]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
[Ada] Missing error on generic type with representation clause
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
996ae0b0 1------------------------------------------------------------------------------
82c80734 2-- --
996ae0b0
RK
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
1d005acc 9-- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
0f1a6a0b 26with Aspects; use Aspects;
996ae0b0 27with Atree; use Atree;
d087cd96 28with Checks; use Checks;
8bfbd380 29with Debug; use Debug;
996ae0b0 30with Einfo; use Einfo;
cefce34c 31with Elists; use Elists;
996ae0b0 32with Errout; use Errout;
cefce34c 33with Exp_Disp; use Exp_Disp;
996ae0b0
RK
34with Exp_Tss; use Exp_Tss;
35with Exp_Util; use Exp_Util;
8b034336 36with Freeze; use Freeze;
241ebe89 37with Ghost; use Ghost;
996ae0b0 38with Lib; use Lib;
2642f998 39with Lib.Xref; use Lib.Xref;
8f7770f9 40with Namet; use Namet;
996ae0b0
RK
41with Nlists; use Nlists;
42with Nmake; use Nmake;
43with Opt; use Opt;
62807842 44with Par_SCO; use Par_SCO;
5f3ab6fb
AC
45with Restrict; use Restrict;
46with Rident; use Rident;
996ae0b0
RK
47with Rtsfind; use Rtsfind;
48with Sem; use Sem;
a4100e55 49with Sem_Aux; use Sem_Aux;
c76bf0bf 50with Sem_Case; use Sem_Case;
3ff38f33 51with Sem_Ch3; use Sem_Ch3;
f2acf80c 52with Sem_Ch6; use Sem_Ch6;
57f6e00c 53with Sem_Ch7; use Sem_Ch7;
996ae0b0 54with Sem_Ch8; use Sem_Ch8;
dec6faf1 55with Sem_Dim; use Sem_Dim;
70805b88 56with Sem_Disp; use Sem_Disp;
996ae0b0 57with Sem_Eval; use Sem_Eval;
aab45d22 58with Sem_Prag; use Sem_Prag;
996ae0b0
RK
59with Sem_Res; use Sem_Res;
60with Sem_Type; use Sem_Type;
61with Sem_Util; use Sem_Util;
affbee12 62with Sem_Warn; use Sem_Warn;
ca0eb951 63with Sinfo; use Sinfo;
c775c209 64with Sinput; use Sinput;
fbf5a39b 65with Snames; use Snames;
996ae0b0 66with Stand; use Stand;
9f4fd324 67with Targparm; use Targparm;
996ae0b0
RK
68with Ttypes; use Ttypes;
69with Tbuild; use Tbuild;
70with Urealp; use Urealp;
499769ec 71with Warnsw; use Warnsw;
996ae0b0 72
d4731b80 73with GNAT.Heap_Sort_G;
996ae0b0
RK
74
75package body Sem_Ch13 is
76
77 SSU : constant Pos := System_Storage_Unit;
78 -- Convenient short hand for commonly used constant
79
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
83
52b70b1b 84 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
0f83b044 85 -- Helper routine providing the original (pre-AI95-0133) behavior for
52b70b1b
TQ
86 -- Adjust_Record_For_Reverse_Bit_Order.
87
76af4137
AC
88 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
89 -- This routine is called after setting one of the sizes of type entity
90 -- Typ to Size. The purpose is to deal with the situation of a derived
91 -- type whose inherited alignment is no longer appropriate for the new
92 -- size value. In this case, we reset the Alignment to unknown.
996ae0b0 93
baa571ab 94 procedure Build_Discrete_Static_Predicate
1e194575
AC
95 (Typ : Entity_Id;
96 Expr : Node_Id;
97 Nam : Name_Id);
f6b5dc8e
AC
98 -- Given a predicated type Typ, where Typ is a discrete static subtype,
99 -- whose predicate expression is Expr, tests if Expr is a static predicate,
100 -- and if so, builds the predicate range list. Nam is the name of the one
101 -- argument to the predicate function. Occurrences of the type name in the
308e6f3a 102 -- predicate expression have been replaced by identifier references to this
f6b5dc8e
AC
103 -- name, which is unique, so any identifier with Chars matching Nam must be
104 -- a reference to the type. If the predicate is non-static, this procedure
105 -- returns doing nothing. If the predicate is static, then the predicate
60f908dd
RD
106 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
107 -- rewritten as a canonicalized membership operation.
1e194575 108
2e885a6f
AC
109 function Build_Export_Import_Pragma
110 (Asp : Node_Id;
111 Id : Entity_Id) return Node_Id;
112 -- Create the corresponding pragma for aspect Export or Import denoted by
113 -- Asp. Id is the related entity subject to the aspect. Return Empty when
114 -- the expression of aspect Asp evaluates to False or is erroneous.
115
6905a049
AC
116 function Build_Predicate_Function_Declaration
117 (Typ : Entity_Id) return Node_Id;
118 -- Build the declaration for a predicate function. The declaration is built
119 -- at the end of the declarative part containing the type definition, which
120 -- may be before the freeze point of the type. The predicate expression is
812e6118 121 -- preanalyzed at this point, to catch visibility errors.
6905a049 122
baa571ab
AC
123 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
124 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
125 -- then either there are pragma Predicate entries on the rep chain for the
126 -- type (note that Predicate aspects are converted to pragma Predicate), or
127 -- there are inherited aspects from a parent type, or ancestor subtypes.
6905a049
AC
128 -- This procedure builds body for the Predicate function that tests these
129 -- predicates. N is the freeze node for the type. The spec of the function
130 -- is inserted before the freeze node, and the body of the function is
131 -- inserted after the freeze node. If the predicate expression has a least
132 -- one Raise_Expression, then this procedure also builds the M version of
133 -- the predicate function for use in membership tests.
baa571ab 134
113a62d9
RD
135 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
136 -- Called if both Storage_Pool and Storage_Size attribute definition
137 -- clauses (SP and SS) are present for entity Ent. Issue error message.
138
5a8a6763
RD
139 procedure Freeze_Entity_Checks (N : Node_Id);
140 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
141 -- to generate appropriate semantic checks that are delayed until this
142 -- point (they had to be delayed this long for cases of delayed aspects,
143 -- e.g. analysis of statically predicated subtypes in choices, for which
e1e307d9 144 -- we have to be sure the subtypes in question are frozen before checking).
5a8a6763 145
996ae0b0
RK
146 function Get_Alignment_Value (Expr : Node_Id) return Uint;
147 -- Given the expression for an alignment value, returns the corresponding
148 -- Uint value. If the value is inappropriate, then error messages are
149 -- posted as required, and a value of No_Uint is returned.
150
151 function Is_Operational_Item (N : Node_Id) return Boolean;
c775c209
AC
152 -- A specification for a stream attribute is allowed before the full type
153 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
154 -- that do not specify a representation characteristic are operational
155 -- attributes.
996ae0b0 156
ee4eee0a
AC
157 function Is_Predicate_Static
158 (Expr : Node_Id;
159 Nam : Name_Id) return Boolean;
160 -- Given predicate expression Expr, tests if Expr is predicate-static in
161 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
162 -- name in the predicate expression have been replaced by references to
163 -- an identifier whose Chars field is Nam. This name is unique, so any
164 -- identifier with Chars matching Nam must be a reference to the type.
165 -- Returns True if the expression is predicate-static and False otherwise,
166 -- but is not in the business of setting flags or issuing error messages.
167 --
168 -- Only scalar types can have static predicates, so False is always
169 -- returned for non-scalar types.
170 --
171 -- Note: the RM seems to suggest that string types can also have static
172 -- predicates. But that really makes lttle sense as very few useful
173 -- predicates can be constructed for strings. Remember that:
174 --
175 -- "ABC" < "DEF"
176 --
177 -- is not a static expression. So even though the clearly faulty RM wording
178 -- allows the following:
179 --
180 -- subtype S is String with Static_Predicate => S < "DEF"
181 --
182 -- We can't allow this, otherwise we have predicate-static applying to a
183 -- larger class than static expressions, which was never intended.
184
affbee12 185 procedure New_Stream_Subprogram
996ae0b0
RK
186 (N : Node_Id;
187 Ent : Entity_Id;
188 Subp : Entity_Id;
fbf5a39b 189 Nam : TSS_Name_Type);
affbee12
RD
190 -- Create a subprogram renaming of a given stream attribute to the
191 -- designated subprogram and then in the tagged case, provide this as a
1fb63e89 192 -- primitive operation, or in the untagged case make an appropriate TSS
affbee12 193 -- entry. This is more properly an expansion activity than just semantics,
1fb63e89
RD
194 -- but the presence of user-defined stream functions for limited types
195 -- is a legality check, which is why this takes place here rather than in
affbee12
RD
196 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
197 -- function to be generated.
fbf5a39b 198 --
07fc65c4
GB
199 -- To avoid elaboration anomalies with freeze nodes, for untagged types
200 -- we generate both a subprogram declaration and a subprogram renaming
201 -- declaration, so that the attribute specification is handled as a
202 -- renaming_as_body. For tagged types, the specification is one of the
203 -- primitive specs.
204
5067f3a0
PMR
205 procedure Register_Address_Clause_Check
206 (N : Node_Id;
207 X : Entity_Id;
208 A : Uint;
209 Y : Entity_Id;
210 Off : Boolean);
211 -- Register a check for the address clause N. The rest of the parameters
212 -- are in keeping with the components of Address_Clause_Check_Record below.
213
b4f149c2
AC
214 procedure Resolve_Iterable_Operation
215 (N : Node_Id;
216 Cursor : Entity_Id;
217 Typ : Entity_Id;
218 Nam : Name_Id);
219 -- If the name of a primitive operation for an Iterable aspect is
220 -- overloaded, resolve according to required signature.
221
a3f2babd
AC
222 procedure Set_Biased
223 (E : Entity_Id;
224 N : Node_Id;
225 Msg : String;
226 Biased : Boolean := True);
227 -- If Biased is True, sets Has_Biased_Representation flag for E, and
228 -- outputs a warning message at node N if Warn_On_Biased_Representation is
229 -- is True. This warning inserts the string Msg to describe the construct
230 -- causing biasing.
231
5f531fef
ES
232 -----------------------------------------------------------
233 -- Visibility of Discriminants in Aspect Specifications --
234 -----------------------------------------------------------
235
236 -- The discriminants of a type are visible when analyzing the aspect
237 -- specifications of a type declaration or protected type declaration,
238 -- but not when analyzing those of a subtype declaration. The following
239 -- routines enforce this distinction.
240
241 procedure Push_Type (E : Entity_Id);
242 -- Push scope E and make visible the discriminants of type entity E if E
243 -- has discriminants and is not a subtype.
244
245 procedure Pop_Type (E : Entity_Id);
246 -- Remove visibility to the discriminants of type entity E and pop the
247 -- scope stack if E has discriminants and is not a subtype.
248
996ae0b0
RK
249 ----------------------------------------------
250 -- Table for Validate_Unchecked_Conversions --
251 ----------------------------------------------
252
253 -- The following table collects unchecked conversions for validation.
a1092b48
AC
254 -- Entries are made by Validate_Unchecked_Conversion and then the call
255 -- to Validate_Unchecked_Conversions does the actual error checking and
256 -- posting of warnings. The reason for this delayed processing is to take
257 -- advantage of back-annotations of size and alignment values performed by
258 -- the back end.
996ae0b0 259
a1092b48
AC
260 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
261 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
262 -- already have modified all Sloc values if the -gnatD option is set.
f66d46ec 263
996ae0b0 264 type UC_Entry is record
4c51ff88
AC
265 Eloc : Source_Ptr; -- node used for posting warnings
266 Source : Entity_Id; -- source type for unchecked conversion
267 Target : Entity_Id; -- target type for unchecked conversion
268 Act_Unit : Entity_Id; -- actual function instantiated
996ae0b0
RK
269 end record;
270
271 package Unchecked_Conversions is new Table.Table (
272 Table_Component_Type => UC_Entry,
273 Table_Index_Type => Int,
274 Table_Low_Bound => 1,
275 Table_Initial => 50,
276 Table_Increment => 200,
277 Table_Name => "Unchecked_Conversions");
278
2642f998
RD
279 ----------------------------------------
280 -- Table for Validate_Address_Clauses --
281 ----------------------------------------
282
283 -- If an address clause has the form
284
285 -- for X'Address use Expr
286
f26a3587
AC
287 -- where Expr has a value known at compile time or is of the form Y'Address
288 -- or recursively is a reference to a constant initialized with either of
289 -- these forms, and the value of Expr is not a multiple of X's alignment,
290 -- or if Y has a smaller alignment than X, then that merits a warning about
a1092b48
AC
291 -- possible bad alignment. The following table collects address clauses of
292 -- this kind. We put these in a table so that they can be checked after the
293 -- back end has completed annotation of the alignments of objects, since we
294 -- can catch more cases that way.
2642f998
RD
295
296 type Address_Clause_Check_Record is record
297 N : Node_Id;
298 -- The address clause
299
300 X : Entity_Id;
f26a3587
AC
301 -- The entity of the object subject to the address clause
302
303 A : Uint;
304 -- The value of the address in the first case
2642f998
RD
305
306 Y : Entity_Id;
f26a3587 307 -- The entity of the object being overlaid in the second case
f4cd2542
EB
308
309 Off : Boolean;
f26a3587 310 -- Whether the address is offset within Y in the second case
5067f3a0
PMR
311
312 Alignment_Checks_Suppressed : Boolean;
313 -- Whether alignment checks are suppressed by an active scope suppress
314 -- setting. We need to save the value in order to be able to reuse it
315 -- after the back end has been run.
2642f998
RD
316 end record;
317
318 package Address_Clause_Checks is new Table.Table (
319 Table_Component_Type => Address_Clause_Check_Record,
320 Table_Index_Type => Int,
321 Table_Low_Bound => 1,
322 Table_Initial => 20,
323 Table_Increment => 200,
324 Table_Name => "Address_Clause_Checks");
325
5067f3a0
PMR
326 function Alignment_Checks_Suppressed
327 (ACCR : Address_Clause_Check_Record) return Boolean;
328 -- Return whether the alignment check generated for the address clause
329 -- is suppressed.
330
331 ---------------------------------
332 -- Alignment_Checks_Suppressed --
333 ---------------------------------
334
335 function Alignment_Checks_Suppressed
336 (ACCR : Address_Clause_Check_Record) return Boolean
337 is
338 begin
339 if Checks_May_Be_Suppressed (ACCR.X) then
340 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
341 else
342 return ACCR.Alignment_Checks_Suppressed;
343 end if;
344 end Alignment_Checks_Suppressed;
345
a9a5b8ac
RD
346 -----------------------------------------
347 -- Adjust_Record_For_Reverse_Bit_Order --
348 -----------------------------------------
349
350 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
52b70b1b
TQ
351 Max_Machine_Scalar_Size : constant Uint :=
352 UI_From_Int
353 (Standard_Long_Long_Integer_Size);
354 -- We use this as the maximum machine scalar size
a9a5b8ac 355
d43584ca
AC
356 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
357
358 CC : Node_Id;
359 Comp : Node_Id;
52b70b1b 360 Num_CC : Natural;
498d1b80 361
52b70b1b 362 begin
0f83b044 363 -- Processing here used to depend on Ada version: the behavior was
52b70b1b 364 -- changed by AI95-0133. However this AI is a Binding interpretation,
0f83b044 365 -- so we now implement it even in Ada 95 mode. The original behavior
52b70b1b
TQ
366 -- from unamended Ada 95 is still available for compatibility under
367 -- debugging switch -gnatd.
368
369 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
370 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
371 return;
372 end if;
373
374 -- For Ada 2005, we do machine scalar processing, as fully described In
375 -- AI-133. This involves gathering all components which start at the
376 -- same byte offset and processing them together. Same approach is still
377 -- valid in later versions including Ada 2012.
498d1b80 378
d43584ca
AC
379 -- This first loop through components does two things. First it deals
380 -- with the case of components with component clauses whose length is
381 -- greater than the maximum machine scalar size (either accepting them
382 -- or rejecting as needed). Second, it counts the number of components
383 -- with component clauses whose length does not exceed this maximum for
384 -- later processing.
