]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
2014-10-23 Ed Schonberg <schonberg@adacore.com>
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
2625eb01 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
175a6969 29with Debug; use Debug;
d6f39728 30with Einfo; use Einfo;
d00681a7 31with Elists; use Elists;
d6f39728 32with Errout; use Errout;
d00681a7 33with Exp_Disp; use Exp_Disp;
d6f39728 34with Exp_Tss; use Exp_Tss;
35with Exp_Util; use Exp_Util;
37c6552c 36with Freeze; use Freeze;
d6f39728 37with Lib; use Lib;
83f8f0a6 38with Lib.Xref; use Lib.Xref;
15ebb600 39with Namet; use Namet;
d6f39728 40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
e0521a36 43with Restrict; use Restrict;
44with Rident; use Rident;
d6f39728 45with Rtsfind; use Rtsfind;
46with Sem; use Sem;
d60c9ff7 47with Sem_Aux; use Sem_Aux;
be9124d0 48with Sem_Case; use Sem_Case;
40ca69b9 49with Sem_Ch3; use Sem_Ch3;
490beba6 50with Sem_Ch6; use Sem_Ch6;
d6f39728 51with Sem_Ch8; use Sem_Ch8;
85696508 52with Sem_Dim; use Sem_Dim;
85377c9b 53with Sem_Disp; use Sem_Disp;
d6f39728 54with Sem_Eval; use Sem_Eval;
51ea9c94 55with Sem_Prag; use Sem_Prag;
d6f39728 56with Sem_Res; use Sem_Res;
57with Sem_Type; use Sem_Type;
58with Sem_Util; use Sem_Util;
44e4341e 59with Sem_Warn; use Sem_Warn;
1e3c4ae6 60with Sinput; use Sinput;
9dfe12ae 61with Snames; use Snames;
d6f39728 62with Stand; use Stand;
63with Sinfo; use Sinfo;
5b5df4a9 64with Stringt; use Stringt;
93735cb8 65with Targparm; use Targparm;
d6f39728 66with Ttypes; use Ttypes;
67with Tbuild; use Tbuild;
68with Urealp; use Urealp;
f42f24d7 69with Warnsw; use Warnsw;
d6f39728 70
bfa5a9d9 71with GNAT.Heap_Sort_G;
d6f39728 72
73package body Sem_Ch13 is
74
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
77
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
81
1d366b32 82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 87
eb66e842 88 procedure Build_Discrete_Static_Predicate
d97beb2f 89 (Typ : Entity_Id;
90 Expr : Node_Id;
91 Nam : Name_Id);
d7c2851f 92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 96 -- predicate expression have been replaced by identifier references to this
d7c2851f 97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
5c6a5792 100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
d97beb2f 102
eb66e842 103 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
114
6653b695 115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
118
d9f6a4ee 119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
125
d6f39728 126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
130
131 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
d6f39728 136
3b23aaa0 137 function Is_Predicate_Static
138 (Expr : Node_Id;
139 Nam : Name_Id) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
147 --
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
150 --
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
154 --
155 -- "ABC" < "DEF"
156 --
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
159 --
160 -- subtype S is String with Static_Predicate => S < "DEF"
161 --
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
164
44e4341e 165 procedure New_Stream_Subprogram
d6f39728 166 (N : Node_Id;
167 Ent : Entity_Id;
168 Subp : Entity_Id;
9dfe12ae 169 Nam : TSS_Name_Type);
44e4341e 170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
d1a2e31b 172 -- primitive operation, or in the untagged case make an appropriate TSS
44e4341e 173 -- entry. This is more properly an expansion activity than just semantics,
d1a2e31b 174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
44e4341e 176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
9dfe12ae 178 --
f15731c4 179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
183 -- primitive specs.
184
3061ffde 185 procedure Resolve_Iterable_Operation
186 (N : Node_Id;
187 Cursor : Entity_Id;
188 Typ : Entity_Id;
189 Nam : Name_Id);
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
192
b77e4501 193 procedure Set_Biased
194 (E : Entity_Id;
195 N : Node_Id;
196 Msg : String;
197 Biased : Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
201 -- causing biasing.
202
d6f39728 203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
206
207 -- The following table collects unchecked conversions for validation.
95deda50 208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
212 -- the back end.
d6f39728 213
95deda50 214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 217
d6f39728 218 type UC_Entry is record
86d32751 219 Eloc : Source_Ptr; -- node used for posting warnings
220 Source : Entity_Id; -- source type for unchecked conversion
221 Target : Entity_Id; -- target type for unchecked conversion
222 Act_Unit : Entity_Id; -- actual function instantiated
d6f39728 223 end record;
224
225 package Unchecked_Conversions is new Table.Table (
226 Table_Component_Type => UC_Entry,
227 Table_Index_Type => Int,
228 Table_Low_Bound => 1,
229 Table_Initial => 50,
230 Table_Increment => 200,
231 Table_Name => "Unchecked_Conversions");
232
83f8f0a6 233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
236
237 -- If an address clause has the form
238
239 -- for X'Address use Expr
240
95deda50 241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
83f8f0a6 248
249 type Address_Clause_Check_Record is record
250 N : Node_Id;
251 -- The address clause
252
253 X : Entity_Id;
254 -- The entity of the object overlaying Y
255
256 Y : Entity_Id;
257 -- The entity of the object being overlaid
d6da7448 258
259 Off : Boolean;
6fb3c314 260 -- Whether the address is offset within Y
83f8f0a6 261 end record;
262
263 package Address_Clause_Checks is new Table.Table (
264 Table_Component_Type => Address_Clause_Check_Record,
265 Table_Index_Type => Int,
266 Table_Low_Bound => 1,
267 Table_Initial => 20,
268 Table_Increment => 200,
269 Table_Name => "Address_Clause_Checks");
270
59ac57b5 271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
274
275 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
67278d60 276 Comp : Node_Id;
277 CC : Node_Id;
59ac57b5 278
279 begin
67278d60 280 -- Processing depends on version of Ada
59ac57b5 281
6797073f 282 -- For Ada 95, we just renumber bits within a storage unit. We do the
568b0f6a 283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
ab19a652 284 -- Ada 83, and are free to add this extension.
6797073f 285
286 if Ada_Version < Ada_2005 then
287 Comp := First_Component_Or_Discriminant (R);
288 while Present (Comp) loop
289 CC := Component_Clause (Comp);
290
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
293
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
297
b9e61b2a 298 if Present (CC) and then Ekind (R) = E_Record_Type then
6797073f 299 declare
300 CFB : constant Uint := Component_Bit_Offset (Comp);
301 CSZ : constant Uint := Esize (Comp);
302 CLC : constant Node_Id := Component_Clause (Comp);
303 Pos : constant Node_Id := Position (CLC);
304 FB : constant Node_Id := First_Bit (CLC);
305
306 Storage_Unit_Offset : constant Uint :=
307 CFB / System_Storage_Unit;
308
309 Start_Bit : constant Uint :=
310 CFB mod System_Storage_Unit;
59ac57b5 311
6797073f 312 begin
313 -- Cases where field goes over storage unit boundary
59ac57b5 314
6797073f 315 if Start_Bit + CSZ > System_Storage_Unit then
59ac57b5 316
6797073f 317 -- Allow multi-byte field but generate warning
59ac57b5 318
6797073f 319 if Start_Bit mod System_Storage_Unit = 0
320 and then CSZ mod System_Storage_Unit = 0
321 then
322 Error_Msg_N
7a41db5b 323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC);
31486bc0 325
6797073f 326 if Bytes_Big_Endian then
31486bc0 327 Error_Msg_N
7a41db5b 328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC);
31486bc0 330 else
331 Error_Msg_N
7a41db5b 332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC);
31486bc0 334 end if;
59ac57b5 335
6797073f 336 -- Do not allow non-contiguous field
59ac57b5 337
67278d60 338 else
6797073f 339 Error_Msg_N
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC);
342 Error_Msg_N
343 ("\caused by non-standard Bit_Order "
344 & "specified", CLC);
345 Error_Msg_N
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC);
348 end if;
59ac57b5 349
6797073f 350 -- Case where field fits in one storage unit
59ac57b5 351
6797073f 352 else
353 -- Give warning if suspicious component clause
59ac57b5 354
6797073f 355 if Intval (FB) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
357 then
358 Error_Msg_N
7a41db5b 359 ("info: Bit_Order clause does not affect " &
1e3532e7 360 "byte ordering?V?", Pos);
6797073f 361 Error_Msg_Uint_1 :=
362 Intval (Pos) + Intval (FB) /
363 System_Storage_Unit;
364 Error_Msg_N
7a41db5b 365 ("info: position normalized to ^ before bit " &
1e3532e7 366 "order interpreted?V?", Pos);
6797073f 367 end if;
59ac57b5 368
6797073f 369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
bfa5a9d9 372
6797073f 373 -- First_Bit .. Last_Bit Component_Bit_Offset
374 -- old new old new
59ac57b5 375
6797073f 376 -- 0 .. 0 7 .. 7 0 7
377 -- 0 .. 1 6 .. 7 0 6
378 -- 0 .. 2 5 .. 7 0 5
379 -- 0 .. 7 0 .. 7 0 4
59ac57b5 380
6797073f 381 -- 1 .. 1 6 .. 6 1 6
382 -- 1 .. 4 3 .. 6 1 3
383 -- 4 .. 7 0 .. 3 4 0
59ac57b5 384
6797073f 385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
59ac57b5 387
6797073f 388 Set_Component_Bit_Offset
389 (Comp,
390 (Storage_Unit_Offset * System_Storage_Unit) +
391 (System_Storage_Unit - 1) -
392 (Start_Bit + CSZ - 1));
59ac57b5 393
6797073f 394 Set_Normalized_First_Bit
395 (Comp,
396 Component_Bit_Offset (Comp) mod
397 System_Storage_Unit);
398 end if;
399 end;
400 end if;
401
402 Next_Component_Or_Discriminant (Comp);
403 end loop;
404
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
409
410 else
411 declare
412 Max_Machine_Scalar_Size : constant Uint :=
413 UI_From_Int
414 (Standard_Long_Long_Integer_Size);
67278d60 415 -- We use this as the maximum machine scalar size
59ac57b5 416
6797073f 417 Num_CC : Natural;
418 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
59ac57b5 419
6797073f 420 begin
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
67278d60 427
6797073f 428 Num_CC := 0;
429 Comp := First_Component_Or_Discriminant (R);
430 while Present (Comp) loop
431 CC := Component_Clause (Comp);
67278d60 432
6797073f 433 if Present (CC) then
434 declare
1e3532e7 435 Fbit : constant Uint := Static_Integer (First_Bit (CC));
436 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
67278d60 437
6797073f 438 begin
b38e4131 439 -- Case of component with last bit >= max machine scalar
67278d60 440
b38e4131 441 if Lbit >= Max_Machine_Scalar_Size then
67278d60 442
b38e4131 443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
67278d60 445
b38e4131 446 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
67278d60 447
b38e4131 448 -- This is the case to give a warning if enabled
67278d60 449
b38e4131 450 if Warn_On_Reverse_Bit_Order then
451 Error_Msg_N
7a41db5b 452 ("info: multi-byte field specified with "
1e3532e7 453 & " non-standard Bit_Order?V?", CC);
b38e4131 454
455 if Bytes_Big_Endian then
456 Error_Msg_N
457 ("\bytes are not reversed "
1e3532e7 458 & "(component is big-endian)?V?", CC);
b38e4131 459 else
460 Error_Msg_N
461 ("\bytes are not reversed "
1e3532e7 462 & "(component is little-endian)?V?", CC);
b38e4131 463 end if;
464 end if;
67278d60 465
7eb0e22f 466 -- Give error message for RM 13.5.1(10) violation
67278d60 467
b38e4131 468 else
469 Error_Msg_FE
470 ("machine scalar rules not followed for&",
471 First_Bit (CC), Comp);
67278d60 472
b38e4131 473 Error_Msg_Uint_1 := Lbit;
474 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
475 Error_Msg_F
476 ("\last bit (^) exceeds maximum machine "
477 & "scalar size (^)",
478 First_Bit (CC));
67278d60 479
b38e4131 480 if (Lbit + 1) mod SSU /= 0 then
481 Error_Msg_Uint_1 := SSU;
482 Error_Msg_F
483 ("\and is not a multiple of Storage_Unit (^) "
0cafb066 484 & "(RM 13.4.1(10))",
b38e4131 485 First_Bit (CC));
6797073f 486
6797073f 487 else
b38e4131 488 Error_Msg_Uint_1 := Fbit;
489 Error_Msg_F
490 ("\and first bit (^) is non-zero "
0cafb066 491 & "(RM 13.4.1(10))",
b38e4131 492 First_Bit (CC));
67278d60 493 end if;
6797073f 494 end if;
59ac57b5 495
b38e4131 496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
59ac57b5 498
6797073f 499 else
500 Num_CC := Num_CC + 1;
501 end if;
502 end;
503 end if;
59ac57b5 504
6797073f 505 Next_Component_Or_Discriminant (Comp);
506 end loop;
59ac57b5 507
6797073f 508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
4a87c513 510 -- the same Position together to determine the relevant machine
6797073f 511 -- scalar size.
59ac57b5 512
6797073f 513 Sort_CC : declare
514 Comps : array (0 .. Num_CC) of Entity_Id;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
517 -- routine.
59ac57b5 518
6797073f 519 function CP_Lt (Op1, Op2 : Natural) return Boolean;
520 -- Compare routine for Sort
59ac57b5 521
6797073f 522 procedure CP_Move (From : Natural; To : Natural);
523 -- Move routine for Sort
59ac57b5 524
6797073f 525 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 526
6797073f 527 Start : Natural;
528 Stop : Natural;
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
59ac57b5 532
6797073f 533 MaxL : Uint;
534 -- Maximum last bit value of any component in this set
59ac57b5 535
6797073f 536 MSS : Uint;
537 -- Corresponding machine scalar size
67278d60 538
6797073f 539 -----------
540 -- CP_Lt --
541 -----------
67278d60 542
6797073f 543 function CP_Lt (Op1, Op2 : Natural) return Boolean is
544 begin
545 return Position (Component_Clause (Comps (Op1))) <
546 Position (Component_Clause (Comps (Op2)));
547 end CP_Lt;
67278d60 548
6797073f 549 -------------
550 -- CP_Move --
551 -------------
67278d60 552
6797073f 553 procedure CP_Move (From : Natural; To : Natural) is
554 begin
555 Comps (To) := Comps (From);
556 end CP_Move;
67278d60 557
4a87c513 558 -- Start of processing for Sort_CC
59ac57b5 559
6797073f 560 begin
b38e4131 561 -- Collect the machine scalar relevant component clauses
59ac57b5 562
6797073f 563 Num_CC := 0;
564 Comp := First_Component_Or_Discriminant (R);
565 while Present (Comp) loop
b38e4131 566 declare
567 CC : constant Node_Id := Component_Clause (Comp);
568
569 begin
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
576
577 if Present (CC)
578 and then not Error_Posted (Last_Bit (CC))
579 and then Static_Integer (Last_Bit (CC)) <
d64221a7 580 Max_Machine_Scalar_Size
b38e4131 581 then
582 Num_CC := Num_CC + 1;
583 Comps (Num_CC) := Comp;
584 end if;
585 end;
59ac57b5 586
6797073f 587 Next_Component_Or_Discriminant (Comp);
588 end loop;
67278d60 589
6797073f 590 -- Sort by ascending position number
67278d60 591
6797073f 592 Sorting.Sort (Num_CC);
67278d60 593
6797073f 594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
67278d60 598
6797073f 599 Stop := 0;
600 while Stop < Num_CC loop
601 Start := Stop + 1;
602 Stop := Start;
603 MaxL :=
604 Static_Integer
605 (Last_Bit (Component_Clause (Comps (Start))));
67278d60 606 while Stop < Num_CC loop
6797073f 607 if Static_Integer
608 (Position (Component_Clause (Comps (Stop + 1)))) =
609 Static_Integer
610 (Position (Component_Clause (Comps (Stop))))
611 then
612 Stop := Stop + 1;
613 MaxL :=
614 UI_Max
615 (MaxL,
616 Static_Integer
617 (Last_Bit
618 (Component_Clause (Comps (Stop)))));
619 else
620 exit;
621 end if;
622 end loop;
67278d60 623
6797073f 624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
627
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
632
633 MSS := Max_Machine_Scalar_Size;
634 while MSS mod 2 = 0
635 and then (MSS / 2) >= SSU
636 and then (MSS / 2) > MaxL
637 loop
638 MSS := MSS / 2;
639 end loop;
67278d60 640
6797073f 641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
644 -- size of 8 are:
67278d60 645
6797073f 646 -- First_Bit .. Last_Bit Component_Bit_Offset
647 -- old new old new
67278d60 648
6797073f 649 -- 0 .. 0 7 .. 7 0 7
650 -- 0 .. 1 6 .. 7 0 6
651 -- 0 .. 2 5 .. 7 0 5
652 -- 0 .. 7 0 .. 7 0 4
67278d60 653
6797073f 654 -- 1 .. 1 6 .. 6 1 6
655 -- 1 .. 4 3 .. 6 1 3
656 -- 4 .. 7 0 .. 3 4 0
67278d60 657
6797073f 658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
67278d60 660
6797073f 661 for C in Start .. Stop loop
662 declare
663 Comp : constant Entity_Id := Comps (C);
b9e61b2a 664 CC : constant Node_Id := Component_Clause (Comp);
665
666 LB : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 667 NFB : constant Uint := MSS - Uint_1 - LB;
668 NLB : constant Uint := NFB + Esize (Comp) - 1;
b9e61b2a 669 Pos : constant Uint := Static_Integer (Position (CC));
67278d60 670
6797073f 671 begin
672 if Warn_On_Reverse_Bit_Order then
673 Error_Msg_Uint_1 := MSS;
674 Error_Msg_N
675 ("info: reverse bit order in machine " &
1e3532e7 676 "scalar of length^?V?", First_Bit (CC));
6797073f 677 Error_Msg_Uint_1 := NFB;
678 Error_Msg_Uint_2 := NLB;
679
680 if Bytes_Big_Endian then
681 Error_Msg_NE
7a41db5b 682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
6797073f 684 else
685 Error_Msg_NE
7a41db5b 686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
67278d60 688 end if;
6797073f 689 end if;
67278d60 690
6797073f 691 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
692 Set_Normalized_First_Bit (Comp, NFB mod SSU);
693 end;
67278d60 694 end loop;
6797073f 695 end loop;
696 end Sort_CC;
697 end;
698 end if;
59ac57b5 699 end Adjust_Record_For_Reverse_Bit_Order;
700
1d366b32 701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
d6f39728 704
1d366b32 705 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 706 begin
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
711
712 if Known_Alignment (Typ)
713 and then not Has_Alignment_Clause (Typ)
1d366b32 714 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 715 then
716 Init_Alignment (Typ);
717 end if;
1d366b32 718 end Alignment_Check_For_Size_Change;
d6f39728 719
06ef5f86 720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
723
724 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
725 ASN : Node_Id;
726 A_Id : Aspect_Id;
727 Ritem : Node_Id;
728
729 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
732
37c6e44c 733 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
737 --
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
740 -- ..
741 -- type B is new A;
742 -- ..
743 -- Not_Defined_Yet : constant := 64;
744 --
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
b21edad9 752 -- of all delayed aspects from the parent type. The derived type is E,
37c6e44c 753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
755
06ef5f86 756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
760
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
764
765 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
766 Ent : constant Entity_Id := Entity (ASN);
767 Expr : constant Node_Id := Expression (ASN);
768 Id : constant Node_Id := Identifier (ASN);
769
770 begin
771 Error_Msg_Name_1 := Chars (Id);
772
773 if not Is_Type (Ent) then
774 Error_Msg_N ("aspect% can only apply to a type", Id);
775 return;
776
777 elsif not Is_First_Subtype (Ent) then
778 Error_Msg_N ("aspect% cannot apply to subtype", Id);
779 return;
780
781 elsif A_Id = Aspect_Default_Value
782 and then not Is_Scalar_Type (Ent)
783 then
784 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
785 return;
786
787 elsif A_Id = Aspect_Default_Component_Value then
788 if not Is_Array_Type (Ent) then
789 Error_Msg_N ("aspect% can only be applied to array type", Id);
790 return;
791
792 elsif not Is_Scalar_Type (Component_Type (Ent)) then
793 Error_Msg_N ("aspect% requires scalar components", Id);
794 return;
795 end if;
796 end if;
797
798 Set_Has_Default_Aspect (Base_Type (Ent));
799
800 if Is_Scalar_Type (Ent) then
9f36e3fb 801 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
06ef5f86 802 else
f3d70f08 803 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
06ef5f86 804 end if;
805 end Analyze_Aspect_Default_Value;
806
37c6e44c 807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
810
811 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
812 P : constant Entity_Id := Entity (ASN);
813 -- Entithy for parent type
814
815 N : Node_Id;
816 -- Item from Rep_Item chain
817
818 A : Aspect_Id;
819
820 begin
821 -- Loop through delayed aspects for the parent type
822
823 N := ASN;
824 while Present (N) loop
825 if Nkind (N) = N_Aspect_Specification then
826 exit when Entity (N) /= P;
827
828 if Is_Delayed_Aspect (N) then
829 A := Get_Aspect_Id (Chars (Identifier (N)));
830
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
837
838 case A is
839
840 -- Alignment
841
842 when Aspect_Alignment =>
843 if not Has_Alignment_Clause (E) then
844 Set_Alignment (E, Alignment (P));
845 end if;
846
847 -- Atomic
848
849 when Aspect_Atomic =>
850 if Is_Atomic (P) then
851 Set_Is_Atomic (E);
852 end if;
853
854 -- Atomic_Components
855
856 when Aspect_Atomic_Components =>
857 if Has_Atomic_Components (P) then
858 Set_Has_Atomic_Components (Base_Type (E));
859 end if;
860
861 -- Bit_Order
862
863 when Aspect_Bit_Order =>
864 if Is_Record_Type (E)
865 and then No (Get_Attribute_Definition_Clause
866 (E, Attribute_Bit_Order))
867 and then Reverse_Bit_Order (P)
868 then
869 Set_Reverse_Bit_Order (Base_Type (E));
870 end if;
871
872 -- Component_Size
873
874 when Aspect_Component_Size =>
875 if Is_Array_Type (E)
876 and then not Has_Component_Size_Clause (E)
877 then
878 Set_Component_Size
879 (Base_Type (E), Component_Size (P));
880 end if;
881
882 -- Machine_Radix
883
884 when Aspect_Machine_Radix =>
885 if Is_Decimal_Fixed_Point_Type (E)
886 and then not Has_Machine_Radix_Clause (E)
887 then
888 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
889 end if;
890
891 -- Object_Size (also Size which also sets Object_Size)
892
893 when Aspect_Object_Size | Aspect_Size =>
894 if not Has_Size_Clause (E)
895 and then
896 No (Get_Attribute_Definition_Clause
897 (E, Attribute_Object_Size))
898 then
899 Set_Esize (E, Esize (P));
900 end if;
901
902 -- Pack
903
904 when Aspect_Pack =>
905 if not Is_Packed (E) then
906 Set_Is_Packed (Base_Type (E));
907
908 if Is_Bit_Packed_Array (P) then
909 Set_Is_Bit_Packed_Array (Base_Type (E));
a88a5773 910 Set_Packed_Array_Impl_Type
911 (E, Packed_Array_Impl_Type (P));
37c6e44c 912 end if;
913 end if;
914
915 -- Scalar_Storage_Order
916
917 when Aspect_Scalar_Storage_Order =>
918 if (Is_Record_Type (E) or else Is_Array_Type (E))
919 and then No (Get_Attribute_Definition_Clause
e163cac8 920 (E, Attribute_Scalar_Storage_Order))
37c6e44c 921 and then Reverse_Storage_Order (P)
922 then
923 Set_Reverse_Storage_Order (Base_Type (E));
b64082f2 924
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
927
928 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
929 Set_SSO_Set_High_By_Default (Base_Type (E), False);
37c6e44c 930 end if;
931
932 -- Small
933
934 when Aspect_Small =>
935 if Is_Fixed_Point_Type (E)
936 and then not Has_Small_Clause (E)
937 then
938 Set_Small_Value (E, Small_Value (P));
939 end if;
940
941 -- Storage_Size
942
943 when Aspect_Storage_Size =>
944 if (Is_Access_Type (E) or else Is_Task_Type (E))
945 and then not Has_Storage_Size_Clause (E)
946 then
947 Set_Storage_Size_Variable
948 (Base_Type (E), Storage_Size_Variable (P));
949 end if;
950
951 -- Value_Size
952
953 when Aspect_Value_Size =>
954
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
958
959 null;
960
961 -- Volatile
962
963 when Aspect_Volatile =>
964 if Is_Volatile (P) then
965 Set_Is_Volatile (E);
966 end if;
967
968 -- Volatile_Components
969
970 when Aspect_Volatile_Components =>
971 if Has_Volatile_Components (P) then
972 Set_Has_Volatile_Components (Base_Type (E));
973 end if;
974
975 -- That should be all the Rep Aspects
976
977 when others =>
978 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
979 null;
980
981 end case;
982 end if;
983 end if;
984
985 N := Next_Rep_Item (N);
986 end loop;
987 end Inherit_Delayed_Rep_Aspects;
988
06ef5f86 989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
992
993 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
994 Ident : constant Node_Id := Identifier (ASN);
995 A_Name : constant Name_Id := Chars (Ident);
996 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
997 Ent : constant Entity_Id := Entity (ASN);
998 Expr : constant Node_Id := Expression (ASN);
999 Loc : constant Source_Ptr := Sloc (ASN);
1000
1001 Prag : Node_Id;
1002
1003 procedure Check_False_Aspect_For_Derived_Type;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1006 -- the parent.
1007
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1011
1012 procedure Check_False_Aspect_For_Derived_Type is
1013 Par : Node_Id;
1014
1015 begin
1016 -- We are only checking derived types
1017
1018 if not Is_Derived_Type (E) then
1019 return;
1020 end if;
1021
1022 Par := Nearest_Ancestor (E);
1023
1024 case A_Id is
1025 when Aspect_Atomic | Aspect_Shared =>
1026 if not Is_Atomic (Par) then
1027 return;
1028 end if;
1029
1030 when Aspect_Atomic_Components =>
1031 if not Has_Atomic_Components (Par) then
1032 return;
1033 end if;
1034
1035 when Aspect_Discard_Names =>
1036 if not Discard_Names (Par) then
1037 return;
1038 end if;
1039
1040 when Aspect_Pack =>
1041 if not Is_Packed (Par) then
1042 return;
1043 end if;
1044
1045 when Aspect_Unchecked_Union =>
1046 if not Is_Unchecked_Union (Par) then
1047 return;
1048 end if;
1049
1050 when Aspect_Volatile =>
1051 if not Is_Volatile (Par) then
1052 return;
1053 end if;
1054
1055 when Aspect_Volatile_Components =>
1056 if not Has_Volatile_Components (Par) then
1057 return;
1058 end if;
1059
1060 when others =>
1061 return;
1062 end case;
1063
1064 -- Fall through means we are canceling an inherited aspect
1065
1066 Error_Msg_Name_1 := A_Name;
37c6e44c 1067 Error_Msg_NE
1068 ("derived type& inherits aspect%, cannot cancel", Expr, E);
06ef5f86 1069
1070 end Check_False_Aspect_For_Derived_Type;
1071
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1073
1074 begin
37c6e44c 1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1078
06ef5f86 1079 if Is_False (Static_Boolean (Expr)) then
1080 Check_False_Aspect_For_Derived_Type;
1081
1082 else
1083 Prag :=
1084 Make_Pragma (Loc,
1085 Pragma_Argument_Associations => New_List (
57cd943b 1086 Make_Pragma_Argument_Association (Sloc (Ident),
1087 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1088
06ef5f86 1089 Pragma_Identifier =>
1090 Make_Identifier (Sloc (Ident), Chars (Ident)));
1091
1092 Set_From_Aspect_Specification (Prag, True);
1093 Set_Corresponding_Aspect (Prag, ASN);
1094 Set_Aspect_Rep_Item (ASN, Prag);
1095 Set_Is_Delayed_Aspect (Prag);
1096 Set_Parent (Prag, ASN);
1097 end if;
06ef5f86 1098 end Make_Pragma_From_Boolean_Aspect;
1099
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1101
1102 begin
29a9d4be 1103 -- Must be visible in current scope
06ef5f86 1104
ace3389d 1105 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 1106 return;
1107 end if;
1108
1109 -- Look for aspect specification entries for this entity
1110
1111 ASN := First_Rep_Item (E);
06ef5f86 1112 while Present (ASN) loop
37c6e44c 1113 if Nkind (ASN) = N_Aspect_Specification then
1114 exit when Entity (ASN) /= E;
06ef5f86 1115
37c6e44c 1116 if Is_Delayed_Aspect (ASN) then
1117 A_Id := Get_Aspect_Id (ASN);
1118
1119 case A_Id is
e4c87fa5 1120
37c6e44c 1121 -- For aspects whose expression is an optional Boolean, make
7d6fb253 1122 -- the corresponding pragma at the freeze point.
06ef5f86 1123
7d6fb253 1124 when Boolean_Aspects |
1125 Library_Unit_Aspects =>
1126 Make_Pragma_From_Boolean_Aspect (ASN);
06ef5f86 1127
37c6e44c 1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
06ef5f86 1130
7d6fb253 1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value =>
1133 Analyze_Aspect_Default_Value (ASN);
06ef5f86 1134
37c6e44c 1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
af9fed8f 1137
7d6fb253 1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element =>
1142 Analyze (Expression (ASN));
af9fed8f 1143
7d6fb253 1144 if Etype (Expression (ASN)) = Any_Type then
1145 Error_Msg_NE
1146 ("\aspect must be fully defined before & is frozen",
1147 ASN, E);
1148 end if;
b3f8228a 1149
7d6fb253 1150 when Aspect_Iterable =>
1151 Validate_Iterable_Aspect (E, ASN);
1152
1153 when others =>
1154 null;
37c6e44c 1155 end case;
06ef5f86 1156
37c6e44c 1157 Ritem := Aspect_Rep_Item (ASN);
06ef5f86 1158
37c6e44c 1159 if Present (Ritem) then
1160 Analyze (Ritem);
1161 end if;
06ef5f86 1162 end if;
1163 end if;
1164
1165 Next_Rep_Item (ASN);
1166 end loop;
37c6e44c 1167
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1172
1173 if May_Inherit_Delayed_Rep_Aspects (E) then
1174 Inherit_Delayed_Rep_Aspects (ASN);
1175 end if;
06ef5f86 1176 end Analyze_Aspects_At_Freeze_Point;
1177
ae888dbd 1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1181
21ea3a4f 1182 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
e2bf777d 1183 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
c4369687 1184 -- Establish linkages between an aspect and its corresponding
e2bf777d 1185 -- pragma.
5ddd846b 1186
50e44732 1187 procedure Insert_After_SPARK_Mode
1188 (Prag : Node_Id;
1189 Ins_Nod : Node_Id;
1190 Decls : List_Id);
e2bf777d 1191 -- Subsidiary to the analysis of aspects Abstract_State, Initializes,
1192 -- Initial_Condition and Refined_State. Insert node Prag before node
c4369687 1193 -- Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip SPARK_Mode.
1194 -- Decls is the associated declarative list where Prag is to reside.
e2bf777d 1195
1196 procedure Insert_Pragma (Prag : Node_Id);
1197 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1198 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1199 -- Insert pragma Prag such that it mimics the placement of a source
1200 -- pragma of the same kind.
1201 --
1202 -- procedure Proc (Formal : ...) with Global => ...;
1203 --
1204 -- procedure Proc (Formal : ...);
1205 -- pragma Global (...);
1206
1207 --------------
1208 -- Decorate --
1209 --------------
1210
1211 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5ddd846b 1212 begin
5cc6f0cf 1213 Set_Aspect_Rep_Item (Asp, Prag);
5ddd846b 1214 Set_Corresponding_Aspect (Prag, Asp);
1215 Set_From_Aspect_Specification (Prag);
5ddd846b 1216 Set_Parent (Prag, Asp);
e2bf777d 1217 end Decorate;
f0813d71 1218
50e44732 1219 -----------------------------
1220 -- Insert_After_SPARK_Mode --
1221 -----------------------------
1222
1223 procedure Insert_After_SPARK_Mode
1224 (Prag : Node_Id;
1225 Ins_Nod : Node_Id;
1226 Decls : List_Id)
1227 is
1228 Decl : Node_Id := Ins_Nod;
1229
1230 begin
1231 -- Skip SPARK_Mode
1232
1233 if Present (Decl)
1234 and then Nkind (Decl) = N_Pragma
1235 and then Pragma_Name (Decl) = Name_SPARK_Mode
1236 then
1237 Decl := Next (Decl);
1238 end if;
1239
1240 if Present (Decl) then
1241 Insert_Before (Decl, Prag);
1242
1243 -- Aitem acts as the last declaration
1244
1245 else
1246 Append_To (Decls, Prag);
1247 end if;
1248 end Insert_After_SPARK_Mode;
1249
e2bf777d 1250 -------------------
1251 -- Insert_Pragma --
1252 -------------------
c1006d6d 1253
e2bf777d 1254 procedure Insert_Pragma (Prag : Node_Id) is
1255 Aux : Node_Id;
1256 Decl : Node_Id;
c1006d6d 1257
1258 begin
1259 -- When the context is a library unit, the pragma is added to the
1260 -- Pragmas_After list.
1261
1262 if Nkind (Parent (N)) = N_Compilation_Unit then
1263 Aux := Aux_Decls_Node (Parent (N));
1264
1265 if No (Pragmas_After (Aux)) then
1266 Set_Pragmas_After (Aux, New_List);
1267 end if;
1268
1269 Prepend (Prag, Pragmas_After (Aux));
1270
1271 -- Pragmas associated with subprogram bodies are inserted in the
1272 -- declarative part.
1273
1274 elsif Nkind (N) = N_Subprogram_Body then
e2bf777d 1275 if Present (Declarations (N)) then
d324c418 1276
e2bf777d 1277 -- Skip other internally generated pragmas from aspects to find
1278 -- the proper insertion point. As a result the order of pragmas
1279 -- is the same as the order of aspects.
d324c418 1280
607bc8f5 1281 -- As precondition pragmas generated from conjuncts in the
1282 -- precondition aspect are presented in reverse order to
1283 -- Insert_Pragma, insert them in the correct order here by not
1284 -- skipping previously inserted precondition pragmas when the
1285 -- current pragma is a precondition.
1286
e2bf777d 1287 Decl := First (Declarations (N));
1288 while Present (Decl) loop
1289 if Nkind (Decl) = N_Pragma
1290 and then From_Aspect_Specification (Decl)
607bc8f5 1291 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1292 and then
1293 Get_Pragma_Id (Prag) = Pragma_Precondition)
e2bf777d 1294 then
1295 Next (Decl);
d324c418 1296 else
e2bf777d 1297 exit;
d324c418 1298 end if;
e2bf777d 1299 end loop;
1300
1301 if Present (Decl) then
1302 Insert_Before (Decl, Prag);
1303 else
1304 Append (Prag, Declarations (N));
1305 end if;
1306 else
1307 Set_Declarations (N, New_List (Prag));
d324c418 1308 end if;
c1006d6d 1309
1310 -- Default
1311
1312 else
1313 Insert_After (N, Prag);
c1006d6d 1314 end if;
e2bf777d 1315 end Insert_Pragma;
c1006d6d 1316
1317 -- Local variables
1318
ae888dbd 1319 Aspect : Node_Id;
d74fc39a 1320 Aitem : Node_Id;
ae888dbd 1321 Ent : Node_Id;
ae888dbd 1322
21ea3a4f 1323 L : constant List_Id := Aspect_Specifications (N);
1324
ae888dbd 1325 Ins_Node : Node_Id := N;
89f1e35c 1326 -- Insert pragmas/attribute definition clause after this node when no
1327 -- delayed analysis is required.
d74fc39a 1328
f0813d71 1329 -- Start of processing for Analyze_Aspect_Specifications
1330
d74fc39a 1331 -- The general processing involves building an attribute definition
89f1e35c 1332 -- clause or a pragma node that corresponds to the aspect. Then in order
1333 -- to delay the evaluation of this aspect to the freeze point, we attach
1334 -- the corresponding pragma/attribute definition clause to the aspect
1335 -- specification node, which is then placed in the Rep Item chain. In
1336 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1337 -- and we evaluate the rep item at the freeze point. When the aspect
1338 -- doesn't have a corresponding pragma/attribute definition clause, then
1339 -- its analysis is simply delayed at the freeze point.
1340
1341 -- Some special cases don't require delay analysis, thus the aspect is
1342 -- analyzed right now.
1343
51ea9c94 1344 -- Note that there is a special handling for Pre, Post, Test_Case,
e66f4e2a 1345 -- Contract_Cases aspects. In these cases, we do not have to worry
51ea9c94 1346 -- about delay issues, since the pragmas themselves deal with delay
1347 -- of visibility for the expression analysis. Thus, we just insert
1348 -- the pragma after the node N.
ae888dbd 1349
1350 begin
21ea3a4f 1351 pragma Assert (Present (L));
1352
6fb3c314 1353 -- Loop through aspects
f93e7257 1354
ae888dbd 1355 Aspect := First (L);
21ea3a4f 1356 Aspect_Loop : while Present (Aspect) loop
0fd13d32 1357 Analyze_One_Aspect : declare
94153a42 1358 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 1359 Id : constant Node_Id := Identifier (Aspect);
1360 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 1361 Nam : constant Name_Id := Chars (Id);
1362 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 1363 Anod : Node_Id;
1364
37c6e44c 1365 Delay_Required : Boolean;
89f1e35c 1366 -- Set False if delay is not required
1367
c0793fff 1368 Eloc : Source_Ptr := No_Location;
1369 -- Source location of expression, modified when we split PPC's. It
1370 -- is set below when Expr is present.
39e1f22f 1371
89f1e35c 1372 procedure Analyze_Aspect_External_Or_Link_Name;
0fd13d32 1373 -- Perform analysis of the External_Name or Link_Name aspects
21ea3a4f 1374
89f1e35c 1375 procedure Analyze_Aspect_Implicit_Dereference;
9ab32fe9 1376 -- Perform analysis of the Implicit_Dereference aspects
0fd13d32 1377
1378 procedure Make_Aitem_Pragma
1379 (Pragma_Argument_Associations : List_Id;
1380 Pragma_Name : Name_Id);
1381 -- This is a wrapper for Make_Pragma used for converting aspects
1382 -- to pragmas. It takes care of Sloc (set from Loc) and building
1383 -- the pragma identifier from the given name. In addition the
1384 -- flags Class_Present and Split_PPC are set from the aspect
1385 -- node, as well as Is_Ignored. This routine also sets the
1386 -- From_Aspect_Specification in the resulting pragma node to
1387 -- True, and sets Corresponding_Aspect to point to the aspect.
1388 -- The resulting pragma is assigned to Aitem.
21ea3a4f 1389
89f1e35c 1390 ------------------------------------------
1391 -- Analyze_Aspect_External_Or_Link_Name --
1392 ------------------------------------------
1393
1394 procedure Analyze_Aspect_External_Or_Link_Name is
21ea3a4f 1395 begin
89f1e35c 1396 -- Verify that there is an Import/Export aspect defined for the
1397 -- entity. The processing of that aspect in turn checks that
1398 -- there is a Convention aspect declared. The pragma is
1399 -- constructed when processing the Convention aspect.
21ea3a4f 1400
89f1e35c 1401 declare
1402 A : Node_Id;
21ea3a4f 1403
89f1e35c 1404 begin
1405 A := First (L);
89f1e35c 1406 while Present (A) loop
18393965 1407 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1408 Name_Import);
89f1e35c 1409 Next (A);
1410 end loop;
21ea3a4f 1411
89f1e35c 1412 if No (A) then
1413 Error_Msg_N
51ea9c94 1414 ("missing Import/Export for Link/External name",
8a1e3cde 1415 Aspect);
89f1e35c 1416 end if;
1417 end;
1418 end Analyze_Aspect_External_Or_Link_Name;
21ea3a4f 1419
89f1e35c 1420 -----------------------------------------
1421 -- Analyze_Aspect_Implicit_Dereference --
1422 -----------------------------------------
21ea3a4f 1423
89f1e35c 1424 procedure Analyze_Aspect_Implicit_Dereference is
1425 begin
b9e61b2a 1426 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1427 Error_Msg_N
51ea9c94 1428 ("aspect must apply to a type with discriminants", N);
21ea3a4f 1429
89f1e35c 1430 else
1431 declare
1432 Disc : Entity_Id;
21ea3a4f 1433
89f1e35c 1434 begin
1435 Disc := First_Discriminant (E);
89f1e35c 1436 while Present (Disc) loop
1437 if Chars (Expr) = Chars (Disc)
1438 and then Ekind (Etype (Disc)) =
1439 E_Anonymous_Access_Type
1440 then
1441 Set_Has_Implicit_Dereference (E);
1442 Set_Has_Implicit_Dereference (Disc);
1443 return;
1444 end if;
21ea3a4f 1445
89f1e35c 1446 Next_Discriminant (Disc);
1447 end loop;
21ea3a4f 1448
89f1e35c 1449 -- Error if no proper access discriminant.
21ea3a4f 1450
89f1e35c 1451 Error_Msg_NE
1452 ("not an access discriminant of&", Expr, E);
1453 end;
1454 end if;
1455 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1456
0fd13d32 1457 -----------------------
1458 -- Make_Aitem_Pragma --
1459 -----------------------
1460
1461 procedure Make_Aitem_Pragma
1462 (Pragma_Argument_Associations : List_Id;
1463 Pragma_Name : Name_Id)
1464 is
b855559d 1465 Args : List_Id := Pragma_Argument_Associations;
1466
0fd13d32 1467 begin
1468 -- We should never get here if aspect was disabled
1469
1470 pragma Assert (not Is_Disabled (Aspect));
1471
056dc987 1472 -- Certain aspects allow for an optional name or expression. Do
1473 -- not generate a pragma with empty argument association list.
b855559d 1474
1475 if No (Args) or else No (Expression (First (Args))) then
1476 Args := No_List;
1477 end if;
1478
0fd13d32 1479 -- Build the pragma
1480
1481 Aitem :=
1482 Make_Pragma (Loc,
b855559d 1483 Pragma_Argument_Associations => Args,
0fd13d32 1484 Pragma_Identifier =>
1485 Make_Identifier (Sloc (Id), Pragma_Name),
9ab32fe9 1486 Class_Present => Class_Present (Aspect),
1487 Split_PPC => Split_PPC (Aspect));
0fd13d32 1488
1489 -- Set additional semantic fields
1490
1491 if Is_Ignored (Aspect) then
1492 Set_Is_Ignored (Aitem);
57d8d1f3 1493 elsif Is_Checked (Aspect) then
a5109493 1494 Set_Is_Checked (Aitem);
0fd13d32 1495 end if;
1496
1497 Set_Corresponding_Aspect (Aitem, Aspect);
1498 Set_From_Aspect_Specification (Aitem, True);
1499 end Make_Aitem_Pragma;
1500
1501 -- Start of processing for Analyze_One_Aspect
1502
ae888dbd 1503 begin
2d1acfa7 1504 -- Skip aspect if already analyzed, to avoid looping in some cases
fb7f2fc4 1505
1506 if Analyzed (Aspect) then
1507 goto Continue;
1508 end if;
1509
ef957022 1510 -- Skip looking at aspect if it is totally disabled. Just mark it
1511 -- as such for later reference in the tree. This also sets the
1512 -- Is_Ignored and Is_Checked flags appropriately.
51ea9c94 1513
1514 Check_Applicable_Policy (Aspect);
1515
1516 if Is_Disabled (Aspect) then
1517 goto Continue;
1518 end if;
1519
c0793fff 1520 -- Set the source location of expression, used in the case of
1521 -- a failed precondition/postcondition or invariant. Note that
1522 -- the source location of the expression is not usually the best
1523 -- choice here. For example, it gets located on the last AND
1524 -- keyword in a chain of boolean expressiond AND'ed together.
1525 -- It is best to put the message on the first character of the
1526 -- assertion, which is the effect of the First_Node call here.
1527
1528 if Present (Expr) then
1529 Eloc := Sloc (First_Node (Expr));
1530 end if;
1531
d7ed83a2 1532 -- Check restriction No_Implementation_Aspect_Specifications
1533
c171e1be 1534 if Implementation_Defined_Aspect (A_Id) then
d7ed83a2 1535 Check_Restriction
1536 (No_Implementation_Aspect_Specifications, Aspect);
1537 end if;
1538
1539 -- Check restriction No_Specification_Of_Aspect
1540
1541 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1542
f67ed4f5 1543 -- Mark aspect analyzed (actual analysis is delayed till later)
d7ed83a2 1544
fb7f2fc4 1545 Set_Analyzed (Aspect);
d74fc39a 1546 Set_Entity (Aspect, E);
1547 Ent := New_Occurrence_Of (E, Sloc (Id));
1548
1e3c4ae6 1549 -- Check for duplicate aspect. Note that the Comes_From_Source
1550 -- test allows duplicate Pre/Post's that we generate internally
1551 -- to escape being flagged here.
ae888dbd 1552
6c545057 1553 if No_Duplicates_Allowed (A_Id) then
1554 Anod := First (L);
1555 while Anod /= Aspect loop
c171e1be 1556 if Comes_From_Source (Aspect)
1557 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
6c545057 1558 then
1559 Error_Msg_Name_1 := Nam;
1560 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1561
6c545057 1562 -- Case of same aspect specified twice
39e1f22f 1563
6c545057 1564 if Class_Present (Anod) = Class_Present (Aspect) then
1565 if not Class_Present (Anod) then
1566 Error_Msg_NE
1567 ("aspect% for & previously given#",
1568 Id, E);
1569 else
1570 Error_Msg_NE
1571 ("aspect `%''Class` for & previously given#",
1572 Id, E);
1573 end if;
39e1f22f 1574 end if;
6c545057 1575 end if;
ae888dbd 1576
6c545057 1577 Next (Anod);
1578 end loop;
1579 end if;
ae888dbd 1580
4db325e6 1581 -- Check some general restrictions on language defined aspects
1582
c171e1be 1583 if not Implementation_Defined_Aspect (A_Id) then
4db325e6 1584 Error_Msg_Name_1 := Nam;
1585
1586 -- Not allowed for renaming declarations
1587
1588 if Nkind (N) in N_Renaming_Declaration then
1589 Error_Msg_N
1590 ("aspect % not allowed for renaming declaration",
1591 Aspect);
1592 end if;
1593
1594 -- Not allowed for formal type declarations
1595
1596 if Nkind (N) = N_Formal_Type_Declaration then
1597 Error_Msg_N
1598 ("aspect % not allowed for formal type declaration",
1599 Aspect);
1600 end if;
1601 end if;
1602
7d20685d 1603 -- Copy expression for later processing by the procedures
1604 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1605
1606 Set_Entity (Id, New_Copy_Tree (Expr));
1607
37c6e44c 1608 -- Set Delay_Required as appropriate to aspect
1609
1610 case Aspect_Delay (A_Id) is
1611 when Always_Delay =>
1612 Delay_Required := True;
1613
1614 when Never_Delay =>
1615 Delay_Required := False;
1616
1617 when Rep_Aspect =>
1618
1619 -- If expression has the form of an integer literal, then
1620 -- do not delay, since we know the value cannot change.
1621 -- This optimization catches most rep clause cases.
1622
1623 if (Present (Expr) and then Nkind (Expr) = N_Integer_Literal)
1624 or else (A_Id in Boolean_Aspects and then No (Expr))
1625 then
1626 Delay_Required := False;
1627 else
1628 Delay_Required := True;
1629 Set_Has_Delayed_Rep_Aspects (E);
1630 end if;
1631 end case;
1632
ae888dbd 1633 -- Processing based on specific aspect
1634
d74fc39a 1635 case A_Id is
ae888dbd 1636
1637 -- No_Aspect should be impossible
1638
1639 when No_Aspect =>
1640 raise Program_Error;
1641
89f1e35c 1642 -- Case 1: Aspects corresponding to attribute definition
1643 -- clauses.
ae888dbd 1644
b7b74740 1645 when Aspect_Address |
1646 Aspect_Alignment |
1647 Aspect_Bit_Order |
1648 Aspect_Component_Size |
89f1e35c 1649 Aspect_Constant_Indexing |
89f1e35c 1650 Aspect_Default_Iterator |
1651 Aspect_Dispatching_Domain |
b7b74740 1652 Aspect_External_Tag |
1653 Aspect_Input |
b3f8228a 1654 Aspect_Iterable |
89f1e35c 1655 Aspect_Iterator_Element |
b7b74740 1656 Aspect_Machine_Radix |
1657 Aspect_Object_Size |
1658 Aspect_Output |
1659 Aspect_Read |
1660 Aspect_Scalar_Storage_Order |
1661 Aspect_Size |
1662 Aspect_Small |
1663 Aspect_Simple_Storage_Pool |
1664 Aspect_Storage_Pool |
b7b74740 1665 Aspect_Stream_Size |
1666 Aspect_Value_Size |
89f1e35c 1667 Aspect_Variable_Indexing |
b7b74740 1668 Aspect_Write =>
d74fc39a 1669
89f1e35c 1670 -- Indexing aspects apply only to tagged type
1671
1672 if (A_Id = Aspect_Constant_Indexing
37c6e44c 1673 or else
1674 A_Id = Aspect_Variable_Indexing)
89f1e35c 1675 and then not (Is_Type (E)
1676 and then Is_Tagged_Type (E))
1677 then
05987af3 1678 Error_Msg_N
1679 ("indexing aspect can only apply to a tagged type",
3f4c9ffc 1680 Aspect);
89f1e35c 1681 goto Continue;
1682 end if;
1683
39616053 1684 -- For the case of aspect Address, we don't consider that we
588e7f97 1685 -- know the entity is never set in the source, since it is
1686 -- is likely aliasing is occurring.
1687
1688 -- Note: one might think that the analysis of the resulting
1689 -- attribute definition clause would take care of that, but
1690 -- that's not the case since it won't be from source.
1691
1692 if A_Id = Aspect_Address then
1693 Set_Never_Set_In_Source (E, False);
1694 end if;
1695
5ac76cee 1696 -- Correctness of the profile of a stream operation is
1697 -- verified at the freeze point, but we must detect the
1698 -- illegal specification of this aspect for a subtype now,
1699 -- to prevent malformed rep_item chains.
1700
cda40848 1701 if (A_Id = Aspect_Input or else
1702 A_Id = Aspect_Output or else
1703 A_Id = Aspect_Read or else
1704 A_Id = Aspect_Write)
5ac76cee 1705 and not Is_First_Subtype (E)
1706 then
1707 Error_Msg_N
1708 ("local name must be a first subtype", Aspect);
1709 goto Continue;
1710 end if;
1711
d74fc39a 1712 -- Construct the attribute definition clause
1713
1714 Aitem :=
94153a42 1715 Make_Attribute_Definition_Clause (Loc,
d74fc39a 1716 Name => Ent,
ae888dbd 1717 Chars => Chars (Id),
1718 Expression => Relocate_Node (Expr));
1719
af9a0cc3 1720 -- If the address is specified, then we treat the entity as
41f06abf 1721 -- referenced, to avoid spurious warnings. This is analogous
1722 -- to what is done with an attribute definition clause, but
1723 -- here we don't want to generate a reference because this
1724 -- is the point of definition of the entity.
1725
1726 if A_Id = Aspect_Address then
1727 Set_Referenced (E);
1728 end if;
1729
51ea9c94 1730 -- Case 2: Aspects corresponding to pragmas
d74fc39a 1731
89f1e35c 1732 -- Case 2a: Aspects corresponding to pragmas with two
1733 -- arguments, where the first argument is a local name
1734 -- referring to the entity, and the second argument is the
1735 -- aspect definition expression.
ae888dbd 1736
04ae062f 1737 -- Linker_Section/Suppress/Unsuppress
0fd13d32 1738
04ae062f 1739 when Aspect_Linker_Section |
1740 Aspect_Suppress |
1741 Aspect_Unsuppress =>
ae888dbd 1742
0fd13d32 1743 Make_Aitem_Pragma
1744 (Pragma_Argument_Associations => New_List (
1745 Make_Pragma_Argument_Association (Loc,
1746 Expression => New_Occurrence_Of (E, Loc)),
1747 Make_Pragma_Argument_Association (Sloc (Expr),
1748 Expression => Relocate_Node (Expr))),
1749 Pragma_Name => Chars (Id));
57cd943b 1750
0fd13d32 1751 -- Synchronization
d74fc39a 1752
0fd13d32 1753 -- Corresponds to pragma Implemented, construct the pragma
49213728 1754
5bbfbad2 1755 when Aspect_Synchronization =>
0fd13d32 1756 Make_Aitem_Pragma
1757 (Pragma_Argument_Associations => New_List (
1758 Make_Pragma_Argument_Association (Loc,
1759 Expression => New_Occurrence_Of (E, Loc)),
1760 Make_Pragma_Argument_Association (Sloc (Expr),
1761 Expression => Relocate_Node (Expr))),
1762 Pragma_Name => Name_Implemented);
49213728 1763
e2bf777d 1764 -- Attach_Handler
0fd13d32 1765
89f1e35c 1766 when Aspect_Attach_Handler =>
0fd13d32 1767 Make_Aitem_Pragma
1768 (Pragma_Argument_Associations => New_List (
1769 Make_Pragma_Argument_Association (Sloc (Ent),
1770 Expression => Ent),
1771 Make_Pragma_Argument_Association (Sloc (Expr),
1772 Expression => Relocate_Node (Expr))),
1773 Pragma_Name => Name_Attach_Handler);
1774
f67ed4f5 1775 -- We need to insert this pragma into the tree to get proper
1776 -- processing and to look valid from a placement viewpoint.
1777
e2bf777d 1778 Insert_Pragma (Aitem);
f67ed4f5 1779 goto Continue;
1780
0fd13d32 1781 -- Dynamic_Predicate, Predicate, Static_Predicate
89f1e35c 1782
1783 when Aspect_Dynamic_Predicate |
1784 Aspect_Predicate |
1785 Aspect_Static_Predicate =>
1786
a47ce82d 1787 -- These aspects apply only to subtypes
1788
1789 if not Is_Type (E) then
1790 Error_Msg_N
1791 ("predicate can only be specified for a subtype",
1792 Aspect);
1793 goto Continue;
7c0c95b8 1794
1795 elsif Is_Incomplete_Type (E) then
1796 Error_Msg_N
1797 ("predicate cannot apply to incomplete view", Aspect);
1798 goto Continue;
a47ce82d 1799 end if;
1800
89f1e35c 1801 -- Construct the pragma (always a pragma Predicate, with
51ea9c94 1802 -- flags recording whether it is static/dynamic). We also
1803 -- set flags recording this in the type itself.
89f1e35c 1804
0fd13d32 1805 Make_Aitem_Pragma
1806 (Pragma_Argument_Associations => New_List (
1807 Make_Pragma_Argument_Association (Sloc (Ent),
1808 Expression => Ent),
1809 Make_Pragma_Argument_Association (Sloc (Expr),
1810 Expression => Relocate_Node (Expr))),
1811 Pragma_Name => Name_Predicate);
89f1e35c 1812
51ea9c94 1813 -- Mark type has predicates, and remember what kind of
1814 -- aspect lead to this predicate (we need this to access
1815 -- the right set of check policies later on).
1816
1817 Set_Has_Predicates (E);
1818
1819 if A_Id = Aspect_Dynamic_Predicate then
1820 Set_Has_Dynamic_Predicate_Aspect (E);
1821 elsif A_Id = Aspect_Static_Predicate then
1822 Set_Has_Static_Predicate_Aspect (E);
1823 end if;
1824
89f1e35c 1825 -- If the type is private, indicate that its completion
6653b695 1826 -- has a freeze node, because that is the one that will
1827 -- be visible at freeze time.
89f1e35c 1828
0fd13d32 1829 if Is_Private_Type (E) and then Present (Full_View (E)) then
89f1e35c 1830 Set_Has_Predicates (Full_View (E));
51ea9c94 1831
1832 if A_Id = Aspect_Dynamic_Predicate then
1833 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1834 elsif A_Id = Aspect_Static_Predicate then
1835 Set_Has_Static_Predicate_Aspect (Full_View (E));
1836 end if;
1837
89f1e35c 1838 Set_Has_Delayed_Aspects (Full_View (E));
1839 Ensure_Freeze_Node (Full_View (E));
1840 end if;
1841
1842 -- Case 2b: Aspects corresponding to pragmas with two
1843 -- arguments, where the second argument is a local name
1844 -- referring to the entity, and the first argument is the
1845 -- aspect definition expression.
ae888dbd 1846
0fd13d32 1847 -- Convention
1848
a5a64273 1849 when Aspect_Convention =>
1850
1851 -- The aspect may be part of the specification of an import
1852 -- or export pragma. Scan the aspect list to gather the
1853 -- other components, if any. The name of the generated
1854 -- pragma is one of Convention/Import/Export.
1855
1856 declare
97bf66e6 1857 Args : constant List_Id := New_List (
1858 Make_Pragma_Argument_Association (Sloc (Expr),
1859 Expression => Relocate_Node (Expr)),
1860 Make_Pragma_Argument_Association (Sloc (Ent),
1861 Expression => Ent));
1862
1863 Imp_Exp_Seen : Boolean := False;
1864 -- Flag set when aspect Import or Export has been seen
1865
1866 Imp_Seen : Boolean := False;
1867 -- Flag set when aspect Import has been seen
1868
1869 Asp : Node_Id;
1870 Asp_Nam : Name_Id;
1871 Extern_Arg : Node_Id;
1872 Link_Arg : Node_Id;
1873 Prag_Nam : Name_Id;
a5a64273 1874
1875 begin
97bf66e6 1876 Extern_Arg := Empty;
1877 Link_Arg := Empty;
1878 Prag_Nam := Chars (Id);
1879
1880 Asp := First (L);
1881 while Present (Asp) loop
1882 Asp_Nam := Chars (Identifier (Asp));
1883
1884 -- Aspects Import and Export take precedence over
1885 -- aspect Convention. As a result the generated pragma
1886 -- must carry the proper interfacing aspect's name.
