]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
gcc/ada/
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
fdd294d1 9-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
713c00d6 27with Checks; use Checks;
d6f39728 28with Einfo; use Einfo;
29with Errout; use Errout;
30with Exp_Tss; use Exp_Tss;
31with Exp_Util; use Exp_Util;
d6f39728 32with Lib; use Lib;
83f8f0a6 33with Lib.Xref; use Lib.Xref;
15ebb600 34with Namet; use Namet;
d6f39728 35with Nlists; use Nlists;
36with Nmake; use Nmake;
37with Opt; use Opt;
e0521a36 38with Restrict; use Restrict;
39with Rident; use Rident;
d6f39728 40with Rtsfind; use Rtsfind;
41with Sem; use Sem;
42with Sem_Ch8; use Sem_Ch8;
43with Sem_Eval; use Sem_Eval;
44with Sem_Res; use Sem_Res;
45with Sem_Type; use Sem_Type;
46with Sem_Util; use Sem_Util;
44e4341e 47with Sem_Warn; use Sem_Warn;
9dfe12ae 48with Snames; use Snames;
d6f39728 49with Stand; use Stand;
50with Sinfo; use Sinfo;
d6f39728 51with Table;
93735cb8 52with Targparm; use Targparm;
d6f39728 53with Ttypes; use Ttypes;
54with Tbuild; use Tbuild;
55with Urealp; use Urealp;
56
bfa5a9d9 57with GNAT.Heap_Sort_G;
d6f39728 58
59package body Sem_Ch13 is
60
61 SSU : constant Pos := System_Storage_Unit;
62 -- Convenient short hand for commonly used constant
63
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
67
68 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
69 -- This routine is called after setting the Esize of type entity Typ.
1a34e48c 70 -- The purpose is to deal with the situation where an alignment has been
d6f39728 71 -- inherited from a derived type that is no longer appropriate for the
72 -- new Esize value. In this case, we reset the Alignment to unknown.
73
d6f39728 74 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
75 -- Given two entities for record components or discriminants, checks
1a34e48c 76 -- if they have overlapping component clauses and issues errors if so.
d6f39728 77
78 function Get_Alignment_Value (Expr : Node_Id) return Uint;
79 -- Given the expression for an alignment value, returns the corresponding
80 -- Uint value. If the value is inappropriate, then error messages are
81 -- posted as required, and a value of No_Uint is returned.
82
83 function Is_Operational_Item (N : Node_Id) return Boolean;
84 -- A specification for a stream attribute is allowed before the full
85 -- type is declared, as explained in AI-00137 and the corrigendum.
86 -- Attributes that do not specify a representation characteristic are
87 -- operational attributes.
88
9dfe12ae 89 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
2866d595 90 -- If expression N is of the form E'Address, return E
9dfe12ae 91
44e4341e 92 procedure New_Stream_Subprogram
d6f39728 93 (N : Node_Id;
94 Ent : Entity_Id;
95 Subp : Entity_Id;
9dfe12ae 96 Nam : TSS_Name_Type);
44e4341e 97 -- Create a subprogram renaming of a given stream attribute to the
98 -- designated subprogram and then in the tagged case, provide this as a
99 -- primitive operation, or in the non-tagged case make an appropriate TSS
100 -- entry. This is more properly an expansion activity than just semantics,
101 -- but the presence of user-defined stream functions for limited types is a
102 -- legality check, which is why this takes place here rather than in
103 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
104 -- function to be generated.
9dfe12ae 105 --
f15731c4 106 -- To avoid elaboration anomalies with freeze nodes, for untagged types
107 -- we generate both a subprogram declaration and a subprogram renaming
108 -- declaration, so that the attribute specification is handled as a
109 -- renaming_as_body. For tagged types, the specification is one of the
110 -- primitive specs.
111
d6f39728 112 ----------------------------------------------
113 -- Table for Validate_Unchecked_Conversions --
114 ----------------------------------------------
115
116 -- The following table collects unchecked conversions for validation.
117 -- Entries are made by Validate_Unchecked_Conversion and then the
118 -- call to Validate_Unchecked_Conversions does the actual error
119 -- checking and posting of warnings. The reason for this delayed
120 -- processing is to take advantage of back-annotations of size and
1a34e48c 121 -- alignment values performed by the back end.
d6f39728 122
123 type UC_Entry is record
124 Enode : Node_Id; -- node used for posting warnings
125 Source : Entity_Id; -- source type for unchecked conversion
126 Target : Entity_Id; -- target type for unchecked conversion
127 end record;
128
129 package Unchecked_Conversions is new Table.Table (
130 Table_Component_Type => UC_Entry,
131 Table_Index_Type => Int,
132 Table_Low_Bound => 1,
133 Table_Initial => 50,
134 Table_Increment => 200,
135 Table_Name => "Unchecked_Conversions");
136
83f8f0a6 137 ----------------------------------------
138 -- Table for Validate_Address_Clauses --
139 ----------------------------------------
140
141 -- If an address clause has the form
142
143 -- for X'Address use Expr
144
145 -- where Expr is of the form Y'Address or recursively is a reference
146 -- to a constant of either of these forms, and X and Y are entities of
147 -- objects, then if Y has a smaller alignment than X, that merits a
148 -- warning about possible bad alignment. The following table collects
149 -- address clauses of this kind. We put these in a table so that they
150 -- can be checked after the back end has completed annotation of the
151 -- alignments of objects, since we can catch more cases that way.
152
153 type Address_Clause_Check_Record is record
154 N : Node_Id;
155 -- The address clause
156
157 X : Entity_Id;
158 -- The entity of the object overlaying Y
159
160 Y : Entity_Id;
161 -- The entity of the object being overlaid
162 end record;
163
164 package Address_Clause_Checks is new Table.Table (
165 Table_Component_Type => Address_Clause_Check_Record,
166 Table_Index_Type => Int,
167 Table_Low_Bound => 1,
168 Table_Initial => 20,
169 Table_Increment => 200,
170 Table_Name => "Address_Clause_Checks");
171
9dfe12ae 172 ----------------------------
173 -- Address_Aliased_Entity --
174 ----------------------------
175
176 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
177 begin
178 if Nkind (N) = N_Attribute_Reference
179 and then Attribute_Name (N) = Name_Address
180 then
181 declare
fdd294d1 182 P : Node_Id;
183
9dfe12ae 184 begin
fdd294d1 185 P := Prefix (N);
186 while Nkind_In (P, N_Selected_Component, N_Indexed_Component) loop
187 P := Prefix (P);
9dfe12ae 188 end loop;
189
fdd294d1 190 if Is_Entity_Name (P) then
191 return Entity (P);
9dfe12ae 192 end if;
193 end;
194 end if;
195
196 return Empty;
197 end Address_Aliased_Entity;
198
59ac57b5 199 -----------------------------------------
200 -- Adjust_Record_For_Reverse_Bit_Order --
201 -----------------------------------------
202
203 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
204 Max_Machine_Scalar_Size : constant Uint :=
205 UI_From_Int
206 (Standard_Long_Long_Integer_Size);
207 -- We use this as the maximum machine scalar size in the sense of AI-133
208
209 Num_CC : Natural;
210 Comp : Entity_Id;
211 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
212
213 begin
214 -- This first loop through components does two things. First it deals
215 -- with the case of components with component clauses whose length is
216 -- greater than the maximum machine scalar size (either accepting them
217 -- or rejecting as needed). Second, it counts the number of components
218 -- with component clauses whose length does not exceed this maximum for
219 -- later processing.
220
221 Num_CC := 0;
222 Comp := First_Component_Or_Discriminant (R);
223 while Present (Comp) loop
224 declare
225 CC : constant Node_Id := Component_Clause (Comp);
226 Fbit : constant Uint := Static_Integer (First_Bit (CC));
227
228 begin
229 if Present (CC) then
230
231 -- Case of component with size > max machine scalar
232
233 if Esize (Comp) > Max_Machine_Scalar_Size then
234
235 -- Must begin on byte boundary
236
237 if Fbit mod SSU /= 0 then
238 Error_Msg_N
239 ("illegal first bit value for reverse bit order",
240 First_Bit (CC));
241 Error_Msg_Uint_1 := SSU;
242 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
243
244 Error_Msg_N
245 ("\must be a multiple of ^ if size greater than ^",
246 First_Bit (CC));
247
248 -- Must end on byte boundary
249
250 elsif Esize (Comp) mod SSU /= 0 then
251 Error_Msg_N
252 ("illegal last bit value for reverse bit order",
253 Last_Bit (CC));
254 Error_Msg_Uint_1 := SSU;
255 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
256
257 Error_Msg_N
258 ("\must be a multiple of ^ if size greater than ^",
259 Last_Bit (CC));
260
261 -- OK, give warning if enabled
262
263 elsif Warn_On_Reverse_Bit_Order then
264 Error_Msg_N
265 ("multi-byte field specified with non-standard"
266 & " Bit_Order?", CC);
267
268 if Bytes_Big_Endian then
269 Error_Msg_N
270 ("\bytes are not reversed "
271 & "(component is big-endian)?", CC);
272 else
273 Error_Msg_N
274 ("\bytes are not reversed "
275 & "(component is little-endian)?", CC);
276 end if;
277 end if;
278
279 -- Case where size is not greater than max machine scalar.
280 -- For now, we just count these.
281
282 else
283 Num_CC := Num_CC + 1;
284 end if;
285 end if;
286 end;
287
288 Next_Component_Or_Discriminant (Comp);
289 end loop;
290
291 -- We need to sort the component clauses on the basis of the Position
83f8f0a6 292 -- values in the clause, so we can group clauses with the same Position.
59ac57b5 293 -- together to determine the relevant machine scalar size.
294
295 declare
296 Comps : array (0 .. Num_CC) of Entity_Id;
1a34e48c 297 -- Array to collect component and discriminant entities. The data
bfa5a9d9 298 -- starts at index 1, the 0'th entry is for the sort routine.
59ac57b5 299
300 function CP_Lt (Op1, Op2 : Natural) return Boolean;
bfa5a9d9 301 -- Compare routine for Sort
59ac57b5 302
303 procedure CP_Move (From : Natural; To : Natural);
bfa5a9d9 304 -- Move routine for Sort
305
306 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 307
308 Start : Natural;
309 Stop : Natural;
310 -- Start and stop positions in component list of set of components
311 -- with the same starting position (that constitute components in
312 -- a single machine scalar).
313
314 MaxL : Uint;
315 -- Maximum last bit value of any component in this set
316
317 MSS : Uint;
318 -- Corresponding machine scalar size
319
320 -----------
321 -- CP_Lt --
322 -----------
323
324 function CP_Lt (Op1, Op2 : Natural) return Boolean is
325 begin
326 return Position (Component_Clause (Comps (Op1))) <
327 Position (Component_Clause (Comps (Op2)));
328 end CP_Lt;
329
330 -------------
331 -- CP_Move --
332 -------------
333
334 procedure CP_Move (From : Natural; To : Natural) is
335 begin
336 Comps (To) := Comps (From);
337 end CP_Move;
338
339 begin
340 -- Collect the component clauses
341
342 Num_CC := 0;
343 Comp := First_Component_Or_Discriminant (R);
344 while Present (Comp) loop
345 if Present (Component_Clause (Comp))
346 and then Esize (Comp) <= Max_Machine_Scalar_Size
347 then
348 Num_CC := Num_CC + 1;
349 Comps (Num_CC) := Comp;
350 end if;
351
352 Next_Component_Or_Discriminant (Comp);
353 end loop;
354
355 -- Sort by ascending position number
356
bfa5a9d9 357 Sorting.Sort (Num_CC);
59ac57b5 358
359 -- We now have all the components whose size does not exceed the max
360 -- machine scalar value, sorted by starting position. In this loop
361 -- we gather groups of clauses starting at the same position, to
362 -- process them in accordance with Ada 2005 AI-133.
363
364 Stop := 0;
365 while Stop < Num_CC loop
366 Start := Stop + 1;
367 Stop := Start;
368 MaxL :=
369 Static_Integer (Last_Bit (Component_Clause (Comps (Start))));
370 while Stop < Num_CC loop
371 if Static_Integer
372 (Position (Component_Clause (Comps (Stop + 1)))) =
373 Static_Integer
374 (Position (Component_Clause (Comps (Stop))))
375 then
376 Stop := Stop + 1;
377 MaxL :=
378 UI_Max
379 (MaxL,
380 Static_Integer
381 (Last_Bit (Component_Clause (Comps (Stop)))));
382 else
383 exit;
384 end if;
385 end loop;
386
387 -- Now we have a group of component clauses from Start to Stop
388 -- whose positions are identical, and MaxL is the maximum last bit
389 -- value of any of these components.
390
391 -- We need to determine the corresponding machine scalar size.
392 -- This loop assumes that machine scalar sizes are even, and that
393 -- each possible machine scalar has twice as many bits as the
394 -- next smaller one.
395
396 MSS := Max_Machine_Scalar_Size;
397 while MSS mod 2 = 0
398 and then (MSS / 2) >= SSU
399 and then (MSS / 2) > MaxL
400 loop
401 MSS := MSS / 2;
402 end loop;
403
404 -- Here is where we fix up the Component_Bit_Offset value to
405 -- account for the reverse bit order. Some examples of what needs
406 -- to be done for the case of a machine scalar size of 8 are:
407
408 -- First_Bit .. Last_Bit Component_Bit_Offset
409 -- old new old new
410
411 -- 0 .. 0 7 .. 7 0 7
412 -- 0 .. 1 6 .. 7 0 6
413 -- 0 .. 2 5 .. 7 0 5
414 -- 0 .. 7 0 .. 7 0 4
415
416 -- 1 .. 1 6 .. 6 1 6
417 -- 1 .. 4 3 .. 6 1 3
418 -- 4 .. 7 0 .. 3 4 0
419
420 -- The general rule is that the first bit is is obtained by
421 -- subtracting the old ending bit from machine scalar size - 1.
422
423 for C in Start .. Stop loop
424 declare
425 Comp : constant Entity_Id := Comps (C);
426 CC : constant Node_Id := Component_Clause (Comp);
427 LB : constant Uint := Static_Integer (Last_Bit (CC));
428 NFB : constant Uint := MSS - Uint_1 - LB;
429 NLB : constant Uint := NFB + Esize (Comp) - 1;
430 Pos : constant Uint := Static_Integer (Position (CC));
431
432 begin
433 if Warn_On_Reverse_Bit_Order then
434 Error_Msg_Uint_1 := MSS;
435 Error_Msg_N
436 ("?reverse bit order in machine " &
437 "scalar of length^", First_Bit (CC));
438 Error_Msg_Uint_1 := NFB;
439 Error_Msg_Uint_2 := NLB;
440
441 if Bytes_Big_Endian then
442 Error_Msg_NE
443 ("?\big-endian range for component & is ^ .. ^",
444 First_Bit (CC), Comp);
445 else
446 Error_Msg_NE
447 ("?\little-endian range for component & is ^ .. ^",
448 First_Bit (CC), Comp);
449 end if;
450 end if;
451
452 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
453 Set_Normalized_First_Bit (Comp, NFB mod SSU);
454 end;
455 end loop;
456 end loop;
457 end;
458 end Adjust_Record_For_Reverse_Bit_Order;
459
d6f39728 460 --------------------------------------
461 -- Alignment_Check_For_Esize_Change --
462 --------------------------------------
463
464 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
465 begin
466 -- If the alignment is known, and not set by a rep clause, and is
467 -- inconsistent with the size being set, then reset it to unknown,
468 -- we assume in this case that the size overrides the inherited
469 -- alignment, and that the alignment must be recomputed.
470
471 if Known_Alignment (Typ)
472 and then not Has_Alignment_Clause (Typ)
473 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
474 then
475 Init_Alignment (Typ);
476 end if;
477 end Alignment_Check_For_Esize_Change;
478
479 -----------------------
480 -- Analyze_At_Clause --
481 -----------------------
482
483 -- An at clause is replaced by the corresponding Address attribute
484 -- definition clause that is the preferred approach in Ada 95.
485
486 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 487 CS : constant Boolean := Comes_From_Source (N);
488
d6f39728 489 begin
177675a7 490 -- This is an obsolescent feature
491
e0521a36 492 Check_Restriction (No_Obsolescent_Features, N);
493
9dfe12ae 494 if Warn_On_Obsolescent_Feature then
495 Error_Msg_N
fbc67f84 496 ("at clause is an obsolescent feature (RM J.7(2))?", N);
9dfe12ae 497 Error_Msg_N
d53a018a 498 ("\use address attribute definition clause instead?", N);
9dfe12ae 499 end if;
500
177675a7 501 -- Rewrite as address clause
502
d6f39728 503 Rewrite (N,
504 Make_Attribute_Definition_Clause (Sloc (N),
505 Name => Identifier (N),
506 Chars => Name_Address,
507 Expression => Expression (N)));
177675a7 508
509 -- We preserve Comes_From_Source, since logically the clause still
510 -- comes from the source program even though it is changed in form.
511
512 Set_Comes_From_Source (N, CS);
513
514 -- Analyze rewritten clause
515
d6f39728 516 Analyze_Attribute_Definition_Clause (N);
517 end Analyze_At_Clause;
518
519 -----------------------------------------
520 -- Analyze_Attribute_Definition_Clause --
521 -----------------------------------------
522
523 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
524 Loc : constant Source_Ptr := Sloc (N);
525 Nam : constant Node_Id := Name (N);
526 Attr : constant Name_Id := Chars (N);
527 Expr : constant Node_Id := Expression (N);
528 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
529 Ent : Entity_Id;
530 U_Ent : Entity_Id;
531
532 FOnly : Boolean := False;
533 -- Reset to True for subtype specific attribute (Alignment, Size)
534 -- and for stream attributes, i.e. those cases where in the call
535 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
536 -- rules are checked. Note that the case of stream attributes is not
537 -- clear from the RM, but see AI95-00137. Also, the RM seems to
538 -- disallow Storage_Size for derived task types, but that is also
539 -- clearly unintentional.
540
9f373bb8 541 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
542 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
543 -- definition clauses.
544
177675a7 545 -----------------------------------
546 -- Analyze_Stream_TSS_Definition --
547 -----------------------------------
548
9f373bb8 549 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
550 Subp : Entity_Id := Empty;
551 I : Interp_Index;
552 It : Interp;
553 Pnam : Entity_Id;
554
555 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
556
557 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
558 -- Return true if the entity is a subprogram with an appropriate
559 -- profile for the attribute being defined.