498d1b80 385
52b70b1b
TQ
386 Num_CC := 0;
387 Comp := First_Component_Or_Discriminant (R);
388 while Present (Comp) loop
389 CC := Component_Clause (Comp);
498d1b80 390
52b70b1b
TQ
391 if Present (CC) then
392 declare
393 Fbit : constant Uint := Static_Integer (First_Bit (CC));
394 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
498d1b80 395
52b70b1b
TQ
396 begin
397 -- Case of component with last bit >= max machine scalar
498d1b80 398
52b70b1b 399 if Lbit >= Max_Machine_Scalar_Size then
a9a5b8ac 400
d43584ca
AC
401 -- This is allowed only if first bit is zero, and last bit
402 -- + 1 is a multiple of storage unit size.
a9a5b8ac 403
52b70b1b 404 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
a9a5b8ac 405
52b70b1b 406 -- This is the case to give a warning if enabled
a9a5b8ac 407
52b70b1b 408 if Warn_On_Reverse_Bit_Order then
498d1b80 409 Error_Msg_N
ee10c0ec 410 ("info: multi-byte field specified with "
52b70b1b 411 & "non-standard Bit_Order?V?", CC);
5e5dc75a 412
498d1b80 413 if Bytes_Big_Endian then
5e5dc75a 414 Error_Msg_N
ee10c0ec 415 ("\bytes are not reversed "
52b70b1b 416 & "(component is big-endian)?V?", CC);
5e5dc75a
RD
417 else
418 Error_Msg_N
ee10c0ec 419 ("\bytes are not reversed "
52b70b1b 420 & "(component is little-endian)?V?", CC);
5e5dc75a 421 end if;
52b70b1b 422 end if;
a9a5b8ac 423
52b70b1b
TQ
424 -- Give error message for RM 13.5.1(10) violation
425
426 else
427 Error_Msg_FE
428 ("machine scalar rules not followed for&",
429 First_Bit (CC), Comp);
430
431 Error_Msg_Uint_1 := Lbit + 1;
432 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
433 Error_Msg_F
d43584ca
AC
434 ("\last bit + 1 (^) exceeds maximum machine scalar "
435 & "size (^)", First_Bit (CC));
52b70b1b
TQ
436
437 if (Lbit + 1) mod SSU /= 0 then
438 Error_Msg_Uint_1 := SSU;
439 Error_Msg_F
440 ("\and is not a multiple of Storage_Unit (^) "
d43584ca 441 & "(RM 13.5.1(10))", First_Bit (CC));
a9a5b8ac 442
8a95f4e8 443 else
52b70b1b
TQ
444 Error_Msg_Uint_1 := Fbit;
445 Error_Msg_F
446 ("\and first bit (^) is non-zero "
d43584ca 447 & "(RM 13.4.1(10))", First_Bit (CC));
498d1b80 448 end if;
52b70b1b 449 end if;
a9a5b8ac 450
d43584ca
AC
451 -- OK case of machine scalar related component clause. For now,
452 -- just count them.
a9a5b8ac 453
52b70b1b
TQ
454 else
455 Num_CC := Num_CC + 1;
456 end if;
457 end;
458 end if;
a9a5b8ac 459
52b70b1b
TQ
460 Next_Component_Or_Discriminant (Comp);
461 end loop;
a9a5b8ac 462
d43584ca
AC
463 -- We need to sort the component clauses on the basis of the Position
464 -- values in the clause, so we can group clauses with the same Position
465 -- together to determine the relevant machine scalar size.
d4731b80 466
52b70b1b
TQ
467 Sort_CC : declare
468 Comps : array (0 .. Num_CC) of Entity_Id;
d43584ca
AC
469 -- Array to collect component and discriminant entities. The data
470 -- starts at index 1, the 0'th entry is for the sort routine.
a9a5b8ac 471
52b70b1b
TQ
472 function CP_Lt (Op1, Op2 : Natural) return Boolean;
473 -- Compare routine for Sort
a9a5b8ac 474
52b70b1b
TQ
475 procedure CP_Move (From : Natural; To : Natural);
476 -- Move routine for Sort
a9a5b8ac 477
52b70b1b 478 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
a9a5b8ac 479
d43584ca
AC
480 MaxL : Uint;
481 -- Maximum last bit value of any component in this set
482
483 MSS : Uint;
484 -- Corresponding machine scalar size
485
52b70b1b
TQ
486 Start : Natural;
487 Stop : Natural;
488 -- Start and stop positions in the component list of the set of
489 -- components with the same starting position (that constitute
490 -- components in a single machine scalar).
a9a5b8ac 491
52b70b1b
TQ
492 -----------
493 -- CP_Lt --
494 -----------
498d1b80 495
52b70b1b
TQ
496 function CP_Lt (Op1, Op2 : Natural) return Boolean is
497 begin
d43584ca
AC
498 return
499 Position (Component_Clause (Comps (Op1))) <
52b70b1b
TQ
500 Position (Component_Clause (Comps (Op2)));
501 end CP_Lt;
a9a5b8ac 502
52b70b1b
TQ
503 -------------
504 -- CP_Move --
505 -------------
a9a5b8ac 506
52b70b1b 507 procedure CP_Move (From : Natural; To : Natural) is
498d1b80 508 begin
52b70b1b
TQ
509 Comps (To) := Comps (From);
510 end CP_Move;
511
512 -- Start of processing for Sort_CC
513
514 begin
515 -- Collect the machine scalar relevant component clauses
8a95f4e8 516
52b70b1b
TQ
517 Num_CC := 0;
518 Comp := First_Component_Or_Discriminant (R);
519 while Present (Comp) loop
520 declare
521 CC : constant Node_Id := Component_Clause (Comp);
8a95f4e8 522
52b70b1b 523 begin
d43584ca
AC
524 -- Collect only component clauses whose last bit is less than
525 -- machine scalar size. Any component clause whose last bit
526 -- exceeds this value does not take part in machine scalar
527 -- layout considerations. The test for Error_Posted makes sure
528 -- we exclude component clauses for which we already posted an
529 -- error.
52b70b1b
TQ
530
531 if Present (CC)
532 and then not Error_Posted (Last_Bit (CC))
533 and then Static_Integer (Last_Bit (CC)) <
534 Max_Machine_Scalar_Size
535 then
536 Num_CC := Num_CC + 1;
537 Comps (Num_CC) := Comp;
538 end if;
539 end;
8a95f4e8 540
52b70b1b
TQ
541 Next_Component_Or_Discriminant (Comp);
542 end loop;
8a95f4e8 543
52b70b1b
TQ
544 -- Sort by ascending position number
545
546 Sorting.Sort (Num_CC);
547
d43584ca
AC
548 -- We now have all the components whose size does not exceed the max
549 -- machine scalar value, sorted by starting position. In this loop we
550 -- gather groups of clauses starting at the same position, to process
551 -- them in accordance with AI-133.
52b70b1b
TQ
552
553 Stop := 0;
554 while Stop < Num_CC loop
555 Start := Stop + 1;
556 Stop := Start;
557 MaxL :=
558 Static_Integer
559 (Last_Bit (Component_Clause (Comps (Start))));
560 while Stop < Num_CC loop
561 if Static_Integer
562 (Position (Component_Clause (Comps (Stop + 1)))) =
563 Static_Integer
564 (Position (Component_Clause (Comps (Stop))))
565 then
566 Stop := Stop + 1;
567 MaxL :=
568 UI_Max
569 (MaxL,
570 Static_Integer
571 (Last_Bit
572 (Component_Clause (Comps (Stop)))));
573 else
574 exit;
575 end if;
576 end loop;
8a95f4e8 577
d43584ca
AC
578 -- Now we have a group of component clauses from Start to Stop
579 -- whose positions are identical, and MaxL is the maximum last
580 -- bit value of any of these components.
52b70b1b 581
d43584ca
AC
582 -- We need to determine the corresponding machine scalar size.
583 -- This loop assumes that machine scalar sizes are even, and that
584 -- each possible machine scalar has twice as many bits as the next
585 -- smaller one.
52b70b1b
TQ
586
587 MSS := Max_Machine_Scalar_Size;
588 while MSS mod 2 = 0
589 and then (MSS / 2) >= SSU
590 and then (MSS / 2) > MaxL
591 loop
592 MSS := MSS / 2;
593 end loop;
8a95f4e8 594
d43584ca
AC
595 -- Here is where we fix up the Component_Bit_Offset value to
596 -- account for the reverse bit order. Some examples of what needs
597 -- to be done for the case of a machine scalar size of 8 are:
8a95f4e8 598
52b70b1b
TQ
599 -- First_Bit .. Last_Bit Component_Bit_Offset
600 -- old new old new
8a95f4e8 601
52b70b1b
TQ
602 -- 0 .. 0 7 .. 7 0 7
603 -- 0 .. 1 6 .. 7 0 6
604 -- 0 .. 2 5 .. 7 0 5
605 -- 0 .. 7 0 .. 7 0 4
038140ed 606
52b70b1b
TQ
607 -- 1 .. 1 6 .. 6 1 6
608 -- 1 .. 4 3 .. 6 1 3
609 -- 4 .. 7 0 .. 3 4 0
8a95f4e8 610
d43584ca
AC
611 -- The rule is that the first bit is obtained by subtracting the
612 -- old ending bit from machine scalar size - 1.
8a95f4e8 613
52b70b1b
TQ
614 for C in Start .. Stop loop
615 declare
616 Comp : constant Entity_Id := Comps (C);
617 CC : constant Node_Id := Component_Clause (Comp);
a9a5b8ac 618
52b70b1b
TQ
619 LB : constant Uint := Static_Integer (Last_Bit (CC));
620 NFB : constant Uint := MSS - Uint_1 - LB;
621 NLB : constant Uint := NFB + Esize (Comp) - 1;
622 Pos : constant Uint := Static_Integer (Position (CC));
a9a5b8ac 623
52b70b1b
TQ
624 begin
625 if Warn_On_Reverse_Bit_Order then
626 Error_Msg_Uint_1 := MSS;
627 Error_Msg_N
d43584ca
AC
628 ("info: reverse bit order in machine scalar of "
629 & "length^?V?", First_Bit (CC));
52b70b1b
TQ
630 Error_Msg_Uint_1 := NFB;
631 Error_Msg_Uint_2 := NLB;
632
633 if Bytes_Big_Endian then
634 Error_Msg_NE
d43584ca
AC
635 ("\big-endian range for component & is ^ .. ^?V?",
636 First_Bit (CC), Comp);
498d1b80 637 else
52b70b1b 638 Error_Msg_NE
d43584ca
AC
639 ("\little-endian range for component & is ^ .. ^?V?",
640 First_Bit (CC), Comp);
498d1b80 641 end if;
52b70b1b 642 end if;
a9a5b8ac 643
52b70b1b 644 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
74a78a4f 645 Set_Normalized_Position (Comp, Pos + NFB / SSU);
52b70b1b
TQ
646 Set_Normalized_First_Bit (Comp, NFB mod SSU);
647 end;
498d1b80 648 end loop;
52b70b1b
TQ
649 end loop;
650 end Sort_CC;
651 end Adjust_Record_For_Reverse_Bit_Order;
a9a5b8ac 652
52b70b1b
TQ
653 ------------------------------------------------
654 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
655 ------------------------------------------------
a9a5b8ac 656
52b70b1b 657 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
52b70b1b 658 CC : Node_Id;
d43584ca 659 Comp : Node_Id;
a9a5b8ac 660
52b70b1b
TQ
661 begin
662 -- For Ada 95, we just renumber bits within a storage unit. We do the
663 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
664 -- Ada 83, and are free to add this extension.
a9a5b8ac 665
52b70b1b
TQ
666 Comp := First_Component_Or_Discriminant (R);
667 while Present (Comp) loop
668 CC := Component_Clause (Comp);
a9a5b8ac 669
52b70b1b
TQ
670 -- If component clause is present, then deal with the non-default
671 -- bit order case for Ada 95 mode.
a9a5b8ac 672
52b70b1b
TQ
673 -- We only do this processing for the base type, and in fact that
674 -- is important, since otherwise if there are record subtypes, we
675 -- could reverse the bits once for each subtype, which is wrong.
a9a5b8ac 676
52b70b1b
TQ
677 if Present (CC) and then Ekind (R) = E_Record_Type then
678 declare
679 CFB : constant Uint := Component_Bit_Offset (Comp);
680 CSZ : constant Uint := Esize (Comp);
681 CLC : constant Node_Id := Component_Clause (Comp);
682 Pos : constant Node_Id := Position (CLC);
683 FB : constant Node_Id := First_Bit (CLC);
a9a5b8ac 684
52b70b1b
TQ
685 Storage_Unit_Offset : constant Uint :=
686 CFB / System_Storage_Unit;
8a95f4e8 687
52b70b1b
TQ
688 Start_Bit : constant Uint :=
689 CFB mod System_Storage_Unit;
8a95f4e8 690
52b70b1b
TQ
691 begin
692 -- Cases where field goes over storage unit boundary
8a95f4e8 693
52b70b1b 694 if Start_Bit + CSZ > System_Storage_Unit then
8a95f4e8 695
52b70b1b 696 -- Allow multi-byte field but generate warning
8a95f4e8 697
52b70b1b
TQ
698 if Start_Bit mod System_Storage_Unit = 0
699 and then CSZ mod System_Storage_Unit = 0
700 then
701 Error_Msg_N
d43584ca
AC
702 ("info: multi-byte field specified with non-standard "
703 & "Bit_Order?V?", CLC);
a9a5b8ac 704
52b70b1b
TQ
705 if Bytes_Big_Endian then
706 Error_Msg_N
707 ("\bytes are not reversed "
708 & "(component is big-endian)?V?", CLC);
498d1b80 709 else
52b70b1b
TQ
710 Error_Msg_N
711 ("\bytes are not reversed "
712 & "(component is little-endian)?V?", CLC);
498d1b80 713 end if;
8a95f4e8 714
52b70b1b 715 -- Do not allow non-contiguous field
498d1b80 716
52b70b1b
TQ
717 else
718 Error_Msg_N
d43584ca
AC
719 ("attempt to specify non-contiguous field not "
720 & "permitted", CLC);
52b70b1b 721 Error_Msg_N
d43584ca
AC
722 ("\caused by non-standard Bit_Order specified in "
723 & "legacy Ada 95 mode", CLC);
52b70b1b 724 end if;
498d1b80 725
52b70b1b
TQ
726 -- Case where field fits in one storage unit
727
728 else
729 -- Give warning if suspicious component clause
730
731 if Intval (FB) >= System_Storage_Unit
732 and then Warn_On_Reverse_Bit_Order
733 then
734 Error_Msg_N
d43584ca
AC
735 ("info: Bit_Order clause does not affect byte "
736 & "ordering?V?", Pos);
52b70b1b
TQ
737 Error_Msg_Uint_1 :=
738 Intval (Pos) + Intval (FB) /
739 System_Storage_Unit;
740 Error_Msg_N
d43584ca
AC
741 ("info: position normalized to ^ before bit order "
742 & "interpreted?V?", Pos);
52b70b1b 743 end if;
8a95f4e8 744
498d1b80
AC
745 -- Here is where we fix up the Component_Bit_Offset value
746 -- to account for the reverse bit order. Some examples of
52b70b1b 747 -- what needs to be done are:
8a95f4e8 748
498d1b80
AC
749 -- First_Bit .. Last_Bit Component_Bit_Offset
750 -- old new old new
8a95f4e8 751
498d1b80
AC
752 -- 0 .. 0 7 .. 7 0 7
753 -- 0 .. 1 6 .. 7 0 6
754 -- 0 .. 2 5 .. 7 0 5
755 -- 0 .. 7 0 .. 7 0 4
8a95f4e8 756
498d1b80
AC
757 -- 1 .. 1 6 .. 6 1 6
758 -- 1 .. 4 3 .. 6 1 3
759 -- 4 .. 7 0 .. 3 4 0
8a95f4e8 760
52b70b1b
TQ
761 -- The rule is that the first bit is is obtained by
762 -- subtracting the old ending bit from storage_unit - 1.
8a95f4e8 763
d43584ca
AC
764 Set_Component_Bit_Offset (Comp,
765 (Storage_Unit_Offset * System_Storage_Unit) +
766 (System_Storage_Unit - 1) -
767 (Start_Bit + CSZ - 1));
616547fa 768
74a78a4f
AC
769 Set_Normalized_Position (Comp,
770 Component_Bit_Offset (Comp) / System_Storage_Unit);
771
d43584ca
AC
772 Set_Normalized_First_Bit (Comp,
773 Component_Bit_Offset (Comp) mod System_Storage_Unit);
52b70b1b
TQ
774 end if;
775 end;
776 end if;
8a95f4e8 777
52b70b1b
TQ
778 Next_Component_Or_Discriminant (Comp);
779 end loop;
780 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
a9a5b8ac 781
76af4137
AC
782 -------------------------------------
783 -- Alignment_Check_For_Size_Change --
784 -------------------------------------
996ae0b0 785
76af4137 786 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
996ae0b0
RK
787 begin
788 -- If the alignment is known, and not set by a rep clause, and is
789 -- inconsistent with the size being set, then reset it to unknown,
790 -- we assume in this case that the size overrides the inherited
791 -- alignment, and that the alignment must be recomputed.
792
793 if Known_Alignment (Typ)
794 and then not Has_Alignment_Clause (Typ)
76af4137 795 and then Size mod (Alignment (Typ) * SSU) /= 0
996ae0b0
RK
796 then
797 Init_Alignment (Typ);
798 end if;
76af4137 799 end Alignment_Check_For_Size_Change;
996ae0b0 800
8a0320ad
AC
801 -------------------------------------
802 -- Analyze_Aspects_At_Freeze_Point --
803 -------------------------------------
804
805 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
8a0320ad
AC
806 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
807 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
808 -- the aspect specification node ASN.
809
15e934bf
AC
810 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
811 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
812 -- a derived type can inherit aspects from its parent which have been
813 -- specified at the time of the derivation using an aspect, as in:
814 --
815 -- type A is range 1 .. 10
816 -- with Size => Not_Defined_Yet;
817 -- ..
818 -- type B is new A;
819 -- ..
