]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch3.adb
trans-array.c (gfc_conv_descriptor_data_get): Rename from gfc_conv_descriptor_data.
[thirdparty/gcc.git] / gcc / ada / exp_ch3.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 3 --
6-- --
7-- B o d y --
8-- --
82c80734 9-- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Checks; use Checks;
29with Einfo; use Einfo;
30with Elists; use Elists;
07fc65c4 31with Errout; use Errout;
70482933
RK
32with Exp_Aggr; use Exp_Aggr;
33with Exp_Ch4; use Exp_Ch4;
34with Exp_Ch7; use Exp_Ch7;
35with Exp_Ch9; use Exp_Ch9;
36with Exp_Ch11; use Exp_Ch11;
37with Exp_Disp; use Exp_Disp;
38with Exp_Dist; use Exp_Dist;
39with Exp_Smem; use Exp_Smem;
40with Exp_Strm; use Exp_Strm;
41with Exp_Tss; use Exp_Tss;
42with Exp_Util; use Exp_Util;
43with Freeze; use Freeze;
44with Hostparm; use Hostparm;
45with Nlists; use Nlists;
46with Nmake; use Nmake;
47with Opt; use Opt;
48with Restrict; use Restrict;
6e937c1c 49with Rident; use Rident;
70482933
RK
50with Rtsfind; use Rtsfind;
51with Sem; use Sem;
52with Sem_Ch3; use Sem_Ch3;
53with Sem_Ch8; use Sem_Ch8;
54with Sem_Eval; use Sem_Eval;
55with Sem_Mech; use Sem_Mech;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Stand; use Stand;
60with Snames; use Snames;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
70482933
RK
63with Validsw; use Validsw;
64
65package body Exp_Ch3 is
66
67 -----------------------
68 -- Local Subprograms --
69 -----------------------
70
71 procedure Adjust_Discriminants (Rtype : Entity_Id);
72 -- This is used when freezing a record type. It attempts to construct
73 -- more restrictive subtypes for discriminants so that the max size of
74 -- the record can be calculated more accurately. See the body of this
75 -- procedure for details.
76
77 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
78 -- Build initialization procedure for given array type. Nod is a node
79 -- used for attachment of any actions required in its construction.
80 -- It also supplies the source location used for the procedure.
81
82 procedure Build_Class_Wide_Master (T : Entity_Id);
83 -- for access to class-wide limited types we must build a task master
84 -- because some subsequent extension may add a task component. To avoid
85 -- bringing in the tasking run-time whenever an access-to-class-wide
86 -- limited type is used, we use the soft-link mechanism and add a level
87 -- of indirection to calls to routines that manipulate Master_Ids.
88
89 function Build_Discriminant_Formals
90 (Rec_Id : Entity_Id;
2e071734 91 Use_Dl : Boolean) return List_Id;
70482933
RK
92 -- This function uses the discriminants of a type to build a list of
93 -- formal parameters, used in the following function. If the flag Use_Dl
94 -- is set, the list is built using the already defined discriminals
95 -- of the type. Otherwise new identifiers are created, with the source
96 -- names of the discriminants.
97
98 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
99 -- If the designated type of an access type is a task type or contains
100 -- tasks, we make sure that a _Master variable is declared in the current
101 -- scope, and then declare a renaming for it:
102 --
103 -- atypeM : Master_Id renames _Master;
104 --
105 -- where atyp is the name of the access type. This declaration is
106 -- used when an allocator for the access type is expanded. The node N
107 -- is the full declaration of the designated type that contains tasks.
108 -- The renaming declaration is inserted before N, and after the Master
109 -- declaration.
110
111 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
112 -- Build record initialization procedure. N is the type declaration
113 -- node, and Pe is the corresponding entity for the record type.
114
26fd4eae
AC
115 procedure Build_Slice_Assignment (Typ : Entity_Id);
116 -- Build assignment procedure for one-dimensional arrays of controlled
117 -- types. Other array and slice assignments are expanded in-line, but
118 -- the code expansion for controlled components (when control actions
119 -- are active) can lead to very large blocks that GCC3 handles poorly.
120
70482933
RK
121 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
122 -- Create An Equality function for the non-tagged variant record 'Typ'
123 -- and attach it to the TSS list
124
07fc65c4
GB
125 procedure Check_Stream_Attributes (Typ : Entity_Id);
126 -- Check that if a limited extension has a parent with user-defined
127 -- stream attributes, any limited component of the extension also has
128 -- the corresponding user-defined stream attributes.
129
70482933
RK
130 procedure Expand_Tagged_Root (T : Entity_Id);
131 -- Add a field _Tag at the beginning of the record. This field carries
132 -- the value of the access to the Dispatch table. This procedure is only
133 -- called on root (non CPP_Class) types, the _Tag field being inherited
134 -- by the descendants.
135
136 procedure Expand_Record_Controller (T : Entity_Id);
fbf5a39b
AC
137 -- T must be a record type that Has_Controlled_Component. Add a field
138 -- _controller of type Record_Controller or Limited_Record_Controller
139 -- in the record T.
70482933
RK
140
141 procedure Freeze_Array_Type (N : Node_Id);
142 -- Freeze an array type. Deals with building the initialization procedure,
143 -- creating the packed array type for a packed array and also with the
144 -- creation of the controlling procedures for the controlled case. The
145 -- argument N is the N_Freeze_Entity node for the type.
146
147 procedure Freeze_Enumeration_Type (N : Node_Id);
148 -- Freeze enumeration type with non-standard representation. Builds the
149 -- array and function needed to convert between enumeration pos and
150 -- enumeration representation values. N is the N_Freeze_Entity node
151 -- for the type.
152
153 procedure Freeze_Record_Type (N : Node_Id);
154 -- Freeze record type. Builds all necessary discriminant checking
155 -- and other ancillary functions, and builds dispatch tables where
156 -- needed. The argument N is the N_Freeze_Entity node. This processing
157 -- applies only to E_Record_Type entities, not to class wide types,
158 -- record subtypes, or private types.
159
07fc65c4
GB
160 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
161 -- Treat user-defined stream operations as renaming_as_body if the
162 -- subprogram they rename is not frozen when the type is frozen.
163
70482933
RK
164 function Init_Formals (Typ : Entity_Id) return List_Id;
165 -- This function builds the list of formals for an initialization routine.
166 -- The first formal is always _Init with the given type. For task value
167 -- record types and types containing tasks, three additional formals are
168 -- added:
169 --
fbf5a39b
AC
170 -- _Master : Master_Id
171 -- _Chain : in out Activation_Chain
172 -- _Task_Name : String
70482933
RK
173 --
174 -- The caller must append additional entries for discriminants if required.
175
176 function In_Runtime (E : Entity_Id) return Boolean;
177 -- Check if E is defined in the RTL (in a child of Ada or System). Used
178 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
179
5d09245e
AC
180 function Make_Eq_Case
181 (E : Entity_Id;
182 CL : Node_Id;
183 Discr : Entity_Id := Empty) return List_Id;
70482933
RK
184 -- Building block for variant record equality. Defined to share the
185 -- code between the tagged and non-tagged case. Given a Component_List
186 -- node CL, it generates an 'if' followed by a 'case' statement that
187 -- compares all components of local temporaries named X and Y (that
5d09245e
AC
188 -- are declared as formals at some upper level). E provides the Sloc to be
189 -- used for the generated code. Discr is used as the case statement switch
190 -- in the case of Unchecked_Union equality.
70482933 191
5d09245e
AC
192 function Make_Eq_If
193 (E : Entity_Id;
194 L : List_Id) return Node_Id;
70482933
RK
195 -- Building block for variant record equality. Defined to share the
196 -- code between the tagged and non-tagged case. Given the list of
197 -- components (or discriminants) L, it generates a return statement
198 -- that compares all components of local temporaries named X and Y
5d09245e
AC
199 -- (that are declared as formals at some upper level). E provides the Sloc
200 -- to be used for the generated code.
70482933
RK
201
202 procedure Make_Predefined_Primitive_Specs
203 (Tag_Typ : Entity_Id;
204 Predef_List : out List_Id;
205 Renamed_Eq : out Node_Id);
206 -- Create a list with the specs of the predefined primitive operations.
fbf5a39b
AC
207 -- The following entries are present for all tagged types, and provide
208 -- the results of the corresponding attribute applied to the object.
209 -- Dispatching is required in general, since the result of the attribute
210 -- will vary with the actual object subtype.
211 --
212 -- _alignment provides result of 'Alignment attribute
213 -- _size provides result of 'Size attribute
214 -- typSR provides result of 'Read attribute
215 -- typSW provides result of 'Write attribute
216 -- typSI provides result of 'Input attribute
217 -- typSO provides result of 'Output attribute
218 --
219 -- The following entries are additionally present for non-limited
220 -- tagged types, and implement additional dispatching operations
221 -- for predefined operations:
222 --
223 -- _equality implements "=" operator
224 -- _assign implements assignment operation
225 -- typDF implements deep finalization
226 -- typDA implements deep adust
227 --
228 -- The latter two are empty procedures unless the type contains some
229 -- controlled components that require finalization actions (the deep
230 -- in the name refers to the fact that the action applies to components).
231 --
232 -- The list is returned in Predef_List. The Parameter Renamed_Eq
233 -- either returns the value Empty, or else the defining unit name
234 -- for the predefined equality function in the case where the type
235 -- has a primitive operation that is a renaming of predefined equality
236 -- (but only if there is also an overriding user-defined equality
237 -- function). The returned Renamed_Eq will be passed to the
238 -- corresponding parameter of Predefined_Primitive_Bodies.
70482933
RK
239
240 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
241 -- returns True if there are representation clauses for type T that
242 -- are not inherited. If the result is false, the init_proc and the
243 -- discriminant_checking functions of the parent can be reused by
244 -- a derived type.
245
246 function Predef_Spec_Or_Body
247 (Loc : Source_Ptr;
248 Tag_Typ : Entity_Id;
249 Name : Name_Id;
250 Profile : List_Id;
251 Ret_Type : Entity_Id := Empty;
2e071734 252 For_Body : Boolean := False) return Node_Id;
70482933
RK
253 -- This function generates the appropriate expansion for a predefined
254 -- primitive operation specified by its name, parameter profile and
255 -- return type (Empty means this is a procedure). If For_Body is false,
256 -- then the returned node is a subprogram declaration. If For_Body is
257 -- true, then the returned node is a empty subprogram body containing
258 -- no declarations and no statements.
259
260 function Predef_Stream_Attr_Spec
261 (Loc : Source_Ptr;
262 Tag_Typ : Entity_Id;
fbf5a39b 263 Name : TSS_Name_Type;
2e071734 264 For_Body : Boolean := False) return Node_Id;
fbf5a39b
AC
265 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
266 -- input and output attribute whose specs are constructed in Exp_Strm.
70482933
RK
267
268 function Predef_Deep_Spec
269 (Loc : Source_Ptr;
270 Tag_Typ : Entity_Id;
fbf5a39b 271 Name : TSS_Name_Type;
2e071734 272 For_Body : Boolean := False) return Node_Id;
70482933
RK
273 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
274 -- and _deep_finalize
275
276 function Predefined_Primitive_Bodies
277 (Tag_Typ : Entity_Id;
2e071734 278 Renamed_Eq : Node_Id) return List_Id;
70482933
RK
279 -- Create the bodies of the predefined primitives that are described in
280 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
281 -- the defining unit name of the type's predefined equality as returned
282 -- by Make_Predefined_Primitive_Specs.
283
284 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
285 -- Freeze entities of all predefined primitive operations. This is needed
286 -- because the bodies of these operations do not normally do any freezeing.
287
d2d3604c
TQ
288 function Stream_Operation_OK
289 (Typ : Entity_Id;
290 Operation : TSS_Name_Type) return Boolean;
291 -- Check whether the named stream operation must be emitted for a given
292 -- type. The rules for inheritance of stream attributes by type extensions
293 -- are enforced by this function. Furthermore, various restrictions prevent
294 -- the generation of these operations, as a useful optimization or for
295 -- certification purposes.
a778d033 296
70482933
RK
297 --------------------------
298 -- Adjust_Discriminants --
299 --------------------------
300
301 -- This procedure attempts to define subtypes for discriminants that
302 -- are more restrictive than those declared. Such a replacement is
303 -- possible if we can demonstrate that values outside the restricted
304 -- range would cause constraint errors in any case. The advantage of
305 -- restricting the discriminant types in this way is tha the maximum
306 -- size of the variant record can be calculated more conservatively.
307
308 -- An example of a situation in which we can perform this type of
309 -- restriction is the following:
310
311 -- subtype B is range 1 .. 10;
312 -- type Q is array (B range <>) of Integer;
313
314 -- type V (N : Natural) is record
315 -- C : Q (1 .. N);
316 -- end record;
317
318 -- In this situation, we can restrict the upper bound of N to 10, since
319 -- any larger value would cause a constraint error in any case.
320
321 -- There are many situations in which such restriction is possible, but
322 -- for now, we just look for cases like the above, where the component
323 -- in question is a one dimensional array whose upper bound is one of
324 -- the record discriminants. Also the component must not be part of
325 -- any variant part, since then the component does not always exist.
326
327 procedure Adjust_Discriminants (Rtype : Entity_Id) is
328 Loc : constant Source_Ptr := Sloc (Rtype);
329 Comp : Entity_Id;
330 Ctyp : Entity_Id;
331 Ityp : Entity_Id;
332 Lo : Node_Id;
333 Hi : Node_Id;
334 P : Node_Id;
335 Loval : Uint;
336 Discr : Entity_Id;
337 Dtyp : Entity_Id;
338 Dhi : Node_Id;
339 Dhiv : Uint;
340 Ahi : Node_Id;
341 Ahiv : Uint;
342 Tnn : Entity_Id;
343
344 begin
345 Comp := First_Component (Rtype);
346 while Present (Comp) loop
347
348 -- If our parent is a variant, quit, we do not look at components
349 -- that are in variant parts, because they may not always exist.
350
351 P := Parent (Comp); -- component declaration
352 P := Parent (P); -- component list
353
354 exit when Nkind (Parent (P)) = N_Variant;
355
356 -- We are looking for a one dimensional array type
357
358 Ctyp := Etype (Comp);
359
360 if not Is_Array_Type (Ctyp)
361 or else Number_Dimensions (Ctyp) > 1
362 then
363 goto Continue;
364 end if;
365
366 -- The lower bound must be constant, and the upper bound is a
367 -- discriminant (which is a discriminant of the current record).
368
369 Ityp := Etype (First_Index (Ctyp));
370 Lo := Type_Low_Bound (Ityp);
371 Hi := Type_High_Bound (Ityp);
372
373 if not Compile_Time_Known_Value (Lo)
374 or else Nkind (Hi) /= N_Identifier
375 or else No (Entity (Hi))
376 or else Ekind (Entity (Hi)) /= E_Discriminant
377 then
378 goto Continue;
379 end if;
380
381 -- We have an array with appropriate bounds
382
383 Loval := Expr_Value (Lo);
384 Discr := Entity (Hi);
385 Dtyp := Etype (Discr);
386
387 -- See if the discriminant has a known upper bound
388
389 Dhi := Type_High_Bound (Dtyp);
390
391 if not Compile_Time_Known_Value (Dhi) then
392 goto Continue;
393 end if;
394
395 Dhiv := Expr_Value (Dhi);
396
397 -- See if base type of component array has known upper bound
398
399 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
400
401 if not Compile_Time_Known_Value (Ahi) then
402 goto Continue;
403 end if;
404
405 Ahiv := Expr_Value (Ahi);
406
407 -- The condition for doing the restriction is that the high bound
408 -- of the discriminant is greater than the low bound of the array,
409 -- and is also greater than the high bound of the base type index.
410
411 if Dhiv > Loval and then Dhiv > Ahiv then
412
413 -- We can reset the upper bound of the discriminant type to
414 -- whichever is larger, the low bound of the component, or
415 -- the high bound of the base type array index.
416
417 -- We build a subtype that is declared as
418
419 -- subtype Tnn is discr_type range discr_type'First .. max;
420
421 -- And insert this declaration into the tree. The type of the
422 -- discriminant is then reset to this more restricted subtype.
423
424 Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
425
426 Insert_Action (Declaration_Node (Rtype),
427 Make_Subtype_Declaration (Loc,
428 Defining_Identifier => Tnn,
429 Subtype_Indication =>
430 Make_Subtype_Indication (Loc,
431 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
432 Constraint =>
433 Make_Range_Constraint (Loc,
434 Range_Expression =>
435 Make_Range (Loc,
436 Low_Bound =>
437 Make_Attribute_Reference (Loc,
438 Attribute_Name => Name_First,
439 Prefix => New_Occurrence_Of (Dtyp, Loc)),
440 High_Bound =>
441 Make_Integer_Literal (Loc,
442 Intval => UI_Max (Loval, Ahiv)))))));
443
444 Set_Etype (Discr, Tnn);
445 end if;
446
447 <<Continue>>
448 Next_Component (Comp);
449 end loop;
70482933
RK
450 end Adjust_Discriminants;
451
452 ---------------------------
453 -- Build_Array_Init_Proc --
454 ---------------------------
455
456 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
457 Loc : constant Source_Ptr := Sloc (Nod);
458 Comp_Type : constant Entity_Id := Component_Type (A_Type);
459 Index_List : List_Id;
460 Proc_Id : Entity_Id;
70482933
RK
461 Body_Stmts : List_Id;
462
463 function Init_Component return List_Id;
464 -- Create one statement to initialize one array component, designated
465 -- by a full set of indices.
466
467 function Init_One_Dimension (N : Int) return List_Id;
468 -- Create loop to initialize one dimension of the array. The single
469 -- statement in the loop body initializes the inner dimensions if any,
470 -- or else the single component. Note that this procedure is called
471 -- recursively, with N being the dimension to be initialized. A call
472 -- with N greater than the number of dimensions simply generates the
473 -- component initialization, terminating the recursion.
474
475 --------------------
476 -- Init_Component --
477 --------------------
478
479 function Init_Component return List_Id is
480 Comp : Node_Id;
481
482 begin
483 Comp :=
484 Make_Indexed_Component (Loc,
485 Prefix => Make_Identifier (Loc, Name_uInit),
486 Expressions => Index_List);
487
488 if Needs_Simple_Initialization (Comp_Type) then
489 Set_Assignment_OK (Comp);
490 return New_List (
491 Make_Assignment_Statement (Loc,
492 Name => Comp,
82c80734
RD
493 Expression =>
494 Get_Simple_Init_Val
495 (Comp_Type, Loc, Component_Size (A_Type))));
70482933
RK
496
497 else
498 return
499 Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
500 end if;
501 end Init_Component;
502
503 ------------------------
504 -- Init_One_Dimension --
505 ------------------------
506
507 function Init_One_Dimension (N : Int) return List_Id is
508 Index : Entity_Id;
509
510 begin
511 -- If the component does not need initializing, then there is nothing
512 -- to do here, so we return a null body. This occurs when generating
513 -- the dummy Init_Proc needed for Initialize_Scalars processing.
514
515 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
516 and then not Needs_Simple_Initialization (Comp_Type)
517 and then not Has_Task (Comp_Type)
518 then
519 return New_List (Make_Null_Statement (Loc));
520
521 -- If all dimensions dealt with, we simply initialize the component
522
523 elsif N > Number_Dimensions (A_Type) then
524 return Init_Component;
525
526 -- Here we generate the required loop
527
528 else
529 Index :=
530 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
531
532 Append (New_Reference_To (Index, Loc), Index_List);
533
534 return New_List (
535 Make_Implicit_Loop_Statement (Nod,
536 Identifier => Empty,
537 Iteration_Scheme =>
538 Make_Iteration_Scheme (Loc,
539 Loop_Parameter_Specification =>
540 Make_Loop_Parameter_Specification (Loc,
541 Defining_Identifier => Index,
542 Discrete_Subtype_Definition =>
543 Make_Attribute_Reference (Loc,
544 Prefix => Make_Identifier (Loc, Name_uInit),
545 Attribute_Name => Name_Range,
546 Expressions => New_List (
547 Make_Integer_Literal (Loc, N))))),
548 Statements => Init_One_Dimension (N + 1)));
549 end if;
550 end Init_One_Dimension;
551
552 -- Start of processing for Build_Array_Init_Proc
553
554 begin
555 if Suppress_Init_Proc (A_Type) then
556 return;
557 end if;
558
559 Index_List := New_List;
560
561 -- We need an initialization procedure if any of the following is true:
562
563 -- 1. The component type has an initialization procedure
564 -- 2. The component type needs simple initialization
565 -- 3. Tasks are present
566 -- 4. The type is marked as a publc entity
567
568 -- The reason for the public entity test is to deal properly with the
569 -- Initialize_Scalars pragma. This pragma can be set in the client and
570 -- not in the declaring package, this means the client will make a call
571 -- to the initialization procedure (because one of conditions 1-3 must
572 -- apply in this case), and we must generate a procedure (even if it is
573 -- null) to satisfy the call in this case.
574
82c80734
RD
575 -- Exception: do not build an array init_proc for a type whose root
576 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
577 -- is no place to put the code, and in any case we handle initialization
578 -- of such types (in the Initialize_Scalars case, that's the only time
579 -- the issue arises) in a special manner anyway which does not need an
580 -- init_proc.
70482933
RK
581
582 if Has_Non_Null_Base_Init_Proc (Comp_Type)
583 or else Needs_Simple_Initialization (Comp_Type)
584 or else Has_Task (Comp_Type)
6e937c1c 585 or else (not Restriction_Active (No_Initialize_Scalars)
fbf5a39b 586 and then Is_Public (A_Type)
70482933 587 and then Root_Type (A_Type) /= Standard_String
82c80734
RD
588 and then Root_Type (A_Type) /= Standard_Wide_String
589 and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
70482933
RK
590 then
591 Proc_Id :=
fbf5a39b 592 Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));
70482933
RK
593
594 Body_Stmts := Init_One_Dimension (1);
595
fbf5a39b 596 Discard_Node (
70482933
RK
597 Make_Subprogram_Body (Loc,
598 Specification =>
599 Make_Procedure_Specification (Loc,
600 Defining_Unit_Name => Proc_Id,
601 Parameter_Specifications => Init_Formals (A_Type)),
602 Declarations => New_List,
603 Handled_Statement_Sequence =>
604 Make_Handled_Sequence_Of_Statements (Loc,
fbf5a39b 605 Statements => Body_Stmts)));
70482933
RK
606
607 Set_Ekind (Proc_Id, E_Procedure);
608 Set_Is_Public (Proc_Id, Is_Public (A_Type));
70482933
RK
609 Set_Is_Internal (Proc_Id);
610 Set_Has_Completion (Proc_Id);
611
612 if not Debug_Generated_Code then
613 Set_Debug_Info_Off (Proc_Id);
614 end if;
615
07fc65c4
GB
616 -- Set inlined unless controlled stuff or tasks around, in which
617 -- case we do not want to inline, because nested stuff may cause
618 -- difficulties in interunit inlining, and furthermore there is
619 -- in any case no point in inlining such complex init procs.
620
621 if not Has_Task (Proc_Id)
622 and then not Controlled_Type (Proc_Id)
623 then
624 Set_Is_Inlined (Proc_Id);
625 end if;
626
70482933
RK
627 -- Associate Init_Proc with type, and determine if the procedure
628 -- is null (happens because of the Initialize_Scalars pragma case,
629 -- where we have to generate a null procedure in case it is called
630 -- by a client with Initialize_Scalars set). Such procedures have
631 -- to be generated, but do not have to be called, so we mark them
632 -- as null to suppress the call.
633
634 Set_Init_Proc (A_Type, Proc_Id);
635
636 if List_Length (Body_Stmts) = 1
637 and then Nkind (First (Body_Stmts)) = N_Null_Statement
638 then
639 Set_Is_Null_Init_Proc (Proc_Id);
640 end if;
641 end if;
70482933
RK
642 end Build_Array_Init_Proc;
643
644 -----------------------------
645 -- Build_Class_Wide_Master --
646 -----------------------------
647
648 procedure Build_Class_Wide_Master (T : Entity_Id) is
649 Loc : constant Source_Ptr := Sloc (T);
650 M_Id : Entity_Id;
651 Decl : Node_Id;
652 P : Node_Id;
653
654 begin
a5b62485 655 -- Nothing to do if there is no task hierarchy
70482933 656
6e937c1c 657 if Restriction_Active (No_Task_Hierarchy) then
70482933
RK
658 return;
659 end if;
660
661 -- Nothing to do if we already built a master entity for this scope
662
663 if not Has_Master_Entity (Scope (T)) then
82c80734 664
70482933
RK
665 -- first build the master entity
666 -- _Master : constant Master_Id := Current_Master.all;
667 -- and insert it just before the current declaration
668
669 Decl :=
670 Make_Object_Declaration (Loc,
671 Defining_Identifier =>
672 Make_Defining_Identifier (Loc, Name_uMaster),
673 Constant_Present => True,
674 Object_Definition => New_Reference_To (Standard_Integer, Loc),
675 Expression =>
676 Make_Explicit_Dereference (Loc,
677 New_Reference_To (RTE (RE_Current_Master), Loc)));
678
679 P := Parent (T);
680 Insert_Before (P, Decl);
681 Analyze (Decl);
682 Set_Has_Master_Entity (Scope (T));
683
684 -- Now mark the containing scope as a task master
685
686 while Nkind (P) /= N_Compilation_Unit loop
687 P := Parent (P);
688
689 -- If we fall off the top, we are at the outer level, and the
690 -- environment task is our effective master, so nothing to mark.
691
692 if Nkind (P) = N_Task_Body
693 or else Nkind (P) = N_Block_Statement
694 or else Nkind (P) = N_Subprogram_Body
695 then
696 Set_Is_Task_Master (P, True);
697 exit;
698 end if;
699 end loop;
700 end if;
701
a5b62485 702 -- Now define the renaming of the master_id
70482933
RK
703
704 M_Id :=
705 Make_Defining_Identifier (Loc,
706 New_External_Name (Chars (T), 'M'));
707
708 Decl :=
709 Make_Object_Renaming_Declaration (Loc,
710 Defining_Identifier => M_Id,
711 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
712 Name => Make_Identifier (Loc, Name_uMaster));
713 Insert_Before (Parent (T), Decl);
714 Analyze (Decl);
715
716 Set_Master_Id (T, M_Id);
fbf5a39b
AC
717
718 exception
719 when RE_Not_Available =>
720 return;
70482933
RK
721 end Build_Class_Wide_Master;
722
723 --------------------------------
724 -- Build_Discr_Checking_Funcs --
725 --------------------------------
726
727 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
728 Rec_Id : Entity_Id;
729 Loc : Source_Ptr;
730 Enclosing_Func_Id : Entity_Id;
731 Sequence : Nat := 1;
732 Type_Def : Node_Id;
733 V : Node_Id;
734
735 function Build_Case_Statement
736 (Case_Id : Entity_Id;
2e071734 737 Variant : Node_Id) return Node_Id;
fbf5a39b
AC
738 -- Build a case statement containing only two alternatives. The
739 -- first alternative corresponds exactly to the discrete choices
740 -- given on the variant with contains the components that we are
741 -- generating the checks for. If the discriminant is one of these
742 -- return False. The second alternative is an OTHERS choice that
743 -- will return True indicating the discriminant did not match.
70482933
RK
744
745 function Build_Dcheck_Function
746 (Case_Id : Entity_Id;
2e071734 747 Variant : Node_Id) return Entity_Id;
70482933
RK
748 -- Build the discriminant checking function for a given variant
749
750 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
751 -- Builds the discriminant checking function for each variant of the
752 -- given variant part of the record type.
753
754 --------------------------
755 -- Build_Case_Statement --
756 --------------------------
757
758 function Build_Case_Statement
759 (Case_Id : Entity_Id;
2e071734 760 Variant : Node_Id) return Node_Id
70482933 761 is
fbf5a39b 762 Alt_List : constant List_Id := New_List;
70482933 763 Actuals_List : List_Id;
70482933
RK
764 Case_Node : Node_Id;
765 Case_Alt_Node : Node_Id;
766 Choice : Node_Id;
767 Choice_List : List_Id;
768 D : Entity_Id;
769 Return_Node : Node_Id;
770
771 begin
70482933
RK
772 Case_Node := New_Node (N_Case_Statement, Loc);
773
774 -- Replace the discriminant which controls the variant, with the
775 -- name of the formal of the checking function.
