]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
2013-01-03 Robert Dewar <dewar@adacore.com>
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
49213728 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
d6f39728 29with Einfo; use Einfo;
d00681a7 30with Elists; use Elists;
d6f39728 31with Errout; use Errout;
d00681a7 32with Exp_Disp; use Exp_Disp;
d6f39728 33with Exp_Tss; use Exp_Tss;
34with Exp_Util; use Exp_Util;
d6f39728 35with Lib; use Lib;
83f8f0a6 36with Lib.Xref; use Lib.Xref;
15ebb600 37with Namet; use Namet;
d6f39728 38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
e0521a36 41with Restrict; use Restrict;
42with Rident; use Rident;
d6f39728 43with Rtsfind; use Rtsfind;
44with Sem; use Sem;
d60c9ff7 45with Sem_Aux; use Sem_Aux;
40ca69b9 46with Sem_Ch3; use Sem_Ch3;
490beba6 47with Sem_Ch6; use Sem_Ch6;
d6f39728 48with Sem_Ch8; use Sem_Ch8;
89f1e35c 49with Sem_Ch9; use Sem_Ch9;
85696508 50with Sem_Dim; use Sem_Dim;
85377c9b 51with Sem_Disp; use Sem_Disp;
d6f39728 52with Sem_Eval; use Sem_Eval;
53with Sem_Res; use Sem_Res;
54with Sem_Type; use Sem_Type;
55with Sem_Util; use Sem_Util;
44e4341e 56with Sem_Warn; use Sem_Warn;
1e3c4ae6 57with Sinput; use Sinput;
9dfe12ae 58with Snames; use Snames;
d6f39728 59with Stand; use Stand;
60with Sinfo; use Sinfo;
5b5df4a9 61with Stringt; use Stringt;
93735cb8 62with Targparm; use Targparm;
d6f39728 63with Ttypes; use Ttypes;
64with Tbuild; use Tbuild;
65with Urealp; use Urealp;
f42f24d7 66with Warnsw; use Warnsw;
d6f39728 67
bfa5a9d9 68with GNAT.Heap_Sort_G;
d6f39728 69
70package body Sem_Ch13 is
71
72 SSU : constant Pos := System_Storage_Unit;
73 -- Convenient short hand for commonly used constant
74
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
78
1d366b32 79 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
80 -- This routine is called after setting one of the sizes of type entity
81 -- Typ to Size. The purpose is to deal with the situation of a derived
82 -- type whose inherited alignment is no longer appropriate for the new
83 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 84
490beba6 85 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
9dc88aea 86 -- If Typ has predicates (indicated by Has_Predicates being set for Typ,
9f727ad2 87 -- then either there are pragma Predicate entries on the rep chain for the
6fb3c314 88 -- type (note that Predicate aspects are converted to pragma Predicate), or
490beba6 89 -- there are inherited aspects from a parent type, or ancestor subtypes.
90 -- This procedure builds the spec and body for the Predicate function that
91 -- tests these predicates. N is the freeze node for the type. The spec of
92 -- the function is inserted before the freeze node, and the body of the
6fb3c314 93 -- function is inserted after the freeze node.
9dc88aea 94
d97beb2f 95 procedure Build_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
d7c2851f 99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 103 -- predicate expression have been replaced by identifier references to this
d7c2851f 104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Predicate (Typ), and the Expr is rewritten as
108 -- a canonicalized membership operation.
d97beb2f 109
d6f39728 110 function Get_Alignment_Value (Expr : Node_Id) return Uint;
111 -- Given the expression for an alignment value, returns the corresponding
112 -- Uint value. If the value is inappropriate, then error messages are
113 -- posted as required, and a value of No_Uint is returned.
114
115 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 116 -- A specification for a stream attribute is allowed before the full type
117 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
118 -- that do not specify a representation characteristic are operational
119 -- attributes.
d6f39728 120
44e4341e 121 procedure New_Stream_Subprogram
d6f39728 122 (N : Node_Id;
123 Ent : Entity_Id;
124 Subp : Entity_Id;
9dfe12ae 125 Nam : TSS_Name_Type);
44e4341e 126 -- Create a subprogram renaming of a given stream attribute to the
127 -- designated subprogram and then in the tagged case, provide this as a
128 -- primitive operation, or in the non-tagged case make an appropriate TSS
129 -- entry. This is more properly an expansion activity than just semantics,
130 -- but the presence of user-defined stream functions for limited types is a
131 -- legality check, which is why this takes place here rather than in
132 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
133 -- function to be generated.
9dfe12ae 134 --
f15731c4 135 -- To avoid elaboration anomalies with freeze nodes, for untagged types
136 -- we generate both a subprogram declaration and a subprogram renaming
137 -- declaration, so that the attribute specification is handled as a
138 -- renaming_as_body. For tagged types, the specification is one of the
139 -- primitive specs.
140
2072eaa9 141 generic
142 with procedure Replace_Type_Reference (N : Node_Id);
143 procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
144 -- This is used to scan an expression for a predicate or invariant aspect
145 -- replacing occurrences of the name TName (the name of the subtype to
146 -- which the aspect applies) with appropriate references to the parameter
147 -- of the predicate function or invariant procedure. The procedure passed
148 -- as a generic parameter does the actual replacement of node N, which is
149 -- either a simple direct reference to TName, or a selected component that
150 -- represents an appropriately qualified occurrence of TName.
151
b77e4501 152 procedure Set_Biased
153 (E : Entity_Id;
154 N : Node_Id;
155 Msg : String;
156 Biased : Boolean := True);
157 -- If Biased is True, sets Has_Biased_Representation flag for E, and
158 -- outputs a warning message at node N if Warn_On_Biased_Representation is
159 -- is True. This warning inserts the string Msg to describe the construct
160 -- causing biasing.
161
d6f39728 162 ----------------------------------------------
163 -- Table for Validate_Unchecked_Conversions --
164 ----------------------------------------------
165
166 -- The following table collects unchecked conversions for validation.
95deda50 167 -- Entries are made by Validate_Unchecked_Conversion and then the call
168 -- to Validate_Unchecked_Conversions does the actual error checking and
169 -- posting of warnings. The reason for this delayed processing is to take
170 -- advantage of back-annotations of size and alignment values performed by
171 -- the back end.
d6f39728 172
95deda50 173 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
174 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
175 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 176
d6f39728 177 type UC_Entry is record
299480f9 178 Eloc : Source_Ptr; -- node used for posting warnings
179 Source : Entity_Id; -- source type for unchecked conversion
180 Target : Entity_Id; -- target type for unchecked conversion
d6f39728 181 end record;
182
183 package Unchecked_Conversions is new Table.Table (
184 Table_Component_Type => UC_Entry,
185 Table_Index_Type => Int,
186 Table_Low_Bound => 1,
187 Table_Initial => 50,
188 Table_Increment => 200,
189 Table_Name => "Unchecked_Conversions");
190
83f8f0a6 191 ----------------------------------------
192 -- Table for Validate_Address_Clauses --
193 ----------------------------------------
194
195 -- If an address clause has the form
196
197 -- for X'Address use Expr
198
95deda50 199 -- where Expr is of the form Y'Address or recursively is a reference to a
200 -- constant of either of these forms, and X and Y are entities of objects,
201 -- then if Y has a smaller alignment than X, that merits a warning about
202 -- possible bad alignment. The following table collects address clauses of
203 -- this kind. We put these in a table so that they can be checked after the
204 -- back end has completed annotation of the alignments of objects, since we
205 -- can catch more cases that way.
83f8f0a6 206
207 type Address_Clause_Check_Record is record
208 N : Node_Id;
209 -- The address clause
210
211 X : Entity_Id;
212 -- The entity of the object overlaying Y
213
214 Y : Entity_Id;
215 -- The entity of the object being overlaid
d6da7448 216
217 Off : Boolean;
6fb3c314 218 -- Whether the address is offset within Y
83f8f0a6 219 end record;
220
221 package Address_Clause_Checks is new Table.Table (
222 Table_Component_Type => Address_Clause_Check_Record,
223 Table_Index_Type => Int,
224 Table_Low_Bound => 1,
225 Table_Initial => 20,
226 Table_Increment => 200,
227 Table_Name => "Address_Clause_Checks");
228
59ac57b5 229 -----------------------------------------
230 -- Adjust_Record_For_Reverse_Bit_Order --
231 -----------------------------------------
232
233 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
67278d60 234 Comp : Node_Id;
235 CC : Node_Id;
59ac57b5 236
237 begin
67278d60 238 -- Processing depends on version of Ada
59ac57b5 239
6797073f 240 -- For Ada 95, we just renumber bits within a storage unit. We do the
568b0f6a 241 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
ab19a652 242 -- Ada 83, and are free to add this extension.
6797073f 243
244 if Ada_Version < Ada_2005 then
245 Comp := First_Component_Or_Discriminant (R);
246 while Present (Comp) loop
247 CC := Component_Clause (Comp);
248
249 -- If component clause is present, then deal with the non-default
250 -- bit order case for Ada 95 mode.
251
252 -- We only do this processing for the base type, and in fact that
253 -- is important, since otherwise if there are record subtypes, we
254 -- could reverse the bits once for each subtype, which is wrong.
255
b9e61b2a 256 if Present (CC) and then Ekind (R) = E_Record_Type then
6797073f 257 declare
258 CFB : constant Uint := Component_Bit_Offset (Comp);
259 CSZ : constant Uint := Esize (Comp);
260 CLC : constant Node_Id := Component_Clause (Comp);
261 Pos : constant Node_Id := Position (CLC);
262 FB : constant Node_Id := First_Bit (CLC);
263
264 Storage_Unit_Offset : constant Uint :=
265 CFB / System_Storage_Unit;
266
267 Start_Bit : constant Uint :=
268 CFB mod System_Storage_Unit;
59ac57b5 269
6797073f 270 begin
271 -- Cases where field goes over storage unit boundary
59ac57b5 272
6797073f 273 if Start_Bit + CSZ > System_Storage_Unit then
59ac57b5 274
6797073f 275 -- Allow multi-byte field but generate warning
59ac57b5 276
6797073f 277 if Start_Bit mod System_Storage_Unit = 0
278 and then CSZ mod System_Storage_Unit = 0
279 then
280 Error_Msg_N
281 ("multi-byte field specified with non-standard"
1e3532e7 282 & " Bit_Order??", CLC);
31486bc0 283
6797073f 284 if Bytes_Big_Endian then
31486bc0 285 Error_Msg_N
6797073f 286 ("bytes are not reversed "
1e3532e7 287 & "(component is big-endian)??", CLC);
31486bc0 288 else
289 Error_Msg_N
6797073f 290 ("bytes are not reversed "
1e3532e7 291 & "(component is little-endian)??", CLC);
31486bc0 292 end if;
59ac57b5 293
6797073f 294 -- Do not allow non-contiguous field
59ac57b5 295
67278d60 296 else
6797073f 297 Error_Msg_N
298 ("attempt to specify non-contiguous field "
299 & "not permitted", CLC);
300 Error_Msg_N
301 ("\caused by non-standard Bit_Order "
302 & "specified", CLC);
303 Error_Msg_N
304 ("\consider possibility of using "
305 & "Ada 2005 mode here", CLC);
306 end if;
59ac57b5 307
6797073f 308 -- Case where field fits in one storage unit
59ac57b5 309
6797073f 310 else
311 -- Give warning if suspicious component clause
59ac57b5 312
6797073f 313 if Intval (FB) >= System_Storage_Unit
314 and then Warn_On_Reverse_Bit_Order
315 then
316 Error_Msg_N
1e3532e7 317 ("Bit_Order clause does not affect " &
318 "byte ordering?V?", Pos);
6797073f 319 Error_Msg_Uint_1 :=
320 Intval (Pos) + Intval (FB) /
321 System_Storage_Unit;
322 Error_Msg_N
1e3532e7 323 ("position normalized to ^ before bit " &
324 "order interpreted?V?", Pos);
6797073f 325 end if;
59ac57b5 326
6797073f 327 -- Here is where we fix up the Component_Bit_Offset value
328 -- to account for the reverse bit order. Some examples of
329 -- what needs to be done are:
bfa5a9d9 330
6797073f 331 -- First_Bit .. Last_Bit Component_Bit_Offset
332 -- old new old new
59ac57b5 333
6797073f 334 -- 0 .. 0 7 .. 7 0 7
335 -- 0 .. 1 6 .. 7 0 6
336 -- 0 .. 2 5 .. 7 0 5
337 -- 0 .. 7 0 .. 7 0 4
59ac57b5 338
6797073f 339 -- 1 .. 1 6 .. 6 1 6
340 -- 1 .. 4 3 .. 6 1 3
341 -- 4 .. 7 0 .. 3 4 0
59ac57b5 342
6797073f 343 -- The rule is that the first bit is is obtained by
344 -- subtracting the old ending bit from storage_unit - 1.
59ac57b5 345
6797073f 346 Set_Component_Bit_Offset
347 (Comp,
348 (Storage_Unit_Offset * System_Storage_Unit) +
349 (System_Storage_Unit - 1) -
350 (Start_Bit + CSZ - 1));
59ac57b5 351
6797073f 352 Set_Normalized_First_Bit
353 (Comp,
354 Component_Bit_Offset (Comp) mod
355 System_Storage_Unit);
356 end if;
357 end;
358 end if;
359
360 Next_Component_Or_Discriminant (Comp);
361 end loop;
362
363 -- For Ada 2005, we do machine scalar processing, as fully described In
364 -- AI-133. This involves gathering all components which start at the
365 -- same byte offset and processing them together. Same approach is still
366 -- valid in later versions including Ada 2012.
367
368 else
369 declare
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
67278d60 373 -- We use this as the maximum machine scalar size
59ac57b5 374
6797073f 375 Num_CC : Natural;
376 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
59ac57b5 377
6797073f 378 begin
379 -- This first loop through components does two things. First it
380 -- deals with the case of components with component clauses whose
381 -- length is greater than the maximum machine scalar size (either
382 -- accepting them or rejecting as needed). Second, it counts the
383 -- number of components with component clauses whose length does
384 -- not exceed this maximum for later processing.
67278d60 385
6797073f 386 Num_CC := 0;
387 Comp := First_Component_Or_Discriminant (R);
388 while Present (Comp) loop
389 CC := Component_Clause (Comp);
67278d60 390
6797073f 391 if Present (CC) then
392 declare
1e3532e7 393 Fbit : constant Uint := Static_Integer (First_Bit (CC));
394 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
67278d60 395
6797073f 396 begin
b38e4131 397 -- Case of component with last bit >= max machine scalar
67278d60 398
b38e4131 399 if Lbit >= Max_Machine_Scalar_Size then
67278d60 400
b38e4131 401 -- This is allowed only if first bit is zero, and
402 -- last bit + 1 is a multiple of storage unit size.
67278d60 403
b38e4131 404 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
67278d60 405
b38e4131 406 -- This is the case to give a warning if enabled
67278d60 407
b38e4131 408 if Warn_On_Reverse_Bit_Order then
409 Error_Msg_N
410 ("multi-byte field specified with "
1e3532e7 411 & " non-standard Bit_Order?V?", CC);
b38e4131 412
413 if Bytes_Big_Endian then
414 Error_Msg_N
415 ("\bytes are not reversed "
1e3532e7 416 & "(component is big-endian)?V?", CC);
b38e4131 417 else
418 Error_Msg_N
419 ("\bytes are not reversed "
1e3532e7 420 & "(component is little-endian)?V?", CC);
b38e4131 421 end if;
422 end if;
67278d60 423
7eb0e22f 424 -- Give error message for RM 13.5.1(10) violation
67278d60 425
b38e4131 426 else
427 Error_Msg_FE
428 ("machine scalar rules not followed for&",
429 First_Bit (CC), Comp);
67278d60 430
b38e4131 431 Error_Msg_Uint_1 := Lbit;
432 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
433 Error_Msg_F
434 ("\last bit (^) exceeds maximum machine "
435 & "scalar size (^)",
436 First_Bit (CC));
67278d60 437
b38e4131 438 if (Lbit + 1) mod SSU /= 0 then
439 Error_Msg_Uint_1 := SSU;
440 Error_Msg_F
441 ("\and is not a multiple of Storage_Unit (^) "
0cafb066 442 & "(RM 13.4.1(10))",
b38e4131 443 First_Bit (CC));
6797073f 444
6797073f 445 else
b38e4131 446 Error_Msg_Uint_1 := Fbit;
447 Error_Msg_F
448 ("\and first bit (^) is non-zero "
0cafb066 449 & "(RM 13.4.1(10))",
b38e4131 450 First_Bit (CC));
67278d60 451 end if;
6797073f 452 end if;
59ac57b5 453
b38e4131 454 -- OK case of machine scalar related component clause,
455 -- For now, just count them.
59ac57b5 456
6797073f 457 else
458 Num_CC := Num_CC + 1;
459 end if;
460 end;
461 end if;
59ac57b5 462
6797073f 463 Next_Component_Or_Discriminant (Comp);
464 end loop;
59ac57b5 465
6797073f 466 -- We need to sort the component clauses on the basis of the
467 -- Position values in the clause, so we can group clauses with
468 -- the same Position. together to determine the relevant machine
469 -- scalar size.
59ac57b5 470
6797073f 471 Sort_CC : declare
472 Comps : array (0 .. Num_CC) of Entity_Id;
473 -- Array to collect component and discriminant entities. The
474 -- data starts at index 1, the 0'th entry is for the sort
475 -- routine.
59ac57b5 476
6797073f 477 function CP_Lt (Op1, Op2 : Natural) return Boolean;
478 -- Compare routine for Sort
59ac57b5 479
6797073f 480 procedure CP_Move (From : Natural; To : Natural);
481 -- Move routine for Sort
59ac57b5 482
6797073f 483 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 484
6797073f 485 Start : Natural;
486 Stop : Natural;
487 -- Start and stop positions in the component list of the set of
488 -- components with the same starting position (that constitute
489 -- components in a single machine scalar).
59ac57b5 490
6797073f 491 MaxL : Uint;
492 -- Maximum last bit value of any component in this set
59ac57b5 493
6797073f 494 MSS : Uint;
495 -- Corresponding machine scalar size
67278d60 496
6797073f 497 -----------
498 -- CP_Lt --
499 -----------
67278d60 500
6797073f 501 function CP_Lt (Op1, Op2 : Natural) return Boolean is
502 begin
503 return Position (Component_Clause (Comps (Op1))) <
504 Position (Component_Clause (Comps (Op2)));
505 end CP_Lt;
67278d60 506
6797073f 507 -------------
508 -- CP_Move --
509 -------------
67278d60 510
6797073f 511 procedure CP_Move (From : Natural; To : Natural) is
512 begin
513 Comps (To) := Comps (From);
514 end CP_Move;
67278d60 515
516 -- Start of processing for Sort_CC
59ac57b5 517
6797073f 518 begin
b38e4131 519 -- Collect the machine scalar relevant component clauses
59ac57b5 520
6797073f 521 Num_CC := 0;
522 Comp := First_Component_Or_Discriminant (R);
523 while Present (Comp) loop
b38e4131 524 declare
525 CC : constant Node_Id := Component_Clause (Comp);
526
527 begin
528 -- Collect only component clauses whose last bit is less
529 -- than machine scalar size. Any component clause whose
530 -- last bit exceeds this value does not take part in
531 -- machine scalar layout considerations. The test for
532 -- Error_Posted makes sure we exclude component clauses
533 -- for which we already posted an error.
534
535 if Present (CC)
536 and then not Error_Posted (Last_Bit (CC))
537 and then Static_Integer (Last_Bit (CC)) <
d64221a7 538 Max_Machine_Scalar_Size
b38e4131 539 then
540 Num_CC := Num_CC + 1;
541 Comps (Num_CC) := Comp;
542 end if;
543 end;
59ac57b5 544
6797073f 545 Next_Component_Or_Discriminant (Comp);
546 end loop;
67278d60 547
6797073f 548 -- Sort by ascending position number
67278d60 549
6797073f 550 Sorting.Sort (Num_CC);
67278d60 551
6797073f 552 -- We now have all the components whose size does not exceed
553 -- the max machine scalar value, sorted by starting position.
554 -- In this loop we gather groups of clauses starting at the
555 -- same position, to process them in accordance with AI-133.
67278d60 556
6797073f 557 Stop := 0;
558 while Stop < Num_CC loop
559 Start := Stop + 1;
560 Stop := Start;
561 MaxL :=
562 Static_Integer
563 (Last_Bit (Component_Clause (Comps (Start))));
67278d60 564 while Stop < Num_CC loop
6797073f 565 if Static_Integer
566 (Position (Component_Clause (Comps (Stop + 1)))) =
567 Static_Integer
568 (Position (Component_Clause (Comps (Stop))))
569 then
570 Stop := Stop + 1;
571 MaxL :=
572 UI_Max
573 (MaxL,
574 Static_Integer
575 (Last_Bit
576 (Component_Clause (Comps (Stop)))));
577 else
578 exit;
579 end if;
580 end loop;
67278d60 581
6797073f 582 -- Now we have a group of component clauses from Start to
583 -- Stop whose positions are identical, and MaxL is the
584 -- maximum last bit value of any of these components.
585
586 -- We need to determine the corresponding machine scalar
587 -- size. This loop assumes that machine scalar sizes are
588 -- even, and that each possible machine scalar has twice
589 -- as many bits as the next smaller one.
590
591 MSS := Max_Machine_Scalar_Size;
592 while MSS mod 2 = 0
593 and then (MSS / 2) >= SSU
594 and then (MSS / 2) > MaxL
595 loop
596 MSS := MSS / 2;
597 end loop;
67278d60 598
6797073f 599 -- Here is where we fix up the Component_Bit_Offset value
600 -- to account for the reverse bit order. Some examples of
601 -- what needs to be done for the case of a machine scalar
602 -- size of 8 are:
67278d60 603
6797073f 604 -- First_Bit .. Last_Bit Component_Bit_Offset
605 -- old new old new
67278d60 606
6797073f 607 -- 0 .. 0 7 .. 7 0 7
608 -- 0 .. 1 6 .. 7 0 6
609 -- 0 .. 2 5 .. 7 0 5
610 -- 0 .. 7 0 .. 7 0 4
67278d60 611
6797073f 612 -- 1 .. 1 6 .. 6 1 6
613 -- 1 .. 4 3 .. 6 1 3
614 -- 4 .. 7 0 .. 3 4 0
67278d60 615
6797073f 616 -- The rule is that the first bit is obtained by subtracting
617 -- the old ending bit from machine scalar size - 1.
67278d60 618
6797073f 619 for C in Start .. Stop loop
620 declare
621 Comp : constant Entity_Id := Comps (C);
b9e61b2a 622 CC : constant Node_Id := Component_Clause (Comp);
623
624 LB : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 625 NFB : constant Uint := MSS - Uint_1 - LB;
626 NLB : constant Uint := NFB + Esize (Comp) - 1;
b9e61b2a 627 Pos : constant Uint := Static_Integer (Position (CC));
67278d60 628
6797073f 629 begin
630 if Warn_On_Reverse_Bit_Order then
631 Error_Msg_Uint_1 := MSS;
632 Error_Msg_N
633 ("info: reverse bit order in machine " &
1e3532e7 634 "scalar of length^?V?", First_Bit (CC));
6797073f 635 Error_Msg_Uint_1 := NFB;
636 Error_Msg_Uint_2 := NLB;
637
638 if Bytes_Big_Endian then
639 Error_Msg_NE
1e3532e7 640 ("\info: big-endian range for "
641 & "component & is ^ .. ^?V?",
6797073f 642 First_Bit (CC), Comp);
643 else
644 Error_Msg_NE
1e3532e7 645 ("\info: little-endian range "
646 & "for component & is ^ .. ^?V?",
6797073f 647 First_Bit (CC), Comp);
67278d60 648 end if;
6797073f 649 end if;
67278d60 650
6797073f 651 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
652 Set_Normalized_First_Bit (Comp, NFB mod SSU);
653 end;
67278d60 654 end loop;
6797073f 655 end loop;
656 end Sort_CC;
657 end;
658 end if;
59ac57b5 659 end Adjust_Record_For_Reverse_Bit_Order;
660
1d366b32 661 -------------------------------------
662 -- Alignment_Check_For_Size_Change --
663 -------------------------------------
d6f39728 664
1d366b32 665 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 666 begin
667 -- If the alignment is known, and not set by a rep clause, and is
668 -- inconsistent with the size being set, then reset it to unknown,
669 -- we assume in this case that the size overrides the inherited
670 -- alignment, and that the alignment must be recomputed.
671
672 if Known_Alignment (Typ)
673 and then not Has_Alignment_Clause (Typ)
1d366b32 674 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 675 then
676 Init_Alignment (Typ);
677 end if;
1d366b32 678 end Alignment_Check_For_Size_Change;
d6f39728 679
06ef5f86 680 -------------------------------------
681 -- Analyze_Aspects_At_Freeze_Point --
682 -------------------------------------
683
684 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
685 ASN : Node_Id;
686 A_Id : Aspect_Id;
687 Ritem : Node_Id;
688
689 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
690 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
691 -- the aspect specification node ASN.
692
693 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
694 -- Given an aspect specification node ASN whose expression is an
695 -- optional Boolean, this routines creates the corresponding pragma
696 -- at the freezing point.
697
698 ----------------------------------
699 -- Analyze_Aspect_Default_Value --
700 ----------------------------------
701
702 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
703 Ent : constant Entity_Id := Entity (ASN);
704 Expr : constant Node_Id := Expression (ASN);
705 Id : constant Node_Id := Identifier (ASN);
706
707 begin
708 Error_Msg_Name_1 := Chars (Id);
709
710 if not Is_Type (Ent) then
711 Error_Msg_N ("aspect% can only apply to a type", Id);
712 return;
713
714 elsif not Is_First_Subtype (Ent) then
715 Error_Msg_N ("aspect% cannot apply to subtype", Id);
716 return;
717
718 elsif A_Id = Aspect_Default_Value
719 and then not Is_Scalar_Type (Ent)
720 then
721 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
722 return;
723
724 elsif A_Id = Aspect_Default_Component_Value then
725 if not Is_Array_Type (Ent) then
726 Error_Msg_N ("aspect% can only be applied to array type", Id);
727 return;
728
729 elsif not Is_Scalar_Type (Component_Type (Ent)) then
730 Error_Msg_N ("aspect% requires scalar components", Id);
731 return;
732 end if;
733 end if;
734
735 Set_Has_Default_Aspect (Base_Type (Ent));
736
737 if Is_Scalar_Type (Ent) then
738 Set_Default_Aspect_Value (Ent, Expr);
9f36e3fb 739
740 -- Place default value of base type as well, because that is
741 -- the semantics of the aspect. It is convenient to link the
742 -- aspect to both the (possibly anonymous) base type and to
743 -- the given first subtype.
744
745 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
746
06ef5f86 747 else
748 Set_Default_Aspect_Component_Value (Ent, Expr);
749 end if;
750 end Analyze_Aspect_Default_Value;
751
752 -------------------------------------
753 -- Make_Pragma_From_Boolean_Aspect --
754 -------------------------------------
755
756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
757 Ident : constant Node_Id := Identifier (ASN);
758 A_Name : constant Name_Id := Chars (Ident);
759 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
760 Ent : constant Entity_Id := Entity (ASN);
761 Expr : constant Node_Id := Expression (ASN);
762 Loc : constant Source_Ptr := Sloc (ASN);
763
764 Prag : Node_Id;
765
766 procedure Check_False_Aspect_For_Derived_Type;
767 -- This procedure checks for the case of a false aspect for a derived
768 -- type, which improperly tries to cancel an aspect inherited from
769 -- the parent.
770
771 -----------------------------------------
772 -- Check_False_Aspect_For_Derived_Type --
773 -----------------------------------------
774
775 procedure Check_False_Aspect_For_Derived_Type is
776 Par : Node_Id;
777
778 begin
779 -- We are only checking derived types
780
781 if not Is_Derived_Type (E) then
782 return;
783 end if;
784
785 Par := Nearest_Ancestor (E);
786
787 case A_Id is
788 when Aspect_Atomic | Aspect_Shared =>
789 if not Is_Atomic (Par) then
790 return;
791 end if;
792
793 when Aspect_Atomic_Components =>
794 if not Has_Atomic_Components (Par) then
795 return;
796 end if;
797
798 when Aspect_Discard_Names =>
799 if not Discard_Names (Par) then
800 return;
801 end if;
802
803 when Aspect_Pack =>
804 if not Is_Packed (Par) then
805 return;
806 end if;
807
808 when Aspect_Unchecked_Union =>
809 if not Is_Unchecked_Union (Par) then
810 return;
811 end if;
812
813 when Aspect_Volatile =>
814 if not Is_Volatile (Par) then
815 return;
816 end if;
817
818 when Aspect_Volatile_Components =>
819 if not Has_Volatile_Components (Par) then
820 return;
821 end if;
822
823 when others =>
824 return;
825 end case;
826
827 -- Fall through means we are canceling an inherited aspect
828
829 Error_Msg_Name_1 := A_Name;
830 Error_Msg_NE ("derived type& inherits aspect%, cannot cancel",
831 Expr,
832 E);
833
834 end Check_False_Aspect_For_Derived_Type;
835
836 -- Start of processing for Make_Pragma_From_Boolean_Aspect
837
838 begin
839 if Is_False (Static_Boolean (Expr)) then
840 Check_False_Aspect_For_Derived_Type;
841
842 else
843 Prag :=
844 Make_Pragma (Loc,
845 Pragma_Argument_Associations => New_List (
846 New_Occurrence_Of (Ent, Sloc (Ident))),
847 Pragma_Identifier =>
848 Make_Identifier (Sloc (Ident), Chars (Ident)));
849
850 Set_From_Aspect_Specification (Prag, True);
851 Set_Corresponding_Aspect (Prag, ASN);
852 Set_Aspect_Rep_Item (ASN, Prag);
853 Set_Is_Delayed_Aspect (Prag);
854 Set_Parent (Prag, ASN);
855 end if;
06ef5f86 856 end Make_Pragma_From_Boolean_Aspect;
857
858 -- Start of processing for Analyze_Aspects_At_Freeze_Point
859
860 begin
29a9d4be 861 -- Must be visible in current scope
06ef5f86 862
ace3389d 863 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 864 return;
865 end if;
866
867 -- Look for aspect specification entries for this entity
868
869 ASN := First_Rep_Item (E);
06ef5f86 870 while Present (ASN) loop
871 if Nkind (ASN) = N_Aspect_Specification
872 and then Entity (ASN) = E
873 and then Is_Delayed_Aspect (ASN)
874 then
875 A_Id := Get_Aspect_Id (Chars (Identifier (ASN)));
876
877 case A_Id is
e4c87fa5 878
06ef5f86 879 -- For aspects whose expression is an optional Boolean, make
880 -- the corresponding pragma at the freezing point.
881
882 when Boolean_Aspects |
883 Library_Unit_Aspects =>
884 Make_Pragma_From_Boolean_Aspect (ASN);
885
886 -- Special handling for aspects that don't correspond to
887 -- pragmas/attributes.
888
889 when Aspect_Default_Value |
890 Aspect_Default_Component_Value =>
891 Analyze_Aspect_Default_Value (ASN);
892
af9fed8f 893 -- Ditto for iterator aspects, because the corresponding
894 -- attributes may not have been analyzed yet.
895
896 when Aspect_Constant_Indexing |
897 Aspect_Variable_Indexing |
898 Aspect_Default_Iterator |
899 Aspect_Iterator_Element =>
900 Analyze (Expression (ASN));
901
e4c87fa5 902 when others =>
903 null;
06ef5f86 904 end case;
905
906 Ritem := Aspect_Rep_Item (ASN);
907
908 if Present (Ritem) then
909 Analyze (Ritem);
910 end if;
911 end if;
912
913 Next_Rep_Item (ASN);
914 end loop;
915 end Analyze_Aspects_At_Freeze_Point;
916
ae888dbd 917 -----------------------------------
918 -- Analyze_Aspect_Specifications --
919 -----------------------------------
920
21ea3a4f 921 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
ae888dbd 922 Aspect : Node_Id;
d74fc39a 923 Aitem : Node_Id;
ae888dbd 924 Ent : Node_Id;
ae888dbd 925
21ea3a4f 926 L : constant List_Id := Aspect_Specifications (N);
927
ae888dbd 928 Ins_Node : Node_Id := N;
89f1e35c 929 -- Insert pragmas/attribute definition clause after this node when no
930 -- delayed analysis is required.
d74fc39a 931
932 -- The general processing involves building an attribute definition
89f1e35c 933 -- clause or a pragma node that corresponds to the aspect. Then in order
934 -- to delay the evaluation of this aspect to the freeze point, we attach
935 -- the corresponding pragma/attribute definition clause to the aspect
936 -- specification node, which is then placed in the Rep Item chain. In
937 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
938 -- and we evaluate the rep item at the freeze point. When the aspect
939 -- doesn't have a corresponding pragma/attribute definition clause, then
940 -- its analysis is simply delayed at the freeze point.
941
942 -- Some special cases don't require delay analysis, thus the aspect is
943 -- analyzed right now.
944
945 -- Note that there is a special handling for
946 -- Pre/Post/Test_Case/Contract_Case aspects. In this case, we do not
947 -- have to worry about delay issues, since the pragmas themselves deal
948 -- with delay of visibility for the expression analysis. Thus, we just
949 -- insert the pragma after the node N.
ae888dbd 950
951 begin
21ea3a4f 952 pragma Assert (Present (L));
953
6fb3c314 954 -- Loop through aspects
f93e7257 955
ae888dbd 956 Aspect := First (L);
21ea3a4f 957 Aspect_Loop : while Present (Aspect) loop
ae888dbd 958 declare
94153a42 959 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 960 Id : constant Node_Id := Identifier (Aspect);
961 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 962 Nam : constant Name_Id := Chars (Id);
963 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 964 Anod : Node_Id;
965
89f1e35c 966 Delay_Required : Boolean := True;
967 -- Set False if delay is not required
968
c0793fff 969 Eloc : Source_Ptr := No_Location;
970 -- Source location of expression, modified when we split PPC's. It
971 -- is set below when Expr is present.
39e1f22f 972
89f1e35c 973 procedure Analyze_Aspect_External_Or_Link_Name;
974 -- This routine performs the analysis of the External_Name or
975 -- Link_Name aspects.
21ea3a4f 976
89f1e35c 977 procedure Analyze_Aspect_Implicit_Dereference;
978 -- This routine performs the analysis of the Implicit_Dereference
979 -- aspects.
21ea3a4f 980
89f1e35c 981 ------------------------------------------
982 -- Analyze_Aspect_External_Or_Link_Name --
983 ------------------------------------------
984
985 procedure Analyze_Aspect_External_Or_Link_Name is
21ea3a4f 986 begin
89f1e35c 987 -- Verify that there is an Import/Export aspect defined for the
988 -- entity. The processing of that aspect in turn checks that
989 -- there is a Convention aspect declared. The pragma is
990 -- constructed when processing the Convention aspect.
21ea3a4f 991
89f1e35c 992 declare
993 A : Node_Id;
21ea3a4f 994
89f1e35c 995 begin
996 A := First (L);
89f1e35c 997 while Present (A) loop
998 exit when Chars (Identifier (A)) = Name_Export
999 or else Chars (Identifier (A)) = Name_Import;
1000 Next (A);
1001 end loop;
21ea3a4f 1002
89f1e35c 1003 if No (A) then
1004 Error_Msg_N
1005 ("Missing Import/Export for Link/External name",
1006 Aspect);
1007 end if;
1008 end;
1009 end Analyze_Aspect_External_Or_Link_Name;
21ea3a4f 1010
89f1e35c 1011 -----------------------------------------
1012 -- Analyze_Aspect_Implicit_Dereference --
1013 -----------------------------------------
21ea3a4f 1014
89f1e35c 1015 procedure Analyze_Aspect_Implicit_Dereference is
1016 begin
b9e61b2a 1017 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1018 Error_Msg_N
1019 ("Aspect must apply to a type with discriminants", N);
21ea3a4f 1020
89f1e35c 1021 else
1022 declare
1023 Disc : Entity_Id;
21ea3a4f 1024
89f1e35c 1025 begin
1026 Disc := First_Discriminant (E);
89f1e35c 1027 while Present (Disc) loop
1028 if Chars (Expr) = Chars (Disc)
1029 and then Ekind (Etype (Disc)) =
1030 E_Anonymous_Access_Type
1031 then
1032 Set_Has_Implicit_Dereference (E);
1033 Set_Has_Implicit_Dereference (Disc);
1034 return;
1035 end if;
21ea3a4f 1036
89f1e35c 1037 Next_Discriminant (Disc);
1038 end loop;
21ea3a4f 1039
89f1e35c 1040 -- Error if no proper access discriminant.
21ea3a4f 1041
89f1e35c 1042 Error_Msg_NE
1043 ("not an access discriminant of&", Expr, E);
1044 end;
1045 end if;
1046 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1047
ae888dbd 1048 begin
fb7f2fc4 1049 -- Skip aspect if already analyzed (not clear if this is needed)
1050
1051 if Analyzed (Aspect) then
1052 goto Continue;
1053 end if;
1054
c0793fff 1055 -- Set the source location of expression, used in the case of
1056 -- a failed precondition/postcondition or invariant. Note that
1057 -- the source location of the expression is not usually the best
1058 -- choice here. For example, it gets located on the last AND
1059 -- keyword in a chain of boolean expressiond AND'ed together.
1060 -- It is best to put the message on the first character of the
1061 -- assertion, which is the effect of the First_Node call here.
1062
1063 if Present (Expr) then
1064 Eloc := Sloc (First_Node (Expr));
1065 end if;
1066
d7ed83a2 1067 -- Check restriction No_Implementation_Aspect_Specifications
1068
1069 if Impl_Defined_Aspects (A_Id) then
1070 Check_Restriction
1071 (No_Implementation_Aspect_Specifications, Aspect);
1072 end if;
1073
1074 -- Check restriction No_Specification_Of_Aspect
1075
1076 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1077
1078 -- Analyze this aspect
1079
fb7f2fc4 1080 Set_Analyzed (Aspect);
d74fc39a 1081 Set_Entity (Aspect, E);
1082 Ent := New_Occurrence_Of (E, Sloc (Id));
1083
1e3c4ae6 1084 -- Check for duplicate aspect. Note that the Comes_From_Source
1085 -- test allows duplicate Pre/Post's that we generate internally
1086 -- to escape being flagged here.
ae888dbd 1087
6c545057 1088 if No_Duplicates_Allowed (A_Id) then
1089 Anod := First (L);
1090 while Anod /= Aspect loop
1091 if Same_Aspect
1092 (A_Id, Get_Aspect_Id (Chars (Identifier (Anod))))
1093 and then Comes_From_Source (Aspect)
1094 then
1095 Error_Msg_Name_1 := Nam;
1096 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1097
6c545057 1098 -- Case of same aspect specified twice
39e1f22f 1099
6c545057 1100 if Class_Present (Anod) = Class_Present (Aspect) then
1101 if not Class_Present (Anod) then
1102 Error_Msg_NE
1103 ("aspect% for & previously given#",
1104 Id, E);
1105 else
1106 Error_Msg_NE
1107 ("aspect `%''Class` for & previously given#",
1108 Id, E);
1109 end if;
39e1f22f 1110 end if;
6c545057 1111 end if;
ae888dbd 1112
6c545057 1113 Next (Anod);
1114 end loop;
1115 end if;
ae888dbd 1116
4db325e6 1117 -- Check some general restrictions on language defined aspects
1118
1119 if not Impl_Defined_Aspects (A_Id) then
1120 Error_Msg_Name_1 := Nam;
1121
1122 -- Not allowed for renaming declarations
1123
1124 if Nkind (N) in N_Renaming_Declaration then
1125 Error_Msg_N
1126 ("aspect % not allowed for renaming declaration",
1127 Aspect);
1128 end if;
1129
1130 -- Not allowed for formal type declarations
1131
1132 if Nkind (N) = N_Formal_Type_Declaration then
1133 Error_Msg_N
1134 ("aspect % not allowed for formal type declaration",
1135 Aspect);
1136 end if;
1137 end if;
1138
7d20685d 1139 -- Copy expression for later processing by the procedures
1140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1141
1142 Set_Entity (Id, New_Copy_Tree (Expr));
1143
ae888dbd 1144 -- Processing based on specific aspect
1145
d74fc39a 1146 case A_Id is
ae888dbd 1147
1148 -- No_Aspect should be impossible
1149
1150 when No_Aspect =>
1151 raise Program_Error;
1152
89f1e35c 1153 -- Case 1: Aspects corresponding to attribute definition
1154 -- clauses.
ae888dbd 1155
b7b74740 1156 when Aspect_Address |
1157 Aspect_Alignment |
1158 Aspect_Bit_Order |
1159 Aspect_Component_Size |
89f1e35c 1160 Aspect_Constant_Indexing |
89f1e35c 1161 Aspect_Default_Iterator |
1162 Aspect_Dispatching_Domain |
b7b74740 1163 Aspect_External_Tag |
1164 Aspect_Input |
89f1e35c 1165 Aspect_Iterator_Element |
b7b74740 1166 Aspect_Machine_Radix |
1167 Aspect_Object_Size |
1168 Aspect_Output |
1169 Aspect_Read |
1170 Aspect_Scalar_Storage_Order |
1171 Aspect_Size |
1172 Aspect_Small |
1173 Aspect_Simple_Storage_Pool |
1174 Aspect_Storage_Pool |
1175 Aspect_Storage_Size |
1176 Aspect_Stream_Size |
1177 Aspect_Value_Size |
89f1e35c 1178 Aspect_Variable_Indexing |
b7b74740 1179 Aspect_Write =>
d74fc39a 1180
89f1e35c 1181 -- Indexing aspects apply only to tagged type
1182
1183 if (A_Id = Aspect_Constant_Indexing
1184 or else A_Id = Aspect_Variable_Indexing)
1185 and then not (Is_Type (E)
1186 and then Is_Tagged_Type (E))
1187 then
1188 Error_Msg_N ("indexing applies to a tagged type", N);
1189 goto Continue;
1190 end if;
1191
d74fc39a 1192 -- Construct the attribute definition clause
1193
1194 Aitem :=
94153a42 1195 Make_Attribute_Definition_Clause (Loc,
d74fc39a 1196 Name => Ent,
ae888dbd 1197 Chars => Chars (Id),
1198 Expression => Relocate_Node (Expr));
1199
89f1e35c 1200 -- Case 2: Aspects cooresponding to pragmas
d74fc39a 1201
89f1e35c 1202 -- Case 2a: Aspects corresponding to pragmas with two
1203 -- arguments, where the first argument is a local name
1204 -- referring to the entity, and the second argument is the
1205 -- aspect definition expression.
ae888dbd 1206
1207 when Aspect_Suppress |
1208 Aspect_Unsuppress =>
1209
d74fc39a 1210 -- Construct the pragma
1211
1212 Aitem :=
94153a42 1213 Make_Pragma (Loc,
ae888dbd 1214 Pragma_Argument_Associations => New_List (
231eb581 1215 New_Occurrence_Of (E, Loc),
ae888dbd 1216 Relocate_Node (Expr)),
1217 Pragma_Identifier =>
e7823792 1218 Make_Identifier (Sloc (Id), Chars (Id)));
d74fc39a 1219
49213728 1220 when Aspect_Synchronization =>
1221
1222 -- The aspect corresponds to pragma Implemented.
