]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_attr.adb
2011-08-02 Ed Schonberg <schonberg@adacore.com>
[thirdparty/gcc.git] / gcc / ada / exp_attr.adb
CommitLineData
ee6ba406 1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A T T R --
6-- --
7-- B o d y --
8-- --
36dccb2b 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
ee6ba406 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
6bc9506f 13-- ware Foundation; either version 3, or (at your option) any later ver- --
ee6ba406 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
3430bf31 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
ee6ba406 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
ee6ba406 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Einfo; use Einfo;
00f91aef 29with Elists; use Elists;
99f2248e 30with Exp_Atag; use Exp_Atag;
ee6ba406 31with Exp_Ch2; use Exp_Ch2;
d55c93e0 32with Exp_Ch3; use Exp_Ch3;
33with Exp_Ch6; use Exp_Ch6;
ee6ba406 34with Exp_Ch9; use Exp_Ch9;
5690e662 35with Exp_Dist; use Exp_Dist;
ee6ba406 36with Exp_Imgv; use Exp_Imgv;
37with Exp_Pakd; use Exp_Pakd;
38with Exp_Strm; use Exp_Strm;
39with Exp_Tss; use Exp_Tss;
40with Exp_Util; use Exp_Util;
6e62b6c3 41with Exp_VFpt; use Exp_VFpt;
d55c93e0 42with Fname; use Fname;
db14252c 43with Freeze; use Freeze;
ee6ba406 44with Gnatvsn; use Gnatvsn;
db14252c 45with Itypes; use Itypes;
ee6ba406 46with Lib; use Lib;
47with Namet; use Namet;
48with Nmake; use Nmake;
49with Nlists; use Nlists;
50with Opt; use Opt;
51with Restrict; use Restrict;
1e16c51c 52with Rident; use Rident;
ee6ba406 53with Rtsfind; use Rtsfind;
54with Sem; use Sem;
d60c9ff7 55with Sem_Aux; use Sem_Aux;
4c06b9d2 56with Sem_Ch6; use Sem_Ch6;
ee6ba406 57with Sem_Ch7; use Sem_Ch7;
58with Sem_Ch8; use Sem_Ch8;
ee6ba406 59with Sem_Eval; use Sem_Eval;
60with Sem_Res; use Sem_Res;
61with Sem_Util; use Sem_Util;
62with Sinfo; use Sinfo;
63with Snames; use Snames;
64with Stand; use Stand;
65with Stringt; use Stringt;
83aa52b6 66with Targparm; use Targparm;
ee6ba406 67with Tbuild; use Tbuild;
68with Ttypes; use Ttypes;
69with Uintp; use Uintp;
70with Uname; use Uname;
71with Validsw; use Validsw;
72
73package body Exp_Attr is
74
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
78
79 procedure Compile_Stream_Body_In_Scope
80 (N : Node_Id;
81 Decl : Node_Id;
82 Arr : Entity_Id;
83 Check : Boolean);
84 -- The body for a stream subprogram may be generated outside of the scope
85 -- of the type. If the type is fully private, it may depend on the full
1d00a8ce 86 -- view of other types (e.g. indexes) that are currently private as well.
ee6ba406 87 -- We install the declarations of the package in which the type is declared
88 -- before compiling the body in what is its proper environment. The Check
89 -- parameter indicates if checks are to be suppressed for the stream body.
90 -- We suppress checks for array/record reads, since the rule is that these
91 -- are like assignments, out of range values due to uninitialized storage,
92 -- or other invalid values do NOT cause a Constraint_Error to be raised.
93
7f8eb6ed 94 procedure Expand_Access_To_Protected_Op
95 (N : Node_Id;
96 Pref : Node_Id;
97 Typ : Entity_Id);
7f8eb6ed 98 -- An attribute reference to a protected subprogram is transformed into
99 -- a pair of pointers: one to the object, and one to the operations.
100 -- This expansion is performed for 'Access and for 'Unrestricted_Access.
101
ee6ba406 102 procedure Expand_Fpt_Attribute
9dfe12ae 103 (N : Node_Id;
1550b445 104 Pkg : RE_Id;
9dfe12ae 105 Nam : Name_Id;
ee6ba406 106 Args : List_Id);
107 -- This procedure expands a call to a floating-point attribute function.
108 -- N is the attribute reference node, and Args is a list of arguments to
1550b445 109 -- be passed to the function call. Pkg identifies the package containing
110 -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
111 -- have already been converted to the floating-point type for which Pkg was
112 -- instantiated. The Nam argument is the relevant attribute processing
113 -- routine to be called. This is the same as the attribute name, except in
114 -- the Unaligned_Valid case.
ee6ba406 115
116 procedure Expand_Fpt_Attribute_R (N : Node_Id);
117 -- This procedure expands a call to a floating-point attribute function
9dfe12ae 118 -- that takes a single floating-point argument. The function to be called
119 -- is always the same as the attribute name.
ee6ba406 120
121 procedure Expand_Fpt_Attribute_RI (N : Node_Id);
122 -- This procedure expands a call to a floating-point attribute function
9dfe12ae 123 -- that takes one floating-point argument and one integer argument. The
124 -- function to be called is always the same as the attribute name.
ee6ba406 125
126 procedure Expand_Fpt_Attribute_RR (N : Node_Id);
127 -- This procedure expands a call to a floating-point attribute function
9dfe12ae 128 -- that takes two floating-point arguments. The function to be called
129 -- is always the same as the attribute name.
ee6ba406 130
131 procedure Expand_Pred_Succ (N : Node_Id);
132 -- Handles expansion of Pred or Succ attributes for case of non-real
133 -- operand with overflow checking required.
134
135 function Get_Index_Subtype (N : Node_Id) return Entity_Id;
f0bf2ff3 136 -- Used for Last, Last, and Length, when the prefix is an array type.
ee6ba406 137 -- Obtains the corresponding index subtype.
138
1550b445 139 procedure Find_Fat_Info
140 (T : Entity_Id;
141 Fat_Type : out Entity_Id;
142 Fat_Pkg : out RE_Id);
143 -- Given a floating-point type T, identifies the package containing the
144 -- attributes for this type (returned in Fat_Pkg), and the corresponding
145 -- type for which this package was instantiated from Fat_Gen. Error if T
146 -- is not a floating-point type.
147
9dfe12ae 148 function Find_Stream_Subprogram
149 (Typ : Entity_Id;
150 Nam : TSS_Name_Type) return Entity_Id;
151 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
152 -- types, the corresponding primitive operation is looked up, else the
153 -- appropriate TSS from the type itself, or from its closest ancestor
154 -- defining it, is returned. In both cases, inheritance of representation
155 -- aspects is thus taken into account.
ee6ba406 156
7af38999 157 function Full_Base (T : Entity_Id) return Entity_Id;
158 -- The stream functions need to examine the underlying representation of
159 -- composite types. In some cases T may be non-private but its base type
160 -- is, in which case the function returns the corresponding full view.
161
5245b786 162 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
163 -- Given a type, find a corresponding stream convert pragma that applies to
164 -- the implementation base type of this type (Typ). If found, return the
165 -- pragma node, otherwise return Empty if no pragma is found.
166
ee6ba406 167 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
168 -- Utility for array attributes, returns true on packed constrained
169 -- arrays, and on access to same.
170
99f2248e 171 function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
172 -- Returns true iff the given node refers to an attribute call that
173 -- can be expanded directly by the back end and does not need front end
174 -- expansion. Typically used for rounding and truncation attributes that
175 -- appear directly inside a conversion to integer.
176
ee6ba406 177 ----------------------------------
178 -- Compile_Stream_Body_In_Scope --
179 ----------------------------------
180
181 procedure Compile_Stream_Body_In_Scope
182 (N : Node_Id;
183 Decl : Node_Id;
184 Arr : Entity_Id;
185 Check : Boolean)
186 is
187 Installed : Boolean := False;
188 Scop : constant Entity_Id := Scope (Arr);
189 Curr : constant Entity_Id := Current_Scope;
190
191 begin
192 if Is_Hidden (Arr)
193 and then not In_Open_Scopes (Scop)
194 and then Ekind (Scop) = E_Package
195 then
83aa52b6 196 Push_Scope (Scop);
ee6ba406 197 Install_Visible_Declarations (Scop);
198 Install_Private_Declarations (Scop);
199 Installed := True;
200
201 -- The entities in the package are now visible, but the generated
202 -- stream entity must appear in the current scope (usually an
203 -- enclosing stream function) so that itypes all have their proper
204 -- scopes.
205
83aa52b6 206 Push_Scope (Curr);
ee6ba406 207 end if;
208
209 if Check then
210 Insert_Action (N, Decl);
211 else
1550b445 212 Insert_Action (N, Decl, Suppress => All_Checks);
ee6ba406 213 end if;
214
215 if Installed then
216
217 -- Remove extra copy of current scope, and package itself
218
219 Pop_Scope;
220 End_Package_Scope (Scop);
221 end if;
222 end Compile_Stream_Body_In_Scope;
223
7f8eb6ed 224 -----------------------------------
225 -- Expand_Access_To_Protected_Op --
226 -----------------------------------
227
228 procedure Expand_Access_To_Protected_Op
229 (N : Node_Id;
230 Pref : Node_Id;
231 Typ : Entity_Id)
232 is
233 -- The value of the attribute_reference is a record containing two
234 -- fields: an access to the protected object, and an access to the
235 -- subprogram itself. The prefix is a selected component.
236
237 Loc : constant Source_Ptr := Sloc (N);
238 Agg : Node_Id;
239 Btyp : constant Entity_Id := Base_Type (Typ);
240 Sub : Entity_Id;
a9b0586f 241 Sub_Ref : Node_Id;
7f8eb6ed 242 E_T : constant Entity_Id := Equivalent_Type (Btyp);
243 Acc : constant Entity_Id :=
244 Etype (Next_Component (First_Component (E_T)));
245 Obj_Ref : Node_Id;
246 Curr : Entity_Id;
247
248 function May_Be_External_Call return Boolean;
249 -- If the 'Access is to a local operation, but appears in a context
250 -- where it may lead to a call from outside the object, we must treat
251 -- this as an external call. Clearly we cannot tell without full
252 -- flow analysis, and a subsequent call that uses this 'Access may
253 -- lead to a bounded error (trying to seize locks twice, e.g.). For
254 -- now we treat 'Access as a potential external call if it is an actual
255 -- in a call to an outside subprogram.
256
257 --------------------------
258 -- May_Be_External_Call --
259 --------------------------
260
261 function May_Be_External_Call return Boolean is
262 Subp : Entity_Id;
d55c93e0 263 Par : Node_Id := Parent (N);
264
7f8eb6ed 265 begin
d55c93e0 266 -- Account for the case where the Access attribute is part of a
267 -- named parameter association.
268
269 if Nkind (Par) = N_Parameter_Association then
270 Par := Parent (Par);
271 end if;
272
273 if Nkind_In (Par, N_Procedure_Call_Statement, N_Function_Call)
274 and then Is_Entity_Name (Name (Par))
7f8eb6ed 275 then
d55c93e0 276 Subp := Entity (Name (Par));
7f8eb6ed 277 return not In_Open_Scopes (Scope (Subp));
278 else
279 return False;
280 end if;
281 end May_Be_External_Call;
282
283 -- Start of processing for Expand_Access_To_Protected_Op
284
285 begin
d73d4db0 286 -- Within the body of the protected type, the prefix designates a local
287 -- operation, and the object is the first parameter of the corresponding
288 -- protected body of the current enclosing operation.
7f8eb6ed 289
290 if Is_Entity_Name (Pref) then
7f8eb6ed 291 if May_Be_External_Call then
292 Sub :=
d73d4db0 293 New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
7f8eb6ed 294 else
295 Sub :=
296 New_Occurrence_Of
297 (Protected_Body_Subprogram (Entity (Pref)), Loc);
298 end if;
299
d55c93e0 300 -- Don't traverse the scopes when the attribute occurs within an init
301 -- proc, because we directly use the _init formal of the init proc in
302 -- that case.
303
7f8eb6ed 304 Curr := Current_Scope;
d55c93e0 305 if not Is_Init_Proc (Curr) then
306 pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
307
308 while Scope (Curr) /= Scope (Entity (Pref)) loop
309 Curr := Scope (Curr);
310 end loop;
311 end if;
7f8eb6ed 312
313 -- In case of protected entries the first formal of its Protected_
314 -- Body_Subprogram is the address of the object.
315
316 if Ekind (Curr) = E_Entry then
317 Obj_Ref :=
318 New_Occurrence_Of
319 (First_Formal
320 (Protected_Body_Subprogram (Curr)), Loc);
321
d55c93e0 322 -- If the current scope is an init proc, then use the address of the
323 -- _init formal as the object reference.
324
325 elsif Is_Init_Proc (Curr) then
326 Obj_Ref :=
327 Make_Attribute_Reference (Loc,
328 Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
329 Attribute_Name => Name_Address);
330
7f8eb6ed 331 -- In case of protected subprograms the first formal of its
332 -- Protected_Body_Subprogram is the object and we get its address.
333
334 else
335 Obj_Ref :=
336 Make_Attribute_Reference (Loc,
337 Prefix =>
338 New_Occurrence_Of
339 (First_Formal
340 (Protected_Body_Subprogram (Curr)), Loc),
341 Attribute_Name => Name_Address);
342 end if;
343
344 -- Case where the prefix is not an entity name. Find the
345 -- version of the protected operation to be called from
346 -- outside the protected object.
347
348 else
349 Sub :=
350 New_Occurrence_Of
351 (External_Subprogram
352 (Entity (Selector_Name (Pref))), Loc);
353
354 Obj_Ref :=
355 Make_Attribute_Reference (Loc,
356 Prefix => Relocate_Node (Prefix (Pref)),
357 Attribute_Name => Name_Address);
358 end if;
359
a9b0586f 360 Sub_Ref :=
361 Make_Attribute_Reference (Loc,
82ae9906 362 Prefix => Sub,
a9b0586f 363 Attribute_Name => Name_Access);
364
365 -- We set the type of the access reference to the already generated
366 -- access_to_subprogram type, and declare the reference analyzed, to
367 -- prevent further expansion when the enclosing aggregate is analyzed.
368
369 Set_Etype (Sub_Ref, Acc);
370 Set_Analyzed (Sub_Ref);
371
7f8eb6ed 372 Agg :=
373 Make_Aggregate (Loc,
82ae9906 374 Expressions => New_List (Obj_Ref, Sub_Ref));
7f8eb6ed 375
6cba2d6a 376 -- Sub_Ref has been marked as analyzed, but we still need to make sure
377 -- Sub is correctly frozen.
378
d73d4db0 379 Freeze_Before (N, Entity (Sub));
6cba2d6a 380
7f8eb6ed 381 Rewrite (N, Agg);
7f8eb6ed 382 Analyze_And_Resolve (N, E_T);
383
82ae9906 384 -- For subsequent analysis, the node must retain its type. The backend
385 -- will replace it with the equivalent type where needed.
7f8eb6ed 386
387 Set_Etype (N, Typ);
388 end Expand_Access_To_Protected_Op;
389
ee6ba406 390 --------------------------
391 -- Expand_Fpt_Attribute --
392 --------------------------
393
394 procedure Expand_Fpt_Attribute
395 (N : Node_Id;
1550b445 396 Pkg : RE_Id;
9dfe12ae 397 Nam : Name_Id;
ee6ba406 398 Args : List_Id)
399 is
400 Loc : constant Source_Ptr := Sloc (N);
401 Typ : constant Entity_Id := Etype (N);
ee6ba406 402 Fnm : Node_Id;
403
404 begin
1550b445 405 -- The function name is the selected component Attr_xxx.yyy where
406 -- Attr_xxx is the package name, and yyy is the argument Nam.
ee6ba406 407
408 -- Note: it would be more usual to have separate RE entries for each
409 -- of the entities in the Fat packages, but first they have identical
410 -- names (so we would have to have lots of renaming declarations to
411 -- meet the normal RE rule of separate names for all runtime entities),
412 -- and second there would be an awful lot of them!
413
ee6ba406 414 Fnm :=
415 Make_Selected_Component (Loc,
416 Prefix => New_Reference_To (RTE (Pkg), Loc),
9dfe12ae 417 Selector_Name => Make_Identifier (Loc, Nam));
ee6ba406 418
419 -- The generated call is given the provided set of parameters, and then
420 -- wrapped in a conversion which converts the result to the target type
5245b786 421 -- We use the base type as the target because a range check may be
422 -- required.
ee6ba406 423
424 Rewrite (N,
5245b786 425 Unchecked_Convert_To (Base_Type (Etype (N)),
ee6ba406 426 Make_Function_Call (Loc,
1550b445 427 Name => Fnm,
ee6ba406 428 Parameter_Associations => Args)));
429
430 Analyze_And_Resolve (N, Typ);
ee6ba406 431 end Expand_Fpt_Attribute;
432
433 ----------------------------
434 -- Expand_Fpt_Attribute_R --
435 ----------------------------
436
437 -- The single argument is converted to its root type to call the
438 -- appropriate runtime function, with the actual call being built
439 -- by Expand_Fpt_Attribute
440
441 procedure Expand_Fpt_Attribute_R (N : Node_Id) is
442 E1 : constant Node_Id := First (Expressions (N));
1550b445 443 Ftp : Entity_Id;
444 Pkg : RE_Id;
ee6ba406 445 begin
1550b445 446 Find_Fat_Info (Etype (E1), Ftp, Pkg);
9dfe12ae 447 Expand_Fpt_Attribute
1550b445 448 (N, Pkg, Attribute_Name (N),
449 New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
ee6ba406 450 end Expand_Fpt_Attribute_R;
451
452 -----------------------------
453 -- Expand_Fpt_Attribute_RI --
454 -----------------------------
455
456 -- The first argument is converted to its root type and the second
457 -- argument is converted to standard long long integer to call the
458 -- appropriate runtime function, with the actual call being built
459 -- by Expand_Fpt_Attribute
460
461 procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
462 E1 : constant Node_Id := First (Expressions (N));
1550b445 463 Ftp : Entity_Id;
464 Pkg : RE_Id;
ee6ba406 465 E2 : constant Node_Id := Next (E1);
ee6ba406 466 begin
1550b445 467 Find_Fat_Info (Etype (E1), Ftp, Pkg);
9dfe12ae 468 Expand_Fpt_Attribute
1550b445 469 (N, Pkg, Attribute_Name (N),
9dfe12ae 470 New_List (
1550b445 471 Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
9dfe12ae 472 Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
ee6ba406 473 end Expand_Fpt_Attribute_RI;
474
475 -----------------------------
476 -- Expand_Fpt_Attribute_RR --
477 -----------------------------
478
99f2248e 479 -- The two arguments are converted to their root types to call the
ee6ba406 480 -- appropriate runtime function, with the actual call being built
481 -- by Expand_Fpt_Attribute
482
483 procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
484 E1 : constant Node_Id := First (Expressions (N));
1550b445 485 Ftp : Entity_Id;
486 Pkg : RE_Id;
ee6ba406 487 E2 : constant Node_Id := Next (E1);
ee6ba406 488 begin
1550b445 489 Find_Fat_Info (Etype (E1), Ftp, Pkg);
9dfe12ae 490 Expand_Fpt_Attribute
1550b445 491 (N, Pkg, Attribute_Name (N),
9dfe12ae 492 New_List (
1550b445 493 Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
494 Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
ee6ba406 495 end Expand_Fpt_Attribute_RR;
496
497 ----------------------------------
498 -- Expand_N_Attribute_Reference --
499 ----------------------------------
500
501 procedure Expand_N_Attribute_Reference (N : Node_Id) is
502 Loc : constant Source_Ptr := Sloc (N);
503 Typ : constant Entity_Id := Etype (N);
504 Btyp : constant Entity_Id := Base_Type (Typ);
505 Pref : constant Node_Id := Prefix (N);
d55c93e0 506 Ptyp : constant Entity_Id := Etype (Pref);
ee6ba406 507 Exprs : constant List_Id := Expressions (N);
508 Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
509
510 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
511 -- Rewrites a stream attribute for Read, Write or Output with the
512 -- procedure call. Pname is the entity for the procedure to call.
513
514 ------------------------------
515 -- Rewrite_Stream_Proc_Call --
516 ------------------------------
517
518 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
519 Item : constant Node_Id := Next (First (Exprs));
9dfe12ae 520 Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
521 Formal_Typ : constant Entity_Id := Etype (Formal);
522 Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
ee6ba406 523
524 begin
9dfe12ae 525 -- The expansion depends on Item, the second actual, which is
526 -- the object being streamed in or out.
527
528 -- If the item is a component of a packed array type, and
529 -- a conversion is needed on exit, we introduce a temporary to
530 -- hold the value, because otherwise the packed reference will
531 -- not be properly expanded.
532
533 if Nkind (Item) = N_Indexed_Component
534 and then Is_Packed (Base_Type (Etype (Prefix (Item))))
535 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
536 and then Is_Written
537 then
538 declare
46eb6933 539 Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
9dfe12ae 540 Decl : Node_Id;
541 Assn : Node_Id;
542
543 begin
544 Decl :=
545 Make_Object_Declaration (Loc,
546 Defining_Identifier => Temp,
547 Object_Definition =>
548 New_Occurrence_Of (Formal_Typ, Loc));
549 Set_Etype (Temp, Formal_Typ);
550
551 Assn :=
552 Make_Assignment_Statement (Loc,
553 Name => New_Copy_Tree (Item),
554 Expression =>
555 Unchecked_Convert_To
556 (Etype (Item), New_Occurrence_Of (Temp, Loc)));
557
558 Rewrite (Item, New_Occurrence_Of (Temp, Loc));
559 Insert_Actions (N,
560 New_List (
561 Decl,
562 Make_Procedure_Call_Statement (Loc,
563 Name => New_Occurrence_Of (Pname, Loc),
564 Parameter_Associations => Exprs),
565 Assn));
566
567 Rewrite (N, Make_Null_Statement (Loc));
568 return;
569 end;
570 end if;
ee6ba406 571
572 -- For the class-wide dispatching cases, and for cases in which
573 -- the base type of the second argument matches the base type of
9dfe12ae 574 -- the corresponding formal parameter (that is to say the stream
575 -- operation is not inherited), we are all set, and can use the
576 -- argument unchanged.
ee6ba406 577
578 -- For all other cases we do an unchecked conversion of the second
579 -- parameter to the type of the formal of the procedure we are
580 -- calling. This deals with the private type cases, and with going
581 -- to the root type as required in elementary type case.
582
583 if not Is_Class_Wide_Type (Entity (Pref))
9dfe12ae 584 and then not Is_Class_Wide_Type (Etype (Item))
ee6ba406 585 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
586 then
587 Rewrite (Item,
588 Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
589
590 -- For untagged derived types set Assignment_OK, to prevent
591 -- copies from being created when the unchecked conversion
592 -- is expanded (which would happen in Remove_Side_Effects
593 -- if Expand_N_Unchecked_Conversion were allowed to call
594 -- Force_Evaluation). The copy could violate Ada semantics
595 -- in cases such as an actual that is an out parameter.
596 -- Note that this approach is also used in exp_ch7 for calls
597 -- to controlled type operations to prevent problems with
598 -- actuals wrapped in unchecked conversions.
599
600 if Is_Untagged_Derivation (Etype (Expression (Item))) then
601 Set_Assignment_OK (Item);
602 end if;
603 end if;
604
ad7d90bc 605 -- The stream operation to call maybe a renaming created by
606 -- an attribute definition clause, and may not be frozen yet.
607 -- Ensure that it has the necessary extra formals.
608
609 if not Is_Frozen (Pname) then
610 Create_Extra_Formals (Pname);
611 end if;
612
ee6ba406 613 -- And now rewrite the call
614
615 Rewrite (N,
616 Make_Procedure_Call_Statement (Loc,
617 Name => New_Occurrence_Of (Pname, Loc),
618 Parameter_Associations => Exprs));
619
620 Analyze (N);
621 end Rewrite_Stream_Proc_Call;
622
623 -- Start of processing for Expand_N_Attribute_Reference
624
625 begin
7189d17f 626 -- Do required validity checking, if enabled. Do not apply check to
627 -- output parameters of an Asm instruction, since the value of this
372ac9de 628 -- is not set till after the attribute has been elaborated, and do
629 -- not apply the check to the arguments of a 'Read or 'Input attribute
630 -- reference since the scalar argument is an OUT scalar.
ee6ba406 631
7189d17f 632 if Validity_Checks_On and then Validity_Check_Operands
633 and then Id /= Attribute_Asm_Output
372ac9de 634 and then Id /= Attribute_Read
635 and then Id /= Attribute_Input
7189d17f 636 then
ee6ba406 637 declare
638 Expr : Node_Id;
ee6ba406 639 begin
640 Expr := First (Expressions (N));
641 while Present (Expr) loop
642 Ensure_Valid (Expr);
643 Next (Expr);
644 end loop;
645 end;
646 end if;
647
d55c93e0 648 -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
649 -- place function, then a temporary return object needs to be created
650 -- and access to it must be passed to the function. Currently we limit
651 -- such functions to those with inherently limited result subtypes, but
652 -- eventually we plan to expand the functions that are treated as
653 -- build-in-place to include other composite result types.
654
de54c5ab 655 if Ada_Version >= Ada_2005
d55c93e0 656 and then Is_Build_In_Place_Function_Call (Pref)
657 then
658 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
659 end if;
660
36e5d81f 661 -- If prefix is a protected type name, this is a reference to the
662 -- current instance of the type. For a component definition, nothing
663 -- to do (expansion will occur in the init proc). In other contexts,
664 -- rewrite into reference to current instance.
665
666 if Is_Protected_Self_Reference (Pref)
667 and then not
9e434a36 668 (Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
669 N_Discriminant_Association)
670 and then Nkind (Parent (Parent (Parent (Parent (N))))) =
671 N_Component_Definition)
36e5d81f 672 then
98d58e33 673 Rewrite (Pref, Concurrent_Ref (Pref));
674 Analyze (Pref);
675 end if;
676
ee6ba406 677 -- Remaining processing depends on specific attribute
678
679 case Id is
680
681 ------------
682 -- Access --
683 ------------
684
f947f061 685 when Attribute_Access |
686 Attribute_Unchecked_Access |
687 Attribute_Unrestricted_Access =>
ee6ba406 688
5e82d8fe 689 Access_Cases : declare
5e82d8fe 690 Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
d251c56f 691 Btyp_DDT : Entity_Id;
ee6ba406 692
4094dca5 693 function Enclosing_Object (N : Node_Id) return Node_Id;
694 -- If N denotes a compound name (selected component, indexed
9e434a36 695 -- component, or slice), returns the name of the outermost such
696 -- enclosing object. Otherwise returns N. If the object is a
697 -- renaming, then the renamed object is returned.