776
777 Set_Expression (Case_Node,
fbf5a39b 778 Make_Identifier (Loc, Chars (Case_Id)));
70482933
RK
779
780 Choice := First (Discrete_Choices (Variant));
781
782 if Nkind (Choice) = N_Others_Choice then
783 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
784 else
785 Choice_List := New_Copy_List (Discrete_Choices (Variant));
786 end if;
787
788 if not Is_Empty_List (Choice_List) then
789 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
790 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
791
792 -- In case this is a nested variant, we need to return the result
793 -- of the discriminant checking function for the immediately
794 -- enclosing variant.
795
796 if Present (Enclosing_Func_Id) then
797 Actuals_List := New_List;
798
799 D := First_Discriminant (Rec_Id);
800 while Present (D) loop
801 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
802 Next_Discriminant (D);
803 end loop;
804
805 Return_Node :=
806 Make_Return_Statement (Loc,
807 Expression =>
808 Make_Function_Call (Loc,
809 Name =>
810 New_Reference_To (Enclosing_Func_Id, Loc),
811 Parameter_Associations =>
812 Actuals_List));
813
814 else
815 Return_Node :=
816 Make_Return_Statement (Loc,
817 Expression =>
818 New_Reference_To (Standard_False, Loc));
819 end if;
820
821 Set_Statements (Case_Alt_Node, New_List (Return_Node));
822 Append (Case_Alt_Node, Alt_List);
823 end if;
824
825 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
826 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
827 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
828
829 Return_Node :=
830 Make_Return_Statement (Loc,
831 Expression =>
832 New_Reference_To (Standard_True, Loc));
833
834 Set_Statements (Case_Alt_Node, New_List (Return_Node));
835 Append (Case_Alt_Node, Alt_List);
836
837 Set_Alternatives (Case_Node, Alt_List);
838 return Case_Node;
839 end Build_Case_Statement;
840
841 ---------------------------
842 -- Build_Dcheck_Function --
843 ---------------------------
844
845 function Build_Dcheck_Function
846 (Case_Id : Entity_Id;
2e071734 847 Variant : Node_Id) return Entity_Id
70482933
RK
848 is
849 Body_Node : Node_Id;
850 Func_Id : Entity_Id;
851 Parameter_List : List_Id;
852 Spec_Node : Node_Id;
853
854 begin
855 Body_Node := New_Node (N_Subprogram_Body, Loc);
856 Sequence := Sequence + 1;
857
858 Func_Id :=
859 Make_Defining_Identifier (Loc,
860 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
861
862 Spec_Node := New_Node (N_Function_Specification, Loc);
863 Set_Defining_Unit_Name (Spec_Node, Func_Id);
864
865 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
866
867 Set_Parameter_Specifications (Spec_Node, Parameter_List);
868 Set_Subtype_Mark (Spec_Node,
869 New_Reference_To (Standard_Boolean, Loc));
870 Set_Specification (Body_Node, Spec_Node);
871 Set_Declarations (Body_Node, New_List);
872
873 Set_Handled_Statement_Sequence (Body_Node,
874 Make_Handled_Sequence_Of_Statements (Loc,
875 Statements => New_List (
876 Build_Case_Statement (Case_Id, Variant))));
877
878 Set_Ekind (Func_Id, E_Function);
879 Set_Mechanism (Func_Id, Default_Mechanism);
880 Set_Is_Inlined (Func_Id, True);
881 Set_Is_Pure (Func_Id, True);
882 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
883 Set_Is_Internal (Func_Id, True);
884
885 if not Debug_Generated_Code then
886 Set_Debug_Info_Off (Func_Id);
887 end if;
888
fbf5a39b
AC
889 Analyze (Body_Node);
890
70482933
RK
891 Append_Freeze_Action (Rec_Id, Body_Node);
892 Set_Dcheck_Function (Variant, Func_Id);
893 return Func_Id;
894 end Build_Dcheck_Function;
895
896 ----------------------------
897 -- Build_Dcheck_Functions --
898 ----------------------------
899
900 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
901 Component_List_Node : Node_Id;
902 Decl : Entity_Id;
903 Discr_Name : Entity_Id;
904 Func_Id : Entity_Id;
905 Variant : Node_Id;
906 Saved_Enclosing_Func_Id : Entity_Id;
907
908 begin
909 -- Build the discriminant checking function for each variant, label
910 -- all components of that variant with the function's name.
911
912 Discr_Name := Entity (Name (Variant_Part_Node));
913 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
914
915 while Present (Variant) loop
916 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
917 Component_List_Node := Component_List (Variant);
918
919 if not Null_Present (Component_List_Node) then
920 Decl :=
921 First_Non_Pragma (Component_Items (Component_List_Node));
922
923 while Present (Decl) loop
924 Set_Discriminant_Checking_Func
925 (Defining_Identifier (Decl), Func_Id);
926
927 Next_Non_Pragma (Decl);
928 end loop;
929
930 if Present (Variant_Part (Component_List_Node)) then
931 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
932 Enclosing_Func_Id := Func_Id;
933 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
934 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
935 end if;
936 end if;
937
938 Next_Non_Pragma (Variant);
939 end loop;
940 end Build_Dcheck_Functions;
941
942 -- Start of processing for Build_Discr_Checking_Funcs
943
944 begin
945 -- Only build if not done already
946
947 if not Discr_Check_Funcs_Built (N) then
948 Type_Def := Type_Definition (N);
949
950 if Nkind (Type_Def) = N_Record_Definition then
951 if No (Component_List (Type_Def)) then -- null record.
952 return;
953 else
954 V := Variant_Part (Component_List (Type_Def));
955 end if;
956
957 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
958 if No (Component_List (Record_Extension_Part (Type_Def))) then
959 return;
960 else
961 V := Variant_Part
962 (Component_List (Record_Extension_Part (Type_Def)));
963 end if;
964 end if;
965
966 Rec_Id := Defining_Identifier (N);
967
968 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
969 Loc := Sloc (N);
970 Enclosing_Func_Id := Empty;
971 Build_Dcheck_Functions (V);
972 end if;
973
974 Set_Discr_Check_Funcs_Built (N);
975 end if;
976 end Build_Discr_Checking_Funcs;
977
978 --------------------------------
979 -- Build_Discriminant_Formals --
980 --------------------------------
981
982 function Build_Discriminant_Formals
983 (Rec_Id : Entity_Id;
2e071734 984 Use_Dl : Boolean) return List_Id
70482933 985 is
fbf5a39b
AC
986 Loc : Source_Ptr := Sloc (Rec_Id);
987 Parameter_List : constant List_Id := New_List;
70482933
RK
988 D : Entity_Id;
989 Formal : Entity_Id;
70482933 990 Param_Spec_Node : Node_Id;
70482933
RK
991
992 begin
993 if Has_Discriminants (Rec_Id) then
994 D := First_Discriminant (Rec_Id);
70482933
RK
995 while Present (D) loop
996 Loc := Sloc (D);
997
998 if Use_Dl then
999 Formal := Discriminal (D);
1000 else
fbf5a39b 1001 Formal := Make_Defining_Identifier (Loc, Chars (D));
70482933
RK
1002 end if;
1003
1004 Param_Spec_Node :=
1005 Make_Parameter_Specification (Loc,
1006 Defining_Identifier => Formal,
1007 Parameter_Type =>
1008 New_Reference_To (Etype (D), Loc));
1009 Append (Param_Spec_Node, Parameter_List);
1010 Next_Discriminant (D);
1011 end loop;
1012 end if;
1013
1014 return Parameter_List;
1015 end Build_Discriminant_Formals;
1016
1017 -------------------------------
1018 -- Build_Initialization_Call --
1019 -------------------------------
1020
1021 -- References to a discriminant inside the record type declaration
1022 -- can appear either in the subtype_indication to constrain a
1023 -- record or an array, or as part of a larger expression given for
1024 -- the initial value of a component. In both of these cases N appears
1025 -- in the record initialization procedure and needs to be replaced by
1026 -- the formal parameter of the initialization procedure which
1027 -- corresponds to that discriminant.
1028
1029 -- In the example below, references to discriminants D1 and D2 in proc_1
1030 -- are replaced by references to formals with the same name
1031 -- (discriminals)
1032
1033 -- A similar replacement is done for calls to any record
1034 -- initialization procedure for any components that are themselves
1035 -- of a record type.
1036
1037 -- type R (D1, D2 : Integer) is record
1038 -- X : Integer := F * D1;
1039 -- Y : Integer := F * D2;
1040 -- end record;
1041
1042 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1043 -- begin
1044 -- Out_2.D1 := D1;
1045 -- Out_2.D2 := D2;
1046 -- Out_2.X := F * D1;
1047 -- Out_2.Y := F * D2;
1048 -- end;
1049
1050 function Build_Initialization_Call
c45b6ae0
AC
1051 (Loc : Source_Ptr;
1052 Id_Ref : Node_Id;
1053 Typ : Entity_Id;
1054 In_Init_Proc : Boolean := False;
1055 Enclos_Type : Entity_Id := Empty;
1056 Discr_Map : Elist_Id := New_Elmt_List;
2e071734 1057 With_Default_Init : Boolean := False) return List_Id
70482933
RK
1058 is
1059 First_Arg : Node_Id;
1060 Args : List_Id;
1061 Decls : List_Id;
1062 Decl : Node_Id;
1063 Discr : Entity_Id;
1064 Arg : Node_Id;
1065 Proc : constant Entity_Id := Base_Init_Proc (Typ);
1066 Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
1067 Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
fbf5a39b 1068 Res : constant List_Id := New_List;
70482933
RK
1069 Full_Type : Entity_Id := Typ;
1070 Controller_Typ : Entity_Id;
1071
1072 begin
2820d220 1073 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
70482933
RK
1074 -- is active (in which case we make the call anyway, since in the
1075 -- actual compiled client it may be non null).
1076
1077 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1078 return Empty_List;
1079 end if;
1080
fbf5a39b
AC
1081 -- Go to full view if private type. In the case of successive
1082 -- private derivations, this can require more than one step.
70482933 1083
fbf5a39b
AC
1084 while Is_Private_Type (Full_Type)
1085 and then Present (Full_View (Full_Type))
1086 loop
1087 Full_Type := Full_View (Full_Type);
1088 end loop;
70482933
RK
1089
1090 -- If Typ is derived, the procedure is the initialization procedure for
1091 -- the root type. Wrap the argument in an conversion to make it type
1092 -- honest. Actually it isn't quite type honest, because there can be
1093 -- conflicts of views in the private type case. That is why we set
1094 -- Conversion_OK in the conversion node.
70482933
RK
1095 if (Is_Record_Type (Typ)
1096 or else Is_Array_Type (Typ)
1097 or else Is_Private_Type (Typ))
1098 and then Init_Type /= Base_Type (Typ)
1099 then
1100 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1101 Set_Etype (First_Arg, Init_Type);
1102
1103 else
1104 First_Arg := Id_Ref;
1105 end if;
1106
1107 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1108
1109 -- In the tasks case, add _Master as the value of the _Master parameter
1110 -- and _Chain as the value of the _Chain parameter. At the outer level,
1111 -- these will be variables holding the corresponding values obtained
1112 -- from GNARL. At inner levels, they will be the parameters passed down
1113 -- through the outer routines.
1114
1115 if Has_Task (Full_Type) then
6e937c1c 1116 if Restriction_Active (No_Task_Hierarchy) then
70482933
RK
1117
1118 -- See comments in System.Tasking.Initialization.Init_RTS
fbf5a39b 1119 -- for the value 3 (should be rtsfindable constant ???)
70482933
RK
1120
1121 Append_To (Args, Make_Integer_Literal (Loc, 3));
1122 else
1123 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1124 end if;
1125
1126 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1127
0ab80019 1128 -- Ada 2005 (AI-287): In case of default initialized components
c45b6ae0
AC
1129 -- with tasks, we generate a null string actual parameter.
1130 -- This is just a workaround that must be improved later???
70482933 1131
c45b6ae0 1132 if With_Default_Init then
1d571f3b
AC
1133 Append_To (Args,
1134 Make_String_Literal (Loc,
1135 Strval => ""));
1136
c45b6ae0
AC
1137 else
1138 Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
1139 Decl := Last (Decls);
1140
1141 Append_To (Args,
1142 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1143 Append_List (Decls, Res);
1144 end if;
70482933
RK
1145
1146 else
1147 Decls := No_List;
1148 Decl := Empty;
1149 end if;
1150
1151 -- Add discriminant values if discriminants are present
1152
1153 if Has_Discriminants (Full_Init_Type) then
1154 Discr := First_Discriminant (Full_Init_Type);
1155
1156 while Present (Discr) loop
1157
1158 -- If this is a discriminated concurrent type, the init_proc
1159 -- for the corresponding record is being called. Use that
1160 -- type directly to find the discriminant value, to handle
1161 -- properly intervening renamed discriminants.
1162
1163 declare
1164 T : Entity_Id := Full_Type;
1165
1166 begin
1167 if Is_Protected_Type (T) then
1168 T := Corresponding_Record_Type (T);
fbf5a39b
AC
1169
1170 elsif Is_Private_Type (T)
1171 and then Present (Underlying_Full_View (T))
1172 and then Is_Protected_Type (Underlying_Full_View (T))
1173 then
1174 T := Corresponding_Record_Type (Underlying_Full_View (T));
70482933
RK
1175 end if;
1176
1177 Arg :=
1178 Get_Discriminant_Value (
1179 Discr,
1180 T,
1181 Discriminant_Constraint (Full_Type));
1182 end;
1183
1184 if In_Init_Proc then
1185
1186 -- Replace any possible references to the discriminant in the
1187 -- call to the record initialization procedure with references
1188 -- to the appropriate formal parameter.
1189
1190 if Nkind (Arg) = N_Identifier
1191 and then Ekind (Entity (Arg)) = E_Discriminant
1192 then
1193 Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
1194
1195 -- Case of access discriminants. We replace the reference
1196 -- to the type by a reference to the actual object
1197
1198 elsif Nkind (Arg) = N_Attribute_Reference
1199 and then Is_Access_Type (Etype (Arg))
1200 and then Is_Entity_Name (Prefix (Arg))
1201 and then Is_Type (Entity (Prefix (Arg)))
1202 then
1203 Arg :=
1204 Make_Attribute_Reference (Loc,
1205 Prefix => New_Copy (Prefix (Id_Ref)),
1206 Attribute_Name => Name_Unrestricted_Access);
1207
1208 -- Otherwise make a copy of the default expression. Note
1209 -- that we use the current Sloc for this, because we do not
1210 -- want the call to appear to be at the declaration point.
1211 -- Within the expression, replace discriminants with their
1212 -- discriminals.
1213
1214 else
1215 Arg :=
1216 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1217 end if;
1218
1219 else
1220 if Is_Constrained (Full_Type) then
fbf5a39b 1221 Arg := Duplicate_Subexpr_No_Checks (Arg);
70482933
RK
1222 else
1223 -- The constraints come from the discriminant default
1224 -- exps, they must be reevaluated, so we use New_Copy_Tree
1225 -- but we ensure the proper Sloc (for any embedded calls).
1226
1227 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1228 end if;
1229 end if;
1230
0ab80019
AC
1231 -- Ada 2005 (AI-287) In case of default initialized components,
1232 -- we need to generate the corresponding selected component node
c45b6ae0
AC
1233 -- to access the discriminant value. In other cases this is not
1234 -- required because we are inside the init proc and we use the
1235 -- corresponding formal.
1236
1237 if With_Default_Init
1238 and then Nkind (Id_Ref) = N_Selected_Component
1239 then
1240 Append_To (Args,
1241 Make_Selected_Component (Loc,
1242 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1243 Selector_Name => Arg));
1244 else
1245 Append_To (Args, Arg);
1246 end if;
70482933
RK
1247
1248 Next_Discriminant (Discr);
1249 end loop;
1250 end if;
1251
1252 -- If this is a call to initialize the parent component of a derived
1253 -- tagged type, indicate that the tag should not be set in the parent.
1254
1255 if Is_Tagged_Type (Full_Init_Type)
1256 and then not Is_CPP_Class (Full_Init_Type)
1257 and then Nkind (Id_Ref) = N_Selected_Component
1258 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1259 then
1260 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1261 end if;
1262
1263 Append_To (Res,
1264 Make_Procedure_Call_Statement (Loc,
1265 Name => New_Occurrence_Of (Proc, Loc),
1266 Parameter_Associations => Args));
1267
1268 if Controlled_Type (Typ)
1269 and then Nkind (Id_Ref) = N_Selected_Component
1270 then
1271 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1272 Append_List_To (Res,
1273 Make_Init_Call (
1274 Ref => New_Copy_Tree (First_Arg),
1275 Typ => Typ,
1276 Flist_Ref =>
1277 Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1278 With_Attach => Make_Integer_Literal (Loc, 1)));
1279
1280 -- If the enclosing type is an extension with new controlled
1281 -- components, it has his own record controller. If the parent
1282 -- also had a record controller, attach it to the new one.
1283 -- Build_Init_Statements relies on the fact that in this specific
1284 -- case the last statement of the result is the attach call to
1285 -- the controller. If this is changed, it must be synchronized.
1286
1287 elsif Present (Enclos_Type)
1288 and then Has_New_Controlled_Component (Enclos_Type)
1289 and then Has_Controlled_Component (Typ)
1290 then
1291 if Is_Return_By_Reference_Type (Typ) then
1292 Controller_Typ := RTE (RE_Limited_Record_Controller);
1293 else
1294 Controller_Typ := RTE (RE_Record_Controller);
1295 end if;
1296
1297 Append_List_To (Res,
1298 Make_Init_Call (
1299 Ref =>
1300 Make_Selected_Component (Loc,
1301 Prefix => New_Copy_Tree (First_Arg),
1302 Selector_Name => Make_Identifier (Loc, Name_uController)),
1303 Typ => Controller_Typ,
1304 Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1305 With_Attach => Make_Integer_Literal (Loc, 1)));
1306 end if;
1307 end if;
1308
70482933 1309 return Res;
fbf5a39b
AC
1310
1311 exception
1312 when RE_Not_Available =>
1313 return Empty_List;
70482933
RK
1314 end Build_Initialization_Call;
1315
1316 ---------------------------
1317 -- Build_Master_Renaming --
1318 ---------------------------
1319
1320 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
1321 Loc : constant Source_Ptr := Sloc (N);
1322 M_Id : Entity_Id;
1323 Decl : Node_Id;
1324
1325 begin
a5b62485 1326 -- Nothing to do if there is no task hierarchy
70482933 1327
6e937c1c 1328 if Restriction_Active (No_Task_Hierarchy) then
70482933
RK
1329 return;
1330 end if;
1331
1332 M_Id :=
1333 Make_Defining_Identifier (Loc,
1334 New_External_Name (Chars (T), 'M'));
1335
1336 Decl :=
1337 Make_Object_Renaming_Declaration (Loc,
1338 Defining_Identifier => M_Id,
1339 Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
1340 Name => Make_Identifier (Loc, Name_uMaster));
1341 Insert_Before (N, Decl);
1342 Analyze (Decl);
1343
1344 Set_Master_Id (T, M_Id);
1345
fbf5a39b
AC
1346 exception
1347 when RE_Not_Available =>
1348 return;
70482933
RK
1349 end Build_Master_Renaming;
1350
1351 ----------------------------
1352 -- Build_Record_Init_Proc --
1353 ----------------------------
1354
1355 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
1356 Loc : Source_Ptr := Sloc (N);
fbf5a39b 1357 Discr_Map : constant Elist_Id := New_Elmt_List;
70482933
RK
1358 Proc_Id : Entity_Id;
1359 Rec_Type : Entity_Id;
70482933
RK
1360 Set_Tag : Entity_Id := Empty;
1361
1362 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1363 -- Build a assignment statement node which assigns to record
1364 -- component its default expression if defined. The left hand side
1365 -- of the assignment is marked Assignment_OK so that initialization
1366 -- of limited private records works correctly, Return also the
1367 -- adjustment call for controlled objects
1368
1369 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1370 -- If the record has discriminants, adds assignment statements to
1371 -- statement list to initialize the discriminant values from the
1372 -- arguments of the initialization procedure.
1373
1374 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1375 -- Build a list representing a sequence of statements which initialize
1376 -- components of the given component list. This may involve building
1377 -- case statements for the variant parts.
1378
2e071734 1379 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
70482933
RK
1380 -- Given a non-tagged type-derivation that declares discriminants,
1381 -- such as
1382 --
1383 -- type R (R1, R2 : Integer) is record ... end record;
1384 --
1385 -- type D (D1 : Integer) is new R (1, D1);
1386 --
1387 -- we make the _init_proc of D be
1388 --
1389 -- procedure _init_proc(X : D; D1 : Integer) is
1390 -- begin
1391 -- _init_proc( R(X), 1, D1);
1392 -- end _init_proc;
1393 --
1394 -- This function builds the call statement in this _init_proc.
1395
1396 procedure Build_Init_Procedure;
1397 -- Build the tree corresponding to the procedure specification and body
1398 -- of the initialization procedure (by calling all the preceding
1399 -- auxiliary routines), and install it as the _init TSS.
1400
07fc65c4 1401 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
70482933 1402 -- Add range checks to components of disciminated records. S is a
07fc65c4
GB
1403 -- subtype indication of a record component. Check_List is a list
1404 -- to which the check actions are appended.
70482933
RK
1405
1406 function Component_Needs_Simple_Initialization
2e071734 1407 (T : Entity_Id) return Boolean;
70482933 1408 -- Determines if a component needs simple initialization, given its
0c644933 1409 -- type T. This is the same as Needs_Simple_Initialization except
c885d7a1
AC
1410 -- for the following difference: the types Tag and Vtable_Ptr, which
1411 -- are access types which would normally require simple initialization
1412 -- to null, do not require initialization as components, since they
1413 -- are explicitly initialized by other means.
70482933
RK
1414
1415 procedure Constrain_Array
07fc65c4
GB
1416 (SI : Node_Id;
1417 Check_List : List_Id);
70482933
RK
1418 -- Called from Build_Record_Checks.
1419 -- Apply a list of index constraints to an unconstrained array type.
1420 -- The first parameter is the entity for the resulting subtype.
07fc65c4 1421 -- Check_List is a list to which the check actions are appended.
70482933
RK
1422
1423 procedure Constrain_Index
07fc65c4
GB
1424 (Index : Node_Id;
1425 S : Node_Id;
1426 Check_List : List_Id);
70482933
RK
1427 -- Called from Build_Record_Checks.
1428 -- Process an index constraint in a constrained array declaration.
1429 -- The constraint can be a subtype name, or a range with or without
1430 -- an explicit subtype mark. The index is the corresponding index of the
1431 -- unconstrained array. S is the range expression. Check_List is a list
1432 -- to which the check actions are appended.
1433
1434 function Parent_Subtype_Renaming_Discrims return Boolean;
1435 -- Returns True for base types N that rename discriminants, else False
1436
1437 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1438 -- Determines whether a record initialization procedure needs to be
1439 -- generated for the given record type.
1440
1441 ----------------------
1442 -- Build_Assignment --
1443 ----------------------
1444
1445 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1446 Exp : Node_Id := N;
1447 Lhs : Node_Id;
1448 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1449 Kind : Node_Kind := Nkind (N);
1450 Res : List_Id;
1451
1452 begin
1453 Loc := Sloc (N);
1454 Lhs :=
1455 Make_Selected_Component (Loc,
1456 Prefix => Make_Identifier (Loc, Name_uInit),
1457 Selector_Name => New_Occurrence_Of (Id, Loc));
1458 Set_Assignment_OK (Lhs);
1459
c885d7a1
AC
1460 -- Case of an access attribute applied to the current instance.
1461 -- Replace the reference to the type by a reference to the actual
1462 -- object. (Note that this handles the case of the top level of
1463 -- the expression being given by such an attribute, but does not
1464 -- cover uses nested within an initial value expression. Nested
1465 -- uses are unlikely to occur in practice, but are theoretically
1466 -- possible. It is not clear how to handle them without fully
1467 -- traversing the expression. ???
70482933
RK
1468
1469 if Kind = N_Attribute_Reference
1470 and then (Attribute_Name (N) = Name_Unchecked_Access
1471 or else
1472 Attribute_Name (N) = Name_Unrestricted_Access)
1473 and then Is_Entity_Name (Prefix (N))
1474 and then Is_Type (Entity (Prefix (N)))
1475 and then Entity (Prefix (N)) = Rec_Type
1476 then
1477 Exp :=
1478 Make_Attribute_Reference (Loc,
1479 Prefix => Make_Identifier (Loc, Name_uInit),
1480 Attribute_Name => Name_Unrestricted_Access);
1481 end if;
1482
0ab80019 1483 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
c885d7a1 1484 -- type to force the corresponding run-time check.
2820d220 1485
0ab80019 1486 if Ada_Version >= Ada_05
2820d220 1487 and then Can_Never_Be_Null (Etype (Id)) -- Lhs
0ab80019
AC
1488 and then Present (Etype (Exp))
1489 and then not Can_Never_Be_Null (Etype (Exp))
2820d220 1490 then
0ab80019 1491 Rewrite (Exp, Convert_To (Etype (Id), Relocate_Node (Exp)));
2820d220
AC
1492 Analyze_And_Resolve (Exp, Etype (Id));
1493 end if;
1494
c885d7a1
AC
1495 -- Take a copy of Exp to ensure that later copies of this
1496 -- component_declaration in derived types see the original tree,
1497 -- not a node rewritten during expansion of the init_proc.
1498
1499 Exp := New_Copy_Tree (Exp);
1500
70482933
RK
1501 Res := New_List (
1502 Make_Assignment_Statement (Loc,
1503 Name => Lhs,
1504 Expression => Exp));
1505
1506 Set_No_Ctrl_Actions (First (Res));
1507
1508 -- Adjust the tag if tagged (because of possible view conversions).
1509 -- Suppress the tag adjustment when Java_VM because JVM tags are
1510 -- represented implicitly in objects.
1511
1512 if Is_Tagged_Type (Typ) and then not Java_VM then
1513 Append_To (Res,
1514 Make_Assignment_Statement (Loc,
1515 Name =>
1516 Make_Selected_Component (Loc,
1517 Prefix => New_Copy_Tree (Lhs),
1518 Selector_Name =>
a9d8907c 1519 New_Reference_To (First_Tag_Component (Typ), Loc)),
70482933
RK
1520
1521 Expression =>
1522 Unchecked_Convert_To (RTE (RE_Tag),
a9d8907c
JM
1523 New_Reference_To
1524 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
70482933
RK
1525 end if;
1526
1527 -- Adjust the component if controlled except if it is an
1528 -- aggregate that will be expanded inline
1529
1530 if Kind = N_Qualified_Expression then
9bc43c53 1531 Kind := Nkind (Expression (N));
70482933
RK
1532 end if;
1533
1534 if Controlled_Type (Typ)
1535 and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
1536 then
1537 Append_List_To (Res,
1538 Make_Adjust_Call (
1539 Ref => New_Copy_Tree (Lhs),
1540 Typ => Etype (Id),
1541 Flist_Ref =>
1542 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
1543 With_Attach => Make_Integer_Literal (Loc, 1)));
1544 end if;
1545
1546 return Res;
fbf5a39b
AC
1547
1548 exception
1549 when RE_Not_Available =>
1550 return Empty_List;
70482933
RK
1551 end Build_Assignment;
1552
1553 ------------------------------------
1554 -- Build_Discriminant_Assignments --
1555 ------------------------------------
1556
1557 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1558 D : Entity_Id;
1559 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1560
1561 begin
1562 if Has_Discriminants (Rec_Type)
1563 and then not Is_Unchecked_Union (Rec_Type)
1564 then
1565 D := First_Discriminant (Rec_Type);
1566
1567 while Present (D) loop
1568 -- Don't generate the assignment for discriminants in derived
1569 -- tagged types if the discriminant is a renaming of some
1570 -- ancestor discriminant. This initialization will be done
1571 -- when initializing the _parent field of the derived record.
