]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
a-reatim.adb: Call System.OS_Primitives.Initialize during elaboration
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
9cbfc269 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
70482933 34with Exp_Ch3; use Exp_Ch3;
20b5d666 35with Exp_Ch6; use Exp_Ch6;
70482933
RK
36with Exp_Ch7; use Exp_Ch7;
37with Exp_Ch9; use Exp_Ch9;
20b5d666 38with Exp_Disp; use Exp_Disp;
70482933
RK
39with Exp_Fixd; use Exp_Fixd;
40with Exp_Pakd; use Exp_Pakd;
41with Exp_Tss; use Exp_Tss;
42with Exp_Util; use Exp_Util;
43with Exp_VFpt; use Exp_VFpt;
f02b8bb8 44with Freeze; use Freeze;
70482933 45with Inline; use Inline;
26bff3d9 46with Namet; use Namet;
70482933
RK
47with Nlists; use Nlists;
48with Nmake; use Nmake;
49with Opt; use Opt;
25adc5fb 50with Par_SCO; use Par_SCO;
0669bebe
GB
51with Restrict; use Restrict;
52with Rident; use Rident;
70482933
RK
53with Rtsfind; use Rtsfind;
54with Sem; use Sem;
a4100e55 55with Sem_Aux; use Sem_Aux;
70482933 56with Sem_Cat; use Sem_Cat;
5d09245e 57with Sem_Ch3; use Sem_Ch3;
26bff3d9 58with Sem_Ch8; use Sem_Ch8;
70482933
RK
59with Sem_Ch13; use Sem_Ch13;
60with Sem_Eval; use Sem_Eval;
61with Sem_Res; use Sem_Res;
62with Sem_Type; use Sem_Type;
63with Sem_Util; use Sem_Util;
07fc65c4 64with Sem_Warn; use Sem_Warn;
70482933 65with Sinfo; use Sinfo;
70482933
RK
66with Snames; use Snames;
67with Stand; use Stand;
7665e4bd 68with SCIL_LL; use SCIL_LL;
07fc65c4 69with Targparm; use Targparm;
70482933
RK
70with Tbuild; use Tbuild;
71with Ttypes; use Ttypes;
72with Uintp; use Uintp;
73with Urealp; use Urealp;
74with Validsw; use Validsw;
75
76package body Exp_Ch4 is
77
15ce9ca2
AC
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
70482933
RK
81
82 procedure Binary_Op_Validity_Checks (N : Node_Id);
83 pragma Inline (Binary_Op_Validity_Checks);
84 -- Performs validity checks for a binary operator
85
fbf5a39b
AC
86 procedure Build_Boolean_Array_Proc_Call
87 (N : Node_Id;
88 Op1 : Node_Id;
89 Op2 : Node_Id);
303b4d58 90 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
91 -- corresponding library procedure.
92
26bff3d9
JM
93 procedure Displace_Allocator_Pointer (N : Node_Id);
94 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
95 -- Expand_Allocator_Expression. Allocating class-wide interface objects
96 -- this routine displaces the pointer to the allocated object to reference
97 -- the component referencing the corresponding secondary dispatch table.
98
fbf5a39b
AC
99 procedure Expand_Allocator_Expression (N : Node_Id);
100 -- Subsidiary to Expand_N_Allocator, for the case when the expression
101 -- is a qualified expression or an aggregate.
102
70482933
RK
103 procedure Expand_Array_Comparison (N : Node_Id);
104 -- This routine handles expansion of the comparison operators (N_Op_Lt,
105 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
106 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
107 -- the actual comparison call that is made. Special processing (call a
108 -- run-time routine)
70482933
RK
109
110 function Expand_Array_Equality
111 (Nod : Node_Id;
70482933
RK
112 Lhs : Node_Id;
113 Rhs : Node_Id;
0da2c8ac
AC
114 Bodies : List_Id;
115 Typ : Entity_Id) return Node_Id;
70482933 116 -- Expand an array equality into a call to a function implementing this
685094bf
RD
117 -- equality, and a call to it. Loc is the location for the generated nodes.
118 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
119 -- on which to attach bodies of local functions that are created in the
120 -- process. It is the responsibility of the caller to insert those bodies
121 -- at the right place. Nod provides the Sloc value for the generated code.
122 -- Normally the types used for the generated equality routine are taken
123 -- from Lhs and Rhs. However, in some situations of generated code, the
124 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
125 -- the type to be used for the formal parameters.
70482933
RK
126
127 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
128 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
129 -- case of array type arguments.
70482933 130
5875f8d6
AC
131 procedure Expand_Short_Circuit_Operator (N : Node_Id);
132 -- Common expansion processing for short-circuit boolean operators
133
70482933
RK
134 function Expand_Composite_Equality
135 (Nod : Node_Id;
136 Typ : Entity_Id;
137 Lhs : Node_Id;
138 Rhs : Node_Id;
2e071734 139 Bodies : List_Id) return Node_Id;
685094bf
RD
140 -- Local recursive function used to expand equality for nested composite
141 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
142 -- to attach bodies of local functions that are created in the process.
143 -- This is the responsibility of the caller to insert those bodies at the
144 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
145 -- are the left and right sides for the comparison, and Typ is the type of
146 -- the arrays to compare.
70482933 147
fdac1f80
AC
148 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
149 -- Routine to expand concatenation of a sequence of two or more operands
150 -- (in the list Operands) and replace node Cnode with the result of the
151 -- concatenation. The operands can be of any appropriate type, and can
152 -- include both arrays and singleton elements.
70482933
RK
153
154 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
155 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
156 -- fixed. We do not have such a type at runtime, so the purpose of this
157 -- routine is to find the real type by looking up the tree. We also
158 -- determine if the operation must be rounded.
70482933 159
fbf5a39b
AC
160 function Get_Allocator_Final_List
161 (N : Node_Id;
162 T : Entity_Id;
2e071734 163 PtrT : Entity_Id) return Entity_Id;
685094bf
RD
164 -- If the designated type is controlled, build final_list expression for
165 -- created object. If context is an access parameter, create a local access
166 -- type to have a usable finalization list.
fbf5a39b 167
5d09245e
AC
168 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
169 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
170 -- discriminants if it has a constrained nominal type, unless the object
171 -- is a component of an enclosing Unchecked_Union object that is subject
172 -- to a per-object constraint and the enclosing object lacks inferable
173 -- discriminants.
174 --
175 -- An expression of an Unchecked_Union type has inferable discriminants
176 -- if it is either a name of an object with inferable discriminants or a
177 -- qualified expression whose subtype mark denotes a constrained subtype.
178
70482933 179 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
180 -- N is an expression whose type is an access. When the type of the
181 -- associated storage pool is derived from Checked_Pool, generate a
182 -- call to the 'Dereference' primitive operation.
70482933
RK
183
184 function Make_Array_Comparison_Op
2e071734
AC
185 (Typ : Entity_Id;
186 Nod : Node_Id) return Node_Id;
685094bf
RD
187 -- Comparisons between arrays are expanded in line. This function produces
188 -- the body of the implementation of (a > b), where a and b are one-
189 -- dimensional arrays of some discrete type. The original node is then
190 -- expanded into the appropriate call to this function. Nod provides the
191 -- Sloc value for the generated code.
70482933
RK
192
193 function Make_Boolean_Array_Op
2e071734
AC
194 (Typ : Entity_Id;
195 N : Node_Id) return Node_Id;
685094bf
RD
196 -- Boolean operations on boolean arrays are expanded in line. This function
197 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
198 -- b). It is used only the normal case and not the packed case. The type
199 -- involved, Typ, is the Boolean array type, and the logical operations in
200 -- the body are simple boolean operations. Note that Typ is always a
201 -- constrained type (the caller has ensured this by using
202 -- Convert_To_Actual_Subtype if necessary).
70482933
RK
203
204 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 205 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
206 -- compile time, then the node N can be rewritten with True or False. If
207 -- the outcome cannot be determined at compile time, the call has no
208 -- effect. If N is a type conversion, then this processing is applied to
209 -- its expression. If N is neither comparison nor a type conversion, the
210 -- call has no effect.
70482933 211
82878151
AC
212 procedure Tagged_Membership
213 (N : Node_Id;
214 SCIL_Node : out Node_Id;
215 Result : out Node_Id);
70482933
RK
216 -- Construct the expression corresponding to the tagged membership test.
217 -- Deals with a second operand being (or not) a class-wide type.
218
fbf5a39b 219 function Safe_In_Place_Array_Op
2e071734
AC
220 (Lhs : Node_Id;
221 Op1 : Node_Id;
222 Op2 : Node_Id) return Boolean;
685094bf
RD
223 -- In the context of an assignment, where the right-hand side is a boolean
224 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 225
70482933
RK
226 procedure Unary_Op_Validity_Checks (N : Node_Id);
227 pragma Inline (Unary_Op_Validity_Checks);
228 -- Performs validity checks for a unary operator
229
230 -------------------------------
231 -- Binary_Op_Validity_Checks --
232 -------------------------------
233
234 procedure Binary_Op_Validity_Checks (N : Node_Id) is
235 begin
236 if Validity_Checks_On and Validity_Check_Operands then
237 Ensure_Valid (Left_Opnd (N));
238 Ensure_Valid (Right_Opnd (N));
239 end if;
240 end Binary_Op_Validity_Checks;
241
fbf5a39b
AC
242 ------------------------------------
243 -- Build_Boolean_Array_Proc_Call --
244 ------------------------------------
245
246 procedure Build_Boolean_Array_Proc_Call
247 (N : Node_Id;
248 Op1 : Node_Id;
249 Op2 : Node_Id)
250 is
251 Loc : constant Source_Ptr := Sloc (N);
252 Kind : constant Node_Kind := Nkind (Expression (N));
253 Target : constant Node_Id :=
254 Make_Attribute_Reference (Loc,
255 Prefix => Name (N),
256 Attribute_Name => Name_Address);
257
258 Arg1 : constant Node_Id := Op1;
259 Arg2 : Node_Id := Op2;
260 Call_Node : Node_Id;
261 Proc_Name : Entity_Id;
262
263 begin
264 if Kind = N_Op_Not then
265 if Nkind (Op1) in N_Binary_Op then
266
5e1c00fa 267 -- Use negated version of the binary operators
fbf5a39b
AC
268
269 if Nkind (Op1) = N_Op_And then
270 Proc_Name := RTE (RE_Vector_Nand);
271
272 elsif Nkind (Op1) = N_Op_Or then
273 Proc_Name := RTE (RE_Vector_Nor);
274
275 else pragma Assert (Nkind (Op1) = N_Op_Xor);
276 Proc_Name := RTE (RE_Vector_Xor);
277 end if;
278
279 Call_Node :=
280 Make_Procedure_Call_Statement (Loc,
281 Name => New_Occurrence_Of (Proc_Name, Loc),
282
283 Parameter_Associations => New_List (
284 Target,
285 Make_Attribute_Reference (Loc,
286 Prefix => Left_Opnd (Op1),
287 Attribute_Name => Name_Address),
288
289 Make_Attribute_Reference (Loc,
290 Prefix => Right_Opnd (Op1),
291 Attribute_Name => Name_Address),
292
293 Make_Attribute_Reference (Loc,
294 Prefix => Left_Opnd (Op1),
295 Attribute_Name => Name_Length)));
296
297 else
298 Proc_Name := RTE (RE_Vector_Not);
299
300 Call_Node :=
301 Make_Procedure_Call_Statement (Loc,
302 Name => New_Occurrence_Of (Proc_Name, Loc),
303 Parameter_Associations => New_List (
304 Target,
305
306 Make_Attribute_Reference (Loc,
307 Prefix => Op1,
308 Attribute_Name => Name_Address),
309
310 Make_Attribute_Reference (Loc,
311 Prefix => Op1,
312 Attribute_Name => Name_Length)));
313 end if;
314
315 else
316 -- We use the following equivalences:
317
318 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
319 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
320 -- (not X) xor (not Y) = X xor Y
321 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
322
323 if Nkind (Op1) = N_Op_Not then
324 if Kind = N_Op_And then
325 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
326 elsif Kind = N_Op_Or then
327 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
328 else
329 Proc_Name := RTE (RE_Vector_Xor);
330 end if;
331
332 else
333 if Kind = N_Op_And then
334 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
335 elsif Kind = N_Op_Or then
336 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
337 elsif Nkind (Op2) = N_Op_Not then
338 Proc_Name := RTE (RE_Vector_Nxor);
339 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
340 else
341 Proc_Name := RTE (RE_Vector_Xor);
342 end if;
343 end if;
344
345 Call_Node :=
346 Make_Procedure_Call_Statement (Loc,
347 Name => New_Occurrence_Of (Proc_Name, Loc),
348 Parameter_Associations => New_List (
349 Target,
955871d3
AC
350 Make_Attribute_Reference (Loc,
351 Prefix => Arg1,
352 Attribute_Name => Name_Address),
353 Make_Attribute_Reference (Loc,
354 Prefix => Arg2,
355 Attribute_Name => Name_Address),
356 Make_Attribute_Reference (Loc,
357 Prefix => Op1,
358 Attribute_Name => Name_Length)));
fbf5a39b
AC
359 end if;
360
361 Rewrite (N, Call_Node);
362 Analyze (N);
363
364 exception
365 when RE_Not_Available =>
366 return;
367 end Build_Boolean_Array_Proc_Call;
368
26bff3d9
JM
369 --------------------------------
370 -- Displace_Allocator_Pointer --
371 --------------------------------
372
373 procedure Displace_Allocator_Pointer (N : Node_Id) is
374 Loc : constant Source_Ptr := Sloc (N);
375 Orig_Node : constant Node_Id := Original_Node (N);
376 Dtyp : Entity_Id;
377 Etyp : Entity_Id;
378 PtrT : Entity_Id;
379
380 begin
303b4d58
AC
381 -- Do nothing in case of VM targets: the virtual machine will handle
382 -- interfaces directly.
383
1f110335 384 if not Tagged_Type_Expansion then
303b4d58
AC
385 return;
386 end if;
387
26bff3d9
JM
388 pragma Assert (Nkind (N) = N_Identifier
389 and then Nkind (Orig_Node) = N_Allocator);
390
391 PtrT := Etype (Orig_Node);
d6a24cdb 392 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
393 Etyp := Etype (Expression (Orig_Node));
394
395 if Is_Class_Wide_Type (Dtyp)
396 and then Is_Interface (Dtyp)
397 then
398 -- If the type of the allocator expression is not an interface type
399 -- we can generate code to reference the record component containing
400 -- the pointer to the secondary dispatch table.
401
402 if not Is_Interface (Etyp) then
403 declare
404 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
405
406 begin
407 -- 1) Get access to the allocated object
408
409 Rewrite (N,
410 Make_Explicit_Dereference (Loc,
411 Relocate_Node (N)));
412 Set_Etype (N, Etyp);
413 Set_Analyzed (N);
414
415 -- 2) Add the conversion to displace the pointer to reference
416 -- the secondary dispatch table.
417
418 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
419 Analyze_And_Resolve (N, Dtyp);
420
421 -- 3) The 'access to the secondary dispatch table will be used
422 -- as the value returned by the allocator.
423
424 Rewrite (N,
425 Make_Attribute_Reference (Loc,
426 Prefix => Relocate_Node (N),
427 Attribute_Name => Name_Access));
428 Set_Etype (N, Saved_Typ);
429 Set_Analyzed (N);
430 end;
431
432 -- If the type of the allocator expression is an interface type we
433 -- generate a run-time call to displace "this" to reference the
434 -- component containing the pointer to the secondary dispatch table
435 -- or else raise Constraint_Error if the actual object does not
436 -- implement the target interface. This case corresponds with the
437 -- following example:
438
8fc789c8 439 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
440 -- begin
441 -- return new Iface_2'Class'(Obj);
442 -- end Op;
443
444 else
445 Rewrite (N,
446 Unchecked_Convert_To (PtrT,
447 Make_Function_Call (Loc,
448 Name => New_Reference_To (RTE (RE_Displace), Loc),
449 Parameter_Associations => New_List (
450 Unchecked_Convert_To (RTE (RE_Address),
451 Relocate_Node (N)),
452
453 New_Occurrence_Of
454 (Elists.Node
455 (First_Elmt
456 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
457 Loc)))));
458 Analyze_And_Resolve (N, PtrT);
459 end if;
460 end if;
461 end Displace_Allocator_Pointer;
462
fbf5a39b
AC
463 ---------------------------------
464 -- Expand_Allocator_Expression --
465 ---------------------------------
466
467 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
468 Loc : constant Source_Ptr := Sloc (N);
469 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
470 PtrT : constant Entity_Id := Etype (N);
471 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
472
473 procedure Apply_Accessibility_Check
474 (Ref : Node_Id;
475 Built_In_Place : Boolean := False);
476 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
477 -- type, generate an accessibility check to verify that the level of the
478 -- type of the created object is not deeper than the level of the access
479 -- type. If the type of the qualified expression is class- wide, then
480 -- always generate the check (except in the case where it is known to be
481 -- unnecessary, see comment below). Otherwise, only generate the check
482 -- if the level of the qualified expression type is statically deeper
483 -- than the access type.
484 --
485 -- Although the static accessibility will generally have been performed
486 -- as a legality check, it won't have been done in cases where the
487 -- allocator appears in generic body, so a run-time check is needed in
488 -- general. One special case is when the access type is declared in the
489 -- same scope as the class-wide allocator, in which case the check can
490 -- never fail, so it need not be generated.
491 --
492 -- As an open issue, there seem to be cases where the static level
493 -- associated with the class-wide object's underlying type is not
494 -- sufficient to perform the proper accessibility check, such as for
495 -- allocators in nested subprograms or accept statements initialized by
496 -- class-wide formals when the actual originates outside at a deeper
497 -- static level. The nested subprogram case might require passing
498 -- accessibility levels along with class-wide parameters, and the task
499 -- case seems to be an actual gap in the language rules that needs to
500 -- be fixed by the ARG. ???
26bff3d9
JM
501
502 -------------------------------
503 -- Apply_Accessibility_Check --
504 -------------------------------
505
506 procedure Apply_Accessibility_Check
507 (Ref : Node_Id;
508 Built_In_Place : Boolean := False)
509 is
510 Ref_Node : Node_Id;
511
512 begin
513 -- Note: we skip the accessibility check for the VM case, since
514 -- there does not seem to be any practical way of implementing it.
515
516 if Ada_Version >= Ada_05
1f110335 517 and then Tagged_Type_Expansion
26bff3d9
JM
518 and then Is_Class_Wide_Type (DesigT)
519 and then not Scope_Suppress (Accessibility_Check)
520 and then
521 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
522 or else
523 (Is_Class_Wide_Type (Etype (Exp))
524 and then Scope (PtrT) /= Current_Scope))
525 then
526 -- If the allocator was built in place Ref is already a reference
527 -- to the access object initialized to the result of the allocator
528 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
529 -- it is the entity associated with the object containing the
530 -- address of the allocated object.
531
532 if Built_In_Place then
533 Ref_Node := New_Copy (Ref);
534 else
535 Ref_Node := New_Reference_To (Ref, Loc);
536 end if;
537
538 Insert_Action (N,
539 Make_Raise_Program_Error (Loc,
540 Condition =>
541 Make_Op_Gt (Loc,
542 Left_Opnd =>
543 Build_Get_Access_Level (Loc,
544 Make_Attribute_Reference (Loc,
545 Prefix => Ref_Node,
546 Attribute_Name => Name_Tag)),
547 Right_Opnd =>
548 Make_Integer_Literal (Loc,
549 Type_Access_Level (PtrT))),
550 Reason => PE_Accessibility_Check_Failed));
551 end if;
552 end Apply_Accessibility_Check;
553
554 -- Local variables
555
556 Indic : constant Node_Id := Subtype_Mark (Expression (N));
557 T : constant Entity_Id := Entity (Indic);
558 Flist : Node_Id;
559 Node : Node_Id;
560 Temp : Entity_Id;
fbf5a39b 561
d26dc4b5
AC
562 TagT : Entity_Id := Empty;
563 -- Type used as source for tag assignment
564
565 TagR : Node_Id := Empty;
566 -- Target reference for tag assignment
567
fbf5a39b
AC
568 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
569
570 Tag_Assign : Node_Id;
571 Tmp_Node : Node_Id;
572
26bff3d9
JM
573 -- Start of processing for Expand_Allocator_Expression
574
fbf5a39b 575 begin
048e5cef 576 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fbf5a39b 577
fadcf313
AC
578 if Is_CPP_Constructor_Call (Exp) then
579
580 -- Generate:
581 -- Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn
582
583 -- Allocate the object with no expression
584
585 Node := Relocate_Node (N);
7b4db06c 586 Set_Expression (Node, New_Reference_To (Etype (Exp), Loc));
fadcf313
AC
587
588 -- Avoid its expansion to avoid generating a call to the default
589 -- C++ constructor
590
591 Set_Analyzed (Node);
592
e86a3a7e 593 Temp := Make_Temporary (Loc, 'P', N);
fadcf313
AC
594
595 Insert_Action (N,
596 Make_Object_Declaration (Loc,
597 Defining_Identifier => Temp,
598 Constant_Present => True,
599 Object_Definition => New_Reference_To (PtrT, Loc),
600 Expression => Node));
601
602 Apply_Accessibility_Check (Temp);
603
ffa5876f 604 -- Locate the enclosing list and insert the C++ constructor call
fadcf313
AC
605
606 declare
ffa5876f 607 P : Node_Id;
fadcf313
AC
608
609 begin
ffa5876f 610 P := Parent (Node);
fadcf313
AC
611 while not Is_List_Member (P) loop
612 P := Parent (P);
613 end loop;
614
615 Insert_List_After_And_Analyze (P,
616 Build_Initialization_Call (Loc,
ffa5876f
AC
617 Id_Ref =>
618 Make_Explicit_Dereference (Loc,
619 Prefix => New_Reference_To (Temp, Loc)),
7b4db06c 620 Typ => Etype (Exp),
fadcf313
AC
621 Constructor_Ref => Exp));
622 end;
623
624 Rewrite (N, New_Reference_To (Temp, Loc));
625 Analyze_And_Resolve (N, PtrT);
fadcf313
AC
626 return;
627 end if;
628
685094bf
RD
629 -- Ada 2005 (AI-318-02): If the initialization expression is a call
630 -- to a build-in-place function, then access to the allocated object
631 -- must be passed to the function. Currently we limit such functions
632 -- to those with constrained limited result subtypes, but eventually
633 -- we plan to expand the allowed forms of functions that are treated
634 -- as build-in-place.
20b5d666
JM
635
636 if Ada_Version >= Ada_05
637 and then Is_Build_In_Place_Function_Call (Exp)
638 then
639 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
640 Apply_Accessibility_Check (N, Built_In_Place => True);
641 return;
20b5d666
JM
642 end if;
643
fbf5a39b
AC
644 -- Actions inserted before:
645 -- Temp : constant ptr_T := new T'(Expression);
646 -- <no CW> Temp._tag := T'tag;
647 -- <CTRL> Adjust (Finalizable (Temp.all));
648 -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
649
650 -- We analyze by hand the new internal allocator to avoid
651 -- any recursion and inappropriate call to Initialize
7324bf49 652
20b5d666
JM
653 -- We don't want to remove side effects when the expression must be
654 -- built in place. In the case of a build-in-place function call,
655 -- that could lead to a duplication of the call, which was already
656 -- substituted for the allocator.
657
26bff3d9 658 if not Aggr_In_Place then
fbf5a39b
AC
659 Remove_Side_Effects (Exp);
660 end if;
661
e86a3a7e 662 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
663
664 -- For a class wide allocation generate the following code:
665
666 -- type Equiv_Record is record ... end record;
667 -- implicit subtype CW is <Class_Wide_Subytpe>;
668 -- temp : PtrT := new CW'(CW!(expr));
669
670 if Is_Class_Wide_Type (T) then
671 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
672
26bff3d9
JM
673 -- Ada 2005 (AI-251): If the expression is a class-wide interface
674 -- object we generate code to move up "this" to reference the
675 -- base of the object before allocating the new object.
676
677 -- Note that Exp'Address is recursively expanded into a call
678 -- to Base_Address (Exp.Tag)
679
680 if Is_Class_Wide_Type (Etype (Exp))
681 and then Is_Interface (Etype (Exp))
1f110335 682 and then Tagged_Type_Expansion
26bff3d9
JM
683 then
684 Set_Expression
685 (Expression (N),
686 Unchecked_Convert_To (Entity (Indic),
687 Make_Explicit_Dereference (Loc,
688 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
689 Make_Attribute_Reference (Loc,
690 Prefix => Exp,
691 Attribute_Name => Name_Address)))));
692
693 else
694 Set_Expression
695 (Expression (N),
696 Unchecked_Convert_To (Entity (Indic), Exp));
697 end if;
fbf5a39b
AC
698
699 Analyze_And_Resolve (Expression (N), Entity (Indic));
700 end if;
701
26bff3d9 702 -- Keep separate the management of allocators returning interfaces
fbf5a39b 703
26bff3d9
JM
704 if not Is_Interface (Directly_Designated_Type (PtrT)) then
705 if Aggr_In_Place then
706 Tmp_Node :=
707 Make_Object_Declaration (Loc,
708 Defining_Identifier => Temp,
709 Object_Definition => New_Reference_To (PtrT, Loc),
710 Expression =>
711 Make_Allocator (Loc,
712 New_Reference_To (Etype (Exp), Loc)));
fbf5a39b 713
fad0600d
AC
714 -- Copy the Comes_From_Source flag for the allocator we just
715 -- built, since logically this allocator is a replacement of
716 -- the original allocator node. This is for proper handling of
717 -- restriction No_Implicit_Heap_Allocations.
718
26bff3d9
JM
719 Set_Comes_From_Source
720 (Expression (Tmp_Node), Comes_From_Source (N));
fbf5a39b 721
26bff3d9
JM
722 Set_No_Initialization (Expression (Tmp_Node));
723 Insert_Action (N, Tmp_Node);
fbf5a39b 724
048e5cef 725 if Needs_Finalization (T)
26bff3d9
JM
726 and then Ekind (PtrT) = E_Anonymous_Access_Type
727 then
728 -- Create local finalization list for access parameter
729
730 Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
731 end if;
732
d766cee3 733 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
fad0600d 734
26bff3d9
JM
735 else
736 Node := Relocate_Node (N);
737 Set_Analyzed (Node);
738 Insert_Action (N,
739 Make_Object_Declaration (Loc,
740 Defining_Identifier => Temp,
741 Constant_Present => True,
742 Object_Definition => New_Reference_To (PtrT, Loc),
743 Expression => Node));
fbf5a39b
AC
744 end if;
745
26bff3d9
JM
746 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
747 -- interface type. In this case we use the type of the qualified
748 -- expression to allocate the object.
749
fbf5a39b 750 else
26bff3d9 751 declare
191fcb3a 752 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 753 New_Decl : Node_Id;
fbf5a39b 754
26bff3d9
JM
755 begin
756 New_Decl :=
757 Make_Full_Type_Declaration (Loc,
758 Defining_Identifier => Def_Id,
759 Type_Definition =>
760 Make_Access_To_Object_Definition (Loc,
761 All_Present => True,
762 Null_Exclusion_Present => False,
763 Constant_Present => False,
764 Subtype_Indication =>
765 New_Reference_To (Etype (Exp), Loc)));
766
767 Insert_Action (N, New_Decl);
768
769 -- Inherit the final chain to ensure that the expansion of the
770 -- aggregate is correct in case of controlled types
771
048e5cef 772 if Needs_Finalization (Directly_Designated_Type (PtrT)) then
26bff3d9
JM
773 Set_Associated_Final_Chain (Def_Id,
774 Associated_Final_Chain (PtrT));
775 end if;
758c442c 776
26bff3d9
JM
777 -- Declare the object using the previous type declaration
778
779 if Aggr_In_Place then
780 Tmp_Node :=
781 Make_Object_Declaration (Loc,
782 Defining_Identifier => Temp,
783 Object_Definition => New_Reference_To (Def_Id, Loc),
784 Expression =>
785 Make_Allocator (Loc,
786 New_Reference_To (Etype (Exp), Loc)));
787
fad0600d
AC
788 -- Copy the Comes_From_Source flag for the allocator we just
789 -- built, since logically this allocator is a replacement of
790 -- the original allocator node. This is for proper handling
791 -- of restriction No_Implicit_Heap_Allocations.
792
26bff3d9
JM
793 Set_Comes_From_Source
794 (Expression (Tmp_Node), Comes_From_Source (N));
795
796 Set_No_Initialization (Expression (Tmp_Node));
797 Insert_Action (N, Tmp_Node);
798
048e5cef 799 if Needs_Finalization (T)
26bff3d9
JM
800 and then Ekind (PtrT) = E_Anonymous_Access_Type
801 then
802 -- Create local finalization list for access parameter
803
804 Flist :=
805 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
806 end if;
807
d766cee3 808 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
26bff3d9
JM
809 else
810 Node := Relocate_Node (N);
811 Set_Analyzed (Node);
812 Insert_Action (N,
813 Make_Object_Declaration (Loc,
814 Defining_Identifier => Temp,
815 Constant_Present => True,
816 Object_Definition => New_Reference_To (Def_Id, Loc),
817 Expression => Node));
818 end if;
819
820 -- Generate an additional object containing the address of the
821 -- returned object. The type of this second object declaration
685094bf
RD
822 -- is the correct type required for the common processing that
823 -- is still performed by this subprogram. The displacement of
824 -- this pointer to reference the component associated with the
825 -- interface type will be done at the end of common processing.
26bff3d9
JM
826
827 New_Decl :=
828 Make_Object_Declaration (Loc,
191fcb3a 829 Defining_Identifier => Make_Temporary (Loc, 'P'),
26bff3d9
JM
830 Object_Definition => New_Reference_To (PtrT, Loc),
831 Expression => Unchecked_Convert_To (PtrT,
832 New_Reference_To (Temp, Loc)));
833
834 Insert_Action (N, New_Decl);
835
836 Tmp_Node := New_Decl;
837 Temp := Defining_Identifier (New_Decl);
838 end;
758c442c
GD
839 end if;
840
26bff3d9
JM
841 Apply_Accessibility_Check (Temp);
842
843 -- Generate the tag assignment
844
845 -- Suppress the tag assignment when VM_Target because VM tags are
846 -- represented implicitly in objects.
847
1f110335 848 if not Tagged_Type_Expansion then
26bff3d9 849 null;
fbf5a39b 850
26bff3d9
JM
851 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
852 -- interface objects because in this case the tag does not change.
d26dc4b5 853
26bff3d9
JM
854 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
855 pragma Assert (Is_Class_Wide_Type
856 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
857 null;
858
859 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
860 TagT := T;
861 TagR := New_Reference_To (Temp, Loc);
862
863 elsif Is_Private_Type (T)
864 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 865 then
d26dc4b5 866 TagT := Underlying_Type (T);
dfd99a80
TQ
867 TagR :=
868 Unchecked_Convert_To (Underlying_Type (T),
869 Make_Explicit_Dereference (Loc,
870 Prefix => New_Reference_To (Temp, Loc)));
d26dc4b5
AC
871 end if;
872
873 if Present (TagT) then
fbf5a39b
AC
874 Tag_Assign :=
875 Make_Assignment_Statement (Loc,
876 Name =>
877 Make_Selected_Component (Loc,
d26dc4b5 878 Prefix => TagR,
fbf5a39b 879 Selector_Name =>
d26dc4b5 880 New_Reference_To (First_Tag_Component (TagT), Loc)),
fbf5a39b
AC
881
882 Expression =>
883 Unchecked_Convert_To (RTE (RE_Tag),
a9d8907c 884 New_Reference_To
d26dc4b5 885 (Elists.Node (First_Elmt (Access_Disp_Table (TagT))),
a9d8907c 886 Loc)));
fbf5a39b
AC
887
888 -- The previous assignment has to be done in any case
889
890 Set_Assignment_OK (Name (Tag_Assign));
891 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
892 end if;
893
048e5cef
BD
894 if Needs_Finalization (DesigT)
895 and then Needs_Finalization (T)
fbf5a39b
AC
896 then
897 declare
898 Attach : Node_Id;
899 Apool : constant Entity_Id :=
900 Associated_Storage_Pool (PtrT);
901
902 begin
685094bf
RD
903 -- If it is an allocation on the secondary stack (i.e. a value
904 -- returned from a function), the object is attached on the
905 -- caller side as soon as the call is completed (see
906 -- Expand_Ctrl_Function_Call)
fbf5a39b
AC
907
908 if Is_RTE (Apool, RE_SS_Pool) then
909 declare
191fcb3a 910 F : constant Entity_Id := Make_Temporary (Loc, 'F');
fbf5a39b
AC
911 begin
912 Insert_Action (N,
913 Make_Object_Declaration (Loc,
914 Defining_Identifier => F,
191fcb3a
RD
915 Object_Definition =>
916 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
fbf5a39b
AC
917 Flist := New_Reference_To (F, Loc);
918 Attach := Make_Integer_Literal (Loc, 1);
919 end;
920
921 -- Normal case, not a secondary stack allocation
922
923 else
048e5cef 924 if Needs_Finalization (T)
615cbd95
AC
925 and then Ekind (PtrT) = E_Anonymous_Access_Type
926 then
5e1c00fa 927 -- Create local finalization list for access parameter
615cbd95
AC
928
929 Flist :=
930 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
931 else
932 Flist := Find_Final_List (PtrT);
933 end if;
934
fbf5a39b
AC
935 Attach := Make_Integer_Literal (Loc, 2);
936 end if;
937
26bff3d9
JM
938 -- Generate an Adjust call if the object will be moved. In Ada
939 -- 2005, the object may be inherently limited, in which case
940 -- there is no Adjust procedure, and the object is built in
941 -- place. In Ada 95, the object can be limited but not
942 -- inherently limited if this allocator came from a return
943 -- statement (we're allocating the result on the secondary
944 -- stack). In that case, the object will be moved, so we _do_
945 -- want to Adjust.
946
947 if not Aggr_In_Place
948 and then not Is_Inherently_Limited_Type (T)
949 then
fbf5a39b
AC
950 Insert_Actions (N,
951 Make_Adjust_Call (
952 Ref =>
953
685094bf
RD
954 -- An unchecked conversion is needed in the classwide
955 -- case because the designated type can be an ancestor of
956 -- the subtype mark of the allocator.
fbf5a39b
AC
957
958 Unchecked_Convert_To (T,
959 Make_Explicit_Dereference (Loc,
dfd99a80 960 Prefix => New_Reference_To (Temp, Loc))),
fbf5a39b
AC
961
962 Typ => T,
963 Flist_Ref => Flist,
dfd99a80
TQ
964 With_Attach => Attach,
965 Allocator => True));
fbf5a39b
AC
966 end if;
967 end;
968 end if;
969
970 Rewrite (N, New_Reference_To (Temp, Loc));
971 Analyze_And_Resolve (N, PtrT);
972
685094bf
RD
973 -- Ada 2005 (AI-251): Displace the pointer to reference the record
974 -- component containing the secondary dispatch table of the interface
975 -- type.
26bff3d9
JM
976
977 if Is_Interface (Directly_Designated_Type (PtrT)) then
978 Displace_Allocator_Pointer (N);
979 end if;
980
fbf5a39b 981 elsif Aggr_In_Place then
e86a3a7e 982 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
983 Tmp_Node :=
984 Make_Object_Declaration (Loc,
985 Defining_Identifier => Temp,
986 Object_Definition => New_Reference_To (PtrT, Loc),
987 Expression => Make_Allocator (Loc,
988 New_Reference_To (Etype (Exp), Loc)));
989
fad0600d
AC
990 -- Copy the Comes_From_Source flag for the allocator we just built,
991 -- since logically this allocator is a replacement of the original
992 -- allocator node. This is for proper handling of restriction
993 -- No_Implicit_Heap_Allocations.
994
fbf5a39b
AC
995 Set_Comes_From_Source
996 (Expression (Tmp_Node), Comes_From_Source (N));
997
998 Set_No_Initialization (Expression (Tmp_Node));
999 Insert_Action (N, Tmp_Node);
d766cee3 1000 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
fbf5a39b
AC
1001 Rewrite (N, New_Reference_To (Temp, Loc));
1002 Analyze_And_Resolve (N, PtrT);
1003
51e4c4b9
AC
1004 elsif Is_Access_Type (T)
1005 and then Can_Never_Be_Null (T)
1006 then
1007 Install_Null_Excluding_Check (Exp);
1008
f02b8bb8 1009 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1010 and then Nkind (Exp) = N_Allocator
1011 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1012 then
0da2c8ac 1013 -- Apply constraint to designated subtype indication
fbf5a39b
AC
1014
1015 Apply_Constraint_Check (Expression (Exp),
f02b8bb8 1016 Designated_Type (DesigT),
fbf5a39b
AC
1017 No_Sliding => True);
1018
1019 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1020
1021 -- Propagate constraint_error to enclosing allocator
1022
1023 Rewrite (Exp, New_Copy (Expression (Exp)));
1024 end if;
1025 else
36c73552
AC
1026 -- If we have:
1027 -- type A is access T1;
1028 -- X : A := new T2'(...);
1029 -- T1 and T2 can be different subtypes, and we might need to check
1030 -- both constraints. First check against the type of the qualified
1031 -- expression.
1032
1033 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1034
d79e621a
GD
1035 if Do_Range_Check (Exp) then
1036 Set_Do_Range_Check (Exp, False);
1037 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1038 end if;
1039
685094bf
RD
1040 -- A check is also needed in cases where the designated subtype is
1041 -- constrained and differs from the subtype given in the qualified
1042 -- expression. Note that the check on the qualified expression does
1043 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1044
f02b8bb8 1045 if Is_Constrained (DesigT)
9450205a 1046 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1047 then
1048 Apply_Constraint_Check
f02b8bb8 1049 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1050
1051 if Do_Range_Check (Exp) then
1052 Set_Do_Range_Check (Exp, False);
1053 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1054 end if;
f02b8bb8
RD
1055 end if;
1056
685094bf
RD
1057 -- For an access to unconstrained packed array, GIGI needs to see an
1058 -- expression with a constrained subtype in order to compute the
1059 -- proper size for the allocator.
f02b8bb8
RD
1060
1061 if Is_Array_Type (T)
1062 and then not Is_Constrained (T)
1063 and then Is_Packed (T)
1064 then
1065 declare
191fcb3a 1066 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1067 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1068 begin
1069 Insert_Action (Exp,
1070 Make_Subtype_Declaration (Loc,
1071 Defining_Identifier => ConstrT,
1072 Subtype_Indication =>
1073 Make_Subtype_From_Expr (Exp, T)));
1074 Freeze_Itype (ConstrT, Exp);
1075 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1076 end;
fbf5a39b 1077 end if;
f02b8bb8 1078
685094bf
RD
1079 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1080 -- to a build-in-place function, then access to the allocated object
1081 -- must be passed to the function. Currently we limit such functions
1082 -- to those with constrained limited result subtypes, but eventually
1083 -- we plan to expand the allowed forms of functions that are treated
1084 -- as build-in-place.
20b5d666
JM
1085
1086 if Ada_Version >= Ada_05
1087 and then Is_Build_In_Place_Function_Call (Exp)
1088 then
1089 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1090 end if;
fbf5a39b
AC
1091 end if;
1092
1093 exception
1094 when RE_Not_Available =>
1095 return;
1096 end Expand_Allocator_Expression;
1097
70482933
RK
1098 -----------------------------
1099 -- Expand_Array_Comparison --
1100 -----------------------------
1101
685094bf
RD
1102 -- Expansion is only required in the case of array types. For the unpacked
1103 -- case, an appropriate runtime routine is called. For packed cases, and
1104 -- also in some other cases where a runtime routine cannot be called, the
1105 -- form of the expansion is:
70482933
RK
1106
1107 -- [body for greater_nn; boolean_expression]
1108
1109 -- The body is built by Make_Array_Comparison_Op, and the form of the
1110 -- Boolean expression depends on the operator involved.
1111
1112 procedure Expand_Array_Comparison (N : Node_Id) is
1113 Loc : constant Source_Ptr := Sloc (N);
1114 Op1 : Node_Id := Left_Opnd (N);
1115 Op2 : Node_Id := Right_Opnd (N);
1116 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1117 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1118
1119 Expr : Node_Id;
1120 Func_Body : Node_Id;
1121 Func_Name : Entity_Id;
1122
fbf5a39b
AC
1123 Comp : RE_Id;
1124
9bc43c53
AC
1125 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1126 -- True for byte addressable target
91b1417d 1127
fbf5a39b 1128 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1129 -- Returns True if the length of the given operand is known to be less
1130 -- than 4. Returns False if this length is known to be four or greater
1131 -- or is not known at compile time.
fbf5a39b
AC
1132
1133 ------------------------
1134 -- Length_Less_Than_4 --
1135 ------------------------
1136
1137 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1138 Otyp : constant Entity_Id := Etype (Opnd);
1139
1140 begin
1141 if Ekind (Otyp) = E_String_Literal_Subtype then
1142 return String_Literal_Length (Otyp) < 4;
1143
1144 else
1145 declare
1146 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1147 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1148 Hi : constant Node_Id := Type_High_Bound (Ityp);
1149 Lov : Uint;
1150 Hiv : Uint;
1151
1152 begin
1153 if Compile_Time_Known_Value (Lo) then
1154 Lov := Expr_Value (Lo);
1155 else
1156 return False;
1157 end if;
1158
1159 if Compile_Time_Known_Value (Hi) then
1160 Hiv := Expr_Value (Hi);
1161 else
1162 return False;
1163 end if;
1164
1165 return Hiv < Lov + 3;
1166 end;
1167 end if;
1168 end Length_Less_Than_4;
1169
1170 -- Start of processing for Expand_Array_Comparison
1171
70482933 1172 begin
fbf5a39b
AC
1173 -- Deal first with unpacked case, where we can call a runtime routine
1174 -- except that we avoid this for targets for which are not addressable
26bff3d9 1175 -- by bytes, and for the JVM/CIL, since they do not support direct
fbf5a39b
AC
1176 -- addressing of array components.
1177
1178 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1179 and then Byte_Addressable
26bff3d9 1180 and then VM_Target = No_VM
fbf5a39b
AC
1181 then
1182 -- The call we generate is:
1183
1184 -- Compare_Array_xn[_Unaligned]
1185 -- (left'address, right'address, left'length, right'length) <op> 0
1186
1187 -- x = U for unsigned, S for signed
1188 -- n = 8,16,32,64 for component size
1189 -- Add _Unaligned if length < 4 and component size is 8.
1190 -- <op> is the standard comparison operator
1191
1192 if Component_Size (Typ1) = 8 then
1193 if Length_Less_Than_4 (Op1)
1194 or else
1195 Length_Less_Than_4 (Op2)
1196 then
1197 if Is_Unsigned_Type (Ctyp) then
1198 Comp := RE_Compare_Array_U8_Unaligned;
1199 else
1200 Comp := RE_Compare_Array_S8_Unaligned;
1201 end if;
1202
1203 else
1204 if Is_Unsigned_Type (Ctyp) then
1205 Comp := RE_Compare_Array_U8;
1206 else
1207 Comp := RE_Compare_Array_S8;
1208 end if;
1209 end if;
1210
1211 elsif Component_Size (Typ1) = 16 then
1212 if Is_Unsigned_Type (Ctyp) then
1213 Comp := RE_Compare_Array_U16;
1214 else
1215 Comp := RE_Compare_Array_S16;
1216 end if;
1217
1218 elsif Component_Size (Typ1) = 32 then
1219 if Is_Unsigned_Type (Ctyp) then
1220 Comp := RE_Compare_Array_U32;
1221 else
1222 Comp := RE_Compare_Array_S32;
1223 end if;
1224
1225 else pragma Assert (Component_Size (Typ1) = 64);
1226 if Is_Unsigned_Type (Ctyp) then
1227 Comp := RE_Compare_Array_U64;
1228 else
1229 Comp := RE_Compare_Array_S64;
1230 end if;
1231 end if;
1232
1233 Remove_Side_Effects (Op1, Name_Req => True);
1234 Remove_Side_Effects (Op2, Name_Req => True);
1235
1236 Rewrite (Op1,
1237 Make_Function_Call (Sloc (Op1),
1238 Name => New_Occurrence_Of (RTE (Comp), Loc),
1239
1240 Parameter_Associations => New_List (
1241 Make_Attribute_Reference (Loc,
1242 Prefix => Relocate_Node (Op1),
1243 Attribute_Name => Name_Address),
1244
1245 Make_Attribute_Reference (Loc,
1246 Prefix => Relocate_Node (Op2),
1247 Attribute_Name => Name_Address),
1248
1249 Make_Attribute_Reference (Loc,
1250 Prefix => Relocate_Node (Op1),
1251 Attribute_Name => Name_Length),
1252
1253 Make_Attribute_Reference (Loc,
1254 Prefix => Relocate_Node (Op2),
1255 Attribute_Name => Name_Length))));
1256
1257 Rewrite (Op2,
1258 Make_Integer_Literal (Sloc (Op2),
1259 Intval => Uint_0));
1260
1261 Analyze_And_Resolve (Op1, Standard_Integer);
1262 Analyze_And_Resolve (Op2, Standard_Integer);
1263 return;
1264 end if;
1265
1266 -- Cases where we cannot make runtime call
1267
70482933
RK
1268 -- For (a <= b) we convert to not (a > b)
1269
1270 if Chars (N) = Name_Op_Le then
1271 Rewrite (N,
1272 Make_Op_Not (Loc,
1273 Right_Opnd =>
1274 Make_Op_Gt (Loc,
1275 Left_Opnd => Op1,
1276 Right_Opnd => Op2)));
1277 Analyze_And_Resolve (N, Standard_Boolean);
1278 return;
1279
1280 -- For < the Boolean expression is
1281 -- greater__nn (op2, op1)
1282
1283 elsif Chars (N) = Name_Op_Lt then
1284 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1285
1286 -- Switch operands
1287
1288 Op1 := Right_Opnd (N);
1289 Op2 := Left_Opnd (N);
1290
1291 -- For (a >= b) we convert to not (a < b)
1292
1293 elsif Chars (N) = Name_Op_Ge then
1294 Rewrite (N,
1295 Make_Op_Not (Loc,
1296 Right_Opnd =>
1297 Make_Op_Lt (Loc,
1298 Left_Opnd => Op1,
1299 Right_Opnd => Op2)));
1300 Analyze_And_Resolve (N, Standard_Boolean);
1301 return;
1302
1303 -- For > the Boolean expression is
1304 -- greater__nn (op1, op2)
1305
1306 else
1307 pragma Assert (Chars (N) = Name_Op_Gt);
1308 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1309 end if;
1310
1311 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1312 Expr :=
1313 Make_Function_Call (Loc,
1314 Name => New_Reference_To (Func_Name, Loc),
1315 Parameter_Associations => New_List (Op1, Op2));
1316
1317 Insert_Action (N, Func_Body);
1318 Rewrite (N, Expr);
1319 Analyze_And_Resolve (N, Standard_Boolean);
1320
fbf5a39b
AC
1321 exception
1322 when RE_Not_Available =>
1323 return;
70482933
RK
1324 end Expand_Array_Comparison;
1325
1326 ---------------------------
1327 -- Expand_Array_Equality --
1328 ---------------------------
1329
685094bf
RD
1330 -- Expand an equality function for multi-dimensional arrays. Here is an
1331 -- example of such a function for Nb_Dimension = 2
70482933 1332
0da2c8ac 1333 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1334 -- begin
fbf5a39b
AC
1335 -- if (A'length (1) = 0 or else A'length (2) = 0)
1336 -- and then
1337 -- (B'length (1) = 0 or else B'length (2) = 0)
1338 -- then
1339 -- return True; -- RM 4.5.2(22)
1340 -- end if;
0da2c8ac 1341
fbf5a39b
AC
1342 -- if A'length (1) /= B'length (1)
1343 -- or else
1344 -- A'length (2) /= B'length (2)
1345 -- then
1346 -- return False; -- RM 4.5.2(23)
1347 -- end if;
0da2c8ac 1348
fbf5a39b 1349 -- declare
523456db
AC
1350 -- A1 : Index_T1 := A'first (1);
1351 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1352 -- begin
523456db 1353 -- loop
fbf5a39b 1354 -- declare
523456db
AC
1355 -- A2 : Index_T2 := A'first (2);
1356 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1357 -- begin
523456db 1358 -- loop
fbf5a39b
AC
1359 -- if A (A1, A2) /= B (B1, B2) then
1360 -- return False;
70482933 1361 -- end if;
0da2c8ac 1362
523456db
AC
1363 -- exit when A2 = A'last (2);
1364 -- A2 := Index_T2'succ (A2);
0da2c8ac 1365 -- B2 := Index_T2'succ (B2);
70482933 1366 -- end loop;
fbf5a39b 1367 -- end;
0da2c8ac 1368
523456db
AC
1369 -- exit when A1 = A'last (1);
1370 -- A1 := Index_T1'succ (A1);
0da2c8ac 1371 -- B1 := Index_T1'succ (B1);
70482933 1372 -- end loop;
fbf5a39b 1373 -- end;
0da2c8ac 1374
70482933
RK
1375 -- return true;
1376 -- end Enn;
1377
685094bf
RD
1378 -- Note on the formal types used (atyp and btyp). If either of the arrays
1379 -- is of a private type, we use the underlying type, and do an unchecked
1380 -- conversion of the actual. If either of the arrays has a bound depending
1381 -- on a discriminant, then we use the base type since otherwise we have an
1382 -- escaped discriminant in the function.