4094dca5 698
699 ----------------------
700 -- Enclosing_Object --
701 ----------------------
702
703 function Enclosing_Object (N : Node_Id) return Node_Id is
704 Obj_Name : Node_Id;
705
706 begin
707 Obj_Name := N;
708 while Nkind_In (Obj_Name, N_Selected_Component,
709 N_Indexed_Component,
710 N_Slice)
711 loop
712 Obj_Name := Prefix (Obj_Name);
713 end loop;
714
715 return Get_Referenced_Object (Obj_Name);
716 end Enclosing_Object;
717
718 -- Local declarations
719
720 Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
721
722 -- Start of processing for Access_Cases
723
5e82d8fe 724 begin
d251c56f 725 Btyp_DDT := Designated_Type (Btyp);
726
727 -- Handle designated types that come from the limited view
728
729 if Ekind (Btyp_DDT) = E_Incomplete_Type
730 and then From_With_Type (Btyp_DDT)
731 and then Present (Non_Limited_View (Btyp_DDT))
732 then
733 Btyp_DDT := Non_Limited_View (Btyp_DDT);
734
735 elsif Is_Class_Wide_Type (Btyp_DDT)
736 and then Ekind (Etype (Btyp_DDT)) = E_Incomplete_Type
737 and then From_With_Type (Etype (Btyp_DDT))
738 and then Present (Non_Limited_View (Etype (Btyp_DDT)))
739 and then Present (Class_Wide_Type
740 (Non_Limited_View (Etype (Btyp_DDT))))
741 then
742 Btyp_DDT :=
743 Class_Wide_Type (Non_Limited_View (Etype (Btyp_DDT)));
744 end if;
745
4c06b9d2 746 -- In order to improve the text of error messages, the designated
747 -- type of access-to-subprogram itypes is set by the semantics as
748 -- the associated subprogram entity (see sem_attr). Now we replace
749 -- such node with the proper E_Subprogram_Type itype.
750
751 if Id = Attribute_Unrestricted_Access
752 and then Is_Subprogram (Directly_Designated_Type (Typ))
753 then
d55c93e0 754 -- The following conditions ensure that this special management
4c06b9d2 755 -- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
756 -- At this stage other cases in which the designated type is
757 -- still a subprogram (instead of an E_Subprogram_Type) are
526aedbb 758 -- wrong because the semantics must have overridden the type of
4c06b9d2 759 -- the node with the type imposed by the context.
760
d55c93e0 761 if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
762 and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
763 then
764 Set_Etype (N, RTE (RE_Prim_Ptr));
4c06b9d2 765
d55c93e0 766 else
767 declare
768 Subp : constant Entity_Id :=
769 Directly_Designated_Type (Typ);
770 Etyp : Entity_Id;
771 Extra : Entity_Id := Empty;
772 New_Formal : Entity_Id;
773 Old_Formal : Entity_Id := First_Formal (Subp);
774 Subp_Typ : Entity_Id;
4c06b9d2 775
d55c93e0 776 begin
777 Subp_Typ := Create_Itype (E_Subprogram_Type, N);
778 Set_Etype (Subp_Typ, Etype (Subp));
779 Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
4c06b9d2 780
d55c93e0 781 if Present (Old_Formal) then
782 New_Formal := New_Copy (Old_Formal);
783 Set_First_Entity (Subp_Typ, New_Formal);
4c06b9d2 784
d55c93e0 785 loop
786 Set_Scope (New_Formal, Subp_Typ);
787 Etyp := Etype (New_Formal);
4c06b9d2 788
d55c93e0 789 -- Handle itypes. There is no need to duplicate
790 -- here the itypes associated with record types
791 -- (i.e the implicit full view of private types).
4c06b9d2 792
d55c93e0 793 if Is_Itype (Etyp)
794 and then Ekind (Base_Type (Etyp)) /= E_Record_Type
4c06b9d2 795 then
d55c93e0 796 Extra := New_Copy (Etyp);
797 Set_Parent (Extra, New_Formal);
798 Set_Etype (New_Formal, Extra);
799 Set_Scope (Extra, Subp_Typ);
4c06b9d2 800 end if;
801
d55c93e0 802 Extra := New_Formal;
803 Next_Formal (Old_Formal);
804 exit when No (Old_Formal);
4c06b9d2 805
d55c93e0 806 Set_Next_Entity (New_Formal,
807 New_Copy (Old_Formal));
808 Next_Entity (New_Formal);
809 end loop;
4c06b9d2 810
d55c93e0 811 Set_Next_Entity (New_Formal, Empty);
812 Set_Last_Entity (Subp_Typ, Extra);
813 end if;
4c06b9d2 814
d55c93e0 815 -- Now that the explicit formals have been duplicated,
816 -- any extra formals needed by the subprogram must be
817 -- created.
4c06b9d2 818
d55c93e0 819 if Present (Extra) then
820 Set_Extra_Formal (Extra, Empty);
821 end if;
4c06b9d2 822
d55c93e0 823 Create_Extra_Formals (Subp_Typ);
824 Set_Directly_Designated_Type (Typ, Subp_Typ);
825 end;
826 end if;
4c06b9d2 827 end if;
828
5e82d8fe 829 if Is_Access_Protected_Subprogram_Type (Btyp) then
830 Expand_Access_To_Protected_Op (N, Pref, Typ);
831
832 -- If prefix is a type name, this is a reference to the current
833 -- instance of the type, within its initialization procedure.
834
835 elsif Is_Entity_Name (Pref)
836 and then Is_Type (Entity (Pref))
837 then
838 declare
839 Par : Node_Id;
840 Formal : Entity_Id;
841
842 begin
843 -- If the current instance name denotes a task type, then
844 -- the access attribute is rewritten to be the name of the
845 -- "_task" parameter associated with the task type's task
846 -- procedure. An unchecked conversion is applied to ensure
847 -- a type match in cases of expander-generated calls (e.g.
848 -- init procs).
849
850 if Is_Task_Type (Entity (Pref)) then
851 Formal :=
852 First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
853 while Present (Formal) loop
854 exit when Chars (Formal) = Name_uTask;
855 Next_Entity (Formal);
856 end loop;
857
858 pragma Assert (Present (Formal));
f947f061 859
5e82d8fe 860 Rewrite (N,
861 Unchecked_Convert_To (Typ,
862 New_Occurrence_Of (Formal, Loc)));
863 Set_Etype (N, Typ);
f947f061 864
5e82d8fe 865 -- The expression must appear in a default expression,
866 -- (which in the initialization procedure is the
867 -- right-hand side of an assignment), and not in a
868 -- discriminant constraint.
f947f061 869
5e82d8fe 870 else
871 Par := Parent (N);
872 while Present (Par) loop
873 exit when Nkind (Par) = N_Assignment_Statement;
f947f061 874
5e82d8fe 875 if Nkind (Par) = N_Component_Declaration then
876 return;
877 end if;
f947f061 878
5e82d8fe 879 Par := Parent (Par);
880 end loop;
f947f061 881
5e82d8fe 882 if Present (Par) then
883 Rewrite (N,
884 Make_Attribute_Reference (Loc,
885 Prefix => Make_Identifier (Loc, Name_uInit),
886 Attribute_Name => Attribute_Name (N)));
f947f061 887
5e82d8fe 888 Analyze_And_Resolve (N, Typ);
889 end if;
f947f061 890 end if;
5e82d8fe 891 end;
892
893 -- If the prefix of an Access attribute is a dereference of an
4094dca5 894 -- access parameter (or a renaming of such a dereference, or a
895 -- subcomponent of such a dereference) and the context is a
80e22f63 896 -- general access type (including the type of an object or
897 -- component with an access_definition, but not the anonymous
898 -- type of an access parameter or access discriminant), then
4094dca5 899 -- apply an accessibility check to the access parameter. We used
900 -- to rewrite the access parameter as a type conversion, but that
901 -- could only be done if the immediate prefix of the Access
902 -- attribute was the dereference, and didn't handle cases where
903 -- the attribute is applied to a subcomponent of the dereference,
904 -- since there's generally no available, appropriate access type
55dc6dc2 905 -- to convert to in that case. The attribute is passed as the
906 -- point to insert the check, because the access parameter may
907 -- come from a renaming, possibly in a different scope, and the
908 -- check must be associated with the attribute itself.
4094dca5 909
910 elsif Id = Attribute_Access
911 and then Nkind (Enc_Object) = N_Explicit_Dereference
912 and then Is_Entity_Name (Prefix (Enc_Object))
80e22f63 913 and then (Ekind (Btyp) = E_General_Access_Type
914 or else Is_Local_Anonymous_Access (Btyp))
4094dca5 915 and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
916 and then Ekind (Etype (Entity (Prefix (Enc_Object))))
5e82d8fe 917 = E_Anonymous_Access_Type
918 and then Present (Extra_Accessibility
4094dca5 919 (Entity (Prefix (Enc_Object))))
5e82d8fe 920 then
55dc6dc2 921 Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
5e82d8fe 922
923 -- Ada 2005 (AI-251): If the designated type is an interface we
924 -- add an implicit conversion to force the displacement of the
925 -- pointer to reference the secondary dispatch table.
926
927 elsif Is_Interface (Btyp_DDT)
928 and then (Comes_From_Source (N)
929 or else Comes_From_Source (Ref_Object)
930 or else (Nkind (Ref_Object) in N_Has_Chars
931 and then Chars (Ref_Object) = Name_uInit))
932 then
933 if Nkind (Ref_Object) /= N_Explicit_Dereference then
934
d8d8b098 935 -- No implicit conversion required if types match, or if
936 -- the prefix is the class_wide_type of the interface. In
937 -- either case passing an object of the interface type has
938 -- already set the pointer correctly.
939
940 if Btyp_DDT = Etype (Ref_Object)
941 or else (Is_Class_Wide_Type (Etype (Ref_Object))
942 and then
943 Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
944 then
945 null;
5e82d8fe 946
d8d8b098 947 else
5e82d8fe 948 Rewrite (Prefix (N),
d251c56f 949 Convert_To (Btyp_DDT,
5e82d8fe 950 New_Copy_Tree (Prefix (N))));
951
d251c56f 952 Analyze_And_Resolve (Prefix (N), Btyp_DDT);
ee6ba406 953 end if;
aad6babd 954
5e82d8fe 955 -- When the object is an explicit dereference, convert the
956 -- dereference's prefix.
f947f061 957
5e82d8fe 958 else
959 declare
960 Obj_DDT : constant Entity_Id :=
961 Base_Type
962 (Directly_Designated_Type
963 (Etype (Prefix (Ref_Object))));
964 begin
965 -- No implicit conversion required if designated types
966 -- match.
967
968 if Obj_DDT /= Btyp_DDT
969 and then not (Is_Class_Wide_Type (Obj_DDT)
970 and then Etype (Obj_DDT) = Btyp_DDT)
971 then
972 Rewrite (N,
973 Convert_To (Typ,
974 New_Copy_Tree (Prefix (Ref_Object))));
975 Analyze_And_Resolve (N, Typ);
976 end if;
977 end;
ee6ba406 978 end if;
5e82d8fe 979 end if;
980 end Access_Cases;
ee6ba406 981
982 --------------
983 -- Adjacent --
984 --------------
985
986 -- Transforms 'Adjacent into a call to the floating-point attribute
987 -- function Adjacent in Fat_xxx (where xxx is the root type)
988
989 when Attribute_Adjacent =>
990 Expand_Fpt_Attribute_RR (N);
991
992 -------------
993 -- Address --
994 -------------
995
996 when Attribute_Address => Address : declare
997 Task_Proc : Entity_Id;
998
999 begin
f947f061 1000 -- If the prefix is a task or a task type, the useful address is that
1001 -- of the procedure for the task body, i.e. the actual program unit.
1002 -- We replace the original entity with that of the procedure.
ee6ba406 1003
1004 if Is_Entity_Name (Pref)
1005 and then Is_Task_Type (Entity (Pref))
1006 then
d55c93e0 1007 Task_Proc := Next_Entity (Root_Type (Ptyp));
ee6ba406 1008
1009 while Present (Task_Proc) loop
1010 exit when Ekind (Task_Proc) = E_Procedure
1011 and then Etype (First_Formal (Task_Proc)) =
d55c93e0 1012 Corresponding_Record_Type (Ptyp);
ee6ba406 1013 Next_Entity (Task_Proc);
1014 end loop;
1015
1016 if Present (Task_Proc) then
1017 Set_Entity (Pref, Task_Proc);
1018 Set_Etype (Pref, Etype (Task_Proc));
1019 end if;
1020
1021 -- Similarly, the address of a protected operation is the address
1022 -- of the corresponding protected body, regardless of the protected
1023 -- object from which it is selected.
1024
1025 elsif Nkind (Pref) = N_Selected_Component
1026 and then Is_Subprogram (Entity (Selector_Name (Pref)))
1027 and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
1028 then
1029 Rewrite (Pref,
1030 New_Occurrence_Of (
1031 External_Subprogram (Entity (Selector_Name (Pref))), Loc));
1032
1033 elsif Nkind (Pref) = N_Explicit_Dereference
d55c93e0 1034 and then Ekind (Ptyp) = E_Subprogram_Type
1035 and then Convention (Ptyp) = Convention_Protected
ee6ba406 1036 then
1037 -- The prefix is be a dereference of an access_to_protected_
1038 -- subprogram. The desired address is the second component of
1039 -- the record that represents the access.
1040
1041 declare
1042 Addr : constant Entity_Id := Etype (N);
1043 Ptr : constant Node_Id := Prefix (Pref);
1044 T : constant Entity_Id :=
1045 Equivalent_Type (Base_Type (Etype (Ptr)));
1046
1047 begin
1048 Rewrite (N,
1049 Unchecked_Convert_To (Addr,
1050 Make_Selected_Component (Loc,
1051 Prefix => Unchecked_Convert_To (T, Ptr),
1052 Selector_Name => New_Occurrence_Of (
1053 Next_Entity (First_Entity (T)), Loc))));
1054
1055 Analyze_And_Resolve (N, Addr);
1056 end;
99f2248e 1057
1058 -- Ada 2005 (AI-251): Class-wide interface objects are always
1059 -- "displaced" to reference the tag associated with the interface
1060 -- type. In order to obtain the real address of such objects we
1061 -- generate a call to a run-time subprogram that returns the base
1062 -- address of the object.
1063
f0bf2ff3 1064 -- This processing is not needed in the VM case, where dispatching
1065 -- issues are taken care of by the virtual machine.
1066
d55c93e0 1067 elsif Is_Class_Wide_Type (Ptyp)
1068 and then Is_Interface (Ptyp)
662256db 1069 and then Tagged_Type_Expansion
83aa52b6 1070 and then not (Nkind (Pref) in N_Has_Entity
1071 and then Is_Subprogram (Entity (Pref)))
99f2248e 1072 then
1073 Rewrite (N,
1074 Make_Function_Call (Loc,
1075 Name => New_Reference_To (RTE (RE_Base_Address), Loc),
1076 Parameter_Associations => New_List (
1077 Relocate_Node (N))));
1078 Analyze (N);
1079 return;
ee6ba406 1080 end if;
1081
d55c93e0 1082 -- Deal with packed array reference, other cases are handled by
1083 -- the back end.
ee6ba406 1084
1085 if Involves_Packed_Array_Reference (Pref) then
1086 Expand_Packed_Address_Reference (N);
1087 end if;
1088 end Address;
1089
9dfe12ae 1090 ---------------
1091 -- Alignment --
1092 ---------------
1093
1094 when Attribute_Alignment => Alignment : declare
9dfe12ae 1095 New_Node : Node_Id;
1096
1097 begin
1098 -- For class-wide types, X'Class'Alignment is transformed into a
1099 -- direct reference to the Alignment of the class type, so that the
1100 -- back end does not have to deal with the X'Class'Alignment
1101 -- reference.
1102
1103 if Is_Entity_Name (Pref)
1104 and then Is_Class_Wide_Type (Entity (Pref))
1105 then
1106 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
1107 return;
1108
1109 -- For x'Alignment applied to an object of a class wide type,
1110 -- transform X'Alignment into a call to the predefined primitive
1111 -- operation _Alignment applied to X.
1112
1113 elsif Is_Class_Wide_Type (Ptyp) then
99f2248e 1114
1115 -- No need to do anything else compiling under restriction
1116 -- No_Dispatching_Calls. During the semantic analysis we
1117 -- already notified such violation.
1118
1119 if Restriction_Active (No_Dispatching_Calls) then
1120 return;
1121 end if;
1122
9dfe12ae 1123 New_Node :=
1124 Make_Function_Call (Loc,
1125 Name => New_Reference_To
1126 (Find_Prim_Op (Ptyp, Name_uAlignment), Loc),
1127 Parameter_Associations => New_List (Pref));
1128
1129 if Typ /= Standard_Integer then
1130
1131 -- The context is a specific integer type with which the
1132 -- original attribute was compatible. The function has a
1133 -- specific type as well, so to preserve the compatibility
1134 -- we must convert explicitly.
1135
1136 New_Node := Convert_To (Typ, New_Node);
1137 end if;
1138
1139 Rewrite (N, New_Node);
1140 Analyze_And_Resolve (N, Typ);
1141 return;
1142
1143 -- For all other cases, we just have to deal with the case of
1144 -- the fact that the result can be universal.
1145
1146 else
1147 Apply_Universal_Integer_Attribute_Checks (N);
1148 end if;
1149 end Alignment;
1150
ee6ba406 1151 ---------------
1152 -- AST_Entry --
1153 ---------------
1154
1155 when Attribute_AST_Entry => AST_Entry : declare
1156 Ttyp : Entity_Id;
1157 T_Id : Node_Id;
1158 Eent : Entity_Id;
1159
1160 Entry_Ref : Node_Id;
1161 -- The reference to the entry or entry family
1162
1163 Index : Node_Id;
1164 -- The index expression for an entry family reference, or
1165 -- the Empty if Entry_Ref references a simple entry.
1166
1167 begin
1168 if Nkind (Pref) = N_Indexed_Component then
1169 Entry_Ref := Prefix (Pref);
1170 Index := First (Expressions (Pref));
1171 else
1172 Entry_Ref := Pref;
1173 Index := Empty;
1174 end if;
1175
1176 -- Get expression for Task_Id and the entry entity
1177
1178 if Nkind (Entry_Ref) = N_Selected_Component then
1179 T_Id :=
1180 Make_Attribute_Reference (Loc,
1181 Attribute_Name => Name_Identity,
1182 Prefix => Prefix (Entry_Ref));
1183
1184 Ttyp := Etype (Prefix (Entry_Ref));
1185 Eent := Entity (Selector_Name (Entry_Ref));
1186
1187 else
1188 T_Id :=
1189 Make_Function_Call (Loc,
1190 Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
1191
1192 Eent := Entity (Entry_Ref);
1193
1194 -- We have to find the enclosing task to get the task type
1195 -- There must be one, since we already validated this earlier
1196
1197 Ttyp := Current_Scope;
1198 while not Is_Task_Type (Ttyp) loop
1199 Ttyp := Scope (Ttyp);
1200 end loop;
1201 end if;
1202
1203 -- Now rewrite the attribute with a call to Create_AST_Handler
1204
1205 Rewrite (N,
1206 Make_Function_Call (Loc,
1207 Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
1208 Parameter_Associations => New_List (
1209 T_Id,
1210 Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
1211
1212 Analyze_And_Resolve (N, RTE (RE_AST_Handler));
1213 end AST_Entry;
1214
5c182b3b 1215 ---------
1216 -- Bit --
1217 ---------
1218
1219 -- We compute this if a packed array reference was present, otherwise we
1220 -- leave the computation up to the back end.
1221
1222 when Attribute_Bit =>
1223 if Involves_Packed_Array_Reference (Pref) then
1224 Expand_Packed_Bit_Reference (N);
1225 else
1226 Apply_Universal_Integer_Attribute_Checks (N);
1227 end if;
1228
ee6ba406 1229 ------------------
1230 -- Bit_Position --
1231 ------------------
1232
d55c93e0 1233 -- We compute this if a component clause was present, otherwise we leave
1234 -- the computation up to the back end, since we don't know what layout
1235 -- will be chosen.
ee6ba406 1236
1237 -- Note that the attribute can apply to a naked record component
1238 -- in generated code (i.e. the prefix is an identifier that
1239 -- references the component or discriminant entity).
1240
5c182b3b 1241 when Attribute_Bit_Position => Bit_Position : declare
ee6ba406 1242 CE : Entity_Id;
1243
1244 begin
1245 if Nkind (Pref) = N_Identifier then
1246 CE := Entity (Pref);
1247 else
1248 CE := Entity (Selector_Name (Pref));
1249 end if;
1250
1251 if Known_Static_Component_Bit_Offset (CE) then
1252 Rewrite (N,
1253 Make_Integer_Literal (Loc,
1254 Intval => Component_Bit_Offset (CE)));
1255 Analyze_And_Resolve (N, Typ);
1256
1257 else
1258 Apply_Universal_Integer_Attribute_Checks (N);
1259 end if;
1260 end Bit_Position;
1261
1262 ------------------
1263 -- Body_Version --
1264 ------------------
1265
1266 -- A reference to P'Body_Version or P'Version is expanded to
1267
1268 -- Vnn : Unsigned;
17953e50 1269 -- pragma Import (C, Vnn, "uuuuT");
ee6ba406 1270 -- ...
1271 -- Get_Version_String (Vnn)
1272
1273 -- where uuuu is the unit name (dots replaced by double underscore)
1274 -- and T is B for the cases of Body_Version, or Version applied to a
1275 -- subprogram acting as its own spec, and S for Version applied to a
1276 -- subprogram spec or package. This sequence of code references the
6fb3c314 1277 -- unsigned constant created in the main program by the binder.
ee6ba406 1278
36dccb2b 1279 -- A special exception occurs for Standard, where the string returned
1280 -- is a copy of the library string in gnatvsn.ads.
ee6ba406 1281
1282 when Attribute_Body_Version | Attribute_Version => Version : declare
46eb6933 1283 E : constant Entity_Id := Make_Temporary (Loc, 'V');
f947f061 1284 Pent : Entity_Id;
ee6ba406 1285 S : String_Id;
1286
1287 begin
1288 -- If not library unit, get to containing library unit
1289
f947f061 1290 Pent := Entity (Pref);
ee6ba406 1291 while Pent /= Standard_Standard
1292 and then Scope (Pent) /= Standard_Standard
f947f061 1293 and then not Is_Child_Unit (Pent)
ee6ba406 1294 loop
1295 Pent := Scope (Pent);
1296 end loop;
1297
f947f061 1298 -- Special case Standard and Standard.ASCII
ee6ba406 1299
f947f061 1300 if Pent = Standard_Standard or else Pent = Standard_ASCII then
ee6ba406 1301 Rewrite (N,
1302 Make_String_Literal (Loc,
5245b786 1303 Strval => Verbose_Library_Version));
ee6ba406 1304
1305 -- All other cases
1306
1307 else
1308 -- Build required string constant
1309
1310 Get_Name_String (Get_Unit_Name (Pent));
1311
1312 Start_String;
1313 for J in 1 .. Name_Len - 2 loop
1314 if Name_Buffer (J) = '.' then
1315 Store_String_Chars ("__");
1316 else
1317 Store_String_Char (Get_Char_Code (Name_Buffer (J)));
1318 end if;
1319 end loop;
1320
1321 -- Case of subprogram acting as its own spec, always use body
1322
1323 if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
1324 and then Nkind (Parent (Declaration_Node (Pent))) =
1325 N_Subprogram_Body
1326 and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
1327 then
1328 Store_String_Chars ("B");
1329
1330 -- Case of no body present, always use spec
1331
1332 elsif not Unit_Requires_Body (Pent) then
1333 Store_String_Chars ("S");
1334
1335 -- Otherwise use B for Body_Version, S for spec
1336
1337 elsif Id = Attribute_Body_Version then
1338 Store_String_Chars ("B");
1339 else
1340 Store_String_Chars ("S");
1341 end if;
1342
1343 S := End_String;
1344 Lib.Version_Referenced (S);
1345
1346 -- Insert the object declaration
1347
1348 Insert_Actions (N, New_List (
1349 Make_Object_Declaration (Loc,
1350 Defining_Identifier => E,
1351 Object_Definition =>
1352 New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
1353
1354 -- Set entity as imported with correct external name
1355
1356 Set_Is_Imported (E);
1357 Set_Interface_Name (E, Make_String_Literal (Loc, S));
1358
f947f061 1359 -- Set entity as internal to ensure proper Sprint output of its
1360 -- implicit importation.
1361
1362 Set_Is_Internal (E);
1363
ee6ba406 1364 -- And now rewrite original reference
1365
1366 Rewrite (N,
1367 Make_Function_Call (Loc,
1368 Name => New_Reference_To (RTE (RE_Get_Version_String), Loc),
1369 Parameter_Associations => New_List (
1370 New_Occurrence_Of (E, Loc))));
1371 end if;
1372
1373 Analyze_And_Resolve (N, RTE (RE_Version_String));
1374 end Version;
1375
1376 -------------
1377 -- Ceiling --
1378 -------------
1379
1380 -- Transforms 'Ceiling into a call to the floating-point attribute
1381 -- function Ceiling in Fat_xxx (where xxx is the root type)
1382
1383 when Attribute_Ceiling =>
1384 Expand_Fpt_Attribute_R (N);
1385
1386 --------------
1387 -- Callable --
1388 --------------
1389
aad6babd 1390 -- Transforms 'Callable attribute into a call to the Callable function
ee6ba406 1391
1392 when Attribute_Callable => Callable :
1393 begin
1550b445 1394 -- We have an object of a task interface class-wide type as a prefix
1395 -- to Callable. Generate:
83aa52b6 1396 -- callable (Task_Id (Pref._disp_get_task_id));
1550b445 1397
de54c5ab 1398 if Ada_Version >= Ada_2005
d55c93e0 1399 and then Ekind (Ptyp) = E_Class_Wide_Type
1400 and then Is_Interface (Ptyp)
1401 and then Is_Task_Interface (Ptyp)
1550b445 1402 then
1403 Rewrite (N,
1404 Make_Function_Call (Loc,
1405 Name =>
1406 New_Reference_To (RTE (RE_Callable), Loc),
1407 Parameter_Associations => New_List (
83aa52b6 1408 Make_Unchecked_Type_Conversion (Loc,
1409 Subtype_Mark =>
1410 New_Reference_To (RTE (RO_ST_Task_Id), Loc),
1411 Expression =>
1412 Make_Selected_Component (Loc,
1413 Prefix =>
1414 New_Copy_Tree (Pref),
1415 Selector_Name =>
1416 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
1417
1550b445 1418 else
1419 Rewrite (N,
1420 Build_Call_With_Task (Pref, RTE (RE_Callable)));
1421 end if;
1422
ee6ba406 1423 Analyze_And_Resolve (N, Standard_Boolean);
1424 end Callable;
1425
1426 ------------
1427 -- Caller --
1428 ------------
1429
1430 -- Transforms 'Caller attribute into a call to either the
1431 -- Task_Entry_Caller or the Protected_Entry_Caller function.
1432
1433 when Attribute_Caller => Caller : declare
7f9be362 1434 Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
9dfe12ae 1435 Ent : constant Entity_Id := Entity (Pref);
1436 Conctype : constant Entity_Id := Scope (Ent);
1437 Nest_Depth : Integer := 0;
ee6ba406 1438 Name : Node_Id;
1439 S : Entity_Id;
1440
1441 begin
1442 -- Protected case
1443
1444 if Is_Protected_Type (Conctype) then
4c06b9d2 1445 case Corresponding_Runtime_Package (Conctype) is
1446 when System_Tasking_Protected_Objects_Entries =>
1447 Name :=
1448 New_Reference_To
1449 (RTE (RE_Protected_Entry_Caller), Loc);
1450
1451 when System_Tasking_Protected_Objects_Single_Entry =>
1452 Name :=
1453 New_Reference_To
1454 (RTE (RE_Protected_Single_Entry_Caller), Loc);
1455
1456 when others =>
1457 raise Program_Error;
1458 end case;
ee6ba406 1459
1460 Rewrite (N,
1461 Unchecked_Convert_To (Id_Kind,
1462 Make_Function_Call (Loc,
1463 Name => Name,
d55c93e0 1464 Parameter_Associations => New_List (
1465 New_Reference_To
1466 (Find_Protection_Object (Current_Scope), Loc)))));
ee6ba406 1467
1468 -- Task case
1469
1470 else
1471 -- Determine the nesting depth of the E'Caller attribute, that
1472 -- is, how many accept statements are nested within the accept
1473 -- statement for E at the point of E'Caller. The runtime uses
1474 -- this depth to find the specified entry call.