1572
1573 if Is_Tagged and then
1574 Present (Corresponding_Discriminant (D))
1575 then
1576 null;
1577
1578 else
1579 Loc := Sloc (D);
1580 Append_List_To (Statement_List,
1581 Build_Assignment (D,
1582 New_Reference_To (Discriminal (D), Loc)));
1583 end if;
1584
1585 Next_Discriminant (D);
1586 end loop;
1587 end if;
1588 end Build_Discriminant_Assignments;
1589
1590 --------------------------
1591 -- Build_Init_Call_Thru --
1592 --------------------------
1593
2e071734
AC
1594 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1595 Parent_Proc : constant Entity_Id :=
1596 Base_Init_Proc (Etype (Rec_Type));
70482933 1597
2e071734
AC
1598 Parent_Type : constant Entity_Id :=
1599 Etype (First_Formal (Parent_Proc));
70482933 1600
2e071734
AC
1601 Uparent_Type : constant Entity_Id :=
1602 Underlying_Type (Parent_Type);
70482933
RK
1603
1604 First_Discr_Param : Node_Id;
1605
1606 Parent_Discr : Entity_Id;
1607 First_Arg : Node_Id;
1608 Args : List_Id;
1609 Arg : Node_Id;
1610 Res : List_Id;
1611
1612 begin
1613 -- First argument (_Init) is the object to be initialized.
1614 -- ??? not sure where to get a reasonable Loc for First_Arg
1615
1616 First_Arg :=
1617 OK_Convert_To (Parent_Type,
1618 New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
1619
1620 Set_Etype (First_Arg, Parent_Type);
1621
1622 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1623
1624 -- In the tasks case,
1625 -- add _Master as the value of the _Master parameter
1626 -- add _Chain as the value of the _Chain parameter.
fbf5a39b 1627 -- add _Task_Name as the value of the _Task_Name parameter.
70482933
RK
1628 -- At the outer level, these will be variables holding the
1629 -- corresponding values obtained from GNARL or the expander.
1630 --
1631 -- At inner levels, they will be the parameters passed down through
1632 -- the outer routines.
1633
1634 First_Discr_Param := Next (First (Parameters));
1635
1636 if Has_Task (Rec_Type) then
6e937c1c 1637 if Restriction_Active (No_Task_Hierarchy) then
70482933
RK
1638
1639 -- See comments in System.Tasking.Initialization.Init_RTS
1640 -- for the value 3.
1641
1642 Append_To (Args, Make_Integer_Literal (Loc, 3));
1643 else
1644 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1645 end if;
1646
1647 Append_To (Args, Make_Identifier (Loc, Name_uChain));
fbf5a39b 1648 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
70482933
RK
1649 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1650 end if;
1651
1652 -- Append discriminant values
1653
1654 if Has_Discriminants (Uparent_Type) then
1655 pragma Assert (not Is_Tagged_Type (Uparent_Type));
1656
1657 Parent_Discr := First_Discriminant (Uparent_Type);
1658 while Present (Parent_Discr) loop
1659
1660 -- Get the initial value for this discriminant
fbf5a39b 1661 -- ??? needs to be cleaned up to use parent_Discr_Constr
70482933
RK
1662 -- directly.
1663
1664 declare
1665 Discr_Value : Elmt_Id :=
1666 First_Elmt
fbf5a39b 1667 (Stored_Constraint (Rec_Type));
70482933
RK
1668
1669 Discr : Entity_Id :=
fbf5a39b 1670 First_Stored_Discriminant (Uparent_Type);
70482933
RK
1671 begin
1672 while Original_Record_Component (Parent_Discr) /= Discr loop
fbf5a39b 1673 Next_Stored_Discriminant (Discr);
70482933
RK
1674 Next_Elmt (Discr_Value);
1675 end loop;
1676
1677 Arg := Node (Discr_Value);
1678 end;
1679
1680 -- Append it to the list
1681
1682 if Nkind (Arg) = N_Identifier
1683 and then Ekind (Entity (Arg)) = E_Discriminant
1684 then
1685 Append_To (Args,
1686 New_Reference_To (Discriminal (Entity (Arg)), Loc));
1687
1688 -- Case of access discriminants. We replace the reference
1689 -- to the type by a reference to the actual object
1690
fbf5a39b
AC
1691-- ??? why is this code deleted without comment
1692
70482933
RK
1693-- elsif Nkind (Arg) = N_Attribute_Reference
1694-- and then Is_Entity_Name (Prefix (Arg))
1695-- and then Is_Type (Entity (Prefix (Arg)))
1696-- then
1697-- Append_To (Args,
1698-- Make_Attribute_Reference (Loc,
1699-- Prefix => New_Copy (Prefix (Id_Ref)),
1700-- Attribute_Name => Name_Unrestricted_Access));
1701
1702 else
1703 Append_To (Args, New_Copy (Arg));
1704 end if;
1705
1706 Next_Discriminant (Parent_Discr);
1707 end loop;
1708 end if;
1709
1710 Res :=
1711 New_List (
1712 Make_Procedure_Call_Statement (Loc,
1713 Name => New_Occurrence_Of (Parent_Proc, Loc),
1714 Parameter_Associations => Args));
1715
1716 return Res;
1717 end Build_Init_Call_Thru;
1718
1719 --------------------------
1720 -- Build_Init_Procedure --
1721 --------------------------
1722
1723 procedure Build_Init_Procedure is
1724 Body_Node : Node_Id;
1725 Handled_Stmt_Node : Node_Id;
1726 Parameters : List_Id;
1727 Proc_Spec_Node : Node_Id;
1728 Body_Stmts : List_Id;
1729 Record_Extension_Node : Node_Id;
1730 Init_Tag : Node_Id;
1731
1732 begin
1733 Body_Stmts := New_List;
1734 Body_Node := New_Node (N_Subprogram_Body, Loc);
1735
fbf5a39b
AC
1736 Proc_Id :=
1737 Make_Defining_Identifier (Loc,
1738 Chars => Make_Init_Proc_Name (Rec_Type));
70482933
RK
1739 Set_Ekind (Proc_Id, E_Procedure);
1740
1741 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
1742 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
1743
1744 Parameters := Init_Formals (Rec_Type);
1745 Append_List_To (Parameters,
1746 Build_Discriminant_Formals (Rec_Type, True));
1747
1748 -- For tagged types, we add a flag to indicate whether the routine
1749 -- is called to initialize a parent component in the init_proc of
1750 -- a type extension. If the flag is false, we do not set the tag
1751 -- because it has been set already in the extension.
1752
1753 if Is_Tagged_Type (Rec_Type)
1754 and then not Is_CPP_Class (Rec_Type)
1755 then
1756 Set_Tag :=
1757 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
1758
1759 Append_To (Parameters,
1760 Make_Parameter_Specification (Loc,
1761 Defining_Identifier => Set_Tag,
1762 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
1763 Expression => New_Occurrence_Of (Standard_True, Loc)));
1764 end if;
1765
1766 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
1767 Set_Specification (Body_Node, Proc_Spec_Node);
1768 Set_Declarations (Body_Node, New_List);
1769
1770 if Parent_Subtype_Renaming_Discrims then
1771
1772 -- N is a Derived_Type_Definition that renames the parameters
1773 -- of the ancestor type. We init it by expanding our discrims
1774 -- and call the ancestor _init_proc with a type-converted object
1775
1776 Append_List_To (Body_Stmts,
fbf5a39b 1777 Build_Init_Call_Thru (Parameters));
70482933
RK
1778
1779 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
1780 Build_Discriminant_Assignments (Body_Stmts);
1781
1782 if not Null_Present (Type_Definition (N)) then
1783 Append_List_To (Body_Stmts,
1784 Build_Init_Statements (
1785 Component_List (Type_Definition (N))));
1786 end if;
1787
1788 else
1789 -- N is a Derived_Type_Definition with a possible non-empty
1790 -- extension. The initialization of a type extension consists
1791 -- in the initialization of the components in the extension.
1792
1793 Build_Discriminant_Assignments (Body_Stmts);
1794
1795 Record_Extension_Node :=
1796 Record_Extension_Part (Type_Definition (N));
1797
1798 if not Null_Present (Record_Extension_Node) then
1799 declare
fbf5a39b
AC
1800 Stmts : constant List_Id :=
1801 Build_Init_Statements (
1802 Component_List (Record_Extension_Node));
70482933
RK
1803
1804 begin
1805 -- The parent field must be initialized first because
1806 -- the offset of the new discriminants may depend on it
1807
1808 Prepend_To (Body_Stmts, Remove_Head (Stmts));
1809 Append_List_To (Body_Stmts, Stmts);
1810 end;
1811 end if;
1812 end if;
1813
1814 -- Add here the assignment to instantiate the Tag
1815
1816 -- The assignement corresponds to the code:
1817
1818 -- _Init._Tag := Typ'Tag;
1819
1820 -- Suppress the tag assignment when Java_VM because JVM tags are
1821 -- represented implicitly in objects.
1822
1823 if Is_Tagged_Type (Rec_Type)
1824 and then not Is_CPP_Class (Rec_Type)
1825 and then not Java_VM
1826 then
1827 Init_Tag :=
1828 Make_Assignment_Statement (Loc,
1829 Name =>
1830 Make_Selected_Component (Loc,
1831 Prefix => Make_Identifier (Loc, Name_uInit),
1832 Selector_Name =>
a9d8907c 1833 New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
70482933
RK
1834
1835 Expression =>
a9d8907c
JM
1836 New_Reference_To
1837 (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc));
70482933
RK
1838
1839 -- The tag must be inserted before the assignments to other
1840 -- components, because the initial value of the component may
1841 -- depend ot the tag (eg. through a dispatching operation on
1842 -- an access to the current type). The tag assignment is not done
1843 -- when initializing the parent component of a type extension,
1844 -- because in that case the tag is set in the extension.
1845 -- Extensions of imported C++ classes add a final complication,
1846 -- because we cannot inhibit tag setting in the constructor for
1847 -- the parent. In that case we insert the tag initialization
1848 -- after the calls to initialize the parent.
1849
1850 Init_Tag :=
1851 Make_If_Statement (Loc,
1852 Condition => New_Occurrence_Of (Set_Tag, Loc),
1853 Then_Statements => New_List (Init_Tag));
1854
1855 if not Is_CPP_Class (Etype (Rec_Type)) then
1856 Prepend_To (Body_Stmts, Init_Tag);
1857
1858 else
1859 declare
1860 Nod : Node_Id := First (Body_Stmts);
1861
1862 begin
1863 -- We assume the first init_proc call is for the parent
1864
1865 while Present (Next (Nod))
1866 and then (Nkind (Nod) /= N_Procedure_Call_Statement
fbf5a39b 1867 or else not Is_Init_Proc (Name (Nod)))
70482933
RK
1868 loop
1869 Nod := Next (Nod);
1870 end loop;
1871
1872 Insert_After (Nod, Init_Tag);
1873 end;
1874 end if;
1875 end if;
1876
1877 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
1878 Set_Statements (Handled_Stmt_Node, Body_Stmts);
1879 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
1880 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
1881
1882 if not Debug_Generated_Code then
1883 Set_Debug_Info_Off (Proc_Id);
1884 end if;
1885
1886 -- Associate Init_Proc with type, and determine if the procedure
1887 -- is null (happens because of the Initialize_Scalars pragma case,
1888 -- where we have to generate a null procedure in case it is called
1889 -- by a client with Initialize_Scalars set). Such procedures have
1890 -- to be generated, but do not have to be called, so we mark them
1891 -- as null to suppress the call.
1892
1893 Set_Init_Proc (Rec_Type, Proc_Id);
1894
1895 if List_Length (Body_Stmts) = 1
1896 and then Nkind (First (Body_Stmts)) = N_Null_Statement
1897 then
1898 Set_Is_Null_Init_Proc (Proc_Id);
1899 end if;
1900 end Build_Init_Procedure;
1901
1902 ---------------------------
1903 -- Build_Init_Statements --
1904 ---------------------------
1905
1906 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
fbf5a39b 1907 Check_List : constant List_Id := New_List;
70482933
RK
1908 Alt_List : List_Id;
1909 Statement_List : List_Id;
1910 Stmts : List_Id;
70482933
RK
1911
1912 Per_Object_Constraint_Components : Boolean;
1913
1914 Decl : Node_Id;
1915 Variant : Node_Id;
1916
1917 Id : Entity_Id;
1918 Typ : Entity_Id;
1919
5d09245e
AC
1920 function Has_Access_Constraint (E : Entity_Id) return Boolean;
1921 -- Components with access discriminants that depend on the current
1922 -- instance must be initialized after all other components.
1923
1924 ---------------------------
1925 -- Has_Access_Constraint --
1926 ---------------------------
1927
1928 function Has_Access_Constraint (E : Entity_Id) return Boolean is
1929 Disc : Entity_Id;
1930 T : constant Entity_Id := Etype (E);
1931
1932 begin
1933 if Has_Per_Object_Constraint (E)
1934 and then Has_Discriminants (T)
1935 then
1936 Disc := First_Discriminant (T);
1937 while Present (Disc) loop
1938 if Is_Access_Type (Etype (Disc)) then
1939 return True;
1940 end if;
1941
1942 Next_Discriminant (Disc);
1943 end loop;
1944
1945 return False;
1946 else
1947 return False;
1948 end if;
1949 end Has_Access_Constraint;
1950
1951 -- Start of processing for Build_Init_Statements
1952
70482933
RK
1953 begin
1954 if Null_Present (Comp_List) then
1955 return New_List (Make_Null_Statement (Loc));
1956 end if;
1957
1958 Statement_List := New_List;
1959
1960 -- Loop through components, skipping pragmas, in 2 steps. The first
1961 -- step deals with regular components. The second step deals with
1962 -- components have per object constraints, and no explicit initia-
1963 -- lization.
1964
1965 Per_Object_Constraint_Components := False;
1966
5d09245e 1967 -- First step : regular components
70482933
RK
1968
1969 Decl := First_Non_Pragma (Component_Items (Comp_List));
1970 while Present (Decl) loop
1971 Loc := Sloc (Decl);
a397db96
AC
1972 Build_Record_Checks
1973 (Subtype_Indication (Component_Definition (Decl)), Check_List);
70482933
RK
1974
1975 Id := Defining_Identifier (Decl);
1976 Typ := Etype (Id);
1977
5d09245e 1978 if Has_Access_Constraint (Id)
70482933
RK
1979 and then No (Expression (Decl))
1980 then
1981 -- Skip processing for now and ask for a second pass
1982
1983 Per_Object_Constraint_Components := True;
fbf5a39b 1984
70482933 1985 else
fbf5a39b
AC
1986 -- Case of explicit initialization
1987
70482933
RK
1988 if Present (Expression (Decl)) then
1989 Stmts := Build_Assignment (Id, Expression (Decl));
1990
fbf5a39b
AC
1991 -- Case of composite component with its own Init_Proc
1992
70482933
RK
1993 elsif Has_Non_Null_Base_Init_Proc (Typ) then
1994 Stmts :=
fbf5a39b
AC
1995 Build_Initialization_Call
1996 (Loc,
1997 Make_Selected_Component (Loc,
1998 Prefix => Make_Identifier (Loc, Name_uInit),
1999 Selector_Name => New_Occurrence_Of (Id, Loc)),
2000 Typ,
2001 True,
2002 Rec_Type,
2003 Discr_Map => Discr_Map);
2004
2005 -- Case of component needing simple initialization
70482933
RK
2006
2007 elsif Component_Needs_Simple_Initialization (Typ) then
2008 Stmts :=
82c80734
RD
2009 Build_Assignment
2010 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id)));
70482933 2011
fbf5a39b
AC
2012 -- Nothing needed for this case
2013
70482933
RK
2014 else
2015 Stmts := No_List;
2016 end if;
2017
2018 if Present (Check_List) then
2019 Append_List_To (Statement_List, Check_List);
2020 end if;
2021
2022 if Present (Stmts) then
2023
fbf5a39b
AC
2024 -- Add the initialization of the record controller before
2025 -- the _Parent field is attached to it when the attachment
2026 -- can occur. It does not work to simply initialize the
2027 -- controller first: it must be initialized after the parent
2028 -- if the parent holds discriminants that can be used
2029 -- to compute the offset of the controller. We assume here
2030 -- that the last statement of the initialization call is the
2031 -- attachement of the parent (see Build_Initialization_Call)
70482933
RK
2032
2033 if Chars (Id) = Name_uController
2034 and then Rec_Type /= Etype (Rec_Type)
2035 and then Has_Controlled_Component (Etype (Rec_Type))
2036 and then Has_New_Controlled_Component (Rec_Type)
2037 then
2038 Insert_List_Before (Last (Statement_List), Stmts);
2039 else
2040 Append_List_To (Statement_List, Stmts);
2041 end if;
2042 end if;
2043 end if;
2044
2045 Next_Non_Pragma (Decl);
2046 end loop;
2047
2048 if Per_Object_Constraint_Components then
2049
2050 -- Second pass: components with per-object constraints
2051
2052 Decl := First_Non_Pragma (Component_Items (Comp_List));
2053
2054 while Present (Decl) loop
2055 Loc := Sloc (Decl);
2056 Id := Defining_Identifier (Decl);
2057 Typ := Etype (Id);
2058
5d09245e 2059 if Has_Access_Constraint (Id)
70482933
RK
2060 and then No (Expression (Decl))
2061 then
2062 if Has_Non_Null_Base_Init_Proc (Typ) then
2063 Append_List_To (Statement_List,
2064 Build_Initialization_Call (Loc,
2065 Make_Selected_Component (Loc,
2066 Prefix => Make_Identifier (Loc, Name_uInit),
2067 Selector_Name => New_Occurrence_Of (Id, Loc)),
2068 Typ, True, Rec_Type, Discr_Map => Discr_Map));
2069
2070 elsif Component_Needs_Simple_Initialization (Typ) then
2071 Append_List_To (Statement_List,
82c80734
RD
2072 Build_Assignment
2073 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id))));
70482933
RK
2074 end if;
2075 end if;
2076
2077 Next_Non_Pragma (Decl);
2078 end loop;
2079 end if;
2080
2081 -- Process the variant part
2082
2083 if Present (Variant_Part (Comp_List)) then
2084 Alt_List := New_List;
2085 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
2086
2087 while Present (Variant) loop
2088 Loc := Sloc (Variant);
2089 Append_To (Alt_List,
2090 Make_Case_Statement_Alternative (Loc,
2091 Discrete_Choices =>
2092 New_Copy_List (Discrete_Choices (Variant)),
2093 Statements =>
2094 Build_Init_Statements (Component_List (Variant))));
2095
2096 Next_Non_Pragma (Variant);
2097 end loop;
2098
2099 -- The expression of the case statement which is a reference
2100 -- to one of the discriminants is replaced by the appropriate
2101 -- formal parameter of the initialization procedure.
2102
2103 Append_To (Statement_List,
2104 Make_Case_Statement (Loc,
2105 Expression =>
2106 New_Reference_To (Discriminal (
2107 Entity (Name (Variant_Part (Comp_List)))), Loc),
2108 Alternatives => Alt_List));
2109 end if;
2110
2111 -- For a task record type, add the task create call and calls
2112 -- to bind any interrupt (signal) entries.
2113
2114 if Is_Task_Record_Type (Rec_Type) then
523456db
AC
2115
2116 -- In the case of the restricted run time the ATCB has already
2117 -- been preallocated.
2118
2119 if Restricted_Profile then
2120 Append_To (Statement_List,
2121 Make_Assignment_Statement (Loc,
2122 Name => Make_Selected_Component (Loc,
2123 Prefix => Make_Identifier (Loc, Name_uInit),
2124 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
2125 Expression => Make_Attribute_Reference (Loc,
2126 Prefix =>
2127 Make_Selected_Component (Loc,
2128 Prefix => Make_Identifier (Loc, Name_uInit),
2129 Selector_Name =>
2130 Make_Identifier (Loc, Name_uATCB)),
2131 Attribute_Name => Name_Unchecked_Access)));
2132 end if;
2133
70482933
RK
2134 Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
2135
2136 declare
2137 Task_Type : constant Entity_Id :=
2138 Corresponding_Concurrent_Type (Rec_Type);
2139 Task_Decl : constant Node_Id := Parent (Task_Type);
2140 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
2141 Vis_Decl : Node_Id;
2142 Ent : Entity_Id;
2143
2144 begin
2145 if Present (Task_Def) then
2146 Vis_Decl := First (Visible_Declarations (Task_Def));
2147 while Present (Vis_Decl) loop
2148 Loc := Sloc (Vis_Decl);
2149
2150 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
2151 if Get_Attribute_Id (Chars (Vis_Decl)) =
2152 Attribute_Address
2153 then
2154 Ent := Entity (Name (Vis_Decl));
2155
2156 if Ekind (Ent) = E_Entry then
2157 Append_To (Statement_List,
2158 Make_Procedure_Call_Statement (Loc,
2159 Name => New_Reference_To (
2160 RTE (RE_Bind_Interrupt_To_Entry), Loc),
2161 Parameter_Associations => New_List (
2162 Make_Selected_Component (Loc,
2163 Prefix =>
2164 Make_Identifier (Loc, Name_uInit),
2165 Selector_Name =>
2166 Make_Identifier (Loc, Name_uTask_Id)),
2167 Entry_Index_Expression (
2168 Loc, Ent, Empty, Task_Type),
2169 Expression (Vis_Decl))));
2170 end if;
2171 end if;
2172 end if;
2173
2174 Next (Vis_Decl);
2175 end loop;
2176 end if;
2177 end;
2178 end if;
2179
2180 -- For a protected type, add statements generated by
2181 -- Make_Initialize_Protection.
2182
2183 if Is_Protected_Record_Type (Rec_Type) then
2184 Append_List_To (Statement_List,
2185 Make_Initialize_Protection (Rec_Type));
2186 end if;
2187
2188 -- If no initializations when generated for component declarations
2189 -- corresponding to this Statement_List, append a null statement
2190 -- to the Statement_List to make it a valid Ada tree.
2191
2192 if Is_Empty_List (Statement_List) then
2193 Append (New_Node (N_Null_Statement, Loc), Statement_List);
2194 end if;
2195
2196 return Statement_List;
fbf5a39b
AC
2197
2198 exception
2199 when RE_Not_Available =>
2200 return Empty_List;
70482933
RK
2201 end Build_Init_Statements;
2202
2203 -------------------------
2204 -- Build_Record_Checks --
2205 -------------------------
2206
07fc65c4 2207 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
70482933 2208 Subtype_Mark_Id : Entity_Id;
70482933 2209
07fc65c4 2210 begin
70482933
RK
2211 if Nkind (S) = N_Subtype_Indication then
2212 Find_Type (Subtype_Mark (S));
70482933
RK
2213 Subtype_Mark_Id := Entity (Subtype_Mark (S));
2214
2215 -- Remaining processing depends on type
2216
2217 case Ekind (Subtype_Mark_Id) is
2218
2219 when Array_Kind =>
07fc65c4 2220 Constrain_Array (S, Check_List);
70482933
RK
2221
2222 when others =>
2223 null;
2224 end case;
2225 end if;
70482933
RK
2226 end Build_Record_Checks;
2227
2228 -------------------------------------------
2229 -- Component_Needs_Simple_Initialization --
2230 -------------------------------------------
2231
2232 function Component_Needs_Simple_Initialization
2e071734 2233 (T : Entity_Id) return Boolean
70482933
RK
2234 is
2235 begin
2236 return
2237 Needs_Simple_Initialization (T)
2238 and then not Is_RTE (T, RE_Tag)
c885d7a1 2239 and then not Is_RTE (T, RE_Vtable_Ptr);
70482933
RK
2240 end Component_Needs_Simple_Initialization;
2241
2242 ---------------------
2243 -- Constrain_Array --
2244 ---------------------
2245
2246 procedure Constrain_Array
2247 (SI : Node_Id;
70482933
RK
2248 Check_List : List_Id)
2249 is
2250 C : constant Node_Id := Constraint (SI);
2251 Number_Of_Constraints : Nat := 0;
2252 Index : Node_Id;
2253 S, T : Entity_Id;
2254
2255 begin
2256 T := Entity (Subtype_Mark (SI));
2257
2258 if Ekind (T) in Access_Kind then
2259 T := Designated_Type (T);
2260 end if;
2261
2262 S := First (Constraints (C));
2263
2264 while Present (S) loop
2265 Number_Of_Constraints := Number_Of_Constraints + 1;
2266 Next (S);
2267 end loop;
2268
2269 -- In either case, the index constraint must provide a discrete
2270 -- range for each index of the array type and the type of each
2271 -- discrete range must be the same as that of the corresponding
2272 -- index. (RM 3.6.1)
2273
2274 S := First (Constraints (C));
2275 Index := First_Index (T);
2276 Analyze (Index);
2277
2278 -- Apply constraints to each index type
2279
2280 for J in 1 .. Number_Of_Constraints loop
07fc65c4 2281 Constrain_Index (Index, S, Check_List);
70482933
RK
2282 Next (Index);
2283 Next (S);
2284 end loop;
2285
2286 end Constrain_Array;
2287
2288 ---------------------
2289 -- Constrain_Index --
2290 ---------------------
2291
2292 procedure Constrain_Index
2293 (Index : Node_Id;
2294 S : Node_Id;
70482933
RK
2295 Check_List : List_Id)
2296 is
2297 T : constant Entity_Id := Etype (Index);
2298
2299 begin
2300 if Nkind (S) = N_Range then
07fc65c4 2301 Process_Range_Expr_In_Decl (S, T, Check_List);
70482933
RK
2302 end if;
2303 end Constrain_Index;
2304
2305 --------------------------------------
2306 -- Parent_Subtype_Renaming_Discrims --
2307 --------------------------------------
2308
2309 function Parent_Subtype_Renaming_Discrims return Boolean is
2310 De : Entity_Id;
2311 Dp : Entity_Id;
2312
2313 begin
2314 if Base_Type (Pe) /= Pe then
2315 return False;
2316 end if;
2317
2318 if Etype (Pe) = Pe
2319 or else not Has_Discriminants (Pe)
2320 or else Is_Constrained (Pe)
2321 or else Is_Tagged_Type (Pe)
2322 then
2323 return False;
2324 end if;
2325
fbf5a39b 2326 -- If there are no explicit stored discriminants we have inherited
70482933
RK
2327 -- the root type discriminants so far, so no renamings occurred.
2328
fbf5a39b 2329 if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
70482933
RK
2330 return False;
2331 end if;
2332
2333 -- Check if we have done some trivial renaming of the parent
2334 -- discriminants, i.e. someting like
2335 --
2336 -- type DT (X1,X2: int) is new PT (X1,X2);
2337
2338 De := First_Discriminant (Pe);
2339 Dp := First_Discriminant (Etype (Pe));
2340
2341 while Present (De) loop
2342 pragma Assert (Present (Dp));
2343
2344 if Corresponding_Discriminant (De) /= Dp then
2345 return True;
2346 end if;
2347
2348 Next_Discriminant (De);
2349 Next_Discriminant (Dp);
2350 end loop;
2351
2352 return Present (Dp);
2353 end Parent_Subtype_Renaming_Discrims;
2354
2355 ------------------------
2356 -- Requires_Init_Proc --
2357 ------------------------
2358
2359 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
2360 Comp_Decl : Node_Id;
2361 Id : Entity_Id;
2362 Typ : Entity_Id;
2363
2364 begin
2365 -- Definitely do not need one if specifically suppressed
2366
2367 if Suppress_Init_Proc (Rec_Id) then
2368 return False;
2369 end if;
2370
2371 -- Otherwise we need to generate an initialization procedure if
2372 -- Is_CPP_Class is False and at least one of the following applies:
2373
2374 -- 1. Discriminants are present, since they need to be initialized
2375 -- with the appropriate discriminant constraint expressions.
