]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_fixd.adb
gcc_release (announce_snapshot): Use changedir instead of plain cd.
[thirdparty/gcc.git] / gcc / ada / exp_fixd.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ F I X D --
6-- --
7-- B o d y --
8-- --
fbf5a39b 9-- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Checks; use Checks;
29with Einfo; use Einfo;
30with Exp_Util; use Exp_Util;
31with Nlists; use Nlists;
32with Nmake; use Nmake;
70482933
RK
33with Rtsfind; use Rtsfind;
34with Sem; use Sem;
35with Sem_Eval; use Sem_Eval;
36with Sem_Res; use Sem_Res;
37with Sem_Util; use Sem_Util;
38with Sinfo; use Sinfo;
39with Stand; use Stand;
40with Tbuild; use Tbuild;
70482933
RK
41with Uintp; use Uintp;
42with Urealp; use Urealp;
43
44package body Exp_Fixd is
45
46 -----------------------
47 -- Local Subprograms --
48 -----------------------
49
50 -- General note; in this unit, a number of routines are driven by the
51 -- types (Etype) of their operands. Since we are dealing with unanalyzed
52 -- expressions as they are constructed, the Etypes would not normally be
53 -- set, but the construction routines that we use in this unit do in fact
54 -- set the Etype values correctly. In addition, setting the Etype ensures
55 -- that the analyzer does not try to redetermine the type when the node
56 -- is analyzed (which would be wrong, since in the case where we set the
57 -- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
58 -- still dealing with a normal fixed-point operation and mess it up).
59
60 function Build_Conversion
61 (N : Node_Id;
62 Typ : Entity_Id;
63 Expr : Node_Id;
64 Rchk : Boolean := False)
65 return Node_Id;
66 -- Build an expression that converts the expression Expr to type Typ,
67 -- taking the source location from Sloc (N). If the conversions involve
68 -- fixed-point types, then the Conversion_OK flag will be set so that the
69 -- resulting conversions do not get re-expanded. On return the resulting
70 -- node has its Etype set. If Rchk is set, then Do_Range_Check is set
71 -- in the resulting conversion node.
72
73 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
74 -- Builds an N_Op_Divide node from the given left and right operand
75 -- expressions, using the source location from Sloc (N). The operands
76 -- are either both Long_Long_Float, in which case Build_Divide differs
77 -- from Make_Op_Divide only in that the Etype of the resulting node is
78 -- set (to Long_Long_Float), or they can be integer types. In this case
79 -- the integer types need not be the same, and Build_Divide converts
80 -- the operand with the smaller sized type to match the type of the
81 -- other operand and sets this as the result type. The Rounded_Result
82 -- flag of the result in this case is set from the Rounded_Result flag
83 -- of node N. On return, the resulting node is analyzed, and has its
84 -- Etype set.
85
86 function Build_Double_Divide
87 (N : Node_Id;
88 X, Y, Z : Node_Id)
89 return Node_Id;
90 -- Returns a node corresponding to the value X/(Y*Z) using the source
91 -- location from Sloc (N). The division is rounded if the Rounded_Result
92 -- flag of N is set. The integer types of X, Y, Z may be different. On
93 -- return the resulting node is analyzed, and has its Etype set.
94
95 procedure Build_Double_Divide_Code
96 (N : Node_Id;
97 X, Y, Z : Node_Id;
98 Qnn, Rnn : out Entity_Id;
99 Code : out List_Id);
100 -- Generates a sequence of code for determining the quotient and remainder
101 -- of the division X/(Y*Z), using the source location from Sloc (N).
102 -- Entities of appropriate types are allocated for the quotient and
103 -- remainder and returned in Qnn and Rnn. The result is rounded if
104 -- the Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn
105 -- are appropriately set on return.
106
107 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
108 -- Builds an N_Op_Multiply node from the given left and right operand
109 -- expressions, using the source location from Sloc (N). The operands
110 -- are either both Long_Long_Float, in which case Build_Divide differs
111 -- from Make_Op_Multiply only in that the Etype of the resulting node is
112 -- set (to Long_Long_Float), or they can be integer types. In this case
113 -- the integer types need not be the same, and Build_Multiply chooses
114 -- a type long enough to hold the product (i.e. twice the size of the
115 -- longer of the two operand types), and both operands are converted
116 -- to this type. The Etype of the result is also set to this value.
117 -- However, the result can never overflow Integer_64, so this is the
118 -- largest type that is ever generated. On return, the resulting node
119 -- is analyzed and has its Etype set.
120
121 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
122 -- Builds an N_Op_Rem node from the given left and right operand
123 -- expressions, using the source location from Sloc (N). The operands
124 -- are both integer types, which need not be the same. Build_Rem
125 -- converts the operand with the smaller sized type to match the type
126 -- of the other operand and sets this as the result type. The result
127 -- is never rounded (rem operations cannot be rounded in any case!)
128 -- On return, the resulting node is analyzed and has its Etype set.
129
130 function Build_Scaled_Divide
131 (N : Node_Id;
132 X, Y, Z : Node_Id)
133 return Node_Id;
134 -- Returns a node corresponding to the value X*Y/Z using the source
135 -- location from Sloc (N). The division is rounded if the Rounded_Result
136 -- flag of N is set. The integer types of X, Y, Z may be different. On
137 -- return the resulting node is analyzed and has is Etype set.
138
139 procedure Build_Scaled_Divide_Code
140 (N : Node_Id;
141 X, Y, Z : Node_Id;
142 Qnn, Rnn : out Entity_Id;
143 Code : out List_Id);
144 -- Generates a sequence of code for determining the quotient and remainder
145 -- of the division X*Y/Z, using the source location from Sloc (N). Entities
146 -- of appropriate types are allocated for the quotient and remainder and
147 -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
148 -- The division is rounded if the Rounded_Result flag of N is set. The
149 -- Etype fields of Qnn and Rnn are appropriately set on return.
150
151 procedure Do_Divide_Fixed_Fixed (N : Node_Id);
152 -- Handles expansion of divide for case of two fixed-point operands
153 -- (neither of them universal), with an integer or fixed-point result.
154 -- N is the N_Op_Divide node to be expanded.
155
156 procedure Do_Divide_Fixed_Universal (N : Node_Id);
157 -- Handles expansion of divide for case of a fixed-point operand divided
158 -- by a universal real operand, with an integer or fixed-point result. N
159 -- is the N_Op_Divide node to be expanded.
160
161 procedure Do_Divide_Universal_Fixed (N : Node_Id);
162 -- Handles expansion of divide for case of a universal real operand
163 -- divided by a fixed-point operand, with an integer or fixed-point
164 -- result. N is the N_Op_Divide node to be expanded.
165
166 procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
167 -- Handles expansion of multiply for case of two fixed-point operands
168 -- (neither of them universal), with an integer or fixed-point result.
169 -- N is the N_Op_Multiply node to be expanded.
170
171 procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
172 -- Handles expansion of multiply for case of a fixed-point operand
173 -- multiplied by a universal real operand, with an integer or fixed-
174 -- point result. N is the N_Op_Multiply node to be expanded, and
175 -- Left, Right are the operands (which may have been switched).
176
177 procedure Expand_Convert_Fixed_Static (N : Node_Id);
178 -- This routine is called where the node N is a conversion of a literal
179 -- or other static expression of a fixed-point type to some other type.
180 -- In such cases, we simply rewrite the operand as a real literal and
181 -- reanalyze. This avoids problems which would otherwise result from
182 -- attempting to build and fold expressions involving constants.
183
184 function Fpt_Value (N : Node_Id) return Node_Id;
185 -- Given an operand of fixed-point operation, return an expression that
186 -- represents the corresponding Long_Long_Float value. The expression
187 -- can be of integer type, floating-point type, or fixed-point type.
188 -- The expression returned is neither analyzed and resolved. The Etype
189 -- of the result is properly set (to Long_Long_Float).
190
191 function Integer_Literal (N : Node_Id; V : Uint) return Node_Id;
192 -- Given a non-negative universal integer value, build a typed integer
193 -- literal node, using the smallest applicable standard integer type. If
194 -- the value exceeds 2**63-1, the largest value allowed for perfect result
195 -- set scaling factors (see RM G.2.3(22)), then Empty is returned. The
196 -- node N provides the Sloc value for the constructed literal. The Etype
197 -- of the resulting literal is correctly set, and it is marked as analyzed.
198
199 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
200 -- Build a real literal node from the given value, the Etype of the
201 -- returned node is set to Long_Long_Float, since all floating-point
202 -- arithmetic operations that we construct use Long_Long_Float
203
204 function Rounded_Result_Set (N : Node_Id) return Boolean;
205 -- Returns True if N is a node that contains the Rounded_Result flag
206 -- and if the flag is true.
207
208 procedure Set_Result (N : Node_Id; Expr : Node_Id; Rchk : Boolean := False);
209 -- N is the node for the current conversion, division or multiplication
210 -- operation, and Expr is an expression representing the result. Expr
211 -- may be of floating-point or integer type. If the operation result
212 -- is fixed-point, then the value of Expr is in units of small of the
213 -- result type (i.e. small's have already been dealt with). The result
214 -- of the call is to replace N by an appropriate conversion to the
215 -- result type, dealing with rounding for the decimal types case. The
216 -- node is then analyzed and resolved using the result type. If Rchk
217 -- is True, then Do_Range_Check is set in the resulting conversion.
218
219 ----------------------
220 -- Build_Conversion --
221 ----------------------
222
223 function Build_Conversion
224 (N : Node_Id;
225 Typ : Entity_Id;
226 Expr : Node_Id;
227 Rchk : Boolean := False)
228 return Node_Id
229 is
230 Loc : constant Source_Ptr := Sloc (N);
231 Result : Node_Id;
232 Rcheck : Boolean := Rchk;
233
234 begin
235 -- A special case, if the expression is an integer literal and the
236 -- target type is an integer type, then just retype the integer
237 -- literal to the desired target type. Don't do this if we need
238 -- a range check.
239
240 if Nkind (Expr) = N_Integer_Literal
241 and then Is_Integer_Type (Typ)
242 and then not Rchk
243 then
244 Result := Expr;
245
246 -- Cases where we end up with a conversion. Note that we do not use the
247 -- Convert_To abstraction here, since we may be decorating the resulting
248 -- conversion with Rounded_Result and/or Conversion_OK, so we want the
249 -- conversion node present, even if it appears to be redundant.