820 -- Not_Defined_Yet : constant := 64;
821 --
822 -- In this example, the Size of A is considered to be specified prior
823 -- to the derivation, and thus inherited, even though the value is not
824 -- known at the time of derivation. To deal with this, we use two entity
825 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
826 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
827 -- the derived type (B here). If this flag is set when the derived type
828 -- is frozen, then this procedure is called to ensure proper inheritance
860917b6 829 -- of all delayed aspects from the parent type. The derived type is E,
15e934bf
AC
830 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
831 -- aspect specification node in the Rep_Item chain for the parent type.
832
8a0320ad
AC
833 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
834 -- Given an aspect specification node ASN whose expression is an
835 -- optional Boolean, this routines creates the corresponding pragma
836 -- at the freezing point.
837
838 ----------------------------------
839 -- Analyze_Aspect_Default_Value --
840 ----------------------------------
841
842 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
2e885a6f 843 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
8a0320ad
AC
844 Ent : constant Entity_Id := Entity (ASN);
845 Expr : constant Node_Id := Expression (ASN);
846 Id : constant Node_Id := Identifier (ASN);
847
848 begin
849 Error_Msg_Name_1 := Chars (Id);
850
851 if not Is_Type (Ent) then
852 Error_Msg_N ("aspect% can only apply to a type", Id);
853 return;
854
855 elsif not Is_First_Subtype (Ent) then
856 Error_Msg_N ("aspect% cannot apply to subtype", Id);
857 return;
858
859 elsif A_Id = Aspect_Default_Value
860 and then not Is_Scalar_Type (Ent)
861 then
862 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
863 return;
864
865 elsif A_Id = Aspect_Default_Component_Value then
866 if not Is_Array_Type (Ent) then
867 Error_Msg_N ("aspect% can only be applied to array type", Id);
868 return;
869
870 elsif not Is_Scalar_Type (Component_Type (Ent)) then
871 Error_Msg_N ("aspect% requires scalar components", Id);
872 return;
873 end if;
874 end if;
875
876 Set_Has_Default_Aspect (Base_Type (Ent));
877
878 if Is_Scalar_Type (Ent) then
7b55fea6 879 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
8a0320ad 880 else
688a9b51 881 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
8a0320ad
AC
882 end if;
883 end Analyze_Aspect_Default_Value;
884
15e934bf
AC
885 ---------------------------------
886 -- Inherit_Delayed_Rep_Aspects --
887 ---------------------------------
888
889 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
2e885a6f
AC
890 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
891 P : constant Entity_Id := Entity (ASN);
15e934bf
AC
892 -- Entithy for parent type
893
894 N : Node_Id;
895 -- Item from Rep_Item chain
896
897 A : Aspect_Id;
898
899 begin
900 -- Loop through delayed aspects for the parent type
901
902 N := ASN;
903 while Present (N) loop
904 if Nkind (N) = N_Aspect_Specification then
905 exit when Entity (N) /= P;
906
907 if Is_Delayed_Aspect (N) then
908 A := Get_Aspect_Id (Chars (Identifier (N)));
909
910 -- Process delayed rep aspect. For Boolean attributes it is
911 -- not possible to cancel an attribute once set (the attempt
912 -- to use an aspect with xxx => False is an error) for a
913 -- derived type. So for those cases, we do not have to check
914 -- if a clause has been given for the derived type, since it
915 -- is harmless to set it again if it is already set.
916
917 case A is
918
919 -- Alignment
920
921 when Aspect_Alignment =>
922 if not Has_Alignment_Clause (E) then
923 Set_Alignment (E, Alignment (P));
924 end if;
925
926 -- Atomic
927
928 when Aspect_Atomic =>
929 if Is_Atomic (P) then
930 Set_Is_Atomic (E);
931 end if;
932
933 -- Atomic_Components
934
935 when Aspect_Atomic_Components =>
936 if Has_Atomic_Components (P) then
937 Set_Has_Atomic_Components (Base_Type (E));
938 end if;
939
940 -- Bit_Order
941
942 when Aspect_Bit_Order =>
943 if Is_Record_Type (E)
944 and then No (Get_Attribute_Definition_Clause
945 (E, Attribute_Bit_Order))
946 and then Reverse_Bit_Order (P)
947 then
948 Set_Reverse_Bit_Order (Base_Type (E));
949 end if;
950
951 -- Component_Size
952
953 when Aspect_Component_Size =>
954 if Is_Array_Type (E)
955 and then not Has_Component_Size_Clause (E)
956 then
957 Set_Component_Size
958 (Base_Type (E), Component_Size (P));
959 end if;
960
961 -- Machine_Radix
962
963 when Aspect_Machine_Radix =>
964 if Is_Decimal_Fixed_Point_Type (E)
965 and then not Has_Machine_Radix_Clause (E)
966 then
967 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
968 end if;
969
970 -- Object_Size (also Size which also sets Object_Size)
971
d8f43ee6
HK
972 when Aspect_Object_Size
973 | Aspect_Size
974 =>
15e934bf
AC
975 if not Has_Size_Clause (E)
976 and then
977 No (Get_Attribute_Definition_Clause
978 (E, Attribute_Object_Size))
979 then
980 Set_Esize (E, Esize (P));
981 end if;
982
983 -- Pack
984
985 when Aspect_Pack =>
986 if not Is_Packed (E) then
987 Set_Is_Packed (Base_Type (E));
988
989 if Is_Bit_Packed_Array (P) then
990 Set_Is_Bit_Packed_Array (Base_Type (E));
8ca597af
RD
991 Set_Packed_Array_Impl_Type
992 (E, Packed_Array_Impl_Type (P));
15e934bf
AC
993 end if;
994 end if;
995
996 -- Scalar_Storage_Order
997
998 when Aspect_Scalar_Storage_Order =>
999 if (Is_Record_Type (E) or else Is_Array_Type (E))
1000 and then No (Get_Attribute_Definition_Clause
c1645ac8 1001 (E, Attribute_Scalar_Storage_Order))
15e934bf
AC
1002 and then Reverse_Storage_Order (P)
1003 then
1004 Set_Reverse_Storage_Order (Base_Type (E));
220d1fd9
AC
1005
1006 -- Clear default SSO indications, since the aspect
1007 -- overrides the default.
1008
1009 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1010 Set_SSO_Set_High_By_Default (Base_Type (E), False);
15e934bf
AC
1011 end if;
1012
1013 -- Small
1014
1015 when Aspect_Small =>
1016 if Is_Fixed_Point_Type (E)
1017 and then not Has_Small_Clause (E)
1018 then
1019 Set_Small_Value (E, Small_Value (P));
1020 end if;
1021
1022 -- Storage_Size
1023
1024 when Aspect_Storage_Size =>
1025 if (Is_Access_Type (E) or else Is_Task_Type (E))
1026 and then not Has_Storage_Size_Clause (E)
1027 then
1028 Set_Storage_Size_Variable
1029 (Base_Type (E), Storage_Size_Variable (P));
1030 end if;
1031
1032 -- Value_Size
1033
1034 when Aspect_Value_Size =>
1035
1036 -- Value_Size is never inherited, it is either set by
1037 -- default, or it is explicitly set for the derived
1038 -- type. So nothing to do here.
1039
1040 null;
1041
1042 -- Volatile
1043
1044 when Aspect_Volatile =>
1045 if Is_Volatile (P) then
1046 Set_Is_Volatile (E);
1047 end if;
1048
f280dd8f
RD
1049 -- Volatile_Full_Access
1050
1051 when Aspect_Volatile_Full_Access =>
57abdadd
EB
1052 if Is_Volatile_Full_Access (P) then
1053 Set_Is_Volatile_Full_Access (E);
f280dd8f
RD
1054 end if;
1055
15e934bf
AC
1056 -- Volatile_Components
1057
1058 when Aspect_Volatile_Components =>
1059 if Has_Volatile_Components (P) then
1060 Set_Has_Volatile_Components (Base_Type (E));
1061 end if;
1062
1063 -- That should be all the Rep Aspects
1064
1065 when others =>
1066 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1067 null;
15e934bf
AC
1068 end case;
1069 end if;
1070 end if;
1071
1072 N := Next_Rep_Item (N);
1073 end loop;
1074 end Inherit_Delayed_Rep_Aspects;
1075
8a0320ad
AC
1076 -------------------------------------
1077 -- Make_Pragma_From_Boolean_Aspect --
1078 -------------------------------------
1079
1080 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1081 Ident : constant Node_Id := Identifier (ASN);
1082 A_Name : constant Name_Id := Chars (Ident);
1083 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1084 Ent : constant Entity_Id := Entity (ASN);
1085 Expr : constant Node_Id := Expression (ASN);
1086 Loc : constant Source_Ptr := Sloc (ASN);
1087
8a0320ad
AC
1088 procedure Check_False_Aspect_For_Derived_Type;
1089 -- This procedure checks for the case of a false aspect for a derived
1090 -- type, which improperly tries to cancel an aspect inherited from
1091 -- the parent.
1092
1093 -----------------------------------------
1094 -- Check_False_Aspect_For_Derived_Type --
1095 -----------------------------------------
1096
1097 procedure Check_False_Aspect_For_Derived_Type is
1098 Par : Node_Id;
1099
1100 begin
1101 -- We are only checking derived types
1102
1103 if not Is_Derived_Type (E) then
1104 return;
1105 end if;
1106
1107 Par := Nearest_Ancestor (E);
1108
1109 case A_Id is
d8f43ee6
HK
1110 when Aspect_Atomic
1111 | Aspect_Shared
1112 =>
8a0320ad
AC
1113 if not Is_Atomic (Par) then
1114 return;
1115 end if;
1116
1117 when Aspect_Atomic_Components =>
1118 if not Has_Atomic_Components (Par) then
1119 return;
1120 end if;
1121
1122 when Aspect_Discard_Names =>
1123 if not Discard_Names (Par) then
1124 return;
1125 end if;
1126
1127 when Aspect_Pack =>
1128 if not Is_Packed (Par) then
1129 return;
1130 end if;
1131
1132 when Aspect_Unchecked_Union =>
1133 if not Is_Unchecked_Union (Par) then
1134 return;
1135 end if;
1136
1137 when Aspect_Volatile =>
1138 if not Is_Volatile (Par) then
1139 return;
1140 end if;
1141
1142 when Aspect_Volatile_Components =>
1143 if not Has_Volatile_Components (Par) then
1144 return;
1145 end if;
1146
f280dd8f 1147 when Aspect_Volatile_Full_Access =>
57abdadd 1148 if not Is_Volatile_Full_Access (Par) then
f280dd8f
RD
1149 return;
1150 end if;
1151
8a0320ad
AC
1152 when others =>
1153 return;
1154 end case;
1155
1156 -- Fall through means we are canceling an inherited aspect
1157
1158 Error_Msg_Name_1 := A_Name;
15e934bf
AC
1159 Error_Msg_NE
1160 ("derived type& inherits aspect%, cannot cancel", Expr, E);
8a0320ad
AC
1161 end Check_False_Aspect_For_Derived_Type;
1162
2e885a6f
AC
1163 -- Local variables
1164
1165 Prag : Node_Id;
1166
8a0320ad
AC
1167 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1168
1169 begin
15e934bf
AC
1170 -- Note that we know Expr is present, because for a missing Expr
1171 -- argument, we knew it was True and did not need to delay the
1172 -- evaluation to the freeze point.
1173
8a0320ad
AC
1174 if Is_False (Static_Boolean (Expr)) then
1175 Check_False_Aspect_For_Derived_Type;
1176
1177 else
1178 Prag :=
1179 Make_Pragma (Loc,
2e885a6f
AC
1180 Pragma_Identifier =>
1181 Make_Identifier (Sloc (Ident), Chars (Ident)),
8a0320ad 1182 Pragma_Argument_Associations => New_List (
3860d469 1183 Make_Pragma_Argument_Association (Sloc (Ident),
2e885a6f 1184 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
8a0320ad
AC
1185
1186 Set_From_Aspect_Specification (Prag, True);
1187 Set_Corresponding_Aspect (Prag, ASN);
1188 Set_Aspect_Rep_Item (ASN, Prag);
1189 Set_Is_Delayed_Aspect (Prag);
1190 Set_Parent (Prag, ASN);
1191 end if;
8a0320ad
AC
1192 end Make_Pragma_From_Boolean_Aspect;
1193
2e885a6f
AC
1194 -- Local variables
1195
1196 A_Id : Aspect_Id;
1197 ASN : Node_Id;
1198 Ritem : Node_Id;
1199
8a0320ad
AC
1200 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1201
1202 begin
0f168ccc
AC
1203 -- Must be visible in current scope, but if this is a type from a nested
1204 -- package it may be frozen from an object declaration in the enclosing
1205 -- scope, so install the package declarations to complete the analysis
1206 -- of the aspects, if any. If the package itself is frozen the type will
1207 -- have been frozen as well.
8a0320ad 1208
5eeeed5e 1209 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
e1691d7e 1210 if Is_Type (E) and then From_Nested_Package (E) then
57f6e00c
AC
1211 declare
1212 Pack : constant Entity_Id := Scope (E);
1213
1214 begin
1215 Push_Scope (Pack);
1216 Install_Visible_Declarations (Pack);
1217 Install_Private_Declarations (Pack);
1218 Analyze_Aspects_At_Freeze_Point (E);
1219
1220 if Is_Private_Type (E)
1221 and then Present (Full_View (E))
1222 then
1223 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1224 end if;
1225
1226 End_Package_Scope (Pack);
e1691d7e 1227 return;
57f6e00c
AC
1228 end;
1229
0f168ccc
AC
1230 -- Aspects from other entities in different contexts are analyzed
1231 -- elsewhere.
57f6e00c 1232
0f168ccc 1233 else
57f6e00c
AC
1234 return;
1235 end if;
8a0320ad
AC
1236 end if;
1237
1238 -- Look for aspect specification entries for this entity
1239
1240 ASN := First_Rep_Item (E);
8a0320ad 1241 while Present (ASN) loop
15e934bf
AC
1242 if Nkind (ASN) = N_Aspect_Specification then
1243 exit when Entity (ASN) /= E;
8a0320ad 1244
15e934bf
AC
1245 if Is_Delayed_Aspect (ASN) then
1246 A_Id := Get_Aspect_Id (ASN);
1247
1248 case A_Id is
21791d97 1249
15e934bf 1250 -- For aspects whose expression is an optional Boolean, make
3e1862b1 1251 -- the corresponding pragma at the freeze point.
8a0320ad 1252
d8f43ee6
HK
1253 when Boolean_Aspects
1254 | Library_Unit_Aspects
1255 =>
2e885a6f
AC
1256 -- Aspects Export and Import require special handling.
1257 -- Both are by definition Boolean and may benefit from
1258 -- forward references, however their expressions are
1259 -- treated as static. In addition, the syntax of their
1260 -- corresponding pragmas requires extra "pieces" which
1261 -- may also contain forward references. To account for
1262 -- all of this, the corresponding pragma is created by
1263 -- Analyze_Aspect_Export_Import, but is not analyzed as
1264 -- the complete analysis must happen now.
1265
1266 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1267 null;
1268
1269 -- Otherwise create a corresponding pragma
1270
1271 else
1272 Make_Pragma_From_Boolean_Aspect (ASN);
1273 end if;
8a0320ad 1274
15e934bf
AC
1275 -- Special handling for aspects that don't correspond to
1276 -- pragmas/attributes.
8a0320ad 1277
d8f43ee6
HK
1278 when Aspect_Default_Value
1279 | Aspect_Default_Component_Value
1280 =>
731261c3
AC
1281 -- Do not inherit aspect for anonymous base type of a
1282 -- scalar or array type, because they apply to the first
1283 -- subtype of the type, and will be processed when that
1284 -- first subtype is frozen.
1285
1286 if Is_Derived_Type (E)
1287 and then not Comes_From_Source (E)
1288 and then E /= First_Subtype (E)
1289 then
1290 null;
1291 else
1292 Analyze_Aspect_Default_Value (ASN);
1293 end if;
8a0320ad 1294
15e934bf
AC
1295 -- Ditto for iterator aspects, because the corresponding
1296 -- attributes may not have been analyzed yet.
7640ef8a 1297
d8f43ee6
HK
1298 when Aspect_Constant_Indexing
1299 | Aspect_Default_Iterator
1300 | Aspect_Iterator_Element
1301 | Aspect_Variable_Indexing
1302 =>
3e1862b1 1303 Analyze (Expression (ASN));
7640ef8a 1304
3e1862b1
ES
1305 if Etype (Expression (ASN)) = Any_Type then
1306 Error_Msg_NE
1307 ("\aspect must be fully defined before & is frozen",
1308 ASN, E);
1309 end if;
dd2bf554 1310
3e1862b1
ES
1311 when Aspect_Iterable =>
1312 Validate_Iterable_Aspect (E, ASN);
1313
1314 when others =>
1315 null;
15e934bf 1316 end case;
8a0320ad 1317
15e934bf 1318 Ritem := Aspect_Rep_Item (ASN);
8a0320ad 1319
15e934bf
AC
1320 if Present (Ritem) then
1321 Analyze (Ritem);
1322 end if;
8a0320ad
AC
1323 end if;
1324 end if;
1325
1326 Next_Rep_Item (ASN);
1327 end loop;
15e934bf
AC
1328
1329 -- This is where we inherit delayed rep aspects from our parent. Note
1330 -- that if we fell out of the above loop with ASN non-empty, it means
1331 -- we hit an aspect for an entity other than E, and it must be the
1332 -- type from which we were derived.