1475
1476 for J in reverse 0 .. Scope_Stack.Last loop
1477 S := Scope_Stack.Table (J).Entity;
1478
1479 -- We should not reach the scope of the entry, as it should
1480 -- already have been checked in Sem_Attr that this attribute
1481 -- reference is within a matching accept statement.
1482
1483 pragma Assert (S /= Conctype);
1484
1485 if S = Ent then
1486 exit;
1487
1488 elsif Is_Entry (S) then
1489 Nest_Depth := Nest_Depth + 1;
1490 end if;
1491 end loop;
1492
1493 Rewrite (N,
1494 Unchecked_Convert_To (Id_Kind,
1495 Make_Function_Call (Loc,
d55c93e0 1496 Name =>
1497 New_Reference_To (RTE (RE_Task_Entry_Caller), Loc),
ee6ba406 1498 Parameter_Associations => New_List (
1499 Make_Integer_Literal (Loc,
1500 Intval => Int (Nest_Depth))))));
1501 end if;
1502
1503 Analyze_And_Resolve (N, Id_Kind);
1504 end Caller;
1505
1506 -------------
1507 -- Compose --
1508 -------------
1509
1510 -- Transforms 'Compose into a call to the floating-point attribute
1511 -- function Compose in Fat_xxx (where xxx is the root type)
1512
1513 -- Note: we strictly should have special code here to deal with the
1514 -- case of absurdly negative arguments (less than Integer'First)
1515 -- which will return a (signed) zero value, but it hardly seems
1516 -- worth the effort. Absurdly large positive arguments will raise
1517 -- constraint error which is fine.
1518
1519 when Attribute_Compose =>
1520 Expand_Fpt_Attribute_RI (N);
1521
1522 -----------------
1523 -- Constrained --
1524 -----------------
1525
1526 when Attribute_Constrained => Constrained : declare
1527 Formal_Ent : constant Entity_Id := Param_Entity (Pref);
1528
7f8eb6ed 1529 function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
1530 -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
1531 -- view of an aliased object whose subtype is constrained.
1532
1533 ---------------------------------
1534 -- Is_Constrained_Aliased_View --
1535 ---------------------------------
1536
1537 function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
1538 E : Entity_Id;
1539
1540 begin
1541 if Is_Entity_Name (Obj) then
1542 E := Entity (Obj);
1543
1544 if Present (Renamed_Object (E)) then
1545 return Is_Constrained_Aliased_View (Renamed_Object (E));
7f8eb6ed 1546 else
1547 return Is_Aliased (E) and then Is_Constrained (Etype (E));
1548 end if;
1549
1550 else
1551 return Is_Aliased_View (Obj)
1552 and then
1553 (Is_Constrained (Etype (Obj))
1554 or else (Nkind (Obj) = N_Explicit_Dereference
1555 and then
1556 not Has_Constrained_Partial_View
1557 (Base_Type (Etype (Obj)))));
1558 end if;
1559 end Is_Constrained_Aliased_View;
1560
1561 -- Start of processing for Constrained
1562
ee6ba406 1563 begin
1564 -- Reference to a parameter where the value is passed as an extra
1565 -- actual, corresponding to the extra formal referenced by the
9dfe12ae 1566 -- Extra_Constrained field of the corresponding formal. If this
1567 -- is an entry in-parameter, it is replaced by a constant renaming
1568 -- for which Extra_Constrained is never created.
ee6ba406 1569
1570 if Present (Formal_Ent)
9dfe12ae 1571 and then Ekind (Formal_Ent) /= E_Constant
ee6ba406 1572 and then Present (Extra_Constrained (Formal_Ent))
1573 then
1574 Rewrite (N,
1575 New_Occurrence_Of
1576 (Extra_Constrained (Formal_Ent), Sloc (N)));
1577
1578 -- For variables with a Extra_Constrained field, we use the
1579 -- corresponding entity.
1580
1581 elsif Nkind (Pref) = N_Identifier
1582 and then Ekind (Entity (Pref)) = E_Variable
1583 and then Present (Extra_Constrained (Entity (Pref)))
1584 then
1585 Rewrite (N,
1586 New_Occurrence_Of
1587 (Extra_Constrained (Entity (Pref)), Sloc (N)));
1588
1589 -- For all other entity names, we can tell at compile time
1590
1591 elsif Is_Entity_Name (Pref) then
1592 declare
1593 Ent : constant Entity_Id := Entity (Pref);
1594 Res : Boolean;
1595
1596 begin
1597 -- (RM J.4) obsolescent cases
1598
1599 if Is_Type (Ent) then
1600
1601 -- Private type
1602
1603 if Is_Private_Type (Ent) then
1604 Res := not Has_Discriminants (Ent)
1605 or else Is_Constrained (Ent);
1606
1607 -- It not a private type, must be a generic actual type
1608 -- that corresponded to a private type. We know that this
1609 -- correspondence holds, since otherwise the reference
1610 -- within the generic template would have been illegal.
1611
1612 else
9dfe12ae 1613 if Is_Composite_Type (Underlying_Type (Ent)) then
1614 Res := Is_Constrained (Ent);
1615 else
1616 Res := True;
1617 end if;
ee6ba406 1618 end if;
1619
1620 -- If the prefix is not a variable or is aliased, then
d55c93e0 1621 -- definitely true; if it's a formal parameter without an
1622 -- associated extra formal, then treat it as constrained.
ee6ba406 1623
7f8eb6ed 1624 -- Ada 2005 (AI-363): An aliased prefix must be known to be
1625 -- constrained in order to set the attribute to True.
1626
ee6ba406 1627 elsif not Is_Variable (Pref)
1628 or else Present (Formal_Ent)
de54c5ab 1629 or else (Ada_Version < Ada_2005
7f8eb6ed 1630 and then Is_Aliased_View (Pref))
de54c5ab 1631 or else (Ada_Version >= Ada_2005
7f8eb6ed 1632 and then Is_Constrained_Aliased_View (Pref))
ee6ba406 1633 then
1634 Res := True;
1635
d55c93e0 1636 -- Variable case, look at type to see if it is constrained.
1637 -- Note that the one case where this is not accurate (the
1638 -- procedure formal case), has been handled above.
ee6ba406 1639
99f2248e 1640 -- We use the Underlying_Type here (and below) in case the
1641 -- type is private without discriminants, but the full type
1642 -- has discriminants. This case is illegal, but we generate it
1643 -- internally for passing to the Extra_Constrained parameter.
1644
ee6ba406 1645 else
e8b5ac67 1646 -- In Ada 2012, test for case of a limited tagged type, in
1647 -- which case the attribute is always required to return
1648 -- True. The underlying type is tested, to make sure we also
1649 -- return True for cases where there is an unconstrained
1650 -- object with an untagged limited partial view which has
1651 -- defaulted discriminants (such objects always produce a
1652 -- False in earlier versions of Ada). (Ada 2012: AI05-0214)
1653
1654 Res := Is_Constrained (Underlying_Type (Etype (Ent)))
1655 or else
1656 (Ada_Version >= Ada_2012
1657 and then Is_Tagged_Type (Underlying_Type (Ptyp))
1658 and then Is_Limited_Type (Ptyp));
ee6ba406 1659 end if;
1660
e8b5ac67 1661 Rewrite (N, New_Reference_To (Boolean_Literals (Res), Loc));
ee6ba406 1662 end;
1663
d55c93e0 1664 -- Prefix is not an entity name. These are also cases where we can
1665 -- always tell at compile time by looking at the form and type of the
1666 -- prefix. If an explicit dereference of an object with constrained
e8b5ac67 1667 -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
1668 -- underlying type is a limited tagged type, then Constrained is
1669 -- required to always return True (Ada 2012: AI05-0214).
ee6ba406 1670
1671 else
1bbc9831 1672 Rewrite (N,
1673 New_Reference_To (
1674 Boolean_Literals (
1675 not Is_Variable (Pref)
aad6babd 1676 or else
1677 (Nkind (Pref) = N_Explicit_Dereference
e8b5ac67 1678 and then
1679 not Has_Constrained_Partial_View (Base_Type (Ptyp)))
1680 or else Is_Constrained (Underlying_Type (Ptyp))
1681 or else (Ada_Version >= Ada_2012
1682 and then Is_Tagged_Type (Underlying_Type (Ptyp))
1683 and then Is_Limited_Type (Ptyp))),
1bbc9831 1684 Loc));
ee6ba406 1685 end if;
1686
1687 Analyze_And_Resolve (N, Standard_Boolean);
1688 end Constrained;
1689
1690 ---------------
1691 -- Copy_Sign --
1692 ---------------
1693
1694 -- Transforms 'Copy_Sign into a call to the floating-point attribute
1695 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
1696
1697 when Attribute_Copy_Sign =>
1698 Expand_Fpt_Attribute_RR (N);
1699
1700 -----------
1701 -- Count --
1702 -----------
1703
1704 -- Transforms 'Count attribute into a call to the Count function
1705
d55c93e0 1706 when Attribute_Count => Count : declare
1707 Call : Node_Id;
1708 Conctyp : Entity_Id;
1709 Entnam : Node_Id;
1710 Entry_Id : Entity_Id;
1711 Index : Node_Id;
1712 Name : Node_Id;
ee6ba406 1713
1714 begin
1715 -- If the prefix is a member of an entry family, retrieve both
1716 -- entry name and index. For a simple entry there is no index.
1717
1718 if Nkind (Pref) = N_Indexed_Component then
1719 Entnam := Prefix (Pref);
1720 Index := First (Expressions (Pref));
1721 else
1722 Entnam := Pref;
1723 Index := Empty;
1724 end if;
1725
d55c93e0 1726 Entry_Id := Entity (Entnam);
1727
ee6ba406 1728 -- Find the concurrent type in which this attribute is referenced
1729 -- (there had better be one).
1730
1731 Conctyp := Current_Scope;
1732 while not Is_Concurrent_Type (Conctyp) loop
1733 Conctyp := Scope (Conctyp);
1734 end loop;
1735
1736 -- Protected case
1737
1738 if Is_Protected_Type (Conctyp) then
4c06b9d2 1739 case Corresponding_Runtime_Package (Conctyp) is
1740 when System_Tasking_Protected_Objects_Entries =>
1741 Name := New_Reference_To (RTE (RE_Protected_Count), Loc);
1742
1743 Call :=
1744 Make_Function_Call (Loc,
1745 Name => Name,
1746 Parameter_Associations => New_List (
d55c93e0 1747 New_Reference_To
1748 (Find_Protection_Object (Current_Scope), Loc),
1749 Entry_Index_Expression
1750 (Loc, Entry_Id, Index, Scope (Entry_Id))));
4c06b9d2 1751
1752 when System_Tasking_Protected_Objects_Single_Entry =>
d55c93e0 1753 Name :=
1754 New_Reference_To (RTE (RE_Protected_Count_Entry), Loc);
4c06b9d2 1755
1756 Call :=
1757 Make_Function_Call (Loc,
1758 Name => Name,
1759 Parameter_Associations => New_List (
d55c93e0 1760 New_Reference_To
1761 (Find_Protection_Object (Current_Scope), Loc)));
1762
4c06b9d2 1763 when others =>
1764 raise Program_Error;
4c06b9d2 1765 end case;
ee6ba406 1766
1767 -- Task case
1768
1769 else
1770 Call :=
1771 Make_Function_Call (Loc,
1772 Name => New_Reference_To (RTE (RE_Task_Count), Loc),
1773 Parameter_Associations => New_List (
d55c93e0 1774 Entry_Index_Expression (Loc,
1775 Entry_Id, Index, Scope (Entry_Id))));
ee6ba406 1776 end if;
1777
1778 -- The call returns type Natural but the context is universal integer
1779 -- so any integer type is allowed. The attribute was already resolved
1780 -- so its Etype is the required result type. If the base type of the
1781 -- context type is other than Standard.Integer we put in a conversion
1782 -- to the required type. This can be a normal typed conversion since
1783 -- both input and output types of the conversion are integer types
1784
1785 if Base_Type (Typ) /= Base_Type (Standard_Integer) then
1786 Rewrite (N, Convert_To (Typ, Call));
1787 else
1788 Rewrite (N, Call);
1789 end if;
1790
1791 Analyze_And_Resolve (N, Typ);
1792 end Count;
1793
1794 ---------------
1795 -- Elab_Body --
1796 ---------------
1797
1798 -- This processing is shared by Elab_Spec
1799
1800 -- What we do is to insert the following declarations
1801
1802 -- procedure tnn;
1803 -- pragma Import (C, enn, "name___elabb/s");
1804
1805 -- and then the Elab_Body/Spec attribute is replaced by a reference
1806 -- to this defining identifier.
1807
1808 when Attribute_Elab_Body |
1809 Attribute_Elab_Spec =>
1810
1811 Elab_Body : declare
46eb6933 1812 Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
ee6ba406 1813 Str : String_Id;
1814 Lang : Node_Id;
1815
1816 procedure Make_Elab_String (Nod : Node_Id);
1817 -- Given Nod, an identifier, or a selected component, put the
1818 -- image into the current string literal, with double underline
1819 -- between components.
1820
7f8eb6ed 1821 ----------------------
1822 -- Make_Elab_String --
1823 ----------------------
1824
ee6ba406 1825 procedure Make_Elab_String (Nod : Node_Id) is
1826 begin
1827 if Nkind (Nod) = N_Selected_Component then
1828 Make_Elab_String (Prefix (Nod));
7f8eb6ed 1829
83aa52b6 1830 case VM_Target is
1831 when JVM_Target =>
1832 Store_String_Char ('$');
1833 when CLI_Target =>
1834 Store_String_Char ('.');
1835 when No_VM =>
1836 Store_String_Char ('_');
1837 Store_String_Char ('_');
1838 end case;
ee6ba406 1839
1840 Get_Name_String (Chars (Selector_Name (Nod)));
1841
1842 else
1843 pragma Assert (Nkind (Nod) = N_Identifier);
1844 Get_Name_String (Chars (Nod));
1845 end if;
1846
1847 Store_String_Chars (Name_Buffer (1 .. Name_Len));
1848 end Make_Elab_String;
1849
1850 -- Start of processing for Elab_Body/Elab_Spec
1851
1852 begin
1853 -- First we need to prepare the string literal for the name of
1854 -- the elaboration routine to be referenced.
1855
1856 Start_String;
1857 Make_Elab_String (Pref);
1858
83aa52b6 1859 if VM_Target = No_VM then
ee6ba406 1860 Store_String_Chars ("___elab");
1861 Lang := Make_Identifier (Loc, Name_C);
83aa52b6 1862 else
1863 Store_String_Chars ("._elab");
1864 Lang := Make_Identifier (Loc, Name_Ada);
ee6ba406 1865 end if;
1866
1867 if Id = Attribute_Elab_Body then
1868 Store_String_Char ('b');
1869 else
1870 Store_String_Char ('s');
1871 end if;
1872
1873 Str := End_String;
1874
1875 Insert_Actions (N, New_List (
1876 Make_Subprogram_Declaration (Loc,
1877 Specification =>
1878 Make_Procedure_Specification (Loc,
1879 Defining_Unit_Name => Ent)),
1880
1881 Make_Pragma (Loc,
1882 Chars => Name_Import,
1883 Pragma_Argument_Associations => New_List (
55868293 1884 Make_Pragma_Argument_Association (Loc, Expression => Lang),
ee6ba406 1885
1886 Make_Pragma_Argument_Association (Loc,
55868293 1887 Expression => Make_Identifier (Loc, Chars (Ent))),
ee6ba406 1888
1889 Make_Pragma_Argument_Association (Loc,
55868293 1890 Expression => Make_String_Literal (Loc, Str))))));
ee6ba406 1891
1892 Set_Entity (N, Ent);
1893 Rewrite (N, New_Occurrence_Of (Ent, Loc));
1894 end Elab_Body;
1895
1896 ----------------
1897 -- Elaborated --
1898 ----------------
1899
d55c93e0 1900 -- Elaborated is always True for preelaborated units, predefined units,
1901 -- pure units and units which have Elaborate_Body pragmas. These units
1902 -- have no elaboration entity.
ee6ba406 1903
d55c93e0 1904 -- Note: The Elaborated attribute is never passed to the back end
ee6ba406 1905
1906 when Attribute_Elaborated => Elaborated : declare
1907 Ent : constant Entity_Id := Entity (Pref);
1908
1909 begin
1910 if Present (Elaboration_Entity (Ent)) then
1911 Rewrite (N,
1912 New_Occurrence_Of (Elaboration_Entity (Ent), Loc));
1913 else
1914 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
1915 end if;
1916 end Elaborated;
1917
1918 --------------
1919 -- Enum_Rep --
1920 --------------
1921
1922 when Attribute_Enum_Rep => Enum_Rep :
1923 begin
1924 -- X'Enum_Rep (Y) expands to
1925
1926 -- target-type (Y)
1927
d55c93e0 1928 -- This is simply a direct conversion from the enumeration type to
1929 -- the target integer type, which is treated by the back end as a
1930 -- normal integer conversion, treating the enumeration type as an
1931 -- integer, which is exactly what we want! We set Conversion_OK to
1932 -- make sure that the analyzer does not complain about what otherwise
1933 -- might be an illegal conversion.
ee6ba406 1934
1935 if Is_Non_Empty_List (Exprs) then
1936 Rewrite (N,
1937 OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
1938
1939 -- X'Enum_Rep where X is an enumeration literal is replaced by
1940 -- the literal value.
1941
1942 elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
1943 Rewrite (N,
1944 Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
1945
9dfe12ae 1946 -- If this is a renaming of a literal, recover the representation
1947 -- of the original.
1948
1949 elsif Ekind (Entity (Pref)) = E_Constant
1950 and then Present (Renamed_Object (Entity (Pref)))
1951 and then
1952 Ekind (Entity (Renamed_Object (Entity (Pref))))
1953 = E_Enumeration_Literal
1954 then
1955 Rewrite (N,
1956 Make_Integer_Literal (Loc,
1957 Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
1958
ee6ba406 1959 -- X'Enum_Rep where X is an object does a direct unchecked conversion
1960 -- of the object value, as described for the type case above.
1961
1962 else
1963 Rewrite (N,
1964 OK_Convert_To (Typ, Relocate_Node (Pref)));
1965 end if;
1966
1967 Set_Etype (N, Typ);
1968 Analyze_And_Resolve (N, Typ);
ee6ba406 1969 end Enum_Rep;
1970
d55c93e0 1971 --------------
1972 -- Enum_Val --
1973 --------------
1974
1975 when Attribute_Enum_Val => Enum_Val : declare
1976 Expr : Node_Id;
1977 Btyp : constant Entity_Id := Base_Type (Ptyp);
1978
1979 begin
1980 -- X'Enum_Val (Y) expands to
1981
1982 -- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
1983 -- X!(Y);
1984
1985 Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
1986
1987 Insert_Action (N,
1988 Make_Raise_Constraint_Error (Loc,
1989 Condition =>
1990 Make_Op_Eq (Loc,
1991 Left_Opnd =>
1992 Make_Function_Call (Loc,
1993 Name =>
1994 New_Reference_To (TSS (Btyp, TSS_Rep_To_Pos), Loc),
1995 Parameter_Associations => New_List (
1996 Relocate_Node (Duplicate_Subexpr (Expr)),
1997 New_Occurrence_Of (Standard_False, Loc))),
1998
1999 Right_Opnd => Make_Integer_Literal (Loc, -1)),
2000 Reason => CE_Range_Check_Failed));
2001
2002 Rewrite (N, Expr);
2003 Analyze_And_Resolve (N, Ptyp);
2004 end Enum_Val;
2005
ee6ba406 2006 --------------
2007 -- Exponent --
2008 --------------
2009
2010 -- Transforms 'Exponent into a call to the floating-point attribute
2011 -- function Exponent in Fat_xxx (where xxx is the root type)
2012
2013 when Attribute_Exponent =>
2014 Expand_Fpt_Attribute_R (N);
2015
2016 ------------------
2017 -- External_Tag --
2018 ------------------
2019
2020 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
2021
2022 when Attribute_External_Tag => External_Tag :
2023 begin
2024 Rewrite (N,
2025 Make_Function_Call (Loc,
2026 Name => New_Reference_To (RTE (RE_External_Tag), Loc),
2027 Parameter_Associations => New_List (
2028 Make_Attribute_Reference (Loc,
2029 Attribute_Name => Name_Tag,
2030 Prefix => Prefix (N)))));
2031
2032 Analyze_And_Resolve (N, Standard_String);
2033 end External_Tag;
2034
2035 -----------
2036 -- First --
2037 -----------
2038
d55c93e0 2039 when Attribute_First =>
ee6ba406 2040
ee6ba406 2041 -- If the prefix type is a constrained packed array type which
2042 -- already has a Packed_Array_Type representation defined, then
2043 -- replace this attribute with a direct reference to 'First of the
d55c93e0 2044 -- appropriate index subtype (since otherwise the back end will try
2045 -- to give us the value of 'First for this implementation type).
ee6ba406 2046
2047 if Is_Constrained_Packed_Array (Ptyp) then
2048 Rewrite (N,
2049 Make_Attribute_Reference (Loc,
2050 Attribute_Name => Name_First,
2051 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
2052 Analyze_And_Resolve (N, Typ);
2053
2054 elsif Is_Access_Type (Ptyp) then
2055 Apply_Access_Check (N);
2056 end if;
ee6ba406 2057
2058 ---------------
2059 -- First_Bit --
2060 ---------------
2061
d55c93e0 2062 -- Compute this if component clause was present, otherwise we leave the
2063 -- computation to be completed in the back-end, since we don't know what
ee6ba406 2064 -- layout will be chosen.
2065
d55c93e0 2066 when Attribute_First_Bit => First_Bit : declare
ee6ba406 2067 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2068
2069 begin
2070 if Known_Static_Component_Bit_Offset (CE) then
2071 Rewrite (N,
2072 Make_Integer_Literal (Loc,
2073 Component_Bit_Offset (CE) mod System_Storage_Unit));
2074
2075 Analyze_And_Resolve (N, Typ);
2076
2077 else
2078 Apply_Universal_Integer_Attribute_Checks (N);
2079 end if;
2080 end First_Bit;
2081
2082 -----------------
2083 -- Fixed_Value --
2084 -----------------
2085
2086 -- We transform:
2087
2088 -- fixtype'Fixed_Value (integer-value)
2089
2090 -- into
2091
2092 -- fixtype(integer-value)
2093
d55c93e0 2094 -- We do all the required analysis of the conversion here, because we do
2095 -- not want this to go through the fixed-point conversion circuits. Note
2096 -- that the back end always treats fixed-point as equivalent to the
2097 -- corresponding integer type anyway.
ee6ba406 2098
2099 when Attribute_Fixed_Value => Fixed_Value :
2100 begin
2101 Rewrite (N,
2102 Make_Type_Conversion (Loc,
2103 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
2104 Expression => Relocate_Node (First (Exprs))));
2105 Set_Etype (N, Entity (Pref));
2106 Set_Analyzed (N);
9dfe12ae 2107
2108 -- Note: it might appear that a properly analyzed unchecked conversion
2109 -- would be just fine here, but that's not the case, since the full
2110 -- range checks performed by the following call are critical!
2111
ee6ba406 2112 Apply_Type_Conversion_Checks (N);
2113 end Fixed_Value;
2114
2115 -----------
2116 -- Floor --
2117 -----------
2118
2119 -- Transforms 'Floor into a call to the floating-point attribute
2120 -- function Floor in Fat_xxx (where xxx is the root type)
2121
2122 when Attribute_Floor =>
2123 Expand_Fpt_Attribute_R (N);
2124
2125 ----------
2126 -- Fore --
2127 ----------
2128
2129 -- For the fixed-point type Typ:
2130
2131 -- Typ'Fore
2132
2133 -- expands into
2134
1550b445 2135 -- Result_Type (System.Fore (Universal_Real (Type'First)),
2136 -- Universal_Real (Type'Last))
ee6ba406 2137
2138 -- Note that we know that the type is a non-static subtype, or Fore
2139 -- would have itself been computed dynamically in Eval_Attribute.
2140
d55c93e0 2141 when Attribute_Fore => Fore : begin
ee6ba406 2142 Rewrite (N,
2143 Convert_To (Typ,
2144 Make_Function_Call (Loc,
2145 Name => New_Reference_To (RTE (RE_Fore), Loc),
2146
2147 Parameter_Associations => New_List (
1550b445 2148 Convert_To (Universal_Real,
ee6ba406 2149 Make_Attribute_Reference (Loc,
2150 Prefix => New_Reference_To (Ptyp, Loc),
2151 Attribute_Name => Name_First)),
2152
1550b445 2153 Convert_To (Universal_Real,
ee6ba406 2154 Make_Attribute_Reference (Loc,
2155 Prefix => New_Reference_To (Ptyp, Loc),
2156 Attribute_Name => Name_Last))))));
2157
2158 Analyze_And_Resolve (N, Typ);
2159 end Fore;
2160
2161 --------------
2162 -- Fraction --
2163 --------------
2164
2165 -- Transforms 'Fraction into a call to the floating-point attribute
2166 -- function Fraction in Fat_xxx (where xxx is the root type)
2167
2168 when Attribute_Fraction =>
2169 Expand_Fpt_Attribute_R (N);
2170
5690e662 2171 --------------
2172 -- From_Any --
2173 --------------
2174
2175 when Attribute_From_Any => From_Any : declare
2176 P_Type : constant Entity_Id := Etype (Pref);
2177 Decls : constant List_Id := New_List;
2178 begin
2179 Rewrite (N,
2180 Build_From_Any_Call (P_Type,
2181 Relocate_Node (First (Exprs)),
2182 Decls));
2183 Insert_Actions (N, Decls);
2184 Analyze_And_Resolve (N, P_Type);
2185 end From_Any;
2186
ee6ba406 2187 --------------
2188 -- Identity --
2189 --------------
2190
2191 -- For an exception returns a reference to the exception data:
2192 -- Exception_Id!(Prefix'Reference)
2193
2194 -- For a task it returns a reference to the _task_id component of
2195 -- corresponding record:
2196
7f9be362 2197 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
ee6ba406 2198
aad6babd 2199 -- in Ada.Task_Identification
ee6ba406 2200
2201 when Attribute_Identity => Identity : declare
2202 Id_Kind : Entity_Id;
2203
2204 begin
d55c93e0 2205 if Ptyp = Standard_Exception_Type then
ee6ba406 2206 Id_Kind := RTE (RE_Exception_Id);
2207
2208 if Present (Renamed_Object (Entity (Pref))) then
2209 Set_Entity (Pref, Renamed_Object (Entity (Pref)));
2210 end if;
2211
2212 Rewrite (N,
2213 Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
2214 else
7f9be362 2215 Id_Kind := RTE (RO_AT_Task_Id);
ee6ba406 2216
f0bf2ff3 2217 -- If the prefix is a task interface, the Task_Id is obtained
2218 -- dynamically through a dispatching call, as for other task
2219 -- attributes applied to interfaces.
