]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
[optabs.c] Fix PR 67989: Handle const0_rtx target in expand_atomic_compare_and_swap
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
60a4a5af 9-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
175a6969 29with Debug; use Debug;
d6f39728 30with Einfo; use Einfo;
d00681a7 31with Elists; use Elists;
d6f39728 32with Errout; use Errout;
d00681a7 33with Exp_Disp; use Exp_Disp;
d6f39728 34with Exp_Tss; use Exp_Tss;
35with Exp_Util; use Exp_Util;
37c6552c 36with Freeze; use Freeze;
f9e26ff7 37with Ghost; use Ghost;
d6f39728 38with Lib; use Lib;
83f8f0a6 39with Lib.Xref; use Lib.Xref;
15ebb600 40with Namet; use Namet;
d6f39728 41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
e0521a36 44with Restrict; use Restrict;
45with Rident; use Rident;
d6f39728 46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
d60c9ff7 48with Sem_Aux; use Sem_Aux;
be9124d0 49with Sem_Case; use Sem_Case;
40ca69b9 50with Sem_Ch3; use Sem_Ch3;
490beba6 51with Sem_Ch6; use Sem_Ch6;
d6f39728 52with Sem_Ch8; use Sem_Ch8;
85696508 53with Sem_Dim; use Sem_Dim;
85377c9b 54with Sem_Disp; use Sem_Disp;
d6f39728 55with Sem_Eval; use Sem_Eval;
51ea9c94 56with Sem_Prag; use Sem_Prag;
d6f39728 57with Sem_Res; use Sem_Res;
58with Sem_Type; use Sem_Type;
59with Sem_Util; use Sem_Util;
44e4341e 60with Sem_Warn; use Sem_Warn;
1e3c4ae6 61with Sinput; use Sinput;
9dfe12ae 62with Snames; use Snames;
d6f39728 63with Stand; use Stand;
64with Sinfo; use Sinfo;
5b5df4a9 65with Stringt; use Stringt;
93735cb8 66with Targparm; use Targparm;
d6f39728 67with Ttypes; use Ttypes;
68with Tbuild; use Tbuild;
69with Urealp; use Urealp;
f42f24d7 70with Warnsw; use Warnsw;
d6f39728 71
bfa5a9d9 72with GNAT.Heap_Sort_G;
d6f39728 73
74package body Sem_Ch13 is
75
76 SSU : constant Pos := System_Storage_Unit;
77 -- Convenient short hand for commonly used constant
78
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
82
1d366b32 83 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
84 -- This routine is called after setting one of the sizes of type entity
85 -- Typ to Size. The purpose is to deal with the situation of a derived
86 -- type whose inherited alignment is no longer appropriate for the new
87 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 88
eb66e842 89 procedure Build_Discrete_Static_Predicate
d97beb2f 90 (Typ : Entity_Id;
91 Expr : Node_Id;
92 Nam : Name_Id);
d7c2851f 93 -- Given a predicated type Typ, where Typ is a discrete static subtype,
94 -- whose predicate expression is Expr, tests if Expr is a static predicate,
95 -- and if so, builds the predicate range list. Nam is the name of the one
96 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 97 -- predicate expression have been replaced by identifier references to this
d7c2851f 98 -- name, which is unique, so any identifier with Chars matching Nam must be
99 -- a reference to the type. If the predicate is non-static, this procedure
100 -- returns doing nothing. If the predicate is static, then the predicate
5c6a5792 101 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
102 -- rewritten as a canonicalized membership operation.
d97beb2f 103
eb66e842 104 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
105 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
106 -- then either there are pragma Predicate entries on the rep chain for the
107 -- type (note that Predicate aspects are converted to pragma Predicate), or
108 -- there are inherited aspects from a parent type, or ancestor subtypes.
109 -- This procedure builds the spec and body for the Predicate function that
110 -- tests these predicates. N is the freeze node for the type. The spec of
111 -- the function is inserted before the freeze node, and the body of the
112 -- function is inserted after the freeze node. If the predicate expression
113 -- has at least one Raise_Expression, then this procedure also builds the
114 -- M version of the predicate function for use in membership tests.
115
6653b695 116 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
117 -- Called if both Storage_Pool and Storage_Size attribute definition
118 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119
d9f6a4ee 120 procedure Freeze_Entity_Checks (N : Node_Id);
121 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
122 -- to generate appropriate semantic checks that are delayed until this
123 -- point (they had to be delayed this long for cases of delayed aspects,
124 -- e.g. analysis of statically predicated subtypes in choices, for which
5f067114 125 -- we have to be sure the subtypes in question are frozen before checking).
d9f6a4ee 126
d6f39728 127 function Get_Alignment_Value (Expr : Node_Id) return Uint;
128 -- Given the expression for an alignment value, returns the corresponding
129 -- Uint value. If the value is inappropriate, then error messages are
130 -- posted as required, and a value of No_Uint is returned.
131
132 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 133 -- A specification for a stream attribute is allowed before the full type
134 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
135 -- that do not specify a representation characteristic are operational
136 -- attributes.
d6f39728 137
3b23aaa0 138 function Is_Predicate_Static
139 (Expr : Node_Id;
140 Nam : Name_Id) return Boolean;
141 -- Given predicate expression Expr, tests if Expr is predicate-static in
142 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
143 -- name in the predicate expression have been replaced by references to
144 -- an identifier whose Chars field is Nam. This name is unique, so any
145 -- identifier with Chars matching Nam must be a reference to the type.
146 -- Returns True if the expression is predicate-static and False otherwise,
147 -- but is not in the business of setting flags or issuing error messages.
148 --
149 -- Only scalar types can have static predicates, so False is always
150 -- returned for non-scalar types.
151 --
152 -- Note: the RM seems to suggest that string types can also have static
153 -- predicates. But that really makes lttle sense as very few useful
154 -- predicates can be constructed for strings. Remember that:
155 --
156 -- "ABC" < "DEF"
157 --
158 -- is not a static expression. So even though the clearly faulty RM wording
159 -- allows the following:
160 --
161 -- subtype S is String with Static_Predicate => S < "DEF"
162 --
163 -- We can't allow this, otherwise we have predicate-static applying to a
164 -- larger class than static expressions, which was never intended.
165
44e4341e 166 procedure New_Stream_Subprogram
d6f39728 167 (N : Node_Id;
168 Ent : Entity_Id;
169 Subp : Entity_Id;
9dfe12ae 170 Nam : TSS_Name_Type);
44e4341e 171 -- Create a subprogram renaming of a given stream attribute to the
172 -- designated subprogram and then in the tagged case, provide this as a
d1a2e31b 173 -- primitive operation, or in the untagged case make an appropriate TSS
44e4341e 174 -- entry. This is more properly an expansion activity than just semantics,
d1a2e31b 175 -- but the presence of user-defined stream functions for limited types
176 -- is a legality check, which is why this takes place here rather than in
44e4341e 177 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
178 -- function to be generated.
9dfe12ae 179 --
f15731c4 180 -- To avoid elaboration anomalies with freeze nodes, for untagged types
181 -- we generate both a subprogram declaration and a subprogram renaming
182 -- declaration, so that the attribute specification is handled as a
183 -- renaming_as_body. For tagged types, the specification is one of the
184 -- primitive specs.
185
3061ffde 186 procedure Resolve_Iterable_Operation
187 (N : Node_Id;
188 Cursor : Entity_Id;
189 Typ : Entity_Id;
190 Nam : Name_Id);
191 -- If the name of a primitive operation for an Iterable aspect is
192 -- overloaded, resolve according to required signature.
193
b77e4501 194 procedure Set_Biased
195 (E : Entity_Id;
196 N : Node_Id;
197 Msg : String;
198 Biased : Boolean := True);
199 -- If Biased is True, sets Has_Biased_Representation flag for E, and
200 -- outputs a warning message at node N if Warn_On_Biased_Representation is
201 -- is True. This warning inserts the string Msg to describe the construct
202 -- causing biasing.
203
d6f39728 204 ----------------------------------------------
205 -- Table for Validate_Unchecked_Conversions --
206 ----------------------------------------------
207
208 -- The following table collects unchecked conversions for validation.
95deda50 209 -- Entries are made by Validate_Unchecked_Conversion and then the call
210 -- to Validate_Unchecked_Conversions does the actual error checking and
211 -- posting of warnings. The reason for this delayed processing is to take
212 -- advantage of back-annotations of size and alignment values performed by
213 -- the back end.
d6f39728 214
95deda50 215 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
216 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
217 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 218
d6f39728 219 type UC_Entry is record
86d32751 220 Eloc : Source_Ptr; -- node used for posting warnings
221 Source : Entity_Id; -- source type for unchecked conversion
222 Target : Entity_Id; -- target type for unchecked conversion
223 Act_Unit : Entity_Id; -- actual function instantiated
d6f39728 224 end record;
225
226 package Unchecked_Conversions is new Table.Table (
227 Table_Component_Type => UC_Entry,
228 Table_Index_Type => Int,
229 Table_Low_Bound => 1,
230 Table_Initial => 50,
231 Table_Increment => 200,
232 Table_Name => "Unchecked_Conversions");
233
83f8f0a6 234 ----------------------------------------
235 -- Table for Validate_Address_Clauses --
236 ----------------------------------------
237
238 -- If an address clause has the form
239
240 -- for X'Address use Expr
241
95deda50 242 -- where Expr is of the form Y'Address or recursively is a reference to a
243 -- constant of either of these forms, and X and Y are entities of objects,
244 -- then if Y has a smaller alignment than X, that merits a warning about
245 -- possible bad alignment. The following table collects address clauses of
246 -- this kind. We put these in a table so that they can be checked after the
247 -- back end has completed annotation of the alignments of objects, since we
248 -- can catch more cases that way.
83f8f0a6 249
250 type Address_Clause_Check_Record is record
251 N : Node_Id;
252 -- The address clause
253
254 X : Entity_Id;
255 -- The entity of the object overlaying Y
256
257 Y : Entity_Id;
258 -- The entity of the object being overlaid
d6da7448 259
260 Off : Boolean;
6fb3c314 261 -- Whether the address is offset within Y
83f8f0a6 262 end record;
263
264 package Address_Clause_Checks is new Table.Table (
265 Table_Component_Type => Address_Clause_Check_Record,
266 Table_Index_Type => Int,
267 Table_Low_Bound => 1,
268 Table_Initial => 20,
269 Table_Increment => 200,
270 Table_Name => "Address_Clause_Checks");
271
59ac57b5 272 -----------------------------------------
273 -- Adjust_Record_For_Reverse_Bit_Order --
274 -----------------------------------------
275
276 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
67278d60 277 Comp : Node_Id;
278 CC : Node_Id;
59ac57b5 279
280 begin
67278d60 281 -- Processing depends on version of Ada
59ac57b5 282
6797073f 283 -- For Ada 95, we just renumber bits within a storage unit. We do the
568b0f6a 284 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
ab19a652 285 -- Ada 83, and are free to add this extension.
6797073f 286
287 if Ada_Version < Ada_2005 then
288 Comp := First_Component_Or_Discriminant (R);
289 while Present (Comp) loop
290 CC := Component_Clause (Comp);
291
292 -- If component clause is present, then deal with the non-default
293 -- bit order case for Ada 95 mode.
294
295 -- We only do this processing for the base type, and in fact that
296 -- is important, since otherwise if there are record subtypes, we
297 -- could reverse the bits once for each subtype, which is wrong.
298
b9e61b2a 299 if Present (CC) and then Ekind (R) = E_Record_Type then
6797073f 300 declare
301 CFB : constant Uint := Component_Bit_Offset (Comp);
302 CSZ : constant Uint := Esize (Comp);
303 CLC : constant Node_Id := Component_Clause (Comp);
304 Pos : constant Node_Id := Position (CLC);
305 FB : constant Node_Id := First_Bit (CLC);
306
307 Storage_Unit_Offset : constant Uint :=
308 CFB / System_Storage_Unit;
309
310 Start_Bit : constant Uint :=
311 CFB mod System_Storage_Unit;
59ac57b5 312
6797073f 313 begin
314 -- Cases where field goes over storage unit boundary
59ac57b5 315
6797073f 316 if Start_Bit + CSZ > System_Storage_Unit then
59ac57b5 317
6797073f 318 -- Allow multi-byte field but generate warning
59ac57b5 319
6797073f 320 if Start_Bit mod System_Storage_Unit = 0
321 and then CSZ mod System_Storage_Unit = 0
322 then
323 Error_Msg_N
7a41db5b 324 ("info: multi-byte field specified with "
325 & "non-standard Bit_Order?V?", CLC);
31486bc0 326
6797073f 327 if Bytes_Big_Endian then
31486bc0 328 Error_Msg_N
7a41db5b 329 ("\bytes are not reversed "
330 & "(component is big-endian)?V?", CLC);
31486bc0 331 else
332 Error_Msg_N
7a41db5b 333 ("\bytes are not reversed "
334 & "(component is little-endian)?V?", CLC);
31486bc0 335 end if;
59ac57b5 336
6797073f 337 -- Do not allow non-contiguous field
59ac57b5 338
67278d60 339 else
6797073f 340 Error_Msg_N
341 ("attempt to specify non-contiguous field "
342 & "not permitted", CLC);
343 Error_Msg_N
344 ("\caused by non-standard Bit_Order "
345 & "specified", CLC);
346 Error_Msg_N
347 ("\consider possibility of using "
348 & "Ada 2005 mode here", CLC);
349 end if;
59ac57b5 350
6797073f 351 -- Case where field fits in one storage unit
59ac57b5 352
6797073f 353 else
354 -- Give warning if suspicious component clause
59ac57b5 355
6797073f 356 if Intval (FB) >= System_Storage_Unit
357 and then Warn_On_Reverse_Bit_Order
358 then
359 Error_Msg_N
7a41db5b 360 ("info: Bit_Order clause does not affect " &
1e3532e7 361 "byte ordering?V?", Pos);
6797073f 362 Error_Msg_Uint_1 :=
363 Intval (Pos) + Intval (FB) /
364 System_Storage_Unit;
365 Error_Msg_N
7a41db5b 366 ("info: position normalized to ^ before bit " &
1e3532e7 367 "order interpreted?V?", Pos);
6797073f 368 end if;
59ac57b5 369
6797073f 370 -- Here is where we fix up the Component_Bit_Offset value
371 -- to account for the reverse bit order. Some examples of
372 -- what needs to be done are:
bfa5a9d9 373
6797073f 374 -- First_Bit .. Last_Bit Component_Bit_Offset
375 -- old new old new
59ac57b5 376
6797073f 377 -- 0 .. 0 7 .. 7 0 7
378 -- 0 .. 1 6 .. 7 0 6
379 -- 0 .. 2 5 .. 7 0 5
380 -- 0 .. 7 0 .. 7 0 4
59ac57b5 381
6797073f 382 -- 1 .. 1 6 .. 6 1 6
383 -- 1 .. 4 3 .. 6 1 3
384 -- 4 .. 7 0 .. 3 4 0
59ac57b5 385
6797073f 386 -- The rule is that the first bit is is obtained by
387 -- subtracting the old ending bit from storage_unit - 1.
59ac57b5 388
6797073f 389 Set_Component_Bit_Offset
390 (Comp,
391 (Storage_Unit_Offset * System_Storage_Unit) +
392 (System_Storage_Unit - 1) -
393 (Start_Bit + CSZ - 1));
59ac57b5 394
6797073f 395 Set_Normalized_First_Bit
396 (Comp,
397 Component_Bit_Offset (Comp) mod
398 System_Storage_Unit);
399 end if;
400 end;
401 end if;
402
403 Next_Component_Or_Discriminant (Comp);
404 end loop;
405
406 -- For Ada 2005, we do machine scalar processing, as fully described In
407 -- AI-133. This involves gathering all components which start at the
408 -- same byte offset and processing them together. Same approach is still
409 -- valid in later versions including Ada 2012.
410
411 else
412 declare
413 Max_Machine_Scalar_Size : constant Uint :=
414 UI_From_Int
415 (Standard_Long_Long_Integer_Size);
67278d60 416 -- We use this as the maximum machine scalar size
59ac57b5 417
6797073f 418 Num_CC : Natural;
419 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
59ac57b5 420
6797073f 421 begin
422 -- This first loop through components does two things. First it
423 -- deals with the case of components with component clauses whose
424 -- length is greater than the maximum machine scalar size (either
425 -- accepting them or rejecting as needed). Second, it counts the
426 -- number of components with component clauses whose length does
427 -- not exceed this maximum for later processing.
67278d60 428
6797073f 429 Num_CC := 0;
430 Comp := First_Component_Or_Discriminant (R);
431 while Present (Comp) loop
432 CC := Component_Clause (Comp);
67278d60 433
6797073f 434 if Present (CC) then
435 declare
1e3532e7 436 Fbit : constant Uint := Static_Integer (First_Bit (CC));
437 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
67278d60 438
6797073f 439 begin
b38e4131 440 -- Case of component with last bit >= max machine scalar
67278d60 441
b38e4131 442 if Lbit >= Max_Machine_Scalar_Size then
67278d60 443
b38e4131 444 -- This is allowed only if first bit is zero, and
445 -- last bit + 1 is a multiple of storage unit size.
67278d60 446
b38e4131 447 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
67278d60 448
b38e4131 449 -- This is the case to give a warning if enabled
67278d60 450
b38e4131 451 if Warn_On_Reverse_Bit_Order then
452 Error_Msg_N
7a41db5b 453 ("info: multi-byte field specified with "
1e3532e7 454 & " non-standard Bit_Order?V?", CC);
b38e4131 455
456 if Bytes_Big_Endian then
457 Error_Msg_N
458 ("\bytes are not reversed "
1e3532e7 459 & "(component is big-endian)?V?", CC);
b38e4131 460 else
461 Error_Msg_N
462 ("\bytes are not reversed "
1e3532e7 463 & "(component is little-endian)?V?", CC);
b38e4131 464 end if;
465 end if;
67278d60 466
7eb0e22f 467 -- Give error message for RM 13.5.1(10) violation
67278d60 468
b38e4131 469 else
470 Error_Msg_FE
471 ("machine scalar rules not followed for&",
472 First_Bit (CC), Comp);
67278d60 473
0c978552 474 Error_Msg_Uint_1 := Lbit + 1;
b38e4131 475 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
476 Error_Msg_F
0c978552 477 ("\last bit + 1 (^) exceeds maximum machine "
b38e4131 478 & "scalar size (^)",
479 First_Bit (CC));
67278d60 480
b38e4131 481 if (Lbit + 1) mod SSU /= 0 then
482 Error_Msg_Uint_1 := SSU;
483 Error_Msg_F
484 ("\and is not a multiple of Storage_Unit (^) "
0c978552 485 & "(RM 13.5.1(10))",
b38e4131 486 First_Bit (CC));
6797073f 487
6797073f 488 else
b38e4131 489 Error_Msg_Uint_1 := Fbit;
490 Error_Msg_F
491 ("\and first bit (^) is non-zero "
0cafb066 492 & "(RM 13.4.1(10))",
b38e4131 493 First_Bit (CC));
67278d60 494 end if;
6797073f 495 end if;
59ac57b5 496
b38e4131 497 -- OK case of machine scalar related component clause,
498 -- For now, just count them.
59ac57b5 499
6797073f 500 else
501 Num_CC := Num_CC + 1;
502 end if;
503 end;
504 end if;
59ac57b5 505
6797073f 506 Next_Component_Or_Discriminant (Comp);
507 end loop;
59ac57b5 508
6797073f 509 -- We need to sort the component clauses on the basis of the
510 -- Position values in the clause, so we can group clauses with
4a87c513 511 -- the same Position together to determine the relevant machine
6797073f 512 -- scalar size.
59ac57b5 513
6797073f 514 Sort_CC : declare
515 Comps : array (0 .. Num_CC) of Entity_Id;
516 -- Array to collect component and discriminant entities. The
517 -- data starts at index 1, the 0'th entry is for the sort
518 -- routine.
59ac57b5 519
6797073f 520 function CP_Lt (Op1, Op2 : Natural) return Boolean;
521 -- Compare routine for Sort
59ac57b5 522
6797073f 523 procedure CP_Move (From : Natural; To : Natural);
524 -- Move routine for Sort
59ac57b5 525
6797073f 526 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 527
6797073f 528 Start : Natural;
529 Stop : Natural;
530 -- Start and stop positions in the component list of the set of
531 -- components with the same starting position (that constitute
532 -- components in a single machine scalar).
59ac57b5 533
6797073f 534 MaxL : Uint;
535 -- Maximum last bit value of any component in this set
59ac57b5 536
6797073f 537 MSS : Uint;
538 -- Corresponding machine scalar size
67278d60 539
6797073f 540 -----------
541 -- CP_Lt --
542 -----------
67278d60 543
6797073f 544 function CP_Lt (Op1, Op2 : Natural) return Boolean is
545 begin
546 return Position (Component_Clause (Comps (Op1))) <
547 Position (Component_Clause (Comps (Op2)));
548 end CP_Lt;
67278d60 549
6797073f 550 -------------
551 -- CP_Move --
552 -------------
67278d60 553
6797073f 554 procedure CP_Move (From : Natural; To : Natural) is
555 begin
556 Comps (To) := Comps (From);
557 end CP_Move;
67278d60 558
4a87c513 559 -- Start of processing for Sort_CC
59ac57b5 560
6797073f 561 begin
b38e4131 562 -- Collect the machine scalar relevant component clauses
59ac57b5 563
6797073f 564 Num_CC := 0;
565 Comp := First_Component_Or_Discriminant (R);
566 while Present (Comp) loop
b38e4131 567 declare
568 CC : constant Node_Id := Component_Clause (Comp);
569
570 begin
571 -- Collect only component clauses whose last bit is less
572 -- than machine scalar size. Any component clause whose
573 -- last bit exceeds this value does not take part in
574 -- machine scalar layout considerations. The test for
575 -- Error_Posted makes sure we exclude component clauses
576 -- for which we already posted an error.
577
578 if Present (CC)
579 and then not Error_Posted (Last_Bit (CC))
580 and then Static_Integer (Last_Bit (CC)) <
d64221a7 581 Max_Machine_Scalar_Size
b38e4131 582 then
583 Num_CC := Num_CC + 1;
584 Comps (Num_CC) := Comp;
585 end if;
586 end;
59ac57b5 587
6797073f 588 Next_Component_Or_Discriminant (Comp);
589 end loop;
67278d60 590
6797073f 591 -- Sort by ascending position number
67278d60 592
6797073f 593 Sorting.Sort (Num_CC);
67278d60 594
6797073f 595 -- We now have all the components whose size does not exceed
596 -- the max machine scalar value, sorted by starting position.
597 -- In this loop we gather groups of clauses starting at the
598 -- same position, to process them in accordance with AI-133.
67278d60 599
6797073f 600 Stop := 0;
601 while Stop < Num_CC loop
602 Start := Stop + 1;
603 Stop := Start;
604 MaxL :=
605 Static_Integer
606 (Last_Bit (Component_Clause (Comps (Start))));
67278d60 607 while Stop < Num_CC loop
6797073f 608 if Static_Integer
609 (Position (Component_Clause (Comps (Stop + 1)))) =
610 Static_Integer
611 (Position (Component_Clause (Comps (Stop))))
612 then
613 Stop := Stop + 1;
614 MaxL :=
615 UI_Max
616 (MaxL,
617 Static_Integer
618 (Last_Bit
619 (Component_Clause (Comps (Stop)))));
620 else
621 exit;
622 end if;
623 end loop;
67278d60 624
6797073f 625 -- Now we have a group of component clauses from Start to
626 -- Stop whose positions are identical, and MaxL is the
627 -- maximum last bit value of any of these components.
628
629 -- We need to determine the corresponding machine scalar
630 -- size. This loop assumes that machine scalar sizes are
631 -- even, and that each possible machine scalar has twice
632 -- as many bits as the next smaller one.
633
634 MSS := Max_Machine_Scalar_Size;
635 while MSS mod 2 = 0
636 and then (MSS / 2) >= SSU
637 and then (MSS / 2) > MaxL
638 loop
639 MSS := MSS / 2;
640 end loop;
67278d60 641
6797073f 642 -- Here is where we fix up the Component_Bit_Offset value
643 -- to account for the reverse bit order. Some examples of
644 -- what needs to be done for the case of a machine scalar
645 -- size of 8 are:
67278d60 646
6797073f 647 -- First_Bit .. Last_Bit Component_Bit_Offset
648 -- old new old new
67278d60 649
6797073f 650 -- 0 .. 0 7 .. 7 0 7
651 -- 0 .. 1 6 .. 7 0 6
652 -- 0 .. 2 5 .. 7 0 5
653 -- 0 .. 7 0 .. 7 0 4
67278d60 654
6797073f 655 -- 1 .. 1 6 .. 6 1 6
656 -- 1 .. 4 3 .. 6 1 3
657 -- 4 .. 7 0 .. 3 4 0
67278d60 658
6797073f 659 -- The rule is that the first bit is obtained by subtracting
660 -- the old ending bit from machine scalar size - 1.
67278d60 661
6797073f 662 for C in Start .. Stop loop
663 declare
664 Comp : constant Entity_Id := Comps (C);
b9e61b2a 665 CC : constant Node_Id := Component_Clause (Comp);
666
667 LB : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 668 NFB : constant Uint := MSS - Uint_1 - LB;
669 NLB : constant Uint := NFB + Esize (Comp) - 1;
b9e61b2a 670 Pos : constant Uint := Static_Integer (Position (CC));
67278d60 671
6797073f 672 begin
673 if Warn_On_Reverse_Bit_Order then
674 Error_Msg_Uint_1 := MSS;
675 Error_Msg_N
676 ("info: reverse bit order in machine " &
1e3532e7 677 "scalar of length^?V?", First_Bit (CC));
6797073f 678 Error_Msg_Uint_1 := NFB;
679 Error_Msg_Uint_2 := NLB;
680
681 if Bytes_Big_Endian then
682 Error_Msg_NE
7a41db5b 683 ("\big-endian range for component "
684 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
6797073f 685 else
686 Error_Msg_NE
7a41db5b 687 ("\little-endian range for component"
688 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
67278d60 689 end if;
6797073f 690 end if;
67278d60 691
6797073f 692 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
693 Set_Normalized_First_Bit (Comp, NFB mod SSU);
694 end;
67278d60 695 end loop;
6797073f 696 end loop;
697 end Sort_CC;
698 end;
699 end if;
59ac57b5 700 end Adjust_Record_For_Reverse_Bit_Order;
701
1d366b32 702 -------------------------------------
703 -- Alignment_Check_For_Size_Change --
704 -------------------------------------
d6f39728 705
1d366b32 706 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 707 begin
708 -- If the alignment is known, and not set by a rep clause, and is
709 -- inconsistent with the size being set, then reset it to unknown,
710 -- we assume in this case that the size overrides the inherited
711 -- alignment, and that the alignment must be recomputed.
712
713 if Known_Alignment (Typ)
714 and then not Has_Alignment_Clause (Typ)
1d366b32 715 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 716 then
717 Init_Alignment (Typ);
718 end if;
1d366b32 719 end Alignment_Check_For_Size_Change;
d6f39728 720
06ef5f86 721 -------------------------------------
722 -- Analyze_Aspects_At_Freeze_Point --
723 -------------------------------------
724
725 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
726 ASN : Node_Id;
727 A_Id : Aspect_Id;
728 Ritem : Node_Id;
729
730 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
731 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
732 -- the aspect specification node ASN.
733
37c6e44c 734 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
735 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
736 -- a derived type can inherit aspects from its parent which have been
737 -- specified at the time of the derivation using an aspect, as in:
738 --
739 -- type A is range 1 .. 10
740 -- with Size => Not_Defined_Yet;
741 -- ..
742 -- type B is new A;
743 -- ..
744 -- Not_Defined_Yet : constant := 64;
745 --
746 -- In this example, the Size of A is considered to be specified prior
747 -- to the derivation, and thus inherited, even though the value is not
748 -- known at the time of derivation. To deal with this, we use two entity
749 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
750 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
751 -- the derived type (B here). If this flag is set when the derived type
752 -- is frozen, then this procedure is called to ensure proper inheritance
b21edad9 753 -- of all delayed aspects from the parent type. The derived type is E,
37c6e44c 754 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
755 -- aspect specification node in the Rep_Item chain for the parent type.
756
06ef5f86 757 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
758 -- Given an aspect specification node ASN whose expression is an
759 -- optional Boolean, this routines creates the corresponding pragma
760 -- at the freezing point.
761
762 ----------------------------------
763 -- Analyze_Aspect_Default_Value --
764 ----------------------------------
765
766 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
767 Ent : constant Entity_Id := Entity (ASN);
768 Expr : constant Node_Id := Expression (ASN);
769 Id : constant Node_Id := Identifier (ASN);
770
771 begin
772 Error_Msg_Name_1 := Chars (Id);
773
774 if not Is_Type (Ent) then
775 Error_Msg_N ("aspect% can only apply to a type", Id);
776 return;
777
778 elsif not Is_First_Subtype (Ent) then
779 Error_Msg_N ("aspect% cannot apply to subtype", Id);
780 return;
781
782 elsif A_Id = Aspect_Default_Value
783 and then not Is_Scalar_Type (Ent)
784 then
785 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
786 return;
787
788 elsif A_Id = Aspect_Default_Component_Value then
789 if not Is_Array_Type (Ent) then
790 Error_Msg_N ("aspect% can only be applied to array type", Id);
791 return;
792
793 elsif not Is_Scalar_Type (Component_Type (Ent)) then
794 Error_Msg_N ("aspect% requires scalar components", Id);
795 return;
796 end if;
797 end if;
798
799 Set_Has_Default_Aspect (Base_Type (Ent));
800
801 if Is_Scalar_Type (Ent) then
9f36e3fb 802 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
06ef5f86 803 else
f3d70f08 804 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
06ef5f86 805 end if;
806 end Analyze_Aspect_Default_Value;
807
37c6e44c 808 ---------------------------------
809 -- Inherit_Delayed_Rep_Aspects --
810 ---------------------------------
811
812 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
813 P : constant Entity_Id := Entity (ASN);
814 -- Entithy for parent type
815
816 N : Node_Id;
817 -- Item from Rep_Item chain
818
819 A : Aspect_Id;
820
821 begin
822 -- Loop through delayed aspects for the parent type
823
824 N := ASN;
825 while Present (N) loop
826 if Nkind (N) = N_Aspect_Specification then
827 exit when Entity (N) /= P;
828
829 if Is_Delayed_Aspect (N) then
830 A := Get_Aspect_Id (Chars (Identifier (N)));
831
832 -- Process delayed rep aspect. For Boolean attributes it is
833 -- not possible to cancel an attribute once set (the attempt
834 -- to use an aspect with xxx => False is an error) for a
835 -- derived type. So for those cases, we do not have to check
836 -- if a clause has been given for the derived type, since it
837 -- is harmless to set it again if it is already set.
838
839 case A is
840
841 -- Alignment
842
843 when Aspect_Alignment =>
844 if not Has_Alignment_Clause (E) then
845 Set_Alignment (E, Alignment (P));
846 end if;
847
848 -- Atomic
849
850 when Aspect_Atomic =>
851 if Is_Atomic (P) then
852 Set_Is_Atomic (E);
853 end if;
854
855 -- Atomic_Components
856
857 when Aspect_Atomic_Components =>
858 if Has_Atomic_Components (P) then
859 Set_Has_Atomic_Components (Base_Type (E));
860 end if;
861
862 -- Bit_Order
863
864 when Aspect_Bit_Order =>
865 if Is_Record_Type (E)
866 and then No (Get_Attribute_Definition_Clause
867 (E, Attribute_Bit_Order))
868 and then Reverse_Bit_Order (P)
869 then
870 Set_Reverse_Bit_Order (Base_Type (E));
871 end if;
872
873 -- Component_Size
874
875 when Aspect_Component_Size =>
876 if Is_Array_Type (E)
877 and then not Has_Component_Size_Clause (E)
878 then
879 Set_Component_Size
880 (Base_Type (E), Component_Size (P));
881 end if;
882
883 -- Machine_Radix
884
885 when Aspect_Machine_Radix =>
886 if Is_Decimal_Fixed_Point_Type (E)
887 and then not Has_Machine_Radix_Clause (E)
888 then
889 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
890 end if;
891
892 -- Object_Size (also Size which also sets Object_Size)
893
894 when Aspect_Object_Size | Aspect_Size =>
895 if not Has_Size_Clause (E)
896 and then
897 No (Get_Attribute_Definition_Clause
898 (E, Attribute_Object_Size))
899 then
900 Set_Esize (E, Esize (P));
901 end if;
902
903 -- Pack
904
905 when Aspect_Pack =>
906 if not Is_Packed (E) then
907 Set_Is_Packed (Base_Type (E));
908
909 if Is_Bit_Packed_Array (P) then
910 Set_Is_Bit_Packed_Array (Base_Type (E));
a88a5773 911 Set_Packed_Array_Impl_Type
912 (E, Packed_Array_Impl_Type (P));
37c6e44c 913 end if;
914 end if;
915
916 -- Scalar_Storage_Order
917
918 when Aspect_Scalar_Storage_Order =>
919 if (Is_Record_Type (E) or else Is_Array_Type (E))
920 and then No (Get_Attribute_Definition_Clause
e163cac8 921 (E, Attribute_Scalar_Storage_Order))
37c6e44c 922 and then Reverse_Storage_Order (P)
923 then
924 Set_Reverse_Storage_Order (Base_Type (E));
b64082f2 925
926 -- Clear default SSO indications, since the aspect
927 -- overrides the default.
928
929 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
930 Set_SSO_Set_High_By_Default (Base_Type (E), False);
37c6e44c 931 end if;
932
933 -- Small
934
935 when Aspect_Small =>
936 if Is_Fixed_Point_Type (E)
937 and then not Has_Small_Clause (E)
938 then
939 Set_Small_Value (E, Small_Value (P));
940 end if;
941
942 -- Storage_Size
943
944 when Aspect_Storage_Size =>
945 if (Is_Access_Type (E) or else Is_Task_Type (E))
946 and then not Has_Storage_Size_Clause (E)
947 then
948 Set_Storage_Size_Variable
949 (Base_Type (E), Storage_Size_Variable (P));
950 end if;
951
952 -- Value_Size
953
954 when Aspect_Value_Size =>
955
956 -- Value_Size is never inherited, it is either set by
957 -- default, or it is explicitly set for the derived
958 -- type. So nothing to do here.
959
960 null;
961
962 -- Volatile
963
964 when Aspect_Volatile =>
965 if Is_Volatile (P) then
966 Set_Is_Volatile (E);
967 end if;
968
2fe893b9 969 -- Volatile_Full_Access
970
971 when Aspect_Volatile_Full_Access =>
4bf2acc9 972 if Is_Volatile_Full_Access (P) then
973 Set_Is_Volatile_Full_Access (E);
2fe893b9 974 end if;
975
37c6e44c 976 -- Volatile_Components
977
978 when Aspect_Volatile_Components =>
979 if Has_Volatile_Components (P) then
980 Set_Has_Volatile_Components (Base_Type (E));
981 end if;
982
983 -- That should be all the Rep Aspects
984
985 when others =>
986 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
987 null;
988
989 end case;
990 end if;
991 end if;
992
993 N := Next_Rep_Item (N);
994 end loop;
995 end Inherit_Delayed_Rep_Aspects;
996
06ef5f86 997 -------------------------------------
998 -- Make_Pragma_From_Boolean_Aspect --
999 -------------------------------------
1000
1001 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1002 Ident : constant Node_Id := Identifier (ASN);
1003 A_Name : constant Name_Id := Chars (Ident);
1004 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1005 Ent : constant Entity_Id := Entity (ASN);
1006 Expr : constant Node_Id := Expression (ASN);
1007 Loc : constant Source_Ptr := Sloc (ASN);
1008
1009 Prag : Node_Id;
1010
1011 procedure Check_False_Aspect_For_Derived_Type;
1012 -- This procedure checks for the case of a false aspect for a derived
1013 -- type, which improperly tries to cancel an aspect inherited from
1014 -- the parent.
1015
1016 -----------------------------------------
1017 -- Check_False_Aspect_For_Derived_Type --
1018 -----------------------------------------
1019
1020 procedure Check_False_Aspect_For_Derived_Type is
1021 Par : Node_Id;
1022
1023 begin
1024 -- We are only checking derived types
1025
1026 if not Is_Derived_Type (E) then
1027 return;
1028 end if;
1029
1030 Par := Nearest_Ancestor (E);
1031
1032 case A_Id is
1033 when Aspect_Atomic | Aspect_Shared =>
1034 if not Is_Atomic (Par) then
1035 return;
1036 end if;
1037
1038 when Aspect_Atomic_Components =>
1039 if not Has_Atomic_Components (Par) then
1040 return;
1041 end if;
1042
1043 when Aspect_Discard_Names =>
1044 if not Discard_Names (Par) then
1045 return;
1046 end if;
1047
1048 when Aspect_Pack =>
1049 if not Is_Packed (Par) then
1050 return;
1051 end if;
1052
1053 when Aspect_Unchecked_Union =>
1054 if not Is_Unchecked_Union (Par) then
1055 return;
1056 end if;
1057
1058 when Aspect_Volatile =>
1059 if not Is_Volatile (Par) then
1060 return;
1061 end if;
1062
1063 when Aspect_Volatile_Components =>
1064 if not Has_Volatile_Components (Par) then
1065 return;
1066 end if;
1067
2fe893b9 1068 when Aspect_Volatile_Full_Access =>
4bf2acc9 1069 if not Is_Volatile_Full_Access (Par) then
2fe893b9 1070 return;
1071 end if;
1072
06ef5f86 1073 when others =>
1074 return;
1075 end case;
1076
1077 -- Fall through means we are canceling an inherited aspect
1078
1079 Error_Msg_Name_1 := A_Name;
37c6e44c 1080 Error_Msg_NE
1081 ("derived type& inherits aspect%, cannot cancel", Expr, E);
06ef5f86 1082 end Check_False_Aspect_For_Derived_Type;
1083
1084 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1085
1086 begin
37c6e44c 1087 -- Note that we know Expr is present, because for a missing Expr
1088 -- argument, we knew it was True and did not need to delay the
1089 -- evaluation to the freeze point.
1090
06ef5f86 1091 if Is_False (Static_Boolean (Expr)) then
1092 Check_False_Aspect_For_Derived_Type;
1093
1094 else
1095 Prag :=
1096 Make_Pragma (Loc,
1097 Pragma_Argument_Associations => New_List (
57cd943b 1098 Make_Pragma_Argument_Association (Sloc (Ident),
1099 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1100
06ef5f86 1101 Pragma_Identifier =>
1102 Make_Identifier (Sloc (Ident), Chars (Ident)));
1103
1104 Set_From_Aspect_Specification (Prag, True);
1105 Set_Corresponding_Aspect (Prag, ASN);
1106 Set_Aspect_Rep_Item (ASN, Prag);
1107 Set_Is_Delayed_Aspect (Prag);
1108 Set_Parent (Prag, ASN);
1109 end if;
06ef5f86 1110 end Make_Pragma_From_Boolean_Aspect;
1111
1112 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1113
1114 begin
29a9d4be 1115 -- Must be visible in current scope
06ef5f86 1116
ace3389d 1117 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 1118 return;
1119 end if;
1120
1121 -- Look for aspect specification entries for this entity
1122
1123 ASN := First_Rep_Item (E);
06ef5f86 1124 while Present (ASN) loop
37c6e44c 1125 if Nkind (ASN) = N_Aspect_Specification then
1126 exit when Entity (ASN) /= E;
06ef5f86 1127
37c6e44c 1128 if Is_Delayed_Aspect (ASN) then
1129 A_Id := Get_Aspect_Id (ASN);
1130
1131 case A_Id is
e4c87fa5 1132
37c6e44c 1133 -- For aspects whose expression is an optional Boolean, make
7d6fb253 1134 -- the corresponding pragma at the freeze point.
06ef5f86 1135
7d6fb253 1136 when Boolean_Aspects |
1137 Library_Unit_Aspects =>
1138 Make_Pragma_From_Boolean_Aspect (ASN);
06ef5f86 1139
37c6e44c 1140 -- Special handling for aspects that don't correspond to
1141 -- pragmas/attributes.
06ef5f86 1142
7d6fb253 1143 when Aspect_Default_Value |
1144 Aspect_Default_Component_Value =>
81c2bc19 1145
1146 -- Do not inherit aspect for anonymous base type of a
1147 -- scalar or array type, because they apply to the first
1148 -- subtype of the type, and will be processed when that
1149 -- first subtype is frozen.
1150
1151 if Is_Derived_Type (E)
1152 and then not Comes_From_Source (E)
1153 and then E /= First_Subtype (E)
1154 then
1155 null;
1156 else
1157 Analyze_Aspect_Default_Value (ASN);
1158 end if;
06ef5f86 1159
37c6e44c 1160 -- Ditto for iterator aspects, because the corresponding
1161 -- attributes may not have been analyzed yet.
af9fed8f 1162
7d6fb253 1163 when Aspect_Constant_Indexing |
1164 Aspect_Variable_Indexing |
1165 Aspect_Default_Iterator |
1166 Aspect_Iterator_Element =>
1167 Analyze (Expression (ASN));
af9fed8f 1168
7d6fb253 1169 if Etype (Expression (ASN)) = Any_Type then
1170 Error_Msg_NE
1171 ("\aspect must be fully defined before & is frozen",
1172 ASN, E);
1173 end if;
b3f8228a 1174
7d6fb253 1175 when Aspect_Iterable =>
1176 Validate_Iterable_Aspect (E, ASN);
1177
1178 when others =>
1179 null;
37c6e44c 1180 end case;
06ef5f86 1181
37c6e44c 1182 Ritem := Aspect_Rep_Item (ASN);
06ef5f86 1183
37c6e44c 1184 if Present (Ritem) then
1185 Analyze (Ritem);
1186 end if;
06ef5f86 1187 end if;
1188 end if;
1189
1190 Next_Rep_Item (ASN);
1191 end loop;
37c6e44c 1192
1193 -- This is where we inherit delayed rep aspects from our parent. Note
1194 -- that if we fell out of the above loop with ASN non-empty, it means
1195 -- we hit an aspect for an entity other than E, and it must be the
1196 -- type from which we were derived.
1197
1198 if May_Inherit_Delayed_Rep_Aspects (E) then
1199 Inherit_Delayed_Rep_Aspects (ASN);
1200 end if;
06ef5f86 1201 end Analyze_Aspects_At_Freeze_Point;
1202
ae888dbd 1203 -----------------------------------
1204 -- Analyze_Aspect_Specifications --
1205 -----------------------------------
1206
21ea3a4f 1207 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
e2bf777d 1208 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
6c5793cd 1209 -- Establish linkages between an aspect and its corresponding pragma
5ddd846b 1210
50e44732 1211 procedure Insert_After_SPARK_Mode
1212 (Prag : Node_Id;
1213 Ins_Nod : Node_Id;
1214 Decls : List_Id);
3dbe7a69 1215 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1216 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1217 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1218 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1219 -- reside.
e2bf777d 1220
1221 procedure Insert_Pragma (Prag : Node_Id);
1222 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1223 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1224 -- Insert pragma Prag such that it mimics the placement of a source
1225 -- pragma of the same kind.
1226 --
1227 -- procedure Proc (Formal : ...) with Global => ...;
1228 --
1229 -- procedure Proc (Formal : ...);
1230 -- pragma Global (...);
1231
1232 --------------
1233 -- Decorate --
1234 --------------
1235
1236 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5ddd846b 1237 begin
6c5793cd 1238 Set_Aspect_Rep_Item (Asp, Prag);
5ddd846b 1239 Set_Corresponding_Aspect (Prag, Asp);
1240 Set_From_Aspect_Specification (Prag);
5ddd846b 1241 Set_Parent (Prag, Asp);
e2bf777d 1242 end Decorate;
f0813d71 1243
50e44732 1244 -----------------------------
1245 -- Insert_After_SPARK_Mode --
1246 -----------------------------
1247
1248 procedure Insert_After_SPARK_Mode
1249 (Prag : Node_Id;
1250 Ins_Nod : Node_Id;
1251 Decls : List_Id)
1252 is
1253 Decl : Node_Id := Ins_Nod;
1254
1255 begin
1256 -- Skip SPARK_Mode
1257
1258 if Present (Decl)
1259 and then Nkind (Decl) = N_Pragma
1260 and then Pragma_Name (Decl) = Name_SPARK_Mode
1261 then
1262 Decl := Next (Decl);
1263 end if;
1264
1265 if Present (Decl) then
1266 Insert_Before (Decl, Prag);
1267
1268 -- Aitem acts as the last declaration
1269
1270 else
1271 Append_To (Decls, Prag);
1272 end if;
1273 end Insert_After_SPARK_Mode;
1274
e2bf777d 1275 -------------------
1276 -- Insert_Pragma --
1277 -------------------
c1006d6d 1278
e2bf777d 1279 procedure Insert_Pragma (Prag : Node_Id) is
1280 Aux : Node_Id;
1281 Decl : Node_Id;
c1006d6d 1282
1283 begin
ed695684 1284 if Nkind (N) = N_Subprogram_Body then
e2bf777d 1285 if Present (Declarations (N)) then
d324c418 1286
e2bf777d 1287 -- Skip other internally generated pragmas from aspects to find
1288 -- the proper insertion point. As a result the order of pragmas
1289 -- is the same as the order of aspects.
d324c418 1290
607bc8f5 1291 -- As precondition pragmas generated from conjuncts in the
1292 -- precondition aspect are presented in reverse order to
1293 -- Insert_Pragma, insert them in the correct order here by not
1294 -- skipping previously inserted precondition pragmas when the
1295 -- current pragma is a precondition.
1296
e2bf777d 1297 Decl := First (Declarations (N));
1298 while Present (Decl) loop
1299 if Nkind (Decl) = N_Pragma
1300 and then From_Aspect_Specification (Decl)
607bc8f5 1301 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1302 and then
1303 Get_Pragma_Id (Prag) = Pragma_Precondition)
e2bf777d 1304 then
1305 Next (Decl);
d324c418 1306 else
e2bf777d 1307 exit;
d324c418 1308 end if;
e2bf777d 1309 end loop;
1310
1311 if Present (Decl) then
1312 Insert_Before (Decl, Prag);
1313 else
1314 Append (Prag, Declarations (N));
1315 end if;
1316 else
1317 Set_Declarations (N, New_List (Prag));
d324c418 1318 end if;
c1006d6d 1319
ed695684 1320 -- When the context is a library unit, the pragma is added to the
1321 -- Pragmas_After list.
1322
1323 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1324 Aux := Aux_Decls_Node (Parent (N));
1325
1326 if No (Pragmas_After (Aux)) then
1327 Set_Pragmas_After (Aux, New_List);
1328 end if;
1329
1330 Prepend (Prag, Pragmas_After (Aux));
1331
c1006d6d 1332 -- Default
1333
1334 else
1335 Insert_After (N, Prag);
c1006d6d 1336 end if;
e2bf777d 1337 end Insert_Pragma;
c1006d6d 1338
1339 -- Local variables
1340
ae888dbd 1341 Aspect : Node_Id;
d74fc39a 1342 Aitem : Node_Id;
ae888dbd 1343 Ent : Node_Id;
ae888dbd 1344
21ea3a4f 1345 L : constant List_Id := Aspect_Specifications (N);
1346
ae888dbd 1347 Ins_Node : Node_Id := N;
89f1e35c 1348 -- Insert pragmas/attribute definition clause after this node when no
1349 -- delayed analysis is required.
d74fc39a 1350
f0813d71 1351 -- Start of processing for Analyze_Aspect_Specifications
1352
d74fc39a 1353 -- The general processing involves building an attribute definition
89f1e35c 1354 -- clause or a pragma node that corresponds to the aspect. Then in order
1355 -- to delay the evaluation of this aspect to the freeze point, we attach
1356 -- the corresponding pragma/attribute definition clause to the aspect
1357 -- specification node, which is then placed in the Rep Item chain. In
1358 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1359 -- and we evaluate the rep item at the freeze point. When the aspect
1360 -- doesn't have a corresponding pragma/attribute definition clause, then
1361 -- its analysis is simply delayed at the freeze point.
1362
1363 -- Some special cases don't require delay analysis, thus the aspect is
1364 -- analyzed right now.
1365
51ea9c94 1366 -- Note that there is a special handling for Pre, Post, Test_Case,
e66f4e2a 1367 -- Contract_Cases aspects. In these cases, we do not have to worry
51ea9c94 1368 -- about delay issues, since the pragmas themselves deal with delay
1369 -- of visibility for the expression analysis. Thus, we just insert
1370 -- the pragma after the node N.
ae888dbd 1371
1372 begin
21ea3a4f 1373 pragma Assert (Present (L));
1374
6fb3c314 1375 -- Loop through aspects
f93e7257 1376
ae888dbd 1377 Aspect := First (L);
21ea3a4f 1378 Aspect_Loop : while Present (Aspect) loop
0fd13d32 1379 Analyze_One_Aspect : declare
94153a42 1380 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 1381 Id : constant Node_Id := Identifier (Aspect);
1382 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 1383 Nam : constant Name_Id := Chars (Id);
1384 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 1385 Anod : Node_Id;
1386
37c6e44c 1387 Delay_Required : Boolean;
89f1e35c 1388 -- Set False if delay is not required
1389
c0793fff 1390 Eloc : Source_Ptr := No_Location;
1391 -- Source location of expression, modified when we split PPC's. It
1392 -- is set below when Expr is present.
39e1f22f 1393
89f1e35c 1394 procedure Analyze_Aspect_External_Or_Link_Name;
0fd13d32 1395 -- Perform analysis of the External_Name or Link_Name aspects
21ea3a4f 1396
89f1e35c 1397 procedure Analyze_Aspect_Implicit_Dereference;
9ab32fe9 1398 -- Perform analysis of the Implicit_Dereference aspects
0fd13d32 1399
1400 procedure Make_Aitem_Pragma
1401 (Pragma_Argument_Associations : List_Id;
1402 Pragma_Name : Name_Id);
1403 -- This is a wrapper for Make_Pragma used for converting aspects
1404 -- to pragmas. It takes care of Sloc (set from Loc) and building
1405 -- the pragma identifier from the given name. In addition the
1406 -- flags Class_Present and Split_PPC are set from the aspect
1407 -- node, as well as Is_Ignored. This routine also sets the
1408 -- From_Aspect_Specification in the resulting pragma node to
1409 -- True, and sets Corresponding_Aspect to point to the aspect.
1410 -- The resulting pragma is assigned to Aitem.
21ea3a4f 1411
89f1e35c 1412 ------------------------------------------
1413 -- Analyze_Aspect_External_Or_Link_Name --
1414 ------------------------------------------
1415
1416 procedure Analyze_Aspect_External_Or_Link_Name is
21ea3a4f 1417 begin
89f1e35c 1418 -- Verify that there is an Import/Export aspect defined for the
1419 -- entity. The processing of that aspect in turn checks that
1420 -- there is a Convention aspect declared. The pragma is
1421 -- constructed when processing the Convention aspect.
21ea3a4f 1422
89f1e35c 1423 declare
1424 A : Node_Id;
21ea3a4f 1425
89f1e35c 1426 begin
1427 A := First (L);
89f1e35c 1428 while Present (A) loop
18393965 1429 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1430 Name_Import);
89f1e35c 1431 Next (A);
1432 end loop;
21ea3a4f 1433
89f1e35c 1434 if No (A) then
1435 Error_Msg_N
51ea9c94 1436 ("missing Import/Export for Link/External name",
8a1e3cde 1437 Aspect);
89f1e35c 1438 end if;
1439 end;
1440 end Analyze_Aspect_External_Or_Link_Name;
21ea3a4f 1441
89f1e35c 1442 -----------------------------------------
1443 -- Analyze_Aspect_Implicit_Dereference --
1444 -----------------------------------------
21ea3a4f 1445
89f1e35c 1446 procedure Analyze_Aspect_Implicit_Dereference is
1ff43c00 1447 Disc : Entity_Id;
1448 Parent_Disc : Entity_Id;
1449
89f1e35c 1450 begin
b9e61b2a 1451 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1452 Error_Msg_N
1ff43c00 1453 ("aspect must apply to a type with discriminants", Expr);
21ea3a4f 1454
1ff43c00 1455 elsif not Is_Entity_Name (Expr) then
1456 Error_Msg_N
1457 ("aspect must name a discriminant of current type", Expr);
21ea3a4f 1458
1ff43c00 1459 else
1460 Disc := First_Discriminant (E);
1461 while Present (Disc) loop
1462 if Chars (Expr) = Chars (Disc)
1463 and then Ekind (Etype (Disc)) =
1464 E_Anonymous_Access_Type
1465 then
1466 Set_Has_Implicit_Dereference (E);
1467 Set_Has_Implicit_Dereference (Disc);
1468 exit;
1469 end if;
21ea3a4f 1470
1ff43c00 1471 Next_Discriminant (Disc);
1472 end loop;
21ea3a4f 1473
9b5b11fb 1474 -- Error if no proper access discriminant
21ea3a4f 1475
1ff43c00 1476 if No (Disc) then
89f1e35c 1477 Error_Msg_NE
1478 ("not an access discriminant of&", Expr, E);
1ff43c00 1479 return;
1480 end if;
1481 end if;
1482
9b5b11fb 1483 -- For a type extension, check whether parent has a
1484 -- reference discriminant, to verify that use is proper.
1485
1ff43c00 1486 if Is_Derived_Type (E)
1487 and then Has_Discriminants (Etype (E))
1488 then
1489 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1490
1491 if Present (Parent_Disc)
1492 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1493 then
1494 Error_Msg_N ("reference discriminant does not match " &
1495 "discriminant of parent type", Expr);
1496 end if;
89f1e35c 1497 end if;
1498 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1499
0fd13d32 1500 -----------------------
1501 -- Make_Aitem_Pragma --
1502 -----------------------
1503
1504 procedure Make_Aitem_Pragma
1505 (Pragma_Argument_Associations : List_Id;
1506 Pragma_Name : Name_Id)
1507 is
b855559d 1508 Args : List_Id := Pragma_Argument_Associations;
1509
0fd13d32 1510 begin
1511 -- We should never get here if aspect was disabled
1512
1513 pragma Assert (not Is_Disabled (Aspect));
1514
056dc987 1515 -- Certain aspects allow for an optional name or expression. Do
1516 -- not generate a pragma with empty argument association list.
b855559d 1517
1518 if No (Args) or else No (Expression (First (Args))) then
1519 Args := No_List;
1520 end if;
1521
0fd13d32 1522 -- Build the pragma
1523
1524 Aitem :=
1525 Make_Pragma (Loc,
b855559d 1526 Pragma_Argument_Associations => Args,
0fd13d32 1527 Pragma_Identifier =>
1528 Make_Identifier (Sloc (Id), Pragma_Name),
9ab32fe9 1529 Class_Present => Class_Present (Aspect),
1530 Split_PPC => Split_PPC (Aspect));
0fd13d32 1531
1532 -- Set additional semantic fields
1533
1534 if Is_Ignored (Aspect) then
1535 Set_Is_Ignored (Aitem);
57d8d1f3 1536 elsif Is_Checked (Aspect) then
a5109493 1537 Set_Is_Checked (Aitem);
0fd13d32 1538 end if;
1539
1540 Set_Corresponding_Aspect (Aitem, Aspect);
1541 Set_From_Aspect_Specification (Aitem, True);
1542 end Make_Aitem_Pragma;
1543
1544 -- Start of processing for Analyze_One_Aspect
1545
ae888dbd 1546 begin
2d1acfa7 1547 -- Skip aspect if already analyzed, to avoid looping in some cases
fb7f2fc4 1548
1549 if Analyzed (Aspect) then
1550 goto Continue;
1551 end if;
1552
ef957022 1553 -- Skip looking at aspect if it is totally disabled. Just mark it
1554 -- as such for later reference in the tree. This also sets the
1555 -- Is_Ignored and Is_Checked flags appropriately.
51ea9c94 1556
1557 Check_Applicable_Policy (Aspect);
1558
1559 if Is_Disabled (Aspect) then
1560 goto Continue;
1561 end if;
1562
c0793fff 1563 -- Set the source location of expression, used in the case of
1564 -- a failed precondition/postcondition or invariant. Note that
1565 -- the source location of the expression is not usually the best
1566 -- choice here. For example, it gets located on the last AND
1567 -- keyword in a chain of boolean expressiond AND'ed together.
1568 -- It is best to put the message on the first character of the
1569 -- assertion, which is the effect of the First_Node call here.
1570
1571 if Present (Expr) then
1572 Eloc := Sloc (First_Node (Expr));
1573 end if;
1574
d7ed83a2 1575 -- Check restriction No_Implementation_Aspect_Specifications
1576
c171e1be 1577 if Implementation_Defined_Aspect (A_Id) then
d7ed83a2 1578 Check_Restriction
1579 (No_Implementation_Aspect_Specifications, Aspect);
1580 end if;
1581
1582 -- Check restriction No_Specification_Of_Aspect
1583
1584 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1585
f67ed4f5 1586 -- Mark aspect analyzed (actual analysis is delayed till later)
d7ed83a2 1587
fb7f2fc4 1588 Set_Analyzed (Aspect);
d74fc39a 1589 Set_Entity (Aspect, E);
1590 Ent := New_Occurrence_Of (E, Sloc (Id));
1591
1e3c4ae6 1592 -- Check for duplicate aspect. Note that the Comes_From_Source
1593 -- test allows duplicate Pre/Post's that we generate internally
1594 -- to escape being flagged here.
ae888dbd 1595
6c545057 1596 if No_Duplicates_Allowed (A_Id) then
1597 Anod := First (L);
1598 while Anod /= Aspect loop
c171e1be 1599 if Comes_From_Source (Aspect)
1600 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
6c545057 1601 then
1602 Error_Msg_Name_1 := Nam;
1603 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1604
6c545057 1605 -- Case of same aspect specified twice
39e1f22f 1606
6c545057 1607 if Class_Present (Anod) = Class_Present (Aspect) then
1608 if not Class_Present (Anod) then
1609 Error_Msg_NE
1610 ("aspect% for & previously given#",
1611 Id, E);
1612 else
1613 Error_Msg_NE
1614 ("aspect `%''Class` for & previously given#",
1615 Id, E);
1616 end if;
39e1f22f 1617 end if;
6c545057 1618 end if;
ae888dbd 1619
6c545057 1620 Next (Anod);
1621 end loop;
1622 end if;
ae888dbd 1623
4db325e6 1624 -- Check some general restrictions on language defined aspects
1625
c171e1be 1626 if not Implementation_Defined_Aspect (A_Id) then
4db325e6 1627 Error_Msg_Name_1 := Nam;
1628
1629 -- Not allowed for renaming declarations
1630
1631 if Nkind (N) in N_Renaming_Declaration then
1632 Error_Msg_N
1633 ("aspect % not allowed for renaming declaration",
1634 Aspect);
1635 end if;
1636
1637 -- Not allowed for formal type declarations
1638
1639 if Nkind (N) = N_Formal_Type_Declaration then
1640 Error_Msg_N
1641 ("aspect % not allowed for formal type declaration",
1642 Aspect);
1643 end if;
1644 end if;
1645
7d20685d 1646 -- Copy expression for later processing by the procedures
1647 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1648
1649 Set_Entity (Id, New_Copy_Tree (Expr));
1650
37c6e44c 1651 -- Set Delay_Required as appropriate to aspect
1652
1653 case Aspect_Delay (A_Id) is
1654 when Always_Delay =>
1655 Delay_Required := True;
1656
1657 when Never_Delay =>
1658 Delay_Required := False;
1659
1660 when Rep_Aspect =>
1661
1662 -- If expression has the form of an integer literal, then
1663 -- do not delay, since we know the value cannot change.
1664 -- This optimization catches most rep clause cases.
1665
e43fc5c5 1666 -- For Boolean aspects, don't delay if no expression
1667
1668 if A_Id in Boolean_Aspects and then No (Expr) then
1669 Delay_Required := False;
1670
1671 -- For non-Boolean aspects, don't delay if integer literal
1672
1673 elsif A_Id not in Boolean_Aspects
1674 and then Present (Expr)
1675 and then Nkind (Expr) = N_Integer_Literal
1676 then
1677 Delay_Required := False;
1678
1679 -- All other cases are delayed
1680
1681 else
1682 Delay_Required := True;
1683 Set_Has_Delayed_Rep_Aspects (E);
1684 end if;
37c6e44c 1685 end case;
1686
ae888dbd 1687 -- Processing based on specific aspect
1688
d74fc39a 1689 case A_Id is
aa2f48d2 1690 when Aspect_Unimplemented =>
1691 null; -- ??? temp for now
ae888dbd 1692
1693 -- No_Aspect should be impossible
1694
1695 when No_Aspect =>
1696 raise Program_Error;
1697
89f1e35c 1698 -- Case 1: Aspects corresponding to attribute definition
1699 -- clauses.
ae888dbd 1700
b7b74740 1701 when Aspect_Address |
1702 Aspect_Alignment |
1703 Aspect_Bit_Order |
1704 Aspect_Component_Size |
89f1e35c 1705 Aspect_Constant_Indexing |
89f1e35c 1706 Aspect_Default_Iterator |
1707 Aspect_Dispatching_Domain |
b7b74740 1708 Aspect_External_Tag |
1709 Aspect_Input |
b3f8228a 1710 Aspect_Iterable |
89f1e35c 1711 Aspect_Iterator_Element |
b7b74740 1712 Aspect_Machine_Radix |
1713 Aspect_Object_Size |
1714 Aspect_Output |
1715 Aspect_Read |
1716 Aspect_Scalar_Storage_Order |
1717 Aspect_Size |
1718 Aspect_Small |
1719 Aspect_Simple_Storage_Pool |
1720 Aspect_Storage_Pool |
b7b74740 1721 Aspect_Stream_Size |
1722 Aspect_Value_Size |
89f1e35c 1723 Aspect_Variable_Indexing |
b7b74740 1724 Aspect_Write =>
d74fc39a 1725
89f1e35c 1726 -- Indexing aspects apply only to tagged type
1727
1728 if (A_Id = Aspect_Constant_Indexing
37c6e44c 1729 or else
1730 A_Id = Aspect_Variable_Indexing)
89f1e35c 1731 and then not (Is_Type (E)
1732 and then Is_Tagged_Type (E))
1733 then
05987af3 1734 Error_Msg_N
1735 ("indexing aspect can only apply to a tagged type",
3f4c9ffc 1736 Aspect);
89f1e35c 1737 goto Continue;
1738 end if;
1739
39616053 1740 -- For the case of aspect Address, we don't consider that we
588e7f97 1741 -- know the entity is never set in the source, since it is
1742 -- is likely aliasing is occurring.