2376 -- However, the discriminant of an unchecked union does not
2377 -- count, since the discriminant is not present.
2378
2379 -- 2. The type is a tagged type, since the implicit Tag component
2380 -- needs to be initialized with a pointer to the dispatch table.
2381
2382 -- 3. The type contains tasks
2383
2384 -- 4. One or more components has an initial value
2385
2386 -- 5. One or more components is for a type which itself requires
2387 -- an initialization procedure.
2388
2389 -- 6. One or more components is a type that requires simple
2390 -- initialization (see Needs_Simple_Initialization), except
2391 -- that types Tag and Vtable_Ptr are excluded, since fields
2392 -- of these types are initialized by other means.
2393
2394 -- 7. The type is the record type built for a task type (since at
2395 -- the very least, Create_Task must be called)
2396
2397 -- 8. The type is the record type built for a protected type (since
2398 -- at least Initialize_Protection must be called)
2399
2400 -- 9. The type is marked as a public entity. The reason we add this
2401 -- case (even if none of the above apply) is to properly handle
2402 -- Initialize_Scalars. If a package is compiled without an IS
2403 -- pragma, and the client is compiled with an IS pragma, then
2404 -- the client will think an initialization procedure is present
2405 -- and call it, when in fact no such procedure is required, but
2406 -- since the call is generated, there had better be a routine
2407 -- at the other end of the call, even if it does nothing!)
2408
2409 -- Note: the reason we exclude the CPP_Class case is ???
2410
2411 if Is_CPP_Class (Rec_Id) then
2412 return False;
2413
6e937c1c 2414 elsif not Restriction_Active (No_Initialize_Scalars)
fbf5a39b
AC
2415 and then Is_Public (Rec_Id)
2416 then
70482933
RK
2417 return True;
2418
2419 elsif (Has_Discriminants (Rec_Id)
2420 and then not Is_Unchecked_Union (Rec_Id))
2421 or else Is_Tagged_Type (Rec_Id)
2422 or else Is_Concurrent_Record_Type (Rec_Id)
2423 or else Has_Task (Rec_Id)
2424 then
2425 return True;
2426 end if;
2427
2428 Id := First_Component (Rec_Id);
2429
2430 while Present (Id) loop
2431 Comp_Decl := Parent (Id);
2432 Typ := Etype (Id);
2433
2434 if Present (Expression (Comp_Decl))
2435 or else Has_Non_Null_Base_Init_Proc (Typ)
2436 or else Component_Needs_Simple_Initialization (Typ)
2437 then
2438 return True;
2439 end if;
2440
2441 Next_Component (Id);
2442 end loop;
2443
2444 return False;
2445 end Requires_Init_Proc;
2446
2447 -- Start of processing for Build_Record_Init_Proc
2448
2449 begin
2450 Rec_Type := Defining_Identifier (N);
2451
2452 -- This may be full declaration of a private type, in which case
2453 -- the visible entity is a record, and the private entity has been
2454 -- exchanged with it in the private part of the current package.
2455 -- The initialization procedure is built for the record type, which
2456 -- is retrievable from the private entity.
2457
2458 if Is_Incomplete_Or_Private_Type (Rec_Type) then
2459 Rec_Type := Underlying_Type (Rec_Type);
2460 end if;
2461
2462 -- If there are discriminants, build the discriminant map to replace
2463 -- discriminants by their discriminals in complex bound expressions.
2464 -- These only arise for the corresponding records of protected types.
2465
2466 if Is_Concurrent_Record_Type (Rec_Type)
2467 and then Has_Discriminants (Rec_Type)
2468 then
2469 declare
2470 Disc : Entity_Id;
2471
2472 begin
2473 Disc := First_Discriminant (Rec_Type);
2474
2475 while Present (Disc) loop
2476 Append_Elmt (Disc, Discr_Map);
2477 Append_Elmt (Discriminal (Disc), Discr_Map);
2478 Next_Discriminant (Disc);
2479 end loop;
2480 end;
2481 end if;
2482
2483 -- Derived types that have no type extension can use the initialization
2484 -- procedure of their parent and do not need a procedure of their own.
2485 -- This is only correct if there are no representation clauses for the
2486 -- type or its parent, and if the parent has in fact been frozen so
2487 -- that its initialization procedure exists.
2488
2489 if Is_Derived_Type (Rec_Type)
2490 and then not Is_Tagged_Type (Rec_Type)
5d09245e 2491 and then not Is_Unchecked_Union (Rec_Type)
70482933
RK
2492 and then not Has_New_Non_Standard_Rep (Rec_Type)
2493 and then not Parent_Subtype_Renaming_Discrims
2494 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
2495 then
2496 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
2497
2498 -- Otherwise if we need an initialization procedure, then build one,
2499 -- mark it as public and inlinable and as having a completion.
2500
5d09245e
AC
2501 elsif Requires_Init_Proc (Rec_Type)
2502 or else Is_Unchecked_Union (Rec_Type)
2503 then
70482933
RK
2504 Build_Init_Procedure;
2505 Set_Is_Public (Proc_Id, Is_Public (Pe));
2506
2507 -- The initialization of protected records is not worth inlining.
2508 -- In addition, when compiled for another unit for inlining purposes,
2509 -- it may make reference to entities that have not been elaborated
2510 -- yet. The initialization of controlled records contains a nested
2511 -- clean-up procedure that makes it impractical to inline as well,
2512 -- and leads to undefined symbols if inlined in a different unit.
07fc65c4 2513 -- Similar considerations apply to task types.
70482933 2514
07fc65c4
GB
2515 if not Is_Concurrent_Type (Rec_Type)
2516 and then not Has_Task (Rec_Type)
70482933
RK
2517 and then not Controlled_Type (Rec_Type)
2518 then
2519 Set_Is_Inlined (Proc_Id);
2520 end if;
2521
2522 Set_Is_Internal (Proc_Id);
2523 Set_Has_Completion (Proc_Id);
2524
2525 if not Debug_Generated_Code then
2526 Set_Debug_Info_Off (Proc_Id);
2527 end if;
2528 end if;
2529 end Build_Record_Init_Proc;
2530
26fd4eae
AC
2531 ----------------------------
2532 -- Build_Slice_Assignment --
2533 ----------------------------
2534
2535 -- Generates the following subprogram:
6e937c1c 2536
26fd4eae
AC
2537 -- procedure Assign
2538 -- (Source, Target : Array_Type,
2539 -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
2540 -- Rev : Boolean)
2541 -- is
2542 -- Li1 : Index;
2543 -- Ri1 : Index;
6e937c1c 2544
26fd4eae
AC
2545 -- begin
2546 -- if Rev then
2547 -- Li1 := Left_Hi;
2548 -- Ri1 := Right_Hi;
2549 -- else
2550 -- Li1 := Left_Lo;
2551 -- Ri1 := Right_Lo;
2552 -- end if;
6e937c1c 2553
26fd4eae 2554 -- loop
a41ea816
AC
2555 -- if Rev then
2556 -- exit when Li1 < Left_Lo;
2557 -- else
2558 -- exit when Li1 > Left_Hi;
2559 -- end if;
2560
26fd4eae 2561 -- Target (Li1) := Source (Ri1);
6e937c1c 2562
26fd4eae 2563 -- if Rev then
a41ea816
AC
2564 -- Li1 := Index'pred (Li1);
2565 -- Ri1 := Index'pred (Ri1);
26fd4eae 2566 -- else
a41ea816
AC
2567 -- Li1 := Index'succ (Li1);
2568 -- Ri1 := Index'succ (Ri1);
26fd4eae
AC
2569 -- end if;
2570 -- end loop;
2571 -- end Assign;
2572
2573 procedure Build_Slice_Assignment (Typ : Entity_Id) is
2574 Loc : constant Source_Ptr := Sloc (Typ);
2575 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
2576
2577 -- Build formal parameters of procedure
2578
2579 Larray : constant Entity_Id :=
2580 Make_Defining_Identifier
2581 (Loc, Chars => New_Internal_Name ('A'));
2582 Rarray : constant Entity_Id :=
2583 Make_Defining_Identifier
2584 (Loc, Chars => New_Internal_Name ('R'));
2585 Left_Lo : constant Entity_Id :=
2586 Make_Defining_Identifier
2587 (Loc, Chars => New_Internal_Name ('L'));
2588 Left_Hi : constant Entity_Id :=
2589 Make_Defining_Identifier
2590 (Loc, Chars => New_Internal_Name ('L'));
2591 Right_Lo : constant Entity_Id :=
2592 Make_Defining_Identifier
2593 (Loc, Chars => New_Internal_Name ('R'));
2594 Right_Hi : constant Entity_Id :=
2595 Make_Defining_Identifier
2596 (Loc, Chars => New_Internal_Name ('R'));
2597 Rev : constant Entity_Id :=
2598 Make_Defining_Identifier
2599 (Loc, Chars => New_Internal_Name ('D'));
2600 Proc_Name : constant Entity_Id :=
2601 Make_Defining_Identifier (Loc,
2602 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
2603
6e937c1c
AC
2604 Lnn : constant Entity_Id :=
2605 Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
2606 Rnn : constant Entity_Id :=
2607 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2608 -- Subscripts for left and right sides
26fd4eae 2609
6e937c1c
AC
2610 Decls : List_Id;
2611 Loops : Node_Id;
2612 Stats : List_Id;
26fd4eae
AC
2613
2614 begin
6e937c1c 2615 -- Build declarations for indices
26fd4eae
AC
2616
2617 Decls := New_List;
2618
2619 Append_To (Decls,
2620 Make_Object_Declaration (Loc,
2621 Defining_Identifier => Lnn,
2622 Object_Definition =>
2623 New_Occurrence_Of (Index, Loc)));
2624
2625 Append_To (Decls,
2626 Make_Object_Declaration (Loc,
2627 Defining_Identifier => Rnn,
2628 Object_Definition =>
2629 New_Occurrence_Of (Index, Loc)));
2630
2631 Stats := New_List;
2632
6e937c1c 2633 -- Build initializations for indices
26fd4eae
AC
2634
2635 declare
2636 F_Init : constant List_Id := New_List;
2637 B_Init : constant List_Id := New_List;
2638
2639 begin
2640 Append_To (F_Init,
2641 Make_Assignment_Statement (Loc,
2642 Name => New_Occurrence_Of (Lnn, Loc),
2643 Expression => New_Occurrence_Of (Left_Lo, Loc)));
2644
2645 Append_To (F_Init,
2646 Make_Assignment_Statement (Loc,
2647 Name => New_Occurrence_Of (Rnn, Loc),
2648 Expression => New_Occurrence_Of (Right_Lo, Loc)));
2649
2650 Append_To (B_Init,
2651 Make_Assignment_Statement (Loc,
2652 Name => New_Occurrence_Of (Lnn, Loc),
2653 Expression => New_Occurrence_Of (Left_Hi, Loc)));
2654
2655 Append_To (B_Init,
2656 Make_Assignment_Statement (Loc,
2657 Name => New_Occurrence_Of (Rnn, Loc),
2658 Expression => New_Occurrence_Of (Right_Hi, Loc)));
2659
2660 Append_To (Stats,
2661 Make_If_Statement (Loc,
2662 Condition => New_Occurrence_Of (Rev, Loc),
2663 Then_Statements => B_Init,
2664 Else_Statements => F_Init));
2665 end;
2666
2667 -- Now construct the assignment statement
2668
2669 Loops :=
2670 Make_Loop_Statement (Loc,
2671 Statements => New_List (
2672 Make_Assignment_Statement (Loc,
2673 Name =>
2674 Make_Indexed_Component (Loc,
2675 Prefix => New_Occurrence_Of (Larray, Loc),
2676 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
2677 Expression =>
2678 Make_Indexed_Component (Loc,
2679 Prefix => New_Occurrence_Of (Rarray, Loc),
2680 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
2681 End_Label => Empty);
2682
a5b62485 2683 -- Build exit condition
26fd4eae
AC
2684
2685 declare
2686 F_Ass : constant List_Id := New_List;
2687 B_Ass : constant List_Id := New_List;
2688
2689 begin
2690 Append_To (F_Ass,
2691 Make_Exit_Statement (Loc,
2692 Condition =>
a41ea816 2693 Make_Op_Gt (Loc,
26fd4eae
AC
2694 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
2695 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
2696
2697 Append_To (B_Ass,
2698 Make_Exit_Statement (Loc,
2699 Condition =>
a41ea816 2700 Make_Op_Lt (Loc,
26fd4eae
AC
2701 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
2702 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
2703
a41ea816
AC
2704 Prepend_To (Statements (Loops),
2705 Make_If_Statement (Loc,
2706 Condition => New_Occurrence_Of (Rev, Loc),
2707 Then_Statements => B_Ass,
2708 Else_Statements => F_Ass));
2709 end;
2710
2711 -- Build the increment/decrement statements
2712
2713 declare
2714 F_Ass : constant List_Id := New_List;
2715 B_Ass : constant List_Id := New_List;
2716
2717 begin
26fd4eae
AC
2718 Append_To (F_Ass,
2719 Make_Assignment_Statement (Loc,
2720 Name => New_Occurrence_Of (Lnn, Loc),
2721 Expression =>
2722 Make_Attribute_Reference (Loc,
2723 Prefix =>
2724 New_Occurrence_Of (Index, Loc),
2725 Attribute_Name => Name_Succ,
2726 Expressions => New_List (
2727 New_Occurrence_Of (Lnn, Loc)))));
2728
2729 Append_To (F_Ass,
2730 Make_Assignment_Statement (Loc,
2731 Name => New_Occurrence_Of (Rnn, Loc),
2732 Expression =>
2733 Make_Attribute_Reference (Loc,
2734 Prefix =>
2735 New_Occurrence_Of (Index, Loc),
2736 Attribute_Name => Name_Succ,
2737 Expressions => New_List (
2738 New_Occurrence_Of (Rnn, Loc)))));
2739
2740 Append_To (B_Ass,
2741 Make_Assignment_Statement (Loc,
2742 Name => New_Occurrence_Of (Lnn, Loc),
2743 Expression =>
2744 Make_Attribute_Reference (Loc,
2745 Prefix =>
2746 New_Occurrence_Of (Index, Loc),
2747 Attribute_Name => Name_Pred,
2748 Expressions => New_List (
2749 New_Occurrence_Of (Lnn, Loc)))));
2750
2751 Append_To (B_Ass,
2752 Make_Assignment_Statement (Loc,
2753 Name => New_Occurrence_Of (Rnn, Loc),
2754 Expression =>
2755 Make_Attribute_Reference (Loc,
2756 Prefix =>
2757 New_Occurrence_Of (Index, Loc),
2758 Attribute_Name => Name_Pred,
2759 Expressions => New_List (
2760 New_Occurrence_Of (Rnn, Loc)))));
2761
2762 Append_To (Statements (Loops),
2763 Make_If_Statement (Loc,
2764 Condition => New_Occurrence_Of (Rev, Loc),
2765 Then_Statements => B_Ass,
2766 Else_Statements => F_Ass));
2767 end;
2768
2769 Append_To (Stats, Loops);
2770
2771 declare
6e937c1c
AC
2772 Spec : Node_Id;
2773 Formals : List_Id := New_List;
26fd4eae
AC
2774
2775 begin
2776 Formals := New_List (
2777 Make_Parameter_Specification (Loc,
2778 Defining_Identifier => Larray,
2779 Out_Present => True,
2780 Parameter_Type =>
2781 New_Reference_To (Base_Type (Typ), Loc)),
2782
2783 Make_Parameter_Specification (Loc,
2784 Defining_Identifier => Rarray,
2785 Parameter_Type =>
2786 New_Reference_To (Base_Type (Typ), Loc)),
2787
2788 Make_Parameter_Specification (Loc,
2789 Defining_Identifier => Left_Lo,
2790 Parameter_Type =>
2791 New_Reference_To (Index, Loc)),
2792
2793 Make_Parameter_Specification (Loc,
2794 Defining_Identifier => Left_Hi,
2795 Parameter_Type =>
2796 New_Reference_To (Index, Loc)),
2797
2798 Make_Parameter_Specification (Loc,
2799 Defining_Identifier => Right_Lo,
2800 Parameter_Type =>
2801 New_Reference_To (Index, Loc)),
2802
2803 Make_Parameter_Specification (Loc,
2804 Defining_Identifier => Right_Hi,
2805 Parameter_Type =>
2806 New_Reference_To (Index, Loc)));
2807
2808 Append_To (Formals,
2809 Make_Parameter_Specification (Loc,
2810 Defining_Identifier => Rev,
2811 Parameter_Type =>
2812 New_Reference_To (Standard_Boolean, Loc)));
2813
2814 Spec :=
2815 Make_Procedure_Specification (Loc,
2816 Defining_Unit_Name => Proc_Name,
2817 Parameter_Specifications => Formals);
2818
2819 Discard_Node (
2820 Make_Subprogram_Body (Loc,
2821 Specification => Spec,
2822 Declarations => Decls,
2823 Handled_Statement_Sequence =>
2824 Make_Handled_Sequence_Of_Statements (Loc,
2825 Statements => Stats)));
2826 end;
2827
2828 Set_TSS (Typ, Proc_Name);
2829 Set_Is_Pure (Proc_Name);
2830 end Build_Slice_Assignment;
2831
70482933
RK
2832 ------------------------------------
2833 -- Build_Variant_Record_Equality --
2834 ------------------------------------
2835
2836 -- Generates:
6e937c1c 2837
70482933
RK
2838 -- function _Equality (X, Y : T) return Boolean is
2839 -- begin
2840 -- -- Compare discriminants
2841
2842 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
2843 -- return False;
2844 -- end if;
2845
2846 -- -- Compare components
2847
2848 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
2849 -- return False;
2850 -- end if;
2851
2852 -- -- Compare variant part
2853
2854 -- case X.D1 is
2855 -- when V1 =>
2856 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
2857 -- return False;
2858 -- end if;
2859 -- ...
2860 -- when Vn =>
2861 -- if False or else X.Cn /= Y.Cn then
2862 -- return False;
2863 -- end if;
2864 -- end case;
2865 -- return True;
2866 -- end _Equality;
2867
fbf5a39b 2868 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
70482933 2869 Loc : constant Source_Ptr := Sloc (Typ);
70482933 2870
fbf5a39b
AC
2871 F : constant Entity_Id :=
2872 Make_Defining_Identifier (Loc,
2873 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
2874
2875 X : constant Entity_Id :=
2876 Make_Defining_Identifier (Loc,
2877 Chars => Name_X);
2878
2879 Y : constant Entity_Id :=
2880 Make_Defining_Identifier (Loc,
2881 Chars => Name_Y);
2882
2883 Def : constant Node_Id := Parent (Typ);
2884 Comps : constant Node_Id := Component_List (Type_Definition (Def));
2885 Stmts : constant List_Id := New_List;
5d09245e 2886 Pspecs : constant List_Id := New_List;
70482933
RK
2887
2888 begin
5d09245e
AC
2889 -- Derived Unchecked_Union types no longer inherit the equality function
2890 -- of their parent.
2891
70482933 2892 if Is_Derived_Type (Typ)
5d09245e 2893 and then not Is_Unchecked_Union (Typ)
70482933
RK
2894 and then not Has_New_Non_Standard_Rep (Typ)
2895 then
2896 declare
fbf5a39b
AC
2897 Parent_Eq : constant Entity_Id :=
2898 TSS (Root_Type (Typ), TSS_Composite_Equality);
70482933
RK
2899
2900 begin
2901 if Present (Parent_Eq) then
2902 Copy_TSS (Parent_Eq, Typ);
2903 return;
2904 end if;
2905 end;
2906 end if;
2907
fbf5a39b 2908 Discard_Node (
70482933
RK
2909 Make_Subprogram_Body (Loc,
2910 Specification =>
2911 Make_Function_Specification (Loc,
2912 Defining_Unit_Name => F,
5d09245e 2913 Parameter_Specifications => Pspecs,
70482933 2914 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
70482933
RK
2915 Declarations => New_List,
2916 Handled_Statement_Sequence =>
2917 Make_Handled_Sequence_Of_Statements (Loc,
fbf5a39b 2918 Statements => Stmts)));
70482933 2919
5d09245e
AC
2920 Append_To (Pspecs,
2921 Make_Parameter_Specification (Loc,
2922 Defining_Identifier => X,
2923 Parameter_Type => New_Reference_To (Typ, Loc)));
2924
2925 Append_To (Pspecs,
2926 Make_Parameter_Specification (Loc,
2927 Defining_Identifier => Y,
2928 Parameter_Type => New_Reference_To (Typ, Loc)));
2929
2930 -- Unchecked_Unions require additional machinery to support equality.
2931 -- Two extra parameters (A and B) are added to the equality function
2932 -- parameter list in order to capture the inferred values of the
2933 -- discriminants in later calls.
2934
2935 if Is_Unchecked_Union (Typ) then
2936 declare
2937 Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
2938
2939 A : constant Node_Id :=
2940 Make_Defining_Identifier (Loc,
2941 Chars => Name_A);
2942
2943 B : constant Node_Id :=
2944 Make_Defining_Identifier (Loc,
2945 Chars => Name_B);
2946
2947 begin
2948 -- Add A and B to the parameter list
2949
2950 Append_To (Pspecs,
2951 Make_Parameter_Specification (Loc,
2952 Defining_Identifier => A,
2953 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
2954
2955 Append_To (Pspecs,
2956 Make_Parameter_Specification (Loc,
2957 Defining_Identifier => B,
2958 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
2959
2960 -- Generate the following header code to compare the inferred
2961 -- discriminants:
2962
2963 -- if a /= b then
2964 -- return False;
2965 -- end if;
2966
2967 Append_To (Stmts,
2968 Make_If_Statement (Loc,
2969 Condition =>
2970 Make_Op_Ne (Loc,
2971 Left_Opnd => New_Reference_To (A, Loc),
2972 Right_Opnd => New_Reference_To (B, Loc)),
2973 Then_Statements => New_List (
2974 Make_Return_Statement (Loc,
2975 Expression => New_Occurrence_Of (Standard_False, Loc)))));
2976
2977 -- Generate component-by-component comparison. Note that we must
2978 -- propagate one of the inferred discriminant formals to act as
2979 -- the case statement switch.
2980
2981 Append_List_To (Stmts,
2982 Make_Eq_Case (Typ, Comps, A));
2983
2984 end;
2985
2986 -- Normal case (not unchecked union)
70482933 2987
70482933
RK
2988 else
2989 Append_To (Stmts,
2990 Make_Eq_If (Typ,
2991 Discriminant_Specifications (Def)));
5d09245e 2992
70482933
RK
2993 Append_List_To (Stmts,
2994 Make_Eq_Case (Typ, Comps));
2995 end if;
2996
2997 Append_To (Stmts,
2998 Make_Return_Statement (Loc,
2999 Expression => New_Reference_To (Standard_True, Loc)));
3000
3001 Set_TSS (Typ, F);
3002 Set_Is_Pure (F);
3003
3004 if not Debug_Generated_Code then
3005 Set_Debug_Info_Off (F);
3006 end if;
3007 end Build_Variant_Record_Equality;
3008
07fc65c4
GB
3009 -----------------------------
3010 -- Check_Stream_Attributes --
3011 -----------------------------
3012
3013 procedure Check_Stream_Attributes (Typ : Entity_Id) is
fbf5a39b
AC
3014 Comp : Entity_Id;
3015 Par : constant Entity_Id := Root_Type (Base_Type (Typ));
3016 Par_Read : constant Boolean := Present (TSS (Par, TSS_Stream_Read));
3017 Par_Write : constant Boolean := Present (TSS (Par, TSS_Stream_Write));
07fc65c4 3018
d2d3604c
TQ
3019 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
3020 -- Check that Comp has a user-specified Nam stream attribute
3021
3022 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
3023 begin
3024 if No (TSS (Base_Type (Etype (Comp)), TSS_Nam)) then
3025 Error_Msg_Name_1 := Nam;
3026 Error_Msg_N
3027 ("|component& in limited extension must have% attribute", Comp);
3028 end if;
3029 end Check_Attr;
3030
07fc65c4
GB
3031 begin
3032 if Par_Read or else Par_Write then
3033 Comp := First_Component (Typ);
3034 while Present (Comp) loop
3035 if Comes_From_Source (Comp)
d2d3604c 3036 and then Original_Record_Component (Comp) = Comp
07fc65c4
GB
3037 and then Is_Limited_Type (Etype (Comp))
3038 then
d2d3604c
TQ
3039 if Par_Read then
3040 Check_Attr (Name_Read, TSS_Stream_Read);
3041 end if;
3042
3043 if Par_Write then
3044 Check_Attr (Name_Write, TSS_Stream_Write);
07fc65c4
GB
3045 end if;
3046 end if;
3047
3048 Next_Component (Comp);
3049 end loop;
3050 end if;
3051 end Check_Stream_Attributes;
3052
c885d7a1
AC
3053 -----------------------------
3054 -- Expand_Record_Extension --
3055 -----------------------------
70482933
RK
3056
3057 -- Add a field _parent at the beginning of the record extension. This is
3058 -- used to implement inheritance. Here are some examples of expansion:
3059
3060 -- 1. no discriminants
3061 -- type T2 is new T1 with null record;
3062 -- gives
3063 -- type T2 is new T1 with record
3064 -- _Parent : T1;
3065 -- end record;
3066
3067 -- 2. renamed discriminants
3068 -- type T2 (B, C : Int) is new T1 (A => B) with record
3069 -- _Parent : T1 (A => B);
3070 -- D : Int;
3071 -- end;
3072
3073 -- 3. inherited discriminants
3074 -- type T2 is new T1 with record -- discriminant A inherited
3075 -- _Parent : T1 (A);
3076 -- D : Int;
3077 -- end;
3078
c885d7a1 3079 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
70482933
RK
3080 Indic : constant Node_Id := Subtype_Indication (Def);
3081 Loc : constant Source_Ptr := Sloc (Def);
3082 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
3083 Par_Subtype : Entity_Id;
3084 Comp_List : Node_Id;
3085 Comp_Decl : Node_Id;
3086 Parent_N : Node_Id;
3087 D : Entity_Id;
3088 List_Constr : constant List_Id := New_List;
3089
3090 begin
c885d7a1 3091 -- Expand_Record_Extension is called directly from the semantics, so
70482933
RK
3092 -- we must check to see whether expansion is active before proceeding
3093
3094 if not Expander_Active then
3095 return;
3096 end if;
3097
3098 -- This may be a derivation of an untagged private type whose full
3099 -- view is tagged, in which case the Derived_Type_Definition has no
3100 -- extension part. Build an empty one now.