560
561 ----------------------
562 -- Has_Good_Profile --
563 ----------------------
564
565 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
566 F : Entity_Id;
567 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
568 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
569 (False => E_Procedure, True => E_Function);
570 Typ : Entity_Id;
571
572 begin
573 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
574 return False;
575 end if;
576
577 F := First_Formal (Subp);
578
579 if No (F)
580 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
581 or else Designated_Type (Etype (F)) /=
582 Class_Wide_Type (RTE (RE_Root_Stream_Type))
583 then
584 return False;
585 end if;
586
587 if not Is_Function then
588 Next_Formal (F);
589
590 declare
591 Expected_Mode : constant array (Boolean) of Entity_Kind :=
592 (False => E_In_Parameter,
593 True => E_Out_Parameter);
594 begin
595 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
596 return False;
597 end if;
598 end;
599
600 Typ := Etype (F);
601
602 else
603 Typ := Etype (Subp);
604 end if;
605
606 return Base_Type (Typ) = Base_Type (Ent)
607 and then No (Next_Formal (F));
9f373bb8 608 end Has_Good_Profile;
609
610 -- Start of processing for Analyze_Stream_TSS_Definition
611
612 begin
613 FOnly := True;
614
615 if not Is_Type (U_Ent) then
616 Error_Msg_N ("local name must be a subtype", Nam);
617 return;
618 end if;
619
620 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
621
44e4341e 622 -- If Pnam is present, it can be either inherited from an ancestor
623 -- type (in which case it is legal to redefine it for this type), or
624 -- be a previous definition of the attribute for the same type (in
625 -- which case it is illegal).
626
627 -- In the first case, it will have been analyzed already, and we
628 -- can check that its profile does not match the expected profile
629 -- for a stream attribute of U_Ent. In the second case, either Pnam
630 -- has been analyzed (and has the expected profile), or it has not
631 -- been analyzed yet (case of a type that has not been frozen yet
632 -- and for which the stream attribute has been set using Set_TSS).
633
634 if Present (Pnam)
635 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
636 then
9f373bb8 637 Error_Msg_Sloc := Sloc (Pnam);
638 Error_Msg_Name_1 := Attr;
639 Error_Msg_N ("% attribute already defined #", Nam);
640 return;
641 end if;
642
643 Analyze (Expr);
644
645 if Is_Entity_Name (Expr) then
646 if not Is_Overloaded (Expr) then
647 if Has_Good_Profile (Entity (Expr)) then
648 Subp := Entity (Expr);
649 end if;
650
651 else
652 Get_First_Interp (Expr, I, It);
9f373bb8 653 while Present (It.Nam) loop
654 if Has_Good_Profile (It.Nam) then
655 Subp := It.Nam;
656 exit;
657 end if;
658
659 Get_Next_Interp (I, It);
660 end loop;
661 end if;
662 end if;
663
664 if Present (Subp) then
59ac57b5 665 if Is_Abstract_Subprogram (Subp) then
9f373bb8 666 Error_Msg_N ("stream subprogram must not be abstract", Expr);
667 return;
668 end if;
669
670 Set_Entity (Expr, Subp);
671 Set_Etype (Expr, Etype (Subp));
672
44e4341e 673 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 674
675 else
676 Error_Msg_Name_1 := Attr;
677 Error_Msg_N ("incorrect expression for% attribute", Expr);
678 end if;
679 end Analyze_Stream_TSS_Definition;
680
681 -- Start of processing for Analyze_Attribute_Definition_Clause
682
d6f39728 683 begin
fbc67f84 684 if Ignore_Rep_Clauses then
685 Rewrite (N, Make_Null_Statement (Sloc (N)));
686 return;
687 end if;
688
d6f39728 689 Analyze (Nam);
690 Ent := Entity (Nam);
691
692 if Rep_Item_Too_Early (Ent, N) then
693 return;
694 end if;
695
9f373bb8 696 -- Rep clause applies to full view of incomplete type or private type if
697 -- we have one (if not, this is a premature use of the type). However,
698 -- certain semantic checks need to be done on the specified entity (i.e.
699 -- the private view), so we save it in Ent.
d6f39728 700
701 if Is_Private_Type (Ent)
702 and then Is_Derived_Type (Ent)
703 and then not Is_Tagged_Type (Ent)
704 and then No (Full_View (Ent))
705 then
9f373bb8 706 -- If this is a private type whose completion is a derivation from
707 -- another private type, there is no full view, and the attribute
708 -- belongs to the type itself, not its underlying parent.
d6f39728 709
710 U_Ent := Ent;
711
712 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 713
9f373bb8 714 -- The attribute applies to the full view, set the entity of the
715 -- attribute definition accordingly.
d5b349fa 716
d6f39728 717 Ent := Underlying_Type (Ent);
718 U_Ent := Ent;
d5b349fa 719 Set_Entity (Nam, Ent);
720
d6f39728 721 else
722 U_Ent := Underlying_Type (Ent);
723 end if;
724
725 -- Complete other routine error checks
726
727 if Etype (Nam) = Any_Type then
728 return;
729
730 elsif Scope (Ent) /= Current_Scope then
731 Error_Msg_N ("entity must be declared in this scope", Nam);
732 return;
733
f15731c4 734 elsif No (U_Ent) then
735 U_Ent := Ent;
736
d6f39728 737 elsif Is_Type (U_Ent)
738 and then not Is_First_Subtype (U_Ent)
739 and then Id /= Attribute_Object_Size
740 and then Id /= Attribute_Value_Size
741 and then not From_At_Mod (N)
742 then
743 Error_Msg_N ("cannot specify attribute for subtype", Nam);
744 return;
d6f39728 745 end if;
746
747 -- Switch on particular attribute
748
749 case Id is
750
751 -------------
752 -- Address --
753 -------------
754
755 -- Address attribute definition clause
756
757 when Attribute_Address => Address : begin
177675a7 758
759 -- A little error check, catch for X'Address use X'Address;
760
761 if Nkind (Nam) = N_Identifier
762 and then Nkind (Expr) = N_Attribute_Reference
763 and then Attribute_Name (Expr) = Name_Address
764 and then Nkind (Prefix (Expr)) = N_Identifier
765 and then Chars (Nam) = Chars (Prefix (Expr))
766 then
767 Error_Msg_NE
768 ("address for & is self-referencing", Prefix (Expr), Ent);
769 return;
770 end if;
771
772 -- Not that special case, carry on with analysis of expression
773
d6f39728 774 Analyze_And_Resolve (Expr, RTE (RE_Address));
775
776 if Present (Address_Clause (U_Ent)) then
777 Error_Msg_N ("address already given for &", Nam);
778
779 -- Case of address clause for subprogram
780
781 elsif Is_Subprogram (U_Ent) then
d6f39728 782 if Has_Homonym (U_Ent) then
783 Error_Msg_N
784 ("address clause cannot be given " &
785 "for overloaded subprogram",
786 Nam);
83f8f0a6 787 return;
d6f39728 788 end if;
789
83f8f0a6 790 -- For subprograms, all address clauses are permitted, and we
791 -- mark the subprogram as having a deferred freeze so that Gigi
792 -- will not elaborate it too soon.
d6f39728 793
794 -- Above needs more comments, what is too soon about???
795
796 Set_Has_Delayed_Freeze (U_Ent);
797
798 -- Case of address clause for entry
799
800 elsif Ekind (U_Ent) = E_Entry then
d6f39728 801 if Nkind (Parent (N)) = N_Task_Body then
802 Error_Msg_N
803 ("entry address must be specified in task spec", Nam);
83f8f0a6 804 return;
d6f39728 805 end if;
806
807 -- For entries, we require a constant address
808
809 Check_Constant_Address_Clause (Expr, U_Ent);
810
83f8f0a6 811 -- Special checks for task types
812
f15731c4 813 if Is_Task_Type (Scope (U_Ent))
814 and then Comes_From_Source (Scope (U_Ent))
815 then
816 Error_Msg_N
817 ("?entry address declared for entry in task type", N);
818 Error_Msg_N
819 ("\?only one task can be declared of this type", N);
820 end if;
821
83f8f0a6 822 -- Entry address clauses are obsolescent
823
e0521a36 824 Check_Restriction (No_Obsolescent_Features, N);
825
9dfe12ae 826 if Warn_On_Obsolescent_Feature then
827 Error_Msg_N
828 ("attaching interrupt to task entry is an " &
fbc67f84 829 "obsolescent feature (RM J.7.1)?", N);
9dfe12ae 830 Error_Msg_N
d53a018a 831 ("\use interrupt procedure instead?", N);
9dfe12ae 832 end if;
833
83f8f0a6 834 -- Case of an address clause for a controlled object which we
835 -- consider to be erroneous.
9dfe12ae 836
83f8f0a6 837 elsif Is_Controlled (Etype (U_Ent))
838 or else Has_Controlled_Component (Etype (U_Ent))
839 then
9dfe12ae 840 Error_Msg_NE
841 ("?controlled object& must not be overlaid", Nam, U_Ent);
842 Error_Msg_N
843 ("\?Program_Error will be raised at run time", Nam);
844 Insert_Action (Declaration_Node (U_Ent),
845 Make_Raise_Program_Error (Loc,
846 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 847 return;
9dfe12ae 848
849 -- Case of address clause for a (non-controlled) object
d6f39728 850
851 elsif
852 Ekind (U_Ent) = E_Variable
853 or else
854 Ekind (U_Ent) = E_Constant
855 then
856 declare
83f8f0a6 857 Expr : constant Node_Id := Expression (N);
858 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
859 Ent_Y : constant Entity_Id := Find_Overlaid_Object (N);
d6f39728 860
861 begin
862 -- Exported variables cannot have an address clause,
863 -- because this cancels the effect of the pragma Export
864
865 if Is_Exported (U_Ent) then
866 Error_Msg_N
867 ("cannot export object with address clause", Nam);
83f8f0a6 868 return;
d6f39728 869
9dfe12ae 870 -- Overlaying controlled objects is erroneous
871
872 elsif Present (Aent)
83f8f0a6 873 and then (Has_Controlled_Component (Etype (Aent))
874 or else Is_Controlled (Etype (Aent)))
9dfe12ae 875 then
876 Error_Msg_N
83f8f0a6 877 ("?cannot overlay with controlled object", Expr);
9dfe12ae 878 Error_Msg_N
879 ("\?Program_Error will be raised at run time", Expr);
880 Insert_Action (Declaration_Node (U_Ent),
881 Make_Raise_Program_Error (Loc,
882 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 883 return;
9dfe12ae 884
885 elsif Present (Aent)
886 and then Ekind (U_Ent) = E_Constant
887 and then Ekind (Aent) /= E_Constant
888 then
889 Error_Msg_N ("constant overlays a variable?", Expr);
890
891 elsif Present (Renamed_Object (U_Ent)) then
892 Error_Msg_N
893 ("address clause not allowed"
fbc67f84 894 & " for a renaming declaration (RM 13.1(6))", Nam);
83f8f0a6 895 return;
9dfe12ae 896
d6f39728 897 -- Imported variables can have an address clause, but then
898 -- the import is pretty meaningless except to suppress
899 -- initializations, so we do not need such variables to
900 -- be statically allocated (and in fact it causes trouble
901 -- if the address clause is a local value).
902
903 elsif Is_Imported (U_Ent) then
904 Set_Is_Statically_Allocated (U_Ent, False);
905 end if;
906
907 -- We mark a possible modification of a variable with an
908 -- address clause, since it is likely aliasing is occurring.
909
177675a7 910 Note_Possible_Modification (Nam, Sure => False);
d6f39728 911
83f8f0a6 912 -- Here we are checking for explicit overlap of one variable
913 -- by another, and if we find this then mark the overlapped
914 -- variable as also being volatile to prevent unwanted
915 -- optimizations.
d6f39728 916
83f8f0a6 917 if Present (Ent_Y) then
918 Set_Treat_As_Volatile (Ent_Y);
d6f39728 919 end if;
920
9dfe12ae 921 -- Legality checks on the address clause for initialized
922 -- objects is deferred until the freeze point, because
923 -- a subsequent pragma might indicate that the object is
924 -- imported and thus not initialized.
925
926 Set_Has_Delayed_Freeze (U_Ent);
927
d6f39728 928 if Is_Exported (U_Ent) then
929 Error_Msg_N
930 ("& cannot be exported if an address clause is given",
931 Nam);
932 Error_Msg_N
933 ("\define and export a variable " &
934 "that holds its address instead",
935 Nam);
936 end if;
937
44e4341e 938 -- Entity has delayed freeze, so we will generate an
939 -- alignment check at the freeze point unless suppressed.
d6f39728 940
44e4341e 941 if not Range_Checks_Suppressed (U_Ent)
942 and then not Alignment_Checks_Suppressed (U_Ent)
943 then
944 Set_Check_Address_Alignment (N);
945 end if;
d6f39728 946
947 -- Kill the size check code, since we are not allocating
948 -- the variable, it is somewhere else.
949
950 Kill_Size_Check_Code (U_Ent);
951 end;
952
83f8f0a6 953 -- If the address clause is of the form:
954
177675a7 955 -- for Y'Address use X'Address
83f8f0a6 956
957 -- or
958
177675a7 959 -- Const : constant Address := X'Address;
83f8f0a6 960 -- ...
177675a7 961 -- for Y'Address use Const;
83f8f0a6 962
963 -- then we make an entry in the table for checking the size and
964 -- alignment of the overlaying variable. We defer this check
965 -- till after code generation to take full advantage of the
966 -- annotation done by the back end. This entry is only made if
967 -- we have not already posted a warning about size/alignment
177675a7 968 -- (some warnings of this type are posted in Checks), and if
969 -- the address clause comes from source.
83f8f0a6 970
177675a7 971 if Address_Clause_Overlay_Warnings
972 and then Comes_From_Source (N)
973 then
83f8f0a6 974 declare
975 Ent_X : Entity_Id := Empty;
976 Ent_Y : Entity_Id := Empty;
977
978 begin
979 Ent_Y := Find_Overlaid_Object (N);
980
981 if Present (Ent_Y) and then Is_Entity_Name (Name (N)) then
982 Ent_X := Entity (Name (N));
177675a7 983 Address_Clause_Checks.Append ((N, Ent_X, Ent_Y));
984
985 -- If variable overlays a constant view, and we are
986 -- warning on overlays, then mark the variable as
987 -- overlaying a constant (we will give warnings later
988 -- if this variable is assigned).
989
990 if Is_Constant_Object (Ent_Y)
991 and then Ekind (Ent_X) = E_Variable
992 then
993 Set_Overlays_Constant (Ent_X);
994 end if;
83f8f0a6 995 end if;
996 end;
997 end if;
998
d6f39728 999 -- Not a valid entity for an address clause
1000
1001 else
1002 Error_Msg_N ("address cannot be given for &", Nam);
1003 end if;
1004 end Address;
1005
1006 ---------------
1007 -- Alignment --
1008 ---------------
1009
1010 -- Alignment attribute definition clause
1011
1012 when Attribute_Alignment => Alignment_Block : declare
9dfe12ae 1013 Align : constant Uint := Get_Alignment_Value (Expr);
d6f39728 1014
1015 begin
1016 FOnly := True;
1017
1018 if not Is_Type (U_Ent)
1019 and then Ekind (U_Ent) /= E_Variable
1020 and then Ekind (U_Ent) /= E_Constant
1021 then
1022 Error_Msg_N ("alignment cannot be given for &", Nam);
1023
1024 elsif Has_Alignment_Clause (U_Ent) then
1025 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1026 Error_Msg_N ("alignment clause previously given#", N);
1027
1028 elsif Align /= No_Uint then
1029 Set_Has_Alignment_Clause (U_Ent);
1030 Set_Alignment (U_Ent, Align);
1031 end if;
1032 end Alignment_Block;
1033
1034 ---------------
1035 -- Bit_Order --
1036 ---------------
1037
1038 -- Bit_Order attribute definition clause
1039
1040 when Attribute_Bit_Order => Bit_Order : declare
1041 begin
1042 if not Is_Record_Type (U_Ent) then
1043 Error_Msg_N
1044 ("Bit_Order can only be defined for record type", Nam);
1045
1046 else
1047 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
1048
1049 if Etype (Expr) = Any_Type then
1050 return;
1051
1052 elsif not Is_Static_Expression (Expr) then
9dfe12ae 1053 Flag_Non_Static_Expr
1054 ("Bit_Order requires static expression!", Expr);
d6f39728 1055
1056 else
1057 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
1058 Set_Reverse_Bit_Order (U_Ent, True);
1059 end if;
1060 end if;
1061 end if;
1062 end Bit_Order;
1063
1064 --------------------
1065 -- Component_Size --
1066 --------------------
1067
1068 -- Component_Size attribute definition clause
1069
1070 when Attribute_Component_Size => Component_Size_Case : declare
1071 Csize : constant Uint := Static_Integer (Expr);
1072 Btype : Entity_Id;
1073 Biased : Boolean;
1074 New_Ctyp : Entity_Id;
1075 Decl : Node_Id;
1076
1077 begin
1078 if not Is_Array_Type (U_Ent) then
1079 Error_Msg_N ("component size requires array type", Nam);
1080 return;
1081 end if;
1082
1083 Btype := Base_Type (U_Ent);
1084
1085 if Has_Component_Size_Clause (Btype) then
1086 Error_Msg_N
3062c401 1087 ("component size clause for& previously given", Nam);
d6f39728 1088
1089 elsif Csize /= No_Uint then
1090 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
1091
1092 if Has_Aliased_Components (Btype)
1093 and then Csize < 32
1094 and then Csize /= 8
1095 and then Csize /= 16
1096 then
1097 Error_Msg_N
1098 ("component size incorrect for aliased components", N);
1099 return;
1100 end if;
1101
1102 -- For the biased case, build a declaration for a subtype
1103 -- that will be used to represent the biased subtype that
1104 -- reflects the biased representation of components. We need
1105 -- this subtype to get proper conversions on referencing
3062c401 1106 -- elements of the array. Note that component size clauses
1107 -- are ignored in VM mode.
1108
1109 if VM_Target = No_VM then
1110 if Biased then
1111 New_Ctyp :=
1112 Make_Defining_Identifier (Loc,
1113 Chars =>
1114 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
1115
1116 Decl :=
1117 Make_Subtype_Declaration (Loc,
1118 Defining_Identifier => New_Ctyp,
1119 Subtype_Indication =>
1120 New_Occurrence_Of (Component_Type (Btype), Loc));
1121
1122 Set_Parent (Decl, N);
1123 Analyze (Decl, Suppress => All_Checks);
1124
1125 Set_Has_Delayed_Freeze (New_Ctyp, False);
1126 Set_Esize (New_Ctyp, Csize);
1127 Set_RM_Size (New_Ctyp, Csize);
1128 Init_Alignment (New_Ctyp);
1129 Set_Has_Biased_Representation (New_Ctyp, True);
1130 Set_Is_Itype (New_Ctyp, True);
1131 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
1132
1133 Set_Component_Type (Btype, New_Ctyp);
1134 end if;
1135
1136 Set_Component_Size (Btype, Csize);
1137
1138 -- For VM case, we ignore component size clauses
1139
1140 else
1141 -- Give a warning unless we are in GNAT mode, in which case
1142 -- the warning is suppressed since it is not useful.