1333
1334 if May_Inherit_Delayed_Rep_Aspects (E) then
1335 Inherit_Delayed_Rep_Aspects (ASN);
1336 end if;
5f531fef
ES
1337
1338 if In_Instance
1339 and then E /= Base_Type (E)
1340 and then Is_First_Subtype (E)
1341 then
1342 Inherit_Rep_Item_Chain (Base_Type (E), E);
1343 end if;
8a0320ad
AC
1344 end Analyze_Aspects_At_Freeze_Point;
1345
0f1a6a0b
AC
1346 -----------------------------------
1347 -- Analyze_Aspect_Specifications --
1348 -----------------------------------
1349
eaba57fb 1350 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
5612989e
PMR
1351 pragma Assert (Present (E));
1352
4e6768ab 1353 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
c8593453 1354 -- Establish linkages between an aspect and its corresponding pragma
5afe5d2d 1355
21d7ef70
AC
1356 procedure Insert_Pragma
1357 (Prag : Node_Id;
1358 Is_Instance : Boolean := False);
877a5a12
AC
1359 -- Subsidiary to the analysis of aspects
1360 -- Abstract_State
877a5a12
AC
1361 -- Attach_Handler
1362 -- Contract_Cases
1363 -- Depends
21d7ef70 1364 -- Ghost
877a5a12 1365 -- Global
21d7ef70
AC
1366 -- Initial_Condition
1367 -- Initializes
877a5a12
AC
1368 -- Post
1369 -- Pre
1370 -- Refined_Depends
1371 -- Refined_Global
21d7ef70 1372 -- Refined_State
877a5a12
AC
1373 -- SPARK_Mode
1374 -- Warnings
4e6768ab 1375 -- Insert pragma Prag such that it mimics the placement of a source
21d7ef70
AC
1376 -- pragma of the same kind. Flag Is_Generic should be set when the
1377 -- context denotes a generic instance.
4e6768ab
AC
1378
1379 --------------
1380 -- Decorate --
1381 --------------
1382
1383 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5afe5d2d 1384 begin
c8593453 1385 Set_Aspect_Rep_Item (Asp, Prag);
5afe5d2d
HK
1386 Set_Corresponding_Aspect (Prag, Asp);
1387 Set_From_Aspect_Specification (Prag);
5afe5d2d 1388 Set_Parent (Prag, Asp);
4e6768ab 1389 end Decorate;
dba44dbe 1390
4e6768ab
AC
1391 -------------------
1392 -- Insert_Pragma --
1393 -------------------
d6095153 1394
21d7ef70
AC
1395 procedure Insert_Pragma
1396 (Prag : Node_Id;
1397 Is_Instance : Boolean := False)
1398 is
8a0183fd
HK
1399 Aux : Node_Id;
1400 Decl : Node_Id;
1401 Decls : List_Id;
1402 Def : Node_Id;
1403 Inserted : Boolean := False;
d6095153
AC
1404
1405 begin
8a0183fd
HK
1406 -- When the aspect appears on an entry, package, protected unit,
1407 -- subprogram, or task unit body, insert the generated pragma at the
1408 -- top of the body declarations to emulate the behavior of a source
1409 -- pragma.
877a5a12
AC
1410
1411 -- package body Pack with Aspect is
1412
1413 -- package body Pack is
1414 -- pragma Prag;
1415
8a0183fd
HK
1416 if Nkind_In (N, N_Entry_Body,
1417 N_Package_Body,
877a5a12
AC
1418 N_Protected_Body,
1419 N_Subprogram_Body,
1420 N_Task_Body)
1421 then
1422 Decls := Declarations (N);
1423
1424 if No (Decls) then
1425 Decls := New_List;
1426 Set_Declarations (N, Decls);
1427 end if;
4e6768ab 1428
8a0183fd 1429 Prepend_To (Decls, Prag);
877a5a12
AC
1430
1431 -- When the aspect is associated with a [generic] package declaration
1432 -- insert the generated pragma at the top of the visible declarations
1433 -- to emulate the behavior of a source pragma.
1434
1435 -- package Pack with Aspect is
1436
1437 -- package Pack is
1438 -- pragma Prag;
1439
1440 elsif Nkind_In (N, N_Generic_Package_Declaration,
1441 N_Package_Declaration)
1442 then
1443 Decls := Visible_Declarations (Specification (N));
1444
1445 if No (Decls) then
1446 Decls := New_List;
1447 Set_Visible_Declarations (Specification (N), Decls);
1448 end if;
1449
21d7ef70
AC
1450 -- The visible declarations of a generic instance have the
1451 -- following structure:
1452
1453 -- <renamings of generic formals>
1454 -- <renamings of internally-generated spec and body>
1455 -- <first source declaration>
1456
1457 -- Insert the pragma before the first source declaration by
8a0183fd
HK
1458 -- skipping the instance "header" to ensure proper visibility of
1459 -- all formals.
21d7ef70
AC
1460
1461 if Is_Instance then
1462 Decl := First (Decls);
8a0183fd
HK
1463 while Present (Decl) loop
1464 if Comes_From_Source (Decl) then
1465 Insert_Before (Decl, Prag);
1466 Inserted := True;
1467 exit;
1468 else
1469 Next (Decl);
1470 end if;
21d7ef70
AC
1471 end loop;
1472
8a0183fd 1473 -- The pragma is placed after the instance "header"
21d7ef70 1474
8a0183fd 1475 if not Inserted then
21d7ef70
AC
1476 Append_To (Decls, Prag);
1477 end if;
1478
1479 -- Otherwise this is not a generic instance
1480
1481 else
1482 Prepend_To (Decls, Prag);
1483 end if;
877a5a12
AC
1484
1485 -- When the aspect is associated with a protected unit declaration,
1486 -- insert the generated pragma at the top of the visible declarations
1487 -- the emulate the behavior of a source pragma.
1488
1489 -- protected [type] Prot with Aspect is
1490
1491 -- protected [type] Prot is
1492 -- pragma Prag;
1493
1494 elsif Nkind (N) = N_Protected_Type_Declaration then
75b87c16
AC
1495 Def := Protected_Definition (N);
1496
1497 if No (Def) then
1498 Def :=
1499 Make_Protected_Definition (Sloc (N),
1500 Visible_Declarations => New_List,
1501 End_Label => Empty);
1502
1503 Set_Protected_Definition (N, Def);
1504 end if;
1505
1506 Decls := Visible_Declarations (Def);
877a5a12
AC
1507
1508 if No (Decls) then
1509 Decls := New_List;
75b87c16 1510 Set_Visible_Declarations (Def, Decls);
877a5a12
AC
1511 end if;
1512
1513 Prepend_To (Decls, Prag);
1514
75b87c16
AC
1515 -- When the aspect is associated with a task unit declaration, insert
1516 -- insert the generated pragma at the top of the visible declarations
1517 -- the emulate the behavior of a source pragma.
877a5a12
AC
1518
1519 -- task [type] Prot with Aspect is
1520
1521 -- task [type] Prot is
1522 -- pragma Prag;
1523
75b87c16
AC
1524 elsif Nkind (N) = N_Task_Type_Declaration then
1525 Def := Task_Definition (N);
1526
1527 if No (Def) then
1528 Def :=
1529 Make_Task_Definition (Sloc (N),
1530 Visible_Declarations => New_List,
1531 End_Label => Empty);
1532
1533 Set_Task_Definition (N, Def);
1534 end if;
1535
1536 Decls := Visible_Declarations (Def);
877a5a12
AC
1537
1538 if No (Decls) then
1539 Decls := New_List;
75b87c16 1540 Set_Visible_Declarations (Def, Decls);
2fc07285 1541 end if;
d6095153 1542
877a5a12
AC
1543 Prepend_To (Decls, Prag);
1544
c9d70ab1
AC
1545 -- When the context is a library unit, the pragma is added to the
1546 -- Pragmas_After list.
1547
1548 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1549 Aux := Aux_Decls_Node (Parent (N));
1550
1551 if No (Pragmas_After (Aux)) then
1552 Set_Pragmas_After (Aux, New_List);
1553 end if;
1554
1555 Prepend (Prag, Pragmas_After (Aux));
1556
877a5a12 1557 -- Default, the pragma is inserted after the context
d6095153
AC
1558
1559 else
1560 Insert_After (N, Prag);
d6095153 1561 end if;
4e6768ab 1562 end Insert_Pragma;
d6095153
AC
1563
1564 -- Local variables
1565
0f1a6a0b 1566 Aspect : Node_Id;
c159409f 1567 Aitem : Node_Id;
0f1a6a0b 1568 Ent : Node_Id;
0f1a6a0b 1569
eaba57fb 1570 L : constant List_Id := Aspect_Specifications (N);
5612989e 1571 pragma Assert (Present (L));
eaba57fb 1572
0f1a6a0b 1573 Ins_Node : Node_Id := N;
b98e2969
AC
1574 -- Insert pragmas/attribute definition clause after this node when no
1575 -- delayed analysis is required.
c159409f 1576
2e885a6f 1577 -- Start of processing for Analyze_Aspect_Specifications
dba44dbe 1578
2e885a6f 1579 begin
c159409f 1580 -- The general processing involves building an attribute definition
b98e2969
AC
1581 -- clause or a pragma node that corresponds to the aspect. Then in order
1582 -- to delay the evaluation of this aspect to the freeze point, we attach
1583 -- the corresponding pragma/attribute definition clause to the aspect
1584 -- specification node, which is then placed in the Rep Item chain. In
1585 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1586 -- and we evaluate the rep item at the freeze point. When the aspect
1587 -- doesn't have a corresponding pragma/attribute definition clause, then
1588 -- its analysis is simply delayed at the freeze point.
1589
1590 -- Some special cases don't require delay analysis, thus the aspect is
1591 -- analyzed right now.
1592
aab45d22 1593 -- Note that there is a special handling for Pre, Post, Test_Case,
541fb4d9 1594 -- Contract_Cases aspects. In these cases, we do not have to worry
aab45d22
AC
1595 -- about delay issues, since the pragmas themselves deal with delay
1596 -- of visibility for the expression analysis. Thus, we just insert
1597 -- the pragma after the node N.
0f1a6a0b 1598
308e6f3a 1599 -- Loop through aspects
2d4e0553 1600
0f1a6a0b 1601 Aspect := First (L);
eaba57fb 1602 Aspect_Loop : while Present (Aspect) loop
9d5598bf 1603 Analyze_One_Aspect : declare
811ef5ba 1604 Expr : constant Node_Id := Expression (Aspect);
b98e2969
AC
1605 Id : constant Node_Id := Identifier (Aspect);
1606 Loc : constant Source_Ptr := Sloc (Aspect);
811ef5ba
RD
1607 Nam : constant Name_Id := Chars (Id);
1608 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
0f1a6a0b
AC
1609 Anod : Node_Id;
1610
15e934bf 1611 Delay_Required : Boolean;
b98e2969
AC
1612 -- Set False if delay is not required
1613
95160516
AC
1614 Eloc : Source_Ptr := No_Location;
1615 -- Source location of expression, modified when we split PPC's. It
1616 -- is set below when Expr is present.
beacce02 1617
2e885a6f
AC
1618 procedure Analyze_Aspect_Convention;
1619 -- Perform analysis of aspect Convention
1620
0cb81445
PMR
1621 procedure Analyze_Aspect_Disable_Controlled;
1622 -- Perform analysis of aspect Disable_Controlled
1623
2e885a6f
AC
1624 procedure Analyze_Aspect_Export_Import;
1625 -- Perform analysis of aspects Export or Import
1626
1627 procedure Analyze_Aspect_External_Link_Name;
1628 -- Perform analysis of aspects External_Name or Link_Name
eaba57fb 1629
b98e2969 1630 procedure Analyze_Aspect_Implicit_Dereference;
3b1d4d82 1631 -- Perform analysis of the Implicit_Dereference aspects
9d5598bf
AC
1632
1633 procedure Make_Aitem_Pragma
1634 (Pragma_Argument_Associations : List_Id;
1635 Pragma_Name : Name_Id);
1636 -- This is a wrapper for Make_Pragma used for converting aspects
1637 -- to pragmas. It takes care of Sloc (set from Loc) and building
1638 -- the pragma identifier from the given name. In addition the
1639 -- flags Class_Present and Split_PPC are set from the aspect
1640 -- node, as well as Is_Ignored. This routine also sets the
1641 -- From_Aspect_Specification in the resulting pragma node to
1642 -- True, and sets Corresponding_Aspect to point to the aspect.
1643 -- The resulting pragma is assigned to Aitem.
eaba57fb 1644
2e885a6f
AC
1645 -------------------------------
1646 -- Analyze_Aspect_Convention --
1647 -------------------------------
1648
1649 procedure Analyze_Aspect_Convention is
1650 Conv : Node_Id;
1651 Dummy_1 : Node_Id;
1652 Dummy_2 : Node_Id;
1653 Dummy_3 : Node_Id;
1654 Expo : Node_Id;
1655 Imp : Node_Id;
b98e2969 1656
eaba57fb 1657 begin
2e885a6f
AC
1658 -- Obtain all interfacing aspects that apply to the related
1659 -- entity.
1660
1661 Get_Interfacing_Aspects
1662 (Iface_Asp => Aspect,
1663 Conv_Asp => Dummy_1,
1664 EN_Asp => Dummy_2,
1665 Expo_Asp => Expo,
1666 Imp_Asp => Imp,
1667 LN_Asp => Dummy_3,
1668 Do_Checks => True);
1669
1670 -- The related entity is subject to aspect Export or Import.
1671 -- Do not process Convention now because it must be analysed
1672 -- as part of Export or Import.
1673
1674 if Present (Expo) or else Present (Imp) then
1675 return;
eaba57fb 1676
2e885a6f 1677 -- Otherwise Convention appears by itself
eaba57fb 1678
2e885a6f
AC
1679 else
1680 -- The aspect specifies a particular convention
1681
1682 if Present (Expr) then
1683 Conv := New_Copy_Tree (Expr);
1684
1685 -- Otherwise assume convention Ada
1686
1687 else
1688 Conv := Make_Identifier (Loc, Name_Ada);
1689 end if;
1690
1691 -- Generate:
1692 -- pragma Convention (<Conv>, <E>);
1693
1694 Make_Aitem_Pragma
1695 (Pragma_Name => Name_Convention,
1696 Pragma_Argument_Associations => New_List (
1697 Make_Pragma_Argument_Association (Loc,
1698 Expression => Conv),
1699 Make_Pragma_Argument_Association (Loc,
1700 Expression => New_Occurrence_Of (E, Loc))));
1701
1702 Decorate (Aspect, Aitem);
1703 Insert_Pragma (Aitem);
1704 end if;
1705 end Analyze_Aspect_Convention;
1706
0cb81445
PMR
1707 ---------------------------------------
1708 -- Analyze_Aspect_Disable_Controlled --
1709 ---------------------------------------
1710
1711 procedure Analyze_Aspect_Disable_Controlled is
1712 begin
1713 -- The aspect applies only to controlled records
1714
1715 if not (Ekind (E) = E_Record_Type
1716 and then Is_Controlled_Active (E))
1717 then
1718 Error_Msg_N
1719 ("aspect % requires controlled record type", Aspect);
1720 return;
1721 end if;
1722
1723 -- Preanalyze the expression (if any) when the aspect resides
1724 -- in a generic unit.
1725
1726 if Inside_A_Generic then
1727 if Present (Expr) then
1728 Preanalyze_And_Resolve (Expr, Any_Boolean);
1729 end if;
1730
1731 -- Otherwise the aspect resides in a nongeneric context
1732
1733 else
1734 -- A controlled record type loses its controlled semantics
1735 -- when the expression statically evaluates to True.
1736
1737 if Present (Expr) then
1738 Analyze_And_Resolve (Expr, Any_Boolean);
1739
1740 if Is_OK_Static_Expression (Expr) then
1741 if Is_True (Static_Boolean (Expr)) then
1742 Set_Disable_Controlled (E);
1743 end if;
1744
1745 -- Otherwise the expression is not static
1746
1747 else
1748 Error_Msg_N
1749 ("expression of aspect % must be static", Aspect);
1750 end if;
1751
1752 -- Otherwise the aspect appears without an expression and
1753 -- defaults to True.
1754
1755 else
1756 Set_Disable_Controlled (E);
1757 end if;
1758 end if;
1759 end Analyze_Aspect_Disable_Controlled;
1760
2e885a6f
AC
1761 ----------------------------------
1762 -- Analyze_Aspect_Export_Import --
1763 ----------------------------------
eaba57fb 1764
2e885a6f
AC
1765 procedure Analyze_Aspect_Export_Import is
1766 Dummy_1 : Node_Id;
1767 Dummy_2 : Node_Id;
1768 Dummy_3 : Node_Id;
1769 Expo : Node_Id;
1770 Imp : Node_Id;
1771
1772 begin
1773 -- Obtain all interfacing aspects that apply to the related
1774 -- entity.