250
251 else
252 -- Remove inner conversion if both inner and outer conversions are
253 -- to integer types, since the inner one serves no purpose (except
254 -- perhaps to set rounding, so we preserve the Rounded_Result flag)
255 -- and also we preserve the range check flag on the inner operand
256
257 if Is_Integer_Type (Typ)
258 and then Is_Integer_Type (Etype (Expr))
259 and then Nkind (Expr) = N_Type_Conversion
260 then
261 Result :=
262 Make_Type_Conversion (Loc,
263 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
264 Expression => Expression (Expr));
265 Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
266 Rcheck := Rcheck or Do_Range_Check (Expr);
267
268 -- For all other cases, a simple type conversion will work
269
270 else
271 Result :=
272 Make_Type_Conversion (Loc,
273 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
274 Expression => Expr);
275 end if;
276
277 -- Set Conversion_OK if either result or expression type is a
278 -- fixed-point type, since from a semantic point of view, we are
279 -- treating fixed-point values as integers at this stage.
280
281 if Is_Fixed_Point_Type (Typ)
282 or else Is_Fixed_Point_Type (Etype (Expression (Result)))
283 then
284 Set_Conversion_OK (Result);
285 end if;
286
287 -- Set Do_Range_Check if either it was requested by the caller,
288 -- or if an eliminated inner conversion had a range check.
289
290 if Rcheck then
291 Enable_Range_Check (Result);
292 else
293 Set_Do_Range_Check (Result, False);
294 end if;
295 end if;
296
297 Set_Etype (Result, Typ);
298 return Result;
299
300 end Build_Conversion;
301
302 ------------------
303 -- Build_Divide --
304 ------------------
305
306 function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
307 Loc : constant Source_Ptr := Sloc (N);
308 Left_Type : constant Entity_Id := Base_Type (Etype (L));
309 Right_Type : constant Entity_Id := Base_Type (Etype (R));
310 Result_Type : Entity_Id;
311 Rnode : Node_Id;
312
313 begin
314 -- Deal with floating-point case first
315
316 if Is_Floating_Point_Type (Left_Type) then
317 pragma Assert (Left_Type = Standard_Long_Long_Float);
318 pragma Assert (Right_Type = Standard_Long_Long_Float);
319
320 Rnode := Make_Op_Divide (Loc, L, R);
321 Result_Type := Standard_Long_Long_Float;
322
323 -- Integer and fixed-point cases
324
325 else
326 -- An optimization. If the right operand is the literal 1, then we
327 -- can just return the left hand operand. Putting the optimization
328 -- here allows us to omit the check at the call site.
329
330 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
331 return L;
332 end if;
333
334 -- If left and right types are the same, no conversion needed
335
336 if Left_Type = Right_Type then
337 Result_Type := Left_Type;
338 Rnode :=
339 Make_Op_Divide (Loc,
340 Left_Opnd => L,
341 Right_Opnd => R);
342
343 -- Use left type if it is the larger of the two
344
345 elsif Esize (Left_Type) >= Esize (Right_Type) then
346 Result_Type := Left_Type;
347 Rnode :=
348 Make_Op_Divide (Loc,
349 Left_Opnd => L,
350 Right_Opnd => Build_Conversion (N, Left_Type, R));
351
352 -- Otherwise right type is larger of the two, us it
353
354 else
355 Result_Type := Right_Type;
356 Rnode :=
357 Make_Op_Divide (Loc,
358 Left_Opnd => Build_Conversion (N, Right_Type, L),
359 Right_Opnd => R);
360 end if;
361 end if;
362
363 -- We now have a divide node built with Result_Type set. First
364 -- set Etype of result, as required for all Build_xxx routines
365
366 Set_Etype (Rnode, Base_Type (Result_Type));
367
368 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
369 -- since this is a literal arithmetic operation, to be performed
370 -- by Gigi without any consideration of small values.
371
372 if Is_Fixed_Point_Type (Result_Type) then
373 Set_Treat_Fixed_As_Integer (Rnode);
374 end if;
375
376 -- The result is rounded if the target of the operation is decimal
377 -- and Rounded_Result is set, or if the target of the operation
378 -- is an integer type.
379
380 if Is_Integer_Type (Etype (N))
381 or else Rounded_Result_Set (N)
382 then
383 Set_Rounded_Result (Rnode);
384 end if;
385
386 return Rnode;
387
388 end Build_Divide;
389
390 -------------------------
391 -- Build_Double_Divide --
392 -------------------------
393
394 function Build_Double_Divide
395 (N : Node_Id;
396 X, Y, Z : Node_Id)
397 return Node_Id
398 is
399 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
400 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
401 Expr : Node_Id;
402
403 begin
70482933
RK
404 -- If denominator fits in 64 bits, we can build the operations directly
405 -- without causing any intermediate overflow, so that's what we do!
406
407 if Int'Max (Y_Size, Z_Size) <= 32 then
408 return
409 Build_Divide (N, X, Build_Multiply (N, Y, Z));
410
411 -- Otherwise we use the runtime routine
412
413 -- [Qnn : Interfaces.Integer_64,
414 -- Rnn : Interfaces.Integer_64;
415 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
416 -- Qnn]
417
418 else
419 declare
420 Loc : constant Source_Ptr := Sloc (N);
421 Qnn : Entity_Id;
422 Rnn : Entity_Id;
423 Code : List_Id;
424
425 begin
426 Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
427 Insert_Actions (N, Code);
428 Expr := New_Occurrence_Of (Qnn, Loc);
429
430 -- Set type of result in case used elsewhere (see note at start)
431
432 Set_Etype (Expr, Etype (Qnn));
433
434 -- Set result as analyzed (see note at start on build routines)
435
436 return Expr;
437 end;
438 end if;
439 end Build_Double_Divide;
440
441 ------------------------------
442 -- Build_Double_Divide_Code --
443 ------------------------------
444
445 -- If the denominator can be computed in 64-bits, we build
446
447 -- [Nnn : constant typ := typ (X);
448 -- Dnn : constant typ := typ (Y) * typ (Z)
449 -- Qnn : constant typ := Nnn / Dnn;
450 -- Rnn : constant typ := Nnn / Dnn;
451
452 -- If the numerator cannot be computed in 64 bits, we build
453
454 -- [Qnn : typ;
455 -- Rnn : typ;
456 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
457
458 procedure Build_Double_Divide_Code
459 (N : Node_Id;
460 X, Y, Z : Node_Id;
461 Qnn, Rnn : out Entity_Id;
462 Code : out List_Id)
463 is
464 Loc : constant Source_Ptr := Sloc (N);
465
466 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
467 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
468 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
469
470 QR_Siz : Int;
471 QR_Typ : Entity_Id;
472
473 Nnn : Entity_Id;
474 Dnn : Entity_Id;
475
476 Quo : Node_Id;
477 Rnd : Entity_Id;
478
479 begin
480 -- Find type that will allow computation of numerator
481
482 QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
483
484 if QR_Siz <= 16 then
485 QR_Typ := Standard_Integer_16;
486 elsif QR_Siz <= 32 then
487 QR_Typ := Standard_Integer_32;
488 elsif QR_Siz <= 64 then
489 QR_Typ := Standard_Integer_64;
490
491 -- For more than 64, bits, we use the 64-bit integer defined in
492 -- Interfaces, so that it can be handled by the runtime routine
493
494 else
495 QR_Typ := RTE (RE_Integer_64);
496 end if;
497
498 -- Define quotient and remainder, and set their Etypes, so
499 -- that they can be picked up by Build_xxx routines.
500
501 Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
502 Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
503
504 Set_Etype (Qnn, QR_Typ);
505 Set_Etype (Rnn, QR_Typ);
506
507 -- Case that we can compute the denominator in 64 bits
508
509 if QR_Siz <= 64 then
510
511 -- Create temporaries for numerator and denominator and set Etypes,
512 -- so that New_Occurrence_Of picks them up for Build_xxx calls.
513
514 Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
515 Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
516
517 Set_Etype (Nnn, QR_Typ);
518 Set_Etype (Dnn, QR_Typ);
519
520 Code := New_List (
521 Make_Object_Declaration (Loc,
522 Defining_Identifier => Nnn,
523 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
524 Constant_Present => True,
525 Expression => Build_Conversion (N, QR_Typ, X)),
526
527 Make_Object_Declaration (Loc,
528 Defining_Identifier => Dnn,
529 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
530 Constant_Present => True,
531 Expression =>
532 Build_Multiply (N,
533 Build_Conversion (N, QR_Typ, Y),
534 Build_Conversion (N, QR_Typ, Z))));
535
536 Quo :=
537 Build_Divide (N,
538 New_Occurrence_Of (Nnn, Loc),
539 New_Occurrence_Of (Dnn, Loc));
540
541 Set_Rounded_Result (Quo, Rounded_Result_Set (N));
542
543 Append_To (Code,
544 Make_Object_Declaration (Loc,
545 Defining_Identifier => Qnn,
546 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
547 Constant_Present => True,
548 Expression => Quo));
549
550 Append_To (Code,
551 Make_Object_Declaration (Loc,
552 Defining_Identifier => Rnn,
553 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
554 Constant_Present => True,
555 Expression =>
556 Build_Rem (N,
557 New_Occurrence_Of (Nnn, Loc),
558 New_Occurrence_Of (Dnn, Loc))));
559
560 -- Case where denominator does not fit in 64 bits, so we have to
561 -- call the runtime routine to compute the quotient and remainder
562
563 else
564 if Rounded_Result_Set (N) then
565 Rnd := Standard_True;
566 else
567 Rnd := Standard_False;
568 end if;
569
570 Code := New_List (
571 Make_Object_Declaration (Loc,
572 Defining_Identifier => Qnn,
573 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
574
575 Make_Object_Declaration (Loc,
576 Defining_Identifier => Rnn,
577 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
578
579 Make_Procedure_Call_Statement (Loc,
580 Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
581 Parameter_Associations => New_List (
582 Build_Conversion (N, QR_Typ, X),
583 Build_Conversion (N, QR_Typ, Y),
584 Build_Conversion (N, QR_Typ, Z),
585 New_Occurrence_Of (Qnn, Loc),
586 New_Occurrence_Of (Rnn, Loc),
587 New_Occurrence_Of (Rnd, Loc))));
588 end if;
589
590 end Build_Double_Divide_Code;
591
592 --------------------
593 -- Build_Multiply --
594 --------------------
595
596 function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
597 Loc : constant Source_Ptr := Sloc (N);
598 Left_Type : constant Entity_Id := Etype (L);
599 Right_Type : constant Entity_Id := Etype (R);
fbf5a39b
AC
600 Left_Size : Int;
601 Right_Size : Int;
70482933
RK
602 Rsize : Int;
603 Result_Type : Entity_Id;
604 Rnode : Node_Id;
605
606 begin
607 -- Deal with floating-point case first
608
609 if Is_Floating_Point_Type (Left_Type) then
610 pragma Assert (Left_Type = Standard_Long_Long_Float);
611 pragma Assert (Right_Type = Standard_Long_Long_Float);
612
613 Result_Type := Standard_Long_Long_Float;
614 Rnode := Make_Op_Multiply (Loc, L, R);
615
616 -- Integer and fixed-point cases
617
618 else
619 -- An optimization. If the right operand is the literal 1, then we
620 -- can just return the left hand operand. Putting the optimization
621 -- here allows us to omit the check at the call site. Similarly, if
622 -- the left operand is the integer 1 we can return the right operand.