1743
1744 -- Note: one might think that the analysis of the resulting
1745 -- attribute definition clause would take care of that, but
1746 -- that's not the case since it won't be from source.
1747
1748 if A_Id = Aspect_Address then
1749 Set_Never_Set_In_Source (E, False);
1750 end if;
1751
5ac76cee 1752 -- Correctness of the profile of a stream operation is
1753 -- verified at the freeze point, but we must detect the
1754 -- illegal specification of this aspect for a subtype now,
1755 -- to prevent malformed rep_item chains.
1756
fbf4d6ef 1757 if A_Id = Aspect_Input or else
1758 A_Id = Aspect_Output or else
1759 A_Id = Aspect_Read or else
1760 A_Id = Aspect_Write
5ac76cee 1761 then
fbf4d6ef 1762 if not Is_First_Subtype (E) then
1763 Error_Msg_N
1764 ("local name must be a first subtype", Aspect);
1765 goto Continue;
1766
1767 -- If stream aspect applies to the class-wide type,
1768 -- the generated attribute definition applies to the
1769 -- class-wide type as well.
1770
1771 elsif Class_Present (Aspect) then
1772 Ent :=
1773 Make_Attribute_Reference (Loc,
1774 Prefix => Ent,
1775 Attribute_Name => Name_Class);
1776 end if;
5ac76cee 1777 end if;
1778
d74fc39a 1779 -- Construct the attribute definition clause
1780
1781 Aitem :=
94153a42 1782 Make_Attribute_Definition_Clause (Loc,
d74fc39a 1783 Name => Ent,
ae888dbd 1784 Chars => Chars (Id),
1785 Expression => Relocate_Node (Expr));
1786
af9a0cc3 1787 -- If the address is specified, then we treat the entity as
41f06abf 1788 -- referenced, to avoid spurious warnings. This is analogous
1789 -- to what is done with an attribute definition clause, but
1790 -- here we don't want to generate a reference because this
1791 -- is the point of definition of the entity.
1792
1793 if A_Id = Aspect_Address then
1794 Set_Referenced (E);
1795 end if;
1796
51ea9c94 1797 -- Case 2: Aspects corresponding to pragmas
d74fc39a 1798
89f1e35c 1799 -- Case 2a: Aspects corresponding to pragmas with two
1800 -- arguments, where the first argument is a local name
1801 -- referring to the entity, and the second argument is the
1802 -- aspect definition expression.
ae888dbd 1803
04ae062f 1804 -- Linker_Section/Suppress/Unsuppress
0fd13d32 1805
04ae062f 1806 when Aspect_Linker_Section |
1807 Aspect_Suppress |
1808 Aspect_Unsuppress =>
ae888dbd 1809
0fd13d32 1810 Make_Aitem_Pragma
1811 (Pragma_Argument_Associations => New_List (
1812 Make_Pragma_Argument_Association (Loc,
1813 Expression => New_Occurrence_Of (E, Loc)),
1814 Make_Pragma_Argument_Association (Sloc (Expr),
1815 Expression => Relocate_Node (Expr))),
1816 Pragma_Name => Chars (Id));
57cd943b 1817
0fd13d32 1818 -- Synchronization
d74fc39a 1819
0fd13d32 1820 -- Corresponds to pragma Implemented, construct the pragma
49213728 1821
5bbfbad2 1822 when Aspect_Synchronization =>
0fd13d32 1823 Make_Aitem_Pragma
1824 (Pragma_Argument_Associations => New_List (
1825 Make_Pragma_Argument_Association (Loc,
1826 Expression => New_Occurrence_Of (E, Loc)),
1827 Make_Pragma_Argument_Association (Sloc (Expr),
1828 Expression => Relocate_Node (Expr))),
1829 Pragma_Name => Name_Implemented);
49213728 1830
e2bf777d 1831 -- Attach_Handler
0fd13d32 1832
89f1e35c 1833 when Aspect_Attach_Handler =>
0fd13d32 1834 Make_Aitem_Pragma
1835 (Pragma_Argument_Associations => New_List (
1836 Make_Pragma_Argument_Association (Sloc (Ent),
1837 Expression => Ent),
1838 Make_Pragma_Argument_Association (Sloc (Expr),
1839 Expression => Relocate_Node (Expr))),
1840 Pragma_Name => Name_Attach_Handler);
1841
f67ed4f5 1842 -- We need to insert this pragma into the tree to get proper
1843 -- processing and to look valid from a placement viewpoint.
1844
e2bf777d 1845 Insert_Pragma (Aitem);
f67ed4f5 1846 goto Continue;
1847
0fd13d32 1848 -- Dynamic_Predicate, Predicate, Static_Predicate
89f1e35c 1849
1850 when Aspect_Dynamic_Predicate |
1851 Aspect_Predicate |
1852 Aspect_Static_Predicate =>
1853
a47ce82d 1854 -- These aspects apply only to subtypes
1855
1856 if not Is_Type (E) then
1857 Error_Msg_N
1858 ("predicate can only be specified for a subtype",
1859 Aspect);
1860 goto Continue;
7c0c95b8 1861
1862 elsif Is_Incomplete_Type (E) then
1863 Error_Msg_N
1864 ("predicate cannot apply to incomplete view", Aspect);
1865 goto Continue;
a47ce82d 1866 end if;
1867
89f1e35c 1868 -- Construct the pragma (always a pragma Predicate, with
51ea9c94 1869 -- flags recording whether it is static/dynamic). We also
1870 -- set flags recording this in the type itself.
89f1e35c 1871
0fd13d32 1872 Make_Aitem_Pragma
1873 (Pragma_Argument_Associations => New_List (
1874 Make_Pragma_Argument_Association (Sloc (Ent),
1875 Expression => Ent),
1876 Make_Pragma_Argument_Association (Sloc (Expr),
1877 Expression => Relocate_Node (Expr))),
1878 Pragma_Name => Name_Predicate);
89f1e35c 1879
51ea9c94 1880 -- Mark type has predicates, and remember what kind of
1881 -- aspect lead to this predicate (we need this to access
1882 -- the right set of check policies later on).
1883
1884 Set_Has_Predicates (E);
1885
1886 if A_Id = Aspect_Dynamic_Predicate then
1887 Set_Has_Dynamic_Predicate_Aspect (E);
1888 elsif A_Id = Aspect_Static_Predicate then
1889 Set_Has_Static_Predicate_Aspect (E);
1890 end if;
1891
89f1e35c 1892 -- If the type is private, indicate that its completion
6653b695 1893 -- has a freeze node, because that is the one that will
1894 -- be visible at freeze time.
89f1e35c 1895
0fd13d32 1896 if Is_Private_Type (E) and then Present (Full_View (E)) then
89f1e35c 1897 Set_Has_Predicates (Full_View (E));
51ea9c94 1898
1899 if A_Id = Aspect_Dynamic_Predicate then
1900 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1901 elsif A_Id = Aspect_Static_Predicate then
1902 Set_Has_Static_Predicate_Aspect (Full_View (E));
1903 end if;
1904
89f1e35c 1905 Set_Has_Delayed_Aspects (Full_View (E));
1906 Ensure_Freeze_Node (Full_View (E));
1907 end if;
1908
1909 -- Case 2b: Aspects corresponding to pragmas with two
1910 -- arguments, where the second argument is a local name
1911 -- referring to the entity, and the first argument is the
1912 -- aspect definition expression.
ae888dbd 1913
0fd13d32 1914 -- Convention
1915
a5a64273 1916 when Aspect_Convention =>
1917
1918 -- The aspect may be part of the specification of an import
1919 -- or export pragma. Scan the aspect list to gather the
1920 -- other components, if any. The name of the generated
1921 -- pragma is one of Convention/Import/Export.
1922
1923 declare
97bf66e6 1924 Args : constant List_Id := New_List (
1925 Make_Pragma_Argument_Association (Sloc (Expr),
1926 Expression => Relocate_Node (Expr)),
1927 Make_Pragma_Argument_Association (Sloc (Ent),
1928 Expression => Ent));
1929
1930 Imp_Exp_Seen : Boolean := False;
1931 -- Flag set when aspect Import or Export has been seen
1932
1933 Imp_Seen : Boolean := False;
1934 -- Flag set when aspect Import has been seen
1935
1936 Asp : Node_Id;
1937 Asp_Nam : Name_Id;
1938 Extern_Arg : Node_Id;
1939 Link_Arg : Node_Id;
1940 Prag_Nam : Name_Id;
a5a64273 1941
1942 begin
97bf66e6 1943 Extern_Arg := Empty;
1944 Link_Arg := Empty;
1945 Prag_Nam := Chars (Id);
1946
1947 Asp := First (L);
1948 while Present (Asp) loop
1949 Asp_Nam := Chars (Identifier (Asp));
1950
1951 -- Aspects Import and Export take precedence over
1952 -- aspect Convention. As a result the generated pragma
1953 -- must carry the proper interfacing aspect's name.
1954
1955 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1956 if Imp_Exp_Seen then
1957 Error_Msg_N ("conflicting", Asp);
a5a64273 1958 else
97bf66e6 1959 Imp_Exp_Seen := True;
1960
1961 if Asp_Nam = Name_Import then
1962 Imp_Seen := True;
1963 end if;
a5a64273 1964 end if;
1965
97bf66e6 1966 Prag_Nam := Asp_Nam;
a5a64273 1967
97bf66e6 1968 -- Aspect External_Name adds an extra argument to the
1969 -- generated pragma.
1970
1971 elsif Asp_Nam = Name_External_Name then
1972 Extern_Arg :=
4bba0a8d 1973 Make_Pragma_Argument_Association (Loc,
97bf66e6 1974 Chars => Asp_Nam,
1975 Expression => Relocate_Node (Expression (Asp)));
1976
1977 -- Aspect Link_Name adds an extra argument to the
1978 -- generated pragma.
a5a64273 1979
97bf66e6 1980 elsif Asp_Nam = Name_Link_Name then
1981 Link_Arg :=
4bba0a8d 1982 Make_Pragma_Argument_Association (Loc,
97bf66e6 1983 Chars => Asp_Nam,
1984 Expression => Relocate_Node (Expression (Asp)));
a5a64273 1985 end if;
1986
97bf66e6 1987 Next (Asp);
a5a64273 1988 end loop;
1989
97bf66e6 1990 -- Assemble the full argument list
b9e61b2a 1991
97bf66e6 1992 if Present (Extern_Arg) then
1993 Append_To (Args, Extern_Arg);
a5a64273 1994 end if;
1995
8a1e3cde 1996 if Present (Link_Arg) then
1997 Append_To (Args, Link_Arg);
1998 end if;
1999
0fd13d32 2000 Make_Aitem_Pragma
97bf66e6 2001 (Pragma_Argument_Associations => Args,
2002 Pragma_Name => Prag_Nam);
2003
2004 -- Store the generated pragma Import in the related
2005 -- subprogram.
2006
2007 if Imp_Seen and then Is_Subprogram (E) then
2008 Set_Import_Pragma (E, Aitem);
2009 end if;
a5a64273 2010 end;
e1cedbae 2011
0fd13d32 2012 -- CPU, Interrupt_Priority, Priority
2013
d6814978 2014 -- These three aspects can be specified for a subprogram spec
2015 -- or body, in which case we analyze the expression and export
2016 -- the value of the aspect.
2017
2018 -- Previously, we generated an equivalent pragma for bodies
2019 -- (note that the specs cannot contain these pragmas). The
2020 -- pragma was inserted ahead of local declarations, rather than
2021 -- after the body. This leads to a certain duplication between
2022 -- the processing performed for the aspect and the pragma, but
2023 -- given the straightforward handling required it is simpler
2024 -- to duplicate than to translate the aspect in the spec into
2025 -- a pragma in the declarative part of the body.
3a72f9c3 2026
2027 when Aspect_CPU |
2028 Aspect_Interrupt_Priority |
2029 Aspect_Priority =>
51ea9c94 2030
d6814978 2031 if Nkind_In (N, N_Subprogram_Body,
2032 N_Subprogram_Declaration)
2033 then
2034 -- Analyze the aspect expression
2035
2036 Analyze_And_Resolve (Expr, Standard_Integer);
2037
2038 -- Interrupt_Priority aspect not allowed for main
078a74b8 2039 -- subprograms. RM D.1 does not forbid this explicitly,
2040 -- but RM J.15.11(6/3) does not permit pragma
d6814978 2041 -- Interrupt_Priority for subprograms.
2042
2043 if A_Id = Aspect_Interrupt_Priority then
2044 Error_Msg_N
2045 ("Interrupt_Priority aspect cannot apply to "
2046 & "subprogram", Expr);
2047
2048 -- The expression must be static
2049
cda40848 2050 elsif not Is_OK_Static_Expression (Expr) then
d6814978 2051 Flag_Non_Static_Expr
2052 ("aspect requires static expression!", Expr);
2053
24d7b9d6 2054 -- Check whether this is the main subprogram. Issue a
2055 -- warning only if it is obviously not a main program
2056 -- (when it has parameters or when the subprogram is
2057 -- within a package).
2058
2059 elsif Present (Parameter_Specifications
2060 (Specification (N)))
2061 or else not Is_Compilation_Unit (Defining_Entity (N))
d6814978 2062 then
078a74b8 2063 -- See RM D.1(14/3) and D.16(12/3)
d6814978 2064
2065 Error_Msg_N
2066 ("aspect applied to subprogram other than the "
2067 & "main subprogram has no effect??", Expr);
2068
2069 -- Otherwise check in range and export the value
2070
2071 -- For the CPU aspect
2072
2073 elsif A_Id = Aspect_CPU then
2074 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2075
2076 -- Value is correct so we export the value to make
2077 -- it available at execution time.
2078
2079 Set_Main_CPU
2080 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2081
2082 else
2083 Error_Msg_N
2084 ("main subprogram CPU is out of range", Expr);
2085 end if;
2086
2087 -- For the Priority aspect
2088
2089 elsif A_Id = Aspect_Priority then
2090 if Is_In_Range (Expr, RTE (RE_Priority)) then
2091
2092 -- Value is correct so we export the value to make
2093 -- it available at execution time.
2094
2095 Set_Main_Priority
2096 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2097
32572384 2098 -- Ignore pragma if Relaxed_RM_Semantics to support
2099 -- other targets/non GNAT compilers.
2100
2101 elsif not Relaxed_RM_Semantics then
d6814978 2102 Error_Msg_N
2103 ("main subprogram priority is out of range",
2104 Expr);
2105 end if;
2106 end if;
2107
2108 -- Load an arbitrary entity from System.Tasking.Stages
2109 -- or System.Tasking.Restricted.Stages (depending on
2110 -- the supported profile) to make sure that one of these
2111 -- packages is implicitly with'ed, since we need to have
2112 -- the tasking run time active for the pragma Priority to
a0c3eeb9 2113 -- have any effect. Previously we with'ed the package
d6814978 2114 -- System.Tasking, but this package does not trigger the
2115 -- required initialization of the run-time library.
2116
2117 declare
2118 Discard : Entity_Id;
d6814978 2119 begin
2120 if Restricted_Profile then
2121 Discard := RTE (RE_Activate_Restricted_Tasks);
2122 else
2123 Discard := RTE (RE_Activate_Tasks);
2124 end if;
2125 end;
2126
2127 -- Handling for these Aspects in subprograms is complete
2128
2129 goto Continue;
2130
2131 -- For tasks
0fd13d32 2132
3a72f9c3 2133 else
d6814978 2134 -- Pass the aspect as an attribute
2135
3a72f9c3 2136 Aitem :=
2137 Make_Attribute_Definition_Clause (Loc,
2138 Name => Ent,
2139 Chars => Chars (Id),
2140 Expression => Relocate_Node (Expr));
2141 end if;
2142
0fd13d32 2143 -- Warnings
2144
ae888dbd 2145 when Aspect_Warnings =>
0fd13d32 2146 Make_Aitem_Pragma
2147 (Pragma_Argument_Associations => New_List (
2148 Make_Pragma_Argument_Association (Sloc (Expr),
2149 Expression => Relocate_Node (Expr)),
2150 Make_Pragma_Argument_Association (Loc,
2151 Expression => New_Occurrence_Of (E, Loc))),
2152 Pragma_Name => Chars (Id));
ae888dbd 2153
89f1e35c 2154 -- Case 2c: Aspects corresponding to pragmas with three
2155 -- arguments.
d64221a7 2156
89f1e35c 2157 -- Invariant aspects have a first argument that references the
2158 -- entity, a second argument that is the expression and a third
2159 -- argument that is an appropriate message.
d64221a7 2160
0fd13d32 2161 -- Invariant, Type_Invariant
2162
89f1e35c 2163 when Aspect_Invariant |
2164 Aspect_Type_Invariant =>
d64221a7 2165
89f1e35c 2166 -- Analysis of the pragma will verify placement legality:
2167 -- an invariant must apply to a private type, or appear in
2168 -- the private part of a spec and apply to a completion.
d64221a7 2169
0fd13d32 2170 Make_Aitem_Pragma
2171 (Pragma_Argument_Associations => New_List (
2172 Make_Pragma_Argument_Association (Sloc (Ent),
2173 Expression => Ent),
2174 Make_Pragma_Argument_Association (Sloc (Expr),
2175 Expression => Relocate_Node (Expr))),
2176 Pragma_Name => Name_Invariant);
89f1e35c 2177
2178 -- Add message unless exception messages are suppressed
2179
2180 if not Opt.Exception_Locations_Suppressed then
2181 Append_To (Pragma_Argument_Associations (Aitem),
2182 Make_Pragma_Argument_Association (Eloc,
2183 Chars => Name_Message,
2184 Expression =>
2185 Make_String_Literal (Eloc,
2186 Strval => "failed invariant from "
2187 & Build_Location_String (Eloc))));
d64221a7 2188 end if;
2189
89f1e35c 2190 -- For Invariant case, insert immediately after the entity
2191 -- declaration. We do not have to worry about delay issues
2192 -- since the pragma processing takes care of this.
2193
89f1e35c 2194 Delay_Required := False;
d64221a7 2195
47a46747 2196 -- Case 2d : Aspects that correspond to a pragma with one
2197 -- argument.
2198
0fd13d32 2199 -- Abstract_State
115f7b08 2200
d4e369ad 2201 -- Aspect Abstract_State introduces implicit declarations for
2202 -- all state abstraction entities it defines. To emulate this
2203 -- behavior, insert the pragma at the beginning of the visible
2204 -- declarations of the related package so that it is analyzed
2205 -- immediately.
2206
9129c28f 2207 when Aspect_Abstract_State => Abstract_State : declare
eb4f7efa 2208 Context : Node_Id := N;
630b6d55 2209 Decl : Node_Id;
eb4f7efa 2210 Decls : List_Id;
9129c28f 2211
2212 begin
eb4f7efa 2213 -- When aspect Abstract_State appears on a generic package,
2214 -- it is propageted to the package instance. The context in
2215 -- this case is the instance spec.
2216
2217 if Nkind (Context) = N_Package_Instantiation then
2218 Context := Instance_Spec (Context);
2219 end if;
2220
2221 if Nkind_In (Context, N_Generic_Package_Declaration,
2222 N_Package_Declaration)
9129c28f 2223 then
9129c28f 2224 Make_Aitem_Pragma
2225 (Pragma_Argument_Associations => New_List (
2226 Make_Pragma_Argument_Association (Loc,
2227 Expression => Relocate_Node (Expr))),
2228 Pragma_Name => Name_Abstract_State);
e2bf777d 2229 Decorate (Aspect, Aitem);
9129c28f 2230
630b6d55 2231 Decls := Visible_Declarations (Specification (Context));
2232
2233 -- In general pragma Abstract_State must be at the top
2234 -- of the existing visible declarations to emulate its
2235 -- source counterpart. The only exception to this is a
2236 -- generic instance in which case the pragma must be
2237 -- inserted after the association renamings.
2238
2239 if Present (Decls) then
50e44732 2240 Decl := First (Decls);
630b6d55 2241
2242 -- The visible declarations of a generic instance have
2243 -- the following structure:
2244
2245 -- <renamings of generic formals>
2246 -- <renamings of internally-generated spec and body>
2247 -- <first source declaration>
2248
2249 -- The pragma must be inserted before the first source
50e44732 2250 -- declaration, skip the instance "header".
630b6d55 2251
2252 if Is_Generic_Instance (Defining_Entity (Context)) then
630b6d55 2253 while Present (Decl)
2254 and then not Comes_From_Source (Decl)
2255 loop
2256 Decl := Next (Decl);
2257 end loop;
50e44732 2258 end if;
630b6d55 2259
3dbe7a69 2260 -- When aspects Abstract_State, Ghost,
2261 -- Initial_Condition and Initializes are out of order,
2262 -- ensure that pragma SPARK_Mode is always at the top
2263 -- of the declarations to properly enabled/suppress
2264 -- errors.
630b6d55 2265
50e44732 2266 Insert_After_SPARK_Mode
2267 (Prag => Aitem,
2268 Ins_Nod => Decl,
2269 Decls => Decls);
630b6d55 2270
2271 -- Otherwise the pragma forms a new declarative list
2272
2273 else
2274 Set_Visible_Declarations
2275 (Specification (Context), New_List (Aitem));
2276 end if;
9129c28f 2277
2278 else
2279 Error_Msg_NE
2280 ("aspect & must apply to a package declaration",
2281 Aspect, Id);
2282 end if;
2283
2284 goto Continue;
2285 end Abstract_State;
115f7b08 2286
85ee12c0 2287 -- Aspect Async_Readers is never delayed because it is
2288 -- equivalent to a source pragma which appears after the
2289 -- related object declaration.
2290
2291 when Aspect_Async_Readers =>
2292 Make_Aitem_Pragma
2293 (Pragma_Argument_Associations => New_List (
2294 Make_Pragma_Argument_Association (Loc,
2295 Expression => Relocate_Node (Expr))),
2296 Pragma_Name => Name_Async_Readers);
2297
2298 Decorate (Aspect, Aitem);
2299 Insert_Pragma (Aitem);
2300 goto Continue;
2301
2302 -- Aspect Async_Writers is never delayed because it is
2303 -- equivalent to a source pragma which appears after the
2304 -- related object declaration.
2305
2306 when Aspect_Async_Writers =>
2307 Make_Aitem_Pragma
2308 (Pragma_Argument_Associations => New_List (
2309 Make_Pragma_Argument_Association (Loc,
2310 Expression => Relocate_Node (Expr))),
2311 Pragma_Name => Name_Async_Writers);
2312
2313 Decorate (Aspect, Aitem);
2314 Insert_Pragma (Aitem);
2315 goto Continue;
2316
d0849c23 2317 -- Aspect Constant_After_Elaboration is never delayed because
2318 -- it is equivalent to a source pragma which appears after the
2319 -- related object declaration.
2320
2321 when Aspect_Constant_After_Elaboration =>
2322 Make_Aitem_Pragma
2323 (Pragma_Argument_Associations => New_List (
2324 Make_Pragma_Argument_Association (Loc,
2325 Expression => Relocate_Node (Expr))),
2326 Pragma_Name =>
2327 Name_Constant_After_Elaboration);
2328
2329 Decorate (Aspect, Aitem);
2330 Insert_Pragma (Aitem);
2331 goto Continue;
2332
ec6f6da5 2333 -- Aspect Default_Internal_Condition is never delayed because
2334 -- it is equivalent to a source pragma which appears after the
2335 -- related private type. To deal with forward references, the
2336 -- generated pragma is stored in the rep chain of the related
2337 -- private type as types do not carry contracts. The pragma is
2338 -- wrapped inside of a procedure at the freeze point of the
2339 -- private type's full view.
2340
2341 when Aspect_Default_Initial_Condition =>
2342 Make_Aitem_Pragma
2343 (Pragma_Argument_Associations => New_List (
2344 Make_Pragma_Argument_Association (Loc,
2345 Expression => Relocate_Node (Expr))),
2346 Pragma_Name =>
2347 Name_Default_Initial_Condition);
2348
2349 Decorate (Aspect, Aitem);
2350 Insert_Pragma (Aitem);
2351 goto Continue;
2352
647fab54 2353 -- Default_Storage_Pool
2354
2355 when Aspect_Default_Storage_Pool =>
2356 Make_Aitem_Pragma
2357 (Pragma_Argument_Associations => New_List (
2358 Make_Pragma_Argument_Association (Loc,
2359 Expression => Relocate_Node (Expr))),
2360 Pragma_Name =>
2361 Name_Default_Storage_Pool);
2362
2363 Decorate (Aspect, Aitem);
2364 Insert_Pragma (Aitem);
2365 goto Continue;
2366
0fd13d32 2367 -- Depends
2368
e2bf777d 2369 -- Aspect Depends is never delayed because it is equivalent to
2370 -- a source pragma which appears after the related subprogram.
2371 -- To deal with forward references, the generated pragma is
2372 -- stored in the contract of the related subprogram and later
2373 -- analyzed at the end of the declarative region. See routine
2374 -- Analyze_Depends_In_Decl_Part for details.
6144c105 2375
12334c57 2376 when Aspect_Depends =>
0fd13d32 2377 Make_Aitem_Pragma
2378 (Pragma_Argument_Associations => New_List (
2379 Make_Pragma_Argument_Association (Loc,
2380 Expression => Relocate_Node (Expr))),
2381 Pragma_Name => Name_Depends);
2382
e2bf777d 2383 Decorate (Aspect, Aitem);
2384 Insert_Pragma (Aitem);
c1006d6d 2385 goto Continue;
2386
85ee12c0 2387 -- Aspect Effecitve_Reads is never delayed because it is
2388 -- equivalent to a source pragma which appears after the
2389 -- related object declaration.
2390
2391 when Aspect_Effective_Reads =>
2392 Make_Aitem_Pragma
2393 (Pragma_Argument_Associations => New_List (
2394 Make_Pragma_Argument_Association (Loc,
2395 Expression => Relocate_Node (Expr))),
2396 Pragma_Name => Name_Effective_Reads);
2397
2398 Decorate (Aspect, Aitem);
2399 Insert_Pragma (Aitem);
2400 goto Continue;
2401
2402 -- Aspect Effective_Writes is never delayed because it is
2403 -- equivalent to a source pragma which appears after the
2404 -- related object declaration.
2405
2406 when Aspect_Effective_Writes =>
2407 Make_Aitem_Pragma
2408 (Pragma_Argument_Associations => New_List (
2409 Make_Pragma_Argument_Association (Loc,
2410 Expression => Relocate_Node (Expr))),
2411 Pragma_Name => Name_Effective_Writes);
2412
2413 Decorate (Aspect, Aitem);
2414 Insert_Pragma (Aitem);
2415 goto Continue;
2416
cab27d2a 2417 -- Aspect Extensions_Visible is never delayed because it is
2418 -- equivalent to a source pragma which appears after the
2419 -- related subprogram.
2420
2421 when Aspect_Extensions_Visible =>
2422 Make_Aitem_Pragma
2423 (Pragma_Argument_Associations => New_List (
2424 Make_Pragma_Argument_Association (Loc,
2425 Expression => Relocate_Node (Expr))),
2426 Pragma_Name => Name_Extensions_Visible);
2427
2428 Decorate (Aspect, Aitem);
2429 Insert_Pragma (Aitem);
2430 goto Continue;
2431
3dbe7a69 2432 -- Aspect Ghost is never delayed because it is equivalent to a
2433 -- source pragma which appears at the top of [generic] package
2434 -- declarations or after an object, a [generic] subprogram, or
2435 -- a type declaration.
2436
2437 when Aspect_Ghost => Ghost : declare
2438 Decls : List_Id;
2439
2440 begin
2441 Make_Aitem_Pragma
2442 (Pragma_Argument_Associations => New_List (
2443 Make_Pragma_Argument_Association (Loc,
2444 Expression => Relocate_Node (Expr))),
2445 Pragma_Name => Name_Ghost);
2446
2447 Decorate (Aspect, Aitem);
2448
2449 -- When the aspect applies to a [generic] package, insert
2450 -- the pragma at the top of the visible declarations. This
2451 -- emulates the placement of a source pragma.
2452
2453 if Nkind_In (N, N_Generic_Package_Declaration,
2454 N_Package_Declaration)
2455 then
2456 Decls := Visible_Declarations (Specification (N));
2457
2458 if No (Decls) then
2459 Decls := New_List;
2460 Set_Visible_Declarations (N, Decls);
2461 end if;
2462
2463 -- When aspects Abstract_State, Ghost, Initial_Condition
2464 -- and Initializes are out of order, ensure that pragma
2465 -- SPARK_Mode is always at the top of the declarations to
2466 -- properly enabled/suppress errors.
2467
2468 Insert_After_SPARK_Mode
2469 (Prag => Aitem,
2470 Ins_Nod => First (Decls),
2471 Decls => Decls);
2472
2473 -- Otherwise the context is an object, [generic] subprogram
2474 -- or type declaration.
2475
2476 else
2477 Insert_Pragma (Aitem);
2478 end if;
2479
2480 goto Continue;
2481 end Ghost;
2482
0fd13d32 2483 -- Global
12334c57 2484
e2bf777d 2485 -- Aspect Global is never delayed because it is equivalent to
2486 -- a source pragma which appears after the related subprogram.
2487 -- To deal with forward references, the generated pragma is
2488 -- stored in the contract of the related subprogram and later
2489 -- analyzed at the end of the declarative region. See routine
2490 -- Analyze_Global_In_Decl_Part for details.
3cdbaa5a 2491
2492 when Aspect_Global =>
0fd13d32 2493 Make_Aitem_Pragma
2494 (Pragma_Argument_Associations => New_List (
2495 Make_Pragma_Argument_Association (Loc,
2496 Expression => Relocate_Node (Expr))),
2497 Pragma_Name => Name_Global);
2498
e2bf777d 2499 Decorate (Aspect, Aitem);
2500 Insert_Pragma (Aitem);
c1006d6d 2501 goto Continue;
2502
9c138530 2503 -- Initial_Condition
2504
e2bf777d 2505 -- Aspect Initial_Condition is never delayed because it is
2506 -- equivalent to a source pragma which appears after the
2507 -- related package. To deal with forward references, the
2508 -- generated pragma is stored in the contract of the related
2509 -- package and later analyzed at the end of the declarative
2510 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2511 -- for details.
9c138530 2512
2513 when Aspect_Initial_Condition => Initial_Condition : declare
eb4f7efa 2514 Context : Node_Id := N;
2515 Decls : List_Id;
9c138530 2516
2517 begin
e2bf777d 2518 -- When aspect Initial_Condition appears on a generic
2519 -- package, it is propageted to the package instance. The
2520 -- context in this case is the instance spec.
eb4f7efa 2521
2522 if Nkind (Context) = N_Package_Instantiation then
2523 Context := Instance_Spec (Context);
2524 end if;
2525
2526 if Nkind_In (Context, N_Generic_Package_Declaration,
2527 N_Package_Declaration)
9c138530 2528 then
eb4f7efa 2529 Decls := Visible_Declarations (Specification (Context));
9c138530 2530
2531 Make_Aitem_Pragma
2532 (Pragma_Argument_Associations => New_List (
2533 Make_Pragma_Argument_Association (Loc,
2534 Expression => Relocate_Node (Expr))),
2535 Pragma_Name =>
2536 Name_Initial_Condition);
e2bf777d 2537 Decorate (Aspect, Aitem);
9c138530 2538
2539 if No (Decls) then
2540 Decls := New_List;
eb4f7efa 2541 Set_Visible_Declarations (Context, Decls);
9c138530 2542 end if;
2543
3dbe7a69 2544 -- When aspects Abstract_State, Ghost, Initial_Condition
2545 -- and Initializes are out of order, ensure that pragma
2546 -- SPARK_Mode is always at the top of the declarations to
2547 -- properly enabled/suppress errors.
50e44732 2548
2549 Insert_After_SPARK_Mode
2550 (Prag => Aitem,
2551 Ins_Nod => First (Decls),
2552 Decls => Decls);
9c138530 2553
2554 else
2555 Error_Msg_NE
2556 ("aspect & must apply to a package declaration",
2557 Aspect, Id);
2558 end if;
2559
2560 goto Continue;
2561 end Initial_Condition;
2562
d4e369ad 2563 -- Initializes
2564
e2bf777d 2565 -- Aspect Initializes is never delayed because it is equivalent
2566 -- to a source pragma appearing after the related package. To
2567 -- deal with forward references, the generated pragma is stored
2568 -- in the contract of the related package and later analyzed at
2569 -- the end of the declarative region. For details, see routine
2570 -- Analyze_Initializes_In_Decl_Part.
d4e369ad 2571
2572 when Aspect_Initializes => Initializes : declare
eb4f7efa 2573 Context : Node_Id := N;
2574 Decls : List_Id;
d4e369ad 2575
2576 begin
50e44732 2577 -- When aspect Initializes appears on a generic package,
2578 -- it is propageted to the package instance. The context
2579 -- in this case is the instance spec.
eb4f7efa 2580
2581 if Nkind (Context) = N_Package_Instantiation then
2582 Context := Instance_Spec (Context);
2583 end if;
2584
2585 if Nkind_In (Context, N_Generic_Package_Declaration,
2586 N_Package_Declaration)
d4e369ad 2587 then
eb4f7efa 2588 Decls := Visible_Declarations (Specification (Context));
d4e369ad 2589
2590 Make_Aitem_Pragma
2591 (Pragma_Argument_Associations => New_List (
2592 Make_Pragma_Argument_Association (Loc,
2593 Expression => Relocate_Node (Expr))),
2594 Pragma_Name => Name_Initializes);
e2bf777d 2595 Decorate (Aspect, Aitem);
d4e369ad 2596
2597 if No (Decls) then
2598 Decls := New_List;
eb4f7efa 2599 Set_Visible_Declarations (Context, Decls);
d4e369ad 2600 end if;
2601
3dbe7a69 2602 -- When aspects Abstract_State, Ghost, Initial_Condition
2603 -- and Initializes are out of order, ensure that pragma
2604 -- SPARK_Mode is always at the top of the declarations to
2605 -- properly enabled/suppress errors.
50e44732 2606
2607 Insert_After_SPARK_Mode
2608 (Prag => Aitem,
2609 Ins_Nod => First (Decls),
2610 Decls => Decls);
d4e369ad 2611
2612 else
2613 Error_Msg_NE
2614 ("aspect & must apply to a package declaration",
2615 Aspect, Id);
2616 end if;
2617
2618 goto Continue;
2619 end Initializes;
2620
1fd4313f 2621 -- Obsolescent
2622
2623 when Aspect_Obsolescent => declare
2624 Args : List_Id;
2625
2626 begin
2627 if No (Expr) then
2628 Args := No_List;
2629 else
2630 Args := New_List (
2631 Make_Pragma_Argument_Association (Sloc (Expr),
2632 Expression => Relocate_Node (Expr)));
2633 end if;
2634
2635 Make_Aitem_Pragma
2636 (Pragma_Argument_Associations => Args,
2637 Pragma_Name => Chars (Id));
2638 end;
2639
5cc6f0cf 2640 -- Part_Of
2641
2642 when Aspect_Part_Of =>
2643 if Nkind_In (N, N_Object_Declaration,
2644 N_Package_Instantiation)
2645 then
2646 Make_Aitem_Pragma
2647 (Pragma_Argument_Associations => New_List (
2648 Make_Pragma_Argument_Association (Loc,
2649 Expression => Relocate_Node (Expr))),
2650 Pragma_Name => Name_Part_Of);
2651
2652 else
2653 Error_Msg_NE
2654 ("aspect & must apply to a variable or package "
2655 & "instantiation", Aspect, Id);
2656 end if;
2657
5dd93a61 2658 -- SPARK_Mode
2659
778ebf56 2660 when Aspect_SPARK_Mode => SPARK_Mode : declare
2661 Decls : List_Id;
2662
2663 begin
5dd93a61 2664 Make_Aitem_Pragma
2665 (Pragma_Argument_Associations => New_List (
2666 Make_Pragma_Argument_Association (Loc,
2667 Expression => Relocate_Node (Expr))),
2668 Pragma_Name => Name_SPARK_Mode);
5dd93a61 2669
b90d9656 2670 -- When the aspect appears on a package or a subprogram
2671 -- body, insert the generated pragma at the top of the body
2672 -- declarations to emulate the behavior of a source pragma.
778ebf56 2673
b90d9656 2674 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
e2bf777d 2675 Decorate (Aspect, Aitem);
5cc6f0cf 2676
778ebf56 2677 Decls := Declarations (N);
2678
2679 if No (Decls) then
2680 Decls := New_List;
2681 Set_Declarations (N, Decls);
2682 end if;
2683
a04f9d2e 2684 Prepend_To (Decls, Aitem);
2685 goto Continue;
2686
b90d9656 2687 -- When the aspect is associated with a [generic] package
2688 -- declaration, insert the generated pragma at the top of
2689 -- the visible declarations to emulate the behavior of a
2690 -- source pragma.
a04f9d2e 2691
b90d9656 2692 elsif Nkind_In (N, N_Generic_Package_Declaration,
2693 N_Package_Declaration)
2694 then
e2bf777d 2695 Decorate (Aspect, Aitem);
5cc6f0cf 2696
a04f9d2e 2697 Decls := Visible_Declarations (Specification (N));
2698
2699 if No (Decls) then
2700 Decls := New_List;
2701 Set_Visible_Declarations (Specification (N), Decls);
2702 end if;
2703
778ebf56 2704 Prepend_To (Decls, Aitem);
2705 goto Continue;
2706 end if;
2707 end SPARK_Mode;
2708
4befb1a0 2709 -- Refined_Depends
2710
e2bf777d 2711 -- Aspect Refined_Depends is never delayed because it is
2712 -- equivalent to a source pragma which appears in the
2713 -- declarations of the related subprogram body. To deal with
2714 -- forward references, the generated pragma is stored in the
2715 -- contract of the related subprogram body and later analyzed
2716 -- at the end of the declarative region. For details, see
2717 -- routine Analyze_Refined_Depends_In_Decl_Part.
4befb1a0 2718
2719 when Aspect_Refined_Depends =>
422073ed 2720 Make_Aitem_Pragma
2721 (Pragma_Argument_Associations => New_List (
2722 Make_Pragma_Argument_Association (Loc,
2723 Expression => Relocate_Node (Expr))),
2724 Pragma_Name => Name_Refined_Depends);
2725
e2bf777d 2726 Decorate (Aspect, Aitem);
2727 Insert_Pragma (Aitem);
422073ed 2728 goto Continue;
4befb1a0 2729
2730 -- Refined_Global
2731
e2bf777d 2732 -- Aspect Refined_Global is never delayed because it is
2733 -- equivalent to a source pragma which appears in the
2734 -- declarations of the related subprogram body. To deal with
2735 -- forward references, the generated pragma is stored in the
2736 -- contract of the related subprogram body and later analyzed
2737 -- at the end of the declarative region. For details, see
2738 -- routine Analyze_Refined_Global_In_Decl_Part.
4befb1a0 2739
2740 when Aspect_Refined_Global =>
28ff117f 2741 Make_Aitem_Pragma
2742 (Pragma_Argument_Associations => New_List (
2743 Make_Pragma_Argument_Association (Loc,
2744 Expression => Relocate_Node (Expr))),
2745 Pragma_Name => Name_Refined_Global);
2746
e2bf777d 2747 Decorate (Aspect, Aitem);
2748 Insert_Pragma (Aitem);
28ff117f 2749 goto Continue;
4befb1a0 2750
63b65b2d 2751 -- Refined_Post
2752
2753 when Aspect_Refined_Post =>
2754 Make_Aitem_Pragma
2755 (Pragma_Argument_Associations => New_List (
2756 Make_Pragma_Argument_Association (Loc,
2757 Expression => Relocate_Node (Expr))),
2758 Pragma_Name => Name_Refined_Post);
2759
9129c28f 2760 -- Refined_State
2761
2762 when Aspect_Refined_State => Refined_State : declare
2763 Decls : List_Id;
2764
2765 begin
2766 -- The corresponding pragma for Refined_State is inserted in
2767 -- the declarations of the related package body. This action
2768 -- synchronizes both the source and from-aspect versions of
2769 -- the pragma.
2770
2771 if Nkind (N) = N_Package_Body then
e2bf777d 2772 Decls := Declarations (N);
2773
9129c28f 2774 Make_Aitem_Pragma
2775 (Pragma_Argument_Associations => New_List (
2776 Make_Pragma_Argument_Association (Loc,
2777 Expression => Relocate_Node (Expr))),
2778 Pragma_Name => Name_Refined_State);
e2bf777d 2779 Decorate (Aspect, Aitem);
b9b2d6e5 2780
e2bf777d 2781 if No (Decls) then
2782 Decls := New_List;
2783 Set_Declarations (N, Decls);
2784 end if;
b9b2d6e5 2785
e2bf777d 2786 -- Pragma Refined_State must be inserted after pragma
2787 -- SPARK_Mode in the tree. This ensures that any error
2788 -- messages dependent on SPARK_Mode will be properly
2789 -- enabled/suppressed.
b9b2d6e5 2790
e2bf777d 2791 Insert_After_SPARK_Mode
2792 (Prag => Aitem,
2793 Ins_Nod => First (Decls),
2794 Decls => Decls);
9129c28f 2795
2796 else
2797 Error_Msg_NE
2798 ("aspect & must apply to a package body", Aspect, Id);
2799 end if;
2800
2801 goto Continue;
2802 end Refined_State;
2803
0fd13d32 2804 -- Relative_Deadline
3cdbaa5a 2805
2806 when Aspect_Relative_Deadline =>
0fd13d32 2807 Make_Aitem_Pragma
2808 (Pragma_Argument_Associations => New_List (
2809 Make_Pragma_Argument_Association (Loc,
2810 Expression => Relocate_Node (Expr))),
2811 Pragma_Name => Name_Relative_Deadline);
47a46747 2812
2813 -- If the aspect applies to a task, the corresponding pragma
2814 -- must appear within its declarations, not after.
2815
2816 if Nkind (N) = N_Task_Type_Declaration then
2817 declare
2818 Def : Node_Id;
2819 V : List_Id;
2820
2821 begin
2822 if No (Task_Definition (N)) then
2823 Set_Task_Definition (N,
2824 Make_Task_Definition (Loc,
2825 Visible_Declarations => New_List,
2826 End_Label => Empty));
2827 end if;
2828
2829 Def := Task_Definition (N);
2830 V := Visible_Declarations (Def);
2831 if not Is_Empty_List (V) then
2832 Insert_Before (First (V), Aitem);
2833
2834 else
2835 Set_Visible_Declarations (Def, New_List (Aitem));
2836 end if;
2837
2838 goto Continue;
2839 end;
2840 end if;
2841
85ee12c0 2842 -- Aspect Volatile_Function is never delayed because it is
2843 -- equivalent to a source pragma which appears after the
2844 -- related subprogram.
2845
2846 when Aspect_Volatile_Function =>
2847 Make_Aitem_Pragma
2848 (Pragma_Argument_Associations => New_List (
2849 Make_Pragma_Argument_Association (Loc,
2850 Expression => Relocate_Node (Expr))),
2851 Pragma_Name => Name_Volatile_Function);
2852
2853 Decorate (Aspect, Aitem);
2854 Insert_Pragma (Aitem);
2855 goto Continue;
2856
956ffaf4 2857 -- Case 2e: Annotate aspect
2858
2859 when Aspect_Annotate =>
2860 declare
2861 Args : List_Id;
2862 Pargs : List_Id;
2863 Arg : Node_Id;
2864
2865 begin
2866 -- The argument can be a single identifier
2867
2868 if Nkind (Expr) = N_Identifier then
2869
2870 -- One level of parens is allowed
2871
2872 if Paren_Count (Expr) > 1 then
2873 Error_Msg_F ("extra parentheses ignored", Expr);
2874 end if;
2875
2876 Set_Paren_Count (Expr, 0);
2877
2878 -- Add the single item to the list
2879
2880 Args := New_List (Expr);
2881
2882 -- Otherwise we must have an aggregate
2883
2884 elsif Nkind (Expr) = N_Aggregate then
2885
2886 -- Must be positional
2887
2888 if Present (Component_Associations (Expr)) then
2889 Error_Msg_F
2890 ("purely positional aggregate required", Expr);
2891 goto Continue;
2892 end if;
2893
2894 -- Must not be parenthesized
2895
2896 if Paren_Count (Expr) /= 0 then
2897 Error_Msg_F ("extra parentheses ignored", Expr);
2898 end if;
2899
2900 -- List of arguments is list of aggregate expressions
2901
2902 Args := Expressions (Expr);
2903
2904 -- Anything else is illegal
2905
2906 else
2907 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2908 goto Continue;
2909 end if;
2910
2911 -- Prepare pragma arguments
2912
2913 Pargs := New_List;
2914 Arg := First (Args);
2915 while Present (Arg) loop
2916 Append_To (Pargs,
2917 Make_Pragma_Argument_Association (Sloc (Arg),
2918 Expression => Relocate_Node (Arg)));
2919 Next (Arg);
2920 end loop;
2921
2922 Append_To (Pargs,
2923 Make_Pragma_Argument_Association (Sloc (Ent),
2924 Chars => Name_Entity,
2925 Expression => Ent));
2926
2927 Make_Aitem_Pragma
2928 (Pragma_Argument_Associations => Pargs,
2929 Pragma_Name => Name_Annotate);
2930 end;
2931
89f1e35c 2932 -- Case 3 : Aspects that don't correspond to pragma/attribute
2933 -- definition clause.
7b9b2f05 2934
89f1e35c 2935 -- Case 3a: The aspects listed below don't correspond to
2936 -- pragmas/attributes but do require delayed analysis.
7f694ca2 2937
51fa2a45 2938 -- Default_Value can only apply to a scalar type
2939
2940 when Aspect_Default_Value =>
2941 if not Is_Scalar_Type (E) then
2942 Error_Msg_N
1089ff19 2943 ("aspect Default_Value must apply to a scalar type", N);
51fa2a45 2944 end if;
2945
2946 Aitem := Empty;
2947
2948 -- Default_Component_Value can only apply to an array type
2949 -- with scalar components.
2950
2951 when Aspect_Default_Component_Value =>
2952 if not (Is_Array_Type (E)
3f4c9ffc 2953 and then Is_Scalar_Type (Component_Type (E)))
51fa2a45 2954 then
2955 Error_Msg_N ("aspect Default_Component_Value can only "
2956 & "apply to an array of scalar components", N);
2957 end if;
0fd13d32 2958
89f1e35c 2959 Aitem := Empty;
7f694ca2 2960
89f1e35c 2961 -- Case 3b: The aspects listed below don't correspond to
2962 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 2963
0fd13d32 2964 -- Implicit_Dereference
2965
89f1e35c 2966 -- For Implicit_Dereference, External_Name and Link_Name, only
2967 -- the legality checks are done during the analysis, thus no
2968 -- delay is required.
a8e38e1d 2969
89f1e35c 2970 when Aspect_Implicit_Dereference =>
2971 Analyze_Aspect_Implicit_Dereference;
2972 goto Continue;
7f694ca2 2973
0fd13d32 2974 -- External_Name, Link_Name
2975
89f1e35c 2976 when Aspect_External_Name |
2977 Aspect_Link_Name =>
2978 Analyze_Aspect_External_Or_Link_Name;
2979 goto Continue;
7f694ca2 2980
0fd13d32 2981 -- Dimension
2982
89f1e35c 2983 when Aspect_Dimension =>
2984 Analyze_Aspect_Dimension (N, Id, Expr);
2985 goto Continue;
cb4c311d 2986
0fd13d32 2987 -- Dimension_System
2988
89f1e35c 2989 when Aspect_Dimension_System =>
2990 Analyze_Aspect_Dimension_System (N, Id, Expr);
2991 goto Continue;
7f694ca2 2992
ceec4f7c 2993 -- Case 4: Aspects requiring special handling
51ea9c94 2994
e66f4e2a 2995 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2996 -- pragmas take care of the delay.
7f694ca2 2997
0fd13d32 2998 -- Pre/Post
2999
1e3c4ae6 3000 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3001 -- with a first argument that is the expression, and a second
3002 -- argument that is an informative message if the test fails.
3003 -- This is inserted right after the declaration, to get the
5b5df4a9 3004 -- required pragma placement. The processing for the pragmas
3005 -- takes care of the required delay.
ae888dbd 3006
5ddd846b 3007 when Pre_Post_Aspects => Pre_Post : declare
1e3c4ae6 3008 Pname : Name_Id;
ae888dbd 3009
1e3c4ae6 3010 begin
77ae6789 3011 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 3012 Pname := Name_Precondition;
3013 else
3014 Pname := Name_Postcondition;
3015 end if;
d74fc39a 3016
1e3c4ae6 3017 -- If the expressions is of the form A and then B, then
3018 -- we generate separate Pre/Post aspects for the separate
3019 -- clauses. Since we allow multiple pragmas, there is no
3020 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 3021 -- These should be treated in reverse order (B first and
3022 -- A second) since they are later inserted just after N in
3023 -- the order they are treated. This way, the pragma for A
3024 -- ends up preceding the pragma for B, which may have an
3025 -- importance for the error raised (either constraint error
3026 -- or precondition error).
1e3c4ae6 3027
39e1f22f 3028 -- We do not do this for Pre'Class, since we have to put
51fa2a45 3029 -- these conditions together in a complex OR expression.
ae888dbd 3030
4282d342 3031 -- We do not do this in ASIS mode, as ASIS relies on the
3032 -- original node representing the complete expression, when
3033 -- retrieving it through the source aspect table.
3034
3035 if not ASIS_Mode
3036 and then (Pname = Name_Postcondition
3037 or else not Class_Present (Aspect))
39e1f22f 3038 then
3039 while Nkind (Expr) = N_And_Then loop
3040 Insert_After (Aspect,
a273015d 3041 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 3042 Identifier => Identifier (Aspect),
a273015d 3043 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 3044 Class_Present => Class_Present (Aspect),
3045 Split_PPC => True));
a273015d 3046 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 3047 Eloc := Sloc (Expr);
3048 end loop;
3049 end if;
ae888dbd 3050
48d6f069 3051 -- Build the precondition/postcondition pragma
3052
51fa2a45 3053 -- Add note about why we do NOT need Copy_Tree here???
d74fc39a 3054
0fd13d32 3055 Make_Aitem_Pragma
3056 (Pragma_Argument_Associations => New_List (
3057 Make_Pragma_Argument_Association (Eloc,
3058 Chars => Name_Check,
a19e1763 3059 Expression => Relocate_Node (Expr))),
0fd13d32 3060 Pragma_Name => Pname);
39e1f22f 3061
3062 -- Add message unless exception messages are suppressed
3063
3064 if not Opt.Exception_Locations_Suppressed then
3065 Append_To (Pragma_Argument_Associations (Aitem),
3066 Make_Pragma_Argument_Association (Eloc,
ed695684 3067 Chars => Name_Message,
39e1f22f 3068 Expression =>
3069 Make_String_Literal (Eloc,
3070 Strval => "failed "
3071 & Get_Name_String (Pname)
3072 & " from "
3073 & Build_Location_String (Eloc))));
3074 end if;
d74fc39a 3075
7d20685d 3076 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 3077
1e3c4ae6 3078 -- For Pre/Post cases, insert immediately after the entity
3079 -- declaration, since that is the required pragma placement.
3080 -- Note that for these aspects, we do not have to worry
3081 -- about delay issues, since the pragmas themselves deal
3082 -- with delay of visibility for the expression analysis.
3083
e2bf777d 3084 Insert_Pragma (Aitem);
299b347e 3085
1e3c4ae6 3086 goto Continue;
5ddd846b 3087 end Pre_Post;
ae888dbd 3088
0fd13d32 3089 -- Test_Case
3090
e66f4e2a 3091 when Aspect_Test_Case => Test_Case : declare
3092 Args : List_Id;
3093 Comp_Expr : Node_Id;
3094 Comp_Assn : Node_Id;
3095 New_Expr : Node_Id;
57cd943b 3096
e66f4e2a 3097 begin
3098 Args := New_List;
b0bc40fd 3099
e66f4e2a 3100 if Nkind (Parent (N)) = N_Compilation_Unit then
3101 Error_Msg_Name_1 := Nam;
3102 Error_Msg_N ("incorrect placement of aspect `%`", E);
3103 goto Continue;
3104 end if;
6c545057 3105
e66f4e2a 3106 if Nkind (Expr) /= N_Aggregate then
3107 Error_Msg_Name_1 := Nam;
3108 Error_Msg_NE
3109 ("wrong syntax for aspect `%` for &", Id, E);
3110 goto Continue;
3111 end if;
6c545057 3112
e66f4e2a 3113 -- Make pragma expressions refer to the original aspect
51fa2a45 3114 -- expressions through the Original_Node link. This is used
3115 -- in semantic analysis for ASIS mode, so that the original
3116 -- expression also gets analyzed.
e66f4e2a 3117
3118 Comp_Expr := First (Expressions (Expr));
3119 while Present (Comp_Expr) loop
3120 New_Expr := Relocate_Node (Comp_Expr);
e66f4e2a 3121 Append_To (Args,
3122 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3123 Expression => New_Expr));
3124 Next (Comp_Expr);
3125 end loop;
3126
3127 Comp_Assn := First (Component_Associations (Expr));
3128 while Present (Comp_Assn) loop
3129 if List_Length (Choices (Comp_Assn)) /= 1
3130 or else
3131 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3132 then
fad014fe 3133 Error_Msg_Name_1 := Nam;
6c545057 3134 Error_Msg_NE
fad014fe 3135 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 3136 goto Continue;
3137 end if;
3138
e66f4e2a 3139 Append_To (Args,
3140 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
ed695684 3141 Chars => Chars (First (Choices (Comp_Assn))),
3142 Expression =>
3143 Relocate_Node (Expression (Comp_Assn))));
e66f4e2a 3144 Next (Comp_Assn);
3145 end loop;
6c545057 3146
e66f4e2a 3147 -- Build the test-case pragma
6c545057 3148
0fd13d32 3149 Make_Aitem_Pragma
3150 (Pragma_Argument_Associations => Args,
3151 Pragma_Name => Nam);
e66f4e2a 3152 end Test_Case;
85696508 3153
0fd13d32 3154 -- Contract_Cases
3155
5ddd846b 3156 when Aspect_Contract_Cases =>
0fd13d32 3157 Make_Aitem_Pragma
3158 (Pragma_Argument_Associations => New_List (
3159 Make_Pragma_Argument_Association (Loc,
3160 Expression => Relocate_Node (Expr))),
3161 Pragma_Name => Nam);
3a128918 3162
e2bf777d 3163 Decorate (Aspect, Aitem);
3164 Insert_Pragma (Aitem);
5ddd846b 3165 goto Continue;
3a128918 3166
89f1e35c 3167 -- Case 5: Special handling for aspects with an optional
3168 -- boolean argument.
85696508 3169
6c5793cd 3170 -- In the delayed case, the corresponding pragma cannot be
0fd13d32 3171 -- generated yet because the evaluation of the boolean needs
3172 -- to be delayed till the freeze point.
3173
89f1e35c 3174 when Boolean_Aspects |
3175 Library_Unit_Aspects =>
a5a64273 3176
89f1e35c 3177 Set_Is_Boolean_Aspect (Aspect);
a5a64273 3178
89f1e35c 3179 -- Lock_Free aspect only apply to protected objects
e1cedbae 3180
89f1e35c 3181 if A_Id = Aspect_Lock_Free then
3182 if Ekind (E) /= E_Protected_Type then
99a2d5bd 3183 Error_Msg_Name_1 := Nam;
a5a64273 3184 Error_Msg_N
89f1e35c 3185 ("aspect % only applies to a protected object",
3186 Aspect);
3187
3188 else
3189 -- Set the Uses_Lock_Free flag to True if there is no
37c6e44c 3190 -- expression or if the expression is True. The
89f1e35c 3191 -- evaluation of this aspect should be delayed to the
37c6e44c 3192 -- freeze point (why???)
89f1e35c 3193
e81df51c 3194 if No (Expr)
3195 or else Is_True (Static_Boolean (Expr))
89f1e35c 3196 then
3197 Set_Uses_Lock_Free (E);
3198 end if;
caf125ce 3199
3200 Record_Rep_Item (E, Aspect);
a5a64273 3201 end if;
e1cedbae 3202
89f1e35c 3203 goto Continue;
ae888dbd 3204
17631aa0 3205 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
d74fc39a 3206
39616053 3207 -- For the case of aspects Import and Export, we don't
3208 -- consider that we know the entity is never set in the
3209 -- source, since it is is likely modified outside the
3210 -- program.
3211
3212 -- Note: one might think that the analysis of the
3213 -- resulting pragma would take care of that, but
3214 -- that's not the case since it won't be from source.
3215
3216 if Ekind (E) = E_Variable then
3217 Set_Never_Set_In_Source (E, False);
3218 end if;
3219
2e1821c9 3220 -- In older versions of Ada the corresponding pragmas
51fa2a45 3221 -- specified a Convention. In Ada 2012 the convention is
3222 -- specified as a separate aspect, and it is optional,
2e1821c9 3223 -- given that it defaults to Convention_Ada. The code
3224 -- that verifed that there was a matching convention
3225 -- is now obsolete.
d74fc39a 3226
718d0d92 3227 -- Resolve the expression of an Import or Export here,
3228 -- and require it to be of type Boolean and static. This
3229 -- is not quite right, because in general this should be
3230 -- delayed, but that seems tricky for these, because
3231 -- normally Boolean aspects are replaced with pragmas at
3232 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3233 -- but in the case of these aspects we can't generate
3234 -- a simple pragma with just the entity name. ???
3235
3236 if not Present (Expr)
3237 or else Is_True (Static_Boolean (Expr))
3238 then
3239 if A_Id = Aspect_Import then
3240 Set_Is_Imported (E);
19a2e7b4 3241 Set_Has_Completion (E);
dd4c44af 3242
718d0d92 3243 -- An imported entity cannot have an explicit
3244 -- initialization.
dd4c44af 3245
718d0d92 3246 if Nkind (N) = N_Object_Declaration
3247 and then Present (Expression (N))
3248 then
3249 Error_Msg_N
3250 ("imported entities cannot be initialized "
3251 & "(RM B.1(24))", Expression (N));
3252 end if;
3253
3254 elsif A_Id = Aspect_Export then
3255 Set_Is_Exported (E);
dd4c44af 3256 end if;
3257 end if;
3258
6c5793cd 3259 goto Continue;
3260
3261 -- Disable_Controlled
3262
3263 elsif A_Id = Aspect_Disable_Controlled then
3264 if Ekind (E) /= E_Record_Type
3265 or else not Is_Controlled (E)
3266 then
3267 Error_Msg_N
3268 ("aspect % requires controlled record type", Aspect);
3269 goto Continue;
3270 end if;
3271
3f716509 3272 -- If we're in a generic template, we don't want to try
3273 -- to disable controlled types, because typical usage is
3274 -- "Disable_Controlled => not <some_check>'Enabled", and
3275 -- the value of Enabled is not known until we see a
7e2d3667 3276 -- particular instance. In such a context, we just need
3277 -- to preanalyze the expression for legality.
3f716509 3278
3279 if Expander_Active then
aae9bc79 3280 Analyze_And_Resolve (Expr, Standard_Boolean);
3281
3f716509 3282 if not Present (Expr)
3283 or else Is_True (Static_Boolean (Expr))
3284 then
3285 Set_Disable_Controlled (E);
3286 end if;
7e2d3667 3287
3288 elsif Serious_Errors_Detected = 0 then
3289 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6c5793cd 3290 end if;
3291
89f1e35c 3292 goto Continue;
3293 end if;
d74fc39a 3294
37c6e44c 3295 -- Library unit aspects require special handling in the case
3296 -- of a package declaration, the pragma needs to be inserted
3297 -- in the list of declarations for the associated package.
3298 -- There is no issue of visibility delay for these aspects.
d64221a7 3299
89f1e35c 3300 if A_Id in Library_Unit_Aspects
178fec9b 3301 and then
3302 Nkind_In (N, N_Package_Declaration,
3303 N_Generic_Package_Declaration)
89f1e35c 3304 and then Nkind (Parent (N)) /= N_Compilation_Unit
3ad60f63 3305
3306 -- Aspect is legal on a local instantiation of a library-
3307 -- level generic unit.
3308
b94a633e 3309 and then not Is_Generic_Instance (Defining_Entity (N))
89f1e35c 3310 then
3311 Error_Msg_N
dd4c44af 3312 ("incorrect context for library unit aspect&", Id);
89f1e35c 3313 goto Continue;
3314 end if;
cce84b09 3315
51fa2a45 3316 -- Cases where we do not delay, includes all cases where the
3317 -- expression is missing other than the above cases.
d74fc39a 3318
85ee12c0 3319 if not Delay_Required or else No (Expr) then
0fd13d32 3320 Make_Aitem_Pragma
3321 (Pragma_Argument_Associations => New_List (
3322 Make_Pragma_Argument_Association (Sloc (Ent),
3323 Expression => Ent)),
3324 Pragma_Name => Chars (Id));
89f1e35c 3325 Delay_Required := False;
ddf1337b 3326
89f1e35c 3327 -- In general cases, the corresponding pragma/attribute
3328 -- definition clause will be inserted later at the freezing
294709fa 3329 -- point, and we do not need to build it now.
ddf1337b 3330
89f1e35c 3331 else
3332 Aitem := Empty;
3333 end if;
ceec4f7c 3334
3335 -- Storage_Size
3336
3337 -- This is special because for access types we need to generate
3338 -- an attribute definition clause. This also works for single
3339 -- task declarations, but it does not work for task type
3340 -- declarations, because we have the case where the expression
3341 -- references a discriminant of the task type. That can't use
3342 -- an attribute definition clause because we would not have
3343 -- visibility on the discriminant. For that case we must
3344 -- generate a pragma in the task definition.