1143
1144 if not GNAT_Mode then
1145 Error_Msg_N
1146 ("?component size ignored in this configuration", N);
1147 end if;
d6f39728 1148 end if;
1149
d6f39728 1150 Set_Has_Component_Size_Clause (Btype, True);
1151 Set_Has_Non_Standard_Rep (Btype, True);
1152 end if;
1153 end Component_Size_Case;
1154
1155 ------------------
1156 -- External_Tag --
1157 ------------------
1158
1159 when Attribute_External_Tag => External_Tag :
1160 begin
1161 if not Is_Tagged_Type (U_Ent) then
1162 Error_Msg_N ("should be a tagged type", Nam);
1163 end if;
1164
1165 Analyze_And_Resolve (Expr, Standard_String);
1166
1167 if not Is_Static_Expression (Expr) then
9dfe12ae 1168 Flag_Non_Static_Expr
1169 ("static string required for tag name!", Nam);
d6f39728 1170 end if;
1171
15ebb600 1172 if VM_Target = No_VM then
1173 Set_Has_External_Tag_Rep_Clause (U_Ent);
bfa5a9d9 1174 elsif not Inspector_Mode then
15ebb600 1175 Error_Msg_Name_1 := Attr;
1176 Error_Msg_N
1177 ("% attribute unsupported in this configuration", Nam);
1178 end if;
fbc67f84 1179
1180 if not Is_Library_Level_Entity (U_Ent) then
1181 Error_Msg_NE
1182 ("?non-unique external tag supplied for &", N, U_Ent);
1183 Error_Msg_N
1184 ("?\same external tag applies to all subprogram calls", N);
1185 Error_Msg_N
1186 ("?\corresponding internal tag cannot be obtained", N);
1187 end if;
d6f39728 1188 end External_Tag;
1189
1190 -----------
1191 -- Input --
1192 -----------
1193
9f373bb8 1194 when Attribute_Input =>
1195 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
1196 Set_Has_Specified_Stream_Input (Ent);
d6f39728 1197
1198 -------------------
1199 -- Machine_Radix --
1200 -------------------
1201
1202 -- Machine radix attribute definition clause
1203
1204 when Attribute_Machine_Radix => Machine_Radix : declare
1205 Radix : constant Uint := Static_Integer (Expr);
1206
1207 begin
1208 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
1209 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
1210
1211 elsif Has_Machine_Radix_Clause (U_Ent) then
1212 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1213 Error_Msg_N ("machine radix clause previously given#", N);
1214
1215 elsif Radix /= No_Uint then
1216 Set_Has_Machine_Radix_Clause (U_Ent);
1217 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
1218
1219 if Radix = 2 then
1220 null;
1221 elsif Radix = 10 then
1222 Set_Machine_Radix_10 (U_Ent);
1223 else
1224 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
1225 end if;
1226 end if;
1227 end Machine_Radix;
1228
1229 -----------------
1230 -- Object_Size --
1231 -----------------
1232
1233 -- Object_Size attribute definition clause
1234
1235 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 1236 Size : constant Uint := Static_Integer (Expr);
1237
d6f39728 1238 Biased : Boolean;
bfa5a9d9 1239 pragma Warnings (Off, Biased);
d6f39728 1240
1241 begin
1242 if not Is_Type (U_Ent) then
1243 Error_Msg_N ("Object_Size cannot be given for &", Nam);
1244
1245 elsif Has_Object_Size_Clause (U_Ent) then
1246 Error_Msg_N ("Object_Size already given for &", Nam);
1247
1248 else
1249 Check_Size (Expr, U_Ent, Size, Biased);
1250
1251 if Size /= 8
1252 and then
1253 Size /= 16
1254 and then
1255 Size /= 32
1256 and then
1257 UI_Mod (Size, 64) /= 0
1258 then
1259 Error_Msg_N
1260 ("Object_Size must be 8, 16, 32, or multiple of 64",
1261 Expr);
1262 end if;
1263
1264 Set_Esize (U_Ent, Size);
1265 Set_Has_Object_Size_Clause (U_Ent);
1266 Alignment_Check_For_Esize_Change (U_Ent);
1267 end if;
1268 end Object_Size;
1269
1270 ------------
1271 -- Output --
1272 ------------
1273
9f373bb8 1274 when Attribute_Output =>
1275 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
1276 Set_Has_Specified_Stream_Output (Ent);
d6f39728 1277
1278 ----------
1279 -- Read --
1280 ----------
1281
9f373bb8 1282 when Attribute_Read =>
1283 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
1284 Set_Has_Specified_Stream_Read (Ent);
d6f39728 1285
1286 ----------
1287 -- Size --
1288 ----------
1289
1290 -- Size attribute definition clause
1291
1292 when Attribute_Size => Size : declare
1293 Size : constant Uint := Static_Integer (Expr);
1294 Etyp : Entity_Id;
1295 Biased : Boolean;
1296
1297 begin
1298 FOnly := True;
1299
1300 if Has_Size_Clause (U_Ent) then
1301 Error_Msg_N ("size already given for &", Nam);
1302
1303 elsif not Is_Type (U_Ent)
1304 and then Ekind (U_Ent) /= E_Variable
1305 and then Ekind (U_Ent) /= E_Constant
1306 then
1307 Error_Msg_N ("size cannot be given for &", Nam);
1308
1309 elsif Is_Array_Type (U_Ent)
1310 and then not Is_Constrained (U_Ent)
1311 then
1312 Error_Msg_N
1313 ("size cannot be given for unconstrained array", Nam);
1314
1315 elsif Size /= No_Uint then
d6f39728 1316 if Is_Type (U_Ent) then
1317 Etyp := U_Ent;
1318 else
1319 Etyp := Etype (U_Ent);
1320 end if;
1321
59ac57b5 1322 -- Check size, note that Gigi is in charge of checking that the
1323 -- size of an array or record type is OK. Also we do not check
1324 -- the size in the ordinary fixed-point case, since it is too
1325 -- early to do so (there may be subsequent small clause that
1326 -- affects the size). We can check the size if a small clause
1327 -- has already been given.
d6f39728 1328
1329 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1330 or else Has_Small_Clause (U_Ent)
1331 then
1332 Check_Size (Expr, Etyp, Size, Biased);
1333 Set_Has_Biased_Representation (U_Ent, Biased);
1334 end if;
1335
1336 -- For types set RM_Size and Esize if possible
1337
1338 if Is_Type (U_Ent) then
1339 Set_RM_Size (U_Ent, Size);
1340
59ac57b5 1341 -- For scalar types, increase Object_Size to power of 2, but
1342 -- not less than a storage unit in any case (i.e., normally
1343 -- this means it will be byte addressable).
d6f39728 1344
1345 if Is_Scalar_Type (U_Ent) then
f15731c4 1346 if Size <= System_Storage_Unit then
1347 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 1348 elsif Size <= 16 then
1349 Init_Esize (U_Ent, 16);
1350 elsif Size <= 32 then
1351 Init_Esize (U_Ent, 32);
1352 else
1353 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1354 end if;
1355
1356 -- For all other types, object size = value size. The
1357 -- backend will adjust as needed.
1358
1359 else
1360 Set_Esize (U_Ent, Size);
1361 end if;
1362
1363 Alignment_Check_For_Esize_Change (U_Ent);
1364
1365 -- For objects, set Esize only
1366
1367 else
9dfe12ae 1368 if Is_Elementary_Type (Etyp) then
1369 if Size /= System_Storage_Unit
1370 and then
1371 Size /= System_Storage_Unit * 2
1372 and then
1373 Size /= System_Storage_Unit * 4
1374 and then
1375 Size /= System_Storage_Unit * 8
1376 then
5c99c290 1377 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
87d5c1d0 1378 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
9dfe12ae 1379 Error_Msg_N
5c99c290 1380 ("size for primitive object must be a power of 2"
87d5c1d0 1381 & " in the range ^-^", N);
9dfe12ae 1382 end if;
1383 end if;
1384
d6f39728 1385 Set_Esize (U_Ent, Size);
1386 end if;
1387
1388 Set_Has_Size_Clause (U_Ent);
1389 end if;
1390 end Size;
1391
1392 -----------
1393 -- Small --
1394 -----------
1395
1396 -- Small attribute definition clause
1397
1398 when Attribute_Small => Small : declare
1399 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1400 Small : Ureal;
1401
1402 begin
1403 Analyze_And_Resolve (Expr, Any_Real);
1404
1405 if Etype (Expr) = Any_Type then
1406 return;
1407
1408 elsif not Is_Static_Expression (Expr) then
9dfe12ae 1409 Flag_Non_Static_Expr
1410 ("small requires static expression!", Expr);
d6f39728 1411 return;
1412
1413 else
1414 Small := Expr_Value_R (Expr);
1415
1416 if Small <= Ureal_0 then
1417 Error_Msg_N ("small value must be greater than zero", Expr);
1418 return;
1419 end if;
1420
1421 end if;
1422
1423 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1424 Error_Msg_N
1425 ("small requires an ordinary fixed point type", Nam);
1426
1427 elsif Has_Small_Clause (U_Ent) then
1428 Error_Msg_N ("small already given for &", Nam);
1429
1430 elsif Small > Delta_Value (U_Ent) then
1431 Error_Msg_N
1432 ("small value must not be greater then delta value", Nam);
1433
1434 else
1435 Set_Small_Value (U_Ent, Small);
1436 Set_Small_Value (Implicit_Base, Small);
1437 Set_Has_Small_Clause (U_Ent);
1438 Set_Has_Small_Clause (Implicit_Base);
1439 Set_Has_Non_Standard_Rep (Implicit_Base);
1440 end if;
1441 end Small;
1442
d6f39728 1443 ------------------
1444 -- Storage_Pool --
1445 ------------------
1446
1447 -- Storage_Pool attribute definition clause
1448
1449 when Attribute_Storage_Pool => Storage_Pool : declare
1450 Pool : Entity_Id;
6b567c71 1451 T : Entity_Id;
d6f39728 1452
1453 begin
44e4341e 1454 if Ekind (U_Ent) = E_Access_Subprogram_Type then
1455 Error_Msg_N
1456 ("storage pool cannot be given for access-to-subprogram type",
1457 Nam);
1458 return;
1459
1460 elsif Ekind (U_Ent) /= E_Access_Type
d6f39728 1461 and then Ekind (U_Ent) /= E_General_Access_Type
1462 then
44e4341e 1463 Error_Msg_N
1464 ("storage pool can only be given for access types", Nam);
d6f39728 1465 return;
1466
1467 elsif Is_Derived_Type (U_Ent) then
1468 Error_Msg_N
1469 ("storage pool cannot be given for a derived access type",
1470 Nam);
1471
1472 elsif Has_Storage_Size_Clause (U_Ent) then
1473 Error_Msg_N ("storage size already given for &", Nam);
1474 return;
1475
1476 elsif Present (Associated_Storage_Pool (U_Ent)) then
1477 Error_Msg_N ("storage pool already given for &", Nam);
1478 return;
1479 end if;
1480
1481 Analyze_And_Resolve
1482 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1483
6b567c71 1484 if Nkind (Expr) = N_Type_Conversion then
1485 T := Etype (Expression (Expr));
1486 else
1487 T := Etype (Expr);
1488 end if;
1489
1490 -- The Stack_Bounded_Pool is used internally for implementing
1491 -- access types with a Storage_Size. Since it only work
1492 -- properly when used on one specific type, we need to check
1a34e48c 1493 -- that it is not hijacked improperly:
6b567c71 1494 -- type T is access Integer;
1495 -- for T'Storage_Size use n;
1496 -- type Q is access Float;
1497 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1498
15ebb600 1499 if RTE_Available (RE_Stack_Bounded_Pool)
1500 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
1501 then
1502 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 1503 return;
1504 end if;
1505
d6f39728 1506 -- If the argument is a name that is not an entity name, then
1507 -- we construct a renaming operation to define an entity of
1508 -- type storage pool.
1509
1510 if not Is_Entity_Name (Expr)
1511 and then Is_Object_Reference (Expr)
1512 then
1513 Pool :=
1514 Make_Defining_Identifier (Loc,
1515 Chars => New_Internal_Name ('P'));
1516
1517 declare
1518 Rnode : constant Node_Id :=
1519 Make_Object_Renaming_Declaration (Loc,
1520 Defining_Identifier => Pool,
1521 Subtype_Mark =>
1522 New_Occurrence_Of (Etype (Expr), Loc),
1523 Name => Expr);
1524
1525 begin
1526 Insert_Before (N, Rnode);
1527 Analyze (Rnode);
1528 Set_Associated_Storage_Pool (U_Ent, Pool);
1529 end;
1530
1531 elsif Is_Entity_Name (Expr) then
1532 Pool := Entity (Expr);
1533
1534 -- If pool is a renamed object, get original one. This can
1535 -- happen with an explicit renaming, and within instances.
1536
1537 while Present (Renamed_Object (Pool))
1538 and then Is_Entity_Name (Renamed_Object (Pool))
1539 loop
1540 Pool := Entity (Renamed_Object (Pool));
1541 end loop;
1542
1543 if Present (Renamed_Object (Pool))
1544 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1545 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1546 then
1547 Pool := Entity (Expression (Renamed_Object (Pool)));
1548 end if;
1549
6b567c71 1550 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 1551
1552 elsif Nkind (Expr) = N_Type_Conversion
1553 and then Is_Entity_Name (Expression (Expr))
1554 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1555 then
1556 Pool := Entity (Expression (Expr));
6b567c71 1557 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 1558
1559 else
1560 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1561 return;
1562 end if;
1563 end Storage_Pool;
1564
44e4341e 1565 ------------------
1566 -- Storage_Size --
1567 ------------------
1568
1569 -- Storage_Size attribute definition clause
1570
1571 when Attribute_Storage_Size => Storage_Size : declare
1572 Btype : constant Entity_Id := Base_Type (U_Ent);
1573 Sprag : Node_Id;
1574
1575 begin
1576 if Is_Task_Type (U_Ent) then
1577 Check_Restriction (No_Obsolescent_Features, N);
1578
1579 if Warn_On_Obsolescent_Feature then
1580 Error_Msg_N
1581 ("storage size clause for task is an " &
fbc67f84 1582 "obsolescent feature (RM J.9)?", N);
44e4341e 1583 Error_Msg_N
1584 ("\use Storage_Size pragma instead?", N);
1585 end if;
1586
1587 FOnly := True;
1588 end if;
1589
1590 if not Is_Access_Type (U_Ent)
1591 and then Ekind (U_Ent) /= E_Task_Type
1592 then
1593 Error_Msg_N ("storage size cannot be given for &", Nam);
1594
1595 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1596 Error_Msg_N
1597 ("storage size cannot be given for a derived access type",
1598 Nam);
1599
1600 elsif Has_Storage_Size_Clause (Btype) then
1601 Error_Msg_N ("storage size already given for &", Nam);
1602
1603 else
1604 Analyze_And_Resolve (Expr, Any_Integer);
1605
1606 if Is_Access_Type (U_Ent) then
1607 if Present (Associated_Storage_Pool (U_Ent)) then
1608 Error_Msg_N ("storage pool already given for &", Nam);
1609 return;
1610 end if;
1611
1612 if Compile_Time_Known_Value (Expr)
1613 and then Expr_Value (Expr) = 0
1614 then
1615 Set_No_Pool_Assigned (Btype);
1616 end if;
1617
1618 else -- Is_Task_Type (U_Ent)
1619 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1620
1621 if Present (Sprag) then
1622 Error_Msg_Sloc := Sloc (Sprag);
1623 Error_Msg_N
1624 ("Storage_Size already specified#", Nam);
1625 return;
1626 end if;
1627 end if;
1628
1629 Set_Has_Storage_Size_Clause (Btype);
1630 end if;
1631 end Storage_Size;
1632
7189d17f 1633 -----------------
1634 -- Stream_Size --
1635 -----------------
1636
1637 when Attribute_Stream_Size => Stream_Size : declare
1638 Size : constant Uint := Static_Integer (Expr);
1639
1640 begin
15ebb600 1641 if Ada_Version <= Ada_95 then
1642 Check_Restriction (No_Implementation_Attributes, N);
1643 end if;
1644
7189d17f 1645 if Has_Stream_Size_Clause (U_Ent) then
1646 Error_Msg_N ("Stream_Size already given for &", Nam);
1647
1648 elsif Is_Elementary_Type (U_Ent) then
1649 if Size /= System_Storage_Unit
1650 and then
1651 Size /= System_Storage_Unit * 2
1652 and then
1653 Size /= System_Storage_Unit * 4
1654 and then
1655 Size /= System_Storage_Unit * 8
1656 then
1657 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1658 Error_Msg_N
1659 ("stream size for elementary type must be a"
1660 & " power of 2 and at least ^", N);
1661
1662 elsif RM_Size (U_Ent) > Size then
1663 Error_Msg_Uint_1 := RM_Size (U_Ent);
1664 Error_Msg_N
1665 ("stream size for elementary type must be a"
1666 & " power of 2 and at least ^", N);
1667 end if;
1668
1669 Set_Has_Stream_Size_Clause (U_Ent);
1670
1671 else
1672 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1673 end if;
1674 end Stream_Size;
1675
d6f39728 1676 ----------------
1677 -- Value_Size --
1678 ----------------
1679
1680 -- Value_Size attribute definition clause
1681
1682 when Attribute_Value_Size => Value_Size : declare
1683 Size : constant Uint := Static_Integer (Expr);
1684 Biased : Boolean;
1685
1686 begin
1687 if not Is_Type (U_Ent) then
1688 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1689
1690 elsif Present
1691 (Get_Attribute_Definition_Clause
1692 (U_Ent, Attribute_Value_Size))
1693 then
1694 Error_Msg_N ("Value_Size already given for &", Nam);
1695
59ac57b5 1696 elsif Is_Array_Type (U_Ent)
1697 and then not Is_Constrained (U_Ent)
1698 then
1699 Error_Msg_N
1700 ("Value_Size cannot be given for unconstrained array", Nam);
1701
d6f39728 1702 else
1703 if Is_Elementary_Type (U_Ent) then
1704 Check_Size (Expr, U_Ent, Size, Biased);
1705 Set_Has_Biased_Representation (U_Ent, Biased);
1706 end if;
1707
1708 Set_RM_Size (U_Ent, Size);
1709 end if;
1710 end Value_Size;
1711
1712 -----------
1713 -- Write --
1714 -----------
1715
9f373bb8 1716 when Attribute_Write =>
1717 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1718 Set_Has_Specified_Stream_Write (Ent);
d6f39728 1719
1720 -- All other attributes cannot be set
1721
1722 when others =>
1723 Error_Msg_N
1724 ("attribute& cannot be set with definition clause", N);
d6f39728 1725 end case;
1726
1727 -- The test for the type being frozen must be performed after
1728 -- any expression the clause has been analyzed since the expression
1729 -- itself might cause freezing that makes the clause illegal.