623
624 if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
625 return L;
626 elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
627 return R;
628 end if;
629
fbf5a39b
AC
630 -- Otherwise we need to figure out the correct result type size
631 -- First figure out the effective sizes of the operands. Normally
632 -- the effective size of an operand is the RM_Size of the operand.
633 -- But a special case arises with operands whose size is known at
634 -- compile time. In this case, we can use the actual value of the
635 -- operand to get its size if it would fit in 8 or 16 bits.
636
637 -- Note: if both operands are known at compile time (can that
638 -- happen?) and both were equal to the power of 2, then we would
639 -- be one bit off in this test, so for the left operand, we only
640 -- go up to the power of 2 - 1. This ensures that we do not get
641 -- this anomolous case, and in practice the right operand is by
642 -- far the more likely one to be the constant.
643
644 Left_Size := UI_To_Int (RM_Size (Left_Type));
645
646 if Compile_Time_Known_Value (L) then
647 declare
648 Val : constant Uint := Expr_Value (L);
649
650 begin
651 if Val < Int'(2 ** 8) then
652 Left_Size := 8;
653 elsif Val < Int'(2 ** 16) then
654 Left_Size := 16;
655 end if;
656 end;
657 end if;
658
659 Right_Size := UI_To_Int (RM_Size (Right_Type));
660
661 if Compile_Time_Known_Value (R) then
662 declare
663 Val : constant Uint := Expr_Value (R);
664
665 begin
666 if Val <= Int'(2 ** 8) then
667 Right_Size := 8;
668 elsif Val <= Int'(2 ** 16) then
669 Right_Size := 16;
670 end if;
671 end;
672 end if;
673
674 -- Now the result size must be at least twice the longer of
675 -- the two sizes, to accomodate all possible results.
70482933 676
fbf5a39b 677 Rsize := 2 * Int'Max (Left_Size, Right_Size);
70482933
RK
678
679 if Rsize <= 8 then
680 Result_Type := Standard_Integer_8;
681
682 elsif Rsize <= 16 then
683 Result_Type := Standard_Integer_16;
684
685 elsif Rsize <= 32 then
686 Result_Type := Standard_Integer_32;
687
688 else
70482933
RK
689 Result_Type := Standard_Integer_64;
690 end if;
691
692 Rnode :=
693 Make_Op_Multiply (Loc,
694 Left_Opnd => Build_Conversion (N, Result_Type, L),
695 Right_Opnd => Build_Conversion (N, Result_Type, R));
696 end if;
697
698 -- We now have a multiply node built with Result_Type set. First
699 -- set Etype of result, as required for all Build_xxx routines
700
701 Set_Etype (Rnode, Base_Type (Result_Type));
702
703 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
704 -- since this is a literal arithmetic operation, to be performed
705 -- by Gigi without any consideration of small values.
706
707 if Is_Fixed_Point_Type (Result_Type) then
708 Set_Treat_Fixed_As_Integer (Rnode);
709 end if;
710
711 return Rnode;
712 end Build_Multiply;
713
714 ---------------
715 -- Build_Rem --
716 ---------------
717
718 function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
719 Loc : constant Source_Ptr := Sloc (N);
720 Left_Type : constant Entity_Id := Etype (L);
721 Right_Type : constant Entity_Id := Etype (R);
722 Result_Type : Entity_Id;
723 Rnode : Node_Id;
724
725 begin
726 if Left_Type = Right_Type then
727 Result_Type := Left_Type;
728 Rnode :=
729 Make_Op_Rem (Loc,
730 Left_Opnd => L,
731 Right_Opnd => R);
732
733 -- If left size is larger, we do the remainder operation using the
734 -- size of the left type (i.e. the larger of the two integer types).
735
736 elsif Esize (Left_Type) >= Esize (Right_Type) then
737 Result_Type := Left_Type;
738 Rnode :=
739 Make_Op_Rem (Loc,
740 Left_Opnd => L,
741 Right_Opnd => Build_Conversion (N, Left_Type, R));
742
743 -- Similarly, if the right size is larger, we do the remainder
744 -- operation using the right type.
745
746 else
747 Result_Type := Right_Type;
748 Rnode :=
749 Make_Op_Rem (Loc,
750 Left_Opnd => Build_Conversion (N, Right_Type, L),
751 Right_Opnd => R);
752 end if;
753
754 -- We now have an N_Op_Rem node built with Result_Type set. First
755 -- set Etype of result, as required for all Build_xxx routines
756
757 Set_Etype (Rnode, Base_Type (Result_Type));
758
759 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
760 -- since this is a literal arithmetic operation, to be performed
761 -- by Gigi without any consideration of small values.
762
763 if Is_Fixed_Point_Type (Result_Type) then
764 Set_Treat_Fixed_As_Integer (Rnode);
765 end if;
766
767 -- One more check. We did the rem operation using the larger of the
768 -- two types, which is reasonable. However, in the case where the
769 -- two types have unequal sizes, it is impossible for the result of
770 -- a remainder operation to be larger than the smaller of the two
771 -- types, so we can put a conversion round the result to keep the
772 -- evolving operation size as small as possible.
773
774 if Esize (Left_Type) >= Esize (Right_Type) then
775 Rnode := Build_Conversion (N, Right_Type, Rnode);
776 elsif Esize (Right_Type) >= Esize (Left_Type) then
777 Rnode := Build_Conversion (N, Left_Type, Rnode);
778 end if;
779
780 return Rnode;
781 end Build_Rem;
782
783 -------------------------
784 -- Build_Scaled_Divide --
785 -------------------------
786
787 function Build_Scaled_Divide
788 (N : Node_Id;
789 X, Y, Z : Node_Id)
790 return Node_Id
791 is
792 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
793 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
794 Expr : Node_Id;
795
796 begin
797 -- If numerator fits in 64 bits, we can build the operations directly
798 -- without causing any intermediate overflow, so that's what we do!
799
800 if Int'Max (X_Size, Y_Size) <= 32 then
801 return
802 Build_Divide (N, Build_Multiply (N, X, Y), Z);
803
804 -- Otherwise we use the runtime routine
805
806 -- [Qnn : Integer_64,
807 -- Rnn : Integer_64;
808 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
809 -- Qnn]
810
811 else
812 declare
813 Loc : constant Source_Ptr := Sloc (N);
814 Qnn : Entity_Id;
815 Rnn : Entity_Id;
816 Code : List_Id;
817
818 begin
819 Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
820 Insert_Actions (N, Code);
821 Expr := New_Occurrence_Of (Qnn, Loc);
822
823 -- Set type of result in case used elsewhere (see note at start)
824
825 Set_Etype (Expr, Etype (Qnn));
826 return Expr;
827 end;
828 end if;
829 end Build_Scaled_Divide;
830
831 ------------------------------
832 -- Build_Scaled_Divide_Code --
833 ------------------------------
834
835 -- If the numerator can be computed in 64-bits, we build
836
837 -- [Nnn : constant typ := typ (X) * typ (Y);
838 -- Dnn : constant typ := typ (Z)
839 -- Qnn : constant typ := Nnn / Dnn;
840 -- Rnn : constant typ := Nnn / Dnn;
841
842 -- If the numerator cannot be computed in 64 bits, we build
843
844 -- [Qnn : Interfaces.Integer_64;
845 -- Rnn : Interfaces.Integer_64;
846 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
847
848 procedure Build_Scaled_Divide_Code
849 (N : Node_Id;
850 X, Y, Z : Node_Id;
851 Qnn, Rnn : out Entity_Id;
852 Code : out List_Id)
853 is
854 Loc : constant Source_Ptr := Sloc (N);
855
856 X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
857 Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
858 Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
859
860 QR_Siz : Int;
861 QR_Typ : Entity_Id;
862
863 Nnn : Entity_Id;
864 Dnn : Entity_Id;
865
866 Quo : Node_Id;
867 Rnd : Entity_Id;
868
869 begin
870 -- Find type that will allow computation of numerator
871
872 QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
873
874 if QR_Siz <= 16 then
875 QR_Typ := Standard_Integer_16;
876 elsif QR_Siz <= 32 then
877 QR_Typ := Standard_Integer_32;
878 elsif QR_Siz <= 64 then
879 QR_Typ := Standard_Integer_64;
880
881 -- For more than 64, bits, we use the 64-bit integer defined in
882 -- Interfaces, so that it can be handled by the runtime routine
883
884 else
885 QR_Typ := RTE (RE_Integer_64);
886 end if;
887
888 -- Define quotient and remainder, and set their Etypes, so
889 -- that they can be picked up by Build_xxx routines.