3101
3102 if No (Rec_Ext_Part) then
3103 Rec_Ext_Part :=
3104 Make_Record_Definition (Loc,
3105 End_Label => Empty,
3106 Component_List => Empty,
3107 Null_Present => True);
3108
3109 Set_Record_Extension_Part (Def, Rec_Ext_Part);
3110 Mark_Rewrite_Insertion (Rec_Ext_Part);
3111 end if;
3112
3113 Comp_List := Component_List (Rec_Ext_Part);
3114
3115 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
3116
3117 -- If the derived type inherits its discriminants the type of the
3118 -- _parent field must be constrained by the inherited discriminants
3119
3120 if Has_Discriminants (T)
3121 and then Nkind (Indic) /= N_Subtype_Indication
3122 and then not Is_Constrained (Entity (Indic))
3123 then
3124 D := First_Discriminant (T);
fbf5a39b 3125 while Present (D) loop
70482933
RK
3126 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
3127 Next_Discriminant (D);
3128 end loop;
3129
3130 Par_Subtype :=
3131 Process_Subtype (
3132 Make_Subtype_Indication (Loc,
3133 Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
3134 Constraint =>
3135 Make_Index_Or_Discriminant_Constraint (Loc,
3136 Constraints => List_Constr)),
3137 Def);
3138
3139 -- Otherwise the original subtype_indication is just what is needed
3140
3141 else
3142 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
3143 end if;
3144
3145 Set_Parent_Subtype (T, Par_Subtype);
3146
3147 Comp_Decl :=
3148 Make_Component_Declaration (Loc,
3149 Defining_Identifier => Parent_N,
a397db96
AC
3150 Component_Definition =>
3151 Make_Component_Definition (Loc,
3152 Aliased_Present => False,
3153 Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
70482933
RK
3154
3155 if Null_Present (Rec_Ext_Part) then
3156 Set_Component_List (Rec_Ext_Part,
3157 Make_Component_List (Loc,
3158 Component_Items => New_List (Comp_Decl),
3159 Variant_Part => Empty,
3160 Null_Present => False));
3161 Set_Null_Present (Rec_Ext_Part, False);
3162
3163 elsif Null_Present (Comp_List)
3164 or else Is_Empty_List (Component_Items (Comp_List))
3165 then
3166 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3167 Set_Null_Present (Comp_List, False);
3168
3169 else
3170 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3171 end if;
3172
3173 Analyze (Comp_Decl);
c885d7a1 3174 end Expand_Record_Extension;
70482933
RK
3175
3176 ------------------------------------
3177 -- Expand_N_Full_Type_Declaration --
3178 ------------------------------------
3179
3180 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
3181 Def_Id : constant Entity_Id := Defining_Identifier (N);
fbf5a39b 3182 B_Id : constant Entity_Id := Base_Type (Def_Id);
70482933
RK
3183 Par_Id : Entity_Id;
3184 FN : Node_Id;
3185
3186 begin
3187 if Is_Access_Type (Def_Id) then
3188
3189 -- Anonymous access types are created for the components of the
3190 -- record parameter for an entry declaration. No master is created
3191 -- for such a type.
3192
3193 if Has_Task (Designated_Type (Def_Id))
3194 and then Comes_From_Source (N)
3195 then
3196 Build_Master_Entity (Def_Id);
3197 Build_Master_Renaming (Parent (Def_Id), Def_Id);
3198
3199 -- Create a class-wide master because a Master_Id must be generated
3200 -- for access-to-limited-class-wide types, whose root may be extended
3201 -- with task components.
3202
3203 elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
3204 and then Is_Limited_Type (Designated_Type (Def_Id))
3205 and then Tasking_Allowed
3206
3207 -- Don't create a class-wide master for types whose convention is
3208 -- Java since these types cannot embed Ada tasks anyway. Note that
3209 -- the following test cannot catch the following case:
3210 --
3211 -- package java.lang.Object is
3212 -- type Typ is tagged limited private;
3213 -- type Ref is access all Typ'Class;
3214 -- private
3215 -- type Typ is tagged limited ...;
3216 -- pragma Convention (Typ, Java)
3217 -- end;
3218 --
3219 -- Because the convention appears after we have done the
3220 -- processing for type Ref.
3221
3222 and then Convention (Designated_Type (Def_Id)) /= Convention_Java
3223 then
3224 Build_Class_Wide_Master (Def_Id);
3225
3226 elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
3227 Expand_Access_Protected_Subprogram_Type (N);
3228 end if;
3229
3230 elsif Has_Task (Def_Id) then
07fc65c4 3231 Expand_Previous_Access_Type (Def_Id);
70482933
RK
3232 end if;
3233
3234 Par_Id := Etype (B_Id);
3235
3236 -- The parent type is private then we need to inherit
3237 -- any TSS operations from the full view.
3238
3239 if Ekind (Par_Id) in Private_Kind
3240 and then Present (Full_View (Par_Id))
3241 then
3242 Par_Id := Base_Type (Full_View (Par_Id));
3243 end if;
3244
3245 if Nkind (Type_Definition (Original_Node (N)))
3246 = N_Derived_Type_Definition
3247 and then not Is_Tagged_Type (Def_Id)
3248 and then Present (Freeze_Node (Par_Id))
3249 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
3250 then
3251 Ensure_Freeze_Node (B_Id);
3252 FN := Freeze_Node (B_Id);
3253
3254 if No (TSS_Elist (FN)) then
3255 Set_TSS_Elist (FN, New_Elmt_List);
3256 end if;
3257
3258 declare
fbf5a39b 3259 T_E : constant Elist_Id := TSS_Elist (FN);
70482933
RK
3260 Elmt : Elmt_Id;
3261
3262 begin
3263 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
3264
3265 while Present (Elmt) loop
3266 if Chars (Node (Elmt)) /= Name_uInit then
3267 Append_Elmt (Node (Elmt), T_E);
3268 end if;
3269
3270 Next_Elmt (Elmt);
3271 end loop;
3272
6e937c1c
AC
3273 -- If the derived type itself is private with a full view, then
3274 -- associate the full view with the inherited TSS_Elist as well.
70482933
RK
3275
3276 if Ekind (B_Id) in Private_Kind
3277 and then Present (Full_View (B_Id))
3278 then
3279 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
3280 Set_TSS_Elist
3281 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
3282 end if;
3283 end;
3284 end if;
3285 end Expand_N_Full_Type_Declaration;
3286
3287 ---------------------------------
3288 -- Expand_N_Object_Declaration --
3289 ---------------------------------
3290
3291 -- First we do special processing for objects of a tagged type where this
3292 -- is the point at which the type is frozen. The creation of the dispatch
3293 -- table and the initialization procedure have to be deferred to this
3294 -- point, since we reference previously declared primitive subprograms.
3295
3296 -- For all types, we call an initialization procedure if there is one
3297
3298 procedure Expand_N_Object_Declaration (N : Node_Id) is
3299 Def_Id : constant Entity_Id := Defining_Identifier (N);
3300 Typ : constant Entity_Id := Etype (Def_Id);
3301 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 3302 Expr : constant Node_Id := Expression (N);
70482933
RK
3303 New_Ref : Node_Id;
3304 Id_Ref : Node_Id;
3305 Expr_Q : Node_Id;
3306
3307 begin
3308 -- Don't do anything for deferred constants. All proper actions will
91b1417d 3309 -- be expanded during the full declaration.
70482933 3310
fbf5a39b 3311 if No (Expr) and Constant_Present (N) then
70482933
RK
3312 return;
3313 end if;
3314
3315 -- Make shared memory routines for shared passive variable
3316
3317 if Is_Shared_Passive (Def_Id) then
3318 Make_Shared_Var_Procs (N);
3319 end if;
3320
3321 -- If tasks being declared, make sure we have an activation chain
3322 -- defined for the tasks (has no effect if we already have one), and
3323 -- also that a Master variable is established and that the appropriate
3324 -- enclosing construct is established as a task master.
3325
3326 if Has_Task (Typ) then
3327 Build_Activation_Chain_Entity (N);
3328 Build_Master_Entity (Def_Id);
3329 end if;
3330
3331 -- Default initialization required, and no expression present
3332
3333 if No (Expr) then
3334
3335 -- Expand Initialize call for controlled objects. One may wonder why
3336 -- the Initialize Call is not done in the regular Init procedure
3337 -- attached to the record type. That's because the init procedure is
3338 -- recursively called on each component, including _Parent, thus the
3339 -- Init call for a controlled object would generate not only one
3340 -- Initialize call as it is required but one for each ancestor of
3341 -- its type. This processing is suppressed if No_Initialization set.
3342
3343 if not Controlled_Type (Typ)
3344 or else No_Initialization (N)
3345 then
3346 null;
3347
3348 elsif not Abort_Allowed
3349 or else not Comes_From_Source (N)
3350 then
3351 Insert_Actions_After (N,
3352 Make_Init_Call (
3353 Ref => New_Occurrence_Of (Def_Id, Loc),
3354 Typ => Base_Type (Typ),
3355 Flist_Ref => Find_Final_List (Def_Id),
3356 With_Attach => Make_Integer_Literal (Loc, 1)));
3357
3358 -- Abort allowed
3359
3360 else
3361 -- We need to protect the initialize call
3362
3363 -- begin
3364 -- Defer_Abort.all;
3365 -- Initialize (...);
3366 -- at end
3367 -- Undefer_Abort.all;
3368 -- end;
3369
3370 -- ??? this won't protect the initialize call for controlled
3371 -- components which are part of the init proc, so this block
3372 -- should probably also contain the call to _init_proc but this
3373 -- requires some code reorganization...
3374
3375 declare
3376 L : constant List_Id :=
3377 Make_Init_Call (
3378 Ref => New_Occurrence_Of (Def_Id, Loc),
3379 Typ => Base_Type (Typ),
3380 Flist_Ref => Find_Final_List (Def_Id),
3381 With_Attach => Make_Integer_Literal (Loc, 1));
3382
3383 Blk : constant Node_Id :=
3384 Make_Block_Statement (Loc,
3385 Handled_Statement_Sequence =>
3386 Make_Handled_Sequence_Of_Statements (Loc, L));
3387
3388 begin
3389 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
3390 Set_At_End_Proc (Handled_Statement_Sequence (Blk),
3391 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
3392 Insert_Actions_After (N, New_List (Blk));
3393 Expand_At_End_Handler
3394 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
3395 end;
3396 end if;
3397
3398 -- Call type initialization procedure if there is one. We build the
3399 -- call and put it immediately after the object declaration, so that
3400 -- it will be expanded in the usual manner. Note that this will
3401 -- result in proper handling of defaulted discriminants. The call
3402 -- to the Init_Proc is suppressed if No_Initialization is set.
3403
3404 if Has_Non_Null_Base_Init_Proc (Typ)
3405 and then not No_Initialization (N)
3406 then
3407 -- The call to the initialization procedure does NOT freeze
3408 -- the object being initialized. This is because the call is
3409 -- not a source level call. This works fine, because the only
3410 -- possible statements depending on freeze status that can
3411 -- appear after the _Init call are rep clauses which can
3412 -- safely appear after actual references to the object.
3413
3414 Id_Ref := New_Reference_To (Def_Id, Loc);
3415 Set_Must_Not_Freeze (Id_Ref);
3416 Set_Assignment_OK (Id_Ref);
3417
3418 Insert_Actions_After (N,
3419 Build_Initialization_Call (Loc, Id_Ref, Typ));
3420
3421 -- If simple initialization is required, then set an appropriate
3422 -- simple initialization expression in place. This special
3423 -- initialization is required even though No_Init_Flag is present.
3424
3425 elsif Needs_Simple_Initialization (Typ) then
3426 Set_No_Initialization (N, False);
82c80734 3427 Set_Expression (N, Get_Simple_Init_Val (Typ, Loc, Esize (Def_Id)));
70482933
RK
3428 Analyze_And_Resolve (Expression (N), Typ);
3429 end if;
3430
3431 -- Explicit initialization present
3432
3433 else
3434 -- Obtain actual expression from qualified expression
3435
3436 if Nkind (Expr) = N_Qualified_Expression then
3437 Expr_Q := Expression (Expr);
3438 else
3439 Expr_Q := Expr;
3440 end if;
3441
3442 -- When we have the appropriate type of aggregate in the
3443 -- expression (it has been determined during analysis of the
3444 -- aggregate by setting the delay flag), let's perform in
91b1417d 3445 -- place assignment and thus avoid creating a temporary.
70482933
RK
3446
3447 if Is_Delayed_Aggregate (Expr_Q) then
3448 Convert_Aggr_In_Object_Decl (N);
3449
3450 else
3451 -- In most cases, we must check that the initial value meets
3452 -- any constraint imposed by the declared type. However, there
3453 -- is one very important exception to this rule. If the entity
3454 -- has an unconstrained nominal subtype, then it acquired its
3455 -- constraints from the expression in the first place, and not
3456 -- only does this mean that the constraint check is not needed,
3457 -- but an attempt to perform the constraint check can
3458 -- cause order of elaboration problems.
3459
3460 if not Is_Constr_Subt_For_U_Nominal (Typ) then
3461
3462 -- If this is an allocator for an aggregate that has been
3463 -- allocated in place, delay checks until assignments are
3464 -- made, because the discriminants are not initialized.
3465
3466 if Nkind (Expr) = N_Allocator
3467 and then No_Initialization (Expr)
3468 then
3469 null;
3470 else
3471 Apply_Constraint_Check (Expr, Typ);
3472 end if;
3473 end if;
3474
3475 -- If the type is controlled we attach the object to the final
3476 -- list and adjust the target after the copy. This
3477
3478 if Controlled_Type (Typ) then
3479 declare
3480 Flist : Node_Id;
3481 F : Entity_Id;
3482
3483 begin
3484 -- Attach the result to a dummy final list which will never
3485 -- be finalized if Delay_Finalize_Attachis set. It is
3486 -- important to attach to a dummy final list rather than
3487 -- not attaching at all in order to reset the pointers
3488 -- coming from the initial value. Equivalent code exists
3489 -- in the sec-stack case in Exp_Ch4.Expand_N_Allocator.
3490
3491 if Delay_Finalize_Attach (N) then
3492 F :=
3493 Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
3494 Insert_Action (N,
3495 Make_Object_Declaration (Loc,
3496 Defining_Identifier => F,
3497 Object_Definition =>
3498 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
3499
3500 Flist := New_Reference_To (F, Loc);
3501
3502 else
3503 Flist := Find_Final_List (Def_Id);
3504 end if;
3505
3506 Insert_Actions_After (N,
3507 Make_Adjust_Call (
3508 Ref => New_Reference_To (Def_Id, Loc),
3509 Typ => Base_Type (Typ),
3510 Flist_Ref => Flist,
3511 With_Attach => Make_Integer_Literal (Loc, 1)));
3512 end;
3513 end if;
3514
a9d8907c
JM
3515 -- For tagged types, when an init value is given, the tag has to
3516 -- be re-initialized separately in order to avoid the propagation
3517 -- of a wrong tag coming from a view conversion unless the type
3518 -- is class wide (in this case the tag comes from the init
3519 -- value). Suppress the tag assignment when Java_VM because JVM
3520 -- tags are represented implicitly in objects. Ditto for types
3521 -- that are CPP_CLASS, and for initializations that are
3522 -- aggregates, because they have to have the right tag.
70482933
RK
3523
3524 if Is_Tagged_Type (Typ)
3525 and then not Is_Class_Wide_Type (Typ)
3526 and then not Is_CPP_Class (Typ)
3527 and then not Java_VM
a9d8907c 3528 and then Nkind (Expr) /= N_Aggregate
70482933
RK
3529 then
3530 -- The re-assignment of the tag has to be done even if
3531 -- the object is a constant
3532
3533 New_Ref :=
3534 Make_Selected_Component (Loc,
3535 Prefix => New_Reference_To (Def_Id, Loc),
3536 Selector_Name =>
a9d8907c 3537 New_Reference_To (First_Tag_Component (Typ), Loc));
70482933
RK
3538
3539 Set_Assignment_OK (New_Ref);
3540
3541 Insert_After (N,
3542 Make_Assignment_Statement (Loc,
3543 Name => New_Ref,
3544 Expression =>
3545 Unchecked_Convert_To (RTE (RE_Tag),
3546 New_Reference_To
a9d8907c
JM
3547 (Node
3548 (First_Elmt
3549 (Access_Disp_Table (Base_Type (Typ)))),
3550 Loc))));
70482933
RK
3551
3552 -- For discrete types, set the Is_Known_Valid flag if the
3553 -- initializing value is known to be valid.
3554
3555 elsif Is_Discrete_Type (Typ)
3556 and then Expr_Known_Valid (Expr)
3557 then
3558 Set_Is_Known_Valid (Def_Id);
fbf5a39b 3559
2820d220 3560 elsif Is_Access_Type (Typ) then
fbf5a39b 3561
0ab80019 3562 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
2820d220 3563 -- type to force the corresponding run-time check
fbf5a39b 3564
0ab80019 3565 if Ada_Version >= Ada_05
2820d220 3566 and then (Can_Never_Be_Null (Def_Id)
0ab80019 3567 or else Can_Never_Be_Null (Typ))
2820d220 3568 then
0ab80019
AC
3569 Rewrite
3570 (Expr_Q,
3571 Convert_To (Etype (Def_Id), Relocate_Node (Expr_Q)));
2820d220
AC
3572 Analyze_And_Resolve (Expr_Q, Etype (Def_Id));
3573 end if;
3574
3575 -- For access types set the Is_Known_Non_Null flag if the
a9d8907c
JM
3576 -- initializing value is known to be non-null. We can also set
3577 -- Can_Never_Be_Null if this is a constant.
2820d220
AC
3578
3579 if Known_Non_Null (Expr) then
3580 Set_Is_Known_Non_Null (Def_Id);
3581
3582 if Constant_Present (N) then
3583 Set_Can_Never_Be_Null (Def_Id);
3584 end if;
fbf5a39b 3585 end if;
70482933
RK
3586 end if;
3587
3588 -- If validity checking on copies, validate initial expression
3589
3590 if Validity_Checks_On
3591 and then Validity_Check_Copies
3592 then
3593 Ensure_Valid (Expr);
3594 Set_Is_Known_Valid (Def_Id);
3595 end if;
3596 end if;
fbf5a39b 3597
a9d8907c
JM
3598 -- Cases where the back end cannot handle the initialization
3599 -- directly. In such cases, we expand an assignment that will
3600 -- be appropriately handled by Expand_N_Assignment_Statement.
fbf5a39b 3601
a9d8907c
JM
3602 -- The exclusion of the unconstrained case is wrong, but for
3603 -- now it is too much trouble ???
fbf5a39b 3604
a9d8907c
JM
3605 if (Is_Possibly_Unaligned_Slice (Expr)
3606 or else (Is_Possibly_Unaligned_Object (Expr)
3607 and then not Represented_As_Scalar (Etype (Expr))))
3608
3609 -- The exclusion of the unconstrained case is wrong, but for
3610 -- now it is too much trouble ???
3611
3612 and then not (Is_Array_Type (Etype (Expr))
3613 and then not Is_Constrained (Etype (Expr)))
3614 then
fbf5a39b
AC
3615 declare
3616 Stat : constant Node_Id :=
3617 Make_Assignment_Statement (Loc,
a9d8907c 3618 Name => New_Reference_To (Def_Id, Loc),
fbf5a39b 3619 Expression => Relocate_Node (Expr));
fbf5a39b
AC
3620 begin
3621 Set_Expression (N, Empty);
3622 Set_No_Initialization (N);
3623 Set_Assignment_OK (Name (Stat));
a9d8907c 3624 Set_No_Ctrl_Actions (Stat);
fbf5a39b
AC
3625 Insert_After (N, Stat);
3626 Analyze (Stat);
3627 end;
3628 end if;
70482933
RK
3629 end if;
3630
3631 -- For array type, check for size too large
3632 -- We really need this for record types too???
3633
3634 if Is_Array_Type (Typ) then
3635 Apply_Array_Size_Check (N, Typ);
3636 end if;
3637
fbf5a39b
AC
3638 exception
3639 when RE_Not_Available =>
3640 return;
70482933
RK
3641 end Expand_N_Object_Declaration;
3642
3643 ---------------------------------
3644 -- Expand_N_Subtype_Indication --
3645 ---------------------------------
3646
a9d8907c
JM
3647 -- Add a check on the range of the subtype. The static case is partially
3648 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
3649 -- to check here for the static case in order to avoid generating
3650 -- extraneous expanded code.
70482933
RK
3651
3652 procedure Expand_N_Subtype_Indication (N : Node_Id) is
fbf5a39b
AC
3653 Ran : constant Node_Id := Range_Expression (Constraint (N));
3654 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
70482933
RK
3655
3656 begin
3657 if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
3658 Nkind (Parent (N)) = N_Slice
3659 then
3660 Resolve (Ran, Typ);
3661 Apply_Range_Check (Ran, Typ);
3662 end if;
3663 end Expand_N_Subtype_Indication;
3664
3665 ---------------------------
3666 -- Expand_N_Variant_Part --
3667 ---------------------------
3668
a9d8907c
JM
3669 -- If the last variant does not contain the Others choice, replace it with
3670 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
3671 -- do not bother to call Analyze on the modified variant part, since it's
3672 -- only effect would be to compute the contents of the
3673 -- Others_Discrete_Choices node laboriously, and of course we already know
3674 -- the list of choices that corresponds to the others choice (it's the
3675 -- list we are replacing!)
70482933
RK
3676
3677 procedure Expand_N_Variant_Part (N : Node_Id) is
3678 Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
3679 Others_Node : Node_Id;
70482933
RK
3680 begin
3681 if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
3682 Others_Node := Make_Others_Choice (Sloc (Last_Var));
3683 Set_Others_Discrete_Choices
3684 (Others_Node, Discrete_Choices (Last_Var));
3685 Set_Discrete_Choices (Last_Var, New_List (Others_Node));
3686 end if;
3687 end Expand_N_Variant_Part;
3688
3689 ---------------------------------
3690 -- Expand_Previous_Access_Type --
3691 ---------------------------------
3692
07fc65c4 3693 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
70482933
RK
3694 T : Entity_Id := First_Entity (Current_Scope);
3695
3696 begin
3697 -- Find all access types declared in the current scope, whose
3698 -- designated type is Def_Id.
3699
3700 while Present (T) loop
3701 if Is_Access_Type (T)
3702 and then Designated_Type (T) = Def_Id
3703 then
3704 Build_Master_Entity (Def_Id);
3705 Build_Master_Renaming (Parent (Def_Id), T);
3706 end if;
3707
3708 Next_Entity (T);
3709 end loop;
3710 end Expand_Previous_Access_Type;
3711
3712 ------------------------------
3713 -- Expand_Record_Controller --
3714 ------------------------------
3715
3716 procedure Expand_Record_Controller (T : Entity_Id) is
3717 Def : Node_Id := Type_Definition (Parent (T));
3718 Comp_List : Node_Id;
3719 Comp_Decl : Node_Id;
3720 Loc : Source_Ptr;
3721 First_Comp : Node_Id;
3722 Controller_Type : Entity_Id;
3723 Ent : Entity_Id;
3724
3725 begin
3726 if Nkind (Def) = N_Derived_Type_Definition then
3727 Def := Record_Extension_Part (Def);
3728 end if;
3729
3730 if Null_Present (Def) then
3731 Set_Component_List (Def,
3732 Make_Component_List (Sloc (Def),
3733 Component_Items => Empty_List,
3734 Variant_Part => Empty,
3735 Null_Present => True));
3736 end if;
3737
3738 Comp_List := Component_List (Def);
3739
3740 if Null_Present (Comp_List)
3741 or else Is_Empty_List (Component_Items (Comp_List))
3742 then
3743 Loc := Sloc (Comp_List);
3744 else
3745 Loc := Sloc (First (Component_Items (Comp_List)));
3746 end if;
3747
3748 if Is_Return_By_Reference_Type (T) then
3749 Controller_Type := RTE (RE_Limited_Record_Controller);
3750 else
3751 Controller_Type := RTE (RE_Record_Controller);
3752 end if;
3753
3754 Ent := Make_Defining_Identifier (Loc, Name_uController);
3755
3756 Comp_Decl :=
3757 Make_Component_Declaration (Loc,
3758 Defining_Identifier => Ent,
a397db96
AC
3759 Component_Definition =>
3760 Make_Component_Definition (Loc,
3761 Aliased_Present => False,
3762 Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
70482933
RK
3763
3764 if Null_Present (Comp_List)
3765 or else Is_Empty_List (Component_Items (Comp_List))
3766 then
3767 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3768 Set_Null_Present (Comp_List, False);
3769
3770 else
a9d8907c
JM
3771 -- The controller cannot be placed before the _Parent field since
3772 -- gigi lays out field in order and _parent must be first to
3773 -- preserve the polymorphism of tagged types.
70482933
RK
3774
3775 First_Comp := First (Component_Items (Comp_List));
3776
3777 if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
3778 and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
3779 then
3780 Insert_Before (First_Comp, Comp_Decl);
3781 else
3782 Insert_After (First_Comp, Comp_Decl);
3783 end if;
3784 end if;
3785
3786 New_Scope (T);
3787 Analyze (Comp_Decl);
3788 Set_Ekind (Ent, E_Component);
3789 Init_Component_Location (Ent);
3790
a9d8907c
JM
3791 -- Move the _controller entity ahead in the list of internal entities
3792 -- of the enclosing record so that it is selected instead of a
3793 -- potentially inherited one.
70482933
RK
3794
3795 declare
fbf5a39b 3796 E : constant Entity_Id := Last_Entity (T);
70482933
RK
3797 Comp : Entity_Id;
3798
3799 begin
3800 pragma Assert (Chars (E) = Name_uController);
3801
3802 Set_Next_Entity (E, First_Entity (T));
3803 Set_First_Entity (T, E);
3804
3805 Comp := Next_Entity (E);
3806 while Next_Entity (Comp) /= E loop
3807 Next_Entity (Comp);
3808 end loop;
3809
3810 Set_Next_Entity (Comp, Empty);
3811 Set_Last_Entity (T, Comp);
3812 end;
3813
3814 End_Scope;
fbf5a39b
AC
3815
3816 exception
3817 when RE_Not_Available =>
3818 return;
70482933
RK
3819 end Expand_Record_Controller;
3820
3821 ------------------------
3822 -- Expand_Tagged_Root --
3823 ------------------------
3824
3825 procedure Expand_Tagged_Root (T : Entity_Id) is
3826 Def : constant Node_Id := Type_Definition (Parent (T));
3827 Comp_List : Node_Id;
3828 Comp_Decl : Node_Id;
3829 Sloc_N : Source_Ptr;
3830
3831 begin
3832 if Null_Present (Def) then
3833 Set_Component_List (Def,
3834 Make_Component_List (Sloc (Def),
3835 Component_Items => Empty_List,
3836 Variant_Part => Empty,
3837 Null_Present => True));
3838 end if;
3839
3840 Comp_List := Component_List (Def);
3841
3842 if Null_Present (Comp_List)
3843 or else Is_Empty_List (Component_Items (Comp_List))
3844 then
3845 Sloc_N := Sloc (Comp_List);
3846 else
3847 Sloc_N := Sloc (First (Component_Items (Comp_List)));
3848 end if;
3849
3850 Comp_Decl :=
3851 Make_Component_Declaration (Sloc_N,
a9d8907c 3852 Defining_Identifier => First_Tag_Component (T),
a397db96
AC
3853 Component_Definition =>
3854 Make_Component_Definition (Sloc_N,
3855 Aliased_Present => False,
3856 Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
70482933
RK
3857
3858 if Null_Present (Comp_List)
3859 or else Is_Empty_List (Component_Items (Comp_List))
3860 then
3861 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3862 Set_Null_Present (Comp_List, False);
3863
3864 else
3865 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3866 end if;
3867
3868 -- We don't Analyze the whole expansion because the tag component has
a9d8907c
JM
3869 -- already been analyzed previously. Here we just insure that the tree
3870 -- is coherent with the semantic decoration
70482933 3871
a397db96 3872 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
fbf5a39b
AC
3873
3874 exception
3875 when RE_Not_Available =>
3876 return;
70482933
RK
3877 end Expand_Tagged_Root;
3878
3879 -----------------------
3880 -- Freeze_Array_Type --
3881 -----------------------
3882
3883 procedure Freeze_Array_Type (N : Node_Id) is
3884 Typ : constant Entity_Id := Entity (N);
3885 Base : constant Entity_Id := Base_Type (Typ);
3886
3887 begin
70482933
RK
3888 if not Is_Bit_Packed_Array (Typ) then
3889
a9d8907c
JM
3890 -- If the component contains tasks, so does the array type. This may
3891 -- not be indicated in the array type because the component may have
3892 -- been a private type at the point of definition. Same if component
3893 -- type is controlled.
70482933
RK
3894
3895 Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
3896 Set_Has_Controlled_Component (Base,
3897 Has_Controlled_Component (Component_Type (Typ))
3898 or else Is_Controlled (Component_Type (Typ)));
3899
3900 if No (Init_Proc (Base)) then
3901
a9d8907c
JM
3902 -- If this is an anonymous array created for a declaration with
3903 -- an initial value, its init_proc will never be called. The
3904 -- initial value itself may have been expanded into assign-
70482933
RK
3905 -- ments, in which case the object declaration is carries the
3906 -- No_Initialization flag.
