjust_Call (
df3e68b1
HK
2782 Obj_Ref => New_Copy_Tree (Comp_Expr),
2783 Typ => Comp_Type));
70482933
RK
2784 end if;
2785 end if;
fbf5a39b
AC
2786
2787 -- ???
2788
2789 elsif Ekind (Selector) = E_Discriminant
2790 and then Nkind (N) /= N_Extension_Aggregate
2791 and then Nkind (Parent (N)) = N_Component_Association
2792 and then Is_Constrained (Typ)
2793 then
2794 -- We must check that the discriminant value imposed by the
2795 -- context is the same as the value given in the subaggregate,
2796 -- because after the expansion into assignments there is no
2797 -- record on which to perform a regular discriminant check.
2798
2799 declare
2800 D_Val : Elmt_Id;
2801 Disc : Entity_Id;
2802
2803 begin
2804 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2805 Disc := First_Discriminant (Typ);
fbf5a39b
AC
2806 while Chars (Disc) /= Chars (Selector) loop
2807 Next_Discriminant (Disc);
2808 Next_Elmt (D_Val);
2809 end loop;
2810
2811 pragma Assert (Present (D_Val));
2812
0f95b178
JM
2813 -- This check cannot performed for components that are
2814 -- constrained by a current instance, because this is not a
2815 -- value that can be compared with the actual constraint.
2816
2817 if Nkind (Node (D_Val)) /= N_Attribute_Reference
2818 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2819 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2820 then
2821 Append_To (L,
2822 Make_Raise_Constraint_Error (Loc,
2823 Condition =>
2824 Make_Op_Ne (Loc,
2825 Left_Opnd => New_Copy_Tree (Node (D_Val)),
2826 Right_Opnd => Expression (Comp)),
2827 Reason => CE_Discriminant_Check_Failed));
2828
2829 else
3b9fa2df
ES
2830 -- Find self-reference in previous discriminant assignment,
2831 -- and replace with proper expression.
0f95b178
JM
2832
2833 declare
2834 Ass : Node_Id;
2835
2836 begin
2837 Ass := First (L);
2838 while Present (Ass) loop
2839 if Nkind (Ass) = N_Assignment_Statement
2840 and then Nkind (Name (Ass)) = N_Selected_Component
2841 and then Chars (Selector_Name (Name (Ass))) =
2842 Chars (Disc)
2843 then
2844 Set_Expression
2845 (Ass, New_Copy_Tree (Expression (Comp)));
2846 exit;
2847 end if;
2848 Next (Ass);
2849 end loop;
2850 end;
2851 end if;
fbf5a39b 2852 end;
70482933
RK
2853 end if;
2854
2855 Next (Comp);
2856 end loop;
2857
2858 -- If the type is tagged, the tag needs to be initialized (unless
2859 -- compiling for the Java VM where tags are implicit). It is done
2860 -- late in the initialization process because in some cases, we call
fbf5a39b 2861 -- the init proc of an ancestor which will not leave out the right tag
70482933
RK
2862
2863 if Ancestor_Is_Expression then
2864 null;
2865
28541488
JM
2866 -- For CPP types we generated a call to the C++ default constructor
2867 -- before the components have been initialized to ensure the proper
2868 -- initialization of the _Tag component (see above).
2869
2870 elsif Is_CPP_Class (Typ) then
2871 null;
2872
1f110335 2873 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
70482933
RK
2874 Instr :=
2875 Make_OK_Assignment_Statement (Loc,
2876 Name =>
2877 Make_Selected_Component (Loc,
c5ee5ad2 2878 Prefix => New_Copy_Tree (Target),
70482933 2879 Selector_Name =>
a9d8907c
JM
2880 New_Reference_To
2881 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
2882
2883 Expression =>
2884 Unchecked_Convert_To (RTE (RE_Tag),
a9d8907c
JM
2885 New_Reference_To
2886 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
2887 Loc)));
70482933
RK
2888
2889 Append_To (L, Instr);
c5ee5ad2
BD
2890
2891 -- Ada 2005 (AI-251): If the tagged type has been derived from
2892 -- abstract interfaces we must also initialize the tags of the
2893 -- secondary dispatch tables.
2894
ce2b6ba5 2895 if Has_Interfaces (Base_Type (Typ)) then
c5ee5ad2
BD
2896 Init_Secondary_Tags
2897 (Typ => Base_Type (Typ),
2898 Target => Target,
2899 Stmts_List => L);
2900 end if;
70482933
RK
2901 end if;
2902
7b9d0d69
ES
2903 -- If the controllers have not been initialized yet (by lack of non-
2904 -- discriminant components), let's do it now.
70482933 2905
df3e68b1 2906 Generate_Finalization_Actions;
70482933 2907
7b9d0d69 2908 return L;
70482933
RK
2909 end Build_Record_Aggr_Code;
2910
2911 -------------------------------
2912 -- Convert_Aggr_In_Allocator --
2913 -------------------------------
2914
fa57ac97
ES
2915 procedure Convert_Aggr_In_Allocator
2916 (Alloc : Node_Id;
2917 Decl : Node_Id;
2918 Aggr : Node_Id)
2919 is
70482933
RK
2920 Loc : constant Source_Ptr := Sloc (Aggr);
2921 Typ : constant Entity_Id := Etype (Aggr);
2922 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
2923
2924 Occ : constant Node_Id :=
2925 Unchecked_Convert_To (Typ,
2926 Make_Explicit_Dereference (Loc,
2927 New_Reference_To (Temp, Loc)));
70482933 2928
70482933 2929 begin
6f639c98
ES
2930 if Is_Array_Type (Typ) then
2931 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
2932
2933 elsif Has_Default_Init_Comps (Aggr) then
c45b6ae0
AC
2934 declare
2935 L : constant List_Id := New_List;
2936 Init_Stmts : List_Id;
2937
2938 begin
df3e68b1 2939 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
c45b6ae0 2940
0f95b178
JM
2941 if Has_Task (Typ) then
2942 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
fa57ac97 2943 Insert_Actions (Alloc, L);
0f95b178 2944 else
fa57ac97 2945 Insert_Actions (Alloc, Init_Stmts);
0f95b178 2946 end if;
c45b6ae0
AC
2947 end;
2948
2949 else
df3e68b1 2950 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
c45b6ae0 2951 end if;
70482933
RK
2952 end Convert_Aggr_In_Allocator;
2953
2954 --------------------------------
2955 -- Convert_Aggr_In_Assignment --
2956 --------------------------------
2957
2958 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3b9fa2df
ES
2959 Aggr : Node_Id := Expression (N);
2960 Typ : constant Entity_Id := Etype (Aggr);
2961 Occ : constant Node_Id := New_Copy_Tree (Name (N));
70482933
RK
2962
2963 begin
2964 if Nkind (Aggr) = N_Qualified_Expression then
2965 Aggr := Expression (Aggr);
2966 end if;
2967
df3e68b1 2968 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933
RK
2969 end Convert_Aggr_In_Assignment;
2970
2971 ---------------------------------
2972 -- Convert_Aggr_In_Object_Decl --
2973 ---------------------------------
2974
2975 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
2976 Obj : constant Entity_Id := Defining_Identifier (N);
fbf5a39b 2977 Aggr : Node_Id := Expression (N);
70482933
RK
2978 Loc : constant Source_Ptr := Sloc (Aggr);
2979 Typ : constant Entity_Id := Etype (Aggr);
2980 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
2981
fbf5a39b
AC
2982 function Discriminants_Ok return Boolean;
2983 -- If the object type is constrained, the discriminants in the
2984 -- aggregate must be checked against the discriminants of the subtype.
2985 -- This cannot be done using Apply_Discriminant_Checks because after
2986 -- expansion there is no aggregate left to check.
2987
2988 ----------------------
2989 -- Discriminants_Ok --
2990 ----------------------
2991
2992 function Discriminants_Ok return Boolean is
2993 Cond : Node_Id := Empty;
2994 Check : Node_Id;
2995 D : Entity_Id;
2996 Disc1 : Elmt_Id;
2997 Disc2 : Elmt_Id;
2998 Val1 : Node_Id;
2999 Val2 : Node_Id;
3000
3001 begin
3002 D := First_Discriminant (Typ);
3003 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3004 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
fbf5a39b
AC
3005 while Present (Disc1) and then Present (Disc2) loop
3006 Val1 := Node (Disc1);
3007 Val2 := Node (Disc2);
3008
3009 if not Is_OK_Static_Expression (Val1)
3010 or else not Is_OK_Static_Expression (Val2)
3011 then
3012 Check := Make_Op_Ne (Loc,
3013 Left_Opnd => Duplicate_Subexpr (Val1),
3014 Right_Opnd => Duplicate_Subexpr (Val2));
3015
3016 if No (Cond) then
3017 Cond := Check;
3018
3019 else
3020 Cond := Make_Or_Else (Loc,
3021 Left_Opnd => Cond,
3022 Right_Opnd => Check);
3023 end if;
3024
3025 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3026 Apply_Compile_Time_Constraint_Error (Aggr,
3027 Msg => "incorrect value for discriminant&?",
3028 Reason => CE_Discriminant_Check_Failed,
3029 Ent => D);
3030 return False;
3031 end if;
3032
3033 Next_Discriminant (D);
3034 Next_Elmt (Disc1);
3035 Next_Elmt (Disc2);
3036 end loop;
3037
3cf3e5c6 3038 -- If any discriminant constraint is non-static, emit a check
fbf5a39b
AC
3039
3040 if Present (Cond) then
3041 Insert_Action (N,
3042 Make_Raise_Constraint_Error (Loc,
3043 Condition => Cond,
3044 Reason => CE_Discriminant_Check_Failed));
3045 end if;
3046
3047 return True;
3048 end Discriminants_Ok;
3049
3050 -- Start of processing for Convert_Aggr_In_Object_Decl
3051
70482933
RK
3052 begin
3053 Set_Assignment_OK (Occ);
3054
3055 if Nkind (Aggr) = N_Qualified_Expression then
3056 Aggr := Expression (Aggr);
3057 end if;
3058
fbf5a39b
AC
3059 if Has_Discriminants (Typ)
3060 and then Typ /= Etype (Obj)
3061 and then Is_Constrained (Etype (Obj))
3062 and then not Discriminants_Ok
3063 then
3064 return;
3065 end if;
3066
0f95b178
JM
3067 -- If the context is an extended return statement, it has its own
3068 -- finalization machinery (i.e. works like a transient scope) and
3069 -- we do not want to create an additional one, because objects on
3070 -- the finalization list of the return must be moved to the caller's
3071 -- finalization list to complete the return.
3072
3b9fa2df
ES
3073 -- However, if the aggregate is limited, it is built in place, and the
3074 -- controlled components are not assigned to intermediate temporaries
3075 -- so there is no need for a transient scope in this case either.
3076
0f95b178
JM
3077 if Requires_Transient_Scope (Typ)
3078 and then Ekind (Current_Scope) /= E_Return_Statement
3b9fa2df 3079 and then not Is_Limited_Type (Typ)
0f95b178 3080 then
7e5ce5a8
JM
3081 Establish_Transient_Scope
3082 (Aggr,
3083 Sec_Stack =>
3084 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
7b9d0d69
ES
3085 end if;
3086
df3e68b1 3087 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933 3088 Set_No_Initialization (N);
07fc65c4 3089 Initialize_Discriminants (N, Typ);
70482933
RK
3090 end Convert_Aggr_In_Object_Decl;
3091
6f639c98 3092 -------------------------------------
3b9fa2df 3093 -- Convert_Array_Aggr_In_Allocator --
6f639c98
ES
3094 -------------------------------------
3095
3096 procedure Convert_Array_Aggr_In_Allocator
3097 (Decl : Node_Id;
3098 Aggr : Node_Id;
3099 Target : Node_Id)
3100 is
3101 Aggr_Code : List_Id;
3102 Typ : constant Entity_Id := Etype (Aggr);
3103 Ctyp : constant Entity_Id := Component_Type (Typ);
3104
3105 begin
3106 -- The target is an explicit dereference of the allocated object.
3107 -- Generate component assignments to it, as for an aggregate that
3108 -- appears on the right-hand side of an assignment statement.
3109
3110 Aggr_Code :=
3111 Build_Array_Aggr_Code (Aggr,
3112 Ctype => Ctyp,
3113 Index => First_Index (Typ),
3114 Into => Target,
3115 Scalar_Comp => Is_Scalar_Type (Ctyp));
3116
3117 Insert_Actions_After (Decl, Aggr_Code);
3118 end Convert_Array_Aggr_In_Allocator;
3119
70482933
RK
3120 ----------------------------
3121 -- Convert_To_Assignments --
3122 ----------------------------
3123
3124 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3125 Loc : constant Source_Ptr := Sloc (N);
39f346aa 3126 T : Entity_Id;
70482933
RK
3127 Temp : Entity_Id;
3128
fbf5a39b
AC
3129 Instr : Node_Id;
3130 Target_Expr : Node_Id;
3131 Parent_Kind : Node_Kind;
3132 Unc_Decl : Boolean := False;
3133 Parent_Node : Node_Id;
70482933
RK
3134
3135 begin
fa57ac97
ES
3136 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3137 pragma Assert (Is_Record_Type (Typ));
3138
70482933
RK
3139 Parent_Node := Parent (N);
3140 Parent_Kind := Nkind (Parent_Node);
3141
3142 if Parent_Kind = N_Qualified_Expression then
3143
3144 -- Check if we are in a unconstrained declaration because in this
3145 -- case the current delayed expansion mechanism doesn't work when
3146 -- the declared object size depend on the initializing expr.
3147
3148 begin
3149 Parent_Node := Parent (Parent_Node);
3150 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 3151
70482933
RK
3152 if Parent_Kind = N_Object_Declaration then
3153 Unc_Decl :=
3154 not Is_Entity_Name (Object_Definition (Parent_Node))
fbf5a39b
AC
3155 or else Has_Discriminants
3156 (Entity (Object_Definition (Parent_Node)))
3157 or else Is_Class_Wide_Type
3158 (Entity (Object_Definition (Parent_Node)));
70482933
RK
3159 end if;
3160 end;
3161 end if;
3162
3b9fa2df
ES
3163 -- Just set the Delay flag in the cases where the transformation will be
3164 -- done top down from above.
fbf5a39b 3165
fa57ac97 3166 if False
0f95b178 3167
fa57ac97 3168 -- Internal aggregate (transformed when expanding the parent)
0f95b178 3169
fa57ac97
ES
3170 or else Parent_Kind = N_Aggregate
3171 or else Parent_Kind = N_Extension_Aggregate
3172 or else Parent_Kind = N_Component_Association
0f95b178 3173
fa57ac97 3174 -- Allocator (see Convert_Aggr_In_Allocator)
70482933 3175
fa57ac97 3176 or else Parent_Kind = N_Allocator
0f95b178 3177
fa57ac97
ES
3178 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3179
3180 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3181
3182 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3183 -- assignments in init procs are taken into account.
3184
3185 or else (Parent_Kind = N_Assignment_Statement
3186 and then Inside_Init_Proc)
3187
3188 -- (Ada 2005) An inherently limited type in a return statement,
3189 -- which will be handled in a build-in-place fashion, and may be
3190 -- rewritten as an extended return and have its own finalization
3191 -- machinery. In the case of a simple return, the aggregate needs
3192 -- to be delayed until the scope for the return statement has been
3193 -- created, so that any finalization chain will be associated with
3194 -- that scope. For extended returns, we delay expansion to avoid the
3195 -- creation of an unwanted transient scope that could result in
3196 -- premature finalization of the return object (which is built in
3197 -- in place within the caller's scope).
3198
3199 or else
40f07b4b 3200 (Is_Immutably_Limited_Type (Typ)
3b9fa2df
ES
3201 and then
3202 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
d7f94401 3203 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
70482933
RK
3204 then
3205 Set_Expansion_Delayed (N);
3206 return;
3207 end if;
3208
3209 if Requires_Transient_Scope (Typ) then
3b9fa2df
ES
3210 Establish_Transient_Scope
3211 (N, Sec_Stack =>
3212 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
70482933
RK
3213 end if;
3214
36c73552
AC
3215 -- If the aggregate is non-limited, create a temporary. If it is limited
3216 -- and the context is an assignment, this is a subaggregate for an
3217 -- enclosing aggregate being expanded. It must be built in place, so use
3218 -- the target of the current assignment.