0da2c8ac 1383
685094bf
RD
1384 -- If both arrays are constrained and have the same bounds, we can generate
1385 -- a loop with an explicit iteration scheme using a 'Range attribute over
1386 -- the first array.
523456db 1387
70482933
RK
1388 function Expand_Array_Equality
1389 (Nod : Node_Id;
70482933
RK
1390 Lhs : Node_Id;
1391 Rhs : Node_Id;
0da2c8ac
AC
1392 Bodies : List_Id;
1393 Typ : Entity_Id) return Node_Id
70482933
RK
1394 is
1395 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1396 Decls : constant List_Id := New_List;
1397 Index_List1 : constant List_Id := New_List;
1398 Index_List2 : constant List_Id := New_List;
1399
1400 Actuals : List_Id;
1401 Formals : List_Id;
1402 Func_Name : Entity_Id;
1403 Func_Body : Node_Id;
70482933
RK
1404
1405 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1406 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1407
0da2c8ac
AC
1408 Ltyp : Entity_Id;
1409 Rtyp : Entity_Id;
1410 -- The parameter types to be used for the formals
1411
fbf5a39b
AC
1412 function Arr_Attr
1413 (Arr : Entity_Id;
1414 Nam : Name_Id;
2e071734 1415 Num : Int) return Node_Id;
5e1c00fa 1416 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1417
70482933 1418 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf
RD
1419 -- Create one statement to compare corresponding components, designated
1420 -- by a full set of indices.
70482933 1421
0da2c8ac 1422 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1423 -- Given one of the arguments, computes the appropriate type to be used
1424 -- for that argument in the corresponding function formal
0da2c8ac 1425
fbf5a39b 1426 function Handle_One_Dimension
70482933 1427 (N : Int;
2e071734 1428 Index : Node_Id) return Node_Id;
0da2c8ac 1429 -- This procedure returns the following code
fbf5a39b
AC
1430 --
1431 -- declare
523456db 1432 -- Bn : Index_T := B'First (N);
fbf5a39b 1433 -- begin
523456db 1434 -- loop
fbf5a39b 1435 -- xxx
523456db
AC
1436 -- exit when An = A'Last (N);
1437 -- An := Index_T'Succ (An)
0da2c8ac 1438 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1439 -- end loop;
1440 -- end;
1441 --
523456db
AC
1442 -- If both indices are constrained and identical, the procedure
1443 -- returns a simpler loop:
1444 --
1445 -- for An in A'Range (N) loop
1446 -- xxx
1447 -- end loop
0da2c8ac 1448 --
523456db 1449 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1450 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1451 -- xxx statement is either the loop or declare for the next dimension
1452 -- or if this is the last dimension the comparison of corresponding
1453 -- components of the arrays.
fbf5a39b 1454 --
685094bf
RD
1455 -- The actual way the code works is to return the comparison of
1456 -- corresponding components for the N+1 call. That's neater!
fbf5a39b
AC
1457
1458 function Test_Empty_Arrays return Node_Id;
1459 -- This function constructs the test for both arrays being empty
1460 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1461 -- and then
1462 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1463
1464 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1465 -- This function constructs the test for arrays having different lengths
1466 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1467
1468 -- A'length (1) /= B'length (1)
1469 -- or else
1470 -- A'length (2) /= B'length (2)
1471 -- or else
1472 -- ...
1473
1474 --------------
1475 -- Arr_Attr --
1476 --------------
1477
1478 function Arr_Attr
1479 (Arr : Entity_Id;
1480 Nam : Name_Id;
2e071734 1481 Num : Int) return Node_Id
fbf5a39b
AC
1482 is
1483 begin
1484 return
1485 Make_Attribute_Reference (Loc,
1486 Attribute_Name => Nam,
1487 Prefix => New_Reference_To (Arr, Loc),
1488 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1489 end Arr_Attr;
70482933
RK
1490
1491 ------------------------
1492 -- Component_Equality --
1493 ------------------------
1494
1495 function Component_Equality (Typ : Entity_Id) return Node_Id is
1496 Test : Node_Id;
1497 L, R : Node_Id;
1498
1499 begin
1500 -- if a(i1...) /= b(j1...) then return false; end if;
1501
1502 L :=
1503 Make_Indexed_Component (Loc,
1504 Prefix => Make_Identifier (Loc, Chars (A)),
1505 Expressions => Index_List1);
1506
1507 R :=
1508 Make_Indexed_Component (Loc,
1509 Prefix => Make_Identifier (Loc, Chars (B)),
1510 Expressions => Index_List2);
1511
1512 Test := Expand_Composite_Equality
1513 (Nod, Component_Type (Typ), L, R, Decls);
1514
a9d8907c
JM
1515 -- If some (sub)component is an unchecked_union, the whole operation
1516 -- will raise program error.
8aceda64
AC
1517
1518 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1519
1520 -- This node is going to be inserted at a location where a
685094bf
RD
1521 -- statement is expected: clear its Etype so analysis will set
1522 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1523
1524 Set_Etype (Test, Empty);
8aceda64
AC
1525 return Test;
1526
1527 else
1528 return
1529 Make_Implicit_If_Statement (Nod,
1530 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1531 Then_Statements => New_List (
d766cee3 1532 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1533 Expression => New_Occurrence_Of (Standard_False, Loc))));
1534 end if;
70482933
RK
1535 end Component_Equality;
1536
0da2c8ac
AC
1537 ------------------
1538 -- Get_Arg_Type --
1539 ------------------
1540
1541 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1542 T : Entity_Id;
1543 X : Node_Id;
1544
1545 begin
1546 T := Etype (N);
1547
1548 if No (T) then
1549 return Typ;
1550
1551 else
1552 T := Underlying_Type (T);
1553
1554 X := First_Index (T);
1555 while Present (X) loop
1556 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1557 or else
1558 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1559 then
1560 T := Base_Type (T);
1561 exit;
1562 end if;
1563
1564 Next_Index (X);
1565 end loop;
1566
1567 return T;
1568 end if;
1569 end Get_Arg_Type;
1570
fbf5a39b
AC
1571 --------------------------
1572 -- Handle_One_Dimension --
1573 ---------------------------
70482933 1574
fbf5a39b 1575 function Handle_One_Dimension
70482933 1576 (N : Int;
2e071734 1577 Index : Node_Id) return Node_Id
70482933 1578 is
0da2c8ac
AC
1579 Need_Separate_Indexes : constant Boolean :=
1580 Ltyp /= Rtyp
1581 or else not Is_Constrained (Ltyp);
1582 -- If the index types are identical, and we are working with
685094bf
RD
1583 -- constrained types, then we can use the same index for both
1584 -- of the arrays.
0da2c8ac 1585
191fcb3a 1586 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1587
1588 Bn : Entity_Id;
1589 Index_T : Entity_Id;
1590 Stm_List : List_Id;
1591 Loop_Stm : Node_Id;
70482933
RK
1592
1593 begin
0da2c8ac
AC
1594 if N > Number_Dimensions (Ltyp) then
1595 return Component_Equality (Ltyp);
fbf5a39b 1596 end if;
70482933 1597
0da2c8ac
AC
1598 -- Case where we generate a loop
1599
1600 Index_T := Base_Type (Etype (Index));
1601
1602 if Need_Separate_Indexes then
191fcb3a 1603 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1604 else
1605 Bn := An;
1606 end if;
70482933 1607
fbf5a39b
AC
1608 Append (New_Reference_To (An, Loc), Index_List1);
1609 Append (New_Reference_To (Bn, Loc), Index_List2);
70482933 1610
0da2c8ac
AC
1611 Stm_List := New_List (
1612 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1613
0da2c8ac 1614 if Need_Separate_Indexes then
a9d8907c 1615
5e1c00fa 1616 -- Generate guard for loop, followed by increments of indices
523456db
AC
1617
1618 Append_To (Stm_List,
1619 Make_Exit_Statement (Loc,
1620 Condition =>
1621 Make_Op_Eq (Loc,
1622 Left_Opnd => New_Reference_To (An, Loc),
1623 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1624
1625 Append_To (Stm_List,
1626 Make_Assignment_Statement (Loc,
1627 Name => New_Reference_To (An, Loc),
1628 Expression =>
1629 Make_Attribute_Reference (Loc,
1630 Prefix => New_Reference_To (Index_T, Loc),
1631 Attribute_Name => Name_Succ,
1632 Expressions => New_List (New_Reference_To (An, Loc)))));
1633
0da2c8ac
AC
1634 Append_To (Stm_List,
1635 Make_Assignment_Statement (Loc,
1636 Name => New_Reference_To (Bn, Loc),
1637 Expression =>
1638 Make_Attribute_Reference (Loc,
1639 Prefix => New_Reference_To (Index_T, Loc),
1640 Attribute_Name => Name_Succ,
1641 Expressions => New_List (New_Reference_To (Bn, Loc)))));
1642 end if;
1643
a9d8907c
JM
1644 -- If separate indexes, we need a declare block for An and Bn, and a
1645 -- loop without an iteration scheme.
0da2c8ac
AC
1646
1647 if Need_Separate_Indexes then
523456db
AC
1648 Loop_Stm :=
1649 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1650
0da2c8ac
AC
1651 return
1652 Make_Block_Statement (Loc,
1653 Declarations => New_List (
523456db
AC
1654 Make_Object_Declaration (Loc,
1655 Defining_Identifier => An,
1656 Object_Definition => New_Reference_To (Index_T, Loc),
1657 Expression => Arr_Attr (A, Name_First, N)),
1658
0da2c8ac
AC
1659 Make_Object_Declaration (Loc,
1660 Defining_Identifier => Bn,
1661 Object_Definition => New_Reference_To (Index_T, Loc),
1662 Expression => Arr_Attr (B, Name_First, N))),
523456db 1663
0da2c8ac
AC
1664 Handled_Statement_Sequence =>
1665 Make_Handled_Sequence_Of_Statements (Loc,
1666 Statements => New_List (Loop_Stm)));
1667
523456db
AC
1668 -- If no separate indexes, return loop statement with explicit
1669 -- iteration scheme on its own
0da2c8ac
AC
1670
1671 else
523456db
AC
1672 Loop_Stm :=
1673 Make_Implicit_Loop_Statement (Nod,
1674 Statements => Stm_List,
1675 Iteration_Scheme =>
1676 Make_Iteration_Scheme (Loc,
1677 Loop_Parameter_Specification =>
1678 Make_Loop_Parameter_Specification (Loc,
1679 Defining_Identifier => An,
1680 Discrete_Subtype_Definition =>
1681 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
1682 return Loop_Stm;
1683 end if;
fbf5a39b
AC
1684 end Handle_One_Dimension;
1685
1686 -----------------------
1687 -- Test_Empty_Arrays --
1688 -----------------------
1689
1690 function Test_Empty_Arrays return Node_Id is
1691 Alist : Node_Id;
1692 Blist : Node_Id;
1693
1694 Atest : Node_Id;
1695 Btest : Node_Id;
70482933 1696
fbf5a39b
AC
1697 begin
1698 Alist := Empty;
1699 Blist := Empty;
0da2c8ac 1700 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
1701 Atest :=
1702 Make_Op_Eq (Loc,
1703 Left_Opnd => Arr_Attr (A, Name_Length, J),
1704 Right_Opnd => Make_Integer_Literal (Loc, 0));
1705
1706 Btest :=
1707 Make_Op_Eq (Loc,
1708 Left_Opnd => Arr_Attr (B, Name_Length, J),
1709 Right_Opnd => Make_Integer_Literal (Loc, 0));
1710
1711 if No (Alist) then
1712 Alist := Atest;
1713 Blist := Btest;
70482933 1714
fbf5a39b
AC
1715 else
1716 Alist :=
1717 Make_Or_Else (Loc,
1718 Left_Opnd => Relocate_Node (Alist),
1719 Right_Opnd => Atest);
1720
1721 Blist :=
1722 Make_Or_Else (Loc,
1723 Left_Opnd => Relocate_Node (Blist),
1724 Right_Opnd => Btest);
1725 end if;
1726 end loop;
70482933 1727
fbf5a39b
AC
1728 return
1729 Make_And_Then (Loc,
1730 Left_Opnd => Alist,
1731 Right_Opnd => Blist);
1732 end Test_Empty_Arrays;
70482933 1733
fbf5a39b
AC
1734 -----------------------------
1735 -- Test_Lengths_Correspond --
1736 -----------------------------
70482933 1737
fbf5a39b
AC
1738 function Test_Lengths_Correspond return Node_Id is
1739 Result : Node_Id;
1740 Rtest : Node_Id;
1741
1742 begin
1743 Result := Empty;
0da2c8ac 1744 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
1745 Rtest :=
1746 Make_Op_Ne (Loc,
1747 Left_Opnd => Arr_Attr (A, Name_Length, J),
1748 Right_Opnd => Arr_Attr (B, Name_Length, J));
1749
1750 if No (Result) then
1751 Result := Rtest;
1752 else
1753 Result :=
1754 Make_Or_Else (Loc,
1755 Left_Opnd => Relocate_Node (Result),
1756 Right_Opnd => Rtest);
1757 end if;
1758 end loop;
1759
1760 return Result;
1761 end Test_Lengths_Correspond;
70482933
RK
1762
1763 -- Start of processing for Expand_Array_Equality
1764
1765 begin
0da2c8ac
AC
1766 Ltyp := Get_Arg_Type (Lhs);
1767 Rtyp := Get_Arg_Type (Rhs);
1768
685094bf
RD
1769 -- For now, if the argument types are not the same, go to the base type,
1770 -- since the code assumes that the formals have the same type. This is
1771 -- fixable in future ???
0da2c8ac
AC
1772
1773 if Ltyp /= Rtyp then
1774 Ltyp := Base_Type (Ltyp);
1775 Rtyp := Base_Type (Rtyp);
1776 pragma Assert (Ltyp = Rtyp);
1777 end if;
1778
1779 -- Build list of formals for function
1780
70482933
RK
1781 Formals := New_List (
1782 Make_Parameter_Specification (Loc,
1783 Defining_Identifier => A,
0da2c8ac 1784 Parameter_Type => New_Reference_To (Ltyp, Loc)),
70482933
RK
1785
1786 Make_Parameter_Specification (Loc,
1787 Defining_Identifier => B,
0da2c8ac 1788 Parameter_Type => New_Reference_To (Rtyp, Loc)));
70482933 1789
191fcb3a 1790 Func_Name := Make_Temporary (Loc, 'E');
70482933 1791
fbf5a39b 1792 -- Build statement sequence for function
70482933
RK
1793
1794 Func_Body :=
1795 Make_Subprogram_Body (Loc,
1796 Specification =>
1797 Make_Function_Specification (Loc,
1798 Defining_Unit_Name => Func_Name,
1799 Parameter_Specifications => Formals,
630d30e9 1800 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
fbf5a39b
AC
1801
1802 Declarations => Decls,
1803
70482933
RK
1804 Handled_Statement_Sequence =>
1805 Make_Handled_Sequence_Of_Statements (Loc,
1806 Statements => New_List (
fbf5a39b
AC
1807
1808 Make_Implicit_If_Statement (Nod,
1809 Condition => Test_Empty_Arrays,
1810 Then_Statements => New_List (
d766cee3 1811 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
1812 Expression =>
1813 New_Occurrence_Of (Standard_True, Loc)))),
1814
1815 Make_Implicit_If_Statement (Nod,
1816 Condition => Test_Lengths_Correspond,
1817 Then_Statements => New_List (
d766cee3 1818 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
1819 Expression =>
1820 New_Occurrence_Of (Standard_False, Loc)))),
1821
0da2c8ac 1822 Handle_One_Dimension (1, First_Index (Ltyp)),
fbf5a39b 1823
d766cee3 1824 Make_Simple_Return_Statement (Loc,
70482933
RK
1825 Expression => New_Occurrence_Of (Standard_True, Loc)))));
1826
1827 Set_Has_Completion (Func_Name, True);
0da2c8ac 1828 Set_Is_Inlined (Func_Name);
70482933 1829
685094bf
RD
1830 -- If the array type is distinct from the type of the arguments, it
1831 -- is the full view of a private type. Apply an unchecked conversion
1832 -- to insure that analysis of the call succeeds.
70482933 1833
0da2c8ac
AC
1834 declare
1835 L, R : Node_Id;
1836
1837 begin
1838 L := Lhs;
1839 R := Rhs;
1840
1841 if No (Etype (Lhs))
1842 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
1843 then
1844 L := OK_Convert_To (Ltyp, Lhs);
1845 end if;
1846
1847 if No (Etype (Rhs))
1848 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
1849 then
1850 R := OK_Convert_To (Rtyp, Rhs);
1851 end if;
1852
1853 Actuals := New_List (L, R);
1854 end;
70482933
RK
1855
1856 Append_To (Bodies, Func_Body);
1857
1858 return
1859 Make_Function_Call (Loc,
0da2c8ac 1860 Name => New_Reference_To (Func_Name, Loc),
70482933
RK
1861 Parameter_Associations => Actuals);
1862 end Expand_Array_Equality;
1863
1864 -----------------------------
1865 -- Expand_Boolean_Operator --
1866 -----------------------------
1867
685094bf
RD
1868 -- Note that we first get the actual subtypes of the operands, since we
1869 -- always want to deal with types that have bounds.
70482933
RK
1870
1871 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 1872 Typ : constant Entity_Id := Etype (N);
70482933
RK
1873
1874 begin
685094bf
RD
1875 -- Special case of bit packed array where both operands are known to be
1876 -- properly aligned. In this case we use an efficient run time routine
1877 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
1878
1879 if Is_Bit_Packed_Array (Typ)
1880 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
1881 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
1882 then
70482933 1883 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
1884 return;
1885 end if;
70482933 1886
a9d8907c
JM
1887 -- For the normal non-packed case, the general expansion is to build
1888 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
1889 -- and then inserting it into the tree. The original operator node is
1890 -- then rewritten as a call to this function. We also use this in the
1891 -- packed case if either operand is a possibly unaligned object.
70482933 1892
a9d8907c
JM
1893 declare
1894 Loc : constant Source_Ptr := Sloc (N);
1895 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1896 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1897 Func_Body : Node_Id;
1898 Func_Name : Entity_Id;
fbf5a39b 1899
a9d8907c
JM
1900 begin
1901 Convert_To_Actual_Subtype (L);
1902 Convert_To_Actual_Subtype (R);
1903 Ensure_Defined (Etype (L), N);
1904 Ensure_Defined (Etype (R), N);
1905 Apply_Length_Check (R, Etype (L));
1906
b4592168
GD
1907 if Nkind (N) = N_Op_Xor then
1908 Silly_Boolean_Array_Xor_Test (N, Etype (L));
1909 end if;
1910
a9d8907c
JM
1911 if Nkind (Parent (N)) = N_Assignment_Statement
1912 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
1913 then
1914 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 1915
a9d8907c
JM
1916 elsif Nkind (Parent (N)) = N_Op_Not
1917 and then Nkind (N) = N_Op_And
1918 and then
b4592168 1919 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
1920 then
1921 return;
1922 else
fbf5a39b 1923
a9d8907c
JM
1924 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
1925 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1926 Insert_Action (N, Func_Body);
70482933 1927
a9d8907c 1928 -- Now rewrite the expression with a call
70482933 1929
a9d8907c
JM
1930 Rewrite (N,
1931 Make_Function_Call (Loc,
1932 Name => New_Reference_To (Func_Name, Loc),
1933 Parameter_Associations =>
1934 New_List (
1935 L,
1936 Make_Type_Conversion
1937 (Loc, New_Reference_To (Etype (L), Loc), R))));
70482933 1938
a9d8907c
JM
1939 Analyze_And_Resolve (N, Typ);
1940 end if;
1941 end;
70482933
RK
1942 end Expand_Boolean_Operator;
1943
1944 -------------------------------
1945 -- Expand_Composite_Equality --
1946 -------------------------------
1947
1948 -- This function is only called for comparing internal fields of composite
1949 -- types when these fields are themselves composites. This is a special
1950 -- case because it is not possible to respect normal Ada visibility rules.
1951
1952 function Expand_Composite_Equality
1953 (Nod : Node_Id;
1954 Typ : Entity_Id;
1955 Lhs : Node_Id;
1956 Rhs : Node_Id;
2e071734 1957 Bodies : List_Id) return Node_Id
70482933
RK
1958 is
1959 Loc : constant Source_Ptr := Sloc (Nod);
1960 Full_Type : Entity_Id;
1961 Prim : Elmt_Id;
1962 Eq_Op : Entity_Id;
1963
1964 begin
1965 if Is_Private_Type (Typ) then
1966 Full_Type := Underlying_Type (Typ);
1967 else
1968 Full_Type := Typ;
1969 end if;
1970
685094bf
RD
1971 -- Defense against malformed private types with no completion the error
1972 -- will be diagnosed later by check_completion
70482933
RK
1973
1974 if No (Full_Type) then
1975 return New_Reference_To (Standard_False, Loc);
1976 end if;
1977
1978 Full_Type := Base_Type (Full_Type);
1979
1980 if Is_Array_Type (Full_Type) then
1981
1982 -- If the operand is an elementary type other than a floating-point
1983 -- type, then we can simply use the built-in block bitwise equality,
1984 -- since the predefined equality operators always apply and bitwise
1985 -- equality is fine for all these cases.
1986
1987 if Is_Elementary_Type (Component_Type (Full_Type))
1988 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
1989 then
1990 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
1991
685094bf
RD
1992 -- For composite component types, and floating-point types, use the
1993 -- expansion. This deals with tagged component types (where we use
1994 -- the applicable equality routine) and floating-point, (where we
1995 -- need to worry about negative zeroes), and also the case of any
1996 -- composite type recursively containing such fields.
70482933
RK
1997
1998 else
0da2c8ac 1999 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
70482933
RK
2000 end if;
2001
2002 elsif Is_Tagged_Type (Full_Type) then
2003
2004 -- Call the primitive operation "=" of this type
2005
2006 if Is_Class_Wide_Type (Full_Type) then
2007 Full_Type := Root_Type (Full_Type);
2008 end if;
2009
685094bf
RD
2010 -- If this is derived from an untagged private type completed with a
2011 -- tagged type, it does not have a full view, so we use the primitive
2012 -- operations of the private type. This check should no longer be
2013 -- necessary when these types receive their full views ???
70482933
RK
2014
2015 if Is_Private_Type (Typ)
2016 and then not Is_Tagged_Type (Typ)
2017 and then not Is_Controlled (Typ)
2018 and then Is_Derived_Type (Typ)
2019 and then No (Full_View (Typ))
2020 then
2021 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2022 else
2023 Prim := First_Elmt (Primitive_Operations (Full_Type));
2024 end if;
2025
2026 loop
2027 Eq_Op := Node (Prim);
2028 exit when Chars (Eq_Op) = Name_Op_Eq
2029 and then Etype (First_Formal (Eq_Op)) =
e6f69614
AC
2030 Etype (Next_Formal (First_Formal (Eq_Op)))
2031 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
70482933
RK
2032 Next_Elmt (Prim);
2033 pragma Assert (Present (Prim));
2034 end loop;
2035
2036 Eq_Op := Node (Prim);
2037
2038 return
2039 Make_Function_Call (Loc,
2040 Name => New_Reference_To (Eq_Op, Loc),
2041 Parameter_Associations =>
2042 New_List
2043 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2044 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2045
2046 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2047 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2048
2049 if Present (Eq_Op) then
2050 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2051
685094bf
RD
2052 -- Inherited equality from parent type. Convert the actuals to
2053 -- match signature of operation.
70482933
RK
2054
2055 declare
fbf5a39b 2056 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2057
2058 begin
2059 return
2060 Make_Function_Call (Loc,
2061 Name => New_Reference_To (Eq_Op, Loc),
2062 Parameter_Associations =>
2063 New_List (OK_Convert_To (T, Lhs),
2064 OK_Convert_To (T, Rhs)));
2065 end;
2066
2067 else
5d09245e
AC
2068 -- Comparison between Unchecked_Union components
2069
2070 if Is_Unchecked_Union (Full_Type) then
2071 declare
2072 Lhs_Type : Node_Id := Full_Type;
2073 Rhs_Type : Node_Id := Full_Type;
2074 Lhs_Discr_Val : Node_Id;
2075 Rhs_Discr_Val : Node_Id;
2076
2077 begin
2078 -- Lhs subtype
2079
2080 if Nkind (Lhs) = N_Selected_Component then
2081 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2082 end if;
2083
2084 -- Rhs subtype
2085
2086 if Nkind (Rhs) = N_Selected_Component then
2087 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2088 end if;
2089
2090 -- Lhs of the composite equality
2091
2092 if Is_Constrained (Lhs_Type) then
2093
685094bf 2094 -- Since the enclosing record type can never be an
5d09245e
AC
2095 -- Unchecked_Union (this code is executed for records
2096 -- that do not have variants), we may reference its
2097 -- discriminant(s).
2098
2099 if Nkind (Lhs) = N_Selected_Component
2100 and then Has_Per_Object_Constraint (
2101 Entity (Selector_Name (Lhs)))
2102 then
2103 Lhs_Discr_Val :=
2104 Make_Selected_Component (Loc,
2105 Prefix => Prefix (Lhs),
2106 Selector_Name =>
2107 New_Copy (
2108 Get_Discriminant_Value (
2109 First_Discriminant (Lhs_Type),
2110 Lhs_Type,
2111 Stored_Constraint (Lhs_Type))));
2112
2113 else
2114 Lhs_Discr_Val := New_Copy (
2115 Get_Discriminant_Value (
2116 First_Discriminant (Lhs_Type),
2117 Lhs_Type,
2118 Stored_Constraint (Lhs_Type)));
2119
2120 end if;
2121 else
2122 -- It is not possible to infer the discriminant since
2123 -- the subtype is not constrained.
2124
8aceda64 2125 return
5d09245e 2126 Make_Raise_Program_Error (Loc,
8aceda64 2127 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2128 end if;
2129
2130 -- Rhs of the composite equality
2131
2132 if Is_Constrained (Rhs_Type) then
2133 if Nkind (Rhs) = N_Selected_Component
2134 and then Has_Per_Object_Constraint (
2135 Entity (Selector_Name (Rhs)))
2136 then
2137 Rhs_Discr_Val :=
2138 Make_Selected_Component (Loc,
2139 Prefix => Prefix (Rhs),
2140 Selector_Name =>
2141 New_Copy (
2142 Get_Discriminant_Value (
2143 First_Discriminant (Rhs_Type),
2144 Rhs_Type,
2145 Stored_Constraint (Rhs_Type))));
2146
2147 else
2148 Rhs_Discr_Val := New_Copy (
2149 Get_Discriminant_Value (
2150 First_Discriminant (Rhs_Type),
2151 Rhs_Type,
2152 Stored_Constraint (Rhs_Type)));
2153
2154 end if;
2155 else
8aceda64 2156 return
5d09245e 2157 Make_Raise_Program_Error (Loc,
8aceda64 2158 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2159 end if;
2160
2161 -- Call the TSS equality function with the inferred
2162 -- discriminant values.
2163
2164 return
2165 Make_Function_Call (Loc,
2166 Name => New_Reference_To (Eq_Op, Loc),
2167 Parameter_Associations => New_List (
2168 Lhs,
2169 Rhs,
2170 Lhs_Discr_Val,
2171 Rhs_Discr_Val));
2172 end;
2173 end if;
2174
685094bf
RD
2175 -- Shouldn't this be an else, we can't fall through the above
2176 -- IF, right???
5d09245e 2177
70482933
RK
2178 return
2179 Make_Function_Call (Loc,
2180 Name => New_Reference_To (Eq_Op, Loc),
2181 Parameter_Associations => New_List (Lhs, Rhs));
2182 end if;
2183
2184 else
2185 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2186 end if;
2187
2188 else
2189 -- It can be a simple record or the full view of a scalar private
2190
2191 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2192 end if;
2193 end Expand_Composite_Equality;
2194
fdac1f80
AC
2195 ------------------------
2196 -- Expand_Concatenate --
2197 ------------------------
70482933 2198
fdac1f80
AC
2199 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2200 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2201
fdac1f80
AC
2202 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2203 -- Result type of concatenation
70482933 2204
fdac1f80
AC
2205 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2206 -- Component type. Elements of this component type can appear as one
2207 -- of the operands of concatenation as well as arrays.
70482933 2208
ecc4ddde
AC
2209 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2210 -- Index subtype
2211
2212 Ityp : constant Entity_Id := Base_Type (Istyp);
2213 -- Index type. This is the base type of the index subtype, and is used
2214 -- for all computed bounds (which may be out of range of Istyp in the
2215 -- case of null ranges).
70482933 2216
46ff89f3 2217 Artyp : Entity_Id;
fdac1f80
AC
2218 -- This is the type we use to do arithmetic to compute the bounds and
2219 -- lengths of operands. The choice of this type is a little subtle and
2220 -- is discussed in a separate section at the start of the body code.
70482933 2221
fdac1f80
AC
2222 Concatenation_Error : exception;
2223 -- Raised if concatenation is sure to raise a CE
70482933 2224
0ac73189
AC
2225 Result_May_Be_Null : Boolean := True;
2226 -- Reset to False if at least one operand is encountered which is known
2227 -- at compile time to be non-null. Used for handling the special case
2228 -- of setting the high bound to the last operand high bound for a null
2229 -- result, thus ensuring a proper high bound in the super-flat case.
2230
df46b832 2231 N : constant Nat := List_Length (Opnds);
fdac1f80 2232 -- Number of concatenation operands including possibly null operands
df46b832
AC
2233
2234 NN : Nat := 0;
a29262fd
AC
2235 -- Number of operands excluding any known to be null, except that the
2236 -- last operand is always retained, in case it provides the bounds for
2237 -- a null result.
2238
2239 Opnd : Node_Id;
2240 -- Current operand being processed in the loop through operands. After
2241 -- this loop is complete, always contains the last operand (which is not
2242 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2243
2244 -- Arrays describing the operands, only the first NN entries of each
2245 -- array are set (NN < N when we exclude known null operands).
2246
2247 Is_Fixed_Length : array (1 .. N) of Boolean;
2248 -- True if length of corresponding operand known at compile time
2249
2250 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2251 -- Set to the corresponding entry in the Opnds list (but note that null
2252 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2253
2254 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2255 -- Set to length of operand. Entries in this array are set only if the
2256 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2257
0ac73189
AC
2258 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2259 -- Set to lower bound of operand. Either an integer literal in the case
2260 -- where the bound is known at compile time, else actual lower bound.
2261 -- The operand low bound is of type Ityp.
2262
df46b832
AC
2263 Var_Length : array (1 .. N) of Entity_Id;
2264 -- Set to an entity of type Natural that contains the length of an
2265 -- operand whose length is not known at compile time. Entries in this
2266 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2267 -- is False. The entity is of type Artyp.
df46b832
AC
2268
2269 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2270 -- The J'th entry in an expression node that represents the total length
2271 -- of operands 1 through J. It is either an integer literal node, or a
2272 -- reference to a constant entity with the right value, so it is fine
2273 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
46ff89f3 2274 -- entry always is set to zero. The length is of type Artyp.
df46b832
AC
2275
2276 Low_Bound : Node_Id;
0ac73189
AC
2277 -- A tree node representing the low bound of the result (of type Ityp).
2278 -- This is either an integer literal node, or an identifier reference to
2279 -- a constant entity initialized to the appropriate value.
2280
a29262fd
AC
2281 Last_Opnd_High_Bound : Node_Id;
2282 -- A tree node representing the high bound of the last operand. This
2283 -- need only be set if the result could be null. It is used for the
2284 -- special case of setting the right high bound for a null result.
2285 -- This is of type Ityp.
2286
0ac73189
AC
2287 High_Bound : Node_Id;
2288 -- A tree node representing the high bound of the result (of type Ityp)
df46b832
AC
2289
2290 Result : Node_Id;
0ac73189 2291 -- Result of the concatenation (of type Ityp)
df46b832 2292
d0f8d157
AC
2293 Actions : constant List_Id := New_List;
2294 -- Collect actions to be inserted if Save_Space is False
2295
2296 Save_Space : Boolean;
2297 pragma Warnings (Off, Save_Space);
2298 -- Set to True if we are saving generated code space by calling routines
2299 -- in packages System.Concat_n.
2300
fa969310
AC
2301 Known_Non_Null_Operand_Seen : Boolean;
2302 -- Set True during generation of the assignements of operands into
2303 -- result once an operand known to be non-null has been seen.
2304
2305 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2306 -- This function makes an N_Integer_Literal node that is returned in
2307 -- analyzed form with the type set to Artyp. Importantly this literal
2308 -- is not flagged as static, so that if we do computations with it that
2309 -- result in statically detected out of range conditions, we will not
2310 -- generate error messages but instead warning messages.
2311
46ff89f3 2312 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 2313 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
2314 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2315 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
2316
2317 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 2318 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 2319
fa969310
AC
2320 ------------------------
2321 -- Make_Artyp_Literal --
2322 ------------------------
2323
2324 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2325 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2326 begin
2327 Set_Etype (Result, Artyp);
2328 Set_Analyzed (Result, True);
2329 Set_Is_Static_Expression (Result, False);
2330 return Result;
2331 end Make_Artyp_Literal;
76c597a1 2332
fdac1f80 2333 --------------
46ff89f3 2334 -- To_Artyp --
fdac1f80
AC
2335 --------------
2336
46ff89f3 2337 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 2338 begin
46ff89f3 2339 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
2340 return X;
2341
2342 elsif Is_Enumeration_Type (Ityp) then
2343 return
2344 Make_Attribute_Reference (Loc,
2345 Prefix => New_Occurrence_Of (Ityp, Loc),
2346 Attribute_Name => Name_Pos,
2347 Expressions => New_List (X));
2348
2349 else
46ff89f3 2350 return Convert_To (Artyp, X);
fdac1f80 2351 end if;
46ff89f3 2352 end To_Artyp;
fdac1f80
AC
2353
2354 -------------
2355 -- To_Ityp --
2356 -------------
2357
2358 function To_Ityp (X : Node_Id) return Node_Id is
2359 begin
2fc05e3d 2360 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
2361 return
2362 Make_Attribute_Reference (Loc,
2363 Prefix => New_Occurrence_Of (Ityp, Loc),
2364 Attribute_Name => Name_Val,
2365 Expressions => New_List (X));
2366
2367 -- Case where we will do a type conversion
2368
2369 else
76c597a1
AC
2370 if Ityp = Base_Type (Artyp) then
2371 return X;
fdac1f80 2372 else
76c597a1 2373 return Convert_To (Ityp, X);
fdac1f80
AC
2374 end if;
2375 end if;
2376 end To_Ityp;
2377
2378 -- Local Declarations
2379
0ac73189
AC
2380 Opnd_Typ : Entity_Id;
2381 Ent : Entity_Id;
2382 Len : Uint;
2383 J : Nat;
2384 Clen : Node_Id;
2385 Set : Boolean;
70482933
RK
2386
2387 begin
fdac1f80
AC
2388 -- Choose an appropriate computational type
2389
2390 -- We will be doing calculations of lengths and bounds in this routine
2391 -- and computing one from the other in some cases, e.g. getting the high
2392 -- bound by adding the length-1 to the low bound.
2393
2394 -- We can't just use the index type, or even its base type for this
2395 -- purpose for two reasons. First it might be an enumeration type which
2396 -- is not suitable fo computations of any kind, and second it may simply
2397 -- not have enough range. For example if the index type is -128..+127
2398 -- then lengths can be up to 256, which is out of range of the type.
2399
2400 -- For enumeration types, we can simply use Standard_Integer, this is
2401 -- sufficient since the actual number of enumeration literals cannot
2402 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 2403 -- arithmetic with POS values, not representation values).
fdac1f80
AC
2404
2405 if Is_Enumeration_Type (Ityp) then
46ff89f3 2406 Artyp := Standard_Integer;
fdac1f80 2407
59262ebb
AC
2408 -- If index type is Positive, we use the standard unsigned type, to give
2409 -- more room on the top of the range, obviating the need for an overflow
2410 -- check when creating the upper bound. This is needed to avoid junk
2411 -- overflow checks in the common case of String types.
2412
2413 -- ??? Disabled for now
2414
2415 -- elsif Istyp = Standard_Positive then
2416 -- Artyp := Standard_Unsigned;
2417
2fc05e3d
AC
2418 -- For modular types, we use a 32-bit modular type for types whose size
2419 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2420 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 2421
2fc05e3d 2422 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 2423 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 2424 Artyp := Standard_Unsigned;
ecc4ddde 2425 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 2426 Artyp := Ityp;
fdac1f80 2427 else
46ff89f3 2428 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
2429 end if;
2430
2fc05e3d 2431 -- Similar treatment for signed types
fdac1f80
AC
2432
2433 else
ecc4ddde 2434 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 2435 Artyp := Standard_Integer;
ecc4ddde 2436 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 2437 Artyp := Ityp;
fdac1f80 2438 else
46ff89f3 2439 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
2440 end if;
2441 end if;
2442
fa969310
AC
2443 -- Supply dummy entry at start of length array
2444
2445 Aggr_Length (0) := Make_Artyp_Literal (0);
2446
fdac1f80 2447 -- Go through operands setting up the above arrays
70482933 2448
df46b832
AC
2449 J := 1;
2450 while J <= N loop
2451 Opnd := Remove_Head (Opnds);
0ac73189 2452 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
2453
2454 -- The parent got messed up when we put the operands in a list,
2455 -- so now put back the proper parent for the saved operand.
2456
df46b832 2457 Set_Parent (Opnd, Parent (Cnode));
fdac1f80
AC
2458
2459 -- Set will be True when we have setup one entry in the array
2460
df46b832
AC
2461 Set := False;
2462
fdac1f80 2463 -- Singleton element (or character literal) case
df46b832 2464
0ac73189 2465 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
2466 NN := NN + 1;
2467 Operands (NN) := Opnd;
2468 Is_Fixed_Length (NN) := True;
2469 Fixed_Length (NN) := Uint_1;
0ac73189 2470 Result_May_Be_Null := False;
fdac1f80 2471
a29262fd
AC
2472 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2473 -- since we know that the result cannot be null).
fdac1f80 2474
0ac73189
AC
2475 Opnd_Low_Bound (NN) :=
2476 Make_Attribute_Reference (Loc,
ecc4ddde 2477 Prefix => New_Reference_To (Istyp, Loc),
0ac73189
AC
2478 Attribute_Name => Name_First);
2479
df46b832
AC
2480 Set := True;
2481
fdac1f80 2482 -- String literal case (can only occur for strings of course)
df46b832
AC
2483
2484 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 2485 Len := String_Literal_Length (Opnd_Typ);
df46b832 2486
a29262fd
AC
2487 if Len /= 0 then
2488 Result_May_Be_Null := False;
2489 end if;
2490
2491 -- Capture last operand high bound if result could be null
2492
2493 if J = N and then Result_May_Be_Null then
2494 Last_Opnd_High_Bound :=
2495 Make_Op_Add (Loc,
2496 Left_Opnd =>
2497 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 2498 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
2499 end if;
2500
2501 -- Skip null string literal
fdac1f80 2502
0ac73189 2503 if J < N and then Len = 0 then
df46b832
AC
2504 goto Continue;
2505 end if;
2506
2507 NN := NN + 1;
2508 Operands (NN) := Opnd;
2509 Is_Fixed_Length (NN) := True;
0ac73189
AC
2510
2511 -- Set length and bounds
2512
df46b832 2513 Fixed_Length (NN) := Len;
0ac73189
AC
2514
2515 Opnd_Low_Bound (NN) :=
2516 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
2517
df46b832
AC
2518 Set := True;
2519
2520 -- All other cases
2521
2522 else
2523 -- Check constrained case with known bounds
2524
0ac73189 2525 if Is_Constrained (Opnd_Typ) then
df46b832 2526 declare
df46b832
AC
2527 Index : constant Node_Id := First_Index (Opnd_Typ);
2528 Indx_Typ : constant Entity_Id := Etype (Index);
2529 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
2530 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
2531
2532 begin
fdac1f80
AC
2533 -- Fixed length constrained array type with known at compile
2534 -- time bounds is last case of fixed length operand.
df46b832
AC
2535
2536 if Compile_Time_Known_Value (Lo)
2537 and then
2538 Compile_Time_Known_Value (Hi)
2539 then
2540 declare
2541 Loval : constant Uint := Expr_Value (Lo);
2542 Hival : constant Uint := Expr_Value (Hi);
2543 Len : constant Uint :=
2544 UI_Max (Hival - Loval + 1, Uint_0);
2545
2546 begin
0ac73189
AC
2547 if Len > 0 then
2548 Result_May_Be_Null := False;
df46b832 2549 end if;
0ac73189 2550
a29262fd
AC
2551 -- Capture last operand bound if result could be null
2552
2553 if J = N and then Result_May_Be_Null then
2554 Last_Opnd_High_Bound :=
2555 Convert_To (Ityp,
2556 Make_Integer_Literal (Loc,
2557 Intval => Expr_Value (Hi)));
2558 end if;
2559
2560 -- Exclude null length case unless last operand
0ac73189 2561
a29262fd 2562 if J < N and then Len = 0 then
0ac73189
AC
2563 goto Continue;
2564 end if;
2565
2566 NN := NN + 1;
2567 Operands (NN) := Opnd;
2568 Is_Fixed_Length (NN) := True;
2569 Fixed_Length (NN) := Len;
2570
a2dc5812 2571 Opnd_Low_Bound (NN) := To_Ityp (
0ac73189 2572 Make_Integer_Literal (Loc,
a2dc5812 2573 Intval => Expr_Value (Lo)));
0ac73189 2574
0ac73189 2575 Set := True;
df46b832
AC
2576 end;
2577 end if;
2578 end;
2579 end if;
2580
0ac73189
AC
2581 -- All cases where the length is not known at compile time, or the
2582 -- special case of an operand which is known to be null but has a
2583 -- lower bound other than 1 or is other than a string type.
df46b832
AC
2584
2585 if not Set then
2586 NN := NN + 1;
0ac73189
AC
2587
2588 -- Capture operand bounds
2589
2590 Opnd_Low_Bound (NN) :=
2591 Make_Attribute_Reference (Loc,
2592 Prefix =>
2593 Duplicate_Subexpr (Opnd, Name_Req => True),
2594 Attribute_Name => Name_First);
2595
a29262fd
AC
2596 if J = N and Result_May_Be_Null then
2597 Last_Opnd_High_Bound :=
2598 Convert_To (Ityp,
2599 Make_Attribute_Reference (Loc,
2600 Prefix =>
2601 Duplicate_Subexpr (Opnd, Name_Req => True),
2602 Attribute_Name => Name_Last));
2603 end if;
0ac73189
AC
2604
2605 -- Capture length of operand in entity
2606
df46b832
AC
2607 Operands (NN) := Opnd;
2608 Is_Fixed_Length (NN) := False;
2609
191fcb3a 2610 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 2611
d0f8d157 2612 Append_To (Actions,
df46b832
AC
2613 Make_Object_Declaration (Loc,
2614 Defining_Identifier => Var_Length (NN),
2615 Constant_Present => True,
2616
2617 Object_Definition =>
46ff89f3 2618 New_Occurrence_Of (Artyp, Loc),
df46b832
AC
2619
2620 Expression =>
2621 Make_Attribute_Reference (Loc,
2622 Prefix =>
2623 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 2624 Attribute_Name => Name_Length)));
df46b832
AC
2625 end if;
2626 end if;
2627
2628 -- Set next entry in aggregate length array
2629
2630 -- For first entry, make either integer literal for fixed length
0ac73189 2631 -- or a reference to the saved length for variable length.
df46b832
AC
2632
2633 if NN = 1 then
2634 if Is_Fixed_Length (1) then
2635 Aggr_Length (1) :=
2636 Make_Integer_Literal (Loc,
2637 Intval => Fixed_Length (1));
2638 else
2639 Aggr_Length (1) :=
2640 New_Reference_To (Var_Length (1), Loc);
2641 end if;
2642
2643 -- If entry is fixed length and only fixed lengths so far, make
2644 -- appropriate new integer literal adding new length.