3345
3346 when Aspect_Storage_Size =>
3347
3348 -- Task type case
3349
3350 if Ekind (E) = E_Task_Type then
3351 declare
3352 Decl : constant Node_Id := Declaration_Node (E);
3353
3354 begin
3355 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3356
3357 -- If no task definition, create one
3358
3359 if No (Task_Definition (Decl)) then
3360 Set_Task_Definition (Decl,
3361 Make_Task_Definition (Loc,
3362 Visible_Declarations => Empty_List,
3363 End_Label => Empty));
3364 end if;
3365
51fa2a45 3366 -- Create a pragma and put it at the start of the task
3367 -- definition for the task type declaration.
ceec4f7c 3368
3369 Make_Aitem_Pragma
3370 (Pragma_Argument_Associations => New_List (
3371 Make_Pragma_Argument_Association (Loc,
3372 Expression => Relocate_Node (Expr))),
3373 Pragma_Name => Name_Storage_Size);
3374
3375 Prepend
3376 (Aitem,
3377 Visible_Declarations (Task_Definition (Decl)));
3378 goto Continue;
3379 end;
3380
3381 -- All other cases, generate attribute definition
3382
3383 else
3384 Aitem :=
3385 Make_Attribute_Definition_Clause (Loc,
3386 Name => Ent,
3387 Chars => Chars (Id),
3388 Expression => Relocate_Node (Expr));
3389 end if;
89f1e35c 3390 end case;
ddf1337b 3391
89f1e35c 3392 -- Attach the corresponding pragma/attribute definition clause to
3393 -- the aspect specification node.
d74fc39a 3394
89f1e35c 3395 if Present (Aitem) then
e2bf777d 3396 Set_From_Aspect_Specification (Aitem);
89f1e35c 3397 end if;
53c179ea 3398
89f1e35c 3399 -- In the context of a compilation unit, we directly put the
0fd13d32 3400 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3401 -- node (no delay is required here) except for aspects on a
51fa2a45 3402 -- subprogram body (see below) and a generic package, for which we
3403 -- need to introduce the pragma before building the generic copy
3404 -- (see sem_ch12), and for package instantiations, where the
3405 -- library unit pragmas are better handled early.
ddf1337b 3406
9129c28f 3407 if Nkind (Parent (N)) = N_Compilation_Unit
89f1e35c 3408 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3409 then
3410 declare
3411 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 3412
89f1e35c 3413 begin
3414 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 3415
89f1e35c 3416 -- For a Boolean aspect, create the corresponding pragma if
3417 -- no expression or if the value is True.
7f694ca2 3418
b9e61b2a 3419 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 3420 if Is_True (Static_Boolean (Expr)) then
0fd13d32 3421 Make_Aitem_Pragma
3422 (Pragma_Argument_Associations => New_List (
3423 Make_Pragma_Argument_Association (Sloc (Ent),
3424 Expression => Ent)),
3425 Pragma_Name => Chars (Id));
7f694ca2 3426
89f1e35c 3427 Set_From_Aspect_Specification (Aitem, True);
3428 Set_Corresponding_Aspect (Aitem, Aspect);
3429
3430 else
3431 goto Continue;
3432 end if;
3433 end if;
7f694ca2 3434
d6814978 3435 -- If the aspect is on a subprogram body (relevant aspect
3436 -- is Inline), add the pragma in front of the declarations.
3a72f9c3 3437
3438 if Nkind (N) = N_Subprogram_Body then
3439 if No (Declarations (N)) then
3440 Set_Declarations (N, New_List);
3441 end if;
3442
3443 Prepend (Aitem, Declarations (N));
3444
178fec9b 3445 elsif Nkind (N) = N_Generic_Package_Declaration then
3446 if No (Visible_Declarations (Specification (N))) then
3447 Set_Visible_Declarations (Specification (N), New_List);
3448 end if;
3449
3450 Prepend (Aitem,
3451 Visible_Declarations (Specification (N)));
3452
c39cce40 3453 elsif Nkind (N) = N_Package_Instantiation then
df8b0dae 3454 declare
3455 Spec : constant Node_Id :=
3456 Specification (Instance_Spec (N));
3457 begin
3458 if No (Visible_Declarations (Spec)) then
3459 Set_Visible_Declarations (Spec, New_List);
3460 end if;
3461
3462 Prepend (Aitem, Visible_Declarations (Spec));
3463 end;
3464
3a72f9c3 3465 else
3466 if No (Pragmas_After (Aux)) then
d4596fbe 3467 Set_Pragmas_After (Aux, New_List);
3a72f9c3 3468 end if;
3469
3470 Append (Aitem, Pragmas_After (Aux));
89f1e35c 3471 end if;
7f694ca2 3472
89f1e35c 3473 goto Continue;
3474 end;
3475 end if;
7f694ca2 3476
89f1e35c 3477 -- The evaluation of the aspect is delayed to the freezing point.
3478 -- The pragma or attribute clause if there is one is then attached
37c6e44c 3479 -- to the aspect specification which is put in the rep item list.
1a814552 3480
89f1e35c 3481 if Delay_Required then
3482 if Present (Aitem) then
3483 Set_Is_Delayed_Aspect (Aitem);
3484 Set_Aspect_Rep_Item (Aspect, Aitem);
3485 Set_Parent (Aitem, Aspect);
3486 end if;
1a814552 3487
89f1e35c 3488 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 3489
cba2ae82 3490 -- In the case of Default_Value, link the aspect to base type
3491 -- as well, even though it appears on a first subtype. This is
3492 -- mandated by the semantics of the aspect. Do not establish
3493 -- the link when processing the base type itself as this leads
3494 -- to a rep item circularity. Verify that we are dealing with
3495 -- a scalar type to prevent cascaded errors.
3496
3497 if A_Id = Aspect_Default_Value
3498 and then Is_Scalar_Type (E)
3499 and then Base_Type (E) /= E
3500 then
9f36e3fb 3501 Set_Has_Delayed_Aspects (Base_Type (E));
3502 Record_Rep_Item (Base_Type (E), Aspect);
3503 end if;
3504
89f1e35c 3505 Set_Has_Delayed_Aspects (E);
3506 Record_Rep_Item (E, Aspect);
ddf1337b 3507
b855559d 3508 -- When delay is not required and the context is a package or a
3509 -- subprogram body, insert the pragma in the body declarations.
f55ce169 3510
b855559d 3511 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
f55ce169 3512 if No (Declarations (N)) then
3513 Set_Declarations (N, New_List);
3514 end if;
3515
3516 -- The pragma is added before source declarations
3517
3518 Prepend_To (Declarations (N), Aitem);
3519
89f1e35c 3520 -- When delay is not required and the context is not a compilation
3521 -- unit, we simply insert the pragma/attribute definition clause
3522 -- in sequence.
ddf1337b 3523
89f1e35c 3524 else
3525 Insert_After (Ins_Node, Aitem);
3526 Ins_Node := Aitem;
d74fc39a 3527 end if;
0fd13d32 3528 end Analyze_One_Aspect;
ae888dbd 3529
d64221a7 3530 <<Continue>>
3531 Next (Aspect);
21ea3a4f 3532 end loop Aspect_Loop;
89f1e35c 3533
3534 if Has_Delayed_Aspects (E) then
3535 Ensure_Freeze_Node (E);
3536 end if;
21ea3a4f 3537 end Analyze_Aspect_Specifications;
ae888dbd 3538
eb8aeefc 3539 ---------------------------------------------------
3540 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3541 ---------------------------------------------------
3542
3543 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3544 Body_Id : constant Entity_Id := Defining_Entity (N);
3545
3546 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3547 -- Subprogram body [stub] N has aspects, but they are not properly
3548 -- placed. Emit an error message depending on the aspects involved.
3549 -- Spec_Id is the entity of the corresponding spec.
3550
3551 --------------------------------
3552 -- Diagnose_Misplaced_Aspects --
3553 --------------------------------
3554
3555 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3556 procedure Misplaced_Aspect_Error
3557 (Asp : Node_Id;
3558 Ref_Nam : Name_Id);
3559 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3560 -- the name of the refined version of the aspect.
3561
3562 ----------------------------
3563 -- Misplaced_Aspect_Error --
3564 ----------------------------
3565
3566 procedure Misplaced_Aspect_Error
3567 (Asp : Node_Id;
3568 Ref_Nam : Name_Id)
3569 is
3570 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3571 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3572
3573 begin
3574 -- The corresponding spec already contains the aspect in question
3575 -- and the one appearing on the body must be the refined form:
3576
3577 -- procedure P with Global ...;
3578 -- procedure P with Global ... is ... end P;
3579 -- ^
3580 -- Refined_Global
3581
3582 if Has_Aspect (Spec_Id, Asp_Id) then
3583 Error_Msg_Name_1 := Asp_Nam;
3584
3585 -- Subunits cannot carry aspects that apply to a subprogram
3586 -- declaration.
3587
3588 if Nkind (Parent (N)) = N_Subunit then
3589 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3590
3591 -- Otherwise suggest the refined form
3592
3593 else
3594 Error_Msg_Name_2 := Ref_Nam;
3595 Error_Msg_N ("aspect % should be %", Asp);
3596 end if;
3597
3598 -- Otherwise the aspect must appear on the spec, not on the body
3599
3600 -- procedure P;
3601 -- procedure P with Global ... is ... end P;
3602
3603 else
3604 Error_Msg_N
3605 ("aspect specification must appear in subprogram declaration",
3606 Asp);
3607 end if;
3608 end Misplaced_Aspect_Error;
3609
3610 -- Local variables
3611
3612 Asp : Node_Id;
3613 Asp_Nam : Name_Id;
3614
3615 -- Start of processing for Diagnose_Misplaced_Aspects
3616
3617 begin
3618 -- Iterate over the aspect specifications and emit specific errors
3619 -- where applicable.
3620
3621 Asp := First (Aspect_Specifications (N));
3622 while Present (Asp) loop
3623 Asp_Nam := Chars (Identifier (Asp));
3624
3625 -- Do not emit errors on aspects that can appear on a subprogram
3626 -- body. This scenario occurs when the aspect specification list
3627 -- contains both misplaced and properly placed aspects.
3628
3629 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3630 null;
3631
3632 -- Special diagnostics for SPARK aspects
3633
3634 elsif Asp_Nam = Name_Depends then
3635 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3636
3637 elsif Asp_Nam = Name_Global then
3638 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3639
3640 elsif Asp_Nam = Name_Post then
3641 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3642
3643 -- Otherwise a language-defined aspect is misplaced
3644
3645 else
3646 Error_Msg_N
3647 ("aspect specification must appear in subprogram declaration",
3648 Asp);
3649 end if;
3650
3651 Next (Asp);
3652 end loop;
3653 end Diagnose_Misplaced_Aspects;
3654
3655 -- Local variables
3656
3657 Spec_Id : Entity_Id;
3658
3659 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3660
3661 begin
3662 if Nkind (N) = N_Subprogram_Body_Stub then
3663 Spec_Id := Corresponding_Spec_Of_Stub (N);
3664 else
3665 Spec_Id := Corresponding_Spec (N);
3666 end if;
3667
3668 -- Language-defined aspects cannot be associated with a subprogram body
3669 -- [stub] if the subprogram has a spec. Certain implementation defined
3670 -- aspects are allowed to break this rule (for all applicable cases, see
3671 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3672
3673 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
3674 Diagnose_Misplaced_Aspects (Spec_Id);
3675 else
3676 Analyze_Aspect_Specifications (N, Body_Id);
3677 end if;
3678 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3679
d6f39728 3680 -----------------------
3681 -- Analyze_At_Clause --
3682 -----------------------
3683
3684 -- An at clause is replaced by the corresponding Address attribute
3685 -- definition clause that is the preferred approach in Ada 95.
3686
3687 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 3688 CS : constant Boolean := Comes_From_Source (N);
3689
d6f39728 3690 begin
177675a7 3691 -- This is an obsolescent feature
3692
e0521a36 3693 Check_Restriction (No_Obsolescent_Features, N);
3694
9dfe12ae 3695 if Warn_On_Obsolescent_Feature then
3696 Error_Msg_N
b174444e 3697 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 3698 Error_Msg_N
b174444e 3699 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 3700 end if;
3701
177675a7 3702 -- Rewrite as address clause
3703
d6f39728 3704 Rewrite (N,
3705 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 3706 Name => Identifier (N),
3707 Chars => Name_Address,
d6f39728 3708 Expression => Expression (N)));
177675a7 3709
2beb22b1 3710 -- We preserve Comes_From_Source, since logically the clause still comes
3711 -- from the source program even though it is changed in form.
177675a7 3712
3713 Set_Comes_From_Source (N, CS);
3714
3715 -- Analyze rewritten clause
3716
d6f39728 3717 Analyze_Attribute_Definition_Clause (N);
3718 end Analyze_At_Clause;
3719
3720 -----------------------------------------
3721 -- Analyze_Attribute_Definition_Clause --
3722 -----------------------------------------
3723
3724 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3725 Loc : constant Source_Ptr := Sloc (N);
3726 Nam : constant Node_Id := Name (N);
3727 Attr : constant Name_Id := Chars (N);
3728 Expr : constant Node_Id := Expression (N);
3729 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 3730
3731 Ent : Entity_Id;
3732 -- The entity of Nam after it is analyzed. In the case of an incomplete
3733 -- type, this is the underlying type.
3734
d6f39728 3735 U_Ent : Entity_Id;
d64221a7 3736 -- The underlying entity to which the attribute applies. Generally this
3737 -- is the Underlying_Type of Ent, except in the case where the clause
3738 -- applies to full view of incomplete type or private type in which case
3739 -- U_Ent is just a copy of Ent.
d6f39728 3740
3741 FOnly : Boolean := False;
3742 -- Reset to True for subtype specific attribute (Alignment, Size)
51fa2a45 3743 -- and for stream attributes, i.e. those cases where in the call to
3744 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3745 -- are checked. Note that the case of stream attributes is not clear
3746 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3747 -- Storage_Size for derived task types, but that is also clearly
3748 -- unintentional.
d6f39728 3749
9f373bb8 3750 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3751 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3752 -- definition clauses.
3753
ae888dbd 3754 function Duplicate_Clause return Boolean;
3755 -- This routine checks if the aspect for U_Ent being given by attribute
3756 -- definition clause N is for an aspect that has already been specified,
3757 -- and if so gives an error message. If there is a duplicate, True is
3758 -- returned, otherwise if there is no error, False is returned.
3759
81b424ac 3760 procedure Check_Indexing_Functions;
3761 -- Check that the function in Constant_Indexing or Variable_Indexing
3762 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 3763 -- check that some interpretation is legal.
81b424ac 3764
89cc7147 3765 procedure Check_Iterator_Functions;
3766 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 3767 -- has the proper type structure.
89cc7147 3768
3769 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 3770 -- Common legality check for the previous two
89cc7147 3771
177675a7 3772 -----------------------------------
3773 -- Analyze_Stream_TSS_Definition --
3774 -----------------------------------
3775
9f373bb8 3776 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3777 Subp : Entity_Id := Empty;
3778 I : Interp_Index;
3779 It : Interp;
3780 Pnam : Entity_Id;
3781
3782 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
d64221a7 3783 -- True for Read attribute, false for other attributes
9f373bb8 3784
3785 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3786 -- Return true if the entity is a subprogram with an appropriate
3787 -- profile for the attribute being defined.
3788
3789 ----------------------
3790 -- Has_Good_Profile --
3791 ----------------------
3792
3793 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3794 F : Entity_Id;
3795 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3796 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3797 (False => E_Procedure, True => E_Function);
3798 Typ : Entity_Id;
3799
3800 begin
3801 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3802 return False;
3803 end if;
3804
3805 F := First_Formal (Subp);
3806
3807 if No (F)
3808 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3809 or else Designated_Type (Etype (F)) /=
3810 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3811 then
3812 return False;
3813 end if;
3814
3815 if not Is_Function then
3816 Next_Formal (F);
3817
3818 declare
3819 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3820 (False => E_In_Parameter,
3821 True => E_Out_Parameter);
3822 begin
3823 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3824 return False;
3825 end if;
3826 end;
3827
3828 Typ := Etype (F);
3829
b64082f2 3830 -- If the attribute specification comes from an aspect
51fa2a45 3831 -- specification for a class-wide stream, the parameter must be
3832 -- a class-wide type of the entity to which the aspect applies.
b64082f2 3833
3834 if From_Aspect_Specification (N)
3835 and then Class_Present (Parent (N))
3836 and then Is_Class_Wide_Type (Typ)
3837 then
3838 Typ := Etype (Typ);
3839 end if;
3840
9f373bb8 3841 else
3842 Typ := Etype (Subp);
3843 end if;
3844
51fa2a45 3845 -- Verify that the prefix of the attribute and the local name for
5a8fe506 3846 -- the type of the formal match, or one is the class-wide of the
3847 -- other, in the case of a class-wide stream operation.
48680a09 3848
b8eacb12 3849 if Base_Type (Typ) = Base_Type (Ent)
5a8fe506 3850 or else (Is_Class_Wide_Type (Typ)
2be1f7d7 3851 and then Typ = Class_Wide_Type (Base_Type (Ent)))
fbf4d6ef 3852 or else (Is_Class_Wide_Type (Ent)
3853 and then Ent = Class_Wide_Type (Base_Type (Typ)))
5a8fe506 3854 then
3855 null;
3856 else
3857 return False;
3858 end if;
3859
3860 if Present ((Next_Formal (F)))
48680a09 3861 then
3862 return False;
3863
3864 elsif not Is_Scalar_Type (Typ)
3865 and then not Is_First_Subtype (Typ)
3866 and then not Is_Class_Wide_Type (Typ)
3867 then
3868 return False;
3869
3870 else
3871 return True;
3872 end if;
9f373bb8 3873 end Has_Good_Profile;
3874
3875 -- Start of processing for Analyze_Stream_TSS_Definition
3876
3877 begin
3878 FOnly := True;
3879
3880 if not Is_Type (U_Ent) then
3881 Error_Msg_N ("local name must be a subtype", Nam);
3882 return;
48680a09 3883
3884 elsif not Is_First_Subtype (U_Ent) then
3885 Error_Msg_N ("local name must be a first subtype", Nam);
3886 return;
9f373bb8 3887 end if;
3888
3889 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3890
44e4341e 3891 -- If Pnam is present, it can be either inherited from an ancestor
3892 -- type (in which case it is legal to redefine it for this type), or
3893 -- be a previous definition of the attribute for the same type (in
3894 -- which case it is illegal).
3895
3896 -- In the first case, it will have been analyzed already, and we
3897 -- can check that its profile does not match the expected profile
3898 -- for a stream attribute of U_Ent. In the second case, either Pnam
3899 -- has been analyzed (and has the expected profile), or it has not
3900 -- been analyzed yet (case of a type that has not been frozen yet
3901 -- and for which the stream attribute has been set using Set_TSS).
3902
3903 if Present (Pnam)
3904 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3905 then
9f373bb8 3906 Error_Msg_Sloc := Sloc (Pnam);
3907 Error_Msg_Name_1 := Attr;
3908 Error_Msg_N ("% attribute already defined #", Nam);
3909 return;
3910 end if;
3911
3912 Analyze (Expr);
3913
3914 if Is_Entity_Name (Expr) then
3915 if not Is_Overloaded (Expr) then
3916 if Has_Good_Profile (Entity (Expr)) then
3917 Subp := Entity (Expr);
3918 end if;
3919
3920 else
3921 Get_First_Interp (Expr, I, It);
9f373bb8 3922 while Present (It.Nam) loop
3923 if Has_Good_Profile (It.Nam) then
3924 Subp := It.Nam;
3925 exit;
3926 end if;
3927
3928 Get_Next_Interp (I, It);
3929 end loop;
3930 end if;
3931 end if;
3932
3933 if Present (Subp) then
59ac57b5 3934 if Is_Abstract_Subprogram (Subp) then
9f373bb8 3935 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3936 return;
e12b2502 3937
299b347e 3938 -- A stream subprogram for an interface type must be a null
3939 -- procedure (RM 13.13.2 (38/3)).
e12b2502 3940
3941 elsif Is_Interface (U_Ent)
5a8fe506 3942 and then not Is_Class_Wide_Type (U_Ent)
e12b2502 3943 and then not Inside_A_Generic
e12b2502 3944 and then
5a8fe506 3945 (Ekind (Subp) = E_Function
3946 or else
3947 not Null_Present
2be1f7d7 3948 (Specification
3949 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
e12b2502 3950 then
3951 Error_Msg_N
3952 ("stream subprogram for interface type "
3953 & "must be null procedure", Expr);
9f373bb8 3954 end if;
3955
3956 Set_Entity (Expr, Subp);
3957 Set_Etype (Expr, Etype (Subp));
3958
44e4341e 3959 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 3960
3961 else
3962 Error_Msg_Name_1 := Attr;
3963 Error_Msg_N ("incorrect expression for% attribute", Expr);
3964 end if;
3965 end Analyze_Stream_TSS_Definition;
3966
81b424ac 3967 ------------------------------
3968 -- Check_Indexing_Functions --
3969 ------------------------------
3970
3971 procedure Check_Indexing_Functions is
c8a2d809 3972 Indexing_Found : Boolean := False;
8df4f2a5 3973
44d567c8 3974 procedure Check_Inherited_Indexing;
3975 -- For a derived type, check that no indexing aspect is specified
3976 -- for the type if it is also inherited
3977
81b424ac 3978 procedure Check_One_Function (Subp : Entity_Id);
7796365f 3979 -- Check one possible interpretation. Sets Indexing_Found True if a
3980 -- legal indexing function is found.
81b424ac 3981
05987af3 3982 procedure Illegal_Indexing (Msg : String);
3983 -- Diagnose illegal indexing function if not overloaded. In the
3984 -- overloaded case indicate that no legal interpretation exists.
3985
44d567c8 3986 ------------------------------
3987 -- Check_Inherited_Indexing --
3988 ------------------------------
3989
3990 procedure Check_Inherited_Indexing is
3991 Inherited : Node_Id;
3992
3993 begin
3994 if Attr = Name_Constant_Indexing then
3995 Inherited :=
3996 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
3997 else pragma Assert (Attr = Name_Variable_Indexing);
3998 Inherited :=
3999 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4000 end if;
4001
4002 if Present (Inherited) then
4003 if Debug_Flag_Dot_XX then
4004 null;
4005
4006 -- OK if current attribute_definition_clause is expansion
4007 -- of inherited aspect.
4008
4009 elsif Aspect_Rep_Item (Inherited) = N then
4010 null;
4011
4012 -- Indicate the operation that must be overridden, rather
4013 -- than redefining the indexing aspect
4014
4015 else
4016 Illegal_Indexing
4017 ("indexing function already inherited "
4018 & "from parent type");
4019 Error_Msg_NE
4020 ("!override & instead",
4021 N, Entity (Expression (Inherited)));
4022 end if;
4023 end if;
4024 end Check_Inherited_Indexing;
4025
81b424ac 4026 ------------------------
4027 -- Check_One_Function --
4028 ------------------------
4029
4030 procedure Check_One_Function (Subp : Entity_Id) is
05987af3 4031 Default_Element : Node_Id;
4032 Ret_Type : constant Entity_Id := Etype (Subp);
1b7510f9 4033
81b424ac 4034 begin
05987af3 4035 if not Is_Overloadable (Subp) then
4036 Illegal_Indexing ("illegal indexing function for type&");
4037 return;
4038
7796365f 4039 elsif Scope (Subp) /= Scope (Ent) then
4040 if Nkind (Expr) = N_Expanded_Name then
4041
4042 -- Indexing function can't be declared elsewhere
4043
4044 Illegal_Indexing
4045 ("indexing function must be declared in scope of type&");
4046 end if;
4047
05987af3 4048 return;
4049
4050 elsif No (First_Formal (Subp)) then
4051 Illegal_Indexing
4052 ("Indexing requires a function that applies to type&");
4053 return;
4054
4055 elsif No (Next_Formal (First_Formal (Subp))) then
4056 Illegal_Indexing
2eb0ff42 4057 ("indexing function must have at least two parameters");
05987af3 4058 return;
4059
4060 elsif Is_Derived_Type (Ent) then
44d567c8 4061 Check_Inherited_Indexing;
05987af3 4062 end if;
4063
e81df51c 4064 if not Check_Primitive_Function (Subp) then
05987af3 4065 Illegal_Indexing
4066 ("Indexing aspect requires a function that applies to type&");
4067 return;
81b424ac 4068 end if;
4069
7796365f 4070 -- If partial declaration exists, verify that it is not tagged.
4071
4072 if Ekind (Current_Scope) = E_Package
4073 and then Has_Private_Declaration (Ent)
4074 and then From_Aspect_Specification (N)
7c0c95b8 4075 and then
4076 List_Containing (Parent (Ent)) =
4077 Private_Declarations
7796365f 4078 (Specification (Unit_Declaration_Node (Current_Scope)))
4079 and then Nkind (N) = N_Attribute_Definition_Clause
4080 then
4081 declare
4082 Decl : Node_Id;
4083
4084 begin
4085 Decl :=
4086 First (Visible_Declarations
7c0c95b8 4087 (Specification
4088 (Unit_Declaration_Node (Current_Scope))));
7796365f 4089
4090 while Present (Decl) loop
4091 if Nkind (Decl) = N_Private_Type_Declaration
4092 and then Ent = Full_View (Defining_Identifier (Decl))
4093 and then Tagged_Present (Decl)
4094 and then No (Aspect_Specifications (Decl))
4095 then
4096 Illegal_Indexing
4097 ("Indexing aspect cannot be specified on full view "
7c0c95b8 4098 & "if partial view is tagged");
7796365f 4099 return;
4100 end if;
4101
4102 Next (Decl);
4103 end loop;
4104 end;
4105 end if;
4106
1b7510f9 4107 -- An indexing function must return either the default element of
cac18f71 4108 -- the container, or a reference type. For variable indexing it
a45d946f 4109 -- must be the latter.
1b7510f9 4110
05987af3 4111 Default_Element :=
4112 Find_Value_Of_Aspect
4113 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4114
1b7510f9 4115 if Present (Default_Element) then
4116 Analyze (Default_Element);
a45d946f 4117
1b7510f9 4118 if Is_Entity_Name (Default_Element)
05987af3 4119 and then not Covers (Entity (Default_Element), Ret_Type)
4120 and then False
1b7510f9 4121 then
05987af3 4122 Illegal_Indexing
4123 ("wrong return type for indexing function");
1b7510f9 4124 return;
4125 end if;
4126 end if;
4127
a45d946f 4128 -- For variable_indexing the return type must be a reference type
1b7510f9 4129
05987af3 4130 if Attr = Name_Variable_Indexing then
4131 if not Has_Implicit_Dereference (Ret_Type) then
4132 Illegal_Indexing
4133 ("variable indexing must return a reference type");
4134 return;
4135
423b89fd 4136 elsif Is_Access_Constant
4137 (Etype (First_Discriminant (Ret_Type)))
05987af3 4138 then
4139 Illegal_Indexing
4140 ("variable indexing must return an access to variable");
4141 return;
4142 end if;
cac18f71 4143
4144 else
05987af3 4145 if Has_Implicit_Dereference (Ret_Type)
4146 and then not
4147 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4148 then
4149 Illegal_Indexing
4150 ("constant indexing must return an access to constant");
4151 return;
4152
4153 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4154 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4155 then
4156 Illegal_Indexing
4157 ("constant indexing must apply to an access to constant");
4158 return;
4159 end if;
81b424ac 4160 end if;
05987af3 4161
4162 -- All checks succeeded.
4163
4164 Indexing_Found := True;
81b424ac 4165 end Check_One_Function;
4166
05987af3 4167 -----------------------
4168 -- Illegal_Indexing --
4169 -----------------------
4170
4171 procedure Illegal_Indexing (Msg : String) is
4172 begin
7796365f 4173 Error_Msg_NE (Msg, N, Ent);
05987af3 4174 end Illegal_Indexing;
4175
81b424ac 4176 -- Start of processing for Check_Indexing_Functions
4177
4178 begin
89cc7147 4179 if In_Instance then
44d567c8 4180 Check_Inherited_Indexing;
89cc7147 4181 end if;
4182
81b424ac 4183 Analyze (Expr);
4184
4185 if not Is_Overloaded (Expr) then
4186 Check_One_Function (Entity (Expr));
4187
4188 else
4189 declare
2c5754de 4190 I : Interp_Index;
81b424ac 4191 It : Interp;
4192
4193 begin
cac18f71 4194 Indexing_Found := False;
81b424ac 4195 Get_First_Interp (Expr, I, It);
4196 while Present (It.Nam) loop
4197
4198 -- Note that analysis will have added the interpretation
4199 -- that corresponds to the dereference. We only check the
4200 -- subprogram itself.
4201
4202 if Is_Overloadable (It.Nam) then
4203 Check_One_Function (It.Nam);
4204 end if;
4205
4206 Get_Next_Interp (I, It);
4207 end loop;
4208 end;
4209 end if;
7796365f 4210
7c0c95b8 4211 if not Indexing_Found and then not Error_Posted (N) then
7796365f 4212 Error_Msg_NE
4213 ("aspect Indexing requires a local function that "
4214 & "applies to type&", Expr, Ent);
4215 end if;
81b424ac 4216 end Check_Indexing_Functions;
4217
89cc7147 4218 ------------------------------
4219 -- Check_Iterator_Functions --
4220 ------------------------------
4221
4222 procedure Check_Iterator_Functions is
4223 Default : Entity_Id;
4224
4225 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 4226 -- Check one possible interpretation for validity
89cc7147 4227
4228 ----------------------------
4229 -- Valid_Default_Iterator --
4230 ----------------------------
4231
4232 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4233 Formal : Entity_Id;
4234
4235 begin
4236 if not Check_Primitive_Function (Subp) then
4237 return False;
4238 else
4239 Formal := First_Formal (Subp);
4240 end if;
4241
8df4f2a5 4242 -- False if any subsequent formal has no default expression
89cc7147 4243
8df4f2a5 4244 Formal := Next_Formal (Formal);
4245 while Present (Formal) loop
4246 if No (Expression (Parent (Formal))) then
4247 return False;
4248 end if;
89cc7147 4249
8df4f2a5 4250 Next_Formal (Formal);
4251 end loop;
89cc7147 4252
8df4f2a5 4253 -- True if all subsequent formals have default expressions
89cc7147 4254
4255 return True;
4256 end Valid_Default_Iterator;
4257
4258 -- Start of processing for Check_Iterator_Functions
4259
4260 begin
4261 Analyze (Expr);
4262
4263 if not Is_Entity_Name (Expr) then
4264 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4265 end if;
4266
4267 if not Is_Overloaded (Expr) then
4268 if not Check_Primitive_Function (Entity (Expr)) then
4269 Error_Msg_NE
4270 ("aspect Indexing requires a function that applies to type&",
4271 Entity (Expr), Ent);
4272 end if;
4273
05f6f999 4274 -- Flag the default_iterator as well as the denoted function.
4275
89cc7147 4276 if not Valid_Default_Iterator (Entity (Expr)) then
05f6f999 4277 Error_Msg_N ("improper function for default iterator!", Expr);
89cc7147 4278 end if;
4279
4280 else
4281 Default := Empty;
4282 declare
4283 I : Interp_Index;
4284 It : Interp;
4285
4286 begin
4287 Get_First_Interp (Expr, I, It);
4288 while Present (It.Nam) loop
4289 if not Check_Primitive_Function (It.Nam)
59f3e675 4290 or else not Valid_Default_Iterator (It.Nam)
89cc7147 4291 then
4292 Remove_Interp (I);
4293
4294 elsif Present (Default) then
4295 Error_Msg_N ("default iterator must be unique", Expr);
4296
4297 else
4298 Default := It.Nam;
4299 end if;
4300
4301 Get_Next_Interp (I, It);
4302 end loop;
4303 end;
4304
4305 if Present (Default) then
4306 Set_Entity (Expr, Default);
4307 Set_Is_Overloaded (Expr, False);
4308 end if;
4309 end if;
4310 end Check_Iterator_Functions;
4311
4312 -------------------------------
4313 -- Check_Primitive_Function --
4314 -------------------------------
4315
4316 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4317 Ctrl : Entity_Id;
4318
4319 begin
4320 if Ekind (Subp) /= E_Function then
4321 return False;
4322 end if;
4323
4324 if No (First_Formal (Subp)) then
4325 return False;
4326 else
4327 Ctrl := Etype (First_Formal (Subp));
4328 end if;
4329
05f6f999 4330 -- To be a primitive operation subprogram has to be in same scope.
4331
4332 if Scope (Ctrl) /= Scope (Subp) then
4333 return False;
4334 end if;
4335
7d6fb253 4336 -- Type of formal may be the class-wide type, an access to such,
4337 -- or an incomplete view.
4338
89cc7147 4339 if Ctrl = Ent
4340 or else Ctrl = Class_Wide_Type (Ent)
4341 or else
4342 (Ekind (Ctrl) = E_Anonymous_Access_Type
b85d62ec 4343 and then (Designated_Type (Ctrl) = Ent
4344 or else
4345 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
7d6fb253 4346 or else
4347 (Ekind (Ctrl) = E_Incomplete_Type
4348 and then Full_View (Ctrl) = Ent)
89cc7147 4349 then
4350 null;
89cc7147 4351 else
4352 return False;
4353 end if;
4354
4355 return True;
4356 end Check_Primitive_Function;
4357
ae888dbd 4358 ----------------------
4359 -- Duplicate_Clause --
4360 ----------------------
4361
4362 function Duplicate_Clause return Boolean is
d74fc39a 4363 A : Node_Id;
ae888dbd 4364
4365 begin
c8969ba6 4366 -- Nothing to do if this attribute definition clause comes from
4367 -- an aspect specification, since we could not be duplicating an
ae888dbd 4368 -- explicit clause, and we dealt with the case of duplicated aspects
4369 -- in Analyze_Aspect_Specifications.
4370
4371 if From_Aspect_Specification (N) then
4372 return False;
4373 end if;
4374
89f1e35c 4375 -- Otherwise current clause may duplicate previous clause, or a
4376 -- previously given pragma or aspect specification for the same
4377 -- aspect.
d74fc39a 4378
89b3b365 4379 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 4380
4381 if Present (A) then
89f1e35c 4382 Error_Msg_Name_1 := Chars (N);
4383 Error_Msg_Sloc := Sloc (A);
4384
89b3b365 4385 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 4386 return True;
ae888dbd 4387 end if;
4388
4389 return False;
4390 end Duplicate_Clause;
4391
9f373bb8 4392 -- Start of processing for Analyze_Attribute_Definition_Clause
4393
d6f39728 4394 begin
d64221a7 4395 -- The following code is a defense against recursion. Not clear that
51fa2a45 4396 -- this can happen legitimately, but perhaps some error situations can
4397 -- cause it, and we did see this recursion during testing.
d64221a7 4398
4399 if Analyzed (N) then
4400 return;
4401 else
4402 Set_Analyzed (N, True);
4403 end if;
4404
a29bc1d9 4405 -- Ignore some selected attributes in CodePeer mode since they are not
4406 -- relevant in this context.
4407
4408 if CodePeer_Mode then
4409 case Id is
4410
4411 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4412 -- internal representation of types by implicitly packing them.
4413
4414 when Attribute_Component_Size =>
4415 Rewrite (N, Make_Null_Statement (Sloc (N)));
4416 return;
4417
4418 when others =>
4419 null;
4420 end case;
4421 end if;
4422
d8ba53a8 4423 -- Process Ignore_Rep_Clauses option
eef1ca1e 4424
d8ba53a8 4425 if Ignore_Rep_Clauses then
9d627c41 4426 case Id is
4427
eef1ca1e 4428 -- The following should be ignored. They do not affect legality
4429 -- and may be target dependent. The basic idea of -gnatI is to
4430 -- ignore any rep clauses that may be target dependent but do not
4431 -- affect legality (except possibly to be rejected because they
4432 -- are incompatible with the compilation target).
9d627c41 4433
2f1aac99 4434 when Attribute_Alignment |
9d627c41 4435 Attribute_Bit_Order |
4436 Attribute_Component_Size |
4437 Attribute_Machine_Radix |
4438 Attribute_Object_Size |
4439 Attribute_Size |
2ff55065 4440 Attribute_Small |
9d627c41 4441 Attribute_Stream_Size |
4442 Attribute_Value_Size =>
2ff55065 4443 Kill_Rep_Clause (N);
9d627c41 4444 return;
4445
eef1ca1e 4446 -- The following should not be ignored, because in the first place
51fa2a45 4447 -- they are reasonably portable, and should not cause problems
4448 -- in compiling code from another target, and also they do affect
4449 -- legality, e.g. failing to provide a stream attribute for a type
4450 -- may make a program illegal.
9d627c41 4451
b55f7641 4452 when Attribute_External_Tag |
4453 Attribute_Input |
4454 Attribute_Output |
4455 Attribute_Read |
4456 Attribute_Simple_Storage_Pool |
4457 Attribute_Storage_Pool |
4458 Attribute_Storage_Size |
4459 Attribute_Write =>
9d627c41 4460 null;
4461
2ff55065 4462 -- We do not do anything here with address clauses, they will be
4463 -- removed by Freeze later on, but for now, it works better to
4464 -- keep then in the tree.
4465
4466 when Attribute_Address =>
4467 null;
4468
b593a52c 4469 -- Other cases are errors ("attribute& cannot be set with
4470 -- definition clause"), which will be caught below.
9d627c41 4471
4472 when others =>
4473 null;
4474 end case;
fbc67f84 4475 end if;
4476
d6f39728 4477 Analyze (Nam);
4478 Ent := Entity (Nam);
4479
4480 if Rep_Item_Too_Early (Ent, N) then
4481 return;
4482 end if;
4483
9f373bb8 4484 -- Rep clause applies to full view of incomplete type or private type if
4485 -- we have one (if not, this is a premature use of the type). However,
4486 -- certain semantic checks need to be done on the specified entity (i.e.
4487 -- the private view), so we save it in Ent.
d6f39728 4488
4489 if Is_Private_Type (Ent)
4490 and then Is_Derived_Type (Ent)
4491 and then not Is_Tagged_Type (Ent)
4492 and then No (Full_View (Ent))
4493 then
9f373bb8 4494 -- If this is a private type whose completion is a derivation from
4495 -- another private type, there is no full view, and the attribute
4496 -- belongs to the type itself, not its underlying parent.
d6f39728 4497
4498 U_Ent := Ent;
4499
4500 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 4501
9f373bb8 4502 -- The attribute applies to the full view, set the entity of the
4503 -- attribute definition accordingly.
d5b349fa 4504
d6f39728 4505 Ent := Underlying_Type (Ent);
4506 U_Ent := Ent;
d5b349fa 4507 Set_Entity (Nam, Ent);
4508
d6f39728 4509 else
4510 U_Ent := Underlying_Type (Ent);
4511 end if;
4512
44705307 4513 -- Avoid cascaded error
d6f39728 4514
4515 if Etype (Nam) = Any_Type then
4516 return;
4517
89f1e35c 4518 -- Must be declared in current scope or in case of an aspect
ace3389d 4519 -- specification, must be visible in current scope.
44705307 4520
89f1e35c 4521 elsif Scope (Ent) /= Current_Scope
ace3389d 4522 and then
4523 not (From_Aspect_Specification (N)
4524 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 4525 then
d6f39728 4526 Error_Msg_N ("entity must be declared in this scope", Nam);
4527 return;
4528
44705307 4529 -- Must not be a source renaming (we do have some cases where the
4530 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 4531 -- cases any attribute applies to the renamed object as well).
44705307 4532
4533 elsif Is_Object (Ent)
4534 and then Present (Renamed_Object (Ent))
44705307 4535 then
a3248fc4 4536 -- Case of renamed object from source, this is an error
4537
4538 if Comes_From_Source (Renamed_Object (Ent)) then
4539 Get_Name_String (Chars (N));
4540 Error_Msg_Strlen := Name_Len;
4541 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4542 Error_Msg_N
4543 ("~ clause not allowed for a renaming declaration "
4544 & "(RM 13.1(6))", Nam);
4545 return;
4546
4547 -- For the case of a compiler generated renaming, the attribute
4548 -- definition clause applies to the renamed object created by the
4549 -- expander. The easiest general way to handle this is to create a
4550 -- copy of the attribute definition clause for this object.
4551
9a48fc56 4552 elsif Is_Entity_Name (Renamed_Object (Ent)) then
a3248fc4 4553 Insert_Action (N,
4554 Make_Attribute_Definition_Clause (Loc,
4555 Name =>
4556 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4557 Chars => Chars (N),
4558 Expression => Duplicate_Subexpr (Expression (N))));
9a48fc56 4559
4560 -- If the renamed object is not an entity, it must be a dereference
4561 -- of an unconstrained function call, and we must introduce a new
4562 -- declaration to capture the expression. This is needed in the case
4563 -- of 'Alignment, where the original declaration must be rewritten.
4564
4565 else
4566 pragma Assert
4567 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4568 null;
a3248fc4 4569 end if;
44705307 4570
4571 -- If no underlying entity, use entity itself, applies to some
4572 -- previously detected error cases ???
4573
f15731c4 4574 elsif No (U_Ent) then
4575 U_Ent := Ent;
4576
44705307 4577 -- Cannot specify for a subtype (exception Object/Value_Size)
4578
d6f39728 4579 elsif Is_Type (U_Ent)
4580 and then not Is_First_Subtype (U_Ent)
4581 and then Id /= Attribute_Object_Size
4582 and then Id /= Attribute_Value_Size
4583 and then not From_At_Mod (N)
4584 then
4585 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4586 return;
d6f39728 4587 end if;
4588
ae888dbd 4589 Set_Entity (N, U_Ent);
25e23a77 4590 Check_Restriction_No_Use_Of_Attribute (N);
ae888dbd 4591
d6f39728 4592 -- Switch on particular attribute
4593
4594 case Id is
4595
4596 -------------
4597 -- Address --
4598 -------------
4599
4600 -- Address attribute definition clause
4601
4602 when Attribute_Address => Address : begin
177675a7 4603
4604 -- A little error check, catch for X'Address use X'Address;
4605
4606 if Nkind (Nam) = N_Identifier
4607 and then Nkind (Expr) = N_Attribute_Reference
4608 and then Attribute_Name (Expr) = Name_Address
4609 and then Nkind (Prefix (Expr)) = N_Identifier
4610 and then Chars (Nam) = Chars (Prefix (Expr))
4611 then
4612 Error_Msg_NE
4613 ("address for & is self-referencing", Prefix (Expr), Ent);
4614 return;
4615 end if;
4616
4617 -- Not that special case, carry on with analysis of expression
4618
d6f39728 4619 Analyze_And_Resolve (Expr, RTE (RE_Address));
4620
2f1aac99 4621 -- Even when ignoring rep clauses we need to indicate that the
4622 -- entity has an address clause and thus it is legal to declare
2ff55065 4623 -- it imported. Freeze will get rid of the address clause later.
2f1aac99 4624
4625 if Ignore_Rep_Clauses then
d3ef794c 4626 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 4627 Record_Rep_Item (U_Ent, N);
4628 end if;
4629
4630 return;
4631 end if;
4632
ae888dbd 4633 if Duplicate_Clause then
4634 null;
d6f39728 4635
4636 -- Case of address clause for subprogram
4637
4638 elsif Is_Subprogram (U_Ent) then
d6f39728 4639 if Has_Homonym (U_Ent) then
4640 Error_Msg_N
4641 ("address clause cannot be given " &
4642 "for overloaded subprogram",
4643 Nam);
83f8f0a6 4644 return;
d6f39728 4645 end if;
4646
83f8f0a6 4647 -- For subprograms, all address clauses are permitted, and we
4648 -- mark the subprogram as having a deferred freeze so that Gigi
4649 -- will not elaborate it too soon.
d6f39728 4650
4651 -- Above needs more comments, what is too soon about???
4652
4653 Set_Has_Delayed_Freeze (U_Ent);
4654
4655 -- Case of address clause for entry
4656
4657 elsif Ekind (U_Ent) = E_Entry then
d6f39728 4658 if Nkind (Parent (N)) = N_Task_Body then
4659 Error_Msg_N
4660 ("entry address must be specified in task spec", Nam);
83f8f0a6 4661 return;
d6f39728 4662 end if;
4663
4664 -- For entries, we require a constant address
4665
4666 Check_Constant_Address_Clause (Expr, U_Ent);
4667
83f8f0a6 4668 -- Special checks for task types
4669
f15731c4 4670 if Is_Task_Type (Scope (U_Ent))
4671 and then Comes_From_Source (Scope (U_Ent))
4672 then
4673 Error_Msg_N
1e3532e7 4674 ("??entry address declared for entry in task type", N);
f15731c4 4675 Error_Msg_N
1e3532e7 4676 ("\??only one task can be declared of this type", N);
f15731c4 4677 end if;
4678
83f8f0a6 4679 -- Entry address clauses are obsolescent
4680
e0521a36 4681 Check_Restriction (No_Obsolescent_Features, N);
4682
9dfe12ae 4683 if Warn_On_Obsolescent_Feature then
4684 Error_Msg_N
1e3532e7 4685 ("?j?attaching interrupt to task entry is an " &
4686 "obsolescent feature (RM J.7.1)", N);
9dfe12ae 4687 Error_Msg_N
1e3532e7 4688 ("\?j?use interrupt procedure instead", N);
9dfe12ae 4689 end if;
4690
83f8f0a6 4691 -- Case of an address clause for a controlled object which we
4692 -- consider to be erroneous.
9dfe12ae 4693
83f8f0a6 4694 elsif Is_Controlled (Etype (U_Ent))
4695 or else Has_Controlled_Component (Etype (U_Ent))
4696 then
9dfe12ae 4697 Error_Msg_NE
1e3532e7 4698 ("??controlled object& must not be overlaid", Nam, U_Ent);
9dfe12ae 4699 Error_Msg_N
1e3532e7 4700 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 4701 Insert_Action (Declaration_Node (U_Ent),
4702 Make_Raise_Program_Error (Loc,
4703 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4704 return;
9dfe12ae 4705
4706 -- Case of address clause for a (non-controlled) object
d6f39728 4707
f02a9a9a 4708 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
d6f39728 4709 declare
d6da7448 4710 Expr : constant Node_Id := Expression (N);
4711 O_Ent : Entity_Id;
4712 Off : Boolean;
d6f39728 4713
4714 begin
7ee315cc 4715 -- Exported variables cannot have an address clause, because
4716 -- this cancels the effect of the pragma Export.
d6f39728 4717
4718 if Is_Exported (U_Ent) then
4719 Error_Msg_N
4720 ("cannot export object with address clause", Nam);
83f8f0a6 4721 return;
d6da7448 4722 end if;
4723
4724 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 4725
0c30cda1 4726 -- Overlaying controlled objects is erroneous.
4727 -- Emit warning but continue analysis because program is
4728 -- itself legal, and back-end must see address clause.
9dfe12ae 4729
d6da7448 4730 if Present (O_Ent)
4731 and then (Has_Controlled_Component (Etype (O_Ent))
f02a9a9a 4732 or else Is_Controlled (Etype (O_Ent)))
0c30cda1 4733 and then not Inside_A_Generic
9dfe12ae 4734 then
4735 Error_Msg_N
0c30cda1 4736 ("??cannot use overlays with controlled objects", Expr);
9dfe12ae 4737 Error_Msg_N
1e3532e7 4738 ("\??Program_Error will be raised at run time", Expr);
9dfe12ae 4739 Insert_Action (Declaration_Node (U_Ent),
4740 Make_Raise_Program_Error (Loc,
4741 Reason => PE_Overlaid_Controlled_Object));
4742
95009d64 4743 -- Issue an unconditional warning for a constant overlaying
4744 -- a variable. For the reverse case, we will issue it only
4745 -- if the variable is modified, see below.
4746
4747 elsif Address_Clause_Overlay_Warnings
4748 and then Present (O_Ent)
9dfe12ae 4749 and then Ekind (U_Ent) = E_Constant
d6da7448 4750 and then not Is_Constant_Object (O_Ent)
9dfe12ae 4751 then
1e3532e7 4752 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 4753
d6f39728 4754 -- Imported variables can have an address clause, but then
4755 -- the import is pretty meaningless except to suppress
4756 -- initializations, so we do not need such variables to
4757 -- be statically allocated (and in fact it causes trouble
4758 -- if the address clause is a local value).
4759
4760 elsif Is_Imported (U_Ent) then
4761 Set_Is_Statically_Allocated (U_Ent, False);
4762 end if;
4763
4764 -- We mark a possible modification of a variable with an
4765 -- address clause, since it is likely aliasing is occurring.
4766
177675a7 4767 Note_Possible_Modification (Nam, Sure => False);
d6f39728 4768
83f8f0a6 4769 -- Here we are checking for explicit overlap of one variable
4770 -- by another, and if we find this then mark the overlapped
4771 -- variable as also being volatile to prevent unwanted
d6da7448 4772 -- optimizations. This is a significant pessimization so
4773 -- avoid it when there is an offset, i.e. when the object
4774 -- is composite; they cannot be optimized easily anyway.
d6f39728 4775
d6da7448 4776 if Present (O_Ent)
4777 and then Is_Object (O_Ent)
4778 and then not Off
ba5efa21 4779
4780 -- The following test is an expedient solution to what
4781 -- is really a problem in CodePeer. Suppressing the
4782 -- Set_Treat_As_Volatile call here prevents later
4783 -- generation (in some cases) of trees that CodePeer
4784 -- should, but currently does not, handle correctly.
4785 -- This test should probably be removed when CodePeer
4786 -- is improved, just because we want the tree CodePeer
4787 -- analyzes to match the tree for which we generate code
4788 -- as closely as is practical. ???
4789
4790 and then not CodePeer_Mode
d6da7448 4791 then
ba5efa21 4792 -- ??? O_Ent might not be in current unit
4793
d6da7448 4794 Set_Treat_As_Volatile (O_Ent);
d6f39728 4795 end if;
4796
9dfe12ae 4797 -- Legality checks on the address clause for initialized
4798 -- objects is deferred until the freeze point, because
2beb22b1 4799 -- a subsequent pragma might indicate that the object
42e09e36 4800 -- is imported and thus not initialized. Also, the address
4801 -- clause might involve entities that have yet to be
4802 -- elaborated.
9dfe12ae 4803
4804 Set_Has_Delayed_Freeze (U_Ent);
4805
51ad5ad2 4806 -- If an initialization call has been generated for this
4807 -- object, it needs to be deferred to after the freeze node
4808 -- we have just now added, otherwise GIGI will see a
4809 -- reference to the variable (as actual to the IP call)
4810 -- before its definition.
4811
4812 declare
df9fba45 4813 Init_Call : constant Node_Id :=
4814 Remove_Init_Call (U_Ent, N);
4bba0a8d 4815
51ad5ad2 4816 begin
4817 if Present (Init_Call) then
28a4283c 4818 Append_Freeze_Action (U_Ent, Init_Call);
df9fba45 4819
28a4283c 4820 -- Reset Initialization_Statements pointer so that
4821 -- if there is a pragma Import further down, it can
4822 -- clear any default initialization.
df9fba45 4823
28a4283c 4824 Set_Initialization_Statements (U_Ent, Init_Call);
51ad5ad2 4825 end if;
4826 end;
4827
44e4341e 4828 -- Entity has delayed freeze, so we will generate an
4829 -- alignment check at the freeze point unless suppressed.
d6f39728 4830
44e4341e 4831 if not Range_Checks_Suppressed (U_Ent)
4832 and then not Alignment_Checks_Suppressed (U_Ent)
4833 then
4834 Set_Check_Address_Alignment (N);
4835 end if;
d6f39728 4836
4837 -- Kill the size check code, since we are not allocating
4838 -- the variable, it is somewhere else.
4839
4840 Kill_Size_Check_Code (U_Ent);
83f8f0a6 4841
d6da7448 4842 -- If the address clause is of the form:
83f8f0a6 4843
d6da7448 4844 -- for Y'Address use X'Address
83f8f0a6 4845
d6da7448 4846 -- or
83f8f0a6 4847
d6da7448 4848 -- Const : constant Address := X'Address;
4849 -- ...
4850 -- for Y'Address use Const;
83f8f0a6 4851
d6da7448 4852 -- then we make an entry in the table for checking the size
4853 -- and alignment of the overlaying variable. We defer this
4854 -- check till after code generation to take full advantage
f4623c89 4855 -- of the annotation done by the back end.
d64221a7 4856
9474aa9c 4857 -- If the entity has a generic type, the check will be
43dd6937 4858 -- performed in the instance if the actual type justifies
4859 -- it, and we do not insert the clause in the table to
4860 -- prevent spurious warnings.
83f8f0a6 4861
f4623c89 4862 -- Note: we used to test Comes_From_Source and only give
4863 -- this warning for source entities, but we have removed
4864 -- this test. It really seems bogus to generate overlays
4865 -- that would trigger this warning in generated code.
4866 -- Furthermore, by removing the test, we handle the
4867 -- aspect case properly.
4868
d6da7448 4869 if Address_Clause_Overlay_Warnings
d6da7448 4870 and then Present (O_Ent)
4871 and then Is_Object (O_Ent)
4872 then
9474aa9c 4873 if not Is_Generic_Type (Etype (U_Ent)) then
4874 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4875 end if;
177675a7 4876
d6da7448 4877 -- If variable overlays a constant view, and we are
4878 -- warning on overlays, then mark the variable as
95009d64 4879 -- overlaying a constant and warn immediately if it
4880 -- is initialized. We will give other warnings later
4881 -- if the variable is assigned.
177675a7 4882
d6da7448 4883 if Is_Constant_Object (O_Ent)
4884 and then Ekind (U_Ent) = E_Variable
4885 then
95009d64 4886 declare
4887 Init : constant Node_Id :=
6a7c16f5 4888 Expression (Declaration_Node (U_Ent));
95009d64 4889 begin
4890 Set_Overlays_Constant (U_Ent);
6a7c16f5 4891
95009d64 4892 if Present (Init)
4893 and then Comes_From_Source (Init)
4894 then
4895 Error_Msg_Sloc := Sloc (N);
4896 Error_Msg_NE
4897 ("??constant& may be modified via address "
4898 & "clause#", Declaration_Node (U_Ent), O_Ent);
4899 end if;
4900 end;
83f8f0a6 4901 end if;
d6da7448 4902 end if;
4903 end;
83f8f0a6 4904
d6f39728 4905 -- Not a valid entity for an address clause
4906
4907 else
4908 Error_Msg_N ("address cannot be given for &", Nam);
4909 end if;
4910 end Address;
4911
4912 ---------------
4913 -- Alignment --
4914 ---------------
4915
4916 -- Alignment attribute definition clause
4917
b47769f0 4918 when Attribute_Alignment => Alignment : declare
208fd589 4919 Align : constant Uint := Get_Alignment_Value (Expr);
4920 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 4921
d6f39728 4922 begin
4923 FOnly := True;
4924
4925 if not Is_Type (U_Ent)
4926 and then Ekind (U_Ent) /= E_Variable
4927 and then Ekind (U_Ent) /= E_Constant
4928 then
4929 Error_Msg_N ("alignment cannot be given for &", Nam);
4930
ae888dbd 4931 elsif Duplicate_Clause then
4932 null;
d6f39728 4933
4934 elsif Align /= No_Uint then
4935 Set_Has_Alignment_Clause (U_Ent);
208fd589 4936
44705307 4937 -- Tagged type case, check for attempt to set alignment to a
4938 -- value greater than Max_Align, and reset if so.
4939
41331dcf 4940 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
208fd589 4941 Error_Msg_N
1e3532e7 4942 ("alignment for & set to Maximum_Aligment??", Nam);
44705307 4943 Set_Alignment (U_Ent, Max_Align);
4944
4945 -- All other cases
4946
208fd589 4947 else
4948 Set_Alignment (U_Ent, Align);
4949 end if;
b47769f0 4950
4951 -- For an array type, U_Ent is the first subtype. In that case,
4952 -- also set the alignment of the anonymous base type so that
4953 -- other subtypes (such as the itypes for aggregates of the
4954 -- type) also receive the expected alignment.
4955
4956 if Is_Array_Type (U_Ent) then
4957 Set_Alignment (Base_Type (U_Ent), Align);
4958 end if;
d6f39728 4959 end if;
b47769f0 4960 end Alignment;
d6f39728 4961
4962 ---------------
4963 -- Bit_Order --
4964 ---------------
4965
4966 -- Bit_Order attribute definition clause
4967
4968 when Attribute_Bit_Order => Bit_Order : declare
4969 begin
4970 if not Is_Record_Type (U_Ent) then
4971 Error_Msg_N
4972 ("Bit_Order can only be defined for record type", Nam);
4973
ae888dbd 4974 elsif Duplicate_Clause then
4975 null;
4976
d6f39728 4977 else
4978 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4979
4980 if Etype (Expr) = Any_Type then
4981 return;
4982
cda40848 4983 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 4984 Flag_Non_Static_Expr
4985 ("Bit_Order requires static expression!", Expr);
d6f39728 4986
4987 else
4988 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
fae4ea1f 4989 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
d6f39728 4990 end if;
4991 end if;
4992 end if;
4993 end Bit_Order;
4994
4995 --------------------
4996 -- Component_Size --
4997 --------------------
4998
4999 -- Component_Size attribute definition clause
5000
5001 when Attribute_Component_Size => Component_Size_Case : declare
5002 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 5003 Ctyp : Entity_Id;
d6f39728 5004 Btype : Entity_Id;
5005 Biased : Boolean;
5006 New_Ctyp : Entity_Id;
5007 Decl : Node_Id;
5008
5009 begin
5010 if not Is_Array_Type (U_Ent) then
5011 Error_Msg_N ("component size requires array type", Nam);
5012 return;
5013 end if;
5014
5015 Btype := Base_Type (U_Ent);
a0fc8c5b 5016 Ctyp := Component_Type (Btype);
d6f39728 5017
ae888dbd 5018 if Duplicate_Clause then
5019 null;
d6f39728 5020
f3e4db96 5021 elsif Rep_Item_Too_Early (Btype, N) then
5022 null;
5023
d6f39728 5024 elsif Csize /= No_Uint then
a0fc8c5b 5025 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 5026
d74fc39a 5027 -- For the biased case, build a declaration for a subtype that
5028 -- will be used to represent the biased subtype that reflects
5029 -- the biased representation of components. We need the subtype
5030 -- to get proper conversions on referencing elements of the
36ac5fbb 5031 -- array.
3062c401 5032
36ac5fbb 5033 if Biased then
5034 New_Ctyp :=
5035 Make_Defining_Identifier (Loc,
5036 Chars =>
5037 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
3062c401 5038
36ac5fbb 5039 Decl :=
5040 Make_Subtype_Declaration (Loc,
5041 Defining_Identifier => New_Ctyp,
5042 Subtype_Indication =>
5043 New_Occurrence_Of (Component_Type (Btype), Loc));
5044
5045 Set_Parent (Decl, N);
5046 Analyze (Decl, Suppress => All_Checks);
5047
5048 Set_Has_Delayed_Freeze (New_Ctyp, False);
5049 Set_Esize (New_Ctyp, Csize);
5050 Set_RM_Size (New_Ctyp, Csize);
5051 Init_Alignment (New_Ctyp);
5052 Set_Is_Itype (New_Ctyp, True);
5053 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5054
5055 Set_Component_Type (Btype, New_Ctyp);
5056 Set_Biased (New_Ctyp, N, "component size clause");
d6f39728 5057 end if;
5058
36ac5fbb 5059 Set_Component_Size (Btype, Csize);
5060
a0fc8c5b 5061 -- Deal with warning on overridden size
5062
5063 if Warn_On_Overridden_Size
5064 and then Has_Size_Clause (Ctyp)
5065 and then RM_Size (Ctyp) /= Csize
5066 then
5067 Error_Msg_NE
1e3532e7 5068 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 5069 end if;
5070
d6f39728 5071 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 5072 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 5073 end if;
5074 end Component_Size_Case;
5075
81b424ac 5076 -----------------------
5077 -- Constant_Indexing --
5078 -----------------------
5079
5080 when Attribute_Constant_Indexing =>
5081 Check_Indexing_Functions;
5082
89f1e35c 5083 ---------
5084 -- CPU --
5085 ---------
5086
5087 when Attribute_CPU => CPU :
5088 begin
5089 -- CPU attribute definition clause not allowed except from aspect
5090 -- specification.
5091
5092 if From_Aspect_Specification (N) then
5093 if not Is_Task_Type (U_Ent) then
5094 Error_Msg_N ("CPU can only be defined for task", Nam);
5095
5096 elsif Duplicate_Clause then
5097 null;
5098
5099 else
5100 -- The expression must be analyzed in the special manner
5101 -- described in "Handling of Default and Per-Object
5102 -- Expressions" in sem.ads.
5103
5104 -- The visibility to the discriminants must be restored
5105
5106 Push_Scope_And_Install_Discriminants (U_Ent);
5107 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5108 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5109
cda40848 5110 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5111 Check_Restriction (Static_Priorities, Expr);
5112 end if;
5113 end if;
5114
5115 else
5116 Error_Msg_N
5117 ("attribute& cannot be set with definition clause", N);
5118 end if;
5119 end CPU;
5120
89cc7147 5121 ----------------------
5122 -- Default_Iterator --
5123 ----------------------
5124
5125 when Attribute_Default_Iterator => Default_Iterator : declare
5126 Func : Entity_Id;
fbf4d6ef 5127 Typ : Entity_Id;
89cc7147 5128
5129 begin
05f6f999 5130 -- If target type is untagged, further checks are irrelevant
5131
89cc7147 5132 if not Is_Tagged_Type (U_Ent) then
5133 Error_Msg_N
05f6f999 5134 ("aspect Default_Iterator applies to tagged type", Nam);
5135 return;
89cc7147 5136 end if;
5137
5138 Check_Iterator_Functions;
5139
5140 Analyze (Expr);
5141
5142 if not Is_Entity_Name (Expr)
5143 or else Ekind (Entity (Expr)) /= E_Function
5144 then
5145 Error_Msg_N ("aspect Iterator must be a function", Expr);
05f6f999 5146 return;
89cc7147 5147 else
5148 Func := Entity (Expr);
5149 end if;
5150
fbf4d6ef 5151 -- The type of the first parameter must be T, T'class, or a
05f6f999 5152 -- corresponding access type (5.5.1 (8/3). If function is
5153 -- parameterless label type accordingly.
fbf4d6ef 5154
5155 if No (First_Formal (Func)) then
05f6f999 5156 Typ := Any_Type;
fbf4d6ef 5157 else
5158 Typ := Etype (First_Formal (Func));
5159 end if;
5160
5161 if Typ = U_Ent
5162 or else Typ = Class_Wide_Type (U_Ent)
5163 or else (Is_Access_Type (Typ)
5164 and then Designated_Type (Typ) = U_Ent)
5165 or else (Is_Access_Type (Typ)
5166 and then Designated_Type (Typ) =
5167 Class_Wide_Type (U_Ent))
89cc7147 5168 then
fbf4d6ef 5169 null;
5170
5171 else
89cc7147 5172 Error_Msg_NE
5173 ("Default Iterator must be a primitive of&", Func, U_Ent);
5174 end if;
5175 end Default_Iterator;
5176
89f1e35c 5177 ------------------------
5178 -- Dispatching_Domain --
5179 ------------------------
5180
5181 when Attribute_Dispatching_Domain => Dispatching_Domain :
5182 begin
5183 -- Dispatching_Domain attribute definition clause not allowed
5184 -- except from aspect specification.
