]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
2017-01-13 Hristian Kirtchev <kirtchev@adacore.com>
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
9c20237a 9-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
175a6969 29with Debug; use Debug;
d6f39728 30with Einfo; use Einfo;
d00681a7 31with Elists; use Elists;
d6f39728 32with Errout; use Errout;
76a6b7c7 33with Expander; use Expander;
d00681a7 34with Exp_Disp; use Exp_Disp;
d6f39728 35with Exp_Tss; use Exp_Tss;
36with Exp_Util; use Exp_Util;
37c6552c 37with Freeze; use Freeze;
f9e26ff7 38with Ghost; use Ghost;
d6f39728 39with Lib; use Lib;
83f8f0a6 40with Lib.Xref; use Lib.Xref;
15ebb600 41with Namet; use Namet;
d6f39728 42with Nlists; use Nlists;
43with Nmake; use Nmake;
44with Opt; use Opt;
e0521a36 45with Restrict; use Restrict;
46with Rident; use Rident;
d6f39728 47with Rtsfind; use Rtsfind;
48with Sem; use Sem;
d60c9ff7 49with Sem_Aux; use Sem_Aux;
be9124d0 50with Sem_Case; use Sem_Case;
40ca69b9 51with Sem_Ch3; use Sem_Ch3;
490beba6 52with Sem_Ch6; use Sem_Ch6;
d6f39728 53with Sem_Ch8; use Sem_Ch8;
85696508 54with Sem_Dim; use Sem_Dim;
85377c9b 55with Sem_Disp; use Sem_Disp;
d6f39728 56with Sem_Eval; use Sem_Eval;
51ea9c94 57with Sem_Prag; use Sem_Prag;
d6f39728 58with Sem_Res; use Sem_Res;
59with Sem_Type; use Sem_Type;
60with Sem_Util; use Sem_Util;
44e4341e 61with Sem_Warn; use Sem_Warn;
738ec25b 62with Sinfo; use Sinfo;
1e3c4ae6 63with Sinput; use Sinput;
9dfe12ae 64with Snames; use Snames;
d6f39728 65with Stand; use Stand;
93735cb8 66with Targparm; use Targparm;
d6f39728 67with Ttypes; use Ttypes;
68with Tbuild; use Tbuild;
69with Urealp; use Urealp;
f42f24d7 70with Warnsw; use Warnsw;
d6f39728 71
bfa5a9d9 72with GNAT.Heap_Sort_G;
d6f39728 73
74package body Sem_Ch13 is
75
76 SSU : constant Pos := System_Storage_Unit;
77 -- Convenient short hand for commonly used constant
78
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
82
1d366b32 83 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
84 -- This routine is called after setting one of the sizes of type entity
85 -- Typ to Size. The purpose is to deal with the situation of a derived
86 -- type whose inherited alignment is no longer appropriate for the new
87 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 88
eb66e842 89 procedure Build_Discrete_Static_Predicate
d97beb2f 90 (Typ : Entity_Id;
91 Expr : Node_Id;
92 Nam : Name_Id);
d7c2851f 93 -- Given a predicated type Typ, where Typ is a discrete static subtype,
94 -- whose predicate expression is Expr, tests if Expr is a static predicate,
95 -- and if so, builds the predicate range list. Nam is the name of the one
96 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 97 -- predicate expression have been replaced by identifier references to this
d7c2851f 98 -- name, which is unique, so any identifier with Chars matching Nam must be
99 -- a reference to the type. If the predicate is non-static, this procedure
100 -- returns doing nothing. If the predicate is static, then the predicate
5c6a5792 101 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
102 -- rewritten as a canonicalized membership operation.
d97beb2f 103
ee2b7923 104 function Build_Export_Import_Pragma
105 (Asp : Node_Id;
106 Id : Entity_Id) return Node_Id;
107 -- Create the corresponding pragma for aspect Export or Import denoted by
108 -- Asp. Id is the related entity subject to the aspect. Return Empty when
109 -- the expression of aspect Asp evaluates to False or is erroneous.
110
9c20237a 111 function Build_Predicate_Function_Declaration
112 (Typ : Entity_Id) return Node_Id;
113 -- Build the declaration for a predicate function. The declaration is built
114 -- at the end of the declarative part containing the type definition, which
115 -- may be before the freeze point of the type. The predicate expression is
116 -- pre-analyzed at this point, to catch visibility errors.
117
eb66e842 118 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
119 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
120 -- then either there are pragma Predicate entries on the rep chain for the
121 -- type (note that Predicate aspects are converted to pragma Predicate), or
122 -- there are inherited aspects from a parent type, or ancestor subtypes.
9c20237a 123 -- This procedure builds body for the Predicate function that tests these
124 -- predicates. N is the freeze node for the type. The spec of the function
125 -- is inserted before the freeze node, and the body of the function is
126 -- inserted after the freeze node. If the predicate expression has a least
127 -- one Raise_Expression, then this procedure also builds the M version of
128 -- the predicate function for use in membership tests.
eb66e842 129
6653b695 130 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
131 -- Called if both Storage_Pool and Storage_Size attribute definition
132 -- clauses (SP and SS) are present for entity Ent. Issue error message.
133
d9f6a4ee 134 procedure Freeze_Entity_Checks (N : Node_Id);
135 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
136 -- to generate appropriate semantic checks that are delayed until this
137 -- point (they had to be delayed this long for cases of delayed aspects,
138 -- e.g. analysis of statically predicated subtypes in choices, for which
5f067114 139 -- we have to be sure the subtypes in question are frozen before checking).
d9f6a4ee 140
d6f39728 141 function Get_Alignment_Value (Expr : Node_Id) return Uint;
142 -- Given the expression for an alignment value, returns the corresponding
143 -- Uint value. If the value is inappropriate, then error messages are
144 -- posted as required, and a value of No_Uint is returned.
145
ee2b7923 146 procedure Get_Interfacing_Aspects
147 (Iface_Asp : Node_Id;
148 Conv_Asp : out Node_Id;
149 EN_Asp : out Node_Id;
150 Expo_Asp : out Node_Id;
151 Imp_Asp : out Node_Id;
152 LN_Asp : out Node_Id;
153 Do_Checks : Boolean := False);
154 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
155 -- aspects that apply to the same related entity. The aspects considered by
156 -- this routine are as follows:
157 --
158 -- Conv_Asp - aspect Convention
159 -- EN_Asp - aspect External_Name
160 -- Expo_Asp - aspect Export
161 -- Imp_Asp - aspect Import
162 -- LN_Asp - aspect Link_Name
163 --
164 -- When flag Do_Checks is set, this routine will flag duplicate uses of
165 -- aspects.
166
d6f39728 167 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 168 -- A specification for a stream attribute is allowed before the full type
169 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
170 -- that do not specify a representation characteristic are operational
171 -- attributes.
d6f39728 172
3b23aaa0 173 function Is_Predicate_Static
174 (Expr : Node_Id;
175 Nam : Name_Id) return Boolean;
176 -- Given predicate expression Expr, tests if Expr is predicate-static in
177 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
178 -- name in the predicate expression have been replaced by references to
179 -- an identifier whose Chars field is Nam. This name is unique, so any
180 -- identifier with Chars matching Nam must be a reference to the type.
181 -- Returns True if the expression is predicate-static and False otherwise,
182 -- but is not in the business of setting flags or issuing error messages.
183 --
184 -- Only scalar types can have static predicates, so False is always
185 -- returned for non-scalar types.
186 --
187 -- Note: the RM seems to suggest that string types can also have static
188 -- predicates. But that really makes lttle sense as very few useful
189 -- predicates can be constructed for strings. Remember that:
190 --
191 -- "ABC" < "DEF"
192 --
193 -- is not a static expression. So even though the clearly faulty RM wording
194 -- allows the following:
195 --
196 -- subtype S is String with Static_Predicate => S < "DEF"
197 --
198 -- We can't allow this, otherwise we have predicate-static applying to a
199 -- larger class than static expressions, which was never intended.
200
44e4341e 201 procedure New_Stream_Subprogram
d6f39728 202 (N : Node_Id;
203 Ent : Entity_Id;
204 Subp : Entity_Id;
9dfe12ae 205 Nam : TSS_Name_Type);
44e4341e 206 -- Create a subprogram renaming of a given stream attribute to the
207 -- designated subprogram and then in the tagged case, provide this as a
d1a2e31b 208 -- primitive operation, or in the untagged case make an appropriate TSS
44e4341e 209 -- entry. This is more properly an expansion activity than just semantics,
d1a2e31b 210 -- but the presence of user-defined stream functions for limited types
211 -- is a legality check, which is why this takes place here rather than in
44e4341e 212 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
213 -- function to be generated.
9dfe12ae 214 --
f15731c4 215 -- To avoid elaboration anomalies with freeze nodes, for untagged types
216 -- we generate both a subprogram declaration and a subprogram renaming
217 -- declaration, so that the attribute specification is handled as a
218 -- renaming_as_body. For tagged types, the specification is one of the
219 -- primitive specs.
220
3061ffde 221 procedure Resolve_Iterable_Operation
222 (N : Node_Id;
223 Cursor : Entity_Id;
224 Typ : Entity_Id;
225 Nam : Name_Id);
226 -- If the name of a primitive operation for an Iterable aspect is
227 -- overloaded, resolve according to required signature.
228
b77e4501 229 procedure Set_Biased
230 (E : Entity_Id;
231 N : Node_Id;
232 Msg : String;
233 Biased : Boolean := True);
234 -- If Biased is True, sets Has_Biased_Representation flag for E, and
235 -- outputs a warning message at node N if Warn_On_Biased_Representation is
236 -- is True. This warning inserts the string Msg to describe the construct
237 -- causing biasing.
238
76a6b7c7 239 ---------------------------------------------------
240 -- Table for Validate_Compile_Time_Warning_Error --
241 ---------------------------------------------------
242
243 -- The following table collects pragmas Compile_Time_Error and Compile_
244 -- Time_Warning for validation. Entries are made by calls to subprogram
245 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
246 -- Validate_Compile_Time_Warning_Errors does the actual error checking
247 -- and posting of warning and error messages. The reason for this delayed
248 -- processing is to take advantage of back-annotations of attributes size
249 -- and alignment values performed by the back end.
250
251 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
252 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
253 -- already have modified all Sloc values if the -gnatD option is set.
254
255 type CTWE_Entry is record
256 Eloc : Source_Ptr;
257 -- Source location used in warnings and error messages
258
259 Prag : Node_Id;
260 -- Pragma Compile_Time_Error or Compile_Time_Warning
261
262 Scope : Node_Id;
263 -- The scope which encloses the pragma
264 end record;
265
266 package Compile_Time_Warnings_Errors is new Table.Table (
267 Table_Component_Type => CTWE_Entry,
268 Table_Index_Type => Int,
269 Table_Low_Bound => 1,
270 Table_Initial => 50,
271 Table_Increment => 200,
272 Table_Name => "Compile_Time_Warnings_Errors");
273
d6f39728 274 ----------------------------------------------
275 -- Table for Validate_Unchecked_Conversions --
276 ----------------------------------------------
277
278 -- The following table collects unchecked conversions for validation.
95deda50 279 -- Entries are made by Validate_Unchecked_Conversion and then the call
280 -- to Validate_Unchecked_Conversions does the actual error checking and
281 -- posting of warnings. The reason for this delayed processing is to take
282 -- advantage of back-annotations of size and alignment values performed by
283 -- the back end.
d6f39728 284
95deda50 285 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
286 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
287 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 288
d6f39728 289 type UC_Entry is record
86d32751 290 Eloc : Source_Ptr; -- node used for posting warnings
291 Source : Entity_Id; -- source type for unchecked conversion
292 Target : Entity_Id; -- target type for unchecked conversion
293 Act_Unit : Entity_Id; -- actual function instantiated
d6f39728 294 end record;
295
296 package Unchecked_Conversions is new Table.Table (
297 Table_Component_Type => UC_Entry,
298 Table_Index_Type => Int,
299 Table_Low_Bound => 1,
300 Table_Initial => 50,
301 Table_Increment => 200,
302 Table_Name => "Unchecked_Conversions");
303
83f8f0a6 304 ----------------------------------------
305 -- Table for Validate_Address_Clauses --
306 ----------------------------------------
307
308 -- If an address clause has the form
309
310 -- for X'Address use Expr
311
514a5555 312 -- where Expr has a value known at compile time or is of the form Y'Address
313 -- or recursively is a reference to a constant initialized with either of
314 -- these forms, and the value of Expr is not a multiple of X's alignment,
315 -- or if Y has a smaller alignment than X, then that merits a warning about
95deda50 316 -- possible bad alignment. The following table collects address clauses of
317 -- this kind. We put these in a table so that they can be checked after the
318 -- back end has completed annotation of the alignments of objects, since we
319 -- can catch more cases that way.
83f8f0a6 320
321 type Address_Clause_Check_Record is record
322 N : Node_Id;
323 -- The address clause
324
325 X : Entity_Id;
514a5555 326 -- The entity of the object subject to the address clause
327
328 A : Uint;
329 -- The value of the address in the first case
83f8f0a6 330
331 Y : Entity_Id;
514a5555 332 -- The entity of the object being overlaid in the second case
d6da7448 333
334 Off : Boolean;
514a5555 335 -- Whether the address is offset within Y in the second case
83f8f0a6 336 end record;
337
338 package Address_Clause_Checks is new Table.Table (
339 Table_Component_Type => Address_Clause_Check_Record,
340 Table_Index_Type => Int,
341 Table_Low_Bound => 1,
342 Table_Initial => 20,
343 Table_Increment => 200,
344 Table_Name => "Address_Clause_Checks");
345
59ac57b5 346 -----------------------------------------
347 -- Adjust_Record_For_Reverse_Bit_Order --
348 -----------------------------------------
349
350 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
67278d60 351 Comp : Node_Id;
352 CC : Node_Id;
59ac57b5 353
354 begin
67278d60 355 -- Processing depends on version of Ada
59ac57b5 356
6797073f 357 -- For Ada 95, we just renumber bits within a storage unit. We do the
568b0f6a 358 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
ab19a652 359 -- Ada 83, and are free to add this extension.
6797073f 360
361 if Ada_Version < Ada_2005 then
362 Comp := First_Component_Or_Discriminant (R);
363 while Present (Comp) loop
364 CC := Component_Clause (Comp);
365
366 -- If component clause is present, then deal with the non-default
367 -- bit order case for Ada 95 mode.
368
369 -- We only do this processing for the base type, and in fact that
370 -- is important, since otherwise if there are record subtypes, we
371 -- could reverse the bits once for each subtype, which is wrong.
372
b9e61b2a 373 if Present (CC) and then Ekind (R) = E_Record_Type then
6797073f 374 declare
375 CFB : constant Uint := Component_Bit_Offset (Comp);
376 CSZ : constant Uint := Esize (Comp);
377 CLC : constant Node_Id := Component_Clause (Comp);
378 Pos : constant Node_Id := Position (CLC);
379 FB : constant Node_Id := First_Bit (CLC);
380
381 Storage_Unit_Offset : constant Uint :=
382 CFB / System_Storage_Unit;
383
384 Start_Bit : constant Uint :=
385 CFB mod System_Storage_Unit;
59ac57b5 386
6797073f 387 begin
388 -- Cases where field goes over storage unit boundary
59ac57b5 389
6797073f 390 if Start_Bit + CSZ > System_Storage_Unit then
59ac57b5 391
6797073f 392 -- Allow multi-byte field but generate warning
59ac57b5 393
6797073f 394 if Start_Bit mod System_Storage_Unit = 0
395 and then CSZ mod System_Storage_Unit = 0
396 then
397 Error_Msg_N
7a41db5b 398 ("info: multi-byte field specified with "
399 & "non-standard Bit_Order?V?", CLC);
31486bc0 400
6797073f 401 if Bytes_Big_Endian then
31486bc0 402 Error_Msg_N
7a41db5b 403 ("\bytes are not reversed "
404 & "(component is big-endian)?V?", CLC);
31486bc0 405 else
406 Error_Msg_N
7a41db5b 407 ("\bytes are not reversed "
408 & "(component is little-endian)?V?", CLC);
31486bc0 409 end if;
59ac57b5 410
cfc922ed 411 -- Do not allow non-contiguous field
59ac57b5 412
67278d60 413 else
6797073f 414 Error_Msg_N
415 ("attempt to specify non-contiguous field "
416 & "not permitted", CLC);
417 Error_Msg_N
418 ("\caused by non-standard Bit_Order "
419 & "specified", CLC);
420 Error_Msg_N
421 ("\consider possibility of using "
422 & "Ada 2005 mode here", CLC);
423 end if;
59ac57b5 424
6797073f 425 -- Case where field fits in one storage unit
59ac57b5 426
6797073f 427 else
428 -- Give warning if suspicious component clause
59ac57b5 429
6797073f 430 if Intval (FB) >= System_Storage_Unit
431 and then Warn_On_Reverse_Bit_Order
432 then
433 Error_Msg_N
7a41db5b 434 ("info: Bit_Order clause does not affect " &
1e3532e7 435 "byte ordering?V?", Pos);
6797073f 436 Error_Msg_Uint_1 :=
437 Intval (Pos) + Intval (FB) /
438 System_Storage_Unit;
439 Error_Msg_N
7a41db5b 440 ("info: position normalized to ^ before bit " &
1e3532e7 441 "order interpreted?V?", Pos);
6797073f 442 end if;
59ac57b5 443
6797073f 444 -- Here is where we fix up the Component_Bit_Offset value
445 -- to account for the reverse bit order. Some examples of
446 -- what needs to be done are:
bfa5a9d9 447
6797073f 448 -- First_Bit .. Last_Bit Component_Bit_Offset
449 -- old new old new
59ac57b5 450
6797073f 451 -- 0 .. 0 7 .. 7 0 7
452 -- 0 .. 1 6 .. 7 0 6
453 -- 0 .. 2 5 .. 7 0 5
454 -- 0 .. 7 0 .. 7 0 4
59ac57b5 455
6797073f 456 -- 1 .. 1 6 .. 6 1 6
457 -- 1 .. 4 3 .. 6 1 3
458 -- 4 .. 7 0 .. 3 4 0
59ac57b5 459
6797073f 460 -- The rule is that the first bit is is obtained by
461 -- subtracting the old ending bit from storage_unit - 1.
59ac57b5 462
6797073f 463 Set_Component_Bit_Offset
464 (Comp,
465 (Storage_Unit_Offset * System_Storage_Unit) +
466 (System_Storage_Unit - 1) -
467 (Start_Bit + CSZ - 1));
59ac57b5 468
6797073f 469 Set_Normalized_First_Bit
470 (Comp,
471 Component_Bit_Offset (Comp) mod
472 System_Storage_Unit);
473 end if;
474 end;
475 end if;
476
477 Next_Component_Or_Discriminant (Comp);
478 end loop;
479
480 -- For Ada 2005, we do machine scalar processing, as fully described In
481 -- AI-133. This involves gathering all components which start at the
482 -- same byte offset and processing them together. Same approach is still
483 -- valid in later versions including Ada 2012.
484
485 else
486 declare
487 Max_Machine_Scalar_Size : constant Uint :=
488 UI_From_Int
489 (Standard_Long_Long_Integer_Size);
67278d60 490 -- We use this as the maximum machine scalar size
59ac57b5 491
6797073f 492 Num_CC : Natural;
493 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
59ac57b5 494
6797073f 495 begin
496 -- This first loop through components does two things. First it
497 -- deals with the case of components with component clauses whose
498 -- length is greater than the maximum machine scalar size (either
499 -- accepting them or rejecting as needed). Second, it counts the
500 -- number of components with component clauses whose length does
501 -- not exceed this maximum for later processing.
67278d60 502
6797073f 503 Num_CC := 0;
504 Comp := First_Component_Or_Discriminant (R);
505 while Present (Comp) loop
506 CC := Component_Clause (Comp);
67278d60 507
6797073f 508 if Present (CC) then
509 declare
1e3532e7 510 Fbit : constant Uint := Static_Integer (First_Bit (CC));
511 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
67278d60 512
6797073f 513 begin
b38e4131 514 -- Case of component with last bit >= max machine scalar
67278d60 515
b38e4131 516 if Lbit >= Max_Machine_Scalar_Size then
67278d60 517
b38e4131 518 -- This is allowed only if first bit is zero, and
519 -- last bit + 1 is a multiple of storage unit size.
67278d60 520
b38e4131 521 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
67278d60 522
b38e4131 523 -- This is the case to give a warning if enabled
67278d60 524
b38e4131 525 if Warn_On_Reverse_Bit_Order then
526 Error_Msg_N
7a41db5b 527 ("info: multi-byte field specified with "
cfc922ed 528 & "non-standard Bit_Order?V?", CC);
b38e4131 529
530 if Bytes_Big_Endian then
531 Error_Msg_N
532 ("\bytes are not reversed "
1e3532e7 533 & "(component is big-endian)?V?", CC);
b38e4131 534 else
535 Error_Msg_N
536 ("\bytes are not reversed "
1e3532e7 537 & "(component is little-endian)?V?", CC);
b38e4131 538 end if;
539 end if;
67278d60 540
7eb0e22f 541 -- Give error message for RM 13.5.1(10) violation
67278d60 542
b38e4131 543 else
544 Error_Msg_FE
545 ("machine scalar rules not followed for&",
546 First_Bit (CC), Comp);
67278d60 547
0c978552 548 Error_Msg_Uint_1 := Lbit + 1;
b38e4131 549 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
550 Error_Msg_F
0c978552 551 ("\last bit + 1 (^) exceeds maximum machine "
b38e4131 552 & "scalar size (^)",
553 First_Bit (CC));
67278d60 554
b38e4131 555 if (Lbit + 1) mod SSU /= 0 then
556 Error_Msg_Uint_1 := SSU;
557 Error_Msg_F
558 ("\and is not a multiple of Storage_Unit (^) "
0c978552 559 & "(RM 13.5.1(10))",
b38e4131 560 First_Bit (CC));
6797073f 561
6797073f 562 else
b38e4131 563 Error_Msg_Uint_1 := Fbit;
564 Error_Msg_F
565 ("\and first bit (^) is non-zero "
0cafb066 566 & "(RM 13.4.1(10))",
b38e4131 567 First_Bit (CC));
67278d60 568 end if;
6797073f 569 end if;
59ac57b5 570
b38e4131 571 -- OK case of machine scalar related component clause,
572 -- For now, just count them.
59ac57b5 573
6797073f 574 else
575 Num_CC := Num_CC + 1;
576 end if;
577 end;
578 end if;
59ac57b5 579
6797073f 580 Next_Component_Or_Discriminant (Comp);
581 end loop;
59ac57b5 582
6797073f 583 -- We need to sort the component clauses on the basis of the
584 -- Position values in the clause, so we can group clauses with
4a87c513 585 -- the same Position together to determine the relevant machine
6797073f 586 -- scalar size.
59ac57b5 587
6797073f 588 Sort_CC : declare
589 Comps : array (0 .. Num_CC) of Entity_Id;
590 -- Array to collect component and discriminant entities. The
591 -- data starts at index 1, the 0'th entry is for the sort
592 -- routine.
59ac57b5 593
6797073f 594 function CP_Lt (Op1, Op2 : Natural) return Boolean;
595 -- Compare routine for Sort
59ac57b5 596
6797073f 597 procedure CP_Move (From : Natural; To : Natural);
598 -- Move routine for Sort
59ac57b5 599
6797073f 600 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 601
6797073f 602 Start : Natural;
603 Stop : Natural;
604 -- Start and stop positions in the component list of the set of
605 -- components with the same starting position (that constitute
606 -- components in a single machine scalar).
59ac57b5 607
6797073f 608 MaxL : Uint;
609 -- Maximum last bit value of any component in this set
59ac57b5 610
6797073f 611 MSS : Uint;
612 -- Corresponding machine scalar size
67278d60 613
6797073f 614 -----------
615 -- CP_Lt --
616 -----------
67278d60 617
6797073f 618 function CP_Lt (Op1, Op2 : Natural) return Boolean is
619 begin
620 return Position (Component_Clause (Comps (Op1))) <
621 Position (Component_Clause (Comps (Op2)));
622 end CP_Lt;
67278d60 623
6797073f 624 -------------
625 -- CP_Move --
626 -------------
67278d60 627
6797073f 628 procedure CP_Move (From : Natural; To : Natural) is
629 begin
630 Comps (To) := Comps (From);
631 end CP_Move;
67278d60 632
4a87c513 633 -- Start of processing for Sort_CC
59ac57b5 634
6797073f 635 begin
b38e4131 636 -- Collect the machine scalar relevant component clauses
59ac57b5 637
6797073f 638 Num_CC := 0;
639 Comp := First_Component_Or_Discriminant (R);
640 while Present (Comp) loop
b38e4131 641 declare
642 CC : constant Node_Id := Component_Clause (Comp);
643
644 begin
645 -- Collect only component clauses whose last bit is less
646 -- than machine scalar size. Any component clause whose
647 -- last bit exceeds this value does not take part in
648 -- machine scalar layout considerations. The test for
649 -- Error_Posted makes sure we exclude component clauses
650 -- for which we already posted an error.
651
652 if Present (CC)
653 and then not Error_Posted (Last_Bit (CC))
654 and then Static_Integer (Last_Bit (CC)) <
d64221a7 655 Max_Machine_Scalar_Size
b38e4131 656 then
657 Num_CC := Num_CC + 1;
658 Comps (Num_CC) := Comp;
659 end if;
660 end;
59ac57b5 661
6797073f 662 Next_Component_Or_Discriminant (Comp);
663 end loop;
67278d60 664
6797073f 665 -- Sort by ascending position number
67278d60 666
6797073f 667 Sorting.Sort (Num_CC);
67278d60 668
6797073f 669 -- We now have all the components whose size does not exceed
670 -- the max machine scalar value, sorted by starting position.
671 -- In this loop we gather groups of clauses starting at the
672 -- same position, to process them in accordance with AI-133.
67278d60 673
6797073f 674 Stop := 0;
675 while Stop < Num_CC loop
676 Start := Stop + 1;
677 Stop := Start;
678 MaxL :=
679 Static_Integer
680 (Last_Bit (Component_Clause (Comps (Start))));
67278d60 681 while Stop < Num_CC loop
6797073f 682 if Static_Integer
683 (Position (Component_Clause (Comps (Stop + 1)))) =
684 Static_Integer
685 (Position (Component_Clause (Comps (Stop))))
686 then
687 Stop := Stop + 1;
688 MaxL :=
689 UI_Max
690 (MaxL,
691 Static_Integer
692 (Last_Bit
693 (Component_Clause (Comps (Stop)))));
694 else
695 exit;
696 end if;
697 end loop;
67278d60 698
6797073f 699 -- Now we have a group of component clauses from Start to
700 -- Stop whose positions are identical, and MaxL is the
701 -- maximum last bit value of any of these components.
702
703 -- We need to determine the corresponding machine scalar
704 -- size. This loop assumes that machine scalar sizes are
705 -- even, and that each possible machine scalar has twice
706 -- as many bits as the next smaller one.
707
708 MSS := Max_Machine_Scalar_Size;
709 while MSS mod 2 = 0
710 and then (MSS / 2) >= SSU
711 and then (MSS / 2) > MaxL
712 loop
713 MSS := MSS / 2;
714 end loop;
67278d60 715
6797073f 716 -- Here is where we fix up the Component_Bit_Offset value
717 -- to account for the reverse bit order. Some examples of
718 -- what needs to be done for the case of a machine scalar
719 -- size of 8 are:
67278d60 720
6797073f 721 -- First_Bit .. Last_Bit Component_Bit_Offset
722 -- old new old new
67278d60 723
6797073f 724 -- 0 .. 0 7 .. 7 0 7
725 -- 0 .. 1 6 .. 7 0 6
726 -- 0 .. 2 5 .. 7 0 5
727 -- 0 .. 7 0 .. 7 0 4
67278d60 728
6797073f 729 -- 1 .. 1 6 .. 6 1 6
730 -- 1 .. 4 3 .. 6 1 3
731 -- 4 .. 7 0 .. 3 4 0
67278d60 732
6797073f 733 -- The rule is that the first bit is obtained by subtracting
734 -- the old ending bit from machine scalar size - 1.
67278d60 735
6797073f 736 for C in Start .. Stop loop
737 declare
738 Comp : constant Entity_Id := Comps (C);
b9e61b2a 739 CC : constant Node_Id := Component_Clause (Comp);
740
741 LB : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 742 NFB : constant Uint := MSS - Uint_1 - LB;
743 NLB : constant Uint := NFB + Esize (Comp) - 1;
b9e61b2a 744 Pos : constant Uint := Static_Integer (Position (CC));
67278d60 745
6797073f 746 begin
747 if Warn_On_Reverse_Bit_Order then
748 Error_Msg_Uint_1 := MSS;
749 Error_Msg_N
750 ("info: reverse bit order in machine " &
1e3532e7 751 "scalar of length^?V?", First_Bit (CC));
6797073f 752 Error_Msg_Uint_1 := NFB;
753 Error_Msg_Uint_2 := NLB;
754
755 if Bytes_Big_Endian then
756 Error_Msg_NE
7a41db5b 757 ("\big-endian range for component "
758 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
6797073f 759 else
760 Error_Msg_NE
7a41db5b 761 ("\little-endian range for component"
762 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
67278d60 763 end if;
6797073f 764 end if;
67278d60 765
6797073f 766 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
767 Set_Normalized_First_Bit (Comp, NFB mod SSU);
768 end;
67278d60 769 end loop;
6797073f 770 end loop;
771 end Sort_CC;
772 end;
773 end if;
59ac57b5 774 end Adjust_Record_For_Reverse_Bit_Order;
775
1d366b32 776 -------------------------------------
777 -- Alignment_Check_For_Size_Change --
778 -------------------------------------
d6f39728 779
1d366b32 780 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 781 begin
782 -- If the alignment is known, and not set by a rep clause, and is
783 -- inconsistent with the size being set, then reset it to unknown,
784 -- we assume in this case that the size overrides the inherited
785 -- alignment, and that the alignment must be recomputed.
786
787 if Known_Alignment (Typ)
788 and then not Has_Alignment_Clause (Typ)
1d366b32 789 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 790 then
791 Init_Alignment (Typ);
792 end if;
1d366b32 793 end Alignment_Check_For_Size_Change;
d6f39728 794
06ef5f86 795 -------------------------------------
796 -- Analyze_Aspects_At_Freeze_Point --
797 -------------------------------------
798
799 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
06ef5f86 800 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
801 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
802 -- the aspect specification node ASN.
803
37c6e44c 804 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
805 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
806 -- a derived type can inherit aspects from its parent which have been
807 -- specified at the time of the derivation using an aspect, as in:
808 --
809 -- type A is range 1 .. 10
810 -- with Size => Not_Defined_Yet;
811 -- ..
812 -- type B is new A;
813 -- ..
814 -- Not_Defined_Yet : constant := 64;
815 --
816 -- In this example, the Size of A is considered to be specified prior
817 -- to the derivation, and thus inherited, even though the value is not
818 -- known at the time of derivation. To deal with this, we use two entity
819 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
820 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
821 -- the derived type (B here). If this flag is set when the derived type
822 -- is frozen, then this procedure is called to ensure proper inheritance
b21edad9 823 -- of all delayed aspects from the parent type. The derived type is E,
37c6e44c 824 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
825 -- aspect specification node in the Rep_Item chain for the parent type.
826
06ef5f86 827 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
828 -- Given an aspect specification node ASN whose expression is an
829 -- optional Boolean, this routines creates the corresponding pragma
830 -- at the freezing point.
831
832 ----------------------------------
833 -- Analyze_Aspect_Default_Value --
834 ----------------------------------
835
836 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
ee2b7923 837 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
06ef5f86 838 Ent : constant Entity_Id := Entity (ASN);
839 Expr : constant Node_Id := Expression (ASN);
840 Id : constant Node_Id := Identifier (ASN);
841
842 begin
843 Error_Msg_Name_1 := Chars (Id);
844
845 if not Is_Type (Ent) then
846 Error_Msg_N ("aspect% can only apply to a type", Id);
847 return;
848
849 elsif not Is_First_Subtype (Ent) then
850 Error_Msg_N ("aspect% cannot apply to subtype", Id);
851 return;
852
853 elsif A_Id = Aspect_Default_Value
854 and then not Is_Scalar_Type (Ent)
855 then
856 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
857 return;
858
859 elsif A_Id = Aspect_Default_Component_Value then
860 if not Is_Array_Type (Ent) then
861 Error_Msg_N ("aspect% can only be applied to array type", Id);
862 return;
863
864 elsif not Is_Scalar_Type (Component_Type (Ent)) then
865 Error_Msg_N ("aspect% requires scalar components", Id);
866 return;
867 end if;
868 end if;
869
870 Set_Has_Default_Aspect (Base_Type (Ent));
871
872 if Is_Scalar_Type (Ent) then
9f36e3fb 873 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
06ef5f86 874 else
f3d70f08 875 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
06ef5f86 876 end if;
877 end Analyze_Aspect_Default_Value;
878
37c6e44c 879 ---------------------------------
880 -- Inherit_Delayed_Rep_Aspects --
881 ---------------------------------
882
883 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
ee2b7923 884 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
885 P : constant Entity_Id := Entity (ASN);
37c6e44c 886 -- Entithy for parent type
887
888 N : Node_Id;
889 -- Item from Rep_Item chain
890
891 A : Aspect_Id;
892
893 begin
894 -- Loop through delayed aspects for the parent type
895
896 N := ASN;
897 while Present (N) loop
898 if Nkind (N) = N_Aspect_Specification then
899 exit when Entity (N) /= P;
900
901 if Is_Delayed_Aspect (N) then
902 A := Get_Aspect_Id (Chars (Identifier (N)));
903
904 -- Process delayed rep aspect. For Boolean attributes it is
905 -- not possible to cancel an attribute once set (the attempt
906 -- to use an aspect with xxx => False is an error) for a
907 -- derived type. So for those cases, we do not have to check
908 -- if a clause has been given for the derived type, since it
909 -- is harmless to set it again if it is already set.
910
911 case A is
912
913 -- Alignment
914
915 when Aspect_Alignment =>
916 if not Has_Alignment_Clause (E) then
917 Set_Alignment (E, Alignment (P));
918 end if;
919
920 -- Atomic
921
922 when Aspect_Atomic =>
923 if Is_Atomic (P) then
924 Set_Is_Atomic (E);
925 end if;
926
927 -- Atomic_Components
928
929 when Aspect_Atomic_Components =>
930 if Has_Atomic_Components (P) then
931 Set_Has_Atomic_Components (Base_Type (E));
932 end if;
933
934 -- Bit_Order
935
936 when Aspect_Bit_Order =>
937 if Is_Record_Type (E)
938 and then No (Get_Attribute_Definition_Clause
939 (E, Attribute_Bit_Order))
940 and then Reverse_Bit_Order (P)
941 then
942 Set_Reverse_Bit_Order (Base_Type (E));
943 end if;
944
945 -- Component_Size
946
947 when Aspect_Component_Size =>
948 if Is_Array_Type (E)
949 and then not Has_Component_Size_Clause (E)
950 then
951 Set_Component_Size
952 (Base_Type (E), Component_Size (P));
953 end if;
954
955 -- Machine_Radix
956
957 when Aspect_Machine_Radix =>
958 if Is_Decimal_Fixed_Point_Type (E)
959 and then not Has_Machine_Radix_Clause (E)
960 then
961 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
962 end if;
963
964 -- Object_Size (also Size which also sets Object_Size)
965
966 when Aspect_Object_Size | Aspect_Size =>
967 if not Has_Size_Clause (E)
968 and then
969 No (Get_Attribute_Definition_Clause
970 (E, Attribute_Object_Size))
971 then
972 Set_Esize (E, Esize (P));
973 end if;
974
975 -- Pack
976
977 when Aspect_Pack =>
978 if not Is_Packed (E) then
979 Set_Is_Packed (Base_Type (E));
980
981 if Is_Bit_Packed_Array (P) then
982 Set_Is_Bit_Packed_Array (Base_Type (E));
a88a5773 983 Set_Packed_Array_Impl_Type
984 (E, Packed_Array_Impl_Type (P));
37c6e44c 985 end if;
986 end if;
987
988 -- Scalar_Storage_Order
989
990 when Aspect_Scalar_Storage_Order =>
991 if (Is_Record_Type (E) or else Is_Array_Type (E))
992 and then No (Get_Attribute_Definition_Clause
e163cac8 993 (E, Attribute_Scalar_Storage_Order))
37c6e44c 994 and then Reverse_Storage_Order (P)
995 then
996 Set_Reverse_Storage_Order (Base_Type (E));
b64082f2 997
998 -- Clear default SSO indications, since the aspect
999 -- overrides the default.
1000
1001 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1002 Set_SSO_Set_High_By_Default (Base_Type (E), False);
37c6e44c 1003 end if;
1004
1005 -- Small
1006
1007 when Aspect_Small =>
1008 if Is_Fixed_Point_Type (E)
1009 and then not Has_Small_Clause (E)
1010 then
1011 Set_Small_Value (E, Small_Value (P));
1012 end if;
1013
1014 -- Storage_Size
1015
1016 when Aspect_Storage_Size =>
1017 if (Is_Access_Type (E) or else Is_Task_Type (E))
1018 and then not Has_Storage_Size_Clause (E)
1019 then
1020 Set_Storage_Size_Variable
1021 (Base_Type (E), Storage_Size_Variable (P));
1022 end if;
1023
1024 -- Value_Size
1025
1026 when Aspect_Value_Size =>
1027
1028 -- Value_Size is never inherited, it is either set by
1029 -- default, or it is explicitly set for the derived
1030 -- type. So nothing to do here.
1031
1032 null;
1033
1034 -- Volatile
1035
1036 when Aspect_Volatile =>
1037 if Is_Volatile (P) then
1038 Set_Is_Volatile (E);
1039 end if;
1040
2fe893b9 1041 -- Volatile_Full_Access
1042
1043 when Aspect_Volatile_Full_Access =>
4bf2acc9 1044 if Is_Volatile_Full_Access (P) then
1045 Set_Is_Volatile_Full_Access (E);
2fe893b9 1046 end if;
1047
37c6e44c 1048 -- Volatile_Components
1049
1050 when Aspect_Volatile_Components =>
1051 if Has_Volatile_Components (P) then
1052 Set_Has_Volatile_Components (Base_Type (E));
1053 end if;
1054
1055 -- That should be all the Rep Aspects
1056
1057 when others =>
1058 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1059 null;
1060
1061 end case;
1062 end if;
1063 end if;
1064
1065 N := Next_Rep_Item (N);
1066 end loop;
1067 end Inherit_Delayed_Rep_Aspects;
1068
06ef5f86 1069 -------------------------------------
1070 -- Make_Pragma_From_Boolean_Aspect --
1071 -------------------------------------
1072
1073 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1074 Ident : constant Node_Id := Identifier (ASN);
1075 A_Name : constant Name_Id := Chars (Ident);
1076 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1077 Ent : constant Entity_Id := Entity (ASN);
1078 Expr : constant Node_Id := Expression (ASN);
1079 Loc : constant Source_Ptr := Sloc (ASN);
1080
06ef5f86 1081 procedure Check_False_Aspect_For_Derived_Type;
1082 -- This procedure checks for the case of a false aspect for a derived
1083 -- type, which improperly tries to cancel an aspect inherited from
1084 -- the parent.
1085
1086 -----------------------------------------
1087 -- Check_False_Aspect_For_Derived_Type --
1088 -----------------------------------------
1089
1090 procedure Check_False_Aspect_For_Derived_Type is
1091 Par : Node_Id;
1092
1093 begin
1094 -- We are only checking derived types
1095
1096 if not Is_Derived_Type (E) then
1097 return;
1098 end if;
1099
1100 Par := Nearest_Ancestor (E);
1101
1102 case A_Id is
1103 when Aspect_Atomic | Aspect_Shared =>
1104 if not Is_Atomic (Par) then
1105 return;
1106 end if;
1107
1108 when Aspect_Atomic_Components =>
1109 if not Has_Atomic_Components (Par) then
1110 return;
1111 end if;
1112
1113 when Aspect_Discard_Names =>
1114 if not Discard_Names (Par) then
1115 return;
1116 end if;
1117
1118 when Aspect_Pack =>
1119 if not Is_Packed (Par) then
1120 return;
1121 end if;
1122
1123 when Aspect_Unchecked_Union =>
1124 if not Is_Unchecked_Union (Par) then
1125 return;
1126 end if;
1127
1128 when Aspect_Volatile =>
1129 if not Is_Volatile (Par) then
1130 return;
1131 end if;
1132
1133 when Aspect_Volatile_Components =>
1134 if not Has_Volatile_Components (Par) then
1135 return;
1136 end if;
1137
2fe893b9 1138 when Aspect_Volatile_Full_Access =>
4bf2acc9 1139 if not Is_Volatile_Full_Access (Par) then
2fe893b9 1140 return;
1141 end if;
1142
06ef5f86 1143 when others =>
1144 return;
1145 end case;
1146
1147 -- Fall through means we are canceling an inherited aspect
1148
1149 Error_Msg_Name_1 := A_Name;
37c6e44c 1150 Error_Msg_NE
1151 ("derived type& inherits aspect%, cannot cancel", Expr, E);
06ef5f86 1152 end Check_False_Aspect_For_Derived_Type;
1153
ee2b7923 1154 -- Local variables
1155
1156 Prag : Node_Id;
1157
06ef5f86 1158 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1159
1160 begin
37c6e44c 1161 -- Note that we know Expr is present, because for a missing Expr
1162 -- argument, we knew it was True and did not need to delay the
1163 -- evaluation to the freeze point.
1164
06ef5f86 1165 if Is_False (Static_Boolean (Expr)) then
1166 Check_False_Aspect_For_Derived_Type;
1167
1168 else
1169 Prag :=
1170 Make_Pragma (Loc,
ee2b7923 1171 Pragma_Identifier =>
1172 Make_Identifier (Sloc (Ident), Chars (Ident)),
06ef5f86 1173 Pragma_Argument_Associations => New_List (
57cd943b 1174 Make_Pragma_Argument_Association (Sloc (Ident),
ee2b7923 1175 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
06ef5f86 1176
1177 Set_From_Aspect_Specification (Prag, True);
1178 Set_Corresponding_Aspect (Prag, ASN);
1179 Set_Aspect_Rep_Item (ASN, Prag);
1180 Set_Is_Delayed_Aspect (Prag);
1181 Set_Parent (Prag, ASN);
1182 end if;
06ef5f86 1183 end Make_Pragma_From_Boolean_Aspect;
1184
ee2b7923 1185 -- Local variables
1186
1187 A_Id : Aspect_Id;
1188 ASN : Node_Id;
1189 Ritem : Node_Id;
1190
06ef5f86 1191 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1192
1193 begin
29a9d4be 1194 -- Must be visible in current scope
06ef5f86 1195
ace3389d 1196 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 1197 return;
1198 end if;
1199
1200 -- Look for aspect specification entries for this entity
1201
1202 ASN := First_Rep_Item (E);
06ef5f86 1203 while Present (ASN) loop
37c6e44c 1204 if Nkind (ASN) = N_Aspect_Specification then
1205 exit when Entity (ASN) /= E;
06ef5f86 1206
37c6e44c 1207 if Is_Delayed_Aspect (ASN) then
1208 A_Id := Get_Aspect_Id (ASN);
1209
1210 case A_Id is
e4c87fa5 1211
37c6e44c 1212 -- For aspects whose expression is an optional Boolean, make
7d6fb253 1213 -- the corresponding pragma at the freeze point.
06ef5f86 1214
7d6fb253 1215 when Boolean_Aspects |
1216 Library_Unit_Aspects =>
ee2b7923 1217
1218 -- Aspects Export and Import require special handling.
1219 -- Both are by definition Boolean and may benefit from
1220 -- forward references, however their expressions are
1221 -- treated as static. In addition, the syntax of their
1222 -- corresponding pragmas requires extra "pieces" which
1223 -- may also contain forward references. To account for
1224 -- all of this, the corresponding pragma is created by
1225 -- Analyze_Aspect_Export_Import, but is not analyzed as
1226 -- the complete analysis must happen now.
1227
1228 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1229 null;
1230
1231 -- Otherwise create a corresponding pragma
1232
1233 else
1234 Make_Pragma_From_Boolean_Aspect (ASN);
1235 end if;
06ef5f86 1236
37c6e44c 1237 -- Special handling for aspects that don't correspond to
1238 -- pragmas/attributes.
06ef5f86 1239
7d6fb253 1240 when Aspect_Default_Value |
1241 Aspect_Default_Component_Value =>
81c2bc19 1242
1243 -- Do not inherit aspect for anonymous base type of a
1244 -- scalar or array type, because they apply to the first
1245 -- subtype of the type, and will be processed when that
1246 -- first subtype is frozen.
1247
1248 if Is_Derived_Type (E)
1249 and then not Comes_From_Source (E)
1250 and then E /= First_Subtype (E)
1251 then
1252 null;
1253 else
1254 Analyze_Aspect_Default_Value (ASN);
1255 end if;
06ef5f86 1256
37c6e44c 1257 -- Ditto for iterator aspects, because the corresponding
1258 -- attributes may not have been analyzed yet.
af9fed8f 1259
7d6fb253 1260 when Aspect_Constant_Indexing |
1261 Aspect_Variable_Indexing |
1262 Aspect_Default_Iterator |
1263 Aspect_Iterator_Element =>
1264 Analyze (Expression (ASN));
af9fed8f 1265
7d6fb253 1266 if Etype (Expression (ASN)) = Any_Type then
1267 Error_Msg_NE
1268 ("\aspect must be fully defined before & is frozen",
1269 ASN, E);
1270 end if;
b3f8228a 1271
7d6fb253 1272 when Aspect_Iterable =>
1273 Validate_Iterable_Aspect (E, ASN);
1274
1275 when others =>
1276 null;
37c6e44c 1277 end case;
06ef5f86 1278
37c6e44c 1279 Ritem := Aspect_Rep_Item (ASN);
06ef5f86 1280
37c6e44c 1281 if Present (Ritem) then
1282 Analyze (Ritem);
1283 end if;
06ef5f86 1284 end if;
1285 end if;
1286
1287 Next_Rep_Item (ASN);
1288 end loop;
37c6e44c 1289
1290 -- This is where we inherit delayed rep aspects from our parent. Note
1291 -- that if we fell out of the above loop with ASN non-empty, it means
1292 -- we hit an aspect for an entity other than E, and it must be the
1293 -- type from which we were derived.
1294
1295 if May_Inherit_Delayed_Rep_Aspects (E) then
1296 Inherit_Delayed_Rep_Aspects (ASN);
1297 end if;
06ef5f86 1298 end Analyze_Aspects_At_Freeze_Point;
1299
ae888dbd 1300 -----------------------------------
1301 -- Analyze_Aspect_Specifications --
1302 -----------------------------------
1303
21ea3a4f 1304 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
e2bf777d 1305 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
6c5793cd 1306 -- Establish linkages between an aspect and its corresponding pragma
5ddd846b 1307
5655be8a 1308 procedure Insert_Pragma
1309 (Prag : Node_Id;
1310 Is_Instance : Boolean := False);
2f06c88a 1311 -- Subsidiary to the analysis of aspects
1312 -- Abstract_State
2f06c88a 1313 -- Attach_Handler
1314 -- Contract_Cases
1315 -- Depends
5655be8a 1316 -- Ghost
2f06c88a 1317 -- Global
5655be8a 1318 -- Initial_Condition
1319 -- Initializes
2f06c88a 1320 -- Post
1321 -- Pre
1322 -- Refined_Depends
1323 -- Refined_Global
5655be8a 1324 -- Refined_State
2f06c88a 1325 -- SPARK_Mode
1326 -- Warnings
e2bf777d 1327 -- Insert pragma Prag such that it mimics the placement of a source
5655be8a 1328 -- pragma of the same kind. Flag Is_Generic should be set when the
1329 -- context denotes a generic instance.
e2bf777d 1330
1331 --------------
1332 -- Decorate --
1333 --------------
1334
1335 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5ddd846b 1336 begin
6c5793cd 1337 Set_Aspect_Rep_Item (Asp, Prag);
5ddd846b 1338 Set_Corresponding_Aspect (Prag, Asp);
1339 Set_From_Aspect_Specification (Prag);
5ddd846b 1340 Set_Parent (Prag, Asp);
e2bf777d 1341 end Decorate;
f0813d71 1342
e2bf777d 1343 -------------------
1344 -- Insert_Pragma --
1345 -------------------
c1006d6d 1346
5655be8a 1347 procedure Insert_Pragma
1348 (Prag : Node_Id;
1349 Is_Instance : Boolean := False)
1350 is
3ff5e35d 1351 Aux : Node_Id;
1352 Decl : Node_Id;
1353 Decls : List_Id;
1354 Def : Node_Id;
1355 Inserted : Boolean := False;
c1006d6d 1356
1357 begin
3ff5e35d 1358 -- When the aspect appears on an entry, package, protected unit,
1359 -- subprogram, or task unit body, insert the generated pragma at the
1360 -- top of the body declarations to emulate the behavior of a source
1361 -- pragma.
2f06c88a 1362
1363 -- package body Pack with Aspect is
1364
1365 -- package body Pack is
1366 -- pragma Prag;
1367
3ff5e35d 1368 if Nkind_In (N, N_Entry_Body,
1369 N_Package_Body,
2f06c88a 1370 N_Protected_Body,
1371 N_Subprogram_Body,
1372 N_Task_Body)
1373 then
1374 Decls := Declarations (N);
1375
1376 if No (Decls) then
1377 Decls := New_List;
1378 Set_Declarations (N, Decls);
1379 end if;
e2bf777d 1380
3ff5e35d 1381 Prepend_To (Decls, Prag);
2f06c88a 1382
1383 -- When the aspect is associated with a [generic] package declaration
1384 -- insert the generated pragma at the top of the visible declarations
1385 -- to emulate the behavior of a source pragma.
1386
1387 -- package Pack with Aspect is
1388
1389 -- package Pack is
1390 -- pragma Prag;
1391
1392 elsif Nkind_In (N, N_Generic_Package_Declaration,
1393 N_Package_Declaration)
1394 then
1395 Decls := Visible_Declarations (Specification (N));
1396
1397 if No (Decls) then
1398 Decls := New_List;
1399 Set_Visible_Declarations (Specification (N), Decls);
1400 end if;
1401
5655be8a 1402 -- The visible declarations of a generic instance have the
1403 -- following structure:
1404
1405 -- <renamings of generic formals>
1406 -- <renamings of internally-generated spec and body>
1407 -- <first source declaration>
1408
1409 -- Insert the pragma before the first source declaration by
3ff5e35d 1410 -- skipping the instance "header" to ensure proper visibility of
1411 -- all formals.
5655be8a 1412
1413 if Is_Instance then
1414 Decl := First (Decls);
3ff5e35d 1415 while Present (Decl) loop
1416 if Comes_From_Source (Decl) then
1417 Insert_Before (Decl, Prag);
1418 Inserted := True;
1419 exit;
1420 else
1421 Next (Decl);
1422 end if;
5655be8a 1423 end loop;
1424
3ff5e35d 1425 -- The pragma is placed after the instance "header"
5655be8a 1426
3ff5e35d 1427 if not Inserted then
5655be8a 1428 Append_To (Decls, Prag);
1429 end if;
1430
1431 -- Otherwise this is not a generic instance
1432
1433 else
1434 Prepend_To (Decls, Prag);
1435 end if;
2f06c88a 1436
1437 -- When the aspect is associated with a protected unit declaration,
1438 -- insert the generated pragma at the top of the visible declarations
1439 -- the emulate the behavior of a source pragma.
1440
1441 -- protected [type] Prot with Aspect is
1442
1443 -- protected [type] Prot is
1444 -- pragma Prag;
1445
1446 elsif Nkind (N) = N_Protected_Type_Declaration then
736b80cc 1447 Def := Protected_Definition (N);
1448
1449 if No (Def) then
1450 Def :=
1451 Make_Protected_Definition (Sloc (N),
1452 Visible_Declarations => New_List,
1453 End_Label => Empty);
1454
1455 Set_Protected_Definition (N, Def);
1456 end if;
1457
1458 Decls := Visible_Declarations (Def);
2f06c88a 1459
1460 if No (Decls) then
1461 Decls := New_List;
736b80cc 1462 Set_Visible_Declarations (Def, Decls);
2f06c88a 1463 end if;
1464
1465 Prepend_To (Decls, Prag);
1466
736b80cc 1467 -- When the aspect is associated with a task unit declaration, insert
1468 -- insert the generated pragma at the top of the visible declarations
1469 -- the emulate the behavior of a source pragma.
2f06c88a 1470
1471 -- task [type] Prot with Aspect is
1472
1473 -- task [type] Prot is
1474 -- pragma Prag;
1475
736b80cc 1476 elsif Nkind (N) = N_Task_Type_Declaration then
1477 Def := Task_Definition (N);
1478
1479 if No (Def) then
1480 Def :=
1481 Make_Task_Definition (Sloc (N),
1482 Visible_Declarations => New_List,
1483 End_Label => Empty);
1484
1485 Set_Task_Definition (N, Def);
1486 end if;
1487
1488 Decls := Visible_Declarations (Def);
2f06c88a 1489
1490 if No (Decls) then
1491 Decls := New_List;
736b80cc 1492 Set_Visible_Declarations (Def, Decls);
d324c418 1493 end if;
c1006d6d 1494
2f06c88a 1495 Prepend_To (Decls, Prag);
1496
ed695684 1497 -- When the context is a library unit, the pragma is added to the
1498 -- Pragmas_After list.
1499
1500 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1501 Aux := Aux_Decls_Node (Parent (N));
1502
1503 if No (Pragmas_After (Aux)) then
1504 Set_Pragmas_After (Aux, New_List);
1505 end if;
1506
1507 Prepend (Prag, Pragmas_After (Aux));
1508
2f06c88a 1509 -- Default, the pragma is inserted after the context
c1006d6d 1510
1511 else
1512 Insert_After (N, Prag);
c1006d6d 1513 end if;
e2bf777d 1514 end Insert_Pragma;
c1006d6d 1515
1516 -- Local variables
1517
ae888dbd 1518 Aspect : Node_Id;
d74fc39a 1519 Aitem : Node_Id;
ae888dbd 1520 Ent : Node_Id;
ae888dbd 1521
21ea3a4f 1522 L : constant List_Id := Aspect_Specifications (N);
1523
ae888dbd 1524 Ins_Node : Node_Id := N;
89f1e35c 1525 -- Insert pragmas/attribute definition clause after this node when no
1526 -- delayed analysis is required.
d74fc39a 1527
ee2b7923 1528 -- Start of processing for Analyze_Aspect_Specifications
f0813d71 1529
ee2b7923 1530 begin
d74fc39a 1531 -- The general processing involves building an attribute definition
89f1e35c 1532 -- clause or a pragma node that corresponds to the aspect. Then in order
1533 -- to delay the evaluation of this aspect to the freeze point, we attach
1534 -- the corresponding pragma/attribute definition clause to the aspect
1535 -- specification node, which is then placed in the Rep Item chain. In
1536 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1537 -- and we evaluate the rep item at the freeze point. When the aspect
1538 -- doesn't have a corresponding pragma/attribute definition clause, then
1539 -- its analysis is simply delayed at the freeze point.
1540
1541 -- Some special cases don't require delay analysis, thus the aspect is
1542 -- analyzed right now.
1543
51ea9c94 1544 -- Note that there is a special handling for Pre, Post, Test_Case,
e66f4e2a 1545 -- Contract_Cases aspects. In these cases, we do not have to worry
51ea9c94 1546 -- about delay issues, since the pragmas themselves deal with delay
1547 -- of visibility for the expression analysis. Thus, we just insert
1548 -- the pragma after the node N.
ae888dbd 1549
21ea3a4f 1550 pragma Assert (Present (L));
1551
6fb3c314 1552 -- Loop through aspects
f93e7257 1553
ae888dbd 1554 Aspect := First (L);
21ea3a4f 1555 Aspect_Loop : while Present (Aspect) loop
0fd13d32 1556 Analyze_One_Aspect : declare
94153a42 1557 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 1558 Id : constant Node_Id := Identifier (Aspect);
1559 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 1560 Nam : constant Name_Id := Chars (Id);
1561 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 1562 Anod : Node_Id;
1563
37c6e44c 1564 Delay_Required : Boolean;
89f1e35c 1565 -- Set False if delay is not required
1566
c0793fff 1567 Eloc : Source_Ptr := No_Location;
1568 -- Source location of expression, modified when we split PPC's. It
1569 -- is set below when Expr is present.
39e1f22f 1570
ee2b7923 1571 procedure Analyze_Aspect_Convention;
1572 -- Perform analysis of aspect Convention
1573
1574 procedure Analyze_Aspect_Export_Import;
1575 -- Perform analysis of aspects Export or Import
1576
1577 procedure Analyze_Aspect_External_Link_Name;
1578 -- Perform analysis of aspects External_Name or Link_Name
21ea3a4f 1579
89f1e35c 1580 procedure Analyze_Aspect_Implicit_Dereference;
9ab32fe9 1581 -- Perform analysis of the Implicit_Dereference aspects
0fd13d32 1582
1583 procedure Make_Aitem_Pragma
1584 (Pragma_Argument_Associations : List_Id;
1585 Pragma_Name : Name_Id);
1586 -- This is a wrapper for Make_Pragma used for converting aspects
1587 -- to pragmas. It takes care of Sloc (set from Loc) and building
1588 -- the pragma identifier from the given name. In addition the
1589 -- flags Class_Present and Split_PPC are set from the aspect
1590 -- node, as well as Is_Ignored. This routine also sets the
1591 -- From_Aspect_Specification in the resulting pragma node to
1592 -- True, and sets Corresponding_Aspect to point to the aspect.
1593 -- The resulting pragma is assigned to Aitem.
21ea3a4f 1594
ee2b7923 1595 -------------------------------
1596 -- Analyze_Aspect_Convention --
1597 -------------------------------
1598
1599 procedure Analyze_Aspect_Convention is
1600 Conv : Node_Id;
1601 Dummy_1 : Node_Id;
1602 Dummy_2 : Node_Id;
1603 Dummy_3 : Node_Id;
1604 Expo : Node_Id;
1605 Imp : Node_Id;
89f1e35c 1606
21ea3a4f 1607 begin
ee2b7923 1608 -- Obtain all interfacing aspects that apply to the related
1609 -- entity.
1610
1611 Get_Interfacing_Aspects
1612 (Iface_Asp => Aspect,
1613 Conv_Asp => Dummy_1,
1614 EN_Asp => Dummy_2,
1615 Expo_Asp => Expo,
1616 Imp_Asp => Imp,
1617 LN_Asp => Dummy_3,
1618 Do_Checks => True);
1619
1620 -- The related entity is subject to aspect Export or Import.
1621 -- Do not process Convention now because it must be analysed
1622 -- as part of Export or Import.
1623
1624 if Present (Expo) or else Present (Imp) then
1625 return;
21ea3a4f 1626
ee2b7923 1627 -- Otherwise Convention appears by itself
21ea3a4f 1628
ee2b7923 1629 else
1630 -- The aspect specifies a particular convention
1631
1632 if Present (Expr) then
1633 Conv := New_Copy_Tree (Expr);
1634
1635 -- Otherwise assume convention Ada
1636
1637 else
1638 Conv := Make_Identifier (Loc, Name_Ada);
1639 end if;
1640
1641 -- Generate:
1642 -- pragma Convention (<Conv>, <E>);
1643
1644 Make_Aitem_Pragma
1645 (Pragma_Name => Name_Convention,
1646 Pragma_Argument_Associations => New_List (
1647 Make_Pragma_Argument_Association (Loc,
1648 Expression => Conv),
1649 Make_Pragma_Argument_Association (Loc,
1650 Expression => New_Occurrence_Of (E, Loc))));
1651
1652 Decorate (Aspect, Aitem);
1653 Insert_Pragma (Aitem);
1654 end if;
1655 end Analyze_Aspect_Convention;
1656
1657 ----------------------------------
1658 -- Analyze_Aspect_Export_Import --
1659 ----------------------------------
21ea3a4f 1660
ee2b7923 1661 procedure Analyze_Aspect_Export_Import is
1662 Dummy_1 : Node_Id;
1663 Dummy_2 : Node_Id;
1664 Dummy_3 : Node_Id;
1665 Expo : Node_Id;
1666 Imp : Node_Id;
1667
1668 begin
1669 -- Obtain all interfacing aspects that apply to the related
1670 -- entity.
1671
1672 Get_Interfacing_Aspects
1673 (Iface_Asp => Aspect,
1674 Conv_Asp => Dummy_1,
1675 EN_Asp => Dummy_2,
1676 Expo_Asp => Expo,
1677 Imp_Asp => Imp,
1678 LN_Asp => Dummy_3,
1679 Do_Checks => True);
1680
1681 -- The related entity cannot be subject to both aspects Export
1682 -- and Import.
1683
1684 if Present (Expo) and then Present (Imp) then
1685 Error_Msg_N
1686 ("incompatible interfacing aspects given for &", E);
1687 Error_Msg_Sloc := Sloc (Expo);
1688 Error_Msg_N ("\aspect `Export` #", E);
1689 Error_Msg_Sloc := Sloc (Imp);
1690 Error_Msg_N ("\aspect `Import` #", E);
1691 end if;
1692
1693 -- A variable is most likely modified from the outside. Take
1694 -- Take the optimistic approach to avoid spurious errors.
1695
1696 if Ekind (E) = E_Variable then
1697 Set_Never_Set_In_Source (E, False);
1698 end if;
1699
1700 -- Resolve the expression of an Import or Export here, and
1701 -- require it to be of type Boolean and static. This is not
1702 -- quite right, because in general this should be delayed,
1703 -- but that seems tricky for these, because normally Boolean
1704 -- aspects are replaced with pragmas at the freeze point in
1705 -- Make_Pragma_From_Boolean_Aspect.
1706
1707 if not Present (Expr)
1708 or else Is_True (Static_Boolean (Expr))
1709 then
1710 if A_Id = Aspect_Import then
1711 Set_Has_Completion (E);
1712 Set_Is_Imported (E);
1713
1714 -- An imported object cannot be explicitly initialized
1715
1716 if Nkind (N) = N_Object_Declaration
1717 and then Present (Expression (N))
1718 then
1719 Error_Msg_N
1720 ("imported entities cannot be initialized "
1721 & "(RM B.1(24))", Expression (N));
1722 end if;
1723
1724 else
1725 pragma Assert (A_Id = Aspect_Export);
1726 Set_Is_Exported (E);
1727 end if;
1728
1729 -- Create the proper form of pragma Export or Import taking
1730 -- into account Conversion, External_Name, and Link_Name.
1731
1732 Aitem := Build_Export_Import_Pragma (Aspect, E);
d8e539ae 1733
1734 -- Otherwise the expression is either False or erroneous. There
1735 -- is no corresponding pragma.
1736
1737 else
1738 Aitem := Empty;
ee2b7923 1739 end if;
1740 end Analyze_Aspect_Export_Import;
1741
1742 ---------------------------------------
1743 -- Analyze_Aspect_External_Link_Name --
1744 ---------------------------------------
1745
1746 procedure Analyze_Aspect_External_Link_Name is
1747 Dummy_1 : Node_Id;
1748 Dummy_2 : Node_Id;
1749 Dummy_3 : Node_Id;
1750 Expo : Node_Id;
1751 Imp : Node_Id;
1752
1753 begin
1754 -- Obtain all interfacing aspects that apply to the related
1755 -- entity.
1756
1757 Get_Interfacing_Aspects
1758 (Iface_Asp => Aspect,
1759 Conv_Asp => Dummy_1,
1760 EN_Asp => Dummy_2,
1761 Expo_Asp => Expo,
1762 Imp_Asp => Imp,
1763 LN_Asp => Dummy_3,
1764 Do_Checks => True);
1765
1766 -- Ensure that aspect External_Name applies to aspect Export or
1767 -- Import.