2645
2646 elsif Is_Fixed_Length (NN)
2647 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
2648 then
2649 Aggr_Length (NN) :=
2650 Make_Integer_Literal (Loc,
2651 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
2652
d0f8d157
AC
2653 -- All other cases, construct an addition node for the length and
2654 -- create an entity initialized to this length.
df46b832
AC
2655
2656 else
191fcb3a 2657 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
2658
2659 if Is_Fixed_Length (NN) then
2660 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
2661 else
2662 Clen := New_Reference_To (Var_Length (NN), Loc);
2663 end if;
2664
d0f8d157 2665 Append_To (Actions,
df46b832
AC
2666 Make_Object_Declaration (Loc,
2667 Defining_Identifier => Ent,
2668 Constant_Present => True,
2669
2670 Object_Definition =>
46ff89f3 2671 New_Occurrence_Of (Artyp, Loc),
df46b832
AC
2672
2673 Expression =>
2674 Make_Op_Add (Loc,
2675 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
d0f8d157 2676 Right_Opnd => Clen)));
df46b832 2677
76c597a1 2678 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
2679 end if;
2680
2681 <<Continue>>
2682 J := J + 1;
2683 end loop;
2684
a29262fd 2685 -- If we have only skipped null operands, return the last operand
df46b832
AC
2686
2687 if NN = 0 then
a29262fd 2688 Result := Opnd;
df46b832
AC
2689 goto Done;
2690 end if;
2691
2692 -- If we have only one non-null operand, return it and we are done.
2693 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
2694 -- the sole operand is of the element type, in which case it must be
2695 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
2696 -- through the normal general circuit.
2697
2698 if NN = 1
fdac1f80 2699 and then Base_Type (Etype (Operands (1))) /= Ctyp
df46b832
AC
2700 then
2701 Result := Operands (1);
2702 goto Done;
2703 end if;
2704
2705 -- Cases where we have a real concatenation
2706
fdac1f80
AC
2707 -- Next step is to find the low bound for the result array that we
2708 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
2709
2710 -- If the ultimate ancestor of the index subtype is a constrained array
2711 -- definition, then the lower bound is that of the index subtype as
2712 -- specified by (RM 4.5.3(6)).
2713
2714 -- The right test here is to go to the root type, and then the ultimate
2715 -- ancestor is the first subtype of this root type.
2716
2717 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 2718 Low_Bound :=
fdac1f80
AC
2719 Make_Attribute_Reference (Loc,
2720 Prefix =>
2721 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 2722 Attribute_Name => Name_First);
df46b832
AC
2723
2724 -- If the first operand in the list has known length we know that
2725 -- the lower bound of the result is the lower bound of this operand.
2726
fdac1f80 2727 elsif Is_Fixed_Length (1) then
0ac73189 2728 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
2729
2730 -- OK, we don't know the lower bound, we have to build a horrible
2731 -- expression actions node of the form
2732
2733 -- if Cond1'Length /= 0 then
0ac73189 2734 -- Opnd1 low bound
df46b832
AC
2735 -- else
2736 -- if Opnd2'Length /= 0 then
0ac73189 2737 -- Opnd2 low bound
df46b832
AC
2738 -- else
2739 -- ...
2740
2741 -- The nesting ends either when we hit an operand whose length is known
2742 -- at compile time, or on reaching the last operand, whose low bound we
2743 -- take unconditionally whether or not it is null. It's easiest to do
2744 -- this with a recursive procedure:
2745
2746 else
2747 declare
2748 function Get_Known_Bound (J : Nat) return Node_Id;
2749 -- Returns the lower bound determined by operands J .. NN
2750
2751 ---------------------
2752 -- Get_Known_Bound --
2753 ---------------------
2754
2755 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 2756 begin
0ac73189
AC
2757 if Is_Fixed_Length (J) or else J = NN then
2758 return New_Copy (Opnd_Low_Bound (J));
70482933
RK
2759
2760 else
df46b832
AC
2761 return
2762 Make_Conditional_Expression (Loc,
2763 Expressions => New_List (
2764
2765 Make_Op_Ne (Loc,
2766 Left_Opnd => New_Reference_To (Var_Length (J), Loc),
2767 Right_Opnd => Make_Integer_Literal (Loc, 0)),
2768
0ac73189 2769 New_Copy (Opnd_Low_Bound (J)),
df46b832 2770 Get_Known_Bound (J + 1)));
70482933 2771 end if;
df46b832 2772 end Get_Known_Bound;
70482933 2773
df46b832 2774 begin
191fcb3a 2775 Ent := Make_Temporary (Loc, 'L');
df46b832 2776
d0f8d157 2777 Append_To (Actions,
df46b832
AC
2778 Make_Object_Declaration (Loc,
2779 Defining_Identifier => Ent,
2780 Constant_Present => True,
0ac73189 2781 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 2782 Expression => Get_Known_Bound (1)));
df46b832
AC
2783
2784 Low_Bound := New_Reference_To (Ent, Loc);
2785 end;
2786 end if;
70482933 2787
76c597a1
AC
2788 -- Now we can safely compute the upper bound, normally
2789 -- Low_Bound + Length - 1.
0ac73189
AC
2790
2791 High_Bound :=
2792 To_Ityp (
2793 Make_Op_Add (Loc,
46ff89f3 2794 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
0ac73189
AC
2795 Right_Opnd =>
2796 Make_Op_Subtract (Loc,
2797 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 2798 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 2799
59262ebb 2800 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
2801 -- very weird cases, so in the general case we need an overflow check on
2802 -- the high bound. We can avoid this for the common case of string types
2803 -- and other types whose index is Positive, since we chose a wider range
2804 -- for the arithmetic type.
76c597a1 2805
59262ebb
AC
2806 if Istyp /= Standard_Positive then
2807 Activate_Overflow_Check (High_Bound);
2808 end if;
76c597a1
AC
2809
2810 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
2811 -- case the bounds come from the last operand (so that we get the proper
2812 -- bounds if the last operand is super-flat).
2813
0ac73189
AC
2814 if Result_May_Be_Null then
2815 High_Bound :=
2816 Make_Conditional_Expression (Loc,
2817 Expressions => New_List (
2818 Make_Op_Eq (Loc,
2819 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 2820 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 2821 Last_Opnd_High_Bound,
0ac73189
AC
2822 High_Bound));
2823 end if;
2824
d0f8d157
AC
2825 -- Here is where we insert the saved up actions
2826
2827 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
2828
602a7ec0
AC
2829 -- Now we construct an array object with appropriate bounds. We mark
2830 -- the target as internal to prevent useless initialization when
2831 -- Initialize_Scalars is enabled.
70482933 2832
191fcb3a 2833 Ent := Make_Temporary (Loc, 'S');
008f6fd3 2834 Set_Is_Internal (Ent);
70482933 2835
76c597a1 2836 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
2837 -- to abort, we want a warning and a runtime constraint error. Note that
2838 -- we have arranged that the result will not be treated as a static
2839 -- constant, so we won't get an illegality during this insertion.
76c597a1 2840
df46b832
AC
2841 Insert_Action (Cnode,
2842 Make_Object_Declaration (Loc,
2843 Defining_Identifier => Ent,
df46b832
AC
2844 Object_Definition =>
2845 Make_Subtype_Indication (Loc,
fdac1f80 2846 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
2847 Constraint =>
2848 Make_Index_Or_Discriminant_Constraint (Loc,
2849 Constraints => New_List (
2850 Make_Range (Loc,
0ac73189
AC
2851 Low_Bound => Low_Bound,
2852 High_Bound => High_Bound))))),
df46b832
AC
2853 Suppress => All_Checks);
2854
d1f453b7
RD
2855 -- If the result of the concatenation appears as the initializing
2856 -- expression of an object declaration, we can just rename the
2857 -- result, rather than copying it.
2858
2859 Set_OK_To_Rename (Ent);
2860
76c597a1
AC
2861 -- Catch the static out of range case now
2862
2863 if Raises_Constraint_Error (High_Bound) then
2864 raise Concatenation_Error;
2865 end if;
2866
df46b832
AC
2867 -- Now we will generate the assignments to do the actual concatenation
2868
bded454f
RD
2869 -- There is one case in which we will not do this, namely when all the
2870 -- following conditions are met:
2871
2872 -- The result type is Standard.String
2873
2874 -- There are nine or fewer retained (non-null) operands
2875
ffec8e81 2876 -- The optimization level is -O0
bded454f
RD
2877
2878 -- The corresponding System.Concat_n.Str_Concat_n routine is
2879 -- available in the run time.
2880
2881 -- The debug flag gnatd.c is not set
2882
2883 -- If all these conditions are met then we generate a call to the
2884 -- relevant concatenation routine. The purpose of this is to avoid
2885 -- undesirable code bloat at -O0.
2886
2887 if Atyp = Standard_String
2888 and then NN in 2 .. 9
ffec8e81 2889 and then (Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
bded454f
RD
2890 and then not Debug_Flag_Dot_C
2891 then
2892 declare
2893 RR : constant array (Nat range 2 .. 9) of RE_Id :=
2894 (RE_Str_Concat_2,
2895 RE_Str_Concat_3,
2896 RE_Str_Concat_4,
2897 RE_Str_Concat_5,
2898 RE_Str_Concat_6,
2899 RE_Str_Concat_7,
2900 RE_Str_Concat_8,
2901 RE_Str_Concat_9);
2902
2903 begin
2904 if RTE_Available (RR (NN)) then
2905 declare
2906 Opnds : constant List_Id :=
2907 New_List (New_Occurrence_Of (Ent, Loc));
2908
2909 begin
2910 for J in 1 .. NN loop
2911 if Is_List_Member (Operands (J)) then
2912 Remove (Operands (J));
2913 end if;
2914
2915 if Base_Type (Etype (Operands (J))) = Ctyp then
2916 Append_To (Opnds,
2917 Make_Aggregate (Loc,
2918 Component_Associations => New_List (
2919 Make_Component_Association (Loc,
2920 Choices => New_List (
2921 Make_Integer_Literal (Loc, 1)),
2922 Expression => Operands (J)))));
2923
2924 else
2925 Append_To (Opnds, Operands (J));
2926 end if;
2927 end loop;
2928
2929 Insert_Action (Cnode,
2930 Make_Procedure_Call_Statement (Loc,
2931 Name => New_Reference_To (RTE (RR (NN)), Loc),
2932 Parameter_Associations => Opnds));
2933
2934 Result := New_Reference_To (Ent, Loc);
2935 goto Done;
2936 end;
2937 end if;
2938 end;
2939 end if;
2940
2941 -- Not special case so generate the assignments
2942
76c597a1
AC
2943 Known_Non_Null_Operand_Seen := False;
2944
df46b832
AC
2945 for J in 1 .. NN loop
2946 declare
2947 Lo : constant Node_Id :=
2948 Make_Op_Add (Loc,
46ff89f3 2949 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
2950 Right_Opnd => Aggr_Length (J - 1));
2951
2952 Hi : constant Node_Id :=
2953 Make_Op_Add (Loc,
46ff89f3 2954 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
2955 Right_Opnd =>
2956 Make_Op_Subtract (Loc,
2957 Left_Opnd => Aggr_Length (J),
fa969310 2958 Right_Opnd => Make_Artyp_Literal (1)));
70482933 2959
df46b832 2960 begin
fdac1f80
AC
2961 -- Singleton case, simple assignment
2962
2963 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 2964 Known_Non_Null_Operand_Seen := True;
df46b832
AC
2965 Insert_Action (Cnode,
2966 Make_Assignment_Statement (Loc,
2967 Name =>
2968 Make_Indexed_Component (Loc,
2969 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 2970 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
2971 Expression => Operands (J)),
2972 Suppress => All_Checks);
70482933 2973
76c597a1
AC
2974 -- Array case, slice assignment, skipped when argument is fixed
2975 -- length and known to be null.
fdac1f80 2976
76c597a1
AC
2977 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
2978 declare
2979 Assign : Node_Id :=
2980 Make_Assignment_Statement (Loc,
2981 Name =>
2982 Make_Slice (Loc,
2983 Prefix =>
2984 New_Occurrence_Of (Ent, Loc),
2985 Discrete_Range =>
2986 Make_Range (Loc,
2987 Low_Bound => To_Ityp (Lo),
2988 High_Bound => To_Ityp (Hi))),
2989 Expression => Operands (J));
2990 begin
2991 if Is_Fixed_Length (J) then
2992 Known_Non_Null_Operand_Seen := True;
2993
2994 elsif not Known_Non_Null_Operand_Seen then
2995
2996 -- Here if operand length is not statically known and no
2997 -- operand known to be non-null has been processed yet.
2998 -- If operand length is 0, we do not need to perform the
2999 -- assignment, and we must avoid the evaluation of the
3000 -- high bound of the slice, since it may underflow if the
3001 -- low bound is Ityp'First.
3002
3003 Assign :=
3004 Make_Implicit_If_Statement (Cnode,
3005 Condition =>
3006 Make_Op_Ne (Loc,
3007 Left_Opnd =>
3008 New_Occurrence_Of (Var_Length (J), Loc),
3009 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3010 Then_Statements =>
3011 New_List (Assign));
3012 end if;
fa969310 3013
76c597a1
AC
3014 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3015 end;
df46b832
AC
3016 end if;
3017 end;
3018 end loop;
70482933 3019
0ac73189
AC
3020 -- Finally we build the result, which is a reference to the array object
3021
df46b832 3022 Result := New_Reference_To (Ent, Loc);
70482933 3023
df46b832
AC
3024 <<Done>>
3025 Rewrite (Cnode, Result);
fdac1f80
AC
3026 Analyze_And_Resolve (Cnode, Atyp);
3027
3028 exception
3029 when Concatenation_Error =>
76c597a1
AC
3030
3031 -- Kill warning generated for the declaration of the static out of
3032 -- range high bound, and instead generate a Constraint_Error with
3033 -- an appropriate specific message.
3034
3035 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3036 Apply_Compile_Time_Constraint_Error
3037 (N => Cnode,
3038 Msg => "concatenation result upper bound out of range?",
3039 Reason => CE_Range_Check_Failed);
3040 -- Set_Etype (Cnode, Atyp);
fdac1f80 3041 end Expand_Concatenate;
70482933
RK
3042
3043 ------------------------
3044 -- Expand_N_Allocator --
3045 ------------------------
3046
3047 procedure Expand_N_Allocator (N : Node_Id) is
3048 PtrT : constant Entity_Id := Etype (N);
d6a24cdb 3049 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
f82944b7 3050 Etyp : constant Entity_Id := Etype (Expression (N));
70482933 3051 Loc : constant Source_Ptr := Sloc (N);
f82944b7 3052 Desig : Entity_Id;
70482933 3053 Temp : Entity_Id;
26bff3d9 3054 Nod : Node_Id;
70482933 3055
26bff3d9
JM
3056 procedure Complete_Coextension_Finalization;
3057 -- Generate finalization calls for all nested coextensions of N. This
3058 -- routine may allocate list controllers if necessary.
0669bebe 3059
26bff3d9
JM
3060 procedure Rewrite_Coextension (N : Node_Id);
3061 -- Static coextensions have the same lifetime as the entity they
8fc789c8 3062 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 3063 -- and their unrestricted access used instead of the coextension.
0669bebe 3064
8aec446b 3065 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd
AC
3066 -- Given a constrained array type E, returns a node representing the
3067 -- code to compute the size in storage elements for the given type.
205c14b0 3068 -- This is done without using the attribute (which malfunctions for
507ed3fd 3069 -- large sizes ???)
8aec446b 3070
26bff3d9
JM
3071 ---------------------------------------
3072 -- Complete_Coextension_Finalization --
3073 ---------------------------------------
0669bebe 3074
26bff3d9
JM
3075 procedure Complete_Coextension_Finalization is
3076 Coext : Node_Id;
3077 Coext_Elmt : Elmt_Id;
3078 Flist : Node_Id;
3079 Ref : Node_Id;
0669bebe 3080
26bff3d9
JM
3081 function Inside_A_Return_Statement (N : Node_Id) return Boolean;
3082 -- Determine whether node N is part of a return statement
3083
3084 function Needs_Initialization_Call (N : Node_Id) return Boolean;
3085 -- Determine whether node N is a subtype indicator allocator which
b4592168 3086 -- acts a coextension. Such coextensions need initialization.
26bff3d9
JM
3087
3088 -------------------------------
3089 -- Inside_A_Return_Statement --
3090 -------------------------------
3091
3092 function Inside_A_Return_Statement (N : Node_Id) return Boolean is
3093 P : Node_Id;
3094
3095 begin
3096 P := Parent (N);
3097 while Present (P) loop
303b4d58
AC
3098 if Nkind_In
3099 (P, N_Extended_Return_Statement, N_Simple_Return_Statement)
26bff3d9
JM
3100 then
3101 return True;
3102
3103 -- Stop the traversal when we reach a subprogram body
3104
3105 elsif Nkind (P) = N_Subprogram_Body then
3106 return False;
3107 end if;
3108
3109 P := Parent (P);
3110 end loop;
3111
3112 return False;
3113 end Inside_A_Return_Statement;
3114
3115 -------------------------------
3116 -- Needs_Initialization_Call --
3117 -------------------------------
3118
3119 function Needs_Initialization_Call (N : Node_Id) return Boolean is
3120 Obj_Decl : Node_Id;
3121
3122 begin
3123 if Nkind (N) = N_Explicit_Dereference
3124 and then Nkind (Prefix (N)) = N_Identifier
3125 and then Nkind (Parent (Entity (Prefix (N)))) =
3126 N_Object_Declaration
3127 then
3128 Obj_Decl := Parent (Entity (Prefix (N)));
0669bebe 3129
26bff3d9
JM
3130 return
3131 Present (Expression (Obj_Decl))
3132 and then Nkind (Expression (Obj_Decl)) = N_Allocator
3133 and then Nkind (Expression (Expression (Obj_Decl))) /=
3134 N_Qualified_Expression;
0669bebe
GB
3135 end if;
3136
26bff3d9
JM
3137 return False;
3138 end Needs_Initialization_Call;
3139
3140 -- Start of processing for Complete_Coextension_Finalization
3141
3142 begin
3143 -- When a coextension root is inside a return statement, we need to
3144 -- use the finalization chain of the function's scope. This does not
3145 -- apply for controlled named access types because in those cases we
3146 -- can use the finalization chain of the type itself.
3147
3148 if Inside_A_Return_Statement (N)
3149 and then
3150 (Ekind (PtrT) = E_Anonymous_Access_Type
3151 or else
3152 (Ekind (PtrT) = E_Access_Type
3153 and then No (Associated_Final_Chain (PtrT))))
3154 then
0669bebe 3155 declare
26bff3d9
JM
3156 Decl : Node_Id;
3157 Outer_S : Entity_Id;
13d923cc 3158 S : Entity_Id;
0669bebe
GB
3159
3160 begin
13d923cc 3161 S := Current_Scope;
26bff3d9
JM
3162 while Present (S) and then S /= Standard_Standard loop
3163 if Ekind (S) = E_Function then
3164 Outer_S := Scope (S);
3165
3166 -- Retrieve the declaration of the body
3167
8aec446b
AC
3168 Decl :=
3169 Parent
3170 (Parent
3171 (Corresponding_Body (Parent (Parent (S)))));
26bff3d9
JM
3172 exit;
3173 end if;
3174
3175 S := Scope (S);
0669bebe
GB
3176 end loop;
3177
26bff3d9
JM
3178 -- Push the scope of the function body since we are inserting
3179 -- the list before the body, but we are currently in the body
3180 -- itself. Override the finalization list of PtrT since the
3181 -- finalization context is now different.
3182
3183 Push_Scope (Outer_S);
3184 Build_Final_List (Decl, PtrT);
3185 Pop_Scope;
0669bebe
GB
3186 end;
3187
26bff3d9
JM
3188 -- The root allocator may not be controlled, but it still needs a
3189 -- finalization list for all nested coextensions.
0669bebe 3190
26bff3d9
JM
3191 elsif No (Associated_Final_Chain (PtrT)) then
3192 Build_Final_List (N, PtrT);
3193 end if;
0669bebe 3194
26bff3d9
JM
3195 Flist :=
3196 Make_Selected_Component (Loc,
3197 Prefix =>
3198 New_Reference_To (Associated_Final_Chain (PtrT), Loc),
3199 Selector_Name =>
3200 Make_Identifier (Loc, Name_F));
3201
3202 Coext_Elmt := First_Elmt (Coextensions (N));
3203 while Present (Coext_Elmt) loop
3204 Coext := Node (Coext_Elmt);
3205
3206 -- Generate:
3207 -- typ! (coext.all)
3208
3209 if Nkind (Coext) = N_Identifier then
685094bf
RD
3210 Ref :=
3211 Make_Unchecked_Type_Conversion (Loc,
3212 Subtype_Mark => New_Reference_To (Etype (Coext), Loc),
3213 Expression =>
3214 Make_Explicit_Dereference (Loc,
3215 Prefix => New_Copy_Tree (Coext)));
26bff3d9
JM
3216 else
3217 Ref := New_Copy_Tree (Coext);
3218 end if;
0669bebe 3219
b4592168 3220 -- No initialization call if not allowed
26bff3d9 3221
b4592168 3222 Check_Restriction (No_Default_Initialization, N);
26bff3d9 3223
b4592168 3224 if not Restriction_Active (No_Default_Initialization) then
26bff3d9 3225
b4592168
GD
3226 -- Generate:
3227 -- initialize (Ref)
3228 -- attach_to_final_list (Ref, Flist, 2)
3229
3230 if Needs_Initialization_Call (Coext) then
3231 Insert_Actions (N,
3232 Make_Init_Call (
3233 Ref => Ref,
3234 Typ => Etype (Coext),
3235 Flist_Ref => Flist,
3236 With_Attach => Make_Integer_Literal (Loc, Uint_2)));
3237
3238 -- Generate:
3239 -- attach_to_final_list (Ref, Flist, 2)
3240
3241 else
3242 Insert_Action (N,
3243 Make_Attach_Call (
3244 Obj_Ref => Ref,
3245 Flist_Ref => New_Copy_Tree (Flist),
3246 With_Attach => Make_Integer_Literal (Loc, Uint_2)));
3247 end if;
26bff3d9
JM
3248 end if;
3249
3250 Next_Elmt (Coext_Elmt);
3251 end loop;
3252 end Complete_Coextension_Finalization;
3253
3254 -------------------------
3255 -- Rewrite_Coextension --
3256 -------------------------
3257
3258 procedure Rewrite_Coextension (N : Node_Id) is
191fcb3a 3259 Temp : constant Node_Id := Make_Temporary (Loc, 'C');
26bff3d9
JM
3260
3261 -- Generate:
3262 -- Cnn : aliased Etyp;
3263
3264 Decl : constant Node_Id :=
3265 Make_Object_Declaration (Loc,
3266 Defining_Identifier => Temp,
3267 Aliased_Present => True,
3268 Object_Definition =>
3269 New_Occurrence_Of (Etyp, Loc));
3270 Nod : Node_Id;
3271
3272 begin
3273 if Nkind (Expression (N)) = N_Qualified_Expression then
3274 Set_Expression (Decl, Expression (Expression (N)));
0669bebe 3275 end if;
26bff3d9
JM
3276
3277 -- Find the proper insertion node for the declaration
3278
3279 Nod := Parent (N);
3280 while Present (Nod) loop
3281 exit when Nkind (Nod) in N_Statement_Other_Than_Procedure_Call
3282 or else Nkind (Nod) = N_Procedure_Call_Statement
3283 or else Nkind (Nod) in N_Declaration;
3284 Nod := Parent (Nod);
3285 end loop;
3286
3287 Insert_Before (Nod, Decl);
3288 Analyze (Decl);
3289
3290 Rewrite (N,
3291 Make_Attribute_Reference (Loc,
3292 Prefix => New_Occurrence_Of (Temp, Loc),
3293 Attribute_Name => Name_Unrestricted_Access));
3294
3295 Analyze_And_Resolve (N, PtrT);
3296 end Rewrite_Coextension;
0669bebe 3297
8aec446b
AC
3298 ------------------------------
3299 -- Size_In_Storage_Elements --
3300 ------------------------------
3301
3302 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
3303 begin
3304 -- Logically this just returns E'Max_Size_In_Storage_Elements.
3305 -- However, the reason for the existence of this function is
3306 -- to construct a test for sizes too large, which means near the
3307 -- 32-bit limit on a 32-bit machine, and precisely the trouble
3308 -- is that we get overflows when sizes are greater than 2**31.
3309
507ed3fd 3310 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
3311
3312 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
3313
3314 -- which avoids this problem. All this is a big bogus, but it does
3315 -- mean we catch common cases of trying to allocate arrays that
3316 -- are too large, and which in the absence of a check results in
3317 -- undetected chaos ???
3318
507ed3fd
AC
3319 declare
3320 Len : Node_Id;
3321 Res : Node_Id;
8aec446b 3322
507ed3fd
AC
3323 begin
3324 for J in 1 .. Number_Dimensions (E) loop
3325 Len :=
3326 Make_Attribute_Reference (Loc,
3327 Prefix => New_Occurrence_Of (E, Loc),
3328 Attribute_Name => Name_Length,
3329 Expressions => New_List (
3330 Make_Integer_Literal (Loc, J)));
8aec446b 3331
507ed3fd
AC
3332 if J = 1 then
3333 Res := Len;
8aec446b 3334
507ed3fd
AC
3335 else
3336 Res :=
3337 Make_Op_Multiply (Loc,
3338 Left_Opnd => Res,
3339 Right_Opnd => Len);
3340 end if;
3341 end loop;
8aec446b 3342
8aec446b 3343 return
507ed3fd
AC
3344 Make_Op_Multiply (Loc,
3345 Left_Opnd => Len,
3346 Right_Opnd =>
3347 Make_Attribute_Reference (Loc,
3348 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
3349 Attribute_Name => Name_Max_Size_In_Storage_Elements));
3350 end;
8aec446b
AC
3351 end Size_In_Storage_Elements;
3352
0669bebe
GB
3353 -- Start of processing for Expand_N_Allocator
3354
70482933
RK
3355 begin
3356 -- RM E.2.3(22). We enforce that the expected type of an allocator
3357 -- shall not be a remote access-to-class-wide-limited-private type
3358
3359 -- Why is this being done at expansion time, seems clearly wrong ???
3360
3361 Validate_Remote_Access_To_Class_Wide_Type (N);
3362
3363 -- Set the Storage Pool
3364
3365 Set_Storage_Pool (N, Associated_Storage_Pool (Root_Type (PtrT)));
3366
3367 if Present (Storage_Pool (N)) then
3368 if Is_RTE (Storage_Pool (N), RE_SS_Pool) then
26bff3d9 3369 if VM_Target = No_VM then
70482933
RK
3370 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3371 end if;
fbf5a39b
AC
3372
3373 elsif Is_Class_Wide_Type (Etype (Storage_Pool (N))) then
3374 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
3375
70482933
RK
3376 else
3377 Set_Procedure_To_Call (N,
3378 Find_Prim_Op (Etype (Storage_Pool (N)), Name_Allocate));
3379 end if;
3380 end if;
3381
685094bf
RD
3382 -- Under certain circumstances we can replace an allocator by an access
3383 -- to statically allocated storage. The conditions, as noted in AARM
3384 -- 3.10 (10c) are as follows:
70482933
RK
3385
3386 -- Size and initial value is known at compile time
3387 -- Access type is access-to-constant
3388
fbf5a39b
AC
3389 -- The allocator is not part of a constraint on a record component,
3390 -- because in that case the inserted actions are delayed until the
3391 -- record declaration is fully analyzed, which is too late for the
3392 -- analysis of the rewritten allocator.
3393
70482933
RK
3394 if Is_Access_Constant (PtrT)
3395 and then Nkind (Expression (N)) = N_Qualified_Expression
3396 and then Compile_Time_Known_Value (Expression (Expression (N)))
3397 and then Size_Known_At_Compile_Time (Etype (Expression
3398 (Expression (N))))
fbf5a39b 3399 and then not Is_Record_Type (Current_Scope)
70482933
RK
3400 then
3401 -- Here we can do the optimization. For the allocator
3402
3403 -- new x'(y)
3404
3405 -- We insert an object declaration
3406
3407 -- Tnn : aliased x := y;
3408
685094bf
RD
3409 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
3410 -- marked as requiring static allocation.
70482933 3411
191fcb3a 3412 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
3413 Desig := Subtype_Mark (Expression (N));
3414
3415 -- If context is constrained, use constrained subtype directly,
8fc789c8 3416 -- so that the constant is not labelled as having a nominally
70482933
RK
3417 -- unconstrained subtype.
3418
0da2c8ac
AC
3419 if Entity (Desig) = Base_Type (Dtyp) then
3420 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
3421 end if;
3422
3423 Insert_Action (N,
3424 Make_Object_Declaration (Loc,
3425 Defining_Identifier => Temp,
3426 Aliased_Present => True,
3427 Constant_Present => Is_Access_Constant (PtrT),
3428 Object_Definition => Desig,
3429 Expression => Expression (Expression (N))));
3430
3431 Rewrite (N,
3432 Make_Attribute_Reference (Loc,
3433 Prefix => New_Occurrence_Of (Temp, Loc),
3434 Attribute_Name => Name_Unrestricted_Access));
3435
3436 Analyze_And_Resolve (N, PtrT);
3437
685094bf
RD
3438 -- We set the variable as statically allocated, since we don't want
3439 -- it going on the stack of the current procedure!
70482933
RK
3440
3441 Set_Is_Statically_Allocated (Temp);
3442 return;
3443 end if;
3444
0669bebe
GB
3445 -- Same if the allocator is an access discriminant for a local object:
3446 -- instead of an allocator we create a local value and constrain the
3447 -- the enclosing object with the corresponding access attribute.
3448
26bff3d9
JM
3449 if Is_Static_Coextension (N) then
3450 Rewrite_Coextension (N);
0669bebe
GB
3451 return;
3452 end if;
3453
26bff3d9
JM
3454 -- The current allocator creates an object which may contain nested
3455 -- coextensions. Use the current allocator's finalization list to
3456 -- generate finalization call for all nested coextensions.
3457
3458 if Is_Coextension_Root (N) then
3459 Complete_Coextension_Finalization;
3460 end if;
3461
8aec446b
AC
3462 -- Check for size too large, we do this because the back end misses
3463 -- proper checks here and can generate rubbish allocation calls when
3464 -- we are near the limit. We only do this for the 32-bit address case
3465 -- since that is from a practical point of view where we see a problem.
3466
3467 if System_Address_Size = 32
3468 and then not Storage_Checks_Suppressed (PtrT)
3469 and then not Storage_Checks_Suppressed (Dtyp)
3470 and then not Storage_Checks_Suppressed (Etyp)
3471 then
3472 -- The check we want to generate should look like
3473
3474 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
3475 -- raise Storage_Error;
3476 -- end if;
3477
507ed3fd
AC
3478 -- where 3.5 gigabytes is a constant large enough to accomodate any
3479 -- reasonable request for. But we can't do it this way because at
3480 -- least at the moment we don't compute this attribute right, and
3481 -- can silently give wrong results when the result gets large. Since
3482 -- this is all about large results, that's bad, so instead we only
205c14b0 3483 -- apply the check for constrained arrays, and manually compute the
507ed3fd 3484 -- value of the attribute ???
8aec446b 3485
507ed3fd
AC
3486 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
3487 Insert_Action (N,
3488 Make_Raise_Storage_Error (Loc,
3489 Condition =>
3490 Make_Op_Gt (Loc,
3491 Left_Opnd => Size_In_Storage_Elements (Etyp),
3492 Right_Opnd =>
3493 Make_Integer_Literal (Loc,
3494 Intval => Uint_7 * (Uint_2 ** 29))),
3495 Reason => SE_Object_Too_Large));
3496 end if;
8aec446b
AC
3497 end if;
3498
0da2c8ac 3499 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
3500 -- First apply constraint checks, because the bounds or discriminants
3501 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 3502
70482933 3503 if Nkind (Expression (N)) = N_Qualified_Expression then
cac5a801
AC
3504 Apply_Constraint_Check
3505 (Expression (Expression (N)), Etype (Expression (N)));
3506
fbf5a39b 3507 Expand_Allocator_Expression (N);
26bff3d9
JM
3508 return;
3509 end if;
fbf5a39b 3510
26bff3d9
JM
3511 -- If the allocator is for a type which requires initialization, and
3512 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
3513 -- rather than a qualified expression), then we must generate a call to
3514 -- the initialization routine using an expressions action node:
70482933 3515
26bff3d9 3516 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 3517
26bff3d9
JM
3518 -- Here ptr_T is the pointer type for the allocator, and T is the
3519 -- subtype of the allocator. A special case arises if the designated
3520 -- type of the access type is a task or contains tasks. In this case
3521 -- the call to Init (Temp.all ...) is replaced by code that ensures
3522 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
3523 -- for details). In addition, if the type T is a task T, then the
3524 -- first argument to Init must be converted to the task record type.
70482933 3525
26bff3d9
JM
3526 declare
3527 T : constant Entity_Id := Entity (Expression (N));
3528 Init : Entity_Id;
3529 Arg1 : Node_Id;
3530 Args : List_Id;
3531 Decls : List_Id;
3532 Decl : Node_Id;
3533 Discr : Elmt_Id;
3534 Flist : Node_Id;
3535 Temp_Decl : Node_Id;
3536 Temp_Type : Entity_Id;
3537 Attach_Level : Uint;
70482933 3538
26bff3d9
JM
3539 begin
3540 if No_Initialization (N) then
3541 null;
70482933 3542
26bff3d9 3543 -- Case of no initialization procedure present
70482933 3544
26bff3d9 3545 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 3546
26bff3d9 3547 -- Case of simple initialization required
70482933 3548
26bff3d9 3549 if Needs_Simple_Initialization (T) then
b4592168 3550 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
3551 Rewrite (Expression (N),
3552 Make_Qualified_Expression (Loc,
3553 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 3554 Expression => Get_Simple_Init_Val (T, N)));
70482933 3555
26bff3d9
JM
3556 Analyze_And_Resolve (Expression (Expression (N)), T);
3557 Analyze_And_Resolve (Expression (N), T);
3558 Set_Paren_Count (Expression (Expression (N)), 1);
3559 Expand_N_Allocator (N);
70482933 3560
26bff3d9 3561 -- No initialization required
70482933
RK
3562
3563 else
26bff3d9
JM
3564 null;
3565 end if;
70482933 3566
26bff3d9 3567 -- Case of initialization procedure present, must be called
70482933 3568
26bff3d9 3569 else
b4592168 3570 Check_Restriction (No_Default_Initialization, N);
70482933 3571
b4592168
GD
3572 if not Restriction_Active (No_Default_Initialization) then
3573 Init := Base_Init_Proc (T);
3574 Nod := N;
191fcb3a 3575 Temp := Make_Temporary (Loc, 'P');
70482933 3576
b4592168 3577 -- Construct argument list for the initialization routine call
70482933 3578
26bff3d9 3579 Arg1 :=
b4592168
GD
3580 Make_Explicit_Dereference (Loc,
3581 Prefix => New_Reference_To (Temp, Loc));
3582 Set_Assignment_OK (Arg1);
3583 Temp_Type := PtrT;
26bff3d9 3584
b4592168
GD
3585 -- The initialization procedure expects a specific type. if the
3586 -- context is access to class wide, indicate that the object
3587 -- being allocated has the right specific type.
70482933 3588
b4592168
GD
3589 if Is_Class_Wide_Type (Dtyp) then
3590 Arg1 := Unchecked_Convert_To (T, Arg1);
3591 end if;
70482933 3592
b4592168
GD
3593 -- If designated type is a concurrent type or if it is private
3594 -- type whose definition is a concurrent type, the first
3595 -- argument in the Init routine has to be unchecked conversion
3596 -- to the corresponding record type. If the designated type is
3597 -- a derived type, we also convert the argument to its root
3598 -- type.
20b5d666 3599
b4592168
GD
3600 if Is_Concurrent_Type (T) then
3601 Arg1 :=
3602 Unchecked_Convert_To (Corresponding_Record_Type (T), Arg1);
70482933 3603
b4592168
GD
3604 elsif Is_Private_Type (T)
3605 and then Present (Full_View (T))
3606 and then Is_Concurrent_Type (Full_View (T))
3607 then
3608 Arg1 :=
3609 Unchecked_Convert_To
3610 (Corresponding_Record_Type (Full_View (T)), Arg1);
70482933 3611
b4592168
GD
3612 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
3613 declare
3614 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
3615 begin
3616 Arg1 := OK_Convert_To (Etype (Ftyp), Arg1);
3617 Set_Etype (Arg1, Ftyp);
3618 end;
3619 end if;
70482933 3620
b4592168 3621 Args := New_List (Arg1);
70482933 3622
b4592168
GD
3623 -- For the task case, pass the Master_Id of the access type as
3624 -- the value of the _Master parameter, and _Chain as the value
3625 -- of the _Chain parameter (_Chain will be defined as part of
3626 -- the generated code for the allocator).
70482933 3627
b4592168
GD
3628 -- In Ada 2005, the context may be a function that returns an
3629 -- anonymous access type. In that case the Master_Id has been
3630 -- created when expanding the function declaration.
70482933 3631
b4592168
GD
3632 if Has_Task (T) then
3633 if No (Master_Id (Base_Type (PtrT))) then
70482933 3634
b4592168
GD
3635 -- If we have a non-library level task with restriction
3636 -- No_Task_Hierarchy set, then no point in expanding.
70482933 3637
b4592168
GD
3638 if not Is_Library_Level_Entity (T)
3639 and then Restriction_Active (No_Task_Hierarchy)
26bff3d9 3640 then
b4592168 3641 return;
26bff3d9 3642 end if;
70482933 3643
b4592168
GD
3644 -- The designated type was an incomplete type, and the
3645 -- access type did not get expanded. Salvage it now.
70482933 3646
b4592168
GD
3647 pragma Assert (Present (Parent (Base_Type (PtrT))));
3648 Expand_N_Full_Type_Declaration
3649 (Parent (Base_Type (PtrT)));
3650 end if;
70482933 3651
b4592168
GD
3652 -- If the context of the allocator is a declaration or an
3653 -- assignment, we can generate a meaningful image for it,
3654 -- even though subsequent assignments might remove the
3655 -- connection between task and entity. We build this image
3656 -- when the left-hand side is a simple variable, a simple
3657 -- indexed assignment or a simple selected component.
3658
3659 if Nkind (Parent (N)) = N_Assignment_Statement then
3660 declare
3661 Nam : constant Node_Id := Name (Parent (N));
3662
3663 begin
3664 if Is_Entity_Name (Nam) then
3665 Decls :=
3666 Build_Task_Image_Decls
3667 (Loc,
3668 New_Occurrence_Of
3669 (Entity (Nam), Sloc (Nam)), T);
3670
3671 elsif Nkind_In
3672 (Nam, N_Indexed_Component, N_Selected_Component)
3673 and then Is_Entity_Name (Prefix (Nam))
3674 then
3675 Decls :=
3676 Build_Task_Image_Decls
3677 (Loc, Nam, Etype (Prefix (Nam)));
3678 else
3679 Decls := Build_Task_Image_Decls (Loc, T, T);
3680 end if;
3681 end;
70482933 3682
b4592168
GD
3683 elsif Nkind (Parent (N)) = N_Object_Declaration then
3684 Decls :=
3685 Build_Task_Image_Decls
3686 (Loc, Defining_Identifier (Parent (N)), T);
70482933 3687
b4592168
GD
3688 else
3689 Decls := Build_Task_Image_Decls (Loc, T, T);
3690 end if;
26bff3d9 3691
b4592168
GD
3692 Append_To (Args,
3693 New_Reference_To
3694 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
3695 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 3696
b4592168
GD
3697 Decl := Last (Decls);
3698 Append_To (Args,
3699 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 3700
b4592168 3701 -- Has_Task is false, Decls not used
26bff3d9 3702
b4592168
GD
3703 else
3704 Decls := No_List;
26bff3d9
JM
3705 end if;
3706
b4592168
GD
3707 -- Add discriminants if discriminated type
3708
3709 declare
3710 Dis : Boolean := False;
3711 Typ : Entity_Id;
3712
3713 begin
3714 if Has_Discriminants (T) then
3715 Dis := True;
3716 Typ := T;
3717
3718 elsif Is_Private_Type (T)
3719 and then Present (Full_View (T))
3720 and then Has_Discriminants (Full_View (T))
20b5d666 3721 then
b4592168
GD
3722 Dis := True;
3723 Typ := Full_View (T);
20b5d666 3724 end if;
70482933 3725
b4592168 3726 if Dis then
26bff3d9 3727
b4592168 3728 -- If the allocated object will be constrained by the
685094bf
RD
3729 -- default values for discriminants, then build a subtype
3730 -- with those defaults, and change the allocated subtype
3731 -- to that. Note that this happens in fewer cases in Ada
3732 -- 2005 (AI-363).
26bff3d9 3733
b4592168
GD
3734 if not Is_Constrained (Typ)
3735 and then Present (Discriminant_Default_Value
3736 (First_Discriminant (Typ)))
3737 and then (Ada_Version < Ada_05
3738 or else
3739 not Has_Constrained_Partial_View (Typ))
20b5d666 3740 then
b4592168
GD
3741 Typ := Build_Default_Subtype (Typ, N);
3742 Set_Expression (N, New_Reference_To (Typ, Loc));
20b5d666
JM
3743 end if;
3744
b4592168
GD
3745 Discr := First_Elmt (Discriminant_Constraint (Typ));
3746 while Present (Discr) loop
3747 Nod := Node (Discr);
3748 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 3749
b4592168
GD
3750 -- AI-416: when the discriminant constraint is an
3751 -- anonymous access type make sure an accessibility
3752 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 3753
b4592168
GD
3754 if Ada_Version >= Ada_05
3755 and then
3756 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
3757 then
e84e11ba
GD
3758 Apply_Accessibility_Check
3759 (Nod, Typ, Insert_Node => Nod);
b4592168 3760 end if;
20b5d666 3761
b4592168
GD
3762 Next_Elmt (Discr);
3763 end loop;
3764 end if;
3765 end;
70482933 3766
b4592168
GD
3767 -- We set the allocator as analyzed so that when we analyze the
3768 -- expression actions node, we do not get an unwanted recursive
3769 -- expansion of the allocator expression.
70482933 3770
b4592168
GD
3771 Set_Analyzed (N, True);
3772 Nod := Relocate_Node (N);
70482933 3773
b4592168
GD
3774 -- Here is the transformation:
3775 -- input: new T
3776 -- output: Temp : constant ptr_T := new T;
3777 -- Init (Temp.all, ...);
3778 -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
3779 -- <CTRL> Initialize (Finalizable (Temp.all));
70482933 3780
b4592168
GD
3781 -- Here ptr_T is the pointer type for the allocator, and is the
3782 -- subtype of the allocator.
70482933 3783
b4592168
GD
3784 Temp_Decl :=
3785 Make_Object_Declaration (Loc,
3786 Defining_Identifier => Temp,
3787 Constant_Present => True,
3788 Object_Definition => New_Reference_To (Temp_Type, Loc),
3789 Expression => Nod);
70482933 3790
b4592168
GD
3791 Set_Assignment_OK (Temp_Decl);
3792 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 3793
b4592168
GD
3794 -- If the designated type is a task type or contains tasks,
3795 -- create block to activate created tasks, and insert
3796 -- declaration for Task_Image variable ahead of call.
70482933 3797
b4592168
GD
3798 if Has_Task (T) then
3799 declare
3800 L : constant List_Id := New_List;
3801 Blk : Node_Id;
3802 begin
3803 Build_Task_Allocate_Block (L, Nod, Args);
3804 Blk := Last (L);
3805 Insert_List_Before (First (Declarations (Blk)), Decls);
3806 Insert_Actions (N, L);
3807 end;
70482933 3808
b4592168
GD
3809 else
3810 Insert_Action (N,
3811 Make_Procedure_Call_Statement (Loc,
3812 Name => New_Reference_To (Init, Loc),
3813 Parameter_Associations => Args));
3814 end if;
70482933 3815
048e5cef 3816 if Needs_Finalization (T) then
70482933 3817
b4592168
GD
3818 -- Postpone the generation of a finalization call for the
3819 -- current allocator if it acts as a coextension.
26bff3d9 3820
b4592168
GD
3821 if Is_Dynamic_Coextension (N) then
3822 if No (Coextensions (N)) then
3823 Set_Coextensions (N, New_Elmt_List);
3824 end if;
70482933 3825
b4592168
GD
3826 Append_Elmt (New_Copy_Tree (Arg1), Coextensions (N));
3827
3828 else
3829 Flist :=
3830 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
0669bebe 3831
b4592168
GD
3832 -- Anonymous access types created for access parameters
3833 -- are attached to an explicitly constructed controller,
3834 -- which ensures that they can be finalized properly,
3835 -- even if their deallocation might not happen. The list
3836 -- associated with the controller is doubly-linked. For
3837 -- other anonymous access types, the object may end up
3838 -- on the global final list which is singly-linked.
3839 -- Work needed for access discriminants in Ada 2005 ???
0669bebe 3840
a523b302 3841 if Ekind (PtrT) = E_Anonymous_Access_Type then
b4592168
GD
3842 Attach_Level := Uint_1;
3843 else
3844 Attach_Level := Uint_2;
3845 end if;
0669bebe 3846
b4592168
GD
3847 Insert_Actions (N,
3848 Make_Init_Call (
3849 Ref => New_Copy_Tree (Arg1),
3850 Typ => T,
3851 Flist_Ref => Flist,
3852 With_Attach => Make_Integer_Literal (Loc,
3853 Intval => Attach_Level)));
3854 end if;
70482933
RK
3855 end if;
3856
b4592168
GD
3857 Rewrite (N, New_Reference_To (Temp, Loc));
3858 Analyze_And_Resolve (N, PtrT);
3859 end if;
26bff3d9
JM
3860 end if;
3861 end;
f82944b7 3862
26bff3d9
JM
3863 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
3864 -- object that has been rewritten as a reference, we displace "this"
3865 -- to reference properly its secondary dispatch table.