1223 -- Construct the pragma
1224
1225 Aitem :=
1226 Make_Pragma (Loc,
1227 Pragma_Argument_Associations => New_List (
1228 New_Occurrence_Of (E, Loc),
1229 Relocate_Node (Expr)),
1230 Pragma_Identifier =>
1231 Make_Identifier (Sloc (Id), Name_Implemented));
1232
89f1e35c 1233 -- No delay is required since the only values are: By_Entry
1234 -- | By_Protected_Procedure | By_Any | Optional which don't
1235 -- get analyzed anyway.
49213728 1236
89f1e35c 1237 Delay_Required := False;
1238
1239 when Aspect_Attach_Handler =>
1240 Aitem :=
1241 Make_Pragma (Loc,
1242 Pragma_Identifier =>
1243 Make_Identifier (Sloc (Id), Name_Attach_Handler),
1244 Pragma_Argument_Associations =>
1245 New_List (Ent, Relocate_Node (Expr)));
1246
1247 when Aspect_Dynamic_Predicate |
1248 Aspect_Predicate |
1249 Aspect_Static_Predicate =>
1250
1251 -- Construct the pragma (always a pragma Predicate, with
1252 -- flags recording whether it is static/dynamic).
1253
1254 Aitem :=
1255 Make_Pragma (Loc,
1256 Pragma_Argument_Associations =>
1257 New_List (Ent, Relocate_Node (Expr)),
1258 Class_Present => Class_Present (Aspect),
1259 Pragma_Identifier =>
1260 Make_Identifier (Sloc (Id), Name_Predicate));
1261
1262 -- If the type is private, indicate that its completion
1263 -- has a freeze node, because that is the one that will be
1264 -- visible at freeze time.
1265
1266 Set_Has_Predicates (E);
1267
1268 if Is_Private_Type (E)
1269 and then Present (Full_View (E))
1270 then
1271 Set_Has_Predicates (Full_View (E));
1272 Set_Has_Delayed_Aspects (Full_View (E));
1273 Ensure_Freeze_Node (Full_View (E));
1274 end if;
1275
1276 -- Case 2b: Aspects corresponding to pragmas with two
1277 -- arguments, where the second argument is a local name
1278 -- referring to the entity, and the first argument is the
1279 -- aspect definition expression.
ae888dbd 1280
a5a64273 1281 when Aspect_Convention =>
1282
1283 -- The aspect may be part of the specification of an import
1284 -- or export pragma. Scan the aspect list to gather the
1285 -- other components, if any. The name of the generated
1286 -- pragma is one of Convention/Import/Export.
1287
1288 declare
1289 P_Name : Name_Id;
1290 A_Name : Name_Id;
1291 A : Node_Id;
1292 Arg_List : List_Id;
1293 Found : Boolean;
1294 L_Assoc : Node_Id;
1295 E_Assoc : Node_Id;
1296
1297 begin
1298 P_Name := Chars (Id);
1299 Found := False;
1300 Arg_List := New_List;
1301 L_Assoc := Empty;
1302 E_Assoc := Empty;
1303
1304 A := First (L);
1305 while Present (A) loop
1306 A_Name := Chars (Identifier (A));
1307
1308 if A_Name = Name_Import
b9e61b2a 1309 or else
1310 A_Name = Name_Export
a5a64273 1311 then
1312 if Found then
89f1e35c 1313 Error_Msg_N ("conflicting", A);
a5a64273 1314 else
1315 Found := True;
1316 end if;
1317
1318 P_Name := A_Name;
1319
1320 elsif A_Name = Name_Link_Name then
1321 L_Assoc := Make_Pragma_Argument_Association (Loc,
89f1e35c 1322 Chars => A_Name,
a5a64273 1323 Expression => Relocate_Node (Expression (A)));
1324
1325 elsif A_Name = Name_External_Name then
1326 E_Assoc := Make_Pragma_Argument_Association (Loc,
89f1e35c 1327 Chars => A_Name,
a5a64273 1328 Expression => Relocate_Node (Expression (A)));
1329 end if;
1330
1331 Next (A);
1332 end loop;
1333
1334 Arg_List := New_List (Relocate_Node (Expr), Ent);
b9e61b2a 1335
a5a64273 1336 if Present (L_Assoc) then
1337 Append_To (Arg_List, L_Assoc);
1338 end if;
1339
1340 if Present (E_Assoc) then
1341 Append_To (Arg_List, E_Assoc);
1342 end if;
1343
1344 Aitem :=
1345 Make_Pragma (Loc,
1346 Pragma_Argument_Associations => Arg_List,
1347 Pragma_Identifier =>
1348 Make_Identifier (Loc, P_Name));
1349 end;
e1cedbae 1350
3a72f9c3 1351 -- The following three aspects can be specified for a
1352 -- subprogram body, in which case we generate pragmas for them
1353 -- and insert them ahead of local declarations, rather than
1354 -- after the body.
1355
1356 when Aspect_CPU |
1357 Aspect_Interrupt_Priority |
1358 Aspect_Priority =>
1359 if Nkind (N) = N_Subprogram_Body then
1360 Aitem :=
1361 Make_Pragma (Loc,
1362 Pragma_Argument_Associations =>
1363 New_List (Relocate_Node (Expr)),
1364 Pragma_Identifier =>
1365 Make_Identifier (Sloc (Id), Chars (Id)));
1366 else
1367 Aitem :=
1368 Make_Attribute_Definition_Clause (Loc,
1369 Name => Ent,
1370 Chars => Chars (Id),
1371 Expression => Relocate_Node (Expr));
1372 end if;
1373
ae888dbd 1374 when Aspect_Warnings =>
1375
d74fc39a 1376 -- Construct the pragma
1377
1378 Aitem :=
94153a42 1379 Make_Pragma (Loc,
ae888dbd 1380 Pragma_Argument_Associations => New_List (
1381 Relocate_Node (Expr),
231eb581 1382 New_Occurrence_Of (E, Loc)),
ae888dbd 1383 Pragma_Identifier =>
94153a42 1384 Make_Identifier (Sloc (Id), Chars (Id)),
1385 Class_Present => Class_Present (Aspect));
ae888dbd 1386
d74fc39a 1387 -- We don't have to play the delay game here, since the only
0b424e9b 1388 -- values are ON/OFF which don't get analyzed anyway.
d74fc39a 1389
89f1e35c 1390 Delay_Required := False;
d74fc39a 1391
89f1e35c 1392 -- Case 2c: Aspects corresponding to pragmas with three
1393 -- arguments.
d64221a7 1394
89f1e35c 1395 -- Invariant aspects have a first argument that references the
1396 -- entity, a second argument that is the expression and a third
1397 -- argument that is an appropriate message.
d64221a7 1398
89f1e35c 1399 when Aspect_Invariant |
1400 Aspect_Type_Invariant =>
d64221a7 1401
89f1e35c 1402 -- Analysis of the pragma will verify placement legality:
1403 -- an invariant must apply to a private type, or appear in
1404 -- the private part of a spec and apply to a completion.
d64221a7 1405
89f1e35c 1406 -- Construct the pragma
d64221a7 1407
89f1e35c 1408 Aitem :=
1409 Make_Pragma (Loc,
1410 Pragma_Argument_Associations =>
1411 New_List (Ent, Relocate_Node (Expr)),
1412 Class_Present => Class_Present (Aspect),
1413 Pragma_Identifier =>
1414 Make_Identifier (Sloc (Id), Name_Invariant));
1415
1416 -- Add message unless exception messages are suppressed
1417
1418 if not Opt.Exception_Locations_Suppressed then
1419 Append_To (Pragma_Argument_Associations (Aitem),
1420 Make_Pragma_Argument_Association (Eloc,
1421 Chars => Name_Message,
1422 Expression =>
1423 Make_String_Literal (Eloc,
1424 Strval => "failed invariant from "
1425 & Build_Location_String (Eloc))));
d64221a7 1426 end if;
1427
89f1e35c 1428 -- For Invariant case, insert immediately after the entity
1429 -- declaration. We do not have to worry about delay issues
1430 -- since the pragma processing takes care of this.
1431
89f1e35c 1432 Delay_Required := False;
d64221a7 1433
47a46747 1434 -- Case 2d : Aspects that correspond to a pragma with one
1435 -- argument.
1436
1437 when Aspect_Relative_Deadline =>
1438 Aitem :=
1439 Make_Pragma (Loc,
1440 Pragma_Argument_Associations =>
1441 New_List (
1442 Make_Pragma_Argument_Association (Loc,
1443 Expression => Relocate_Node (Expr))),
1444 Pragma_Identifier =>
1445 Make_Identifier (Sloc (Id), Name_Relative_Deadline));
1446
1447 -- If the aspect applies to a task, the corresponding pragma
1448 -- must appear within its declarations, not after.
1449
1450 if Nkind (N) = N_Task_Type_Declaration then
1451 declare
1452 Def : Node_Id;
1453 V : List_Id;
1454
1455 begin
1456 if No (Task_Definition (N)) then
1457 Set_Task_Definition (N,
1458 Make_Task_Definition (Loc,
1459 Visible_Declarations => New_List,
1460 End_Label => Empty));
1461 end if;
1462
1463 Def := Task_Definition (N);
1464 V := Visible_Declarations (Def);
1465 if not Is_Empty_List (V) then
1466 Insert_Before (First (V), Aitem);
1467
1468 else
1469 Set_Visible_Declarations (Def, New_List (Aitem));
1470 end if;
1471
1472 goto Continue;
1473 end;
1474 end if;
1475
89f1e35c 1476 -- Case 3 : Aspects that don't correspond to pragma/attribute
1477 -- definition clause.
7b9b2f05 1478
89f1e35c 1479 -- Case 3a: The aspects listed below don't correspond to
1480 -- pragmas/attributes but do require delayed analysis.
7f694ca2 1481
89f1e35c 1482 when Aspect_Default_Value |
1483 Aspect_Default_Component_Value =>
1484 Aitem := Empty;
7f694ca2 1485
89f1e35c 1486 -- Case 3b: The aspects listed below don't correspond to
1487 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 1488
89f1e35c 1489 -- For Implicit_Dereference, External_Name and Link_Name, only
1490 -- the legality checks are done during the analysis, thus no
1491 -- delay is required.
a8e38e1d 1492
89f1e35c 1493 when Aspect_Implicit_Dereference =>
1494 Analyze_Aspect_Implicit_Dereference;
1495 goto Continue;
7f694ca2 1496
89f1e35c 1497 when Aspect_External_Name |
1498 Aspect_Link_Name =>
1499 Analyze_Aspect_External_Or_Link_Name;
1500 goto Continue;
7f694ca2 1501
89f1e35c 1502 when Aspect_Dimension =>
1503 Analyze_Aspect_Dimension (N, Id, Expr);
1504 goto Continue;
cb4c311d 1505
89f1e35c 1506 when Aspect_Dimension_System =>
1507 Analyze_Aspect_Dimension_System (N, Id, Expr);
1508 goto Continue;
7f694ca2 1509
89f1e35c 1510 -- Case 4: Special handling for aspects
1511 -- Pre/Post/Test_Case/Contract_Case whose corresponding pragmas
1512 -- take care of the delay.
7f694ca2 1513
1e3c4ae6 1514 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
1515 -- with a first argument that is the expression, and a second
1516 -- argument that is an informative message if the test fails.
1517 -- This is inserted right after the declaration, to get the
5b5df4a9 1518 -- required pragma placement. The processing for the pragmas
1519 -- takes care of the required delay.
ae888dbd 1520
ddf1337b 1521 when Pre_Post_Aspects => declare
1e3c4ae6 1522 Pname : Name_Id;
ae888dbd 1523
1e3c4ae6 1524 begin
77ae6789 1525 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 1526 Pname := Name_Precondition;
1527 else
1528 Pname := Name_Postcondition;
1529 end if;
d74fc39a 1530
1e3c4ae6 1531 -- If the expressions is of the form A and then B, then
1532 -- we generate separate Pre/Post aspects for the separate
1533 -- clauses. Since we allow multiple pragmas, there is no
1534 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 1535 -- These should be treated in reverse order (B first and
1536 -- A second) since they are later inserted just after N in
1537 -- the order they are treated. This way, the pragma for A
1538 -- ends up preceding the pragma for B, which may have an
1539 -- importance for the error raised (either constraint error
1540 -- or precondition error).
1e3c4ae6 1541
39e1f22f 1542 -- We do not do this for Pre'Class, since we have to put
1543 -- these conditions together in a complex OR expression
ae888dbd 1544
4282d342 1545 -- We do not do this in ASIS mode, as ASIS relies on the
1546 -- original node representing the complete expression, when
1547 -- retrieving it through the source aspect table.
1548
1549 if not ASIS_Mode
1550 and then (Pname = Name_Postcondition
1551 or else not Class_Present (Aspect))
39e1f22f 1552 then
1553 while Nkind (Expr) = N_And_Then loop
1554 Insert_After (Aspect,
a273015d 1555 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 1556 Identifier => Identifier (Aspect),
a273015d 1557 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 1558 Class_Present => Class_Present (Aspect),
1559 Split_PPC => True));
a273015d 1560 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 1561 Eloc := Sloc (Expr);
1562 end loop;
1563 end if;
ae888dbd 1564
39e1f22f 1565 -- Build the precondition/postcondition pragma
d74fc39a 1566
1567 Aitem :=
1e3c4ae6 1568 Make_Pragma (Loc,
ae888dbd 1569 Pragma_Identifier =>
55868293 1570 Make_Identifier (Sloc (Id), Pname),
94153a42 1571 Class_Present => Class_Present (Aspect),
39e1f22f 1572 Split_PPC => Split_PPC (Aspect),
94153a42 1573 Pragma_Argument_Associations => New_List (
1e3c4ae6 1574 Make_Pragma_Argument_Association (Eloc,
94153a42 1575 Chars => Name_Check,
39e1f22f 1576 Expression => Relocate_Node (Expr))));
1577
1578 -- Add message unless exception messages are suppressed
1579
1580 if not Opt.Exception_Locations_Suppressed then
1581 Append_To (Pragma_Argument_Associations (Aitem),
1582 Make_Pragma_Argument_Association (Eloc,
1583 Chars => Name_Message,
1584 Expression =>
1585 Make_String_Literal (Eloc,
1586 Strval => "failed "
1587 & Get_Name_String (Pname)
1588 & " from "
1589 & Build_Location_String (Eloc))));
1590 end if;
d74fc39a 1591
1e3c4ae6 1592 Set_From_Aspect_Specification (Aitem, True);
cce84b09 1593 Set_Corresponding_Aspect (Aitem, Aspect);
7d20685d 1594 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 1595
1e3c4ae6 1596 -- For Pre/Post cases, insert immediately after the entity
1597 -- declaration, since that is the required pragma placement.
1598 -- Note that for these aspects, we do not have to worry
1599 -- about delay issues, since the pragmas themselves deal
1600 -- with delay of visibility for the expression analysis.
1601
d2be415f 1602 -- If the entity is a library-level subprogram, the pre/
d4596fbe 1603 -- postconditions must be treated as late pragmas. Note
1604 -- that they must be prepended, not appended, to the list,
1605 -- so that split AND THEN sections are processed in the
1606 -- correct order.
d2be415f 1607
1608 if Nkind (Parent (N)) = N_Compilation_Unit then
d4596fbe 1609 declare
1610 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
b174444e 1611
d4596fbe 1612 begin
1613 if No (Pragmas_After (Aux)) then
1614 Set_Pragmas_After (Aux, New_List);
1615 end if;
1616
1617 Prepend (Aitem, Pragmas_After (Aux));
1618 end;
01fa11f5 1619
1620 -- If it is a subprogram body, add pragmas to list of
1621 -- declarations in body.
1622
1623 elsif Nkind (N) = N_Subprogram_Body then
1624 if No (Declarations (N)) then
1625 Set_Declarations (N, New_List);
1626 end if;
1627
1628 Append (Aitem, Declarations (N));
1629
d2be415f 1630 else
1631 Insert_After (N, Aitem);
1632 end if;
1633
1e3c4ae6 1634 goto Continue;
1635 end;
ae888dbd 1636
fad014fe 1637 when Aspect_Contract_Case |
1638 Aspect_Test_Case =>
1639 declare
1640 Args : List_Id;
1641 Comp_Expr : Node_Id;
1642 Comp_Assn : Node_Id;
1643 New_Expr : Node_Id;
b0bc40fd 1644
fad014fe 1645 begin
1646 Args := New_List;
6c545057 1647
fad014fe 1648 if Nkind (Parent (N)) = N_Compilation_Unit then
1649 Error_Msg_Name_1 := Nam;
1650 Error_Msg_N ("incorrect placement of aspect `%`", E);
1651 goto Continue;
1652 end if;
6c545057 1653
fad014fe 1654 if Nkind (Expr) /= N_Aggregate then
1655 Error_Msg_Name_1 := Nam;
6c545057 1656 Error_Msg_NE
fad014fe 1657 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 1658 goto Continue;
1659 end if;
1660
fad014fe 1661 -- Make pragma expressions refer to the original aspect
1662 -- expressions through the Original_Node link. This is
1663 -- used in semantic analysis for ASIS mode, so that the
1664 -- original expression also gets analyzed.
1665
1666 Comp_Expr := First (Expressions (Expr));
1667 while Present (Comp_Expr) loop
1668 New_Expr := Relocate_Node (Comp_Expr);
1669 Set_Original_Node (New_Expr, Comp_Expr);
1670 Append
1671 (Make_Pragma_Argument_Association (Sloc (Comp_Expr),
1672 Expression => New_Expr),
1673 Args);
1674 Next (Comp_Expr);
1675 end loop;
6c545057 1676
fad014fe 1677 Comp_Assn := First (Component_Associations (Expr));
1678 while Present (Comp_Assn) loop
1679 if List_Length (Choices (Comp_Assn)) /= 1
1680 or else
1681 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
1682 then
1683 Error_Msg_Name_1 := Nam;
1684 Error_Msg_NE
1685 ("wrong syntax for aspect `%` for &", Id, E);
1686 goto Continue;
1687 end if;
6c545057 1688
fad014fe 1689 New_Expr := Relocate_Node (Expression (Comp_Assn));
1690 Set_Original_Node (New_Expr, Expression (Comp_Assn));
1691 Append (Make_Pragma_Argument_Association (
1692 Sloc => Sloc (Comp_Assn),
1693 Chars => Chars (First (Choices (Comp_Assn))),
1694 Expression => New_Expr),
1695 Args);
1696 Next (Comp_Assn);
1697 end loop;
6c545057 1698
fad014fe 1699 -- Build the contract-case or test-case pragma
6c545057 1700
fad014fe 1701 Aitem :=
1702 Make_Pragma (Loc,
3a128918 1703 Pragma_Identifier =>
1704 Make_Identifier (Sloc (Id), Nam),
1705 Pragma_Argument_Associations => Args);
6c545057 1706
89f1e35c 1707 Delay_Required := False;
fad014fe 1708 end;
85696508 1709
3a128918 1710 when Aspect_Contract_Cases => Contract_Cases : declare
1711 Case_Guard : Node_Id;
1712 Extra : Node_Id;
1713 Others_Seen : Boolean := False;
1714 Post_Case : Node_Id;
1715
1716 begin
1717 if Nkind (Parent (N)) = N_Compilation_Unit then
1718 Error_Msg_Name_1 := Nam;
1719 Error_Msg_N ("incorrect placement of aspect `%`", E);
1720 goto Continue;
1721 end if;
1722
1723 if Nkind (Expr) /= N_Aggregate then
1724 Error_Msg_Name_1 := Nam;
1725 Error_Msg_NE
1726 ("wrong syntax for aspect `%` for &", Id, E);
1727 goto Continue;
1728 end if;
1729
1730 -- Verify the legality of individual post cases
1731
1732 Post_Case := First (Component_Associations (Expr));
1733 while Present (Post_Case) loop
1734 if Nkind (Post_Case) /= N_Component_Association then
1735 Error_Msg_N ("wrong syntax in post case", Post_Case);
1736 goto Continue;
1737 end if;
1738
1739 -- Each post case must have exactly one case guard
1740
1741 Case_Guard := First (Choices (Post_Case));
1742 Extra := Next (Case_Guard);
1743
1744 if Present (Extra) then
1745 Error_Msg_N
1746 ("post case may have only one case guard", Extra);
1747 goto Continue;
1748 end if;
1749
1750 -- Check the placement of "others" (if available)
1751
1752 if Nkind (Case_Guard) = N_Others_Choice then
1753 if Others_Seen then
1754 Error_Msg_Name_1 := Nam;
1755 Error_Msg_N
1756 ("only one others choice allowed in aspect %",
1757 Case_Guard);
1758 goto Continue;
1759 else
1760 Others_Seen := True;
1761 end if;
1762
1763 elsif Others_Seen then
1764 Error_Msg_Name_1 := Nam;
1765 Error_Msg_N
1766 ("others must be the last choice in aspect %", N);
1767 goto Continue;
1768 end if;
1769
1770 Next (Post_Case);
1771 end loop;
1772
1773 -- Transform the aspect into a pragma
1774
1775 Aitem :=
1776 Make_Pragma (Loc,
1777 Pragma_Identifier =>
1778 Make_Identifier (Loc, Nam),
1779 Pragma_Argument_Associations => New_List (
1780 Make_Pragma_Argument_Association (Loc,
1781 Expression => Relocate_Node (Expr))));
1782
1783 Delay_Required := False;
1784 end Contract_Cases;
1785
89f1e35c 1786 -- Case 5: Special handling for aspects with an optional
1787 -- boolean argument.
85696508 1788
89f1e35c 1789 -- In the general case, the corresponding pragma cannot be
1790 -- generated yet because the evaluation of the boolean needs to
1791 -- be delayed til the freeze point.
85696508 1792
89f1e35c 1793 when Boolean_Aspects |
1794 Library_Unit_Aspects =>
a5a64273 1795
89f1e35c 1796 Set_Is_Boolean_Aspect (Aspect);
a5a64273 1797
89f1e35c 1798 -- Lock_Free aspect only apply to protected objects
e1cedbae 1799
89f1e35c 1800 if A_Id = Aspect_Lock_Free then
1801 if Ekind (E) /= E_Protected_Type then
99a2d5bd 1802 Error_Msg_Name_1 := Nam;
a5a64273 1803 Error_Msg_N
89f1e35c 1804 ("aspect % only applies to a protected object",
1805 Aspect);
1806
1807 else
1808 -- Set the Uses_Lock_Free flag to True if there is no
1809 -- expression or if the expression is True. ??? The
1810 -- evaluation of this aspect should be delayed to the
1811 -- freeze point.
1812
1813 if No (Expr)
1814 or else Is_True (Static_Boolean (Expr))
1815 then
1816 Set_Uses_Lock_Free (E);
1817 end if;
caf125ce 1818
1819 Record_Rep_Item (E, Aspect);
a5a64273 1820 end if;
e1cedbae 1821
89f1e35c 1822 goto Continue;
ae888dbd 1823
17631aa0 1824 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
d74fc39a 1825
89f1e35c 1826 -- Verify that there is an aspect Convention that will
1827 -- incorporate the Import/Export aspect, and eventual
1828 -- Link/External names.
cce84b09 1829
89f1e35c 1830 declare
1831 A : Node_Id;
cce84b09 1832
89f1e35c 1833 begin
1834 A := First (L);
1835 while Present (A) loop
1836 exit when Chars (Identifier (A)) = Name_Convention;
1837 Next (A);
1838 end loop;
d64221a7 1839
89f1e35c 1840 if No (A) then
1841 Error_Msg_N
1842 ("missing Convention aspect for Export/Import",
1843 Aspect);
1844 end if;
1845 end;
d74fc39a 1846
89f1e35c 1847 goto Continue;
1848 end if;
d74fc39a 1849
89f1e35c 1850 -- This requires special handling in the case of a package
1851 -- declaration, the pragma needs to be inserted in the list
1852 -- of declarations for the associated package. There is no
1853 -- issue of visibility delay for these aspects.
d64221a7 1854
89f1e35c 1855 if A_Id in Library_Unit_Aspects
1856 and then Nkind (N) = N_Package_Declaration
1857 and then Nkind (Parent (N)) /= N_Compilation_Unit
1858 then
1859 Error_Msg_N
1860 ("incorrect context for library unit aspect&", Id);
1861 goto Continue;
1862 end if;
cce84b09 1863
89f1e35c 1864 -- Special handling when the aspect has no expression. In
1865 -- this case the value is considered to be True. Thus, we
1866 -- simply insert the pragma, no delay is required.
d74fc39a 1867
89f1e35c 1868 if No (Expr) then
1869 Aitem :=
1870 Make_Pragma (Loc,
1871 Pragma_Argument_Associations => New_List (Ent),
1872 Pragma_Identifier =>
1873 Make_Identifier (Sloc (Id), Chars (Id)));
ddf1337b 1874
89f1e35c 1875 Delay_Required := False;
ddf1337b 1876
89f1e35c 1877 -- In general cases, the corresponding pragma/attribute
1878 -- definition clause will be inserted later at the freezing
1879 -- point.
ddf1337b 1880
89f1e35c 1881 else
1882 Aitem := Empty;
1883 end if;
1884 end case;
ddf1337b 1885
89f1e35c 1886 -- Attach the corresponding pragma/attribute definition clause to
1887 -- the aspect specification node.
d74fc39a 1888
89f1e35c 1889 if Present (Aitem) then
1890 Set_From_Aspect_Specification (Aitem, True);
d74fc39a 1891
89f1e35c 1892 if Nkind (Aitem) = N_Pragma then
1893 Set_Corresponding_Aspect (Aitem, Aspect);
1894 end if;
1895 end if;
53c179ea 1896
89f1e35c 1897 -- In the context of a compilation unit, we directly put the
1898 -- pragma in the Pragmas_After list of the
935e86e0 1899 -- N_Compilation_Unit_Aux node (no delay is required here)
3a72f9c3 1900 -- except for aspects on a subprogram body (see below).
ddf1337b 1901
89f1e35c 1902 if Nkind (Parent (N)) = N_Compilation_Unit
1903 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
1904 then
1905 declare
1906 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 1907
89f1e35c 1908 begin
1909 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 1910
89f1e35c 1911 -- For a Boolean aspect, create the corresponding pragma if
1912 -- no expression or if the value is True.
7f694ca2 1913
b9e61b2a 1914 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 1915 if Is_True (Static_Boolean (Expr)) then
1916 Aitem :=
1917 Make_Pragma (Loc,
1918 Pragma_Argument_Associations => New_List (Ent),
1919 Pragma_Identifier =>
1920 Make_Identifier (Sloc (Id), Chars (Id)));
7f694ca2 1921
89f1e35c 1922 Set_From_Aspect_Specification (Aitem, True);
1923 Set_Corresponding_Aspect (Aitem, Aspect);
1924
1925 else
1926 goto Continue;
1927 end if;
1928 end if;
7f694ca2 1929
3a72f9c3 1930 -- If the aspect is on a subprogram body (relevant aspects
1931 -- are Inline and Priority), add the pragma in front of
1932 -- the declarations.
1933
1934 if Nkind (N) = N_Subprogram_Body then
1935 if No (Declarations (N)) then
1936 Set_Declarations (N, New_List);
1937 end if;
1938
1939 Prepend (Aitem, Declarations (N));
1940
1941 else
1942 if No (Pragmas_After (Aux)) then
d4596fbe 1943 Set_Pragmas_After (Aux, New_List);
3a72f9c3 1944 end if;
1945
1946 Append (Aitem, Pragmas_After (Aux));
89f1e35c 1947 end if;
7f694ca2 1948
89f1e35c 1949 goto Continue;
1950 end;
1951 end if;
7f694ca2 1952
89f1e35c 1953 -- The evaluation of the aspect is delayed to the freezing point.
1954 -- The pragma or attribute clause if there is one is then attached
1955 -- to the aspect specification which is placed in the rep item
1956 -- list.
1a814552 1957
89f1e35c 1958 if Delay_Required then
1959 if Present (Aitem) then
1960 Set_Is_Delayed_Aspect (Aitem);
1961 Set_Aspect_Rep_Item (Aspect, Aitem);
1962 Set_Parent (Aitem, Aspect);
1963 end if;
1a814552 1964
89f1e35c 1965 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 1966
1967 -- In the case of Default_Value, link aspect to base type
1968 -- as well, even though it appears on a first subtype. This
1969 -- is mandated by the semantics of the aspect. Verify that
1970 -- this a scalar type, to prevent cascaded errors.
1971
c826347a 1972 if A_Id = Aspect_Default_Value and then Is_Scalar_Type (E) then
9f36e3fb 1973 Set_Has_Delayed_Aspects (Base_Type (E));
1974 Record_Rep_Item (Base_Type (E), Aspect);
1975 end if;
1976
89f1e35c 1977 Set_Has_Delayed_Aspects (E);
1978 Record_Rep_Item (E, Aspect);
ddf1337b 1979
89f1e35c 1980 -- When delay is not required and the context is not a compilation
1981 -- unit, we simply insert the pragma/attribute definition clause
1982 -- in sequence.
ddf1337b 1983
89f1e35c 1984 else
1985 Insert_After (Ins_Node, Aitem);
1986 Ins_Node := Aitem;
d74fc39a 1987 end if;
ae888dbd 1988 end;
1989
d64221a7 1990 <<Continue>>
1991 Next (Aspect);
21ea3a4f 1992 end loop Aspect_Loop;
89f1e35c 1993
1994 if Has_Delayed_Aspects (E) then
1995 Ensure_Freeze_Node (E);
1996 end if;
21ea3a4f 1997 end Analyze_Aspect_Specifications;
ae888dbd 1998
d6f39728 1999 -----------------------
2000 -- Analyze_At_Clause --
2001 -----------------------
2002
2003 -- An at clause is replaced by the corresponding Address attribute
2004 -- definition clause that is the preferred approach in Ada 95.
2005
2006 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 2007 CS : constant Boolean := Comes_From_Source (N);
2008
d6f39728 2009 begin
177675a7 2010 -- This is an obsolescent feature
2011
e0521a36 2012 Check_Restriction (No_Obsolescent_Features, N);
2013
9dfe12ae 2014 if Warn_On_Obsolescent_Feature then
2015 Error_Msg_N
b174444e 2016 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 2017 Error_Msg_N
b174444e 2018 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 2019 end if;
2020
177675a7 2021 -- Rewrite as address clause
2022
d6f39728 2023 Rewrite (N,
2024 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 2025 Name => Identifier (N),
2026 Chars => Name_Address,
d6f39728 2027 Expression => Expression (N)));
177675a7 2028
2beb22b1 2029 -- We preserve Comes_From_Source, since logically the clause still comes
2030 -- from the source program even though it is changed in form.
177675a7 2031
2032 Set_Comes_From_Source (N, CS);
2033
2034 -- Analyze rewritten clause
2035
d6f39728 2036 Analyze_Attribute_Definition_Clause (N);
2037 end Analyze_At_Clause;
2038
2039 -----------------------------------------
2040 -- Analyze_Attribute_Definition_Clause --
2041 -----------------------------------------
2042
2043 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
2044 Loc : constant Source_Ptr := Sloc (N);
2045 Nam : constant Node_Id := Name (N);
2046 Attr : constant Name_Id := Chars (N);
2047 Expr : constant Node_Id := Expression (N);
2048 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 2049
2050 Ent : Entity_Id;
2051 -- The entity of Nam after it is analyzed. In the case of an incomplete
2052 -- type, this is the underlying type.
2053
d6f39728 2054 U_Ent : Entity_Id;
d64221a7 2055 -- The underlying entity to which the attribute applies. Generally this
2056 -- is the Underlying_Type of Ent, except in the case where the clause
2057 -- applies to full view of incomplete type or private type in which case
2058 -- U_Ent is just a copy of Ent.
d6f39728 2059
2060 FOnly : Boolean := False;
2061 -- Reset to True for subtype specific attribute (Alignment, Size)
2062 -- and for stream attributes, i.e. those cases where in the call
2063 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
2064 -- rules are checked. Note that the case of stream attributes is not
2065 -- clear from the RM, but see AI95-00137. Also, the RM seems to
2066 -- disallow Storage_Size for derived task types, but that is also
2067 -- clearly unintentional.
2068
9f373bb8 2069 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
2070 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
2071 -- definition clauses.
2072
ae888dbd 2073 function Duplicate_Clause return Boolean;
2074 -- This routine checks if the aspect for U_Ent being given by attribute
2075 -- definition clause N is for an aspect that has already been specified,
2076 -- and if so gives an error message. If there is a duplicate, True is
2077 -- returned, otherwise if there is no error, False is returned.
2078
81b424ac 2079 procedure Check_Indexing_Functions;
2080 -- Check that the function in Constant_Indexing or Variable_Indexing
2081 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 2082 -- check that some interpretation is legal.
81b424ac 2083
89cc7147 2084 procedure Check_Iterator_Functions;
2085 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 2086 -- has the proper type structure.
89cc7147 2087
2088 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 2089 -- Common legality check for the previous two
89cc7147 2090
177675a7 2091 -----------------------------------
2092 -- Analyze_Stream_TSS_Definition --
2093 -----------------------------------
2094
9f373bb8 2095 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
2096 Subp : Entity_Id := Empty;
2097 I : Interp_Index;
2098 It : Interp;
2099 Pnam : Entity_Id;
2100
2101 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
d64221a7 2102 -- True for Read attribute, false for other attributes
9f373bb8 2103
2104 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
2105 -- Return true if the entity is a subprogram with an appropriate
2106 -- profile for the attribute being defined.
2107
2108 ----------------------
2109 -- Has_Good_Profile --
2110 ----------------------
2111
2112 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
2113 F : Entity_Id;
2114 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
2115 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
2116 (False => E_Procedure, True => E_Function);
2117 Typ : Entity_Id;
2118
2119 begin
2120 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
2121 return False;
2122 end if;
2123
2124 F := First_Formal (Subp);
2125
2126 if No (F)
2127 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
2128 or else Designated_Type (Etype (F)) /=
2129 Class_Wide_Type (RTE (RE_Root_Stream_Type))
2130 then
2131 return False;
2132 end if;
2133
2134 if not Is_Function then
2135 Next_Formal (F);
2136
2137 declare
2138 Expected_Mode : constant array (Boolean) of Entity_Kind :=
2139 (False => E_In_Parameter,
2140 True => E_Out_Parameter);
2141 begin
2142 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
2143 return False;
2144 end if;
2145 end;
2146
2147 Typ := Etype (F);
2148
2149 else
2150 Typ := Etype (Subp);
2151 end if;
2152
2153 return Base_Type (Typ) = Base_Type (Ent)
2154 and then No (Next_Formal (F));
9f373bb8 2155 end Has_Good_Profile;
2156
2157 -- Start of processing for Analyze_Stream_TSS_Definition
2158
2159 begin
2160 FOnly := True;
2161
2162 if not Is_Type (U_Ent) then
2163 Error_Msg_N ("local name must be a subtype", Nam);
2164 return;
2165 end if;
2166
2167 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
2168
44e4341e 2169 -- If Pnam is present, it can be either inherited from an ancestor
2170 -- type (in which case it is legal to redefine it for this type), or
2171 -- be a previous definition of the attribute for the same type (in
2172 -- which case it is illegal).
2173
2174 -- In the first case, it will have been analyzed already, and we
2175 -- can check that its profile does not match the expected profile
2176 -- for a stream attribute of U_Ent. In the second case, either Pnam
2177 -- has been analyzed (and has the expected profile), or it has not
2178 -- been analyzed yet (case of a type that has not been frozen yet
2179 -- and for which the stream attribute has been set using Set_TSS).
2180
2181 if Present (Pnam)
2182 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
2183 then
9f373bb8 2184 Error_Msg_Sloc := Sloc (Pnam);
2185 Error_Msg_Name_1 := Attr;
2186 Error_Msg_N ("% attribute already defined #", Nam);
2187 return;
2188 end if;
2189
2190 Analyze (Expr);
2191
2192 if Is_Entity_Name (Expr) then
2193 if not Is_Overloaded (Expr) then
2194 if Has_Good_Profile (Entity (Expr)) then
2195 Subp := Entity (Expr);
2196 end if;
2197
2198 else
2199 Get_First_Interp (Expr, I, It);
9f373bb8 2200 while Present (It.Nam) loop
2201 if Has_Good_Profile (It.Nam) then
2202 Subp := It.Nam;
2203 exit;
2204 end if;
2205
2206 Get_Next_Interp (I, It);
2207 end loop;
2208 end if;
2209 end if;
2210
2211 if Present (Subp) then
59ac57b5 2212 if Is_Abstract_Subprogram (Subp) then
9f373bb8 2213 Error_Msg_N ("stream subprogram must not be abstract", Expr);
2214 return;
2215 end if;
2216
2217 Set_Entity (Expr, Subp);
2218 Set_Etype (Expr, Etype (Subp));
2219
44e4341e 2220 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 2221
2222 else
2223 Error_Msg_Name_1 := Attr;
2224 Error_Msg_N ("incorrect expression for% attribute", Expr);
2225 end if;
2226 end Analyze_Stream_TSS_Definition;
2227
81b424ac 2228 ------------------------------
2229 -- Check_Indexing_Functions --
2230 ------------------------------
2231
2232 procedure Check_Indexing_Functions is
cac18f71 2233 Indexing_Found : Boolean;
8df4f2a5 2234
81b424ac 2235 procedure Check_One_Function (Subp : Entity_Id);
a45d946f 2236 -- Check one possible interpretation. Sets Indexing_Found True if an
2237 -- indexing function is found.
81b424ac 2238
2239 ------------------------
2240 -- Check_One_Function --
2241 ------------------------
2242
2243 procedure Check_One_Function (Subp : Entity_Id) is
1b7510f9 2244 Default_Element : constant Node_Id :=
2c5754de 2245 Find_Aspect
2246 (Etype (First_Formal (Subp)),
2247 Aspect_Iterator_Element);
1b7510f9 2248
81b424ac 2249 begin
cac18f71 2250 if not Check_Primitive_Function (Subp)
2251 and then not Is_Overloaded (Expr)
2252 then
89cc7147 2253 Error_Msg_NE
2254 ("aspect Indexing requires a function that applies to type&",
cac18f71 2255 Subp, Ent);
81b424ac 2256 end if;
2257
1b7510f9 2258 -- An indexing function must return either the default element of
cac18f71 2259 -- the container, or a reference type. For variable indexing it
a45d946f 2260 -- must be the latter.
1b7510f9 2261
2262 if Present (Default_Element) then
2263 Analyze (Default_Element);
a45d946f 2264
1b7510f9 2265 if Is_Entity_Name (Default_Element)
2c5754de 2266 and then Covers (Entity (Default_Element), Etype (Subp))
1b7510f9 2267 then
cac18f71 2268 Indexing_Found := True;
1b7510f9 2269 return;
2270 end if;
2271 end if;
2272
a45d946f 2273 -- For variable_indexing the return type must be a reference type
1b7510f9 2274
cac18f71 2275 if Attr = Name_Variable_Indexing
2276 and then not Has_Implicit_Dereference (Etype (Subp))
2277 then
81b424ac 2278 Error_Msg_N
2279 ("function for indexing must return a reference type", Subp);
cac18f71 2280
2281 else
2282 Indexing_Found := True;
81b424ac 2283 end if;
2284 end Check_One_Function;
2285
2286 -- Start of processing for Check_Indexing_Functions
2287
2288 begin
89cc7147 2289 if In_Instance then
2290 return;
2291 end if;
2292
81b424ac 2293 Analyze (Expr);
2294
2295 if not Is_Overloaded (Expr) then
2296 Check_One_Function (Entity (Expr));
2297
2298 else
2299 declare
2c5754de 2300 I : Interp_Index;
81b424ac 2301 It : Interp;
2302
2303 begin
cac18f71 2304 Indexing_Found := False;
81b424ac 2305 Get_First_Interp (Expr, I, It);
2306 while Present (It.Nam) loop
2307
2308 -- Note that analysis will have added the interpretation
2309 -- that corresponds to the dereference. We only check the
2310 -- subprogram itself.
2311
2312 if Is_Overloadable (It.Nam) then
2313 Check_One_Function (It.Nam);
2314 end if;
2315
2316 Get_Next_Interp (I, It);
2317 end loop;
a45d946f 2318
cac18f71 2319 if not Indexing_Found then
a45d946f 2320 Error_Msg_NE
2321 ("aspect Indexing requires a function that "
2322 & "applies to type&", Expr, Ent);
cac18f71 2323 end if;
81b424ac 2324 end;
2325 end if;
2326 end Check_Indexing_Functions;
2327
89cc7147 2328 ------------------------------
2329 -- Check_Iterator_Functions --
2330 ------------------------------
2331
2332 procedure Check_Iterator_Functions is
2333 Default : Entity_Id;
2334
2335 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 2336 -- Check one possible interpretation for validity
89cc7147 2337
2338 ----------------------------
2339 -- Valid_Default_Iterator --
2340 ----------------------------
2341
2342 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
2343 Formal : Entity_Id;
2344
2345 begin
2346 if not Check_Primitive_Function (Subp) then
2347 return False;
2348 else
2349 Formal := First_Formal (Subp);
2350 end if;
2351
8df4f2a5 2352 -- False if any subsequent formal has no default expression
89cc7147 2353
8df4f2a5 2354 Formal := Next_Formal (Formal);
2355 while Present (Formal) loop
2356 if No (Expression (Parent (Formal))) then
2357 return False;
2358 end if;
89cc7147 2359
8df4f2a5 2360 Next_Formal (Formal);
2361 end loop;
89cc7147 2362
8df4f2a5 2363 -- True if all subsequent formals have default expressions
89cc7147 2364
2365 return True;
2366 end Valid_Default_Iterator;
2367
2368 -- Start of processing for Check_Iterator_Functions
2369
2370 begin
2371 Analyze (Expr);
2372
2373 if not Is_Entity_Name (Expr) then
2374 Error_Msg_N ("aspect Iterator must be a function name", Expr);
2375 end if;
2376
2377 if not Is_Overloaded (Expr) then
2378 if not Check_Primitive_Function (Entity (Expr)) then
2379 Error_Msg_NE
2380 ("aspect Indexing requires a function that applies to type&",
2381 Entity (Expr), Ent);
2382 end if;
2383
2384 if not Valid_Default_Iterator (Entity (Expr)) then
2385 Error_Msg_N ("improper function for default iterator", Expr);
2386 end if;
2387
2388 else
2389 Default := Empty;
2390 declare
2391 I : Interp_Index;
2392 It : Interp;
2393
2394 begin
2395 Get_First_Interp (Expr, I, It);
2396 while Present (It.Nam) loop
2397 if not Check_Primitive_Function (It.Nam)
59f3e675 2398 or else not Valid_Default_Iterator (It.Nam)
89cc7147 2399 then
2400 Remove_Interp (I);
2401
2402 elsif Present (Default) then
2403 Error_Msg_N ("default iterator must be unique", Expr);
2404
2405 else
2406 Default := It.Nam;
2407 end if;
2408
2409 Get_Next_Interp (I, It);
2410 end loop;
2411 end;
2412
2413 if Present (Default) then
2414 Set_Entity (Expr, Default);
2415 Set_Is_Overloaded (Expr, False);
2416 end if;
2417 end if;
2418 end Check_Iterator_Functions;
2419
2420 -------------------------------
2421 -- Check_Primitive_Function --
2422 -------------------------------
2423
2424 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
2425 Ctrl : Entity_Id;
2426
2427 begin
2428 if Ekind (Subp) /= E_Function then
2429 return False;
2430 end if;
2431
2432 if No (First_Formal (Subp)) then
2433 return False;
2434 else
2435 Ctrl := Etype (First_Formal (Subp));
2436 end if;
2437
2438 if Ctrl = Ent
2439 or else Ctrl = Class_Wide_Type (Ent)
2440 or else
2441 (Ekind (Ctrl) = E_Anonymous_Access_Type
2442 and then
2443 (Designated_Type (Ctrl) = Ent
2444 or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
2445 then
2446 null;
2447
2448 else
2449 return False;
2450 end if;
2451
2452 return True;
2453 end Check_Primitive_Function;
2454
ae888dbd 2455 ----------------------
2456 -- Duplicate_Clause --
2457 ----------------------
2458
2459 function Duplicate_Clause return Boolean is
d74fc39a 2460 A : Node_Id;
ae888dbd 2461
2462 begin
c8969ba6 2463 -- Nothing to do if this attribute definition clause comes from
2464 -- an aspect specification, since we could not be duplicating an
ae888dbd 2465 -- explicit clause, and we dealt with the case of duplicated aspects
2466 -- in Analyze_Aspect_Specifications.