1887
1888 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1889 if Imp_Exp_Seen then
1890 Error_Msg_N ("conflicting", Asp);
a5a64273 1891 else
97bf66e6 1892 Imp_Exp_Seen := True;
1893
1894 if Asp_Nam = Name_Import then
1895 Imp_Seen := True;
1896 end if;
a5a64273 1897 end if;
1898
97bf66e6 1899 Prag_Nam := Asp_Nam;
a5a64273 1900
97bf66e6 1901 -- Aspect External_Name adds an extra argument to the
1902 -- generated pragma.
1903
1904 elsif Asp_Nam = Name_External_Name then
1905 Extern_Arg :=
4bba0a8d 1906 Make_Pragma_Argument_Association (Loc,
97bf66e6 1907 Chars => Asp_Nam,
1908 Expression => Relocate_Node (Expression (Asp)));
1909
1910 -- Aspect Link_Name adds an extra argument to the
1911 -- generated pragma.
a5a64273 1912
97bf66e6 1913 elsif Asp_Nam = Name_Link_Name then
1914 Link_Arg :=
4bba0a8d 1915 Make_Pragma_Argument_Association (Loc,
97bf66e6 1916 Chars => Asp_Nam,
1917 Expression => Relocate_Node (Expression (Asp)));
a5a64273 1918 end if;
1919
97bf66e6 1920 Next (Asp);
a5a64273 1921 end loop;
1922
97bf66e6 1923 -- Assemble the full argument list
b9e61b2a 1924
97bf66e6 1925 if Present (Extern_Arg) then
1926 Append_To (Args, Extern_Arg);
a5a64273 1927 end if;
1928
8a1e3cde 1929 if Present (Link_Arg) then
1930 Append_To (Args, Link_Arg);
1931 end if;
1932
0fd13d32 1933 Make_Aitem_Pragma
97bf66e6 1934 (Pragma_Argument_Associations => Args,
1935 Pragma_Name => Prag_Nam);
1936
1937 -- Store the generated pragma Import in the related
1938 -- subprogram.
1939
1940 if Imp_Seen and then Is_Subprogram (E) then
1941 Set_Import_Pragma (E, Aitem);
1942 end if;
a5a64273 1943 end;
e1cedbae 1944
0fd13d32 1945 -- CPU, Interrupt_Priority, Priority
1946
d6814978 1947 -- These three aspects can be specified for a subprogram spec
1948 -- or body, in which case we analyze the expression and export
1949 -- the value of the aspect.
1950
1951 -- Previously, we generated an equivalent pragma for bodies
1952 -- (note that the specs cannot contain these pragmas). The
1953 -- pragma was inserted ahead of local declarations, rather than
1954 -- after the body. This leads to a certain duplication between
1955 -- the processing performed for the aspect and the pragma, but
1956 -- given the straightforward handling required it is simpler
1957 -- to duplicate than to translate the aspect in the spec into
1958 -- a pragma in the declarative part of the body.
3a72f9c3 1959
1960 when Aspect_CPU |
1961 Aspect_Interrupt_Priority |
1962 Aspect_Priority =>
51ea9c94 1963
d6814978 1964 if Nkind_In (N, N_Subprogram_Body,
1965 N_Subprogram_Declaration)
1966 then
1967 -- Analyze the aspect expression
1968
1969 Analyze_And_Resolve (Expr, Standard_Integer);
1970
1971 -- Interrupt_Priority aspect not allowed for main
1972 -- subprograms. ARM D.1 does not forbid this explicitly,
1973 -- but ARM J.15.11 (6/3) does not permit pragma
1974 -- Interrupt_Priority for subprograms.
1975
1976 if A_Id = Aspect_Interrupt_Priority then
1977 Error_Msg_N
1978 ("Interrupt_Priority aspect cannot apply to "
1979 & "subprogram", Expr);
1980
1981 -- The expression must be static
1982
cda40848 1983 elsif not Is_OK_Static_Expression (Expr) then
d6814978 1984 Flag_Non_Static_Expr
1985 ("aspect requires static expression!", Expr);
1986
24d7b9d6 1987 -- Check whether this is the main subprogram. Issue a
1988 -- warning only if it is obviously not a main program
1989 -- (when it has parameters or when the subprogram is
1990 -- within a package).
1991
1992 elsif Present (Parameter_Specifications
1993 (Specification (N)))
1994 or else not Is_Compilation_Unit (Defining_Entity (N))
d6814978 1995 then
1996 -- See ARM D.1 (14/3) and D.16 (12/3)
1997
1998 Error_Msg_N
1999 ("aspect applied to subprogram other than the "
2000 & "main subprogram has no effect??", Expr);
2001
2002 -- Otherwise check in range and export the value
2003
2004 -- For the CPU aspect
2005
2006 elsif A_Id = Aspect_CPU then
2007 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2008
2009 -- Value is correct so we export the value to make
2010 -- it available at execution time.
2011
2012 Set_Main_CPU
2013 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2014
2015 else
2016 Error_Msg_N
2017 ("main subprogram CPU is out of range", Expr);
2018 end if;
2019
2020 -- For the Priority aspect
2021
2022 elsif A_Id = Aspect_Priority then
2023 if Is_In_Range (Expr, RTE (RE_Priority)) then
2024
2025 -- Value is correct so we export the value to make
2026 -- it available at execution time.
2027
2028 Set_Main_Priority
2029 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2030
32572384 2031 -- Ignore pragma if Relaxed_RM_Semantics to support
2032 -- other targets/non GNAT compilers.
2033
2034 elsif not Relaxed_RM_Semantics then
d6814978 2035 Error_Msg_N
2036 ("main subprogram priority is out of range",
2037 Expr);
2038 end if;
2039 end if;
2040
2041 -- Load an arbitrary entity from System.Tasking.Stages
2042 -- or System.Tasking.Restricted.Stages (depending on
2043 -- the supported profile) to make sure that one of these
2044 -- packages is implicitly with'ed, since we need to have
2045 -- the tasking run time active for the pragma Priority to
a0c3eeb9 2046 -- have any effect. Previously we with'ed the package
d6814978 2047 -- System.Tasking, but this package does not trigger the
2048 -- required initialization of the run-time library.
2049
2050 declare
2051 Discard : Entity_Id;
d6814978 2052 begin
2053 if Restricted_Profile then
2054 Discard := RTE (RE_Activate_Restricted_Tasks);
2055 else
2056 Discard := RTE (RE_Activate_Tasks);
2057 end if;
2058 end;
2059
2060 -- Handling for these Aspects in subprograms is complete
2061
2062 goto Continue;
2063
2064 -- For tasks
0fd13d32 2065
3a72f9c3 2066 else
d6814978 2067 -- Pass the aspect as an attribute
2068
3a72f9c3 2069 Aitem :=
2070 Make_Attribute_Definition_Clause (Loc,
2071 Name => Ent,
2072 Chars => Chars (Id),
2073 Expression => Relocate_Node (Expr));
2074 end if;
2075
0fd13d32 2076 -- Warnings
2077
ae888dbd 2078 when Aspect_Warnings =>
0fd13d32 2079 Make_Aitem_Pragma
2080 (Pragma_Argument_Associations => New_List (
2081 Make_Pragma_Argument_Association (Sloc (Expr),
2082 Expression => Relocate_Node (Expr)),
2083 Make_Pragma_Argument_Association (Loc,
2084 Expression => New_Occurrence_Of (E, Loc))),
2085 Pragma_Name => Chars (Id));
ae888dbd 2086
89f1e35c 2087 -- Case 2c: Aspects corresponding to pragmas with three
2088 -- arguments.
d64221a7 2089
89f1e35c 2090 -- Invariant aspects have a first argument that references the
2091 -- entity, a second argument that is the expression and a third
2092 -- argument that is an appropriate message.
d64221a7 2093
0fd13d32 2094 -- Invariant, Type_Invariant
2095
89f1e35c 2096 when Aspect_Invariant |
2097 Aspect_Type_Invariant =>
d64221a7 2098
89f1e35c 2099 -- Analysis of the pragma will verify placement legality:
2100 -- an invariant must apply to a private type, or appear in
2101 -- the private part of a spec and apply to a completion.
d64221a7 2102
0fd13d32 2103 Make_Aitem_Pragma
2104 (Pragma_Argument_Associations => New_List (
2105 Make_Pragma_Argument_Association (Sloc (Ent),
2106 Expression => Ent),
2107 Make_Pragma_Argument_Association (Sloc (Expr),
2108 Expression => Relocate_Node (Expr))),
2109 Pragma_Name => Name_Invariant);
89f1e35c 2110
2111 -- Add message unless exception messages are suppressed
2112
2113 if not Opt.Exception_Locations_Suppressed then
2114 Append_To (Pragma_Argument_Associations (Aitem),
2115 Make_Pragma_Argument_Association (Eloc,
2116 Chars => Name_Message,
2117 Expression =>
2118 Make_String_Literal (Eloc,
2119 Strval => "failed invariant from "
2120 & Build_Location_String (Eloc))));
d64221a7 2121 end if;
2122
89f1e35c 2123 -- For Invariant case, insert immediately after the entity
2124 -- declaration. We do not have to worry about delay issues
2125 -- since the pragma processing takes care of this.
2126
89f1e35c 2127 Delay_Required := False;
d64221a7 2128
47a46747 2129 -- Case 2d : Aspects that correspond to a pragma with one
2130 -- argument.
2131
0fd13d32 2132 -- Abstract_State
115f7b08 2133
d4e369ad 2134 -- Aspect Abstract_State introduces implicit declarations for
2135 -- all state abstraction entities it defines. To emulate this
2136 -- behavior, insert the pragma at the beginning of the visible
2137 -- declarations of the related package so that it is analyzed
2138 -- immediately.
2139
9129c28f 2140 when Aspect_Abstract_State => Abstract_State : declare
eb4f7efa 2141 Context : Node_Id := N;
630b6d55 2142 Decl : Node_Id;
eb4f7efa 2143 Decls : List_Id;
9129c28f 2144
2145 begin
eb4f7efa 2146 -- When aspect Abstract_State appears on a generic package,
2147 -- it is propageted to the package instance. The context in
2148 -- this case is the instance spec.
2149
2150 if Nkind (Context) = N_Package_Instantiation then
2151 Context := Instance_Spec (Context);
2152 end if;
2153
2154 if Nkind_In (Context, N_Generic_Package_Declaration,
2155 N_Package_Declaration)
9129c28f 2156 then
9129c28f 2157 Make_Aitem_Pragma
2158 (Pragma_Argument_Associations => New_List (
2159 Make_Pragma_Argument_Association (Loc,
2160 Expression => Relocate_Node (Expr))),
2161 Pragma_Name => Name_Abstract_State);
e2bf777d 2162 Decorate (Aspect, Aitem);
9129c28f 2163
630b6d55 2164 Decls := Visible_Declarations (Specification (Context));
2165
2166 -- In general pragma Abstract_State must be at the top
2167 -- of the existing visible declarations to emulate its
2168 -- source counterpart. The only exception to this is a
2169 -- generic instance in which case the pragma must be
2170 -- inserted after the association renamings.
2171
2172 if Present (Decls) then
50e44732 2173 Decl := First (Decls);
630b6d55 2174
2175 -- The visible declarations of a generic instance have
2176 -- the following structure:
2177
2178 -- <renamings of generic formals>
2179 -- <renamings of internally-generated spec and body>
2180 -- <first source declaration>
2181
2182 -- The pragma must be inserted before the first source
50e44732 2183 -- declaration, skip the instance "header".
630b6d55 2184
2185 if Is_Generic_Instance (Defining_Entity (Context)) then
630b6d55 2186 while Present (Decl)
2187 and then not Comes_From_Source (Decl)
2188 loop
2189 Decl := Next (Decl);
2190 end loop;
50e44732 2191 end if;
630b6d55 2192
50e44732 2193 -- Pragma Abstract_State must be inserted after pragma
2194 -- SPARK_Mode in the tree. This ensures that any error
2195 -- messages dependent on SPARK_Mode will be properly
2196 -- enabled/suppressed.
630b6d55 2197
50e44732 2198 Insert_After_SPARK_Mode
2199 (Prag => Aitem,
2200 Ins_Nod => Decl,
2201 Decls => Decls);
630b6d55 2202
2203 -- Otherwise the pragma forms a new declarative list
2204
2205 else
2206 Set_Visible_Declarations
2207 (Specification (Context), New_List (Aitem));
2208 end if;
9129c28f 2209
2210 else
2211 Error_Msg_NE
2212 ("aspect & must apply to a package declaration",
2213 Aspect, Id);
2214 end if;
2215
2216 goto Continue;
2217 end Abstract_State;
115f7b08 2218
ec6f6da5 2219 -- Aspect Default_Internal_Condition is never delayed because
2220 -- it is equivalent to a source pragma which appears after the
2221 -- related private type. To deal with forward references, the
2222 -- generated pragma is stored in the rep chain of the related
2223 -- private type as types do not carry contracts. The pragma is
2224 -- wrapped inside of a procedure at the freeze point of the
2225 -- private type's full view.
2226
2227 when Aspect_Default_Initial_Condition =>
2228 Make_Aitem_Pragma
2229 (Pragma_Argument_Associations => New_List (
2230 Make_Pragma_Argument_Association (Loc,
2231 Expression => Relocate_Node (Expr))),
2232 Pragma_Name =>
2233 Name_Default_Initial_Condition);
2234
2235 Decorate (Aspect, Aitem);
2236 Insert_Pragma (Aitem);
2237 goto Continue;
2238
0fd13d32 2239 -- Depends
2240
e2bf777d 2241 -- Aspect Depends is never delayed because it is equivalent to
2242 -- a source pragma which appears after the related subprogram.
2243 -- To deal with forward references, the generated pragma is
2244 -- stored in the contract of the related subprogram and later
2245 -- analyzed at the end of the declarative region. See routine
2246 -- Analyze_Depends_In_Decl_Part for details.
6144c105 2247
12334c57 2248 when Aspect_Depends =>
0fd13d32 2249 Make_Aitem_Pragma
2250 (Pragma_Argument_Associations => New_List (
2251 Make_Pragma_Argument_Association (Loc,
2252 Expression => Relocate_Node (Expr))),
2253 Pragma_Name => Name_Depends);
2254
e2bf777d 2255 Decorate (Aspect, Aitem);
2256 Insert_Pragma (Aitem);
c1006d6d 2257 goto Continue;
2258
0fd13d32 2259 -- Global
12334c57 2260
e2bf777d 2261 -- Aspect Global is never delayed because it is equivalent to
2262 -- a source pragma which appears after the related subprogram.
2263 -- To deal with forward references, the generated pragma is
2264 -- stored in the contract of the related subprogram and later
2265 -- analyzed at the end of the declarative region. See routine
2266 -- Analyze_Global_In_Decl_Part for details.
3cdbaa5a 2267
2268 when Aspect_Global =>
0fd13d32 2269 Make_Aitem_Pragma
2270 (Pragma_Argument_Associations => New_List (
2271 Make_Pragma_Argument_Association (Loc,
2272 Expression => Relocate_Node (Expr))),
2273 Pragma_Name => Name_Global);
2274
e2bf777d 2275 Decorate (Aspect, Aitem);
2276 Insert_Pragma (Aitem);
c1006d6d 2277 goto Continue;
2278
9c138530 2279 -- Initial_Condition
2280
e2bf777d 2281 -- Aspect Initial_Condition is never delayed because it is
2282 -- equivalent to a source pragma which appears after the
2283 -- related package. To deal with forward references, the
2284 -- generated pragma is stored in the contract of the related
2285 -- package and later analyzed at the end of the declarative
2286 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2287 -- for details.
9c138530 2288
2289 when Aspect_Initial_Condition => Initial_Condition : declare
eb4f7efa 2290 Context : Node_Id := N;
2291 Decls : List_Id;
9c138530 2292
2293 begin
e2bf777d 2294 -- When aspect Initial_Condition appears on a generic
2295 -- package, it is propageted to the package instance. The
2296 -- context in this case is the instance spec.
eb4f7efa 2297
2298 if Nkind (Context) = N_Package_Instantiation then
2299 Context := Instance_Spec (Context);
2300 end if;
2301
2302 if Nkind_In (Context, N_Generic_Package_Declaration,
2303 N_Package_Declaration)
9c138530 2304 then
eb4f7efa 2305 Decls := Visible_Declarations (Specification (Context));
9c138530 2306
2307 Make_Aitem_Pragma
2308 (Pragma_Argument_Associations => New_List (
2309 Make_Pragma_Argument_Association (Loc,
2310 Expression => Relocate_Node (Expr))),
2311 Pragma_Name =>
2312 Name_Initial_Condition);
e2bf777d 2313 Decorate (Aspect, Aitem);
9c138530 2314
2315 if No (Decls) then
2316 Decls := New_List;
eb4f7efa 2317 Set_Visible_Declarations (Context, Decls);
9c138530 2318 end if;
2319
50e44732 2320 -- When aspects Abstract_State, Initial_Condition and
2321 -- Initializes are out of order, ensure that pragma
2322 -- SPARK_Mode is always at the top of the declarative
2323 -- list to properly enable/suppress errors.
2324
2325 Insert_After_SPARK_Mode
2326 (Prag => Aitem,
2327 Ins_Nod => First (Decls),
2328 Decls => Decls);
9c138530 2329
2330 else
2331 Error_Msg_NE
2332 ("aspect & must apply to a package declaration",
2333 Aspect, Id);
2334 end if;
2335
2336 goto Continue;
2337 end Initial_Condition;
2338
d4e369ad 2339 -- Initializes
2340
e2bf777d 2341 -- Aspect Initializes is never delayed because it is equivalent
2342 -- to a source pragma appearing after the related package. To
2343 -- deal with forward references, the generated pragma is stored
2344 -- in the contract of the related package and later analyzed at
2345 -- the end of the declarative region. For details, see routine
2346 -- Analyze_Initializes_In_Decl_Part.
d4e369ad 2347
2348 when Aspect_Initializes => Initializes : declare
eb4f7efa 2349 Context : Node_Id := N;
2350 Decls : List_Id;
d4e369ad 2351
2352 begin
50e44732 2353 -- When aspect Initializes appears on a generic package,
2354 -- it is propageted to the package instance. The context
2355 -- in this case is the instance spec.
eb4f7efa 2356
2357 if Nkind (Context) = N_Package_Instantiation then
2358 Context := Instance_Spec (Context);
2359 end if;
2360
2361 if Nkind_In (Context, N_Generic_Package_Declaration,
2362 N_Package_Declaration)
d4e369ad 2363 then
eb4f7efa 2364 Decls := Visible_Declarations (Specification (Context));
d4e369ad 2365
2366 Make_Aitem_Pragma
2367 (Pragma_Argument_Associations => New_List (
2368 Make_Pragma_Argument_Association (Loc,
2369 Expression => Relocate_Node (Expr))),
2370 Pragma_Name => Name_Initializes);
e2bf777d 2371 Decorate (Aspect, Aitem);
d4e369ad 2372
2373 if No (Decls) then
2374 Decls := New_List;
eb4f7efa 2375 Set_Visible_Declarations (Context, Decls);
d4e369ad 2376 end if;
2377
50e44732 2378 -- When aspects Abstract_State, Initial_Condition and
2379 -- Initializes are out of order, ensure that pragma
2380 -- SPARK_Mode is always at the top of the declarative
2381 -- list to properly enable/suppress errors.
2382
2383 Insert_After_SPARK_Mode
2384 (Prag => Aitem,
2385 Ins_Nod => First (Decls),
2386 Decls => Decls);
d4e369ad 2387
2388 else
2389 Error_Msg_NE
2390 ("aspect & must apply to a package declaration",
2391 Aspect, Id);
2392 end if;
2393
2394 goto Continue;
2395 end Initializes;
2396
1fd4313f 2397 -- Obsolescent
2398
2399 when Aspect_Obsolescent => declare
2400 Args : List_Id;
2401
2402 begin
2403 if No (Expr) then
2404 Args := No_List;
2405 else
2406 Args := New_List (
2407 Make_Pragma_Argument_Association (Sloc (Expr),
2408 Expression => Relocate_Node (Expr)));
2409 end if;
2410
2411 Make_Aitem_Pragma
2412 (Pragma_Argument_Associations => Args,
2413 Pragma_Name => Chars (Id));
2414 end;
2415
5cc6f0cf 2416 -- Part_Of
2417
2418 when Aspect_Part_Of =>
2419 if Nkind_In (N, N_Object_Declaration,
2420 N_Package_Instantiation)
2421 then
2422 Make_Aitem_Pragma
2423 (Pragma_Argument_Associations => New_List (
2424 Make_Pragma_Argument_Association (Loc,
2425 Expression => Relocate_Node (Expr))),
2426 Pragma_Name => Name_Part_Of);
2427
2428 else
2429 Error_Msg_NE
2430 ("aspect & must apply to a variable or package "
2431 & "instantiation", Aspect, Id);
2432 end if;
2433
5dd93a61 2434 -- SPARK_Mode
2435
778ebf56 2436 when Aspect_SPARK_Mode => SPARK_Mode : declare
2437 Decls : List_Id;
2438
2439 begin
5dd93a61 2440 Make_Aitem_Pragma
2441 (Pragma_Argument_Associations => New_List (
2442 Make_Pragma_Argument_Association (Loc,
2443 Expression => Relocate_Node (Expr))),
2444 Pragma_Name => Name_SPARK_Mode);
5dd93a61 2445
b90d9656 2446 -- When the aspect appears on a package or a subprogram
2447 -- body, insert the generated pragma at the top of the body
2448 -- declarations to emulate the behavior of a source pragma.
778ebf56 2449
b90d9656 2450 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
e2bf777d 2451 Decorate (Aspect, Aitem);
5cc6f0cf 2452
778ebf56 2453 Decls := Declarations (N);
2454
2455 if No (Decls) then
2456 Decls := New_List;
2457 Set_Declarations (N, Decls);
2458 end if;
2459
a04f9d2e 2460 Prepend_To (Decls, Aitem);
2461 goto Continue;
2462
b90d9656 2463 -- When the aspect is associated with a [generic] package
2464 -- declaration, insert the generated pragma at the top of
2465 -- the visible declarations to emulate the behavior of a
2466 -- source pragma.
a04f9d2e 2467
b90d9656 2468 elsif Nkind_In (N, N_Generic_Package_Declaration,
2469 N_Package_Declaration)
2470 then
e2bf777d 2471 Decorate (Aspect, Aitem);
5cc6f0cf 2472
a04f9d2e 2473 Decls := Visible_Declarations (Specification (N));
2474
2475 if No (Decls) then
2476 Decls := New_List;
2477 Set_Visible_Declarations (Specification (N), Decls);
2478 end if;
2479
778ebf56 2480 Prepend_To (Decls, Aitem);
2481 goto Continue;
2482 end if;
2483 end SPARK_Mode;
2484
4befb1a0 2485 -- Refined_Depends
2486
e2bf777d 2487 -- Aspect Refined_Depends is never delayed because it is
2488 -- equivalent to a source pragma which appears in the
2489 -- declarations of the related subprogram body. To deal with
2490 -- forward references, the generated pragma is stored in the
2491 -- contract of the related subprogram body and later analyzed
2492 -- at the end of the declarative region. For details, see
2493 -- routine Analyze_Refined_Depends_In_Decl_Part.
4befb1a0 2494
2495 when Aspect_Refined_Depends =>
422073ed 2496 Make_Aitem_Pragma
2497 (Pragma_Argument_Associations => New_List (
2498 Make_Pragma_Argument_Association (Loc,
2499 Expression => Relocate_Node (Expr))),
2500 Pragma_Name => Name_Refined_Depends);
2501
e2bf777d 2502 Decorate (Aspect, Aitem);
2503 Insert_Pragma (Aitem);
422073ed 2504 goto Continue;
4befb1a0 2505
2506 -- Refined_Global
2507
e2bf777d 2508 -- Aspect Refined_Global is never delayed because it is
2509 -- equivalent to a source pragma which appears in the
2510 -- declarations of the related subprogram body. To deal with
2511 -- forward references, the generated pragma is stored in the
2512 -- contract of the related subprogram body and later analyzed
2513 -- at the end of the declarative region. For details, see
2514 -- routine Analyze_Refined_Global_In_Decl_Part.
4befb1a0 2515
2516 when Aspect_Refined_Global =>
28ff117f 2517 Make_Aitem_Pragma
2518 (Pragma_Argument_Associations => New_List (
2519 Make_Pragma_Argument_Association (Loc,
2520 Expression => Relocate_Node (Expr))),
2521 Pragma_Name => Name_Refined_Global);
2522
e2bf777d 2523 Decorate (Aspect, Aitem);
2524 Insert_Pragma (Aitem);
28ff117f 2525 goto Continue;
4befb1a0 2526
63b65b2d 2527 -- Refined_Post
2528
2529 when Aspect_Refined_Post =>
2530 Make_Aitem_Pragma
2531 (Pragma_Argument_Associations => New_List (
2532 Make_Pragma_Argument_Association (Loc,
2533 Expression => Relocate_Node (Expr))),
2534 Pragma_Name => Name_Refined_Post);
2535
9129c28f 2536 -- Refined_State
2537
2538 when Aspect_Refined_State => Refined_State : declare
2539 Decls : List_Id;
2540
2541 begin
2542 -- The corresponding pragma for Refined_State is inserted in
2543 -- the declarations of the related package body. This action
2544 -- synchronizes both the source and from-aspect versions of
2545 -- the pragma.
2546
2547 if Nkind (N) = N_Package_Body then
e2bf777d 2548 Decls := Declarations (N);
2549
9129c28f 2550 Make_Aitem_Pragma
2551 (Pragma_Argument_Associations => New_List (
2552 Make_Pragma_Argument_Association (Loc,
2553 Expression => Relocate_Node (Expr))),
2554 Pragma_Name => Name_Refined_State);
e2bf777d 2555 Decorate (Aspect, Aitem);
b9b2d6e5 2556
e2bf777d 2557 if No (Decls) then
2558 Decls := New_List;
2559 Set_Declarations (N, Decls);
2560 end if;
b9b2d6e5 2561
e2bf777d 2562 -- Pragma Refined_State must be inserted after pragma
2563 -- SPARK_Mode in the tree. This ensures that any error
2564 -- messages dependent on SPARK_Mode will be properly
2565 -- enabled/suppressed.
b9b2d6e5 2566
e2bf777d 2567 Insert_After_SPARK_Mode
2568 (Prag => Aitem,
2569 Ins_Nod => First (Decls),
2570 Decls => Decls);
9129c28f 2571
2572 else
2573 Error_Msg_NE
2574 ("aspect & must apply to a package body", Aspect, Id);
2575 end if;
2576
2577 goto Continue;
2578 end Refined_State;
2579
0fd13d32 2580 -- Relative_Deadline
3cdbaa5a 2581
2582 when Aspect_Relative_Deadline =>
0fd13d32 2583 Make_Aitem_Pragma
2584 (Pragma_Argument_Associations => New_List (
2585 Make_Pragma_Argument_Association (Loc,
2586 Expression => Relocate_Node (Expr))),
2587 Pragma_Name => Name_Relative_Deadline);
47a46747 2588
2589 -- If the aspect applies to a task, the corresponding pragma
2590 -- must appear within its declarations, not after.
2591
2592 if Nkind (N) = N_Task_Type_Declaration then
2593 declare
2594 Def : Node_Id;
2595 V : List_Id;
2596
2597 begin
2598 if No (Task_Definition (N)) then
2599 Set_Task_Definition (N,
2600 Make_Task_Definition (Loc,
2601 Visible_Declarations => New_List,
2602 End_Label => Empty));
2603 end if;
2604
2605 Def := Task_Definition (N);
2606 V := Visible_Declarations (Def);
2607 if not Is_Empty_List (V) then
2608 Insert_Before (First (V), Aitem);
2609
2610 else
2611 Set_Visible_Declarations (Def, New_List (Aitem));
2612 end if;
2613
2614 goto Continue;
2615 end;
2616 end if;
2617
956ffaf4 2618 -- Case 2e: Annotate aspect
2619
2620 when Aspect_Annotate =>
2621 declare
2622 Args : List_Id;
2623 Pargs : List_Id;
2624 Arg : Node_Id;
2625
2626 begin
2627 -- The argument can be a single identifier
2628
2629 if Nkind (Expr) = N_Identifier then
2630
2631 -- One level of parens is allowed
2632
2633 if Paren_Count (Expr) > 1 then
2634 Error_Msg_F ("extra parentheses ignored", Expr);
2635 end if;
2636
2637 Set_Paren_Count (Expr, 0);
2638
2639 -- Add the single item to the list
2640
2641 Args := New_List (Expr);
2642
2643 -- Otherwise we must have an aggregate
2644
2645 elsif Nkind (Expr) = N_Aggregate then
2646
2647 -- Must be positional
2648
2649 if Present (Component_Associations (Expr)) then
2650 Error_Msg_F
2651 ("purely positional aggregate required", Expr);
2652 goto Continue;
2653 end if;
2654
2655 -- Must not be parenthesized
2656
2657 if Paren_Count (Expr) /= 0 then
2658 Error_Msg_F ("extra parentheses ignored", Expr);
2659 end if;
2660
2661 -- List of arguments is list of aggregate expressions
2662
2663 Args := Expressions (Expr);
2664
2665 -- Anything else is illegal
2666
2667 else
2668 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2669 goto Continue;
2670 end if;
2671
2672 -- Prepare pragma arguments
2673
2674 Pargs := New_List;
2675 Arg := First (Args);
2676 while Present (Arg) loop
2677 Append_To (Pargs,
2678 Make_Pragma_Argument_Association (Sloc (Arg),
2679 Expression => Relocate_Node (Arg)));
2680 Next (Arg);
2681 end loop;
2682
2683 Append_To (Pargs,
2684 Make_Pragma_Argument_Association (Sloc (Ent),
2685 Chars => Name_Entity,
2686 Expression => Ent));
2687
2688 Make_Aitem_Pragma
2689 (Pragma_Argument_Associations => Pargs,
2690 Pragma_Name => Name_Annotate);
2691 end;
2692
89f1e35c 2693 -- Case 3 : Aspects that don't correspond to pragma/attribute
2694 -- definition clause.
7b9b2f05 2695
89f1e35c 2696 -- Case 3a: The aspects listed below don't correspond to
2697 -- pragmas/attributes but do require delayed analysis.
7f694ca2 2698
51fa2a45 2699 -- Default_Value can only apply to a scalar type
2700
2701 when Aspect_Default_Value =>
2702 if not Is_Scalar_Type (E) then
2703 Error_Msg_N
2704 ("aspect Default_Value must apply to a scalar_Type", N);
2705 end if;
2706
2707 Aitem := Empty;
2708
2709 -- Default_Component_Value can only apply to an array type
2710 -- with scalar components.
2711
2712 when Aspect_Default_Component_Value =>
2713 if not (Is_Array_Type (E)
3f4c9ffc 2714 and then Is_Scalar_Type (Component_Type (E)))
51fa2a45 2715 then
2716 Error_Msg_N ("aspect Default_Component_Value can only "
2717 & "apply to an array of scalar components", N);
2718 end if;
0fd13d32 2719
89f1e35c 2720 Aitem := Empty;
7f694ca2 2721
89f1e35c 2722 -- Case 3b: The aspects listed below don't correspond to
2723 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 2724
0fd13d32 2725 -- Implicit_Dereference
2726
89f1e35c 2727 -- For Implicit_Dereference, External_Name and Link_Name, only
2728 -- the legality checks are done during the analysis, thus no
2729 -- delay is required.
a8e38e1d 2730
89f1e35c 2731 when Aspect_Implicit_Dereference =>
2732 Analyze_Aspect_Implicit_Dereference;
2733 goto Continue;
7f694ca2 2734
0fd13d32 2735 -- External_Name, Link_Name
2736
89f1e35c 2737 when Aspect_External_Name |
2738 Aspect_Link_Name =>
2739 Analyze_Aspect_External_Or_Link_Name;
2740 goto Continue;
7f694ca2 2741
0fd13d32 2742 -- Dimension
2743
89f1e35c 2744 when Aspect_Dimension =>
2745 Analyze_Aspect_Dimension (N, Id, Expr);
2746 goto Continue;
cb4c311d 2747
0fd13d32 2748 -- Dimension_System
2749
89f1e35c 2750 when Aspect_Dimension_System =>
2751 Analyze_Aspect_Dimension_System (N, Id, Expr);
2752 goto Continue;
7f694ca2 2753
ceec4f7c 2754 -- Case 4: Aspects requiring special handling
51ea9c94 2755
e66f4e2a 2756 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2757 -- pragmas take care of the delay.
7f694ca2 2758
0fd13d32 2759 -- Pre/Post
2760
1e3c4ae6 2761 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2762 -- with a first argument that is the expression, and a second
2763 -- argument that is an informative message if the test fails.
2764 -- This is inserted right after the declaration, to get the
5b5df4a9 2765 -- required pragma placement. The processing for the pragmas
2766 -- takes care of the required delay.
ae888dbd 2767
5ddd846b 2768 when Pre_Post_Aspects => Pre_Post : declare
1e3c4ae6 2769 Pname : Name_Id;
ae888dbd 2770
1e3c4ae6 2771 begin
77ae6789 2772 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 2773 Pname := Name_Precondition;
2774 else
2775 Pname := Name_Postcondition;
2776 end if;
d74fc39a 2777
1e3c4ae6 2778 -- If the expressions is of the form A and then B, then
2779 -- we generate separate Pre/Post aspects for the separate
2780 -- clauses. Since we allow multiple pragmas, there is no
2781 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 2782 -- These should be treated in reverse order (B first and
2783 -- A second) since they are later inserted just after N in
2784 -- the order they are treated. This way, the pragma for A
2785 -- ends up preceding the pragma for B, which may have an
2786 -- importance for the error raised (either constraint error
2787 -- or precondition error).
1e3c4ae6 2788
39e1f22f 2789 -- We do not do this for Pre'Class, since we have to put
51fa2a45 2790 -- these conditions together in a complex OR expression.
ae888dbd 2791
4282d342 2792 -- We do not do this in ASIS mode, as ASIS relies on the
2793 -- original node representing the complete expression, when
2794 -- retrieving it through the source aspect table.
2795
2796 if not ASIS_Mode
2797 and then (Pname = Name_Postcondition
2798 or else not Class_Present (Aspect))
39e1f22f 2799 then
2800 while Nkind (Expr) = N_And_Then loop
2801 Insert_After (Aspect,
a273015d 2802 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 2803 Identifier => Identifier (Aspect),
a273015d 2804 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 2805 Class_Present => Class_Present (Aspect),
2806 Split_PPC => True));
a273015d 2807 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 2808 Eloc := Sloc (Expr);
2809 end loop;
2810 end if;
ae888dbd 2811
48d6f069 2812 -- Build the precondition/postcondition pragma
2813
51fa2a45 2814 -- Add note about why we do NOT need Copy_Tree here???
d74fc39a 2815
0fd13d32 2816 Make_Aitem_Pragma
2817 (Pragma_Argument_Associations => New_List (
2818 Make_Pragma_Argument_Association (Eloc,
2819 Chars => Name_Check,
a19e1763 2820 Expression => Relocate_Node (Expr))),
0fd13d32 2821 Pragma_Name => Pname);
39e1f22f 2822
2823 -- Add message unless exception messages are suppressed
2824
2825 if not Opt.Exception_Locations_Suppressed then
2826 Append_To (Pragma_Argument_Associations (Aitem),
2827 Make_Pragma_Argument_Association (Eloc,
2828 Chars => Name_Message,
2829 Expression =>
2830 Make_String_Literal (Eloc,
2831 Strval => "failed "
2832 & Get_Name_String (Pname)
2833 & " from "
2834 & Build_Location_String (Eloc))));
2835 end if;
d74fc39a 2836
7d20685d 2837 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 2838
1e3c4ae6 2839 -- For Pre/Post cases, insert immediately after the entity
2840 -- declaration, since that is the required pragma placement.
2841 -- Note that for these aspects, we do not have to worry
2842 -- about delay issues, since the pragmas themselves deal
2843 -- with delay of visibility for the expression analysis.
2844
e2bf777d 2845 Insert_Pragma (Aitem);
1e3c4ae6 2846 goto Continue;
5ddd846b 2847 end Pre_Post;
ae888dbd 2848
0fd13d32 2849 -- Test_Case
2850
e66f4e2a 2851 when Aspect_Test_Case => Test_Case : declare
2852 Args : List_Id;
2853 Comp_Expr : Node_Id;
2854 Comp_Assn : Node_Id;
2855 New_Expr : Node_Id;
57cd943b 2856
e66f4e2a 2857 begin
2858 Args := New_List;
b0bc40fd 2859
e66f4e2a 2860 if Nkind (Parent (N)) = N_Compilation_Unit then
2861 Error_Msg_Name_1 := Nam;
2862 Error_Msg_N ("incorrect placement of aspect `%`", E);
2863 goto Continue;
2864 end if;
6c545057 2865
e66f4e2a 2866 if Nkind (Expr) /= N_Aggregate then
2867 Error_Msg_Name_1 := Nam;
2868 Error_Msg_NE
2869 ("wrong syntax for aspect `%` for &", Id, E);
2870 goto Continue;
2871 end if;
6c545057 2872
e66f4e2a 2873 -- Make pragma expressions refer to the original aspect
51fa2a45 2874 -- expressions through the Original_Node link. This is used
2875 -- in semantic analysis for ASIS mode, so that the original
2876 -- expression also gets analyzed.
e66f4e2a 2877
2878 Comp_Expr := First (Expressions (Expr));
2879 while Present (Comp_Expr) loop
2880 New_Expr := Relocate_Node (Comp_Expr);
2881 Set_Original_Node (New_Expr, Comp_Expr);
2882 Append_To (Args,
2883 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
2884 Expression => New_Expr));
2885 Next (Comp_Expr);
2886 end loop;
2887
2888 Comp_Assn := First (Component_Associations (Expr));
2889 while Present (Comp_Assn) loop
2890 if List_Length (Choices (Comp_Assn)) /= 1
2891 or else
2892 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
2893 then
fad014fe 2894 Error_Msg_Name_1 := Nam;
6c545057 2895 Error_Msg_NE
fad014fe 2896 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 2897 goto Continue;
2898 end if;
2899
e66f4e2a 2900 New_Expr := Relocate_Node (Expression (Comp_Assn));
2901 Set_Original_Node (New_Expr, Expression (Comp_Assn));
2902 Append_To (Args,
2903 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
2904 Chars => Chars (First (Choices (Comp_Assn))),
2905 Expression => New_Expr));
2906 Next (Comp_Assn);
2907 end loop;
6c545057 2908
e66f4e2a 2909 -- Build the test-case pragma
6c545057 2910
0fd13d32 2911 Make_Aitem_Pragma
2912 (Pragma_Argument_Associations => Args,
2913 Pragma_Name => Nam);
e66f4e2a 2914 end Test_Case;
85696508 2915
0fd13d32 2916 -- Contract_Cases
2917
5ddd846b 2918 when Aspect_Contract_Cases =>
0fd13d32 2919 Make_Aitem_Pragma
2920 (Pragma_Argument_Associations => New_List (
2921 Make_Pragma_Argument_Association (Loc,
2922 Expression => Relocate_Node (Expr))),
2923 Pragma_Name => Nam);
3a128918 2924
e2bf777d 2925 Decorate (Aspect, Aitem);
2926 Insert_Pragma (Aitem);
5ddd846b 2927 goto Continue;
3a128918 2928
89f1e35c 2929 -- Case 5: Special handling for aspects with an optional
2930 -- boolean argument.
85696508 2931
89f1e35c 2932 -- In the general case, the corresponding pragma cannot be
0fd13d32 2933 -- generated yet because the evaluation of the boolean needs
2934 -- to be delayed till the freeze point.
2935
89f1e35c 2936 when Boolean_Aspects |
2937 Library_Unit_Aspects =>
a5a64273 2938
89f1e35c 2939 Set_Is_Boolean_Aspect (Aspect);
a5a64273 2940
89f1e35c 2941 -- Lock_Free aspect only apply to protected objects
e1cedbae 2942
89f1e35c 2943 if A_Id = Aspect_Lock_Free then
2944 if Ekind (E) /= E_Protected_Type then
99a2d5bd 2945 Error_Msg_Name_1 := Nam;
a5a64273 2946 Error_Msg_N
89f1e35c 2947 ("aspect % only applies to a protected object",
2948 Aspect);
2949
2950 else
2951 -- Set the Uses_Lock_Free flag to True if there is no
37c6e44c 2952 -- expression or if the expression is True. The
89f1e35c 2953 -- evaluation of this aspect should be delayed to the
37c6e44c 2954 -- freeze point (why???)
89f1e35c 2955
f02a9a9a 2956 if No (Expr) or else Is_True (Static_Boolean (Expr))
89f1e35c 2957 then
2958 Set_Uses_Lock_Free (E);
2959 end if;
caf125ce 2960
2961 Record_Rep_Item (E, Aspect);
a5a64273 2962 end if;
e1cedbae 2963
89f1e35c 2964 goto Continue;
ae888dbd 2965
17631aa0 2966 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
d74fc39a 2967
39616053 2968 -- For the case of aspects Import and Export, we don't
2969 -- consider that we know the entity is never set in the
2970 -- source, since it is is likely modified outside the
2971 -- program.
2972
2973 -- Note: one might think that the analysis of the
2974 -- resulting pragma would take care of that, but
2975 -- that's not the case since it won't be from source.
2976
2977 if Ekind (E) = E_Variable then
2978 Set_Never_Set_In_Source (E, False);
2979 end if;
2980
2e1821c9 2981 -- In older versions of Ada the corresponding pragmas
51fa2a45 2982 -- specified a Convention. In Ada 2012 the convention is
2983 -- specified as a separate aspect, and it is optional,
2e1821c9 2984 -- given that it defaults to Convention_Ada. The code
2985 -- that verifed that there was a matching convention
2986 -- is now obsolete.
d74fc39a 2987
718d0d92 2988 -- Resolve the expression of an Import or Export here,
2989 -- and require it to be of type Boolean and static. This
2990 -- is not quite right, because in general this should be
2991 -- delayed, but that seems tricky for these, because
2992 -- normally Boolean aspects are replaced with pragmas at
2993 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
2994 -- but in the case of these aspects we can't generate
2995 -- a simple pragma with just the entity name. ???
2996
2997 if not Present (Expr)
2998 or else Is_True (Static_Boolean (Expr))
2999 then
3000 if A_Id = Aspect_Import then
3001 Set_Is_Imported (E);
dd4c44af 3002
718d0d92 3003 -- An imported entity cannot have an explicit
3004 -- initialization.
dd4c44af 3005
718d0d92 3006 if Nkind (N) = N_Object_Declaration
3007 and then Present (Expression (N))
3008 then
3009 Error_Msg_N
3010 ("imported entities cannot be initialized "
3011 & "(RM B.1(24))", Expression (N));
3012 end if;
3013
3014 elsif A_Id = Aspect_Export then
3015 Set_Is_Exported (E);
dd4c44af 3016 end if;
3017 end if;
3018
89f1e35c 3019 goto Continue;
3020 end if;
d74fc39a 3021
37c6e44c 3022 -- Library unit aspects require special handling in the case
3023 -- of a package declaration, the pragma needs to be inserted
3024 -- in the list of declarations for the associated package.
3025 -- There is no issue of visibility delay for these aspects.
d64221a7 3026
89f1e35c 3027 if A_Id in Library_Unit_Aspects
178fec9b 3028 and then
3029 Nkind_In (N, N_Package_Declaration,
3030 N_Generic_Package_Declaration)
89f1e35c 3031 and then Nkind (Parent (N)) /= N_Compilation_Unit
3ad60f63 3032
3033 -- Aspect is legal on a local instantiation of a library-
3034 -- level generic unit.
3035
b94a633e 3036 and then not Is_Generic_Instance (Defining_Entity (N))
89f1e35c 3037 then
3038 Error_Msg_N
dd4c44af 3039 ("incorrect context for library unit aspect&", Id);
89f1e35c 3040 goto Continue;
3041 end if;
cce84b09 3042
294709fa 3043 -- External property aspects are Boolean by nature, but
3044 -- their pragmas must contain two arguments, the second
3045 -- being the optional Boolean expression.
3046
a7ed0410 3047 if A_Id = Aspect_Async_Readers or else
3048 A_Id = Aspect_Async_Writers or else
3049 A_Id = Aspect_Effective_Reads or else
3050 A_Id = Aspect_Effective_Writes
294709fa 3051 then
3052 declare
3053 Args : List_Id;
3054
3055 begin
3056 -- The first argument of the external property pragma
3057 -- is the related object.
3058
a7ed0410 3059 Args :=
3060 New_List (
3061 Make_Pragma_Argument_Association (Sloc (Ent),
3062 Expression => Ent));
294709fa 3063
3064 -- The second argument is the optional Boolean
3065 -- expression which must be propagated even if it
3066 -- evaluates to False as this has special semantic
3067 -- meaning.
3068
3069 if Present (Expr) then
3070 Append_To (Args,
3071 Make_Pragma_Argument_Association (Loc,
3072 Expression => Relocate_Node (Expr)));
3073 end if;
3074
3075 Make_Aitem_Pragma
3076 (Pragma_Argument_Associations => Args,
3077 Pragma_Name => Nam);
3078 end;
3079
51fa2a45 3080 -- Cases where we do not delay, includes all cases where the
3081 -- expression is missing other than the above cases.
d74fc39a 3082
294709fa 3083 elsif not Delay_Required or else No (Expr) then
0fd13d32 3084 Make_Aitem_Pragma
3085 (Pragma_Argument_Associations => New_List (
3086 Make_Pragma_Argument_Association (Sloc (Ent),
3087 Expression => Ent)),
3088 Pragma_Name => Chars (Id));
89f1e35c 3089 Delay_Required := False;
ddf1337b 3090
89f1e35c 3091 -- In general cases, the corresponding pragma/attribute
3092 -- definition clause will be inserted later at the freezing
294709fa 3093 -- point, and we do not need to build it now.
ddf1337b 3094
89f1e35c 3095 else
3096 Aitem := Empty;
3097 end if;
ceec4f7c 3098
3099 -- Storage_Size
3100
3101 -- This is special because for access types we need to generate
3102 -- an attribute definition clause. This also works for single
3103 -- task declarations, but it does not work for task type
3104 -- declarations, because we have the case where the expression
3105 -- references a discriminant of the task type. That can't use
3106 -- an attribute definition clause because we would not have
3107 -- visibility on the discriminant. For that case we must
3108 -- generate a pragma in the task definition.
3109
3110 when Aspect_Storage_Size =>
3111
3112 -- Task type case
3113
3114 if Ekind (E) = E_Task_Type then
3115 declare
3116 Decl : constant Node_Id := Declaration_Node (E);
3117
3118 begin
3119 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3120
3121 -- If no task definition, create one
3122
3123 if No (Task_Definition (Decl)) then
3124 Set_Task_Definition (Decl,
3125 Make_Task_Definition (Loc,
3126 Visible_Declarations => Empty_List,
3127 End_Label => Empty));
3128 end if;
3129
51fa2a45 3130 -- Create a pragma and put it at the start of the task
3131 -- definition for the task type declaration.
ceec4f7c 3132
3133 Make_Aitem_Pragma
3134 (Pragma_Argument_Associations => New_List (
3135 Make_Pragma_Argument_Association (Loc,
3136 Expression => Relocate_Node (Expr))),
3137 Pragma_Name => Name_Storage_Size);
3138
3139 Prepend
3140 (Aitem,
3141 Visible_Declarations (Task_Definition (Decl)));
3142 goto Continue;
3143 end;
3144
3145 -- All other cases, generate attribute definition
3146
3147 else
3148 Aitem :=
3149 Make_Attribute_Definition_Clause (Loc,
3150 Name => Ent,
3151 Chars => Chars (Id),
3152 Expression => Relocate_Node (Expr));
3153 end if;
89f1e35c 3154 end case;
ddf1337b 3155
89f1e35c 3156 -- Attach the corresponding pragma/attribute definition clause to
3157 -- the aspect specification node.
d74fc39a 3158
89f1e35c 3159 if Present (Aitem) then
e2bf777d 3160 Set_From_Aspect_Specification (Aitem);
89f1e35c 3161 end if;
53c179ea 3162
89f1e35c 3163 -- In the context of a compilation unit, we directly put the
0fd13d32 3164 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3165 -- node (no delay is required here) except for aspects on a
51fa2a45 3166 -- subprogram body (see below) and a generic package, for which we
3167 -- need to introduce the pragma before building the generic copy
3168 -- (see sem_ch12), and for package instantiations, where the
3169 -- library unit pragmas are better handled early.
ddf1337b 3170
9129c28f 3171 if Nkind (Parent (N)) = N_Compilation_Unit
89f1e35c 3172 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3173 then
3174 declare
3175 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 3176
89f1e35c 3177 begin
3178 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 3179
89f1e35c 3180 -- For a Boolean aspect, create the corresponding pragma if
3181 -- no expression or if the value is True.
7f694ca2 3182
b9e61b2a 3183 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 3184 if Is_True (Static_Boolean (Expr)) then
0fd13d32 3185 Make_Aitem_Pragma
3186 (Pragma_Argument_Associations => New_List (
3187 Make_Pragma_Argument_Association (Sloc (Ent),
3188 Expression => Ent)),
3189 Pragma_Name => Chars (Id));
7f694ca2 3190
89f1e35c 3191 Set_From_Aspect_Specification (Aitem, True);
3192 Set_Corresponding_Aspect (Aitem, Aspect);
3193
3194 else
3195 goto Continue;
3196 end if;
3197 end if;
7f694ca2 3198
d6814978 3199 -- If the aspect is on a subprogram body (relevant aspect
3200 -- is Inline), add the pragma in front of the declarations.
3a72f9c3 3201
3202 if Nkind (N) = N_Subprogram_Body then
3203 if No (Declarations (N)) then
3204 Set_Declarations (N, New_List);
3205 end if;
3206
3207 Prepend (Aitem, Declarations (N));
3208
178fec9b 3209 elsif Nkind (N) = N_Generic_Package_Declaration then
3210 if No (Visible_Declarations (Specification (N))) then
3211 Set_Visible_Declarations (Specification (N), New_List);
3212 end if;
3213
3214 Prepend (Aitem,
3215 Visible_Declarations (Specification (N)));
3216
c39cce40 3217 elsif Nkind (N) = N_Package_Instantiation then
df8b0dae 3218 declare
3219 Spec : constant Node_Id :=
3220 Specification (Instance_Spec (N));
3221 begin
3222 if No (Visible_Declarations (Spec)) then
3223 Set_Visible_Declarations (Spec, New_List);
3224 end if;
3225
3226 Prepend (Aitem, Visible_Declarations (Spec));
3227 end;
3228
3a72f9c3 3229 else
3230 if No (Pragmas_After (Aux)) then
d4596fbe 3231 Set_Pragmas_After (Aux, New_List);
3a72f9c3 3232 end if;
3233
3234 Append (Aitem, Pragmas_After (Aux));
89f1e35c 3235 end if;
7f694ca2 3236
89f1e35c 3237 goto Continue;
3238 end;
3239 end if;
7f694ca2 3240
89f1e35c 3241 -- The evaluation of the aspect is delayed to the freezing point.
3242 -- The pragma or attribute clause if there is one is then attached
37c6e44c 3243 -- to the aspect specification which is put in the rep item list.
1a814552 3244
89f1e35c 3245 if Delay_Required then
3246 if Present (Aitem) then
3247 Set_Is_Delayed_Aspect (Aitem);
3248 Set_Aspect_Rep_Item (Aspect, Aitem);
3249 Set_Parent (Aitem, Aspect);
3250 end if;
1a814552 3251
89f1e35c 3252 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 3253
cba2ae82 3254 -- In the case of Default_Value, link the aspect to base type
3255 -- as well, even though it appears on a first subtype. This is
3256 -- mandated by the semantics of the aspect. Do not establish
3257 -- the link when processing the base type itself as this leads
3258 -- to a rep item circularity. Verify that we are dealing with
3259 -- a scalar type to prevent cascaded errors.
3260
3261 if A_Id = Aspect_Default_Value
3262 and then Is_Scalar_Type (E)
3263 and then Base_Type (E) /= E
3264 then
9f36e3fb 3265 Set_Has_Delayed_Aspects (Base_Type (E));
3266 Record_Rep_Item (Base_Type (E), Aspect);
3267 end if;
3268
89f1e35c 3269 Set_Has_Delayed_Aspects (E);
3270 Record_Rep_Item (E, Aspect);
ddf1337b 3271
b855559d 3272 -- When delay is not required and the context is a package or a
3273 -- subprogram body, insert the pragma in the body declarations.
f55ce169 3274
b855559d 3275 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
f55ce169 3276 if No (Declarations (N)) then
3277 Set_Declarations (N, New_List);
3278 end if;
3279
3280 -- The pragma is added before source declarations
3281
3282 Prepend_To (Declarations (N), Aitem);
3283
89f1e35c 3284 -- When delay is not required and the context is not a compilation
3285 -- unit, we simply insert the pragma/attribute definition clause
3286 -- in sequence.
ddf1337b 3287
89f1e35c 3288 else
3289 Insert_After (Ins_Node, Aitem);
3290 Ins_Node := Aitem;
d74fc39a 3291 end if;
0fd13d32 3292 end Analyze_One_Aspect;
ae888dbd 3293
d64221a7 3294 <<Continue>>
3295 Next (Aspect);
21ea3a4f 3296 end loop Aspect_Loop;
89f1e35c 3297
3298 if Has_Delayed_Aspects (E) then
3299 Ensure_Freeze_Node (E);
3300 end if;
21ea3a4f 3301 end Analyze_Aspect_Specifications;
ae888dbd 3302
d6f39728 3303 -----------------------
3304 -- Analyze_At_Clause --
3305 -----------------------
3306
3307 -- An at clause is replaced by the corresponding Address attribute
3308 -- definition clause that is the preferred approach in Ada 95.
3309
3310 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 3311 CS : constant Boolean := Comes_From_Source (N);
3312
d6f39728 3313 begin
177675a7 3314 -- This is an obsolescent feature
3315
e0521a36 3316 Check_Restriction (No_Obsolescent_Features, N);
3317
9dfe12ae 3318 if Warn_On_Obsolescent_Feature then
3319 Error_Msg_N
b174444e 3320 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 3321 Error_Msg_N
b174444e 3322 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 3323 end if;
3324
177675a7 3325 -- Rewrite as address clause
3326
d6f39728 3327 Rewrite (N,
3328 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 3329 Name => Identifier (N),
3330 Chars => Name_Address,
d6f39728 3331 Expression => Expression (N)));
177675a7 3332
2beb22b1 3333 -- We preserve Comes_From_Source, since logically the clause still comes
3334 -- from the source program even though it is changed in form.
177675a7 3335
3336 Set_Comes_From_Source (N, CS);
3337
3338 -- Analyze rewritten clause
3339
d6f39728 3340 Analyze_Attribute_Definition_Clause (N);
3341 end Analyze_At_Clause;
3342
3343 -----------------------------------------
3344 -- Analyze_Attribute_Definition_Clause --
3345 -----------------------------------------
3346
3347 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3348 Loc : constant Source_Ptr := Sloc (N);
3349 Nam : constant Node_Id := Name (N);
3350 Attr : constant Name_Id := Chars (N);
3351 Expr : constant Node_Id := Expression (N);
3352 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 3353
3354 Ent : Entity_Id;
3355 -- The entity of Nam after it is analyzed. In the case of an incomplete
3356 -- type, this is the underlying type.
3357
d6f39728 3358 U_Ent : Entity_Id;
d64221a7 3359 -- The underlying entity to which the attribute applies. Generally this
3360 -- is the Underlying_Type of Ent, except in the case where the clause
3361 -- applies to full view of incomplete type or private type in which case
3362 -- U_Ent is just a copy of Ent.
d6f39728 3363
3364 FOnly : Boolean := False;
3365 -- Reset to True for subtype specific attribute (Alignment, Size)
51fa2a45 3366 -- and for stream attributes, i.e. those cases where in the call to
3367 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3368 -- are checked. Note that the case of stream attributes is not clear
3369 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3370 -- Storage_Size for derived task types, but that is also clearly
3371 -- unintentional.
d6f39728 3372
9f373bb8 3373 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3374 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3375 -- definition clauses.
3376
ae888dbd 3377 function Duplicate_Clause return Boolean;
3378 -- This routine checks if the aspect for U_Ent being given by attribute
3379 -- definition clause N is for an aspect that has already been specified,
3380 -- and if so gives an error message. If there is a duplicate, True is
3381 -- returned, otherwise if there is no error, False is returned.
3382
81b424ac 3383 procedure Check_Indexing_Functions;
3384 -- Check that the function in Constant_Indexing or Variable_Indexing
3385 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 3386 -- check that some interpretation is legal.
81b424ac 3387
89cc7147 3388 procedure Check_Iterator_Functions;
3389 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 3390 -- has the proper type structure.
89cc7147 3391
3392 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 3393 -- Common legality check for the previous two
89cc7147 3394
177675a7 3395 -----------------------------------
3396 -- Analyze_Stream_TSS_Definition --
3397 -----------------------------------
3398
9f373bb8 3399 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3400 Subp : Entity_Id := Empty;
3401 I : Interp_Index;
3402 It : Interp;
3403 Pnam : Entity_Id;
3404
3405 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
d64221a7 3406 -- True for Read attribute, false for other attributes
9f373bb8 3407
3408 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3409 -- Return true if the entity is a subprogram with an appropriate
3410 -- profile for the attribute being defined.