70482933 3219
3b9fa2df
ES
3220 if Is_Limited_Type (Typ)
3221 and then Nkind (Parent (N)) = N_Assignment_Statement
3222 then
3223 Target_Expr := New_Copy_Tree (Name (Parent (N)));
df3e68b1
HK
3224 Insert_Actions (Parent (N),
3225 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3b9fa2df 3226 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933 3227
3b9fa2df 3228 else
faf387e1 3229 Temp := Make_Temporary (Loc, 'A', N);
70482933 3230
39f346aa
ES
3231 -- If the type inherits unknown discriminants, use the view with
3232 -- known discriminants if available.
3233
3234 if Has_Unknown_Discriminants (Typ)
3235 and then Present (Underlying_Record_View (Typ))
3236 then
3237 T := Underlying_Record_View (Typ);
3238 else
3239 T := Typ;
3240 end if;
3241
3b9fa2df
ES
3242 Instr :=
3243 Make_Object_Declaration (Loc,
3244 Defining_Identifier => Temp,
39f346aa 3245 Object_Definition => New_Occurrence_Of (T, Loc));
3b9fa2df
ES
3246
3247 Set_No_Initialization (Instr);
3248 Insert_Action (N, Instr);
39f346aa 3249 Initialize_Discriminants (Instr, T);
3b9fa2df 3250 Target_Expr := New_Occurrence_Of (Temp, Loc);
39f346aa 3251 Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
3b9fa2df 3252 Rewrite (N, New_Occurrence_Of (Temp, Loc));
39f346aa 3253 Analyze_And_Resolve (N, T);
3b9fa2df 3254 end if;
70482933
RK
3255 end Convert_To_Assignments;
3256
07fc65c4
GB
3257 ---------------------------
3258 -- Convert_To_Positional --
3259 ---------------------------
3260
3261 procedure Convert_To_Positional
3262 (N : Node_Id;
fbf5a39b 3263 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
3264 Handle_Bit_Packed : Boolean := False)
3265 is
fbf5a39b 3266 Typ : constant Entity_Id := Etype (N);
07fc65c4 3267
0f95b178
JM
3268 Static_Components : Boolean := True;
3269
3270 procedure Check_Static_Components;
3b9fa2df
ES
3271 -- Check whether all components of the aggregate are compile-time known
3272 -- values, and can be passed as is to the back-end without further
3273 -- expansion.
0f95b178 3274
fbf5a39b 3275 function Flatten
d05ef0ab
AC
3276 (N : Node_Id;
3277 Ix : Node_Id;
3278 Ixb : Node_Id) return Boolean;
3b9fa2df
ES
3279 -- Convert the aggregate into a purely positional form if possible. On
3280 -- entry the bounds of all dimensions are known to be static, and the
3281 -- total number of components is safe enough to expand.
fbf5a39b
AC
3282
3283 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
64425dff 3284 -- Return True iff the array N is flat (which is not trivial in the case
308e6f3a 3285 -- of multidimensional aggregates).
fbf5a39b 3286
0f95b178
JM
3287 -----------------------------
3288 -- Check_Static_Components --
3289 -----------------------------
3290
3291 procedure Check_Static_Components is
3292 Expr : Node_Id;
3293
3294 begin
3295 Static_Components := True;
3296
3297 if Nkind (N) = N_String_Literal then
3298 null;
3299
3300 elsif Present (Expressions (N)) then
3301 Expr := First (Expressions (N));
3302 while Present (Expr) loop
3303 if Nkind (Expr) /= N_Aggregate
3304 or else not Compile_Time_Known_Aggregate (Expr)
3305 or else Expansion_Delayed (Expr)
3306 then
3307 Static_Components := False;
3308 exit;
3309 end if;
3310
3311 Next (Expr);
3312 end loop;
3313 end if;
3314
3315 if Nkind (N) = N_Aggregate
3316 and then Present (Component_Associations (N))
3317 then
3318 Expr := First (Component_Associations (N));
3319 while Present (Expr) loop
8da337c5
AC
3320 if Nkind_In (Expression (Expr), N_Integer_Literal,
3321 N_Real_Literal)
3322 then
0f95b178
JM
3323 null;
3324
094cefda
AC
3325 elsif Is_Entity_Name (Expression (Expr))
3326 and then Present (Entity (Expression (Expr)))
3327 and then Ekind (Entity (Expression (Expr))) =
3328 E_Enumeration_Literal
3329 then
3330 null;
3331
0f95b178 3332 elsif Nkind (Expression (Expr)) /= N_Aggregate
8da337c5 3333 or else not Compile_Time_Known_Aggregate (Expression (Expr))
0f95b178
JM
3334 or else Expansion_Delayed (Expression (Expr))
3335 then
3336 Static_Components := False;
3337 exit;
3338 end if;
3339
3340 Next (Expr);
3341 end loop;
3342 end if;
3343 end Check_Static_Components;
3344
fbf5a39b
AC
3345 -------------
3346 -- Flatten --
3347 -------------
3348
3349 function Flatten
d05ef0ab
AC
3350 (N : Node_Id;
3351 Ix : Node_Id;
3352 Ixb : Node_Id) return Boolean
fbf5a39b
AC
3353 is
3354 Loc : constant Source_Ptr := Sloc (N);
3355 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3356 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3357 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3358 Lov : Uint;
3359 Hiv : Uint;
3360
3f5a8fee
AC
3361 Others_Present : Boolean := False;
3362
6e937c1c 3363 begin
fbf5a39b
AC
3364 if Nkind (Original_Node (N)) = N_String_Literal then
3365 return True;
3366 end if;
07fc65c4 3367
0f95b178
JM
3368 if not Compile_Time_Known_Value (Lo)
3369 or else not Compile_Time_Known_Value (Hi)
3370 then
3371 return False;
3372 end if;
07fc65c4 3373
fbf5a39b
AC
3374 Lov := Expr_Value (Lo);
3375 Hiv := Expr_Value (Hi);
07fc65c4 3376
3f5a8fee
AC
3377 -- Check if there is an others choice
3378
3379 if Present (Component_Associations (N)) then
3380 declare
3381 Assoc : Node_Id;
3382 Choice : Node_Id;
3383
3384 begin
3385 Assoc := First (Component_Associations (N));
3386 while Present (Assoc) loop
3387 Choice := First (Choices (Assoc));
3388
3389 while Present (Choice) loop
3390 if Nkind (Choice) = N_Others_Choice then
3391 Others_Present := True;
3392 end if;
3393
3394 Next (Choice);
3395 end loop;
3396
3397 Next (Assoc);
3398 end loop;
3399 end;
3400 end if;
3401
3402 -- If the low bound is not known at compile time and others is not
3403 -- present we can proceed since the bounds can be obtained from the
3404 -- aggregate.
3405
3406 -- Note: This case is required in VM platforms since their backends
3407 -- normalize array indexes in the range 0 .. N-1. Hence, if we do
3408 -- not flat an array whose bounds cannot be obtained from the type
3409 -- of the index the backend has no way to properly generate the code.
3410 -- See ACATS c460010 for an example.
3411
fbf5a39b 3412 if Hiv < Lov
3f5a8fee
AC
3413 or else (not Compile_Time_Known_Value (Blo)
3414 and then Others_Present)
fbf5a39b
AC
3415 then
3416 return False;
3417 end if;
07fc65c4 3418
3b9fa2df
ES
3419 -- Determine if set of alternatives is suitable for conversion and
3420 -- build an array containing the values in sequence.
07fc65c4 3421
fbf5a39b
AC
3422 declare
3423 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3424 of Node_Id := (others => Empty);
3425 -- The values in the aggregate sorted appropriately
07fc65c4 3426
fbf5a39b
AC
3427 Vlist : List_Id;
3428 -- Same data as Vals in list form
07fc65c4 3429
fbf5a39b
AC
3430 Rep_Count : Nat;
3431 -- Used to validate Max_Others_Replicate limit
07fc65c4 3432
841dd0f5
AC
3433 Elmt : Node_Id;
3434 Num : Int := UI_To_Int (Lov);
3435 Choice_Index : Int;
3436 Choice : Node_Id;
3437 Lo, Hi : Node_Id;
07fc65c4 3438
fbf5a39b
AC
3439 begin
3440 if Present (Expressions (N)) then
3441 Elmt := First (Expressions (N));
fbf5a39b
AC
3442 while Present (Elmt) loop
3443 if Nkind (Elmt) = N_Aggregate
3444 and then Present (Next_Index (Ix))
3445 and then
d7f94401 3446 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
fbf5a39b
AC
3447 then
3448 return False;
3449 end if;
07fc65c4 3450
fbf5a39b
AC
3451 Vals (Num) := Relocate_Node (Elmt);
3452 Num := Num + 1;
07fc65c4 3453
fbf5a39b
AC
3454 Next (Elmt);
3455 end loop;
3456 end if;
07fc65c4 3457
fbf5a39b
AC
3458 if No (Component_Associations (N)) then
3459 return True;
3460 end if;
07fc65c4 3461
fbf5a39b 3462 Elmt := First (Component_Associations (N));
07fc65c4 3463
fbf5a39b
AC
3464 if Nkind (Expression (Elmt)) = N_Aggregate then
3465 if Present (Next_Index (Ix))
3466 and then
3467 not Flatten
3468 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3469 then
3470 return False;
3471 end if;
3472 end if;
07fc65c4 3473
fbf5a39b
AC
3474 Component_Loop : while Present (Elmt) loop
3475 Choice := First (Choices (Elmt));
3476 Choice_Loop : while Present (Choice) loop
3477
3478 -- If we have an others choice, fill in the missing elements
3479 -- subject to the limit established by Max_Others_Replicate.
3480
3481 if Nkind (Choice) = N_Others_Choice then
3482 Rep_Count := 0;
3483
3484 for J in Vals'Range loop
3485 if No (Vals (J)) then
3486 Vals (J) := New_Copy_Tree (Expression (Elmt));
3487 Rep_Count := Rep_Count + 1;
3488
3489 -- Check for maximum others replication. Note that
3490 -- we skip this test if either of the restrictions
3491 -- No_Elaboration_Code or No_Implicit_Loops is
7f4c1903
AC
3492 -- active, if this is a preelaborable unit or a
3493 -- predefined unit. This ensures that predefined
3494 -- units get the same level of constant folding in
3495 -- Ada 95 and Ada 05, where their categorization
3496 -- has changed.
fbf5a39b
AC
3497
3498 declare
3499 P : constant Entity_Id :=
3500 Cunit_Entity (Current_Sem_Unit);
3501
3502 begin
7f4c1903
AC
3503 -- Check if duplication OK and if so continue
3504 -- processing.
3505
6e937c1c
AC
3506 if Restriction_Active (No_Elaboration_Code)
3507 or else Restriction_Active (No_Implicit_Loops)
fbf5a39b
AC
3508 or else Is_Preelaborated (P)
3509 or else (Ekind (P) = E_Package_Body
3510 and then
3511 Is_Preelaborated (Spec_Entity (P)))
7f4c1903
AC
3512 or else
3513 Is_Predefined_File_Name
3514 (Unit_File_Name (Get_Source_Unit (P)))
fbf5a39b
AC
3515 then
3516 null;
6e937c1c 3517
7f4c1903
AC
3518 -- If duplication not OK, then we return False
3519 -- if the replication count is too high
3520
fbf5a39b
AC
3521 elsif Rep_Count > Max_Others_Replicate then
3522 return False;
7f4c1903
AC
3523
3524 -- Continue on if duplication not OK, but the
3525 -- replication count is not excessive.
3526
3527 else
3528 null;
fbf5a39b
AC
3529 end if;
3530 end;
3531 end if;
3532 end loop;
07fc65c4 3533
fbf5a39b 3534 exit Component_Loop;
07fc65c4 3535
deeb1604 3536 -- Case of a subtype mark, identifier or expanded name
07fc65c4 3537
deeb1604 3538 elsif Is_Entity_Name (Choice)
fbf5a39b
AC
3539 and then Is_Type (Entity (Choice))
3540 then
3541 Lo := Type_Low_Bound (Etype (Choice));
3542 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 3543
fbf5a39b 3544 -- Case of subtype indication
07fc65c4 3545
fbf5a39b
AC
3546 elsif Nkind (Choice) = N_Subtype_Indication then
3547 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3548 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3549
3550 -- Case of a range
3551
3552 elsif Nkind (Choice) = N_Range then
3553 Lo := Low_Bound (Choice);
3554 Hi := High_Bound (Choice);
3555
3556 -- Normal subexpression case
3557
3558 else pragma Assert (Nkind (Choice) in N_Subexpr);
3559 if not Compile_Time_Known_Value (Choice) then
3560 return False;
3561
3562 else
841dd0f5
AC
3563 Choice_Index := UI_To_Int (Expr_Value (Choice));
3564 if Choice_Index in Vals'Range then
3565 Vals (Choice_Index) :=
3566 New_Copy_Tree (Expression (Elmt));
3567 goto Continue;
3568
3569 else
3570 -- Choice is statically out-of-range, will be
3571 -- rewritten to raise Constraint_Error.
3572
3573 return False;
3574 end if;
07fc65c4 3575 end if;
fbf5a39b
AC
3576 end if;
3577
64425dff 3578 -- Range cases merge with Lo,Hi set
fbf5a39b
AC
3579
3580 if not Compile_Time_Known_Value (Lo)
3581 or else
3582 not Compile_Time_Known_Value (Hi)
3583 then
3584 return False;
3585 else
3586 for J in UI_To_Int (Expr_Value (Lo)) ..
3587 UI_To_Int (Expr_Value (Hi))
3588 loop
3589 Vals (J) := New_Copy_Tree (Expression (Elmt));
3590 end loop;
3591 end if;
07fc65c4 3592
fbf5a39b
AC
3593 <<Continue>>
3594 Next (Choice);
3595 end loop Choice_Loop;
07fc65c4 3596
fbf5a39b
AC
3597 Next (Elmt);
3598 end loop Component_Loop;
07fc65c4 3599
fbf5a39b 3600 -- If we get here the conversion is possible
07fc65c4 3601
fbf5a39b
AC
3602 Vlist := New_List;
3603 for J in Vals'Range loop
3604 Append (Vals (J), Vlist);
3605 end loop;
07fc65c4 3606
fbf5a39b
AC
3607 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3608 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3609 return True;
3610 end;
3611 end Flatten;
07fc65c4 3612
fbf5a39b
AC
3613 -------------
3614 -- Is_Flat --
3615 -------------
07fc65c4 3616
fbf5a39b
AC
3617 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3618 Elmt : Node_Id;
07fc65c4 3619
fbf5a39b
AC
3620 begin
3621 if Dims = 0 then
3622 return True;
07fc65c4 3623
fbf5a39b
AC
3624 elsif Nkind (N) = N_Aggregate then
3625 if Present (Component_Associations (N)) then
3626 return False;
07fc65c4 3627
fbf5a39b
AC
3628 else
3629 Elmt := First (Expressions (N));
fbf5a39b
AC
3630 while Present (Elmt) loop
3631 if not Is_Flat (Elmt, Dims - 1) then
3632 return False;
07fc65c4 3633 end if;
07fc65c4 3634
fbf5a39b
AC
3635 Next (Elmt);
3636 end loop;
07fc65c4 3637
fbf5a39b
AC
3638 return True;
3639 end if;
3640 else
3641 return True;
3642 end if;
3643 end Is_Flat;
07fc65c4 3644
fbf5a39b 3645 -- Start of processing for Convert_To_Positional
07fc65c4 3646
fbf5a39b 3647 begin
0ab80019 3648 -- Ada 2005 (AI-287): Do not convert in case of default initialized
c45b6ae0
AC
3649 -- components because in this case will need to call the corresponding
3650 -- IP procedure.