2467
2468 if From_Aspect_Specification (N) then
2469 return False;
2470 end if;
2471
89f1e35c 2472 -- Otherwise current clause may duplicate previous clause, or a
2473 -- previously given pragma or aspect specification for the same
2474 -- aspect.
d74fc39a 2475
89b3b365 2476 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 2477
2478 if Present (A) then
89f1e35c 2479 Error_Msg_Name_1 := Chars (N);
2480 Error_Msg_Sloc := Sloc (A);
2481
89b3b365 2482 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 2483 return True;
ae888dbd 2484 end if;
2485
2486 return False;
2487 end Duplicate_Clause;
2488
9f373bb8 2489 -- Start of processing for Analyze_Attribute_Definition_Clause
2490
d6f39728 2491 begin
d64221a7 2492 -- The following code is a defense against recursion. Not clear that
2493 -- this can happen legitimately, but perhaps some error situations
2494 -- can cause it, and we did see this recursion during testing.
2495
2496 if Analyzed (N) then
2497 return;
2498 else
2499 Set_Analyzed (N, True);
2500 end if;
2501
a29bc1d9 2502 -- Ignore some selected attributes in CodePeer mode since they are not
2503 -- relevant in this context.
2504
2505 if CodePeer_Mode then
2506 case Id is
2507
2508 -- Ignore Component_Size in CodePeer mode, to avoid changing the
2509 -- internal representation of types by implicitly packing them.
2510
2511 when Attribute_Component_Size =>
2512 Rewrite (N, Make_Null_Statement (Sloc (N)));
2513 return;
2514
2515 when others =>
2516 null;
2517 end case;
2518 end if;
2519
d8ba53a8 2520 -- Process Ignore_Rep_Clauses option
eef1ca1e 2521
d8ba53a8 2522 if Ignore_Rep_Clauses then
9d627c41 2523 case Id is
2524
eef1ca1e 2525 -- The following should be ignored. They do not affect legality
2526 -- and may be target dependent. The basic idea of -gnatI is to
2527 -- ignore any rep clauses that may be target dependent but do not
2528 -- affect legality (except possibly to be rejected because they
2529 -- are incompatible with the compilation target).
9d627c41 2530
2f1aac99 2531 when Attribute_Alignment |
9d627c41 2532 Attribute_Bit_Order |
2533 Attribute_Component_Size |
2534 Attribute_Machine_Radix |
2535 Attribute_Object_Size |
2536 Attribute_Size |
9d627c41 2537 Attribute_Stream_Size |
2538 Attribute_Value_Size =>
9d627c41 2539 Rewrite (N, Make_Null_Statement (Sloc (N)));
2540 return;
2541
d8ba53a8 2542 -- Perhaps 'Small should not be ignored by Ignore_Rep_Clauses ???
fe639c68 2543
2544 when Attribute_Small =>
2545 if Ignore_Rep_Clauses then
2546 Rewrite (N, Make_Null_Statement (Sloc (N)));
2547 return;
2548 end if;
2549
eef1ca1e 2550 -- The following should not be ignored, because in the first place
2551 -- they are reasonably portable, and should not cause problems in
2552 -- compiling code from another target, and also they do affect
2553 -- legality, e.g. failing to provide a stream attribute for a
2554 -- type may make a program illegal.
9d627c41 2555
b55f7641 2556 when Attribute_External_Tag |
2557 Attribute_Input |
2558 Attribute_Output |
2559 Attribute_Read |
2560 Attribute_Simple_Storage_Pool |
2561 Attribute_Storage_Pool |
2562 Attribute_Storage_Size |
2563 Attribute_Write =>
9d627c41 2564 null;
2565
b593a52c 2566 -- Other cases are errors ("attribute& cannot be set with
2567 -- definition clause"), which will be caught below.
9d627c41 2568
2569 when others =>
2570 null;
2571 end case;
fbc67f84 2572 end if;
2573
d6f39728 2574 Analyze (Nam);
2575 Ent := Entity (Nam);
2576
2577 if Rep_Item_Too_Early (Ent, N) then
2578 return;
2579 end if;
2580
9f373bb8 2581 -- Rep clause applies to full view of incomplete type or private type if
2582 -- we have one (if not, this is a premature use of the type). However,
2583 -- certain semantic checks need to be done on the specified entity (i.e.
2584 -- the private view), so we save it in Ent.
d6f39728 2585
2586 if Is_Private_Type (Ent)
2587 and then Is_Derived_Type (Ent)
2588 and then not Is_Tagged_Type (Ent)
2589 and then No (Full_View (Ent))
2590 then
9f373bb8 2591 -- If this is a private type whose completion is a derivation from
2592 -- another private type, there is no full view, and the attribute
2593 -- belongs to the type itself, not its underlying parent.
d6f39728 2594
2595 U_Ent := Ent;
2596
2597 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 2598
9f373bb8 2599 -- The attribute applies to the full view, set the entity of the
2600 -- attribute definition accordingly.
d5b349fa 2601
d6f39728 2602 Ent := Underlying_Type (Ent);
2603 U_Ent := Ent;
d5b349fa 2604 Set_Entity (Nam, Ent);
2605
d6f39728 2606 else
2607 U_Ent := Underlying_Type (Ent);
2608 end if;
2609
44705307 2610 -- Avoid cascaded error
d6f39728 2611
2612 if Etype (Nam) = Any_Type then
2613 return;
2614
89f1e35c 2615 -- Must be declared in current scope or in case of an aspect
ace3389d 2616 -- specification, must be visible in current scope.
44705307 2617
89f1e35c 2618 elsif Scope (Ent) /= Current_Scope
ace3389d 2619 and then
2620 not (From_Aspect_Specification (N)
2621 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 2622 then
d6f39728 2623 Error_Msg_N ("entity must be declared in this scope", Nam);
2624 return;
2625
44705307 2626 -- Must not be a source renaming (we do have some cases where the
2627 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 2628 -- cases any attribute applies to the renamed object as well).
44705307 2629
2630 elsif Is_Object (Ent)
2631 and then Present (Renamed_Object (Ent))
44705307 2632 then
a3248fc4 2633 -- Case of renamed object from source, this is an error
2634
2635 if Comes_From_Source (Renamed_Object (Ent)) then
2636 Get_Name_String (Chars (N));
2637 Error_Msg_Strlen := Name_Len;
2638 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
2639 Error_Msg_N
2640 ("~ clause not allowed for a renaming declaration "
2641 & "(RM 13.1(6))", Nam);
2642 return;
2643
2644 -- For the case of a compiler generated renaming, the attribute
2645 -- definition clause applies to the renamed object created by the
2646 -- expander. The easiest general way to handle this is to create a
2647 -- copy of the attribute definition clause for this object.
2648
2649 else
2650 Insert_Action (N,
2651 Make_Attribute_Definition_Clause (Loc,
2652 Name =>
2653 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
2654 Chars => Chars (N),
2655 Expression => Duplicate_Subexpr (Expression (N))));
2656 end if;
44705307 2657
2658 -- If no underlying entity, use entity itself, applies to some
2659 -- previously detected error cases ???
2660
f15731c4 2661 elsif No (U_Ent) then
2662 U_Ent := Ent;
2663
44705307 2664 -- Cannot specify for a subtype (exception Object/Value_Size)
2665
d6f39728 2666 elsif Is_Type (U_Ent)
2667 and then not Is_First_Subtype (U_Ent)
2668 and then Id /= Attribute_Object_Size
2669 and then Id /= Attribute_Value_Size
2670 and then not From_At_Mod (N)
2671 then
2672 Error_Msg_N ("cannot specify attribute for subtype", Nam);
2673 return;
d6f39728 2674 end if;
2675
ae888dbd 2676 Set_Entity (N, U_Ent);
2677
d6f39728 2678 -- Switch on particular attribute
2679
2680 case Id is
2681
2682 -------------
2683 -- Address --
2684 -------------
2685
2686 -- Address attribute definition clause
2687
2688 when Attribute_Address => Address : begin
177675a7 2689
2690 -- A little error check, catch for X'Address use X'Address;
2691
2692 if Nkind (Nam) = N_Identifier
2693 and then Nkind (Expr) = N_Attribute_Reference
2694 and then Attribute_Name (Expr) = Name_Address
2695 and then Nkind (Prefix (Expr)) = N_Identifier
2696 and then Chars (Nam) = Chars (Prefix (Expr))
2697 then
2698 Error_Msg_NE
2699 ("address for & is self-referencing", Prefix (Expr), Ent);
2700 return;
2701 end if;
2702
2703 -- Not that special case, carry on with analysis of expression
2704
d6f39728 2705 Analyze_And_Resolve (Expr, RTE (RE_Address));
2706
2f1aac99 2707 -- Even when ignoring rep clauses we need to indicate that the
2708 -- entity has an address clause and thus it is legal to declare
2709 -- it imported.
2710
2711 if Ignore_Rep_Clauses then
d3ef794c 2712 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 2713 Record_Rep_Item (U_Ent, N);
2714 end if;
2715
2716 return;
2717 end if;
2718
ae888dbd 2719 if Duplicate_Clause then
2720 null;
d6f39728 2721
2722 -- Case of address clause for subprogram
2723
2724 elsif Is_Subprogram (U_Ent) then
d6f39728 2725 if Has_Homonym (U_Ent) then
2726 Error_Msg_N
2727 ("address clause cannot be given " &
2728 "for overloaded subprogram",
2729 Nam);
83f8f0a6 2730 return;
d6f39728 2731 end if;
2732
83f8f0a6 2733 -- For subprograms, all address clauses are permitted, and we
2734 -- mark the subprogram as having a deferred freeze so that Gigi
2735 -- will not elaborate it too soon.
d6f39728 2736
2737 -- Above needs more comments, what is too soon about???
2738
2739 Set_Has_Delayed_Freeze (U_Ent);
2740
2741 -- Case of address clause for entry
2742
2743 elsif Ekind (U_Ent) = E_Entry then
d6f39728 2744 if Nkind (Parent (N)) = N_Task_Body then
2745 Error_Msg_N
2746 ("entry address must be specified in task spec", Nam);
83f8f0a6 2747 return;
d6f39728 2748 end if;
2749
2750 -- For entries, we require a constant address
2751
2752 Check_Constant_Address_Clause (Expr, U_Ent);
2753
83f8f0a6 2754 -- Special checks for task types
2755
f15731c4 2756 if Is_Task_Type (Scope (U_Ent))
2757 and then Comes_From_Source (Scope (U_Ent))
2758 then
2759 Error_Msg_N
1e3532e7 2760 ("??entry address declared for entry in task type", N);
f15731c4 2761 Error_Msg_N
1e3532e7 2762 ("\??only one task can be declared of this type", N);
f15731c4 2763 end if;
2764
83f8f0a6 2765 -- Entry address clauses are obsolescent
2766
e0521a36 2767 Check_Restriction (No_Obsolescent_Features, N);
2768
9dfe12ae 2769 if Warn_On_Obsolescent_Feature then
2770 Error_Msg_N
1e3532e7 2771 ("?j?attaching interrupt to task entry is an " &
2772 "obsolescent feature (RM J.7.1)", N);
9dfe12ae 2773 Error_Msg_N
1e3532e7 2774 ("\?j?use interrupt procedure instead", N);
9dfe12ae 2775 end if;
2776
83f8f0a6 2777 -- Case of an address clause for a controlled object which we
2778 -- consider to be erroneous.
9dfe12ae 2779
83f8f0a6 2780 elsif Is_Controlled (Etype (U_Ent))
2781 or else Has_Controlled_Component (Etype (U_Ent))
2782 then
9dfe12ae 2783 Error_Msg_NE
1e3532e7 2784 ("??controlled object& must not be overlaid", Nam, U_Ent);
9dfe12ae 2785 Error_Msg_N
1e3532e7 2786 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 2787 Insert_Action (Declaration_Node (U_Ent),
2788 Make_Raise_Program_Error (Loc,
2789 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 2790 return;
9dfe12ae 2791
2792 -- Case of address clause for a (non-controlled) object
d6f39728 2793
2794 elsif
2795 Ekind (U_Ent) = E_Variable
2796 or else
2797 Ekind (U_Ent) = E_Constant
2798 then
2799 declare
d6da7448 2800 Expr : constant Node_Id := Expression (N);
2801 O_Ent : Entity_Id;
2802 Off : Boolean;
d6f39728 2803
2804 begin
7ee315cc 2805 -- Exported variables cannot have an address clause, because
2806 -- this cancels the effect of the pragma Export.
d6f39728 2807
2808 if Is_Exported (U_Ent) then
2809 Error_Msg_N
2810 ("cannot export object with address clause", Nam);
83f8f0a6 2811 return;
d6da7448 2812 end if;
2813
2814 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 2815
9dfe12ae 2816 -- Overlaying controlled objects is erroneous
2817
d6da7448 2818 if Present (O_Ent)
2819 and then (Has_Controlled_Component (Etype (O_Ent))
2820 or else Is_Controlled (Etype (O_Ent)))
9dfe12ae 2821 then
2822 Error_Msg_N
1e3532e7 2823 ("??cannot overlay with controlled object", Expr);
9dfe12ae 2824 Error_Msg_N
1e3532e7 2825 ("\??Program_Error will be raised at run time", Expr);
9dfe12ae 2826 Insert_Action (Declaration_Node (U_Ent),
2827 Make_Raise_Program_Error (Loc,
2828 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 2829 return;
9dfe12ae 2830
d6da7448 2831 elsif Present (O_Ent)
9dfe12ae 2832 and then Ekind (U_Ent) = E_Constant
d6da7448 2833 and then not Is_Constant_Object (O_Ent)
9dfe12ae 2834 then
1e3532e7 2835 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 2836
d6f39728 2837 -- Imported variables can have an address clause, but then
2838 -- the import is pretty meaningless except to suppress
2839 -- initializations, so we do not need such variables to
2840 -- be statically allocated (and in fact it causes trouble
2841 -- if the address clause is a local value).
2842
2843 elsif Is_Imported (U_Ent) then
2844 Set_Is_Statically_Allocated (U_Ent, False);
2845 end if;
2846
2847 -- We mark a possible modification of a variable with an
2848 -- address clause, since it is likely aliasing is occurring.
2849
177675a7 2850 Note_Possible_Modification (Nam, Sure => False);
d6f39728 2851
83f8f0a6 2852 -- Here we are checking for explicit overlap of one variable
2853 -- by another, and if we find this then mark the overlapped
2854 -- variable as also being volatile to prevent unwanted
d6da7448 2855 -- optimizations. This is a significant pessimization so
2856 -- avoid it when there is an offset, i.e. when the object
2857 -- is composite; they cannot be optimized easily anyway.
d6f39728 2858
d6da7448 2859 if Present (O_Ent)
2860 and then Is_Object (O_Ent)
2861 and then not Off
ba5efa21 2862
2863 -- The following test is an expedient solution to what
2864 -- is really a problem in CodePeer. Suppressing the
2865 -- Set_Treat_As_Volatile call here prevents later
2866 -- generation (in some cases) of trees that CodePeer
2867 -- should, but currently does not, handle correctly.
2868 -- This test should probably be removed when CodePeer
2869 -- is improved, just because we want the tree CodePeer
2870 -- analyzes to match the tree for which we generate code
2871 -- as closely as is practical. ???
2872
2873 and then not CodePeer_Mode
d6da7448 2874 then
ba5efa21 2875 -- ??? O_Ent might not be in current unit
2876
d6da7448 2877 Set_Treat_As_Volatile (O_Ent);
d6f39728 2878 end if;
2879
9dfe12ae 2880 -- Legality checks on the address clause for initialized
2881 -- objects is deferred until the freeze point, because
2beb22b1 2882 -- a subsequent pragma might indicate that the object
2883 -- is imported and thus not initialized.
9dfe12ae 2884
2885 Set_Has_Delayed_Freeze (U_Ent);
2886
51ad5ad2 2887 -- If an initialization call has been generated for this
2888 -- object, it needs to be deferred to after the freeze node
2889 -- we have just now added, otherwise GIGI will see a
2890 -- reference to the variable (as actual to the IP call)
2891 -- before its definition.
2892
2893 declare
2894 Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
2895 begin
2896 if Present (Init_Call) then
2897 Remove (Init_Call);
2898 Append_Freeze_Action (U_Ent, Init_Call);
2899 end if;
2900 end;
2901
d6f39728 2902 if Is_Exported (U_Ent) then
2903 Error_Msg_N
2904 ("& cannot be exported if an address clause is given",
2905 Nam);
2906 Error_Msg_N
2907 ("\define and export a variable " &
2908 "that holds its address instead",
2909 Nam);
2910 end if;
2911
44e4341e 2912 -- Entity has delayed freeze, so we will generate an
2913 -- alignment check at the freeze point unless suppressed.
d6f39728 2914
44e4341e 2915 if not Range_Checks_Suppressed (U_Ent)
2916 and then not Alignment_Checks_Suppressed (U_Ent)
2917 then
2918 Set_Check_Address_Alignment (N);
2919 end if;
d6f39728 2920
2921 -- Kill the size check code, since we are not allocating
2922 -- the variable, it is somewhere else.
2923
2924 Kill_Size_Check_Code (U_Ent);
83f8f0a6 2925
d6da7448 2926 -- If the address clause is of the form:
83f8f0a6 2927
d6da7448 2928 -- for Y'Address use X'Address
83f8f0a6 2929
d6da7448 2930 -- or
83f8f0a6 2931
d6da7448 2932 -- Const : constant Address := X'Address;
2933 -- ...
2934 -- for Y'Address use Const;
83f8f0a6 2935
d6da7448 2936 -- then we make an entry in the table for checking the size
2937 -- and alignment of the overlaying variable. We defer this
2938 -- check till after code generation to take full advantage
2939 -- of the annotation done by the back end. This entry is
2940 -- only made if the address clause comes from source.
d64221a7 2941
9474aa9c 2942 -- If the entity has a generic type, the check will be
43dd6937 2943 -- performed in the instance if the actual type justifies
2944 -- it, and we do not insert the clause in the table to
2945 -- prevent spurious warnings.
83f8f0a6 2946
d6da7448 2947 if Address_Clause_Overlay_Warnings
2948 and then Comes_From_Source (N)
2949 and then Present (O_Ent)
2950 and then Is_Object (O_Ent)
2951 then
9474aa9c 2952 if not Is_Generic_Type (Etype (U_Ent)) then
2953 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
2954 end if;
177675a7 2955
d6da7448 2956 -- If variable overlays a constant view, and we are
2957 -- warning on overlays, then mark the variable as
2958 -- overlaying a constant (we will give warnings later
2959 -- if this variable is assigned).
177675a7 2960
d6da7448 2961 if Is_Constant_Object (O_Ent)
2962 and then Ekind (U_Ent) = E_Variable
2963 then
2964 Set_Overlays_Constant (U_Ent);
83f8f0a6 2965 end if;
d6da7448 2966 end if;
2967 end;
83f8f0a6 2968
d6f39728 2969 -- Not a valid entity for an address clause
2970
2971 else
2972 Error_Msg_N ("address cannot be given for &", Nam);
2973 end if;
2974 end Address;
2975
2976 ---------------
2977 -- Alignment --
2978 ---------------
2979
2980 -- Alignment attribute definition clause
2981
b47769f0 2982 when Attribute_Alignment => Alignment : declare
208fd589 2983 Align : constant Uint := Get_Alignment_Value (Expr);
2984 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 2985
d6f39728 2986 begin
2987 FOnly := True;
2988
2989 if not Is_Type (U_Ent)
2990 and then Ekind (U_Ent) /= E_Variable
2991 and then Ekind (U_Ent) /= E_Constant
2992 then
2993 Error_Msg_N ("alignment cannot be given for &", Nam);
2994
ae888dbd 2995 elsif Duplicate_Clause then
2996 null;
d6f39728 2997
2998 elsif Align /= No_Uint then
2999 Set_Has_Alignment_Clause (U_Ent);
208fd589 3000
44705307 3001 -- Tagged type case, check for attempt to set alignment to a
3002 -- value greater than Max_Align, and reset if so.
3003
41331dcf 3004 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
208fd589 3005 Error_Msg_N
1e3532e7 3006 ("alignment for & set to Maximum_Aligment??", Nam);
44705307 3007 Set_Alignment (U_Ent, Max_Align);
3008
3009 -- All other cases
3010
208fd589 3011 else
3012 Set_Alignment (U_Ent, Align);
3013 end if;
b47769f0 3014
3015 -- For an array type, U_Ent is the first subtype. In that case,
3016 -- also set the alignment of the anonymous base type so that
3017 -- other subtypes (such as the itypes for aggregates of the
3018 -- type) also receive the expected alignment.
3019
3020 if Is_Array_Type (U_Ent) then
3021 Set_Alignment (Base_Type (U_Ent), Align);
3022 end if;
d6f39728 3023 end if;
b47769f0 3024 end Alignment;
d6f39728 3025
3026 ---------------
3027 -- Bit_Order --
3028 ---------------
3029
3030 -- Bit_Order attribute definition clause
3031
3032 when Attribute_Bit_Order => Bit_Order : declare
3033 begin
3034 if not Is_Record_Type (U_Ent) then
3035 Error_Msg_N
3036 ("Bit_Order can only be defined for record type", Nam);
3037
ae888dbd 3038 elsif Duplicate_Clause then
3039 null;
3040
d6f39728 3041 else
3042 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
3043
3044 if Etype (Expr) = Any_Type then
3045 return;
3046
3047 elsif not Is_Static_Expression (Expr) then
9dfe12ae 3048 Flag_Non_Static_Expr
3049 ("Bit_Order requires static expression!", Expr);
d6f39728 3050
3051 else
3052 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
3053 Set_Reverse_Bit_Order (U_Ent, True);
3054 end if;
3055 end if;
3056 end if;
3057 end Bit_Order;
3058
3059 --------------------
3060 -- Component_Size --
3061 --------------------
3062
3063 -- Component_Size attribute definition clause
3064
3065 when Attribute_Component_Size => Component_Size_Case : declare
3066 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 3067 Ctyp : Entity_Id;
d6f39728 3068 Btype : Entity_Id;
3069 Biased : Boolean;
3070 New_Ctyp : Entity_Id;
3071 Decl : Node_Id;
3072
3073 begin
3074 if not Is_Array_Type (U_Ent) then
3075 Error_Msg_N ("component size requires array type", Nam);
3076 return;
3077 end if;
3078
3079 Btype := Base_Type (U_Ent);
a0fc8c5b 3080 Ctyp := Component_Type (Btype);
d6f39728 3081
ae888dbd 3082 if Duplicate_Clause then
3083 null;
d6f39728 3084
f3e4db96 3085 elsif Rep_Item_Too_Early (Btype, N) then
3086 null;
3087
d6f39728 3088 elsif Csize /= No_Uint then
a0fc8c5b 3089 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 3090
d74fc39a 3091 -- For the biased case, build a declaration for a subtype that
3092 -- will be used to represent the biased subtype that reflects
3093 -- the biased representation of components. We need the subtype
3094 -- to get proper conversions on referencing elements of the
3095 -- array. Note: component size clauses are ignored in VM mode.
3062c401 3096
3097 if VM_Target = No_VM then
3098 if Biased then
3099 New_Ctyp :=
3100 Make_Defining_Identifier (Loc,
3101 Chars =>
3102 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
3103
3104 Decl :=
3105 Make_Subtype_Declaration (Loc,
3106 Defining_Identifier => New_Ctyp,
3107 Subtype_Indication =>
3108 New_Occurrence_Of (Component_Type (Btype), Loc));
3109
3110 Set_Parent (Decl, N);
3111 Analyze (Decl, Suppress => All_Checks);
3112
3113 Set_Has_Delayed_Freeze (New_Ctyp, False);
3114 Set_Esize (New_Ctyp, Csize);
3115 Set_RM_Size (New_Ctyp, Csize);
3116 Init_Alignment (New_Ctyp);
3062c401 3117 Set_Is_Itype (New_Ctyp, True);
3118 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
3119
3120 Set_Component_Type (Btype, New_Ctyp);
b77e4501 3121 Set_Biased (New_Ctyp, N, "component size clause");
3062c401 3122 end if;
3123
3124 Set_Component_Size (Btype, Csize);
3125
3126 -- For VM case, we ignore component size clauses
3127
3128 else
3129 -- Give a warning unless we are in GNAT mode, in which case
3130 -- the warning is suppressed since it is not useful.
3131
3132 if not GNAT_Mode then
3133 Error_Msg_N
1e3532e7 3134 ("component size ignored in this configuration??", N);
3062c401 3135 end if;
d6f39728 3136 end if;
3137
a0fc8c5b 3138 -- Deal with warning on overridden size
3139
3140 if Warn_On_Overridden_Size
3141 and then Has_Size_Clause (Ctyp)
3142 and then RM_Size (Ctyp) /= Csize
3143 then
3144 Error_Msg_NE
1e3532e7 3145 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 3146 end if;
3147
d6f39728 3148 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 3149 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 3150 end if;
3151 end Component_Size_Case;
3152
81b424ac 3153 -----------------------
3154 -- Constant_Indexing --
3155 -----------------------
3156
3157 when Attribute_Constant_Indexing =>
3158 Check_Indexing_Functions;
3159
89f1e35c 3160 ---------
3161 -- CPU --
3162 ---------
3163
3164 when Attribute_CPU => CPU :
3165 begin
3166 -- CPU attribute definition clause not allowed except from aspect
3167 -- specification.
3168
3169 if From_Aspect_Specification (N) then
3170 if not Is_Task_Type (U_Ent) then
3171 Error_Msg_N ("CPU can only be defined for task", Nam);
3172
3173 elsif Duplicate_Clause then
3174 null;
3175
3176 else
3177 -- The expression must be analyzed in the special manner
3178 -- described in "Handling of Default and Per-Object
3179 -- Expressions" in sem.ads.
3180
3181 -- The visibility to the discriminants must be restored
3182
3183 Push_Scope_And_Install_Discriminants (U_Ent);
3184 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
3185 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
3186
3187 if not Is_Static_Expression (Expr) then
3188 Check_Restriction (Static_Priorities, Expr);
3189 end if;
3190 end if;
3191
3192 else
3193 Error_Msg_N
3194 ("attribute& cannot be set with definition clause", N);
3195 end if;
3196 end CPU;
3197
89cc7147 3198 ----------------------
3199 -- Default_Iterator --
3200 ----------------------
3201
3202 when Attribute_Default_Iterator => Default_Iterator : declare
3203 Func : Entity_Id;
3204
3205 begin
3206 if not Is_Tagged_Type (U_Ent) then
3207 Error_Msg_N
3208 ("aspect Default_Iterator applies to tagged type", Nam);
3209 end if;
3210
3211 Check_Iterator_Functions;
3212
3213 Analyze (Expr);
3214
3215 if not Is_Entity_Name (Expr)
3216 or else Ekind (Entity (Expr)) /= E_Function
3217 then
3218 Error_Msg_N ("aspect Iterator must be a function", Expr);
3219 else
3220 Func := Entity (Expr);
3221 end if;
3222
3223 if No (First_Formal (Func))
3224 or else Etype (First_Formal (Func)) /= U_Ent
3225 then
3226 Error_Msg_NE
3227 ("Default Iterator must be a primitive of&", Func, U_Ent);
3228 end if;
3229 end Default_Iterator;
3230
89f1e35c 3231 ------------------------
3232 -- Dispatching_Domain --
3233 ------------------------
3234
3235 when Attribute_Dispatching_Domain => Dispatching_Domain :
3236 begin
3237 -- Dispatching_Domain attribute definition clause not allowed
3238 -- except from aspect specification.
3239
3240 if From_Aspect_Specification (N) then
3241 if not Is_Task_Type (U_Ent) then
3242 Error_Msg_N ("Dispatching_Domain can only be defined" &
3243 "for task",
3244 Nam);
3245
3246 elsif Duplicate_Clause then
3247 null;
3248
3249 else
3250 -- The expression must be analyzed in the special manner
3251 -- described in "Handling of Default and Per-Object
3252 -- Expressions" in sem.ads.
3253
3254 -- The visibility to the discriminants must be restored
3255
3256 Push_Scope_And_Install_Discriminants (U_Ent);
3257
3258 Preanalyze_Spec_Expression
3259 (Expr, RTE (RE_Dispatching_Domain));
3260
3261 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
3262 end if;
3263
3264 else
3265 Error_Msg_N
3266 ("attribute& cannot be set with definition clause", N);
3267 end if;
3268 end Dispatching_Domain;
3269
d6f39728 3270 ------------------
3271 -- External_Tag --
3272 ------------------
3273
3274 when Attribute_External_Tag => External_Tag :
3275 begin
3276 if not Is_Tagged_Type (U_Ent) then
3277 Error_Msg_N ("should be a tagged type", Nam);
3278 end if;
3279
ae888dbd 3280 if Duplicate_Clause then
3281 null;
d6f39728 3282
9af0ddc7 3283 else
ae888dbd 3284 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 3285
ae888dbd 3286 if not Is_Static_Expression (Expr) then
3287 Flag_Non_Static_Expr
3288 ("static string required for tag name!", Nam);
3289 end if;
3290
3291 if VM_Target = No_VM then
3292 Set_Has_External_Tag_Rep_Clause (U_Ent);
3293 else
3294 Error_Msg_Name_1 := Attr;
3295 Error_Msg_N
3296 ("% attribute unsupported in this configuration", Nam);
3297 end if;
3298
3299 if not Is_Library_Level_Entity (U_Ent) then
3300 Error_Msg_NE
1e3532e7 3301 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 3302 Error_Msg_N
1e3532e7 3303 ("\??same external tag applies to all "
3304 & "subprogram calls", N);
ae888dbd 3305 Error_Msg_N
1e3532e7 3306 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 3307 end if;
fbc67f84 3308 end if;
d6f39728 3309 end External_Tag;
3310
b57530b8 3311 --------------------------
3312 -- Implicit_Dereference --
3313 --------------------------
7947a439 3314
b57530b8 3315 when Attribute_Implicit_Dereference =>
7947a439 3316
2beb22b1 3317 -- Legality checks already performed at the point of the type
3318 -- declaration, aspect is not delayed.
7947a439 3319
89cc7147 3320 null;
b57530b8 3321
d6f39728 3322 -----------
3323 -- Input --
3324 -----------
3325
9f373bb8 3326 when Attribute_Input =>
3327 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
3328 Set_Has_Specified_Stream_Input (Ent);
d6f39728 3329
89f1e35c 3330 ------------------------
3331 -- Interrupt_Priority --
3332 ------------------------
3333
3334 when Attribute_Interrupt_Priority => Interrupt_Priority :
3335 begin
3336 -- Interrupt_Priority attribute definition clause not allowed
3337 -- except from aspect specification.
3338
3339 if From_Aspect_Specification (N) then
3340 if not (Is_Protected_Type (U_Ent)
3341 or else Is_Task_Type (U_Ent))
3342 then
3343 Error_Msg_N
3344 ("Interrupt_Priority can only be defined for task" &
3345 "and protected object",
3346 Nam);
3347
3348 elsif Duplicate_Clause then
3349 null;
3350
3351 else
3352 -- The expression must be analyzed in the special manner
3353 -- described in "Handling of Default and Per-Object
3354 -- Expressions" in sem.ads.
3355
3356 -- The visibility to the discriminants must be restored
3357
3358 Push_Scope_And_Install_Discriminants (U_Ent);
3359
3360 Preanalyze_Spec_Expression
3361 (Expr, RTE (RE_Interrupt_Priority));
3362
3363 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
3364 end if;
3365
3366 else
3367 Error_Msg_N
3368 ("attribute& cannot be set with definition clause", N);
3369 end if;
3370 end Interrupt_Priority;
3371
89cc7147 3372 ----------------------
3373 -- Iterator_Element --
3374 ----------------------
3375
3376 when Attribute_Iterator_Element =>
3377 Analyze (Expr);
3378
3379 if not Is_Entity_Name (Expr)
3380 or else not Is_Type (Entity (Expr))
3381 then
3382 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
3383 end if;
3384
d6f39728 3385 -------------------
3386 -- Machine_Radix --
3387 -------------------
3388
3389 -- Machine radix attribute definition clause
3390
3391 when Attribute_Machine_Radix => Machine_Radix : declare
3392 Radix : constant Uint := Static_Integer (Expr);
3393
3394 begin
3395 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
3396 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
3397
ae888dbd 3398 elsif Duplicate_Clause then
3399 null;
d6f39728 3400
3401 elsif Radix /= No_Uint then
3402 Set_Has_Machine_Radix_Clause (U_Ent);
3403 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
3404
3405 if Radix = 2 then
3406 null;
3407 elsif Radix = 10 then
3408 Set_Machine_Radix_10 (U_Ent);
3409 else
3410 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
3411 end if;
3412 end if;
3413 end Machine_Radix;
3414
3415 -----------------
3416 -- Object_Size --
3417 -----------------
3418
3419 -- Object_Size attribute definition clause
3420
3421 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 3422 Size : constant Uint := Static_Integer (Expr);
3423
d6f39728 3424 Biased : Boolean;
bfa5a9d9 3425 pragma Warnings (Off, Biased);
d6f39728 3426
3427 begin
3428 if not Is_Type (U_Ent) then
3429 Error_Msg_N ("Object_Size cannot be given for &", Nam);
3430
ae888dbd 3431 elsif Duplicate_Clause then
3432 null;
d6f39728 3433
3434 else
3435 Check_Size (Expr, U_Ent, Size, Biased);
3436
3437 if Size /= 8
3438 and then
3439 Size /= 16
3440 and then
3441 Size /= 32
3442 and then
3443 UI_Mod (Size, 64) /= 0
3444 then
3445 Error_Msg_N
3446 ("Object_Size must be 8, 16, 32, or multiple of 64",
3447 Expr);
3448 end if;
3449
3450 Set_Esize (U_Ent, Size);
3451 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 3452 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 3453 end if;
3454 end Object_Size;
3455
3456 ------------
3457 -- Output --
3458 ------------
3459
9f373bb8 3460 when Attribute_Output =>
3461 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
3462 Set_Has_Specified_Stream_Output (Ent);
d6f39728 3463
89f1e35c 3464 --------------
3465 -- Priority --
3466 --------------
3467
3468 when Attribute_Priority => Priority :
3469 begin
3470 -- Priority attribute definition clause not allowed except from
3471 -- aspect specification.
3472
3473 if From_Aspect_Specification (N) then
3474 if not (Is_Protected_Type (U_Ent)
3a72f9c3 3475 or else Is_Task_Type (U_Ent)
3476 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 3477 then
3478 Error_Msg_N
3a72f9c3 3479 ("Priority can only be defined for task and protected " &
89f1e35c 3480 "object",
3481 Nam);
3482
3483 elsif Duplicate_Clause then
3484 null;
3485
3486 else
3487 -- The expression must be analyzed in the special manner
3488 -- described in "Handling of Default and Per-Object
3489 -- Expressions" in sem.ads.
3490
3491 -- The visibility to the discriminants must be restored
3492
3493 Push_Scope_And_Install_Discriminants (U_Ent);
3494 Preanalyze_Spec_Expression (Expr, Standard_Integer);
3495 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
3496
3497 if not Is_Static_Expression (Expr) then
3498 Check_Restriction (Static_Priorities, Expr);
3499 end if;
3500 end if;
3501
3502 else
3503 Error_Msg_N
3504 ("attribute& cannot be set with definition clause", N);
3505 end if;
3506 end Priority;
3507
d6f39728 3508 ----------
3509 -- Read --
3510 ----------
3511
9f373bb8 3512 when Attribute_Read =>
3513 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
3514 Set_Has_Specified_Stream_Read (Ent);
d6f39728 3515
b7b74740 3516 --------------------------
3517 -- Scalar_Storage_Order --
3518 --------------------------
3519
3520 -- Scalar_Storage_Order attribute definition clause
3521
3522 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
3523 begin
b43a5770 3524 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 3525 Error_Msg_N
b43a5770 3526 ("Scalar_Storage_Order can only be defined for "
3527 & "record or array type", Nam);
b7b74740 3528
3529 elsif Duplicate_Clause then
3530 null;
3531
3532 else
3533 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
3534
3535 if Etype (Expr) = Any_Type then
3536 return;
3537
3538 elsif not Is_Static_Expression (Expr) then
3539 Flag_Non_Static_Expr
3540 ("Scalar_Storage_Order requires static expression!", Expr);
3541
3542 else
3543 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
d0a9ea3b 3544 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
b7b74740 3545 end if;
3546 end if;
3547 end if;
3548 end Scalar_Storage_Order;
3549
d6f39728 3550 ----------
3551 -- Size --
3552 ----------
3553
3554 -- Size attribute definition clause
3555
3556 when Attribute_Size => Size : declare
3557 Size : constant Uint := Static_Integer (Expr);
3558 Etyp : Entity_Id;
3559 Biased : Boolean;
3560
3561 begin
3562 FOnly := True;
3563
ae888dbd 3564 if Duplicate_Clause then
3565 null;
d6f39728 3566
3567 elsif not Is_Type (U_Ent)
3568 and then Ekind (U_Ent) /= E_Variable
3569 and then Ekind (U_Ent) /= E_Constant
3570 then
3571 Error_Msg_N ("size cannot be given for &", Nam);
3572
3573 elsif Is_Array_Type (U_Ent)
3574 and then not Is_Constrained (U_Ent)
3575 then
3576 Error_Msg_N
3577 ("size cannot be given for unconstrained array", Nam);
3578
c2b89d6e 3579 elsif Size /= No_Uint then
c2b89d6e 3580 if VM_Target /= No_VM and then not GNAT_Mode then
47495553 3581
c2b89d6e 3582 -- Size clause is not handled properly on VM targets.
3583 -- Display a warning unless we are in GNAT mode, in which
3584 -- case this is useless.
47495553 3585
682fa897 3586 Error_Msg_N
1e3532e7 3587 ("size clauses are ignored in this configuration??", N);
682fa897 3588 end if;
3589
d6f39728 3590 if Is_Type (U_Ent) then
3591 Etyp := U_Ent;
3592 else
3593 Etyp := Etype (U_Ent);
3594 end if;
3595
59ac57b5 3596 -- Check size, note that Gigi is in charge of checking that the
3597 -- size of an array or record type is OK. Also we do not check
3598 -- the size in the ordinary fixed-point case, since it is too
3599 -- early to do so (there may be subsequent small clause that
3600 -- affects the size). We can check the size if a small clause
3601 -- has already been given.
d6f39728 3602
3603 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
3604 or else Has_Small_Clause (U_Ent)
3605 then
3606 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 3607 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 3608 end if;
3609
3610 -- For types set RM_Size and Esize if possible
3611
3612 if Is_Type (U_Ent) then
3613 Set_RM_Size (U_Ent, Size);
3614
ada34def 3615 -- For elementary types, increase Object_Size to power of 2,
3616 -- but not less than a storage unit in any case (normally
59ac57b5 3617 -- this means it will be byte addressable).
d6f39728 3618
ada34def 3619 -- For all other types, nothing else to do, we leave Esize
3620 -- (object size) unset, the back end will set it from the
3621 -- size and alignment in an appropriate manner.
3622
1d366b32 3623 -- In both cases, we check whether the alignment must be
3624 -- reset in the wake of the size change.
3625
ada34def 3626 if Is_Elementary_Type (U_Ent) then
f15731c4 3627 if Size <= System_Storage_Unit then
3628 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 3629 elsif Size <= 16 then
3630 Init_Esize (U_Ent, 16);
3631 elsif Size <= 32 then
3632 Init_Esize (U_Ent, 32);
3633 else
3634 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
3635 end if;
3636
1d366b32 3637 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
3638 else
3639 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 3640 end if;
3641
d6f39728 3642 -- For objects, set Esize only
3643
3644 else
9dfe12ae 3645 if Is_Elementary_Type (Etyp) then
3646 if Size /= System_Storage_Unit
3647 and then
3648 Size /= System_Storage_Unit * 2
3649 and then
3650 Size /= System_Storage_Unit * 4
3651 and then
3652 Size /= System_Storage_Unit * 8
3653 then
5c99c290 3654 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
87d5c1d0 3655 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
9dfe12ae 3656 Error_Msg_N
5c99c290 3657 ("size for primitive object must be a power of 2"
87d5c1d0 3658 & " in the range ^-^", N);
9dfe12ae 3659 end if;
3660 end if;
3661
d6f39728 3662 Set_Esize (U_Ent, Size);
3663 end if;
3664
3665 Set_Has_Size_Clause (U_Ent);
3666 end if;
3667 end Size;
3668
3669 -----------
3670 -- Small --
3671 -----------
3672
3673 -- Small attribute definition clause
3674
3675 when Attribute_Small => Small : declare
3676 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
3677 Small : Ureal;
3678
3679 begin
3680 Analyze_And_Resolve (Expr, Any_Real);
3681
3682 if Etype (Expr) = Any_Type then
3683 return;
3684
3685 elsif not Is_Static_Expression (Expr) then
9dfe12ae 3686 Flag_Non_Static_Expr
3687 ("small requires static expression!", Expr);
d6f39728 3688 return;
3689
3690 else
3691 Small := Expr_Value_R (Expr);
3692
3693 if Small <= Ureal_0 then
3694 Error_Msg_N ("small value must be greater than zero", Expr);
3695 return;
3696 end if;
3697
3698 end if;
3699
3700 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
3701 Error_Msg_N
3702 ("small requires an ordinary fixed point type", Nam);
3703
3704 elsif Has_Small_Clause (U_Ent) then
3705 Error_Msg_N ("small already given for &", Nam);
3706
3707 elsif Small > Delta_Value (U_Ent) then
3708 Error_Msg_N
ce3e25d6 3709 ("small value must not be greater than delta value", Nam);
d6f39728 3710
3711 else
3712 Set_Small_Value (U_Ent, Small);
3713 Set_Small_Value (Implicit_Base, Small);
3714 Set_Has_Small_Clause (U_Ent);
3715 Set_Has_Small_Clause (Implicit_Base);
3716 Set_Has_Non_Standard_Rep (Implicit_Base);
3717 end if;
3718 end Small;
3719
d6f39728 3720 ------------------
3721 -- Storage_Pool --
3722 ------------------
3723
3724 -- Storage_Pool attribute definition clause
3725
b55f7641 3726 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
d6f39728 3727 Pool : Entity_Id;
6b567c71 3728 T : Entity_Id;
d6f39728 3729
3730 begin
44e4341e 3731 if Ekind (U_Ent) = E_Access_Subprogram_Type then
3732 Error_Msg_N
3733 ("storage pool cannot be given for access-to-subprogram type",
3734 Nam);
3735 return;
3736
d3ef794c 3737 elsif not
3738 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 3739 then
44e4341e 3740 Error_Msg_N
3741 ("storage pool can only be given for access types", Nam);
d6f39728 3742 return;
3743
3744 elsif Is_Derived_Type (U_Ent) then
3745 Error_Msg_N
3746 ("storage pool cannot be given for a derived access type",
3747 Nam);
3748
ae888dbd 3749 elsif Duplicate_Clause then
d6f39728 3750 return;
3751
3752 elsif Present (Associated_Storage_Pool (U_Ent)) then
3753 Error_Msg_N ("storage pool already given for &", Nam);
3754 return;
3755 end if;
3756
b55f7641 3757 if Id = Attribute_Storage_Pool then
3758 Analyze_And_Resolve
3759 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
3760
3761 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 3762 -- simple storage pool type, so we Resolve without imposing an
b55f7641 3763 -- expected type.