890
891 Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
892 Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
893
894 Set_Etype (Qnn, QR_Typ);
895 Set_Etype (Rnn, QR_Typ);
896
897 -- Case that we can compute the numerator in 64 bits
898
899 if QR_Siz <= 64 then
900 Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
901 Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
902
903 -- Set Etypes, so that they can be picked up by New_Occurrence_Of
904
905 Set_Etype (Nnn, QR_Typ);
906 Set_Etype (Dnn, QR_Typ);
907
908 Code := New_List (
909 Make_Object_Declaration (Loc,
910 Defining_Identifier => Nnn,
911 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
912 Constant_Present => True,
913 Expression =>
914 Build_Multiply (N,
915 Build_Conversion (N, QR_Typ, X),
916 Build_Conversion (N, QR_Typ, Y))),
917
918 Make_Object_Declaration (Loc,
919 Defining_Identifier => Dnn,
920 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
921 Constant_Present => True,
922 Expression => Build_Conversion (N, QR_Typ, Z)));
923
924 Quo :=
925 Build_Divide (N,
926 New_Occurrence_Of (Nnn, Loc),
927 New_Occurrence_Of (Dnn, Loc));
928
929 Append_To (Code,
930 Make_Object_Declaration (Loc,
931 Defining_Identifier => Qnn,
932 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
933 Constant_Present => True,
934 Expression => Quo));
935
936 Append_To (Code,
937 Make_Object_Declaration (Loc,
938 Defining_Identifier => Rnn,
939 Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
940 Constant_Present => True,
941 Expression =>
942 Build_Rem (N,
943 New_Occurrence_Of (Nnn, Loc),
944 New_Occurrence_Of (Dnn, Loc))));
945
946 -- Case where numerator does not fit in 64 bits, so we have to
947 -- call the runtime routine to compute the quotient and remainder
948
949 else
950 if Rounded_Result_Set (N) then
951 Rnd := Standard_True;
952 else
953 Rnd := Standard_False;
954 end if;
955
956 Code := New_List (
957 Make_Object_Declaration (Loc,
958 Defining_Identifier => Qnn,
959 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
960
961 Make_Object_Declaration (Loc,
962 Defining_Identifier => Rnn,
963 Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
964
965 Make_Procedure_Call_Statement (Loc,
966 Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
967 Parameter_Associations => New_List (
968 Build_Conversion (N, QR_Typ, X),
969 Build_Conversion (N, QR_Typ, Y),
970 Build_Conversion (N, QR_Typ, Z),
971 New_Occurrence_Of (Qnn, Loc),
972 New_Occurrence_Of (Rnn, Loc),
973 New_Occurrence_Of (Rnd, Loc))));
974 end if;
975
976 -- Set type of result, for use in caller.
977
978 Set_Etype (Qnn, QR_Typ);
979 end Build_Scaled_Divide_Code;
980
981 ---------------------------
982 -- Do_Divide_Fixed_Fixed --
983 ---------------------------
984
985 -- We have:
986
987 -- (Result_Value * Result_Small) =
988 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
989
990 -- Result_Value = (Left_Value / Right_Value) *
991 -- (Left_Small / (Right_Small * Result_Small));
992
993 -- we can do the operation in integer arithmetic if this fraction is an
994 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
995 -- Otherwise the result is in the close result set and our approach is to
996 -- use floating-point to compute this close result.
997
998 procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
999 Left : constant Node_Id := Left_Opnd (N);
1000 Right : constant Node_Id := Right_Opnd (N);
1001 Left_Type : constant Entity_Id := Etype (Left);
1002 Right_Type : constant Entity_Id := Etype (Right);
1003 Result_Type : constant Entity_Id := Etype (N);
1004 Right_Small : constant Ureal := Small_Value (Right_Type);
1005 Left_Small : constant Ureal := Small_Value (Left_Type);
1006
1007 Result_Small : Ureal;
1008 Frac : Ureal;
1009 Frac_Num : Uint;
1010 Frac_Den : Uint;
1011 Lit_Int : Node_Id;
1012
1013 begin
1014 -- Rounding is required if the result is integral
1015
1016 if Is_Integer_Type (Result_Type) then
1017 Set_Rounded_Result (N);
1018 end if;
1019
1020 -- Get result small. If the result is an integer, treat it as though
1021 -- it had a small of 1.0, all other processing is identical.
1022
1023 if Is_Integer_Type (Result_Type) then
1024 Result_Small := Ureal_1;
1025 else
1026 Result_Small := Small_Value (Result_Type);
1027 end if;
1028
1029 -- Get small ratio
1030
1031 Frac := Left_Small / (Right_Small * Result_Small);
1032 Frac_Num := Norm_Num (Frac);
1033 Frac_Den := Norm_Den (Frac);
1034
1035 -- If the fraction is an integer, then we get the result by multiplying
1036 -- the left operand by the integer, and then dividing by the right
1037 -- operand (the order is important, if we did the divide first, we
1038 -- would lose precision).
1039
1040 if Frac_Den = 1 then
1041 Lit_Int := Integer_Literal (N, Frac_Num);
1042
1043 if Present (Lit_Int) then
1044 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
1045 return;
1046 end if;
1047
1048 -- If the fraction is the reciprocal of an integer, then we get the
1049 -- result by first multiplying the divisor by the integer, and then
1050 -- doing the division with the adjusted divisor.
1051
1052 -- Note: this is much better than doing two divisions: multiplications
1053 -- are much faster than divisions (and certainly faster than rounded
1054 -- divisions), and we don't get inaccuracies from double rounding.
1055
1056 elsif Frac_Num = 1 then
1057 Lit_Int := Integer_Literal (N, Frac_Den);
1058
1059 if Present (Lit_Int) then
1060 Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
1061 return;
1062 end if;
1063 end if;
1064
1065 -- If we fall through, we use floating-point to compute the result
1066
1067 Set_Result (N,
1068 Build_Multiply (N,
1069 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
1070 Real_Literal (N, Frac)));
1071
1072 end Do_Divide_Fixed_Fixed;
1073
1074 -------------------------------
1075 -- Do_Divide_Fixed_Universal --
1076 -------------------------------
1077
1078 -- We have:
1079
1080 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1081 -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1082
1083 -- The result is required to be in the perfect result set if the literal
1084 -- can be factored so that the resulting small ratio is an integer or the
1085 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1086 -- analysis of these RM requirements:
1087
1088 -- We must factor the literal, finding an integer K:
1089
1090 -- Lit_Value = K * Right_Small
1091 -- Right_Small = Lit_Value / K
1092
1093 -- such that the small ratio:
1094
1095 -- Left_Small
1096 -- ------------------------------
1097 -- (Lit_Value / K) * Result_Small
1098
1099 -- Left_Small
1100 -- = ------------------------ * K
1101 -- Lit_Value * Result_Small
1102
1103 -- is an integer or the reciprocal of an integer, and for
1104 -- implementation efficiency we need the smallest such K.
1105
1106 -- First we reduce the left fraction to lowest terms.
1107
1108 -- If numerator = 1, then for K = 1, the small ratio is the reciprocal
1109 -- of an integer, and this is clearly the minimum K case, so set K = 1,
1110 -- Right_Small = Lit_Value.
1111
1112 -- If numerator > 1, then set K to the denominator of the fraction so
1113 -- that the resulting small ratio is an integer (the numerator value).
1114
1115 procedure Do_Divide_Fixed_Universal (N : Node_Id) is
1116 Left : constant Node_Id := Left_Opnd (N);
1117 Right : constant Node_Id := Right_Opnd (N);
1118 Left_Type : constant Entity_Id := Etype (Left);
1119 Result_Type : constant Entity_Id := Etype (N);
1120 Left_Small : constant Ureal := Small_Value (Left_Type);
1121 Lit_Value : constant Ureal := Realval (Right);
1122
1123 Result_Small : Ureal;
1124 Frac : Ureal;
1125 Frac_Num : Uint;
1126 Frac_Den : Uint;
1127 Lit_K : Node_Id;
1128 Lit_Int : Node_Id;
1129
1130 begin
1131 -- Get result small. If the result is an integer, treat it as though
1132 -- it had a small of 1.0, all other processing is identical.
1133
1134 if Is_Integer_Type (Result_Type) then
1135 Result_Small := Ureal_1;
1136 else
1137 Result_Small := Small_Value (Result_Type);
1138 end if;
1139
1140 -- Determine if literal can be rewritten successfully
1141
1142 Frac := Left_Small / (Lit_Value * Result_Small);
1143 Frac_Num := Norm_Num (Frac);
1144 Frac_Den := Norm_Den (Frac);
1145
1146 -- Case where fraction is the reciprocal of an integer (K = 1, integer
1147 -- = denominator). If this integer is not too large, this is the case
1148 -- where the result can be obtained by dividing by this integer value.
1149
1150 if Frac_Num = 1 then
1151 Lit_Int := Integer_Literal (N, Frac_Den);
1152
1153 if Present (Lit_Int) then
1154 Set_Result (N, Build_Divide (N, Left, Lit_Int));
1155 return;
1156 end if;
1157
1158 -- Case where we choose K to make fraction an integer (K = denominator
1159 -- of fraction, integer = numerator of fraction). If both K and the
1160 -- numerator are small enough, this is the case where the result can
1161 -- be obtained by first multiplying by the integer value and then
1162 -- dividing by K (the order is important, if we divided first, we
1163 -- would lose precision).
1164
1165 else
1166 Lit_Int := Integer_Literal (N, Frac_Num);
1167 Lit_K := Integer_Literal (N, Frac_Den);
1168
1169 if Present (Lit_Int) and then Present (Lit_K) then
1170 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
1171 return;
1172 end if;
1173 end if;
1174
1175 -- Fall through if the literal cannot be successfully rewritten, or if
1176 -- the small ratio is out of range of integer arithmetic. In the former
1177 -- case it is fine to use floating-point to get the close result set,
1178 -- and in the latter case, it means that the result is zero or raises
1179 -- constraint error, and we can do that accurately in floating-point.
1180
1181 -- If we end up using floating-point, then we take the right integer
1182 -- to be one, and its small to be the value of the original right real
1183 -- literal. That way, we need only one floating-point multiplication.