3411
3412 ----------------------
3413 -- Has_Good_Profile --
3414 ----------------------
3415
3416 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3417 F : Entity_Id;
3418 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3419 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3420 (False => E_Procedure, True => E_Function);
3421 Typ : Entity_Id;
3422
3423 begin
3424 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3425 return False;
3426 end if;
3427
3428 F := First_Formal (Subp);
3429
3430 if No (F)
3431 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3432 or else Designated_Type (Etype (F)) /=
3433 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3434 then
3435 return False;
3436 end if;
3437
3438 if not Is_Function then
3439 Next_Formal (F);
3440
3441 declare
3442 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3443 (False => E_In_Parameter,
3444 True => E_Out_Parameter);
3445 begin
3446 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3447 return False;
3448 end if;
3449 end;
3450
3451 Typ := Etype (F);
3452
b64082f2 3453 -- If the attribute specification comes from an aspect
51fa2a45 3454 -- specification for a class-wide stream, the parameter must be
3455 -- a class-wide type of the entity to which the aspect applies.
b64082f2 3456
3457 if From_Aspect_Specification (N)
3458 and then Class_Present (Parent (N))
3459 and then Is_Class_Wide_Type (Typ)
3460 then
3461 Typ := Etype (Typ);
3462 end if;
3463
9f373bb8 3464 else
3465 Typ := Etype (Subp);
3466 end if;
3467
51fa2a45 3468 -- Verify that the prefix of the attribute and the local name for
3469 -- the type of the formal match.
48680a09 3470
3471 if Base_Type (Typ) /= Base_Type (Ent)
3472 or else Present ((Next_Formal (F)))
3473 then
3474 return False;
3475
3476 elsif not Is_Scalar_Type (Typ)
3477 and then not Is_First_Subtype (Typ)
3478 and then not Is_Class_Wide_Type (Typ)
3479 then
3480 return False;
3481
3482 else
3483 return True;
3484 end if;
9f373bb8 3485 end Has_Good_Profile;
3486
3487 -- Start of processing for Analyze_Stream_TSS_Definition
3488
3489 begin
3490 FOnly := True;
3491
3492 if not Is_Type (U_Ent) then
3493 Error_Msg_N ("local name must be a subtype", Nam);
3494 return;
48680a09 3495
3496 elsif not Is_First_Subtype (U_Ent) then
3497 Error_Msg_N ("local name must be a first subtype", Nam);
3498 return;
9f373bb8 3499 end if;
3500
3501 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3502
44e4341e 3503 -- If Pnam is present, it can be either inherited from an ancestor
3504 -- type (in which case it is legal to redefine it for this type), or
3505 -- be a previous definition of the attribute for the same type (in
3506 -- which case it is illegal).
3507
3508 -- In the first case, it will have been analyzed already, and we
3509 -- can check that its profile does not match the expected profile
3510 -- for a stream attribute of U_Ent. In the second case, either Pnam
3511 -- has been analyzed (and has the expected profile), or it has not
3512 -- been analyzed yet (case of a type that has not been frozen yet
3513 -- and for which the stream attribute has been set using Set_TSS).
3514
3515 if Present (Pnam)
3516 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3517 then
9f373bb8 3518 Error_Msg_Sloc := Sloc (Pnam);
3519 Error_Msg_Name_1 := Attr;
3520 Error_Msg_N ("% attribute already defined #", Nam);
3521 return;
3522 end if;
3523
3524 Analyze (Expr);
3525
3526 if Is_Entity_Name (Expr) then
3527 if not Is_Overloaded (Expr) then
3528 if Has_Good_Profile (Entity (Expr)) then
3529 Subp := Entity (Expr);
3530 end if;
3531
3532 else
3533 Get_First_Interp (Expr, I, It);
9f373bb8 3534 while Present (It.Nam) loop
3535 if Has_Good_Profile (It.Nam) then
3536 Subp := It.Nam;
3537 exit;
3538 end if;
3539
3540 Get_Next_Interp (I, It);
3541 end loop;
3542 end if;
3543 end if;
3544
3545 if Present (Subp) then
59ac57b5 3546 if Is_Abstract_Subprogram (Subp) then
9f373bb8 3547 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3548 return;
e12b2502 3549
dd270bcf 3550 -- Test for stream subprogram for interface type being non-null
e12b2502 3551
3552 elsif Is_Interface (U_Ent)
3553 and then not Inside_A_Generic
3554 and then Ekind (Subp) = E_Procedure
3555 and then
3556 not Null_Present
3557 (Specification
3558 (Unit_Declaration_Node (Ultimate_Alias (Subp))))
e12b2502 3559 then
3560 Error_Msg_N
3561 ("stream subprogram for interface type "
3562 & "must be null procedure", Expr);
9f373bb8 3563 end if;
3564
3565 Set_Entity (Expr, Subp);
3566 Set_Etype (Expr, Etype (Subp));
3567
44e4341e 3568 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 3569
3570 else
3571 Error_Msg_Name_1 := Attr;
3572 Error_Msg_N ("incorrect expression for% attribute", Expr);
3573 end if;
3574 end Analyze_Stream_TSS_Definition;
3575
81b424ac 3576 ------------------------------
3577 -- Check_Indexing_Functions --
3578 ------------------------------
3579
3580 procedure Check_Indexing_Functions is
c8a2d809 3581 Indexing_Found : Boolean := False;
8df4f2a5 3582
81b424ac 3583 procedure Check_One_Function (Subp : Entity_Id);
7796365f 3584 -- Check one possible interpretation. Sets Indexing_Found True if a
3585 -- legal indexing function is found.
81b424ac 3586
05987af3 3587 procedure Illegal_Indexing (Msg : String);
3588 -- Diagnose illegal indexing function if not overloaded. In the
3589 -- overloaded case indicate that no legal interpretation exists.
3590
81b424ac 3591 ------------------------
3592 -- Check_One_Function --
3593 ------------------------
3594
3595 procedure Check_One_Function (Subp : Entity_Id) is
05987af3 3596 Default_Element : Node_Id;
3597 Ret_Type : constant Entity_Id := Etype (Subp);
1b7510f9 3598
81b424ac 3599 begin
05987af3 3600 if not Is_Overloadable (Subp) then
3601 Illegal_Indexing ("illegal indexing function for type&");
3602 return;
3603
7796365f 3604 elsif Scope (Subp) /= Scope (Ent) then
3605 if Nkind (Expr) = N_Expanded_Name then
3606
3607 -- Indexing function can't be declared elsewhere
3608
3609 Illegal_Indexing
3610 ("indexing function must be declared in scope of type&");
3611 end if;
3612
05987af3 3613 return;
3614
3615 elsif No (First_Formal (Subp)) then
3616 Illegal_Indexing
3617 ("Indexing requires a function that applies to type&");
3618 return;
3619
3620 elsif No (Next_Formal (First_Formal (Subp))) then
3621 Illegal_Indexing
3622 ("indexing function must have at least two parameters");
3623 return;
3624
3625 elsif Is_Derived_Type (Ent) then
3626 if (Attr = Name_Constant_Indexing
3627 and then Present
3628 (Find_Aspect (Etype (Ent), Aspect_Constant_Indexing)))
f02a9a9a 3629 or else
3630 (Attr = Name_Variable_Indexing
3631 and then Present
3632 (Find_Aspect (Etype (Ent), Aspect_Variable_Indexing)))
05987af3 3633 then
3634 if Debug_Flag_Dot_XX then
3635 null;
3636
3637 else
3638 Illegal_Indexing
3639 ("indexing function already inherited "
3640 & "from parent type");
7796365f 3641 return;
05987af3 3642 end if;
05987af3 3643 end if;
3644 end if;
3645
cac18f71 3646 if not Check_Primitive_Function (Subp)
cac18f71 3647 then
05987af3 3648 Illegal_Indexing
3649 ("Indexing aspect requires a function that applies to type&");
3650 return;
81b424ac 3651 end if;
3652
7796365f 3653 -- If partial declaration exists, verify that it is not tagged.
3654
3655 if Ekind (Current_Scope) = E_Package
3656 and then Has_Private_Declaration (Ent)
3657 and then From_Aspect_Specification (N)
7c0c95b8 3658 and then
3659 List_Containing (Parent (Ent)) =
3660 Private_Declarations
7796365f 3661 (Specification (Unit_Declaration_Node (Current_Scope)))
3662 and then Nkind (N) = N_Attribute_Definition_Clause
3663 then
3664 declare
3665 Decl : Node_Id;
3666
3667 begin
3668 Decl :=
3669 First (Visible_Declarations
7c0c95b8 3670 (Specification
3671 (Unit_Declaration_Node (Current_Scope))));
7796365f 3672
3673 while Present (Decl) loop
3674 if Nkind (Decl) = N_Private_Type_Declaration
3675 and then Ent = Full_View (Defining_Identifier (Decl))
3676 and then Tagged_Present (Decl)
3677 and then No (Aspect_Specifications (Decl))
3678 then
3679 Illegal_Indexing
3680 ("Indexing aspect cannot be specified on full view "
7c0c95b8 3681 & "if partial view is tagged");
7796365f 3682 return;
3683 end if;
3684
3685 Next (Decl);
3686 end loop;
3687 end;
3688 end if;
3689
1b7510f9 3690 -- An indexing function must return either the default element of
cac18f71 3691 -- the container, or a reference type. For variable indexing it
a45d946f 3692 -- must be the latter.
1b7510f9 3693
05987af3 3694 Default_Element :=
3695 Find_Value_Of_Aspect
3696 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
3697
1b7510f9 3698 if Present (Default_Element) then
3699 Analyze (Default_Element);
a45d946f 3700
1b7510f9 3701 if Is_Entity_Name (Default_Element)
05987af3 3702 and then not Covers (Entity (Default_Element), Ret_Type)
3703 and then False
1b7510f9 3704 then
05987af3 3705 Illegal_Indexing
3706 ("wrong return type for indexing function");
1b7510f9 3707 return;
3708 end if;
3709 end if;
3710
a45d946f 3711 -- For variable_indexing the return type must be a reference type
1b7510f9 3712
05987af3 3713 if Attr = Name_Variable_Indexing then
3714 if not Has_Implicit_Dereference (Ret_Type) then
3715 Illegal_Indexing
3716 ("variable indexing must return a reference type");
3717 return;
3718
3719 elsif Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
3720 then
3721 Illegal_Indexing
3722 ("variable indexing must return an access to variable");
3723 return;
3724 end if;
cac18f71 3725
3726 else
05987af3 3727 if Has_Implicit_Dereference (Ret_Type)
3728 and then not
3729 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
3730 then
3731 Illegal_Indexing
3732 ("constant indexing must return an access to constant");
3733 return;
3734
3735 elsif Is_Access_Type (Etype (First_Formal (Subp)))
3736 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
3737 then
3738 Illegal_Indexing
3739 ("constant indexing must apply to an access to constant");
3740 return;
3741 end if;
81b424ac 3742 end if;
05987af3 3743
3744 -- All checks succeeded.
3745
3746 Indexing_Found := True;
81b424ac 3747 end Check_One_Function;
3748
05987af3 3749 -----------------------
3750 -- Illegal_Indexing --
3751 -----------------------
3752
3753 procedure Illegal_Indexing (Msg : String) is
3754 begin
7796365f 3755 Error_Msg_NE (Msg, N, Ent);
05987af3 3756 end Illegal_Indexing;
3757
81b424ac 3758 -- Start of processing for Check_Indexing_Functions
3759
3760 begin
89cc7147 3761 if In_Instance then
3762 return;
3763 end if;
3764
81b424ac 3765 Analyze (Expr);
3766
3767 if not Is_Overloaded (Expr) then
3768 Check_One_Function (Entity (Expr));
3769
3770 else
3771 declare
2c5754de 3772 I : Interp_Index;
81b424ac 3773 It : Interp;
3774
3775 begin
cac18f71 3776 Indexing_Found := False;
81b424ac 3777 Get_First_Interp (Expr, I, It);
3778 while Present (It.Nam) loop
3779
3780 -- Note that analysis will have added the interpretation
3781 -- that corresponds to the dereference. We only check the
3782 -- subprogram itself.
3783
3784 if Is_Overloadable (It.Nam) then
3785 Check_One_Function (It.Nam);
3786 end if;
3787
3788 Get_Next_Interp (I, It);
3789 end loop;
3790 end;
3791 end if;
7796365f 3792
7c0c95b8 3793 if not Indexing_Found and then not Error_Posted (N) then
7796365f 3794 Error_Msg_NE
3795 ("aspect Indexing requires a local function that "
3796 & "applies to type&", Expr, Ent);
3797 end if;
81b424ac 3798 end Check_Indexing_Functions;
3799
89cc7147 3800 ------------------------------
3801 -- Check_Iterator_Functions --
3802 ------------------------------
3803
3804 procedure Check_Iterator_Functions is
3805 Default : Entity_Id;
3806
3807 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 3808 -- Check one possible interpretation for validity
89cc7147 3809
3810 ----------------------------
3811 -- Valid_Default_Iterator --
3812 ----------------------------
3813
3814 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
3815 Formal : Entity_Id;
3816
3817 begin
3818 if not Check_Primitive_Function (Subp) then
3819 return False;
3820 else
3821 Formal := First_Formal (Subp);
3822 end if;
3823
8df4f2a5 3824 -- False if any subsequent formal has no default expression
89cc7147 3825
8df4f2a5 3826 Formal := Next_Formal (Formal);
3827 while Present (Formal) loop
3828 if No (Expression (Parent (Formal))) then
3829 return False;
3830 end if;
89cc7147 3831
8df4f2a5 3832 Next_Formal (Formal);
3833 end loop;
89cc7147 3834
8df4f2a5 3835 -- True if all subsequent formals have default expressions
89cc7147 3836
3837 return True;
3838 end Valid_Default_Iterator;
3839
3840 -- Start of processing for Check_Iterator_Functions
3841
3842 begin
3843 Analyze (Expr);
3844
3845 if not Is_Entity_Name (Expr) then
3846 Error_Msg_N ("aspect Iterator must be a function name", Expr);
3847 end if;
3848
3849 if not Is_Overloaded (Expr) then
3850 if not Check_Primitive_Function (Entity (Expr)) then
3851 Error_Msg_NE
3852 ("aspect Indexing requires a function that applies to type&",
3853 Entity (Expr), Ent);
3854 end if;
3855
3856 if not Valid_Default_Iterator (Entity (Expr)) then
3857 Error_Msg_N ("improper function for default iterator", Expr);
3858 end if;
3859
3860 else
3861 Default := Empty;
3862 declare
3863 I : Interp_Index;
3864 It : Interp;
3865
3866 begin
3867 Get_First_Interp (Expr, I, It);
3868 while Present (It.Nam) loop
3869 if not Check_Primitive_Function (It.Nam)
59f3e675 3870 or else not Valid_Default_Iterator (It.Nam)
89cc7147 3871 then
3872 Remove_Interp (I);
3873
3874 elsif Present (Default) then
3875 Error_Msg_N ("default iterator must be unique", Expr);
3876
3877 else
3878 Default := It.Nam;
3879 end if;
3880
3881 Get_Next_Interp (I, It);
3882 end loop;
3883 end;
3884
3885 if Present (Default) then
3886 Set_Entity (Expr, Default);
3887 Set_Is_Overloaded (Expr, False);
3888 end if;
3889 end if;
3890 end Check_Iterator_Functions;
3891
3892 -------------------------------
3893 -- Check_Primitive_Function --
3894 -------------------------------
3895
3896 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
3897 Ctrl : Entity_Id;
3898
3899 begin
3900 if Ekind (Subp) /= E_Function then
3901 return False;
3902 end if;
3903
3904 if No (First_Formal (Subp)) then
3905 return False;
3906 else
3907 Ctrl := Etype (First_Formal (Subp));
3908 end if;
3909
7d6fb253 3910 -- Type of formal may be the class-wide type, an access to such,
3911 -- or an incomplete view.
3912
89cc7147 3913 if Ctrl = Ent
3914 or else Ctrl = Class_Wide_Type (Ent)
3915 or else
3916 (Ekind (Ctrl) = E_Anonymous_Access_Type
b85d62ec 3917 and then (Designated_Type (Ctrl) = Ent
3918 or else
3919 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
7d6fb253 3920 or else
3921 (Ekind (Ctrl) = E_Incomplete_Type
3922 and then Full_View (Ctrl) = Ent)
89cc7147 3923 then
3924 null;
89cc7147 3925 else
3926 return False;
3927 end if;
3928
3929 return True;
3930 end Check_Primitive_Function;
3931
ae888dbd 3932 ----------------------
3933 -- Duplicate_Clause --
3934 ----------------------
3935
3936 function Duplicate_Clause return Boolean is
d74fc39a 3937 A : Node_Id;
ae888dbd 3938
3939 begin
c8969ba6 3940 -- Nothing to do if this attribute definition clause comes from
3941 -- an aspect specification, since we could not be duplicating an
ae888dbd 3942 -- explicit clause, and we dealt with the case of duplicated aspects
3943 -- in Analyze_Aspect_Specifications.
3944
3945 if From_Aspect_Specification (N) then
3946 return False;
3947 end if;
3948
89f1e35c 3949 -- Otherwise current clause may duplicate previous clause, or a
3950 -- previously given pragma or aspect specification for the same
3951 -- aspect.
d74fc39a 3952
89b3b365 3953 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 3954
3955 if Present (A) then
89f1e35c 3956 Error_Msg_Name_1 := Chars (N);
3957 Error_Msg_Sloc := Sloc (A);
3958
89b3b365 3959 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 3960 return True;
ae888dbd 3961 end if;
3962
3963 return False;
3964 end Duplicate_Clause;
3965
9f373bb8 3966 -- Start of processing for Analyze_Attribute_Definition_Clause
3967
d6f39728 3968 begin
d64221a7 3969 -- The following code is a defense against recursion. Not clear that
51fa2a45 3970 -- this can happen legitimately, but perhaps some error situations can
3971 -- cause it, and we did see this recursion during testing.
d64221a7 3972
3973 if Analyzed (N) then
3974 return;
3975 else
3976 Set_Analyzed (N, True);
3977 end if;
3978
a29bc1d9 3979 -- Ignore some selected attributes in CodePeer mode since they are not
3980 -- relevant in this context.
3981
3982 if CodePeer_Mode then
3983 case Id is
3984
3985 -- Ignore Component_Size in CodePeer mode, to avoid changing the
3986 -- internal representation of types by implicitly packing them.
3987
3988 when Attribute_Component_Size =>
3989 Rewrite (N, Make_Null_Statement (Sloc (N)));
3990 return;
3991
3992 when others =>
3993 null;
3994 end case;
3995 end if;
3996
d8ba53a8 3997 -- Process Ignore_Rep_Clauses option
eef1ca1e 3998
d8ba53a8 3999 if Ignore_Rep_Clauses then
9d627c41 4000 case Id is
4001
eef1ca1e 4002 -- The following should be ignored. They do not affect legality
4003 -- and may be target dependent. The basic idea of -gnatI is to
4004 -- ignore any rep clauses that may be target dependent but do not
4005 -- affect legality (except possibly to be rejected because they
4006 -- are incompatible with the compilation target).
9d627c41 4007
2f1aac99 4008 when Attribute_Alignment |
9d627c41 4009 Attribute_Bit_Order |
4010 Attribute_Component_Size |
4011 Attribute_Machine_Radix |
4012 Attribute_Object_Size |
4013 Attribute_Size |
2ff55065 4014 Attribute_Small |
9d627c41 4015 Attribute_Stream_Size |
4016 Attribute_Value_Size =>
2ff55065 4017 Kill_Rep_Clause (N);
9d627c41 4018 return;
4019
eef1ca1e 4020 -- The following should not be ignored, because in the first place
51fa2a45 4021 -- they are reasonably portable, and should not cause problems
4022 -- in compiling code from another target, and also they do affect
4023 -- legality, e.g. failing to provide a stream attribute for a type
4024 -- may make a program illegal.
9d627c41 4025
b55f7641 4026 when Attribute_External_Tag |
4027 Attribute_Input |
4028 Attribute_Output |
4029 Attribute_Read |
4030 Attribute_Simple_Storage_Pool |
4031 Attribute_Storage_Pool |
4032 Attribute_Storage_Size |
4033 Attribute_Write =>
9d627c41 4034 null;
4035
2ff55065 4036 -- We do not do anything here with address clauses, they will be
4037 -- removed by Freeze later on, but for now, it works better to
4038 -- keep then in the tree.
4039
4040 when Attribute_Address =>
4041 null;
4042
b593a52c 4043 -- Other cases are errors ("attribute& cannot be set with
4044 -- definition clause"), which will be caught below.
9d627c41 4045
4046 when others =>
4047 null;
4048 end case;
fbc67f84 4049 end if;
4050
d6f39728 4051 Analyze (Nam);
4052 Ent := Entity (Nam);
4053
4054 if Rep_Item_Too_Early (Ent, N) then
4055 return;
4056 end if;
4057
9f373bb8 4058 -- Rep clause applies to full view of incomplete type or private type if
4059 -- we have one (if not, this is a premature use of the type). However,
4060 -- certain semantic checks need to be done on the specified entity (i.e.
4061 -- the private view), so we save it in Ent.
d6f39728 4062
4063 if Is_Private_Type (Ent)
4064 and then Is_Derived_Type (Ent)
4065 and then not Is_Tagged_Type (Ent)
4066 and then No (Full_View (Ent))
4067 then
9f373bb8 4068 -- If this is a private type whose completion is a derivation from
4069 -- another private type, there is no full view, and the attribute
4070 -- belongs to the type itself, not its underlying parent.
d6f39728 4071
4072 U_Ent := Ent;
4073
4074 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 4075
9f373bb8 4076 -- The attribute applies to the full view, set the entity of the
4077 -- attribute definition accordingly.
d5b349fa 4078
d6f39728 4079 Ent := Underlying_Type (Ent);
4080 U_Ent := Ent;
d5b349fa 4081 Set_Entity (Nam, Ent);
4082
d6f39728 4083 else
4084 U_Ent := Underlying_Type (Ent);
4085 end if;
4086
44705307 4087 -- Avoid cascaded error
d6f39728 4088
4089 if Etype (Nam) = Any_Type then
4090 return;
4091
89f1e35c 4092 -- Must be declared in current scope or in case of an aspect
ace3389d 4093 -- specification, must be visible in current scope.
44705307 4094
89f1e35c 4095 elsif Scope (Ent) /= Current_Scope
ace3389d 4096 and then
4097 not (From_Aspect_Specification (N)
4098 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 4099 then
d6f39728 4100 Error_Msg_N ("entity must be declared in this scope", Nam);
4101 return;
4102
44705307 4103 -- Must not be a source renaming (we do have some cases where the
4104 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 4105 -- cases any attribute applies to the renamed object as well).
44705307 4106
4107 elsif Is_Object (Ent)
4108 and then Present (Renamed_Object (Ent))
44705307 4109 then
a3248fc4 4110 -- Case of renamed object from source, this is an error
4111
4112 if Comes_From_Source (Renamed_Object (Ent)) then
4113 Get_Name_String (Chars (N));
4114 Error_Msg_Strlen := Name_Len;
4115 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4116 Error_Msg_N
4117 ("~ clause not allowed for a renaming declaration "
4118 & "(RM 13.1(6))", Nam);
4119 return;
4120
4121 -- For the case of a compiler generated renaming, the attribute
4122 -- definition clause applies to the renamed object created by the
4123 -- expander. The easiest general way to handle this is to create a
4124 -- copy of the attribute definition clause for this object.
4125
9a48fc56 4126 elsif Is_Entity_Name (Renamed_Object (Ent)) then
a3248fc4 4127 Insert_Action (N,
4128 Make_Attribute_Definition_Clause (Loc,
4129 Name =>
4130 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4131 Chars => Chars (N),
4132 Expression => Duplicate_Subexpr (Expression (N))));
9a48fc56 4133
4134 -- If the renamed object is not an entity, it must be a dereference
4135 -- of an unconstrained function call, and we must introduce a new
4136 -- declaration to capture the expression. This is needed in the case
4137 -- of 'Alignment, where the original declaration must be rewritten.
4138
4139 else
4140 pragma Assert
4141 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4142 null;
a3248fc4 4143 end if;
44705307 4144
4145 -- If no underlying entity, use entity itself, applies to some
4146 -- previously detected error cases ???
4147
f15731c4 4148 elsif No (U_Ent) then
4149 U_Ent := Ent;
4150
44705307 4151 -- Cannot specify for a subtype (exception Object/Value_Size)
4152
d6f39728 4153 elsif Is_Type (U_Ent)
4154 and then not Is_First_Subtype (U_Ent)
4155 and then Id /= Attribute_Object_Size
4156 and then Id /= Attribute_Value_Size
4157 and then not From_At_Mod (N)
4158 then
4159 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4160 return;
d6f39728 4161 end if;
4162
ae888dbd 4163 Set_Entity (N, U_Ent);
25e23a77 4164 Check_Restriction_No_Use_Of_Attribute (N);
ae888dbd 4165
d6f39728 4166 -- Switch on particular attribute
4167
4168 case Id is
4169
4170 -------------
4171 -- Address --
4172 -------------
4173
4174 -- Address attribute definition clause
4175
4176 when Attribute_Address => Address : begin
177675a7 4177
4178 -- A little error check, catch for X'Address use X'Address;
4179
4180 if Nkind (Nam) = N_Identifier
4181 and then Nkind (Expr) = N_Attribute_Reference
4182 and then Attribute_Name (Expr) = Name_Address
4183 and then Nkind (Prefix (Expr)) = N_Identifier
4184 and then Chars (Nam) = Chars (Prefix (Expr))
4185 then
4186 Error_Msg_NE
4187 ("address for & is self-referencing", Prefix (Expr), Ent);
4188 return;
4189 end if;
4190
4191 -- Not that special case, carry on with analysis of expression
4192
d6f39728 4193 Analyze_And_Resolve (Expr, RTE (RE_Address));
4194
2f1aac99 4195 -- Even when ignoring rep clauses we need to indicate that the
4196 -- entity has an address clause and thus it is legal to declare
2ff55065 4197 -- it imported. Freeze will get rid of the address clause later.
2f1aac99 4198
4199 if Ignore_Rep_Clauses then
d3ef794c 4200 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 4201 Record_Rep_Item (U_Ent, N);
4202 end if;
4203
4204 return;
4205 end if;
4206
ae888dbd 4207 if Duplicate_Clause then
4208 null;
d6f39728 4209
4210 -- Case of address clause for subprogram
4211
4212 elsif Is_Subprogram (U_Ent) then
d6f39728 4213 if Has_Homonym (U_Ent) then
4214 Error_Msg_N
4215 ("address clause cannot be given " &
4216 "for overloaded subprogram",
4217 Nam);
83f8f0a6 4218 return;
d6f39728 4219 end if;
4220
83f8f0a6 4221 -- For subprograms, all address clauses are permitted, and we
4222 -- mark the subprogram as having a deferred freeze so that Gigi
4223 -- will not elaborate it too soon.
d6f39728 4224
4225 -- Above needs more comments, what is too soon about???
4226
4227 Set_Has_Delayed_Freeze (U_Ent);
4228
4229 -- Case of address clause for entry
4230
4231 elsif Ekind (U_Ent) = E_Entry then
d6f39728 4232 if Nkind (Parent (N)) = N_Task_Body then
4233 Error_Msg_N
4234 ("entry address must be specified in task spec", Nam);
83f8f0a6 4235 return;
d6f39728 4236 end if;
4237
4238 -- For entries, we require a constant address
4239
4240 Check_Constant_Address_Clause (Expr, U_Ent);
4241
83f8f0a6 4242 -- Special checks for task types
4243
f15731c4 4244 if Is_Task_Type (Scope (U_Ent))
4245 and then Comes_From_Source (Scope (U_Ent))
4246 then
4247 Error_Msg_N
1e3532e7 4248 ("??entry address declared for entry in task type", N);
f15731c4 4249 Error_Msg_N
1e3532e7 4250 ("\??only one task can be declared of this type", N);
f15731c4 4251 end if;
4252
83f8f0a6 4253 -- Entry address clauses are obsolescent
4254
e0521a36 4255 Check_Restriction (No_Obsolescent_Features, N);
4256
9dfe12ae 4257 if Warn_On_Obsolescent_Feature then
4258 Error_Msg_N
1e3532e7 4259 ("?j?attaching interrupt to task entry is an " &
4260 "obsolescent feature (RM J.7.1)", N);
9dfe12ae 4261 Error_Msg_N
1e3532e7 4262 ("\?j?use interrupt procedure instead", N);
9dfe12ae 4263 end if;
4264
83f8f0a6 4265 -- Case of an address clause for a controlled object which we
4266 -- consider to be erroneous.
9dfe12ae 4267
83f8f0a6 4268 elsif Is_Controlled (Etype (U_Ent))
4269 or else Has_Controlled_Component (Etype (U_Ent))
4270 then
9dfe12ae 4271 Error_Msg_NE
1e3532e7 4272 ("??controlled object& must not be overlaid", Nam, U_Ent);
9dfe12ae 4273 Error_Msg_N
1e3532e7 4274 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 4275 Insert_Action (Declaration_Node (U_Ent),
4276 Make_Raise_Program_Error (Loc,
4277 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4278 return;
9dfe12ae 4279
4280 -- Case of address clause for a (non-controlled) object
d6f39728 4281
f02a9a9a 4282 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
d6f39728 4283 declare
d6da7448 4284 Expr : constant Node_Id := Expression (N);
4285 O_Ent : Entity_Id;
4286 Off : Boolean;
d6f39728 4287
4288 begin
7ee315cc 4289 -- Exported variables cannot have an address clause, because
4290 -- this cancels the effect of the pragma Export.
d6f39728 4291
4292 if Is_Exported (U_Ent) then
4293 Error_Msg_N
4294 ("cannot export object with address clause", Nam);
83f8f0a6 4295 return;
d6da7448 4296 end if;
4297
4298 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 4299
9dfe12ae 4300 -- Overlaying controlled objects is erroneous
4301
d6da7448 4302 if Present (O_Ent)
4303 and then (Has_Controlled_Component (Etype (O_Ent))
f02a9a9a 4304 or else Is_Controlled (Etype (O_Ent)))
9dfe12ae 4305 then
4306 Error_Msg_N
1e3532e7 4307 ("??cannot overlay with controlled object", Expr);
9dfe12ae 4308 Error_Msg_N
1e3532e7 4309 ("\??Program_Error will be raised at run time", Expr);
9dfe12ae 4310 Insert_Action (Declaration_Node (U_Ent),
4311 Make_Raise_Program_Error (Loc,
4312 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4313 return;
9dfe12ae 4314
d6da7448 4315 elsif Present (O_Ent)
9dfe12ae 4316 and then Ekind (U_Ent) = E_Constant
d6da7448 4317 and then not Is_Constant_Object (O_Ent)
9dfe12ae 4318 then
1e3532e7 4319 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 4320
d6f39728 4321 -- Imported variables can have an address clause, but then
4322 -- the import is pretty meaningless except to suppress
4323 -- initializations, so we do not need such variables to
4324 -- be statically allocated (and in fact it causes trouble
4325 -- if the address clause is a local value).
4326
4327 elsif Is_Imported (U_Ent) then
4328 Set_Is_Statically_Allocated (U_Ent, False);
4329 end if;
4330
4331 -- We mark a possible modification of a variable with an
4332 -- address clause, since it is likely aliasing is occurring.
4333
177675a7 4334 Note_Possible_Modification (Nam, Sure => False);
d6f39728 4335
83f8f0a6 4336 -- Here we are checking for explicit overlap of one variable
4337 -- by another, and if we find this then mark the overlapped
4338 -- variable as also being volatile to prevent unwanted
d6da7448 4339 -- optimizations. This is a significant pessimization so
4340 -- avoid it when there is an offset, i.e. when the object
4341 -- is composite; they cannot be optimized easily anyway.
d6f39728 4342
d6da7448 4343 if Present (O_Ent)
4344 and then Is_Object (O_Ent)
4345 and then not Off
ba5efa21 4346
4347 -- The following test is an expedient solution to what
4348 -- is really a problem in CodePeer. Suppressing the
4349 -- Set_Treat_As_Volatile call here prevents later
4350 -- generation (in some cases) of trees that CodePeer
4351 -- should, but currently does not, handle correctly.
4352 -- This test should probably be removed when CodePeer
4353 -- is improved, just because we want the tree CodePeer
4354 -- analyzes to match the tree for which we generate code
4355 -- as closely as is practical. ???
4356
4357 and then not CodePeer_Mode
d6da7448 4358 then
ba5efa21 4359 -- ??? O_Ent might not be in current unit
4360
d6da7448 4361 Set_Treat_As_Volatile (O_Ent);
d6f39728 4362 end if;
4363
9dfe12ae 4364 -- Legality checks on the address clause for initialized
4365 -- objects is deferred until the freeze point, because
2beb22b1 4366 -- a subsequent pragma might indicate that the object
42e09e36 4367 -- is imported and thus not initialized. Also, the address
4368 -- clause might involve entities that have yet to be
4369 -- elaborated.
9dfe12ae 4370
4371 Set_Has_Delayed_Freeze (U_Ent);
4372
51ad5ad2 4373 -- If an initialization call has been generated for this
4374 -- object, it needs to be deferred to after the freeze node
4375 -- we have just now added, otherwise GIGI will see a
4376 -- reference to the variable (as actual to the IP call)
4377 -- before its definition.
4378
4379 declare
df9fba45 4380 Init_Call : constant Node_Id :=
4381 Remove_Init_Call (U_Ent, N);
4bba0a8d 4382
51ad5ad2 4383 begin
4384 if Present (Init_Call) then
28a4283c 4385 Append_Freeze_Action (U_Ent, Init_Call);
df9fba45 4386
28a4283c 4387 -- Reset Initialization_Statements pointer so that
4388 -- if there is a pragma Import further down, it can
4389 -- clear any default initialization.
df9fba45 4390
28a4283c 4391 Set_Initialization_Statements (U_Ent, Init_Call);
51ad5ad2 4392 end if;
4393 end;
4394
d6f39728 4395 if Is_Exported (U_Ent) then
4396 Error_Msg_N
4397 ("& cannot be exported if an address clause is given",
4398 Nam);
4399 Error_Msg_N
4bba0a8d 4400 ("\define and export a variable "
4401 & "that holds its address instead", Nam);
d6f39728 4402 end if;
4403
44e4341e 4404 -- Entity has delayed freeze, so we will generate an
4405 -- alignment check at the freeze point unless suppressed.
d6f39728 4406
44e4341e 4407 if not Range_Checks_Suppressed (U_Ent)
4408 and then not Alignment_Checks_Suppressed (U_Ent)
4409 then
4410 Set_Check_Address_Alignment (N);
4411 end if;
d6f39728 4412
4413 -- Kill the size check code, since we are not allocating
4414 -- the variable, it is somewhere else.
4415
4416 Kill_Size_Check_Code (U_Ent);
83f8f0a6 4417
d6da7448 4418 -- If the address clause is of the form:
83f8f0a6 4419
d6da7448 4420 -- for Y'Address use X'Address
83f8f0a6 4421
d6da7448 4422 -- or
83f8f0a6 4423
d6da7448 4424 -- Const : constant Address := X'Address;
4425 -- ...
4426 -- for Y'Address use Const;
83f8f0a6 4427
d6da7448 4428 -- then we make an entry in the table for checking the size
4429 -- and alignment of the overlaying variable. We defer this
4430 -- check till after code generation to take full advantage
f4623c89 4431 -- of the annotation done by the back end.
d64221a7 4432
9474aa9c 4433 -- If the entity has a generic type, the check will be
43dd6937 4434 -- performed in the instance if the actual type justifies
4435 -- it, and we do not insert the clause in the table to
4436 -- prevent spurious warnings.
83f8f0a6 4437
f4623c89 4438 -- Note: we used to test Comes_From_Source and only give
4439 -- this warning for source entities, but we have removed
4440 -- this test. It really seems bogus to generate overlays
4441 -- that would trigger this warning in generated code.
4442 -- Furthermore, by removing the test, we handle the
4443 -- aspect case properly.
4444
d6da7448 4445 if Address_Clause_Overlay_Warnings
d6da7448 4446 and then Present (O_Ent)
4447 and then Is_Object (O_Ent)
4448 then
9474aa9c 4449 if not Is_Generic_Type (Etype (U_Ent)) then
4450 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4451 end if;
177675a7 4452
d6da7448 4453 -- If variable overlays a constant view, and we are
4454 -- warning on overlays, then mark the variable as
4455 -- overlaying a constant (we will give warnings later
4456 -- if this variable is assigned).
177675a7 4457
d6da7448 4458 if Is_Constant_Object (O_Ent)
4459 and then Ekind (U_Ent) = E_Variable
4460 then
4461 Set_Overlays_Constant (U_Ent);
83f8f0a6 4462 end if;
d6da7448 4463 end if;
4464 end;
83f8f0a6 4465
d6f39728 4466 -- Not a valid entity for an address clause
4467
4468 else
4469 Error_Msg_N ("address cannot be given for &", Nam);
4470 end if;
4471 end Address;
4472
4473 ---------------
4474 -- Alignment --
4475 ---------------
4476
4477 -- Alignment attribute definition clause
4478
b47769f0 4479 when Attribute_Alignment => Alignment : declare
208fd589 4480 Align : constant Uint := Get_Alignment_Value (Expr);
4481 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 4482
d6f39728 4483 begin
4484 FOnly := True;
4485
4486 if not Is_Type (U_Ent)
4487 and then Ekind (U_Ent) /= E_Variable
4488 and then Ekind (U_Ent) /= E_Constant
4489 then
4490 Error_Msg_N ("alignment cannot be given for &", Nam);
4491
ae888dbd 4492 elsif Duplicate_Clause then
4493 null;
d6f39728 4494
4495 elsif Align /= No_Uint then
4496 Set_Has_Alignment_Clause (U_Ent);
208fd589 4497
44705307 4498 -- Tagged type case, check for attempt to set alignment to a
4499 -- value greater than Max_Align, and reset if so.
4500
41331dcf 4501 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
208fd589 4502 Error_Msg_N
1e3532e7 4503 ("alignment for & set to Maximum_Aligment??", Nam);
44705307 4504 Set_Alignment (U_Ent, Max_Align);
4505
4506 -- All other cases
4507
208fd589 4508 else
4509 Set_Alignment (U_Ent, Align);
4510 end if;
b47769f0 4511
4512 -- For an array type, U_Ent is the first subtype. In that case,
4513 -- also set the alignment of the anonymous base type so that
4514 -- other subtypes (such as the itypes for aggregates of the
4515 -- type) also receive the expected alignment.
4516
4517 if Is_Array_Type (U_Ent) then
4518 Set_Alignment (Base_Type (U_Ent), Align);
4519 end if;
d6f39728 4520 end if;
b47769f0 4521 end Alignment;
d6f39728 4522
4523 ---------------
4524 -- Bit_Order --
4525 ---------------
4526
4527 -- Bit_Order attribute definition clause
4528
4529 when Attribute_Bit_Order => Bit_Order : declare
4530 begin
4531 if not Is_Record_Type (U_Ent) then
4532 Error_Msg_N
4533 ("Bit_Order can only be defined for record type", Nam);
4534
ae888dbd 4535 elsif Duplicate_Clause then
4536 null;
4537
d6f39728 4538 else
4539 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4540
4541 if Etype (Expr) = Any_Type then
4542 return;
4543
cda40848 4544 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 4545 Flag_Non_Static_Expr
4546 ("Bit_Order requires static expression!", Expr);
d6f39728 4547
4548 else
4549 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
fae4ea1f 4550 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
d6f39728 4551 end if;
4552 end if;
4553 end if;
4554 end Bit_Order;
4555
4556 --------------------
4557 -- Component_Size --
4558 --------------------
4559
4560 -- Component_Size attribute definition clause
4561
4562 when Attribute_Component_Size => Component_Size_Case : declare
4563 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 4564 Ctyp : Entity_Id;
d6f39728 4565 Btype : Entity_Id;
4566 Biased : Boolean;
4567 New_Ctyp : Entity_Id;
4568 Decl : Node_Id;
4569
4570 begin
4571 if not Is_Array_Type (U_Ent) then
4572 Error_Msg_N ("component size requires array type", Nam);
4573 return;
4574 end if;
4575
4576 Btype := Base_Type (U_Ent);
a0fc8c5b 4577 Ctyp := Component_Type (Btype);
d6f39728 4578
ae888dbd 4579 if Duplicate_Clause then
4580 null;
d6f39728 4581
f3e4db96 4582 elsif Rep_Item_Too_Early (Btype, N) then
4583 null;
4584
d6f39728 4585 elsif Csize /= No_Uint then
a0fc8c5b 4586 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 4587
d74fc39a 4588 -- For the biased case, build a declaration for a subtype that
4589 -- will be used to represent the biased subtype that reflects
4590 -- the biased representation of components. We need the subtype
4591 -- to get proper conversions on referencing elements of the
4592 -- array. Note: component size clauses are ignored in VM mode.
3062c401 4593
4594 if VM_Target = No_VM then
4595 if Biased then
4596 New_Ctyp :=
4597 Make_Defining_Identifier (Loc,
4598 Chars =>
4599 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4600
4601 Decl :=
4602 Make_Subtype_Declaration (Loc,
4603 Defining_Identifier => New_Ctyp,
4604 Subtype_Indication =>
4605 New_Occurrence_Of (Component_Type (Btype), Loc));
4606
4607 Set_Parent (Decl, N);
4608 Analyze (Decl, Suppress => All_Checks);
4609
4610 Set_Has_Delayed_Freeze (New_Ctyp, False);
4611 Set_Esize (New_Ctyp, Csize);
4612 Set_RM_Size (New_Ctyp, Csize);
4613 Init_Alignment (New_Ctyp);
3062c401 4614 Set_Is_Itype (New_Ctyp, True);
4615 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4616
4617 Set_Component_Type (Btype, New_Ctyp);
b77e4501 4618 Set_Biased (New_Ctyp, N, "component size clause");
3062c401 4619 end if;
4620
4621 Set_Component_Size (Btype, Csize);
4622
4623 -- For VM case, we ignore component size clauses
4624
4625 else
4626 -- Give a warning unless we are in GNAT mode, in which case
4627 -- the warning is suppressed since it is not useful.
4628
4629 if not GNAT_Mode then
4630 Error_Msg_N
1e3532e7 4631 ("component size ignored in this configuration??", N);
3062c401 4632 end if;
d6f39728 4633 end if;
4634
a0fc8c5b 4635 -- Deal with warning on overridden size
4636
4637 if Warn_On_Overridden_Size
4638 and then Has_Size_Clause (Ctyp)
4639 and then RM_Size (Ctyp) /= Csize
4640 then
4641 Error_Msg_NE
1e3532e7 4642 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 4643 end if;
4644
d6f39728 4645 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 4646 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 4647 end if;
4648 end Component_Size_Case;
4649
81b424ac 4650 -----------------------
4651 -- Constant_Indexing --
4652 -----------------------
4653
4654 when Attribute_Constant_Indexing =>
4655 Check_Indexing_Functions;
4656
89f1e35c 4657 ---------
4658 -- CPU --
4659 ---------
4660
4661 when Attribute_CPU => CPU :
4662 begin
4663 -- CPU attribute definition clause not allowed except from aspect
4664 -- specification.
4665
4666 if From_Aspect_Specification (N) then
4667 if not Is_Task_Type (U_Ent) then
4668 Error_Msg_N ("CPU can only be defined for task", Nam);
4669
4670 elsif Duplicate_Clause then
4671 null;
4672
4673 else
4674 -- The expression must be analyzed in the special manner
4675 -- described in "Handling of Default and Per-Object
4676 -- Expressions" in sem.ads.
4677
4678 -- The visibility to the discriminants must be restored
4679
4680 Push_Scope_And_Install_Discriminants (U_Ent);
4681 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4682 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4683
cda40848 4684 if not Is_OK_Static_Expression (Expr) then
89f1e35c 4685 Check_Restriction (Static_Priorities, Expr);
4686 end if;
4687 end if;
4688
4689 else
4690 Error_Msg_N
4691 ("attribute& cannot be set with definition clause", N);
4692 end if;
4693 end CPU;
4694
89cc7147 4695 ----------------------
4696 -- Default_Iterator --
4697 ----------------------
4698
4699 when Attribute_Default_Iterator => Default_Iterator : declare
4700 Func : Entity_Id;
4701
4702 begin
4703 if not Is_Tagged_Type (U_Ent) then
4704 Error_Msg_N
4705 ("aspect Default_Iterator applies to tagged type", Nam);
4706 end if;
4707
4708 Check_Iterator_Functions;
4709
4710 Analyze (Expr);
4711
4712 if not Is_Entity_Name (Expr)
4713 or else Ekind (Entity (Expr)) /= E_Function
4714 then
4715 Error_Msg_N ("aspect Iterator must be a function", Expr);
4716 else
4717 Func := Entity (Expr);
4718 end if;
4719
4720 if No (First_Formal (Func))
4721 or else Etype (First_Formal (Func)) /= U_Ent
4722 then
4723 Error_Msg_NE
4724 ("Default Iterator must be a primitive of&", Func, U_Ent);
4725 end if;
4726 end Default_Iterator;
4727
89f1e35c 4728 ------------------------
4729 -- Dispatching_Domain --
4730 ------------------------
4731
4732 when Attribute_Dispatching_Domain => Dispatching_Domain :
4733 begin
4734 -- Dispatching_Domain attribute definition clause not allowed
4735 -- except from aspect specification.
4736
4737 if From_Aspect_Specification (N) then
4738 if not Is_Task_Type (U_Ent) then
4739 Error_Msg_N ("Dispatching_Domain can only be defined" &
4740 "for task",
4741 Nam);
4742
4743 elsif Duplicate_Clause then
4744 null;
4745
4746 else
4747 -- The expression must be analyzed in the special manner
4748 -- described in "Handling of Default and Per-Object
4749 -- Expressions" in sem.ads.
4750
4751 -- The visibility to the discriminants must be restored
4752
4753 Push_Scope_And_Install_Discriminants (U_Ent);
4754
4755 Preanalyze_Spec_Expression
4756 (Expr, RTE (RE_Dispatching_Domain));
4757
4758 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4759 end if;
4760
4761 else
4762 Error_Msg_N
4763 ("attribute& cannot be set with definition clause", N);
4764 end if;
4765 end Dispatching_Domain;
4766
d6f39728 4767 ------------------
4768 -- External_Tag --
4769 ------------------
4770
4771 when Attribute_External_Tag => External_Tag :
4772 begin
4773 if not Is_Tagged_Type (U_Ent) then
4774 Error_Msg_N ("should be a tagged type", Nam);
4775 end if;
4776
ae888dbd 4777 if Duplicate_Clause then
4778 null;
d6f39728 4779
9af0ddc7 4780 else
ae888dbd 4781 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 4782
cda40848 4783 if not Is_OK_Static_Expression (Expr) then
ae888dbd 4784 Flag_Non_Static_Expr
4785 ("static string required for tag name!", Nam);
4786 end if;
4787
15a67a0a 4788 if VM_Target /= No_VM then
ae888dbd 4789 Error_Msg_Name_1 := Attr;
4790 Error_Msg_N
4791 ("% attribute unsupported in this configuration", Nam);
4792 end if;
4793
4794 if not Is_Library_Level_Entity (U_Ent) then
4795 Error_Msg_NE
1e3532e7 4796 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 4797 Error_Msg_N
1e3532e7 4798 ("\??same external tag applies to all "
4799 & "subprogram calls", N);
ae888dbd 4800 Error_Msg_N
1e3532e7 4801 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 4802 end if;
fbc67f84 4803 end if;
d6f39728 4804 end External_Tag;
4805
b57530b8 4806 --------------------------
4807 -- Implicit_Dereference --
4808 --------------------------
7947a439 4809
b57530b8 4810 when Attribute_Implicit_Dereference =>
7947a439 4811
2beb22b1 4812 -- Legality checks already performed at the point of the type
4813 -- declaration, aspect is not delayed.
7947a439 4814
89cc7147 4815 null;
b57530b8 4816
d6f39728 4817 -----------
4818 -- Input --
4819 -----------
4820
9f373bb8 4821 when Attribute_Input =>
4822 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
4823 Set_Has_Specified_Stream_Input (Ent);
d6f39728 4824
89f1e35c 4825 ------------------------
4826 -- Interrupt_Priority --
4827 ------------------------
4828
4829 when Attribute_Interrupt_Priority => Interrupt_Priority :
4830 begin
4831 -- Interrupt_Priority attribute definition clause not allowed
4832 -- except from aspect specification.
4833
4834 if From_Aspect_Specification (N) then
f02a9a9a 4835 if not Is_Concurrent_Type (U_Ent) then
89f1e35c 4836 Error_Msg_N
f02a9a9a 4837 ("Interrupt_Priority can only be defined for task "
4838 & "and protected object", Nam);
89f1e35c 4839
4840 elsif Duplicate_Clause then
4841 null;
4842
4843 else
4844 -- The expression must be analyzed in the special manner
4845 -- described in "Handling of Default and Per-Object
4846 -- Expressions" in sem.ads.
4847
4848 -- The visibility to the discriminants must be restored
4849
4850 Push_Scope_And_Install_Discriminants (U_Ent);
4851
4852 Preanalyze_Spec_Expression
4853 (Expr, RTE (RE_Interrupt_Priority));
4854
4855 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4856 end if;
4857
4858 else
4859 Error_Msg_N
4860 ("attribute& cannot be set with definition clause", N);
4861 end if;
4862 end Interrupt_Priority;
4863
b3f8228a 4864 --------------
4865 -- Iterable --
4866 --------------
4867
4868 when Attribute_Iterable =>
4869 Analyze (Expr);
bde03454 4870
b3f8228a 4871 if Nkind (Expr) /= N_Aggregate then
4872 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
4873 end if;
4874
4875 declare
4876 Assoc : Node_Id;
4877
4878 begin
4879 Assoc := First (Component_Associations (Expr));
4880 while Present (Assoc) loop
4881 if not Is_Entity_Name (Expression (Assoc)) then
4882 Error_Msg_N ("value must be a function", Assoc);
4883 end if;
bde03454 4884
b3f8228a 4885 Next (Assoc);
4886 end loop;
4887 end;
4888
89cc7147 4889 ----------------------
4890 -- Iterator_Element --
4891 ----------------------
4892
4893 when Attribute_Iterator_Element =>
4894 Analyze (Expr);
4895
4896 if not Is_Entity_Name (Expr)
4897 or else not Is_Type (Entity (Expr))
4898 then
4899 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
4900 end if;
4901
d6f39728 4902 -------------------
4903 -- Machine_Radix --
4904 -------------------
4905
4906 -- Machine radix attribute definition clause
4907
4908 when Attribute_Machine_Radix => Machine_Radix : declare
4909 Radix : constant Uint := Static_Integer (Expr);
4910
4911 begin
4912 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
4913 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
4914
ae888dbd 4915 elsif Duplicate_Clause then
4916 null;
d6f39728 4917
4918 elsif Radix /= No_Uint then
4919 Set_Has_Machine_Radix_Clause (U_Ent);
4920 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
4921
4922 if Radix = 2 then
4923 null;
4924 elsif Radix = 10 then
4925 Set_Machine_Radix_10 (U_Ent);
4926 else
4927 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
4928 end if;
4929 end if;
4930 end Machine_Radix;
4931
4932 -----------------
4933 -- Object_Size --
4934 -----------------
4935
4936 -- Object_Size attribute definition clause
4937
4938 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 4939 Size : constant Uint := Static_Integer (Expr);
4940
d6f39728 4941 Biased : Boolean;
bfa5a9d9 4942 pragma Warnings (Off, Biased);
d6f39728 4943
4944 begin
4945 if not Is_Type (U_Ent) then
4946 Error_Msg_N ("Object_Size cannot be given for &", Nam);
4947
ae888dbd 4948 elsif Duplicate_Clause then
4949 null;
d6f39728 4950
4951 else
4952 Check_Size (Expr, U_Ent, Size, Biased);
4953
829cd457 4954 if Is_Scalar_Type (U_Ent) then
4955 if Size /= 8 and then Size /= 16 and then Size /= 32
4956 and then UI_Mod (Size, 64) /= 0
4957 then
4958 Error_Msg_N
4959 ("Object_Size must be 8, 16, 32, or multiple of 64",
4960 Expr);
4961 end if;
4962
4963 elsif Size mod 8 /= 0 then
4964 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
d6f39728 4965 end if;
4966
4967 Set_Esize (U_Ent, Size);
4968 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 4969 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 4970 end if;
4971 end Object_Size;
4972
4973 ------------
4974 -- Output --
4975 ------------
4976
9f373bb8 4977 when Attribute_Output =>
4978 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
4979 Set_Has_Specified_Stream_Output (Ent);
d6f39728 4980
89f1e35c 4981 --------------
4982 -- Priority --
4983 --------------
4984
4985 when Attribute_Priority => Priority :
4986 begin
4987 -- Priority attribute definition clause not allowed except from
4988 -- aspect specification.
4989
4990 if From_Aspect_Specification (N) then
f02a9a9a 4991 if not (Is_Concurrent_Type (U_Ent)
3a72f9c3 4992 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 4993 then
4994 Error_Msg_N
f02a9a9a 4995 ("Priority can only be defined for task and protected "
4996 & "object", Nam);
89f1e35c 4997
4998 elsif Duplicate_Clause then
4999 null;
5000
5001 else
5002 -- The expression must be analyzed in the special manner
5003 -- described in "Handling of Default and Per-Object
5004 -- Expressions" in sem.ads.
5005
5006 -- The visibility to the discriminants must be restored
5007
5008 Push_Scope_And_Install_Discriminants (U_Ent);
5009 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5010 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5011
cda40848 5012 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5013 Check_Restriction (Static_Priorities, Expr);
5014 end if;
5015 end if;
5016
5017 else
5018 Error_Msg_N
5019 ("attribute& cannot be set with definition clause", N);
5020 end if;
5021 end Priority;
5022
d6f39728 5023 ----------
5024 -- Read --
5025 ----------
5026
9f373bb8 5027 when Attribute_Read =>
5028 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5029 Set_Has_Specified_Stream_Read (Ent);
d6f39728 5030
b7b74740 5031 --------------------------
5032 -- Scalar_Storage_Order --
5033 --------------------------
5034
5035 -- Scalar_Storage_Order attribute definition clause
5036
5037 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5038 begin
b43a5770 5039 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 5040 Error_Msg_N
b43a5770 5041 ("Scalar_Storage_Order can only be defined for "
5042 & "record or array type", Nam);
b7b74740 5043
5044 elsif Duplicate_Clause then
5045 null;
5046
5047 else
5048 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5049
5050 if Etype (Expr) = Any_Type then
5051 return;
5052
cda40848 5053 elsif not Is_OK_Static_Expression (Expr) then
b7b74740 5054 Flag_Non_Static_Expr
5055 ("Scalar_Storage_Order requires static expression!", Expr);
5056
c0912570 5057 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5058
5059 -- Here for the case of a non-default (i.e. non-confirming)
5060 -- Scalar_Storage_Order attribute definition.
5061
5062 if Support_Nondefault_SSO_On_Target then
d0a9ea3b 5063 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
c0912570 5064 else
5065 Error_Msg_N
5066 ("non-default Scalar_Storage_Order "
5067 & "not supported on target", Expr);
b7b74740 5068 end if;
5069 end if;
b64082f2 5070
5071 -- Clear SSO default indications since explicit setting of the
5072 -- order overrides the defaults.
5073
5074 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5075 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
b7b74740 5076 end if;
5077 end Scalar_Storage_Order;
5078
d6f39728 5079 ----------
5080 -- Size --
5081 ----------
5082
5083 -- Size attribute definition clause
5084
5085 when Attribute_Size => Size : declare
5086 Size : constant Uint := Static_Integer (Expr);
5087 Etyp : Entity_Id;
5088 Biased : Boolean;
5089
5090 begin
5091 FOnly := True;
5092
ae888dbd 5093 if Duplicate_Clause then
5094 null;
d6f39728 5095
5096 elsif not Is_Type (U_Ent)
5097 and then Ekind (U_Ent) /= E_Variable
5098 and then Ekind (U_Ent) /= E_Constant
5099 then
5100 Error_Msg_N ("size cannot be given for &", Nam);
5101
5102 elsif Is_Array_Type (U_Ent)
5103 and then not Is_Constrained (U_Ent)
5104 then
5105 Error_Msg_N
5106 ("size cannot be given for unconstrained array", Nam);
5107
c2b89d6e 5108 elsif Size /= No_Uint then
c2b89d6e 5109 if VM_Target /= No_VM and then not GNAT_Mode then
47495553 5110
c2b89d6e 5111 -- Size clause is not handled properly on VM targets.
5112 -- Display a warning unless we are in GNAT mode, in which
5113 -- case this is useless.
47495553 5114
682fa897 5115 Error_Msg_N
1e3532e7 5116 ("size clauses are ignored in this configuration??", N);
682fa897 5117 end if;
5118
d6f39728 5119 if Is_Type (U_Ent) then
5120 Etyp := U_Ent;
5121 else
5122 Etyp := Etype (U_Ent);
5123 end if;
5124
59ac57b5 5125 -- Check size, note that Gigi is in charge of checking that the
5126 -- size of an array or record type is OK. Also we do not check
5127 -- the size in the ordinary fixed-point case, since it is too
5128 -- early to do so (there may be subsequent small clause that
5129 -- affects the size). We can check the size if a small clause
5130 -- has already been given.
d6f39728 5131
5132 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5133 or else Has_Small_Clause (U_Ent)
5134 then
5135 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 5136 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 5137 end if;
5138
5139 -- For types set RM_Size and Esize if possible
5140
5141 if Is_Type (U_Ent) then
5142 Set_RM_Size (U_Ent, Size);
5143
ada34def 5144 -- For elementary types, increase Object_Size to power of 2,
5145 -- but not less than a storage unit in any case (normally
59ac57b5 5146 -- this means it will be byte addressable).
d6f39728 5147
ada34def 5148 -- For all other types, nothing else to do, we leave Esize
5149 -- (object size) unset, the back end will set it from the
5150 -- size and alignment in an appropriate manner.
5151
1d366b32 5152 -- In both cases, we check whether the alignment must be
5153 -- reset in the wake of the size change.