3866
3867 if Nkind (N) = N_Identifier
f82944b7
JM
3868 and then Is_Interface (Dtyp)
3869 then
26bff3d9 3870 Displace_Allocator_Pointer (N);
f82944b7
JM
3871 end if;
3872
fbf5a39b
AC
3873 exception
3874 when RE_Not_Available =>
3875 return;
70482933
RK
3876 end Expand_N_Allocator;
3877
3878 -----------------------
3879 -- Expand_N_And_Then --
3880 -----------------------
3881
5875f8d6
AC
3882 procedure Expand_N_And_Then (N : Node_Id)
3883 renames Expand_Short_Circuit_Operator;
70482933 3884
19d846a0
RD
3885 ------------------------------
3886 -- Expand_N_Case_Expression --
3887 ------------------------------
3888
3889 procedure Expand_N_Case_Expression (N : Node_Id) is
3890 Loc : constant Source_Ptr := Sloc (N);
3891 Typ : constant Entity_Id := Etype (N);
3892 Cstmt : Node_Id;
3893 Tnn : Entity_Id;
3894 Pnn : Entity_Id;
3895 Actions : List_Id;
3896 Ttyp : Entity_Id;
3897 Alt : Node_Id;
3898 Fexp : Node_Id;
3899
3900 begin
3901 -- We expand
3902
3903 -- case X is when A => AX, when B => BX ...
3904
3905 -- to
3906
3907 -- do
3908 -- Tnn : typ;
3909 -- case X is
3910 -- when A =>
3911 -- Tnn := AX;
3912 -- when B =>
3913 -- Tnn := BX;
3914 -- ...
3915 -- end case;
3916 -- in Tnn end;
3917
3918 -- However, this expansion is wrong for limited types, and also
3919 -- wrong for unconstrained types (since the bounds may not be the
3920 -- same in all branches). Furthermore it involves an extra copy
3921 -- for large objects. So we take care of this by using the following
3922 -- modified expansion for non-scalar types:
3923
3924 -- do
3925 -- type Pnn is access all typ;
3926 -- Tnn : Pnn;
3927 -- case X is
3928 -- when A =>
3929 -- T := AX'Unrestricted_Access;
3930 -- when B =>
3931 -- T := BX'Unrestricted_Access;
3932 -- ...
3933 -- end case;
3934 -- in Tnn.all end;
3935
3936 Cstmt :=
3937 Make_Case_Statement (Loc,
3938 Expression => Expression (N),
3939 Alternatives => New_List);
3940
3941 Actions := New_List;
3942
3943 -- Scalar case
3944
3945 if Is_Scalar_Type (Typ) then
3946 Ttyp := Typ;
3947
3948 else
3949 Pnn := Make_Temporary (Loc, 'P');
3950 Append_To (Actions,
3951 Make_Full_Type_Declaration (Loc,
3952 Defining_Identifier => Pnn,
3953 Type_Definition =>
3954 Make_Access_To_Object_Definition (Loc,
3955 All_Present => True,
3956 Subtype_Indication =>
3957 New_Reference_To (Typ, Loc))));
3958 Ttyp := Pnn;
3959 end if;
3960
3961 Tnn := Make_Temporary (Loc, 'T');
3962 Append_To (Actions,
3963 Make_Object_Declaration (Loc,
3964 Defining_Identifier => Tnn,
3965 Object_Definition => New_Occurrence_Of (Ttyp, Loc)));
3966
3967 -- Now process the alternatives
3968
3969 Alt := First (Alternatives (N));
3970 while Present (Alt) loop
3971 declare
3972 Aexp : Node_Id := Expression (Alt);
3973 Aloc : constant Source_Ptr := Sloc (Aexp);
3974
3975 begin
3976 if not Is_Scalar_Type (Typ) then
3977 Aexp :=
3978 Make_Attribute_Reference (Aloc,
3979 Prefix => Relocate_Node (Aexp),
3980 Attribute_Name => Name_Unrestricted_Access);
3981 end if;
3982
3983 Append_To
3984 (Alternatives (Cstmt),
3985 Make_Case_Statement_Alternative (Sloc (Alt),
3986 Discrete_Choices => Discrete_Choices (Alt),
3987 Statements => New_List (
3988 Make_Assignment_Statement (Aloc,
3989 Name => New_Occurrence_Of (Tnn, Loc),
3990 Expression => Aexp))));
3991 end;
3992
3993 Next (Alt);
3994 end loop;
3995
3996 Append_To (Actions, Cstmt);
3997
3998 -- Construct and return final expression with actions
3999
4000 if Is_Scalar_Type (Typ) then
4001 Fexp := New_Occurrence_Of (Tnn, Loc);
4002 else
4003 Fexp :=
4004 Make_Explicit_Dereference (Loc,
4005 Prefix => New_Occurrence_Of (Tnn, Loc));
4006 end if;
4007
4008 Rewrite (N,
4009 Make_Expression_With_Actions (Loc,
4010 Expression => Fexp,
4011 Actions => Actions));
4012
4013 Analyze_And_Resolve (N, Typ);
4014 end Expand_N_Case_Expression;
4015
70482933
RK
4016 -------------------------------------
4017 -- Expand_N_Conditional_Expression --
4018 -------------------------------------
4019
305caf42 4020 -- Deal with limited types and expression actions
70482933
RK
4021
4022 procedure Expand_N_Conditional_Expression (N : Node_Id) is
4023 Loc : constant Source_Ptr := Sloc (N);
4024 Cond : constant Node_Id := First (Expressions (N));
4025 Thenx : constant Node_Id := Next (Cond);
4026 Elsex : constant Node_Id := Next (Thenx);
4027 Typ : constant Entity_Id := Etype (N);
c471e2da 4028
602a7ec0
AC
4029 Cnn : Entity_Id;
4030 Decl : Node_Id;
4031 New_If : Node_Id;
4032 New_N : Node_Id;
4033 P_Decl : Node_Id;
4034 Expr : Node_Id;
4035 Actions : List_Id;
70482933
RK
4036
4037 begin
602a7ec0
AC
4038 -- Fold at compile time if condition known. We have already folded
4039 -- static conditional expressions, but it is possible to fold any
4040 -- case in which the condition is known at compile time, even though
4041 -- the result is non-static.
4042
4043 -- Note that we don't do the fold of such cases in Sem_Elab because
4044 -- it can cause infinite loops with the expander adding a conditional
4045 -- expression, and Sem_Elab circuitry removing it repeatedly.
4046
4047 if Compile_Time_Known_Value (Cond) then
4048 if Is_True (Expr_Value (Cond)) then
4049 Expr := Thenx;
4050 Actions := Then_Actions (N);
4051 else
4052 Expr := Elsex;
4053 Actions := Else_Actions (N);
4054 end if;
4055
4056 Remove (Expr);
ae77c68b
AC
4057
4058 if Present (Actions) then
4059
4060 -- If we are not allowed to use Expression_With_Actions, just
4061 -- skip the optimization, it is not critical for correctness.
4062
4063 if not Use_Expression_With_Actions then
4064 goto Skip_Optimization;
4065 end if;
4066
4067 Rewrite (N,
4068 Make_Expression_With_Actions (Loc,
4069 Expression => Relocate_Node (Expr),
4070 Actions => Actions));
4071 Analyze_And_Resolve (N, Typ);
4072
4073 else
4074 Rewrite (N, Relocate_Node (Expr));
4075 end if;
602a7ec0
AC
4076
4077 -- Note that the result is never static (legitimate cases of static
4078 -- conditional expressions were folded in Sem_Eval).
4079
4080 Set_Is_Static_Expression (N, False);
4081 return;
4082 end if;
4083
ae77c68b
AC
4084 <<Skip_Optimization>>
4085
305caf42
AC
4086 -- If the type is limited or unconstrained, we expand as follows to
4087 -- avoid any possibility of improper copies.
70482933 4088
305caf42
AC
4089 -- Note: it may be possible to avoid this special processing if the
4090 -- back end uses its own mechanisms for handling by-reference types ???
ac7120ce 4091
c471e2da
AC
4092 -- type Ptr is access all Typ;
4093 -- Cnn : Ptr;
ac7120ce
RD
4094 -- if cond then
4095 -- <<then actions>>
4096 -- Cnn := then-expr'Unrestricted_Access;
4097 -- else
4098 -- <<else actions>>
4099 -- Cnn := else-expr'Unrestricted_Access;
4100 -- end if;
4101
c471e2da 4102 -- and replace the conditional expresion by a reference to Cnn.all.
ac7120ce 4103
305caf42
AC
4104 -- This special case can be skipped if the back end handles limited
4105 -- types properly and ensures that no incorrect copies are made.
4106
4107 if Is_By_Reference_Type (Typ)
4108 and then not Back_End_Handles_Limited_Types
4109 then
faf387e1 4110 Cnn := Make_Temporary (Loc, 'C', N);
70482933 4111
c471e2da
AC
4112 P_Decl :=
4113 Make_Full_Type_Declaration (Loc,
191fcb3a 4114 Defining_Identifier => Make_Temporary (Loc, 'A'),
c471e2da
AC
4115 Type_Definition =>
4116 Make_Access_To_Object_Definition (Loc,
4117 All_Present => True,
4118 Subtype_Indication =>
4119 New_Reference_To (Typ, Loc)));
4120
4121 Insert_Action (N, P_Decl);
4122
4123 Decl :=
4124 Make_Object_Declaration (Loc,
4125 Defining_Identifier => Cnn,
4126 Object_Definition =>
4127 New_Occurrence_Of (Defining_Identifier (P_Decl), Loc));
4128
70482933
RK
4129 New_If :=
4130 Make_Implicit_If_Statement (N,
4131 Condition => Relocate_Node (Cond),
4132
4133 Then_Statements => New_List (
4134 Make_Assignment_Statement (Sloc (Thenx),
4135 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
c471e2da
AC
4136 Expression =>
4137 Make_Attribute_Reference (Loc,
4138 Attribute_Name => Name_Unrestricted_Access,
4139 Prefix => Relocate_Node (Thenx)))),
70482933
RK
4140
4141 Else_Statements => New_List (
4142 Make_Assignment_Statement (Sloc (Elsex),
4143 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
c471e2da
AC
4144 Expression =>
4145 Make_Attribute_Reference (Loc,
4146 Attribute_Name => Name_Unrestricted_Access,
4147 Prefix => Relocate_Node (Elsex)))));
70482933 4148
c471e2da
AC
4149 New_N :=
4150 Make_Explicit_Dereference (Loc,
4151 Prefix => New_Occurrence_Of (Cnn, Loc));
fb1949a0 4152
c471e2da
AC
4153 -- For other types, we only need to expand if there are other actions
4154 -- associated with either branch.
4155
4156 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 4157
305caf42
AC
4158 -- We have two approaches to handling this. If we are allowed to use
4159 -- N_Expression_With_Actions, then we can just wrap the actions into
4160 -- the appropriate expression.
4161
4162 if Use_Expression_With_Actions then
4163 if Present (Then_Actions (N)) then
4164 Rewrite (Thenx,
4165 Make_Expression_With_Actions (Sloc (Thenx),
4166 Actions => Then_Actions (N),
4167 Expression => Relocate_Node (Thenx)));
48b351d9 4168 Set_Then_Actions (N, No_List);
305caf42
AC
4169 Analyze_And_Resolve (Thenx, Typ);
4170 end if;
c471e2da 4171
305caf42
AC
4172 if Present (Else_Actions (N)) then
4173 Rewrite (Elsex,
4174 Make_Expression_With_Actions (Sloc (Elsex),
4175 Actions => Else_Actions (N),
4176 Expression => Relocate_Node (Elsex)));
48b351d9 4177 Set_Else_Actions (N, No_List);
305caf42
AC
4178 Analyze_And_Resolve (Elsex, Typ);
4179 end if;
c471e2da 4180
305caf42 4181 return;
c471e2da 4182
305caf42
AC
4183 -- if we can't use N_Expression_With_Actions nodes, then we insert
4184 -- the following sequence of actions (using Insert_Actions):
fb1949a0 4185
305caf42
AC
4186 -- Cnn : typ;
4187 -- if cond then
4188 -- <<then actions>>
4189 -- Cnn := then-expr;
4190 -- else
4191 -- <<else actions>>
4192 -- Cnn := else-expr
4193 -- end if;
fbf5a39b 4194
305caf42 4195 -- and replace the conditional expression by a reference to Cnn
70482933 4196
305caf42
AC
4197 else
4198 Cnn := Make_Temporary (Loc, 'C', N);
4199
4200 Decl :=
4201 Make_Object_Declaration (Loc,
4202 Defining_Identifier => Cnn,
4203 Object_Definition => New_Occurrence_Of (Typ, Loc));
4204
4205 New_If :=
4206 Make_Implicit_If_Statement (N,
4207 Condition => Relocate_Node (Cond),
4208
4209 Then_Statements => New_List (
4210 Make_Assignment_Statement (Sloc (Thenx),
4211 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4212 Expression => Relocate_Node (Thenx))),
4213
4214 Else_Statements => New_List (
4215 Make_Assignment_Statement (Sloc (Elsex),
4216 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4217 Expression => Relocate_Node (Elsex))));
70482933 4218
305caf42
AC
4219 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
4220 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
4221
4222 New_N := New_Occurrence_Of (Cnn, Loc);
4223 end if;
4224
4225 -- If no actions then no expansion needed, gigi will handle it using
4226 -- the same approach as a C conditional expression.
4227
4228 else
c471e2da
AC
4229 return;
4230 end if;
4231
305caf42
AC
4232 -- Fall through here for either the limited expansion, or the case of
4233 -- inserting actions for non-limited types. In both these cases, we must
4234 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
4235 -- change it to the SLOC of the expression which, after expansion, will
4236 -- correspond to what is being evaluated.
c471e2da
AC
4237
4238 if Present (Parent (N))
4239 and then Nkind (Parent (N)) = N_If_Statement
4240 then
4241 Set_Sloc (New_If, Sloc (Parent (N)));
4242 Set_Sloc (Parent (N), Loc);
4243 end if;
70482933 4244
3fc5d116
RD
4245 -- Make sure Then_Actions and Else_Actions are appropriately moved
4246 -- to the new if statement.
4247
c471e2da
AC
4248 if Present (Then_Actions (N)) then
4249 Insert_List_Before
4250 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 4251 end if;
c471e2da
AC
4252
4253 if Present (Else_Actions (N)) then
4254 Insert_List_Before
4255 (First (Else_Statements (New_If)), Else_Actions (N));
4256 end if;
4257
4258 Insert_Action (N, Decl);
4259 Insert_Action (N, New_If);
4260 Rewrite (N, New_N);
4261 Analyze_And_Resolve (N, Typ);
70482933
RK
4262 end Expand_N_Conditional_Expression;
4263
4264 -----------------------------------
4265 -- Expand_N_Explicit_Dereference --
4266 -----------------------------------
4267
4268 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
4269 begin
dfd99a80 4270 -- Insert explicit dereference call for the checked storage pool case
70482933
RK
4271
4272 Insert_Dereference_Action (Prefix (N));
4273 end Expand_N_Explicit_Dereference;
4274
4275 -----------------
4276 -- Expand_N_In --
4277 -----------------
4278
4279 procedure Expand_N_In (N : Node_Id) is
7324bf49
AC
4280 Loc : constant Source_Ptr := Sloc (N);
4281 Rtyp : constant Entity_Id := Etype (N);
4282 Lop : constant Node_Id := Left_Opnd (N);
4283 Rop : constant Node_Id := Right_Opnd (N);
4284 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 4285
197e4514
AC
4286 procedure Expand_Set_Membership;
4287 -- For each disjunct we create a simple equality or membership test.
4288 -- The whole membership is rewritten as a short-circuit disjunction.
4289
4290 ---------------------------
4291 -- Expand_Set_Membership --
4292 ---------------------------
4293
4294 procedure Expand_Set_Membership is
4295 Alt : Node_Id;
4296 Res : Node_Id;
4297
4298 function Make_Cond (Alt : Node_Id) return Node_Id;
4299 -- If the alternative is a subtype mark, create a simple membership
4300 -- test. Otherwise create an equality test for it.
4301
4302 ---------------
4303 -- Make_Cond --
4304 ---------------
4305
4306 function Make_Cond (Alt : Node_Id) return Node_Id is
4307 Cond : Node_Id;
4308 L : constant Node_Id := New_Copy (Lop);
4309 R : constant Node_Id := Relocate_Node (Alt);
4310
4311 begin
4312 if Is_Entity_Name (Alt)
4313 and then Is_Type (Entity (Alt))
4314 then
4315 Cond :=
4316 Make_In (Sloc (Alt),
4317 Left_Opnd => L,
4318 Right_Opnd => R);
4319 else
4320 Cond := Make_Op_Eq (Sloc (Alt),
4321 Left_Opnd => L,
4322 Right_Opnd => R);
4323 end if;
4324
4325 return Cond;
4326 end Make_Cond;
4327
4328 -- Start of proessing for Expand_N_In
4329
4330 begin
4331 Alt := Last (Alternatives (N));
4332 Res := Make_Cond (Alt);
4333
4334 Prev (Alt);
4335 while Present (Alt) loop
4336 Res :=
4337 Make_Or_Else (Sloc (Alt),
4338 Left_Opnd => Make_Cond (Alt),
4339 Right_Opnd => Res);
4340 Prev (Alt);
4341 end loop;
4342
4343 Rewrite (N, Res);
4344 Analyze_And_Resolve (N, Standard_Boolean);
4345 end Expand_Set_Membership;
4346
630d30e9
RD
4347 procedure Substitute_Valid_Check;
4348 -- Replaces node N by Lop'Valid. This is done when we have an explicit
4349 -- test for the left operand being in range of its subtype.
4350
4351 ----------------------------
4352 -- Substitute_Valid_Check --
4353 ----------------------------
4354
4355 procedure Substitute_Valid_Check is
4356 begin
4357 Rewrite (N,
4358 Make_Attribute_Reference (Loc,
4359 Prefix => Relocate_Node (Lop),
4360 Attribute_Name => Name_Valid));
4361
4362 Analyze_And_Resolve (N, Rtyp);
4363
4364 Error_Msg_N ("?explicit membership test may be optimized away", N);
305caf42
AC
4365 Error_Msg_N -- CODEFIX
4366 ("\?use ''Valid attribute instead", N);
630d30e9
RD
4367 return;
4368 end Substitute_Valid_Check;
4369
4370 -- Start of processing for Expand_N_In
4371
70482933 4372 begin
197e4514
AC
4373 if Present (Alternatives (N)) then
4374 Remove_Side_Effects (Lop);
4375 Expand_Set_Membership;
4376 return;
4377 end if;
4378
630d30e9
RD
4379 -- Check case of explicit test for an expression in range of its
4380 -- subtype. This is suspicious usage and we replace it with a 'Valid
545cb5be
AC
4381 -- test and give a warning. For floating point types however, this
4382 -- is a standard way to check for finite numbers, and using 'Valid
4383 -- would typically be a pessimization
630d30e9
RD
4384
4385 if Is_Scalar_Type (Etype (Lop))
545cb5be 4386 and then not Is_Floating_Point_Type (Etype (Lop))
630d30e9
RD
4387 and then Nkind (Rop) in N_Has_Entity
4388 and then Etype (Lop) = Entity (Rop)
4389 and then Comes_From_Source (N)
26bff3d9 4390 and then VM_Target = No_VM
630d30e9
RD
4391 then
4392 Substitute_Valid_Check;
4393 return;
4394 end if;
4395
20b5d666
JM
4396 -- Do validity check on operands
4397
4398 if Validity_Checks_On and Validity_Check_Operands then
4399 Ensure_Valid (Left_Opnd (N));
4400 Validity_Check_Range (Right_Opnd (N));
4401 end if;
4402
630d30e9 4403 -- Case of explicit range
fbf5a39b
AC
4404
4405 if Nkind (Rop) = N_Range then
4406 declare
630d30e9
RD
4407 Lo : constant Node_Id := Low_Bound (Rop);
4408 Hi : constant Node_Id := High_Bound (Rop);
4409
d766cee3
RD
4410 Ltyp : constant Entity_Id := Etype (Lop);
4411
630d30e9
RD
4412 Lo_Orig : constant Node_Id := Original_Node (Lo);
4413 Hi_Orig : constant Node_Id := Original_Node (Hi);
4414
c800f862
RD
4415 Lcheck : Compare_Result;
4416 Ucheck : Compare_Result;
fbf5a39b 4417
d766cee3
RD
4418 Warn1 : constant Boolean :=
4419 Constant_Condition_Warnings
c800f862
RD
4420 and then Comes_From_Source (N)
4421 and then not In_Instance;
d766cee3
RD
4422 -- This must be true for any of the optimization warnings, we
4423 -- clearly want to give them only for source with the flag on.
c800f862
RD
4424 -- We also skip these warnings in an instance since it may be
4425 -- the case that different instantiations have different ranges.
d766cee3
RD
4426
4427 Warn2 : constant Boolean :=
4428 Warn1
4429 and then Nkind (Original_Node (Rop)) = N_Range
4430 and then Is_Integer_Type (Etype (Lo));
4431 -- For the case where only one bound warning is elided, we also
4432 -- insist on an explicit range and an integer type. The reason is
4433 -- that the use of enumeration ranges including an end point is
4434 -- common, as is the use of a subtype name, one of whose bounds
4435 -- is the same as the type of the expression.
4436
fbf5a39b 4437 begin
630d30e9
RD
4438 -- If test is explicit x'first .. x'last, replace by valid check
4439
d766cee3 4440 if Is_Scalar_Type (Ltyp)
630d30e9
RD
4441 and then Nkind (Lo_Orig) = N_Attribute_Reference
4442 and then Attribute_Name (Lo_Orig) = Name_First
4443 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 4444 and then Entity (Prefix (Lo_Orig)) = Ltyp
630d30e9
RD
4445 and then Nkind (Hi_Orig) = N_Attribute_Reference
4446 and then Attribute_Name (Hi_Orig) = Name_Last
4447 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 4448 and then Entity (Prefix (Hi_Orig)) = Ltyp
630d30e9 4449 and then Comes_From_Source (N)
26bff3d9 4450 and then VM_Target = No_VM
630d30e9
RD
4451 then
4452 Substitute_Valid_Check;
4453 return;
4454 end if;
4455
d766cee3
RD
4456 -- If bounds of type are known at compile time, and the end points
4457 -- are known at compile time and identical, this is another case
4458 -- for substituting a valid test. We only do this for discrete
4459 -- types, since it won't arise in practice for float types.
4460
4461 if Comes_From_Source (N)
4462 and then Is_Discrete_Type (Ltyp)
4463 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
4464 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
4465 and then Compile_Time_Known_Value (Lo)
4466 and then Compile_Time_Known_Value (Hi)
4467 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
4468 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e
RD
4469
4470 -- Kill warnings in instances, since they may be cases where we
4471 -- have a test in the generic that makes sense with some types
4472 -- and not with other types.
4473
4474 and then not In_Instance
d766cee3
RD
4475 then
4476 Substitute_Valid_Check;
4477 return;
4478 end if;
4479
630d30e9
RD
4480 -- If we have an explicit range, do a bit of optimization based
4481 -- on range analysis (we may be able to kill one or both checks).
4482
c800f862
RD
4483 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
4484 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
4485
630d30e9
RD
4486 -- If either check is known to fail, replace result by False since
4487 -- the other check does not matter. Preserve the static flag for
4488 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
4489
4490 if Lcheck = LT or else Ucheck = GT then
c800f862 4491 if Warn1 then
ed2233dc
AC
4492 Error_Msg_N ("?range test optimized away", N);
4493 Error_Msg_N ("\?value is known to be out of range", N);
d766cee3
RD
4494 end if;
4495
fbf5a39b
AC
4496 Rewrite (N,
4497 New_Reference_To (Standard_False, Loc));
4498 Analyze_And_Resolve (N, Rtyp);
7324bf49 4499 Set_Is_Static_Expression (N, Static);
d766cee3 4500
fbf5a39b
AC
4501 return;
4502
685094bf
RD
4503 -- If both checks are known to succeed, replace result by True,
4504 -- since we know we are in range.
fbf5a39b
AC
4505
4506 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 4507 if Warn1 then
ed2233dc
AC
4508 Error_Msg_N ("?range test optimized away", N);
4509 Error_Msg_N ("\?value is known to be in range", N);
d766cee3
RD
4510 end if;
4511
fbf5a39b
AC
4512 Rewrite (N,
4513 New_Reference_To (Standard_True, Loc));
4514 Analyze_And_Resolve (N, Rtyp);
7324bf49 4515 Set_Is_Static_Expression (N, Static);
d766cee3 4516
fbf5a39b
AC
4517 return;
4518
d766cee3
RD
4519 -- If lower bound check succeeds and upper bound check is not
4520 -- known to succeed or fail, then replace the range check with
4521 -- a comparison against the upper bound.
fbf5a39b
AC
4522
4523 elsif Lcheck in Compare_GE then
94eefd2e 4524 if Warn2 and then not In_Instance then
ed2233dc
AC
4525 Error_Msg_N ("?lower bound test optimized away", Lo);
4526 Error_Msg_N ("\?value is known to be in range", Lo);
d766cee3
RD
4527 end if;
4528
fbf5a39b
AC
4529 Rewrite (N,
4530 Make_Op_Le (Loc,
4531 Left_Opnd => Lop,
4532 Right_Opnd => High_Bound (Rop)));
4533 Analyze_And_Resolve (N, Rtyp);
d766cee3 4534
fbf5a39b
AC
4535 return;
4536
d766cee3
RD
4537 -- If upper bound check succeeds and lower bound check is not
4538 -- known to succeed or fail, then replace the range check with
4539 -- a comparison against the lower bound.
fbf5a39b
AC
4540
4541 elsif Ucheck in Compare_LE then
94eefd2e 4542 if Warn2 and then not In_Instance then
ed2233dc
AC
4543 Error_Msg_N ("?upper bound test optimized away", Hi);
4544 Error_Msg_N ("\?value is known to be in range", Hi);
d766cee3
RD
4545 end if;
4546
fbf5a39b
AC
4547 Rewrite (N,
4548 Make_Op_Ge (Loc,
4549 Left_Opnd => Lop,
4550 Right_Opnd => Low_Bound (Rop)));
4551 Analyze_And_Resolve (N, Rtyp);
d766cee3 4552
fbf5a39b
AC
4553 return;
4554 end if;
c800f862
RD
4555
4556 -- We couldn't optimize away the range check, but there is one
4557 -- more issue. If we are checking constant conditionals, then we
4558 -- see if we can determine the outcome assuming everything is
4559 -- valid, and if so give an appropriate warning.
4560
4561 if Warn1 and then not Assume_No_Invalid_Values then
4562 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
4563 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
4564
4565 -- Result is out of range for valid value
4566
4567 if Lcheck = LT or else Ucheck = GT then
ed2233dc 4568 Error_Msg_N
c800f862
RD
4569 ("?value can only be in range if it is invalid", N);
4570
4571 -- Result is in range for valid value
4572
4573 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 4574 Error_Msg_N
c800f862
RD
4575 ("?value can only be out of range if it is invalid", N);
4576
4577 -- Lower bound check succeeds if value is valid
4578
4579 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 4580 Error_Msg_N
c800f862
RD
4581 ("?lower bound check only fails if it is invalid", Lo);
4582
4583 -- Upper bound check succeeds if value is valid
4584
4585 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 4586 Error_Msg_N
c800f862
RD
4587 ("?upper bound check only fails for invalid values", Hi);
4588 end if;
4589 end if;
fbf5a39b
AC
4590 end;
4591
4592 -- For all other cases of an explicit range, nothing to be done
70482933 4593
70482933
RK
4594 return;
4595
4596 -- Here right operand is a subtype mark
4597
4598 else
4599 declare
82878151
AC
4600 Typ : Entity_Id := Etype (Rop);
4601 Is_Acc : constant Boolean := Is_Access_Type (Typ);
4602 Cond : Node_Id := Empty;
4603 New_N : Node_Id;
4604 Obj : Node_Id := Lop;
4605 SCIL_Node : Node_Id;
70482933
RK
4606
4607 begin
4608 Remove_Side_Effects (Obj);
4609
4610 -- For tagged type, do tagged membership operation
4611
4612 if Is_Tagged_Type (Typ) then
fbf5a39b 4613
26bff3d9
JM
4614 -- No expansion will be performed when VM_Target, as the VM
4615 -- back-ends will handle the membership tests directly (tags
4616 -- are not explicitly represented in Java objects, so the
4617 -- normal tagged membership expansion is not what we want).
70482933 4618
1f110335 4619 if Tagged_Type_Expansion then
82878151
AC
4620 Tagged_Membership (N, SCIL_Node, New_N);
4621 Rewrite (N, New_N);
70482933 4622 Analyze_And_Resolve (N, Rtyp);
82878151
AC
4623
4624 -- Update decoration of relocated node referenced by the
4625 -- SCIL node.
4626
4627 if Generate_SCIL
4628 and then Present (SCIL_Node)
4629 then
7665e4bd 4630 Set_SCIL_Node (N, SCIL_Node);
82878151 4631 end if;
70482933
RK
4632 end if;
4633
4634 return;
4635
20b5d666 4636 -- If type is scalar type, rewrite as x in t'first .. t'last.
70482933 4637 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
4638 -- type if they come from the original type definition. Also this
4639 -- way we get all the processing above for an explicit range.
70482933
RK
4640
4641 elsif Is_Scalar_Type (Typ) then
fbf5a39b 4642 Rewrite (Rop,
70482933
RK
4643 Make_Range (Loc,
4644 Low_Bound =>
4645 Make_Attribute_Reference (Loc,
4646 Attribute_Name => Name_First,
4647 Prefix => New_Reference_To (Typ, Loc)),
4648
4649 High_Bound =>
4650 Make_Attribute_Reference (Loc,
4651 Attribute_Name => Name_Last,
4652 Prefix => New_Reference_To (Typ, Loc))));
4653 Analyze_And_Resolve (N, Rtyp);
4654 return;
5d09245e
AC
4655
4656 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
4657 -- a membership test if the subtype mark denotes a constrained
4658 -- Unchecked_Union subtype and the expression lacks inferable
4659 -- discriminants.
4660
4661 elsif Is_Unchecked_Union (Base_Type (Typ))
4662 and then Is_Constrained (Typ)
4663 and then not Has_Inferable_Discriminants (Lop)
4664 then
4665 Insert_Action (N,
4666 Make_Raise_Program_Error (Loc,
4667 Reason => PE_Unchecked_Union_Restriction));
4668
4669 -- Prevent Gigi from generating incorrect code by rewriting
4670 -- the test as a standard False.
4671
4672 Rewrite (N,
4673 New_Occurrence_Of (Standard_False, Loc));
4674
4675 return;
70482933
RK
4676 end if;
4677
fbf5a39b
AC
4678 -- Here we have a non-scalar type
4679
70482933
RK
4680 if Is_Acc then
4681 Typ := Designated_Type (Typ);
4682 end if;
4683
4684 if not Is_Constrained (Typ) then
4685 Rewrite (N,
4686 New_Reference_To (Standard_True, Loc));
4687 Analyze_And_Resolve (N, Rtyp);
4688
685094bf
RD
4689 -- For the constrained array case, we have to check the subscripts
4690 -- for an exact match if the lengths are non-zero (the lengths
4691 -- must match in any case).
70482933
RK
4692
4693 elsif Is_Array_Type (Typ) then
4694
fbf5a39b 4695 Check_Subscripts : declare
70482933 4696 function Construct_Attribute_Reference
2e071734
AC
4697 (E : Node_Id;
4698 Nam : Name_Id;
4699 Dim : Nat) return Node_Id;
70482933
RK
4700 -- Build attribute reference E'Nam(Dim)
4701
fbf5a39b
AC
4702 -----------------------------------
4703 -- Construct_Attribute_Reference --
4704 -----------------------------------
4705
70482933 4706 function Construct_Attribute_Reference
2e071734
AC
4707 (E : Node_Id;
4708 Nam : Name_Id;
4709 Dim : Nat) return Node_Id
70482933
RK
4710 is
4711 begin
4712 return
4713 Make_Attribute_Reference (Loc,
4714 Prefix => E,
4715 Attribute_Name => Nam,
4716 Expressions => New_List (
4717 Make_Integer_Literal (Loc, Dim)));
4718 end Construct_Attribute_Reference;
4719
fad0600d 4720 -- Start of processing for Check_Subscripts
fbf5a39b 4721
70482933
RK
4722 begin
4723 for J in 1 .. Number_Dimensions (Typ) loop
4724 Evolve_And_Then (Cond,
4725 Make_Op_Eq (Loc,
4726 Left_Opnd =>
4727 Construct_Attribute_Reference
fbf5a39b
AC
4728 (Duplicate_Subexpr_No_Checks (Obj),
4729 Name_First, J),
70482933
RK
4730 Right_Opnd =>
4731 Construct_Attribute_Reference
4732 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
4733
4734 Evolve_And_Then (Cond,
4735 Make_Op_Eq (Loc,
4736 Left_Opnd =>
4737 Construct_Attribute_Reference
fbf5a39b
AC
4738 (Duplicate_Subexpr_No_Checks (Obj),
4739 Name_Last, J),
70482933
RK
4740 Right_Opnd =>
4741 Construct_Attribute_Reference
4742 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
4743 end loop;
4744
4745 if Is_Acc then
fbf5a39b
AC
4746 Cond :=
4747 Make_Or_Else (Loc,
4748 Left_Opnd =>
4749 Make_Op_Eq (Loc,
4750 Left_Opnd => Obj,
4751 Right_Opnd => Make_Null (Loc)),
4752 Right_Opnd => Cond);
70482933
RK
4753 end if;
4754
4755 Rewrite (N, Cond);
4756 Analyze_And_Resolve (N, Rtyp);
fbf5a39b 4757 end Check_Subscripts;
70482933 4758
685094bf
RD
4759 -- These are the cases where constraint checks may be required,
4760 -- e.g. records with possible discriminants
70482933
RK
4761
4762 else
4763 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
4764 -- The expression that is built is the negation of the one that
4765 -- is used for checking discriminant constraints.
70482933
RK
4766
4767 Obj := Relocate_Node (Left_Opnd (N));
4768
4769 if Has_Discriminants (Typ) then
4770 Cond := Make_Op_Not (Loc,
4771 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
4772
4773 if Is_Acc then
4774 Cond := Make_Or_Else (Loc,
4775 Left_Opnd =>
4776 Make_Op_Eq (Loc,
4777 Left_Opnd => Obj,
4778 Right_Opnd => Make_Null (Loc)),
4779 Right_Opnd => Cond);
4780 end if;
4781
4782 else
4783 Cond := New_Occurrence_Of (Standard_True, Loc);
4784 end if;
4785
4786 Rewrite (N, Cond);
4787 Analyze_And_Resolve (N, Rtyp);
4788 end if;
4789 end;
4790 end if;
4791 end Expand_N_In;
4792
4793 --------------------------------
4794 -- Expand_N_Indexed_Component --
4795 --------------------------------
4796
4797 procedure Expand_N_Indexed_Component (N : Node_Id) is
4798 Loc : constant Source_Ptr := Sloc (N);
4799 Typ : constant Entity_Id := Etype (N);
4800 P : constant Node_Id := Prefix (N);
4801 T : constant Entity_Id := Etype (P);
4802
4803 begin
685094bf
RD
4804 -- A special optimization, if we have an indexed component that is
4805 -- selecting from a slice, then we can eliminate the slice, since, for
4806 -- example, x (i .. j)(k) is identical to x(k). The only difference is
4807 -- the range check required by the slice. The range check for the slice
4808 -- itself has already been generated. The range check for the
4809 -- subscripting operation is ensured by converting the subject to
4810 -- the subtype of the slice.
4811
4812 -- This optimization not only generates better code, avoiding slice
4813 -- messing especially in the packed case, but more importantly bypasses
4814 -- some problems in handling this peculiar case, for example, the issue
4815 -- of dealing specially with object renamings.
70482933
RK
4816
4817 if Nkind (P) = N_Slice then
4818 Rewrite (N,
4819 Make_Indexed_Component (Loc,
4820 Prefix => Prefix (P),
4821 Expressions => New_List (
4822 Convert_To
4823 (Etype (First_Index (Etype (P))),
4824 First (Expressions (N))))));
4825 Analyze_And_Resolve (N, Typ);
4826 return;
4827 end if;
4828
b4592168
GD
4829 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
4830 -- function, then additional actuals must be passed.
4831
4832 if Ada_Version >= Ada_05
4833 and then Is_Build_In_Place_Function_Call (P)
4834 then
4835 Make_Build_In_Place_Call_In_Anonymous_Context (P);
4836 end if;
4837
685094bf 4838 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 4839 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
4840 -- cases, including packed array cases and certain cases in which checks
4841 -- must be generated. We used to try to do this only when it was
4842 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
4843
4844 if Is_Access_Type (T) then
2717634d 4845 Insert_Explicit_Dereference (P);
70482933
RK
4846 Analyze_And_Resolve (P, Designated_Type (T));
4847 end if;
4848
fbf5a39b
AC
4849 -- Generate index and validity checks
4850
4851 Generate_Index_Checks (N);
4852
70482933
RK
4853 if Validity_Checks_On and then Validity_Check_Subscripts then
4854 Apply_Subscript_Validity_Checks (N);
4855 end if;
4856
4857 -- All done for the non-packed case
4858
4859 if not Is_Packed (Etype (Prefix (N))) then
4860 return;
4861 end if;
4862
4863 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 4864 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
4865 -- we can always use the normal packed element get circuit.
4866
4867 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
4868 Expand_Packed_Element_Reference (N);
4869 return;
4870 end if;
4871
4872 -- For a reference to a component of a bit packed array, we have to
4873 -- convert it to a reference to the corresponding Packed_Array_Type.
4874 -- We only want to do this for simple references, and not for:
4875
685094bf
RD
4876 -- Left side of assignment, or prefix of left side of assignment, or
4877 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
4878 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
4879
4880 -- Renaming objects in renaming associations
4881 -- This case is handled when a use of the renamed variable occurs
4882
4883 -- Actual parameters for a procedure call
4884 -- This case is handled in Exp_Ch6.Expand_Actuals
4885
4886 -- The second expression in a 'Read attribute reference
4887
47d3b920 4888 -- The prefix of an address or bit or size attribute reference
70482933
RK
4889
4890 -- The following circuit detects these exceptions
4891
4892 declare
4893 Child : Node_Id := N;
4894 Parnt : Node_Id := Parent (N);
4895
4896 begin
4897 loop
4898 if Nkind (Parnt) = N_Unchecked_Expression then
4899 null;
4900
303b4d58
AC
4901 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
4902 N_Procedure_Call_Statement)
70482933
RK
4903 or else (Nkind (Parnt) = N_Parameter_Association
4904 and then
4905 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
4906 then
4907 return;
4908
4909 elsif Nkind (Parnt) = N_Attribute_Reference
4910 and then (Attribute_Name (Parnt) = Name_Address
4911 or else
47d3b920
AC
4912 Attribute_Name (Parnt) = Name_Bit
4913 or else
70482933
RK
4914 Attribute_Name (Parnt) = Name_Size)
4915 and then Prefix (Parnt) = Child
4916 then
4917 return;
4918
4919 elsif Nkind (Parnt) = N_Assignment_Statement
4920 and then Name (Parnt) = Child
4921 then
4922 return;
4923
685094bf
RD
4924 -- If the expression is an index of an indexed component, it must
4925 -- be expanded regardless of context.
fbf5a39b
AC
4926
4927 elsif Nkind (Parnt) = N_Indexed_Component
4928 and then Child /= Prefix (Parnt)
4929 then
4930 Expand_Packed_Element_Reference (N);
4931 return;
4932
4933 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
4934 and then Name (Parent (Parnt)) = Parnt
4935 then
4936 return;
4937
70482933
RK
4938 elsif Nkind (Parnt) = N_Attribute_Reference
4939 and then Attribute_Name (Parnt) = Name_Read
4940 and then Next (First (Expressions (Parnt))) = Child
4941 then
4942 return;
4943
303b4d58 4944 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
70482933
RK
4945 and then Prefix (Parnt) = Child
4946 then
4947 null;
4948
4949 else
4950 Expand_Packed_Element_Reference (N);
4951 return;
4952 end if;
4953
685094bf
RD
4954 -- Keep looking up tree for unchecked expression, or if we are the
4955 -- prefix of a possible assignment left side.
70482933
RK
4956
4957 Child := Parnt;
4958 Parnt := Parent (Child);
4959 end loop;
4960 end;
70482933
RK
4961 end Expand_N_Indexed_Component;
4962
4963 ---------------------
4964 -- Expand_N_Not_In --
4965 ---------------------
4966
4967 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
4968 -- can be done. This avoids needing to duplicate this expansion code.
4969
4970 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
4971 Loc : constant Source_Ptr := Sloc (N);
4972 Typ : constant Entity_Id := Etype (N);
4973 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
4974
4975 begin
4976 Rewrite (N,
4977 Make_Op_Not (Loc,
4978 Right_Opnd =>
4979 Make_In (Loc,
4980 Left_Opnd => Left_Opnd (N),
d766cee3 4981 Right_Opnd => Right_Opnd (N))));
630d30e9 4982
197e4514
AC
4983 -- If this is a set membership, preserve list of alternatives
4984
4985 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
4986
d766cee3 4987 -- We want this to appear as coming from source if original does (see
8fc789c8 4988 -- transformations in Expand_N_In).
630d30e9
RD
4989
4990 Set_Comes_From_Source (N, Cfs);
4991 Set_Comes_From_Source (Right_Opnd (N), Cfs);
4992
8fc789c8 4993 -- Now analyze transformed node
630d30e9 4994
70482933
RK
4995 Analyze_And_Resolve (N, Typ);
4996 end Expand_N_Not_In;
4997
4998 -------------------
4999 -- Expand_N_Null --
5000 -------------------
5001
685094bf
RD
5002 -- The only replacement required is for the case of a null of type that is
5003 -- an access to protected subprogram. We represent such access values as a
5004 -- record, and so we must replace the occurrence of null by the equivalent
5005 -- record (with a null address and a null pointer in it), so that the
5006 -- backend creates the proper value.
70482933
RK
5007
5008 procedure Expand_N_Null (N : Node_Id) is
5009 Loc : constant Source_Ptr := Sloc (N);
5010 Typ : constant Entity_Id := Etype (N);
5011 Agg : Node_Id;
5012
5013 begin
26bff3d9 5014 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
5015 Agg :=
5016 Make_Aggregate (Loc,
5017 Expressions => New_List (
5018 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
5019 Make_Null (Loc)));
5020
5021 Rewrite (N, Agg);
5022 Analyze_And_Resolve (N, Equivalent_Type (Typ));
5023
685094bf
RD
5024 -- For subsequent semantic analysis, the node must retain its type.
5025 -- Gigi in any case replaces this type by the corresponding record
5026 -- type before processing the node.
70482933
RK
5027
5028 Set_Etype (N, Typ);
5029 end if;
fbf5a39b
AC
5030
5031 exception
5032 when RE_Not_Available =>
5033 return;
70482933
RK
5034 end Expand_N_Null;
5035
5036 ---------------------
5037 -- Expand_N_Op_Abs --
5038 ---------------------
5039
5040 procedure Expand_N_Op_Abs (N : Node_Id) is
5041 Loc : constant Source_Ptr := Sloc (N);
5042 Expr : constant Node_Id := Right_Opnd (N);
5043
5044 begin
5045 Unary_Op_Validity_Checks (N);
5046
5047 -- Deal with software overflow checking
5048
07fc65c4 5049 if not Backend_Overflow_Checks_On_Target
70482933
RK
5050 and then Is_Signed_Integer_Type (Etype (N))
5051 and then Do_Overflow_Check (N)
5052 then
685094bf
RD
5053 -- The only case to worry about is when the argument is equal to the
5054 -- largest negative number, so what we do is to insert the check:
70482933 5055
fbf5a39b 5056 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
5057
5058 -- with the usual Duplicate_Subexpr use coding for expr
5059
fbf5a39b
AC
5060 Insert_Action (N,
5061 Make_Raise_Constraint_Error (Loc,
5062 Condition =>
5063 Make_Op_Eq (Loc,
70482933 5064 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
5065 Right_Opnd =>
5066 Make_Attribute_Reference (Loc,
5067 Prefix =>
5068 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
5069 Attribute_Name => Name_First)),
5070 Reason => CE_Overflow_Check_Failed));
5071 end if;
70482933
RK
5072
5073 -- Vax floating-point types case
5074
fbf5a39b 5075 if Vax_Float (Etype (N)) then
70482933
RK
5076 Expand_Vax_Arith (N);
5077 end if;
5078 end Expand_N_Op_Abs;
5079
5080 ---------------------
5081 -- Expand_N_Op_Add --
5082 ---------------------
5083
5084 procedure Expand_N_Op_Add (N : Node_Id) is
5085 Typ : constant Entity_Id := Etype (N);
5086
5087 begin
5088 Binary_Op_Validity_Checks (N);
5089
5090 -- N + 0 = 0 + N = N for integer types
5091
5092 if Is_Integer_Type (Typ) then
5093 if Compile_Time_Known_Value (Right_Opnd (N))
5094 and then Expr_Value (Right_Opnd (N)) = Uint_0
5095 then
5096 Rewrite (N, Left_Opnd (N));
5097 return;
5098
5099 elsif Compile_Time_Known_Value (Left_Opnd (N))
5100 and then Expr_Value (Left_Opnd (N)) = Uint_0
5101 then
5102 Rewrite (N, Right_Opnd (N));
5103 return;
5104 end if;
5105 end if;
5106
fbf5a39b 5107 -- Arithmetic overflow checks for signed integer/fixed point types
70482933
RK
5108
5109 if Is_Signed_Integer_Type (Typ)
5110 or else Is_Fixed_Point_Type (Typ)
5111 then
5112 Apply_Arithmetic_Overflow_Check (N);
5113 return;
5114
5115 -- Vax floating-point types case
5116
5117 elsif Vax_Float (Typ) then
5118 Expand_Vax_Arith (N);
5119 end if;
5120 end Expand_N_Op_Add;
5121
5122 ---------------------
5123 -- Expand_N_Op_And --
5124 ---------------------
5125
5126 procedure Expand_N_Op_And (N : Node_Id) is
5127 Typ : constant Entity_Id := Etype (N);
5128
5129 begin
5130 Binary_Op_Validity_Checks (N);
5131
5132 if Is_Array_Type (Etype (N)) then
5133 Expand_Boolean_Operator (N);
5134
5135 elsif Is_Boolean_Type (Etype (N)) then
6a2afd13
AC
5136
5137 -- Replace AND by AND THEN if Short_Circuit_And_Or active and the
5138 -- type is standard Boolean (do not mess with AND that uses a non-
5139 -- standard Boolean type, because something strange is going on).