3651
3652 if Has_Default_Init_Comps (N) then
3653 return;
3654 end if;
3655
fbf5a39b
AC
3656 if Is_Flat (N, Number_Dimensions (Typ)) then
3657 return;
3658 end if;
3659
3660 if Is_Bit_Packed_Array (Typ)
3661 and then not Handle_Bit_Packed
3662 then
3663 return;
3664 end if;
07fc65c4 3665
3b9fa2df
ES
3666 -- Do not convert to positional if controlled components are involved
3667 -- since these require special processing
07fc65c4 3668
fbf5a39b
AC
3669 if Has_Controlled_Component (Typ) then
3670 return;
3671 end if;
07fc65c4 3672
0f95b178
JM
3673 Check_Static_Components;
3674
3675 -- If the size is known, or all the components are static, try to
3676 -- build a fully positional aggregate.
3677
3678 -- The size of the type may not be known for an aggregate with
3679 -- discriminated array components, but if the components are static
3680 -- it is still possible to verify statically that the length is
3681 -- compatible with the upper bound of the type, and therefore it is
3682 -- worth flattening such aggregates as well.
3683
3684 -- For now the back-end expands these aggregates into individual
3685 -- assignments to the target anyway, but it is conceivable that
3686 -- it will eventually be able to treat such aggregates statically???
3687
58fda84d 3688 if Aggr_Size_OK (N, Typ)
0f95b178 3689 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
643a0839 3690 then
0f95b178
JM
3691 if Static_Components then
3692 Set_Compile_Time_Known_Aggregate (N);
3693 Set_Expansion_Delayed (N, False);
3694 end if;
3695
07fc65c4 3696 Analyze_And_Resolve (N, Typ);
fbf5a39b 3697 end if;
07fc65c4
GB
3698 end Convert_To_Positional;
3699
70482933
RK
3700 ----------------------------
3701 -- Expand_Array_Aggregate --
3702 ----------------------------
3703
3704 -- Array aggregate expansion proceeds as follows:
3705
3706 -- 1. If requested we generate code to perform all the array aggregate
3707 -- bound checks, specifically
3708
3709 -- (a) Check that the index range defined by aggregate bounds is
3710 -- compatible with corresponding index subtype.
3711
3712 -- (b) If an others choice is present check that no aggregate
3713 -- index is outside the bounds of the index constraint.
3714
3715 -- (c) For multidimensional arrays make sure that all subaggregates
3716 -- corresponding to the same dimension have the same bounds.
3717
fbf5a39b
AC
3718 -- 2. Check for packed array aggregate which can be converted to a
3719 -- constant so that the aggregate disappeares completely.
3720
3721 -- 3. Check case of nested aggregate. Generally nested aggregates are
3722 -- handled during the processing of the parent aggregate.
3723
3724 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
3725 -- case pass it as is to Gigi. Note that a necessary condition for
3726 -- static processing is that the aggregate be fully positional.
3727
fbf5a39b 3728 -- 5. If in place aggregate expansion is possible (i.e. no need to create
70482933
RK
3729 -- a temporary) then mark the aggregate as such and return. Otherwise
3730 -- create a new temporary and generate the appropriate initialization
3731 -- code.
3732
3733 procedure Expand_Array_Aggregate (N : Node_Id) is
3734 Loc : constant Source_Ptr := Sloc (N);
3735
3736 Typ : constant Entity_Id := Etype (N);
3737 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 3738 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
3739 -- Ctyp is the corresponding component type.
3740
3741 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3cf3e5c6 3742 -- Number of aggregate index dimensions
70482933
RK
3743
3744 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
3745 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3cf3e5c6 3746 -- Low and High bounds of the constraint for each aggregate index
70482933
RK
3747
3748 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3cf3e5c6 3749 -- The type of each index
70482933
RK
3750
3751 Maybe_In_Place_OK : Boolean;
3752 -- If the type is neither controlled nor packed and the aggregate
3753 -- is the expression in an assignment, assignment in place may be
3754 -- possible, provided other conditions are met on the LHS.
3755
07fc65c4
GB
3756 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
3757 (others => False);
3758 -- If Others_Present (J) is True, then there is an others choice
3759 -- in one of the sub-aggregates of N at dimension J.
70482933
RK
3760
3761 procedure Build_Constrained_Type (Positional : Boolean);
3762 -- If the subtype is not static or unconstrained, build a constrained
3763 -- type using the computable sizes of the aggregate and its sub-
3764 -- aggregates.
3765
3766 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
3767 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
3768 -- by Index_Bounds.
3769
3770 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
3771 -- Checks that in a multi-dimensional array aggregate all subaggregates
3772 -- corresponding to the same dimension have the same bounds.
3773 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
3774 -- corresponding to the sub-aggregate.
3775
3776 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
3777 -- Computes the values of array Others_Present. Sub_Aggr is the
3778 -- array sub-aggregate we start the computation from. Dim is the
3779 -- dimension corresponding to the sub-aggregate.
3780
70482933
RK
3781 function In_Place_Assign_OK return Boolean;
3782 -- Simple predicate to determine whether an aggregate assignment can
3783 -- be done in place, because none of the new values can depend on the
3784 -- components of the target of the assignment.
3785
3786 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
3787 -- Checks that if an others choice is present in any sub-aggregate no
3788 -- aggregate index is outside the bounds of the index constraint.
3789 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
3790 -- corresponding to the sub-aggregate.
3791
8da337c5
AC
3792 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
3793 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
3794 -- built directly into the target of the assignment it must be free
3795 -- of side-effects.
3796
70482933
RK
3797 ----------------------------
3798 -- Build_Constrained_Type --
3799 ----------------------------
3800
3801 procedure Build_Constrained_Type (Positional : Boolean) is
fbf5a39b 3802 Loc : constant Source_Ptr := Sloc (N);
191fcb3a 3803 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
fbf5a39b
AC
3804 Comp : Node_Id;
3805 Decl : Node_Id;
3806 Typ : constant Entity_Id := Etype (N);
deeb1604 3807 Indexes : constant List_Id := New_List;
fbf5a39b
AC
3808 Num : Int;
3809 Sub_Agg : Node_Id;
70482933
RK
3810
3811 begin
70482933
RK
3812 -- If the aggregate is purely positional, all its subaggregates
3813 -- have the same size. We collect the dimensions from the first
3814 -- subaggregate at each level.
3815
3816 if Positional then
3817 Sub_Agg := N;
3818
3819 for D in 1 .. Number_Dimensions (Typ) loop
5277cab6 3820 Sub_Agg := First (Expressions (Sub_Agg));
70482933 3821
5277cab6 3822 Comp := Sub_Agg;
70482933 3823 Num := 0;
70482933
RK
3824 while Present (Comp) loop
3825 Num := Num + 1;
3826 Next (Comp);
3827 end loop;
3828
deeb1604 3829 Append_To (Indexes,
70482933 3830 Make_Range (Loc,
191fcb3a
RD
3831 Low_Bound => Make_Integer_Literal (Loc, 1),
3832 High_Bound => Make_Integer_Literal (Loc, Num)));
70482933
RK
3833 end loop;
3834
3835 else
3b9fa2df
ES
3836 -- We know the aggregate type is unconstrained and the aggregate
3837 -- is not processable by the back end, therefore not necessarily
3838 -- positional. Retrieve each dimension bounds (computed earlier).
70482933
RK
3839
3840 for D in 1 .. Number_Dimensions (Typ) loop
3841 Append (
3842 Make_Range (Loc,
3843 Low_Bound => Aggr_Low (D),
3844 High_Bound => Aggr_High (D)),
deeb1604 3845 Indexes);
70482933
RK
3846 end loop;
3847 end if;
3848
3849 Decl :=
3850 Make_Full_Type_Declaration (Loc,
3851 Defining_Identifier => Agg_Type,
3852 Type_Definition =>
3853 Make_Constrained_Array_Definition (Loc,
deeb1604
AC
3854 Discrete_Subtype_Definitions => Indexes,
3855 Component_Definition =>
a397db96 3856 Make_Component_Definition (Loc,
deeb1604 3857 Aliased_Present => False,
a397db96
AC
3858 Subtype_Indication =>
3859 New_Occurrence_Of (Component_Type (Typ), Loc))));
70482933
RK
3860
3861 Insert_Action (N, Decl);
3862 Analyze (Decl);
3863 Set_Etype (N, Agg_Type);
3864 Set_Is_Itype (Agg_Type);
3865 Freeze_Itype (Agg_Type, N);
3866 end Build_Constrained_Type;
3867
3868 ------------------
3869 -- Check_Bounds --
3870 ------------------
3871
3872 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
3873 Aggr_Lo : Node_Id;
3874 Aggr_Hi : Node_Id;
3875
3876 Ind_Lo : Node_Id;
3877 Ind_Hi : Node_Id;
3878
3879 Cond : Node_Id := Empty;
3880
3881 begin
3882 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
3883 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
3884
3885 -- Generate the following test:
3886 --
3887 -- [constraint_error when
3888 -- Aggr_Lo <= Aggr_Hi and then
3889 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3b9fa2df 3890
641d3093 3891 -- As an optimization try to see if some tests are trivially vacuous
70482933
RK
3892 -- because we are comparing an expression against itself.
3893
3894 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
3895 Cond := Empty;
3896
3897 elsif Aggr_Hi = Ind_Hi then
3898 Cond :=
3899 Make_Op_Lt (Loc,
fbf5a39b
AC
3900 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3901 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
70482933
RK
3902
3903 elsif Aggr_Lo = Ind_Lo then
3904 Cond :=
3905 Make_Op_Gt (Loc,
fbf5a39b
AC
3906 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3907 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
70482933
RK
3908
3909 else
3910 Cond :=
3911 Make_Or_Else (Loc,
3912 Left_Opnd =>
3913 Make_Op_Lt (Loc,
fbf5a39b
AC
3914 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3915 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
70482933
RK
3916
3917 Right_Opnd =>
3918 Make_Op_Gt (Loc,
3919 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
3920 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
3921 end if;
3922
3923 if Present (Cond) then
3924 Cond :=
3925 Make_And_Then (Loc,
3926 Left_Opnd =>
3927 Make_Op_Le (Loc,
fbf5a39b
AC
3928 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3929 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
70482933
RK
3930
3931 Right_Opnd => Cond);
3932
3933 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
3934 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
3935 Insert_Action (N,
07fc65c4
GB
3936 Make_Raise_Constraint_Error (Loc,
3937 Condition => Cond,
3938 Reason => CE_Length_Check_Failed));
70482933
RK
3939 end if;
3940 end Check_Bounds;
3941
3942 ----------------------------
3943 -- Check_Same_Aggr_Bounds --
3944 ----------------------------
3945
3946 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
3947 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
3948 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
3cf3e5c6 3949 -- The bounds of this specific sub-aggregate
70482933
RK
3950
3951 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
3952 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3953 -- The bounds of the aggregate for this dimension
3954
3955 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 3956 -- The index type for this dimension.xxx
70482933 3957
fbf5a39b 3958 Cond : Node_Id := Empty;
fbf5a39b
AC
3959 Assoc : Node_Id;
3960 Expr : Node_Id;
70482933
RK
3961
3962 begin
3963 -- If index checks are on generate the test
3b9fa2df 3964
70482933
RK
3965 -- [constraint_error when
3966 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3b9fa2df 3967
70482933
RK
3968 -- As an optimization try to see if some tests are trivially vacuos
3969 -- because we are comparing an expression against itself. Also for
3970 -- the first dimension the test is trivially vacuous because there
3971 -- is just one aggregate for dimension 1.
3972
3973 if Index_Checks_Suppressed (Ind_Typ) then
3974 Cond := Empty;
3975
3976 elsif Dim = 1
3977 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
3978 then
3979 Cond := Empty;
3980
3981 elsif Aggr_Hi = Sub_Hi then
3982 Cond :=
3983 Make_Op_Ne (Loc,
fbf5a39b
AC
3984 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3985 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
3986
3987 elsif Aggr_Lo = Sub_Lo then
3988 Cond :=
3989 Make_Op_Ne (Loc,
fbf5a39b
AC
3990 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3991 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
3992
3993 else
3994 Cond :=
3995 Make_Or_Else (Loc,
3996 Left_Opnd =>
3997 Make_Op_Ne (Loc,
fbf5a39b
AC
3998 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3999 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
4000
4001 Right_Opnd =>
4002 Make_Op_Ne (Loc,
4003 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4004 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4005 end if;
4006
4007 if Present (Cond) then
4008 Insert_Action (N,
07fc65c4
GB
4009 Make_Raise_Constraint_Error (Loc,
4010 Condition => Cond,
4011 Reason => CE_Length_Check_Failed));
70482933
RK
4012 end if;
4013
4014 -- Now look inside the sub-aggregate to see if there is more work
4015
4016 if Dim < Aggr_Dimension then
4017
4018 -- Process positional components
4019
4020 if Present (Expressions (Sub_Aggr)) then
4021 Expr := First (Expressions (Sub_Aggr));
4022 while Present (Expr) loop
4023 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4024 Next (Expr);
4025 end loop;
4026 end if;
4027
4028 -- Process component associations
4029
4030 if Present (Component_Associations (Sub_Aggr)) then
4031 Assoc := First (Component_Associations (Sub_Aggr));
4032 while Present (Assoc) loop
4033 Expr := Expression (Assoc);
4034 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4035 Next (Assoc);
4036 end loop;
4037 end if;
4038 end if;
4039 end Check_Same_Aggr_Bounds;
4040
4041 ----------------------------
4042 -- Compute_Others_Present --
4043 ----------------------------
4044
4045 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
4046 Assoc : Node_Id;
4047 Expr : Node_Id;
70482933
RK
4048
4049 begin
4050 if Present (Component_Associations (Sub_Aggr)) then
4051 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 4052
70482933
RK
4053 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4054 Others_Present (Dim) := True;
4055 end if;
4056 end if;
4057
4058 -- Now look inside the sub-aggregate to see if there is more work
4059
4060 if Dim < Aggr_Dimension then
4061
4062 -- Process positional components
4063
4064 if Present (Expressions (Sub_Aggr)) then
4065 Expr := First (Expressions (Sub_Aggr));
4066 while Present (Expr) loop
4067 Compute_Others_Present (Expr, Dim + 1);
4068 Next (Expr);
4069 end loop;
4070 end if;
4071
4072 -- Process component associations
4073
4074 if Present (Component_Associations (Sub_Aggr)) then
4075 Assoc := First (Component_Associations (Sub_Aggr));
4076 while Present (Assoc) loop
4077 Expr := Expression (Assoc);
4078 Compute_Others_Present (Expr, Dim + 1);
4079 Next (Assoc);
4080 end loop;
4081 end if;
4082 end if;
4083 end Compute_Others_Present;
4084
70482933
RK
4085 ------------------------
4086 -- In_Place_Assign_OK --
4087 ------------------------
4088
4089 function In_Place_Assign_OK return Boolean is
4090 Aggr_In : Node_Id;
4091 Aggr_Lo : Node_Id;
4092 Aggr_Hi : Node_Id;
4093 Obj_In : Node_Id;
4094 Obj_Lo : Node_Id;
4095 Obj_Hi : Node_Id;
4096
4097 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4098 -- Check recursively that each component of a (sub)aggregate does
4099 -- not depend on the variable being assigned to.
4100
4101 function Safe_Component (Expr : Node_Id) return Boolean;
4102 -- Verify that an expression cannot depend on the variable being
4103 -- assigned to. Room for improvement here (but less than before).