1768
1769 if A_Id = Aspect_External_Name then
1770 if No (Expo) and then No (Imp) then
89f1e35c 1771 Error_Msg_N
ee2b7923 1772 ("aspect `External_Name` requires aspect `Import` or "
1773 & "`Export`", Aspect);
89f1e35c 1774 end if;
ee2b7923 1775
1776 -- Otherwise ensure that aspect Link_Name applies to aspect
1777 -- Export or Import.
1778
1779 else
1780 pragma Assert (A_Id = Aspect_Link_Name);
1781 if No (Expo) and then No (Imp) then
1782 Error_Msg_N
1783 ("aspect `Link_Name` requires aspect `Import` or "
1784 & "`Export`", Aspect);
1785 end if;
1786 end if;
1787 end Analyze_Aspect_External_Link_Name;
21ea3a4f 1788
89f1e35c 1789 -----------------------------------------
1790 -- Analyze_Aspect_Implicit_Dereference --
1791 -----------------------------------------
21ea3a4f 1792
89f1e35c 1793 procedure Analyze_Aspect_Implicit_Dereference is
1ff43c00 1794 Disc : Entity_Id;
1795 Parent_Disc : Entity_Id;
1796
89f1e35c 1797 begin
b9e61b2a 1798 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1799 Error_Msg_N
1ff43c00 1800 ("aspect must apply to a type with discriminants", Expr);
21ea3a4f 1801
1ff43c00 1802 elsif not Is_Entity_Name (Expr) then
1803 Error_Msg_N
1804 ("aspect must name a discriminant of current type", Expr);
21ea3a4f 1805
1ff43c00 1806 else
1807 Disc := First_Discriminant (E);
1808 while Present (Disc) loop
1809 if Chars (Expr) = Chars (Disc)
1810 and then Ekind (Etype (Disc)) =
1811 E_Anonymous_Access_Type
1812 then
1813 Set_Has_Implicit_Dereference (E);
1814 Set_Has_Implicit_Dereference (Disc);
1815 exit;
1816 end if;
21ea3a4f 1817
1ff43c00 1818 Next_Discriminant (Disc);
1819 end loop;
21ea3a4f 1820
9b5b11fb 1821 -- Error if no proper access discriminant
21ea3a4f 1822
1ff43c00 1823 if No (Disc) then
ee2b7923 1824 Error_Msg_NE ("not an access discriminant of&", Expr, E);
1ff43c00 1825 return;
1826 end if;
1827 end if;
1828
9b5b11fb 1829 -- For a type extension, check whether parent has a
1830 -- reference discriminant, to verify that use is proper.
1831
1ff43c00 1832 if Is_Derived_Type (E)
1833 and then Has_Discriminants (Etype (E))
1834 then
1835 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1836
1837 if Present (Parent_Disc)
1838 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1839 then
ee2b7923 1840 Error_Msg_N
1841 ("reference discriminant does not match discriminant "
1842 & "of parent type", Expr);
1ff43c00 1843 end if;
89f1e35c 1844 end if;
1845 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1846
0fd13d32 1847 -----------------------
1848 -- Make_Aitem_Pragma --
1849 -----------------------
1850
1851 procedure Make_Aitem_Pragma
1852 (Pragma_Argument_Associations : List_Id;
1853 Pragma_Name : Name_Id)
1854 is
b855559d 1855 Args : List_Id := Pragma_Argument_Associations;
1856
0fd13d32 1857 begin
1858 -- We should never get here if aspect was disabled
1859
1860 pragma Assert (not Is_Disabled (Aspect));
1861
056dc987 1862 -- Certain aspects allow for an optional name or expression. Do
1863 -- not generate a pragma with empty argument association list.
b855559d 1864
1865 if No (Args) or else No (Expression (First (Args))) then
1866 Args := No_List;
1867 end if;
1868
0fd13d32 1869 -- Build the pragma
1870
1871 Aitem :=
1872 Make_Pragma (Loc,
b855559d 1873 Pragma_Argument_Associations => Args,
0fd13d32 1874 Pragma_Identifier =>
1875 Make_Identifier (Sloc (Id), Pragma_Name),
9ab32fe9 1876 Class_Present => Class_Present (Aspect),
1877 Split_PPC => Split_PPC (Aspect));
0fd13d32 1878
1879 -- Set additional semantic fields
1880
1881 if Is_Ignored (Aspect) then
1882 Set_Is_Ignored (Aitem);
57d8d1f3 1883 elsif Is_Checked (Aspect) then
a5109493 1884 Set_Is_Checked (Aitem);
0fd13d32 1885 end if;
1886
1887 Set_Corresponding_Aspect (Aitem, Aspect);
fdec445e 1888 Set_From_Aspect_Specification (Aitem);
0fd13d32 1889 end Make_Aitem_Pragma;
1890
738ec25b 1891 -- Start of processing for Analyze_One_Aspect
0fd13d32 1892
ae888dbd 1893 begin
2d1acfa7 1894 -- Skip aspect if already analyzed, to avoid looping in some cases
fb7f2fc4 1895
1896 if Analyzed (Aspect) then
1897 goto Continue;
1898 end if;
1899
ef957022 1900 -- Skip looking at aspect if it is totally disabled. Just mark it
1901 -- as such for later reference in the tree. This also sets the
1902 -- Is_Ignored and Is_Checked flags appropriately.
51ea9c94 1903
1904 Check_Applicable_Policy (Aspect);
1905
1906 if Is_Disabled (Aspect) then
1907 goto Continue;
1908 end if;
1909
c0793fff 1910 -- Set the source location of expression, used in the case of
1911 -- a failed precondition/postcondition or invariant. Note that
1912 -- the source location of the expression is not usually the best
1913 -- choice here. For example, it gets located on the last AND
1914 -- keyword in a chain of boolean expressiond AND'ed together.
1915 -- It is best to put the message on the first character of the
1916 -- assertion, which is the effect of the First_Node call here.
1917
1918 if Present (Expr) then
1919 Eloc := Sloc (First_Node (Expr));
1920 end if;
1921
d7ed83a2 1922 -- Check restriction No_Implementation_Aspect_Specifications
1923
c171e1be 1924 if Implementation_Defined_Aspect (A_Id) then
d7ed83a2 1925 Check_Restriction
1926 (No_Implementation_Aspect_Specifications, Aspect);
1927 end if;
1928
1929 -- Check restriction No_Specification_Of_Aspect
1930
1931 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1932
f67ed4f5 1933 -- Mark aspect analyzed (actual analysis is delayed till later)
d7ed83a2 1934
fb7f2fc4 1935 Set_Analyzed (Aspect);
d74fc39a 1936 Set_Entity (Aspect, E);
738ec25b 1937
1938 -- Build the reference to E that will be used in the built pragmas
1939
d74fc39a 1940 Ent := New_Occurrence_Of (E, Sloc (Id));
1941
738ec25b 1942 if A_Id = Aspect_Attach_Handler
1943 or else A_Id = Aspect_Interrupt_Handler
1944 then
1945 -- Decorate the reference as comming from the sources and force
1946 -- its reanalysis to generate the reference to E; required to
1947 -- avoid reporting spurious warning on E as unreferenced entity
1948 -- (because aspects are not fully analyzed).
1949
1950 Set_Comes_From_Source (Ent, Comes_From_Source (Id));
1951 Set_Entity (Ent, Empty);
1952
1953 Analyze (Ent);
1954 end if;
1955
1e3c4ae6 1956 -- Check for duplicate aspect. Note that the Comes_From_Source
1957 -- test allows duplicate Pre/Post's that we generate internally
1958 -- to escape being flagged here.
ae888dbd 1959
6c545057 1960 if No_Duplicates_Allowed (A_Id) then
1961 Anod := First (L);
1962 while Anod /= Aspect loop
c171e1be 1963 if Comes_From_Source (Aspect)
1964 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
6c545057 1965 then
1966 Error_Msg_Name_1 := Nam;
1967 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1968
6c545057 1969 -- Case of same aspect specified twice
39e1f22f 1970
6c545057 1971 if Class_Present (Anod) = Class_Present (Aspect) then
1972 if not Class_Present (Anod) then
1973 Error_Msg_NE
1974 ("aspect% for & previously given#",
1975 Id, E);
1976 else
1977 Error_Msg_NE
1978 ("aspect `%''Class` for & previously given#",
1979 Id, E);
1980 end if;
39e1f22f 1981 end if;
6c545057 1982 end if;
ae888dbd 1983
6c545057 1984 Next (Anod);
1985 end loop;
1986 end if;
ae888dbd 1987
4db325e6 1988 -- Check some general restrictions on language defined aspects
1989
c171e1be 1990 if not Implementation_Defined_Aspect (A_Id) then
4db325e6 1991 Error_Msg_Name_1 := Nam;
1992
d1edd78e 1993 -- Not allowed for renaming declarations. Examine the original
da1b7592 1994 -- node because a subprogram renaming may have been rewritten
1995 -- as a body.
4db325e6 1996
da1b7592 1997 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
4db325e6 1998 Error_Msg_N
1999 ("aspect % not allowed for renaming declaration",
2000 Aspect);
2001 end if;
2002
2003 -- Not allowed for formal type declarations
2004
2005 if Nkind (N) = N_Formal_Type_Declaration then
2006 Error_Msg_N
2007 ("aspect % not allowed for formal type declaration",
2008 Aspect);
2009 end if;
2010 end if;
2011
7d20685d 2012 -- Copy expression for later processing by the procedures
2013 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2014
2015 Set_Entity (Id, New_Copy_Tree (Expr));
2016
37c6e44c 2017 -- Set Delay_Required as appropriate to aspect
2018
2019 case Aspect_Delay (A_Id) is
2020 when Always_Delay =>
2021 Delay_Required := True;
2022
2023 when Never_Delay =>
2024 Delay_Required := False;
2025
2026 when Rep_Aspect =>
2027
2028 -- If expression has the form of an integer literal, then
2029 -- do not delay, since we know the value cannot change.
2030 -- This optimization catches most rep clause cases.
2031
e43fc5c5 2032 -- For Boolean aspects, don't delay if no expression
2033
2034 if A_Id in Boolean_Aspects and then No (Expr) then
2035 Delay_Required := False;
2036
2037 -- For non-Boolean aspects, don't delay if integer literal
2038
2039 elsif A_Id not in Boolean_Aspects
2040 and then Present (Expr)
2041 and then Nkind (Expr) = N_Integer_Literal
2042 then
2043 Delay_Required := False;
2044
2045 -- All other cases are delayed
2046
2047 else
2048 Delay_Required := True;
2049 Set_Has_Delayed_Rep_Aspects (E);
2050 end if;
37c6e44c 2051 end case;
2052
ae888dbd 2053 -- Processing based on specific aspect
2054
d74fc39a 2055 case A_Id is
aa2f48d2 2056 when Aspect_Unimplemented =>
2057 null; -- ??? temp for now
ae888dbd 2058
2059 -- No_Aspect should be impossible
2060
2061 when No_Aspect =>
2062 raise Program_Error;
2063
89f1e35c 2064 -- Case 1: Aspects corresponding to attribute definition
2065 -- clauses.
ae888dbd 2066
b7b74740 2067 when Aspect_Address |
2068 Aspect_Alignment |
2069 Aspect_Bit_Order |
2070 Aspect_Component_Size |
89f1e35c 2071 Aspect_Constant_Indexing |
89f1e35c 2072 Aspect_Default_Iterator |
2073 Aspect_Dispatching_Domain |
b7b74740 2074 Aspect_External_Tag |
2075 Aspect_Input |
b3f8228a 2076 Aspect_Iterable |
89f1e35c 2077 Aspect_Iterator_Element |
b7b74740 2078 Aspect_Machine_Radix |
2079 Aspect_Object_Size |
2080 Aspect_Output |
2081 Aspect_Read |
2082 Aspect_Scalar_Storage_Order |
e6ce0468 2083 Aspect_Secondary_Stack_Size |
b7b74740 2084 Aspect_Simple_Storage_Pool |
fe696bd7 2085 Aspect_Size |
2086 Aspect_Small |
b7b74740 2087 Aspect_Storage_Pool |
b7b74740 2088 Aspect_Stream_Size |
2089 Aspect_Value_Size |
89f1e35c 2090 Aspect_Variable_Indexing |
b7b74740 2091 Aspect_Write =>
d74fc39a 2092
89f1e35c 2093 -- Indexing aspects apply only to tagged type
2094
2095 if (A_Id = Aspect_Constant_Indexing
37c6e44c 2096 or else
2097 A_Id = Aspect_Variable_Indexing)
89f1e35c 2098 and then not (Is_Type (E)
2099 and then Is_Tagged_Type (E))
2100 then
05987af3 2101 Error_Msg_N
2102 ("indexing aspect can only apply to a tagged type",
3f4c9ffc 2103 Aspect);
89f1e35c 2104 goto Continue;
2105 end if;
2106
39616053 2107 -- For the case of aspect Address, we don't consider that we
588e7f97 2108 -- know the entity is never set in the source, since it is
2109 -- is likely aliasing is occurring.
2110
2111 -- Note: one might think that the analysis of the resulting
2112 -- attribute definition clause would take care of that, but
2113 -- that's not the case since it won't be from source.
2114
2115 if A_Id = Aspect_Address then
2116 Set_Never_Set_In_Source (E, False);
2117 end if;
2118
5ac76cee 2119 -- Correctness of the profile of a stream operation is
2120 -- verified at the freeze point, but we must detect the
2121 -- illegal specification of this aspect for a subtype now,
2122 -- to prevent malformed rep_item chains.
2123
fbf4d6ef 2124 if A_Id = Aspect_Input or else
2125 A_Id = Aspect_Output or else
2126 A_Id = Aspect_Read or else
2127 A_Id = Aspect_Write
5ac76cee 2128 then
fbf4d6ef 2129 if not Is_First_Subtype (E) then
2130 Error_Msg_N
2131 ("local name must be a first subtype", Aspect);
2132 goto Continue;
2133
2134 -- If stream aspect applies to the class-wide type,
2135 -- the generated attribute definition applies to the
2136 -- class-wide type as well.
2137
2138 elsif Class_Present (Aspect) then
2139 Ent :=
2140 Make_Attribute_Reference (Loc,
2141 Prefix => Ent,
2142 Attribute_Name => Name_Class);
2143 end if;
5ac76cee 2144 end if;
2145
d74fc39a 2146 -- Construct the attribute definition clause
2147
2148 Aitem :=
94153a42 2149 Make_Attribute_Definition_Clause (Loc,
d74fc39a 2150 Name => Ent,
ae888dbd 2151 Chars => Chars (Id),
2152 Expression => Relocate_Node (Expr));
2153
af9a0cc3 2154 -- If the address is specified, then we treat the entity as
41f06abf 2155 -- referenced, to avoid spurious warnings. This is analogous
2156 -- to what is done with an attribute definition clause, but
2157 -- here we don't want to generate a reference because this
2158 -- is the point of definition of the entity.
2159
2160 if A_Id = Aspect_Address then
2161 Set_Referenced (E);
2162 end if;
2163
51ea9c94 2164 -- Case 2: Aspects corresponding to pragmas
d74fc39a 2165
89f1e35c 2166 -- Case 2a: Aspects corresponding to pragmas with two
2167 -- arguments, where the first argument is a local name
2168 -- referring to the entity, and the second argument is the
2169 -- aspect definition expression.
ae888dbd 2170
04ae062f 2171 -- Linker_Section/Suppress/Unsuppress
0fd13d32 2172
04ae062f 2173 when Aspect_Linker_Section |
2174 Aspect_Suppress |
2175 Aspect_Unsuppress =>
ae888dbd 2176
0fd13d32 2177 Make_Aitem_Pragma
2178 (Pragma_Argument_Associations => New_List (
2179 Make_Pragma_Argument_Association (Loc,
2180 Expression => New_Occurrence_Of (E, Loc)),
2181 Make_Pragma_Argument_Association (Sloc (Expr),
2182 Expression => Relocate_Node (Expr))),
2183 Pragma_Name => Chars (Id));
57cd943b 2184
0fd13d32 2185 -- Synchronization
d74fc39a 2186
0fd13d32 2187 -- Corresponds to pragma Implemented, construct the pragma
49213728 2188
5bbfbad2 2189 when Aspect_Synchronization =>
0fd13d32 2190 Make_Aitem_Pragma
2191 (Pragma_Argument_Associations => New_List (
2192 Make_Pragma_Argument_Association (Loc,
2193 Expression => New_Occurrence_Of (E, Loc)),
2194 Make_Pragma_Argument_Association (Sloc (Expr),
2195 Expression => Relocate_Node (Expr))),
2196 Pragma_Name => Name_Implemented);
49213728 2197
e2bf777d 2198 -- Attach_Handler
0fd13d32 2199
89f1e35c 2200 when Aspect_Attach_Handler =>
0fd13d32 2201 Make_Aitem_Pragma
2202 (Pragma_Argument_Associations => New_List (
2203 Make_Pragma_Argument_Association (Sloc (Ent),
2204 Expression => Ent),
2205 Make_Pragma_Argument_Association (Sloc (Expr),
2206 Expression => Relocate_Node (Expr))),
2207 Pragma_Name => Name_Attach_Handler);
2208
f67ed4f5 2209 -- We need to insert this pragma into the tree to get proper
2210 -- processing and to look valid from a placement viewpoint.
2211
e2bf777d 2212 Insert_Pragma (Aitem);
f67ed4f5 2213 goto Continue;
2214
0fd13d32 2215 -- Dynamic_Predicate, Predicate, Static_Predicate
89f1e35c 2216
2217 when Aspect_Dynamic_Predicate |
2218 Aspect_Predicate |
2219 Aspect_Static_Predicate =>
2220
a47ce82d 2221 -- These aspects apply only to subtypes
2222
2223 if not Is_Type (E) then
2224 Error_Msg_N
2225 ("predicate can only be specified for a subtype",
2226 Aspect);
2227 goto Continue;
7c0c95b8 2228
2229 elsif Is_Incomplete_Type (E) then
2230 Error_Msg_N
2231 ("predicate cannot apply to incomplete view", Aspect);
2232 goto Continue;
a47ce82d 2233 end if;
2234
89f1e35c 2235 -- Construct the pragma (always a pragma Predicate, with
51ea9c94 2236 -- flags recording whether it is static/dynamic). We also
2237 -- set flags recording this in the type itself.
89f1e35c 2238
0fd13d32 2239 Make_Aitem_Pragma
2240 (Pragma_Argument_Associations => New_List (
2241 Make_Pragma_Argument_Association (Sloc (Ent),
2242 Expression => Ent),
2243 Make_Pragma_Argument_Association (Sloc (Expr),
2244 Expression => Relocate_Node (Expr))),
fdec445e 2245 Pragma_Name => Name_Predicate);
89f1e35c 2246
51ea9c94 2247 -- Mark type has predicates, and remember what kind of
2248 -- aspect lead to this predicate (we need this to access
2249 -- the right set of check policies later on).
2250
2251 Set_Has_Predicates (E);
2252
2253 if A_Id = Aspect_Dynamic_Predicate then
2254 Set_Has_Dynamic_Predicate_Aspect (E);
2255 elsif A_Id = Aspect_Static_Predicate then
2256 Set_Has_Static_Predicate_Aspect (E);
2257 end if;
2258
89f1e35c 2259 -- If the type is private, indicate that its completion
6653b695 2260 -- has a freeze node, because that is the one that will
2261 -- be visible at freeze time.
89f1e35c 2262
0fd13d32 2263 if Is_Private_Type (E) and then Present (Full_View (E)) then
89f1e35c 2264 Set_Has_Predicates (Full_View (E));
51ea9c94 2265
2266 if A_Id = Aspect_Dynamic_Predicate then
2267 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2268 elsif A_Id = Aspect_Static_Predicate then
2269 Set_Has_Static_Predicate_Aspect (Full_View (E));
2270 end if;
2271
89f1e35c 2272 Set_Has_Delayed_Aspects (Full_View (E));
2273 Ensure_Freeze_Node (Full_View (E));
2274 end if;
2275
fdec445e 2276 -- Predicate_Failure
2277
2278 when Aspect_Predicate_Failure =>
2279
2280 -- This aspect applies only to subtypes
2281
2282 if not Is_Type (E) then
2283 Error_Msg_N
2284 ("predicate can only be specified for a subtype",
2285 Aspect);
2286 goto Continue;
2287
2288 elsif Is_Incomplete_Type (E) then
2289 Error_Msg_N
2290 ("predicate cannot apply to incomplete view", Aspect);
2291 goto Continue;
2292 end if;
2293
2294 -- Construct the pragma
2295
2296 Make_Aitem_Pragma
2297 (Pragma_Argument_Associations => New_List (
2298 Make_Pragma_Argument_Association (Sloc (Ent),
2299 Expression => Ent),
2300 Make_Pragma_Argument_Association (Sloc (Expr),
2301 Expression => Relocate_Node (Expr))),
2302 Pragma_Name => Name_Predicate_Failure);
2303
2304 Set_Has_Predicates (E);
2305
2306 -- If the type is private, indicate that its completion
2307 -- has a freeze node, because that is the one that will
2308 -- be visible at freeze time.
2309
2310 if Is_Private_Type (E) and then Present (Full_View (E)) then
2311 Set_Has_Predicates (Full_View (E));
2312 Set_Has_Delayed_Aspects (Full_View (E));
2313 Ensure_Freeze_Node (Full_View (E));
2314 end if;
2315
89f1e35c 2316 -- Case 2b: Aspects corresponding to pragmas with two
2317 -- arguments, where the second argument is a local name
2318 -- referring to the entity, and the first argument is the
2319 -- aspect definition expression.
ae888dbd 2320
0fd13d32 2321 -- Convention
2322
ee2b7923 2323 when Aspect_Convention =>
2324 Analyze_Aspect_Convention;
2325 goto Continue;
97bf66e6 2326
ee2b7923 2327 -- External_Name, Link_Name
97bf66e6 2328
ee2b7923 2329 when Aspect_External_Name |
2330 Aspect_Link_Name =>
2331 Analyze_Aspect_External_Link_Name;
2332 goto Continue;
e1cedbae 2333
0fd13d32 2334 -- CPU, Interrupt_Priority, Priority
2335
d6814978 2336 -- These three aspects can be specified for a subprogram spec
2337 -- or body, in which case we analyze the expression and export
2338 -- the value of the aspect.
2339
2340 -- Previously, we generated an equivalent pragma for bodies
2341 -- (note that the specs cannot contain these pragmas). The
2342 -- pragma was inserted ahead of local declarations, rather than
2343 -- after the body. This leads to a certain duplication between
2344 -- the processing performed for the aspect and the pragma, but
2345 -- given the straightforward handling required it is simpler
2346 -- to duplicate than to translate the aspect in the spec into
2347 -- a pragma in the declarative part of the body.
3a72f9c3 2348
2349 when Aspect_CPU |
2350 Aspect_Interrupt_Priority |
2351 Aspect_Priority =>
51ea9c94 2352
d6814978 2353 if Nkind_In (N, N_Subprogram_Body,
2354 N_Subprogram_Declaration)
2355 then
2356 -- Analyze the aspect expression
2357
2358 Analyze_And_Resolve (Expr, Standard_Integer);
2359
2360 -- Interrupt_Priority aspect not allowed for main
078a74b8 2361 -- subprograms. RM D.1 does not forbid this explicitly,
2362 -- but RM J.15.11(6/3) does not permit pragma
d6814978 2363 -- Interrupt_Priority for subprograms.
2364
2365 if A_Id = Aspect_Interrupt_Priority then
2366 Error_Msg_N
2367 ("Interrupt_Priority aspect cannot apply to "
2368 & "subprogram", Expr);
2369
2370 -- The expression must be static
2371
cda40848 2372 elsif not Is_OK_Static_Expression (Expr) then
d6814978 2373 Flag_Non_Static_Expr
2374 ("aspect requires static expression!", Expr);
2375
24d7b9d6 2376 -- Check whether this is the main subprogram. Issue a
2377 -- warning only if it is obviously not a main program
2378 -- (when it has parameters or when the subprogram is
2379 -- within a package).
2380
2381 elsif Present (Parameter_Specifications
2382 (Specification (N)))
2383 or else not Is_Compilation_Unit (Defining_Entity (N))
d6814978 2384 then
078a74b8 2385 -- See RM D.1(14/3) and D.16(12/3)
d6814978 2386
2387 Error_Msg_N
2388 ("aspect applied to subprogram other than the "
2389 & "main subprogram has no effect??", Expr);
2390
2391 -- Otherwise check in range and export the value
2392
2393 -- For the CPU aspect
2394
2395 elsif A_Id = Aspect_CPU then
2396 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2397
2398 -- Value is correct so we export the value to make
2399 -- it available at execution time.
2400
2401 Set_Main_CPU
2402 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2403
2404 else
2405 Error_Msg_N
2406 ("main subprogram CPU is out of range", Expr);
2407 end if;
2408
2409 -- For the Priority aspect
2410
2411 elsif A_Id = Aspect_Priority then
2412 if Is_In_Range (Expr, RTE (RE_Priority)) then
2413
2414 -- Value is correct so we export the value to make
2415 -- it available at execution time.
2416
2417 Set_Main_Priority
2418 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2419
32572384 2420 -- Ignore pragma if Relaxed_RM_Semantics to support
2421 -- other targets/non GNAT compilers.
2422
2423 elsif not Relaxed_RM_Semantics then
d6814978 2424 Error_Msg_N
2425 ("main subprogram priority is out of range",
2426 Expr);
2427 end if;
2428 end if;
2429
2430 -- Load an arbitrary entity from System.Tasking.Stages
2431 -- or System.Tasking.Restricted.Stages (depending on
2432 -- the supported profile) to make sure that one of these
2433 -- packages is implicitly with'ed, since we need to have
2434 -- the tasking run time active for the pragma Priority to
a0c3eeb9 2435 -- have any effect. Previously we with'ed the package
d6814978 2436 -- System.Tasking, but this package does not trigger the
2437 -- required initialization of the run-time library.
2438
2439 declare
2440 Discard : Entity_Id;
d6814978 2441 begin
2442 if Restricted_Profile then
2443 Discard := RTE (RE_Activate_Restricted_Tasks);
2444 else
2445 Discard := RTE (RE_Activate_Tasks);
2446 end if;
2447 end;
2448
e6ce0468 2449 -- Handling for these aspects in subprograms is complete
d6814978 2450
2451 goto Continue;
2452
2f06c88a 2453 -- For tasks pass the aspect as an attribute
0fd13d32 2454
3a72f9c3 2455 else
2456 Aitem :=
2457 Make_Attribute_Definition_Clause (Loc,
2458 Name => Ent,
2459 Chars => Chars (Id),
2460 Expression => Relocate_Node (Expr));
2461 end if;
2462
0fd13d32 2463 -- Warnings
2464
ae888dbd 2465 when Aspect_Warnings =>
0fd13d32 2466 Make_Aitem_Pragma
2467 (Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Sloc (Expr),
2469 Expression => Relocate_Node (Expr)),
2470 Make_Pragma_Argument_Association (Loc,
2471 Expression => New_Occurrence_Of (E, Loc))),
2472 Pragma_Name => Chars (Id));
ae888dbd 2473
2f06c88a 2474 Decorate (Aspect, Aitem);
2475 Insert_Pragma (Aitem);
2476 goto Continue;
2477
89f1e35c 2478 -- Case 2c: Aspects corresponding to pragmas with three
2479 -- arguments.
d64221a7 2480
89f1e35c 2481 -- Invariant aspects have a first argument that references the
2482 -- entity, a second argument that is the expression and a third
2483 -- argument that is an appropriate message.
d64221a7 2484
0fd13d32 2485 -- Invariant, Type_Invariant
2486
89f1e35c 2487 when Aspect_Invariant |
2488 Aspect_Type_Invariant =>
d64221a7 2489
89f1e35c 2490 -- Analysis of the pragma will verify placement legality:
2491 -- an invariant must apply to a private type, or appear in
2492 -- the private part of a spec and apply to a completion.
d64221a7 2493
0fd13d32 2494 Make_Aitem_Pragma
2495 (Pragma_Argument_Associations => New_List (
2496 Make_Pragma_Argument_Association (Sloc (Ent),
2497 Expression => Ent),
2498 Make_Pragma_Argument_Association (Sloc (Expr),
2499 Expression => Relocate_Node (Expr))),
2500 Pragma_Name => Name_Invariant);
89f1e35c 2501
2502 -- Add message unless exception messages are suppressed
2503
2504 if not Opt.Exception_Locations_Suppressed then
2505 Append_To (Pragma_Argument_Associations (Aitem),
2506 Make_Pragma_Argument_Association (Eloc,
2507 Chars => Name_Message,
2508 Expression =>
2509 Make_String_Literal (Eloc,
2510 Strval => "failed invariant from "
2511 & Build_Location_String (Eloc))));
d64221a7 2512 end if;
2513
89f1e35c 2514 -- For Invariant case, insert immediately after the entity
2515 -- declaration. We do not have to worry about delay issues
2516 -- since the pragma processing takes care of this.
2517
89f1e35c 2518 Delay_Required := False;
d64221a7 2519
47a46747 2520 -- Case 2d : Aspects that correspond to a pragma with one
2521 -- argument.
2522
0fd13d32 2523 -- Abstract_State
115f7b08 2524
d4e369ad 2525 -- Aspect Abstract_State introduces implicit declarations for
2526 -- all state abstraction entities it defines. To emulate this
2527 -- behavior, insert the pragma at the beginning of the visible
2528 -- declarations of the related package so that it is analyzed
2529 -- immediately.
2530
9129c28f 2531 when Aspect_Abstract_State => Abstract_State : declare
eb4f7efa 2532 Context : Node_Id := N;
9129c28f 2533
2534 begin
eb4f7efa 2535 -- When aspect Abstract_State appears on a generic package,
2536 -- it is propageted to the package instance. The context in
2537 -- this case is the instance spec.
2538
2539 if Nkind (Context) = N_Package_Instantiation then
2540 Context := Instance_Spec (Context);
2541 end if;
2542
2543 if Nkind_In (Context, N_Generic_Package_Declaration,
2544 N_Package_Declaration)
9129c28f 2545 then
9129c28f 2546 Make_Aitem_Pragma
2547 (Pragma_Argument_Associations => New_List (
2548 Make_Pragma_Argument_Association (Loc,
2549 Expression => Relocate_Node (Expr))),
2550 Pragma_Name => Name_Abstract_State);
630b6d55 2551
5655be8a 2552 Decorate (Aspect, Aitem);
2553 Insert_Pragma
2554 (Prag => Aitem,
2555 Is_Instance =>
2556 Is_Generic_Instance (Defining_Entity (Context)));
9129c28f 2557
2558 else
2559 Error_Msg_NE
2560 ("aspect & must apply to a package declaration",
2561 Aspect, Id);
2562 end if;
2563
2564 goto Continue;
2565 end Abstract_State;
115f7b08 2566
85ee12c0 2567 -- Aspect Async_Readers is never delayed because it is
2568 -- equivalent to a source pragma which appears after the
2569 -- related object declaration.
2570
2571 when Aspect_Async_Readers =>
2572 Make_Aitem_Pragma
2573 (Pragma_Argument_Associations => New_List (
2574 Make_Pragma_Argument_Association (Loc,
2575 Expression => Relocate_Node (Expr))),
2576 Pragma_Name => Name_Async_Readers);
2577
2578 Decorate (Aspect, Aitem);
2579 Insert_Pragma (Aitem);
2580 goto Continue;
2581
2582 -- Aspect Async_Writers is never delayed because it is
2583 -- equivalent to a source pragma which appears after the
2584 -- related object declaration.
2585
2586 when Aspect_Async_Writers =>
2587 Make_Aitem_Pragma
2588 (Pragma_Argument_Associations => New_List (
2589 Make_Pragma_Argument_Association (Loc,
2590 Expression => Relocate_Node (Expr))),
2591 Pragma_Name => Name_Async_Writers);
2592
2593 Decorate (Aspect, Aitem);
2594 Insert_Pragma (Aitem);
2595 goto Continue;
2596
d0849c23 2597 -- Aspect Constant_After_Elaboration is never delayed because
2598 -- it is equivalent to a source pragma which appears after the
2599 -- related object declaration.
2600
2601 when Aspect_Constant_After_Elaboration =>
2602 Make_Aitem_Pragma
2603 (Pragma_Argument_Associations => New_List (
2604 Make_Pragma_Argument_Association (Loc,
2605 Expression => Relocate_Node (Expr))),
2606 Pragma_Name =>
2607 Name_Constant_After_Elaboration);
2608
2609 Decorate (Aspect, Aitem);
2610 Insert_Pragma (Aitem);
2611 goto Continue;
2612
ec6f6da5 2613 -- Aspect Default_Internal_Condition is never delayed because
2614 -- it is equivalent to a source pragma which appears after the
2615 -- related private type. To deal with forward references, the
2616 -- generated pragma is stored in the rep chain of the related
2617 -- private type as types do not carry contracts. The pragma is
2618 -- wrapped inside of a procedure at the freeze point of the
2619 -- private type's full view.
2620
2621 when Aspect_Default_Initial_Condition =>
2622 Make_Aitem_Pragma
2623 (Pragma_Argument_Associations => New_List (
2624 Make_Pragma_Argument_Association (Loc,
2625 Expression => Relocate_Node (Expr))),
2626 Pragma_Name =>
2627 Name_Default_Initial_Condition);
2628
2629 Decorate (Aspect, Aitem);
2630 Insert_Pragma (Aitem);
2631 goto Continue;
2632
647fab54 2633 -- Default_Storage_Pool
2634
2635 when Aspect_Default_Storage_Pool =>
2636 Make_Aitem_Pragma
2637 (Pragma_Argument_Associations => New_List (
2638 Make_Pragma_Argument_Association (Loc,
2639 Expression => Relocate_Node (Expr))),
2640 Pragma_Name =>
2641 Name_Default_Storage_Pool);
2642
2643 Decorate (Aspect, Aitem);
2644 Insert_Pragma (Aitem);
2645 goto Continue;
2646
0fd13d32 2647 -- Depends
2648
e2bf777d 2649 -- Aspect Depends is never delayed because it is equivalent to
2650 -- a source pragma which appears after the related subprogram.
2651 -- To deal with forward references, the generated pragma is
2652 -- stored in the contract of the related subprogram and later
2653 -- analyzed at the end of the declarative region. See routine
2654 -- Analyze_Depends_In_Decl_Part for details.
6144c105 2655
12334c57 2656 when Aspect_Depends =>
0fd13d32 2657 Make_Aitem_Pragma
2658 (Pragma_Argument_Associations => New_List (
2659 Make_Pragma_Argument_Association (Loc,
2660 Expression => Relocate_Node (Expr))),
2661 Pragma_Name => Name_Depends);
2662
e2bf777d 2663 Decorate (Aspect, Aitem);
2664 Insert_Pragma (Aitem);
c1006d6d 2665 goto Continue;
2666
85ee12c0 2667 -- Aspect Effecitve_Reads is never delayed because it is
2668 -- equivalent to a source pragma which appears after the
2669 -- related object declaration.
2670
2671 when Aspect_Effective_Reads =>
2672 Make_Aitem_Pragma
2673 (Pragma_Argument_Associations => New_List (
2674 Make_Pragma_Argument_Association (Loc,
2675 Expression => Relocate_Node (Expr))),
2676 Pragma_Name => Name_Effective_Reads);
2677
2678 Decorate (Aspect, Aitem);
2679 Insert_Pragma (Aitem);
2680 goto Continue;
2681
2682 -- Aspect Effective_Writes is never delayed because it is
2683 -- equivalent to a source pragma which appears after the
2684 -- related object declaration.
2685
2686 when Aspect_Effective_Writes =>
2687 Make_Aitem_Pragma
2688 (Pragma_Argument_Associations => New_List (
2689 Make_Pragma_Argument_Association (Loc,
2690 Expression => Relocate_Node (Expr))),
2691 Pragma_Name => Name_Effective_Writes);
2692
2693 Decorate (Aspect, Aitem);
2694 Insert_Pragma (Aitem);
2695 goto Continue;
2696
cab27d2a 2697 -- Aspect Extensions_Visible is never delayed because it is
2698 -- equivalent to a source pragma which appears after the
2699 -- related subprogram.
2700
2701 when Aspect_Extensions_Visible =>
2702 Make_Aitem_Pragma
2703 (Pragma_Argument_Associations => New_List (
2704 Make_Pragma_Argument_Association (Loc,
2705 Expression => Relocate_Node (Expr))),
2706 Pragma_Name => Name_Extensions_Visible);
2707
2708 Decorate (Aspect, Aitem);
2709 Insert_Pragma (Aitem);
2710 goto Continue;
2711
3dbe7a69 2712 -- Aspect Ghost is never delayed because it is equivalent to a
2713 -- source pragma which appears at the top of [generic] package
2714 -- declarations or after an object, a [generic] subprogram, or
2715 -- a type declaration.
2716
5655be8a 2717 when Aspect_Ghost =>
3dbe7a69 2718 Make_Aitem_Pragma
2719 (Pragma_Argument_Associations => New_List (
2720 Make_Pragma_Argument_Association (Loc,
2721 Expression => Relocate_Node (Expr))),
2722 Pragma_Name => Name_Ghost);
2723
2724 Decorate (Aspect, Aitem);
5655be8a 2725 Insert_Pragma (Aitem);
3dbe7a69 2726 goto Continue;
3dbe7a69 2727
0fd13d32 2728 -- Global
12334c57 2729
e2bf777d 2730 -- Aspect Global is never delayed because it is equivalent to
2731 -- a source pragma which appears after the related subprogram.
2732 -- To deal with forward references, the generated pragma is
2733 -- stored in the contract of the related subprogram and later
2734 -- analyzed at the end of the declarative region. See routine
2735 -- Analyze_Global_In_Decl_Part for details.
3cdbaa5a 2736
2737 when Aspect_Global =>
0fd13d32 2738 Make_Aitem_Pragma
2739 (Pragma_Argument_Associations => New_List (
2740 Make_Pragma_Argument_Association (Loc,
2741 Expression => Relocate_Node (Expr))),
2742 Pragma_Name => Name_Global);
2743
e2bf777d 2744 Decorate (Aspect, Aitem);
2745 Insert_Pragma (Aitem);
c1006d6d 2746 goto Continue;
2747
9c138530 2748 -- Initial_Condition
2749
e2bf777d 2750 -- Aspect Initial_Condition is never delayed because it is
2751 -- equivalent to a source pragma which appears after the
2752 -- related package. To deal with forward references, the
2753 -- generated pragma is stored in the contract of the related
2754 -- package and later analyzed at the end of the declarative
2755 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2756 -- for details.
9c138530 2757
2758 when Aspect_Initial_Condition => Initial_Condition : declare
eb4f7efa 2759 Context : Node_Id := N;
9c138530 2760
2761 begin
e2bf777d 2762 -- When aspect Initial_Condition appears on a generic
2763 -- package, it is propageted to the package instance. The
2764 -- context in this case is the instance spec.
eb4f7efa 2765
2766 if Nkind (Context) = N_Package_Instantiation then
2767 Context := Instance_Spec (Context);
2768 end if;
2769
2770 if Nkind_In (Context, N_Generic_Package_Declaration,
2771 N_Package_Declaration)
9c138530 2772 then
9c138530 2773 Make_Aitem_Pragma
2774 (Pragma_Argument_Associations => New_List (
2775 Make_Pragma_Argument_Association (Loc,
2776 Expression => Relocate_Node (Expr))),
2777 Pragma_Name =>
2778 Name_Initial_Condition);
9c138530 2779
5655be8a 2780 Decorate (Aspect, Aitem);
2781 Insert_Pragma
2782 (Prag => Aitem,
2783 Is_Instance =>
2784 Is_Generic_Instance (Defining_Entity (Context)));
50e44732 2785
5655be8a 2786 -- Otherwise the context is illegal
9c138530 2787
2788 else
2789 Error_Msg_NE
2790 ("aspect & must apply to a package declaration",
2791 Aspect, Id);
2792 end if;
2793
2794 goto Continue;
2795 end Initial_Condition;
2796
d4e369ad 2797 -- Initializes
2798
e2bf777d 2799 -- Aspect Initializes is never delayed because it is equivalent
2800 -- to a source pragma appearing after the related package. To
2801 -- deal with forward references, the generated pragma is stored
2802 -- in the contract of the related package and later analyzed at
2803 -- the end of the declarative region. For details, see routine
2804 -- Analyze_Initializes_In_Decl_Part.
d4e369ad 2805
2806 when Aspect_Initializes => Initializes : declare
eb4f7efa 2807 Context : Node_Id := N;
d4e369ad 2808
2809 begin
50e44732 2810 -- When aspect Initializes appears on a generic package,
2811 -- it is propageted to the package instance. The context
2812 -- in this case is the instance spec.
eb4f7efa 2813
2814 if Nkind (Context) = N_Package_Instantiation then
2815 Context := Instance_Spec (Context);
2816 end if;
2817
2818 if Nkind_In (Context, N_Generic_Package_Declaration,
2819 N_Package_Declaration)
d4e369ad 2820 then
d4e369ad 2821 Make_Aitem_Pragma
2822 (Pragma_Argument_Associations => New_List (
2823 Make_Pragma_Argument_Association (Loc,
2824 Expression => Relocate_Node (Expr))),
2825 Pragma_Name => Name_Initializes);
d4e369ad 2826
5655be8a 2827 Decorate (Aspect, Aitem);
2828 Insert_Pragma
2829 (Prag => Aitem,
2830 Is_Instance =>
2831 Is_Generic_Instance (Defining_Entity (Context)));
50e44732 2832
5655be8a 2833 -- Otherwise the context is illegal
d4e369ad 2834
2835 else
2836 Error_Msg_NE
2837 ("aspect & must apply to a package declaration",
2838 Aspect, Id);
2839 end if;
2840
2841 goto Continue;
2842 end Initializes;
2843
cbd45084 2844 -- Max_Queue_Length
2845
2846 when Aspect_Max_Queue_Length =>
2847 Make_Aitem_Pragma
2848 (Pragma_Argument_Associations => New_List (
2849 Make_Pragma_Argument_Association (Loc,
2850 Expression => Relocate_Node (Expr))),
2851 Pragma_Name => Name_Max_Queue_Length);
2852
2853 Decorate (Aspect, Aitem);
2854 Insert_Pragma (Aitem);
2855 goto Continue;
2856
1fd4313f 2857 -- Obsolescent
2858
2859 when Aspect_Obsolescent => declare
2860 Args : List_Id;
2861
2862 begin
2863 if No (Expr) then
2864 Args := No_List;
2865 else
2866 Args := New_List (
2867 Make_Pragma_Argument_Association (Sloc (Expr),
2868 Expression => Relocate_Node (Expr)));
2869 end if;
2870
2871 Make_Aitem_Pragma
2872 (Pragma_Argument_Associations => Args,
2873 Pragma_Name => Chars (Id));
2874 end;
2875
5cc6f0cf 2876 -- Part_Of
2877
2878 when Aspect_Part_Of =>
2879 if Nkind_In (N, N_Object_Declaration,
2880 N_Package_Instantiation)
736b80cc 2881 or else Is_Single_Concurrent_Type_Declaration (N)
5cc6f0cf 2882 then
2883 Make_Aitem_Pragma
2884 (Pragma_Argument_Associations => New_List (
2885 Make_Pragma_Argument_Association (Loc,
2886 Expression => Relocate_Node (Expr))),
2887 Pragma_Name => Name_Part_Of);
2888
736b80cc 2889 Decorate (Aspect, Aitem);
2890 Insert_Pragma (Aitem);
736b80cc 2891
5cc6f0cf 2892 else
2893 Error_Msg_NE
736b80cc 2894 ("aspect & must apply to package instantiation, "
2895 & "object, single protected type or single task type",
2896 Aspect, Id);
5cc6f0cf 2897 end if;
2898
d5c65b80 2899 goto Continue;
2900
5dd93a61 2901 -- SPARK_Mode
2902
2f06c88a 2903 when Aspect_SPARK_Mode =>
5dd93a61 2904 Make_Aitem_Pragma
2905 (Pragma_Argument_Associations => New_List (
2906 Make_Pragma_Argument_Association (Loc,
2907 Expression => Relocate_Node (Expr))),
2908 Pragma_Name => Name_SPARK_Mode);
5dd93a61 2909
2f06c88a 2910 Decorate (Aspect, Aitem);
2911 Insert_Pragma (Aitem);
2912 goto Continue;
778ebf56 2913
4befb1a0 2914 -- Refined_Depends
2915
e2bf777d 2916 -- Aspect Refined_Depends is never delayed because it is
2917 -- equivalent to a source pragma which appears in the
2918 -- declarations of the related subprogram body. To deal with
2919 -- forward references, the generated pragma is stored in the
2920 -- contract of the related subprogram body and later analyzed
2921 -- at the end of the declarative region. For details, see
2922 -- routine Analyze_Refined_Depends_In_Decl_Part.
4befb1a0 2923
2924 when Aspect_Refined_Depends =>
422073ed 2925 Make_Aitem_Pragma
2926 (Pragma_Argument_Associations => New_List (
2927 Make_Pragma_Argument_Association (Loc,
2928 Expression => Relocate_Node (Expr))),
2929 Pragma_Name => Name_Refined_Depends);
2930
e2bf777d 2931 Decorate (Aspect, Aitem);
2932 Insert_Pragma (Aitem);
422073ed 2933 goto Continue;
4befb1a0 2934
2935 -- Refined_Global
2936
e2bf777d 2937 -- Aspect Refined_Global is never delayed because it is
2938 -- equivalent to a source pragma which appears in the
2939 -- declarations of the related subprogram body. To deal with
2940 -- forward references, the generated pragma is stored in the
2941 -- contract of the related subprogram body and later analyzed
2942 -- at the end of the declarative region. For details, see
2943 -- routine Analyze_Refined_Global_In_Decl_Part.
4befb1a0 2944
2945 when Aspect_Refined_Global =>
28ff117f 2946 Make_Aitem_Pragma
2947 (Pragma_Argument_Associations => New_List (
2948 Make_Pragma_Argument_Association (Loc,
2949 Expression => Relocate_Node (Expr))),
2950 Pragma_Name => Name_Refined_Global);
2951
e2bf777d 2952 Decorate (Aspect, Aitem);
2953 Insert_Pragma (Aitem);
28ff117f 2954 goto Continue;
4befb1a0 2955
63b65b2d 2956 -- Refined_Post
2957
2958 when Aspect_Refined_Post =>
2959 Make_Aitem_Pragma
2960 (Pragma_Argument_Associations => New_List (
2961 Make_Pragma_Argument_Association (Loc,
2962 Expression => Relocate_Node (Expr))),
2963 Pragma_Name => Name_Refined_Post);
2964
3ff5e35d 2965 Decorate (Aspect, Aitem);
2966 Insert_Pragma (Aitem);
2967 goto Continue;
2968
9129c28f 2969 -- Refined_State
2970
5655be8a 2971 when Aspect_Refined_State =>
9129c28f 2972
9129c28f 2973 -- The corresponding pragma for Refined_State is inserted in
2974 -- the declarations of the related package body. This action
2975 -- synchronizes both the source and from-aspect versions of
2976 -- the pragma.
2977
2978 if Nkind (N) = N_Package_Body then
9129c28f 2979 Make_Aitem_Pragma
2980 (Pragma_Argument_Associations => New_List (
2981 Make_Pragma_Argument_Association (Loc,
2982 Expression => Relocate_Node (Expr))),
2983 Pragma_Name => Name_Refined_State);
b9b2d6e5 2984
5655be8a 2985 Decorate (Aspect, Aitem);
2986 Insert_Pragma (Aitem);
b9b2d6e5 2987
5655be8a 2988 -- Otherwise the context is illegal
9129c28f 2989
2990 else
2991 Error_Msg_NE
2992 ("aspect & must apply to a package body", Aspect, Id);
2993 end if;
2994
2995 goto Continue;
9129c28f 2996
0fd13d32 2997 -- Relative_Deadline
3cdbaa5a 2998
2999 when Aspect_Relative_Deadline =>
0fd13d32 3000 Make_Aitem_Pragma
3001 (Pragma_Argument_Associations => New_List (
3002 Make_Pragma_Argument_Association (Loc,
3003 Expression => Relocate_Node (Expr))),
3004 Pragma_Name => Name_Relative_Deadline);
47a46747 3005
3006 -- If the aspect applies to a task, the corresponding pragma
3007 -- must appear within its declarations, not after.
3008
3009 if Nkind (N) = N_Task_Type_Declaration then
3010 declare
3011 Def : Node_Id;
3012 V : List_Id;
3013
3014 begin
3015 if No (Task_Definition (N)) then
3016 Set_Task_Definition (N,
3017 Make_Task_Definition (Loc,
3018 Visible_Declarations => New_List,
3019 End_Label => Empty));
3020 end if;
3021
3022 Def := Task_Definition (N);
3023 V := Visible_Declarations (Def);
3024 if not Is_Empty_List (V) then
3025 Insert_Before (First (V), Aitem);
3026
3027 else
3028 Set_Visible_Declarations (Def, New_List (Aitem));
3029 end if;
3030
3031 goto Continue;
3032 end;
3033 end if;
3034
85ee12c0 3035 -- Aspect Volatile_Function is never delayed because it is
3036 -- equivalent to a source pragma which appears after the
3037 -- related subprogram.
3038
3039 when Aspect_Volatile_Function =>
3040 Make_Aitem_Pragma
3041 (Pragma_Argument_Associations => New_List (
3042 Make_Pragma_Argument_Association (Loc,
3043 Expression => Relocate_Node (Expr))),
3044 Pragma_Name => Name_Volatile_Function);
3045
3046 Decorate (Aspect, Aitem);
3047 Insert_Pragma (Aitem);
3048 goto Continue;
3049
956ffaf4 3050 -- Case 2e: Annotate aspect
3051
3052 when Aspect_Annotate =>
3053 declare
3054 Args : List_Id;
3055 Pargs : List_Id;
3056 Arg : Node_Id;
3057
3058 begin
3059 -- The argument can be a single identifier
3060
3061 if Nkind (Expr) = N_Identifier then
3062
3063 -- One level of parens is allowed
3064
3065 if Paren_Count (Expr) > 1 then
3066 Error_Msg_F ("extra parentheses ignored", Expr);
3067 end if;
3068
3069 Set_Paren_Count (Expr, 0);
3070
3071 -- Add the single item to the list
3072
3073 Args := New_List (Expr);
3074
3075 -- Otherwise we must have an aggregate
3076
3077 elsif Nkind (Expr) = N_Aggregate then
3078
3079 -- Must be positional
3080
3081 if Present (Component_Associations (Expr)) then
3082 Error_Msg_F
3083 ("purely positional aggregate required", Expr);
3084 goto Continue;
3085 end if;
3086
3087 -- Must not be parenthesized
3088
3089 if Paren_Count (Expr) /= 0 then
3090 Error_Msg_F ("extra parentheses ignored", Expr);
3091 end if;
3092
3093 -- List of arguments is list of aggregate expressions
3094
3095 Args := Expressions (Expr);
3096
3097 -- Anything else is illegal
3098
3099 else
3100 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3101 goto Continue;
3102 end if;
3103
3104 -- Prepare pragma arguments
3105
3106 Pargs := New_List;
3107 Arg := First (Args);
3108 while Present (Arg) loop
3109 Append_To (Pargs,
3110 Make_Pragma_Argument_Association (Sloc (Arg),
3111 Expression => Relocate_Node (Arg)));
3112 Next (Arg);
3113 end loop;
3114
3115 Append_To (Pargs,
3116 Make_Pragma_Argument_Association (Sloc (Ent),
3117 Chars => Name_Entity,
3118 Expression => Ent));
3119
3120 Make_Aitem_Pragma
3121 (Pragma_Argument_Associations => Pargs,
3122 Pragma_Name => Name_Annotate);
3123 end;
3124
89f1e35c 3125 -- Case 3 : Aspects that don't correspond to pragma/attribute
3126 -- definition clause.
7b9b2f05 3127
89f1e35c 3128 -- Case 3a: The aspects listed below don't correspond to
3129 -- pragmas/attributes but do require delayed analysis.
7f694ca2 3130
51fa2a45 3131 -- Default_Value can only apply to a scalar type
3132
3133 when Aspect_Default_Value =>
3134 if not Is_Scalar_Type (E) then
3135 Error_Msg_N
1089ff19 3136 ("aspect Default_Value must apply to a scalar type", N);
51fa2a45 3137 end if;
3138
3139 Aitem := Empty;
3140
3141 -- Default_Component_Value can only apply to an array type
3142 -- with scalar components.
3143
3144 when Aspect_Default_Component_Value =>
3145 if not (Is_Array_Type (E)
3f4c9ffc 3146 and then Is_Scalar_Type (Component_Type (E)))
51fa2a45 3147 then
ee2b7923 3148 Error_Msg_N
3149 ("aspect Default_Component_Value can only apply to an "
3150 & "array of scalar components", N);
51fa2a45 3151 end if;
0fd13d32 3152
89f1e35c 3153 Aitem := Empty;
7f694ca2 3154
89f1e35c 3155 -- Case 3b: The aspects listed below don't correspond to
3156 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 3157
0fd13d32 3158 -- Implicit_Dereference
3159
89f1e35c 3160 -- For Implicit_Dereference, External_Name and Link_Name, only
3161 -- the legality checks are done during the analysis, thus no
3162 -- delay is required.
a8e38e1d 3163
89f1e35c 3164 when Aspect_Implicit_Dereference =>
3165 Analyze_Aspect_Implicit_Dereference;
3166 goto Continue;
7f694ca2 3167
0fd13d32 3168 -- Dimension
3169
89f1e35c 3170 when Aspect_Dimension =>
3171 Analyze_Aspect_Dimension (N, Id, Expr);
3172 goto Continue;
cb4c311d 3173
0fd13d32 3174 -- Dimension_System
3175
89f1e35c 3176 when Aspect_Dimension_System =>
3177 Analyze_Aspect_Dimension_System (N, Id, Expr);
3178 goto Continue;
7f694ca2 3179
ceec4f7c 3180 -- Case 4: Aspects requiring special handling
51ea9c94 3181
e66f4e2a 3182 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3183 -- pragmas take care of the delay.
7f694ca2 3184
0fd13d32 3185 -- Pre/Post
3186
1e3c4ae6 3187 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3188 -- with a first argument that is the expression, and a second
3189 -- argument that is an informative message if the test fails.
3190 -- This is inserted right after the declaration, to get the
5b5df4a9 3191 -- required pragma placement. The processing for the pragmas
3192 -- takes care of the required delay.
ae888dbd 3193
5ddd846b 3194 when Pre_Post_Aspects => Pre_Post : declare
1e3c4ae6 3195 Pname : Name_Id;
ae888dbd 3196
1e3c4ae6 3197 begin
77ae6789 3198 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 3199 Pname := Name_Precondition;
3200 else
3201 Pname := Name_Postcondition;
3202 end if;
d74fc39a 3203
26062729 3204 -- Check that the class-wide predicate cannot be applied to
3205 -- an operation of a synchronized type that is not a tagged
3206 -- type. Other legality checks are performed when analyzing
3207 -- the contract of the operation.
3208
3209 if Class_Present (Aspect)
3210 and then Is_Concurrent_Type (Current_Scope)
3211 and then not Is_Tagged_Type (Current_Scope)
3212 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3213 then
3214 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3215 Error_Msg_N
3216 ("aspect % can only be specified for a primitive "
3217 & "operation of a tagged type", Aspect);
3218
3219 goto Continue;
3220 end if;
3221
1e3c4ae6 3222 -- If the expressions is of the form A and then B, then
3223 -- we generate separate Pre/Post aspects for the separate
3224 -- clauses. Since we allow multiple pragmas, there is no
3225 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 3226 -- These should be treated in reverse order (B first and
3227 -- A second) since they are later inserted just after N in
3228 -- the order they are treated. This way, the pragma for A
3229 -- ends up preceding the pragma for B, which may have an
3230 -- importance for the error raised (either constraint error
3231 -- or precondition error).
1e3c4ae6 3232
39e1f22f 3233 -- We do not do this for Pre'Class, since we have to put
51fa2a45 3234 -- these conditions together in a complex OR expression.
ae888dbd 3235
4282d342 3236 -- We do not do this in ASIS mode, as ASIS relies on the
3237 -- original node representing the complete expression, when
3238 -- retrieving it through the source aspect table.
3239
3240 if not ASIS_Mode
3241 and then (Pname = Name_Postcondition
3242 or else not Class_Present (Aspect))
39e1f22f 3243 then
3244 while Nkind (Expr) = N_And_Then loop
3245 Insert_After (Aspect,
a273015d 3246 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 3247 Identifier => Identifier (Aspect),
a273015d 3248 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 3249 Class_Present => Class_Present (Aspect),
3250 Split_PPC => True));
a273015d 3251 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 3252 Eloc := Sloc (Expr);
3253 end loop;
3254 end if;
ae888dbd 3255
48d6f069 3256 -- Build the precondition/postcondition pragma
3257
51fa2a45 3258 -- Add note about why we do NOT need Copy_Tree here???
d74fc39a 3259
0fd13d32 3260 Make_Aitem_Pragma
3261 (Pragma_Argument_Associations => New_List (
3262 Make_Pragma_Argument_Association (Eloc,
3263 Chars => Name_Check,
a19e1763 3264 Expression => Relocate_Node (Expr))),
0fd13d32 3265 Pragma_Name => Pname);
39e1f22f 3266
3267 -- Add message unless exception messages are suppressed
3268
3269 if not Opt.Exception_Locations_Suppressed then
3270 Append_To (Pragma_Argument_Associations (Aitem),
3271 Make_Pragma_Argument_Association (Eloc,
ed695684 3272 Chars => Name_Message,
39e1f22f 3273 Expression =>
3274 Make_String_Literal (Eloc,
3275 Strval => "failed "
3276 & Get_Name_String (Pname)
3277 & " from "
3278 & Build_Location_String (Eloc))));
3279 end if;
d74fc39a 3280
7d20685d 3281 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 3282
1e3c4ae6 3283 -- For Pre/Post cases, insert immediately after the entity
3284 -- declaration, since that is the required pragma placement.
3285 -- Note that for these aspects, we do not have to worry
3286 -- about delay issues, since the pragmas themselves deal
3287 -- with delay of visibility for the expression analysis.
3288
e2bf777d 3289 Insert_Pragma (Aitem);
299b347e 3290
1e3c4ae6 3291 goto Continue;
5ddd846b 3292 end Pre_Post;
ae888dbd 3293
0fd13d32 3294 -- Test_Case
3295
e66f4e2a 3296 when Aspect_Test_Case => Test_Case : declare
3297 Args : List_Id;
3298 Comp_Expr : Node_Id;
3299 Comp_Assn : Node_Id;
3300 New_Expr : Node_Id;
57cd943b 3301
e66f4e2a 3302 begin
3303 Args := New_List;
b0bc40fd 3304
e66f4e2a 3305 if Nkind (Parent (N)) = N_Compilation_Unit then
3306 Error_Msg_Name_1 := Nam;
3307 Error_Msg_N ("incorrect placement of aspect `%`", E);
3308 goto Continue;
3309 end if;
6c545057 3310
e66f4e2a 3311 if Nkind (Expr) /= N_Aggregate then
3312 Error_Msg_Name_1 := Nam;
3313 Error_Msg_NE
3314 ("wrong syntax for aspect `%` for &", Id, E);
3315 goto Continue;
3316 end if;
6c545057 3317
e66f4e2a 3318 -- Make pragma expressions refer to the original aspect
51fa2a45 3319 -- expressions through the Original_Node link. This is used
3320 -- in semantic analysis for ASIS mode, so that the original
3321 -- expression also gets analyzed.
e66f4e2a 3322
3323 Comp_Expr := First (Expressions (Expr));
3324 while Present (Comp_Expr) loop
3325 New_Expr := Relocate_Node (Comp_Expr);
e66f4e2a 3326 Append_To (Args,
3327 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3328 Expression => New_Expr));
3329 Next (Comp_Expr);
3330 end loop;
3331
3332 Comp_Assn := First (Component_Associations (Expr));
3333 while Present (Comp_Assn) loop
3334 if List_Length (Choices (Comp_Assn)) /= 1
3335 or else
3336 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3337 then
fad014fe 3338 Error_Msg_Name_1 := Nam;
6c545057 3339 Error_Msg_NE
fad014fe 3340 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 3341 goto Continue;
3342 end if;
3343
e66f4e2a 3344 Append_To (Args,
3345 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
ed695684 3346 Chars => Chars (First (Choices (Comp_Assn))),
3347 Expression =>
3348 Relocate_Node (Expression (Comp_Assn))));
e66f4e2a 3349 Next (Comp_Assn);
3350 end loop;
6c545057 3351
e66f4e2a 3352 -- Build the test-case pragma
6c545057 3353
0fd13d32 3354 Make_Aitem_Pragma
3355 (Pragma_Argument_Associations => Args,
3356 Pragma_Name => Nam);
e66f4e2a 3357 end Test_Case;
85696508 3358
0fd13d32 3359 -- Contract_Cases
3360
5ddd846b 3361 when Aspect_Contract_Cases =>
0fd13d32 3362 Make_Aitem_Pragma
3363 (Pragma_Argument_Associations => New_List (
3364 Make_Pragma_Argument_Association (Loc,
3365 Expression => Relocate_Node (Expr))),
3366 Pragma_Name => Nam);
3a128918 3367
e2bf777d 3368 Decorate (Aspect, Aitem);
3369 Insert_Pragma (Aitem);
5ddd846b 3370 goto Continue;
3a128918 3371
89f1e35c 3372 -- Case 5: Special handling for aspects with an optional
3373 -- boolean argument.
85696508 3374
6c5793cd 3375 -- In the delayed case, the corresponding pragma cannot be
0fd13d32 3376 -- generated yet because the evaluation of the boolean needs
3377 -- to be delayed till the freeze point.
3378
89f1e35c 3379 when Boolean_Aspects |
3380 Library_Unit_Aspects =>
a5a64273 3381
89f1e35c 3382 Set_Is_Boolean_Aspect (Aspect);
a5a64273 3383
89f1e35c 3384 -- Lock_Free aspect only apply to protected objects
e1cedbae 3385
89f1e35c 3386 if A_Id = Aspect_Lock_Free then
3387 if Ekind (E) /= E_Protected_Type then
99a2d5bd 3388 Error_Msg_Name_1 := Nam;
a5a64273 3389 Error_Msg_N
89f1e35c 3390 ("aspect % only applies to a protected object",
3391 Aspect);
3392
3393 else
3394 -- Set the Uses_Lock_Free flag to True if there is no
37c6e44c 3395 -- expression or if the expression is True. The
89f1e35c 3396 -- evaluation of this aspect should be delayed to the
37c6e44c 3397 -- freeze point (why???)
89f1e35c 3398
e81df51c 3399 if No (Expr)
3400 or else Is_True (Static_Boolean (Expr))
89f1e35c 3401 then
3402 Set_Uses_Lock_Free (E);
3403 end if;
caf125ce 3404
3405 Record_Rep_Item (E, Aspect);
a5a64273 3406 end if;
e1cedbae 3407
89f1e35c 3408 goto Continue;
ae888dbd 3409
ee2b7923 3410 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3411 Analyze_Aspect_Export_Import;
6c5793cd 3412
3413 -- Disable_Controlled
3414
3415 elsif A_Id = Aspect_Disable_Controlled then
3416 if Ekind (E) /= E_Record_Type
3417 or else not Is_Controlled (E)
3418 then
3419 Error_Msg_N
3420 ("aspect % requires controlled record type", Aspect);
3421 goto Continue;
3422 end if;
3423
3f716509 3424 -- If we're in a generic template, we don't want to try
3425 -- to disable controlled types, because typical usage is
3426 -- "Disable_Controlled => not <some_check>'Enabled", and
3427 -- the value of Enabled is not known until we see a
7e2d3667 3428 -- particular instance. In such a context, we just need
3429 -- to preanalyze the expression for legality.