5140
5141 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
5142 Rewrite (N,
5143 Make_And_Then (Sloc (N),
5144 Left_Opnd => Relocate_Node (Left_Opnd (N)),
5145 Right_Opnd => Relocate_Node (Right_Opnd (N))));
5146 Analyze_And_Resolve (N, Typ);
5147
5148 -- Otherwise, adjust conditions
5149
5150 else
5151 Adjust_Condition (Left_Opnd (N));
5152 Adjust_Condition (Right_Opnd (N));
5153 Set_Etype (N, Standard_Boolean);
5154 Adjust_Result_Type (N, Typ);
5155 end if;
70482933
RK
5156 end if;
5157 end Expand_N_Op_And;
5158
5159 ------------------------
5160 -- Expand_N_Op_Concat --
5161 ------------------------
5162
5163 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
5164 Opnds : List_Id;
5165 -- List of operands to be concatenated
5166
70482933 5167 Cnode : Node_Id;
685094bf
RD
5168 -- Node which is to be replaced by the result of concatenating the nodes
5169 -- in the list Opnds.
70482933 5170
70482933 5171 begin
fbf5a39b
AC
5172 -- Ensure validity of both operands
5173
70482933
RK
5174 Binary_Op_Validity_Checks (N);
5175
685094bf
RD
5176 -- If we are the left operand of a concatenation higher up the tree,
5177 -- then do nothing for now, since we want to deal with a series of
5178 -- concatenations as a unit.
70482933
RK
5179
5180 if Nkind (Parent (N)) = N_Op_Concat
5181 and then N = Left_Opnd (Parent (N))
5182 then
5183 return;
5184 end if;
5185
5186 -- We get here with a concatenation whose left operand may be a
5187 -- concatenation itself with a consistent type. We need to process
5188 -- these concatenation operands from left to right, which means
5189 -- from the deepest node in the tree to the highest node.
5190
5191 Cnode := N;
5192 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
5193 Cnode := Left_Opnd (Cnode);
5194 end loop;
5195
64425dff
BD
5196 -- Now Cnode is the deepest concatenation, and its parents are the
5197 -- concatenation nodes above, so now we process bottom up, doing the
5198 -- operations. We gather a string that is as long as possible up to five
5199 -- operands.
70482933 5200
df46b832
AC
5201 -- The outer loop runs more than once if more than one concatenation
5202 -- type is involved.
70482933
RK
5203
5204 Outer : loop
5205 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
5206 Set_Parent (Opnds, N);
5207
df46b832 5208 -- The inner loop gathers concatenation operands
70482933
RK
5209
5210 Inner : while Cnode /= N
70482933
RK
5211 and then Base_Type (Etype (Cnode)) =
5212 Base_Type (Etype (Parent (Cnode)))
5213 loop
5214 Cnode := Parent (Cnode);
5215 Append (Right_Opnd (Cnode), Opnds);
5216 end loop Inner;
5217
fdac1f80 5218 Expand_Concatenate (Cnode, Opnds);
70482933
RK
5219
5220 exit Outer when Cnode = N;
5221 Cnode := Parent (Cnode);
5222 end loop Outer;
5223 end Expand_N_Op_Concat;
5224
5225 ------------------------
5226 -- Expand_N_Op_Divide --
5227 ------------------------
5228
5229 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
5230 Loc : constant Source_Ptr := Sloc (N);
5231 Lopnd : constant Node_Id := Left_Opnd (N);
5232 Ropnd : constant Node_Id := Right_Opnd (N);
5233 Ltyp : constant Entity_Id := Etype (Lopnd);
5234 Rtyp : constant Entity_Id := Etype (Ropnd);
5235 Typ : Entity_Id := Etype (N);
5236 Rknow : constant Boolean := Is_Integer_Type (Typ)
5237 and then
5238 Compile_Time_Known_Value (Ropnd);
5239 Rval : Uint;
70482933
RK
5240
5241 begin
5242 Binary_Op_Validity_Checks (N);
5243
f82944b7
JM
5244 if Rknow then
5245 Rval := Expr_Value (Ropnd);
5246 end if;
5247
70482933
RK
5248 -- N / 1 = N for integer types
5249
f82944b7
JM
5250 if Rknow and then Rval = Uint_1 then
5251 Rewrite (N, Lopnd);
70482933
RK
5252 return;
5253 end if;
5254
5255 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
5256 -- Is_Power_Of_2_For_Shift is set means that we know that our left
5257 -- operand is an unsigned integer, as required for this to work.
5258
f82944b7
JM
5259 if Nkind (Ropnd) = N_Op_Expon
5260 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
5261
5262 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 5263 -- have 64-bit integers and long shifts are not available.
fbf5a39b
AC
5264
5265 and then
5266 (Esize (Ltyp) <= 32
5267 or else Support_Long_Shifts_On_Target)
70482933
RK
5268 then
5269 Rewrite (N,
5270 Make_Op_Shift_Right (Loc,
f82944b7 5271 Left_Opnd => Lopnd,
70482933 5272 Right_Opnd =>
f82944b7 5273 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
5274 Analyze_And_Resolve (N, Typ);
5275 return;
5276 end if;
5277
5278 -- Do required fixup of universal fixed operation
5279
5280 if Typ = Universal_Fixed then
5281 Fixup_Universal_Fixed_Operation (N);
5282 Typ := Etype (N);
5283 end if;
5284
5285 -- Divisions with fixed-point results
5286
5287 if Is_Fixed_Point_Type (Typ) then
5288
685094bf
RD
5289 -- No special processing if Treat_Fixed_As_Integer is set, since
5290 -- from a semantic point of view such operations are simply integer
5291 -- operations and will be treated that way.
70482933
RK
5292
5293 if not Treat_Fixed_As_Integer (N) then
5294 if Is_Integer_Type (Rtyp) then
5295 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
5296 else
5297 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
5298 end if;
5299 end if;
5300
685094bf
RD
5301 -- Other cases of division of fixed-point operands. Again we exclude the
5302 -- case where Treat_Fixed_As_Integer is set.
70482933
RK
5303
5304 elsif (Is_Fixed_Point_Type (Ltyp) or else
5305 Is_Fixed_Point_Type (Rtyp))
5306 and then not Treat_Fixed_As_Integer (N)
5307 then
5308 if Is_Integer_Type (Typ) then
5309 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
5310 else
5311 pragma Assert (Is_Floating_Point_Type (Typ));
5312 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
5313 end if;
5314
685094bf
RD
5315 -- Mixed-mode operations can appear in a non-static universal context,
5316 -- in which case the integer argument must be converted explicitly.
70482933
RK
5317
5318 elsif Typ = Universal_Real
5319 and then Is_Integer_Type (Rtyp)
5320 then
f82944b7
JM
5321 Rewrite (Ropnd,
5322 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 5323
f82944b7 5324 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933
RK
5325
5326 elsif Typ = Universal_Real
5327 and then Is_Integer_Type (Ltyp)
5328 then
f82944b7
JM
5329 Rewrite (Lopnd,
5330 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 5331
f82944b7 5332 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 5333
f02b8bb8 5334 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
5335
5336 elsif Is_Integer_Type (Typ) then
5337 Apply_Divide_Check (N);
fbf5a39b 5338
f82944b7
JM
5339 -- Check for 64-bit division available, or long shifts if the divisor
5340 -- is a small power of 2 (since such divides will be converted into
1147c704 5341 -- long shifts).
fbf5a39b
AC
5342
5343 if Esize (Ltyp) > 32
5344 and then not Support_64_Bit_Divides_On_Target
f82944b7
JM
5345 and then
5346 (not Rknow
5347 or else not Support_Long_Shifts_On_Target
5348 or else (Rval /= Uint_2 and then
5349 Rval /= Uint_4 and then
5350 Rval /= Uint_8 and then
5351 Rval /= Uint_16 and then
5352 Rval /= Uint_32 and then
5353 Rval /= Uint_64))
fbf5a39b
AC
5354 then
5355 Error_Msg_CRT ("64-bit division", N);
5356 end if;
f02b8bb8
RD
5357
5358 -- Deal with Vax_Float
5359
5360 elsif Vax_Float (Typ) then
5361 Expand_Vax_Arith (N);
5362 return;
70482933
RK
5363 end if;
5364 end Expand_N_Op_Divide;
5365
5366 --------------------
5367 -- Expand_N_Op_Eq --
5368 --------------------
5369
5370 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
5371 Loc : constant Source_Ptr := Sloc (N);
5372 Typ : constant Entity_Id := Etype (N);
5373 Lhs : constant Node_Id := Left_Opnd (N);
5374 Rhs : constant Node_Id := Right_Opnd (N);
5375 Bodies : constant List_Id := New_List;
5376 A_Typ : constant Entity_Id := Etype (Lhs);
5377
70482933
RK
5378 Typl : Entity_Id := A_Typ;
5379 Op_Name : Entity_Id;
5380 Prim : Elmt_Id;
70482933
RK
5381
5382 procedure Build_Equality_Call (Eq : Entity_Id);
5383 -- If a constructed equality exists for the type or for its parent,
5384 -- build and analyze call, adding conversions if the operation is
5385 -- inherited.
5386
5d09245e 5387 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
8fc789c8 5388 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
5389 -- Unchecked_Union subtype. Typ is a record type.
5390
70482933
RK
5391 -------------------------
5392 -- Build_Equality_Call --
5393 -------------------------
5394
5395 procedure Build_Equality_Call (Eq : Entity_Id) is
5396 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
5397 L_Exp : Node_Id := Relocate_Node (Lhs);
5398 R_Exp : Node_Id := Relocate_Node (Rhs);
5399
5400 begin
5401 if Base_Type (Op_Type) /= Base_Type (A_Typ)
5402 and then not Is_Class_Wide_Type (A_Typ)
5403 then
5404 L_Exp := OK_Convert_To (Op_Type, L_Exp);
5405 R_Exp := OK_Convert_To (Op_Type, R_Exp);
5406 end if;
5407
5d09245e
AC
5408 -- If we have an Unchecked_Union, we need to add the inferred
5409 -- discriminant values as actuals in the function call. At this
5410 -- point, the expansion has determined that both operands have
5411 -- inferable discriminants.
5412
5413 if Is_Unchecked_Union (Op_Type) then
5414 declare
5415 Lhs_Type : constant Node_Id := Etype (L_Exp);
5416 Rhs_Type : constant Node_Id := Etype (R_Exp);
5417 Lhs_Discr_Val : Node_Id;
5418 Rhs_Discr_Val : Node_Id;
5419
5420 begin
5421 -- Per-object constrained selected components require special
5422 -- attention. If the enclosing scope of the component is an
f02b8bb8 5423 -- Unchecked_Union, we cannot reference its discriminants
5d09245e
AC
5424 -- directly. This is why we use the two extra parameters of
5425 -- the equality function of the enclosing Unchecked_Union.
5426
5427 -- type UU_Type (Discr : Integer := 0) is
5428 -- . . .
5429 -- end record;
5430 -- pragma Unchecked_Union (UU_Type);
5431
5432 -- 1. Unchecked_Union enclosing record:
5433
5434 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
5435 -- . . .
5436 -- Comp : UU_Type (Discr);
5437 -- . . .
5438 -- end Enclosing_UU_Type;
5439 -- pragma Unchecked_Union (Enclosing_UU_Type);
5440
5441 -- Obj1 : Enclosing_UU_Type;
5442 -- Obj2 : Enclosing_UU_Type (1);
5443
2717634d 5444 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
5445
5446 -- Generated code:
5447
5448 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
5449
5450 -- A and B are the formal parameters of the equality function
5451 -- of Enclosing_UU_Type. The function always has two extra
5452 -- formals to capture the inferred discriminant values.
5453
5454 -- 2. Non-Unchecked_Union enclosing record:
5455
5456 -- type
5457 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
5458 -- is record
5459 -- . . .
5460 -- Comp : UU_Type (Discr);
5461 -- . . .
5462 -- end Enclosing_Non_UU_Type;
5463
5464 -- Obj1 : Enclosing_Non_UU_Type;
5465 -- Obj2 : Enclosing_Non_UU_Type (1);
5466
630d30e9 5467 -- ... Obj1 = Obj2 ...
5d09245e
AC
5468
5469 -- Generated code:
5470
5471 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
5472 -- obj1.discr, obj2.discr)) then
5473
5474 -- In this case we can directly reference the discriminants of
5475 -- the enclosing record.
5476
5477 -- Lhs of equality
5478
5479 if Nkind (Lhs) = N_Selected_Component
5e1c00fa
RD
5480 and then Has_Per_Object_Constraint
5481 (Entity (Selector_Name (Lhs)))
5d09245e
AC
5482 then
5483 -- Enclosing record is an Unchecked_Union, use formal A
5484
5485 if Is_Unchecked_Union (Scope
5486 (Entity (Selector_Name (Lhs))))
5487 then
5488 Lhs_Discr_Val :=
5489 Make_Identifier (Loc,
5490 Chars => Name_A);
5491
5492 -- Enclosing record is of a non-Unchecked_Union type, it is
5493 -- possible to reference the discriminant.
5494
5495 else
5496 Lhs_Discr_Val :=
5497 Make_Selected_Component (Loc,
5498 Prefix => Prefix (Lhs),
5499 Selector_Name =>
5e1c00fa
RD
5500 New_Copy
5501 (Get_Discriminant_Value
5502 (First_Discriminant (Lhs_Type),
5503 Lhs_Type,
5504 Stored_Constraint (Lhs_Type))));
5d09245e
AC
5505 end if;
5506
5507 -- Comment needed here ???
5508
5509 else
5510 -- Infer the discriminant value
5511
5512 Lhs_Discr_Val :=
5e1c00fa
RD
5513 New_Copy
5514 (Get_Discriminant_Value
5515 (First_Discriminant (Lhs_Type),
5516 Lhs_Type,
5517 Stored_Constraint (Lhs_Type)));
5d09245e
AC
5518 end if;
5519
5520 -- Rhs of equality
5521
5522 if Nkind (Rhs) = N_Selected_Component
5e1c00fa
RD
5523 and then Has_Per_Object_Constraint
5524 (Entity (Selector_Name (Rhs)))
5d09245e 5525 then
5e1c00fa
RD
5526 if Is_Unchecked_Union
5527 (Scope (Entity (Selector_Name (Rhs))))
5d09245e
AC
5528 then
5529 Rhs_Discr_Val :=
5530 Make_Identifier (Loc,
5531 Chars => Name_B);
5532
5533 else
5534 Rhs_Discr_Val :=
5535 Make_Selected_Component (Loc,
5536 Prefix => Prefix (Rhs),
5537 Selector_Name =>
5538 New_Copy (Get_Discriminant_Value (
5539 First_Discriminant (Rhs_Type),
5540 Rhs_Type,
5541 Stored_Constraint (Rhs_Type))));
5542
5543 end if;
5544 else
5545 Rhs_Discr_Val :=
5546 New_Copy (Get_Discriminant_Value (
5547 First_Discriminant (Rhs_Type),
5548 Rhs_Type,
5549 Stored_Constraint (Rhs_Type)));
5550
5551 end if;
5552
5553 Rewrite (N,
5554 Make_Function_Call (Loc,
5555 Name => New_Reference_To (Eq, Loc),
5556 Parameter_Associations => New_List (
5557 L_Exp,
5558 R_Exp,
5559 Lhs_Discr_Val,
5560 Rhs_Discr_Val)));
5561 end;
5562
5563 -- Normal case, not an unchecked union
5564
5565 else
5566 Rewrite (N,
5567 Make_Function_Call (Loc,
5568 Name => New_Reference_To (Eq, Loc),
5569 Parameter_Associations => New_List (L_Exp, R_Exp)));
5570 end if;
70482933
RK
5571
5572 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5573 end Build_Equality_Call;
5574
5d09245e
AC
5575 ------------------------------------
5576 -- Has_Unconstrained_UU_Component --
5577 ------------------------------------
5578
5579 function Has_Unconstrained_UU_Component
5580 (Typ : Node_Id) return Boolean
5581 is
5582 Tdef : constant Node_Id :=
57848bf7 5583 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
5584 Clist : Node_Id;
5585 Vpart : Node_Id;
5586
5587 function Component_Is_Unconstrained_UU
5588 (Comp : Node_Id) return Boolean;
5589 -- Determines whether the subtype of the component is an
5590 -- unconstrained Unchecked_Union.
5591
5592 function Variant_Is_Unconstrained_UU
5593 (Variant : Node_Id) return Boolean;
5594 -- Determines whether a component of the variant has an unconstrained
5595 -- Unchecked_Union subtype.
5596
5597 -----------------------------------
5598 -- Component_Is_Unconstrained_UU --
5599 -----------------------------------
5600
5601 function Component_Is_Unconstrained_UU
5602 (Comp : Node_Id) return Boolean
5603 is
5604 begin
5605 if Nkind (Comp) /= N_Component_Declaration then
5606 return False;
5607 end if;
5608
5609 declare
5610 Sindic : constant Node_Id :=
5611 Subtype_Indication (Component_Definition (Comp));
5612
5613 begin
5614 -- Unconstrained nominal type. In the case of a constraint
5615 -- present, the node kind would have been N_Subtype_Indication.
5616
5617 if Nkind (Sindic) = N_Identifier then
5618 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
5619 end if;
5620
5621 return False;
5622 end;
5623 end Component_Is_Unconstrained_UU;
5624
5625 ---------------------------------
5626 -- Variant_Is_Unconstrained_UU --
5627 ---------------------------------
5628
5629 function Variant_Is_Unconstrained_UU
5630 (Variant : Node_Id) return Boolean
5631 is
5632 Clist : constant Node_Id := Component_List (Variant);
5633
5634 begin
5635 if Is_Empty_List (Component_Items (Clist)) then
5636 return False;
5637 end if;
5638
f02b8bb8
RD
5639 -- We only need to test one component
5640
5d09245e
AC
5641 declare
5642 Comp : Node_Id := First (Component_Items (Clist));
5643
5644 begin
5645 while Present (Comp) loop
5d09245e
AC
5646 if Component_Is_Unconstrained_UU (Comp) then
5647 return True;
5648 end if;
5649
5650 Next (Comp);
5651 end loop;
5652 end;
5653
5654 -- None of the components withing the variant were of
5655 -- unconstrained Unchecked_Union type.
5656
5657 return False;
5658 end Variant_Is_Unconstrained_UU;
5659
5660 -- Start of processing for Has_Unconstrained_UU_Component
5661
5662 begin
5663 if Null_Present (Tdef) then
5664 return False;
5665 end if;
5666
5667 Clist := Component_List (Tdef);
5668 Vpart := Variant_Part (Clist);
5669
5670 -- Inspect available components
5671
5672 if Present (Component_Items (Clist)) then
5673 declare
5674 Comp : Node_Id := First (Component_Items (Clist));
5675
5676 begin
5677 while Present (Comp) loop
5678
8fc789c8 5679 -- One component is sufficient
5d09245e
AC
5680
5681 if Component_Is_Unconstrained_UU (Comp) then
5682 return True;
5683 end if;
5684
5685 Next (Comp);
5686 end loop;
5687 end;
5688 end if;
5689
5690 -- Inspect available components withing variants
5691
5692 if Present (Vpart) then
5693 declare
5694 Variant : Node_Id := First (Variants (Vpart));
5695
5696 begin
5697 while Present (Variant) loop
5698
8fc789c8 5699 -- One component within a variant is sufficient
5d09245e
AC
5700
5701 if Variant_Is_Unconstrained_UU (Variant) then
5702 return True;
5703 end if;
5704
5705 Next (Variant);
5706 end loop;
5707 end;
5708 end if;
5709
5710 -- Neither the available components, nor the components inside the
5711 -- variant parts were of an unconstrained Unchecked_Union subtype.
5712
5713 return False;
5714 end Has_Unconstrained_UU_Component;
5715
70482933
RK
5716 -- Start of processing for Expand_N_Op_Eq
5717
5718 begin
5719 Binary_Op_Validity_Checks (N);
5720
5721 if Ekind (Typl) = E_Private_Type then
5722 Typl := Underlying_Type (Typl);
70482933
RK
5723 elsif Ekind (Typl) = E_Private_Subtype then
5724 Typl := Underlying_Type (Base_Type (Typl));
f02b8bb8
RD
5725 else
5726 null;
70482933
RK
5727 end if;
5728
5729 -- It may happen in error situations that the underlying type is not
5730 -- set. The error will be detected later, here we just defend the
5731 -- expander code.
5732
5733 if No (Typl) then
5734 return;
5735 end if;
5736
5737 Typl := Base_Type (Typl);
5738
70482933
RK
5739 -- Boolean types (requiring handling of non-standard case)
5740
f02b8bb8 5741 if Is_Boolean_Type (Typl) then
70482933
RK
5742 Adjust_Condition (Left_Opnd (N));
5743 Adjust_Condition (Right_Opnd (N));
5744 Set_Etype (N, Standard_Boolean);
5745 Adjust_Result_Type (N, Typ);
5746
5747 -- Array types
5748
5749 elsif Is_Array_Type (Typl) then
5750
1033834f
RD
5751 -- If we are doing full validity checking, and it is possible for the
5752 -- array elements to be invalid then expand out array comparisons to
5753 -- make sure that we check the array elements.
fbf5a39b 5754
1033834f
RD
5755 if Validity_Check_Operands
5756 and then not Is_Known_Valid (Component_Type (Typl))
5757 then
fbf5a39b
AC
5758 declare
5759 Save_Force_Validity_Checks : constant Boolean :=
5760 Force_Validity_Checks;
5761 begin
5762 Force_Validity_Checks := True;
5763 Rewrite (N,
0da2c8ac
AC
5764 Expand_Array_Equality
5765 (N,
5766 Relocate_Node (Lhs),
5767 Relocate_Node (Rhs),
5768 Bodies,
5769 Typl));
5770 Insert_Actions (N, Bodies);
fbf5a39b
AC
5771 Analyze_And_Resolve (N, Standard_Boolean);
5772 Force_Validity_Checks := Save_Force_Validity_Checks;
5773 end;
5774
a9d8907c 5775 -- Packed case where both operands are known aligned
70482933 5776
a9d8907c
JM
5777 elsif Is_Bit_Packed_Array (Typl)
5778 and then not Is_Possibly_Unaligned_Object (Lhs)
5779 and then not Is_Possibly_Unaligned_Object (Rhs)
5780 then
70482933
RK
5781 Expand_Packed_Eq (N);
5782
5e1c00fa
RD
5783 -- Where the component type is elementary we can use a block bit
5784 -- comparison (if supported on the target) exception in the case
5785 -- of floating-point (negative zero issues require element by
5786 -- element comparison), and atomic types (where we must be sure
a9d8907c 5787 -- to load elements independently) and possibly unaligned arrays.
70482933 5788
70482933
RK
5789 elsif Is_Elementary_Type (Component_Type (Typl))
5790 and then not Is_Floating_Point_Type (Component_Type (Typl))
5e1c00fa 5791 and then not Is_Atomic (Component_Type (Typl))
a9d8907c
JM
5792 and then not Is_Possibly_Unaligned_Object (Lhs)
5793 and then not Is_Possibly_Unaligned_Object (Rhs)
fbf5a39b 5794 and then Support_Composite_Compare_On_Target
70482933
RK
5795 then
5796 null;
5797
685094bf
RD
5798 -- For composite and floating-point cases, expand equality loop to
5799 -- make sure of using proper comparisons for tagged types, and
5800 -- correctly handling the floating-point case.
70482933
RK
5801
5802 else
5803 Rewrite (N,
0da2c8ac
AC
5804 Expand_Array_Equality
5805 (N,
5806 Relocate_Node (Lhs),
5807 Relocate_Node (Rhs),
5808 Bodies,
5809 Typl));
70482933
RK
5810 Insert_Actions (N, Bodies, Suppress => All_Checks);
5811 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5812 end if;
5813
5814 -- Record Types
5815
5816 elsif Is_Record_Type (Typl) then
5817
5818 -- For tagged types, use the primitive "="
5819
5820 if Is_Tagged_Type (Typl) then
5821
0669bebe
GB
5822 -- No need to do anything else compiling under restriction
5823 -- No_Dispatching_Calls. During the semantic analysis we
5824 -- already notified such violation.
5825
5826 if Restriction_Active (No_Dispatching_Calls) then
5827 return;
5828 end if;
5829
685094bf
RD
5830 -- If this is derived from an untagged private type completed with
5831 -- a tagged type, it does not have a full view, so we use the
5832 -- primitive operations of the private type. This check should no
5833 -- longer be necessary when these types get their full views???
70482933
RK
5834
5835 if Is_Private_Type (A_Typ)
5836 and then not Is_Tagged_Type (A_Typ)
5837 and then Is_Derived_Type (A_Typ)
5838 and then No (Full_View (A_Typ))
5839 then
685094bf
RD
5840 -- Search for equality operation, checking that the operands
5841 -- have the same type. Note that we must find a matching entry,
5842 -- or something is very wrong!
2e071734 5843
70482933
RK
5844 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
5845
2e071734
AC
5846 while Present (Prim) loop
5847 exit when Chars (Node (Prim)) = Name_Op_Eq
5848 and then Etype (First_Formal (Node (Prim))) =
5849 Etype (Next_Formal (First_Formal (Node (Prim))))
5850 and then
5851 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
5852
70482933 5853 Next_Elmt (Prim);
70482933
RK
5854 end loop;
5855
2e071734 5856 pragma Assert (Present (Prim));
70482933 5857 Op_Name := Node (Prim);
fbf5a39b
AC
5858
5859 -- Find the type's predefined equality or an overriding
685094bf 5860 -- user- defined equality. The reason for not simply calling
fbf5a39b 5861 -- Find_Prim_Op here is that there may be a user-defined
685094bf
RD
5862 -- overloaded equality op that precedes the equality that we want,
5863 -- so we have to explicitly search (e.g., there could be an
5864 -- equality with two different parameter types).
fbf5a39b 5865
70482933 5866 else
fbf5a39b
AC
5867 if Is_Class_Wide_Type (Typl) then
5868 Typl := Root_Type (Typl);
5869 end if;
5870
5871 Prim := First_Elmt (Primitive_Operations (Typl));
fbf5a39b
AC
5872 while Present (Prim) loop
5873 exit when Chars (Node (Prim)) = Name_Op_Eq
5874 and then Etype (First_Formal (Node (Prim))) =
5875 Etype (Next_Formal (First_Formal (Node (Prim))))
12e0c41c
AC
5876 and then
5877 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
fbf5a39b
AC
5878
5879 Next_Elmt (Prim);
fbf5a39b
AC
5880 end loop;
5881
2e071734 5882 pragma Assert (Present (Prim));
fbf5a39b 5883 Op_Name := Node (Prim);
70482933
RK
5884 end if;
5885
5886 Build_Equality_Call (Op_Name);
5887
5d09245e
AC
5888 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
5889 -- predefined equality operator for a type which has a subcomponent
5890 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
5891
5892 elsif Has_Unconstrained_UU_Component (Typl) then
5893 Insert_Action (N,
5894 Make_Raise_Program_Error (Loc,
5895 Reason => PE_Unchecked_Union_Restriction));
5896
5897 -- Prevent Gigi from generating incorrect code by rewriting the
5898 -- equality as a standard False.
5899
5900 Rewrite (N,
5901 New_Occurrence_Of (Standard_False, Loc));
5902
5903 elsif Is_Unchecked_Union (Typl) then
5904
5905 -- If we can infer the discriminants of the operands, we make a
5906 -- call to the TSS equality function.
5907
5908 if Has_Inferable_Discriminants (Lhs)
5909 and then
5910 Has_Inferable_Discriminants (Rhs)
5911 then
5912 Build_Equality_Call
5913 (TSS (Root_Type (Typl), TSS_Composite_Equality));
5914
5915 else
5916 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5917 -- the predefined equality operator for an Unchecked_Union type
5918 -- if either of the operands lack inferable discriminants.
5919
5920 Insert_Action (N,
5921 Make_Raise_Program_Error (Loc,
5922 Reason => PE_Unchecked_Union_Restriction));
5923
5924 -- Prevent Gigi from generating incorrect code by rewriting
5925 -- the equality as a standard False.
5926
5927 Rewrite (N,
5928 New_Occurrence_Of (Standard_False, Loc));
5929
5930 end if;
5931
70482933
RK
5932 -- If a type support function is present (for complex cases), use it
5933
fbf5a39b
AC
5934 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
5935 Build_Equality_Call
5936 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933
RK
5937
5938 -- Otherwise expand the component by component equality. Note that
8fc789c8 5939 -- we never use block-bit comparisons for records, because of the
70482933
RK
5940 -- problems with gaps. The backend will often be able to recombine
5941 -- the separate comparisons that we generate here.
5942
5943 else
5944 Remove_Side_Effects (Lhs);
5945 Remove_Side_Effects (Rhs);
5946 Rewrite (N,
5947 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
5948
5949 Insert_Actions (N, Bodies, Suppress => All_Checks);
5950 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5951 end if;
5952 end if;
5953
d26dc4b5 5954 -- Test if result is known at compile time
70482933 5955
d26dc4b5 5956 Rewrite_Comparison (N);
f02b8bb8
RD
5957
5958 -- If we still have comparison for Vax_Float, process it
5959
5960 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
5961 Expand_Vax_Comparison (N);
5962 return;
5963 end if;
70482933
RK
5964 end Expand_N_Op_Eq;
5965
5966 -----------------------
5967 -- Expand_N_Op_Expon --
5968 -----------------------
5969
5970 procedure Expand_N_Op_Expon (N : Node_Id) is
5971 Loc : constant Source_Ptr := Sloc (N);
5972 Typ : constant Entity_Id := Etype (N);
5973 Rtyp : constant Entity_Id := Root_Type (Typ);
5974 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
07fc65c4 5975 Bastyp : constant Node_Id := Etype (Base);
70482933
RK
5976 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
5977 Exptyp : constant Entity_Id := Etype (Exp);
5978 Ovflo : constant Boolean := Do_Overflow_Check (N);
5979 Expv : Uint;
5980 Xnode : Node_Id;
5981 Temp : Node_Id;
5982 Rent : RE_Id;
5983 Ent : Entity_Id;
fbf5a39b 5984 Etyp : Entity_Id;
70482933
RK
5985
5986 begin
5987 Binary_Op_Validity_Checks (N);
5988
685094bf
RD
5989 -- If either operand is of a private type, then we have the use of an
5990 -- intrinsic operator, and we get rid of the privateness, by using root
5991 -- types of underlying types for the actual operation. Otherwise the
5992 -- private types will cause trouble if we expand multiplications or
5993 -- shifts etc. We also do this transformation if the result type is
5994 -- different from the base type.
07fc65c4
GB
5995
5996 if Is_Private_Type (Etype (Base))
5997 or else
5998 Is_Private_Type (Typ)
5999 or else
6000 Is_Private_Type (Exptyp)
6001 or else
6002 Rtyp /= Root_Type (Bastyp)
6003 then
6004 declare
6005 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
6006 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
6007
6008 begin
6009 Rewrite (N,
6010 Unchecked_Convert_To (Typ,
6011 Make_Op_Expon (Loc,
6012 Left_Opnd => Unchecked_Convert_To (Bt, Base),
6013 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
6014 Analyze_And_Resolve (N, Typ);
6015 return;
6016 end;
6017 end if;
6018
fbf5a39b 6019 -- Test for case of known right argument
70482933
RK
6020
6021 if Compile_Time_Known_Value (Exp) then
6022 Expv := Expr_Value (Exp);
6023
6024 -- We only fold small non-negative exponents. You might think we
6025 -- could fold small negative exponents for the real case, but we
6026 -- can't because we are required to raise Constraint_Error for
6027 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
6028 -- See ACVC test C4A012B.
6029
6030 if Expv >= 0 and then Expv <= 4 then
6031
6032 -- X ** 0 = 1 (or 1.0)
6033
6034 if Expv = 0 then
abcbd24c
ST
6035
6036 -- Call Remove_Side_Effects to ensure that any side effects
6037 -- in the ignored left operand (in particular function calls
6038 -- to user defined functions) are properly executed.
6039
6040 Remove_Side_Effects (Base);
6041
70482933
RK
6042 if Ekind (Typ) in Integer_Kind then
6043 Xnode := Make_Integer_Literal (Loc, Intval => 1);
6044 else
6045 Xnode := Make_Real_Literal (Loc, Ureal_1);
6046 end if;
6047
6048 -- X ** 1 = X
6049
6050 elsif Expv = 1 then
6051 Xnode := Base;
6052
6053 -- X ** 2 = X * X
6054
6055 elsif Expv = 2 then
6056 Xnode :=
6057 Make_Op_Multiply (Loc,
6058 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 6059 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
6060
6061 -- X ** 3 = X * X * X
6062
6063 elsif Expv = 3 then
6064 Xnode :=
6065 Make_Op_Multiply (Loc,
6066 Left_Opnd =>
6067 Make_Op_Multiply (Loc,
6068 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b
AC
6069 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
6070 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
6071
6072 -- X ** 4 ->
6073 -- En : constant base'type := base * base;
6074 -- ...
6075 -- En * En
6076
6077 else -- Expv = 4
191fcb3a 6078 Temp := Make_Temporary (Loc, 'E', Base);
70482933
RK
6079
6080 Insert_Actions (N, New_List (
6081 Make_Object_Declaration (Loc,
6082 Defining_Identifier => Temp,
6083 Constant_Present => True,
6084 Object_Definition => New_Reference_To (Typ, Loc),
6085 Expression =>
6086 Make_Op_Multiply (Loc,
6087 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 6088 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
70482933
RK
6089
6090 Xnode :=
6091 Make_Op_Multiply (Loc,
6092 Left_Opnd => New_Reference_To (Temp, Loc),
6093 Right_Opnd => New_Reference_To (Temp, Loc));
6094 end if;
6095
6096 Rewrite (N, Xnode);
6097 Analyze_And_Resolve (N, Typ);
6098 return;
6099 end if;
6100 end if;
6101
6102 -- Case of (2 ** expression) appearing as an argument of an integer
6103 -- multiplication, or as the right argument of a division of a non-
fbf5a39b 6104 -- negative integer. In such cases we leave the node untouched, setting
70482933
RK
6105 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
6106 -- of the higher level node converts it into a shift.
6107
51bf9bdf
AC
6108 -- Another case is 2 ** N in any other context. We simply convert
6109 -- this to 1 * 2 ** N, and then the above transformation applies.
6110
685094bf
RD
6111 -- Note: this transformation is not applicable for a modular type with
6112 -- a non-binary modulus in the multiplication case, since we get a wrong
6113 -- result if the shift causes an overflow before the modular reduction.
6114
70482933
RK
6115 if Nkind (Base) = N_Integer_Literal
6116 and then Intval (Base) = 2
6117 and then Is_Integer_Type (Root_Type (Exptyp))
6118 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
6119 and then Is_Unsigned_Type (Exptyp)
6120 and then not Ovflo
70482933 6121 then
51bf9bdf 6122 -- First the multiply and divide cases
70482933 6123
51bf9bdf
AC
6124 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
6125 declare
6126 P : constant Node_Id := Parent (N);
6127 L : constant Node_Id := Left_Opnd (P);
6128 R : constant Node_Id := Right_Opnd (P);
6129
6130 begin
6131 if (Nkind (P) = N_Op_Multiply
6132 and then not Non_Binary_Modulus (Typ)
6133 and then
6134 ((Is_Integer_Type (Etype (L)) and then R = N)
6135 or else
6136 (Is_Integer_Type (Etype (R)) and then L = N))
6137 and then not Do_Overflow_Check (P))
6138 or else
6139 (Nkind (P) = N_Op_Divide
6140 and then Is_Integer_Type (Etype (L))
6141 and then Is_Unsigned_Type (Etype (L))
6142 and then R = N
6143 and then not Do_Overflow_Check (P))
6144 then
6145 Set_Is_Power_Of_2_For_Shift (N);
6146 return;
6147 end if;
6148 end;
6149
6150 -- Now the other cases
6151
6152 elsif not Non_Binary_Modulus (Typ) then
6153 Rewrite (N,
6154 Make_Op_Multiply (Loc,
6155 Left_Opnd => Make_Integer_Literal (Loc, 1),
6156 Right_Opnd => Relocate_Node (N)));
6157 Analyze_And_Resolve (N, Typ);
6158 return;
6159 end if;
70482933
RK
6160 end if;
6161
07fc65c4
GB
6162 -- Fall through if exponentiation must be done using a runtime routine
6163
07fc65c4 6164 -- First deal with modular case
70482933
RK
6165
6166 if Is_Modular_Integer_Type (Rtyp) then
6167
6168 -- Non-binary case, we call the special exponentiation routine for
6169 -- the non-binary case, converting the argument to Long_Long_Integer
6170 -- and passing the modulus value. Then the result is converted back
6171 -- to the base type.
6172
6173 if Non_Binary_Modulus (Rtyp) then
70482933
RK
6174 Rewrite (N,
6175 Convert_To (Typ,
6176 Make_Function_Call (Loc,
6177 Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
6178 Parameter_Associations => New_List (
6179 Convert_To (Standard_Integer, Base),
6180 Make_Integer_Literal (Loc, Modulus (Rtyp)),
6181 Exp))));
6182
685094bf
RD
6183 -- Binary case, in this case, we call one of two routines, either the
6184 -- unsigned integer case, or the unsigned long long integer case,
6185 -- with a final "and" operation to do the required mod.
70482933
RK
6186
6187 else
6188 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
6189 Ent := RTE (RE_Exp_Unsigned);
6190 else
6191 Ent := RTE (RE_Exp_Long_Long_Unsigned);
6192 end if;
6193
6194 Rewrite (N,
6195 Convert_To (Typ,
6196 Make_Op_And (Loc,
6197 Left_Opnd =>
6198 Make_Function_Call (Loc,
6199 Name => New_Reference_To (Ent, Loc),
6200 Parameter_Associations => New_List (
6201 Convert_To (Etype (First_Formal (Ent)), Base),
6202 Exp)),
6203 Right_Opnd =>
6204 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
6205
6206 end if;
6207
6208 -- Common exit point for modular type case
6209
6210 Analyze_And_Resolve (N, Typ);
6211 return;
6212
fbf5a39b
AC
6213 -- Signed integer cases, done using either Integer or Long_Long_Integer.
6214 -- It is not worth having routines for Short_[Short_]Integer, since for
6215 -- most machines it would not help, and it would generate more code that
dfd99a80 6216 -- might need certification when a certified run time is required.
70482933 6217
fbf5a39b 6218 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
6219 -- checks are required, and one when they are not required, since there
6220 -- is a real gain in omitting checks on many machines.
70482933 6221
fbf5a39b
AC
6222 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
6223 or else (Rtyp = Base_Type (Standard_Long_Integer)
6224 and then
6225 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
6226 or else (Rtyp = Universal_Integer)
70482933 6227 then
fbf5a39b
AC
6228 Etyp := Standard_Long_Long_Integer;
6229
70482933
RK
6230 if Ovflo then
6231 Rent := RE_Exp_Long_Long_Integer;
6232 else
6233 Rent := RE_Exn_Long_Long_Integer;
6234 end if;
6235
fbf5a39b
AC
6236 elsif Is_Signed_Integer_Type (Rtyp) then
6237 Etyp := Standard_Integer;
70482933
RK
6238
6239 if Ovflo then
fbf5a39b 6240 Rent := RE_Exp_Integer;
70482933 6241 else
fbf5a39b 6242 Rent := RE_Exn_Integer;
70482933 6243 end if;
fbf5a39b
AC
6244
6245 -- Floating-point cases, always done using Long_Long_Float. We do not
6246 -- need separate routines for the overflow case here, since in the case
6247 -- of floating-point, we generate infinities anyway as a rule (either
6248 -- that or we automatically trap overflow), and if there is an infinity
6249 -- generated and a range check is required, the check will fail anyway.
6250
6251 else
6252 pragma Assert (Is_Floating_Point_Type (Rtyp));
6253 Etyp := Standard_Long_Long_Float;
6254 Rent := RE_Exn_Long_Long_Float;
70482933
RK
6255 end if;
6256
6257 -- Common processing for integer cases and floating-point cases.
fbf5a39b 6258 -- If we are in the right type, we can call runtime routine directly
70482933 6259
fbf5a39b 6260 if Typ = Etyp
70482933
RK
6261 and then Rtyp /= Universal_Integer
6262 and then Rtyp /= Universal_Real
6263 then
6264 Rewrite (N,
6265 Make_Function_Call (Loc,
6266 Name => New_Reference_To (RTE (Rent), Loc),
6267 Parameter_Associations => New_List (Base, Exp)));
6268
6269 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 6270 -- required in the universal cases, since the runtime routine is
1147c704 6271 -- typed using one of the standard types).
70482933
RK
6272
6273 else
6274 Rewrite (N,
6275 Convert_To (Typ,
6276 Make_Function_Call (Loc,
6277 Name => New_Reference_To (RTE (Rent), Loc),
6278 Parameter_Associations => New_List (
fbf5a39b 6279 Convert_To (Etyp, Base),
70482933
RK
6280 Exp))));
6281 end if;
6282
6283 Analyze_And_Resolve (N, Typ);
6284 return;
6285
fbf5a39b
AC
6286 exception
6287 when RE_Not_Available =>
6288 return;
70482933
RK
6289 end Expand_N_Op_Expon;
6290
6291 --------------------
6292 -- Expand_N_Op_Ge --
6293 --------------------
6294
6295 procedure Expand_N_Op_Ge (N : Node_Id) is
6296 Typ : constant Entity_Id := Etype (N);
6297 Op1 : constant Node_Id := Left_Opnd (N);
6298 Op2 : constant Node_Id := Right_Opnd (N);
6299 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6300
6301 begin
6302 Binary_Op_Validity_Checks (N);
6303
f02b8bb8 6304 if Is_Array_Type (Typ1) then
70482933
RK
6305 Expand_Array_Comparison (N);
6306 return;
6307 end if;
6308
6309 if Is_Boolean_Type (Typ1) then
6310 Adjust_Condition (Op1);
6311 Adjust_Condition (Op2);
6312 Set_Etype (N, Standard_Boolean);
6313 Adjust_Result_Type (N, Typ);
6314 end if;
6315
6316 Rewrite_Comparison (N);
f02b8bb8
RD
6317
6318 -- If we still have comparison, and Vax_Float type, process it
6319
6320 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6321 Expand_Vax_Comparison (N);
6322 return;
6323 end if;
70482933
RK
6324 end Expand_N_Op_Ge;
6325
6326 --------------------
6327 -- Expand_N_Op_Gt --
6328 --------------------
6329
6330 procedure Expand_N_Op_Gt (N : Node_Id) is
6331 Typ : constant Entity_Id := Etype (N);
6332 Op1 : constant Node_Id := Left_Opnd (N);
6333 Op2 : constant Node_Id := Right_Opnd (N);
6334 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6335
6336 begin
6337 Binary_Op_Validity_Checks (N);
6338
f02b8bb8 6339 if Is_Array_Type (Typ1) then
70482933
RK
6340 Expand_Array_Comparison (N);
6341 return;
6342 end if;
6343
6344 if Is_Boolean_Type (Typ1) then
6345 Adjust_Condition (Op1);
6346 Adjust_Condition (Op2);
6347 Set_Etype (N, Standard_Boolean);
6348 Adjust_Result_Type (N, Typ);
6349 end if;
6350
6351 Rewrite_Comparison (N);
f02b8bb8
RD
6352
6353 -- If we still have comparison, and Vax_Float type, process it
6354
6355 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6356 Expand_Vax_Comparison (N);
6357 return;
6358 end if;
70482933
RK
6359 end Expand_N_Op_Gt;
6360
6361 --------------------
6362 -- Expand_N_Op_Le --
6363 --------------------
6364
6365 procedure Expand_N_Op_Le (N : Node_Id) is
6366 Typ : constant Entity_Id := Etype (N);
6367 Op1 : constant Node_Id := Left_Opnd (N);
6368 Op2 : constant Node_Id := Right_Opnd (N);
6369 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6370
6371 begin
6372 Binary_Op_Validity_Checks (N);
6373
f02b8bb8 6374 if Is_Array_Type (Typ1) then
70482933
RK
6375 Expand_Array_Comparison (N);
6376 return;
6377 end if;
6378
6379 if Is_Boolean_Type (Typ1) then
6380 Adjust_Condition (Op1);
6381 Adjust_Condition (Op2);
6382 Set_Etype (N, Standard_Boolean);
6383 Adjust_Result_Type (N, Typ);
6384 end if;
6385
6386 Rewrite_Comparison (N);
f02b8bb8
RD
6387
6388 -- If we still have comparison, and Vax_Float type, process it
6389
6390 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6391 Expand_Vax_Comparison (N);
6392 return;
6393 end if;
70482933
RK
6394 end Expand_N_Op_Le;
6395
6396 --------------------
6397 -- Expand_N_Op_Lt --
6398 --------------------
6399
6400 procedure Expand_N_Op_Lt (N : Node_Id) is
6401 Typ : constant Entity_Id := Etype (N);
6402 Op1 : constant Node_Id := Left_Opnd (N);
6403 Op2 : constant Node_Id := Right_Opnd (N);
6404 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6405
6406 begin
6407 Binary_Op_Validity_Checks (N);
6408
f02b8bb8 6409 if Is_Array_Type (Typ1) then
70482933
RK
6410 Expand_Array_Comparison (N);
6411 return;
6412 end if;
6413
6414 if Is_Boolean_Type (Typ1) then
6415 Adjust_Condition (Op1);
6416 Adjust_Condition (Op2);
6417 Set_Etype (N, Standard_Boolean);
6418 Adjust_Result_Type (N, Typ);
6419 end if;
6420
6421 Rewrite_Comparison (N);
f02b8bb8
RD
6422
6423 -- If we still have comparison, and Vax_Float type, process it
6424
6425 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6426 Expand_Vax_Comparison (N);
6427 return;
6428 end if;
70482933
RK
6429 end Expand_N_Op_Lt;
6430
6431 -----------------------
6432 -- Expand_N_Op_Minus --
6433 -----------------------
6434
6435 procedure Expand_N_Op_Minus (N : Node_Id) is
6436 Loc : constant Source_Ptr := Sloc (N);
6437 Typ : constant Entity_Id := Etype (N);
6438
6439 begin
6440 Unary_Op_Validity_Checks (N);
6441
07fc65c4 6442 if not Backend_Overflow_Checks_On_Target
70482933
RK
6443 and then Is_Signed_Integer_Type (Etype (N))
6444 and then Do_Overflow_Check (N)
6445 then
6446 -- Software overflow checking expands -expr into (0 - expr)
6447
6448 Rewrite (N,
6449 Make_Op_Subtract (Loc,
6450 Left_Opnd => Make_Integer_Literal (Loc, 0),
6451 Right_Opnd => Right_Opnd (N)));
6452
6453 Analyze_And_Resolve (N, Typ);
6454
6455 -- Vax floating-point types case
6456
6457 elsif Vax_Float (Etype (N)) then
6458 Expand_Vax_Arith (N);
6459 end if;
6460 end Expand_N_Op_Minus;
6461
6462 ---------------------
6463 -- Expand_N_Op_Mod --
6464 ---------------------
6465
6466 procedure Expand_N_Op_Mod (N : Node_Id) is
6467 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 6468 Typ : constant Entity_Id := Etype (N);
70482933
RK
6469 Left : constant Node_Id := Left_Opnd (N);
6470 Right : constant Node_Id := Right_Opnd (N);
6471 DOC : constant Boolean := Do_Overflow_Check (N);
6472 DDC : constant Boolean := Do_Division_Check (N);
6473
6474 LLB : Uint;
6475 Llo : Uint;
6476 Lhi : Uint;
6477 LOK : Boolean;
6478 Rlo : Uint;
6479 Rhi : Uint;
6480 ROK : Boolean;
6481
1033834f
RD
6482 pragma Warnings (Off, Lhi);
6483
70482933
RK
6484 begin
6485 Binary_Op_Validity_Checks (N);
6486
5d5e9775
AC
6487 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
6488 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933
RK
6489
6490 -- Convert mod to rem if operands are known non-negative. We do this
6491 -- since it is quite likely that this will improve the quality of code,
6492 -- (the operation now corresponds to the hardware remainder), and it
6493 -- does not seem likely that it could be harmful.