5185
5186 if From_Aspect_Specification (N) then
5187 if not Is_Task_Type (U_Ent) then
fbf4d6ef 5188 Error_Msg_N
5189 ("Dispatching_Domain can only be defined for task", Nam);
89f1e35c 5190
5191 elsif Duplicate_Clause then
5192 null;
5193
5194 else
5195 -- The expression must be analyzed in the special manner
5196 -- described in "Handling of Default and Per-Object
5197 -- Expressions" in sem.ads.
5198
5199 -- The visibility to the discriminants must be restored
5200
5201 Push_Scope_And_Install_Discriminants (U_Ent);
5202
5203 Preanalyze_Spec_Expression
5204 (Expr, RTE (RE_Dispatching_Domain));
5205
5206 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5207 end if;
5208
5209 else
5210 Error_Msg_N
5211 ("attribute& cannot be set with definition clause", N);
5212 end if;
5213 end Dispatching_Domain;
5214
d6f39728 5215 ------------------
5216 -- External_Tag --
5217 ------------------
5218
5219 when Attribute_External_Tag => External_Tag :
5220 begin
5221 if not Is_Tagged_Type (U_Ent) then
5222 Error_Msg_N ("should be a tagged type", Nam);
5223 end if;
5224
ae888dbd 5225 if Duplicate_Clause then
5226 null;
d6f39728 5227
9af0ddc7 5228 else
ae888dbd 5229 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 5230
cda40848 5231 if not Is_OK_Static_Expression (Expr) then
ae888dbd 5232 Flag_Non_Static_Expr
5233 ("static string required for tag name!", Nam);
5234 end if;
5235
ae888dbd 5236 if not Is_Library_Level_Entity (U_Ent) then
5237 Error_Msg_NE
1e3532e7 5238 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 5239 Error_Msg_N
1e3532e7 5240 ("\??same external tag applies to all "
5241 & "subprogram calls", N);
ae888dbd 5242 Error_Msg_N
1e3532e7 5243 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 5244 end if;
fbc67f84 5245 end if;
d6f39728 5246 end External_Tag;
5247
b57530b8 5248 --------------------------
5249 -- Implicit_Dereference --
5250 --------------------------
7947a439 5251
b57530b8 5252 when Attribute_Implicit_Dereference =>
7947a439 5253
2beb22b1 5254 -- Legality checks already performed at the point of the type
5255 -- declaration, aspect is not delayed.
7947a439 5256
89cc7147 5257 null;
b57530b8 5258
d6f39728 5259 -----------
5260 -- Input --
5261 -----------
5262
9f373bb8 5263 when Attribute_Input =>
5264 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5265 Set_Has_Specified_Stream_Input (Ent);
d6f39728 5266
89f1e35c 5267 ------------------------
5268 -- Interrupt_Priority --
5269 ------------------------
5270
5271 when Attribute_Interrupt_Priority => Interrupt_Priority :
5272 begin
5273 -- Interrupt_Priority attribute definition clause not allowed
5274 -- except from aspect specification.
5275
5276 if From_Aspect_Specification (N) then
f02a9a9a 5277 if not Is_Concurrent_Type (U_Ent) then
89f1e35c 5278 Error_Msg_N
f02a9a9a 5279 ("Interrupt_Priority can only be defined for task "
5280 & "and protected object", Nam);
89f1e35c 5281
5282 elsif Duplicate_Clause then
5283 null;
5284
5285 else
5286 -- The expression must be analyzed in the special manner
5287 -- described in "Handling of Default and Per-Object
5288 -- Expressions" in sem.ads.
5289
5290 -- The visibility to the discriminants must be restored
5291
5292 Push_Scope_And_Install_Discriminants (U_Ent);
5293
5294 Preanalyze_Spec_Expression
5295 (Expr, RTE (RE_Interrupt_Priority));
5296
5297 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
d4e1acfa 5298
5299 -- Check the No_Task_At_Interrupt_Priority restriction
5300
5301 if Is_Task_Type (U_Ent) then
5302 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5303 end if;
89f1e35c 5304 end if;
5305
5306 else
5307 Error_Msg_N
5308 ("attribute& cannot be set with definition clause", N);
5309 end if;
5310 end Interrupt_Priority;
5311
b3f8228a 5312 --------------
5313 -- Iterable --
5314 --------------
5315
5316 when Attribute_Iterable =>
5317 Analyze (Expr);
bde03454 5318
b3f8228a 5319 if Nkind (Expr) /= N_Aggregate then
5320 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5321 end if;
5322
5323 declare
5324 Assoc : Node_Id;
5325
5326 begin
5327 Assoc := First (Component_Associations (Expr));
5328 while Present (Assoc) loop
5329 if not Is_Entity_Name (Expression (Assoc)) then
5330 Error_Msg_N ("value must be a function", Assoc);
5331 end if;
bde03454 5332
b3f8228a 5333 Next (Assoc);
5334 end loop;
5335 end;
5336
89cc7147 5337 ----------------------
5338 -- Iterator_Element --
5339 ----------------------
5340
5341 when Attribute_Iterator_Element =>
5342 Analyze (Expr);
5343
5344 if not Is_Entity_Name (Expr)
5345 or else not Is_Type (Entity (Expr))
5346 then
5347 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5348 end if;
5349
d6f39728 5350 -------------------
5351 -- Machine_Radix --
5352 -------------------
5353
5354 -- Machine radix attribute definition clause
5355
5356 when Attribute_Machine_Radix => Machine_Radix : declare
5357 Radix : constant Uint := Static_Integer (Expr);
5358
5359 begin
5360 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5361 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5362
ae888dbd 5363 elsif Duplicate_Clause then
5364 null;
d6f39728 5365
5366 elsif Radix /= No_Uint then
5367 Set_Has_Machine_Radix_Clause (U_Ent);
5368 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5369
5370 if Radix = 2 then
5371 null;
5372 elsif Radix = 10 then
5373 Set_Machine_Radix_10 (U_Ent);
5374 else
5375 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5376 end if;
5377 end if;
5378 end Machine_Radix;
5379
5380 -----------------
5381 -- Object_Size --
5382 -----------------
5383
5384 -- Object_Size attribute definition clause
5385
5386 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 5387 Size : constant Uint := Static_Integer (Expr);
5388
d6f39728 5389 Biased : Boolean;
bfa5a9d9 5390 pragma Warnings (Off, Biased);
d6f39728 5391
5392 begin
5393 if not Is_Type (U_Ent) then
5394 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5395
ae888dbd 5396 elsif Duplicate_Clause then
5397 null;
d6f39728 5398
5399 else
5400 Check_Size (Expr, U_Ent, Size, Biased);
5401
829cd457 5402 if Is_Scalar_Type (U_Ent) then
5403 if Size /= 8 and then Size /= 16 and then Size /= 32
5404 and then UI_Mod (Size, 64) /= 0
5405 then
5406 Error_Msg_N
5407 ("Object_Size must be 8, 16, 32, or multiple of 64",
5408 Expr);
5409 end if;
5410
5411 elsif Size mod 8 /= 0 then
5412 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
d6f39728 5413 end if;
5414
5415 Set_Esize (U_Ent, Size);
5416 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 5417 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5418 end if;
5419 end Object_Size;
5420
5421 ------------
5422 -- Output --
5423 ------------
5424
9f373bb8 5425 when Attribute_Output =>
5426 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5427 Set_Has_Specified_Stream_Output (Ent);
d6f39728 5428
89f1e35c 5429 --------------
5430 -- Priority --
5431 --------------
5432
5433 when Attribute_Priority => Priority :
5434 begin
5435 -- Priority attribute definition clause not allowed except from
5436 -- aspect specification.
5437
5438 if From_Aspect_Specification (N) then
f02a9a9a 5439 if not (Is_Concurrent_Type (U_Ent)
3a72f9c3 5440 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 5441 then
5442 Error_Msg_N
f02a9a9a 5443 ("Priority can only be defined for task and protected "
5444 & "object", Nam);
89f1e35c 5445
5446 elsif Duplicate_Clause then
5447 null;
5448
5449 else
5450 -- The expression must be analyzed in the special manner
5451 -- described in "Handling of Default and Per-Object
5452 -- Expressions" in sem.ads.
5453
5454 -- The visibility to the discriminants must be restored
5455
5456 Push_Scope_And_Install_Discriminants (U_Ent);
5457 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5458 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5459
cda40848 5460 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5461 Check_Restriction (Static_Priorities, Expr);
5462 end if;
5463 end if;
5464
5465 else
5466 Error_Msg_N
5467 ("attribute& cannot be set with definition clause", N);
5468 end if;
5469 end Priority;
5470
d6f39728 5471 ----------
5472 -- Read --
5473 ----------
5474
9f373bb8 5475 when Attribute_Read =>
5476 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5477 Set_Has_Specified_Stream_Read (Ent);
d6f39728 5478
b7b74740 5479 --------------------------
5480 -- Scalar_Storage_Order --
5481 --------------------------
5482
5483 -- Scalar_Storage_Order attribute definition clause
5484
5485 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5486 begin
b43a5770 5487 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 5488 Error_Msg_N
b43a5770 5489 ("Scalar_Storage_Order can only be defined for "
5490 & "record or array type", Nam);
b7b74740 5491
5492 elsif Duplicate_Clause then
5493 null;
5494
5495 else
5496 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5497
5498 if Etype (Expr) = Any_Type then
5499 return;
5500
cda40848 5501 elsif not Is_OK_Static_Expression (Expr) then
b7b74740 5502 Flag_Non_Static_Expr
5503 ("Scalar_Storage_Order requires static expression!", Expr);
5504
c0912570 5505 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5506
5507 -- Here for the case of a non-default (i.e. non-confirming)
5508 -- Scalar_Storage_Order attribute definition.
5509
5510 if Support_Nondefault_SSO_On_Target then
d0a9ea3b 5511 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
c0912570 5512 else
5513 Error_Msg_N
5514 ("non-default Scalar_Storage_Order "
5515 & "not supported on target", Expr);
b7b74740 5516 end if;
5517 end if;
b64082f2 5518
5519 -- Clear SSO default indications since explicit setting of the
5520 -- order overrides the defaults.
5521
5522 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5523 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
b7b74740 5524 end if;
5525 end Scalar_Storage_Order;
5526
d6f39728 5527 ----------
5528 -- Size --
5529 ----------
5530
5531 -- Size attribute definition clause
5532
5533 when Attribute_Size => Size : declare
5534 Size : constant Uint := Static_Integer (Expr);
5535 Etyp : Entity_Id;
5536 Biased : Boolean;
5537
5538 begin
5539 FOnly := True;
5540
ae888dbd 5541 if Duplicate_Clause then
5542 null;
d6f39728 5543
5544 elsif not Is_Type (U_Ent)
5545 and then Ekind (U_Ent) /= E_Variable
5546 and then Ekind (U_Ent) /= E_Constant
5547 then
5548 Error_Msg_N ("size cannot be given for &", Nam);
5549
5550 elsif Is_Array_Type (U_Ent)
5551 and then not Is_Constrained (U_Ent)
5552 then
5553 Error_Msg_N
5554 ("size cannot be given for unconstrained array", Nam);
5555
c2b89d6e 5556 elsif Size /= No_Uint then
d6f39728 5557 if Is_Type (U_Ent) then
5558 Etyp := U_Ent;
5559 else
5560 Etyp := Etype (U_Ent);
5561 end if;
5562
59ac57b5 5563 -- Check size, note that Gigi is in charge of checking that the
5564 -- size of an array or record type is OK. Also we do not check
5565 -- the size in the ordinary fixed-point case, since it is too
5566 -- early to do so (there may be subsequent small clause that
5567 -- affects the size). We can check the size if a small clause
5568 -- has already been given.
d6f39728 5569
5570 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5571 or else Has_Small_Clause (U_Ent)
5572 then
5573 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 5574 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 5575 end if;
5576
5577 -- For types set RM_Size and Esize if possible
5578
5579 if Is_Type (U_Ent) then
5580 Set_RM_Size (U_Ent, Size);
5581
ada34def 5582 -- For elementary types, increase Object_Size to power of 2,
5583 -- but not less than a storage unit in any case (normally
59ac57b5 5584 -- this means it will be byte addressable).
d6f39728 5585
ada34def 5586 -- For all other types, nothing else to do, we leave Esize
5587 -- (object size) unset, the back end will set it from the
5588 -- size and alignment in an appropriate manner.
5589
1d366b32 5590 -- In both cases, we check whether the alignment must be
5591 -- reset in the wake of the size change.
5592
ada34def 5593 if Is_Elementary_Type (U_Ent) then
f15731c4 5594 if Size <= System_Storage_Unit then
5595 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 5596 elsif Size <= 16 then
5597 Init_Esize (U_Ent, 16);
5598 elsif Size <= 32 then
5599 Init_Esize (U_Ent, 32);
5600 else
5601 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5602 end if;
5603
1d366b32 5604 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5605 else
5606 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5607 end if;
5608
d6f39728 5609 -- For objects, set Esize only
5610
5611 else
9dfe12ae 5612 if Is_Elementary_Type (Etyp) then
5613 if Size /= System_Storage_Unit
5614 and then
5615 Size /= System_Storage_Unit * 2
5616 and then
5617 Size /= System_Storage_Unit * 4
5618 and then
5619 Size /= System_Storage_Unit * 8
5620 then
5c99c290 5621 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
87d5c1d0 5622 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
9dfe12ae 5623 Error_Msg_N
5c99c290 5624 ("size for primitive object must be a power of 2"
87d5c1d0 5625 & " in the range ^-^", N);
9dfe12ae 5626 end if;
5627 end if;
5628
d6f39728 5629 Set_Esize (U_Ent, Size);
5630 end if;
5631
5632 Set_Has_Size_Clause (U_Ent);
5633 end if;
5634 end Size;
5635
5636 -----------
5637 -- Small --
5638 -----------
5639
5640 -- Small attribute definition clause
5641
5642 when Attribute_Small => Small : declare
5643 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5644 Small : Ureal;
5645
5646 begin
5647 Analyze_And_Resolve (Expr, Any_Real);
5648
5649 if Etype (Expr) = Any_Type then
5650 return;
5651
cda40848 5652 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5653 Flag_Non_Static_Expr
5654 ("small requires static expression!", Expr);
d6f39728 5655 return;
5656
5657 else
5658 Small := Expr_Value_R (Expr);
5659
5660 if Small <= Ureal_0 then
5661 Error_Msg_N ("small value must be greater than zero", Expr);
5662 return;
5663 end if;
5664
5665 end if;
5666
5667 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5668 Error_Msg_N
5669 ("small requires an ordinary fixed point type", Nam);
5670
5671 elsif Has_Small_Clause (U_Ent) then
5672 Error_Msg_N ("small already given for &", Nam);
5673
5674 elsif Small > Delta_Value (U_Ent) then
5675 Error_Msg_N
ce3e25d6 5676 ("small value must not be greater than delta value", Nam);
d6f39728 5677
5678 else
5679 Set_Small_Value (U_Ent, Small);
5680 Set_Small_Value (Implicit_Base, Small);
5681 Set_Has_Small_Clause (U_Ent);
5682 Set_Has_Small_Clause (Implicit_Base);
5683 Set_Has_Non_Standard_Rep (Implicit_Base);
5684 end if;
5685 end Small;
5686
d6f39728 5687 ------------------
5688 -- Storage_Pool --
5689 ------------------
5690
5691 -- Storage_Pool attribute definition clause
5692
b55f7641 5693 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
d6f39728 5694 Pool : Entity_Id;
6b567c71 5695 T : Entity_Id;
d6f39728 5696
5697 begin
44e4341e 5698 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5699 Error_Msg_N
5700 ("storage pool cannot be given for access-to-subprogram type",
5701 Nam);
5702 return;
5703
d3ef794c 5704 elsif not
5705 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 5706 then
44e4341e 5707 Error_Msg_N
5708 ("storage pool can only be given for access types", Nam);
d6f39728 5709 return;
5710
5711 elsif Is_Derived_Type (U_Ent) then
5712 Error_Msg_N
5713 ("storage pool cannot be given for a derived access type",
5714 Nam);
5715
ae888dbd 5716 elsif Duplicate_Clause then
d6f39728 5717 return;
5718
5719 elsif Present (Associated_Storage_Pool (U_Ent)) then
5720 Error_Msg_N ("storage pool already given for &", Nam);
5721 return;
5722 end if;
5723
6653b695 5724 -- Check for Storage_Size previously given
5725
5726 declare
5727 SS : constant Node_Id :=
5728 Get_Attribute_Definition_Clause
5729 (U_Ent, Attribute_Storage_Size);
5730 begin
5731 if Present (SS) then
5732 Check_Pool_Size_Clash (U_Ent, N, SS);
5733 end if;
5734 end;
5735
5736 -- Storage_Pool case
5737
b55f7641 5738 if Id = Attribute_Storage_Pool then
5739 Analyze_And_Resolve
5740 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5741
5742 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 5743 -- simple storage pool type, so we Resolve without imposing an
b55f7641 5744 -- expected type.
5745
5746 else
5747 Analyze_And_Resolve (Expr);
5748
5749 if not Present (Get_Rep_Pragma
b15003c3 5750 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 5751 then
5752 Error_Msg_N
5753 ("expression must be of a simple storage pool type", Expr);
5754 end if;
5755 end if;
d6f39728 5756
8c5c7277 5757 if not Denotes_Variable (Expr) then
5758 Error_Msg_N ("storage pool must be a variable", Expr);
5759 return;
5760 end if;
5761
6b567c71 5762 if Nkind (Expr) = N_Type_Conversion then
5763 T := Etype (Expression (Expr));
5764 else
5765 T := Etype (Expr);
5766 end if;
5767
5768 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 5769 -- access types with a Storage_Size. Since it only work properly
5770 -- when used on one specific type, we need to check that it is not
5771 -- hijacked improperly:
5772
6b567c71 5773 -- type T is access Integer;
5774 -- for T'Storage_Size use n;
5775 -- type Q is access Float;
5776 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5777
15ebb600 5778 if RTE_Available (RE_Stack_Bounded_Pool)
5779 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5780 then
5781 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 5782 return;
5783 end if;
5784
d6f39728 5785 -- If the argument is a name that is not an entity name, then
5786 -- we construct a renaming operation to define an entity of
5787 -- type storage pool.
5788
5789 if not Is_Entity_Name (Expr)
5790 and then Is_Object_Reference (Expr)
5791 then
11deeeb6 5792 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 5793
5794 declare
5795 Rnode : constant Node_Id :=
5796 Make_Object_Renaming_Declaration (Loc,
5797 Defining_Identifier => Pool,
5798 Subtype_Mark =>
5799 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 5800 Name => Expr);
d6f39728 5801
5802 begin
f65f7fdf 5803 -- If the attribute definition clause comes from an aspect
5804 -- clause, then insert the renaming before the associated
5805 -- entity's declaration, since the attribute clause has
5806 -- not yet been appended to the declaration list.
5807
5808 if From_Aspect_Specification (N) then
5809 Insert_Before (Parent (Entity (N)), Rnode);
5810 else
5811 Insert_Before (N, Rnode);
5812 end if;
5813
d6f39728 5814 Analyze (Rnode);
5815 Set_Associated_Storage_Pool (U_Ent, Pool);
5816 end;
5817
5818 elsif Is_Entity_Name (Expr) then
5819 Pool := Entity (Expr);
5820
5821 -- If pool is a renamed object, get original one. This can
5822 -- happen with an explicit renaming, and within instances.
5823
5824 while Present (Renamed_Object (Pool))
5825 and then Is_Entity_Name (Renamed_Object (Pool))
5826 loop
5827 Pool := Entity (Renamed_Object (Pool));
5828 end loop;
5829
5830 if Present (Renamed_Object (Pool))
5831 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5832 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5833 then
5834 Pool := Entity (Expression (Renamed_Object (Pool)));
5835 end if;
5836
6b567c71 5837 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5838
5839 elsif Nkind (Expr) = N_Type_Conversion
5840 and then Is_Entity_Name (Expression (Expr))
5841 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5842 then
5843 Pool := Entity (Expression (Expr));
6b567c71 5844 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5845
5846 else
5847 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5848 return;
5849 end if;
b55f7641 5850 end;
d6f39728 5851
44e4341e 5852 ------------------
5853 -- Storage_Size --
5854 ------------------
5855
5856 -- Storage_Size attribute definition clause
5857
5858 when Attribute_Storage_Size => Storage_Size : declare
5859 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 5860
5861 begin
5862 if Is_Task_Type (U_Ent) then
44e4341e 5863
39a0c1d3 5864 -- Check obsolescent (but never obsolescent if from aspect)
ceec4f7c 5865
5866 if not From_Aspect_Specification (N) then
5867 Check_Restriction (No_Obsolescent_Features, N);
5868
5869 if Warn_On_Obsolescent_Feature then
5870 Error_Msg_N
5871 ("?j?storage size clause for task is an " &
5872 "obsolescent feature (RM J.9)", N);
5873 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5874 end if;
44e4341e 5875 end if;
5876
5877 FOnly := True;
5878 end if;
5879
5880 if not Is_Access_Type (U_Ent)
5881 and then Ekind (U_Ent) /= E_Task_Type
5882 then
5883 Error_Msg_N ("storage size cannot be given for &", Nam);
5884
5885 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5886 Error_Msg_N
5887 ("storage size cannot be given for a derived access type",
5888 Nam);
5889
ae888dbd 5890 elsif Duplicate_Clause then
5891 null;
44e4341e 5892
5893 else
5894 Analyze_And_Resolve (Expr, Any_Integer);
5895
5896 if Is_Access_Type (U_Ent) then
6653b695 5897
5898 -- Check for Storage_Pool previously given
5899
5900 declare
5901 SP : constant Node_Id :=
5902 Get_Attribute_Definition_Clause
5903 (U_Ent, Attribute_Storage_Pool);
5904
5905 begin
5906 if Present (SP) then
5907 Check_Pool_Size_Clash (U_Ent, SP, N);
5908 end if;
5909 end;
5910
5911 -- Special case of for x'Storage_Size use 0
44e4341e 5912
5941a4e9 5913 if Is_OK_Static_Expression (Expr)
44e4341e 5914 and then Expr_Value (Expr) = 0
5915 then
5916 Set_No_Pool_Assigned (Btype);
5917 end if;
44e4341e 5918 end if;
5919
5920 Set_Has_Storage_Size_Clause (Btype);
5921 end if;
5922 end Storage_Size;
5923
7189d17f 5924 -----------------
5925 -- Stream_Size --
5926 -----------------
5927
5928 when Attribute_Stream_Size => Stream_Size : declare
5929 Size : constant Uint := Static_Integer (Expr);
5930
5931 begin
15ebb600 5932 if Ada_Version <= Ada_95 then
5933 Check_Restriction (No_Implementation_Attributes, N);
5934 end if;
5935
ae888dbd 5936 if Duplicate_Clause then
5937 null;
7189d17f 5938
5939 elsif Is_Elementary_Type (U_Ent) then
5940 if Size /= System_Storage_Unit
5941 and then
5942 Size /= System_Storage_Unit * 2
5943 and then
5944 Size /= System_Storage_Unit * 4
5945 and then
5946 Size /= System_Storage_Unit * 8
5947 then
5948 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5949 Error_Msg_N
5950 ("stream size for elementary type must be a"
5951 & " power of 2 and at least ^", N);
5952
5953 elsif RM_Size (U_Ent) > Size then
5954 Error_Msg_Uint_1 := RM_Size (U_Ent);
5955 Error_Msg_N
5956 ("stream size for elementary type must be a"
5957 & " power of 2 and at least ^", N);
5958 end if;
5959
5960 Set_Has_Stream_Size_Clause (U_Ent);
5961
5962 else
5963 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5964 end if;
5965 end Stream_Size;
5966
d6f39728 5967 ----------------
5968 -- Value_Size --
5969 ----------------
5970
5971 -- Value_Size attribute definition clause
5972
5973 when Attribute_Value_Size => Value_Size : declare
5974 Size : constant Uint := Static_Integer (Expr);
5975 Biased : Boolean;
5976
5977 begin
5978 if not Is_Type (U_Ent) then
5979 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5980
ae888dbd 5981 elsif Duplicate_Clause then
5982 null;
d6f39728 5983
59ac57b5 5984 elsif Is_Array_Type (U_Ent)
5985 and then not Is_Constrained (U_Ent)
5986 then
5987 Error_Msg_N
5988 ("Value_Size cannot be given for unconstrained array", Nam);
5989
d6f39728 5990 else
5991 if Is_Elementary_Type (U_Ent) then
5992 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 5993 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 5994 end if;
5995
5996 Set_RM_Size (U_Ent, Size);
5997 end if;
5998 end Value_Size;
5999
81b424ac 6000 -----------------------
6001 -- Variable_Indexing --
6002 -----------------------
6003
6004 when Attribute_Variable_Indexing =>
6005 Check_Indexing_Functions;
6006
d6f39728 6007 -----------
6008 -- Write --
6009 -----------
6010
9f373bb8 6011 when Attribute_Write =>
6012 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6013 Set_Has_Specified_Stream_Write (Ent);
d6f39728 6014
6015 -- All other attributes cannot be set
6016
6017 when others =>
6018 Error_Msg_N
6019 ("attribute& cannot be set with definition clause", N);
d6f39728 6020 end case;
6021
d64221a7 6022 -- The test for the type being frozen must be performed after any
6023 -- expression the clause has been analyzed since the expression itself
6024 -- might cause freezing that makes the clause illegal.
d6f39728 6025
6026 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6027 return;
6028 end if;
6029 end Analyze_Attribute_Definition_Clause;
6030
6031 ----------------------------
6032 -- Analyze_Code_Statement --
6033 ----------------------------
6034
6035 procedure Analyze_Code_Statement (N : Node_Id) is
6036 HSS : constant Node_Id := Parent (N);
6037 SBody : constant Node_Id := Parent (HSS);
6038 Subp : constant Entity_Id := Current_Scope;
6039 Stmt : Node_Id;
6040 Decl : Node_Id;
6041 StmtO : Node_Id;
6042 DeclO : Node_Id;
6043
6044 begin
6045 -- Analyze and check we get right type, note that this implements the
6046 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
6047 -- is the only way that Asm_Insn could possibly be visible.
6048
6049 Analyze_And_Resolve (Expression (N));
6050
6051 if Etype (Expression (N)) = Any_Type then
6052 return;
6053 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6054 Error_Msg_N ("incorrect type for code statement", N);
6055 return;
6056 end if;
6057
44e4341e 6058 Check_Code_Statement (N);
6059
d6f39728 6060 -- Make sure we appear in the handled statement sequence of a
6061 -- subprogram (RM 13.8(3)).
6062
6063 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6064 or else Nkind (SBody) /= N_Subprogram_Body
6065 then
6066 Error_Msg_N
6067 ("code statement can only appear in body of subprogram", N);
6068 return;
6069 end if;
6070
6071 -- Do remaining checks (RM 13.8(3)) if not already done
6072
6073 if not Is_Machine_Code_Subprogram (Subp) then
6074 Set_Is_Machine_Code_Subprogram (Subp);
6075
6076 -- No exception handlers allowed
6077
6078 if Present (Exception_Handlers (HSS)) then
6079 Error_Msg_N
6080 ("exception handlers not permitted in machine code subprogram",
6081 First (Exception_Handlers (HSS)));
6082 end if;
6083
6084 -- No declarations other than use clauses and pragmas (we allow
6085 -- certain internally generated declarations as well).
6086
6087 Decl := First (Declarations (SBody));
6088 while Present (Decl) loop
6089 DeclO := Original_Node (Decl);
6090 if Comes_From_Source (DeclO)
fdd294d1 6091 and not Nkind_In (DeclO, N_Pragma,
6092 N_Use_Package_Clause,
6093 N_Use_Type_Clause,
6094 N_Implicit_Label_Declaration)
d6f39728 6095 then
6096 Error_Msg_N
6097 ("this declaration not allowed in machine code subprogram",
6098 DeclO);
6099 end if;
6100
6101 Next (Decl);
6102 end loop;
6103
6104 -- No statements other than code statements, pragmas, and labels.
6105 -- Again we allow certain internally generated statements.
3ab42ff7 6106
c3107527 6107 -- In Ada 2012, qualified expressions are names, and the code
6108 -- statement is initially parsed as a procedure call.
d6f39728 6109
6110 Stmt := First (Statements (HSS));
6111 while Present (Stmt) loop
6112 StmtO := Original_Node (Stmt);
c3107527 6113
59f2fcab 6114 -- A procedure call transformed into a code statement is OK.
6115
c3107527 6116 if Ada_Version >= Ada_2012
6117 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 6118 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 6119 then
6120 null;
6121
6122 elsif Comes_From_Source (StmtO)
fdd294d1 6123 and then not Nkind_In (StmtO, N_Pragma,
6124 N_Label,
6125 N_Code_Statement)
d6f39728 6126 then
6127 Error_Msg_N
6128 ("this statement is not allowed in machine code subprogram",
6129 StmtO);
6130 end if;
6131
6132 Next (Stmt);
6133 end loop;
6134 end if;
d6f39728 6135 end Analyze_Code_Statement;
6136
6137 -----------------------------------------------
6138 -- Analyze_Enumeration_Representation_Clause --
6139 -----------------------------------------------
6140
6141 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6142 Ident : constant Node_Id := Identifier (N);
6143 Aggr : constant Node_Id := Array_Aggregate (N);
6144 Enumtype : Entity_Id;
6145 Elit : Entity_Id;
6146 Expr : Node_Id;
6147 Assoc : Node_Id;
6148 Choice : Node_Id;
6149 Val : Uint;
b3190af0 6150
6151 Err : Boolean := False;
098d3082 6152 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 6153
e30c7d84 6154 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6155 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6156 -- Allowed range of universal integer (= allowed range of enum lit vals)
6157
d6f39728 6158 Min : Uint;
6159 Max : Uint;
e30c7d84 6160 -- Minimum and maximum values of entries
6161
6162 Max_Node : Node_Id;
6163 -- Pointer to node for literal providing max value
d6f39728 6164
6165 begin
ca301e17 6166 if Ignore_Rep_Clauses then
2ff55065 6167 Kill_Rep_Clause (N);
fbc67f84 6168 return;
6169 end if;
6170
175a6969 6171 -- Ignore enumeration rep clauses by default in CodePeer mode,
6172 -- unless -gnatd.I is specified, as a work around for potential false
6173 -- positive messages.
6174
6175 if CodePeer_Mode and not Debug_Flag_Dot_II then
6176 return;
6177 end if;
6178
d6f39728 6179 -- First some basic error checks
6180
6181 Find_Type (Ident);
6182 Enumtype := Entity (Ident);
6183
6184 if Enumtype = Any_Type
6185 or else Rep_Item_Too_Early (Enumtype, N)
6186 then
6187 return;
6188 else
6189 Enumtype := Underlying_Type (Enumtype);
6190 end if;
6191
6192 if not Is_Enumeration_Type (Enumtype) then
6193 Error_Msg_NE
6194 ("enumeration type required, found}",
6195 Ident, First_Subtype (Enumtype));
6196 return;
6197 end if;
6198
9dfe12ae 6199 -- Ignore rep clause on generic actual type. This will already have
6200 -- been flagged on the template as an error, and this is the safest
6201 -- way to ensure we don't get a junk cascaded message in the instance.
6202
6203 if Is_Generic_Actual_Type (Enumtype) then
6204 return;
6205
6206 -- Type must be in current scope
6207
6208 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 6209 Error_Msg_N ("type must be declared in this scope", Ident);
6210 return;
6211
9dfe12ae 6212 -- Type must be a first subtype
6213
d6f39728 6214 elsif not Is_First_Subtype (Enumtype) then
6215 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6216 return;
6217
9dfe12ae 6218 -- Ignore duplicate rep clause
6219
d6f39728 6220 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6221 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6222 return;
6223
7189d17f 6224 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 6225
177675a7 6226 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 6227 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 6228 return;
6229
d9125581 6230 -- Check that the expression is a proper aggregate (no parentheses)
6231
6232 elsif Paren_Count (Aggr) /= 0 then
6233 Error_Msg
6234 ("extra parentheses surrounding aggregate not allowed",
6235 First_Sloc (Aggr));
6236 return;
6237
9dfe12ae 6238 -- All tests passed, so set rep clause in place
d6f39728 6239
6240 else
6241 Set_Has_Enumeration_Rep_Clause (Enumtype);
6242 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6243 end if;
6244
6245 -- Now we process the aggregate. Note that we don't use the normal
6246 -- aggregate code for this purpose, because we don't want any of the
6247 -- normal expansion activities, and a number of special semantic
6248 -- rules apply (including the component type being any integer type)
6249
d6f39728 6250 Elit := First_Literal (Enumtype);
6251
6252 -- First the positional entries if any
6253
6254 if Present (Expressions (Aggr)) then
6255 Expr := First (Expressions (Aggr));
6256 while Present (Expr) loop
6257 if No (Elit) then
6258 Error_Msg_N ("too many entries in aggregate", Expr);
6259 return;
6260 end if;
6261
6262 Val := Static_Integer (Expr);
6263
d9125581 6264 -- Err signals that we found some incorrect entries processing
6265 -- the list. The final checks for completeness and ordering are
6266 -- skipped in this case.
6267
d6f39728 6268 if Val = No_Uint then
6269 Err := True;
f02a9a9a 6270
d6f39728 6271 elsif Val < Lo or else Hi < Val then
6272 Error_Msg_N ("value outside permitted range", Expr);
6273 Err := True;
6274 end if;
6275
6276 Set_Enumeration_Rep (Elit, Val);
6277 Set_Enumeration_Rep_Expr (Elit, Expr);
6278 Next (Expr);
6279 Next (Elit);
6280 end loop;
6281 end if;
6282
6283 -- Now process the named entries if present
6284
6285 if Present (Component_Associations (Aggr)) then
6286 Assoc := First (Component_Associations (Aggr));
6287 while Present (Assoc) loop
6288 Choice := First (Choices (Assoc));
6289
6290 if Present (Next (Choice)) then
6291 Error_Msg_N
6292 ("multiple choice not allowed here", Next (Choice));
6293 Err := True;
6294 end if;
6295
6296 if Nkind (Choice) = N_Others_Choice then
6297 Error_Msg_N ("others choice not allowed here", Choice);
6298 Err := True;
6299
6300 elsif Nkind (Choice) = N_Range then
b3190af0 6301
d6f39728 6302 -- ??? should allow zero/one element range here
b3190af0 6303
d6f39728 6304 Error_Msg_N ("range not allowed here", Choice);
6305 Err := True;
6306
6307 else
6308 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 6309
098d3082 6310 if Error_Posted (Choice) then
d6f39728 6311 Err := True;
098d3082 6312 end if;
d6f39728 6313
098d3082 6314 if not Err then
6315 if Is_Entity_Name (Choice)
6316 and then Is_Type (Entity (Choice))
6317 then
6318 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 6319 Err := True;
b3190af0 6320
098d3082 6321 -- ??? should allow static subtype with zero/one entry
d6f39728 6322
098d3082 6323 elsif Etype (Choice) = Base_Type (Enumtype) then
cda40848 6324 if not Is_OK_Static_Expression (Choice) then
098d3082 6325 Flag_Non_Static_Expr
6326 ("non-static expression used for choice!", Choice);
d6f39728 6327 Err := True;
d6f39728 6328
098d3082 6329 else
6330 Elit := Expr_Value_E (Choice);
6331
6332 if Present (Enumeration_Rep_Expr (Elit)) then
6333 Error_Msg_Sloc :=
6334 Sloc (Enumeration_Rep_Expr (Elit));
6335 Error_Msg_NE
6336 ("representation for& previously given#",
6337 Choice, Elit);
6338 Err := True;
6339 end if;
d6f39728 6340
098d3082 6341 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 6342
098d3082 6343 Expr := Expression (Assoc);
6344 Val := Static_Integer (Expr);
d6f39728 6345
098d3082 6346 if Val = No_Uint then
6347 Err := True;
6348
6349 elsif Val < Lo or else Hi < Val then
6350 Error_Msg_N ("value outside permitted range", Expr);
6351 Err := True;
6352 end if;
d6f39728 6353
098d3082 6354 Set_Enumeration_Rep (Elit, Val);
6355 end if;
d6f39728 6356 end if;
6357 end if;
6358 end if;
6359
6360 Next (Assoc);
6361 end loop;
6362 end if;
6363
6364 -- Aggregate is fully processed. Now we check that a full set of
6365 -- representations was given, and that they are in range and in order.
6366 -- These checks are only done if no other errors occurred.
6367
6368 if not Err then
6369 Min := No_Uint;
6370 Max := No_Uint;
6371
6372 Elit := First_Literal (Enumtype);
6373 while Present (Elit) loop
6374 if No (Enumeration_Rep_Expr (Elit)) then
6375 Error_Msg_NE ("missing representation for&!", N, Elit);
6376
6377 else
6378 Val := Enumeration_Rep (Elit);
6379
6380 if Min = No_Uint then
6381 Min := Val;
6382 end if;
6383
6384 if Val /= No_Uint then
6385 if Max /= No_Uint and then Val <= Max then
6386 Error_Msg_NE
6387 ("enumeration value for& not ordered!",
e30c7d84 6388 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 6389 end if;
6390
e30c7d84 6391 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 6392 Max := Val;
6393 end if;
6394
e30c7d84 6395 -- If there is at least one literal whose representation is not
6396 -- equal to the Pos value, then note that this enumeration type
6397 -- has a non-standard representation.
d6f39728 6398
6399 if Val /= Enumeration_Pos (Elit) then
6400 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6401 end if;
6402 end if;
6403
6404 Next (Elit);
6405 end loop;
6406
6407 -- Now set proper size information
6408
6409 declare
6410 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6411
6412 begin
6413 if Has_Size_Clause (Enumtype) then
e30c7d84 6414
6415 -- All OK, if size is OK now
6416
6417 if RM_Size (Enumtype) >= Minsize then
d6f39728 6418 null;
6419
6420 else
e30c7d84 6421 -- Try if we can get by with biasing
6422
d6f39728 6423 Minsize :=
6424 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6425
e30c7d84 6426 -- Error message if even biasing does not work
6427
6428 if RM_Size (Enumtype) < Minsize then
6429 Error_Msg_Uint_1 := RM_Size (Enumtype);
6430 Error_Msg_Uint_2 := Max;
6431 Error_Msg_N
6432 ("previously given size (^) is too small "
6433 & "for this value (^)", Max_Node);
6434
6435 -- If biasing worked, indicate that we now have biased rep
d6f39728 6436
6437 else
b77e4501 6438 Set_Biased
6439 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 6440 end if;
6441 end if;
6442
6443 else
6444 Set_RM_Size (Enumtype, Minsize);
6445 Set_Enum_Esize (Enumtype);
6446 end if;
6447
6448 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6449 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6450 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6451 end;
6452 end if;
6453
39a0c1d3 6454 -- We repeat the too late test in case it froze itself
d6f39728 6455
6456 if Rep_Item_Too_Late (Enumtype, N) then
6457 null;
6458 end if;
d6f39728 6459 end Analyze_Enumeration_Representation_Clause;
6460
6461 ----------------------------
6462 -- Analyze_Free_Statement --
6463 ----------------------------
6464
6465 procedure Analyze_Free_Statement (N : Node_Id) is
6466 begin
6467 Analyze (Expression (N));
6468 end Analyze_Free_Statement;
6469
40ca69b9 6470 ---------------------------
6471 -- Analyze_Freeze_Entity --
6472 ---------------------------
6473
6474 procedure Analyze_Freeze_Entity (N : Node_Id) is
40ca69b9 6475 begin
d9f6a4ee 6476 Freeze_Entity_Checks (N);
6477 end Analyze_Freeze_Entity;
98f7db28 6478
d9f6a4ee 6479 -----------------------------------
6480 -- Analyze_Freeze_Generic_Entity --
6481 -----------------------------------
98f7db28 6482
d9f6a4ee 6483 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6484 begin
6485 Freeze_Entity_Checks (N);
6486 end Analyze_Freeze_Generic_Entity;
40ca69b9 6487
d9f6a4ee 6488 ------------------------------------------
6489 -- Analyze_Record_Representation_Clause --
6490 ------------------------------------------
c8da6114 6491
d9f6a4ee 6492 -- Note: we check as much as we can here, but we can't do any checks
6493 -- based on the position values (e.g. overlap checks) until freeze time
6494 -- because especially in Ada 2005 (machine scalar mode), the processing
6495 -- for non-standard bit order can substantially change the positions.
6496 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6497 -- for the remainder of this processing.
d00681a7 6498
d9f6a4ee 6499 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6500 Ident : constant Node_Id := Identifier (N);
6501 Biased : Boolean;
6502 CC : Node_Id;
6503 Comp : Entity_Id;
6504 Fbit : Uint;
6505 Hbit : Uint := Uint_0;
6506 Lbit : Uint;
6507 Ocomp : Entity_Id;
6508 Posit : Uint;
6509 Rectype : Entity_Id;
6510 Recdef : Node_Id;
d00681a7 6511
d9f6a4ee 6512 function Is_Inherited (Comp : Entity_Id) return Boolean;
6513 -- True if Comp is an inherited component in a record extension
d00681a7 6514
d9f6a4ee 6515 ------------------
6516 -- Is_Inherited --
6517 ------------------
d00681a7 6518
d9f6a4ee 6519 function Is_Inherited (Comp : Entity_Id) return Boolean is
6520 Comp_Base : Entity_Id;
d00681a7 6521
d9f6a4ee 6522 begin
6523 if Ekind (Rectype) = E_Record_Subtype then
6524 Comp_Base := Original_Record_Component (Comp);
6525 else
6526 Comp_Base := Comp;
d00681a7 6527 end if;
6528
d9f6a4ee 6529 return Comp_Base /= Original_Record_Component (Comp_Base);
6530 end Is_Inherited;
d00681a7 6531
d9f6a4ee 6532 -- Local variables
d00681a7 6533
d9f6a4ee 6534 Is_Record_Extension : Boolean;
6535 -- True if Rectype is a record extension
d00681a7 6536
d9f6a4ee 6537 CR_Pragma : Node_Id := Empty;
6538 -- Points to N_Pragma node if Complete_Representation pragma present
d00681a7 6539
d9f6a4ee 6540 -- Start of processing for Analyze_Record_Representation_Clause
d00681a7 6541
d9f6a4ee 6542 begin
6543 if Ignore_Rep_Clauses then
2ff55065 6544 Kill_Rep_Clause (N);
d9f6a4ee 6545 return;
d00681a7 6546 end if;
98f7db28 6547
d9f6a4ee 6548 Find_Type (Ident);
6549 Rectype := Entity (Ident);
85377c9b 6550
d9f6a4ee 6551 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6552 return;
6553 else
6554 Rectype := Underlying_Type (Rectype);
6555 end if;
85377c9b 6556
d9f6a4ee 6557 -- First some basic error checks
85377c9b 6558
d9f6a4ee 6559 if not Is_Record_Type (Rectype) then
6560 Error_Msg_NE
6561 ("record type required, found}", Ident, First_Subtype (Rectype));
6562 return;
85377c9b 6563
d9f6a4ee 6564 elsif Scope (Rectype) /= Current_Scope then
6565 Error_Msg_N ("type must be declared in this scope", N);
6566 return;
85377c9b 6567
d9f6a4ee 6568 elsif not Is_First_Subtype (Rectype) then
6569 Error_Msg_N ("cannot give record rep clause for subtype", N);
6570 return;
9dc88aea 6571
d9f6a4ee 6572 elsif Has_Record_Rep_Clause (Rectype) then
6573 Error_Msg_N ("duplicate record rep clause ignored", N);
6574 return;
9dc88aea 6575
d9f6a4ee 6576 elsif Rep_Item_Too_Late (Rectype, N) then
6577 return;
9dc88aea 6578 end if;
fb7f2fc4 6579
2ced3742 6580 -- We know we have a first subtype, now possibly go to the anonymous
d9f6a4ee 6581 -- base type to determine whether Rectype is a record extension.
89f1e35c 6582
d9f6a4ee 6583 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6584 Is_Record_Extension :=
6585 Nkind (Recdef) = N_Derived_Type_Definition
6586 and then Present (Record_Extension_Part (Recdef));
89f1e35c 6587
d9f6a4ee 6588 if Present (Mod_Clause (N)) then
fb7f2fc4 6589 declare
d9f6a4ee 6590 Loc : constant Source_Ptr := Sloc (N);
6591 M : constant Node_Id := Mod_Clause (N);
6592 P : constant List_Id := Pragmas_Before (M);
6593 AtM_Nod : Node_Id;
6594
6595 Mod_Val : Uint;
6596 pragma Warnings (Off, Mod_Val);
fb7f2fc4 6597
6598 begin
d9f6a4ee 6599 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
fb7f2fc4 6600
d9f6a4ee 6601 if Warn_On_Obsolescent_Feature then
6602 Error_Msg_N
6603 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6604 Error_Msg_N
6605 ("\?j?use alignment attribute definition clause instead", N);
6606 end if;
fb7f2fc4 6607
d9f6a4ee 6608 if Present (P) then
6609 Analyze_List (P);
6610 end if;
89f1e35c 6611
d9f6a4ee 6612 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6613 -- the Mod clause into an alignment clause anyway, so that the
6614 -- back-end can compute and back-annotate properly the size and
6615 -- alignment of types that may include this record.
be9124d0 6616
d9f6a4ee 6617 -- This seems dubious, this destroys the source tree in a manner
6618 -- not detectable by ASIS ???
be9124d0 6619
d9f6a4ee 6620 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6621 AtM_Nod :=
6622 Make_Attribute_Definition_Clause (Loc,
83c6c069 6623 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
d9f6a4ee 6624 Chars => Name_Alignment,
6625 Expression => Relocate_Node (Expression (M)));
be9124d0 6626
d9f6a4ee 6627 Set_From_At_Mod (AtM_Nod);
6628 Insert_After (N, AtM_Nod);
6629 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6630 Set_Mod_Clause (N, Empty);
be9124d0 6631
d9f6a4ee 6632 else
6633 -- Get the alignment value to perform error checking
be9124d0 6634
d9f6a4ee 6635 Mod_Val := Get_Alignment_Value (Expression (M));
6636 end if;
6637 end;
6638 end if;
be9124d0 6639
d9f6a4ee 6640 -- For untagged types, clear any existing component clauses for the
6641 -- type. If the type is derived, this is what allows us to override
6642 -- a rep clause for the parent. For type extensions, the representation
6643 -- of the inherited components is inherited, so we want to keep previous
6644 -- component clauses for completeness.
be9124d0 6645
d9f6a4ee 6646 if not Is_Tagged_Type (Rectype) then
6647 Comp := First_Component_Or_Discriminant (Rectype);
6648 while Present (Comp) loop
6649 Set_Component_Clause (Comp, Empty);
6650 Next_Component_Or_Discriminant (Comp);
6651 end loop;
6652 end if;
be9124d0 6653
d9f6a4ee 6654 -- All done if no component clauses
be9124d0 6655
d9f6a4ee 6656 CC := First (Component_Clauses (N));
be9124d0 6657
d9f6a4ee 6658 if No (CC) then
6659 return;
6660 end if;
be9124d0 6661
d9f6a4ee 6662 -- A representation like this applies to the base type
be9124d0 6663
d9f6a4ee 6664 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6665 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6666 Set_Has_Specified_Layout (Base_Type (Rectype));
be9124d0 6667
d9f6a4ee 6668 -- Process the component clauses
be9124d0 6669
d9f6a4ee 6670 while Present (CC) loop
be9124d0 6671
d9f6a4ee 6672 -- Pragma
be9124d0 6673
d9f6a4ee 6674 if Nkind (CC) = N_Pragma then
6675 Analyze (CC);
be9124d0 6676
d9f6a4ee 6677 -- The only pragma of interest is Complete_Representation
be9124d0 6678
d9f6a4ee 6679 if Pragma_Name (CC) = Name_Complete_Representation then
6680 CR_Pragma := CC;
6681 end if;
be9124d0 6682
d9f6a4ee 6683 -- Processing for real component clause
be9124d0 6684
d9f6a4ee 6685 else
6686 Posit := Static_Integer (Position (CC));
6687 Fbit := Static_Integer (First_Bit (CC));
6688 Lbit := Static_Integer (Last_Bit (CC));
be9124d0 6689
d9f6a4ee 6690 if Posit /= No_Uint
6691 and then Fbit /= No_Uint
6692 and then Lbit /= No_Uint
6693 then
6694 if Posit < 0 then
6695 Error_Msg_N
6696 ("position cannot be negative", Position (CC));
be9124d0 6697
d9f6a4ee 6698 elsif Fbit < 0 then
6699 Error_Msg_N
6700 ("first bit cannot be negative", First_Bit (CC));
be9124d0 6701
d9f6a4ee 6702 -- The Last_Bit specified in a component clause must not be
6703 -- less than the First_Bit minus one (RM-13.5.1(10)).
be9124d0 6704
d9f6a4ee 6705 elsif Lbit < Fbit - 1 then
6706 Error_Msg_N
6707 ("last bit cannot be less than first bit minus one",
6708 Last_Bit (CC));
be9124d0 6709
d9f6a4ee 6710 -- Values look OK, so find the corresponding record component
6711 -- Even though the syntax allows an attribute reference for
6712 -- implementation-defined components, GNAT does not allow the
6713 -- tag to get an explicit position.
be9124d0 6714
d9f6a4ee 6715 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6716 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6717 Error_Msg_N ("position of tag cannot be specified", CC);
6718 else
6719 Error_Msg_N ("illegal component name", CC);
6720 end if;
be9124d0 6721
d9f6a4ee 6722 else
6723 Comp := First_Entity (Rectype);
6724 while Present (Comp) loop
6725 exit when Chars (Comp) = Chars (Component_Name (CC));
6726 Next_Entity (Comp);
6727 end loop;
be9124d0 6728
d9f6a4ee 6729 if No (Comp) then
be9124d0 6730
d9f6a4ee 6731 -- Maybe component of base type that is absent from
6732 -- statically constrained first subtype.
be9124d0 6733
d9f6a4ee 6734 Comp := First_Entity (Base_Type (Rectype));
6735 while Present (Comp) loop
6736 exit when Chars (Comp) = Chars (Component_Name (CC));
6737 Next_Entity (Comp);
6738 end loop;
6739 end if;
be9124d0 6740
d9f6a4ee 6741 if No (Comp) then
6742 Error_Msg_N
6743 ("component clause is for non-existent field", CC);
be9124d0 6744
d9f6a4ee 6745 -- Ada 2012 (AI05-0026): Any name that denotes a
6746 -- discriminant of an object of an unchecked union type
6747 -- shall not occur within a record_representation_clause.
be9124d0 6748
d9f6a4ee 6749 -- The general restriction of using record rep clauses on
6750 -- Unchecked_Union types has now been lifted. Since it is
6751 -- possible to introduce a record rep clause which mentions
6752 -- the discriminant of an Unchecked_Union in non-Ada 2012
6753 -- code, this check is applied to all versions of the
6754 -- language.
be9124d0 6755
d9f6a4ee 6756 elsif Ekind (Comp) = E_Discriminant
6757 and then Is_Unchecked_Union (Rectype)
6758 then
6759 Error_Msg_N
6760 ("cannot reference discriminant of unchecked union",
6761 Component_Name (CC));
be9124d0 6762
d9f6a4ee 6763 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6764 Error_Msg_NE
6765 ("component clause not allowed for inherited "
6766 & "component&", CC, Comp);
40ca69b9 6767
d9f6a4ee 6768 elsif Present (Component_Clause (Comp)) then
462a079f 6769
d9f6a4ee 6770 -- Diagnose duplicate rep clause, or check consistency
6771 -- if this is an inherited component. In a double fault,
6772 -- there may be a duplicate inconsistent clause for an
6773 -- inherited component.
462a079f 6774
d9f6a4ee 6775 if Scope (Original_Record_Component (Comp)) = Rectype
6776 or else Parent (Component_Clause (Comp)) = N
6777 then
6778 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6779 Error_Msg_N ("component clause previously given#", CC);
3062c401 6780
6781 else
6782 declare
6783 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 6784 begin
6785 if Intval (Position (Rep1)) /=
6786 Intval (Position (CC))
6787 or else Intval (First_Bit (Rep1)) /=
6788 Intval (First_Bit (CC))
6789 or else Intval (Last_Bit (Rep1)) /=
6790 Intval (Last_Bit (CC))
6791 then
b9e61b2a 6792 Error_Msg_N
6793 ("component clause inconsistent "
6794 & "with representation of ancestor", CC);
6a06584c 6795
3062c401 6796 elsif Warn_On_Redundant_Constructs then
b9e61b2a 6797 Error_Msg_N
6a06584c 6798 ("?r?redundant confirming component clause "
6799 & "for component!", CC);
3062c401 6800 end if;
6801 end;
6802 end if;
d6f39728 6803
d2b860b4 6804 -- Normal case where this is the first component clause we
6805 -- have seen for this entity, so set it up properly.
6806
d6f39728 6807 else
83f8f0a6 6808 -- Make reference for field in record rep clause and set
6809 -- appropriate entity field in the field identifier.
6810
6811 Generate_Reference
6812 (Comp, Component_Name (CC), Set_Ref => False);
6813 Set_Entity (Component_Name (CC), Comp);
6814
2866d595 6815 -- Update Fbit and Lbit to the actual bit number
d6f39728 6816
6817 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6818 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6819
d6f39728 6820 if Has_Size_Clause (Rectype)
ada34def 6821 and then RM_Size (Rectype) <= Lbit
d6f39728 6822 then
6823 Error_Msg_N
6824 ("bit number out of range of specified size",
6825 Last_Bit (CC));
6826 else
6827 Set_Component_Clause (Comp, CC);
6828 Set_Component_Bit_Offset (Comp, Fbit);
6829 Set_Esize (Comp, 1 + (Lbit - Fbit));
6830 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6831 Set_Normalized_Position (Comp, Fbit / SSU);
6832
a0fc8c5b 6833 if Warn_On_Overridden_Size
6834 and then Has_Size_Clause (Etype (Comp))
6835 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6836 then
6837 Error_Msg_NE
1e3532e7 6838 ("?S?component size overrides size clause for&",
a0fc8c5b 6839 Component_Name (CC), Etype (Comp));
6840 end if;
6841
ea61a7ea 6842 -- This information is also set in the corresponding
6843 -- component of the base type, found by accessing the
6844 -- Original_Record_Component link if it is present.
d6f39728 6845
6846 Ocomp := Original_Record_Component (Comp);
6847
6848 if Hbit < Lbit then
6849 Hbit := Lbit;
6850 end if;
6851
6852 Check_Size
6853 (Component_Name (CC),
6854 Etype (Comp),
6855 Esize (Comp),
6856 Biased);
6857
b77e4501 6858 Set_Biased
6859 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 6860
d6f39728 6861 if Present (Ocomp) then
6862 Set_Component_Clause (Ocomp, CC);
6863 Set_Component_Bit_Offset (Ocomp, Fbit);
6864 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6865 Set_Normalized_Position (Ocomp, Fbit / SSU);
6866 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6867
6868 Set_Normalized_Position_Max
6869 (Ocomp, Normalized_Position (Ocomp));
6870
b77e4501 6871 -- Note: we don't use Set_Biased here, because we
6872 -- already gave a warning above if needed, and we
6873 -- would get a duplicate for the same name here.
6874
d6f39728 6875 Set_Has_Biased_Representation
6876 (Ocomp, Has_Biased_Representation (Comp));
6877 end if;
6878
6879 if Esize (Comp) < 0 then
6880 Error_Msg_N ("component size is negative", CC);
6881 end if;
6882 end if;
6883 end if;
6884 end if;
6885 end if;
6886 end if;
6887
6888 Next (CC);
6889 end loop;
6890
67278d60 6891 -- Check missing components if Complete_Representation pragma appeared
d6f39728 6892
67278d60 6893 if Present (CR_Pragma) then
6894 Comp := First_Component_Or_Discriminant (Rectype);
6895 while Present (Comp) loop
6896 if No (Component_Clause (Comp)) then
6897 Error_Msg_NE
6898 ("missing component clause for &", CR_Pragma, Comp);
6899 end if;
d6f39728 6900
67278d60 6901 Next_Component_Or_Discriminant (Comp);
6902 end loop;
d6f39728 6903
1e3532e7 6904 -- Give missing components warning if required
15ebb600 6905
fdd294d1 6906 elsif Warn_On_Unrepped_Components then
15ebb600 6907 declare
6908 Num_Repped_Components : Nat := 0;
6909 Num_Unrepped_Components : Nat := 0;
6910
6911 begin
6912 -- First count number of repped and unrepped components
6913
6914 Comp := First_Component_Or_Discriminant (Rectype);
6915 while Present (Comp) loop
6916 if Present (Component_Clause (Comp)) then
6917 Num_Repped_Components := Num_Repped_Components + 1;
6918 else
6919 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6920 end if;
6921
6922 Next_Component_Or_Discriminant (Comp);
6923 end loop;
6924
6925 -- We are only interested in the case where there is at least one
6926 -- unrepped component, and at least half the components have rep
6927 -- clauses. We figure that if less than half have them, then the
87f9eef5 6928 -- partial rep clause is really intentional. If the component
6929 -- type has no underlying type set at this point (as for a generic
6930 -- formal type), we don't know enough to give a warning on the
6931 -- component.
15ebb600 6932
6933 if Num_Unrepped_Components > 0
6934 and then Num_Unrepped_Components < Num_Repped_Components
6935 then
6936 Comp := First_Component_Or_Discriminant (Rectype);
6937 while Present (Comp) loop
83f8f0a6 6938 if No (Component_Clause (Comp))
3062c401 6939 and then Comes_From_Source (Comp)
87f9eef5 6940 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 6941 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 6942 or else Size_Known_At_Compile_Time
6943 (Underlying_Type (Etype (Comp))))
fdd294d1 6944 and then not Has_Warnings_Off (Rectype)
2be1f7d7 6945
6946 -- Ignore discriminant in unchecked union, since it is
6947 -- not there, and cannot have a component clause.
6948
6949 and then (not Is_Unchecked_Union (Rectype)
6950 or else Ekind (Comp) /= E_Discriminant)
83f8f0a6 6951 then
15ebb600 6952 Error_Msg_Sloc := Sloc (Comp);
6953 Error_Msg_NE
1e3532e7 6954 ("?C?no component clause given for & declared #",
15ebb600 6955 N, Comp);
6956 end if;
6957
6958 Next_Component_Or_Discriminant (Comp);
6959 end loop;
6960 end if;
6961 end;
d6f39728 6962 end if;
d6f39728 6963 end Analyze_Record_Representation_Clause;
6964
eb66e842 6965 -------------------------------------
6966 -- Build_Discrete_Static_Predicate --
6967 -------------------------------------
9ea61fdd 6968
eb66e842 6969 procedure Build_Discrete_Static_Predicate
6970 (Typ : Entity_Id;
6971 Expr : Node_Id;
6972 Nam : Name_Id)
9ea61fdd 6973 is
eb66e842 6974 Loc : constant Source_Ptr := Sloc (Expr);
9ea61fdd 6975
eb66e842 6976 Non_Static : exception;
6977 -- Raised if something non-static is found
9ea61fdd 6978
eb66e842 6979 Btyp : constant Entity_Id := Base_Type (Typ);
9ea61fdd 6980
eb66e842 6981 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6982 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6983 -- Low bound and high bound value of base type of Typ
9ea61fdd 6984
afc229da 6985 TLo : Uint;
6986 THi : Uint;
6987 -- Bounds for constructing the static predicate. We use the bound of the
6988 -- subtype if it is static, otherwise the corresponding base type bound.
6989 -- Note: a non-static subtype can have a static predicate.
9ea61fdd 6990
eb66e842 6991 type REnt is record
6992 Lo, Hi : Uint;
6993 end record;
6994 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6995 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6996 -- value.
9ea61fdd 6997
eb66e842 6998 type RList is array (Nat range <>) of REnt;
6999 -- A list of ranges. The ranges are sorted in increasing order, and are
7000 -- disjoint (there is a gap of at least one value between each range in
7001 -- the table). A value is in the set of ranges in Rlist if it lies
7002 -- within one of these ranges.
9ea61fdd 7003
eb66e842 7004 False_Range : constant RList :=
7005 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7006 -- An empty set of ranges represents a range list that can never be
7007 -- satisfied, since there are no ranges in which the value could lie,
7008 -- so it does not lie in any of them. False_Range is a canonical value
7009 -- for this empty set, but general processing should test for an Rlist
7010 -- with length zero (see Is_False predicate), since other null ranges
7011 -- may appear which must be treated as False.
5b5df4a9 7012
eb66e842 7013 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7014 -- Range representing True, value must be in the base range
5b5df4a9 7015
eb66e842 7016 function "and" (Left : RList; Right : RList) return RList;
7017 -- And's together two range lists, returning a range list. This is a set
7018 -- intersection operation.
5b5df4a9 7019
eb66e842 7020 function "or" (Left : RList; Right : RList) return RList;
7021 -- Or's together two range lists, returning a range list. This is a set
7022 -- union operation.
87f3d5d3 7023
eb66e842 7024 function "not" (Right : RList) return RList;
7025 -- Returns complement of a given range list, i.e. a range list
7026 -- representing all the values in TLo .. THi that are not in the input
7027 -- operand Right.
ed4adc99 7028
eb66e842 7029 function Build_Val (V : Uint) return Node_Id;
7030 -- Return an analyzed N_Identifier node referencing this value, suitable
5c6a5792 7031 -- for use as an entry in the Static_Discrte_Predicate list. This node
7032 -- is typed with the base type.
5b5df4a9 7033
eb66e842 7034 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7035 -- Return an analyzed N_Range node referencing this range, suitable for
5c6a5792 7036 -- use as an entry in the Static_Discrete_Predicate list. This node is
7037 -- typed with the base type.
5b5df4a9 7038
eb66e842 7039 function Get_RList (Exp : Node_Id) return RList;
7040 -- This is a recursive routine that converts the given expression into a
7041 -- list of ranges, suitable for use in building the static predicate.
5b5df4a9 7042
eb66e842 7043 function Is_False (R : RList) return Boolean;
7044 pragma Inline (Is_False);
7045 -- Returns True if the given range list is empty, and thus represents a
7046 -- False list of ranges that can never be satisfied.
87f3d5d3 7047
eb66e842 7048 function Is_True (R : RList) return Boolean;
7049 -- Returns True if R trivially represents the True predicate by having a
7050 -- single range from BLo to BHi.
5b5df4a9 7051
eb66e842 7052 function Is_Type_Ref (N : Node_Id) return Boolean;
7053 pragma Inline (Is_Type_Ref);
7054 -- Returns if True if N is a reference to the type for the predicate in
7055 -- the expression (i.e. if it is an identifier whose Chars field matches
7de4cba3 7056 -- the Nam given in the call). N must not be parenthesized, if the type
7057 -- name appears in parens, this routine will return False.