4104
4105 --------------------
4106 -- Safe_Aggregate --
4107 --------------------
4108
4109 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4110 Expr : Node_Id;
4111
4112 begin
4113 if Present (Expressions (Aggr)) then
4114 Expr := First (Expressions (Aggr));
70482933
RK
4115 while Present (Expr) loop
4116 if Nkind (Expr) = N_Aggregate then
4117 if not Safe_Aggregate (Expr) then
4118 return False;
4119 end if;
4120
4121 elsif not Safe_Component (Expr) then
4122 return False;
4123 end if;
4124
4125 Next (Expr);
4126 end loop;
4127 end if;
4128
4129 if Present (Component_Associations (Aggr)) then
4130 Expr := First (Component_Associations (Aggr));
70482933
RK
4131 while Present (Expr) loop
4132 if Nkind (Expression (Expr)) = N_Aggregate then
4133 if not Safe_Aggregate (Expression (Expr)) then
4134 return False;
4135 end if;
4136
4137 elsif not Safe_Component (Expression (Expr)) then
4138 return False;
4139 end if;
4140
4141 Next (Expr);
4142 end loop;
4143 end if;
4144
4145 return True;
4146 end Safe_Aggregate;
4147
4148 --------------------
4149 -- Safe_Component --
4150 --------------------
4151
4152 function Safe_Component (Expr : Node_Id) return Boolean is
4153 Comp : Node_Id := Expr;
4154
4155 function Check_Component (Comp : Node_Id) return Boolean;
3cf3e5c6 4156 -- Do the recursive traversal, after copy
70482933 4157
fbf5a39b
AC
4158 ---------------------
4159 -- Check_Component --
4160 ---------------------
4161
70482933
RK
4162 function Check_Component (Comp : Node_Id) return Boolean is
4163 begin
4164 if Is_Overloaded (Comp) then
4165 return False;
4166 end if;
4167
4168 return Compile_Time_Known_Value (Comp)
4169
4170 or else (Is_Entity_Name (Comp)
4171 and then Present (Entity (Comp))
4172 and then No (Renamed_Object (Entity (Comp))))
4173
4174 or else (Nkind (Comp) = N_Attribute_Reference
4175 and then Check_Component (Prefix (Comp)))
4176
4177 or else (Nkind (Comp) in N_Binary_Op
4178 and then Check_Component (Left_Opnd (Comp))
4179 and then Check_Component (Right_Opnd (Comp)))
4180
4181 or else (Nkind (Comp) in N_Unary_Op
4182 and then Check_Component (Right_Opnd (Comp)))
4183
4184 or else (Nkind (Comp) = N_Selected_Component
6f639c98
ES
4185 and then Check_Component (Prefix (Comp)))
4186
4187 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4188 and then Check_Component (Expression (Comp)));
70482933
RK
4189 end Check_Component;
4190
fbf5a39b 4191 -- Start of processing for Safe_Component
70482933
RK
4192
4193 begin
4194 -- If the component appears in an association that may
4195 -- correspond to more than one element, it is not analyzed
4196 -- before the expansion into assignments, to avoid side effects.
4197 -- We analyze, but do not resolve the copy, to obtain sufficient
4198 -- entity information for the checks that follow. If component is
4199 -- overloaded we assume an unsafe function call.
4200
4201 if not Analyzed (Comp) then
4202 if Is_Overloaded (Expr) then
4203 return False;
07fc65c4
GB
4204
4205 elsif Nkind (Expr) = N_Aggregate
4206 and then not Is_Others_Aggregate (Expr)
4207 then
4208 return False;
4209
4210 elsif Nkind (Expr) = N_Allocator then
3cf3e5c6
AC
4211
4212 -- For now, too complex to analyze
07fc65c4
GB
4213
4214 return False;
70482933
RK
4215 end if;
4216
4217 Comp := New_Copy_Tree (Expr);
07fc65c4 4218 Set_Parent (Comp, Parent (Expr));
70482933
RK
4219 Analyze (Comp);
4220 end if;
4221
07fc65c4
GB
4222 if Nkind (Comp) = N_Aggregate then
4223 return Safe_Aggregate (Comp);
4224 else
4225 return Check_Component (Comp);
4226 end if;
70482933
RK
4227 end Safe_Component;
4228
4229 -- Start of processing for In_Place_Assign_OK
4230
4231 begin
4232 if Present (Component_Associations (N)) then
4233
4234 -- On assignment, sliding can take place, so we cannot do the
4235 -- assignment in place unless the bounds of the aggregate are
4236 -- statically equal to those of the target.
4237
4238 -- If the aggregate is given by an others choice, the bounds
4239 -- are derived from the left-hand side, and the assignment is
4240 -- safe if the expression is.
4241
07fc65c4 4242 if Is_Others_Aggregate (N) then
70482933
RK
4243 return
4244 Safe_Component
4245 (Expression (First (Component_Associations (N))));
4246 end if;
4247
4248 Aggr_In := First_Index (Etype (N));
6465b6a7 4249
6f639c98
ES
4250 if Nkind (Parent (N)) = N_Assignment_Statement then
4251 Obj_In := First_Index (Etype (Name (Parent (N))));
4252
4253 else
4254 -- Context is an allocator. Check bounds of aggregate
4255 -- against given type in qualified expression.
4256
4257 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4258 Obj_In :=
4259 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4260 end if;
70482933
RK
4261
4262 while Present (Aggr_In) loop
4263 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4264 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4265
4266 if not Compile_Time_Known_Value (Aggr_Lo)
4267 or else not Compile_Time_Known_Value (Aggr_Hi)
4268 or else not Compile_Time_Known_Value (Obj_Lo)
4269 or else not Compile_Time_Known_Value (Obj_Hi)
4270 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4271 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4272 then
4273 return False;
4274 end if;
4275
4276 Next_Index (Aggr_In);
4277 Next_Index (Obj_In);
4278 end loop;
4279 end if;
4280
3cf3e5c6 4281 -- Now check the component values themselves
70482933
RK
4282
4283 return Safe_Aggregate (N);
4284 end In_Place_Assign_OK;
4285
4286 ------------------
4287 -- Others_Check --
4288 ------------------
4289
4290 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4291 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4292 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3cf3e5c6 4293 -- The bounds of the aggregate for this dimension
70482933
RK
4294
4295 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 4296 -- The index type for this dimension
70482933
RK
4297
4298 Need_To_Check : Boolean := False;
4299
4300 Choices_Lo : Node_Id := Empty;
4301 Choices_Hi : Node_Id := Empty;
4302 -- The lowest and highest discrete choices for a named sub-aggregate
4303
4304 Nb_Choices : Int := -1;
4305 -- The number of discrete non-others choices in this sub-aggregate
4306
4307 Nb_Elements : Uint := Uint_0;
4308 -- The number of elements in a positional aggregate
4309
4310 Cond : Node_Id := Empty;
4311
4312 Assoc : Node_Id;
4313 Choice : Node_Id;
4314 Expr : Node_Id;
4315
4316 begin
4317 -- Check if we have an others choice. If we do make sure that this
4318 -- sub-aggregate contains at least one element in addition to the
4319 -- others choice.
4320
4321 if Range_Checks_Suppressed (Ind_Typ) then
4322 Need_To_Check := False;
4323
4324 elsif Present (Expressions (Sub_Aggr))
4325 and then Present (Component_Associations (Sub_Aggr))
4326 then
4327 Need_To_Check := True;
4328
4329 elsif Present (Component_Associations (Sub_Aggr)) then
4330 Assoc := Last (Component_Associations (Sub_Aggr));
4331
4332 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4333 Need_To_Check := False;
4334
4335 else
3b9fa2df
ES
4336 -- Count the number of discrete choices. Start with -1 because
4337 -- the others choice does not count.
70482933
RK
4338
4339 Nb_Choices := -1;
4340 Assoc := First (Component_Associations (Sub_Aggr));
4341 while Present (Assoc) loop
4342 Choice := First (Choices (Assoc));
4343 while Present (Choice) loop
4344 Nb_Choices := Nb_Choices + 1;
4345 Next (Choice);
4346 end loop;
4347
4348 Next (Assoc);
4349 end loop;
4350
4351 -- If there is only an others choice nothing to do
4352
4353 Need_To_Check := (Nb_Choices > 0);
4354 end if;
4355
4356 else
4357 Need_To_Check := False;
4358 end if;
4359
3b9fa2df
ES
4360 -- If we are dealing with a positional sub-aggregate with an others
4361 -- choice then compute the number or positional elements.
70482933
RK
4362
4363 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4364 Expr := First (Expressions (Sub_Aggr));
4365 Nb_Elements := Uint_0;
4366 while Present (Expr) loop
4367 Nb_Elements := Nb_Elements + 1;
4368 Next (Expr);
4369 end loop;
4370
4371 -- If the aggregate contains discrete choices and an others choice
4372 -- compute the smallest and largest discrete choice values.
4373
4374 elsif Need_To_Check then
4375 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 4376
70482933
RK
4377 Table : Case_Table_Type (1 .. Nb_Choices);
4378 -- Used to sort all the different choice values
4379
07fc65c4 4380 J : Pos := 1;
70482933
RK
4381 Low : Node_Id;
4382 High : Node_Id;
4383
4384 begin
4385 Assoc := First (Component_Associations (Sub_Aggr));
4386 while Present (Assoc) loop
4387 Choice := First (Choices (Assoc));
4388 while Present (Choice) loop
4389 if Nkind (Choice) = N_Others_Choice then
4390 exit;
4391 end if;
4392
4393 Get_Index_Bounds (Choice, Low, High);
07fc65c4
GB
4394 Table (J).Choice_Lo := Low;
4395 Table (J).Choice_Hi := High;
70482933 4396
07fc65c4 4397 J := J + 1;
70482933
RK
4398 Next (Choice);
4399 end loop;
4400
4401 Next (Assoc);
4402 end loop;
4403
4404 -- Sort the discrete choices
4405
4406 Sort_Case_Table (Table);
4407
4408 Choices_Lo := Table (1).Choice_Lo;
4409 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4410 end Compute_Choices_Lo_And_Choices_Hi;
4411 end if;
4412
4413 -- If no others choice in this sub-aggregate, or the aggregate
4414 -- comprises only an others choice, nothing to do.
4415
4416 if not Need_To_Check then
4417 Cond := Empty;
4418
3b9fa2df
ES
4419 -- If we are dealing with an aggregate containing an others choice
4420 -- and positional components, we generate the following test:
4421
70482933
RK
4422 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4423 -- Ind_Typ'Pos (Aggr_Hi)
4424 -- then
4425 -- raise Constraint_Error;
4426 -- end if;
4427
4428 elsif Nb_Elements > Uint_0 then
4429 Cond :=
4430 Make_Op_Gt (Loc,
4431 Left_Opnd =>
4432 Make_Op_Add (Loc,
4433 Left_Opnd =>
4434 Make_Attribute_Reference (Loc,
4435 Prefix => New_Reference_To (Ind_Typ, Loc),
4436 Attribute_Name => Name_Pos,
4437 Expressions =>
fbf5a39b
AC
4438 New_List
4439 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
70482933
RK
4440 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4441
4442 Right_Opnd =>
4443 Make_Attribute_Reference (Loc,
4444 Prefix => New_Reference_To (Ind_Typ, Loc),
4445 Attribute_Name => Name_Pos,
fbf5a39b
AC
4446 Expressions => New_List (
4447 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
70482933 4448
3b9fa2df
ES
4449 -- If we are dealing with an aggregate containing an others choice
4450 -- and discrete choices we generate the following test:
4451
70482933
RK
4452 -- [constraint_error when
4453 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4454
4455 else
4456 Cond :=
4457 Make_Or_Else (Loc,
4458 Left_Opnd =>
4459 Make_Op_Lt (Loc,
fbf5a39b
AC
4460 Left_Opnd =>
4461 Duplicate_Subexpr_Move_Checks (Choices_Lo),
4462 Right_Opnd =>
4463 Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
4464
4465 Right_Opnd =>
4466 Make_Op_Gt (Loc,
fbf5a39b
AC
4467 Left_Opnd =>
4468 Duplicate_Subexpr (Choices_Hi),
4469 Right_Opnd =>
4470 Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
4471 end if;
4472
4473 if Present (Cond) then
4474 Insert_Action (N,
07fc65c4
GB
4475 Make_Raise_Constraint_Error (Loc,
4476 Condition => Cond,
4477 Reason => CE_Length_Check_Failed));
641d3093
TQ
4478 -- Questionable reason code, shouldn't that be a
4479 -- CE_Range_Check_Failed ???
70482933
RK
4480 end if;
4481
4482 -- Now look inside the sub-aggregate to see if there is more work
4483
4484 if Dim < Aggr_Dimension then
4485
4486 -- Process positional components
4487
4488 if Present (Expressions (Sub_Aggr)) then
4489 Expr := First (Expressions (Sub_Aggr));
4490 while Present (Expr) loop
4491 Others_Check (Expr, Dim + 1);
4492 Next (Expr);
4493 end loop;
4494 end if;
4495
4496 -- Process component associations
4497
4498 if Present (Component_Associations (Sub_Aggr)) then
4499 Assoc := First (Component_Associations (Sub_Aggr));
4500 while Present (Assoc) loop
4501 Expr := Expression (Assoc);
4502 Others_Check (Expr, Dim + 1);
4503 Next (Assoc);
4504 end loop;
4505 end if;
4506 end if;
4507 end Others_Check;
4508
8da337c5
AC
4509 -------------------------
4510 -- Safe_Left_Hand_Side --
4511 -------------------------
4512
4513 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
deeb1604
AC
4514 function Is_Safe_Index (Indx : Node_Id) return Boolean;
4515 -- If the left-hand side includes an indexed component, check that
4516 -- the indexes are free of side-effect.
4517
4518 -------------------
4519 -- Is_Safe_Index --
4520 -------------------
4521
4522 function Is_Safe_Index (Indx : Node_Id) return Boolean is
4523 begin
4524 if Is_Entity_Name (Indx) then
4525 return True;
4526
4527 elsif Nkind (Indx) = N_Integer_Literal then
4528 return True;
4529
4530 elsif Nkind (Indx) = N_Function_Call
4531 and then Is_Entity_Name (Name (Indx))
4532 and then
4533 Has_Pragma_Pure_Function (Entity (Name (Indx)))
4534 then
4535 return True;
4536
4537 elsif Nkind (Indx) = N_Type_Conversion
4538 and then Is_Safe_Index (Expression (Indx))
4539 then
4540 return True;
4541
4542 else
4543 return False;
4544 end if;
4545 end Is_Safe_Index;
4546
4547 -- Start of processing for Safe_Left_Hand_Side
4548
8da337c5
AC
4549 begin
4550 if Is_Entity_Name (N) then
4551 return True;
4552
4553 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4554 and then Safe_Left_Hand_Side (Prefix (N))
4555 then
4556 return True;
4557
4558 elsif Nkind (N) = N_Indexed_Component
4559 and then Safe_Left_Hand_Side (Prefix (N))
4560 and then
deeb1604 4561 Is_Safe_Index (First (Expressions (N)))
8da337c5
AC
4562 then
4563 return True;
deeb1604
AC
4564
4565 elsif Nkind (N) = N_Unchecked_Type_Conversion then
4566 return Safe_Left_Hand_Side (Expression (N));
4567
8da337c5
AC
4568 else
4569 return False;
4570 end if;
4571 end Safe_Left_Hand_Side;
4572
4573 -- Local variables
70482933
RK
4574
4575 Tmp : Entity_Id;
fbf5a39b 4576 -- Holds the temporary aggregate value
70482933
RK
4577
4578 Tmp_Decl : Node_Id;
fbf5a39b 4579 -- Holds the declaration of Tmp
70482933
RK
4580
4581 Aggr_Code : List_Id;
4582 Parent_Node : Node_Id;
4583 Parent_Kind : Node_Kind;
4584
4585 -- Start of processing for Expand_Array_Aggregate
4586
4587 begin
4588 -- Do not touch the special aggregates of attributes used for Asm calls
4589
4590 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4591 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4592 then
4593 return;
4594 end if;
4595
07fc65c4 4596 -- If the semantic analyzer has determined that aggregate N will raise
e7c0dd39 4597 -- Constraint_Error at run time, then the aggregate node has been
07fc65c4
GB
4598 -- replaced with an N_Raise_Constraint_Error node and we should
4599 -- never get here.