3907
3908 if Is_Itype (Base)
3909 and then Nkind (Associated_Node_For_Itype (Base)) =
3910 N_Object_Declaration
3911 and then (Present (Expression (Associated_Node_For_Itype (Base)))
3912 or else
3913 No_Initialization (Associated_Node_For_Itype (Base)))
3914 then
3915 null;
3916
82c80734
RD
3917 -- We do not need an init proc for string or wide [wide] string,
3918 -- since the only time these need initialization in normalize or
70482933
RK
3919 -- initialize scalars mode, and these types are treated specially
3920 -- and do not need initialization procedures.
3921
ecad994d
AC
3922 elsif Root_Type (Base) = Standard_String
3923 or else Root_Type (Base) = Standard_Wide_String
82c80734 3924 or else Root_Type (Base) = Standard_Wide_Wide_String
70482933
RK
3925 then
3926 null;
3927
3928 -- Otherwise we have to build an init proc for the subtype
3929
3930 else
3931 Build_Array_Init_Proc (Base, N);
3932 end if;
3933 end if;
3934
3935 if Typ = Base and then Has_Controlled_Component (Base) then
3936 Build_Controlling_Procs (Base);
26fd4eae
AC
3937
3938 if not Is_Limited_Type (Component_Type (Typ))
3939 and then Number_Dimensions (Typ) = 1
3940 then
3941 Build_Slice_Assignment (Typ);
3942 end if;
70482933 3943 end if;
fbf5a39b 3944
a9d8907c
JM
3945 -- For packed case, there is a default initialization, except if the
3946 -- component type is itself a packed structure with an initialization
3947 -- procedure.
fbf5a39b
AC
3948
3949 elsif Present (Init_Proc (Component_Type (Base)))
3950 and then No (Base_Init_Proc (Base))
3951 then
3952 Build_Array_Init_Proc (Base, N);
70482933
RK
3953 end if;
3954 end Freeze_Array_Type;
3955
3956 -----------------------------
3957 -- Freeze_Enumeration_Type --
3958 -----------------------------
3959
3960 procedure Freeze_Enumeration_Type (N : Node_Id) is
fbf5a39b
AC
3961 Typ : constant Entity_Id := Entity (N);
3962 Loc : constant Source_Ptr := Sloc (Typ);
3963 Ent : Entity_Id;
3964 Lst : List_Id;
3965 Num : Nat;
3966 Arr : Entity_Id;
3967 Fent : Entity_Id;
3968 Ityp : Entity_Id;
3969 Is_Contiguous : Boolean;
3970 Pos_Expr : Node_Id;
3971 Last_Repval : Uint;
3972
70482933 3973 Func : Entity_Id;
fbf5a39b 3974 pragma Warnings (Off, Func);
70482933
RK
3975
3976 begin
a9d8907c
JM
3977 -- Various optimization are possible if the given representation is
3978 -- contiguous.
70482933 3979
fbf5a39b 3980 Is_Contiguous := True;
70482933 3981 Ent := First_Literal (Typ);
fbf5a39b
AC
3982 Last_Repval := Enumeration_Rep (Ent);
3983 Next_Literal (Ent);
3984
70482933 3985 while Present (Ent) loop
fbf5a39b
AC
3986 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
3987 Is_Contiguous := False;
3988 exit;
3989 else
3990 Last_Repval := Enumeration_Rep (Ent);
3991 end if;
3992
70482933
RK
3993 Next_Literal (Ent);
3994 end loop;
3995
fbf5a39b
AC
3996 if Is_Contiguous then
3997 Set_Has_Contiguous_Rep (Typ);
3998 Ent := First_Literal (Typ);
3999 Num := 1;
4000 Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
4001
4002 else
4003 -- Build list of literal references
4004
4005 Lst := New_List;
4006 Num := 0;
4007
4008 Ent := First_Literal (Typ);
4009 while Present (Ent) loop
4010 Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
4011 Num := Num + 1;
4012 Next_Literal (Ent);
4013 end loop;
4014 end if;
4015
a5b62485 4016 -- Now build an array declaration
70482933
RK
4017
4018 -- typA : array (Natural range 0 .. num - 1) of ctype :=
fbf5a39b 4019 -- (v, v, v, v, v, ....)
70482933 4020
a9d8907c
JM
4021 -- where ctype is the corresponding integer type. If the representation
4022 -- is contiguous, we only keep the first literal, which provides the
4023 -- offset for Pos_To_Rep computations.
70482933
RK
4024
4025 Arr :=
4026 Make_Defining_Identifier (Loc,
4027 Chars => New_External_Name (Chars (Typ), 'A'));
4028
4029 Append_Freeze_Action (Typ,
4030 Make_Object_Declaration (Loc,
4031 Defining_Identifier => Arr,
4032 Constant_Present => True,
4033
4034 Object_Definition =>
4035 Make_Constrained_Array_Definition (Loc,
4036 Discrete_Subtype_Definitions => New_List (
4037 Make_Subtype_Indication (Loc,
4038 Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
4039 Constraint =>
4040 Make_Range_Constraint (Loc,
4041 Range_Expression =>
4042 Make_Range (Loc,
4043 Low_Bound =>
4044 Make_Integer_Literal (Loc, 0),
4045 High_Bound =>
4046 Make_Integer_Literal (Loc, Num - 1))))),
4047
a397db96
AC
4048 Component_Definition =>
4049 Make_Component_Definition (Loc,
4050 Aliased_Present => False,
4051 Subtype_Indication => New_Reference_To (Typ, Loc))),
70482933
RK
4052
4053 Expression =>
4054 Make_Aggregate (Loc,
4055 Expressions => Lst)));
4056
4057 Set_Enum_Pos_To_Rep (Typ, Arr);
4058
4059 -- Now we build the function that converts representation values to
4060 -- position values. This function has the form:
4061
4062 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4063 -- begin
4064 -- case ityp!(A) is
4065 -- when enum-lit'Enum_Rep => return posval;
4066 -- when enum-lit'Enum_Rep => return posval;
4067 -- ...
4068 -- when others =>
fbf5a39b 4069 -- [raise Constraint_Error when F "invalid data"]
70482933
RK
4070 -- return -1;
4071 -- end case;
4072 -- end;
4073
4074 -- Note: the F parameter determines whether the others case (no valid
fbf5a39b
AC
4075 -- representation) raises Constraint_Error or returns a unique value
4076 -- of minus one. The latter case is used, e.g. in 'Valid code.
70482933 4077
a9d8907c
JM
4078 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4079 -- the code generator making inappropriate assumptions about the range
4080 -- of the values in the case where the value is invalid. ityp is a
4081 -- signed or unsigned integer type of appropriate width.
70482933 4082
fbf5a39b
AC
4083 -- Note: if exceptions are not supported, then we suppress the raise
4084 -- and return -1 unconditionally (this is an erroneous program in any
a9d8907c
JM
4085 -- case and there is no obligation to raise Constraint_Error here!) We
4086 -- also do this if pragma Restrictions (No_Exceptions) is active.
70482933 4087
fbf5a39b 4088 -- Representations are signed
70482933 4089
fbf5a39b 4090 if Enumeration_Rep (First_Literal (Typ)) < 0 then
70482933 4091
fbf5a39b 4092 -- The underlying type is signed. Reset the Is_Unsigned_Type
a9d8907c 4093 -- explicitly, because it might have been inherited from
fbf5a39b 4094 -- parent type.
70482933 4095
fbf5a39b 4096 Set_Is_Unsigned_Type (Typ, False);
70482933 4097
70482933
RK
4098 if Esize (Typ) <= Standard_Integer_Size then
4099 Ityp := Standard_Integer;
4100 else
4101 Ityp := Universal_Integer;
4102 end if;
4103
4104 -- Representations are unsigned
4105
4106 else
4107 if Esize (Typ) <= Standard_Integer_Size then
4108 Ityp := RTE (RE_Unsigned);
4109 else
4110 Ityp := RTE (RE_Long_Long_Unsigned);
4111 end if;
4112 end if;
4113
a9d8907c
JM
4114 -- The body of the function is a case statement. First collect case
4115 -- alternatives, or optimize the contiguous case.
fbf5a39b
AC
4116
4117 Lst := New_List;
4118
4119 -- If representation is contiguous, Pos is computed by subtracting
4120 -- the representation of the first literal.
4121
4122 if Is_Contiguous then
4123 Ent := First_Literal (Typ);
4124
4125 if Enumeration_Rep (Ent) = Last_Repval then
4126
a5b62485 4127 -- Another special case: for a single literal, Pos is zero
fbf5a39b
AC
4128
4129 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4130
4131 else
4132 Pos_Expr :=
4133 Convert_To (Standard_Integer,
4134 Make_Op_Subtract (Loc,
4135 Left_Opnd =>
4136 Unchecked_Convert_To (Ityp,
4137 Make_Identifier (Loc, Name_uA)),
4138 Right_Opnd =>
4139 Make_Integer_Literal (Loc,
4140 Intval =>
4141 Enumeration_Rep (First_Literal (Typ)))));
4142 end if;
4143
4144 Append_To (Lst,
4145 Make_Case_Statement_Alternative (Loc,
4146 Discrete_Choices => New_List (
4147 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4148 Low_Bound =>
4149 Make_Integer_Literal (Loc,
4150 Intval => Enumeration_Rep (Ent)),
4151 High_Bound =>
4152 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4153
4154 Statements => New_List (
4155 Make_Return_Statement (Loc,
4156 Expression => Pos_Expr))));
4157
4158 else
4159 Ent := First_Literal (Typ);
4160
4161 while Present (Ent) loop
4162 Append_To (Lst,
4163 Make_Case_Statement_Alternative (Loc,
4164 Discrete_Choices => New_List (
4165 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
4166 Intval => Enumeration_Rep (Ent))),
4167
4168 Statements => New_List (
4169 Make_Return_Statement (Loc,
4170 Expression =>
4171 Make_Integer_Literal (Loc,
4172 Intval => Enumeration_Pos (Ent))))));
4173
4174 Next_Literal (Ent);
4175 end loop;
4176 end if;
4177
70482933
RK
4178 -- In normal mode, add the others clause with the test
4179
6e937c1c 4180 if not Restriction_Active (No_Exception_Handlers) then
70482933
RK
4181 Append_To (Lst,
4182 Make_Case_Statement_Alternative (Loc,
4183 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4184 Statements => New_List (
fbf5a39b 4185 Make_Raise_Constraint_Error (Loc,
07fc65c4 4186 Condition => Make_Identifier (Loc, Name_uF),
fbf5a39b 4187 Reason => CE_Invalid_Data),
70482933
RK
4188 Make_Return_Statement (Loc,
4189 Expression =>
4190 Make_Integer_Literal (Loc, -1)))));
4191
fbf5a39b
AC
4192 -- If Restriction (No_Exceptions_Handlers) is active then we always
4193 -- return -1 (since we cannot usefully raise Constraint_Error in
4194 -- this case). See description above for further details.
70482933
RK
4195
4196 else
4197 Append_To (Lst,
4198 Make_Case_Statement_Alternative (Loc,
4199 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4200 Statements => New_List (
4201 Make_Return_Statement (Loc,
4202 Expression =>
4203 Make_Integer_Literal (Loc, -1)))));
4204 end if;
4205
4206 -- Now we can build the function body
4207
4208 Fent :=
fbf5a39b 4209 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
70482933
RK
4210
4211 Func :=
4212 Make_Subprogram_Body (Loc,
4213 Specification =>
4214 Make_Function_Specification (Loc,
4215 Defining_Unit_Name => Fent,
4216 Parameter_Specifications => New_List (
4217 Make_Parameter_Specification (Loc,
4218 Defining_Identifier =>
4219 Make_Defining_Identifier (Loc, Name_uA),
4220 Parameter_Type => New_Reference_To (Typ, Loc)),
4221 Make_Parameter_Specification (Loc,
4222 Defining_Identifier =>
4223 Make_Defining_Identifier (Loc, Name_uF),
4224 Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
4225
4226 Subtype_Mark => New_Reference_To (Standard_Integer, Loc)),
4227
4228 Declarations => Empty_List,
4229
4230 Handled_Statement_Sequence =>
4231 Make_Handled_Sequence_Of_Statements (Loc,
4232 Statements => New_List (
4233 Make_Case_Statement (Loc,
4234 Expression =>
4235 Unchecked_Convert_To (Ityp,
4236 Make_Identifier (Loc, Name_uA)),
4237 Alternatives => Lst))));
4238
4239 Set_TSS (Typ, Fent);
4240 Set_Is_Pure (Fent);
4241
4242 if not Debug_Generated_Code then
4243 Set_Debug_Info_Off (Fent);
4244 end if;
fbf5a39b
AC
4245
4246 exception
4247 when RE_Not_Available =>
4248 return;
70482933
RK
4249 end Freeze_Enumeration_Type;
4250
4251 ------------------------
4252 -- Freeze_Record_Type --
4253 ------------------------
4254
4255 procedure Freeze_Record_Type (N : Node_Id) is
4256 Def_Id : constant Node_Id := Entity (N);
4257 Comp : Entity_Id;
4258 Type_Decl : constant Node_Id := Parent (Def_Id);
4259 Predef_List : List_Id;
4260
4261 Renamed_Eq : Node_Id := Empty;
4262 -- Could use some comments ???
4263
4264 begin
4265 -- Build discriminant checking functions if not a derived type (for
4266 -- derived types that are not tagged types, we always use the
4267 -- discriminant checking functions of the parent type). However, for
4268 -- untagged types the derivation may have taken place before the
4269 -- parent was frozen, so we copy explicitly the discriminant checking
4270 -- functions from the parent into the components of the derived type.
4271
4272 if not Is_Derived_Type (Def_Id)
4273 or else Has_New_Non_Standard_Rep (Def_Id)
4274 or else Is_Tagged_Type (Def_Id)
4275 then
4276 Build_Discr_Checking_Funcs (Type_Decl);
4277
4278 elsif Is_Derived_Type (Def_Id)
4279 and then not Is_Tagged_Type (Def_Id)
5d09245e
AC
4280
4281 -- If we have a derived Unchecked_Union, we do not inherit the
4282 -- discriminant checking functions from the parent type since the
4283 -- discriminants are non existent.
4284
4285 and then not Is_Unchecked_Union (Def_Id)
70482933
RK
4286 and then Has_Discriminants (Def_Id)
4287 then
4288 declare
4289 Old_Comp : Entity_Id;
4290
4291 begin
4292 Old_Comp :=
4293 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
4294 Comp := First_Component (Def_Id);
70482933
RK
4295 while Present (Comp) loop
4296 if Ekind (Comp) = E_Component
4297 and then Chars (Comp) = Chars (Old_Comp)
4298 then
4299 Set_Discriminant_Checking_Func (Comp,
4300 Discriminant_Checking_Func (Old_Comp));
4301 end if;
4302
4303 Next_Component (Old_Comp);
4304 Next_Component (Comp);
4305 end loop;
4306 end;
4307 end if;
4308
07fc65c4
GB
4309 if Is_Derived_Type (Def_Id)
4310 and then Is_Limited_Type (Def_Id)
4311 and then Is_Tagged_Type (Def_Id)
4312 then
4313 Check_Stream_Attributes (Def_Id);
4314 end if;
4315
70482933
RK
4316 -- Update task and controlled component flags, because some of the
4317 -- component types may have been private at the point of the record
4318 -- declaration.
4319
4320 Comp := First_Component (Def_Id);
4321
4322 while Present (Comp) loop
4323 if Has_Task (Etype (Comp)) then
4324 Set_Has_Task (Def_Id);
4325
4326 elsif Has_Controlled_Component (Etype (Comp))
4327 or else (Chars (Comp) /= Name_uParent
4328 and then Is_Controlled (Etype (Comp)))
4329 then
4330 Set_Has_Controlled_Component (Def_Id);
4331 end if;
4332
4333 Next_Component (Comp);
4334 end loop;
4335
4336 -- Creation of the Dispatch Table. Note that a Dispatch Table is
a9d8907c
JM
4337 -- created for regular tagged types as well as for Ada types deriving
4338 -- from a C++ Class, but not for tagged types directly corresponding to
4339 -- the C++ classes. In the later case we assume that the Vtable is
4340 -- created in the C++ side and we just use it.
70482933
RK
4341
4342 if Is_Tagged_Type (Def_Id) then
70482933
RK
4343 if Is_CPP_Class (Def_Id) then
4344 Set_All_DT_Position (Def_Id);
4345 Set_Default_Constructor (Def_Id);
4346
4347 else
a9d8907c
JM
4348 -- Usually inherited primitives are not delayed but the first Ada
4349 -- extension of a CPP_Class is an exception since the address of
4350 -- the inherited subprogram has to be inserted in the new Ada
4351 -- Dispatch Table and this is a freezing action (usually the
4352 -- inherited primitive address is inserted in the DT by
4353 -- Inherit_DT)
4354
4355 -- Similarly, if this is an inherited operation whose parent is
4356 -- not frozen yet, it is not in the DT of the parent, and we
4357 -- generate an explicit freeze node for the inherited operation,
4358 -- so that it is properly inserted in the DT of the current type.
70482933 4359
e6f69614
AC
4360 declare
4361 Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
4362 Subp : Entity_Id;
4363
4364 begin
4365 while Present (Elmt) loop
4366 Subp := Node (Elmt);
4367
4368 if Present (Alias (Subp)) then
4369 if Is_CPP_Class (Etype (Def_Id)) then
4370 Set_Has_Delayed_Freeze (Subp);
70482933 4371
e6f69614
AC
4372 elsif Has_Delayed_Freeze (Alias (Subp))
4373 and then not Is_Frozen (Alias (Subp))
4374 then
4375 Set_Is_Frozen (Subp, False);
70482933
RK
4376 Set_Has_Delayed_Freeze (Subp);
4377 end if;
e6f69614 4378 end if;
70482933 4379
e6f69614
AC
4380 Next_Elmt (Elmt);
4381 end loop;
4382 end;
70482933
RK
4383
4384 if Underlying_Type (Etype (Def_Id)) = Def_Id then
4385 Expand_Tagged_Root (Def_Id);
4386 end if;
4387
a9d8907c
JM
4388 -- Unfreeze momentarily the type to add the predefined primitives
4389 -- operations. The reason we unfreeze is so that these predefined
4390 -- operations will indeed end up as primitive operations (which
4391 -- must be before the freeze point).
70482933
RK
4392
4393 Set_Is_Frozen (Def_Id, False);
4394 Make_Predefined_Primitive_Specs
4395 (Def_Id, Predef_List, Renamed_Eq);
4396 Insert_List_Before_And_Analyze (N, Predef_List);
4397 Set_Is_Frozen (Def_Id, True);
4398 Set_All_DT_Position (Def_Id);
4399
4400 -- Add the controlled component before the freezing actions
a9d8907c 4401 -- referenced in those actions.
70482933
RK
4402
4403 if Has_New_Controlled_Component (Def_Id) then
4404 Expand_Record_Controller (Def_Id);
4405 end if;
4406
a9d8907c
JM
4407 -- Suppress creation of a dispatch table when Java_VM because the
4408 -- dispatching mechanism is handled internally by the JVM.
70482933
RK
4409
4410 if not Java_VM then
4411 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
4412 end if;
4413
a9d8907c
JM
4414 -- Make sure that the primitives Initialize, Adjust and Finalize
4415 -- are Frozen before other TSS subprograms. We don't want them
4416 -- Frozen inside.
70482933
RK
4417
4418 if Is_Controlled (Def_Id) then
4419 if not Is_Limited_Type (Def_Id) then
4420 Append_Freeze_Actions (Def_Id,
4421 Freeze_Entity
4422 (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
4423 end if;
4424
4425 Append_Freeze_Actions (Def_Id,
4426 Freeze_Entity
4427 (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
4428
4429 Append_Freeze_Actions (Def_Id,
4430 Freeze_Entity
4431 (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
4432 end if;
4433
4434 -- Freeze rest of primitive operations
4435
4436 Append_Freeze_Actions
4437 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
4438 end if;
4439
a9d8907c
JM
4440 -- In the non-tagged case, an equality function is provided only for
4441 -- variant records (that are not unchecked unions).
70482933
RK
4442
4443 elsif Has_Discriminants (Def_Id)
4444 and then not Is_Limited_Type (Def_Id)
4445 then
4446 declare
4447 Comps : constant Node_Id :=
4448 Component_List (Type_Definition (Type_Decl));
4449
4450 begin
4451 if Present (Comps)
4452 and then Present (Variant_Part (Comps))
70482933
RK
4453 then
4454 Build_Variant_Record_Equality (Def_Id);
4455 end if;
4456 end;
4457 end if;
4458
4459 -- Before building the record initialization procedure, if we are
a9d8907c
JM
4460 -- dealing with a concurrent record value type, then we must go through
4461 -- the discriminants, exchanging discriminals between the concurrent
4462 -- type and the concurrent record value type. See the section "Handling
4463 -- of Discriminants" in the Einfo spec for details.
70482933
RK
4464
4465 if Is_Concurrent_Record_Type (Def_Id)
4466 and then Has_Discriminants (Def_Id)
4467 then
4468 declare
4469 Ctyp : constant Entity_Id :=
4470 Corresponding_Concurrent_Type (Def_Id);
4471 Conc_Discr : Entity_Id;
4472 Rec_Discr : Entity_Id;
4473 Temp : Entity_Id;
4474
4475 begin
4476 Conc_Discr := First_Discriminant (Ctyp);
4477 Rec_Discr := First_Discriminant (Def_Id);
4478
4479 while Present (Conc_Discr) loop
4480 Temp := Discriminal (Conc_Discr);
4481 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
4482 Set_Discriminal (Rec_Discr, Temp);
4483
4484 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
4485 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
4486
4487 Next_Discriminant (Conc_Discr);
4488 Next_Discriminant (Rec_Discr);
4489 end loop;
4490 end;
4491 end if;
4492
4493 if Has_Controlled_Component (Def_Id) then
4494 if No (Controller_Component (Def_Id)) then
4495 Expand_Record_Controller (Def_Id);
4496 end if;
4497
4498 Build_Controlling_Procs (Def_Id);
4499 end if;
4500
4501 Adjust_Discriminants (Def_Id);
4502 Build_Record_Init_Proc (Type_Decl, Def_Id);
4503
a9d8907c
JM
4504 -- For tagged type, build bodies of primitive operations. Note that we
4505 -- do this after building the record initialization experiment, since
4506 -- the primitive operations may need the initialization routine
70482933
RK
4507
4508 if Is_Tagged_Type (Def_Id) then
4509 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
4510 Append_Freeze_Actions (Def_Id, Predef_List);
4511 end if;
4512
4513 end Freeze_Record_Type;
4514
07fc65c4
GB
4515 ------------------------------
4516 -- Freeze_Stream_Operations --
4517 ------------------------------
4518
4519 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
4520 Names : constant array (1 .. 4) of TSS_Name_Type :=
4521 (TSS_Stream_Input,
4522 TSS_Stream_Output,
4523 TSS_Stream_Read,
4524 TSS_Stream_Write);
07fc65c4
GB
4525 Stream_Op : Entity_Id;
4526
4527 begin
4528 -- Primitive operations of tagged types are frozen when the dispatch
4529 -- table is constructed.
4530
4531 if not Comes_From_Source (Typ)
4532 or else Is_Tagged_Type (Typ)
4533 then
4534 return;
4535 end if;
4536
4537 for J in Names'Range loop
4538 Stream_Op := TSS (Typ, Names (J));
4539
4540 if Present (Stream_Op)
4541 and then Is_Subprogram (Stream_Op)
4542 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
4543 N_Subprogram_Declaration
4544 and then not Is_Frozen (Stream_Op)
4545 then
4546 Append_Freeze_Actions
4547 (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
4548 end if;
4549 end loop;
4550 end Freeze_Stream_Operations;
4551
70482933
RK
4552 -----------------
4553 -- Freeze_Type --
4554 -----------------
4555
a9d8907c
JM
4556 -- Full type declarations are expanded at the point at which the type is
4557 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
4558 -- declarations generated by the freezing (e.g. the procedure generated
70482933
RK
4559 -- for initialization) are chained in the Acions field list of the freeze
4560 -- node using Append_Freeze_Actions.
4561
a9d8907c 4562 function Freeze_Type (N : Node_Id) return Boolean is
fbf5a39b
AC
4563 Def_Id : constant Entity_Id := Entity (N);
4564 RACW_Seen : Boolean := False;
a9d8907c 4565 Result : Boolean := False;
70482933
RK
4566
4567 begin
4568 -- Process associated access types needing special processing
4569
4570 if Present (Access_Types_To_Process (N)) then
4571 declare
4572 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
4573 begin
4574 while Present (E) loop
4575
70482933 4576 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
fbf5a39b 4577 RACW_Seen := True;
70482933
RK
4578 end if;
4579
4580 E := Next_Elmt (E);
4581 end loop;
4582 end;
fbf5a39b
AC
4583
4584 if RACW_Seen then
4585
a5b62485 4586 -- If there are RACWs designating this type, make stubs now
fbf5a39b
AC
4587
4588 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
4589 end if;
70482933
RK
4590 end if;
4591
4592 -- Freeze processing for record types
4593
4594 if Is_Record_Type (Def_Id) then
4595 if Ekind (Def_Id) = E_Record_Type then
4596 Freeze_Record_Type (N);
4597
a9d8907c
JM
4598 -- The subtype may have been declared before the type was frozen. If
4599 -- the type has controlled components it is necessary to create the
4600 -- entity for the controller explicitly because it did not exist at
4601 -- the point of the subtype declaration. Only the entity is needed,
4602 -- the back-end will obtain the layout from the type. This is only
4603 -- necessary if this is constrained subtype whose component list is
4604 -- not shared with the base type.
70482933
RK
4605
4606 elsif Ekind (Def_Id) = E_Record_Subtype
4607 and then Has_Discriminants (Def_Id)
4608 and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
4609 and then Present (Controller_Component (Def_Id))
4610 then
4611 declare
fbf5a39b 4612 Old_C : constant Entity_Id := Controller_Component (Def_Id);
70482933
RK
4613 New_C : Entity_Id;
4614
4615 begin
4616 if Scope (Old_C) = Base_Type (Def_Id) then
4617
a5b62485 4618 -- The entity is the one in the parent. Create new one
70482933
RK
4619
4620 New_C := New_Copy (Old_C);
4621 Set_Parent (New_C, Parent (Old_C));
4622 New_Scope (Def_Id);
4623 Enter_Name (New_C);
4624 End_Scope;
4625 end if;
4626 end;
fbf5a39b 4627
a9d8907c
JM
4628 if Is_Itype (Def_Id)
4629 and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
4630 then
4631 -- The freeze node is only used to introduce the controller,
4632 -- the back-end has no use for it for a discriminated
4633 -- component.
4634
4635 Set_Freeze_Node (Def_Id, Empty);
4636 Set_Has_Delayed_Freeze (Def_Id, False);
4637 Result := True;
4638 end if;
4639
4640 -- Similar process if the controller of the subtype is not present
4641 -- but the parent has it. This can happen with constrained
fbf5a39b
AC
4642 -- record components where the subtype is an itype.
4643
4644 elsif Ekind (Def_Id) = E_Record_Subtype
4645 and then Is_Itype (Def_Id)
4646 and then No (Controller_Component (Def_Id))
4647 and then Present (Controller_Component (Etype (Def_Id)))
4648 then
4649 declare
4650 Old_C : constant Entity_Id :=
4651 Controller_Component (Etype (Def_Id));
4652 New_C : constant Entity_Id := New_Copy (Old_C);
4653
4654 begin
4655 Set_Next_Entity (New_C, First_Entity (Def_Id));
4656 Set_First_Entity (Def_Id, New_C);
4657
4658 -- The freeze node is only used to introduce the controller,
4659 -- the back-end has no use for it for a discriminated
4660 -- component.