3764
3765 else
3766 Analyze_And_Resolve (Expr);
3767
3768 if not Present (Get_Rep_Pragma
b15003c3 3769 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 3770 then
3771 Error_Msg_N
3772 ("expression must be of a simple storage pool type", Expr);
3773 end if;
3774 end if;
d6f39728 3775
8c5c7277 3776 if not Denotes_Variable (Expr) then
3777 Error_Msg_N ("storage pool must be a variable", Expr);
3778 return;
3779 end if;
3780
6b567c71 3781 if Nkind (Expr) = N_Type_Conversion then
3782 T := Etype (Expression (Expr));
3783 else
3784 T := Etype (Expr);
3785 end if;
3786
3787 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 3788 -- access types with a Storage_Size. Since it only work properly
3789 -- when used on one specific type, we need to check that it is not
3790 -- hijacked improperly:
3791
6b567c71 3792 -- type T is access Integer;
3793 -- for T'Storage_Size use n;
3794 -- type Q is access Float;
3795 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
3796
15ebb600 3797 if RTE_Available (RE_Stack_Bounded_Pool)
3798 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
3799 then
3800 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 3801 return;
3802 end if;
3803
d6f39728 3804 -- If the argument is a name that is not an entity name, then
3805 -- we construct a renaming operation to define an entity of
3806 -- type storage pool.
3807
3808 if not Is_Entity_Name (Expr)
3809 and then Is_Object_Reference (Expr)
3810 then
11deeeb6 3811 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 3812
3813 declare
3814 Rnode : constant Node_Id :=
3815 Make_Object_Renaming_Declaration (Loc,
3816 Defining_Identifier => Pool,
3817 Subtype_Mark =>
3818 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 3819 Name => Expr);
d6f39728 3820
3821 begin
3822 Insert_Before (N, Rnode);
3823 Analyze (Rnode);
3824 Set_Associated_Storage_Pool (U_Ent, Pool);
3825 end;
3826
3827 elsif Is_Entity_Name (Expr) then
3828 Pool := Entity (Expr);
3829
3830 -- If pool is a renamed object, get original one. This can
3831 -- happen with an explicit renaming, and within instances.
3832
3833 while Present (Renamed_Object (Pool))
3834 and then Is_Entity_Name (Renamed_Object (Pool))
3835 loop
3836 Pool := Entity (Renamed_Object (Pool));
3837 end loop;
3838
3839 if Present (Renamed_Object (Pool))
3840 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
3841 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
3842 then
3843 Pool := Entity (Expression (Renamed_Object (Pool)));
3844 end if;
3845
6b567c71 3846 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 3847
3848 elsif Nkind (Expr) = N_Type_Conversion
3849 and then Is_Entity_Name (Expression (Expr))
3850 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
3851 then
3852 Pool := Entity (Expression (Expr));
6b567c71 3853 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 3854
3855 else
3856 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
3857 return;
3858 end if;
b55f7641 3859 end;
d6f39728 3860
44e4341e 3861 ------------------
3862 -- Storage_Size --
3863 ------------------
3864
3865 -- Storage_Size attribute definition clause
3866
3867 when Attribute_Storage_Size => Storage_Size : declare
3868 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 3869
3870 begin
3871 if Is_Task_Type (U_Ent) then
3872 Check_Restriction (No_Obsolescent_Features, N);
3873
3874 if Warn_On_Obsolescent_Feature then
3875 Error_Msg_N
1e3532e7 3876 ("?j?storage size clause for task is an " &
3877 "obsolescent feature (RM J.9)", N);
3878 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
44e4341e 3879 end if;
3880
3881 FOnly := True;
3882 end if;
3883
3884 if not Is_Access_Type (U_Ent)
3885 and then Ekind (U_Ent) /= E_Task_Type
3886 then
3887 Error_Msg_N ("storage size cannot be given for &", Nam);
3888
3889 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
3890 Error_Msg_N
3891 ("storage size cannot be given for a derived access type",
3892 Nam);
3893
ae888dbd 3894 elsif Duplicate_Clause then
3895 null;
44e4341e 3896
3897 else
3898 Analyze_And_Resolve (Expr, Any_Integer);
3899
3900 if Is_Access_Type (U_Ent) then
3901 if Present (Associated_Storage_Pool (U_Ent)) then
3902 Error_Msg_N ("storage pool already given for &", Nam);
3903 return;
3904 end if;
3905
5941a4e9 3906 if Is_OK_Static_Expression (Expr)
44e4341e 3907 and then Expr_Value (Expr) = 0
3908 then
3909 Set_No_Pool_Assigned (Btype);
3910 end if;
44e4341e 3911 end if;
3912
3913 Set_Has_Storage_Size_Clause (Btype);
3914 end if;
3915 end Storage_Size;
3916
7189d17f 3917 -----------------
3918 -- Stream_Size --
3919 -----------------
3920
3921 when Attribute_Stream_Size => Stream_Size : declare
3922 Size : constant Uint := Static_Integer (Expr);
3923
3924 begin
15ebb600 3925 if Ada_Version <= Ada_95 then
3926 Check_Restriction (No_Implementation_Attributes, N);
3927 end if;
3928
ae888dbd 3929 if Duplicate_Clause then
3930 null;
7189d17f 3931
3932 elsif Is_Elementary_Type (U_Ent) then
3933 if Size /= System_Storage_Unit
3934 and then
3935 Size /= System_Storage_Unit * 2
3936 and then
3937 Size /= System_Storage_Unit * 4
3938 and then
3939 Size /= System_Storage_Unit * 8
3940 then
3941 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
3942 Error_Msg_N
3943 ("stream size for elementary type must be a"
3944 & " power of 2 and at least ^", N);
3945
3946 elsif RM_Size (U_Ent) > Size then
3947 Error_Msg_Uint_1 := RM_Size (U_Ent);
3948 Error_Msg_N
3949 ("stream size for elementary type must be a"
3950 & " power of 2 and at least ^", N);
3951 end if;
3952
3953 Set_Has_Stream_Size_Clause (U_Ent);
3954
3955 else
3956 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
3957 end if;
3958 end Stream_Size;
3959
d6f39728 3960 ----------------
3961 -- Value_Size --
3962 ----------------
3963
3964 -- Value_Size attribute definition clause
3965
3966 when Attribute_Value_Size => Value_Size : declare
3967 Size : constant Uint := Static_Integer (Expr);
3968 Biased : Boolean;
3969
3970 begin
3971 if not Is_Type (U_Ent) then
3972 Error_Msg_N ("Value_Size cannot be given for &", Nam);
3973
ae888dbd 3974 elsif Duplicate_Clause then
3975 null;
d6f39728 3976
59ac57b5 3977 elsif Is_Array_Type (U_Ent)
3978 and then not Is_Constrained (U_Ent)
3979 then
3980 Error_Msg_N
3981 ("Value_Size cannot be given for unconstrained array", Nam);
3982
d6f39728 3983 else
3984 if Is_Elementary_Type (U_Ent) then
3985 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 3986 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 3987 end if;
3988
3989 Set_RM_Size (U_Ent, Size);
3990 end if;
3991 end Value_Size;
3992
81b424ac 3993 -----------------------
3994 -- Variable_Indexing --
3995 -----------------------
3996
3997 when Attribute_Variable_Indexing =>
3998 Check_Indexing_Functions;
3999
d6f39728 4000 -----------
4001 -- Write --
4002 -----------
4003
9f373bb8 4004 when Attribute_Write =>
4005 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
4006 Set_Has_Specified_Stream_Write (Ent);
d6f39728 4007
4008 -- All other attributes cannot be set
4009
4010 when others =>
4011 Error_Msg_N
4012 ("attribute& cannot be set with definition clause", N);
d6f39728 4013 end case;
4014
d64221a7 4015 -- The test for the type being frozen must be performed after any
4016 -- expression the clause has been analyzed since the expression itself
4017 -- might cause freezing that makes the clause illegal.
d6f39728 4018
4019 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
4020 return;
4021 end if;
4022 end Analyze_Attribute_Definition_Clause;
4023
4024 ----------------------------
4025 -- Analyze_Code_Statement --
4026 ----------------------------
4027
4028 procedure Analyze_Code_Statement (N : Node_Id) is
4029 HSS : constant Node_Id := Parent (N);
4030 SBody : constant Node_Id := Parent (HSS);
4031 Subp : constant Entity_Id := Current_Scope;
4032 Stmt : Node_Id;
4033 Decl : Node_Id;
4034 StmtO : Node_Id;
4035 DeclO : Node_Id;
4036
4037 begin
4038 -- Analyze and check we get right type, note that this implements the
4039 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
4040 -- is the only way that Asm_Insn could possibly be visible.
4041
4042 Analyze_And_Resolve (Expression (N));
4043
4044 if Etype (Expression (N)) = Any_Type then
4045 return;
4046 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
4047 Error_Msg_N ("incorrect type for code statement", N);
4048 return;
4049 end if;
4050
44e4341e 4051 Check_Code_Statement (N);
4052
d6f39728 4053 -- Make sure we appear in the handled statement sequence of a
4054 -- subprogram (RM 13.8(3)).
4055
4056 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
4057 or else Nkind (SBody) /= N_Subprogram_Body
4058 then
4059 Error_Msg_N
4060 ("code statement can only appear in body of subprogram", N);
4061 return;
4062 end if;
4063
4064 -- Do remaining checks (RM 13.8(3)) if not already done
4065
4066 if not Is_Machine_Code_Subprogram (Subp) then
4067 Set_Is_Machine_Code_Subprogram (Subp);
4068
4069 -- No exception handlers allowed
4070
4071 if Present (Exception_Handlers (HSS)) then
4072 Error_Msg_N
4073 ("exception handlers not permitted in machine code subprogram",
4074 First (Exception_Handlers (HSS)));
4075 end if;
4076
4077 -- No declarations other than use clauses and pragmas (we allow
4078 -- certain internally generated declarations as well).
4079
4080 Decl := First (Declarations (SBody));
4081 while Present (Decl) loop
4082 DeclO := Original_Node (Decl);
4083 if Comes_From_Source (DeclO)
fdd294d1 4084 and not Nkind_In (DeclO, N_Pragma,
4085 N_Use_Package_Clause,
4086 N_Use_Type_Clause,
4087 N_Implicit_Label_Declaration)
d6f39728 4088 then
4089 Error_Msg_N
4090 ("this declaration not allowed in machine code subprogram",
4091 DeclO);
4092 end if;
4093
4094 Next (Decl);
4095 end loop;
4096
4097 -- No statements other than code statements, pragmas, and labels.
4098 -- Again we allow certain internally generated statements.
3ab42ff7 4099
c3107527 4100 -- In Ada 2012, qualified expressions are names, and the code
4101 -- statement is initially parsed as a procedure call.
d6f39728 4102
4103 Stmt := First (Statements (HSS));
4104 while Present (Stmt) loop
4105 StmtO := Original_Node (Stmt);
c3107527 4106
59f2fcab 4107 -- A procedure call transformed into a code statement is OK.
4108
c3107527 4109 if Ada_Version >= Ada_2012
4110 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 4111 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 4112 then
4113 null;
4114
4115 elsif Comes_From_Source (StmtO)
fdd294d1 4116 and then not Nkind_In (StmtO, N_Pragma,
4117 N_Label,
4118 N_Code_Statement)
d6f39728 4119 then
4120 Error_Msg_N
4121 ("this statement is not allowed in machine code subprogram",
4122 StmtO);
4123 end if;
4124
4125 Next (Stmt);
4126 end loop;
4127 end if;
d6f39728 4128 end Analyze_Code_Statement;
4129
4130 -----------------------------------------------
4131 -- Analyze_Enumeration_Representation_Clause --
4132 -----------------------------------------------
4133
4134 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
4135 Ident : constant Node_Id := Identifier (N);
4136 Aggr : constant Node_Id := Array_Aggregate (N);
4137 Enumtype : Entity_Id;
4138 Elit : Entity_Id;
4139 Expr : Node_Id;
4140 Assoc : Node_Id;
4141 Choice : Node_Id;
4142 Val : Uint;
b3190af0 4143
4144 Err : Boolean := False;
098d3082 4145 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 4146
e30c7d84 4147 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
4148 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
4149 -- Allowed range of universal integer (= allowed range of enum lit vals)
4150
d6f39728 4151 Min : Uint;
4152 Max : Uint;
e30c7d84 4153 -- Minimum and maximum values of entries
4154
4155 Max_Node : Node_Id;
4156 -- Pointer to node for literal providing max value
d6f39728 4157
4158 begin
ca301e17 4159 if Ignore_Rep_Clauses then
fbc67f84 4160 return;
4161 end if;
4162
d6f39728 4163 -- First some basic error checks
4164
4165 Find_Type (Ident);
4166 Enumtype := Entity (Ident);
4167
4168 if Enumtype = Any_Type
4169 or else Rep_Item_Too_Early (Enumtype, N)
4170 then
4171 return;
4172 else
4173 Enumtype := Underlying_Type (Enumtype);
4174 end if;
4175
4176 if not Is_Enumeration_Type (Enumtype) then
4177 Error_Msg_NE
4178 ("enumeration type required, found}",
4179 Ident, First_Subtype (Enumtype));
4180 return;
4181 end if;
4182
9dfe12ae 4183 -- Ignore rep clause on generic actual type. This will already have
4184 -- been flagged on the template as an error, and this is the safest
4185 -- way to ensure we don't get a junk cascaded message in the instance.
4186
4187 if Is_Generic_Actual_Type (Enumtype) then
4188 return;
4189
4190 -- Type must be in current scope
4191
4192 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 4193 Error_Msg_N ("type must be declared in this scope", Ident);
4194 return;
4195
9dfe12ae 4196 -- Type must be a first subtype
4197
d6f39728 4198 elsif not Is_First_Subtype (Enumtype) then
4199 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
4200 return;
4201
9dfe12ae 4202 -- Ignore duplicate rep clause
4203
d6f39728 4204 elsif Has_Enumeration_Rep_Clause (Enumtype) then
4205 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
4206 return;
4207
7189d17f 4208 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 4209
177675a7 4210 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 4211 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 4212 return;
4213
d9125581 4214 -- Check that the expression is a proper aggregate (no parentheses)
4215
4216 elsif Paren_Count (Aggr) /= 0 then
4217 Error_Msg
4218 ("extra parentheses surrounding aggregate not allowed",
4219 First_Sloc (Aggr));
4220 return;
4221
9dfe12ae 4222 -- All tests passed, so set rep clause in place
d6f39728 4223
4224 else
4225 Set_Has_Enumeration_Rep_Clause (Enumtype);
4226 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
4227 end if;
4228
4229 -- Now we process the aggregate. Note that we don't use the normal
4230 -- aggregate code for this purpose, because we don't want any of the
4231 -- normal expansion activities, and a number of special semantic
4232 -- rules apply (including the component type being any integer type)
4233
d6f39728 4234 Elit := First_Literal (Enumtype);
4235
4236 -- First the positional entries if any
4237
4238 if Present (Expressions (Aggr)) then
4239 Expr := First (Expressions (Aggr));
4240 while Present (Expr) loop
4241 if No (Elit) then
4242 Error_Msg_N ("too many entries in aggregate", Expr);
4243 return;
4244 end if;
4245
4246 Val := Static_Integer (Expr);
4247
d9125581 4248 -- Err signals that we found some incorrect entries processing
4249 -- the list. The final checks for completeness and ordering are
4250 -- skipped in this case.
4251
d6f39728 4252 if Val = No_Uint then
4253 Err := True;
d6f39728 4254 elsif Val < Lo or else Hi < Val then
4255 Error_Msg_N ("value outside permitted range", Expr);
4256 Err := True;
4257 end if;
4258
4259 Set_Enumeration_Rep (Elit, Val);
4260 Set_Enumeration_Rep_Expr (Elit, Expr);
4261 Next (Expr);
4262 Next (Elit);
4263 end loop;
4264 end if;
4265
4266 -- Now process the named entries if present
4267
4268 if Present (Component_Associations (Aggr)) then
4269 Assoc := First (Component_Associations (Aggr));
4270 while Present (Assoc) loop
4271 Choice := First (Choices (Assoc));
4272
4273 if Present (Next (Choice)) then
4274 Error_Msg_N
4275 ("multiple choice not allowed here", Next (Choice));
4276 Err := True;
4277 end if;
4278
4279 if Nkind (Choice) = N_Others_Choice then
4280 Error_Msg_N ("others choice not allowed here", Choice);
4281 Err := True;
4282
4283 elsif Nkind (Choice) = N_Range then
b3190af0 4284
d6f39728 4285 -- ??? should allow zero/one element range here
b3190af0 4286
d6f39728 4287 Error_Msg_N ("range not allowed here", Choice);
4288 Err := True;
4289
4290 else
4291 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 4292
098d3082 4293 if Error_Posted (Choice) then
d6f39728 4294 Err := True;
098d3082 4295 end if;
d6f39728 4296
098d3082 4297 if not Err then
4298 if Is_Entity_Name (Choice)
4299 and then Is_Type (Entity (Choice))
4300 then
4301 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 4302 Err := True;
b3190af0 4303
098d3082 4304 -- ??? should allow static subtype with zero/one entry
d6f39728 4305
098d3082 4306 elsif Etype (Choice) = Base_Type (Enumtype) then
4307 if not Is_Static_Expression (Choice) then
4308 Flag_Non_Static_Expr
4309 ("non-static expression used for choice!", Choice);
d6f39728 4310 Err := True;
d6f39728 4311
098d3082 4312 else
4313 Elit := Expr_Value_E (Choice);
4314
4315 if Present (Enumeration_Rep_Expr (Elit)) then
4316 Error_Msg_Sloc :=
4317 Sloc (Enumeration_Rep_Expr (Elit));
4318 Error_Msg_NE
4319 ("representation for& previously given#",
4320 Choice, Elit);
4321 Err := True;
4322 end if;
d6f39728 4323
098d3082 4324 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 4325
098d3082 4326 Expr := Expression (Assoc);
4327 Val := Static_Integer (Expr);
d6f39728 4328
098d3082 4329 if Val = No_Uint then
4330 Err := True;
4331
4332 elsif Val < Lo or else Hi < Val then
4333 Error_Msg_N ("value outside permitted range", Expr);
4334 Err := True;
4335 end if;
d6f39728 4336
098d3082 4337 Set_Enumeration_Rep (Elit, Val);
4338 end if;
d6f39728 4339 end if;
4340 end if;
4341 end if;
4342
4343 Next (Assoc);
4344 end loop;
4345 end if;
4346
4347 -- Aggregate is fully processed. Now we check that a full set of
4348 -- representations was given, and that they are in range and in order.
4349 -- These checks are only done if no other errors occurred.
4350
4351 if not Err then
4352 Min := No_Uint;
4353 Max := No_Uint;
4354
4355 Elit := First_Literal (Enumtype);
4356 while Present (Elit) loop
4357 if No (Enumeration_Rep_Expr (Elit)) then
4358 Error_Msg_NE ("missing representation for&!", N, Elit);
4359
4360 else
4361 Val := Enumeration_Rep (Elit);
4362
4363 if Min = No_Uint then
4364 Min := Val;
4365 end if;
4366
4367 if Val /= No_Uint then
4368 if Max /= No_Uint and then Val <= Max then
4369 Error_Msg_NE
4370 ("enumeration value for& not ordered!",
e30c7d84 4371 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 4372 end if;
4373
e30c7d84 4374 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 4375 Max := Val;
4376 end if;
4377
e30c7d84 4378 -- If there is at least one literal whose representation is not
4379 -- equal to the Pos value, then note that this enumeration type
4380 -- has a non-standard representation.
d6f39728 4381
4382 if Val /= Enumeration_Pos (Elit) then
4383 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
4384 end if;
4385 end if;
4386
4387 Next (Elit);
4388 end loop;
4389
4390 -- Now set proper size information
4391
4392 declare
4393 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
4394
4395 begin
4396 if Has_Size_Clause (Enumtype) then
e30c7d84 4397
4398 -- All OK, if size is OK now
4399
4400 if RM_Size (Enumtype) >= Minsize then
d6f39728 4401 null;
4402
4403 else
e30c7d84 4404 -- Try if we can get by with biasing
4405
d6f39728 4406 Minsize :=
4407 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
4408
e30c7d84 4409 -- Error message if even biasing does not work
4410
4411 if RM_Size (Enumtype) < Minsize then
4412 Error_Msg_Uint_1 := RM_Size (Enumtype);
4413 Error_Msg_Uint_2 := Max;
4414 Error_Msg_N
4415 ("previously given size (^) is too small "
4416 & "for this value (^)", Max_Node);
4417
4418 -- If biasing worked, indicate that we now have biased rep
d6f39728 4419
4420 else
b77e4501 4421 Set_Biased
4422 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 4423 end if;
4424 end if;
4425
4426 else
4427 Set_RM_Size (Enumtype, Minsize);
4428 Set_Enum_Esize (Enumtype);
4429 end if;
4430
4431 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
4432 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
4433 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
4434 end;
4435 end if;
4436
4437 -- We repeat the too late test in case it froze itself!
4438
4439 if Rep_Item_Too_Late (Enumtype, N) then
4440 null;
4441 end if;
d6f39728 4442 end Analyze_Enumeration_Representation_Clause;
4443
4444 ----------------------------
4445 -- Analyze_Free_Statement --
4446 ----------------------------
4447
4448 procedure Analyze_Free_Statement (N : Node_Id) is
4449 begin
4450 Analyze (Expression (N));
4451 end Analyze_Free_Statement;
4452
40ca69b9 4453 ---------------------------
4454 -- Analyze_Freeze_Entity --
4455 ---------------------------
4456
4457 procedure Analyze_Freeze_Entity (N : Node_Id) is
4458 E : constant Entity_Id := Entity (N);
4459
4460 begin
98f7db28 4461 -- Remember that we are processing a freezing entity. Required to
4462 -- ensure correct decoration of internal entities associated with
4463 -- interfaces (see New_Overloaded_Entity).
4464
4465 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
4466
40ca69b9 4467 -- For tagged types covering interfaces add internal entities that link
4468 -- the primitives of the interfaces with the primitives that cover them.
40ca69b9 4469 -- Note: These entities were originally generated only when generating
4470 -- code because their main purpose was to provide support to initialize
4471 -- the secondary dispatch tables. They are now generated also when
4472 -- compiling with no code generation to provide ASIS the relationship
c8da6114 4473 -- between interface primitives and tagged type primitives. They are
4474 -- also used to locate primitives covering interfaces when processing
4475 -- generics (see Derive_Subprograms).
40ca69b9 4476
de54c5ab 4477 if Ada_Version >= Ada_2005
40ca69b9 4478 and then Ekind (E) = E_Record_Type
4479 and then Is_Tagged_Type (E)
4480 and then not Is_Interface (E)
4481 and then Has_Interfaces (E)
4482 then
c8da6114 4483 -- This would be a good common place to call the routine that checks
4484 -- overriding of interface primitives (and thus factorize calls to
4485 -- Check_Abstract_Overriding located at different contexts in the
4486 -- compiler). However, this is not possible because it causes
4487 -- spurious errors in case of late overriding.
4488
40ca69b9 4489 Add_Internal_Interface_Entities (E);
4490 end if;
d00681a7 4491
4492 -- Check CPP types
4493
4494 if Ekind (E) = E_Record_Type
4495 and then Is_CPP_Class (E)
4496 and then Is_Tagged_Type (E)
4497 and then Tagged_Type_Expansion
4498 and then Expander_Active
4499 then
4500 if CPP_Num_Prims (E) = 0 then
4501
4502 -- If the CPP type has user defined components then it must import
4503 -- primitives from C++. This is required because if the C++ class
4504 -- has no primitives then the C++ compiler does not added the _tag
4505 -- component to the type.
4506
4507 pragma Assert (Chars (First_Entity (E)) = Name_uTag);
4508
4509 if First_Entity (E) /= Last_Entity (E) then
4510 Error_Msg_N
1e3532e7 4511 ("'C'P'P type must import at least one primitive from C++??",
d00681a7 4512 E);
4513 end if;
4514 end if;
4515
4516 -- Check that all its primitives are abstract or imported from C++.
4517 -- Check also availability of the C++ constructor.
4518
4519 declare
4520 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
4521 Elmt : Elmt_Id;
4522 Error_Reported : Boolean := False;
4523 Prim : Node_Id;
4524
4525 begin
4526 Elmt := First_Elmt (Primitive_Operations (E));
4527 while Present (Elmt) loop
4528 Prim := Node (Elmt);
4529
4530 if Comes_From_Source (Prim) then
4531 if Is_Abstract_Subprogram (Prim) then
4532 null;
4533
4534 elsif not Is_Imported (Prim)
4535 or else Convention (Prim) /= Convention_CPP
4536 then
4537 Error_Msg_N
1e3532e7 4538 ("primitives of 'C'P'P types must be imported from C++ "
4539 & "or abstract??", Prim);
d00681a7 4540
4541 elsif not Has_Constructors
4542 and then not Error_Reported
4543 then
4544 Error_Msg_Name_1 := Chars (E);
4545 Error_Msg_N
1e3532e7 4546 ("??'C'P'P constructor required for type %", Prim);
d00681a7 4547 Error_Reported := True;
4548 end if;
4549 end if;
4550
4551 Next_Elmt (Elmt);
4552 end loop;
4553 end;
4554 end if;
98f7db28 4555
85377c9b 4556 -- Check Ada derivation of CPP type
4557
4558 if Expander_Active
4559 and then Tagged_Type_Expansion
4560 and then Ekind (E) = E_Record_Type
4561 and then Etype (E) /= E
4562 and then Is_CPP_Class (Etype (E))
4563 and then CPP_Num_Prims (Etype (E)) > 0
4564 and then not Is_CPP_Class (E)
4565 and then not Has_CPP_Constructors (Etype (E))
4566 then
4567 -- If the parent has C++ primitives but it has no constructor then
4568 -- check that all the primitives are overridden in this derivation;
4569 -- otherwise the constructor of the parent is needed to build the
4570 -- dispatch table.
4571
4572 declare
4573 Elmt : Elmt_Id;
4574 Prim : Node_Id;
4575
4576 begin
4577 Elmt := First_Elmt (Primitive_Operations (E));
4578 while Present (Elmt) loop
4579 Prim := Node (Elmt);
4580
4581 if not Is_Abstract_Subprogram (Prim)
4582 and then No (Interface_Alias (Prim))
4583 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
4584 then
4585 Error_Msg_Name_1 := Chars (Etype (E));
4586 Error_Msg_N
4587 ("'C'P'P constructor required for parent type %", E);
4588 exit;
4589 end if;
4590
4591 Next_Elmt (Elmt);
4592 end loop;
4593 end;
4594 end if;
4595
98f7db28 4596 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
9dc88aea 4597
4598 -- If we have a type with predicates, build predicate function
4599
4600 if Is_Type (E) and then Has_Predicates (E) then
490beba6 4601 Build_Predicate_Function (E, N);
9dc88aea 4602 end if;
fb7f2fc4 4603
d64221a7 4604 -- If type has delayed aspects, this is where we do the preanalysis at
4605 -- the freeze point, as part of the consistent visibility check. Note
4606 -- that this must be done after calling Build_Predicate_Function or
4607 -- Build_Invariant_Procedure since these subprograms fix occurrences of
4608 -- the subtype name in the saved expression so that they will not cause
4609 -- trouble in the preanalysis.
fb7f2fc4 4610
89f1e35c 4611 if Has_Delayed_Aspects (E)
4612 and then Scope (E) = Current_Scope
4613 then
4614 -- Retrieve the visibility to the discriminants in order to properly
4615 -- analyze the aspects.
4616
4617 Push_Scope_And_Install_Discriminants (E);
4618
fb7f2fc4 4619 declare
4620 Ritem : Node_Id;
4621
4622 begin
4623 -- Look for aspect specification entries for this entity
4624
4625 Ritem := First_Rep_Item (E);
4626 while Present (Ritem) loop
4627 if Nkind (Ritem) = N_Aspect_Specification
4628 and then Entity (Ritem) = E
4629 and then Is_Delayed_Aspect (Ritem)
4630 then
4631 Check_Aspect_At_Freeze_Point (Ritem);
4632 end if;
4633
4634 Next_Rep_Item (Ritem);
4635 end loop;
4636 end;
89f1e35c 4637
4638 Uninstall_Discriminants_And_Pop_Scope (E);
fb7f2fc4 4639 end if;
40ca69b9 4640 end Analyze_Freeze_Entity;
4641
d6f39728 4642 ------------------------------------------
4643 -- Analyze_Record_Representation_Clause --
4644 ------------------------------------------
4645
67278d60 4646 -- Note: we check as much as we can here, but we can't do any checks
4647 -- based on the position values (e.g. overlap checks) until freeze time
4648 -- because especially in Ada 2005 (machine scalar mode), the processing
4649 -- for non-standard bit order can substantially change the positions.
4650 -- See procedure Check_Record_Representation_Clause (called from Freeze)
4651 -- for the remainder of this processing.
4652
d6f39728 4653 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
7800b920 4654 Ident : constant Node_Id := Identifier (N);
4655 Biased : Boolean;
d6f39728 4656 CC : Node_Id;
7800b920 4657 Comp : Entity_Id;
d6f39728 4658 Fbit : Uint;
d6f39728 4659 Hbit : Uint := Uint_0;
7800b920 4660 Lbit : Uint;
d6f39728 4661 Ocomp : Entity_Id;
7800b920 4662 Posit : Uint;
4663 Rectype : Entity_Id;
d6f39728 4664
639e37b0 4665 CR_Pragma : Node_Id := Empty;
4666 -- Points to N_Pragma node if Complete_Representation pragma present
4667
d6f39728 4668 begin
fbc67f84 4669 if Ignore_Rep_Clauses then
4670 return;
4671 end if;
4672
d6f39728 4673 Find_Type (Ident);
4674 Rectype := Entity (Ident);
4675
4676 if Rectype = Any_Type
4677 or else Rep_Item_Too_Early (Rectype, N)
4678 then
4679 return;
4680 else
4681 Rectype := Underlying_Type (Rectype);
4682 end if;
4683
4684 -- First some basic error checks
4685
4686 if not Is_Record_Type (Rectype) then
4687 Error_Msg_NE
4688 ("record type required, found}", Ident, First_Subtype (Rectype));
4689 return;
4690
d6f39728 4691 elsif Scope (Rectype) /= Current_Scope then
4692 Error_Msg_N ("type must be declared in this scope", N);
4693 return;
4694
4695 elsif not Is_First_Subtype (Rectype) then
4696 Error_Msg_N ("cannot give record rep clause for subtype", N);
4697 return;
4698
4699 elsif Has_Record_Rep_Clause (Rectype) then
4700 Error_Msg_N ("duplicate record rep clause ignored", N);
4701 return;
4702
4703 elsif Rep_Item_Too_Late (Rectype, N) then
4704 return;
4705 end if;
4706
4707 if Present (Mod_Clause (N)) then
4708 declare
4709 Loc : constant Source_Ptr := Sloc (N);
4710 M : constant Node_Id := Mod_Clause (N);
4711 P : constant List_Id := Pragmas_Before (M);
d6f39728 4712 AtM_Nod : Node_Id;
4713
9dfe12ae 4714 Mod_Val : Uint;
4715 pragma Warnings (Off, Mod_Val);
4716
d6f39728 4717 begin
e0521a36 4718 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
4719
9dfe12ae 4720 if Warn_On_Obsolescent_Feature then
4721 Error_Msg_N
b174444e 4722 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
9dfe12ae 4723 Error_Msg_N
1e3532e7 4724 ("\?j?use alignment attribute definition clause instead", N);
9dfe12ae 4725 end if;
4726
d6f39728 4727 if Present (P) then
4728 Analyze_List (P);
4729 end if;
4730
fbc67f84 4731 -- In ASIS_Mode mode, expansion is disabled, but we must convert
4732 -- the Mod clause into an alignment clause anyway, so that the
4733 -- back-end can compute and back-annotate properly the size and
4734 -- alignment of types that may include this record.
d6f39728 4735
15ebb600 4736 -- This seems dubious, this destroys the source tree in a manner
4737 -- not detectable by ASIS ???
4738
3157c4f3 4739 if Operating_Mode = Check_Semantics and then ASIS_Mode then
d6f39728 4740 AtM_Nod :=
4741 Make_Attribute_Definition_Clause (Loc,
4742 Name => New_Reference_To (Base_Type (Rectype), Loc),
4743 Chars => Name_Alignment,
4744 Expression => Relocate_Node (Expression (M)));
4745
4746 Set_From_At_Mod (AtM_Nod);
4747 Insert_After (N, AtM_Nod);
4748 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
4749 Set_Mod_Clause (N, Empty);
4750
4751 else
4752 -- Get the alignment value to perform error checking
4753
4754 Mod_Val := Get_Alignment_Value (Expression (M));
d6f39728 4755 end if;
4756 end;
4757 end if;
4758
3062c401 4759 -- For untagged types, clear any existing component clauses for the
4760 -- type. If the type is derived, this is what allows us to override
4761 -- a rep clause for the parent. For type extensions, the representation
4762 -- of the inherited components is inherited, so we want to keep previous
4763 -- component clauses for completeness.
d6f39728 4764
3062c401 4765 if not Is_Tagged_Type (Rectype) then
4766 Comp := First_Component_Or_Discriminant (Rectype);
4767 while Present (Comp) loop
4768 Set_Component_Clause (Comp, Empty);
4769 Next_Component_Or_Discriminant (Comp);
4770 end loop;
4771 end if;
d6f39728 4772
4773 -- All done if no component clauses
4774
4775 CC := First (Component_Clauses (N));
4776
4777 if No (CC) then
4778 return;
4779 end if;
4780
f15731c4 4781 -- A representation like this applies to the base type
d6f39728 4782
4783 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
4784 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
4785 Set_Has_Specified_Layout (Base_Type (Rectype));
4786
d6f39728 4787 -- Process the component clauses
4788
4789 while Present (CC) loop
4790
639e37b0 4791 -- Pragma
d6f39728 4792
4793 if Nkind (CC) = N_Pragma then
4794 Analyze (CC);
4795
639e37b0 4796 -- The only pragma of interest is Complete_Representation
4797
fdd294d1 4798 if Pragma_Name (CC) = Name_Complete_Representation then
639e37b0 4799 CR_Pragma := CC;
4800 end if;
4801
d6f39728 4802 -- Processing for real component clause
4803
4804 else
d6f39728 4805 Posit := Static_Integer (Position (CC));
4806 Fbit := Static_Integer (First_Bit (CC));
4807 Lbit := Static_Integer (Last_Bit (CC));
4808
4809 if Posit /= No_Uint
4810 and then Fbit /= No_Uint
4811 and then Lbit /= No_Uint
4812 then
4813 if Posit < 0 then
4814 Error_Msg_N
4815 ("position cannot be negative", Position (CC));
4816
4817 elsif Fbit < 0 then
4818 Error_Msg_N
4819 ("first bit cannot be negative", First_Bit (CC));
4820
177675a7 4821 -- The Last_Bit specified in a component clause must not be
4822 -- less than the First_Bit minus one (RM-13.5.1(10)).
4823
4824 elsif Lbit < Fbit - 1 then
4825 Error_Msg_N
4826 ("last bit cannot be less than first bit minus one",
4827 Last_Bit (CC));
4828
d6f39728 4829 -- Values look OK, so find the corresponding record component
4830 -- Even though the syntax allows an attribute reference for
4831 -- implementation-defined components, GNAT does not allow the
4832 -- tag to get an explicit position.
4833
4834 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
d6f39728 4835 if Attribute_Name (Component_Name (CC)) = Name_Tag then
4836 Error_Msg_N ("position of tag cannot be specified", CC);
4837 else
4838 Error_Msg_N ("illegal component name", CC);
4839 end if;
4840
4841 else
4842 Comp := First_Entity (Rectype);
4843 while Present (Comp) loop
4844 exit when Chars (Comp) = Chars (Component_Name (CC));
4845 Next_Entity (Comp);
4846 end loop;
4847
4848 if No (Comp) then
4849
4850 -- Maybe component of base type that is absent from
4851 -- statically constrained first subtype.
4852
4853 Comp := First_Entity (Base_Type (Rectype));
4854 while Present (Comp) loop
4855 exit when Chars (Comp) = Chars (Component_Name (CC));
4856 Next_Entity (Comp);
4857 end loop;
4858 end if;
4859
4860 if No (Comp) then
4861 Error_Msg_N
4862 ("component clause is for non-existent field", CC);
4863
7800b920 4864 -- Ada 2012 (AI05-0026): Any name that denotes a
4865 -- discriminant of an object of an unchecked union type
4866 -- shall not occur within a record_representation_clause.
4867
4868 -- The general restriction of using record rep clauses on
4869 -- Unchecked_Union types has now been lifted. Since it is
4870 -- possible to introduce a record rep clause which mentions
4871 -- the discriminant of an Unchecked_Union in non-Ada 2012
4872 -- code, this check is applied to all versions of the
4873 -- language.
4874
4875 elsif Ekind (Comp) = E_Discriminant
4876 and then Is_Unchecked_Union (Rectype)
4877 then
4878 Error_Msg_N
41d55ffb 4879 ("cannot reference discriminant of unchecked union",
7800b920 4880 Component_Name (CC));
4881
d6f39728 4882 elsif Present (Component_Clause (Comp)) then
3062c401 4883
1a34e48c 4884 -- Diagnose duplicate rep clause, or check consistency
fdd294d1 4885 -- if this is an inherited component. In a double fault,
3062c401 4886 -- there may be a duplicate inconsistent clause for an
4887 -- inherited component.
4888
fdd294d1 4889 if Scope (Original_Record_Component (Comp)) = Rectype
4890 or else Parent (Component_Clause (Comp)) = N
3062c401 4891 then
4892 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
4893 Error_Msg_N ("component clause previously given#", CC);
4894
4895 else
4896 declare
4897 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 4898 begin
4899 if Intval (Position (Rep1)) /=
4900 Intval (Position (CC))
4901 or else Intval (First_Bit (Rep1)) /=
4902 Intval (First_Bit (CC))
4903 or else Intval (Last_Bit (Rep1)) /=
4904 Intval (Last_Bit (CC))
4905 then
b9e61b2a 4906 Error_Msg_N
4907 ("component clause inconsistent "
4908 & "with representation of ancestor", CC);
3062c401 4909 elsif Warn_On_Redundant_Constructs then
b9e61b2a 4910 Error_Msg_N
1e3532e7 4911 ("?r?redundant component clause "
b9e61b2a 4912 & "for inherited component!", CC);
3062c401 4913 end if;
4914 end;
4915 end if;
d6f39728 4916
d2b860b4 4917 -- Normal case where this is the first component clause we
4918 -- have seen for this entity, so set it up properly.
4919
d6f39728 4920 else
83f8f0a6 4921 -- Make reference for field in record rep clause and set
4922 -- appropriate entity field in the field identifier.
4923
4924 Generate_Reference
4925 (Comp, Component_Name (CC), Set_Ref => False);
4926 Set_Entity (Component_Name (CC), Comp);
4927
2866d595 4928 -- Update Fbit and Lbit to the actual bit number
d6f39728 4929
4930 Fbit := Fbit + UI_From_Int (SSU) * Posit;
4931 Lbit := Lbit + UI_From_Int (SSU) * Posit;
4932
d6f39728 4933 if Has_Size_Clause (Rectype)
ada34def 4934 and then RM_Size (Rectype) <= Lbit
d6f39728 4935 then
4936 Error_Msg_N
4937 ("bit number out of range of specified size",
4938 Last_Bit (CC));
4939 else
4940 Set_Component_Clause (Comp, CC);
4941 Set_Component_Bit_Offset (Comp, Fbit);
4942 Set_Esize (Comp, 1 + (Lbit - Fbit));
4943 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
4944 Set_Normalized_Position (Comp, Fbit / SSU);
4945
a0fc8c5b 4946 if Warn_On_Overridden_Size
4947 and then Has_Size_Clause (Etype (Comp))
4948 and then RM_Size (Etype (Comp)) /= Esize (Comp)
4949 then
4950 Error_Msg_NE
1e3532e7 4951 ("?S?component size overrides size clause for&",
a0fc8c5b 4952 Component_Name (CC), Etype (Comp));
4953 end if;
4954
ea61a7ea 4955 -- This information is also set in the corresponding
4956 -- component of the base type, found by accessing the
4957 -- Original_Record_Component link if it is present.
d6f39728 4958
4959 Ocomp := Original_Record_Component (Comp);
4960
4961 if Hbit < Lbit then
4962 Hbit := Lbit;
4963 end if;
4964
4965 Check_Size
4966 (Component_Name (CC),
4967 Etype (Comp),
4968 Esize (Comp),
4969 Biased);
4970
b77e4501 4971 Set_Biased
4972 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 4973
d6f39728 4974 if Present (Ocomp) then
4975 Set_Component_Clause (Ocomp, CC);
4976 Set_Component_Bit_Offset (Ocomp, Fbit);
4977 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
4978 Set_Normalized_Position (Ocomp, Fbit / SSU);
4979 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
4980
4981 Set_Normalized_Position_Max
4982 (Ocomp, Normalized_Position (Ocomp));
4983
b77e4501 4984 -- Note: we don't use Set_Biased here, because we
4985 -- already gave a warning above if needed, and we
4986 -- would get a duplicate for the same name here.