1184
1185 Set_Result (N,
1186 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1187
1188 end Do_Divide_Fixed_Universal;
1189
1190 -------------------------------
1191 -- Do_Divide_Universal_Fixed --
1192 -------------------------------
1193
1194 -- We have:
1195
1196 -- (Result_Value * Result_Small) =
1197 -- Lit_Value / (Right_Value * Right_Small)
1198 -- Result_Value =
1199 -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1200
1201 -- The result is required to be in the perfect result set if the literal
1202 -- can be factored so that the resulting small ratio is an integer or the
1203 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1204 -- analysis of these RM requirements:
1205
1206 -- We must factor the literal, finding an integer K:
1207
1208 -- Lit_Value = K * Left_Small
1209 -- Left_Small = Lit_Value / K
1210
1211 -- such that the small ratio:
1212
1213 -- (Lit_Value / K)
1214 -- --------------------------
1215 -- Right_Small * Result_Small
1216
1217 -- Lit_Value 1
1218 -- = -------------------------- * -
1219 -- Right_Small * Result_Small K
1220
1221 -- is an integer or the reciprocal of an integer, and for
1222 -- implementation efficiency we need the smallest such K.
1223
1224 -- First we reduce the left fraction to lowest terms.
1225
1226 -- If denominator = 1, then for K = 1, the small ratio is an integer
1227 -- (the numerator) and this is clearly the minimum K case, so set K = 1,
1228 -- and Left_Small = Lit_Value.
1229
1230 -- If denominator > 1, then set K to the numerator of the fraction so
1231 -- that the resulting small ratio is the reciprocal of an integer (the
1232 -- numerator value).
1233
1234 procedure Do_Divide_Universal_Fixed (N : Node_Id) is
1235 Left : constant Node_Id := Left_Opnd (N);
1236 Right : constant Node_Id := Right_Opnd (N);
1237 Right_Type : constant Entity_Id := Etype (Right);
1238 Result_Type : constant Entity_Id := Etype (N);
1239 Right_Small : constant Ureal := Small_Value (Right_Type);
1240 Lit_Value : constant Ureal := Realval (Left);
1241
1242 Result_Small : Ureal;
1243 Frac : Ureal;
1244 Frac_Num : Uint;
1245 Frac_Den : Uint;
1246 Lit_K : Node_Id;
1247 Lit_Int : Node_Id;
1248
1249 begin
1250 -- Get result small. If the result is an integer, treat it as though
1251 -- it had a small of 1.0, all other processing is identical.
1252
1253 if Is_Integer_Type (Result_Type) then
1254 Result_Small := Ureal_1;
1255 else
1256 Result_Small := Small_Value (Result_Type);
1257 end if;
1258
1259 -- Determine if literal can be rewritten successfully
1260
1261 Frac := Lit_Value / (Right_Small * Result_Small);
1262 Frac_Num := Norm_Num (Frac);
1263 Frac_Den := Norm_Den (Frac);
1264
1265 -- Case where fraction is an integer (K = 1, integer = numerator). If
1266 -- this integer is not too large, this is the case where the result
1267 -- can be obtained by dividing this integer by the right operand.
1268
1269 if Frac_Den = 1 then
1270 Lit_Int := Integer_Literal (N, Frac_Num);
1271
1272 if Present (Lit_Int) then
1273 Set_Result (N, Build_Divide (N, Lit_Int, Right));
1274 return;
1275 end if;
1276
1277 -- Case where we choose K to make the fraction the reciprocal of an
1278 -- integer (K = numerator of fraction, integer = numerator of fraction).
1279 -- If both K and the integer are small enough, this is the case where
1280 -- the result can be obtained by multiplying the right operand by K
1281 -- and then dividing by the integer value. The order of the operations
1282 -- is important (if we divided first, we would lose precision).
1283
1284 else
1285 Lit_Int := Integer_Literal (N, Frac_Den);
1286 Lit_K := Integer_Literal (N, Frac_Num);
1287
1288 if Present (Lit_Int) and then Present (Lit_K) then
1289 Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
1290 return;
1291 end if;
1292 end if;
1293
1294 -- Fall through if the literal cannot be successfully rewritten, or if
1295 -- the small ratio is out of range of integer arithmetic. In the former
1296 -- case it is fine to use floating-point to get the close result set,
1297 -- and in the latter case, it means that the result is zero or raises
1298 -- constraint error, and we can do that accurately in floating-point.
1299
1300 -- If we end up using floating-point, then we take the right integer
1301 -- to be one, and its small to be the value of the original right real
1302 -- literal. That way, we need only one floating-point division.
1303
1304 Set_Result (N,
1305 Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
1306
1307 end Do_Divide_Universal_Fixed;
1308
1309 -----------------------------
1310 -- Do_Multiply_Fixed_Fixed --
1311 -----------------------------
1312
1313 -- We have:
1314
1315 -- (Result_Value * Result_Small) =
1316 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
1317
1318 -- Result_Value = (Left_Value * Right_Value) *
1319 -- (Left_Small * Right_Small) / Result_Small;
1320
1321 -- we can do the operation in integer arithmetic if this fraction is an
1322 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1323 -- Otherwise the result is in the close result set and our approach is to
1324 -- use floating-point to compute this close result.
1325
1326 procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
1327 Left : constant Node_Id := Left_Opnd (N);
1328 Right : constant Node_Id := Right_Opnd (N);
1329
1330 Left_Type : constant Entity_Id := Etype (Left);
1331 Right_Type : constant Entity_Id := Etype (Right);
1332 Result_Type : constant Entity_Id := Etype (N);
1333 Right_Small : constant Ureal := Small_Value (Right_Type);
1334 Left_Small : constant Ureal := Small_Value (Left_Type);
1335
1336 Result_Small : Ureal;
1337 Frac : Ureal;
1338 Frac_Num : Uint;
1339 Frac_Den : Uint;
1340 Lit_Int : Node_Id;
1341
1342 begin
1343 -- Get result small. If the result is an integer, treat it as though
1344 -- it had a small of 1.0, all other processing is identical.
1345
1346 if Is_Integer_Type (Result_Type) then
1347 Result_Small := Ureal_1;
1348 else
1349 Result_Small := Small_Value (Result_Type);
1350 end if;
1351
1352 -- Get small ratio
1353
1354 Frac := (Left_Small * Right_Small) / Result_Small;
1355 Frac_Num := Norm_Num (Frac);
1356 Frac_Den := Norm_Den (Frac);
1357
1358 -- If the fraction is an integer, then we get the result by multiplying
1359 -- the operands, and then multiplying the result by the integer value.
1360
1361 if Frac_Den = 1 then
1362 Lit_Int := Integer_Literal (N, Frac_Num);
1363
1364 if Present (Lit_Int) then
1365 Set_Result (N,
1366 Build_Multiply (N, Build_Multiply (N, Left, Right),
1367 Lit_Int));
1368 return;
1369 end if;
1370
1371 -- If the fraction is the reciprocal of an integer, then we get the
1372 -- result by multiplying the operands, and then dividing the result by
1373 -- the integer value. The order of the operations is important, if we
1374 -- divided first, we would lose precision.
1375
1376 elsif Frac_Num = 1 then
1377 Lit_Int := Integer_Literal (N, Frac_Den);
1378
1379 if Present (Lit_Int) then
1380 Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
1381 return;
1382 end if;
1383 end if;
1384
1385 -- If we fall through, we use floating-point to compute the result
1386
1387 Set_Result (N,
1388 Build_Multiply (N,
1389 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
1390 Real_Literal (N, Frac)));
1391
1392 end Do_Multiply_Fixed_Fixed;
1393
1394 ---------------------------------
1395 -- Do_Multiply_Fixed_Universal --
1396 ---------------------------------
1397
1398 -- We have:
1399
1400 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1401 -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1402
1403 -- The result is required to be in the perfect result set if the literal
1404 -- can be factored so that the resulting small ratio is an integer or the
1405 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1406 -- analysis of these RM requirements:
1407
1408 -- We must factor the literal, finding an integer K:
1409
1410 -- Lit_Value = K * Right_Small
1411 -- Right_Small = Lit_Value / K
1412
1413 -- such that the small ratio:
1414
1415 -- Left_Small * (Lit_Value / K)
1416 -- ----------------------------
1417 -- Result_Small
1418
1419 -- Left_Small * Lit_Value 1
1420 -- = ---------------------- * -
1421 -- Result_Small K
1422
1423 -- is an integer or the reciprocal of an integer, and for
1424 -- implementation efficiency we need the smallest such K.
1425
1426 -- First we reduce the left fraction to lowest terms.
1427
1428 -- If denominator = 1, then for K = 1, the small ratio is an
1429 -- integer, and this is clearly the minimum K case, so set
1430 -- K = 1, Right_Small = Lit_Value.
1431
1432 -- If denominator > 1, then set K to the numerator of the
1433 -- fraction, so that the resulting small ratio is the
1434 -- reciprocal of the integer (the denominator value).
1435
1436 procedure Do_Multiply_Fixed_Universal
1437 (N : Node_Id;
1438 Left, Right : Node_Id)
1439 is
1440 Left_Type : constant Entity_Id := Etype (Left);
1441 Result_Type : constant Entity_Id := Etype (N);
1442 Left_Small : constant Ureal := Small_Value (Left_Type);
1443 Lit_Value : constant Ureal := Realval (Right);
1444
1445 Result_Small : Ureal;
1446 Frac : Ureal;
1447 Frac_Num : Uint;
1448 Frac_Den : Uint;
1449 Lit_K : Node_Id;
1450 Lit_Int : Node_Id;
1451
1452 begin
1453 -- Get result small. If the result is an integer, treat it as though
1454 -- it had a small of 1.0, all other processing is identical.
1455
1456 if Is_Integer_Type (Result_Type) then
1457 Result_Small := Ureal_1;
1458 else
1459 Result_Small := Small_Value (Result_Type);
1460 end if;
1461
1462 -- Determine if literal can be rewritten successfully
1463
1464 Frac := (Left_Small * Lit_Value) / Result_Small;
1465 Frac_Num := Norm_Num (Frac);
1466 Frac_Den := Norm_Den (Frac);
1467
1468 -- Case where fraction is an integer (K = 1, integer = numerator). If
1469 -- this integer is not too large, this is the case where the result can
1470 -- be obtained by multiplying by this integer value.