5154
ada34def 5155 if Is_Elementary_Type (U_Ent) then
f15731c4 5156 if Size <= System_Storage_Unit then
5157 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 5158 elsif Size <= 16 then
5159 Init_Esize (U_Ent, 16);
5160 elsif Size <= 32 then
5161 Init_Esize (U_Ent, 32);
5162 else
5163 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5164 end if;
5165
1d366b32 5166 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5167 else
5168 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5169 end if;
5170
d6f39728 5171 -- For objects, set Esize only
5172
5173 else
9dfe12ae 5174 if Is_Elementary_Type (Etyp) then
5175 if Size /= System_Storage_Unit
5176 and then
5177 Size /= System_Storage_Unit * 2
5178 and then
5179 Size /= System_Storage_Unit * 4
5180 and then
5181 Size /= System_Storage_Unit * 8
5182 then
5c99c290 5183 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
87d5c1d0 5184 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
9dfe12ae 5185 Error_Msg_N
5c99c290 5186 ("size for primitive object must be a power of 2"
87d5c1d0 5187 & " in the range ^-^", N);
9dfe12ae 5188 end if;
5189 end if;
5190
d6f39728 5191 Set_Esize (U_Ent, Size);
5192 end if;
5193
5194 Set_Has_Size_Clause (U_Ent);
5195 end if;
5196 end Size;
5197
5198 -----------
5199 -- Small --
5200 -----------
5201
5202 -- Small attribute definition clause
5203
5204 when Attribute_Small => Small : declare
5205 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5206 Small : Ureal;
5207
5208 begin
5209 Analyze_And_Resolve (Expr, Any_Real);
5210
5211 if Etype (Expr) = Any_Type then
5212 return;
5213
cda40848 5214 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5215 Flag_Non_Static_Expr
5216 ("small requires static expression!", Expr);
d6f39728 5217 return;
5218
5219 else
5220 Small := Expr_Value_R (Expr);
5221
5222 if Small <= Ureal_0 then
5223 Error_Msg_N ("small value must be greater than zero", Expr);
5224 return;
5225 end if;
5226
5227 end if;
5228
5229 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5230 Error_Msg_N
5231 ("small requires an ordinary fixed point type", Nam);
5232
5233 elsif Has_Small_Clause (U_Ent) then
5234 Error_Msg_N ("small already given for &", Nam);
5235
5236 elsif Small > Delta_Value (U_Ent) then
5237 Error_Msg_N
ce3e25d6 5238 ("small value must not be greater than delta value", Nam);
d6f39728 5239
5240 else
5241 Set_Small_Value (U_Ent, Small);
5242 Set_Small_Value (Implicit_Base, Small);
5243 Set_Has_Small_Clause (U_Ent);
5244 Set_Has_Small_Clause (Implicit_Base);
5245 Set_Has_Non_Standard_Rep (Implicit_Base);
5246 end if;
5247 end Small;
5248
d6f39728 5249 ------------------
5250 -- Storage_Pool --
5251 ------------------
5252
5253 -- Storage_Pool attribute definition clause
5254
b55f7641 5255 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
d6f39728 5256 Pool : Entity_Id;
6b567c71 5257 T : Entity_Id;
d6f39728 5258
5259 begin
44e4341e 5260 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5261 Error_Msg_N
5262 ("storage pool cannot be given for access-to-subprogram type",
5263 Nam);
5264 return;
5265
d3ef794c 5266 elsif not
5267 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 5268 then
44e4341e 5269 Error_Msg_N
5270 ("storage pool can only be given for access types", Nam);
d6f39728 5271 return;
5272
5273 elsif Is_Derived_Type (U_Ent) then
5274 Error_Msg_N
5275 ("storage pool cannot be given for a derived access type",
5276 Nam);
5277
ae888dbd 5278 elsif Duplicate_Clause then
d6f39728 5279 return;
5280
5281 elsif Present (Associated_Storage_Pool (U_Ent)) then
5282 Error_Msg_N ("storage pool already given for &", Nam);
5283 return;
5284 end if;
5285
6653b695 5286 -- Check for Storage_Size previously given
5287
5288 declare
5289 SS : constant Node_Id :=
5290 Get_Attribute_Definition_Clause
5291 (U_Ent, Attribute_Storage_Size);
5292 begin
5293 if Present (SS) then
5294 Check_Pool_Size_Clash (U_Ent, N, SS);
5295 end if;
5296 end;
5297
5298 -- Storage_Pool case
5299
b55f7641 5300 if Id = Attribute_Storage_Pool then
5301 Analyze_And_Resolve
5302 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5303
5304 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 5305 -- simple storage pool type, so we Resolve without imposing an
b55f7641 5306 -- expected type.
5307
5308 else
5309 Analyze_And_Resolve (Expr);
5310
5311 if not Present (Get_Rep_Pragma
b15003c3 5312 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 5313 then
5314 Error_Msg_N
5315 ("expression must be of a simple storage pool type", Expr);
5316 end if;
5317 end if;
d6f39728 5318
8c5c7277 5319 if not Denotes_Variable (Expr) then
5320 Error_Msg_N ("storage pool must be a variable", Expr);
5321 return;
5322 end if;
5323
6b567c71 5324 if Nkind (Expr) = N_Type_Conversion then
5325 T := Etype (Expression (Expr));
5326 else
5327 T := Etype (Expr);
5328 end if;
5329
5330 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 5331 -- access types with a Storage_Size. Since it only work properly
5332 -- when used on one specific type, we need to check that it is not
5333 -- hijacked improperly:
5334
6b567c71 5335 -- type T is access Integer;
5336 -- for T'Storage_Size use n;
5337 -- type Q is access Float;
5338 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5339
15ebb600 5340 if RTE_Available (RE_Stack_Bounded_Pool)
5341 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5342 then
5343 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 5344 return;
5345 end if;
5346
d6f39728 5347 -- If the argument is a name that is not an entity name, then
5348 -- we construct a renaming operation to define an entity of
5349 -- type storage pool.
5350
5351 if not Is_Entity_Name (Expr)
5352 and then Is_Object_Reference (Expr)
5353 then
11deeeb6 5354 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 5355
5356 declare
5357 Rnode : constant Node_Id :=
5358 Make_Object_Renaming_Declaration (Loc,
5359 Defining_Identifier => Pool,
5360 Subtype_Mark =>
5361 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 5362 Name => Expr);
d6f39728 5363
5364 begin
f65f7fdf 5365 -- If the attribute definition clause comes from an aspect
5366 -- clause, then insert the renaming before the associated
5367 -- entity's declaration, since the attribute clause has
5368 -- not yet been appended to the declaration list.
5369
5370 if From_Aspect_Specification (N) then
5371 Insert_Before (Parent (Entity (N)), Rnode);
5372 else
5373 Insert_Before (N, Rnode);
5374 end if;
5375
d6f39728 5376 Analyze (Rnode);
5377 Set_Associated_Storage_Pool (U_Ent, Pool);
5378 end;
5379
5380 elsif Is_Entity_Name (Expr) then
5381 Pool := Entity (Expr);
5382
5383 -- If pool is a renamed object, get original one. This can
5384 -- happen with an explicit renaming, and within instances.
5385
5386 while Present (Renamed_Object (Pool))
5387 and then Is_Entity_Name (Renamed_Object (Pool))
5388 loop
5389 Pool := Entity (Renamed_Object (Pool));
5390 end loop;
5391
5392 if Present (Renamed_Object (Pool))
5393 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5394 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5395 then
5396 Pool := Entity (Expression (Renamed_Object (Pool)));
5397 end if;
5398
6b567c71 5399 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5400
5401 elsif Nkind (Expr) = N_Type_Conversion
5402 and then Is_Entity_Name (Expression (Expr))
5403 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5404 then
5405 Pool := Entity (Expression (Expr));
6b567c71 5406 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5407
5408 else
5409 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5410 return;
5411 end if;
b55f7641 5412 end;
d6f39728 5413
44e4341e 5414 ------------------
5415 -- Storage_Size --
5416 ------------------
5417
5418 -- Storage_Size attribute definition clause
5419
5420 when Attribute_Storage_Size => Storage_Size : declare
5421 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 5422
5423 begin
5424 if Is_Task_Type (U_Ent) then
44e4341e 5425
39a0c1d3 5426 -- Check obsolescent (but never obsolescent if from aspect)
ceec4f7c 5427
5428 if not From_Aspect_Specification (N) then
5429 Check_Restriction (No_Obsolescent_Features, N);
5430
5431 if Warn_On_Obsolescent_Feature then
5432 Error_Msg_N
5433 ("?j?storage size clause for task is an " &
5434 "obsolescent feature (RM J.9)", N);
5435 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5436 end if;
44e4341e 5437 end if;
5438
5439 FOnly := True;
5440 end if;
5441
5442 if not Is_Access_Type (U_Ent)
5443 and then Ekind (U_Ent) /= E_Task_Type
5444 then
5445 Error_Msg_N ("storage size cannot be given for &", Nam);
5446
5447 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5448 Error_Msg_N
5449 ("storage size cannot be given for a derived access type",
5450 Nam);
5451
ae888dbd 5452 elsif Duplicate_Clause then
5453 null;
44e4341e 5454
5455 else
5456 Analyze_And_Resolve (Expr, Any_Integer);
5457
5458 if Is_Access_Type (U_Ent) then
6653b695 5459
5460 -- Check for Storage_Pool previously given
5461
5462 declare
5463 SP : constant Node_Id :=
5464 Get_Attribute_Definition_Clause
5465 (U_Ent, Attribute_Storage_Pool);
5466
5467 begin
5468 if Present (SP) then
5469 Check_Pool_Size_Clash (U_Ent, SP, N);
5470 end if;
5471 end;
5472
5473 -- Special case of for x'Storage_Size use 0
44e4341e 5474
5941a4e9 5475 if Is_OK_Static_Expression (Expr)
44e4341e 5476 and then Expr_Value (Expr) = 0
5477 then
5478 Set_No_Pool_Assigned (Btype);
5479 end if;
44e4341e 5480 end if;
5481
5482 Set_Has_Storage_Size_Clause (Btype);
5483 end if;
5484 end Storage_Size;
5485
7189d17f 5486 -----------------
5487 -- Stream_Size --
5488 -----------------
5489
5490 when Attribute_Stream_Size => Stream_Size : declare
5491 Size : constant Uint := Static_Integer (Expr);
5492
5493 begin
15ebb600 5494 if Ada_Version <= Ada_95 then
5495 Check_Restriction (No_Implementation_Attributes, N);
5496 end if;
5497
ae888dbd 5498 if Duplicate_Clause then
5499 null;
7189d17f 5500
5501 elsif Is_Elementary_Type (U_Ent) then
5502 if Size /= System_Storage_Unit
5503 and then
5504 Size /= System_Storage_Unit * 2
5505 and then
5506 Size /= System_Storage_Unit * 4
5507 and then
5508 Size /= System_Storage_Unit * 8
5509 then
5510 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5511 Error_Msg_N
5512 ("stream size for elementary type must be a"
5513 & " power of 2 and at least ^", N);
5514
5515 elsif RM_Size (U_Ent) > Size then
5516 Error_Msg_Uint_1 := RM_Size (U_Ent);
5517 Error_Msg_N
5518 ("stream size for elementary type must be a"
5519 & " power of 2 and at least ^", N);
5520 end if;
5521
5522 Set_Has_Stream_Size_Clause (U_Ent);
5523
5524 else
5525 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5526 end if;
5527 end Stream_Size;
5528
d6f39728 5529 ----------------
5530 -- Value_Size --
5531 ----------------
5532
5533 -- Value_Size attribute definition clause
5534
5535 when Attribute_Value_Size => Value_Size : declare
5536 Size : constant Uint := Static_Integer (Expr);
5537 Biased : Boolean;
5538
5539 begin
5540 if not Is_Type (U_Ent) then
5541 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5542
ae888dbd 5543 elsif Duplicate_Clause then
5544 null;
d6f39728 5545
59ac57b5 5546 elsif Is_Array_Type (U_Ent)
5547 and then not Is_Constrained (U_Ent)
5548 then
5549 Error_Msg_N
5550 ("Value_Size cannot be given for unconstrained array", Nam);
5551
d6f39728 5552 else
5553 if Is_Elementary_Type (U_Ent) then
5554 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 5555 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 5556 end if;
5557
5558 Set_RM_Size (U_Ent, Size);
5559 end if;
5560 end Value_Size;
5561
81b424ac 5562 -----------------------
5563 -- Variable_Indexing --
5564 -----------------------
5565
5566 when Attribute_Variable_Indexing =>
5567 Check_Indexing_Functions;
5568
d6f39728 5569 -----------
5570 -- Write --
5571 -----------
5572
9f373bb8 5573 when Attribute_Write =>
5574 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5575 Set_Has_Specified_Stream_Write (Ent);
d6f39728 5576
5577 -- All other attributes cannot be set
5578
5579 when others =>
5580 Error_Msg_N
5581 ("attribute& cannot be set with definition clause", N);
d6f39728 5582 end case;
5583
d64221a7 5584 -- The test for the type being frozen must be performed after any
5585 -- expression the clause has been analyzed since the expression itself
5586 -- might cause freezing that makes the clause illegal.
d6f39728 5587
5588 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5589 return;
5590 end if;
5591 end Analyze_Attribute_Definition_Clause;
5592
5593 ----------------------------
5594 -- Analyze_Code_Statement --
5595 ----------------------------
5596
5597 procedure Analyze_Code_Statement (N : Node_Id) is
5598 HSS : constant Node_Id := Parent (N);
5599 SBody : constant Node_Id := Parent (HSS);
5600 Subp : constant Entity_Id := Current_Scope;
5601 Stmt : Node_Id;
5602 Decl : Node_Id;
5603 StmtO : Node_Id;
5604 DeclO : Node_Id;
5605
5606 begin
5607 -- Analyze and check we get right type, note that this implements the
5608 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5609 -- is the only way that Asm_Insn could possibly be visible.
5610
5611 Analyze_And_Resolve (Expression (N));
5612
5613 if Etype (Expression (N)) = Any_Type then
5614 return;
5615 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
5616 Error_Msg_N ("incorrect type for code statement", N);
5617 return;
5618 end if;
5619
44e4341e 5620 Check_Code_Statement (N);
5621
d6f39728 5622 -- Make sure we appear in the handled statement sequence of a
5623 -- subprogram (RM 13.8(3)).
5624
5625 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5626 or else Nkind (SBody) /= N_Subprogram_Body
5627 then
5628 Error_Msg_N
5629 ("code statement can only appear in body of subprogram", N);
5630 return;
5631 end if;
5632
5633 -- Do remaining checks (RM 13.8(3)) if not already done
5634
5635 if not Is_Machine_Code_Subprogram (Subp) then
5636 Set_Is_Machine_Code_Subprogram (Subp);
5637
5638 -- No exception handlers allowed
5639
5640 if Present (Exception_Handlers (HSS)) then
5641 Error_Msg_N
5642 ("exception handlers not permitted in machine code subprogram",
5643 First (Exception_Handlers (HSS)));
5644 end if;
5645
5646 -- No declarations other than use clauses and pragmas (we allow
5647 -- certain internally generated declarations as well).
5648
5649 Decl := First (Declarations (SBody));
5650 while Present (Decl) loop
5651 DeclO := Original_Node (Decl);
5652 if Comes_From_Source (DeclO)
fdd294d1 5653 and not Nkind_In (DeclO, N_Pragma,
5654 N_Use_Package_Clause,
5655 N_Use_Type_Clause,
5656 N_Implicit_Label_Declaration)
d6f39728 5657 then
5658 Error_Msg_N
5659 ("this declaration not allowed in machine code subprogram",
5660 DeclO);
5661 end if;
5662
5663 Next (Decl);
5664 end loop;
5665
5666 -- No statements other than code statements, pragmas, and labels.
5667 -- Again we allow certain internally generated statements.
3ab42ff7 5668
c3107527 5669 -- In Ada 2012, qualified expressions are names, and the code
5670 -- statement is initially parsed as a procedure call.
d6f39728 5671
5672 Stmt := First (Statements (HSS));
5673 while Present (Stmt) loop
5674 StmtO := Original_Node (Stmt);
c3107527 5675
59f2fcab 5676 -- A procedure call transformed into a code statement is OK.
5677
c3107527 5678 if Ada_Version >= Ada_2012
5679 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 5680 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 5681 then
5682 null;
5683
5684 elsif Comes_From_Source (StmtO)
fdd294d1 5685 and then not Nkind_In (StmtO, N_Pragma,
5686 N_Label,
5687 N_Code_Statement)
d6f39728 5688 then
5689 Error_Msg_N
5690 ("this statement is not allowed in machine code subprogram",
5691 StmtO);
5692 end if;
5693
5694 Next (Stmt);
5695 end loop;
5696 end if;
d6f39728 5697 end Analyze_Code_Statement;
5698
5699 -----------------------------------------------
5700 -- Analyze_Enumeration_Representation_Clause --
5701 -----------------------------------------------
5702
5703 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
5704 Ident : constant Node_Id := Identifier (N);
5705 Aggr : constant Node_Id := Array_Aggregate (N);
5706 Enumtype : Entity_Id;
5707 Elit : Entity_Id;
5708 Expr : Node_Id;
5709 Assoc : Node_Id;
5710 Choice : Node_Id;
5711 Val : Uint;
b3190af0 5712
5713 Err : Boolean := False;
098d3082 5714 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 5715
e30c7d84 5716 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
5717 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
5718 -- Allowed range of universal integer (= allowed range of enum lit vals)
5719
d6f39728 5720 Min : Uint;
5721 Max : Uint;
e30c7d84 5722 -- Minimum and maximum values of entries
5723
5724 Max_Node : Node_Id;
5725 -- Pointer to node for literal providing max value
d6f39728 5726
5727 begin
ca301e17 5728 if Ignore_Rep_Clauses then
2ff55065 5729 Kill_Rep_Clause (N);
fbc67f84 5730 return;
5731 end if;
5732
175a6969 5733 -- Ignore enumeration rep clauses by default in CodePeer mode,
5734 -- unless -gnatd.I is specified, as a work around for potential false
5735 -- positive messages.
5736
5737 if CodePeer_Mode and not Debug_Flag_Dot_II then
5738 return;
5739 end if;
5740
d6f39728 5741 -- First some basic error checks
5742
5743 Find_Type (Ident);
5744 Enumtype := Entity (Ident);
5745
5746 if Enumtype = Any_Type
5747 or else Rep_Item_Too_Early (Enumtype, N)
5748 then
5749 return;
5750 else
5751 Enumtype := Underlying_Type (Enumtype);
5752 end if;
5753
5754 if not Is_Enumeration_Type (Enumtype) then
5755 Error_Msg_NE
5756 ("enumeration type required, found}",
5757 Ident, First_Subtype (Enumtype));
5758 return;
5759 end if;
5760
9dfe12ae 5761 -- Ignore rep clause on generic actual type. This will already have
5762 -- been flagged on the template as an error, and this is the safest
5763 -- way to ensure we don't get a junk cascaded message in the instance.
5764
5765 if Is_Generic_Actual_Type (Enumtype) then
5766 return;
5767
5768 -- Type must be in current scope
5769
5770 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 5771 Error_Msg_N ("type must be declared in this scope", Ident);
5772 return;
5773
9dfe12ae 5774 -- Type must be a first subtype
5775
d6f39728 5776 elsif not Is_First_Subtype (Enumtype) then
5777 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
5778 return;
5779
9dfe12ae 5780 -- Ignore duplicate rep clause
5781
d6f39728 5782 elsif Has_Enumeration_Rep_Clause (Enumtype) then
5783 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
5784 return;
5785
7189d17f 5786 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 5787
177675a7 5788 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 5789 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 5790 return;
5791
d9125581 5792 -- Check that the expression is a proper aggregate (no parentheses)
5793
5794 elsif Paren_Count (Aggr) /= 0 then
5795 Error_Msg
5796 ("extra parentheses surrounding aggregate not allowed",
5797 First_Sloc (Aggr));
5798 return;
5799
9dfe12ae 5800 -- All tests passed, so set rep clause in place
d6f39728 5801
5802 else
5803 Set_Has_Enumeration_Rep_Clause (Enumtype);
5804 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
5805 end if;
5806
5807 -- Now we process the aggregate. Note that we don't use the normal
5808 -- aggregate code for this purpose, because we don't want any of the
5809 -- normal expansion activities, and a number of special semantic
5810 -- rules apply (including the component type being any integer type)
5811
d6f39728 5812 Elit := First_Literal (Enumtype);
5813
5814 -- First the positional entries if any
5815
5816 if Present (Expressions (Aggr)) then
5817 Expr := First (Expressions (Aggr));
5818 while Present (Expr) loop
5819 if No (Elit) then
5820 Error_Msg_N ("too many entries in aggregate", Expr);
5821 return;
5822 end if;
5823
5824 Val := Static_Integer (Expr);
5825
d9125581 5826 -- Err signals that we found some incorrect entries processing
5827 -- the list. The final checks for completeness and ordering are
5828 -- skipped in this case.
5829
d6f39728 5830 if Val = No_Uint then
5831 Err := True;
f02a9a9a 5832
d6f39728 5833 elsif Val < Lo or else Hi < Val then
5834 Error_Msg_N ("value outside permitted range", Expr);
5835 Err := True;
5836 end if;
5837
5838 Set_Enumeration_Rep (Elit, Val);
5839 Set_Enumeration_Rep_Expr (Elit, Expr);
5840 Next (Expr);
5841 Next (Elit);
5842 end loop;
5843 end if;
5844
5845 -- Now process the named entries if present
5846
5847 if Present (Component_Associations (Aggr)) then
5848 Assoc := First (Component_Associations (Aggr));
5849 while Present (Assoc) loop
5850 Choice := First (Choices (Assoc));
5851
5852 if Present (Next (Choice)) then
5853 Error_Msg_N
5854 ("multiple choice not allowed here", Next (Choice));
5855 Err := True;
5856 end if;
5857
5858 if Nkind (Choice) = N_Others_Choice then
5859 Error_Msg_N ("others choice not allowed here", Choice);
5860 Err := True;
5861
5862 elsif Nkind (Choice) = N_Range then
b3190af0 5863
d6f39728 5864 -- ??? should allow zero/one element range here
b3190af0 5865
d6f39728 5866 Error_Msg_N ("range not allowed here", Choice);
5867 Err := True;
5868
5869 else
5870 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 5871
098d3082 5872 if Error_Posted (Choice) then
d6f39728 5873 Err := True;
098d3082 5874 end if;
d6f39728 5875
098d3082 5876 if not Err then
5877 if Is_Entity_Name (Choice)
5878 and then Is_Type (Entity (Choice))
5879 then
5880 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 5881 Err := True;
b3190af0 5882
098d3082 5883 -- ??? should allow static subtype with zero/one entry
d6f39728 5884
098d3082 5885 elsif Etype (Choice) = Base_Type (Enumtype) then
cda40848 5886 if not Is_OK_Static_Expression (Choice) then
098d3082 5887 Flag_Non_Static_Expr
5888 ("non-static expression used for choice!", Choice);
d6f39728 5889 Err := True;
d6f39728 5890
098d3082 5891 else
5892 Elit := Expr_Value_E (Choice);
5893
5894 if Present (Enumeration_Rep_Expr (Elit)) then
5895 Error_Msg_Sloc :=
5896 Sloc (Enumeration_Rep_Expr (Elit));
5897 Error_Msg_NE
5898 ("representation for& previously given#",
5899 Choice, Elit);
5900 Err := True;
5901 end if;
d6f39728 5902
098d3082 5903 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 5904
098d3082 5905 Expr := Expression (Assoc);
5906 Val := Static_Integer (Expr);
d6f39728 5907
098d3082 5908 if Val = No_Uint then
5909 Err := True;
5910
5911 elsif Val < Lo or else Hi < Val then
5912 Error_Msg_N ("value outside permitted range", Expr);
5913 Err := True;
5914 end if;
d6f39728 5915
098d3082 5916 Set_Enumeration_Rep (Elit, Val);
5917 end if;
d6f39728 5918 end if;
5919 end if;
5920 end if;
5921
5922 Next (Assoc);
5923 end loop;
5924 end if;
5925
5926 -- Aggregate is fully processed. Now we check that a full set of
5927 -- representations was given, and that they are in range and in order.
5928 -- These checks are only done if no other errors occurred.
5929
5930 if not Err then
5931 Min := No_Uint;
5932 Max := No_Uint;
5933
5934 Elit := First_Literal (Enumtype);
5935 while Present (Elit) loop
5936 if No (Enumeration_Rep_Expr (Elit)) then
5937 Error_Msg_NE ("missing representation for&!", N, Elit);
5938
5939 else
5940 Val := Enumeration_Rep (Elit);
5941
5942 if Min = No_Uint then
5943 Min := Val;
5944 end if;
5945
5946 if Val /= No_Uint then
5947 if Max /= No_Uint and then Val <= Max then
5948 Error_Msg_NE
5949 ("enumeration value for& not ordered!",
e30c7d84 5950 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 5951 end if;
5952
e30c7d84 5953 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 5954 Max := Val;
5955 end if;
5956
e30c7d84 5957 -- If there is at least one literal whose representation is not
5958 -- equal to the Pos value, then note that this enumeration type
5959 -- has a non-standard representation.
d6f39728 5960
5961 if Val /= Enumeration_Pos (Elit) then
5962 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
5963 end if;
5964 end if;
5965
5966 Next (Elit);
5967 end loop;
5968
5969 -- Now set proper size information
5970
5971 declare
5972 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
5973
5974 begin
5975 if Has_Size_Clause (Enumtype) then
e30c7d84 5976
5977 -- All OK, if size is OK now
5978
5979 if RM_Size (Enumtype) >= Minsize then
d6f39728 5980 null;
5981
5982 else
e30c7d84 5983 -- Try if we can get by with biasing
5984
d6f39728 5985 Minsize :=
5986 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
5987
e30c7d84 5988 -- Error message if even biasing does not work
5989
5990 if RM_Size (Enumtype) < Minsize then
5991 Error_Msg_Uint_1 := RM_Size (Enumtype);
5992 Error_Msg_Uint_2 := Max;
5993 Error_Msg_N
5994 ("previously given size (^) is too small "
5995 & "for this value (^)", Max_Node);
5996
5997 -- If biasing worked, indicate that we now have biased rep
d6f39728 5998
5999 else
b77e4501 6000 Set_Biased
6001 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 6002 end if;
6003 end if;
6004
6005 else
6006 Set_RM_Size (Enumtype, Minsize);
6007 Set_Enum_Esize (Enumtype);
6008 end if;
6009
6010 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6011 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6012 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6013 end;
6014 end if;
6015
39a0c1d3 6016 -- We repeat the too late test in case it froze itself
d6f39728 6017
6018 if Rep_Item_Too_Late (Enumtype, N) then
6019 null;
6020 end if;
d6f39728 6021 end Analyze_Enumeration_Representation_Clause;
6022
6023 ----------------------------
6024 -- Analyze_Free_Statement --
6025 ----------------------------
6026
6027 procedure Analyze_Free_Statement (N : Node_Id) is
6028 begin
6029 Analyze (Expression (N));
6030 end Analyze_Free_Statement;
6031
40ca69b9 6032 ---------------------------
6033 -- Analyze_Freeze_Entity --
6034 ---------------------------
6035
6036 procedure Analyze_Freeze_Entity (N : Node_Id) is
40ca69b9 6037 begin
d9f6a4ee 6038 Freeze_Entity_Checks (N);
6039 end Analyze_Freeze_Entity;
98f7db28 6040
d9f6a4ee 6041 -----------------------------------
6042 -- Analyze_Freeze_Generic_Entity --
6043 -----------------------------------
98f7db28 6044
d9f6a4ee 6045 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6046 begin
6047 Freeze_Entity_Checks (N);
6048 end Analyze_Freeze_Generic_Entity;
40ca69b9 6049
d9f6a4ee 6050 ------------------------------------------
6051 -- Analyze_Record_Representation_Clause --
6052 ------------------------------------------
c8da6114 6053
d9f6a4ee 6054 -- Note: we check as much as we can here, but we can't do any checks
6055 -- based on the position values (e.g. overlap checks) until freeze time
6056 -- because especially in Ada 2005 (machine scalar mode), the processing
6057 -- for non-standard bit order can substantially change the positions.
6058 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6059 -- for the remainder of this processing.
d00681a7 6060
d9f6a4ee 6061 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6062 Ident : constant Node_Id := Identifier (N);
6063 Biased : Boolean;
6064 CC : Node_Id;
6065 Comp : Entity_Id;
6066 Fbit : Uint;
6067 Hbit : Uint := Uint_0;
6068 Lbit : Uint;
6069 Ocomp : Entity_Id;
6070 Posit : Uint;
6071 Rectype : Entity_Id;
6072 Recdef : Node_Id;
d00681a7 6073
d9f6a4ee 6074 function Is_Inherited (Comp : Entity_Id) return Boolean;
6075 -- True if Comp is an inherited component in a record extension
d00681a7 6076
d9f6a4ee 6077 ------------------
6078 -- Is_Inherited --
6079 ------------------
d00681a7 6080
d9f6a4ee 6081 function Is_Inherited (Comp : Entity_Id) return Boolean is
6082 Comp_Base : Entity_Id;
d00681a7 6083
d9f6a4ee 6084 begin
6085 if Ekind (Rectype) = E_Record_Subtype then
6086 Comp_Base := Original_Record_Component (Comp);
6087 else
6088 Comp_Base := Comp;
d00681a7 6089 end if;
6090
d9f6a4ee 6091 return Comp_Base /= Original_Record_Component (Comp_Base);
6092 end Is_Inherited;
d00681a7 6093
d9f6a4ee 6094 -- Local variables
d00681a7 6095
d9f6a4ee 6096 Is_Record_Extension : Boolean;
6097 -- True if Rectype is a record extension
d00681a7 6098
d9f6a4ee 6099 CR_Pragma : Node_Id := Empty;
6100 -- Points to N_Pragma node if Complete_Representation pragma present
d00681a7 6101
d9f6a4ee 6102 -- Start of processing for Analyze_Record_Representation_Clause
d00681a7 6103
d9f6a4ee 6104 begin
6105 if Ignore_Rep_Clauses then
2ff55065 6106 Kill_Rep_Clause (N);
d9f6a4ee 6107 return;
d00681a7 6108 end if;
98f7db28 6109
d9f6a4ee 6110 Find_Type (Ident);
6111 Rectype := Entity (Ident);
85377c9b 6112
d9f6a4ee 6113 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6114 return;
6115 else
6116 Rectype := Underlying_Type (Rectype);
6117 end if;
85377c9b 6118
d9f6a4ee 6119 -- First some basic error checks
85377c9b 6120
d9f6a4ee 6121 if not Is_Record_Type (Rectype) then
6122 Error_Msg_NE
6123 ("record type required, found}", Ident, First_Subtype (Rectype));
6124 return;
85377c9b 6125
d9f6a4ee 6126 elsif Scope (Rectype) /= Current_Scope then
6127 Error_Msg_N ("type must be declared in this scope", N);
6128 return;
85377c9b 6129
d9f6a4ee 6130 elsif not Is_First_Subtype (Rectype) then
6131 Error_Msg_N ("cannot give record rep clause for subtype", N);
6132 return;
9dc88aea 6133
d9f6a4ee 6134 elsif Has_Record_Rep_Clause (Rectype) then
6135 Error_Msg_N ("duplicate record rep clause ignored", N);
6136 return;
9dc88aea 6137
d9f6a4ee 6138 elsif Rep_Item_Too_Late (Rectype, N) then
6139 return;
9dc88aea 6140 end if;
fb7f2fc4 6141
d9f6a4ee 6142 -- We know we have a first subtype, now possibly go the the anonymous
6143 -- base type to determine whether Rectype is a record extension.
89f1e35c 6144
d9f6a4ee 6145 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6146 Is_Record_Extension :=
6147 Nkind (Recdef) = N_Derived_Type_Definition
6148 and then Present (Record_Extension_Part (Recdef));
89f1e35c 6149
d9f6a4ee 6150 if Present (Mod_Clause (N)) then
fb7f2fc4 6151 declare
d9f6a4ee 6152 Loc : constant Source_Ptr := Sloc (N);
6153 M : constant Node_Id := Mod_Clause (N);
6154 P : constant List_Id := Pragmas_Before (M);
6155 AtM_Nod : Node_Id;
6156
6157 Mod_Val : Uint;
6158 pragma Warnings (Off, Mod_Val);
fb7f2fc4 6159
6160 begin
d9f6a4ee 6161 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
fb7f2fc4 6162
d9f6a4ee 6163 if Warn_On_Obsolescent_Feature then
6164 Error_Msg_N
6165 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6166 Error_Msg_N
6167 ("\?j?use alignment attribute definition clause instead", N);
6168 end if;
fb7f2fc4 6169
d9f6a4ee 6170 if Present (P) then
6171 Analyze_List (P);
6172 end if;
89f1e35c 6173
d9f6a4ee 6174 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6175 -- the Mod clause into an alignment clause anyway, so that the
6176 -- back-end can compute and back-annotate properly the size and
6177 -- alignment of types that may include this record.
be9124d0 6178
d9f6a4ee 6179 -- This seems dubious, this destroys the source tree in a manner
6180 -- not detectable by ASIS ???
be9124d0 6181
d9f6a4ee 6182 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6183 AtM_Nod :=
6184 Make_Attribute_Definition_Clause (Loc,
83c6c069 6185 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
d9f6a4ee 6186 Chars => Name_Alignment,
6187 Expression => Relocate_Node (Expression (M)));
be9124d0 6188
d9f6a4ee 6189 Set_From_At_Mod (AtM_Nod);
6190 Insert_After (N, AtM_Nod);
6191 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6192 Set_Mod_Clause (N, Empty);
be9124d0 6193
d9f6a4ee 6194 else
6195 -- Get the alignment value to perform error checking
be9124d0 6196
d9f6a4ee 6197 Mod_Val := Get_Alignment_Value (Expression (M));
6198 end if;
6199 end;
6200 end if;
be9124d0 6201
d9f6a4ee 6202 -- For untagged types, clear any existing component clauses for the
6203 -- type. If the type is derived, this is what allows us to override
6204 -- a rep clause for the parent. For type extensions, the representation
6205 -- of the inherited components is inherited, so we want to keep previous
6206 -- component clauses for completeness.
be9124d0 6207
d9f6a4ee 6208 if not Is_Tagged_Type (Rectype) then
6209 Comp := First_Component_Or_Discriminant (Rectype);
6210 while Present (Comp) loop
6211 Set_Component_Clause (Comp, Empty);
6212 Next_Component_Or_Discriminant (Comp);
6213 end loop;
6214 end if;
be9124d0 6215
d9f6a4ee 6216 -- All done if no component clauses
be9124d0 6217
d9f6a4ee 6218 CC := First (Component_Clauses (N));
be9124d0 6219
d9f6a4ee 6220 if No (CC) then
6221 return;
6222 end if;
be9124d0 6223
d9f6a4ee 6224 -- A representation like this applies to the base type
be9124d0 6225
d9f6a4ee 6226 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6227 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6228 Set_Has_Specified_Layout (Base_Type (Rectype));
be9124d0 6229
d9f6a4ee 6230 -- Process the component clauses
be9124d0 6231
d9f6a4ee 6232 while Present (CC) loop
be9124d0 6233
d9f6a4ee 6234 -- Pragma
be9124d0 6235
d9f6a4ee 6236 if Nkind (CC) = N_Pragma then
6237 Analyze (CC);
be9124d0 6238
d9f6a4ee 6239 -- The only pragma of interest is Complete_Representation
be9124d0 6240
d9f6a4ee 6241 if Pragma_Name (CC) = Name_Complete_Representation then
6242 CR_Pragma := CC;
6243 end if;
be9124d0 6244
d9f6a4ee 6245 -- Processing for real component clause
be9124d0 6246
d9f6a4ee 6247 else
6248 Posit := Static_Integer (Position (CC));
6249 Fbit := Static_Integer (First_Bit (CC));
6250 Lbit := Static_Integer (Last_Bit (CC));
be9124d0 6251
d9f6a4ee 6252 if Posit /= No_Uint
6253 and then Fbit /= No_Uint
6254 and then Lbit /= No_Uint
6255 then
6256 if Posit < 0 then
6257 Error_Msg_N
6258 ("position cannot be negative", Position (CC));
be9124d0 6259
d9f6a4ee 6260 elsif Fbit < 0 then
6261 Error_Msg_N
6262 ("first bit cannot be negative", First_Bit (CC));
be9124d0 6263
d9f6a4ee 6264 -- The Last_Bit specified in a component clause must not be
6265 -- less than the First_Bit minus one (RM-13.5.1(10)).
be9124d0 6266
d9f6a4ee 6267 elsif Lbit < Fbit - 1 then
6268 Error_Msg_N
6269 ("last bit cannot be less than first bit minus one",
6270 Last_Bit (CC));
be9124d0 6271
d9f6a4ee 6272 -- Values look OK, so find the corresponding record component
6273 -- Even though the syntax allows an attribute reference for
6274 -- implementation-defined components, GNAT does not allow the
6275 -- tag to get an explicit position.
be9124d0 6276
d9f6a4ee 6277 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6278 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6279 Error_Msg_N ("position of tag cannot be specified", CC);
6280 else
6281 Error_Msg_N ("illegal component name", CC);
6282 end if;
be9124d0 6283
d9f6a4ee 6284 else
6285 Comp := First_Entity (Rectype);
6286 while Present (Comp) loop
6287 exit when Chars (Comp) = Chars (Component_Name (CC));
6288 Next_Entity (Comp);
6289 end loop;
be9124d0 6290
d9f6a4ee 6291 if No (Comp) then
be9124d0 6292
d9f6a4ee 6293 -- Maybe component of base type that is absent from
6294 -- statically constrained first subtype.
be9124d0 6295
d9f6a4ee 6296 Comp := First_Entity (Base_Type (Rectype));
6297 while Present (Comp) loop
6298 exit when Chars (Comp) = Chars (Component_Name (CC));
6299 Next_Entity (Comp);
6300 end loop;
6301 end if;
be9124d0 6302
d9f6a4ee 6303 if No (Comp) then
6304 Error_Msg_N
6305 ("component clause is for non-existent field", CC);
be9124d0 6306
d9f6a4ee 6307 -- Ada 2012 (AI05-0026): Any name that denotes a
6308 -- discriminant of an object of an unchecked union type
6309 -- shall not occur within a record_representation_clause.
be9124d0 6310
d9f6a4ee 6311 -- The general restriction of using record rep clauses on
6312 -- Unchecked_Union types has now been lifted. Since it is
6313 -- possible to introduce a record rep clause which mentions
6314 -- the discriminant of an Unchecked_Union in non-Ada 2012
6315 -- code, this check is applied to all versions of the
6316 -- language.
be9124d0 6317
d9f6a4ee 6318 elsif Ekind (Comp) = E_Discriminant
6319 and then Is_Unchecked_Union (Rectype)
6320 then
6321 Error_Msg_N
6322 ("cannot reference discriminant of unchecked union",
6323 Component_Name (CC));
be9124d0 6324
d9f6a4ee 6325 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6326 Error_Msg_NE
6327 ("component clause not allowed for inherited "
6328 & "component&", CC, Comp);
40ca69b9 6329
d9f6a4ee 6330 elsif Present (Component_Clause (Comp)) then
462a079f 6331
d9f6a4ee 6332 -- Diagnose duplicate rep clause, or check consistency
6333 -- if this is an inherited component. In a double fault,
6334 -- there may be a duplicate inconsistent clause for an
6335 -- inherited component.
462a079f 6336
d9f6a4ee 6337 if Scope (Original_Record_Component (Comp)) = Rectype
6338 or else Parent (Component_Clause (Comp)) = N
6339 then
6340 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6341 Error_Msg_N ("component clause previously given#", CC);
3062c401 6342
6343 else
6344 declare
6345 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 6346 begin
6347 if Intval (Position (Rep1)) /=
6348 Intval (Position (CC))
6349 or else Intval (First_Bit (Rep1)) /=
6350 Intval (First_Bit (CC))
6351 or else Intval (Last_Bit (Rep1)) /=
6352 Intval (Last_Bit (CC))
6353 then
b9e61b2a 6354 Error_Msg_N
6355 ("component clause inconsistent "
6356 & "with representation of ancestor", CC);
6a06584c 6357
3062c401 6358 elsif Warn_On_Redundant_Constructs then
b9e61b2a 6359 Error_Msg_N
6a06584c 6360 ("?r?redundant confirming component clause "
6361 & "for component!", CC);
3062c401 6362 end if;
6363 end;
6364 end if;
d6f39728 6365
d2b860b4 6366 -- Normal case where this is the first component clause we
6367 -- have seen for this entity, so set it up properly.
6368
d6f39728 6369 else
83f8f0a6 6370 -- Make reference for field in record rep clause and set
6371 -- appropriate entity field in the field identifier.
6372
6373 Generate_Reference
6374 (Comp, Component_Name (CC), Set_Ref => False);
6375 Set_Entity (Component_Name (CC), Comp);
6376
2866d595 6377 -- Update Fbit and Lbit to the actual bit number
d6f39728 6378
6379 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6380 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6381
d6f39728 6382 if Has_Size_Clause (Rectype)
ada34def 6383 and then RM_Size (Rectype) <= Lbit
d6f39728 6384 then
6385 Error_Msg_N
6386 ("bit number out of range of specified size",
6387 Last_Bit (CC));
6388 else
6389 Set_Component_Clause (Comp, CC);
6390 Set_Component_Bit_Offset (Comp, Fbit);
6391 Set_Esize (Comp, 1 + (Lbit - Fbit));
6392 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6393 Set_Normalized_Position (Comp, Fbit / SSU);
6394
a0fc8c5b 6395 if Warn_On_Overridden_Size
6396 and then Has_Size_Clause (Etype (Comp))
6397 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6398 then
6399 Error_Msg_NE
1e3532e7 6400 ("?S?component size overrides size clause for&",
a0fc8c5b 6401 Component_Name (CC), Etype (Comp));
6402 end if;
6403
ea61a7ea 6404 -- This information is also set in the corresponding
6405 -- component of the base type, found by accessing the
6406 -- Original_Record_Component link if it is present.
d6f39728 6407
6408 Ocomp := Original_Record_Component (Comp);
6409
6410 if Hbit < Lbit then
6411 Hbit := Lbit;
6412 end if;
6413
6414 Check_Size
6415 (Component_Name (CC),
6416 Etype (Comp),
6417 Esize (Comp),
6418 Biased);
6419
b77e4501 6420 Set_Biased
6421 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 6422
d6f39728 6423 if Present (Ocomp) then
6424 Set_Component_Clause (Ocomp, CC);
6425 Set_Component_Bit_Offset (Ocomp, Fbit);
6426 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6427 Set_Normalized_Position (Ocomp, Fbit / SSU);
6428 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6429
6430 Set_Normalized_Position_Max
6431 (Ocomp, Normalized_Position (Ocomp));
6432
b77e4501 6433 -- Note: we don't use Set_Biased here, because we
6434 -- already gave a warning above if needed, and we
6435 -- would get a duplicate for the same name here.
6436
d6f39728 6437 Set_Has_Biased_Representation
6438 (Ocomp, Has_Biased_Representation (Comp));
6439 end if;
6440
6441 if Esize (Comp) < 0 then
6442 Error_Msg_N ("component size is negative", CC);
6443 end if;
6444 end if;
6445 end if;
6446 end if;
6447 end if;
6448 end if;
6449
6450 Next (CC);
6451 end loop;
6452
67278d60 6453 -- Check missing components if Complete_Representation pragma appeared
d6f39728 6454
67278d60 6455 if Present (CR_Pragma) then
6456 Comp := First_Component_Or_Discriminant (Rectype);
6457 while Present (Comp) loop
6458 if No (Component_Clause (Comp)) then
6459 Error_Msg_NE
6460 ("missing component clause for &", CR_Pragma, Comp);
6461 end if;
d6f39728 6462
67278d60 6463 Next_Component_Or_Discriminant (Comp);
6464 end loop;
d6f39728 6465
1e3532e7 6466 -- Give missing components warning if required
15ebb600 6467
fdd294d1 6468 elsif Warn_On_Unrepped_Components then
15ebb600 6469 declare
6470 Num_Repped_Components : Nat := 0;
6471 Num_Unrepped_Components : Nat := 0;
6472
6473 begin
6474 -- First count number of repped and unrepped components
6475
6476 Comp := First_Component_Or_Discriminant (Rectype);
6477 while Present (Comp) loop
6478 if Present (Component_Clause (Comp)) then
6479 Num_Repped_Components := Num_Repped_Components + 1;
6480 else
6481 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6482 end if;
6483
6484 Next_Component_Or_Discriminant (Comp);
6485 end loop;
6486
6487 -- We are only interested in the case where there is at least one
6488 -- unrepped component, and at least half the components have rep
6489 -- clauses. We figure that if less than half have them, then the
87f9eef5 6490 -- partial rep clause is really intentional. If the component
6491 -- type has no underlying type set at this point (as for a generic
6492 -- formal type), we don't know enough to give a warning on the
6493 -- component.
15ebb600 6494
6495 if Num_Unrepped_Components > 0
6496 and then Num_Unrepped_Components < Num_Repped_Components
6497 then
6498 Comp := First_Component_Or_Discriminant (Rectype);
6499 while Present (Comp) loop
83f8f0a6 6500 if No (Component_Clause (Comp))
3062c401 6501 and then Comes_From_Source (Comp)
87f9eef5 6502 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 6503 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 6504 or else Size_Known_At_Compile_Time
6505 (Underlying_Type (Etype (Comp))))
fdd294d1 6506 and then not Has_Warnings_Off (Rectype)
83f8f0a6 6507 then
15ebb600 6508 Error_Msg_Sloc := Sloc (Comp);
6509 Error_Msg_NE
1e3532e7 6510 ("?C?no component clause given for & declared #",
15ebb600 6511 N, Comp);
6512 end if;
6513
6514 Next_Component_Or_Discriminant (Comp);
6515 end loop;
6516 end if;
6517 end;
d6f39728 6518 end if;
d6f39728 6519 end Analyze_Record_Representation_Clause;
6520
eb66e842 6521 -------------------------------------
6522 -- Build_Discrete_Static_Predicate --
6523 -------------------------------------
9ea61fdd 6524
eb66e842 6525 procedure Build_Discrete_Static_Predicate
6526 (Typ : Entity_Id;
6527 Expr : Node_Id;
6528 Nam : Name_Id)
9ea61fdd 6529 is
eb66e842 6530 Loc : constant Source_Ptr := Sloc (Expr);
9ea61fdd 6531
eb66e842 6532 Non_Static : exception;
6533 -- Raised if something non-static is found
9ea61fdd 6534
eb66e842 6535 Btyp : constant Entity_Id := Base_Type (Typ);
9ea61fdd 6536
eb66e842 6537 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6538 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6539 -- Low bound and high bound value of base type of Typ
9ea61fdd 6540
eb66e842 6541 TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
6542 THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
6543 -- Low bound and high bound values of static subtype Typ
9ea61fdd 6544
eb66e842 6545 type REnt is record
6546 Lo, Hi : Uint;
6547 end record;
6548 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6549 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6550 -- value.
9ea61fdd 6551
eb66e842 6552 type RList is array (Nat range <>) of REnt;
6553 -- A list of ranges. The ranges are sorted in increasing order, and are
6554 -- disjoint (there is a gap of at least one value between each range in
6555 -- the table). A value is in the set of ranges in Rlist if it lies
6556 -- within one of these ranges.
9ea61fdd 6557
eb66e842 6558 False_Range : constant RList :=
6559 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6560 -- An empty set of ranges represents a range list that can never be
6561 -- satisfied, since there are no ranges in which the value could lie,
6562 -- so it does not lie in any of them. False_Range is a canonical value
6563 -- for this empty set, but general processing should test for an Rlist
6564 -- with length zero (see Is_False predicate), since other null ranges
6565 -- may appear which must be treated as False.
5b5df4a9 6566
eb66e842 6567 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6568 -- Range representing True, value must be in the base range
5b5df4a9 6569
eb66e842 6570 function "and" (Left : RList; Right : RList) return RList;
6571 -- And's together two range lists, returning a range list. This is a set
6572 -- intersection operation.
5b5df4a9 6573
eb66e842 6574 function "or" (Left : RList; Right : RList) return RList;
6575 -- Or's together two range lists, returning a range list. This is a set
6576 -- union operation.
87f3d5d3 6577
eb66e842 6578 function "not" (Right : RList) return RList;
6579 -- Returns complement of a given range list, i.e. a range list
6580 -- representing all the values in TLo .. THi that are not in the input
6581 -- operand Right.
ed4adc99 6582
eb66e842 6583 function Build_Val (V : Uint) return Node_Id;
6584 -- Return an analyzed N_Identifier node referencing this value, suitable
5c6a5792 6585 -- for use as an entry in the Static_Discrte_Predicate list. This node
6586 -- is typed with the base type.
5b5df4a9 6587
eb66e842 6588 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6589 -- Return an analyzed N_Range node referencing this range, suitable for
5c6a5792 6590 -- use as an entry in the Static_Discrete_Predicate list. This node is
6591 -- typed with the base type.
5b5df4a9 6592
eb66e842 6593 function Get_RList (Exp : Node_Id) return RList;
6594 -- This is a recursive routine that converts the given expression into a
6595 -- list of ranges, suitable for use in building the static predicate.
5b5df4a9 6596
eb66e842 6597 function Is_False (R : RList) return Boolean;
6598 pragma Inline (Is_False);
6599 -- Returns True if the given range list is empty, and thus represents a
6600 -- False list of ranges that can never be satisfied.
87f3d5d3 6601
eb66e842 6602 function Is_True (R : RList) return Boolean;
6603 -- Returns True if R trivially represents the True predicate by having a
6604 -- single range from BLo to BHi.
5b5df4a9 6605
eb66e842 6606 function Is_Type_Ref (N : Node_Id) return Boolean;
6607 pragma Inline (Is_Type_Ref);
6608 -- Returns if True if N is a reference to the type for the predicate in
6609 -- the expression (i.e. if it is an identifier whose Chars field matches
7de4cba3 6610 -- the Nam given in the call). N must not be parenthesized, if the type
6611 -- name appears in parens, this routine will return False.
5b5df4a9 6612
eb66e842 6613 function Lo_Val (N : Node_Id) return Uint;
5c6a5792 6614 -- Given an entry from a Static_Discrete_Predicate list that is either
6615 -- a static expression or static range, gets either the expression value
6616 -- or the low bound of the range.
5b5df4a9 6617
eb66e842 6618 function Hi_Val (N : Node_Id) return Uint;
5c6a5792 6619 -- Given an entry from a Static_Discrete_Predicate list that is either
6620 -- a static expression or static range, gets either the expression value
6621 -- or the high bound of the range.
5b5df4a9 6622
eb66e842 6623 function Membership_Entry (N : Node_Id) return RList;
6624 -- Given a single membership entry (range, value, or subtype), returns
6625 -- the corresponding range list. Raises Static_Error if not static.
5b5df4a9 6626
eb66e842 6627 function Membership_Entries (N : Node_Id) return RList;
6628 -- Given an element on an alternatives list of a membership operation,
6629 -- returns the range list corresponding to this entry and all following
6630 -- entries (i.e. returns the "or" of this list of values).
b9e61b2a 6631
eb66e842 6632 function Stat_Pred (Typ : Entity_Id) return RList;
6633 -- Given a type, if it has a static predicate, then return the predicate
6634 -- as a range list, otherwise raise Non_Static.
c4968aa2 6635
eb66e842 6636 -----------
6637 -- "and" --
6638 -----------
c4968aa2 6639
eb66e842 6640 function "and" (Left : RList; Right : RList) return RList is
6641 FEnt : REnt;
6642 -- First range of result
c4968aa2 6643
eb66e842 6644 SLeft : Nat := Left'First;
6645 -- Start of rest of left entries
c4968aa2 6646
eb66e842 6647 SRight : Nat := Right'First;
6648 -- Start of rest of right entries
2072eaa9 6649
eb66e842 6650 begin
6651 -- If either range is True, return the other
5b5df4a9 6652
eb66e842 6653 if Is_True (Left) then
6654 return Right;
6655 elsif Is_True (Right) then
6656 return Left;
6657 end if;
87f3d5d3 6658
eb66e842 6659 -- If either range is False, return False
5b5df4a9 6660
eb66e842 6661 if Is_False (Left) or else Is_False (Right) then
6662 return False_Range;
6663 end if;
4c1fd062 6664
eb66e842 6665 -- Loop to remove entries at start that are disjoint, and thus just
6666 -- get discarded from the result entirely.
5b5df4a9 6667
eb66e842 6668 loop
6669 -- If no operands left in either operand, result is false
5b5df4a9 6670
eb66e842 6671 if SLeft > Left'Last or else SRight > Right'Last then
6672 return False_Range;
5b5df4a9 6673
eb66e842 6674 -- Discard first left operand entry if disjoint with right
5b5df4a9 6675
eb66e842 6676 elsif Left (SLeft).Hi < Right (SRight).Lo then
6677 SLeft := SLeft + 1;
5b5df4a9 6678
eb66e842 6679 -- Discard first right operand entry if disjoint with left
5b5df4a9 6680
eb66e842 6681 elsif Right (SRight).Hi < Left (SLeft).Lo then
6682 SRight := SRight + 1;
5b5df4a9 6683
eb66e842 6684 -- Otherwise we have an overlapping entry
5b5df4a9 6685
eb66e842 6686 else
6687 exit;
6688 end if;
6689 end loop;
5b5df4a9 6690
eb66e842 6691 -- Now we have two non-null operands, and first entries overlap. The
6692 -- first entry in the result will be the overlapping part of these
6693 -- two entries.
47a46747 6694
eb66e842 6695 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6696 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
47a46747 6697
eb66e842 6698 -- Now we can remove the entry that ended at a lower value, since its
6699 -- contribution is entirely contained in Fent.
5b5df4a9 6700
eb66e842 6701 if Left (SLeft).Hi <= Right (SRight).Hi then
6702 SLeft := SLeft + 1;
6703 else
6704 SRight := SRight + 1;
6705 end if;
5b5df4a9 6706
eb66e842 6707 -- Compute result by concatenating this first entry with the "and" of
6708 -- the remaining parts of the left and right operands. Note that if
6709 -- either of these is empty, "and" will yield empty, so that we will
6710 -- end up with just Fent, which is what we want in that case.
5b5df4a9 6711
eb66e842 6712 return
6713 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6714 end "and";
fb7f2fc4 6715
eb66e842 6716 -----------
6717 -- "not" --
6718 -----------
fb7f2fc4 6719
eb66e842 6720 function "not" (Right : RList) return RList is
6721 begin
6722 -- Return True if False range
fb7f2fc4 6723
eb66e842 6724 if Is_False (Right) then
6725 return True_Range;
6726 end if;
ed4adc99 6727
eb66e842 6728 -- Return False if True range
fb7f2fc4 6729
eb66e842 6730 if Is_True (Right) then
6731 return False_Range;
6732 end if;
fb7f2fc4 6733
eb66e842 6734 -- Here if not trivial case
87f3d5d3 6735
eb66e842 6736 declare
6737 Result : RList (1 .. Right'Length + 1);
6738 -- May need one more entry for gap at beginning and end
87f3d5d3 6739
eb66e842 6740 Count : Nat := 0;
6741 -- Number of entries stored in Result
4098232e 6742
eb66e842 6743 begin
6744 -- Gap at start
4098232e 6745
eb66e842 6746 if Right (Right'First).Lo > TLo then
6747 Count := Count + 1;
6748 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
6749 end if;
ed4adc99 6750
eb66e842 6751 -- Gaps between ranges
ed4adc99 6752
eb66e842 6753 for J in Right'First .. Right'Last - 1 loop
6754 Count := Count + 1;
6755 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6756 end loop;
5b5df4a9 6757
eb66e842 6758 -- Gap at end
5b5df4a9 6759
eb66e842 6760 if Right (Right'Last).Hi < THi then
6761 Count := Count + 1;
6762 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
6763 end if;
5b5df4a9 6764
eb66e842 6765 return Result (1 .. Count);
6766 end;
6767 end "not";
5b5df4a9 6768
eb66e842 6769 ----------
6770 -- "or" --
6771 ----------
5b5df4a9 6772
eb66e842 6773 function "or" (Left : RList; Right : RList) return RList is
6774 FEnt : REnt;
6775 -- First range of result
5b5df4a9 6776
eb66e842 6777 SLeft : Nat := Left'First;
6778 -- Start of rest of left entries
5b5df4a9 6779
eb66e842 6780 SRight : Nat := Right'First;
6781 -- Start of rest of right entries
5b5df4a9 6782
eb66e842 6783 begin
6784 -- If either range is True, return True
5b5df4a9 6785
eb66e842 6786 if Is_True (Left) or else Is_True (Right) then
6787 return True_Range;
6788 end if;
5b5df4a9 6789
eb66e842 6790 -- If either range is False (empty), return the other
5b5df4a9 6791
eb66e842 6792 if Is_False (Left) then
6793 return Right;
6794 elsif Is_False (Right) then
6795 return Left;
6796 end if;
5b5df4a9 6797
eb66e842 6798 -- Initialize result first entry from left or right operand depending
6799 -- on which starts with the lower range.
5b5df4a9 6800
eb66e842 6801 if Left (SLeft).Lo < Right (SRight).Lo then
6802 FEnt := Left (SLeft);
6803 SLeft := SLeft + 1;
6804 else
6805 FEnt := Right (SRight);
6806 SRight := SRight + 1;
6807 end if;
5b5df4a9 6808
eb66e842 6809 -- This loop eats ranges from left and right operands that are
6810 -- contiguous with the first range we are gathering.
9ea61fdd 6811
eb66e842 6812 loop
6813 -- Eat first entry in left operand if contiguous or overlapped by
6814 -- gathered first operand of result.
9ea61fdd 6815
eb66e842 6816 if SLeft <= Left'Last
6817 and then Left (SLeft).Lo <= FEnt.Hi + 1
6818 then
6819 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
6820 SLeft := SLeft + 1;
9ea61fdd 6821
eb66e842 6822 -- Eat first entry in right operand if contiguous or overlapped by
6823 -- gathered right operand of result.