3f716509 3430
3431 if Expander_Active then
aae9bc79 3432 Analyze_And_Resolve (Expr, Standard_Boolean);
3433
3f716509 3434 if not Present (Expr)
3435 or else Is_True (Static_Boolean (Expr))
3436 then
3437 Set_Disable_Controlled (E);
3438 end if;
7e2d3667 3439
3440 elsif Serious_Errors_Detected = 0 then
3441 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6c5793cd 3442 end if;
3443
89f1e35c 3444 goto Continue;
3445 end if;
d74fc39a 3446
37c6e44c 3447 -- Library unit aspects require special handling in the case
3448 -- of a package declaration, the pragma needs to be inserted
3449 -- in the list of declarations for the associated package.
3450 -- There is no issue of visibility delay for these aspects.
d64221a7 3451
89f1e35c 3452 if A_Id in Library_Unit_Aspects
178fec9b 3453 and then
3454 Nkind_In (N, N_Package_Declaration,
3455 N_Generic_Package_Declaration)
89f1e35c 3456 and then Nkind (Parent (N)) /= N_Compilation_Unit
3ad60f63 3457
3458 -- Aspect is legal on a local instantiation of a library-
3459 -- level generic unit.
3460
b94a633e 3461 and then not Is_Generic_Instance (Defining_Entity (N))
89f1e35c 3462 then
3463 Error_Msg_N
dd4c44af 3464 ("incorrect context for library unit aspect&", Id);
89f1e35c 3465 goto Continue;
3466 end if;
cce84b09 3467
51fa2a45 3468 -- Cases where we do not delay, includes all cases where the
3469 -- expression is missing other than the above cases.
d74fc39a 3470
85ee12c0 3471 if not Delay_Required or else No (Expr) then
ee2b7923 3472
3473 -- Exclude aspects Export and Import because their pragma
3474 -- syntax does not map directly to a Boolean aspect.
3475
3476 if A_Id /= Aspect_Export
3477 and then A_Id /= Aspect_Import
3478 then
3479 Make_Aitem_Pragma
3480 (Pragma_Argument_Associations => New_List (
3481 Make_Pragma_Argument_Association (Sloc (Ent),
3482 Expression => Ent)),
3483 Pragma_Name => Chars (Id));
3484 end if;
3485
89f1e35c 3486 Delay_Required := False;
ddf1337b 3487
89f1e35c 3488 -- In general cases, the corresponding pragma/attribute
3489 -- definition clause will be inserted later at the freezing
294709fa 3490 -- point, and we do not need to build it now.
ddf1337b 3491
89f1e35c 3492 else
3493 Aitem := Empty;
3494 end if;
ceec4f7c 3495
3496 -- Storage_Size
3497
3498 -- This is special because for access types we need to generate
3499 -- an attribute definition clause. This also works for single
3500 -- task declarations, but it does not work for task type
3501 -- declarations, because we have the case where the expression
3502 -- references a discriminant of the task type. That can't use
3503 -- an attribute definition clause because we would not have
3504 -- visibility on the discriminant. For that case we must
3505 -- generate a pragma in the task definition.
3506
3507 when Aspect_Storage_Size =>
3508
3509 -- Task type case
3510
3511 if Ekind (E) = E_Task_Type then
3512 declare
3513 Decl : constant Node_Id := Declaration_Node (E);
3514
3515 begin
3516 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3517
3518 -- If no task definition, create one
3519
3520 if No (Task_Definition (Decl)) then
3521 Set_Task_Definition (Decl,
3522 Make_Task_Definition (Loc,
3523 Visible_Declarations => Empty_List,
3524 End_Label => Empty));
3525 end if;
3526
51fa2a45 3527 -- Create a pragma and put it at the start of the task
3528 -- definition for the task type declaration.
ceec4f7c 3529
3530 Make_Aitem_Pragma
3531 (Pragma_Argument_Associations => New_List (
3532 Make_Pragma_Argument_Association (Loc,
3533 Expression => Relocate_Node (Expr))),
3534 Pragma_Name => Name_Storage_Size);
3535
3536 Prepend
3537 (Aitem,
3538 Visible_Declarations (Task_Definition (Decl)));
3539 goto Continue;
3540 end;
3541
3542 -- All other cases, generate attribute definition
3543
3544 else
3545 Aitem :=
3546 Make_Attribute_Definition_Clause (Loc,
3547 Name => Ent,
3548 Chars => Chars (Id),
3549 Expression => Relocate_Node (Expr));
3550 end if;
89f1e35c 3551 end case;
ddf1337b 3552
89f1e35c 3553 -- Attach the corresponding pragma/attribute definition clause to
3554 -- the aspect specification node.
d74fc39a 3555
89f1e35c 3556 if Present (Aitem) then
e2bf777d 3557 Set_From_Aspect_Specification (Aitem);
89f1e35c 3558 end if;
53c179ea 3559
89f1e35c 3560 -- In the context of a compilation unit, we directly put the
0fd13d32 3561 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3562 -- node (no delay is required here) except for aspects on a
51fa2a45 3563 -- subprogram body (see below) and a generic package, for which we
3564 -- need to introduce the pragma before building the generic copy
3565 -- (see sem_ch12), and for package instantiations, where the
3566 -- library unit pragmas are better handled early.
ddf1337b 3567
9129c28f 3568 if Nkind (Parent (N)) = N_Compilation_Unit
89f1e35c 3569 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3570 then
3571 declare
3572 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 3573
89f1e35c 3574 begin
3575 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 3576
89f1e35c 3577 -- For a Boolean aspect, create the corresponding pragma if
3578 -- no expression or if the value is True.
7f694ca2 3579
b9e61b2a 3580 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 3581 if Is_True (Static_Boolean (Expr)) then
0fd13d32 3582 Make_Aitem_Pragma
3583 (Pragma_Argument_Associations => New_List (
3584 Make_Pragma_Argument_Association (Sloc (Ent),
3585 Expression => Ent)),
3586 Pragma_Name => Chars (Id));
7f694ca2 3587
89f1e35c 3588 Set_From_Aspect_Specification (Aitem, True);
3589 Set_Corresponding_Aspect (Aitem, Aspect);
3590
3591 else
3592 goto Continue;
3593 end if;
3594 end if;
7f694ca2 3595
d6814978 3596 -- If the aspect is on a subprogram body (relevant aspect
3597 -- is Inline), add the pragma in front of the declarations.
3a72f9c3 3598
3599 if Nkind (N) = N_Subprogram_Body then
3600 if No (Declarations (N)) then
3601 Set_Declarations (N, New_List);
3602 end if;
3603
3604 Prepend (Aitem, Declarations (N));
3605
178fec9b 3606 elsif Nkind (N) = N_Generic_Package_Declaration then
3607 if No (Visible_Declarations (Specification (N))) then
3608 Set_Visible_Declarations (Specification (N), New_List);
3609 end if;
3610
3611 Prepend (Aitem,
3612 Visible_Declarations (Specification (N)));
3613
c39cce40 3614 elsif Nkind (N) = N_Package_Instantiation then
df8b0dae 3615 declare
3616 Spec : constant Node_Id :=
3617 Specification (Instance_Spec (N));
3618 begin
3619 if No (Visible_Declarations (Spec)) then
3620 Set_Visible_Declarations (Spec, New_List);
3621 end if;
3622
3623 Prepend (Aitem, Visible_Declarations (Spec));
3624 end;
3625
3a72f9c3 3626 else
3627 if No (Pragmas_After (Aux)) then
d4596fbe 3628 Set_Pragmas_After (Aux, New_List);
3a72f9c3 3629 end if;
3630
3631 Append (Aitem, Pragmas_After (Aux));
89f1e35c 3632 end if;
7f694ca2 3633
89f1e35c 3634 goto Continue;
3635 end;
3636 end if;
7f694ca2 3637
89f1e35c 3638 -- The evaluation of the aspect is delayed to the freezing point.
3639 -- The pragma or attribute clause if there is one is then attached
37c6e44c 3640 -- to the aspect specification which is put in the rep item list.
1a814552 3641
89f1e35c 3642 if Delay_Required then
3643 if Present (Aitem) then
3644 Set_Is_Delayed_Aspect (Aitem);
3645 Set_Aspect_Rep_Item (Aspect, Aitem);
3646 Set_Parent (Aitem, Aspect);
3647 end if;
1a814552 3648
89f1e35c 3649 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 3650
cba2ae82 3651 -- In the case of Default_Value, link the aspect to base type
3652 -- as well, even though it appears on a first subtype. This is
3653 -- mandated by the semantics of the aspect. Do not establish
3654 -- the link when processing the base type itself as this leads
3655 -- to a rep item circularity. Verify that we are dealing with
3656 -- a scalar type to prevent cascaded errors.
3657
3658 if A_Id = Aspect_Default_Value
3659 and then Is_Scalar_Type (E)
3660 and then Base_Type (E) /= E
3661 then
9f36e3fb 3662 Set_Has_Delayed_Aspects (Base_Type (E));
3663 Record_Rep_Item (Base_Type (E), Aspect);
3664 end if;
3665
89f1e35c 3666 Set_Has_Delayed_Aspects (E);
3667 Record_Rep_Item (E, Aspect);
ddf1337b 3668
b855559d 3669 -- When delay is not required and the context is a package or a
3670 -- subprogram body, insert the pragma in the body declarations.
f55ce169 3671
b855559d 3672 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
f55ce169 3673 if No (Declarations (N)) then
3674 Set_Declarations (N, New_List);
3675 end if;
3676
3677 -- The pragma is added before source declarations
3678
3679 Prepend_To (Declarations (N), Aitem);
3680
89f1e35c 3681 -- When delay is not required and the context is not a compilation
3682 -- unit, we simply insert the pragma/attribute definition clause
3683 -- in sequence.
ddf1337b 3684
ee2b7923 3685 elsif Present (Aitem) then
89f1e35c 3686 Insert_After (Ins_Node, Aitem);
3687 Ins_Node := Aitem;
d74fc39a 3688 end if;
0fd13d32 3689 end Analyze_One_Aspect;
ae888dbd 3690
d64221a7 3691 <<Continue>>
3692 Next (Aspect);
21ea3a4f 3693 end loop Aspect_Loop;
89f1e35c 3694
3695 if Has_Delayed_Aspects (E) then
3696 Ensure_Freeze_Node (E);
3697 end if;
21ea3a4f 3698 end Analyze_Aspect_Specifications;
ae888dbd 3699
eb8aeefc 3700 ---------------------------------------------------
3701 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3702 ---------------------------------------------------
3703
3704 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3705 Body_Id : constant Entity_Id := Defining_Entity (N);
3706
3707 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
c02dccca 3708 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3709 -- error message depending on the aspects involved. Spec_Id denotes the
3710 -- entity of the corresponding spec.
eb8aeefc 3711
3712 --------------------------------
3713 -- Diagnose_Misplaced_Aspects --
3714 --------------------------------
3715
3716 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3717 procedure Misplaced_Aspect_Error
3718 (Asp : Node_Id;
3719 Ref_Nam : Name_Id);
3720 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3721 -- the name of the refined version of the aspect.
3722
3723 ----------------------------
3724 -- Misplaced_Aspect_Error --
3725 ----------------------------
3726
3727 procedure Misplaced_Aspect_Error
3728 (Asp : Node_Id;
3729 Ref_Nam : Name_Id)
3730 is
3731 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3732 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3733
3734 begin
3735 -- The corresponding spec already contains the aspect in question
3736 -- and the one appearing on the body must be the refined form:
3737
3738 -- procedure P with Global ...;
3739 -- procedure P with Global ... is ... end P;
3740 -- ^
3741 -- Refined_Global
3742
3743 if Has_Aspect (Spec_Id, Asp_Id) then
3744 Error_Msg_Name_1 := Asp_Nam;
3745
3746 -- Subunits cannot carry aspects that apply to a subprogram
3747 -- declaration.
3748
3749 if Nkind (Parent (N)) = N_Subunit then
3750 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3751
3752 -- Otherwise suggest the refined form
3753
3754 else
3755 Error_Msg_Name_2 := Ref_Nam;
3756 Error_Msg_N ("aspect % should be %", Asp);
3757 end if;
3758
3759 -- Otherwise the aspect must appear on the spec, not on the body
3760
3761 -- procedure P;
3762 -- procedure P with Global ... is ... end P;
3763
3764 else
3765 Error_Msg_N
c02dccca 3766 ("aspect specification must appear on initial declaration",
eb8aeefc 3767 Asp);
3768 end if;
3769 end Misplaced_Aspect_Error;
3770
3771 -- Local variables
3772
3773 Asp : Node_Id;
3774 Asp_Nam : Name_Id;
3775
3776 -- Start of processing for Diagnose_Misplaced_Aspects
3777
3778 begin
3779 -- Iterate over the aspect specifications and emit specific errors
3780 -- where applicable.
3781
3782 Asp := First (Aspect_Specifications (N));
3783 while Present (Asp) loop
3784 Asp_Nam := Chars (Identifier (Asp));
3785
3786 -- Do not emit errors on aspects that can appear on a subprogram
3787 -- body. This scenario occurs when the aspect specification list
3788 -- contains both misplaced and properly placed aspects.
3789
3790 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3791 null;
3792
3793 -- Special diagnostics for SPARK aspects
3794
3795 elsif Asp_Nam = Name_Depends then
3796 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3797
3798 elsif Asp_Nam = Name_Global then
3799 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3800
3801 elsif Asp_Nam = Name_Post then
3802 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3803
3804 -- Otherwise a language-defined aspect is misplaced
3805
3806 else
3807 Error_Msg_N
c02dccca 3808 ("aspect specification must appear on initial declaration",
eb8aeefc 3809 Asp);
3810 end if;
3811
3812 Next (Asp);
3813 end loop;
3814 end Diagnose_Misplaced_Aspects;
3815
3816 -- Local variables
3817
c02dccca 3818 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
eb8aeefc 3819
3820 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3821
3822 begin
eb8aeefc 3823 -- Language-defined aspects cannot be associated with a subprogram body
3824 -- [stub] if the subprogram has a spec. Certain implementation defined
3825 -- aspects are allowed to break this rule (for all applicable cases, see
3826 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3827
c02dccca 3828 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
eb8aeefc 3829 Diagnose_Misplaced_Aspects (Spec_Id);
3830 else
3831 Analyze_Aspect_Specifications (N, Body_Id);
3832 end if;
3833 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3834
d6f39728 3835 -----------------------
3836 -- Analyze_At_Clause --
3837 -----------------------
3838
3839 -- An at clause is replaced by the corresponding Address attribute
3840 -- definition clause that is the preferred approach in Ada 95.
3841
3842 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 3843 CS : constant Boolean := Comes_From_Source (N);
3844
d6f39728 3845 begin
177675a7 3846 -- This is an obsolescent feature
3847
e0521a36 3848 Check_Restriction (No_Obsolescent_Features, N);
3849
9dfe12ae 3850 if Warn_On_Obsolescent_Feature then
3851 Error_Msg_N
b174444e 3852 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 3853 Error_Msg_N
b174444e 3854 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 3855 end if;
3856
177675a7 3857 -- Rewrite as address clause
3858
d6f39728 3859 Rewrite (N,
3860 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 3861 Name => Identifier (N),
3862 Chars => Name_Address,
d6f39728 3863 Expression => Expression (N)));
177675a7 3864
2beb22b1 3865 -- We preserve Comes_From_Source, since logically the clause still comes
3866 -- from the source program even though it is changed in form.
177675a7 3867
3868 Set_Comes_From_Source (N, CS);
3869
3870 -- Analyze rewritten clause
3871
d6f39728 3872 Analyze_Attribute_Definition_Clause (N);
3873 end Analyze_At_Clause;
3874
3875 -----------------------------------------
3876 -- Analyze_Attribute_Definition_Clause --
3877 -----------------------------------------
3878
3879 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3880 Loc : constant Source_Ptr := Sloc (N);
3881 Nam : constant Node_Id := Name (N);
3882 Attr : constant Name_Id := Chars (N);
3883 Expr : constant Node_Id := Expression (N);
3884 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 3885
3886 Ent : Entity_Id;
3887 -- The entity of Nam after it is analyzed. In the case of an incomplete
3888 -- type, this is the underlying type.
3889
d6f39728 3890 U_Ent : Entity_Id;
d64221a7 3891 -- The underlying entity to which the attribute applies. Generally this
3892 -- is the Underlying_Type of Ent, except in the case where the clause
69069c76 3893 -- applies to the full view of an incomplete or private type, in which
3894 -- case U_Ent is just a copy of Ent.
d6f39728 3895
3896 FOnly : Boolean := False;
3897 -- Reset to True for subtype specific attribute (Alignment, Size)
51fa2a45 3898 -- and for stream attributes, i.e. those cases where in the call to
3899 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3900 -- are checked. Note that the case of stream attributes is not clear
3901 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3902 -- Storage_Size for derived task types, but that is also clearly
3903 -- unintentional.
d6f39728 3904
9f373bb8 3905 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3906 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3907 -- definition clauses.
3908
ae888dbd 3909 function Duplicate_Clause return Boolean;
3910 -- This routine checks if the aspect for U_Ent being given by attribute
3911 -- definition clause N is for an aspect that has already been specified,
3912 -- and if so gives an error message. If there is a duplicate, True is
3913 -- returned, otherwise if there is no error, False is returned.
3914
81b424ac 3915 procedure Check_Indexing_Functions;
3916 -- Check that the function in Constant_Indexing or Variable_Indexing
3917 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 3918 -- check that some interpretation is legal.
81b424ac 3919
89cc7147 3920 procedure Check_Iterator_Functions;
3921 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 3922 -- has the proper type structure.
89cc7147 3923
3924 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 3925 -- Common legality check for the previous two
89cc7147 3926
177675a7 3927 -----------------------------------
3928 -- Analyze_Stream_TSS_Definition --
3929 -----------------------------------
3930
9f373bb8 3931 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3932 Subp : Entity_Id := Empty;
3933 I : Interp_Index;
3934 It : Interp;
3935 Pnam : Entity_Id;
3936
3937 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
ba662f09 3938 -- True for Read attribute, False for other attributes
9f373bb8 3939
c41e404d 3940 function Has_Good_Profile
3941 (Subp : Entity_Id;
3942 Report : Boolean := False) return Boolean;
9f373bb8 3943 -- Return true if the entity is a subprogram with an appropriate
ba662f09 3944 -- profile for the attribute being defined. If result is False and
3945 -- Report is True, function emits appropriate error.
9f373bb8 3946
3947 ----------------------
3948 -- Has_Good_Profile --
3949 ----------------------
3950
c41e404d 3951 function Has_Good_Profile
3952 (Subp : Entity_Id;
3953 Report : Boolean := False) return Boolean
3954 is
9f373bb8 3955 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3956 (False => E_Procedure, True => E_Function);
4a83cc35 3957 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3958 F : Entity_Id;
9f373bb8 3959 Typ : Entity_Id;
3960
3961 begin
3962 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3963 return False;
3964 end if;
3965
3966 F := First_Formal (Subp);
3967
3968 if No (F)
3969 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3970 or else Designated_Type (Etype (F)) /=
4a83cc35 3971 Class_Wide_Type (RTE (RE_Root_Stream_Type))
9f373bb8 3972 then
3973 return False;
3974 end if;
3975
3976 if not Is_Function then
3977 Next_Formal (F);
3978
3979 declare
3980 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3981 (False => E_In_Parameter,
3982 True => E_Out_Parameter);
3983 begin
3984 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3985 return False;
3986 end if;
3987 end;
3988
3989 Typ := Etype (F);
3990
b64082f2 3991 -- If the attribute specification comes from an aspect
51fa2a45 3992 -- specification for a class-wide stream, the parameter must be
3993 -- a class-wide type of the entity to which the aspect applies.
b64082f2 3994
3995 if From_Aspect_Specification (N)
3996 and then Class_Present (Parent (N))
3997 and then Is_Class_Wide_Type (Typ)
3998 then
3999 Typ := Etype (Typ);
4000 end if;
4001
9f373bb8 4002 else
4003 Typ := Etype (Subp);
4004 end if;
4005
51fa2a45 4006 -- Verify that the prefix of the attribute and the local name for
5a8fe506 4007 -- the type of the formal match, or one is the class-wide of the
4008 -- other, in the case of a class-wide stream operation.
48680a09 4009
b8eacb12 4010 if Base_Type (Typ) = Base_Type (Ent)
5a8fe506 4011 or else (Is_Class_Wide_Type (Typ)
2be1f7d7 4012 and then Typ = Class_Wide_Type (Base_Type (Ent)))
fbf4d6ef 4013 or else (Is_Class_Wide_Type (Ent)
4014 and then Ent = Class_Wide_Type (Base_Type (Typ)))
5a8fe506 4015 then
4016 null;
4017 else
4018 return False;
4019 end if;
4020
4a83cc35 4021 if Present (Next_Formal (F)) then
48680a09 4022 return False;
4023
4024 elsif not Is_Scalar_Type (Typ)
4025 and then not Is_First_Subtype (Typ)
4026 and then not Is_Class_Wide_Type (Typ)
4027 then
c41e404d 4028 if Report and not Is_First_Subtype (Typ) then
4029 Error_Msg_N
ba662f09 4030 ("subtype of formal in stream operation must be a first "
4031 & "subtype", Parameter_Type (Parent (F)));
c41e404d 4032 end if;
4033
48680a09 4034 return False;
4035
4036 else
4037 return True;
4038 end if;
9f373bb8 4039 end Has_Good_Profile;
4040
4041 -- Start of processing for Analyze_Stream_TSS_Definition
4042
4043 begin
4044 FOnly := True;
4045
4046 if not Is_Type (U_Ent) then
4047 Error_Msg_N ("local name must be a subtype", Nam);
4048 return;
48680a09 4049
4050 elsif not Is_First_Subtype (U_Ent) then
4051 Error_Msg_N ("local name must be a first subtype", Nam);
4052 return;
9f373bb8 4053 end if;
4054
4055 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4056
44e4341e 4057 -- If Pnam is present, it can be either inherited from an ancestor
4058 -- type (in which case it is legal to redefine it for this type), or
4059 -- be a previous definition of the attribute for the same type (in
4060 -- which case it is illegal).
4061
4062 -- In the first case, it will have been analyzed already, and we
4063 -- can check that its profile does not match the expected profile
4064 -- for a stream attribute of U_Ent. In the second case, either Pnam
4065 -- has been analyzed (and has the expected profile), or it has not
4066 -- been analyzed yet (case of a type that has not been frozen yet
4067 -- and for which the stream attribute has been set using Set_TSS).
4068
4069 if Present (Pnam)
4070 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4071 then
9f373bb8 4072 Error_Msg_Sloc := Sloc (Pnam);
4073 Error_Msg_Name_1 := Attr;
4074 Error_Msg_N ("% attribute already defined #", Nam);
4075 return;
4076 end if;
4077
4078 Analyze (Expr);
4079
4080 if Is_Entity_Name (Expr) then
4081 if not Is_Overloaded (Expr) then
c41e404d 4082 if Has_Good_Profile (Entity (Expr), Report => True) then
9f373bb8 4083 Subp := Entity (Expr);
4084 end if;
4085
4086 else
4087 Get_First_Interp (Expr, I, It);
9f373bb8 4088 while Present (It.Nam) loop
4089 if Has_Good_Profile (It.Nam) then
4090 Subp := It.Nam;
4091 exit;
4092 end if;
4093
4094 Get_Next_Interp (I, It);
4095 end loop;
4096 end if;
4097 end if;
4098
4099 if Present (Subp) then
59ac57b5 4100 if Is_Abstract_Subprogram (Subp) then
9f373bb8 4101 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4102 return;
e12b2502 4103
299b347e 4104 -- A stream subprogram for an interface type must be a null
bfbd9cf4 4105 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4106 -- of an interface is not an interface type (3.9.4 (6.b/2)).
e12b2502 4107
4108 elsif Is_Interface (U_Ent)
5a8fe506 4109 and then not Is_Class_Wide_Type (U_Ent)
e12b2502 4110 and then not Inside_A_Generic
e12b2502 4111 and then
5a8fe506 4112 (Ekind (Subp) = E_Function
4113 or else
4114 not Null_Present
2be1f7d7 4115 (Specification
4116 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
e12b2502 4117 then
4118 Error_Msg_N
4a83cc35 4119 ("stream subprogram for interface type must be null "
4120 & "procedure", Expr);
9f373bb8 4121 end if;
4122
4123 Set_Entity (Expr, Subp);
4124 Set_Etype (Expr, Etype (Subp));
4125
44e4341e 4126 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 4127
4128 else
4129 Error_Msg_Name_1 := Attr;
4130 Error_Msg_N ("incorrect expression for% attribute", Expr);
4131 end if;
4132 end Analyze_Stream_TSS_Definition;
4133
81b424ac 4134 ------------------------------
4135 -- Check_Indexing_Functions --
4136 ------------------------------
4137
4138 procedure Check_Indexing_Functions is
c8a2d809 4139 Indexing_Found : Boolean := False;
8df4f2a5 4140
44d567c8 4141 procedure Check_Inherited_Indexing;
4142 -- For a derived type, check that no indexing aspect is specified
4143 -- for the type if it is also inherited
4144
81b424ac 4145 procedure Check_One_Function (Subp : Entity_Id);
7796365f 4146 -- Check one possible interpretation. Sets Indexing_Found True if a
4147 -- legal indexing function is found.
81b424ac 4148
05987af3 4149 procedure Illegal_Indexing (Msg : String);
4150 -- Diagnose illegal indexing function if not overloaded. In the
4151 -- overloaded case indicate that no legal interpretation exists.
4152
44d567c8 4153 ------------------------------
4154 -- Check_Inherited_Indexing --
4155 ------------------------------
4156
4157 procedure Check_Inherited_Indexing is
4158 Inherited : Node_Id;
4159
4160 begin
4161 if Attr = Name_Constant_Indexing then
4162 Inherited :=
4163 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4164 else pragma Assert (Attr = Name_Variable_Indexing);
4165 Inherited :=
4166 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4167 end if;
4168
4169 if Present (Inherited) then
4170 if Debug_Flag_Dot_XX then
4171 null;
4172
83d39cd3 4173 -- OK if current attribute_definition_clause is expansion of
4174 -- inherited aspect.
44d567c8 4175
4176 elsif Aspect_Rep_Item (Inherited) = N then
4177 null;
4178
83d39cd3 4179 -- Indicate the operation that must be overridden, rather than
4180 -- redefining the indexing aspect.
44d567c8 4181
4182 else
4183 Illegal_Indexing
f2837ceb 4184 ("indexing function already inherited from parent type");
44d567c8 4185 Error_Msg_NE
4186 ("!override & instead",
4187 N, Entity (Expression (Inherited)));
4188 end if;
4189 end if;
4190 end Check_Inherited_Indexing;
4191
81b424ac 4192 ------------------------
4193 -- Check_One_Function --
4194 ------------------------
4195
4196 procedure Check_One_Function (Subp : Entity_Id) is
05987af3 4197 Default_Element : Node_Id;
4198 Ret_Type : constant Entity_Id := Etype (Subp);
1b7510f9 4199
81b424ac 4200 begin
05987af3 4201 if not Is_Overloadable (Subp) then
4202 Illegal_Indexing ("illegal indexing function for type&");
4203 return;
4204
7796365f 4205 elsif Scope (Subp) /= Scope (Ent) then
4206 if Nkind (Expr) = N_Expanded_Name then
4207
4208 -- Indexing function can't be declared elsewhere
4209
4210 Illegal_Indexing
4211 ("indexing function must be declared in scope of type&");
4212 end if;
4213
05987af3 4214 return;
4215
4216 elsif No (First_Formal (Subp)) then
4217 Illegal_Indexing
4218 ("Indexing requires a function that applies to type&");
4219 return;
4220
4221 elsif No (Next_Formal (First_Formal (Subp))) then
4222 Illegal_Indexing
2eb0ff42 4223 ("indexing function must have at least two parameters");
05987af3 4224 return;
4225
4226 elsif Is_Derived_Type (Ent) then
44d567c8 4227 Check_Inherited_Indexing;
05987af3 4228 end if;
4229
e81df51c 4230 if not Check_Primitive_Function (Subp) then
05987af3 4231 Illegal_Indexing
4232 ("Indexing aspect requires a function that applies to type&");
4233 return;
81b424ac 4234 end if;
4235
7796365f 4236 -- If partial declaration exists, verify that it is not tagged.
4237
4238 if Ekind (Current_Scope) = E_Package
4239 and then Has_Private_Declaration (Ent)
4240 and then From_Aspect_Specification (N)
7c0c95b8 4241 and then
4242 List_Containing (Parent (Ent)) =
4243 Private_Declarations
7796365f 4244 (Specification (Unit_Declaration_Node (Current_Scope)))
4245 and then Nkind (N) = N_Attribute_Definition_Clause
4246 then
4247 declare
4248 Decl : Node_Id;
4249
4250 begin
4251 Decl :=
4252 First (Visible_Declarations
7c0c95b8 4253 (Specification
4254 (Unit_Declaration_Node (Current_Scope))));
7796365f 4255
4256 while Present (Decl) loop
4257 if Nkind (Decl) = N_Private_Type_Declaration
4258 and then Ent = Full_View (Defining_Identifier (Decl))
4259 and then Tagged_Present (Decl)
4260 and then No (Aspect_Specifications (Decl))
4261 then
4262 Illegal_Indexing
4263 ("Indexing aspect cannot be specified on full view "
7c0c95b8 4264 & "if partial view is tagged");
7796365f 4265 return;
4266 end if;
4267
4268 Next (Decl);
4269 end loop;
4270 end;
4271 end if;
4272
1b7510f9 4273 -- An indexing function must return either the default element of
cac18f71 4274 -- the container, or a reference type. For variable indexing it
a45d946f 4275 -- must be the latter.
1b7510f9 4276
05987af3 4277 Default_Element :=
4278 Find_Value_Of_Aspect
4279 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4280
1b7510f9 4281 if Present (Default_Element) then
4282 Analyze (Default_Element);
a45d946f 4283
1b7510f9 4284 if Is_Entity_Name (Default_Element)
05987af3 4285 and then not Covers (Entity (Default_Element), Ret_Type)
4286 and then False
1b7510f9 4287 then
05987af3 4288 Illegal_Indexing
4289 ("wrong return type for indexing function");
1b7510f9 4290 return;
4291 end if;
4292 end if;
4293
a45d946f 4294 -- For variable_indexing the return type must be a reference type
1b7510f9 4295
05987af3 4296 if Attr = Name_Variable_Indexing then
4297 if not Has_Implicit_Dereference (Ret_Type) then
4298 Illegal_Indexing
4299 ("variable indexing must return a reference type");
4300 return;
4301
423b89fd 4302 elsif Is_Access_Constant
4303 (Etype (First_Discriminant (Ret_Type)))
05987af3 4304 then
4305 Illegal_Indexing
4306 ("variable indexing must return an access to variable");
4307 return;
4308 end if;
cac18f71 4309
4310 else
05987af3 4311 if Has_Implicit_Dereference (Ret_Type)
4312 and then not
4313 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4314 then
4315 Illegal_Indexing
4316 ("constant indexing must return an access to constant");
4317 return;
4318
4319 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4320 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4321 then
4322 Illegal_Indexing
4323 ("constant indexing must apply to an access to constant");
4324 return;
4325 end if;
81b424ac 4326 end if;
05987af3 4327
4328 -- All checks succeeded.
4329
4330 Indexing_Found := True;
81b424ac 4331 end Check_One_Function;
4332
05987af3 4333 -----------------------
4334 -- Illegal_Indexing --
4335 -----------------------
4336
4337 procedure Illegal_Indexing (Msg : String) is
4338 begin
7796365f 4339 Error_Msg_NE (Msg, N, Ent);
05987af3 4340 end Illegal_Indexing;
4341
81b424ac 4342 -- Start of processing for Check_Indexing_Functions
4343
4344 begin
89cc7147 4345 if In_Instance then
44d567c8 4346 Check_Inherited_Indexing;
89cc7147 4347 end if;
4348
81b424ac 4349 Analyze (Expr);
4350
4351 if not Is_Overloaded (Expr) then
4352 Check_One_Function (Entity (Expr));
4353
4354 else
4355 declare
2c5754de 4356 I : Interp_Index;
81b424ac 4357 It : Interp;
4358
4359 begin
cac18f71 4360 Indexing_Found := False;
81b424ac 4361 Get_First_Interp (Expr, I, It);
4362 while Present (It.Nam) loop
4363
4364 -- Note that analysis will have added the interpretation
4365 -- that corresponds to the dereference. We only check the
4366 -- subprogram itself.
4367
4368 if Is_Overloadable (It.Nam) then
4369 Check_One_Function (It.Nam);
4370 end if;
4371
4372 Get_Next_Interp (I, It);
4373 end loop;
4374 end;
4375 end if;
7796365f 4376
7c0c95b8 4377 if not Indexing_Found and then not Error_Posted (N) then
7796365f 4378 Error_Msg_NE
4379 ("aspect Indexing requires a local function that "
4380 & "applies to type&", Expr, Ent);
4381 end if;
81b424ac 4382 end Check_Indexing_Functions;
4383
89cc7147 4384 ------------------------------
4385 -- Check_Iterator_Functions --
4386 ------------------------------
4387
4388 procedure Check_Iterator_Functions is
89cc7147 4389 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 4390 -- Check one possible interpretation for validity
89cc7147 4391
4392 ----------------------------
4393 -- Valid_Default_Iterator --
4394 ----------------------------
4395
4396 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
8b8be176 4397 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
7f5dd8d8 4398 Formal : Entity_Id;
89cc7147 4399
4400 begin
4401 if not Check_Primitive_Function (Subp) then
4402 return False;
8b8be176 4403
4404 -- The return type must be derived from a type in an instance
4405 -- of Iterator.Interfaces, and thus its root type must have a
4406 -- predefined name.
4407
4408 elsif Chars (Root_T) /= Name_Forward_Iterator
4409 and then Chars (Root_T) /= Name_Reversible_Iterator
4410 then
4411 return False;
4412
89cc7147 4413 else
4414 Formal := First_Formal (Subp);
4415 end if;
4416
8df4f2a5 4417 -- False if any subsequent formal has no default expression
89cc7147 4418
8df4f2a5 4419 Formal := Next_Formal (Formal);
4420 while Present (Formal) loop
4421 if No (Expression (Parent (Formal))) then
4422 return False;
4423 end if;
89cc7147 4424
8df4f2a5 4425 Next_Formal (Formal);
4426 end loop;
89cc7147 4427
8df4f2a5 4428 -- True if all subsequent formals have default expressions
89cc7147 4429
4430 return True;
4431 end Valid_Default_Iterator;
4432
4433 -- Start of processing for Check_Iterator_Functions
4434
4435 begin
4436 Analyze (Expr);
4437
4438 if not Is_Entity_Name (Expr) then
4439 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4440 end if;
4441
4442 if not Is_Overloaded (Expr) then
4443 if not Check_Primitive_Function (Entity (Expr)) then
4444 Error_Msg_NE
4445 ("aspect Indexing requires a function that applies to type&",
4446 Entity (Expr), Ent);
4447 end if;
4448
05f6f999 4449 -- Flag the default_iterator as well as the denoted function.
4450
89cc7147 4451 if not Valid_Default_Iterator (Entity (Expr)) then
05f6f999 4452 Error_Msg_N ("improper function for default iterator!", Expr);
89cc7147 4453 end if;
4454
4455 else
89cc7147 4456 declare
270ee9c5 4457 Default : Entity_Id := Empty;
8be33fbe 4458 I : Interp_Index;
4459 It : Interp;
89cc7147 4460
4461 begin
4462 Get_First_Interp (Expr, I, It);
4463 while Present (It.Nam) loop
4464 if not Check_Primitive_Function (It.Nam)
59f3e675 4465 or else not Valid_Default_Iterator (It.Nam)
89cc7147 4466 then
4467 Remove_Interp (I);
4468
4469 elsif Present (Default) then
89cc7147 4470
8be33fbe 4471 -- An explicit one should override an implicit one
4472
4473 if Comes_From_Source (Default) =
4474 Comes_From_Source (It.Nam)
4475 then
4476 Error_Msg_N ("default iterator must be unique", Expr);
4477 Error_Msg_Sloc := Sloc (Default);
4478 Error_Msg_N ("\\possible interpretation#", Expr);
4479 Error_Msg_Sloc := Sloc (It.Nam);
4480 Error_Msg_N ("\\possible interpretation#", Expr);
4481
4482 elsif Comes_From_Source (It.Nam) then
4483 Default := It.Nam;
4484 end if;
89cc7147 4485 else
4486 Default := It.Nam;
4487 end if;
4488
4489 Get_Next_Interp (I, It);
4490 end loop;
89cc7147 4491
270ee9c5 4492 if Present (Default) then
4493 Set_Entity (Expr, Default);
4494 Set_Is_Overloaded (Expr, False);
8b8be176 4495 else
4496 Error_Msg_N
7f5dd8d8 4497 ("no interpretation is a valid default iterator!", Expr);
270ee9c5 4498 end if;
4499 end;
89cc7147 4500 end if;
4501 end Check_Iterator_Functions;
4502
4503 -------------------------------
4504 -- Check_Primitive_Function --
4505 -------------------------------
4506
4507 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4508 Ctrl : Entity_Id;
4509
4510 begin
4511 if Ekind (Subp) /= E_Function then
4512 return False;
4513 end if;
4514
4515 if No (First_Formal (Subp)) then
4516 return False;
4517 else
4518 Ctrl := Etype (First_Formal (Subp));
4519 end if;
4520
05f6f999 4521 -- To be a primitive operation subprogram has to be in same scope.
4522
4523 if Scope (Ctrl) /= Scope (Subp) then
4524 return False;
4525 end if;
4526
7d6fb253 4527 -- Type of formal may be the class-wide type, an access to such,
4528 -- or an incomplete view.
4529
89cc7147 4530 if Ctrl = Ent
4531 or else Ctrl = Class_Wide_Type (Ent)
4532 or else
4533 (Ekind (Ctrl) = E_Anonymous_Access_Type
b85d62ec 4534 and then (Designated_Type (Ctrl) = Ent
4535 or else
4536 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
7d6fb253 4537 or else
4538 (Ekind (Ctrl) = E_Incomplete_Type
4539 and then Full_View (Ctrl) = Ent)
89cc7147 4540 then
4541 null;
89cc7147 4542 else
4543 return False;
4544 end if;
4545
4546 return True;
4547 end Check_Primitive_Function;
4548
ae888dbd 4549 ----------------------
4550 -- Duplicate_Clause --
4551 ----------------------
4552
4553 function Duplicate_Clause return Boolean is
d74fc39a 4554 A : Node_Id;
ae888dbd 4555
4556 begin
c8969ba6 4557 -- Nothing to do if this attribute definition clause comes from
4558 -- an aspect specification, since we could not be duplicating an
ae888dbd 4559 -- explicit clause, and we dealt with the case of duplicated aspects
4560 -- in Analyze_Aspect_Specifications.
4561
4562 if From_Aspect_Specification (N) then
4563 return False;
4564 end if;
4565
89f1e35c 4566 -- Otherwise current clause may duplicate previous clause, or a
4567 -- previously given pragma or aspect specification for the same
4568 -- aspect.
d74fc39a 4569
89b3b365 4570 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 4571
4572 if Present (A) then
89f1e35c 4573 Error_Msg_Name_1 := Chars (N);
4574 Error_Msg_Sloc := Sloc (A);
4575
89b3b365 4576 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 4577 return True;
ae888dbd 4578 end if;
4579
4580 return False;
4581 end Duplicate_Clause;
4582
9f373bb8 4583 -- Start of processing for Analyze_Attribute_Definition_Clause
4584
d6f39728 4585 begin
d64221a7 4586 -- The following code is a defense against recursion. Not clear that
51fa2a45 4587 -- this can happen legitimately, but perhaps some error situations can
4588 -- cause it, and we did see this recursion during testing.
d64221a7 4589
4590 if Analyzed (N) then
4591 return;
4592 else
4593 Set_Analyzed (N, True);
4594 end if;
4595
2609e4d0 4596 Check_Restriction_No_Use_Of_Attribute (N);
4597
a29bc1d9 4598 -- Ignore some selected attributes in CodePeer mode since they are not
4599 -- relevant in this context.
4600
4601 if CodePeer_Mode then
4602 case Id is
4603
4604 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4605 -- internal representation of types by implicitly packing them.
4606
4607 when Attribute_Component_Size =>
4608 Rewrite (N, Make_Null_Statement (Sloc (N)));
4609 return;
4610
4611 when others =>
4612 null;
4613 end case;
4614 end if;
4615
d8ba53a8 4616 -- Process Ignore_Rep_Clauses option
eef1ca1e 4617
d8ba53a8 4618 if Ignore_Rep_Clauses then
9d627c41 4619 case Id is
4620
eef1ca1e 4621 -- The following should be ignored. They do not affect legality
4622 -- and may be target dependent. The basic idea of -gnatI is to
4623 -- ignore any rep clauses that may be target dependent but do not
4624 -- affect legality (except possibly to be rejected because they
4625 -- are incompatible with the compilation target).
9d627c41 4626
2f1aac99 4627 when Attribute_Alignment |
9d627c41 4628 Attribute_Bit_Order |
4629 Attribute_Component_Size |
4630 Attribute_Machine_Radix |
4631 Attribute_Object_Size |
4632 Attribute_Size |
2ff55065 4633 Attribute_Small |
9d627c41 4634 Attribute_Stream_Size |
4635 Attribute_Value_Size =>
2ff55065 4636 Kill_Rep_Clause (N);
9d627c41 4637 return;
4638
eef1ca1e 4639 -- The following should not be ignored, because in the first place
51fa2a45 4640 -- they are reasonably portable, and should not cause problems
4641 -- in compiling code from another target, and also they do affect
4642 -- legality, e.g. failing to provide a stream attribute for a type
4643 -- may make a program illegal.
9d627c41 4644
b55f7641 4645 when Attribute_External_Tag |
4646 Attribute_Input |
4647 Attribute_Output |
4648 Attribute_Read |
4649 Attribute_Simple_Storage_Pool |
4650 Attribute_Storage_Pool |
4651 Attribute_Storage_Size |
4652 Attribute_Write =>
9d627c41 4653 null;
4654
2ff55065 4655 -- We do not do anything here with address clauses, they will be
4656 -- removed by Freeze later on, but for now, it works better to
4657 -- keep then in the tree.
4658
4659 when Attribute_Address =>
4660 null;
4661
b593a52c 4662 -- Other cases are errors ("attribute& cannot be set with
4663 -- definition clause"), which will be caught below.
9d627c41 4664
4665 when others =>
4666 null;
4667 end case;
fbc67f84 4668 end if;
4669
d6f39728 4670 Analyze (Nam);
4671 Ent := Entity (Nam);
4672
4673 if Rep_Item_Too_Early (Ent, N) then
4674 return;
4675 end if;
4676
9f373bb8 4677 -- Rep clause applies to full view of incomplete type or private type if
4678 -- we have one (if not, this is a premature use of the type). However,
4679 -- certain semantic checks need to be done on the specified entity (i.e.
4680 -- the private view), so we save it in Ent.
d6f39728 4681
4682 if Is_Private_Type (Ent)
4683 and then Is_Derived_Type (Ent)
4684 and then not Is_Tagged_Type (Ent)
4685 and then No (Full_View (Ent))
4686 then
9f373bb8 4687 -- If this is a private type whose completion is a derivation from
4688 -- another private type, there is no full view, and the attribute
4689 -- belongs to the type itself, not its underlying parent.
d6f39728 4690
4691 U_Ent := Ent;
4692
4693 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 4694
9f373bb8 4695 -- The attribute applies to the full view, set the entity of the
4696 -- attribute definition accordingly.
d5b349fa 4697
d6f39728 4698 Ent := Underlying_Type (Ent);
4699 U_Ent := Ent;
d5b349fa 4700 Set_Entity (Nam, Ent);
4701
d6f39728 4702 else
4703 U_Ent := Underlying_Type (Ent);
4704 end if;
4705
44705307 4706 -- Avoid cascaded error
d6f39728 4707
4708 if Etype (Nam) = Any_Type then
4709 return;
4710
89f1e35c 4711 -- Must be declared in current scope or in case of an aspect
ace3389d 4712 -- specification, must be visible in current scope.
44705307 4713
89f1e35c 4714 elsif Scope (Ent) /= Current_Scope
ace3389d 4715 and then
4716 not (From_Aspect_Specification (N)
4717 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 4718 then
d6f39728 4719 Error_Msg_N ("entity must be declared in this scope", Nam);
4720 return;
4721
44705307 4722 -- Must not be a source renaming (we do have some cases where the
4723 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 4724 -- cases any attribute applies to the renamed object as well).
44705307 4725
4726 elsif Is_Object (Ent)
4727 and then Present (Renamed_Object (Ent))
44705307 4728 then
a3248fc4 4729 -- Case of renamed object from source, this is an error
4730
4731 if Comes_From_Source (Renamed_Object (Ent)) then
4732 Get_Name_String (Chars (N));
4733 Error_Msg_Strlen := Name_Len;
4734 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4735 Error_Msg_N
4736 ("~ clause not allowed for a renaming declaration "
4737 & "(RM 13.1(6))", Nam);
4738 return;
4739
4740 -- For the case of a compiler generated renaming, the attribute
4741 -- definition clause applies to the renamed object created by the
4742 -- expander. The easiest general way to handle this is to create a
4743 -- copy of the attribute definition clause for this object.
4744
9a48fc56 4745 elsif Is_Entity_Name (Renamed_Object (Ent)) then
a3248fc4 4746 Insert_Action (N,
4747 Make_Attribute_Definition_Clause (Loc,
4748 Name =>
4749 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4750 Chars => Chars (N),
4751 Expression => Duplicate_Subexpr (Expression (N))));
9a48fc56 4752
4753 -- If the renamed object is not an entity, it must be a dereference
4754 -- of an unconstrained function call, and we must introduce a new
4755 -- declaration to capture the expression. This is needed in the case
4756 -- of 'Alignment, where the original declaration must be rewritten.
4757
4758 else
4759 pragma Assert
4760 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4761 null;
a3248fc4 4762 end if;
44705307 4763
4764 -- If no underlying entity, use entity itself, applies to some
4765 -- previously detected error cases ???
4766
f15731c4 4767 elsif No (U_Ent) then
4768 U_Ent := Ent;
4769
44705307 4770 -- Cannot specify for a subtype (exception Object/Value_Size)
4771
d6f39728 4772 elsif Is_Type (U_Ent)
4773 and then not Is_First_Subtype (U_Ent)
4774 and then Id /= Attribute_Object_Size
4775 and then Id /= Attribute_Value_Size
4776 and then not From_At_Mod (N)
4777 then
4778 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4779 return;
d6f39728 4780 end if;
4781
ae888dbd 4782 Set_Entity (N, U_Ent);
4783
d6f39728 4784 -- Switch on particular attribute
4785
4786 case Id is
4787
4788 -------------
4789 -- Address --
4790 -------------
4791
4792 -- Address attribute definition clause
4793
4794 when Attribute_Address => Address : begin
177675a7 4795
4796 -- A little error check, catch for X'Address use X'Address;
4797
4798 if Nkind (Nam) = N_Identifier
4799 and then Nkind (Expr) = N_Attribute_Reference
4800 and then Attribute_Name (Expr) = Name_Address
4801 and then Nkind (Prefix (Expr)) = N_Identifier
4802 and then Chars (Nam) = Chars (Prefix (Expr))
4803 then
4804 Error_Msg_NE
4805 ("address for & is self-referencing", Prefix (Expr), Ent);
4806 return;
4807 end if;
4808
4809 -- Not that special case, carry on with analysis of expression
4810
d6f39728 4811 Analyze_And_Resolve (Expr, RTE (RE_Address));
4812
2f1aac99 4813 -- Even when ignoring rep clauses we need to indicate that the
4814 -- entity has an address clause and thus it is legal to declare
2ff55065 4815 -- it imported. Freeze will get rid of the address clause later.
2f1aac99 4816
4817 if Ignore_Rep_Clauses then
d3ef794c 4818 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 4819 Record_Rep_Item (U_Ent, N);
4820 end if;
4821
4822 return;
4823 end if;
4824
ae888dbd 4825 if Duplicate_Clause then
4826 null;
d6f39728 4827
4828 -- Case of address clause for subprogram
4829
4830 elsif Is_Subprogram (U_Ent) then
d6f39728 4831 if Has_Homonym (U_Ent) then
4832 Error_Msg_N
f74a102b 4833 ("address clause cannot be given for overloaded "
4834 & "subprogram", Nam);
83f8f0a6 4835 return;
d6f39728 4836 end if;
4837
83f8f0a6 4838 -- For subprograms, all address clauses are permitted, and we
4839 -- mark the subprogram as having a deferred freeze so that Gigi
4840 -- will not elaborate it too soon.
d6f39728 4841
4842 -- Above needs more comments, what is too soon about???
4843
4844 Set_Has_Delayed_Freeze (U_Ent);
4845
4846 -- Case of address clause for entry
4847
4848 elsif Ekind (U_Ent) = E_Entry then
d6f39728 4849 if Nkind (Parent (N)) = N_Task_Body then
4850 Error_Msg_N
4851 ("entry address must be specified in task spec", Nam);
83f8f0a6 4852 return;
d6f39728 4853 end if;
4854
4855 -- For entries, we require a constant address
4856
4857 Check_Constant_Address_Clause (Expr, U_Ent);
4858
83f8f0a6 4859 -- Special checks for task types
4860
f15731c4 4861 if Is_Task_Type (Scope (U_Ent))
4862 and then Comes_From_Source (Scope (U_Ent))
4863 then
4864 Error_Msg_N
1e3532e7 4865 ("??entry address declared for entry in task type", N);
f15731c4 4866 Error_Msg_N
1e3532e7 4867 ("\??only one task can be declared of this type", N);
f15731c4 4868 end if;
4869
83f8f0a6 4870 -- Entry address clauses are obsolescent
4871
e0521a36 4872 Check_Restriction (No_Obsolescent_Features, N);
4873
9dfe12ae 4874 if Warn_On_Obsolescent_Feature then
4875 Error_Msg_N
f74a102b 4876 ("?j?attaching interrupt to task entry is an obsolescent "
4877 & "feature (RM J.7.1)", N);
9dfe12ae 4878 Error_Msg_N
1e3532e7 4879 ("\?j?use interrupt procedure instead", N);
9dfe12ae 4880 end if;
4881
83f8f0a6 4882 -- Case of an address clause for a controlled object which we
4883 -- consider to be erroneous.
9dfe12ae 4884
83f8f0a6 4885 elsif Is_Controlled (Etype (U_Ent))
4886 or else Has_Controlled_Component (Etype (U_Ent))
4887 then
9dfe12ae 4888 Error_Msg_NE
1e3532e7 4889 ("??controlled object& must not be overlaid", Nam, U_Ent);
9dfe12ae 4890 Error_Msg_N
1e3532e7 4891 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 4892 Insert_Action (Declaration_Node (U_Ent),
4893 Make_Raise_Program_Error (Loc,
4894 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4895 return;
9dfe12ae 4896
4897 -- Case of address clause for a (non-controlled) object
d6f39728 4898
f02a9a9a 4899 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
d6f39728 4900 declare
d6da7448 4901 Expr : constant Node_Id := Expression (N);
4902 O_Ent : Entity_Id;
4903 Off : Boolean;
d6f39728 4904
4905 begin
7ee315cc 4906 -- Exported variables cannot have an address clause, because
4907 -- this cancels the effect of the pragma Export.
d6f39728 4908
4909 if Is_Exported (U_Ent) then
4910 Error_Msg_N
4911 ("cannot export object with address clause", Nam);
83f8f0a6 4912 return;
d6da7448 4913 end if;
4914
4915 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 4916
a9dd889b 4917 if Present (O_Ent) then
798dec73 4918
a9dd889b 4919 -- If the object overlays a constant object, mark it so
b2d32174 4920
a9dd889b 4921 if Is_Constant_Object (O_Ent) then
4922 Set_Overlays_Constant (U_Ent);
4923 end if;
798dec73 4924
514a5555 4925 -- If the address clause is of the form:
4926
4927 -- for X'Address use Y'Address;
4928
4929 -- or
4930
4931 -- C : constant Address := Y'Address;
4932 -- ...
4933 -- for X'Address use C;
4934
4935 -- then we make an entry in the table to check the size
4936 -- and alignment of the overlaying variable. But we defer
4937 -- this check till after code generation to take full
4938 -- advantage of the annotation done by the back end.
4939
4940 -- If the entity has a generic type, the check will be
4941 -- performed in the instance if the actual type justifies
4942 -- it, and we do not insert the clause in the table to
4943 -- prevent spurious warnings.
4944
4945 -- Note: we used to test Comes_From_Source and only give
4946 -- this warning for source entities, but we have removed
4947 -- this test. It really seems bogus to generate overlays
4948 -- that would trigger this warning in generated code.
4949 -- Furthermore, by removing the test, we handle the
4950 -- aspect case properly.
4951
4952 if Is_Object (O_Ent)
4953 and then not Is_Generic_Type (Etype (U_Ent))
4954 and then Address_Clause_Overlay_Warnings
4955 then
4956 Address_Clause_Checks.Append
4957 ((N, U_Ent, No_Uint, O_Ent, Off));
4958 end if;
a9dd889b 4959 else
4960 -- If this is not an overlay, mark a variable as being
4961 -- volatile to prevent unwanted optimizations. It's a
4962 -- conservative interpretation of RM 13.3(19) for the
4963 -- cases where the compiler cannot detect potential
4964 -- aliasing issues easily and it also covers the case
4965 -- of an absolute address where the volatile aspect is
4966 -- kind of implicit.
4967
4968 if Ekind (U_Ent) = E_Variable then
4969 Set_Treat_As_Volatile (U_Ent);
4970 end if;
514a5555 4971
4972 -- Make an entry in the table for an absolute address as
4973 -- above to check that the value is compatible with the
4974 -- alignment of the object.
4975
4976 declare
4977 Addr : constant Node_Id := Address_Value (Expr);
4978 begin
4979 if Compile_Time_Known_Value (Addr)
4980 and then Address_Clause_Overlay_Warnings
4981 then
4982 Address_Clause_Checks.Append
4983 ((N, U_Ent, Expr_Value (Addr), Empty, False));
4984 end if;
4985 end;
b2d32174 4986 end if;
4987
798dec73 4988 -- Overlaying controlled objects is erroneous. Emit warning
4989 -- but continue analysis because program is itself legal,
3ff5e35d 4990 -- and back end must see address clause.
9dfe12ae 4991
d6da7448 4992 if Present (O_Ent)
4993 and then (Has_Controlled_Component (Etype (O_Ent))
f02a9a9a 4994 or else Is_Controlled (Etype (O_Ent)))
0c30cda1 4995 and then not Inside_A_Generic
9dfe12ae 4996 then
4997 Error_Msg_N
0c30cda1 4998 ("??cannot use overlays with controlled objects", Expr);
9dfe12ae 4999 Error_Msg_N
1e3532e7 5000 ("\??Program_Error will be raised at run time", Expr);
9dfe12ae 5001 Insert_Action (Declaration_Node (U_Ent),
5002 Make_Raise_Program_Error (Loc,
5003 Reason => PE_Overlaid_Controlled_Object));
5004
95009d64 5005 -- Issue an unconditional warning for a constant overlaying
5006 -- a variable. For the reverse case, we will issue it only
b2d32174 5007 -- if the variable is modified.
95009d64 5008
b2d32174 5009 elsif Ekind (U_Ent) = E_Constant
95009d64 5010 and then Present (O_Ent)
b2d32174 5011 and then not Overlays_Constant (U_Ent)
5012 and then Address_Clause_Overlay_Warnings
9dfe12ae 5013 then
1e3532e7 5014 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 5015
d6f39728 5016 -- Imported variables can have an address clause, but then
5017 -- the import is pretty meaningless except to suppress
5018 -- initializations, so we do not need such variables to
5019 -- be statically allocated (and in fact it causes trouble
5020 -- if the address clause is a local value).
5021
5022 elsif Is_Imported (U_Ent) then
5023 Set_Is_Statically_Allocated (U_Ent, False);
5024 end if;
5025
5026 -- We mark a possible modification of a variable with an
5027 -- address clause, since it is likely aliasing is occurring.
5028
177675a7 5029 Note_Possible_Modification (Nam, Sure => False);
d6f39728 5030
9dfe12ae 5031 -- Legality checks on the address clause for initialized
5032 -- objects is deferred until the freeze point, because
2beb22b1 5033 -- a subsequent pragma might indicate that the object
42e09e36 5034 -- is imported and thus not initialized. Also, the address
5035 -- clause might involve entities that have yet to be
5036 -- elaborated.
9dfe12ae 5037
5038 Set_Has_Delayed_Freeze (U_Ent);
5039
51ad5ad2 5040 -- If an initialization call has been generated for this
5041 -- object, it needs to be deferred to after the freeze node
5042 -- we have just now added, otherwise GIGI will see a
5043 -- reference to the variable (as actual to the IP call)
5044 -- before its definition.
5045
5046 declare
df9fba45 5047 Init_Call : constant Node_Id :=
5048 Remove_Init_Call (U_Ent, N);
4bba0a8d 5049
51ad5ad2 5050 begin
5051 if Present (Init_Call) then
28a4283c 5052 Append_Freeze_Action (U_Ent, Init_Call);
df9fba45 5053
28a4283c 5054 -- Reset Initialization_Statements pointer so that
5055 -- if there is a pragma Import further down, it can
5056 -- clear any default initialization.
df9fba45 5057
28a4283c 5058 Set_Initialization_Statements (U_Ent, Init_Call);
51ad5ad2 5059 end if;
5060 end;
5061
44e4341e 5062 -- Entity has delayed freeze, so we will generate an
5063 -- alignment check at the freeze point unless suppressed.
d6f39728 5064
44e4341e 5065 if not Range_Checks_Suppressed (U_Ent)
5066 and then not Alignment_Checks_Suppressed (U_Ent)
5067 then
5068 Set_Check_Address_Alignment (N);
5069 end if;
d6f39728 5070
5071 -- Kill the size check code, since we are not allocating
5072 -- the variable, it is somewhere else.
5073
5074 Kill_Size_Check_Code (U_Ent);
d6da7448 5075 end;
83f8f0a6 5076
d6f39728 5077 -- Not a valid entity for an address clause
5078
5079 else
5080 Error_Msg_N ("address cannot be given for &", Nam);
5081 end if;
5082 end Address;
5083
5084 ---------------
5085 -- Alignment --
5086 ---------------
5087
5088 -- Alignment attribute definition clause
5089
b47769f0 5090 when Attribute_Alignment => Alignment : declare
208fd589 5091 Align : constant Uint := Get_Alignment_Value (Expr);
5092 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 5093
d6f39728 5094 begin
5095 FOnly := True;
5096
5097 if not Is_Type (U_Ent)
5098 and then Ekind (U_Ent) /= E_Variable
5099 and then Ekind (U_Ent) /= E_Constant
5100 then
5101 Error_Msg_N ("alignment cannot be given for &", Nam);
5102
ae888dbd 5103 elsif Duplicate_Clause then
5104 null;
d6f39728 5105
5106 elsif Align /= No_Uint then
5107 Set_Has_Alignment_Clause (U_Ent);
208fd589 5108
44705307 5109 -- Tagged type case, check for attempt to set alignment to a
f74a102b 5110 -- value greater than Max_Align, and reset if so. This error
5111 -- is suppressed in ASIS mode to allow for different ASIS
f9906591 5112 -- back ends or ASIS-based tools to query the illegal clause.
44705307 5113
f74a102b 5114 if Is_Tagged_Type (U_Ent)
5115 and then Align > Max_Align
5116 and then not ASIS_Mode
5117 then
208fd589 5118 Error_Msg_N
1e3532e7 5119 ("alignment for & set to Maximum_Aligment??", Nam);
f74a102b 5120 Set_Alignment (U_Ent, Max_Align);
44705307 5121
5122 -- All other cases
5123
208fd589 5124 else
5125 Set_Alignment (U_Ent, Align);
5126 end if;
b47769f0 5127
5128 -- For an array type, U_Ent is the first subtype. In that case,
5129 -- also set the alignment of the anonymous base type so that
5130 -- other subtypes (such as the itypes for aggregates of the
5131 -- type) also receive the expected alignment.
5132
5133 if Is_Array_Type (U_Ent) then
5134 Set_Alignment (Base_Type (U_Ent), Align);
5135 end if;
d6f39728 5136 end if;
b47769f0 5137 end Alignment;
d6f39728 5138
5139 ---------------
5140 -- Bit_Order --
5141 ---------------
5142
5143 -- Bit_Order attribute definition clause
5144
5145 when Attribute_Bit_Order => Bit_Order : declare
5146 begin
5147 if not Is_Record_Type (U_Ent) then
5148 Error_Msg_N
5149 ("Bit_Order can only be defined for record type", Nam);
5150
ae888dbd 5151 elsif Duplicate_Clause then
5152 null;
5153
d6f39728 5154 else
5155 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5156
5157 if Etype (Expr) = Any_Type then
5158 return;
5159
cda40848 5160 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5161 Flag_Non_Static_Expr
5162 ("Bit_Order requires static expression!", Expr);
d6f39728 5163
5164 else
5165 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
fae4ea1f 5166 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
d6f39728 5167 end if;
5168 end if;
5169 end if;
5170 end Bit_Order;
5171
5172 --------------------
5173 -- Component_Size --
5174 --------------------
5175
5176 -- Component_Size attribute definition clause
5177
5178 when Attribute_Component_Size => Component_Size_Case : declare
5179 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 5180 Ctyp : Entity_Id;
d6f39728 5181 Btype : Entity_Id;
5182 Biased : Boolean;
5183 New_Ctyp : Entity_Id;
5184 Decl : Node_Id;
5185
5186 begin
5187 if not Is_Array_Type (U_Ent) then
5188 Error_Msg_N ("component size requires array type", Nam);
5189 return;
5190 end if;
5191
5192 Btype := Base_Type (U_Ent);
f74a102b 5193 Ctyp := Component_Type (Btype);
d6f39728 5194
ae888dbd 5195 if Duplicate_Clause then
5196 null;
d6f39728 5197
f3e4db96 5198 elsif Rep_Item_Too_Early (Btype, N) then
5199 null;
5200
d6f39728 5201 elsif Csize /= No_Uint then
a0fc8c5b 5202 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 5203
d74fc39a 5204 -- For the biased case, build a declaration for a subtype that
5205 -- will be used to represent the biased subtype that reflects
5206 -- the biased representation of components. We need the subtype
5207 -- to get proper conversions on referencing elements of the
36ac5fbb 5208 -- array.
3062c401 5209
36ac5fbb 5210 if Biased then
5211 New_Ctyp :=
5212 Make_Defining_Identifier (Loc,
5213 Chars =>
5214 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
3062c401 5215
36ac5fbb 5216 Decl :=
5217 Make_Subtype_Declaration (Loc,
5218 Defining_Identifier => New_Ctyp,
5219 Subtype_Indication =>
5220 New_Occurrence_Of (Component_Type (Btype), Loc));
5221
5222 Set_Parent (Decl, N);
5223 Analyze (Decl, Suppress => All_Checks);
5224
5225 Set_Has_Delayed_Freeze (New_Ctyp, False);
5226 Set_Esize (New_Ctyp, Csize);
5227 Set_RM_Size (New_Ctyp, Csize);
5228 Init_Alignment (New_Ctyp);
5229 Set_Is_Itype (New_Ctyp, True);
5230 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5231
5232 Set_Component_Type (Btype, New_Ctyp);
5233 Set_Biased (New_Ctyp, N, "component size clause");
d6f39728 5234 end if;
5235
36ac5fbb 5236 Set_Component_Size (Btype, Csize);
5237
a0fc8c5b 5238 -- Deal with warning on overridden size
5239
5240 if Warn_On_Overridden_Size
5241 and then Has_Size_Clause (Ctyp)
5242 and then RM_Size (Ctyp) /= Csize
5243 then
5244 Error_Msg_NE
1e3532e7 5245 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 5246 end if;
5247
d6f39728 5248 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 5249 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 5250 end if;
5251 end Component_Size_Case;
5252
81b424ac 5253 -----------------------
5254 -- Constant_Indexing --
5255 -----------------------
5256
5257 when Attribute_Constant_Indexing =>
5258 Check_Indexing_Functions;
5259
89f1e35c 5260 ---------
5261 -- CPU --
5262 ---------
5263
5264 when Attribute_CPU => CPU :
5265 begin
5266 -- CPU attribute definition clause not allowed except from aspect
5267 -- specification.