2220
de54c5ab 2221 if Ada_Version >= Ada_2005
d55c93e0 2222 and then Ekind (Ptyp) = E_Class_Wide_Type
2223 and then Is_Interface (Ptyp)
2224 and then Is_Task_Interface (Ptyp)
f0bf2ff3 2225 then
2226 Rewrite (N,
2227 Unchecked_Convert_To (Id_Kind,
2228 Make_Selected_Component (Loc,
2229 Prefix =>
2230 New_Copy_Tree (Pref),
2231 Selector_Name =>
2232 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))));
2233
2234 else
2235 Rewrite (N,
2236 Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
2237 end if;
ee6ba406 2238 end if;
2239
2240 Analyze_And_Resolve (N, Id_Kind);
2241 end Identity;
2242
2243 -----------
2244 -- Image --
2245 -----------
2246
2247 -- Image attribute is handled in separate unit Exp_Imgv
2248
2249 when Attribute_Image =>
2250 Exp_Imgv.Expand_Image_Attribute (N);
2251
2252 ---------
2253 -- Img --
2254 ---------
2255
2256 -- X'Img is expanded to typ'Image (X), where typ is the type of X
2257
2258 when Attribute_Img => Img :
2259 begin
2260 Rewrite (N,
2261 Make_Attribute_Reference (Loc,
d55c93e0 2262 Prefix => New_Reference_To (Ptyp, Loc),
ee6ba406 2263 Attribute_Name => Name_Image,
2264 Expressions => New_List (Relocate_Node (Pref))));
2265
2266 Analyze_And_Resolve (N, Standard_String);
2267 end Img;
2268
2269 -----------
2270 -- Input --
2271 -----------
2272
2273 when Attribute_Input => Input : declare
2274 P_Type : constant Entity_Id := Entity (Pref);
2275 B_Type : constant Entity_Id := Base_Type (P_Type);
2276 U_Type : constant Entity_Id := Underlying_Type (P_Type);
2277 Strm : constant Node_Id := First (Exprs);
2278 Fname : Entity_Id;
2279 Decl : Node_Id;
2280 Call : Node_Id;
2281 Prag : Node_Id;
2282 Arg2 : Node_Id;
2283 Rfunc : Node_Id;
2284
2285 Cntrl : Node_Id := Empty;
2286 -- Value for controlling argument in call. Always Empty except in
2287 -- the dispatching (class-wide type) case, where it is a reference
2288 -- to the dummy object initialized to the right internal tag.
2289
d53a018a 2290 procedure Freeze_Stream_Subprogram (F : Entity_Id);
2291 -- The expansion of the attribute reference may generate a call to
2292 -- a user-defined stream subprogram that is frozen by the call. This
2293 -- can lead to access-before-elaboration problem if the reference
2294 -- appears in an object declaration and the subprogram body has not
2295 -- been seen. The freezing of the subprogram requires special code
2296 -- because it appears in an expanded context where expressions do
2297 -- not freeze their constituents.
2298
2299 ------------------------------
2300 -- Freeze_Stream_Subprogram --
2301 ------------------------------
2302
2303 procedure Freeze_Stream_Subprogram (F : Entity_Id) is
2304 Decl : constant Node_Id := Unit_Declaration_Node (F);
2305 Bod : Node_Id;
2306
2307 begin
2308 -- If this is user-defined subprogram, the corresponding
2309 -- stream function appears as a renaming-as-body, and the
2310 -- user subprogram must be retrieved by tree traversal.
2311
2312 if Present (Decl)
2313 and then Nkind (Decl) = N_Subprogram_Declaration
2314 and then Present (Corresponding_Body (Decl))
2315 then
2316 Bod := Corresponding_Body (Decl);
2317
2318 if Nkind (Unit_Declaration_Node (Bod)) =
2319 N_Subprogram_Renaming_Declaration
2320 then
2321 Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
2322 end if;
2323 end if;
2324 end Freeze_Stream_Subprogram;
2325
2326 -- Start of processing for Input
2327
ee6ba406 2328 begin
2329 -- If no underlying type, we have an error that will be diagnosed
2330 -- elsewhere, so here we just completely ignore the expansion.
2331
2332 if No (U_Type) then
2333 return;
2334 end if;
2335
2336 -- If there is a TSS for Input, just call it
2337
9dfe12ae 2338 Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
ee6ba406 2339
2340 if Present (Fname) then
2341 null;
2342
2343 else
2344 -- If there is a Stream_Convert pragma, use it, we rewrite
2345
2346 -- sourcetyp'Input (stream)
2347
2348 -- as
2349
2350 -- sourcetyp (streamread (strmtyp'Input (stream)));
2351
2c145f84 2352 -- where streamread is the given Read function that converts an
d55c93e0 2353 -- argument of type strmtyp to type sourcetyp or a type from which
2354 -- it is derived (extra conversion required for the derived case).
ee6ba406 2355
5245b786 2356 Prag := Get_Stream_Convert_Pragma (P_Type);
ee6ba406 2357
2358 if Present (Prag) then
2359 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
2360 Rfunc := Entity (Expression (Arg2));
2361
2362 Rewrite (N,
2363 Convert_To (B_Type,
2364 Make_Function_Call (Loc,
2365 Name => New_Occurrence_Of (Rfunc, Loc),
2366 Parameter_Associations => New_List (
2367 Make_Attribute_Reference (Loc,
2368 Prefix =>
2369 New_Occurrence_Of
2370 (Etype (First_Formal (Rfunc)), Loc),
2371 Attribute_Name => Name_Input,
2372 Expressions => Exprs)))));
2373
2374 Analyze_And_Resolve (N, B_Type);
2375 return;
2376
2377 -- Elementary types
2378
2379 elsif Is_Elementary_Type (U_Type) then
2380
2381 -- A special case arises if we have a defined _Read routine,
2382 -- since in this case we are required to call this routine.
2383
9dfe12ae 2384 if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
ee6ba406 2385 Build_Record_Or_Elementary_Input_Function
2386 (Loc, U_Type, Decl, Fname);
2387 Insert_Action (N, Decl);
2388
2389 -- For normal cases, we call the I_xxx routine directly
2390
2391 else
2392 Rewrite (N, Build_Elementary_Input_Call (N));
2393 Analyze_And_Resolve (N, P_Type);
2394 return;
2395 end if;
2396
2397 -- Array type case
2398
2399 elsif Is_Array_Type (U_Type) then
2400 Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
2401 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
2402
2403 -- Dispatching case with class-wide type
2404
2405 elsif Is_Class_Wide_Type (P_Type) then
2406
99f2248e 2407 -- No need to do anything else compiling under restriction
2408 -- No_Dispatching_Calls. During the semantic analysis we
2409 -- already notified such violation.
2410
2411 if Restriction_Active (No_Dispatching_Calls) then
2412 return;
2413 end if;
2414
ee6ba406 2415 declare
2416 Rtyp : constant Entity_Id := Root_Type (P_Type);
2417 Dnn : Entity_Id;
2418 Decl : Node_Id;
46eb6933 2419 Expr : Node_Id;
ee6ba406 2420
2421 begin
2422 -- Read the internal tag (RM 13.13.2(34)) and use it to
2423 -- initialize a dummy tag object:
2424
46eb6933 2425 -- Dnn : Ada.Tags.Tag :=
2426 -- Descendant_Tag (String'Input (Strm), P_Type);
ee6ba406 2427
2428 -- This dummy object is used only to provide a controlling
aad6babd 2429 -- argument for the eventual _Input call. Descendant_Tag is
2430 -- called rather than Internal_Tag to ensure that we have a
2431 -- tag for a type that is descended from the prefix type and
2432 -- declared at the same accessibility level (the exception
2433 -- Tag_Error will be raised otherwise). The level check is
2434 -- required for Ada 2005 because tagged types can be
2435 -- extended in nested scopes (AI-344).
ee6ba406 2436
46eb6933 2437 Expr :=
2438 Make_Function_Call (Loc,
2439 Name =>
2440 New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
2441 Parameter_Associations => New_List (
2442 Make_Attribute_Reference (Loc,
2443 Prefix => New_Occurrence_Of (Standard_String, Loc),
2444 Attribute_Name => Name_Input,
2445 Expressions => New_List (
2446 Relocate_Node (Duplicate_Subexpr (Strm)))),
2447 Make_Attribute_Reference (Loc,
2448 Prefix => New_Reference_To (P_Type, Loc),
2449 Attribute_Name => Name_Tag)));
2450
2451 Dnn := Make_Temporary (Loc, 'D', Expr);
ee6ba406 2452
2453 Decl :=
2454 Make_Object_Declaration (Loc,
2455 Defining_Identifier => Dnn,
46eb6933 2456 Object_Definition =>
ee6ba406 2457 New_Occurrence_Of (RTE (RE_Tag), Loc),
46eb6933 2458 Expression => Expr);
ee6ba406 2459
2460 Insert_Action (N, Decl);
2461
2462 -- Now we need to get the entity for the call, and construct
2463 -- a function call node, where we preset a reference to Dnn
aad6babd 2464 -- as the controlling argument (doing an unchecked convert
2465 -- to the class-wide tagged type to make it look like a real
2466 -- tagged object).
ee6ba406 2467
9dfe12ae 2468 Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
46eb6933 2469 Cntrl :=
2470 Unchecked_Convert_To (P_Type,
2471 New_Occurrence_Of (Dnn, Loc));
9dfe12ae 2472 Set_Etype (Cntrl, P_Type);
ee6ba406 2473 Set_Parent (Cntrl, N);
2474 end;
2475
2476 -- For tagged types, use the primitive Input function
2477
2478 elsif Is_Tagged_Type (U_Type) then
9dfe12ae 2479 Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
ee6ba406 2480
aad6babd 2481 -- All other record type cases, including protected records. The
2482 -- latter only arise for expander generated code for handling
2483 -- shared passive partition access.
ee6ba406 2484
2485 else
2486 pragma Assert
2487 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
2488
d55c93e0 2489 -- Ada 2005 (AI-216): Program_Error is raised executing default
2490 -- implementation of the Input attribute of an unchecked union
2491 -- type if the type lacks default discriminant values.
00f91aef 2492
2493 if Is_Unchecked_Union (Base_Type (U_Type))
18a40e97 2494 and then No (Discriminant_Constraint (U_Type))
00f91aef 2495 then
2496 Insert_Action (N,
2497 Make_Raise_Program_Error (Loc,
2498 Reason => PE_Unchecked_Union_Restriction));
2499
2500 return;
2501 end if;
2502
ee6ba406 2503 Build_Record_Or_Elementary_Input_Function
2504 (Loc, Base_Type (U_Type), Decl, Fname);
2505 Insert_Action (N, Decl);
d53a018a 2506
2507 if Nkind (Parent (N)) = N_Object_Declaration
2508 and then Is_Record_Type (U_Type)
2509 then
2510 -- The stream function may contain calls to user-defined
2511 -- Read procedures for individual components.
2512
2513 declare
2514 Comp : Entity_Id;
2515 Func : Entity_Id;
2516
2517 begin
2518 Comp := First_Component (U_Type);
2519 while Present (Comp) loop
2520 Func :=
2521 Find_Stream_Subprogram
2522 (Etype (Comp), TSS_Stream_Read);
2523
2524 if Present (Func) then
2525 Freeze_Stream_Subprogram (Func);
2526 end if;
2527
2528 Next_Component (Comp);
2529 end loop;
2530 end;
2531 end if;
ee6ba406 2532 end if;
2533 end if;
2534
aad6babd 2535 -- If we fall through, Fname is the function to be called. The result
2536 -- is obtained by calling the appropriate function, then converting
2537 -- the result. The conversion does a subtype check.
ee6ba406 2538
2539 Call :=
2540 Make_Function_Call (Loc,
2541 Name => New_Occurrence_Of (Fname, Loc),
2542 Parameter_Associations => New_List (
2543 Relocate_Node (Strm)));
2544
2545 Set_Controlling_Argument (Call, Cntrl);
2546 Rewrite (N, Unchecked_Convert_To (P_Type, Call));
2547 Analyze_And_Resolve (N, P_Type);
d53a018a 2548
2549 if Nkind (Parent (N)) = N_Object_Declaration then
2550 Freeze_Stream_Subprogram (Fname);
2551 end if;
ee6ba406 2552 end Input;
2553
2554 -------------------
2555 -- Integer_Value --
2556 -------------------
2557
2558 -- We transform
2559
2560 -- inttype'Fixed_Value (fixed-value)
2561
2562 -- into
2563
2564 -- inttype(integer-value))
2565
d55c93e0 2566 -- we do all the required analysis of the conversion here, because we do
2567 -- not want this to go through the fixed-point conversion circuits. Note
2568 -- that the back end always treats fixed-point as equivalent to the
2569 -- corresponding integer type anyway.
ee6ba406 2570
2571 when Attribute_Integer_Value => Integer_Value :
2572 begin
2573 Rewrite (N,
2574 Make_Type_Conversion (Loc,
2575 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
2576 Expression => Relocate_Node (First (Exprs))));
2577 Set_Etype (N, Entity (Pref));
2578 Set_Analyzed (N);
9dfe12ae 2579
2580 -- Note: it might appear that a properly analyzed unchecked conversion
2581 -- would be just fine here, but that's not the case, since the full
2582 -- range checks performed by the following call are critical!
2583
ee6ba406 2584 Apply_Type_Conversion_Checks (N);
2585 end Integer_Value;
2586
d55c93e0 2587 -------------------
2588 -- Invalid_Value --
2589 -------------------
2590
2591 when Attribute_Invalid_Value =>
2592 Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
2593
ee6ba406 2594 ----------
2595 -- Last --
2596 ----------
2597
d55c93e0 2598 when Attribute_Last =>
ee6ba406 2599
ee6ba406 2600 -- If the prefix type is a constrained packed array type which
2601 -- already has a Packed_Array_Type representation defined, then
2602 -- replace this attribute with a direct reference to 'Last of the
d55c93e0 2603 -- appropriate index subtype (since otherwise the back end will try
2604 -- to give us the value of 'Last for this implementation type).
ee6ba406 2605
2606 if Is_Constrained_Packed_Array (Ptyp) then
2607 Rewrite (N,
2608 Make_Attribute_Reference (Loc,
2609 Attribute_Name => Name_Last,
2610 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
2611 Analyze_And_Resolve (N, Typ);
2612
2613 elsif Is_Access_Type (Ptyp) then
2614 Apply_Access_Check (N);
2615 end if;
ee6ba406 2616
2617 --------------
2618 -- Last_Bit --
2619 --------------
2620
d55c93e0 2621 -- We compute this if a component clause was present, otherwise we leave
2622 -- the computation up to the back end, since we don't know what layout
2623 -- will be chosen.
ee6ba406 2624
d55c93e0 2625 when Attribute_Last_Bit => Last_Bit : declare
ee6ba406 2626 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2627
2628 begin
2629 if Known_Static_Component_Bit_Offset (CE)
2630 and then Known_Static_Esize (CE)
2631 then
2632 Rewrite (N,
2633 Make_Integer_Literal (Loc,
2634 Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
2635 + Esize (CE) - 1));
2636
2637 Analyze_And_Resolve (N, Typ);
2638
2639 else
2640 Apply_Universal_Integer_Attribute_Checks (N);
2641 end if;
2642 end Last_Bit;
2643
2644 ------------------
2645 -- Leading_Part --
2646 ------------------
2647
2648 -- Transforms 'Leading_Part into a call to the floating-point attribute
2649 -- function Leading_Part in Fat_xxx (where xxx is the root type)
2650
d55c93e0 2651 -- Note: strictly, we should generate special case code to deal with
aad6babd 2652 -- absurdly large positive arguments (greater than Integer'Last), which
2653 -- result in returning the first argument unchanged, but it hardly seems
2654 -- worth the effort. We raise constraint error for absurdly negative
2655 -- arguments which is fine.
ee6ba406 2656
2657 when Attribute_Leading_Part =>
2658 Expand_Fpt_Attribute_RI (N);
2659
2660 ------------
2661 -- Length --
2662 ------------
2663
2664 when Attribute_Length => declare
ee6ba406 2665 Ityp : Entity_Id;
2666 Xnum : Uint;
2667
2668 begin
2669 -- Processing for packed array types
2670
2671 if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
2672 Ityp := Get_Index_Subtype (N);
2673
d55c93e0 2674 -- If the index type, Ityp, is an enumeration type with holes,
2675 -- then we calculate X'Length explicitly using
ee6ba406 2676
2677 -- Typ'Max
2678 -- (0, Ityp'Pos (X'Last (N)) -
2679 -- Ityp'Pos (X'First (N)) + 1);
2680
d55c93e0 2681 -- Since the bounds in the template are the representation values
2682 -- and the back end would get the wrong value.
ee6ba406 2683
2684 if Is_Enumeration_Type (Ityp)
2685 and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
2686 then
2687 if No (Exprs) then
2688 Xnum := Uint_1;
2689 else
2690 Xnum := Expr_Value (First (Expressions (N)));
2691 end if;
2692
2693 Rewrite (N,
2694 Make_Attribute_Reference (Loc,
2695 Prefix => New_Occurrence_Of (Typ, Loc),
2696 Attribute_Name => Name_Max,
2697 Expressions => New_List
2698 (Make_Integer_Literal (Loc, 0),
2699
2700 Make_Op_Add (Loc,
2701 Left_Opnd =>
2702 Make_Op_Subtract (Loc,
2703 Left_Opnd =>
2704 Make_Attribute_Reference (Loc,
2705 Prefix => New_Occurrence_Of (Ityp, Loc),
2706 Attribute_Name => Name_Pos,
2707
2708 Expressions => New_List (
2709 Make_Attribute_Reference (Loc,
2710 Prefix => Duplicate_Subexpr (Pref),
2711 Attribute_Name => Name_Last,
2712 Expressions => New_List (
2713 Make_Integer_Literal (Loc, Xnum))))),
2714
2715 Right_Opnd =>
2716 Make_Attribute_Reference (Loc,
2717 Prefix => New_Occurrence_Of (Ityp, Loc),
2718 Attribute_Name => Name_Pos,
2719
2720 Expressions => New_List (
2721 Make_Attribute_Reference (Loc,
9dfe12ae 2722 Prefix =>
2723 Duplicate_Subexpr_No_Checks (Pref),
ee6ba406 2724 Attribute_Name => Name_First,
2725 Expressions => New_List (
2726 Make_Integer_Literal (Loc, Xnum)))))),
2727
2728 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
2729
2730 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2731 return;
2732
2733 -- If the prefix type is a constrained packed array type which
2734 -- already has a Packed_Array_Type representation defined, then
2735 -- replace this attribute with a direct reference to 'Range_Length
d55c93e0 2736 -- of the appropriate index subtype (since otherwise the back end
2737 -- will try to give us the value of 'Length for this
2738 -- implementation type).
ee6ba406 2739
2740 elsif Is_Constrained (Ptyp) then
2741 Rewrite (N,
2742 Make_Attribute_Reference (Loc,
2743 Attribute_Name => Name_Range_Length,
2744 Prefix => New_Reference_To (Ityp, Loc)));
2745 Analyze_And_Resolve (N, Typ);
2746 end if;
2747
ee6ba406 2748 -- Access type case
2749
2750 elsif Is_Access_Type (Ptyp) then
2751 Apply_Access_Check (N);
2752
d55c93e0 2753 -- If the designated type is a packed array type, then we convert
2754 -- the reference to:
ee6ba406 2755
2756 -- typ'Max (0, 1 +
2757 -- xtyp'Pos (Pref'Last (Expr)) -
2758 -- xtyp'Pos (Pref'First (Expr)));
2759
d55c93e0 2760 -- This is a bit complex, but it is the easiest thing to do that
2761 -- works in all cases including enum types with holes xtyp here
2762 -- is the appropriate index type.
ee6ba406 2763
2764 declare
2765 Dtyp : constant Entity_Id := Designated_Type (Ptyp);
2766 Xtyp : Entity_Id;
2767
2768 begin
2769 if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
2770 Xtyp := Get_Index_Subtype (N);
2771
2772 Rewrite (N,
2773 Make_Attribute_Reference (Loc,
2774 Prefix => New_Occurrence_Of (Typ, Loc),
2775 Attribute_Name => Name_Max,
2776 Expressions => New_List (
2777 Make_Integer_Literal (Loc, 0),
2778
2779 Make_Op_Add (Loc,
2780 Make_Integer_Literal (Loc, 1),
2781 Make_Op_Subtract (Loc,
2782 Left_Opnd =>
2783 Make_Attribute_Reference (Loc,
2784 Prefix => New_Occurrence_Of (Xtyp, Loc),
2785 Attribute_Name => Name_Pos,
2786 Expressions => New_List (
2787 Make_Attribute_Reference (Loc,
2788 Prefix => Duplicate_Subexpr (Pref),
2789 Attribute_Name => Name_Last,
2790 Expressions =>
2791 New_Copy_List (Exprs)))),
2792
2793 Right_Opnd =>
2794 Make_Attribute_Reference (Loc,
2795 Prefix => New_Occurrence_Of (Xtyp, Loc),
2796 Attribute_Name => Name_Pos,
2797 Expressions => New_List (
2798 Make_Attribute_Reference (Loc,
9dfe12ae 2799 Prefix =>
2800 Duplicate_Subexpr_No_Checks (Pref),
ee6ba406 2801 Attribute_Name => Name_First,
2802 Expressions =>
2803 New_Copy_List (Exprs)))))))));
2804
2805 Analyze_And_Resolve (N, Typ);
2806 end if;
2807 end;
2808
d55c93e0 2809 -- Otherwise leave it to the back end
ee6ba406 2810
2811 else
2812 Apply_Universal_Integer_Attribute_Checks (N);
2813 end if;
2814 end;
2815
2816 -------------
2817 -- Machine --
2818 -------------
2819
2820 -- Transforms 'Machine into a call to the floating-point attribute
2821 -- function Machine in Fat_xxx (where xxx is the root type)
2822
2823 when Attribute_Machine =>
2824 Expand_Fpt_Attribute_R (N);
2825
1550b445 2826 ----------------------
2827 -- Machine_Rounding --
2828 ----------------------
2829
2830 -- Transforms 'Machine_Rounding into a call to the floating-point
2831 -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
99f2248e 2832 -- type). Expansion is avoided for cases the back end can handle
2833 -- directly.
1550b445 2834
2835 when Attribute_Machine_Rounding =>
99f2248e 2836 if not Is_Inline_Floating_Point_Attribute (N) then
2837 Expand_Fpt_Attribute_R (N);
2838 end if;
1550b445 2839
ee6ba406 2840 ------------------
2841 -- Machine_Size --
2842 ------------------
2843
2844 -- Machine_Size is equivalent to Object_Size, so transform it into
d55c93e0 2845 -- Object_Size and that way the back end never sees Machine_Size.
ee6ba406 2846
2847 when Attribute_Machine_Size =>
2848 Rewrite (N,
2849 Make_Attribute_Reference (Loc,
2850 Prefix => Prefix (N),
2851 Attribute_Name => Name_Object_Size));
2852
2853 Analyze_And_Resolve (N, Typ);
2854
2855 --------------
2856 -- Mantissa --
2857 --------------
2858
aad6babd 2859 -- The only case that can get this far is the dynamic case of the old
d55c93e0 2860 -- Ada 83 Mantissa attribute for the fixed-point case. For this case,
2861 -- we expand:
ee6ba406 2862
2863 -- typ'Mantissa
2864
2865 -- into
2866
2867 -- ityp (System.Mantissa.Mantissa_Value
2868 -- (Integer'Integer_Value (typ'First),
2869 -- Integer'Integer_Value (typ'Last)));
2870
d55c93e0 2871 when Attribute_Mantissa => Mantissa : begin
ee6ba406 2872 Rewrite (N,
2873 Convert_To (Typ,
2874 Make_Function_Call (Loc,
2875 Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
2876
2877 Parameter_Associations => New_List (
2878
2879 Make_Attribute_Reference (Loc,
2880 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
2881 Attribute_Name => Name_Integer_Value,
2882 Expressions => New_List (
2883
2884 Make_Attribute_Reference (Loc,
2885 Prefix => New_Occurrence_Of (Ptyp, Loc),
2886 Attribute_Name => Name_First))),
2887
2888 Make_Attribute_Reference (Loc,
2889 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
2890 Attribute_Name => Name_Integer_Value,
2891 Expressions => New_List (
2892
2893 Make_Attribute_Reference (Loc,
2894 Prefix => New_Occurrence_Of (Ptyp, Loc),
2895 Attribute_Name => Name_Last)))))));
2896
2897 Analyze_And_Resolve (N, Typ);
2898 end Mantissa;
2899
18a40e97 2900 --------------------
2901 -- Mechanism_Code --
2902 --------------------
2903
2904 when Attribute_Mechanism_Code =>
2905
2906 -- We must replace the prefix in the renamed case
2907
2908 if Is_Entity_Name (Pref)
2909 and then Present (Alias (Entity (Pref)))
2910 then
2911 Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
2912 end if;
2913
e0521a36 2914 ---------
2915 -- Mod --
2916 ---------
2917
2918 when Attribute_Mod => Mod_Case : declare
2919 Arg : constant Node_Id := Relocate_Node (First (Exprs));
2920 Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
2921 Modv : constant Uint := Modulus (Btyp);
2922
2923 begin
2924
2925 -- This is not so simple. The issue is what type to use for the
2926 -- computation of the modular value.
2927
2928 -- The easy case is when the modulus value is within the bounds
2929 -- of the signed integer type of the argument. In this case we can
2930 -- just do the computation in that signed integer type, and then
2931 -- do an ordinary conversion to the target type.
2932
2933 if Modv <= Expr_Value (Hi) then
2934 Rewrite (N,
2935 Convert_To (Btyp,
2936 Make_Op_Mod (Loc,
2937 Left_Opnd => Arg,
2938 Right_Opnd => Make_Integer_Literal (Loc, Modv))));
2939
2940 -- Here we know that the modulus is larger than type'Last of the
9eb397d8 2941 -- integer type. There are two cases to consider:
e0521a36 2942
2943 -- a) The integer value is non-negative. In this case, it is
2944 -- returned as the result (since it is less than the modulus).
2945
aad6babd 2946 -- b) The integer value is negative. In this case, we know that the
2947 -- result is modulus + value, where the value might be as small as
2948 -- -modulus. The trouble is what type do we use to do the subtract.
2949 -- No type will do, since modulus can be as big as 2**64, and no
2c145f84 2950 -- integer type accommodates this value. Let's do bit of algebra
e0521a36 2951
2952 -- modulus + value
2953 -- = modulus - (-value)
2954 -- = (modulus - 1) - (-value - 1)
2955
2956 -- Now modulus - 1 is certainly in range of the modular type.
2957 -- -value is in the range 1 .. modulus, so -value -1 is in the
2958 -- range 0 .. modulus-1 which is in range of the modular type.
2959 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
2960 -- which we can compute using the integer base type.
2961
9eb397d8 2962 -- Once this is done we analyze the conditional expression without
2963 -- range checks, because we know everything is in range, and we
2964 -- want to prevent spurious warnings on either branch.