9ea61fdd 6824
eb66e842 6825 elsif SRight <= Right'Last
6826 and then Right (SRight).Lo <= FEnt.Hi + 1
6827 then
6828 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
6829 SRight := SRight + 1;
9ea61fdd 6830
eb66e842 6831 -- All done if no more entries to eat
5b5df4a9 6832
eb66e842 6833 else
6834 exit;
6835 end if;
6836 end loop;
5b5df4a9 6837
eb66e842 6838 -- Obtain result as the first entry we just computed, concatenated
6839 -- to the "or" of the remaining results (if one operand is empty,
6840 -- this will just concatenate with the other
5b5df4a9 6841
eb66e842 6842 return
6843 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
6844 end "or";
5b5df4a9 6845
eb66e842 6846 -----------------
6847 -- Build_Range --
6848 -----------------
5b5df4a9 6849
eb66e842 6850 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
6851 Result : Node_Id;
5b5df4a9 6852 begin
eb66e842 6853 Result :=
6854 Make_Range (Loc,
6855 Low_Bound => Build_Val (Lo),
6856 High_Bound => Build_Val (Hi));
6857 Set_Etype (Result, Btyp);
6858 Set_Analyzed (Result);
6859 return Result;
6860 end Build_Range;
5b5df4a9 6861
eb66e842 6862 ---------------
6863 -- Build_Val --
6864 ---------------
5b5df4a9 6865
eb66e842 6866 function Build_Val (V : Uint) return Node_Id is
6867 Result : Node_Id;
5b5df4a9 6868
eb66e842 6869 begin
6870 if Is_Enumeration_Type (Typ) then
6871 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
6872 else
6873 Result := Make_Integer_Literal (Loc, V);
6874 end if;
5b5df4a9 6875
eb66e842 6876 Set_Etype (Result, Btyp);
6877 Set_Is_Static_Expression (Result);
6878 Set_Analyzed (Result);
6879 return Result;
6880 end Build_Val;
87f3d5d3 6881
eb66e842 6882 ---------------
6883 -- Get_RList --
6884 ---------------
87f3d5d3 6885
eb66e842 6886 function Get_RList (Exp : Node_Id) return RList is
6887 Op : Node_Kind;
6888 Val : Uint;
87f3d5d3 6889
eb66e842 6890 begin
6891 -- Static expression can only be true or false
87f3d5d3 6892
eb66e842 6893 if Is_OK_Static_Expression (Exp) then
6894 if Expr_Value (Exp) = 0 then
6895 return False_Range;
6896 else
6897 return True_Range;
9ea61fdd 6898 end if;
eb66e842 6899 end if;
87f3d5d3 6900
eb66e842 6901 -- Otherwise test node type
192b8dab 6902
eb66e842 6903 Op := Nkind (Exp);
192b8dab 6904
eb66e842 6905 case Op is
5d3fb947 6906
eb66e842 6907 -- And
5d3fb947 6908
eb66e842 6909 when N_Op_And | N_And_Then =>
6910 return Get_RList (Left_Opnd (Exp))
6911 and
6912 Get_RList (Right_Opnd (Exp));
5b5df4a9 6913
eb66e842 6914 -- Or
9dc88aea 6915
eb66e842 6916 when N_Op_Or | N_Or_Else =>
6917 return Get_RList (Left_Opnd (Exp))
6918 or
6919 Get_RList (Right_Opnd (Exp));
7c443ae8 6920
eb66e842 6921 -- Not
9dc88aea 6922
eb66e842 6923 when N_Op_Not =>
6924 return not Get_RList (Right_Opnd (Exp));
9dc88aea 6925
eb66e842 6926 -- Comparisons of type with static value
84c8f0b8 6927
eb66e842 6928 when N_Op_Compare =>
490beba6 6929
eb66e842 6930 -- Type is left operand
9dc88aea 6931
eb66e842 6932 if Is_Type_Ref (Left_Opnd (Exp))
6933 and then Is_OK_Static_Expression (Right_Opnd (Exp))
6934 then
6935 Val := Expr_Value (Right_Opnd (Exp));
84c8f0b8 6936
eb66e842 6937 -- Typ is right operand
84c8f0b8 6938
eb66e842 6939 elsif Is_Type_Ref (Right_Opnd (Exp))
6940 and then Is_OK_Static_Expression (Left_Opnd (Exp))
6941 then
6942 Val := Expr_Value (Left_Opnd (Exp));
84c8f0b8 6943
eb66e842 6944 -- Invert sense of comparison
84c8f0b8 6945
eb66e842 6946 case Op is
6947 when N_Op_Gt => Op := N_Op_Lt;
6948 when N_Op_Lt => Op := N_Op_Gt;
6949 when N_Op_Ge => Op := N_Op_Le;
6950 when N_Op_Le => Op := N_Op_Ge;
6951 when others => null;
6952 end case;
84c8f0b8 6953
eb66e842 6954 -- Other cases are non-static
34d045d3 6955
eb66e842 6956 else
6957 raise Non_Static;
6958 end if;
9dc88aea 6959
eb66e842 6960 -- Construct range according to comparison operation
9dc88aea 6961
eb66e842 6962 case Op is
6963 when N_Op_Eq =>
6964 return RList'(1 => REnt'(Val, Val));
9dc88aea 6965
eb66e842 6966 when N_Op_Ge =>
6967 return RList'(1 => REnt'(Val, BHi));
84c8f0b8 6968
eb66e842 6969 when N_Op_Gt =>
6970 return RList'(1 => REnt'(Val + 1, BHi));
84c8f0b8 6971
eb66e842 6972 when N_Op_Le =>
6973 return RList'(1 => REnt'(BLo, Val));
fb7f2fc4 6974
eb66e842 6975 when N_Op_Lt =>
6976 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 6977
eb66e842 6978 when N_Op_Ne =>
6979 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9dc88aea 6980
eb66e842 6981 when others =>
6982 raise Program_Error;
6983 end case;
9dc88aea 6984
eb66e842 6985 -- Membership (IN)
9dc88aea 6986
eb66e842 6987 when N_In =>
6988 if not Is_Type_Ref (Left_Opnd (Exp)) then
6989 raise Non_Static;
6990 end if;
9dc88aea 6991
eb66e842 6992 if Present (Right_Opnd (Exp)) then
6993 return Membership_Entry (Right_Opnd (Exp));
6994 else
6995 return Membership_Entries (First (Alternatives (Exp)));
6996 end if;
9dc88aea 6997
eb66e842 6998 -- Negative membership (NOT IN)
9dc88aea 6999
eb66e842 7000 when N_Not_In =>
7001 if not Is_Type_Ref (Left_Opnd (Exp)) then
7002 raise Non_Static;
7003 end if;
9dc88aea 7004
eb66e842 7005 if Present (Right_Opnd (Exp)) then
7006 return not Membership_Entry (Right_Opnd (Exp));
7007 else
7008 return not Membership_Entries (First (Alternatives (Exp)));
7009 end if;
9dc88aea 7010
eb66e842 7011 -- Function call, may be call to static predicate
9dc88aea 7012
eb66e842 7013 when N_Function_Call =>
7014 if Is_Entity_Name (Name (Exp)) then
7015 declare
7016 Ent : constant Entity_Id := Entity (Name (Exp));
7017 begin
7018 if Is_Predicate_Function (Ent)
7019 or else
7020 Is_Predicate_Function_M (Ent)
7021 then
7022 return Stat_Pred (Etype (First_Formal (Ent)));
7023 end if;
7024 end;
7025 end if;
9dc88aea 7026
eb66e842 7027 -- Other function call cases are non-static
9dc88aea 7028
eb66e842 7029 raise Non_Static;
490beba6 7030
eb66e842 7031 -- Qualified expression, dig out the expression
c92e878b 7032
eb66e842 7033 when N_Qualified_Expression =>
7034 return Get_RList (Expression (Exp));
4c1fd062 7035
eb66e842 7036 when N_Case_Expression =>
7037 declare
7038 Alt : Node_Id;
7039 Choices : List_Id;
7040 Dep : Node_Id;
4c1fd062 7041
eb66e842 7042 begin
7043 if not Is_Entity_Name (Expression (Expr))
7044 or else Etype (Expression (Expr)) /= Typ
7045 then
7046 Error_Msg_N
7047 ("expression must denaote subtype", Expression (Expr));
7048 return False_Range;
7049 end if;
9dc88aea 7050
eb66e842 7051 -- Collect discrete choices in all True alternatives
9dc88aea 7052
eb66e842 7053 Choices := New_List;
7054 Alt := First (Alternatives (Exp));
7055 while Present (Alt) loop
7056 Dep := Expression (Alt);
34d045d3 7057
cda40848 7058 if not Is_OK_Static_Expression (Dep) then
eb66e842 7059 raise Non_Static;
ebbab42d 7060
eb66e842 7061 elsif Is_True (Expr_Value (Dep)) then
7062 Append_List_To (Choices,
7063 New_Copy_List (Discrete_Choices (Alt)));
7064 end if;
fb7f2fc4 7065
eb66e842 7066 Next (Alt);
7067 end loop;
9dc88aea 7068
eb66e842 7069 return Membership_Entries (First (Choices));
7070 end;
9dc88aea 7071
eb66e842 7072 -- Expression with actions: if no actions, dig out expression
9dc88aea 7073
eb66e842 7074 when N_Expression_With_Actions =>
7075 if Is_Empty_List (Actions (Exp)) then
7076 return Get_RList (Expression (Exp));
7077 else
7078 raise Non_Static;
7079 end if;
9dc88aea 7080
eb66e842 7081 -- Xor operator
490beba6 7082
eb66e842 7083 when N_Op_Xor =>
7084 return (Get_RList (Left_Opnd (Exp))
7085 and not Get_RList (Right_Opnd (Exp)))
7086 or (Get_RList (Right_Opnd (Exp))
7087 and not Get_RList (Left_Opnd (Exp)));
9dc88aea 7088
eb66e842 7089 -- Any other node type is non-static
fb7f2fc4 7090
eb66e842 7091 when others =>
7092 raise Non_Static;
7093 end case;
7094 end Get_RList;
fb7f2fc4 7095
eb66e842 7096 ------------
7097 -- Hi_Val --
7098 ------------
fb7f2fc4 7099
eb66e842 7100 function Hi_Val (N : Node_Id) return Uint is
7101 begin
cda40848 7102 if Is_OK_Static_Expression (N) then
eb66e842 7103 return Expr_Value (N);
7104 else
7105 pragma Assert (Nkind (N) = N_Range);
7106 return Expr_Value (High_Bound (N));
7107 end if;
7108 end Hi_Val;
fb7f2fc4 7109
eb66e842 7110 --------------
7111 -- Is_False --
7112 --------------
fb7f2fc4 7113
eb66e842 7114 function Is_False (R : RList) return Boolean is
7115 begin
7116 return R'Length = 0;
7117 end Is_False;
9dc88aea 7118
eb66e842 7119 -------------
7120 -- Is_True --
7121 -------------
9dc88aea 7122
eb66e842 7123 function Is_True (R : RList) return Boolean is
7124 begin
7125 return R'Length = 1
7126 and then R (R'First).Lo = BLo
7127 and then R (R'First).Hi = BHi;
7128 end Is_True;
9dc88aea 7129
eb66e842 7130 -----------------
7131 -- Is_Type_Ref --
7132 -----------------
9dc88aea 7133
eb66e842 7134 function Is_Type_Ref (N : Node_Id) return Boolean is
7135 begin
7de4cba3 7136 return Nkind (N) = N_Identifier
7137 and then Chars (N) = Nam
7138 and then Paren_Count (N) = 0;
eb66e842 7139 end Is_Type_Ref;
9dc88aea 7140
eb66e842 7141 ------------
7142 -- Lo_Val --
7143 ------------
9dc88aea 7144
eb66e842 7145 function Lo_Val (N : Node_Id) return Uint is
84c8f0b8 7146 begin
cda40848 7147 if Is_OK_Static_Expression (N) then
eb66e842 7148 return Expr_Value (N);
84c8f0b8 7149 else
eb66e842 7150 pragma Assert (Nkind (N) = N_Range);
7151 return Expr_Value (Low_Bound (N));
84c8f0b8 7152 end if;
eb66e842 7153 end Lo_Val;
d97beb2f 7154
eb66e842 7155 ------------------------
7156 -- Membership_Entries --
7157 ------------------------
d97beb2f 7158
eb66e842 7159 function Membership_Entries (N : Node_Id) return RList is
84c8f0b8 7160 begin
eb66e842 7161 if No (Next (N)) then
7162 return Membership_Entry (N);
84c8f0b8 7163 else
eb66e842 7164 return Membership_Entry (N) or Membership_Entries (Next (N));
84c8f0b8 7165 end if;
eb66e842 7166 end Membership_Entries;
84c8f0b8 7167
eb66e842 7168 ----------------------
7169 -- Membership_Entry --
7170 ----------------------
84c8f0b8 7171
eb66e842 7172 function Membership_Entry (N : Node_Id) return RList is
7173 Val : Uint;
7174 SLo : Uint;
7175 SHi : Uint;
d97beb2f 7176
eb66e842 7177 begin
7178 -- Range case
d97beb2f 7179
eb66e842 7180 if Nkind (N) = N_Range then
cda40848 7181 if not Is_OK_Static_Expression (Low_Bound (N))
eb66e842 7182 or else
cda40848 7183 not Is_OK_Static_Expression (High_Bound (N))
eb66e842 7184 then
7185 raise Non_Static;
7186 else
7187 SLo := Expr_Value (Low_Bound (N));
7188 SHi := Expr_Value (High_Bound (N));
7189 return RList'(1 => REnt'(SLo, SHi));
7190 end if;
84c8f0b8 7191
eb66e842 7192 -- Static expression case
84c8f0b8 7193
cda40848 7194 elsif Is_OK_Static_Expression (N) then
eb66e842 7195 Val := Expr_Value (N);
7196 return RList'(1 => REnt'(Val, Val));
d97beb2f 7197
eb66e842 7198 -- Identifier (other than static expression) case
d97beb2f 7199
eb66e842 7200 else pragma Assert (Nkind (N) = N_Identifier);
d97beb2f 7201
eb66e842 7202 -- Type case
d97beb2f 7203
eb66e842 7204 if Is_Type (Entity (N)) then
d97beb2f 7205
eb66e842 7206 -- If type has predicates, process them
d97beb2f 7207
eb66e842 7208 if Has_Predicates (Entity (N)) then
7209 return Stat_Pred (Entity (N));
d97beb2f 7210
eb66e842 7211 -- For static subtype without predicates, get range
9dc88aea 7212
cda40848 7213 elsif Is_OK_Static_Subtype (Entity (N)) then
eb66e842 7214 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7215 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7216 return RList'(1 => REnt'(SLo, SHi));
9f269bd8 7217
eb66e842 7218 -- Any other type makes us non-static
9f269bd8 7219
eb66e842 7220 else
7221 raise Non_Static;
7222 end if;
84c8f0b8 7223
eb66e842 7224 -- Any other kind of identifier in predicate (e.g. a non-static
7225 -- expression value) means this is not a static predicate.
84c8f0b8 7226
eb66e842 7227 else
7228 raise Non_Static;
7229 end if;
7230 end if;
7231 end Membership_Entry;
84c8f0b8 7232
eb66e842 7233 ---------------
7234 -- Stat_Pred --
7235 ---------------
84c8f0b8 7236
eb66e842 7237 function Stat_Pred (Typ : Entity_Id) return RList is
7238 begin
7239 -- Not static if type does not have static predicates
84c8f0b8 7240
5c6a5792 7241 if not Has_Static_Predicate (Typ) then
eb66e842 7242 raise Non_Static;
7243 end if;
84c8f0b8 7244
eb66e842 7245 -- Otherwise we convert the predicate list to a range list
84c8f0b8 7246
eb66e842 7247 declare
5c6a5792 7248 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7249 Result : RList (1 .. List_Length (Spred));
eb66e842 7250 P : Node_Id;
84c8f0b8 7251
eb66e842 7252 begin
5c6a5792 7253 P := First (Static_Discrete_Predicate (Typ));
eb66e842 7254 for J in Result'Range loop
7255 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7256 Next (P);
7257 end loop;
84c8f0b8 7258
eb66e842 7259 return Result;
7260 end;
7261 end Stat_Pred;
84c8f0b8 7262
eb66e842 7263 -- Start of processing for Build_Discrete_Static_Predicate
84c8f0b8 7264
eb66e842 7265 begin
7266 -- Analyze the expression to see if it is a static predicate
84c8f0b8 7267
eb66e842 7268 declare
7269 Ranges : constant RList := Get_RList (Expr);
7270 -- Range list from expression if it is static
84c8f0b8 7271
eb66e842 7272 Plist : List_Id;
84c8f0b8 7273
eb66e842 7274 begin
7275 -- Convert range list into a form for the static predicate. In the
7276 -- Ranges array, we just have raw ranges, these must be converted
7277 -- to properly typed and analyzed static expressions or range nodes.
84c8f0b8 7278
eb66e842 7279 -- Note: here we limit ranges to the ranges of the subtype, so that
7280 -- a predicate is always false for values outside the subtype. That
7281 -- seems fine, such values are invalid anyway, and considering them
7282 -- to fail the predicate seems allowed and friendly, and furthermore
7283 -- simplifies processing for case statements and loops.
84c8f0b8 7284
eb66e842 7285 Plist := New_List;
7286
7287 for J in Ranges'Range loop
84c8f0b8 7288 declare
eb66e842 7289 Lo : Uint := Ranges (J).Lo;
7290 Hi : Uint := Ranges (J).Hi;
84c8f0b8 7291
eb66e842 7292 begin
7293 -- Ignore completely out of range entry
84c8f0b8 7294
eb66e842 7295 if Hi < TLo or else Lo > THi then
7296 null;
84c8f0b8 7297
eb66e842 7298 -- Otherwise process entry
84c8f0b8 7299
eb66e842 7300 else
7301 -- Adjust out of range value to subtype range
490beba6 7302
eb66e842 7303 if Lo < TLo then
7304 Lo := TLo;
7305 end if;
490beba6 7306
eb66e842 7307 if Hi > THi then
7308 Hi := THi;
7309 end if;
84c8f0b8 7310
eb66e842 7311 -- Convert range into required form
84c8f0b8 7312
eb66e842 7313 Append_To (Plist, Build_Range (Lo, Hi));
84c8f0b8 7314 end if;
eb66e842 7315 end;
7316 end loop;
84c8f0b8 7317
eb66e842 7318 -- Processing was successful and all entries were static, so now we
7319 -- can store the result as the predicate list.
84c8f0b8 7320
5c6a5792 7321 Set_Static_Discrete_Predicate (Typ, Plist);
84c8f0b8 7322
eb66e842 7323 -- The processing for static predicates put the expression into
7324 -- canonical form as a series of ranges. It also eliminated
7325 -- duplicates and collapsed and combined ranges. We might as well
7326 -- replace the alternatives list of the right operand of the
7327 -- membership test with the static predicate list, which will
7328 -- usually be more efficient.
84c8f0b8 7329
eb66e842 7330 declare
7331 New_Alts : constant List_Id := New_List;
7332 Old_Node : Node_Id;
7333 New_Node : Node_Id;
84c8f0b8 7334
eb66e842 7335 begin
7336 Old_Node := First (Plist);
7337 while Present (Old_Node) loop
7338 New_Node := New_Copy (Old_Node);
84c8f0b8 7339
eb66e842 7340 if Nkind (New_Node) = N_Range then
7341 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7342 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7343 end if;
84c8f0b8 7344
eb66e842 7345 Append_To (New_Alts, New_Node);
7346 Next (Old_Node);
7347 end loop;
84c8f0b8 7348
eb66e842 7349 -- If empty list, replace by False
84c8f0b8 7350
eb66e842 7351 if Is_Empty_List (New_Alts) then
7352 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
84c8f0b8 7353
eb66e842 7354 -- Else replace by set membership test
84c8f0b8 7355
eb66e842 7356 else
7357 Rewrite (Expr,
7358 Make_In (Loc,
7359 Left_Opnd => Make_Identifier (Loc, Nam),
7360 Right_Opnd => Empty,
7361 Alternatives => New_Alts));
490beba6 7362
eb66e842 7363 -- Resolve new expression in function context
490beba6 7364
eb66e842 7365 Install_Formals (Predicate_Function (Typ));
7366 Push_Scope (Predicate_Function (Typ));
7367 Analyze_And_Resolve (Expr, Standard_Boolean);
7368 Pop_Scope;
7369 end if;
7370 end;
7371 end;
9ab32fe9 7372
eb66e842 7373 -- If non-static, return doing nothing
9ab32fe9 7374
eb66e842 7375 exception
7376 when Non_Static =>
7377 return;
7378 end Build_Discrete_Static_Predicate;
64cc9e5d 7379
eb66e842 7380 -------------------------------------------
7381 -- Build_Invariant_Procedure_Declaration --
7382 -------------------------------------------
9ab32fe9 7383
eb66e842 7384 function Build_Invariant_Procedure_Declaration
7385 (Typ : Entity_Id) return Node_Id
7386 is
7387 Loc : constant Source_Ptr := Sloc (Typ);
7388 Object_Entity : constant Entity_Id :=
7389 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7390 Spec : Node_Id;
7391 SId : Entity_Id;
9ab32fe9 7392
eb66e842 7393 begin
7394 Set_Etype (Object_Entity, Typ);
7395
7396 -- Check for duplicate definiations.
7397
7398 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7399 return Empty;
d97beb2f 7400 end if;
d97beb2f 7401
eb66e842 7402 SId :=
7403 Make_Defining_Identifier (Loc,
7404 Chars => New_External_Name (Chars (Typ), "Invariant"));
7405 Set_Has_Invariants (Typ);
7406 Set_Ekind (SId, E_Procedure);
856a9917 7407 Set_Etype (SId, Standard_Void_Type);
eb66e842 7408 Set_Is_Invariant_Procedure (SId);
7409 Set_Invariant_Procedure (Typ, SId);
d97beb2f 7410
eb66e842 7411 Spec :=
7412 Make_Procedure_Specification (Loc,
7413 Defining_Unit_Name => SId,
7414 Parameter_Specifications => New_List (
7415 Make_Parameter_Specification (Loc,
7416 Defining_Identifier => Object_Entity,
7417 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
d97beb2f 7418
eb66e842 7419 return Make_Subprogram_Declaration (Loc, Specification => Spec);
7420 end Build_Invariant_Procedure_Declaration;
7421
7422 -------------------------------
7423 -- Build_Invariant_Procedure --
7424 -------------------------------
7425
7426 -- The procedure that is constructed here has the form
7427
7428 -- procedure typInvariant (Ixxx : typ) is
7429 -- begin
7430 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7431 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7432 -- ...
7433 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7434 -- ...
7435 -- end typInvariant;
7436
7437 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7438 Loc : constant Source_Ptr := Sloc (Typ);
7439 Stmts : List_Id;
7440 Spec : Node_Id;
7441 SId : Entity_Id;
7442 PDecl : Node_Id;
7443 PBody : Node_Id;
d97beb2f 7444
eb66e842 7445 Nam : Name_Id;
7446 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7447 -- if we come from a Type_Invariant aspect, we make sure to build the
7448 -- Check pragma with the right name, so that Check_Policy works right.
d7c2851f 7449
eb66e842 7450 Visible_Decls : constant List_Id := Visible_Declarations (N);
7451 Private_Decls : constant List_Id := Private_Declarations (N);
d7c2851f 7452
eb66e842 7453 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
7454 -- Appends statements to Stmts for any invariants in the rep item chain
7455 -- of the given type. If Inherit is False, then we only process entries
7456 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7457 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7458 -- "inherited" to the exception message and generating an informational
7459 -- message about the inheritance of an invariant.
d97beb2f 7460
eb66e842 7461 Object_Name : Name_Id;
7462 -- Name for argument of invariant procedure
d97beb2f 7463
eb66e842 7464 Object_Entity : Node_Id;
7465 -- The entity of the formal for the procedure
d97beb2f 7466
eb66e842 7467 --------------------
7468 -- Add_Invariants --
7469 --------------------
d97beb2f 7470
eb66e842 7471 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
7472 Ritem : Node_Id;
7473 Arg1 : Node_Id;
7474 Arg2 : Node_Id;
7475 Arg3 : Node_Id;
7476 Exp : Node_Id;
7477 Loc : Source_Ptr;
7478 Assoc : List_Id;
7479 Str : String_Id;
d97beb2f 7480
eb66e842 7481 procedure Replace_Type_Reference (N : Node_Id);
7482 -- Replace a single occurrence N of the subtype name with a reference
7483 -- to the formal of the predicate function. N can be an identifier
7484 -- referencing the subtype, or a selected component, representing an
7485 -- appropriately qualified occurrence of the subtype name.
d97beb2f 7486
eb66e842 7487 procedure Replace_Type_References is
7488 new Replace_Type_References_Generic (Replace_Type_Reference);
7489 -- Traverse an expression replacing all occurrences of the subtype
7490 -- name with appropriate references to the object that is the formal
7491 -- parameter of the predicate function. Note that we must ensure
7492 -- that the type and entity information is properly set in the
7493 -- replacement node, since we will do a Preanalyze call of this
7494 -- expression without proper visibility of the procedure argument.
d97beb2f 7495
eb66e842 7496 ----------------------------
7497 -- Replace_Type_Reference --
7498 ----------------------------
d97beb2f 7499
eb66e842 7500 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7501 -- regarding handling of Sloc and Comes_From_Source.
d97beb2f 7502
eb66e842 7503 procedure Replace_Type_Reference (N : Node_Id) is
7504 begin
d97beb2f 7505
eb66e842 7506 -- Add semantic information to node to be rewritten, for ASIS
7507 -- navigation needs.
d97beb2f 7508
eb66e842 7509 if Nkind (N) = N_Identifier then
7510 Set_Entity (N, T);
7511 Set_Etype (N, T);
d7c2851f 7512
eb66e842 7513 elsif Nkind (N) = N_Selected_Component then
7514 Analyze (Prefix (N));
7515 Set_Entity (Selector_Name (N), T);
7516 Set_Etype (Selector_Name (N), T);
7517 end if;
d7c2851f 7518
eb66e842 7519 -- Invariant'Class, replace with T'Class (obj)
69004fe6 7520 -- In ASIS mode, an inherited item is analyzed already, and the
7521 -- replacement has been done, so do not repeat transformation
7522 -- to prevent ill-formed tree.
d97beb2f 7523
eb66e842 7524 if Class_Present (Ritem) then
69004fe6 7525 if ASIS_Mode
7526 and then Nkind (Parent (N)) = N_Attribute_Reference
7527 and then Attribute_Name (Parent (N)) = Name_Class
7528 then
7529 null;
7530
7531 else
7532 Rewrite (N,
7533 Make_Type_Conversion (Sloc (N),
7534 Subtype_Mark =>
7535 Make_Attribute_Reference (Sloc (N),
7536 Prefix => New_Occurrence_Of (T, Sloc (N)),
7537 Attribute_Name => Name_Class),
7538 Expression =>
7539 Make_Identifier (Sloc (N), Object_Name)));
7540
7541 Set_Entity (Expression (N), Object_Entity);
7542 Set_Etype (Expression (N), Typ);
7543 end if;
d9f6a4ee 7544
eb66e842 7545 -- Invariant, replace with obj
d9f6a4ee 7546
eb66e842 7547 else
7548 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
7549 Set_Entity (N, Object_Entity);
7550 Set_Etype (N, Typ);
7551 end if;
d9f6a4ee 7552
eb66e842 7553 Set_Comes_From_Source (N, True);
7554 end Replace_Type_Reference;
d9f6a4ee 7555
eb66e842 7556 -- Start of processing for Add_Invariants
d9f6a4ee 7557
eb66e842 7558 begin
7559 Ritem := First_Rep_Item (T);
7560 while Present (Ritem) loop
7561 if Nkind (Ritem) = N_Pragma
7562 and then Pragma_Name (Ritem) = Name_Invariant
7563 then
7564 Arg1 := First (Pragma_Argument_Associations (Ritem));
7565 Arg2 := Next (Arg1);
7566 Arg3 := Next (Arg2);
d9f6a4ee 7567
eb66e842 7568 Arg1 := Get_Pragma_Arg (Arg1);
7569 Arg2 := Get_Pragma_Arg (Arg2);
d9f6a4ee 7570
eb66e842 7571 -- For Inherit case, ignore Invariant, process only Class case
d9f6a4ee 7572
eb66e842 7573 if Inherit then
7574 if not Class_Present (Ritem) then
7575 goto Continue;
7576 end if;
d9f6a4ee 7577
eb66e842 7578 -- For Inherit false, process only item for right type
d9f6a4ee 7579
eb66e842 7580 else
7581 if Entity (Arg1) /= Typ then
7582 goto Continue;
7583 end if;
7584 end if;
d9f6a4ee 7585
eb66e842 7586 if No (Stmts) then
7587 Stmts := Empty_List;
7588 end if;
d9f6a4ee 7589
eb66e842 7590 Exp := New_Copy_Tree (Arg2);
d9f6a4ee 7591
eb66e842 7592 -- Preserve sloc of original pragma Invariant
d9f6a4ee 7593
eb66e842 7594 Loc := Sloc (Ritem);
d9f6a4ee 7595
eb66e842 7596 -- We need to replace any occurrences of the name of the type
7597 -- with references to the object, converted to type'Class in
7598 -- the case of Invariant'Class aspects.
d9f6a4ee 7599
37c6552c 7600 Replace_Type_References (Exp, T);
d9f6a4ee 7601
eb66e842 7602 -- If this invariant comes from an aspect, find the aspect
7603 -- specification, and replace the saved expression because
7604 -- we need the subtype references replaced for the calls to
7605 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7606 -- and Check_Aspect_At_End_Of_Declarations.
d9f6a4ee 7607
eb66e842 7608 if From_Aspect_Specification (Ritem) then
7609 declare
7610 Aitem : Node_Id;
d9f6a4ee 7611
eb66e842 7612 begin
7613 -- Loop to find corresponding aspect, note that this
7614 -- must be present given the pragma is marked delayed.
d9f6a4ee 7615
eb66e842 7616 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7617 -- this loop does nothing. Furthermore, why isn't this
7618 -- simply Corresponding_Aspect ???
d9f6a4ee 7619
eb66e842 7620 Aitem := Next_Rep_Item (Ritem);
7621 while Present (Aitem) loop
7622 if Nkind (Aitem) = N_Aspect_Specification
7623 and then Aspect_Rep_Item (Aitem) = Ritem
7624 then
7625 Set_Entity
7626 (Identifier (Aitem), New_Copy_Tree (Exp));
7627 exit;
7628 end if;
d9f6a4ee 7629
eb66e842 7630 Aitem := Next_Rep_Item (Aitem);
7631 end loop;
7632 end;
7633 end if;
d9f6a4ee 7634
eb66e842 7635 -- Now we need to preanalyze the expression to properly capture
7636 -- the visibility in the visible part. The expression will not
7637 -- be analyzed for real until the body is analyzed, but that is
7638 -- at the end of the private part and has the wrong visibility.
d9f6a4ee 7639
eb66e842 7640 Set_Parent (Exp, N);
7641 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
d9f6a4ee 7642
f02a9a9a 7643 -- A class-wide invariant may be inherited in a separate unit,
7644 -- where the corresponding expression cannot be resolved by
7645 -- visibility, because it refers to a local function. Propagate
7646 -- semantic information to the original representation item, to
7647 -- be used when an invariant procedure for a derived type is
7648 -- constructed.
7649
7650 -- Unclear how to handle class-wide invariants that are not
7651 -- function calls ???
7652
7653 if not Inherit
7654 and then Class_Present (Ritem)
7655 and then Nkind (Exp) = N_Function_Call
7656 and then Nkind (Arg2) = N_Indexed_Component
7657 then
7658 Rewrite (Arg2,
7659 Make_Function_Call (Loc,
7660 Name =>
7661 New_Occurrence_Of (Entity (Name (Exp)), Loc),
7662 Parameter_Associations =>
7663 New_Copy_List (Expressions (Arg2))));
7664 end if;
7665
eb66e842 7666 -- In ASIS mode, even if assertions are not enabled, we must
7667 -- analyze the original expression in the aspect specification
7668 -- because it is part of the original tree.
d9f6a4ee 7669
eb66e842 7670 if ASIS_Mode and then From_Aspect_Specification (Ritem) then
7671 declare
7672 Inv : constant Node_Id :=
7673 Expression (Corresponding_Aspect (Ritem));
7674 begin
37c6552c 7675 Replace_Type_References (Inv, T);
eb66e842 7676 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
7677 end;
7678 end if;
d9f6a4ee 7679
eb66e842 7680 -- Get name to be used for Check pragma
d9f6a4ee 7681
eb66e842 7682 if not From_Aspect_Specification (Ritem) then
7683 Nam := Name_Invariant;
7684 else
7685 Nam := Chars (Identifier (Corresponding_Aspect (Ritem)));
7686 end if;
d9f6a4ee 7687
eb66e842 7688 -- Build first two arguments for Check pragma
d9f6a4ee 7689
eb66e842 7690 Assoc :=
7691 New_List (
7692 Make_Pragma_Argument_Association (Loc,
7693 Expression => Make_Identifier (Loc, Chars => Nam)),
7694 Make_Pragma_Argument_Association (Loc,
7695 Expression => Exp));
d9f6a4ee 7696
eb66e842 7697 -- Add message if present in Invariant pragma
d9f6a4ee 7698
eb66e842 7699 if Present (Arg3) then
7700 Str := Strval (Get_Pragma_Arg (Arg3));
d9f6a4ee 7701
eb66e842 7702 -- If inherited case, and message starts "failed invariant",
7703 -- change it to be "failed inherited invariant".
d9f6a4ee 7704
eb66e842 7705 if Inherit then
7706 String_To_Name_Buffer (Str);
d9f6a4ee 7707
eb66e842 7708 if Name_Buffer (1 .. 16) = "failed invariant" then
7709 Insert_Str_In_Name_Buffer ("inherited ", 8);
7710 Str := String_From_Name_Buffer;
7711 end if;
7712 end if;
d9f6a4ee 7713
eb66e842 7714 Append_To (Assoc,
7715 Make_Pragma_Argument_Association (Loc,
7716 Expression => Make_String_Literal (Loc, Str)));
7717 end if;
d9f6a4ee 7718
eb66e842 7719 -- Add Check pragma to list of statements
d97beb2f 7720
eb66e842 7721 Append_To (Stmts,
7722 Make_Pragma (Loc,
7723 Pragma_Identifier =>
7724 Make_Identifier (Loc, Name_Check),
7725 Pragma_Argument_Associations => Assoc));
d97beb2f 7726
eb66e842 7727 -- If Inherited case and option enabled, output info msg. Note
7728 -- that we know this is a case of Invariant'Class.
d97beb2f 7729
eb66e842 7730 if Inherit and Opt.List_Inherited_Aspects then
7731 Error_Msg_Sloc := Sloc (Ritem);
7732 Error_Msg_N
7733 ("info: & inherits `Invariant''Class` aspect from #?L?",
7734 Typ);
7735 end if;
d9f6a4ee 7736 end if;
d97beb2f 7737
eb66e842 7738 <<Continue>>
7739 Next_Rep_Item (Ritem);
7740 end loop;
7741 end Add_Invariants;
d97beb2f 7742
eb66e842 7743 -- Start of processing for Build_Invariant_Procedure
d97beb2f 7744
eb66e842 7745 begin
7746 Stmts := No_List;
7747 PDecl := Empty;
7748 PBody := Empty;
7749 SId := Empty;
d97beb2f 7750
eb66e842 7751 -- If the aspect specification exists for some view of the type, the
7752 -- declaration for the procedure has been created.
d97beb2f 7753
eb66e842 7754 if Has_Invariants (Typ) then
7755 SId := Invariant_Procedure (Typ);
7756 end if;
9dc88aea 7757
0c2bde47 7758 -- If the body is already present, nothing to do. This will occur when
7759 -- the type is already frozen, which is the case when the invariant
7760 -- appears in a private part, and the freezing takes place before the
7761 -- final pass over full declarations.
aba11c12 7762
7763 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
0c2bde47 7764
eb66e842 7765 if Present (SId) then
7766 PDecl := Unit_Declaration_Node (SId);
0c2bde47 7767
7768 if Present (PDecl)
7769 and then Nkind (PDecl) = N_Subprogram_Declaration
7770 and then Present (Corresponding_Body (PDecl))
7771 then
7772 return;
7773 end if;
7774
eb66e842 7775 else
7776 PDecl := Build_Invariant_Procedure_Declaration (Typ);
7777 end if;
9dc88aea 7778
eb66e842 7779 -- Recover formal of procedure, for use in the calls to invariant
7780 -- functions (including inherited ones).
d9f6a4ee 7781
eb66e842 7782 Object_Entity :=
7783 Defining_Identifier
7784 (First (Parameter_Specifications (Specification (PDecl))));
7785 Object_Name := Chars (Object_Entity);
d9f6a4ee 7786
eb66e842 7787 -- Add invariants for the current type
9dc88aea 7788
eb66e842 7789 Add_Invariants (Typ, Inherit => False);
9dc88aea 7790
eb66e842 7791 -- Add invariants for parent types
9dc88aea 7792
eb66e842 7793 declare
7794 Current_Typ : Entity_Id;
7795 Parent_Typ : Entity_Id;
9dc88aea 7796
eb66e842 7797 begin
7798 Current_Typ := Typ;
d97beb2f 7799 loop
eb66e842 7800 Parent_Typ := Etype (Current_Typ);
9dc88aea 7801
eb66e842 7802 if Is_Private_Type (Parent_Typ)
7803 and then Present (Full_View (Base_Type (Parent_Typ)))
d9f6a4ee 7804 then
eb66e842 7805 Parent_Typ := Full_View (Base_Type (Parent_Typ));
7806 end if;
9dc88aea 7807
eb66e842 7808 exit when Parent_Typ = Current_Typ;
9dc88aea 7809
eb66e842 7810 Current_Typ := Parent_Typ;
7811 Add_Invariants (Current_Typ, Inherit => True);
7812 end loop;
7813 end;
9dc88aea 7814
eb66e842 7815 -- Build the procedure if we generated at least one Check pragma
9dc88aea 7816
eb66e842 7817 if Stmts /= No_List then
7818 Spec := Copy_Separate_Tree (Specification (PDecl));
9dc88aea 7819
eb66e842 7820 PBody :=
7821 Make_Subprogram_Body (Loc,
7822 Specification => Spec,
7823 Declarations => Empty_List,
7824 Handled_Statement_Sequence =>
7825 Make_Handled_Sequence_Of_Statements (Loc,
7826 Statements => Stmts));
9dc88aea 7827
eb66e842 7828 -- Insert procedure declaration and spec at the appropriate points.
7829 -- If declaration is already analyzed, it was processed by the
7830 -- generated pragma.
9dc88aea 7831
eb66e842 7832 if Present (Private_Decls) then
d97beb2f 7833
eb66e842 7834 -- The spec goes at the end of visible declarations, but they have
7835 -- already been analyzed, so we need to explicitly do the analyze.
d9f6a4ee 7836
eb66e842 7837 if not Analyzed (PDecl) then
7838 Append_To (Visible_Decls, PDecl);
7839 Analyze (PDecl);
7840 end if;
d9f6a4ee 7841
eb66e842 7842 -- The body goes at the end of the private declarations, which we
7843 -- have not analyzed yet, so we do not need to perform an explicit
7844 -- analyze call. We skip this if there are no private declarations
7845 -- (this is an error that will be caught elsewhere);
d9f6a4ee 7846
eb66e842 7847 Append_To (Private_Decls, PBody);
d9f6a4ee 7848
eb66e842 7849 -- If the invariant appears on the full view of a type, the
7850 -- analysis of the private part is complete, and we must
7851 -- analyze the new body explicitly.
d9f6a4ee 7852
eb66e842 7853 if In_Private_Part (Current_Scope) then
7854 Analyze (PBody);
7855 end if;
d97beb2f 7856
eb66e842 7857 -- If there are no private declarations this may be an error that
7858 -- will be diagnosed elsewhere. However, if this is a non-private
7859 -- type that inherits invariants, it needs no completion and there
7860 -- may be no private part. In this case insert invariant procedure
7861 -- at end of current declarative list, and analyze at once, given
7862 -- that the type is about to be frozen.
d97beb2f 7863
eb66e842 7864 elsif not Is_Private_Type (Typ) then
7865 Append_To (Visible_Decls, PDecl);
7866 Append_To (Visible_Decls, PBody);
7867 Analyze (PDecl);
7868 Analyze (PBody);
7869 end if;
7870 end if;
7871 end Build_Invariant_Procedure;
d9f6a4ee 7872
eb66e842 7873 -------------------------------
7874 -- Build_Predicate_Functions --
7875 -------------------------------
d9f6a4ee 7876
eb66e842 7877 -- The procedures that are constructed here have the form:
d9f6a4ee 7878
eb66e842 7879 -- function typPredicate (Ixxx : typ) return Boolean is
7880 -- begin
7881 -- return
7882 -- exp1 and then exp2 and then ...
7883 -- and then typ1Predicate (typ1 (Ixxx))
7884 -- and then typ2Predicate (typ2 (Ixxx))
7885 -- and then ...;
7886 -- end typPredicate;
d9f6a4ee 7887
eb66e842 7888 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
7889 -- this is the point at which these expressions get analyzed, providing the
7890 -- required delay, and typ1, typ2, are entities from which predicates are
7891 -- inherited. Note that we do NOT generate Check pragmas, that's because we
7892 -- use this function even if checks are off, e.g. for membership tests.
d9f6a4ee 7893
eb66e842 7894 -- If the expression has at least one Raise_Expression, then we also build
7895 -- the typPredicateM version of the function, in which any occurrence of a
7896 -- Raise_Expression is converted to "return False".
d9f6a4ee 7897
eb66e842 7898 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
7899 Loc : constant Source_Ptr := Sloc (Typ);
d9f6a4ee 7900
eb66e842 7901 Expr : Node_Id;
7902 -- This is the expression for the result of the function. It is
7903 -- is build by connecting the component predicates with AND THEN.
d9f6a4ee 7904
eb66e842 7905 Expr_M : Node_Id;
7906 -- This is the corresponding return expression for the Predicate_M
7907 -- function. It differs in that raise expressions are marked for
7908 -- special expansion (see Process_REs).
d9f6a4ee 7909
eb66e842 7910 Object_Name : constant Name_Id := New_Internal_Name ('I');
7911 -- Name for argument of Predicate procedure. Note that we use the same
499918a7 7912 -- name for both predicate functions. That way the reference within the
eb66e842 7913 -- predicate expression is the same in both functions.
d9f6a4ee 7914
eb66e842 7915 Object_Entity : constant Entity_Id :=
7916 Make_Defining_Identifier (Loc, Chars => Object_Name);
7917 -- Entity for argument of Predicate procedure
d9f6a4ee 7918
eb66e842 7919 Object_Entity_M : constant Entity_Id :=
7920 Make_Defining_Identifier (Loc, Chars => Object_Name);
7921 -- Entity for argument of Predicate_M procedure
d9f6a4ee 7922
eb66e842 7923 Raise_Expression_Present : Boolean := False;
7924 -- Set True if Expr has at least one Raise_Expression
d9f6a4ee 7925
eb66e842 7926 procedure Add_Call (T : Entity_Id);
7927 -- Includes a call to the predicate function for type T in Expr if T
7928 -- has predicates and Predicate_Function (T) is non-empty.
d9f6a4ee 7929
eb66e842 7930 procedure Add_Predicates;
7931 -- Appends expressions for any Predicate pragmas in the rep item chain
7932 -- Typ to Expr. Note that we look only at items for this exact entity.
7933 -- Inheritance of predicates for the parent type is done by calling the
7934 -- Predicate_Function of the parent type, using Add_Call above.
d9f6a4ee 7935
eb66e842 7936 function Test_RE (N : Node_Id) return Traverse_Result;
7937 -- Used in Test_REs, tests one node for being a raise expression, and if
7938 -- so sets Raise_Expression_Present True.
d9f6a4ee 7939
eb66e842 7940 procedure Test_REs is new Traverse_Proc (Test_RE);
7941 -- Tests to see if Expr contains any raise expressions
d9f6a4ee 7942
eb66e842 7943 function Process_RE (N : Node_Id) return Traverse_Result;
7944 -- Used in Process REs, tests if node N is a raise expression, and if
7945 -- so, marks it to be converted to return False.
d9f6a4ee 7946
eb66e842 7947 procedure Process_REs is new Traverse_Proc (Process_RE);
7948 -- Marks any raise expressions in Expr_M to return False
d9f6a4ee 7949
eb66e842 7950 --------------
7951 -- Add_Call --
7952 --------------
d9f6a4ee 7953
eb66e842 7954 procedure Add_Call (T : Entity_Id) is
7955 Exp : Node_Id;
d9f6a4ee 7956
eb66e842 7957 begin
7958 if Present (T) and then Present (Predicate_Function (T)) then
7959 Set_Has_Predicates (Typ);
d9f6a4ee 7960
eb66e842 7961 -- Build the call to the predicate function of T
d9f6a4ee 7962
eb66e842 7963 Exp :=
7964 Make_Predicate_Call
7965 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
d9f6a4ee 7966
eb66e842 7967 -- Add call to evolving expression, using AND THEN if needed
d9f6a4ee 7968
eb66e842 7969 if No (Expr) then
7970 Expr := Exp;
3b23aaa0 7971
eb66e842 7972 else
7973 Expr :=
3b23aaa0 7974 Make_And_Then (Sloc (Expr),
eb66e842 7975 Left_Opnd => Relocate_Node (Expr),
7976 Right_Opnd => Exp);
7977 end if;
d9f6a4ee 7978
eb66e842 7979 -- Output info message on inheritance if required. Note we do not
7980 -- give this information for generic actual types, since it is
7981 -- unwelcome noise in that case in instantiations. We also
7982 -- generally suppress the message in instantiations, and also
7983 -- if it involves internal names.
d9f6a4ee 7984
eb66e842 7985 if Opt.List_Inherited_Aspects
7986 and then not Is_Generic_Actual_Type (Typ)
7987 and then Instantiation_Depth (Sloc (Typ)) = 0
7988 and then not Is_Internal_Name (Chars (T))
7989 and then not Is_Internal_Name (Chars (Typ))
7990 then
7991 Error_Msg_Sloc := Sloc (Predicate_Function (T));
7992 Error_Msg_Node_2 := T;
7993 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
7994 end if;
7995 end if;
7996 end Add_Call;
d9f6a4ee 7997
eb66e842 7998 --------------------
7999 -- Add_Predicates --
8000 --------------------
d9f6a4ee 8001
eb66e842 8002 procedure Add_Predicates is
8003 Ritem : Node_Id;
8004 Arg1 : Node_Id;
8005 Arg2 : Node_Id;
d9f6a4ee 8006
eb66e842 8007 procedure Replace_Type_Reference (N : Node_Id);
8008 -- Replace a single occurrence N of the subtype name with a reference
8009 -- to the formal of the predicate function. N can be an identifier
8010 -- referencing the subtype, or a selected component, representing an
8011 -- appropriately qualified occurrence of the subtype name.
d9f6a4ee 8012
eb66e842 8013 procedure Replace_Type_References is
8014 new Replace_Type_References_Generic (Replace_Type_Reference);
8015 -- Traverse an expression changing every occurrence of an identifier
8016 -- whose name matches the name of the subtype with a reference to
8017 -- the formal parameter of the predicate function.
d9f6a4ee 8018
eb66e842 8019 ----------------------------
8020 -- Replace_Type_Reference --
8021 ----------------------------
d9f6a4ee 8022
eb66e842 8023 procedure Replace_Type_Reference (N : Node_Id) is
8024 begin
8025 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8026 -- Use the Sloc of the usage name, not the defining name
d97beb2f 8027
eb66e842 8028 Set_Etype (N, Typ);
8029 Set_Entity (N, Object_Entity);
d97beb2f 8030
eb66e842 8031 -- We want to treat the node as if it comes from source, so that
8032 -- ASIS will not ignore it
d97beb2f 8033
eb66e842 8034 Set_Comes_From_Source (N, True);
8035 end Replace_Type_Reference;
d97beb2f 8036
eb66e842 8037 -- Start of processing for Add_Predicates
d97beb2f 8038
eb66e842 8039 begin
8040 Ritem := First_Rep_Item (Typ);
8041 while Present (Ritem) loop
8042 if Nkind (Ritem) = N_Pragma
8043 and then Pragma_Name (Ritem) = Name_Predicate
8044 then
eb66e842 8045 -- Acquire arguments
d97beb2f 8046
eb66e842 8047 Arg1 := First (Pragma_Argument_Associations (Ritem));
8048 Arg2 := Next (Arg1);
d97beb2f 8049
eb66e842 8050 Arg1 := Get_Pragma_Arg (Arg1);
8051 Arg2 := Get_Pragma_Arg (Arg2);
d97beb2f 8052
eb66e842 8053 -- See if this predicate pragma is for the current type or for
8054 -- its full view. A predicate on a private completion is placed
8055 -- on the partial view beause this is the visible entity that
8056 -- is frozen.
639c3741 8057
eb66e842 8058 if Entity (Arg1) = Typ
8059 or else Full_View (Entity (Arg1)) = Typ
639c3741 8060 then
eb66e842 8061 -- We have a match, this entry is for our subtype
639c3741 8062
eb66e842 8063 -- We need to replace any occurrences of the name of the
8064 -- type with references to the object.
639c3741 8065
37c6552c 8066 Replace_Type_References (Arg2, Typ);
639c3741 8067
eb66e842 8068 -- If this predicate comes from an aspect, find the aspect
8069 -- specification, and replace the saved expression because
8070 -- we need the subtype references replaced for the calls to
8071 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8072 -- and Check_Aspect_At_End_Of_Declarations.
639c3741 8073
eb66e842 8074 if From_Aspect_Specification (Ritem) then
8075 declare
8076 Aitem : Node_Id;
639c3741 8077
eb66e842 8078 begin
8079 -- Loop to find corresponding aspect, note that this
8080 -- must be present given the pragma is marked delayed.
639c3741 8081
eb66e842 8082 Aitem := Next_Rep_Item (Ritem);
8083 loop
8084 if Nkind (Aitem) = N_Aspect_Specification
8085 and then Aspect_Rep_Item (Aitem) = Ritem
8086 then
8087 Set_Entity
8088 (Identifier (Aitem), New_Copy_Tree (Arg2));
8089 exit;
8090 end if;
639c3741 8091
eb66e842 8092 Aitem := Next_Rep_Item (Aitem);
8093 end loop;
8094 end;
8095 end if;
737e8460 8096
eb66e842 8097 -- Now we can add the expression
737e8460 8098
eb66e842 8099 if No (Expr) then
8100 Expr := Relocate_Node (Arg2);
d97beb2f 8101
eb66e842 8102 -- There already was a predicate, so add to it
d97beb2f 8103
eb66e842 8104 else
8105 Expr :=
8106 Make_And_Then (Loc,
8107 Left_Opnd => Relocate_Node (Expr),
8108 Right_Opnd => Relocate_Node (Arg2));
8109 end if;
8110 end if;
8111 end if;
d97beb2f 8112
eb66e842 8113 Next_Rep_Item (Ritem);
8114 end loop;
8115 end Add_Predicates;
d97beb2f 8116
eb66e842 8117 ----------------
8118 -- Process_RE --
8119 ----------------
d97beb2f 8120
eb66e842 8121 function Process_RE (N : Node_Id) return Traverse_Result is
d9f6a4ee 8122 begin
eb66e842 8123 if Nkind (N) = N_Raise_Expression then
8124 Set_Convert_To_Return_False (N);
8125 return Skip;
d9f6a4ee 8126 else
eb66e842 8127 return OK;
d9f6a4ee 8128 end if;
eb66e842 8129 end Process_RE;
d7c2851f 8130
d9f6a4ee 8131 -------------
eb66e842 8132 -- Test_RE --
d9f6a4ee 8133 -------------
d7c2851f 8134
eb66e842 8135 function Test_RE (N : Node_Id) return Traverse_Result is
d97beb2f 8136 begin
eb66e842 8137 if Nkind (N) = N_Raise_Expression then
8138 Raise_Expression_Present := True;
8139 return Abandon;
8140 else
8141 return OK;
8142 end if;
8143 end Test_RE;
d97beb2f 8144
eb66e842 8145 -- Start of processing for Build_Predicate_Functions
d97beb2f 8146
eb66e842 8147 begin
8148 -- Return if already built or if type does not have predicates
9dc88aea 8149
eb66e842 8150 if not Has_Predicates (Typ)
8151 or else Present (Predicate_Function (Typ))
8152 then
8153 return;
8154 end if;
d9f6a4ee 8155
eb66e842 8156 -- Prepare to construct predicate expression
d97beb2f 8157
eb66e842 8158 Expr := Empty;
d97beb2f 8159
eb66e842 8160 -- Add Predicates for the current type
d97beb2f 8161
eb66e842 8162 Add_Predicates;
d97beb2f 8163
eb66e842 8164 -- Add predicates for ancestor if present
d97beb2f 8165
eb66e842 8166 declare
8167 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
d9f6a4ee 8168 begin
eb66e842 8169 if Present (Atyp) then
8170 Add_Call (Atyp);
8171 end if;
8172 end;
9dc88aea 8173
eb66e842 8174 -- Case where predicates are present
9dc88aea 8175
eb66e842 8176 if Present (Expr) then
726fd56a 8177
eb66e842 8178 -- Test for raise expression present
726fd56a 8179
eb66e842 8180 Test_REs (Expr);
9dc88aea 8181
eb66e842 8182 -- If raise expression is present, capture a copy of Expr for use
8183 -- in building the predicateM function version later on. For this
8184 -- copy we replace references to Object_Entity by Object_Entity_M.
9dc88aea 8185
eb66e842 8186 if Raise_Expression_Present then
8187 declare
8188 Map : constant Elist_Id := New_Elmt_List;
8189 begin
8190 Append_Elmt (Object_Entity, Map);
8191 Append_Elmt (Object_Entity_M, Map);
8192 Expr_M := New_Copy_Tree (Expr, Map => Map);
8193 end;
8194 end if;
d97beb2f 8195
eb66e842 8196 -- Build the main predicate function
9dc88aea 8197
eb66e842 8198 declare
8199 SId : constant Entity_Id :=
8200 Make_Defining_Identifier (Loc,
8201 Chars => New_External_Name (Chars (Typ), "Predicate"));
8202 -- The entity for the the function spec
9dc88aea 8203
eb66e842 8204 SIdB : constant Entity_Id :=
8205 Make_Defining_Identifier (Loc,
8206 Chars => New_External_Name (Chars (Typ), "Predicate"));
8207 -- The entity for the function body
9dc88aea 8208
eb66e842 8209 Spec : Node_Id;
8210 FDecl : Node_Id;
8211 FBody : Node_Id;
9dc88aea 8212
eb66e842 8213 begin
8214 -- Build function declaration
d97beb2f 8215
eb66e842 8216 Set_Ekind (SId, E_Function);
8217 Set_Is_Internal (SId);
8218 Set_Is_Predicate_Function (SId);
8219 Set_Predicate_Function (Typ, SId);
d97beb2f 8220
eb66e842 8221 -- The predicate function is shared between views of a type
d97beb2f 8222
eb66e842 8223 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8224 Set_Predicate_Function (Full_View (Typ), SId);
d97beb2f 8225 end if;
d97beb2f 8226
eb66e842 8227 Spec :=
8228 Make_Function_Specification (Loc,
8229 Defining_Unit_Name => SId,
8230 Parameter_Specifications => New_List (
8231 Make_Parameter_Specification (Loc,
8232 Defining_Identifier => Object_Entity,
8233 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8234 Result_Definition =>
8235 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8236
eb66e842 8237 FDecl :=
8238 Make_Subprogram_Declaration (Loc,
8239 Specification => Spec);
d97beb2f 8240
eb66e842 8241 -- Build function body
d97beb2f 8242
eb66e842 8243 Spec :=
8244 Make_Function_Specification (Loc,
8245 Defining_Unit_Name => SIdB,
8246 Parameter_Specifications => New_List (
8247 Make_Parameter_Specification (Loc,
8248 Defining_Identifier =>
8249 Make_Defining_Identifier (Loc, Object_Name),
8250 Parameter_Type =>
8251 New_Occurrence_Of (Typ, Loc))),
8252 Result_Definition =>
8253 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8254
eb66e842 8255 FBody :=
8256 Make_Subprogram_Body (Loc,
8257 Specification => Spec,
8258 Declarations => Empty_List,
8259 Handled_Statement_Sequence =>
8260 Make_Handled_Sequence_Of_Statements (Loc,
8261 Statements => New_List (
8262 Make_Simple_Return_Statement (Loc,
8263 Expression => Expr))));
9dc88aea 8264
eb66e842 8265 -- Insert declaration before freeze node and body after
d97beb2f 8266
eb66e842 8267 Insert_Before_And_Analyze (N, FDecl);
8268 Insert_After_And_Analyze (N, FBody);
d9f6a4ee 8269 end;
d97beb2f 8270
eb66e842 8271 -- Test for raise expressions present and if so build M version
d97beb2f 8272
eb66e842 8273 if Raise_Expression_Present then
8274 declare
8275 SId : constant Entity_Id :=
8276 Make_Defining_Identifier (Loc,
8277 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8278 -- The entity for the the function spec
d97beb2f 8279
eb66e842 8280 SIdB : constant Entity_Id :=
8281 Make_Defining_Identifier (Loc,
8282 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8283 -- The entity for the function body
b9e61b2a 8284
eb66e842 8285 Spec : Node_Id;
8286 FDecl : Node_Id;
8287 FBody : Node_Id;
8288 BTemp : Entity_Id;
d97beb2f 8289
eb66e842 8290 begin
8291 -- Mark any raise expressions for special expansion
d97beb2f 8292
eb66e842 8293 Process_REs (Expr_M);
d97beb2f 8294
eb66e842 8295 -- Build function declaration
d97beb2f 8296
eb66e842 8297 Set_Ekind (SId, E_Function);
8298 Set_Is_Predicate_Function_M (SId);
8299 Set_Predicate_Function_M (Typ, SId);
d97beb2f 8300
eb66e842 8301 -- The predicate function is shared between views of a type
d97beb2f 8302
eb66e842 8303 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8304 Set_Predicate_Function_M (Full_View (Typ), SId);
8305 end if;
9dc88aea 8306
eb66e842 8307 Spec :=
8308 Make_Function_Specification (Loc,
8309 Defining_Unit_Name => SId,
8310 Parameter_Specifications => New_List (
8311 Make_Parameter_Specification (Loc,
8312 Defining_Identifier => Object_Entity_M,
8313 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8314 Result_Definition =>
8315 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8316
eb66e842 8317 FDecl :=
8318 Make_Subprogram_Declaration (Loc,
8319 Specification => Spec);
9dc88aea 8320
eb66e842 8321 -- Build function body
9dc88aea 8322
eb66e842 8323 Spec :=
8324 Make_Function_Specification (Loc,
8325 Defining_Unit_Name => SIdB,
8326 Parameter_Specifications => New_List (
8327 Make_Parameter_Specification (Loc,
8328 Defining_Identifier =>
8329 Make_Defining_Identifier (Loc, Object_Name),
8330 Parameter_Type =>
8331 New_Occurrence_Of (Typ, Loc))),
8332 Result_Definition =>
8333 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8334
eb66e842 8335 -- Build the body, we declare the boolean expression before
8336 -- doing the return, because we are not really confident of
8337 -- what happens if a return appears within a return.