1775
1776 Get_Interfacing_Aspects
1777 (Iface_Asp => Aspect,
1778 Conv_Asp => Dummy_1,
1779 EN_Asp => Dummy_2,
1780 Expo_Asp => Expo,
1781 Imp_Asp => Imp,
1782 LN_Asp => Dummy_3,
1783 Do_Checks => True);
1784
1785 -- The related entity cannot be subject to both aspects Export
1786 -- and Import.
1787
1788 if Present (Expo) and then Present (Imp) then
1789 Error_Msg_N
1790 ("incompatible interfacing aspects given for &", E);
1791 Error_Msg_Sloc := Sloc (Expo);
1792 Error_Msg_N ("\aspect `Export` #", E);
1793 Error_Msg_Sloc := Sloc (Imp);
1794 Error_Msg_N ("\aspect `Import` #", E);
1795 end if;
1796
1797 -- A variable is most likely modified from the outside. Take
f2a54683 1798 -- the optimistic approach to avoid spurious errors.
2e885a6f
AC
1799
1800 if Ekind (E) = E_Variable then
1801 Set_Never_Set_In_Source (E, False);
1802 end if;
1803
1804 -- Resolve the expression of an Import or Export here, and
1805 -- require it to be of type Boolean and static. This is not
1806 -- quite right, because in general this should be delayed,
1807 -- but that seems tricky for these, because normally Boolean
1808 -- aspects are replaced with pragmas at the freeze point in
1809 -- Make_Pragma_From_Boolean_Aspect.
1810
1811 if not Present (Expr)
1812 or else Is_True (Static_Boolean (Expr))
1813 then
1814 if A_Id = Aspect_Import then
1815 Set_Has_Completion (E);
1816 Set_Is_Imported (E);
1817
1818 -- An imported object cannot be explicitly initialized
1819
1820 if Nkind (N) = N_Object_Declaration
1821 and then Present (Expression (N))
1822 then
1823 Error_Msg_N
1824 ("imported entities cannot be initialized "
1825 & "(RM B.1(24))", Expression (N));
1826 end if;
1827
1828 else
1829 pragma Assert (A_Id = Aspect_Export);
1830 Set_Is_Exported (E);
1831 end if;
1832
1833 -- Create the proper form of pragma Export or Import taking
1834 -- into account Conversion, External_Name, and Link_Name.
1835
1836 Aitem := Build_Export_Import_Pragma (Aspect, E);
c7518e6f
AC
1837
1838 -- Otherwise the expression is either False or erroneous. There
1839 -- is no corresponding pragma.
1840
1841 else
1842 Aitem := Empty;
2e885a6f
AC
1843 end if;
1844 end Analyze_Aspect_Export_Import;
1845
1846 ---------------------------------------
1847 -- Analyze_Aspect_External_Link_Name --
1848 ---------------------------------------
1849
1850 procedure Analyze_Aspect_External_Link_Name is
1851 Dummy_1 : Node_Id;
1852 Dummy_2 : Node_Id;
1853 Dummy_3 : Node_Id;
1854 Expo : Node_Id;
1855 Imp : Node_Id;
1856
1857 begin
1858 -- Obtain all interfacing aspects that apply to the related
1859 -- entity.
1860
1861 Get_Interfacing_Aspects
1862 (Iface_Asp => Aspect,
1863 Conv_Asp => Dummy_1,
1864 EN_Asp => Dummy_2,
1865 Expo_Asp => Expo,
1866 Imp_Asp => Imp,
1867 LN_Asp => Dummy_3,
1868 Do_Checks => True);
1869
1870 -- Ensure that aspect External_Name applies to aspect Export or
1871 -- Import.
1872
1873 if A_Id = Aspect_External_Name then
1874 if No (Expo) and then No (Imp) then
b98e2969 1875 Error_Msg_N
2e885a6f
AC
1876 ("aspect `External_Name` requires aspect `Import` or "
1877 & "`Export`", Aspect);
b98e2969 1878 end if;
2e885a6f
AC
1879
1880 -- Otherwise ensure that aspect Link_Name applies to aspect
1881 -- Export or Import.
1882
1883 else
1884 pragma Assert (A_Id = Aspect_Link_Name);
1885 if No (Expo) and then No (Imp) then
1886 Error_Msg_N
1887 ("aspect `Link_Name` requires aspect `Import` or "
1888 & "`Export`", Aspect);
1889 end if;
1890 end if;
1891 end Analyze_Aspect_External_Link_Name;
eaba57fb 1892
b98e2969
AC
1893 -----------------------------------------
1894 -- Analyze_Aspect_Implicit_Dereference --
1895 -----------------------------------------
eaba57fb 1896
b98e2969
AC
1897 procedure Analyze_Aspect_Implicit_Dereference is
1898 begin
616547fa 1899 if not Is_Type (E) or else not Has_Discriminants (E) then
b98e2969 1900 Error_Msg_N
b8a18216 1901 ("aspect must apply to a type with discriminants", Expr);
eaba57fb 1902
b8a18216
ES
1903 elsif not Is_Entity_Name (Expr) then
1904 Error_Msg_N
1905 ("aspect must name a discriminant of current type", Expr);
eaba57fb 1906
b8a18216 1907 else
f4ef7b06
AC
1908 -- Discriminant type be an anonymous access type or an
1909 -- anonymous access to subprogram.
4f324de2 1910
f4ef7b06
AC
1911 -- Missing synchronized types???
1912
5612989e
PMR
1913 declare
1914 Disc : Entity_Id := First_Discriminant (E);
1915 begin
1916 while Present (Disc) loop
1917 if Chars (Expr) = Chars (Disc)
1918 and then Ekind_In
1919 (Etype (Disc),
1920 E_Anonymous_Access_Subprogram_Type,
1921 E_Anonymous_Access_Type)
1922 then
1923 Set_Has_Implicit_Dereference (E);
1924 Set_Has_Implicit_Dereference (Disc);
1925 exit;
1926 end if;
eaba57fb 1927
5612989e
PMR
1928 Next_Discriminant (Disc);
1929 end loop;
eaba57fb 1930
5612989e 1931 -- Error if no proper access discriminant
b8a18216 1932
5612989e
PMR
1933 if Present (Disc) then
1934 -- For a type extension, check whether parent has
1935 -- a reference discriminant, to verify that use is
1936 -- proper.
40417de8 1937
5612989e
PMR
1938 if Is_Derived_Type (E)
1939 and then Has_Discriminants (Etype (E))
1940 then
1941 declare
1942 Parent_Disc : constant Entity_Id :=
1943 Get_Reference_Discriminant (Etype (E));
1944 begin
1945 if Present (Parent_Disc)
1946 and then Corresponding_Discriminant (Disc) /=
1947 Parent_Disc
1948 then
1949 Error_Msg_N
1950 ("reference discriminant does not match "
1951 & "discriminant of parent type", Expr);
1952 end if;
1953 end;
1954 end if;
b8a18216 1955
5612989e
PMR
1956 else
1957 Error_Msg_NE
1958 ("not an access discriminant of&", Expr, E);
1959 end if;
1960 end;
b98e2969 1961 end if;
5612989e 1962
b98e2969 1963 end Analyze_Aspect_Implicit_Dereference;
eaba57fb 1964
9d5598bf
AC
1965 -----------------------
1966 -- Make_Aitem_Pragma --
1967 -----------------------
1968
1969 procedure Make_Aitem_Pragma
1970 (Pragma_Argument_Associations : List_Id;
1971 Pragma_Name : Name_Id)
1972 is
80e59506
AC
1973 Args : List_Id := Pragma_Argument_Associations;
1974
9d5598bf
AC
1975 begin
1976 -- We should never get here if aspect was disabled
1977
1978 pragma Assert (not Is_Disabled (Aspect));
1979
4169c2d2
AC
1980 -- Certain aspects allow for an optional name or expression. Do
1981 -- not generate a pragma with empty argument association list.
80e59506
AC
1982
1983 if No (Args) or else No (Expression (First (Args))) then
1984 Args := No_List;
1985 end if;
1986
9d5598bf
AC
1987 -- Build the pragma
1988
1989 Aitem :=
1990 Make_Pragma (Loc,
80e59506 1991 Pragma_Argument_Associations => Args,
9d5598bf
AC
1992 Pragma_Identifier =>
1993 Make_Identifier (Sloc (Id), Pragma_Name),
3b1d4d82
AC
1994 Class_Present => Class_Present (Aspect),
1995 Split_PPC => Split_PPC (Aspect));
9d5598bf
AC
1996
1997 -- Set additional semantic fields
1998
1999 if Is_Ignored (Aspect) then
2000 Set_Is_Ignored (Aitem);
7fe6c026 2001 elsif Is_Checked (Aspect) then
3699edc4 2002 Set_Is_Checked (Aitem);
9d5598bf
AC
2003 end if;
2004
2005 Set_Corresponding_Aspect (Aitem, Aspect);
a2c314c7 2006 Set_From_Aspect_Specification (Aitem);
9d5598bf
AC
2007 end Make_Aitem_Pragma;
2008
ca0eb951 2009 -- Start of processing for Analyze_One_Aspect
9d5598bf 2010
0f1a6a0b 2011 begin
2178830b 2012 -- Skip aspect if already analyzed, to avoid looping in some cases
bd949ee2
RD
2013
2014 if Analyzed (Aspect) then
2015 goto Continue;
2016 end if;
2017
882eadaf
RD
2018 -- Skip looking at aspect if it is totally disabled. Just mark it
2019 -- as such for later reference in the tree. This also sets the
2020 -- Is_Ignored and Is_Checked flags appropriately.
aab45d22
AC
2021
2022 Check_Applicable_Policy (Aspect);
2023
2024 if Is_Disabled (Aspect) then
2025 goto Continue;
2026 end if;
2027
95160516
AC
2028 -- Set the source location of expression, used in the case of
2029 -- a failed precondition/postcondition or invariant. Note that
2030 -- the source location of the expression is not usually the best
2031 -- choice here. For example, it gets located on the last AND
2032 -- keyword in a chain of boolean expressiond AND'ed together.
2033 -- It is best to put the message on the first character of the
2034 -- assertion, which is the effect of the First_Node call here.
2035
2036 if Present (Expr) then
2037 Eloc := Sloc (First_Node (Expr));
2038 end if;
2039
e7fceebc
AC
2040 -- Check restriction No_Implementation_Aspect_Specifications
2041
9a7049fd 2042 if Implementation_Defined_Aspect (A_Id) then
e7fceebc
AC
2043 Check_Restriction
2044 (No_Implementation_Aspect_Specifications, Aspect);
2045 end if;
2046
2047 -- Check restriction No_Specification_Of_Aspect
2048
2049 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2050
0df5ae93 2051 -- Mark aspect analyzed (actual analysis is delayed till later)
e7fceebc 2052
bd949ee2 2053 Set_Analyzed (Aspect);
c159409f 2054 Set_Entity (Aspect, E);
ca0eb951
AC
2055
2056 -- Build the reference to E that will be used in the built pragmas
2057
c159409f
AC
2058 Ent := New_Occurrence_Of (E, Sloc (Id));
2059
ca0eb951
AC
2060 if A_Id = Aspect_Attach_Handler
2061 or else A_Id = Aspect_Interrupt_Handler
2062 then
ca0eb951 2063
85be939e
AC
2064 -- Treat the specification as a reference to the protected
2065 -- operation, which might otherwise appear unreferenced and
2066 -- generate spurious warnings.
ca0eb951 2067
85be939e 2068 Generate_Reference (E, Id);
ca0eb951
AC
2069 end if;
2070
c775c209
AC
2071 -- Check for duplicate aspect. Note that the Comes_From_Source
2072 -- test allows duplicate Pre/Post's that we generate internally
2073 -- to escape being flagged here.
0f1a6a0b 2074
dac3bede
YM
2075 if No_Duplicates_Allowed (A_Id) then
2076 Anod := First (L);
2077 while Anod /= Aspect loop
9a7049fd
AC
2078 if Comes_From_Source (Aspect)
2079 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
dac3bede
YM
2080 then
2081 Error_Msg_Name_1 := Nam;
2082 Error_Msg_Sloc := Sloc (Anod);
beacce02 2083
dac3bede 2084 -- Case of same aspect specified twice
beacce02 2085
dac3bede
YM
2086 if Class_Present (Anod) = Class_Present (Aspect) then
2087 if not Class_Present (Anod) then
2088 Error_Msg_NE
2089 ("aspect% for & previously given#",
2090 Id, E);
2091 else
2092 Error_Msg_NE
2093 ("aspect `%''Class` for & previously given#",
2094 Id, E);
2095 end if;
beacce02 2096 end if;
dac3bede 2097 end if;
0f1a6a0b 2098
dac3bede
YM
2099 Next (Anod);
2100 end loop;
2101 end if;
0f1a6a0b 2102
dd91386d
AC
2103 -- Check some general restrictions on language defined aspects
2104
9a7049fd 2105 if not Implementation_Defined_Aspect (A_Id) then
dd91386d
AC
2106 Error_Msg_Name_1 := Nam;
2107
75e4e36d 2108 -- Not allowed for renaming declarations. Examine the original
0c3f76ba
AC
2109 -- node because a subprogram renaming may have been rewritten
2110 -- as a body.
dd91386d 2111
0c3f76ba 2112 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
dd91386d
AC
2113 Error_Msg_N
2114 ("aspect % not allowed for renaming declaration",
2115 Aspect);
2116 end if;
2117
2118 -- Not allowed for formal type declarations
2119
2120 if Nkind (N) = N_Formal_Type_Declaration then
2121 Error_Msg_N
2122 ("aspect % not allowed for formal type declaration",
2123 Aspect);
2124 end if;
2125 end if;
2126
47e11d08
AC
2127 -- Copy expression for later processing by the procedures
2128 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2129
2130 Set_Entity (Id, New_Copy_Tree (Expr));
2131
15e934bf
AC
2132 -- Set Delay_Required as appropriate to aspect
2133
2134 case Aspect_Delay (A_Id) is
2135 when Always_Delay =>
2136 Delay_Required := True;
2137
2138 when Never_Delay =>
2139 Delay_Required := False;
2140
2141 when Rep_Aspect =>
2142
2143 -- If expression has the form of an integer literal, then
2144 -- do not delay, since we know the value cannot change.
2145 -- This optimization catches most rep clause cases.
2146
07a64c02
AC
2147 -- For Boolean aspects, don't delay if no expression
2148
2149 if A_Id in Boolean_Aspects and then No (Expr) then
2150 Delay_Required := False;
2151
be42aa71
AC
2152 -- For non-Boolean aspects, don't delay if integer literal,
2153 -- unless the aspect is Alignment, which affects the
2154 -- freezing of an initialized object.
07a64c02
AC
2155
2156 elsif A_Id not in Boolean_Aspects
be42aa71 2157 and then A_Id /= Aspect_Alignment
07a64c02
AC
2158 and then Present (Expr)
2159 and then Nkind (Expr) = N_Integer_Literal
2160 then
2161 Delay_Required := False;
2162
2163 -- All other cases are delayed
2164
2165 else
2166 Delay_Required := True;
2167 Set_Has_Delayed_Rep_Aspects (E);
2168 end if;
15e934bf
AC
2169 end case;
2170
0f1a6a0b
AC
2171 -- Processing based on specific aspect
2172
c159409f 2173 case A_Id is
d3ef4bd6
AC
2174 when Aspect_Unimplemented =>
2175 null; -- ??? temp for now
0f1a6a0b
AC
2176
2177 -- No_Aspect should be impossible
2178
2179 when No_Aspect =>
2180 raise Program_Error;
2181
b98e2969
AC
2182 -- Case 1: Aspects corresponding to attribute definition
2183 -- clauses.
0f1a6a0b 2184
d8f43ee6
HK
2185 when Aspect_Address
2186 | Aspect_Alignment
2187 | Aspect_Bit_Order
2188 | Aspect_Component_Size
2189 | Aspect_Constant_Indexing
2190 | Aspect_Default_Iterator
2191 | Aspect_Dispatching_Domain
2192 | Aspect_External_Tag
2193 | Aspect_Input
2194 | Aspect_Iterable
2195 | Aspect_Iterator_Element
2196 | Aspect_Machine_Radix
2197 | Aspect_Object_Size
2198 | Aspect_Output
2199 | Aspect_Read
2200 | Aspect_Scalar_Storage_Order
d8f43ee6
HK
2201 | Aspect_Simple_Storage_Pool
2202 | Aspect_Size
2203 | Aspect_Small
2204 | Aspect_Storage_Pool
2205 | Aspect_Stream_Size
2206 | Aspect_Value_Size
2207 | Aspect_Variable_Indexing
2208 | Aspect_Write
2209 =>
b98e2969
AC
2210 -- Indexing aspects apply only to tagged type
2211
2212 if (A_Id = Aspect_Constant_Indexing
15e934bf
AC
2213 or else
2214 A_Id = Aspect_Variable_Indexing)
b98e2969
AC
2215 and then not (Is_Type (E)
2216 and then Is_Tagged_Type (E))
2217 then
f3296dd3
AC
2218 Error_Msg_N
2219 ("indexing aspect can only apply to a tagged type",
adc876a8 2220 Aspect);
b98e2969
AC
2221 goto Continue;
2222 end if;
2223
7f2c8954 2224 -- For the case of aspect Address, we don't consider that we
27a8f150
AC
2225 -- know the entity is never set in the source, since it is
2226 -- is likely aliasing is occurring.