70482933
RK
4600
4601 pragma Assert (not Raises_Constraint_Error (N));
4602
3cf3e5c6 4603 -- STEP 1a
fbf5a39b
AC
4604
4605 -- Check that the index range defined by aggregate bounds is
4606 -- compatible with corresponding index subtype.
70482933
RK
4607
4608 Index_Compatibility_Check : declare
4609 Aggr_Index_Range : Node_Id := First_Index (Typ);
4610 -- The current aggregate index range
4611
4612 Index_Constraint : Node_Id := First_Index (Etype (Typ));
4613 -- The corresponding index constraint against which we have to
4614 -- check the above aggregate index range.
4615
4616 begin
4617 Compute_Others_Present (N, 1);
4618
4619 for J in 1 .. Aggr_Dimension loop
4620 -- There is no need to emit a check if an others choice is
4621 -- present for this array aggregate dimension since in this
4622 -- case one of N's sub-aggregates has taken its bounds from the
4623 -- context and these bounds must have been checked already. In
4624 -- addition all sub-aggregates corresponding to the same
4625 -- dimension must all have the same bounds (checked in (c) below).
4626
4627 if not Range_Checks_Suppressed (Etype (Index_Constraint))
4628 and then not Others_Present (J)
4629 then
3b9fa2df
ES
4630 -- We don't use Checks.Apply_Range_Check here because it emits
4631 -- a spurious check. Namely it checks that the range defined by
4632 -- the aggregate bounds is non empty. But we know this already
4633 -- if we get here.
70482933
RK
4634
4635 Check_Bounds (Aggr_Index_Range, Index_Constraint);
4636 end if;
4637
3b9fa2df
ES
4638 -- Save the low and high bounds of the aggregate index as well as
4639 -- the index type for later use in checks (b) and (c) below.
70482933
RK
4640
4641 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
4642 Aggr_High (J) := High_Bound (Aggr_Index_Range);
4643
4644 Aggr_Index_Typ (J) := Etype (Index_Constraint);
4645
4646 Next_Index (Aggr_Index_Range);
4647 Next_Index (Index_Constraint);
4648 end loop;
4649 end Index_Compatibility_Check;
4650
3cf3e5c6 4651 -- STEP 1b
fbf5a39b 4652
3b9fa2df
ES
4653 -- If an others choice is present check that no aggregate index is
4654 -- outside the bounds of the index constraint.
70482933
RK
4655
4656 Others_Check (N, 1);
4657
3cf3e5c6 4658 -- STEP 1c
fbf5a39b
AC
4659
4660 -- For multidimensional arrays make sure that all subaggregates
4661 -- corresponding to the same dimension have the same bounds.
70482933
RK
4662
4663 if Aggr_Dimension > 1 then
4664 Check_Same_Aggr_Bounds (N, 1);
4665 end if;
4666
9b20e59b
AC
4667 -- In formal verification mode, leave the aggregate non-expanded
4668
4669 if ALFA_Mode then
4670 return;
4671 end if;
4672
3cf3e5c6 4673 -- STEP 2
70482933 4674
3b9fa2df
ES
4675 -- Here we test for is packed array aggregate that we can handle at
4676 -- compile time. If so, return with transformation done. Note that we do
4677 -- this even if the aggregate is nested, because once we have done this
4678 -- processing, there is no more nested aggregate!
fbf5a39b
AC
4679
4680 if Packed_Array_Aggregate_Handled (N) then
4681 return;
4682 end if;
4683
4684 -- At this point we try to convert to positional form
70482933 4685
0f95b178
JM
4686 if Ekind (Current_Scope) = E_Package
4687 and then Static_Elaboration_Desired (Current_Scope)
4688 then
4689 Convert_To_Positional (N, Max_Others_Replicate => 100);
4690
4691 else
4692 Convert_To_Positional (N);
4693 end if;
70482933 4694
fbf5a39b
AC
4695 -- if the result is no longer an aggregate (e.g. it may be a string
4696 -- literal, or a temporary which has the needed value), then we are
4697 -- done, since there is no longer a nested aggregate.
4698
70482933
RK
4699 if Nkind (N) /= N_Aggregate then
4700 return;
4701
fbf5a39b
AC
4702 -- We are also done if the result is an analyzed aggregate
4703 -- This case could use more comments ???
4704
70482933
RK
4705 elsif Analyzed (N)
4706 and then N /= Original_Node (N)
4707 then
4708 return;
4709 end if;
4710
fa57ac97
ES
4711 -- If all aggregate components are compile-time known and the aggregate
4712 -- has been flattened, nothing left to do. The same occurs if the
4713 -- aggregate is used to initialize the components of an statically
4714 -- allocated dispatch table.
0f95b178 4715
fa57ac97
ES
4716 if Compile_Time_Known_Aggregate (N)
4717 or else Is_Static_Dispatch_Table_Aggregate (N)
4718 then
0f95b178
JM
4719 Set_Expansion_Delayed (N, False);
4720 return;
4721 end if;
4722
fbf5a39b
AC
4723 -- Now see if back end processing is possible
4724
70482933
RK
4725 if Backend_Processing_Possible (N) then
4726
4727 -- If the aggregate is static but the constraints are not, build
4728 -- a static subtype for the aggregate, so that Gigi can place it
4729 -- in static memory. Perform an unchecked_conversion to the non-
4730 -- static type imposed by the context.
4731
4732 declare
4733 Itype : constant Entity_Id := Etype (N);
4734 Index : Node_Id;
4735 Needs_Type : Boolean := False;
4736
4737 begin
4738 Index := First_Index (Itype);
70482933
RK
4739 while Present (Index) loop
4740 if not Is_Static_Subtype (Etype (Index)) then
4741 Needs_Type := True;
4742 exit;
4743 else
4744 Next_Index (Index);
4745 end if;
4746 end loop;
4747
4748 if Needs_Type then
4749 Build_Constrained_Type (Positional => True);
4750 Rewrite (N, Unchecked_Convert_To (Itype, N));
4751 Analyze (N);
4752 end if;
4753 end;
4754
4755 return;
4756 end if;
4757
3cf3e5c6 4758 -- STEP 3
fbf5a39b 4759
36c73552
AC
4760 -- Delay expansion for nested aggregates: it will be taken care of
4761 -- when the parent aggregate is expanded.
70482933
RK
4762
4763 Parent_Node := Parent (N);
4764 Parent_Kind := Nkind (Parent_Node);
4765
4766 if Parent_Kind = N_Qualified_Expression then
4767 Parent_Node := Parent (Parent_Node);
4768 Parent_Kind := Nkind (Parent_Node);
4769 end if;
4770
4771 if Parent_Kind = N_Aggregate
4772 or else Parent_Kind = N_Extension_Aggregate
4773 or else Parent_Kind = N_Component_Association
4774 or else (Parent_Kind = N_Object_Declaration
048e5cef 4775 and then Needs_Finalization (Typ))
70482933
RK
4776 or else (Parent_Kind = N_Assignment_Statement
4777 and then Inside_Init_Proc)
4778 then
0f95b178
JM
4779 if Static_Array_Aggregate (N)
4780 or else Compile_Time_Known_Aggregate (N)
4781 then
4782 Set_Expansion_Delayed (N, False);
4783 return;
4784 else
4785 Set_Expansion_Delayed (N);
4786 return;
4787 end if;
70482933
RK
4788 end if;
4789
3cf3e5c6 4790 -- STEP 4
70482933 4791
7f4c1903 4792 -- Look if in place aggregate expansion is possible
70482933
RK
4793
4794 -- For object declarations we build the aggregate in place, unless
4795 -- the array is bit-packed or the component is controlled.
4796
4797 -- For assignments we do the assignment in place if all the component
4798 -- associations have compile-time known values. For other cases we
4799 -- create a temporary. The analysis for safety of on-line assignment
4800 -- is delicate, i.e. we don't know how to do it fully yet ???
4801
6f639c98
ES
4802 -- For allocators we assign to the designated object in place if the
4803 -- aggregate meets the same conditions as other in-place assignments.
4804 -- In this case the aggregate may not come from source but was created
4805 -- for default initialization, e.g. with Initialize_Scalars.
4806
70482933
RK
4807 if Requires_Transient_Scope (Typ) then
4808 Establish_Transient_Scope
4809 (N, Sec_Stack => Has_Controlled_Component (Typ));
4810 end if;
4811
c45b6ae0
AC
4812 if Has_Default_Init_Comps (N) then
4813 Maybe_In_Place_OK := False;
6f639c98
ES
4814
4815 elsif Is_Bit_Packed_Array (Typ)
4816 or else Has_Controlled_Component (Typ)
4817 then
4818 Maybe_In_Place_OK := False;
4819
c45b6ae0
AC
4820 else
4821 Maybe_In_Place_OK :=
6f639c98 4822 (Nkind (Parent (N)) = N_Assignment_Statement
d7f94401
AC
4823 and then Comes_From_Source (N)
4824 and then In_Place_Assign_OK)
6f639c98
ES
4825
4826 or else
4827 (Nkind (Parent (Parent (N))) = N_Allocator
4828 and then In_Place_Assign_OK);
c45b6ae0 4829 end if;
70482933 4830
36c73552
AC
4831 -- If this is an array of tasks, it will be expanded into build-in-place
4832 -- assignments. Build an activation chain for the tasks now.
a38ff9b1
ES
4833
4834 if Has_Task (Etype (N)) then
4835 Build_Activation_Chain_Entity (N);
4836 end if;
4837
a5d83d61
AC
4838 -- Should document these individual tests ???
4839
c45b6ae0
AC
4840 if not Has_Default_Init_Comps (N)
4841 and then Comes_From_Source (Parent (N))
70482933 4842 and then Nkind (Parent (N)) = N_Object_Declaration
3cf3e5c6
AC
4843 and then not
4844 Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
70482933
RK
4845 and then N = Expression (Parent (N))
4846 and then not Is_Bit_Packed_Array (Typ)
4847 and then not Has_Controlled_Component (Typ)
a5d83d61
AC
4848
4849 -- If the aggregate is the expression in an object declaration, it
4850 -- cannot be expanded in place. Lookahead in the current declarative
4851 -- part to find an address clause for the object being declared. If
4852 -- one is present, we cannot build in place. Unclear comment???
4853
4854 and then not Has_Following_Address_Clause (Parent (N))
70482933 4855 then
70482933
RK
4856 Tmp := Defining_Identifier (Parent (N));
4857 Set_No_Initialization (Parent (N));
4858 Set_Expression (Parent (N), Empty);
4859
4860 -- Set the type of the entity, for use in the analysis of the
4861 -- subsequent indexed assignments. If the nominal type is not
4862 -- constrained, build a subtype from the known bounds of the
4863 -- aggregate. If the declaration has a subtype mark, use it,
4864 -- otherwise use the itype of the aggregate.
4865
4866 if not Is_Constrained (Typ) then
4867 Build_Constrained_Type (Positional => False);
4868 elsif Is_Entity_Name (Object_Definition (Parent (N)))
4869 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
4870 then
4871 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
4872 else
4873 Set_Size_Known_At_Compile_Time (Typ, False);
4874 Set_Etype (Tmp, Typ);
4875 end if;
4876
6f639c98
ES
4877 elsif Maybe_In_Place_OK
4878 and then Nkind (Parent (N)) = N_Qualified_Expression
4879 and then Nkind (Parent (Parent (N))) = N_Allocator
4880 then
4881 Set_Expansion_Delayed (N);
4882 return;
4883
5277cab6 4884 -- In the remaining cases the aggregate is the RHS of an assignment
6f639c98 4885
70482933 4886 elsif Maybe_In_Place_OK
8da337c5 4887 and then Safe_Left_Hand_Side (Name (Parent (N)))
70482933 4888 then
8da337c5 4889 Tmp := Name (Parent (N));
70482933
RK
4890
4891 if Etype (Tmp) /= Etype (N) then
4892 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
4893
4894 if Nkind (N) = N_Raise_Constraint_Error then
4895
4896 -- Static error, nothing further to expand
4897
4898 return;
4899 end if;
70482933
RK
4900 end if;
4901
4902 elsif Maybe_In_Place_OK
4903 and then Nkind (Name (Parent (N))) = N_Slice
07fc65c4 4904 and then Safe_Slice_Assignment (N)
70482933 4905 then
07fc65c4 4906 -- Safe_Slice_Assignment rewrites assignment as a loop
70482933
RK
4907
4908 return;
4909
fbf5a39b
AC
4910 -- Step 5
4911
4912 -- In place aggregate expansion is not possible
4913
70482933 4914 else
07fc65c4 4915 Maybe_In_Place_OK := False;
faf387e1 4916 Tmp := Make_Temporary (Loc, 'A', N);
70482933
RK
4917 Tmp_Decl :=
4918 Make_Object_Declaration
4919 (Loc,
4920 Defining_Identifier => Tmp,
4921 Object_Definition => New_Occurrence_Of (Typ, Loc));
4922 Set_No_Initialization (Tmp_Decl, True);
4923
4924 -- If we are within a loop, the temporary will be pushed on the
36c73552
AC
4925 -- stack at each iteration. If the aggregate is the expression for an
4926 -- allocator, it will be immediately copied to the heap and can
70482933
RK
4927 -- be reclaimed at once. We create a transient scope around the
4928 -- aggregate for this purpose.
4929
4930 if Ekind (Current_Scope) = E_Loop
4931 and then Nkind (Parent (Parent (N))) = N_Allocator
4932 then
4933 Establish_Transient_Scope (N, False);
4934 end if;
4935
4936 Insert_Action (N, Tmp_Decl);
4937 end if;
4938
36c73552
AC
4939 -- Construct and insert the aggregate code. We can safely suppress index
4940 -- checks because this code is guaranteed not to raise CE on index
4941 -- checks. However we should *not* suppress all checks.
70482933 4942
07fc65c4
GB
4943 declare
4944 Target : Node_Id;
4945
4946 begin
4947 if Nkind (Tmp) = N_Defining_Identifier then
4948 Target := New_Reference_To (Tmp, Loc);
4949
4950 else
c45b6ae0
AC
4951
4952 if Has_Default_Init_Comps (N) then
4953
0ab80019 4954 -- Ada 2005 (AI-287): This case has not been analyzed???
c45b6ae0 4955
9bc856dd 4956 raise Program_Error;
c45b6ae0
AC
4957 end if;
4958
0da2c8ac 4959 -- Name in assignment is explicit dereference
07fc65c4
GB
4960
4961 Target := New_Copy (Tmp);
4962 end if;
4963
4964 Aggr_Code :=
4965 Build_Array_Aggr_Code (N,
c45b6ae0 4966 Ctype => Ctyp,
07fc65c4
GB
4967 Index => First_Index (Typ),
4968 Into => Target,
4969 Scalar_Comp => Is_Scalar_Type (Ctyp));
4970 end;
70482933
RK
4971
4972 if Comes_From_Source (Tmp) then
4973 Insert_Actions_After (Parent (N), Aggr_Code);
4974
4975 else
4976 Insert_Actions (N, Aggr_Code);
4977 end if;
4978
07fc65c4
GB
4979 -- If the aggregate has been assigned in place, remove the original
4980 -- assignment.
4981
70482933 4982 if Nkind (Parent (N)) = N_Assignment_Statement
07fc65c4 4983 and then Maybe_In_Place_OK
70482933
RK
4984 then
4985 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933
RK
4986
4987 elsif Nkind (Parent (N)) /= N_Object_Declaration
4988 or else Tmp /= Defining_Identifier (Parent (N))
4989 then
4990 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
4991 Analyze_And_Resolve (N, Typ);
4992 end if;
4993 end Expand_Array_Aggregate;
4994
4995 ------------------------
4996 -- Expand_N_Aggregate --
4997 ------------------------
4998
4999 procedure Expand_N_Aggregate (N : Node_Id) is
5000 begin
5001 if Is_Record_Type (Etype (N)) then
5002 Expand_Record_Aggregate (N);
5003 else
5004 Expand_Array_Aggregate (N);
5005 end if;
fbf5a39b
AC
5006 exception
5007 when RE_Not_Available =>
5008 return;
70482933
RK
5009 end Expand_N_Aggregate;
5010
5011 ----------------------------------
5012 -- Expand_N_Extension_Aggregate --
5013 ----------------------------------
5014
5015 -- If the ancestor part is an expression, add a component association for
5016 -- the parent field. If the type of the ancestor part is not the direct
5017 -- parent of the expected type, build recursively the needed ancestors.