4987
d6f39728 4988 Set_Has_Biased_Representation
4989 (Ocomp, Has_Biased_Representation (Comp));
4990 end if;
4991
4992 if Esize (Comp) < 0 then
4993 Error_Msg_N ("component size is negative", CC);
4994 end if;
4995 end if;
4996 end if;
4997 end if;
4998 end if;
4999 end if;
5000
5001 Next (CC);
5002 end loop;
5003
67278d60 5004 -- Check missing components if Complete_Representation pragma appeared
d6f39728 5005
67278d60 5006 if Present (CR_Pragma) then
5007 Comp := First_Component_Or_Discriminant (Rectype);
5008 while Present (Comp) loop
5009 if No (Component_Clause (Comp)) then
5010 Error_Msg_NE
5011 ("missing component clause for &", CR_Pragma, Comp);
5012 end if;
d6f39728 5013
67278d60 5014 Next_Component_Or_Discriminant (Comp);
5015 end loop;
d6f39728 5016
1e3532e7 5017 -- Give missing components warning if required
15ebb600 5018
fdd294d1 5019 elsif Warn_On_Unrepped_Components then
15ebb600 5020 declare
5021 Num_Repped_Components : Nat := 0;
5022 Num_Unrepped_Components : Nat := 0;
5023
5024 begin
5025 -- First count number of repped and unrepped components
5026
5027 Comp := First_Component_Or_Discriminant (Rectype);
5028 while Present (Comp) loop
5029 if Present (Component_Clause (Comp)) then
5030 Num_Repped_Components := Num_Repped_Components + 1;
5031 else
5032 Num_Unrepped_Components := Num_Unrepped_Components + 1;
5033 end if;
5034
5035 Next_Component_Or_Discriminant (Comp);
5036 end loop;
5037
5038 -- We are only interested in the case where there is at least one
5039 -- unrepped component, and at least half the components have rep
5040 -- clauses. We figure that if less than half have them, then the
87f9eef5 5041 -- partial rep clause is really intentional. If the component
5042 -- type has no underlying type set at this point (as for a generic
5043 -- formal type), we don't know enough to give a warning on the
5044 -- component.
15ebb600 5045
5046 if Num_Unrepped_Components > 0
5047 and then Num_Unrepped_Components < Num_Repped_Components
5048 then
5049 Comp := First_Component_Or_Discriminant (Rectype);
5050 while Present (Comp) loop
83f8f0a6 5051 if No (Component_Clause (Comp))
3062c401 5052 and then Comes_From_Source (Comp)
87f9eef5 5053 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 5054 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 5055 or else Size_Known_At_Compile_Time
5056 (Underlying_Type (Etype (Comp))))
fdd294d1 5057 and then not Has_Warnings_Off (Rectype)
83f8f0a6 5058 then
15ebb600 5059 Error_Msg_Sloc := Sloc (Comp);
5060 Error_Msg_NE
1e3532e7 5061 ("?C?no component clause given for & declared #",
15ebb600 5062 N, Comp);
5063 end if;
5064
5065 Next_Component_Or_Discriminant (Comp);
5066 end loop;
5067 end if;
5068 end;
d6f39728 5069 end if;
d6f39728 5070 end Analyze_Record_Representation_Clause;
5071
9ea61fdd 5072 -------------------------------------------
5073 -- Build_Invariant_Procedure_Declaration --
5074 -------------------------------------------
5075
5076 function Build_Invariant_Procedure_Declaration
5077 (Typ : Entity_Id) return Node_Id
5078 is
5079 Loc : constant Source_Ptr := Sloc (Typ);
5080 Object_Entity : constant Entity_Id :=
5081 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
5082 Spec : Node_Id;
5083 SId : Entity_Id;
5084
5085 begin
5086 Set_Etype (Object_Entity, Typ);
5087
5088 -- Check for duplicate definiations.
5089
1e3532e7 5090 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
9ea61fdd 5091 return Empty;
5092 end if;
5093
5094 SId := Make_Defining_Identifier (Loc,
5095 Chars => New_External_Name (Chars (Typ), "Invariant"));
5096 Set_Has_Invariants (SId);
5097 Set_Has_Invariants (Typ);
5098 Set_Ekind (SId, E_Procedure);
5099 Set_Invariant_Procedure (Typ, SId);
5100
5101 Spec :=
5102 Make_Procedure_Specification (Loc,
5103 Defining_Unit_Name => SId,
5104 Parameter_Specifications => New_List (
5105 Make_Parameter_Specification (Loc,
5106 Defining_Identifier => Object_Entity,
5107 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
5108
5109 return Make_Subprogram_Declaration (Loc, Specification => Spec);
5110 end Build_Invariant_Procedure_Declaration;
5111
5b5df4a9 5112 -------------------------------
5113 -- Build_Invariant_Procedure --
5114 -------------------------------
5115
5116 -- The procedure that is constructed here has the form
5117
5118 -- procedure typInvariant (Ixxx : typ) is
5119 -- begin
5120 -- pragma Check (Invariant, exp, "failed invariant from xxx");
5121 -- pragma Check (Invariant, exp, "failed invariant from xxx");
5122 -- ...
5123 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
5124 -- ...
5125 -- end typInvariant;
5126
87f3d5d3 5127 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
5b5df4a9 5128 Loc : constant Source_Ptr := Sloc (Typ);
5129 Stmts : List_Id;
5130 Spec : Node_Id;
5131 SId : Entity_Id;
87f3d5d3 5132 PDecl : Node_Id;
5133 PBody : Node_Id;
5134
5135 Visible_Decls : constant List_Id := Visible_Declarations (N);
5136 Private_Decls : constant List_Id := Private_Declarations (N);
5b5df4a9 5137
5138 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
5139 -- Appends statements to Stmts for any invariants in the rep item chain
5140 -- of the given type. If Inherit is False, then we only process entries
5141 -- on the chain for the type Typ. If Inherit is True, then we ignore any
5142 -- Invariant aspects, but we process all Invariant'Class aspects, adding
5143 -- "inherited" to the exception message and generating an informational
5144 -- message about the inheritance of an invariant.
5145
9ea61fdd 5146 Object_Name : Name_Id;
5b5df4a9 5147 -- Name for argument of invariant procedure
5148
9ea61fdd 5149 Object_Entity : Node_Id;
5150 -- The entity of the formal for the procedure
87f3d5d3 5151
5b5df4a9 5152 --------------------
5153 -- Add_Invariants --
5154 --------------------
5155
5156 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
5157 Ritem : Node_Id;
5158 Arg1 : Node_Id;
5159 Arg2 : Node_Id;
5160 Arg3 : Node_Id;
5161 Exp : Node_Id;
5162 Loc : Source_Ptr;
5163 Assoc : List_Id;
5164 Str : String_Id;
5165
2072eaa9 5166 procedure Replace_Type_Reference (N : Node_Id);
5167 -- Replace a single occurrence N of the subtype name with a reference
5168 -- to the formal of the predicate function. N can be an identifier
5169 -- referencing the subtype, or a selected component, representing an
5170 -- appropriately qualified occurrence of the subtype name.
5b5df4a9 5171
2072eaa9 5172 procedure Replace_Type_References is
5173 new Replace_Type_References_Generic (Replace_Type_Reference);
5174 -- Traverse an expression replacing all occurrences of the subtype
5175 -- name with appropriate references to the object that is the formal
87f3d5d3 5176 -- parameter of the predicate function. Note that we must ensure
5177 -- that the type and entity information is properly set in the
5178 -- replacement node, since we will do a Preanalyze call of this
5179 -- expression without proper visibility of the procedure argument.
5b5df4a9 5180
2072eaa9 5181 ----------------------------
5182 -- Replace_Type_Reference --
5183 ----------------------------
5b5df4a9 5184
b9e61b2a 5185 -- Note: See comments in Add_Predicates.Replace_Type_Reference
5186 -- regarding handling of Sloc and Comes_From_Source.
5187
2072eaa9 5188 procedure Replace_Type_Reference (N : Node_Id) is
5b5df4a9 5189 begin
2072eaa9 5190 -- Invariant'Class, replace with T'Class (obj)
5191
5192 if Class_Present (Ritem) then
5193 Rewrite (N,
c92e878b 5194 Make_Type_Conversion (Sloc (N),
2072eaa9 5195 Subtype_Mark =>
c92e878b 5196 Make_Attribute_Reference (Sloc (N),
5197 Prefix => New_Occurrence_Of (T, Sloc (N)),
2072eaa9 5198 Attribute_Name => Name_Class),
c92e878b 5199 Expression => Make_Identifier (Sloc (N), Object_Name)));
5b5df4a9 5200
87f3d5d3 5201 Set_Entity (Expression (N), Object_Entity);
5202 Set_Etype (Expression (N), Typ);
5203
2072eaa9 5204 -- Invariant, replace with obj
5b5df4a9 5205
5206 else
c92e878b 5207 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
87f3d5d3 5208 Set_Entity (N, Object_Entity);
5209 Set_Etype (N, Typ);
5b5df4a9 5210 end if;
4c1fd062 5211
5212 Set_Comes_From_Source (N, True);
2072eaa9 5213 end Replace_Type_Reference;
5b5df4a9 5214
5215 -- Start of processing for Add_Invariants
5216
5217 begin
5218 Ritem := First_Rep_Item (T);
5219 while Present (Ritem) loop
5220 if Nkind (Ritem) = N_Pragma
5221 and then Pragma_Name (Ritem) = Name_Invariant
5222 then
5223 Arg1 := First (Pragma_Argument_Associations (Ritem));
5224 Arg2 := Next (Arg1);
5225 Arg3 := Next (Arg2);
5226
5227 Arg1 := Get_Pragma_Arg (Arg1);
5228 Arg2 := Get_Pragma_Arg (Arg2);
5229
5230 -- For Inherit case, ignore Invariant, process only Class case
5231
5232 if Inherit then
5233 if not Class_Present (Ritem) then
5234 goto Continue;
5235 end if;
5236
5237 -- For Inherit false, process only item for right type
5238
5239 else
5240 if Entity (Arg1) /= Typ then
5241 goto Continue;
5242 end if;
5243 end if;
5244
5245 if No (Stmts) then
5246 Stmts := Empty_List;
5247 end if;
5248
5249 Exp := New_Copy_Tree (Arg2);
47a46747 5250
88254da4 5251 -- Preserve sloc of original pragma Invariant
47a46747 5252
5253 Loc := Sloc (Ritem);
5b5df4a9 5254
5255 -- We need to replace any occurrences of the name of the type
5256 -- with references to the object, converted to type'Class in
2072eaa9 5257 -- the case of Invariant'Class aspects.
5b5df4a9 5258
2072eaa9 5259 Replace_Type_References (Exp, Chars (T));
5b5df4a9 5260
fb7f2fc4 5261 -- If this invariant comes from an aspect, find the aspect
5262 -- specification, and replace the saved expression because
5263 -- we need the subtype references replaced for the calls to
5264 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
5265 -- and Check_Aspect_At_End_Of_Declarations.
5266
5267 if From_Aspect_Specification (Ritem) then
5268 declare
5269 Aitem : Node_Id;
5270
5271 begin
5272 -- Loop to find corresponding aspect, note that this
5273 -- must be present given the pragma is marked delayed.
5274
5275 Aitem := Next_Rep_Item (Ritem);
5276 while Present (Aitem) loop
5277 if Nkind (Aitem) = N_Aspect_Specification
5278 and then Aspect_Rep_Item (Aitem) = Ritem
5279 then
5280 Set_Entity
5281 (Identifier (Aitem), New_Copy_Tree (Exp));
5282 exit;
5283 end if;
5284
5285 Aitem := Next_Rep_Item (Aitem);
5286 end loop;
5287 end;
5288 end if;
5289
87f3d5d3 5290 -- Now we need to preanalyze the expression to properly capture
5291 -- the visibility in the visible part. The expression will not
5292 -- be analyzed for real until the body is analyzed, but that is
5293 -- at the end of the private part and has the wrong visibility.
5294
5295 Set_Parent (Exp, N);
d513339a 5296 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
87f3d5d3 5297
5b5df4a9 5298 -- Build first two arguments for Check pragma
5299
5300 Assoc := New_List (
5301 Make_Pragma_Argument_Association (Loc,
55868293 5302 Expression => Make_Identifier (Loc, Name_Invariant)),
b9e61b2a 5303 Make_Pragma_Argument_Association (Loc,
5304 Expression => Exp));
5b5df4a9 5305
5306 -- Add message if present in Invariant pragma
5307
5308 if Present (Arg3) then
5309 Str := Strval (Get_Pragma_Arg (Arg3));
5310
5311 -- If inherited case, and message starts "failed invariant",
5312 -- change it to be "failed inherited invariant".
5313
5314 if Inherit then
5315 String_To_Name_Buffer (Str);
5316
5317 if Name_Buffer (1 .. 16) = "failed invariant" then
5318 Insert_Str_In_Name_Buffer ("inherited ", 8);
5319 Str := String_From_Name_Buffer;
5320 end if;
5321 end if;
5322
5323 Append_To (Assoc,
5324 Make_Pragma_Argument_Association (Loc,
5325 Expression => Make_String_Literal (Loc, Str)));
5326 end if;
5327
5328 -- Add Check pragma to list of statements
5329
5330 Append_To (Stmts,
5331 Make_Pragma (Loc,
5332 Pragma_Identifier =>
55868293 5333 Make_Identifier (Loc, Name_Check),
5b5df4a9 5334 Pragma_Argument_Associations => Assoc));
5335
5336 -- If Inherited case and option enabled, output info msg. Note
5337 -- that we know this is a case of Invariant'Class.
5338
5339 if Inherit and Opt.List_Inherited_Aspects then
5340 Error_Msg_Sloc := Sloc (Ritem);
5341 Error_Msg_N
cb97ae5c 5342 ("?L?info: & inherits `Invariant''Class` aspect from #",
5b5df4a9 5343 Typ);
5344 end if;
5345 end if;
5346
5347 <<Continue>>
5348 Next_Rep_Item (Ritem);
5349 end loop;
5350 end Add_Invariants;
5351
5352 -- Start of processing for Build_Invariant_Procedure
5353
5354 begin
5355 Stmts := No_List;
5356 PDecl := Empty;
5357 PBody := Empty;
9ea61fdd 5358 SId := Empty;
5359
5360 -- If the aspect specification exists for some view of the type, the
5361 -- declaration for the procedure has been created.
5362
5363 if Has_Invariants (Typ) then
5364 SId := Invariant_Procedure (Typ);
5365 end if;
5366
5367 if Present (SId) then
5368 PDecl := Unit_Declaration_Node (SId);
5369
5370 else
5371 PDecl := Build_Invariant_Procedure_Declaration (Typ);
5372 end if;
5373
5374 -- Recover formal of procedure, for use in the calls to invariant
5375 -- functions (including inherited ones).
5376
5377 Object_Entity :=
5378 Defining_Identifier
5379 (First (Parameter_Specifications (Specification (PDecl))));
5380 Object_Name := Chars (Object_Entity);
5b5df4a9 5381
5382 -- Add invariants for the current type
5383
5384 Add_Invariants (Typ, Inherit => False);
5385
5386 -- Add invariants for parent types
5387
5388 declare
5389 Current_Typ : Entity_Id;
5390 Parent_Typ : Entity_Id;
5391
5392 begin
5393 Current_Typ := Typ;
5394 loop
5395 Parent_Typ := Etype (Current_Typ);
5396
5397 if Is_Private_Type (Parent_Typ)
5398 and then Present (Full_View (Base_Type (Parent_Typ)))
5399 then
5400 Parent_Typ := Full_View (Base_Type (Parent_Typ));
5401 end if;
5402
5403 exit when Parent_Typ = Current_Typ;
5404
5405 Current_Typ := Parent_Typ;
5406 Add_Invariants (Current_Typ, Inherit => True);
5407 end loop;
5408 end;
5409
5b5df4a9 5410 -- Build the procedure if we generated at least one Check pragma
5411
5412 if Stmts /= No_List then
9ea61fdd 5413 Spec := Copy_Separate_Tree (Specification (PDecl));
5b5df4a9 5414
5415 PBody :=
5416 Make_Subprogram_Body (Loc,
5417 Specification => Spec,
5418 Declarations => Empty_List,
5419 Handled_Statement_Sequence =>
5420 Make_Handled_Sequence_Of_Statements (Loc,
5421 Statements => Stmts));
87f3d5d3 5422
5423 -- Insert procedure declaration and spec at the appropriate points.
9ea61fdd 5424 -- If declaration is already analyzed, it was processed by the
5425 -- generated pragma.
87f3d5d3 5426
5427 if Present (Private_Decls) then
5428
5429 -- The spec goes at the end of visible declarations, but they have
5430 -- already been analyzed, so we need to explicitly do the analyze.
5431
9ea61fdd 5432 if not Analyzed (PDecl) then
5433 Append_To (Visible_Decls, PDecl);
5434 Analyze (PDecl);
5435 end if;
87f3d5d3 5436
5437 -- The body goes at the end of the private declarations, which we
5438 -- have not analyzed yet, so we do not need to perform an explicit
5439 -- analyze call. We skip this if there are no private declarations
5440 -- (this is an error that will be caught elsewhere);
5441
5442 Append_To (Private_Decls, PBody);
192b8dab 5443
5444 -- If the invariant appears on the full view of a type, the
5445 -- analysis of the private part is complete, and we must
5446 -- analyze the new body explicitly.
5447
5448 if In_Private_Part (Current_Scope) then
5449 Analyze (PBody);
5450 end if;
5d3fb947 5451
5452 -- If there are no private declarations this may be an error that
5453 -- will be diagnosed elsewhere. However, if this is a non-private
5454 -- type that inherits invariants, it needs no completion and there
5455 -- may be no private part. In this case insert invariant procedure
5456 -- at end of current declarative list, and analyze at once, given
5457 -- that the type is about to be frozen.
5458
5459 elsif not Is_Private_Type (Typ) then
5460 Append_To (Visible_Decls, PDecl);
5461 Append_To (Visible_Decls, PBody);
5462 Analyze (PDecl);
5463 Analyze (PBody);
87f3d5d3 5464 end if;
5b5df4a9 5465 end if;
5466 end Build_Invariant_Procedure;
5467
9dc88aea 5468 ------------------------------
5469 -- Build_Predicate_Function --
5470 ------------------------------
5471
7c443ae8 5472 -- The procedure that is constructed here has the form:
5473
5474 -- function typPredicate (Ixxx : typ) return Boolean is
5475 -- begin
5476 -- return
5477 -- exp1 and then exp2 and then ...
5478 -- and then typ1Predicate (typ1 (Ixxx))
5479 -- and then typ2Predicate (typ2 (Ixxx))
5480 -- and then ...;
5481 -- end typPredicate;
9dc88aea 5482
5483 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
5484 -- this is the point at which these expressions get analyzed, providing the
5485 -- required delay, and typ1, typ2, are entities from which predicates are
5486 -- inherited. Note that we do NOT generate Check pragmas, that's because we
5487 -- use this function even if checks are off, e.g. for membership tests.
5488
490beba6 5489 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
9f727ad2 5490 Loc : constant Source_Ptr := Sloc (Typ);
5491 Spec : Node_Id;
5492 SId : Entity_Id;
490beba6 5493 FDecl : Node_Id;
5494 FBody : Node_Id;
5495
9dc88aea 5496 Expr : Node_Id;
5497 -- This is the expression for the return statement in the function. It
5498 -- is build by connecting the component predicates with AND THEN.
5499
5500 procedure Add_Call (T : Entity_Id);
5501 -- Includes a call to the predicate function for type T in Expr if T
5502 -- has predicates and Predicate_Function (T) is non-empty.
5503
5504 procedure Add_Predicates;
5505 -- Appends expressions for any Predicate pragmas in the rep item chain
5506 -- Typ to Expr. Note that we look only at items for this exact entity.
5507 -- Inheritance of predicates for the parent type is done by calling the
5508 -- Predicate_Function of the parent type, using Add_Call above.
5509
9dc88aea 5510 Object_Name : constant Name_Id := New_Internal_Name ('I');
5511 -- Name for argument of Predicate procedure
5512
fb7f2fc4 5513 Object_Entity : constant Entity_Id :=
5514 Make_Defining_Identifier (Loc, Object_Name);
5515 -- The entity for the spec entity for the argument
5516
ebbab42d 5517 Dynamic_Predicate_Present : Boolean := False;
5518 -- Set True if a dynamic predicate is present, results in the entire
5519 -- predicate being considered dynamic even if it looks static
5520
5521 Static_Predicate_Present : Node_Id := Empty;
5522 -- Set to N_Pragma node for a static predicate if one is encountered.
5523
9dc88aea 5524 --------------
5525 -- Add_Call --
5526 --------------
5527
5528 procedure Add_Call (T : Entity_Id) is
5529 Exp : Node_Id;
5530
5531 begin
5532 if Present (T) and then Present (Predicate_Function (T)) then
5533 Set_Has_Predicates (Typ);
5534
5535 -- Build the call to the predicate function of T
5536
5537 Exp :=
5538 Make_Predicate_Call
55868293 5539 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
9dc88aea 5540
5541 -- Add call to evolving expression, using AND THEN if needed
5542
5543 if No (Expr) then
5544 Expr := Exp;
5545 else
5546 Expr :=
5547 Make_And_Then (Loc,
5548 Left_Opnd => Relocate_Node (Expr),
5549 Right_Opnd => Exp);
5550 end if;
5551
2f32076c 5552 -- Output info message on inheritance if required. Note we do not
5553 -- give this information for generic actual types, since it is
55e8372b 5554 -- unwelcome noise in that case in instantiations. We also
490beba6 5555 -- generally suppress the message in instantiations, and also
5556 -- if it involves internal names.
9dc88aea 5557
2f32076c 5558 if Opt.List_Inherited_Aspects
5559 and then not Is_Generic_Actual_Type (Typ)
55e8372b 5560 and then Instantiation_Depth (Sloc (Typ)) = 0
490beba6 5561 and then not Is_Internal_Name (Chars (T))
5562 and then not Is_Internal_Name (Chars (Typ))
2f32076c 5563 then
9dc88aea 5564 Error_Msg_Sloc := Sloc (Predicate_Function (T));
5565 Error_Msg_Node_2 := T;
cb97ae5c 5566 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
9dc88aea 5567 end if;
5568 end if;
5569 end Add_Call;
5570
5571 --------------------
5572 -- Add_Predicates --
5573 --------------------
5574
5575 procedure Add_Predicates is
5576 Ritem : Node_Id;
5577 Arg1 : Node_Id;
5578 Arg2 : Node_Id;
5579
2072eaa9 5580 procedure Replace_Type_Reference (N : Node_Id);
5581 -- Replace a single occurrence N of the subtype name with a reference
5582 -- to the formal of the predicate function. N can be an identifier
5583 -- referencing the subtype, or a selected component, representing an
5584 -- appropriately qualified occurrence of the subtype name.
9dc88aea 5585
2072eaa9 5586 procedure Replace_Type_References is
5587 new Replace_Type_References_Generic (Replace_Type_Reference);
490beba6 5588 -- Traverse an expression changing every occurrence of an identifier
6fb3c314 5589 -- whose name matches the name of the subtype with a reference to
2072eaa9 5590 -- the formal parameter of the predicate function.
9dc88aea 5591
2072eaa9 5592 ----------------------------
5593 -- Replace_Type_Reference --
5594 ----------------------------
490beba6 5595
2072eaa9 5596 procedure Replace_Type_Reference (N : Node_Id) is
9dc88aea 5597 begin
c92e878b 5598 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
5599 -- Use the Sloc of the usage name, not the defining name
5600
fb7f2fc4 5601 Set_Entity (N, Object_Entity);
5602 Set_Etype (N, Typ);
4c1fd062 5603
5604 -- We want to treat the node as if it comes from source, so that
5605 -- ASIS will not ignore it
5606
5607 Set_Comes_From_Source (N, True);
2072eaa9 5608 end Replace_Type_Reference;
9dc88aea 5609
5610 -- Start of processing for Add_Predicates
5611
5612 begin
5613 Ritem := First_Rep_Item (Typ);
5614 while Present (Ritem) loop
5615 if Nkind (Ritem) = N_Pragma
5616 and then Pragma_Name (Ritem) = Name_Predicate
5617 then
cce84b09 5618 if Present (Corresponding_Aspect (Ritem)) then
5619 case Chars (Identifier (Corresponding_Aspect (Ritem))) is
5620 when Name_Dynamic_Predicate =>
5621 Dynamic_Predicate_Present := True;
5622 when Name_Static_Predicate =>
5623 Static_Predicate_Present := Ritem;
5624 when others =>
5625 null;
5626 end case;
ebbab42d 5627 end if;
5628
fb7f2fc4 5629 -- Acquire arguments
5630
9dc88aea 5631 Arg1 := First (Pragma_Argument_Associations (Ritem));
5632 Arg2 := Next (Arg1);
5633
5634 Arg1 := Get_Pragma_Arg (Arg1);
5635 Arg2 := Get_Pragma_Arg (Arg2);
5636
ffc2539e 5637 -- See if this predicate pragma is for the current type or for
5638 -- its full view. A predicate on a private completion is placed
5639 -- on the partial view beause this is the visible entity that
5640 -- is frozen.
9dc88aea 5641
13dc58a7 5642 if Entity (Arg1) = Typ
5643 or else Full_View (Entity (Arg1)) = Typ
5644 then
9dc88aea 5645 -- We have a match, this entry is for our subtype
5646
fb7f2fc4 5647 -- We need to replace any occurrences of the name of the
5648 -- type with references to the object.
490beba6 5649
2072eaa9 5650 Replace_Type_References (Arg2, Chars (Typ));
9dc88aea 5651
fb7f2fc4 5652 -- If this predicate comes from an aspect, find the aspect
5653 -- specification, and replace the saved expression because
5654 -- we need the subtype references replaced for the calls to
5655 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
5656 -- and Check_Aspect_At_End_Of_Declarations.
5657
5658 if From_Aspect_Specification (Ritem) then
5659 declare
5660 Aitem : Node_Id;
5661
5662 begin
5663 -- Loop to find corresponding aspect, note that this
5664 -- must be present given the pragma is marked delayed.
5665
5666 Aitem := Next_Rep_Item (Ritem);
5667 loop
5668 if Nkind (Aitem) = N_Aspect_Specification
5669 and then Aspect_Rep_Item (Aitem) = Ritem
5670 then
5671 Set_Entity
5672 (Identifier (Aitem), New_Copy_Tree (Arg2));
5673 exit;
5674 end if;
5675
5676 Aitem := Next_Rep_Item (Aitem);
5677 end loop;
5678 end;
5679 end if;
5680
5681 -- Now we can add the expression
9dc88aea 5682
5683 if No (Expr) then
5684 Expr := Relocate_Node (Arg2);
5685
5686 -- There already was a predicate, so add to it
5687
5688 else
5689 Expr :=
5690 Make_And_Then (Loc,
5691 Left_Opnd => Relocate_Node (Expr),
5692 Right_Opnd => Relocate_Node (Arg2));
5693 end if;
5694 end if;
5695 end if;
5696
5697 Next_Rep_Item (Ritem);
5698 end loop;
5699 end Add_Predicates;
5700
d97beb2f 5701 -- Start of processing for Build_Predicate_Function
9dc88aea 5702
d97beb2f 5703 begin
5704 -- Initialize for construction of statement list
5705
ebbab42d 5706 Expr := Empty;
d97beb2f 5707
5708 -- Return if already built or if type does not have predicates
5709
5710 if not Has_Predicates (Typ)
5711 or else Present (Predicate_Function (Typ))
5712 then
5713 return;
5714 end if;
5715
5716 -- Add Predicates for the current type
5717
5718 Add_Predicates;
5719
5720 -- Add predicates for ancestor if present
5721
5722 declare
5723 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
5724 begin
5725 if Present (Atyp) then
5726 Add_Call (Atyp);
5727 end if;
5728 end;
5729
5730 -- If we have predicates, build the function
5731
5732 if Present (Expr) then
5733
d97beb2f 5734 -- Build function declaration
5735
d97beb2f 5736 SId :=
5737 Make_Defining_Identifier (Loc,
5738 Chars => New_External_Name (Chars (Typ), "Predicate"));
5739 Set_Has_Predicates (SId);
9ea61fdd 5740 Set_Ekind (SId, E_Function);
d97beb2f 5741 Set_Predicate_Function (Typ, SId);
9dc88aea 5742
9f269bd8 5743 -- The predicate function is shared between views of a type.
5744
30fe3fdc 5745 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
9f269bd8 5746 Set_Predicate_Function (Full_View (Typ), SId);
5747 end if;
5748
d97beb2f 5749 Spec :=
5750 Make_Function_Specification (Loc,
5751 Defining_Unit_Name => SId,
5752 Parameter_Specifications => New_List (
5753 Make_Parameter_Specification (Loc,
fb7f2fc4 5754 Defining_Identifier => Object_Entity,
d97beb2f 5755 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
5756 Result_Definition =>
5757 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 5758
490beba6 5759 FDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9dc88aea 5760
d97beb2f 5761 -- Build function body
5762
5763 SId :=
5764 Make_Defining_Identifier (Loc,
5765 Chars => New_External_Name (Chars (Typ), "Predicate"));
5766
5767 Spec :=
5768 Make_Function_Specification (Loc,
5769 Defining_Unit_Name => SId,
5770 Parameter_Specifications => New_List (
5771 Make_Parameter_Specification (Loc,
5772 Defining_Identifier =>
55868293 5773 Make_Defining_Identifier (Loc, Object_Name),
d97beb2f 5774 Parameter_Type =>
5775 New_Occurrence_Of (Typ, Loc))),
5776 Result_Definition =>
5777 New_Occurrence_Of (Standard_Boolean, Loc));
5778
5779 FBody :=
5780 Make_Subprogram_Body (Loc,
5781 Specification => Spec,
5782 Declarations => Empty_List,
5783 Handled_Statement_Sequence =>
5784 Make_Handled_Sequence_Of_Statements (Loc,
5785 Statements => New_List (
5786 Make_Simple_Return_Statement (Loc,
5787 Expression => Expr))));
490beba6 5788
5789 -- Insert declaration before freeze node and body after
5790
5791 Insert_Before_And_Analyze (N, FDecl);
5792 Insert_After_And_Analyze (N, FBody);
5793
5794 -- Deal with static predicate case
5795
5796 if Ekind_In (Typ, E_Enumeration_Subtype,
5797 E_Modular_Integer_Subtype,
5798 E_Signed_Integer_Subtype)
5799 and then Is_Static_Subtype (Typ)
ebbab42d 5800 and then not Dynamic_Predicate_Present
490beba6 5801 then
5802 Build_Static_Predicate (Typ, Expr, Object_Name);
ebbab42d 5803
5804 if Present (Static_Predicate_Present)
5805 and No (Static_Predicate (Typ))
5806 then
5807 Error_Msg_F
5808 ("expression does not have required form for "
5809 & "static predicate",
5810 Next (First (Pragma_Argument_Associations
5811 (Static_Predicate_Present))));
5812 end if;
490beba6 5813 end if;
d97beb2f 5814 end if;
5815 end Build_Predicate_Function;
5816
5817 ----------------------------
5818 -- Build_Static_Predicate --
5819 ----------------------------
5820
5821 procedure Build_Static_Predicate
5822 (Typ : Entity_Id;
5823 Expr : Node_Id;
5824 Nam : Name_Id)
5825 is
5826 Loc : constant Source_Ptr := Sloc (Expr);
5827
5828 Non_Static : exception;
5829 -- Raised if something non-static is found
5830
d7c2851f 5831 Btyp : constant Entity_Id := Base_Type (Typ);
5832
5833 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
5834 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
5835 -- Low bound and high bound value of base type of Typ
5836
5837 TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
5838 THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
5839 -- Low bound and high bound values of static subtype Typ
d97beb2f 5840
5841 type REnt is record
9dc88aea 5842 Lo, Hi : Uint;
d97beb2f 5843 end record;
5844 -- One entry in a Rlist value, a single REnt (range entry) value
5845 -- denotes one range from Lo to Hi. To represent a single value
5846 -- range Lo = Hi = value.
5847
5848 type RList is array (Nat range <>) of REnt;
5849 -- A list of ranges. The ranges are sorted in increasing order,
5850 -- and are disjoint (there is a gap of at least one value between
d7c2851f 5851 -- each range in the table). A value is in the set of ranges in
5852 -- Rlist if it lies within one of these ranges
d97beb2f 5853
d7c2851f 5854 False_Range : constant RList :=
5855 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
5856 -- An empty set of ranges represents a range list that can never be
5857 -- satisfied, since there are no ranges in which the value could lie,
5858 -- so it does not lie in any of them. False_Range is a canonical value
5859 -- for this empty set, but general processing should test for an Rlist
5860 -- with length zero (see Is_False predicate), since other null ranges
5861 -- may appear which must be treated as False.
d97beb2f 5862
d7c2851f 5863 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
5864 -- Range representing True, value must be in the base range
d97beb2f 5865
5866 function "and" (Left, Right : RList) return RList;
5867 -- And's together two range lists, returning a range list. This is
5868 -- a set intersection operation.
5869
5870 function "or" (Left, Right : RList) return RList;
5871 -- Or's together two range lists, returning a range list. This is a
5872 -- set union operation.
5873
5874 function "not" (Right : RList) return RList;
5875 -- Returns complement of a given range list, i.e. a range list
5876 -- representing all the values in TLo .. THi that are not in the
5877 -- input operand Right.
5878
5879 function Build_Val (V : Uint) return Node_Id;
5880 -- Return an analyzed N_Identifier node referencing this value, suitable
d7c2851f 5881 -- for use as an entry in the Static_Predicate list. This node is typed
5882 -- with the base type.
d97beb2f 5883
5884 function Build_Range (Lo, Hi : Uint) return Node_Id;
5885 -- Return an analyzed N_Range node referencing this range, suitable
d7c2851f 5886 -- for use as an entry in the Static_Predicate list. This node is typed
5887 -- with the base type.
d97beb2f 5888
5889 function Get_RList (Exp : Node_Id) return RList;
5890 -- This is a recursive routine that converts the given expression into
5891 -- a list of ranges, suitable for use in building the static predicate.
5892
d7c2851f 5893 function Is_False (R : RList) return Boolean;
5894 pragma Inline (Is_False);
5895 -- Returns True if the given range list is empty, and thus represents
6fb3c314 5896 -- a False list of ranges that can never be satisfied.
d7c2851f 5897
5898 function Is_True (R : RList) return Boolean;
5899 -- Returns True if R trivially represents the True predicate by having
5900 -- a single range from BLo to BHi.
5901
d97beb2f 5902 function Is_Type_Ref (N : Node_Id) return Boolean;
5903 pragma Inline (Is_Type_Ref);
5904 -- Returns if True if N is a reference to the type for the predicate in
5905 -- the expression (i.e. if it is an identifier whose Chars field matches
5906 -- the Nam given in the call).
5907
5908 function Lo_Val (N : Node_Id) return Uint;
5909 -- Given static expression or static range from a Static_Predicate list,
5910 -- gets expression value or low bound of range.
5911
5912 function Hi_Val (N : Node_Id) return Uint;
5913 -- Given static expression or static range from a Static_Predicate list,
5914 -- gets expression value of high bound of range.
5915
5916 function Membership_Entry (N : Node_Id) return RList;
5917 -- Given a single membership entry (range, value, or subtype), returns
5918 -- the corresponding range list. Raises Static_Error if not static.
5919
5920 function Membership_Entries (N : Node_Id) return RList;
5921 -- Given an element on an alternatives list of a membership operation,
5922 -- returns the range list corresponding to this entry and all following
5923 -- entries (i.e. returns the "or" of this list of values).
5924
5925 function Stat_Pred (Typ : Entity_Id) return RList;
5926 -- Given a type, if it has a static predicate, then return the predicate
5927 -- as a range list, otherwise raise Non_Static.
5928
5929 -----------
5930 -- "and" --
5931 -----------
5932
5933 function "and" (Left, Right : RList) return RList is
5934 FEnt : REnt;
5935 -- First range of result
5936
5937 SLeft : Nat := Left'First;
5938 -- Start of rest of left entries
5939
5940 SRight : Nat := Right'First;
5941 -- Start of rest of right entries
9dc88aea 5942
d97beb2f 5943 begin
5944 -- If either range is True, return the other
9dc88aea 5945
d7c2851f 5946 if Is_True (Left) then
d97beb2f 5947 return Right;
d7c2851f 5948 elsif Is_True (Right) then
d97beb2f 5949 return Left;
5950 end if;
9dc88aea 5951
d97beb2f 5952 -- If either range is False, return False
9dc88aea 5953
d7c2851f 5954 if Is_False (Left) or else Is_False (Right) then
d97beb2f 5955 return False_Range;
5956 end if;
9dc88aea 5957
d97beb2f 5958 -- Loop to remove entries at start that are disjoint, and thus
5959 -- just get discarded from the result entirely.
9dc88aea 5960
d97beb2f 5961 loop
5962 -- If no operands left in either operand, result is false
9dc88aea 5963
d97beb2f 5964 if SLeft > Left'Last or else SRight > Right'Last then
5965 return False_Range;
9dc88aea 5966
d97beb2f 5967 -- Discard first left operand entry if disjoint with right
9dc88aea 5968
d97beb2f 5969 elsif Left (SLeft).Hi < Right (SRight).Lo then
5970 SLeft := SLeft + 1;
9dc88aea 5971
d97beb2f 5972 -- Discard first right operand entry if disjoint with left
9dc88aea 5973
d97beb2f 5974 elsif Right (SRight).Hi < Left (SLeft).Lo then
5975 SRight := SRight + 1;
9dc88aea 5976
d97beb2f 5977 -- Otherwise we have an overlapping entry
9dc88aea 5978
d97beb2f 5979 else
5980 exit;
5981 end if;
5982 end loop;
9dc88aea 5983
d97beb2f 5984 -- Now we have two non-null operands, and first entries overlap.
5985 -- The first entry in the result will be the overlapping part of
5986 -- these two entries.
9dc88aea 5987
d97beb2f 5988 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
5989 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
9dc88aea 5990
d97beb2f 5991 -- Now we can remove the entry that ended at a lower value, since
5992 -- its contribution is entirely contained in Fent.
5993
5994 if Left (SLeft).Hi <= Right (SRight).Hi then
5995 SLeft := SLeft + 1;
5996 else
5997 SRight := SRight + 1;
5998 end if;
5999
d7c2851f 6000 -- Compute result by concatenating this first entry with the "and"
6001 -- of the remaining parts of the left and right operands. Note that
6002 -- if either of these is empty, "and" will yield empty, so that we
6003 -- will end up with just Fent, which is what we want in that case.
d97beb2f 6004
d7c2851f 6005 return
6006 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
d97beb2f 6007 end "and";
6008
6009 -----------
6010 -- "not" --
6011 -----------
6012
6013 function "not" (Right : RList) return RList is
6014 begin
6015 -- Return True if False range
6016
d7c2851f 6017 if Is_False (Right) then
d97beb2f 6018 return True_Range;
6019 end if;
6020
6021 -- Return False if True range
6022
d7c2851f 6023 if Is_True (Right) then
d97beb2f 6024 return False_Range;
6025 end if;
6026
6027 -- Here if not trivial case
6028
6029 declare
6030 Result : RList (1 .. Right'Length + 1);
6031 -- May need one more entry for gap at beginning and end
6032
6033 Count : Nat := 0;
6034 -- Number of entries stored in Result
6035
6036 begin
6037 -- Gap at start
6038
6039 if Right (Right'First).Lo > TLo then
6040 Count := Count + 1;
6041 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
6042 end if;
6043
6044 -- Gaps between ranges
6045
6046 for J in Right'First .. Right'Last - 1 loop
6047 Count := Count + 1;
6048 Result (Count) :=
6049 REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6050 end loop;
6051
6052 -- Gap at end
6053
6054 if Right (Right'Last).Hi < THi then
6055 Count := Count + 1;
6056 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
6057 end if;
6058
6059 return Result (1 .. Count);
6060 end;
6061 end "not";
6062
6063 ----------
6064 -- "or" --
6065 ----------
6066
6067 function "or" (Left, Right : RList) return RList is
d7c2851f 6068 FEnt : REnt;
6069 -- First range of result
6070
6071 SLeft : Nat := Left'First;
6072 -- Start of rest of left entries
6073
6074 SRight : Nat := Right'First;
6075 -- Start of rest of right entries
6076
d97beb2f 6077 begin
6078 -- If either range is True, return True
6079
d7c2851f 6080 if Is_True (Left) or else Is_True (Right) then
d97beb2f 6081 return True_Range;
6082 end if;
6083
d7c2851f 6084 -- If either range is False (empty), return the other
9dc88aea 6085
d7c2851f 6086 if Is_False (Left) then
d97beb2f 6087 return Right;
d7c2851f 6088 elsif Is_False (Right) then
d97beb2f 6089 return Left;
6090 end if;
6091
d7c2851f 6092 -- Initialize result first entry from left or right operand
6093 -- depending on which starts with the lower range.
d97beb2f 6094
d7c2851f 6095 if Left (SLeft).Lo < Right (SRight).Lo then
6096 FEnt := Left (SLeft);
6097 SLeft := SLeft + 1;
6098 else
6099 FEnt := Right (SRight);
6100 SRight := SRight + 1;
d97beb2f 6101 end if;
6102
d7c2851f 6103 -- This loop eats ranges from left and right operands that
6104 -- are contiguous with the first range we are gathering.
9dc88aea 6105
d7c2851f 6106 loop
6107 -- Eat first entry in left operand if contiguous or
6108 -- overlapped by gathered first operand of result.
d97beb2f 6109
d7c2851f 6110 if SLeft <= Left'Last
6111 and then Left (SLeft).Lo <= FEnt.Hi + 1
6112 then
6113 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
d97beb2f 6114 SLeft := SLeft + 1;
d97beb2f 6115
6116 -- Eat first entry in right operand if contiguous or
6117 -- overlapped by gathered right operand of result.
6118
d7c2851f 6119 elsif SRight <= Right'Last
6120 and then Right (SRight).Lo <= FEnt.Hi + 1
6121 then
6122 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
6123 SRight := SRight + 1;
d97beb2f 6124
6125 -- All done if no more entries to eat!