2227
2228 -- Note: one might think that the analysis of the resulting
2229 -- attribute definition clause would take care of that, but
2230 -- that's not the case since it won't be from source.
2231
2232 if A_Id = Aspect_Address then
2233 Set_Never_Set_In_Source (E, False);
2234 end if;
2235
c74afd84
AC
2236 -- Correctness of the profile of a stream operation is
2237 -- verified at the freeze point, but we must detect the
2238 -- illegal specification of this aspect for a subtype now,
2239 -- to prevent malformed rep_item chains.
2240
72eaa365
AC
2241 if A_Id = Aspect_Input or else
2242 A_Id = Aspect_Output or else
2243 A_Id = Aspect_Read or else
2244 A_Id = Aspect_Write
c74afd84 2245 then
72eaa365
AC
2246 if not Is_First_Subtype (E) then
2247 Error_Msg_N
2248 ("local name must be a first subtype", Aspect);
2249 goto Continue;
2250
2251 -- If stream aspect applies to the class-wide type,
2252 -- the generated attribute definition applies to the
2253 -- class-wide type as well.
2254
2255 elsif Class_Present (Aspect) then
2256 Ent :=
2257 Make_Attribute_Reference (Loc,
2258 Prefix => Ent,
2259 Attribute_Name => Name_Class);
2260 end if;
c74afd84
AC
2261 end if;
2262
851e9f19
PMR
2263 -- Construct the attribute_definition_clause. The expression
2264 -- in the aspect specification is simply shared with the
2265 -- constructed attribute, because it will be fully analyzed
2266 -- when the attribute is processed. However, in ASIS mode
2267 -- the aspect expression itself is preanalyzed and resolved
2268 -- to catch visibility errors that are otherwise caught
2269 -- later, and we create a separate copy of the expression
2270 -- to prevent analysis of a malformed tree (e.g. a function
2271 -- call with parameter associations).
2272
2273 if ASIS_Mode then
2274 Aitem :=
2275 Make_Attribute_Definition_Clause (Loc,
2276 Name => Ent,
2277 Chars => Chars (Id),
2278 Expression => New_Copy_Tree (Expr));
2279 else
2280 Aitem :=
2281 Make_Attribute_Definition_Clause (Loc,
2282 Name => Ent,
2283 Chars => Chars (Id),
2284 Expression => Relocate_Node (Expr));
2285 end if;
0f1a6a0b 2286
dd3b3672 2287 -- If the address is specified, then we treat the entity as
b5bdffcc
AC
2288 -- referenced, to avoid spurious warnings. This is analogous
2289 -- to what is done with an attribute definition clause, but
2290 -- here we don't want to generate a reference because this
2291 -- is the point of definition of the entity.
2292
2293 if A_Id = Aspect_Address then
2294 Set_Referenced (E);
2295 end if;
2296
aab45d22 2297 -- Case 2: Aspects corresponding to pragmas
c159409f 2298
b98e2969
AC
2299 -- Case 2a: Aspects corresponding to pragmas with two
2300 -- arguments, where the first argument is a local name
2301 -- referring to the entity, and the second argument is the
2302 -- aspect definition expression.
0f1a6a0b 2303
19992053 2304 -- Linker_Section/Suppress/Unsuppress
9d5598bf 2305
d8f43ee6
HK
2306 when Aspect_Linker_Section
2307 | Aspect_Suppress
2308 | Aspect_Unsuppress
2309 =>
9d5598bf
AC
2310 Make_Aitem_Pragma
2311 (Pragma_Argument_Associations => New_List (
2312 Make_Pragma_Argument_Association (Loc,
2313 Expression => New_Occurrence_Of (E, Loc)),
2314 Make_Pragma_Argument_Association (Sloc (Expr),
2315 Expression => Relocate_Node (Expr))),
2316 Pragma_Name => Chars (Id));
3860d469 2317
eb0f297f
AC
2318 -- Linker_Section does not need delaying, as its argument
2319 -- must be a static string. Furthermore, if applied to
2320 -- an object with an explicit initialization, the object
2321 -- must be frozen in order to elaborate the initialization
2322 -- code. (This is already done for types with implicit
2323 -- initialization, such as protected types.)
2324
2325 if A_Id = Aspect_Linker_Section
2326 and then Nkind (N) = N_Object_Declaration
2327 and then Has_Init_Expression (N)
2328 then
2329 Delay_Required := False;
2330 end if;
2331
9d5598bf 2332 -- Synchronization
c159409f 2333
9d5598bf 2334 -- Corresponds to pragma Implemented, construct the pragma
6cbab959 2335
d62520f3 2336 when Aspect_Synchronization =>
9d5598bf
AC
2337 Make_Aitem_Pragma
2338 (Pragma_Argument_Associations => New_List (
2339 Make_Pragma_Argument_Association (Loc,
2340 Expression => New_Occurrence_Of (E, Loc)),
2341 Make_Pragma_Argument_Association (Sloc (Expr),
2342 Expression => Relocate_Node (Expr))),
2343 Pragma_Name => Name_Implemented);
6cbab959 2344
4e6768ab 2345 -- Attach_Handler
9d5598bf 2346
b98e2969 2347 when Aspect_Attach_Handler =>
9d5598bf
AC
2348 Make_Aitem_Pragma
2349 (Pragma_Argument_Associations => New_List (
2350 Make_Pragma_Argument_Association (Sloc (Ent),
2351 Expression => Ent),
2352 Make_Pragma_Argument_Association (Sloc (Expr),
2353 Expression => Relocate_Node (Expr))),
2354 Pragma_Name => Name_Attach_Handler);
2355
0df5ae93
AC
2356 -- We need to insert this pragma into the tree to get proper
2357 -- processing and to look valid from a placement viewpoint.
2358
4e6768ab 2359 Insert_Pragma (Aitem);
0df5ae93
AC
2360 goto Continue;
2361
9d5598bf 2362 -- Dynamic_Predicate, Predicate, Static_Predicate
b98e2969 2363
d8f43ee6
HK
2364 when Aspect_Dynamic_Predicate
2365 | Aspect_Predicate
2366 | Aspect_Static_Predicate
2367 =>
ac072cb2
AC
2368 -- These aspects apply only to subtypes
2369
2370 if not Is_Type (E) then
2371 Error_Msg_N
2372 ("predicate can only be specified for a subtype",
2373 Aspect);
2374 goto Continue;
fd7215d7
AC
2375
2376 elsif Is_Incomplete_Type (E) then
2377 Error_Msg_N
2378 ("predicate cannot apply to incomplete view", Aspect);
40c21e91
PMR
2379
2380 elsif Is_Generic_Type (E) then
2381 Error_Msg_N
2382 ("predicate cannot apply to formal type", Aspect);
fd7215d7 2383 goto Continue;
ac072cb2
AC
2384 end if;
2385
b98e2969 2386 -- Construct the pragma (always a pragma Predicate, with
aab45d22
AC
2387 -- flags recording whether it is static/dynamic). We also
2388 -- set flags recording this in the type itself.
b98e2969 2389
9d5598bf
AC
2390 Make_Aitem_Pragma
2391 (Pragma_Argument_Associations => New_List (
2392 Make_Pragma_Argument_Association (Sloc (Ent),
2393 Expression => Ent),
2394 Make_Pragma_Argument_Association (Sloc (Expr),
2395 Expression => Relocate_Node (Expr))),
a2c314c7 2396 Pragma_Name => Name_Predicate);
b98e2969 2397
aab45d22
AC
2398 -- Mark type has predicates, and remember what kind of
2399 -- aspect lead to this predicate (we need this to access
2400 -- the right set of check policies later on).
2401
2402 Set_Has_Predicates (E);
2403
2404 if A_Id = Aspect_Dynamic_Predicate then
2405 Set_Has_Dynamic_Predicate_Aspect (E);
89a53f83
AC
2406
2407 -- If the entity has a dynamic predicate, any inherited
2408 -- static predicate becomes dynamic as well, and the
2409 -- predicate function includes the conjunction of both.
2410
2411 Set_Has_Static_Predicate_Aspect (E, False);
2412
aab45d22
AC
2413 elsif A_Id = Aspect_Static_Predicate then
2414 Set_Has_Static_Predicate_Aspect (E);
2415 end if;
2416
b98e2969 2417 -- If the type is private, indicate that its completion
113a62d9
RD
2418 -- has a freeze node, because that is the one that will
2419 -- be visible at freeze time.
b98e2969 2420
9d5598bf 2421 if Is_Private_Type (E) and then Present (Full_View (E)) then
b98e2969 2422 Set_Has_Predicates (Full_View (E));
aab45d22
AC
2423
2424 if A_Id = Aspect_Dynamic_Predicate then
2425 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2426 elsif A_Id = Aspect_Static_Predicate then
2427 Set_Has_Static_Predicate_Aspect (Full_View (E));
2428 end if;
2429
b98e2969
AC
2430 Set_Has_Delayed_Aspects (Full_View (E));
2431 Ensure_Freeze_Node (Full_View (E));
2432 end if;
2433
a2c314c7
AC
2434 -- Predicate_Failure
2435
2436 when Aspect_Predicate_Failure =>
2437
2438 -- This aspect applies only to subtypes
2439
2440 if not Is_Type (E) then
2441 Error_Msg_N
2442 ("predicate can only be specified for a subtype",
2443 Aspect);
2444 goto Continue;
2445
2446 elsif Is_Incomplete_Type (E) then
2447 Error_Msg_N
2448 ("predicate cannot apply to incomplete view", Aspect);
2449 goto Continue;
2450 end if;
2451
2452 -- Construct the pragma
2453
2454 Make_Aitem_Pragma
2455 (Pragma_Argument_Associations => New_List (
2456 Make_Pragma_Argument_Association (Sloc (Ent),
2457 Expression => Ent),
2458 Make_Pragma_Argument_Association (Sloc (Expr),
2459 Expression => Relocate_Node (Expr))),
2460 Pragma_Name => Name_Predicate_Failure);
2461
2462 Set_Has_Predicates (E);
2463
2464 -- If the type is private, indicate that its completion
2465 -- has a freeze node, because that is the one that will
2466 -- be visible at freeze time.
2467
2468 if Is_Private_Type (E) and then Present (Full_View (E)) then
2469 Set_Has_Predicates (Full_View (E));
2470 Set_Has_Delayed_Aspects (Full_View (E));
2471 Ensure_Freeze_Node (Full_View (E));
2472 end if;
2473
b98e2969
AC
2474 -- Case 2b: Aspects corresponding to pragmas with two
2475 -- arguments, where the second argument is a local name
2476 -- referring to the entity, and the first argument is the
2477 -- aspect definition expression.
0f1a6a0b 2478
9d5598bf
AC
2479 -- Convention
2480
2e885a6f
AC
2481 when Aspect_Convention =>
2482 Analyze_Aspect_Convention;
2483 goto Continue;
41d8ee1d 2484
2e885a6f 2485 -- External_Name, Link_Name
41d8ee1d 2486
d8f43ee6
HK
2487 when Aspect_External_Name
2488 | Aspect_Link_Name
2489 =>
2e885a6f
AC
2490 Analyze_Aspect_External_Link_Name;
2491 goto Continue;
4169b895 2492
9d5598bf
AC
2493 -- CPU, Interrupt_Priority, Priority
2494
cf3b97ef
AC
2495 -- These three aspects can be specified for a subprogram spec
2496 -- or body, in which case we analyze the expression and export
2497 -- the value of the aspect.
2498
2499 -- Previously, we generated an equivalent pragma for bodies
2500 -- (note that the specs cannot contain these pragmas). The
2501 -- pragma was inserted ahead of local declarations, rather than
2502 -- after the body. This leads to a certain duplication between
2503 -- the processing performed for the aspect and the pragma, but
2504 -- given the straightforward handling required it is simpler
2505 -- to duplicate than to translate the aspect in the spec into
2506 -- a pragma in the declarative part of the body.
473e20df 2507
d8f43ee6
HK
2508 when Aspect_CPU
2509 | Aspect_Interrupt_Priority
2510 | Aspect_Priority
2511 =>
cf3b97ef
AC
2512 if Nkind_In (N, N_Subprogram_Body,
2513 N_Subprogram_Declaration)
2514 then
2515 -- Analyze the aspect expression
2516
2517 Analyze_And_Resolve (Expr, Standard_Integer);
2518
2519 -- Interrupt_Priority aspect not allowed for main
e9f97e79
AC
2520 -- subprograms. RM D.1 does not forbid this explicitly,
2521 -- but RM J.15.11(6/3) does not permit pragma
cf3b97ef
AC
2522 -- Interrupt_Priority for subprograms.
2523
2524 if A_Id = Aspect_Interrupt_Priority then
2525 Error_Msg_N
2526 ("Interrupt_Priority aspect cannot apply to "
2527 & "subprogram", Expr);
2528
2529 -- The expression must be static
2530
edab6088 2531 elsif not Is_OK_Static_Expression (Expr) then
cf3b97ef
AC
2532 Flag_Non_Static_Expr
2533 ("aspect requires static expression!", Expr);
2534
5644b7e8
AC
2535 -- Check whether this is the main subprogram. Issue a
2536 -- warning only if it is obviously not a main program
2537 -- (when it has parameters or when the subprogram is
2538 -- within a package).
2539
2540 elsif Present (Parameter_Specifications
2541 (Specification (N)))
2542 or else not Is_Compilation_Unit (Defining_Entity (N))
cf3b97ef 2543 then
e9f97e79 2544 -- See RM D.1(14/3) and D.16(12/3)
cf3b97ef
AC
2545
2546 Error_Msg_N
2547 ("aspect applied to subprogram other than the "
2548 & "main subprogram has no effect??", Expr);
2549
2550 -- Otherwise check in range and export the value
2551
2552 -- For the CPU aspect
2553
2554 elsif A_Id = Aspect_CPU then
2555 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2556
2557 -- Value is correct so we export the value to make
2558 -- it available at execution time.
2559
2560 Set_Main_CPU
2561 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2562
2563 else
2564 Error_Msg_N
2565 ("main subprogram CPU is out of range", Expr);
2566 end if;
2567
2568 -- For the Priority aspect
2569
2570 elsif A_Id = Aspect_Priority then
2571 if Is_In_Range (Expr, RTE (RE_Priority)) then
2572
2573 -- Value is correct so we export the value to make
2574 -- it available at execution time.
2575
2576 Set_Main_Priority
2577 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2578
53f697ee
AC
2579 -- Ignore pragma if Relaxed_RM_Semantics to support
2580 -- other targets/non GNAT compilers.
2581
2582 elsif not Relaxed_RM_Semantics then
cf3b97ef
AC
2583 Error_Msg_N
2584 ("main subprogram priority is out of range",
2585 Expr);
2586 end if;
2587 end if;
2588
2589 -- Load an arbitrary entity from System.Tasking.Stages
2590 -- or System.Tasking.Restricted.Stages (depending on
2591 -- the supported profile) to make sure that one of these
2592 -- packages is implicitly with'ed, since we need to have
2593 -- the tasking run time active for the pragma Priority to
6be44a9a 2594 -- have any effect. Previously we with'ed the package
cf3b97ef
AC
2595 -- System.Tasking, but this package does not trigger the
2596 -- required initialization of the run-time library.
2597
2598 declare
2599 Discard : Entity_Id;
cf3b97ef
AC
2600 begin
2601 if Restricted_Profile then
2602 Discard := RTE (RE_Activate_Restricted_Tasks);
2603 else
2604 Discard := RTE (RE_Activate_Tasks);
2605 end if;
2606 end;
2607
eacfa9bc 2608 -- Handling for these aspects in subprograms is complete
cf3b97ef
AC
2609
2610 goto Continue;
2611
634a926b
AC
2612 -- For task and protected types pass the aspect as an
2613 -- attribute.