6494
6495 if LOK and then Llo >= 0
6496 and then
6497 ROK and then Rlo >= 0
6498 then
6499 Rewrite (N,
6500 Make_Op_Rem (Sloc (N),
6501 Left_Opnd => Left_Opnd (N),
6502 Right_Opnd => Right_Opnd (N)));
6503
685094bf
RD
6504 -- Instead of reanalyzing the node we do the analysis manually. This
6505 -- avoids anomalies when the replacement is done in an instance and
6506 -- is epsilon more efficient.
70482933
RK
6507
6508 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 6509 Set_Etype (N, Typ);
70482933
RK
6510 Set_Do_Overflow_Check (N, DOC);
6511 Set_Do_Division_Check (N, DDC);
6512 Expand_N_Op_Rem (N);
6513 Set_Analyzed (N);
6514
6515 -- Otherwise, normal mod processing
6516
6517 else
6518 if Is_Integer_Type (Etype (N)) then
6519 Apply_Divide_Check (N);
6520 end if;
6521
fbf5a39b
AC
6522 -- Apply optimization x mod 1 = 0. We don't really need that with
6523 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
6524 -- certainly harmless.
6525
6526 if Is_Integer_Type (Etype (N))
6527 and then Compile_Time_Known_Value (Right)
6528 and then Expr_Value (Right) = Uint_1
6529 then
abcbd24c
ST
6530 -- Call Remove_Side_Effects to ensure that any side effects in
6531 -- the ignored left operand (in particular function calls to
6532 -- user defined functions) are properly executed.
6533
6534 Remove_Side_Effects (Left);
6535
fbf5a39b
AC
6536 Rewrite (N, Make_Integer_Literal (Loc, 0));
6537 Analyze_And_Resolve (N, Typ);
6538 return;
6539 end if;
6540
70482933
RK
6541 -- Deal with annoying case of largest negative number remainder
6542 -- minus one. Gigi does not handle this case correctly, because
6543 -- it generates a divide instruction which may trap in this case.
6544
685094bf
RD
6545 -- In fact the check is quite easy, if the right operand is -1, then
6546 -- the mod value is always 0, and we can just ignore the left operand
6547 -- completely in this case.
70482933 6548
30783513 6549 -- The operand type may be private (e.g. in the expansion of an
685094bf
RD
6550 -- intrinsic operation) so we must use the underlying type to get the
6551 -- bounds, and convert the literals explicitly.
fbf5a39b
AC
6552
6553 LLB :=
6554 Expr_Value
6555 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
70482933
RK
6556
6557 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
6558 and then
6559 ((not LOK) or else (Llo = LLB))
6560 then
6561 Rewrite (N,
6562 Make_Conditional_Expression (Loc,
6563 Expressions => New_List (
6564 Make_Op_Eq (Loc,
6565 Left_Opnd => Duplicate_Subexpr (Right),
6566 Right_Opnd =>
fbf5a39b
AC
6567 Unchecked_Convert_To (Typ,
6568 Make_Integer_Literal (Loc, -1))),
6569 Unchecked_Convert_To (Typ,
6570 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
6571 Relocate_Node (N))));
6572
6573 Set_Analyzed (Next (Next (First (Expressions (N)))));
fbf5a39b 6574 Analyze_And_Resolve (N, Typ);
70482933
RK
6575 end if;
6576 end if;
6577 end Expand_N_Op_Mod;
6578
6579 --------------------------
6580 -- Expand_N_Op_Multiply --
6581 --------------------------
6582
6583 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
6584 Loc : constant Source_Ptr := Sloc (N);
6585 Lop : constant Node_Id := Left_Opnd (N);
6586 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 6587
abcbd24c
ST
6588 Lp2 : constant Boolean :=
6589 Nkind (Lop) = N_Op_Expon
6590 and then Is_Power_Of_2_For_Shift (Lop);
fbf5a39b 6591
abcbd24c
ST
6592 Rp2 : constant Boolean :=
6593 Nkind (Rop) = N_Op_Expon
6594 and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 6595
70482933
RK
6596 Ltyp : constant Entity_Id := Etype (Lop);
6597 Rtyp : constant Entity_Id := Etype (Rop);
6598 Typ : Entity_Id := Etype (N);
6599
6600 begin
6601 Binary_Op_Validity_Checks (N);
6602
6603 -- Special optimizations for integer types
6604
6605 if Is_Integer_Type (Typ) then
6606
abcbd24c 6607 -- N * 0 = 0 for integer types
70482933 6608
abcbd24c
ST
6609 if Compile_Time_Known_Value (Rop)
6610 and then Expr_Value (Rop) = Uint_0
70482933 6611 then
abcbd24c
ST
6612 -- Call Remove_Side_Effects to ensure that any side effects in
6613 -- the ignored left operand (in particular function calls to
6614 -- user defined functions) are properly executed.
6615
6616 Remove_Side_Effects (Lop);
6617
6618 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
6619 Analyze_And_Resolve (N, Typ);
6620 return;
6621 end if;
6622
6623 -- Similar handling for 0 * N = 0
6624
6625 if Compile_Time_Known_Value (Lop)
6626 and then Expr_Value (Lop) = Uint_0
6627 then
6628 Remove_Side_Effects (Rop);
70482933
RK
6629 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
6630 Analyze_And_Resolve (N, Typ);
6631 return;
6632 end if;
6633
6634 -- N * 1 = 1 * N = N for integer types
6635
fbf5a39b
AC
6636 -- This optimisation is not done if we are going to
6637 -- rewrite the product 1 * 2 ** N to a shift.
6638
6639 if Compile_Time_Known_Value (Rop)
6640 and then Expr_Value (Rop) = Uint_1
6641 and then not Lp2
70482933 6642 then
fbf5a39b 6643 Rewrite (N, Lop);
70482933
RK
6644 return;
6645
fbf5a39b
AC
6646 elsif Compile_Time_Known_Value (Lop)
6647 and then Expr_Value (Lop) = Uint_1
6648 and then not Rp2
70482933 6649 then
fbf5a39b 6650 Rewrite (N, Rop);
70482933
RK
6651 return;
6652 end if;
6653 end if;
6654
70482933
RK
6655 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
6656 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6657 -- operand is an integer, as required for this to work.
6658
fbf5a39b
AC
6659 if Rp2 then
6660 if Lp2 then
70482933 6661
fbf5a39b 6662 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
6663
6664 Rewrite (N,
6665 Make_Op_Expon (Loc,
6666 Left_Opnd => Make_Integer_Literal (Loc, 2),
6667 Right_Opnd =>
6668 Make_Op_Add (Loc,
6669 Left_Opnd => Right_Opnd (Lop),
6670 Right_Opnd => Right_Opnd (Rop))));
6671 Analyze_And_Resolve (N, Typ);
6672 return;
6673
6674 else
6675 Rewrite (N,
6676 Make_Op_Shift_Left (Loc,
6677 Left_Opnd => Lop,
6678 Right_Opnd =>
6679 Convert_To (Standard_Natural, Right_Opnd (Rop))));
6680 Analyze_And_Resolve (N, Typ);
6681 return;
6682 end if;
6683
6684 -- Same processing for the operands the other way round
6685
fbf5a39b 6686 elsif Lp2 then
70482933
RK
6687 Rewrite (N,
6688 Make_Op_Shift_Left (Loc,
6689 Left_Opnd => Rop,
6690 Right_Opnd =>
6691 Convert_To (Standard_Natural, Right_Opnd (Lop))));
6692 Analyze_And_Resolve (N, Typ);
6693 return;
6694 end if;
6695
6696 -- Do required fixup of universal fixed operation
6697
6698 if Typ = Universal_Fixed then
6699 Fixup_Universal_Fixed_Operation (N);
6700 Typ := Etype (N);
6701 end if;
6702
6703 -- Multiplications with fixed-point results
6704
6705 if Is_Fixed_Point_Type (Typ) then
6706
685094bf
RD
6707 -- No special processing if Treat_Fixed_As_Integer is set, since from
6708 -- a semantic point of view such operations are simply integer
6709 -- operations and will be treated that way.
70482933
RK
6710
6711 if not Treat_Fixed_As_Integer (N) then
6712
6713 -- Case of fixed * integer => fixed
6714
6715 if Is_Integer_Type (Rtyp) then
6716 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
6717
6718 -- Case of integer * fixed => fixed
6719
6720 elsif Is_Integer_Type (Ltyp) then
6721 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
6722
6723 -- Case of fixed * fixed => fixed
6724
6725 else
6726 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
6727 end if;
6728 end if;
6729
685094bf
RD
6730 -- Other cases of multiplication of fixed-point operands. Again we
6731 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
6732
6733 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
6734 and then not Treat_Fixed_As_Integer (N)
6735 then
6736 if Is_Integer_Type (Typ) then
6737 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
6738 else
6739 pragma Assert (Is_Floating_Point_Type (Typ));
6740 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
6741 end if;
6742
685094bf
RD
6743 -- Mixed-mode operations can appear in a non-static universal context,
6744 -- in which case the integer argument must be converted explicitly.
70482933
RK
6745
6746 elsif Typ = Universal_Real
6747 and then Is_Integer_Type (Rtyp)
6748 then
6749 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
6750
6751 Analyze_And_Resolve (Rop, Universal_Real);
6752
6753 elsif Typ = Universal_Real
6754 and then Is_Integer_Type (Ltyp)
6755 then
6756 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
6757
6758 Analyze_And_Resolve (Lop, Universal_Real);
6759
6760 -- Non-fixed point cases, check software overflow checking required
6761
6762 elsif Is_Signed_Integer_Type (Etype (N)) then
6763 Apply_Arithmetic_Overflow_Check (N);
f02b8bb8
RD
6764
6765 -- Deal with VAX float case
6766
6767 elsif Vax_Float (Typ) then
6768 Expand_Vax_Arith (N);
6769 return;
70482933
RK
6770 end if;
6771 end Expand_N_Op_Multiply;
6772
6773 --------------------
6774 -- Expand_N_Op_Ne --
6775 --------------------
6776
70482933 6777 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 6778 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
6779
6780 begin
f02b8bb8 6781 -- Case of elementary type with standard operator
70482933 6782
f02b8bb8
RD
6783 if Is_Elementary_Type (Typ)
6784 and then Sloc (Entity (N)) = Standard_Location
6785 then
6786 Binary_Op_Validity_Checks (N);
70482933 6787
f02b8bb8 6788 -- Boolean types (requiring handling of non-standard case)
70482933 6789
f02b8bb8
RD
6790 if Is_Boolean_Type (Typ) then
6791 Adjust_Condition (Left_Opnd (N));
6792 Adjust_Condition (Right_Opnd (N));
6793 Set_Etype (N, Standard_Boolean);
6794 Adjust_Result_Type (N, Typ);
6795 end if;
fbf5a39b 6796
f02b8bb8
RD
6797 Rewrite_Comparison (N);
6798
6799 -- If we still have comparison for Vax_Float, process it
6800
6801 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
6802 Expand_Vax_Comparison (N);
6803 return;
6804 end if;
6805
6806 -- For all cases other than elementary types, we rewrite node as the
6807 -- negation of an equality operation, and reanalyze. The equality to be
6808 -- used is defined in the same scope and has the same signature. This
6809 -- signature must be set explicitly since in an instance it may not have
6810 -- the same visibility as in the generic unit. This avoids duplicating
6811 -- or factoring the complex code for record/array equality tests etc.
6812
6813 else
6814 declare
6815 Loc : constant Source_Ptr := Sloc (N);
6816 Neg : Node_Id;
6817 Ne : constant Entity_Id := Entity (N);
6818
6819 begin
6820 Binary_Op_Validity_Checks (N);
6821
6822 Neg :=
6823 Make_Op_Not (Loc,
6824 Right_Opnd =>
6825 Make_Op_Eq (Loc,
6826 Left_Opnd => Left_Opnd (N),
6827 Right_Opnd => Right_Opnd (N)));
6828 Set_Paren_Count (Right_Opnd (Neg), 1);
6829
6830 if Scope (Ne) /= Standard_Standard then
6831 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
6832 end if;
6833
6834 -- For navigation purposes, the inequality is treated as an
6835 -- implicit reference to the corresponding equality. Preserve the
6836 -- Comes_From_ source flag so that the proper Xref entry is
6837 -- generated.
6838
6839 Preserve_Comes_From_Source (Neg, N);
6840 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
6841 Rewrite (N, Neg);
6842 Analyze_And_Resolve (N, Standard_Boolean);
6843 end;
6844 end if;
70482933
RK
6845 end Expand_N_Op_Ne;
6846
6847 ---------------------
6848 -- Expand_N_Op_Not --
6849 ---------------------
6850
685094bf 6851 -- If the argument is other than a Boolean array type, there is no special
c77599d5 6852 -- expansion required, except for VMS operations on signed integers.
70482933
RK
6853
6854 -- For the packed case, we call the special routine in Exp_Pakd, except
6855 -- that if the component size is greater than one, we use the standard
6856 -- routine generating a gruesome loop (it is so peculiar to have packed
685094bf
RD
6857 -- arrays with non-standard Boolean representations anyway, so it does not
6858 -- matter that we do not handle this case efficiently).
70482933 6859
685094bf
RD
6860 -- For the unpacked case (and for the special packed case where we have non
6861 -- standard Booleans, as discussed above), we generate and insert into the
6862 -- tree the following function definition:
70482933
RK
6863
6864 -- function Nnnn (A : arr) is
6865 -- B : arr;
6866 -- begin
6867 -- for J in a'range loop
6868 -- B (J) := not A (J);
6869 -- end loop;
6870 -- return B;
6871 -- end Nnnn;
6872
6873 -- Here arr is the actual subtype of the parameter (and hence always
6874 -- constrained). Then we replace the not with a call to this function.
6875
6876 procedure Expand_N_Op_Not (N : Node_Id) is
6877 Loc : constant Source_Ptr := Sloc (N);
6878 Typ : constant Entity_Id := Etype (N);
6879 Opnd : Node_Id;
6880 Arr : Entity_Id;
6881 A : Entity_Id;
6882 B : Entity_Id;
6883 J : Entity_Id;
6884 A_J : Node_Id;
6885 B_J : Node_Id;
6886
6887 Func_Name : Entity_Id;
6888 Loop_Statement : Node_Id;
6889
6890 begin
6891 Unary_Op_Validity_Checks (N);
6892
6893 -- For boolean operand, deal with non-standard booleans
6894
6895 if Is_Boolean_Type (Typ) then
6896 Adjust_Condition (Right_Opnd (N));
6897 Set_Etype (N, Standard_Boolean);
6898 Adjust_Result_Type (N, Typ);
6899 return;
6900 end if;
6901
c77599d5
AC
6902 -- For the VMS "not" on signed integer types, use conversion to and
6903 -- from a predefined modular type.
6904
6905 if Is_VMS_Operator (Entity (N)) then
6906 declare
9bebf0e9
AC
6907 Rtyp : Entity_Id;
6908 Utyp : Entity_Id;
6909
c77599d5 6910 begin
9bebf0e9
AC
6911 -- If this is a derived type, retrieve original VMS type so that
6912 -- the proper sized type is used for intermediate values.
6913
6914 if Is_Derived_Type (Typ) then
6915 Rtyp := First_Subtype (Etype (Typ));
6916 else
6917 Rtyp := Typ;
6918 end if;
6919
6920 -- The proper unsigned type must have a size compatible with
6921 -- the operand, to prevent misalignment..
6922
6923 if RM_Size (Rtyp) <= 8 then
6924 Utyp := RTE (RE_Unsigned_8);
6925
6926 elsif RM_Size (Rtyp) <= 16 then
6927 Utyp := RTE (RE_Unsigned_16);
6928
6929 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
6930 Utyp := Typ;
6931
6932 else
6933 Utyp := RTE (RE_Long_Long_Unsigned);
6934 end if;
6935
c77599d5
AC
6936 Rewrite (N,
6937 Unchecked_Convert_To (Typ,
9bebf0e9
AC
6938 Make_Op_Not (Loc,
6939 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
c77599d5
AC
6940 Analyze_And_Resolve (N, Typ);
6941 return;
6942 end;
6943 end if;
6944
70482933
RK
6945 -- Only array types need any other processing
6946
6947 if not Is_Array_Type (Typ) then
6948 return;
6949 end if;
6950
a9d8907c
JM
6951 -- Case of array operand. If bit packed with a component size of 1,
6952 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 6953
a9d8907c
JM
6954 if Is_Bit_Packed_Array (Typ)
6955 and then Component_Size (Typ) = 1
6956 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
6957 then
70482933
RK
6958 Expand_Packed_Not (N);
6959 return;
6960 end if;
6961
fbf5a39b
AC
6962 -- Case of array operand which is not bit-packed. If the context is
6963 -- a safe assignment, call in-place operation, If context is a larger
6964 -- boolean expression in the context of a safe assignment, expansion is
6965 -- done by enclosing operation.
70482933
RK
6966
6967 Opnd := Relocate_Node (Right_Opnd (N));
6968 Convert_To_Actual_Subtype (Opnd);
6969 Arr := Etype (Opnd);
6970 Ensure_Defined (Arr, N);
b4592168 6971 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 6972
fbf5a39b
AC
6973 if Nkind (Parent (N)) = N_Assignment_Statement then
6974 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
6975 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
6976 return;
6977
5e1c00fa 6978 -- Special case the negation of a binary operation
fbf5a39b 6979
303b4d58 6980 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 6981 and then Safe_In_Place_Array_Op
303b4d58 6982 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
6983 then
6984 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
6985 return;
6986 end if;
6987
6988 elsif Nkind (Parent (N)) in N_Binary_Op
6989 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
6990 then
6991 declare
6992 Op1 : constant Node_Id := Left_Opnd (Parent (N));
6993 Op2 : constant Node_Id := Right_Opnd (Parent (N));
6994 Lhs : constant Node_Id := Name (Parent (Parent (N)));
6995
6996 begin
6997 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
6998 if N = Op1
6999 and then Nkind (Op2) = N_Op_Not
7000 then
5e1c00fa 7001 -- (not A) op (not B) can be reduced to a single call
fbf5a39b
AC
7002
7003 return;
7004
7005 elsif N = Op2
7006 and then Nkind (Parent (N)) = N_Op_Xor
7007 then
5e1c00fa 7008 -- A xor (not B) can also be special-cased
fbf5a39b
AC
7009
7010 return;
7011 end if;
7012 end if;
7013 end;
7014 end if;
7015
70482933
RK
7016 A := Make_Defining_Identifier (Loc, Name_uA);
7017 B := Make_Defining_Identifier (Loc, Name_uB);
7018 J := Make_Defining_Identifier (Loc, Name_uJ);
7019
7020 A_J :=
7021 Make_Indexed_Component (Loc,
7022 Prefix => New_Reference_To (A, Loc),
7023 Expressions => New_List (New_Reference_To (J, Loc)));
7024
7025 B_J :=
7026 Make_Indexed_Component (Loc,
7027 Prefix => New_Reference_To (B, Loc),
7028 Expressions => New_List (New_Reference_To (J, Loc)));
7029
7030 Loop_Statement :=
7031 Make_Implicit_Loop_Statement (N,
7032 Identifier => Empty,
7033
7034 Iteration_Scheme =>
7035 Make_Iteration_Scheme (Loc,
7036 Loop_Parameter_Specification =>
7037 Make_Loop_Parameter_Specification (Loc,
7038 Defining_Identifier => J,
7039 Discrete_Subtype_Definition =>
7040 Make_Attribute_Reference (Loc,
7041 Prefix => Make_Identifier (Loc, Chars (A)),
7042 Attribute_Name => Name_Range))),
7043
7044 Statements => New_List (
7045 Make_Assignment_Statement (Loc,
7046 Name => B_J,
7047 Expression => Make_Op_Not (Loc, A_J))));
7048
191fcb3a 7049 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
7050 Set_Is_Inlined (Func_Name);
7051
7052 Insert_Action (N,
7053 Make_Subprogram_Body (Loc,
7054 Specification =>
7055 Make_Function_Specification (Loc,
7056 Defining_Unit_Name => Func_Name,
7057 Parameter_Specifications => New_List (
7058 Make_Parameter_Specification (Loc,
7059 Defining_Identifier => A,
7060 Parameter_Type => New_Reference_To (Typ, Loc))),
630d30e9 7061 Result_Definition => New_Reference_To (Typ, Loc)),
70482933
RK
7062
7063 Declarations => New_List (
7064 Make_Object_Declaration (Loc,
7065 Defining_Identifier => B,
7066 Object_Definition => New_Reference_To (Arr, Loc))),
7067
7068 Handled_Statement_Sequence =>
7069 Make_Handled_Sequence_Of_Statements (Loc,
7070 Statements => New_List (
7071 Loop_Statement,
d766cee3 7072 Make_Simple_Return_Statement (Loc,
70482933
RK
7073 Expression =>
7074 Make_Identifier (Loc, Chars (B)))))));
7075
7076 Rewrite (N,
7077 Make_Function_Call (Loc,
7078 Name => New_Reference_To (Func_Name, Loc),
7079 Parameter_Associations => New_List (Opnd)));
7080
7081 Analyze_And_Resolve (N, Typ);
7082 end Expand_N_Op_Not;
7083
7084 --------------------
7085 -- Expand_N_Op_Or --
7086 --------------------
7087
7088 procedure Expand_N_Op_Or (N : Node_Id) is
7089 Typ : constant Entity_Id := Etype (N);
7090
7091 begin
7092 Binary_Op_Validity_Checks (N);
7093
7094 if Is_Array_Type (Etype (N)) then
7095 Expand_Boolean_Operator (N);
7096
7097 elsif Is_Boolean_Type (Etype (N)) then
6a2afd13
AC
7098
7099 -- Replace OR by OR ELSE if Short_Circuit_And_Or active and the
7100 -- type is standard Boolean (do not mess with AND that uses a non-
7101 -- standard Boolean type, because something strange is going on).
7102
7103 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
7104 Rewrite (N,
7105 Make_Or_Else (Sloc (N),
7106 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7107 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7108 Analyze_And_Resolve (N, Typ);
7109
7110 -- Otherwise, adjust conditions
7111
7112 else
7113 Adjust_Condition (Left_Opnd (N));
7114 Adjust_Condition (Right_Opnd (N));
7115 Set_Etype (N, Standard_Boolean);
7116 Adjust_Result_Type (N, Typ);
7117 end if;
70482933
RK
7118 end if;
7119 end Expand_N_Op_Or;
7120
7121 ----------------------
7122 -- Expand_N_Op_Plus --
7123 ----------------------
7124
7125 procedure Expand_N_Op_Plus (N : Node_Id) is
7126 begin
7127 Unary_Op_Validity_Checks (N);
7128 end Expand_N_Op_Plus;
7129
7130 ---------------------
7131 -- Expand_N_Op_Rem --
7132 ---------------------
7133
7134 procedure Expand_N_Op_Rem (N : Node_Id) is
7135 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 7136 Typ : constant Entity_Id := Etype (N);
70482933
RK
7137
7138 Left : constant Node_Id := Left_Opnd (N);
7139 Right : constant Node_Id := Right_Opnd (N);
7140
5d5e9775
AC
7141 Lo : Uint;
7142 Hi : Uint;
7143 OK : Boolean;
70482933 7144
5d5e9775
AC
7145 Lneg : Boolean;
7146 Rneg : Boolean;
7147 -- Set if corresponding operand can be negative
7148
7149 pragma Unreferenced (Hi);
1033834f 7150
70482933
RK
7151 begin
7152 Binary_Op_Validity_Checks (N);
7153
7154 if Is_Integer_Type (Etype (N)) then
7155 Apply_Divide_Check (N);
7156 end if;
7157
685094bf
RD
7158 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
7159 -- but it is useful with other back ends (e.g. AAMP), and is certainly
7160 -- harmless.
fbf5a39b
AC
7161
7162 if Is_Integer_Type (Etype (N))
7163 and then Compile_Time_Known_Value (Right)
7164 and then Expr_Value (Right) = Uint_1
7165 then
abcbd24c
ST
7166 -- Call Remove_Side_Effects to ensure that any side effects in the
7167 -- ignored left operand (in particular function calls to user defined
7168 -- functions) are properly executed.
7169
7170 Remove_Side_Effects (Left);
7171
fbf5a39b
AC
7172 Rewrite (N, Make_Integer_Literal (Loc, 0));
7173 Analyze_And_Resolve (N, Typ);
7174 return;
7175 end if;
7176
685094bf
RD
7177 -- Deal with annoying case of largest negative number remainder minus
7178 -- one. Gigi does not handle this case correctly, because it generates
7179 -- a divide instruction which may trap in this case.
70482933 7180
685094bf
RD
7181 -- In fact the check is quite easy, if the right operand is -1, then
7182 -- the remainder is always 0, and we can just ignore the left operand
7183 -- completely in this case.
70482933 7184
5d5e9775
AC
7185 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
7186 Lneg := (not OK) or else Lo < 0;
fbf5a39b 7187
5d5e9775
AC
7188 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
7189 Rneg := (not OK) or else Lo < 0;
fbf5a39b 7190
5d5e9775
AC
7191 -- We won't mess with trying to find out if the left operand can really
7192 -- be the largest negative number (that's a pain in the case of private
7193 -- types and this is really marginal). We will just assume that we need
7194 -- the test if the left operand can be negative at all.
fbf5a39b 7195
5d5e9775 7196 if Lneg and Rneg then
70482933
RK
7197 Rewrite (N,
7198 Make_Conditional_Expression (Loc,
7199 Expressions => New_List (
7200 Make_Op_Eq (Loc,
7201 Left_Opnd => Duplicate_Subexpr (Right),
7202 Right_Opnd =>
fbf5a39b
AC
7203 Unchecked_Convert_To (Typ,
7204 Make_Integer_Literal (Loc, -1))),
70482933 7205
fbf5a39b
AC
7206 Unchecked_Convert_To (Typ,
7207 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
7208
7209 Relocate_Node (N))));
7210
7211 Set_Analyzed (Next (Next (First (Expressions (N)))));
7212 Analyze_And_Resolve (N, Typ);
7213 end if;
7214 end Expand_N_Op_Rem;
7215
7216 -----------------------------
7217 -- Expand_N_Op_Rotate_Left --
7218 -----------------------------
7219
7220 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
7221 begin
7222 Binary_Op_Validity_Checks (N);
7223 end Expand_N_Op_Rotate_Left;
7224
7225 ------------------------------
7226 -- Expand_N_Op_Rotate_Right --
7227 ------------------------------
7228
7229 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
7230 begin
7231 Binary_Op_Validity_Checks (N);
7232 end Expand_N_Op_Rotate_Right;
7233
7234 ----------------------------
7235 -- Expand_N_Op_Shift_Left --
7236 ----------------------------
7237
7238 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
7239 begin
7240 Binary_Op_Validity_Checks (N);
7241 end Expand_N_Op_Shift_Left;
7242
7243 -----------------------------
7244 -- Expand_N_Op_Shift_Right --
7245 -----------------------------
7246
7247 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
7248 begin
7249 Binary_Op_Validity_Checks (N);
7250 end Expand_N_Op_Shift_Right;
7251
7252 ----------------------------------------
7253 -- Expand_N_Op_Shift_Right_Arithmetic --
7254 ----------------------------------------
7255
7256 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
7257 begin
7258 Binary_Op_Validity_Checks (N);
7259 end Expand_N_Op_Shift_Right_Arithmetic;
7260
7261 --------------------------
7262 -- Expand_N_Op_Subtract --
7263 --------------------------
7264
7265 procedure Expand_N_Op_Subtract (N : Node_Id) is
7266 Typ : constant Entity_Id := Etype (N);
7267
7268 begin
7269 Binary_Op_Validity_Checks (N);
7270
7271 -- N - 0 = N for integer types
7272
7273 if Is_Integer_Type (Typ)
7274 and then Compile_Time_Known_Value (Right_Opnd (N))
7275 and then Expr_Value (Right_Opnd (N)) = 0
7276 then
7277 Rewrite (N, Left_Opnd (N));
7278 return;
7279 end if;
7280
8fc789c8 7281 -- Arithmetic overflow checks for signed integer/fixed point types
70482933
RK
7282
7283 if Is_Signed_Integer_Type (Typ)
7284 or else Is_Fixed_Point_Type (Typ)
7285 then
7286 Apply_Arithmetic_Overflow_Check (N);
7287
7288 -- Vax floating-point types case
7289
7290 elsif Vax_Float (Typ) then
7291 Expand_Vax_Arith (N);
7292 end if;
7293 end Expand_N_Op_Subtract;
7294
7295 ---------------------
7296 -- Expand_N_Op_Xor --
7297 ---------------------
7298
7299 procedure Expand_N_Op_Xor (N : Node_Id) is
7300 Typ : constant Entity_Id := Etype (N);
7301
7302 begin
7303 Binary_Op_Validity_Checks (N);
7304
7305 if Is_Array_Type (Etype (N)) then
7306 Expand_Boolean_Operator (N);
7307
7308 elsif Is_Boolean_Type (Etype (N)) then
7309 Adjust_Condition (Left_Opnd (N));
7310 Adjust_Condition (Right_Opnd (N));
7311 Set_Etype (N, Standard_Boolean);
7312 Adjust_Result_Type (N, Typ);
7313 end if;
7314 end Expand_N_Op_Xor;
7315
7316 ----------------------
7317 -- Expand_N_Or_Else --
7318 ----------------------
7319
5875f8d6
AC
7320 procedure Expand_N_Or_Else (N : Node_Id)
7321 renames Expand_Short_Circuit_Operator;
70482933
RK
7322
7323 -----------------------------------
7324 -- Expand_N_Qualified_Expression --
7325 -----------------------------------
7326
7327 procedure Expand_N_Qualified_Expression (N : Node_Id) is
7328 Operand : constant Node_Id := Expression (N);
7329 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
7330
7331 begin
f82944b7
JM
7332 -- Do validity check if validity checking operands
7333
7334 if Validity_Checks_On
7335 and then Validity_Check_Operands
7336 then
7337 Ensure_Valid (Operand);
7338 end if;
7339
7340 -- Apply possible constraint check
7341
70482933 7342 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
7343
7344 if Do_Range_Check (Operand) then
7345 Set_Do_Range_Check (Operand, False);
7346 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
7347 end if;
70482933
RK
7348 end Expand_N_Qualified_Expression;
7349
7350 ---------------------------------
7351 -- Expand_N_Selected_Component --
7352 ---------------------------------
7353
7354 -- If the selector is a discriminant of a concurrent object, rewrite the
7355 -- prefix to denote the corresponding record type.
7356
7357 procedure Expand_N_Selected_Component (N : Node_Id) is
7358 Loc : constant Source_Ptr := Sloc (N);
7359 Par : constant Node_Id := Parent (N);
7360 P : constant Node_Id := Prefix (N);
fbf5a39b 7361 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 7362 Disc : Entity_Id;
70482933 7363 New_N : Node_Id;
fbf5a39b 7364 Dcon : Elmt_Id;
70482933
RK
7365
7366 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
7367 -- Gigi needs a temporary for prefixes that depend on a discriminant,
7368 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
7369 -- Don't we have a general routine that does this???
7370
7371 -----------------------
7372 -- In_Left_Hand_Side --
7373 -----------------------
70482933
RK
7374
7375 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
7376 begin
fbf5a39b
AC
7377 return (Nkind (Parent (Comp)) = N_Assignment_Statement
7378 and then Comp = Name (Parent (Comp)))
7379 or else (Present (Parent (Comp))
7380 and then Nkind (Parent (Comp)) in N_Subexpr
7381 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
7382 end In_Left_Hand_Side;
7383
fbf5a39b
AC
7384 -- Start of processing for Expand_N_Selected_Component
7385
70482933 7386 begin
fbf5a39b
AC
7387 -- Insert explicit dereference if required
7388
7389 if Is_Access_Type (Ptyp) then
7390 Insert_Explicit_Dereference (P);
e6f69614 7391 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b
AC
7392
7393 if Ekind (Etype (P)) = E_Private_Subtype
7394 and then Is_For_Access_Subtype (Etype (P))
7395 then
7396 Set_Etype (P, Base_Type (Etype (P)));
7397 end if;
7398
7399 Ptyp := Etype (P);
7400 end if;
7401
7402 -- Deal with discriminant check required
7403
70482933
RK
7404 if Do_Discriminant_Check (N) then
7405
685094bf
RD
7406 -- Present the discriminant checking function to the backend, so that
7407 -- it can inline the call to the function.
70482933
RK
7408
7409 Add_Inlined_Body
7410 (Discriminant_Checking_Func
7411 (Original_Record_Component (Entity (Selector_Name (N)))));
70482933 7412
fbf5a39b 7413 -- Now reset the flag and generate the call
70482933 7414
fbf5a39b
AC
7415 Set_Do_Discriminant_Check (N, False);
7416 Generate_Discriminant_Check (N);
70482933
RK
7417 end if;
7418
b4592168
GD
7419 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7420 -- function, then additional actuals must be passed.
7421
7422 if Ada_Version >= Ada_05
7423 and then Is_Build_In_Place_Function_Call (P)
7424 then
7425 Make_Build_In_Place_Call_In_Anonymous_Context (P);
7426 end if;
7427
fbf5a39b
AC
7428 -- Gigi cannot handle unchecked conversions that are the prefix of a
7429 -- selected component with discriminants. This must be checked during
7430 -- expansion, because during analysis the type of the selector is not
7431 -- known at the point the prefix is analyzed. If the conversion is the
7432 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
7433
7434 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
7435 and then Has_Discriminants (Etype (N))
7436 and then not In_Left_Hand_Side (N)
7437 then
7438 Force_Evaluation (Prefix (N));
7439 end if;
7440
7441 -- Remaining processing applies only if selector is a discriminant
7442
7443 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
7444
7445 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
7446 -- we may be able to rewrite the expression with the actual value
7447 -- of the discriminant, a useful optimization in some cases.
70482933
RK
7448
7449 if Is_Record_Type (Ptyp)
7450 and then Has_Discriminants (Ptyp)
7451 and then Is_Constrained (Ptyp)
70482933 7452 then
fbf5a39b
AC
7453 -- Do this optimization for discrete types only, and not for
7454 -- access types (access discriminants get us into trouble!)
70482933 7455
fbf5a39b
AC
7456 if not Is_Discrete_Type (Etype (N)) then
7457 null;
7458
7459 -- Don't do this on the left hand of an assignment statement.
7460 -- Normally one would think that references like this would
7461 -- not occur, but they do in generated code, and mean that
7462 -- we really do want to assign the discriminant!
7463
7464 elsif Nkind (Par) = N_Assignment_Statement
7465 and then Name (Par) = N
7466 then
7467 null;
7468
685094bf
RD
7469 -- Don't do this optimization for the prefix of an attribute or
7470 -- the operand of an object renaming declaration since these are
7471 -- contexts where we do not want the value anyway.
fbf5a39b
AC
7472
7473 elsif (Nkind (Par) = N_Attribute_Reference
7474 and then Prefix (Par) = N)
7475 or else Is_Renamed_Object (N)
7476 then
7477 null;
7478
7479 -- Don't do this optimization if we are within the code for a
7480 -- discriminant check, since the whole point of such a check may
7481 -- be to verify the condition on which the code below depends!
7482
7483 elsif Is_In_Discriminant_Check (N) then
7484 null;
7485
7486 -- Green light to see if we can do the optimization. There is
685094bf
RD
7487 -- still one condition that inhibits the optimization below but
7488 -- now is the time to check the particular discriminant.
fbf5a39b
AC
7489
7490 else
685094bf
RD
7491 -- Loop through discriminants to find the matching discriminant
7492 -- constraint to see if we can copy it.
fbf5a39b
AC
7493
7494 Disc := First_Discriminant (Ptyp);
7495 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
7496 Discr_Loop : while Present (Dcon) loop
7497
7498 -- Check if this is the matching discriminant
7499
7500 if Disc = Entity (Selector_Name (N)) then
70482933 7501
fbf5a39b
AC
7502 -- Here we have the matching discriminant. Check for
7503 -- the case of a discriminant of a component that is
7504 -- constrained by an outer discriminant, which cannot
7505 -- be optimized away.
7506
7507 if
7508 Denotes_Discriminant
20b5d666 7509 (Node (Dcon), Check_Concurrent => True)
fbf5a39b
AC
7510 then
7511 exit Discr_Loop;
70482933 7512
685094bf
RD
7513 -- In the context of a case statement, the expression may
7514 -- have the base type of the discriminant, and we need to
7515 -- preserve the constraint to avoid spurious errors on
7516 -- missing cases.
70482933 7517
fbf5a39b
AC
7518 elsif Nkind (Parent (N)) = N_Case_Statement
7519 and then Etype (Node (Dcon)) /= Etype (Disc)
70482933
RK
7520 then
7521 Rewrite (N,
7522 Make_Qualified_Expression (Loc,
fbf5a39b
AC
7523 Subtype_Mark =>
7524 New_Occurrence_Of (Etype (Disc), Loc),
7525 Expression =>
ffe9aba8
AC
7526 New_Copy_Tree (Node (Dcon))));
7527 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
7528
7529 -- In case that comes out as a static expression,
7530 -- reset it (a selected component is never static).
7531
7532 Set_Is_Static_Expression (N, False);
7533 return;
7534
7535 -- Otherwise we can just copy the constraint, but the
ffe9aba8
AC
7536 -- result is certainly not static! In some cases the
7537 -- discriminant constraint has been analyzed in the
7538 -- context of the original subtype indication, but for
7539 -- itypes the constraint might not have been analyzed
7540 -- yet, and this must be done now.
fbf5a39b 7541
70482933 7542 else
ffe9aba8
AC
7543 Rewrite (N, New_Copy_Tree (Node (Dcon)));
7544 Analyze_And_Resolve (N);
fbf5a39b
AC
7545 Set_Is_Static_Expression (N, False);
7546 return;
70482933 7547 end if;
70482933
RK
7548 end if;
7549
fbf5a39b
AC
7550 Next_Elmt (Dcon);
7551 Next_Discriminant (Disc);
7552 end loop Discr_Loop;
70482933 7553
fbf5a39b
AC
7554 -- Note: the above loop should always find a matching
7555 -- discriminant, but if it does not, we just missed an
685094bf
RD
7556 -- optimization due to some glitch (perhaps a previous error),
7557 -- so ignore.
fbf5a39b
AC
7558
7559 end if;
70482933
RK
7560 end if;
7561
7562 -- The only remaining processing is in the case of a discriminant of
7563 -- a concurrent object, where we rewrite the prefix to denote the
7564 -- corresponding record type. If the type is derived and has renamed
7565 -- discriminants, use corresponding discriminant, which is the one
7566 -- that appears in the corresponding record.
7567
7568 if not Is_Concurrent_Type (Ptyp) then
7569 return;
7570 end if;
7571
7572 Disc := Entity (Selector_Name (N));
7573
7574 if Is_Derived_Type (Ptyp)
7575 and then Present (Corresponding_Discriminant (Disc))
7576 then
7577 Disc := Corresponding_Discriminant (Disc);
7578 end if;
7579
7580 New_N :=
7581 Make_Selected_Component (Loc,
7582 Prefix =>
7583 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
7584 New_Copy_Tree (P)),
7585 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
7586
7587 Rewrite (N, New_N);
7588 Analyze (N);
7589 end if;
70482933
RK
7590 end Expand_N_Selected_Component;
7591
7592 --------------------
7593 -- Expand_N_Slice --
7594 --------------------
7595
7596 procedure Expand_N_Slice (N : Node_Id) is
7597 Loc : constant Source_Ptr := Sloc (N);
7598 Typ : constant Entity_Id := Etype (N);
7599 Pfx : constant Node_Id := Prefix (N);
7600 Ptp : Entity_Id := Etype (Pfx);
fbf5a39b 7601
81a5b587 7602 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
7603 -- Check whether the argument is an actual for a procedure call, in
7604 -- which case the expansion of a bit-packed slice is deferred until the
7605 -- call itself is expanded. The reason this is required is that we might
7606 -- have an IN OUT or OUT parameter, and the copy out is essential, and
7607 -- that copy out would be missed if we created a temporary here in
7608 -- Expand_N_Slice. Note that we don't bother to test specifically for an
7609 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
7610 -- is harmless to defer expansion in the IN case, since the call
7611 -- processing will still generate the appropriate copy in operation,
7612 -- which will take care of the slice.
81a5b587 7613
b01bf852 7614 procedure Make_Temporary_For_Slice;
685094bf
RD
7615 -- Create a named variable for the value of the slice, in cases where
7616 -- the back-end cannot handle it properly, e.g. when packed types or
7617 -- unaligned slices are involved.
fbf5a39b 7618
81a5b587
AC
7619 -------------------------
7620 -- Is_Procedure_Actual --
7621 -------------------------
7622
7623 function Is_Procedure_Actual (N : Node_Id) return Boolean is
7624 Par : Node_Id := Parent (N);
08aa9a4a 7625
81a5b587 7626 begin
81a5b587 7627 loop
c6a60aa1
RD
7628 -- If our parent is a procedure call we can return
7629
81a5b587
AC
7630 if Nkind (Par) = N_Procedure_Call_Statement then
7631 return True;
6b6fcd3e 7632
685094bf
RD
7633 -- If our parent is a type conversion, keep climbing the tree,
7634 -- since a type conversion can be a procedure actual. Also keep
7635 -- climbing if parameter association or a qualified expression,
7636 -- since these are additional cases that do can appear on
7637 -- procedure actuals.
6b6fcd3e 7638
303b4d58
AC
7639 elsif Nkind_In (Par, N_Type_Conversion,
7640 N_Parameter_Association,
7641 N_Qualified_Expression)
c6a60aa1 7642 then
81a5b587 7643 Par := Parent (Par);
c6a60aa1
RD
7644
7645 -- Any other case is not what we are looking for
7646
7647 else
7648 return False;
81a5b587
AC
7649 end if;
7650 end loop;
81a5b587
AC
7651 end Is_Procedure_Actual;
7652
b01bf852
AC
7653 ------------------------------
7654 -- Make_Temporary_For_Slice --
7655 ------------------------------
fbf5a39b 7656
b01bf852 7657 procedure Make_Temporary_For_Slice is
fbf5a39b 7658 Decl : Node_Id;
b01bf852 7659 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
13d923cc 7660
fbf5a39b
AC
7661 begin
7662 Decl :=
7663 Make_Object_Declaration (Loc,
7664 Defining_Identifier => Ent,
7665 Object_Definition => New_Occurrence_Of (Typ, Loc));
7666
7667 Set_No_Initialization (Decl);
7668
7669 Insert_Actions (N, New_List (
7670 Decl,
7671 Make_Assignment_Statement (Loc,
7672 Name => New_Occurrence_Of (Ent, Loc),
7673 Expression => Relocate_Node (N))));
7674
7675 Rewrite (N, New_Occurrence_Of (Ent, Loc));
7676 Analyze_And_Resolve (N, Typ);
b01bf852 7677 end Make_Temporary_For_Slice;
fbf5a39b
AC
7678
7679 -- Start of processing for Expand_N_Slice
70482933
RK
7680
7681 begin
7682 -- Special handling for access types
7683
7684 if Is_Access_Type (Ptp) then
7685
70482933
RK
7686 Ptp := Designated_Type (Ptp);
7687
e6f69614
AC
7688 Rewrite (Pfx,
7689 Make_Explicit_Dereference (Sloc (N),
7690 Prefix => Relocate_Node (Pfx)));
70482933 7691
e6f69614 7692 Analyze_And_Resolve (Pfx, Ptp);
70482933
RK
7693 end if;
7694
b4592168
GD
7695 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7696 -- function, then additional actuals must be passed.
7697
7698 if Ada_Version >= Ada_05
7699 and then Is_Build_In_Place_Function_Call (Pfx)
7700 then
7701 Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
7702 end if;
7703
70482933
RK
7704 -- The remaining case to be handled is packed slices. We can leave
7705 -- packed slices as they are in the following situations:
7706
7707 -- 1. Right or left side of an assignment (we can handle this
7708 -- situation correctly in the assignment statement expansion).
7709
685094bf
RD
7710 -- 2. Prefix of indexed component (the slide is optimized away in this
7711 -- case, see the start of Expand_N_Slice.)
70482933 7712
685094bf
RD
7713 -- 3. Object renaming declaration, since we want the name of the
7714 -- slice, not the value.
70482933 7715
685094bf
RD
7716 -- 4. Argument to procedure call, since copy-in/copy-out handling may
7717 -- be required, and this is handled in the expansion of call
7718 -- itself.
70482933 7719
685094bf
RD
7720 -- 5. Prefix of an address attribute (this is an error which is caught
7721 -- elsewhere, and the expansion would interfere with generating the
7722 -- error message).