5b5df4a9 7058
eb66e842 7059 function Lo_Val (N : Node_Id) return Uint;
5c6a5792 7060 -- Given an entry from a Static_Discrete_Predicate list that is either
7061 -- a static expression or static range, gets either the expression value
7062 -- or the low bound of the range.
5b5df4a9 7063
eb66e842 7064 function Hi_Val (N : Node_Id) return Uint;
5c6a5792 7065 -- Given an entry from a Static_Discrete_Predicate list that is either
7066 -- a static expression or static range, gets either the expression value
7067 -- or the high bound of the range.
5b5df4a9 7068
eb66e842 7069 function Membership_Entry (N : Node_Id) return RList;
7070 -- Given a single membership entry (range, value, or subtype), returns
7071 -- the corresponding range list. Raises Static_Error if not static.
5b5df4a9 7072
eb66e842 7073 function Membership_Entries (N : Node_Id) return RList;
7074 -- Given an element on an alternatives list of a membership operation,
7075 -- returns the range list corresponding to this entry and all following
7076 -- entries (i.e. returns the "or" of this list of values).
b9e61b2a 7077
eb66e842 7078 function Stat_Pred (Typ : Entity_Id) return RList;
7079 -- Given a type, if it has a static predicate, then return the predicate
7080 -- as a range list, otherwise raise Non_Static.
c4968aa2 7081
eb66e842 7082 -----------
7083 -- "and" --
7084 -----------
c4968aa2 7085
eb66e842 7086 function "and" (Left : RList; Right : RList) return RList is
7087 FEnt : REnt;
7088 -- First range of result
c4968aa2 7089
eb66e842 7090 SLeft : Nat := Left'First;
7091 -- Start of rest of left entries
c4968aa2 7092
eb66e842 7093 SRight : Nat := Right'First;
7094 -- Start of rest of right entries
2072eaa9 7095
eb66e842 7096 begin
7097 -- If either range is True, return the other
5b5df4a9 7098
eb66e842 7099 if Is_True (Left) then
7100 return Right;
7101 elsif Is_True (Right) then
7102 return Left;
7103 end if;
87f3d5d3 7104
eb66e842 7105 -- If either range is False, return False
5b5df4a9 7106
eb66e842 7107 if Is_False (Left) or else Is_False (Right) then
7108 return False_Range;
7109 end if;
4c1fd062 7110
eb66e842 7111 -- Loop to remove entries at start that are disjoint, and thus just
7112 -- get discarded from the result entirely.
5b5df4a9 7113
eb66e842 7114 loop
7115 -- If no operands left in either operand, result is false
5b5df4a9 7116
eb66e842 7117 if SLeft > Left'Last or else SRight > Right'Last then
7118 return False_Range;
5b5df4a9 7119
eb66e842 7120 -- Discard first left operand entry if disjoint with right
5b5df4a9 7121
eb66e842 7122 elsif Left (SLeft).Hi < Right (SRight).Lo then
7123 SLeft := SLeft + 1;
5b5df4a9 7124
eb66e842 7125 -- Discard first right operand entry if disjoint with left
5b5df4a9 7126
eb66e842 7127 elsif Right (SRight).Hi < Left (SLeft).Lo then
7128 SRight := SRight + 1;
5b5df4a9 7129
eb66e842 7130 -- Otherwise we have an overlapping entry
5b5df4a9 7131
eb66e842 7132 else
7133 exit;
7134 end if;
7135 end loop;
5b5df4a9 7136
eb66e842 7137 -- Now we have two non-null operands, and first entries overlap. The
7138 -- first entry in the result will be the overlapping part of these
7139 -- two entries.
47a46747 7140
eb66e842 7141 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7142 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
47a46747 7143
eb66e842 7144 -- Now we can remove the entry that ended at a lower value, since its
7145 -- contribution is entirely contained in Fent.
5b5df4a9 7146
eb66e842 7147 if Left (SLeft).Hi <= Right (SRight).Hi then
7148 SLeft := SLeft + 1;
7149 else
7150 SRight := SRight + 1;
7151 end if;
5b5df4a9 7152
eb66e842 7153 -- Compute result by concatenating this first entry with the "and" of
7154 -- the remaining parts of the left and right operands. Note that if
7155 -- either of these is empty, "and" will yield empty, so that we will
7156 -- end up with just Fent, which is what we want in that case.
5b5df4a9 7157
eb66e842 7158 return
7159 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7160 end "and";
fb7f2fc4 7161
eb66e842 7162 -----------
7163 -- "not" --
7164 -----------
fb7f2fc4 7165
eb66e842 7166 function "not" (Right : RList) return RList is
7167 begin
7168 -- Return True if False range
fb7f2fc4 7169
eb66e842 7170 if Is_False (Right) then
7171 return True_Range;
7172 end if;
ed4adc99 7173
eb66e842 7174 -- Return False if True range
fb7f2fc4 7175
eb66e842 7176 if Is_True (Right) then
7177 return False_Range;
7178 end if;
fb7f2fc4 7179
eb66e842 7180 -- Here if not trivial case
87f3d5d3 7181
eb66e842 7182 declare
7183 Result : RList (1 .. Right'Length + 1);
7184 -- May need one more entry for gap at beginning and end
87f3d5d3 7185
eb66e842 7186 Count : Nat := 0;
7187 -- Number of entries stored in Result
4098232e 7188
eb66e842 7189 begin
7190 -- Gap at start
4098232e 7191
eb66e842 7192 if Right (Right'First).Lo > TLo then
7193 Count := Count + 1;
7194 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7195 end if;
ed4adc99 7196
eb66e842 7197 -- Gaps between ranges
ed4adc99 7198
eb66e842 7199 for J in Right'First .. Right'Last - 1 loop
7200 Count := Count + 1;
7201 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7202 end loop;
5b5df4a9 7203
eb66e842 7204 -- Gap at end
5b5df4a9 7205
eb66e842 7206 if Right (Right'Last).Hi < THi then
7207 Count := Count + 1;
7208 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7209 end if;
5b5df4a9 7210
eb66e842 7211 return Result (1 .. Count);
7212 end;
7213 end "not";
5b5df4a9 7214
eb66e842 7215 ----------
7216 -- "or" --
7217 ----------
5b5df4a9 7218
eb66e842 7219 function "or" (Left : RList; Right : RList) return RList is
7220 FEnt : REnt;
7221 -- First range of result
5b5df4a9 7222
eb66e842 7223 SLeft : Nat := Left'First;
7224 -- Start of rest of left entries
5b5df4a9 7225
eb66e842 7226 SRight : Nat := Right'First;
7227 -- Start of rest of right entries
5b5df4a9 7228
eb66e842 7229 begin
7230 -- If either range is True, return True
5b5df4a9 7231
eb66e842 7232 if Is_True (Left) or else Is_True (Right) then
7233 return True_Range;
7234 end if;
5b5df4a9 7235
eb66e842 7236 -- If either range is False (empty), return the other
5b5df4a9 7237
eb66e842 7238 if Is_False (Left) then
7239 return Right;
7240 elsif Is_False (Right) then
7241 return Left;
7242 end if;
5b5df4a9 7243
eb66e842 7244 -- Initialize result first entry from left or right operand depending
7245 -- on which starts with the lower range.
5b5df4a9 7246
eb66e842 7247 if Left (SLeft).Lo < Right (SRight).Lo then
7248 FEnt := Left (SLeft);
7249 SLeft := SLeft + 1;
7250 else
7251 FEnt := Right (SRight);
7252 SRight := SRight + 1;
7253 end if;
5b5df4a9 7254
eb66e842 7255 -- This loop eats ranges from left and right operands that are
7256 -- contiguous with the first range we are gathering.
9ea61fdd 7257
eb66e842 7258 loop
7259 -- Eat first entry in left operand if contiguous or overlapped by
7260 -- gathered first operand of result.
9ea61fdd 7261
eb66e842 7262 if SLeft <= Left'Last
7263 and then Left (SLeft).Lo <= FEnt.Hi + 1
7264 then
7265 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7266 SLeft := SLeft + 1;
9ea61fdd 7267
eb66e842 7268 -- Eat first entry in right operand if contiguous or overlapped by
7269 -- gathered right operand of result.
9ea61fdd 7270
eb66e842 7271 elsif SRight <= Right'Last
7272 and then Right (SRight).Lo <= FEnt.Hi + 1
7273 then
7274 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7275 SRight := SRight + 1;
9ea61fdd 7276
eb66e842 7277 -- All done if no more entries to eat
5b5df4a9 7278
eb66e842 7279 else
7280 exit;
7281 end if;
7282 end loop;
5b5df4a9 7283
eb66e842 7284 -- Obtain result as the first entry we just computed, concatenated
7285 -- to the "or" of the remaining results (if one operand is empty,
7286 -- this will just concatenate with the other
5b5df4a9 7287
eb66e842 7288 return
7289 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7290 end "or";
5b5df4a9 7291
eb66e842 7292 -----------------
7293 -- Build_Range --
7294 -----------------
5b5df4a9 7295
eb66e842 7296 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7297 Result : Node_Id;
5b5df4a9 7298 begin
eb66e842 7299 Result :=
7300 Make_Range (Loc,
7301 Low_Bound => Build_Val (Lo),
7302 High_Bound => Build_Val (Hi));
7303 Set_Etype (Result, Btyp);
7304 Set_Analyzed (Result);
7305 return Result;
7306 end Build_Range;
5b5df4a9 7307
eb66e842 7308 ---------------
7309 -- Build_Val --
7310 ---------------
5b5df4a9 7311
eb66e842 7312 function Build_Val (V : Uint) return Node_Id is
7313 Result : Node_Id;
5b5df4a9 7314
eb66e842 7315 begin
7316 if Is_Enumeration_Type (Typ) then
7317 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7318 else
7319 Result := Make_Integer_Literal (Loc, V);
7320 end if;
5b5df4a9 7321
eb66e842 7322 Set_Etype (Result, Btyp);
7323 Set_Is_Static_Expression (Result);
7324 Set_Analyzed (Result);
7325 return Result;
7326 end Build_Val;
87f3d5d3 7327
eb66e842 7328 ---------------
7329 -- Get_RList --
7330 ---------------
87f3d5d3 7331
eb66e842 7332 function Get_RList (Exp : Node_Id) return RList is
7333 Op : Node_Kind;
7334 Val : Uint;
87f3d5d3 7335
eb66e842 7336 begin
7337 -- Static expression can only be true or false
87f3d5d3 7338
eb66e842 7339 if Is_OK_Static_Expression (Exp) then
7340 if Expr_Value (Exp) = 0 then
7341 return False_Range;
7342 else
7343 return True_Range;
9ea61fdd 7344 end if;
eb66e842 7345 end if;
87f3d5d3 7346
eb66e842 7347 -- Otherwise test node type
192b8dab 7348
eb66e842 7349 Op := Nkind (Exp);
192b8dab 7350
eb66e842 7351 case Op is
5d3fb947 7352
eb66e842 7353 -- And
5d3fb947 7354
eb66e842 7355 when N_Op_And | N_And_Then =>
7356 return Get_RList (Left_Opnd (Exp))
7357 and
7358 Get_RList (Right_Opnd (Exp));
5b5df4a9 7359
eb66e842 7360 -- Or
9dc88aea 7361
eb66e842 7362 when N_Op_Or | N_Or_Else =>
7363 return Get_RList (Left_Opnd (Exp))
7364 or
7365 Get_RList (Right_Opnd (Exp));
7c443ae8 7366
eb66e842 7367 -- Not
9dc88aea 7368
eb66e842 7369 when N_Op_Not =>
7370 return not Get_RList (Right_Opnd (Exp));
9dc88aea 7371
eb66e842 7372 -- Comparisons of type with static value
84c8f0b8 7373
eb66e842 7374 when N_Op_Compare =>
490beba6 7375
eb66e842 7376 -- Type is left operand
9dc88aea 7377
eb66e842 7378 if Is_Type_Ref (Left_Opnd (Exp))
7379 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7380 then
7381 Val := Expr_Value (Right_Opnd (Exp));
84c8f0b8 7382
eb66e842 7383 -- Typ is right operand
84c8f0b8 7384
eb66e842 7385 elsif Is_Type_Ref (Right_Opnd (Exp))
7386 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7387 then
7388 Val := Expr_Value (Left_Opnd (Exp));
84c8f0b8 7389
eb66e842 7390 -- Invert sense of comparison
84c8f0b8 7391
eb66e842 7392 case Op is
7393 when N_Op_Gt => Op := N_Op_Lt;
7394 when N_Op_Lt => Op := N_Op_Gt;
7395 when N_Op_Ge => Op := N_Op_Le;
7396 when N_Op_Le => Op := N_Op_Ge;
7397 when others => null;
7398 end case;
84c8f0b8 7399
eb66e842 7400 -- Other cases are non-static
34d045d3 7401
eb66e842 7402 else
7403 raise Non_Static;
7404 end if;
9dc88aea 7405
eb66e842 7406 -- Construct range according to comparison operation
9dc88aea 7407
eb66e842 7408 case Op is
7409 when N_Op_Eq =>
7410 return RList'(1 => REnt'(Val, Val));
9dc88aea 7411
eb66e842 7412 when N_Op_Ge =>
7413 return RList'(1 => REnt'(Val, BHi));
84c8f0b8 7414
eb66e842 7415 when N_Op_Gt =>
7416 return RList'(1 => REnt'(Val + 1, BHi));
84c8f0b8 7417
eb66e842 7418 when N_Op_Le =>
7419 return RList'(1 => REnt'(BLo, Val));
fb7f2fc4 7420
eb66e842 7421 when N_Op_Lt =>
7422 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 7423
eb66e842 7424 when N_Op_Ne =>
7425 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9dc88aea 7426
eb66e842 7427 when others =>
7428 raise Program_Error;
7429 end case;
9dc88aea 7430
eb66e842 7431 -- Membership (IN)
9dc88aea 7432
eb66e842 7433 when N_In =>
7434 if not Is_Type_Ref (Left_Opnd (Exp)) then
7435 raise Non_Static;
7436 end if;
9dc88aea 7437
eb66e842 7438 if Present (Right_Opnd (Exp)) then
7439 return Membership_Entry (Right_Opnd (Exp));
7440 else
7441 return Membership_Entries (First (Alternatives (Exp)));
7442 end if;
9dc88aea 7443
eb66e842 7444 -- Negative membership (NOT IN)
9dc88aea 7445
eb66e842 7446 when N_Not_In =>
7447 if not Is_Type_Ref (Left_Opnd (Exp)) then
7448 raise Non_Static;
7449 end if;
9dc88aea 7450
eb66e842 7451 if Present (Right_Opnd (Exp)) then
7452 return not Membership_Entry (Right_Opnd (Exp));
7453 else
7454 return not Membership_Entries (First (Alternatives (Exp)));
7455 end if;
9dc88aea 7456
eb66e842 7457 -- Function call, may be call to static predicate
9dc88aea 7458
eb66e842 7459 when N_Function_Call =>
7460 if Is_Entity_Name (Name (Exp)) then
7461 declare
7462 Ent : constant Entity_Id := Entity (Name (Exp));
7463 begin
7464 if Is_Predicate_Function (Ent)
7465 or else
7466 Is_Predicate_Function_M (Ent)
7467 then
7468 return Stat_Pred (Etype (First_Formal (Ent)));
7469 end if;
7470 end;
7471 end if;
9dc88aea 7472
eb66e842 7473 -- Other function call cases are non-static
9dc88aea 7474
eb66e842 7475 raise Non_Static;
490beba6 7476
eb66e842 7477 -- Qualified expression, dig out the expression
c92e878b 7478
eb66e842 7479 when N_Qualified_Expression =>
7480 return Get_RList (Expression (Exp));
4c1fd062 7481
eb66e842 7482 when N_Case_Expression =>
7483 declare
7484 Alt : Node_Id;
7485 Choices : List_Id;
7486 Dep : Node_Id;
4c1fd062 7487
eb66e842 7488 begin
7489 if not Is_Entity_Name (Expression (Expr))
7490 or else Etype (Expression (Expr)) /= Typ
7491 then
7492 Error_Msg_N
7493 ("expression must denaote subtype", Expression (Expr));
7494 return False_Range;
7495 end if;
9dc88aea 7496
eb66e842 7497 -- Collect discrete choices in all True alternatives
9dc88aea 7498
eb66e842 7499 Choices := New_List;
7500 Alt := First (Alternatives (Exp));
7501 while Present (Alt) loop
7502 Dep := Expression (Alt);
34d045d3 7503
cda40848 7504 if not Is_OK_Static_Expression (Dep) then
eb66e842 7505 raise Non_Static;
ebbab42d 7506
eb66e842 7507 elsif Is_True (Expr_Value (Dep)) then
7508 Append_List_To (Choices,
7509 New_Copy_List (Discrete_Choices (Alt)));
7510 end if;
fb7f2fc4 7511
eb66e842 7512 Next (Alt);
7513 end loop;
9dc88aea 7514
eb66e842 7515 return Membership_Entries (First (Choices));
7516 end;
9dc88aea 7517
eb66e842 7518 -- Expression with actions: if no actions, dig out expression
9dc88aea 7519
eb66e842 7520 when N_Expression_With_Actions =>
7521 if Is_Empty_List (Actions (Exp)) then
7522 return Get_RList (Expression (Exp));
7523 else
7524 raise Non_Static;
7525 end if;
9dc88aea 7526
eb66e842 7527 -- Xor operator
490beba6 7528
eb66e842 7529 when N_Op_Xor =>
7530 return (Get_RList (Left_Opnd (Exp))
7531 and not Get_RList (Right_Opnd (Exp)))
7532 or (Get_RList (Right_Opnd (Exp))
7533 and not Get_RList (Left_Opnd (Exp)));
9dc88aea 7534
eb66e842 7535 -- Any other node type is non-static
fb7f2fc4 7536
eb66e842 7537 when others =>
7538 raise Non_Static;
7539 end case;
7540 end Get_RList;
fb7f2fc4 7541
eb66e842 7542 ------------
7543 -- Hi_Val --
7544 ------------
fb7f2fc4 7545
eb66e842 7546 function Hi_Val (N : Node_Id) return Uint is
7547 begin
cda40848 7548 if Is_OK_Static_Expression (N) then
eb66e842 7549 return Expr_Value (N);
7550 else
7551 pragma Assert (Nkind (N) = N_Range);
7552 return Expr_Value (High_Bound (N));
7553 end if;
7554 end Hi_Val;
fb7f2fc4 7555
eb66e842 7556 --------------
7557 -- Is_False --
7558 --------------
fb7f2fc4 7559
eb66e842 7560 function Is_False (R : RList) return Boolean is
7561 begin
7562 return R'Length = 0;
7563 end Is_False;
9dc88aea 7564
eb66e842 7565 -------------
7566 -- Is_True --
7567 -------------
9dc88aea 7568
eb66e842 7569 function Is_True (R : RList) return Boolean is
7570 begin
7571 return R'Length = 1
7572 and then R (R'First).Lo = BLo
7573 and then R (R'First).Hi = BHi;
7574 end Is_True;
9dc88aea 7575
eb66e842 7576 -----------------
7577 -- Is_Type_Ref --
7578 -----------------
9dc88aea 7579
eb66e842 7580 function Is_Type_Ref (N : Node_Id) return Boolean is
7581 begin
7de4cba3 7582 return Nkind (N) = N_Identifier
7583 and then Chars (N) = Nam
7584 and then Paren_Count (N) = 0;
eb66e842 7585 end Is_Type_Ref;
9dc88aea 7586
eb66e842 7587 ------------
7588 -- Lo_Val --
7589 ------------
9dc88aea 7590
eb66e842 7591 function Lo_Val (N : Node_Id) return Uint is
84c8f0b8 7592 begin
cda40848 7593 if Is_OK_Static_Expression (N) then
eb66e842 7594 return Expr_Value (N);
84c8f0b8 7595 else
eb66e842 7596 pragma Assert (Nkind (N) = N_Range);
7597 return Expr_Value (Low_Bound (N));
84c8f0b8 7598 end if;
eb66e842 7599 end Lo_Val;
d97beb2f 7600
eb66e842 7601 ------------------------
7602 -- Membership_Entries --
7603 ------------------------
d97beb2f 7604
eb66e842 7605 function Membership_Entries (N : Node_Id) return RList is
84c8f0b8 7606 begin
eb66e842 7607 if No (Next (N)) then
7608 return Membership_Entry (N);
84c8f0b8 7609 else
eb66e842 7610 return Membership_Entry (N) or Membership_Entries (Next (N));
84c8f0b8 7611 end if;
eb66e842 7612 end Membership_Entries;
84c8f0b8 7613
eb66e842 7614 ----------------------
7615 -- Membership_Entry --
7616 ----------------------
84c8f0b8 7617
eb66e842 7618 function Membership_Entry (N : Node_Id) return RList is
7619 Val : Uint;
7620 SLo : Uint;
7621 SHi : Uint;
d97beb2f 7622
eb66e842 7623 begin
7624 -- Range case
d97beb2f 7625
eb66e842 7626 if Nkind (N) = N_Range then
cda40848 7627 if not Is_OK_Static_Expression (Low_Bound (N))
eb66e842 7628 or else
cda40848 7629 not Is_OK_Static_Expression (High_Bound (N))
eb66e842 7630 then
7631 raise Non_Static;
7632 else
7633 SLo := Expr_Value (Low_Bound (N));
7634 SHi := Expr_Value (High_Bound (N));
7635 return RList'(1 => REnt'(SLo, SHi));
7636 end if;
84c8f0b8 7637
eb66e842 7638 -- Static expression case
84c8f0b8 7639
cda40848 7640 elsif Is_OK_Static_Expression (N) then
eb66e842 7641 Val := Expr_Value (N);
7642 return RList'(1 => REnt'(Val, Val));
d97beb2f 7643
eb66e842 7644 -- Identifier (other than static expression) case
d97beb2f 7645
eb66e842 7646 else pragma Assert (Nkind (N) = N_Identifier);
d97beb2f 7647
eb66e842 7648 -- Type case
d97beb2f 7649
eb66e842 7650 if Is_Type (Entity (N)) then
d97beb2f 7651
eb66e842 7652 -- If type has predicates, process them
d97beb2f 7653
eb66e842 7654 if Has_Predicates (Entity (N)) then
7655 return Stat_Pred (Entity (N));
d97beb2f 7656
eb66e842 7657 -- For static subtype without predicates, get range
9dc88aea 7658
cda40848 7659 elsif Is_OK_Static_Subtype (Entity (N)) then
eb66e842 7660 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7661 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7662 return RList'(1 => REnt'(SLo, SHi));
9f269bd8 7663
eb66e842 7664 -- Any other type makes us non-static
9f269bd8 7665
eb66e842 7666 else
7667 raise Non_Static;
7668 end if;
84c8f0b8 7669
eb66e842 7670 -- Any other kind of identifier in predicate (e.g. a non-static
7671 -- expression value) means this is not a static predicate.
84c8f0b8 7672
eb66e842 7673 else
7674 raise Non_Static;
7675 end if;
7676 end if;
7677 end Membership_Entry;
84c8f0b8 7678
eb66e842 7679 ---------------
7680 -- Stat_Pred --
7681 ---------------
84c8f0b8 7682
eb66e842 7683 function Stat_Pred (Typ : Entity_Id) return RList is
7684 begin
7685 -- Not static if type does not have static predicates
84c8f0b8 7686
5c6a5792 7687 if not Has_Static_Predicate (Typ) then
eb66e842 7688 raise Non_Static;
7689 end if;
84c8f0b8 7690
eb66e842 7691 -- Otherwise we convert the predicate list to a range list
84c8f0b8 7692
eb66e842 7693 declare
5c6a5792 7694 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7695 Result : RList (1 .. List_Length (Spred));
eb66e842 7696 P : Node_Id;
84c8f0b8 7697
eb66e842 7698 begin
5c6a5792 7699 P := First (Static_Discrete_Predicate (Typ));
eb66e842 7700 for J in Result'Range loop
7701 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7702 Next (P);
7703 end loop;
84c8f0b8 7704
eb66e842 7705 return Result;
7706 end;
7707 end Stat_Pred;
84c8f0b8 7708
eb66e842 7709 -- Start of processing for Build_Discrete_Static_Predicate
84c8f0b8 7710
eb66e842 7711 begin
afc229da 7712 -- Establish bounds for the predicate
7713
7714 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7715 TLo := Expr_Value (Type_Low_Bound (Typ));
7716 else
7717 TLo := BLo;
7718 end if;
7719
7720 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7721 THi := Expr_Value (Type_High_Bound (Typ));
7722 else
7723 THi := BHi;
7724 end if;
7725
eb66e842 7726 -- Analyze the expression to see if it is a static predicate
84c8f0b8 7727
eb66e842 7728 declare
7729 Ranges : constant RList := Get_RList (Expr);
7730 -- Range list from expression if it is static
84c8f0b8 7731
eb66e842 7732 Plist : List_Id;
84c8f0b8 7733
eb66e842 7734 begin
7735 -- Convert range list into a form for the static predicate. In the
7736 -- Ranges array, we just have raw ranges, these must be converted
7737 -- to properly typed and analyzed static expressions or range nodes.
84c8f0b8 7738
eb66e842 7739 -- Note: here we limit ranges to the ranges of the subtype, so that
7740 -- a predicate is always false for values outside the subtype. That
7741 -- seems fine, such values are invalid anyway, and considering them
7742 -- to fail the predicate seems allowed and friendly, and furthermore
7743 -- simplifies processing for case statements and loops.
84c8f0b8 7744
eb66e842 7745 Plist := New_List;
7746
7747 for J in Ranges'Range loop
84c8f0b8 7748 declare
eb66e842 7749 Lo : Uint := Ranges (J).Lo;
7750 Hi : Uint := Ranges (J).Hi;
84c8f0b8 7751
eb66e842 7752 begin
7753 -- Ignore completely out of range entry
84c8f0b8 7754
eb66e842 7755 if Hi < TLo or else Lo > THi then
7756 null;
84c8f0b8 7757
eb66e842 7758 -- Otherwise process entry
84c8f0b8 7759
eb66e842 7760 else
7761 -- Adjust out of range value to subtype range
490beba6 7762
eb66e842 7763 if Lo < TLo then
7764 Lo := TLo;
7765 end if;
490beba6 7766
eb66e842 7767 if Hi > THi then
7768 Hi := THi;
7769 end if;
84c8f0b8 7770
eb66e842 7771 -- Convert range into required form
84c8f0b8 7772
eb66e842 7773 Append_To (Plist, Build_Range (Lo, Hi));
84c8f0b8 7774 end if;
eb66e842 7775 end;
7776 end loop;
84c8f0b8 7777
eb66e842 7778 -- Processing was successful and all entries were static, so now we
7779 -- can store the result as the predicate list.
84c8f0b8 7780
5c6a5792 7781 Set_Static_Discrete_Predicate (Typ, Plist);
84c8f0b8 7782
eb66e842 7783 -- The processing for static predicates put the expression into
7784 -- canonical form as a series of ranges. It also eliminated
7785 -- duplicates and collapsed and combined ranges. We might as well
7786 -- replace the alternatives list of the right operand of the
7787 -- membership test with the static predicate list, which will
7788 -- usually be more efficient.
84c8f0b8 7789
eb66e842 7790 declare
7791 New_Alts : constant List_Id := New_List;
7792 Old_Node : Node_Id;
7793 New_Node : Node_Id;
84c8f0b8 7794
eb66e842 7795 begin
7796 Old_Node := First (Plist);
7797 while Present (Old_Node) loop
7798 New_Node := New_Copy (Old_Node);
84c8f0b8 7799
eb66e842 7800 if Nkind (New_Node) = N_Range then
7801 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7802 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7803 end if;
84c8f0b8 7804
eb66e842 7805 Append_To (New_Alts, New_Node);
7806 Next (Old_Node);
7807 end loop;
84c8f0b8 7808
eb66e842 7809 -- If empty list, replace by False
84c8f0b8 7810
eb66e842 7811 if Is_Empty_List (New_Alts) then
7812 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
84c8f0b8 7813
eb66e842 7814 -- Else replace by set membership test
84c8f0b8 7815
eb66e842 7816 else
7817 Rewrite (Expr,
7818 Make_In (Loc,
7819 Left_Opnd => Make_Identifier (Loc, Nam),
7820 Right_Opnd => Empty,
7821 Alternatives => New_Alts));
490beba6 7822
eb66e842 7823 -- Resolve new expression in function context
490beba6 7824
eb66e842 7825 Install_Formals (Predicate_Function (Typ));
7826 Push_Scope (Predicate_Function (Typ));
7827 Analyze_And_Resolve (Expr, Standard_Boolean);
7828 Pop_Scope;
7829 end if;
7830 end;
7831 end;
9ab32fe9 7832
eb66e842 7833 -- If non-static, return doing nothing
9ab32fe9 7834
eb66e842 7835 exception
7836 when Non_Static =>
7837 return;
7838 end Build_Discrete_Static_Predicate;
64cc9e5d 7839
eb66e842 7840 -------------------------------------------
7841 -- Build_Invariant_Procedure_Declaration --
7842 -------------------------------------------
9ab32fe9 7843
eb66e842 7844 function Build_Invariant_Procedure_Declaration
7845 (Typ : Entity_Id) return Node_Id
7846 is
30f8d103 7847 Loc : constant Source_Ptr := Sloc (Typ);
f9e26ff7 7848 Decl : Node_Id;
7849 Obj_Id : Entity_Id;
7850 SId : Entity_Id;
9ab32fe9 7851
30f8d103 7852 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
7853
eb66e842 7854 begin
8d8194a6 7855 -- Check for duplicate definitions
eb66e842 7856
7857 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7858 return Empty;
d97beb2f 7859 end if;
d97beb2f 7860
30f8d103 7861 -- The related type may be subject to pragma Ghost. Set the mode now to
39629e6a 7862 -- ensure that the invariant procedure is properly marked as Ghost.
f9e26ff7 7863
7864 Set_Ghost_Mode_From_Entity (Typ);
7865
eb66e842 7866 SId :=
7867 Make_Defining_Identifier (Loc,
7868 Chars => New_External_Name (Chars (Typ), "Invariant"));
7869 Set_Has_Invariants (Typ);
7870 Set_Ekind (SId, E_Procedure);
856a9917 7871 Set_Etype (SId, Standard_Void_Type);
eb66e842 7872 Set_Is_Invariant_Procedure (SId);
7873 Set_Invariant_Procedure (Typ, SId);
d97beb2f 7874
f9e26ff7 7875 -- Mark the invariant procedure explicitly as Ghost because it does not
7876 -- come from source.
7877
7878 if Ghost_Mode > None then
7879 Set_Is_Ghost_Entity (SId);
7880 end if;
7881
7882 Obj_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7883 Set_Etype (Obj_Id, Typ);
7884
7885 Decl :=
7886 Make_Subprogram_Declaration (Loc,
7887 Make_Procedure_Specification (Loc,
7888 Defining_Unit_Name => SId,
7889 Parameter_Specifications => New_List (
7890 Make_Parameter_Specification (Loc,
7891 Defining_Identifier => Obj_Id,
7892 Parameter_Type => New_Occurrence_Of (Typ, Loc)))));
7893
30f8d103 7894 Ghost_Mode := Save_Ghost_Mode;
f9e26ff7 7895
7896 return Decl;
eb66e842 7897 end Build_Invariant_Procedure_Declaration;
7898
7899 -------------------------------
7900 -- Build_Invariant_Procedure --
7901 -------------------------------
7902
7903 -- The procedure that is constructed here has the form
7904
7905 -- procedure typInvariant (Ixxx : typ) is
7906 -- begin
7907 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7908 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7909 -- ...
7910 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7911 -- ...
7912 -- end typInvariant;
7913
7914 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
39629e6a 7915 procedure Add_Invariants
7916 (T : Entity_Id;
7917 Obj_Id : Entity_Id;
7918 Stmts : in out List_Id;
7919 Inherit : Boolean);
eb66e842 7920 -- Appends statements to Stmts for any invariants in the rep item chain
7921 -- of the given type. If Inherit is False, then we only process entries
7922 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7923 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7924 -- "inherited" to the exception message and generating an informational
7925 -- message about the inheritance of an invariant.
d97beb2f 7926
eb66e842 7927 --------------------
7928 -- Add_Invariants --
7929 --------------------
d97beb2f 7930
39629e6a 7931 procedure Add_Invariants
7932 (T : Entity_Id;
7933 Obj_Id : Entity_Id;
7934 Stmts : in out List_Id;
7935 Inherit : Boolean)
7936 is
f9e26ff7 7937 procedure Add_Invariant (Prag : Node_Id);
7938 -- Create a runtime check to verify the exression of invariant pragma
7939 -- Prag. All generated code is added to list Stmts.
d97beb2f 7940
f9e26ff7 7941 -------------------
7942 -- Add_Invariant --
7943 -------------------
d97beb2f 7944
f9e26ff7 7945 procedure Add_Invariant (Prag : Node_Id) is
7946 procedure Replace_Type_Reference (N : Node_Id);
7947 -- Replace a single occurrence N of the subtype name with a
7948 -- reference to the formal of the predicate function. N can be an
7949 -- identifier referencing the subtype, or a selected component,
7950 -- representing an appropriately qualified occurrence of the
7951 -- subtype name.
7952
7953 procedure Replace_Type_References is
7954 new Replace_Type_References_Generic (Replace_Type_Reference);
7955 -- Traverse an expression replacing all occurrences of the subtype
7956 -- name with appropriate references to the formal of the predicate
7957 -- function. Note that we must ensure that the type and entity
7958 -- information is properly set in the replacement node, since we
7959 -- will do a Preanalyze call of this expression without proper
7960 -- visibility of the procedure argument.
7961
7962 ----------------------------
7963 -- Replace_Type_Reference --
7964 ----------------------------
7965
7966 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7967 -- regarding handling of Sloc and Comes_From_Source.
7968
7969 procedure Replace_Type_Reference (N : Node_Id) is
7970 Nloc : constant Source_Ptr := Sloc (N);
d97beb2f 7971
f9e26ff7 7972 begin
7973 -- Add semantic information to node to be rewritten, for ASIS
7974 -- navigation needs.
d97beb2f 7975
f9e26ff7 7976 if Nkind (N) = N_Identifier then
7977 Set_Entity (N, T);
7978 Set_Etype (N, T);
d7c2851f 7979
f9e26ff7 7980 elsif Nkind (N) = N_Selected_Component then
7981 Analyze (Prefix (N));
7982 Set_Entity (Selector_Name (N), T);
7983 Set_Etype (Selector_Name (N), T);
7984 end if;
d7c2851f 7985
f9e26ff7 7986 -- Invariant'Class, replace with T'Class (obj)
d97beb2f 7987
f9e26ff7 7988 if Class_Present (Prag) then
69004fe6 7989
f9e26ff7 7990 -- In ASIS mode, an inherited item is already analyzed,
7991 -- and the replacement has been done, so do not repeat
7992 -- the transformation to prevent a malformed tree.
d9f6a4ee 7993
f9e26ff7 7994 if ASIS_Mode
7995 and then Nkind (Parent (N)) = N_Attribute_Reference
7996 and then Attribute_Name (Parent (N)) = Name_Class
7997 then
7998 null;
d9f6a4ee 7999
f9e26ff7 8000 else
8001 Rewrite (N,
8002 Make_Type_Conversion (Nloc,
8003 Subtype_Mark =>
8004 Make_Attribute_Reference (Nloc,
8005 Prefix => New_Occurrence_Of (T, Nloc),
8006 Attribute_Name => Name_Class),
39629e6a 8007 Expression =>
8008 Make_Identifier (Nloc, Chars (Obj_Id))));
f9e26ff7 8009
39629e6a 8010 Set_Entity (Expression (N), Obj_Id);
f9e26ff7 8011 Set_Etype (Expression (N), Typ);
8012 end if;
d9f6a4ee 8013
f9e26ff7 8014 -- Invariant, replace with obj
d9f6a4ee 8015
f9e26ff7 8016 else
39629e6a 8017 Rewrite (N, Make_Identifier (Nloc, Chars (Obj_Id)));
8018 Set_Entity (N, Obj_Id);
f9e26ff7 8019 Set_Etype (N, Typ);
8020 end if;
d9f6a4ee 8021
f9e26ff7 8022 Set_Comes_From_Source (N, True);
8023 end Replace_Type_Reference;
d9f6a4ee 8024
f9e26ff7 8025 -- Local variables
d9f6a4ee 8026
f9e26ff7 8027 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8028 Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
8029 Ploc : constant Source_Ptr := Sloc (Prag);
8030 Arg1 : Node_Id;
8031 Arg2 : Node_Id;
8032 Arg3 : Node_Id;
8033 Assoc : List_Id;
8034 Expr : Node_Id;
8035 Str : String_Id;
d9f6a4ee 8036
f9e26ff7 8037 -- Start of processing for Add_Invariant
d9f6a4ee 8038
f9e26ff7 8039 begin
8040 -- Extract the arguments of the invariant pragma
d9f6a4ee 8041
f9e26ff7 8042 Arg1 := First (Pragma_Argument_Associations (Prag));
8043 Arg2 := Next (Arg1);
8044 Arg3 := Next (Arg2);
d9f6a4ee 8045
f9e26ff7 8046 Arg1 := Get_Pragma_Arg (Arg1);
8047 Arg2 := Get_Pragma_Arg (Arg2);
d9f6a4ee 8048
f9e26ff7 8049 -- The caller requests processing of all Invariant'Class pragmas,
8050 -- but the current pragma does not fall in this category. Return
8051 -- as there is nothing left to do.
d9f6a4ee 8052
f9e26ff7 8053 if Inherit then
8054 if not Class_Present (Prag) then
8055 return;
8056 end if;
d9f6a4ee 8057
f9e26ff7 8058 -- Otherwise the pragma must apply to the current type
d9f6a4ee 8059
f9e26ff7 8060 elsif Entity (Arg1) /= T then
8061 return;
8062 end if;
d9f6a4ee 8063
f9e26ff7 8064 Expr := New_Copy_Tree (Arg2);
d9f6a4ee 8065
f9e26ff7 8066 -- Replace all occurrences of the type's name with references to
8067 -- the formal parameter of the invariant procedure.
d9f6a4ee 8068
f9e26ff7 8069 Replace_Type_References (Expr, T);
d9f6a4ee 8070
f9e26ff7 8071 -- If the invariant pragma comes from an aspect, replace the saved
8072 -- expression because we need the subtype references replaced for
8073 -- the calls to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
8074 -- routines.
d9f6a4ee 8075
f9e26ff7 8076 if Present (Asp) then
8077 Set_Entity (Identifier (Asp), New_Copy_Tree (Expr));
8078 end if;
d9f6a4ee 8079
f9e26ff7 8080 -- Preanalyze the invariant expression to capture the visibility
8081 -- of the proper package part. In general the expression is not
8082 -- fully analyzed until the body of the invariant procedure is
8083 -- analyzed at the end of the private part, but that yields the
8084 -- wrong visibility.
d9f6a4ee 8085
8d8194a6 8086 -- Historical note: we used to set N as the parent, but a package
f9e26ff7 8087 -- specification as the parent of an expression is bizarre.
d9f6a4ee 8088
f9e26ff7 8089 Set_Parent (Expr, Parent (Arg2));
8090 Preanalyze_Assert_Expression (Expr, Any_Boolean);
d9f6a4ee 8091
f9e26ff7 8092 -- A class-wide invariant may be inherited in a separate unit,
8093 -- where the corresponding expression cannot be resolved by
8094 -- visibility, because it refers to a local function. Propagate
8095 -- semantic information to the original representation item, to
8096 -- be used when an invariant procedure for a derived type is
8097 -- constructed.
d9f6a4ee 8098
f9e26ff7 8099 -- ??? Unclear how to handle class-wide invariants that are not
8100 -- function calls.
f02a9a9a 8101
f9e26ff7 8102 if not Inherit
8103 and then Class_Present (Prag)
8104 and then Nkind (Expr) = N_Function_Call
8105 and then Nkind (Arg2) = N_Indexed_Component
8106 then
8107 Rewrite (Arg2,
8108 Make_Function_Call (Ploc,
8109 Name =>
8110 New_Occurrence_Of (Entity (Name (Expr)), Ploc),
8111 Parameter_Associations =>
8112 New_Copy_List (Expressions (Arg2))));
8113 end if;
f02a9a9a 8114
f9e26ff7 8115 -- In ASIS mode, even if assertions are not enabled, we must
8116 -- analyze the original expression in the aspect specification
8117 -- because it is part of the original tree.
f02a9a9a 8118
f9e26ff7 8119 if ASIS_Mode and then Present (Asp) then
8120 declare
8121 Orig_Expr : constant Node_Id := Expression (Asp);
8122 begin
8123 Replace_Type_References (Orig_Expr, T);
8124 Preanalyze_Assert_Expression (Orig_Expr, Any_Boolean);
8125 end;
8126 end if;
d9f6a4ee 8127
f9e26ff7 8128 -- An ignored invariant must not generate a runtime check. Add a
8129 -- null statement to ensure that the invariant procedure does get
8130 -- a completing body.
d9f6a4ee 8131
f9e26ff7 8132 if No (Stmts) then
8133 Stmts := Empty_List;
8134 end if;
d9f6a4ee 8135
f9e26ff7 8136 if Is_Ignored (Prag) then
8137 Append_To (Stmts, Make_Null_Statement (Ploc));
d9f6a4ee 8138
f9e26ff7 8139 -- Otherwise the invariant is checked. Build a Check pragma to
8140 -- verify the expression at runtime.
d9f6a4ee 8141
f9e26ff7 8142 else
8143 Assoc := New_List (
8144 Make_Pragma_Argument_Association (Ploc,
8145 Expression => Make_Identifier (Ploc, Nam)),
8146 Make_Pragma_Argument_Association (Ploc,
8147 Expression => Expr));
d9f6a4ee 8148
f9e26ff7 8149 -- Handle the String argument (if any)
d9f6a4ee 8150
eb66e842 8151 if Present (Arg3) then
8152 Str := Strval (Get_Pragma_Arg (Arg3));
d9f6a4ee 8153
f9e26ff7 8154 -- When inheriting an invariant, modify the message from
8155 -- "failed invariant" to "failed inherited invariant".
d9f6a4ee 8156
eb66e842 8157 if Inherit then
8158 String_To_Name_Buffer (Str);
d9f6a4ee 8159
eb66e842 8160 if Name_Buffer (1 .. 16) = "failed invariant" then
8161 Insert_Str_In_Name_Buffer ("inherited ", 8);
8162 Str := String_From_Name_Buffer;
8163 end if;
8164 end if;
d9f6a4ee 8165
eb66e842 8166 Append_To (Assoc,
f9e26ff7 8167 Make_Pragma_Argument_Association (Ploc,
8168 Expression => Make_String_Literal (Ploc, Str)));
eb66e842 8169 end if;
d9f6a4ee 8170
f9e26ff7 8171 -- Generate:
8172 -- pragma Check (Nam, Expr, Str);
d97beb2f 8173
eb66e842 8174 Append_To (Stmts,
f9e26ff7 8175 Make_Pragma (Ploc,
eb66e842 8176 Pragma_Identifier =>
f9e26ff7 8177 Make_Identifier (Ploc, Name_Check),
eb66e842 8178 Pragma_Argument_Associations => Assoc));
f9e26ff7 8179 end if;
d97beb2f 8180
f9e26ff7 8181 -- Output an info message when inheriting an invariant and the
8182 -- listing option is enabled.
d97beb2f 8183
f9e26ff7 8184 if Inherit and Opt.List_Inherited_Aspects then
8185 Error_Msg_Sloc := Sloc (Prag);
8186 Error_Msg_N
8187 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ);
8188 end if;
8189 end Add_Invariant;
8190
8191 -- Local variables
8192
8193 Ritem : Node_Id;
8194
8195 -- Start of processing for Add_Invariants
8196
8197 begin
8198 Ritem := First_Rep_Item (T);
8199 while Present (Ritem) loop
8200 if Nkind (Ritem) = N_Pragma
8201 and then Pragma_Name (Ritem) = Name_Invariant
8202 then
8203 Add_Invariant (Ritem);
d9f6a4ee 8204 end if;
d97beb2f 8205
eb66e842 8206 Next_Rep_Item (Ritem);
8207 end loop;
8208 end Add_Invariants;
d97beb2f 8209
39629e6a 8210 -- Local variables
8211
8212 Loc : constant Source_Ptr := Sloc (Typ);
8213 Priv_Decls : constant List_Id := Private_Declarations (N);
8214 Vis_Decls : constant List_Id := Visible_Declarations (N);
8215
8216 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8217
8218 PBody : Node_Id;
8219 PDecl : Node_Id;
8220 SId : Entity_Id;
8221 Spec : Node_Id;
8222 Stmts : List_Id;
8223
8224 Obj_Id : Node_Id;
8225 -- The entity of the formal for the procedure
8226
eb66e842 8227 -- Start of processing for Build_Invariant_Procedure
d97beb2f 8228
eb66e842 8229 begin
39629e6a 8230 -- The related type may be subject to pragma Ghost. Set the mode now to
8231 -- ensure that the invariant procedure is properly marked as Ghost.
8232
8233 Set_Ghost_Mode_From_Entity (Typ);
8234
eb66e842 8235 Stmts := No_List;
8236 PDecl := Empty;
8237 PBody := Empty;
8238 SId := Empty;
d97beb2f 8239
eb66e842 8240 -- If the aspect specification exists for some view of the type, the
8241 -- declaration for the procedure has been created.
d97beb2f 8242
eb66e842 8243 if Has_Invariants (Typ) then
8244 SId := Invariant_Procedure (Typ);
8245 end if;
9dc88aea 8246
0c2bde47 8247 -- If the body is already present, nothing to do. This will occur when
8248 -- the type is already frozen, which is the case when the invariant
8249 -- appears in a private part, and the freezing takes place before the
8250 -- final pass over full declarations.
aba11c12 8251
8252 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
0c2bde47 8253
eb66e842 8254 if Present (SId) then
8255 PDecl := Unit_Declaration_Node (SId);
0c2bde47 8256
8257 if Present (PDecl)
8258 and then Nkind (PDecl) = N_Subprogram_Declaration
8259 and then Present (Corresponding_Body (PDecl))
8260 then
39629e6a 8261 Ghost_Mode := Save_Ghost_Mode;
0c2bde47 8262 return;
8263 end if;
8264
eb66e842 8265 else
8266 PDecl := Build_Invariant_Procedure_Declaration (Typ);
8267 end if;
9dc88aea 8268
eb66e842 8269 -- Recover formal of procedure, for use in the calls to invariant
8270 -- functions (including inherited ones).
d9f6a4ee 8271
39629e6a 8272 Obj_Id :=
eb66e842 8273 Defining_Identifier
8274 (First (Parameter_Specifications (Specification (PDecl))));
d9f6a4ee 8275
eb66e842 8276 -- Add invariants for the current type
9dc88aea 8277
39629e6a 8278 Add_Invariants
8279 (T => Typ,
8280 Obj_Id => Obj_Id,
8281 Stmts => Stmts,
8282 Inherit => False);
9dc88aea 8283
eb66e842 8284 -- Add invariants for parent types
9dc88aea 8285
eb66e842 8286 declare
8287 Current_Typ : Entity_Id;
8288 Parent_Typ : Entity_Id;
9dc88aea 8289
eb66e842 8290 begin
8291 Current_Typ := Typ;
d97beb2f 8292 loop
eb66e842 8293 Parent_Typ := Etype (Current_Typ);
9dc88aea 8294
eb66e842 8295 if Is_Private_Type (Parent_Typ)
8296 and then Present (Full_View (Base_Type (Parent_Typ)))
d9f6a4ee 8297 then
eb66e842 8298 Parent_Typ := Full_View (Base_Type (Parent_Typ));
8299 end if;
9dc88aea 8300
eb66e842 8301 exit when Parent_Typ = Current_Typ;
9dc88aea 8302
eb66e842 8303 Current_Typ := Parent_Typ;
39629e6a 8304 Add_Invariants
8305 (T => Current_Typ,
8306 Obj_Id => Obj_Id,
8307 Stmts => Stmts,
8308 Inherit => True);
eb66e842 8309 end loop;
8310 end;
ad274a73 8311
8312 -- Add invariants of progenitors
8313
8314 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
8315 declare
8316 Ifaces_List : Elist_Id;
8317 AI : Elmt_Id;
8318 Iface : Entity_Id;
8319
8320 begin
8321 Collect_Interfaces (Typ, Ifaces_List);
8322
8323 AI := First_Elmt (Ifaces_List);
8324 while Present (AI) loop
8325 Iface := Node (AI);
8326
8327 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
39629e6a 8328 Add_Invariants
8329 (T => Iface,
8330 Obj_Id => Obj_Id,
8331 Stmts => Stmts,
8332 Inherit => True);
ad274a73 8333 end if;
8334
8335 Next_Elmt (AI);
8336 end loop;
8337 end;
8338 end if;
9dc88aea 8339
eb66e842 8340 -- Build the procedure if we generated at least one Check pragma
9dc88aea 8341
eb66e842 8342 if Stmts /= No_List then
39629e6a 8343 Spec := Copy_Separate_Tree (Specification (PDecl));
9dc88aea 8344
eb66e842 8345 PBody :=
8346 Make_Subprogram_Body (Loc,
8347 Specification => Spec,
8348 Declarations => Empty_List,
8349 Handled_Statement_Sequence =>
8350 Make_Handled_Sequence_Of_Statements (Loc,
8351 Statements => Stmts));
9dc88aea 8352
eb66e842 8353 -- Insert procedure declaration and spec at the appropriate points.
8354 -- If declaration is already analyzed, it was processed by the
8355 -- generated pragma.
9dc88aea 8356
f9e26ff7 8357 if Present (Priv_Decls) then
d97beb2f 8358
eb66e842 8359 -- The spec goes at the end of visible declarations, but they have
8360 -- already been analyzed, so we need to explicitly do the analyze.
d9f6a4ee 8361
eb66e842 8362 if not Analyzed (PDecl) then
f9e26ff7 8363 Append_To (Vis_Decls, PDecl);
eb66e842 8364 Analyze (PDecl);
8365 end if;
d9f6a4ee 8366
eb66e842 8367 -- The body goes at the end of the private declarations, which we
8368 -- have not analyzed yet, so we do not need to perform an explicit
8369 -- analyze call. We skip this if there are no private declarations
8370 -- (this is an error that will be caught elsewhere);
d9f6a4ee 8371
f9e26ff7 8372 Append_To (Priv_Decls, PBody);
d9f6a4ee 8373
eb66e842 8374 -- If the invariant appears on the full view of a type, the
8375 -- analysis of the private part is complete, and we must
8376 -- analyze the new body explicitly.
d9f6a4ee 8377
eb66e842 8378 if In_Private_Part (Current_Scope) then
8379 Analyze (PBody);
8380 end if;
d97beb2f 8381
eb66e842 8382 -- If there are no private declarations this may be an error that
8383 -- will be diagnosed elsewhere. However, if this is a non-private
8384 -- type that inherits invariants, it needs no completion and there
8385 -- may be no private part. In this case insert invariant procedure
8386 -- at end of current declarative list, and analyze at once, given
8387 -- that the type is about to be frozen.
d97beb2f 8388
eb66e842 8389 elsif not Is_Private_Type (Typ) then
f9e26ff7 8390 Append_To (Vis_Decls, PDecl);
8391 Append_To (Vis_Decls, PBody);
eb66e842 8392 Analyze (PDecl);
8393 Analyze (PBody);
8394 end if;
8395 end if;
39629e6a 8396
8397 Ghost_Mode := Save_Ghost_Mode;
eb66e842 8398 end Build_Invariant_Procedure;
d9f6a4ee 8399
eb66e842 8400 -------------------------------
8401 -- Build_Predicate_Functions --
8402 -------------------------------
d9f6a4ee 8403
eb66e842 8404 -- The procedures that are constructed here have the form:
d9f6a4ee 8405
eb66e842 8406 -- function typPredicate (Ixxx : typ) return Boolean is
8407 -- begin
8408 -- return
8409 -- exp1 and then exp2 and then ...
8410 -- and then typ1Predicate (typ1 (Ixxx))
8411 -- and then typ2Predicate (typ2 (Ixxx))
8412 -- and then ...;
8413 -- end typPredicate;
d9f6a4ee 8414
eb66e842 8415 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8416 -- this is the point at which these expressions get analyzed, providing the
8417 -- required delay, and typ1, typ2, are entities from which predicates are
8418 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8419 -- use this function even if checks are off, e.g. for membership tests.
d9f6a4ee 8420
eb66e842 8421 -- If the expression has at least one Raise_Expression, then we also build
8422 -- the typPredicateM version of the function, in which any occurrence of a
8423 -- Raise_Expression is converted to "return False".
d9f6a4ee 8424
eb66e842 8425 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8426 Loc : constant Source_Ptr := Sloc (Typ);
d9f6a4ee 8427
eb66e842 8428 Expr : Node_Id;
8429 -- This is the expression for the result of the function. It is
8430 -- is build by connecting the component predicates with AND THEN.
d9f6a4ee 8431
eb66e842 8432 Expr_M : Node_Id;
8433 -- This is the corresponding return expression for the Predicate_M
8434 -- function. It differs in that raise expressions are marked for
8435 -- special expansion (see Process_REs).
d9f6a4ee 8436
eb66e842 8437 Object_Name : constant Name_Id := New_Internal_Name ('I');
8438 -- Name for argument of Predicate procedure. Note that we use the same
499918a7 8439 -- name for both predicate functions. That way the reference within the
eb66e842 8440 -- predicate expression is the same in both functions.
d9f6a4ee 8441
eb66e842 8442 Object_Entity : constant Entity_Id :=
8443 Make_Defining_Identifier (Loc, Chars => Object_Name);
8444 -- Entity for argument of Predicate procedure
d9f6a4ee 8445
eb66e842 8446 Object_Entity_M : constant Entity_Id :=
8447 Make_Defining_Identifier (Loc, Chars => Object_Name);
8448 -- Entity for argument of Predicate_M procedure
d9f6a4ee 8449
eb66e842 8450 Raise_Expression_Present : Boolean := False;
8451 -- Set True if Expr has at least one Raise_Expression
d9f6a4ee 8452
eb66e842 8453 procedure Add_Call (T : Entity_Id);
8454 -- Includes a call to the predicate function for type T in Expr if T
8455 -- has predicates and Predicate_Function (T) is non-empty.
d9f6a4ee 8456
eb66e842 8457 procedure Add_Predicates;
8458 -- Appends expressions for any Predicate pragmas in the rep item chain
8459 -- Typ to Expr. Note that we look only at items for this exact entity.
8460 -- Inheritance of predicates for the parent type is done by calling the
8461 -- Predicate_Function of the parent type, using Add_Call above.
d9f6a4ee 8462
eb66e842 8463 function Process_RE (N : Node_Id) return Traverse_Result;
8464 -- Used in Process REs, tests if node N is a raise expression, and if
8465 -- so, marks it to be converted to return False.
d9f6a4ee 8466
eb66e842 8467 procedure Process_REs is new Traverse_Proc (Process_RE);
8468 -- Marks any raise expressions in Expr_M to return False
d9f6a4ee 8469
f9e26ff7 8470 function Test_RE (N : Node_Id) return Traverse_Result;
8471 -- Used in Test_REs, tests one node for being a raise expression, and if
8472 -- so sets Raise_Expression_Present True.
8473
8474 procedure Test_REs is new Traverse_Proc (Test_RE);
8475 -- Tests to see if Expr contains any raise expressions
8476
eb66e842 8477 --------------
8478 -- Add_Call --
8479 --------------
d9f6a4ee 8480
eb66e842 8481 procedure Add_Call (T : Entity_Id) is
8482 Exp : Node_Id;
d9f6a4ee 8483
eb66e842 8484 begin
8485 if Present (T) and then Present (Predicate_Function (T)) then
8486 Set_Has_Predicates (Typ);
d9f6a4ee 8487
eb66e842 8488 -- Build the call to the predicate function of T
d9f6a4ee 8489
eb66e842 8490 Exp :=
8491 Make_Predicate_Call
8492 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
d9f6a4ee 8493
eb66e842 8494 -- Add call to evolving expression, using AND THEN if needed
d9f6a4ee 8495
eb66e842 8496 if No (Expr) then
8497 Expr := Exp;
3b23aaa0 8498
eb66e842 8499 else
8500 Expr :=
3b23aaa0 8501 Make_And_Then (Sloc (Expr),
eb66e842 8502 Left_Opnd => Relocate_Node (Expr),
8503 Right_Opnd => Exp);
8504 end if;
d9f6a4ee 8505
eb66e842 8506 -- Output info message on inheritance if required. Note we do not
8507 -- give this information for generic actual types, since it is
8508 -- unwelcome noise in that case in instantiations. We also
8509 -- generally suppress the message in instantiations, and also
8510 -- if it involves internal names.
d9f6a4ee 8511
eb66e842 8512 if Opt.List_Inherited_Aspects
8513 and then not Is_Generic_Actual_Type (Typ)
8514 and then Instantiation_Depth (Sloc (Typ)) = 0
8515 and then not Is_Internal_Name (Chars (T))
8516 and then not Is_Internal_Name (Chars (Typ))
8517 then
8518 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8519 Error_Msg_Node_2 := T;
8520 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8521 end if;
8522 end if;
8523 end Add_Call;
d9f6a4ee 8524
eb66e842 8525 --------------------
8526 -- Add_Predicates --
8527 --------------------
d9f6a4ee 8528
eb66e842 8529 procedure Add_Predicates is
f9e26ff7 8530 procedure Add_Predicate (Prag : Node_Id);
8531 -- Concatenate the expression of predicate pragma Prag to Expr by
8532 -- using a short circuit "and then" operator.
d9f6a4ee 8533
f9e26ff7 8534 -------------------
8535 -- Add_Predicate --
8536 -------------------
d9f6a4ee 8537
f9e26ff7 8538 procedure Add_Predicate (Prag : Node_Id) is
8539 procedure Replace_Type_Reference (N : Node_Id);
8540 -- Replace a single occurrence N of the subtype name with a
8541 -- reference to the formal of the predicate function. N can be an
8542 -- identifier referencing the subtype, or a selected component,
8543 -- representing an appropriately qualified occurrence of the
8544 -- subtype name.
8545
8546 procedure Replace_Type_References is
8547 new Replace_Type_References_Generic (Replace_Type_Reference);
8548 -- Traverse an expression changing every occurrence of an
8549 -- identifier whose name matches the name of the subtype with a
8550 -- reference to the formal parameter of the predicate function.
8551
8552 ----------------------------
8553 -- Replace_Type_Reference --
8554 ----------------------------
8555
8556 procedure Replace_Type_Reference (N : Node_Id) is
8557 begin
8558 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8559 -- Use the Sloc of the usage name, not the defining name
d9f6a4ee 8560
f9e26ff7 8561 Set_Etype (N, Typ);
8562 Set_Entity (N, Object_Entity);
d97beb2f 8563
f9e26ff7 8564 -- We want to treat the node as if it comes from source, so
8565 -- that ASIS will not ignore it.
d97beb2f 8566
f9e26ff7 8567 Set_Comes_From_Source (N, True);
8568 end Replace_Type_Reference;
d97beb2f 8569
f9e26ff7 8570 -- Local variables
d97beb2f 8571
f9e26ff7 8572 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8573 Arg1 : Node_Id;
8574 Arg2 : Node_Id;
d97beb2f 8575
f9e26ff7 8576 -- Start of processing for Add_Predicate
24c8d764 8577
f9e26ff7 8578 begin
8579 -- Extract the arguments of the pragma. The expression itself
8580 -- is copied for use in the predicate function, to preserve the
8581 -- original version for ASIS use.
d97beb2f 8582
f9e26ff7 8583 Arg1 := First (Pragma_Argument_Associations (Prag));
8584 Arg2 := Next (Arg1);
d97beb2f 8585
f9e26ff7 8586 Arg1 := Get_Pragma_Arg (Arg1);
8587 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
d97beb2f 8588
f9e26ff7 8589 -- When the predicate pragma applies to the current type or its
8590 -- full view, replace all occurrences of the subtype name with
8591 -- references to the formal parameter of the predicate function.
639c3741 8592
f9e26ff7 8593 if Entity (Arg1) = Typ
8594 or else Full_View (Entity (Arg1)) = Typ
8595 then
8596 Replace_Type_References (Arg2, Typ);
639c3741 8597
f9e26ff7 8598 -- If the predicate pragma comes from an aspect, replace the
8599 -- saved expression because we need the subtype references
8600 -- replaced for the calls to Preanalyze_Spec_Expression in
8601 -- Check_Aspect_At_xxx routines.
639c3741 8602
f9e26ff7 8603 if Present (Asp) then
639c3741 8604
f9e26ff7 8605 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8606 end if;
24c8d764 8607
f9e26ff7 8608 -- Concatenate to the existing predicate expressions by using
8609 -- "and then".