9dc88aea 8338
eb66e842 8339 BTemp :=
8340 Make_Defining_Identifier (Loc,
8341 Chars => New_Internal_Name ('B'));
9dc88aea 8342
eb66e842 8343 FBody :=
8344 Make_Subprogram_Body (Loc,
8345 Specification => Spec,
9dc88aea 8346
eb66e842 8347 Declarations => New_List (
8348 Make_Object_Declaration (Loc,
8349 Defining_Identifier => BTemp,
8350 Constant_Present => True,
8351 Object_Definition =>
8352 New_Occurrence_Of (Standard_Boolean, Loc),
8353 Expression => Expr_M)),
d97beb2f 8354
eb66e842 8355 Handled_Statement_Sequence =>
8356 Make_Handled_Sequence_Of_Statements (Loc,
8357 Statements => New_List (
8358 Make_Simple_Return_Statement (Loc,
8359 Expression => New_Occurrence_Of (BTemp, Loc)))));
d97beb2f 8360
eb66e842 8361 -- Insert declaration before freeze node and body after
d97beb2f 8362
eb66e842 8363 Insert_Before_And_Analyze (N, FDecl);
8364 Insert_After_And_Analyze (N, FBody);
8365 end;
8366 end if;
9dc88aea 8367
3b23aaa0 8368 -- See if we have a static predicate. Note that the answer may be
8369 -- yes even if we have an explicit Dynamic_Predicate present.
9dc88aea 8370
3b23aaa0 8371 declare
94d896aa 8372 PS : Boolean;
3b23aaa0 8373 EN : Node_Id;
9dc88aea 8374
3b23aaa0 8375 begin
94d896aa 8376 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8377 PS := False;
8378 else
8379 PS := Is_Predicate_Static (Expr, Object_Name);
8380 end if;
8381
a360a0f7 8382 -- Case where we have a predicate-static aspect
9dc88aea 8383
3b23aaa0 8384 if PS then
9dc88aea 8385
3b23aaa0 8386 -- We don't set Has_Static_Predicate_Aspect, since we can have
8387 -- any of the three cases (Predicate, Dynamic_Predicate, or
8388 -- Static_Predicate) generating a predicate with an expression
a360a0f7 8389 -- that is predicate-static. We just indicate that we have a
3b23aaa0 8390 -- predicate that can be treated as static.
d7c2851f 8391
3b23aaa0 8392 Set_Has_Static_Predicate (Typ);
d7c2851f 8393
3b23aaa0 8394 -- For discrete subtype, build the static predicate list
9dc88aea 8395
3b23aaa0 8396 if Is_Discrete_Type (Typ) then
d0988351 8397 if not Is_Static_Subtype (Typ) then
8398
8399 -- This can only happen in the presence of previous
8400 -- semantic errors.
8401
8402 pragma Assert (Serious_Errors_Detected > 0);
8403 return;
8404 end if;
8405
3b23aaa0 8406 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8407
8408 -- If we don't get a static predicate list, it means that we
8409 -- have a case where this is not possible, most typically in
8410 -- the case where we inherit a dynamic predicate. We do not
8411 -- consider this an error, we just leave the predicate as
8412 -- dynamic. But if we do succeed in building the list, then
8413 -- we mark the predicate as static.
8414
5c6a5792 8415 if No (Static_Discrete_Predicate (Typ)) then
3b23aaa0 8416 Set_Has_Static_Predicate (Typ, False);
8417 end if;
94d896aa 8418
8419 -- For real or string subtype, save predicate expression
8420
8421 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8422 Set_Static_Real_Or_String_Predicate (Typ, Expr);
3b23aaa0 8423 end if;
8424
8425 -- Case of dynamic predicate (expression is not predicate-static)
9dc88aea 8426
eb66e842 8427 else
3b23aaa0 8428 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8429 -- is only set if we have an explicit Dynamic_Predicate aspect
8430 -- given. Here we may simply have a Predicate aspect where the
8431 -- expression happens not to be predicate-static.
8432
8433 -- Emit an error when the predicate is categorized as static
8434 -- but its expression is not predicate-static.
8435
8436 -- First a little fiddling to get a nice location for the
8437 -- message. If the expression is of the form (A and then B),
8438 -- then use the left operand for the Sloc. This avoids getting
a360a0f7 8439 -- confused by a call to a higher-level predicate with a less
3b23aaa0 8440 -- convenient source location.
8441
8442 EN := Expr;
8443 while Nkind (EN) = N_And_Then loop
8444 EN := Left_Opnd (EN);
8445 end loop;
8446
8447 -- Now post appropriate message
8448
8449 if Has_Static_Predicate_Aspect (Typ) then
94d896aa 8450 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
3b23aaa0 8451 Error_Msg_F
26279d91 8452 ("expression is not predicate-static (RM 3.2.4(16-22))",
3b23aaa0 8453 EN);
8454 else
94d896aa 8455 Error_Msg_F
8456 ("static predicate requires scalar or string type", EN);
3b23aaa0 8457 end if;
8458 end if;
eb66e842 8459 end if;
3b23aaa0 8460 end;
eb66e842 8461 end if;
8462 end Build_Predicate_Functions;
9dc88aea 8463
d9f6a4ee 8464 -----------------------------------------
8465 -- Check_Aspect_At_End_Of_Declarations --
8466 -----------------------------------------
9dc88aea 8467
d9f6a4ee 8468 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8469 Ent : constant Entity_Id := Entity (ASN);
8470 Ident : constant Node_Id := Identifier (ASN);
8471 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
d7c2851f 8472
d9f6a4ee 8473 End_Decl_Expr : constant Node_Id := Entity (Ident);
8474 -- Expression to be analyzed at end of declarations
d7c2851f 8475
d9f6a4ee 8476 Freeze_Expr : constant Node_Id := Expression (ASN);
8477 -- Expression from call to Check_Aspect_At_Freeze_Point
d7c2851f 8478
d9f6a4ee 8479 T : constant Entity_Id := Etype (Freeze_Expr);
8480 -- Type required for preanalyze call
d7c2851f 8481
d9f6a4ee 8482 Err : Boolean;
8483 -- Set False if error
9dc88aea 8484
d9f6a4ee 8485 -- On entry to this procedure, Entity (Ident) contains a copy of the
8486 -- original expression from the aspect, saved for this purpose, and
8487 -- but Expression (Ident) is a preanalyzed copy of the expression,
8488 -- preanalyzed just after the freeze point.
9dc88aea 8489
d9f6a4ee 8490 procedure Check_Overloaded_Name;
8491 -- For aspects whose expression is simply a name, this routine checks if
8492 -- the name is overloaded or not. If so, it verifies there is an
8493 -- interpretation that matches the entity obtained at the freeze point,
8494 -- otherwise the compiler complains.
9dc88aea 8495
d9f6a4ee 8496 ---------------------------
8497 -- Check_Overloaded_Name --
8498 ---------------------------
8499
8500 procedure Check_Overloaded_Name is
d97beb2f 8501 begin
d9f6a4ee 8502 if not Is_Overloaded (End_Decl_Expr) then
5ac76cee 8503 Err := not Is_Entity_Name (End_Decl_Expr)
8504 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
d9f6a4ee 8505
d97beb2f 8506 else
d9f6a4ee 8507 Err := True;
9dc88aea 8508
d9f6a4ee 8509 declare
8510 Index : Interp_Index;
8511 It : Interp;
9dc88aea 8512
d9f6a4ee 8513 begin
8514 Get_First_Interp (End_Decl_Expr, Index, It);
8515 while Present (It.Typ) loop
8516 if It.Nam = Entity (Freeze_Expr) then
8517 Err := False;
8518 exit;
8519 end if;
8520
8521 Get_Next_Interp (Index, It);
8522 end loop;
8523 end;
9dc88aea 8524 end if;
d9f6a4ee 8525 end Check_Overloaded_Name;
9dc88aea 8526
d9f6a4ee 8527 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9dc88aea 8528
d9f6a4ee 8529 begin
8530 -- Case of aspects Dimension, Dimension_System and Synchronization
9dc88aea 8531
d9f6a4ee 8532 if A_Id = Aspect_Synchronization then
8533 return;
d97beb2f 8534
d9f6a4ee 8535 -- Case of stream attributes, just have to compare entities. However,
8536 -- the expression is just a name (possibly overloaded), and there may
8537 -- be stream operations declared for unrelated types, so we just need
8538 -- to verify that one of these interpretations is the one available at
8539 -- at the freeze point.
9dc88aea 8540
d9f6a4ee 8541 elsif A_Id = Aspect_Input or else
f02a9a9a 8542 A_Id = Aspect_Output or else
8543 A_Id = Aspect_Read or else
8544 A_Id = Aspect_Write
d9f6a4ee 8545 then
8546 Analyze (End_Decl_Expr);
8547 Check_Overloaded_Name;
9dc88aea 8548
d9f6a4ee 8549 elsif A_Id = Aspect_Variable_Indexing or else
8550 A_Id = Aspect_Constant_Indexing or else
8551 A_Id = Aspect_Default_Iterator or else
8552 A_Id = Aspect_Iterator_Element
8553 then
8554 -- Make type unfrozen before analysis, to prevent spurious errors
8555 -- about late attributes.
9dc88aea 8556
d9f6a4ee 8557 Set_Is_Frozen (Ent, False);
8558 Analyze (End_Decl_Expr);
8559 Set_Is_Frozen (Ent, True);
9dc88aea 8560
d9f6a4ee 8561 -- If the end of declarations comes before any other freeze
8562 -- point, the Freeze_Expr is not analyzed: no check needed.
9dc88aea 8563
d9f6a4ee 8564 if Analyzed (Freeze_Expr) and then not In_Instance then
8565 Check_Overloaded_Name;
8566 else
8567 Err := False;
8568 end if;
55e8372b 8569
d9f6a4ee 8570 -- All other cases
55e8372b 8571
d9f6a4ee 8572 else
c1efebf9 8573 -- Indicate that the expression comes from an aspect specification,
8574 -- which is used in subsequent analysis even if expansion is off.
8575
8576 Set_Parent (End_Decl_Expr, ASN);
8577
d9f6a4ee 8578 -- In a generic context the aspect expressions have not been
8579 -- preanalyzed, so do it now. There are no conformance checks
8580 -- to perform in this case.
55e8372b 8581
d9f6a4ee 8582 if No (T) then
8583 Check_Aspect_At_Freeze_Point (ASN);
8584 return;
55e8372b 8585
d9f6a4ee 8586 -- The default values attributes may be defined in the private part,
8587 -- and the analysis of the expression may take place when only the
8588 -- partial view is visible. The expression must be scalar, so use
8589 -- the full view to resolve.
55e8372b 8590
d9f6a4ee 8591 elsif (A_Id = Aspect_Default_Value
8592 or else
8593 A_Id = Aspect_Default_Component_Value)
8594 and then Is_Private_Type (T)
8595 then
8596 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
c1efebf9 8597
d9f6a4ee 8598 else
8599 Preanalyze_Spec_Expression (End_Decl_Expr, T);
8600 end if;
d97beb2f 8601
d9f6a4ee 8602 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
8603 end if;
55e8372b 8604
c1efebf9 8605 -- Output error message if error. Force error on aspect specification
8606 -- even if there is an error on the expression itself.
55e8372b 8607
d9f6a4ee 8608 if Err then
8609 Error_Msg_NE
c1efebf9 8610 ("!visibility of aspect for& changes after freeze point",
d9f6a4ee 8611 ASN, Ent);
8612 Error_Msg_NE
8613 ("info: & is frozen here, aspects evaluated at this point??",
8614 Freeze_Node (Ent), Ent);
8615 end if;
8616 end Check_Aspect_At_End_Of_Declarations;
55e8372b 8617
d9f6a4ee 8618 ----------------------------------
8619 -- Check_Aspect_At_Freeze_Point --
8620 ----------------------------------
9dc88aea 8621
d9f6a4ee 8622 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
8623 Ident : constant Node_Id := Identifier (ASN);
8624 -- Identifier (use Entity field to save expression)
9dc88aea 8625
d9f6a4ee 8626 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9dc88aea 8627
d9f6a4ee 8628 T : Entity_Id := Empty;
8629 -- Type required for preanalyze call
9dc88aea 8630
d9f6a4ee 8631 begin
8632 -- On entry to this procedure, Entity (Ident) contains a copy of the
8633 -- original expression from the aspect, saved for this purpose.
9dc88aea 8634
d9f6a4ee 8635 -- On exit from this procedure Entity (Ident) is unchanged, still
8636 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8637 -- of the expression, preanalyzed just after the freeze point.
d97beb2f 8638
d9f6a4ee 8639 -- Make a copy of the expression to be preanalyzed
d97beb2f 8640
d9f6a4ee 8641 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
d97beb2f 8642
d9f6a4ee 8643 -- Find type for preanalyze call
d97beb2f 8644
d9f6a4ee 8645 case A_Id is
9dc88aea 8646
d9f6a4ee 8647 -- No_Aspect should be impossible
d97beb2f 8648
d9f6a4ee 8649 when No_Aspect =>
8650 raise Program_Error;
8651
8652 -- Aspects taking an optional boolean argument
d97beb2f 8653
d9f6a4ee 8654 when Boolean_Aspects |
8655 Library_Unit_Aspects =>
9dc88aea 8656
d9f6a4ee 8657 T := Standard_Boolean;
d7c2851f 8658
d9f6a4ee 8659 -- Aspects corresponding to attribute definition clauses
9dc88aea 8660
d9f6a4ee 8661 when Aspect_Address =>
8662 T := RTE (RE_Address);
9dc88aea 8663
d9f6a4ee 8664 when Aspect_Attach_Handler =>
8665 T := RTE (RE_Interrupt_ID);
d7c2851f 8666
d9f6a4ee 8667 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
8668 T := RTE (RE_Bit_Order);
d7c2851f 8669
d9f6a4ee 8670 when Aspect_Convention =>
8671 return;
d7c2851f 8672
d9f6a4ee 8673 when Aspect_CPU =>
8674 T := RTE (RE_CPU_Range);
d7c2851f 8675
d9f6a4ee 8676 -- Default_Component_Value is resolved with the component type
d7c2851f 8677
d9f6a4ee 8678 when Aspect_Default_Component_Value =>
8679 T := Component_Type (Entity (ASN));
d7c2851f 8680
d9f6a4ee 8681 -- Default_Value is resolved with the type entity in question
d7c2851f 8682
d9f6a4ee 8683 when Aspect_Default_Value =>
8684 T := Entity (ASN);
9dc88aea 8685
d9f6a4ee 8686 -- Depends is a delayed aspect because it mentiones names first
8687 -- introduced by aspect Global which is already delayed. There is
8688 -- no action to be taken with respect to the aspect itself as the
8689 -- analysis is done by the corresponding pragma.
9dc88aea 8690
d9f6a4ee 8691 when Aspect_Depends =>
8692 return;
9dc88aea 8693
d9f6a4ee 8694 when Aspect_Dispatching_Domain =>
8695 T := RTE (RE_Dispatching_Domain);
9dc88aea 8696
d9f6a4ee 8697 when Aspect_External_Tag =>
8698 T := Standard_String;
9dc88aea 8699
d9f6a4ee 8700 when Aspect_External_Name =>
8701 T := Standard_String;
9dc88aea 8702
d9f6a4ee 8703 -- Global is a delayed aspect because it may reference names that
8704 -- have not been declared yet. There is no action to be taken with
8705 -- respect to the aspect itself as the reference checking is done
8706 -- on the corresponding pragma.
9dc88aea 8707
d9f6a4ee 8708 when Aspect_Global =>
8709 return;
9dc88aea 8710
d9f6a4ee 8711 when Aspect_Link_Name =>
8712 T := Standard_String;
9dc88aea 8713
d9f6a4ee 8714 when Aspect_Priority | Aspect_Interrupt_Priority =>
8715 T := Standard_Integer;
d97beb2f 8716
d9f6a4ee 8717 when Aspect_Relative_Deadline =>
8718 T := RTE (RE_Time_Span);
d97beb2f 8719
d9f6a4ee 8720 when Aspect_Small =>
8721 T := Universal_Real;
490beba6 8722
d9f6a4ee 8723 -- For a simple storage pool, we have to retrieve the type of the
8724 -- pool object associated with the aspect's corresponding attribute
8725 -- definition clause.
490beba6 8726
d9f6a4ee 8727 when Aspect_Simple_Storage_Pool =>
8728 T := Etype (Expression (Aspect_Rep_Item (ASN)));
d97beb2f 8729
d9f6a4ee 8730 when Aspect_Storage_Pool =>
8731 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
d97beb2f 8732
d9f6a4ee 8733 when Aspect_Alignment |
8734 Aspect_Component_Size |
8735 Aspect_Machine_Radix |
8736 Aspect_Object_Size |
8737 Aspect_Size |
8738 Aspect_Storage_Size |
8739 Aspect_Stream_Size |
8740 Aspect_Value_Size =>
8741 T := Any_Integer;
9dc88aea 8742
04ae062f 8743 when Aspect_Linker_Section =>
8744 T := Standard_String;
8745
d9f6a4ee 8746 when Aspect_Synchronization =>
8747 return;
7d20685d 8748
d9f6a4ee 8749 -- Special case, the expression of these aspects is just an entity
8750 -- that does not need any resolution, so just analyze.
7d20685d 8751
d9f6a4ee 8752 when Aspect_Input |
8753 Aspect_Output |
8754 Aspect_Read |
8755 Aspect_Suppress |
8756 Aspect_Unsuppress |
8757 Aspect_Warnings |
8758 Aspect_Write =>
8759 Analyze (Expression (ASN));
8760 return;
7d20685d 8761
d9f6a4ee 8762 -- Same for Iterator aspects, where the expression is a function
8763 -- name. Legality rules are checked separately.
89f1e35c 8764
d9f6a4ee 8765 when Aspect_Constant_Indexing |
8766 Aspect_Default_Iterator |
8767 Aspect_Iterator_Element |
8768 Aspect_Variable_Indexing =>
8769 Analyze (Expression (ASN));
8770 return;
7d20685d 8771
b3f8228a 8772 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8773
8774 when Aspect_Iterable =>
3061ffde 8775 T := Entity (ASN);
8776
b3f8228a 8777 declare
a9f5fea7 8778 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
3061ffde 8779 Assoc : Node_Id;
8780 Expr : Node_Id;
a9f5fea7 8781
b3f8228a 8782 begin
a9f5fea7 8783 if Cursor = Any_Type then
8784 return;
8785 end if;
8786
b3f8228a 8787 Assoc := First (Component_Associations (Expression (ASN)));
8788 while Present (Assoc) loop
3061ffde 8789 Expr := Expression (Assoc);
8790 Analyze (Expr);
a9f5fea7 8791
8792 if not Error_Posted (Expr) then
8793 Resolve_Iterable_Operation
8794 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
8795 end if;
8796
b3f8228a 8797 Next (Assoc);
8798 end loop;
8799 end;
3061ffde 8800
b3f8228a 8801 return;
8802
d9f6a4ee 8803 -- Invariant/Predicate take boolean expressions
7d20685d 8804
d9f6a4ee 8805 when Aspect_Dynamic_Predicate |
8806 Aspect_Invariant |
8807 Aspect_Predicate |
8808 Aspect_Static_Predicate |
8809 Aspect_Type_Invariant =>
8810 T := Standard_Boolean;
7d20685d 8811
d9f6a4ee 8812 -- Here is the list of aspects that don't require delay analysis
89f1e35c 8813
ec6f6da5 8814 when Aspect_Abstract_State |
8815 Aspect_Annotate |
8816 Aspect_Contract_Cases |
8817 Aspect_Default_Initial_Condition |
8818 Aspect_Dimension |
8819 Aspect_Dimension_System |
8820 Aspect_Implicit_Dereference |
8821 Aspect_Initial_Condition |
8822 Aspect_Initializes |
1fd4313f 8823 Aspect_Obsolescent |
ec6f6da5 8824 Aspect_Part_Of |
8825 Aspect_Post |
8826 Aspect_Postcondition |
8827 Aspect_Pre |
8828 Aspect_Precondition |
8829 Aspect_Refined_Depends |
8830 Aspect_Refined_Global |
8831 Aspect_Refined_Post |
8832 Aspect_Refined_State |
8833 Aspect_SPARK_Mode |
8834 Aspect_Test_Case =>
d9f6a4ee 8835 raise Program_Error;
2b184b2f 8836
d9f6a4ee 8837 end case;
2b184b2f 8838
d9f6a4ee 8839 -- Do the preanalyze call
2b184b2f 8840
d9f6a4ee 8841 Preanalyze_Spec_Expression (Expression (ASN), T);
8842 end Check_Aspect_At_Freeze_Point;
2b184b2f 8843
d9f6a4ee 8844 -----------------------------------
8845 -- Check_Constant_Address_Clause --
8846 -----------------------------------
2b184b2f 8847
d9f6a4ee 8848 procedure Check_Constant_Address_Clause
8849 (Expr : Node_Id;
8850 U_Ent : Entity_Id)
8851 is
8852 procedure Check_At_Constant_Address (Nod : Node_Id);
8853 -- Checks that the given node N represents a name whose 'Address is
8854 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
8855 -- address value is the same at the point of declaration of U_Ent and at
8856 -- the time of elaboration of the address clause.
84ed7523 8857
d9f6a4ee 8858 procedure Check_Expr_Constants (Nod : Node_Id);
8859 -- Checks that Nod meets the requirements for a constant address clause
8860 -- in the sense of the enclosing procedure.
84ed7523 8861
d9f6a4ee 8862 procedure Check_List_Constants (Lst : List_Id);
8863 -- Check that all elements of list Lst meet the requirements for a
8864 -- constant address clause in the sense of the enclosing procedure.
84ed7523 8865
d9f6a4ee 8866 -------------------------------
8867 -- Check_At_Constant_Address --
8868 -------------------------------
84ed7523 8869
d9f6a4ee 8870 procedure Check_At_Constant_Address (Nod : Node_Id) is
8871 begin
8872 if Is_Entity_Name (Nod) then
8873 if Present (Address_Clause (Entity ((Nod)))) then
8874 Error_Msg_NE
8875 ("invalid address clause for initialized object &!",
8876 Nod, U_Ent);
8877 Error_Msg_NE
8878 ("address for& cannot" &
8879 " depend on another address clause! (RM 13.1(22))!",
8880 Nod, U_Ent);
84ed7523 8881
d9f6a4ee 8882 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
8883 and then Sloc (U_Ent) < Sloc (Entity (Nod))
8884 then
8885 Error_Msg_NE
8886 ("invalid address clause for initialized object &!",
8887 Nod, U_Ent);
8888 Error_Msg_Node_2 := U_Ent;
8889 Error_Msg_NE
8890 ("\& must be defined before & (RM 13.1(22))!",
8891 Nod, Entity (Nod));
8892 end if;
7d20685d 8893
d9f6a4ee 8894 elsif Nkind (Nod) = N_Selected_Component then
8895 declare
8896 T : constant Entity_Id := Etype (Prefix (Nod));
59f3e675 8897
d9f6a4ee 8898 begin
8899 if (Is_Record_Type (T)
8900 and then Has_Discriminants (T))
8901 or else
8902 (Is_Access_Type (T)
f02a9a9a 8903 and then Is_Record_Type (Designated_Type (T))
8904 and then Has_Discriminants (Designated_Type (T)))
d9f6a4ee 8905 then
8906 Error_Msg_NE
8907 ("invalid address clause for initialized object &!",
8908 Nod, U_Ent);
8909 Error_Msg_N
8910 ("\address cannot depend on component" &
8911 " of discriminated record (RM 13.1(22))!",
8912 Nod);
8913 else
8914 Check_At_Constant_Address (Prefix (Nod));
8915 end if;
8916 end;
89cc7147 8917
d9f6a4ee 8918 elsif Nkind (Nod) = N_Indexed_Component then
8919 Check_At_Constant_Address (Prefix (Nod));
8920 Check_List_Constants (Expressions (Nod));
89cc7147 8921
84ed7523 8922 else
d9f6a4ee 8923 Check_Expr_Constants (Nod);
84ed7523 8924 end if;
d9f6a4ee 8925 end Check_At_Constant_Address;
81b424ac 8926
d9f6a4ee 8927 --------------------------
8928 -- Check_Expr_Constants --
8929 --------------------------
7b9b2f05 8930
d9f6a4ee 8931 procedure Check_Expr_Constants (Nod : Node_Id) is
8932 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
8933 Ent : Entity_Id := Empty;
7b9b2f05 8934
d9f6a4ee 8935 begin
8936 if Nkind (Nod) in N_Has_Etype
8937 and then Etype (Nod) = Any_Type
7b9b2f05 8938 then
d9f6a4ee 8939 return;
309c3053 8940 end if;
8941
d9f6a4ee 8942 case Nkind (Nod) is
8943 when N_Empty | N_Error =>
8944 return;
7d20685d 8945
d9f6a4ee 8946 when N_Identifier | N_Expanded_Name =>
8947 Ent := Entity (Nod);
7d20685d 8948
d9f6a4ee 8949 -- We need to look at the original node if it is different
8950 -- from the node, since we may have rewritten things and
8951 -- substituted an identifier representing the rewrite.
7d20685d 8952
d9f6a4ee 8953 if Original_Node (Nod) /= Nod then
8954 Check_Expr_Constants (Original_Node (Nod));
7d20685d 8955
d9f6a4ee 8956 -- If the node is an object declaration without initial
8957 -- value, some code has been expanded, and the expression
8958 -- is not constant, even if the constituents might be
8959 -- acceptable, as in A'Address + offset.
7d20685d 8960
d9f6a4ee 8961 if Ekind (Ent) = E_Variable
8962 and then
8963 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
8964 and then
8965 No (Expression (Declaration_Node (Ent)))
8966 then
8967 Error_Msg_NE
8968 ("invalid address clause for initialized object &!",
8969 Nod, U_Ent);
89f1e35c 8970
d9f6a4ee 8971 -- If entity is constant, it may be the result of expanding
8972 -- a check. We must verify that its declaration appears
8973 -- before the object in question, else we also reject the
8974 -- address clause.
7d20685d 8975
d9f6a4ee 8976 elsif Ekind (Ent) = E_Constant
8977 and then In_Same_Source_Unit (Ent, U_Ent)
8978 and then Sloc (Ent) > Loc_U_Ent
8979 then
8980 Error_Msg_NE
8981 ("invalid address clause for initialized object &!",
8982 Nod, U_Ent);
8983 end if;
7d20685d 8984
d9f6a4ee 8985 return;
8986 end if;
7d20685d 8987
d9f6a4ee 8988 -- Otherwise look at the identifier and see if it is OK
7d20685d 8989
d9f6a4ee 8990 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
8991 or else Is_Type (Ent)
8992 then
8993 return;
7d20685d 8994
f02a9a9a 8995 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
8996
d9f6a4ee 8997 -- This is the case where we must have Ent defined before
8998 -- U_Ent. Clearly if they are in different units this
8999 -- requirement is met since the unit containing Ent is
9000 -- already processed.
7d20685d 9001
d9f6a4ee 9002 if not In_Same_Source_Unit (Ent, U_Ent) then
9003 return;
7d20685d 9004
d9f6a4ee 9005 -- Otherwise location of Ent must be before the location
9006 -- of U_Ent, that's what prior defined means.
7d20685d 9007
d9f6a4ee 9008 elsif Sloc (Ent) < Loc_U_Ent then
9009 return;
6c545057 9010
d9f6a4ee 9011 else
9012 Error_Msg_NE
9013 ("invalid address clause for initialized object &!",
9014 Nod, U_Ent);
9015 Error_Msg_Node_2 := U_Ent;
9016 Error_Msg_NE
9017 ("\& must be defined before & (RM 13.1(22))!",
9018 Nod, Ent);
9019 end if;
37c6e44c 9020
d9f6a4ee 9021 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9022 Check_Expr_Constants (Original_Node (Nod));
6c545057 9023
d9f6a4ee 9024 else
9025 Error_Msg_NE
9026 ("invalid address clause for initialized object &!",
9027 Nod, U_Ent);
3cdbaa5a 9028
d9f6a4ee 9029 if Comes_From_Source (Ent) then
9030 Error_Msg_NE
9031 ("\reference to variable& not allowed"
9032 & " (RM 13.1(22))!", Nod, Ent);
9033 else
9034 Error_Msg_N
9035 ("non-static expression not allowed"
9036 & " (RM 13.1(22))!", Nod);
9037 end if;
9038 end if;
3cdbaa5a 9039
d9f6a4ee 9040 when N_Integer_Literal =>
7f694ca2 9041
d9f6a4ee 9042 -- If this is a rewritten unchecked conversion, in a system
9043 -- where Address is an integer type, always use the base type
9044 -- for a literal value. This is user-friendly and prevents
9045 -- order-of-elaboration issues with instances of unchecked
9046 -- conversion.
3cdbaa5a 9047
d9f6a4ee 9048 if Nkind (Original_Node (Nod)) = N_Function_Call then
9049 Set_Etype (Nod, Base_Type (Etype (Nod)));
9050 end if;
e1cedbae 9051
d9f6a4ee 9052 when N_Real_Literal |
9053 N_String_Literal |
9054 N_Character_Literal =>
9055 return;
7d20685d 9056
d9f6a4ee 9057 when N_Range =>
9058 Check_Expr_Constants (Low_Bound (Nod));
9059 Check_Expr_Constants (High_Bound (Nod));
231eb581 9060
d9f6a4ee 9061 when N_Explicit_Dereference =>
9062 Check_Expr_Constants (Prefix (Nod));
231eb581 9063
d9f6a4ee 9064 when N_Indexed_Component =>
9065 Check_Expr_Constants (Prefix (Nod));
9066 Check_List_Constants (Expressions (Nod));
7d20685d 9067
d9f6a4ee 9068 when N_Slice =>
9069 Check_Expr_Constants (Prefix (Nod));
9070 Check_Expr_Constants (Discrete_Range (Nod));
cb4c311d 9071
d9f6a4ee 9072 when N_Selected_Component =>
9073 Check_Expr_Constants (Prefix (Nod));
6144c105 9074
d9f6a4ee 9075 when N_Attribute_Reference =>
9076 if Nam_In (Attribute_Name (Nod), Name_Address,
9077 Name_Access,
9078 Name_Unchecked_Access,
9079 Name_Unrestricted_Access)
9080 then
9081 Check_At_Constant_Address (Prefix (Nod));
6144c105 9082
d9f6a4ee 9083 else
9084 Check_Expr_Constants (Prefix (Nod));
9085 Check_List_Constants (Expressions (Nod));
9086 end if;
a7a4a7c2 9087
d9f6a4ee 9088 when N_Aggregate =>
9089 Check_List_Constants (Component_Associations (Nod));
9090 Check_List_Constants (Expressions (Nod));
7d20685d 9091
d9f6a4ee 9092 when N_Component_Association =>
9093 Check_Expr_Constants (Expression (Nod));
e1cedbae 9094
d9f6a4ee 9095 when N_Extension_Aggregate =>
9096 Check_Expr_Constants (Ancestor_Part (Nod));
9097 Check_List_Constants (Component_Associations (Nod));
9098 Check_List_Constants (Expressions (Nod));
3cdbaa5a 9099
d9f6a4ee 9100 when N_Null =>
9101 return;
3cdbaa5a 9102
d9f6a4ee 9103 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9104 Check_Expr_Constants (Left_Opnd (Nod));
9105 Check_Expr_Constants (Right_Opnd (Nod));
e1cedbae 9106
d9f6a4ee 9107 when N_Unary_Op =>
9108 Check_Expr_Constants (Right_Opnd (Nod));
7f694ca2 9109
d9f6a4ee 9110 when N_Type_Conversion |
9111 N_Qualified_Expression |
9112 N_Allocator |
9113 N_Unchecked_Type_Conversion =>
9114 Check_Expr_Constants (Expression (Nod));
47a46747 9115
d9f6a4ee 9116 when N_Function_Call =>
9117 if not Is_Pure (Entity (Name (Nod))) then
9118 Error_Msg_NE
9119 ("invalid address clause for initialized object &!",
9120 Nod, U_Ent);
7f694ca2 9121
d9f6a4ee 9122 Error_Msg_NE
9123 ("\function & is not pure (RM 13.1(22))!",
9124 Nod, Entity (Name (Nod)));
b55f7641 9125
d9f6a4ee 9126 else
9127 Check_List_Constants (Parameter_Associations (Nod));
9128 end if;
b55f7641 9129
d9f6a4ee 9130 when N_Parameter_Association =>
9131 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7d20685d 9132
d9f6a4ee 9133 when others =>
9134 Error_Msg_NE
9135 ("invalid address clause for initialized object &!",
9136 Nod, U_Ent);
9137 Error_Msg_NE
9138 ("\must be constant defined before& (RM 13.1(22))!",
9139 Nod, U_Ent);
9140 end case;
9141 end Check_Expr_Constants;
7d20685d 9142
d9f6a4ee 9143 --------------------------
9144 -- Check_List_Constants --
9145 --------------------------
89f1e35c 9146
d9f6a4ee 9147 procedure Check_List_Constants (Lst : List_Id) is
9148 Nod1 : Node_Id;
7d20685d 9149
d9f6a4ee 9150 begin
9151 if Present (Lst) then
9152 Nod1 := First (Lst);
9153 while Present (Nod1) loop
9154 Check_Expr_Constants (Nod1);
9155 Next (Nod1);
9156 end loop;
9157 end if;
9158 end Check_List_Constants;
81b424ac 9159
d9f6a4ee 9160 -- Start of processing for Check_Constant_Address_Clause
81b424ac 9161
d9f6a4ee 9162 begin
9163 -- If rep_clauses are to be ignored, no need for legality checks. In
9164 -- particular, no need to pester user about rep clauses that violate
9165 -- the rule on constant addresses, given that these clauses will be
9166 -- removed by Freeze before they reach the back end.
7d20685d 9167
d9f6a4ee 9168 if not Ignore_Rep_Clauses then
9169 Check_Expr_Constants (Expr);
9170 end if;
9171 end Check_Constant_Address_Clause;
7d20685d 9172
6653b695 9173 ---------------------------
9174 -- Check_Pool_Size_Clash --
9175 ---------------------------
9176
9177 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9178 Post : Node_Id;
9179
9180 begin
9181 -- We need to find out which one came first. Note that in the case of
9182 -- aspects mixed with pragmas there are cases where the processing order
9183 -- is reversed, which is why we do the check here.
9184
9185 if Sloc (SP) < Sloc (SS) then
9186 Error_Msg_Sloc := Sloc (SP);
9187 Post := SS;
9188 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9189
9190 else
9191 Error_Msg_Sloc := Sloc (SS);
9192 Post := SP;
9193 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9194 end if;
9195
9196 Error_Msg_N
9197 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9198 end Check_Pool_Size_Clash;
9199
d9f6a4ee 9200 ----------------------------------------
9201 -- Check_Record_Representation_Clause --
9202 ----------------------------------------
85696508 9203
d9f6a4ee 9204 procedure Check_Record_Representation_Clause (N : Node_Id) is
9205 Loc : constant Source_Ptr := Sloc (N);
9206 Ident : constant Node_Id := Identifier (N);
9207 Rectype : Entity_Id;
9208 Fent : Entity_Id;
9209 CC : Node_Id;
9210 Fbit : Uint;
9211 Lbit : Uint;
9212 Hbit : Uint := Uint_0;
9213 Comp : Entity_Id;
9214 Pcomp : Entity_Id;
89f1e35c 9215
d9f6a4ee 9216 Max_Bit_So_Far : Uint;
9217 -- Records the maximum bit position so far. If all field positions
9218 -- are monotonically increasing, then we can skip the circuit for
9219 -- checking for overlap, since no overlap is possible.
85696508 9220
d9f6a4ee 9221 Tagged_Parent : Entity_Id := Empty;
9222 -- This is set in the case of a derived tagged type for which we have
9223 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9224 -- positioned by record representation clauses). In this case we must
9225 -- check for overlap between components of this tagged type, and the
9226 -- components of its parent. Tagged_Parent will point to this parent
9227 -- type. For all other cases Tagged_Parent is left set to Empty.
7d20685d 9228
d9f6a4ee 9229 Parent_Last_Bit : Uint;
9230 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9231 -- last bit position for any field in the parent type. We only need to
9232 -- check overlap for fields starting below this point.
7d20685d 9233
d9f6a4ee 9234 Overlap_Check_Required : Boolean;
9235 -- Used to keep track of whether or not an overlap check is required
7d20685d 9236
d9f6a4ee 9237 Overlap_Detected : Boolean := False;
9238 -- Set True if an overlap is detected
d6f39728 9239
d9f6a4ee 9240 Ccount : Natural := 0;
9241 -- Number of component clauses in record rep clause
d6f39728 9242
d9f6a4ee 9243 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9244 -- Given two entities for record components or discriminants, checks
9245 -- if they have overlapping component clauses and issues errors if so.
d6f39728 9246
d9f6a4ee 9247 procedure Find_Component;
9248 -- Finds component entity corresponding to current component clause (in
9249 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9250 -- start/stop bits for the field. If there is no matching component or
9251 -- if the matching component does not have a component clause, then
9252 -- that's an error and Comp is set to Empty, but no error message is
9253 -- issued, since the message was already given. Comp is also set to
9254 -- Empty if the current "component clause" is in fact a pragma.
d6f39728 9255
d9f6a4ee 9256 -----------------------------
9257 -- Check_Component_Overlap --
9258 -----------------------------
9259
9260 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9261 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9262 CC2 : constant Node_Id := Component_Clause (C2_Ent);
d6f39728 9263
d6f39728 9264 begin
d9f6a4ee 9265 if Present (CC1) and then Present (CC2) then
d6f39728 9266
d9f6a4ee 9267 -- Exclude odd case where we have two tag components in the same
9268 -- record, both at location zero. This seems a bit strange, but
9269 -- it seems to happen in some circumstances, perhaps on an error.
9270
9271 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9272 return;
d6f39728 9273 end if;
9274
d9f6a4ee 9275 -- Here we check if the two fields overlap
9276
d6f39728 9277 declare
d9f6a4ee 9278 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9279 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9280 E1 : constant Uint := S1 + Esize (C1_Ent);
9281 E2 : constant Uint := S2 + Esize (C2_Ent);
d6f39728 9282
9283 begin
d9f6a4ee 9284 if E2 <= S1 or else E1 <= S2 then
9285 null;
d6f39728 9286 else
d9f6a4ee 9287 Error_Msg_Node_2 := Component_Name (CC2);
9288 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9289 Error_Msg_Node_1 := Component_Name (CC1);
9290 Error_Msg_N
9291 ("component& overlaps & #", Component_Name (CC1));
9292 Overlap_Detected := True;
d6f39728 9293 end if;
9294 end;
d6f39728 9295 end if;
d9f6a4ee 9296 end Check_Component_Overlap;
d6f39728 9297
d9f6a4ee 9298 --------------------
9299 -- Find_Component --
9300 --------------------
9dfe12ae 9301
d9f6a4ee 9302 procedure Find_Component is
9dfe12ae 9303
d9f6a4ee 9304 procedure Search_Component (R : Entity_Id);
9305 -- Search components of R for a match. If found, Comp is set
9dfe12ae 9306
d9f6a4ee 9307 ----------------------
9308 -- Search_Component --
9309 ----------------------
e7b2d6bc 9310
d9f6a4ee 9311 procedure Search_Component (R : Entity_Id) is
9312 begin
9313 Comp := First_Component_Or_Discriminant (R);
9314 while Present (Comp) loop
e7b2d6bc 9315
d9f6a4ee 9316 -- Ignore error of attribute name for component name (we
9317 -- already gave an error message for this, so no need to
9318 -- complain here)
e7b2d6bc 9319
d9f6a4ee 9320 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9321 null;
9322 else
9323 exit when Chars (Comp) = Chars (Component_Name (CC));
9dfe12ae 9324 end if;
9325
d9f6a4ee 9326 Next_Component_Or_Discriminant (Comp);
9327 end loop;
9328 end Search_Component;
d6f39728 9329
d9f6a4ee 9330 -- Start of processing for Find_Component
d6f39728 9331
d9f6a4ee 9332 begin
9333 -- Return with Comp set to Empty if we have a pragma
d6f39728 9334
d9f6a4ee 9335 if Nkind (CC) = N_Pragma then
9336 Comp := Empty;
9337 return;
9338 end if;
d6f39728 9339
d9f6a4ee 9340 -- Search current record for matching component
d6f39728 9341
d9f6a4ee 9342 Search_Component (Rectype);
9dfe12ae 9343
d9f6a4ee 9344 -- If not found, maybe component of base type discriminant that is
9345 -- absent from statically constrained first subtype.
e7b2d6bc 9346
d9f6a4ee 9347 if No (Comp) then
9348 Search_Component (Base_Type (Rectype));
9349 end if;
e7b2d6bc 9350
d9f6a4ee 9351 -- If no component, or the component does not reference the component
9352 -- clause in question, then there was some previous error for which
9353 -- we already gave a message, so just return with Comp Empty.
d6f39728 9354
d9f6a4ee 9355 if No (Comp) or else Component_Clause (Comp) /= CC then
9356 Check_Error_Detected;
9357 Comp := Empty;
93735cb8 9358
d9f6a4ee 9359 -- Normal case where we have a component clause
93735cb8 9360
d9f6a4ee 9361 else
9362 Fbit := Component_Bit_Offset (Comp);
9363 Lbit := Fbit + Esize (Comp) - 1;
9364 end if;
9365 end Find_Component;
93735cb8 9366
d9f6a4ee 9367 -- Start of processing for Check_Record_Representation_Clause
d6f39728 9368
d9f6a4ee 9369 begin
9370 Find_Type (Ident);
9371 Rectype := Entity (Ident);
d6f39728 9372
d9f6a4ee 9373 if Rectype = Any_Type then
9374 return;
9375 else
9376 Rectype := Underlying_Type (Rectype);
9377 end if;
d6f39728 9378
d9f6a4ee 9379 -- See if we have a fully repped derived tagged type
d6f39728 9380
d9f6a4ee 9381 declare
9382 PS : constant Entity_Id := Parent_Subtype (Rectype);
d6f39728 9383
d9f6a4ee 9384 begin
9385 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9386 Tagged_Parent := PS;
d6f39728 9387
d9f6a4ee 9388 -- Find maximum bit of any component of the parent type
d6f39728 9389
d9f6a4ee 9390 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9391 Pcomp := First_Entity (Tagged_Parent);
9392 while Present (Pcomp) loop
9393 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9394 if Component_Bit_Offset (Pcomp) /= No_Uint
9395 and then Known_Static_Esize (Pcomp)
9396 then
9397 Parent_Last_Bit :=
9398 UI_Max
9399 (Parent_Last_Bit,
9400 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9401 end if;
9402
9403 Next_Entity (Pcomp);
d6f39728 9404 end if;
d9f6a4ee 9405 end loop;
9406 end if;
9407 end;
d6f39728 9408
d9f6a4ee 9409 -- All done if no component clauses
d6f39728 9410
d9f6a4ee 9411 CC := First (Component_Clauses (N));
d6f39728 9412
d9f6a4ee 9413 if No (CC) then
9414 return;
9415 end if;
d6f39728 9416
d9f6a4ee 9417 -- If a tag is present, then create a component clause that places it
9418 -- at the start of the record (otherwise gigi may place it after other
9419 -- fields that have rep clauses).
d6f39728 9420
d9f6a4ee 9421 Fent := First_Entity (Rectype);
d6f39728 9422
d9f6a4ee 9423 if Nkind (Fent) = N_Defining_Identifier
9424 and then Chars (Fent) = Name_uTag
9425 then
9426 Set_Component_Bit_Offset (Fent, Uint_0);
9427 Set_Normalized_Position (Fent, Uint_0);
9428 Set_Normalized_First_Bit (Fent, Uint_0);
9429 Set_Normalized_Position_Max (Fent, Uint_0);
9430 Init_Esize (Fent, System_Address_Size);
d6f39728 9431
d9f6a4ee 9432 Set_Component_Clause (Fent,
9433 Make_Component_Clause (Loc,
9434 Component_Name => Make_Identifier (Loc, Name_uTag),
d6f39728 9435
d9f6a4ee 9436 Position => Make_Integer_Literal (Loc, Uint_0),
9437 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9438 Last_Bit =>
9439 Make_Integer_Literal (Loc,
9440 UI_From_Int (System_Address_Size))));
d6f39728 9441
d9f6a4ee 9442 Ccount := Ccount + 1;
9443 end if;
d6f39728 9444
d9f6a4ee 9445 Max_Bit_So_Far := Uint_Minus_1;
9446 Overlap_Check_Required := False;
d6f39728 9447
d9f6a4ee 9448 -- Process the component clauses
d6f39728 9449
d9f6a4ee 9450 while Present (CC) loop
9451 Find_Component;
d6f39728 9452
d9f6a4ee 9453 if Present (Comp) then
9454 Ccount := Ccount + 1;
d6f39728 9455
d9f6a4ee 9456 -- We need a full overlap check if record positions non-monotonic
d6f39728 9457
d9f6a4ee 9458 if Fbit <= Max_Bit_So_Far then
9459 Overlap_Check_Required := True;
9460 end if;
d6f39728 9461
d9f6a4ee 9462 Max_Bit_So_Far := Lbit;
d6f39728 9463
d9f6a4ee 9464 -- Check bit position out of range of specified size
01cb2726 9465
d9f6a4ee 9466 if Has_Size_Clause (Rectype)
9467 and then RM_Size (Rectype) <= Lbit
9468 then
9469 Error_Msg_N
9470 ("bit number out of range of specified size",
9471 Last_Bit (CC));
d6f39728 9472
d9f6a4ee 9473 -- Check for overlap with tag component
67278d60 9474
d9f6a4ee 9475 else
9476 if Is_Tagged_Type (Rectype)
9477 and then Fbit < System_Address_Size
9478 then
9479 Error_Msg_NE
9480 ("component overlaps tag field of&",
9481 Component_Name (CC), Rectype);
9482 Overlap_Detected := True;
9483 end if;
67278d60 9484
d9f6a4ee 9485 if Hbit < Lbit then
9486 Hbit := Lbit;
9487 end if;
9488 end if;
67278d60 9489
d9f6a4ee 9490 -- Check parent overlap if component might overlap parent field
67278d60 9491
d9f6a4ee 9492 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9493 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9494 while Present (Pcomp) loop
9495 if not Is_Tag (Pcomp)
9496 and then Chars (Pcomp) /= Name_uParent
9497 then
9498 Check_Component_Overlap (Comp, Pcomp);
9499 end if;
67278d60 9500
d9f6a4ee 9501 Next_Component_Or_Discriminant (Pcomp);
9502 end loop;
9503 end if;
9504 end if;
67278d60 9505
d9f6a4ee 9506 Next (CC);
9507 end loop;
47495553 9508
d9f6a4ee 9509 -- Now that we have processed all the component clauses, check for
9510 -- overlap. We have to leave this till last, since the components can
9511 -- appear in any arbitrary order in the representation clause.
67278d60 9512
d9f6a4ee 9513 -- We do not need this check if all specified ranges were monotonic,
9514 -- as recorded by Overlap_Check_Required being False at this stage.
67278d60 9515
d9f6a4ee 9516 -- This first section checks if there are any overlapping entries at
9517 -- all. It does this by sorting all entries and then seeing if there are
9518 -- any overlaps. If there are none, then that is decisive, but if there
9519 -- are overlaps, they may still be OK (they may result from fields in
9520 -- different variants).
67278d60 9521
d9f6a4ee 9522 if Overlap_Check_Required then
9523 Overlap_Check1 : declare
67278d60 9524
d9f6a4ee 9525 OC_Fbit : array (0 .. Ccount) of Uint;
9526 -- First-bit values for component clauses, the value is the offset
9527 -- of the first bit of the field from start of record. The zero
9528 -- entry is for use in sorting.
47495553 9529
d9f6a4ee 9530 OC_Lbit : array (0 .. Ccount) of Uint;
9531 -- Last-bit values for component clauses, the value is the offset
9532 -- of the last bit of the field from start of record. The zero
9533 -- entry is for use in sorting.
9534
9535 OC_Count : Natural := 0;
9536 -- Count of entries in OC_Fbit and OC_Lbit
67278d60 9537
d9f6a4ee 9538 function OC_Lt (Op1, Op2 : Natural) return Boolean;
9539 -- Compare routine for Sort
67278d60 9540
d9f6a4ee 9541 procedure OC_Move (From : Natural; To : Natural);
9542 -- Move routine for Sort
67278d60 9543
d9f6a4ee 9544 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
67278d60 9545
d9f6a4ee 9546 -----------
9547 -- OC_Lt --
9548 -----------
67278d60 9549
d9f6a4ee 9550 function OC_Lt (Op1, Op2 : Natural) return Boolean is
67278d60 9551 begin
d9f6a4ee 9552 return OC_Fbit (Op1) < OC_Fbit (Op2);
9553 end OC_Lt;
67278d60 9554
d9f6a4ee 9555 -------------
9556 -- OC_Move --
9557 -------------
67278d60 9558
d9f6a4ee 9559 procedure OC_Move (From : Natural; To : Natural) is
9560 begin
9561 OC_Fbit (To) := OC_Fbit (From);
9562 OC_Lbit (To) := OC_Lbit (From);
9563 end OC_Move;
67278d60 9564
d9f6a4ee 9565 -- Start of processing for Overlap_Check
67278d60 9566
67278d60 9567 begin
d9f6a4ee 9568 CC := First (Component_Clauses (N));
9569 while Present (CC) loop
67278d60 9570
d9f6a4ee 9571 -- Exclude component clause already marked in error
67278d60 9572
d9f6a4ee 9573 if not Error_Posted (CC) then
9574 Find_Component;
9575
9576 if Present (Comp) then
9577 OC_Count := OC_Count + 1;
9578 OC_Fbit (OC_Count) := Fbit;
9579 OC_Lbit (OC_Count) := Lbit;
9580 end if;
67278d60 9581 end if;
9582
d9f6a4ee 9583 Next (CC);
67278d60 9584 end loop;
67278d60 9585
d9f6a4ee 9586 Sorting.Sort (OC_Count);
67278d60 9587
d9f6a4ee 9588 Overlap_Check_Required := False;
9589 for J in 1 .. OC_Count - 1 loop
9590 if OC_Lbit (J) >= OC_Fbit (J + 1) then
9591 Overlap_Check_Required := True;
9592 exit;
9593 end if;
9594 end loop;
9595 end Overlap_Check1;
9596 end if;
67278d60 9597
d9f6a4ee 9598 -- If Overlap_Check_Required is still True, then we have to do the full
9599 -- scale overlap check, since we have at least two fields that do
9600 -- overlap, and we need to know if that is OK since they are in
9601 -- different variant, or whether we have a definite problem.
67278d60 9602
d9f6a4ee 9603 if Overlap_Check_Required then
9604 Overlap_Check2 : declare
9605 C1_Ent, C2_Ent : Entity_Id;
9606 -- Entities of components being checked for overlap
67278d60 9607
d9f6a4ee 9608 Clist : Node_Id;
9609 -- Component_List node whose Component_Items are being checked
67278d60 9610
d9f6a4ee 9611 Citem : Node_Id;
9612 -- Component declaration for component being checked
67278d60 9613
d9f6a4ee 9614 begin
9615 C1_Ent := First_Entity (Base_Type (Rectype));
67278d60 9616
d9f6a4ee 9617 -- Loop through all components in record. For each component check
9618 -- for overlap with any of the preceding elements on the component
9619 -- list containing the component and also, if the component is in
9620 -- a variant, check against components outside the case structure.
9621 -- This latter test is repeated recursively up the variant tree.
67278d60 9622
d9f6a4ee 9623 Main_Component_Loop : while Present (C1_Ent) loop
9624 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
9625 goto Continue_Main_Component_Loop;
9626 end if;
67278d60 9627
d9f6a4ee 9628 -- Skip overlap check if entity has no declaration node. This
9629 -- happens with discriminants in constrained derived types.
9630 -- Possibly we are missing some checks as a result, but that
9631 -- does not seem terribly serious.
67278d60 9632
d9f6a4ee 9633 if No (Declaration_Node (C1_Ent)) then
9634 goto Continue_Main_Component_Loop;
9635 end if;
67278d60 9636
d9f6a4ee 9637 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
67278d60 9638
d9f6a4ee 9639 -- Loop through component lists that need checking. Check the
9640 -- current component list and all lists in variants above us.
67278d60 9641
d9f6a4ee 9642 Component_List_Loop : loop
67278d60 9643
d9f6a4ee 9644 -- If derived type definition, go to full declaration
9645 -- If at outer level, check discriminants if there are any.
67278d60 9646
d9f6a4ee 9647 if Nkind (Clist) = N_Derived_Type_Definition then
9648 Clist := Parent (Clist);
9649 end if;
67278d60 9650
d9f6a4ee 9651 -- Outer level of record definition, check discriminants
67278d60 9652
d9f6a4ee 9653 if Nkind_In (Clist, N_Full_Type_Declaration,
9654 N_Private_Type_Declaration)
67278d60 9655 then
d9f6a4ee 9656 if Has_Discriminants (Defining_Identifier (Clist)) then
9657 C2_Ent :=
9658 First_Discriminant (Defining_Identifier (Clist));
9659 while Present (C2_Ent) loop
9660 exit when C1_Ent = C2_Ent;
9661 Check_Component_Overlap (C1_Ent, C2_Ent);
9662 Next_Discriminant (C2_Ent);
9663 end loop;
9664 end if;
67278d60 9665
d9f6a4ee 9666 -- Record extension case
67278d60 9667
d9f6a4ee 9668 elsif Nkind (Clist) = N_Derived_Type_Definition then
9669 Clist := Empty;
67278d60 9670
d9f6a4ee 9671 -- Otherwise check one component list
67278d60 9672
d9f6a4ee 9673 else
9674 Citem := First (Component_Items (Clist));
9675 while Present (Citem) loop
9676 if Nkind (Citem) = N_Component_Declaration then
9677 C2_Ent := Defining_Identifier (Citem);
9678 exit when C1_Ent = C2_Ent;
9679 Check_Component_Overlap (C1_Ent, C2_Ent);
9680 end if;
67278d60 9681
d9f6a4ee 9682 Next (Citem);
9683 end loop;
9684 end if;
67278d60 9685
d9f6a4ee 9686 -- Check for variants above us (the parent of the Clist can
9687 -- be a variant, in which case its parent is a variant part,
9688 -- and the parent of the variant part is a component list
9689 -- whose components must all be checked against the current
9690 -- component for overlap).
67278d60 9691
d9f6a4ee 9692 if Nkind (Parent (Clist)) = N_Variant then
9693 Clist := Parent (Parent (Parent (Clist)));
67278d60 9694
d9f6a4ee 9695 -- Check for possible discriminant part in record, this
9696 -- is treated essentially as another level in the
9697 -- recursion. For this case the parent of the component
9698 -- list is the record definition, and its parent is the
9699 -- full type declaration containing the discriminant
9700 -- specifications.
9701
9702 elsif Nkind (Parent (Clist)) = N_Record_Definition then
9703 Clist := Parent (Parent ((Clist)));
9704
9705 -- If neither of these two cases, we are at the top of
9706 -- the tree.
9707
9708 else
9709 exit Component_List_Loop;
9710 end if;
9711 end loop Component_List_Loop;
67278d60 9712
d9f6a4ee 9713 <<Continue_Main_Component_Loop>>
9714 Next_Entity (C1_Ent);
67278d60 9715
d9f6a4ee 9716 end loop Main_Component_Loop;
9717 end Overlap_Check2;
67278d60 9718 end if;
9719
d9f6a4ee 9720 -- The following circuit deals with warning on record holes (gaps). We
9721 -- skip this check if overlap was detected, since it makes sense for the
9722 -- programmer to fix this illegality before worrying about warnings.
67278d60 9723
d9f6a4ee 9724 if not Overlap_Detected and Warn_On_Record_Holes then
9725 Record_Hole_Check : declare
9726 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
9727 -- Full declaration of record type
67278d60 9728
d9f6a4ee 9729 procedure Check_Component_List
9730 (CL : Node_Id;
9731 Sbit : Uint;
9732 DS : List_Id);
9733 -- Check component list CL for holes. The starting bit should be
9734 -- Sbit. which is zero for the main record component list and set
9735 -- appropriately for recursive calls for variants. DS is set to
9736 -- a list of discriminant specifications to be included in the
9737 -- consideration of components. It is No_List if none to consider.