5268
5269 if From_Aspect_Specification (N) then
5270 if not Is_Task_Type (U_Ent) then
5271 Error_Msg_N ("CPU can only be defined for task", Nam);
5272
5273 elsif Duplicate_Clause then
5274 null;
5275
5276 else
5277 -- The expression must be analyzed in the special manner
5278 -- described in "Handling of Default and Per-Object
5279 -- Expressions" in sem.ads.
5280
5281 -- The visibility to the discriminants must be restored
5282
5283 Push_Scope_And_Install_Discriminants (U_Ent);
5284 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5285 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5286
cda40848 5287 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5288 Check_Restriction (Static_Priorities, Expr);
5289 end if;
5290 end if;
5291
5292 else
5293 Error_Msg_N
5294 ("attribute& cannot be set with definition clause", N);
5295 end if;
5296 end CPU;
5297
89cc7147 5298 ----------------------
5299 -- Default_Iterator --
5300 ----------------------
5301
5302 when Attribute_Default_Iterator => Default_Iterator : declare
5303 Func : Entity_Id;
fbf4d6ef 5304 Typ : Entity_Id;
89cc7147 5305
5306 begin
05f6f999 5307 -- If target type is untagged, further checks are irrelevant
5308
89cc7147 5309 if not Is_Tagged_Type (U_Ent) then
5310 Error_Msg_N
05f6f999 5311 ("aspect Default_Iterator applies to tagged type", Nam);
5312 return;
89cc7147 5313 end if;
5314
5315 Check_Iterator_Functions;
5316
5317 Analyze (Expr);
5318
5319 if not Is_Entity_Name (Expr)
5320 or else Ekind (Entity (Expr)) /= E_Function
5321 then
5322 Error_Msg_N ("aspect Iterator must be a function", Expr);
05f6f999 5323 return;
89cc7147 5324 else
5325 Func := Entity (Expr);
5326 end if;
5327
fbf4d6ef 5328 -- The type of the first parameter must be T, T'class, or a
05f6f999 5329 -- corresponding access type (5.5.1 (8/3). If function is
5330 -- parameterless label type accordingly.
fbf4d6ef 5331
5332 if No (First_Formal (Func)) then
05f6f999 5333 Typ := Any_Type;
fbf4d6ef 5334 else
5335 Typ := Etype (First_Formal (Func));
5336 end if;
5337
5338 if Typ = U_Ent
5339 or else Typ = Class_Wide_Type (U_Ent)
5340 or else (Is_Access_Type (Typ)
5341 and then Designated_Type (Typ) = U_Ent)
5342 or else (Is_Access_Type (Typ)
5343 and then Designated_Type (Typ) =
5344 Class_Wide_Type (U_Ent))
89cc7147 5345 then
fbf4d6ef 5346 null;
5347
5348 else
89cc7147 5349 Error_Msg_NE
5350 ("Default Iterator must be a primitive of&", Func, U_Ent);
5351 end if;
5352 end Default_Iterator;
5353
89f1e35c 5354 ------------------------
5355 -- Dispatching_Domain --
5356 ------------------------
5357
5358 when Attribute_Dispatching_Domain => Dispatching_Domain :
5359 begin
5360 -- Dispatching_Domain attribute definition clause not allowed
5361 -- except from aspect specification.
5362
5363 if From_Aspect_Specification (N) then
5364 if not Is_Task_Type (U_Ent) then
fbf4d6ef 5365 Error_Msg_N
5366 ("Dispatching_Domain can only be defined for task", Nam);
89f1e35c 5367
5368 elsif Duplicate_Clause then
5369 null;
5370
5371 else
5372 -- The expression must be analyzed in the special manner
5373 -- described in "Handling of Default and Per-Object
5374 -- Expressions" in sem.ads.
5375
5376 -- The visibility to the discriminants must be restored
5377
5378 Push_Scope_And_Install_Discriminants (U_Ent);
5379
5380 Preanalyze_Spec_Expression
5381 (Expr, RTE (RE_Dispatching_Domain));
5382
5383 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5384 end if;
5385
5386 else
5387 Error_Msg_N
5388 ("attribute& cannot be set with definition clause", N);
5389 end if;
5390 end Dispatching_Domain;
5391
d6f39728 5392 ------------------
5393 -- External_Tag --
5394 ------------------
5395
5396 when Attribute_External_Tag => External_Tag :
5397 begin
5398 if not Is_Tagged_Type (U_Ent) then
5399 Error_Msg_N ("should be a tagged type", Nam);
5400 end if;
5401
ae888dbd 5402 if Duplicate_Clause then
5403 null;
d6f39728 5404
9af0ddc7 5405 else
ae888dbd 5406 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 5407
cda40848 5408 if not Is_OK_Static_Expression (Expr) then
ae888dbd 5409 Flag_Non_Static_Expr
5410 ("static string required for tag name!", Nam);
5411 end if;
5412
ae888dbd 5413 if not Is_Library_Level_Entity (U_Ent) then
5414 Error_Msg_NE
1e3532e7 5415 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 5416 Error_Msg_N
f74a102b 5417 ("\??same external tag applies to all subprogram calls",
5418 N);
ae888dbd 5419 Error_Msg_N
1e3532e7 5420 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 5421 end if;
fbc67f84 5422 end if;
d6f39728 5423 end External_Tag;
5424
b57530b8 5425 --------------------------
5426 -- Implicit_Dereference --
5427 --------------------------
7947a439 5428
b57530b8 5429 when Attribute_Implicit_Dereference =>
7947a439 5430
2beb22b1 5431 -- Legality checks already performed at the point of the type
5432 -- declaration, aspect is not delayed.
7947a439 5433
89cc7147 5434 null;
b57530b8 5435
d6f39728 5436 -----------
5437 -- Input --
5438 -----------
5439
9f373bb8 5440 when Attribute_Input =>
5441 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5442 Set_Has_Specified_Stream_Input (Ent);
d6f39728 5443
89f1e35c 5444 ------------------------
5445 -- Interrupt_Priority --
5446 ------------------------
5447
5448 when Attribute_Interrupt_Priority => Interrupt_Priority :
5449 begin
5450 -- Interrupt_Priority attribute definition clause not allowed
5451 -- except from aspect specification.
5452
5453 if From_Aspect_Specification (N) then
f02a9a9a 5454 if not Is_Concurrent_Type (U_Ent) then
89f1e35c 5455 Error_Msg_N
f74a102b 5456 ("Interrupt_Priority can only be defined for task and "
5457 & "protected object", Nam);
89f1e35c 5458
5459 elsif Duplicate_Clause then
5460 null;
5461
5462 else
5463 -- The expression must be analyzed in the special manner
5464 -- described in "Handling of Default and Per-Object
5465 -- Expressions" in sem.ads.
5466
5467 -- The visibility to the discriminants must be restored
5468
5469 Push_Scope_And_Install_Discriminants (U_Ent);
5470
5471 Preanalyze_Spec_Expression
5472 (Expr, RTE (RE_Interrupt_Priority));
5473
5474 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
d4e1acfa 5475
5476 -- Check the No_Task_At_Interrupt_Priority restriction
5477
5478 if Is_Task_Type (U_Ent) then
5479 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5480 end if;
89f1e35c 5481 end if;
5482
5483 else
5484 Error_Msg_N
5485 ("attribute& cannot be set with definition clause", N);
5486 end if;
5487 end Interrupt_Priority;
5488
b3f8228a 5489 --------------
5490 -- Iterable --
5491 --------------
5492
5493 when Attribute_Iterable =>
5494 Analyze (Expr);
bde03454 5495
b3f8228a 5496 if Nkind (Expr) /= N_Aggregate then
5497 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5498 end if;
5499
5500 declare
5501 Assoc : Node_Id;
5502
5503 begin
5504 Assoc := First (Component_Associations (Expr));
5505 while Present (Assoc) loop
5506 if not Is_Entity_Name (Expression (Assoc)) then
5507 Error_Msg_N ("value must be a function", Assoc);
5508 end if;
bde03454 5509
b3f8228a 5510 Next (Assoc);
5511 end loop;
5512 end;
5513
89cc7147 5514 ----------------------
5515 -- Iterator_Element --
5516 ----------------------
5517
5518 when Attribute_Iterator_Element =>
5519 Analyze (Expr);
5520
5521 if not Is_Entity_Name (Expr)
5522 or else not Is_Type (Entity (Expr))
5523 then
5524 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5525 end if;
5526
d6f39728 5527 -------------------
5528 -- Machine_Radix --
5529 -------------------
5530
5531 -- Machine radix attribute definition clause
5532
5533 when Attribute_Machine_Radix => Machine_Radix : declare
5534 Radix : constant Uint := Static_Integer (Expr);
5535
5536 begin
5537 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5538 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5539
ae888dbd 5540 elsif Duplicate_Clause then
5541 null;
d6f39728 5542
5543 elsif Radix /= No_Uint then
5544 Set_Has_Machine_Radix_Clause (U_Ent);
5545 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5546
5547 if Radix = 2 then
5548 null;
f74a102b 5549
d6f39728 5550 elsif Radix = 10 then
5551 Set_Machine_Radix_10 (U_Ent);
f74a102b 5552
5553 -- The following error is suppressed in ASIS mode to allow for
f9906591 5554 -- different ASIS back ends or ASIS-based tools to query the
f74a102b 5555 -- illegal clause.
5556
5557 elsif not ASIS_Mode then
d6f39728 5558 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5559 end if;
5560 end if;
5561 end Machine_Radix;
5562
5563 -----------------
5564 -- Object_Size --
5565 -----------------
5566
5567 -- Object_Size attribute definition clause
5568
5569 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 5570 Size : constant Uint := Static_Integer (Expr);
5571
d6f39728 5572 Biased : Boolean;
bfa5a9d9 5573 pragma Warnings (Off, Biased);
d6f39728 5574
5575 begin
5576 if not Is_Type (U_Ent) then
5577 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5578
ae888dbd 5579 elsif Duplicate_Clause then
5580 null;
d6f39728 5581
5582 else
5583 Check_Size (Expr, U_Ent, Size, Biased);
5584
f74a102b 5585 -- The following errors are suppressed in ASIS mode to allow
f9906591 5586 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 5587 -- the illegal clause.
5588
5589 if ASIS_Mode then
5590 null;
5591
5592 elsif Is_Scalar_Type (U_Ent) then
829cd457 5593 if Size /= 8 and then Size /= 16 and then Size /= 32
5594 and then UI_Mod (Size, 64) /= 0
5595 then
5596 Error_Msg_N
5597 ("Object_Size must be 8, 16, 32, or multiple of 64",
5598 Expr);
5599 end if;
5600
5601 elsif Size mod 8 /= 0 then
5602 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
d6f39728 5603 end if;
5604
5605 Set_Esize (U_Ent, Size);
5606 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 5607 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5608 end if;
5609 end Object_Size;
5610
5611 ------------
5612 -- Output --
5613 ------------
5614
9f373bb8 5615 when Attribute_Output =>
5616 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5617 Set_Has_Specified_Stream_Output (Ent);
d6f39728 5618
89f1e35c 5619 --------------
5620 -- Priority --
5621 --------------
5622
5623 when Attribute_Priority => Priority :
5624 begin
5625 -- Priority attribute definition clause not allowed except from
5626 -- aspect specification.
5627
5628 if From_Aspect_Specification (N) then
f02a9a9a 5629 if not (Is_Concurrent_Type (U_Ent)
3a72f9c3 5630 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 5631 then
5632 Error_Msg_N
f02a9a9a 5633 ("Priority can only be defined for task and protected "
5634 & "object", Nam);
89f1e35c 5635
5636 elsif Duplicate_Clause then
5637 null;
5638
5639 else
5640 -- The expression must be analyzed in the special manner
5641 -- described in "Handling of Default and Per-Object
5642 -- Expressions" in sem.ads.
5643
5644 -- The visibility to the discriminants must be restored
5645
5646 Push_Scope_And_Install_Discriminants (U_Ent);
5647 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5648 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5649
cda40848 5650 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5651 Check_Restriction (Static_Priorities, Expr);
5652 end if;
5653 end if;
5654
5655 else
5656 Error_Msg_N
5657 ("attribute& cannot be set with definition clause", N);
5658 end if;
5659 end Priority;
5660
d6f39728 5661 ----------
5662 -- Read --
5663 ----------
5664
9f373bb8 5665 when Attribute_Read =>
5666 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5667 Set_Has_Specified_Stream_Read (Ent);
d6f39728 5668
b7b74740 5669 --------------------------
5670 -- Scalar_Storage_Order --
5671 --------------------------
5672
5673 -- Scalar_Storage_Order attribute definition clause
5674
5675 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5676 begin
b43a5770 5677 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 5678 Error_Msg_N
f74a102b 5679 ("Scalar_Storage_Order can only be defined for record or "
5680 & "array type", Nam);
b7b74740 5681
5682 elsif Duplicate_Clause then
5683 null;
5684
5685 else
5686 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5687
5688 if Etype (Expr) = Any_Type then
5689 return;
5690
cda40848 5691 elsif not Is_OK_Static_Expression (Expr) then
b7b74740 5692 Flag_Non_Static_Expr
5693 ("Scalar_Storage_Order requires static expression!", Expr);
5694
c0912570 5695 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5696
5697 -- Here for the case of a non-default (i.e. non-confirming)
5698 -- Scalar_Storage_Order attribute definition.
5699
5700 if Support_Nondefault_SSO_On_Target then
d0a9ea3b 5701 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
c0912570 5702 else
5703 Error_Msg_N
f74a102b 5704 ("non-default Scalar_Storage_Order not supported on "
5705 & "target", Expr);
b7b74740 5706 end if;
5707 end if;
b64082f2 5708
5709 -- Clear SSO default indications since explicit setting of the
5710 -- order overrides the defaults.
5711
5712 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5713 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
b7b74740 5714 end if;
5715 end Scalar_Storage_Order;
5716
e6ce0468 5717 --------------------------
5718 -- Secondary_Stack_Size --
5719 --------------------------
5720
5721 when Attribute_Secondary_Stack_Size => Secondary_Stack_Size :
5722 begin
5723 -- Secondary_Stack_Size attribute definition clause not allowed
5724 -- except from aspect specification.
5725
5726 if From_Aspect_Specification (N) then
5727 if not Is_Task_Type (U_Ent) then
fe696bd7 5728 Error_Msg_N
5729 ("Secondary Stack Size can only be defined for task", Nam);
e6ce0468 5730
5731 elsif Duplicate_Clause then
5732 null;
5733
5734 else
5735 Check_Restriction (No_Secondary_Stack, Expr);
5736
5737 -- The expression must be analyzed in the special manner
5738 -- described in "Handling of Default and Per-Object
5739 -- Expressions" in sem.ads.
5740
5741 -- The visibility to the discriminants must be restored
5742
5743 Push_Scope_And_Install_Discriminants (U_Ent);
5744 Preanalyze_Spec_Expression (Expr, Any_Integer);
5745 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5746
5747 if not Is_OK_Static_Expression (Expr) then
5748 Check_Restriction (Static_Storage_Size, Expr);
5749 end if;
5750 end if;
5751
5752 else
5753 Error_Msg_N
5754 ("attribute& cannot be set with definition clause", N);
5755 end if;
5756 end Secondary_Stack_Size;
5757
d6f39728 5758 ----------
5759 -- Size --
5760 ----------
5761
5762 -- Size attribute definition clause
5763
5764 when Attribute_Size => Size : declare
5765 Size : constant Uint := Static_Integer (Expr);
5766 Etyp : Entity_Id;
5767 Biased : Boolean;
5768
5769 begin
5770 FOnly := True;
5771
ae888dbd 5772 if Duplicate_Clause then
5773 null;
d6f39728 5774
5775 elsif not Is_Type (U_Ent)
5776 and then Ekind (U_Ent) /= E_Variable
5777 and then Ekind (U_Ent) /= E_Constant
5778 then
5779 Error_Msg_N ("size cannot be given for &", Nam);
5780
5781 elsif Is_Array_Type (U_Ent)
5782 and then not Is_Constrained (U_Ent)
5783 then
5784 Error_Msg_N
5785 ("size cannot be given for unconstrained array", Nam);
5786
c2b89d6e 5787 elsif Size /= No_Uint then
d6f39728 5788 if Is_Type (U_Ent) then
5789 Etyp := U_Ent;
5790 else
5791 Etyp := Etype (U_Ent);
5792 end if;
5793
59ac57b5 5794 -- Check size, note that Gigi is in charge of checking that the
5795 -- size of an array or record type is OK. Also we do not check
5796 -- the size in the ordinary fixed-point case, since it is too
5797 -- early to do so (there may be subsequent small clause that
5798 -- affects the size). We can check the size if a small clause
5799 -- has already been given.
d6f39728 5800
5801 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5802 or else Has_Small_Clause (U_Ent)
5803 then
5804 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 5805 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 5806 end if;
5807
5808 -- For types set RM_Size and Esize if possible
5809
5810 if Is_Type (U_Ent) then
5811 Set_RM_Size (U_Ent, Size);
5812
ada34def 5813 -- For elementary types, increase Object_Size to power of 2,
5814 -- but not less than a storage unit in any case (normally
59ac57b5 5815 -- this means it will be byte addressable).
d6f39728 5816
ada34def 5817 -- For all other types, nothing else to do, we leave Esize
5818 -- (object size) unset, the back end will set it from the
5819 -- size and alignment in an appropriate manner.
5820
1d366b32 5821 -- In both cases, we check whether the alignment must be
5822 -- reset in the wake of the size change.
5823
ada34def 5824 if Is_Elementary_Type (U_Ent) then
f15731c4 5825 if Size <= System_Storage_Unit then
5826 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 5827 elsif Size <= 16 then
5828 Init_Esize (U_Ent, 16);
5829 elsif Size <= 32 then
5830 Init_Esize (U_Ent, 32);
5831 else
5832 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5833 end if;
5834
1d366b32 5835 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5836 else
5837 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5838 end if;
5839
d6f39728 5840 -- For objects, set Esize only
5841
5842 else
f74a102b 5843 -- The following error is suppressed in ASIS mode to allow
f9906591 5844 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 5845 -- the illegal clause.
5846
5847 if Is_Elementary_Type (Etyp)
5848 and then Size /= System_Storage_Unit
5849 and then Size /= System_Storage_Unit * 2
5850 and then Size /= System_Storage_Unit * 4
5851 and then Size /= System_Storage_Unit * 8
5852 and then not ASIS_Mode
5853 then
5854 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5855 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5856 Error_Msg_N
5857 ("size for primitive object must be a power of 2 in "
5858 & "the range ^-^", N);
9dfe12ae 5859 end if;
5860
d6f39728 5861 Set_Esize (U_Ent, Size);
5862 end if;
5863
5864 Set_Has_Size_Clause (U_Ent);
5865 end if;
5866 end Size;
5867
5868 -----------
5869 -- Small --
5870 -----------
5871
5872 -- Small attribute definition clause
5873
5874 when Attribute_Small => Small : declare
5875 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5876 Small : Ureal;
5877
5878 begin
5879 Analyze_And_Resolve (Expr, Any_Real);
5880
5881 if Etype (Expr) = Any_Type then
5882 return;
5883
cda40848 5884 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5885 Flag_Non_Static_Expr
5886 ("small requires static expression!", Expr);
d6f39728 5887 return;
5888
5889 else
5890 Small := Expr_Value_R (Expr);
5891
5892 if Small <= Ureal_0 then
5893 Error_Msg_N ("small value must be greater than zero", Expr);
5894 return;
5895 end if;
5896
5897 end if;
5898
5899 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5900 Error_Msg_N
5901 ("small requires an ordinary fixed point type", Nam);
5902
5903 elsif Has_Small_Clause (U_Ent) then
5904 Error_Msg_N ("small already given for &", Nam);
5905
5906 elsif Small > Delta_Value (U_Ent) then
5907 Error_Msg_N
ce3e25d6 5908 ("small value must not be greater than delta value", Nam);
d6f39728 5909
5910 else
5911 Set_Small_Value (U_Ent, Small);
5912 Set_Small_Value (Implicit_Base, Small);
5913 Set_Has_Small_Clause (U_Ent);
5914 Set_Has_Small_Clause (Implicit_Base);
5915 Set_Has_Non_Standard_Rep (Implicit_Base);
5916 end if;
5917 end Small;
5918
d6f39728 5919 ------------------
5920 -- Storage_Pool --
5921 ------------------
5922
5923 -- Storage_Pool attribute definition clause
5924
b55f7641 5925 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
d6f39728 5926 Pool : Entity_Id;
6b567c71 5927 T : Entity_Id;
d6f39728 5928
5929 begin
44e4341e 5930 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5931 Error_Msg_N
5932 ("storage pool cannot be given for access-to-subprogram type",
5933 Nam);
5934 return;
5935
d3ef794c 5936 elsif not
5937 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 5938 then
44e4341e 5939 Error_Msg_N
5940 ("storage pool can only be given for access types", Nam);
d6f39728 5941 return;
5942
5943 elsif Is_Derived_Type (U_Ent) then
5944 Error_Msg_N
5945 ("storage pool cannot be given for a derived access type",
5946 Nam);
5947
ae888dbd 5948 elsif Duplicate_Clause then
d6f39728 5949 return;
5950
5951 elsif Present (Associated_Storage_Pool (U_Ent)) then
5952 Error_Msg_N ("storage pool already given for &", Nam);
5953 return;
5954 end if;
5955
6653b695 5956 -- Check for Storage_Size previously given
5957
5958 declare
5959 SS : constant Node_Id :=
5960 Get_Attribute_Definition_Clause
5961 (U_Ent, Attribute_Storage_Size);
5962 begin
5963 if Present (SS) then
5964 Check_Pool_Size_Clash (U_Ent, N, SS);
5965 end if;
5966 end;
5967
5968 -- Storage_Pool case
5969
b55f7641 5970 if Id = Attribute_Storage_Pool then
5971 Analyze_And_Resolve
5972 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5973
5974 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 5975 -- simple storage pool type, so we Resolve without imposing an
b55f7641 5976 -- expected type.
5977
5978 else
5979 Analyze_And_Resolve (Expr);
5980
5981 if not Present (Get_Rep_Pragma
b15003c3 5982 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 5983 then
5984 Error_Msg_N
5985 ("expression must be of a simple storage pool type", Expr);
5986 end if;
5987 end if;
d6f39728 5988
8c5c7277 5989 if not Denotes_Variable (Expr) then
5990 Error_Msg_N ("storage pool must be a variable", Expr);
5991 return;
5992 end if;
5993
6b567c71 5994 if Nkind (Expr) = N_Type_Conversion then
5995 T := Etype (Expression (Expr));
5996 else
5997 T := Etype (Expr);
5998 end if;
5999
6000 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 6001 -- access types with a Storage_Size. Since it only work properly
6002 -- when used on one specific type, we need to check that it is not
6003 -- hijacked improperly:
6004
6b567c71 6005 -- type T is access Integer;
6006 -- for T'Storage_Size use n;
6007 -- type Q is access Float;
6008 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6009
15ebb600 6010 if RTE_Available (RE_Stack_Bounded_Pool)
6011 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6012 then
6013 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 6014 return;
6015 end if;
6016
d6f39728 6017 -- If the argument is a name that is not an entity name, then
6018 -- we construct a renaming operation to define an entity of
6019 -- type storage pool.
6020
6021 if not Is_Entity_Name (Expr)
6022 and then Is_Object_Reference (Expr)
6023 then
11deeeb6 6024 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 6025
6026 declare
6027 Rnode : constant Node_Id :=
6028 Make_Object_Renaming_Declaration (Loc,
6029 Defining_Identifier => Pool,
6030 Subtype_Mark =>
6031 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 6032 Name => Expr);
d6f39728 6033
6034 begin
f65f7fdf 6035 -- If the attribute definition clause comes from an aspect
6036 -- clause, then insert the renaming before the associated
6037 -- entity's declaration, since the attribute clause has
6038 -- not yet been appended to the declaration list.
6039
6040 if From_Aspect_Specification (N) then
6041 Insert_Before (Parent (Entity (N)), Rnode);
6042 else
6043 Insert_Before (N, Rnode);
6044 end if;
6045
d6f39728 6046 Analyze (Rnode);
6047 Set_Associated_Storage_Pool (U_Ent, Pool);
6048 end;
6049
6050 elsif Is_Entity_Name (Expr) then
6051 Pool := Entity (Expr);
6052
6053 -- If pool is a renamed object, get original one. This can
6054 -- happen with an explicit renaming, and within instances.
6055
6056 while Present (Renamed_Object (Pool))
6057 and then Is_Entity_Name (Renamed_Object (Pool))
6058 loop
6059 Pool := Entity (Renamed_Object (Pool));
6060 end loop;
6061
6062 if Present (Renamed_Object (Pool))
6063 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6064 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6065 then
6066 Pool := Entity (Expression (Renamed_Object (Pool)));
6067 end if;
6068
6b567c71 6069 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 6070
6071 elsif Nkind (Expr) = N_Type_Conversion
6072 and then Is_Entity_Name (Expression (Expr))
6073 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6074 then
6075 Pool := Entity (Expression (Expr));
6b567c71 6076 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 6077
6078 else
6079 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6080 return;
6081 end if;
b55f7641 6082 end;
d6f39728 6083
44e4341e 6084 ------------------
6085 -- Storage_Size --
6086 ------------------
6087
6088 -- Storage_Size attribute definition clause
6089
6090 when Attribute_Storage_Size => Storage_Size : declare
6091 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 6092
6093 begin
6094 if Is_Task_Type (U_Ent) then
44e4341e 6095
39a0c1d3 6096 -- Check obsolescent (but never obsolescent if from aspect)
ceec4f7c 6097
6098 if not From_Aspect_Specification (N) then
6099 Check_Restriction (No_Obsolescent_Features, N);
6100
6101 if Warn_On_Obsolescent_Feature then
6102 Error_Msg_N
f74a102b 6103 ("?j?storage size clause for task is an obsolescent "
6104 & "feature (RM J.9)", N);
ceec4f7c 6105 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6106 end if;
44e4341e 6107 end if;
6108
6109 FOnly := True;
6110 end if;
6111
6112 if not Is_Access_Type (U_Ent)
6113 and then Ekind (U_Ent) /= E_Task_Type
6114 then
6115 Error_Msg_N ("storage size cannot be given for &", Nam);
6116
6117 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6118 Error_Msg_N
6119 ("storage size cannot be given for a derived access type",
6120 Nam);
6121
ae888dbd 6122 elsif Duplicate_Clause then
6123 null;
44e4341e 6124
6125 else
6126 Analyze_And_Resolve (Expr, Any_Integer);
6127
6128 if Is_Access_Type (U_Ent) then
6653b695 6129
6130 -- Check for Storage_Pool previously given
6131
6132 declare
6133 SP : constant Node_Id :=
6134 Get_Attribute_Definition_Clause
6135 (U_Ent, Attribute_Storage_Pool);
6136
6137 begin
6138 if Present (SP) then
6139 Check_Pool_Size_Clash (U_Ent, SP, N);
6140 end if;
6141 end;
6142
6143 -- Special case of for x'Storage_Size use 0
44e4341e 6144
5941a4e9 6145 if Is_OK_Static_Expression (Expr)
44e4341e 6146 and then Expr_Value (Expr) = 0
6147 then
6148 Set_No_Pool_Assigned (Btype);
6149 end if;
44e4341e 6150 end if;
6151
6152 Set_Has_Storage_Size_Clause (Btype);
6153 end if;
6154 end Storage_Size;
6155
7189d17f 6156 -----------------
6157 -- Stream_Size --
6158 -----------------
6159
6160 when Attribute_Stream_Size => Stream_Size : declare
6161 Size : constant Uint := Static_Integer (Expr);
6162
6163 begin
15ebb600 6164 if Ada_Version <= Ada_95 then
6165 Check_Restriction (No_Implementation_Attributes, N);
6166 end if;
6167
ae888dbd 6168 if Duplicate_Clause then
6169 null;
7189d17f 6170
6171 elsif Is_Elementary_Type (U_Ent) then
f74a102b 6172
6173 -- The following errors are suppressed in ASIS mode to allow
f9906591 6174 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 6175 -- the illegal clause.
6176
6177 if ASIS_Mode then
6178 null;
6179
6180 elsif Size /= System_Storage_Unit
6181 and then Size /= System_Storage_Unit * 2
6182 and then Size /= System_Storage_Unit * 4
6183 and then Size /= System_Storage_Unit * 8
7189d17f 6184 then
6185 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6186 Error_Msg_N
f74a102b 6187 ("stream size for elementary type must be a power of 2 "
6188 & "and at least ^", N);
7189d17f 6189
6190 elsif RM_Size (U_Ent) > Size then
6191 Error_Msg_Uint_1 := RM_Size (U_Ent);
6192 Error_Msg_N
f74a102b 6193 ("stream size for elementary type must be a power of 2 "
6194 & "and at least ^", N);
7189d17f 6195 end if;
6196
6197 Set_Has_Stream_Size_Clause (U_Ent);
6198
6199 else
6200 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6201 end if;
6202 end Stream_Size;
6203
d6f39728 6204 ----------------
6205 -- Value_Size --
6206 ----------------
6207
6208 -- Value_Size attribute definition clause
6209
6210 when Attribute_Value_Size => Value_Size : declare
6211 Size : constant Uint := Static_Integer (Expr);
6212 Biased : Boolean;
6213
6214 begin
6215 if not Is_Type (U_Ent) then
6216 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6217
ae888dbd 6218 elsif Duplicate_Clause then
6219 null;
d6f39728 6220
59ac57b5 6221 elsif Is_Array_Type (U_Ent)
6222 and then not Is_Constrained (U_Ent)
6223 then
6224 Error_Msg_N
6225 ("Value_Size cannot be given for unconstrained array", Nam);
6226
d6f39728 6227 else
6228 if Is_Elementary_Type (U_Ent) then
6229 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 6230 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 6231 end if;
6232
6233 Set_RM_Size (U_Ent, Size);
6234 end if;
6235 end Value_Size;
6236
81b424ac 6237 -----------------------
6238 -- Variable_Indexing --
6239 -----------------------
6240
6241 when Attribute_Variable_Indexing =>
6242 Check_Indexing_Functions;
6243
d6f39728 6244 -----------
6245 -- Write --
6246 -----------
6247
9f373bb8 6248 when Attribute_Write =>
6249 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6250 Set_Has_Specified_Stream_Write (Ent);
d6f39728 6251
6252 -- All other attributes cannot be set
6253
6254 when others =>
6255 Error_Msg_N
6256 ("attribute& cannot be set with definition clause", N);
d6f39728 6257 end case;
6258
d64221a7 6259 -- The test for the type being frozen must be performed after any
6260 -- expression the clause has been analyzed since the expression itself
6261 -- might cause freezing that makes the clause illegal.
d6f39728 6262
6263 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6264 return;
6265 end if;
6266 end Analyze_Attribute_Definition_Clause;
6267
6268 ----------------------------
6269 -- Analyze_Code_Statement --
6270 ----------------------------
6271
6272 procedure Analyze_Code_Statement (N : Node_Id) is
6273 HSS : constant Node_Id := Parent (N);
6274 SBody : constant Node_Id := Parent (HSS);
6275 Subp : constant Entity_Id := Current_Scope;
6276 Stmt : Node_Id;
6277 Decl : Node_Id;
6278 StmtO : Node_Id;
6279 DeclO : Node_Id;
6280
6281 begin
1d3f0c6b 6282 -- Accept foreign code statements for CodePeer. The analysis is skipped
6283 -- to avoid rejecting unrecognized constructs.
6284
6285 if CodePeer_Mode then
6286 Set_Analyzed (N);
6287 return;
6288 end if;
6289
d6f39728 6290 -- Analyze and check we get right type, note that this implements the
1d3f0c6b 6291 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6292 -- the only way that Asm_Insn could possibly be visible.
d6f39728 6293
6294 Analyze_And_Resolve (Expression (N));
6295
6296 if Etype (Expression (N)) = Any_Type then
6297 return;
6298 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6299 Error_Msg_N ("incorrect type for code statement", N);
6300 return;
6301 end if;
6302
44e4341e 6303 Check_Code_Statement (N);
6304
1d3f0c6b 6305 -- Make sure we appear in the handled statement sequence of a subprogram
6306 -- (RM 13.8(3)).
d6f39728 6307
6308 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6309 or else Nkind (SBody) /= N_Subprogram_Body
6310 then
6311 Error_Msg_N
6312 ("code statement can only appear in body of subprogram", N);
6313 return;
6314 end if;
6315
6316 -- Do remaining checks (RM 13.8(3)) if not already done
6317
6318 if not Is_Machine_Code_Subprogram (Subp) then
6319 Set_Is_Machine_Code_Subprogram (Subp);
6320
6321 -- No exception handlers allowed
6322
6323 if Present (Exception_Handlers (HSS)) then
6324 Error_Msg_N
6325 ("exception handlers not permitted in machine code subprogram",
6326 First (Exception_Handlers (HSS)));
6327 end if;
6328
6329 -- No declarations other than use clauses and pragmas (we allow
6330 -- certain internally generated declarations as well).
6331
6332 Decl := First (Declarations (SBody));
6333 while Present (Decl) loop
6334 DeclO := Original_Node (Decl);
6335 if Comes_From_Source (DeclO)
fdd294d1 6336 and not Nkind_In (DeclO, N_Pragma,
6337 N_Use_Package_Clause,
6338 N_Use_Type_Clause,
6339 N_Implicit_Label_Declaration)
d6f39728 6340 then
6341 Error_Msg_N
6342 ("this declaration not allowed in machine code subprogram",
6343 DeclO);
6344 end if;
6345
6346 Next (Decl);
6347 end loop;
6348
6349 -- No statements other than code statements, pragmas, and labels.
6350 -- Again we allow certain internally generated statements.
3ab42ff7 6351
c3107527 6352 -- In Ada 2012, qualified expressions are names, and the code
6353 -- statement is initially parsed as a procedure call.
d6f39728 6354
6355 Stmt := First (Statements (HSS));
6356 while Present (Stmt) loop
6357 StmtO := Original_Node (Stmt);
c3107527 6358
1d3f0c6b 6359 -- A procedure call transformed into a code statement is OK
59f2fcab 6360
c3107527 6361 if Ada_Version >= Ada_2012
6362 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 6363 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 6364 then
6365 null;
6366
6367 elsif Comes_From_Source (StmtO)
fdd294d1 6368 and then not Nkind_In (StmtO, N_Pragma,
6369 N_Label,
6370 N_Code_Statement)
d6f39728 6371 then
6372 Error_Msg_N
6373 ("this statement is not allowed in machine code subprogram",
6374 StmtO);
6375 end if;
6376
6377 Next (Stmt);
6378 end loop;
6379 end if;
d6f39728 6380 end Analyze_Code_Statement;
6381
6382 -----------------------------------------------
6383 -- Analyze_Enumeration_Representation_Clause --
6384 -----------------------------------------------
6385
6386 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
21647c2d 6387 Ident : constant Node_Id := Identifier (N);
6388 Aggr : constant Node_Id := Array_Aggregate (N);
d6f39728 6389 Enumtype : Entity_Id;
6390 Elit : Entity_Id;
6391 Expr : Node_Id;
6392 Assoc : Node_Id;
6393 Choice : Node_Id;
6394 Val : Uint;
b3190af0 6395
6396 Err : Boolean := False;
098d3082 6397 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 6398
e30c7d84 6399 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6400 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6401 -- Allowed range of universal integer (= allowed range of enum lit vals)
6402
d6f39728 6403 Min : Uint;
6404 Max : Uint;
e30c7d84 6405 -- Minimum and maximum values of entries
6406
6407 Max_Node : Node_Id;
6408 -- Pointer to node for literal providing max value
d6f39728 6409
6410 begin
ca301e17 6411 if Ignore_Rep_Clauses then
2ff55065 6412 Kill_Rep_Clause (N);
fbc67f84 6413 return;
6414 end if;
6415
175a6969 6416 -- Ignore enumeration rep clauses by default in CodePeer mode,
6417 -- unless -gnatd.I is specified, as a work around for potential false
6418 -- positive messages.
6419
6420 if CodePeer_Mode and not Debug_Flag_Dot_II then
6421 return;
6422 end if;
6423
d6f39728 6424 -- First some basic error checks
6425
6426 Find_Type (Ident);
6427 Enumtype := Entity (Ident);
6428
6429 if Enumtype = Any_Type
6430 or else Rep_Item_Too_Early (Enumtype, N)
6431 then
6432 return;
6433 else
6434 Enumtype := Underlying_Type (Enumtype);
6435 end if;
6436
6437 if not Is_Enumeration_Type (Enumtype) then
6438 Error_Msg_NE
6439 ("enumeration type required, found}",
6440 Ident, First_Subtype (Enumtype));
6441 return;
6442 end if;
6443
9dfe12ae 6444 -- Ignore rep clause on generic actual type. This will already have
6445 -- been flagged on the template as an error, and this is the safest
6446 -- way to ensure we don't get a junk cascaded message in the instance.
6447
6448 if Is_Generic_Actual_Type (Enumtype) then
6449 return;
6450
6451 -- Type must be in current scope
6452
6453 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 6454 Error_Msg_N ("type must be declared in this scope", Ident);
6455 return;
6456
9dfe12ae 6457 -- Type must be a first subtype
6458
d6f39728 6459 elsif not Is_First_Subtype (Enumtype) then
6460 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6461 return;
6462
9dfe12ae 6463 -- Ignore duplicate rep clause
6464
d6f39728 6465 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6466 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6467 return;
6468
7189d17f 6469 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 6470
177675a7 6471 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 6472 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 6473 return;
6474
d9125581 6475 -- Check that the expression is a proper aggregate (no parentheses)
6476
6477 elsif Paren_Count (Aggr) /= 0 then
6478 Error_Msg
6479 ("extra parentheses surrounding aggregate not allowed",
6480 First_Sloc (Aggr));
6481 return;
6482
9dfe12ae 6483 -- All tests passed, so set rep clause in place
d6f39728 6484
6485 else
6486 Set_Has_Enumeration_Rep_Clause (Enumtype);
6487 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6488 end if;
6489
6490 -- Now we process the aggregate. Note that we don't use the normal
6491 -- aggregate code for this purpose, because we don't want any of the
6492 -- normal expansion activities, and a number of special semantic
6493 -- rules apply (including the component type being any integer type)
6494
d6f39728 6495 Elit := First_Literal (Enumtype);
6496
6497 -- First the positional entries if any
6498
6499 if Present (Expressions (Aggr)) then
6500 Expr := First (Expressions (Aggr));
6501 while Present (Expr) loop
6502 if No (Elit) then
6503 Error_Msg_N ("too many entries in aggregate", Expr);
6504 return;
6505 end if;
6506
6507 Val := Static_Integer (Expr);
6508
d9125581 6509 -- Err signals that we found some incorrect entries processing
6510 -- the list. The final checks for completeness and ordering are
6511 -- skipped in this case.
6512
d6f39728 6513 if Val = No_Uint then
6514 Err := True;
f02a9a9a 6515
d6f39728 6516 elsif Val < Lo or else Hi < Val then
6517 Error_Msg_N ("value outside permitted range", Expr);
6518 Err := True;
6519 end if;
6520
6521 Set_Enumeration_Rep (Elit, Val);
6522 Set_Enumeration_Rep_Expr (Elit, Expr);
6523 Next (Expr);
6524 Next (Elit);
6525 end loop;
6526 end if;
6527
6528 -- Now process the named entries if present
6529
6530 if Present (Component_Associations (Aggr)) then
6531 Assoc := First (Component_Associations (Aggr));
6532 while Present (Assoc) loop
6533 Choice := First (Choices (Assoc));
6534
6535 if Present (Next (Choice)) then
6536 Error_Msg_N
6537 ("multiple choice not allowed here", Next (Choice));
6538 Err := True;
6539 end if;
6540
6541 if Nkind (Choice) = N_Others_Choice then
6542 Error_Msg_N ("others choice not allowed here", Choice);
6543 Err := True;
6544
6545 elsif Nkind (Choice) = N_Range then
b3190af0 6546
d6f39728 6547 -- ??? should allow zero/one element range here
b3190af0 6548
d6f39728 6549 Error_Msg_N ("range not allowed here", Choice);
6550 Err := True;
6551
6552 else
6553 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 6554
098d3082 6555 if Error_Posted (Choice) then
d6f39728 6556 Err := True;
098d3082 6557 end if;
d6f39728 6558
098d3082 6559 if not Err then
6560 if Is_Entity_Name (Choice)
6561 and then Is_Type (Entity (Choice))
6562 then
6563 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 6564 Err := True;
b3190af0 6565
098d3082 6566 -- ??? should allow static subtype with zero/one entry
d6f39728 6567
098d3082 6568 elsif Etype (Choice) = Base_Type (Enumtype) then
cda40848 6569 if not Is_OK_Static_Expression (Choice) then
098d3082 6570 Flag_Non_Static_Expr
6571 ("non-static expression used for choice!", Choice);
d6f39728 6572 Err := True;
d6f39728 6573
098d3082 6574 else
6575 Elit := Expr_Value_E (Choice);
6576
6577 if Present (Enumeration_Rep_Expr (Elit)) then
6578 Error_Msg_Sloc :=
6579 Sloc (Enumeration_Rep_Expr (Elit));
6580 Error_Msg_NE
6581 ("representation for& previously given#",
6582 Choice, Elit);
6583 Err := True;
6584 end if;
d6f39728 6585
098d3082 6586 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 6587
098d3082 6588 Expr := Expression (Assoc);
6589 Val := Static_Integer (Expr);
d6f39728 6590
098d3082 6591 if Val = No_Uint then
6592 Err := True;
6593
6594 elsif Val < Lo or else Hi < Val then
6595 Error_Msg_N ("value outside permitted range", Expr);
6596 Err := True;
6597 end if;
d6f39728 6598
098d3082 6599 Set_Enumeration_Rep (Elit, Val);
6600 end if;
d6f39728 6601 end if;
6602 end if;
6603 end if;
6604
6605 Next (Assoc);
6606 end loop;
6607 end if;
6608
6609 -- Aggregate is fully processed. Now we check that a full set of
6610 -- representations was given, and that they are in range and in order.
6611 -- These checks are only done if no other errors occurred.
6612
6613 if not Err then
6614 Min := No_Uint;
6615 Max := No_Uint;
6616
6617 Elit := First_Literal (Enumtype);
6618 while Present (Elit) loop
6619 if No (Enumeration_Rep_Expr (Elit)) then
6620 Error_Msg_NE ("missing representation for&!", N, Elit);
6621
6622 else
6623 Val := Enumeration_Rep (Elit);
6624
6625 if Min = No_Uint then
6626 Min := Val;
6627 end if;
6628
6629 if Val /= No_Uint then
6630 if Max /= No_Uint and then Val <= Max then
6631 Error_Msg_NE
6632 ("enumeration value for& not ordered!",
e30c7d84 6633 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 6634 end if;
6635
e30c7d84 6636 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 6637 Max := Val;
6638 end if;
6639
e30c7d84 6640 -- If there is at least one literal whose representation is not
6641 -- equal to the Pos value, then note that this enumeration type
6642 -- has a non-standard representation.
d6f39728 6643
6644 if Val /= Enumeration_Pos (Elit) then
6645 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6646 end if;
6647 end if;
6648
6649 Next (Elit);
6650 end loop;
6651
6652 -- Now set proper size information
6653
6654 declare
6655 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6656
6657 begin
6658 if Has_Size_Clause (Enumtype) then
e30c7d84 6659
6660 -- All OK, if size is OK now
6661
6662 if RM_Size (Enumtype) >= Minsize then
d6f39728 6663 null;
6664
6665 else
e30c7d84 6666 -- Try if we can get by with biasing
6667
d6f39728 6668 Minsize :=
6669 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6670
e30c7d84 6671 -- Error message if even biasing does not work
6672
6673 if RM_Size (Enumtype) < Minsize then
6674 Error_Msg_Uint_1 := RM_Size (Enumtype);
6675 Error_Msg_Uint_2 := Max;
6676 Error_Msg_N
6677 ("previously given size (^) is too small "
6678 & "for this value (^)", Max_Node);
6679
6680 -- If biasing worked, indicate that we now have biased rep
d6f39728 6681
6682 else
b77e4501 6683 Set_Biased
6684 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 6685 end if;
6686 end if;
6687
6688 else
6689 Set_RM_Size (Enumtype, Minsize);
6690 Set_Enum_Esize (Enumtype);
6691 end if;
6692
6693 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6694 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6695 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6696 end;
6697 end if;
6698
39a0c1d3 6699 -- We repeat the too late test in case it froze itself
d6f39728 6700
6701 if Rep_Item_Too_Late (Enumtype, N) then
6702 null;
6703 end if;
d6f39728 6704 end Analyze_Enumeration_Representation_Clause;
6705
6706 ----------------------------
6707 -- Analyze_Free_Statement --
6708 ----------------------------
6709
6710 procedure Analyze_Free_Statement (N : Node_Id) is
6711 begin
6712 Analyze (Expression (N));
6713 end Analyze_Free_Statement;
6714
40ca69b9 6715 ---------------------------
6716 -- Analyze_Freeze_Entity --
6717 ---------------------------
6718
6719 procedure Analyze_Freeze_Entity (N : Node_Id) is
40ca69b9 6720 begin
d9f6a4ee 6721 Freeze_Entity_Checks (N);
6722 end Analyze_Freeze_Entity;
98f7db28 6723
d9f6a4ee 6724 -----------------------------------
6725 -- Analyze_Freeze_Generic_Entity --
6726 -----------------------------------
98f7db28 6727
d9f6a4ee 6728 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
61989dbb 6729 E : constant Entity_Id := Entity (N);
6730
d9f6a4ee 6731 begin
61989dbb 6732 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6733 Analyze_Aspects_At_Freeze_Point (E);
6734 end if;
6735
d9f6a4ee 6736 Freeze_Entity_Checks (N);
6737 end Analyze_Freeze_Generic_Entity;
40ca69b9 6738
d9f6a4ee 6739 ------------------------------------------
6740 -- Analyze_Record_Representation_Clause --
6741 ------------------------------------------
c8da6114 6742
d9f6a4ee 6743 -- Note: we check as much as we can here, but we can't do any checks
6744 -- based on the position values (e.g. overlap checks) until freeze time
6745 -- because especially in Ada 2005 (machine scalar mode), the processing
6746 -- for non-standard bit order can substantially change the positions.
6747 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6748 -- for the remainder of this processing.
d00681a7 6749
d9f6a4ee 6750 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6751 Ident : constant Node_Id := Identifier (N);
6752 Biased : Boolean;
6753 CC : Node_Id;
6754 Comp : Entity_Id;
6755 Fbit : Uint;
6756 Hbit : Uint := Uint_0;
6757 Lbit : Uint;
6758 Ocomp : Entity_Id;
6759 Posit : Uint;
6760 Rectype : Entity_Id;
6761 Recdef : Node_Id;
d00681a7 6762
d9f6a4ee 6763 function Is_Inherited (Comp : Entity_Id) return Boolean;
6764 -- True if Comp is an inherited component in a record extension
d00681a7 6765
d9f6a4ee 6766 ------------------
6767 -- Is_Inherited --
6768 ------------------
d00681a7 6769
d9f6a4ee 6770 function Is_Inherited (Comp : Entity_Id) return Boolean is
6771 Comp_Base : Entity_Id;
d00681a7 6772
d9f6a4ee 6773 begin
6774 if Ekind (Rectype) = E_Record_Subtype then
6775 Comp_Base := Original_Record_Component (Comp);
6776 else
6777 Comp_Base := Comp;
d00681a7 6778 end if;
6779
d9f6a4ee 6780 return Comp_Base /= Original_Record_Component (Comp_Base);
6781 end Is_Inherited;
d00681a7 6782
d9f6a4ee 6783 -- Local variables
d00681a7 6784
d9f6a4ee 6785 Is_Record_Extension : Boolean;
6786 -- True if Rectype is a record extension
d00681a7 6787
d9f6a4ee 6788 CR_Pragma : Node_Id := Empty;
6789 -- Points to N_Pragma node if Complete_Representation pragma present
d00681a7 6790
d9f6a4ee 6791 -- Start of processing for Analyze_Record_Representation_Clause
d00681a7 6792
d9f6a4ee 6793 begin
6794 if Ignore_Rep_Clauses then
2ff55065 6795 Kill_Rep_Clause (N);
d9f6a4ee 6796 return;
d00681a7 6797 end if;
98f7db28 6798
d9f6a4ee 6799 Find_Type (Ident);
6800 Rectype := Entity (Ident);
85377c9b 6801
d9f6a4ee 6802 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6803 return;
6804 else
6805 Rectype := Underlying_Type (Rectype);
6806 end if;
85377c9b 6807
d9f6a4ee 6808 -- First some basic error checks
85377c9b 6809
d9f6a4ee 6810 if not Is_Record_Type (Rectype) then
6811 Error_Msg_NE
6812 ("record type required, found}", Ident, First_Subtype (Rectype));
6813 return;
85377c9b 6814
d9f6a4ee 6815 elsif Scope (Rectype) /= Current_Scope then
6816 Error_Msg_N ("type must be declared in this scope", N);
6817 return;
85377c9b 6818
d9f6a4ee 6819 elsif not Is_First_Subtype (Rectype) then
6820 Error_Msg_N ("cannot give record rep clause for subtype", N);
6821 return;
9dc88aea 6822
d9f6a4ee 6823 elsif Has_Record_Rep_Clause (Rectype) then
6824 Error_Msg_N ("duplicate record rep clause ignored", N);
6825 return;
9dc88aea 6826
d9f6a4ee 6827 elsif Rep_Item_Too_Late (Rectype, N) then
6828 return;
9dc88aea 6829 end if;
fb7f2fc4 6830
2ced3742 6831 -- We know we have a first subtype, now possibly go to the anonymous
d9f6a4ee 6832 -- base type to determine whether Rectype is a record extension.
89f1e35c 6833
d9f6a4ee 6834 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6835 Is_Record_Extension :=
6836 Nkind (Recdef) = N_Derived_Type_Definition
6837 and then Present (Record_Extension_Part (Recdef));
89f1e35c 6838
d9f6a4ee 6839 if Present (Mod_Clause (N)) then
fb7f2fc4 6840 declare
d9f6a4ee 6841 Loc : constant Source_Ptr := Sloc (N);
6842 M : constant Node_Id := Mod_Clause (N);
6843 P : constant List_Id := Pragmas_Before (M);
6844 AtM_Nod : Node_Id;
6845
6846 Mod_Val : Uint;
6847 pragma Warnings (Off, Mod_Val);
fb7f2fc4 6848
6849 begin
d9f6a4ee 6850 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
fb7f2fc4 6851
d9f6a4ee 6852 if Warn_On_Obsolescent_Feature then
6853 Error_Msg_N
6854 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6855 Error_Msg_N
6856 ("\?j?use alignment attribute definition clause instead", N);
6857 end if;
fb7f2fc4 6858
d9f6a4ee 6859 if Present (P) then
6860 Analyze_List (P);
6861 end if;
89f1e35c 6862
d9f6a4ee 6863 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6864 -- the Mod clause into an alignment clause anyway, so that the
3ff5e35d 6865 -- back end can compute and back-annotate properly the size and
d9f6a4ee 6866 -- alignment of types that may include this record.
be9124d0 6867
d9f6a4ee 6868 -- This seems dubious, this destroys the source tree in a manner
6869 -- not detectable by ASIS ???
be9124d0 6870
d9f6a4ee 6871 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6872 AtM_Nod :=
6873 Make_Attribute_Definition_Clause (Loc,
83c6c069 6874 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
d9f6a4ee 6875 Chars => Name_Alignment,
6876 Expression => Relocate_Node (Expression (M)));
be9124d0 6877
d9f6a4ee 6878 Set_From_At_Mod (AtM_Nod);
6879 Insert_After (N, AtM_Nod);
6880 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6881 Set_Mod_Clause (N, Empty);
be9124d0 6882
d9f6a4ee 6883 else
6884 -- Get the alignment value to perform error checking
be9124d0 6885
d9f6a4ee 6886 Mod_Val := Get_Alignment_Value (Expression (M));
6887 end if;
6888 end;
6889 end if;
be9124d0 6890
d9f6a4ee 6891 -- For untagged types, clear any existing component clauses for the
6892 -- type. If the type is derived, this is what allows us to override
6893 -- a rep clause for the parent. For type extensions, the representation
6894 -- of the inherited components is inherited, so we want to keep previous
6895 -- component clauses for completeness.
be9124d0 6896
d9f6a4ee 6897 if not Is_Tagged_Type (Rectype) then
6898 Comp := First_Component_Or_Discriminant (Rectype);
6899 while Present (Comp) loop
6900 Set_Component_Clause (Comp, Empty);
6901 Next_Component_Or_Discriminant (Comp);
6902 end loop;
6903 end if;
be9124d0 6904
d9f6a4ee 6905 -- All done if no component clauses
be9124d0 6906
d9f6a4ee 6907 CC := First (Component_Clauses (N));
be9124d0 6908
d9f6a4ee 6909 if No (CC) then
6910 return;
6911 end if;
be9124d0 6912
d9f6a4ee 6913 -- A representation like this applies to the base type
be9124d0 6914
d9f6a4ee 6915 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6916 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6917 Set_Has_Specified_Layout (Base_Type (Rectype));
be9124d0 6918
d9f6a4ee 6919 -- Process the component clauses
be9124d0 6920
d9f6a4ee 6921 while Present (CC) loop
be9124d0 6922
d9f6a4ee 6923 -- Pragma
be9124d0 6924
d9f6a4ee 6925 if Nkind (CC) = N_Pragma then
6926 Analyze (CC);
be9124d0 6927
d9f6a4ee 6928 -- The only pragma of interest is Complete_Representation
be9124d0 6929
ddccc924 6930 if Pragma_Name (CC) = Name_Complete_Representation then
d9f6a4ee 6931 CR_Pragma := CC;
6932 end if;
be9124d0 6933
d9f6a4ee 6934 -- Processing for real component clause
be9124d0 6935
d9f6a4ee 6936 else
6937 Posit := Static_Integer (Position (CC));
6938 Fbit := Static_Integer (First_Bit (CC));
6939 Lbit := Static_Integer (Last_Bit (CC));
be9124d0 6940
d9f6a4ee 6941 if Posit /= No_Uint
6942 and then Fbit /= No_Uint
6943 and then Lbit /= No_Uint
6944 then
6945 if Posit < 0 then
f74a102b 6946 Error_Msg_N ("position cannot be negative", Position (CC));
be9124d0 6947
d9f6a4ee 6948 elsif Fbit < 0 then
f74a102b 6949 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
be9124d0 6950
d9f6a4ee 6951 -- The Last_Bit specified in a component clause must not be
6952 -- less than the First_Bit minus one (RM-13.5.1(10)).
be9124d0 6953
d9f6a4ee 6954 elsif Lbit < Fbit - 1 then
6955 Error_Msg_N
6956 ("last bit cannot be less than first bit minus one",
6957 Last_Bit (CC));
be9124d0 6958
d9f6a4ee 6959 -- Values look OK, so find the corresponding record component
6960 -- Even though the syntax allows an attribute reference for
6961 -- implementation-defined components, GNAT does not allow the
6962 -- tag to get an explicit position.
be9124d0 6963
d9f6a4ee 6964 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6965 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6966 Error_Msg_N ("position of tag cannot be specified", CC);
6967 else
6968 Error_Msg_N ("illegal component name", CC);
6969 end if;
be9124d0 6970
d9f6a4ee 6971 else
6972 Comp := First_Entity (Rectype);
6973 while Present (Comp) loop
6974 exit when Chars (Comp) = Chars (Component_Name (CC));
6975 Next_Entity (Comp);
6976 end loop;
be9124d0 6977
d9f6a4ee 6978 if No (Comp) then
be9124d0 6979
d9f6a4ee 6980 -- Maybe component of base type that is absent from
6981 -- statically constrained first subtype.
be9124d0 6982
d9f6a4ee 6983 Comp := First_Entity (Base_Type (Rectype));
6984 while Present (Comp) loop
6985 exit when Chars (Comp) = Chars (Component_Name (CC));
6986 Next_Entity (Comp);
6987 end loop;
6988 end if;
be9124d0 6989
d9f6a4ee 6990 if No (Comp) then
6991 Error_Msg_N
6992 ("component clause is for non-existent field", CC);
be9124d0 6993
d9f6a4ee 6994 -- Ada 2012 (AI05-0026): Any name that denotes a
6995 -- discriminant of an object of an unchecked union type
6996 -- shall not occur within a record_representation_clause.
be9124d0 6997
d9f6a4ee 6998 -- The general restriction of using record rep clauses on
6999 -- Unchecked_Union types has now been lifted. Since it is
7000 -- possible to introduce a record rep clause which mentions
7001 -- the discriminant of an Unchecked_Union in non-Ada 2012
7002 -- code, this check is applied to all versions of the
7003 -- language.
be9124d0 7004
d9f6a4ee 7005 elsif Ekind (Comp) = E_Discriminant
7006 and then Is_Unchecked_Union (Rectype)
7007 then
7008 Error_Msg_N
7009 ("cannot reference discriminant of unchecked union",
7010 Component_Name (CC));
be9124d0 7011
d9f6a4ee 7012 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7013 Error_Msg_NE
7014 ("component clause not allowed for inherited "
7015 & "component&", CC, Comp);
40ca69b9 7016
d9f6a4ee 7017 elsif Present (Component_Clause (Comp)) then
462a079f 7018
d9f6a4ee 7019 -- Diagnose duplicate rep clause, or check consistency
7020 -- if this is an inherited component. In a double fault,
7021 -- there may be a duplicate inconsistent clause for an
7022 -- inherited component.
462a079f 7023
d9f6a4ee 7024 if Scope (Original_Record_Component (Comp)) = Rectype
7025 or else Parent (Component_Clause (Comp)) = N
7026 then
7027 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7028 Error_Msg_N ("component clause previously given#", CC);
3062c401 7029
7030 else
7031 declare
7032 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 7033 begin
7034 if Intval (Position (Rep1)) /=
7035 Intval (Position (CC))
7036 or else Intval (First_Bit (Rep1)) /=
7037 Intval (First_Bit (CC))
7038 or else Intval (Last_Bit (Rep1)) /=
7039 Intval (Last_Bit (CC))
7040 then
b9e61b2a 7041 Error_Msg_N
f74a102b 7042 ("component clause inconsistent with "
7043 & "representation of ancestor", CC);
6a06584c 7044
3062c401 7045 elsif Warn_On_Redundant_Constructs then
b9e61b2a 7046 Error_Msg_N
6a06584c 7047 ("?r?redundant confirming component clause "
7048 & "for component!", CC);
3062c401 7049 end if;
7050 end;
7051 end if;
d6f39728 7052
d2b860b4 7053 -- Normal case where this is the first component clause we
7054 -- have seen for this entity, so set it up properly.
7055
d6f39728 7056 else
83f8f0a6 7057 -- Make reference for field in record rep clause and set
7058 -- appropriate entity field in the field identifier.
7059
7060 Generate_Reference
7061 (Comp, Component_Name (CC), Set_Ref => False);
7062 Set_Entity (Component_Name (CC), Comp);
7063
2866d595 7064 -- Update Fbit and Lbit to the actual bit number
d6f39728 7065
7066 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7067 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7068
d6f39728 7069 if Has_Size_Clause (Rectype)
ada34def 7070 and then RM_Size (Rectype) <= Lbit
d6f39728 7071 then
7072 Error_Msg_N
7073 ("bit number out of range of specified size",
7074 Last_Bit (CC));
7075 else
7076 Set_Component_Clause (Comp, CC);
7077 Set_Component_Bit_Offset (Comp, Fbit);
7078 Set_Esize (Comp, 1 + (Lbit - Fbit));
7079 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7080 Set_Normalized_Position (Comp, Fbit / SSU);
7081
a0fc8c5b 7082 if Warn_On_Overridden_Size
7083 and then Has_Size_Clause (Etype (Comp))
7084 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7085 then
7086 Error_Msg_NE
1e3532e7 7087 ("?S?component size overrides size clause for&",
a0fc8c5b 7088 Component_Name (CC), Etype (Comp));
7089 end if;
7090
ea61a7ea 7091 -- This information is also set in the corresponding
7092 -- component of the base type, found by accessing the
7093 -- Original_Record_Component link if it is present.
d6f39728 7094
7095 Ocomp := Original_Record_Component (Comp);
7096
7097 if Hbit < Lbit then
7098 Hbit := Lbit;
7099 end if;
7100
7101 Check_Size
7102 (Component_Name (CC),
7103 Etype (Comp),
7104 Esize (Comp),
7105 Biased);
7106
b77e4501 7107 Set_Biased
7108 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 7109
d6f39728 7110 if Present (Ocomp) then
7111 Set_Component_Clause (Ocomp, CC);
7112 Set_Component_Bit_Offset (Ocomp, Fbit);
7113 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7114 Set_Normalized_Position (Ocomp, Fbit / SSU);
7115 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7116
7117 Set_Normalized_Position_Max
7118 (Ocomp, Normalized_Position (Ocomp));
7119
b77e4501 7120 -- Note: we don't use Set_Biased here, because we
7121 -- already gave a warning above if needed, and we
7122 -- would get a duplicate for the same name here.
7123
d6f39728 7124 Set_Has_Biased_Representation
7125 (Ocomp, Has_Biased_Representation (Comp));
7126 end if;
7127
7128 if Esize (Comp) < 0 then
7129 Error_Msg_N ("component size is negative", CC);
7130 end if;
7131 end if;
7132 end if;
7133 end if;
7134 end if;
7135 end if;
7136
7137 Next (CC);
7138 end loop;
7139
67278d60 7140 -- Check missing components if Complete_Representation pragma appeared
d6f39728 7141
67278d60 7142 if Present (CR_Pragma) then
7143 Comp := First_Component_Or_Discriminant (Rectype);
7144 while Present (Comp) loop
7145 if No (Component_Clause (Comp)) then
7146 Error_Msg_NE
7147 ("missing component clause for &", CR_Pragma, Comp);
7148 end if;
d6f39728 7149
67278d60 7150 Next_Component_Or_Discriminant (Comp);
7151 end loop;
d6f39728 7152
1e3532e7 7153 -- Give missing components warning if required
15ebb600 7154
fdd294d1 7155 elsif Warn_On_Unrepped_Components then
15ebb600 7156 declare
7157 Num_Repped_Components : Nat := 0;
7158 Num_Unrepped_Components : Nat := 0;
7159
7160 begin
7161 -- First count number of repped and unrepped components
7162
7163 Comp := First_Component_Or_Discriminant (Rectype);
7164 while Present (Comp) loop
7165 if Present (Component_Clause (Comp)) then
7166 Num_Repped_Components := Num_Repped_Components + 1;
7167 else
7168 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7169 end if;
7170
7171 Next_Component_Or_Discriminant (Comp);
7172 end loop;
7173
7174 -- We are only interested in the case where there is at least one
7175 -- unrepped component, and at least half the components have rep
7176 -- clauses. We figure that if less than half have them, then the
87f9eef5 7177 -- partial rep clause is really intentional. If the component
7178 -- type has no underlying type set at this point (as for a generic
7179 -- formal type), we don't know enough to give a warning on the
7180 -- component.