4661
4662 Set_Freeze_Node (Def_Id, Empty);
4663 Set_Has_Delayed_Freeze (Def_Id, False);
a9d8907c 4664 Result := True;
fbf5a39b 4665 end;
70482933
RK
4666 end if;
4667
4668 -- Freeze processing for array types
4669
4670 elsif Is_Array_Type (Def_Id) then
4671 Freeze_Array_Type (N);
4672
4673 -- Freeze processing for access types
4674
4675 -- For pool-specific access types, find out the pool object used for
4676 -- this type, needs actual expansion of it in some cases. Here are the
4677 -- different cases :
4678
4679 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
4680 -- ---> don't use any storage pool
4681
4682 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
4683 -- Expand:
4684 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
4685
4686 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
4687 -- ---> Storage Pool is the specified one
4688
4689 -- See GNAT Pool packages in the Run-Time for more details
4690
4691 elsif Ekind (Def_Id) = E_Access_Type
4692 or else Ekind (Def_Id) = E_General_Access_Type
4693 then
4694 declare
4695 Loc : constant Source_Ptr := Sloc (N);
4696 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
4697 Pool_Object : Entity_Id;
4698 Siz_Exp : Node_Id;
4699
4700 Freeze_Action_Typ : Entity_Id;
4701
4702 begin
4703 if Has_Storage_Size_Clause (Def_Id) then
4704 Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
4705 else
4706 Siz_Exp := Empty;
4707 end if;
4708
4709 -- Case 1
4710
4711 -- Rep Clause "for Def_Id'Storage_Size use 0;"
4712 -- ---> don't use any storage pool
4713
4714 if Has_Storage_Size_Clause (Def_Id)
4715 and then Compile_Time_Known_Value (Siz_Exp)
4716 and then Expr_Value (Siz_Exp) = 0
4717 then
4718 null;
4719
4720 -- Case 2
4721
4722 -- Rep Clause : for Def_Id'Storage_Size use Expr.
4723 -- ---> Expand:
4724 -- Def_Id__Pool : Stack_Bounded_Pool
4725 -- (Expr, DT'Size, DT'Alignment);
4726
4727 elsif Has_Storage_Size_Clause (Def_Id) then
4728 declare
4729 DT_Size : Node_Id;
4730 DT_Align : Node_Id;
4731
4732 begin
a9d8907c
JM
4733 -- For unconstrained composite types we give a size of zero
4734 -- so that the pool knows that it needs a special algorithm
4735 -- for variable size object allocation.
70482933
RK
4736
4737 if Is_Composite_Type (Desig_Type)
4738 and then not Is_Constrained (Desig_Type)
4739 then
4740 DT_Size :=
4741 Make_Integer_Literal (Loc, 0);
4742
4743 DT_Align :=
4744 Make_Integer_Literal (Loc, Maximum_Alignment);
4745
4746 else
4747 DT_Size :=
4748 Make_Attribute_Reference (Loc,
4749 Prefix => New_Reference_To (Desig_Type, Loc),
4750 Attribute_Name => Name_Max_Size_In_Storage_Elements);
4751
4752 DT_Align :=
4753 Make_Attribute_Reference (Loc,
4754 Prefix => New_Reference_To (Desig_Type, Loc),
4755 Attribute_Name => Name_Alignment);
4756 end if;
4757
4758 Pool_Object :=
4759 Make_Defining_Identifier (Loc,
4760 Chars => New_External_Name (Chars (Def_Id), 'P'));
4761
a9d8907c
JM
4762 -- We put the code associated with the pools in the entity
4763 -- that has the later freeze node, usually the acces type
4764 -- but it can also be the designated_type; because the pool
4765 -- code requires both those types to be frozen
70482933
RK
4766
4767 if Is_Frozen (Desig_Type)
4768 and then (not Present (Freeze_Node (Desig_Type))
4769 or else Analyzed (Freeze_Node (Desig_Type)))
4770 then
4771 Freeze_Action_Typ := Def_Id;
4772
4773 -- A Taft amendment type cannot get the freeze actions
4774 -- since the full view is not there.
4775
4776 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
4777 and then No (Full_View (Desig_Type))
4778 then
4779 Freeze_Action_Typ := Def_Id;
4780
4781 else
4782 Freeze_Action_Typ := Desig_Type;
4783 end if;
4784
4785 Append_Freeze_Action (Freeze_Action_Typ,
4786 Make_Object_Declaration (Loc,
4787 Defining_Identifier => Pool_Object,
4788 Object_Definition =>
4789 Make_Subtype_Indication (Loc,
4790 Subtype_Mark =>
4791 New_Reference_To
4792 (RTE (RE_Stack_Bounded_Pool), Loc),
4793
4794 Constraint =>
4795 Make_Index_Or_Discriminant_Constraint (Loc,
4796 Constraints => New_List (
4797
4798 -- First discriminant is the Pool Size
4799
4800 New_Reference_To (
4801 Storage_Size_Variable (Def_Id), Loc),
4802
4803 -- Second discriminant is the element size
4804
4805 DT_Size,
4806
4807 -- Third discriminant is the alignment
4808
4809 DT_Align)))));
70482933
RK
4810 end;
4811
4812 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
4813
4814 -- Case 3
4815
4816 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
4817 -- ---> Storage Pool is the specified one
4818
4819 elsif Present (Associated_Storage_Pool (Def_Id)) then
4820
4821 -- Nothing to do the associated storage pool has been attached
4822 -- when analyzing the rep. clause
4823
4824 null;
70482933
RK
4825 end if;
4826
a9d8907c
JM
4827 -- For access-to-controlled types (including class-wide types and
4828 -- Taft-amendment types which potentially have controlled
4829 -- components), expand the list controller object that will store
4830 -- the dynamically allocated objects. Do not do this
70482933
RK
4831 -- transformation for expander-generated access types, but do it
4832 -- for types that are the full view of types derived from other
4833 -- private types. Also suppress the list controller in the case
4834 -- of a designated type with convention Java, since this is used
a9d8907c
JM
4835 -- when binding to Java API specs, where there's no equivalent of
4836 -- a finalization list and we don't want to pull in the
70482933
RK
4837 -- finalization support if not needed.
4838
4839 if not Comes_From_Source (Def_Id)
4840 and then not Has_Private_Declaration (Def_Id)
4841 then
4842 null;
4843
4844 elsif (Controlled_Type (Desig_Type)
4845 and then Convention (Desig_Type) /= Convention_Java)
fbf5a39b
AC
4846 or else
4847 (Is_Incomplete_Or_Private_Type (Desig_Type)
4848 and then No (Full_View (Desig_Type))
70482933 4849
6e937c1c
AC
4850 -- An exception is made for types defined in the run-time
4851 -- because Ada.Tags.Tag itself is such a type and cannot
4852 -- afford this unnecessary overhead that would generates a
4853 -- loop in the expansion scheme...
70482933 4854
6e937c1c 4855 and then not In_Runtime (Def_Id)
fbf5a39b 4856
6e937c1c
AC
4857 -- Another exception is if Restrictions (No_Finalization)
4858 -- is active, since then we know nothing is controlled.
fbf5a39b 4859
6e937c1c 4860 and then not Restriction_Active (No_Finalization))
70482933
RK
4861
4862 -- If the designated type is not frozen yet, its controlled
4863 -- status must be retrieved explicitly.
4864
4865 or else (Is_Array_Type (Desig_Type)
4866 and then not Is_Frozen (Desig_Type)
4867 and then Controlled_Type (Component_Type (Desig_Type)))
4868 then
4869 Set_Associated_Final_Chain (Def_Id,
4870 Make_Defining_Identifier (Loc,
4871 New_External_Name (Chars (Def_Id), 'L')));
4872
4873 Append_Freeze_Action (Def_Id,
4874 Make_Object_Declaration (Loc,
4875 Defining_Identifier => Associated_Final_Chain (Def_Id),
4876 Object_Definition =>
4877 New_Reference_To (RTE (RE_List_Controller), Loc)));
4878 end if;
4879 end;
4880
4881 -- Freeze processing for enumeration types
4882
4883 elsif Ekind (Def_Id) = E_Enumeration_Type then
4884
4885 -- We only have something to do if we have a non-standard
4886 -- representation (i.e. at least one literal whose pos value
4887 -- is not the same as its representation)
4888
4889 if Has_Non_Standard_Rep (Def_Id) then
4890 Freeze_Enumeration_Type (N);
4891 end if;
4892
fbf5a39b 4893 -- Private types that are completed by a derivation from a private
70482933
RK
4894 -- type have an internally generated full view, that needs to be
4895 -- frozen. This must be done explicitly because the two views share
4896 -- the freeze node, and the underlying full view is not visible when
4897 -- the freeze node is analyzed.
4898
4899 elsif Is_Private_Type (Def_Id)
4900 and then Is_Derived_Type (Def_Id)
4901 and then Present (Full_View (Def_Id))
4902 and then Is_Itype (Full_View (Def_Id))
4903 and then Has_Private_Declaration (Full_View (Def_Id))
4904 and then Freeze_Node (Full_View (Def_Id)) = N
4905 then
4906 Set_Entity (N, Full_View (Def_Id));
a9d8907c 4907 Result := Freeze_Type (N);
70482933
RK
4908 Set_Entity (N, Def_Id);
4909
a9d8907c
JM
4910 -- All other types require no expander action. There are such cases
4911 -- (e.g. task types and protected types). In such cases, the freeze
4912 -- nodes are there for use by Gigi.
70482933
RK
4913
4914 end if;
07fc65c4
GB
4915
4916 Freeze_Stream_Operations (N, Def_Id);
a9d8907c 4917 return Result;
fbf5a39b
AC
4918
4919 exception
4920 when RE_Not_Available =>
a9d8907c 4921 return False;
70482933
RK
4922 end Freeze_Type;
4923
4924 -------------------------
4925 -- Get_Simple_Init_Val --
4926 -------------------------
4927
4928 function Get_Simple_Init_Val
82c80734
RD
4929 (T : Entity_Id;
4930 Loc : Source_Ptr;
4931 Size : Uint := No_Uint) return Node_Id
70482933
RK
4932 is
4933 Val : Node_Id;
70482933
RK
4934 Result : Node_Id;
4935 Val_RE : RE_Id;
4936
82c80734
RD
4937 Size_To_Use : Uint;
4938 -- This is the size to be used for computation of the appropriate
4939 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
4940
4941 Lo_Bound : Uint;
4942 Hi_Bound : Uint;
4943 -- These are the values computed by the procedure Check_Subtype_Bounds
4944
4945 procedure Check_Subtype_Bounds;
a9d8907c
JM
4946 -- This procedure examines the subtype T, and its ancestor subtypes and
4947 -- derived types to determine the best known information about the
4948 -- bounds of the subtype. After the call Lo_Bound is set either to
4949 -- No_Uint if no information can be determined, or to a value which
82c80734
RD
4950 -- represents a known low bound, i.e. a valid value of the subtype can
4951 -- not be less than this value. Hi_Bound is similarly set to a known
4952 -- high bound (valid value cannot be greater than this).
4953
4954 --------------------------
4955 -- Check_Subtype_Bounds --
4956 --------------------------
4957
4958 procedure Check_Subtype_Bounds is
4959 ST1 : Entity_Id;
4960 ST2 : Entity_Id;
4961 Lo : Node_Id;
4962 Hi : Node_Id;
4963 Loval : Uint;
4964 Hival : Uint;
4965
4966 begin
4967 Lo_Bound := No_Uint;
4968 Hi_Bound := No_Uint;
4969
4970 -- Loop to climb ancestor subtypes and derived types
4971
4972 ST1 := T;
4973 loop
4974 if not Is_Discrete_Type (ST1) then
4975 return;
4976 end if;
4977
4978 Lo := Type_Low_Bound (ST1);
4979 Hi := Type_High_Bound (ST1);
4980
4981 if Compile_Time_Known_Value (Lo) then
4982 Loval := Expr_Value (Lo);
4983
4984 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
4985 Lo_Bound := Loval;
4986 end if;
4987 end if;
4988
4989 if Compile_Time_Known_Value (Hi) then
4990 Hival := Expr_Value (Hi);
4991
4992 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
4993 Hi_Bound := Hival;
4994 end if;
4995 end if;
4996
4997 ST2 := Ancestor_Subtype (ST1);
4998
4999 if No (ST2) then
5000 ST2 := Etype (ST1);
5001 end if;
5002
5003 exit when ST1 = ST2;
5004 ST1 := ST2;
5005 end loop;
5006 end Check_Subtype_Bounds;
5007
5008 -- Start of processing for Get_Simple_Init_Val
5009
70482933 5010 begin
07fc65c4
GB
5011 -- For a private type, we should always have an underlying type
5012 -- (because this was already checked in Needs_Simple_Initialization).
a9d8907c
JM
5013 -- What we do is to get the value for the underlying type and then do
5014 -- an Unchecked_Convert to the private type.
07fc65c4
GB
5015
5016 if Is_Private_Type (T) then
82c80734 5017 Val := Get_Simple_Init_Val (Underlying_Type (T), Loc, Size);
07fc65c4 5018
a9d8907c
JM
5019 -- A special case, if the underlying value is null, then qualify it
5020 -- with the underlying type, so that the null is properly typed
5021 -- Similarly, if it is an aggregate it must be qualified, because an
5022 -- unchecked conversion does not provide a context for it.
07fc65c4
GB
5023
5024 if Nkind (Val) = N_Null
5025 or else Nkind (Val) = N_Aggregate
5026 then
5027 Val :=
5028 Make_Qualified_Expression (Loc,
5029 Subtype_Mark =>
5030 New_Occurrence_Of (Underlying_Type (T), Loc),
5031 Expression => Val);
5032 end if;
5033
fbf5a39b
AC
5034 Result := Unchecked_Convert_To (T, Val);
5035
5036 -- Don't truncate result (important for Initialize/Normalize_Scalars)
5037
5038 if Nkind (Result) = N_Unchecked_Type_Conversion
5039 and then Is_Scalar_Type (Underlying_Type (T))
5040 then
5041 Set_No_Truncation (Result);
5042 end if;
5043
5044 return Result;
07fc65c4 5045
70482933
RK
5046 -- For scalars, we must have normalize/initialize scalars case
5047
07fc65c4 5048 elsif Is_Scalar_Type (T) then
70482933
RK
5049 pragma Assert (Init_Or_Norm_Scalars);
5050
a9d8907c
JM
5051 -- Compute size of object. If it is given by the caller, we can use
5052 -- it directly, otherwise we use Esize (T) as an estimate. As far as
5053 -- we know this covers all cases correctly.
82c80734
RD
5054
5055 if Size = No_Uint or else Size <= Uint_0 then
5056 Size_To_Use := UI_Max (Uint_1, Esize (T));
5057 else
5058 Size_To_Use := Size;
5059 end if;
5060
5061 -- Maximum size to use is 64 bits, since we will create values
5062 -- of type Unsigned_64 and the range must fit this type.
5063
5064 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
5065 Size_To_Use := Uint_64;
5066 end if;
5067
5068 -- Check known bounds of subtype
5069
5070 Check_Subtype_Bounds;
5071
70482933
RK
5072 -- Processing for Normalize_Scalars case
5073
5074 if Normalize_Scalars then
5075
82c80734
RD
5076 -- If zero is invalid, it is a convenient value to use that is
5077 -- for sure an appropriate invalid value in all situations.
5078
5079 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5080 Val := Make_Integer_Literal (Loc, 0);
5081
5082 -- Cases where all one bits is the appropriate invalid value
5083
5084 -- For modular types, all 1 bits is either invalid or valid. If
5085 -- it is valid, then there is nothing that can be done since there
5086 -- are no invalid values (we ruled out zero already).
5087
5088 -- For signed integer types that have no negative values, either
5089 -- there is room for negative values, or there is not. If there
5090 -- is, then all 1 bits may be interpretecd as minus one, which is
5091 -- certainly invalid. Alternatively it is treated as the largest
5092 -- positive value, in which case the observation for modular types
5093 -- still applies.
5094
5095 -- For float types, all 1-bits is a NaN (not a number), which is
5096 -- certainly an appropriately invalid value.
70482933 5097
82c80734
RD
5098 elsif Is_Unsigned_Type (T)
5099 or else Is_Floating_Point_Type (T)
5100 or else Is_Enumeration_Type (T)
5101 then
5102 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
5103
5104 -- Resolve as Unsigned_64, because the largest number we
5105 -- can generate is out of range of universal integer.
5106
5107 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
70482933 5108
82c80734 5109 -- Case of signed types
70482933
RK
5110
5111 else
82c80734
RD
5112 declare
5113 Signed_Size : constant Uint :=
5114 UI_Min (Uint_63, Size_To_Use - 1);
5115
5116 begin
5117 -- Normally we like to use the most negative number. The
a9d8907c
JM
5118 -- one exception is when this number is in the known
5119 -- subtype range and the largest positive number is not in
5120 -- the known subtype range.
82c80734
RD
5121
5122 -- For this exceptional case, use largest positive value
70482933 5123
82c80734
RD
5124 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
5125 and then Lo_Bound <= (-(2 ** Signed_Size))
5126 and then Hi_Bound < 2 ** Signed_Size
5127 then
5128 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
5129
5130 -- Normal case of largest negative value
5131
5132 else
5133 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
5134 end if;
5135 end;
70482933
RK
5136 end if;
5137
5138 -- Here for Initialize_Scalars case
5139
5140 else
82c80734
RD
5141 -- For float types, use float values from System.Scalar_Values
5142
70482933
RK
5143 if Is_Floating_Point_Type (T) then
5144 if Root_Type (T) = Standard_Short_Float then
5145 Val_RE := RE_IS_Isf;
5146 elsif Root_Type (T) = Standard_Float then
5147 Val_RE := RE_IS_Ifl;
fbf5a39b 5148 elsif Root_Type (T) = Standard_Long_Float then
70482933 5149 Val_RE := RE_IS_Ilf;
70482933
RK
5150 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
5151 Val_RE := RE_IS_Ill;
5152 end if;
5153
82c80734
RD
5154 -- If zero is invalid, use zero values from System.Scalar_Values
5155
5156 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5157 if Size_To_Use <= 8 then
5158 Val_RE := RE_IS_Iz1;
5159 elsif Size_To_Use <= 16 then
5160 Val_RE := RE_IS_Iz2;
5161 elsif Size_To_Use <= 32 then
5162 Val_RE := RE_IS_Iz4;
5163 else
5164 Val_RE := RE_IS_Iz8;
5165 end if;
5166
5167 -- For unsigned, use unsigned values from System.Scalar_Values
5168
5169 elsif Is_Unsigned_Type (T) then
5170 if Size_To_Use <= 8 then
70482933 5171 Val_RE := RE_IS_Iu1;
82c80734 5172 elsif Size_To_Use <= 16 then
70482933 5173 Val_RE := RE_IS_Iu2;
82c80734 5174 elsif Size_To_Use <= 32 then
70482933 5175 Val_RE := RE_IS_Iu4;
82c80734 5176 else
70482933
RK
5177 Val_RE := RE_IS_Iu8;
5178 end if;
5179
82c80734
RD
5180 -- For signed, use signed values from System.Scalar_Values
5181
5182 else
5183 if Size_To_Use <= 8 then
70482933 5184 Val_RE := RE_IS_Is1;
82c80734 5185 elsif Size_To_Use <= 16 then
70482933 5186 Val_RE := RE_IS_Is2;
82c80734 5187 elsif Size_To_Use <= 32 then
70482933 5188 Val_RE := RE_IS_Is4;
82c80734 5189 else
70482933
RK
5190 Val_RE := RE_IS_Is8;
5191 end if;
5192 end if;
5193
5194 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
5195 end if;
5196
82c80734
RD
5197 -- The final expression is obtained by doing an unchecked conversion
5198 -- of this result to the base type of the required subtype. We use
5199 -- the base type to avoid the unchecked conversion from chopping
5200 -- bits, and then we set Kill_Range_Check to preserve the "bad"
5201 -- value.
70482933
RK
5202
5203 Result := Unchecked_Convert_To (Base_Type (T), Val);
5204
fbf5a39b
AC
5205 -- Ensure result is not truncated, since we want the "bad" bits
5206 -- and also kill range check on result.
5207
70482933 5208 if Nkind (Result) = N_Unchecked_Type_Conversion then
fbf5a39b 5209 Set_No_Truncation (Result);
70482933
RK
5210 Set_Kill_Range_Check (Result, True);
5211 end if;
5212
5213 return Result;
5214
82c80734 5215 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
70482933
RK
5216
5217 elsif Root_Type (T) = Standard_String
5218 or else
5219 Root_Type (T) = Standard_Wide_String
82c80734
RD
5220 or else
5221 Root_Type (T) = Standard_Wide_Wide_String
70482933
RK
5222 then
5223 pragma Assert (Init_Or_Norm_Scalars);
5224
70482933 5225 return
c84700e7
ES
5226 Make_Aggregate (Loc,
5227 Component_Associations => New_List (
5228 Make_Component_Association (Loc,
5229 Choices => New_List (
5230 Make_Others_Choice (Loc)),
5231 Expression =>
82c80734
RD
5232 Get_Simple_Init_Val
5233 (Component_Type (T), Loc, Esize (Root_Type (T))))));
70482933
RK
5234
5235 -- Access type is initialized to null
5236
5237 elsif Is_Access_Type (T) then
5238 return
5239 Make_Null (Loc);
5240
07fc65c4
GB
5241 -- No other possibilities should arise, since we should only be
5242 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
5243 -- returned True, indicating one of the above cases held.
70482933
RK
5244
5245 else
07fc65c4 5246 raise Program_Error;
70482933 5247 end if;
fbf5a39b
AC
5248
5249 exception
5250 when RE_Not_Available =>
5251 return Empty;
70482933
RK
5252 end Get_Simple_Init_Val;
5253
5254 ------------------------------
5255 -- Has_New_Non_Standard_Rep --
5256 ------------------------------
5257
5258 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
5259 begin
5260 if not Is_Derived_Type (T) then
5261 return Has_Non_Standard_Rep (T)
5262 or else Has_Non_Standard_Rep (Root_Type (T));
5263
5264 -- If Has_Non_Standard_Rep is not set on the derived type, the
5265 -- representation is fully inherited.
5266
5267 elsif not Has_Non_Standard_Rep (T) then
5268 return False;
5269
5270 else
5271 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
5272
5273 -- May need a more precise check here: the First_Rep_Item may
5274 -- be a stream attribute, which does not affect the representation
5275 -- of the type ???
5276 end if;
5277 end Has_New_Non_Standard_Rep;
5278
5279 ----------------
5280 -- In_Runtime --
5281 ----------------
5282
5283 function In_Runtime (E : Entity_Id) return Boolean is
5284 S1 : Entity_Id := Scope (E);
5285
5286 begin
5287 while Scope (S1) /= Standard_Standard loop
5288 S1 := Scope (S1);
5289 end loop;
5290
5291 return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
5292 end In_Runtime;
5293
5294 ------------------
5295 -- Init_Formals --
5296 ------------------
5297
5298 function Init_Formals (Typ : Entity_Id) return List_Id is
5299 Loc : constant Source_Ptr := Sloc (Typ);
5300 Formals : List_Id;
5301
5302 begin
5303 -- First parameter is always _Init : in out typ. Note that we need
5304 -- this to be in/out because in the case of the task record value,
5305 -- there are default record fields (_Priority, _Size, -Task_Info)
5306 -- that may be referenced in the generated initialization routine.
5307
5308 Formals := New_List (
5309 Make_Parameter_Specification (Loc,
5310 Defining_Identifier =>
5311 Make_Defining_Identifier (Loc, Name_uInit),
5312 In_Present => True,
5313 Out_Present => True,
5314 Parameter_Type => New_Reference_To (Typ, Loc)));
5315
5316 -- For task record value, or type that contains tasks, add two more
5317 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
5318 -- We also add these parameters for the task record type case.
5319
5320 if Has_Task (Typ)
5321 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
5322 then
5323 Append_To (Formals,
5324 Make_Parameter_Specification (Loc,
5325 Defining_Identifier =>
5326 Make_Defining_Identifier (Loc, Name_uMaster),
5327 Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
5328
5329 Append_To (Formals,
5330 Make_Parameter_Specification (Loc,
5331 Defining_Identifier =>
5332 Make_Defining_Identifier (Loc, Name_uChain),
5333 In_Present => True,
5334 Out_Present => True,
5335 Parameter_Type =>
5336 New_Reference_To (RTE (RE_Activation_Chain), Loc)));
5337
5338 Append_To (Formals,
5339 Make_Parameter_Specification (Loc,
5340 Defining_Identifier =>
fbf5a39b 5341 Make_Defining_Identifier (Loc, Name_uTask_Name),
70482933
RK
5342 In_Present => True,
5343 Parameter_Type =>
fbf5a39b 5344 New_Reference_To (Standard_String, Loc)));
70482933
RK
5345 end if;
5346
5347 return Formals;
fbf5a39b
AC
5348
5349 exception
5350 when RE_Not_Available =>
5351 return Empty_List;
70482933
RK
5352 end Init_Formals;
5353
5354 ------------------
5355 -- Make_Eq_Case --
5356 ------------------
5357
5358 -- <Make_Eq_if shared components>
5359 -- case X.D1 is
5360 -- when V1 => <Make_Eq_Case> on subcomponents
5361 -- ...
5362 -- when Vn => <Make_Eq_Case> on subcomponents
5363 -- end case;
5364
5d09245e
AC
5365 function Make_Eq_Case
5366 (E : Entity_Id;
5367 CL : Node_Id;
5368 Discr : Entity_Id := Empty) return List_Id
5369 is
5370 Loc : constant Source_Ptr := Sloc (E);
fbf5a39b 5371 Result : constant List_Id := New_List;
70482933
RK
5372 Variant : Node_Id;
5373 Alt_List : List_Id;
70482933
RK
5374
5375 begin
5d09245e 5376 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
70482933
RK
5377
5378 if No (Variant_Part (CL)) then
5379 return Result;
5380 end if;
5381
5382 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
5383
5384 if No (Variant) then
5385 return Result;
5386 end if;
5387
5388 Alt_List := New_List;
5389
5390 while Present (Variant) loop
5391 Append_To (Alt_List,
5392 Make_Case_Statement_Alternative (Loc,
5393 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
5d09245e 5394 Statements => Make_Eq_Case (E, Component_List (Variant))));
70482933
RK
5395
5396 Next_Non_Pragma (Variant);
5397 end loop;
5398
5d09245e
AC
5399 -- If we have an Unchecked_Union, use one of the parameters that
5400 -- captures the discriminants.
5401
5402 if Is_Unchecked_Union (E) then
5403 Append_To (Result,
5404 Make_Case_Statement (Loc,
5405 Expression => New_Reference_To (Discr, Loc),
5406 Alternatives => Alt_List));
5407
5408 else
5409 Append_To (Result,
5410 Make_Case_Statement (Loc,
5411 Expression =>
5412 Make_Selected_Component (Loc,
5413 Prefix => Make_Identifier (Loc, Name_X),
5414 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
5415 Alternatives => Alt_List));
5416 end if;
70482933
RK
5417
5418 return Result;
5419 end Make_Eq_Case;
5420
5421 ----------------
5422 -- Make_Eq_If --
5423 ----------------
5424
5425 -- Generates:
5426
5427 -- if
5428 -- X.C1 /= Y.C1
5429 -- or else
5430 -- X.C2 /= Y.C2
5431 -- ...
5432 -- then
5433 -- return False;
5434 -- end if;
5435
5436 -- or a null statement if the list L is empty
5437
5d09245e
AC
5438 function Make_Eq_If
5439 (E : Entity_Id;
5440 L : List_Id) return Node_Id
5441 is
5442 Loc : constant Source_Ptr := Sloc (E);
70482933
RK
5443 C : Node_Id;
5444 Field_Name : Name_Id;
5445 Cond : Node_Id;
5446
5447 begin
5448 if No (L) then
5449 return Make_Null_Statement (Loc);
5450
5451 else
5452 Cond := Empty;
5453
5454 C := First_Non_Pragma (L);
5455 while Present (C) loop
5456 Field_Name := Chars (Defining_Identifier (C));
5457
5458 -- The tags must not be compared they are not part of the value.
5459 -- Note also that in the following, we use Make_Identifier for
5460 -- the component names. Use of New_Reference_To to identify the
5461 -- components would be incorrect because the wrong entities for
5462 -- discriminants could be picked up in the private type case.