1471
1472 if Frac_Den = 1 then
1473 Lit_Int := Integer_Literal (N, Frac_Num);
1474
1475 if Present (Lit_Int) then
1476 Set_Result (N, Build_Multiply (N, Left, Lit_Int));
1477 return;
1478 end if;
1479
1480 -- Case where we choose K to make fraction the reciprocal of an integer
1481 -- (K = numerator of fraction, integer = denominator of fraction). If
1482 -- both K and the denominator are small enough, this is the case where
1483 -- the result can be obtained by first multiplying by K, and then
1484 -- dividing by the integer value.
1485
1486 else
1487 Lit_Int := Integer_Literal (N, Frac_Den);
1488 Lit_K := Integer_Literal (N, Frac_Num);
1489
1490 if Present (Lit_Int) and then Present (Lit_K) then
1491 Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
1492 return;
1493 end if;
1494 end if;
1495
1496 -- Fall through if the literal cannot be successfully rewritten, or if
1497 -- the small ratio is out of range of integer arithmetic. In the former
1498 -- case it is fine to use floating-point to get the close result set,
1499 -- and in the latter case, it means that the result is zero or raises
1500 -- constraint error, and we can do that accurately in floating-point.
1501
1502 -- If we end up using floating-point, then we take the right integer
1503 -- to be one, and its small to be the value of the original right real
1504 -- literal. That way, we need only one floating-point multiplication.
1505
1506 Set_Result (N,
1507 Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
1508
1509 end Do_Multiply_Fixed_Universal;
1510
1511 ---------------------------------
1512 -- Expand_Convert_Fixed_Static --
1513 ---------------------------------
1514
1515 procedure Expand_Convert_Fixed_Static (N : Node_Id) is
1516 begin
1517 Rewrite (N,
1518 Convert_To (Etype (N),
1519 Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
1520 Analyze_And_Resolve (N);
1521 end Expand_Convert_Fixed_Static;
1522
1523 -----------------------------------
1524 -- Expand_Convert_Fixed_To_Fixed --
1525 -----------------------------------
1526
1527 -- We have:
1528
1529 -- Result_Value * Result_Small = Source_Value * Source_Small
1530 -- Result_Value = Source_Value * (Source_Small / Result_Small)
1531
1532 -- If the small ratio (Source_Small / Result_Small) is a sufficiently small
1533 -- integer, then the perfect result set is obtained by a single integer
1534 -- multiplication.
1535
1536 -- If the small ratio is the reciprocal of a sufficiently small integer,
1537 -- then the perfect result set is obtained by a single integer division.
1538
1539 -- In other cases, we obtain the close result set by calculating the
1540 -- result in floating-point.
1541
1542 procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
1543 Rng_Check : constant Boolean := Do_Range_Check (N);
1544 Expr : constant Node_Id := Expression (N);
1545 Result_Type : constant Entity_Id := Etype (N);
1546 Source_Type : constant Entity_Id := Etype (Expr);
1547 Small_Ratio : Ureal;
1548 Ratio_Num : Uint;
1549 Ratio_Den : Uint;
1550 Lit : Node_Id;
1551
1552 begin
1553 if Is_OK_Static_Expression (Expr) then
1554 Expand_Convert_Fixed_Static (N);
1555 return;
1556 end if;
1557
1558 Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
1559 Ratio_Num := Norm_Num (Small_Ratio);
1560 Ratio_Den := Norm_Den (Small_Ratio);
1561
1562 if Ratio_Den = 1 then
1563
1564 if Ratio_Num = 1 then
1565 Set_Result (N, Expr);
1566 return;
1567
1568 else
1569 Lit := Integer_Literal (N, Ratio_Num);
1570
1571 if Present (Lit) then
1572 Set_Result (N, Build_Multiply (N, Expr, Lit));
1573 return;
1574 end if;
1575 end if;
1576
1577 elsif Ratio_Num = 1 then
1578 Lit := Integer_Literal (N, Ratio_Den);
1579
1580 if Present (Lit) then
1581 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1582 return;
1583 end if;
1584 end if;
1585
1586 -- Fall through to use floating-point for the close result set case
1587 -- either as a result of the small ratio not being an integer or the
1588 -- reciprocal of an integer, or if the integer is out of range.
1589
1590 Set_Result (N,
1591 Build_Multiply (N,
1592 Fpt_Value (Expr),
1593 Real_Literal (N, Small_Ratio)),
1594 Rng_Check);
1595
1596 end Expand_Convert_Fixed_To_Fixed;
1597
1598 -----------------------------------
1599 -- Expand_Convert_Fixed_To_Float --
1600 -----------------------------------
1601
1602 -- If the small of the fixed type is 1.0, then we simply convert the
1603 -- integer value directly to the target floating-point type, otherwise
1604 -- we first have to multiply by the small, in Long_Long_Float, and then
1605 -- convert the result to the target floating-point type.
1606
1607 procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
1608 Rng_Check : constant Boolean := Do_Range_Check (N);
1609 Expr : constant Node_Id := Expression (N);
1610 Source_Type : constant Entity_Id := Etype (Expr);
1611 Small : constant Ureal := Small_Value (Source_Type);
1612
1613 begin
1614 if Is_OK_Static_Expression (Expr) then
1615 Expand_Convert_Fixed_Static (N);
1616 return;
1617 end if;
1618
1619 if Small = Ureal_1 then
1620 Set_Result (N, Expr);
1621
1622 else
1623 Set_Result (N,
1624 Build_Multiply (N,
1625 Fpt_Value (Expr),
1626 Real_Literal (N, Small)),
1627 Rng_Check);
1628 end if;
1629 end Expand_Convert_Fixed_To_Float;
1630
1631 -------------------------------------
1632 -- Expand_Convert_Fixed_To_Integer --
1633 -------------------------------------
1634
1635 -- We have:
1636
1637 -- Result_Value = Source_Value * Source_Small
1638
1639 -- If the small value is a sufficiently small integer, then the perfect
1640 -- result set is obtained by a single integer multiplication.
1641
1642 -- If the small value is the reciprocal of a sufficiently small integer,
1643 -- then the perfect result set is obtained by a single integer division.
1644
1645 -- In other cases, we obtain the close result set by calculating the
1646 -- result in floating-point.
1647
1648 procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
1649 Rng_Check : constant Boolean := Do_Range_Check (N);
1650 Expr : constant Node_Id := Expression (N);
1651 Source_Type : constant Entity_Id := Etype (Expr);
1652 Small : constant Ureal := Small_Value (Source_Type);
1653 Small_Num : constant Uint := Norm_Num (Small);
1654 Small_Den : constant Uint := Norm_Den (Small);
1655 Lit : Node_Id;
1656
1657 begin
1658 if Is_OK_Static_Expression (Expr) then
1659 Expand_Convert_Fixed_Static (N);
1660 return;
1661 end if;
1662
1663 if Small_Den = 1 then
1664 Lit := Integer_Literal (N, Small_Num);
1665
1666 if Present (Lit) then
1667 Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1668 return;
1669 end if;
1670
1671 elsif Small_Num = 1 then
1672 Lit := Integer_Literal (N, Small_Den);
1673
1674 if Present (Lit) then
1675 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1676 return;
1677 end if;
1678 end if;
1679
1680 -- Fall through to use floating-point for the close result set case
1681 -- either as a result of the small value not being an integer or the
1682 -- reciprocal of an integer, or if the integer is out of range.
1683
1684 Set_Result (N,
1685 Build_Multiply (N,
1686 Fpt_Value (Expr),
1687 Real_Literal (N, Small)),
1688 Rng_Check);
1689
1690 end Expand_Convert_Fixed_To_Integer;
1691
1692 -----------------------------------
1693 -- Expand_Convert_Float_To_Fixed --
1694 -----------------------------------
1695
1696 -- We have
1697
1698 -- Result_Value * Result_Small = Operand_Value
1699
1700 -- so compute:
1701
1702 -- Result_Value = Operand_Value * (1.0 / Result_Small)
1703
1704 -- We do the small scaling in floating-point, and we do a multiplication
1705 -- rather than a division, since it is accurate enough for the perfect
1706 -- result cases, and faster.
1707
1708 procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
1709 Rng_Check : constant Boolean := Do_Range_Check (N);
1710 Expr : constant Node_Id := Expression (N);
1711 Result_Type : constant Entity_Id := Etype (N);
1712 Small : constant Ureal := Small_Value (Result_Type);
1713
1714 begin
1715 -- Optimize small = 1, where we can avoid the multiply completely
1716
1717 if Small = Ureal_1 then
1718 Set_Result (N, Expr, Rng_Check);
1719
1720 -- Normal case where multiply is required
1721
1722 else
1723 Set_Result (N,
1724 Build_Multiply (N,
1725 Fpt_Value (Expr),
1726 Real_Literal (N, Ureal_1 / Small)),
1727 Rng_Check);
1728 end if;
1729 end Expand_Convert_Float_To_Fixed;
1730
1731 -------------------------------------
1732 -- Expand_Convert_Integer_To_Fixed --
1733 -------------------------------------
1734
1735 -- We have
1736
1737 -- Result_Value * Result_Small = Operand_Value
1738 -- Result_Value = Operand_Value / Result_Small
1739
1740 -- If the small value is a sufficiently small integer, then the perfect
1741 -- result set is obtained by a single integer division.
1742
1743 -- If the small value is the reciprocal of a sufficiently small integer,
1744 -- the perfect result set is obtained by a single integer multiplication.
1745
1746 -- In other cases, we obtain the close result set by calculating the
1747 -- result in floating-point using a multiplication by the reciprocal
1748 -- of the Result_Small.
1749
1750 procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
1751 Rng_Check : constant Boolean := Do_Range_Check (N);
1752 Expr : constant Node_Id := Expression (N);
1753 Result_Type : constant Entity_Id := Etype (N);
1754 Small : constant Ureal := Small_Value (Result_Type);
1755 Small_Num : constant Uint := Norm_Num (Small);
1756 Small_Den : constant Uint := Norm_Den (Small);
1757 Lit : Node_Id;
1758
1759 begin
1760 if Small_Den = 1 then
1761 Lit := Integer_Literal (N, Small_Num);
1762
1763 if Present (Lit) then
1764 Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
1765 return;
1766 end if;
1767
1768 elsif Small_Num = 1 then
1769 Lit := Integer_Literal (N, Small_Den);
1770
1771 if Present (Lit) then
1772 Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
1773 return;
1774 end if;
1775 end if;
1776
1777 -- Fall through to use floating-point for the close result set case
1778 -- either as a result of the small value not being an integer or the
1779 -- reciprocal of an integer, or if the integer is out of range.