6126
d97beb2f 6127 else
d7c2851f 6128 exit;
d97beb2f 6129 end if;
d7c2851f 6130 end loop;
6131
6132 -- Obtain result as the first entry we just computed, concatenated
6133 -- to the "or" of the remaining results (if one operand is empty,
6134 -- this will just concatenate with the other
6135
6136 return
6137 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
d97beb2f 6138 end "or";
9dc88aea 6139
d97beb2f 6140 -----------------
6141 -- Build_Range --
6142 -----------------
9dc88aea 6143
d97beb2f 6144 function Build_Range (Lo, Hi : Uint) return Node_Id is
6145 Result : Node_Id;
6146 begin
6147 if Lo = Hi then
6148 return Build_Val (Hi);
6149 else
6150 Result :=
6151 Make_Range (Loc,
6152 Low_Bound => Build_Val (Lo),
6153 High_Bound => Build_Val (Hi));
d7c2851f 6154 Set_Etype (Result, Btyp);
d97beb2f 6155 Set_Analyzed (Result);
6156 return Result;
6157 end if;
6158 end Build_Range;
9dc88aea 6159
d97beb2f 6160 ---------------
6161 -- Build_Val --
6162 ---------------
9dc88aea 6163
d97beb2f 6164 function Build_Val (V : Uint) return Node_Id is
6165 Result : Node_Id;
6166
6167 begin
6168 if Is_Enumeration_Type (Typ) then
6169 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
6170 else
55868293 6171 Result := Make_Integer_Literal (Loc, V);
d97beb2f 6172 end if;
9dc88aea 6173
d7c2851f 6174 Set_Etype (Result, Btyp);
d97beb2f 6175 Set_Is_Static_Expression (Result);
6176 Set_Analyzed (Result);
6177 return Result;
6178 end Build_Val;
9dc88aea 6179
d97beb2f 6180 ---------------
6181 -- Get_RList --
6182 ---------------
9dc88aea 6183
d97beb2f 6184 function Get_RList (Exp : Node_Id) return RList is
6185 Op : Node_Kind;
6186 Val : Uint;
9dc88aea 6187
d97beb2f 6188 begin
6189 -- Static expression can only be true or false
6190
6191 if Is_OK_Static_Expression (Exp) then
6192
d7c2851f 6193 -- For False
d97beb2f 6194
6195 if Expr_Value (Exp) = 0 then
6196 return False_Range;
d97beb2f 6197 else
d7c2851f 6198 return True_Range;
d97beb2f 6199 end if;
6200 end if;
6201
6202 -- Otherwise test node type
6203
6204 Op := Nkind (Exp);
6205
6206 case Op is
6207
6208 -- And
6209
6210 when N_Op_And | N_And_Then =>
6211 return Get_RList (Left_Opnd (Exp))
6212 and
6213 Get_RList (Right_Opnd (Exp));
9dc88aea 6214
d97beb2f 6215 -- Or
6216
6217 when N_Op_Or | N_Or_Else =>
6218 return Get_RList (Left_Opnd (Exp))
6219 or
6220 Get_RList (Right_Opnd (Exp));
6221
6222 -- Not
6223
6224 when N_Op_Not =>
6225 return not Get_RList (Right_Opnd (Exp));
6226
6227 -- Comparisons of type with static value
6228
6229 when N_Op_Compare =>
b9e61b2a 6230
d97beb2f 6231 -- Type is left operand
6232
6233 if Is_Type_Ref (Left_Opnd (Exp))
6234 and then Is_OK_Static_Expression (Right_Opnd (Exp))
6235 then
6236 Val := Expr_Value (Right_Opnd (Exp));
6237
6238 -- Typ is right operand
6239
6240 elsif Is_Type_Ref (Right_Opnd (Exp))
6241 and then Is_OK_Static_Expression (Left_Opnd (Exp))
6242 then
6243 Val := Expr_Value (Left_Opnd (Exp));
6244
6245 -- Invert sense of comparison
6246
6247 case Op is
6248 when N_Op_Gt => Op := N_Op_Lt;
6249 when N_Op_Lt => Op := N_Op_Gt;
6250 when N_Op_Ge => Op := N_Op_Le;
6251 when N_Op_Le => Op := N_Op_Ge;
6252 when others => null;
6253 end case;
6254
6255 -- Other cases are non-static
9dc88aea 6256
6257 else
d97beb2f 6258 raise Non_Static;
9dc88aea 6259 end if;
9dc88aea 6260
d97beb2f 6261 -- Construct range according to comparison operation
9dc88aea 6262
d97beb2f 6263 case Op is
6264 when N_Op_Eq =>
6265 return RList'(1 => REnt'(Val, Val));
9dc88aea 6266
d97beb2f 6267 when N_Op_Ge =>
d7c2851f 6268 return RList'(1 => REnt'(Val, BHi));
9dc88aea 6269
d97beb2f 6270 when N_Op_Gt =>
d7c2851f 6271 return RList'(1 => REnt'(Val + 1, BHi));
9dc88aea 6272
d97beb2f 6273 when N_Op_Le =>
d7c2851f 6274 return RList'(1 => REnt'(BLo, Val));
9dc88aea 6275
d97beb2f 6276 when N_Op_Lt =>
d7c2851f 6277 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 6278
d97beb2f 6279 when N_Op_Ne =>
d7c2851f 6280 return RList'(REnt'(BLo, Val - 1),
6281 REnt'(Val + 1, BHi));
9dc88aea 6282
d97beb2f 6283 when others =>
6284 raise Program_Error;
6285 end case;
9dc88aea 6286
d97beb2f 6287 -- Membership (IN)
9dc88aea 6288
d97beb2f 6289 when N_In =>
6290 if not Is_Type_Ref (Left_Opnd (Exp)) then
6291 raise Non_Static;
6292 end if;
9dc88aea 6293
d97beb2f 6294 if Present (Right_Opnd (Exp)) then
6295 return Membership_Entry (Right_Opnd (Exp));
6296 else
6297 return Membership_Entries (First (Alternatives (Exp)));
6298 end if;
9dc88aea 6299
d97beb2f 6300 -- Negative membership (NOT IN)
9dc88aea 6301
d97beb2f 6302 when N_Not_In =>
6303 if not Is_Type_Ref (Left_Opnd (Exp)) then
6304 raise Non_Static;
6305 end if;
6306
6307 if Present (Right_Opnd (Exp)) then
6308 return not Membership_Entry (Right_Opnd (Exp));
6309 else
6310 return not Membership_Entries (First (Alternatives (Exp)));
6311 end if;
6312
6313 -- Function call, may be call to static predicate
6314
6315 when N_Function_Call =>
6316 if Is_Entity_Name (Name (Exp)) then
6317 declare
6318 Ent : constant Entity_Id := Entity (Name (Exp));
6319 begin
6320 if Has_Predicates (Ent) then
6321 return Stat_Pred (Etype (First_Formal (Ent)));
9dc88aea 6322 end if;
d97beb2f 6323 end;
6324 end if;
9dc88aea 6325
d97beb2f 6326 -- Other function call cases are non-static
9dc88aea 6327
d97beb2f 6328 raise Non_Static;
9dc88aea 6329
d97beb2f 6330 -- Qualified expression, dig out the expression
9dc88aea 6331
d97beb2f 6332 when N_Qualified_Expression =>
6333 return Get_RList (Expression (Exp));
9dc88aea 6334
d7c2851f 6335 -- Xor operator
6336
6337 when N_Op_Xor =>
6338 return (Get_RList (Left_Opnd (Exp))
6339 and not Get_RList (Right_Opnd (Exp)))
6340 or (Get_RList (Right_Opnd (Exp))
6341 and not Get_RList (Left_Opnd (Exp)));
6342
d97beb2f 6343 -- Any other node type is non-static
9dc88aea 6344
d97beb2f 6345 when others =>
6346 raise Non_Static;
6347 end case;
6348 end Get_RList;
9dc88aea 6349
d97beb2f 6350 ------------
6351 -- Hi_Val --
6352 ------------
9dc88aea 6353
d97beb2f 6354 function Hi_Val (N : Node_Id) return Uint is
9dc88aea 6355 begin
d97beb2f 6356 if Is_Static_Expression (N) then
6357 return Expr_Value (N);
6358 else
6359 pragma Assert (Nkind (N) = N_Range);
6360 return Expr_Value (High_Bound (N));
9dc88aea 6361 end if;
d97beb2f 6362 end Hi_Val;
9dc88aea 6363
d7c2851f 6364 --------------
6365 -- Is_False --
6366 --------------
6367
6368 function Is_False (R : RList) return Boolean is
6369 begin
6370 return R'Length = 0;
6371 end Is_False;
6372
6373 -------------
6374 -- Is_True --
6375 -------------
6376
6377 function Is_True (R : RList) return Boolean is
6378 begin
6379 return R'Length = 1
6380 and then R (R'First).Lo = BLo
6381 and then R (R'First).Hi = BHi;
6382 end Is_True;
6383
d97beb2f 6384 -----------------
6385 -- Is_Type_Ref --
6386 -----------------
9dc88aea 6387
d97beb2f 6388 function Is_Type_Ref (N : Node_Id) return Boolean is
6389 begin
6390 return Nkind (N) = N_Identifier and then Chars (N) = Nam;
6391 end Is_Type_Ref;
9dc88aea 6392
d97beb2f 6393 ------------
6394 -- Lo_Val --
6395 ------------
9dc88aea 6396
d97beb2f 6397 function Lo_Val (N : Node_Id) return Uint is
6398 begin
6399 if Is_Static_Expression (N) then
6400 return Expr_Value (N);
6401 else
6402 pragma Assert (Nkind (N) = N_Range);
6403 return Expr_Value (Low_Bound (N));
6404 end if;
6405 end Lo_Val;
9dc88aea 6406
d97beb2f 6407 ------------------------
6408 -- Membership_Entries --
6409 ------------------------
9dc88aea 6410
d97beb2f 6411 function Membership_Entries (N : Node_Id) return RList is
6412 begin
6413 if No (Next (N)) then
6414 return Membership_Entry (N);
9dc88aea 6415 else
d97beb2f 6416 return Membership_Entry (N) or Membership_Entries (Next (N));
9dc88aea 6417 end if;
d97beb2f 6418 end Membership_Entries;
9dc88aea 6419
d97beb2f 6420 ----------------------
6421 -- Membership_Entry --
6422 ----------------------
9dc88aea 6423
d97beb2f 6424 function Membership_Entry (N : Node_Id) return RList is
6425 Val : Uint;
6426 SLo : Uint;
6427 SHi : Uint;
9dc88aea 6428
d97beb2f 6429 begin
6430 -- Range case
6431
6432 if Nkind (N) = N_Range then
6433 if not Is_Static_Expression (Low_Bound (N))
6434 or else
6435 not Is_Static_Expression (High_Bound (N))
6436 then
6437 raise Non_Static;
6438 else
6439 SLo := Expr_Value (Low_Bound (N));
6440 SHi := Expr_Value (High_Bound (N));
6441 return RList'(1 => REnt'(SLo, SHi));
9dc88aea 6442 end if;
6443
d97beb2f 6444 -- Static expression case
9dc88aea 6445
d97beb2f 6446 elsif Is_Static_Expression (N) then
6447 Val := Expr_Value (N);
6448 return RList'(1 => REnt'(Val, Val));
9dc88aea 6449
d97beb2f 6450 -- Identifier (other than static expression) case
9dc88aea 6451
d97beb2f 6452 else pragma Assert (Nkind (N) = N_Identifier);
9dc88aea 6453
d97beb2f 6454 -- Type case
55e8372b 6455
d97beb2f 6456 if Is_Type (Entity (N)) then
55e8372b 6457
d97beb2f 6458 -- If type has predicates, process them
55e8372b 6459
d97beb2f 6460 if Has_Predicates (Entity (N)) then
6461 return Stat_Pred (Entity (N));
55e8372b 6462
d97beb2f 6463 -- For static subtype without predicates, get range
55e8372b 6464
d97beb2f 6465 elsif Is_Static_Subtype (Entity (N)) then
6466 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
6467 SHi := Expr_Value (Type_High_Bound (Entity (N)));
6468 return RList'(1 => REnt'(SLo, SHi));
6469
6470 -- Any other type makes us non-static
55e8372b 6471
d97beb2f 6472 else
6473 raise Non_Static;
6474 end if;
55e8372b 6475
d97beb2f 6476 -- Any other kind of identifier in predicate (e.g. a non-static
6477 -- expression value) means this is not a static predicate.
55e8372b 6478
55e8372b 6479 else
d97beb2f 6480 raise Non_Static;
55e8372b 6481 end if;
d97beb2f 6482 end if;
6483 end Membership_Entry;
9dc88aea 6484
d97beb2f 6485 ---------------
6486 -- Stat_Pred --
6487 ---------------
9dc88aea 6488
d97beb2f 6489 function Stat_Pred (Typ : Entity_Id) return RList is
6490 begin
6491 -- Not static if type does not have static predicates
9dc88aea 6492
b9e61b2a 6493 if not Has_Predicates (Typ) or else No (Static_Predicate (Typ)) then
d97beb2f 6494 raise Non_Static;
6495 end if;
9dc88aea 6496
d97beb2f 6497 -- Otherwise we convert the predicate list to a range list
9dc88aea 6498
d97beb2f 6499 declare
6500 Result : RList (1 .. List_Length (Static_Predicate (Typ)));
6501 P : Node_Id;
6502
6503 begin
6504 P := First (Static_Predicate (Typ));
6505 for J in Result'Range loop
6506 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
6507 Next (P);
6508 end loop;
6509
6510 return Result;
6511 end;
6512 end Stat_Pred;
6513
6514 -- Start of processing for Build_Static_Predicate
6515
6516 begin
d97beb2f 6517 -- Now analyze the expression to see if it is a static predicate
9dc88aea 6518
6519 declare
d97beb2f 6520 Ranges : constant RList := Get_RList (Expr);
6521 -- Range list from expression if it is static
6522
6523 Plist : List_Id;
6524
9dc88aea 6525 begin
d97beb2f 6526 -- Convert range list into a form for the static predicate. In the
6527 -- Ranges array, we just have raw ranges, these must be converted
6528 -- to properly typed and analyzed static expressions or range nodes.
9dc88aea 6529
d7c2851f 6530 -- Note: here we limit ranges to the ranges of the subtype, so that
6531 -- a predicate is always false for values outside the subtype. That
6532 -- seems fine, such values are invalid anyway, and considering them
6533 -- to fail the predicate seems allowed and friendly, and furthermore
6534 -- simplifies processing for case statements and loops.
6535
d97beb2f 6536 Plist := New_List;
9dc88aea 6537
d97beb2f 6538 for J in Ranges'Range loop
6539 declare
d7c2851f 6540 Lo : Uint := Ranges (J).Lo;
6541 Hi : Uint := Ranges (J).Hi;
9dc88aea 6542
d97beb2f 6543 begin
d7c2851f 6544 -- Ignore completely out of range entry
6545
6546 if Hi < TLo or else Lo > THi then
6547 null;
6548
6549 -- Otherwise process entry
6550
d97beb2f 6551 else
d7c2851f 6552 -- Adjust out of range value to subtype range
6553
6554 if Lo < TLo then
6555 Lo := TLo;
6556 end if;
6557
6558 if Hi > THi then
6559 Hi := THi;
6560 end if;
6561
6562 -- Convert range into required form
6563
6564 if Lo = Hi then
6565 Append_To (Plist, Build_Val (Lo));
6566 else
6567 Append_To (Plist, Build_Range (Lo, Hi));
6568 end if;
d97beb2f 6569 end if;
6570 end;
6571 end loop;
9dc88aea 6572
d97beb2f 6573 -- Processing was successful and all entries were static, so now we
6574 -- can store the result as the predicate list.
9dc88aea 6575
d97beb2f 6576 Set_Static_Predicate (Typ, Plist);
9dc88aea 6577
d97beb2f 6578 -- The processing for static predicates put the expression into
6579 -- canonical form as a series of ranges. It also eliminated
6580 -- duplicates and collapsed and combined ranges. We might as well
6581 -- replace the alternatives list of the right operand of the
6582 -- membership test with the static predicate list, which will
6583 -- usually be more efficient.
9dc88aea 6584
d97beb2f 6585 declare
6586 New_Alts : constant List_Id := New_List;
6587 Old_Node : Node_Id;
6588 New_Node : Node_Id;
9dc88aea 6589
d97beb2f 6590 begin
6591 Old_Node := First (Plist);
6592 while Present (Old_Node) loop
6593 New_Node := New_Copy (Old_Node);
9dc88aea 6594
d97beb2f 6595 if Nkind (New_Node) = N_Range then
6596 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
6597 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
6598 end if;
9dc88aea 6599
d97beb2f 6600 Append_To (New_Alts, New_Node);
6601 Next (Old_Node);
6602 end loop;
9dc88aea 6603
d7c2851f 6604 -- If empty list, replace by False
9dc88aea 6605
d97beb2f 6606 if Is_Empty_List (New_Alts) then
d7c2851f 6607 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
d97beb2f 6608
d7c2851f 6609 -- Else replace by set membership test
d97beb2f 6610
6611 else
6612 Rewrite (Expr,
6613 Make_In (Loc,
6614 Left_Opnd => Make_Identifier (Loc, Nam),
6615 Right_Opnd => Empty,
6616 Alternatives => New_Alts));
490beba6 6617
6618 -- Resolve new expression in function context
6619
6620 Install_Formals (Predicate_Function (Typ));
6621 Push_Scope (Predicate_Function (Typ));
6622 Analyze_And_Resolve (Expr, Standard_Boolean);
6623 Pop_Scope;
d97beb2f 6624 end if;
6625 end;
6626 end;
6627
6628 -- If non-static, return doing nothing
6629
6630 exception
6631 when Non_Static =>
6632 return;
6633 end Build_Static_Predicate;
9dc88aea 6634
7d20685d 6635 -----------------------------------------
6636 -- Check_Aspect_At_End_Of_Declarations --
6637 -----------------------------------------
6638
6639 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
6640 Ent : constant Entity_Id := Entity (ASN);
6641 Ident : constant Node_Id := Identifier (ASN);
89f1e35c 6642 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
7d20685d 6643
6644 End_Decl_Expr : constant Node_Id := Entity (Ident);
6645 -- Expression to be analyzed at end of declarations
6646
89f1e35c 6647 Freeze_Expr : constant Node_Id := Expression (ASN);
6648 -- Expression from call to Check_Aspect_At_Freeze_Point
6649
7d20685d 6650 T : constant Entity_Id := Etype (Freeze_Expr);
6651 -- Type required for preanalyze call
6652
7d20685d 6653 Err : Boolean;
6654 -- Set False if error
6655
6656 -- On entry to this procedure, Entity (Ident) contains a copy of the
6657 -- original expression from the aspect, saved for this purpose, and
6658 -- but Expression (Ident) is a preanalyzed copy of the expression,
6659 -- preanalyzed just after the freeze point.
6660
84ed7523 6661 procedure Check_Overloaded_Name;
6662 -- For aspects whose expression is simply a name, this routine checks if
6663 -- the name is overloaded or not. If so, it verifies there is an
6664 -- interpretation that matches the entity obtained at the freeze point,
6665 -- otherwise the compiler complains.
89f1e35c 6666
84ed7523 6667 ---------------------------
6668 -- Check_Overloaded_Name --
6669 ---------------------------
2b184b2f 6670
84ed7523 6671 procedure Check_Overloaded_Name is
6672 begin
2b184b2f 6673 if not Is_Overloaded (End_Decl_Expr) then
6674 Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
6675
6676 else
6677 Err := True;
6678
6679 declare
6680 Index : Interp_Index;
6681 It : Interp;
6682
6683 begin
6684 Get_First_Interp (End_Decl_Expr, Index, It);
6685 while Present (It.Typ) loop
6686 if It.Nam = Entity (Freeze_Expr) then
6687 Err := False;
6688 exit;
6689 end if;
6690
6691 Get_Next_Interp (Index, It);
6692 end loop;
6693 end;
6694 end if;
84ed7523 6695 end Check_Overloaded_Name;
6696
6697 -- Start of processing for Check_Aspect_At_End_Of_Declarations
6698
6699 begin
6700 -- Case of aspects Dimension, Dimension_System and Synchronization
6701
6702 if A_Id = Aspect_Synchronization then
6703 return;
6704
6705 -- Case of stream attributes, just have to compare entities. However,
6706 -- the expression is just a name (possibly overloaded), and there may
6707 -- be stream operations declared for unrelated types, so we just need
6708 -- to verify that one of these interpretations is the one available at
6709 -- at the freeze point.
6710
6711 elsif A_Id = Aspect_Input or else
6712 A_Id = Aspect_Output or else
6713 A_Id = Aspect_Read or else
6714 A_Id = Aspect_Write
6715 then
6716 Analyze (End_Decl_Expr);
6717 Check_Overloaded_Name;
7d20685d 6718
81b424ac 6719 elsif A_Id = Aspect_Variable_Indexing or else
89cc7147 6720 A_Id = Aspect_Constant_Indexing or else
6721 A_Id = Aspect_Default_Iterator or else
6722 A_Id = Aspect_Iterator_Element
81b424ac 6723 then
aabafdc2 6724 -- Make type unfrozen before analysis, to prevent spurious errors
6725 -- about late attributes.
59f3e675 6726
6727 Set_Is_Frozen (Ent, False);
81b424ac 6728 Analyze (End_Decl_Expr);
59f3e675 6729 Set_Is_Frozen (Ent, True);
89cc7147 6730
6731 -- If the end of declarations comes before any other freeze
6732 -- point, the Freeze_Expr is not analyzed: no check needed.
6733
6b34a333 6734 if Analyzed (Freeze_Expr) and then not In_Instance then
84ed7523 6735 Check_Overloaded_Name;
84ed7523 6736 else
6737 Err := False;
6738 end if;
81b424ac 6739
7d20685d 6740 -- All other cases
6741
6742 else
d67a83fe 6743 -- In a generic context the aspect expressions have not been
4055a532 6744 -- preanalyzed, so do it now. There are no conformance checks
6745 -- to perform in this case.
309c3053 6746
d67a83fe 6747 if No (T) then
309c3053 6748 Check_Aspect_At_Freeze_Point (ASN);
6749 return;
7b9b2f05 6750
6751 -- The default values attributes may be defined in the private part,
6752 -- and the analysis of the expression may take place when only the
6753 -- partial view is visible. The expression must be scalar, so use
6754 -- the full view to resolve.
6755
30fe3fdc 6756 elsif (A_Id = Aspect_Default_Value
6757 or else
7b9b2f05 6758 A_Id = Aspect_Default_Component_Value)
6759 and then Is_Private_Type (T)
6760 then
6761 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
309c3053 6762 else
6763 Preanalyze_Spec_Expression (End_Decl_Expr, T);
6764 end if;
6765
7d20685d 6766 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
6767 end if;
6768
6769 -- Output error message if error
6770
6771 if Err then
6772 Error_Msg_NE
6773 ("visibility of aspect for& changes after freeze point",
6774 ASN, Ent);
6775 Error_Msg_NE
1e3532e7 6776 ("info: & is frozen here, aspects evaluated at this point??",
7d20685d 6777 Freeze_Node (Ent), Ent);
6778 end if;
6779 end Check_Aspect_At_End_Of_Declarations;
6780
6781 ----------------------------------
6782 -- Check_Aspect_At_Freeze_Point --
6783 ----------------------------------
6784
6785 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
6786 Ident : constant Node_Id := Identifier (ASN);
6787 -- Identifier (use Entity field to save expression)
6788
7d20685d 6789 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
6790
17631aa0 6791 T : Entity_Id := Empty;
89f1e35c 6792 -- Type required for preanalyze call
6793
7d20685d 6794 begin
6795 -- On entry to this procedure, Entity (Ident) contains a copy of the
6796 -- original expression from the aspect, saved for this purpose.
6797
6798 -- On exit from this procedure Entity (Ident) is unchanged, still
6799 -- containing that copy, but Expression (Ident) is a preanalyzed copy
6800 -- of the expression, preanalyzed just after the freeze point.
6801
c92e878b 6802 -- Make a copy of the expression to be preanalyzed
7d20685d 6803
6804 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
6805
6806 -- Find type for preanalyze call
6807
6808 case A_Id is
6809
6810 -- No_Aspect should be impossible
6811
6812 when No_Aspect =>
6813 raise Program_Error;
6814
17631aa0 6815 -- Aspects taking an optional boolean argument
6c545057 6816
89f1e35c 6817 when Boolean_Aspects |
6818 Library_Unit_Aspects =>
6819 T := Standard_Boolean;
6c545057 6820
7f694ca2 6821 when Aspect_Attach_Handler =>
6822 T := RTE (RE_Interrupt_ID);
6823
e1cedbae 6824 when Aspect_Convention =>
89f1e35c 6825 return;
e1cedbae 6826
231eb581 6827 -- Default_Value is resolved with the type entity in question
8398ba2c 6828
231eb581 6829 when Aspect_Default_Value =>
8398ba2c 6830 T := Entity (ASN);
7d20685d 6831
231eb581 6832 -- Default_Component_Value is resolved with the component type
6833
6834 when Aspect_Default_Component_Value =>
6835 T := Component_Type (Entity (ASN));
6836
7d20685d 6837 -- Aspects corresponding to attribute definition clauses
6838
8398ba2c 6839 when Aspect_Address =>
7d20685d 6840 T := RTE (RE_Address);
6841
b7b74740 6842 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
7d20685d 6843 T := RTE (RE_Bit_Order);
6844
cb4c311d 6845 when Aspect_CPU =>
6846 T := RTE (RE_CPU_Range);
6847
a7a4a7c2 6848 when Aspect_Dispatching_Domain =>
6849 T := RTE (RE_Dispatching_Domain);
6850
7d20685d 6851 when Aspect_External_Tag =>
6852 T := Standard_String;
6853
e1cedbae 6854 when Aspect_External_Name =>
6855 T := Standard_String;
6856
6857 when Aspect_Link_Name =>
6858 T := Standard_String;
6859
7f694ca2 6860 when Aspect_Priority | Aspect_Interrupt_Priority =>
6861 T := Standard_Integer;
6862
47a46747 6863 when Aspect_Relative_Deadline =>
6864 T := RTE (RE_Time_Span);
6865
7f694ca2 6866 when Aspect_Small =>
6867 T := Universal_Real;
6868
b55f7641 6869 -- For a simple storage pool, we have to retrieve the type of the
6870 -- pool object associated with the aspect's corresponding attribute
6871 -- definition clause.
6872
6873 when Aspect_Simple_Storage_Pool =>
6874 T := Etype (Expression (Aspect_Rep_Item (ASN)));
6875
7d20685d 6876 when Aspect_Storage_Pool =>
6877 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
6878
6c545057 6879 when Aspect_Alignment |
7d20685d 6880 Aspect_Component_Size |
6881 Aspect_Machine_Radix |
6882 Aspect_Object_Size |
6883 Aspect_Size |
6884 Aspect_Storage_Size |
6885 Aspect_Stream_Size |
6886 Aspect_Value_Size =>
6887 T := Any_Integer;
6888
89f1e35c 6889 when Aspect_Synchronization =>
6890 return;
6891
6892 -- Special case, the expression of these aspects is just an entity
7d20685d 6893 -- that does not need any resolution, so just analyze.
6894
17631aa0 6895 when Aspect_Input |
6896 Aspect_Output |
6897 Aspect_Read |
6898 Aspect_Suppress |
6899 Aspect_Unsuppress |
6900 Aspect_Warnings |
6901 Aspect_Write =>
7d20685d 6902 Analyze (Expression (ASN));
81b424ac 6903 return;
6904
6905 -- Same for Iterator aspects, where the expression is a function
6906 -- name. Legality rules are checked separately.
6907
17631aa0 6908 when Aspect_Constant_Indexing |
6909 Aspect_Default_Iterator |
6910 Aspect_Iterator_Element |
6911 Aspect_Variable_Indexing =>
81b424ac 6912 Analyze (Expression (ASN));
7d20685d 6913 return;
6914
89f1e35c 6915 -- Invariant/Predicate take boolean expressions
7d20685d 6916
ebbab42d 6917 when Aspect_Dynamic_Predicate |
6918 Aspect_Invariant |
ebbab42d 6919 Aspect_Predicate |
77ae6789 6920 Aspect_Static_Predicate |
6921 Aspect_Type_Invariant =>
7d20685d 6922 T := Standard_Boolean;
85696508 6923
89f1e35c 6924 -- Here is the list of aspects that don't require delay analysis.
6925
6926 when Aspect_Contract_Case |
3a128918 6927 Aspect_Contract_Cases |
89f1e35c 6928 Aspect_Dimension |
6929 Aspect_Dimension_System |
6930 Aspect_Implicit_Dereference |
6931 Aspect_Post |
6932 Aspect_Postcondition |
6933 Aspect_Pre |
6934 Aspect_Precondition |
6935 Aspect_Test_Case =>
85696508 6936 raise Program_Error;
6937
7d20685d 6938 end case;
6939
6940 -- Do the preanalyze call
6941
6942 Preanalyze_Spec_Expression (Expression (ASN), T);
6943 end Check_Aspect_At_Freeze_Point;
6944
d6f39728 6945 -----------------------------------
6946 -- Check_Constant_Address_Clause --
6947 -----------------------------------
6948
6949 procedure Check_Constant_Address_Clause
6950 (Expr : Node_Id;
6951 U_Ent : Entity_Id)
6952 is
6953 procedure Check_At_Constant_Address (Nod : Node_Id);
fdd294d1 6954 -- Checks that the given node N represents a name whose 'Address is
6955 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
6956 -- address value is the same at the point of declaration of U_Ent and at
6957 -- the time of elaboration of the address clause.
d6f39728 6958
6959 procedure Check_Expr_Constants (Nod : Node_Id);
fdd294d1 6960 -- Checks that Nod meets the requirements for a constant address clause
6961 -- in the sense of the enclosing procedure.
d6f39728 6962
6963 procedure Check_List_Constants (Lst : List_Id);
6964 -- Check that all elements of list Lst meet the requirements for a
6965 -- constant address clause in the sense of the enclosing procedure.
6966
6967 -------------------------------
6968 -- Check_At_Constant_Address --
6969 -------------------------------
6970
6971 procedure Check_At_Constant_Address (Nod : Node_Id) is
6972 begin
6973 if Is_Entity_Name (Nod) then
6974 if Present (Address_Clause (Entity ((Nod)))) then
6975 Error_Msg_NE
6976 ("invalid address clause for initialized object &!",
6977 Nod, U_Ent);
6978 Error_Msg_NE
6979 ("address for& cannot" &
fbc67f84 6980 " depend on another address clause! (RM 13.1(22))!",
d6f39728 6981 Nod, U_Ent);
6982
6983 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
6984 and then Sloc (U_Ent) < Sloc (Entity (Nod))
6985 then
6986 Error_Msg_NE
6987 ("invalid address clause for initialized object &!",
6988 Nod, U_Ent);
2f582d72 6989 Error_Msg_Node_2 := U_Ent;
6990 Error_Msg_NE
6991 ("\& must be defined before & (RM 13.1(22))!",
6992 Nod, Entity (Nod));
d6f39728 6993 end if;
6994
6995 elsif Nkind (Nod) = N_Selected_Component then
6996 declare
6997 T : constant Entity_Id := Etype (Prefix (Nod));
6998
6999 begin
7000 if (Is_Record_Type (T)
7001 and then Has_Discriminants (T))
7002 or else
7003 (Is_Access_Type (T)
7004 and then Is_Record_Type (Designated_Type (T))
7005 and then Has_Discriminants (Designated_Type (T)))
7006 then
7007 Error_Msg_NE
7008 ("invalid address clause for initialized object &!",
7009 Nod, U_Ent);
7010 Error_Msg_N
7011 ("\address cannot depend on component" &
fbc67f84 7012 " of discriminated record (RM 13.1(22))!",
d6f39728 7013 Nod);
7014 else
7015 Check_At_Constant_Address (Prefix (Nod));
7016 end if;
7017 end;
7018
7019 elsif Nkind (Nod) = N_Indexed_Component then
7020 Check_At_Constant_Address (Prefix (Nod));
7021 Check_List_Constants (Expressions (Nod));
7022
7023 else
7024 Check_Expr_Constants (Nod);
7025 end if;
7026 end Check_At_Constant_Address;
7027
7028 --------------------------
7029 -- Check_Expr_Constants --
7030 --------------------------
7031
7032 procedure Check_Expr_Constants (Nod : Node_Id) is
e7b2d6bc 7033 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
7034 Ent : Entity_Id := Empty;
7035
d6f39728 7036 begin
7037 if Nkind (Nod) in N_Has_Etype
7038 and then Etype (Nod) = Any_Type
7039 then
7040 return;
7041 end if;
7042
7043 case Nkind (Nod) is
7044 when N_Empty | N_Error =>
7045 return;
7046
7047 when N_Identifier | N_Expanded_Name =>
e7b2d6bc 7048 Ent := Entity (Nod);
9dfe12ae 7049
7050 -- We need to look at the original node if it is different
7051 -- from the node, since we may have rewritten things and
7052 -- substituted an identifier representing the rewrite.
7053
7054 if Original_Node (Nod) /= Nod then
7055 Check_Expr_Constants (Original_Node (Nod));
7056
7057 -- If the node is an object declaration without initial
7058 -- value, some code has been expanded, and the expression
7059 -- is not constant, even if the constituents might be
fdd294d1 7060 -- acceptable, as in A'Address + offset.
9dfe12ae 7061
e7b2d6bc 7062 if Ekind (Ent) = E_Variable
fdd294d1 7063 and then
7064 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9dfe12ae 7065 and then
e7b2d6bc 7066 No (Expression (Declaration_Node (Ent)))
7067 then
7068 Error_Msg_NE
7069 ("invalid address clause for initialized object &!",
7070 Nod, U_Ent);
7071
7072 -- If entity is constant, it may be the result of expanding
7073 -- a check. We must verify that its declaration appears
7074 -- before the object in question, else we also reject the
7075 -- address clause.
7076
7077 elsif Ekind (Ent) = E_Constant
7078 and then In_Same_Source_Unit (Ent, U_Ent)
7079 and then Sloc (Ent) > Loc_U_Ent
9dfe12ae 7080 then
7081 Error_Msg_NE
7082 ("invalid address clause for initialized object &!",
7083 Nod, U_Ent);
7084 end if;
e7b2d6bc 7085
9dfe12ae 7086 return;
7087 end if;
7088
2866d595 7089 -- Otherwise look at the identifier and see if it is OK
9dfe12ae 7090
d3ef794c 7091 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
7092 or else Is_Type (Ent)
e7b2d6bc 7093 then
7094 return;
d6f39728 7095
e7b2d6bc 7096 elsif
7097 Ekind (Ent) = E_Constant
7098 or else
7099 Ekind (Ent) = E_In_Parameter
7100 then
fdd294d1 7101 -- This is the case where we must have Ent defined before
7102 -- U_Ent. Clearly if they are in different units this
7103 -- requirement is met since the unit containing Ent is
7104 -- already processed.
d6f39728 7105
e7b2d6bc 7106 if not In_Same_Source_Unit (Ent, U_Ent) then
7107 return;
d6f39728 7108
fdd294d1 7109 -- Otherwise location of Ent must be before the location
7110 -- of U_Ent, that's what prior defined means.
d6f39728 7111
e7b2d6bc 7112 elsif Sloc (Ent) < Loc_U_Ent then
7113 return;
d6f39728 7114
7115 else
7116 Error_Msg_NE
7117 ("invalid address clause for initialized object &!",
7118 Nod, U_Ent);
2f582d72 7119 Error_Msg_Node_2 := U_Ent;
7120 Error_Msg_NE
7121 ("\& must be defined before & (RM 13.1(22))!",
7122 Nod, Ent);
e7b2d6bc 7123 end if;
9dfe12ae 7124
e7b2d6bc 7125 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
7126 Check_Expr_Constants (Original_Node (Nod));
7127
7128 else
7129 Error_Msg_NE
7130 ("invalid address clause for initialized object &!",
7131 Nod, U_Ent);
7132
7133 if Comes_From_Source (Ent) then
2f582d72 7134 Error_Msg_NE
7135 ("\reference to variable& not allowed"
7136 & " (RM 13.1(22))!", Nod, Ent);
e7b2d6bc 7137 else
7138 Error_Msg_N
7139 ("non-static expression not allowed"
fbc67f84 7140 & " (RM 13.1(22))!", Nod);
d6f39728 7141 end if;
e7b2d6bc 7142 end if;
d6f39728 7143
93735cb8 7144 when N_Integer_Literal =>
7145
7146 -- If this is a rewritten unchecked conversion, in a system
7147 -- where Address is an integer type, always use the base type
7148 -- for a literal value. This is user-friendly and prevents
7149 -- order-of-elaboration issues with instances of unchecked
7150 -- conversion.
7151
7152 if Nkind (Original_Node (Nod)) = N_Function_Call then
7153 Set_Etype (Nod, Base_Type (Etype (Nod)));
7154 end if;
7155
7156 when N_Real_Literal |
d6f39728 7157 N_String_Literal |
7158 N_Character_Literal =>
7159 return;
7160
7161 when N_Range =>
7162 Check_Expr_Constants (Low_Bound (Nod));
7163 Check_Expr_Constants (High_Bound (Nod));
7164
7165 when N_Explicit_Dereference =>
7166 Check_Expr_Constants (Prefix (Nod));
7167
7168 when N_Indexed_Component =>
7169 Check_Expr_Constants (Prefix (Nod));
7170 Check_List_Constants (Expressions (Nod));
7171
7172 when N_Slice =>
7173 Check_Expr_Constants (Prefix (Nod));
7174 Check_Expr_Constants (Discrete_Range (Nod));
7175
7176 when N_Selected_Component =>
7177 Check_Expr_Constants (Prefix (Nod));
7178
7179 when N_Attribute_Reference =>
9dfe12ae 7180 if Attribute_Name (Nod) = Name_Address
7181 or else
7182 Attribute_Name (Nod) = Name_Access
d6f39728 7183 or else
9dfe12ae 7184 Attribute_Name (Nod) = Name_Unchecked_Access
d6f39728 7185 or else
9dfe12ae 7186 Attribute_Name (Nod) = Name_Unrestricted_Access
d6f39728 7187 then
7188 Check_At_Constant_Address (Prefix (Nod));
7189
7190 else
7191 Check_Expr_Constants (Prefix (Nod));
7192 Check_List_Constants (Expressions (Nod));
7193 end if;
7194
7195 when N_Aggregate =>
7196 Check_List_Constants (Component_Associations (Nod));
7197 Check_List_Constants (Expressions (Nod));
7198
7199 when N_Component_Association =>
7200 Check_Expr_Constants (Expression (Nod));
7201
7202 when N_Extension_Aggregate =>
7203 Check_Expr_Constants (Ancestor_Part (Nod));
7204 Check_List_Constants (Component_Associations (Nod));
7205 Check_List_Constants (Expressions (Nod));
7206
7207 when N_Null =>
7208 return;
7209
e7771556 7210 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
d6f39728 7211 Check_Expr_Constants (Left_Opnd (Nod));
7212 Check_Expr_Constants (Right_Opnd (Nod));
7213
7214 when N_Unary_Op =>
7215 Check_Expr_Constants (Right_Opnd (Nod));
7216
7217 when N_Type_Conversion |
7218 N_Qualified_Expression |
7219 N_Allocator =>
7220 Check_Expr_Constants (Expression (Nod));
7221
7222 when N_Unchecked_Type_Conversion =>
7223 Check_Expr_Constants (Expression (Nod));
7224
fdd294d1 7225 -- If this is a rewritten unchecked conversion, subtypes in
7226 -- this node are those created within the instance. To avoid
7227 -- order of elaboration issues, replace them with their base
7228 -- types. Note that address clauses can cause order of
7229 -- elaboration problems because they are elaborated by the
7230 -- back-end at the point of definition, and may mention
7231 -- entities declared in between (as long as everything is
7232 -- static). It is user-friendly to allow unchecked conversions
7233 -- in this context.
d6f39728 7234
7235 if Nkind (Original_Node (Nod)) = N_Function_Call then
7236 Set_Etype (Expression (Nod),
7237 Base_Type (Etype (Expression (Nod))));
7238 Set_Etype (Nod, Base_Type (Etype (Nod)));
7239 end if;
7240
7241 when N_Function_Call =>
7242 if not Is_Pure (Entity (Name (Nod))) then
7243 Error_Msg_NE
7244 ("invalid address clause for initialized object &!",
7245 Nod, U_Ent);
7246
7247 Error_Msg_NE
fbc67f84 7248 ("\function & is not pure (RM 13.1(22))!",
d6f39728 7249 Nod, Entity (Name (Nod)));
7250
7251 else
7252 Check_List_Constants (Parameter_Associations (Nod));
7253 end if;
7254
7255 when N_Parameter_Association =>
7256 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7257
7258 when others =>
7259 Error_Msg_NE
7260 ("invalid address clause for initialized object &!",
7261 Nod, U_Ent);
7262 Error_Msg_NE
fbc67f84 7263 ("\must be constant defined before& (RM 13.1(22))!",
d6f39728 7264 Nod, U_Ent);
7265 end case;
7266 end Check_Expr_Constants;
7267
7268 --------------------------
7269 -- Check_List_Constants --
7270 --------------------------
7271
7272 procedure Check_List_Constants (Lst : List_Id) is
7273 Nod1 : Node_Id;
7274
7275 begin
7276 if Present (Lst) then
7277 Nod1 := First (Lst);
7278 while Present (Nod1) loop
7279 Check_Expr_Constants (Nod1);
7280 Next (Nod1);
7281 end loop;
7282 end if;
7283 end Check_List_Constants;
7284
7285 -- Start of processing for Check_Constant_Address_Clause
7286
7287 begin
01cb2726 7288 -- If rep_clauses are to be ignored, no need for legality checks. In
7289 -- particular, no need to pester user about rep clauses that violate
7290 -- the rule on constant addresses, given that these clauses will be
7291 -- removed by Freeze before they reach the back end.
7292
7293 if not Ignore_Rep_Clauses then
7294 Check_Expr_Constants (Expr);
7295 end if;
d6f39728 7296 end Check_Constant_Address_Clause;
7297
67278d60 7298 ----------------------------------------
7299 -- Check_Record_Representation_Clause --
7300 ----------------------------------------
7301
7302 procedure Check_Record_Representation_Clause (N : Node_Id) is
7303 Loc : constant Source_Ptr := Sloc (N);
7304 Ident : constant Node_Id := Identifier (N);
7305 Rectype : Entity_Id;
7306 Fent : Entity_Id;
7307 CC : Node_Id;
7308 Fbit : Uint;
7309 Lbit : Uint;
7310 Hbit : Uint := Uint_0;
7311 Comp : Entity_Id;
7312 Pcomp : Entity_Id;
7313
7314 Max_Bit_So_Far : Uint;
7315 -- Records the maximum bit position so far. If all field positions
7316 -- are monotonically increasing, then we can skip the circuit for
7317 -- checking for overlap, since no overlap is possible.
7318
7319 Tagged_Parent : Entity_Id := Empty;
7320 -- This is set in the case of a derived tagged type for which we have
7321 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
7322 -- positioned by record representation clauses). In this case we must
7323 -- check for overlap between components of this tagged type, and the
7324 -- components of its parent. Tagged_Parent will point to this parent
7325 -- type. For all other cases Tagged_Parent is left set to Empty.
7326
7327 Parent_Last_Bit : Uint;
7328 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
7329 -- last bit position for any field in the parent type. We only need to
7330 -- check overlap for fields starting below this point.
7331
7332 Overlap_Check_Required : Boolean;
7333 -- Used to keep track of whether or not an overlap check is required
7334
47495553 7335 Overlap_Detected : Boolean := False;
7336 -- Set True if an overlap is detected
7337
67278d60 7338 Ccount : Natural := 0;
7339 -- Number of component clauses in record rep clause
7340
7341 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
7342 -- Given two entities for record components or discriminants, checks
7343 -- if they have overlapping component clauses and issues errors if so.