5018 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5019 -- ration for a temporary of the expected type, followed by individual
5020 -- assignments to the given components.
5021
5022 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5023 Loc : constant Source_Ptr := Sloc (N);
5024 A : constant Node_Id := Ancestor_Part (N);
5025 Typ : constant Entity_Id := Etype (N);
5026
5027 begin
fbf5a39b 5028 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
5029 -- on the resulting object which thus has to be materialized in
5030 -- the front-end
5031
5032 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5033 Convert_To_Assignments (N, Typ);
5034
5035 -- The extension aggregate is transformed into a record aggregate
5036 -- of the following form (c1 and c2 are inherited components)
5037
5038 -- (Exp with c3 => a, c4 => b)
0877856b 5039 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
70482933
RK
5040
5041 else
5042 Set_Etype (N, Typ);
5043
1f110335 5044 if Tagged_Type_Expansion then
70482933 5045 Expand_Record_Aggregate (N,
a9d8907c
JM
5046 Orig_Tag =>
5047 New_Occurrence_Of
5048 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
70482933 5049 Parent_Expr => A);
5c34e9cd
AC
5050
5051 -- No tag is needed in the case of a VM
5052
0f95b178 5053 else
5c34e9cd 5054 Expand_Record_Aggregate (N, Parent_Expr => A);
70482933
RK
5055 end if;
5056 end if;
fbf5a39b
AC
5057
5058 exception
5059 when RE_Not_Available =>
5060 return;
70482933
RK
5061 end Expand_N_Extension_Aggregate;
5062
5063 -----------------------------
5064 -- Expand_Record_Aggregate --
5065 -----------------------------
5066
5067 procedure Expand_Record_Aggregate
5068 (N : Node_Id;
5069 Orig_Tag : Node_Id := Empty;
5070 Parent_Expr : Node_Id := Empty)
5071 is
fbf5a39b
AC
5072 Loc : constant Source_Ptr := Sloc (N);
5073 Comps : constant List_Id := Component_Associations (N);
5074 Typ : constant Entity_Id := Etype (N);
5075 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933 5076
0f95b178
JM
5077 Static_Components : Boolean := True;
5078 -- Flag to indicate whether all components are compile-time known,
5079 -- and the aggregate can be constructed statically and handled by
5080 -- the back-end.
70482933 5081
0f95b178
JM
5082 function Component_Not_OK_For_Backend return Boolean;
5083 -- Check for presence of component which makes it impossible for the
5084 -- backend to process the aggregate, thus requiring the use of a series
5085 -- of assignment statements. Cases checked for are a nested aggregate
5086 -- needing Late_Expansion, the presence of a tagged component which may
5087 -- need tag adjustment, and a bit unaligned component reference.
4a76b687
ES
5088 --
5089 -- We also force expansion into assignments if a component is of a
5090 -- mutable type (including a private type with discriminants) because
5091 -- in that case the size of the component to be copied may be smaller
5092 -- than the side of the target, and there is no simple way for gigi
5093 -- to compute the size of the object to be copied.
5094 --
5095 -- NOTE: This is part of the ongoing work to define precisely the
5096 -- interface between front-end and back-end handling of aggregates.
5097 -- In general it is desirable to pass aggregates as they are to gigi,
5098 -- in order to minimize elaboration code. This is one case where the
5099 -- semantics of Ada complicate the analysis and lead to anomalies in
5100 -- the gcc back-end if the aggregate is not expanded into assignments.
70482933 5101
57a8057a
AC
5102 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5103 -- If any ancestor of the current type is private, the aggregate
5104 -- cannot be built in place. We canot rely on Has_Private_Ancestor,
5105 -- because it will not be set when type and its parent are in the
5106 -- same scope, and the parent component needs expansion.
5107
5108 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5109 -- For nested aggregates return the ultimate enclosing aggregate; for
5110 -- non-nested aggregates return N.
5111
0f95b178
JM
5112 ----------------------------------
5113 -- Component_Not_OK_For_Backend --
5114 ----------------------------------
5115
5116 function Component_Not_OK_For_Backend return Boolean is
fbf5a39b 5117 C : Node_Id;
70482933
RK
5118 Expr_Q : Node_Id;
5119
5120 begin
5121 if No (Comps) then
5122 return False;
5123 end if;
5124
5125 C := First (Comps);
5126 while Present (C) loop
094cefda
AC
5127
5128 -- If the component has box initialization, expansion is needed
5129 -- and component is not ready for backend.
5130
5131 if Box_Present (C) then
5132 return True;
5133 end if;
5134
70482933
RK
5135 if Nkind (Expression (C)) = N_Qualified_Expression then
5136 Expr_Q := Expression (Expression (C));
5137 else
5138 Expr_Q := Expression (C);
5139 end if;
5140
3b9fa2df
ES
5141 -- Return true if the aggregate has any associations for tagged
5142 -- components that may require tag adjustment.
5143
5144 -- These are cases where the source expression may have a tag that
5145 -- could differ from the component tag (e.g., can occur for type
5146 -- conversions and formal parameters). (Tag adjustment not needed
5147 -- if VM_Target because object tags are implicit in the machine.)
70482933
RK
5148
5149 if Is_Tagged_Type (Etype (Expr_Q))
5150 and then (Nkind (Expr_Q) = N_Type_Conversion
0f95b178 5151 or else (Is_Entity_Name (Expr_Q)
3b9fa2df
ES
5152 and then
5153 Ekind (Entity (Expr_Q)) in Formal_Kind))
1f110335 5154 and then Tagged_Type_Expansion
70482933 5155 then
0f95b178 5156 Static_Components := False;
70482933 5157 return True;
70482933 5158
0f95b178
JM
5159 elsif Is_Delayed_Aggregate (Expr_Q) then
5160 Static_Components := False;
5161 return True;
5162
5163 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5164 Static_Components := False;
70482933
RK
5165 return True;
5166 end if;
5167
0f95b178
JM
5168 if Is_Scalar_Type (Etype (Expr_Q)) then
5169 if not Compile_Time_Known_Value (Expr_Q) then
5170 Static_Components := False;
5171 end if;
5172
5173 elsif Nkind (Expr_Q) /= N_Aggregate
5174 or else not Compile_Time_Known_Aggregate (Expr_Q)
5175 then
5176 Static_Components := False;
4a76b687
ES
5177
5178 if Is_Private_Type (Etype (Expr_Q))
5179 and then Has_Discriminants (Etype (Expr_Q))
5180 then
5181 return True;
5182 end if;
0f95b178
JM
5183 end if;
5184
70482933
RK
5185 Next (C);
5186 end loop;
5187
5188 return False;
0f95b178 5189 end Component_Not_OK_For_Backend;
70482933 5190
7ae0d98c
AC
5191 -----------------------------------
5192 -- Has_Visible_Private_Ancestor --
5193 -----------------------------------
5194
5195 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5196 R : constant Entity_Id := Root_Type (Id);
5197 T1 : Entity_Id := Id;
57a8057a 5198
7ae0d98c
AC
5199 begin
5200 loop
5201 if Is_Private_Type (T1) then
5202 return True;
5203
5204 elsif T1 = R then
5205 return False;
5206
5207 else
5208 T1 := Etype (T1);
5209 end if;
5210 end loop;
5211 end Has_Visible_Private_Ancestor;
5212
57a8057a
AC
5213 -------------------------
5214 -- Top_Level_Aggregate --
5215 -------------------------
5216
5217 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5218 Aggr : Node_Id := N;
5219
5220 begin
5221 while Present (Parent (Aggr))
5222 and then Nkind_In (Parent (Aggr), N_Component_Association,
5223 N_Aggregate)
5224 loop
5225 Aggr := Parent (Aggr);
5226 end loop;
5227
5228 return Aggr;
5229 end Top_Level_Aggregate;
5230
5231 -- Local variables
5232
5233 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5234 Tag_Value : Node_Id;
5235 Comp : Entity_Id;
5236 New_Comp : Node_Id;
5237
70482933
RK
5238 -- Start of processing for Expand_Record_Aggregate
5239
5240 begin
fbf5a39b
AC
5241 -- If the aggregate is to be assigned to an atomic variable, we
5242 -- have to prevent a piecemeal assignment even if the aggregate
5243 -- is to be expanded. We create a temporary for the aggregate, and
5244 -- assign the temporary instead, so that the back end can generate
5245 -- an atomic move for it.
5246
5247 if Is_Atomic (Typ)
fbf5a39b 5248 and then Comes_From_Source (Parent (N))
cfb120b5 5249 and then Is_Atomic_Aggregate (N, Typ)
fbf5a39b 5250 then
fbf5a39b 5251 return;
fa57ac97
ES
5252
5253 -- No special management required for aggregates used to initialize
5254 -- statically allocated dispatch tables
5255
5256 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5257 return;
fbf5a39b
AC
5258 end if;
5259
c5ee5ad2 5260 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
094cefda
AC
5261 -- are build-in-place function calls. The assignments will each turn
5262 -- into a build-in-place function call. If components are all static,
5263 -- we can pass the aggregate to the backend regardless of limitedness.
5264
5265 -- Extension aggregates, aggregates in extended return statements, and
5266 -- aggregates for C++ imported types must be expanded.
c5ee5ad2 5267
0791fbe9 5268 if Ada_Version >= Ada_2005 and then Is_Immutably_Limited_Type (Typ) then
8779dffa
AC
5269 if not Nkind_In (Parent (N), N_Object_Declaration,
5270 N_Component_Association)
5271 then
094cefda
AC
5272 Convert_To_Assignments (N, Typ);
5273
5274 elsif Nkind (N) = N_Extension_Aggregate
5275 or else Convention (Typ) = Convention_CPP
5276 then
5277 Convert_To_Assignments (N, Typ);
5278
5279 elsif not Size_Known_At_Compile_Time (Typ)
5280 or else Component_Not_OK_For_Backend
5281 or else not Static_Components
5282 then
5283 Convert_To_Assignments (N, Typ);
5284
5285 else
5286 Set_Compile_Time_Known_Aggregate (N);
5287 Set_Expansion_Delayed (N, False);
5288 end if;
c5ee5ad2 5289
5c34e9cd
AC
5290 -- Gigi doesn't properly handle temporaries of variable size so we
5291 -- generate it in the front-end
70482933 5292
abcd9db2
AC
5293 elsif not Size_Known_At_Compile_Time (Typ)
5294 and then Tagged_Type_Expansion
5295 then
70482933
RK
5296 Convert_To_Assignments (N, Typ);
5297
5c34e9cd
AC
5298 -- Temporaries for controlled aggregates need to be attached to a final
5299 -- chain in order to be properly finalized, so it has to be created in
5300 -- the front-end
70482933
RK
5301
5302 elsif Is_Controlled (Typ)
5303 or else Has_Controlled_Component (Base_Type (Typ))
5304 then
5305 Convert_To_Assignments (N, Typ);
5306
0ab80019
AC
5307 -- Ada 2005 (AI-287): In case of default initialized components we
5308 -- convert the aggregate into assignments.
19f0526a 5309
65356e64
AC
5310 elsif Has_Default_Init_Comps (N) then
5311 Convert_To_Assignments (N, Typ);
5312
0f95b178
JM
5313 -- Check components
5314
5315 elsif Component_Not_OK_For_Backend then
70482933
RK
5316 Convert_To_Assignments (N, Typ);
5317
5318 -- If an ancestor is private, some components are not inherited and
5319 -- we cannot expand into a record aggregate
5320
7ae0d98c 5321 elsif Has_Visible_Private_Ancestor (Typ) then
70482933
RK
5322 Convert_To_Assignments (N, Typ);
5323
5324 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5325 -- is not able to handle the aggregate for Late_Request.
5326
5327 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5328 Convert_To_Assignments (N, Typ);
5329
0f95b178 5330 -- If the tagged types covers interface types we need to initialize all
3b9fa2df 5331 -- hidden components containing pointers to secondary dispatch tables.
0f95b178 5332
ce2b6ba5 5333 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
0f95b178
JM
5334 Convert_To_Assignments (N, Typ);
5335
fbf5a39b 5336 -- If some components are mutable, the size of the aggregate component
4a76b687 5337 -- may be distinct from the default size of the type component, so
fbf5a39b 5338 -- we need to expand to insure that the back-end copies the proper
5c34e9cd
AC
5339 -- size of the data. However, if the aggregate is the initial value of
5340 -- a constant, the target is immutable and may be built statically.
fbf5a39b 5341
5c34e9cd
AC
5342 elsif Has_Mutable_Components (Typ)
5343 and then
57a8057a
AC
5344 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
5345 or else not Constant_Present (Parent (Top_Level_Aggr)))
5c34e9cd 5346 then
fbf5a39b
AC
5347 Convert_To_Assignments (N, Typ);
5348
3b9fa2df
ES
5349 -- If the type involved has any non-bit aligned components, then we are
5350 -- not sure that the back end can handle this case correctly.
91b1417d
AC
5351
5352 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5353 Convert_To_Assignments (N, Typ);
5354
3b9fa2df 5355 -- In all other cases, build a proper aggregate handlable by gigi
70482933
RK
5356
5357 else
0f95b178
JM
5358 if Nkind (N) = N_Aggregate then
5359
3b9fa2df
ES
5360 -- If the aggregate is static and can be handled by the back-end,
5361 -- nothing left to do.
0f95b178
JM
5362
5363 if Static_Components then
5364 Set_Compile_Time_Known_Aggregate (N);
5365 Set_Expansion_Delayed (N, False);
5366 end if;
5367 end if;
5368
07fc65c4 5369 -- If no discriminants, nothing special to do
70482933 5370
07fc65c4 5371 if not Has_Discriminants (Typ) then
70482933
RK
5372 null;
5373
07fc65c4
GB
5374 -- Case of discriminants present
5375
70482933
RK
5376 elsif Is_Derived_Type (Typ) then
5377
fbf5a39b
AC
5378 -- For untagged types, non-stored discriminants are replaced
5379 -- with stored discriminants, which are the ones that gigi uses
07fc65c4 5380 -- to describe the type and its components.
70482933 5381
07fc65c4 5382 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 5383 Constraints : constant List_Id := New_List;
70482933
RK
5384 First_Comp : Node_Id;
5385 Discriminant : Entity_Id;
07fc65c4
GB
5386 Decl : Node_Id;
5387 Num_Disc : Int := 0;
5388 Num_Gird : Int := 0;
5389
fbf5a39b 5390 procedure Prepend_Stored_Values (T : Entity_Id);
3b9fa2df
ES
5391 -- Scan the list of stored discriminants of the type, and add
5392 -- their values to the aggregate being built.