70482933 7723
81a5b587 7724 if not Is_Packed (Typ) then
08aa9a4a 7725
685094bf
RD
7726 -- Apply transformation for actuals of a function call, where
7727 -- Expand_Actuals is not used.
81a5b587
AC
7728
7729 if Nkind (Parent (N)) = N_Function_Call
7730 and then Is_Possibly_Unaligned_Slice (N)
7731 then
b01bf852 7732 Make_Temporary_For_Slice;
81a5b587
AC
7733 end if;
7734
7735 elsif Nkind (Parent (N)) = N_Assignment_Statement
7736 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
7737 and then Parent (N) = Name (Parent (Parent (N))))
70482933 7738 then
81a5b587 7739 return;
70482933 7740
81a5b587
AC
7741 elsif Nkind (Parent (N)) = N_Indexed_Component
7742 or else Is_Renamed_Object (N)
7743 or else Is_Procedure_Actual (N)
7744 then
7745 return;
70482933 7746
91b1417d
AC
7747 elsif Nkind (Parent (N)) = N_Attribute_Reference
7748 and then Attribute_Name (Parent (N)) = Name_Address
fbf5a39b 7749 then
81a5b587
AC
7750 return;
7751
7752 else
b01bf852 7753 Make_Temporary_For_Slice;
70482933
RK
7754 end if;
7755 end Expand_N_Slice;
7756
7757 ------------------------------
7758 -- Expand_N_Type_Conversion --
7759 ------------------------------
7760
7761 procedure Expand_N_Type_Conversion (N : Node_Id) is
7762 Loc : constant Source_Ptr := Sloc (N);
7763 Operand : constant Node_Id := Expression (N);
7764 Target_Type : constant Entity_Id := Etype (N);
7765 Operand_Type : Entity_Id := Etype (Operand);
7766
7767 procedure Handle_Changed_Representation;
685094bf
RD
7768 -- This is called in the case of record and array type conversions to
7769 -- see if there is a change of representation to be handled. Change of
7770 -- representation is actually handled at the assignment statement level,
7771 -- and what this procedure does is rewrite node N conversion as an
7772 -- assignment to temporary. If there is no change of representation,
7773 -- then the conversion node is unchanged.
70482933 7774
426908f8
RD
7775 procedure Raise_Accessibility_Error;
7776 -- Called when we know that an accessibility check will fail. Rewrites
7777 -- node N to an appropriate raise statement and outputs warning msgs.
7778 -- The Etype of the raise node is set to Target_Type.
7779
70482933
RK
7780 procedure Real_Range_Check;
7781 -- Handles generation of range check for real target value
7782
7783 -----------------------------------
7784 -- Handle_Changed_Representation --
7785 -----------------------------------
7786
7787 procedure Handle_Changed_Representation is
7788 Temp : Entity_Id;
7789 Decl : Node_Id;
7790 Odef : Node_Id;
7791 Disc : Node_Id;
7792 N_Ix : Node_Id;
7793 Cons : List_Id;
7794
7795 begin
f82944b7 7796 -- Nothing else to do if no change of representation
70482933
RK
7797
7798 if Same_Representation (Operand_Type, Target_Type) then
7799 return;
7800
7801 -- The real change of representation work is done by the assignment
7802 -- statement processing. So if this type conversion is appearing as
7803 -- the expression of an assignment statement, nothing needs to be
7804 -- done to the conversion.
7805
7806 elsif Nkind (Parent (N)) = N_Assignment_Statement then
7807 return;
7808
7809 -- Otherwise we need to generate a temporary variable, and do the
7810 -- change of representation assignment into that temporary variable.
7811 -- The conversion is then replaced by a reference to this variable.
7812
7813 else
7814 Cons := No_List;
7815
685094bf
RD
7816 -- If type is unconstrained we have to add a constraint, copied
7817 -- from the actual value of the left hand side.
70482933
RK
7818
7819 if not Is_Constrained (Target_Type) then
7820 if Has_Discriminants (Operand_Type) then
7821 Disc := First_Discriminant (Operand_Type);
fbf5a39b
AC
7822
7823 if Disc /= First_Stored_Discriminant (Operand_Type) then
7824 Disc := First_Stored_Discriminant (Operand_Type);
7825 end if;
7826
70482933
RK
7827 Cons := New_List;
7828 while Present (Disc) loop
7829 Append_To (Cons,
7830 Make_Selected_Component (Loc,
fbf5a39b 7831 Prefix => Duplicate_Subexpr_Move_Checks (Operand),
70482933
RK
7832 Selector_Name =>
7833 Make_Identifier (Loc, Chars (Disc))));
7834 Next_Discriminant (Disc);
7835 end loop;
7836
7837 elsif Is_Array_Type (Operand_Type) then
7838 N_Ix := First_Index (Target_Type);
7839 Cons := New_List;
7840
7841 for J in 1 .. Number_Dimensions (Operand_Type) loop
7842
7843 -- We convert the bounds explicitly. We use an unchecked
7844 -- conversion because bounds checks are done elsewhere.
7845
7846 Append_To (Cons,
7847 Make_Range (Loc,
7848 Low_Bound =>
7849 Unchecked_Convert_To (Etype (N_Ix),
7850 Make_Attribute_Reference (Loc,
7851 Prefix =>
fbf5a39b 7852 Duplicate_Subexpr_No_Checks
70482933
RK
7853 (Operand, Name_Req => True),
7854 Attribute_Name => Name_First,
7855 Expressions => New_List (
7856 Make_Integer_Literal (Loc, J)))),
7857
7858 High_Bound =>
7859 Unchecked_Convert_To (Etype (N_Ix),
7860 Make_Attribute_Reference (Loc,
7861 Prefix =>
fbf5a39b 7862 Duplicate_Subexpr_No_Checks
70482933
RK
7863 (Operand, Name_Req => True),
7864 Attribute_Name => Name_Last,
7865 Expressions => New_List (
7866 Make_Integer_Literal (Loc, J))))));
7867
7868 Next_Index (N_Ix);
7869 end loop;
7870 end if;
7871 end if;
7872
7873 Odef := New_Occurrence_Of (Target_Type, Loc);
7874
7875 if Present (Cons) then
7876 Odef :=
7877 Make_Subtype_Indication (Loc,
7878 Subtype_Mark => Odef,
7879 Constraint =>
7880 Make_Index_Or_Discriminant_Constraint (Loc,
7881 Constraints => Cons));
7882 end if;
7883
191fcb3a 7884 Temp := Make_Temporary (Loc, 'C');
70482933
RK
7885 Decl :=
7886 Make_Object_Declaration (Loc,
7887 Defining_Identifier => Temp,
7888 Object_Definition => Odef);
7889
7890 Set_No_Initialization (Decl, True);
7891
7892 -- Insert required actions. It is essential to suppress checks
7893 -- since we have suppressed default initialization, which means
7894 -- that the variable we create may have no discriminants.
7895
7896 Insert_Actions (N,
7897 New_List (
7898 Decl,
7899 Make_Assignment_Statement (Loc,
7900 Name => New_Occurrence_Of (Temp, Loc),
7901 Expression => Relocate_Node (N))),
7902 Suppress => All_Checks);
7903
7904 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7905 return;
7906 end if;
7907 end Handle_Changed_Representation;
7908
426908f8
RD
7909 -------------------------------
7910 -- Raise_Accessibility_Error --
7911 -------------------------------
7912
7913 procedure Raise_Accessibility_Error is
7914 begin
7915 Rewrite (N,
7916 Make_Raise_Program_Error (Sloc (N),
7917 Reason => PE_Accessibility_Check_Failed));
7918 Set_Etype (N, Target_Type);
7919
7920 Error_Msg_N ("?accessibility check failure", N);
7921 Error_Msg_NE
7922 ("\?& will be raised at run time", N, Standard_Program_Error);
7923 end Raise_Accessibility_Error;
7924
70482933
RK
7925 ----------------------
7926 -- Real_Range_Check --
7927 ----------------------
7928
685094bf
RD
7929 -- Case of conversions to floating-point or fixed-point. If range checks
7930 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
7931
7932 -- typ (x)
7933
7934 -- to
7935
7936 -- Tnn : typ'Base := typ'Base (x);
7937 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
7938 -- Tnn
7939
685094bf
RD
7940 -- This is necessary when there is a conversion of integer to float or
7941 -- to fixed-point to ensure that the correct checks are made. It is not
7942 -- necessary for float to float where it is enough to simply set the
7943 -- Do_Range_Check flag.
fbf5a39b 7944
70482933
RK
7945 procedure Real_Range_Check is
7946 Btyp : constant Entity_Id := Base_Type (Target_Type);
7947 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
7948 Hi : constant Node_Id := Type_High_Bound (Target_Type);
fbf5a39b 7949 Xtyp : constant Entity_Id := Etype (Operand);
70482933
RK
7950 Conv : Node_Id;
7951 Tnn : Entity_Id;
7952
7953 begin
7954 -- Nothing to do if conversion was rewritten
7955
7956 if Nkind (N) /= N_Type_Conversion then
7957 return;
7958 end if;
7959
685094bf
RD
7960 -- Nothing to do if range checks suppressed, or target has the same
7961 -- range as the base type (or is the base type).
70482933
RK
7962
7963 if Range_Checks_Suppressed (Target_Type)
7964 or else (Lo = Type_Low_Bound (Btyp)
7965 and then
7966 Hi = Type_High_Bound (Btyp))
7967 then
7968 return;
7969 end if;
7970
685094bf
RD
7971 -- Nothing to do if expression is an entity on which checks have been
7972 -- suppressed.
70482933 7973
fbf5a39b
AC
7974 if Is_Entity_Name (Operand)
7975 and then Range_Checks_Suppressed (Entity (Operand))
7976 then
7977 return;
7978 end if;
7979
685094bf
RD
7980 -- Nothing to do if bounds are all static and we can tell that the
7981 -- expression is within the bounds of the target. Note that if the
7982 -- operand is of an unconstrained floating-point type, then we do
7983 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
7984
7985 declare
f02b8bb8
RD
7986 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
7987 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
fbf5a39b
AC
7988
7989 begin
7990 if (not Is_Floating_Point_Type (Xtyp)
7991 or else Is_Constrained (Xtyp))
7992 and then Compile_Time_Known_Value (S_Lo)
7993 and then Compile_Time_Known_Value (S_Hi)
7994 and then Compile_Time_Known_Value (Hi)
7995 and then Compile_Time_Known_Value (Lo)
7996 then
7997 declare
7998 D_Lov : constant Ureal := Expr_Value_R (Lo);
7999 D_Hiv : constant Ureal := Expr_Value_R (Hi);
8000 S_Lov : Ureal;
8001 S_Hiv : Ureal;
8002
8003 begin
8004 if Is_Real_Type (Xtyp) then
8005 S_Lov := Expr_Value_R (S_Lo);
8006 S_Hiv := Expr_Value_R (S_Hi);
8007 else
8008 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
8009 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
8010 end if;
8011
8012 if D_Hiv > D_Lov
8013 and then S_Lov >= D_Lov
8014 and then S_Hiv <= D_Hiv
8015 then
8016 Set_Do_Range_Check (Operand, False);
8017 return;
8018 end if;
8019 end;
8020 end if;
8021 end;
8022
8023 -- For float to float conversions, we are done
8024
8025 if Is_Floating_Point_Type (Xtyp)
8026 and then
8027 Is_Floating_Point_Type (Btyp)
70482933
RK
8028 then
8029 return;
8030 end if;
8031
fbf5a39b 8032 -- Otherwise rewrite the conversion as described above
70482933
RK
8033
8034 Conv := Relocate_Node (N);
eaa826f8 8035 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
70482933
RK
8036 Set_Etype (Conv, Btyp);
8037
f02b8bb8
RD
8038 -- Enable overflow except for case of integer to float conversions,
8039 -- where it is never required, since we can never have overflow in
8040 -- this case.
70482933 8041
fbf5a39b
AC
8042 if not Is_Integer_Type (Etype (Operand)) then
8043 Enable_Overflow_Check (Conv);
70482933
RK
8044 end if;
8045
191fcb3a 8046 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933
RK
8047
8048 Insert_Actions (N, New_List (
8049 Make_Object_Declaration (Loc,
8050 Defining_Identifier => Tnn,
8051 Object_Definition => New_Occurrence_Of (Btyp, Loc),
8052 Expression => Conv),
8053
8054 Make_Raise_Constraint_Error (Loc,
07fc65c4
GB
8055 Condition =>
8056 Make_Or_Else (Loc,
8057 Left_Opnd =>
8058 Make_Op_Lt (Loc,
8059 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8060 Right_Opnd =>
8061 Make_Attribute_Reference (Loc,
8062 Attribute_Name => Name_First,
8063 Prefix =>
8064 New_Occurrence_Of (Target_Type, Loc))),
70482933 8065
07fc65c4
GB
8066 Right_Opnd =>
8067 Make_Op_Gt (Loc,
8068 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8069 Right_Opnd =>
8070 Make_Attribute_Reference (Loc,
8071 Attribute_Name => Name_Last,
8072 Prefix =>
8073 New_Occurrence_Of (Target_Type, Loc)))),
8074 Reason => CE_Range_Check_Failed)));
70482933
RK
8075
8076 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
8077 Analyze_And_Resolve (N, Btyp);
8078 end Real_Range_Check;
8079
8080 -- Start of processing for Expand_N_Type_Conversion
8081
8082 begin
685094bf 8083 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
8084 -- the conversion completely, it is useless, except that it may carry
8085 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
8086
8087 if Operand_Type = Target_Type then
7b00e31d
AC
8088 if Assignment_OK (N) then
8089 Set_Assignment_OK (Operand);
8090 end if;
8091
fbf5a39b 8092 Rewrite (N, Relocate_Node (Operand));
70482933
RK
8093 return;
8094 end if;
8095
685094bf
RD
8096 -- Nothing to do if this is the second argument of read. This is a
8097 -- "backwards" conversion that will be handled by the specialized code
8098 -- in attribute processing.
70482933
RK
8099
8100 if Nkind (Parent (N)) = N_Attribute_Reference
8101 and then Attribute_Name (Parent (N)) = Name_Read
8102 and then Next (First (Expressions (Parent (N)))) = N
8103 then
8104 return;
8105 end if;
8106
8107 -- Here if we may need to expand conversion
8108
eaa826f8
RD
8109 -- If the operand of the type conversion is an arithmetic operation on
8110 -- signed integers, and the based type of the signed integer type in
8111 -- question is smaller than Standard.Integer, we promote both of the
8112 -- operands to type Integer.
8113
8114 -- For example, if we have
8115
8116 -- target-type (opnd1 + opnd2)
8117
8118 -- and opnd1 and opnd2 are of type short integer, then we rewrite
8119 -- this as:
8120
8121 -- target-type (integer(opnd1) + integer(opnd2))
8122
8123 -- We do this because we are always allowed to compute in a larger type
8124 -- if we do the right thing with the result, and in this case we are
8125 -- going to do a conversion which will do an appropriate check to make
8126 -- sure that things are in range of the target type in any case. This
8127 -- avoids some unnecessary intermediate overflows.
8128
dfcfdc0a
AC
8129 -- We might consider a similar transformation in the case where the
8130 -- target is a real type or a 64-bit integer type, and the operand
8131 -- is an arithmetic operation using a 32-bit integer type. However,
8132 -- we do not bother with this case, because it could cause significant
8133 -- ineffiencies on 32-bit machines. On a 64-bit machine it would be
8134 -- much cheaper, but we don't want different behavior on 32-bit and
8135 -- 64-bit machines. Note that the exclusion of the 64-bit case also
8136 -- handles the configurable run-time cases where 64-bit arithmetic
8137 -- may simply be unavailable.
eaa826f8
RD
8138
8139 -- Note: this circuit is partially redundant with respect to the circuit
8140 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
8141 -- the processing here. Also we still need the Checks circuit, since we
8142 -- have to be sure not to generate junk overflow checks in the first
8143 -- place, since it would be trick to remove them here!
8144
fdfcc663 8145 if Integer_Promotion_Possible (N) then
eaa826f8 8146
fdfcc663 8147 -- All conditions met, go ahead with transformation
eaa826f8 8148
fdfcc663
AC
8149 declare
8150 Opnd : Node_Id;
8151 L, R : Node_Id;
dfcfdc0a 8152
fdfcc663
AC
8153 begin
8154 R :=
8155 Make_Type_Conversion (Loc,
8156 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8157 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 8158
5f3f175d
AC
8159 Opnd := New_Op_Node (Nkind (Operand), Loc);
8160 Set_Right_Opnd (Opnd, R);
eaa826f8 8161
5f3f175d 8162 if Nkind (Operand) in N_Binary_Op then
fdfcc663 8163 L :=
eaa826f8 8164 Make_Type_Conversion (Loc,
dfcfdc0a 8165 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
fdfcc663
AC
8166 Expression => Relocate_Node (Left_Opnd (Operand)));
8167
5f3f175d
AC
8168 Set_Left_Opnd (Opnd, L);
8169 end if;
eaa826f8 8170
5f3f175d
AC
8171 Rewrite (N,
8172 Make_Type_Conversion (Loc,
8173 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
8174 Expression => Opnd));
dfcfdc0a 8175
5f3f175d
AC
8176 Analyze_And_Resolve (N, Target_Type);
8177 return;
fdfcc663
AC
8178 end;
8179 end if;
eaa826f8 8180
f82944b7
JM
8181 -- Do validity check if validity checking operands
8182
8183 if Validity_Checks_On
8184 and then Validity_Check_Operands
8185 then
8186 Ensure_Valid (Operand);
8187 end if;
8188
70482933
RK
8189 -- Special case of converting from non-standard boolean type
8190
8191 if Is_Boolean_Type (Operand_Type)
8192 and then (Nonzero_Is_True (Operand_Type))
8193 then
8194 Adjust_Condition (Operand);
8195 Set_Etype (Operand, Standard_Boolean);
8196 Operand_Type := Standard_Boolean;
8197 end if;
8198
8199 -- Case of converting to an access type
8200
8201 if Is_Access_Type (Target_Type) then
8202
d766cee3
RD
8203 -- Apply an accessibility check when the conversion operand is an
8204 -- access parameter (or a renaming thereof), unless conversion was
e84e11ba
GD
8205 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
8206 -- Note that other checks may still need to be applied below (such
8207 -- as tagged type checks).
70482933
RK
8208
8209 if Is_Entity_Name (Operand)
d766cee3
RD
8210 and then
8211 (Is_Formal (Entity (Operand))
8212 or else
8213 (Present (Renamed_Object (Entity (Operand)))
8214 and then Is_Entity_Name (Renamed_Object (Entity (Operand)))
8215 and then Is_Formal
8216 (Entity (Renamed_Object (Entity (Operand))))))
70482933 8217 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
d766cee3
RD
8218 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
8219 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 8220 then
e84e11ba
GD
8221 Apply_Accessibility_Check
8222 (Operand, Target_Type, Insert_Node => Operand);
70482933 8223
e84e11ba 8224 -- If the level of the operand type is statically deeper than the
685094bf
RD
8225 -- level of the target type, then force Program_Error. Note that this
8226 -- can only occur for cases where the attribute is within the body of
8227 -- an instantiation (otherwise the conversion will already have been
8228 -- rejected as illegal). Note: warnings are issued by the analyzer
8229 -- for the instance cases.
70482933
RK
8230
8231 elsif In_Instance_Body
07fc65c4
GB
8232 and then Type_Access_Level (Operand_Type) >
8233 Type_Access_Level (Target_Type)
70482933 8234 then
426908f8 8235 Raise_Accessibility_Error;
70482933 8236
685094bf
RD
8237 -- When the operand is a selected access discriminant the check needs
8238 -- to be made against the level of the object denoted by the prefix
8239 -- of the selected name. Force Program_Error for this case as well
8240 -- (this accessibility violation can only happen if within the body
8241 -- of an instantiation).
70482933
RK
8242
8243 elsif In_Instance_Body
8244 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
8245 and then Nkind (Operand) = N_Selected_Component
8246 and then Object_Access_Level (Operand) >
8247 Type_Access_Level (Target_Type)
8248 then
426908f8 8249 Raise_Accessibility_Error;
950d217a 8250 return;
70482933
RK
8251 end if;
8252 end if;
8253
8254 -- Case of conversions of tagged types and access to tagged types
8255
685094bf
RD
8256 -- When needed, that is to say when the expression is class-wide, Add
8257 -- runtime a tag check for (strict) downward conversion by using the
8258 -- membership test, generating:
70482933
RK
8259
8260 -- [constraint_error when Operand not in Target_Type'Class]
8261
8262 -- or in the access type case
8263
8264 -- [constraint_error
8265 -- when Operand /= null
8266 -- and then Operand.all not in
8267 -- Designated_Type (Target_Type)'Class]
8268
8269 if (Is_Access_Type (Target_Type)
8270 and then Is_Tagged_Type (Designated_Type (Target_Type)))
8271 or else Is_Tagged_Type (Target_Type)
8272 then
685094bf
RD
8273 -- Do not do any expansion in the access type case if the parent is a
8274 -- renaming, since this is an error situation which will be caught by
8275 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 8276
e7e4d230 8277 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
70482933
RK
8278 return;
8279 end if;
8280
0669bebe 8281 -- Otherwise, proceed with processing tagged conversion
70482933 8282
e7e4d230 8283 Tagged_Conversion : declare
8cea7b64
HK
8284 Actual_Op_Typ : Entity_Id;
8285 Actual_Targ_Typ : Entity_Id;
8286 Make_Conversion : Boolean := False;
8287 Root_Op_Typ : Entity_Id;
70482933 8288
8cea7b64
HK
8289 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
8290 -- Create a membership check to test whether Operand is a member
8291 -- of Targ_Typ. If the original Target_Type is an access, include
8292 -- a test for null value. The check is inserted at N.
8293
8294 --------------------
8295 -- Make_Tag_Check --
8296 --------------------
8297
8298 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
8299 Cond : Node_Id;
8300
8301 begin
8302 -- Generate:
8303 -- [Constraint_Error
8304 -- when Operand /= null
8305 -- and then Operand.all not in Targ_Typ]
8306
8307 if Is_Access_Type (Target_Type) then
8308 Cond :=
8309 Make_And_Then (Loc,
8310 Left_Opnd =>
8311 Make_Op_Ne (Loc,
8312 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8313 Right_Opnd => Make_Null (Loc)),
8314
8315 Right_Opnd =>
8316 Make_Not_In (Loc,
8317 Left_Opnd =>
8318 Make_Explicit_Dereference (Loc,
8319 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
8320 Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
8321
8322 -- Generate:
8323 -- [Constraint_Error when Operand not in Targ_Typ]
8324
8325 else
8326 Cond :=
8327 Make_Not_In (Loc,
8328 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8329 Right_Opnd => New_Reference_To (Targ_Typ, Loc));
8330 end if;
8331
8332 Insert_Action (N,
8333 Make_Raise_Constraint_Error (Loc,
8334 Condition => Cond,
8335 Reason => CE_Tag_Check_Failed));
8336 end Make_Tag_Check;
8337
e7e4d230 8338 -- Start of processing for Tagged_Conversion
70482933
RK
8339
8340 begin
8341 if Is_Access_Type (Target_Type) then
70482933 8342
852dba80
AC
8343 -- Handle entities from the limited view
8344
8345 Actual_Op_Typ :=
8346 Available_View (Designated_Type (Operand_Type));
8347 Actual_Targ_Typ :=
8348 Available_View (Designated_Type (Target_Type));
70482933 8349 else
8cea7b64
HK
8350 Actual_Op_Typ := Operand_Type;
8351 Actual_Targ_Typ := Target_Type;
70482933
RK
8352 end if;
8353
8cea7b64
HK
8354 Root_Op_Typ := Root_Type (Actual_Op_Typ);
8355
20b5d666
JM
8356 -- Ada 2005 (AI-251): Handle interface type conversion
8357
8cea7b64 8358 if Is_Interface (Actual_Op_Typ) then
20b5d666
JM
8359 Expand_Interface_Conversion (N, Is_Static => False);
8360 return;
8361 end if;
8362
8cea7b64 8363 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 8364
8cea7b64
HK
8365 -- Create a runtime tag check for a downward class-wide type
8366 -- conversion.
70482933 8367
8cea7b64 8368 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 8369 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64
HK
8370 and then Root_Op_Typ /= Actual_Targ_Typ
8371 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ)
8372 then
8373 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
8374 Make_Conversion := True;
8375 end if;
70482933 8376
8cea7b64
HK
8377 -- AI05-0073: If the result subtype of the function is defined
8378 -- by an access_definition designating a specific tagged type
8379 -- T, a check is made that the result value is null or the tag
8380 -- of the object designated by the result value identifies T.
8381 -- Constraint_Error is raised if this check fails.
70482933 8382
8cea7b64
HK
8383 if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
8384 declare
e886436a 8385 Func : Entity_Id;
8cea7b64
HK
8386 Func_Typ : Entity_Id;
8387
8388 begin
e886436a 8389 -- Climb scope stack looking for the enclosing function
8cea7b64 8390
e886436a 8391 Func := Current_Scope;
8cea7b64
HK
8392 while Present (Func)
8393 and then Ekind (Func) /= E_Function
8394 loop
8395 Func := Scope (Func);
8396 end loop;
8397
8398 -- The function's return subtype must be defined using
8399 -- an access definition.
8400
8401 if Nkind (Result_Definition (Parent (Func))) =
8402 N_Access_Definition
8403 then
8404 Func_Typ := Directly_Designated_Type (Etype (Func));
8405
8406 -- The return subtype denotes a specific tagged type,
8407 -- in other words, a non class-wide type.
8408
8409 if Is_Tagged_Type (Func_Typ)
8410 and then not Is_Class_Wide_Type (Func_Typ)
8411 then
8412 Make_Tag_Check (Actual_Targ_Typ);
8413 Make_Conversion := True;
8414 end if;
8415 end if;
8416 end;
70482933
RK
8417 end if;
8418
8cea7b64
HK
8419 -- We have generated a tag check for either a class-wide type
8420 -- conversion or for AI05-0073.
70482933 8421
8cea7b64
HK
8422 if Make_Conversion then
8423 declare
8424 Conv : Node_Id;
8425 begin
8426 Conv :=
8427 Make_Unchecked_Type_Conversion (Loc,
8428 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
8429 Expression => Relocate_Node (Expression (N)));
8430 Rewrite (N, Conv);
8431 Analyze_And_Resolve (N, Target_Type);
8432 end;
8433 end if;
70482933 8434 end if;
e7e4d230 8435 end Tagged_Conversion;
70482933
RK
8436
8437 -- Case of other access type conversions
8438
8439 elsif Is_Access_Type (Target_Type) then
8440 Apply_Constraint_Check (Operand, Target_Type);
8441
8442 -- Case of conversions from a fixed-point type
8443
685094bf
RD
8444 -- These conversions require special expansion and processing, found in
8445 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
8446 -- since from a semantic point of view, these are simple integer
70482933
RK
8447 -- conversions, which do not need further processing.
8448
8449 elsif Is_Fixed_Point_Type (Operand_Type)
8450 and then not Conversion_OK (N)
8451 then
8452 -- We should never see universal fixed at this case, since the
8453 -- expansion of the constituent divide or multiply should have
8454 -- eliminated the explicit mention of universal fixed.
8455
8456 pragma Assert (Operand_Type /= Universal_Fixed);
8457
685094bf
RD
8458 -- Check for special case of the conversion to universal real that
8459 -- occurs as a result of the use of a round attribute. In this case,
8460 -- the real type for the conversion is taken from the target type of
8461 -- the Round attribute and the result must be marked as rounded.
70482933
RK
8462
8463 if Target_Type = Universal_Real
8464 and then Nkind (Parent (N)) = N_Attribute_Reference
8465 and then Attribute_Name (Parent (N)) = Name_Round
8466 then
8467 Set_Rounded_Result (N);
8468 Set_Etype (N, Etype (Parent (N)));
8469 end if;
8470
8471 -- Otherwise do correct fixed-conversion, but skip these if the
e7e4d230
AC
8472 -- Conversion_OK flag is set, because from a semantic point of view
8473 -- these are simple integer conversions needing no further processing
8474 -- (the backend will simply treat them as integers).
70482933
RK
8475
8476 if not Conversion_OK (N) then
8477 if Is_Fixed_Point_Type (Etype (N)) then
8478 Expand_Convert_Fixed_To_Fixed (N);
8479 Real_Range_Check;
8480
8481 elsif Is_Integer_Type (Etype (N)) then
8482 Expand_Convert_Fixed_To_Integer (N);
8483
8484 else
8485 pragma Assert (Is_Floating_Point_Type (Etype (N)));
8486 Expand_Convert_Fixed_To_Float (N);
8487 Real_Range_Check;
8488 end if;
8489 end if;
8490
8491 -- Case of conversions to a fixed-point type
8492
685094bf
RD
8493 -- These conversions require special expansion and processing, found in
8494 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
8495 -- since from a semantic point of view, these are simple integer
8496 -- conversions, which do not need further processing.
70482933
RK
8497
8498 elsif Is_Fixed_Point_Type (Target_Type)
8499 and then not Conversion_OK (N)
8500 then
8501 if Is_Integer_Type (Operand_Type) then
8502 Expand_Convert_Integer_To_Fixed (N);
8503 Real_Range_Check;
8504 else
8505 pragma Assert (Is_Floating_Point_Type (Operand_Type));
8506 Expand_Convert_Float_To_Fixed (N);
8507 Real_Range_Check;
8508 end if;
8509
8510 -- Case of float-to-integer conversions
8511
8512 -- We also handle float-to-fixed conversions with Conversion_OK set
8513 -- since semantically the fixed-point target is treated as though it
8514 -- were an integer in such cases.
8515
8516 elsif Is_Floating_Point_Type (Operand_Type)
8517 and then
8518 (Is_Integer_Type (Target_Type)
8519 or else
8520 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
8521 then
70482933
RK
8522 -- One more check here, gcc is still not able to do conversions of
8523 -- this type with proper overflow checking, and so gigi is doing an
8524 -- approximation of what is required by doing floating-point compares
8525 -- with the end-point. But that can lose precision in some cases, and
f02b8bb8 8526 -- give a wrong result. Converting the operand to Universal_Real is
70482933 8527 -- helpful, but still does not catch all cases with 64-bit integers
e7e4d230 8528 -- on targets with only 64-bit floats.
0669bebe
GB
8529
8530 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
8531 -- Can this code be removed ???
70482933 8532
fbf5a39b
AC
8533 if Do_Range_Check (Operand) then
8534 Rewrite (Operand,
70482933
RK
8535 Make_Type_Conversion (Loc,
8536 Subtype_Mark =>
f02b8bb8 8537 New_Occurrence_Of (Universal_Real, Loc),
70482933 8538 Expression =>
fbf5a39b 8539 Relocate_Node (Operand)));
70482933 8540
f02b8bb8 8541 Set_Etype (Operand, Universal_Real);
fbf5a39b
AC
8542 Enable_Range_Check (Operand);
8543 Set_Do_Range_Check (Expression (Operand), False);
70482933
RK
8544 end if;
8545
8546 -- Case of array conversions
8547
685094bf
RD
8548 -- Expansion of array conversions, add required length/range checks but
8549 -- only do this if there is no change of representation. For handling of
8550 -- this case, see Handle_Changed_Representation.
70482933
RK
8551
8552 elsif Is_Array_Type (Target_Type) then
8553
8554 if Is_Constrained (Target_Type) then
8555 Apply_Length_Check (Operand, Target_Type);
8556 else
8557 Apply_Range_Check (Operand, Target_Type);
8558 end if;
8559
8560 Handle_Changed_Representation;
8561
8562 -- Case of conversions of discriminated types
8563
685094bf
RD
8564 -- Add required discriminant checks if target is constrained. Again this
8565 -- change is skipped if we have a change of representation.
70482933
RK
8566
8567 elsif Has_Discriminants (Target_Type)
8568 and then Is_Constrained (Target_Type)
8569 then
8570 Apply_Discriminant_Check (Operand, Target_Type);
8571 Handle_Changed_Representation;
8572
8573 -- Case of all other record conversions. The only processing required
8574 -- is to check for a change of representation requiring the special
8575 -- assignment processing.
8576
8577 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
8578
8579 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
8580 -- a derived Unchecked_Union type to an unconstrained type that is
8581 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
8582
8583 if Is_Derived_Type (Operand_Type)
8584 and then Is_Unchecked_Union (Base_Type (Operand_Type))
8585 and then not Is_Constrained (Target_Type)
8586 and then not Is_Unchecked_Union (Base_Type (Target_Type))
8587 and then not Has_Inferable_Discriminants (Operand)
8588 then
685094bf 8589 -- To prevent Gigi from generating illegal code, we generate a
5d09245e
AC
8590 -- Program_Error node, but we give it the target type of the
8591 -- conversion.
8592
8593 declare
8594 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
8595 Reason => PE_Unchecked_Union_Restriction);
8596
8597 begin
8598 Set_Etype (PE, Target_Type);
8599 Rewrite (N, PE);
8600
8601 end;
8602 else
8603 Handle_Changed_Representation;
8604 end if;
70482933
RK
8605
8606 -- Case of conversions of enumeration types
8607
8608 elsif Is_Enumeration_Type (Target_Type) then
8609
8610 -- Special processing is required if there is a change of
e7e4d230 8611 -- representation (from enumeration representation clauses).
70482933
RK
8612
8613 if not Same_Representation (Target_Type, Operand_Type) then
8614
8615 -- Convert: x(y) to x'val (ytyp'val (y))
8616
8617 Rewrite (N,
8618 Make_Attribute_Reference (Loc,
8619 Prefix => New_Occurrence_Of (Target_Type, Loc),
8620 Attribute_Name => Name_Val,
8621 Expressions => New_List (
8622 Make_Attribute_Reference (Loc,
8623 Prefix => New_Occurrence_Of (Operand_Type, Loc),
8624 Attribute_Name => Name_Pos,
8625 Expressions => New_List (Operand)))));
8626
8627 Analyze_And_Resolve (N, Target_Type);
8628 end if;
8629
8630 -- Case of conversions to floating-point
8631
8632 elsif Is_Floating_Point_Type (Target_Type) then
8633 Real_Range_Check;
70482933
RK
8634 end if;
8635
685094bf 8636 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
8637 -- some other equivalent expression, or left as a conversion that can be
8638 -- handled by Gigi, in the following cases:
70482933
RK
8639
8640 -- Conversions with no change of representation or type
8641
685094bf
RD
8642 -- Numeric conversions involving integer, floating- and fixed-point
8643 -- values. Fixed-point values are allowed only if Conversion_OK is
8644 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 8645
5e1c00fa
RD
8646 -- No other conversions should be passed to Gigi
8647
8648 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 8649
685094bf
RD
8650 -- The only remaining step is to generate a range check if we still have
8651 -- a type conversion at this stage and Do_Range_Check is set. For now we
8652 -- do this only for conversions of discrete types.
fbf5a39b
AC
8653
8654 if Nkind (N) = N_Type_Conversion
8655 and then Is_Discrete_Type (Etype (N))
8656 then
8657 declare
8658 Expr : constant Node_Id := Expression (N);
8659 Ftyp : Entity_Id;
8660 Ityp : Entity_Id;
8661
8662 begin
8663 if Do_Range_Check (Expr)
8664 and then Is_Discrete_Type (Etype (Expr))
8665 then
8666 Set_Do_Range_Check (Expr, False);
8667
685094bf
RD
8668 -- Before we do a range check, we have to deal with treating a
8669 -- fixed-point operand as an integer. The way we do this is
8670 -- simply to do an unchecked conversion to an appropriate
fbf5a39b
AC
8671 -- integer type large enough to hold the result.
8672
8673 -- This code is not active yet, because we are only dealing
8674 -- with discrete types so far ???
8675
8676 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
8677 and then Treat_Fixed_As_Integer (Expr)
8678 then
8679 Ftyp := Base_Type (Etype (Expr));
8680
8681 if Esize (Ftyp) >= Esize (Standard_Integer) then
8682 Ityp := Standard_Long_Long_Integer;
8683 else
8684 Ityp := Standard_Integer;
8685 end if;
8686
8687 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
8688 end if;
8689
8690 -- Reset overflow flag, since the range check will include
e7e4d230 8691 -- dealing with possible overflow, and generate the check. If
685094bf 8692 -- Address is either a source type or target type, suppress
8a36a0cc
AC
8693 -- range check to avoid typing anomalies when it is a visible
8694 -- integer type.
fbf5a39b
AC
8695
8696 Set_Do_Overflow_Check (N, False);
8a36a0cc
AC
8697 if not Is_Descendent_Of_Address (Etype (Expr))
8698 and then not Is_Descendent_Of_Address (Target_Type)
8699 then
8700 Generate_Range_Check
8701 (Expr, Target_Type, CE_Range_Check_Failed);
8702 end if;
fbf5a39b
AC
8703 end if;
8704 end;
8705 end if;
f02b8bb8
RD
8706
8707 -- Final step, if the result is a type conversion involving Vax_Float
8708 -- types, then it is subject for further special processing.
8709
8710 if Nkind (N) = N_Type_Conversion
8711 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
8712 then
8713 Expand_Vax_Conversion (N);
8714 return;
8715 end if;
70482933
RK
8716 end Expand_N_Type_Conversion;
8717
8718 -----------------------------------
8719 -- Expand_N_Unchecked_Expression --
8720 -----------------------------------
8721
e7e4d230 8722 -- Remove the unchecked expression node from the tree. Its job was simply
70482933
RK
8723 -- to make sure that its constituent expression was handled with checks
8724 -- off, and now that that is done, we can remove it from the tree, and
e7e4d230 8725 -- indeed must, since Gigi does not expect to see these nodes.
70482933
RK
8726
8727 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
8728 Exp : constant Node_Id := Expression (N);
70482933 8729 begin
e7e4d230 8730 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
8731 Rewrite (N, Exp);
8732 end Expand_N_Unchecked_Expression;
8733
8734 ----------------------------------------
8735 -- Expand_N_Unchecked_Type_Conversion --
8736 ----------------------------------------
8737
685094bf
RD
8738 -- If this cannot be handled by Gigi and we haven't already made a
8739 -- temporary for it, do it now.
70482933
RK
8740
8741 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
8742 Target_Type : constant Entity_Id := Etype (N);
8743 Operand : constant Node_Id := Expression (N);
8744 Operand_Type : constant Entity_Id := Etype (Operand);
8745
8746 begin
7b00e31d 8747 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 8748 -- the conversion completely, it is useless, except that it may carry
e7e4d230 8749 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
8750
8751 if Operand_Type = Target_Type then
13d923cc 8752
e7e4d230
AC
8753 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
8754
7b00e31d
AC
8755 if Assignment_OK (N) then
8756 Set_Assignment_OK (Operand);
8757 end if;
8758
8759 Rewrite (N, Relocate_Node (Operand));
8760 return;
8761 end if;
8762
70482933
RK
8763 -- If we have a conversion of a compile time known value to a target
8764 -- type and the value is in range of the target type, then we can simply
8765 -- replace the construct by an integer literal of the correct type. We
8766 -- only apply this to integer types being converted. Possibly it may
8767 -- apply in other cases, but it is too much trouble to worry about.
8768
8769 -- Note that we do not do this transformation if the Kill_Range_Check
8770 -- flag is set, since then the value may be outside the expected range.
8771 -- This happens in the Normalize_Scalars case.
8772
20b5d666
JM
8773 -- We also skip this if either the target or operand type is biased
8774 -- because in this case, the unchecked conversion is supposed to
8775 -- preserve the bit pattern, not the integer value.
8776
70482933 8777 if Is_Integer_Type (Target_Type)
20b5d666 8778 and then not Has_Biased_Representation (Target_Type)
70482933 8779 and then Is_Integer_Type (Operand_Type)
20b5d666 8780 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
8781 and then Compile_Time_Known_Value (Operand)
8782 and then not Kill_Range_Check (N)
8783 then
8784 declare
8785 Val : constant Uint := Expr_Value (Operand);
8786
8787 begin
8788 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
8789 and then
8790 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
8791 and then
8792 Val >= Expr_Value (Type_Low_Bound (Target_Type))
8793 and then
8794 Val <= Expr_Value (Type_High_Bound (Target_Type))
8795 then
8796 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 8797
685094bf
RD
8798 -- If Address is the target type, just set the type to avoid a
8799 -- spurious type error on the literal when Address is a visible
8800 -- integer type.
8a36a0cc
AC
8801
8802 if Is_Descendent_Of_Address (Target_Type) then
8803 Set_Etype (N, Target_Type);
8804 else
8805 Analyze_And_Resolve (N, Target_Type);
8806 end if;
8807
70482933
RK
8808 return;
8809 end if;
8810 end;
8811 end if;
8812
8813 -- Nothing to do if conversion is safe
8814
8815 if Safe_Unchecked_Type_Conversion (N) then
8816 return;
8817 end if;
8818
8819 -- Otherwise force evaluation unless Assignment_OK flag is set (this
8820 -- flag indicates ??? -- more comments needed here)
8821
8822 if Assignment_OK (N) then
8823 null;
8824 else
8825 Force_Evaluation (N);
8826 end if;
8827 end Expand_N_Unchecked_Type_Conversion;
8828
8829 ----------------------------
8830 -- Expand_Record_Equality --
8831 ----------------------------
8832
8833 -- For non-variant records, Equality is expanded when needed into:
8834
8835 -- and then Lhs.Discr1 = Rhs.Discr1
8836 -- and then ...
8837 -- and then Lhs.Discrn = Rhs.Discrn
8838 -- and then Lhs.Cmp1 = Rhs.Cmp1
8839 -- and then ...
8840 -- and then Lhs.Cmpn = Rhs.Cmpn
8841
8842 -- The expression is folded by the back-end for adjacent fields. This
8843 -- function is called for tagged record in only one occasion: for imple-
8844 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
8845 -- otherwise the primitive "=" is used directly.
8846
8847 function Expand_Record_Equality
8848 (Nod : Node_Id;
8849 Typ : Entity_Id;
8850 Lhs : Node_Id;
8851 Rhs : Node_Id;
2e071734 8852 Bodies : List_Id) return Node_Id
70482933
RK
8853 is
8854 Loc : constant Source_Ptr := Sloc (Nod);
8855
0ab80019
AC
8856 Result : Node_Id;
8857 C : Entity_Id;
8858
8859 First_Time : Boolean := True;
8860
70482933
RK
8861 function Suitable_Element (C : Entity_Id) return Entity_Id;
8862 -- Return the first field to compare beginning with C, skipping the
0ab80019
AC
8863 -- inherited components.
8864
8865 ----------------------
8866 -- Suitable_Element --
8867 ----------------------
70482933
RK
8868
8869 function Suitable_Element (C : Entity_Id) return Entity_Id is
8870 begin
8871 if No (C) then
8872 return Empty;
8873
8874 elsif Ekind (C) /= E_Discriminant
8875 and then Ekind (C) /= E_Component
8876 then
8877 return Suitable_Element (Next_Entity (C));
8878
8879 elsif Is_Tagged_Type (Typ)
8880 and then C /= Original_Record_Component (C)
8881 then
8882 return Suitable_Element (Next_Entity (C));
8883
8884 elsif Chars (C) = Name_uController
8885 or else Chars (C) = Name_uTag
8886 then
8887 return Suitable_Element (Next_Entity (C));
8888
26bff3d9
JM
8889 elsif Is_Interface (Etype (C)) then
8890 return Suitable_Element (Next_Entity (C));
8891
70482933
RK
8892 else
8893 return C;
8894 end if;
8895 end Suitable_Element;
8896
70482933
RK
8897 -- Start of processing for Expand_Record_Equality
8898
8899 begin
70482933
RK
8900 -- Generates the following code: (assuming that Typ has one Discr and
8901 -- component C2 is also a record)
8902
8903 -- True
8904 -- and then Lhs.Discr1 = Rhs.Discr1
8905 -- and then Lhs.C1 = Rhs.C1
8906 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
8907 -- and then ...
8908 -- and then Lhs.Cmpn = Rhs.Cmpn
8909
8910 Result := New_Reference_To (Standard_True, Loc);
8911 C := Suitable_Element (First_Entity (Typ));
70482933 8912 while Present (C) loop
70482933
RK
8913 declare
8914 New_Lhs : Node_Id;
8915 New_Rhs : Node_Id;
8aceda64 8916 Check : Node_Id;
70482933
RK
8917
8918 begin
8919 if First_Time then
8920 First_Time := False;
8921 New_Lhs := Lhs;
8922 New_Rhs := Rhs;
70482933
RK
8923 else
8924 New_Lhs := New_Copy_Tree (Lhs);
8925 New_Rhs := New_Copy_Tree (Rhs);
8926 end if;
8927
8aceda64
AC
8928 Check :=
8929 Expand_Composite_Equality (Nod, Etype (C),
8930 Lhs =>
8931 Make_Selected_Component (Loc,
8932 Prefix => New_Lhs,
8933 Selector_Name => New_Reference_To (C, Loc)),
8934 Rhs =>
8935 Make_Selected_Component (Loc,
8936 Prefix => New_Rhs,
8937 Selector_Name => New_Reference_To (C, Loc)),
8938 Bodies => Bodies);
8939
8940 -- If some (sub)component is an unchecked_union, the whole
8941 -- operation will raise program error.
8942
8943 if Nkind (Check) = N_Raise_Program_Error then
8944 Result := Check;
8945 Set_Etype (Result, Standard_Boolean);
8946 exit;
8947 else
8948 Result :=
8949 Make_And_Then (Loc,
8950 Left_Opnd => Result,
8951 Right_Opnd => Check);
8952 end if;
70482933
RK
8953 end;
8954
8955 C := Suitable_Element (Next_Entity (C));
8956 end loop;
8957
8958 return Result;
8959 end Expand_Record_Equality;
8960
5875f8d6
AC
8961 -----------------------------------
8962 -- Expand_Short_Circuit_Operator --
8963 -----------------------------------
8964
955871d3
AC
8965 -- Deal with special expansion if actions are present for the right operand
8966 -- and deal with optimizing case of arguments being True or False. We also
8967 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
8968
8969 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
8970 Loc : constant Source_Ptr := Sloc (N);
8971 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
8972 Left : constant Node_Id := Left_Opnd (N);
8973 Right : constant Node_Id := Right_Opnd (N);
955871d3 8974 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
8975 Actlist : List_Id;
8976
8977 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
8978 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
8979 -- If Left = Shortcut_Value then Right need not be evaluated
8980
25adc5fb
AC
8981 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
8982 -- For Opnd a boolean expression, return a Boolean expression equivalent
8983 -- to Opnd /= Shortcut_Value.