15ebb600 7181
7182 if Num_Unrepped_Components > 0
7183 and then Num_Unrepped_Components < Num_Repped_Components
7184 then
7185 Comp := First_Component_Or_Discriminant (Rectype);
7186 while Present (Comp) loop
83f8f0a6 7187 if No (Component_Clause (Comp))
3062c401 7188 and then Comes_From_Source (Comp)
87f9eef5 7189 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 7190 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 7191 or else Size_Known_At_Compile_Time
7192 (Underlying_Type (Etype (Comp))))
fdd294d1 7193 and then not Has_Warnings_Off (Rectype)
2be1f7d7 7194
7195 -- Ignore discriminant in unchecked union, since it is
7196 -- not there, and cannot have a component clause.
7197
7198 and then (not Is_Unchecked_Union (Rectype)
7199 or else Ekind (Comp) /= E_Discriminant)
83f8f0a6 7200 then
15ebb600 7201 Error_Msg_Sloc := Sloc (Comp);
7202 Error_Msg_NE
1e3532e7 7203 ("?C?no component clause given for & declared #",
15ebb600 7204 N, Comp);
7205 end if;
7206
7207 Next_Component_Or_Discriminant (Comp);
7208 end loop;
7209 end if;
7210 end;
d6f39728 7211 end if;
d6f39728 7212 end Analyze_Record_Representation_Clause;
7213
eb66e842 7214 -------------------------------------
7215 -- Build_Discrete_Static_Predicate --
7216 -------------------------------------
9ea61fdd 7217
eb66e842 7218 procedure Build_Discrete_Static_Predicate
7219 (Typ : Entity_Id;
7220 Expr : Node_Id;
7221 Nam : Name_Id)
9ea61fdd 7222 is
eb66e842 7223 Loc : constant Source_Ptr := Sloc (Expr);
9ea61fdd 7224
eb66e842 7225 Non_Static : exception;
7226 -- Raised if something non-static is found
9ea61fdd 7227
eb66e842 7228 Btyp : constant Entity_Id := Base_Type (Typ);
9ea61fdd 7229
eb66e842 7230 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7231 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7232 -- Low bound and high bound value of base type of Typ
9ea61fdd 7233
afc229da 7234 TLo : Uint;
7235 THi : Uint;
7236 -- Bounds for constructing the static predicate. We use the bound of the
7237 -- subtype if it is static, otherwise the corresponding base type bound.
7238 -- Note: a non-static subtype can have a static predicate.
9ea61fdd 7239
eb66e842 7240 type REnt is record
7241 Lo, Hi : Uint;
7242 end record;
7243 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7244 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7245 -- value.
9ea61fdd 7246
eb66e842 7247 type RList is array (Nat range <>) of REnt;
7248 -- A list of ranges. The ranges are sorted in increasing order, and are
7249 -- disjoint (there is a gap of at least one value between each range in
7250 -- the table). A value is in the set of ranges in Rlist if it lies
7251 -- within one of these ranges.
9ea61fdd 7252
eb66e842 7253 False_Range : constant RList :=
7254 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7255 -- An empty set of ranges represents a range list that can never be
7256 -- satisfied, since there are no ranges in which the value could lie,
7257 -- so it does not lie in any of them. False_Range is a canonical value
7258 -- for this empty set, but general processing should test for an Rlist
7259 -- with length zero (see Is_False predicate), since other null ranges
7260 -- may appear which must be treated as False.
5b5df4a9 7261
eb66e842 7262 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7263 -- Range representing True, value must be in the base range
5b5df4a9 7264
eb66e842 7265 function "and" (Left : RList; Right : RList) return RList;
7266 -- And's together two range lists, returning a range list. This is a set
7267 -- intersection operation.
5b5df4a9 7268
eb66e842 7269 function "or" (Left : RList; Right : RList) return RList;
7270 -- Or's together two range lists, returning a range list. This is a set
7271 -- union operation.
87f3d5d3 7272
eb66e842 7273 function "not" (Right : RList) return RList;
7274 -- Returns complement of a given range list, i.e. a range list
7275 -- representing all the values in TLo .. THi that are not in the input
7276 -- operand Right.
ed4adc99 7277
eb66e842 7278 function Build_Val (V : Uint) return Node_Id;
7279 -- Return an analyzed N_Identifier node referencing this value, suitable
5c6a5792 7280 -- for use as an entry in the Static_Discrte_Predicate list. This node
7281 -- is typed with the base type.
5b5df4a9 7282
eb66e842 7283 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7284 -- Return an analyzed N_Range node referencing this range, suitable for
5c6a5792 7285 -- use as an entry in the Static_Discrete_Predicate list. This node is
7286 -- typed with the base type.
5b5df4a9 7287
eb66e842 7288 function Get_RList (Exp : Node_Id) return RList;
7289 -- This is a recursive routine that converts the given expression into a
7290 -- list of ranges, suitable for use in building the static predicate.
5b5df4a9 7291
eb66e842 7292 function Is_False (R : RList) return Boolean;
7293 pragma Inline (Is_False);
7294 -- Returns True if the given range list is empty, and thus represents a
7295 -- False list of ranges that can never be satisfied.
87f3d5d3 7296
eb66e842 7297 function Is_True (R : RList) return Boolean;
7298 -- Returns True if R trivially represents the True predicate by having a
7299 -- single range from BLo to BHi.
5b5df4a9 7300
eb66e842 7301 function Is_Type_Ref (N : Node_Id) return Boolean;
7302 pragma Inline (Is_Type_Ref);
7303 -- Returns if True if N is a reference to the type for the predicate in
7304 -- the expression (i.e. if it is an identifier whose Chars field matches
7de4cba3 7305 -- the Nam given in the call). N must not be parenthesized, if the type
7306 -- name appears in parens, this routine will return False.
5b5df4a9 7307
eb66e842 7308 function Lo_Val (N : Node_Id) return Uint;
5c6a5792 7309 -- Given an entry from a Static_Discrete_Predicate list that is either
7310 -- a static expression or static range, gets either the expression value
7311 -- or the low bound of the range.
5b5df4a9 7312
eb66e842 7313 function Hi_Val (N : Node_Id) return Uint;
5c6a5792 7314 -- Given an entry from a Static_Discrete_Predicate list that is either
7315 -- a static expression or static range, gets either the expression value
7316 -- or the high bound of the range.
5b5df4a9 7317
eb66e842 7318 function Membership_Entry (N : Node_Id) return RList;
7319 -- Given a single membership entry (range, value, or subtype), returns
7320 -- the corresponding range list. Raises Static_Error if not static.
5b5df4a9 7321
eb66e842 7322 function Membership_Entries (N : Node_Id) return RList;
7323 -- Given an element on an alternatives list of a membership operation,
7324 -- returns the range list corresponding to this entry and all following
7325 -- entries (i.e. returns the "or" of this list of values).
b9e61b2a 7326
eb66e842 7327 function Stat_Pred (Typ : Entity_Id) return RList;
7328 -- Given a type, if it has a static predicate, then return the predicate
7329 -- as a range list, otherwise raise Non_Static.
c4968aa2 7330
eb66e842 7331 -----------
7332 -- "and" --
7333 -----------
c4968aa2 7334
eb66e842 7335 function "and" (Left : RList; Right : RList) return RList is
7336 FEnt : REnt;
7337 -- First range of result
c4968aa2 7338
eb66e842 7339 SLeft : Nat := Left'First;
7340 -- Start of rest of left entries
c4968aa2 7341
eb66e842 7342 SRight : Nat := Right'First;
7343 -- Start of rest of right entries
2072eaa9 7344
eb66e842 7345 begin
7346 -- If either range is True, return the other
5b5df4a9 7347
eb66e842 7348 if Is_True (Left) then
7349 return Right;
7350 elsif Is_True (Right) then
7351 return Left;
7352 end if;
87f3d5d3 7353
eb66e842 7354 -- If either range is False, return False
5b5df4a9 7355
eb66e842 7356 if Is_False (Left) or else Is_False (Right) then
7357 return False_Range;
7358 end if;
4c1fd062 7359
eb66e842 7360 -- Loop to remove entries at start that are disjoint, and thus just
7361 -- get discarded from the result entirely.
5b5df4a9 7362
eb66e842 7363 loop
7364 -- If no operands left in either operand, result is false
5b5df4a9 7365
eb66e842 7366 if SLeft > Left'Last or else SRight > Right'Last then
7367 return False_Range;
5b5df4a9 7368
eb66e842 7369 -- Discard first left operand entry if disjoint with right
5b5df4a9 7370
eb66e842 7371 elsif Left (SLeft).Hi < Right (SRight).Lo then
7372 SLeft := SLeft + 1;
5b5df4a9 7373
eb66e842 7374 -- Discard first right operand entry if disjoint with left
5b5df4a9 7375
eb66e842 7376 elsif Right (SRight).Hi < Left (SLeft).Lo then
7377 SRight := SRight + 1;
5b5df4a9 7378
eb66e842 7379 -- Otherwise we have an overlapping entry
5b5df4a9 7380
eb66e842 7381 else
7382 exit;
7383 end if;
7384 end loop;
5b5df4a9 7385
eb66e842 7386 -- Now we have two non-null operands, and first entries overlap. The
7387 -- first entry in the result will be the overlapping part of these
7388 -- two entries.
47a46747 7389
eb66e842 7390 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7391 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
47a46747 7392
eb66e842 7393 -- Now we can remove the entry that ended at a lower value, since its
7394 -- contribution is entirely contained in Fent.
5b5df4a9 7395
eb66e842 7396 if Left (SLeft).Hi <= Right (SRight).Hi then
7397 SLeft := SLeft + 1;
7398 else
7399 SRight := SRight + 1;
7400 end if;
5b5df4a9 7401
eb66e842 7402 -- Compute result by concatenating this first entry with the "and" of
7403 -- the remaining parts of the left and right operands. Note that if
7404 -- either of these is empty, "and" will yield empty, so that we will
7405 -- end up with just Fent, which is what we want in that case.
5b5df4a9 7406
eb66e842 7407 return
7408 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7409 end "and";
fb7f2fc4 7410
eb66e842 7411 -----------
7412 -- "not" --
7413 -----------
fb7f2fc4 7414
eb66e842 7415 function "not" (Right : RList) return RList is
7416 begin
7417 -- Return True if False range
fb7f2fc4 7418
eb66e842 7419 if Is_False (Right) then
7420 return True_Range;
7421 end if;
ed4adc99 7422
eb66e842 7423 -- Return False if True range
fb7f2fc4 7424
eb66e842 7425 if Is_True (Right) then
7426 return False_Range;
7427 end if;
fb7f2fc4 7428
eb66e842 7429 -- Here if not trivial case
87f3d5d3 7430
eb66e842 7431 declare
7432 Result : RList (1 .. Right'Length + 1);
7433 -- May need one more entry for gap at beginning and end
87f3d5d3 7434
eb66e842 7435 Count : Nat := 0;
7436 -- Number of entries stored in Result
4098232e 7437
eb66e842 7438 begin
7439 -- Gap at start
4098232e 7440
eb66e842 7441 if Right (Right'First).Lo > TLo then
7442 Count := Count + 1;
7443 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7444 end if;
ed4adc99 7445
eb66e842 7446 -- Gaps between ranges
ed4adc99 7447
eb66e842 7448 for J in Right'First .. Right'Last - 1 loop
7449 Count := Count + 1;
7450 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7451 end loop;
5b5df4a9 7452
eb66e842 7453 -- Gap at end
5b5df4a9 7454
eb66e842 7455 if Right (Right'Last).Hi < THi then
7456 Count := Count + 1;
7457 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7458 end if;
5b5df4a9 7459
eb66e842 7460 return Result (1 .. Count);
7461 end;
7462 end "not";
5b5df4a9 7463
eb66e842 7464 ----------
7465 -- "or" --
7466 ----------
5b5df4a9 7467
eb66e842 7468 function "or" (Left : RList; Right : RList) return RList is
7469 FEnt : REnt;
7470 -- First range of result
5b5df4a9 7471
eb66e842 7472 SLeft : Nat := Left'First;
7473 -- Start of rest of left entries
5b5df4a9 7474
eb66e842 7475 SRight : Nat := Right'First;
7476 -- Start of rest of right entries
5b5df4a9 7477
eb66e842 7478 begin
7479 -- If either range is True, return True
5b5df4a9 7480
eb66e842 7481 if Is_True (Left) or else Is_True (Right) then
7482 return True_Range;
7483 end if;
5b5df4a9 7484
eb66e842 7485 -- If either range is False (empty), return the other
5b5df4a9 7486
eb66e842 7487 if Is_False (Left) then
7488 return Right;
7489 elsif Is_False (Right) then
7490 return Left;
7491 end if;
5b5df4a9 7492
eb66e842 7493 -- Initialize result first entry from left or right operand depending
7494 -- on which starts with the lower range.
5b5df4a9 7495
eb66e842 7496 if Left (SLeft).Lo < Right (SRight).Lo then
7497 FEnt := Left (SLeft);
7498 SLeft := SLeft + 1;
7499 else
7500 FEnt := Right (SRight);
7501 SRight := SRight + 1;
7502 end if;
5b5df4a9 7503
eb66e842 7504 -- This loop eats ranges from left and right operands that are
7505 -- contiguous with the first range we are gathering.
9ea61fdd 7506
eb66e842 7507 loop
7508 -- Eat first entry in left operand if contiguous or overlapped by
7509 -- gathered first operand of result.
9ea61fdd 7510
eb66e842 7511 if SLeft <= Left'Last
7512 and then Left (SLeft).Lo <= FEnt.Hi + 1
7513 then
7514 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7515 SLeft := SLeft + 1;
9ea61fdd 7516
eb66e842 7517 -- Eat first entry in right operand if contiguous or overlapped by
7518 -- gathered right operand of result.
9ea61fdd 7519
eb66e842 7520 elsif SRight <= Right'Last
7521 and then Right (SRight).Lo <= FEnt.Hi + 1
7522 then
7523 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7524 SRight := SRight + 1;
9ea61fdd 7525
eb66e842 7526 -- All done if no more entries to eat
5b5df4a9 7527
eb66e842 7528 else
7529 exit;
7530 end if;
7531 end loop;
5b5df4a9 7532
eb66e842 7533 -- Obtain result as the first entry we just computed, concatenated
7534 -- to the "or" of the remaining results (if one operand is empty,
7535 -- this will just concatenate with the other
5b5df4a9 7536
eb66e842 7537 return
7538 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7539 end "or";
5b5df4a9 7540
eb66e842 7541 -----------------
7542 -- Build_Range --
7543 -----------------
5b5df4a9 7544
eb66e842 7545 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7546 Result : Node_Id;
5b5df4a9 7547 begin
eb66e842 7548 Result :=
7549 Make_Range (Loc,
7550 Low_Bound => Build_Val (Lo),
7551 High_Bound => Build_Val (Hi));
7552 Set_Etype (Result, Btyp);
7553 Set_Analyzed (Result);
7554 return Result;
7555 end Build_Range;
5b5df4a9 7556
eb66e842 7557 ---------------
7558 -- Build_Val --
7559 ---------------
5b5df4a9 7560
eb66e842 7561 function Build_Val (V : Uint) return Node_Id is
7562 Result : Node_Id;
5b5df4a9 7563
eb66e842 7564 begin
7565 if Is_Enumeration_Type (Typ) then
7566 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7567 else
7568 Result := Make_Integer_Literal (Loc, V);
7569 end if;
5b5df4a9 7570
eb66e842 7571 Set_Etype (Result, Btyp);
7572 Set_Is_Static_Expression (Result);
7573 Set_Analyzed (Result);
7574 return Result;
7575 end Build_Val;
87f3d5d3 7576
eb66e842 7577 ---------------
7578 -- Get_RList --
7579 ---------------
87f3d5d3 7580
eb66e842 7581 function Get_RList (Exp : Node_Id) return RList is
7582 Op : Node_Kind;
7583 Val : Uint;
87f3d5d3 7584
eb66e842 7585 begin
7586 -- Static expression can only be true or false
87f3d5d3 7587
eb66e842 7588 if Is_OK_Static_Expression (Exp) then
7589 if Expr_Value (Exp) = 0 then
7590 return False_Range;
7591 else
7592 return True_Range;
9ea61fdd 7593 end if;
eb66e842 7594 end if;
87f3d5d3 7595
eb66e842 7596 -- Otherwise test node type
192b8dab 7597
eb66e842 7598 Op := Nkind (Exp);
192b8dab 7599
eb66e842 7600 case Op is
5d3fb947 7601
eb66e842 7602 -- And
5d3fb947 7603
eb66e842 7604 when N_Op_And | N_And_Then =>
7605 return Get_RList (Left_Opnd (Exp))
7606 and
7607 Get_RList (Right_Opnd (Exp));
5b5df4a9 7608
eb66e842 7609 -- Or
9dc88aea 7610
eb66e842 7611 when N_Op_Or | N_Or_Else =>
7612 return Get_RList (Left_Opnd (Exp))
7613 or
7614 Get_RList (Right_Opnd (Exp));
7c443ae8 7615
eb66e842 7616 -- Not
9dc88aea 7617
eb66e842 7618 when N_Op_Not =>
7619 return not Get_RList (Right_Opnd (Exp));
9dc88aea 7620
eb66e842 7621 -- Comparisons of type with static value
84c8f0b8 7622
eb66e842 7623 when N_Op_Compare =>
490beba6 7624
eb66e842 7625 -- Type is left operand
9dc88aea 7626
eb66e842 7627 if Is_Type_Ref (Left_Opnd (Exp))
7628 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7629 then
7630 Val := Expr_Value (Right_Opnd (Exp));
84c8f0b8 7631
eb66e842 7632 -- Typ is right operand
84c8f0b8 7633
eb66e842 7634 elsif Is_Type_Ref (Right_Opnd (Exp))
7635 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7636 then
7637 Val := Expr_Value (Left_Opnd (Exp));
84c8f0b8 7638
eb66e842 7639 -- Invert sense of comparison
84c8f0b8 7640
eb66e842 7641 case Op is
7642 when N_Op_Gt => Op := N_Op_Lt;
7643 when N_Op_Lt => Op := N_Op_Gt;
7644 when N_Op_Ge => Op := N_Op_Le;
7645 when N_Op_Le => Op := N_Op_Ge;
7646 when others => null;
7647 end case;
84c8f0b8 7648
eb66e842 7649 -- Other cases are non-static
34d045d3 7650
eb66e842 7651 else
7652 raise Non_Static;
7653 end if;
9dc88aea 7654
eb66e842 7655 -- Construct range according to comparison operation
9dc88aea 7656
eb66e842 7657 case Op is
7658 when N_Op_Eq =>
7659 return RList'(1 => REnt'(Val, Val));
9dc88aea 7660
eb66e842 7661 when N_Op_Ge =>
7662 return RList'(1 => REnt'(Val, BHi));
84c8f0b8 7663
eb66e842 7664 when N_Op_Gt =>
7665 return RList'(1 => REnt'(Val + 1, BHi));
84c8f0b8 7666
eb66e842 7667 when N_Op_Le =>
7668 return RList'(1 => REnt'(BLo, Val));
fb7f2fc4 7669
eb66e842 7670 when N_Op_Lt =>
7671 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 7672
eb66e842 7673 when N_Op_Ne =>
7674 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9dc88aea 7675
eb66e842 7676 when others =>
7677 raise Program_Error;
7678 end case;
9dc88aea 7679
eb66e842 7680 -- Membership (IN)
9dc88aea 7681
eb66e842 7682 when N_In =>
7683 if not Is_Type_Ref (Left_Opnd (Exp)) then
7684 raise Non_Static;
7685 end if;
9dc88aea 7686
eb66e842 7687 if Present (Right_Opnd (Exp)) then
7688 return Membership_Entry (Right_Opnd (Exp));
7689 else
7690 return Membership_Entries (First (Alternatives (Exp)));
7691 end if;
9dc88aea 7692
eb66e842 7693 -- Negative membership (NOT IN)
9dc88aea 7694
eb66e842 7695 when N_Not_In =>
7696 if not Is_Type_Ref (Left_Opnd (Exp)) then
7697 raise Non_Static;
7698 end if;
9dc88aea 7699
eb66e842 7700 if Present (Right_Opnd (Exp)) then
7701 return not Membership_Entry (Right_Opnd (Exp));
7702 else
7703 return not Membership_Entries (First (Alternatives (Exp)));
7704 end if;
9dc88aea 7705
eb66e842 7706 -- Function call, may be call to static predicate
9dc88aea 7707
eb66e842 7708 when N_Function_Call =>
7709 if Is_Entity_Name (Name (Exp)) then
7710 declare
7711 Ent : constant Entity_Id := Entity (Name (Exp));
7712 begin
7713 if Is_Predicate_Function (Ent)
7714 or else
7715 Is_Predicate_Function_M (Ent)
7716 then
7717 return Stat_Pred (Etype (First_Formal (Ent)));
7718 end if;
7719 end;
7720 end if;
9dc88aea 7721
eb66e842 7722 -- Other function call cases are non-static
9dc88aea 7723
eb66e842 7724 raise Non_Static;
490beba6 7725
eb66e842 7726 -- Qualified expression, dig out the expression
c92e878b 7727
eb66e842 7728 when N_Qualified_Expression =>
7729 return Get_RList (Expression (Exp));
4c1fd062 7730
eb66e842 7731 when N_Case_Expression =>
7732 declare
7733 Alt : Node_Id;
7734 Choices : List_Id;
7735 Dep : Node_Id;
4c1fd062 7736
eb66e842 7737 begin
7738 if not Is_Entity_Name (Expression (Expr))
7739 or else Etype (Expression (Expr)) /= Typ
7740 then
7741 Error_Msg_N
7742 ("expression must denaote subtype", Expression (Expr));
7743 return False_Range;
7744 end if;
9dc88aea 7745
eb66e842 7746 -- Collect discrete choices in all True alternatives
9dc88aea 7747
eb66e842 7748 Choices := New_List;
7749 Alt := First (Alternatives (Exp));
7750 while Present (Alt) loop
7751 Dep := Expression (Alt);
34d045d3 7752
cda40848 7753 if not Is_OK_Static_Expression (Dep) then
eb66e842 7754 raise Non_Static;
ebbab42d 7755
eb66e842 7756 elsif Is_True (Expr_Value (Dep)) then
7757 Append_List_To (Choices,
7758 New_Copy_List (Discrete_Choices (Alt)));
7759 end if;
fb7f2fc4 7760
eb66e842 7761 Next (Alt);
7762 end loop;
9dc88aea 7763
eb66e842 7764 return Membership_Entries (First (Choices));
7765 end;
9dc88aea 7766
eb66e842 7767 -- Expression with actions: if no actions, dig out expression
9dc88aea 7768
eb66e842 7769 when N_Expression_With_Actions =>
7770 if Is_Empty_List (Actions (Exp)) then
7771 return Get_RList (Expression (Exp));
7772 else
7773 raise Non_Static;
7774 end if;
9dc88aea 7775
eb66e842 7776 -- Xor operator
490beba6 7777
eb66e842 7778 when N_Op_Xor =>
7779 return (Get_RList (Left_Opnd (Exp))
7780 and not Get_RList (Right_Opnd (Exp)))
7781 or (Get_RList (Right_Opnd (Exp))
7782 and not Get_RList (Left_Opnd (Exp)));
9dc88aea 7783
eb66e842 7784 -- Any other node type is non-static
fb7f2fc4 7785
eb66e842 7786 when others =>
7787 raise Non_Static;
7788 end case;
7789 end Get_RList;
fb7f2fc4 7790
eb66e842 7791 ------------
7792 -- Hi_Val --
7793 ------------
fb7f2fc4 7794
eb66e842 7795 function Hi_Val (N : Node_Id) return Uint is
7796 begin
cda40848 7797 if Is_OK_Static_Expression (N) then
eb66e842 7798 return Expr_Value (N);
7799 else
7800 pragma Assert (Nkind (N) = N_Range);
7801 return Expr_Value (High_Bound (N));
7802 end if;
7803 end Hi_Val;
fb7f2fc4 7804
eb66e842 7805 --------------
7806 -- Is_False --
7807 --------------
fb7f2fc4 7808
eb66e842 7809 function Is_False (R : RList) return Boolean is
7810 begin
7811 return R'Length = 0;
7812 end Is_False;
9dc88aea 7813
eb66e842 7814 -------------
7815 -- Is_True --
7816 -------------
9dc88aea 7817
eb66e842 7818 function Is_True (R : RList) return Boolean is
7819 begin
7820 return R'Length = 1
7821 and then R (R'First).Lo = BLo
7822 and then R (R'First).Hi = BHi;
7823 end Is_True;
9dc88aea 7824
eb66e842 7825 -----------------
7826 -- Is_Type_Ref --
7827 -----------------
9dc88aea 7828
eb66e842 7829 function Is_Type_Ref (N : Node_Id) return Boolean is
7830 begin
7de4cba3 7831 return Nkind (N) = N_Identifier
7832 and then Chars (N) = Nam
7833 and then Paren_Count (N) = 0;
eb66e842 7834 end Is_Type_Ref;
9dc88aea 7835
eb66e842 7836 ------------
7837 -- Lo_Val --
7838 ------------
9dc88aea 7839
eb66e842 7840 function Lo_Val (N : Node_Id) return Uint is
84c8f0b8 7841 begin
cda40848 7842 if Is_OK_Static_Expression (N) then
eb66e842 7843 return Expr_Value (N);
84c8f0b8 7844 else
eb66e842 7845 pragma Assert (Nkind (N) = N_Range);
7846 return Expr_Value (Low_Bound (N));
84c8f0b8 7847 end if;
eb66e842 7848 end Lo_Val;
d97beb2f 7849
eb66e842 7850 ------------------------
7851 -- Membership_Entries --
7852 ------------------------
d97beb2f 7853
eb66e842 7854 function Membership_Entries (N : Node_Id) return RList is
84c8f0b8 7855 begin
eb66e842 7856 if No (Next (N)) then
7857 return Membership_Entry (N);
84c8f0b8 7858 else
eb66e842 7859 return Membership_Entry (N) or Membership_Entries (Next (N));
84c8f0b8 7860 end if;
eb66e842 7861 end Membership_Entries;
84c8f0b8 7862
eb66e842 7863 ----------------------
7864 -- Membership_Entry --
7865 ----------------------
84c8f0b8 7866
eb66e842 7867 function Membership_Entry (N : Node_Id) return RList is
7868 Val : Uint;
7869 SLo : Uint;
7870 SHi : Uint;
d97beb2f 7871
eb66e842 7872 begin
7873 -- Range case
d97beb2f 7874
eb66e842 7875 if Nkind (N) = N_Range then
cda40848 7876 if not Is_OK_Static_Expression (Low_Bound (N))
eb66e842 7877 or else
cda40848 7878 not Is_OK_Static_Expression (High_Bound (N))
eb66e842 7879 then
7880 raise Non_Static;
7881 else
7882 SLo := Expr_Value (Low_Bound (N));
7883 SHi := Expr_Value (High_Bound (N));
7884 return RList'(1 => REnt'(SLo, SHi));
7885 end if;
84c8f0b8 7886
eb66e842 7887 -- Static expression case
84c8f0b8 7888
cda40848 7889 elsif Is_OK_Static_Expression (N) then
eb66e842 7890 Val := Expr_Value (N);
7891 return RList'(1 => REnt'(Val, Val));
d97beb2f 7892
eb66e842 7893 -- Identifier (other than static expression) case
d97beb2f 7894
eb66e842 7895 else pragma Assert (Nkind (N) = N_Identifier);
d97beb2f 7896
eb66e842 7897 -- Type case
d97beb2f 7898
eb66e842 7899 if Is_Type (Entity (N)) then
d97beb2f 7900
eb66e842 7901 -- If type has predicates, process them
d97beb2f 7902
eb66e842 7903 if Has_Predicates (Entity (N)) then
7904 return Stat_Pred (Entity (N));
d97beb2f 7905
eb66e842 7906 -- For static subtype without predicates, get range
9dc88aea 7907
cda40848 7908 elsif Is_OK_Static_Subtype (Entity (N)) then
eb66e842 7909 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7910 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7911 return RList'(1 => REnt'(SLo, SHi));
9f269bd8 7912
eb66e842 7913 -- Any other type makes us non-static
9f269bd8 7914
eb66e842 7915 else
7916 raise Non_Static;
7917 end if;
84c8f0b8 7918
eb66e842 7919 -- Any other kind of identifier in predicate (e.g. a non-static
7920 -- expression value) means this is not a static predicate.
84c8f0b8 7921
eb66e842 7922 else
7923 raise Non_Static;
7924 end if;
7925 end if;
7926 end Membership_Entry;
84c8f0b8 7927
eb66e842 7928 ---------------
7929 -- Stat_Pred --
7930 ---------------
84c8f0b8 7931
eb66e842 7932 function Stat_Pred (Typ : Entity_Id) return RList is
7933 begin
7934 -- Not static if type does not have static predicates
84c8f0b8 7935
5c6a5792 7936 if not Has_Static_Predicate (Typ) then
eb66e842 7937 raise Non_Static;
7938 end if;
84c8f0b8 7939
eb66e842 7940 -- Otherwise we convert the predicate list to a range list
84c8f0b8 7941
eb66e842 7942 declare
5c6a5792 7943 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7944 Result : RList (1 .. List_Length (Spred));
eb66e842 7945 P : Node_Id;
84c8f0b8 7946
eb66e842 7947 begin
5c6a5792 7948 P := First (Static_Discrete_Predicate (Typ));
eb66e842 7949 for J in Result'Range loop
7950 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7951 Next (P);
7952 end loop;
84c8f0b8 7953
eb66e842 7954 return Result;
7955 end;
7956 end Stat_Pred;
84c8f0b8 7957
eb66e842 7958 -- Start of processing for Build_Discrete_Static_Predicate
84c8f0b8 7959
eb66e842 7960 begin
fdec445e 7961 -- Establish bounds for the predicate
afc229da 7962
7963 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7964 TLo := Expr_Value (Type_Low_Bound (Typ));
7965 else
7966 TLo := BLo;
7967 end if;
7968
7969 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7970 THi := Expr_Value (Type_High_Bound (Typ));
7971 else
7972 THi := BHi;
7973 end if;
7974
eb66e842 7975 -- Analyze the expression to see if it is a static predicate
84c8f0b8 7976
eb66e842 7977 declare
7978 Ranges : constant RList := Get_RList (Expr);
7979 -- Range list from expression if it is static
84c8f0b8 7980
eb66e842 7981 Plist : List_Id;
84c8f0b8 7982
eb66e842 7983 begin
7984 -- Convert range list into a form for the static predicate. In the
7985 -- Ranges array, we just have raw ranges, these must be converted
7986 -- to properly typed and analyzed static expressions or range nodes.
84c8f0b8 7987
eb66e842 7988 -- Note: here we limit ranges to the ranges of the subtype, so that
7989 -- a predicate is always false for values outside the subtype. That
7990 -- seems fine, such values are invalid anyway, and considering them
7991 -- to fail the predicate seems allowed and friendly, and furthermore
7992 -- simplifies processing for case statements and loops.
84c8f0b8 7993
eb66e842 7994 Plist := New_List;
7995
7996 for J in Ranges'Range loop
84c8f0b8 7997 declare
eb66e842 7998 Lo : Uint := Ranges (J).Lo;
7999 Hi : Uint := Ranges (J).Hi;
84c8f0b8 8000
eb66e842 8001 begin
8002 -- Ignore completely out of range entry
84c8f0b8 8003
eb66e842 8004 if Hi < TLo or else Lo > THi then
8005 null;
84c8f0b8 8006
eb66e842 8007 -- Otherwise process entry
84c8f0b8 8008
eb66e842 8009 else
8010 -- Adjust out of range value to subtype range
490beba6 8011
eb66e842 8012 if Lo < TLo then
8013 Lo := TLo;
8014 end if;
490beba6 8015
eb66e842 8016 if Hi > THi then
8017 Hi := THi;
8018 end if;
84c8f0b8 8019
eb66e842 8020 -- Convert range into required form
84c8f0b8 8021
eb66e842 8022 Append_To (Plist, Build_Range (Lo, Hi));
84c8f0b8 8023 end if;
eb66e842 8024 end;
8025 end loop;
84c8f0b8 8026
eb66e842 8027 -- Processing was successful and all entries were static, so now we
8028 -- can store the result as the predicate list.
84c8f0b8 8029
5c6a5792 8030 Set_Static_Discrete_Predicate (Typ, Plist);
84c8f0b8 8031
eb66e842 8032 -- The processing for static predicates put the expression into
8033 -- canonical form as a series of ranges. It also eliminated
8034 -- duplicates and collapsed and combined ranges. We might as well
8035 -- replace the alternatives list of the right operand of the
8036 -- membership test with the static predicate list, which will
8037 -- usually be more efficient.
84c8f0b8 8038
eb66e842 8039 declare
8040 New_Alts : constant List_Id := New_List;
8041 Old_Node : Node_Id;
8042 New_Node : Node_Id;
84c8f0b8 8043
eb66e842 8044 begin
8045 Old_Node := First (Plist);
8046 while Present (Old_Node) loop
8047 New_Node := New_Copy (Old_Node);
84c8f0b8 8048
eb66e842 8049 if Nkind (New_Node) = N_Range then
8050 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8051 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8052 end if;
84c8f0b8 8053
eb66e842 8054 Append_To (New_Alts, New_Node);
8055 Next (Old_Node);
8056 end loop;
84c8f0b8 8057
eb66e842 8058 -- If empty list, replace by False
84c8f0b8 8059
eb66e842 8060 if Is_Empty_List (New_Alts) then
8061 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
84c8f0b8 8062
eb66e842 8063 -- Else replace by set membership test
84c8f0b8 8064
eb66e842 8065 else
8066 Rewrite (Expr,
8067 Make_In (Loc,
8068 Left_Opnd => Make_Identifier (Loc, Nam),
8069 Right_Opnd => Empty,
8070 Alternatives => New_Alts));
490beba6 8071
eb66e842 8072 -- Resolve new expression in function context
490beba6 8073
eb66e842 8074 Install_Formals (Predicate_Function (Typ));
8075 Push_Scope (Predicate_Function (Typ));
8076 Analyze_And_Resolve (Expr, Standard_Boolean);
8077 Pop_Scope;
8078 end if;
8079 end;
8080 end;
9ab32fe9 8081
eb66e842 8082 -- If non-static, return doing nothing
9ab32fe9 8083
eb66e842 8084 exception
8085 when Non_Static =>
8086 return;
8087 end Build_Discrete_Static_Predicate;
64cc9e5d 8088
ee2b7923 8089 --------------------------------
8090 -- Build_Export_Import_Pragma --
8091 --------------------------------
8092
8093 function Build_Export_Import_Pragma
8094 (Asp : Node_Id;
8095 Id : Entity_Id) return Node_Id
8096 is
8097 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8098 Expr : constant Node_Id := Expression (Asp);
8099 Loc : constant Source_Ptr := Sloc (Asp);
8100
8101 Args : List_Id;
8102 Conv : Node_Id;
8103 Conv_Arg : Node_Id;
8104 Dummy_1 : Node_Id;
8105 Dummy_2 : Node_Id;
8106 EN : Node_Id;
8107 LN : Node_Id;
8108 Prag : Node_Id;
8109
8110 Create_Pragma : Boolean := False;
8111 -- This flag is set when the aspect form is such that it warrants the
8112 -- creation of a corresponding pragma.
8113
8114 begin
8115 if Present (Expr) then
8116 if Error_Posted (Expr) then
8117 null;
8118
8119 elsif Is_True (Expr_Value (Expr)) then
8120 Create_Pragma := True;
8121 end if;
8122
8123 -- Otherwise the aspect defaults to True
8124
8125 else
8126 Create_Pragma := True;
8127 end if;
8128
8129 -- Nothing to do when the expression is False or is erroneous
8130
8131 if not Create_Pragma then
8132 return Empty;
8133 end if;
8134
8135 -- Obtain all interfacing aspects that apply to the related entity
8136
8137 Get_Interfacing_Aspects
8138 (Iface_Asp => Asp,
8139 Conv_Asp => Conv,
8140 EN_Asp => EN,
8141 Expo_Asp => Dummy_1,
8142 Imp_Asp => Dummy_2,
8143 LN_Asp => LN);
8144
8145 Args := New_List;
8146
8147 -- Handle the convention argument
8148
8149 if Present (Conv) then
8150 Conv_Arg := New_Copy_Tree (Expression (Conv));
8151
8152 -- Assume convention "Ada' when aspect Convention is missing
8153
8154 else
8155 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8156 end if;
8157
8158 Append_To (Args,
8159 Make_Pragma_Argument_Association (Loc,
8160 Chars => Name_Convention,
8161 Expression => Conv_Arg));
8162
8163 -- Handle the entity argument
8164
8165 Append_To (Args,
8166 Make_Pragma_Argument_Association (Loc,
8167 Chars => Name_Entity,
8168 Expression => New_Occurrence_Of (Id, Loc)));
8169
8170 -- Handle the External_Name argument
8171
8172 if Present (EN) then
8173 Append_To (Args,
8174 Make_Pragma_Argument_Association (Loc,
8175 Chars => Name_External_Name,
8176 Expression => New_Copy_Tree (Expression (EN))));
8177 end if;
8178
8179 -- Handle the Link_Name argument
8180
8181 if Present (LN) then
8182 Append_To (Args,
8183 Make_Pragma_Argument_Association (Loc,
8184 Chars => Name_Link_Name,
8185 Expression => New_Copy_Tree (Expression (LN))));
8186 end if;
8187
8188 -- Generate:
8189 -- pragma Export/Import
8190 -- (Convention => <Conv>/Ada,
8191 -- Entity => <Id>,
8192 -- [External_Name => <EN>,]
8193 -- [Link_Name => <LN>]);
8194
8195 Prag :=
8196 Make_Pragma (Loc,
8197 Pragma_Identifier =>
8198 Make_Identifier (Loc, Chars (Identifier (Asp))),
8199 Pragma_Argument_Associations => Args);
8200
8201 -- Decorate the relevant aspect and the pragma
8202
8203 Set_Aspect_Rep_Item (Asp, Prag);
8204
8205 Set_Corresponding_Aspect (Prag, Asp);
8206 Set_From_Aspect_Specification (Prag);
8207 Set_Parent (Prag, Asp);
8208
8209 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8210 Set_Import_Pragma (Id, Prag);
8211 end if;
8212
8213 return Prag;
8214 end Build_Export_Import_Pragma;
8215
eb66e842 8216 -------------------------------
8217 -- Build_Predicate_Functions --
8218 -------------------------------
d9f6a4ee 8219
eb66e842 8220 -- The procedures that are constructed here have the form:
d9f6a4ee 8221
eb66e842 8222 -- function typPredicate (Ixxx : typ) return Boolean is
8223 -- begin
8224 -- return
75491446 8225 -- typ1Predicate (typ1 (Ixxx))
eb66e842 8226 -- and then typ2Predicate (typ2 (Ixxx))
8227 -- and then ...;
75491446 8228 -- exp1 and then exp2 and then ...
eb66e842 8229 -- end typPredicate;
d9f6a4ee 8230
eb66e842 8231 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8232 -- this is the point at which these expressions get analyzed, providing the
8233 -- required delay, and typ1, typ2, are entities from which predicates are
8234 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8235 -- use this function even if checks are off, e.g. for membership tests.
d9f6a4ee 8236
75491446 8237 -- Note that the inherited predicates are evaluated first, as required by
8238 -- AI12-0071-1.
8239
8240 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8241 -- the form of this return expression.
8242
eb66e842 8243 -- If the expression has at least one Raise_Expression, then we also build
8244 -- the typPredicateM version of the function, in which any occurrence of a
8245 -- Raise_Expression is converted to "return False".
d9f6a4ee 8246
eb66e842 8247 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8248 Loc : constant Source_Ptr := Sloc (Typ);
d9f6a4ee 8249
eb66e842 8250 Expr : Node_Id;
8251 -- This is the expression for the result of the function. It is
8252 -- is build by connecting the component predicates with AND THEN.
d9f6a4ee 8253
eb66e842 8254 Expr_M : Node_Id;
8255 -- This is the corresponding return expression for the Predicate_M
8256 -- function. It differs in that raise expressions are marked for
8257 -- special expansion (see Process_REs).
d9f6a4ee 8258
9c20237a 8259 Object_Name : Name_Id;
eb66e842 8260 -- Name for argument of Predicate procedure. Note that we use the same
499918a7 8261 -- name for both predicate functions. That way the reference within the
eb66e842 8262 -- predicate expression is the same in both functions.
d9f6a4ee 8263
9c20237a 8264 Object_Entity : Entity_Id;
eb66e842 8265 -- Entity for argument of Predicate procedure
d9f6a4ee 8266
9c20237a 8267 Object_Entity_M : Entity_Id;
8268 -- Entity for argument of separate Predicate procedure when exceptions
8269 -- are present in expression.
8270
02e5d0d0 8271 FDecl : Node_Id;
8272 -- The function declaration
9c20237a 8273
02e5d0d0 8274 SId : Entity_Id;
8275 -- Its entity
d9f6a4ee 8276
eb66e842 8277 Raise_Expression_Present : Boolean := False;
8278 -- Set True if Expr has at least one Raise_Expression
d9f6a4ee 8279
75491446 8280 procedure Add_Condition (Cond : Node_Id);
8281 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8282 -- Expr is empty).
d9f6a4ee 8283
eb66e842 8284 procedure Add_Predicates;
8285 -- Appends expressions for any Predicate pragmas in the rep item chain
8286 -- Typ to Expr. Note that we look only at items for this exact entity.
8287 -- Inheritance of predicates for the parent type is done by calling the
8288 -- Predicate_Function of the parent type, using Add_Call above.
d9f6a4ee 8289
75491446 8290 procedure Add_Call (T : Entity_Id);
8291 -- Includes a call to the predicate function for type T in Expr if T
8292 -- has predicates and Predicate_Function (T) is non-empty.
8293
eb66e842 8294 function Process_RE (N : Node_Id) return Traverse_Result;
8295 -- Used in Process REs, tests if node N is a raise expression, and if
8296 -- so, marks it to be converted to return False.
d9f6a4ee 8297
eb66e842 8298 procedure Process_REs is new Traverse_Proc (Process_RE);
8299 -- Marks any raise expressions in Expr_M to return False
d9f6a4ee 8300
f9e26ff7 8301 function Test_RE (N : Node_Id) return Traverse_Result;
8302 -- Used in Test_REs, tests one node for being a raise expression, and if
8303 -- so sets Raise_Expression_Present True.
8304
8305 procedure Test_REs is new Traverse_Proc (Test_RE);
8306 -- Tests to see if Expr contains any raise expressions
8307
eb66e842 8308 --------------
8309 -- Add_Call --
8310 --------------
d9f6a4ee 8311
eb66e842 8312 procedure Add_Call (T : Entity_Id) is
8313 Exp : Node_Id;
d9f6a4ee 8314
eb66e842 8315 begin
8316 if Present (T) and then Present (Predicate_Function (T)) then
8317 Set_Has_Predicates (Typ);
d9f6a4ee 8318
eb66e842 8319 -- Build the call to the predicate function of T
d9f6a4ee 8320
eb66e842 8321 Exp :=
8322 Make_Predicate_Call
8323 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
d9f6a4ee 8324
75491446 8325 -- "and"-in the call to evolving expression
d9f6a4ee 8326
75491446 8327 Add_Condition (Exp);
d9f6a4ee 8328
eb66e842 8329 -- Output info message on inheritance if required. Note we do not
8330 -- give this information for generic actual types, since it is
8331 -- unwelcome noise in that case in instantiations. We also
8332 -- generally suppress the message in instantiations, and also
8333 -- if it involves internal names.
d9f6a4ee 8334
eb66e842 8335 if Opt.List_Inherited_Aspects
8336 and then not Is_Generic_Actual_Type (Typ)
8337 and then Instantiation_Depth (Sloc (Typ)) = 0
8338 and then not Is_Internal_Name (Chars (T))
8339 and then not Is_Internal_Name (Chars (Typ))
8340 then
8341 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8342 Error_Msg_Node_2 := T;
8343 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8344 end if;
8345 end if;
8346 end Add_Call;
d9f6a4ee 8347
75491446 8348 -------------------
8349 -- Add_Condition --
8350 -------------------
8351
8352 procedure Add_Condition (Cond : Node_Id) is
8353 begin
8354 -- This is the first predicate expression
8355
8356 if No (Expr) then
8357 Expr := Cond;
8358
8359 -- Otherwise concatenate to the existing predicate expressions by
8360 -- using "and then".
8361
8362 else
8363 Expr :=
8364 Make_And_Then (Loc,
8365 Left_Opnd => Relocate_Node (Expr),
8366 Right_Opnd => Cond);
8367 end if;
8368 end Add_Condition;
8369
eb66e842 8370 --------------------
8371 -- Add_Predicates --
8372 --------------------
d9f6a4ee 8373
eb66e842 8374 procedure Add_Predicates is
f9e26ff7 8375 procedure Add_Predicate (Prag : Node_Id);
8376 -- Concatenate the expression of predicate pragma Prag to Expr by
8377 -- using a short circuit "and then" operator.
d9f6a4ee 8378
f9e26ff7 8379 -------------------
8380 -- Add_Predicate --
8381 -------------------
d9f6a4ee 8382
f9e26ff7 8383 procedure Add_Predicate (Prag : Node_Id) is
8384 procedure Replace_Type_Reference (N : Node_Id);
8385 -- Replace a single occurrence N of the subtype name with a
8386 -- reference to the formal of the predicate function. N can be an
8387 -- identifier referencing the subtype, or a selected component,
8388 -- representing an appropriately qualified occurrence of the
8389 -- subtype name.
8390
8391 procedure Replace_Type_References is
8392 new Replace_Type_References_Generic (Replace_Type_Reference);
8393 -- Traverse an expression changing every occurrence of an
8394 -- identifier whose name matches the name of the subtype with a
8395 -- reference to the formal parameter of the predicate function.
8396
8397 ----------------------------
8398 -- Replace_Type_Reference --
8399 ----------------------------
8400
8401 procedure Replace_Type_Reference (N : Node_Id) is
8402 begin
8403 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8404 -- Use the Sloc of the usage name, not the defining name
d9f6a4ee 8405
f9e26ff7 8406 Set_Etype (N, Typ);
8407 Set_Entity (N, Object_Entity);
d97beb2f 8408
f9e26ff7 8409 -- We want to treat the node as if it comes from source, so
8410 -- that ASIS will not ignore it.
d97beb2f 8411
f9e26ff7 8412 Set_Comes_From_Source (N, True);
8413 end Replace_Type_Reference;
d97beb2f 8414
f9e26ff7 8415 -- Local variables
d97beb2f 8416
f9e26ff7 8417 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8418 Arg1 : Node_Id;
8419 Arg2 : Node_Id;
d97beb2f 8420
f9e26ff7 8421 -- Start of processing for Add_Predicate
24c8d764 8422
f9e26ff7 8423 begin
8424 -- Extract the arguments of the pragma. The expression itself
8425 -- is copied for use in the predicate function, to preserve the
8426 -- original version for ASIS use.
d97beb2f 8427
f9e26ff7 8428 Arg1 := First (Pragma_Argument_Associations (Prag));
8429 Arg2 := Next (Arg1);
d97beb2f 8430
f9e26ff7 8431 Arg1 := Get_Pragma_Arg (Arg1);
8432 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
d97beb2f 8433
f9e26ff7 8434 -- When the predicate pragma applies to the current type or its
8435 -- full view, replace all occurrences of the subtype name with
8436 -- references to the formal parameter of the predicate function.
639c3741 8437
f9e26ff7 8438 if Entity (Arg1) = Typ
8439 or else Full_View (Entity (Arg1)) = Typ
8440 then
8441 Replace_Type_References (Arg2, Typ);
639c3741 8442
f9e26ff7 8443 -- If the predicate pragma comes from an aspect, replace the
8444 -- saved expression because we need the subtype references
8445 -- replaced for the calls to Preanalyze_Spec_Expression in
8446 -- Check_Aspect_At_xxx routines.
639c3741 8447
f9e26ff7 8448 if Present (Asp) then
f9e26ff7 8449 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8450 end if;
24c8d764 8451
75491446 8452 -- "and"-in the Arg2 condition to evolving expression
639c3741 8453
75491446 8454 Add_Condition (Relocate_Node (Arg2));
f9e26ff7 8455 end if;
8456 end Add_Predicate;
737e8460 8457
f9e26ff7 8458 -- Local variables
737e8460 8459
f9e26ff7 8460 Ritem : Node_Id;
d97beb2f 8461
f9e26ff7 8462 -- Start of processing for Add_Predicates
d97beb2f 8463
f9e26ff7 8464 begin
8465 Ritem := First_Rep_Item (Typ);
8466 while Present (Ritem) loop
8467 if Nkind (Ritem) = N_Pragma
ddccc924 8468 and then Pragma_Name (Ritem) = Name_Predicate
f9e26ff7 8469 then
8470 Add_Predicate (Ritem);
0ea02224 8471
8472 -- If the type is declared in an inner package it may be frozen
8473 -- outside of the package, and the generated pragma has not been
8474 -- analyzed yet, so capture the expression for the predicate
8475 -- function at this point.
8476
8477 elsif Nkind (Ritem) = N_Aspect_Specification
238921ae 8478 and then Present (Aspect_Rep_Item (Ritem))
8479 and then Scope (Typ) /= Current_Scope
0ea02224 8480 then
8481 declare
8482 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8483
8484 begin
8485 if Nkind (Prag) = N_Pragma
ddccc924 8486 and then Pragma_Name (Prag) = Name_Predicate
0ea02224 8487 then
8488 Add_Predicate (Prag);
8489 end if;
8490 end;
eb66e842 8491 end if;
d97beb2f 8492
eb66e842 8493 Next_Rep_Item (Ritem);
8494 end loop;
8495 end Add_Predicates;
d97beb2f 8496
eb66e842 8497 ----------------
8498 -- Process_RE --
8499 ----------------
d97beb2f 8500
eb66e842 8501 function Process_RE (N : Node_Id) return Traverse_Result is
d9f6a4ee 8502 begin
eb66e842 8503 if Nkind (N) = N_Raise_Expression then
8504 Set_Convert_To_Return_False (N);
8505 return Skip;
d9f6a4ee 8506 else
eb66e842 8507 return OK;
d9f6a4ee 8508 end if;
eb66e842 8509 end Process_RE;
d7c2851f 8510
d9f6a4ee 8511 -------------
eb66e842 8512 -- Test_RE --
d9f6a4ee 8513 -------------
d7c2851f 8514
eb66e842 8515 function Test_RE (N : Node_Id) return Traverse_Result is
d97beb2f 8516 begin
eb66e842 8517 if Nkind (N) = N_Raise_Expression then
8518 Raise_Expression_Present := True;
8519 return Abandon;
8520 else
8521 return OK;
8522 end if;
8523 end Test_RE;
d97beb2f 8524
f9e26ff7 8525 -- Local variables
8526
72a98436 8527 Mode : Ghost_Mode_Type;
f9e26ff7 8528
eb66e842 8529 -- Start of processing for Build_Predicate_Functions
d97beb2f 8530
eb66e842 8531 begin
8532 -- Return if already built or if type does not have predicates
9dc88aea 8533
9c20237a 8534 SId := Predicate_Function (Typ);
eb66e842 8535 if not Has_Predicates (Typ)
9c20237a 8536 or else (Present (SId) and then Has_Completion (SId))
eb66e842 8537 then
8538 return;
8539 end if;
d9f6a4ee 8540
30f8d103 8541 -- The related type may be subject to pragma Ghost. Set the mode now to
8542 -- ensure that the predicate functions are properly marked as Ghost.
f9e26ff7 8543
72a98436 8544 Set_Ghost_Mode (Typ, Mode);
f9e26ff7 8545
eb66e842 8546 -- Prepare to construct predicate expression
d97beb2f 8547
eb66e842 8548 Expr := Empty;
d97beb2f 8549
9c20237a 8550 if Present (SId) then
8551 FDecl := Unit_Declaration_Node (SId);
8552
8553 else
8554 FDecl := Build_Predicate_Function_Declaration (Typ);
8555 SId := Defining_Entity (FDecl);
8556 end if;
8557
8558 -- Recover name of formal parameter of function that replaces references
8559 -- to the type in predicate expressions.
8560
8561 Object_Entity :=
8562 Defining_Identifier
8563 (First (Parameter_Specifications (Specification (FDecl))));
8564
8565 Object_Name := Chars (Object_Entity);
8566 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8567
75491446 8568 -- Add predicates for ancestor if present. These must come before the
8569 -- ones for the current type, as required by AI12-0071-1.
d97beb2f 8570
eb66e842 8571 declare
8572 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
d9f6a4ee 8573 begin
eb66e842 8574 if Present (Atyp) then
8575 Add_Call (Atyp);
8576 end if;
8577 end;
02e5d0d0 8578
75491446 8579 -- Add Predicates for the current type
8580
8581 Add_Predicates;
8582
eb66e842 8583 -- Case where predicates are present
9dc88aea 8584
eb66e842 8585 if Present (Expr) then
726fd56a 8586
eb66e842 8587 -- Test for raise expression present
726fd56a 8588
eb66e842 8589 Test_REs (Expr);
9dc88aea 8590
eb66e842 8591 -- If raise expression is present, capture a copy of Expr for use
8592 -- in building the predicateM function version later on. For this
8593 -- copy we replace references to Object_Entity by Object_Entity_M.
9dc88aea 8594
eb66e842 8595 if Raise_Expression_Present then
8596 declare
299b347e 8597 Map : constant Elist_Id := New_Elmt_List;
8598 New_V : Entity_Id := Empty;
8599
8600 -- The unanalyzed expression will be copied and appear in
8601 -- both functions. Normally expressions do not declare new
8602 -- entities, but quantified expressions do, so we need to
8603 -- create new entities for their bound variables, to prevent
8604 -- multiple definitions in gigi.
8605
8606 function Reset_Loop_Variable (N : Node_Id)
8607 return Traverse_Result;
8608
8609 procedure Collect_Loop_Variables is
8610 new Traverse_Proc (Reset_Loop_Variable);
8611
8612 ------------------------
8613 -- Reset_Loop_Variable --
8614 ------------------------
8615
8616 function Reset_Loop_Variable (N : Node_Id)
8617 return Traverse_Result
8618 is
8619 begin
8620 if Nkind (N) = N_Iterator_Specification then
8621 New_V := Make_Defining_Identifier
8622 (Sloc (N), Chars (Defining_Identifier (N)));
8623
8624 Set_Defining_Identifier (N, New_V);
8625 end if;
8626
8627 return OK;
8628 end Reset_Loop_Variable;
8629
eb66e842 8630 begin
8631 Append_Elmt (Object_Entity, Map);
8632 Append_Elmt (Object_Entity_M, Map);
8633 Expr_M := New_Copy_Tree (Expr, Map => Map);
299b347e 8634 Collect_Loop_Variables (Expr_M);
eb66e842 8635 end;
8636 end if;
d97beb2f 8637
eb66e842 8638 -- Build the main predicate function
9dc88aea 8639
eb66e842 8640 declare
eb66e842 8641 SIdB : constant Entity_Id :=
8642 Make_Defining_Identifier (Loc,
8643 Chars => New_External_Name (Chars (Typ), "Predicate"));
8644 -- The entity for the function body
9dc88aea 8645
eb66e842 8646 Spec : Node_Id;
eb66e842 8647 FBody : Node_Id;
9dc88aea 8648
eb66e842 8649 begin
eb66e842 8650 -- The predicate function is shared between views of a type
d97beb2f 8651
eb66e842 8652 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8653 Set_Predicate_Function (Full_View (Typ), SId);
d97beb2f 8654 end if;
d97beb2f 8655
eb66e842 8656 -- Build function body
d97beb2f 8657
eb66e842 8658 Spec :=
8659 Make_Function_Specification (Loc,
8660 Defining_Unit_Name => SIdB,
8661 Parameter_Specifications => New_List (
8662 Make_Parameter_Specification (Loc,
8663 Defining_Identifier =>
8664 Make_Defining_Identifier (Loc, Object_Name),
8665 Parameter_Type =>
8666 New_Occurrence_Of (Typ, Loc))),
8667 Result_Definition =>
8668 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8669
eb66e842 8670 FBody :=
8671 Make_Subprogram_Body (Loc,
8672 Specification => Spec,
8673 Declarations => Empty_List,
8674 Handled_Statement_Sequence =>
8675 Make_Handled_Sequence_Of_Statements (Loc,
8676 Statements => New_List (
8677 Make_Simple_Return_Statement (Loc,
8678 Expression => Expr))));
9dc88aea 8679
9c20237a 8680 -- If declaration has not been analyzed yet, Insert declaration
7db33803 8681 -- before freeze node. Insert body itself after freeze node.
9c20237a 8682
8683 if not Analyzed (FDecl) then
8684 Insert_Before_And_Analyze (N, FDecl);
8685 end if;
d97beb2f 8686
02e5d0d0 8687 Insert_After_And_Analyze (N, FBody);
6958c62c 8688
8689 -- Static predicate functions are always side-effect free, and
8690 -- in most cases dynamic predicate functions are as well. Mark
8691 -- them as such whenever possible, so redundant predicate checks
7dd0b9b3 8692 -- can be optimized. If there is a variable reference within the
8693 -- expression, the function is not pure.
b2e821de 8694
6958c62c 8695 if Expander_Active then
7dd0b9b3 8696 Set_Is_Pure (SId,
8697 Side_Effect_Free (Expr, Variable_Ref => True));
6958c62c 8698 Set_Is_Inlined (SId);
8699 end if;
d9f6a4ee 8700 end;
d97beb2f 8701
eb66e842 8702 -- Test for raise expressions present and if so build M version
d97beb2f 8703
eb66e842 8704 if Raise_Expression_Present then
8705 declare
8706 SId : constant Entity_Id :=
8707 Make_Defining_Identifier (Loc,
8708 Chars => New_External_Name (Chars (Typ), "PredicateM"));
c96806b2 8709 -- The entity for the function spec
d97beb2f 8710
eb66e842 8711 SIdB : constant Entity_Id :=
8712 Make_Defining_Identifier (Loc,
8713 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8714 -- The entity for the function body
b9e61b2a 8715
eb66e842 8716 Spec : Node_Id;
eb66e842 8717 FBody : Node_Id;
9c20237a 8718 FDecl : Node_Id;
eb66e842 8719 BTemp : Entity_Id;
d97beb2f 8720
eb66e842 8721 begin
8722 -- Mark any raise expressions for special expansion
d97beb2f 8723
eb66e842 8724 Process_REs (Expr_M);
d97beb2f 8725
eb66e842 8726 -- Build function declaration
d97beb2f 8727
eb66e842 8728 Set_Ekind (SId, E_Function);
8729 Set_Is_Predicate_Function_M (SId);
8730 Set_Predicate_Function_M (Typ, SId);
d97beb2f 8731
eb66e842 8732 -- The predicate function is shared between views of a type
d97beb2f 8733
eb66e842 8734 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8735 Set_Predicate_Function_M (Full_View (Typ), SId);
8736 end if;
9dc88aea 8737
eb66e842 8738 Spec :=
8739 Make_Function_Specification (Loc,
8740 Defining_Unit_Name => SId,
8741 Parameter_Specifications => New_List (
8742 Make_Parameter_Specification (Loc,
8743 Defining_Identifier => Object_Entity_M,
8744 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8745 Result_Definition =>
8746 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8747
eb66e842 8748 FDecl :=
8749 Make_Subprogram_Declaration (Loc,
8750 Specification => Spec);
9dc88aea 8751
eb66e842 8752 -- Build function body
9dc88aea 8753
eb66e842 8754 Spec :=
8755 Make_Function_Specification (Loc,
8756 Defining_Unit_Name => SIdB,
8757 Parameter_Specifications => New_List (
8758 Make_Parameter_Specification (Loc,
8759 Defining_Identifier =>
8760 Make_Defining_Identifier (Loc, Object_Name),
8761 Parameter_Type =>
8762 New_Occurrence_Of (Typ, Loc))),
8763 Result_Definition =>
8764 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8765
eb66e842 8766 -- Build the body, we declare the boolean expression before
8767 -- doing the return, because we are not really confident of
8768 -- what happens if a return appears within a return.
9dc88aea 8769
eb66e842 8770 BTemp :=
8771 Make_Defining_Identifier (Loc,
8772 Chars => New_Internal_Name ('B'));
9dc88aea 8773
eb66e842 8774 FBody :=
8775 Make_Subprogram_Body (Loc,
8776 Specification => Spec,
9dc88aea 8777
eb66e842 8778 Declarations => New_List (
8779 Make_Object_Declaration (Loc,
8780 Defining_Identifier => BTemp,
8781 Constant_Present => True,
8782 Object_Definition =>
8783 New_Occurrence_Of (Standard_Boolean, Loc),
8784 Expression => Expr_M)),
d97beb2f 8785
eb66e842 8786 Handled_Statement_Sequence =>
8787 Make_Handled_Sequence_Of_Statements (Loc,
8788 Statements => New_List (
8789 Make_Simple_Return_Statement (Loc,
8790 Expression => New_Occurrence_Of (BTemp, Loc)))));
d97beb2f 8791
eb66e842 8792 -- Insert declaration before freeze node and body after
d97beb2f 8793
eb66e842 8794 Insert_Before_And_Analyze (N, FDecl);
8795 Insert_After_And_Analyze (N, FBody);
8796 end;
8797 end if;
9dc88aea 8798
3b23aaa0 8799 -- See if we have a static predicate. Note that the answer may be
8800 -- yes even if we have an explicit Dynamic_Predicate present.
9dc88aea 8801
3b23aaa0 8802 declare
94d896aa 8803 PS : Boolean;
3b23aaa0 8804 EN : Node_Id;
9dc88aea 8805
3b23aaa0 8806 begin
94d896aa 8807 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8808 PS := False;
8809 else
8810 PS := Is_Predicate_Static (Expr, Object_Name);
8811 end if;
8812
a360a0f7 8813 -- Case where we have a predicate-static aspect
9dc88aea 8814
3b23aaa0 8815 if PS then
9dc88aea 8816
3b23aaa0 8817 -- We don't set Has_Static_Predicate_Aspect, since we can have
8818 -- any of the three cases (Predicate, Dynamic_Predicate, or
8819 -- Static_Predicate) generating a predicate with an expression
a360a0f7 8820 -- that is predicate-static. We just indicate that we have a
3b23aaa0 8821 -- predicate that can be treated as static.
d7c2851f 8822
3b23aaa0 8823 Set_Has_Static_Predicate (Typ);
d7c2851f 8824
3b23aaa0 8825 -- For discrete subtype, build the static predicate list
9dc88aea 8826
3b23aaa0 8827 if Is_Discrete_Type (Typ) then
8828 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8829
8830 -- If we don't get a static predicate list, it means that we
8831 -- have a case where this is not possible, most typically in
8832 -- the case where we inherit a dynamic predicate. We do not
8833 -- consider this an error, we just leave the predicate as
8834 -- dynamic. But if we do succeed in building the list, then
8835 -- we mark the predicate as static.
8836
5c6a5792 8837 if No (Static_Discrete_Predicate (Typ)) then
3b23aaa0 8838 Set_Has_Static_Predicate (Typ, False);
8839 end if;
94d896aa 8840
8841 -- For real or string subtype, save predicate expression
8842
8843 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8844 Set_Static_Real_Or_String_Predicate (Typ, Expr);
3b23aaa0 8845 end if;
8846
8847 -- Case of dynamic predicate (expression is not predicate-static)
9dc88aea 8848
eb66e842 8849 else
3b23aaa0 8850 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8851 -- is only set if we have an explicit Dynamic_Predicate aspect
8852 -- given. Here we may simply have a Predicate aspect where the
8853 -- expression happens not to be predicate-static.
8854
8855 -- Emit an error when the predicate is categorized as static
8856 -- but its expression is not predicate-static.
8857
8858 -- First a little fiddling to get a nice location for the
8859 -- message. If the expression is of the form (A and then B),
75491446 8860 -- where A is an inherited predicate, then use the right
8861 -- operand for the Sloc. This avoids getting confused by a call
8862 -- to an inherited predicate with a less convenient source
8863 -- location.