67278d60 9738
d9f6a4ee 9739 --------------------------
9740 -- Check_Component_List --
9741 --------------------------
47495553 9742
d9f6a4ee 9743 procedure Check_Component_List
9744 (CL : Node_Id;
9745 Sbit : Uint;
9746 DS : List_Id)
9747 is
9748 Compl : Integer;
67278d60 9749
d9f6a4ee 9750 begin
9751 Compl := Integer (List_Length (Component_Items (CL)));
47495553 9752
d9f6a4ee 9753 if DS /= No_List then
9754 Compl := Compl + Integer (List_Length (DS));
9755 end if;
67278d60 9756
d9f6a4ee 9757 declare
9758 Comps : array (Natural range 0 .. Compl) of Entity_Id;
9759 -- Gather components (zero entry is for sort routine)
67278d60 9760
d9f6a4ee 9761 Ncomps : Natural := 0;
9762 -- Number of entries stored in Comps (starting at Comps (1))
67278d60 9763
d9f6a4ee 9764 Citem : Node_Id;
9765 -- One component item or discriminant specification
67278d60 9766
d9f6a4ee 9767 Nbit : Uint;
9768 -- Starting bit for next component
67278d60 9769
d9f6a4ee 9770 CEnt : Entity_Id;
9771 -- Component entity
67278d60 9772
d9f6a4ee 9773 Variant : Node_Id;
9774 -- One variant
67278d60 9775
d9f6a4ee 9776 function Lt (Op1, Op2 : Natural) return Boolean;
9777 -- Compare routine for Sort
67278d60 9778
d9f6a4ee 9779 procedure Move (From : Natural; To : Natural);
9780 -- Move routine for Sort
67278d60 9781
d9f6a4ee 9782 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
67278d60 9783
d9f6a4ee 9784 --------
9785 -- Lt --
9786 --------
67278d60 9787
d9f6a4ee 9788 function Lt (Op1, Op2 : Natural) return Boolean is
9789 begin
9790 return Component_Bit_Offset (Comps (Op1))
9791 <
9792 Component_Bit_Offset (Comps (Op2));
9793 end Lt;
67278d60 9794
d9f6a4ee 9795 ----------
9796 -- Move --
9797 ----------
67278d60 9798
d9f6a4ee 9799 procedure Move (From : Natural; To : Natural) is
9800 begin
9801 Comps (To) := Comps (From);
9802 end Move;
67278d60 9803
d9f6a4ee 9804 begin
9805 -- Gather discriminants into Comp
67278d60 9806
d9f6a4ee 9807 if DS /= No_List then
9808 Citem := First (DS);
9809 while Present (Citem) loop
9810 if Nkind (Citem) = N_Discriminant_Specification then
9811 declare
9812 Ent : constant Entity_Id :=
9813 Defining_Identifier (Citem);
9814 begin
9815 if Ekind (Ent) = E_Discriminant then
9816 Ncomps := Ncomps + 1;
9817 Comps (Ncomps) := Ent;
9818 end if;
9819 end;
9820 end if;
67278d60 9821
d9f6a4ee 9822 Next (Citem);
9823 end loop;
9824 end if;
67278d60 9825
d9f6a4ee 9826 -- Gather component entities into Comp
67278d60 9827
d9f6a4ee 9828 Citem := First (Component_Items (CL));
9829 while Present (Citem) loop
9830 if Nkind (Citem) = N_Component_Declaration then
9831 Ncomps := Ncomps + 1;
9832 Comps (Ncomps) := Defining_Identifier (Citem);
9833 end if;
67278d60 9834
d9f6a4ee 9835 Next (Citem);
9836 end loop;
67278d60 9837
d9f6a4ee 9838 -- Now sort the component entities based on the first bit.
9839 -- Note we already know there are no overlapping components.
67278d60 9840
d9f6a4ee 9841 Sorting.Sort (Ncomps);
67278d60 9842
d9f6a4ee 9843 -- Loop through entries checking for holes
67278d60 9844
d9f6a4ee 9845 Nbit := Sbit;
9846 for J in 1 .. Ncomps loop
9847 CEnt := Comps (J);
9848 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
67278d60 9849
d9f6a4ee 9850 if Error_Msg_Uint_1 > 0 then
9851 Error_Msg_NE
9852 ("?H?^-bit gap before component&",
9853 Component_Name (Component_Clause (CEnt)), CEnt);
9854 end if;
67278d60 9855
d9f6a4ee 9856 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
9857 end loop;
67278d60 9858
d9f6a4ee 9859 -- Process variant parts recursively if present
67278d60 9860
d9f6a4ee 9861 if Present (Variant_Part (CL)) then
9862 Variant := First (Variants (Variant_Part (CL)));
9863 while Present (Variant) loop
9864 Check_Component_List
9865 (Component_List (Variant), Nbit, No_List);
9866 Next (Variant);
9867 end loop;
67278d60 9868 end if;
d9f6a4ee 9869 end;
9870 end Check_Component_List;
67278d60 9871
d9f6a4ee 9872 -- Start of processing for Record_Hole_Check
67278d60 9873
d9f6a4ee 9874 begin
9875 declare
9876 Sbit : Uint;
67278d60 9877
d9f6a4ee 9878 begin
9879 if Is_Tagged_Type (Rectype) then
9880 Sbit := UI_From_Int (System_Address_Size);
9881 else
9882 Sbit := Uint_0;
9883 end if;
9884
9885 if Nkind (Decl) = N_Full_Type_Declaration
9886 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
9887 then
9888 Check_Component_List
9889 (Component_List (Type_Definition (Decl)),
9890 Sbit,
9891 Discriminant_Specifications (Decl));
67278d60 9892 end if;
d9f6a4ee 9893 end;
9894 end Record_Hole_Check;
67278d60 9895 end if;
9896
d9f6a4ee 9897 -- For records that have component clauses for all components, and whose
9898 -- size is less than or equal to 32, we need to know the size in the
9899 -- front end to activate possible packed array processing where the
9900 -- component type is a record.
67278d60 9901
d9f6a4ee 9902 -- At this stage Hbit + 1 represents the first unused bit from all the
9903 -- component clauses processed, so if the component clauses are
9904 -- complete, then this is the length of the record.
67278d60 9905
d9f6a4ee 9906 -- For records longer than System.Storage_Unit, and for those where not
9907 -- all components have component clauses, the back end determines the
9908 -- length (it may for example be appropriate to round up the size
9909 -- to some convenient boundary, based on alignment considerations, etc).
67278d60 9910
d9f6a4ee 9911 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
67278d60 9912
d9f6a4ee 9913 -- Nothing to do if at least one component has no component clause
67278d60 9914
d9f6a4ee 9915 Comp := First_Component_Or_Discriminant (Rectype);
9916 while Present (Comp) loop
9917 exit when No (Component_Clause (Comp));
9918 Next_Component_Or_Discriminant (Comp);
9919 end loop;
67278d60 9920
d9f6a4ee 9921 -- If we fall out of loop, all components have component clauses
9922 -- and so we can set the size to the maximum value.
67278d60 9923
d9f6a4ee 9924 if No (Comp) then
9925 Set_RM_Size (Rectype, Hbit + 1);
9926 end if;
9927 end if;
9928 end Check_Record_Representation_Clause;
67278d60 9929
d9f6a4ee 9930 ----------------
9931 -- Check_Size --
9932 ----------------
67278d60 9933
d9f6a4ee 9934 procedure Check_Size
9935 (N : Node_Id;
9936 T : Entity_Id;
9937 Siz : Uint;
9938 Biased : out Boolean)
9939 is
9940 UT : constant Entity_Id := Underlying_Type (T);
9941 M : Uint;
67278d60 9942
d9f6a4ee 9943 begin
9944 Biased := False;
67278d60 9945
d9f6a4ee 9946 -- Reject patently improper size values.
67278d60 9947
d9f6a4ee 9948 if Is_Elementary_Type (T)
9949 and then Siz > UI_From_Int (Int'Last)
9950 then
9951 Error_Msg_N ("Size value too large for elementary type", N);
67278d60 9952
d9f6a4ee 9953 if Nkind (Original_Node (N)) = N_Op_Expon then
9954 Error_Msg_N
9955 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
9956 end if;
9957 end if;
67278d60 9958
d9f6a4ee 9959 -- Dismiss generic types
67278d60 9960
d9f6a4ee 9961 if Is_Generic_Type (T)
9962 or else
9963 Is_Generic_Type (UT)
9964 or else
9965 Is_Generic_Type (Root_Type (UT))
9966 then
9967 return;
67278d60 9968
d9f6a4ee 9969 -- Guard against previous errors
67278d60 9970
d9f6a4ee 9971 elsif No (UT) or else UT = Any_Type then
9972 Check_Error_Detected;
9973 return;
67278d60 9974
d9f6a4ee 9975 -- Check case of bit packed array
67278d60 9976
d9f6a4ee 9977 elsif Is_Array_Type (UT)
9978 and then Known_Static_Component_Size (UT)
9979 and then Is_Bit_Packed_Array (UT)
9980 then
9981 declare
9982 Asiz : Uint;
9983 Indx : Node_Id;
9984 Ityp : Entity_Id;
67278d60 9985
d9f6a4ee 9986 begin
9987 Asiz := Component_Size (UT);
9988 Indx := First_Index (UT);
9989 loop
9990 Ityp := Etype (Indx);
67278d60 9991
d9f6a4ee 9992 -- If non-static bound, then we are not in the business of
9993 -- trying to check the length, and indeed an error will be
9994 -- issued elsewhere, since sizes of non-static array types
9995 -- cannot be set implicitly or explicitly.
67278d60 9996
cda40848 9997 if not Is_OK_Static_Subtype (Ityp) then
d9f6a4ee 9998 return;
9999 end if;
67278d60 10000
d9f6a4ee 10001 -- Otherwise accumulate next dimension
67278d60 10002
d9f6a4ee 10003 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10004 Expr_Value (Type_Low_Bound (Ityp)) +
10005 Uint_1);
67278d60 10006
d9f6a4ee 10007 Next_Index (Indx);
10008 exit when No (Indx);
10009 end loop;
67278d60 10010
d9f6a4ee 10011 if Asiz <= Siz then
10012 return;
67278d60 10013
d9f6a4ee 10014 else
10015 Error_Msg_Uint_1 := Asiz;
10016 Error_Msg_NE
10017 ("size for& too small, minimum allowed is ^", N, T);
10018 Set_Esize (T, Asiz);
10019 Set_RM_Size (T, Asiz);
10020 end if;
10021 end;
67278d60 10022
d9f6a4ee 10023 -- All other composite types are ignored
67278d60 10024
d9f6a4ee 10025 elsif Is_Composite_Type (UT) then
10026 return;
47495553 10027
d9f6a4ee 10028 -- For fixed-point types, don't check minimum if type is not frozen,
10029 -- since we don't know all the characteristics of the type that can
10030 -- affect the size (e.g. a specified small) till freeze time.
47495553 10031
d9f6a4ee 10032 elsif Is_Fixed_Point_Type (UT)
10033 and then not Is_Frozen (UT)
10034 then
10035 null;
47495553 10036
d9f6a4ee 10037 -- Cases for which a minimum check is required
47495553 10038
d9f6a4ee 10039 else
10040 -- Ignore if specified size is correct for the type
47495553 10041
d9f6a4ee 10042 if Known_Esize (UT) and then Siz = Esize (UT) then
10043 return;
10044 end if;
47495553 10045
d9f6a4ee 10046 -- Otherwise get minimum size
47495553 10047
d9f6a4ee 10048 M := UI_From_Int (Minimum_Size (UT));
47495553 10049
d9f6a4ee 10050 if Siz < M then
47495553 10051
d9f6a4ee 10052 -- Size is less than minimum size, but one possibility remains
10053 -- that we can manage with the new size if we bias the type.
47495553 10054
d9f6a4ee 10055 M := UI_From_Int (Minimum_Size (UT, Biased => True));
47495553 10056
d9f6a4ee 10057 if Siz < M then
10058 Error_Msg_Uint_1 := M;
10059 Error_Msg_NE
10060 ("size for& too small, minimum allowed is ^", N, T);
10061 Set_Esize (T, M);
10062 Set_RM_Size (T, M);
10063 else
10064 Biased := True;
10065 end if;
10066 end if;
10067 end if;
10068 end Check_Size;
47495553 10069
d9f6a4ee 10070 --------------------------
10071 -- Freeze_Entity_Checks --
10072 --------------------------
47495553 10073
d9f6a4ee 10074 procedure Freeze_Entity_Checks (N : Node_Id) is
8cf481c9 10075 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10076 -- Inspect the primitive operations of type Typ and hide all pairs of
3118058b 10077 -- implicitly declared non-overridden non-fully conformant homographs
10078 -- (Ada RM 8.3 12.3/2).
8cf481c9 10079
10080 -------------------------------------
10081 -- Hide_Non_Overridden_Subprograms --
10082 -------------------------------------
10083
10084 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10085 procedure Hide_Matching_Homographs
10086 (Subp_Id : Entity_Id;
10087 Start_Elmt : Elmt_Id);
10088 -- Inspect a list of primitive operations starting with Start_Elmt
3118058b 10089 -- and find matching implicitly declared non-overridden non-fully
10090 -- conformant homographs of Subp_Id. If found, all matches along
10091 -- with Subp_Id are hidden from all visibility.
8cf481c9 10092
10093 function Is_Non_Overridden_Or_Null_Procedure
10094 (Subp_Id : Entity_Id) return Boolean;
10095 -- Determine whether subprogram Subp_Id is implicitly declared non-
10096 -- overridden subprogram or an implicitly declared null procedure.
10097
10098 ------------------------------
10099 -- Hide_Matching_Homographs --
10100 ------------------------------
10101
10102 procedure Hide_Matching_Homographs
10103 (Subp_Id : Entity_Id;
10104 Start_Elmt : Elmt_Id)
10105 is
10106 Prim : Entity_Id;
10107 Prim_Elmt : Elmt_Id;
10108
10109 begin
10110 Prim_Elmt := Start_Elmt;
10111 while Present (Prim_Elmt) loop
10112 Prim := Node (Prim_Elmt);
10113
10114 -- The current primitive is implicitly declared non-overridden
3118058b 10115 -- non-fully conformant homograph of Subp_Id. Both subprograms
10116 -- must be hidden from visibility.
8cf481c9 10117
10118 if Chars (Prim) = Chars (Subp_Id)
8cf481c9 10119 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
3118058b 10120 and then not Fully_Conformant (Prim, Subp_Id)
8cf481c9 10121 then
8c7ee4ac 10122 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10123 Set_Is_Immediately_Visible (Prim, False);
10124 Set_Is_Potentially_Use_Visible (Prim, False);
8cf481c9 10125
8c7ee4ac 10126 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10127 Set_Is_Immediately_Visible (Subp_Id, False);
10128 Set_Is_Potentially_Use_Visible (Subp_Id, False);
8cf481c9 10129 end if;
10130
10131 Next_Elmt (Prim_Elmt);
10132 end loop;
10133 end Hide_Matching_Homographs;
10134
10135 -----------------------------------------
10136 -- Is_Non_Overridden_Or_Null_Procedure --
10137 -----------------------------------------
10138
10139 function Is_Non_Overridden_Or_Null_Procedure
10140 (Subp_Id : Entity_Id) return Boolean
10141 is
10142 Alias_Id : Entity_Id;
10143
10144 begin
10145 -- The subprogram is inherited (implicitly declared), it does not
10146 -- override and does not cover a primitive of an interface.
10147
10148 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10149 and then Present (Alias (Subp_Id))
10150 and then No (Interface_Alias (Subp_Id))
10151 and then No (Overridden_Operation (Subp_Id))
10152 then
10153 Alias_Id := Alias (Subp_Id);
10154
10155 if Requires_Overriding (Alias_Id) then
10156 return True;
10157
10158 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10159 and then Null_Present (Parent (Alias_Id))
10160 then
10161 return True;
10162 end if;
10163 end if;
10164
10165 return False;
10166 end Is_Non_Overridden_Or_Null_Procedure;
10167
10168 -- Local variables
10169
10170 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10171 Prim : Entity_Id;
10172 Prim_Elmt : Elmt_Id;
10173
10174 -- Start of processing for Hide_Non_Overridden_Subprograms
10175
10176 begin
3118058b 10177 -- Inspect the list of primitives looking for non-overridden
10178 -- subprograms.
8cf481c9 10179
10180 if Present (Prim_Ops) then
10181 Prim_Elmt := First_Elmt (Prim_Ops);
10182 while Present (Prim_Elmt) loop
10183 Prim := Node (Prim_Elmt);
10184 Next_Elmt (Prim_Elmt);
10185
10186 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10187 Hide_Matching_Homographs
10188 (Subp_Id => Prim,
10189 Start_Elmt => Prim_Elmt);
10190 end if;
10191 end loop;
10192 end if;
10193 end Hide_Non_Overridden_Subprograms;
10194
10195 ---------------------
10196 -- Local variables --
10197 ---------------------
10198
d9f6a4ee 10199 E : constant Entity_Id := Entity (N);
47495553 10200
d9f6a4ee 10201 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10202 -- True in non-generic case. Some of the processing here is skipped
10203 -- for the generic case since it is not needed. Basically in the
10204 -- generic case, we only need to do stuff that might generate error
10205 -- messages or warnings.
8cf481c9 10206
10207 -- Start of processing for Freeze_Entity_Checks
10208
d9f6a4ee 10209 begin
10210 -- Remember that we are processing a freezing entity. Required to
10211 -- ensure correct decoration of internal entities associated with
10212 -- interfaces (see New_Overloaded_Entity).
47495553 10213
d9f6a4ee 10214 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
47495553 10215
d9f6a4ee 10216 -- For tagged types covering interfaces add internal entities that link
10217 -- the primitives of the interfaces with the primitives that cover them.
10218 -- Note: These entities were originally generated only when generating
10219 -- code because their main purpose was to provide support to initialize
10220 -- the secondary dispatch tables. They are now generated also when
10221 -- compiling with no code generation to provide ASIS the relationship
10222 -- between interface primitives and tagged type primitives. They are
10223 -- also used to locate primitives covering interfaces when processing
10224 -- generics (see Derive_Subprograms).
47495553 10225
d9f6a4ee 10226 -- This is not needed in the generic case
47495553 10227
d9f6a4ee 10228 if Ada_Version >= Ada_2005
10229 and then Non_Generic_Case
10230 and then Ekind (E) = E_Record_Type
10231 and then Is_Tagged_Type (E)
10232 and then not Is_Interface (E)
10233 and then Has_Interfaces (E)
10234 then
10235 -- This would be a good common place to call the routine that checks
10236 -- overriding of interface primitives (and thus factorize calls to
10237 -- Check_Abstract_Overriding located at different contexts in the
10238 -- compiler). However, this is not possible because it causes
10239 -- spurious errors in case of late overriding.
47495553 10240
d9f6a4ee 10241 Add_Internal_Interface_Entities (E);
10242 end if;
47495553 10243
8cf481c9 10244 -- After all forms of overriding have been resolved, a tagged type may
10245 -- be left with a set of implicitly declared and possibly erroneous
10246 -- abstract subprograms, null procedures and subprograms that require
10247 -- overriding. If this set contains fully conformat homographs, then one
10248 -- is chosen arbitrarily (already done during resolution), otherwise all
3118058b 10249 -- remaining non-fully conformant homographs are hidden from visibility
8cf481c9 10250 -- (Ada RM 8.3 12.3/2).
10251
10252 if Is_Tagged_Type (E) then
10253 Hide_Non_Overridden_Subprograms (E);
10254 end if;
10255
d9f6a4ee 10256 -- Check CPP types
47495553 10257
d9f6a4ee 10258 if Ekind (E) = E_Record_Type
10259 and then Is_CPP_Class (E)
10260 and then Is_Tagged_Type (E)
10261 and then Tagged_Type_Expansion
d9f6a4ee 10262 then
10263 if CPP_Num_Prims (E) = 0 then
47495553 10264
d9f6a4ee 10265 -- If the CPP type has user defined components then it must import
10266 -- primitives from C++. This is required because if the C++ class
10267 -- has no primitives then the C++ compiler does not added the _tag
10268 -- component to the type.
47495553 10269
d9f6a4ee 10270 if First_Entity (E) /= Last_Entity (E) then
10271 Error_Msg_N
10272 ("'C'P'P type must import at least one primitive from C++??",
10273 E);
10274 end if;
10275 end if;
47495553 10276
d9f6a4ee 10277 -- Check that all its primitives are abstract or imported from C++.
10278 -- Check also availability of the C++ constructor.
47495553 10279
d9f6a4ee 10280 declare
10281 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10282 Elmt : Elmt_Id;
10283 Error_Reported : Boolean := False;
10284 Prim : Node_Id;
47495553 10285
d9f6a4ee 10286 begin
10287 Elmt := First_Elmt (Primitive_Operations (E));
10288 while Present (Elmt) loop
10289 Prim := Node (Elmt);
47495553 10290
d9f6a4ee 10291 if Comes_From_Source (Prim) then
10292 if Is_Abstract_Subprogram (Prim) then
10293 null;
47495553 10294
d9f6a4ee 10295 elsif not Is_Imported (Prim)
10296 or else Convention (Prim) /= Convention_CPP
10297 then
10298 Error_Msg_N
10299 ("primitives of 'C'P'P types must be imported from C++ "
10300 & "or abstract??", Prim);
47495553 10301
d9f6a4ee 10302 elsif not Has_Constructors
10303 and then not Error_Reported
10304 then
10305 Error_Msg_Name_1 := Chars (E);
10306 Error_Msg_N
10307 ("??'C'P'P constructor required for type %", Prim);
10308 Error_Reported := True;
10309 end if;
10310 end if;
47495553 10311
d9f6a4ee 10312 Next_Elmt (Elmt);
10313 end loop;
10314 end;
10315 end if;
47495553 10316
d9f6a4ee 10317 -- Check Ada derivation of CPP type
47495553 10318
30ab103b 10319 if Expander_Active -- why? losing errors in -gnatc mode???
10320 and then Present (Etype (E)) -- defend against errors
d9f6a4ee 10321 and then Tagged_Type_Expansion
10322 and then Ekind (E) = E_Record_Type
10323 and then Etype (E) /= E
10324 and then Is_CPP_Class (Etype (E))
10325 and then CPP_Num_Prims (Etype (E)) > 0
10326 and then not Is_CPP_Class (E)
10327 and then not Has_CPP_Constructors (Etype (E))
10328 then
10329 -- If the parent has C++ primitives but it has no constructor then
10330 -- check that all the primitives are overridden in this derivation;
10331 -- otherwise the constructor of the parent is needed to build the
10332 -- dispatch table.
47495553 10333
d9f6a4ee 10334 declare
10335 Elmt : Elmt_Id;
10336 Prim : Node_Id;
47495553 10337
10338 begin
d9f6a4ee 10339 Elmt := First_Elmt (Primitive_Operations (E));
10340 while Present (Elmt) loop
10341 Prim := Node (Elmt);
47495553 10342
d9f6a4ee 10343 if not Is_Abstract_Subprogram (Prim)
10344 and then No (Interface_Alias (Prim))
10345 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
47495553 10346 then
d9f6a4ee 10347 Error_Msg_Name_1 := Chars (Etype (E));
10348 Error_Msg_N
10349 ("'C'P'P constructor required for parent type %", E);
10350 exit;
47495553 10351 end if;
d9f6a4ee 10352
10353 Next_Elmt (Elmt);
10354 end loop;
10355 end;
47495553 10356 end if;
10357
d9f6a4ee 10358 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
67278d60 10359
d9f6a4ee 10360 -- If we have a type with predicates, build predicate function. This
0e9014a7 10361 -- is not needed in the generic case, and is not needed within TSS
ea822fd4 10362 -- subprograms and other predefined primitives.
67278d60 10363
ea822fd4 10364 if Non_Generic_Case
10365 and then Is_Type (E)
10366 and then Has_Predicates (E)
10367 and then not Within_Internal_Subprogram
10368 then
d9f6a4ee 10369 Build_Predicate_Functions (E, N);
10370 end if;
67278d60 10371
d9f6a4ee 10372 -- If type has delayed aspects, this is where we do the preanalysis at
10373 -- the freeze point, as part of the consistent visibility check. Note
10374 -- that this must be done after calling Build_Predicate_Functions or
10375 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10376 -- the subtype name in the saved expression so that they will not cause
10377 -- trouble in the preanalysis.
67278d60 10378
d9f6a4ee 10379 -- This is also not needed in the generic case
10380
10381 if Non_Generic_Case
10382 and then Has_Delayed_Aspects (E)
10383 and then Scope (E) = Current_Scope
10384 then
10385 -- Retrieve the visibility to the discriminants in order to properly
10386 -- analyze the aspects.
10387
10388 Push_Scope_And_Install_Discriminants (E);
10389
10390 declare
10391 Ritem : Node_Id;
10392
10393 begin
10394 -- Look for aspect specification entries for this entity
67278d60 10395
d9f6a4ee 10396 Ritem := First_Rep_Item (E);
10397 while Present (Ritem) loop
10398 if Nkind (Ritem) = N_Aspect_Specification
10399 and then Entity (Ritem) = E
10400 and then Is_Delayed_Aspect (Ritem)
10401 then
10402 Check_Aspect_At_Freeze_Point (Ritem);
10403 end if;
67278d60 10404
d9f6a4ee 10405 Next_Rep_Item (Ritem);
10406 end loop;
10407 end;
67278d60 10408
d9f6a4ee 10409 Uninstall_Discriminants_And_Pop_Scope (E);
67278d60 10410 end if;
67278d60 10411
d9f6a4ee 10412 -- For a record type, deal with variant parts. This has to be delayed
d0988351 10413 -- to this point, because of the issue of statically predicated
d9f6a4ee 10414 -- subtypes, which we have to ensure are frozen before checking
10415 -- choices, since we need to have the static choice list set.
d6f39728 10416
d9f6a4ee 10417 if Is_Record_Type (E) then
10418 Check_Variant_Part : declare
10419 D : constant Node_Id := Declaration_Node (E);
10420 T : Node_Id;
10421 C : Node_Id;
10422 VP : Node_Id;
d6f39728 10423
d9f6a4ee 10424 Others_Present : Boolean;
10425 pragma Warnings (Off, Others_Present);
10426 -- Indicates others present, not used in this case
d6f39728 10427
d9f6a4ee 10428 procedure Non_Static_Choice_Error (Choice : Node_Id);
10429 -- Error routine invoked by the generic instantiation below when
10430 -- the variant part has a non static choice.
f117057b 10431
d9f6a4ee 10432 procedure Process_Declarations (Variant : Node_Id);
10433 -- Processes declarations associated with a variant. We analyzed
10434 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10435 -- but we still need the recursive call to Check_Choices for any
10436 -- nested variant to get its choices properly processed. This is
10437 -- also where we expand out the choices if expansion is active.
1f526845 10438
d9f6a4ee 10439 package Variant_Choices_Processing is new
10440 Generic_Check_Choices
10441 (Process_Empty_Choice => No_OP,
10442 Process_Non_Static_Choice => Non_Static_Choice_Error,
10443 Process_Associated_Node => Process_Declarations);
10444 use Variant_Choices_Processing;
f117057b 10445
d9f6a4ee 10446 -----------------------------
10447 -- Non_Static_Choice_Error --
10448 -----------------------------
d6f39728 10449
d9f6a4ee 10450 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10451 begin
10452 Flag_Non_Static_Expr
10453 ("choice given in variant part is not static!", Choice);
10454 end Non_Static_Choice_Error;
d6f39728 10455
d9f6a4ee 10456 --------------------------
10457 -- Process_Declarations --
10458 --------------------------
dba36b60 10459
d9f6a4ee 10460 procedure Process_Declarations (Variant : Node_Id) is
10461 CL : constant Node_Id := Component_List (Variant);
10462 VP : Node_Id;
dba36b60 10463
d9f6a4ee 10464 begin
10465 -- Check for static predicate present in this variant
ea61a7ea 10466
d9f6a4ee 10467 if Has_SP_Choice (Variant) then
ea61a7ea 10468
d9f6a4ee 10469 -- Here we expand. You might expect to find this call in
10470 -- Expand_N_Variant_Part, but that is called when we first
10471 -- see the variant part, and we cannot do this expansion
10472 -- earlier than the freeze point, since for statically
10473 -- predicated subtypes, the predicate is not known till
10474 -- the freeze point.
ea61a7ea 10475
d9f6a4ee 10476 -- Furthermore, we do this expansion even if the expander
10477 -- is not active, because other semantic processing, e.g.
10478 -- for aggregates, requires the expanded list of choices.
ea61a7ea 10479
d9f6a4ee 10480 -- If the expander is not active, then we can't just clobber
10481 -- the list since it would invalidate the ASIS -gnatct tree.
10482 -- So we have to rewrite the variant part with a Rewrite
10483 -- call that replaces it with a copy and clobber the copy.
10484
10485 if not Expander_Active then
10486 declare
10487 NewV : constant Node_Id := New_Copy (Variant);
10488 begin
10489 Set_Discrete_Choices
10490 (NewV, New_Copy_List (Discrete_Choices (Variant)));
10491 Rewrite (Variant, NewV);
10492 end;
10493 end if;
10494
10495 Expand_Static_Predicates_In_Choices (Variant);
ea61a7ea 10496 end if;
10497
d9f6a4ee 10498 -- We don't need to worry about the declarations in the variant
10499 -- (since they were analyzed by Analyze_Choices when we first
10500 -- encountered the variant), but we do need to take care of
10501 -- expansion of any nested variants.
ea61a7ea 10502
d9f6a4ee 10503 if not Null_Present (CL) then
10504 VP := Variant_Part (CL);
ea61a7ea 10505
d9f6a4ee 10506 if Present (VP) then
10507 Check_Choices
10508 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10509 end if;
10510 end if;
10511 end Process_Declarations;
ea61a7ea 10512
d9f6a4ee 10513 -- Start of processing for Check_Variant_Part
b9e61b2a 10514
d9f6a4ee 10515 begin
10516 -- Find component list
ea61a7ea 10517
d9f6a4ee 10518 C := Empty;
ea61a7ea 10519
d9f6a4ee 10520 if Nkind (D) = N_Full_Type_Declaration then
10521 T := Type_Definition (D);
ea61a7ea 10522
d9f6a4ee 10523 if Nkind (T) = N_Record_Definition then
10524 C := Component_List (T);
d6f39728 10525
d9f6a4ee 10526 elsif Nkind (T) = N_Derived_Type_Definition
10527 and then Present (Record_Extension_Part (T))
10528 then
10529 C := Component_List (Record_Extension_Part (T));
10530 end if;
10531 end if;
d6f39728 10532
d9f6a4ee 10533 -- Case of variant part present
d6f39728 10534
d9f6a4ee 10535 if Present (C) and then Present (Variant_Part (C)) then
10536 VP := Variant_Part (C);
ea61a7ea 10537
d9f6a4ee 10538 -- Check choices
ea61a7ea 10539
d9f6a4ee 10540 Check_Choices
10541 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
ea61a7ea 10542
d9f6a4ee 10543 -- If the last variant does not contain the Others choice,
10544 -- replace it with an N_Others_Choice node since Gigi always
10545 -- wants an Others. Note that we do not bother to call Analyze
10546 -- on the modified variant part, since its only effect would be
10547 -- to compute the Others_Discrete_Choices node laboriously, and
10548 -- of course we already know the list of choices corresponding
39a0c1d3 10549 -- to the others choice (it's the list we're replacing).
d6f39728 10550
d9f6a4ee 10551 -- We only want to do this if the expander is active, since
39a0c1d3 10552 -- we do not want to clobber the ASIS tree.
d6f39728 10553
d9f6a4ee 10554 if Expander_Active then
10555 declare
10556 Last_Var : constant Node_Id :=
10557 Last_Non_Pragma (Variants (VP));
d6f39728 10558
d9f6a4ee 10559 Others_Node : Node_Id;
d6f39728 10560
d9f6a4ee 10561 begin
10562 if Nkind (First (Discrete_Choices (Last_Var))) /=
10563 N_Others_Choice
10564 then
10565 Others_Node := Make_Others_Choice (Sloc (Last_Var));
10566 Set_Others_Discrete_Choices
10567 (Others_Node, Discrete_Choices (Last_Var));
10568 Set_Discrete_Choices
10569 (Last_Var, New_List (Others_Node));
10570 end if;
10571 end;
10572 end if;
d6f39728 10573 end if;
d9f6a4ee 10574 end Check_Variant_Part;
d6f39728 10575 end if;
d9f6a4ee 10576 end Freeze_Entity_Checks;
d6f39728 10577
10578 -------------------------
10579 -- Get_Alignment_Value --
10580 -------------------------
10581
10582 function Get_Alignment_Value (Expr : Node_Id) return Uint is
10583 Align : constant Uint := Static_Integer (Expr);
10584
10585 begin
10586 if Align = No_Uint then
10587 return No_Uint;
10588
10589 elsif Align <= 0 then
10590 Error_Msg_N ("alignment value must be positive", Expr);
10591 return No_Uint;
10592
10593 else
10594 for J in Int range 0 .. 64 loop
10595 declare
10596 M : constant Uint := Uint_2 ** J;
10597
10598 begin
10599 exit when M = Align;
10600
10601 if M > Align then
10602 Error_Msg_N
10603 ("alignment value must be power of 2", Expr);
10604 return No_Uint;
10605 end if;
10606 end;
10607 end loop;
10608
10609 return Align;
10610 end if;
10611 end Get_Alignment_Value;
10612
99a2d5bd 10613 -------------------------------------
10614 -- Inherit_Aspects_At_Freeze_Point --
10615 -------------------------------------
10616
10617 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
10618 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10619 (Rep_Item : Node_Id) return Boolean;
10620 -- This routine checks if Rep_Item is either a pragma or an aspect
10621 -- specification node whose correponding pragma (if any) is present in
10622 -- the Rep Item chain of the entity it has been specified to.
10623
10624 --------------------------------------------------
10625 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10626 --------------------------------------------------
10627
10628 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10629 (Rep_Item : Node_Id) return Boolean
10630 is
10631 begin
ec6f6da5 10632 return
10633 Nkind (Rep_Item) = N_Pragma
10634 or else Present_In_Rep_Item
10635 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
99a2d5bd 10636 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
10637
29a9d4be 10638 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10639
99a2d5bd 10640 begin
10641 -- A representation item is either subtype-specific (Size and Alignment
10642 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 10643 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 10644
10645 -- A derived type inherits each type-related representation aspect of
10646 -- its parent type that was directly specified before the declaration of
29a9d4be 10647 -- the derived type (RM 13.1.15).
99a2d5bd 10648
10649 -- A derived subtype inherits each subtype-specific representation
10650 -- aspect of its parent subtype that was directly specified before the
29a9d4be 10651 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 10652
10653 -- The general processing involves inheriting a representation aspect
10654 -- from a parent type whenever the first rep item (aspect specification,
10655 -- attribute definition clause, pragma) corresponding to the given
10656 -- representation aspect in the rep item chain of Typ, if any, isn't
10657 -- directly specified to Typ but to one of its parents.
10658
10659 -- ??? Note that, for now, just a limited number of representation
29a9d4be 10660 -- aspects have been inherited here so far. Many of them are
10661 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10662 -- a non- exhaustive list of aspects that likely also need to
10663 -- be moved to this routine: Alignment, Component_Alignment,
10664 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 10665 -- Preelaborable_Initialization, RM_Size and Small.
10666
8b6e9bf2 10667 -- In addition, Convention must be propagated from base type to subtype,
10668 -- because the subtype may have been declared on an incomplete view.
10669
99a2d5bd 10670 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
10671 return;
10672 end if;
10673
10674 -- Ada_05/Ada_2005
10675
10676 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
10677 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
10678 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10679 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
10680 then
10681 Set_Is_Ada_2005_Only (Typ);
10682 end if;
10683
10684 -- Ada_12/Ada_2012
10685
10686 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
10687 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
10688 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10689 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
10690 then
10691 Set_Is_Ada_2012_Only (Typ);
10692 end if;
10693
10694 -- Atomic/Shared
10695
10696 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
10697 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
10698 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10699 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
10700 then
10701 Set_Is_Atomic (Typ);
10702 Set_Treat_As_Volatile (Typ);
10703 Set_Is_Volatile (Typ);
10704 end if;
10705
8b6e9bf2 10706 -- Convention
10707
7ac4254e 10708 if Is_Record_Type (Typ)
10709 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
10710 then
8b6e9bf2 10711 Set_Convention (Typ, Convention (Base_Type (Typ)));
10712 end if;
10713
29a9d4be 10714 -- Default_Component_Value
99a2d5bd 10715
10716 if Is_Array_Type (Typ)
f3d70f08 10717 and then Is_Base_Type (Typ)
99a2d5bd 10718 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
10719 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
10720 then
10721 Set_Default_Aspect_Component_Value (Typ,
10722 Default_Aspect_Component_Value
10723 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
10724 end if;
10725
29a9d4be 10726 -- Default_Value
99a2d5bd 10727
10728 if Is_Scalar_Type (Typ)
f3d70f08 10729 and then Is_Base_Type (Typ)
99a2d5bd 10730 and then Has_Rep_Item (Typ, Name_Default_Value, False)
10731 and then Has_Rep_Item (Typ, Name_Default_Value)
10732 then
10733 Set_Default_Aspect_Value (Typ,
10734 Default_Aspect_Value
10735 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
10736 end if;
10737
10738 -- Discard_Names
10739
10740 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
10741 and then Has_Rep_Item (Typ, Name_Discard_Names)
10742 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10743 (Get_Rep_Item (Typ, Name_Discard_Names))
10744 then
10745 Set_Discard_Names (Typ);
10746 end if;
10747
10748 -- Invariants
10749
10750 if not Has_Rep_Item (Typ, Name_Invariant, False)
10751 and then Has_Rep_Item (Typ, Name_Invariant)
10752 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10753 (Get_Rep_Item (Typ, Name_Invariant))
10754 then
10755 Set_Has_Invariants (Typ);
10756
10757 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
10758 Set_Has_Inheritable_Invariants (Typ);
10759 end if;
d7487d7d 10760
953378ae 10761 -- If we have a subtype with invariants, whose base type does not have
10762 -- invariants, copy these invariants to the base type. This happens for
10763 -- the case of implicit base types created for scalar and array types.
d7487d7d 10764
953378ae 10765 elsif Has_Invariants (Typ)
d7487d7d 10766 and then not Has_Invariants (Base_Type (Typ))
10767 then
10768 Set_Has_Invariants (Base_Type (Typ));
10769 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
99a2d5bd 10770 end if;
10771
10772 -- Volatile
10773
10774 if not Has_Rep_Item (Typ, Name_Volatile, False)
10775 and then Has_Rep_Item (Typ, Name_Volatile)
10776 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10777 (Get_Rep_Item (Typ, Name_Volatile))
10778 then
10779 Set_Treat_As_Volatile (Typ);
10780 Set_Is_Volatile (Typ);
10781 end if;
10782
10783 -- Inheritance for derived types only
10784
10785 if Is_Derived_Type (Typ) then
10786 declare
10787 Bas_Typ : constant Entity_Id := Base_Type (Typ);
10788 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
10789
10790 begin
10791 -- Atomic_Components
10792
10793 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
10794 and then Has_Rep_Item (Typ, Name_Atomic_Components)
10795 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10796 (Get_Rep_Item (Typ, Name_Atomic_Components))
10797 then
10798 Set_Has_Atomic_Components (Imp_Bas_Typ);
10799 end if;
10800
10801 -- Volatile_Components
10802
10803 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
10804 and then Has_Rep_Item (Typ, Name_Volatile_Components)
10805 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10806 (Get_Rep_Item (Typ, Name_Volatile_Components))
10807 then
10808 Set_Has_Volatile_Components (Imp_Bas_Typ);
10809 end if;
10810
10811 -- Finalize_Storage_Only.
10812
10813 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
10814 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
10815 then
10816 Set_Finalize_Storage_Only (Bas_Typ);
10817 end if;
10818
10819 -- Universal_Aliasing
10820
10821 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
10822 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
10823 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10824 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
10825 then
10826 Set_Universal_Aliasing (Imp_Bas_Typ);
10827 end if;
10828
10829 -- Record type specific aspects
10830
10831 if Is_Record_Type (Typ) then
29a9d4be 10832
99a2d5bd 10833 -- Bit_Order
10834
10835 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
10836 and then Has_Rep_Item (Typ, Name_Bit_Order)
10837 then
10838 Set_Reverse_Bit_Order (Bas_Typ,
10839 Reverse_Bit_Order (Entity (Name
10840 (Get_Rep_Item (Typ, Name_Bit_Order)))));
10841 end if;
10842
10843 -- Scalar_Storage_Order
10844
10845 if not Has_Rep_Item (Typ, Name_Scalar_Storage_Order, False)
10846 and then Has_Rep_Item (Typ, Name_Scalar_Storage_Order)
10847 then
10848 Set_Reverse_Storage_Order (Bas_Typ,
10849 Reverse_Storage_Order (Entity (Name
10850 (Get_Rep_Item (Typ, Name_Scalar_Storage_Order)))));
b64082f2 10851
10852 -- Clear default SSO indications, since the inherited aspect
10853 -- which was set explicitly overrides the default.
10854
10855 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
10856 Set_SSO_Set_High_By_Default (Bas_Typ, False);
99a2d5bd 10857 end if;
10858 end if;
10859 end;
10860 end if;
10861 end Inherit_Aspects_At_Freeze_Point;
10862
d6f39728 10863 ----------------
10864 -- Initialize --
10865 ----------------
10866
10867 procedure Initialize is
10868 begin
7717ea00 10869 Address_Clause_Checks.Init;
10870 Independence_Checks.Init;
d6f39728 10871 Unchecked_Conversions.Init;
10872 end Initialize;
10873
2625eb01 10874 ---------------------------
10875 -- Install_Discriminants --
10876 ---------------------------
10877
10878 procedure Install_Discriminants (E : Entity_Id) is
10879 Disc : Entity_Id;
10880 Prev : Entity_Id;
10881 begin
10882 Disc := First_Discriminant (E);
10883 while Present (Disc) loop
10884 Prev := Current_Entity (Disc);
10885 Set_Current_Entity (Disc);
10886 Set_Is_Immediately_Visible (Disc);
10887 Set_Homonym (Disc, Prev);
10888 Next_Discriminant (Disc);
10889 end loop;
10890 end Install_Discriminants;
10891
d6f39728 10892 -------------------------
10893 -- Is_Operational_Item --
10894 -------------------------
10895
10896 function Is_Operational_Item (N : Node_Id) return Boolean is
10897 begin
10898 if Nkind (N) /= N_Attribute_Definition_Clause then
10899 return False;
b9e61b2a 10900
d6f39728 10901 else
10902 declare
b9e61b2a 10903 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 10904 begin
b9e61b2a 10905 return Id = Attribute_Input
d6f39728 10906 or else Id = Attribute_Output
10907 or else Id = Attribute_Read
f15731c4 10908 or else Id = Attribute_Write
10909 or else Id = Attribute_External_Tag;
d6f39728 10910 end;
10911 end if;
10912 end Is_Operational_Item;
10913
3b23aaa0 10914 -------------------------
10915 -- Is_Predicate_Static --
10916 -------------------------
10917
94d896aa 10918 -- Note: the basic legality of the expression has already been checked, so
10919 -- we don't need to worry about cases or ranges on strings for example.
10920
3b23aaa0 10921 function Is_Predicate_Static
10922 (Expr : Node_Id;
10923 Nam : Name_Id) return Boolean
10924 is
10925 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
973c2fba 10926 -- Given a list of case expression alternatives, returns True if all
10927 -- the alternatives are static (have all static choices, and a static
10928 -- expression).
3b23aaa0 10929
10930 function All_Static_Choices (L : List_Id) return Boolean;
a360a0f7 10931 -- Returns true if all elements of the list are OK static choices
3b23aaa0 10932 -- as defined below for Is_Static_Choice. Used for case expression
973c2fba 10933 -- alternatives and for the right operand of a membership test. An
10934 -- others_choice is static if the corresponding expression is static.
7c0c95b8 10935 -- The staticness of the bounds is checked separately.
3b23aaa0 10936
10937 function Is_Static_Choice (N : Node_Id) return Boolean;
10938 -- Returns True if N represents a static choice (static subtype, or
a360a0f7 10939 -- static subtype indication, or static expression, or static range).
3b23aaa0 10940 --
10941 -- Note that this is a bit more inclusive than we actually need
10942 -- (in particular membership tests do not allow the use of subtype
a360a0f7 10943 -- indications). But that doesn't matter, we have already checked
3b23aaa0 10944 -- that the construct is legal to get this far.
10945
10946 function Is_Type_Ref (N : Node_Id) return Boolean;
10947 pragma Inline (Is_Type_Ref);
973c2fba 10948 -- Returns True if N is a reference to the type for the predicate in the
10949 -- expression (i.e. if it is an identifier whose Chars field matches the
10950 -- Nam given in the call). N must not be parenthesized, if the type name
10951 -- appears in parens, this routine will return False.
3b23aaa0 10952
10953 ----------------------------------
10954 -- All_Static_Case_Alternatives --
10955 ----------------------------------
10956
10957 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
10958 N : Node_Id;
10959
10960 begin
10961 N := First (L);
10962 while Present (N) loop
10963 if not (All_Static_Choices (Discrete_Choices (N))
10964 and then Is_OK_Static_Expression (Expression (N)))
10965 then
10966 return False;
10967 end if;
10968
10969 Next (N);
10970 end loop;
10971
10972 return True;
10973 end All_Static_Case_Alternatives;
10974
10975 ------------------------
10976 -- All_Static_Choices --
10977 ------------------------
10978
10979 function All_Static_Choices (L : List_Id) return Boolean is
10980 N : Node_Id;
10981
10982 begin
10983 N := First (L);
10984 while Present (N) loop
10985 if not Is_Static_Choice (N) then
10986 return False;
10987 end if;
10988
10989 Next (N);
10990 end loop;
10991
10992 return True;
10993 end All_Static_Choices;
10994
10995 ----------------------
10996 -- Is_Static_Choice --
10997 ----------------------
10998
10999 function Is_Static_Choice (N : Node_Id) return Boolean is
11000 begin
7c0c95b8 11001 return Nkind (N) = N_Others_Choice
11002 or else Is_OK_Static_Expression (N)
3b23aaa0 11003 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11004 and then Is_OK_Static_Subtype (Entity (N)))
11005 or else (Nkind (N) = N_Subtype_Indication
11006 and then Is_OK_Static_Subtype (Entity (N)))
11007 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11008 end Is_Static_Choice;
11009
11010 -----------------
11011 -- Is_Type_Ref --
11012 -----------------
11013
11014 function Is_Type_Ref (N : Node_Id) return Boolean is
11015 begin
11016 return Nkind (N) = N_Identifier
11017 and then Chars (N) = Nam
11018 and then Paren_Count (N) = 0;
11019 end Is_Type_Ref;
11020
11021 -- Start of processing for Is_Predicate_Static
11022
11023 begin
3b23aaa0 11024 -- Predicate_Static means one of the following holds. Numbers are the
11025 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11026
11027 -- 16: A static expression
11028
11029 if Is_OK_Static_Expression (Expr) then
11030 return True;
11031
11032 -- 17: A membership test whose simple_expression is the current
11033 -- instance, and whose membership_choice_list meets the requirements
11034 -- for a static membership test.
11035
11036 elsif Nkind (Expr) in N_Membership_Test
11037 and then ((Present (Right_Opnd (Expr))
11038 and then Is_Static_Choice (Right_Opnd (Expr)))
11039 or else
11040 (Present (Alternatives (Expr))
11041 and then All_Static_Choices (Alternatives (Expr))))
11042 then
11043 return True;
11044
11045 -- 18. A case_expression whose selecting_expression is the current
11046 -- instance, and whose dependent expressions are static expressions.
11047
11048 elsif Nkind (Expr) = N_Case_Expression
11049 and then Is_Type_Ref (Expression (Expr))
11050 and then All_Static_Case_Alternatives (Alternatives (Expr))
11051 then
11052 return True;
11053
11054 -- 19. A call to a predefined equality or ordering operator, where one
11055 -- operand is the current instance, and the other is a static
11056 -- expression.
11057
94d896aa 11058 -- Note: the RM is clearly wrong here in not excluding string types.
11059 -- Without this exclusion, we would allow expressions like X > "ABC"
11060 -- to be considered as predicate-static, which is clearly not intended,
11061 -- since the idea is for predicate-static to be a subset of normal
11062 -- static expressions (and "DEF" > "ABC" is not a static expression).
11063
11064 -- However, we do allow internally generated (not from source) equality
11065 -- and inequality operations to be valid on strings (this helps deal
11066 -- with cases where we transform A in "ABC" to A = "ABC).
11067
3b23aaa0 11068 elsif Nkind (Expr) in N_Op_Compare
94d896aa 11069 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11070 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11071 and then not Comes_From_Source (Expr)))
3b23aaa0 11072 and then ((Is_Type_Ref (Left_Opnd (Expr))
11073 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11074 or else
11075 (Is_Type_Ref (Right_Opnd (Expr))
11076 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11077 then
11078 return True;
11079
11080 -- 20. A call to a predefined boolean logical operator, where each
11081 -- operand is predicate-static.
11082
11083 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11084 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11085 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11086 or else
11087 (Nkind (Expr) = N_Op_Not
11088 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11089 then
11090 return True;
11091
11092 -- 21. A short-circuit control form where both operands are
11093 -- predicate-static.
11094
11095 elsif Nkind (Expr) in N_Short_Circuit
11096 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11097 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11098 then
11099 return True;
11100
11101 -- 22. A parenthesized predicate-static expression. This does not
11102 -- require any special test, since we just ignore paren levels in
11103 -- all the cases above.
11104
11105 -- One more test that is an implementation artifact caused by the fact
499918a7 11106 -- that we are analyzing not the original expression, but the generated
3b23aaa0 11107 -- expression in the body of the predicate function. This can include
a360a0f7 11108 -- references to inherited predicates, so that the expression we are
3b23aaa0 11109 -- processing looks like:
11110
11111 -- expression and then xxPredicate (typ (Inns))
11112
11113 -- Where the call is to a Predicate function for an inherited predicate.
11114 -- We simply ignore such a call (which could be to either a dynamic or
499918a7 11115 -- a static predicate, but remember that we can have a Static_Predicate
3b23aaa0 11116 -- for a non-static subtype).
11117
11118 elsif Nkind (Expr) = N_Function_Call
11119 and then Is_Predicate_Function (Entity (Name (Expr)))
11120 then
11121 return True;
11122
11123 -- That's an exhaustive list of tests, all other cases are not
a360a0f7 11124 -- predicate-static, so we return False.
3b23aaa0 11125
11126 else
11127 return False;
11128 end if;
11129 end Is_Predicate_Static;
11130
2ff55065 11131 ---------------------
11132 -- Kill_Rep_Clause --
11133 ---------------------
11134
11135 procedure Kill_Rep_Clause (N : Node_Id) is
11136 begin
11137 pragma Assert (Ignore_Rep_Clauses);
360f426f 11138
11139 -- Note: we use Replace rather than Rewrite, because we don't want
11140 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11141 -- rep clause that is being replaced.
11142
4949ddd5 11143 Replace (N, Make_Null_Statement (Sloc (N)));
360f426f 11144
11145 -- The null statement must be marked as not coming from source. This is
37c6552c 11146 -- so that ASIS ignores it, and also the back end does not expect bogus
360f426f 11147 -- "from source" null statements in weird places (e.g. in declarative
11148 -- regions where such null statements are not allowed).
11149
11150 Set_Comes_From_Source (N, False);
2ff55065 11151 end Kill_Rep_Clause;
11152
d6f39728 11153 ------------------
11154 -- Minimum_Size --
11155 ------------------
11156
11157 function Minimum_Size
11158 (T : Entity_Id;
d5b349fa 11159 Biased : Boolean := False) return Nat
d6f39728 11160 is
11161 Lo : Uint := No_Uint;
11162 Hi : Uint := No_Uint;
11163 LoR : Ureal := No_Ureal;
11164 HiR : Ureal := No_Ureal;
11165 LoSet : Boolean := False;
11166 HiSet : Boolean := False;
11167 B : Uint;
11168 S : Nat;
11169 Ancest : Entity_Id;
f15731c4 11170 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 11171
11172 begin
11173 -- If bad type, return 0
11174
11175 if T = Any_Type then
11176 return 0;
11177
11178 -- For generic types, just return zero. There cannot be any legitimate
11179 -- need to know such a size, but this routine may be called with a
11180 -- generic type as part of normal processing.
11181
f02a9a9a 11182 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
d6f39728 11183 return 0;
11184
74c7ae52 11185 -- Access types (cannot have size smaller than System.Address)
d6f39728 11186
11187 elsif Is_Access_Type (T) then
74c7ae52 11188 return System_Address_Size;
d6f39728 11189
11190 -- Floating-point types
11191
11192 elsif Is_Floating_Point_Type (T) then
f15731c4 11193 return UI_To_Int (Esize (R_Typ));
d6f39728 11194
11195 -- Discrete types
11196
11197 elsif Is_Discrete_Type (T) then
11198
fdd294d1 11199 -- The following loop is looking for the nearest compile time known
11200 -- bounds following the ancestor subtype chain. The idea is to find
11201 -- the most restrictive known bounds information.
d6f39728 11202
11203 Ancest := T;
11204 loop
11205 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11206 return 0;
11207 end if;
11208
11209 if not LoSet then
11210 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11211 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11212 LoSet := True;
11213 exit when HiSet;
11214 end if;
11215 end if;
11216
11217 if not HiSet then
11218 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11219 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11220 HiSet := True;
11221 exit when LoSet;
11222 end if;
11223 end if;
11224
11225 Ancest := Ancestor_Subtype (Ancest);
11226
11227 if No (Ancest) then
11228 Ancest := Base_Type (T);
11229
11230 if Is_Generic_Type (Ancest) then
11231 return 0;
11232 end if;
11233 end if;
11234 end loop;
11235
11236 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 11237 -- Corresponding_Integer_Value values of the bounds, since these do not
11238 -- get set till the type is frozen, and this routine can be called
11239 -- before the type is frozen. Similarly the test for bounds being static
11240 -- needs to include the case where we have unanalyzed real literals for
11241 -- the same reason.
d6f39728 11242
11243 elsif Is_Fixed_Point_Type (T) then
11244
fdd294d1 11245 -- The following loop is looking for the nearest compile time known
11246 -- bounds following the ancestor subtype chain. The idea is to find
11247 -- the most restrictive known bounds information.
d6f39728 11248
11249 Ancest := T;
11250 loop
11251 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11252 return 0;
11253 end if;
11254
3062c401 11255 -- Note: In the following two tests for LoSet and HiSet, it may
11256 -- seem redundant to test for N_Real_Literal here since normally
11257 -- one would assume that the test for the value being known at
11258 -- compile time includes this case. However, there is a glitch.
11259 -- If the real literal comes from folding a non-static expression,
11260 -- then we don't consider any non- static expression to be known
11261 -- at compile time if we are in configurable run time mode (needed
11262 -- in some cases to give a clearer definition of what is and what
11263 -- is not accepted). So the test is indeed needed. Without it, we
11264 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11265
d6f39728 11266 if not LoSet then
11267 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11268 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11269 then
11270 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11271 LoSet := True;
11272 exit when HiSet;
11273 end if;
11274 end if;
11275
11276 if not HiSet then
11277 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11278 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11279 then
11280 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11281 HiSet := True;
11282 exit when LoSet;
11283 end if;
11284 end if;
11285
11286 Ancest := Ancestor_Subtype (Ancest);
11287
11288 if No (Ancest) then
11289 Ancest := Base_Type (T);
11290
11291 if Is_Generic_Type (Ancest) then
11292 return 0;
11293 end if;
11294 end if;
11295 end loop;
11296
11297 Lo := UR_To_Uint (LoR / Small_Value (T));
11298 Hi := UR_To_Uint (HiR / Small_Value (T));
11299
11300 -- No other types allowed
11301
11302 else
11303 raise Program_Error;
11304 end if;
11305
2866d595 11306 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 11307
cc46ff4b 11308 if (Biased
11309 and then not Is_Fixed_Point_Type (T)
11310 and then not (Is_Enumeration_Type (T)
11311 and then Has_Non_Standard_Rep (T)))
d6f39728 11312 or else Has_Biased_Representation (T)
11313 then
11314 Hi := Hi - Lo;
11315 Lo := Uint_0;
11316 end if;
11317
11318 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 11319 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 11320 -- to be accommodated in the base type.
d6f39728 11321
11322 if Lo < 0 or else Hi < 0 then
11323 S := 1;
11324 B := Uint_1;
11325
da253936 11326 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11327 -- Note that we accommodate the case where the bounds cross. This
d6f39728 11328 -- can happen either because of the way the bounds are declared
11329 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11330
11331 while Lo < -B
11332 or else Hi < -B
11333 or else Lo >= B
11334 or else Hi >= B
11335 loop
11336 B := Uint_2 ** S;
11337 S := S + 1;
11338 end loop;
11339
11340 -- Unsigned case
11341
11342 else
11343 -- If both bounds are positive, make sure that both are represen-
11344 -- table in the case where the bounds are crossed. This can happen
11345 -- either because of the way the bounds are declared, or because of
11346 -- the algorithm in Freeze_Fixed_Point_Type.
11347
11348 if Lo > Hi then
11349 Hi := Lo;
11350 end if;
11351
da253936 11352 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 11353
11354 S := 0;
11355 while Hi >= Uint_2 ** S loop
11356 S := S + 1;
11357 end loop;
11358 end if;
11359
11360 return S;
11361 end Minimum_Size;
11362
44e4341e 11363 ---------------------------
11364 -- New_Stream_Subprogram --
11365 ---------------------------
d6f39728 11366
44e4341e 11367 procedure New_Stream_Subprogram
11368 (N : Node_Id;
11369 Ent : Entity_Id;
11370 Subp : Entity_Id;
11371 Nam : TSS_Name_Type)
d6f39728 11372 is
11373 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 11374 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 11375 Subp_Id : Entity_Id;
d6f39728 11376 Subp_Decl : Node_Id;
11377 F : Entity_Id;
11378 Etyp : Entity_Id;
11379
44e4341e 11380 Defer_Declaration : constant Boolean :=
11381 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
11382 -- For a tagged type, there is a declaration for each stream attribute
11383 -- at the freeze point, and we must generate only a completion of this
11384 -- declaration. We do the same for private types, because the full view
11385 -- might be tagged. Otherwise we generate a declaration at the point of
11386 -- the attribute definition clause.
11387
f15731c4 11388 function Build_Spec return Node_Id;
11389 -- Used for declaration and renaming declaration, so that this is
11390 -- treated as a renaming_as_body.