9d5598bf 2614
473e20df
AC
2615 else
2616 Aitem :=
2617 Make_Attribute_Definition_Clause (Loc,
2618 Name => Ent,
2619 Chars => Chars (Id),
2620 Expression => Relocate_Node (Expr));
2621 end if;
2622
9d5598bf
AC
2623 -- Warnings
2624
0f1a6a0b 2625 when Aspect_Warnings =>
9d5598bf
AC
2626 Make_Aitem_Pragma
2627 (Pragma_Argument_Associations => New_List (
2628 Make_Pragma_Argument_Association (Sloc (Expr),
2629 Expression => Relocate_Node (Expr)),
2630 Make_Pragma_Argument_Association (Loc,
2631 Expression => New_Occurrence_Of (E, Loc))),
2632 Pragma_Name => Chars (Id));
0f1a6a0b 2633
877a5a12
AC
2634 Decorate (Aspect, Aitem);
2635 Insert_Pragma (Aitem);
2636 goto Continue;
2637
b98e2969
AC
2638 -- Case 2c: Aspects corresponding to pragmas with three
2639 -- arguments.
a01b9df6 2640
b98e2969
AC
2641 -- Invariant aspects have a first argument that references the
2642 -- entity, a second argument that is the expression and a third
2643 -- argument that is an appropriate message.
a01b9df6 2644
9d5598bf
AC
2645 -- Invariant, Type_Invariant
2646
d8f43ee6
HK
2647 when Aspect_Invariant
2648 | Aspect_Type_Invariant
2649 =>
b98e2969
AC
2650 -- Analysis of the pragma will verify placement legality:
2651 -- an invariant must apply to a private type, or appear in
2652 -- the private part of a spec and apply to a completion.
a01b9df6 2653
9d5598bf
AC
2654 Make_Aitem_Pragma
2655 (Pragma_Argument_Associations => New_List (
2656 Make_Pragma_Argument_Association (Sloc (Ent),
2657 Expression => Ent),
2658 Make_Pragma_Argument_Association (Sloc (Expr),
2659 Expression => Relocate_Node (Expr))),
2660 Pragma_Name => Name_Invariant);
b98e2969
AC
2661
2662 -- Add message unless exception messages are suppressed
2663
2664 if not Opt.Exception_Locations_Suppressed then
2665 Append_To (Pragma_Argument_Associations (Aitem),
2666 Make_Pragma_Argument_Association (Eloc,
2667 Chars => Name_Message,
2668 Expression =>
2669 Make_String_Literal (Eloc,
2670 Strval => "failed invariant from "
2671 & Build_Location_String (Eloc))));
a01b9df6
AC
2672 end if;
2673
b98e2969
AC
2674 -- For Invariant case, insert immediately after the entity
2675 -- declaration. We do not have to worry about delay issues
2676 -- since the pragma processing takes care of this.
2677
b98e2969 2678 Delay_Required := False;
a01b9df6 2679
c116143c
ES
2680 -- Case 2d : Aspects that correspond to a pragma with one
2681 -- argument.
2682
9d5598bf 2683 -- Abstract_State
cf6956bb 2684
54e28df2
HK
2685 -- Aspect Abstract_State introduces implicit declarations for
2686 -- all state abstraction entities it defines. To emulate this
2687 -- behavior, insert the pragma at the beginning of the visible
2688 -- declarations of the related package so that it is analyzed
2689 -- immediately.
2690
39af2bac 2691 when Aspect_Abstract_State => Abstract_State : declare
c0cdbd39 2692 Context : Node_Id := N;
39af2bac
AC
2693
2694 begin
c0cdbd39
AC
2695 -- When aspect Abstract_State appears on a generic package,
2696 -- it is propageted to the package instance. The context in
2697 -- this case is the instance spec.
2698
2699 if Nkind (Context) = N_Package_Instantiation then
2700 Context := Instance_Spec (Context);
2701 end if;
2702
2703 if Nkind_In (Context, N_Generic_Package_Declaration,
2704 N_Package_Declaration)
39af2bac 2705 then
39af2bac
AC
2706 Make_Aitem_Pragma
2707 (Pragma_Argument_Associations => New_List (
2708 Make_Pragma_Argument_Association (Loc,
2709 Expression => Relocate_Node (Expr))),
2710 Pragma_Name => Name_Abstract_State);
ebb6b0bd 2711
21d7ef70
AC
2712 Decorate (Aspect, Aitem);
2713 Insert_Pragma
2714 (Prag => Aitem,
2715 Is_Instance =>
2716 Is_Generic_Instance (Defining_Entity (Context)));
39af2bac
AC
2717
2718 else
2719 Error_Msg_NE
2720 ("aspect & must apply to a package declaration",
2721 Aspect, Id);
2722 end if;
2723
2724 goto Continue;
2725 end Abstract_State;
cf6956bb 2726
847d950d
HK
2727 -- Aspect Async_Readers is never delayed because it is
2728 -- equivalent to a source pragma which appears after the
2729 -- related object declaration.
2730
2731 when Aspect_Async_Readers =>
2732 Make_Aitem_Pragma
2733 (Pragma_Argument_Associations => New_List (
2734 Make_Pragma_Argument_Association (Loc,
2735 Expression => Relocate_Node (Expr))),
2736 Pragma_Name => Name_Async_Readers);
2737
2738 Decorate (Aspect, Aitem);
2739 Insert_Pragma (Aitem);
2740 goto Continue;
2741
2742 -- Aspect Async_Writers is never delayed because it is
2743 -- equivalent to a source pragma which appears after the
2744 -- related object declaration.
2745
2746 when Aspect_Async_Writers =>
2747 Make_Aitem_Pragma
2748 (Pragma_Argument_Associations => New_List (
2749 Make_Pragma_Argument_Association (Loc,
2750 Expression => Relocate_Node (Expr))),
2751 Pragma_Name => Name_Async_Writers);
2752
2753 Decorate (Aspect, Aitem);
2754 Insert_Pragma (Aitem);
2755 goto Continue;
2756
1df7c326
AC
2757 -- Aspect Constant_After_Elaboration is never delayed because
2758 -- it is equivalent to a source pragma which appears after the
2759 -- related object declaration.
2760
2761 when Aspect_Constant_After_Elaboration =>
2762 Make_Aitem_Pragma
2763 (Pragma_Argument_Associations => New_List (
2764 Make_Pragma_Argument_Association (Loc,
2765 Expression => Relocate_Node (Expr))),
2766 Pragma_Name =>
2767 Name_Constant_After_Elaboration);
2768
2769 Decorate (Aspect, Aitem);
2770 Insert_Pragma (Aitem);
2771 goto Continue;
2772
e477d718
AC
2773 -- Aspect Default_Internal_Condition is never delayed because
2774 -- it is equivalent to a source pragma which appears after the
2775 -- related private type. To deal with forward references, the
2776 -- generated pragma is stored in the rep chain of the related
2777 -- private type as types do not carry contracts. The pragma is
2778 -- wrapped inside of a procedure at the freeze point of the
2779 -- private type's full view.
2780
2781 when Aspect_Default_Initial_Condition =>
2782 Make_Aitem_Pragma
2783 (Pragma_Argument_Associations => New_List (
2784 Make_Pragma_Argument_Association (Loc,
2785 Expression => Relocate_Node (Expr))),
2786 Pragma_Name =>
2787 Name_Default_Initial_Condition);
2788
2789 Decorate (Aspect, Aitem);
2790 Insert_Pragma (Aitem);
2791 goto Continue;
2792
2ef05128
AC
2793 -- Default_Storage_Pool
2794
2795 when Aspect_Default_Storage_Pool =>
2796 Make_Aitem_Pragma
2797 (Pragma_Argument_Associations => New_List (
2798 Make_Pragma_Argument_Association (Loc,
2799 Expression => Relocate_Node (Expr))),
2800 Pragma_Name =>
2801 Name_Default_Storage_Pool);
2802
2803 Decorate (Aspect, Aitem);
2804 Insert_Pragma (Aitem);
2805 goto Continue;
2806
9d5598bf
AC
2807 -- Depends
2808
4e6768ab
AC
2809 -- Aspect Depends is never delayed because it is equivalent to
2810 -- a source pragma which appears after the related subprogram.
2811 -- To deal with forward references, the generated pragma is
2812 -- stored in the contract of the related subprogram and later
2813 -- analyzed at the end of the declarative region. See routine
2814 -- Analyze_Depends_In_Decl_Part for details.
fd8b4053 2815
fe96ecb9 2816 when Aspect_Depends =>
9d5598bf
AC
2817 Make_Aitem_Pragma
2818 (Pragma_Argument_Associations => New_List (
2819 Make_Pragma_Argument_Association (Loc,
2820 Expression => Relocate_Node (Expr))),
2821 Pragma_Name => Name_Depends);
2822
4e6768ab
AC
2823 Decorate (Aspect, Aitem);
2824 Insert_Pragma (Aitem);
d6095153
AC
2825 goto Continue;
2826
847d950d
HK
2827 -- Aspect Effecitve_Reads is never delayed because it is
2828 -- equivalent to a source pragma which appears after the
2829 -- related object declaration.
2830
2831 when Aspect_Effective_Reads =>
2832 Make_Aitem_Pragma
2833 (Pragma_Argument_Associations => New_List (
2834 Make_Pragma_Argument_Association (Loc,
2835 Expression => Relocate_Node (Expr))),
2836 Pragma_Name => Name_Effective_Reads);
2837
2838 Decorate (Aspect, Aitem);
2839 Insert_Pragma (Aitem);
2840 goto Continue;
2841
2842 -- Aspect Effective_Writes is never delayed because it is
2843 -- equivalent to a source pragma which appears after the
2844 -- related object declaration.
2845
2846 when Aspect_Effective_Writes =>
2847 Make_Aitem_Pragma
2848 (Pragma_Argument_Associations => New_List (
2849 Make_Pragma_Argument_Association (Loc,
2850 Expression => Relocate_Node (Expr))),
2851 Pragma_Name => Name_Effective_Writes);
2852
2853 Decorate (Aspect, Aitem);
2854 Insert_Pragma (Aitem);
2855 goto Continue;
2856
039538bc
AC
2857 -- Aspect Extensions_Visible is never delayed because it is
2858 -- equivalent to a source pragma which appears after the
2859 -- related subprogram.
2860
2861 when Aspect_Extensions_Visible =>
2862 Make_Aitem_Pragma
2863 (Pragma_Argument_Associations => New_List (
2864 Make_Pragma_Argument_Association (Loc,
2865 Expression => Relocate_Node (Expr))),
2866 Pragma_Name => Name_Extensions_Visible);
2867
2868 Decorate (Aspect, Aitem);
2869 Insert_Pragma (Aitem);
2870 goto Continue;
2871
c5cec2fe
AC
2872 -- Aspect Ghost is never delayed because it is equivalent to a
2873 -- source pragma which appears at the top of [generic] package
2874 -- declarations or after an object, a [generic] subprogram, or
2875 -- a type declaration.
2876
21d7ef70 2877 when Aspect_Ghost =>
c5cec2fe
AC
2878 Make_Aitem_Pragma
2879 (Pragma_Argument_Associations => New_List (
2880 Make_Pragma_Argument_Association (Loc,
2881 Expression => Relocate_Node (Expr))),
2882 Pragma_Name => Name_Ghost);
2883
2884 Decorate (Aspect, Aitem);
21d7ef70 2885 Insert_Pragma (Aitem);
c5cec2fe 2886 goto Continue;
c5cec2fe 2887
9d5598bf 2888 -- Global
fe96ecb9 2889
4e6768ab
AC
2890 -- Aspect Global is never delayed because it is equivalent to
2891 -- a source pragma which appears after the related subprogram.
2892 -- To deal with forward references, the generated pragma is
2893 -- stored in the contract of the related subprogram and later
2894 -- analyzed at the end of the declarative region. See routine
2895 -- Analyze_Global_In_Decl_Part for details.
7a1f1775
AC
2896
2897 when Aspect_Global =>
9d5598bf
AC
2898 Make_Aitem_Pragma
2899 (Pragma_Argument_Associations => New_List (
2900 Make_Pragma_Argument_Association (Loc,
2901 Expression => Relocate_Node (Expr))),
2902 Pragma_Name => Name_Global);
2903
4e6768ab
AC
2904 Decorate (Aspect, Aitem);
2905 Insert_Pragma (Aitem);
d6095153
AC
2906 goto Continue;
2907
9b2451e5
AC
2908 -- Initial_Condition
2909
4e6768ab
AC
2910 -- Aspect Initial_Condition is never delayed because it is
2911 -- equivalent to a source pragma which appears after the
2912 -- related package. To deal with forward references, the
2913 -- generated pragma is stored in the contract of the related
2914 -- package and later analyzed at the end of the declarative
2915 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2916 -- for details.
9b2451e5
AC
2917
2918 when Aspect_Initial_Condition => Initial_Condition : declare
c0cdbd39 2919 Context : Node_Id := N;
9b2451e5
AC
2920
2921 begin
4e6768ab
AC
2922 -- When aspect Initial_Condition appears on a generic
2923 -- package, it is propageted to the package instance. The
2924 -- context in this case is the instance spec.
c0cdbd39
AC
2925
2926 if Nkind (Context) = N_Package_Instantiation then
2927 Context := Instance_Spec (Context);
2928 end if;
2929
2930 if Nkind_In (Context, N_Generic_Package_Declaration,
2931 N_Package_Declaration)
9b2451e5 2932 then
9b2451e5
AC
2933 Make_Aitem_Pragma
2934 (Pragma_Argument_Associations => New_List (
2935 Make_Pragma_Argument_Association (Loc,
2936 Expression => Relocate_Node (Expr))),
2937 Pragma_Name =>
2938 Name_Initial_Condition);
9b2451e5 2939
21d7ef70
AC
2940 Decorate (Aspect, Aitem);
2941 Insert_Pragma
2942 (Prag => Aitem,
2943 Is_Instance =>
2944 Is_Generic_Instance (Defining_Entity (Context)));
e59243fa 2945
21d7ef70 2946 -- Otherwise the context is illegal
9b2451e5
AC
2947
2948 else
2949 Error_Msg_NE
2950 ("aspect & must apply to a package declaration",
2951 Aspect, Id);
2952 end if;
2953
2954 goto Continue;
2955 end Initial_Condition;
2956
54e28df2
HK
2957 -- Initializes
2958
4e6768ab
AC
2959 -- Aspect Initializes is never delayed because it is equivalent
2960 -- to a source pragma appearing after the related package. To
2961 -- deal with forward references, the generated pragma is stored
2962 -- in the contract of the related package and later analyzed at
2963 -- the end of the declarative region. For details, see routine
2964 -- Analyze_Initializes_In_Decl_Part.
54e28df2
HK
2965
2966 when Aspect_Initializes => Initializes : declare
c0cdbd39 2967 Context : Node_Id := N;
54e28df2
HK
2968
2969 begin
e59243fa
AC
2970 -- When aspect Initializes appears on a generic package,
2971 -- it is propageted to the package instance. The context
2972 -- in this case is the instance spec.
c0cdbd39
AC
2973
2974 if Nkind (Context) = N_Package_Instantiation then
2975 Context := Instance_Spec (Context);
2976 end if;
2977
2978 if Nkind_In (Context, N_Generic_Package_Declaration,
2979 N_Package_Declaration)
54e28df2 2980 then
54e28df2
HK
2981 Make_Aitem_Pragma
2982 (Pragma_Argument_Associations => New_List (
2983 Make_Pragma_Argument_Association (Loc,
2984 Expression => Relocate_Node (Expr))),
2985 Pragma_Name => Name_Initializes);
54e28df2 2986
21d7ef70
AC
2987 Decorate (Aspect, Aitem);
2988 Insert_Pragma
2989 (Prag => Aitem,
2990 Is_Instance =>
2991 Is_Generic_Instance (Defining_Entity (Context)));
e59243fa 2992
21d7ef70 2993 -- Otherwise the context is illegal
54e28df2
HK
2994
2995 else
2996 Error_Msg_NE
2997 ("aspect & must apply to a package declaration",
2998 Aspect, Id);
2999 end if;
3000
3001 goto Continue;
3002 end Initializes;
3003
656d1fba
JS
3004 -- Max_Entry_Queue_Depth
3005
3006 when Aspect_Max_Entry_Queue_Depth =>
3007 Make_Aitem_Pragma
3008 (Pragma_Argument_Associations => New_List (
3009 Make_Pragma_Argument_Association (Loc,
3010 Expression => Relocate_Node (Expr))),
3011 Pragma_Name => Name_Max_Entry_Queue_Depth);
3012
3013 Decorate (Aspect, Aitem);
3014 Insert_Pragma (Aitem);
3015 goto Continue;
3016
442d1abb
AC
3017 -- Max_Queue_Length
3018
3019 when Aspect_Max_Queue_Length =>
3020 Make_Aitem_Pragma
3021 (Pragma_Argument_Associations => New_List (
3022 Make_Pragma_Argument_Association (Loc,
3023 Expression => Relocate_Node (Expr))),
3024 Pragma_Name => Name_Max_Queue_Length);
3025
3026 Decorate (Aspect, Aitem);
3027 Insert_Pragma (Aitem);
3028 goto Continue;
3029
c2a2dbcc
RD
3030 -- Obsolescent
3031
3032 when Aspect_Obsolescent => declare
3033 Args : List_Id;
3034
3035 begin
3036 if No (Expr) then
3037 Args := No_List;
3038 else
3039 Args := New_List (
3040 Make_Pragma_Argument_Association (Sloc (Expr),
3041 Expression => Relocate_Node (Expr)));
3042 end if;
3043
3044 Make_Aitem_Pragma
3045 (Pragma_Argument_Associations => Args,
3046 Pragma_Name => Chars (Id));
3047 end;
3048
d7af5ea5
HK
3049 -- Part_Of
3050
3051 when Aspect_Part_Of =>
3052 if Nkind_In (N, N_Object_Declaration,
3053 N_Package_Instantiation)
75b87c16 3054 or else Is_Single_Concurrent_Type_Declaration (N)
d7af5ea5
HK
3055 then
3056 Make_Aitem_Pragma
3057 (Pragma_Argument_Associations => New_List (
3058 Make_Pragma_Argument_Association (Loc,
3059 Expression => Relocate_Node (Expr))),
3060 Pragma_Name => Name_Part_Of);
3061
75b87c16
AC
3062 Decorate (Aspect, Aitem);
3063 Insert_Pragma (Aitem);
75b87c16 3064
d7af5ea5
HK
3065 else
3066 Error_Msg_NE
75b87c16
AC
3067 ("aspect & must apply to package instantiation, "
3068 & "object, single protected type or single task type",
3069 Aspect, Id);
d7af5ea5
HK
3070 end if;
3071
90b510e4
AC
3072 goto Continue;
3073
1c6269d3
HK
3074 -- SPARK_Mode
3075
877a5a12 3076 when Aspect_SPARK_Mode =>
1c6269d3
HK
3077 Make_Aitem_Pragma
3078 (Pragma_Argument_Associations => New_List (
3079 Make_Pragma_Argument_Association (Loc,
3080 Expression => Relocate_Node (Expr))),
3081 Pragma_Name => Name_SPARK_Mode);
1c6269d3 3082
877a5a12
AC
3083 Decorate (Aspect, Aitem);
3084 Insert_Pragma (Aitem);
3085 goto Continue;
5ff90f08 3086
ea3c0651
AC
3087 -- Refined_Depends
3088
4e6768ab
AC
3089 -- Aspect Refined_Depends is never delayed because it is
3090 -- equivalent to a source pragma which appears in the
3091 -- declarations of the related subprogram body. To deal with
3092 -- forward references, the generated pragma is stored in the
3093 -- contract of the related subprogram body and later analyzed
3094 -- at the end of the declarative region. For details, see
3095 -- routine Analyze_Refined_Depends_In_Decl_Part.