3b23aaa0 8864
8865 EN := Expr;
75491446 8866 while Nkind (EN) = N_And_Then
8867 and then Nkind (Left_Opnd (EN)) = N_Function_Call
8868 and then Is_Predicate_Function
8869 (Entity (Name (Left_Opnd (EN))))
8870 loop
8871 EN := Right_Opnd (EN);
3b23aaa0 8872 end loop;
8873
8874 -- Now post appropriate message
8875
8876 if Has_Static_Predicate_Aspect (Typ) then
94d896aa 8877 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
3b23aaa0 8878 Error_Msg_F
26279d91 8879 ("expression is not predicate-static (RM 3.2.4(16-22))",
3b23aaa0 8880 EN);
8881 else
94d896aa 8882 Error_Msg_F
8883 ("static predicate requires scalar or string type", EN);
3b23aaa0 8884 end if;
8885 end if;
eb66e842 8886 end if;
3b23aaa0 8887 end;
eb66e842 8888 end if;
f9e26ff7 8889
72a98436 8890 Restore_Ghost_Mode (Mode);
eb66e842 8891 end Build_Predicate_Functions;
9dc88aea 8892
9c20237a 8893 ------------------------------------------
8894 -- Build_Predicate_Function_Declaration --
8895 ------------------------------------------
8896
8897 function Build_Predicate_Function_Declaration
8898 (Typ : Entity_Id) return Node_Id
8899 is
8900 Loc : constant Source_Ptr := Sloc (Typ);
8901
72a98436 8902 Func_Decl : Node_Id;
8903 Func_Id : Entity_Id;
8904 Mode : Ghost_Mode_Type;
8905 Spec : Node_Id;
9c20237a 8906
72a98436 8907 begin
8908 -- The related type may be subject to pragma Ghost. Set the mode now to
8909 -- ensure that the predicate functions are properly marked as Ghost.
9c20237a 8910
72a98436 8911 Set_Ghost_Mode (Typ, Mode);
9c20237a 8912
72a98436 8913 Func_Id :=
8914 Make_Defining_Identifier (Loc,
8915 Chars => New_External_Name (Chars (Typ), "Predicate"));
9c20237a 8916
9c20237a 8917 Spec :=
8918 Make_Function_Specification (Loc,
72a98436 8919 Defining_Unit_Name => Func_Id,
9c20237a 8920 Parameter_Specifications => New_List (
8921 Make_Parameter_Specification (Loc,
72a98436 8922 Defining_Identifier => Make_Temporary (Loc, 'I'),
9c20237a 8923 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8924 Result_Definition =>
8925 New_Occurrence_Of (Standard_Boolean, Loc));
8926
72a98436 8927 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9c20237a 8928
72a98436 8929 Set_Ekind (Func_Id, E_Function);
8930 Set_Etype (Func_Id, Standard_Boolean);
8931 Set_Is_Internal (Func_Id);
8932 Set_Is_Predicate_Function (Func_Id);
8933 Set_Predicate_Function (Typ, Func_Id);
9c20237a 8934
72a98436 8935 Insert_After (Parent (Typ), Func_Decl);
8936 Analyze (Func_Decl);
9c20237a 8937
72a98436 8938 Restore_Ghost_Mode (Mode);
9c20237a 8939
72a98436 8940 return Func_Decl;
9c20237a 8941 end Build_Predicate_Function_Declaration;
8942
d9f6a4ee 8943 -----------------------------------------
8944 -- Check_Aspect_At_End_Of_Declarations --
8945 -----------------------------------------
9dc88aea 8946
d9f6a4ee 8947 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8948 Ent : constant Entity_Id := Entity (ASN);
8949 Ident : constant Node_Id := Identifier (ASN);
8950 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
d7c2851f 8951
d9f6a4ee 8952 End_Decl_Expr : constant Node_Id := Entity (Ident);
8953 -- Expression to be analyzed at end of declarations
d7c2851f 8954
d9f6a4ee 8955 Freeze_Expr : constant Node_Id := Expression (ASN);
8956 -- Expression from call to Check_Aspect_At_Freeze_Point
d7c2851f 8957
d9f6a4ee 8958 T : constant Entity_Id := Etype (Freeze_Expr);
8959 -- Type required for preanalyze call
d7c2851f 8960
d9f6a4ee 8961 Err : Boolean;
8962 -- Set False if error
9dc88aea 8963
d9f6a4ee 8964 -- On entry to this procedure, Entity (Ident) contains a copy of the
8965 -- original expression from the aspect, saved for this purpose, and
8966 -- but Expression (Ident) is a preanalyzed copy of the expression,
8967 -- preanalyzed just after the freeze point.
9dc88aea 8968
d9f6a4ee 8969 procedure Check_Overloaded_Name;
8970 -- For aspects whose expression is simply a name, this routine checks if
8971 -- the name is overloaded or not. If so, it verifies there is an
8972 -- interpretation that matches the entity obtained at the freeze point,
8973 -- otherwise the compiler complains.
9dc88aea 8974
d9f6a4ee 8975 ---------------------------
8976 -- Check_Overloaded_Name --
8977 ---------------------------
8978
8979 procedure Check_Overloaded_Name is
d97beb2f 8980 begin
d9f6a4ee 8981 if not Is_Overloaded (End_Decl_Expr) then
5ac76cee 8982 Err := not Is_Entity_Name (End_Decl_Expr)
8983 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
d9f6a4ee 8984
d97beb2f 8985 else
d9f6a4ee 8986 Err := True;
9dc88aea 8987
d9f6a4ee 8988 declare
8989 Index : Interp_Index;
8990 It : Interp;
9dc88aea 8991
d9f6a4ee 8992 begin
8993 Get_First_Interp (End_Decl_Expr, Index, It);
8994 while Present (It.Typ) loop
8995 if It.Nam = Entity (Freeze_Expr) then
8996 Err := False;
8997 exit;
8998 end if;
8999
9000 Get_Next_Interp (Index, It);
9001 end loop;
9002 end;
9dc88aea 9003 end if;
d9f6a4ee 9004 end Check_Overloaded_Name;
9dc88aea 9005
d9f6a4ee 9006 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9dc88aea 9007
d9f6a4ee 9008 begin
da3cad01 9009 -- In an instance we do not perform the consistency check between freeze
9010 -- point and end of declarations, because it was done already in the
9011 -- analysis of the generic. Furthermore, the delayed analysis of an
9012 -- aspect of the instance may produce spurious errors when the generic
9013 -- is a child unit that references entities in the parent (which might
9014 -- not be in scope at the freeze point of the instance).
9015
9016 if In_Instance then
9017 return;
9018
d9f6a4ee 9019 -- Case of aspects Dimension, Dimension_System and Synchronization
9dc88aea 9020
da3cad01 9021 elsif A_Id = Aspect_Synchronization then
d9f6a4ee 9022 return;
d97beb2f 9023
d9f6a4ee 9024 -- Case of stream attributes, just have to compare entities. However,
9025 -- the expression is just a name (possibly overloaded), and there may
9026 -- be stream operations declared for unrelated types, so we just need
9027 -- to verify that one of these interpretations is the one available at
9028 -- at the freeze point.
9dc88aea 9029
d9f6a4ee 9030 elsif A_Id = Aspect_Input or else
f02a9a9a 9031 A_Id = Aspect_Output or else
9032 A_Id = Aspect_Read or else
9033 A_Id = Aspect_Write
d9f6a4ee 9034 then
9035 Analyze (End_Decl_Expr);
9036 Check_Overloaded_Name;
9dc88aea 9037
d9f6a4ee 9038 elsif A_Id = Aspect_Variable_Indexing or else
9039 A_Id = Aspect_Constant_Indexing or else
9040 A_Id = Aspect_Default_Iterator or else
9041 A_Id = Aspect_Iterator_Element
9042 then
9043 -- Make type unfrozen before analysis, to prevent spurious errors
9044 -- about late attributes.
9dc88aea 9045
d9f6a4ee 9046 Set_Is_Frozen (Ent, False);
9047 Analyze (End_Decl_Expr);
9048 Set_Is_Frozen (Ent, True);
9dc88aea 9049
d9f6a4ee 9050 -- If the end of declarations comes before any other freeze
9051 -- point, the Freeze_Expr is not analyzed: no check needed.
9dc88aea 9052
d9f6a4ee 9053 if Analyzed (Freeze_Expr) and then not In_Instance then
9054 Check_Overloaded_Name;
9055 else
9056 Err := False;
9057 end if;
55e8372b 9058
d9f6a4ee 9059 -- All other cases
55e8372b 9060
d9f6a4ee 9061 else
c1efebf9 9062 -- Indicate that the expression comes from an aspect specification,
9063 -- which is used in subsequent analysis even if expansion is off.
9064
9065 Set_Parent (End_Decl_Expr, ASN);
9066
d9f6a4ee 9067 -- In a generic context the aspect expressions have not been
9068 -- preanalyzed, so do it now. There are no conformance checks
9069 -- to perform in this case.
55e8372b 9070
d9f6a4ee 9071 if No (T) then
9072 Check_Aspect_At_Freeze_Point (ASN);
9073 return;
55e8372b 9074
d9f6a4ee 9075 -- The default values attributes may be defined in the private part,
9076 -- and the analysis of the expression may take place when only the
9077 -- partial view is visible. The expression must be scalar, so use
9078 -- the full view to resolve.
55e8372b 9079
d9f6a4ee 9080 elsif (A_Id = Aspect_Default_Value
9081 or else
9082 A_Id = Aspect_Default_Component_Value)
9083 and then Is_Private_Type (T)
9084 then
9085 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
c1efebf9 9086
d9f6a4ee 9087 else
9088 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9089 end if;
d97beb2f 9090
d9f6a4ee 9091 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9092 end if;
55e8372b 9093
c1efebf9 9094 -- Output error message if error. Force error on aspect specification
9095 -- even if there is an error on the expression itself.
55e8372b 9096
d9f6a4ee 9097 if Err then
9098 Error_Msg_NE
c1efebf9 9099 ("!visibility of aspect for& changes after freeze point",
d9f6a4ee 9100 ASN, Ent);
9101 Error_Msg_NE
9102 ("info: & is frozen here, aspects evaluated at this point??",
9103 Freeze_Node (Ent), Ent);
9104 end if;
9105 end Check_Aspect_At_End_Of_Declarations;
55e8372b 9106
d9f6a4ee 9107 ----------------------------------
9108 -- Check_Aspect_At_Freeze_Point --
9109 ----------------------------------
9dc88aea 9110
d9f6a4ee 9111 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9112 Ident : constant Node_Id := Identifier (ASN);
9113 -- Identifier (use Entity field to save expression)
9dc88aea 9114
d9f6a4ee 9115 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9dc88aea 9116
d9f6a4ee 9117 T : Entity_Id := Empty;
9118 -- Type required for preanalyze call
9dc88aea 9119
d9f6a4ee 9120 begin
9121 -- On entry to this procedure, Entity (Ident) contains a copy of the
9122 -- original expression from the aspect, saved for this purpose.
9dc88aea 9123
d9f6a4ee 9124 -- On exit from this procedure Entity (Ident) is unchanged, still
9125 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9126 -- of the expression, preanalyzed just after the freeze point.
d97beb2f 9127
d9f6a4ee 9128 -- Make a copy of the expression to be preanalyzed
d97beb2f 9129
d9f6a4ee 9130 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
d97beb2f 9131
d9f6a4ee 9132 -- Find type for preanalyze call
d97beb2f 9133
d9f6a4ee 9134 case A_Id is
9dc88aea 9135
d9f6a4ee 9136 -- No_Aspect should be impossible
d97beb2f 9137
d9f6a4ee 9138 when No_Aspect =>
9139 raise Program_Error;
9140
9141 -- Aspects taking an optional boolean argument
d97beb2f 9142
d9f6a4ee 9143 when Boolean_Aspects |
9144 Library_Unit_Aspects =>
9dc88aea 9145
d9f6a4ee 9146 T := Standard_Boolean;
d7c2851f 9147
d9f6a4ee 9148 -- Aspects corresponding to attribute definition clauses
9dc88aea 9149
d9f6a4ee 9150 when Aspect_Address =>
9151 T := RTE (RE_Address);
9dc88aea 9152
d9f6a4ee 9153 when Aspect_Attach_Handler =>
9154 T := RTE (RE_Interrupt_ID);
d7c2851f 9155
d9f6a4ee 9156 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
9157 T := RTE (RE_Bit_Order);
d7c2851f 9158
d9f6a4ee 9159 when Aspect_Convention =>
9160 return;
d7c2851f 9161
d9f6a4ee 9162 when Aspect_CPU =>
9163 T := RTE (RE_CPU_Range);
d7c2851f 9164
d9f6a4ee 9165 -- Default_Component_Value is resolved with the component type
d7c2851f 9166
d9f6a4ee 9167 when Aspect_Default_Component_Value =>
9168 T := Component_Type (Entity (ASN));
d7c2851f 9169
647fab54 9170 when Aspect_Default_Storage_Pool =>
9171 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9172
d9f6a4ee 9173 -- Default_Value is resolved with the type entity in question
d7c2851f 9174
d9f6a4ee 9175 when Aspect_Default_Value =>
9176 T := Entity (ASN);
9dc88aea 9177
d9f6a4ee 9178 when Aspect_Dispatching_Domain =>
9179 T := RTE (RE_Dispatching_Domain);
9dc88aea 9180
d9f6a4ee 9181 when Aspect_External_Tag =>
9182 T := Standard_String;
9dc88aea 9183
d9f6a4ee 9184 when Aspect_External_Name =>
9185 T := Standard_String;
9dc88aea 9186
d9f6a4ee 9187 when Aspect_Link_Name =>
9188 T := Standard_String;
9dc88aea 9189
d9f6a4ee 9190 when Aspect_Priority | Aspect_Interrupt_Priority =>
9191 T := Standard_Integer;
d97beb2f 9192
d9f6a4ee 9193 when Aspect_Relative_Deadline =>
9194 T := RTE (RE_Time_Span);
d97beb2f 9195
e6ce0468 9196 when Aspect_Secondary_Stack_Size =>
9197 T := Standard_Integer;
9198
d9f6a4ee 9199 when Aspect_Small =>
9200 T := Universal_Real;
490beba6 9201
d9f6a4ee 9202 -- For a simple storage pool, we have to retrieve the type of the
9203 -- pool object associated with the aspect's corresponding attribute
9204 -- definition clause.
490beba6 9205
d9f6a4ee 9206 when Aspect_Simple_Storage_Pool =>
9207 T := Etype (Expression (Aspect_Rep_Item (ASN)));
d97beb2f 9208
d9f6a4ee 9209 when Aspect_Storage_Pool =>
9210 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
d97beb2f 9211
d9f6a4ee 9212 when Aspect_Alignment |
9213 Aspect_Component_Size |
9214 Aspect_Machine_Radix |
9215 Aspect_Object_Size |
9216 Aspect_Size |
9217 Aspect_Storage_Size |
9218 Aspect_Stream_Size |
9219 Aspect_Value_Size =>
9220 T := Any_Integer;
9dc88aea 9221
04ae062f 9222 when Aspect_Linker_Section =>
9223 T := Standard_String;
9224
d9f6a4ee 9225 when Aspect_Synchronization =>
9226 return;
7d20685d 9227
d9f6a4ee 9228 -- Special case, the expression of these aspects is just an entity
9229 -- that does not need any resolution, so just analyze.
7d20685d 9230
d9f6a4ee 9231 when Aspect_Input |
9232 Aspect_Output |
9233 Aspect_Read |
9234 Aspect_Suppress |
9235 Aspect_Unsuppress |
9236 Aspect_Warnings |
9237 Aspect_Write =>
9238 Analyze (Expression (ASN));
9239 return;
7d20685d 9240
d9f6a4ee 9241 -- Same for Iterator aspects, where the expression is a function
9242 -- name. Legality rules are checked separately.
89f1e35c 9243
d9f6a4ee 9244 when Aspect_Constant_Indexing |
9245 Aspect_Default_Iterator |
9246 Aspect_Iterator_Element |
9247 Aspect_Variable_Indexing =>
9248 Analyze (Expression (ASN));
9249 return;
7d20685d 9250
b3f8228a 9251 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9252
9253 when Aspect_Iterable =>
3061ffde 9254 T := Entity (ASN);
9255
b3f8228a 9256 declare
a9f5fea7 9257 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
3061ffde 9258 Assoc : Node_Id;
9259 Expr : Node_Id;
a9f5fea7 9260
b3f8228a 9261 begin
a9f5fea7 9262 if Cursor = Any_Type then
9263 return;
9264 end if;
9265
b3f8228a 9266 Assoc := First (Component_Associations (Expression (ASN)));
9267 while Present (Assoc) loop
3061ffde 9268 Expr := Expression (Assoc);
9269 Analyze (Expr);
a9f5fea7 9270
9271 if not Error_Posted (Expr) then
9272 Resolve_Iterable_Operation
9273 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9274 end if;
9275
b3f8228a 9276 Next (Assoc);
9277 end loop;
9278 end;
3061ffde 9279
b3f8228a 9280 return;
9281
d9f6a4ee 9282 -- Invariant/Predicate take boolean expressions
7d20685d 9283
d9f6a4ee 9284 when Aspect_Dynamic_Predicate |
9285 Aspect_Invariant |
9286 Aspect_Predicate |
9287 Aspect_Static_Predicate |
9288 Aspect_Type_Invariant =>
9289 T := Standard_Boolean;
7d20685d 9290
fdec445e 9291 when Aspect_Predicate_Failure =>
9292 T := Standard_String;
9293
d9f6a4ee 9294 -- Here is the list of aspects that don't require delay analysis
89f1e35c 9295
d0849c23 9296 when Aspect_Abstract_State |
9297 Aspect_Annotate |
85ee12c0 9298 Aspect_Async_Readers |
9299 Aspect_Async_Writers |
d0849c23 9300 Aspect_Constant_After_Elaboration |
9301 Aspect_Contract_Cases |
9302 Aspect_Default_Initial_Condition |
9303 Aspect_Depends |
9304 Aspect_Dimension |
9305 Aspect_Dimension_System |
85ee12c0 9306 Aspect_Effective_Reads |
9307 Aspect_Effective_Writes |
d0849c23 9308 Aspect_Extensions_Visible |
9309 Aspect_Ghost |
9310 Aspect_Global |
9311 Aspect_Implicit_Dereference |
9312 Aspect_Initial_Condition |
9313 Aspect_Initializes |
cbd45084 9314 Aspect_Max_Queue_Length |
d0849c23 9315 Aspect_Obsolescent |
9316 Aspect_Part_Of |
9317 Aspect_Post |
9318 Aspect_Postcondition |
9319 Aspect_Pre |
9320 Aspect_Precondition |
9321 Aspect_Refined_Depends |
9322 Aspect_Refined_Global |
9323 Aspect_Refined_Post |
9324 Aspect_Refined_State |
9325 Aspect_SPARK_Mode |
9326 Aspect_Test_Case |
85ee12c0 9327 Aspect_Unimplemented |
9328 Aspect_Volatile_Function =>
d9f6a4ee 9329 raise Program_Error;
2b184b2f 9330
d9f6a4ee 9331 end case;
2b184b2f 9332
d9f6a4ee 9333 -- Do the preanalyze call
2b184b2f 9334
d9f6a4ee 9335 Preanalyze_Spec_Expression (Expression (ASN), T);
9336 end Check_Aspect_At_Freeze_Point;
2b184b2f 9337
d9f6a4ee 9338 -----------------------------------
9339 -- Check_Constant_Address_Clause --
9340 -----------------------------------
2b184b2f 9341
d9f6a4ee 9342 procedure Check_Constant_Address_Clause
9343 (Expr : Node_Id;
9344 U_Ent : Entity_Id)
9345 is
9346 procedure Check_At_Constant_Address (Nod : Node_Id);
9347 -- Checks that the given node N represents a name whose 'Address is
9348 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9349 -- address value is the same at the point of declaration of U_Ent and at
9350 -- the time of elaboration of the address clause.
84ed7523 9351
d9f6a4ee 9352 procedure Check_Expr_Constants (Nod : Node_Id);
9353 -- Checks that Nod meets the requirements for a constant address clause
9354 -- in the sense of the enclosing procedure.
84ed7523 9355
d9f6a4ee 9356 procedure Check_List_Constants (Lst : List_Id);
9357 -- Check that all elements of list Lst meet the requirements for a
9358 -- constant address clause in the sense of the enclosing procedure.
84ed7523 9359
d9f6a4ee 9360 -------------------------------
9361 -- Check_At_Constant_Address --
9362 -------------------------------
84ed7523 9363
d9f6a4ee 9364 procedure Check_At_Constant_Address (Nod : Node_Id) is
9365 begin
9366 if Is_Entity_Name (Nod) then
9367 if Present (Address_Clause (Entity ((Nod)))) then
9368 Error_Msg_NE
9369 ("invalid address clause for initialized object &!",
9370 Nod, U_Ent);
9371 Error_Msg_NE
9372 ("address for& cannot" &
9373 " depend on another address clause! (RM 13.1(22))!",
9374 Nod, U_Ent);
84ed7523 9375
d9f6a4ee 9376 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9377 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9378 then
9379 Error_Msg_NE
9380 ("invalid address clause for initialized object &!",
9381 Nod, U_Ent);
9382 Error_Msg_Node_2 := U_Ent;
9383 Error_Msg_NE
9384 ("\& must be defined before & (RM 13.1(22))!",
9385 Nod, Entity (Nod));
9386 end if;
7d20685d 9387
d9f6a4ee 9388 elsif Nkind (Nod) = N_Selected_Component then
9389 declare
9390 T : constant Entity_Id := Etype (Prefix (Nod));
59f3e675 9391
d9f6a4ee 9392 begin
9393 if (Is_Record_Type (T)
9394 and then Has_Discriminants (T))
9395 or else
9396 (Is_Access_Type (T)
f02a9a9a 9397 and then Is_Record_Type (Designated_Type (T))
9398 and then Has_Discriminants (Designated_Type (T)))
d9f6a4ee 9399 then
9400 Error_Msg_NE
9401 ("invalid address clause for initialized object &!",
9402 Nod, U_Ent);
9403 Error_Msg_N
9404 ("\address cannot depend on component" &
9405 " of discriminated record (RM 13.1(22))!",
9406 Nod);
9407 else
9408 Check_At_Constant_Address (Prefix (Nod));
9409 end if;
9410 end;
89cc7147 9411
d9f6a4ee 9412 elsif Nkind (Nod) = N_Indexed_Component then
9413 Check_At_Constant_Address (Prefix (Nod));
9414 Check_List_Constants (Expressions (Nod));
89cc7147 9415
84ed7523 9416 else
d9f6a4ee 9417 Check_Expr_Constants (Nod);
84ed7523 9418 end if;
d9f6a4ee 9419 end Check_At_Constant_Address;
81b424ac 9420
d9f6a4ee 9421 --------------------------
9422 -- Check_Expr_Constants --
9423 --------------------------
7b9b2f05 9424
d9f6a4ee 9425 procedure Check_Expr_Constants (Nod : Node_Id) is
9426 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9427 Ent : Entity_Id := Empty;
7b9b2f05 9428
d9f6a4ee 9429 begin
9430 if Nkind (Nod) in N_Has_Etype
9431 and then Etype (Nod) = Any_Type
7b9b2f05 9432 then
d9f6a4ee 9433 return;
309c3053 9434 end if;
9435
d9f6a4ee 9436 case Nkind (Nod) is
9437 when N_Empty | N_Error =>
9438 return;
7d20685d 9439
d9f6a4ee 9440 when N_Identifier | N_Expanded_Name =>
9441 Ent := Entity (Nod);
7d20685d 9442
d9f6a4ee 9443 -- We need to look at the original node if it is different
9444 -- from the node, since we may have rewritten things and
9445 -- substituted an identifier representing the rewrite.
7d20685d 9446
d9f6a4ee 9447 if Original_Node (Nod) /= Nod then
9448 Check_Expr_Constants (Original_Node (Nod));
7d20685d 9449
d9f6a4ee 9450 -- If the node is an object declaration without initial
9451 -- value, some code has been expanded, and the expression
9452 -- is not constant, even if the constituents might be
9453 -- acceptable, as in A'Address + offset.
7d20685d 9454
d9f6a4ee 9455 if Ekind (Ent) = E_Variable
9456 and then
9457 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9458 and then
9459 No (Expression (Declaration_Node (Ent)))
9460 then
9461 Error_Msg_NE
9462 ("invalid address clause for initialized object &!",
9463 Nod, U_Ent);
89f1e35c 9464
d9f6a4ee 9465 -- If entity is constant, it may be the result of expanding
9466 -- a check. We must verify that its declaration appears
9467 -- before the object in question, else we also reject the
9468 -- address clause.
7d20685d 9469
d9f6a4ee 9470 elsif Ekind (Ent) = E_Constant
9471 and then In_Same_Source_Unit (Ent, U_Ent)
9472 and then Sloc (Ent) > Loc_U_Ent
9473 then
9474 Error_Msg_NE
9475 ("invalid address clause for initialized object &!",
9476 Nod, U_Ent);
9477 end if;
7d20685d 9478
d9f6a4ee 9479 return;
9480 end if;
7d20685d 9481
d9f6a4ee 9482 -- Otherwise look at the identifier and see if it is OK
7d20685d 9483
d9f6a4ee 9484 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9485 or else Is_Type (Ent)
9486 then
9487 return;
7d20685d 9488
f02a9a9a 9489 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9490
d9f6a4ee 9491 -- This is the case where we must have Ent defined before
9492 -- U_Ent. Clearly if they are in different units this
9493 -- requirement is met since the unit containing Ent is
9494 -- already processed.
7d20685d 9495
d9f6a4ee 9496 if not In_Same_Source_Unit (Ent, U_Ent) then
9497 return;
7d20685d 9498
d9f6a4ee 9499 -- Otherwise location of Ent must be before the location
9500 -- of U_Ent, that's what prior defined means.
7d20685d 9501
d9f6a4ee 9502 elsif Sloc (Ent) < Loc_U_Ent then
9503 return;
6c545057 9504
d9f6a4ee 9505 else
9506 Error_Msg_NE
9507 ("invalid address clause for initialized object &!",
9508 Nod, U_Ent);
9509 Error_Msg_Node_2 := U_Ent;
9510 Error_Msg_NE
9511 ("\& must be defined before & (RM 13.1(22))!",
9512 Nod, Ent);
9513 end if;
37c6e44c 9514
d9f6a4ee 9515 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9516 Check_Expr_Constants (Original_Node (Nod));
6c545057 9517
d9f6a4ee 9518 else
9519 Error_Msg_NE
9520 ("invalid address clause for initialized object &!",
9521 Nod, U_Ent);
3cdbaa5a 9522
d9f6a4ee 9523 if Comes_From_Source (Ent) then
9524 Error_Msg_NE
9525 ("\reference to variable& not allowed"
9526 & " (RM 13.1(22))!", Nod, Ent);
9527 else
9528 Error_Msg_N
9529 ("non-static expression not allowed"
9530 & " (RM 13.1(22))!", Nod);
9531 end if;
9532 end if;
3cdbaa5a 9533
d9f6a4ee 9534 when N_Integer_Literal =>
7f694ca2 9535
d9f6a4ee 9536 -- If this is a rewritten unchecked conversion, in a system
9537 -- where Address is an integer type, always use the base type
9538 -- for a literal value. This is user-friendly and prevents
9539 -- order-of-elaboration issues with instances of unchecked
9540 -- conversion.
3cdbaa5a 9541
d9f6a4ee 9542 if Nkind (Original_Node (Nod)) = N_Function_Call then
9543 Set_Etype (Nod, Base_Type (Etype (Nod)));
9544 end if;
e1cedbae 9545
d9f6a4ee 9546 when N_Real_Literal |
9547 N_String_Literal |
9548 N_Character_Literal =>
9549 return;
7d20685d 9550
d9f6a4ee 9551 when N_Range =>
9552 Check_Expr_Constants (Low_Bound (Nod));
9553 Check_Expr_Constants (High_Bound (Nod));
231eb581 9554
d9f6a4ee 9555 when N_Explicit_Dereference =>
9556 Check_Expr_Constants (Prefix (Nod));
231eb581 9557
d9f6a4ee 9558 when N_Indexed_Component =>
9559 Check_Expr_Constants (Prefix (Nod));
9560 Check_List_Constants (Expressions (Nod));
7d20685d 9561
d9f6a4ee 9562 when N_Slice =>
9563 Check_Expr_Constants (Prefix (Nod));
9564 Check_Expr_Constants (Discrete_Range (Nod));
cb4c311d 9565
d9f6a4ee 9566 when N_Selected_Component =>
9567 Check_Expr_Constants (Prefix (Nod));
6144c105 9568
d9f6a4ee 9569 when N_Attribute_Reference =>
9570 if Nam_In (Attribute_Name (Nod), Name_Address,
9571 Name_Access,
9572 Name_Unchecked_Access,
9573 Name_Unrestricted_Access)
9574 then
9575 Check_At_Constant_Address (Prefix (Nod));
6144c105 9576
d9f6a4ee 9577 else
9578 Check_Expr_Constants (Prefix (Nod));
9579 Check_List_Constants (Expressions (Nod));
9580 end if;
a7a4a7c2 9581
d9f6a4ee 9582 when N_Aggregate =>
9583 Check_List_Constants (Component_Associations (Nod));
9584 Check_List_Constants (Expressions (Nod));
7d20685d 9585
d9f6a4ee 9586 when N_Component_Association =>
9587 Check_Expr_Constants (Expression (Nod));
e1cedbae 9588
d9f6a4ee 9589 when N_Extension_Aggregate =>
9590 Check_Expr_Constants (Ancestor_Part (Nod));
9591 Check_List_Constants (Component_Associations (Nod));
9592 Check_List_Constants (Expressions (Nod));
3cdbaa5a 9593
d9f6a4ee 9594 when N_Null =>
9595 return;
3cdbaa5a 9596
d9f6a4ee 9597 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9598 Check_Expr_Constants (Left_Opnd (Nod));
9599 Check_Expr_Constants (Right_Opnd (Nod));
e1cedbae 9600
d9f6a4ee 9601 when N_Unary_Op =>
9602 Check_Expr_Constants (Right_Opnd (Nod));
7f694ca2 9603
d9f6a4ee 9604 when N_Type_Conversion |
9605 N_Qualified_Expression |
9606 N_Allocator |
9607 N_Unchecked_Type_Conversion =>
9608 Check_Expr_Constants (Expression (Nod));
47a46747 9609
d9f6a4ee 9610 when N_Function_Call =>
9611 if not Is_Pure (Entity (Name (Nod))) then
9612 Error_Msg_NE
9613 ("invalid address clause for initialized object &!",
9614 Nod, U_Ent);
7f694ca2 9615
d9f6a4ee 9616 Error_Msg_NE
9617 ("\function & is not pure (RM 13.1(22))!",
9618 Nod, Entity (Name (Nod)));
b55f7641 9619
d9f6a4ee 9620 else
9621 Check_List_Constants (Parameter_Associations (Nod));
9622 end if;
b55f7641 9623
d9f6a4ee 9624 when N_Parameter_Association =>
9625 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7d20685d 9626
d9f6a4ee 9627 when others =>
9628 Error_Msg_NE
9629 ("invalid address clause for initialized object &!",
9630 Nod, U_Ent);
9631 Error_Msg_NE
9632 ("\must be constant defined before& (RM 13.1(22))!",
9633 Nod, U_Ent);
9634 end case;
9635 end Check_Expr_Constants;
7d20685d 9636
d9f6a4ee 9637 --------------------------
9638 -- Check_List_Constants --
9639 --------------------------
89f1e35c 9640
d9f6a4ee 9641 procedure Check_List_Constants (Lst : List_Id) is
9642 Nod1 : Node_Id;
7d20685d 9643
d9f6a4ee 9644 begin
9645 if Present (Lst) then
9646 Nod1 := First (Lst);
9647 while Present (Nod1) loop
9648 Check_Expr_Constants (Nod1);
9649 Next (Nod1);
9650 end loop;
9651 end if;
9652 end Check_List_Constants;
81b424ac 9653
d9f6a4ee 9654 -- Start of processing for Check_Constant_Address_Clause
81b424ac 9655
d9f6a4ee 9656 begin
9657 -- If rep_clauses are to be ignored, no need for legality checks. In
9c7948d7 9658 -- particular, no need to pester user about rep clauses that violate the
9659 -- rule on constant addresses, given that these clauses will be removed
9660 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9661 -- we want to relax these checks.
7d20685d 9662
f1a9be43 9663 if not Ignore_Rep_Clauses and not CodePeer_Mode then
d9f6a4ee 9664 Check_Expr_Constants (Expr);
9665 end if;
9666 end Check_Constant_Address_Clause;
7d20685d 9667
6653b695 9668 ---------------------------
9669 -- Check_Pool_Size_Clash --
9670 ---------------------------
9671
9672 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9673 Post : Node_Id;
9674
9675 begin
9676 -- We need to find out which one came first. Note that in the case of
9677 -- aspects mixed with pragmas there are cases where the processing order
9678 -- is reversed, which is why we do the check here.
9679
9680 if Sloc (SP) < Sloc (SS) then
9681 Error_Msg_Sloc := Sloc (SP);
9682 Post := SS;
9683 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9684
9685 else
9686 Error_Msg_Sloc := Sloc (SS);
9687 Post := SP;
9688 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9689 end if;
9690
9691 Error_Msg_N
9692 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9693 end Check_Pool_Size_Clash;
9694
d9f6a4ee 9695 ----------------------------------------
9696 -- Check_Record_Representation_Clause --
9697 ----------------------------------------
85696508 9698
d9f6a4ee 9699 procedure Check_Record_Representation_Clause (N : Node_Id) is
9700 Loc : constant Source_Ptr := Sloc (N);
9701 Ident : constant Node_Id := Identifier (N);
9702 Rectype : Entity_Id;
9703 Fent : Entity_Id;
9704 CC : Node_Id;
9705 Fbit : Uint;
9706 Lbit : Uint;
9707 Hbit : Uint := Uint_0;
9708 Comp : Entity_Id;
9709 Pcomp : Entity_Id;
89f1e35c 9710
d9f6a4ee 9711 Max_Bit_So_Far : Uint;
9712 -- Records the maximum bit position so far. If all field positions
9713 -- are monotonically increasing, then we can skip the circuit for
9714 -- checking for overlap, since no overlap is possible.
85696508 9715
d9f6a4ee 9716 Tagged_Parent : Entity_Id := Empty;
9717 -- This is set in the case of a derived tagged type for which we have
9718 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9719 -- positioned by record representation clauses). In this case we must
9720 -- check for overlap between components of this tagged type, and the
9721 -- components of its parent. Tagged_Parent will point to this parent
9722 -- type. For all other cases Tagged_Parent is left set to Empty.
7d20685d 9723
d9f6a4ee 9724 Parent_Last_Bit : Uint;
9725 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9726 -- last bit position for any field in the parent type. We only need to
9727 -- check overlap for fields starting below this point.
7d20685d 9728
d9f6a4ee 9729 Overlap_Check_Required : Boolean;
9730 -- Used to keep track of whether or not an overlap check is required
7d20685d 9731
d9f6a4ee 9732 Overlap_Detected : Boolean := False;
9733 -- Set True if an overlap is detected
d6f39728 9734
d9f6a4ee 9735 Ccount : Natural := 0;
9736 -- Number of component clauses in record rep clause
d6f39728 9737
d9f6a4ee 9738 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9739 -- Given two entities for record components or discriminants, checks
9740 -- if they have overlapping component clauses and issues errors if so.
d6f39728 9741
d9f6a4ee 9742 procedure Find_Component;
9743 -- Finds component entity corresponding to current component clause (in
9744 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9745 -- start/stop bits for the field. If there is no matching component or
9746 -- if the matching component does not have a component clause, then
9747 -- that's an error and Comp is set to Empty, but no error message is
9748 -- issued, since the message was already given. Comp is also set to
9749 -- Empty if the current "component clause" is in fact a pragma.
d6f39728 9750
d9f6a4ee 9751 -----------------------------
9752 -- Check_Component_Overlap --
9753 -----------------------------
9754
9755 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9756 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9757 CC2 : constant Node_Id := Component_Clause (C2_Ent);
d6f39728 9758
d6f39728 9759 begin
d9f6a4ee 9760 if Present (CC1) and then Present (CC2) then
d6f39728 9761
d9f6a4ee 9762 -- Exclude odd case where we have two tag components in the same
9763 -- record, both at location zero. This seems a bit strange, but
9764 -- it seems to happen in some circumstances, perhaps on an error.
9765
9766 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9767 return;
d6f39728 9768 end if;
9769
d9f6a4ee 9770 -- Here we check if the two fields overlap
9771
d6f39728 9772 declare
d9f6a4ee 9773 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9774 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9775 E1 : constant Uint := S1 + Esize (C1_Ent);
9776 E2 : constant Uint := S2 + Esize (C2_Ent);
d6f39728 9777
9778 begin
d9f6a4ee 9779 if E2 <= S1 or else E1 <= S2 then
9780 null;
d6f39728 9781 else
d9f6a4ee 9782 Error_Msg_Node_2 := Component_Name (CC2);
9783 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9784 Error_Msg_Node_1 := Component_Name (CC1);
9785 Error_Msg_N
9786 ("component& overlaps & #", Component_Name (CC1));
9787 Overlap_Detected := True;
d6f39728 9788 end if;
9789 end;
d6f39728 9790 end if;
d9f6a4ee 9791 end Check_Component_Overlap;
d6f39728 9792
d9f6a4ee 9793 --------------------
9794 -- Find_Component --
9795 --------------------
9dfe12ae 9796
d9f6a4ee 9797 procedure Find_Component is
9dfe12ae 9798
d9f6a4ee 9799 procedure Search_Component (R : Entity_Id);
9800 -- Search components of R for a match. If found, Comp is set
9dfe12ae 9801
d9f6a4ee 9802 ----------------------
9803 -- Search_Component --
9804 ----------------------
e7b2d6bc 9805
d9f6a4ee 9806 procedure Search_Component (R : Entity_Id) is
9807 begin
9808 Comp := First_Component_Or_Discriminant (R);
9809 while Present (Comp) loop
e7b2d6bc 9810
d9f6a4ee 9811 -- Ignore error of attribute name for component name (we
9812 -- already gave an error message for this, so no need to
9813 -- complain here)
e7b2d6bc 9814
d9f6a4ee 9815 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9816 null;
9817 else
9818 exit when Chars (Comp) = Chars (Component_Name (CC));
9dfe12ae 9819 end if;
9820
d9f6a4ee 9821 Next_Component_Or_Discriminant (Comp);
9822 end loop;
9823 end Search_Component;
d6f39728 9824
d9f6a4ee 9825 -- Start of processing for Find_Component
d6f39728 9826
d9f6a4ee 9827 begin
9828 -- Return with Comp set to Empty if we have a pragma
d6f39728 9829
d9f6a4ee 9830 if Nkind (CC) = N_Pragma then
9831 Comp := Empty;
9832 return;
9833 end if;
d6f39728 9834
d9f6a4ee 9835 -- Search current record for matching component
d6f39728 9836
d9f6a4ee 9837 Search_Component (Rectype);
9dfe12ae 9838
d9f6a4ee 9839 -- If not found, maybe component of base type discriminant that is
9840 -- absent from statically constrained first subtype.
e7b2d6bc 9841
d9f6a4ee 9842 if No (Comp) then
9843 Search_Component (Base_Type (Rectype));
9844 end if;
e7b2d6bc 9845
d9f6a4ee 9846 -- If no component, or the component does not reference the component
9847 -- clause in question, then there was some previous error for which
9848 -- we already gave a message, so just return with Comp Empty.
d6f39728 9849
d9f6a4ee 9850 if No (Comp) or else Component_Clause (Comp) /= CC then
9851 Check_Error_Detected;
9852 Comp := Empty;
93735cb8 9853
d9f6a4ee 9854 -- Normal case where we have a component clause
93735cb8 9855
d9f6a4ee 9856 else
9857 Fbit := Component_Bit_Offset (Comp);
9858 Lbit := Fbit + Esize (Comp) - 1;
9859 end if;
9860 end Find_Component;
93735cb8 9861
d9f6a4ee 9862 -- Start of processing for Check_Record_Representation_Clause
d6f39728 9863
d9f6a4ee 9864 begin
9865 Find_Type (Ident);
9866 Rectype := Entity (Ident);
d6f39728 9867
d9f6a4ee 9868 if Rectype = Any_Type then
9869 return;
9870 else
9871 Rectype := Underlying_Type (Rectype);
9872 end if;
d6f39728 9873
d9f6a4ee 9874 -- See if we have a fully repped derived tagged type
d6f39728 9875
d9f6a4ee 9876 declare
9877 PS : constant Entity_Id := Parent_Subtype (Rectype);
d6f39728 9878
d9f6a4ee 9879 begin
9880 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9881 Tagged_Parent := PS;
d6f39728 9882
d9f6a4ee 9883 -- Find maximum bit of any component of the parent type
d6f39728 9884
d9f6a4ee 9885 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9886 Pcomp := First_Entity (Tagged_Parent);
9887 while Present (Pcomp) loop
9888 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9889 if Component_Bit_Offset (Pcomp) /= No_Uint
9890 and then Known_Static_Esize (Pcomp)
9891 then
9892 Parent_Last_Bit :=
9893 UI_Max
9894 (Parent_Last_Bit,
9895 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9896 end if;
b7df4cda 9897 else
9898
9899 -- Skip anonymous types generated for constrained array
9900 -- or record components.
d9f6a4ee 9901
b7df4cda 9902 null;
d6f39728 9903 end if;
b7df4cda 9904
9905 Next_Entity (Pcomp);
d9f6a4ee 9906 end loop;
9907 end if;
9908 end;
d6f39728 9909
d9f6a4ee 9910 -- All done if no component clauses
d6f39728 9911
d9f6a4ee 9912 CC := First (Component_Clauses (N));
d6f39728 9913
d9f6a4ee 9914 if No (CC) then
9915 return;
9916 end if;
d6f39728 9917
d9f6a4ee 9918 -- If a tag is present, then create a component clause that places it
9919 -- at the start of the record (otherwise gigi may place it after other
9920 -- fields that have rep clauses).
d6f39728 9921
d9f6a4ee 9922 Fent := First_Entity (Rectype);
d6f39728 9923
d9f6a4ee 9924 if Nkind (Fent) = N_Defining_Identifier
9925 and then Chars (Fent) = Name_uTag
9926 then
9927 Set_Component_Bit_Offset (Fent, Uint_0);
9928 Set_Normalized_Position (Fent, Uint_0);
9929 Set_Normalized_First_Bit (Fent, Uint_0);
9930 Set_Normalized_Position_Max (Fent, Uint_0);
9931 Init_Esize (Fent, System_Address_Size);
d6f39728 9932
d9f6a4ee 9933 Set_Component_Clause (Fent,
9934 Make_Component_Clause (Loc,
9935 Component_Name => Make_Identifier (Loc, Name_uTag),
d6f39728 9936
d9f6a4ee 9937 Position => Make_Integer_Literal (Loc, Uint_0),
9938 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9939 Last_Bit =>
9940 Make_Integer_Literal (Loc,
9941 UI_From_Int (System_Address_Size))));
d6f39728 9942
d9f6a4ee 9943 Ccount := Ccount + 1;
9944 end if;
d6f39728 9945
d9f6a4ee 9946 Max_Bit_So_Far := Uint_Minus_1;
9947 Overlap_Check_Required := False;
d6f39728 9948
d9f6a4ee 9949 -- Process the component clauses
d6f39728 9950
d9f6a4ee 9951 while Present (CC) loop
9952 Find_Component;
d6f39728 9953
d9f6a4ee 9954 if Present (Comp) then
9955 Ccount := Ccount + 1;
d6f39728 9956
d9f6a4ee 9957 -- We need a full overlap check if record positions non-monotonic
d6f39728 9958
d9f6a4ee 9959 if Fbit <= Max_Bit_So_Far then
9960 Overlap_Check_Required := True;
9961 end if;
d6f39728 9962
d9f6a4ee 9963 Max_Bit_So_Far := Lbit;
d6f39728 9964
d9f6a4ee 9965 -- Check bit position out of range of specified size
01cb2726 9966
d9f6a4ee 9967 if Has_Size_Clause (Rectype)
9968 and then RM_Size (Rectype) <= Lbit
9969 then
9970 Error_Msg_N
9971 ("bit number out of range of specified size",
9972 Last_Bit (CC));
d6f39728 9973
d9f6a4ee 9974 -- Check for overlap with tag component
67278d60 9975
d9f6a4ee 9976 else
9977 if Is_Tagged_Type (Rectype)
9978 and then Fbit < System_Address_Size
9979 then
9980 Error_Msg_NE
9981 ("component overlaps tag field of&",
9982 Component_Name (CC), Rectype);
9983 Overlap_Detected := True;
9984 end if;
67278d60 9985
d9f6a4ee 9986 if Hbit < Lbit then
9987 Hbit := Lbit;
9988 end if;
9989 end if;
67278d60 9990
d9f6a4ee 9991 -- Check parent overlap if component might overlap parent field
67278d60 9992
d9f6a4ee 9993 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9994 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9995 while Present (Pcomp) loop
9996 if not Is_Tag (Pcomp)
9997 and then Chars (Pcomp) /= Name_uParent
9998 then
9999 Check_Component_Overlap (Comp, Pcomp);
10000 end if;
67278d60 10001
d9f6a4ee 10002 Next_Component_Or_Discriminant (Pcomp);
10003 end loop;
10004 end if;
10005 end if;
67278d60 10006
d9f6a4ee 10007 Next (CC);
10008 end loop;
47495553 10009
d9f6a4ee 10010 -- Now that we have processed all the component clauses, check for
10011 -- overlap. We have to leave this till last, since the components can
10012 -- appear in any arbitrary order in the representation clause.
67278d60 10013
d9f6a4ee 10014 -- We do not need this check if all specified ranges were monotonic,
10015 -- as recorded by Overlap_Check_Required being False at this stage.
67278d60 10016
d9f6a4ee 10017 -- This first section checks if there are any overlapping entries at
10018 -- all. It does this by sorting all entries and then seeing if there are
10019 -- any overlaps. If there are none, then that is decisive, but if there
10020 -- are overlaps, they may still be OK (they may result from fields in
10021 -- different variants).
67278d60 10022
d9f6a4ee 10023 if Overlap_Check_Required then
10024 Overlap_Check1 : declare
67278d60 10025
d9f6a4ee 10026 OC_Fbit : array (0 .. Ccount) of Uint;
10027 -- First-bit values for component clauses, the value is the offset
10028 -- of the first bit of the field from start of record. The zero
10029 -- entry is for use in sorting.
47495553 10030
d9f6a4ee 10031 OC_Lbit : array (0 .. Ccount) of Uint;
10032 -- Last-bit values for component clauses, the value is the offset
10033 -- of the last bit of the field from start of record. The zero
10034 -- entry is for use in sorting.
10035
10036 OC_Count : Natural := 0;
10037 -- Count of entries in OC_Fbit and OC_Lbit
67278d60 10038
d9f6a4ee 10039 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10040 -- Compare routine for Sort
67278d60 10041
d9f6a4ee 10042 procedure OC_Move (From : Natural; To : Natural);
10043 -- Move routine for Sort
67278d60 10044
d9f6a4ee 10045 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
67278d60 10046
d9f6a4ee 10047 -----------
10048 -- OC_Lt --
10049 -----------
67278d60 10050
d9f6a4ee 10051 function OC_Lt (Op1, Op2 : Natural) return Boolean is
67278d60 10052 begin
d9f6a4ee 10053 return OC_Fbit (Op1) < OC_Fbit (Op2);
10054 end OC_Lt;
67278d60 10055
d9f6a4ee 10056 -------------
10057 -- OC_Move --
10058 -------------
67278d60 10059
d9f6a4ee 10060 procedure OC_Move (From : Natural; To : Natural) is
10061 begin
10062 OC_Fbit (To) := OC_Fbit (From);
10063 OC_Lbit (To) := OC_Lbit (From);
10064 end OC_Move;
67278d60 10065
d9f6a4ee 10066 -- Start of processing for Overlap_Check
67278d60 10067
67278d60 10068 begin
d9f6a4ee 10069 CC := First (Component_Clauses (N));
10070 while Present (CC) loop
67278d60 10071
d9f6a4ee 10072 -- Exclude component clause already marked in error
67278d60 10073
d9f6a4ee 10074 if not Error_Posted (CC) then
10075 Find_Component;
10076
10077 if Present (Comp) then
10078 OC_Count := OC_Count + 1;
10079 OC_Fbit (OC_Count) := Fbit;
10080 OC_Lbit (OC_Count) := Lbit;
10081 end if;
67278d60 10082 end if;
10083
d9f6a4ee 10084 Next (CC);
67278d60 10085 end loop;
67278d60 10086
d9f6a4ee 10087 Sorting.Sort (OC_Count);
67278d60 10088
d9f6a4ee 10089 Overlap_Check_Required := False;
10090 for J in 1 .. OC_Count - 1 loop
10091 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10092 Overlap_Check_Required := True;
10093 exit;
10094 end if;
10095 end loop;
10096 end Overlap_Check1;
10097 end if;
67278d60 10098
d9f6a4ee 10099 -- If Overlap_Check_Required is still True, then we have to do the full
10100 -- scale overlap check, since we have at least two fields that do
10101 -- overlap, and we need to know if that is OK since they are in
10102 -- different variant, or whether we have a definite problem.
67278d60 10103
d9f6a4ee 10104 if Overlap_Check_Required then
10105 Overlap_Check2 : declare
10106 C1_Ent, C2_Ent : Entity_Id;
10107 -- Entities of components being checked for overlap
67278d60 10108
d9f6a4ee 10109 Clist : Node_Id;
10110 -- Component_List node whose Component_Items are being checked
67278d60 10111
d9f6a4ee 10112 Citem : Node_Id;
10113 -- Component declaration for component being checked
67278d60 10114
d9f6a4ee 10115 begin
10116 C1_Ent := First_Entity (Base_Type (Rectype));
67278d60 10117
d9f6a4ee 10118 -- Loop through all components in record. For each component check
10119 -- for overlap with any of the preceding elements on the component
10120 -- list containing the component and also, if the component is in
10121 -- a variant, check against components outside the case structure.
10122 -- This latter test is repeated recursively up the variant tree.
67278d60 10123
d9f6a4ee 10124 Main_Component_Loop : while Present (C1_Ent) loop
10125 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10126 goto Continue_Main_Component_Loop;
10127 end if;
67278d60 10128
d9f6a4ee 10129 -- Skip overlap check if entity has no declaration node. This
10130 -- happens with discriminants in constrained derived types.
10131 -- Possibly we are missing some checks as a result, but that
10132 -- does not seem terribly serious.
67278d60 10133
d9f6a4ee 10134 if No (Declaration_Node (C1_Ent)) then
10135 goto Continue_Main_Component_Loop;
10136 end if;
67278d60 10137
d9f6a4ee 10138 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
67278d60 10139
d9f6a4ee 10140 -- Loop through component lists that need checking. Check the
10141 -- current component list and all lists in variants above us.
67278d60 10142
d9f6a4ee 10143 Component_List_Loop : loop
67278d60 10144
d9f6a4ee 10145 -- If derived type definition, go to full declaration
10146 -- If at outer level, check discriminants if there are any.
67278d60 10147
d9f6a4ee 10148 if Nkind (Clist) = N_Derived_Type_Definition then
10149 Clist := Parent (Clist);
10150 end if;
67278d60 10151
d9f6a4ee 10152 -- Outer level of record definition, check discriminants
67278d60 10153
d9f6a4ee 10154 if Nkind_In (Clist, N_Full_Type_Declaration,
10155 N_Private_Type_Declaration)
67278d60 10156 then
d9f6a4ee 10157 if Has_Discriminants (Defining_Identifier (Clist)) then
10158 C2_Ent :=
10159 First_Discriminant (Defining_Identifier (Clist));
10160 while Present (C2_Ent) loop
10161 exit when C1_Ent = C2_Ent;
10162 Check_Component_Overlap (C1_Ent, C2_Ent);
10163 Next_Discriminant (C2_Ent);
10164 end loop;
10165 end if;
67278d60 10166
d9f6a4ee 10167 -- Record extension case
67278d60 10168
d9f6a4ee 10169 elsif Nkind (Clist) = N_Derived_Type_Definition then
10170 Clist := Empty;
67278d60 10171
d9f6a4ee 10172 -- Otherwise check one component list
67278d60 10173
d9f6a4ee 10174 else
10175 Citem := First (Component_Items (Clist));
10176 while Present (Citem) loop
10177 if Nkind (Citem) = N_Component_Declaration then
10178 C2_Ent := Defining_Identifier (Citem);
10179 exit when C1_Ent = C2_Ent;
10180 Check_Component_Overlap (C1_Ent, C2_Ent);
10181 end if;
67278d60 10182
d9f6a4ee 10183 Next (Citem);
10184 end loop;
10185 end if;
67278d60 10186
d9f6a4ee 10187 -- Check for variants above us (the parent of the Clist can
10188 -- be a variant, in which case its parent is a variant part,
10189 -- and the parent of the variant part is a component list
10190 -- whose components must all be checked against the current
10191 -- component for overlap).
67278d60 10192
d9f6a4ee 10193 if Nkind (Parent (Clist)) = N_Variant then
10194 Clist := Parent (Parent (Parent (Clist)));
67278d60 10195
d9f6a4ee 10196 -- Check for possible discriminant part in record, this
10197 -- is treated essentially as another level in the
10198 -- recursion. For this case the parent of the component
10199 -- list is the record definition, and its parent is the
10200 -- full type declaration containing the discriminant
10201 -- specifications.
10202
10203 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10204 Clist := Parent (Parent ((Clist)));
10205
10206 -- If neither of these two cases, we are at the top of
10207 -- the tree.
10208
10209 else
10210 exit Component_List_Loop;
10211 end if;
10212 end loop Component_List_Loop;
67278d60 10213
d9f6a4ee 10214 <<Continue_Main_Component_Loop>>
10215 Next_Entity (C1_Ent);
67278d60 10216
d9f6a4ee 10217 end loop Main_Component_Loop;
10218 end Overlap_Check2;
67278d60 10219 end if;
10220
d9f6a4ee 10221 -- The following circuit deals with warning on record holes (gaps). We
10222 -- skip this check if overlap was detected, since it makes sense for the
10223 -- programmer to fix this illegality before worrying about warnings.
67278d60 10224
d9f6a4ee 10225 if not Overlap_Detected and Warn_On_Record_Holes then
10226 Record_Hole_Check : declare
10227 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10228 -- Full declaration of record type
67278d60 10229
d9f6a4ee 10230 procedure Check_Component_List
10231 (CL : Node_Id;
10232 Sbit : Uint;
10233 DS : List_Id);
10234 -- Check component list CL for holes. The starting bit should be
10235 -- Sbit. which is zero for the main record component list and set
10236 -- appropriately for recursive calls for variants. DS is set to
10237 -- a list of discriminant specifications to be included in the
10238 -- consideration of components. It is No_List if none to consider.
67278d60 10239
d9f6a4ee 10240 --------------------------
10241 -- Check_Component_List --
10242 --------------------------
47495553 10243
d9f6a4ee 10244 procedure Check_Component_List
10245 (CL : Node_Id;
10246 Sbit : Uint;
10247 DS : List_Id)
10248 is
10249 Compl : Integer;
67278d60 10250
d9f6a4ee 10251 begin
10252 Compl := Integer (List_Length (Component_Items (CL)));
47495553 10253
d9f6a4ee 10254 if DS /= No_List then
10255 Compl := Compl + Integer (List_Length (DS));
10256 end if;
67278d60 10257
d9f6a4ee 10258 declare
10259 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10260 -- Gather components (zero entry is for sort routine)
67278d60 10261
d9f6a4ee 10262 Ncomps : Natural := 0;
10263 -- Number of entries stored in Comps (starting at Comps (1))
67278d60 10264
d9f6a4ee 10265 Citem : Node_Id;
10266 -- One component item or discriminant specification
67278d60 10267
d9f6a4ee 10268 Nbit : Uint;
10269 -- Starting bit for next component
67278d60 10270
d9f6a4ee 10271 CEnt : Entity_Id;
10272 -- Component entity
67278d60 10273
d9f6a4ee 10274 Variant : Node_Id;
10275 -- One variant
67278d60 10276
d9f6a4ee 10277 function Lt (Op1, Op2 : Natural) return Boolean;
10278 -- Compare routine for Sort
67278d60 10279
d9f6a4ee 10280 procedure Move (From : Natural; To : Natural);
10281 -- Move routine for Sort
67278d60 10282
d9f6a4ee 10283 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
67278d60 10284
d9f6a4ee 10285 --------
10286 -- Lt --
10287 --------
67278d60 10288
d9f6a4ee 10289 function Lt (Op1, Op2 : Natural) return Boolean is
10290 begin
10291 return Component_Bit_Offset (Comps (Op1))
10292 <
10293 Component_Bit_Offset (Comps (Op2));
10294 end Lt;
67278d60 10295
d9f6a4ee 10296 ----------
10297 -- Move --
10298 ----------
67278d60 10299
d9f6a4ee 10300 procedure Move (From : Natural; To : Natural) is
10301 begin
10302 Comps (To) := Comps (From);
10303 end Move;
67278d60 10304
d9f6a4ee 10305 begin
10306 -- Gather discriminants into Comp
67278d60 10307
d9f6a4ee 10308 if DS /= No_List then
10309 Citem := First (DS);
10310 while Present (Citem) loop
10311 if Nkind (Citem) = N_Discriminant_Specification then
10312 declare
10313 Ent : constant Entity_Id :=
10314 Defining_Identifier (Citem);
10315 begin
10316 if Ekind (Ent) = E_Discriminant then
10317 Ncomps := Ncomps + 1;
10318 Comps (Ncomps) := Ent;
10319 end if;
10320 end;
10321 end if;
67278d60 10322
d9f6a4ee 10323 Next (Citem);
10324 end loop;
10325 end if;
67278d60 10326
d9f6a4ee 10327 -- Gather component entities into Comp
67278d60 10328
d9f6a4ee 10329 Citem := First (Component_Items (CL));
10330 while Present (Citem) loop
10331 if Nkind (Citem) = N_Component_Declaration then
10332 Ncomps := Ncomps + 1;
10333 Comps (Ncomps) := Defining_Identifier (Citem);
10334 end if;
67278d60 10335
d9f6a4ee 10336 Next (Citem);
10337 end loop;
67278d60 10338
d9f6a4ee 10339 -- Now sort the component entities based on the first bit.
10340 -- Note we already know there are no overlapping components.
67278d60 10341
d9f6a4ee 10342 Sorting.Sort (Ncomps);
67278d60 10343
d9f6a4ee 10344 -- Loop through entries checking for holes
67278d60 10345
d9f6a4ee 10346 Nbit := Sbit;
10347 for J in 1 .. Ncomps loop
10348 CEnt := Comps (J);
10349 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
67278d60 10350
d9f6a4ee 10351 if Error_Msg_Uint_1 > 0 then
10352 Error_Msg_NE
10353 ("?H?^-bit gap before component&",
10354 Component_Name (Component_Clause (CEnt)), CEnt);
10355 end if;
67278d60 10356
d9f6a4ee 10357 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10358 end loop;
67278d60 10359
d9f6a4ee 10360 -- Process variant parts recursively if present
67278d60 10361
d9f6a4ee 10362 if Present (Variant_Part (CL)) then
10363 Variant := First (Variants (Variant_Part (CL)));
10364 while Present (Variant) loop
10365 Check_Component_List
10366 (Component_List (Variant), Nbit, No_List);
10367 Next (Variant);
10368 end loop;
67278d60 10369 end if;
d9f6a4ee 10370 end;
10371 end Check_Component_List;
67278d60 10372
d9f6a4ee 10373 -- Start of processing for Record_Hole_Check
67278d60 10374
d9f6a4ee 10375 begin
10376 declare
10377 Sbit : Uint;
67278d60 10378
d9f6a4ee 10379 begin
10380 if Is_Tagged_Type (Rectype) then
10381 Sbit := UI_From_Int (System_Address_Size);
10382 else
10383 Sbit := Uint_0;
10384 end if;
10385
10386 if Nkind (Decl) = N_Full_Type_Declaration
10387 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10388 then
10389 Check_Component_List
10390 (Component_List (Type_Definition (Decl)),
10391 Sbit,
10392 Discriminant_Specifications (Decl));
67278d60 10393 end if;
d9f6a4ee 10394 end;
10395 end Record_Hole_Check;
67278d60 10396 end if;
10397
d9f6a4ee 10398 -- For records that have component clauses for all components, and whose
10399 -- size is less than or equal to 32, we need to know the size in the
10400 -- front end to activate possible packed array processing where the
10401 -- component type is a record.
67278d60 10402
d9f6a4ee 10403 -- At this stage Hbit + 1 represents the first unused bit from all the
10404 -- component clauses processed, so if the component clauses are
10405 -- complete, then this is the length of the record.
67278d60 10406
d9f6a4ee 10407 -- For records longer than System.Storage_Unit, and for those where not
10408 -- all components have component clauses, the back end determines the
10409 -- length (it may for example be appropriate to round up the size
10410 -- to some convenient boundary, based on alignment considerations, etc).
67278d60 10411
d9f6a4ee 10412 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
67278d60 10413
d9f6a4ee 10414 -- Nothing to do if at least one component has no component clause
67278d60 10415
d9f6a4ee 10416 Comp := First_Component_Or_Discriminant (Rectype);
10417 while Present (Comp) loop
10418 exit when No (Component_Clause (Comp));
10419 Next_Component_Or_Discriminant (Comp);
10420 end loop;
67278d60 10421
d9f6a4ee 10422 -- If we fall out of loop, all components have component clauses
10423 -- and so we can set the size to the maximum value.
67278d60 10424
d9f6a4ee 10425 if No (Comp) then
10426 Set_RM_Size (Rectype, Hbit + 1);
10427 end if;
10428 end if;
10429 end Check_Record_Representation_Clause;
67278d60 10430
d9f6a4ee 10431 ----------------
10432 -- Check_Size --
10433 ----------------
67278d60 10434
d9f6a4ee 10435 procedure Check_Size
10436 (N : Node_Id;
10437 T : Entity_Id;
10438 Siz : Uint;
10439 Biased : out Boolean)
10440 is
f74a102b 10441 procedure Size_Too_Small_Error (Min_Siz : Uint);
10442 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10443 -- minimum size.
10444
10445 --------------------------
10446 -- Size_Too_Small_Error --
10447 --------------------------
10448
10449 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10450 begin
10451 -- This error is suppressed in ASIS mode to allow for different ASIS
f9906591 10452 -- back ends or ASIS-based tools to query the illegal clause.
f74a102b 10453
10454 if not ASIS_Mode then
10455 Error_Msg_Uint_1 := Min_Siz;
6d22398d 10456 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
f74a102b 10457 end if;
10458 end Size_Too_Small_Error;
10459
10460 -- Local variables
10461
d9f6a4ee 10462 UT : constant Entity_Id := Underlying_Type (T);
10463 M : Uint;
67278d60 10464
f74a102b 10465 -- Start of processing for Check_Size
10466
d9f6a4ee 10467 begin
10468 Biased := False;
67278d60 10469
f74a102b 10470 -- Reject patently improper size values
67278d60 10471
d9f6a4ee 10472 if Is_Elementary_Type (T)
10473 and then Siz > UI_From_Int (Int'Last)
10474 then
10475 Error_Msg_N ("Size value too large for elementary type", N);
67278d60 10476
d9f6a4ee 10477 if Nkind (Original_Node (N)) = N_Op_Expon then
10478 Error_Msg_N
10479 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10480 end if;
10481 end if;
67278d60 10482
d9f6a4ee 10483 -- Dismiss generic types
67278d60 10484
d9f6a4ee 10485 if Is_Generic_Type (T)
10486 or else
10487 Is_Generic_Type (UT)
10488 or else
10489 Is_Generic_Type (Root_Type (UT))
10490 then
10491 return;
67278d60 10492
d9f6a4ee 10493 -- Guard against previous errors
67278d60 10494
d9f6a4ee 10495 elsif No (UT) or else UT = Any_Type then
10496 Check_Error_Detected;
10497 return;
67278d60 10498
d9f6a4ee 10499 -- Check case of bit packed array
67278d60 10500
d9f6a4ee 10501 elsif Is_Array_Type (UT)
10502 and then Known_Static_Component_Size (UT)
10503 and then Is_Bit_Packed_Array (UT)
10504 then
10505 declare
10506 Asiz : Uint;
10507 Indx : Node_Id;
10508 Ityp : Entity_Id;
67278d60 10509
d9f6a4ee 10510 begin
10511 Asiz := Component_Size (UT);
10512 Indx := First_Index (UT);
10513 loop
10514 Ityp := Etype (Indx);
67278d60 10515
d9f6a4ee 10516 -- If non-static bound, then we are not in the business of
10517 -- trying to check the length, and indeed an error will be
10518 -- issued elsewhere, since sizes of non-static array types
10519 -- cannot be set implicitly or explicitly.