11391
11392 ----------------
11393 -- Build_Spec --
11394 ----------------
11395
d5b349fa 11396 function Build_Spec return Node_Id is
44e4341e 11397 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
11398 Formals : List_Id;
11399 Spec : Node_Id;
83c6c069 11400 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
44e4341e 11401
f15731c4 11402 begin
9dfe12ae 11403 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 11404
44e4341e 11405 -- S : access Root_Stream_Type'Class
11406
11407 Formals := New_List (
11408 Make_Parameter_Specification (Loc,
11409 Defining_Identifier =>
11410 Make_Defining_Identifier (Loc, Name_S),
11411 Parameter_Type =>
11412 Make_Access_Definition (Loc,
11413 Subtype_Mark =>
83c6c069 11414 New_Occurrence_Of (
44e4341e 11415 Designated_Type (Etype (F)), Loc))));
11416
11417 if Nam = TSS_Stream_Input then
4bba0a8d 11418 Spec :=
11419 Make_Function_Specification (Loc,
11420 Defining_Unit_Name => Subp_Id,
11421 Parameter_Specifications => Formals,
11422 Result_Definition => T_Ref);
44e4341e 11423 else
11424 -- V : [out] T
f15731c4 11425
44e4341e 11426 Append_To (Formals,
11427 Make_Parameter_Specification (Loc,
11428 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
11429 Out_Present => Out_P,
11430 Parameter_Type => T_Ref));
f15731c4 11431
d3ef794c 11432 Spec :=
11433 Make_Procedure_Specification (Loc,
11434 Defining_Unit_Name => Subp_Id,
11435 Parameter_Specifications => Formals);
44e4341e 11436 end if;
f15731c4 11437
44e4341e 11438 return Spec;
11439 end Build_Spec;
d6f39728 11440
44e4341e 11441 -- Start of processing for New_Stream_Subprogram
d6f39728 11442
44e4341e 11443 begin
11444 F := First_Formal (Subp);
11445
11446 if Ekind (Subp) = E_Procedure then
11447 Etyp := Etype (Next_Formal (F));
d6f39728 11448 else
44e4341e 11449 Etyp := Etype (Subp);
d6f39728 11450 end if;
f15731c4 11451
44e4341e 11452 -- Prepare subprogram declaration and insert it as an action on the
11453 -- clause node. The visibility for this entity is used to test for
11454 -- visibility of the attribute definition clause (in the sense of
11455 -- 8.3(23) as amended by AI-195).
9dfe12ae 11456
44e4341e 11457 if not Defer_Declaration then
f15731c4 11458 Subp_Decl :=
11459 Make_Subprogram_Declaration (Loc,
11460 Specification => Build_Spec);
44e4341e 11461
11462 -- For a tagged type, there is always a visible declaration for each
15ebb600 11463 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 11464 -- completion of this declaration occurs at the freeze point, which is
11465 -- not always visible at places where the attribute definition clause is
11466 -- visible. So, we create a dummy entity here for the purpose of
11467 -- tracking the visibility of the attribute definition clause itself.
11468
11469 else
11470 Subp_Id :=
55868293 11471 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 11472 Subp_Decl :=
11473 Make_Object_Declaration (Loc,
11474 Defining_Identifier => Subp_Id,
11475 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 11476 end if;
11477
44e4341e 11478 Insert_Action (N, Subp_Decl);
11479 Set_Entity (N, Subp_Id);
11480
d6f39728 11481 Subp_Decl :=
11482 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 11483 Specification => Build_Spec,
83c6c069 11484 Name => New_Occurrence_Of (Subp, Loc));
d6f39728 11485
44e4341e 11486 if Defer_Declaration then
d6f39728 11487 Set_TSS (Base_Type (Ent), Subp_Id);
11488 else
11489 Insert_Action (N, Subp_Decl);
11490 Copy_TSS (Subp_Id, Base_Type (Ent));
11491 end if;
44e4341e 11492 end New_Stream_Subprogram;
d6f39728 11493
2625eb01 11494 ------------------------------------------
11495 -- Push_Scope_And_Install_Discriminants --
11496 ------------------------------------------
11497
11498 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
11499 begin
11500 if Has_Discriminants (E) then
11501 Push_Scope (E);
11502
11503 -- Make discriminants visible for type declarations and protected
11504 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11505
11506 if Nkind (Parent (E)) /= N_Subtype_Declaration then
11507 Install_Discriminants (E);
11508 end if;
11509 end if;
11510 end Push_Scope_And_Install_Discriminants;
11511
d6f39728 11512 ------------------------
11513 -- Rep_Item_Too_Early --
11514 ------------------------
11515
80d4fec4 11516 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 11517 begin
44e4341e 11518 -- Cannot apply non-operational rep items to generic types
d6f39728 11519
f15731c4 11520 if Is_Operational_Item (N) then
11521 return False;
11522
11523 elsif Is_Type (T)
d6f39728 11524 and then Is_Generic_Type (Root_Type (T))
11525 then
503f7fd3 11526 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 11527 return True;
11528 end if;
11529
fdd294d1 11530 -- Otherwise check for incomplete type
d6f39728 11531
11532 if Is_Incomplete_Or_Private_Type (T)
11533 and then No (Underlying_Type (T))
d64221a7 11534 and then
11535 (Nkind (N) /= N_Pragma
60014bc9 11536 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 11537 then
11538 Error_Msg_N
11539 ("representation item must be after full type declaration", N);
11540 return True;
11541
1a34e48c 11542 -- If the type has incomplete components, a representation clause is
d6f39728 11543 -- illegal but stream attributes and Convention pragmas are correct.
11544
11545 elsif Has_Private_Component (T) then
f15731c4 11546 if Nkind (N) = N_Pragma then
d6f39728 11547 return False;
b9e61b2a 11548
d6f39728 11549 else
11550 Error_Msg_N
11551 ("representation item must appear after type is fully defined",
11552 N);
11553 return True;
11554 end if;
11555 else
11556 return False;
11557 end if;
11558 end Rep_Item_Too_Early;
11559
11560 -----------------------
11561 -- Rep_Item_Too_Late --
11562 -----------------------
11563
11564 function Rep_Item_Too_Late
11565 (T : Entity_Id;
11566 N : Node_Id;
d5b349fa 11567 FOnly : Boolean := False) return Boolean
d6f39728 11568 is
11569 S : Entity_Id;
11570 Parent_Type : Entity_Id;
11571
4d0944e9 11572 procedure No_Type_Rep_Item;
11573 -- Output message indicating that no type-related aspects can be
11574 -- specified due to some property of the parent type.
11575
d6f39728 11576 procedure Too_Late;
4d0944e9 11577 -- Output message for an aspect being specified too late
11578
11579 -- Note that neither of the above errors is considered a serious one,
11580 -- since the effect is simply that we ignore the representation clause
11581 -- in these cases.
04d38ee4 11582 -- Is this really true? In any case if we make this change we must
11583 -- document the requirement in the spec of Rep_Item_Too_Late that
11584 -- if True is returned, then the rep item must be completely ignored???
4d0944e9 11585
11586 ----------------------
11587 -- No_Type_Rep_Item --
11588 ----------------------
11589
11590 procedure No_Type_Rep_Item is
11591 begin
11592 Error_Msg_N ("|type-related representation item not permitted!", N);
11593 end No_Type_Rep_Item;
d53a018a 11594
11595 --------------
11596 -- Too_Late --
11597 --------------
d6f39728 11598
11599 procedure Too_Late is
11600 begin
ce4da1ed 11601 -- Other compilers seem more relaxed about rep items appearing too
11602 -- late. Since analysis tools typically don't care about rep items
11603 -- anyway, no reason to be too strict about this.
11604
a9cd517c 11605 if not Relaxed_RM_Semantics then
11606 Error_Msg_N ("|representation item appears too late!", N);
11607 end if;
d6f39728 11608 end Too_Late;
11609
11610 -- Start of processing for Rep_Item_Too_Late
11611
11612 begin
a3248fc4 11613 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 11614
11615 if Is_Frozen (T)
a3248fc4 11616
11617 -- Exclude imported types, which may be frozen if they appear in a
11618 -- representation clause for a local type.
11619
4aa270d8 11620 and then not From_Limited_With (T)
a3248fc4 11621
a9cd517c 11622 -- Exclude generated entities (not coming from source). The common
a3248fc4 11623 -- case is when we generate a renaming which prematurely freezes the
11624 -- renamed internal entity, but we still want to be able to set copies
11625 -- of attribute values such as Size/Alignment.
11626
11627 and then Comes_From_Source (T)
d6f39728 11628 then
11629 Too_Late;
11630 S := First_Subtype (T);
11631
11632 if Present (Freeze_Node (S)) then
04d38ee4 11633 if not Relaxed_RM_Semantics then
11634 Error_Msg_NE
11635 ("??no more representation items for }", Freeze_Node (S), S);
11636 end if;
d6f39728 11637 end if;
11638
11639 return True;
11640
d1a2e31b 11641 -- Check for case of untagged derived type whose parent either has
4d0944e9 11642 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11643 -- this case we do not output a Too_Late message, since there is no
11644 -- earlier point where the rep item could be placed to make it legal.
d6f39728 11645
11646 elsif Is_Type (T)
11647 and then not FOnly
11648 and then Is_Derived_Type (T)
11649 and then not Is_Tagged_Type (T)
11650 then
11651 Parent_Type := Etype (Base_Type (T));
11652
11653 if Has_Primitive_Operations (Parent_Type) then
4d0944e9 11654 No_Type_Rep_Item;
04d38ee4 11655
11656 if not Relaxed_RM_Semantics then
11657 Error_Msg_NE
11658 ("\parent type & has primitive operations!", N, Parent_Type);
11659 end if;
11660
d6f39728 11661 return True;
11662
11663 elsif Is_By_Reference_Type (Parent_Type) then
4d0944e9 11664 No_Type_Rep_Item;
04d38ee4 11665
11666 if not Relaxed_RM_Semantics then
11667 Error_Msg_NE
11668 ("\parent type & is a by reference type!", N, Parent_Type);
11669 end if;
11670
d6f39728 11671 return True;
11672 end if;
11673 end if;
11674
04d38ee4 11675 -- No error, but one more warning to consider. The RM (surprisingly)
11676 -- allows this pattern:
11677
11678 -- type S is ...
11679 -- primitive operations for S
11680 -- type R is new S;
11681 -- rep clause for S
11682
11683 -- Meaning that calls on the primitive operations of S for values of
11684 -- type R may require possibly expensive implicit conversion operations.
11685 -- This is not an error, but is worth a warning.
11686
11687 if not Relaxed_RM_Semantics and then Is_Type (T) then
11688 declare
11689 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
11690
11691 begin
11692 if Present (DTL)
11693 and then Has_Primitive_Operations (Base_Type (T))
11694
11695 -- For now, do not generate this warning for the case of aspect
11696 -- specification using Ada 2012 syntax, since we get wrong
11697 -- messages we do not understand. The whole business of derived
11698 -- types and rep items seems a bit confused when aspects are
11699 -- used, since the aspects are not evaluated till freeze time.
11700
11701 and then not From_Aspect_Specification (N)
11702 then
11703 Error_Msg_Sloc := Sloc (DTL);
11704 Error_Msg_N
11705 ("representation item for& appears after derived type "
11706 & "declaration#??", N);
11707 Error_Msg_NE
11708 ("\may result in implicit conversions for primitive "
11709 & "operations of&??", N, T);
11710 Error_Msg_NE
11711 ("\to change representations when called with arguments "
11712 & "of type&??", N, DTL);
11713 end if;
11714 end;
11715 end if;
11716
3062c401 11717 -- No error, link item into head of chain of rep items for the entity,
11718 -- but avoid chaining if we have an overloadable entity, and the pragma
11719 -- is one that can apply to multiple overloaded entities.
11720
b9e61b2a 11721 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 11722 declare
11723 Pname : constant Name_Id := Pragma_Name (N);
11724 begin
18393965 11725 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
11726 Name_External, Name_Interface)
fdd294d1 11727 then
11728 return False;
11729 end if;
11730 end;
3062c401 11731 end if;
11732
fdd294d1 11733 Record_Rep_Item (T, N);
d6f39728 11734 return False;
11735 end Rep_Item_Too_Late;
11736
2072eaa9 11737 -------------------------------------
11738 -- Replace_Type_References_Generic --
11739 -------------------------------------
11740
37c6552c 11741 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
11742 TName : constant Name_Id := Chars (T);
2072eaa9 11743
11744 function Replace_Node (N : Node_Id) return Traverse_Result;
11745 -- Processes a single node in the traversal procedure below, checking
11746 -- if node N should be replaced, and if so, doing the replacement.
11747
11748 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
11749 -- This instantiation provides the body of Replace_Type_References
11750
11751 ------------------
11752 -- Replace_Node --
11753 ------------------
11754
11755 function Replace_Node (N : Node_Id) return Traverse_Result is
11756 S : Entity_Id;
11757 P : Node_Id;
11758
11759 begin
11760 -- Case of identifier
11761
11762 if Nkind (N) = N_Identifier then
11763
37c6552c 11764 -- If not the type name, check whether it is a reference to
11765 -- some other type, which must be frozen before the predicate
11766 -- function is analyzed, i.e. before the freeze node of the
11767 -- type to which the predicate applies.
2072eaa9 11768
11769 if Chars (N) /= TName then
37c6552c 11770 if Present (Current_Entity (N))
11771 and then Is_Type (Current_Entity (N))
11772 then
11773 Freeze_Before (Freeze_Node (T), Current_Entity (N));
11774 end if;
11775
2072eaa9 11776 return Skip;
11777
11778 -- Otherwise do the replacement and we are done with this node
11779
11780 else
11781 Replace_Type_Reference (N);
11782 return Skip;
11783 end if;
11784
11785 -- Case of selected component (which is what a qualification
11786 -- looks like in the unanalyzed tree, which is what we have.
11787
11788 elsif Nkind (N) = N_Selected_Component then
11789
11790 -- If selector name is not our type, keeping going (we might
11791 -- still have an occurrence of the type in the prefix).
11792
11793 if Nkind (Selector_Name (N)) /= N_Identifier
11794 or else Chars (Selector_Name (N)) /= TName
11795 then
11796 return OK;
11797
11798 -- Selector name is our type, check qualification
11799
11800 else
11801 -- Loop through scopes and prefixes, doing comparison
11802
11803 S := Current_Scope;
11804 P := Prefix (N);
11805 loop
11806 -- Continue if no more scopes or scope with no name
11807
11808 if No (S) or else Nkind (S) not in N_Has_Chars then
11809 return OK;
11810 end if;
11811
11812 -- Do replace if prefix is an identifier matching the
11813 -- scope that we are currently looking at.
11814
11815 if Nkind (P) = N_Identifier
11816 and then Chars (P) = Chars (S)
11817 then
11818 Replace_Type_Reference (N);
11819 return Skip;
11820 end if;
11821
11822 -- Go check scope above us if prefix is itself of the
11823 -- form of a selected component, whose selector matches
11824 -- the scope we are currently looking at.
11825
11826 if Nkind (P) = N_Selected_Component
11827 and then Nkind (Selector_Name (P)) = N_Identifier
11828 and then Chars (Selector_Name (P)) = Chars (S)
11829 then
11830 S := Scope (S);
11831 P := Prefix (P);
11832
11833 -- For anything else, we don't have a match, so keep on
11834 -- going, there are still some weird cases where we may
11835 -- still have a replacement within the prefix.
11836
11837 else
11838 return OK;
11839 end if;
11840 end loop;
11841 end if;
11842
ec6f6da5 11843 -- Continue for any other node kind
2072eaa9 11844
11845 else
11846 return OK;
11847 end if;
11848 end Replace_Node;
11849
11850 begin
11851 Replace_Type_Refs (N);
11852 end Replace_Type_References_Generic;
11853
d6f39728 11854 -------------------------
11855 -- Same_Representation --
11856 -------------------------
11857
11858 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
11859 T1 : constant Entity_Id := Underlying_Type (Typ1);
11860 T2 : constant Entity_Id := Underlying_Type (Typ2);
11861
11862 begin
11863 -- A quick check, if base types are the same, then we definitely have
11864 -- the same representation, because the subtype specific representation
11865 -- attributes (Size and Alignment) do not affect representation from
11866 -- the point of view of this test.
11867
11868 if Base_Type (T1) = Base_Type (T2) then
11869 return True;
11870
11871 elsif Is_Private_Type (Base_Type (T2))
11872 and then Base_Type (T1) = Full_View (Base_Type (T2))
11873 then
11874 return True;
11875 end if;
11876
11877 -- Tagged types never have differing representations
11878
11879 if Is_Tagged_Type (T1) then
11880 return True;
11881 end if;
11882
11883 -- Representations are definitely different if conventions differ
11884
11885 if Convention (T1) /= Convention (T2) then
11886 return False;
11887 end if;
11888
ef0772bc 11889 -- Representations are different if component alignments or scalar
11890 -- storage orders differ.
d6f39728 11891
11892 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
726fd56a 11893 and then
d6f39728 11894 (Is_Record_Type (T2) or else Is_Array_Type (T2))
ef0772bc 11895 and then
11896 (Component_Alignment (T1) /= Component_Alignment (T2)
f02a9a9a 11897 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
d6f39728 11898 then
11899 return False;
11900 end if;
11901
11902 -- For arrays, the only real issue is component size. If we know the
11903 -- component size for both arrays, and it is the same, then that's
11904 -- good enough to know we don't have a change of representation.
11905
11906 if Is_Array_Type (T1) then
11907 if Known_Component_Size (T1)
11908 and then Known_Component_Size (T2)
11909 and then Component_Size (T1) = Component_Size (T2)
11910 then
9f1130cc 11911 if VM_Target = No_VM then
11912 return True;
11913
11914 -- In VM targets the representation of arrays with aliased
11915 -- components differs from arrays with non-aliased components
11916
11917 else
11918 return Has_Aliased_Components (Base_Type (T1))
0ba3592b 11919 =
11920 Has_Aliased_Components (Base_Type (T2));
9f1130cc 11921 end if;
d6f39728 11922 end if;
11923 end if;
11924
11925 -- Types definitely have same representation if neither has non-standard
11926 -- representation since default representations are always consistent.
11927 -- If only one has non-standard representation, and the other does not,
11928 -- then we consider that they do not have the same representation. They
11929 -- might, but there is no way of telling early enough.
11930
11931 if Has_Non_Standard_Rep (T1) then
11932 if not Has_Non_Standard_Rep (T2) then
11933 return False;
11934 end if;
11935 else
11936 return not Has_Non_Standard_Rep (T2);
11937 end if;
11938
fdd294d1 11939 -- Here the two types both have non-standard representation, and we need
11940 -- to determine if they have the same non-standard representation.
d6f39728 11941
11942 -- For arrays, we simply need to test if the component sizes are the
11943 -- same. Pragma Pack is reflected in modified component sizes, so this
11944 -- check also deals with pragma Pack.
11945
11946 if Is_Array_Type (T1) then
11947 return Component_Size (T1) = Component_Size (T2);
11948
11949 -- Tagged types always have the same representation, because it is not
11950 -- possible to specify different representations for common fields.
11951
11952 elsif Is_Tagged_Type (T1) then
11953 return True;
11954
11955 -- Case of record types
11956
11957 elsif Is_Record_Type (T1) then
11958
11959 -- Packed status must conform
11960
11961 if Is_Packed (T1) /= Is_Packed (T2) then
11962 return False;
11963
11964 -- Otherwise we must check components. Typ2 maybe a constrained
11965 -- subtype with fewer components, so we compare the components
11966 -- of the base types.
11967
11968 else
11969 Record_Case : declare
11970 CD1, CD2 : Entity_Id;
11971
11972 function Same_Rep return Boolean;
11973 -- CD1 and CD2 are either components or discriminants. This
ef0772bc 11974 -- function tests whether they have the same representation.
d6f39728 11975
80d4fec4 11976 --------------
11977 -- Same_Rep --
11978 --------------
11979
d6f39728 11980 function Same_Rep return Boolean is
11981 begin
11982 if No (Component_Clause (CD1)) then
11983 return No (Component_Clause (CD2));
d6f39728 11984 else
ef0772bc 11985 -- Note: at this point, component clauses have been
11986 -- normalized to the default bit order, so that the
11987 -- comparison of Component_Bit_Offsets is meaningful.
11988
d6f39728 11989 return
11990 Present (Component_Clause (CD2))
11991 and then
11992 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
11993 and then
11994 Esize (CD1) = Esize (CD2);
11995 end if;
11996 end Same_Rep;
11997
1e35409d 11998 -- Start of processing for Record_Case
d6f39728 11999
12000 begin
12001 if Has_Discriminants (T1) then
d6f39728 12002
9dfe12ae 12003 -- The number of discriminants may be different if the
12004 -- derived type has fewer (constrained by values). The
12005 -- invisible discriminants retain the representation of
12006 -- the original, so the discrepancy does not per se
12007 -- indicate a different representation.
12008
b9e61b2a 12009 CD1 := First_Discriminant (T1);
12010 CD2 := First_Discriminant (T2);
12011 while Present (CD1) and then Present (CD2) loop
d6f39728 12012 if not Same_Rep then
12013 return False;
12014 else
12015 Next_Discriminant (CD1);
12016 Next_Discriminant (CD2);
12017 end if;
12018 end loop;
12019 end if;
12020
12021 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12022 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 12023 while Present (CD1) loop
12024 if not Same_Rep then
12025 return False;
12026 else
12027 Next_Component (CD1);
12028 Next_Component (CD2);
12029 end if;
12030 end loop;
12031
12032 return True;
12033 end Record_Case;
12034 end if;
12035
12036 -- For enumeration types, we must check each literal to see if the
12037 -- representation is the same. Note that we do not permit enumeration
1a34e48c 12038 -- representation clauses for Character and Wide_Character, so these
d6f39728 12039 -- cases were already dealt with.
12040
12041 elsif Is_Enumeration_Type (T1) then
d6f39728 12042 Enumeration_Case : declare
12043 L1, L2 : Entity_Id;
12044
12045 begin
12046 L1 := First_Literal (T1);
12047 L2 := First_Literal (T2);
d6f39728 12048 while Present (L1) loop
12049 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12050 return False;
12051 else
12052 Next_Literal (L1);
12053 Next_Literal (L2);
12054 end if;
12055 end loop;
12056
12057 return True;
d6f39728 12058 end Enumeration_Case;
12059
12060 -- Any other types have the same representation for these purposes
12061
12062 else
12063 return True;
12064 end if;
d6f39728 12065 end Same_Representation;
12066
3061ffde 12067 --------------------------------
12068 -- Resolve_Iterable_Operation --
12069 --------------------------------
12070
12071 procedure Resolve_Iterable_Operation
12072 (N : Node_Id;
12073 Cursor : Entity_Id;
12074 Typ : Entity_Id;
12075 Nam : Name_Id)
12076 is
12077 Ent : Entity_Id;
12078 F1 : Entity_Id;
12079 F2 : Entity_Id;
12080
12081 begin
12082 if not Is_Overloaded (N) then
12083 if not Is_Entity_Name (N)
12084 or else Ekind (Entity (N)) /= E_Function
12085 or else Scope (Entity (N)) /= Scope (Typ)
12086 or else No (First_Formal (Entity (N)))
12087 or else Etype (First_Formal (Entity (N))) /= Typ
12088 then
12089 Error_Msg_N ("iterable primitive must be local function name "
12090 & "whose first formal is an iterable type", N);
a9f5fea7 12091 return;
3061ffde 12092 end if;
12093
12094 Ent := Entity (N);
12095 F1 := First_Formal (Ent);
12096 if Nam = Name_First then
12097
12098 -- First (Container) => Cursor
12099
12100 if Etype (Ent) /= Cursor then
12101 Error_Msg_N ("primitive for First must yield a curosr", N);
12102 end if;
12103
12104 elsif Nam = Name_Next then
12105
12106 -- Next (Container, Cursor) => Cursor
12107
12108 F2 := Next_Formal (F1);
12109
12110 if Etype (F2) /= Cursor
12111 or else Etype (Ent) /= Cursor
12112 or else Present (Next_Formal (F2))
12113 then
12114 Error_Msg_N ("no match for Next iterable primitive", N);
12115 end if;
12116
12117 elsif Nam = Name_Has_Element then
12118
12119 -- Has_Element (Container, Cursor) => Boolean
12120
12121 F2 := Next_Formal (F1);
12122 if Etype (F2) /= Cursor
12123 or else Etype (Ent) /= Standard_Boolean
12124 or else Present (Next_Formal (F2))
12125 then
12126 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12127 end if;
12128
12129 elsif Nam = Name_Element then
b9b03799 12130 F2 := Next_Formal (F1);
12131
12132 if No (F2)
12133 or else Etype (F2) /= Cursor
12134 or else Present (Next_Formal (F2))
12135 then
12136 Error_Msg_N ("no match for Element iterable primitive", N);
12137 end if;
3061ffde 12138 null;
12139
12140 else
12141 raise Program_Error;
12142 end if;
12143
12144 else
12145 -- Overloaded case: find subprogram with proper signature.
12146 -- Caller will report error if no match is found.
12147
12148 declare
12149 I : Interp_Index;
12150 It : Interp;
12151
12152 begin
12153 Get_First_Interp (N, I, It);
12154 while Present (It.Typ) loop
12155 if Ekind (It.Nam) = E_Function
b9b03799 12156 and then Scope (It.Nam) = Scope (Typ)
3061ffde 12157 and then Etype (First_Formal (It.Nam)) = Typ
12158 then
12159 F1 := First_Formal (It.Nam);
12160
12161 if Nam = Name_First then
12162 if Etype (It.Nam) = Cursor
12163 and then No (Next_Formal (F1))
12164 then
12165 Set_Entity (N, It.Nam);
12166 exit;
12167 end if;
12168
12169 elsif Nam = Name_Next then
12170 F2 := Next_Formal (F1);
12171
12172 if Present (F2)
12173 and then No (Next_Formal (F2))
12174 and then Etype (F2) = Cursor
12175 and then Etype (It.Nam) = Cursor
12176 then
12177 Set_Entity (N, It.Nam);
12178 exit;
12179 end if;
12180
12181 elsif Nam = Name_Has_Element then
12182 F2 := Next_Formal (F1);
12183
12184 if Present (F2)
12185 and then No (Next_Formal (F2))
12186 and then Etype (F2) = Cursor
12187 and then Etype (It.Nam) = Standard_Boolean
12188 then
12189 Set_Entity (N, It.Nam);
12190 F2 := Next_Formal (F1);
12191 exit;
12192 end if;
12193
12194 elsif Nam = Name_Element then
b9b03799 12195 F2 := Next_Formal (F1);
12196
3061ffde 12197 if Present (F2)
12198 and then No (Next_Formal (F2))
12199 and then Etype (F2) = Cursor
12200 then
12201 Set_Entity (N, It.Nam);
12202 exit;
12203 end if;
12204 end if;
12205 end if;
12206
12207 Get_Next_Interp (I, It);
12208 end loop;
12209 end;
12210 end if;
12211 end Resolve_Iterable_Operation;
12212
b77e4501 12213 ----------------
12214 -- Set_Biased --
12215 ----------------
12216
12217 procedure Set_Biased
12218 (E : Entity_Id;
12219 N : Node_Id;
12220 Msg : String;
12221 Biased : Boolean := True)
12222 is
12223 begin
12224 if Biased then
12225 Set_Has_Biased_Representation (E);
12226
12227 if Warn_On_Biased_Representation then
12228 Error_Msg_NE
1e3532e7 12229 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 12230 end if;
12231 end if;
12232 end Set_Biased;
12233
d6f39728 12234 --------------------
12235 -- Set_Enum_Esize --
12236 --------------------
12237
12238 procedure Set_Enum_Esize (T : Entity_Id) is
12239 Lo : Uint;
12240 Hi : Uint;
12241 Sz : Nat;
12242
12243 begin
12244 Init_Alignment (T);
12245
12246 -- Find the minimum standard size (8,16,32,64) that fits
12247
12248 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12249 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12250
12251 if Lo < 0 then
12252 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 12253 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12254
12255 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12256 Sz := 16;
12257
12258 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12259 Sz := 32;
12260
12261 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12262 Sz := 64;
12263 end if;
12264
12265 else
12266 if Hi < Uint_2**08 then
f15731c4 12267 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12268
12269 elsif Hi < Uint_2**16 then
12270 Sz := 16;
12271
12272 elsif Hi < Uint_2**32 then
12273 Sz := 32;
12274
12275 else pragma Assert (Hi < Uint_2**63);
12276 Sz := 64;
12277 end if;
12278 end if;
12279
12280 -- That minimum is the proper size unless we have a foreign convention
12281 -- and the size required is 32 or less, in which case we bump the size
12282 -- up to 32. This is required for C and C++ and seems reasonable for
12283 -- all other foreign conventions.
12284
12285 if Has_Foreign_Convention (T)
12286 and then Esize (T) < Standard_Integer_Size
db1eed69 12287
12288 -- Don't do this if Short_Enums on target
12289
e9185b9d 12290 and then not Target_Short_Enums
d6f39728 12291 then
12292 Init_Esize (T, Standard_Integer_Size);
d6f39728 12293 else
12294 Init_Esize (T, Sz);
12295 end if;
d6f39728 12296 end Set_Enum_Esize;
12297
2625eb01 12298 -----------------------------
12299 -- Uninstall_Discriminants --
12300 -----------------------------
12301
12302 procedure Uninstall_Discriminants (E : Entity_Id) is
12303 Disc : Entity_Id;
12304 Prev : Entity_Id;
12305 Outer : Entity_Id;
12306
12307 begin
12308 -- Discriminants have been made visible for type declarations and
12309 -- protected type declarations, not for subtype declarations.
12310
12311 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12312 Disc := First_Discriminant (E);
12313 while Present (Disc) loop
12314 if Disc /= Current_Entity (Disc) then
12315 Prev := Current_Entity (Disc);
12316 while Present (Prev)
12317 and then Present (Homonym (Prev))
12318 and then Homonym (Prev) /= Disc
12319 loop
12320 Prev := Homonym (Prev);
12321 end loop;
12322 else
12323 Prev := Empty;
12324 end if;
12325
12326 Set_Is_Immediately_Visible (Disc, False);
12327
12328 Outer := Homonym (Disc);
12329 while Present (Outer) and then Scope (Outer) = E loop
12330 Outer := Homonym (Outer);
12331 end loop;
12332
12333 -- Reset homonym link of other entities, but do not modify link
12334 -- between entities in current scope, so that the back-end can
12335 -- have a proper count of local overloadings.
12336
12337 if No (Prev) then
12338 Set_Name_Entity_Id (Chars (Disc), Outer);
12339
12340 elsif Scope (Prev) /= Scope (Disc) then
12341 Set_Homonym (Prev, Outer);
12342 end if;
12343
12344 Next_Discriminant (Disc);
12345 end loop;
12346 end if;
12347 end Uninstall_Discriminants;
12348
12349 -------------------------------------------
12350 -- Uninstall_Discriminants_And_Pop_Scope --
12351 -------------------------------------------
12352
12353 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
12354 begin
12355 if Has_Discriminants (E) then
12356 Uninstall_Discriminants (E);
12357 Pop_Scope;
12358 end if;
12359 end Uninstall_Discriminants_And_Pop_Scope;
12360
83f8f0a6 12361 ------------------------------
12362 -- Validate_Address_Clauses --
12363 ------------------------------
12364
12365 procedure Validate_Address_Clauses is
12366 begin
12367 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
12368 declare
12369 ACCR : Address_Clause_Check_Record
12370 renames Address_Clause_Checks.Table (J);
12371
d6da7448 12372 Expr : Node_Id;
12373
83f8f0a6 12374 X_Alignment : Uint;
12375 Y_Alignment : Uint;
12376
12377 X_Size : Uint;
12378 Y_Size : Uint;
12379
12380 begin
12381 -- Skip processing of this entry if warning already posted
12382
12383 if not Address_Warning_Posted (ACCR.N) then
d6da7448 12384 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 12385
d6da7448 12386 -- Get alignments
83f8f0a6 12387
d6da7448 12388 X_Alignment := Alignment (ACCR.X);
12389 Y_Alignment := Alignment (ACCR.Y);
83f8f0a6 12390
12391 -- Similarly obtain sizes
12392
d6da7448 12393 X_Size := Esize (ACCR.X);
12394 Y_Size := Esize (ACCR.Y);
83f8f0a6 12395
12396 -- Check for large object overlaying smaller one
12397
12398 if Y_Size > Uint_0
12399 and then X_Size > Uint_0
12400 and then X_Size > Y_Size
12401 then
d6da7448 12402 Error_Msg_NE
1581f2d7 12403 ("??& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 12404 Error_Msg_N
1e3532e7 12405 ("\??program execution may be erroneous", ACCR.N);
83f8f0a6 12406 Error_Msg_Uint_1 := X_Size;
12407 Error_Msg_NE
1e3532e7 12408 ("\??size of & is ^", ACCR.N, ACCR.X);
83f8f0a6 12409 Error_Msg_Uint_1 := Y_Size;
12410 Error_Msg_NE
1e3532e7 12411 ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 12412
d6da7448 12413 -- Check for inadequate alignment, both of the base object
12414 -- and of the offset, if any.
83f8f0a6 12415
d6da7448 12416 -- Note: we do not check the alignment if we gave a size
12417 -- warning, since it would likely be redundant.
83f8f0a6 12418
12419 elsif Y_Alignment /= Uint_0
d6da7448 12420 and then (Y_Alignment < X_Alignment
12421 or else (ACCR.Off
12422 and then
12423 Nkind (Expr) = N_Attribute_Reference
12424 and then
12425 Attribute_Name (Expr) = Name_Address
12426 and then
12427 Has_Compatible_Alignment
12428 (ACCR.X, Prefix (Expr))
12429 /= Known_Compatible))
83f8f0a6 12430 then
12431 Error_Msg_NE
1e3532e7 12432 ("??specified address for& may be inconsistent "
12433 & "with alignment", ACCR.N, ACCR.X);
83f8f0a6 12434 Error_Msg_N
1e3532e7 12435 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 12436 ACCR.N);
12437 Error_Msg_Uint_1 := X_Alignment;
12438 Error_Msg_NE
1e3532e7 12439 ("\??alignment of & is ^", ACCR.N, ACCR.X);
83f8f0a6 12440 Error_Msg_Uint_1 := Y_Alignment;
12441 Error_Msg_NE
1e3532e7 12442 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
d6da7448 12443 if Y_Alignment >= X_Alignment then
12444 Error_Msg_N
1e3532e7 12445 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 12446 end if;
83f8f0a6 12447 end if;
12448 end if;
12449 end;
12450 end loop;
12451 end Validate_Address_Clauses;
12452
7717ea00 12453 ---------------------------
12454 -- Validate_Independence --
12455 ---------------------------
12456
12457 procedure Validate_Independence is
12458 SU : constant Uint := UI_From_Int (System_Storage_Unit);
12459 N : Node_Id;
12460 E : Entity_Id;
12461 IC : Boolean;
12462 Comp : Entity_Id;
12463 Addr : Node_Id;
12464 P : Node_Id;
12465
12466 procedure Check_Array_Type (Atyp : Entity_Id);
12467 -- Checks if the array type Atyp has independent components, and
12468 -- if not, outputs an appropriate set of error messages.
12469
12470 procedure No_Independence;
12471 -- Output message that independence cannot be guaranteed
12472
12473 function OK_Component (C : Entity_Id) return Boolean;
12474 -- Checks one component to see if it is independently accessible, and
12475 -- if so yields True, otherwise yields False if independent access
12476 -- cannot be guaranteed. This is a conservative routine, it only
12477 -- returns True if it knows for sure, it returns False if it knows
12478 -- there is a problem, or it cannot be sure there is no problem.
12479
12480 procedure Reason_Bad_Component (C : Entity_Id);
12481 -- Outputs continuation message if a reason can be determined for
12482 -- the component C being bad.
12483
12484 ----------------------
12485 -- Check_Array_Type --
12486 ----------------------
12487
12488 procedure Check_Array_Type (Atyp : Entity_Id) is
12489 Ctyp : constant Entity_Id := Component_Type (Atyp);
12490
12491 begin
12492 -- OK if no alignment clause, no pack, and no component size
12493
12494 if not Has_Component_Size_Clause (Atyp)
12495 and then not Has_Alignment_Clause (Atyp)
12496 and then not Is_Packed (Atyp)
12497 then
12498 return;
12499 end if;
12500
aa0a69ab 12501 -- Case of component size is greater than or equal to 64 and the
12502 -- alignment of the array is at least as large as the alignment
12503 -- of the component. We are definitely OK in this situation.
12504
12505 if Known_Component_Size (Atyp)
12506 and then Component_Size (Atyp) >= 64
12507 and then Known_Alignment (Atyp)
12508 and then Known_Alignment (Ctyp)
12509 and then Alignment (Atyp) >= Alignment (Ctyp)
12510 then
12511 return;
12512 end if;
12513
7717ea00 12514 -- Check actual component size
12515
12516 if not Known_Component_Size (Atyp)
12517 or else not (Addressable (Component_Size (Atyp))
aa0a69ab 12518 and then Component_Size (Atyp) < 64)
7717ea00 12519 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
12520 then
12521 No_Independence;
12522
12523 -- Bad component size, check reason
12524
12525 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 12526 P := Get_Attribute_Definition_Clause
12527 (Atyp, Attribute_Component_Size);
7717ea00 12528
12529 if Present (P) then
12530 Error_Msg_Sloc := Sloc (P);
12531 Error_Msg_N ("\because of Component_Size clause#", N);
12532 return;
12533 end if;
12534 end if;
12535
12536 if Is_Packed (Atyp) then
12537 P := Get_Rep_Pragma (Atyp, Name_Pack);
12538
12539 if Present (P) then
12540 Error_Msg_Sloc := Sloc (P);
12541 Error_Msg_N ("\because of pragma Pack#", N);
12542 return;
12543 end if;
12544 end if;
12545
12546 -- No reason found, just return
12547
12548 return;
12549 end if;
12550
12551 -- Array type is OK independence-wise
12552
12553 return;
12554 end Check_Array_Type;
12555
12556 ---------------------
12557 -- No_Independence --
12558 ---------------------
12559
12560 procedure No_Independence is
12561 begin
12562 if Pragma_Name (N) = Name_Independent then
18393965 12563 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
7717ea00 12564 else
12565 Error_Msg_NE
12566 ("independent components cannot be guaranteed for&", N, E);
12567 end if;
12568 end No_Independence;
12569
12570 ------------------
12571 -- OK_Component --
12572 ------------------
12573
12574 function OK_Component (C : Entity_Id) return Boolean is
12575 Rec : constant Entity_Id := Scope (C);
12576 Ctyp : constant Entity_Id := Etype (C);
12577
12578 begin
12579 -- OK if no component clause, no Pack, and no alignment clause
12580
12581 if No (Component_Clause (C))
12582 and then not Is_Packed (Rec)
12583 and then not Has_Alignment_Clause (Rec)
12584 then
12585 return True;
12586 end if;
12587
12588 -- Here we look at the actual component layout. A component is
12589 -- addressable if its size is a multiple of the Esize of the
12590 -- component type, and its starting position in the record has
12591 -- appropriate alignment, and the record itself has appropriate
12592 -- alignment to guarantee the component alignment.
12593
12594 -- Make sure sizes are static, always assume the worst for any
12595 -- cases where we cannot check static values.
12596
12597 if not (Known_Static_Esize (C)
b9e61b2a 12598 and then
12599 Known_Static_Esize (Ctyp))
7717ea00 12600 then
12601 return False;
12602 end if;
12603
12604 -- Size of component must be addressable or greater than 64 bits
12605 -- and a multiple of bytes.
12606
b9e61b2a 12607 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 12608 return False;
12609 end if;
12610
12611 -- Check size is proper multiple
12612
12613 if Esize (C) mod Esize (Ctyp) /= 0 then
12614 return False;
12615 end if;
12616
12617 -- Check alignment of component is OK
12618
12619 if not Known_Component_Bit_Offset (C)
12620 or else Component_Bit_Offset (C) < Uint_0
12621 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
12622 then
12623 return False;
12624 end if;
12625
12626 -- Check alignment of record type is OK
12627
12628 if not Known_Alignment (Rec)
12629 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12630 then
12631 return False;
12632 end if;
12633
12634 -- All tests passed, component is addressable
12635
12636 return True;
12637 end OK_Component;
12638
12639 --------------------------
12640 -- Reason_Bad_Component --
12641 --------------------------
12642
12643 procedure Reason_Bad_Component (C : Entity_Id) is
12644 Rec : constant Entity_Id := Scope (C);
12645 Ctyp : constant Entity_Id := Etype (C);
12646
12647 begin
12648 -- If component clause present assume that's the problem
12649
12650 if Present (Component_Clause (C)) then
12651 Error_Msg_Sloc := Sloc (Component_Clause (C));
12652 Error_Msg_N ("\because of Component_Clause#", N);
12653 return;
12654 end if;
12655
12656 -- If pragma Pack clause present, assume that's the problem
12657
12658 if Is_Packed (Rec) then
12659 P := Get_Rep_Pragma (Rec, Name_Pack);
12660
12661 if Present (P) then
12662 Error_Msg_Sloc := Sloc (P);
12663 Error_Msg_N ("\because of pragma Pack#", N);
12664 return;
12665 end if;
12666 end if;
12667
12668 -- See if record has bad alignment clause
12669
12670 if Has_Alignment_Clause (Rec)
12671 and then Known_Alignment (Rec)
12672 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12673 then
12674 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
12675
12676 if Present (P) then
12677 Error_Msg_Sloc := Sloc (P);
12678 Error_Msg_N ("\because of Alignment clause#", N);
12679 end if;
12680 end if;
12681
12682 -- Couldn't find a reason, so return without a message
12683
12684 return;
12685 end Reason_Bad_Component;
12686
12687 -- Start of processing for Validate_Independence
12688
12689 begin
12690 for J in Independence_Checks.First .. Independence_Checks.Last loop
12691 N := Independence_Checks.Table (J).N;
12692 E := Independence_Checks.Table (J).E;
12693 IC := Pragma_Name (N) = Name_Independent_Components;
12694
12695 -- Deal with component case
12696
12697 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
12698 if not OK_Component (E) then
12699 No_Independence;
12700 Reason_Bad_Component (E);
12701 goto Continue;
12702 end if;
12703 end if;
12704
12705 -- Deal with record with Independent_Components
12706
12707 if IC and then Is_Record_Type (E) then
12708 Comp := First_Component_Or_Discriminant (E);
12709 while Present (Comp) loop
12710 if not OK_Component (Comp) then
12711 No_Independence;
12712 Reason_Bad_Component (Comp);
12713 goto Continue;
12714 end if;
12715
12716 Next_Component_Or_Discriminant (Comp);
12717 end loop;
12718 end if;
12719
12720 -- Deal with address clause case
12721
12722 if Is_Object (E) then
12723 Addr := Address_Clause (E);
12724
12725 if Present (Addr) then
12726 No_Independence;
12727 Error_Msg_Sloc := Sloc (Addr);
12728 Error_Msg_N ("\because of Address clause#", N);
12729 goto Continue;
12730 end if;
12731 end if;
12732
12733 -- Deal with independent components for array type
12734
12735 if IC and then Is_Array_Type (E) then
12736 Check_Array_Type (E);
12737 end if;
12738
12739 -- Deal with independent components for array object
12740
12741 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
12742 Check_Array_Type (Etype (E));
12743 end if;
12744
12745 <<Continue>> null;
12746 end loop;
12747 end Validate_Independence;
12748
b3f8228a 12749 ------------------------------
12750 -- Validate_Iterable_Aspect --
12751 ------------------------------
12752
12753 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
3061ffde 12754 Assoc : Node_Id;
12755 Expr : Node_Id;
b3f8228a 12756
bde03454 12757 Prim : Node_Id;
a9f5fea7 12758 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
b3f8228a 12759
12760 First_Id : Entity_Id;
12761 Next_Id : Entity_Id;
12762 Has_Element_Id : Entity_Id;
12763 Element_Id : Entity_Id;
12764
b3f8228a 12765 begin
9698629c 12766 -- If previous error aspect is unusable
a9f5fea7 12767
12768 if Cursor = Any_Type then
3061ffde 12769 return;
12770 end if;
b3f8228a 12771
12772 First_Id := Empty;
12773 Next_Id := Empty;
12774 Has_Element_Id := Empty;
32de816b 12775 Element_Id := Empty;
b3f8228a 12776
12777 -- Each expression must resolve to a function with the proper signature
12778
12779 Assoc := First (Component_Associations (Expression (ASN)));
12780 while Present (Assoc) loop
12781 Expr := Expression (Assoc);
12782 Analyze (Expr);
12783
b3f8228a 12784 Prim := First (Choices (Assoc));
bde03454 12785
f02a9a9a 12786 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
b3f8228a 12787 Error_Msg_N ("illegal name in association", Prim);
12788
12789 elsif Chars (Prim) = Name_First then
3061ffde 12790 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
b3f8228a 12791 First_Id := Entity (Expr);
b3f8228a 12792
12793 elsif Chars (Prim) = Name_Next then
3061ffde 12794 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
b3f8228a 12795 Next_Id := Entity (Expr);
b3f8228a 12796
12797 elsif Chars (Prim) = Name_Has_Element then
3061ffde 12798 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
b3f8228a 12799 Has_Element_Id := Entity (Expr);
bde03454 12800
b3f8228a 12801 elsif Chars (Prim) = Name_Element then
3061ffde 12802 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
b3f8228a 12803 Element_Id := Entity (Expr);
b3f8228a 12804
12805 else
12806 Error_Msg_N ("invalid name for iterable function", Prim);
12807 end if;
12808
12809 Next (Assoc);
12810 end loop;
12811
12812 if No (First_Id) then
3061ffde 12813 Error_Msg_N ("match for First primitive not found", ASN);
b3f8228a 12814
12815 elsif No (Next_Id) then
3061ffde 12816 Error_Msg_N ("match for Next primitive not found", ASN);
b3f8228a 12817
12818 elsif No (Has_Element_Id) then
3061ffde 12819 Error_Msg_N ("match for Has_Element primitive not found", ASN);
12820
12821 elsif No (Element_Id) then
12822 null; -- Optional.
b3f8228a 12823 end if;
12824 end Validate_Iterable_Aspect;
12825
d6f39728 12826 -----------------------------------
12827 -- Validate_Unchecked_Conversion --
12828 -----------------------------------
12829
12830 procedure Validate_Unchecked_Conversion
12831 (N : Node_Id;
12832 Act_Unit : Entity_Id)
12833 is
12834 Source : Entity_Id;
12835 Target : Entity_Id;
12836 Vnode : Node_Id;
12837
12838 begin
12839 -- Obtain source and target types. Note that we call Ancestor_Subtype
12840 -- here because the processing for generic instantiation always makes
12841 -- subtypes, and we want the original frozen actual types.
12842
12843 -- If we are dealing with private types, then do the check on their
12844 -- fully declared counterparts if the full declarations have been
39a0c1d3 12845 -- encountered (they don't have to be visible, but they must exist).
d6f39728 12846
12847 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
12848
12849 if Is_Private_Type (Source)
12850 and then Present (Underlying_Type (Source))
12851 then
12852 Source := Underlying_Type (Source);
12853 end if;
12854
12855 Target := Ancestor_Subtype (Etype (Act_Unit));
12856
fdd294d1 12857 -- If either type is generic, the instantiation happens within a generic
95deda50 12858 -- unit, and there is nothing to check. The proper check will happen
12859 -- when the enclosing generic is instantiated.
d6f39728 12860
12861 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
12862 return;
12863 end if;
12864
12865 if Is_Private_Type (Target)
12866 and then Present (Underlying_Type (Target))
12867 then
12868 Target := Underlying_Type (Target);
12869 end if;
12870
12871 -- Source may be unconstrained array, but not target
12872
b9e61b2a 12873 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
d6f39728 12874 Error_Msg_N
12875 ("unchecked conversion to unconstrained array not allowed", N);
12876 return;
12877 end if;
12878
fbc67f84 12879 -- Warn if conversion between two different convention pointers
12880
12881 if Is_Access_Type (Target)
12882 and then Is_Access_Type (Source)
12883 and then Convention (Target) /= Convention (Source)
12884 and then Warn_On_Unchecked_Conversion
12885 then
74c7ae52 12886 -- Give warnings for subprogram pointers only on most targets
fdd294d1 12887
12888 if Is_Access_Subprogram_Type (Target)
12889 or else Is_Access_Subprogram_Type (Source)
fdd294d1 12890 then
12891 Error_Msg_N
cb97ae5c 12892 ("?z?conversion between pointers with different conventions!",
1e3532e7 12893 N);
fdd294d1 12894 end if;
fbc67f84 12895 end if;
12896
3062c401 12897 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
12898 -- warning when compiling GNAT-related sources.
12899
12900 if Warn_On_Unchecked_Conversion
12901 and then not In_Predefined_Unit (N)
12902 and then RTU_Loaded (Ada_Calendar)
f02a9a9a 12903 and then (Chars (Source) = Name_Time
12904 or else
12905 Chars (Target) = Name_Time)
3062c401 12906 then
12907 -- If Ada.Calendar is loaded and the name of one of the operands is
12908 -- Time, there is a good chance that this is Ada.Calendar.Time.
12909
12910 declare
f02a9a9a 12911 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
3062c401 12912 begin
12913 pragma Assert (Present (Calendar_Time));
12914
b9e61b2a 12915 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 12916 Error_Msg_N
f02a9a9a 12917 ("?z?representation of 'Time values may change between "
12918 & "'G'N'A'T versions", N);
3062c401 12919 end if;
12920 end;
12921 end if;
12922
fdd294d1 12923 -- Make entry in unchecked conversion table for later processing by
12924 -- Validate_Unchecked_Conversions, which will check sizes and alignments
12925 -- (using values set by the back-end where possible). This is only done
12926 -- if the appropriate warning is active.
d6f39728 12927
9dfe12ae 12928 if Warn_On_Unchecked_Conversion then
12929 Unchecked_Conversions.Append
86d32751 12930 (New_Val => UC_Entry'(Eloc => Sloc (N),
12931 Source => Source,
12932 Target => Target,
12933 Act_Unit => Act_Unit));
9dfe12ae 12934
12935 -- If both sizes are known statically now, then back end annotation
12936 -- is not required to do a proper check but if either size is not
12937 -- known statically, then we need the annotation.
12938
12939 if Known_Static_RM_Size (Source)
1e3532e7 12940 and then
12941 Known_Static_RM_Size (Target)
9dfe12ae 12942 then
12943 null;
12944 else
12945 Back_Annotate_Rep_Info := True;
12946 end if;
12947 end if;
d6f39728 12948
fdd294d1 12949 -- If unchecked conversion to access type, and access type is declared
95deda50 12950 -- in the same unit as the unchecked conversion, then set the flag
12951 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 12952
12953 if Is_Access_Type (Target) and then
12954 In_Same_Source_Unit (Target, N)
12955 then
12956 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
12957 end if;
3d875462 12958
95deda50 12959 -- Generate N_Validate_Unchecked_Conversion node for back end in case
12960 -- the back end needs to perform special validation checks.
3d875462 12961
95deda50 12962 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
12963 -- have full expansion and the back end is called ???
3d875462 12964
12965 Vnode :=
12966 Make_Validate_Unchecked_Conversion (Sloc (N));
12967 Set_Source_Type (Vnode, Source);
12968 Set_Target_Type (Vnode, Target);
12969
fdd294d1 12970 -- If the unchecked conversion node is in a list, just insert before it.
12971 -- If not we have some strange case, not worth bothering about.
3d875462 12972
12973 if Is_List_Member (N) then
d6f39728 12974 Insert_After (N, Vnode);
12975 end if;
12976 end Validate_Unchecked_Conversion;
12977
12978 ------------------------------------
12979 -- Validate_Unchecked_Conversions --
12980 ------------------------------------
12981
12982 procedure Validate_Unchecked_Conversions is
12983 begin
12984 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
12985 declare
12986 T : UC_Entry renames Unchecked_Conversions.Table (N);
12987
86d32751 12988 Eloc : constant Source_Ptr := T.Eloc;
12989 Source : constant Entity_Id := T.Source;
12990 Target : constant Entity_Id := T.Target;
12991 Act_Unit : constant Entity_Id := T.Act_Unit;
d6f39728 12992
44705307 12993 Source_Siz : Uint;
12994 Target_Siz : Uint;
d6f39728 12995
12996 begin
86d32751 12997 -- Skip if function marked as warnings off
12998
12999 if Warnings_Off (Act_Unit) then
13000 goto Continue;
13001 end if;
13002
fdd294d1 13003 -- This validation check, which warns if we have unequal sizes for
13004 -- unchecked conversion, and thus potentially implementation
d6f39728 13005 -- dependent semantics, is one of the few occasions on which we
fdd294d1 13006 -- use the official RM size instead of Esize. See description in
13007 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 13008
f15731c4 13009 if Serious_Errors_Detected = 0
d6f39728 13010 and then Known_Static_RM_Size (Source)
13011 and then Known_Static_RM_Size (Target)
f25f4252 13012
13013 -- Don't do the check if warnings off for either type, note the
13014 -- deliberate use of OR here instead of OR ELSE to get the flag
13015 -- Warnings_Off_Used set for both types if appropriate.
13016
13017 and then not (Has_Warnings_Off (Source)
13018 or
13019 Has_Warnings_Off (Target))
d6f39728 13020 then
13021 Source_Siz := RM_Size (Source);
13022 Target_Siz := RM_Size (Target);
13023
13024 if Source_Siz /= Target_Siz then
299480f9 13025 Error_Msg
cb97ae5c 13026 ("?z?types for unchecked conversion have different sizes!",
299480f9 13027 Eloc);
d6f39728 13028
13029 if All_Errors_Mode then
13030 Error_Msg_Name_1 := Chars (Source);
13031 Error_Msg_Uint_1 := Source_Siz;
13032 Error_Msg_Name_2 := Chars (Target);
13033 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 13034 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 13035
13036 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13037
13038 if Is_Discrete_Type (Source)
b9e61b2a 13039 and then
13040 Is_Discrete_Type (Target)
d6f39728 13041 then
13042 if Source_Siz > Target_Siz then
299480f9 13043 Error_Msg
cb97ae5c 13044 ("\?z?^ high order bits of source will "
1e3532e7 13045 & "be ignored!", Eloc);
d6f39728 13046
9dfe12ae 13047 elsif Is_Unsigned_Type (Source) then
299480f9 13048 Error_Msg
cb97ae5c 13049 ("\?z?source will be extended with ^ high order "
1581f2d7 13050 & "zero bits!", Eloc);
d6f39728 13051
13052 else
299480f9 13053 Error_Msg
cb97ae5c 13054 ("\?z?source will be extended with ^ high order "
1e3532e7 13055 & "sign bits!", Eloc);
d6f39728 13056 end if;
13057
13058 elsif Source_Siz < Target_Siz then
13059 if Is_Discrete_Type (Target) then
13060 if Bytes_Big_Endian then
299480f9 13061 Error_Msg
cb97ae5c 13062 ("\?z?target value will include ^ undefined "
1e3532e7 13063 & "low order bits!", Eloc);
d6f39728 13064 else
299480f9 13065 Error_Msg
cb97ae5c 13066 ("\?z?target value will include ^ undefined "
1e3532e7 13067 & "high order bits!", Eloc);
d6f39728 13068 end if;
13069
13070 else
299480f9 13071 Error_Msg
cb97ae5c 13072 ("\?z?^ trailing bits of target value will be "
1e3532e7 13073 & "undefined!", Eloc);
d6f39728 13074 end if;
13075
13076 else pragma Assert (Source_Siz > Target_Siz);
299480f9 13077 Error_Msg
cb97ae5c 13078 ("\?z?^ trailing bits of source will be ignored!",
299480f9 13079 Eloc);
d6f39728 13080 end if;
13081 end if;
d6f39728 13082 end if;
13083 end if;
13084
13085 -- If both types are access types, we need to check the alignment.
13086 -- If the alignment of both is specified, we can do it here.
13087
f15731c4 13088 if Serious_Errors_Detected = 0
2a10e737 13089 and then Is_Access_Type (Source)
13090 and then Is_Access_Type (Target)
d6f39728 13091 and then Target_Strict_Alignment
13092 and then Present (Designated_Type (Source))
13093 and then Present (Designated_Type (Target))
13094 then
13095 declare
13096 D_Source : constant Entity_Id := Designated_Type (Source);
13097 D_Target : constant Entity_Id := Designated_Type (Target);
13098
13099 begin
13100 if Known_Alignment (D_Source)
b9e61b2a 13101 and then
13102 Known_Alignment (D_Target)
d6f39728 13103 then
13104 declare
13105 Source_Align : constant Uint := Alignment (D_Source);
13106 Target_Align : constant Uint := Alignment (D_Target);
13107
13108 begin
13109 if Source_Align < Target_Align
13110 and then not Is_Tagged_Type (D_Source)
f25f4252 13111
13112 -- Suppress warning if warnings suppressed on either
13113 -- type or either designated type. Note the use of
13114 -- OR here instead of OR ELSE. That is intentional,
13115 -- we would like to set flag Warnings_Off_Used in
13116 -- all types for which warnings are suppressed.
13117
13118 and then not (Has_Warnings_Off (D_Source)
13119 or
13120 Has_Warnings_Off (D_Target)
13121 or
13122 Has_Warnings_Off (Source)
13123 or
13124 Has_Warnings_Off (Target))
d6f39728 13125 then
d6f39728 13126 Error_Msg_Uint_1 := Target_Align;
13127 Error_Msg_Uint_2 := Source_Align;
299480f9 13128 Error_Msg_Node_1 := D_Target;
d6f39728 13129 Error_Msg_Node_2 := D_Source;
299480f9 13130 Error_Msg
cb97ae5c 13131 ("?z?alignment of & (^) is stricter than "
1e3532e7 13132 & "alignment of & (^)!", Eloc);
f25f4252 13133 Error_Msg
cb97ae5c 13134 ("\?z?resulting access value may have invalid "
1e3532e7 13135 & "alignment!", Eloc);
d6f39728 13136 end if;
13137 end;
13138 end if;
13139 end;
13140 end if;
13141 end;
86d32751 13142
13143 <<Continue>>
13144 null;
d6f39728 13145 end loop;
13146 end Validate_Unchecked_Conversions;
13147
d6f39728 13148end Sem_Ch13;