8984
8985 --------------------
8986 -- Make_Test_Expr --
8987 --------------------
8988
8989 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
8990 begin
8991 if Shortcut_Value then
8992 return Make_Op_Not (Sloc (Opnd), Opnd);
8993 else
8994 return Opnd;
8995 end if;
8996 end Make_Test_Expr;
8997
8998 Op_Var : Entity_Id;
8999 -- Entity for a temporary variable holding the value of the operator,
9000 -- used for expansion in the case where actions are present.
9001
9002 -- Start of processing for Expand_Short_Circuit_Operator
5875f8d6
AC
9003
9004 begin
9005 -- Deal with non-standard booleans
9006
9007 if Is_Boolean_Type (Typ) then
9008 Adjust_Condition (Left);
9009 Adjust_Condition (Right);
9010 Set_Etype (N, Standard_Boolean);
9011 end if;
9012
9013 -- Check for cases where left argument is known to be True or False
9014
9015 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
9016
9017 -- Mark SCO for left condition as compile time known
9018
9019 if Generate_SCO and then Comes_From_Source (Left) then
9020 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
9021 end if;
9022
5875f8d6
AC
9023 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
9024 -- Any actions associated with Right will be executed unconditionally
9025 -- and can thus be inserted into the tree unconditionally.
9026
9027 if Expr_Value_E (Left) /= Shortcut_Ent then
9028 if Present (Actions (N)) then
9029 Insert_Actions (N, Actions (N));
9030 end if;
9031
9032 Rewrite (N, Right);
9033
9034 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
9035 -- In this case we can forget the actions associated with Right,
9036 -- since they will never be executed.
9037
9038 else
9039 Kill_Dead_Code (Right);
9040 Kill_Dead_Code (Actions (N));
9041 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9042 end if;
9043
9044 Adjust_Result_Type (N, Typ);
9045 return;
9046 end if;
9047
955871d3
AC
9048 -- If Actions are present for the right operand, we have to do some
9049 -- special processing. We can't just let these actions filter back into
9050 -- code preceding the short circuit (which is what would have happened
9051 -- if we had not trapped them in the short-circuit form), since they
9052 -- must only be executed if the right operand of the short circuit is
9053 -- executed and not otherwise.
5875f8d6 9054
955871d3 9055 -- the temporary variable C.
5875f8d6 9056
955871d3
AC
9057 if Present (Actions (N)) then
9058 Actlist := Actions (N);
5875f8d6 9059
955871d3 9060 -- The old approach is to expand:
5875f8d6 9061
955871d3 9062 -- left AND THEN right
25adc5fb 9063
955871d3 9064 -- into
25adc5fb 9065
955871d3
AC
9066 -- C : Boolean := False;
9067 -- IF left THEN
9068 -- Actions;
9069 -- IF right THEN
9070 -- C := True;
9071 -- END IF;
9072 -- END IF;
5875f8d6 9073
955871d3
AC
9074 -- and finally rewrite the operator into a reference to C. Similarly
9075 -- for left OR ELSE right, with negated values. Note that this
9076 -- rewrite causes some difficulties for coverage analysis because
9077 -- of the introduction of the new variable C, which obscures the
9078 -- structure of the test.
5875f8d6 9079
9cbfc269
AC
9080 -- We use this "old approach" if use of N_Expression_With_Actions
9081 -- is False (see description in Opt of when this is or is not set).
5875f8d6 9082
9cbfc269 9083 if not Use_Expression_With_Actions then
955871d3 9084 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
5875f8d6 9085
955871d3
AC
9086 Insert_Action (N,
9087 Make_Object_Declaration (Loc,
9088 Defining_Identifier =>
9089 Op_Var,
9090 Object_Definition =>
9091 New_Occurrence_Of (Standard_Boolean, Loc),
9092 Expression =>
9093 New_Occurrence_Of (Shortcut_Ent, Loc)));
9094
9095 Append_To (Actlist,
9096 Make_Implicit_If_Statement (Right,
9097 Condition => Make_Test_Expr (Right),
9098 Then_Statements => New_List (
9099 Make_Assignment_Statement (LocR,
9100 Name => New_Occurrence_Of (Op_Var, LocR),
9101 Expression =>
9102 New_Occurrence_Of
9103 (Boolean_Literals (not Shortcut_Value), LocR)))));
5875f8d6 9104
955871d3
AC
9105 Insert_Action (N,
9106 Make_Implicit_If_Statement (Left,
9107 Condition => Make_Test_Expr (Left),
9108 Then_Statements => Actlist));
9109
9110 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
9111 Analyze_And_Resolve (N, Standard_Boolean);
9112
9113 -- The new approach, activated for now by the use of debug flag
9114 -- -gnatd.X is to use the new Expression_With_Actions node for the
9115 -- right operand of the short-circuit form. This should solve the
9116 -- traceability problems for coverage analysis.
9117
9118 else
9119 Rewrite (Right,
9120 Make_Expression_With_Actions (LocR,
9121 Expression => Relocate_Node (Right),
9122 Actions => Actlist));
48b351d9 9123 Set_Actions (N, No_List);
955871d3
AC
9124 Analyze_And_Resolve (Right, Standard_Boolean);
9125 end if;
9126
5875f8d6
AC
9127 Adjust_Result_Type (N, Typ);
9128 return;
9129 end if;
9130
9131 -- No actions present, check for cases of right argument True/False
9132
9133 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
9134
9135 -- Mark SCO for left condition as compile time known
9136
9137 if Generate_SCO and then Comes_From_Source (Right) then
9138 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
9139 end if;
9140
5875f8d6
AC
9141 -- Change (Left and then True), (Left or else False) to Left.
9142 -- Note that we know there are no actions associated with the right
9143 -- operand, since we just checked for this case above.
9144
9145 if Expr_Value_E (Right) /= Shortcut_Ent then
9146 Rewrite (N, Left);
9147
9148 -- Change (Left and then False), (Left or else True) to Right,
9149 -- making sure to preserve any side effects associated with the Left
9150 -- operand.
9151
9152 else
9153 Remove_Side_Effects (Left);
9154 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9155 end if;
9156 end if;
9157
9158 Adjust_Result_Type (N, Typ);
9159 end Expand_Short_Circuit_Operator;
9160
70482933
RK
9161 -------------------------------------
9162 -- Fixup_Universal_Fixed_Operation --
9163 -------------------------------------
9164
9165 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
9166 Conv : constant Node_Id := Parent (N);
9167
9168 begin
9169 -- We must have a type conversion immediately above us
9170
9171 pragma Assert (Nkind (Conv) = N_Type_Conversion);
9172
9173 -- Normally the type conversion gives our target type. The exception
9174 -- occurs in the case of the Round attribute, where the conversion
9175 -- will be to universal real, and our real type comes from the Round
9176 -- attribute (as well as an indication that we must round the result)
9177
9178 if Nkind (Parent (Conv)) = N_Attribute_Reference
9179 and then Attribute_Name (Parent (Conv)) = Name_Round
9180 then
9181 Set_Etype (N, Etype (Parent (Conv)));
9182 Set_Rounded_Result (N);
9183
9184 -- Normal case where type comes from conversion above us
9185
9186 else
9187 Set_Etype (N, Etype (Conv));
9188 end if;
9189 end Fixup_Universal_Fixed_Operation;
9190
fbf5a39b
AC
9191 ------------------------------
9192 -- Get_Allocator_Final_List --
9193 ------------------------------
9194
9195 function Get_Allocator_Final_List
9196 (N : Node_Id;
9197 T : Entity_Id;
2e071734 9198 PtrT : Entity_Id) return Entity_Id
fbf5a39b
AC
9199 is
9200 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 9201
0da2c8ac 9202 Owner : Entity_Id := PtrT;
26bff3d9 9203 -- The entity whose finalization list must be used to attach the
0da2c8ac 9204 -- allocated object.
fbf5a39b 9205
0da2c8ac 9206 begin
fbf5a39b 9207 if Ekind (PtrT) = E_Anonymous_Access_Type then
26bff3d9
JM
9208
9209 -- If the context is an access parameter, we need to create a
9210 -- non-anonymous access type in order to have a usable final list,
9211 -- because there is otherwise no pool to which the allocated object
9212 -- can belong. We create both the type and the finalization chain
9213 -- here, because freezing an internal type does not create such a
9214 -- chain. The Final_Chain that is thus created is shared by the
9215 -- access parameter. The access type is tested against the result
9216 -- type of the function to exclude allocators whose type is an
8654a240 9217 -- anonymous access result type. We freeze the type at once to
9450205a
ES
9218 -- ensure that it is properly decorated for the back-end, even
9219 -- if the context and current scope is a loop.
26bff3d9 9220
0da2c8ac
AC
9221 if Nkind (Associated_Node_For_Itype (PtrT))
9222 in N_Subprogram_Specification
26bff3d9
JM
9223 and then
9224 PtrT /=
9225 Etype (Defining_Unit_Name (Associated_Node_For_Itype (PtrT)))
0da2c8ac 9226 then
191fcb3a 9227 Owner := Make_Temporary (Loc, 'J');
0da2c8ac
AC
9228 Insert_Action (N,
9229 Make_Full_Type_Declaration (Loc,
9230 Defining_Identifier => Owner,
9231 Type_Definition =>
9232 Make_Access_To_Object_Definition (Loc,
9233 Subtype_Indication =>
9234 New_Occurrence_Of (T, Loc))));
fbf5a39b 9235
9450205a 9236 Freeze_Before (N, Owner);
0da2c8ac
AC
9237 Build_Final_List (N, Owner);
9238 Set_Associated_Final_Chain (PtrT, Associated_Final_Chain (Owner));
fbf5a39b 9239
26bff3d9
JM
9240 -- Ada 2005 (AI-318-02): If the context is a return object
9241 -- declaration, then the anonymous return subtype is defined to have
9242 -- the same accessibility level as that of the function's result
9243 -- subtype, which means that we want the scope where the function is
9244 -- declared.
9245
9246 elsif Nkind (Associated_Node_For_Itype (PtrT)) = N_Object_Declaration
9247 and then Ekind (Scope (PtrT)) = E_Return_Statement
9248 then
9249 Owner := Scope (Return_Applies_To (Scope (PtrT)));
9250
e7e4d230 9251 -- Case of an access discriminant, or (Ada 2005) of an anonymous
26bff3d9 9252 -- access component or anonymous access function result: find the
d766cee3
RD
9253 -- final list associated with the scope of the type. (In the
9254 -- anonymous access component kind, a list controller will have
9255 -- been allocated when freezing the record type, and PtrT has an
9256 -- Associated_Final_Chain attribute designating it.)
0da2c8ac 9257
d766cee3 9258 elsif No (Associated_Final_Chain (PtrT)) then
0da2c8ac
AC
9259 Owner := Scope (PtrT);
9260 end if;
fbf5a39b 9261 end if;
0da2c8ac
AC
9262
9263 return Find_Final_List (Owner);
fbf5a39b
AC
9264 end Get_Allocator_Final_List;
9265
5d09245e
AC
9266 ---------------------------------
9267 -- Has_Inferable_Discriminants --
9268 ---------------------------------
9269
9270 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
9271
9272 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
9273 -- Determines whether the left-most prefix of a selected component is a
9274 -- formal parameter in a subprogram. Assumes N is a selected component.
9275
9276 --------------------------------
9277 -- Prefix_Is_Formal_Parameter --
9278 --------------------------------
9279
9280 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
9281 Sel_Comp : Node_Id := N;
9282
9283 begin
9284 -- Move to the left-most prefix by climbing up the tree
9285
9286 while Present (Parent (Sel_Comp))
9287 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
9288 loop
9289 Sel_Comp := Parent (Sel_Comp);
9290 end loop;
9291
9292 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
9293 end Prefix_Is_Formal_Parameter;
9294
9295 -- Start of processing for Has_Inferable_Discriminants
9296
9297 begin
8fc789c8 9298 -- For identifiers and indexed components, it is sufficient to have a
5d09245e
AC
9299 -- constrained Unchecked_Union nominal subtype.
9300
303b4d58 9301 if Nkind_In (N, N_Identifier, N_Indexed_Component) then
5d09245e
AC
9302 return Is_Unchecked_Union (Base_Type (Etype (N)))
9303 and then
9304 Is_Constrained (Etype (N));
9305
9306 -- For selected components, the subtype of the selector must be a
9307 -- constrained Unchecked_Union. If the component is subject to a
9308 -- per-object constraint, then the enclosing object must have inferable
9309 -- discriminants.
9310
9311 elsif Nkind (N) = N_Selected_Component then
9312 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
9313
9314 -- A small hack. If we have a per-object constrained selected
9315 -- component of a formal parameter, return True since we do not
9316 -- know the actual parameter association yet.
9317
9318 if Prefix_Is_Formal_Parameter (N) then
9319 return True;
9320 end if;
9321
9322 -- Otherwise, check the enclosing object and the selector
9323
9324 return Has_Inferable_Discriminants (Prefix (N))
9325 and then
9326 Has_Inferable_Discriminants (Selector_Name (N));
9327 end if;
9328
9329 -- The call to Has_Inferable_Discriminants will determine whether
9330 -- the selector has a constrained Unchecked_Union nominal type.
9331
9332 return Has_Inferable_Discriminants (Selector_Name (N));
9333
9334 -- A qualified expression has inferable discriminants if its subtype
9335 -- mark is a constrained Unchecked_Union subtype.
9336
9337 elsif Nkind (N) = N_Qualified_Expression then
9338 return Is_Unchecked_Union (Subtype_Mark (N))
9339 and then
9340 Is_Constrained (Subtype_Mark (N));
9341
9342 end if;
9343
9344 return False;
9345 end Has_Inferable_Discriminants;
9346
70482933
RK
9347 -------------------------------
9348 -- Insert_Dereference_Action --
9349 -------------------------------
9350
9351 procedure Insert_Dereference_Action (N : Node_Id) is
9352 Loc : constant Source_Ptr := Sloc (N);
9353 Typ : constant Entity_Id := Etype (N);
9354 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
0ab80019 9355 Pnod : constant Node_Id := Parent (N);
70482933
RK
9356
9357 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
9358 -- Return true if type of P is derived from Checked_Pool;
9359
9360 -----------------------------
9361 -- Is_Checked_Storage_Pool --
9362 -----------------------------
70482933
RK
9363
9364 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
9365 T : Entity_Id;
9366
9367 begin
9368 if No (P) then
9369 return False;
9370 end if;
9371
9372 T := Etype (P);
9373 while T /= Etype (T) loop
9374 if Is_RTE (T, RE_Checked_Pool) then
9375 return True;
9376 else
9377 T := Etype (T);
9378 end if;
9379 end loop;
9380
9381 return False;
9382 end Is_Checked_Storage_Pool;
9383
9384 -- Start of processing for Insert_Dereference_Action
9385
9386 begin
e6f69614
AC
9387 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
9388
0ab80019
AC
9389 if not (Is_Checked_Storage_Pool (Pool)
9390 and then Comes_From_Source (Original_Node (Pnod)))
e6f69614 9391 then
70482933 9392 return;
70482933
RK
9393 end if;
9394
9395 Insert_Action (N,
9396 Make_Procedure_Call_Statement (Loc,
9397 Name => New_Reference_To (
9398 Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
9399
9400 Parameter_Associations => New_List (
9401
9402 -- Pool
9403
9404 New_Reference_To (Pool, Loc),
9405
685094bf
RD
9406 -- Storage_Address. We use the attribute Pool_Address, which uses
9407 -- the pointer itself to find the address of the object, and which
9408 -- handles unconstrained arrays properly by computing the address
9409 -- of the template. i.e. the correct address of the corresponding
9410 -- allocation.
70482933
RK
9411
9412 Make_Attribute_Reference (Loc,
fbf5a39b
AC
9413 Prefix => Duplicate_Subexpr_Move_Checks (N),
9414 Attribute_Name => Name_Pool_Address),
70482933
RK
9415
9416 -- Size_In_Storage_Elements
9417
9418 Make_Op_Divide (Loc,
9419 Left_Opnd =>
9420 Make_Attribute_Reference (Loc,
9421 Prefix =>
fbf5a39b
AC
9422 Make_Explicit_Dereference (Loc,
9423 Duplicate_Subexpr_Move_Checks (N)),
70482933
RK
9424 Attribute_Name => Name_Size),
9425 Right_Opnd =>
9426 Make_Integer_Literal (Loc, System_Storage_Unit)),
9427
9428 -- Alignment
9429
9430 Make_Attribute_Reference (Loc,
9431 Prefix =>
fbf5a39b
AC
9432 Make_Explicit_Dereference (Loc,
9433 Duplicate_Subexpr_Move_Checks (N)),
70482933
RK
9434 Attribute_Name => Name_Alignment))));
9435
fbf5a39b
AC
9436 exception
9437 when RE_Not_Available =>
9438 return;
70482933
RK
9439 end Insert_Dereference_Action;
9440
fdfcc663
AC
9441 --------------------------------
9442 -- Integer_Promotion_Possible --
9443 --------------------------------
9444
9445 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
9446 Operand : constant Node_Id := Expression (N);
9447 Operand_Type : constant Entity_Id := Etype (Operand);
9448 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
9449
9450 begin
9451 pragma Assert (Nkind (N) = N_Type_Conversion);
9452
9453 return
9454
9455 -- We only do the transformation for source constructs. We assume
9456 -- that the expander knows what it is doing when it generates code.
9457
9458 Comes_From_Source (N)
9459
9460 -- If the operand type is Short_Integer or Short_Short_Integer,
9461 -- then we will promote to Integer, which is available on all
9462 -- targets, and is sufficient to ensure no intermediate overflow.
9463 -- Furthermore it is likely to be as efficient or more efficient
9464 -- than using the smaller type for the computation so we do this
9465 -- unconditionally.
9466
9467 and then
9468 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
9469 or else
9470 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
9471
9472 -- Test for interesting operation, which includes addition,
5f3f175d
AC
9473 -- division, exponentiation, multiplication, subtraction, absolute
9474 -- value and unary negation. Unary "+" is omitted since it is a
9475 -- no-op and thus can't overflow.
fdfcc663 9476
5f3f175d
AC
9477 and then Nkind_In (Operand, N_Op_Abs,
9478 N_Op_Add,
fdfcc663
AC
9479 N_Op_Divide,
9480 N_Op_Expon,
9481 N_Op_Minus,
9482 N_Op_Multiply,
9483 N_Op_Subtract);
9484 end Integer_Promotion_Possible;
9485
70482933
RK
9486 ------------------------------
9487 -- Make_Array_Comparison_Op --
9488 ------------------------------
9489
9490 -- This is a hand-coded expansion of the following generic function:
9491
9492 -- generic
9493 -- type elem is (<>);
9494 -- type index is (<>);
9495 -- type a is array (index range <>) of elem;
20b5d666 9496
70482933
RK
9497 -- function Gnnn (X : a; Y: a) return boolean is
9498 -- J : index := Y'first;
20b5d666 9499
70482933
RK
9500 -- begin
9501 -- if X'length = 0 then
9502 -- return false;
20b5d666 9503
70482933
RK
9504 -- elsif Y'length = 0 then
9505 -- return true;
20b5d666 9506
70482933
RK
9507 -- else
9508 -- for I in X'range loop
9509 -- if X (I) = Y (J) then
9510 -- if J = Y'last then
9511 -- exit;
9512 -- else
9513 -- J := index'succ (J);
9514 -- end if;
20b5d666 9515
70482933
RK
9516 -- else
9517 -- return X (I) > Y (J);
9518 -- end if;
9519 -- end loop;
20b5d666 9520
70482933
RK
9521 -- return X'length > Y'length;
9522 -- end if;
9523 -- end Gnnn;
9524
9525 -- Note that since we are essentially doing this expansion by hand, we
9526 -- do not need to generate an actual or formal generic part, just the
9527 -- instantiated function itself.
9528
9529 function Make_Array_Comparison_Op
2e071734
AC
9530 (Typ : Entity_Id;
9531 Nod : Node_Id) return Node_Id
70482933
RK
9532 is
9533 Loc : constant Source_Ptr := Sloc (Nod);
9534
9535 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
9536 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
9537 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
9538 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
9539
9540 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
9541
9542 Loop_Statement : Node_Id;
9543 Loop_Body : Node_Id;
9544 If_Stat : Node_Id;
9545 Inner_If : Node_Id;
9546 Final_Expr : Node_Id;
9547 Func_Body : Node_Id;
9548 Func_Name : Entity_Id;
9549 Formals : List_Id;
9550 Length1 : Node_Id;
9551 Length2 : Node_Id;
9552
9553 begin
9554 -- if J = Y'last then
9555 -- exit;
9556 -- else
9557 -- J := index'succ (J);
9558 -- end if;
9559
9560 Inner_If :=
9561 Make_Implicit_If_Statement (Nod,
9562 Condition =>
9563 Make_Op_Eq (Loc,
9564 Left_Opnd => New_Reference_To (J, Loc),
9565 Right_Opnd =>
9566 Make_Attribute_Reference (Loc,
9567 Prefix => New_Reference_To (Y, Loc),
9568 Attribute_Name => Name_Last)),
9569
9570 Then_Statements => New_List (
9571 Make_Exit_Statement (Loc)),
9572
9573 Else_Statements =>
9574 New_List (
9575 Make_Assignment_Statement (Loc,
9576 Name => New_Reference_To (J, Loc),
9577 Expression =>
9578 Make_Attribute_Reference (Loc,
9579 Prefix => New_Reference_To (Index, Loc),
9580 Attribute_Name => Name_Succ,
9581 Expressions => New_List (New_Reference_To (J, Loc))))));
9582
9583 -- if X (I) = Y (J) then
9584 -- if ... end if;
9585 -- else
9586 -- return X (I) > Y (J);
9587 -- end if;
9588
9589 Loop_Body :=
9590 Make_Implicit_If_Statement (Nod,
9591 Condition =>
9592 Make_Op_Eq (Loc,
9593 Left_Opnd =>
9594 Make_Indexed_Component (Loc,
9595 Prefix => New_Reference_To (X, Loc),
9596 Expressions => New_List (New_Reference_To (I, Loc))),
9597
9598 Right_Opnd =>
9599 Make_Indexed_Component (Loc,
9600 Prefix => New_Reference_To (Y, Loc),
9601 Expressions => New_List (New_Reference_To (J, Loc)))),
9602
9603 Then_Statements => New_List (Inner_If),
9604
9605 Else_Statements => New_List (
d766cee3 9606 Make_Simple_Return_Statement (Loc,
70482933
RK
9607 Expression =>
9608 Make_Op_Gt (Loc,
9609 Left_Opnd =>
9610 Make_Indexed_Component (Loc,
9611 Prefix => New_Reference_To (X, Loc),
9612 Expressions => New_List (New_Reference_To (I, Loc))),
9613
9614 Right_Opnd =>
9615 Make_Indexed_Component (Loc,
9616 Prefix => New_Reference_To (Y, Loc),
9617 Expressions => New_List (
9618 New_Reference_To (J, Loc)))))));
9619
9620 -- for I in X'range loop
9621 -- if ... end if;
9622 -- end loop;
9623
9624 Loop_Statement :=
9625 Make_Implicit_Loop_Statement (Nod,
9626 Identifier => Empty,
9627
9628 Iteration_Scheme =>
9629 Make_Iteration_Scheme (Loc,
9630 Loop_Parameter_Specification =>
9631 Make_Loop_Parameter_Specification (Loc,
9632 Defining_Identifier => I,
9633 Discrete_Subtype_Definition =>
9634 Make_Attribute_Reference (Loc,
9635 Prefix => New_Reference_To (X, Loc),
9636 Attribute_Name => Name_Range))),
9637
9638 Statements => New_List (Loop_Body));
9639
9640 -- if X'length = 0 then
9641 -- return false;
9642 -- elsif Y'length = 0 then
9643 -- return true;
9644 -- else
9645 -- for ... loop ... end loop;
9646 -- return X'length > Y'length;
9647 -- end if;
9648
9649 Length1 :=
9650 Make_Attribute_Reference (Loc,
9651 Prefix => New_Reference_To (X, Loc),
9652 Attribute_Name => Name_Length);
9653
9654 Length2 :=
9655 Make_Attribute_Reference (Loc,
9656 Prefix => New_Reference_To (Y, Loc),
9657 Attribute_Name => Name_Length);
9658
9659 Final_Expr :=
9660 Make_Op_Gt (Loc,
9661 Left_Opnd => Length1,
9662 Right_Opnd => Length2);
9663
9664 If_Stat :=
9665 Make_Implicit_If_Statement (Nod,
9666 Condition =>
9667 Make_Op_Eq (Loc,
9668 Left_Opnd =>
9669 Make_Attribute_Reference (Loc,
9670 Prefix => New_Reference_To (X, Loc),
9671 Attribute_Name => Name_Length),
9672 Right_Opnd =>
9673 Make_Integer_Literal (Loc, 0)),
9674
9675 Then_Statements =>
9676 New_List (
d766cee3 9677 Make_Simple_Return_Statement (Loc,
70482933
RK
9678 Expression => New_Reference_To (Standard_False, Loc))),
9679
9680 Elsif_Parts => New_List (
9681 Make_Elsif_Part (Loc,
9682 Condition =>
9683 Make_Op_Eq (Loc,
9684 Left_Opnd =>
9685 Make_Attribute_Reference (Loc,
9686 Prefix => New_Reference_To (Y, Loc),
9687 Attribute_Name => Name_Length),
9688 Right_Opnd =>
9689 Make_Integer_Literal (Loc, 0)),
9690
9691 Then_Statements =>
9692 New_List (
d766cee3 9693 Make_Simple_Return_Statement (Loc,
70482933
RK
9694 Expression => New_Reference_To (Standard_True, Loc))))),
9695
9696 Else_Statements => New_List (
9697 Loop_Statement,
d766cee3 9698 Make_Simple_Return_Statement (Loc,
70482933
RK
9699 Expression => Final_Expr)));
9700
9701 -- (X : a; Y: a)
9702
9703 Formals := New_List (
9704 Make_Parameter_Specification (Loc,
9705 Defining_Identifier => X,
9706 Parameter_Type => New_Reference_To (Typ, Loc)),
9707
9708 Make_Parameter_Specification (Loc,
9709 Defining_Identifier => Y,
9710 Parameter_Type => New_Reference_To (Typ, Loc)));
9711
9712 -- function Gnnn (...) return boolean is
9713 -- J : index := Y'first;
9714 -- begin
9715 -- if ... end if;
9716 -- end Gnnn;
9717
191fcb3a 9718 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
9719
9720 Func_Body :=
9721 Make_Subprogram_Body (Loc,
9722 Specification =>
9723 Make_Function_Specification (Loc,
9724 Defining_Unit_Name => Func_Name,
9725 Parameter_Specifications => Formals,
630d30e9 9726 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
70482933
RK
9727
9728 Declarations => New_List (
9729 Make_Object_Declaration (Loc,
9730 Defining_Identifier => J,
9731 Object_Definition => New_Reference_To (Index, Loc),
9732 Expression =>
9733 Make_Attribute_Reference (Loc,
9734 Prefix => New_Reference_To (Y, Loc),
9735 Attribute_Name => Name_First))),
9736
9737 Handled_Statement_Sequence =>
9738 Make_Handled_Sequence_Of_Statements (Loc,
9739 Statements => New_List (If_Stat)));
9740
9741 return Func_Body;
70482933
RK
9742 end Make_Array_Comparison_Op;
9743
9744 ---------------------------
9745 -- Make_Boolean_Array_Op --
9746 ---------------------------
9747
685094bf
RD
9748 -- For logical operations on boolean arrays, expand in line the following,
9749 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
9750
9751 -- function Annn (A : typ; B: typ) return typ is
9752 -- C : typ;
9753 -- begin
9754 -- for J in A'range loop
9755 -- C (J) := A (J) op B (J);
9756 -- end loop;
9757 -- return C;
9758 -- end Annn;
9759
9760 -- Here typ is the boolean array type
9761
9762 function Make_Boolean_Array_Op
2e071734
AC
9763 (Typ : Entity_Id;
9764 N : Node_Id) return Node_Id
70482933
RK
9765 is
9766 Loc : constant Source_Ptr := Sloc (N);
9767
9768 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
9769 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
9770 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
9771 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
9772
9773 A_J : Node_Id;
9774 B_J : Node_Id;
9775 C_J : Node_Id;
9776 Op : Node_Id;
9777
9778 Formals : List_Id;
9779 Func_Name : Entity_Id;
9780 Func_Body : Node_Id;
9781 Loop_Statement : Node_Id;
9782
9783 begin
9784 A_J :=
9785 Make_Indexed_Component (Loc,
9786 Prefix => New_Reference_To (A, Loc),
9787 Expressions => New_List (New_Reference_To (J, Loc)));
9788
9789 B_J :=
9790 Make_Indexed_Component (Loc,
9791 Prefix => New_Reference_To (B, Loc),
9792 Expressions => New_List (New_Reference_To (J, Loc)));
9793
9794 C_J :=
9795 Make_Indexed_Component (Loc,
9796 Prefix => New_Reference_To (C, Loc),
9797 Expressions => New_List (New_Reference_To (J, Loc)));
9798
9799 if Nkind (N) = N_Op_And then
9800 Op :=
9801 Make_Op_And (Loc,
9802 Left_Opnd => A_J,
9803 Right_Opnd => B_J);
9804
9805 elsif Nkind (N) = N_Op_Or then
9806 Op :=
9807 Make_Op_Or (Loc,
9808 Left_Opnd => A_J,
9809 Right_Opnd => B_J);
9810
9811 else
9812 Op :=
9813 Make_Op_Xor (Loc,
9814 Left_Opnd => A_J,
9815 Right_Opnd => B_J);
9816 end if;
9817
9818 Loop_Statement :=
9819 Make_Implicit_Loop_Statement (N,
9820 Identifier => Empty,
9821
9822 Iteration_Scheme =>
9823 Make_Iteration_Scheme (Loc,
9824 Loop_Parameter_Specification =>
9825 Make_Loop_Parameter_Specification (Loc,
9826 Defining_Identifier => J,
9827 Discrete_Subtype_Definition =>
9828 Make_Attribute_Reference (Loc,
9829 Prefix => New_Reference_To (A, Loc),
9830 Attribute_Name => Name_Range))),
9831
9832 Statements => New_List (
9833 Make_Assignment_Statement (Loc,
9834 Name => C_J,
9835 Expression => Op)));
9836
9837 Formals := New_List (
9838 Make_Parameter_Specification (Loc,
9839 Defining_Identifier => A,
9840 Parameter_Type => New_Reference_To (Typ, Loc)),
9841
9842 Make_Parameter_Specification (Loc,
9843 Defining_Identifier => B,
9844 Parameter_Type => New_Reference_To (Typ, Loc)));
9845
191fcb3a 9846 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
9847 Set_Is_Inlined (Func_Name);
9848
9849 Func_Body :=
9850 Make_Subprogram_Body (Loc,
9851 Specification =>
9852 Make_Function_Specification (Loc,
9853 Defining_Unit_Name => Func_Name,
9854 Parameter_Specifications => Formals,
630d30e9 9855 Result_Definition => New_Reference_To (Typ, Loc)),
70482933
RK
9856
9857 Declarations => New_List (
9858 Make_Object_Declaration (Loc,
9859 Defining_Identifier => C,
9860 Object_Definition => New_Reference_To (Typ, Loc))),
9861
9862 Handled_Statement_Sequence =>
9863 Make_Handled_Sequence_Of_Statements (Loc,
9864 Statements => New_List (
9865 Loop_Statement,
d766cee3 9866 Make_Simple_Return_Statement (Loc,
70482933
RK
9867 Expression => New_Reference_To (C, Loc)))));
9868
9869 return Func_Body;
9870 end Make_Boolean_Array_Op;
9871
9872 ------------------------
9873 -- Rewrite_Comparison --
9874 ------------------------
9875
9876 procedure Rewrite_Comparison (N : Node_Id) is
c800f862
RD
9877 Warning_Generated : Boolean := False;
9878 -- Set to True if first pass with Assume_Valid generates a warning in
9879 -- which case we skip the second pass to avoid warning overloaded.
9880
9881 Result : Node_Id;
9882 -- Set to Standard_True or Standard_False
9883
d26dc4b5
AC
9884 begin
9885 if Nkind (N) = N_Type_Conversion then
9886 Rewrite_Comparison (Expression (N));
20b5d666 9887 return;
70482933 9888
d26dc4b5 9889 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
9890 return;
9891 end if;
70482933 9892
c800f862
RD
9893 -- Now start looking at the comparison in detail. We potentially go
9894 -- through this loop twice. The first time, Assume_Valid is set False
9895 -- in the call to Compile_Time_Compare. If this call results in a
9896 -- clear result of always True or Always False, that's decisive and
9897 -- we are done. Otherwise we repeat the processing with Assume_Valid
e7e4d230 9898 -- set to True to generate additional warnings. We can skip that step
c800f862
RD
9899 -- if Constant_Condition_Warnings is False.
9900
9901 for AV in False .. True loop
9902 declare
9903 Typ : constant Entity_Id := Etype (N);
9904 Op1 : constant Node_Id := Left_Opnd (N);
9905 Op2 : constant Node_Id := Right_Opnd (N);
70482933 9906
c800f862
RD
9907 Res : constant Compare_Result :=
9908 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
9909 -- Res indicates if compare outcome can be compile time determined
f02b8bb8 9910
c800f862
RD
9911 True_Result : Boolean;
9912 False_Result : Boolean;
f02b8bb8 9913
c800f862
RD
9914 begin
9915 case N_Op_Compare (Nkind (N)) is
d26dc4b5
AC
9916 when N_Op_Eq =>
9917 True_Result := Res = EQ;
9918 False_Result := Res = LT or else Res = GT or else Res = NE;
9919
9920 when N_Op_Ge =>
9921 True_Result := Res in Compare_GE;
9922 False_Result := Res = LT;
9923
9924 if Res = LE
9925 and then Constant_Condition_Warnings
9926 and then Comes_From_Source (Original_Node (N))
9927 and then Nkind (Original_Node (N)) = N_Op_Ge
9928 and then not In_Instance
d26dc4b5 9929 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 9930 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 9931 then
ed2233dc 9932 Error_Msg_N
d26dc4b5 9933 ("can never be greater than, could replace by ""'=""?", N);
c800f862 9934 Warning_Generated := True;
d26dc4b5 9935 end if;
70482933 9936
d26dc4b5
AC
9937 when N_Op_Gt =>
9938 True_Result := Res = GT;
9939 False_Result := Res in Compare_LE;
9940
9941 when N_Op_Lt =>
9942 True_Result := Res = LT;
9943 False_Result := Res in Compare_GE;
9944
9945 when N_Op_Le =>
9946 True_Result := Res in Compare_LE;
9947 False_Result := Res = GT;
9948
9949 if Res = GE
9950 and then Constant_Condition_Warnings
9951 and then Comes_From_Source (Original_Node (N))
9952 and then Nkind (Original_Node (N)) = N_Op_Le
9953 and then not In_Instance
d26dc4b5 9954 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 9955 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 9956 then
ed2233dc 9957 Error_Msg_N
d26dc4b5 9958 ("can never be less than, could replace by ""'=""?", N);
c800f862 9959 Warning_Generated := True;
d26dc4b5 9960 end if;
70482933 9961
d26dc4b5
AC
9962 when N_Op_Ne =>
9963 True_Result := Res = NE or else Res = GT or else Res = LT;
9964 False_Result := Res = EQ;
c800f862 9965 end case;
d26dc4b5 9966
c800f862
RD
9967 -- If this is the first iteration, then we actually convert the
9968 -- comparison into True or False, if the result is certain.
d26dc4b5 9969
c800f862
RD
9970 if AV = False then
9971 if True_Result or False_Result then
9972 if True_Result then
9973 Result := Standard_True;
9974 else
9975 Result := Standard_False;
9976 end if;
9977
9978 Rewrite (N,
9979 Convert_To (Typ,
9980 New_Occurrence_Of (Result, Sloc (N))));
9981 Analyze_And_Resolve (N, Typ);
9982 Warn_On_Known_Condition (N);
9983 return;
9984 end if;
9985
9986 -- If this is the second iteration (AV = True), and the original
e7e4d230
AC
9987 -- node comes from source and we are not in an instance, then give
9988 -- a warning if we know result would be True or False. Note: we
9989 -- know Constant_Condition_Warnings is set if we get here.
c800f862
RD
9990
9991 elsif Comes_From_Source (Original_Node (N))
9992 and then not In_Instance
9993 then
9994 if True_Result then
ed2233dc 9995 Error_Msg_N
c800f862
RD
9996 ("condition can only be False if invalid values present?",
9997 N);
9998 elsif False_Result then
ed2233dc 9999 Error_Msg_N
c800f862
RD
10000 ("condition can only be True if invalid values present?",
10001 N);
10002 end if;
10003 end if;
10004 end;
10005
10006 -- Skip second iteration if not warning on constant conditions or
e7e4d230
AC
10007 -- if the first iteration already generated a warning of some kind or
10008 -- if we are in any case assuming all values are valid (so that the
10009 -- first iteration took care of the valid case).
c800f862
RD
10010
10011 exit when not Constant_Condition_Warnings;
10012 exit when Warning_Generated;
10013 exit when Assume_No_Invalid_Values;
10014 end loop;
70482933
RK
10015 end Rewrite_Comparison;
10016
fbf5a39b
AC
10017 ----------------------------
10018 -- Safe_In_Place_Array_Op --
10019 ----------------------------
10020
10021 function Safe_In_Place_Array_Op
2e071734
AC
10022 (Lhs : Node_Id;
10023 Op1 : Node_Id;
10024 Op2 : Node_Id) return Boolean
fbf5a39b
AC
10025 is
10026 Target : Entity_Id;
10027
10028 function Is_Safe_Operand (Op : Node_Id) return Boolean;
10029 -- Operand is safe if it cannot overlap part of the target of the
10030 -- operation. If the operand and the target are identical, the operand
10031 -- is safe. The operand can be empty in the case of negation.
10032
10033 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 10034 -- Check that N is a stand-alone entity
fbf5a39b
AC
10035
10036 ------------------
10037 -- Is_Unaliased --
10038 ------------------
10039
10040 function Is_Unaliased (N : Node_Id) return Boolean is
10041 begin
10042 return
10043 Is_Entity_Name (N)
10044 and then No (Address_Clause (Entity (N)))
10045 and then No (Renamed_Object (Entity (N)));
10046 end Is_Unaliased;
10047
10048 ---------------------
10049 -- Is_Safe_Operand --
10050 ---------------------
10051
10052 function Is_Safe_Operand (Op : Node_Id) return Boolean is
10053 begin
10054 if No (Op) then
10055 return True;
10056
10057 elsif Is_Entity_Name (Op) then
10058 return Is_Unaliased (Op);
10059
303b4d58 10060 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
10061 return Is_Unaliased (Prefix (Op));
10062
10063 elsif Nkind (Op) = N_Slice then
10064 return
10065 Is_Unaliased (Prefix (Op))
10066 and then Entity (Prefix (Op)) /= Target;
10067
10068 elsif Nkind (Op) = N_Op_Not then
10069 return Is_Safe_Operand (Right_Opnd (Op));
10070
10071 else
10072 return False;
10073 end if;
10074 end Is_Safe_Operand;
10075
e7e4d230 10076 -- Start of processing for Is_Safe_In_Place_Array_Op
fbf5a39b
AC
10077
10078 begin
685094bf
RD
10079 -- Skip this processing if the component size is different from system
10080 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 10081
eaa826f8 10082 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
10083 return False;
10084
26bff3d9 10085 -- Cannot do in place stuff on VM_Target since cannot pass addresses
fbf5a39b 10086
26bff3d9 10087 elsif VM_Target /= No_VM then
fbf5a39b
AC
10088 return False;
10089
10090 -- Cannot do in place stuff if non-standard Boolean representation
10091
eaa826f8 10092 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
10093 return False;
10094
10095 elsif not Is_Unaliased (Lhs) then
10096 return False;
e7e4d230 10097
fbf5a39b
AC
10098 else
10099 Target := Entity (Lhs);
e7e4d230 10100 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
10101 end if;
10102 end Safe_In_Place_Array_Op;
10103
70482933
RK
10104 -----------------------
10105 -- Tagged_Membership --
10106 -----------------------
10107
685094bf
RD
10108 -- There are two different cases to consider depending on whether the right
10109 -- operand is a class-wide type or not. If not we just compare the actual
10110 -- tag of the left expr to the target type tag:
70482933
RK
10111 --
10112 -- Left_Expr.Tag = Right_Type'Tag;
10113 --
685094bf
RD
10114 -- If it is a class-wide type we use the RT function CW_Membership which is
10115 -- usually implemented by looking in the ancestor tables contained in the
10116 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 10117
0669bebe
GB
10118 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
10119 -- function IW_Membership which is usually implemented by looking in the
10120 -- table of abstract interface types plus the ancestor table contained in
10121 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
10122
82878151
AC
10123 procedure Tagged_Membership
10124 (N : Node_Id;
10125 SCIL_Node : out Node_Id;
10126 Result : out Node_Id)
10127 is
70482933
RK
10128 Left : constant Node_Id := Left_Opnd (N);
10129 Right : constant Node_Id := Right_Opnd (N);
10130 Loc : constant Source_Ptr := Sloc (N);
10131
10132 Left_Type : Entity_Id;
82878151 10133 New_Node : Node_Id;
70482933
RK
10134 Right_Type : Entity_Id;
10135 Obj_Tag : Node_Id;
10136
10137 begin
82878151
AC
10138 SCIL_Node := Empty;
10139
852dba80
AC
10140 -- Handle entities from the limited view
10141
10142 Left_Type := Available_View (Etype (Left));
10143 Right_Type := Available_View (Etype (Right));
70482933
RK
10144
10145 if Is_Class_Wide_Type (Left_Type) then
10146 Left_Type := Root_Type (Left_Type);
10147 end if;
10148
10149 Obj_Tag :=
10150 Make_Selected_Component (Loc,
10151 Prefix => Relocate_Node (Left),
a9d8907c
JM
10152 Selector_Name =>
10153 New_Reference_To (First_Tag_Component (Left_Type), Loc));
70482933
RK
10154
10155 if Is_Class_Wide_Type (Right_Type) then
758c442c 10156
0669bebe
GB
10157 -- No need to issue a run-time check if we statically know that the
10158 -- result of this membership test is always true. For example,
10159 -- considering the following declarations:
10160
10161 -- type Iface is interface;
10162 -- type T is tagged null record;
10163 -- type DT is new T and Iface with null record;
10164
10165 -- Obj1 : T;
10166 -- Obj2 : DT;
10167
10168 -- These membership tests are always true:
10169
10170 -- Obj1 in T'Class
10171 -- Obj2 in T'Class;
10172 -- Obj2 in Iface'Class;
10173
10174 -- We do not need to handle cases where the membership is illegal.
10175 -- For example:
10176
10177 -- Obj1 in DT'Class; -- Compile time error
10178 -- Obj1 in Iface'Class; -- Compile time error
10179
10180 if not Is_Class_Wide_Type (Left_Type)
ce2b6ba5 10181 and then (Is_Ancestor (Etype (Right_Type), Left_Type)
0669bebe
GB
10182 or else (Is_Interface (Etype (Right_Type))
10183 and then Interface_Present_In_Ancestor
10184 (Typ => Left_Type,
10185 Iface => Etype (Right_Type))))
10186 then
82878151
AC
10187 Result := New_Reference_To (Standard_True, Loc);
10188 return;
0669bebe
GB
10189 end if;
10190
758c442c
GD
10191 -- Ada 2005 (AI-251): Class-wide applied to interfaces
10192
630d30e9
RD
10193 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
10194
0669bebe 10195 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
10196
10197 or else Is_Interface (Left_Type)
10198 then
dfd99a80
TQ
10199 -- Issue error if IW_Membership operation not available in a
10200 -- configurable run time setting.
10201
10202 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
10203 Error_Msg_CRT
10204 ("dynamic membership test on interface types", N);
82878151
AC
10205 Result := Empty;
10206 return;
dfd99a80
TQ
10207 end if;
10208
82878151 10209 Result :=
758c442c
GD
10210 Make_Function_Call (Loc,
10211 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
10212 Parameter_Associations => New_List (
10213 Make_Attribute_Reference (Loc,
10214 Prefix => Obj_Tag,
10215 Attribute_Name => Name_Address),
10216 New_Reference_To (
10217 Node (First_Elmt
10218 (Access_Disp_Table (Root_Type (Right_Type)))),
10219 Loc)));
10220
10221 -- Ada 95: Normal case
10222
10223 else
82878151
AC
10224 Build_CW_Membership (Loc,
10225 Obj_Tag_Node => Obj_Tag,
10226 Typ_Tag_Node =>
10227 New_Reference_To (
10228 Node (First_Elmt
10229 (Access_Disp_Table (Root_Type (Right_Type)))),
10230 Loc),
10231 Related_Nod => N,
10232 New_Node => New_Node);
10233
10234 -- Generate the SCIL node for this class-wide membership test.
10235 -- Done here because the previous call to Build_CW_Membership
10236 -- relocates Obj_Tag.
10237
10238 if Generate_SCIL then
10239 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
10240 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
10241 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
10242 end if;
10243
10244 Result := New_Node;
758c442c
GD
10245 end if;
10246
0669bebe
GB
10247 -- Right_Type is not a class-wide type
10248
70482933 10249 else
0669bebe
GB
10250 -- No need to check the tag of the object if Right_Typ is abstract
10251
10252 if Is_Abstract_Type (Right_Type) then
82878151 10253 Result := New_Reference_To (Standard_False, Loc);
0669bebe
GB
10254
10255 else
82878151 10256 Result :=
0669bebe
GB
10257 Make_Op_Eq (Loc,
10258 Left_Opnd => Obj_Tag,
10259 Right_Opnd =>
10260 New_Reference_To
10261 (Node (First_Elmt (Access_Disp_Table (Right_Type))), Loc));
10262 end if;
70482933 10263 end if;
70482933
RK
10264 end Tagged_Membership;
10265
10266 ------------------------------
10267 -- Unary_Op_Validity_Checks --
10268 ------------------------------
10269
10270 procedure Unary_Op_Validity_Checks (N : Node_Id) is
10271 begin
10272 if Validity_Checks_On and Validity_Check_Operands then
10273 Ensure_Valid (Right_Opnd (N));
10274 end if;
10275 end Unary_Op_Validity_Checks;
10276
10277end Exp_Ch4;