67278d60 10520
cda40848 10521 if not Is_OK_Static_Subtype (Ityp) then
d9f6a4ee 10522 return;
10523 end if;
67278d60 10524
d9f6a4ee 10525 -- Otherwise accumulate next dimension
67278d60 10526
d9f6a4ee 10527 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10528 Expr_Value (Type_Low_Bound (Ityp)) +
10529 Uint_1);
67278d60 10530
d9f6a4ee 10531 Next_Index (Indx);
10532 exit when No (Indx);
10533 end loop;
67278d60 10534
d9f6a4ee 10535 if Asiz <= Siz then
10536 return;
67278d60 10537
d9f6a4ee 10538 else
f74a102b 10539 Size_Too_Small_Error (Asiz);
d9f6a4ee 10540 Set_Esize (T, Asiz);
10541 Set_RM_Size (T, Asiz);
10542 end if;
10543 end;
67278d60 10544
d9f6a4ee 10545 -- All other composite types are ignored
67278d60 10546
d9f6a4ee 10547 elsif Is_Composite_Type (UT) then
10548 return;
47495553 10549
d9f6a4ee 10550 -- For fixed-point types, don't check minimum if type is not frozen,
10551 -- since we don't know all the characteristics of the type that can
10552 -- affect the size (e.g. a specified small) till freeze time.
47495553 10553
f74a102b 10554 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
d9f6a4ee 10555 null;
47495553 10556
d9f6a4ee 10557 -- Cases for which a minimum check is required
47495553 10558
d9f6a4ee 10559 else
10560 -- Ignore if specified size is correct for the type
47495553 10561
d9f6a4ee 10562 if Known_Esize (UT) and then Siz = Esize (UT) then
10563 return;
10564 end if;
47495553 10565
d9f6a4ee 10566 -- Otherwise get minimum size
47495553 10567
d9f6a4ee 10568 M := UI_From_Int (Minimum_Size (UT));
47495553 10569
d9f6a4ee 10570 if Siz < M then
47495553 10571
d9f6a4ee 10572 -- Size is less than minimum size, but one possibility remains
10573 -- that we can manage with the new size if we bias the type.
47495553 10574
d9f6a4ee 10575 M := UI_From_Int (Minimum_Size (UT, Biased => True));
47495553 10576
d9f6a4ee 10577 if Siz < M then
f74a102b 10578 Size_Too_Small_Error (M);
10579 Set_Esize (T, M);
d9f6a4ee 10580 Set_RM_Size (T, M);
10581 else
10582 Biased := True;
10583 end if;
10584 end if;
10585 end if;
10586 end Check_Size;
47495553 10587
d9f6a4ee 10588 --------------------------
10589 -- Freeze_Entity_Checks --
10590 --------------------------
47495553 10591
d9f6a4ee 10592 procedure Freeze_Entity_Checks (N : Node_Id) is
8cf481c9 10593 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10594 -- Inspect the primitive operations of type Typ and hide all pairs of
3118058b 10595 -- implicitly declared non-overridden non-fully conformant homographs
10596 -- (Ada RM 8.3 12.3/2).
8cf481c9 10597
10598 -------------------------------------
10599 -- Hide_Non_Overridden_Subprograms --
10600 -------------------------------------
10601
10602 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10603 procedure Hide_Matching_Homographs
10604 (Subp_Id : Entity_Id;
10605 Start_Elmt : Elmt_Id);
10606 -- Inspect a list of primitive operations starting with Start_Elmt
3118058b 10607 -- and find matching implicitly declared non-overridden non-fully
10608 -- conformant homographs of Subp_Id. If found, all matches along
10609 -- with Subp_Id are hidden from all visibility.
8cf481c9 10610
10611 function Is_Non_Overridden_Or_Null_Procedure
10612 (Subp_Id : Entity_Id) return Boolean;
10613 -- Determine whether subprogram Subp_Id is implicitly declared non-
10614 -- overridden subprogram or an implicitly declared null procedure.
10615
10616 ------------------------------
10617 -- Hide_Matching_Homographs --
10618 ------------------------------
10619
10620 procedure Hide_Matching_Homographs
10621 (Subp_Id : Entity_Id;
10622 Start_Elmt : Elmt_Id)
10623 is
10624 Prim : Entity_Id;
10625 Prim_Elmt : Elmt_Id;
10626
10627 begin
10628 Prim_Elmt := Start_Elmt;
10629 while Present (Prim_Elmt) loop
10630 Prim := Node (Prim_Elmt);
10631
10632 -- The current primitive is implicitly declared non-overridden
3118058b 10633 -- non-fully conformant homograph of Subp_Id. Both subprograms
10634 -- must be hidden from visibility.
8cf481c9 10635
10636 if Chars (Prim) = Chars (Subp_Id)
8cf481c9 10637 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
3118058b 10638 and then not Fully_Conformant (Prim, Subp_Id)
8cf481c9 10639 then
8c7ee4ac 10640 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10641 Set_Is_Immediately_Visible (Prim, False);
10642 Set_Is_Potentially_Use_Visible (Prim, False);
8cf481c9 10643
8c7ee4ac 10644 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10645 Set_Is_Immediately_Visible (Subp_Id, False);
10646 Set_Is_Potentially_Use_Visible (Subp_Id, False);
8cf481c9 10647 end if;
10648
10649 Next_Elmt (Prim_Elmt);
10650 end loop;
10651 end Hide_Matching_Homographs;
10652
10653 -----------------------------------------
10654 -- Is_Non_Overridden_Or_Null_Procedure --
10655 -----------------------------------------
10656
10657 function Is_Non_Overridden_Or_Null_Procedure
10658 (Subp_Id : Entity_Id) return Boolean
10659 is
10660 Alias_Id : Entity_Id;
10661
10662 begin
10663 -- The subprogram is inherited (implicitly declared), it does not
10664 -- override and does not cover a primitive of an interface.
10665
10666 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10667 and then Present (Alias (Subp_Id))
10668 and then No (Interface_Alias (Subp_Id))
10669 and then No (Overridden_Operation (Subp_Id))
10670 then
10671 Alias_Id := Alias (Subp_Id);
10672
10673 if Requires_Overriding (Alias_Id) then
10674 return True;
10675
10676 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10677 and then Null_Present (Parent (Alias_Id))
10678 then
10679 return True;
10680 end if;
10681 end if;
10682
10683 return False;
10684 end Is_Non_Overridden_Or_Null_Procedure;
10685
10686 -- Local variables
10687
10688 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10689 Prim : Entity_Id;
10690 Prim_Elmt : Elmt_Id;
10691
10692 -- Start of processing for Hide_Non_Overridden_Subprograms
10693
10694 begin
3118058b 10695 -- Inspect the list of primitives looking for non-overridden
10696 -- subprograms.
8cf481c9 10697
10698 if Present (Prim_Ops) then
10699 Prim_Elmt := First_Elmt (Prim_Ops);
10700 while Present (Prim_Elmt) loop
10701 Prim := Node (Prim_Elmt);
10702 Next_Elmt (Prim_Elmt);
10703
10704 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10705 Hide_Matching_Homographs
10706 (Subp_Id => Prim,
10707 Start_Elmt => Prim_Elmt);
10708 end if;
10709 end loop;
10710 end if;
10711 end Hide_Non_Overridden_Subprograms;
10712
97c23bbe 10713 -- Local variables
8cf481c9 10714
d9f6a4ee 10715 E : constant Entity_Id := Entity (N);
47495553 10716
d9f6a4ee 10717 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10718 -- True in non-generic case. Some of the processing here is skipped
10719 -- for the generic case since it is not needed. Basically in the
10720 -- generic case, we only need to do stuff that might generate error
10721 -- messages or warnings.
8cf481c9 10722
10723 -- Start of processing for Freeze_Entity_Checks
10724
d9f6a4ee 10725 begin
10726 -- Remember that we are processing a freezing entity. Required to
10727 -- ensure correct decoration of internal entities associated with
10728 -- interfaces (see New_Overloaded_Entity).
47495553 10729
d9f6a4ee 10730 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
47495553 10731
d9f6a4ee 10732 -- For tagged types covering interfaces add internal entities that link
10733 -- the primitives of the interfaces with the primitives that cover them.
10734 -- Note: These entities were originally generated only when generating
10735 -- code because their main purpose was to provide support to initialize
10736 -- the secondary dispatch tables. They are now generated also when
10737 -- compiling with no code generation to provide ASIS the relationship
10738 -- between interface primitives and tagged type primitives. They are
10739 -- also used to locate primitives covering interfaces when processing
10740 -- generics (see Derive_Subprograms).
47495553 10741
d9f6a4ee 10742 -- This is not needed in the generic case
47495553 10743
d9f6a4ee 10744 if Ada_Version >= Ada_2005
10745 and then Non_Generic_Case
10746 and then Ekind (E) = E_Record_Type
10747 and then Is_Tagged_Type (E)
10748 and then not Is_Interface (E)
10749 and then Has_Interfaces (E)
10750 then
10751 -- This would be a good common place to call the routine that checks
10752 -- overriding of interface primitives (and thus factorize calls to
10753 -- Check_Abstract_Overriding located at different contexts in the
10754 -- compiler). However, this is not possible because it causes
10755 -- spurious errors in case of late overriding.
47495553 10756
d9f6a4ee 10757 Add_Internal_Interface_Entities (E);
10758 end if;
47495553 10759
8cf481c9 10760 -- After all forms of overriding have been resolved, a tagged type may
10761 -- be left with a set of implicitly declared and possibly erroneous
10762 -- abstract subprograms, null procedures and subprograms that require
0c4e0575 10763 -- overriding. If this set contains fully conformant homographs, then
10764 -- one is chosen arbitrarily (already done during resolution), otherwise
10765 -- all remaining non-fully conformant homographs are hidden from
10766 -- visibility (Ada RM 8.3 12.3/2).
8cf481c9 10767
10768 if Is_Tagged_Type (E) then
10769 Hide_Non_Overridden_Subprograms (E);
10770 end if;
10771
d9f6a4ee 10772 -- Check CPP types
47495553 10773
d9f6a4ee 10774 if Ekind (E) = E_Record_Type
10775 and then Is_CPP_Class (E)
10776 and then Is_Tagged_Type (E)
10777 and then Tagged_Type_Expansion
d9f6a4ee 10778 then
10779 if CPP_Num_Prims (E) = 0 then
47495553 10780
d9f6a4ee 10781 -- If the CPP type has user defined components then it must import
10782 -- primitives from C++. This is required because if the C++ class
10783 -- has no primitives then the C++ compiler does not added the _tag
10784 -- component to the type.
47495553 10785
d9f6a4ee 10786 if First_Entity (E) /= Last_Entity (E) then
10787 Error_Msg_N
10788 ("'C'P'P type must import at least one primitive from C++??",
10789 E);
10790 end if;
10791 end if;
47495553 10792
d9f6a4ee 10793 -- Check that all its primitives are abstract or imported from C++.
10794 -- Check also availability of the C++ constructor.
47495553 10795
d9f6a4ee 10796 declare
10797 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10798 Elmt : Elmt_Id;
10799 Error_Reported : Boolean := False;
10800 Prim : Node_Id;
47495553 10801
d9f6a4ee 10802 begin
10803 Elmt := First_Elmt (Primitive_Operations (E));
10804 while Present (Elmt) loop
10805 Prim := Node (Elmt);
47495553 10806
d9f6a4ee 10807 if Comes_From_Source (Prim) then
10808 if Is_Abstract_Subprogram (Prim) then
10809 null;
47495553 10810
d9f6a4ee 10811 elsif not Is_Imported (Prim)
10812 or else Convention (Prim) /= Convention_CPP
10813 then
10814 Error_Msg_N
10815 ("primitives of 'C'P'P types must be imported from C++ "
10816 & "or abstract??", Prim);
47495553 10817
d9f6a4ee 10818 elsif not Has_Constructors
10819 and then not Error_Reported
10820 then
10821 Error_Msg_Name_1 := Chars (E);
10822 Error_Msg_N
10823 ("??'C'P'P constructor required for type %", Prim);
10824 Error_Reported := True;
10825 end if;
10826 end if;
47495553 10827
d9f6a4ee 10828 Next_Elmt (Elmt);
10829 end loop;
10830 end;
10831 end if;
47495553 10832
d9f6a4ee 10833 -- Check Ada derivation of CPP type
47495553 10834
30ab103b 10835 if Expander_Active -- why? losing errors in -gnatc mode???
10836 and then Present (Etype (E)) -- defend against errors
d9f6a4ee 10837 and then Tagged_Type_Expansion
10838 and then Ekind (E) = E_Record_Type
10839 and then Etype (E) /= E
10840 and then Is_CPP_Class (Etype (E))
10841 and then CPP_Num_Prims (Etype (E)) > 0
10842 and then not Is_CPP_Class (E)
10843 and then not Has_CPP_Constructors (Etype (E))
10844 then
10845 -- If the parent has C++ primitives but it has no constructor then
10846 -- check that all the primitives are overridden in this derivation;
10847 -- otherwise the constructor of the parent is needed to build the
10848 -- dispatch table.
47495553 10849
d9f6a4ee 10850 declare
10851 Elmt : Elmt_Id;
10852 Prim : Node_Id;
47495553 10853
10854 begin
d9f6a4ee 10855 Elmt := First_Elmt (Primitive_Operations (E));
10856 while Present (Elmt) loop
10857 Prim := Node (Elmt);
47495553 10858
d9f6a4ee 10859 if not Is_Abstract_Subprogram (Prim)
10860 and then No (Interface_Alias (Prim))
10861 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
47495553 10862 then
d9f6a4ee 10863 Error_Msg_Name_1 := Chars (Etype (E));
10864 Error_Msg_N
10865 ("'C'P'P constructor required for parent type %", E);
10866 exit;
47495553 10867 end if;
d9f6a4ee 10868
10869 Next_Elmt (Elmt);
10870 end loop;
10871 end;
47495553 10872 end if;
10873
d9f6a4ee 10874 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
67278d60 10875
97c23bbe 10876 -- If we have a type with predicates, build predicate function. This is
10877 -- not needed in the generic case, nor within TSS subprograms and other
10878 -- predefined primitives.
67278d60 10879
97c23bbe 10880 if Is_Type (E)
10881 and then Non_Generic_Case
ea822fd4 10882 and then not Within_Internal_Subprogram
97c23bbe 10883 and then Has_Predicates (E)
ea822fd4 10884 then
d9f6a4ee 10885 Build_Predicate_Functions (E, N);
10886 end if;
67278d60 10887
d9f6a4ee 10888 -- If type has delayed aspects, this is where we do the preanalysis at
10889 -- the freeze point, as part of the consistent visibility check. Note
10890 -- that this must be done after calling Build_Predicate_Functions or
10891 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10892 -- the subtype name in the saved expression so that they will not cause
10893 -- trouble in the preanalysis.
67278d60 10894
61989dbb 10895 -- This is also not needed in the generic case
d9f6a4ee 10896
61989dbb 10897 if Non_Generic_Case
10898 and then Has_Delayed_Aspects (E)
d9f6a4ee 10899 and then Scope (E) = Current_Scope
10900 then
10901 -- Retrieve the visibility to the discriminants in order to properly
10902 -- analyze the aspects.
10903
10904 Push_Scope_And_Install_Discriminants (E);
10905
10906 declare
10907 Ritem : Node_Id;
10908
10909 begin
10910 -- Look for aspect specification entries for this entity
67278d60 10911
d9f6a4ee 10912 Ritem := First_Rep_Item (E);
10913 while Present (Ritem) loop
10914 if Nkind (Ritem) = N_Aspect_Specification
10915 and then Entity (Ritem) = E
10916 and then Is_Delayed_Aspect (Ritem)
10917 then
10918 Check_Aspect_At_Freeze_Point (Ritem);
10919 end if;
67278d60 10920
d9f6a4ee 10921 Next_Rep_Item (Ritem);
10922 end loop;
10923 end;
67278d60 10924
d9f6a4ee 10925 Uninstall_Discriminants_And_Pop_Scope (E);
67278d60 10926 end if;
67278d60 10927
d9f6a4ee 10928 -- For a record type, deal with variant parts. This has to be delayed
d0988351 10929 -- to this point, because of the issue of statically predicated
d9f6a4ee 10930 -- subtypes, which we have to ensure are frozen before checking
10931 -- choices, since we need to have the static choice list set.
d6f39728 10932
d9f6a4ee 10933 if Is_Record_Type (E) then
10934 Check_Variant_Part : declare
10935 D : constant Node_Id := Declaration_Node (E);
10936 T : Node_Id;
10937 C : Node_Id;
10938 VP : Node_Id;
d6f39728 10939
d9f6a4ee 10940 Others_Present : Boolean;
10941 pragma Warnings (Off, Others_Present);
10942 -- Indicates others present, not used in this case
d6f39728 10943
d9f6a4ee 10944 procedure Non_Static_Choice_Error (Choice : Node_Id);
10945 -- Error routine invoked by the generic instantiation below when
10946 -- the variant part has a non static choice.
f117057b 10947
d9f6a4ee 10948 procedure Process_Declarations (Variant : Node_Id);
10949 -- Processes declarations associated with a variant. We analyzed
10950 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10951 -- but we still need the recursive call to Check_Choices for any
10952 -- nested variant to get its choices properly processed. This is
10953 -- also where we expand out the choices if expansion is active.
1f526845 10954
d9f6a4ee 10955 package Variant_Choices_Processing is new
10956 Generic_Check_Choices
10957 (Process_Empty_Choice => No_OP,
10958 Process_Non_Static_Choice => Non_Static_Choice_Error,
10959 Process_Associated_Node => Process_Declarations);
10960 use Variant_Choices_Processing;
f117057b 10961
d9f6a4ee 10962 -----------------------------
10963 -- Non_Static_Choice_Error --
10964 -----------------------------
d6f39728 10965
d9f6a4ee 10966 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10967 begin
10968 Flag_Non_Static_Expr
10969 ("choice given in variant part is not static!", Choice);
10970 end Non_Static_Choice_Error;
d6f39728 10971
d9f6a4ee 10972 --------------------------
10973 -- Process_Declarations --
10974 --------------------------
dba36b60 10975
d9f6a4ee 10976 procedure Process_Declarations (Variant : Node_Id) is
10977 CL : constant Node_Id := Component_List (Variant);
10978 VP : Node_Id;
dba36b60 10979
d9f6a4ee 10980 begin
10981 -- Check for static predicate present in this variant
ea61a7ea 10982
d9f6a4ee 10983 if Has_SP_Choice (Variant) then
ea61a7ea 10984
d9f6a4ee 10985 -- Here we expand. You might expect to find this call in
10986 -- Expand_N_Variant_Part, but that is called when we first
10987 -- see the variant part, and we cannot do this expansion
10988 -- earlier than the freeze point, since for statically
10989 -- predicated subtypes, the predicate is not known till
10990 -- the freeze point.
ea61a7ea 10991
d9f6a4ee 10992 -- Furthermore, we do this expansion even if the expander
10993 -- is not active, because other semantic processing, e.g.
10994 -- for aggregates, requires the expanded list of choices.
ea61a7ea 10995
d9f6a4ee 10996 -- If the expander is not active, then we can't just clobber
10997 -- the list since it would invalidate the ASIS -gnatct tree.
10998 -- So we have to rewrite the variant part with a Rewrite
10999 -- call that replaces it with a copy and clobber the copy.
11000
11001 if not Expander_Active then
11002 declare
11003 NewV : constant Node_Id := New_Copy (Variant);
11004 begin
11005 Set_Discrete_Choices
11006 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11007 Rewrite (Variant, NewV);
11008 end;
11009 end if;
11010
11011 Expand_Static_Predicates_In_Choices (Variant);
ea61a7ea 11012 end if;
11013
d9f6a4ee 11014 -- We don't need to worry about the declarations in the variant
11015 -- (since they were analyzed by Analyze_Choices when we first
11016 -- encountered the variant), but we do need to take care of
11017 -- expansion of any nested variants.
ea61a7ea 11018
d9f6a4ee 11019 if not Null_Present (CL) then
11020 VP := Variant_Part (CL);
ea61a7ea 11021
d9f6a4ee 11022 if Present (VP) then
11023 Check_Choices
11024 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11025 end if;
11026 end if;
11027 end Process_Declarations;
ea61a7ea 11028
d9f6a4ee 11029 -- Start of processing for Check_Variant_Part
b9e61b2a 11030
d9f6a4ee 11031 begin
11032 -- Find component list
ea61a7ea 11033
d9f6a4ee 11034 C := Empty;
ea61a7ea 11035
d9f6a4ee 11036 if Nkind (D) = N_Full_Type_Declaration then
11037 T := Type_Definition (D);
ea61a7ea 11038
d9f6a4ee 11039 if Nkind (T) = N_Record_Definition then
11040 C := Component_List (T);
d6f39728 11041
d9f6a4ee 11042 elsif Nkind (T) = N_Derived_Type_Definition
11043 and then Present (Record_Extension_Part (T))
11044 then
11045 C := Component_List (Record_Extension_Part (T));
11046 end if;
11047 end if;
d6f39728 11048
d9f6a4ee 11049 -- Case of variant part present
d6f39728 11050
d9f6a4ee 11051 if Present (C) and then Present (Variant_Part (C)) then
11052 VP := Variant_Part (C);
ea61a7ea 11053
d9f6a4ee 11054 -- Check choices
ea61a7ea 11055
d9f6a4ee 11056 Check_Choices
11057 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
ea61a7ea 11058
d9f6a4ee 11059 -- If the last variant does not contain the Others choice,
11060 -- replace it with an N_Others_Choice node since Gigi always
11061 -- wants an Others. Note that we do not bother to call Analyze
11062 -- on the modified variant part, since its only effect would be
11063 -- to compute the Others_Discrete_Choices node laboriously, and
11064 -- of course we already know the list of choices corresponding
39a0c1d3 11065 -- to the others choice (it's the list we're replacing).
d6f39728 11066
d9f6a4ee 11067 -- We only want to do this if the expander is active, since
39a0c1d3 11068 -- we do not want to clobber the ASIS tree.
d6f39728 11069
d9f6a4ee 11070 if Expander_Active then
11071 declare
11072 Last_Var : constant Node_Id :=
11073 Last_Non_Pragma (Variants (VP));
d6f39728 11074
d9f6a4ee 11075 Others_Node : Node_Id;
d6f39728 11076
d9f6a4ee 11077 begin
11078 if Nkind (First (Discrete_Choices (Last_Var))) /=
11079 N_Others_Choice
11080 then
11081 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11082 Set_Others_Discrete_Choices
11083 (Others_Node, Discrete_Choices (Last_Var));
11084 Set_Discrete_Choices
11085 (Last_Var, New_List (Others_Node));
11086 end if;
11087 end;
11088 end if;
d6f39728 11089 end if;
d9f6a4ee 11090 end Check_Variant_Part;
d6f39728 11091 end if;
d9f6a4ee 11092 end Freeze_Entity_Checks;
d6f39728 11093
11094 -------------------------
11095 -- Get_Alignment_Value --
11096 -------------------------
11097
11098 function Get_Alignment_Value (Expr : Node_Id) return Uint is
f5d97bf5 11099 Align : constant Uint := Static_Integer (Expr);
f74a102b 11100
f5d97bf5 11101 begin
11102 if Align = No_Uint then
11103 return No_Uint;
11104
11105 elsif Align <= 0 then
f74a102b 11106
f74a102b 11107 -- This error is suppressed in ASIS mode to allow for different ASIS
f9906591 11108 -- back ends or ASIS-based tools to query the illegal clause.
f74a102b 11109
11110 if not ASIS_Mode then
11111 Error_Msg_N ("alignment value must be positive", Expr);
11112 end if;
f74a102b 11113
d6f39728 11114 return No_Uint;
11115
11116 else
11117 for J in Int range 0 .. 64 loop
11118 declare
11119 M : constant Uint := Uint_2 ** J;
11120
11121 begin
11122 exit when M = Align;
11123
11124 if M > Align then
f5d97bf5 11125
11126 -- This error is suppressed in ASIS mode to allow for
f9906591 11127 -- different ASIS back ends or ASIS-based tools to query the
f5d97bf5 11128 -- illegal clause.
11129
11130 if not ASIS_Mode then
11131 Error_Msg_N ("alignment value must be power of 2", Expr);
11132 end if;
11133
d6f39728 11134 return No_Uint;
11135 end if;
11136 end;
11137 end loop;
11138
11139 return Align;
11140 end if;
11141 end Get_Alignment_Value;
11142
ee2b7923 11143 -----------------------------
11144 -- Get_Interfacing_Aspects --
11145 -----------------------------
11146
11147 procedure Get_Interfacing_Aspects
11148 (Iface_Asp : Node_Id;
11149 Conv_Asp : out Node_Id;
11150 EN_Asp : out Node_Id;
11151 Expo_Asp : out Node_Id;
11152 Imp_Asp : out Node_Id;
11153 LN_Asp : out Node_Id;
11154 Do_Checks : Boolean := False)
11155 is
11156 procedure Save_Or_Duplication_Error
11157 (Asp : Node_Id;
11158 To : in out Node_Id);
11159 -- Save the value of aspect Asp in node To. If To already has a value,
11160 -- then this is considered a duplicate use of aspect. Emit an error if
11161 -- flag Do_Checks is set.
11162
11163 -------------------------------
11164 -- Save_Or_Duplication_Error --
11165 -------------------------------
11166
11167 procedure Save_Or_Duplication_Error
11168 (Asp : Node_Id;
11169 To : in out Node_Id)
11170 is
11171 begin
11172 -- Detect an extra aspect and issue an error
11173
11174 if Present (To) then
11175 if Do_Checks then
11176 Error_Msg_Name_1 := Chars (Identifier (Asp));
11177 Error_Msg_Sloc := Sloc (To);
11178 Error_Msg_N ("aspect % previously given #", Asp);
11179 end if;
11180
11181 -- Otherwise capture the aspect
11182
11183 else
11184 To := Asp;
11185 end if;
11186 end Save_Or_Duplication_Error;
11187
11188 -- Local variables
11189
11190 Asp : Node_Id;
11191 Asp_Id : Aspect_Id;
11192
11193 -- The following variables capture each individual aspect
11194
11195 Conv : Node_Id := Empty;
11196 EN : Node_Id := Empty;
11197 Expo : Node_Id := Empty;
11198 Imp : Node_Id := Empty;
11199 LN : Node_Id := Empty;
11200
11201 -- Start of processing for Get_Interfacing_Aspects
11202
11203 begin
11204 -- The input interfacing aspect should reside in an aspect specification
11205 -- list.
11206
11207 pragma Assert (Is_List_Member (Iface_Asp));
11208
11209 -- Examine the aspect specifications of the related entity. Find and
11210 -- capture all interfacing aspects. Detect duplicates and emit errors
11211 -- if applicable.
11212
11213 Asp := First (List_Containing (Iface_Asp));
11214 while Present (Asp) loop
11215 Asp_Id := Get_Aspect_Id (Asp);
11216
11217 if Asp_Id = Aspect_Convention then
11218 Save_Or_Duplication_Error (Asp, Conv);
11219
11220 elsif Asp_Id = Aspect_External_Name then
11221 Save_Or_Duplication_Error (Asp, EN);
11222
11223 elsif Asp_Id = Aspect_Export then
11224 Save_Or_Duplication_Error (Asp, Expo);
11225
11226 elsif Asp_Id = Aspect_Import then
11227 Save_Or_Duplication_Error (Asp, Imp);
11228
11229 elsif Asp_Id = Aspect_Link_Name then
11230 Save_Or_Duplication_Error (Asp, LN);
11231 end if;
11232
11233 Next (Asp);
11234 end loop;
11235
11236 Conv_Asp := Conv;
11237 EN_Asp := EN;
11238 Expo_Asp := Expo;
11239 Imp_Asp := Imp;
11240 LN_Asp := LN;
11241 end Get_Interfacing_Aspects;
11242
99a2d5bd 11243 -------------------------------------
11244 -- Inherit_Aspects_At_Freeze_Point --
11245 -------------------------------------
11246
11247 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11248 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11249 (Rep_Item : Node_Id) return Boolean;
11250 -- This routine checks if Rep_Item is either a pragma or an aspect
11251 -- specification node whose correponding pragma (if any) is present in
11252 -- the Rep Item chain of the entity it has been specified to.
11253
11254 --------------------------------------------------
11255 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11256 --------------------------------------------------
11257
11258 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11259 (Rep_Item : Node_Id) return Boolean
11260 is
11261 begin
ec6f6da5 11262 return
11263 Nkind (Rep_Item) = N_Pragma
11264 or else Present_In_Rep_Item
11265 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
99a2d5bd 11266 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11267
29a9d4be 11268 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11269
99a2d5bd 11270 begin
11271 -- A representation item is either subtype-specific (Size and Alignment
11272 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 11273 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 11274
11275 -- A derived type inherits each type-related representation aspect of
11276 -- its parent type that was directly specified before the declaration of
29a9d4be 11277 -- the derived type (RM 13.1.15).
99a2d5bd 11278
11279 -- A derived subtype inherits each subtype-specific representation
11280 -- aspect of its parent subtype that was directly specified before the
29a9d4be 11281 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 11282
11283 -- The general processing involves inheriting a representation aspect
11284 -- from a parent type whenever the first rep item (aspect specification,
11285 -- attribute definition clause, pragma) corresponding to the given
11286 -- representation aspect in the rep item chain of Typ, if any, isn't
11287 -- directly specified to Typ but to one of its parents.
11288
11289 -- ??? Note that, for now, just a limited number of representation
29a9d4be 11290 -- aspects have been inherited here so far. Many of them are
11291 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11292 -- a non- exhaustive list of aspects that likely also need to
11293 -- be moved to this routine: Alignment, Component_Alignment,
11294 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 11295 -- Preelaborable_Initialization, RM_Size and Small.
11296
8b6e9bf2 11297 -- In addition, Convention must be propagated from base type to subtype,
11298 -- because the subtype may have been declared on an incomplete view.
11299
99a2d5bd 11300 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11301 return;
11302 end if;
11303
11304 -- Ada_05/Ada_2005
11305
11306 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11307 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11308 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11309 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11310 then
11311 Set_Is_Ada_2005_Only (Typ);
11312 end if;
11313
11314 -- Ada_12/Ada_2012
11315
11316 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11317 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11318 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11319 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11320 then
11321 Set_Is_Ada_2012_Only (Typ);
11322 end if;
11323
11324 -- Atomic/Shared
11325
11326 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11327 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11328 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11329 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11330 then
11331 Set_Is_Atomic (Typ);
99a2d5bd 11332 Set_Is_Volatile (Typ);
4bf2acc9 11333 Set_Treat_As_Volatile (Typ);
99a2d5bd 11334 end if;
11335
8b6e9bf2 11336 -- Convention
11337
7ac4254e 11338 if Is_Record_Type (Typ)
11339 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11340 then
8b6e9bf2 11341 Set_Convention (Typ, Convention (Base_Type (Typ)));
11342 end if;
11343
29a9d4be 11344 -- Default_Component_Value
99a2d5bd 11345
81c2bc19 11346 -- Verify that there is no rep_item declared for the type, and there
11347 -- is one coming from an ancestor.
11348
99a2d5bd 11349 if Is_Array_Type (Typ)
f3d70f08 11350 and then Is_Base_Type (Typ)
81c2bc19 11351 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
99a2d5bd 11352 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11353 then
11354 Set_Default_Aspect_Component_Value (Typ,
11355 Default_Aspect_Component_Value
11356 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11357 end if;
11358
29a9d4be 11359 -- Default_Value
99a2d5bd 11360
11361 if Is_Scalar_Type (Typ)
f3d70f08 11362 and then Is_Base_Type (Typ)
81c2bc19 11363 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
99a2d5bd 11364 and then Has_Rep_Item (Typ, Name_Default_Value)
11365 then
81c2bc19 11366 Set_Has_Default_Aspect (Typ);
99a2d5bd 11367 Set_Default_Aspect_Value (Typ,
11368 Default_Aspect_Value
11369 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11370 end if;
11371
11372 -- Discard_Names
11373
11374 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11375 and then Has_Rep_Item (Typ, Name_Discard_Names)
11376 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11377 (Get_Rep_Item (Typ, Name_Discard_Names))
11378 then
11379 Set_Discard_Names (Typ);
11380 end if;
11381
99a2d5bd 11382 -- Volatile
11383
11384 if not Has_Rep_Item (Typ, Name_Volatile, False)
11385 and then Has_Rep_Item (Typ, Name_Volatile)
11386 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11387 (Get_Rep_Item (Typ, Name_Volatile))
11388 then
99a2d5bd 11389 Set_Is_Volatile (Typ);
4bf2acc9 11390 Set_Treat_As_Volatile (Typ);
99a2d5bd 11391 end if;
11392
2fe893b9 11393 -- Volatile_Full_Access
11394
11395 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11396 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11397 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11398 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11399 then
4bf2acc9 11400 Set_Is_Volatile_Full_Access (Typ);
2fe893b9 11401 Set_Is_Volatile (Typ);
4bf2acc9 11402 Set_Treat_As_Volatile (Typ);
2fe893b9 11403 end if;
11404
99a2d5bd 11405 -- Inheritance for derived types only
11406
11407 if Is_Derived_Type (Typ) then
11408 declare
11409 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11410 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11411
11412 begin
11413 -- Atomic_Components
11414
11415 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11416 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11417 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11418 (Get_Rep_Item (Typ, Name_Atomic_Components))
11419 then
11420 Set_Has_Atomic_Components (Imp_Bas_Typ);
11421 end if;
11422
11423 -- Volatile_Components
11424
11425 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11426 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11427 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11428 (Get_Rep_Item (Typ, Name_Volatile_Components))
11429 then
11430 Set_Has_Volatile_Components (Imp_Bas_Typ);
11431 end if;
11432
e81df51c 11433 -- Finalize_Storage_Only
99a2d5bd 11434
11435 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11436 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11437 then
11438 Set_Finalize_Storage_Only (Bas_Typ);
11439 end if;
11440
11441 -- Universal_Aliasing
11442
11443 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11444 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11445 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11446 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11447 then
11448 Set_Universal_Aliasing (Imp_Bas_Typ);
11449 end if;
11450
e81df51c 11451 -- Bit_Order
99a2d5bd 11452
11453 if Is_Record_Type (Typ) then
99a2d5bd 11454 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11455 and then Has_Rep_Item (Typ, Name_Bit_Order)
11456 then
11457 Set_Reverse_Bit_Order (Bas_Typ,
11458 Reverse_Bit_Order (Entity (Name
11459 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11460 end if;
e81df51c 11461 end if;
11462
e9218716 11463 -- Scalar_Storage_Order
11464
11465 -- Note: the aspect is specified on a first subtype, but recorded
11466 -- in a flag of the base type!
e81df51c 11467
11468 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
29b91bc7 11469 and then Typ = Bas_Typ
e81df51c 11470 then
e81df51c 11471 -- For a type extension, always inherit from parent; otherwise
11472 -- inherit if no default applies. Note: we do not check for
11473 -- an explicit rep item on the parent type when inheriting,
11474 -- because the parent SSO may itself have been set by default.
99a2d5bd 11475
e9218716 11476 if not Has_Rep_Item (First_Subtype (Typ),
11477 Name_Scalar_Storage_Order, False)
e81df51c 11478 and then (Is_Tagged_Type (Bas_Typ)
29b91bc7 11479 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11480 or else
11481 SSO_Set_High_By_Default (Bas_Typ)))
99a2d5bd 11482 then
11483 Set_Reverse_Storage_Order (Bas_Typ,
423b89fd 11484 Reverse_Storage_Order
11485 (Implementation_Base_Type (Etype (Bas_Typ))));
b64082f2 11486
11487 -- Clear default SSO indications, since the inherited aspect
11488 -- which was set explicitly overrides the default.
11489
11490 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11491 Set_SSO_Set_High_By_Default (Bas_Typ, False);
99a2d5bd 11492 end if;
11493 end if;
11494 end;
11495 end if;
11496 end Inherit_Aspects_At_Freeze_Point;
11497
d6f39728 11498 ----------------
11499 -- Initialize --
11500 ----------------
11501
11502 procedure Initialize is
11503 begin
7717ea00 11504 Address_Clause_Checks.Init;
76a6b7c7 11505 Compile_Time_Warnings_Errors.Init;
d6f39728 11506 Unchecked_Conversions.Init;
dba38d2f 11507
36ac5fbb 11508 if AAMP_On_Target then
dba38d2f 11509 Independence_Checks.Init;
11510 end if;
d6f39728 11511 end Initialize;
11512
2625eb01 11513 ---------------------------
11514 -- Install_Discriminants --
11515 ---------------------------
11516
11517 procedure Install_Discriminants (E : Entity_Id) is
11518 Disc : Entity_Id;
11519 Prev : Entity_Id;
11520 begin
11521 Disc := First_Discriminant (E);
11522 while Present (Disc) loop
11523 Prev := Current_Entity (Disc);
11524 Set_Current_Entity (Disc);
11525 Set_Is_Immediately_Visible (Disc);
11526 Set_Homonym (Disc, Prev);
11527 Next_Discriminant (Disc);
11528 end loop;
11529 end Install_Discriminants;
11530
d6f39728 11531 -------------------------
11532 -- Is_Operational_Item --
11533 -------------------------
11534
11535 function Is_Operational_Item (N : Node_Id) return Boolean is
11536 begin
11537 if Nkind (N) /= N_Attribute_Definition_Clause then
11538 return False;
b9e61b2a 11539
d6f39728 11540 else
11541 declare
b9e61b2a 11542 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 11543 begin
078a74b8 11544
55ab5265 11545 -- List of operational items is given in AARM 13.1(8.mm/1).
078a74b8 11546 -- It is clearly incomplete, as it does not include iterator
11547 -- aspects, among others.
11548
11549 return Id = Attribute_Constant_Indexing
11550 or else Id = Attribute_Default_Iterator
11551 or else Id = Attribute_Implicit_Dereference
11552 or else Id = Attribute_Input
11553 or else Id = Attribute_Iterator_Element
11554 or else Id = Attribute_Iterable
d6f39728 11555 or else Id = Attribute_Output
11556 or else Id = Attribute_Read
078a74b8 11557 or else Id = Attribute_Variable_Indexing
f15731c4 11558 or else Id = Attribute_Write
11559 or else Id = Attribute_External_Tag;
d6f39728 11560 end;
11561 end if;
11562 end Is_Operational_Item;
11563
3b23aaa0 11564 -------------------------
11565 -- Is_Predicate_Static --
11566 -------------------------
11567
94d896aa 11568 -- Note: the basic legality of the expression has already been checked, so
11569 -- we don't need to worry about cases or ranges on strings for example.
11570
3b23aaa0 11571 function Is_Predicate_Static
11572 (Expr : Node_Id;
11573 Nam : Name_Id) return Boolean
11574 is
11575 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
973c2fba 11576 -- Given a list of case expression alternatives, returns True if all
11577 -- the alternatives are static (have all static choices, and a static
11578 -- expression).
3b23aaa0 11579
11580 function All_Static_Choices (L : List_Id) return Boolean;
a360a0f7 11581 -- Returns true if all elements of the list are OK static choices
3b23aaa0 11582 -- as defined below for Is_Static_Choice. Used for case expression
973c2fba 11583 -- alternatives and for the right operand of a membership test. An
11584 -- others_choice is static if the corresponding expression is static.
7c0c95b8 11585 -- The staticness of the bounds is checked separately.
3b23aaa0 11586
11587 function Is_Static_Choice (N : Node_Id) return Boolean;
11588 -- Returns True if N represents a static choice (static subtype, or
a360a0f7 11589 -- static subtype indication, or static expression, or static range).
3b23aaa0 11590 --
11591 -- Note that this is a bit more inclusive than we actually need
11592 -- (in particular membership tests do not allow the use of subtype
a360a0f7 11593 -- indications). But that doesn't matter, we have already checked
3b23aaa0 11594 -- that the construct is legal to get this far.
11595
11596 function Is_Type_Ref (N : Node_Id) return Boolean;
11597 pragma Inline (Is_Type_Ref);
973c2fba 11598 -- Returns True if N is a reference to the type for the predicate in the
11599 -- expression (i.e. if it is an identifier whose Chars field matches the
11600 -- Nam given in the call). N must not be parenthesized, if the type name
11601 -- appears in parens, this routine will return False.
3b23aaa0 11602
11603 ----------------------------------
11604 -- All_Static_Case_Alternatives --
11605 ----------------------------------
11606
11607 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11608 N : Node_Id;
11609
11610 begin
11611 N := First (L);
11612 while Present (N) loop
11613 if not (All_Static_Choices (Discrete_Choices (N))
11614 and then Is_OK_Static_Expression (Expression (N)))
11615 then
11616 return False;
11617 end if;
11618
11619 Next (N);
11620 end loop;
11621
11622 return True;
11623 end All_Static_Case_Alternatives;
11624
11625 ------------------------
11626 -- All_Static_Choices --
11627 ------------------------
11628
11629 function All_Static_Choices (L : List_Id) return Boolean is
11630 N : Node_Id;
11631
11632 begin
11633 N := First (L);
11634 while Present (N) loop
11635 if not Is_Static_Choice (N) then
11636 return False;
11637 end if;
11638
11639 Next (N);
11640 end loop;
11641
11642 return True;
11643 end All_Static_Choices;
11644
11645 ----------------------
11646 -- Is_Static_Choice --
11647 ----------------------
11648
11649 function Is_Static_Choice (N : Node_Id) return Boolean is
11650 begin
7c0c95b8 11651 return Nkind (N) = N_Others_Choice
11652 or else Is_OK_Static_Expression (N)
3b23aaa0 11653 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11654 and then Is_OK_Static_Subtype (Entity (N)))
11655 or else (Nkind (N) = N_Subtype_Indication
11656 and then Is_OK_Static_Subtype (Entity (N)))
11657 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11658 end Is_Static_Choice;
11659
11660 -----------------
11661 -- Is_Type_Ref --
11662 -----------------
11663
11664 function Is_Type_Ref (N : Node_Id) return Boolean is
11665 begin
11666 return Nkind (N) = N_Identifier
11667 and then Chars (N) = Nam
11668 and then Paren_Count (N) = 0;
11669 end Is_Type_Ref;
11670
11671 -- Start of processing for Is_Predicate_Static
11672
11673 begin
3b23aaa0 11674 -- Predicate_Static means one of the following holds. Numbers are the
11675 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11676
11677 -- 16: A static expression
11678
11679 if Is_OK_Static_Expression (Expr) then
11680 return True;
11681
11682 -- 17: A membership test whose simple_expression is the current
11683 -- instance, and whose membership_choice_list meets the requirements
11684 -- for a static membership test.
11685
11686 elsif Nkind (Expr) in N_Membership_Test
11687 and then ((Present (Right_Opnd (Expr))
11688 and then Is_Static_Choice (Right_Opnd (Expr)))
11689 or else
11690 (Present (Alternatives (Expr))
11691 and then All_Static_Choices (Alternatives (Expr))))
11692 then
11693 return True;
11694
11695 -- 18. A case_expression whose selecting_expression is the current
11696 -- instance, and whose dependent expressions are static expressions.
11697
11698 elsif Nkind (Expr) = N_Case_Expression
11699 and then Is_Type_Ref (Expression (Expr))
11700 and then All_Static_Case_Alternatives (Alternatives (Expr))
11701 then
11702 return True;
11703
11704 -- 19. A call to a predefined equality or ordering operator, where one
11705 -- operand is the current instance, and the other is a static
11706 -- expression.
11707
94d896aa 11708 -- Note: the RM is clearly wrong here in not excluding string types.
11709 -- Without this exclusion, we would allow expressions like X > "ABC"
11710 -- to be considered as predicate-static, which is clearly not intended,
11711 -- since the idea is for predicate-static to be a subset of normal
11712 -- static expressions (and "DEF" > "ABC" is not a static expression).
11713
11714 -- However, we do allow internally generated (not from source) equality
11715 -- and inequality operations to be valid on strings (this helps deal
11716 -- with cases where we transform A in "ABC" to A = "ABC).
11717
3b23aaa0 11718 elsif Nkind (Expr) in N_Op_Compare
94d896aa 11719 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11720 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11721 and then not Comes_From_Source (Expr)))
3b23aaa0 11722 and then ((Is_Type_Ref (Left_Opnd (Expr))
11723 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11724 or else
11725 (Is_Type_Ref (Right_Opnd (Expr))
11726 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11727 then
11728 return True;
11729
11730 -- 20. A call to a predefined boolean logical operator, where each
11731 -- operand is predicate-static.
11732
11733 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11734 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11735 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11736 or else
11737 (Nkind (Expr) = N_Op_Not
11738 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11739 then
11740 return True;
11741
11742 -- 21. A short-circuit control form where both operands are
11743 -- predicate-static.
11744
11745 elsif Nkind (Expr) in N_Short_Circuit
11746 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11747 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11748 then
11749 return True;
11750
11751 -- 22. A parenthesized predicate-static expression. This does not
11752 -- require any special test, since we just ignore paren levels in
11753 -- all the cases above.
11754
11755 -- One more test that is an implementation artifact caused by the fact
499918a7 11756 -- that we are analyzing not the original expression, but the generated
3b23aaa0 11757 -- expression in the body of the predicate function. This can include
a360a0f7 11758 -- references to inherited predicates, so that the expression we are
3b23aaa0 11759 -- processing looks like:
11760
75491446 11761 -- xxPredicate (typ (Inns)) and then expression
3b23aaa0 11762
11763 -- Where the call is to a Predicate function for an inherited predicate.
60a4a5af 11764 -- We simply ignore such a call, which could be to either a dynamic or
11765 -- a static predicate. Note that if the parent predicate is dynamic then
11766 -- eventually this type will be marked as dynamic, but you are allowed
11767 -- to specify a static predicate for a subtype which is inheriting a
11768 -- dynamic predicate, so the static predicate validation here ignores
11769 -- the inherited predicate even if it is dynamic.
7db33803 11770 -- In all cases, a static predicate can only apply to a scalar type.
3b23aaa0 11771
11772 elsif Nkind (Expr) = N_Function_Call
11773 and then Is_Predicate_Function (Entity (Name (Expr)))
7db33803 11774 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
3b23aaa0 11775 then
11776 return True;
11777
11778 -- That's an exhaustive list of tests, all other cases are not
a360a0f7 11779 -- predicate-static, so we return False.
3b23aaa0 11780
11781 else
11782 return False;
11783 end if;
11784 end Is_Predicate_Static;
11785
2ff55065 11786 ---------------------
11787 -- Kill_Rep_Clause --
11788 ---------------------
11789
11790 procedure Kill_Rep_Clause (N : Node_Id) is
11791 begin
11792 pragma Assert (Ignore_Rep_Clauses);
360f426f 11793
11794 -- Note: we use Replace rather than Rewrite, because we don't want
11795 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11796 -- rep clause that is being replaced.
11797
4949ddd5 11798 Replace (N, Make_Null_Statement (Sloc (N)));
360f426f 11799
11800 -- The null statement must be marked as not coming from source. This is
37c6552c 11801 -- so that ASIS ignores it, and also the back end does not expect bogus
360f426f 11802 -- "from source" null statements in weird places (e.g. in declarative
11803 -- regions where such null statements are not allowed).
11804
11805 Set_Comes_From_Source (N, False);
2ff55065 11806 end Kill_Rep_Clause;
11807
d6f39728 11808 ------------------
11809 -- Minimum_Size --
11810 ------------------
11811
11812 function Minimum_Size
11813 (T : Entity_Id;
d5b349fa 11814 Biased : Boolean := False) return Nat
d6f39728 11815 is
11816 Lo : Uint := No_Uint;
11817 Hi : Uint := No_Uint;
11818 LoR : Ureal := No_Ureal;
11819 HiR : Ureal := No_Ureal;
11820 LoSet : Boolean := False;
11821 HiSet : Boolean := False;
11822 B : Uint;
11823 S : Nat;
11824 Ancest : Entity_Id;
f15731c4 11825 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 11826
11827 begin
11828 -- If bad type, return 0
11829
11830 if T = Any_Type then
11831 return 0;
11832
11833 -- For generic types, just return zero. There cannot be any legitimate
11834 -- need to know such a size, but this routine may be called with a
11835 -- generic type as part of normal processing.
11836
f02a9a9a 11837 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
d6f39728 11838 return 0;
11839
74c7ae52 11840 -- Access types (cannot have size smaller than System.Address)
d6f39728 11841
11842 elsif Is_Access_Type (T) then
74c7ae52 11843 return System_Address_Size;
d6f39728 11844
11845 -- Floating-point types
11846
11847 elsif Is_Floating_Point_Type (T) then
f15731c4 11848 return UI_To_Int (Esize (R_Typ));
d6f39728 11849
11850 -- Discrete types
11851
11852 elsif Is_Discrete_Type (T) then
11853
fdd294d1 11854 -- The following loop is looking for the nearest compile time known
11855 -- bounds following the ancestor subtype chain. The idea is to find
11856 -- the most restrictive known bounds information.
d6f39728 11857
11858 Ancest := T;
11859 loop
11860 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11861 return 0;
11862 end if;
11863
11864 if not LoSet then
11865 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11866 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11867 LoSet := True;
11868 exit when HiSet;
11869 end if;
11870 end if;
11871
11872 if not HiSet then
11873 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11874 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11875 HiSet := True;
11876 exit when LoSet;
11877 end if;
11878 end if;
11879
11880 Ancest := Ancestor_Subtype (Ancest);
11881
11882 if No (Ancest) then
11883 Ancest := Base_Type (T);
11884
11885 if Is_Generic_Type (Ancest) then
11886 return 0;
11887 end if;
11888 end if;
11889 end loop;
11890
11891 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 11892 -- Corresponding_Integer_Value values of the bounds, since these do not
11893 -- get set till the type is frozen, and this routine can be called
11894 -- before the type is frozen. Similarly the test for bounds being static
11895 -- needs to include the case where we have unanalyzed real literals for
11896 -- the same reason.
d6f39728 11897
11898 elsif Is_Fixed_Point_Type (T) then
11899
fdd294d1 11900 -- The following loop is looking for the nearest compile time known
11901 -- bounds following the ancestor subtype chain. The idea is to find
11902 -- the most restrictive known bounds information.
d6f39728 11903
11904 Ancest := T;
11905 loop
11906 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11907 return 0;
11908 end if;
11909
3062c401 11910 -- Note: In the following two tests for LoSet and HiSet, it may
11911 -- seem redundant to test for N_Real_Literal here since normally
11912 -- one would assume that the test for the value being known at
11913 -- compile time includes this case. However, there is a glitch.
11914 -- If the real literal comes from folding a non-static expression,
11915 -- then we don't consider any non- static expression to be known
11916 -- at compile time if we are in configurable run time mode (needed
11917 -- in some cases to give a clearer definition of what is and what
11918 -- is not accepted). So the test is indeed needed. Without it, we
11919 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11920
d6f39728 11921 if not LoSet then
11922 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11923 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11924 then
11925 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11926 LoSet := True;
11927 exit when HiSet;
11928 end if;
11929 end if;
11930
11931 if not HiSet then
11932 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11933 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11934 then
11935 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11936 HiSet := True;
11937 exit when LoSet;
11938 end if;
11939 end if;
11940
11941 Ancest := Ancestor_Subtype (Ancest);
11942
11943 if No (Ancest) then
11944 Ancest := Base_Type (T);
11945
11946 if Is_Generic_Type (Ancest) then
11947 return 0;
11948 end if;
11949 end if;
11950 end loop;
11951
11952 Lo := UR_To_Uint (LoR / Small_Value (T));
11953 Hi := UR_To_Uint (HiR / Small_Value (T));
11954
11955 -- No other types allowed
11956
11957 else
11958 raise Program_Error;
11959 end if;
11960
2866d595 11961 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 11962
cc46ff4b 11963 if (Biased
11964 and then not Is_Fixed_Point_Type (T)
11965 and then not (Is_Enumeration_Type (T)
11966 and then Has_Non_Standard_Rep (T)))
d6f39728 11967 or else Has_Biased_Representation (T)
11968 then
11969 Hi := Hi - Lo;
11970 Lo := Uint_0;
11971 end if;
11972
005366f7 11973 -- Null range case, size is always zero. We only do this in the discrete
11974 -- type case, since that's the odd case that came up. Probably we should
11975 -- also do this in the fixed-point case, but doing so causes peculiar
11976 -- gigi failures, and it is not worth worrying about this incredibly
11977 -- marginal case (explicit null-range fixed-point type declarations)???
11978
11979 if Lo > Hi and then Is_Discrete_Type (T) then
11980 S := 0;
11981
d6f39728 11982 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 11983 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 11984 -- to be accommodated in the base type.
d6f39728 11985
005366f7 11986 elsif Lo < 0 or else Hi < 0 then
d6f39728 11987 S := 1;
11988 B := Uint_1;
11989
da253936 11990 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11991 -- Note that we accommodate the case where the bounds cross. This
d6f39728 11992 -- can happen either because of the way the bounds are declared
11993 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11994
11995 while Lo < -B
11996 or else Hi < -B
11997 or else Lo >= B
11998 or else Hi >= B
11999 loop
12000 B := Uint_2 ** S;
12001 S := S + 1;
12002 end loop;
12003
12004 -- Unsigned case
12005
12006 else
12007 -- If both bounds are positive, make sure that both are represen-
12008 -- table in the case where the bounds are crossed. This can happen
12009 -- either because of the way the bounds are declared, or because of
12010 -- the algorithm in Freeze_Fixed_Point_Type.
12011
12012 if Lo > Hi then
12013 Hi := Lo;
12014 end if;
12015
da253936 12016 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 12017
12018 S := 0;
12019 while Hi >= Uint_2 ** S loop
12020 S := S + 1;
12021 end loop;
12022 end if;
12023
12024 return S;
12025 end Minimum_Size;
12026
44e4341e 12027 ---------------------------
12028 -- New_Stream_Subprogram --
12029 ---------------------------
d6f39728 12030
44e4341e 12031 procedure New_Stream_Subprogram
12032 (N : Node_Id;
12033 Ent : Entity_Id;
12034 Subp : Entity_Id;
12035 Nam : TSS_Name_Type)
d6f39728 12036 is
12037 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 12038 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 12039 Subp_Id : Entity_Id;
d6f39728 12040 Subp_Decl : Node_Id;
12041 F : Entity_Id;
12042 Etyp : Entity_Id;
12043
44e4341e 12044 Defer_Declaration : constant Boolean :=
12045 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12046 -- For a tagged type, there is a declaration for each stream attribute
12047 -- at the freeze point, and we must generate only a completion of this
12048 -- declaration. We do the same for private types, because the full view
12049 -- might be tagged. Otherwise we generate a declaration at the point of
449c4f58 12050 -- the attribute definition clause. If the attribute definition comes
12051 -- from an aspect specification the declaration is part of the freeze
12052 -- actions of the type.
44e4341e 12053
f15731c4 12054 function Build_Spec return Node_Id;
12055 -- Used for declaration and renaming declaration, so that this is
12056 -- treated as a renaming_as_body.
12057
12058 ----------------
12059 -- Build_Spec --
12060 ----------------
12061
d5b349fa 12062 function Build_Spec return Node_Id is
44e4341e 12063 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12064 Formals : List_Id;
12065 Spec : Node_Id;
83c6c069 12066 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
44e4341e 12067
f15731c4 12068 begin
9dfe12ae 12069 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 12070
44e4341e 12071 -- S : access Root_Stream_Type'Class
12072
12073 Formals := New_List (
12074 Make_Parameter_Specification (Loc,
12075 Defining_Identifier =>
12076 Make_Defining_Identifier (Loc, Name_S),
12077 Parameter_Type =>
12078 Make_Access_Definition (Loc,
12079 Subtype_Mark =>
83c6c069 12080 New_Occurrence_Of (
44e4341e 12081 Designated_Type (Etype (F)), Loc))));
12082
12083 if Nam = TSS_Stream_Input then
4bba0a8d 12084 Spec :=
12085 Make_Function_Specification (Loc,
12086 Defining_Unit_Name => Subp_Id,
12087 Parameter_Specifications => Formals,
12088 Result_Definition => T_Ref);
44e4341e 12089 else
12090 -- V : [out] T
f15731c4 12091
44e4341e 12092 Append_To (Formals,
12093 Make_Parameter_Specification (Loc,
12094 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12095 Out_Present => Out_P,
12096 Parameter_Type => T_Ref));
f15731c4 12097
d3ef794c 12098 Spec :=
12099 Make_Procedure_Specification (Loc,
12100 Defining_Unit_Name => Subp_Id,
12101 Parameter_Specifications => Formals);
44e4341e 12102 end if;
f15731c4 12103
44e4341e 12104 return Spec;
12105 end Build_Spec;
d6f39728 12106
44e4341e 12107 -- Start of processing for New_Stream_Subprogram
d6f39728 12108
44e4341e 12109 begin
12110 F := First_Formal (Subp);
12111
12112 if Ekind (Subp) = E_Procedure then
12113 Etyp := Etype (Next_Formal (F));
d6f39728 12114 else
44e4341e 12115 Etyp := Etype (Subp);
d6f39728 12116 end if;
f15731c4 12117
44e4341e 12118 -- Prepare subprogram declaration and insert it as an action on the
12119 -- clause node. The visibility for this entity is used to test for
12120 -- visibility of the attribute definition clause (in the sense of
12121 -- 8.3(23) as amended by AI-195).
9dfe12ae 12122
44e4341e 12123 if not Defer_Declaration then
f15731c4 12124 Subp_Decl :=
12125 Make_Subprogram_Declaration (Loc,
12126 Specification => Build_Spec);
44e4341e 12127
12128 -- For a tagged type, there is always a visible declaration for each
15ebb600 12129 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 12130 -- completion of this declaration occurs at the freeze point, which is
12131 -- not always visible at places where the attribute definition clause is
12132 -- visible. So, we create a dummy entity here for the purpose of
12133 -- tracking the visibility of the attribute definition clause itself.
12134
12135 else
12136 Subp_Id :=
55868293 12137 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 12138 Subp_Decl :=
12139 Make_Object_Declaration (Loc,
12140 Defining_Identifier => Subp_Id,
12141 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 12142 end if;
12143
449c4f58 12144 if not Defer_Declaration
12145 and then From_Aspect_Specification (N)
12146 and then Has_Delayed_Freeze (Ent)
12147 then
12148 Append_Freeze_Action (Ent, Subp_Decl);
12149
12150 else
12151 Insert_Action (N, Subp_Decl);
12152 Set_Entity (N, Subp_Id);
12153 end if;
44e4341e 12154
d6f39728 12155 Subp_Decl :=
12156 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 12157 Specification => Build_Spec,
8acb75b4 12158 Name => New_Occurrence_Of (Subp, Loc));
d6f39728 12159
44e4341e 12160 if Defer_Declaration then
d6f39728 12161 Set_TSS (Base_Type (Ent), Subp_Id);
449c4f58 12162
d6f39728 12163 else
449c4f58 12164 if From_Aspect_Specification (N) then
12165 Append_Freeze_Action (Ent, Subp_Decl);
449c4f58 12166 else
12167 Insert_Action (N, Subp_Decl);
12168 end if;
12169
d6f39728 12170 Copy_TSS (Subp_Id, Base_Type (Ent));
12171 end if;
44e4341e 12172 end New_Stream_Subprogram;
d6f39728 12173
2625eb01 12174 ------------------------------------------
12175 -- Push_Scope_And_Install_Discriminants --
12176 ------------------------------------------
12177
12178 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12179 begin
12180 if Has_Discriminants (E) then
12181 Push_Scope (E);
12182
97c23bbe 12183 -- Make the discriminants visible for type declarations and protected
2625eb01 12184 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12185
12186 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12187 Install_Discriminants (E);
12188 end if;
12189 end if;
12190 end Push_Scope_And_Install_Discriminants;
12191
d6f39728 12192 ------------------------
12193 -- Rep_Item_Too_Early --
12194 ------------------------
12195
80d4fec4 12196 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 12197 begin
44e4341e 12198 -- Cannot apply non-operational rep items to generic types
d6f39728 12199
f15731c4 12200 if Is_Operational_Item (N) then
12201 return False;
12202
12203 elsif Is_Type (T)
d6f39728 12204 and then Is_Generic_Type (Root_Type (T))
e17c5076 12205 and then (Nkind (N) /= N_Pragma
12206 or else Get_Pragma_Id (N) /= Pragma_Convention)
d6f39728 12207 then
503f7fd3 12208 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 12209 return True;
12210 end if;
12211
fdd294d1 12212 -- Otherwise check for incomplete type
d6f39728 12213
12214 if Is_Incomplete_Or_Private_Type (T)
12215 and then No (Underlying_Type (T))
d64221a7 12216 and then
12217 (Nkind (N) /= N_Pragma
60014bc9 12218 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 12219 then
12220 Error_Msg_N
12221 ("representation item must be after full type declaration", N);
12222 return True;
12223
1a34e48c 12224 -- If the type has incomplete components, a representation clause is
d6f39728 12225 -- illegal but stream attributes and Convention pragmas are correct.
12226
12227 elsif Has_Private_Component (T) then
f15731c4 12228 if Nkind (N) = N_Pragma then
d6f39728 12229 return False;
b9e61b2a 12230
d6f39728 12231 else
12232 Error_Msg_N
12233 ("representation item must appear after type is fully defined",
12234 N);
12235 return True;
12236 end if;
12237 else
12238 return False;
12239 end if;
12240 end Rep_Item_Too_Early;
12241
12242 -----------------------
12243 -- Rep_Item_Too_Late --
12244 -----------------------
12245
12246 function Rep_Item_Too_Late
12247 (T : Entity_Id;
12248 N : Node_Id;
d5b349fa 12249 FOnly : Boolean := False) return Boolean
d6f39728 12250 is
12251 S : Entity_Id;
12252 Parent_Type : Entity_Id;
12253
4d0944e9 12254 procedure No_Type_Rep_Item;
12255 -- Output message indicating that no type-related aspects can be
12256 -- specified due to some property of the parent type.
12257
d6f39728 12258 procedure Too_Late;
4d0944e9 12259 -- Output message for an aspect being specified too late
12260
12261 -- Note that neither of the above errors is considered a serious one,
12262 -- since the effect is simply that we ignore the representation clause
12263 -- in these cases.
04d38ee4 12264 -- Is this really true? In any case if we make this change we must
12265 -- document the requirement in the spec of Rep_Item_Too_Late that
12266 -- if True is returned, then the rep item must be completely ignored???
4d0944e9 12267
12268 ----------------------
12269 -- No_Type_Rep_Item --
12270 ----------------------
12271
12272 procedure No_Type_Rep_Item is
12273 begin
12274 Error_Msg_N ("|type-related representation item not permitted!", N);
12275 end No_Type_Rep_Item;
d53a018a 12276
12277 --------------
12278 -- Too_Late --
12279 --------------
d6f39728 12280
12281 procedure Too_Late is
12282 begin
ce4da1ed 12283 -- Other compilers seem more relaxed about rep items appearing too
12284 -- late. Since analysis tools typically don't care about rep items
12285 -- anyway, no reason to be too strict about this.