1730
1731 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1732 return;
1733 end if;
1734 end Analyze_Attribute_Definition_Clause;
1735
1736 ----------------------------
1737 -- Analyze_Code_Statement --
1738 ----------------------------
1739
1740 procedure Analyze_Code_Statement (N : Node_Id) is
1741 HSS : constant Node_Id := Parent (N);
1742 SBody : constant Node_Id := Parent (HSS);
1743 Subp : constant Entity_Id := Current_Scope;
1744 Stmt : Node_Id;
1745 Decl : Node_Id;
1746 StmtO : Node_Id;
1747 DeclO : Node_Id;
1748
1749 begin
1750 -- Analyze and check we get right type, note that this implements the
1751 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1752 -- is the only way that Asm_Insn could possibly be visible.
1753
1754 Analyze_And_Resolve (Expression (N));
1755
1756 if Etype (Expression (N)) = Any_Type then
1757 return;
1758 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1759 Error_Msg_N ("incorrect type for code statement", N);
1760 return;
1761 end if;
1762
44e4341e 1763 Check_Code_Statement (N);
1764
d6f39728 1765 -- Make sure we appear in the handled statement sequence of a
1766 -- subprogram (RM 13.8(3)).
1767
1768 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1769 or else Nkind (SBody) /= N_Subprogram_Body
1770 then
1771 Error_Msg_N
1772 ("code statement can only appear in body of subprogram", N);
1773 return;
1774 end if;
1775
1776 -- Do remaining checks (RM 13.8(3)) if not already done
1777
1778 if not Is_Machine_Code_Subprogram (Subp) then
1779 Set_Is_Machine_Code_Subprogram (Subp);
1780
1781 -- No exception handlers allowed
1782
1783 if Present (Exception_Handlers (HSS)) then
1784 Error_Msg_N
1785 ("exception handlers not permitted in machine code subprogram",
1786 First (Exception_Handlers (HSS)));
1787 end if;
1788
1789 -- No declarations other than use clauses and pragmas (we allow
1790 -- certain internally generated declarations as well).
1791
1792 Decl := First (Declarations (SBody));
1793 while Present (Decl) loop
1794 DeclO := Original_Node (Decl);
1795 if Comes_From_Source (DeclO)
fdd294d1 1796 and not Nkind_In (DeclO, N_Pragma,
1797 N_Use_Package_Clause,
1798 N_Use_Type_Clause,
1799 N_Implicit_Label_Declaration)
d6f39728 1800 then
1801 Error_Msg_N
1802 ("this declaration not allowed in machine code subprogram",
1803 DeclO);
1804 end if;
1805
1806 Next (Decl);
1807 end loop;
1808
1809 -- No statements other than code statements, pragmas, and labels.
1810 -- Again we allow certain internally generated statements.
1811
1812 Stmt := First (Statements (HSS));
1813 while Present (Stmt) loop
1814 StmtO := Original_Node (Stmt);
1815 if Comes_From_Source (StmtO)
fdd294d1 1816 and then not Nkind_In (StmtO, N_Pragma,
1817 N_Label,
1818 N_Code_Statement)
d6f39728 1819 then
1820 Error_Msg_N
1821 ("this statement is not allowed in machine code subprogram",
1822 StmtO);
1823 end if;
1824
1825 Next (Stmt);
1826 end loop;
1827 end if;
d6f39728 1828 end Analyze_Code_Statement;
1829
1830 -----------------------------------------------
1831 -- Analyze_Enumeration_Representation_Clause --
1832 -----------------------------------------------
1833
1834 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1835 Ident : constant Node_Id := Identifier (N);
1836 Aggr : constant Node_Id := Array_Aggregate (N);
1837 Enumtype : Entity_Id;
1838 Elit : Entity_Id;
1839 Expr : Node_Id;
1840 Assoc : Node_Id;
1841 Choice : Node_Id;
1842 Val : Uint;
1843 Err : Boolean := False;
1844
1845 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1846 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1847 Min : Uint;
1848 Max : Uint;
1849
1850 begin
fbc67f84 1851 if Ignore_Rep_Clauses then
1852 return;
1853 end if;
1854
d6f39728 1855 -- First some basic error checks
1856
1857 Find_Type (Ident);
1858 Enumtype := Entity (Ident);
1859
1860 if Enumtype = Any_Type
1861 or else Rep_Item_Too_Early (Enumtype, N)
1862 then
1863 return;
1864 else
1865 Enumtype := Underlying_Type (Enumtype);
1866 end if;
1867
1868 if not Is_Enumeration_Type (Enumtype) then
1869 Error_Msg_NE
1870 ("enumeration type required, found}",
1871 Ident, First_Subtype (Enumtype));
1872 return;
1873 end if;
1874
9dfe12ae 1875 -- Ignore rep clause on generic actual type. This will already have
1876 -- been flagged on the template as an error, and this is the safest
1877 -- way to ensure we don't get a junk cascaded message in the instance.
1878
1879 if Is_Generic_Actual_Type (Enumtype) then
1880 return;
1881
1882 -- Type must be in current scope
1883
1884 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 1885 Error_Msg_N ("type must be declared in this scope", Ident);
1886 return;
1887
9dfe12ae 1888 -- Type must be a first subtype
1889
d6f39728 1890 elsif not Is_First_Subtype (Enumtype) then
1891 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1892 return;
1893
9dfe12ae 1894 -- Ignore duplicate rep clause
1895
d6f39728 1896 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1897 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1898 return;
1899
7189d17f 1900 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 1901
177675a7 1902 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 1903 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 1904 return;
1905
d9125581 1906 -- Check that the expression is a proper aggregate (no parentheses)
1907
1908 elsif Paren_Count (Aggr) /= 0 then
1909 Error_Msg
1910 ("extra parentheses surrounding aggregate not allowed",
1911 First_Sloc (Aggr));
1912 return;
1913
9dfe12ae 1914 -- All tests passed, so set rep clause in place
d6f39728 1915
1916 else
1917 Set_Has_Enumeration_Rep_Clause (Enumtype);
1918 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1919 end if;
1920
1921 -- Now we process the aggregate. Note that we don't use the normal
1922 -- aggregate code for this purpose, because we don't want any of the
1923 -- normal expansion activities, and a number of special semantic
1924 -- rules apply (including the component type being any integer type)
1925
d6f39728 1926 Elit := First_Literal (Enumtype);
1927
1928 -- First the positional entries if any
1929
1930 if Present (Expressions (Aggr)) then
1931 Expr := First (Expressions (Aggr));
1932 while Present (Expr) loop
1933 if No (Elit) then
1934 Error_Msg_N ("too many entries in aggregate", Expr);
1935 return;
1936 end if;
1937
1938 Val := Static_Integer (Expr);
1939
d9125581 1940 -- Err signals that we found some incorrect entries processing
1941 -- the list. The final checks for completeness and ordering are
1942 -- skipped in this case.
1943
d6f39728 1944 if Val = No_Uint then
1945 Err := True;
d6f39728 1946 elsif Val < Lo or else Hi < Val then
1947 Error_Msg_N ("value outside permitted range", Expr);
1948 Err := True;
1949 end if;
1950
1951 Set_Enumeration_Rep (Elit, Val);
1952 Set_Enumeration_Rep_Expr (Elit, Expr);
1953 Next (Expr);
1954 Next (Elit);
1955 end loop;
1956 end if;
1957
1958 -- Now process the named entries if present
1959
1960 if Present (Component_Associations (Aggr)) then
1961 Assoc := First (Component_Associations (Aggr));
1962 while Present (Assoc) loop
1963 Choice := First (Choices (Assoc));
1964
1965 if Present (Next (Choice)) then
1966 Error_Msg_N
1967 ("multiple choice not allowed here", Next (Choice));
1968 Err := True;
1969 end if;
1970
1971 if Nkind (Choice) = N_Others_Choice then
1972 Error_Msg_N ("others choice not allowed here", Choice);
1973 Err := True;
1974
1975 elsif Nkind (Choice) = N_Range then
1976 -- ??? should allow zero/one element range here
1977 Error_Msg_N ("range not allowed here", Choice);
1978 Err := True;
1979
1980 else
1981 Analyze_And_Resolve (Choice, Enumtype);
1982
1983 if Is_Entity_Name (Choice)
1984 and then Is_Type (Entity (Choice))
1985 then
1986 Error_Msg_N ("subtype name not allowed here", Choice);
1987 Err := True;
1988 -- ??? should allow static subtype with zero/one entry
1989
1990 elsif Etype (Choice) = Base_Type (Enumtype) then
1991 if not Is_Static_Expression (Choice) then
9dfe12ae 1992 Flag_Non_Static_Expr
1993 ("non-static expression used for choice!", Choice);
d6f39728 1994 Err := True;
1995
1996 else
1997 Elit := Expr_Value_E (Choice);
1998
1999 if Present (Enumeration_Rep_Expr (Elit)) then
2000 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
2001 Error_Msg_NE
2002 ("representation for& previously given#",
2003 Choice, Elit);
2004 Err := True;
2005 end if;
2006
2007 Set_Enumeration_Rep_Expr (Elit, Choice);
2008
2009 Expr := Expression (Assoc);
2010 Val := Static_Integer (Expr);
2011
2012 if Val = No_Uint then
2013 Err := True;
2014
2015 elsif Val < Lo or else Hi < Val then
2016 Error_Msg_N ("value outside permitted range", Expr);
2017 Err := True;
2018 end if;
2019
2020 Set_Enumeration_Rep (Elit, Val);
2021 end if;
2022 end if;
2023 end if;
2024
2025 Next (Assoc);
2026 end loop;
2027 end if;
2028
2029 -- Aggregate is fully processed. Now we check that a full set of
2030 -- representations was given, and that they are in range and in order.
2031 -- These checks are only done if no other errors occurred.
2032
2033 if not Err then
2034 Min := No_Uint;
2035 Max := No_Uint;
2036
2037 Elit := First_Literal (Enumtype);
2038 while Present (Elit) loop
2039 if No (Enumeration_Rep_Expr (Elit)) then
2040 Error_Msg_NE ("missing representation for&!", N, Elit);
2041
2042 else
2043 Val := Enumeration_Rep (Elit);
2044
2045 if Min = No_Uint then
2046 Min := Val;
2047 end if;
2048
2049 if Val /= No_Uint then
2050 if Max /= No_Uint and then Val <= Max then
2051 Error_Msg_NE
2052 ("enumeration value for& not ordered!",
2053 Enumeration_Rep_Expr (Elit), Elit);
2054 end if;
2055
2056 Max := Val;
2057 end if;
2058
2059 -- If there is at least one literal whose representation
2060 -- is not equal to the Pos value, then note that this
2061 -- enumeration type has a non-standard representation.
2062
2063 if Val /= Enumeration_Pos (Elit) then
2064 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
2065 end if;
2066 end if;
2067
2068 Next (Elit);
2069 end loop;
2070
2071 -- Now set proper size information
2072
2073 declare
2074 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
2075
2076 begin
2077 if Has_Size_Clause (Enumtype) then
2078 if Esize (Enumtype) >= Minsize then
2079 null;
2080
2081 else
2082 Minsize :=
2083 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
2084
2085 if Esize (Enumtype) < Minsize then
2086 Error_Msg_N ("previously given size is too small", N);
2087
2088 else
2089 Set_Has_Biased_Representation (Enumtype);
2090 end if;
2091 end if;
2092
2093 else
2094 Set_RM_Size (Enumtype, Minsize);
2095 Set_Enum_Esize (Enumtype);
2096 end if;
2097
2098 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
2099 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
2100 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
2101 end;
2102 end if;
2103
2104 -- We repeat the too late test in case it froze itself!
2105
2106 if Rep_Item_Too_Late (Enumtype, N) then
2107 null;
2108 end if;
d6f39728 2109 end Analyze_Enumeration_Representation_Clause;
2110
2111 ----------------------------
2112 -- Analyze_Free_Statement --
2113 ----------------------------
2114
2115 procedure Analyze_Free_Statement (N : Node_Id) is
2116 begin
2117 Analyze (Expression (N));
2118 end Analyze_Free_Statement;
2119
2120 ------------------------------------------
2121 -- Analyze_Record_Representation_Clause --
2122 ------------------------------------------
2123
2124 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
2125 Loc : constant Source_Ptr := Sloc (N);
2126 Ident : constant Node_Id := Identifier (N);
2127 Rectype : Entity_Id;
2128 Fent : Entity_Id;
2129 CC : Node_Id;
2130 Posit : Uint;
2131 Fbit : Uint;
2132 Lbit : Uint;
2133 Hbit : Uint := Uint_0;
2134 Comp : Entity_Id;
2135 Ocomp : Entity_Id;
2136 Biased : Boolean;
2137
2138 Max_Bit_So_Far : Uint;
ea61a7ea 2139 -- Records the maximum bit position so far. If all field positions
d6f39728 2140 -- are monotonically increasing, then we can skip the circuit for
2141 -- checking for overlap, since no overlap is possible.
2142
2143 Overlap_Check_Required : Boolean;
2144 -- Used to keep track of whether or not an overlap check is required
2145
2146 Ccount : Natural := 0;
2147 -- Number of component clauses in record rep clause
2148
639e37b0 2149 CR_Pragma : Node_Id := Empty;
2150 -- Points to N_Pragma node if Complete_Representation pragma present
2151
d6f39728 2152 begin
fbc67f84 2153 if Ignore_Rep_Clauses then
2154 return;
2155 end if;
2156
d6f39728 2157 Find_Type (Ident);
2158 Rectype := Entity (Ident);
2159
2160 if Rectype = Any_Type
2161 or else Rep_Item_Too_Early (Rectype, N)
2162 then
2163 return;
2164 else
2165 Rectype := Underlying_Type (Rectype);
2166 end if;
2167
2168 -- First some basic error checks
2169
2170 if not Is_Record_Type (Rectype) then
2171 Error_Msg_NE
2172 ("record type required, found}", Ident, First_Subtype (Rectype));
2173 return;
2174
2175 elsif Is_Unchecked_Union (Rectype) then
2176 Error_Msg_N
2177 ("record rep clause not allowed for Unchecked_Union", N);
2178
2179 elsif Scope (Rectype) /= Current_Scope then
2180 Error_Msg_N ("type must be declared in this scope", N);
2181 return;
2182
2183 elsif not Is_First_Subtype (Rectype) then
2184 Error_Msg_N ("cannot give record rep clause for subtype", N);
2185 return;
2186
2187 elsif Has_Record_Rep_Clause (Rectype) then
2188 Error_Msg_N ("duplicate record rep clause ignored", N);
2189 return;
2190
2191 elsif Rep_Item_Too_Late (Rectype, N) then
2192 return;
2193 end if;
2194
2195 if Present (Mod_Clause (N)) then
2196 declare
2197 Loc : constant Source_Ptr := Sloc (N);
2198 M : constant Node_Id := Mod_Clause (N);
2199 P : constant List_Id := Pragmas_Before (M);
d6f39728 2200 AtM_Nod : Node_Id;
2201
9dfe12ae 2202 Mod_Val : Uint;
2203 pragma Warnings (Off, Mod_Val);
2204
d6f39728 2205 begin
e0521a36 2206 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
2207
9dfe12ae 2208 if Warn_On_Obsolescent_Feature then
2209 Error_Msg_N
fbc67f84 2210 ("mod clause is an obsolescent feature (RM J.8)?", N);
9dfe12ae 2211 Error_Msg_N
d53a018a 2212 ("\use alignment attribute definition clause instead?", N);
9dfe12ae 2213 end if;
2214
d6f39728 2215 if Present (P) then
2216 Analyze_List (P);
2217 end if;
2218
fbc67f84 2219 -- In ASIS_Mode mode, expansion is disabled, but we must convert
2220 -- the Mod clause into an alignment clause anyway, so that the
2221 -- back-end can compute and back-annotate properly the size and
2222 -- alignment of types that may include this record.
d6f39728 2223
15ebb600 2224 -- This seems dubious, this destroys the source tree in a manner
2225 -- not detectable by ASIS ???
2226
d6f39728 2227 if Operating_Mode = Check_Semantics
9dfe12ae 2228 and then ASIS_Mode
d6f39728 2229 then
2230 AtM_Nod :=
2231 Make_Attribute_Definition_Clause (Loc,
2232 Name => New_Reference_To (Base_Type (Rectype), Loc),
2233 Chars => Name_Alignment,
2234 Expression => Relocate_Node (Expression (M)));
2235
2236 Set_From_At_Mod (AtM_Nod);
2237 Insert_After (N, AtM_Nod);
2238 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
2239 Set_Mod_Clause (N, Empty);
2240
2241 else
2242 -- Get the alignment value to perform error checking
2243
2244 Mod_Val := Get_Alignment_Value (Expression (M));
2245
2246 end if;
2247 end;
2248 end if;
2249
3062c401 2250 -- For untagged types, clear any existing component clauses for the
2251 -- type. If the type is derived, this is what allows us to override
2252 -- a rep clause for the parent. For type extensions, the representation
2253 -- of the inherited components is inherited, so we want to keep previous
2254 -- component clauses for completeness.
d6f39728 2255
3062c401 2256 if not Is_Tagged_Type (Rectype) then
2257 Comp := First_Component_Or_Discriminant (Rectype);
2258 while Present (Comp) loop
2259 Set_Component_Clause (Comp, Empty);
2260 Next_Component_Or_Discriminant (Comp);
2261 end loop;
2262 end if;
d6f39728 2263
2264 -- All done if no component clauses
2265
2266 CC := First (Component_Clauses (N));
2267
2268 if No (CC) then
2269 return;
2270 end if;
2271
15ebb600 2272 -- If a tag is present, then create a component clause that places it
2273 -- at the start of the record (otherwise gigi may place it after other
2274 -- fields that have rep clauses).
d6f39728 2275
59ac57b5 2276 Fent := First_Entity (Rectype);
2277
d6f39728 2278 if Nkind (Fent) = N_Defining_Identifier
2279 and then Chars (Fent) = Name_uTag
2280 then
2281 Set_Component_Bit_Offset (Fent, Uint_0);
2282 Set_Normalized_Position (Fent, Uint_0);
2283 Set_Normalized_First_Bit (Fent, Uint_0);
2284 Set_Normalized_Position_Max (Fent, Uint_0);
2285 Init_Esize (Fent, System_Address_Size);
2286
2287 Set_Component_Clause (Fent,
2288 Make_Component_Clause (Loc,
2289 Component_Name =>
2290 Make_Identifier (Loc,
2291 Chars => Name_uTag),
2292
2293 Position =>
2294 Make_Integer_Literal (Loc,
2295 Intval => Uint_0),
2296
2297 First_Bit =>
2298 Make_Integer_Literal (Loc,
2299 Intval => Uint_0),
2300
2301 Last_Bit =>
2302 Make_Integer_Literal (Loc,
2303 UI_From_Int (System_Address_Size))));
2304
2305 Ccount := Ccount + 1;
2306 end if;
2307
f15731c4 2308 -- A representation like this applies to the base type
d6f39728 2309
2310 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2311 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2312 Set_Has_Specified_Layout (Base_Type (Rectype));
2313
2314 Max_Bit_So_Far := Uint_Minus_1;
2315 Overlap_Check_Required := False;
2316
2317 -- Process the component clauses
2318
2319 while Present (CC) loop
2320
639e37b0 2321 -- Pragma
d6f39728 2322
2323 if Nkind (CC) = N_Pragma then
2324 Analyze (CC);
2325
639e37b0 2326 -- The only pragma of interest is Complete_Representation
2327
fdd294d1 2328 if Pragma_Name (CC) = Name_Complete_Representation then
639e37b0 2329 CR_Pragma := CC;
2330 end if;
2331
d6f39728 2332 -- Processing for real component clause
2333
2334 else
2335 Ccount := Ccount + 1;
2336 Posit := Static_Integer (Position (CC));
2337 Fbit := Static_Integer (First_Bit (CC));
2338 Lbit := Static_Integer (Last_Bit (CC));
2339
2340 if Posit /= No_Uint
2341 and then Fbit /= No_Uint
2342 and then Lbit /= No_Uint
2343 then
2344 if Posit < 0 then
2345 Error_Msg_N
2346 ("position cannot be negative", Position (CC));
2347
2348 elsif Fbit < 0 then
2349 Error_Msg_N
2350 ("first bit cannot be negative", First_Bit (CC));
2351
177675a7 2352 -- The Last_Bit specified in a component clause must not be
2353 -- less than the First_Bit minus one (RM-13.5.1(10)).