07fc65c4
GB
5393
5394 ---------------------------
fbf5a39b 5395 -- Prepend_Stored_Values --
07fc65c4
GB
5396 ---------------------------
5397
fbf5a39b 5398 procedure Prepend_Stored_Values (T : Entity_Id) is
07fc65c4 5399 begin
fbf5a39b 5400 Discriminant := First_Stored_Discriminant (T);
07fc65c4
GB
5401 while Present (Discriminant) loop
5402 New_Comp :=
5403 Make_Component_Association (Loc,
5404 Choices =>
5405 New_List (New_Occurrence_Of (Discriminant, Loc)),
5406
5407 Expression =>
5408 New_Copy_Tree (
5409 Get_Discriminant_Value (
5410 Discriminant,
5411 Typ,
5412 Discriminant_Constraint (Typ))));
5413
5414 if No (First_Comp) then
5415 Prepend_To (Component_Associations (N), New_Comp);
5416 else
5417 Insert_After (First_Comp, New_Comp);
5418 end if;
5419
5420 First_Comp := New_Comp;
fbf5a39b 5421 Next_Stored_Discriminant (Discriminant);
07fc65c4 5422 end loop;
fbf5a39b 5423 end Prepend_Stored_Values;
07fc65c4
GB
5424
5425 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
5426
5427 begin
3b9fa2df 5428 -- Remove the associations for the discriminant of derived type
70482933
RK
5429
5430 First_Comp := First (Component_Associations (N));
70482933
RK
5431 while Present (First_Comp) loop
5432 Comp := First_Comp;
5433 Next (First_Comp);
5434
5277cab6
ES
5435 if Ekind (Entity
5436 (First (Choices (Comp)))) = E_Discriminant
70482933
RK
5437 then
5438 Remove (Comp);
07fc65c4 5439 Num_Disc := Num_Disc + 1;
70482933
RK
5440 end if;
5441 end loop;
5442
fbf5a39b
AC
5443 -- Insert stored discriminant associations in the correct
5444 -- order. If there are more stored discriminants than new
3b9fa2df
ES
5445 -- discriminants, there is at least one new discriminant that
5446 -- constrains more than one of the stored discriminants. In
5447 -- this case we need to construct a proper subtype of the
5448 -- parent type, in order to supply values to all the
fbf5a39b
AC
5449 -- components. Otherwise there is one-one correspondence
5450 -- between the constraints and the stored discriminants.
70482933
RK
5451
5452 First_Comp := Empty;
70482933 5453
fbf5a39b 5454 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
07fc65c4
GB
5455 while Present (Discriminant) loop
5456 Num_Gird := Num_Gird + 1;
fbf5a39b 5457 Next_Stored_Discriminant (Discriminant);
70482933 5458 end loop;
07fc65c4 5459
fbf5a39b 5460 -- Case of more stored discriminants than new discriminants
07fc65c4
GB
5461
5462 if Num_Gird > Num_Disc then
5463
3b9fa2df
ES
5464 -- Create a proper subtype of the parent type, which is the
5465 -- proper implementation type for the aggregate, and convert
5466 -- it to the intended target type.
07fc65c4 5467
fbf5a39b 5468 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
07fc65c4
GB
5469 while Present (Discriminant) loop
5470 New_Comp :=
5471 New_Copy_Tree (
5472 Get_Discriminant_Value (
5473 Discriminant,
5474 Typ,
5475 Discriminant_Constraint (Typ)));
5476 Append (New_Comp, Constraints);
fbf5a39b 5477 Next_Stored_Discriminant (Discriminant);
07fc65c4
GB
5478 end loop;
5479
5480 Decl :=
5481 Make_Subtype_Declaration (Loc,
191fcb3a 5482 Defining_Identifier => Make_Temporary (Loc, 'T'),
07fc65c4
GB
5483 Subtype_Indication =>
5484 Make_Subtype_Indication (Loc,
5485 Subtype_Mark =>
5486 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5487 Constraint =>
5488 Make_Index_Or_Discriminant_Constraint
5489 (Loc, Constraints)));
5490
5491 Insert_Action (N, Decl);
fbf5a39b 5492 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
5493
5494 Set_Etype (N, Defining_Identifier (Decl));
5495 Set_Analyzed (N);
5496
5497 Rewrite (N, Unchecked_Convert_To (Typ, N));
5498 Analyze (N);
5499
5500 -- Case where we do not have fewer new discriminants than
3b9fa2df
ES
5501 -- stored discriminants, so in this case we can simply use the
5502 -- stored discriminants of the subtype.
07fc65c4
GB
5503
5504 else
fbf5a39b 5505 Prepend_Stored_Values (Typ);
07fc65c4
GB
5506 end if;
5507 end Generate_Aggregate_For_Derived_Type;
70482933
RK
5508 end if;
5509
5510 if Is_Tagged_Type (Typ) then
5511
3cf3e5c6 5512 -- The tagged case, _parent and _tag component must be created
70482933
RK
5513
5514 -- Reset null_present unconditionally. tagged records always have
5515 -- at least one field (the tag or the parent)
5516
5517 Set_Null_Record_Present (N, False);
5518
5519 -- When the current aggregate comes from the expansion of an
5520 -- extension aggregate, the parent expr is replaced by an
5521 -- aggregate formed by selected components of this expr
5522
5523 if Present (Parent_Expr)
5524 and then Is_Empty_List (Comps)
5525 then
5277cab6 5526 Comp := First_Component_Or_Discriminant (Typ);
70482933
RK
5527 while Present (Comp) loop
5528
70482933
RK
5529 -- Skip all expander-generated components
5530
5277cab6 5531 if
70482933
RK
5532 not Comes_From_Source (Original_Record_Component (Comp))
5533 then
5534 null;
5535
5536 else
5537 New_Comp :=
5538 Make_Selected_Component (Loc,
5539 Prefix =>
5540 Unchecked_Convert_To (Typ,
5541 Duplicate_Subexpr (Parent_Expr, True)),
5542
5543 Selector_Name => New_Occurrence_Of (Comp, Loc));
5544
5545 Append_To (Comps,
5546 Make_Component_Association (Loc,
5547 Choices =>
5548 New_List (New_Occurrence_Of (Comp, Loc)),
5549 Expression =>
5550 New_Comp));
5551
5552 Analyze_And_Resolve (New_Comp, Etype (Comp));
5553 end if;
5554
5277cab6 5555 Next_Component_Or_Discriminant (Comp);
70482933
RK
5556 end loop;
5557 end if;
5558
5559 -- Compute the value for the Tag now, if the type is a root it
5560 -- will be included in the aggregate right away, otherwise it will
5561 -- be propagated to the parent aggregate
5562
5563 if Present (Orig_Tag) then
5564 Tag_Value := Orig_Tag;
1f110335 5565 elsif not Tagged_Type_Expansion then
70482933
RK
5566 Tag_Value := Empty;
5567 else
a9d8907c
JM
5568 Tag_Value :=
5569 New_Occurrence_Of
5570 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
70482933
RK
5571 end if;
5572
5573 -- For a derived type, an aggregate for the parent is formed with
5574 -- all the inherited components.
5575
5576 if Is_Derived_Type (Typ) then
5577
5578 declare
5579 First_Comp : Node_Id;
5580 Parent_Comps : List_Id;
5581 Parent_Aggr : Node_Id;
5582 Parent_Name : Node_Id;
5583
5584 begin
5585 -- Remove the inherited component association from the
5586 -- aggregate and store them in the parent aggregate
5587
5588 First_Comp := First (Component_Associations (N));
5589 Parent_Comps := New_List;
70482933
RK
5590 while Present (First_Comp)
5591 and then Scope (Original_Record_Component (
5592 Entity (First (Choices (First_Comp))))) /= Base_Typ
5593 loop
5594 Comp := First_Comp;
5595 Next (First_Comp);
5596 Remove (Comp);
5597 Append (Comp, Parent_Comps);
5598 end loop;
5599
5600 Parent_Aggr := Make_Aggregate (Loc,
5601 Component_Associations => Parent_Comps);
5602 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
5603
5604 -- Find the _parent component
5605
5606 Comp := First_Component (Typ);
5607 while Chars (Comp) /= Name_uParent loop
5608 Comp := Next_Component (Comp);
5609 end loop;
5610
5611 Parent_Name := New_Occurrence_Of (Comp, Loc);
5612
5613 -- Insert the parent aggregate
5614
5615 Prepend_To (Component_Associations (N),
5616 Make_Component_Association (Loc,
5617 Choices => New_List (Parent_Name),
5618 Expression => Parent_Aggr));
5619
5620 -- Expand recursively the parent propagating the right Tag
5621
5622 Expand_Record_Aggregate (
5623 Parent_Aggr, Tag_Value, Parent_Expr);
5624 end;
5625
5626 -- For a root type, the tag component is added (unless compiling
0f95b178 5627 -- for the VMs, where tags are implicit).
70482933 5628
1f110335 5629 elsif Tagged_Type_Expansion then
70482933
RK
5630 declare
5631 Tag_Name : constant Node_Id :=
a9d8907c
JM
5632 New_Occurrence_Of
5633 (First_Tag_Component (Typ), Loc);
70482933
RK
5634 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
5635 Conv_Node : constant Node_Id :=
5636 Unchecked_Convert_To (Typ_Tag, Tag_Value);
5637
5638 begin
5639 Set_Etype (Conv_Node, Typ_Tag);
5640 Prepend_To (Component_Associations (N),
5641 Make_Component_Association (Loc,
5642 Choices => New_List (Tag_Name),
5643 Expression => Conv_Node));
5644 end;
5645 end if;
5646 end if;
5647 end if;
0f95b178 5648
70482933
RK
5649 end Expand_Record_Aggregate;
5650
65356e64
AC
5651 ----------------------------
5652 -- Has_Default_Init_Comps --
5653 ----------------------------
5654
5655 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
d05ef0ab
AC
5656 Comps : constant List_Id := Component_Associations (N);
5657 C : Node_Id;
c45b6ae0 5658 Expr : Node_Id;
65356e64 5659 begin
d7f94401 5660 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
c45b6ae0 5661
65356e64
AC
5662 if No (Comps) then
5663 return False;
5664 end if;
5665
c5ee5ad2
BD
5666 if Has_Self_Reference (N) then
5667 return True;
5668 end if;
5669
c45b6ae0
AC
5670 -- Check if any direct component has default initialized components
5671
65356e64
AC
5672 C := First (Comps);
5673 while Present (C) loop
5674 if Box_Present (C) then
5675 return True;
5676 end if;
5677
5678 Next (C);
5679 end loop;
c45b6ae0
AC
5680
5681 -- Recursive call in case of aggregate expression
5682
5683 C := First (Comps);
5684 while Present (C) loop
5685 Expr := Expression (C);
5686
5687 if Present (Expr)
d7f94401
AC
5688 and then
5689 Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
c45b6ae0
AC
5690 and then Has_Default_Init_Comps (Expr)
5691 then
5692 return True;
5693 end if;
5694
5695 Next (C);
5696 end loop;
5697
65356e64
AC
5698 return False;
5699 end Has_Default_Init_Comps;
5700
70482933
RK
5701 --------------------------
5702 -- Is_Delayed_Aggregate --
5703 --------------------------
5704
5705 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
fbf5a39b 5706 Node : Node_Id := N;
70482933 5707 Kind : Node_Kind := Nkind (Node);
fbf5a39b 5708
70482933
RK
5709 begin
5710 if Kind = N_Qualified_Expression then
5711 Node := Expression (Node);
5712 Kind := Nkind (Node);
5713 end if;
5714
5715 if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
5716 return False;
5717 else
5718 return Expansion_Delayed (Node);
5719 end if;
5720 end Is_Delayed_Aggregate;
5721
fa57ac97
ES
5722 ----------------------------------------
5723 -- Is_Static_Dispatch_Table_Aggregate --
5724 ----------------------------------------
5725
5726 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
5727 Typ : constant Entity_Id := Base_Type (Etype (N));
5728
5729 begin
5730 return Static_Dispatch_Tables
1f110335 5731 and then Tagged_Type_Expansion
fa57ac97
ES
5732 and then RTU_Loaded (Ada_Tags)
5733
5734 -- Avoid circularity when rebuilding the compiler
5735
5736 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
5737 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
5738 or else
5739 Typ = RTE (RE_Address_Array)
5740 or else
5741 Typ = RTE (RE_Type_Specific_Data)
5742 or else
5743 Typ = RTE (RE_Tag_Table)
5744 or else
5745 (RTE_Available (RE_Interface_Data)
5746 and then Typ = RTE (RE_Interface_Data))
5747 or else
5748 (RTE_Available (RE_Interfaces_Array)
5749 and then Typ = RTE (RE_Interfaces_Array))
5750 or else
5751 (RTE_Available (RE_Interface_Data_Element)
5752 and then Typ = RTE (RE_Interface_Data_Element)));
5753 end Is_Static_Dispatch_Table_Aggregate;
5754
70482933
RK
5755 --------------------
5756 -- Late_Expansion --
5757 --------------------
5758
5759 function Late_Expansion
5760 (N : Node_Id;
5761 Typ : Entity_Id;
df3e68b1 5762 Target : Node_Id) return List_Id
9bc856dd 5763 is
70482933
RK
5764 begin
5765 if Is_Record_Type (Etype (N)) then
df3e68b1 5766 return Build_Record_Aggr_Code (N, Typ, Target);
9bc856dd
AC
5767
5768 else pragma Assert (Is_Array_Type (Etype (N)));
70482933
RK
5769 return
5770 Build_Array_Aggr_Code
c45b6ae0
AC
5771 (N => N,
5772 Ctype => Component_Type (Etype (N)),
5773 Index => First_Index (Typ),
5774 Into => Target,
5775 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
df3e68b1 5776 Indexes => No_List);
70482933
RK
5777 end if;
5778 end Late_Expansion;
5779
5780 ----------------------------------
5781 -- Make_OK_Assignment_Statement --
5782 ----------------------------------
5783
5784 function Make_OK_Assignment_Statement
5785 (Sloc : Source_Ptr;
5786 Name : Node_Id;
0f95b178 5787 Expression : Node_Id) return Node_Id
70482933
RK
5788 is
5789 begin
5790 Set_Assignment_OK (Name);
c5ee5ad2 5791
70482933
RK
5792 return Make_Assignment_Statement (Sloc, Name, Expression);
5793 end Make_OK_Assignment_Statement;
5794
5795 -----------------------
5796 -- Number_Of_Choices --
5797 -----------------------
5798
5799 function Number_Of_Choices (N : Node_Id) return Nat is
5800 Assoc : Node_Id;
5801 Choice : Node_Id;
5802
5803 Nb_Choices : Nat := 0;
5804
5805 begin
5806 if Present (Expressions (N)) then
5807 return 0;
5808 end if;
5809
5810 Assoc := First (Component_Associations (N));
5811 while Present (Assoc) loop
70482933
RK
5812 Choice := First (Choices (Assoc));
5813 while Present (Choice) loop
70482933
RK
5814 if Nkind (Choice) /= N_Others_Choice then
5815 Nb_Choices := Nb_Choices + 1;
5816 end if;
5817
5818 Next (Choice);
5819 end loop;
5820
5821 Next (Assoc);
5822 end loop;
5823
5824 return Nb_Choices;
5825 end Number_Of_Choices;
5826
07fc65c4
GB
5827 ------------------------------------
5828 -- Packed_Array_Aggregate_Handled --
5829 ------------------------------------
5830
5831 -- The current version of this procedure will handle at compile time
5832 -- any array aggregate that meets these conditions:
5833
5834 -- One dimensional, bit packed
5835 -- Underlying packed type is modular type
5836 -- Bounds are within 32-bit Int range
5837 -- All bounds and values are static
5838
5839 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
5840 Loc : constant Source_Ptr := Sloc (N);
5841 Typ : constant Entity_Id := Etype (N);
5842 Ctyp : constant Entity_Id := Component_Type (Typ);
5843
5844 Not_Handled : exception;
5845 -- Exception raised if this aggregate cannot be handled
5846
5847 begin
5848 -- For now, handle only one dimensional bit packed arrays
5849
5850 if not Is_Bit_Packed_Array (Typ)
5851 or else Number_Dimensions (Typ) > 1
5852 or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
5853 then
5854 return False;
5855 end if;
5856
0f95b178
JM
5857 if not Is_Scalar_Type (Component_Type (Typ))
5858 and then Has_Non_Standard_Rep (Component_Type (Typ))
5859 then
5860 return False;
5861 end if;
5862
07fc65c4
GB
5863 declare
5864 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
5865
5866 Lo : Node_Id;
5867 Hi : Node_Id;
5868 -- Bounds of index type
5869
5870 Lob : Uint;
5871 Hib : Uint;
5872 -- Values of bounds if compile time known
5873
5874 function Get_Component_Val (N : Node_Id) return Uint;
3b9fa2df
ES
5875 -- Given a expression value N of the component type Ctyp, returns a
5876 -- value of Csiz (component size) bits representing this value. If
5877 -- the value is non-static or any other reason exists why the value
5878 -- cannot be returned, then Not_Handled is raised.