1780
1781 Set_Result (N,
1782 Build_Multiply (N,
1783 Fpt_Value (Expr),
1784 Real_Literal (N, Ureal_1 / Small)),
1785 Rng_Check);
1786
1787 end Expand_Convert_Integer_To_Fixed;
1788
1789 --------------------------------
1790 -- Expand_Decimal_Divide_Call --
1791 --------------------------------
1792
1793 -- We have four operands
1794
1795 -- Dividend
1796 -- Divisor
1797 -- Quotient
1798 -- Remainder
1799
1800 -- All of which are decimal types, and which thus have associated
1801 -- decimal scales.
1802
1803 -- Computing the quotient is a similar problem to that faced by the
1804 -- normal fixed-point division, except that it is simpler, because
1805 -- we always have compatible smalls.
1806
1807 -- Quotient = (Dividend / Divisor) * 10**q
1808
1809 -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1810 -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1811
1812 -- For q >= 0, we compute
1813
1814 -- Numerator := Dividend * 10 ** q
1815 -- Denominator := Divisor
1816 -- Quotient := Numerator / Denominator
1817
1818 -- For q < 0, we compute
1819
1820 -- Numerator := Dividend
1821 -- Denominator := Divisor * 10 ** q
1822 -- Quotient := Numerator / Denominator
1823
1824 -- Both these divisions are done in truncated mode, and the remainder
1825 -- from these divisions is used to compute the result Remainder. This
1826 -- remainder has the effective scale of the numerator of the division,
1827
1828 -- For q >= 0, the remainder scale is Dividend'Scale + q
1829 -- For q < 0, the remainder scale is Dividend'Scale
1830
1831 -- The result Remainder is then computed by a normal truncating decimal
1832 -- conversion from this scale to the scale of the remainder, i.e. by a
1833 -- division or multiplication by the appropriate power of 10.
1834
1835 procedure Expand_Decimal_Divide_Call (N : Node_Id) is
1836 Loc : constant Source_Ptr := Sloc (N);
1837
1838 Dividend : Node_Id := First_Actual (N);
1839 Divisor : Node_Id := Next_Actual (Dividend);
1840 Quotient : Node_Id := Next_Actual (Divisor);
1841 Remainder : Node_Id := Next_Actual (Quotient);
1842
1843 Dividend_Type : constant Entity_Id := Etype (Dividend);
1844 Divisor_Type : constant Entity_Id := Etype (Divisor);
1845 Quotient_Type : constant Entity_Id := Etype (Quotient);
1846 Remainder_Type : constant Entity_Id := Etype (Remainder);
1847
1848 Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
1849 Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
1850 Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
1851 Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
1852
1853 Q : Uint;
1854 Numerator_Scale : Uint;
1855 Stmts : List_Id;
1856 Qnn : Entity_Id;
1857 Rnn : Entity_Id;
1858 Computed_Remainder : Node_Id;
1859 Adjusted_Remainder : Node_Id;
1860 Scale_Adjust : Uint;
1861
1862 begin
1863 -- Relocate the operands, since they are now list elements, and we
1864 -- need to reference them separately as operands in the expanded code.
1865
1866 Dividend := Relocate_Node (Dividend);
1867 Divisor := Relocate_Node (Divisor);
1868 Quotient := Relocate_Node (Quotient);
1869 Remainder := Relocate_Node (Remainder);
1870
1871 -- Now compute Q, the adjustment scale
1872
1873 Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
1874
1875 -- If Q is non-negative then we need a scaled divide
1876
1877 if Q >= 0 then
1878 Build_Scaled_Divide_Code
1879 (N,
1880 Dividend,
1881 Integer_Literal (N, Uint_10 ** Q),
1882 Divisor,
1883 Qnn, Rnn, Stmts);
1884
1885 Numerator_Scale := Dividend_Scale + Q;
1886
1887 -- If Q is negative, then we need a double divide
1888
1889 else
1890 Build_Double_Divide_Code
1891 (N,
1892 Dividend,
1893 Divisor,
1894 Integer_Literal (N, Uint_10 ** (-Q)),
1895 Qnn, Rnn, Stmts);
1896
1897 Numerator_Scale := Dividend_Scale;
1898 end if;
1899
1900 -- Add statement to set quotient value
1901
1902 -- Quotient := quotient-type!(Qnn);
1903
1904 Append_To (Stmts,
1905 Make_Assignment_Statement (Loc,
1906 Name => Quotient,
1907 Expression =>
1908 Unchecked_Convert_To (Quotient_Type,
1909 Build_Conversion (N, Quotient_Type,
1910 New_Occurrence_Of (Qnn, Loc)))));
1911
1912 -- Now we need to deal with computing and setting the remainder. The
1913 -- scale of the remainder is in Numerator_Scale, and the desired
1914 -- scale is the scale of the given Remainder argument. There are
1915 -- three cases:
1916
1917 -- Numerator_Scale > Remainder_Scale
1918
1919 -- in this case, there are extra digits in the computed remainder
1920 -- which must be eliminated by an extra division:
1921
1922 -- computed-remainder := Numerator rem Denominator
1923 -- scale_adjust = Numerator_Scale - Remainder_Scale
1924 -- adjusted-remainder := computed-remainder / 10 ** scale_adjust
1925
1926 -- Numerator_Scale = Remainder_Scale
1927
1928 -- in this case, the we have the remainder we need
1929
1930 -- computed-remainder := Numerator rem Denominator
1931 -- adjusted-remainder := computed-remainder
1932
1933 -- Numerator_Scale < Remainder_Scale
1934
1935 -- in this case, we have insufficient digits in the computed
1936 -- remainder, which must be eliminated by an extra multiply
1937
1938 -- computed-remainder := Numerator rem Denominator
1939 -- scale_adjust = Remainder_Scale - Numerator_Scale
1940 -- adjusted-remainder := computed-remainder * 10 ** scale_adjust
1941
1942 -- Finally we assign the adjusted-remainder to the result Remainder
1943 -- with conversions to get the proper fixed-point type representation.
1944
1945 Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
1946
1947 if Numerator_Scale > Remainder_Scale then
1948 Scale_Adjust := Numerator_Scale - Remainder_Scale;
1949 Adjusted_Remainder :=
1950 Build_Divide
1951 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1952
1953 elsif Numerator_Scale = Remainder_Scale then
1954 Adjusted_Remainder := Computed_Remainder;
1955
1956 else -- Numerator_Scale < Remainder_Scale
1957 Scale_Adjust := Remainder_Scale - Numerator_Scale;
1958 Adjusted_Remainder :=
1959 Build_Multiply
1960 (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
1961 end if;
1962
1963 -- Assignment of remainder result
1964
1965 Append_To (Stmts,
1966 Make_Assignment_Statement (Loc,
1967 Name => Remainder,
1968 Expression =>
1969 Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
1970
1971 -- Final step is to rewrite the call with a block containing the
1972 -- above sequence of constructed statements for the divide operation.
1973
1974 Rewrite (N,
1975 Make_Block_Statement (Loc,
1976 Handled_Statement_Sequence =>
1977 Make_Handled_Sequence_Of_Statements (Loc,
1978 Statements => Stmts)));
1979
1980 Analyze (N);
1981
1982 end Expand_Decimal_Divide_Call;
1983
1984 -----------------------------------------------
1985 -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
1986 -----------------------------------------------
1987
1988 procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
1989 Left : constant Node_Id := Left_Opnd (N);
1990 Right : constant Node_Id := Right_Opnd (N);
1991
1992 begin
07fc65c4
GB
1993 -- Suppress expansion of a fixed-by-fixed division if the
1994 -- operation is supported directly by the target.
1995
1996 if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
1997 return;
1998 end if;
1999
70482933
RK
2000 if Etype (Left) = Universal_Real then
2001 Do_Divide_Universal_Fixed (N);
2002
2003 elsif Etype (Right) = Universal_Real then
2004 Do_Divide_Fixed_Universal (N);
2005
2006 else
2007 Do_Divide_Fixed_Fixed (N);
2008 end if;
2009
2010 end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
2011
2012 -----------------------------------------------
2013 -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
2014 -----------------------------------------------
2015
2016 -- The division is done in long_long_float, and the result is multiplied
2017 -- by the small ratio, which is Small (Right) / Small (Left). Special
2018 -- treatment is required for universal operands, which represent their
2019 -- own value and do not require conversion.
2020
2021 procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2022 Left : constant Node_Id := Left_Opnd (N);
2023 Right : constant Node_Id := Right_Opnd (N);
2024
2025 Left_Type : constant Entity_Id := Etype (Left);
2026 Right_Type : constant Entity_Id := Etype (Right);
2027
2028 begin
2029 -- Case of left operand is universal real, the result we want is:
2030
2031 -- Left_Value / (Right_Value * Right_Small)
2032
2033 -- so we compute this as:
2034
2035 -- (Left_Value / Right_Small) / Right_Value
2036
2037 if Left_Type = Universal_Real then
2038 Set_Result (N,
2039 Build_Divide (N,
2040 Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
2041 Fpt_Value (Right)));
2042
2043 -- Case of right operand is universal real, the result we want is
2044
2045 -- (Left_Value * Left_Small) / Right_Value
2046
2047 -- so we compute this as:
2048
2049 -- Left_Value * (Left_Small / Right_Value)
2050
2051 -- Note we invert to a multiplication since usually floating-point
2052 -- multiplication is much faster than floating-point division.