2354
2355 elsif Lbit < Fbit - 1 then
2356 Error_Msg_N
2357 ("last bit cannot be less than first bit minus one",
2358 Last_Bit (CC));
2359
d6f39728 2360 -- Values look OK, so find the corresponding record component
2361 -- Even though the syntax allows an attribute reference for
2362 -- implementation-defined components, GNAT does not allow the
2363 -- tag to get an explicit position.
2364
2365 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
d6f39728 2366 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2367 Error_Msg_N ("position of tag cannot be specified", CC);
2368 else
2369 Error_Msg_N ("illegal component name", CC);
2370 end if;
2371
2372 else
2373 Comp := First_Entity (Rectype);
2374 while Present (Comp) loop
2375 exit when Chars (Comp) = Chars (Component_Name (CC));
2376 Next_Entity (Comp);
2377 end loop;
2378
2379 if No (Comp) then
2380
2381 -- Maybe component of base type that is absent from
2382 -- statically constrained first subtype.
2383
2384 Comp := First_Entity (Base_Type (Rectype));
2385 while Present (Comp) loop
2386 exit when Chars (Comp) = Chars (Component_Name (CC));
2387 Next_Entity (Comp);
2388 end loop;
2389 end if;
2390
2391 if No (Comp) then
2392 Error_Msg_N
2393 ("component clause is for non-existent field", CC);
2394
2395 elsif Present (Component_Clause (Comp)) then
3062c401 2396
1a34e48c 2397 -- Diagnose duplicate rep clause, or check consistency
fdd294d1 2398 -- if this is an inherited component. In a double fault,
3062c401 2399 -- there may be a duplicate inconsistent clause for an
2400 -- inherited component.
2401
fdd294d1 2402 if Scope (Original_Record_Component (Comp)) = Rectype
2403 or else Parent (Component_Clause (Comp)) = N
3062c401 2404 then
2405 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2406 Error_Msg_N ("component clause previously given#", CC);
2407
2408 else
2409 declare
2410 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 2411 begin
2412 if Intval (Position (Rep1)) /=
2413 Intval (Position (CC))
2414 or else Intval (First_Bit (Rep1)) /=
2415 Intval (First_Bit (CC))
2416 or else Intval (Last_Bit (Rep1)) /=
2417 Intval (Last_Bit (CC))
2418 then
2419 Error_Msg_N ("component clause inconsistent "
2420 & "with representation of ancestor", CC);
3062c401 2421 elsif Warn_On_Redundant_Constructs then
2422 Error_Msg_N ("?redundant component clause "
2423 & "for inherited component!", CC);
2424 end if;
2425 end;
2426 end if;
d6f39728 2427
2428 else
83f8f0a6 2429 -- Make reference for field in record rep clause and set
2430 -- appropriate entity field in the field identifier.
2431
2432 Generate_Reference
2433 (Comp, Component_Name (CC), Set_Ref => False);
2434 Set_Entity (Component_Name (CC), Comp);
2435
2866d595 2436 -- Update Fbit and Lbit to the actual bit number
d6f39728 2437
2438 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2439 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2440
2441 if Fbit <= Max_Bit_So_Far then
2442 Overlap_Check_Required := True;
2443 else
2444 Max_Bit_So_Far := Lbit;
2445 end if;
2446
2447 if Has_Size_Clause (Rectype)
2448 and then Esize (Rectype) <= Lbit
2449 then
2450 Error_Msg_N
2451 ("bit number out of range of specified size",
2452 Last_Bit (CC));
2453 else
2454 Set_Component_Clause (Comp, CC);
2455 Set_Component_Bit_Offset (Comp, Fbit);
2456 Set_Esize (Comp, 1 + (Lbit - Fbit));
2457 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2458 Set_Normalized_Position (Comp, Fbit / SSU);
2459
2460 Set_Normalized_Position_Max
2461 (Fent, Normalized_Position (Fent));
2462
2463 if Is_Tagged_Type (Rectype)
2464 and then Fbit < System_Address_Size
2465 then
2466 Error_Msg_NE
2467 ("component overlaps tag field of&",
2468 CC, Rectype);
2469 end if;
2470
ea61a7ea 2471 -- This information is also set in the corresponding
2472 -- component of the base type, found by accessing the
2473 -- Original_Record_Component link if it is present.
d6f39728 2474
2475 Ocomp := Original_Record_Component (Comp);
2476
2477 if Hbit < Lbit then
2478 Hbit := Lbit;
2479 end if;
2480
2481 Check_Size
2482 (Component_Name (CC),
2483 Etype (Comp),
2484 Esize (Comp),
2485 Biased);
2486
2487 Set_Has_Biased_Representation (Comp, Biased);
2488
2489 if Present (Ocomp) then
2490 Set_Component_Clause (Ocomp, CC);
2491 Set_Component_Bit_Offset (Ocomp, Fbit);
2492 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2493 Set_Normalized_Position (Ocomp, Fbit / SSU);
2494 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2495
2496 Set_Normalized_Position_Max
2497 (Ocomp, Normalized_Position (Ocomp));
2498
2499 Set_Has_Biased_Representation
2500 (Ocomp, Has_Biased_Representation (Comp));
2501 end if;
2502
2503 if Esize (Comp) < 0 then
2504 Error_Msg_N ("component size is negative", CC);
2505 end if;
2506 end if;
2507 end if;
2508 end if;
2509 end if;
2510 end if;
2511
2512 Next (CC);
2513 end loop;
2514
2515 -- Now that we have processed all the component clauses, check for
fdd294d1 2516 -- overlap. We have to leave this till last, since the components can
2517 -- appear in any arbitrary order in the representation clause.
d6f39728 2518
2519 -- We do not need this check if all specified ranges were monotonic,
2520 -- as recorded by Overlap_Check_Required being False at this stage.
2521
fdd294d1 2522 -- This first section checks if there are any overlapping entries at
2523 -- all. It does this by sorting all entries and then seeing if there are
2524 -- any overlaps. If there are none, then that is decisive, but if there
2525 -- are overlaps, they may still be OK (they may result from fields in
2526 -- different variants).
d6f39728 2527
2528 if Overlap_Check_Required then
2529 Overlap_Check1 : declare
2530
2531 OC_Fbit : array (0 .. Ccount) of Uint;
fdd294d1 2532 -- First-bit values for component clauses, the value is the offset
2533 -- of the first bit of the field from start of record. The zero
2534 -- entry is for use in sorting.
d6f39728 2535
2536 OC_Lbit : array (0 .. Ccount) of Uint;
fdd294d1 2537 -- Last-bit values for component clauses, the value is the offset
2538 -- of the last bit of the field from start of record. The zero
2539 -- entry is for use in sorting.
d6f39728 2540
2541 OC_Count : Natural := 0;
2542 -- Count of entries in OC_Fbit and OC_Lbit
2543
2544 function OC_Lt (Op1, Op2 : Natural) return Boolean;
bfa5a9d9 2545 -- Compare routine for Sort
d6f39728 2546
2547 procedure OC_Move (From : Natural; To : Natural);
bfa5a9d9 2548 -- Move routine for Sort
2549
2550 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
d6f39728 2551
2552 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2553 begin
2554 return OC_Fbit (Op1) < OC_Fbit (Op2);
2555 end OC_Lt;
2556
2557 procedure OC_Move (From : Natural; To : Natural) is
2558 begin
2559 OC_Fbit (To) := OC_Fbit (From);
2560 OC_Lbit (To) := OC_Lbit (From);
2561 end OC_Move;
2562
2563 begin
2564 CC := First (Component_Clauses (N));
2565 while Present (CC) loop
2566 if Nkind (CC) /= N_Pragma then
2567 Posit := Static_Integer (Position (CC));
2568 Fbit := Static_Integer (First_Bit (CC));
2569 Lbit := Static_Integer (Last_Bit (CC));
2570
2571 if Posit /= No_Uint
2572 and then Fbit /= No_Uint
2573 and then Lbit /= No_Uint
2574 then
2575 OC_Count := OC_Count + 1;
2576 Posit := Posit * SSU;
2577 OC_Fbit (OC_Count) := Fbit + Posit;
2578 OC_Lbit (OC_Count) := Lbit + Posit;
2579 end if;
2580 end if;
2581
2582 Next (CC);
2583 end loop;
2584
bfa5a9d9 2585 Sorting.Sort (OC_Count);
d6f39728 2586
2587 Overlap_Check_Required := False;
2588 for J in 1 .. OC_Count - 1 loop
2589 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2590 Overlap_Check_Required := True;
2591 exit;
2592 end if;
2593 end loop;
2594 end Overlap_Check1;
2595 end if;
2596
fdd294d1 2597 -- If Overlap_Check_Required is still True, then we have to do the full
2598 -- scale overlap check, since we have at least two fields that do
2599 -- overlap, and we need to know if that is OK since they are in
2600 -- different variant, or whether we have a definite problem.
d6f39728 2601
2602 if Overlap_Check_Required then
2603 Overlap_Check2 : declare
2604 C1_Ent, C2_Ent : Entity_Id;
2605 -- Entities of components being checked for overlap
2606
2607 Clist : Node_Id;
2608 -- Component_List node whose Component_Items are being checked
2609
2610 Citem : Node_Id;
2611 -- Component declaration for component being checked
2612
2613 begin
2614 C1_Ent := First_Entity (Base_Type (Rectype));
2615
2616 -- Loop through all components in record. For each component check
2617 -- for overlap with any of the preceding elements on the component
fdd294d1 2618 -- list containing the component and also, if the component is in
d6f39728 2619 -- a variant, check against components outside the case structure.
2620 -- This latter test is repeated recursively up the variant tree.
2621
2622 Main_Component_Loop : while Present (C1_Ent) loop
2623 if Ekind (C1_Ent) /= E_Component
2624 and then Ekind (C1_Ent) /= E_Discriminant
2625 then
2626 goto Continue_Main_Component_Loop;
2627 end if;
2628
2629 -- Skip overlap check if entity has no declaration node. This
2630 -- happens with discriminants in constrained derived types.
2631 -- Probably we are missing some checks as a result, but that
2632 -- does not seem terribly serious ???
2633
2634 if No (Declaration_Node (C1_Ent)) then
2635 goto Continue_Main_Component_Loop;
2636 end if;
2637
2638 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2639
2640 -- Loop through component lists that need checking. Check the
2641 -- current component list and all lists in variants above us.
2642
2643 Component_List_Loop : loop
2644
2645 -- If derived type definition, go to full declaration
fdd294d1 2646 -- If at outer level, check discriminants if there are any.
d6f39728 2647
2648 if Nkind (Clist) = N_Derived_Type_Definition then
2649 Clist := Parent (Clist);
2650 end if;
2651
2652 -- Outer level of record definition, check discriminants
2653
fdd294d1 2654 if Nkind_In (Clist, N_Full_Type_Declaration,
2655 N_Private_Type_Declaration)
d6f39728 2656 then
2657 if Has_Discriminants (Defining_Identifier (Clist)) then
2658 C2_Ent :=
2659 First_Discriminant (Defining_Identifier (Clist));
2660
2661 while Present (C2_Ent) loop
2662 exit when C1_Ent = C2_Ent;
2663 Check_Component_Overlap (C1_Ent, C2_Ent);
2664 Next_Discriminant (C2_Ent);
2665 end loop;
2666 end if;
2667
2668 -- Record extension case
2669
2670 elsif Nkind (Clist) = N_Derived_Type_Definition then
2671 Clist := Empty;
2672
2673 -- Otherwise check one component list
2674
2675 else
2676 Citem := First (Component_Items (Clist));
2677
2678 while Present (Citem) loop
2679 if Nkind (Citem) = N_Component_Declaration then
2680 C2_Ent := Defining_Identifier (Citem);
2681 exit when C1_Ent = C2_Ent;
2682 Check_Component_Overlap (C1_Ent, C2_Ent);
2683 end if;
2684
2685 Next (Citem);
2686 end loop;
2687 end if;
2688
2689 -- Check for variants above us (the parent of the Clist can
2690 -- be a variant, in which case its parent is a variant part,
2691 -- and the parent of the variant part is a component list
2692 -- whose components must all be checked against the current
fdd294d1 2693 -- component for overlap).
d6f39728 2694
2695 if Nkind (Parent (Clist)) = N_Variant then
2696 Clist := Parent (Parent (Parent (Clist)));
2697
2698 -- Check for possible discriminant part in record, this is
2699 -- treated essentially as another level in the recursion.
fdd294d1 2700 -- For this case the parent of the component list is the
2701 -- record definition, and its parent is the full type
2702 -- declaration containing the discriminant specifications.
d6f39728 2703
2704 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2705 Clist := Parent (Parent ((Clist)));
2706
2707 -- If neither of these two cases, we are at the top of
fdd294d1 2708 -- the tree.
d6f39728 2709
2710 else
2711 exit Component_List_Loop;
2712 end if;
2713 end loop Component_List_Loop;
2714
2715 <<Continue_Main_Component_Loop>>
2716 Next_Entity (C1_Ent);
2717
2718 end loop Main_Component_Loop;
2719 end Overlap_Check2;
2720 end if;
2721
fdd294d1 2722 -- For records that have component clauses for all components, and whose
2723 -- size is less than or equal to 32, we need to know the size in the
2724 -- front end to activate possible packed array processing where the
2725 -- component type is a record.
d6f39728 2726
fdd294d1 2727 -- At this stage Hbit + 1 represents the first unused bit from all the
2728 -- component clauses processed, so if the component clauses are
d6f39728 2729 -- complete, then this is the length of the record.
2730
fdd294d1 2731 -- For records longer than System.Storage_Unit, and for those where not
2732 -- all components have component clauses, the back end determines the
1a34e48c 2733 -- length (it may for example be appropriate to round up the size
fdd294d1 2734 -- to some convenient boundary, based on alignment considerations, etc).
d6f39728 2735
fdd294d1 2736 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
2737
2738 -- Nothing to do if at least one component has no component clause
d6f39728 2739
59ac57b5 2740 Comp := First_Component_Or_Discriminant (Rectype);
d6f39728 2741 while Present (Comp) loop
59ac57b5 2742 exit when No (Component_Clause (Comp));
2743 Next_Component_Or_Discriminant (Comp);
d6f39728 2744 end loop;
2745
2746 -- If we fall out of loop, all components have component clauses
2747 -- and so we can set the size to the maximum value.
2748
639e37b0 2749 if No (Comp) then
2750 Set_RM_Size (Rectype, Hbit + 1);
2751 end if;
2752 end if;
2753
2754 -- Check missing components if Complete_Representation pragma appeared
2755
2756 if Present (CR_Pragma) then
59ac57b5 2757 Comp := First_Component_Or_Discriminant (Rectype);
639e37b0 2758 while Present (Comp) loop
59ac57b5 2759 if No (Component_Clause (Comp)) then
2760 Error_Msg_NE
2761 ("missing component clause for &", CR_Pragma, Comp);
639e37b0 2762 end if;
2763
59ac57b5 2764 Next_Component_Or_Discriminant (Comp);
639e37b0 2765 end loop;
15ebb600 2766
fbc67f84 2767 -- If no Complete_Representation pragma, warn if missing components
15ebb600 2768
fdd294d1 2769 elsif Warn_On_Unrepped_Components then
15ebb600 2770 declare
2771 Num_Repped_Components : Nat := 0;
2772 Num_Unrepped_Components : Nat := 0;
2773
2774 begin
2775 -- First count number of repped and unrepped components
2776
2777 Comp := First_Component_Or_Discriminant (Rectype);
2778 while Present (Comp) loop
2779 if Present (Component_Clause (Comp)) then
2780 Num_Repped_Components := Num_Repped_Components + 1;
2781 else
2782 Num_Unrepped_Components := Num_Unrepped_Components + 1;
2783 end if;
2784
2785 Next_Component_Or_Discriminant (Comp);
2786 end loop;
2787
2788 -- We are only interested in the case where there is at least one
2789 -- unrepped component, and at least half the components have rep
2790 -- clauses. We figure that if less than half have them, then the
87f9eef5 2791 -- partial rep clause is really intentional. If the component
2792 -- type has no underlying type set at this point (as for a generic
2793 -- formal type), we don't know enough to give a warning on the
2794 -- component.