12286
a9cd517c 12287 if not Relaxed_RM_Semantics then
12288 Error_Msg_N ("|representation item appears too late!", N);
12289 end if;
d6f39728 12290 end Too_Late;
12291
12292 -- Start of processing for Rep_Item_Too_Late
12293
12294 begin
a3248fc4 12295 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 12296
12297 if Is_Frozen (T)
a3248fc4 12298
12299 -- Exclude imported types, which may be frozen if they appear in a
12300 -- representation clause for a local type.
12301
4aa270d8 12302 and then not From_Limited_With (T)
a3248fc4 12303
a9cd517c 12304 -- Exclude generated entities (not coming from source). The common
a3248fc4 12305 -- case is when we generate a renaming which prematurely freezes the
12306 -- renamed internal entity, but we still want to be able to set copies
12307 -- of attribute values such as Size/Alignment.
12308
12309 and then Comes_From_Source (T)
d6f39728 12310 then
58e133a6 12311 -- A self-referential aspect is illegal if it forces freezing the
12312 -- entity before the corresponding pragma has been analyzed.
12313
12314 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12315 and then From_Aspect_Specification (N)
12316 then
12317 Error_Msg_NE
12318 ("aspect specification causes premature freezing of&", T, N);
12319 Set_Has_Delayed_Freeze (T, False);
12320 return True;
12321 end if;
12322
d6f39728 12323 Too_Late;
12324 S := First_Subtype (T);
12325
12326 if Present (Freeze_Node (S)) then
04d38ee4 12327 if not Relaxed_RM_Semantics then
12328 Error_Msg_NE
12329 ("??no more representation items for }", Freeze_Node (S), S);
12330 end if;
d6f39728 12331 end if;
12332
12333 return True;
12334
d1a2e31b 12335 -- Check for case of untagged derived type whose parent either has
4d0944e9 12336 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12337 -- this case we do not output a Too_Late message, since there is no
12338 -- earlier point where the rep item could be placed to make it legal.
d6f39728 12339
12340 elsif Is_Type (T)
12341 and then not FOnly
12342 and then Is_Derived_Type (T)
12343 and then not Is_Tagged_Type (T)
12344 then
12345 Parent_Type := Etype (Base_Type (T));
12346
12347 if Has_Primitive_Operations (Parent_Type) then
4d0944e9 12348 No_Type_Rep_Item;
04d38ee4 12349
12350 if not Relaxed_RM_Semantics then
12351 Error_Msg_NE
12352 ("\parent type & has primitive operations!", N, Parent_Type);
12353 end if;
12354
d6f39728 12355 return True;
12356
12357 elsif Is_By_Reference_Type (Parent_Type) then
4d0944e9 12358 No_Type_Rep_Item;
04d38ee4 12359
12360 if not Relaxed_RM_Semantics then
12361 Error_Msg_NE
12362 ("\parent type & is a by reference type!", N, Parent_Type);
12363 end if;
12364
d6f39728 12365 return True;
12366 end if;
12367 end if;
12368
04d38ee4 12369 -- No error, but one more warning to consider. The RM (surprisingly)
12370 -- allows this pattern:
12371
12372 -- type S is ...
12373 -- primitive operations for S
12374 -- type R is new S;
12375 -- rep clause for S
12376
12377 -- Meaning that calls on the primitive operations of S for values of
12378 -- type R may require possibly expensive implicit conversion operations.
12379 -- This is not an error, but is worth a warning.
12380
12381 if not Relaxed_RM_Semantics and then Is_Type (T) then
12382 declare
12383 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12384
12385 begin
12386 if Present (DTL)
12387 and then Has_Primitive_Operations (Base_Type (T))
12388
12389 -- For now, do not generate this warning for the case of aspect
12390 -- specification using Ada 2012 syntax, since we get wrong
12391 -- messages we do not understand. The whole business of derived
12392 -- types and rep items seems a bit confused when aspects are
12393 -- used, since the aspects are not evaluated till freeze time.
12394
12395 and then not From_Aspect_Specification (N)
12396 then
12397 Error_Msg_Sloc := Sloc (DTL);
12398 Error_Msg_N
12399 ("representation item for& appears after derived type "
12400 & "declaration#??", N);
12401 Error_Msg_NE
12402 ("\may result in implicit conversions for primitive "
12403 & "operations of&??", N, T);
12404 Error_Msg_NE
12405 ("\to change representations when called with arguments "
12406 & "of type&??", N, DTL);
12407 end if;
12408 end;
12409 end if;
12410
3062c401 12411 -- No error, link item into head of chain of rep items for the entity,
12412 -- but avoid chaining if we have an overloadable entity, and the pragma
12413 -- is one that can apply to multiple overloaded entities.
12414
b9e61b2a 12415 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 12416 declare
ddccc924 12417 Pname : constant Name_Id := Pragma_Name (N);
fdd294d1 12418 begin
18393965 12419 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12420 Name_External, Name_Interface)
fdd294d1 12421 then
12422 return False;
12423 end if;
12424 end;
3062c401 12425 end if;
12426
fdd294d1 12427 Record_Rep_Item (T, N);
d6f39728 12428 return False;
12429 end Rep_Item_Too_Late;
12430
2072eaa9 12431 -------------------------------------
12432 -- Replace_Type_References_Generic --
12433 -------------------------------------
12434
37c6552c 12435 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12436 TName : constant Name_Id := Chars (T);
2072eaa9 12437
97c23bbe 12438 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
2072eaa9 12439 -- Processes a single node in the traversal procedure below, checking
12440 -- if node N should be replaced, and if so, doing the replacement.
12441
d0931270 12442 function Visible_Component (Comp : Name_Id) return Entity_Id;
12443 -- Given an identifier in the expression, check whether there is a
12444 -- discriminant or component of the type that is directy visible, and
12445 -- rewrite it as the corresponding selected component of the formal of
12446 -- the subprogram. The entity is located by a sequential search, which
12447 -- seems acceptable given the typical size of component lists and check
12448 -- expressions. Possible optimization ???
12449
97c23bbe 12450 ----------------------
12451 -- Replace_Type_Ref --
12452 ----------------------
2072eaa9 12453
97c23bbe 12454 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
d0931270 12455 Loc : constant Source_Ptr := Sloc (N);
2072eaa9 12456
d0931270 12457 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
77fd9c7a 12458 -- Add the proper prefix to a reference to a component of the type
12459 -- when it is not already a selected component.
d0931270 12460
12461 ----------------
12462 -- Add_Prefix --
12463 ----------------
2072eaa9 12464
d0931270 12465 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12466 begin
12467 Rewrite (Ref,
12468 Make_Selected_Component (Loc,
77fd9c7a 12469 Prefix => New_Occurrence_Of (T, Loc),
d0931270 12470 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12471 Replace_Type_Reference (Prefix (Ref));
12472 end Add_Prefix;
12473
77fd9c7a 12474 -- Local variables
12475
12476 Comp : Entity_Id;
12477 Pref : Node_Id;
12478 Scop : Entity_Id;
12479
d0931270 12480 -- Start of processing for Replace_Type_Ref
12481
12482 begin
2072eaa9 12483 if Nkind (N) = N_Identifier then
12484
97c23bbe 12485 -- If not the type name, check whether it is a reference to some
12486 -- other type, which must be frozen before the predicate function
12487 -- is analyzed, i.e. before the freeze node of the type to which
12488 -- the predicate applies.
2072eaa9 12489
12490 if Chars (N) /= TName then
37c6552c 12491 if Present (Current_Entity (N))
46532462 12492 and then Is_Type (Current_Entity (N))
37c6552c 12493 then
12494 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12495 end if;
12496
d0931270 12497 -- The components of the type are directly visible and can
12498 -- be referenced without a prefix.
12499
12500 if Nkind (Parent (N)) = N_Selected_Component then
12501 null;
12502
12503 -- In expression C (I), C may be a directly visible function
12504 -- or a visible component that has an array type. Disambiguate
12505 -- by examining the component type.
12506
12507 elsif Nkind (Parent (N)) = N_Indexed_Component
12508 and then N = Prefix (Parent (N))
12509 then
77fd9c7a 12510 Comp := Visible_Component (Chars (N));
d0931270 12511
77fd9c7a 12512 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12513 Add_Prefix (N, Comp);
d0931270 12514 end if;
12515
12516 else
77fd9c7a 12517 Comp := Visible_Component (Chars (N));
d0931270 12518
77fd9c7a 12519 if Present (Comp) then
12520 Add_Prefix (N, Comp);
d0931270 12521 end if;
12522 end if;
12523
2072eaa9 12524 return Skip;
12525
12526 -- Otherwise do the replacement and we are done with this node
12527
12528 else
12529 Replace_Type_Reference (N);
12530 return Skip;
12531 end if;
12532
97c23bbe 12533 -- Case of selected component (which is what a qualification looks
12534 -- like in the unanalyzed tree, which is what we have.
2072eaa9 12535
12536 elsif Nkind (N) = N_Selected_Component then
12537
97c23bbe 12538 -- If selector name is not our type, keeping going (we might still
12539 -- have an occurrence of the type in the prefix).
2072eaa9 12540
12541 if Nkind (Selector_Name (N)) /= N_Identifier
12542 or else Chars (Selector_Name (N)) /= TName
12543 then
12544 return OK;
12545
12546 -- Selector name is our type, check qualification
12547
12548 else
12549 -- Loop through scopes and prefixes, doing comparison
12550
77fd9c7a 12551 Scop := Current_Scope;
12552 Pref := Prefix (N);
2072eaa9 12553 loop
12554 -- Continue if no more scopes or scope with no name
12555
77fd9c7a 12556 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
2072eaa9 12557 return OK;
12558 end if;
12559
97c23bbe 12560 -- Do replace if prefix is an identifier matching the scope
12561 -- that we are currently looking at.
2072eaa9 12562
77fd9c7a 12563 if Nkind (Pref) = N_Identifier
12564 and then Chars (Pref) = Chars (Scop)
2072eaa9 12565 then
12566 Replace_Type_Reference (N);
12567 return Skip;
12568 end if;
12569
97c23bbe 12570 -- Go check scope above us if prefix is itself of the form
12571 -- of a selected component, whose selector matches the scope
12572 -- we are currently looking at.
2072eaa9 12573
77fd9c7a 12574 if Nkind (Pref) = N_Selected_Component
12575 and then Nkind (Selector_Name (Pref)) = N_Identifier
12576 and then Chars (Selector_Name (Pref)) = Chars (Scop)
2072eaa9 12577 then
77fd9c7a 12578 Scop := Scope (Scop);
12579 Pref := Prefix (Pref);
2072eaa9 12580
12581 -- For anything else, we don't have a match, so keep on
12582 -- going, there are still some weird cases where we may
12583 -- still have a replacement within the prefix.
12584
12585 else
12586 return OK;
12587 end if;
12588 end loop;
12589 end if;
12590
ec6f6da5 12591 -- Continue for any other node kind
2072eaa9 12592
12593 else
12594 return OK;
12595 end if;
97c23bbe 12596 end Replace_Type_Ref;
12597
77fd9c7a 12598 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12599
d0931270 12600 -----------------------
12601 -- Visible_Component --
12602 -----------------------
12603
12604 function Visible_Component (Comp : Name_Id) return Entity_Id is
12605 E : Entity_Id;
77fd9c7a 12606
d0931270 12607 begin
12608 if Ekind (T) /= E_Record_Type then
12609 return Empty;
12610
12611 else
12612 E := First_Entity (T);
12613 while Present (E) loop
77fd9c7a 12614 if Comes_From_Source (E) and then Chars (E) = Comp then
d0931270 12615 return E;
12616 end if;
12617
12618 Next_Entity (E);
12619 end loop;
12620
12621 return Empty;
12622 end if;
12623 end Visible_Component;
12624
77fd9c7a 12625 -- Start of processing for Replace_Type_References_Generic
2072eaa9 12626
12627 begin
12628 Replace_Type_Refs (N);
12629 end Replace_Type_References_Generic;
12630
81bd1c0d 12631 --------------------------------
12632 -- Resolve_Aspect_Expressions --
12633 --------------------------------
12634
12635 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12636 ASN : Node_Id;
12637 A_Id : Aspect_Id;
12638 Expr : Node_Id;
12639
9c20237a 12640 function Resolve_Name (N : Node_Id) return Traverse_Result;
12641 -- Verify that all identifiers in the expression, with the exception
12642 -- of references to the current entity, denote visible entities. This
12643 -- is done only to detect visibility errors, as the expression will be
12644 -- properly analyzed/expanded during analysis of the predicate function
c098acfb 12645 -- body. We omit quantified expressions from this test, given that they
12646 -- introduce a local identifier that would require proper expansion to
12647 -- handle properly.
9c20237a 12648
12649 ------------------
12650 -- Resolve_Name --
12651 ------------------
12652
12653 function Resolve_Name (N : Node_Id) return Traverse_Result is
12654 begin
12655 if Nkind (N) = N_Selected_Component then
12656 if Nkind (Prefix (N)) = N_Identifier
12657 and then Chars (Prefix (N)) /= Chars (E)
12658 then
f4e18891 12659 Find_Selected_Component (N);
9c20237a 12660 end if;
02e5d0d0 12661
9c20237a 12662 return Skip;
12663
02e5d0d0 12664 elsif Nkind (N) = N_Identifier and then Chars (N) /= Chars (E) then
9c20237a 12665 Find_Direct_Name (N);
12666 Set_Entity (N, Empty);
c098acfb 12667
12668 elsif Nkind (N) = N_Quantified_Expression then
12669 return Skip;
9c20237a 12670 end if;
12671
12672 return OK;
12673 end Resolve_Name;
12674
12675 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12676
02e5d0d0 12677 -- Start of processing for Resolve_Aspect_Expressions
12678
81bd1c0d 12679 begin
12680 ASN := First_Rep_Item (E);
12681 while Present (ASN) loop
12682 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12683 A_Id := Get_Aspect_Id (ASN);
12684 Expr := Expression (ASN);
12685
12686 case A_Id is
97c23bbe 12687
81bd1c0d 12688 -- For now we only deal with aspects that do not generate
12689 -- subprograms, or that may mention current instances of
fdec445e 12690 -- types. These will require special handling (???TBD).
81bd1c0d 12691
02e5d0d0 12692 when Aspect_Predicate |
fdec445e 12693 Aspect_Predicate_Failure |
97c23bbe 12694 Aspect_Invariant =>
81bd1c0d 12695 null;
12696
97c23bbe 12697 when Aspect_Dynamic_Predicate |
12698 Aspect_Static_Predicate =>
9c20237a 12699
02e5d0d0 12700 -- Build predicate function specification and preanalyze
9c20237a 12701 -- expression after type replacement.
12702
12703 if No (Predicate_Function (E)) then
12704 declare
12705 FDecl : constant Node_Id :=
02e5d0d0 12706 Build_Predicate_Function_Declaration (E);
9c20237a 12707 pragma Unreferenced (FDecl);
12708 begin
12709 Resolve_Aspect_Expression (Expr);
12710 end;
12711 end if;
12712
81bd1c0d 12713 when Pre_Post_Aspects =>
12714 null;
12715
12716 when Aspect_Iterable =>
12717 if Nkind (Expr) = N_Aggregate then
12718 declare
12719 Assoc : Node_Id;
12720
12721 begin
12722 Assoc := First (Component_Associations (Expr));
12723 while Present (Assoc) loop
12724 Find_Direct_Name (Expression (Assoc));
12725 Next (Assoc);
12726 end loop;
12727 end;
12728 end if;
12729
12730 when others =>
12731 if Present (Expr) then
12732 case Aspect_Argument (A_Id) is
12733 when Expression | Optional_Expression =>
12734 Analyze_And_Resolve (Expression (ASN));
12735
12736 when Name | Optional_Name =>
12737 if Nkind (Expr) = N_Identifier then
12738 Find_Direct_Name (Expr);
12739
12740 elsif Nkind (Expr) = N_Selected_Component then
12741 Find_Selected_Component (Expr);
12742
12743 else
12744 null;
12745 end if;
12746 end case;
12747 end if;
12748 end case;
12749 end if;
12750
a738763e 12751 ASN := Next_Rep_Item (ASN);
81bd1c0d 12752 end loop;
12753 end Resolve_Aspect_Expressions;
12754
d6f39728 12755 -------------------------
12756 -- Same_Representation --
12757 -------------------------
12758
12759 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12760 T1 : constant Entity_Id := Underlying_Type (Typ1);
12761 T2 : constant Entity_Id := Underlying_Type (Typ2);
12762
12763 begin
12764 -- A quick check, if base types are the same, then we definitely have
12765 -- the same representation, because the subtype specific representation
12766 -- attributes (Size and Alignment) do not affect representation from
12767 -- the point of view of this test.
12768
12769 if Base_Type (T1) = Base_Type (T2) then
12770 return True;
12771
12772 elsif Is_Private_Type (Base_Type (T2))
12773 and then Base_Type (T1) = Full_View (Base_Type (T2))
12774 then
12775 return True;
12776 end if;
12777
12778 -- Tagged types never have differing representations
12779
12780 if Is_Tagged_Type (T1) then
12781 return True;
12782 end if;
12783
12784 -- Representations are definitely different if conventions differ
12785
12786 if Convention (T1) /= Convention (T2) then
12787 return False;
12788 end if;
12789
ef0772bc 12790 -- Representations are different if component alignments or scalar
12791 -- storage orders differ.
d6f39728 12792
12793 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
726fd56a 12794 and then
d6f39728 12795 (Is_Record_Type (T2) or else Is_Array_Type (T2))
ef0772bc 12796 and then
12797 (Component_Alignment (T1) /= Component_Alignment (T2)
f02a9a9a 12798 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
d6f39728 12799 then
12800 return False;
12801 end if;
12802
12803 -- For arrays, the only real issue is component size. If we know the
12804 -- component size for both arrays, and it is the same, then that's
12805 -- good enough to know we don't have a change of representation.
12806
12807 if Is_Array_Type (T1) then
12808 if Known_Component_Size (T1)
12809 and then Known_Component_Size (T2)
12810 and then Component_Size (T1) = Component_Size (T2)
12811 then
36ac5fbb 12812 return True;
d6f39728 12813 end if;
12814 end if;
12815
12816 -- Types definitely have same representation if neither has non-standard
12817 -- representation since default representations are always consistent.
12818 -- If only one has non-standard representation, and the other does not,
12819 -- then we consider that they do not have the same representation. They
12820 -- might, but there is no way of telling early enough.
12821
12822 if Has_Non_Standard_Rep (T1) then
12823 if not Has_Non_Standard_Rep (T2) then
12824 return False;
12825 end if;
12826 else
12827 return not Has_Non_Standard_Rep (T2);
12828 end if;
12829
fdd294d1 12830 -- Here the two types both have non-standard representation, and we need
12831 -- to determine if they have the same non-standard representation.
d6f39728 12832
12833 -- For arrays, we simply need to test if the component sizes are the
12834 -- same. Pragma Pack is reflected in modified component sizes, so this
12835 -- check also deals with pragma Pack.
12836
12837 if Is_Array_Type (T1) then
12838 return Component_Size (T1) = Component_Size (T2);
12839
12840 -- Tagged types always have the same representation, because it is not
12841 -- possible to specify different representations for common fields.
12842
12843 elsif Is_Tagged_Type (T1) then
12844 return True;
12845
12846 -- Case of record types
12847
12848 elsif Is_Record_Type (T1) then
12849
12850 -- Packed status must conform
12851
12852 if Is_Packed (T1) /= Is_Packed (T2) then
12853 return False;
12854
12855 -- Otherwise we must check components. Typ2 maybe a constrained
12856 -- subtype with fewer components, so we compare the components
12857 -- of the base types.
12858
12859 else
12860 Record_Case : declare
12861 CD1, CD2 : Entity_Id;
12862
12863 function Same_Rep return Boolean;
12864 -- CD1 and CD2 are either components or discriminants. This
ef0772bc 12865 -- function tests whether they have the same representation.
d6f39728 12866
80d4fec4 12867 --------------
12868 -- Same_Rep --
12869 --------------
12870
d6f39728 12871 function Same_Rep return Boolean is
12872 begin
12873 if No (Component_Clause (CD1)) then
12874 return No (Component_Clause (CD2));
d6f39728 12875 else
ef0772bc 12876 -- Note: at this point, component clauses have been
12877 -- normalized to the default bit order, so that the
12878 -- comparison of Component_Bit_Offsets is meaningful.
12879
d6f39728 12880 return
12881 Present (Component_Clause (CD2))
12882 and then
12883 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12884 and then
12885 Esize (CD1) = Esize (CD2);
12886 end if;
12887 end Same_Rep;
12888
1e35409d 12889 -- Start of processing for Record_Case
d6f39728 12890
12891 begin
12892 if Has_Discriminants (T1) then
d6f39728 12893
9dfe12ae 12894 -- The number of discriminants may be different if the
12895 -- derived type has fewer (constrained by values). The
12896 -- invisible discriminants retain the representation of
12897 -- the original, so the discrepancy does not per se
12898 -- indicate a different representation.
12899
b9e61b2a 12900 CD1 := First_Discriminant (T1);
12901 CD2 := First_Discriminant (T2);
12902 while Present (CD1) and then Present (CD2) loop
d6f39728 12903 if not Same_Rep then
12904 return False;
12905 else
12906 Next_Discriminant (CD1);
12907 Next_Discriminant (CD2);
12908 end if;
12909 end loop;
12910 end if;
12911
12912 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12913 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 12914 while Present (CD1) loop
12915 if not Same_Rep then
12916 return False;
12917 else
12918 Next_Component (CD1);
12919 Next_Component (CD2);
12920 end if;
12921 end loop;
12922
12923 return True;
12924 end Record_Case;
12925 end if;
12926
12927 -- For enumeration types, we must check each literal to see if the
12928 -- representation is the same. Note that we do not permit enumeration
1a34e48c 12929 -- representation clauses for Character and Wide_Character, so these
d6f39728 12930 -- cases were already dealt with.
12931
12932 elsif Is_Enumeration_Type (T1) then
d6f39728 12933 Enumeration_Case : declare
12934 L1, L2 : Entity_Id;
12935
12936 begin
12937 L1 := First_Literal (T1);
12938 L2 := First_Literal (T2);
d6f39728 12939 while Present (L1) loop
12940 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12941 return False;
12942 else
12943 Next_Literal (L1);
12944 Next_Literal (L2);
12945 end if;
12946 end loop;
12947
12948 return True;
d6f39728 12949 end Enumeration_Case;
12950
12951 -- Any other types have the same representation for these purposes
12952
12953 else
12954 return True;
12955 end if;
d6f39728 12956 end Same_Representation;
12957
3061ffde 12958 --------------------------------
12959 -- Resolve_Iterable_Operation --
12960 --------------------------------
12961
12962 procedure Resolve_Iterable_Operation
12963 (N : Node_Id;
12964 Cursor : Entity_Id;
12965 Typ : Entity_Id;
12966 Nam : Name_Id)
12967 is
12968 Ent : Entity_Id;
12969 F1 : Entity_Id;
12970 F2 : Entity_Id;
12971
12972 begin
12973 if not Is_Overloaded (N) then
12974 if not Is_Entity_Name (N)
12975 or else Ekind (Entity (N)) /= E_Function
12976 or else Scope (Entity (N)) /= Scope (Typ)
12977 or else No (First_Formal (Entity (N)))
12978 or else Etype (First_Formal (Entity (N))) /= Typ
12979 then
12980 Error_Msg_N ("iterable primitive must be local function name "
12981 & "whose first formal is an iterable type", N);
a9f5fea7 12982 return;
3061ffde 12983 end if;
12984
12985 Ent := Entity (N);
12986 F1 := First_Formal (Ent);
12987 if Nam = Name_First then
12988
12989 -- First (Container) => Cursor
12990
12991 if Etype (Ent) /= Cursor then
12992 Error_Msg_N ("primitive for First must yield a curosr", N);
12993 end if;
12994
12995 elsif Nam = Name_Next then
12996
12997 -- Next (Container, Cursor) => Cursor
12998
12999 F2 := Next_Formal (F1);
13000
13001 if Etype (F2) /= Cursor
13002 or else Etype (Ent) /= Cursor
13003 or else Present (Next_Formal (F2))
13004 then
13005 Error_Msg_N ("no match for Next iterable primitive", N);
13006 end if;
13007
13008 elsif Nam = Name_Has_Element then
13009
13010 -- Has_Element (Container, Cursor) => Boolean
13011
13012 F2 := Next_Formal (F1);
13013 if Etype (F2) /= Cursor
13014 or else Etype (Ent) /= Standard_Boolean
13015 or else Present (Next_Formal (F2))
13016 then
13017 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13018 end if;
13019
13020 elsif Nam = Name_Element then
b9b03799 13021 F2 := Next_Formal (F1);
13022
13023 if No (F2)
13024 or else Etype (F2) /= Cursor
13025 or else Present (Next_Formal (F2))
13026 then
13027 Error_Msg_N ("no match for Element iterable primitive", N);
13028 end if;
3061ffde 13029 null;
13030
13031 else
13032 raise Program_Error;
13033 end if;
13034
13035 else
13036 -- Overloaded case: find subprogram with proper signature.
13037 -- Caller will report error if no match is found.
13038
13039 declare
13040 I : Interp_Index;
13041 It : Interp;
13042
13043 begin
13044 Get_First_Interp (N, I, It);
13045 while Present (It.Typ) loop
13046 if Ekind (It.Nam) = E_Function
b9b03799 13047 and then Scope (It.Nam) = Scope (Typ)
3061ffde 13048 and then Etype (First_Formal (It.Nam)) = Typ
13049 then
13050 F1 := First_Formal (It.Nam);
13051
13052 if Nam = Name_First then
13053 if Etype (It.Nam) = Cursor
13054 and then No (Next_Formal (F1))
13055 then
13056 Set_Entity (N, It.Nam);
13057 exit;
13058 end if;
13059
13060 elsif Nam = Name_Next then
13061 F2 := Next_Formal (F1);
13062
13063 if Present (F2)
13064 and then No (Next_Formal (F2))
13065 and then Etype (F2) = Cursor
13066 and then Etype (It.Nam) = Cursor
13067 then
13068 Set_Entity (N, It.Nam);
13069 exit;
13070 end if;
13071
13072 elsif Nam = Name_Has_Element then
13073 F2 := Next_Formal (F1);
13074
13075 if Present (F2)
13076 and then No (Next_Formal (F2))
13077 and then Etype (F2) = Cursor
13078 and then Etype (It.Nam) = Standard_Boolean
13079 then
13080 Set_Entity (N, It.Nam);
13081 F2 := Next_Formal (F1);
13082 exit;
13083 end if;
13084
13085 elsif Nam = Name_Element then
b9b03799 13086 F2 := Next_Formal (F1);
13087
3061ffde 13088 if Present (F2)
13089 and then No (Next_Formal (F2))
13090 and then Etype (F2) = Cursor
13091 then
13092 Set_Entity (N, It.Nam);
13093 exit;
13094 end if;
13095 end if;
13096 end if;
13097
13098 Get_Next_Interp (I, It);
13099 end loop;
13100 end;
13101 end if;
13102 end Resolve_Iterable_Operation;
13103
b77e4501 13104 ----------------
13105 -- Set_Biased --
13106 ----------------
13107
13108 procedure Set_Biased
13109 (E : Entity_Id;
13110 N : Node_Id;
13111 Msg : String;
13112 Biased : Boolean := True)
13113 is
13114 begin
13115 if Biased then
13116 Set_Has_Biased_Representation (E);
13117
13118 if Warn_On_Biased_Representation then
13119 Error_Msg_NE
1e3532e7 13120 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 13121 end if;
13122 end if;
13123 end Set_Biased;
13124
d6f39728 13125 --------------------
13126 -- Set_Enum_Esize --
13127 --------------------
13128
13129 procedure Set_Enum_Esize (T : Entity_Id) is
13130 Lo : Uint;
13131 Hi : Uint;
13132 Sz : Nat;
13133
13134 begin
13135 Init_Alignment (T);
13136
13137 -- Find the minimum standard size (8,16,32,64) that fits
13138
13139 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13140 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13141
13142 if Lo < 0 then
13143 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 13144 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 13145
13146 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13147 Sz := 16;
13148
13149 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13150 Sz := 32;
13151
13152 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13153 Sz := 64;
13154 end if;
13155
13156 else
13157 if Hi < Uint_2**08 then
f15731c4 13158 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 13159
13160 elsif Hi < Uint_2**16 then
13161 Sz := 16;
13162
13163 elsif Hi < Uint_2**32 then
13164 Sz := 32;
13165
13166 else pragma Assert (Hi < Uint_2**63);
13167 Sz := 64;
13168 end if;
13169 end if;
13170
13171 -- That minimum is the proper size unless we have a foreign convention
13172 -- and the size required is 32 or less, in which case we bump the size
13173 -- up to 32. This is required for C and C++ and seems reasonable for
13174 -- all other foreign conventions.
13175
13176 if Has_Foreign_Convention (T)
13177 and then Esize (T) < Standard_Integer_Size
db1eed69 13178
13179 -- Don't do this if Short_Enums on target
13180
e9185b9d 13181 and then not Target_Short_Enums
d6f39728 13182 then
13183 Init_Esize (T, Standard_Integer_Size);
d6f39728 13184 else
13185 Init_Esize (T, Sz);
13186 end if;
d6f39728 13187 end Set_Enum_Esize;
13188
2625eb01 13189 -----------------------------
13190 -- Uninstall_Discriminants --
13191 -----------------------------
13192
13193 procedure Uninstall_Discriminants (E : Entity_Id) is
13194 Disc : Entity_Id;
13195 Prev : Entity_Id;
13196 Outer : Entity_Id;
13197
13198 begin
13199 -- Discriminants have been made visible for type declarations and
13200 -- protected type declarations, not for subtype declarations.
13201
13202 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13203 Disc := First_Discriminant (E);
13204 while Present (Disc) loop
13205 if Disc /= Current_Entity (Disc) then
13206 Prev := Current_Entity (Disc);
13207 while Present (Prev)
13208 and then Present (Homonym (Prev))
13209 and then Homonym (Prev) /= Disc
13210 loop
13211 Prev := Homonym (Prev);
13212 end loop;
13213 else
13214 Prev := Empty;
13215 end if;
13216
13217 Set_Is_Immediately_Visible (Disc, False);
13218
13219 Outer := Homonym (Disc);
13220 while Present (Outer) and then Scope (Outer) = E loop
13221 Outer := Homonym (Outer);
13222 end loop;
13223
13224 -- Reset homonym link of other entities, but do not modify link
3ff5e35d 13225 -- between entities in current scope, so that the back end can
2625eb01 13226 -- have a proper count of local overloadings.
13227
13228 if No (Prev) then
13229 Set_Name_Entity_Id (Chars (Disc), Outer);
13230
13231 elsif Scope (Prev) /= Scope (Disc) then
13232 Set_Homonym (Prev, Outer);
13233 end if;
13234
13235 Next_Discriminant (Disc);
13236 end loop;
13237 end if;
13238 end Uninstall_Discriminants;
13239
13240 -------------------------------------------
13241 -- Uninstall_Discriminants_And_Pop_Scope --
13242 -------------------------------------------
13243
13244 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13245 begin
13246 if Has_Discriminants (E) then
13247 Uninstall_Discriminants (E);
13248 Pop_Scope;
13249 end if;
13250 end Uninstall_Discriminants_And_Pop_Scope;
13251
83f8f0a6 13252 ------------------------------
13253 -- Validate_Address_Clauses --
13254 ------------------------------
13255
13256 procedure Validate_Address_Clauses is
c7a1569a 13257 function Offset_Value (Expr : Node_Id) return Uint;
13258 -- Given an Address attribute reference, return the value in bits of its
13259 -- offset from the first bit of the underlying entity, or 0 if it is not
13260 -- known at compile time.
13261
13262 ------------------
13263 -- Offset_Value --
13264 ------------------
13265
13266 function Offset_Value (Expr : Node_Id) return Uint is
13267 N : Node_Id := Prefix (Expr);
13268 Off : Uint;
13269 Val : Uint := Uint_0;
13270
13271 begin
13272 -- Climb the prefix chain and compute the cumulative offset
13273
13274 loop
13275 if Is_Entity_Name (N) then
13276 return Val;
13277
13278 elsif Nkind (N) = N_Selected_Component then
13279 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13280 if Off /= No_Uint and then Off >= Uint_0 then
13281 Val := Val + Off;
13282 N := Prefix (N);
13283 else
13284 return Uint_0;
13285 end if;
13286
13287 elsif Nkind (N) = N_Indexed_Component then
13288 Off := Indexed_Component_Bit_Offset (N);
13289 if Off /= No_Uint then
13290 Val := Val + Off;
13291 N := Prefix (N);
13292 else
13293 return Uint_0;
13294 end if;
13295
13296 else
13297 return Uint_0;
13298 end if;
13299 end loop;
13300 end Offset_Value;
13301
13302 -- Start of processing for Validate_Address_Clauses
13303
83f8f0a6 13304 begin
13305 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13306 declare
13307 ACCR : Address_Clause_Check_Record
13308 renames Address_Clause_Checks.Table (J);
13309
d6da7448 13310 Expr : Node_Id;
13311
83f8f0a6 13312 X_Alignment : Uint;
13313 Y_Alignment : Uint;
13314
13315 X_Size : Uint;
13316 Y_Size : Uint;
13317
c7a1569a 13318 X_Offs : Uint;
13319
83f8f0a6 13320 begin
13321 -- Skip processing of this entry if warning already posted
13322
13323 if not Address_Warning_Posted (ACCR.N) then
d6da7448 13324 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 13325
514a5555 13326 -- Get alignments, sizes and offset, if any
83f8f0a6 13327
d6da7448 13328 X_Alignment := Alignment (ACCR.X);
8650387e 13329 X_Size := Esize (ACCR.X);
514a5555 13330
13331 if Present (ACCR.Y) then
13332 Y_Alignment := Alignment (ACCR.Y);
8650387e 13333 Y_Size := Esize (ACCR.Y);
514a5555 13334 end if;
83f8f0a6 13335
c7a1569a 13336 if ACCR.Off
13337 and then Nkind (Expr) = N_Attribute_Reference
13338 and then Attribute_Name (Expr) = Name_Address
13339 then
13340 X_Offs := Offset_Value (Expr);
13341 else
13342 X_Offs := Uint_0;
13343 end if;
13344
514a5555 13345 -- Check for known value not multiple of alignment
13346
13347 if No (ACCR.Y) then
13348 if not Alignment_Checks_Suppressed (ACCR.X)
13349 and then X_Alignment /= 0
13350 and then ACCR.A mod X_Alignment /= 0
13351 then
13352 Error_Msg_NE
13353 ("??specified address for& is inconsistent with "
13354 & "alignment", ACCR.N, ACCR.X);
13355 Error_Msg_N
13356 ("\??program execution may be erroneous (RM 13.3(27))",
13357 ACCR.N);
13358
13359 Error_Msg_Uint_1 := X_Alignment;
13360 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13361 end if;
13362
83f8f0a6 13363 -- Check for large object overlaying smaller one
13364
514a5555 13365 elsif Y_Size > Uint_0
83f8f0a6 13366 and then X_Size > Uint_0
c7a1569a 13367 and then X_Offs + X_Size > Y_Size
83f8f0a6 13368 then
7161e166 13369 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 13370 Error_Msg_N
1e3532e7 13371 ("\??program execution may be erroneous", ACCR.N);
7161e166 13372
83f8f0a6 13373 Error_Msg_Uint_1 := X_Size;
7161e166 13374 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13375
83f8f0a6 13376 Error_Msg_Uint_1 := Y_Size;
7161e166 13377 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 13378
f5cc2579 13379 if Y_Size >= X_Size then
c7a1569a 13380 Error_Msg_Uint_1 := X_Offs;
f5cc2579 13381 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
c7a1569a 13382 end if;
13383
d6da7448 13384 -- Check for inadequate alignment, both of the base object
e556831e 13385 -- and of the offset, if any. We only do this check if the
13386 -- run-time Alignment_Check is active. No point in warning
13387 -- if this check has been suppressed (or is suppressed by
13388 -- default in the non-strict alignment machine case).
83f8f0a6 13389
d6da7448 13390 -- Note: we do not check the alignment if we gave a size
13391 -- warning, since it would likely be redundant.
83f8f0a6 13392
514a5555 13393 elsif not Alignment_Checks_Suppressed (ACCR.X)
e556831e 13394 and then Y_Alignment /= Uint_0
7161e166 13395 and then
13396 (Y_Alignment < X_Alignment
13397 or else
13398 (ACCR.Off
13399 and then Nkind (Expr) = N_Attribute_Reference
13400 and then Attribute_Name (Expr) = Name_Address
13401 and then Has_Compatible_Alignment
13402 (ACCR.X, Prefix (Expr), True) /=
13403 Known_Compatible))
83f8f0a6 13404 then
13405 Error_Msg_NE
7161e166 13406 ("??specified address for& may be inconsistent with "
13407 & "alignment", ACCR.N, ACCR.X);
83f8f0a6 13408 Error_Msg_N
1e3532e7 13409 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 13410 ACCR.N);
7161e166 13411
83f8f0a6 13412 Error_Msg_Uint_1 := X_Alignment;
7161e166 13413 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13414
83f8f0a6 13415 Error_Msg_Uint_1 := Y_Alignment;
7161e166 13416 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13417
d6da7448 13418 if Y_Alignment >= X_Alignment then
13419 Error_Msg_N
7161e166 13420 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 13421 end if;
83f8f0a6 13422 end if;
13423 end if;
13424 end;
13425 end loop;
13426 end Validate_Address_Clauses;
13427
76a6b7c7 13428 -----------------------------------------
13429 -- Validate_Compile_Time_Warning_Error --
13430 -----------------------------------------
13431
13432 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13433 begin
13434 Compile_Time_Warnings_Errors.Append
13435 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13436 Scope => Current_Scope,
13437 Prag => N));
13438 end Validate_Compile_Time_Warning_Error;
13439
13440 ------------------------------------------
13441 -- Validate_Compile_Time_Warning_Errors --
13442 ------------------------------------------
13443
13444 procedure Validate_Compile_Time_Warning_Errors is
13445 procedure Set_Scope (S : Entity_Id);
13446 -- Install all enclosing scopes of S along with S itself
13447
13448 procedure Unset_Scope (S : Entity_Id);
13449 -- Uninstall all enclosing scopes of S along with S itself
13450
13451 ---------------
13452 -- Set_Scope --
13453 ---------------
13454
13455 procedure Set_Scope (S : Entity_Id) is
13456 begin
13457 if S /= Standard_Standard then
13458 Set_Scope (Scope (S));
13459 end if;
13460
13461 Push_Scope (S);
13462 end Set_Scope;
13463
13464 -----------------
13465 -- Unset_Scope --
13466 -----------------
13467
13468 procedure Unset_Scope (S : Entity_Id) is
13469 begin
13470 if S /= Standard_Standard then
13471 Unset_Scope (Scope (S));
13472 end if;
13473
13474 Pop_Scope;
13475 end Unset_Scope;
13476
13477 -- Start of processing for Validate_Compile_Time_Warning_Errors
13478
13479 begin
13480 Expander_Mode_Save_And_Set (False);
13481 In_Compile_Time_Warning_Or_Error := True;
13482
13483 for N in Compile_Time_Warnings_Errors.First ..
13484 Compile_Time_Warnings_Errors.Last
13485 loop
13486 declare
13487 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13488
13489 begin
13490 Set_Scope (T.Scope);
13491 Reset_Analyzed_Flags (T.Prag);
13492 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13493 Unset_Scope (T.Scope);
13494 end;
13495 end loop;
13496
13497 In_Compile_Time_Warning_Or_Error := False;
13498 Expander_Mode_Restore;
13499 end Validate_Compile_Time_Warning_Errors;
13500
7717ea00 13501 ---------------------------
13502 -- Validate_Independence --
13503 ---------------------------
13504
13505 procedure Validate_Independence is
13506 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13507 N : Node_Id;
13508 E : Entity_Id;
13509 IC : Boolean;
13510 Comp : Entity_Id;
13511 Addr : Node_Id;
13512 P : Node_Id;
13513
13514 procedure Check_Array_Type (Atyp : Entity_Id);
13515 -- Checks if the array type Atyp has independent components, and
13516 -- if not, outputs an appropriate set of error messages.
13517
13518 procedure No_Independence;
13519 -- Output message that independence cannot be guaranteed
13520
13521 function OK_Component (C : Entity_Id) return Boolean;
13522 -- Checks one component to see if it is independently accessible, and
13523 -- if so yields True, otherwise yields False if independent access
13524 -- cannot be guaranteed. This is a conservative routine, it only
13525 -- returns True if it knows for sure, it returns False if it knows
13526 -- there is a problem, or it cannot be sure there is no problem.
13527
13528 procedure Reason_Bad_Component (C : Entity_Id);
13529 -- Outputs continuation message if a reason can be determined for
13530 -- the component C being bad.
13531
13532 ----------------------
13533 -- Check_Array_Type --
13534 ----------------------
13535
13536 procedure Check_Array_Type (Atyp : Entity_Id) is
13537 Ctyp : constant Entity_Id := Component_Type (Atyp);
13538
13539 begin
13540 -- OK if no alignment clause, no pack, and no component size
13541
13542 if not Has_Component_Size_Clause (Atyp)
13543 and then not Has_Alignment_Clause (Atyp)
13544 and then not Is_Packed (Atyp)
13545 then
13546 return;
13547 end if;
13548
aa0a69ab 13549 -- Case of component size is greater than or equal to 64 and the
13550 -- alignment of the array is at least as large as the alignment
13551 -- of the component. We are definitely OK in this situation.
13552
13553 if Known_Component_Size (Atyp)
13554 and then Component_Size (Atyp) >= 64
13555 and then Known_Alignment (Atyp)
13556 and then Known_Alignment (Ctyp)
13557 and then Alignment (Atyp) >= Alignment (Ctyp)
13558 then
13559 return;
13560 end if;
13561
7717ea00 13562 -- Check actual component size
13563
13564 if not Known_Component_Size (Atyp)
13565 or else not (Addressable (Component_Size (Atyp))
aa0a69ab 13566 and then Component_Size (Atyp) < 64)
7717ea00 13567 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13568 then
13569 No_Independence;
13570
13571 -- Bad component size, check reason
13572
13573 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 13574 P := Get_Attribute_Definition_Clause
13575 (Atyp, Attribute_Component_Size);
7717ea00 13576
13577 if Present (P) then
13578 Error_Msg_Sloc := Sloc (P);
13579 Error_Msg_N ("\because of Component_Size clause#", N);
13580 return;
13581 end if;
13582 end if;
13583
13584 if Is_Packed (Atyp) then
13585 P := Get_Rep_Pragma (Atyp, Name_Pack);
13586
13587 if Present (P) then
13588 Error_Msg_Sloc := Sloc (P);
13589 Error_Msg_N ("\because of pragma Pack#", N);
13590 return;
13591 end if;
13592 end if;
13593
13594 -- No reason found, just return
13595
13596 return;
13597 end if;
13598
13599 -- Array type is OK independence-wise
13600
13601 return;
13602 end Check_Array_Type;
13603
13604 ---------------------
13605 -- No_Independence --
13606 ---------------------
13607
13608 procedure No_Independence is
13609 begin
ddccc924 13610 if Pragma_Name (N) = Name_Independent then
18393965 13611 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
7717ea00 13612 else
13613 Error_Msg_NE
13614 ("independent components cannot be guaranteed for&", N, E);
13615 end if;
13616 end No_Independence;
13617
13618 ------------------
13619 -- OK_Component --
13620 ------------------
13621
13622 function OK_Component (C : Entity_Id) return Boolean is
13623 Rec : constant Entity_Id := Scope (C);
13624 Ctyp : constant Entity_Id := Etype (C);
13625
13626 begin
13627 -- OK if no component clause, no Pack, and no alignment clause
13628
13629 if No (Component_Clause (C))
13630 and then not Is_Packed (Rec)
13631 and then not Has_Alignment_Clause (Rec)
13632 then
13633 return True;
13634 end if;
13635
13636 -- Here we look at the actual component layout. A component is
13637 -- addressable if its size is a multiple of the Esize of the
13638 -- component type, and its starting position in the record has
13639 -- appropriate alignment, and the record itself has appropriate
13640 -- alignment to guarantee the component alignment.
13641
13642 -- Make sure sizes are static, always assume the worst for any
13643 -- cases where we cannot check static values.
13644
13645 if not (Known_Static_Esize (C)
b9e61b2a 13646 and then
13647 Known_Static_Esize (Ctyp))
7717ea00 13648 then
13649 return False;
13650 end if;
13651
13652 -- Size of component must be addressable or greater than 64 bits
13653 -- and a multiple of bytes.
13654
b9e61b2a 13655 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 13656 return False;
13657 end if;
13658
13659 -- Check size is proper multiple
13660
13661 if Esize (C) mod Esize (Ctyp) /= 0 then
13662 return False;
13663 end if;
13664
13665 -- Check alignment of component is OK
13666
13667 if not Known_Component_Bit_Offset (C)
13668 or else Component_Bit_Offset (C) < Uint_0
13669 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13670 then
13671 return False;
13672 end if;
13673
13674 -- Check alignment of record type is OK
13675
13676 if not Known_Alignment (Rec)
13677 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13678 then
13679 return False;
13680 end if;
13681
13682 -- All tests passed, component is addressable
13683
13684 return True;
13685 end OK_Component;
13686
13687 --------------------------
13688 -- Reason_Bad_Component --
13689 --------------------------
13690
13691 procedure Reason_Bad_Component (C : Entity_Id) is
13692 Rec : constant Entity_Id := Scope (C);
13693 Ctyp : constant Entity_Id := Etype (C);
13694
13695 begin
13696 -- If component clause present assume that's the problem
13697
13698 if Present (Component_Clause (C)) then
13699 Error_Msg_Sloc := Sloc (Component_Clause (C));
13700 Error_Msg_N ("\because of Component_Clause#", N);
13701 return;
13702 end if;
13703
13704 -- If pragma Pack clause present, assume that's the problem
13705
13706 if Is_Packed (Rec) then
13707 P := Get_Rep_Pragma (Rec, Name_Pack);
13708
13709 if Present (P) then
13710 Error_Msg_Sloc := Sloc (P);
13711 Error_Msg_N ("\because of pragma Pack#", N);
13712 return;
13713 end if;
13714 end if;
13715
13716 -- See if record has bad alignment clause
13717
13718 if Has_Alignment_Clause (Rec)
13719 and then Known_Alignment (Rec)
13720 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13721 then
13722 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13723
13724 if Present (P) then
13725 Error_Msg_Sloc := Sloc (P);
13726 Error_Msg_N ("\because of Alignment clause#", N);
13727 end if;
13728 end if;
13729
13730 -- Couldn't find a reason, so return without a message
13731
13732 return;
13733 end Reason_Bad_Component;
13734
13735 -- Start of processing for Validate_Independence
13736
13737 begin
13738 for J in Independence_Checks.First .. Independence_Checks.Last loop
13739 N := Independence_Checks.Table (J).N;
13740 E := Independence_Checks.Table (J).E;
ddccc924 13741 IC := Pragma_Name (N) = Name_Independent_Components;
7717ea00 13742
13743 -- Deal with component case
13744
13745 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13746 if not OK_Component (E) then
13747 No_Independence;
13748 Reason_Bad_Component (E);
13749 goto Continue;
13750 end if;
13751 end if;
13752
13753 -- Deal with record with Independent_Components
13754
13755 if IC and then Is_Record_Type (E) then
13756 Comp := First_Component_Or_Discriminant (E);
13757 while Present (Comp) loop
13758 if not OK_Component (Comp) then
13759 No_Independence;
13760 Reason_Bad_Component (Comp);
13761 goto Continue;
13762 end if;
13763
13764 Next_Component_Or_Discriminant (Comp);
13765 end loop;
13766 end if;
13767
13768 -- Deal with address clause case
13769
13770 if Is_Object (E) then
13771 Addr := Address_Clause (E);
13772
13773 if Present (Addr) then
13774 No_Independence;
13775 Error_Msg_Sloc := Sloc (Addr);
13776 Error_Msg_N ("\because of Address clause#", N);
13777 goto Continue;
13778 end if;
13779 end if;
13780
13781 -- Deal with independent components for array type
13782
13783 if IC and then Is_Array_Type (E) then
13784 Check_Array_Type (E);
13785 end if;
13786
13787 -- Deal with independent components for array object
13788
13789 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13790 Check_Array_Type (Etype (E));
13791 end if;
13792
13793 <<Continue>> null;
13794 end loop;
13795 end Validate_Independence;
13796
b3f8228a 13797 ------------------------------
13798 -- Validate_Iterable_Aspect --
13799 ------------------------------
13800
13801 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
3061ffde 13802 Assoc : Node_Id;
13803 Expr : Node_Id;
b3f8228a 13804
bde03454 13805 Prim : Node_Id;
a9f5fea7 13806 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
b3f8228a 13807
13808 First_Id : Entity_Id;
13809 Next_Id : Entity_Id;
13810 Has_Element_Id : Entity_Id;
13811 Element_Id : Entity_Id;
13812
b3f8228a 13813 begin
9698629c 13814 -- If previous error aspect is unusable
a9f5fea7 13815
13816 if Cursor = Any_Type then
3061ffde 13817 return;
13818 end if;
b3f8228a 13819
13820 First_Id := Empty;
13821 Next_Id := Empty;
13822 Has_Element_Id := Empty;
32de816b 13823 Element_Id := Empty;
b3f8228a 13824
13825 -- Each expression must resolve to a function with the proper signature
13826
13827 Assoc := First (Component_Associations (Expression (ASN)));
13828 while Present (Assoc) loop
13829 Expr := Expression (Assoc);
13830 Analyze (Expr);
13831
b3f8228a 13832 Prim := First (Choices (Assoc));
bde03454 13833
f02a9a9a 13834 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
b3f8228a 13835 Error_Msg_N ("illegal name in association", Prim);
13836
13837 elsif Chars (Prim) = Name_First then
3061ffde 13838 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
b3f8228a 13839 First_Id := Entity (Expr);
b3f8228a 13840
13841 elsif Chars (Prim) = Name_Next then
3061ffde 13842 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
b3f8228a 13843 Next_Id := Entity (Expr);
b3f8228a 13844
13845 elsif Chars (Prim) = Name_Has_Element then
3061ffde 13846 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
b3f8228a 13847 Has_Element_Id := Entity (Expr);
bde03454 13848
b3f8228a 13849 elsif Chars (Prim) = Name_Element then
3061ffde 13850 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
b3f8228a 13851 Element_Id := Entity (Expr);
b3f8228a 13852
13853 else
13854 Error_Msg_N ("invalid name for iterable function", Prim);
13855 end if;
13856
13857 Next (Assoc);
13858 end loop;
13859
13860 if No (First_Id) then
3061ffde 13861 Error_Msg_N ("match for First primitive not found", ASN);
b3f8228a 13862
13863 elsif No (Next_Id) then
3061ffde 13864 Error_Msg_N ("match for Next primitive not found", ASN);
b3f8228a 13865
13866 elsif No (Has_Element_Id) then
3061ffde 13867 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13868
13869 elsif No (Element_Id) then
13870 null; -- Optional.
b3f8228a 13871 end if;
13872 end Validate_Iterable_Aspect;
13873
d6f39728 13874 -----------------------------------
13875 -- Validate_Unchecked_Conversion --
13876 -----------------------------------
13877
13878 procedure Validate_Unchecked_Conversion
13879 (N : Node_Id;
13880 Act_Unit : Entity_Id)
13881 is
13882 Source : Entity_Id;
13883 Target : Entity_Id;
13884 Vnode : Node_Id;
13885
13886 begin
13887 -- Obtain source and target types. Note that we call Ancestor_Subtype
13888 -- here because the processing for generic instantiation always makes
13889 -- subtypes, and we want the original frozen actual types.
13890
13891 -- If we are dealing with private types, then do the check on their
13892 -- fully declared counterparts if the full declarations have been
39a0c1d3 13893 -- encountered (they don't have to be visible, but they must exist).
d6f39728 13894
13895 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13896
13897 if Is_Private_Type (Source)
13898 and then Present (Underlying_Type (Source))
13899 then
13900 Source := Underlying_Type (Source);
13901 end if;
13902
13903 Target := Ancestor_Subtype (Etype (Act_Unit));
13904
fdd294d1 13905 -- If either type is generic, the instantiation happens within a generic
95deda50 13906 -- unit, and there is nothing to check. The proper check will happen
13907 -- when the enclosing generic is instantiated.
d6f39728 13908
13909 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13910 return;
13911 end if;
13912
13913 if Is_Private_Type (Target)
13914 and then Present (Underlying_Type (Target))
13915 then
13916 Target := Underlying_Type (Target);
13917 end if;
13918
0924014e 13919 -- Source may be unconstrained array, but not target, except in relaxed
13920 -- semantics mode.
d6f39728 13921
0924014e 13922 if Is_Array_Type (Target)
13923 and then not Is_Constrained (Target)
13924 and then not Relaxed_RM_Semantics
13925 then
d6f39728 13926 Error_Msg_N
13927 ("unchecked conversion to unconstrained array not allowed", N);
13928 return;
13929 end if;
13930
fbc67f84 13931 -- Warn if conversion between two different convention pointers
13932
13933 if Is_Access_Type (Target)
13934 and then Is_Access_Type (Source)
13935 and then Convention (Target) /= Convention (Source)
13936 and then Warn_On_Unchecked_Conversion
13937 then
74c7ae52 13938 -- Give warnings for subprogram pointers only on most targets
fdd294d1 13939
13940 if Is_Access_Subprogram_Type (Target)
13941 or else Is_Access_Subprogram_Type (Source)
fdd294d1 13942 then
13943 Error_Msg_N
cb97ae5c 13944 ("?z?conversion between pointers with different conventions!",
1e3532e7 13945 N);
fdd294d1 13946 end if;
fbc67f84 13947 end if;
13948
3062c401 13949 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13950 -- warning when compiling GNAT-related sources.
13951
13952 if Warn_On_Unchecked_Conversion
13953 and then not In_Predefined_Unit (N)
13954 and then RTU_Loaded (Ada_Calendar)
f02a9a9a 13955 and then (Chars (Source) = Name_Time
13956 or else
13957 Chars (Target) = Name_Time)
3062c401 13958 then
13959 -- If Ada.Calendar is loaded and the name of one of the operands is
13960 -- Time, there is a good chance that this is Ada.Calendar.Time.
13961
13962 declare
f02a9a9a 13963 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
3062c401 13964 begin
13965 pragma Assert (Present (Calendar_Time));
13966
b9e61b2a 13967 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 13968 Error_Msg_N
f02a9a9a 13969 ("?z?representation of 'Time values may change between "
13970 & "'G'N'A'T versions", N);
3062c401 13971 end if;
13972 end;
13973 end if;
13974
fdd294d1 13975 -- Make entry in unchecked conversion table for later processing by
13976 -- Validate_Unchecked_Conversions, which will check sizes and alignments
3ff5e35d 13977 -- (using values set by the back end where possible). This is only done
fdd294d1 13978 -- if the appropriate warning is active.
d6f39728 13979
9dfe12ae 13980 if Warn_On_Unchecked_Conversion then
13981 Unchecked_Conversions.Append
86d32751 13982 (New_Val => UC_Entry'(Eloc => Sloc (N),
13983 Source => Source,
13984 Target => Target,
13985 Act_Unit => Act_Unit));
9dfe12ae 13986
f9906591 13987 -- If both sizes are known statically now, then back-end annotation
9dfe12ae 13988 -- is not required to do a proper check but if either size is not
13989 -- known statically, then we need the annotation.
13990
13991 if Known_Static_RM_Size (Source)
1e3532e7 13992 and then
13993 Known_Static_RM_Size (Target)
9dfe12ae 13994 then
13995 null;
13996 else
13997 Back_Annotate_Rep_Info := True;
13998 end if;
13999 end if;
d6f39728 14000
fdd294d1 14001 -- If unchecked conversion to access type, and access type is declared
95deda50 14002 -- in the same unit as the unchecked conversion, then set the flag
14003 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 14004
14005 if Is_Access_Type (Target) and then
14006 In_Same_Source_Unit (Target, N)
14007 then
14008 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14009 end if;
3d875462 14010
95deda50 14011 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14012 -- the back end needs to perform special validation checks.
3d875462 14013
95deda50 14014 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14015 -- have full expansion and the back end is called ???
3d875462 14016
14017 Vnode :=
14018 Make_Validate_Unchecked_Conversion (Sloc (N));
14019 Set_Source_Type (Vnode, Source);
14020 Set_Target_Type (Vnode, Target);
14021
fdd294d1 14022 -- If the unchecked conversion node is in a list, just insert before it.
14023 -- If not we have some strange case, not worth bothering about.
3d875462 14024
14025 if Is_List_Member (N) then
d6f39728 14026 Insert_After (N, Vnode);
14027 end if;
14028 end Validate_Unchecked_Conversion;
14029
14030 ------------------------------------
14031 -- Validate_Unchecked_Conversions --
14032 ------------------------------------
14033
14034 procedure Validate_Unchecked_Conversions is
14035 begin
14036 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14037 declare
14038 T : UC_Entry renames Unchecked_Conversions.Table (N);
14039
e13b1635 14040 Act_Unit : constant Entity_Id := T.Act_Unit;
86d32751 14041 Eloc : constant Source_Ptr := T.Eloc;
14042 Source : constant Entity_Id := T.Source;
14043 Target : constant Entity_Id := T.Target;
d6f39728 14044
44705307 14045 Source_Siz : Uint;
14046 Target_Siz : Uint;
d6f39728 14047
14048 begin
86d32751 14049 -- Skip if function marked as warnings off
14050
14051 if Warnings_Off (Act_Unit) then
14052 goto Continue;
14053 end if;
14054
fdd294d1 14055 -- This validation check, which warns if we have unequal sizes for
14056 -- unchecked conversion, and thus potentially implementation
d6f39728 14057 -- dependent semantics, is one of the few occasions on which we
fdd294d1 14058 -- use the official RM size instead of Esize. See description in
14059 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 14060
f15731c4 14061 if Serious_Errors_Detected = 0
d6f39728 14062 and then Known_Static_RM_Size (Source)
14063 and then Known_Static_RM_Size (Target)
f25f4252 14064
14065 -- Don't do the check if warnings off for either type, note the
14066 -- deliberate use of OR here instead of OR ELSE to get the flag
14067 -- Warnings_Off_Used set for both types if appropriate.
14068
14069 and then not (Has_Warnings_Off (Source)
14070 or
14071 Has_Warnings_Off (Target))
d6f39728 14072 then
14073 Source_Siz := RM_Size (Source);
14074 Target_Siz := RM_Size (Target);
14075
14076 if Source_Siz /= Target_Siz then
299480f9 14077 Error_Msg
cb97ae5c 14078 ("?z?types for unchecked conversion have different sizes!",
299480f9 14079 Eloc);
d6f39728 14080
14081 if All_Errors_Mode then
14082 Error_Msg_Name_1 := Chars (Source);
14083 Error_Msg_Uint_1 := Source_Siz;
14084 Error_Msg_Name_2 := Chars (Target);
14085 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 14086 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 14087
14088 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14089
14090 if Is_Discrete_Type (Source)
b9e61b2a 14091 and then
14092 Is_Discrete_Type (Target)
d6f39728 14093 then
14094 if Source_Siz > Target_Siz then
299480f9 14095 Error_Msg
cb97ae5c 14096 ("\?z?^ high order bits of source will "
1e3532e7 14097 & "be ignored!", Eloc);
d6f39728 14098
9dfe12ae 14099 elsif Is_Unsigned_Type (Source) then
299480f9 14100 Error_Msg
cb97ae5c 14101 ("\?z?source will be extended with ^ high order "
1581f2d7 14102 & "zero bits!", Eloc);
d6f39728 14103
14104 else
299480f9 14105 Error_Msg
cb97ae5c 14106 ("\?z?source will be extended with ^ high order "
1e3532e7 14107 & "sign bits!", Eloc);
d6f39728 14108 end if;
14109
14110 elsif Source_Siz < Target_Siz then
14111 if Is_Discrete_Type (Target) then
14112 if Bytes_Big_Endian then
299480f9 14113 Error_Msg
cb97ae5c 14114 ("\?z?target value will include ^ undefined "
1e3532e7 14115 & "low order bits!", Eloc);
d6f39728 14116 else
299480f9 14117 Error_Msg
cb97ae5c 14118 ("\?z?target value will include ^ undefined "
1e3532e7 14119 & "high order bits!", Eloc);
d6f39728 14120 end if;
14121
14122 else
299480f9 14123 Error_Msg
cb97ae5c 14124 ("\?z?^ trailing bits of target value will be "
1e3532e7 14125 & "undefined!", Eloc);
d6f39728 14126 end if;
14127
14128 else pragma Assert (Source_Siz > Target_Siz);
0388e54e 14129 if Is_Discrete_Type (Source) then
14130 if Bytes_Big_Endian then
14131 Error_Msg
14132 ("\?z?^ low order bits of source will be "
14133 & "ignored!", Eloc);
14134 else
14135 Error_Msg
14136 ("\?z?^ high order bits of source will be "
14137 & "ignored!", Eloc);
14138 end if;
14139
14140 else
14141 Error_Msg
14142 ("\?z?^ trailing bits of source will be "
14143 & "ignored!", Eloc);
14144 end if;
d6f39728 14145 end if;
14146 end if;
d6f39728 14147 end if;
14148 end if;
14149
14150 -- If both types are access types, we need to check the alignment.
14151 -- If the alignment of both is specified, we can do it here.
14152
f15731c4 14153 if Serious_Errors_Detected = 0
2a10e737 14154 and then Is_Access_Type (Source)
14155 and then Is_Access_Type (Target)
d6f39728 14156 and then Target_Strict_Alignment
14157 and then Present (Designated_Type (Source))
14158 and then Present (Designated_Type (Target))
14159 then
14160 declare
14161 D_Source : constant Entity_Id := Designated_Type (Source);
14162 D_Target : constant Entity_Id := Designated_Type (Target);
14163
14164 begin
14165 if Known_Alignment (D_Source)
b9e61b2a 14166 and then
14167 Known_Alignment (D_Target)
d6f39728 14168 then
14169 declare
14170 Source_Align : constant Uint := Alignment (D_Source);
14171 Target_Align : constant Uint := Alignment (D_Target);
14172
14173 begin
14174 if Source_Align < Target_Align
14175 and then not Is_Tagged_Type (D_Source)
f25f4252 14176
14177 -- Suppress warning if warnings suppressed on either
14178 -- type or either designated type. Note the use of
14179 -- OR here instead of OR ELSE. That is intentional,
14180 -- we would like to set flag Warnings_Off_Used in
14181 -- all types for which warnings are suppressed.
14182
14183 and then not (Has_Warnings_Off (D_Source)
14184 or
14185 Has_Warnings_Off (D_Target)
14186 or
14187 Has_Warnings_Off (Source)
14188 or
14189 Has_Warnings_Off (Target))
d6f39728 14190 then
d6f39728 14191 Error_Msg_Uint_1 := Target_Align;
14192 Error_Msg_Uint_2 := Source_Align;
299480f9 14193 Error_Msg_Node_1 := D_Target;
d6f39728 14194 Error_Msg_Node_2 := D_Source;
299480f9 14195 Error_Msg
cb97ae5c 14196 ("?z?alignment of & (^) is stricter than "
1e3532e7 14197 & "alignment of & (^)!", Eloc);
f25f4252 14198 Error_Msg
cb97ae5c 14199 ("\?z?resulting access value may have invalid "
1e3532e7 14200 & "alignment!", Eloc);
d6f39728 14201 end if;
14202 end;
14203 end if;
14204 end;
14205 end if;
14206 end;
86d32751 14207
14208 <<Continue>>
14209 null;
d6f39728 14210 end loop;
14211 end Validate_Unchecked_Conversions;
14212
d6f39728 14213end Sem_Ch13;