7344
7345 procedure Find_Component;
7346 -- Finds component entity corresponding to current component clause (in
7347 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
7348 -- start/stop bits for the field. If there is no matching component or
7349 -- if the matching component does not have a component clause, then
7350 -- that's an error and Comp is set to Empty, but no error message is
7351 -- issued, since the message was already given. Comp is also set to
7352 -- Empty if the current "component clause" is in fact a pragma.
7353
7354 -----------------------------
7355 -- Check_Component_Overlap --
7356 -----------------------------
7357
7358 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
7359 CC1 : constant Node_Id := Component_Clause (C1_Ent);
7360 CC2 : constant Node_Id := Component_Clause (C2_Ent);
47495553 7361
67278d60 7362 begin
7363 if Present (CC1) and then Present (CC2) then
7364
7365 -- Exclude odd case where we have two tag fields in the same
7366 -- record, both at location zero. This seems a bit strange, but
7367 -- it seems to happen in some circumstances, perhaps on an error.
7368
7369 if Chars (C1_Ent) = Name_uTag
7370 and then
7371 Chars (C2_Ent) = Name_uTag
7372 then
7373 return;
7374 end if;
7375
7376 -- Here we check if the two fields overlap
7377
7378 declare
7379 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
7380 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
7381 E1 : constant Uint := S1 + Esize (C1_Ent);
7382 E2 : constant Uint := S2 + Esize (C2_Ent);
7383
7384 begin
7385 if E2 <= S1 or else E1 <= S2 then
7386 null;
7387 else
7388 Error_Msg_Node_2 := Component_Name (CC2);
7389 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
7390 Error_Msg_Node_1 := Component_Name (CC1);
7391 Error_Msg_N
7392 ("component& overlaps & #", Component_Name (CC1));
47495553 7393 Overlap_Detected := True;
67278d60 7394 end if;
7395 end;
7396 end if;
7397 end Check_Component_Overlap;
7398
7399 --------------------
7400 -- Find_Component --
7401 --------------------
7402
7403 procedure Find_Component is
7404
7405 procedure Search_Component (R : Entity_Id);
7406 -- Search components of R for a match. If found, Comp is set.
7407
7408 ----------------------
7409 -- Search_Component --
7410 ----------------------
7411
7412 procedure Search_Component (R : Entity_Id) is
7413 begin
7414 Comp := First_Component_Or_Discriminant (R);
7415 while Present (Comp) loop
7416
7417 -- Ignore error of attribute name for component name (we
7418 -- already gave an error message for this, so no need to
7419 -- complain here)
7420
7421 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
7422 null;
7423 else
7424 exit when Chars (Comp) = Chars (Component_Name (CC));
7425 end if;
7426
7427 Next_Component_Or_Discriminant (Comp);
7428 end loop;
7429 end Search_Component;
7430
7431 -- Start of processing for Find_Component
7432
7433 begin
7434 -- Return with Comp set to Empty if we have a pragma
7435
7436 if Nkind (CC) = N_Pragma then
7437 Comp := Empty;
7438 return;
7439 end if;
7440
7441 -- Search current record for matching component
7442
7443 Search_Component (Rectype);
7444
7445 -- If not found, maybe component of base type that is absent from
7446 -- statically constrained first subtype.
7447
7448 if No (Comp) then
7449 Search_Component (Base_Type (Rectype));
7450 end if;
7451
7452 -- If no component, or the component does not reference the component
7453 -- clause in question, then there was some previous error for which
7454 -- we already gave a message, so just return with Comp Empty.
7455
dba36b60 7456 if No (Comp) or else Component_Clause (Comp) /= CC then
7457 Check_Error_Detected;
67278d60 7458 Comp := Empty;
7459
7460 -- Normal case where we have a component clause
7461
7462 else
7463 Fbit := Component_Bit_Offset (Comp);
7464 Lbit := Fbit + Esize (Comp) - 1;
7465 end if;
7466 end Find_Component;
7467
7468 -- Start of processing for Check_Record_Representation_Clause
7469
7470 begin
7471 Find_Type (Ident);
7472 Rectype := Entity (Ident);
7473
7474 if Rectype = Any_Type then
7475 return;
7476 else
7477 Rectype := Underlying_Type (Rectype);
7478 end if;
7479
7480 -- See if we have a fully repped derived tagged type
7481
7482 declare
7483 PS : constant Entity_Id := Parent_Subtype (Rectype);
7484
7485 begin
7486 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
7487 Tagged_Parent := PS;
7488
7489 -- Find maximum bit of any component of the parent type
7490
7491 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
7492 Pcomp := First_Entity (Tagged_Parent);
7493 while Present (Pcomp) loop
7494 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
7495 if Component_Bit_Offset (Pcomp) /= No_Uint
7496 and then Known_Static_Esize (Pcomp)
7497 then
7498 Parent_Last_Bit :=
7499 UI_Max
7500 (Parent_Last_Bit,
7501 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
7502 end if;
7503
7504 Next_Entity (Pcomp);
7505 end if;
7506 end loop;
7507 end if;
7508 end;
7509
7510 -- All done if no component clauses
7511
7512 CC := First (Component_Clauses (N));
7513
7514 if No (CC) then
7515 return;
7516 end if;
7517
7518 -- If a tag is present, then create a component clause that places it
7519 -- at the start of the record (otherwise gigi may place it after other
7520 -- fields that have rep clauses).
7521
7522 Fent := First_Entity (Rectype);
7523
7524 if Nkind (Fent) = N_Defining_Identifier
7525 and then Chars (Fent) = Name_uTag
7526 then
7527 Set_Component_Bit_Offset (Fent, Uint_0);
7528 Set_Normalized_Position (Fent, Uint_0);
7529 Set_Normalized_First_Bit (Fent, Uint_0);
7530 Set_Normalized_Position_Max (Fent, Uint_0);
7531 Init_Esize (Fent, System_Address_Size);
7532
7533 Set_Component_Clause (Fent,
7534 Make_Component_Clause (Loc,
55868293 7535 Component_Name => Make_Identifier (Loc, Name_uTag),
67278d60 7536
55868293 7537 Position => Make_Integer_Literal (Loc, Uint_0),
7538 First_Bit => Make_Integer_Literal (Loc, Uint_0),
67278d60 7539 Last_Bit =>
7540 Make_Integer_Literal (Loc,
7541 UI_From_Int (System_Address_Size))));
7542
7543 Ccount := Ccount + 1;
7544 end if;
7545
7546 Max_Bit_So_Far := Uint_Minus_1;
7547 Overlap_Check_Required := False;
7548
7549 -- Process the component clauses
7550
7551 while Present (CC) loop
7552 Find_Component;
7553
7554 if Present (Comp) then
7555 Ccount := Ccount + 1;
7556
47495553 7557 -- We need a full overlap check if record positions non-monotonic
7558
67278d60 7559 if Fbit <= Max_Bit_So_Far then
7560 Overlap_Check_Required := True;
67278d60 7561 end if;
7562
47495553 7563 Max_Bit_So_Far := Lbit;
7564
67278d60 7565 -- Check bit position out of range of specified size
7566
7567 if Has_Size_Clause (Rectype)
ada34def 7568 and then RM_Size (Rectype) <= Lbit
67278d60 7569 then
7570 Error_Msg_N
7571 ("bit number out of range of specified size",
7572 Last_Bit (CC));
7573
7574 -- Check for overlap with tag field
7575
7576 else
7577 if Is_Tagged_Type (Rectype)
7578 and then Fbit < System_Address_Size
7579 then
7580 Error_Msg_NE
7581 ("component overlaps tag field of&",
7582 Component_Name (CC), Rectype);
47495553 7583 Overlap_Detected := True;
67278d60 7584 end if;
7585
7586 if Hbit < Lbit then
7587 Hbit := Lbit;
7588 end if;
7589 end if;
7590
7591 -- Check parent overlap if component might overlap parent field
7592
b9e61b2a 7593 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
67278d60 7594 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
7595 while Present (Pcomp) loop
7596 if not Is_Tag (Pcomp)
7597 and then Chars (Pcomp) /= Name_uParent
7598 then
7599 Check_Component_Overlap (Comp, Pcomp);
7600 end if;
7601
7602 Next_Component_Or_Discriminant (Pcomp);
7603 end loop;
7604 end if;
7605 end if;
7606
7607 Next (CC);
7608 end loop;
7609
7610 -- Now that we have processed all the component clauses, check for
7611 -- overlap. We have to leave this till last, since the components can
7612 -- appear in any arbitrary order in the representation clause.
7613
7614 -- We do not need this check if all specified ranges were monotonic,
7615 -- as recorded by Overlap_Check_Required being False at this stage.
7616
7617 -- This first section checks if there are any overlapping entries at
7618 -- all. It does this by sorting all entries and then seeing if there are
7619 -- any overlaps. If there are none, then that is decisive, but if there
7620 -- are overlaps, they may still be OK (they may result from fields in
7621 -- different variants).
7622
7623 if Overlap_Check_Required then
7624 Overlap_Check1 : declare
7625
7626 OC_Fbit : array (0 .. Ccount) of Uint;
7627 -- First-bit values for component clauses, the value is the offset
7628 -- of the first bit of the field from start of record. The zero
7629 -- entry is for use in sorting.
7630
7631 OC_Lbit : array (0 .. Ccount) of Uint;
7632 -- Last-bit values for component clauses, the value is the offset
7633 -- of the last bit of the field from start of record. The zero
7634 -- entry is for use in sorting.
7635
7636 OC_Count : Natural := 0;
7637 -- Count of entries in OC_Fbit and OC_Lbit
7638
7639 function OC_Lt (Op1, Op2 : Natural) return Boolean;
7640 -- Compare routine for Sort
7641
7642 procedure OC_Move (From : Natural; To : Natural);
7643 -- Move routine for Sort
7644
7645 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
7646
7647 -----------
7648 -- OC_Lt --
7649 -----------
7650
7651 function OC_Lt (Op1, Op2 : Natural) return Boolean is
7652 begin
7653 return OC_Fbit (Op1) < OC_Fbit (Op2);
7654 end OC_Lt;
7655
7656 -------------
7657 -- OC_Move --
7658 -------------
7659
7660 procedure OC_Move (From : Natural; To : Natural) is
7661 begin
7662 OC_Fbit (To) := OC_Fbit (From);
7663 OC_Lbit (To) := OC_Lbit (From);
7664 end OC_Move;
7665
7666 -- Start of processing for Overlap_Check
7667
7668 begin
7669 CC := First (Component_Clauses (N));
7670 while Present (CC) loop
7671
7672 -- Exclude component clause already marked in error
7673
7674 if not Error_Posted (CC) then
7675 Find_Component;
7676
7677 if Present (Comp) then
7678 OC_Count := OC_Count + 1;
7679 OC_Fbit (OC_Count) := Fbit;
7680 OC_Lbit (OC_Count) := Lbit;
7681 end if;
7682 end if;
7683
7684 Next (CC);
7685 end loop;
7686
7687 Sorting.Sort (OC_Count);
7688
7689 Overlap_Check_Required := False;
7690 for J in 1 .. OC_Count - 1 loop
7691 if OC_Lbit (J) >= OC_Fbit (J + 1) then
7692 Overlap_Check_Required := True;
7693 exit;
7694 end if;
7695 end loop;
7696 end Overlap_Check1;
7697 end if;
7698
7699 -- If Overlap_Check_Required is still True, then we have to do the full
7700 -- scale overlap check, since we have at least two fields that do
7701 -- overlap, and we need to know if that is OK since they are in
7702 -- different variant, or whether we have a definite problem.
7703
7704 if Overlap_Check_Required then
7705 Overlap_Check2 : declare
7706 C1_Ent, C2_Ent : Entity_Id;
7707 -- Entities of components being checked for overlap
7708
7709 Clist : Node_Id;
7710 -- Component_List node whose Component_Items are being checked
7711
7712 Citem : Node_Id;
7713 -- Component declaration for component being checked
7714
7715 begin
7716 C1_Ent := First_Entity (Base_Type (Rectype));
7717
7718 -- Loop through all components in record. For each component check
7719 -- for overlap with any of the preceding elements on the component
7720 -- list containing the component and also, if the component is in
7721 -- a variant, check against components outside the case structure.
7722 -- This latter test is repeated recursively up the variant tree.
7723
7724 Main_Component_Loop : while Present (C1_Ent) loop
7725 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
7726 goto Continue_Main_Component_Loop;
7727 end if;
7728
7729 -- Skip overlap check if entity has no declaration node. This
7730 -- happens with discriminants in constrained derived types.
47495553 7731 -- Possibly we are missing some checks as a result, but that
7732 -- does not seem terribly serious.
67278d60 7733
7734 if No (Declaration_Node (C1_Ent)) then
7735 goto Continue_Main_Component_Loop;
7736 end if;
7737
7738 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
7739
7740 -- Loop through component lists that need checking. Check the
7741 -- current component list and all lists in variants above us.
7742
7743 Component_List_Loop : loop
7744
7745 -- If derived type definition, go to full declaration
7746 -- If at outer level, check discriminants if there are any.
7747
7748 if Nkind (Clist) = N_Derived_Type_Definition then
7749 Clist := Parent (Clist);
7750 end if;
7751
7752 -- Outer level of record definition, check discriminants
7753
7754 if Nkind_In (Clist, N_Full_Type_Declaration,
b9e61b2a 7755 N_Private_Type_Declaration)
67278d60 7756 then
7757 if Has_Discriminants (Defining_Identifier (Clist)) then
7758 C2_Ent :=
7759 First_Discriminant (Defining_Identifier (Clist));
7760 while Present (C2_Ent) loop
7761 exit when C1_Ent = C2_Ent;
7762 Check_Component_Overlap (C1_Ent, C2_Ent);
7763 Next_Discriminant (C2_Ent);
7764 end loop;
7765 end if;
7766
7767 -- Record extension case
7768
7769 elsif Nkind (Clist) = N_Derived_Type_Definition then
7770 Clist := Empty;
7771
7772 -- Otherwise check one component list
7773
7774 else
7775 Citem := First (Component_Items (Clist));
67278d60 7776 while Present (Citem) loop
7777 if Nkind (Citem) = N_Component_Declaration then
7778 C2_Ent := Defining_Identifier (Citem);
7779 exit when C1_Ent = C2_Ent;
7780 Check_Component_Overlap (C1_Ent, C2_Ent);
7781 end if;
7782
7783 Next (Citem);
7784 end loop;
7785 end if;
7786
7787 -- Check for variants above us (the parent of the Clist can
7788 -- be a variant, in which case its parent is a variant part,
7789 -- and the parent of the variant part is a component list
7790 -- whose components must all be checked against the current
7791 -- component for overlap).
7792
7793 if Nkind (Parent (Clist)) = N_Variant then
7794 Clist := Parent (Parent (Parent (Clist)));
7795
7796 -- Check for possible discriminant part in record, this
7797 -- is treated essentially as another level in the
7798 -- recursion. For this case the parent of the component
7799 -- list is the record definition, and its parent is the
7800 -- full type declaration containing the discriminant
7801 -- specifications.
7802
7803 elsif Nkind (Parent (Clist)) = N_Record_Definition then
7804 Clist := Parent (Parent ((Clist)));
7805
7806 -- If neither of these two cases, we are at the top of
7807 -- the tree.
7808
7809 else
7810 exit Component_List_Loop;
7811 end if;
7812 end loop Component_List_Loop;
7813
7814 <<Continue_Main_Component_Loop>>
7815 Next_Entity (C1_Ent);
7816
7817 end loop Main_Component_Loop;
7818 end Overlap_Check2;
7819 end if;
7820
47495553 7821 -- The following circuit deals with warning on record holes (gaps). We
7822 -- skip this check if overlap was detected, since it makes sense for the
7823 -- programmer to fix this illegality before worrying about warnings.
7824
7825 if not Overlap_Detected and Warn_On_Record_Holes then
7826 Record_Hole_Check : declare
7827 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
7828 -- Full declaration of record type
7829
7830 procedure Check_Component_List
7831 (CL : Node_Id;
7832 Sbit : Uint;
7833 DS : List_Id);
7834 -- Check component list CL for holes. The starting bit should be
7835 -- Sbit. which is zero for the main record component list and set
7836 -- appropriately for recursive calls for variants. DS is set to
7837 -- a list of discriminant specifications to be included in the
7838 -- consideration of components. It is No_List if none to consider.
7839
7840 --------------------------
7841 -- Check_Component_List --
7842 --------------------------
7843
7844 procedure Check_Component_List
7845 (CL : Node_Id;
7846 Sbit : Uint;
7847 DS : List_Id)
7848 is
7849 Compl : Integer;
7850
7851 begin
7852 Compl := Integer (List_Length (Component_Items (CL)));
7853
7854 if DS /= No_List then
7855 Compl := Compl + Integer (List_Length (DS));
7856 end if;
7857
7858 declare
7859 Comps : array (Natural range 0 .. Compl) of Entity_Id;
7860 -- Gather components (zero entry is for sort routine)
7861
7862 Ncomps : Natural := 0;
7863 -- Number of entries stored in Comps (starting at Comps (1))
7864
7865 Citem : Node_Id;
7866 -- One component item or discriminant specification
7867
7868 Nbit : Uint;
7869 -- Starting bit for next component
7870
7871 CEnt : Entity_Id;
7872 -- Component entity
7873
7874 Variant : Node_Id;
7875 -- One variant
7876
7877 function Lt (Op1, Op2 : Natural) return Boolean;
7878 -- Compare routine for Sort
7879
7880 procedure Move (From : Natural; To : Natural);
7881 -- Move routine for Sort
7882
7883 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
7884
7885 --------
7886 -- Lt --
7887 --------
7888
7889 function Lt (Op1, Op2 : Natural) return Boolean is
7890 begin
7891 return Component_Bit_Offset (Comps (Op1))
7892 <
7893 Component_Bit_Offset (Comps (Op2));
7894 end Lt;
7895
7896 ----------
7897 -- Move --
7898 ----------
7899
7900 procedure Move (From : Natural; To : Natural) is
7901 begin
7902 Comps (To) := Comps (From);
7903 end Move;
7904
7905 begin
7906 -- Gather discriminants into Comp
7907
7908 if DS /= No_List then
7909 Citem := First (DS);
7910 while Present (Citem) loop
7911 if Nkind (Citem) = N_Discriminant_Specification then
7912 declare
7913 Ent : constant Entity_Id :=
7914 Defining_Identifier (Citem);
7915 begin
7916 if Ekind (Ent) = E_Discriminant then
7917 Ncomps := Ncomps + 1;
7918 Comps (Ncomps) := Ent;
7919 end if;
7920 end;
7921 end if;
7922
7923 Next (Citem);
7924 end loop;
7925 end if;
7926
7927 -- Gather component entities into Comp
7928
7929 Citem := First (Component_Items (CL));
7930 while Present (Citem) loop
7931 if Nkind (Citem) = N_Component_Declaration then
7932 Ncomps := Ncomps + 1;
7933 Comps (Ncomps) := Defining_Identifier (Citem);
7934 end if;
7935
7936 Next (Citem);
7937 end loop;
7938
7939 -- Now sort the component entities based on the first bit.
7940 -- Note we already know there are no overlapping components.
7941
7942 Sorting.Sort (Ncomps);
7943
7944 -- Loop through entries checking for holes
7945
7946 Nbit := Sbit;
7947 for J in 1 .. Ncomps loop
7948 CEnt := Comps (J);
7949 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
7950
7951 if Error_Msg_Uint_1 > 0 then
7952 Error_Msg_NE
1e3532e7 7953 ("?H?^-bit gap before component&",
47495553 7954 Component_Name (Component_Clause (CEnt)), CEnt);
7955 end if;
7956
7957 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
7958 end loop;
7959
7960 -- Process variant parts recursively if present
7961
7962 if Present (Variant_Part (CL)) then
7963 Variant := First (Variants (Variant_Part (CL)));
7964 while Present (Variant) loop
7965 Check_Component_List
7966 (Component_List (Variant), Nbit, No_List);
7967 Next (Variant);
7968 end loop;
7969 end if;
7970 end;
7971 end Check_Component_List;
7972
7973 -- Start of processing for Record_Hole_Check
7974
7975 begin
7976 declare
7977 Sbit : Uint;
7978
7979 begin
7980 if Is_Tagged_Type (Rectype) then
7981 Sbit := UI_From_Int (System_Address_Size);
7982 else
7983 Sbit := Uint_0;
7984 end if;
7985
7986 if Nkind (Decl) = N_Full_Type_Declaration
7987 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
7988 then
7989 Check_Component_List
7990 (Component_List (Type_Definition (Decl)),
7991 Sbit,
7992 Discriminant_Specifications (Decl));
7993 end if;
7994 end;
7995 end Record_Hole_Check;
7996 end if;
7997
67278d60 7998 -- For records that have component clauses for all components, and whose
7999 -- size is less than or equal to 32, we need to know the size in the
8000 -- front end to activate possible packed array processing where the
8001 -- component type is a record.
8002
8003 -- At this stage Hbit + 1 represents the first unused bit from all the
8004 -- component clauses processed, so if the component clauses are
8005 -- complete, then this is the length of the record.
8006
8007 -- For records longer than System.Storage_Unit, and for those where not
8008 -- all components have component clauses, the back end determines the
8009 -- length (it may for example be appropriate to round up the size
8010 -- to some convenient boundary, based on alignment considerations, etc).
8011
8012 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
8013
8014 -- Nothing to do if at least one component has no component clause
8015
8016 Comp := First_Component_Or_Discriminant (Rectype);
8017 while Present (Comp) loop
8018 exit when No (Component_Clause (Comp));
8019 Next_Component_Or_Discriminant (Comp);
8020 end loop;
8021
8022 -- If we fall out of loop, all components have component clauses
8023 -- and so we can set the size to the maximum value.
8024
8025 if No (Comp) then
8026 Set_RM_Size (Rectype, Hbit + 1);
8027 end if;
8028 end if;
8029 end Check_Record_Representation_Clause;
8030
d6f39728 8031 ----------------
8032 -- Check_Size --
8033 ----------------
8034
8035 procedure Check_Size
8036 (N : Node_Id;
8037 T : Entity_Id;
8038 Siz : Uint;
8039 Biased : out Boolean)
8040 is
8041 UT : constant Entity_Id := Underlying_Type (T);
8042 M : Uint;
8043
8044 begin
8045 Biased := False;
8046
f117057b 8047 -- Reject patently improper size values.
8048
e2f8db26 8049 if Is_Elementary_Type (T)
f117057b 8050 and then Siz > UI_From_Int (Int'Last)
8051 then
e2f8db26 8052 Error_Msg_N ("Size value too large for elementary type", N);
1f526845 8053
f117057b 8054 if Nkind (Original_Node (N)) = N_Op_Expon then
8055 Error_Msg_N
8056 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
8057 end if;
8058 end if;
8059
dba36b60 8060 -- Dismiss generic types
d6f39728 8061
dba36b60 8062 if Is_Generic_Type (T)
8063 or else
8064 Is_Generic_Type (UT)
8065 or else
8066 Is_Generic_Type (Root_Type (UT))
d6f39728 8067 then
8068 return;
8069
dba36b60 8070 -- Guard against previous errors
8071
8072 elsif No (UT) or else UT = Any_Type then
8073 Check_Error_Detected;
8074 return;
8075
ea61a7ea 8076 -- Check case of bit packed array
8077
8078 elsif Is_Array_Type (UT)
8079 and then Known_Static_Component_Size (UT)
8080 and then Is_Bit_Packed_Array (UT)
8081 then
8082 declare
8083 Asiz : Uint;
8084 Indx : Node_Id;
8085 Ityp : Entity_Id;
8086
8087 begin
8088 Asiz := Component_Size (UT);
8089 Indx := First_Index (UT);
8090 loop
8091 Ityp := Etype (Indx);
8092
8093 -- If non-static bound, then we are not in the business of
8094 -- trying to check the length, and indeed an error will be
8095 -- issued elsewhere, since sizes of non-static array types
8096 -- cannot be set implicitly or explicitly.
8097
8098 if not Is_Static_Subtype (Ityp) then
8099 return;
8100 end if;
8101
8102 -- Otherwise accumulate next dimension
8103
8104 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
8105 Expr_Value (Type_Low_Bound (Ityp)) +
8106 Uint_1);
8107
8108 Next_Index (Indx);
8109 exit when No (Indx);
8110 end loop;
8111
8112 if Asiz <= Siz then
8113 return;
b9e61b2a 8114
ea61a7ea 8115 else
8116 Error_Msg_Uint_1 := Asiz;
8117 Error_Msg_NE
8118 ("size for& too small, minimum allowed is ^", N, T);
37cb33b0 8119 Set_Esize (T, Asiz);
8120 Set_RM_Size (T, Asiz);
ea61a7ea 8121 end if;
8122 end;
8123
8124 -- All other composite types are ignored
8125
8126 elsif Is_Composite_Type (UT) then
8127 return;
8128
d6f39728 8129 -- For fixed-point types, don't check minimum if type is not frozen,
ea61a7ea 8130 -- since we don't know all the characteristics of the type that can
8131 -- affect the size (e.g. a specified small) till freeze time.
d6f39728 8132
8133 elsif Is_Fixed_Point_Type (UT)
8134 and then not Is_Frozen (UT)
8135 then
8136 null;
8137
8138 -- Cases for which a minimum check is required
8139
8140 else
ea61a7ea 8141 -- Ignore if specified size is correct for the type
8142
8143 if Known_Esize (UT) and then Siz = Esize (UT) then
8144 return;
8145 end if;
8146
8147 -- Otherwise get minimum size
8148
d6f39728 8149 M := UI_From_Int (Minimum_Size (UT));
8150
8151 if Siz < M then
8152
8153 -- Size is less than minimum size, but one possibility remains
fdd294d1 8154 -- that we can manage with the new size if we bias the type.
d6f39728 8155
8156 M := UI_From_Int (Minimum_Size (UT, Biased => True));
8157
8158 if Siz < M then
8159 Error_Msg_Uint_1 := M;
8160 Error_Msg_NE
8161 ("size for& too small, minimum allowed is ^", N, T);
37cb33b0 8162 Set_Esize (T, M);
8163 Set_RM_Size (T, M);
d6f39728 8164 else
8165 Biased := True;
8166 end if;
8167 end if;
8168 end if;
8169 end Check_Size;
8170
8171 -------------------------
8172 -- Get_Alignment_Value --
8173 -------------------------
8174
8175 function Get_Alignment_Value (Expr : Node_Id) return Uint is
8176 Align : constant Uint := Static_Integer (Expr);
8177
8178 begin
8179 if Align = No_Uint then
8180 return No_Uint;
8181
8182 elsif Align <= 0 then
8183 Error_Msg_N ("alignment value must be positive", Expr);
8184 return No_Uint;
8185
8186 else
8187 for J in Int range 0 .. 64 loop
8188 declare
8189 M : constant Uint := Uint_2 ** J;
8190
8191 begin
8192 exit when M = Align;
8193
8194 if M > Align then
8195 Error_Msg_N
8196 ("alignment value must be power of 2", Expr);
8197 return No_Uint;
8198 end if;
8199 end;
8200 end loop;
8201
8202 return Align;
8203 end if;
8204 end Get_Alignment_Value;
8205
99a2d5bd 8206 -------------------------------------
8207 -- Inherit_Aspects_At_Freeze_Point --
8208 -------------------------------------
8209
8210 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
8211 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8212 (Rep_Item : Node_Id) return Boolean;
8213 -- This routine checks if Rep_Item is either a pragma or an aspect
8214 -- specification node whose correponding pragma (if any) is present in
8215 -- the Rep Item chain of the entity it has been specified to.
8216
8217 --------------------------------------------------
8218 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
8219 --------------------------------------------------
8220
8221 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8222 (Rep_Item : Node_Id) return Boolean
8223 is
8224 begin
8225 return Nkind (Rep_Item) = N_Pragma
8226 or else Present_In_Rep_Item
8227 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
8228 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
8229
29a9d4be 8230 -- Start of processing for Inherit_Aspects_At_Freeze_Point
8231
99a2d5bd 8232 begin
8233 -- A representation item is either subtype-specific (Size and Alignment
8234 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 8235 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 8236
8237 -- A derived type inherits each type-related representation aspect of
8238 -- its parent type that was directly specified before the declaration of
29a9d4be 8239 -- the derived type (RM 13.1.15).
99a2d5bd 8240
8241 -- A derived subtype inherits each subtype-specific representation
8242 -- aspect of its parent subtype that was directly specified before the
29a9d4be 8243 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 8244
8245 -- The general processing involves inheriting a representation aspect
8246 -- from a parent type whenever the first rep item (aspect specification,
8247 -- attribute definition clause, pragma) corresponding to the given
8248 -- representation aspect in the rep item chain of Typ, if any, isn't
8249 -- directly specified to Typ but to one of its parents.
8250
8251 -- ??? Note that, for now, just a limited number of representation
29a9d4be 8252 -- aspects have been inherited here so far. Many of them are
8253 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
8254 -- a non- exhaustive list of aspects that likely also need to
8255 -- be moved to this routine: Alignment, Component_Alignment,
8256 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 8257 -- Preelaborable_Initialization, RM_Size and Small.
8258
8259 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
8260 return;
8261 end if;
8262
8263 -- Ada_05/Ada_2005
8264
8265 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
8266 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
8267 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8268 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
8269 then
8270 Set_Is_Ada_2005_Only (Typ);
8271 end if;
8272
8273 -- Ada_12/Ada_2012
8274
8275 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
8276 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
8277 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8278 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
8279 then
8280 Set_Is_Ada_2012_Only (Typ);
8281 end if;
8282
8283 -- Atomic/Shared
8284
8285 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
8286 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
8287 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8288 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
8289 then
8290 Set_Is_Atomic (Typ);
8291 Set_Treat_As_Volatile (Typ);
8292 Set_Is_Volatile (Typ);
8293 end if;
8294
29a9d4be 8295 -- Default_Component_Value
99a2d5bd 8296
8297 if Is_Array_Type (Typ)
8298 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
8299 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
8300 then
8301 Set_Default_Aspect_Component_Value (Typ,
8302 Default_Aspect_Component_Value
8303 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
8304 end if;
8305
29a9d4be 8306 -- Default_Value
99a2d5bd 8307
8308 if Is_Scalar_Type (Typ)
8309 and then Has_Rep_Item (Typ, Name_Default_Value, False)
8310 and then Has_Rep_Item (Typ, Name_Default_Value)
8311 then
8312 Set_Default_Aspect_Value (Typ,
8313 Default_Aspect_Value
8314 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
8315 end if;
8316
8317 -- Discard_Names
8318
8319 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
8320 and then Has_Rep_Item (Typ, Name_Discard_Names)
8321 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8322 (Get_Rep_Item (Typ, Name_Discard_Names))
8323 then
8324 Set_Discard_Names (Typ);
8325 end if;
8326
8327 -- Invariants
8328
8329 if not Has_Rep_Item (Typ, Name_Invariant, False)
8330 and then Has_Rep_Item (Typ, Name_Invariant)
8331 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8332 (Get_Rep_Item (Typ, Name_Invariant))
8333 then
8334 Set_Has_Invariants (Typ);
8335
8336 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
8337 Set_Has_Inheritable_Invariants (Typ);
8338 end if;
8339 end if;
8340
8341 -- Volatile
8342
8343 if not Has_Rep_Item (Typ, Name_Volatile, False)
8344 and then Has_Rep_Item (Typ, Name_Volatile)
8345 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8346 (Get_Rep_Item (Typ, Name_Volatile))
8347 then
8348 Set_Treat_As_Volatile (Typ);
8349 Set_Is_Volatile (Typ);
8350 end if;
8351
8352 -- Inheritance for derived types only
8353
8354 if Is_Derived_Type (Typ) then
8355 declare
8356 Bas_Typ : constant Entity_Id := Base_Type (Typ);
8357 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
8358
8359 begin
8360 -- Atomic_Components
8361
8362 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
8363 and then Has_Rep_Item (Typ, Name_Atomic_Components)
8364 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8365 (Get_Rep_Item (Typ, Name_Atomic_Components))
8366 then
8367 Set_Has_Atomic_Components (Imp_Bas_Typ);
8368 end if;
8369
8370 -- Volatile_Components
8371
8372 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
8373 and then Has_Rep_Item (Typ, Name_Volatile_Components)
8374 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8375 (Get_Rep_Item (Typ, Name_Volatile_Components))
8376 then
8377 Set_Has_Volatile_Components (Imp_Bas_Typ);
8378 end if;
8379
8380 -- Finalize_Storage_Only.
8381
8382 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
8383 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
8384 then
8385 Set_Finalize_Storage_Only (Bas_Typ);
8386 end if;
8387
8388 -- Universal_Aliasing
8389
8390 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
8391 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
8392 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
8393 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
8394 then
8395 Set_Universal_Aliasing (Imp_Bas_Typ);
8396 end if;
8397
8398 -- Record type specific aspects
8399
8400 if Is_Record_Type (Typ) then
29a9d4be 8401
99a2d5bd 8402 -- Bit_Order
8403
8404 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
8405 and then Has_Rep_Item (Typ, Name_Bit_Order)
8406 then
8407 Set_Reverse_Bit_Order (Bas_Typ,
8408 Reverse_Bit_Order (Entity (Name
8409 (Get_Rep_Item (Typ, Name_Bit_Order)))));
8410 end if;
8411
8412 -- Scalar_Storage_Order
8413
8414 if not Has_Rep_Item (Typ, Name_Scalar_Storage_Order, False)
8415 and then Has_Rep_Item (Typ, Name_Scalar_Storage_Order)
8416 then
8417 Set_Reverse_Storage_Order (Bas_Typ,
8418 Reverse_Storage_Order (Entity (Name
8419 (Get_Rep_Item (Typ, Name_Scalar_Storage_Order)))));
8420 end if;
8421 end if;
8422 end;
8423 end if;
8424 end Inherit_Aspects_At_Freeze_Point;
8425
d6f39728 8426 ----------------
8427 -- Initialize --
8428 ----------------
8429
8430 procedure Initialize is
8431 begin
7717ea00 8432 Address_Clause_Checks.Init;
8433 Independence_Checks.Init;
d6f39728 8434 Unchecked_Conversions.Init;
8435 end Initialize;
8436
8437 -------------------------
8438 -- Is_Operational_Item --
8439 -------------------------
8440
8441 function Is_Operational_Item (N : Node_Id) return Boolean is
8442 begin
8443 if Nkind (N) /= N_Attribute_Definition_Clause then
8444 return False;
b9e61b2a 8445
d6f39728 8446 else
8447 declare
b9e61b2a 8448 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 8449 begin
b9e61b2a 8450 return Id = Attribute_Input
d6f39728 8451 or else Id = Attribute_Output
8452 or else Id = Attribute_Read
f15731c4 8453 or else Id = Attribute_Write
8454 or else Id = Attribute_External_Tag;
d6f39728 8455 end;
8456 end if;
8457 end Is_Operational_Item;
8458
8459 ------------------
8460 -- Minimum_Size --
8461 ------------------
8462
8463 function Minimum_Size
8464 (T : Entity_Id;
d5b349fa 8465 Biased : Boolean := False) return Nat
d6f39728 8466 is
8467 Lo : Uint := No_Uint;
8468 Hi : Uint := No_Uint;
8469 LoR : Ureal := No_Ureal;
8470 HiR : Ureal := No_Ureal;
8471 LoSet : Boolean := False;
8472 HiSet : Boolean := False;
8473 B : Uint;
8474 S : Nat;
8475 Ancest : Entity_Id;
f15731c4 8476 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 8477
8478 begin
8479 -- If bad type, return 0
8480
8481 if T = Any_Type then
8482 return 0;
8483
8484 -- For generic types, just return zero. There cannot be any legitimate
8485 -- need to know such a size, but this routine may be called with a
8486 -- generic type as part of normal processing.
8487
f15731c4 8488 elsif Is_Generic_Type (R_Typ)
8489 or else R_Typ = Any_Type
8490 then
d6f39728 8491 return 0;
8492
93735cb8 8493 -- Access types. Normally an access type cannot have a size smaller
8494 -- than the size of System.Address. The exception is on VMS, where
8495 -- we have short and long addresses, and it is possible for an access
8496 -- type to have a short address size (and thus be less than the size
8497 -- of System.Address itself). We simply skip the check for VMS, and
fdd294d1 8498 -- leave it to the back end to do the check.
d6f39728 8499
8500 elsif Is_Access_Type (T) then
93735cb8 8501 if OpenVMS_On_Target then
8502 return 0;
8503 else
8504 return System_Address_Size;
8505 end if;
d6f39728 8506
8507 -- Floating-point types
8508
8509 elsif Is_Floating_Point_Type (T) then
f15731c4 8510 return UI_To_Int (Esize (R_Typ));
d6f39728 8511
8512 -- Discrete types
8513
8514 elsif Is_Discrete_Type (T) then
8515
fdd294d1 8516 -- The following loop is looking for the nearest compile time known
8517 -- bounds following the ancestor subtype chain. The idea is to find
8518 -- the most restrictive known bounds information.
d6f39728 8519
8520 Ancest := T;
8521 loop
8522 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
8523 return 0;
8524 end if;
8525
8526 if not LoSet then
8527 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
8528 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
8529 LoSet := True;
8530 exit when HiSet;
8531 end if;
8532 end if;
8533
8534 if not HiSet then
8535 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
8536 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
8537 HiSet := True;
8538 exit when LoSet;
8539 end if;
8540 end if;
8541
8542 Ancest := Ancestor_Subtype (Ancest);
8543
8544 if No (Ancest) then
8545 Ancest := Base_Type (T);
8546
8547 if Is_Generic_Type (Ancest) then
8548 return 0;
8549 end if;
8550 end if;
8551 end loop;
8552
8553 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 8554 -- Corresponding_Integer_Value values of the bounds, since these do not
8555 -- get set till the type is frozen, and this routine can be called
8556 -- before the type is frozen. Similarly the test for bounds being static
8557 -- needs to include the case where we have unanalyzed real literals for
8558 -- the same reason.
d6f39728 8559
8560 elsif Is_Fixed_Point_Type (T) then
8561
fdd294d1 8562 -- The following loop is looking for the nearest compile time known
8563 -- bounds following the ancestor subtype chain. The idea is to find
8564 -- the most restrictive known bounds information.
d6f39728 8565
8566 Ancest := T;
8567 loop
8568 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
8569 return 0;
8570 end if;
8571
3062c401 8572 -- Note: In the following two tests for LoSet and HiSet, it may
8573 -- seem redundant to test for N_Real_Literal here since normally
8574 -- one would assume that the test for the value being known at
8575 -- compile time includes this case. However, there is a glitch.
8576 -- If the real literal comes from folding a non-static expression,
8577 -- then we don't consider any non- static expression to be known
8578 -- at compile time if we are in configurable run time mode (needed
8579 -- in some cases to give a clearer definition of what is and what
8580 -- is not accepted). So the test is indeed needed. Without it, we
8581 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
8582
d6f39728 8583 if not LoSet then
8584 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
8585 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
8586 then
8587 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
8588 LoSet := True;
8589 exit when HiSet;
8590 end if;
8591 end if;
8592
8593 if not HiSet then
8594 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
8595 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
8596 then
8597 HiR := Expr_Value_R (Type_High_Bound (Ancest));
8598 HiSet := True;
8599 exit when LoSet;
8600 end if;
8601 end if;
8602
8603 Ancest := Ancestor_Subtype (Ancest);
8604
8605 if No (Ancest) then
8606 Ancest := Base_Type (T);
8607
8608 if Is_Generic_Type (Ancest) then
8609 return 0;
8610 end if;
8611 end if;
8612 end loop;
8613
8614 Lo := UR_To_Uint (LoR / Small_Value (T));
8615 Hi := UR_To_Uint (HiR / Small_Value (T));
8616
8617 -- No other types allowed
8618
8619 else
8620 raise Program_Error;
8621 end if;
8622
2866d595 8623 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 8624
cc46ff4b 8625 if (Biased
8626 and then not Is_Fixed_Point_Type (T)
8627 and then not (Is_Enumeration_Type (T)
8628 and then Has_Non_Standard_Rep (T)))
d6f39728 8629 or else Has_Biased_Representation (T)
8630 then
8631 Hi := Hi - Lo;
8632 Lo := Uint_0;
8633 end if;
8634
8635 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 8636 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 8637 -- to be accommodated in the base type.
d6f39728 8638
8639 if Lo < 0 or else Hi < 0 then
8640 S := 1;
8641 B := Uint_1;
8642
da253936 8643 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
8644 -- Note that we accommodate the case where the bounds cross. This
d6f39728 8645 -- can happen either because of the way the bounds are declared
8646 -- or because of the algorithm in Freeze_Fixed_Point_Type.
8647
8648 while Lo < -B
8649 or else Hi < -B
8650 or else Lo >= B
8651 or else Hi >= B
8652 loop
8653 B := Uint_2 ** S;
8654 S := S + 1;
8655 end loop;
8656
8657 -- Unsigned case
8658
8659 else
8660 -- If both bounds are positive, make sure that both are represen-
8661 -- table in the case where the bounds are crossed. This can happen
8662 -- either because of the way the bounds are declared, or because of
8663 -- the algorithm in Freeze_Fixed_Point_Type.
8664
8665 if Lo > Hi then
8666 Hi := Lo;
8667 end if;
8668
da253936 8669 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 8670
8671 S := 0;
8672 while Hi >= Uint_2 ** S loop
8673 S := S + 1;
8674 end loop;
8675 end if;
8676
8677 return S;
8678 end Minimum_Size;
8679
44e4341e 8680 ---------------------------
8681 -- New_Stream_Subprogram --
8682 ---------------------------
d6f39728 8683
44e4341e 8684 procedure New_Stream_Subprogram
8685 (N : Node_Id;
8686 Ent : Entity_Id;
8687 Subp : Entity_Id;
8688 Nam : TSS_Name_Type)
d6f39728 8689 is
8690 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 8691 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 8692 Subp_Id : Entity_Id;
d6f39728 8693 Subp_Decl : Node_Id;
8694 F : Entity_Id;
8695 Etyp : Entity_Id;
8696
44e4341e 8697 Defer_Declaration : constant Boolean :=
8698 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
8699 -- For a tagged type, there is a declaration for each stream attribute
8700 -- at the freeze point, and we must generate only a completion of this
8701 -- declaration. We do the same for private types, because the full view
8702 -- might be tagged. Otherwise we generate a declaration at the point of
8703 -- the attribute definition clause.
8704
f15731c4 8705 function Build_Spec return Node_Id;
8706 -- Used for declaration and renaming declaration, so that this is
8707 -- treated as a renaming_as_body.