15ebb600 2795
2796 if Num_Unrepped_Components > 0
2797 and then Num_Unrepped_Components < Num_Repped_Components
2798 then
2799 Comp := First_Component_Or_Discriminant (Rectype);
2800 while Present (Comp) loop
83f8f0a6 2801 if No (Component_Clause (Comp))
3062c401 2802 and then Comes_From_Source (Comp)
87f9eef5 2803 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 2804 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
2805 or else Size_Known_At_Compile_Time
2806 (Underlying_Type (Etype (Comp))))
fdd294d1 2807 and then not Has_Warnings_Off (Rectype)
83f8f0a6 2808 then
15ebb600 2809 Error_Msg_Sloc := Sloc (Comp);
2810 Error_Msg_NE
2811 ("?no component clause given for & declared #",
2812 N, Comp);
2813 end if;
2814
2815 Next_Component_Or_Discriminant (Comp);
2816 end loop;
2817 end if;
2818 end;
d6f39728 2819 end if;
d6f39728 2820 end Analyze_Record_Representation_Clause;
2821
d6f39728 2822 -----------------------------
2823 -- Check_Component_Overlap --
2824 -----------------------------
2825
2826 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2827 begin
2828 if Present (Component_Clause (C1_Ent))
2829 and then Present (Component_Clause (C2_Ent))
2830 then
fdd294d1 2831 -- Exclude odd case where we have two tag fields in the same record,
2832 -- both at location zero. This seems a bit strange, but it seems to
2833 -- happen in some circumstances ???
d6f39728 2834
2835 if Chars (C1_Ent) = Name_uTag
2836 and then Chars (C2_Ent) = Name_uTag
2837 then
2838 return;
2839 end if;
2840
2841 -- Here we check if the two fields overlap
2842
2843 declare
2844 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2845 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2846 E1 : constant Uint := S1 + Esize (C1_Ent);
2847 E2 : constant Uint := S2 + Esize (C2_Ent);
2848
2849 begin
2850 if E2 <= S1 or else E1 <= S2 then
2851 null;
2852 else
2853 Error_Msg_Node_2 :=
2854 Component_Name (Component_Clause (C2_Ent));
2855 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2856 Error_Msg_Node_1 :=
2857 Component_Name (Component_Clause (C1_Ent));
2858 Error_Msg_N
2859 ("component& overlaps & #",
2860 Component_Name (Component_Clause (C1_Ent)));
2861 end if;
2862 end;
2863 end if;
2864 end Check_Component_Overlap;
2865
2866 -----------------------------------
2867 -- Check_Constant_Address_Clause --
2868 -----------------------------------
2869
2870 procedure Check_Constant_Address_Clause
2871 (Expr : Node_Id;
2872 U_Ent : Entity_Id)
2873 is
2874 procedure Check_At_Constant_Address (Nod : Node_Id);
fdd294d1 2875 -- Checks that the given node N represents a name whose 'Address is
2876 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
2877 -- address value is the same at the point of declaration of U_Ent and at
2878 -- the time of elaboration of the address clause.
d6f39728 2879
2880 procedure Check_Expr_Constants (Nod : Node_Id);
fdd294d1 2881 -- Checks that Nod meets the requirements for a constant address clause
2882 -- in the sense of the enclosing procedure.
d6f39728 2883
2884 procedure Check_List_Constants (Lst : List_Id);
2885 -- Check that all elements of list Lst meet the requirements for a
2886 -- constant address clause in the sense of the enclosing procedure.
2887
2888 -------------------------------
2889 -- Check_At_Constant_Address --
2890 -------------------------------
2891
2892 procedure Check_At_Constant_Address (Nod : Node_Id) is
2893 begin
2894 if Is_Entity_Name (Nod) then
2895 if Present (Address_Clause (Entity ((Nod)))) then
2896 Error_Msg_NE
2897 ("invalid address clause for initialized object &!",
2898 Nod, U_Ent);
2899 Error_Msg_NE
2900 ("address for& cannot" &
fbc67f84 2901 " depend on another address clause! (RM 13.1(22))!",
d6f39728 2902 Nod, U_Ent);
2903
2904 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2905 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2906 then
2907 Error_Msg_NE
2908 ("invalid address clause for initialized object &!",
2909 Nod, U_Ent);
2910 Error_Msg_Name_1 := Chars (Entity (Nod));
2911 Error_Msg_Name_2 := Chars (U_Ent);
2912 Error_Msg_N
fbc67f84 2913 ("\% must be defined before % (RM 13.1(22))!",
d6f39728 2914 Nod);
2915 end if;
2916
2917 elsif Nkind (Nod) = N_Selected_Component then
2918 declare
2919 T : constant Entity_Id := Etype (Prefix (Nod));
2920
2921 begin
2922 if (Is_Record_Type (T)
2923 and then Has_Discriminants (T))
2924 or else
2925 (Is_Access_Type (T)
2926 and then Is_Record_Type (Designated_Type (T))
2927 and then Has_Discriminants (Designated_Type (T)))
2928 then
2929 Error_Msg_NE
2930 ("invalid address clause for initialized object &!",
2931 Nod, U_Ent);
2932 Error_Msg_N
2933 ("\address cannot depend on component" &
fbc67f84 2934 " of discriminated record (RM 13.1(22))!",
d6f39728 2935 Nod);
2936 else
2937 Check_At_Constant_Address (Prefix (Nod));
2938 end if;
2939 end;
2940
2941 elsif Nkind (Nod) = N_Indexed_Component then
2942 Check_At_Constant_Address (Prefix (Nod));
2943 Check_List_Constants (Expressions (Nod));
2944
2945 else
2946 Check_Expr_Constants (Nod);
2947 end if;
2948 end Check_At_Constant_Address;
2949
2950 --------------------------
2951 -- Check_Expr_Constants --
2952 --------------------------
2953
2954 procedure Check_Expr_Constants (Nod : Node_Id) is
e7b2d6bc 2955 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2956 Ent : Entity_Id := Empty;
2957
d6f39728 2958 begin
2959 if Nkind (Nod) in N_Has_Etype
2960 and then Etype (Nod) = Any_Type
2961 then
2962 return;
2963 end if;
2964
2965 case Nkind (Nod) is
2966 when N_Empty | N_Error =>
2967 return;
2968
2969 when N_Identifier | N_Expanded_Name =>
e7b2d6bc 2970 Ent := Entity (Nod);
9dfe12ae 2971
2972 -- We need to look at the original node if it is different
2973 -- from the node, since we may have rewritten things and
2974 -- substituted an identifier representing the rewrite.
2975
2976 if Original_Node (Nod) /= Nod then
2977 Check_Expr_Constants (Original_Node (Nod));
2978
2979 -- If the node is an object declaration without initial
2980 -- value, some code has been expanded, and the expression
2981 -- is not constant, even if the constituents might be
fdd294d1 2982 -- acceptable, as in A'Address + offset.
9dfe12ae 2983
e7b2d6bc 2984 if Ekind (Ent) = E_Variable
fdd294d1 2985 and then
2986 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9dfe12ae 2987 and then
e7b2d6bc 2988 No (Expression (Declaration_Node (Ent)))
2989 then
2990 Error_Msg_NE
2991 ("invalid address clause for initialized object &!",
2992 Nod, U_Ent);
2993
2994 -- If entity is constant, it may be the result of expanding
2995 -- a check. We must verify that its declaration appears
2996 -- before the object in question, else we also reject the
2997 -- address clause.
2998
2999 elsif Ekind (Ent) = E_Constant
3000 and then In_Same_Source_Unit (Ent, U_Ent)
3001 and then Sloc (Ent) > Loc_U_Ent
9dfe12ae 3002 then
3003 Error_Msg_NE
3004 ("invalid address clause for initialized object &!",
3005 Nod, U_Ent);
3006 end if;
e7b2d6bc 3007
9dfe12ae 3008 return;
3009 end if;
3010
2866d595 3011 -- Otherwise look at the identifier and see if it is OK
9dfe12ae 3012
e7b2d6bc 3013 if Ekind (Ent) = E_Named_Integer
3014 or else
3015 Ekind (Ent) = E_Named_Real
3016 or else
3017 Is_Type (Ent)
3018 then
3019 return;
d6f39728 3020
e7b2d6bc 3021 elsif
3022 Ekind (Ent) = E_Constant
3023 or else
3024 Ekind (Ent) = E_In_Parameter
3025 then
fdd294d1 3026 -- This is the case where we must have Ent defined before
3027 -- U_Ent. Clearly if they are in different units this
3028 -- requirement is met since the unit containing Ent is
3029 -- already processed.
d6f39728 3030
e7b2d6bc 3031 if not In_Same_Source_Unit (Ent, U_Ent) then
3032 return;
d6f39728 3033
fdd294d1 3034 -- Otherwise location of Ent must be before the location
3035 -- of U_Ent, that's what prior defined means.
d6f39728 3036
e7b2d6bc 3037 elsif Sloc (Ent) < Loc_U_Ent then
3038 return;
d6f39728 3039
3040 else
3041 Error_Msg_NE
3042 ("invalid address clause for initialized object &!",
3043 Nod, U_Ent);
e7b2d6bc 3044 Error_Msg_Name_1 := Chars (Ent);
3045 Error_Msg_Name_2 := Chars (U_Ent);
3046 Error_Msg_N
fbc67f84 3047 ("\% must be defined before % (RM 13.1(22))!",
e7b2d6bc 3048 Nod);
3049 end if;
9dfe12ae 3050
e7b2d6bc 3051 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
3052 Check_Expr_Constants (Original_Node (Nod));
3053
3054 else
3055 Error_Msg_NE
3056 ("invalid address clause for initialized object &!",
3057 Nod, U_Ent);
3058
3059 if Comes_From_Source (Ent) then
3060 Error_Msg_Name_1 := Chars (Ent);
3061 Error_Msg_N
3062 ("\reference to variable% not allowed"
fbc67f84 3063 & " (RM 13.1(22))!", Nod);
e7b2d6bc 3064 else
3065 Error_Msg_N
3066 ("non-static expression not allowed"
fbc67f84 3067 & " (RM 13.1(22))!", Nod);
d6f39728 3068 end if;
e7b2d6bc 3069 end if;
d6f39728 3070
93735cb8 3071 when N_Integer_Literal =>
3072
3073 -- If this is a rewritten unchecked conversion, in a system
3074 -- where Address is an integer type, always use the base type
3075 -- for a literal value. This is user-friendly and prevents
3076 -- order-of-elaboration issues with instances of unchecked
3077 -- conversion.
3078
3079 if Nkind (Original_Node (Nod)) = N_Function_Call then
3080 Set_Etype (Nod, Base_Type (Etype (Nod)));
3081 end if;
3082
3083 when N_Real_Literal |
d6f39728 3084 N_String_Literal |
3085 N_Character_Literal =>
3086 return;
3087
3088 when N_Range =>
3089 Check_Expr_Constants (Low_Bound (Nod));
3090 Check_Expr_Constants (High_Bound (Nod));
3091
3092 when N_Explicit_Dereference =>
3093 Check_Expr_Constants (Prefix (Nod));
3094
3095 when N_Indexed_Component =>
3096 Check_Expr_Constants (Prefix (Nod));
3097 Check_List_Constants (Expressions (Nod));
3098
3099 when N_Slice =>
3100 Check_Expr_Constants (Prefix (Nod));
3101 Check_Expr_Constants (Discrete_Range (Nod));
3102
3103 when N_Selected_Component =>
3104 Check_Expr_Constants (Prefix (Nod));
3105
3106 when N_Attribute_Reference =>
9dfe12ae 3107 if Attribute_Name (Nod) = Name_Address
3108 or else
3109 Attribute_Name (Nod) = Name_Access
d6f39728 3110 or else
9dfe12ae 3111 Attribute_Name (Nod) = Name_Unchecked_Access
d6f39728 3112 or else
9dfe12ae 3113 Attribute_Name (Nod) = Name_Unrestricted_Access
d6f39728 3114 then
3115 Check_At_Constant_Address (Prefix (Nod));
3116
3117 else
3118 Check_Expr_Constants (Prefix (Nod));
3119 Check_List_Constants (Expressions (Nod));
3120 end if;
3121
3122 when N_Aggregate =>
3123 Check_List_Constants (Component_Associations (Nod));
3124 Check_List_Constants (Expressions (Nod));
3125
3126 when N_Component_Association =>
3127 Check_Expr_Constants (Expression (Nod));
3128
3129 when N_Extension_Aggregate =>
3130 Check_Expr_Constants (Ancestor_Part (Nod));
3131 Check_List_Constants (Component_Associations (Nod));
3132 Check_List_Constants (Expressions (Nod));
3133
3134 when N_Null =>
3135 return;
3136
44e4341e 3137 when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
d6f39728 3138 Check_Expr_Constants (Left_Opnd (Nod));
3139 Check_Expr_Constants (Right_Opnd (Nod));
3140
3141 when N_Unary_Op =>
3142 Check_Expr_Constants (Right_Opnd (Nod));
3143
3144 when N_Type_Conversion |
3145 N_Qualified_Expression |
3146 N_Allocator =>
3147 Check_Expr_Constants (Expression (Nod));
3148
3149 when N_Unchecked_Type_Conversion =>
3150 Check_Expr_Constants (Expression (Nod));
3151
fdd294d1 3152 -- If this is a rewritten unchecked conversion, subtypes in
3153 -- this node are those created within the instance. To avoid
3154 -- order of elaboration issues, replace them with their base
3155 -- types. Note that address clauses can cause order of
3156 -- elaboration problems because they are elaborated by the
3157 -- back-end at the point of definition, and may mention
3158 -- entities declared in between (as long as everything is
3159 -- static). It is user-friendly to allow unchecked conversions
3160 -- in this context.
d6f39728 3161
3162 if Nkind (Original_Node (Nod)) = N_Function_Call then
3163 Set_Etype (Expression (Nod),
3164 Base_Type (Etype (Expression (Nod))));
3165 Set_Etype (Nod, Base_Type (Etype (Nod)));
3166 end if;
3167
3168 when N_Function_Call =>
3169 if not Is_Pure (Entity (Name (Nod))) then
3170 Error_Msg_NE
3171 ("invalid address clause for initialized object &!",
3172 Nod, U_Ent);
3173
3174 Error_Msg_NE
fbc67f84 3175 ("\function & is not pure (RM 13.1(22))!",
d6f39728 3176 Nod, Entity (Name (Nod)));
3177
3178 else
3179 Check_List_Constants (Parameter_Associations (Nod));
3180 end if;
3181
3182 when N_Parameter_Association =>
3183 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
3184
3185 when others =>
3186 Error_Msg_NE
3187 ("invalid address clause for initialized object &!",
3188 Nod, U_Ent);
3189 Error_Msg_NE
fbc67f84 3190 ("\must be constant defined before& (RM 13.1(22))!",
d6f39728 3191 Nod, U_Ent);
3192 end case;
3193 end Check_Expr_Constants;
3194
3195 --------------------------
3196 -- Check_List_Constants --
3197 --------------------------
3198
3199 procedure Check_List_Constants (Lst : List_Id) is
3200 Nod1 : Node_Id;
3201
3202 begin
3203 if Present (Lst) then
3204 Nod1 := First (Lst);
3205 while Present (Nod1) loop
3206 Check_Expr_Constants (Nod1);
3207 Next (Nod1);
3208 end loop;
3209 end if;
3210 end Check_List_Constants;
3211
3212 -- Start of processing for Check_Constant_Address_Clause
3213
3214 begin
3215 Check_Expr_Constants (Expr);
3216 end Check_Constant_Address_Clause;
3217
3218 ----------------
3219 -- Check_Size --
3220 ----------------
3221
3222 procedure Check_Size
3223 (N : Node_Id;
3224 T : Entity_Id;
3225 Siz : Uint;
3226 Biased : out Boolean)
3227 is
3228 UT : constant Entity_Id := Underlying_Type (T);
3229 M : Uint;
3230
3231 begin
3232 Biased := False;
3233
ea61a7ea 3234 -- Dismiss cases for generic types or types with previous errors
d6f39728 3235
3236 if No (UT)
3237 or else UT = Any_Type
3238 or else Is_Generic_Type (UT)
3239 or else Is_Generic_Type (Root_Type (UT))
d6f39728 3240 then
3241 return;
3242
ea61a7ea 3243 -- Check case of bit packed array
3244
3245 elsif Is_Array_Type (UT)
3246 and then Known_Static_Component_Size (UT)
3247 and then Is_Bit_Packed_Array (UT)
3248 then
3249 declare
3250 Asiz : Uint;
3251 Indx : Node_Id;
3252 Ityp : Entity_Id;
3253
3254 begin
3255 Asiz := Component_Size (UT);
3256 Indx := First_Index (UT);
3257 loop
3258 Ityp := Etype (Indx);
3259
3260 -- If non-static bound, then we are not in the business of
3261 -- trying to check the length, and indeed an error will be
3262 -- issued elsewhere, since sizes of non-static array types
3263 -- cannot be set implicitly or explicitly.
3264
3265 if not Is_Static_Subtype (Ityp) then
3266 return;
3267 end if;
3268
3269 -- Otherwise accumulate next dimension
3270
3271 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
3272 Expr_Value (Type_Low_Bound (Ityp)) +
3273 Uint_1);
3274
3275 Next_Index (Indx);
3276 exit when No (Indx);
3277 end loop;
3278
3279 if Asiz <= Siz then
3280 return;
3281 else
3282 Error_Msg_Uint_1 := Asiz;
3283 Error_Msg_NE
3284 ("size for& too small, minimum allowed is ^", N, T);
37cb33b0 3285 Set_Esize (T, Asiz);
3286 Set_RM_Size (T, Asiz);
ea61a7ea 3287 end if;
3288 end;
3289
3290 -- All other composite types are ignored
3291
3292 elsif Is_Composite_Type (UT) then
3293 return;
3294
d6f39728 3295 -- For fixed-point types, don't check minimum if type is not frozen,
ea61a7ea 3296 -- since we don't know all the characteristics of the type that can
3297 -- affect the size (e.g. a specified small) till freeze time.
d6f39728 3298
3299 elsif Is_Fixed_Point_Type (UT)
3300 and then not Is_Frozen (UT)
3301 then
3302 null;
3303
3304 -- Cases for which a minimum check is required
3305
3306 else
ea61a7ea 3307 -- Ignore if specified size is correct for the type
3308
3309 if Known_Esize (UT) and then Siz = Esize (UT) then
3310 return;
3311 end if;
3312
3313 -- Otherwise get minimum size
3314
d6f39728 3315 M := UI_From_Int (Minimum_Size (UT));
3316
3317 if Siz < M then
3318
3319 -- Size is less than minimum size, but one possibility remains
fdd294d1 3320 -- that we can manage with the new size if we bias the type.
d6f39728 3321
3322 M := UI_From_Int (Minimum_Size (UT, Biased => True));
3323
3324 if Siz < M then
3325 Error_Msg_Uint_1 := M;
3326 Error_Msg_NE
3327 ("size for& too small, minimum allowed is ^", N, T);
37cb33b0 3328 Set_Esize (T, M);
3329 Set_RM_Size (T, M);
d6f39728 3330 else
3331 Biased := True;
3332 end if;
3333 end if;
3334 end if;
3335 end Check_Size;
3336
3337 -------------------------
3338 -- Get_Alignment_Value --
3339 -------------------------
3340
3341 function Get_Alignment_Value (Expr : Node_Id) return Uint is
3342 Align : constant Uint := Static_Integer (Expr);
3343
3344 begin
3345 if Align = No_Uint then
3346 return No_Uint;
3347
3348 elsif Align <= 0 then
3349 Error_Msg_N ("alignment value must be positive", Expr);
3350 return No_Uint;
3351
3352 else
3353 for J in Int range 0 .. 64 loop
3354 declare
3355 M : constant Uint := Uint_2 ** J;
3356
3357 begin
3358 exit when M = Align;
3359
3360 if M > Align then
3361 Error_Msg_N
3362 ("alignment value must be power of 2", Expr);
3363 return No_Uint;
3364 end if;
3365 end;
3366 end loop;
3367
3368 return Align;
3369 end if;
3370 end Get_Alignment_Value;
3371
d6f39728 3372 ----------------
3373 -- Initialize --
3374 ----------------
3375
3376 procedure Initialize is
3377 begin
3378 Unchecked_Conversions.Init;
3379 end Initialize;
3380
3381 -------------------------
3382 -- Is_Operational_Item --
3383 -------------------------
3384
3385 function Is_Operational_Item (N : Node_Id) return Boolean is
3386 begin
3387 if Nkind (N) /= N_Attribute_Definition_Clause then
3388 return False;
3389 else
3390 declare
3391 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 3392 begin
fdd294d1 3393 return Id = Attribute_Input
d6f39728 3394 or else Id = Attribute_Output
3395 or else Id = Attribute_Read
f15731c4 3396 or else Id = Attribute_Write
3397 or else Id = Attribute_External_Tag;
d6f39728 3398 end;
3399 end if;
3400 end Is_Operational_Item;
3401
3402 ------------------
3403 -- Minimum_Size --
3404 ------------------
3405
3406 function Minimum_Size
3407 (T : Entity_Id;
d5b349fa 3408 Biased : Boolean := False) return Nat
d6f39728 3409 is
3410 Lo : Uint := No_Uint;
3411 Hi : Uint := No_Uint;
3412 LoR : Ureal := No_Ureal;
3413 HiR : Ureal := No_Ureal;
3414 LoSet : Boolean := False;
3415 HiSet : Boolean := False;
3416 B : Uint;
3417 S : Nat;
3418 Ancest : Entity_Id;
f15731c4 3419 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 3420
3421 begin
3422 -- If bad type, return 0
3423
3424 if T = Any_Type then
3425 return 0;
3426
3427 -- For generic types, just return zero. There cannot be any legitimate
3428 -- need to know such a size, but this routine may be called with a
3429 -- generic type as part of normal processing.