2965
e0521a36 2966 else
2967 Rewrite (N,
2968 Make_Conditional_Expression (Loc,
2969 Expressions => New_List (
2970 Make_Op_Ge (Loc,
2971 Left_Opnd => Duplicate_Subexpr (Arg),
2972 Right_Opnd => Make_Integer_Literal (Loc, 0)),
2973
2974 Convert_To (Btyp,
2975 Duplicate_Subexpr_No_Checks (Arg)),
2976
2977 Make_Op_Subtract (Loc,
2978 Left_Opnd =>
2979 Make_Integer_Literal (Loc,
2980 Intval => Modv - 1),
2981 Right_Opnd =>
2982 Convert_To (Btyp,
2983 Make_Op_Minus (Loc,
2984 Right_Opnd =>
2985 Make_Op_Add (Loc,
2986 Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
2987 Right_Opnd =>
2988 Make_Integer_Literal (Loc,
2989 Intval => 1))))))));
2990
e0521a36 2991 end if;
2992
1550b445 2993 Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
e0521a36 2994 end Mod_Case;
2995
ee6ba406 2996 -----------
2997 -- Model --
2998 -----------
2999
3000 -- Transforms 'Model into a call to the floating-point attribute
3001 -- function Model in Fat_xxx (where xxx is the root type)
3002
3003 when Attribute_Model =>
3004 Expand_Fpt_Attribute_R (N);
3005
3006 -----------------
3007 -- Object_Size --
3008 -----------------
3009
3010 -- The processing for Object_Size shares the processing for Size
3011
4c06b9d2 3012 ---------
3013 -- Old --
3014 ---------
3015
3016 when Attribute_Old => Old : declare
46eb6933 3017 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', Pref);
4c06b9d2 3018 Subp : Node_Id;
3019 Asn_Stm : Node_Id;
3020
3021 begin
d55c93e0 3022 -- Find the nearest subprogram body, ignoring _Preconditions
3023
4c06b9d2 3024 Subp := N;
3025 loop
3026 Subp := Parent (Subp);
d55c93e0 3027 exit when Nkind (Subp) = N_Subprogram_Body
3028 and then Chars (Defining_Entity (Subp)) /= Name_uPostconditions;
4c06b9d2 3029 end loop;
3030
03a47ff8 3031 -- Insert the initialized object declaration at the start of the
3032 -- subprogram's declarations.
d55c93e0 3033
4c06b9d2 3034 Asn_Stm :=
3035 Make_Object_Declaration (Loc,
3036 Defining_Identifier => Tnn,
3037 Constant_Present => True,
3038 Object_Definition => New_Occurrence_Of (Etype (N), Loc),
3039 Expression => Pref);
3040
03a47ff8 3041 -- Push the subprogram's scope, so that the object will be analyzed
3042 -- in that context (rather than the context of the Precondition
3043 -- subprogram) and will have its Scope set properly.
3044
3045 if Present (Corresponding_Spec (Subp)) then
3046 Push_Scope (Corresponding_Spec (Subp));
3047 else
3048 Push_Scope (Defining_Entity (Subp));
3049 end if;
3050
4c06b9d2 3051 if Is_Empty_List (Declarations (Subp)) then
3052 Set_Declarations (Subp, New_List (Asn_Stm));
3053 Analyze (Asn_Stm);
3054 else
3055 Insert_Action (First (Declarations (Subp)), Asn_Stm);
3056 end if;
3057
03a47ff8 3058 Pop_Scope;
3059
4c06b9d2 3060 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
3061 end Old;
3062
ee6ba406 3063 ------------
3064 -- Output --
3065 ------------
3066
3067 when Attribute_Output => Output : declare
3068 P_Type : constant Entity_Id := Entity (Pref);
ee6ba406 3069 U_Type : constant Entity_Id := Underlying_Type (P_Type);
3070 Pname : Entity_Id;
3071 Decl : Node_Id;
3072 Prag : Node_Id;
3073 Arg3 : Node_Id;
3074 Wfunc : Node_Id;
3075
3076 begin
3077 -- If no underlying type, we have an error that will be diagnosed
3078 -- elsewhere, so here we just completely ignore the expansion.
3079
3080 if No (U_Type) then
3081 return;
3082 end if;
3083
3084 -- If TSS for Output is present, just call it
3085
9dfe12ae 3086 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
ee6ba406 3087
3088 if Present (Pname) then
3089 null;
3090
3091 else
3092 -- If there is a Stream_Convert pragma, use it, we rewrite
3093
3094 -- sourcetyp'Output (stream, Item)
3095
3096 -- as
3097
3098 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
3099
aad6babd 3100 -- where strmwrite is the given Write function that converts an
3101 -- argument of type sourcetyp or a type acctyp, from which it is
3102 -- derived to type strmtyp. The conversion to acttyp is required
3103 -- for the derived case.
ee6ba406 3104
5245b786 3105 Prag := Get_Stream_Convert_Pragma (P_Type);
ee6ba406 3106
3107 if Present (Prag) then
3108 Arg3 :=
3109 Next (Next (First (Pragma_Argument_Associations (Prag))));
3110 Wfunc := Entity (Expression (Arg3));
3111
3112 Rewrite (N,
3113 Make_Attribute_Reference (Loc,
3114 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
3115 Attribute_Name => Name_Output,
3116 Expressions => New_List (
3117 Relocate_Node (First (Exprs)),
3118 Make_Function_Call (Loc,
3119 Name => New_Occurrence_Of (Wfunc, Loc),
3120 Parameter_Associations => New_List (
83aa52b6 3121 OK_Convert_To (Etype (First_Formal (Wfunc)),
ee6ba406 3122 Relocate_Node (Next (First (Exprs)))))))));
3123
3124 Analyze (N);
3125 return;
3126
3127 -- For elementary types, we call the W_xxx routine directly.
3128 -- Note that the effect of Write and Output is identical for
3129 -- the case of an elementary type, since there are no
3130 -- discriminants or bounds.
3131
3132 elsif Is_Elementary_Type (U_Type) then
3133
3134 -- A special case arises if we have a defined _Write routine,
3135 -- since in this case we are required to call this routine.
3136
9dfe12ae 3137 if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
ee6ba406 3138 Build_Record_Or_Elementary_Output_Procedure
3139 (Loc, U_Type, Decl, Pname);
3140 Insert_Action (N, Decl);
3141
3142 -- For normal cases, we call the W_xxx routine directly
3143
3144 else
3145 Rewrite (N, Build_Elementary_Write_Call (N));
3146 Analyze (N);
3147 return;
3148 end if;
3149
3150 -- Array type case
3151
3152 elsif Is_Array_Type (U_Type) then
3153 Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
3154 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
3155
3156 -- Class-wide case, first output external tag, then dispatch
3157 -- to the appropriate primitive Output function (RM 13.13.2(31)).
3158
3159 elsif Is_Class_Wide_Type (P_Type) then
99f2248e 3160
3161 -- No need to do anything else compiling under restriction
3162 -- No_Dispatching_Calls. During the semantic analysis we
3163 -- already notified such violation.
3164
3165 if Restriction_Active (No_Dispatching_Calls) then
3166 return;
3167 end if;
3168
ee6ba406 3169 Tag_Write : declare
3170 Strm : constant Node_Id := First (Exprs);
3171 Item : constant Node_Id := Next (Strm);
3172
3173 begin
83aa52b6 3174 -- Ada 2005 (AI-344): Check that the accessibility level
3175 -- of the type of the output object is not deeper than
3176 -- that of the attribute's prefix type.
3177
aad6babd 3178 -- if Get_Access_Level (Item'Tag)
3179 -- /= Get_Access_Level (P_Type'Tag)
3180 -- then
3181 -- raise Tag_Error;
3182 -- end if;
83aa52b6 3183
aad6babd 3184 -- String'Output (Strm, External_Tag (Item'Tag));
3185
83aa52b6 3186 -- We cannot figure out a practical way to implement this
3187 -- accessibility check on virtual machines, so we omit it.
aad6babd 3188
de54c5ab 3189 if Ada_Version >= Ada_2005
662256db 3190 and then Tagged_Type_Expansion
83aa52b6 3191 then
aad6babd 3192 Insert_Action (N,
3193 Make_Implicit_If_Statement (N,
3194 Condition =>
3195 Make_Op_Ne (Loc,
3196 Left_Opnd =>
99f2248e 3197 Build_Get_Access_Level (Loc,
3198 Make_Attribute_Reference (Loc,
3199 Prefix =>
3200 Relocate_Node (
3201 Duplicate_Subexpr (Item,
3202 Name_Req => True)),
3203 Attribute_Name => Name_Tag)),
3204
aad6babd 3205 Right_Opnd =>
99f2248e 3206 Make_Integer_Literal (Loc,
3207 Type_Access_Level (P_Type))),
3208
aad6babd 3209 Then_Statements =>
3210 New_List (Make_Raise_Statement (Loc,
3211 New_Occurrence_Of (
3212 RTE (RE_Tag_Error), Loc)))));
3213 end if;
ee6ba406 3214
3215 Insert_Action (N,
3216 Make_Attribute_Reference (Loc,
3217 Prefix => New_Occurrence_Of (Standard_String, Loc),
3218 Attribute_Name => Name_Output,
3219 Expressions => New_List (
3220 Relocate_Node (Duplicate_Subexpr (Strm)),
3221 Make_Function_Call (Loc,
3222 Name =>
3223 New_Occurrence_Of (RTE (RE_External_Tag), Loc),
3224 Parameter_Associations => New_List (
3225 Make_Attribute_Reference (Loc,
3226 Prefix =>
3227 Relocate_Node
3228 (Duplicate_Subexpr (Item, Name_Req => True)),
3229 Attribute_Name => Name_Tag))))));
3230 end Tag_Write;
3231
9dfe12ae 3232 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
ee6ba406 3233
3234 -- Tagged type case, use the primitive Output function
3235
3236 elsif Is_Tagged_Type (U_Type) then
9dfe12ae 3237 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
ee6ba406 3238
99f2248e 3239 -- All other record type cases, including protected records.
3240 -- The latter only arise for expander generated code for
3241 -- handling shared passive partition access.
ee6ba406 3242
3243 else
3244 pragma Assert
3245 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
3246
00f91aef 3247 -- Ada 2005 (AI-216): Program_Error is raised when executing
3248 -- the default implementation of the Output attribute of an
3249 -- unchecked union type if the type lacks default discriminant
3250 -- values.
3251
3252 if Is_Unchecked_Union (Base_Type (U_Type))
18a40e97 3253 and then No (Discriminant_Constraint (U_Type))
00f91aef 3254 then
3255 Insert_Action (N,
3256 Make_Raise_Program_Error (Loc,
3257 Reason => PE_Unchecked_Union_Restriction));
3258
3259 return;
3260 end if;
3261
ee6ba406 3262 Build_Record_Or_Elementary_Output_Procedure
3263 (Loc, Base_Type (U_Type), Decl, Pname);
3264 Insert_Action (N, Decl);
3265 end if;
3266 end if;
3267
3268 -- If we fall through, Pname is the name of the procedure to call
3269
3270 Rewrite_Stream_Proc_Call (Pname);
3271 end Output;
3272
3273 ---------
3274 -- Pos --
3275 ---------
3276
3277 -- For enumeration types with a standard representation, Pos is
d55c93e0 3278 -- handled by the back end.
ee6ba406 3279
5c182b3b 3280 -- For enumeration types, with a non-standard representation we generate
3281 -- a call to the _Rep_To_Pos function created when the type was frozen.
3282 -- The call has the form
ee6ba406 3283
9dfe12ae 3284 -- _rep_to_pos (expr, flag)
ee6ba406 3285
9dfe12ae 3286 -- The parameter flag is True if range checks are enabled, causing
3287 -- Program_Error to be raised if the expression has an invalid
3288 -- representation, and False if range checks are suppressed.
ee6ba406 3289
3290 -- For integer types, Pos is equivalent to a simple integer
3291 -- conversion and we rewrite it as such
3292
3293 when Attribute_Pos => Pos :
3294 declare
3295 Etyp : Entity_Id := Base_Type (Entity (Pref));
3296
3297 begin
3298 -- Deal with zero/non-zero boolean values
3299
3300 if Is_Boolean_Type (Etyp) then
3301 Adjust_Condition (First (Exprs));
3302 Etyp := Standard_Boolean;
3303 Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
3304 end if;
3305
3306 -- Case of enumeration type
3307
3308 if Is_Enumeration_Type (Etyp) then
3309
3310 -- Non-standard enumeration type (generate call)
3311
3312 if Present (Enum_Pos_To_Rep (Etyp)) then
9dfe12ae 3313 Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
ee6ba406 3314 Rewrite (N,
3315 Convert_To (Typ,
3316 Make_Function_Call (Loc,
3317 Name =>
9dfe12ae 3318 New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc),
ee6ba406 3319 Parameter_Associations => Exprs)));
3320
3321 Analyze_And_Resolve (N, Typ);
3322
3323 -- Standard enumeration type (do universal integer check)
3324
3325 else
3326 Apply_Universal_Integer_Attribute_Checks (N);
3327 end if;
3328
3329 -- Deal with integer types (replace by conversion)
3330
3331 elsif Is_Integer_Type (Etyp) then
3332 Rewrite (N, Convert_To (Typ, First (Exprs)));
3333 Analyze_And_Resolve (N, Typ);
3334 end if;
3335
3336 end Pos;
3337
3338 --------------
3339 -- Position --
3340 --------------
3341
d55c93e0 3342 -- We compute this if a component clause was present, otherwise we leave
3343 -- the computation up to the back end, since we don't know what layout
3344 -- will be chosen.
ee6ba406 3345
3346 when Attribute_Position => Position :
3347 declare
3348 CE : constant Entity_Id := Entity (Selector_Name (Pref));
3349
3350 begin
3351 if Present (Component_Clause (CE)) then
3352 Rewrite (N,
3353 Make_Integer_Literal (Loc,
3354 Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
3355 Analyze_And_Resolve (N, Typ);
3356
3357 else
3358 Apply_Universal_Integer_Attribute_Checks (N);
3359 end if;
3360 end Position;
3361
3362 ----------
3363 -- Pred --
3364 ----------
3365
3366 -- 1. Deal with enumeration types with holes
3367 -- 2. For floating-point, generate call to attribute function
3368 -- 3. For other cases, deal with constraint checking
3369
3370 when Attribute_Pred => Pred :
3371 declare
d55c93e0 3372 Etyp : constant Entity_Id := Base_Type (Ptyp);
ee6ba406 3373
3374 begin
d55c93e0 3375
ee6ba406 3376 -- For enumeration types with non-standard representations, we
3377 -- expand typ'Pred (x) into
3378
3379 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
3380
9dfe12ae 3381 -- If the representation is contiguous, we compute instead
3382 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
d55c93e0 3383 -- The conversion function Enum_Pos_To_Rep is defined on the
3384 -- base type, not the subtype, so we have to use the base type
3385 -- explicitly for this and other enumeration attributes.
9dfe12ae 3386
ee6ba406 3387 if Is_Enumeration_Type (Ptyp)
d55c93e0 3388 and then Present (Enum_Pos_To_Rep (Etyp))
ee6ba406 3389 then
d55c93e0 3390 if Has_Contiguous_Rep (Etyp) then
9dfe12ae 3391 Rewrite (N,
3392 Unchecked_Convert_To (Ptyp,
3393 Make_Op_Add (Loc,
3394 Left_Opnd =>
3395 Make_Integer_Literal (Loc,
3396 Enumeration_Rep (First_Literal (Ptyp))),
3397 Right_Opnd =>
3398 Make_Function_Call (Loc,
3399 Name =>
3400 New_Reference_To
d55c93e0 3401 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
9dfe12ae 3402
3403 Parameter_Associations =>
3404 New_List (
3405 Unchecked_Convert_To (Ptyp,
3406 Make_Op_Subtract (Loc,
3407 Left_Opnd =>
3408 Unchecked_Convert_To (Standard_Integer,
3409 Relocate_Node (First (Exprs))),
3410 Right_Opnd =>
3411 Make_Integer_Literal (Loc, 1))),
3412 Rep_To_Pos_Flag (Ptyp, Loc))))));
ee6ba406 3413
9dfe12ae 3414 else
3415 -- Add Boolean parameter True, to request program errror if
3416 -- we have a bad representation on our hands. If checks are
3417 -- suppressed, then add False instead
ee6ba406 3418
9dfe12ae 3419 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
3420 Rewrite (N,
3421 Make_Indexed_Component (Loc,
d55c93e0 3422 Prefix =>
3423 New_Reference_To
3424 (Enum_Pos_To_Rep (Etyp), Loc),
9dfe12ae 3425 Expressions => New_List (
3426 Make_Op_Subtract (Loc,
ee6ba406 3427 Left_Opnd =>
3428 Make_Function_Call (Loc,
3429 Name =>
d55c93e0 3430 New_Reference_To
3431 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
9dfe12ae 3432 Parameter_Associations => Exprs),
ee6ba406 3433 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
9dfe12ae 3434 end if;
ee6ba406 3435
3436 Analyze_And_Resolve (N, Typ);
3437
3438 -- For floating-point, we transform 'Pred into a call to the Pred
3439 -- floating-point attribute function in Fat_xxx (xxx is root type)
3440
3441 elsif Is_Floating_Point_Type (Ptyp) then
3442 Expand_Fpt_Attribute_R (N);
3443 Analyze_And_Resolve (N, Typ);
3444
3445 -- For modular types, nothing to do (no overflow, since wraps)
3446
3447 elsif Is_Modular_Integer_Type (Ptyp) then
3448 null;
3449
a9b57347 3450 -- For other types, if argument is marked as needing a range check or
3451 -- overflow checking is enabled, we must generate a check.
ee6ba406 3452
a9b57347 3453 elsif not Overflow_Checks_Suppressed (Ptyp)
3454 or else Do_Range_Check (First (Exprs))
3455 then
3456 Set_Do_Range_Check (First (Exprs), False);
ee6ba406 3457 Expand_Pred_Succ (N);
3458 end if;
ee6ba406 3459 end Pred;
3460
7f8eb6ed 3461 --------------
3462 -- Priority --
3463 --------------
3464
3465 -- Ada 2005 (AI-327): Dynamic ceiling priorities
3466
3467 -- We rewrite X'Priority as the following run-time call:
3468
3469 -- Get_Ceiling (X._Object)
3470
3471 -- Note that although X'Priority is notionally an object, it is quite
3472 -- deliberately not defined as an aliased object in the RM. This means
3473 -- that it works fine to rewrite it as a call, without having to worry
3474 -- about complications that would other arise from X'Priority'Access,
3475 -- which is illegal, because of the lack of aliasing.
3476
3477 when Attribute_Priority =>
3478 declare
3479 Call : Node_Id;
3480 Conctyp : Entity_Id;
3481 Object_Parm : Node_Id;
3482 Subprg : Entity_Id;
3483 RT_Subprg_Name : Node_Id;
3484
3485 begin
3486 -- Look for the enclosing concurrent type
3487
3488 Conctyp := Current_Scope;
3489 while not Is_Concurrent_Type (Conctyp) loop
3490 Conctyp := Scope (Conctyp);
3491 end loop;
3492
3493 pragma Assert (Is_Protected_Type (Conctyp));
3494
3495 -- Generate the actual of the call
3496
3497 Subprg := Current_Scope;
3498 while not Present (Protected_Body_Subprogram (Subprg)) loop
3499 Subprg := Scope (Subprg);
3500 end loop;
3501
db14252c 3502 -- Use of 'Priority inside protected entries and barriers (in
3503 -- both cases the type of the first formal of their expanded
3504 -- subprogram is Address)
3505
3506 if Etype (First_Entity (Protected_Body_Subprogram (Subprg)))
3507 = RTE (RE_Address)
3508 then
3509 declare
3510 New_Itype : Entity_Id;
3511
3512 begin
3513 -- In the expansion of protected entries the type of the
3514 -- first formal of the Protected_Body_Subprogram is an
3515 -- Address. In order to reference the _object component
3516 -- we generate:
3517
3518 -- type T is access p__ptTV;
3519 -- freeze T []
3520
3521 New_Itype := Create_Itype (E_Access_Type, N);
3522 Set_Etype (New_Itype, New_Itype);
db14252c 3523 Set_Directly_Designated_Type (New_Itype,
3524 Corresponding_Record_Type (Conctyp));
3525 Freeze_Itype (New_Itype, N);
3526
3527 -- Generate:
3528 -- T!(O)._object'unchecked_access
3529
3530 Object_Parm :=
3531 Make_Attribute_Reference (Loc,
55868293 3532 Prefix =>
3533 Make_Selected_Component (Loc,
3534 Prefix =>
3535 Unchecked_Convert_To (New_Itype,
3536 New_Reference_To
3537 (First_Entity
3538 (Protected_Body_Subprogram (Subprg)),
3539 Loc)),
3540 Selector_Name =>
3541 Make_Identifier (Loc, Name_uObject)),
db14252c 3542 Attribute_Name => Name_Unchecked_Access);
3543 end;
3544
3545 -- Use of 'Priority inside a protected subprogram
3546
3547 else
3548 Object_Parm :=
3549 Make_Attribute_Reference (Loc,
3550 Prefix =>
3551 Make_Selected_Component (Loc,
3552 Prefix => New_Reference_To
3553 (First_Entity
3554 (Protected_Body_Subprogram (Subprg)),
3555 Loc),
55868293 3556 Selector_Name => Make_Identifier (Loc, Name_uObject)),
db14252c 3557 Attribute_Name => Name_Unchecked_Access);
3558 end if;
7f8eb6ed 3559
3560 -- Select the appropriate run-time subprogram
3561
3562 if Number_Entries (Conctyp) = 0 then
3563 RT_Subprg_Name :=
3564 New_Reference_To (RTE (RE_Get_Ceiling), Loc);
3565 else
3566 RT_Subprg_Name :=
3567 New_Reference_To (RTE (RO_PE_Get_Ceiling), Loc);
3568 end if;
3569
3570 Call :=
3571 Make_Function_Call (Loc,
3572 Name => RT_Subprg_Name,
3573 Parameter_Associations => New_List (Object_Parm));
3574
3575 Rewrite (N, Call);
db14252c 3576
3577 -- Avoid the generation of extra checks on the pointer to the
3578 -- protected object.
3579
3580 Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
7f8eb6ed 3581 end;
3582
ee6ba406 3583 ------------------
3584 -- Range_Length --
3585 ------------------
3586
d55c93e0 3587 when Attribute_Range_Length => Range_Length : begin
5c182b3b 3588
ee6ba406 3589 -- The only special processing required is for the case where
3590 -- Range_Length is applied to an enumeration type with holes.
3591 -- In this case we transform
3592
3593 -- X'Range_Length
3594
3595 -- to
3596
3597 -- X'Pos (X'Last) - X'Pos (X'First) + 1
3598
3599 -- So that the result reflects the proper Pos values instead
3600 -- of the underlying representations.
3601
d55c93e0 3602 if Is_Enumeration_Type (Ptyp)
3603 and then Has_Non_Standard_Rep (Ptyp)
ee6ba406 3604 then
3605 Rewrite (N,
3606 Make_Op_Add (Loc,
3607 Left_Opnd =>
3608 Make_Op_Subtract (Loc,
3609 Left_Opnd =>
3610 Make_Attribute_Reference (Loc,
3611 Attribute_Name => Name_Pos,
d55c93e0 3612 Prefix => New_Occurrence_Of (Ptyp, Loc),
ee6ba406 3613 Expressions => New_List (
3614 Make_Attribute_Reference (Loc,
3615 Attribute_Name => Name_Last,
d55c93e0 3616 Prefix => New_Occurrence_Of (Ptyp, Loc)))),
ee6ba406 3617
3618 Right_Opnd =>
3619 Make_Attribute_Reference (Loc,
3620 Attribute_Name => Name_Pos,
d55c93e0 3621 Prefix => New_Occurrence_Of (Ptyp, Loc),
ee6ba406 3622 Expressions => New_List (
3623 Make_Attribute_Reference (Loc,
3624 Attribute_Name => Name_First,
d55c93e0 3625 Prefix => New_Occurrence_Of (Ptyp, Loc))))),
ee6ba406 3626
328a1570 3627 Right_Opnd => Make_Integer_Literal (Loc, 1)));
ee6ba406 3628
3629 Analyze_And_Resolve (N, Typ);
3630
d55c93e0 3631 -- For all other cases, the attribute is handled by the back end, but
3632 -- we need to deal with the case of the range check on a universal
3633 -- integer.
ee6ba406 3634
3635 else
3636 Apply_Universal_Integer_Attribute_Checks (N);
3637 end if;
ee6ba406 3638 end Range_Length;
3639
3640 ----------
3641 -- Read --
3642 ----------
3643
3644 when Attribute_Read => Read : declare
3645 P_Type : constant Entity_Id := Entity (Pref);
3646 B_Type : constant Entity_Id := Base_Type (P_Type);
3647 U_Type : constant Entity_Id := Underlying_Type (P_Type);
3648 Pname : Entity_Id;
3649 Decl : Node_Id;
3650 Prag : Node_Id;
3651 Arg2 : Node_Id;
3652 Rfunc : Node_Id;
3653 Lhs : Node_Id;
3654 Rhs : Node_Id;
3655
3656 begin
3657 -- If no underlying type, we have an error that will be diagnosed
3658 -- elsewhere, so here we just completely ignore the expansion.
3659
3660 if No (U_Type) then
3661 return;
3662 end if;
3663
3664 -- The simple case, if there is a TSS for Read, just call it
3665
9dfe12ae 3666 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
ee6ba406 3667
3668 if Present (Pname) then
3669 null;
3670
3671 else
3672 -- If there is a Stream_Convert pragma, use it, we rewrite
3673
3674 -- sourcetyp'Read (stream, Item)
3675
3676 -- as
3677
3678 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
3679
aad6babd 3680 -- where strmread is the given Read function that converts an
3681 -- argument of type strmtyp to type sourcetyp or a type from which
3682 -- it is derived. The conversion to sourcetyp is required in the
3683 -- latter case.
ee6ba406 3684
3685 -- A special case arises if Item is a type conversion in which
3686 -- case, we have to expand to:
3687
3688 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
3689
3690 -- where Itemx is the expression of the type conversion (i.e.
3691 -- the actual object), and typex is the type of Itemx.
3692
5245b786 3693 Prag := Get_Stream_Convert_Pragma (P_Type);
ee6ba406 3694
3695 if Present (Prag) then
3696 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
3697 Rfunc := Entity (Expression (Arg2));
3698 Lhs := Relocate_Node (Next (First (Exprs)));
3699 Rhs :=
83aa52b6 3700 OK_Convert_To (B_Type,
ee6ba406 3701 Make_Function_Call (Loc,
3702 Name => New_Occurrence_Of (Rfunc, Loc),
3703 Parameter_Associations => New_List (
3704 Make_Attribute_Reference (Loc,
3705 Prefix =>
3706 New_Occurrence_Of
3707 (Etype (First_Formal (Rfunc)), Loc),
3708 Attribute_Name => Name_Input,
3709 Expressions => New_List (
3710 Relocate_Node (First (Exprs)))))));
3711
3712 if Nkind (Lhs) = N_Type_Conversion then
3713 Lhs := Expression (Lhs);
3714 Rhs := Convert_To (Etype (Lhs), Rhs);
3715 end if;
3716
3717 Rewrite (N,
3718 Make_Assignment_Statement (Loc,
9dfe12ae 3719 Name => Lhs,
ee6ba406 3720 Expression => Rhs));
3721 Set_Assignment_OK (Lhs);
3722 Analyze (N);
3723 return;
3724
3725 -- For elementary types, we call the I_xxx routine using the first
3726 -- parameter and then assign the result into the second parameter.