07fc65c4
GB
5879
5880 -----------------------
5881 -- Get_Component_Val --
5882 -----------------------
5883
5884 function Get_Component_Val (N : Node_Id) return Uint is
5885 Val : Uint;
5886
5887 begin
5888 -- We have to analyze the expression here before doing any further
5889 -- processing here. The analysis of such expressions is deferred
5890 -- till expansion to prevent some problems of premature analysis.
5891
5892 Analyze_And_Resolve (N, Ctyp);
5893
3b9fa2df
ES
5894 -- Must have a compile time value. String literals have to be
5895 -- converted into temporaries as well, because they cannot easily
5896 -- be converted into their bit representation.
07fc65c4 5897
6b6fcd3e
AC
5898 if not Compile_Time_Known_Value (N)
5899 or else Nkind (N) = N_String_Literal
5900 then
07fc65c4
GB
5901 raise Not_Handled;
5902 end if;
5903
5904 Val := Expr_Rep_Value (N);
5905
5906 -- Adjust for bias, and strip proper number of bits
5907
5908 if Has_Biased_Representation (Ctyp) then
5909 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
5910 end if;
5911
5912 return Val mod Uint_2 ** Csiz;
5913 end Get_Component_Val;
5914
5915 -- Here we know we have a one dimensional bit packed array
5916
5917 begin
5918 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
5919
5920 -- Cannot do anything if bounds are dynamic
5921
5922 if not Compile_Time_Known_Value (Lo)
5923 or else
5924 not Compile_Time_Known_Value (Hi)
5925 then
5926 return False;
5927 end if;
5928
5929 -- Or are silly out of range of int bounds
5930
5931 Lob := Expr_Value (Lo);
5932 Hib := Expr_Value (Hi);
5933
5934 if not UI_Is_In_Int_Range (Lob)
5935 or else
5936 not UI_Is_In_Int_Range (Hib)
5937 then
5938 return False;
5939 end if;
5940
3b9fa2df
ES
5941 -- At this stage we have a suitable aggregate for handling at compile
5942 -- time (the only remaining checks are that the values of expressions
5943 -- in the aggregate are compile time known (check is performed by
5944 -- Get_Component_Val), and that any subtypes or ranges are statically
5945 -- known.
07fc65c4 5946
3b9fa2df
ES
5947 -- If the aggregate is not fully positional at this stage, then
5948 -- convert it to positional form. Either this will fail, in which
5949 -- case we can do nothing, or it will succeed, in which case we have
5950 -- succeeded in handling the aggregate, or it will stay an aggregate,
5951 -- in which case we have failed to handle this case.
07fc65c4
GB
5952
5953 if Present (Component_Associations (N)) then
5954 Convert_To_Positional
5955 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
5956 return Nkind (N) /= N_Aggregate;
5957 end if;
5958
5959 -- Otherwise we are all positional, so convert to proper value
5960
5961 declare
42de0044
AC
5962 Lov : constant Int := UI_To_Int (Lob);
5963 Hiv : constant Int := UI_To_Int (Hib);
07fc65c4
GB
5964
5965 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
5966 -- The length of the array (number of elements)
5967
5968 Aggregate_Val : Uint;
3b9fa2df
ES
5969 -- Value of aggregate. The value is set in the low order bits of
5970 -- this value. For the little-endian case, the values are stored
5971 -- from low-order to high-order and for the big-endian case the
5972 -- values are stored from high-order to low-order. Note that gigi
5973 -- will take care of the conversions to left justify the value in
5974 -- the big endian case (because of left justified modular type
07fc65c4
GB
5975 -- processing), so we do not have to worry about that here.
5976
5977 Lit : Node_Id;
5978 -- Integer literal for resulting constructed value
5979
5980 Shift : Nat;
5981 -- Shift count from low order for next value
5982
5983 Incr : Int;
5984 -- Shift increment for loop
5985
5986 Expr : Node_Id;
5987 -- Next expression from positional parameters of aggregate
5988
5989 begin
3b9fa2df
ES
5990 -- For little endian, we fill up the low order bits of the target
5991 -- value. For big endian we fill up the high order bits of the
5992 -- target value (which is a left justified modular value).
07fc65c4
GB
5993
5994 if Bytes_Big_Endian xor Debug_Flag_8 then
5995 Shift := Csiz * (Len - 1);
5996 Incr := -Csiz;
5997 else
5998 Shift := 0;
5999 Incr := +Csiz;
6000 end if;
6001
6002 -- Loop to set the values
6003
fbf5a39b
AC
6004 if Len = 0 then
6005 Aggregate_Val := Uint_0;
6006 else
6007 Expr := First (Expressions (N));
6008 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6009
6010 for J in 2 .. Len loop
6011 Shift := Shift + Incr;
6012 Next (Expr);
6013 Aggregate_Val :=
6014 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6015 end loop;
6016 end if;
07fc65c4
GB
6017
6018 -- Now we can rewrite with the proper value
6019
6020 Lit :=
6021 Make_Integer_Literal (Loc,
6022 Intval => Aggregate_Val);
6023 Set_Print_In_Hex (Lit);
6024
6025 -- Construct the expression using this literal. Note that it is
6026 -- important to qualify the literal with its proper modular type
6027 -- since universal integer does not have the required range and
6028 -- also this is a left justified modular type, which is important
6029 -- in the big-endian case.
6030
6031 Rewrite (N,
6032 Unchecked_Convert_To (Typ,
6033 Make_Qualified_Expression (Loc,
6034 Subtype_Mark =>
6035 New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6036 Expression => Lit)));
6037
6038 Analyze_And_Resolve (N, Typ);
6039 return True;
6040 end;
6041 end;
6042
6043 exception
6044 when Not_Handled =>
6045 return False;
6046 end Packed_Array_Aggregate_Handled;
6047
fbf5a39b
AC
6048 ----------------------------
6049 -- Has_Mutable_Components --
6050 ----------------------------
6051
6052 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6053 Comp : Entity_Id;
6054
6055 begin
6056 Comp := First_Component (Typ);
fbf5a39b
AC
6057 while Present (Comp) loop
6058 if Is_Record_Type (Etype (Comp))
6059 and then Has_Discriminants (Etype (Comp))
6060 and then not Is_Constrained (Etype (Comp))
6061 then
6062 return True;
6063 end if;
6064
6065 Next_Component (Comp);
6066 end loop;
6067
6068 return False;
6069 end Has_Mutable_Components;
6070
07fc65c4
GB
6071 ------------------------------
6072 -- Initialize_Discriminants --
6073 ------------------------------
6074
6075 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6076 Loc : constant Source_Ptr := Sloc (N);
6077 Bas : constant Entity_Id := Base_Type (Typ);
6078 Par : constant Entity_Id := Etype (Bas);
6079 Decl : constant Node_Id := Parent (Par);
6080 Ref : Node_Id;
6081
6082 begin
6083 if Is_Tagged_Type (Bas)
6084 and then Is_Derived_Type (Bas)
6085 and then Has_Discriminants (Par)
6086 and then Has_Discriminants (Bas)
6087 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6088 and then Nkind (Decl) = N_Full_Type_Declaration
6089 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6090 and then Present
6091 (Variant_Part (Component_List (Type_Definition (Decl))))
6092 and then Nkind (N) /= N_Extension_Aggregate
6093 then
6094
fbf5a39b 6095 -- Call init proc to set discriminants.
07fc65c4
GB
6096 -- There should eventually be a special procedure for this ???
6097
6098 Ref := New_Reference_To (Defining_Identifier (N), Loc);
6099 Insert_Actions_After (N,
6100 Build_Initialization_Call (Sloc (N), Ref, Typ));
6101 end if;
6102 end Initialize_Discriminants;
6103
3cf3e5c6
AC
6104 ----------------
6105 -- Must_Slide --
6106 ----------------
6107
6108 function Must_Slide
6109 (Obj_Type : Entity_Id;
6110 Typ : Entity_Id) return Boolean
6111 is
6112 L1, L2, H1, H2 : Node_Id;
6113 begin
3b9fa2df
ES
6114 -- No sliding if the type of the object is not established yet, if it is
6115 -- an unconstrained type whose actual subtype comes from the aggregate,
6116 -- or if the two types are identical.
3cf3e5c6
AC
6117
6118 if not Is_Array_Type (Obj_Type) then
6119 return False;
6120
6121 elsif not Is_Constrained (Obj_Type) then
6122 return False;
6123
6124 elsif Typ = Obj_Type then
6125 return False;
6126
6127 else
6128 -- Sliding can only occur along the first dimension
6129
6130 Get_Index_Bounds (First_Index (Typ), L1, H1);
6131 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6132
6133 if not Is_Static_Expression (L1)
6134 or else not Is_Static_Expression (L2)
6135 or else not Is_Static_Expression (H1)
6136 or else not Is_Static_Expression (H2)
6137 then
6138 return False;
6139 else
6140 return Expr_Value (L1) /= Expr_Value (L2)
6141 or else Expr_Value (H1) /= Expr_Value (H2);
6142 end if;
6143 end if;
6144 end Must_Slide;
6145
70482933
RK
6146 ---------------------------
6147 -- Safe_Slice_Assignment --
6148 ---------------------------
6149
07fc65c4 6150 function Safe_Slice_Assignment (N : Node_Id) return Boolean is
70482933
RK
6151 Loc : constant Source_Ptr := Sloc (Parent (N));
6152 Pref : constant Node_Id := Prefix (Name (Parent (N)));
6153 Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
6154 Expr : Node_Id;
07fc65c4 6155 L_J : Entity_Id;
70482933
RK
6156 L_Iter : Node_Id;
6157 L_Body : Node_Id;
6158 Stat : Node_Id;
6159
6160 begin
07fc65c4 6161 -- Generate: for J in Range loop Pref (J) := Expr; end loop;
70482933
RK
6162
6163 if Comes_From_Source (N)
6164 and then No (Expressions (N))
6165 and then Nkind (First (Choices (First (Component_Associations (N)))))
6166 = N_Others_Choice
6167 then
191fcb3a
RD
6168 Expr := Expression (First (Component_Associations (N)));
6169 L_J := Make_Temporary (Loc, 'J');
70482933
RK
6170
6171 L_Iter :=
6172 Make_Iteration_Scheme (Loc,
6173 Loop_Parameter_Specification =>
6174 Make_Loop_Parameter_Specification
6175 (Loc,
07fc65c4 6176 Defining_Identifier => L_J,
70482933
RK
6177 Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6178
6179 L_Body :=
6180 Make_Assignment_Statement (Loc,
6181 Name =>
6182 Make_Indexed_Component (Loc,
6183 Prefix => Relocate_Node (Pref),
07fc65c4 6184 Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
70482933
RK
6185 Expression => Relocate_Node (Expr));
6186
6187 -- Construct the final loop
6188
6189 Stat :=
6190 Make_Implicit_Loop_Statement
6191 (Node => Parent (N),
6192 Identifier => Empty,
6193 Iteration_Scheme => L_Iter,
6194 Statements => New_List (L_Body));
6195
fbf5a39b
AC
6196 -- Set type of aggregate to be type of lhs in assignment,
6197 -- to suppress redundant length checks.
6198
6199 Set_Etype (N, Etype (Name (Parent (N))));
6200
70482933
RK
6201 Rewrite (Parent (N), Stat);
6202 Analyze (Parent (N));
6203 return True;
6204
6205 else
6206 return False;
6207 end if;
6208 end Safe_Slice_Assignment;
6209
6210 ---------------------
6211 -- Sort_Case_Table --
6212 ---------------------
6213
6214 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
6215 L : constant Int := Case_Table'First;
6216 U : constant Int := Case_Table'Last;
70482933
RK
6217 K : Int;
6218 J : Int;
6219 T : Case_Bounds;
6220
6221 begin
6222 K := L;
70482933
RK
6223 while K /= U loop
6224 T := Case_Table (K + 1);
70482933 6225
5277cab6 6226 J := K + 1;
70482933
RK
6227 while J /= L
6228 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6229 Expr_Value (T.Choice_Lo)
6230 loop
6231 Case_Table (J) := Case_Table (J - 1);
6232 J := J - 1;
6233 end loop;
6234
6235 Case_Table (J) := T;
6236 K := K + 1;
6237 end loop;
6238 end Sort_Case_Table;
6239
0f95b178
JM
6240 ----------------------------
6241 -- Static_Array_Aggregate --
6242 ----------------------------
6243
6244 function Static_Array_Aggregate (N : Node_Id) return Boolean is
6245 Bounds : constant Node_Id := Aggregate_Bounds (N);
6246
6247 Typ : constant Entity_Id := Etype (N);
6248 Comp_Type : constant Entity_Id := Component_Type (Typ);
6249 Agg : Node_Id;
6250 Expr : Node_Id;
6251 Lo : Node_Id;
6252 Hi : Node_Id;
6253
6254 begin
6255 if Is_Tagged_Type (Typ)
6256 or else Is_Controlled (Typ)
6257 or else Is_Packed (Typ)
6258 then
6259 return False;
6260 end if;
6261
6262 if Present (Bounds)
6263 and then Nkind (Bounds) = N_Range
6264 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
6265 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6266 then
6267 Lo := Low_Bound (Bounds);
6268 Hi := High_Bound (Bounds);
6269
6270 if No (Component_Associations (N)) then
6271
fa57ac97 6272 -- Verify that all components are static integers
0f95b178
JM
6273
6274 Expr := First (Expressions (N));
6275 while Present (Expr) loop
6276 if Nkind (Expr) /= N_Integer_Literal then
6277 return False;
6278 end if;
6279
6280 Next (Expr);
6281 end loop;
6282
6283 return True;
6284
6285 else
6286 -- We allow only a single named association, either a static
6287 -- range or an others_clause, with a static expression.
6288
6289 Expr := First (Component_Associations (N));
6290
6291 if Present (Expressions (N)) then
6292 return False;
6293
6294 elsif Present (Next (Expr)) then
6295 return False;
6296
6297 elsif Present (Next (First (Choices (Expr)))) then
6298 return False;
6299
6300 else
d7f94401
AC
6301 -- The aggregate is static if all components are literals,
6302 -- or else all its components are static aggregates for the
fc534c1c
ES
6303 -- component type. We also limit the size of a static aggregate
6304 -- to prevent runaway static expressions.
0f95b178
JM
6305
6306 if Is_Array_Type (Comp_Type)
6307 or else Is_Record_Type (Comp_Type)
6308 then
6309 if Nkind (Expression (Expr)) /= N_Aggregate
6310 or else
6311 not Compile_Time_Known_Aggregate (Expression (Expr))
6312 then
6313 return False;
6314 end if;
6315
6316 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6317 return False;
6a2e4f0b 6318 end if;
fc534c1c 6319
6a2e4f0b 6320 if not Aggr_Size_OK (N, Typ) then
fc534c1c 6321 return False;
0f95b178
JM
6322 end if;
6323
6324 -- Create a positional aggregate with the right number of
6325 -- copies of the expression.
6326
6327 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6328
6329 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6330 loop
6331 Append_To
6332 (Expressions (Agg), New_Copy (Expression (Expr)));
597d7158 6333
9b4b0a1a
GD
6334 -- The copied expression must be analyzed and resolved.
6335 -- Besides setting the type, this ensures that static
6336 -- expressions are appropriately marked as such.
597d7158 6337
9b4b0a1a
GD
6338 Analyze_And_Resolve
6339 (Last (Expressions (Agg)), Component_Type (Typ));
0f95b178
JM
6340 end loop;
6341
6342 Set_Aggregate_Bounds (Agg, Bounds);
6343 Set_Etype (Agg, Typ);
6344 Set_Analyzed (Agg);
6345 Rewrite (N, Agg);
6346 Set_Compile_Time_Known_Aggregate (N);
6347
6348 return True;
6349 end if;
6350 end if;
6351
6352 else
6353 return False;
6354 end if;
6355 end Static_Array_Aggregate;
9b4b0a1a 6356
70482933 6357end Exp_Aggr;