2053
2054 elsif Right_Type = Universal_Real then
2055 Set_Result (N,
2056 Build_Multiply (N,
2057 Fpt_Value (Left),
2058 Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
2059
2060 -- Both operands are fixed, so the value we want is
2061
2062 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
2063
2064 -- which we compute as:
2065
2066 -- (Left_Value / Right_Value) * (Left_Small / Right_Small)
2067
2068 else
2069 Set_Result (N,
2070 Build_Multiply (N,
2071 Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
2072 Real_Literal (N,
2073 Small_Value (Left_Type) / Small_Value (Right_Type))));
2074 end if;
2075
2076 end Expand_Divide_Fixed_By_Fixed_Giving_Float;
2077
2078 -------------------------------------------------
2079 -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2080 -------------------------------------------------
2081
2082 procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2083 Left : constant Node_Id := Left_Opnd (N);
2084 Right : constant Node_Id := Right_Opnd (N);
2085
2086 begin
2087 if Etype (Left) = Universal_Real then
2088 Do_Divide_Universal_Fixed (N);
2089
2090 elsif Etype (Right) = Universal_Real then
2091 Do_Divide_Fixed_Universal (N);
2092
2093 else
2094 Do_Divide_Fixed_Fixed (N);
2095 end if;
2096
2097 end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
2098
2099 -------------------------------------------------
2100 -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2101 -------------------------------------------------
2102
2103 -- Since the operand and result fixed-point type is the same, this is
2104 -- a straight divide by the right operand, the small can be ignored.
2105
2106 procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2107 Left : constant Node_Id := Left_Opnd (N);
2108 Right : constant Node_Id := Right_Opnd (N);
2109
2110 begin
2111 Set_Result (N, Build_Divide (N, Left, Right));
2112 end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
2113
2114 -------------------------------------------------
2115 -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2116 -------------------------------------------------
2117
2118 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
2119 Left : constant Node_Id := Left_Opnd (N);
2120 Right : constant Node_Id := Right_Opnd (N);
2121
3c72bea4
ES
2122 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
2123 -- The operand may be a non-static universal value, such an
2124 -- exponentiation with a non-static exponent. In that case, treat
2125 -- as a fixed * fixed multiplication, and convert the argument to
2126 -- the target fixed type.
2127
2128 procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
2129 Loc : constant Source_Ptr := Sloc (N);
2130
2131 begin
2132 Rewrite (Opnd,
2133 Make_Type_Conversion (Loc,
2134 Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
2135 Expression => Expression (Opnd)));
2136 Analyze_And_Resolve (Opnd, Etype (N));
2137 end Rewrite_Non_Static_Universal;
2138
70482933 2139 begin
07fc65c4
GB
2140 -- Suppress expansion of a fixed-by-fixed multiplication if the
2141 -- operation is supported directly by the target.
2142
2143 if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
2144 return;
2145 end if;
2146
70482933 2147 if Etype (Left) = Universal_Real then
3c72bea4
ES
2148 if Nkind (Left) = N_Real_Literal then
2149 Do_Multiply_Fixed_Universal (N, Right, Left);
2150
2151 elsif Nkind (Left) = N_Type_Conversion then
2152 Rewrite_Non_Static_Universal (Left);
2153 Do_Multiply_Fixed_Fixed (N);
2154 end if;
70482933
RK
2155
2156 elsif Etype (Right) = Universal_Real then
3c72bea4
ES
2157 if Nkind (Right) = N_Real_Literal then
2158 Do_Multiply_Fixed_Universal (N, Left, Right);
2159
2160 elsif Nkind (Right) = N_Type_Conversion then
2161 Rewrite_Non_Static_Universal (Right);
2162 Do_Multiply_Fixed_Fixed (N);
2163 end if;
70482933
RK
2164
2165 else
2166 Do_Multiply_Fixed_Fixed (N);
2167 end if;
2168
2169 end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
2170
2171 -------------------------------------------------
2172 -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2173 -------------------------------------------------
2174
2175 -- The multiply is done in long_long_float, and the result is multiplied
2176 -- by the adjustment for the smalls which is Small (Right) * Small (Left).
2177 -- Special treatment is required for universal operands.
2178
2179 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
2180 Left : constant Node_Id := Left_Opnd (N);
2181 Right : constant Node_Id := Right_Opnd (N);
2182
2183 Left_Type : constant Entity_Id := Etype (Left);
2184 Right_Type : constant Entity_Id := Etype (Right);
2185
2186 begin
2187 -- Case of left operand is universal real, the result we want is
2188
2189 -- Left_Value * (Right_Value * Right_Small)
2190
2191 -- so we compute this as:
2192
2193 -- (Left_Value * Right_Small) * Right_Value;
2194
2195 if Left_Type = Universal_Real then
2196 Set_Result (N,
2197 Build_Multiply (N,
2198 Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
2199 Fpt_Value (Right)));
2200
2201 -- Case of right operand is universal real, the result we want is
2202
2203 -- (Left_Value * Left_Small) * Right_Value
2204
2205 -- so we compute this as:
2206
2207 -- Left_Value * (Left_Small * Right_Value)
2208
2209 elsif Right_Type = Universal_Real then
2210 Set_Result (N,
2211 Build_Multiply (N,
2212 Fpt_Value (Left),
2213 Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
2214
2215 -- Both operands are fixed, so the value we want is
2216
2217 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
2218
2219 -- which we compute as:
2220
2221 -- (Left_Value * Right_Value) * (Right_Small * Left_Small)
2222
2223 else
2224 Set_Result (N,
2225 Build_Multiply (N,
2226 Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
2227 Real_Literal (N,
2228 Small_Value (Right_Type) * Small_Value (Left_Type))));
2229 end if;
2230
2231 end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
2232
2233 ---------------------------------------------------
2234 -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2235 ---------------------------------------------------
2236
2237 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
2238 Left : constant Node_Id := Left_Opnd (N);
2239 Right : constant Node_Id := Right_Opnd (N);
2240
2241 begin
2242 if Etype (Left) = Universal_Real then
2243 Do_Multiply_Fixed_Universal (N, Right, Left);
2244
2245 elsif Etype (Right) = Universal_Real then
2246 Do_Multiply_Fixed_Universal (N, Left, Right);
2247
2248 else
2249 Do_Multiply_Fixed_Fixed (N);
2250 end if;
2251
2252 end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
2253
2254 ---------------------------------------------------
2255 -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2256 ---------------------------------------------------
2257
2258 -- Since the operand and result fixed-point type is the same, this is
2259 -- a straight multiply by the right operand, the small can be ignored.
2260
2261 procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
2262 begin
2263 Set_Result (N,
2264 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2265 end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
2266
2267 ---------------------------------------------------
2268 -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2269 ---------------------------------------------------
2270
2271 -- Since the operand and result fixed-point type is the same, this is
2272 -- a straight multiply by the right operand, the small can be ignored.
2273
2274 procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
2275 begin
2276 Set_Result (N,
2277 Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
2278 end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
2279
2280 ---------------
2281 -- Fpt_Value --
2282 ---------------
2283
2284 function Fpt_Value (N : Node_Id) return Node_Id is
2285 Typ : constant Entity_Id := Etype (N);
2286
2287 begin
2288 if Is_Integer_Type (Typ)
2289 or else Is_Floating_Point_Type (Typ)
2290 then
2291 return
2292 Build_Conversion
2293 (N, Standard_Long_Long_Float, N);
2294
2295 -- Fixed-point case, must get integer value first
2296
2297 else
2298 return
2299 Build_Conversion (N, Standard_Long_Long_Float, N);
2300 end if;
2301
2302 end Fpt_Value;
2303
2304 ---------------------
2305 -- Integer_Literal --
2306 ---------------------
2307
2308 function Integer_Literal (N : Node_Id; V : Uint) return Node_Id is
2309 T : Entity_Id;
2310 L : Node_Id;
2311
2312 begin
2313 if V < Uint_2 ** 7 then
2314 T := Standard_Integer_8;
2315
2316 elsif V < Uint_2 ** 15 then
2317 T := Standard_Integer_16;
2318
2319 elsif V < Uint_2 ** 31 then
2320 T := Standard_Integer_32;
2321
2322 elsif V < Uint_2 ** 63 then
2323 T := Standard_Integer_64;
2324
2325 else
2326 return Empty;
2327 end if;
2328
2329 L := Make_Integer_Literal (Sloc (N), V);
2330
2331 -- Set type of result in case used elsewhere (see note at start)
2332
2333 Set_Etype (L, T);
2334 Set_Is_Static_Expression (L);
2335
2336 -- We really need to set Analyzed here because we may be creating a
2337 -- very strange beast, namely an integer literal typed as fixed-point
2338 -- and the analyzer won't like that. Probably we should allow the
2339 -- Treat_Fixed_As_Integer flag to appear on integer literal nodes
2340 -- and teach the analyzer how to handle them ???
2341
2342 Set_Analyzed (L);
2343 return L;
70482933
RK
2344 end Integer_Literal;
2345
2346 ------------------
2347 -- Real_Literal --
2348 ------------------
2349
2350 function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
2351 L : Node_Id;
2352
2353 begin
2354 L := Make_Real_Literal (Sloc (N), V);
2355
2356 -- Set type of result in case used elsewhere (see note at start)
2357
2358 Set_Etype (L, Standard_Long_Long_Float);
2359 return L;
2360 end Real_Literal;
2361
2362 ------------------------
2363 -- Rounded_Result_Set --
2364 ------------------------
2365
2366 function Rounded_Result_Set (N : Node_Id) return Boolean is
2367 K : constant Node_Kind := Nkind (N);
2368
2369 begin
2370 if (K = N_Type_Conversion or else
2371 K = N_Op_Divide or else
2372 K = N_Op_Multiply)
2373 and then Rounded_Result (N)
2374 then
2375 return True;
2376 else
2377 return False;
2378 end if;
2379 end Rounded_Result_Set;
2380
2381 ----------------
2382 -- Set_Result --
2383 ----------------
2384
2385 procedure Set_Result
2386 (N : Node_Id;
2387 Expr : Node_Id;
2388 Rchk : Boolean := False)
2389 is
2390 Cnode : Node_Id;
2391
2392 Expr_Type : constant Entity_Id := Etype (Expr);
2393 Result_Type : constant Entity_Id := Etype (N);
2394
2395 begin
2396 -- No conversion required if types match and no range check
2397
2398 if Result_Type = Expr_Type and then not Rchk then
2399 Cnode := Expr;
2400
2401 -- Else perform required conversion
2402
2403 else
2404 Cnode := Build_Conversion (N, Result_Type, Expr, Rchk);
2405 end if;
2406
2407 Rewrite (N, Cnode);
2408 Analyze_And_Resolve (N, Result_Type);
2409
2410 end Set_Result;
2411
2412end Exp_Fixd;