3727 -- We set Assignment_OK to deal with the conversion case.
3728
3729 elsif Is_Elementary_Type (U_Type) then
3730 declare
3731 Lhs : Node_Id;
3732 Rhs : Node_Id;
3733
3734 begin
3735 Lhs := Relocate_Node (Next (First (Exprs)));
3736 Rhs := Build_Elementary_Input_Call (N);
3737
3738 if Nkind (Lhs) = N_Type_Conversion then
3739 Lhs := Expression (Lhs);
3740 Rhs := Convert_To (Etype (Lhs), Rhs);
3741 end if;
3742
3743 Set_Assignment_OK (Lhs);
3744
3745 Rewrite (N,
3746 Make_Assignment_Statement (Loc,
328a1570 3747 Name => Lhs,
ee6ba406 3748 Expression => Rhs));
3749
3750 Analyze (N);
3751 return;
3752 end;
3753
3754 -- Array type case
3755
3756 elsif Is_Array_Type (U_Type) then
3757 Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
3758 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
3759
3760 -- Tagged type case, use the primitive Read function. Note that
3761 -- this will dispatch in the class-wide case which is what we want
3762
3763 elsif Is_Tagged_Type (U_Type) then
9dfe12ae 3764 Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
ee6ba406 3765
aad6babd 3766 -- All other record type cases, including protected records. The
3767 -- latter only arise for expander generated code for handling
3768 -- shared passive partition access.
ee6ba406 3769
3770 else
3771 pragma Assert
3772 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
3773
00f91aef 3774 -- Ada 2005 (AI-216): Program_Error is raised when executing
3775 -- the default implementation of the Read attribute of an
3776 -- Unchecked_Union type.
3777
3778 if Is_Unchecked_Union (Base_Type (U_Type)) then
3779 Insert_Action (N,
3780 Make_Raise_Program_Error (Loc,
3781 Reason => PE_Unchecked_Union_Restriction));
3782 end if;
3783
ee6ba406 3784 if Has_Discriminants (U_Type)
3785 and then Present
3786 (Discriminant_Default_Value (First_Discriminant (U_Type)))
3787 then
3788 Build_Mutable_Record_Read_Procedure
7af38999 3789 (Loc, Full_Base (U_Type), Decl, Pname);
ee6ba406 3790 else
3791 Build_Record_Read_Procedure
7af38999 3792 (Loc, Full_Base (U_Type), Decl, Pname);
ee6ba406 3793 end if;
3794
3795 -- Suppress checks, uninitialized or otherwise invalid
3796 -- data does not cause constraint errors to be raised for
3797 -- a complete record read.
3798
3799 Insert_Action (N, Decl, All_Checks);
3800 end if;
3801 end if;
3802
3803 Rewrite_Stream_Proc_Call (Pname);
3804 end Read;
3805
4f2ad752 3806 ---------
3807 -- Ref --
3808 ---------
3809
3810 -- Ref is identical to To_Address, see To_Address for processing
3811
ee6ba406 3812 ---------------
3813 -- Remainder --
3814 ---------------
3815
3816 -- Transforms 'Remainder into a call to the floating-point attribute
3817 -- function Remainder in Fat_xxx (where xxx is the root type)
3818
3819 when Attribute_Remainder =>
3820 Expand_Fpt_Attribute_RR (N);
3821
d55c93e0 3822 ------------
3823 -- Result --
3824 ------------
3825
3826 -- Transform 'Result into reference to _Result formal. At the point
3827 -- where a legal 'Result attribute is expanded, we know that we are in
3828 -- the context of a _Postcondition function with a _Result parameter.
3829
3830 when Attribute_Result =>
328a1570 3831 Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
d55c93e0 3832 Analyze_And_Resolve (N, Typ);
3833
ee6ba406 3834 -----------
3835 -- Round --
3836 -----------
3837
aad6babd 3838 -- The handling of the Round attribute is quite delicate. The processing
3839 -- in Sem_Attr introduced a conversion to universal real, reflecting the
3840 -- semantics of Round, but we do not want anything to do with universal
3841 -- real at runtime, since this corresponds to using floating-point
3842 -- arithmetic.
3843
3844 -- What we have now is that the Etype of the Round attribute correctly
3845 -- indicates the final result type. The operand of the Round is the
3846 -- conversion to universal real, described above, and the operand of
3847 -- this conversion is the actual operand of Round, which may be the
3848 -- special case of a fixed point multiplication or division (Etype =
3849 -- universal fixed)
3850
3851 -- The exapander will expand first the operand of the conversion, then
3852 -- the conversion, and finally the round attribute itself, since we
3853 -- always work inside out. But we cannot simply process naively in this
3854 -- order. In the semantic world where universal fixed and real really
3855 -- exist and have infinite precision, there is no problem, but in the
3856 -- implementation world, where universal real is a floating-point type,
3857 -- we would get the wrong result.
3858
3859 -- So the approach is as follows. First, when expanding a multiply or
3860 -- divide whose type is universal fixed, we do nothing at all, instead
3861 -- deferring the operation till later.
ee6ba406 3862
3863 -- The actual processing is done in Expand_N_Type_Conversion which
aad6babd 3864 -- handles the special case of Round by looking at its parent to see if
3865 -- it is a Round attribute, and if it is, handling the conversion (or
3866 -- its fixed multiply/divide child) in an appropriate manner.
ee6ba406 3867
3868 -- This means that by the time we get to expanding the Round attribute
3869 -- itself, the Round is nothing more than a type conversion (and will
3870 -- often be a null type conversion), so we just replace it with the
3871 -- appropriate conversion operation.
3872
3873 when Attribute_Round =>
3874 Rewrite (N,
3875 Convert_To (Etype (N), Relocate_Node (First (Exprs))));
3876 Analyze_And_Resolve (N);
3877
3878 --------------
3879 -- Rounding --
3880 --------------
3881
3882 -- Transforms 'Rounding into a call to the floating-point attribute
3883 -- function Rounding in Fat_xxx (where xxx is the root type)
3884
3885 when Attribute_Rounding =>
3886 Expand_Fpt_Attribute_R (N);
3887
3888 -------------
3889 -- Scaling --
3890 -------------
3891
3892 -- Transforms 'Scaling into a call to the floating-point attribute
3893 -- function Scaling in Fat_xxx (where xxx is the root type)
3894
3895 when Attribute_Scaling =>
3896 Expand_Fpt_Attribute_RI (N);
3897
3898 ----------
3899 -- Size --
3900 ----------
3901
3902 when Attribute_Size |
3903 Attribute_Object_Size |
3904 Attribute_Value_Size |
3905 Attribute_VADS_Size => Size :
3906
3907 declare
ee6ba406 3908 Siz : Uint;
9dfe12ae 3909 New_Node : Node_Id;
ee6ba406 3910
3911 begin
3912 -- Processing for VADS_Size case. Note that this processing removes
3913 -- all traces of VADS_Size from the tree, and completes all required
3914 -- processing for VADS_Size by translating the attribute reference
3915 -- to an appropriate Size or Object_Size reference.
3916
3917 if Id = Attribute_VADS_Size
3918 or else (Use_VADS_Size and then Id = Attribute_Size)
3919 then
3920 -- If the size is specified, then we simply use the specified
3921 -- size. This applies to both types and objects. The size of an
3922 -- object can be specified in the following ways:
3923
3924 -- An explicit size object is given for an object
3925 -- A component size is specified for an indexed component
3926 -- A component clause is specified for a selected component
3927 -- The object is a component of a packed composite object
3928
3929 -- If the size is specified, then VADS_Size of an object
3930
3931 if (Is_Entity_Name (Pref)
3932 and then Present (Size_Clause (Entity (Pref))))
3933 or else
3934 (Nkind (Pref) = N_Component_Clause
3935 and then (Present (Component_Clause
3936 (Entity (Selector_Name (Pref))))
3937 or else Is_Packed (Etype (Prefix (Pref)))))
3938 or else
3939 (Nkind (Pref) = N_Indexed_Component
3940 and then (Component_Size (Etype (Prefix (Pref))) /= 0
3941 or else Is_Packed (Etype (Prefix (Pref)))))
3942 then
3943 Set_Attribute_Name (N, Name_Size);
3944
3945 -- Otherwise if we have an object rather than a type, then the
3946 -- VADS_Size attribute applies to the type of the object, rather
3947 -- than the object itself. This is one of the respects in which
3948 -- VADS_Size differs from Size.
3949
3950 else
3951 if (not Is_Entity_Name (Pref)
3952 or else not Is_Type (Entity (Pref)))
d55c93e0 3953 and then (Is_Scalar_Type (Ptyp) or else Is_Constrained (Ptyp))
ee6ba406 3954 then
d55c93e0 3955 Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
ee6ba406 3956 end if;
3957
aad6babd 3958 -- For a scalar type for which no size was explicitly given,
3959 -- VADS_Size means Object_Size. This is the other respect in
3960 -- which VADS_Size differs from Size.
ee6ba406 3961
d55c93e0 3962 if Is_Scalar_Type (Ptyp) and then No (Size_Clause (Ptyp)) then
ee6ba406 3963 Set_Attribute_Name (N, Name_Object_Size);
3964
3965 -- In all other cases, Size and VADS_Size are the sane
3966
3967 else
3968 Set_Attribute_Name (N, Name_Size);
3969 end if;
3970 end if;
3971 end if;
3972
d55c93e0 3973 -- For class-wide types, X'Class'Size is transformed into a direct
3974 -- reference to the Size of the class type, so that the back end does
3975 -- not have to deal with the X'Class'Size reference.
ee6ba406 3976
9dfe12ae 3977 if Is_Entity_Name (Pref)
3978 and then Is_Class_Wide_Type (Entity (Pref))
3979 then
3980 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
3981 return;
3982
1550b445 3983 -- For X'Size applied to an object of a class-wide type, transform
9dfe12ae 3984 -- X'Size into a call to the primitive operation _Size applied to X.
3985
442049cc 3986 elsif Is_Class_Wide_Type (Ptyp)
3987 or else (Id = Attribute_Size
3988 and then Is_Tagged_Type (Ptyp)
3989 and then Has_Unknown_Discriminants (Ptyp))
3990 then
99f2248e 3991 -- No need to do anything else compiling under restriction
3992 -- No_Dispatching_Calls. During the semantic analysis we
3993 -- already notified such violation.
3994
3995 if Restriction_Active (No_Dispatching_Calls) then
3996 return;
3997 end if;
3998
ee6ba406 3999 New_Node :=
4000 Make_Function_Call (Loc,
4001 Name => New_Reference_To
4002 (Find_Prim_Op (Ptyp, Name_uSize), Loc),
4003 Parameter_Associations => New_List (Pref));
4004
4005 if Typ /= Standard_Long_Long_Integer then
4006
4007 -- The context is a specific integer type with which the
4008 -- original attribute was compatible. The function has a
4009 -- specific type as well, so to preserve the compatibility
4010 -- we must convert explicitly.
4011
4012 New_Node := Convert_To (Typ, New_Node);
4013 end if;
4014
4015 Rewrite (N, New_Node);
4016 Analyze_And_Resolve (N, Typ);
442049cc 4017 return;
83aa52b6 4018
4019 -- Case of known RM_Size of a type
4020
4021 elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
4022 and then Is_Entity_Name (Pref)
4023 and then Is_Type (Entity (Pref))
4024 and then Known_Static_RM_Size (Entity (Pref))
4025 then
4026 Siz := RM_Size (Entity (Pref));
4027
4028 -- Case of known Esize of a type
4029
4030 elsif Id = Attribute_Object_Size
4031 and then Is_Entity_Name (Pref)
4032 and then Is_Type (Entity (Pref))
4033 and then Known_Static_Esize (Entity (Pref))
4034 then
4035 Siz := Esize (Entity (Pref));
4036
4037 -- Case of known size of object
4038
4039 elsif Id = Attribute_Size
4040 and then Is_Entity_Name (Pref)
4041 and then Is_Object (Entity (Pref))
4042 and then Known_Esize (Entity (Pref))
4043 and then Known_Static_Esize (Entity (Pref))
4044 then
4045 Siz := Esize (Entity (Pref));
ee6ba406 4046
4047 -- For an array component, we can do Size in the front end
4048 -- if the component_size of the array is set.
4049
4050 elsif Nkind (Pref) = N_Indexed_Component then
4051 Siz := Component_Size (Etype (Prefix (Pref)));
4052
aad6babd 4053 -- For a record component, we can do Size in the front end if there
4054 -- is a component clause, or if the record is packed and the
4055 -- component's size is known at compile time.
ee6ba406 4056
4057 elsif Nkind (Pref) = N_Selected_Component then
4058 declare
4059 Rec : constant Entity_Id := Etype (Prefix (Pref));
4060 Comp : constant Entity_Id := Entity (Selector_Name (Pref));
4061
4062 begin
4063 if Present (Component_Clause (Comp)) then
4064 Siz := Esize (Comp);
4065
4066 elsif Is_Packed (Rec) then
4067 Siz := RM_Size (Ptyp);
4068
4069 else
4070 Apply_Universal_Integer_Attribute_Checks (N);
4071 return;
4072 end if;
4073 end;
4074
d55c93e0 4075 -- All other cases are handled by the back end
ee6ba406 4076
4077 else
4078 Apply_Universal_Integer_Attribute_Checks (N);
4079
1550b445 4080 -- If Size is applied to a formal parameter that is of a packed
4081 -- array subtype, then apply Size to the actual subtype.
ee6ba406 4082
4083 if Is_Entity_Name (Pref)
4084 and then Is_Formal (Entity (Pref))
d55c93e0 4085 and then Is_Array_Type (Ptyp)
4086 and then Is_Packed (Ptyp)
ee6ba406 4087 then
4088 Rewrite (N,
4089 Make_Attribute_Reference (Loc,
4090 Prefix =>
4091 New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
4092 Attribute_Name => Name_Size));
4093 Analyze_And_Resolve (N, Typ);
4094 end if;
4095
83aa52b6 4096 -- If Size applies to a dereference of an access to unconstrained
d55c93e0 4097 -- packed array, the back end needs to see its unconstrained
4098 -- nominal type, but also a hint to the actual constrained type.
1550b445 4099
4100 if Nkind (Pref) = N_Explicit_Dereference
d55c93e0 4101 and then Is_Array_Type (Ptyp)
4102 and then not Is_Constrained (Ptyp)
4103 and then Is_Packed (Ptyp)
1550b445 4104 then
4105 Set_Actual_Designated_Subtype (Pref,
4106 Get_Actual_Subtype (Pref));
4107 end if;
4108
ee6ba406 4109 return;
4110 end if;
4111
4112 -- Common processing for record and array component case
4113
83aa52b6 4114 if Siz /= No_Uint and then Siz /= 0 then
6deeca1d 4115 declare
4116 CS : constant Boolean := Comes_From_Source (N);
ee6ba406 4117
6deeca1d 4118 begin
4119 Rewrite (N, Make_Integer_Literal (Loc, Siz));
4120
4121 -- This integer literal is not a static expression. We do not
4122 -- call Analyze_And_Resolve here, because this would activate
4123 -- the circuit for deciding that a static value was out of
4124 -- range, and we don't want that.
ee6ba406 4125
6deeca1d 4126 -- So just manually set the type, mark the expression as non-
4127 -- static, and then ensure that the result is checked properly
4128 -- if the attribute comes from source (if it was internally
4129 -- generated, we never need a constraint check).
ee6ba406 4130
6deeca1d 4131 Set_Etype (N, Typ);
4132 Set_Is_Static_Expression (N, False);
4133
4134 if CS then
4135 Apply_Constraint_Check (N, Typ);
4136 end if;
4137 end;
ee6ba406 4138 end if;
4139 end Size;
4140
4141 ------------------
4142 -- Storage_Pool --
4143 ------------------
4144
4145 when Attribute_Storage_Pool =>
4146 Rewrite (N,
4147 Make_Type_Conversion (Loc,
4148 Subtype_Mark => New_Reference_To (Etype (N), Loc),
4149 Expression => New_Reference_To (Entity (N), Loc)));
4150 Analyze_And_Resolve (N, Typ);
4151
4152 ------------------
4153 -- Storage_Size --
4154 ------------------
4155
d55c93e0 4156 when Attribute_Storage_Size => Storage_Size : begin
ee6ba406 4157
ee6ba406 4158 -- Access type case, always go to the root type
4159
4160 -- The case of access types results in a value of zero for the case
4161 -- where no storage size attribute clause has been given. If a
4162 -- storage size has been given, then the attribute is converted
4163 -- to a reference to the variable used to hold this value.
4164
4165 if Is_Access_Type (Ptyp) then
4166 if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
4167 Rewrite (N,
4168 Make_Attribute_Reference (Loc,
4169 Prefix => New_Reference_To (Typ, Loc),
4170 Attribute_Name => Name_Max,
4171 Expressions => New_List (
4172 Make_Integer_Literal (Loc, 0),
4173 Convert_To (Typ,
4174 New_Reference_To
4175 (Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
4176
4177 elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
4178 Rewrite (N,
4179 OK_Convert_To (Typ,
4180 Make_Function_Call (Loc,
9dfe12ae 4181 Name =>
4182 New_Reference_To
7f8eb6ed 4183 (Find_Prim_Op
4184 (Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
4185 Attribute_Name (N)),
4186 Loc),
4187
4188 Parameter_Associations => New_List (
4189 New_Reference_To
4190 (Associated_Storage_Pool (Root_Type (Ptyp)), Loc)))));
ee6ba406 4191
ee6ba406 4192 else
4193 Rewrite (N, Make_Integer_Literal (Loc, 0));
4194 end if;
4195
4196 Analyze_And_Resolve (N, Typ);
4197
7f8eb6ed 4198 -- For tasks, we retrieve the size directly from the TCB. The
4199 -- size may depend on a discriminant of the type, and therefore
4200 -- can be a per-object expression, so type-level information is
4201 -- not sufficient in general. There are four cases to consider:
ee6ba406 4202
7f8eb6ed 4203 -- a) If the attribute appears within a task body, the designated
4204 -- TCB is obtained by a call to Self.
ee6ba406 4205
7f8eb6ed 4206 -- b) If the prefix of the attribute is the name of a task object,
4207 -- the designated TCB is the one stored in the corresponding record.
ee6ba406 4208
7f8eb6ed 4209 -- c) If the prefix is a task type, the size is obtained from the
4210 -- size variable created for each task type
ee6ba406 4211
7f8eb6ed 4212 -- d) If no storage_size was specified for the type , there is no
4213 -- size variable, and the value is a system-specific default.
ee6ba406 4214
4215 else
7f8eb6ed 4216 if In_Open_Scopes (Ptyp) then
4217
4218 -- Storage_Size (Self)
4219
ee6ba406 4220 Rewrite (N,
4221 Convert_To (Typ,
4222 Make_Function_Call (Loc,
4223 Name =>
7f8eb6ed 4224 New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
4225 Parameter_Associations =>
4226 New_List (
4227 Make_Function_Call (Loc,
4228 Name =>
4229 New_Reference_To (RTE (RE_Self), Loc))))));
ee6ba406 4230
7f8eb6ed 4231 elsif not Is_Entity_Name (Pref)
4232 or else not Is_Type (Entity (Pref))
4233 then
4234 -- Storage_Size (Rec (Obj).Size)
4235
4236 Rewrite (N,
4237 Convert_To (Typ,
4238 Make_Function_Call (Loc,
4239 Name =>
4240 New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
4241 Parameter_Associations =>
ee6ba406 4242 New_List (
4243 Make_Selected_Component (Loc,
4244 Prefix =>
4245 Unchecked_Convert_To (
4246 Corresponding_Record_Type (Ptyp),
7f8eb6ed 4247 New_Copy_Tree (Pref)),
ee6ba406 4248 Selector_Name =>
7f8eb6ed 4249 Make_Identifier (Loc, Name_uTask_Id))))));
ee6ba406 4250
7f8eb6ed 4251 elsif Present (Storage_Size_Variable (Ptyp)) then
ee6ba406 4252
7f8eb6ed 4253 -- Static storage size pragma given for type: retrieve value
4254 -- from its allocated storage variable.
ee6ba406 4255
7f8eb6ed 4256 Rewrite (N,
4257 Convert_To (Typ,
4258 Make_Function_Call (Loc,
4259 Name => New_Occurrence_Of (
4260 RTE (RE_Adjust_Storage_Size), Loc),
4261 Parameter_Associations =>
4262 New_List (
4263 New_Reference_To (
4264 Storage_Size_Variable (Ptyp), Loc)))));
4265 else
4266 -- Get system default
4267
4268 Rewrite (N,
4269 Convert_To (Typ,
4270 Make_Function_Call (Loc,
4271 Name =>
4272 New_Occurrence_Of (
4273 RTE (RE_Default_Stack_Size), Loc))));
ee6ba406 4274 end if;
7f8eb6ed 4275
4276 Analyze_And_Resolve (N, Typ);
ee6ba406 4277 end if;
4278 end Storage_Size;
4279
7189d17f 4280 -----------------
4281 -- Stream_Size --
4282 -----------------
4283
3430bf31 4284 when Attribute_Stream_Size =>
4285 Rewrite (N,
4286 Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
7189d17f 4287 Analyze_And_Resolve (N, Typ);
7189d17f 4288
ee6ba406 4289 ----------
4290 -- Succ --
4291 ----------
4292
4293 -- 1. Deal with enumeration types with holes
4294 -- 2. For floating-point, generate call to attribute function
4295 -- 3. For other cases, deal with constraint checking
4296
5c182b3b 4297 when Attribute_Succ => Succ : declare
d55c93e0 4298 Etyp : constant Entity_Id := Base_Type (Ptyp);
ee6ba406 4299
4300 begin
d55c93e0 4301
ee6ba406 4302 -- For enumeration types with non-standard representations, we
4303 -- expand typ'Succ (x) into
4304
4305 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
4306
9dfe12ae 4307 -- If the representation is contiguous, we compute instead
4308 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
4309
ee6ba406 4310 if Is_Enumeration_Type (Ptyp)
d55c93e0 4311 and then Present (Enum_Pos_To_Rep (Etyp))
ee6ba406 4312 then
d55c93e0 4313 if Has_Contiguous_Rep (Etyp) then
9dfe12ae 4314 Rewrite (N,
4315 Unchecked_Convert_To (Ptyp,
4316 Make_Op_Add (Loc,
4317 Left_Opnd =>
4318 Make_Integer_Literal (Loc,
4319 Enumeration_Rep (First_Literal (Ptyp))),
4320 Right_Opnd =>
4321 Make_Function_Call (Loc,
4322 Name =>
4323 New_Reference_To
d55c93e0 4324 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
9dfe12ae 4325
4326 Parameter_Associations =>
4327 New_List (
4328 Unchecked_Convert_To (Ptyp,
4329 Make_Op_Add (Loc,
4330 Left_Opnd =>
4331 Unchecked_Convert_To (Standard_Integer,
4332 Relocate_Node (First (Exprs))),
4333 Right_Opnd =>
4334 Make_Integer_Literal (Loc, 1))),
4335 Rep_To_Pos_Flag (Ptyp, Loc))))));
4336 else
4337 -- Add Boolean parameter True, to request program errror if
4338 -- we have a bad representation on our hands. Add False if
4339 -- checks are suppressed.
ee6ba406 4340
9dfe12ae 4341 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
4342 Rewrite (N,
4343 Make_Indexed_Component (Loc,
d55c93e0 4344 Prefix =>
4345 New_Reference_To
4346 (Enum_Pos_To_Rep (Etyp), Loc),
9dfe12ae 4347 Expressions => New_List (
4348 Make_Op_Add (Loc,
4349 Left_Opnd =>
4350 Make_Function_Call (Loc,
4351 Name =>
4352 New_Reference_To
d55c93e0 4353 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
9dfe12ae 4354 Parameter_Associations => Exprs),
4355 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
4356 end if;
ee6ba406 4357
4358 Analyze_And_Resolve (N, Typ);
4359
4360 -- For floating-point, we transform 'Succ into a call to the Succ
4361 -- floating-point attribute function in Fat_xxx (xxx is root type)
4362
4363 elsif Is_Floating_Point_Type (Ptyp) then
4364 Expand_Fpt_Attribute_R (N);
4365 Analyze_And_Resolve (N, Typ);
4366
4367 -- For modular types, nothing to do (no overflow, since wraps)
4368
4369 elsif Is_Modular_Integer_Type (Ptyp) then
4370 null;
4371
a9b57347 4372 -- For other types, if argument is marked as needing a range check or
4373 -- overflow checking is enabled, we must generate a check.
ee6ba406 4374
a9b57347 4375 elsif not Overflow_Checks_Suppressed (Ptyp)
4376 or else Do_Range_Check (First (Exprs))
4377 then
4378 Set_Do_Range_Check (First (Exprs), False);
ee6ba406 4379 Expand_Pred_Succ (N);
4380 end if;
4381 end Succ;
4382
4383 ---------
4384 -- Tag --
4385 ---------
4386
4387 -- Transforms X'Tag into a direct reference to the tag of X
4388
5c182b3b 4389 when Attribute_Tag => Tag : declare
ee6ba406 4390 Ttyp : Entity_Id;
4391 Prefix_Is_Type : Boolean;
4392
4393 begin
4394 if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
4395 Ttyp := Entity (Pref);
4396 Prefix_Is_Type := True;
4397 else
d55c93e0 4398 Ttyp := Ptyp;
ee6ba406 4399 Prefix_Is_Type := False;
4400 end if;
4401
4402 if Is_Class_Wide_Type (Ttyp) then
4403 Ttyp := Root_Type (Ttyp);
4404 end if;
4405
4406 Ttyp := Underlying_Type (Ttyp);
4407
8188864b 4408 -- Ada 2005: The type may be a synchronized tagged type, in which
4409 -- case the tag information is stored in the corresponding record.
4410
4411 if Is_Concurrent_Type (Ttyp) then
4412 Ttyp := Corresponding_Record_Type (Ttyp);
4413 end if;
4414
ee6ba406 4415 if Prefix_Is_Type then
1d7e0b5b 4416
83aa52b6 4417 -- For VMs we leave the type attribute unexpanded because
1d7e0b5b 4418 -- there's not a dispatching table to reference.
4419
662256db 4420 if Tagged_Type_Expansion then
1d7e0b5b 4421 Rewrite (N,
4422 Unchecked_Convert_To (RTE (RE_Tag),
4660e715 4423 New_Reference_To
4424 (Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
1d7e0b5b 4425 Analyze_And_Resolve (N, RTE (RE_Tag));
4426 end if;
ee6ba406 4427
b6dbc975 4428 -- Ada 2005 (AI-251): The use of 'Tag in the sources always
83aa52b6 4429 -- references the primary tag of the actual object. If 'Tag is
4430 -- applied to class-wide interface objects we generate code that
4431 -- displaces "this" to reference the base of the object.