24c8d764 8610
f9e26ff7 8611 if Present (Expr) then
8612 Expr :=
8613 Make_And_Then (Loc,
8614 Left_Opnd => Relocate_Node (Expr),
8615 Right_Opnd => Relocate_Node (Arg2));
639c3741 8616
f9e26ff7 8617 -- Otherwise this is the first predicate expression
639c3741 8618
f9e26ff7 8619 else
8620 Expr := Relocate_Node (Arg2);
8621 end if;
8622 end if;
8623 end Add_Predicate;
737e8460 8624
f9e26ff7 8625 -- Local variables
737e8460 8626
f9e26ff7 8627 Ritem : Node_Id;
d97beb2f 8628
f9e26ff7 8629 -- Start of processing for Add_Predicates
d97beb2f 8630
f9e26ff7 8631 begin
8632 Ritem := First_Rep_Item (Typ);
8633 while Present (Ritem) loop
8634 if Nkind (Ritem) = N_Pragma
8635 and then Pragma_Name (Ritem) = Name_Predicate
8636 then
8637 Add_Predicate (Ritem);
eb66e842 8638 end if;
d97beb2f 8639
eb66e842 8640 Next_Rep_Item (Ritem);
8641 end loop;
8642 end Add_Predicates;
d97beb2f 8643
eb66e842 8644 ----------------
8645 -- Process_RE --
8646 ----------------
d97beb2f 8647
eb66e842 8648 function Process_RE (N : Node_Id) return Traverse_Result is
d9f6a4ee 8649 begin
eb66e842 8650 if Nkind (N) = N_Raise_Expression then
8651 Set_Convert_To_Return_False (N);
8652 return Skip;
d9f6a4ee 8653 else
eb66e842 8654 return OK;
d9f6a4ee 8655 end if;
eb66e842 8656 end Process_RE;
d7c2851f 8657
d9f6a4ee 8658 -------------
eb66e842 8659 -- Test_RE --
d9f6a4ee 8660 -------------
d7c2851f 8661
eb66e842 8662 function Test_RE (N : Node_Id) return Traverse_Result is
d97beb2f 8663 begin
eb66e842 8664 if Nkind (N) = N_Raise_Expression then
8665 Raise_Expression_Present := True;
8666 return Abandon;
8667 else
8668 return OK;
8669 end if;
8670 end Test_RE;
d97beb2f 8671
f9e26ff7 8672 -- Local variables
8673
30f8d103 8674 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
f9e26ff7 8675
eb66e842 8676 -- Start of processing for Build_Predicate_Functions
d97beb2f 8677
eb66e842 8678 begin
8679 -- Return if already built or if type does not have predicates
9dc88aea 8680
eb66e842 8681 if not Has_Predicates (Typ)
8682 or else Present (Predicate_Function (Typ))
8683 then
8684 return;
8685 end if;
d9f6a4ee 8686
30f8d103 8687 -- The related type may be subject to pragma Ghost. Set the mode now to
8688 -- ensure that the predicate functions are properly marked as Ghost.
f9e26ff7 8689
8690 Set_Ghost_Mode_From_Entity (Typ);
8691
eb66e842 8692 -- Prepare to construct predicate expression
d97beb2f 8693
eb66e842 8694 Expr := Empty;
d97beb2f 8695
eb66e842 8696 -- Add Predicates for the current type
d97beb2f 8697
eb66e842 8698 Add_Predicates;
d97beb2f 8699
eb66e842 8700 -- Add predicates for ancestor if present
d97beb2f 8701
eb66e842 8702 declare
8703 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
d9f6a4ee 8704 begin
eb66e842 8705 if Present (Atyp) then
8706 Add_Call (Atyp);
8707 end if;
8708 end;
9dc88aea 8709
eb66e842 8710 -- Case where predicates are present
9dc88aea 8711
eb66e842 8712 if Present (Expr) then
726fd56a 8713
eb66e842 8714 -- Test for raise expression present
726fd56a 8715
eb66e842 8716 Test_REs (Expr);
9dc88aea 8717
eb66e842 8718 -- If raise expression is present, capture a copy of Expr for use
8719 -- in building the predicateM function version later on. For this
8720 -- copy we replace references to Object_Entity by Object_Entity_M.
9dc88aea 8721
eb66e842 8722 if Raise_Expression_Present then
8723 declare
299b347e 8724 Map : constant Elist_Id := New_Elmt_List;
8725 New_V : Entity_Id := Empty;
8726
8727 -- The unanalyzed expression will be copied and appear in
8728 -- both functions. Normally expressions do not declare new
8729 -- entities, but quantified expressions do, so we need to
8730 -- create new entities for their bound variables, to prevent
8731 -- multiple definitions in gigi.
8732
8733 function Reset_Loop_Variable (N : Node_Id)
8734 return Traverse_Result;
8735
8736 procedure Collect_Loop_Variables is
8737 new Traverse_Proc (Reset_Loop_Variable);
8738
8739 ------------------------
8740 -- Reset_Loop_Variable --
8741 ------------------------
8742
8743 function Reset_Loop_Variable (N : Node_Id)
8744 return Traverse_Result
8745 is
8746 begin
8747 if Nkind (N) = N_Iterator_Specification then
8748 New_V := Make_Defining_Identifier
8749 (Sloc (N), Chars (Defining_Identifier (N)));
8750
8751 Set_Defining_Identifier (N, New_V);
8752 end if;
8753
8754 return OK;
8755 end Reset_Loop_Variable;
8756
eb66e842 8757 begin
8758 Append_Elmt (Object_Entity, Map);
8759 Append_Elmt (Object_Entity_M, Map);
8760 Expr_M := New_Copy_Tree (Expr, Map => Map);
299b347e 8761 Collect_Loop_Variables (Expr_M);
eb66e842 8762 end;
8763 end if;
d97beb2f 8764
eb66e842 8765 -- Build the main predicate function
9dc88aea 8766
eb66e842 8767 declare
8768 SId : constant Entity_Id :=
8769 Make_Defining_Identifier (Loc,
8770 Chars => New_External_Name (Chars (Typ), "Predicate"));
c96806b2 8771 -- The entity for the function spec
9dc88aea 8772
eb66e842 8773 SIdB : constant Entity_Id :=
8774 Make_Defining_Identifier (Loc,
8775 Chars => New_External_Name (Chars (Typ), "Predicate"));
8776 -- The entity for the function body
9dc88aea 8777
eb66e842 8778 Spec : Node_Id;
8779 FDecl : Node_Id;
8780 FBody : Node_Id;
9dc88aea 8781
eb66e842 8782 begin
8783 -- Build function declaration
d97beb2f 8784
eb66e842 8785 Set_Ekind (SId, E_Function);
8786 Set_Is_Internal (SId);
8787 Set_Is_Predicate_Function (SId);
8788 Set_Predicate_Function (Typ, SId);
d97beb2f 8789
eb66e842 8790 -- The predicate function is shared between views of a type
d97beb2f 8791
eb66e842 8792 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8793 Set_Predicate_Function (Full_View (Typ), SId);
d97beb2f 8794 end if;
d97beb2f 8795
f9e26ff7 8796 -- Mark the predicate function explicitly as Ghost because it does
8797 -- not come from source.
8798
8799 if Ghost_Mode > None then
8800 Set_Is_Ghost_Entity (SId);
8801 end if;
8802
eb66e842 8803 Spec :=
8804 Make_Function_Specification (Loc,
8805 Defining_Unit_Name => SId,
8806 Parameter_Specifications => New_List (
8807 Make_Parameter_Specification (Loc,
8808 Defining_Identifier => Object_Entity,
8809 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8810 Result_Definition =>
8811 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8812
eb66e842 8813 FDecl :=
8814 Make_Subprogram_Declaration (Loc,
8815 Specification => Spec);
d97beb2f 8816
eb66e842 8817 -- Build function body
d97beb2f 8818
eb66e842 8819 Spec :=
8820 Make_Function_Specification (Loc,
8821 Defining_Unit_Name => SIdB,
8822 Parameter_Specifications => New_List (
8823 Make_Parameter_Specification (Loc,
8824 Defining_Identifier =>
8825 Make_Defining_Identifier (Loc, Object_Name),
8826 Parameter_Type =>
8827 New_Occurrence_Of (Typ, Loc))),
8828 Result_Definition =>
8829 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8830
eb66e842 8831 FBody :=
8832 Make_Subprogram_Body (Loc,
8833 Specification => Spec,
8834 Declarations => Empty_List,
8835 Handled_Statement_Sequence =>
8836 Make_Handled_Sequence_Of_Statements (Loc,
8837 Statements => New_List (
8838 Make_Simple_Return_Statement (Loc,
8839 Expression => Expr))));
9dc88aea 8840
eb66e842 8841 -- Insert declaration before freeze node and body after
d97beb2f 8842
eb66e842 8843 Insert_Before_And_Analyze (N, FDecl);
8844 Insert_After_And_Analyze (N, FBody);
6958c62c 8845
8846 -- Static predicate functions are always side-effect free, and
8847 -- in most cases dynamic predicate functions are as well. Mark
8848 -- them as such whenever possible, so redundant predicate checks
7dd0b9b3 8849 -- can be optimized. If there is a variable reference within the
8850 -- expression, the function is not pure.
b2e821de 8851
6958c62c 8852 if Expander_Active then
7dd0b9b3 8853 Set_Is_Pure (SId,
8854 Side_Effect_Free (Expr, Variable_Ref => True));
6958c62c 8855 Set_Is_Inlined (SId);
8856 end if;
d9f6a4ee 8857 end;
d97beb2f 8858
eb66e842 8859 -- Test for raise expressions present and if so build M version
d97beb2f 8860
eb66e842 8861 if Raise_Expression_Present then
8862 declare
8863 SId : constant Entity_Id :=
8864 Make_Defining_Identifier (Loc,
8865 Chars => New_External_Name (Chars (Typ), "PredicateM"));
c96806b2 8866 -- The entity for the function spec
d97beb2f 8867
eb66e842 8868 SIdB : constant Entity_Id :=
8869 Make_Defining_Identifier (Loc,
8870 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8871 -- The entity for the function body
b9e61b2a 8872
eb66e842 8873 Spec : Node_Id;
8874 FDecl : Node_Id;
8875 FBody : Node_Id;
8876 BTemp : Entity_Id;
d97beb2f 8877
eb66e842 8878 begin
8879 -- Mark any raise expressions for special expansion
d97beb2f 8880
eb66e842 8881 Process_REs (Expr_M);
d97beb2f 8882
eb66e842 8883 -- Build function declaration
d97beb2f 8884
eb66e842 8885 Set_Ekind (SId, E_Function);
8886 Set_Is_Predicate_Function_M (SId);
8887 Set_Predicate_Function_M (Typ, SId);
d97beb2f 8888
eb66e842 8889 -- The predicate function is shared between views of a type
d97beb2f 8890
eb66e842 8891 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8892 Set_Predicate_Function_M (Full_View (Typ), SId);
8893 end if;
9dc88aea 8894
f9e26ff7 8895 -- Mark the predicate function explicitly as Ghost because it
8896 -- does not come from source.
8897
8898 if Ghost_Mode > None then
8899 Set_Is_Ghost_Entity (SId);
8900 end if;
8901
eb66e842 8902 Spec :=
8903 Make_Function_Specification (Loc,
8904 Defining_Unit_Name => SId,
8905 Parameter_Specifications => New_List (
8906 Make_Parameter_Specification (Loc,
8907 Defining_Identifier => Object_Entity_M,
8908 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8909 Result_Definition =>
8910 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8911
eb66e842 8912 FDecl :=
8913 Make_Subprogram_Declaration (Loc,
8914 Specification => Spec);
9dc88aea 8915
eb66e842 8916 -- Build function body
9dc88aea 8917
eb66e842 8918 Spec :=
8919 Make_Function_Specification (Loc,
8920 Defining_Unit_Name => SIdB,
8921 Parameter_Specifications => New_List (
8922 Make_Parameter_Specification (Loc,
8923 Defining_Identifier =>
8924 Make_Defining_Identifier (Loc, Object_Name),
8925 Parameter_Type =>
8926 New_Occurrence_Of (Typ, Loc))),
8927 Result_Definition =>
8928 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8929
eb66e842 8930 -- Build the body, we declare the boolean expression before
8931 -- doing the return, because we are not really confident of
8932 -- what happens if a return appears within a return.
9dc88aea 8933
eb66e842 8934 BTemp :=
8935 Make_Defining_Identifier (Loc,
8936 Chars => New_Internal_Name ('B'));
9dc88aea 8937
eb66e842 8938 FBody :=
8939 Make_Subprogram_Body (Loc,
8940 Specification => Spec,
9dc88aea 8941
eb66e842 8942 Declarations => New_List (
8943 Make_Object_Declaration (Loc,
8944 Defining_Identifier => BTemp,
8945 Constant_Present => True,
8946 Object_Definition =>
8947 New_Occurrence_Of (Standard_Boolean, Loc),
8948 Expression => Expr_M)),
d97beb2f 8949
eb66e842 8950 Handled_Statement_Sequence =>
8951 Make_Handled_Sequence_Of_Statements (Loc,
8952 Statements => New_List (
8953 Make_Simple_Return_Statement (Loc,
8954 Expression => New_Occurrence_Of (BTemp, Loc)))));
d97beb2f 8955
eb66e842 8956 -- Insert declaration before freeze node and body after
d97beb2f 8957
eb66e842 8958 Insert_Before_And_Analyze (N, FDecl);
8959 Insert_After_And_Analyze (N, FBody);
8960 end;
8961 end if;
9dc88aea 8962
3b23aaa0 8963 -- See if we have a static predicate. Note that the answer may be
8964 -- yes even if we have an explicit Dynamic_Predicate present.
9dc88aea 8965
3b23aaa0 8966 declare
94d896aa 8967 PS : Boolean;
3b23aaa0 8968 EN : Node_Id;
9dc88aea 8969
3b23aaa0 8970 begin
94d896aa 8971 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8972 PS := False;
8973 else
8974 PS := Is_Predicate_Static (Expr, Object_Name);
8975 end if;
8976
a360a0f7 8977 -- Case where we have a predicate-static aspect
9dc88aea 8978
3b23aaa0 8979 if PS then
9dc88aea 8980
3b23aaa0 8981 -- We don't set Has_Static_Predicate_Aspect, since we can have
8982 -- any of the three cases (Predicate, Dynamic_Predicate, or
8983 -- Static_Predicate) generating a predicate with an expression
a360a0f7 8984 -- that is predicate-static. We just indicate that we have a
3b23aaa0 8985 -- predicate that can be treated as static.
d7c2851f 8986
3b23aaa0 8987 Set_Has_Static_Predicate (Typ);
d7c2851f 8988
3b23aaa0 8989 -- For discrete subtype, build the static predicate list
9dc88aea 8990
3b23aaa0 8991 if Is_Discrete_Type (Typ) then
8992 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8993
8994 -- If we don't get a static predicate list, it means that we
8995 -- have a case where this is not possible, most typically in
8996 -- the case where we inherit a dynamic predicate. We do not
8997 -- consider this an error, we just leave the predicate as
8998 -- dynamic. But if we do succeed in building the list, then
8999 -- we mark the predicate as static.
9000
5c6a5792 9001 if No (Static_Discrete_Predicate (Typ)) then
3b23aaa0 9002 Set_Has_Static_Predicate (Typ, False);
9003 end if;
94d896aa 9004
9005 -- For real or string subtype, save predicate expression
9006
9007 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9008 Set_Static_Real_Or_String_Predicate (Typ, Expr);
3b23aaa0 9009 end if;
9010
9011 -- Case of dynamic predicate (expression is not predicate-static)
9dc88aea 9012
eb66e842 9013 else
3b23aaa0 9014 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9015 -- is only set if we have an explicit Dynamic_Predicate aspect
9016 -- given. Here we may simply have a Predicate aspect where the
9017 -- expression happens not to be predicate-static.
9018
9019 -- Emit an error when the predicate is categorized as static
9020 -- but its expression is not predicate-static.
9021
9022 -- First a little fiddling to get a nice location for the
9023 -- message. If the expression is of the form (A and then B),
9024 -- then use the left operand for the Sloc. This avoids getting
a360a0f7 9025 -- confused by a call to a higher-level predicate with a less
3b23aaa0 9026 -- convenient source location.
9027
9028 EN := Expr;
9029 while Nkind (EN) = N_And_Then loop
9030 EN := Left_Opnd (EN);
9031 end loop;
9032
9033 -- Now post appropriate message
9034
9035 if Has_Static_Predicate_Aspect (Typ) then
94d896aa 9036 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
3b23aaa0 9037 Error_Msg_F
26279d91 9038 ("expression is not predicate-static (RM 3.2.4(16-22))",
3b23aaa0 9039 EN);
9040 else
94d896aa 9041 Error_Msg_F
9042 ("static predicate requires scalar or string type", EN);
3b23aaa0 9043 end if;
9044 end if;
eb66e842 9045 end if;
3b23aaa0 9046 end;
eb66e842 9047 end if;
f9e26ff7 9048
30f8d103 9049 Ghost_Mode := Save_Ghost_Mode;
eb66e842 9050 end Build_Predicate_Functions;
9dc88aea 9051
d9f6a4ee 9052 -----------------------------------------
9053 -- Check_Aspect_At_End_Of_Declarations --
9054 -----------------------------------------
9dc88aea 9055
d9f6a4ee 9056 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9057 Ent : constant Entity_Id := Entity (ASN);
9058 Ident : constant Node_Id := Identifier (ASN);
9059 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
d7c2851f 9060
d9f6a4ee 9061 End_Decl_Expr : constant Node_Id := Entity (Ident);
9062 -- Expression to be analyzed at end of declarations
d7c2851f 9063
d9f6a4ee 9064 Freeze_Expr : constant Node_Id := Expression (ASN);
9065 -- Expression from call to Check_Aspect_At_Freeze_Point
d7c2851f 9066
d9f6a4ee 9067 T : constant Entity_Id := Etype (Freeze_Expr);
9068 -- Type required for preanalyze call
d7c2851f 9069
d9f6a4ee 9070 Err : Boolean;
9071 -- Set False if error
9dc88aea 9072
d9f6a4ee 9073 -- On entry to this procedure, Entity (Ident) contains a copy of the
9074 -- original expression from the aspect, saved for this purpose, and
9075 -- but Expression (Ident) is a preanalyzed copy of the expression,
9076 -- preanalyzed just after the freeze point.
9dc88aea 9077
d9f6a4ee 9078 procedure Check_Overloaded_Name;
9079 -- For aspects whose expression is simply a name, this routine checks if
9080 -- the name is overloaded or not. If so, it verifies there is an
9081 -- interpretation that matches the entity obtained at the freeze point,
9082 -- otherwise the compiler complains.
9dc88aea 9083
d9f6a4ee 9084 ---------------------------
9085 -- Check_Overloaded_Name --
9086 ---------------------------
9087
9088 procedure Check_Overloaded_Name is
d97beb2f 9089 begin
d9f6a4ee 9090 if not Is_Overloaded (End_Decl_Expr) then
5ac76cee 9091 Err := not Is_Entity_Name (End_Decl_Expr)
9092 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
d9f6a4ee 9093
d97beb2f 9094 else
d9f6a4ee 9095 Err := True;
9dc88aea 9096
d9f6a4ee 9097 declare
9098 Index : Interp_Index;
9099 It : Interp;
9dc88aea 9100
d9f6a4ee 9101 begin
9102 Get_First_Interp (End_Decl_Expr, Index, It);
9103 while Present (It.Typ) loop
9104 if It.Nam = Entity (Freeze_Expr) then
9105 Err := False;
9106 exit;
9107 end if;
9108
9109 Get_Next_Interp (Index, It);
9110 end loop;
9111 end;
9dc88aea 9112 end if;
d9f6a4ee 9113 end Check_Overloaded_Name;
9dc88aea 9114
d9f6a4ee 9115 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9dc88aea 9116
d9f6a4ee 9117 begin
da3cad01 9118 -- In an instance we do not perform the consistency check between freeze
9119 -- point and end of declarations, because it was done already in the
9120 -- analysis of the generic. Furthermore, the delayed analysis of an
9121 -- aspect of the instance may produce spurious errors when the generic
9122 -- is a child unit that references entities in the parent (which might
9123 -- not be in scope at the freeze point of the instance).
9124
9125 if In_Instance then
9126 return;
9127
d9f6a4ee 9128 -- Case of aspects Dimension, Dimension_System and Synchronization
9dc88aea 9129
da3cad01 9130 elsif A_Id = Aspect_Synchronization then
d9f6a4ee 9131 return;
d97beb2f 9132
d9f6a4ee 9133 -- Case of stream attributes, just have to compare entities. However,
9134 -- the expression is just a name (possibly overloaded), and there may
9135 -- be stream operations declared for unrelated types, so we just need
9136 -- to verify that one of these interpretations is the one available at
9137 -- at the freeze point.
9dc88aea 9138
d9f6a4ee 9139 elsif A_Id = Aspect_Input or else
f02a9a9a 9140 A_Id = Aspect_Output or else
9141 A_Id = Aspect_Read or else
9142 A_Id = Aspect_Write
d9f6a4ee 9143 then
9144 Analyze (End_Decl_Expr);
9145 Check_Overloaded_Name;
9dc88aea 9146
d9f6a4ee 9147 elsif A_Id = Aspect_Variable_Indexing or else
9148 A_Id = Aspect_Constant_Indexing or else
9149 A_Id = Aspect_Default_Iterator or else
9150 A_Id = Aspect_Iterator_Element
9151 then
9152 -- Make type unfrozen before analysis, to prevent spurious errors
9153 -- about late attributes.
9dc88aea 9154
d9f6a4ee 9155 Set_Is_Frozen (Ent, False);
9156 Analyze (End_Decl_Expr);
9157 Set_Is_Frozen (Ent, True);
9dc88aea 9158
d9f6a4ee 9159 -- If the end of declarations comes before any other freeze
9160 -- point, the Freeze_Expr is not analyzed: no check needed.
9dc88aea 9161
d9f6a4ee 9162 if Analyzed (Freeze_Expr) and then not In_Instance then
9163 Check_Overloaded_Name;
9164 else
9165 Err := False;
9166 end if;
55e8372b 9167
d9f6a4ee 9168 -- All other cases
55e8372b 9169
d9f6a4ee 9170 else
c1efebf9 9171 -- Indicate that the expression comes from an aspect specification,
9172 -- which is used in subsequent analysis even if expansion is off.
9173
9174 Set_Parent (End_Decl_Expr, ASN);
9175
d9f6a4ee 9176 -- In a generic context the aspect expressions have not been
9177 -- preanalyzed, so do it now. There are no conformance checks
9178 -- to perform in this case.
55e8372b 9179
d9f6a4ee 9180 if No (T) then
9181 Check_Aspect_At_Freeze_Point (ASN);
9182 return;
55e8372b 9183
d9f6a4ee 9184 -- The default values attributes may be defined in the private part,
9185 -- and the analysis of the expression may take place when only the
9186 -- partial view is visible. The expression must be scalar, so use
9187 -- the full view to resolve.
55e8372b 9188
d9f6a4ee 9189 elsif (A_Id = Aspect_Default_Value
9190 or else
9191 A_Id = Aspect_Default_Component_Value)
9192 and then Is_Private_Type (T)
9193 then
9194 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
c1efebf9 9195
d9f6a4ee 9196 else
9197 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9198 end if;
d97beb2f 9199
d9f6a4ee 9200 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9201 end if;
55e8372b 9202
c1efebf9 9203 -- Output error message if error. Force error on aspect specification
9204 -- even if there is an error on the expression itself.
55e8372b 9205
d9f6a4ee 9206 if Err then
9207 Error_Msg_NE
c1efebf9 9208 ("!visibility of aspect for& changes after freeze point",
d9f6a4ee 9209 ASN, Ent);
9210 Error_Msg_NE
9211 ("info: & is frozen here, aspects evaluated at this point??",
9212 Freeze_Node (Ent), Ent);
9213 end if;
9214 end Check_Aspect_At_End_Of_Declarations;
55e8372b 9215
d9f6a4ee 9216 ----------------------------------
9217 -- Check_Aspect_At_Freeze_Point --
9218 ----------------------------------
9dc88aea 9219
d9f6a4ee 9220 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9221 Ident : constant Node_Id := Identifier (ASN);
9222 -- Identifier (use Entity field to save expression)
9dc88aea 9223
d9f6a4ee 9224 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9dc88aea 9225
d9f6a4ee 9226 T : Entity_Id := Empty;
9227 -- Type required for preanalyze call
9dc88aea 9228
d9f6a4ee 9229 begin
9230 -- On entry to this procedure, Entity (Ident) contains a copy of the
9231 -- original expression from the aspect, saved for this purpose.
9dc88aea 9232
d9f6a4ee 9233 -- On exit from this procedure Entity (Ident) is unchanged, still
9234 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9235 -- of the expression, preanalyzed just after the freeze point.
d97beb2f 9236
d9f6a4ee 9237 -- Make a copy of the expression to be preanalyzed
d97beb2f 9238
d9f6a4ee 9239 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
d97beb2f 9240
d9f6a4ee 9241 -- Find type for preanalyze call
d97beb2f 9242
d9f6a4ee 9243 case A_Id is
9dc88aea 9244
d9f6a4ee 9245 -- No_Aspect should be impossible
d97beb2f 9246
d9f6a4ee 9247 when No_Aspect =>
9248 raise Program_Error;
9249
9250 -- Aspects taking an optional boolean argument
d97beb2f 9251
d9f6a4ee 9252 when Boolean_Aspects |
9253 Library_Unit_Aspects =>
9dc88aea 9254
d9f6a4ee 9255 T := Standard_Boolean;
d7c2851f 9256
d9f6a4ee 9257 -- Aspects corresponding to attribute definition clauses
9dc88aea 9258
d9f6a4ee 9259 when Aspect_Address =>
9260 T := RTE (RE_Address);
9dc88aea 9261
d9f6a4ee 9262 when Aspect_Attach_Handler =>
9263 T := RTE (RE_Interrupt_ID);
d7c2851f 9264
d9f6a4ee 9265 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
9266 T := RTE (RE_Bit_Order);
d7c2851f 9267
d9f6a4ee 9268 when Aspect_Convention =>
9269 return;
d7c2851f 9270
d9f6a4ee 9271 when Aspect_CPU =>
9272 T := RTE (RE_CPU_Range);
d7c2851f 9273
d9f6a4ee 9274 -- Default_Component_Value is resolved with the component type
d7c2851f 9275
d9f6a4ee 9276 when Aspect_Default_Component_Value =>
9277 T := Component_Type (Entity (ASN));
d7c2851f 9278
647fab54 9279 when Aspect_Default_Storage_Pool =>
9280 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9281
d9f6a4ee 9282 -- Default_Value is resolved with the type entity in question
d7c2851f 9283
d9f6a4ee 9284 when Aspect_Default_Value =>
9285 T := Entity (ASN);
9dc88aea 9286
d9f6a4ee 9287 when Aspect_Dispatching_Domain =>
9288 T := RTE (RE_Dispatching_Domain);
9dc88aea 9289
d9f6a4ee 9290 when Aspect_External_Tag =>
9291 T := Standard_String;
9dc88aea 9292
d9f6a4ee 9293 when Aspect_External_Name =>
9294 T := Standard_String;
9dc88aea 9295
d9f6a4ee 9296 when Aspect_Link_Name =>
9297 T := Standard_String;
9dc88aea 9298
d9f6a4ee 9299 when Aspect_Priority | Aspect_Interrupt_Priority =>
9300 T := Standard_Integer;
d97beb2f 9301
d9f6a4ee 9302 when Aspect_Relative_Deadline =>
9303 T := RTE (RE_Time_Span);
d97beb2f 9304
d9f6a4ee 9305 when Aspect_Small =>
9306 T := Universal_Real;
490beba6 9307
d9f6a4ee 9308 -- For a simple storage pool, we have to retrieve the type of the
9309 -- pool object associated with the aspect's corresponding attribute
9310 -- definition clause.
490beba6 9311
d9f6a4ee 9312 when Aspect_Simple_Storage_Pool =>
9313 T := Etype (Expression (Aspect_Rep_Item (ASN)));
d97beb2f 9314
d9f6a4ee 9315 when Aspect_Storage_Pool =>
9316 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
d97beb2f 9317
d9f6a4ee 9318 when Aspect_Alignment |
9319 Aspect_Component_Size |
9320 Aspect_Machine_Radix |
9321 Aspect_Object_Size |
9322 Aspect_Size |
9323 Aspect_Storage_Size |
9324 Aspect_Stream_Size |
9325 Aspect_Value_Size =>
9326 T := Any_Integer;
9dc88aea 9327
04ae062f 9328 when Aspect_Linker_Section =>
9329 T := Standard_String;
9330
d9f6a4ee 9331 when Aspect_Synchronization =>
9332 return;
7d20685d 9333
d9f6a4ee 9334 -- Special case, the expression of these aspects is just an entity
9335 -- that does not need any resolution, so just analyze.
7d20685d 9336
d9f6a4ee 9337 when Aspect_Input |
9338 Aspect_Output |
9339 Aspect_Read |
9340 Aspect_Suppress |
9341 Aspect_Unsuppress |
9342 Aspect_Warnings |
9343 Aspect_Write =>
9344 Analyze (Expression (ASN));
9345 return;
7d20685d 9346
d9f6a4ee 9347 -- Same for Iterator aspects, where the expression is a function
9348 -- name. Legality rules are checked separately.
89f1e35c 9349
d9f6a4ee 9350 when Aspect_Constant_Indexing |
9351 Aspect_Default_Iterator |
9352 Aspect_Iterator_Element |
9353 Aspect_Variable_Indexing =>
9354 Analyze (Expression (ASN));
9355 return;
7d20685d 9356
b3f8228a 9357 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9358
9359 when Aspect_Iterable =>
3061ffde 9360 T := Entity (ASN);
9361
b3f8228a 9362 declare
a9f5fea7 9363 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
3061ffde 9364 Assoc : Node_Id;
9365 Expr : Node_Id;
a9f5fea7 9366
b3f8228a 9367 begin
a9f5fea7 9368 if Cursor = Any_Type then
9369 return;
9370 end if;
9371
b3f8228a 9372 Assoc := First (Component_Associations (Expression (ASN)));
9373 while Present (Assoc) loop
3061ffde 9374 Expr := Expression (Assoc);
9375 Analyze (Expr);
a9f5fea7 9376
9377 if not Error_Posted (Expr) then
9378 Resolve_Iterable_Operation
9379 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9380 end if;
9381
b3f8228a 9382 Next (Assoc);
9383 end loop;
9384 end;
3061ffde 9385
b3f8228a 9386 return;
9387
d9f6a4ee 9388 -- Invariant/Predicate take boolean expressions
7d20685d 9389
d9f6a4ee 9390 when Aspect_Dynamic_Predicate |
9391 Aspect_Invariant |
9392 Aspect_Predicate |
9393 Aspect_Static_Predicate |
9394 Aspect_Type_Invariant =>
9395 T := Standard_Boolean;
7d20685d 9396
d9f6a4ee 9397 -- Here is the list of aspects that don't require delay analysis
89f1e35c 9398
d0849c23 9399 when Aspect_Abstract_State |
9400 Aspect_Annotate |
85ee12c0 9401 Aspect_Async_Readers |
9402 Aspect_Async_Writers |
d0849c23 9403 Aspect_Constant_After_Elaboration |
9404 Aspect_Contract_Cases |
9405 Aspect_Default_Initial_Condition |
9406 Aspect_Depends |
9407 Aspect_Dimension |
9408 Aspect_Dimension_System |
85ee12c0 9409 Aspect_Effective_Reads |
9410 Aspect_Effective_Writes |
d0849c23 9411 Aspect_Extensions_Visible |
9412 Aspect_Ghost |
9413 Aspect_Global |
9414 Aspect_Implicit_Dereference |
9415 Aspect_Initial_Condition |
9416 Aspect_Initializes |
9417 Aspect_Obsolescent |
9418 Aspect_Part_Of |
9419 Aspect_Post |
9420 Aspect_Postcondition |
9421 Aspect_Pre |
9422 Aspect_Precondition |
9423 Aspect_Refined_Depends |
9424 Aspect_Refined_Global |
9425 Aspect_Refined_Post |
9426 Aspect_Refined_State |
9427 Aspect_SPARK_Mode |
9428 Aspect_Test_Case |
85ee12c0 9429 Aspect_Unimplemented |
9430 Aspect_Volatile_Function =>
d9f6a4ee 9431 raise Program_Error;
2b184b2f 9432
d9f6a4ee 9433 end case;
2b184b2f 9434
d9f6a4ee 9435 -- Do the preanalyze call
2b184b2f 9436
d9f6a4ee 9437 Preanalyze_Spec_Expression (Expression (ASN), T);
9438 end Check_Aspect_At_Freeze_Point;
2b184b2f 9439
d9f6a4ee 9440 -----------------------------------
9441 -- Check_Constant_Address_Clause --
9442 -----------------------------------
2b184b2f 9443
d9f6a4ee 9444 procedure Check_Constant_Address_Clause
9445 (Expr : Node_Id;
9446 U_Ent : Entity_Id)
9447 is
9448 procedure Check_At_Constant_Address (Nod : Node_Id);
9449 -- Checks that the given node N represents a name whose 'Address is
9450 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9451 -- address value is the same at the point of declaration of U_Ent and at
9452 -- the time of elaboration of the address clause.
84ed7523 9453
d9f6a4ee 9454 procedure Check_Expr_Constants (Nod : Node_Id);
9455 -- Checks that Nod meets the requirements for a constant address clause
9456 -- in the sense of the enclosing procedure.
84ed7523 9457
d9f6a4ee 9458 procedure Check_List_Constants (Lst : List_Id);
9459 -- Check that all elements of list Lst meet the requirements for a
9460 -- constant address clause in the sense of the enclosing procedure.
84ed7523 9461
d9f6a4ee 9462 -------------------------------
9463 -- Check_At_Constant_Address --
9464 -------------------------------
84ed7523 9465
d9f6a4ee 9466 procedure Check_At_Constant_Address (Nod : Node_Id) is
9467 begin
9468 if Is_Entity_Name (Nod) then
9469 if Present (Address_Clause (Entity ((Nod)))) then
9470 Error_Msg_NE
9471 ("invalid address clause for initialized object &!",
9472 Nod, U_Ent);
9473 Error_Msg_NE
9474 ("address for& cannot" &
9475 " depend on another address clause! (RM 13.1(22))!",
9476 Nod, U_Ent);
84ed7523 9477
d9f6a4ee 9478 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9479 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9480 then
9481 Error_Msg_NE
9482 ("invalid address clause for initialized object &!",
9483 Nod, U_Ent);
9484 Error_Msg_Node_2 := U_Ent;
9485 Error_Msg_NE
9486 ("\& must be defined before & (RM 13.1(22))!",
9487 Nod, Entity (Nod));
9488 end if;
7d20685d 9489
d9f6a4ee 9490 elsif Nkind (Nod) = N_Selected_Component then
9491 declare
9492 T : constant Entity_Id := Etype (Prefix (Nod));
59f3e675 9493
d9f6a4ee 9494 begin
9495 if (Is_Record_Type (T)
9496 and then Has_Discriminants (T))
9497 or else
9498 (Is_Access_Type (T)
f02a9a9a 9499 and then Is_Record_Type (Designated_Type (T))
9500 and then Has_Discriminants (Designated_Type (T)))
d9f6a4ee 9501 then
9502 Error_Msg_NE
9503 ("invalid address clause for initialized object &!",
9504 Nod, U_Ent);
9505 Error_Msg_N
9506 ("\address cannot depend on component" &
9507 " of discriminated record (RM 13.1(22))!",
9508 Nod);
9509 else
9510 Check_At_Constant_Address (Prefix (Nod));
9511 end if;
9512 end;
89cc7147 9513
d9f6a4ee 9514 elsif Nkind (Nod) = N_Indexed_Component then
9515 Check_At_Constant_Address (Prefix (Nod));
9516 Check_List_Constants (Expressions (Nod));
89cc7147 9517
84ed7523 9518 else
d9f6a4ee 9519 Check_Expr_Constants (Nod);
84ed7523 9520 end if;
d9f6a4ee 9521 end Check_At_Constant_Address;
81b424ac 9522
d9f6a4ee 9523 --------------------------
9524 -- Check_Expr_Constants --
9525 --------------------------
7b9b2f05 9526
d9f6a4ee 9527 procedure Check_Expr_Constants (Nod : Node_Id) is
9528 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9529 Ent : Entity_Id := Empty;
7b9b2f05 9530
d9f6a4ee 9531 begin
9532 if Nkind (Nod) in N_Has_Etype
9533 and then Etype (Nod) = Any_Type
7b9b2f05 9534 then
d9f6a4ee 9535 return;
309c3053 9536 end if;
9537
d9f6a4ee 9538 case Nkind (Nod) is
9539 when N_Empty | N_Error =>
9540 return;
7d20685d 9541
d9f6a4ee 9542 when N_Identifier | N_Expanded_Name =>
9543 Ent := Entity (Nod);
7d20685d 9544
d9f6a4ee 9545 -- We need to look at the original node if it is different
9546 -- from the node, since we may have rewritten things and
9547 -- substituted an identifier representing the rewrite.
7d20685d 9548
d9f6a4ee 9549 if Original_Node (Nod) /= Nod then
9550 Check_Expr_Constants (Original_Node (Nod));
7d20685d 9551
d9f6a4ee 9552 -- If the node is an object declaration without initial
9553 -- value, some code has been expanded, and the expression
9554 -- is not constant, even if the constituents might be
9555 -- acceptable, as in A'Address + offset.
7d20685d 9556
d9f6a4ee 9557 if Ekind (Ent) = E_Variable
9558 and then
9559 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9560 and then
9561 No (Expression (Declaration_Node (Ent)))
9562 then
9563 Error_Msg_NE
9564 ("invalid address clause for initialized object &!",
9565 Nod, U_Ent);
89f1e35c 9566
d9f6a4ee 9567 -- If entity is constant, it may be the result of expanding
9568 -- a check. We must verify that its declaration appears
9569 -- before the object in question, else we also reject the
9570 -- address clause.
7d20685d 9571
d9f6a4ee 9572 elsif Ekind (Ent) = E_Constant
9573 and then In_Same_Source_Unit (Ent, U_Ent)
9574 and then Sloc (Ent) > Loc_U_Ent
9575 then
9576 Error_Msg_NE
9577 ("invalid address clause for initialized object &!",
9578 Nod, U_Ent);
9579 end if;
7d20685d 9580
d9f6a4ee 9581 return;
9582 end if;
7d20685d 9583
d9f6a4ee 9584 -- Otherwise look at the identifier and see if it is OK
7d20685d 9585
d9f6a4ee 9586 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9587 or else Is_Type (Ent)
9588 then
9589 return;
7d20685d 9590
f02a9a9a 9591 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9592
d9f6a4ee 9593 -- This is the case where we must have Ent defined before
9594 -- U_Ent. Clearly if they are in different units this
9595 -- requirement is met since the unit containing Ent is
9596 -- already processed.
7d20685d 9597
d9f6a4ee 9598 if not In_Same_Source_Unit (Ent, U_Ent) then
9599 return;
7d20685d 9600
d9f6a4ee 9601 -- Otherwise location of Ent must be before the location
9602 -- of U_Ent, that's what prior defined means.
7d20685d 9603
d9f6a4ee 9604 elsif Sloc (Ent) < Loc_U_Ent then
9605 return;
6c545057 9606
d9f6a4ee 9607 else
9608 Error_Msg_NE
9609 ("invalid address clause for initialized object &!",
9610 Nod, U_Ent);
9611 Error_Msg_Node_2 := U_Ent;
9612 Error_Msg_NE
9613 ("\& must be defined before & (RM 13.1(22))!",
9614 Nod, Ent);
9615 end if;
37c6e44c 9616
d9f6a4ee 9617 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9618 Check_Expr_Constants (Original_Node (Nod));
6c545057 9619
d9f6a4ee 9620 else
9621 Error_Msg_NE
9622 ("invalid address clause for initialized object &!",
9623 Nod, U_Ent);
3cdbaa5a 9624
d9f6a4ee 9625 if Comes_From_Source (Ent) then
9626 Error_Msg_NE
9627 ("\reference to variable& not allowed"
9628 & " (RM 13.1(22))!", Nod, Ent);
9629 else
9630 Error_Msg_N
9631 ("non-static expression not allowed"
9632 & " (RM 13.1(22))!", Nod);
9633 end if;
9634 end if;
3cdbaa5a 9635
d9f6a4ee 9636 when N_Integer_Literal =>
7f694ca2 9637
d9f6a4ee 9638 -- If this is a rewritten unchecked conversion, in a system
9639 -- where Address is an integer type, always use the base type
9640 -- for a literal value. This is user-friendly and prevents
9641 -- order-of-elaboration issues with instances of unchecked
9642 -- conversion.
3cdbaa5a 9643
d9f6a4ee 9644 if Nkind (Original_Node (Nod)) = N_Function_Call then
9645 Set_Etype (Nod, Base_Type (Etype (Nod)));
9646 end if;
e1cedbae 9647
d9f6a4ee 9648 when N_Real_Literal |
9649 N_String_Literal |
9650 N_Character_Literal =>
9651 return;
7d20685d 9652
d9f6a4ee 9653 when N_Range =>
9654 Check_Expr_Constants (Low_Bound (Nod));
9655 Check_Expr_Constants (High_Bound (Nod));
231eb581 9656
d9f6a4ee 9657 when N_Explicit_Dereference =>
9658 Check_Expr_Constants (Prefix (Nod));
231eb581 9659
d9f6a4ee 9660 when N_Indexed_Component =>
9661 Check_Expr_Constants (Prefix (Nod));
9662 Check_List_Constants (Expressions (Nod));
7d20685d 9663
d9f6a4ee 9664 when N_Slice =>
9665 Check_Expr_Constants (Prefix (Nod));
9666 Check_Expr_Constants (Discrete_Range (Nod));
cb4c311d 9667
d9f6a4ee 9668 when N_Selected_Component =>
9669 Check_Expr_Constants (Prefix (Nod));
6144c105 9670
d9f6a4ee 9671 when N_Attribute_Reference =>
9672 if Nam_In (Attribute_Name (Nod), Name_Address,
9673 Name_Access,
9674 Name_Unchecked_Access,
9675 Name_Unrestricted_Access)
9676 then
9677 Check_At_Constant_Address (Prefix (Nod));
6144c105 9678
d9f6a4ee 9679 else
9680 Check_Expr_Constants (Prefix (Nod));
9681 Check_List_Constants (Expressions (Nod));
9682 end if;
a7a4a7c2 9683
d9f6a4ee 9684 when N_Aggregate =>
9685 Check_List_Constants (Component_Associations (Nod));
9686 Check_List_Constants (Expressions (Nod));
7d20685d 9687
d9f6a4ee 9688 when N_Component_Association =>
9689 Check_Expr_Constants (Expression (Nod));
e1cedbae 9690
d9f6a4ee 9691 when N_Extension_Aggregate =>
9692 Check_Expr_Constants (Ancestor_Part (Nod));
9693 Check_List_Constants (Component_Associations (Nod));
9694 Check_List_Constants (Expressions (Nod));
3cdbaa5a 9695
d9f6a4ee 9696 when N_Null =>
9697 return;
3cdbaa5a 9698
d9f6a4ee 9699 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9700 Check_Expr_Constants (Left_Opnd (Nod));
9701 Check_Expr_Constants (Right_Opnd (Nod));
e1cedbae 9702
d9f6a4ee 9703 when N_Unary_Op =>
9704 Check_Expr_Constants (Right_Opnd (Nod));
7f694ca2 9705
d9f6a4ee 9706 when N_Type_Conversion |
9707 N_Qualified_Expression |
9708 N_Allocator |
9709 N_Unchecked_Type_Conversion =>
9710 Check_Expr_Constants (Expression (Nod));
47a46747 9711
d9f6a4ee 9712 when N_Function_Call =>
9713 if not Is_Pure (Entity (Name (Nod))) then
9714 Error_Msg_NE
9715 ("invalid address clause for initialized object &!",
9716 Nod, U_Ent);
7f694ca2 9717
d9f6a4ee 9718 Error_Msg_NE
9719 ("\function & is not pure (RM 13.1(22))!",
9720 Nod, Entity (Name (Nod)));
b55f7641 9721
d9f6a4ee 9722 else
9723 Check_List_Constants (Parameter_Associations (Nod));
9724 end if;
b55f7641 9725
d9f6a4ee 9726 when N_Parameter_Association =>
9727 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7d20685d 9728
d9f6a4ee 9729 when others =>
9730 Error_Msg_NE
9731 ("invalid address clause for initialized object &!",
9732 Nod, U_Ent);
9733 Error_Msg_NE
9734 ("\must be constant defined before& (RM 13.1(22))!",
9735 Nod, U_Ent);
9736 end case;
9737 end Check_Expr_Constants;
7d20685d 9738
d9f6a4ee 9739 --------------------------
9740 -- Check_List_Constants --
9741 --------------------------
89f1e35c 9742
d9f6a4ee 9743 procedure Check_List_Constants (Lst : List_Id) is
9744 Nod1 : Node_Id;
7d20685d 9745
d9f6a4ee 9746 begin
9747 if Present (Lst) then
9748 Nod1 := First (Lst);
9749 while Present (Nod1) loop
9750 Check_Expr_Constants (Nod1);
9751 Next (Nod1);
9752 end loop;
9753 end if;
9754 end Check_List_Constants;
81b424ac 9755
d9f6a4ee 9756 -- Start of processing for Check_Constant_Address_Clause
81b424ac 9757
d9f6a4ee 9758 begin
9759 -- If rep_clauses are to be ignored, no need for legality checks. In
9c7948d7 9760 -- particular, no need to pester user about rep clauses that violate the
9761 -- rule on constant addresses, given that these clauses will be removed
9762 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9763 -- we want to relax these checks.
7d20685d 9764
f1a9be43 9765 if not Ignore_Rep_Clauses and not CodePeer_Mode then
d9f6a4ee 9766 Check_Expr_Constants (Expr);
9767 end if;
9768 end Check_Constant_Address_Clause;
7d20685d 9769
6653b695 9770 ---------------------------
9771 -- Check_Pool_Size_Clash --
9772 ---------------------------
9773
9774 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9775 Post : Node_Id;
9776
9777 begin
9778 -- We need to find out which one came first. Note that in the case of
9779 -- aspects mixed with pragmas there are cases where the processing order
9780 -- is reversed, which is why we do the check here.
9781
9782 if Sloc (SP) < Sloc (SS) then
9783 Error_Msg_Sloc := Sloc (SP);
9784 Post := SS;
9785 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9786
9787 else
9788 Error_Msg_Sloc := Sloc (SS);
9789 Post := SP;
9790 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9791 end if;
9792
9793 Error_Msg_N
9794 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9795 end Check_Pool_Size_Clash;
9796
d9f6a4ee 9797 ----------------------------------------
9798 -- Check_Record_Representation_Clause --
9799 ----------------------------------------
85696508 9800
d9f6a4ee 9801 procedure Check_Record_Representation_Clause (N : Node_Id) is
9802 Loc : constant Source_Ptr := Sloc (N);
9803 Ident : constant Node_Id := Identifier (N);
9804 Rectype : Entity_Id;
9805 Fent : Entity_Id;
9806 CC : Node_Id;
9807 Fbit : Uint;
9808 Lbit : Uint;
9809 Hbit : Uint := Uint_0;
9810 Comp : Entity_Id;
9811 Pcomp : Entity_Id;
89f1e35c 9812
d9f6a4ee 9813 Max_Bit_So_Far : Uint;
9814 -- Records the maximum bit position so far. If all field positions
9815 -- are monotonically increasing, then we can skip the circuit for
9816 -- checking for overlap, since no overlap is possible.
85696508 9817
d9f6a4ee 9818 Tagged_Parent : Entity_Id := Empty;
9819 -- This is set in the case of a derived tagged type for which we have
9820 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9821 -- positioned by record representation clauses). In this case we must
9822 -- check for overlap between components of this tagged type, and the
9823 -- components of its parent. Tagged_Parent will point to this parent
9824 -- type. For all other cases Tagged_Parent is left set to Empty.
7d20685d 9825
d9f6a4ee 9826 Parent_Last_Bit : Uint;
9827 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9828 -- last bit position for any field in the parent type. We only need to
9829 -- check overlap for fields starting below this point.
7d20685d 9830
d9f6a4ee 9831 Overlap_Check_Required : Boolean;
9832 -- Used to keep track of whether or not an overlap check is required
7d20685d 9833
d9f6a4ee 9834 Overlap_Detected : Boolean := False;
9835 -- Set True if an overlap is detected
d6f39728 9836
d9f6a4ee 9837 Ccount : Natural := 0;
9838 -- Number of component clauses in record rep clause
d6f39728 9839
d9f6a4ee 9840 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9841 -- Given two entities for record components or discriminants, checks
9842 -- if they have overlapping component clauses and issues errors if so.
d6f39728 9843
d9f6a4ee 9844 procedure Find_Component;
9845 -- Finds component entity corresponding to current component clause (in
9846 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9847 -- start/stop bits for the field. If there is no matching component or
9848 -- if the matching component does not have a component clause, then
9849 -- that's an error and Comp is set to Empty, but no error message is
9850 -- issued, since the message was already given. Comp is also set to
9851 -- Empty if the current "component clause" is in fact a pragma.
d6f39728 9852
d9f6a4ee 9853 -----------------------------
9854 -- Check_Component_Overlap --
9855 -----------------------------
9856
9857 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9858 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9859 CC2 : constant Node_Id := Component_Clause (C2_Ent);
d6f39728 9860
d6f39728 9861 begin
d9f6a4ee 9862 if Present (CC1) and then Present (CC2) then
d6f39728 9863
d9f6a4ee 9864 -- Exclude odd case where we have two tag components in the same
9865 -- record, both at location zero. This seems a bit strange, but
9866 -- it seems to happen in some circumstances, perhaps on an error.
9867
9868 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9869 return;
d6f39728 9870 end if;
9871
d9f6a4ee 9872 -- Here we check if the two fields overlap
9873
d6f39728 9874 declare
d9f6a4ee 9875 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9876 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9877 E1 : constant Uint := S1 + Esize (C1_Ent);
9878 E2 : constant Uint := S2 + Esize (C2_Ent);
d6f39728 9879
9880 begin
d9f6a4ee 9881 if E2 <= S1 or else E1 <= S2 then
9882 null;
d6f39728 9883 else
d9f6a4ee 9884 Error_Msg_Node_2 := Component_Name (CC2);
9885 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9886 Error_Msg_Node_1 := Component_Name (CC1);
9887 Error_Msg_N
9888 ("component& overlaps & #", Component_Name (CC1));
9889 Overlap_Detected := True;
d6f39728 9890 end if;
9891 end;
d6f39728 9892 end if;
d9f6a4ee 9893 end Check_Component_Overlap;
d6f39728 9894
d9f6a4ee 9895 --------------------
9896 -- Find_Component --
9897 --------------------
9dfe12ae 9898
d9f6a4ee 9899 procedure Find_Component is
9dfe12ae 9900
d9f6a4ee 9901 procedure Search_Component (R : Entity_Id);
9902 -- Search components of R for a match. If found, Comp is set
9dfe12ae 9903
d9f6a4ee 9904 ----------------------
9905 -- Search_Component --
9906 ----------------------
e7b2d6bc 9907
d9f6a4ee 9908 procedure Search_Component (R : Entity_Id) is
9909 begin
9910 Comp := First_Component_Or_Discriminant (R);
9911 while Present (Comp) loop
e7b2d6bc 9912
d9f6a4ee 9913 -- Ignore error of attribute name for component name (we
9914 -- already gave an error message for this, so no need to
9915 -- complain here)
e7b2d6bc 9916
d9f6a4ee 9917 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9918 null;
9919 else
9920 exit when Chars (Comp) = Chars (Component_Name (CC));
9dfe12ae 9921 end if;
9922
d9f6a4ee 9923 Next_Component_Or_Discriminant (Comp);
9924 end loop;
9925 end Search_Component;
d6f39728 9926
d9f6a4ee 9927 -- Start of processing for Find_Component
d6f39728 9928
d9f6a4ee 9929 begin
9930 -- Return with Comp set to Empty if we have a pragma
d6f39728 9931
d9f6a4ee 9932 if Nkind (CC) = N_Pragma then
9933 Comp := Empty;
9934 return;
9935 end if;
d6f39728 9936
d9f6a4ee 9937 -- Search current record for matching component
d6f39728 9938
d9f6a4ee 9939 Search_Component (Rectype);
9dfe12ae 9940
d9f6a4ee 9941 -- If not found, maybe component of base type discriminant that is
9942 -- absent from statically constrained first subtype.
e7b2d6bc 9943
d9f6a4ee 9944 if No (Comp) then
9945 Search_Component (Base_Type (Rectype));
9946 end if;
e7b2d6bc 9947
d9f6a4ee 9948 -- If no component, or the component does not reference the component
9949 -- clause in question, then there was some previous error for which
9950 -- we already gave a message, so just return with Comp Empty.
d6f39728 9951
d9f6a4ee 9952 if No (Comp) or else Component_Clause (Comp) /= CC then
9953 Check_Error_Detected;
9954 Comp := Empty;
93735cb8 9955
d9f6a4ee 9956 -- Normal case where we have a component clause
93735cb8 9957
d9f6a4ee 9958 else
9959 Fbit := Component_Bit_Offset (Comp);
9960 Lbit := Fbit + Esize (Comp) - 1;
9961 end if;
9962 end Find_Component;
93735cb8 9963
d9f6a4ee 9964 -- Start of processing for Check_Record_Representation_Clause
d6f39728 9965
d9f6a4ee 9966 begin
9967 Find_Type (Ident);
9968 Rectype := Entity (Ident);
d6f39728 9969
d9f6a4ee 9970 if Rectype = Any_Type then
9971 return;
9972 else
9973 Rectype := Underlying_Type (Rectype);
9974 end if;
d6f39728 9975
d9f6a4ee 9976 -- See if we have a fully repped derived tagged type
d6f39728 9977
d9f6a4ee 9978 declare
9979 PS : constant Entity_Id := Parent_Subtype (Rectype);
d6f39728 9980
d9f6a4ee 9981 begin
9982 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9983 Tagged_Parent := PS;
d6f39728 9984
d9f6a4ee 9985 -- Find maximum bit of any component of the parent type
d6f39728 9986
d9f6a4ee 9987 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9988 Pcomp := First_Entity (Tagged_Parent);
9989 while Present (Pcomp) loop
9990 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9991 if Component_Bit_Offset (Pcomp) /= No_Uint
9992 and then Known_Static_Esize (Pcomp)
9993 then
9994 Parent_Last_Bit :=
9995 UI_Max
9996 (Parent_Last_Bit,
9997 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9998 end if;
b7df4cda 9999 else
10000
10001 -- Skip anonymous types generated for constrained array
10002 -- or record components.
d9f6a4ee 10003
b7df4cda 10004 null;
d6f39728 10005 end if;
b7df4cda 10006
10007 Next_Entity (Pcomp);
d9f6a4ee 10008 end loop;
10009 end if;
10010 end;
d6f39728 10011
d9f6a4ee 10012 -- All done if no component clauses
d6f39728 10013
d9f6a4ee 10014 CC := First (Component_Clauses (N));
d6f39728 10015
d9f6a4ee 10016 if No (CC) then
10017 return;
10018 end if;
d6f39728 10019
d9f6a4ee 10020 -- If a tag is present, then create a component clause that places it
10021 -- at the start of the record (otherwise gigi may place it after other
10022 -- fields that have rep clauses).
d6f39728 10023
d9f6a4ee 10024 Fent := First_Entity (Rectype);
d6f39728 10025
d9f6a4ee 10026 if Nkind (Fent) = N_Defining_Identifier
10027 and then Chars (Fent) = Name_uTag
10028 then
10029 Set_Component_Bit_Offset (Fent, Uint_0);
10030 Set_Normalized_Position (Fent, Uint_0);
10031 Set_Normalized_First_Bit (Fent, Uint_0);
10032 Set_Normalized_Position_Max (Fent, Uint_0);
10033 Init_Esize (Fent, System_Address_Size);
d6f39728 10034
d9f6a4ee 10035 Set_Component_Clause (Fent,
10036 Make_Component_Clause (Loc,
10037 Component_Name => Make_Identifier (Loc, Name_uTag),
d6f39728 10038
d9f6a4ee 10039 Position => Make_Integer_Literal (Loc, Uint_0),
10040 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10041 Last_Bit =>
10042 Make_Integer_Literal (Loc,
10043 UI_From_Int (System_Address_Size))));
d6f39728 10044
d9f6a4ee 10045 Ccount := Ccount + 1;
10046 end if;
d6f39728 10047
d9f6a4ee 10048 Max_Bit_So_Far := Uint_Minus_1;
10049 Overlap_Check_Required := False;
d6f39728 10050
d9f6a4ee 10051 -- Process the component clauses
d6f39728 10052
d9f6a4ee 10053 while Present (CC) loop
10054 Find_Component;
d6f39728 10055
d9f6a4ee 10056 if Present (Comp) then
10057 Ccount := Ccount + 1;
d6f39728 10058
d9f6a4ee 10059 -- We need a full overlap check if record positions non-monotonic
d6f39728 10060
d9f6a4ee 10061 if Fbit <= Max_Bit_So_Far then
10062 Overlap_Check_Required := True;
10063 end if;
d6f39728 10064
d9f6a4ee 10065 Max_Bit_So_Far := Lbit;
d6f39728 10066
d9f6a4ee 10067 -- Check bit position out of range of specified size
01cb2726 10068
d9f6a4ee 10069 if Has_Size_Clause (Rectype)
10070 and then RM_Size (Rectype) <= Lbit
10071 then
10072 Error_Msg_N
10073 ("bit number out of range of specified size",
10074 Last_Bit (CC));
d6f39728 10075
d9f6a4ee 10076 -- Check for overlap with tag component
67278d60 10077
d9f6a4ee 10078 else
10079 if Is_Tagged_Type (Rectype)
10080 and then Fbit < System_Address_Size
10081 then
10082 Error_Msg_NE
10083 ("component overlaps tag field of&",
10084 Component_Name (CC), Rectype);
10085 Overlap_Detected := True;
10086 end if;
67278d60 10087
d9f6a4ee 10088 if Hbit < Lbit then
10089 Hbit := Lbit;
10090 end if;
10091 end if;
67278d60 10092
d9f6a4ee 10093 -- Check parent overlap if component might overlap parent field
67278d60 10094
d9f6a4ee 10095 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
10096 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
10097 while Present (Pcomp) loop
10098 if not Is_Tag (Pcomp)
10099 and then Chars (Pcomp) /= Name_uParent
10100 then
10101 Check_Component_Overlap (Comp, Pcomp);
10102 end if;
67278d60 10103
d9f6a4ee 10104 Next_Component_Or_Discriminant (Pcomp);
10105 end loop;
10106 end if;
10107 end if;
67278d60 10108
d9f6a4ee 10109 Next (CC);
10110 end loop;
47495553 10111
d9f6a4ee 10112 -- Now that we have processed all the component clauses, check for
10113 -- overlap. We have to leave this till last, since the components can
10114 -- appear in any arbitrary order in the representation clause.
67278d60 10115
d9f6a4ee 10116 -- We do not need this check if all specified ranges were monotonic,
10117 -- as recorded by Overlap_Check_Required being False at this stage.
67278d60 10118
d9f6a4ee 10119 -- This first section checks if there are any overlapping entries at
10120 -- all. It does this by sorting all entries and then seeing if there are
10121 -- any overlaps. If there are none, then that is decisive, but if there
10122 -- are overlaps, they may still be OK (they may result from fields in
10123 -- different variants).
67278d60 10124
d9f6a4ee 10125 if Overlap_Check_Required then
10126 Overlap_Check1 : declare
67278d60 10127
d9f6a4ee 10128 OC_Fbit : array (0 .. Ccount) of Uint;
10129 -- First-bit values for component clauses, the value is the offset
10130 -- of the first bit of the field from start of record. The zero
10131 -- entry is for use in sorting.
47495553 10132
d9f6a4ee 10133 OC_Lbit : array (0 .. Ccount) of Uint;
10134 -- Last-bit values for component clauses, the value is the offset
10135 -- of the last bit of the field from start of record. The zero
10136 -- entry is for use in sorting.
10137
10138 OC_Count : Natural := 0;
10139 -- Count of entries in OC_Fbit and OC_Lbit
67278d60 10140
d9f6a4ee 10141 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10142 -- Compare routine for Sort
67278d60 10143
d9f6a4ee 10144 procedure OC_Move (From : Natural; To : Natural);
10145 -- Move routine for Sort
67278d60 10146
d9f6a4ee 10147 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
67278d60 10148
d9f6a4ee 10149 -----------
10150 -- OC_Lt --
10151 -----------
67278d60 10152
d9f6a4ee 10153 function OC_Lt (Op1, Op2 : Natural) return Boolean is
67278d60 10154 begin
d9f6a4ee 10155 return OC_Fbit (Op1) < OC_Fbit (Op2);
10156 end OC_Lt;
67278d60 10157
d9f6a4ee 10158 -------------
10159 -- OC_Move --
10160 -------------
67278d60 10161
d9f6a4ee 10162 procedure OC_Move (From : Natural; To : Natural) is
10163 begin
10164 OC_Fbit (To) := OC_Fbit (From);
10165 OC_Lbit (To) := OC_Lbit (From);
10166 end OC_Move;
67278d60 10167
d9f6a4ee 10168 -- Start of processing for Overlap_Check
67278d60 10169
67278d60 10170 begin
d9f6a4ee 10171 CC := First (Component_Clauses (N));
10172 while Present (CC) loop
67278d60 10173
d9f6a4ee 10174 -- Exclude component clause already marked in error
67278d60 10175
d9f6a4ee 10176 if not Error_Posted (CC) then
10177 Find_Component;
10178
10179 if Present (Comp) then
10180 OC_Count := OC_Count + 1;
10181 OC_Fbit (OC_Count) := Fbit;
10182 OC_Lbit (OC_Count) := Lbit;
10183 end if;
67278d60 10184 end if;
10185
d9f6a4ee 10186 Next (CC);
67278d60 10187 end loop;
67278d60 10188
d9f6a4ee 10189 Sorting.Sort (OC_Count);
67278d60 10190
d9f6a4ee 10191 Overlap_Check_Required := False;
10192 for J in 1 .. OC_Count - 1 loop
10193 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10194 Overlap_Check_Required := True;
10195 exit;
10196 end if;
10197 end loop;
10198 end Overlap_Check1;
10199 end if;
67278d60 10200
d9f6a4ee 10201 -- If Overlap_Check_Required is still True, then we have to do the full
10202 -- scale overlap check, since we have at least two fields that do
10203 -- overlap, and we need to know if that is OK since they are in
10204 -- different variant, or whether we have a definite problem.
67278d60 10205
d9f6a4ee 10206 if Overlap_Check_Required then
10207 Overlap_Check2 : declare
10208 C1_Ent, C2_Ent : Entity_Id;
10209 -- Entities of components being checked for overlap
67278d60 10210
d9f6a4ee 10211 Clist : Node_Id;
10212 -- Component_List node whose Component_Items are being checked
67278d60 10213
d9f6a4ee 10214 Citem : Node_Id;
10215 -- Component declaration for component being checked
67278d60 10216
d9f6a4ee 10217 begin
10218 C1_Ent := First_Entity (Base_Type (Rectype));
67278d60 10219
d9f6a4ee 10220 -- Loop through all components in record. For each component check
10221 -- for overlap with any of the preceding elements on the component
10222 -- list containing the component and also, if the component is in
10223 -- a variant, check against components outside the case structure.
10224 -- This latter test is repeated recursively up the variant tree.
67278d60 10225
d9f6a4ee 10226 Main_Component_Loop : while Present (C1_Ent) loop
10227 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10228 goto Continue_Main_Component_Loop;
10229 end if;
67278d60 10230
d9f6a4ee 10231 -- Skip overlap check if entity has no declaration node. This
10232 -- happens with discriminants in constrained derived types.
10233 -- Possibly we are missing some checks as a result, but that
10234 -- does not seem terribly serious.
67278d60 10235
d9f6a4ee 10236 if No (Declaration_Node (C1_Ent)) then
10237 goto Continue_Main_Component_Loop;
10238 end if;
67278d60 10239
d9f6a4ee 10240 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
67278d60 10241
d9f6a4ee 10242 -- Loop through component lists that need checking. Check the
10243 -- current component list and all lists in variants above us.