3430
f15731c4 3431 elsif Is_Generic_Type (R_Typ)
3432 or else R_Typ = Any_Type
3433 then
d6f39728 3434 return 0;
3435
93735cb8 3436 -- Access types. Normally an access type cannot have a size smaller
3437 -- than the size of System.Address. The exception is on VMS, where
3438 -- we have short and long addresses, and it is possible for an access
3439 -- type to have a short address size (and thus be less than the size
3440 -- of System.Address itself). We simply skip the check for VMS, and
fdd294d1 3441 -- leave it to the back end to do the check.
d6f39728 3442
3443 elsif Is_Access_Type (T) then
93735cb8 3444 if OpenVMS_On_Target then
3445 return 0;
3446 else
3447 return System_Address_Size;
3448 end if;
d6f39728 3449
3450 -- Floating-point types
3451
3452 elsif Is_Floating_Point_Type (T) then
f15731c4 3453 return UI_To_Int (Esize (R_Typ));
d6f39728 3454
3455 -- Discrete types
3456
3457 elsif Is_Discrete_Type (T) then
3458
fdd294d1 3459 -- The following loop is looking for the nearest compile time known
3460 -- bounds following the ancestor subtype chain. The idea is to find
3461 -- the most restrictive known bounds information.
d6f39728 3462
3463 Ancest := T;
3464 loop
3465 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3466 return 0;
3467 end if;
3468
3469 if not LoSet then
3470 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
3471 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
3472 LoSet := True;
3473 exit when HiSet;
3474 end if;
3475 end if;
3476
3477 if not HiSet then
3478 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
3479 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
3480 HiSet := True;
3481 exit when LoSet;
3482 end if;
3483 end if;
3484
3485 Ancest := Ancestor_Subtype (Ancest);
3486
3487 if No (Ancest) then
3488 Ancest := Base_Type (T);
3489
3490 if Is_Generic_Type (Ancest) then
3491 return 0;
3492 end if;
3493 end if;
3494 end loop;
3495
3496 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 3497 -- Corresponding_Integer_Value values of the bounds, since these do not
3498 -- get set till the type is frozen, and this routine can be called
3499 -- before the type is frozen. Similarly the test for bounds being static
3500 -- needs to include the case where we have unanalyzed real literals for
3501 -- the same reason.
d6f39728 3502
3503 elsif Is_Fixed_Point_Type (T) then
3504
fdd294d1 3505 -- The following loop is looking for the nearest compile time known
3506 -- bounds following the ancestor subtype chain. The idea is to find
3507 -- the most restrictive known bounds information.
d6f39728 3508
3509 Ancest := T;
3510 loop
3511 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3512 return 0;
3513 end if;
3514
3062c401 3515 -- Note: In the following two tests for LoSet and HiSet, it may
3516 -- seem redundant to test for N_Real_Literal here since normally
3517 -- one would assume that the test for the value being known at
3518 -- compile time includes this case. However, there is a glitch.
3519 -- If the real literal comes from folding a non-static expression,
3520 -- then we don't consider any non- static expression to be known
3521 -- at compile time if we are in configurable run time mode (needed
3522 -- in some cases to give a clearer definition of what is and what
3523 -- is not accepted). So the test is indeed needed. Without it, we
3524 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
3525
d6f39728 3526 if not LoSet then
3527 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
3528 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
3529 then
3530 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
3531 LoSet := True;
3532 exit when HiSet;
3533 end if;
3534 end if;
3535
3536 if not HiSet then
3537 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3538 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3539 then
3540 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3541 HiSet := True;
3542 exit when LoSet;
3543 end if;
3544 end if;
3545
3546 Ancest := Ancestor_Subtype (Ancest);
3547
3548 if No (Ancest) then
3549 Ancest := Base_Type (T);
3550
3551 if Is_Generic_Type (Ancest) then
3552 return 0;
3553 end if;
3554 end if;
3555 end loop;
3556
3557 Lo := UR_To_Uint (LoR / Small_Value (T));
3558 Hi := UR_To_Uint (HiR / Small_Value (T));
3559
3560 -- No other types allowed
3561
3562 else
3563 raise Program_Error;
3564 end if;
3565
2866d595 3566 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 3567
3568 if (Biased and then not Is_Fixed_Point_Type (T))
3569 or else Has_Biased_Representation (T)
3570 then
3571 Hi := Hi - Lo;
3572 Lo := Uint_0;
3573 end if;
3574
3575 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 3576 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 3577 -- to be accommodated in the base type.
d6f39728 3578
3579 if Lo < 0 or else Hi < 0 then
3580 S := 1;
3581 B := Uint_1;
3582
da253936 3583 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3584 -- Note that we accommodate the case where the bounds cross. This
d6f39728 3585 -- can happen either because of the way the bounds are declared
3586 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3587
3588 while Lo < -B
3589 or else Hi < -B
3590 or else Lo >= B
3591 or else Hi >= B
3592 loop
3593 B := Uint_2 ** S;
3594 S := S + 1;
3595 end loop;
3596
3597 -- Unsigned case
3598
3599 else
3600 -- If both bounds are positive, make sure that both are represen-
3601 -- table in the case where the bounds are crossed. This can happen
3602 -- either because of the way the bounds are declared, or because of
3603 -- the algorithm in Freeze_Fixed_Point_Type.
3604
3605 if Lo > Hi then
3606 Hi := Lo;
3607 end if;
3608
da253936 3609 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 3610
3611 S := 0;
3612 while Hi >= Uint_2 ** S loop
3613 S := S + 1;
3614 end loop;
3615 end if;
3616
3617 return S;
3618 end Minimum_Size;
3619
44e4341e 3620 ---------------------------
3621 -- New_Stream_Subprogram --
3622 ---------------------------
d6f39728 3623
44e4341e 3624 procedure New_Stream_Subprogram
3625 (N : Node_Id;
3626 Ent : Entity_Id;
3627 Subp : Entity_Id;
3628 Nam : TSS_Name_Type)
d6f39728 3629 is
3630 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 3631 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 3632 Subp_Id : Entity_Id;
d6f39728 3633 Subp_Decl : Node_Id;
3634 F : Entity_Id;
3635 Etyp : Entity_Id;
3636
44e4341e 3637 Defer_Declaration : constant Boolean :=
3638 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
3639 -- For a tagged type, there is a declaration for each stream attribute
3640 -- at the freeze point, and we must generate only a completion of this
3641 -- declaration. We do the same for private types, because the full view
3642 -- might be tagged. Otherwise we generate a declaration at the point of
3643 -- the attribute definition clause.
3644
f15731c4 3645 function Build_Spec return Node_Id;
3646 -- Used for declaration and renaming declaration, so that this is
3647 -- treated as a renaming_as_body.
3648
3649 ----------------
3650 -- Build_Spec --
3651 ----------------
3652
d5b349fa 3653 function Build_Spec return Node_Id is
44e4341e 3654 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
3655 Formals : List_Id;
3656 Spec : Node_Id;
3657 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
3658
f15731c4 3659 begin
9dfe12ae 3660 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 3661
44e4341e 3662 -- S : access Root_Stream_Type'Class
3663
3664 Formals := New_List (
3665 Make_Parameter_Specification (Loc,
3666 Defining_Identifier =>
3667 Make_Defining_Identifier (Loc, Name_S),
3668 Parameter_Type =>
3669 Make_Access_Definition (Loc,
3670 Subtype_Mark =>
3671 New_Reference_To (
3672 Designated_Type (Etype (F)), Loc))));
3673
3674 if Nam = TSS_Stream_Input then
3675 Spec := Make_Function_Specification (Loc,
3676 Defining_Unit_Name => Subp_Id,
3677 Parameter_Specifications => Formals,
3678 Result_Definition => T_Ref);
3679 else
3680 -- V : [out] T
f15731c4 3681
44e4341e 3682 Append_To (Formals,
3683 Make_Parameter_Specification (Loc,
3684 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
3685 Out_Present => Out_P,
3686 Parameter_Type => T_Ref));
f15731c4 3687
44e4341e 3688 Spec := Make_Procedure_Specification (Loc,
3689 Defining_Unit_Name => Subp_Id,
3690 Parameter_Specifications => Formals);
3691 end if;
f15731c4 3692
44e4341e 3693 return Spec;
3694 end Build_Spec;
d6f39728 3695
44e4341e 3696 -- Start of processing for New_Stream_Subprogram
d6f39728 3697
44e4341e 3698 begin
3699 F := First_Formal (Subp);
3700
3701 if Ekind (Subp) = E_Procedure then
3702 Etyp := Etype (Next_Formal (F));
d6f39728 3703 else
44e4341e 3704 Etyp := Etype (Subp);
d6f39728 3705 end if;
f15731c4 3706
44e4341e 3707 -- Prepare subprogram declaration and insert it as an action on the
3708 -- clause node. The visibility for this entity is used to test for
3709 -- visibility of the attribute definition clause (in the sense of
3710 -- 8.3(23) as amended by AI-195).
9dfe12ae 3711
44e4341e 3712 if not Defer_Declaration then
f15731c4 3713 Subp_Decl :=
3714 Make_Subprogram_Declaration (Loc,
3715 Specification => Build_Spec);
44e4341e 3716
3717 -- For a tagged type, there is always a visible declaration for each
15ebb600 3718 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 3719 -- completion of this declaration occurs at the freeze point, which is
3720 -- not always visible at places where the attribute definition clause is
3721 -- visible. So, we create a dummy entity here for the purpose of
3722 -- tracking the visibility of the attribute definition clause itself.
3723
3724 else
3725 Subp_Id :=
3726 Make_Defining_Identifier (Loc,
3727 Chars => New_External_Name (Sname, 'V'));
3728 Subp_Decl :=
3729 Make_Object_Declaration (Loc,
3730 Defining_Identifier => Subp_Id,
3731 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 3732 end if;
3733
44e4341e 3734 Insert_Action (N, Subp_Decl);
3735 Set_Entity (N, Subp_Id);
3736
d6f39728 3737 Subp_Decl :=
3738 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 3739 Specification => Build_Spec,
3740 Name => New_Reference_To (Subp, Loc));
d6f39728 3741
44e4341e 3742 if Defer_Declaration then
d6f39728 3743 Set_TSS (Base_Type (Ent), Subp_Id);
3744 else
3745 Insert_Action (N, Subp_Decl);
3746 Copy_TSS (Subp_Id, Base_Type (Ent));
3747 end if;
44e4341e 3748 end New_Stream_Subprogram;
d6f39728 3749
d6f39728 3750 ------------------------
3751 -- Rep_Item_Too_Early --
3752 ------------------------
3753
80d4fec4 3754 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 3755 begin
44e4341e 3756 -- Cannot apply non-operational rep items to generic types
d6f39728 3757
f15731c4 3758 if Is_Operational_Item (N) then
3759 return False;
3760
3761 elsif Is_Type (T)
d6f39728 3762 and then Is_Generic_Type (Root_Type (T))
3763 then
3764 Error_Msg_N
3765 ("representation item not allowed for generic type", N);
3766 return True;
3767 end if;
3768
fdd294d1 3769 -- Otherwise check for incomplete type
d6f39728 3770
3771 if Is_Incomplete_Or_Private_Type (T)
3772 and then No (Underlying_Type (T))
3773 then
3774 Error_Msg_N
3775 ("representation item must be after full type declaration", N);
3776 return True;
3777
1a34e48c 3778 -- If the type has incomplete components, a representation clause is
d6f39728 3779 -- illegal but stream attributes and Convention pragmas are correct.
3780
3781 elsif Has_Private_Component (T) then
f15731c4 3782 if Nkind (N) = N_Pragma then
d6f39728 3783 return False;
3784 else
3785 Error_Msg_N
3786 ("representation item must appear after type is fully defined",
3787 N);
3788 return True;
3789 end if;
3790 else
3791 return False;
3792 end if;
3793 end Rep_Item_Too_Early;
3794
3795 -----------------------
3796 -- Rep_Item_Too_Late --
3797 -----------------------
3798
3799 function Rep_Item_Too_Late
3800 (T : Entity_Id;
3801 N : Node_Id;
d5b349fa 3802 FOnly : Boolean := False) return Boolean
d6f39728 3803 is
3804 S : Entity_Id;
3805 Parent_Type : Entity_Id;
3806
3807 procedure Too_Late;
d53a018a 3808 -- Output the too late message. Note that this is not considered a
3809 -- serious error, since the effect is simply that we ignore the
3810 -- representation clause in this case.
3811
3812 --------------
3813 -- Too_Late --
3814 --------------
d6f39728 3815
3816 procedure Too_Late is
3817 begin
d53a018a 3818 Error_Msg_N ("|representation item appears too late!", N);
d6f39728 3819 end Too_Late;
3820
3821 -- Start of processing for Rep_Item_Too_Late
3822
3823 begin
3824 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3825 -- types, which may be frozen if they appear in a representation clause
3826 -- for a local type.
3827
3828 if Is_Frozen (T)
3829 and then not From_With_Type (T)
3830 then
3831 Too_Late;
3832 S := First_Subtype (T);
3833
3834 if Present (Freeze_Node (S)) then
3835 Error_Msg_NE
87d5c1d0 3836 ("?no more representation items for }", Freeze_Node (S), S);
d6f39728 3837 end if;
3838
3839 return True;
3840
3841 -- Check for case of non-tagged derived type whose parent either has
3842 -- primitive operations, or is a by reference type (RM 13.1(10)).
3843
3844 elsif Is_Type (T)
3845 and then not FOnly
3846 and then Is_Derived_Type (T)
3847 and then not Is_Tagged_Type (T)
3848 then
3849 Parent_Type := Etype (Base_Type (T));
3850
3851 if Has_Primitive_Operations (Parent_Type) then
3852 Too_Late;
3853 Error_Msg_NE
3854 ("primitive operations already defined for&!", N, Parent_Type);
3855 return True;
3856
3857 elsif Is_By_Reference_Type (Parent_Type) then
3858 Too_Late;
3859 Error_Msg_NE
3860 ("parent type & is a by reference type!", N, Parent_Type);
3861 return True;
3862 end if;
3863 end if;
3864
3062c401 3865 -- No error, link item into head of chain of rep items for the entity,
3866 -- but avoid chaining if we have an overloadable entity, and the pragma
3867 -- is one that can apply to multiple overloaded entities.
3868
3869 if Is_Overloadable (T)
3870 and then Nkind (N) = N_Pragma
3062c401 3871 then
fdd294d1 3872 declare
3873 Pname : constant Name_Id := Pragma_Name (N);
3874 begin
3875 if Pname = Name_Convention or else
3876 Pname = Name_Import or else
3877 Pname = Name_Export or else
3878 Pname = Name_External or else
3879 Pname = Name_Interface
3880 then
3881 return False;
3882 end if;
3883 end;
3062c401 3884 end if;
3885
fdd294d1 3886 Record_Rep_Item (T, N);
d6f39728 3887 return False;
3888 end Rep_Item_Too_Late;
3889
3890 -------------------------
3891 -- Same_Representation --
3892 -------------------------
3893
3894 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3895 T1 : constant Entity_Id := Underlying_Type (Typ1);
3896 T2 : constant Entity_Id := Underlying_Type (Typ2);
3897
3898 begin
3899 -- A quick check, if base types are the same, then we definitely have
3900 -- the same representation, because the subtype specific representation
3901 -- attributes (Size and Alignment) do not affect representation from
3902 -- the point of view of this test.
3903
3904 if Base_Type (T1) = Base_Type (T2) then
3905 return True;
3906
3907 elsif Is_Private_Type (Base_Type (T2))
3908 and then Base_Type (T1) = Full_View (Base_Type (T2))
3909 then
3910 return True;
3911 end if;
3912
3913 -- Tagged types never have differing representations
3914
3915 if Is_Tagged_Type (T1) then
3916 return True;
3917 end if;
3918
3919 -- Representations are definitely different if conventions differ
3920
3921 if Convention (T1) /= Convention (T2) then
3922 return False;
3923 end if;
3924
3925 -- Representations are different if component alignments differ
3926
3927 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3928 and then
3929 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3930 and then Component_Alignment (T1) /= Component_Alignment (T2)
3931 then
3932 return False;
3933 end if;
3934
3935 -- For arrays, the only real issue is component size. If we know the
3936 -- component size for both arrays, and it is the same, then that's
3937 -- good enough to know we don't have a change of representation.
3938
3939 if Is_Array_Type (T1) then
3940 if Known_Component_Size (T1)
3941 and then Known_Component_Size (T2)
3942 and then Component_Size (T1) = Component_Size (T2)
3943 then
3944 return True;
3945 end if;
3946 end if;
3947
3948 -- Types definitely have same representation if neither has non-standard
3949 -- representation since default representations are always consistent.
3950 -- If only one has non-standard representation, and the other does not,
3951 -- then we consider that they do not have the same representation. They
3952 -- might, but there is no way of telling early enough.
3953
3954 if Has_Non_Standard_Rep (T1) then
3955 if not Has_Non_Standard_Rep (T2) then
3956 return False;
3957 end if;
3958 else
3959 return not Has_Non_Standard_Rep (T2);
3960 end if;
3961
fdd294d1 3962 -- Here the two types both have non-standard representation, and we need
3963 -- to determine if they have the same non-standard representation.
d6f39728 3964
3965 -- For arrays, we simply need to test if the component sizes are the
3966 -- same. Pragma Pack is reflected in modified component sizes, so this
3967 -- check also deals with pragma Pack.
3968
3969 if Is_Array_Type (T1) then
3970 return Component_Size (T1) = Component_Size (T2);
3971
3972 -- Tagged types always have the same representation, because it is not
3973 -- possible to specify different representations for common fields.