4432
4433 elsif Comes_From_Source (N)
4434 and then Is_Class_Wide_Type (Etype (Prefix (N)))
4435 and then Is_Interface (Etype (Prefix (N)))
4436 then
4437 -- Generate:
4438 -- (To_Tag_Ptr (Prefix'Address)).all
4439
4440 -- Note that Prefix'Address is recursively expanded into a call
4441 -- to Base_Address (Obj.Tag)
4442
f0bf2ff3 4443 -- Not needed for VM targets, since all handled by the VM
4444
662256db 4445 if Tagged_Type_Expansion then
f0bf2ff3 4446 Rewrite (N,
4447 Make_Explicit_Dereference (Loc,
4448 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
4449 Make_Attribute_Reference (Loc,
4450 Prefix => Relocate_Node (Pref),
4451 Attribute_Name => Name_Address))));
4452 Analyze_And_Resolve (N, RTE (RE_Tag));
4453 end if;
83aa52b6 4454
ee6ba406 4455 else
4456 Rewrite (N,
4457 Make_Selected_Component (Loc,
4458 Prefix => Relocate_Node (Pref),
4459 Selector_Name =>
4660e715 4460 New_Reference_To (First_Tag_Component (Ttyp), Loc)));
1d7e0b5b 4461 Analyze_And_Resolve (N, RTE (RE_Tag));
ee6ba406 4462 end if;
ee6ba406 4463 end Tag;
4464
4465 ----------------
4466 -- Terminated --
4467 ----------------
4468
aad6babd 4469 -- Transforms 'Terminated attribute into a call to Terminated function
ee6ba406 4470
4471 when Attribute_Terminated => Terminated :
4472 begin
1550b445 4473 -- The prefix of Terminated is of a task interface class-wide type.
4474 -- Generate:
83aa52b6 4475 -- terminated (Task_Id (Pref._disp_get_task_id));
1550b445 4476
de54c5ab 4477 if Ada_Version >= Ada_2005
d55c93e0 4478 and then Ekind (Ptyp) = E_Class_Wide_Type
4479 and then Is_Interface (Ptyp)
4480 and then Is_Task_Interface (Ptyp)
1550b445 4481 then
4482 Rewrite (N,
4483 Make_Function_Call (Loc,
4484 Name =>
4485 New_Reference_To (RTE (RE_Terminated), Loc),
4486 Parameter_Associations => New_List (
83aa52b6 4487 Make_Unchecked_Type_Conversion (Loc,
4488 Subtype_Mark =>
4489 New_Reference_To (RTE (RO_ST_Task_Id), Loc),
4490 Expression =>
4491 Make_Selected_Component (Loc,
4492 Prefix =>
4493 New_Copy_Tree (Pref),
4494 Selector_Name =>
4495 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
1550b445 4496
4497 elsif Restricted_Profile then
ee6ba406 4498 Rewrite (N,
4499 Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
4500
4501 else
4502 Rewrite (N,
4503 Build_Call_With_Task (Pref, RTE (RE_Terminated)));
4504 end if;
4505
4506 Analyze_And_Resolve (N, Standard_Boolean);
4507 end Terminated;
4508
4509 ----------------
4510 -- To_Address --
4511 ----------------
4512
4f2ad752 4513 -- Transforms System'To_Address (X) and System.Address'Ref (X) into
4514 -- unchecked conversion from (integral) type of X to type address.
ee6ba406 4515
4f2ad752 4516 when Attribute_To_Address | Attribute_Ref =>
ee6ba406 4517 Rewrite (N,
4518 Unchecked_Convert_To (RTE (RE_Address),
4519 Relocate_Node (First (Exprs))));
4520 Analyze_And_Resolve (N, RTE (RE_Address));
4521
5690e662 4522 ------------
4523 -- To_Any --
4524 ------------
4525
4526 when Attribute_To_Any => To_Any : declare
4527 P_Type : constant Entity_Id := Etype (Pref);
4528 Decls : constant List_Id := New_List;
4529 begin
4530 Rewrite (N,
4531 Build_To_Any_Call
4532 (Convert_To (P_Type,
4533 Relocate_Node (First (Exprs))), Decls));
4534 Insert_Actions (N, Decls);
4535 Analyze_And_Resolve (N, RTE (RE_Any));
4536 end To_Any;
4537
ee6ba406 4538 ----------------
4539 -- Truncation --
4540 ----------------
4541
4542 -- Transforms 'Truncation into a call to the floating-point attribute
99f2248e 4543 -- function Truncation in Fat_xxx (where xxx is the root type).
4544 -- Expansion is avoided for cases the back end can handle directly.
ee6ba406 4545
4546 when Attribute_Truncation =>
99f2248e 4547 if not Is_Inline_Floating_Point_Attribute (N) then
4548 Expand_Fpt_Attribute_R (N);
4549 end if;
ee6ba406 4550
5690e662 4551 --------------
4552 -- TypeCode --
4553 --------------
4554
4555 when Attribute_TypeCode => TypeCode : declare
4556 P_Type : constant Entity_Id := Etype (Pref);
4557 Decls : constant List_Id := New_List;
4558 begin
4559 Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
4560 Insert_Actions (N, Decls);
4561 Analyze_And_Resolve (N, RTE (RE_TypeCode));
4562 end TypeCode;
4563
ee6ba406 4564 -----------------------
4565 -- Unbiased_Rounding --
4566 -----------------------
4567
4568 -- Transforms 'Unbiased_Rounding into a call to the floating-point
4569 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
99f2248e 4570 -- root type). Expansion is avoided for cases the back end can handle
4571 -- directly.
ee6ba406 4572
4573 when Attribute_Unbiased_Rounding =>
99f2248e 4574 if not Is_Inline_Floating_Point_Attribute (N) then
4575 Expand_Fpt_Attribute_R (N);
4576 end if;
ee6ba406 4577
ee6ba406 4578 -----------------
4579 -- UET_Address --
4580 -----------------
4581
4582 when Attribute_UET_Address => UET_Address : declare
46eb6933 4583 Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
ee6ba406 4584
4585 begin
4586 Insert_Action (N,
4587 Make_Object_Declaration (Loc,
4588 Defining_Identifier => Ent,
4589 Aliased_Present => True,
4590 Object_Definition =>
4591 New_Occurrence_Of (RTE (RE_Address), Loc)));
4592
4593 -- Construct name __gnat_xxx__SDP, where xxx is the unit name
4594 -- in normal external form.
4595
4596 Get_External_Unit_Name_String (Get_Unit_Name (Pref));
4597 Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
4598 Name_Len := Name_Len + 7;
4599 Name_Buffer (1 .. 7) := "__gnat_";
4600 Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
4601 Name_Len := Name_Len + 5;
4602
4603 Set_Is_Imported (Ent);
4604 Set_Interface_Name (Ent,
4605 Make_String_Literal (Loc,
4606 Strval => String_From_Name_Buffer));
4607
f947f061 4608 -- Set entity as internal to ensure proper Sprint output of its
4609 -- implicit importation.
4610
4611 Set_Is_Internal (Ent);
4612
ee6ba406 4613 Rewrite (N,
4614 Make_Attribute_Reference (Loc,
4615 Prefix => New_Occurrence_Of (Ent, Loc),
4616 Attribute_Name => Name_Address));
4617
4618 Analyze_And_Resolve (N, Typ);
4619 end UET_Address;
4620
ee6ba406 4621 ---------------
4622 -- VADS_Size --
4623 ---------------
4624
4625 -- The processing for VADS_Size is shared with Size
4626
4627 ---------
4628 -- Val --
4629 ---------
4630
4631 -- For enumeration types with a standard representation, and for all
d55c93e0 4632 -- other types, Val is handled by the back end. For enumeration types
4633 -- with a non-standard representation we use the _Pos_To_Rep array that
ee6ba406 4634 -- was created when the type was frozen.
4635
5c182b3b 4636 when Attribute_Val => Val : declare
ee6ba406 4637 Etyp : constant Entity_Id := Base_Type (Entity (Pref));
4638
4639 begin
4640 if Is_Enumeration_Type (Etyp)
4641 and then Present (Enum_Pos_To_Rep (Etyp))
4642 then
9dfe12ae 4643 if Has_Contiguous_Rep (Etyp) then
4644 declare
4645 Rep_Node : constant Node_Id :=
4646 Unchecked_Convert_To (Etyp,
4647 Make_Op_Add (Loc,
4648 Left_Opnd =>
4649 Make_Integer_Literal (Loc,
4650 Enumeration_Rep (First_Literal (Etyp))),
4651 Right_Opnd =>
4652 (Convert_To (Standard_Integer,
4653 Relocate_Node (First (Exprs))))));
4654
4655 begin
4656 Rewrite (N,
4657 Unchecked_Convert_To (Etyp,
4658 Make_Op_Add (Loc,
4659 Left_Opnd =>
4660 Make_Integer_Literal (Loc,
4661 Enumeration_Rep (First_Literal (Etyp))),
4662 Right_Opnd =>
4663 Make_Function_Call (Loc,
4664 Name =>
4665 New_Reference_To
4666 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
4667 Parameter_Associations => New_List (
4668 Rep_Node,
4669 Rep_To_Pos_Flag (Etyp, Loc))))));
4670 end;
4671
4672 else
4673 Rewrite (N,
4674 Make_Indexed_Component (Loc,
4675 Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc),
4676 Expressions => New_List (
4677 Convert_To (Standard_Integer,
4678 Relocate_Node (First (Exprs))))));
4679 end if;
ee6ba406 4680
4681 Analyze_And_Resolve (N, Typ);
a9b57347 4682
4683 -- If the argument is marked as requiring a range check then generate
4684 -- it here.
4685
4686 elsif Do_Range_Check (First (Exprs)) then
4687 Set_Do_Range_Check (First (Exprs), False);
4688 Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
ee6ba406 4689 end if;
4690 end Val;
4691
4692 -----------
4693 -- Valid --
4694 -----------
4695
4696 -- The code for valid is dependent on the particular types involved.
4697 -- See separate sections below for the generated code in each case.
4698
5c182b3b 4699 when Attribute_Valid => Valid : declare
d55c93e0 4700 Btyp : Entity_Id := Base_Type (Ptyp);
ee6ba406 4701 Tst : Node_Id;
4702
9dfe12ae 4703 Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
4704 -- Save the validity checking mode. We always turn off validity
4705 -- checking during process of 'Valid since this is one place
4706 -- where we do not want the implicit validity checks to intefere
4707 -- with the explicit validity check that the programmer is doing.
4708
ee6ba406 4709 function Make_Range_Test return Node_Id;
4710 -- Build the code for a range test of the form
72a8dd48 4711 -- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
ee6ba406 4712
9dfe12ae 4713 ---------------------
4714 -- Make_Range_Test --
4715 ---------------------
4716
ee6ba406 4717 function Make_Range_Test return Node_Id is
58f8748b 4718 Temp : constant Node_Id := Duplicate_Subexpr (Pref);
4719
ee6ba406 4720 begin
58f8748b 4721 -- The value whose validity is being checked has been captured in
4722 -- an object declaration. We certainly don't want this object to
4723 -- appear valid because the declaration initializes it!
4724
4725 if Is_Entity_Name (Temp) then
4726 Set_Is_Known_Valid (Entity (Temp), False);
4727 end if;
4728
ee6ba406 4729 return
72a8dd48 4730 Make_In (Loc,
4731 Left_Opnd =>
4732 Unchecked_Convert_To (Btyp, Temp),
4733 Right_Opnd =>
4734 Make_Range (Loc,
4735 Low_Bound =>
ee6ba406 4736 Unchecked_Convert_To (Btyp,
4737 Make_Attribute_Reference (Loc,
4738 Prefix => New_Occurrence_Of (Ptyp, Loc),
72a8dd48 4739 Attribute_Name => Name_First)),
4740 High_Bound =>
ee6ba406 4741 Unchecked_Convert_To (Btyp,
4742 Make_Attribute_Reference (Loc,
4743 Prefix => New_Occurrence_Of (Ptyp, Loc),
4744 Attribute_Name => Name_Last))));
4745 end Make_Range_Test;
4746
4747 -- Start of processing for Attribute_Valid
4748
4749 begin
01cb2726 4750 -- Do not expand sourced code 'Valid reference in CodePeer mode,
4751 -- will be handled by the back-end directly.
4752
4753 if CodePeer_Mode and then Comes_From_Source (N) then
4754 return;
4755 end if;
4756
9dfe12ae 4757 -- Turn off validity checks. We do not want any implicit validity
4758 -- checks to intefere with the explicit check from the attribute
4759
4760 Validity_Checks_On := False;
4761
ee6ba406 4762 -- Floating-point case. This case is handled by the Valid attribute
4763 -- code in the floating-point attribute run-time library.
4764
4765 if Is_Floating_Point_Type (Ptyp) then
4766 declare
1550b445 4767 Pkg : RE_Id;
4768 Ftp : Entity_Id;
ee6ba406 4769
4770 begin
6e62b6c3 4771
95b21580 4772 case Float_Rep (Btyp) is
c9d7c2c0 4773
95b21580 4774 -- For vax fpt types, call appropriate routine in special
c9d7c2c0 4775 -- vax floating point unit. No need to worry about loads in
4776 -- this case, since these types have no signalling NaN's.
6e62b6c3 4777
95b21580 4778 when VAX_Native => Expand_Vax_Valid (N);
7f8eb6ed 4779
95b21580 4780 -- The AAMP back end handles Valid for floating-point types
7f8eb6ed 4781
95b21580 4782 when AAMP =>
4783 Analyze_And_Resolve (Pref, Ptyp);
4784 Set_Etype (N, Standard_Boolean);
4785 Set_Analyzed (N);
9dfe12ae 4786
95b21580 4787 when IEEE_Binary =>
4788 Find_Fat_Info (Ptyp, Ftp, Pkg);
9dfe12ae 4789
95b21580 4790 -- If the floating-point object might be unaligned, we
4791 -- need to call the special routine Unaligned_Valid,
4792 -- which makes the needed copy, being careful not to
4793 -- load the value into any floating-point register.
4794 -- The argument in this case is obj'Address (see
4795 -- Unaligned_Valid routine in Fat_Gen).
9dfe12ae 4796
95b21580 4797 if Is_Possibly_Unaligned_Object (Pref) then
4798 Expand_Fpt_Attribute
4799 (N, Pkg, Name_Unaligned_Valid,
4800 New_List (
4801 Make_Attribute_Reference (Loc,
4802 Prefix => Relocate_Node (Pref),
4803 Attribute_Name => Name_Address)));
4804
4805 -- In the normal case where we are sure the object is
4806 -- aligned, we generate a call to Valid, and the argument
4807 -- in this case is obj'Unrestricted_Access (after
4808 -- converting obj to the right floating-point type).
4809
4810 else
4811 Expand_Fpt_Attribute
4812 (N, Pkg, Name_Valid,
4813 New_List (
4814 Make_Attribute_Reference (Loc,
4815 Prefix => Unchecked_Convert_To (Ftp, Pref),
4816 Attribute_Name => Name_Unrestricted_Access)));
4817 end if;
4818 end case;
ee6ba406 4819
4820 -- One more task, we still need a range check. Required
4821 -- only if we have a constraint, since the Valid routine
4822 -- catches infinities properly (infinities are never valid).
4823
4824 -- The way we do the range check is simply to create the
4825 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
4826
4827 if not Subtypes_Statically_Match (Ptyp, Btyp) then
4828 Rewrite (N,
4829 Make_And_Then (Loc,
4830 Left_Opnd => Relocate_Node (N),
4831 Right_Opnd =>
4832 Make_In (Loc,
4833 Left_Opnd => Convert_To (Btyp, Pref),
4834 Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
4835 end if;
4836 end;
4837
4838 -- Enumeration type with holes
4839
4840 -- For enumeration types with holes, the Pos value constructed by
4841 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
4842 -- second argument of False returns minus one for an invalid value,
4843 -- and the non-negative pos value for a valid value, so the
4844 -- expansion of X'Valid is simply:
4845
4846 -- type(X)'Pos (X) >= 0
4847
4848 -- We can't quite generate it that way because of the requirement
5329ca64 4849 -- for the non-standard second argument of False in the resulting
4850 -- rep_to_pos call, so we have to explicitly create:
ee6ba406 4851
4852 -- _rep_to_pos (X, False) >= 0
4853
4854 -- If we have an enumeration subtype, we also check that the
4855 -- value is in range:
4856
4857 -- _rep_to_pos (X, False) >= 0
4858 -- and then
5329ca64 4859 -- (X >= type(X)'First and then type(X)'Last <= X)
ee6ba406 4860
4861 elsif Is_Enumeration_Type (Ptyp)
4862 and then Present (Enum_Pos_To_Rep (Base_Type (Ptyp)))
4863 then
4864 Tst :=
4865 Make_Op_Ge (Loc,
4866 Left_Opnd =>
4867 Make_Function_Call (Loc,
4868 Name =>
4869 New_Reference_To
9dfe12ae 4870 (TSS (Base_Type (Ptyp), TSS_Rep_To_Pos), Loc),
ee6ba406 4871 Parameter_Associations => New_List (
4872 Pref,
4873 New_Occurrence_Of (Standard_False, Loc))),
4874 Right_Opnd => Make_Integer_Literal (Loc, 0));
4875
4876 if Ptyp /= Btyp
4877 and then
4878 (Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
4879 or else
4880 Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
4881 then
4882 -- The call to Make_Range_Test will create declarations
4883 -- that need a proper insertion point, but Pref is now
4884 -- attached to a node with no ancestor. Attach to tree
4885 -- even if it is to be rewritten below.
4886
4887 Set_Parent (Tst, Parent (N));
4888
4889 Tst :=
4890 Make_And_Then (Loc,
4891 Left_Opnd => Make_Range_Test,
4892 Right_Opnd => Tst);
4893 end if;
4894
4895 Rewrite (N, Tst);
4896
4897 -- Fortran convention booleans
4898
4899 -- For the very special case of Fortran convention booleans, the
4900 -- value is always valid, since it is an integer with the semantics
4901 -- that non-zero is true, and any value is permissible.
4902
4903 elsif Is_Boolean_Type (Ptyp)
4904 and then Convention (Ptyp) = Convention_Fortran
4905 then
4906 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4907
4908 -- For biased representations, we will be doing an unchecked
aad6babd 4909 -- conversion without unbiasing the result. That means that the range
4910 -- test has to take this into account, and the proper form of the
4911 -- test is:
ee6ba406 4912
4913 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
4914
4915 elsif Has_Biased_Representation (Ptyp) then
4916 Btyp := RTE (RE_Unsigned_32);
4917 Rewrite (N,
4918 Make_Op_Lt (Loc,
4919 Left_Opnd =>
4920 Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
4921 Right_Opnd =>
4922 Unchecked_Convert_To (Btyp,
4923 Make_Attribute_Reference (Loc,
4924 Prefix => New_Occurrence_Of (Ptyp, Loc),
4925 Attribute_Name => Name_Range_Length))));
4926
4927 -- For all other scalar types, what we want logically is a
4928 -- range test:
4929
4930 -- X in type(X)'First .. type(X)'Last
4931
4932 -- But that's precisely what won't work because of possible
4933 -- unwanted optimization (and indeed the basic motivation for
5329ca64 4934 -- the Valid attribute is exactly that this test does not work!)
ee6ba406 4935 -- What will work is:
4936
4937 -- Btyp!(X) >= Btyp!(type(X)'First)
4938 -- and then
4939 -- Btyp!(X) <= Btyp!(type(X)'Last)
4940
4941 -- where Btyp is an integer type large enough to cover the full
4942 -- range of possible stored values (i.e. it is chosen on the basis
4943 -- of the size of the type, not the range of the values). We write
4944 -- this as two tests, rather than a range check, so that static
4945 -- evaluation will easily remove either or both of the checks if
4946 -- they can be -statically determined to be true (this happens
4947 -- when the type of X is static and the range extends to the full
4948 -- range of stored values).
4949
4950 -- Unsigned types. Note: it is safe to consider only whether the
4951 -- subtype is unsigned, since we will in that case be doing all
aad6babd 4952 -- unsigned comparisons based on the subtype range. Since we use the
4953 -- actual subtype object size, this is appropriate.
ee6ba406 4954
4955 -- For example, if we have
4956
4957 -- subtype x is integer range 1 .. 200;
4958 -- for x'Object_Size use 8;
4959
aad6babd 4960 -- Now the base type is signed, but objects of this type are bits
4961 -- unsigned, and doing an unsigned test of the range 1 to 200 is
4962 -- correct, even though a value greater than 127 looks signed to a
4963 -- signed comparison.
ee6ba406 4964
4965 elsif Is_Unsigned_Type (Ptyp) then
4966 if Esize (Ptyp) <= 32 then
4967 Btyp := RTE (RE_Unsigned_32);
4968 else
4969 Btyp := RTE (RE_Unsigned_64);
4970 end if;
4971
4972 Rewrite (N, Make_Range_Test);
4973
4974 -- Signed types
4975
4976 else
4977 if Esize (Ptyp) <= Esize (Standard_Integer) then
4978 Btyp := Standard_Integer;
4979 else
4980 Btyp := Universal_Integer;
4981 end if;
4982
4983 Rewrite (N, Make_Range_Test);
4984 end if;
4985
4986 Analyze_And_Resolve (N, Standard_Boolean);
9dfe12ae 4987 Validity_Checks_On := Save_Validity_Checks_On;
ee6ba406 4988 end Valid;
4989
4990 -----------
4991 -- Value --
4992 -----------
4993
4994 -- Value attribute is handled in separate unti Exp_Imgv
4995
4996 when Attribute_Value =>
4997 Exp_Imgv.Expand_Value_Attribute (N);
4998
4999 -----------------
5000 -- Value_Size --
5001 -----------------
5002
5003 -- The processing for Value_Size shares the processing for Size
5004
5005 -------------
5006 -- Version --
5007 -------------
5008
5009 -- The processing for Version shares the processing for Body_Version
5010
5011 ----------------
5012 -- Wide_Image --
5013 ----------------
5014
f0bf2ff3 5015 -- Wide_Image attribute is handled in separate unit Exp_Imgv
ee6ba406 5016
f0bf2ff3 5017 when Attribute_Wide_Image =>
5018 Exp_Imgv.Expand_Wide_Image_Attribute (N);
ee6ba406 5019
7189d17f 5020 ---------------------
5021 -- Wide_Wide_Image --
5022 ---------------------
5023
f0bf2ff3 5024 -- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
7189d17f 5025
f0bf2ff3 5026 when Attribute_Wide_Wide_Image =>
5027 Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
7189d17f 5028
ee6ba406 5029 ----------------
5030 -- Wide_Value --
5031 ----------------
5032
5033 -- We expand typ'Wide_Value (X) into
5034
5035 -- typ'Value
5036 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
5037
5038 -- Wide_String_To_String is a runtime function that converts its wide
5039 -- string argument to String, converting any non-translatable characters
5040 -- into appropriate escape sequences. This preserves the required
5041 -- semantics of Wide_Value in all cases, and results in a very simple
5042 -- implementation approach.
5043
7f8eb6ed 5044 -- Note: for this approach to be fully standard compliant for the cases
5045 -- where typ is Wide_Character and Wide_Wide_Character, the encoding
5046 -- method must cover the entire character range (e.g. UTF-8). But that
5047 -- is a reasonable requirement when dealing with encoded character
5048 -- sequences. Presumably if one of the restrictive encoding mechanisms
5049 -- is in use such as Shift-JIS, then characters that cannot be
5050 -- represented using this encoding will not appear in any case.
ee6ba406 5051
5052 when Attribute_Wide_Value => Wide_Value :
5053 begin
5054 Rewrite (N,
5055 Make_Attribute_Reference (Loc,
5056 Prefix => Pref,
5057 Attribute_Name => Name_Value,
5058
5059 Expressions => New_List (
5060 Make_Function_Call (Loc,
5061 Name =>
5062 New_Reference_To (RTE (RE_Wide_String_To_String), Loc),
5063
5064 Parameter_Associations => New_List (
5065 Relocate_Node (First (Exprs)),
5066 Make_Integer_Literal (Loc,
5067 Intval => Int (Wide_Character_Encoding_Method)))))));
5068
5069 Analyze_And_Resolve (N, Typ);
5070 end Wide_Value;
5071
7189d17f 5072 ---------------------
5073 -- Wide_Wide_Value --
5074 ---------------------
5075
5076 -- We expand typ'Wide_Value_Value (X) into
5077
5078 -- typ'Value
5079 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
5080
5081 -- Wide_Wide_String_To_String is a runtime function that converts its
5082 -- wide string argument to String, converting any non-translatable
5083 -- characters into appropriate escape sequences. This preserves the
5084 -- required semantics of Wide_Wide_Value in all cases, and results in a
5085 -- very simple implementation approach.
5086
5087 -- It's not quite right where typ = Wide_Wide_Character, because the
5088 -- encoding method may not cover the whole character type ???
5089
5090 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
5091 begin
5092 Rewrite (N,
5093 Make_Attribute_Reference (Loc,
5094 Prefix => Pref,
5095 Attribute_Name => Name_Value,
5096
5097 Expressions => New_List (
5098 Make_Function_Call (Loc,
5099 Name =>
5100 New_Reference_To (RTE (RE_Wide_Wide_String_To_String), Loc),
5101
5102 Parameter_Associations => New_List (
5103 Relocate_Node (First (Exprs)),
5104 Make_Integer_Literal (Loc,
5105 Intval => Int (Wide_Character_Encoding_Method)))))));
5106
5107 Analyze_And_Resolve (N, Typ);
5108 end Wide_Wide_Value;
5109
5110 ---------------------
5111 -- Wide_Wide_Width --
5112 ---------------------
5113
5114 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
5115
5116 when Attribute_Wide_Wide_Width =>
5117 Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
5118
ee6ba406 5119 ----------------
5120 -- Wide_Width --
5121 ----------------
5122
5123 -- Wide_Width attribute is handled in separate unit Exp_Imgv
5124
5125 when Attribute_Wide_Width =>
7189d17f 5126 Exp_Imgv.Expand_Width_Attribute (N, Wide);
ee6ba406 5127
5128 -----------
5129 -- Width --
5130 -----------
5131
5132 -- Width attribute is handled in separate unit Exp_Imgv
5133
5134 when Attribute_Width =>
7189d17f 5135 Exp_Imgv.Expand_Width_Attribute (N, Normal);
ee6ba406 5136
5137 -----------
5138 -- Write --
5139 -----------
5140
5141 when Attribute_Write => Write : declare
5142 P_Type : constant Entity_Id := Entity (Pref);
5143 U_Type : constant Entity_Id := Underlying_Type (P_Type);
5144 Pname : Entity_Id;
5145 Decl : Node_Id;
5146 Prag : Node_Id;
5147 Arg3 : Node_Id;
5148 Wfunc : Node_Id;
5149
5150 begin
5151 -- If no underlying type, we have an error that will be diagnosed
5152 -- elsewhere, so here we just completely ignore the expansion.