67278d60 10244
d9f6a4ee 10245 Component_List_Loop : loop
67278d60 10246
d9f6a4ee 10247 -- If derived type definition, go to full declaration
10248 -- If at outer level, check discriminants if there are any.
67278d60 10249
d9f6a4ee 10250 if Nkind (Clist) = N_Derived_Type_Definition then
10251 Clist := Parent (Clist);
10252 end if;
67278d60 10253
d9f6a4ee 10254 -- Outer level of record definition, check discriminants
67278d60 10255
d9f6a4ee 10256 if Nkind_In (Clist, N_Full_Type_Declaration,
10257 N_Private_Type_Declaration)
67278d60 10258 then
d9f6a4ee 10259 if Has_Discriminants (Defining_Identifier (Clist)) then
10260 C2_Ent :=
10261 First_Discriminant (Defining_Identifier (Clist));
10262 while Present (C2_Ent) loop
10263 exit when C1_Ent = C2_Ent;
10264 Check_Component_Overlap (C1_Ent, C2_Ent);
10265 Next_Discriminant (C2_Ent);
10266 end loop;
10267 end if;
67278d60 10268
d9f6a4ee 10269 -- Record extension case
67278d60 10270
d9f6a4ee 10271 elsif Nkind (Clist) = N_Derived_Type_Definition then
10272 Clist := Empty;
67278d60 10273
d9f6a4ee 10274 -- Otherwise check one component list
67278d60 10275
d9f6a4ee 10276 else
10277 Citem := First (Component_Items (Clist));
10278 while Present (Citem) loop
10279 if Nkind (Citem) = N_Component_Declaration then
10280 C2_Ent := Defining_Identifier (Citem);
10281 exit when C1_Ent = C2_Ent;
10282 Check_Component_Overlap (C1_Ent, C2_Ent);
10283 end if;
67278d60 10284
d9f6a4ee 10285 Next (Citem);
10286 end loop;
10287 end if;
67278d60 10288
d9f6a4ee 10289 -- Check for variants above us (the parent of the Clist can
10290 -- be a variant, in which case its parent is a variant part,
10291 -- and the parent of the variant part is a component list
10292 -- whose components must all be checked against the current
10293 -- component for overlap).
67278d60 10294
d9f6a4ee 10295 if Nkind (Parent (Clist)) = N_Variant then
10296 Clist := Parent (Parent (Parent (Clist)));
67278d60 10297
d9f6a4ee 10298 -- Check for possible discriminant part in record, this
10299 -- is treated essentially as another level in the
10300 -- recursion. For this case the parent of the component
10301 -- list is the record definition, and its parent is the
10302 -- full type declaration containing the discriminant
10303 -- specifications.
10304
10305 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10306 Clist := Parent (Parent ((Clist)));
10307
10308 -- If neither of these two cases, we are at the top of
10309 -- the tree.
10310
10311 else
10312 exit Component_List_Loop;
10313 end if;
10314 end loop Component_List_Loop;
67278d60 10315
d9f6a4ee 10316 <<Continue_Main_Component_Loop>>
10317 Next_Entity (C1_Ent);
67278d60 10318
d9f6a4ee 10319 end loop Main_Component_Loop;
10320 end Overlap_Check2;
67278d60 10321 end if;
10322
d9f6a4ee 10323 -- The following circuit deals with warning on record holes (gaps). We
10324 -- skip this check if overlap was detected, since it makes sense for the
10325 -- programmer to fix this illegality before worrying about warnings.
67278d60 10326
d9f6a4ee 10327 if not Overlap_Detected and Warn_On_Record_Holes then
10328 Record_Hole_Check : declare
10329 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10330 -- Full declaration of record type
67278d60 10331
d9f6a4ee 10332 procedure Check_Component_List
10333 (CL : Node_Id;
10334 Sbit : Uint;
10335 DS : List_Id);
10336 -- Check component list CL for holes. The starting bit should be
10337 -- Sbit. which is zero for the main record component list and set
10338 -- appropriately for recursive calls for variants. DS is set to
10339 -- a list of discriminant specifications to be included in the
10340 -- consideration of components. It is No_List if none to consider.
67278d60 10341
d9f6a4ee 10342 --------------------------
10343 -- Check_Component_List --
10344 --------------------------
47495553 10345
d9f6a4ee 10346 procedure Check_Component_List
10347 (CL : Node_Id;
10348 Sbit : Uint;
10349 DS : List_Id)
10350 is
10351 Compl : Integer;
67278d60 10352
d9f6a4ee 10353 begin
10354 Compl := Integer (List_Length (Component_Items (CL)));
47495553 10355
d9f6a4ee 10356 if DS /= No_List then
10357 Compl := Compl + Integer (List_Length (DS));
10358 end if;
67278d60 10359
d9f6a4ee 10360 declare
10361 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10362 -- Gather components (zero entry is for sort routine)
67278d60 10363
d9f6a4ee 10364 Ncomps : Natural := 0;
10365 -- Number of entries stored in Comps (starting at Comps (1))
67278d60 10366
d9f6a4ee 10367 Citem : Node_Id;
10368 -- One component item or discriminant specification
67278d60 10369
d9f6a4ee 10370 Nbit : Uint;
10371 -- Starting bit for next component
67278d60 10372
d9f6a4ee 10373 CEnt : Entity_Id;
10374 -- Component entity
67278d60 10375
d9f6a4ee 10376 Variant : Node_Id;
10377 -- One variant
67278d60 10378
d9f6a4ee 10379 function Lt (Op1, Op2 : Natural) return Boolean;
10380 -- Compare routine for Sort
67278d60 10381
d9f6a4ee 10382 procedure Move (From : Natural; To : Natural);
10383 -- Move routine for Sort
67278d60 10384
d9f6a4ee 10385 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
67278d60 10386
d9f6a4ee 10387 --------
10388 -- Lt --
10389 --------
67278d60 10390
d9f6a4ee 10391 function Lt (Op1, Op2 : Natural) return Boolean is
10392 begin
10393 return Component_Bit_Offset (Comps (Op1))
10394 <
10395 Component_Bit_Offset (Comps (Op2));
10396 end Lt;
67278d60 10397
d9f6a4ee 10398 ----------
10399 -- Move --
10400 ----------
67278d60 10401
d9f6a4ee 10402 procedure Move (From : Natural; To : Natural) is
10403 begin
10404 Comps (To) := Comps (From);
10405 end Move;
67278d60 10406
d9f6a4ee 10407 begin
10408 -- Gather discriminants into Comp
67278d60 10409
d9f6a4ee 10410 if DS /= No_List then
10411 Citem := First (DS);
10412 while Present (Citem) loop
10413 if Nkind (Citem) = N_Discriminant_Specification then
10414 declare
10415 Ent : constant Entity_Id :=
10416 Defining_Identifier (Citem);
10417 begin
10418 if Ekind (Ent) = E_Discriminant then
10419 Ncomps := Ncomps + 1;
10420 Comps (Ncomps) := Ent;
10421 end if;
10422 end;
10423 end if;
67278d60 10424
d9f6a4ee 10425 Next (Citem);
10426 end loop;
10427 end if;
67278d60 10428
d9f6a4ee 10429 -- Gather component entities into Comp
67278d60 10430
d9f6a4ee 10431 Citem := First (Component_Items (CL));
10432 while Present (Citem) loop
10433 if Nkind (Citem) = N_Component_Declaration then
10434 Ncomps := Ncomps + 1;
10435 Comps (Ncomps) := Defining_Identifier (Citem);
10436 end if;
67278d60 10437
d9f6a4ee 10438 Next (Citem);
10439 end loop;
67278d60 10440
d9f6a4ee 10441 -- Now sort the component entities based on the first bit.
10442 -- Note we already know there are no overlapping components.
67278d60 10443
d9f6a4ee 10444 Sorting.Sort (Ncomps);
67278d60 10445
d9f6a4ee 10446 -- Loop through entries checking for holes
67278d60 10447
d9f6a4ee 10448 Nbit := Sbit;
10449 for J in 1 .. Ncomps loop
10450 CEnt := Comps (J);
10451 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
67278d60 10452
d9f6a4ee 10453 if Error_Msg_Uint_1 > 0 then
10454 Error_Msg_NE
10455 ("?H?^-bit gap before component&",
10456 Component_Name (Component_Clause (CEnt)), CEnt);
10457 end if;
67278d60 10458
d9f6a4ee 10459 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10460 end loop;
67278d60 10461
d9f6a4ee 10462 -- Process variant parts recursively if present
67278d60 10463
d9f6a4ee 10464 if Present (Variant_Part (CL)) then
10465 Variant := First (Variants (Variant_Part (CL)));
10466 while Present (Variant) loop
10467 Check_Component_List
10468 (Component_List (Variant), Nbit, No_List);
10469 Next (Variant);
10470 end loop;
67278d60 10471 end if;
d9f6a4ee 10472 end;
10473 end Check_Component_List;
67278d60 10474
d9f6a4ee 10475 -- Start of processing for Record_Hole_Check
67278d60 10476
d9f6a4ee 10477 begin
10478 declare
10479 Sbit : Uint;
67278d60 10480
d9f6a4ee 10481 begin
10482 if Is_Tagged_Type (Rectype) then
10483 Sbit := UI_From_Int (System_Address_Size);
10484 else
10485 Sbit := Uint_0;
10486 end if;
10487
10488 if Nkind (Decl) = N_Full_Type_Declaration
10489 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10490 then
10491 Check_Component_List
10492 (Component_List (Type_Definition (Decl)),
10493 Sbit,
10494 Discriminant_Specifications (Decl));
67278d60 10495 end if;
d9f6a4ee 10496 end;
10497 end Record_Hole_Check;
67278d60 10498 end if;
10499
d9f6a4ee 10500 -- For records that have component clauses for all components, and whose
10501 -- size is less than or equal to 32, we need to know the size in the
10502 -- front end to activate possible packed array processing where the
10503 -- component type is a record.
67278d60 10504
d9f6a4ee 10505 -- At this stage Hbit + 1 represents the first unused bit from all the
10506 -- component clauses processed, so if the component clauses are
10507 -- complete, then this is the length of the record.
67278d60 10508
d9f6a4ee 10509 -- For records longer than System.Storage_Unit, and for those where not
10510 -- all components have component clauses, the back end determines the
10511 -- length (it may for example be appropriate to round up the size
10512 -- to some convenient boundary, based on alignment considerations, etc).
67278d60 10513
d9f6a4ee 10514 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
67278d60 10515
d9f6a4ee 10516 -- Nothing to do if at least one component has no component clause
67278d60 10517
d9f6a4ee 10518 Comp := First_Component_Or_Discriminant (Rectype);
10519 while Present (Comp) loop
10520 exit when No (Component_Clause (Comp));
10521 Next_Component_Or_Discriminant (Comp);
10522 end loop;
67278d60 10523
d9f6a4ee 10524 -- If we fall out of loop, all components have component clauses
10525 -- and so we can set the size to the maximum value.
67278d60 10526
d9f6a4ee 10527 if No (Comp) then
10528 Set_RM_Size (Rectype, Hbit + 1);
10529 end if;
10530 end if;
10531 end Check_Record_Representation_Clause;
67278d60 10532
d9f6a4ee 10533 ----------------
10534 -- Check_Size --
10535 ----------------
67278d60 10536
d9f6a4ee 10537 procedure Check_Size
10538 (N : Node_Id;
10539 T : Entity_Id;
10540 Siz : Uint;
10541 Biased : out Boolean)
10542 is
10543 UT : constant Entity_Id := Underlying_Type (T);
10544 M : Uint;
67278d60 10545
d9f6a4ee 10546 begin
10547 Biased := False;
67278d60 10548
d9f6a4ee 10549 -- Reject patently improper size values.
67278d60 10550
d9f6a4ee 10551 if Is_Elementary_Type (T)
10552 and then Siz > UI_From_Int (Int'Last)
10553 then
10554 Error_Msg_N ("Size value too large for elementary type", N);
67278d60 10555
d9f6a4ee 10556 if Nkind (Original_Node (N)) = N_Op_Expon then
10557 Error_Msg_N
10558 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10559 end if;
10560 end if;
67278d60 10561
d9f6a4ee 10562 -- Dismiss generic types
67278d60 10563
d9f6a4ee 10564 if Is_Generic_Type (T)
10565 or else
10566 Is_Generic_Type (UT)
10567 or else
10568 Is_Generic_Type (Root_Type (UT))
10569 then
10570 return;
67278d60 10571
d9f6a4ee 10572 -- Guard against previous errors
67278d60 10573
d9f6a4ee 10574 elsif No (UT) or else UT = Any_Type then
10575 Check_Error_Detected;
10576 return;
67278d60 10577
d9f6a4ee 10578 -- Check case of bit packed array
67278d60 10579
d9f6a4ee 10580 elsif Is_Array_Type (UT)
10581 and then Known_Static_Component_Size (UT)
10582 and then Is_Bit_Packed_Array (UT)
10583 then
10584 declare
10585 Asiz : Uint;
10586 Indx : Node_Id;
10587 Ityp : Entity_Id;
67278d60 10588
d9f6a4ee 10589 begin
10590 Asiz := Component_Size (UT);
10591 Indx := First_Index (UT);
10592 loop
10593 Ityp := Etype (Indx);
67278d60 10594
d9f6a4ee 10595 -- If non-static bound, then we are not in the business of
10596 -- trying to check the length, and indeed an error will be
10597 -- issued elsewhere, since sizes of non-static array types
10598 -- cannot be set implicitly or explicitly.
67278d60 10599
cda40848 10600 if not Is_OK_Static_Subtype (Ityp) then
d9f6a4ee 10601 return;
10602 end if;
67278d60 10603
d9f6a4ee 10604 -- Otherwise accumulate next dimension
67278d60 10605
d9f6a4ee 10606 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10607 Expr_Value (Type_Low_Bound (Ityp)) +
10608 Uint_1);
67278d60 10609
d9f6a4ee 10610 Next_Index (Indx);
10611 exit when No (Indx);
10612 end loop;
67278d60 10613
d9f6a4ee 10614 if Asiz <= Siz then
10615 return;
67278d60 10616
d9f6a4ee 10617 else
10618 Error_Msg_Uint_1 := Asiz;
10619 Error_Msg_NE
10620 ("size for& too small, minimum allowed is ^", N, T);
10621 Set_Esize (T, Asiz);
10622 Set_RM_Size (T, Asiz);
10623 end if;
10624 end;
67278d60 10625
d9f6a4ee 10626 -- All other composite types are ignored
67278d60 10627
d9f6a4ee 10628 elsif Is_Composite_Type (UT) then
10629 return;
47495553 10630
d9f6a4ee 10631 -- For fixed-point types, don't check minimum if type is not frozen,
10632 -- since we don't know all the characteristics of the type that can
10633 -- affect the size (e.g. a specified small) till freeze time.
47495553 10634
d9f6a4ee 10635 elsif Is_Fixed_Point_Type (UT)
10636 and then not Is_Frozen (UT)
10637 then
10638 null;
47495553 10639
d9f6a4ee 10640 -- Cases for which a minimum check is required
47495553 10641
d9f6a4ee 10642 else
10643 -- Ignore if specified size is correct for the type
47495553 10644
d9f6a4ee 10645 if Known_Esize (UT) and then Siz = Esize (UT) then
10646 return;
10647 end if;
47495553 10648
d9f6a4ee 10649 -- Otherwise get minimum size
47495553 10650
d9f6a4ee 10651 M := UI_From_Int (Minimum_Size (UT));
47495553 10652
d9f6a4ee 10653 if Siz < M then
47495553 10654
d9f6a4ee 10655 -- Size is less than minimum size, but one possibility remains
10656 -- that we can manage with the new size if we bias the type.
47495553 10657
d9f6a4ee 10658 M := UI_From_Int (Minimum_Size (UT, Biased => True));
47495553 10659
d9f6a4ee 10660 if Siz < M then
10661 Error_Msg_Uint_1 := M;
10662 Error_Msg_NE
10663 ("size for& too small, minimum allowed is ^", N, T);
10664 Set_Esize (T, M);
10665 Set_RM_Size (T, M);
10666 else
10667 Biased := True;
10668 end if;
10669 end if;
10670 end if;
10671 end Check_Size;
47495553 10672
d9f6a4ee 10673 --------------------------
10674 -- Freeze_Entity_Checks --
10675 --------------------------
47495553 10676
d9f6a4ee 10677 procedure Freeze_Entity_Checks (N : Node_Id) is
8cf481c9 10678 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10679 -- Inspect the primitive operations of type Typ and hide all pairs of
3118058b 10680 -- implicitly declared non-overridden non-fully conformant homographs
10681 -- (Ada RM 8.3 12.3/2).
8cf481c9 10682
10683 -------------------------------------
10684 -- Hide_Non_Overridden_Subprograms --
10685 -------------------------------------
10686
10687 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10688 procedure Hide_Matching_Homographs
10689 (Subp_Id : Entity_Id;
10690 Start_Elmt : Elmt_Id);
10691 -- Inspect a list of primitive operations starting with Start_Elmt
3118058b 10692 -- and find matching implicitly declared non-overridden non-fully
10693 -- conformant homographs of Subp_Id. If found, all matches along
10694 -- with Subp_Id are hidden from all visibility.
8cf481c9 10695
10696 function Is_Non_Overridden_Or_Null_Procedure
10697 (Subp_Id : Entity_Id) return Boolean;
10698 -- Determine whether subprogram Subp_Id is implicitly declared non-
10699 -- overridden subprogram or an implicitly declared null procedure.
10700
10701 ------------------------------
10702 -- Hide_Matching_Homographs --
10703 ------------------------------
10704
10705 procedure Hide_Matching_Homographs
10706 (Subp_Id : Entity_Id;
10707 Start_Elmt : Elmt_Id)
10708 is
10709 Prim : Entity_Id;
10710 Prim_Elmt : Elmt_Id;
10711
10712 begin
10713 Prim_Elmt := Start_Elmt;
10714 while Present (Prim_Elmt) loop
10715 Prim := Node (Prim_Elmt);
10716
10717 -- The current primitive is implicitly declared non-overridden
3118058b 10718 -- non-fully conformant homograph of Subp_Id. Both subprograms
10719 -- must be hidden from visibility.
8cf481c9 10720
10721 if Chars (Prim) = Chars (Subp_Id)
8cf481c9 10722 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
3118058b 10723 and then not Fully_Conformant (Prim, Subp_Id)
8cf481c9 10724 then
8c7ee4ac 10725 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10726 Set_Is_Immediately_Visible (Prim, False);
10727 Set_Is_Potentially_Use_Visible (Prim, False);
8cf481c9 10728
8c7ee4ac 10729 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10730 Set_Is_Immediately_Visible (Subp_Id, False);
10731 Set_Is_Potentially_Use_Visible (Subp_Id, False);
8cf481c9 10732 end if;
10733
10734 Next_Elmt (Prim_Elmt);
10735 end loop;
10736 end Hide_Matching_Homographs;
10737
10738 -----------------------------------------
10739 -- Is_Non_Overridden_Or_Null_Procedure --
10740 -----------------------------------------
10741
10742 function Is_Non_Overridden_Or_Null_Procedure
10743 (Subp_Id : Entity_Id) return Boolean
10744 is
10745 Alias_Id : Entity_Id;
10746
10747 begin
10748 -- The subprogram is inherited (implicitly declared), it does not
10749 -- override and does not cover a primitive of an interface.
10750
10751 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10752 and then Present (Alias (Subp_Id))
10753 and then No (Interface_Alias (Subp_Id))
10754 and then No (Overridden_Operation (Subp_Id))
10755 then
10756 Alias_Id := Alias (Subp_Id);
10757
10758 if Requires_Overriding (Alias_Id) then
10759 return True;
10760
10761 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10762 and then Null_Present (Parent (Alias_Id))
10763 then
10764 return True;
10765 end if;
10766 end if;
10767
10768 return False;
10769 end Is_Non_Overridden_Or_Null_Procedure;
10770
10771 -- Local variables
10772
10773 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10774 Prim : Entity_Id;
10775 Prim_Elmt : Elmt_Id;
10776
10777 -- Start of processing for Hide_Non_Overridden_Subprograms
10778
10779 begin
3118058b 10780 -- Inspect the list of primitives looking for non-overridden
10781 -- subprograms.
8cf481c9 10782
10783 if Present (Prim_Ops) then
10784 Prim_Elmt := First_Elmt (Prim_Ops);
10785 while Present (Prim_Elmt) loop
10786 Prim := Node (Prim_Elmt);
10787 Next_Elmt (Prim_Elmt);
10788
10789 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10790 Hide_Matching_Homographs
10791 (Subp_Id => Prim,
10792 Start_Elmt => Prim_Elmt);
10793 end if;
10794 end loop;
10795 end if;
10796 end Hide_Non_Overridden_Subprograms;
10797
10798 ---------------------
10799 -- Local variables --
10800 ---------------------
10801
d9f6a4ee 10802 E : constant Entity_Id := Entity (N);
47495553 10803
d9f6a4ee 10804 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10805 -- True in non-generic case. Some of the processing here is skipped
10806 -- for the generic case since it is not needed. Basically in the
10807 -- generic case, we only need to do stuff that might generate error
10808 -- messages or warnings.
8cf481c9 10809
10810 -- Start of processing for Freeze_Entity_Checks
10811
d9f6a4ee 10812 begin
10813 -- Remember that we are processing a freezing entity. Required to
10814 -- ensure correct decoration of internal entities associated with
10815 -- interfaces (see New_Overloaded_Entity).
47495553 10816
d9f6a4ee 10817 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
47495553 10818
d9f6a4ee 10819 -- For tagged types covering interfaces add internal entities that link
10820 -- the primitives of the interfaces with the primitives that cover them.
10821 -- Note: These entities were originally generated only when generating
10822 -- code because their main purpose was to provide support to initialize
10823 -- the secondary dispatch tables. They are now generated also when
10824 -- compiling with no code generation to provide ASIS the relationship
10825 -- between interface primitives and tagged type primitives. They are
10826 -- also used to locate primitives covering interfaces when processing
10827 -- generics (see Derive_Subprograms).
47495553 10828
d9f6a4ee 10829 -- This is not needed in the generic case
47495553 10830
d9f6a4ee 10831 if Ada_Version >= Ada_2005
10832 and then Non_Generic_Case
10833 and then Ekind (E) = E_Record_Type
10834 and then Is_Tagged_Type (E)
10835 and then not Is_Interface (E)
10836 and then Has_Interfaces (E)
10837 then
10838 -- This would be a good common place to call the routine that checks
10839 -- overriding of interface primitives (and thus factorize calls to
10840 -- Check_Abstract_Overriding located at different contexts in the
10841 -- compiler). However, this is not possible because it causes
10842 -- spurious errors in case of late overriding.
47495553 10843
d9f6a4ee 10844 Add_Internal_Interface_Entities (E);
10845 end if;
47495553 10846
8cf481c9 10847 -- After all forms of overriding have been resolved, a tagged type may
10848 -- be left with a set of implicitly declared and possibly erroneous
10849 -- abstract subprograms, null procedures and subprograms that require
10850 -- overriding. If this set contains fully conformat homographs, then one
10851 -- is chosen arbitrarily (already done during resolution), otherwise all
3118058b 10852 -- remaining non-fully conformant homographs are hidden from visibility
8cf481c9 10853 -- (Ada RM 8.3 12.3/2).
10854
10855 if Is_Tagged_Type (E) then
10856 Hide_Non_Overridden_Subprograms (E);
10857 end if;
10858
d9f6a4ee 10859 -- Check CPP types
47495553 10860
d9f6a4ee 10861 if Ekind (E) = E_Record_Type
10862 and then Is_CPP_Class (E)
10863 and then Is_Tagged_Type (E)
10864 and then Tagged_Type_Expansion
d9f6a4ee 10865 then
10866 if CPP_Num_Prims (E) = 0 then
47495553 10867
d9f6a4ee 10868 -- If the CPP type has user defined components then it must import
10869 -- primitives from C++. This is required because if the C++ class
10870 -- has no primitives then the C++ compiler does not added the _tag
10871 -- component to the type.
47495553 10872
d9f6a4ee 10873 if First_Entity (E) /= Last_Entity (E) then
10874 Error_Msg_N
10875 ("'C'P'P type must import at least one primitive from C++??",
10876 E);
10877 end if;
10878 end if;
47495553 10879
d9f6a4ee 10880 -- Check that all its primitives are abstract or imported from C++.
10881 -- Check also availability of the C++ constructor.
47495553 10882
d9f6a4ee 10883 declare
10884 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10885 Elmt : Elmt_Id;
10886 Error_Reported : Boolean := False;
10887 Prim : Node_Id;
47495553 10888
d9f6a4ee 10889 begin
10890 Elmt := First_Elmt (Primitive_Operations (E));
10891 while Present (Elmt) loop
10892 Prim := Node (Elmt);
47495553 10893
d9f6a4ee 10894 if Comes_From_Source (Prim) then
10895 if Is_Abstract_Subprogram (Prim) then
10896 null;
47495553 10897
d9f6a4ee 10898 elsif not Is_Imported (Prim)
10899 or else Convention (Prim) /= Convention_CPP
10900 then
10901 Error_Msg_N
10902 ("primitives of 'C'P'P types must be imported from C++ "
10903 & "or abstract??", Prim);
47495553 10904
d9f6a4ee 10905 elsif not Has_Constructors
10906 and then not Error_Reported
10907 then
10908 Error_Msg_Name_1 := Chars (E);
10909 Error_Msg_N
10910 ("??'C'P'P constructor required for type %", Prim);
10911 Error_Reported := True;
10912 end if;
10913 end if;
47495553 10914
d9f6a4ee 10915 Next_Elmt (Elmt);
10916 end loop;
10917 end;
10918 end if;
47495553 10919
d9f6a4ee 10920 -- Check Ada derivation of CPP type
47495553 10921
30ab103b 10922 if Expander_Active -- why? losing errors in -gnatc mode???
10923 and then Present (Etype (E)) -- defend against errors
d9f6a4ee 10924 and then Tagged_Type_Expansion
10925 and then Ekind (E) = E_Record_Type
10926 and then Etype (E) /= E
10927 and then Is_CPP_Class (Etype (E))
10928 and then CPP_Num_Prims (Etype (E)) > 0
10929 and then not Is_CPP_Class (E)
10930 and then not Has_CPP_Constructors (Etype (E))
10931 then
10932 -- If the parent has C++ primitives but it has no constructor then
10933 -- check that all the primitives are overridden in this derivation;
10934 -- otherwise the constructor of the parent is needed to build the
10935 -- dispatch table.
47495553 10936
d9f6a4ee 10937 declare
10938 Elmt : Elmt_Id;
10939 Prim : Node_Id;
47495553 10940
10941 begin
d9f6a4ee 10942 Elmt := First_Elmt (Primitive_Operations (E));
10943 while Present (Elmt) loop
10944 Prim := Node (Elmt);
47495553 10945
d9f6a4ee 10946 if not Is_Abstract_Subprogram (Prim)
10947 and then No (Interface_Alias (Prim))
10948 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
47495553 10949 then
d9f6a4ee 10950 Error_Msg_Name_1 := Chars (Etype (E));
10951 Error_Msg_N
10952 ("'C'P'P constructor required for parent type %", E);
10953 exit;
47495553 10954 end if;
d9f6a4ee 10955
10956 Next_Elmt (Elmt);
10957 end loop;
10958 end;
47495553 10959 end if;
10960
d9f6a4ee 10961 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
67278d60 10962
d9f6a4ee 10963 -- If we have a type with predicates, build predicate function. This
0e9014a7 10964 -- is not needed in the generic case, and is not needed within TSS
ea822fd4 10965 -- subprograms and other predefined primitives.
67278d60 10966
ea822fd4 10967 if Non_Generic_Case
10968 and then Is_Type (E)
10969 and then Has_Predicates (E)
10970 and then not Within_Internal_Subprogram
10971 then
d9f6a4ee 10972 Build_Predicate_Functions (E, N);
10973 end if;
67278d60 10974
d9f6a4ee 10975 -- If type has delayed aspects, this is where we do the preanalysis at
10976 -- the freeze point, as part of the consistent visibility check. Note
10977 -- that this must be done after calling Build_Predicate_Functions or
10978 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10979 -- the subtype name in the saved expression so that they will not cause
10980 -- trouble in the preanalysis.
67278d60 10981
d9f6a4ee 10982 -- This is also not needed in the generic case
10983
10984 if Non_Generic_Case
10985 and then Has_Delayed_Aspects (E)
10986 and then Scope (E) = Current_Scope
10987 then
10988 -- Retrieve the visibility to the discriminants in order to properly
10989 -- analyze the aspects.
10990
10991 Push_Scope_And_Install_Discriminants (E);
10992
10993 declare
10994 Ritem : Node_Id;
10995
10996 begin
10997 -- Look for aspect specification entries for this entity
67278d60 10998
d9f6a4ee 10999 Ritem := First_Rep_Item (E);
11000 while Present (Ritem) loop
11001 if Nkind (Ritem) = N_Aspect_Specification
11002 and then Entity (Ritem) = E
11003 and then Is_Delayed_Aspect (Ritem)
11004 then
11005 Check_Aspect_At_Freeze_Point (Ritem);
11006 end if;
67278d60 11007
d9f6a4ee 11008 Next_Rep_Item (Ritem);
11009 end loop;
11010 end;
67278d60 11011
d9f6a4ee 11012 Uninstall_Discriminants_And_Pop_Scope (E);
67278d60 11013 end if;
67278d60 11014
d9f6a4ee 11015 -- For a record type, deal with variant parts. This has to be delayed
d0988351 11016 -- to this point, because of the issue of statically predicated
d9f6a4ee 11017 -- subtypes, which we have to ensure are frozen before checking
11018 -- choices, since we need to have the static choice list set.
d6f39728 11019
d9f6a4ee 11020 if Is_Record_Type (E) then
11021 Check_Variant_Part : declare
11022 D : constant Node_Id := Declaration_Node (E);
11023 T : Node_Id;
11024 C : Node_Id;
11025 VP : Node_Id;
d6f39728 11026
d9f6a4ee 11027 Others_Present : Boolean;
11028 pragma Warnings (Off, Others_Present);
11029 -- Indicates others present, not used in this case
d6f39728 11030
d9f6a4ee 11031 procedure Non_Static_Choice_Error (Choice : Node_Id);
11032 -- Error routine invoked by the generic instantiation below when
11033 -- the variant part has a non static choice.
f117057b 11034
d9f6a4ee 11035 procedure Process_Declarations (Variant : Node_Id);
11036 -- Processes declarations associated with a variant. We analyzed
11037 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11038 -- but we still need the recursive call to Check_Choices for any
11039 -- nested variant to get its choices properly processed. This is
11040 -- also where we expand out the choices if expansion is active.
1f526845 11041
d9f6a4ee 11042 package Variant_Choices_Processing is new
11043 Generic_Check_Choices
11044 (Process_Empty_Choice => No_OP,
11045 Process_Non_Static_Choice => Non_Static_Choice_Error,
11046 Process_Associated_Node => Process_Declarations);
11047 use Variant_Choices_Processing;
f117057b 11048
d9f6a4ee 11049 -----------------------------
11050 -- Non_Static_Choice_Error --
11051 -----------------------------
d6f39728 11052
d9f6a4ee 11053 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11054 begin
11055 Flag_Non_Static_Expr
11056 ("choice given in variant part is not static!", Choice);
11057 end Non_Static_Choice_Error;
d6f39728 11058
d9f6a4ee 11059 --------------------------
11060 -- Process_Declarations --
11061 --------------------------
dba36b60 11062
d9f6a4ee 11063 procedure Process_Declarations (Variant : Node_Id) is
11064 CL : constant Node_Id := Component_List (Variant);
11065 VP : Node_Id;
dba36b60 11066
d9f6a4ee 11067 begin
11068 -- Check for static predicate present in this variant
ea61a7ea 11069
d9f6a4ee 11070 if Has_SP_Choice (Variant) then
ea61a7ea 11071
d9f6a4ee 11072 -- Here we expand. You might expect to find this call in
11073 -- Expand_N_Variant_Part, but that is called when we first
11074 -- see the variant part, and we cannot do this expansion
11075 -- earlier than the freeze point, since for statically
11076 -- predicated subtypes, the predicate is not known till
11077 -- the freeze point.
ea61a7ea 11078
d9f6a4ee 11079 -- Furthermore, we do this expansion even if the expander
11080 -- is not active, because other semantic processing, e.g.
11081 -- for aggregates, requires the expanded list of choices.
ea61a7ea 11082
d9f6a4ee 11083 -- If the expander is not active, then we can't just clobber
11084 -- the list since it would invalidate the ASIS -gnatct tree.
11085 -- So we have to rewrite the variant part with a Rewrite
11086 -- call that replaces it with a copy and clobber the copy.
11087
11088 if not Expander_Active then
11089 declare
11090 NewV : constant Node_Id := New_Copy (Variant);
11091 begin
11092 Set_Discrete_Choices
11093 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11094 Rewrite (Variant, NewV);
11095 end;
11096 end if;
11097
11098 Expand_Static_Predicates_In_Choices (Variant);
ea61a7ea 11099 end if;
11100
d9f6a4ee 11101 -- We don't need to worry about the declarations in the variant
11102 -- (since they were analyzed by Analyze_Choices when we first
11103 -- encountered the variant), but we do need to take care of
11104 -- expansion of any nested variants.
ea61a7ea 11105
d9f6a4ee 11106 if not Null_Present (CL) then
11107 VP := Variant_Part (CL);
ea61a7ea 11108
d9f6a4ee 11109 if Present (VP) then
11110 Check_Choices
11111 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11112 end if;
11113 end if;
11114 end Process_Declarations;
ea61a7ea 11115
d9f6a4ee 11116 -- Start of processing for Check_Variant_Part
b9e61b2a 11117
d9f6a4ee 11118 begin
11119 -- Find component list
ea61a7ea 11120
d9f6a4ee 11121 C := Empty;
ea61a7ea 11122
d9f6a4ee 11123 if Nkind (D) = N_Full_Type_Declaration then
11124 T := Type_Definition (D);
ea61a7ea 11125
d9f6a4ee 11126 if Nkind (T) = N_Record_Definition then
11127 C := Component_List (T);
d6f39728 11128
d9f6a4ee 11129 elsif Nkind (T) = N_Derived_Type_Definition
11130 and then Present (Record_Extension_Part (T))
11131 then
11132 C := Component_List (Record_Extension_Part (T));
11133 end if;
11134 end if;
d6f39728 11135
d9f6a4ee 11136 -- Case of variant part present
d6f39728 11137
d9f6a4ee 11138 if Present (C) and then Present (Variant_Part (C)) then
11139 VP := Variant_Part (C);
ea61a7ea 11140
d9f6a4ee 11141 -- Check choices
ea61a7ea 11142
d9f6a4ee 11143 Check_Choices
11144 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
ea61a7ea 11145
d9f6a4ee 11146 -- If the last variant does not contain the Others choice,
11147 -- replace it with an N_Others_Choice node since Gigi always
11148 -- wants an Others. Note that we do not bother to call Analyze
11149 -- on the modified variant part, since its only effect would be
11150 -- to compute the Others_Discrete_Choices node laboriously, and
11151 -- of course we already know the list of choices corresponding
39a0c1d3 11152 -- to the others choice (it's the list we're replacing).
d6f39728 11153
d9f6a4ee 11154 -- We only want to do this if the expander is active, since
39a0c1d3 11155 -- we do not want to clobber the ASIS tree.
d6f39728 11156
d9f6a4ee 11157 if Expander_Active then
11158 declare
11159 Last_Var : constant Node_Id :=
11160 Last_Non_Pragma (Variants (VP));
d6f39728 11161
d9f6a4ee 11162 Others_Node : Node_Id;
d6f39728 11163
d9f6a4ee 11164 begin
11165 if Nkind (First (Discrete_Choices (Last_Var))) /=
11166 N_Others_Choice
11167 then
11168 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11169 Set_Others_Discrete_Choices
11170 (Others_Node, Discrete_Choices (Last_Var));
11171 Set_Discrete_Choices
11172 (Last_Var, New_List (Others_Node));
11173 end if;
11174 end;
11175 end if;
d6f39728 11176 end if;
d9f6a4ee 11177 end Check_Variant_Part;
d6f39728 11178 end if;
d9f6a4ee 11179 end Freeze_Entity_Checks;
d6f39728 11180
11181 -------------------------
11182 -- Get_Alignment_Value --
11183 -------------------------
11184
11185 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11186 Align : constant Uint := Static_Integer (Expr);
11187
11188 begin
11189 if Align = No_Uint then
11190 return No_Uint;
11191
11192 elsif Align <= 0 then
11193 Error_Msg_N ("alignment value must be positive", Expr);
11194 return No_Uint;
11195
11196 else
11197 for J in Int range 0 .. 64 loop
11198 declare
11199 M : constant Uint := Uint_2 ** J;
11200
11201 begin
11202 exit when M = Align;
11203
11204 if M > Align then
11205 Error_Msg_N
11206 ("alignment value must be power of 2", Expr);
11207 return No_Uint;
11208 end if;
11209 end;
11210 end loop;
11211
11212 return Align;
11213 end if;
11214 end Get_Alignment_Value;
11215
99a2d5bd 11216 -------------------------------------
11217 -- Inherit_Aspects_At_Freeze_Point --
11218 -------------------------------------
11219
11220 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11221 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11222 (Rep_Item : Node_Id) return Boolean;
11223 -- This routine checks if Rep_Item is either a pragma or an aspect
11224 -- specification node whose correponding pragma (if any) is present in
11225 -- the Rep Item chain of the entity it has been specified to.
11226
11227 --------------------------------------------------
11228 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11229 --------------------------------------------------
11230
11231 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11232 (Rep_Item : Node_Id) return Boolean
11233 is
11234 begin
ec6f6da5 11235 return
11236 Nkind (Rep_Item) = N_Pragma
11237 or else Present_In_Rep_Item
11238 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
99a2d5bd 11239 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11240
29a9d4be 11241 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11242
99a2d5bd 11243 begin
11244 -- A representation item is either subtype-specific (Size and Alignment
11245 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 11246 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 11247
11248 -- A derived type inherits each type-related representation aspect of
11249 -- its parent type that was directly specified before the declaration of
29a9d4be 11250 -- the derived type (RM 13.1.15).
99a2d5bd 11251
11252 -- A derived subtype inherits each subtype-specific representation
11253 -- aspect of its parent subtype that was directly specified before the
29a9d4be 11254 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 11255
11256 -- The general processing involves inheriting a representation aspect
11257 -- from a parent type whenever the first rep item (aspect specification,
11258 -- attribute definition clause, pragma) corresponding to the given
11259 -- representation aspect in the rep item chain of Typ, if any, isn't
11260 -- directly specified to Typ but to one of its parents.
11261
11262 -- ??? Note that, for now, just a limited number of representation
29a9d4be 11263 -- aspects have been inherited here so far. Many of them are
11264 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11265 -- a non- exhaustive list of aspects that likely also need to
11266 -- be moved to this routine: Alignment, Component_Alignment,
11267 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 11268 -- Preelaborable_Initialization, RM_Size and Small.
11269
8b6e9bf2 11270 -- In addition, Convention must be propagated from base type to subtype,
11271 -- because the subtype may have been declared on an incomplete view.
11272
99a2d5bd 11273 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11274 return;
11275 end if;
11276
11277 -- Ada_05/Ada_2005
11278
11279 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11280 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11281 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11282 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11283 then
11284 Set_Is_Ada_2005_Only (Typ);
11285 end if;
11286
11287 -- Ada_12/Ada_2012
11288
11289 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11290 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11291 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11292 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11293 then
11294 Set_Is_Ada_2012_Only (Typ);
11295 end if;
11296
11297 -- Atomic/Shared
11298
11299 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11300 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11301 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11302 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11303 then
11304 Set_Is_Atomic (Typ);
99a2d5bd 11305 Set_Is_Volatile (Typ);
4bf2acc9 11306 Set_Treat_As_Volatile (Typ);
99a2d5bd 11307 end if;
11308
8b6e9bf2 11309 -- Convention
11310
7ac4254e 11311 if Is_Record_Type (Typ)
11312 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11313 then
8b6e9bf2 11314 Set_Convention (Typ, Convention (Base_Type (Typ)));
11315 end if;
11316
29a9d4be 11317 -- Default_Component_Value
99a2d5bd 11318
81c2bc19 11319 -- Verify that there is no rep_item declared for the type, and there
11320 -- is one coming from an ancestor.
11321
99a2d5bd 11322 if Is_Array_Type (Typ)
f3d70f08 11323 and then Is_Base_Type (Typ)
81c2bc19 11324 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
99a2d5bd 11325 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11326 then
11327 Set_Default_Aspect_Component_Value (Typ,
11328 Default_Aspect_Component_Value
11329 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11330 end if;
11331
29a9d4be 11332 -- Default_Value
99a2d5bd 11333
11334 if Is_Scalar_Type (Typ)
f3d70f08 11335 and then Is_Base_Type (Typ)
81c2bc19 11336 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
99a2d5bd 11337 and then Has_Rep_Item (Typ, Name_Default_Value)
11338 then
81c2bc19 11339 Set_Has_Default_Aspect (Typ);
99a2d5bd 11340 Set_Default_Aspect_Value (Typ,
11341 Default_Aspect_Value
11342 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11343 end if;
11344
11345 -- Discard_Names
11346
11347 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11348 and then Has_Rep_Item (Typ, Name_Discard_Names)
11349 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11350 (Get_Rep_Item (Typ, Name_Discard_Names))
11351 then
11352 Set_Discard_Names (Typ);
11353 end if;
11354
11355 -- Invariants
11356
11357 if not Has_Rep_Item (Typ, Name_Invariant, False)
11358 and then Has_Rep_Item (Typ, Name_Invariant)
11359 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11360 (Get_Rep_Item (Typ, Name_Invariant))
11361 then
11362 Set_Has_Invariants (Typ);
11363
11364 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
11365 Set_Has_Inheritable_Invariants (Typ);
11366 end if;
d7487d7d 11367
953378ae 11368 -- If we have a subtype with invariants, whose base type does not have
11369 -- invariants, copy these invariants to the base type. This happens for
11370 -- the case of implicit base types created for scalar and array types.
d7487d7d 11371
953378ae 11372 elsif Has_Invariants (Typ)
d7487d7d 11373 and then not Has_Invariants (Base_Type (Typ))
11374 then
11375 Set_Has_Invariants (Base_Type (Typ));
11376 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
99a2d5bd 11377 end if;
11378
11379 -- Volatile
11380
11381 if not Has_Rep_Item (Typ, Name_Volatile, False)
11382 and then Has_Rep_Item (Typ, Name_Volatile)
11383 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11384 (Get_Rep_Item (Typ, Name_Volatile))
11385 then
99a2d5bd 11386 Set_Is_Volatile (Typ);
4bf2acc9 11387 Set_Treat_As_Volatile (Typ);
99a2d5bd 11388 end if;
11389
2fe893b9 11390 -- Volatile_Full_Access
11391
11392 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11393 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11394 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11395 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11396 then
4bf2acc9 11397 Set_Is_Volatile_Full_Access (Typ);
2fe893b9 11398 Set_Is_Volatile (Typ);
4bf2acc9 11399 Set_Treat_As_Volatile (Typ);
2fe893b9 11400 end if;
11401
99a2d5bd 11402 -- Inheritance for derived types only
11403
11404 if Is_Derived_Type (Typ) then
11405 declare
11406 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11407 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11408
11409 begin
11410 -- Atomic_Components
11411
11412 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11413 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11414 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11415 (Get_Rep_Item (Typ, Name_Atomic_Components))
11416 then
11417 Set_Has_Atomic_Components (Imp_Bas_Typ);
11418 end if;
11419
11420 -- Volatile_Components
11421
11422 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11423 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11424 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11425 (Get_Rep_Item (Typ, Name_Volatile_Components))
11426 then
11427 Set_Has_Volatile_Components (Imp_Bas_Typ);
11428 end if;
11429
e81df51c 11430 -- Finalize_Storage_Only
99a2d5bd 11431
11432 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11433 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11434 then
11435 Set_Finalize_Storage_Only (Bas_Typ);
11436 end if;
11437
11438 -- Universal_Aliasing
11439
11440 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11441 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11442 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11443 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11444 then
11445 Set_Universal_Aliasing (Imp_Bas_Typ);
11446 end if;
11447
e81df51c 11448 -- Bit_Order
99a2d5bd 11449
11450 if Is_Record_Type (Typ) then
99a2d5bd 11451 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11452 and then Has_Rep_Item (Typ, Name_Bit_Order)
11453 then
11454 Set_Reverse_Bit_Order (Bas_Typ,
11455 Reverse_Bit_Order (Entity (Name
11456 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11457 end if;
e81df51c 11458 end if;
11459
e9218716 11460 -- Scalar_Storage_Order
11461
11462 -- Note: the aspect is specified on a first subtype, but recorded
11463 -- in a flag of the base type!
e81df51c 11464
11465 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
29b91bc7 11466 and then Typ = Bas_Typ
e81df51c 11467 then
e81df51c 11468 -- For a type extension, always inherit from parent; otherwise
11469 -- inherit if no default applies. Note: we do not check for
11470 -- an explicit rep item on the parent type when inheriting,
11471 -- because the parent SSO may itself have been set by default.
99a2d5bd 11472
e9218716 11473 if not Has_Rep_Item (First_Subtype (Typ),
11474 Name_Scalar_Storage_Order, False)
e81df51c 11475 and then (Is_Tagged_Type (Bas_Typ)
29b91bc7 11476 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11477 or else
11478 SSO_Set_High_By_Default (Bas_Typ)))
99a2d5bd 11479 then
11480 Set_Reverse_Storage_Order (Bas_Typ,
423b89fd 11481 Reverse_Storage_Order
11482 (Implementation_Base_Type (Etype (Bas_Typ))));
b64082f2 11483
11484 -- Clear default SSO indications, since the inherited aspect
11485 -- which was set explicitly overrides the default.
11486
11487 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11488 Set_SSO_Set_High_By_Default (Bas_Typ, False);
99a2d5bd 11489 end if;
11490 end if;
11491 end;
11492 end if;
11493 end Inherit_Aspects_At_Freeze_Point;
11494
d6f39728 11495 ----------------
11496 -- Initialize --
11497 ----------------
11498
11499 procedure Initialize is
11500 begin
7717ea00 11501 Address_Clause_Checks.Init;
d6f39728 11502 Unchecked_Conversions.Init;
dba38d2f 11503
36ac5fbb 11504 if AAMP_On_Target then
dba38d2f 11505 Independence_Checks.Init;
11506 end if;
d6f39728 11507 end Initialize;
11508
2625eb01 11509 ---------------------------
11510 -- Install_Discriminants --
11511 ---------------------------
11512
11513 procedure Install_Discriminants (E : Entity_Id) is
11514 Disc : Entity_Id;
11515 Prev : Entity_Id;
11516 begin
11517 Disc := First_Discriminant (E);
11518 while Present (Disc) loop
11519 Prev := Current_Entity (Disc);
11520 Set_Current_Entity (Disc);
11521 Set_Is_Immediately_Visible (Disc);
11522 Set_Homonym (Disc, Prev);
11523 Next_Discriminant (Disc);
11524 end loop;
11525 end Install_Discriminants;
11526
d6f39728 11527 -------------------------
11528 -- Is_Operational_Item --
11529 -------------------------
11530
11531 function Is_Operational_Item (N : Node_Id) return Boolean is
11532 begin
11533 if Nkind (N) /= N_Attribute_Definition_Clause then
11534 return False;
b9e61b2a 11535
d6f39728 11536 else
11537 declare
b9e61b2a 11538 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 11539 begin
078a74b8 11540
55ab5265 11541 -- List of operational items is given in AARM 13.1(8.mm/1).
078a74b8 11542 -- It is clearly incomplete, as it does not include iterator
11543 -- aspects, among others.
11544
11545 return Id = Attribute_Constant_Indexing
11546 or else Id = Attribute_Default_Iterator
11547 or else Id = Attribute_Implicit_Dereference
11548 or else Id = Attribute_Input
11549 or else Id = Attribute_Iterator_Element
11550 or else Id = Attribute_Iterable
d6f39728 11551 or else Id = Attribute_Output
11552 or else Id = Attribute_Read
078a74b8 11553 or else Id = Attribute_Variable_Indexing
f15731c4 11554 or else Id = Attribute_Write
11555 or else Id = Attribute_External_Tag;
d6f39728 11556 end;
11557 end if;
11558 end Is_Operational_Item;
11559
3b23aaa0 11560 -------------------------
11561 -- Is_Predicate_Static --
11562 -------------------------
11563
94d896aa 11564 -- Note: the basic legality of the expression has already been checked, so
11565 -- we don't need to worry about cases or ranges on strings for example.
11566
3b23aaa0 11567 function Is_Predicate_Static
11568 (Expr : Node_Id;
11569 Nam : Name_Id) return Boolean
11570 is
11571 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
973c2fba 11572 -- Given a list of case expression alternatives, returns True if all
11573 -- the alternatives are static (have all static choices, and a static
11574 -- expression).
3b23aaa0 11575
11576 function All_Static_Choices (L : List_Id) return Boolean;
a360a0f7 11577 -- Returns true if all elements of the list are OK static choices
3b23aaa0 11578 -- as defined below for Is_Static_Choice. Used for case expression
973c2fba 11579 -- alternatives and for the right operand of a membership test. An
11580 -- others_choice is static if the corresponding expression is static.
7c0c95b8 11581 -- The staticness of the bounds is checked separately.
3b23aaa0 11582
11583 function Is_Static_Choice (N : Node_Id) return Boolean;
11584 -- Returns True if N represents a static choice (static subtype, or
a360a0f7 11585 -- static subtype indication, or static expression, or static range).
3b23aaa0 11586 --
11587 -- Note that this is a bit more inclusive than we actually need
11588 -- (in particular membership tests do not allow the use of subtype
a360a0f7 11589 -- indications). But that doesn't matter, we have already checked
3b23aaa0 11590 -- that the construct is legal to get this far.
11591
11592 function Is_Type_Ref (N : Node_Id) return Boolean;
11593 pragma Inline (Is_Type_Ref);
973c2fba 11594 -- Returns True if N is a reference to the type for the predicate in the
11595 -- expression (i.e. if it is an identifier whose Chars field matches the
11596 -- Nam given in the call). N must not be parenthesized, if the type name
11597 -- appears in parens, this routine will return False.
3b23aaa0 11598
11599 ----------------------------------
11600 -- All_Static_Case_Alternatives --
11601 ----------------------------------
11602
11603 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11604 N : Node_Id;
11605
11606 begin
11607 N := First (L);
11608 while Present (N) loop
11609 if not (All_Static_Choices (Discrete_Choices (N))
11610 and then Is_OK_Static_Expression (Expression (N)))
11611 then
11612 return False;
11613 end if;
11614
11615 Next (N);
11616 end loop;
11617
11618 return True;
11619 end All_Static_Case_Alternatives;
11620
11621 ------------------------
11622 -- All_Static_Choices --
11623 ------------------------
11624
11625 function All_Static_Choices (L : List_Id) return Boolean is
11626 N : Node_Id;
11627
11628 begin
11629 N := First (L);
11630 while Present (N) loop
11631 if not Is_Static_Choice (N) then
11632 return False;
11633 end if;
11634
11635 Next (N);
11636 end loop;
11637
11638 return True;
11639 end All_Static_Choices;
11640
11641 ----------------------
11642 -- Is_Static_Choice --
11643 ----------------------
11644
11645 function Is_Static_Choice (N : Node_Id) return Boolean is
11646 begin
7c0c95b8 11647 return Nkind (N) = N_Others_Choice
11648 or else Is_OK_Static_Expression (N)
3b23aaa0 11649 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11650 and then Is_OK_Static_Subtype (Entity (N)))
11651 or else (Nkind (N) = N_Subtype_Indication
11652 and then Is_OK_Static_Subtype (Entity (N)))
11653 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11654 end Is_Static_Choice;
11655
11656 -----------------
11657 -- Is_Type_Ref --
11658 -----------------
11659
11660 function Is_Type_Ref (N : Node_Id) return Boolean is
11661 begin
11662 return Nkind (N) = N_Identifier
11663 and then Chars (N) = Nam
11664 and then Paren_Count (N) = 0;
11665 end Is_Type_Ref;
11666
11667 -- Start of processing for Is_Predicate_Static
11668
11669 begin
3b23aaa0 11670 -- Predicate_Static means one of the following holds. Numbers are the
11671 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11672
11673 -- 16: A static expression
11674
11675 if Is_OK_Static_Expression (Expr) then
11676 return True;
11677
11678 -- 17: A membership test whose simple_expression is the current
11679 -- instance, and whose membership_choice_list meets the requirements
11680 -- for a static membership test.
11681
11682 elsif Nkind (Expr) in N_Membership_Test
11683 and then ((Present (Right_Opnd (Expr))
11684 and then Is_Static_Choice (Right_Opnd (Expr)))
11685 or else
11686 (Present (Alternatives (Expr))
11687 and then All_Static_Choices (Alternatives (Expr))))
11688 then
11689 return True;
11690
11691 -- 18. A case_expression whose selecting_expression is the current
11692 -- instance, and whose dependent expressions are static expressions.
11693
11694 elsif Nkind (Expr) = N_Case_Expression
11695 and then Is_Type_Ref (Expression (Expr))
11696 and then All_Static_Case_Alternatives (Alternatives (Expr))
11697 then
11698 return True;
11699
11700 -- 19. A call to a predefined equality or ordering operator, where one
11701 -- operand is the current instance, and the other is a static
11702 -- expression.
11703
94d896aa 11704 -- Note: the RM is clearly wrong here in not excluding string types.
11705 -- Without this exclusion, we would allow expressions like X > "ABC"
11706 -- to be considered as predicate-static, which is clearly not intended,
11707 -- since the idea is for predicate-static to be a subset of normal
11708 -- static expressions (and "DEF" > "ABC" is not a static expression).
11709
11710 -- However, we do allow internally generated (not from source) equality
11711 -- and inequality operations to be valid on strings (this helps deal
11712 -- with cases where we transform A in "ABC" to A = "ABC).
11713
3b23aaa0 11714 elsif Nkind (Expr) in N_Op_Compare
94d896aa 11715 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11716 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11717 and then not Comes_From_Source (Expr)))
3b23aaa0 11718 and then ((Is_Type_Ref (Left_Opnd (Expr))
11719 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11720 or else
11721 (Is_Type_Ref (Right_Opnd (Expr))
11722 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11723 then
11724 return True;
11725
11726 -- 20. A call to a predefined boolean logical operator, where each
11727 -- operand is predicate-static.
11728
11729 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11730 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11731 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11732 or else
11733 (Nkind (Expr) = N_Op_Not
11734 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11735 then
11736 return True;
11737
11738 -- 21. A short-circuit control form where both operands are
11739 -- predicate-static.
11740
11741 elsif Nkind (Expr) in N_Short_Circuit
11742 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11743 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11744 then
11745 return True;
11746
11747 -- 22. A parenthesized predicate-static expression. This does not
11748 -- require any special test, since we just ignore paren levels in
11749 -- all the cases above.
11750
11751 -- One more test that is an implementation artifact caused by the fact
499918a7 11752 -- that we are analyzing not the original expression, but the generated
3b23aaa0 11753 -- expression in the body of the predicate function. This can include
a360a0f7 11754 -- references to inherited predicates, so that the expression we are
3b23aaa0 11755 -- processing looks like:
11756
11757 -- expression and then xxPredicate (typ (Inns))
11758
11759 -- Where the call is to a Predicate function for an inherited predicate.
60a4a5af 11760 -- We simply ignore such a call, which could be to either a dynamic or
11761 -- a static predicate. Note that if the parent predicate is dynamic then
11762 -- eventually this type will be marked as dynamic, but you are allowed
11763 -- to specify a static predicate for a subtype which is inheriting a
11764 -- dynamic predicate, so the static predicate validation here ignores
11765 -- the inherited predicate even if it is dynamic.
3b23aaa0 11766
11767 elsif Nkind (Expr) = N_Function_Call
11768 and then Is_Predicate_Function (Entity (Name (Expr)))
11769 then
11770 return True;
11771
11772 -- That's an exhaustive list of tests, all other cases are not
a360a0f7 11773 -- predicate-static, so we return False.
3b23aaa0 11774
11775 else
11776 return False;
11777 end if;
11778 end Is_Predicate_Static;
11779
2ff55065 11780 ---------------------
11781 -- Kill_Rep_Clause --
11782 ---------------------
11783
11784 procedure Kill_Rep_Clause (N : Node_Id) is
11785 begin
11786 pragma Assert (Ignore_Rep_Clauses);
360f426f 11787
11788 -- Note: we use Replace rather than Rewrite, because we don't want
11789 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11790 -- rep clause that is being replaced.
11791
4949ddd5 11792 Replace (N, Make_Null_Statement (Sloc (N)));
360f426f 11793
11794 -- The null statement must be marked as not coming from source. This is
37c6552c 11795 -- so that ASIS ignores it, and also the back end does not expect bogus
360f426f 11796 -- "from source" null statements in weird places (e.g. in declarative
11797 -- regions where such null statements are not allowed).
11798
11799 Set_Comes_From_Source (N, False);
2ff55065 11800 end Kill_Rep_Clause;
11801
d6f39728 11802 ------------------
11803 -- Minimum_Size --
11804 ------------------
11805
11806 function Minimum_Size
11807 (T : Entity_Id;
d5b349fa 11808 Biased : Boolean := False) return Nat
d6f39728 11809 is
11810 Lo : Uint := No_Uint;
11811 Hi : Uint := No_Uint;
11812 LoR : Ureal := No_Ureal;
11813 HiR : Ureal := No_Ureal;
11814 LoSet : Boolean := False;
11815 HiSet : Boolean := False;
11816 B : Uint;
11817 S : Nat;
11818 Ancest : Entity_Id;
f15731c4 11819 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 11820
11821 begin
11822 -- If bad type, return 0
11823
11824 if T = Any_Type then
11825 return 0;
11826
11827 -- For generic types, just return zero. There cannot be any legitimate
11828 -- need to know such a size, but this routine may be called with a
11829 -- generic type as part of normal processing.
11830
f02a9a9a 11831 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
d6f39728 11832 return 0;
11833
74c7ae52 11834 -- Access types (cannot have size smaller than System.Address)
d6f39728 11835
11836 elsif Is_Access_Type (T) then
74c7ae52 11837 return System_Address_Size;
d6f39728 11838
11839 -- Floating-point types
11840
11841 elsif Is_Floating_Point_Type (T) then
f15731c4 11842 return UI_To_Int (Esize (R_Typ));
d6f39728 11843
11844 -- Discrete types
11845
11846 elsif Is_Discrete_Type (T) then
11847
fdd294d1 11848 -- The following loop is looking for the nearest compile time known
11849 -- bounds following the ancestor subtype chain. The idea is to find
11850 -- the most restrictive known bounds information.
d6f39728 11851
11852 Ancest := T;
11853 loop
11854 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11855 return 0;
11856 end if;
11857
11858 if not LoSet then
11859 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11860 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11861 LoSet := True;
11862 exit when HiSet;
11863 end if;
11864 end if;
11865
11866 if not HiSet then
11867 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11868 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11869 HiSet := True;
11870 exit when LoSet;
11871 end if;
11872 end if;
11873
11874 Ancest := Ancestor_Subtype (Ancest);
11875
11876 if No (Ancest) then
11877 Ancest := Base_Type (T);
11878
11879 if Is_Generic_Type (Ancest) then
11880 return 0;
11881 end if;
11882 end if;
11883 end loop;
11884
11885 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 11886 -- Corresponding_Integer_Value values of the bounds, since these do not
11887 -- get set till the type is frozen, and this routine can be called
11888 -- before the type is frozen. Similarly the test for bounds being static
11889 -- needs to include the case where we have unanalyzed real literals for
11890 -- the same reason.
d6f39728 11891
11892 elsif Is_Fixed_Point_Type (T) then
11893
fdd294d1 11894 -- The following loop is looking for the nearest compile time known
11895 -- bounds following the ancestor subtype chain. The idea is to find
11896 -- the most restrictive known bounds information.
d6f39728 11897
11898 Ancest := T;
11899 loop
11900 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11901 return 0;
11902 end if;
11903
3062c401 11904 -- Note: In the following two tests for LoSet and HiSet, it may
11905 -- seem redundant to test for N_Real_Literal here since normally
11906 -- one would assume that the test for the value being known at
11907 -- compile time includes this case. However, there is a glitch.
11908 -- If the real literal comes from folding a non-static expression,
11909 -- then we don't consider any non- static expression to be known
11910 -- at compile time if we are in configurable run time mode (needed
11911 -- in some cases to give a clearer definition of what is and what
11912 -- is not accepted). So the test is indeed needed. Without it, we
11913 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11914
d6f39728 11915 if not LoSet then
11916 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11917 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11918 then
11919 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11920 LoSet := True;
11921 exit when HiSet;
11922 end if;
11923 end if;
11924
11925 if not HiSet then
11926 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11927 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11928 then
11929 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11930 HiSet := True;
11931 exit when LoSet;
11932 end if;
11933 end if;
11934
11935 Ancest := Ancestor_Subtype (Ancest);
11936
11937 if No (Ancest) then
11938 Ancest := Base_Type (T);
11939
11940 if Is_Generic_Type (Ancest) then
11941 return 0;
11942 end if;
11943 end if;
11944 end loop;
11945
11946 Lo := UR_To_Uint (LoR / Small_Value (T));
11947 Hi := UR_To_Uint (HiR / Small_Value (T));
11948
11949 -- No other types allowed
11950
11951 else
11952 raise Program_Error;
11953 end if;
11954
2866d595 11955 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 11956
cc46ff4b 11957 if (Biased
11958 and then not Is_Fixed_Point_Type (T)
11959 and then not (Is_Enumeration_Type (T)
11960 and then Has_Non_Standard_Rep (T)))
d6f39728 11961 or else Has_Biased_Representation (T)
11962 then
11963 Hi := Hi - Lo;
11964 Lo := Uint_0;
11965 end if;
11966
005366f7 11967 -- Null range case, size is always zero. We only do this in the discrete
11968 -- type case, since that's the odd case that came up. Probably we should
11969 -- also do this in the fixed-point case, but doing so causes peculiar
11970 -- gigi failures, and it is not worth worrying about this incredibly
11971 -- marginal case (explicit null-range fixed-point type declarations)???