5463
5464 if Field_Name /= Name_uTag then
5465 Evolve_Or_Else (Cond,
5466 Make_Op_Ne (Loc,
5467 Left_Opnd =>
5468 Make_Selected_Component (Loc,
5469 Prefix => Make_Identifier (Loc, Name_X),
5470 Selector_Name =>
5471 Make_Identifier (Loc, Field_Name)),
5472
5473 Right_Opnd =>
5474 Make_Selected_Component (Loc,
5475 Prefix => Make_Identifier (Loc, Name_Y),
5476 Selector_Name =>
5477 Make_Identifier (Loc, Field_Name))));
5478 end if;
5479
5480 Next_Non_Pragma (C);
5481 end loop;
5482
5483 if No (Cond) then
5484 return Make_Null_Statement (Loc);
5485
5486 else
5487 return
5d09245e 5488 Make_Implicit_If_Statement (E,
70482933
RK
5489 Condition => Cond,
5490 Then_Statements => New_List (
5491 Make_Return_Statement (Loc,
5492 Expression => New_Occurrence_Of (Standard_False, Loc))));
5493 end if;
5494 end if;
5495 end Make_Eq_If;
5496
5497 -------------------------------------
5498 -- Make_Predefined_Primitive_Specs --
5499 -------------------------------------
5500
5501 procedure Make_Predefined_Primitive_Specs
5502 (Tag_Typ : Entity_Id;
5503 Predef_List : out List_Id;
5504 Renamed_Eq : out Node_Id)
5505 is
5506 Loc : constant Source_Ptr := Sloc (Tag_Typ);
fbf5a39b 5507 Res : constant List_Id := New_List;
70482933
RK
5508 Prim : Elmt_Id;
5509 Eq_Needed : Boolean;
5510 Eq_Spec : Node_Id;
5511 Eq_Name : Name_Id := Name_Op_Eq;
5512
5513 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
5514 -- Returns true if Prim is a renaming of an unresolved predefined
5515 -- equality operation.
5516
fbf5a39b
AC
5517 -------------------------------
5518 -- Is_Predefined_Eq_Renaming --
5519 -------------------------------
5520
70482933
RK
5521 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
5522 begin
5523 return Chars (Prim) /= Name_Op_Eq
5524 and then Present (Alias (Prim))
5525 and then Comes_From_Source (Prim)
5526 and then Is_Intrinsic_Subprogram (Alias (Prim))
5527 and then Chars (Alias (Prim)) = Name_Op_Eq;
5528 end Is_Predefined_Eq_Renaming;
5529
5530 -- Start of processing for Make_Predefined_Primitive_Specs
5531
5532 begin
5533 Renamed_Eq := Empty;
5534
a9d8907c 5535 -- Spec of _Size
fbf5a39b
AC
5536
5537 Append_To (Res, Predef_Spec_Or_Body (Loc,
5538 Tag_Typ => Tag_Typ,
a9d8907c 5539 Name => Name_uSize,
fbf5a39b
AC
5540 Profile => New_List (
5541 Make_Parameter_Specification (Loc,
5542 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5543 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5544
a9d8907c 5545 Ret_Type => Standard_Long_Long_Integer));
fbf5a39b 5546
a9d8907c 5547 -- Spec of _Alignment
70482933
RK
5548
5549 Append_To (Res, Predef_Spec_Or_Body (Loc,
5550 Tag_Typ => Tag_Typ,
a9d8907c 5551 Name => Name_uAlignment,
70482933
RK
5552 Profile => New_List (
5553 Make_Parameter_Specification (Loc,
5554 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5555 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5556
a9d8907c 5557 Ret_Type => Standard_Integer));
70482933 5558
d2d3604c
TQ
5559 -- Specs for dispatching stream attributes.
5560
5561 declare
5562 Stream_Op_TSS_Names :
5563 constant array (Integer range <>) of TSS_Name_Type :=
5564 (TSS_Stream_Read,
5565 TSS_Stream_Write,
5566 TSS_Stream_Input,
5567 TSS_Stream_Output);
5568 begin
5569 for Op in Stream_Op_TSS_Names'Range loop
5570 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
5571 Append_To (Res,
5572 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
5573 Stream_Op_TSS_Names (Op)));
5574 end if;
5575 end loop;
5576 end;
70482933 5577
fbf5a39b
AC
5578 -- Spec of "=" if expanded if the type is not limited and if a
5579 -- user defined "=" was not already declared for the non-full
5580 -- view of a private extension
70482933 5581
fbf5a39b 5582 if not Is_Limited_Type (Tag_Typ) then
70482933
RK
5583 Eq_Needed := True;
5584
5585 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5586 while Present (Prim) loop
fbf5a39b 5587
70482933
RK
5588 -- If a primitive is encountered that renames the predefined
5589 -- equality operator before reaching any explicit equality
5590 -- primitive, then we still need to create a predefined
5591 -- equality function, because calls to it can occur via
5592 -- the renaming. A new name is created for the equality
5593 -- to avoid conflicting with any user-defined equality.
5594 -- (Note that this doesn't account for renamings of
5595 -- equality nested within subpackages???)
5596
5597 if Is_Predefined_Eq_Renaming (Node (Prim)) then
5598 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
5599
5600 elsif Chars (Node (Prim)) = Name_Op_Eq
5601 and then (No (Alias (Node (Prim)))
5602 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
5603 N_Subprogram_Renaming_Declaration)
5604 and then Etype (First_Formal (Node (Prim))) =
5605 Etype (Next_Formal (First_Formal (Node (Prim))))
e6f69614 5606 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
70482933
RK
5607
5608 then
5609 Eq_Needed := False;
5610 exit;
5611
5612 -- If the parent equality is abstract, the inherited equality is
5613 -- abstract as well, and no body can be created for for it.
5614
5615 elsif Chars (Node (Prim)) = Name_Op_Eq
5616 and then Present (Alias (Node (Prim)))
5617 and then Is_Abstract (Alias (Node (Prim)))
5618 then
5619 Eq_Needed := False;
5620 exit;
5621 end if;
5622
5623 Next_Elmt (Prim);
5624 end loop;
5625
5626 -- If a renaming of predefined equality was found
5627 -- but there was no user-defined equality (so Eq_Needed
5628 -- is still true), then set the name back to Name_Op_Eq.
5629 -- But in the case where a user-defined equality was
5630 -- located after such a renaming, then the predefined
5631 -- equality function is still needed, so Eq_Needed must
5632 -- be set back to True.
5633
5634 if Eq_Name /= Name_Op_Eq then
5635 if Eq_Needed then
5636 Eq_Name := Name_Op_Eq;
5637 else
5638 Eq_Needed := True;
5639 end if;
5640 end if;
5641
5642 if Eq_Needed then
5643 Eq_Spec := Predef_Spec_Or_Body (Loc,
5644 Tag_Typ => Tag_Typ,
5645 Name => Eq_Name,
5646 Profile => New_List (
5647 Make_Parameter_Specification (Loc,
5648 Defining_Identifier =>
5649 Make_Defining_Identifier (Loc, Name_X),
5650 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5651 Make_Parameter_Specification (Loc,
5652 Defining_Identifier =>
5653 Make_Defining_Identifier (Loc, Name_Y),
5654 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5655 Ret_Type => Standard_Boolean);
5656 Append_To (Res, Eq_Spec);
5657
5658 if Eq_Name /= Name_Op_Eq then
5659 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
5660
5661 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5662 while Present (Prim) loop
5663
5664 -- Any renamings of equality that appeared before an
5665 -- overriding equality must be updated to refer to
5666 -- the entity for the predefined equality, otherwise
5667 -- calls via the renaming would get incorrectly
5668 -- resolved to call the user-defined equality function.
5669
5670 if Is_Predefined_Eq_Renaming (Node (Prim)) then
5671 Set_Alias (Node (Prim), Renamed_Eq);
5672
5673 -- Exit upon encountering a user-defined equality
5674
5675 elsif Chars (Node (Prim)) = Name_Op_Eq
5676 and then No (Alias (Node (Prim)))
5677 then
5678 exit;
5679 end if;
5680
5681 Next_Elmt (Prim);
5682 end loop;
5683 end if;
5684 end if;
5685
5686 -- Spec for dispatching assignment
5687
5688 Append_To (Res, Predef_Spec_Or_Body (Loc,
5689 Tag_Typ => Tag_Typ,
5690 Name => Name_uAssign,
5691 Profile => New_List (
5692 Make_Parameter_Specification (Loc,
5693 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5694 Out_Present => True,
5695 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5696
5697 Make_Parameter_Specification (Loc,
5698 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
5699 Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
5700 end if;
5701
5702 -- Specs for finalization actions that may be required in case a
5703 -- future extension contain a controlled element. We generate those
5704 -- only for root tagged types where they will get dummy bodies or
5705 -- when the type has controlled components and their body must be
5706 -- generated. It is also impossible to provide those for tagged
5707 -- types defined within s-finimp since it would involve circularity
5708 -- problems
5709
5710 if In_Finalization_Root (Tag_Typ) then
5711 null;
5712
fbf5a39b 5713 -- We also skip these if finalization is not available
70482933 5714
6e937c1c 5715 elsif Restriction_Active (No_Finalization) then
70482933
RK
5716 null;
5717
5718 elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
70482933
RK
5719 if not Is_Limited_Type (Tag_Typ) then
5720 Append_To (Res,
fbf5a39b 5721 Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
70482933
RK
5722 end if;
5723
fbf5a39b 5724 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
70482933
RK
5725 end if;
5726
5727 Predef_List := Res;
5728 end Make_Predefined_Primitive_Specs;
5729
5730 ---------------------------------
5731 -- Needs_Simple_Initialization --
5732 ---------------------------------
5733
5734 function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
5735 begin
07fc65c4
GB
5736 -- Check for private type, in which case test applies to the
5737 -- underlying type of the private type.
5738
5739 if Is_Private_Type (T) then
5740 declare
5741 RT : constant Entity_Id := Underlying_Type (T);
5742
5743 begin
5744 if Present (RT) then
5745 return Needs_Simple_Initialization (RT);
5746 else
5747 return False;
5748 end if;
5749 end;
5750
70482933
RK
5751 -- Cases needing simple initialization are access types, and, if pragma
5752 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
5753 -- types.
5754
07fc65c4 5755 elsif Is_Access_Type (T)
70482933 5756 or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
70482933
RK
5757 then
5758 return True;
5759
5760 -- If Initialize/Normalize_Scalars is in effect, string objects also
5761 -- need initialization, unless they are created in the course of
5762 -- expanding an aggregate (since in the latter case they will be
5763 -- filled with appropriate initializing values before they are used).
5764
5765 elsif Init_Or_Norm_Scalars
5766 and then
5767 (Root_Type (T) = Standard_String
82c80734
RD
5768 or else Root_Type (T) = Standard_Wide_String
5769 or else Root_Type (T) = Standard_Wide_Wide_String)
70482933
RK
5770 and then
5771 (not Is_Itype (T)
5772 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
5773 then
5774 return True;
5775
70482933
RK
5776 else
5777 return False;
5778 end if;
5779 end Needs_Simple_Initialization;
5780
5781 ----------------------
5782 -- Predef_Deep_Spec --
5783 ----------------------
5784
5785 function Predef_Deep_Spec
5786 (Loc : Source_Ptr;
5787 Tag_Typ : Entity_Id;
fbf5a39b 5788 Name : TSS_Name_Type;
2e071734 5789 For_Body : Boolean := False) return Node_Id
70482933
RK
5790 is
5791 Prof : List_Id;
5792 Type_B : Entity_Id;
5793
5794 begin
fbf5a39b 5795 if Name = TSS_Deep_Finalize then
70482933
RK
5796 Prof := New_List;
5797 Type_B := Standard_Boolean;
5798
5799 else
5800 Prof := New_List (
5801 Make_Parameter_Specification (Loc,
5802 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
5803 In_Present => True,
5804 Out_Present => True,
5805 Parameter_Type =>
5806 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
5807 Type_B := Standard_Short_Short_Integer;
5808 end if;
5809
5810 Append_To (Prof,
5811 Make_Parameter_Specification (Loc,
5812 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
5813 In_Present => True,
5814 Out_Present => True,
5815 Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
5816
5817 Append_To (Prof,
5818 Make_Parameter_Specification (Loc,
5819 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
5820 Parameter_Type => New_Reference_To (Type_B, Loc)));
5821
5822 return Predef_Spec_Or_Body (Loc,
fbf5a39b 5823 Name => Make_TSS_Name (Tag_Typ, Name),
70482933
RK
5824 Tag_Typ => Tag_Typ,
5825 Profile => Prof,
5826 For_Body => For_Body);
fbf5a39b
AC
5827
5828 exception
5829 when RE_Not_Available =>
5830 return Empty;
70482933
RK
5831 end Predef_Deep_Spec;
5832
5833 -------------------------
5834 -- Predef_Spec_Or_Body --
5835 -------------------------
5836
5837 function Predef_Spec_Or_Body
5838 (Loc : Source_Ptr;
5839 Tag_Typ : Entity_Id;
5840 Name : Name_Id;
5841 Profile : List_Id;
5842 Ret_Type : Entity_Id := Empty;
2e071734 5843 For_Body : Boolean := False) return Node_Id
70482933 5844 is
fbf5a39b 5845 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
70482933
RK
5846 Spec : Node_Id;
5847
5848 begin
5849 Set_Is_Public (Id, Is_Public (Tag_Typ));
5850
5851 -- The internal flag is set to mark these declarations because
5852 -- they have specific properties. First they are primitives even
5853 -- if they are not defined in the type scope (the freezing point
5854 -- is not necessarily in the same scope), furthermore the
5855 -- predefined equality can be overridden by a user-defined
5856 -- equality, no body will be generated in this case.
5857
5858 Set_Is_Internal (Id);
5859
5860 if not Debug_Generated_Code then
5861 Set_Debug_Info_Off (Id);
5862 end if;
5863
5864 if No (Ret_Type) then
5865 Spec :=
5866 Make_Procedure_Specification (Loc,
5867 Defining_Unit_Name => Id,
5868 Parameter_Specifications => Profile);
5869 else
5870 Spec :=
5871 Make_Function_Specification (Loc,
5872 Defining_Unit_Name => Id,
5873 Parameter_Specifications => Profile,
5874 Subtype_Mark =>
5875 New_Reference_To (Ret_Type, Loc));
5876 end if;
5877
5878 -- If body case, return empty subprogram body. Note that this is
5879 -- ill-formed, because there is not even a null statement, and
5880 -- certainly not a return in the function case. The caller is
5881 -- expected to do surgery on the body to add the appropriate stuff.
5882
5883 if For_Body then
5884 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
5885
fbf5a39b 5886 -- For the case of Input/Output attributes applied to an abstract type,
70482933
RK
5887 -- generate abstract specifications. These will never be called,
5888 -- but we need the slots allocated in the dispatching table so
5889 -- that typ'Class'Input and typ'Class'Output will work properly.
5890
fbf5a39b
AC
5891 elsif (Is_TSS (Name, TSS_Stream_Input)
5892 or else
5893 Is_TSS (Name, TSS_Stream_Output))
70482933
RK
5894 and then Is_Abstract (Tag_Typ)
5895 then
5896 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
5897
5898 -- Normal spec case, where we return a subprogram declaration
5899
5900 else
5901 return Make_Subprogram_Declaration (Loc, Spec);
5902 end if;
5903 end Predef_Spec_Or_Body;
5904
5905 -----------------------------
5906 -- Predef_Stream_Attr_Spec --
5907 -----------------------------
5908
5909 function Predef_Stream_Attr_Spec
5910 (Loc : Source_Ptr;
5911 Tag_Typ : Entity_Id;
fbf5a39b 5912 Name : TSS_Name_Type;
2e071734 5913 For_Body : Boolean := False) return Node_Id
70482933
RK
5914 is
5915 Ret_Type : Entity_Id;
5916
5917 begin
fbf5a39b 5918 if Name = TSS_Stream_Input then
70482933
RK
5919 Ret_Type := Tag_Typ;
5920 else
5921 Ret_Type := Empty;
5922 end if;
5923
5924 return Predef_Spec_Or_Body (Loc,
fbf5a39b 5925 Name => Make_TSS_Name (Tag_Typ, Name),
70482933
RK
5926 Tag_Typ => Tag_Typ,
5927 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
5928 Ret_Type => Ret_Type,
5929 For_Body => For_Body);
5930 end Predef_Stream_Attr_Spec;
5931
5932 ---------------------------------
5933 -- Predefined_Primitive_Bodies --
5934 ---------------------------------
5935
5936 function Predefined_Primitive_Bodies
5937 (Tag_Typ : Entity_Id;
2e071734 5938 Renamed_Eq : Node_Id) return List_Id
70482933
RK
5939 is
5940 Loc : constant Source_Ptr := Sloc (Tag_Typ);
fbf5a39b 5941 Res : constant List_Id := New_List;
70482933 5942 Decl : Node_Id;
70482933
RK
5943 Prim : Elmt_Id;
5944 Eq_Needed : Boolean;
5945 Eq_Name : Name_Id;
5946 Ent : Entity_Id;
5947
5948 begin
5949 -- See if we have a predefined "=" operator
5950
5951 if Present (Renamed_Eq) then
5952 Eq_Needed := True;
5953 Eq_Name := Chars (Renamed_Eq);
5954
5955 else
5956 Eq_Needed := False;
5957 Eq_Name := No_Name;
5958
5959 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5960 while Present (Prim) loop
5961 if Chars (Node (Prim)) = Name_Op_Eq
5962 and then Is_Internal (Node (Prim))
5963 then
5964 Eq_Needed := True;
5965 Eq_Name := Name_Op_Eq;
5966 end if;
5967
5968 Next_Elmt (Prim);
5969 end loop;
5970 end if;
5971
fbf5a39b
AC
5972 -- Body of _Alignment
5973
5974 Decl := Predef_Spec_Or_Body (Loc,
5975 Tag_Typ => Tag_Typ,
5976 Name => Name_uAlignment,
5977 Profile => New_List (
5978 Make_Parameter_Specification (Loc,
5979 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5980 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5981
5982 Ret_Type => Standard_Integer,
5983 For_Body => True);
5984
5985 Set_Handled_Statement_Sequence (Decl,
5986 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5987 Make_Return_Statement (Loc,
5988 Expression =>
5989 Make_Attribute_Reference (Loc,
5990 Prefix => Make_Identifier (Loc, Name_X),
5991 Attribute_Name => Name_Alignment)))));
5992
5993 Append_To (Res, Decl);
5994
70482933
RK
5995 -- Body of _Size
5996
5997 Decl := Predef_Spec_Or_Body (Loc,
5998 Tag_Typ => Tag_Typ,
5999 Name => Name_uSize,
6000 Profile => New_List (
6001 Make_Parameter_Specification (Loc,
6002 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6003 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6004
6005 Ret_Type => Standard_Long_Long_Integer,
6006 For_Body => True);
6007
6008 Set_Handled_Statement_Sequence (Decl,
6009 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6010 Make_Return_Statement (Loc,
6011 Expression =>
6012 Make_Attribute_Reference (Loc,
6013 Prefix => Make_Identifier (Loc, Name_X),
6014 Attribute_Name => Name_Size)))));
6015
6016 Append_To (Res, Decl);
6017
6018 -- Bodies for Dispatching stream IO routines. We need these only for
6019 -- non-limited types (in the limited case there is no dispatching).
a778d033 6020 -- We also skip them if dispatching or finalization are not available.
70482933 6021
d2d3604c
TQ
6022 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
6023 and then No (TSS (Tag_Typ, TSS_Stream_Read))
6024 then
6025 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
6026 Append_To (Res, Decl);
6027 end if;
70482933 6028
d2d3604c
TQ
6029 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
6030 and then No (TSS (Tag_Typ, TSS_Stream_Write))
6031 then
6032 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
6033 Append_To (Res, Decl);
6034 end if;
70482933 6035
d2d3604c
TQ
6036 -- Skip bodies of _Input and _Output for the abstract case, since
6037 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
70482933 6038
d2d3604c
TQ
6039 if not Is_Abstract (Tag_Typ) then
6040 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
6041 and then No (TSS (Tag_Typ, TSS_Stream_Input))
6042 then
6043 Build_Record_Or_Elementary_Input_Function
6044 (Loc, Tag_Typ, Decl, Ent);
6045 Append_To (Res, Decl);
6046 end if;
70482933 6047
d2d3604c
TQ
6048 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
6049 and then No (TSS (Tag_Typ, TSS_Stream_Output))
6050 then
6051 Build_Record_Or_Elementary_Output_Procedure
6052 (Loc, Tag_Typ, Decl, Ent);
6053 Append_To (Res, Decl);
70482933
RK
6054 end if;
6055 end if;
6056
6057 if not Is_Limited_Type (Tag_Typ) then
6058
6059 -- Body for equality
6060
6061 if Eq_Needed then
6062
6063 Decl := Predef_Spec_Or_Body (Loc,
6064 Tag_Typ => Tag_Typ,
6065 Name => Eq_Name,
6066 Profile => New_List (
6067 Make_Parameter_Specification (Loc,
6068 Defining_Identifier =>
6069 Make_Defining_Identifier (Loc, Name_X),
6070 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6071
6072 Make_Parameter_Specification (Loc,
6073 Defining_Identifier =>
6074 Make_Defining_Identifier (Loc, Name_Y),
6075 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6076
6077 Ret_Type => Standard_Boolean,
6078 For_Body => True);
6079
6080 declare
6081 Def : constant Node_Id := Parent (Tag_Typ);
fbf5a39b 6082 Stmts : constant List_Id := New_List;
70482933
RK
6083 Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
6084 Comps : Node_Id := Empty;
6085 Typ_Def : Node_Id := Type_Definition (Def);
70482933
RK
6086
6087 begin
6088 if Variant_Case then
6089 if Nkind (Typ_Def) = N_Derived_Type_Definition then
6090 Typ_Def := Record_Extension_Part (Typ_Def);
6091 end if;
6092
6093 if Present (Typ_Def) then
6094 Comps := Component_List (Typ_Def);
6095 end if;
6096
6097 Variant_Case := Present (Comps)
6098 and then Present (Variant_Part (Comps));
6099 end if;
6100
6101 if Variant_Case then
6102 Append_To (Stmts,
6103 Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
6104 Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
6105 Append_To (Stmts,
6106 Make_Return_Statement (Loc,
6107 Expression => New_Reference_To (Standard_True, Loc)));
6108
6109 else
6110 Append_To (Stmts,
6111 Make_Return_Statement (Loc,
6112 Expression =>
6113 Expand_Record_Equality (Tag_Typ,
6114 Typ => Tag_Typ,
6115 Lhs => Make_Identifier (Loc, Name_X),
6116 Rhs => Make_Identifier (Loc, Name_Y),
6117 Bodies => Declarations (Decl))));
6118 end if;
6119
6120 Set_Handled_Statement_Sequence (Decl,
6121 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
6122 end;
6123 Append_To (Res, Decl);
6124 end if;
6125
6126 -- Body for dispatching assignment
6127
6128 Decl := Predef_Spec_Or_Body (Loc,
6129 Tag_Typ => Tag_Typ,
6130 Name => Name_uAssign,
6131 Profile => New_List (
6132 Make_Parameter_Specification (Loc,
6133 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6134 Out_Present => True,
6135 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6136
6137 Make_Parameter_Specification (Loc,
6138 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
6139 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6140 For_Body => True);
6141
6142 Set_Handled_Statement_Sequence (Decl,
6143 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6144 Make_Assignment_Statement (Loc,
6145 Name => Make_Identifier (Loc, Name_X),
6146 Expression => Make_Identifier (Loc, Name_Y)))));
6147
6148 Append_To (Res, Decl);
6149 end if;
6150
6151 -- Generate dummy bodies for finalization actions of types that have
6152 -- no controlled components.
6153
6154 -- Skip this processing if we are in the finalization routine in the
6155 -- runtime itself, otherwise we get hopelessly circularly confused!
6156
6157 if In_Finalization_Root (Tag_Typ) then
6158 null;
6159
fbf5a39b 6160 -- Skip this if finalization is not available
70482933 6161
6e937c1c 6162 elsif Restriction_Active (No_Finalization) then
70482933
RK
6163 null;
6164
6165 elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
6166 and then not Has_Controlled_Component (Tag_Typ)
6167 then
6168 if not Is_Limited_Type (Tag_Typ) then
fbf5a39b 6169 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
70482933
RK
6170
6171 if Is_Controlled (Tag_Typ) then
6172 Set_Handled_Statement_Sequence (Decl,
6173 Make_Handled_Sequence_Of_Statements (Loc,
6174 Make_Adjust_Call (
6175 Ref => Make_Identifier (Loc, Name_V),
6176 Typ => Tag_Typ,
6177 Flist_Ref => Make_Identifier (Loc, Name_L),
6178 With_Attach => Make_Identifier (Loc, Name_B))));
6179
6180 else
6181 Set_Handled_Statement_Sequence (Decl,
6182 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6183 Make_Null_Statement (Loc))));
6184 end if;
6185
6186 Append_To (Res, Decl);
6187 end if;
6188
fbf5a39b 6189 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
70482933
RK
6190
6191 if Is_Controlled (Tag_Typ) then
6192 Set_Handled_Statement_Sequence (Decl,
6193 Make_Handled_Sequence_Of_Statements (Loc,
6194 Make_Final_Call (
6195 Ref => Make_Identifier (Loc, Name_V),
6196 Typ => Tag_Typ,
6197 With_Detach => Make_Identifier (Loc, Name_B))));
6198
6199 else
6200 Set_Handled_Statement_Sequence (Decl,
6201 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6202 Make_Null_Statement (Loc))));
6203 end if;
6204
6205 Append_To (Res, Decl);
6206 end if;
6207
6208 return Res;
6209 end Predefined_Primitive_Bodies;
6210
6211 ---------------------------------
6212 -- Predefined_Primitive_Freeze --
6213 ---------------------------------
6214
6215 function Predefined_Primitive_Freeze
fbf5a39b 6216 (Tag_Typ : Entity_Id) return List_Id
70482933
RK
6217 is
6218 Loc : constant Source_Ptr := Sloc (Tag_Typ);
fbf5a39b 6219 Res : constant List_Id := New_List;
70482933
RK
6220 Prim : Elmt_Id;
6221 Frnodes : List_Id;
6222
6223 begin
6224 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6225 while Present (Prim) loop
6226 if Is_Internal (Node (Prim)) then
6227 Frnodes := Freeze_Entity (Node (Prim), Loc);
6228
6229 if Present (Frnodes) then
6230 Append_List_To (Res, Frnodes);
6231 end if;
6232 end if;
6233
6234 Next_Elmt (Prim);
6235 end loop;
6236
6237 return Res;
6238 end Predefined_Primitive_Freeze;
a778d033 6239
d2d3604c
TQ
6240 -------------------------
6241 -- Stream_Operation_OK --
6242 -------------------------
6243
6244 function Stream_Operation_OK
6245 (Typ : Entity_Id;
6246 Operation : TSS_Name_Type) return Boolean
6247 is
6248 Has_Inheritable_Stream_Attribute : Boolean := False;
a778d033 6249
a778d033 6250 begin
d2d3604c
TQ
6251 if Is_Limited_Type (Typ)
6252 and then Is_Tagged_Type (Typ)
6253 and then Is_Derived_Type (Typ)
6254 then
6255 -- Special case of a limited type extension: a default implementation
6256 -- of the stream attributes Read and Write exists if the attribute
6257 -- has been specified for an ancestor type.
6258
6259 Has_Inheritable_Stream_Attribute :=
6260 Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
6261 end if;
6262
a778d033 6263 return
d2d3604c
TQ
6264 not (Is_Limited_Type (Typ)
6265 and then not Has_Inheritable_Stream_Attribute)
a778d033
AC
6266 and then RTE_Available (RE_Tag)
6267 and then RTE_Available (RE_Root_Stream_Type)
6268 and then not Restriction_Active (No_Dispatch)
6269 and then not Restriction_Active (No_Streams);
d2d3604c 6270 end Stream_Operation_OK;
70482933 6271end Exp_Ch3;