5153
5154 if No (U_Type) then
5155 return;
5156 end if;
5157
5158 -- The simple case, if there is a TSS for Write, just call it
5159
9dfe12ae 5160 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
ee6ba406 5161
5162 if Present (Pname) then
5163 null;
5164
5165 else
5166 -- If there is a Stream_Convert pragma, use it, we rewrite
5167
5168 -- sourcetyp'Output (stream, Item)
5169
5170 -- as
5171
5172 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
5173
aad6babd 5174 -- where strmwrite is the given Write function that converts an
5175 -- argument of type sourcetyp or a type acctyp, from which it is
5176 -- derived to type strmtyp. The conversion to acttyp is required
5177 -- for the derived case.
ee6ba406 5178
5245b786 5179 Prag := Get_Stream_Convert_Pragma (P_Type);
ee6ba406 5180
5181 if Present (Prag) then
5182 Arg3 :=
5183 Next (Next (First (Pragma_Argument_Associations (Prag))));
5184 Wfunc := Entity (Expression (Arg3));
5185
5186 Rewrite (N,
5187 Make_Attribute_Reference (Loc,
5188 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
5189 Attribute_Name => Name_Output,
5190 Expressions => New_List (
5191 Relocate_Node (First (Exprs)),
5192 Make_Function_Call (Loc,
5193 Name => New_Occurrence_Of (Wfunc, Loc),
5194 Parameter_Associations => New_List (
83aa52b6 5195 OK_Convert_To (Etype (First_Formal (Wfunc)),
ee6ba406 5196 Relocate_Node (Next (First (Exprs)))))))));
5197
5198 Analyze (N);
5199 return;
5200
5201 -- For elementary types, we call the W_xxx routine directly
5202
5203 elsif Is_Elementary_Type (U_Type) then
5204 Rewrite (N, Build_Elementary_Write_Call (N));
5205 Analyze (N);
5206 return;
5207
5208 -- Array type case
5209
5210 elsif Is_Array_Type (U_Type) then
5211 Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
5212 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
5213
5214 -- Tagged type case, use the primitive Write function. Note that
5215 -- this will dispatch in the class-wide case which is what we want
5216
5217 elsif Is_Tagged_Type (U_Type) then
9dfe12ae 5218 Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
ee6ba406 5219
5220 -- All other record type cases, including protected records.
5221 -- The latter only arise for expander generated code for
5222 -- handling shared passive partition access.
5223
5224 else
5225 pragma Assert
5226 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
5227
00f91aef 5228 -- Ada 2005 (AI-216): Program_Error is raised when executing
5229 -- the default implementation of the Write attribute of an
99f2248e 5230 -- Unchecked_Union type. However, if the 'Write reference is
5231 -- within the generated Output stream procedure, Write outputs
5232 -- the components, and the default values of the discriminant
5233 -- are streamed by the Output procedure itself.
00f91aef 5234
99f2248e 5235 if Is_Unchecked_Union (Base_Type (U_Type))
5236 and not Is_TSS (Current_Scope, TSS_Stream_Output)
5237 then
00f91aef 5238 Insert_Action (N,
5239 Make_Raise_Program_Error (Loc,
5240 Reason => PE_Unchecked_Union_Restriction));
5241 end if;
5242
ee6ba406 5243 if Has_Discriminants (U_Type)
5244 and then Present
5245 (Discriminant_Default_Value (First_Discriminant (U_Type)))
5246 then
5247 Build_Mutable_Record_Write_Procedure
7af38999 5248 (Loc, Full_Base (U_Type), Decl, Pname);
ee6ba406 5249 else
5250 Build_Record_Write_Procedure
7af38999 5251 (Loc, Full_Base (U_Type), Decl, Pname);
ee6ba406 5252 end if;
5253
5254 Insert_Action (N, Decl);
5255 end if;
5256 end if;
5257
5258 -- If we fall through, Pname is the procedure to be called
5259
5260 Rewrite_Stream_Proc_Call (Pname);
5261 end Write;
5262
d55c93e0 5263 -- Component_Size is handled by the back end, unless the component size
5264 -- is known at compile time, which is always true in the packed array
5265 -- case. It is important that the packed array case is handled in the
5266 -- front end (see Eval_Attribute) since the back end would otherwise get
5267 -- confused by the equivalent packed array type.
ee6ba406 5268
5269 when Attribute_Component_Size =>
5270 null;
5271
18a40e97 5272 -- The following attributes are handled by the back end (except that
5273 -- static cases have already been evaluated during semantic processing,
5274 -- but in any case the back end should not count on this). The one bit
5275 -- of special processing required is that these attributes typically
5276 -- generate conditionals in the code, so we need to check the relevant
5277 -- restriction.
5278
5279 when Attribute_Max |
5280 Attribute_Min =>
5281 Check_Restriction (No_Implicit_Conditionals, N);
ee6ba406 5282
18a40e97 5283 -- The following attributes are handled by the back end (except that
5284 -- static cases have already been evaluated during semantic processing,
5285 -- but in any case the back end should not count on this).
ee6ba406 5286
d55c93e0 5287 -- The back end also handles the non-class-wide cases of Size
ee6ba406 5288
5289 when Attribute_Bit_Order |
5290 Attribute_Code_Address |
5291 Attribute_Definite |
ee6ba406 5292 Attribute_Null_Parameter |
9dfe12ae 5293 Attribute_Passed_By_Reference |
5294 Attribute_Pool_Address =>
ee6ba406 5295 null;
5296
d55c93e0 5297 -- The following attributes are also handled by the back end, but return
5298 -- a universal integer result, so may need a conversion for checking
ee6ba406 5299 -- that the result is in range.
5300
5301 when Attribute_Aft |
aee37720 5302 Attribute_Max_Alignment_For_Allocation |
5303 Attribute_Max_Size_In_Storage_Elements =>
ee6ba406 5304 Apply_Universal_Integer_Attribute_Checks (N);
5305
5306 -- The following attributes should not appear at this stage, since they
5307 -- have already been handled by the analyzer (and properly rewritten
5308 -- with corresponding values or entities to represent the right values)
5309
5310 when Attribute_Abort_Signal |
5311 Attribute_Address_Size |
5312 Attribute_Base |
5313 Attribute_Class |
a79db212 5314 Attribute_Compiler_Version |
ee6ba406 5315 Attribute_Default_Bit_Order |
5316 Attribute_Delta |
5317 Attribute_Denorm |
5318 Attribute_Digits |
5319 Attribute_Emax |
f947f061 5320 Attribute_Enabled |
ee6ba406 5321 Attribute_Epsilon |
f0bf2ff3 5322 Attribute_Fast_Math |
5c99c290 5323 Attribute_Has_Access_Values |
ee6ba406 5324 Attribute_Has_Discriminants |
d55c93e0 5325 Attribute_Has_Tagged_Values |
ee6ba406 5326 Attribute_Large |
5327 Attribute_Machine_Emax |
5328 Attribute_Machine_Emin |
5329 Attribute_Machine_Mantissa |
5330 Attribute_Machine_Overflows |
5331 Attribute_Machine_Radix |
5332 Attribute_Machine_Rounds |
ee6ba406 5333 Attribute_Maximum_Alignment |
5334 Attribute_Model_Emin |
5335 Attribute_Model_Epsilon |
5336 Attribute_Model_Mantissa |
5337 Attribute_Model_Small |
5338 Attribute_Modulus |
5339 Attribute_Partition_ID |
5340 Attribute_Range |
5341 Attribute_Safe_Emax |
5342 Attribute_Safe_First |
5343 Attribute_Safe_Large |
5344 Attribute_Safe_Last |
5345 Attribute_Safe_Small |
5346 Attribute_Scale |
5347 Attribute_Signed_Zeros |
5348 Attribute_Small |
5349 Attribute_Storage_Unit |
7f8eb6ed 5350 Attribute_Stub_Type |
9dfe12ae 5351 Attribute_Target_Name |
ee6ba406 5352 Attribute_Type_Class |
ec19aaaf 5353 Attribute_Type_Key |
9dfe12ae 5354 Attribute_Unconstrained_Array |
ee6ba406 5355 Attribute_Universal_Literal_String |
5356 Attribute_Wchar_T_Size |
5357 Attribute_Word_Size =>
5358
5359 raise Program_Error;
5360
5361 -- The Asm_Input and Asm_Output attributes are not expanded at this
d55c93e0 5362 -- stage, but will be eliminated in the expansion of the Asm call, see
5363 -- Exp_Intr for details. So the back end will never see these either.
ee6ba406 5364
5365 when Attribute_Asm_Input |
5366 Attribute_Asm_Output =>
5367
5368 null;
5369
5370 end case;
5371
9dfe12ae 5372 exception
5373 when RE_Not_Available =>
5374 return;
ee6ba406 5375 end Expand_N_Attribute_Reference;
5376
5377 ----------------------
5378 -- Expand_Pred_Succ --
5379 ----------------------
5380
5381 -- For typ'Pred (exp), we generate the check
5382
5383 -- [constraint_error when exp = typ'Base'First]
5384
5385 -- Similarly, for typ'Succ (exp), we generate the check
5386
5387 -- [constraint_error when exp = typ'Base'Last]
5388
5389 -- These checks are not generated for modular types, since the proper
5390 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
55e8372b 5391 -- We also suppress these checks if we are the right side of an assignment
5392 -- statement or the expression of an object declaration, where the flag
5393 -- Suppress_Assignment_Checks is set for the assignment/declaration.
ee6ba406 5394
5395 procedure Expand_Pred_Succ (N : Node_Id) is
5396 Loc : constant Source_Ptr := Sloc (N);
55e8372b 5397 P : constant Node_Id := Parent (N);
ee6ba406 5398 Cnam : Name_Id;
5399
5400 begin
5401 if Attribute_Name (N) = Name_Pred then
5402 Cnam := Name_First;
5403 else
5404 Cnam := Name_Last;
5405 end if;
5406
55e8372b 5407 if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
5408 or else not Suppress_Assignment_Checks (P)
5409 then
5410 Insert_Action (N,
5411 Make_Raise_Constraint_Error (Loc,
5412 Condition =>
5413 Make_Op_Eq (Loc,
5414 Left_Opnd =>
5415 Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
5416 Right_Opnd =>
5417 Make_Attribute_Reference (Loc,
5418 Prefix =>
5419 New_Reference_To (Base_Type (Etype (Prefix (N))), Loc),
5420 Attribute_Name => Cnam)),
5421 Reason => CE_Overflow_Check_Failed));
5422 end if;
ee6ba406 5423 end Expand_Pred_Succ;
5424
1550b445 5425 -------------------
5426 -- Find_Fat_Info --
5427 -------------------
5428
5429 procedure Find_Fat_Info
5430 (T : Entity_Id;
5431 Fat_Type : out Entity_Id;
5432 Fat_Pkg : out RE_Id)
5433 is
5434 Btyp : constant Entity_Id := Base_Type (T);
5435 Rtyp : constant Entity_Id := Root_Type (T);
5436 Digs : constant Nat := UI_To_Int (Digits_Value (Btyp));
5437
5438 begin
5439 -- If the base type is VAX float, then get appropriate VAX float type
5440
5441 if Vax_Float (Btyp) then
5442 case Digs is
5443 when 6 =>
5444 Fat_Type := RTE (RE_Fat_VAX_F);
5445 Fat_Pkg := RE_Attr_VAX_F_Float;
5446
5447 when 9 =>
5448 Fat_Type := RTE (RE_Fat_VAX_D);
5449 Fat_Pkg := RE_Attr_VAX_D_Float;
5450
5451 when 15 =>
5452 Fat_Type := RTE (RE_Fat_VAX_G);
5453 Fat_Pkg := RE_Attr_VAX_G_Float;
5454
5455 when others =>
5456 raise Program_Error;
5457 end case;
5458
5459 -- If root type is VAX float, this is the case where the library has
5460 -- been recompiled in VAX float mode, and we have an IEEE float type.
5461 -- This is when we use the special IEEE Fat packages.
5462
5463 elsif Vax_Float (Rtyp) then
5464 case Digs is
5465 when 6 =>
5466 Fat_Type := RTE (RE_Fat_IEEE_Short);
5467 Fat_Pkg := RE_Attr_IEEE_Short;
5468
5469 when 15 =>
5470 Fat_Type := RTE (RE_Fat_IEEE_Long);
5471 Fat_Pkg := RE_Attr_IEEE_Long;
5472
5473 when others =>
5474 raise Program_Error;
5475 end case;
5476
95b21580 5477 -- If neither the base type nor the root type is VAX_Native then VAX
1550b445 5478 -- float is out of the picture, and we can just use the root type.
5479
5480 else
5481 Fat_Type := Rtyp;
5482
5483 if Fat_Type = Standard_Short_Float then
5484 Fat_Pkg := RE_Attr_Short_Float;
7f8eb6ed 5485
1550b445 5486 elsif Fat_Type = Standard_Float then
5487 Fat_Pkg := RE_Attr_Float;
7f8eb6ed 5488
1550b445 5489 elsif Fat_Type = Standard_Long_Float then
5490 Fat_Pkg := RE_Attr_Long_Float;
7f8eb6ed 5491
1550b445 5492 elsif Fat_Type = Standard_Long_Long_Float then
5493 Fat_Pkg := RE_Attr_Long_Long_Float;
7f8eb6ed 5494
5495 -- Universal real (which is its own root type) is treated as being
5496 -- equivalent to Standard.Long_Long_Float, since it is defined to
5497 -- have the same precision as the longest Float type.
5498
5499 elsif Fat_Type = Universal_Real then
5500 Fat_Type := Standard_Long_Long_Float;
5501 Fat_Pkg := RE_Attr_Long_Long_Float;
5502
1550b445 5503 else
5504 raise Program_Error;
5505 end if;
5506 end if;
5507 end Find_Fat_Info;
5508
9dfe12ae 5509 ----------------------------
5510 -- Find_Stream_Subprogram --
5511 ----------------------------
5512
5513 function Find_Stream_Subprogram
5514 (Typ : Entity_Id;
aad6babd 5515 Nam : TSS_Name_Type) return Entity_Id
5516 is
8667b0b2 5517 Base_Typ : constant Entity_Id := Base_Type (Typ);
5518 Ent : constant Entity_Id := TSS (Typ, Nam);
d55c93e0 5519
5236d9f4 5520 function Is_Available (Entity : RE_Id) return Boolean;
5521 pragma Inline (Is_Available);
5522 -- Function to check whether the specified run-time call is available
5523 -- in the run time used. In the case of a configurable run time, it
5524 -- is normal that some subprograms are not there.
5525
5526 function Is_Available (Entity : RE_Id) return Boolean is
5527 begin
5528 -- Assume that the unit will always be available when using a
5529 -- "normal" (not configurable) run time.
5530
5531 return not Configurable_Run_Time_Mode
5532 or else RTE_Available (Entity);
5533 end Is_Available;
5534
9dfe12ae 5535 begin
aad6babd 5536 if Present (Ent) then
5537 return Ent;
5538 end if;
5539
d55c93e0 5540 -- Stream attributes for strings are expanded into library calls. The
5541 -- following checks are disabled when the run-time is not available or
5542 -- when compiling predefined types due to bootstrap issues. As a result,
5543 -- the compiler will generate in-place stream routines for string types
5544 -- that appear in GNAT's library, but will generate calls via rtsfind
5545 -- to library routines for user code.
c2b89d6e 5546
d55c93e0 5547 -- ??? For now, disable this code for JVM, since this generates a
0c826ed4 5548 -- VerifyError exception at run time on e.g. c330001.
c2b89d6e 5549
5550 -- This is disabled for AAMP, to avoid creating dependences on files not
d55c93e0 5551 -- supported in the AAMP library (such as s-fileio.adb).
5552
5236d9f4 5553 -- In the case of using a configurable run time, it is very likely
5554 -- that stream routines for string types are not present (they require
5555 -- file system support). In this case, the specific stream routines for
5556 -- strings are not used, relying on the regular stream mechanism
5557 -- instead.
5558
d55c93e0 5559 if VM_Target /= JVM_Target
5560 and then not AAMP_On_Target
5561 and then
5562 not Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5563 then
d55c93e0 5564 -- String as defined in package Ada
5565
8667b0b2 5566 if Base_Typ = Standard_String then
b9f24e67 5567 if Restriction_Active (No_Stream_Optimizations) then
5236d9f4 5568 if Nam = TSS_Stream_Input
5569 and then Is_Available (RE_String_Input)
5570 then
b9f24e67 5571 return RTE (RE_String_Input);
5572
5236d9f4 5573 elsif Nam = TSS_Stream_Output
5574 and then Is_Available (RE_String_Output)
5575 then
b9f24e67 5576 return RTE (RE_String_Output);
5577
5236d9f4 5578 elsif Nam = TSS_Stream_Read
5579 and then Is_Available (RE_String_Read)
5580 then
b9f24e67 5581 return RTE (RE_String_Read);
d55c93e0 5582
5236d9f4 5583 elsif Nam = TSS_Stream_Write
5584 and then Is_Available (RE_String_Write)
5585 then
b9f24e67 5586 return RTE (RE_String_Write);
5236d9f4 5587
5588 elsif Nam /= TSS_Stream_Input and then
5589 Nam /= TSS_Stream_Output and then
5590 Nam /= TSS_Stream_Read and then
5591 Nam /= TSS_Stream_Write
5592 then
5593 raise Program_Error;
b9f24e67 5594 end if;
5595
5596 else
5236d9f4 5597 if Nam = TSS_Stream_Input
5598 and then Is_Available (RE_String_Input_Blk_IO)
5599 then
b9f24e67 5600 return RTE (RE_String_Input_Blk_IO);
d55c93e0 5601
5236d9f4 5602 elsif Nam = TSS_Stream_Output
5603 and then Is_Available (RE_String_Output_Blk_IO)
5604 then
b9f24e67 5605 return RTE (RE_String_Output_Blk_IO);
d55c93e0 5606
5236d9f4 5607 elsif Nam = TSS_Stream_Read
5608 and then Is_Available (RE_String_Read_Blk_IO)
5609 then
b9f24e67 5610 return RTE (RE_String_Read_Blk_IO);
5611
5236d9f4 5612 elsif Nam = TSS_Stream_Write
5613 and then Is_Available (RE_String_Write_Blk_IO)
5614 then
b9f24e67 5615 return RTE (RE_String_Write_Blk_IO);
5236d9f4 5616
5617 elsif Nam /= TSS_Stream_Input and then
5618 Nam /= TSS_Stream_Output and then
5619 Nam /= TSS_Stream_Read and then
5620 Nam /= TSS_Stream_Write
5621 then
5622 raise Program_Error;
b9f24e67 5623 end if;
d55c93e0 5624 end if;
5625
5626 -- Wide_String as defined in package Ada
5627
8667b0b2 5628 elsif Base_Typ = Standard_Wide_String then
b9f24e67 5629 if Restriction_Active (No_Stream_Optimizations) then
5236d9f4 5630 if Nam = TSS_Stream_Input
5631 and then Is_Available (RE_Wide_String_Input)
5632 then
b9f24e67 5633 return RTE (RE_Wide_String_Input);
5634
5236d9f4 5635 elsif Nam = TSS_Stream_Output
5636 and then Is_Available (RE_Wide_String_Output)
5637 then
b9f24e67 5638 return RTE (RE_Wide_String_Output);
5639
5236d9f4 5640 elsif Nam = TSS_Stream_Read
5641 and then Is_Available (RE_Wide_String_Read)
5642 then
b9f24e67 5643 return RTE (RE_Wide_String_Read);
5644
5236d9f4 5645 elsif Nam = TSS_Stream_Write
5646 and then Is_Available (RE_Wide_String_Write)
5647 then
b9f24e67 5648 return RTE (RE_Wide_String_Write);
5236d9f4 5649
5650 elsif Nam /= TSS_Stream_Input and then
5651 Nam /= TSS_Stream_Output and then
5652 Nam /= TSS_Stream_Read and then
5653 Nam /= TSS_Stream_Write
5654 then
5655 raise Program_Error;
b9f24e67 5656 end if;
5657
5658 else
5236d9f4 5659 if Nam = TSS_Stream_Input
5660 and then Is_Available (RE_Wide_String_Input_Blk_IO)
5661 then
b9f24e67 5662 return RTE (RE_Wide_String_Input_Blk_IO);
d55c93e0 5663
5236d9f4 5664 elsif Nam = TSS_Stream_Output
5665 and then Is_Available (RE_Wide_String_Output_Blk_IO)
5666 then
b9f24e67 5667 return RTE (RE_Wide_String_Output_Blk_IO);
d55c93e0 5668
5236d9f4 5669 elsif Nam = TSS_Stream_Read
5670 and then Is_Available (RE_Wide_String_Read_Blk_IO)
5671 then
b9f24e67 5672 return RTE (RE_Wide_String_Read_Blk_IO);
d55c93e0 5673
5236d9f4 5674 elsif Nam = TSS_Stream_Write
5675 and then Is_Available (RE_Wide_String_Write_Blk_IO)
5676 then
b9f24e67 5677 return RTE (RE_Wide_String_Write_Blk_IO);
5236d9f4 5678
5679 elsif Nam /= TSS_Stream_Input and then
5680 Nam /= TSS_Stream_Output and then
5681 Nam /= TSS_Stream_Read and then
5682 Nam /= TSS_Stream_Write
5683 then
5684 raise Program_Error;
b9f24e67 5685 end if;
d55c93e0 5686 end if;
5687
5688 -- Wide_Wide_String as defined in package Ada
5689
8667b0b2 5690 elsif Base_Typ = Standard_Wide_Wide_String then
b9f24e67 5691 if Restriction_Active (No_Stream_Optimizations) then
5236d9f4 5692 if Nam = TSS_Stream_Input
5693 and then Is_Available (RE_Wide_Wide_String_Input)
5694 then
b9f24e67 5695 return RTE (RE_Wide_Wide_String_Input);
5696
5236d9f4 5697 elsif Nam = TSS_Stream_Output
5698 and then Is_Available (RE_Wide_Wide_String_Output)
5699 then
b9f24e67 5700 return RTE (RE_Wide_Wide_String_Output);
d55c93e0 5701
5236d9f4 5702 elsif Nam = TSS_Stream_Read
5703 and then Is_Available (RE_Wide_Wide_String_Read)
5704 then
b9f24e67 5705 return RTE (RE_Wide_Wide_String_Read);
d55c93e0 5706
5236d9f4 5707 elsif Nam = TSS_Stream_Write
5708 and then Is_Available (RE_Wide_Wide_String_Write)
5709 then
b9f24e67 5710 return RTE (RE_Wide_Wide_String_Write);
5236d9f4 5711
5712 elsif Nam /= TSS_Stream_Input and then
5713 Nam /= TSS_Stream_Output and then
5714 Nam /= TSS_Stream_Read and then
5715 Nam /= TSS_Stream_Write
5716 then
5717 raise Program_Error;
b9f24e67 5718 end if;
d55c93e0 5719
b9f24e67 5720 else
5236d9f4 5721 if Nam = TSS_Stream_Input
5722 and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
5723 then
b9f24e67 5724 return RTE (RE_Wide_Wide_String_Input_Blk_IO);
5725
5236d9f4 5726 elsif Nam = TSS_Stream_Output
5727 and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
5728 then
b9f24e67 5729 return RTE (RE_Wide_Wide_String_Output_Blk_IO);
5730
5236d9f4 5731 elsif Nam = TSS_Stream_Read
5732 and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
5733 then
b9f24e67 5734 return RTE (RE_Wide_Wide_String_Read_Blk_IO);
5735
5236d9f4 5736 elsif Nam = TSS_Stream_Write
5737 and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
5738 then
b9f24e67 5739 return RTE (RE_Wide_Wide_String_Write_Blk_IO);
5236d9f4 5740
5741 elsif Nam /= TSS_Stream_Input and then
5742 Nam /= TSS_Stream_Output and then
5743 Nam /= TSS_Stream_Read and then
5744 Nam /= TSS_Stream_Write
5745 then
5746 raise Program_Error;
b9f24e67 5747 end if;
d55c93e0 5748 end if;
5749 end if;
5750 end if;
5751
9dfe12ae 5752 if Is_Tagged_Type (Typ)
5753 and then Is_Derived_Type (Typ)
5754 then
5755 return Find_Prim_Op (Typ, Nam);
5756 else
5757 return Find_Inherited_TSS (Typ, Nam);
5758 end if;
5759 end Find_Stream_Subprogram;
5760
7af38999 5761 ---------------
5762 -- Full_Base --
5763 ---------------
5764
5765 function Full_Base (T : Entity_Id) return Entity_Id is
5766 BT : Entity_Id;
5767
5768 begin
5769 BT := Base_Type (T);
5770
5771 if Is_Private_Type (BT)
5772 and then Present (Full_View (BT))
5773 then
5774 BT := Full_View (BT);
5775 end if;
5776
5777 return BT;
5778 end Full_Base;
5779
ee6ba406 5780 -----------------------
5781 -- Get_Index_Subtype --
5782 -----------------------
5783
5784 function Get_Index_Subtype (N : Node_Id) return Node_Id is
5785 P_Type : Entity_Id := Etype (Prefix (N));
5786 Indx : Node_Id;
5787 J : Int;
5788
5789 begin
5790 if Is_Access_Type (P_Type) then
5791 P_Type := Designated_Type (P_Type);
5792 end if;
5793
5794 if No (Expressions (N)) then
5795 J := 1;
5796 else
5797 J := UI_To_Int (Expr_Value (First (Expressions (N))));
5798 end if;
5799
5800 Indx := First_Index (P_Type);
5801 while J > 1 loop
5802 Next_Index (Indx);
5803 J := J - 1;
5804 end loop;
5805
5806 return Etype (Indx);
5807 end Get_Index_Subtype;
5808
5245b786 5809 -------------------------------
5810 -- Get_Stream_Convert_Pragma --
5811 -------------------------------
5812
5813 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
5814 Typ : Entity_Id;
5815 N : Node_Id;
5816
5817 begin
5818 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
5819 -- that a stream convert pragma for a tagged type is not inherited from
5820 -- its parent. Probably what is wrong here is that it is basically
5821 -- incorrect to consider a stream convert pragma to be a representation
5822 -- pragma at all ???
5823
5824 N := First_Rep_Item (Implementation_Base_Type (T));
5825 while Present (N) loop
4c06b9d2 5826 if Nkind (N) = N_Pragma
5827 and then Pragma_Name (N) = Name_Stream_Convert
5828 then
5245b786 5829 -- For tagged types this pragma is not inherited, so we
5830 -- must verify that it is defined for the given type and
5831 -- not an ancestor.
5832
5833 Typ :=
5834 Entity (Expression (First (Pragma_Argument_Associations (N))));
5835
5836 if not Is_Tagged_Type (T)
5837 or else T = Typ
5838 or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
5839 then
5840 return N;
5841 end if;
5842 end if;
5843
5844 Next_Rep_Item (N);
5845 end loop;
5846
5847 return Empty;
5848 end Get_Stream_Convert_Pragma;
5849
ee6ba406 5850 ---------------------------------
5851 -- Is_Constrained_Packed_Array --
5852 ---------------------------------
5853
5854 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
5855 Arr : Entity_Id := Typ;
5856
5857 begin
5858 if Is_Access_Type (Arr) then
5859 Arr := Designated_Type (Arr);
5860 end if;
5861
5862 return Is_Array_Type (Arr)
5863 and then Is_Constrained (Arr)
5864 and then Present (Packed_Array_Type (Arr));
5865 end Is_Constrained_Packed_Array;
5866
99f2248e 5867 ----------------------------------------
5868 -- Is_Inline_Floating_Point_Attribute --
5869 ----------------------------------------
5870
5871 function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
5872 Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
5873
5874 begin
5875 if Nkind (Parent (N)) /= N_Type_Conversion
5876 or else not Is_Integer_Type (Etype (Parent (N)))
5877 then
5878 return False;
5879 end if;
5880
5881 -- Should also support 'Machine_Rounding and 'Unbiased_Rounding, but
5882 -- required back end support has not been implemented yet ???
5883
5884 return Id = Attribute_Truncation;
5885 end Is_Inline_Floating_Point_Attribute;
5886
ee6ba406 5887end Exp_Attr;