11972
11973 if Lo > Hi and then Is_Discrete_Type (T) then
11974 S := 0;
11975
d6f39728 11976 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 11977 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 11978 -- to be accommodated in the base type.
d6f39728 11979
005366f7 11980 elsif Lo < 0 or else Hi < 0 then
d6f39728 11981 S := 1;
11982 B := Uint_1;
11983
da253936 11984 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11985 -- Note that we accommodate the case where the bounds cross. This
d6f39728 11986 -- can happen either because of the way the bounds are declared
11987 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11988
11989 while Lo < -B
11990 or else Hi < -B
11991 or else Lo >= B
11992 or else Hi >= B
11993 loop
11994 B := Uint_2 ** S;
11995 S := S + 1;
11996 end loop;
11997
11998 -- Unsigned case
11999
12000 else
12001 -- If both bounds are positive, make sure that both are represen-
12002 -- table in the case where the bounds are crossed. This can happen
12003 -- either because of the way the bounds are declared, or because of
12004 -- the algorithm in Freeze_Fixed_Point_Type.
12005
12006 if Lo > Hi then
12007 Hi := Lo;
12008 end if;
12009
da253936 12010 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 12011
12012 S := 0;
12013 while Hi >= Uint_2 ** S loop
12014 S := S + 1;
12015 end loop;
12016 end if;
12017
12018 return S;
12019 end Minimum_Size;
12020
44e4341e 12021 ---------------------------
12022 -- New_Stream_Subprogram --
12023 ---------------------------
d6f39728 12024
44e4341e 12025 procedure New_Stream_Subprogram
12026 (N : Node_Id;
12027 Ent : Entity_Id;
12028 Subp : Entity_Id;
12029 Nam : TSS_Name_Type)
d6f39728 12030 is
12031 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 12032 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 12033 Subp_Id : Entity_Id;
d6f39728 12034 Subp_Decl : Node_Id;
12035 F : Entity_Id;
12036 Etyp : Entity_Id;
12037
44e4341e 12038 Defer_Declaration : constant Boolean :=
12039 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12040 -- For a tagged type, there is a declaration for each stream attribute
12041 -- at the freeze point, and we must generate only a completion of this
12042 -- declaration. We do the same for private types, because the full view
12043 -- might be tagged. Otherwise we generate a declaration at the point of
12044 -- the attribute definition clause.
12045
f15731c4 12046 function Build_Spec return Node_Id;
12047 -- Used for declaration and renaming declaration, so that this is
12048 -- treated as a renaming_as_body.
12049
12050 ----------------
12051 -- Build_Spec --
12052 ----------------
12053
d5b349fa 12054 function Build_Spec return Node_Id is
44e4341e 12055 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12056 Formals : List_Id;
12057 Spec : Node_Id;
83c6c069 12058 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
44e4341e 12059
f15731c4 12060 begin
9dfe12ae 12061 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 12062
44e4341e 12063 -- S : access Root_Stream_Type'Class
12064
12065 Formals := New_List (
12066 Make_Parameter_Specification (Loc,
12067 Defining_Identifier =>
12068 Make_Defining_Identifier (Loc, Name_S),
12069 Parameter_Type =>
12070 Make_Access_Definition (Loc,
12071 Subtype_Mark =>
83c6c069 12072 New_Occurrence_Of (
44e4341e 12073 Designated_Type (Etype (F)), Loc))));
12074
12075 if Nam = TSS_Stream_Input then
4bba0a8d 12076 Spec :=
12077 Make_Function_Specification (Loc,
12078 Defining_Unit_Name => Subp_Id,
12079 Parameter_Specifications => Formals,
12080 Result_Definition => T_Ref);
44e4341e 12081 else
12082 -- V : [out] T
f15731c4 12083
44e4341e 12084 Append_To (Formals,
12085 Make_Parameter_Specification (Loc,
12086 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12087 Out_Present => Out_P,
12088 Parameter_Type => T_Ref));
f15731c4 12089
d3ef794c 12090 Spec :=
12091 Make_Procedure_Specification (Loc,
12092 Defining_Unit_Name => Subp_Id,
12093 Parameter_Specifications => Formals);
44e4341e 12094 end if;
f15731c4 12095
44e4341e 12096 return Spec;
12097 end Build_Spec;
d6f39728 12098
44e4341e 12099 -- Start of processing for New_Stream_Subprogram
d6f39728 12100
44e4341e 12101 begin
12102 F := First_Formal (Subp);
12103
12104 if Ekind (Subp) = E_Procedure then
12105 Etyp := Etype (Next_Formal (F));
d6f39728 12106 else
44e4341e 12107 Etyp := Etype (Subp);
d6f39728 12108 end if;
f15731c4 12109
44e4341e 12110 -- Prepare subprogram declaration and insert it as an action on the
12111 -- clause node. The visibility for this entity is used to test for
12112 -- visibility of the attribute definition clause (in the sense of
12113 -- 8.3(23) as amended by AI-195).
9dfe12ae 12114
44e4341e 12115 if not Defer_Declaration then
f15731c4 12116 Subp_Decl :=
12117 Make_Subprogram_Declaration (Loc,
12118 Specification => Build_Spec);
44e4341e 12119
12120 -- For a tagged type, there is always a visible declaration for each
15ebb600 12121 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 12122 -- completion of this declaration occurs at the freeze point, which is
12123 -- not always visible at places where the attribute definition clause is
12124 -- visible. So, we create a dummy entity here for the purpose of
12125 -- tracking the visibility of the attribute definition clause itself.
12126
12127 else
12128 Subp_Id :=
55868293 12129 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 12130 Subp_Decl :=
12131 Make_Object_Declaration (Loc,
12132 Defining_Identifier => Subp_Id,
12133 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 12134 end if;
12135
44e4341e 12136 Insert_Action (N, Subp_Decl);
12137 Set_Entity (N, Subp_Id);
12138
d6f39728 12139 Subp_Decl :=
12140 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 12141 Specification => Build_Spec,
83c6c069 12142 Name => New_Occurrence_Of (Subp, Loc));
d6f39728 12143
44e4341e 12144 if Defer_Declaration then
d6f39728 12145 Set_TSS (Base_Type (Ent), Subp_Id);
12146 else
12147 Insert_Action (N, Subp_Decl);
12148 Copy_TSS (Subp_Id, Base_Type (Ent));
12149 end if;
44e4341e 12150 end New_Stream_Subprogram;
d6f39728 12151
2625eb01 12152 ------------------------------------------
12153 -- Push_Scope_And_Install_Discriminants --
12154 ------------------------------------------
12155
12156 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12157 begin
12158 if Has_Discriminants (E) then
12159 Push_Scope (E);
12160
12161 -- Make discriminants visible for type declarations and protected
12162 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12163
12164 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12165 Install_Discriminants (E);
12166 end if;
12167 end if;
12168 end Push_Scope_And_Install_Discriminants;
12169
d6f39728 12170 ------------------------
12171 -- Rep_Item_Too_Early --
12172 ------------------------
12173
80d4fec4 12174 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 12175 begin
44e4341e 12176 -- Cannot apply non-operational rep items to generic types
d6f39728 12177
f15731c4 12178 if Is_Operational_Item (N) then
12179 return False;
12180
12181 elsif Is_Type (T)
d6f39728 12182 and then Is_Generic_Type (Root_Type (T))
e17c5076 12183 and then (Nkind (N) /= N_Pragma
12184 or else Get_Pragma_Id (N) /= Pragma_Convention)
d6f39728 12185 then
503f7fd3 12186 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 12187 return True;
12188 end if;
12189
fdd294d1 12190 -- Otherwise check for incomplete type
d6f39728 12191
12192 if Is_Incomplete_Or_Private_Type (T)
12193 and then No (Underlying_Type (T))
d64221a7 12194 and then
12195 (Nkind (N) /= N_Pragma
60014bc9 12196 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 12197 then
12198 Error_Msg_N
12199 ("representation item must be after full type declaration", N);
12200 return True;
12201
1a34e48c 12202 -- If the type has incomplete components, a representation clause is
d6f39728 12203 -- illegal but stream attributes and Convention pragmas are correct.
12204
12205 elsif Has_Private_Component (T) then
f15731c4 12206 if Nkind (N) = N_Pragma then
d6f39728 12207 return False;
b9e61b2a 12208
d6f39728 12209 else
12210 Error_Msg_N
12211 ("representation item must appear after type is fully defined",
12212 N);
12213 return True;
12214 end if;
12215 else
12216 return False;
12217 end if;
12218 end Rep_Item_Too_Early;
12219
12220 -----------------------
12221 -- Rep_Item_Too_Late --
12222 -----------------------
12223
12224 function Rep_Item_Too_Late
12225 (T : Entity_Id;
12226 N : Node_Id;
d5b349fa 12227 FOnly : Boolean := False) return Boolean
d6f39728 12228 is
12229 S : Entity_Id;
12230 Parent_Type : Entity_Id;
12231
4d0944e9 12232 procedure No_Type_Rep_Item;
12233 -- Output message indicating that no type-related aspects can be
12234 -- specified due to some property of the parent type.
12235
d6f39728 12236 procedure Too_Late;
4d0944e9 12237 -- Output message for an aspect being specified too late
12238
12239 -- Note that neither of the above errors is considered a serious one,
12240 -- since the effect is simply that we ignore the representation clause
12241 -- in these cases.
04d38ee4 12242 -- Is this really true? In any case if we make this change we must
12243 -- document the requirement in the spec of Rep_Item_Too_Late that
12244 -- if True is returned, then the rep item must be completely ignored???
4d0944e9 12245
12246 ----------------------
12247 -- No_Type_Rep_Item --
12248 ----------------------
12249
12250 procedure No_Type_Rep_Item is
12251 begin
12252 Error_Msg_N ("|type-related representation item not permitted!", N);
12253 end No_Type_Rep_Item;
d53a018a 12254
12255 --------------
12256 -- Too_Late --
12257 --------------
d6f39728 12258
12259 procedure Too_Late is
12260 begin
ce4da1ed 12261 -- Other compilers seem more relaxed about rep items appearing too
12262 -- late. Since analysis tools typically don't care about rep items
12263 -- anyway, no reason to be too strict about this.
12264
a9cd517c 12265 if not Relaxed_RM_Semantics then
12266 Error_Msg_N ("|representation item appears too late!", N);
12267 end if;
d6f39728 12268 end Too_Late;
12269
12270 -- Start of processing for Rep_Item_Too_Late
12271
12272 begin
a3248fc4 12273 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 12274
12275 if Is_Frozen (T)
a3248fc4 12276
12277 -- Exclude imported types, which may be frozen if they appear in a
12278 -- representation clause for a local type.
12279
4aa270d8 12280 and then not From_Limited_With (T)
a3248fc4 12281
a9cd517c 12282 -- Exclude generated entities (not coming from source). The common
a3248fc4 12283 -- case is when we generate a renaming which prematurely freezes the
12284 -- renamed internal entity, but we still want to be able to set copies
12285 -- of attribute values such as Size/Alignment.
12286
12287 and then Comes_From_Source (T)
d6f39728 12288 then
12289 Too_Late;
12290 S := First_Subtype (T);
12291
12292 if Present (Freeze_Node (S)) then
04d38ee4 12293 if not Relaxed_RM_Semantics then
12294 Error_Msg_NE
12295 ("??no more representation items for }", Freeze_Node (S), S);
12296 end if;
d6f39728 12297 end if;
12298
12299 return True;
12300
d1a2e31b 12301 -- Check for case of untagged derived type whose parent either has
4d0944e9 12302 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12303 -- this case we do not output a Too_Late message, since there is no
12304 -- earlier point where the rep item could be placed to make it legal.
d6f39728 12305
12306 elsif Is_Type (T)
12307 and then not FOnly
12308 and then Is_Derived_Type (T)
12309 and then not Is_Tagged_Type (T)
12310 then
12311 Parent_Type := Etype (Base_Type (T));
12312
12313 if Has_Primitive_Operations (Parent_Type) then
4d0944e9 12314 No_Type_Rep_Item;
04d38ee4 12315
12316 if not Relaxed_RM_Semantics then
12317 Error_Msg_NE
12318 ("\parent type & has primitive operations!", N, Parent_Type);
12319 end if;
12320
d6f39728 12321 return True;
12322
12323 elsif Is_By_Reference_Type (Parent_Type) then
4d0944e9 12324 No_Type_Rep_Item;
04d38ee4 12325
12326 if not Relaxed_RM_Semantics then
12327 Error_Msg_NE
12328 ("\parent type & is a by reference type!", N, Parent_Type);
12329 end if;
12330
d6f39728 12331 return True;
12332 end if;
12333 end if;
12334
04d38ee4 12335 -- No error, but one more warning to consider. The RM (surprisingly)
12336 -- allows this pattern:
12337
12338 -- type S is ...
12339 -- primitive operations for S
12340 -- type R is new S;
12341 -- rep clause for S
12342
12343 -- Meaning that calls on the primitive operations of S for values of
12344 -- type R may require possibly expensive implicit conversion operations.
12345 -- This is not an error, but is worth a warning.
12346
12347 if not Relaxed_RM_Semantics and then Is_Type (T) then
12348 declare
12349 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12350
12351 begin
12352 if Present (DTL)
12353 and then Has_Primitive_Operations (Base_Type (T))
12354
12355 -- For now, do not generate this warning for the case of aspect
12356 -- specification using Ada 2012 syntax, since we get wrong
12357 -- messages we do not understand. The whole business of derived
12358 -- types and rep items seems a bit confused when aspects are
12359 -- used, since the aspects are not evaluated till freeze time.
12360
12361 and then not From_Aspect_Specification (N)
12362 then
12363 Error_Msg_Sloc := Sloc (DTL);
12364 Error_Msg_N
12365 ("representation item for& appears after derived type "
12366 & "declaration#??", N);
12367 Error_Msg_NE
12368 ("\may result in implicit conversions for primitive "
12369 & "operations of&??", N, T);
12370 Error_Msg_NE
12371 ("\to change representations when called with arguments "
12372 & "of type&??", N, DTL);
12373 end if;
12374 end;
12375 end if;
12376
3062c401 12377 -- No error, link item into head of chain of rep items for the entity,
12378 -- but avoid chaining if we have an overloadable entity, and the pragma
12379 -- is one that can apply to multiple overloaded entities.
12380
b9e61b2a 12381 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 12382 declare
12383 Pname : constant Name_Id := Pragma_Name (N);
12384 begin
18393965 12385 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12386 Name_External, Name_Interface)
fdd294d1 12387 then
12388 return False;
12389 end if;
12390 end;
3062c401 12391 end if;
12392
fdd294d1 12393 Record_Rep_Item (T, N);
d6f39728 12394 return False;
12395 end Rep_Item_Too_Late;
12396
2072eaa9 12397 -------------------------------------
12398 -- Replace_Type_References_Generic --
12399 -------------------------------------
12400
37c6552c 12401 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12402 TName : constant Name_Id := Chars (T);
2072eaa9 12403
12404 function Replace_Node (N : Node_Id) return Traverse_Result;
12405 -- Processes a single node in the traversal procedure below, checking
12406 -- if node N should be replaced, and if so, doing the replacement.
12407
12408 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
12409 -- This instantiation provides the body of Replace_Type_References
12410
12411 ------------------
12412 -- Replace_Node --
12413 ------------------
12414
12415 function Replace_Node (N : Node_Id) return Traverse_Result is
12416 S : Entity_Id;
12417 P : Node_Id;
12418
12419 begin
12420 -- Case of identifier
12421
12422 if Nkind (N) = N_Identifier then
12423
37c6552c 12424 -- If not the type name, check whether it is a reference to
12425 -- some other type, which must be frozen before the predicate
12426 -- function is analyzed, i.e. before the freeze node of the
12427 -- type to which the predicate applies.
2072eaa9 12428
12429 if Chars (N) /= TName then
37c6552c 12430 if Present (Current_Entity (N))
12431 and then Is_Type (Current_Entity (N))
12432 then
12433 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12434 end if;
12435
2072eaa9 12436 return Skip;
12437
12438 -- Otherwise do the replacement and we are done with this node
12439
12440 else
12441 Replace_Type_Reference (N);
12442 return Skip;
12443 end if;
12444
12445 -- Case of selected component (which is what a qualification
12446 -- looks like in the unanalyzed tree, which is what we have.
12447
12448 elsif Nkind (N) = N_Selected_Component then
12449
12450 -- If selector name is not our type, keeping going (we might
12451 -- still have an occurrence of the type in the prefix).
12452
12453 if Nkind (Selector_Name (N)) /= N_Identifier
12454 or else Chars (Selector_Name (N)) /= TName
12455 then
12456 return OK;
12457
12458 -- Selector name is our type, check qualification
12459
12460 else
12461 -- Loop through scopes and prefixes, doing comparison
12462
12463 S := Current_Scope;
12464 P := Prefix (N);
12465 loop
12466 -- Continue if no more scopes or scope with no name
12467
12468 if No (S) or else Nkind (S) not in N_Has_Chars then
12469 return OK;
12470 end if;
12471
12472 -- Do replace if prefix is an identifier matching the
12473 -- scope that we are currently looking at.
12474
12475 if Nkind (P) = N_Identifier
12476 and then Chars (P) = Chars (S)
12477 then
12478 Replace_Type_Reference (N);
12479 return Skip;
12480 end if;
12481
12482 -- Go check scope above us if prefix is itself of the
12483 -- form of a selected component, whose selector matches
12484 -- the scope we are currently looking at.
12485
12486 if Nkind (P) = N_Selected_Component
12487 and then Nkind (Selector_Name (P)) = N_Identifier
12488 and then Chars (Selector_Name (P)) = Chars (S)
12489 then
12490 S := Scope (S);
12491 P := Prefix (P);
12492
12493 -- For anything else, we don't have a match, so keep on
12494 -- going, there are still some weird cases where we may
12495 -- still have a replacement within the prefix.
12496
12497 else
12498 return OK;
12499 end if;
12500 end loop;
12501 end if;
12502
ec6f6da5 12503 -- Continue for any other node kind
2072eaa9 12504
12505 else
12506 return OK;
12507 end if;
12508 end Replace_Node;
12509
12510 begin
12511 Replace_Type_Refs (N);
12512 end Replace_Type_References_Generic;
12513
81bd1c0d 12514 --------------------------------
12515 -- Resolve_Aspect_Expressions --
12516 --------------------------------
12517
12518 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12519 ASN : Node_Id;
12520 A_Id : Aspect_Id;
12521 Expr : Node_Id;
12522
12523 begin
12524 ASN := First_Rep_Item (E);
12525 while Present (ASN) loop
12526 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12527 A_Id := Get_Aspect_Id (ASN);
12528 Expr := Expression (ASN);
12529
12530 case A_Id is
12531 -- For now we only deal with aspects that do not generate
12532 -- subprograms, or that may mention current instances of
12533 -- types. These will require special handling (TBD).
12534
12535 when Aspect_Predicate |
12536 Aspect_Invariant |
12537 Aspect_Static_Predicate |
12538 Aspect_Dynamic_Predicate =>
12539 null;
12540
12541 when Pre_Post_Aspects =>
12542 null;
12543
12544 when Aspect_Iterable =>
12545 if Nkind (Expr) = N_Aggregate then
12546 declare
12547 Assoc : Node_Id;
12548
12549 begin
12550 Assoc := First (Component_Associations (Expr));
12551 while Present (Assoc) loop
12552 Find_Direct_Name (Expression (Assoc));
12553 Next (Assoc);
12554 end loop;
12555 end;
12556 end if;
12557
12558 when others =>
12559 if Present (Expr) then
12560 case Aspect_Argument (A_Id) is
12561 when Expression | Optional_Expression =>
12562 Analyze_And_Resolve (Expression (ASN));
12563
12564 when Name | Optional_Name =>
12565 if Nkind (Expr) = N_Identifier then
12566 Find_Direct_Name (Expr);
12567
12568 elsif Nkind (Expr) = N_Selected_Component then
12569 Find_Selected_Component (Expr);
12570
12571 else
12572 null;
12573 end if;
12574 end case;
12575 end if;
12576 end case;
12577 end if;
12578
a738763e 12579 ASN := Next_Rep_Item (ASN);
81bd1c0d 12580 end loop;
12581 end Resolve_Aspect_Expressions;
12582
d6f39728 12583 -------------------------
12584 -- Same_Representation --
12585 -------------------------
12586
12587 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12588 T1 : constant Entity_Id := Underlying_Type (Typ1);
12589 T2 : constant Entity_Id := Underlying_Type (Typ2);
12590
12591 begin
12592 -- A quick check, if base types are the same, then we definitely have
12593 -- the same representation, because the subtype specific representation
12594 -- attributes (Size and Alignment) do not affect representation from
12595 -- the point of view of this test.
12596
12597 if Base_Type (T1) = Base_Type (T2) then
12598 return True;
12599
12600 elsif Is_Private_Type (Base_Type (T2))
12601 and then Base_Type (T1) = Full_View (Base_Type (T2))
12602 then
12603 return True;
12604 end if;
12605
12606 -- Tagged types never have differing representations
12607
12608 if Is_Tagged_Type (T1) then
12609 return True;
12610 end if;
12611
12612 -- Representations are definitely different if conventions differ
12613
12614 if Convention (T1) /= Convention (T2) then
12615 return False;
12616 end if;
12617
ef0772bc 12618 -- Representations are different if component alignments or scalar
12619 -- storage orders differ.
d6f39728 12620
12621 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
726fd56a 12622 and then
d6f39728 12623 (Is_Record_Type (T2) or else Is_Array_Type (T2))
ef0772bc 12624 and then
12625 (Component_Alignment (T1) /= Component_Alignment (T2)
f02a9a9a 12626 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
d6f39728 12627 then
12628 return False;
12629 end if;
12630
12631 -- For arrays, the only real issue is component size. If we know the
12632 -- component size for both arrays, and it is the same, then that's
12633 -- good enough to know we don't have a change of representation.
12634
12635 if Is_Array_Type (T1) then
12636 if Known_Component_Size (T1)
12637 and then Known_Component_Size (T2)
12638 and then Component_Size (T1) = Component_Size (T2)
12639 then
36ac5fbb 12640 return True;
d6f39728 12641 end if;
12642 end if;
12643
12644 -- Types definitely have same representation if neither has non-standard
12645 -- representation since default representations are always consistent.
12646 -- If only one has non-standard representation, and the other does not,
12647 -- then we consider that they do not have the same representation. They
12648 -- might, but there is no way of telling early enough.
12649
12650 if Has_Non_Standard_Rep (T1) then
12651 if not Has_Non_Standard_Rep (T2) then
12652 return False;
12653 end if;
12654 else
12655 return not Has_Non_Standard_Rep (T2);
12656 end if;
12657
fdd294d1 12658 -- Here the two types both have non-standard representation, and we need
12659 -- to determine if they have the same non-standard representation.
d6f39728 12660
12661 -- For arrays, we simply need to test if the component sizes are the
12662 -- same. Pragma Pack is reflected in modified component sizes, so this
12663 -- check also deals with pragma Pack.
12664
12665 if Is_Array_Type (T1) then
12666 return Component_Size (T1) = Component_Size (T2);
12667
12668 -- Tagged types always have the same representation, because it is not
12669 -- possible to specify different representations for common fields.
12670
12671 elsif Is_Tagged_Type (T1) then
12672 return True;
12673
12674 -- Case of record types
12675
12676 elsif Is_Record_Type (T1) then
12677
12678 -- Packed status must conform
12679
12680 if Is_Packed (T1) /= Is_Packed (T2) then
12681 return False;
12682
12683 -- Otherwise we must check components. Typ2 maybe a constrained
12684 -- subtype with fewer components, so we compare the components
12685 -- of the base types.
12686
12687 else
12688 Record_Case : declare
12689 CD1, CD2 : Entity_Id;
12690
12691 function Same_Rep return Boolean;
12692 -- CD1 and CD2 are either components or discriminants. This
ef0772bc 12693 -- function tests whether they have the same representation.
d6f39728 12694
80d4fec4 12695 --------------
12696 -- Same_Rep --
12697 --------------
12698
d6f39728 12699 function Same_Rep return Boolean is
12700 begin
12701 if No (Component_Clause (CD1)) then
12702 return No (Component_Clause (CD2));
d6f39728 12703 else
ef0772bc 12704 -- Note: at this point, component clauses have been
12705 -- normalized to the default bit order, so that the
12706 -- comparison of Component_Bit_Offsets is meaningful.
12707
d6f39728 12708 return
12709 Present (Component_Clause (CD2))
12710 and then
12711 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12712 and then
12713 Esize (CD1) = Esize (CD2);
12714 end if;
12715 end Same_Rep;
12716
1e35409d 12717 -- Start of processing for Record_Case
d6f39728 12718
12719 begin
12720 if Has_Discriminants (T1) then
d6f39728 12721
9dfe12ae 12722 -- The number of discriminants may be different if the
12723 -- derived type has fewer (constrained by values). The
12724 -- invisible discriminants retain the representation of
12725 -- the original, so the discrepancy does not per se
12726 -- indicate a different representation.
12727
b9e61b2a 12728 CD1 := First_Discriminant (T1);
12729 CD2 := First_Discriminant (T2);
12730 while Present (CD1) and then Present (CD2) loop
d6f39728 12731 if not Same_Rep then
12732 return False;
12733 else
12734 Next_Discriminant (CD1);
12735 Next_Discriminant (CD2);
12736 end if;
12737 end loop;
12738 end if;
12739
12740 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12741 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 12742 while Present (CD1) loop
12743 if not Same_Rep then
12744 return False;
12745 else
12746 Next_Component (CD1);
12747 Next_Component (CD2);
12748 end if;
12749 end loop;
12750
12751 return True;
12752 end Record_Case;
12753 end if;
12754
12755 -- For enumeration types, we must check each literal to see if the
12756 -- representation is the same. Note that we do not permit enumeration
1a34e48c 12757 -- representation clauses for Character and Wide_Character, so these
d6f39728 12758 -- cases were already dealt with.
12759
12760 elsif Is_Enumeration_Type (T1) then
d6f39728 12761 Enumeration_Case : declare
12762 L1, L2 : Entity_Id;
12763
12764 begin
12765 L1 := First_Literal (T1);
12766 L2 := First_Literal (T2);
d6f39728 12767 while Present (L1) loop
12768 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12769 return False;
12770 else
12771 Next_Literal (L1);
12772 Next_Literal (L2);
12773 end if;
12774 end loop;
12775
12776 return True;
d6f39728 12777 end Enumeration_Case;
12778
12779 -- Any other types have the same representation for these purposes
12780
12781 else
12782 return True;
12783 end if;
d6f39728 12784 end Same_Representation;
12785
3061ffde 12786 --------------------------------
12787 -- Resolve_Iterable_Operation --
12788 --------------------------------
12789
12790 procedure Resolve_Iterable_Operation
12791 (N : Node_Id;
12792 Cursor : Entity_Id;
12793 Typ : Entity_Id;
12794 Nam : Name_Id)
12795 is
12796 Ent : Entity_Id;
12797 F1 : Entity_Id;
12798 F2 : Entity_Id;
12799
12800 begin
12801 if not Is_Overloaded (N) then
12802 if not Is_Entity_Name (N)
12803 or else Ekind (Entity (N)) /= E_Function
12804 or else Scope (Entity (N)) /= Scope (Typ)
12805 or else No (First_Formal (Entity (N)))
12806 or else Etype (First_Formal (Entity (N))) /= Typ
12807 then
12808 Error_Msg_N ("iterable primitive must be local function name "
12809 & "whose first formal is an iterable type", N);
a9f5fea7 12810 return;
3061ffde 12811 end if;
12812
12813 Ent := Entity (N);
12814 F1 := First_Formal (Ent);
12815 if Nam = Name_First then
12816
12817 -- First (Container) => Cursor
12818
12819 if Etype (Ent) /= Cursor then
12820 Error_Msg_N ("primitive for First must yield a curosr", N);
12821 end if;
12822
12823 elsif Nam = Name_Next then
12824
12825 -- Next (Container, Cursor) => Cursor
12826
12827 F2 := Next_Formal (F1);
12828
12829 if Etype (F2) /= Cursor
12830 or else Etype (Ent) /= Cursor
12831 or else Present (Next_Formal (F2))
12832 then
12833 Error_Msg_N ("no match for Next iterable primitive", N);
12834 end if;
12835
12836 elsif Nam = Name_Has_Element then
12837
12838 -- Has_Element (Container, Cursor) => Boolean
12839
12840 F2 := Next_Formal (F1);
12841 if Etype (F2) /= Cursor
12842 or else Etype (Ent) /= Standard_Boolean
12843 or else Present (Next_Formal (F2))
12844 then
12845 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12846 end if;
12847
12848 elsif Nam = Name_Element then
b9b03799 12849 F2 := Next_Formal (F1);
12850
12851 if No (F2)
12852 or else Etype (F2) /= Cursor
12853 or else Present (Next_Formal (F2))
12854 then
12855 Error_Msg_N ("no match for Element iterable primitive", N);
12856 end if;
3061ffde 12857 null;
12858
12859 else
12860 raise Program_Error;
12861 end if;
12862
12863 else
12864 -- Overloaded case: find subprogram with proper signature.
12865 -- Caller will report error if no match is found.
12866
12867 declare
12868 I : Interp_Index;
12869 It : Interp;
12870
12871 begin
12872 Get_First_Interp (N, I, It);
12873 while Present (It.Typ) loop
12874 if Ekind (It.Nam) = E_Function
b9b03799 12875 and then Scope (It.Nam) = Scope (Typ)
3061ffde 12876 and then Etype (First_Formal (It.Nam)) = Typ
12877 then
12878 F1 := First_Formal (It.Nam);
12879
12880 if Nam = Name_First then
12881 if Etype (It.Nam) = Cursor
12882 and then No (Next_Formal (F1))
12883 then
12884 Set_Entity (N, It.Nam);
12885 exit;
12886 end if;
12887
12888 elsif Nam = Name_Next then
12889 F2 := Next_Formal (F1);
12890
12891 if Present (F2)
12892 and then No (Next_Formal (F2))
12893 and then Etype (F2) = Cursor
12894 and then Etype (It.Nam) = Cursor
12895 then
12896 Set_Entity (N, It.Nam);
12897 exit;
12898 end if;
12899
12900 elsif Nam = Name_Has_Element then
12901 F2 := Next_Formal (F1);
12902
12903 if Present (F2)
12904 and then No (Next_Formal (F2))
12905 and then Etype (F2) = Cursor
12906 and then Etype (It.Nam) = Standard_Boolean
12907 then
12908 Set_Entity (N, It.Nam);
12909 F2 := Next_Formal (F1);
12910 exit;
12911 end if;
12912
12913 elsif Nam = Name_Element then
b9b03799 12914 F2 := Next_Formal (F1);
12915
3061ffde 12916 if Present (F2)
12917 and then No (Next_Formal (F2))
12918 and then Etype (F2) = Cursor
12919 then
12920 Set_Entity (N, It.Nam);
12921 exit;
12922 end if;
12923 end if;
12924 end if;
12925
12926 Get_Next_Interp (I, It);
12927 end loop;
12928 end;
12929 end if;
12930 end Resolve_Iterable_Operation;
12931
b77e4501 12932 ----------------
12933 -- Set_Biased --
12934 ----------------
12935
12936 procedure Set_Biased
12937 (E : Entity_Id;
12938 N : Node_Id;
12939 Msg : String;
12940 Biased : Boolean := True)
12941 is
12942 begin
12943 if Biased then
12944 Set_Has_Biased_Representation (E);
12945
12946 if Warn_On_Biased_Representation then
12947 Error_Msg_NE
1e3532e7 12948 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 12949 end if;
12950 end if;
12951 end Set_Biased;
12952
d6f39728 12953 --------------------
12954 -- Set_Enum_Esize --
12955 --------------------
12956
12957 procedure Set_Enum_Esize (T : Entity_Id) is
12958 Lo : Uint;
12959 Hi : Uint;
12960 Sz : Nat;
12961
12962 begin
12963 Init_Alignment (T);
12964
12965 -- Find the minimum standard size (8,16,32,64) that fits
12966
12967 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12968 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12969
12970 if Lo < 0 then
12971 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 12972 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12973
12974 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12975 Sz := 16;
12976
12977 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12978 Sz := 32;
12979
12980 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12981 Sz := 64;
12982 end if;
12983
12984 else
12985 if Hi < Uint_2**08 then
f15731c4 12986 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12987
12988 elsif Hi < Uint_2**16 then
12989 Sz := 16;
12990
12991 elsif Hi < Uint_2**32 then
12992 Sz := 32;
12993
12994 else pragma Assert (Hi < Uint_2**63);
12995 Sz := 64;
12996 end if;
12997 end if;
12998
12999 -- That minimum is the proper size unless we have a foreign convention
13000 -- and the size required is 32 or less, in which case we bump the size
13001 -- up to 32. This is required for C and C++ and seems reasonable for
13002 -- all other foreign conventions.
13003
13004 if Has_Foreign_Convention (T)
13005 and then Esize (T) < Standard_Integer_Size
db1eed69 13006
13007 -- Don't do this if Short_Enums on target
13008
e9185b9d 13009 and then not Target_Short_Enums
d6f39728 13010 then
13011 Init_Esize (T, Standard_Integer_Size);
d6f39728 13012 else
13013 Init_Esize (T, Sz);
13014 end if;
d6f39728 13015 end Set_Enum_Esize;
13016
2625eb01 13017 -----------------------------
13018 -- Uninstall_Discriminants --
13019 -----------------------------
13020
13021 procedure Uninstall_Discriminants (E : Entity_Id) is
13022 Disc : Entity_Id;
13023 Prev : Entity_Id;
13024 Outer : Entity_Id;
13025
13026 begin
13027 -- Discriminants have been made visible for type declarations and
13028 -- protected type declarations, not for subtype declarations.
13029
13030 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13031 Disc := First_Discriminant (E);
13032 while Present (Disc) loop
13033 if Disc /= Current_Entity (Disc) then
13034 Prev := Current_Entity (Disc);
13035 while Present (Prev)
13036 and then Present (Homonym (Prev))
13037 and then Homonym (Prev) /= Disc
13038 loop
13039 Prev := Homonym (Prev);
13040 end loop;
13041 else
13042 Prev := Empty;
13043 end if;
13044
13045 Set_Is_Immediately_Visible (Disc, False);
13046
13047 Outer := Homonym (Disc);
13048 while Present (Outer) and then Scope (Outer) = E loop
13049 Outer := Homonym (Outer);
13050 end loop;
13051
13052 -- Reset homonym link of other entities, but do not modify link
13053 -- between entities in current scope, so that the back-end can
13054 -- have a proper count of local overloadings.
13055
13056 if No (Prev) then
13057 Set_Name_Entity_Id (Chars (Disc), Outer);
13058
13059 elsif Scope (Prev) /= Scope (Disc) then
13060 Set_Homonym (Prev, Outer);
13061 end if;
13062
13063 Next_Discriminant (Disc);
13064 end loop;
13065 end if;
13066 end Uninstall_Discriminants;
13067
13068 -------------------------------------------
13069 -- Uninstall_Discriminants_And_Pop_Scope --
13070 -------------------------------------------
13071
13072 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13073 begin
13074 if Has_Discriminants (E) then
13075 Uninstall_Discriminants (E);
13076 Pop_Scope;
13077 end if;
13078 end Uninstall_Discriminants_And_Pop_Scope;
13079
83f8f0a6 13080 ------------------------------
13081 -- Validate_Address_Clauses --
13082 ------------------------------
13083
13084 procedure Validate_Address_Clauses is
13085 begin
13086 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13087 declare
13088 ACCR : Address_Clause_Check_Record
13089 renames Address_Clause_Checks.Table (J);
13090
d6da7448 13091 Expr : Node_Id;
13092
83f8f0a6 13093 X_Alignment : Uint;
13094 Y_Alignment : Uint;
13095
13096 X_Size : Uint;
13097 Y_Size : Uint;
13098
13099 begin
13100 -- Skip processing of this entry if warning already posted
13101
13102 if not Address_Warning_Posted (ACCR.N) then
d6da7448 13103 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 13104
d6da7448 13105 -- Get alignments
83f8f0a6 13106
d6da7448 13107 X_Alignment := Alignment (ACCR.X);
13108 Y_Alignment := Alignment (ACCR.Y);
83f8f0a6 13109
13110 -- Similarly obtain sizes
13111
d6da7448 13112 X_Size := Esize (ACCR.X);
13113 Y_Size := Esize (ACCR.Y);
83f8f0a6 13114
13115 -- Check for large object overlaying smaller one
13116
13117 if Y_Size > Uint_0
13118 and then X_Size > Uint_0
13119 and then X_Size > Y_Size
13120 then
d6da7448 13121 Error_Msg_NE
1581f2d7 13122 ("??& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 13123 Error_Msg_N
1e3532e7 13124 ("\??program execution may be erroneous", ACCR.N);
83f8f0a6 13125 Error_Msg_Uint_1 := X_Size;
13126 Error_Msg_NE
1e3532e7 13127 ("\??size of & is ^", ACCR.N, ACCR.X);
83f8f0a6 13128 Error_Msg_Uint_1 := Y_Size;
13129 Error_Msg_NE
1e3532e7 13130 ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 13131
d6da7448 13132 -- Check for inadequate alignment, both of the base object
e556831e 13133 -- and of the offset, if any. We only do this check if the
13134 -- run-time Alignment_Check is active. No point in warning
13135 -- if this check has been suppressed (or is suppressed by
13136 -- default in the non-strict alignment machine case).
83f8f0a6 13137
d6da7448 13138 -- Note: we do not check the alignment if we gave a size
13139 -- warning, since it would likely be redundant.
83f8f0a6 13140
e556831e 13141 elsif not Alignment_Checks_Suppressed (ACCR.Y)
13142 and then Y_Alignment /= Uint_0
d6da7448 13143 and then (Y_Alignment < X_Alignment
13144 or else (ACCR.Off
13145 and then
13146 Nkind (Expr) = N_Attribute_Reference
13147 and then
13148 Attribute_Name (Expr) = Name_Address
13149 and then
13150 Has_Compatible_Alignment
13151 (ACCR.X, Prefix (Expr))
13152 /= Known_Compatible))
83f8f0a6 13153 then
13154 Error_Msg_NE
1e3532e7 13155 ("??specified address for& may be inconsistent "
13156 & "with alignment", ACCR.N, ACCR.X);
83f8f0a6 13157 Error_Msg_N
1e3532e7 13158 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 13159 ACCR.N);
13160 Error_Msg_Uint_1 := X_Alignment;
13161 Error_Msg_NE
1e3532e7 13162 ("\??alignment of & is ^", ACCR.N, ACCR.X);
83f8f0a6 13163 Error_Msg_Uint_1 := Y_Alignment;
13164 Error_Msg_NE
1e3532e7 13165 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
d6da7448 13166 if Y_Alignment >= X_Alignment then
13167 Error_Msg_N
1e3532e7 13168 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 13169 end if;
83f8f0a6 13170 end if;
13171 end if;
13172 end;
13173 end loop;
13174 end Validate_Address_Clauses;
13175
7717ea00 13176 ---------------------------
13177 -- Validate_Independence --
13178 ---------------------------
13179
13180 procedure Validate_Independence is
13181 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13182 N : Node_Id;
13183 E : Entity_Id;
13184 IC : Boolean;
13185 Comp : Entity_Id;
13186 Addr : Node_Id;
13187 P : Node_Id;
13188
13189 procedure Check_Array_Type (Atyp : Entity_Id);
13190 -- Checks if the array type Atyp has independent components, and
13191 -- if not, outputs an appropriate set of error messages.
13192
13193 procedure No_Independence;
13194 -- Output message that independence cannot be guaranteed
13195
13196 function OK_Component (C : Entity_Id) return Boolean;
13197 -- Checks one component to see if it is independently accessible, and
13198 -- if so yields True, otherwise yields False if independent access
13199 -- cannot be guaranteed. This is a conservative routine, it only
13200 -- returns True if it knows for sure, it returns False if it knows
13201 -- there is a problem, or it cannot be sure there is no problem.
13202
13203 procedure Reason_Bad_Component (C : Entity_Id);
13204 -- Outputs continuation message if a reason can be determined for
13205 -- the component C being bad.
13206
13207 ----------------------
13208 -- Check_Array_Type --
13209 ----------------------
13210
13211 procedure Check_Array_Type (Atyp : Entity_Id) is
13212 Ctyp : constant Entity_Id := Component_Type (Atyp);
13213
13214 begin
13215 -- OK if no alignment clause, no pack, and no component size
13216
13217 if not Has_Component_Size_Clause (Atyp)
13218 and then not Has_Alignment_Clause (Atyp)
13219 and then not Is_Packed (Atyp)
13220 then
13221 return;
13222 end if;
13223
aa0a69ab 13224 -- Case of component size is greater than or equal to 64 and the
13225 -- alignment of the array is at least as large as the alignment
13226 -- of the component. We are definitely OK in this situation.
13227
13228 if Known_Component_Size (Atyp)
13229 and then Component_Size (Atyp) >= 64
13230 and then Known_Alignment (Atyp)
13231 and then Known_Alignment (Ctyp)
13232 and then Alignment (Atyp) >= Alignment (Ctyp)
13233 then
13234 return;
13235 end if;
13236
7717ea00 13237 -- Check actual component size
13238
13239 if not Known_Component_Size (Atyp)
13240 or else not (Addressable (Component_Size (Atyp))
aa0a69ab 13241 and then Component_Size (Atyp) < 64)
7717ea00 13242 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13243 then
13244 No_Independence;
13245
13246 -- Bad component size, check reason
13247
13248 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 13249 P := Get_Attribute_Definition_Clause
13250 (Atyp, Attribute_Component_Size);
7717ea00 13251
13252 if Present (P) then
13253 Error_Msg_Sloc := Sloc (P);
13254 Error_Msg_N ("\because of Component_Size clause#", N);
13255 return;
13256 end if;
13257 end if;
13258
13259 if Is_Packed (Atyp) then
13260 P := Get_Rep_Pragma (Atyp, Name_Pack);
13261
13262 if Present (P) then
13263 Error_Msg_Sloc := Sloc (P);
13264 Error_Msg_N ("\because of pragma Pack#", N);
13265 return;
13266 end if;
13267 end if;
13268
13269 -- No reason found, just return
13270
13271 return;
13272 end if;
13273
13274 -- Array type is OK independence-wise
13275
13276 return;
13277 end Check_Array_Type;
13278
13279 ---------------------
13280 -- No_Independence --
13281 ---------------------
13282
13283 procedure No_Independence is
13284 begin
13285 if Pragma_Name (N) = Name_Independent then
18393965 13286 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
7717ea00 13287 else
13288 Error_Msg_NE
13289 ("independent components cannot be guaranteed for&", N, E);
13290 end if;
13291 end No_Independence;
13292
13293 ------------------
13294 -- OK_Component --
13295 ------------------
13296
13297 function OK_Component (C : Entity_Id) return Boolean is
13298 Rec : constant Entity_Id := Scope (C);
13299 Ctyp : constant Entity_Id := Etype (C);
13300
13301 begin
13302 -- OK if no component clause, no Pack, and no alignment clause
13303
13304 if No (Component_Clause (C))
13305 and then not Is_Packed (Rec)
13306 and then not Has_Alignment_Clause (Rec)
13307 then
13308 return True;
13309 end if;
13310
13311 -- Here we look at the actual component layout. A component is
13312 -- addressable if its size is a multiple of the Esize of the
13313 -- component type, and its starting position in the record has
13314 -- appropriate alignment, and the record itself has appropriate
13315 -- alignment to guarantee the component alignment.
13316
13317 -- Make sure sizes are static, always assume the worst for any
13318 -- cases where we cannot check static values.
13319
13320 if not (Known_Static_Esize (C)
b9e61b2a 13321 and then
13322 Known_Static_Esize (Ctyp))
7717ea00 13323 then
13324 return False;
13325 end if;
13326
13327 -- Size of component must be addressable or greater than 64 bits
13328 -- and a multiple of bytes.
13329
b9e61b2a 13330 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 13331 return False;
13332 end if;
13333
13334 -- Check size is proper multiple
13335
13336 if Esize (C) mod Esize (Ctyp) /= 0 then
13337 return False;
13338 end if;
13339
13340 -- Check alignment of component is OK
13341
13342 if not Known_Component_Bit_Offset (C)
13343 or else Component_Bit_Offset (C) < Uint_0
13344 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13345 then
13346 return False;
13347 end if;
13348
13349 -- Check alignment of record type is OK
13350
13351 if not Known_Alignment (Rec)
13352 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13353 then
13354 return False;
13355 end if;
13356
13357 -- All tests passed, component is addressable
13358
13359 return True;
13360 end OK_Component;
13361
13362 --------------------------
13363 -- Reason_Bad_Component --
13364 --------------------------
13365
13366 procedure Reason_Bad_Component (C : Entity_Id) is
13367 Rec : constant Entity_Id := Scope (C);
13368 Ctyp : constant Entity_Id := Etype (C);
13369
13370 begin
13371 -- If component clause present assume that's the problem
13372
13373 if Present (Component_Clause (C)) then
13374 Error_Msg_Sloc := Sloc (Component_Clause (C));
13375 Error_Msg_N ("\because of Component_Clause#", N);
13376 return;
13377 end if;
13378
13379 -- If pragma Pack clause present, assume that's the problem
13380
13381 if Is_Packed (Rec) then
13382 P := Get_Rep_Pragma (Rec, Name_Pack);
13383
13384 if Present (P) then
13385 Error_Msg_Sloc := Sloc (P);
13386 Error_Msg_N ("\because of pragma Pack#", N);
13387 return;
13388 end if;
13389 end if;
13390
13391 -- See if record has bad alignment clause
13392
13393 if Has_Alignment_Clause (Rec)
13394 and then Known_Alignment (Rec)
13395 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13396 then
13397 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13398
13399 if Present (P) then
13400 Error_Msg_Sloc := Sloc (P);
13401 Error_Msg_N ("\because of Alignment clause#", N);
13402 end if;
13403 end if;
13404
13405 -- Couldn't find a reason, so return without a message
13406
13407 return;
13408 end Reason_Bad_Component;
13409
13410 -- Start of processing for Validate_Independence
13411
13412 begin
13413 for J in Independence_Checks.First .. Independence_Checks.Last loop
13414 N := Independence_Checks.Table (J).N;
13415 E := Independence_Checks.Table (J).E;
13416 IC := Pragma_Name (N) = Name_Independent_Components;
13417
13418 -- Deal with component case
13419
13420 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13421 if not OK_Component (E) then
13422 No_Independence;
13423 Reason_Bad_Component (E);
13424 goto Continue;
13425 end if;
13426 end if;
13427
13428 -- Deal with record with Independent_Components
13429
13430 if IC and then Is_Record_Type (E) then
13431 Comp := First_Component_Or_Discriminant (E);
13432 while Present (Comp) loop
13433 if not OK_Component (Comp) then
13434 No_Independence;
13435 Reason_Bad_Component (Comp);
13436 goto Continue;
13437 end if;
13438
13439 Next_Component_Or_Discriminant (Comp);
13440 end loop;
13441 end if;
13442
13443 -- Deal with address clause case
13444
13445 if Is_Object (E) then
13446 Addr := Address_Clause (E);
13447
13448 if Present (Addr) then
13449 No_Independence;
13450 Error_Msg_Sloc := Sloc (Addr);
13451 Error_Msg_N ("\because of Address clause#", N);
13452 goto Continue;
13453 end if;
13454 end if;
13455
13456 -- Deal with independent components for array type
13457
13458 if IC and then Is_Array_Type (E) then
13459 Check_Array_Type (E);
13460 end if;
13461
13462 -- Deal with independent components for array object
13463
13464 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13465 Check_Array_Type (Etype (E));
13466 end if;
13467
13468 <<Continue>> null;
13469 end loop;
13470 end Validate_Independence;
13471
b3f8228a 13472 ------------------------------
13473 -- Validate_Iterable_Aspect --
13474 ------------------------------
13475
13476 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
3061ffde 13477 Assoc : Node_Id;
13478 Expr : Node_Id;
b3f8228a 13479
bde03454 13480 Prim : Node_Id;
a9f5fea7 13481 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
b3f8228a 13482
13483 First_Id : Entity_Id;
13484 Next_Id : Entity_Id;
13485 Has_Element_Id : Entity_Id;
13486 Element_Id : Entity_Id;
13487
b3f8228a 13488 begin
9698629c 13489 -- If previous error aspect is unusable
a9f5fea7 13490
13491 if Cursor = Any_Type then
3061ffde 13492 return;
13493 end if;
b3f8228a 13494
13495 First_Id := Empty;
13496 Next_Id := Empty;
13497 Has_Element_Id := Empty;
32de816b 13498 Element_Id := Empty;
b3f8228a 13499
13500 -- Each expression must resolve to a function with the proper signature
13501
13502 Assoc := First (Component_Associations (Expression (ASN)));
13503 while Present (Assoc) loop
13504 Expr := Expression (Assoc);
13505 Analyze (Expr);
13506
b3f8228a 13507 Prim := First (Choices (Assoc));
bde03454 13508
f02a9a9a 13509 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
b3f8228a 13510 Error_Msg_N ("illegal name in association", Prim);
13511
13512 elsif Chars (Prim) = Name_First then
3061ffde 13513 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
b3f8228a 13514 First_Id := Entity (Expr);
b3f8228a 13515
13516 elsif Chars (Prim) = Name_Next then
3061ffde 13517 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
b3f8228a 13518 Next_Id := Entity (Expr);
b3f8228a 13519
13520 elsif Chars (Prim) = Name_Has_Element then
3061ffde 13521 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
b3f8228a 13522 Has_Element_Id := Entity (Expr);
bde03454 13523
b3f8228a 13524 elsif Chars (Prim) = Name_Element then
3061ffde 13525 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
b3f8228a 13526 Element_Id := Entity (Expr);
b3f8228a 13527
13528 else
13529 Error_Msg_N ("invalid name for iterable function", Prim);
13530 end if;
13531
13532 Next (Assoc);
13533 end loop;
13534
13535 if No (First_Id) then
3061ffde 13536 Error_Msg_N ("match for First primitive not found", ASN);
b3f8228a 13537
13538 elsif No (Next_Id) then
3061ffde 13539 Error_Msg_N ("match for Next primitive not found", ASN);
b3f8228a 13540
13541 elsif No (Has_Element_Id) then
3061ffde 13542 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13543
13544 elsif No (Element_Id) then
13545 null; -- Optional.
b3f8228a 13546 end if;
13547 end Validate_Iterable_Aspect;
13548
d6f39728 13549 -----------------------------------
13550 -- Validate_Unchecked_Conversion --
13551 -----------------------------------
13552
13553 procedure Validate_Unchecked_Conversion
13554 (N : Node_Id;
13555 Act_Unit : Entity_Id)
13556 is
13557 Source : Entity_Id;
13558 Target : Entity_Id;
13559 Vnode : Node_Id;
13560
13561 begin
13562 -- Obtain source and target types. Note that we call Ancestor_Subtype
13563 -- here because the processing for generic instantiation always makes
13564 -- subtypes, and we want the original frozen actual types.
13565
13566 -- If we are dealing with private types, then do the check on their
13567 -- fully declared counterparts if the full declarations have been
39a0c1d3 13568 -- encountered (they don't have to be visible, but they must exist).
d6f39728 13569
13570 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13571
13572 if Is_Private_Type (Source)
13573 and then Present (Underlying_Type (Source))
13574 then
13575 Source := Underlying_Type (Source);
13576 end if;
13577
13578 Target := Ancestor_Subtype (Etype (Act_Unit));
13579
fdd294d1 13580 -- If either type is generic, the instantiation happens within a generic
95deda50 13581 -- unit, and there is nothing to check. The proper check will happen
13582 -- when the enclosing generic is instantiated.
d6f39728 13583
13584 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13585 return;
13586 end if;
13587
13588 if Is_Private_Type (Target)
13589 and then Present (Underlying_Type (Target))
13590 then
13591 Target := Underlying_Type (Target);
13592 end if;
13593
13594 -- Source may be unconstrained array, but not target
13595
b9e61b2a 13596 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
d6f39728 13597 Error_Msg_N
13598 ("unchecked conversion to unconstrained array not allowed", N);
13599 return;
13600 end if;
13601
fbc67f84 13602 -- Warn if conversion between two different convention pointers
13603
13604 if Is_Access_Type (Target)
13605 and then Is_Access_Type (Source)
13606 and then Convention (Target) /= Convention (Source)
13607 and then Warn_On_Unchecked_Conversion
13608 then
74c7ae52 13609 -- Give warnings for subprogram pointers only on most targets
fdd294d1 13610
13611 if Is_Access_Subprogram_Type (Target)
13612 or else Is_Access_Subprogram_Type (Source)
fdd294d1 13613 then
13614 Error_Msg_N
cb97ae5c 13615 ("?z?conversion between pointers with different conventions!",
1e3532e7 13616 N);
fdd294d1 13617 end if;
fbc67f84 13618 end if;
13619
3062c401 13620 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13621 -- warning when compiling GNAT-related sources.
13622
13623 if Warn_On_Unchecked_Conversion
13624 and then not In_Predefined_Unit (N)
13625 and then RTU_Loaded (Ada_Calendar)
f02a9a9a 13626 and then (Chars (Source) = Name_Time
13627 or else
13628 Chars (Target) = Name_Time)
3062c401 13629 then
13630 -- If Ada.Calendar is loaded and the name of one of the operands is
13631 -- Time, there is a good chance that this is Ada.Calendar.Time.
13632
13633 declare
f02a9a9a 13634 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
3062c401 13635 begin
13636 pragma Assert (Present (Calendar_Time));
13637
b9e61b2a 13638 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 13639 Error_Msg_N
f02a9a9a 13640 ("?z?representation of 'Time values may change between "
13641 & "'G'N'A'T versions", N);
3062c401 13642 end if;
13643 end;
13644 end if;
13645
fdd294d1 13646 -- Make entry in unchecked conversion table for later processing by
13647 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13648 -- (using values set by the back-end where possible). This is only done
13649 -- if the appropriate warning is active.
d6f39728 13650
9dfe12ae 13651 if Warn_On_Unchecked_Conversion then
13652 Unchecked_Conversions.Append
86d32751 13653 (New_Val => UC_Entry'(Eloc => Sloc (N),
13654 Source => Source,
13655 Target => Target,
13656 Act_Unit => Act_Unit));
9dfe12ae 13657
13658 -- If both sizes are known statically now, then back end annotation
13659 -- is not required to do a proper check but if either size is not
13660 -- known statically, then we need the annotation.
13661
13662 if Known_Static_RM_Size (Source)
1e3532e7 13663 and then
13664 Known_Static_RM_Size (Target)
9dfe12ae 13665 then
13666 null;
13667 else
13668 Back_Annotate_Rep_Info := True;
13669 end if;
13670 end if;
d6f39728 13671
fdd294d1 13672 -- If unchecked conversion to access type, and access type is declared
95deda50 13673 -- in the same unit as the unchecked conversion, then set the flag
13674 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 13675
13676 if Is_Access_Type (Target) and then
13677 In_Same_Source_Unit (Target, N)
13678 then
13679 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13680 end if;
3d875462 13681
95deda50 13682 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13683 -- the back end needs to perform special validation checks.
3d875462 13684
95deda50 13685 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13686 -- have full expansion and the back end is called ???
3d875462 13687
13688 Vnode :=
13689 Make_Validate_Unchecked_Conversion (Sloc (N));
13690 Set_Source_Type (Vnode, Source);
13691 Set_Target_Type (Vnode, Target);
13692
fdd294d1 13693 -- If the unchecked conversion node is in a list, just insert before it.
13694 -- If not we have some strange case, not worth bothering about.
3d875462 13695
13696 if Is_List_Member (N) then
d6f39728 13697 Insert_After (N, Vnode);
13698 end if;
13699 end Validate_Unchecked_Conversion;
13700
13701 ------------------------------------
13702 -- Validate_Unchecked_Conversions --
13703 ------------------------------------
13704
13705 procedure Validate_Unchecked_Conversions is
13706 begin
13707 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13708 declare
13709 T : UC_Entry renames Unchecked_Conversions.Table (N);
13710
86d32751 13711 Eloc : constant Source_Ptr := T.Eloc;
13712 Source : constant Entity_Id := T.Source;
13713 Target : constant Entity_Id := T.Target;
13714 Act_Unit : constant Entity_Id := T.Act_Unit;
d6f39728 13715
44705307 13716 Source_Siz : Uint;
13717 Target_Siz : Uint;
d6f39728 13718
13719 begin
86d32751 13720 -- Skip if function marked as warnings off
13721
13722 if Warnings_Off (Act_Unit) then
13723 goto Continue;
13724 end if;
13725
fdd294d1 13726 -- This validation check, which warns if we have unequal sizes for
13727 -- unchecked conversion, and thus potentially implementation
d6f39728 13728 -- dependent semantics, is one of the few occasions on which we
fdd294d1 13729 -- use the official RM size instead of Esize. See description in
13730 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 13731
f15731c4 13732 if Serious_Errors_Detected = 0
d6f39728 13733 and then Known_Static_RM_Size (Source)
13734 and then Known_Static_RM_Size (Target)
f25f4252 13735
13736 -- Don't do the check if warnings off for either type, note the
13737 -- deliberate use of OR here instead of OR ELSE to get the flag
13738 -- Warnings_Off_Used set for both types if appropriate.
13739
13740 and then not (Has_Warnings_Off (Source)
13741 or
13742 Has_Warnings_Off (Target))
d6f39728 13743 then
13744 Source_Siz := RM_Size (Source);
13745 Target_Siz := RM_Size (Target);
13746
13747 if Source_Siz /= Target_Siz then
299480f9 13748 Error_Msg
cb97ae5c 13749 ("?z?types for unchecked conversion have different sizes!",
299480f9 13750 Eloc);
d6f39728 13751
13752 if All_Errors_Mode then
13753 Error_Msg_Name_1 := Chars (Source);
13754 Error_Msg_Uint_1 := Source_Siz;
13755 Error_Msg_Name_2 := Chars (Target);
13756 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 13757 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 13758
13759 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13760
13761 if Is_Discrete_Type (Source)
b9e61b2a 13762 and then
13763 Is_Discrete_Type (Target)
d6f39728 13764 then
13765 if Source_Siz > Target_Siz then
299480f9 13766 Error_Msg
cb97ae5c 13767 ("\?z?^ high order bits of source will "
1e3532e7 13768 & "be ignored!", Eloc);
d6f39728 13769
9dfe12ae 13770 elsif Is_Unsigned_Type (Source) then
299480f9 13771 Error_Msg
cb97ae5c 13772 ("\?z?source will be extended with ^ high order "
1581f2d7 13773 & "zero bits!", Eloc);
d6f39728 13774
13775 else
299480f9 13776 Error_Msg
cb97ae5c 13777 ("\?z?source will be extended with ^ high order "
1e3532e7 13778 & "sign bits!", Eloc);
d6f39728 13779 end if;
13780
13781 elsif Source_Siz < Target_Siz then
13782 if Is_Discrete_Type (Target) then
13783 if Bytes_Big_Endian then
299480f9 13784 Error_Msg
cb97ae5c 13785 ("\?z?target value will include ^ undefined "
1e3532e7 13786 & "low order bits!", Eloc);
d6f39728 13787 else
299480f9 13788 Error_Msg
cb97ae5c 13789 ("\?z?target value will include ^ undefined "
1e3532e7 13790 & "high order bits!", Eloc);
d6f39728 13791 end if;
13792
13793 else
299480f9 13794 Error_Msg
cb97ae5c 13795 ("\?z?^ trailing bits of target value will be "
1e3532e7 13796 & "undefined!", Eloc);
d6f39728 13797 end if;
13798
13799 else pragma Assert (Source_Siz > Target_Siz);
0388e54e 13800 if Is_Discrete_Type (Source) then
13801 if Bytes_Big_Endian then
13802 Error_Msg
13803 ("\?z?^ low order bits of source will be "
13804 & "ignored!", Eloc);
13805 else
13806 Error_Msg
13807 ("\?z?^ high order bits of source will be "
13808 & "ignored!", Eloc);
13809 end if;
13810
13811 else
13812 Error_Msg
13813 ("\?z?^ trailing bits of source will be "
13814 & "ignored!", Eloc);
13815 end if;
d6f39728 13816 end if;
13817 end if;
d6f39728 13818 end if;
13819 end if;
13820
13821 -- If both types are access types, we need to check the alignment.
13822 -- If the alignment of both is specified, we can do it here.
13823
f15731c4 13824 if Serious_Errors_Detected = 0
2a10e737 13825 and then Is_Access_Type (Source)
13826 and then Is_Access_Type (Target)
d6f39728 13827 and then Target_Strict_Alignment
13828 and then Present (Designated_Type (Source))
13829 and then Present (Designated_Type (Target))
13830 then
13831 declare
13832 D_Source : constant Entity_Id := Designated_Type (Source);
13833 D_Target : constant Entity_Id := Designated_Type (Target);
13834
13835 begin
13836 if Known_Alignment (D_Source)
b9e61b2a 13837 and then
13838 Known_Alignment (D_Target)
d6f39728 13839 then
13840 declare
13841 Source_Align : constant Uint := Alignment (D_Source);
13842 Target_Align : constant Uint := Alignment (D_Target);
13843
13844 begin
13845 if Source_Align < Target_Align
13846 and then not Is_Tagged_Type (D_Source)
f25f4252 13847
13848 -- Suppress warning if warnings suppressed on either
13849 -- type or either designated type. Note the use of
13850 -- OR here instead of OR ELSE. That is intentional,
13851 -- we would like to set flag Warnings_Off_Used in
13852 -- all types for which warnings are suppressed.
13853
13854 and then not (Has_Warnings_Off (D_Source)
13855 or
13856 Has_Warnings_Off (D_Target)
13857 or
13858 Has_Warnings_Off (Source)
13859 or
13860 Has_Warnings_Off (Target))
d6f39728 13861 then
d6f39728 13862 Error_Msg_Uint_1 := Target_Align;
13863 Error_Msg_Uint_2 := Source_Align;
299480f9 13864 Error_Msg_Node_1 := D_Target;
d6f39728 13865 Error_Msg_Node_2 := D_Source;
299480f9 13866 Error_Msg
cb97ae5c 13867 ("?z?alignment of & (^) is stricter than "
1e3532e7 13868 & "alignment of & (^)!", Eloc);
f25f4252 13869 Error_Msg
cb97ae5c 13870 ("\?z?resulting access value may have invalid "
1e3532e7 13871 & "alignment!", Eloc);
d6f39728 13872 end if;
13873 end;
13874 end if;
13875 end;
13876 end if;
13877 end;
86d32751 13878
13879 <<Continue>>
13880 null;
d6f39728 13881 end loop;
13882 end Validate_Unchecked_Conversions;
13883
d6f39728 13884end Sem_Ch13;