8708
8709 ----------------
8710 -- Build_Spec --
8711 ----------------
8712
d5b349fa 8713 function Build_Spec return Node_Id is
44e4341e 8714 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
8715 Formals : List_Id;
8716 Spec : Node_Id;
8717 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
8718
f15731c4 8719 begin
9dfe12ae 8720 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 8721
44e4341e 8722 -- S : access Root_Stream_Type'Class
8723
8724 Formals := New_List (
8725 Make_Parameter_Specification (Loc,
8726 Defining_Identifier =>
8727 Make_Defining_Identifier (Loc, Name_S),
8728 Parameter_Type =>
8729 Make_Access_Definition (Loc,
8730 Subtype_Mark =>
8731 New_Reference_To (
8732 Designated_Type (Etype (F)), Loc))));
8733
8734 if Nam = TSS_Stream_Input then
8735 Spec := Make_Function_Specification (Loc,
8736 Defining_Unit_Name => Subp_Id,
8737 Parameter_Specifications => Formals,
8738 Result_Definition => T_Ref);
8739 else
8740 -- V : [out] T
f15731c4 8741
44e4341e 8742 Append_To (Formals,
8743 Make_Parameter_Specification (Loc,
8744 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
8745 Out_Present => Out_P,
8746 Parameter_Type => T_Ref));
f15731c4 8747
d3ef794c 8748 Spec :=
8749 Make_Procedure_Specification (Loc,
8750 Defining_Unit_Name => Subp_Id,
8751 Parameter_Specifications => Formals);
44e4341e 8752 end if;
f15731c4 8753
44e4341e 8754 return Spec;
8755 end Build_Spec;
d6f39728 8756
44e4341e 8757 -- Start of processing for New_Stream_Subprogram
d6f39728 8758
44e4341e 8759 begin
8760 F := First_Formal (Subp);
8761
8762 if Ekind (Subp) = E_Procedure then
8763 Etyp := Etype (Next_Formal (F));
d6f39728 8764 else
44e4341e 8765 Etyp := Etype (Subp);
d6f39728 8766 end if;
f15731c4 8767
44e4341e 8768 -- Prepare subprogram declaration and insert it as an action on the
8769 -- clause node. The visibility for this entity is used to test for
8770 -- visibility of the attribute definition clause (in the sense of
8771 -- 8.3(23) as amended by AI-195).
9dfe12ae 8772
44e4341e 8773 if not Defer_Declaration then
f15731c4 8774 Subp_Decl :=
8775 Make_Subprogram_Declaration (Loc,
8776 Specification => Build_Spec);
44e4341e 8777
8778 -- For a tagged type, there is always a visible declaration for each
15ebb600 8779 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 8780 -- completion of this declaration occurs at the freeze point, which is
8781 -- not always visible at places where the attribute definition clause is
8782 -- visible. So, we create a dummy entity here for the purpose of
8783 -- tracking the visibility of the attribute definition clause itself.
8784
8785 else
8786 Subp_Id :=
55868293 8787 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 8788 Subp_Decl :=
8789 Make_Object_Declaration (Loc,
8790 Defining_Identifier => Subp_Id,
8791 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 8792 end if;
8793
44e4341e 8794 Insert_Action (N, Subp_Decl);
8795 Set_Entity (N, Subp_Id);
8796
d6f39728 8797 Subp_Decl :=
8798 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 8799 Specification => Build_Spec,
8800 Name => New_Reference_To (Subp, Loc));
d6f39728 8801
44e4341e 8802 if Defer_Declaration then
d6f39728 8803 Set_TSS (Base_Type (Ent), Subp_Id);
8804 else
8805 Insert_Action (N, Subp_Decl);
8806 Copy_TSS (Subp_Id, Base_Type (Ent));
8807 end if;
44e4341e 8808 end New_Stream_Subprogram;
d6f39728 8809
d6f39728 8810 ------------------------
8811 -- Rep_Item_Too_Early --
8812 ------------------------
8813
80d4fec4 8814 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 8815 begin
44e4341e 8816 -- Cannot apply non-operational rep items to generic types
d6f39728 8817
f15731c4 8818 if Is_Operational_Item (N) then
8819 return False;
8820
8821 elsif Is_Type (T)
d6f39728 8822 and then Is_Generic_Type (Root_Type (T))
8823 then
503f7fd3 8824 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 8825 return True;
8826 end if;
8827
fdd294d1 8828 -- Otherwise check for incomplete type
d6f39728 8829
8830 if Is_Incomplete_Or_Private_Type (T)
8831 and then No (Underlying_Type (T))
d64221a7 8832 and then
8833 (Nkind (N) /= N_Pragma
60014bc9 8834 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 8835 then
8836 Error_Msg_N
8837 ("representation item must be after full type declaration", N);
8838 return True;
8839
1a34e48c 8840 -- If the type has incomplete components, a representation clause is
d6f39728 8841 -- illegal but stream attributes and Convention pragmas are correct.
8842
8843 elsif Has_Private_Component (T) then
f15731c4 8844 if Nkind (N) = N_Pragma then
d6f39728 8845 return False;
b9e61b2a 8846
d6f39728 8847 else
8848 Error_Msg_N
8849 ("representation item must appear after type is fully defined",
8850 N);
8851 return True;
8852 end if;
8853 else
8854 return False;
8855 end if;
8856 end Rep_Item_Too_Early;
8857
8858 -----------------------
8859 -- Rep_Item_Too_Late --
8860 -----------------------
8861
8862 function Rep_Item_Too_Late
8863 (T : Entity_Id;
8864 N : Node_Id;
d5b349fa 8865 FOnly : Boolean := False) return Boolean
d6f39728 8866 is
8867 S : Entity_Id;
8868 Parent_Type : Entity_Id;
8869
8870 procedure Too_Late;
d53a018a 8871 -- Output the too late message. Note that this is not considered a
8872 -- serious error, since the effect is simply that we ignore the
8873 -- representation clause in this case.
8874
8875 --------------
8876 -- Too_Late --
8877 --------------
d6f39728 8878
8879 procedure Too_Late is
8880 begin
d53a018a 8881 Error_Msg_N ("|representation item appears too late!", N);
d6f39728 8882 end Too_Late;
8883
8884 -- Start of processing for Rep_Item_Too_Late
8885
8886 begin
a3248fc4 8887 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 8888
8889 if Is_Frozen (T)
a3248fc4 8890
8891 -- Exclude imported types, which may be frozen if they appear in a
8892 -- representation clause for a local type.
8893
d6f39728 8894 and then not From_With_Type (T)
a3248fc4 8895
8896 -- Exclude generated entitiesa (not coming from source). The common
8897 -- case is when we generate a renaming which prematurely freezes the
8898 -- renamed internal entity, but we still want to be able to set copies
8899 -- of attribute values such as Size/Alignment.
8900
8901 and then Comes_From_Source (T)
d6f39728 8902 then
8903 Too_Late;
8904 S := First_Subtype (T);
8905
8906 if Present (Freeze_Node (S)) then
8907 Error_Msg_NE
1e3532e7 8908 ("??no more representation items for }", Freeze_Node (S), S);
d6f39728 8909 end if;
8910
8911 return True;
8912
8913 -- Check for case of non-tagged derived type whose parent either has
8914 -- primitive operations, or is a by reference type (RM 13.1(10)).
8915
8916 elsif Is_Type (T)
8917 and then not FOnly
8918 and then Is_Derived_Type (T)
8919 and then not Is_Tagged_Type (T)
8920 then
8921 Parent_Type := Etype (Base_Type (T));
8922
8923 if Has_Primitive_Operations (Parent_Type) then
8924 Too_Late;
8925 Error_Msg_NE
8926 ("primitive operations already defined for&!", N, Parent_Type);
8927 return True;
8928
8929 elsif Is_By_Reference_Type (Parent_Type) then
8930 Too_Late;
8931 Error_Msg_NE
8932 ("parent type & is a by reference type!", N, Parent_Type);
8933 return True;
8934 end if;
8935 end if;
8936
3062c401 8937 -- No error, link item into head of chain of rep items for the entity,
8938 -- but avoid chaining if we have an overloadable entity, and the pragma
8939 -- is one that can apply to multiple overloaded entities.
8940
b9e61b2a 8941 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 8942 declare
8943 Pname : constant Name_Id := Pragma_Name (N);
8944 begin
8945 if Pname = Name_Convention or else
8946 Pname = Name_Import or else
8947 Pname = Name_Export or else
8948 Pname = Name_External or else
8949 Pname = Name_Interface
8950 then
8951 return False;
8952 end if;
8953 end;
3062c401 8954 end if;
8955
fdd294d1 8956 Record_Rep_Item (T, N);
d6f39728 8957 return False;
8958 end Rep_Item_Too_Late;
8959
2072eaa9 8960 -------------------------------------
8961 -- Replace_Type_References_Generic --
8962 -------------------------------------
8963
8964 procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
8965
8966 function Replace_Node (N : Node_Id) return Traverse_Result;
8967 -- Processes a single node in the traversal procedure below, checking
8968 -- if node N should be replaced, and if so, doing the replacement.
8969
8970 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
8971 -- This instantiation provides the body of Replace_Type_References
8972
8973 ------------------
8974 -- Replace_Node --
8975 ------------------
8976
8977 function Replace_Node (N : Node_Id) return Traverse_Result is
8978 S : Entity_Id;
8979 P : Node_Id;
8980
8981 begin
8982 -- Case of identifier
8983
8984 if Nkind (N) = N_Identifier then
8985
8986 -- If not the type name, all done with this node
8987
8988 if Chars (N) /= TName then
8989 return Skip;
8990
8991 -- Otherwise do the replacement and we are done with this node
8992
8993 else
8994 Replace_Type_Reference (N);
8995 return Skip;
8996 end if;
8997
8998 -- Case of selected component (which is what a qualification
8999 -- looks like in the unanalyzed tree, which is what we have.
9000
9001 elsif Nkind (N) = N_Selected_Component then
9002
9003 -- If selector name is not our type, keeping going (we might
9004 -- still have an occurrence of the type in the prefix).
9005
9006 if Nkind (Selector_Name (N)) /= N_Identifier
9007 or else Chars (Selector_Name (N)) /= TName
9008 then
9009 return OK;
9010
9011 -- Selector name is our type, check qualification
9012
9013 else
9014 -- Loop through scopes and prefixes, doing comparison
9015
9016 S := Current_Scope;
9017 P := Prefix (N);
9018 loop
9019 -- Continue if no more scopes or scope with no name
9020
9021 if No (S) or else Nkind (S) not in N_Has_Chars then
9022 return OK;
9023 end if;
9024
9025 -- Do replace if prefix is an identifier matching the
9026 -- scope that we are currently looking at.
9027
9028 if Nkind (P) = N_Identifier
9029 and then Chars (P) = Chars (S)
9030 then
9031 Replace_Type_Reference (N);
9032 return Skip;
9033 end if;
9034
9035 -- Go check scope above us if prefix is itself of the
9036 -- form of a selected component, whose selector matches
9037 -- the scope we are currently looking at.
9038
9039 if Nkind (P) = N_Selected_Component
9040 and then Nkind (Selector_Name (P)) = N_Identifier
9041 and then Chars (Selector_Name (P)) = Chars (S)
9042 then
9043 S := Scope (S);
9044 P := Prefix (P);
9045
9046 -- For anything else, we don't have a match, so keep on
9047 -- going, there are still some weird cases where we may
9048 -- still have a replacement within the prefix.
9049
9050 else
9051 return OK;
9052 end if;
9053 end loop;
9054 end if;
9055
9056 -- Continue for any other node kind
9057
9058 else
9059 return OK;
9060 end if;
9061 end Replace_Node;
9062
9063 begin
9064 Replace_Type_Refs (N);
9065 end Replace_Type_References_Generic;
9066
d6f39728 9067 -------------------------
9068 -- Same_Representation --
9069 -------------------------
9070
9071 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
9072 T1 : constant Entity_Id := Underlying_Type (Typ1);
9073 T2 : constant Entity_Id := Underlying_Type (Typ2);
9074
9075 begin
9076 -- A quick check, if base types are the same, then we definitely have
9077 -- the same representation, because the subtype specific representation
9078 -- attributes (Size and Alignment) do not affect representation from
9079 -- the point of view of this test.
9080
9081 if Base_Type (T1) = Base_Type (T2) then
9082 return True;
9083
9084 elsif Is_Private_Type (Base_Type (T2))
9085 and then Base_Type (T1) = Full_View (Base_Type (T2))
9086 then
9087 return True;
9088 end if;
9089
9090 -- Tagged types never have differing representations
9091
9092 if Is_Tagged_Type (T1) then
9093 return True;
9094 end if;
9095
9096 -- Representations are definitely different if conventions differ
9097
9098 if Convention (T1) /= Convention (T2) then
9099 return False;
9100 end if;
9101
9102 -- Representations are different if component alignments differ
9103
9104 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
9105 and then
9106 (Is_Record_Type (T2) or else Is_Array_Type (T2))
9107 and then Component_Alignment (T1) /= Component_Alignment (T2)
9108 then
9109 return False;
9110 end if;
9111
9112 -- For arrays, the only real issue is component size. If we know the
9113 -- component size for both arrays, and it is the same, then that's
9114 -- good enough to know we don't have a change of representation.
9115
9116 if Is_Array_Type (T1) then
9117 if Known_Component_Size (T1)
9118 and then Known_Component_Size (T2)
9119 and then Component_Size (T1) = Component_Size (T2)
9120 then
9f1130cc 9121 if VM_Target = No_VM then
9122 return True;
9123
9124 -- In VM targets the representation of arrays with aliased
9125 -- components differs from arrays with non-aliased components
9126
9127 else
9128 return Has_Aliased_Components (Base_Type (T1))
0ba3592b 9129 =
9130 Has_Aliased_Components (Base_Type (T2));
9f1130cc 9131 end if;
d6f39728 9132 end if;
9133 end if;
9134
9135 -- Types definitely have same representation if neither has non-standard
9136 -- representation since default representations are always consistent.
9137 -- If only one has non-standard representation, and the other does not,
9138 -- then we consider that they do not have the same representation. They
9139 -- might, but there is no way of telling early enough.
9140
9141 if Has_Non_Standard_Rep (T1) then
9142 if not Has_Non_Standard_Rep (T2) then
9143 return False;
9144 end if;
9145 else
9146 return not Has_Non_Standard_Rep (T2);
9147 end if;
9148
fdd294d1 9149 -- Here the two types both have non-standard representation, and we need
9150 -- to determine if they have the same non-standard representation.
d6f39728 9151
9152 -- For arrays, we simply need to test if the component sizes are the
9153 -- same. Pragma Pack is reflected in modified component sizes, so this
9154 -- check also deals with pragma Pack.
9155
9156 if Is_Array_Type (T1) then
9157 return Component_Size (T1) = Component_Size (T2);
9158
9159 -- Tagged types always have the same representation, because it is not
9160 -- possible to specify different representations for common fields.
9161
9162 elsif Is_Tagged_Type (T1) then
9163 return True;
9164
9165 -- Case of record types
9166
9167 elsif Is_Record_Type (T1) then
9168
9169 -- Packed status must conform
9170
9171 if Is_Packed (T1) /= Is_Packed (T2) then
9172 return False;
9173
9174 -- Otherwise we must check components. Typ2 maybe a constrained
9175 -- subtype with fewer components, so we compare the components
9176 -- of the base types.
9177
9178 else
9179 Record_Case : declare
9180 CD1, CD2 : Entity_Id;
9181
9182 function Same_Rep return Boolean;
9183 -- CD1 and CD2 are either components or discriminants. This
9184 -- function tests whether the two have the same representation
9185
80d4fec4 9186 --------------
9187 -- Same_Rep --
9188 --------------
9189
d6f39728 9190 function Same_Rep return Boolean is
9191 begin
9192 if No (Component_Clause (CD1)) then
9193 return No (Component_Clause (CD2));
9194
9195 else
9196 return
9197 Present (Component_Clause (CD2))
9198 and then
9199 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
9200 and then
9201 Esize (CD1) = Esize (CD2);
9202 end if;
9203 end Same_Rep;
9204
1e35409d 9205 -- Start of processing for Record_Case
d6f39728 9206
9207 begin
9208 if Has_Discriminants (T1) then
d6f39728 9209
9dfe12ae 9210 -- The number of discriminants may be different if the
9211 -- derived type has fewer (constrained by values). The
9212 -- invisible discriminants retain the representation of
9213 -- the original, so the discrepancy does not per se
9214 -- indicate a different representation.
9215
b9e61b2a 9216 CD1 := First_Discriminant (T1);
9217 CD2 := First_Discriminant (T2);
9218 while Present (CD1) and then Present (CD2) loop
d6f39728 9219 if not Same_Rep then
9220 return False;
9221 else
9222 Next_Discriminant (CD1);
9223 Next_Discriminant (CD2);
9224 end if;
9225 end loop;
9226 end if;
9227
9228 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
9229 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 9230 while Present (CD1) loop
9231 if not Same_Rep then
9232 return False;
9233 else
9234 Next_Component (CD1);
9235 Next_Component (CD2);
9236 end if;
9237 end loop;
9238
9239 return True;
9240 end Record_Case;
9241 end if;
9242
9243 -- For enumeration types, we must check each literal to see if the
9244 -- representation is the same. Note that we do not permit enumeration
1a34e48c 9245 -- representation clauses for Character and Wide_Character, so these
d6f39728 9246 -- cases were already dealt with.
9247
9248 elsif Is_Enumeration_Type (T1) then
d6f39728 9249 Enumeration_Case : declare
9250 L1, L2 : Entity_Id;
9251
9252 begin
9253 L1 := First_Literal (T1);
9254 L2 := First_Literal (T2);
d6f39728 9255 while Present (L1) loop
9256 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
9257 return False;
9258 else
9259 Next_Literal (L1);
9260 Next_Literal (L2);
9261 end if;
9262 end loop;
9263
9264 return True;
d6f39728 9265 end Enumeration_Case;
9266
9267 -- Any other types have the same representation for these purposes
9268
9269 else
9270 return True;
9271 end if;
d6f39728 9272 end Same_Representation;
9273
b77e4501 9274 ----------------
9275 -- Set_Biased --
9276 ----------------
9277
9278 procedure Set_Biased
9279 (E : Entity_Id;
9280 N : Node_Id;
9281 Msg : String;
9282 Biased : Boolean := True)
9283 is
9284 begin
9285 if Biased then
9286 Set_Has_Biased_Representation (E);
9287
9288 if Warn_On_Biased_Representation then
9289 Error_Msg_NE
1e3532e7 9290 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 9291 end if;
9292 end if;
9293 end Set_Biased;
9294
d6f39728 9295 --------------------
9296 -- Set_Enum_Esize --
9297 --------------------
9298
9299 procedure Set_Enum_Esize (T : Entity_Id) is
9300 Lo : Uint;
9301 Hi : Uint;
9302 Sz : Nat;
9303
9304 begin
9305 Init_Alignment (T);
9306
9307 -- Find the minimum standard size (8,16,32,64) that fits
9308
9309 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
9310 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
9311
9312 if Lo < 0 then
9313 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 9314 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 9315
9316 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
9317 Sz := 16;
9318
9319 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
9320 Sz := 32;
9321
9322 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
9323 Sz := 64;
9324 end if;
9325
9326 else
9327 if Hi < Uint_2**08 then
f15731c4 9328 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 9329
9330 elsif Hi < Uint_2**16 then
9331 Sz := 16;
9332
9333 elsif Hi < Uint_2**32 then
9334 Sz := 32;
9335
9336 else pragma Assert (Hi < Uint_2**63);
9337 Sz := 64;
9338 end if;
9339 end if;
9340
9341 -- That minimum is the proper size unless we have a foreign convention
9342 -- and the size required is 32 or less, in which case we bump the size
9343 -- up to 32. This is required for C and C++ and seems reasonable for
9344 -- all other foreign conventions.
9345
9346 if Has_Foreign_Convention (T)
9347 and then Esize (T) < Standard_Integer_Size
9348 then
9349 Init_Esize (T, Standard_Integer_Size);
d6f39728 9350 else
9351 Init_Esize (T, Sz);
9352 end if;
d6f39728 9353 end Set_Enum_Esize;
9354
83f8f0a6 9355 ------------------------------
9356 -- Validate_Address_Clauses --
9357 ------------------------------
9358
9359 procedure Validate_Address_Clauses is
9360 begin
9361 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
9362 declare
9363 ACCR : Address_Clause_Check_Record
9364 renames Address_Clause_Checks.Table (J);
9365
d6da7448 9366 Expr : Node_Id;
9367
83f8f0a6 9368 X_Alignment : Uint;
9369 Y_Alignment : Uint;
9370
9371 X_Size : Uint;
9372 Y_Size : Uint;
9373
9374 begin
9375 -- Skip processing of this entry if warning already posted
9376
9377 if not Address_Warning_Posted (ACCR.N) then
d6da7448 9378 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 9379
d6da7448 9380 -- Get alignments
83f8f0a6 9381
d6da7448 9382 X_Alignment := Alignment (ACCR.X);
9383 Y_Alignment := Alignment (ACCR.Y);
83f8f0a6 9384
9385 -- Similarly obtain sizes
9386
d6da7448 9387 X_Size := Esize (ACCR.X);
9388 Y_Size := Esize (ACCR.Y);
83f8f0a6 9389
9390 -- Check for large object overlaying smaller one
9391
9392 if Y_Size > Uint_0
9393 and then X_Size > Uint_0
9394 and then X_Size > Y_Size
9395 then
d6da7448 9396 Error_Msg_NE
9397 ("?& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 9398 Error_Msg_N
1e3532e7 9399 ("\??program execution may be erroneous", ACCR.N);
83f8f0a6 9400 Error_Msg_Uint_1 := X_Size;
9401 Error_Msg_NE
1e3532e7 9402 ("\??size of & is ^", ACCR.N, ACCR.X);
83f8f0a6 9403 Error_Msg_Uint_1 := Y_Size;
9404 Error_Msg_NE
1e3532e7 9405 ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 9406
d6da7448 9407 -- Check for inadequate alignment, both of the base object
9408 -- and of the offset, if any.
83f8f0a6 9409
d6da7448 9410 -- Note: we do not check the alignment if we gave a size
9411 -- warning, since it would likely be redundant.
83f8f0a6 9412
9413 elsif Y_Alignment /= Uint_0
d6da7448 9414 and then (Y_Alignment < X_Alignment
9415 or else (ACCR.Off
9416 and then
9417 Nkind (Expr) = N_Attribute_Reference
9418 and then
9419 Attribute_Name (Expr) = Name_Address
9420 and then
9421 Has_Compatible_Alignment
9422 (ACCR.X, Prefix (Expr))
9423 /= Known_Compatible))
83f8f0a6 9424 then
9425 Error_Msg_NE
1e3532e7 9426 ("??specified address for& may be inconsistent "
9427 & "with alignment", ACCR.N, ACCR.X);
83f8f0a6 9428 Error_Msg_N
1e3532e7 9429 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 9430 ACCR.N);
9431 Error_Msg_Uint_1 := X_Alignment;
9432 Error_Msg_NE
1e3532e7 9433 ("\??alignment of & is ^", ACCR.N, ACCR.X);
83f8f0a6 9434 Error_Msg_Uint_1 := Y_Alignment;
9435 Error_Msg_NE
1e3532e7 9436 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
d6da7448 9437 if Y_Alignment >= X_Alignment then
9438 Error_Msg_N
1e3532e7 9439 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 9440 end if;
83f8f0a6 9441 end if;
9442 end if;
9443 end;
9444 end loop;
9445 end Validate_Address_Clauses;
9446
7717ea00 9447 ---------------------------
9448 -- Validate_Independence --
9449 ---------------------------
9450
9451 procedure Validate_Independence is
9452 SU : constant Uint := UI_From_Int (System_Storage_Unit);
9453 N : Node_Id;
9454 E : Entity_Id;
9455 IC : Boolean;
9456 Comp : Entity_Id;
9457 Addr : Node_Id;
9458 P : Node_Id;
9459
9460 procedure Check_Array_Type (Atyp : Entity_Id);
9461 -- Checks if the array type Atyp has independent components, and
9462 -- if not, outputs an appropriate set of error messages.
9463
9464 procedure No_Independence;
9465 -- Output message that independence cannot be guaranteed
9466
9467 function OK_Component (C : Entity_Id) return Boolean;
9468 -- Checks one component to see if it is independently accessible, and
9469 -- if so yields True, otherwise yields False if independent access
9470 -- cannot be guaranteed. This is a conservative routine, it only
9471 -- returns True if it knows for sure, it returns False if it knows
9472 -- there is a problem, or it cannot be sure there is no problem.
9473
9474 procedure Reason_Bad_Component (C : Entity_Id);
9475 -- Outputs continuation message if a reason can be determined for
9476 -- the component C being bad.
9477
9478 ----------------------
9479 -- Check_Array_Type --
9480 ----------------------
9481
9482 procedure Check_Array_Type (Atyp : Entity_Id) is
9483 Ctyp : constant Entity_Id := Component_Type (Atyp);
9484
9485 begin
9486 -- OK if no alignment clause, no pack, and no component size
9487
9488 if not Has_Component_Size_Clause (Atyp)
9489 and then not Has_Alignment_Clause (Atyp)
9490 and then not Is_Packed (Atyp)
9491 then
9492 return;
9493 end if;
9494
9495 -- Check actual component size
9496
9497 if not Known_Component_Size (Atyp)
9498 or else not (Addressable (Component_Size (Atyp))
9499 and then Component_Size (Atyp) < 64)
9500 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
9501 then
9502 No_Independence;
9503
9504 -- Bad component size, check reason
9505
9506 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 9507 P := Get_Attribute_Definition_Clause
9508 (Atyp, Attribute_Component_Size);
7717ea00 9509
9510 if Present (P) then
9511 Error_Msg_Sloc := Sloc (P);
9512 Error_Msg_N ("\because of Component_Size clause#", N);
9513 return;
9514 end if;
9515 end if;
9516
9517 if Is_Packed (Atyp) then
9518 P := Get_Rep_Pragma (Atyp, Name_Pack);
9519
9520 if Present (P) then
9521 Error_Msg_Sloc := Sloc (P);
9522 Error_Msg_N ("\because of pragma Pack#", N);
9523 return;
9524 end if;
9525 end if;
9526
9527 -- No reason found, just return
9528
9529 return;
9530 end if;
9531
9532 -- Array type is OK independence-wise
9533
9534 return;
9535 end Check_Array_Type;
9536
9537 ---------------------
9538 -- No_Independence --
9539 ---------------------
9540
9541 procedure No_Independence is
9542 begin
9543 if Pragma_Name (N) = Name_Independent then
9544 Error_Msg_NE
9545 ("independence cannot be guaranteed for&", N, E);
9546 else
9547 Error_Msg_NE
9548 ("independent components cannot be guaranteed for&", N, E);
9549 end if;
9550 end No_Independence;
9551
9552 ------------------
9553 -- OK_Component --
9554 ------------------
9555
9556 function OK_Component (C : Entity_Id) return Boolean is
9557 Rec : constant Entity_Id := Scope (C);
9558 Ctyp : constant Entity_Id := Etype (C);
9559
9560 begin
9561 -- OK if no component clause, no Pack, and no alignment clause
9562
9563 if No (Component_Clause (C))
9564 and then not Is_Packed (Rec)
9565 and then not Has_Alignment_Clause (Rec)
9566 then
9567 return True;
9568 end if;
9569
9570 -- Here we look at the actual component layout. A component is
9571 -- addressable if its size is a multiple of the Esize of the
9572 -- component type, and its starting position in the record has
9573 -- appropriate alignment, and the record itself has appropriate
9574 -- alignment to guarantee the component alignment.
9575
9576 -- Make sure sizes are static, always assume the worst for any
9577 -- cases where we cannot check static values.
9578
9579 if not (Known_Static_Esize (C)
b9e61b2a 9580 and then
9581 Known_Static_Esize (Ctyp))
7717ea00 9582 then
9583 return False;
9584 end if;
9585
9586 -- Size of component must be addressable or greater than 64 bits
9587 -- and a multiple of bytes.
9588
b9e61b2a 9589 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 9590 return False;
9591 end if;
9592
9593 -- Check size is proper multiple
9594
9595 if Esize (C) mod Esize (Ctyp) /= 0 then
9596 return False;
9597 end if;
9598
9599 -- Check alignment of component is OK
9600
9601 if not Known_Component_Bit_Offset (C)
9602 or else Component_Bit_Offset (C) < Uint_0
9603 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
9604 then
9605 return False;
9606 end if;
9607
9608 -- Check alignment of record type is OK
9609
9610 if not Known_Alignment (Rec)
9611 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
9612 then
9613 return False;
9614 end if;
9615
9616 -- All tests passed, component is addressable
9617
9618 return True;
9619 end OK_Component;
9620
9621 --------------------------
9622 -- Reason_Bad_Component --
9623 --------------------------
9624
9625 procedure Reason_Bad_Component (C : Entity_Id) is
9626 Rec : constant Entity_Id := Scope (C);
9627 Ctyp : constant Entity_Id := Etype (C);
9628
9629 begin
9630 -- If component clause present assume that's the problem
9631
9632 if Present (Component_Clause (C)) then
9633 Error_Msg_Sloc := Sloc (Component_Clause (C));
9634 Error_Msg_N ("\because of Component_Clause#", N);
9635 return;
9636 end if;
9637
9638 -- If pragma Pack clause present, assume that's the problem
9639
9640 if Is_Packed (Rec) then
9641 P := Get_Rep_Pragma (Rec, Name_Pack);
9642
9643 if Present (P) then
9644 Error_Msg_Sloc := Sloc (P);
9645 Error_Msg_N ("\because of pragma Pack#", N);
9646 return;
9647 end if;
9648 end if;
9649
9650 -- See if record has bad alignment clause
9651
9652 if Has_Alignment_Clause (Rec)
9653 and then Known_Alignment (Rec)
9654 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
9655 then
9656 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
9657
9658 if Present (P) then
9659 Error_Msg_Sloc := Sloc (P);
9660 Error_Msg_N ("\because of Alignment clause#", N);
9661 end if;
9662 end if;
9663
9664 -- Couldn't find a reason, so return without a message
9665
9666 return;
9667 end Reason_Bad_Component;
9668
9669 -- Start of processing for Validate_Independence
9670
9671 begin
9672 for J in Independence_Checks.First .. Independence_Checks.Last loop
9673 N := Independence_Checks.Table (J).N;
9674 E := Independence_Checks.Table (J).E;
9675 IC := Pragma_Name (N) = Name_Independent_Components;
9676
9677 -- Deal with component case
9678
9679 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
9680 if not OK_Component (E) then
9681 No_Independence;
9682 Reason_Bad_Component (E);
9683 goto Continue;
9684 end if;
9685 end if;
9686
9687 -- Deal with record with Independent_Components
9688
9689 if IC and then Is_Record_Type (E) then
9690 Comp := First_Component_Or_Discriminant (E);
9691 while Present (Comp) loop
9692 if not OK_Component (Comp) then
9693 No_Independence;
9694 Reason_Bad_Component (Comp);
9695 goto Continue;
9696 end if;
9697
9698 Next_Component_Or_Discriminant (Comp);
9699 end loop;
9700 end if;
9701
9702 -- Deal with address clause case
9703
9704 if Is_Object (E) then
9705 Addr := Address_Clause (E);
9706
9707 if Present (Addr) then
9708 No_Independence;
9709 Error_Msg_Sloc := Sloc (Addr);
9710 Error_Msg_N ("\because of Address clause#", N);
9711 goto Continue;
9712 end if;
9713 end if;
9714
9715 -- Deal with independent components for array type
9716
9717 if IC and then Is_Array_Type (E) then
9718 Check_Array_Type (E);
9719 end if;
9720
9721 -- Deal with independent components for array object
9722
9723 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
9724 Check_Array_Type (Etype (E));
9725 end if;
9726
9727 <<Continue>> null;
9728 end loop;
9729 end Validate_Independence;
9730
d6f39728 9731 -----------------------------------
9732 -- Validate_Unchecked_Conversion --
9733 -----------------------------------
9734
9735 procedure Validate_Unchecked_Conversion
9736 (N : Node_Id;
9737 Act_Unit : Entity_Id)
9738 is
9739 Source : Entity_Id;
9740 Target : Entity_Id;
9741 Vnode : Node_Id;
9742
9743 begin
9744 -- Obtain source and target types. Note that we call Ancestor_Subtype
9745 -- here because the processing for generic instantiation always makes
9746 -- subtypes, and we want the original frozen actual types.
9747
9748 -- If we are dealing with private types, then do the check on their
9749 -- fully declared counterparts if the full declarations have been
9750 -- encountered (they don't have to be visible, but they must exist!)
9751
9752 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
9753
9754 if Is_Private_Type (Source)
9755 and then Present (Underlying_Type (Source))
9756 then
9757 Source := Underlying_Type (Source);
9758 end if;
9759
9760 Target := Ancestor_Subtype (Etype (Act_Unit));
9761
fdd294d1 9762 -- If either type is generic, the instantiation happens within a generic
95deda50 9763 -- unit, and there is nothing to check. The proper check will happen
9764 -- when the enclosing generic is instantiated.
d6f39728 9765
9766 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
9767 return;
9768 end if;
9769
9770 if Is_Private_Type (Target)
9771 and then Present (Underlying_Type (Target))
9772 then
9773 Target := Underlying_Type (Target);
9774 end if;
9775
9776 -- Source may be unconstrained array, but not target
9777
b9e61b2a 9778 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
d6f39728 9779 Error_Msg_N
9780 ("unchecked conversion to unconstrained array not allowed", N);
9781 return;
9782 end if;
9783
fbc67f84 9784 -- Warn if conversion between two different convention pointers
9785
9786 if Is_Access_Type (Target)
9787 and then Is_Access_Type (Source)
9788 and then Convention (Target) /= Convention (Source)
9789 and then Warn_On_Unchecked_Conversion
9790 then
fdd294d1 9791 -- Give warnings for subprogram pointers only on most targets. The
9792 -- exception is VMS, where data pointers can have different lengths
9793 -- depending on the pointer convention.
9794
9795 if Is_Access_Subprogram_Type (Target)
9796 or else Is_Access_Subprogram_Type (Source)
9797 or else OpenVMS_On_Target
9798 then
9799 Error_Msg_N
cb97ae5c 9800 ("?z?conversion between pointers with different conventions!",
1e3532e7 9801 N);
fdd294d1 9802 end if;
fbc67f84 9803 end if;
9804
3062c401 9805 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
9806 -- warning when compiling GNAT-related sources.
9807
9808 if Warn_On_Unchecked_Conversion
9809 and then not In_Predefined_Unit (N)
9810 and then RTU_Loaded (Ada_Calendar)
9811 and then
9812 (Chars (Source) = Name_Time
9813 or else
9814 Chars (Target) = Name_Time)
9815 then
9816 -- If Ada.Calendar is loaded and the name of one of the operands is
9817 -- Time, there is a good chance that this is Ada.Calendar.Time.
9818
9819 declare
9820 Calendar_Time : constant Entity_Id :=
9821 Full_View (RTE (RO_CA_Time));
9822 begin
9823 pragma Assert (Present (Calendar_Time));
9824
b9e61b2a 9825 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 9826 Error_Msg_N
cb97ae5c 9827 ("?z?representation of 'Time values may change between " &
3062c401 9828 "'G'N'A'T versions", N);
9829 end if;
9830 end;
9831 end if;
9832
fdd294d1 9833 -- Make entry in unchecked conversion table for later processing by
9834 -- Validate_Unchecked_Conversions, which will check sizes and alignments
9835 -- (using values set by the back-end where possible). This is only done
9836 -- if the appropriate warning is active.
d6f39728 9837
9dfe12ae 9838 if Warn_On_Unchecked_Conversion then
9839 Unchecked_Conversions.Append
b9e61b2a 9840 (New_Val => UC_Entry'(Eloc => Sloc (N),
9841 Source => Source,
9842 Target => Target));
9dfe12ae 9843
9844 -- If both sizes are known statically now, then back end annotation
9845 -- is not required to do a proper check but if either size is not
9846 -- known statically, then we need the annotation.
9847
9848 if Known_Static_RM_Size (Source)
1e3532e7 9849 and then
9850 Known_Static_RM_Size (Target)
9dfe12ae 9851 then
9852 null;
9853 else
9854 Back_Annotate_Rep_Info := True;
9855 end if;
9856 end if;
d6f39728 9857
fdd294d1 9858 -- If unchecked conversion to access type, and access type is declared
95deda50 9859 -- in the same unit as the unchecked conversion, then set the flag
9860 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 9861
9862 if Is_Access_Type (Target) and then
9863 In_Same_Source_Unit (Target, N)
9864 then
9865 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
9866 end if;
3d875462 9867
95deda50 9868 -- Generate N_Validate_Unchecked_Conversion node for back end in case
9869 -- the back end needs to perform special validation checks.
3d875462 9870
95deda50 9871 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
9872 -- have full expansion and the back end is called ???
3d875462 9873
9874 Vnode :=
9875 Make_Validate_Unchecked_Conversion (Sloc (N));
9876 Set_Source_Type (Vnode, Source);
9877 Set_Target_Type (Vnode, Target);
9878
fdd294d1 9879 -- If the unchecked conversion node is in a list, just insert before it.
9880 -- If not we have some strange case, not worth bothering about.
3d875462 9881
9882 if Is_List_Member (N) then
d6f39728 9883 Insert_After (N, Vnode);
9884 end if;
9885 end Validate_Unchecked_Conversion;
9886
9887 ------------------------------------
9888 -- Validate_Unchecked_Conversions --
9889 ------------------------------------
9890
9891 procedure Validate_Unchecked_Conversions is
9892 begin
9893 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
9894 declare
9895 T : UC_Entry renames Unchecked_Conversions.Table (N);
9896
299480f9 9897 Eloc : constant Source_Ptr := T.Eloc;
9898 Source : constant Entity_Id := T.Source;
9899 Target : constant Entity_Id := T.Target;
d6f39728 9900
44705307 9901 Source_Siz : Uint;
9902 Target_Siz : Uint;
d6f39728 9903
9904 begin
fdd294d1 9905 -- This validation check, which warns if we have unequal sizes for
9906 -- unchecked conversion, and thus potentially implementation
d6f39728 9907 -- dependent semantics, is one of the few occasions on which we
fdd294d1 9908 -- use the official RM size instead of Esize. See description in
9909 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 9910
f15731c4 9911 if Serious_Errors_Detected = 0
d6f39728 9912 and then Known_Static_RM_Size (Source)
9913 and then Known_Static_RM_Size (Target)
f25f4252 9914
9915 -- Don't do the check if warnings off for either type, note the
9916 -- deliberate use of OR here instead of OR ELSE to get the flag
9917 -- Warnings_Off_Used set for both types if appropriate.
9918
9919 and then not (Has_Warnings_Off (Source)
9920 or
9921 Has_Warnings_Off (Target))
d6f39728 9922 then
9923 Source_Siz := RM_Size (Source);
9924 Target_Siz := RM_Size (Target);
9925
9926 if Source_Siz /= Target_Siz then
299480f9 9927 Error_Msg
cb97ae5c 9928 ("?z?types for unchecked conversion have different sizes!",
299480f9 9929 Eloc);
d6f39728 9930
9931 if All_Errors_Mode then
9932 Error_Msg_Name_1 := Chars (Source);
9933 Error_Msg_Uint_1 := Source_Siz;
9934 Error_Msg_Name_2 := Chars (Target);
9935 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 9936 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 9937
9938 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
9939
9940 if Is_Discrete_Type (Source)
b9e61b2a 9941 and then
9942 Is_Discrete_Type (Target)
d6f39728 9943 then
9944 if Source_Siz > Target_Siz then
299480f9 9945 Error_Msg
cb97ae5c 9946 ("\?z?^ high order bits of source will "
1e3532e7 9947 & "be ignored!", Eloc);
d6f39728 9948
9dfe12ae 9949 elsif Is_Unsigned_Type (Source) then
299480f9 9950 Error_Msg
cb97ae5c 9951 ("\?z?source will be extended with ^ high order "
1e3532e7 9952 & "zero bits?!", Eloc);
d6f39728 9953
9954 else
299480f9 9955 Error_Msg
cb97ae5c 9956 ("\?z?source will be extended with ^ high order "
1e3532e7 9957 & "sign bits!", Eloc);
d6f39728 9958 end if;
9959
9960 elsif Source_Siz < Target_Siz then
9961 if Is_Discrete_Type (Target) then
9962 if Bytes_Big_Endian then
299480f9 9963 Error_Msg
cb97ae5c 9964 ("\?z?target value will include ^ undefined "
1e3532e7 9965 & "low order bits!", Eloc);
d6f39728 9966 else
299480f9 9967 Error_Msg
cb97ae5c 9968 ("\?z?target value will include ^ undefined "
1e3532e7 9969 & "high order bits!", Eloc);
d6f39728 9970 end if;
9971
9972 else
299480f9 9973 Error_Msg
cb97ae5c 9974 ("\?z?^ trailing bits of target value will be "
1e3532e7 9975 & "undefined!", Eloc);
d6f39728 9976 end if;
9977
9978 else pragma Assert (Source_Siz > Target_Siz);
299480f9 9979 Error_Msg
cb97ae5c 9980 ("\?z?^ trailing bits of source will be ignored!",
299480f9 9981 Eloc);
d6f39728 9982 end if;
9983 end if;
d6f39728 9984 end if;
9985 end if;
9986
9987 -- If both types are access types, we need to check the alignment.
9988 -- If the alignment of both is specified, we can do it here.
9989
f15731c4 9990 if Serious_Errors_Detected = 0
d6f39728 9991 and then Ekind (Source) in Access_Kind
9992 and then Ekind (Target) in Access_Kind
9993 and then Target_Strict_Alignment
9994 and then Present (Designated_Type (Source))
9995 and then Present (Designated_Type (Target))
9996 then
9997 declare
9998 D_Source : constant Entity_Id := Designated_Type (Source);
9999 D_Target : constant Entity_Id := Designated_Type (Target);
10000
10001 begin
10002 if Known_Alignment (D_Source)
b9e61b2a 10003 and then
10004 Known_Alignment (D_Target)
d6f39728 10005 then
10006 declare
10007 Source_Align : constant Uint := Alignment (D_Source);
10008 Target_Align : constant Uint := Alignment (D_Target);
10009
10010 begin
10011 if Source_Align < Target_Align
10012 and then not Is_Tagged_Type (D_Source)
f25f4252 10013
10014 -- Suppress warning if warnings suppressed on either
10015 -- type or either designated type. Note the use of
10016 -- OR here instead of OR ELSE. That is intentional,
10017 -- we would like to set flag Warnings_Off_Used in
10018 -- all types for which warnings are suppressed.
10019
10020 and then not (Has_Warnings_Off (D_Source)
10021 or
10022 Has_Warnings_Off (D_Target)
10023 or
10024 Has_Warnings_Off (Source)
10025 or
10026 Has_Warnings_Off (Target))
d6f39728 10027 then
d6f39728 10028 Error_Msg_Uint_1 := Target_Align;
10029 Error_Msg_Uint_2 := Source_Align;
299480f9 10030 Error_Msg_Node_1 := D_Target;
d6f39728 10031 Error_Msg_Node_2 := D_Source;
299480f9 10032 Error_Msg
cb97ae5c 10033 ("?z?alignment of & (^) is stricter than "
1e3532e7 10034 & "alignment of & (^)!", Eloc);
f25f4252 10035 Error_Msg
cb97ae5c 10036 ("\?z?resulting access value may have invalid "
1e3532e7 10037 & "alignment!", Eloc);
d6f39728 10038 end if;
10039 end;
10040 end if;
10041 end;
10042 end if;
10043 end;
10044 end loop;
10045 end Validate_Unchecked_Conversions;
10046
d6f39728 10047end Sem_Ch13;