3974
3975 elsif Is_Tagged_Type (T1) then
3976 return True;
3977
3978 -- Case of record types
3979
3980 elsif Is_Record_Type (T1) then
3981
3982 -- Packed status must conform
3983
3984 if Is_Packed (T1) /= Is_Packed (T2) then
3985 return False;
3986
3987 -- Otherwise we must check components. Typ2 maybe a constrained
3988 -- subtype with fewer components, so we compare the components
3989 -- of the base types.
3990
3991 else
3992 Record_Case : declare
3993 CD1, CD2 : Entity_Id;
3994
3995 function Same_Rep return Boolean;
3996 -- CD1 and CD2 are either components or discriminants. This
3997 -- function tests whether the two have the same representation
3998
80d4fec4 3999 --------------
4000 -- Same_Rep --
4001 --------------
4002
d6f39728 4003 function Same_Rep return Boolean is
4004 begin
4005 if No (Component_Clause (CD1)) then
4006 return No (Component_Clause (CD2));
4007
4008 else
4009 return
4010 Present (Component_Clause (CD2))
4011 and then
4012 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
4013 and then
4014 Esize (CD1) = Esize (CD2);
4015 end if;
4016 end Same_Rep;
4017
4018 -- Start processing for Record_Case
4019
4020 begin
4021 if Has_Discriminants (T1) then
4022 CD1 := First_Discriminant (T1);
4023 CD2 := First_Discriminant (T2);
4024
9dfe12ae 4025 -- The number of discriminants may be different if the
4026 -- derived type has fewer (constrained by values). The
4027 -- invisible discriminants retain the representation of
4028 -- the original, so the discrepancy does not per se
4029 -- indicate a different representation.
4030
4031 while Present (CD1)
4032 and then Present (CD2)
4033 loop
d6f39728 4034 if not Same_Rep then
4035 return False;
4036 else
4037 Next_Discriminant (CD1);
4038 Next_Discriminant (CD2);
4039 end if;
4040 end loop;
4041 end if;
4042
4043 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
4044 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
4045
4046 while Present (CD1) loop
4047 if not Same_Rep then
4048 return False;
4049 else
4050 Next_Component (CD1);
4051 Next_Component (CD2);
4052 end if;
4053 end loop;
4054
4055 return True;
4056 end Record_Case;
4057 end if;
4058
4059 -- For enumeration types, we must check each literal to see if the
4060 -- representation is the same. Note that we do not permit enumeration
1a34e48c 4061 -- representation clauses for Character and Wide_Character, so these
d6f39728 4062 -- cases were already dealt with.
4063
4064 elsif Is_Enumeration_Type (T1) then
4065
4066 Enumeration_Case : declare
4067 L1, L2 : Entity_Id;
4068
4069 begin
4070 L1 := First_Literal (T1);
4071 L2 := First_Literal (T2);
4072
4073 while Present (L1) loop
4074 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
4075 return False;
4076 else
4077 Next_Literal (L1);
4078 Next_Literal (L2);
4079 end if;
4080 end loop;
4081
4082 return True;
4083
4084 end Enumeration_Case;
4085
4086 -- Any other types have the same representation for these purposes
4087
4088 else
4089 return True;
4090 end if;
d6f39728 4091 end Same_Representation;
4092
4093 --------------------
4094 -- Set_Enum_Esize --
4095 --------------------
4096
4097 procedure Set_Enum_Esize (T : Entity_Id) is
4098 Lo : Uint;
4099 Hi : Uint;
4100 Sz : Nat;
4101
4102 begin
4103 Init_Alignment (T);
4104
4105 -- Find the minimum standard size (8,16,32,64) that fits
4106
4107 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
4108 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
4109
4110 if Lo < 0 then
4111 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 4112 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 4113
4114 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
4115 Sz := 16;
4116
4117 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
4118 Sz := 32;
4119
4120 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
4121 Sz := 64;
4122 end if;
4123
4124 else
4125 if Hi < Uint_2**08 then
f15731c4 4126 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 4127
4128 elsif Hi < Uint_2**16 then
4129 Sz := 16;
4130
4131 elsif Hi < Uint_2**32 then
4132 Sz := 32;
4133
4134 else pragma Assert (Hi < Uint_2**63);
4135 Sz := 64;
4136 end if;
4137 end if;
4138
4139 -- That minimum is the proper size unless we have a foreign convention
4140 -- and the size required is 32 or less, in which case we bump the size
4141 -- up to 32. This is required for C and C++ and seems reasonable for
4142 -- all other foreign conventions.
4143
4144 if Has_Foreign_Convention (T)
4145 and then Esize (T) < Standard_Integer_Size
4146 then
4147 Init_Esize (T, Standard_Integer_Size);
d6f39728 4148 else
4149 Init_Esize (T, Sz);
4150 end if;
d6f39728 4151 end Set_Enum_Esize;
4152
83f8f0a6 4153 ------------------------------
4154 -- Validate_Address_Clauses --
4155 ------------------------------
4156
4157 procedure Validate_Address_Clauses is
4158 begin
4159 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
4160 declare
4161 ACCR : Address_Clause_Check_Record
4162 renames Address_Clause_Checks.Table (J);
4163
4164 X_Alignment : Uint;
4165 Y_Alignment : Uint;
4166
4167 X_Size : Uint;
4168 Y_Size : Uint;
4169
4170 begin
4171 -- Skip processing of this entry if warning already posted
4172
4173 if not Address_Warning_Posted (ACCR.N) then
4174
4175 -- Get alignments. Really we should always have the alignment
4176 -- of the objects properly back annotated, but right now the
4177 -- back end fails to back annotate for address clauses???
4178
4179 if Known_Alignment (ACCR.X) then
4180 X_Alignment := Alignment (ACCR.X);
4181 else
4182 X_Alignment := Alignment (Etype (ACCR.X));
4183 end if;
4184
4185 if Known_Alignment (ACCR.Y) then
4186 Y_Alignment := Alignment (ACCR.Y);
4187 else
4188 Y_Alignment := Alignment (Etype (ACCR.Y));
4189 end if;
4190
4191 -- Similarly obtain sizes
4192
4193 if Known_Esize (ACCR.X) then
4194 X_Size := Esize (ACCR.X);
4195 else
4196 X_Size := Esize (Etype (ACCR.X));
4197 end if;
4198
4199 if Known_Esize (ACCR.Y) then
4200 Y_Size := Esize (ACCR.Y);
4201 else
4202 Y_Size := Esize (Etype (ACCR.Y));
4203 end if;
4204
4205 -- Check for large object overlaying smaller one
4206
4207 if Y_Size > Uint_0
4208 and then X_Size > Uint_0
4209 and then X_Size > Y_Size
4210 then
4211 Error_Msg_N
4212 ("?size for overlaid object is too small", ACCR.N);
4213 Error_Msg_Uint_1 := X_Size;
4214 Error_Msg_NE
4215 ("\?size of & is ^", ACCR.N, ACCR.X);
4216 Error_Msg_Uint_1 := Y_Size;
4217 Error_Msg_NE
4218 ("\?size of & is ^", ACCR.N, ACCR.Y);
4219
4220 -- Check for inadequate alignment. Again the defensive check
4221 -- on Y_Alignment should not be needed, but because of the
4222 -- failure in back end annotation, we can have an alignment
4223 -- of 0 here???
4224
4225 -- Note: we do not check alignments if we gave a size
4226 -- warning, since it would likely be redundant.
4227
4228 elsif Y_Alignment /= Uint_0
4229 and then Y_Alignment < X_Alignment
4230 then
4231 Error_Msg_NE
4232 ("?specified address for& may be inconsistent "
4233 & "with alignment",
4234 ACCR.N, ACCR.X);
4235 Error_Msg_N
4236 ("\?program execution may be erroneous (RM 13.3(27))",
4237 ACCR.N);
4238 Error_Msg_Uint_1 := X_Alignment;
4239 Error_Msg_NE
4240 ("\?alignment of & is ^",
4241 ACCR.N, ACCR.X);
4242 Error_Msg_Uint_1 := Y_Alignment;
4243 Error_Msg_NE
4244 ("\?alignment of & is ^",
4245 ACCR.N, ACCR.Y);
4246 end if;
4247 end if;
4248 end;
4249 end loop;
4250 end Validate_Address_Clauses;
4251
d6f39728 4252 -----------------------------------
4253 -- Validate_Unchecked_Conversion --
4254 -----------------------------------
4255
4256 procedure Validate_Unchecked_Conversion
4257 (N : Node_Id;
4258 Act_Unit : Entity_Id)
4259 is
4260 Source : Entity_Id;
4261 Target : Entity_Id;
4262 Vnode : Node_Id;
4263
4264 begin
4265 -- Obtain source and target types. Note that we call Ancestor_Subtype
4266 -- here because the processing for generic instantiation always makes
4267 -- subtypes, and we want the original frozen actual types.
4268
4269 -- If we are dealing with private types, then do the check on their
4270 -- fully declared counterparts if the full declarations have been
4271 -- encountered (they don't have to be visible, but they must exist!)
4272
4273 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
4274
4275 if Is_Private_Type (Source)
4276 and then Present (Underlying_Type (Source))
4277 then
4278 Source := Underlying_Type (Source);
4279 end if;
4280
4281 Target := Ancestor_Subtype (Etype (Act_Unit));
4282
fdd294d1 4283 -- If either type is generic, the instantiation happens within a generic
4284 -- unit, and there is nothing to check. The proper check
d6f39728 4285 -- will happen when the enclosing generic is instantiated.
4286
4287 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
4288 return;
4289 end if;
4290
4291 if Is_Private_Type (Target)
4292 and then Present (Underlying_Type (Target))
4293 then
4294 Target := Underlying_Type (Target);
4295 end if;
4296
4297 -- Source may be unconstrained array, but not target
4298
4299 if Is_Array_Type (Target)
4300 and then not Is_Constrained (Target)
4301 then
4302 Error_Msg_N
4303 ("unchecked conversion to unconstrained array not allowed", N);
4304 return;
4305 end if;
4306
fbc67f84 4307 -- Warn if conversion between two different convention pointers
4308
4309 if Is_Access_Type (Target)
4310 and then Is_Access_Type (Source)
4311 and then Convention (Target) /= Convention (Source)
4312 and then Warn_On_Unchecked_Conversion
4313 then
fdd294d1 4314 -- Give warnings for subprogram pointers only on most targets. The
4315 -- exception is VMS, where data pointers can have different lengths
4316 -- depending on the pointer convention.
4317
4318 if Is_Access_Subprogram_Type (Target)
4319 or else Is_Access_Subprogram_Type (Source)
4320 or else OpenVMS_On_Target
4321 then
4322 Error_Msg_N
4323 ("?conversion between pointers with different conventions!", N);
4324 end if;
fbc67f84 4325 end if;
4326
3062c401 4327 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
4328 -- warning when compiling GNAT-related sources.
4329
4330 if Warn_On_Unchecked_Conversion
4331 and then not In_Predefined_Unit (N)
4332 and then RTU_Loaded (Ada_Calendar)
4333 and then
4334 (Chars (Source) = Name_Time
4335 or else
4336 Chars (Target) = Name_Time)
4337 then
4338 -- If Ada.Calendar is loaded and the name of one of the operands is
4339 -- Time, there is a good chance that this is Ada.Calendar.Time.
4340
4341 declare
4342 Calendar_Time : constant Entity_Id :=
4343 Full_View (RTE (RO_CA_Time));
4344 begin
4345 pragma Assert (Present (Calendar_Time));
4346
4347 if Source = Calendar_Time
4348 or else Target = Calendar_Time
4349 then
4350 Error_Msg_N
4351 ("?representation of 'Time values may change between " &
4352 "'G'N'A'T versions", N);
4353 end if;
4354 end;
4355 end if;
4356
fdd294d1 4357 -- Make entry in unchecked conversion table for later processing by
4358 -- Validate_Unchecked_Conversions, which will check sizes and alignments
4359 -- (using values set by the back-end where possible). This is only done
4360 -- if the appropriate warning is active.
d6f39728 4361
9dfe12ae 4362 if Warn_On_Unchecked_Conversion then
4363 Unchecked_Conversions.Append
4364 (New_Val => UC_Entry'
4365 (Enode => N,
4366 Source => Source,
4367 Target => Target));
4368
4369 -- If both sizes are known statically now, then back end annotation
4370 -- is not required to do a proper check but if either size is not
4371 -- known statically, then we need the annotation.
4372
4373 if Known_Static_RM_Size (Source)
4374 and then Known_Static_RM_Size (Target)
4375 then
4376 null;
4377 else
4378 Back_Annotate_Rep_Info := True;
4379 end if;
4380 end if;
d6f39728 4381
fdd294d1 4382 -- If unchecked conversion to access type, and access type is declared
4383 -- in the same unit as the unchecked conversion, then set the
4384 -- No_Strict_Aliasing flag (no strict aliasing is implicit in this
4385 -- situation).
28ed91d4 4386
4387 if Is_Access_Type (Target) and then
4388 In_Same_Source_Unit (Target, N)
4389 then
4390 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
4391 end if;
3d875462 4392
4393 -- Generate N_Validate_Unchecked_Conversion node for back end in
4394 -- case the back end needs to perform special validation checks.
4395
fdd294d1 4396 -- Shouldn't this be in Exp_Ch13, since the check only gets done
3d875462 4397 -- if we have full expansion and the back end is called ???
4398
4399 Vnode :=
4400 Make_Validate_Unchecked_Conversion (Sloc (N));
4401 Set_Source_Type (Vnode, Source);
4402 Set_Target_Type (Vnode, Target);
4403
fdd294d1 4404 -- If the unchecked conversion node is in a list, just insert before it.
4405 -- If not we have some strange case, not worth bothering about.
3d875462 4406
4407 if Is_List_Member (N) then
d6f39728 4408 Insert_After (N, Vnode);
4409 end if;
4410 end Validate_Unchecked_Conversion;
4411
4412 ------------------------------------
4413 -- Validate_Unchecked_Conversions --
4414 ------------------------------------
4415
4416 procedure Validate_Unchecked_Conversions is
4417 begin
4418 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
4419 declare
4420 T : UC_Entry renames Unchecked_Conversions.Table (N);
4421
4422 Enode : constant Node_Id := T.Enode;
4423 Source : constant Entity_Id := T.Source;
4424 Target : constant Entity_Id := T.Target;
4425
4426 Source_Siz : Uint;
4427 Target_Siz : Uint;
4428
4429 begin
fdd294d1 4430 -- This validation check, which warns if we have unequal sizes for
4431 -- unchecked conversion, and thus potentially implementation
d6f39728 4432 -- dependent semantics, is one of the few occasions on which we
fdd294d1 4433 -- use the official RM size instead of Esize. See description in
4434 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 4435
f15731c4 4436 if Serious_Errors_Detected = 0
d6f39728 4437 and then Known_Static_RM_Size (Source)
4438 and then Known_Static_RM_Size (Target)
4439 then
4440 Source_Siz := RM_Size (Source);
4441 Target_Siz := RM_Size (Target);
4442
4443 if Source_Siz /= Target_Siz then
d6f39728 4444 Error_Msg_N
fbc67f84 4445 ("?types for unchecked conversion have different sizes!",
d6f39728 4446 Enode);
4447
4448 if All_Errors_Mode then
4449 Error_Msg_Name_1 := Chars (Source);
4450 Error_Msg_Uint_1 := Source_Siz;
4451 Error_Msg_Name_2 := Chars (Target);
4452 Error_Msg_Uint_2 := Target_Siz;
4453 Error_Msg_N
4454 ("\size of % is ^, size of % is ^?", Enode);
4455
4456 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
4457
4458 if Is_Discrete_Type (Source)
4459 and then Is_Discrete_Type (Target)
4460 then
4461 if Source_Siz > Target_Siz then
4462 Error_Msg_N
fbc67f84 4463 ("\?^ high order bits of source will be ignored!",
d6f39728 4464 Enode);
4465
9dfe12ae 4466 elsif Is_Unsigned_Type (Source) then
d6f39728 4467 Error_Msg_N
fbc67f84 4468 ("\?source will be extended with ^ high order " &
4469 "zero bits?!", Enode);
d6f39728 4470
4471 else
4472 Error_Msg_N
fbc67f84 4473 ("\?source will be extended with ^ high order " &
4474 "sign bits!",
d6f39728 4475 Enode);
4476 end if;
4477
4478 elsif Source_Siz < Target_Siz then
4479 if Is_Discrete_Type (Target) then
4480 if Bytes_Big_Endian then
4481 Error_Msg_N
fbc67f84 4482 ("\?target value will include ^ undefined " &
4483 "low order bits!",
d6f39728 4484 Enode);
4485 else
4486 Error_Msg_N
fbc67f84 4487 ("\?target value will include ^ undefined " &
4488 "high order bits!",
d6f39728 4489 Enode);
4490 end if;
4491
4492 else
4493 Error_Msg_N
fbc67f84 4494 ("\?^ trailing bits of target value will be " &
4495 "undefined!", Enode);
d6f39728 4496 end if;
4497
4498 else pragma Assert (Source_Siz > Target_Siz);
4499 Error_Msg_N
fbc67f84 4500 ("\?^ trailing bits of source will be ignored!",
d6f39728 4501 Enode);
4502 end if;
4503 end if;
d6f39728 4504 end if;
4505 end if;
4506
4507 -- If both types are access types, we need to check the alignment.
4508 -- If the alignment of both is specified, we can do it here.
4509
f15731c4 4510 if Serious_Errors_Detected = 0
d6f39728 4511 and then Ekind (Source) in Access_Kind
4512 and then Ekind (Target) in Access_Kind
4513 and then Target_Strict_Alignment
4514 and then Present (Designated_Type (Source))
4515 and then Present (Designated_Type (Target))
4516 then
4517 declare
4518 D_Source : constant Entity_Id := Designated_Type (Source);
4519 D_Target : constant Entity_Id := Designated_Type (Target);
4520
4521 begin
4522 if Known_Alignment (D_Source)
4523 and then Known_Alignment (D_Target)
4524 then
4525 declare
4526 Source_Align : constant Uint := Alignment (D_Source);
4527 Target_Align : constant Uint := Alignment (D_Target);
4528
4529 begin
4530 if Source_Align < Target_Align
4531 and then not Is_Tagged_Type (D_Source)
4532 then
d6f39728 4533 Error_Msg_Uint_1 := Target_Align;
4534 Error_Msg_Uint_2 := Source_Align;
4535 Error_Msg_Node_2 := D_Source;
4536 Error_Msg_NE
fbc67f84 4537 ("?alignment of & (^) is stricter than " &
4538 "alignment of & (^)!", Enode, D_Target);
d6f39728 4539
4540 if All_Errors_Mode then
4541 Error_Msg_N
fbc67f84 4542 ("\?resulting access value may have invalid " &
4543 "alignment!", Enode);
d6f39728 4544 end if;
d6f39728 4545 end if;
4546 end;
4547 end if;
4548 end;
4549 end if;
4550 end;
4551 end loop;
4552 end Validate_Unchecked_Conversions;
4553
d6f39728 4554end Sem_Ch13;