ea3c0651
AC
3096
3097 when Aspect_Refined_Depends =>
39d3009f
AC
3098 Make_Aitem_Pragma
3099 (Pragma_Argument_Associations => New_List (
3100 Make_Pragma_Argument_Association (Loc,
3101 Expression => Relocate_Node (Expr))),
3102 Pragma_Name => Name_Refined_Depends);
3103
4e6768ab
AC
3104 Decorate (Aspect, Aitem);
3105 Insert_Pragma (Aitem);
39d3009f 3106 goto Continue;
ea3c0651
AC
3107
3108 -- Refined_Global
3109
4e6768ab
AC
3110 -- Aspect Refined_Global is never delayed because it is
3111 -- equivalent to a source pragma which appears in the
3112 -- declarations of the related subprogram body. To deal with
3113 -- forward references, the generated pragma is stored in the
3114 -- contract of the related subprogram body and later analyzed
3115 -- at the end of the declarative region. For details, see
3116 -- routine Analyze_Refined_Global_In_Decl_Part.
ea3c0651
AC
3117
3118 when Aspect_Refined_Global =>
ab8843fa
HK
3119 Make_Aitem_Pragma
3120 (Pragma_Argument_Associations => New_List (
3121 Make_Pragma_Argument_Association (Loc,
3122 Expression => Relocate_Node (Expr))),
3123 Pragma_Name => Name_Refined_Global);
3124
4e6768ab
AC
3125 Decorate (Aspect, Aitem);
3126 Insert_Pragma (Aitem);
ab8843fa 3127 goto Continue;
ea3c0651 3128
e7f23f06
AC
3129 -- Refined_Post
3130
3131 when Aspect_Refined_Post =>
3132 Make_Aitem_Pragma
3133 (Pragma_Argument_Associations => New_List (
3134 Make_Pragma_Argument_Association (Loc,
3135 Expression => Relocate_Node (Expr))),
3136 Pragma_Name => Name_Refined_Post);
3137
8a0183fd
HK
3138 Decorate (Aspect, Aitem);
3139 Insert_Pragma (Aitem);
3140 goto Continue;
3141
39af2bac
AC
3142 -- Refined_State
3143
21d7ef70 3144 when Aspect_Refined_State =>
39af2bac 3145
39af2bac
AC
3146 -- The corresponding pragma for Refined_State is inserted in
3147 -- the declarations of the related package body. This action
3148 -- synchronizes both the source and from-aspect versions of
3149 -- the pragma.
3150
3151 if Nkind (N) = N_Package_Body then
39af2bac
AC
3152 Make_Aitem_Pragma
3153 (Pragma_Argument_Associations => New_List (
3154 Make_Pragma_Argument_Association (Loc,
3155 Expression => Relocate_Node (Expr))),
3156 Pragma_Name => Name_Refined_State);
2dade097 3157
21d7ef70
AC
3158 Decorate (Aspect, Aitem);
3159 Insert_Pragma (Aitem);
2dade097 3160
21d7ef70 3161 -- Otherwise the context is illegal
39af2bac
AC
3162
3163 else
3164 Error_Msg_NE
3165 ("aspect & must apply to a package body", Aspect, Id);
3166 end if;
3167
3168 goto Continue;
39af2bac 3169
9d5598bf 3170 -- Relative_Deadline
7a1f1775
AC
3171
3172 when Aspect_Relative_Deadline =>
9d5598bf
AC
3173 Make_Aitem_Pragma
3174 (Pragma_Argument_Associations => New_List (
3175 Make_Pragma_Argument_Association (Loc,
3176 Expression => Relocate_Node (Expr))),
3177 Pragma_Name => Name_Relative_Deadline);
c116143c
ES
3178
3179 -- If the aspect applies to a task, the corresponding pragma
3180 -- must appear within its declarations, not after.
3181
3182 if Nkind (N) = N_Task_Type_Declaration then
3183 declare
3184 Def : Node_Id;
3185 V : List_Id;
3186
3187 begin
3188 if No (Task_Definition (N)) then
3189 Set_Task_Definition (N,
3190 Make_Task_Definition (Loc,
3191 Visible_Declarations => New_List,
3192 End_Label => Empty));
3193 end if;
3194
3195 Def := Task_Definition (N);
3196 V := Visible_Declarations (Def);
3197 if not Is_Empty_List (V) then
3198 Insert_Before (First (V), Aitem);
3199
3200 else
3201 Set_Visible_Declarations (Def, New_List (Aitem));
3202 end if;
3203
3204 goto Continue;
3205 end;
3206 end if;
3207
a40d9947
PB
3208 -- Secondary_Stack_Size
3209
3210 -- Aspect Secondary_Stack_Size needs to be converted into a
3211 -- pragma for two reasons: the attribute is not analyzed until
3212 -- after the expansion of the task type declaration and the
3213 -- attribute does not have visibility on the discriminant.
3214
3215 when Aspect_Secondary_Stack_Size =>
3216 Make_Aitem_Pragma
3217 (Pragma_Argument_Associations => New_List (
3218 Make_Pragma_Argument_Association (Loc,
3219 Expression => Relocate_Node (Expr))),
3220 Pragma_Name =>
3221 Name_Secondary_Stack_Size);
3222
3223 Decorate (Aspect, Aitem);
3224 Insert_Pragma (Aitem);
3225 goto Continue;
3226
3227 -- Volatile_Function
3228
847d950d
HK
3229 -- Aspect Volatile_Function is never delayed because it is
3230 -- equivalent to a source pragma which appears after the
3231 -- related subprogram.
3232
3233 when Aspect_Volatile_Function =>
3234 Make_Aitem_Pragma
3235 (Pragma_Argument_Associations => New_List (
3236 Make_Pragma_Argument_Association (Loc,
3237 Expression => Relocate_Node (Expr))),
3238 Pragma_Name => Name_Volatile_Function);
3239
3240 Decorate (Aspect, Aitem);
3241 Insert_Pragma (Aitem);
3242 goto Continue;
3243
52d9ba4d
AC
3244 -- Case 2e: Annotate aspect
3245
3246 when Aspect_Annotate =>
3247 declare
3248 Args : List_Id;
3249 Pargs : List_Id;
3250 Arg : Node_Id;
3251
3252 begin
3253 -- The argument can be a single identifier
3254
3255 if Nkind (Expr) = N_Identifier then
3256
3257 -- One level of parens is allowed
3258
3259 if Paren_Count (Expr) > 1 then
3260 Error_Msg_F ("extra parentheses ignored", Expr);
3261 end if;
3262
3263 Set_Paren_Count (Expr, 0);
3264
3265 -- Add the single item to the list
3266
3267 Args := New_List (Expr);
3268
3269 -- Otherwise we must have an aggregate
3270
3271 elsif Nkind (Expr) = N_Aggregate then
3272
3273 -- Must be positional
3274
3275 if Present (Component_Associations (Expr)) then
3276 Error_Msg_F
3277 ("purely positional aggregate required", Expr);
3278 goto Continue;
3279 end if;
3280
3281 -- Must not be parenthesized
3282
3283 if Paren_Count (Expr) /= 0 then
3284 Error_Msg_F ("extra parentheses ignored", Expr);
3285 end if;
3286
3287 -- List of arguments is list of aggregate expressions
3288
3289 Args := Expressions (Expr);
3290
3291 -- Anything else is illegal
3292
3293 else
3294 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3295 goto Continue;
3296 end if;
3297
3298 -- Prepare pragma arguments
3299
3300 Pargs := New_List;
3301 Arg := First (Args);
3302 while Present (Arg) loop
3303 Append_To (Pargs,
3304 Make_Pragma_Argument_Association (Sloc (Arg),
3305 Expression => Relocate_Node (Arg)));
3306 Next (Arg);
3307 end loop;
3308
3309 Append_To (Pargs,
3310 Make_Pragma_Argument_Association (Sloc (Ent),
3311 Chars => Name_Entity,
3312 Expression => Ent));
3313
3314 Make_Aitem_Pragma
3315 (Pragma_Argument_Associations => Pargs,
3316 Pragma_Name => Name_Annotate);
3317 end;
3318
b98e2969
AC
3319 -- Case 3 : Aspects that don't correspond to pragma/attribute
3320 -- definition clause.
6d9e03cb 3321
b98e2969
AC
3322 -- Case 3a: The aspects listed below don't correspond to
3323 -- pragmas/attributes but do require delayed analysis.
2ef48385 3324
33c9f9af
AC
3325 -- Default_Value can only apply to a scalar type
3326
3327 when Aspect_Default_Value =>
3328 if not Is_Scalar_Type (E) then
3329 Error_Msg_N
ad075b50 3330 ("aspect Default_Value must apply to a scalar type", N);
33c9f9af
AC
3331 end if;
3332
3333 Aitem := Empty;
3334
3335 -- Default_Component_Value can only apply to an array type
3336 -- with scalar components.
3337
3338 when Aspect_Default_Component_Value =>
3339 if not (Is_Array_Type (E)
adc876a8 3340 and then Is_Scalar_Type (Component_Type (E)))
33c9f9af 3341 then
2e885a6f
AC
3342 Error_Msg_N
3343 ("aspect Default_Component_Value can only apply to an "
3344 & "array of scalar components", N);
33c9f9af 3345 end if;
9d5598bf 3346
b98e2969 3347 Aitem := Empty;
2ef48385 3348
b98e2969
AC
3349 -- Case 3b: The aspects listed below don't correspond to
3350 -- pragmas/attributes and don't need delayed analysis.
ddf67a1d 3351
9d5598bf
AC
3352 -- Implicit_Dereference
3353
b98e2969
AC
3354 -- For Implicit_Dereference, External_Name and Link_Name, only
3355 -- the legality checks are done during the analysis, thus no
3356 -- delay is required.
fecbd779 3357
b98e2969
AC
3358 when Aspect_Implicit_Dereference =>
3359 Analyze_Aspect_Implicit_Dereference;
3360 goto Continue;
2ef48385 3361
9d5598bf
AC
3362 -- Dimension
3363
b98e2969
AC
3364 when Aspect_Dimension =>
3365 Analyze_Aspect_Dimension (N, Id, Expr);
3366 goto Continue;
516f608f 3367
9d5598bf
AC
3368 -- Dimension_System
3369
b98e2969
AC
3370 when Aspect_Dimension_System =>
3371 Analyze_Aspect_Dimension_System (N, Id, Expr);
3372 goto Continue;
2ef48385 3373
2cbac6c6 3374 -- Case 4: Aspects requiring special handling
aab45d22 3375
541fb4d9
YM
3376 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3377 -- pragmas take care of the delay.
2ef48385 3378
9d5598bf
AC
3379 -- Pre/Post
3380
c775c209
AC
3381 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3382 -- with a first argument that is the expression, and a second
3383 -- argument that is an informative message if the test fails.
3384 -- This is inserted right after the declaration, to get the
e606088a
AC
3385 -- required pragma placement. The processing for the pragmas
3386 -- takes care of the required delay.
0f1a6a0b 3387
5afe5d2d 3388 when Pre_Post_Aspects => Pre_Post : declare
c775c209 3389 Pname : Name_Id;
0f1a6a0b 3390
c775c209 3391 begin
857ade1b 3392 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
c775c209
AC
3393 Pname := Name_Precondition;
3394 else
3395 Pname := Name_Postcondition;
3396 end if;
c159409f 3397
57323d5b 3398 -- Check that the class-wide predicate cannot be applied to
f2a54683
AC
3399 -- an operation of a synchronized type. AI12-0182 forbids
3400 -- these altogether, while earlier language semantics made
3401 -- them legal on tagged synchronized types.
3402
3403 -- Other legality checks are performed when analyzing the
3404 -- contract of the operation.
57323d5b
AC
3405
3406 if Class_Present (Aspect)
3407 and then Is_Concurrent_Type (Current_Scope)
57323d5b
AC
3408 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3409 then
3410 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3411 Error_Msg_N
3412 ("aspect % can only be specified for a primitive "
3413 & "operation of a tagged type", Aspect);
3414
3415 goto Continue;
3416 end if;
3417
c775c209
AC
3418 -- If the expressions is of the form A and then B, then
3419 -- we generate separate Pre/Post aspects for the separate
3420 -- clauses. Since we allow multiple pragmas, there is no
3421 -- problem in allowing multiple Pre/Post aspects internally.
2d395256
AC
3422 -- These should be treated in reverse order (B first and
3423 -- A second) since they are later inserted just after N in
3424 -- the order they are treated. This way, the pragma for A
3425 -- ends up preceding the pragma for B, which may have an
3426 -- importance for the error raised (either constraint error
3427 -- or precondition error).
c775c209 3428
beacce02 3429 -- We do not do this for Pre'Class, since we have to put
33c9f9af 3430 -- these conditions together in a complex OR expression.
0f1a6a0b 3431
8c18a165
AC
3432 -- We do not do this in ASIS mode, as ASIS relies on the
3433 -- original node representing the complete expression, when
270c6b4d
PT
3434 -- retrieving it through the source aspect table. Also, we
3435 -- don't do this in GNATprove mode, because it brings no
3436 -- benefit for proof and causes annoynace for flow analysis,
3437 -- which prefers to be as close to the original source code
3438 -- as possible.
8c18a165 3439
270c6b4d 3440 if not (ASIS_Mode or GNATprove_Mode)
8c18a165
AC
3441 and then (Pname = Name_Postcondition
3442 or else not Class_Present (Aspect))
beacce02
AC
3443 then
3444 while Nkind (Expr) = N_And_Then loop
3445 Insert_After (Aspect,
2d395256 3446 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
beacce02 3447 Identifier => Identifier (Aspect),
2d395256 3448 Expression => Relocate_Node (Left_Opnd (Expr)),
beacce02
AC
3449 Class_Present => Class_Present (Aspect),
3450 Split_PPC => True));
2d395256 3451 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
beacce02
AC
3452 Eloc := Sloc (Expr);
3453 end loop;
3454 end if;
0f1a6a0b 3455
a9e892d0
AC
3456 -- Build the precondition/postcondition pragma
3457
e87f67eb
ES
3458 -- We use Relocate_Node here rather than New_Copy_Tree
3459 -- because subsequent visibility analysis of the aspect
3460 -- depends on this sharing. This should be cleaned up???
c159409f 3461
5291985c
ES
3462 -- If the context is generic or involves ASIS, we want
3463 -- to preserve the original tree, and simply share it
3464 -- between aspect and generated attribute. This parallels
3465 -- what is done in sem_prag.adb (see Get_Argument).
3466
3467 declare
3468 New_Expr : Node_Id;
3469
3470 begin
3471 if ASIS_Mode or else Inside_A_Generic then
3472 New_Expr := Expr;
3473 else
3474 New_Expr := Relocate_Node (Expr);
3475 end if;
3476
3477 Make_Aitem_Pragma
3478 (Pragma_Argument_Associations => New_List (
3479 Make_Pragma_Argument_Association (Eloc,
3480 Chars => Name_Check,
3481 Expression => New_Expr)),
3482 Pragma_Name => Pname);
3483 end;
beacce02
AC
3484
3485 -- Add message unless exception messages are suppressed
3486
3487 if not Opt.Exception_Locations_Suppressed then
3488 Append_To (Pragma_Argument_Associations (Aitem),
3489 Make_Pragma_Argument_Association (Eloc,
c9d70ab1 3490 Chars => Name_Message,
beacce02
AC
3491 Expression =>
3492 Make_String_Literal (Eloc,
3493 Strval => "failed "
3494 & Get_Name_String (Pname)
3495 & " from "
3496 & Build_Location_String (Eloc))));
3497 end if;
c159409f 3498
47e11d08 3499 Set_Is_Delayed_Aspect (Aspect);
c159409f 3500
c775c209
AC
3501 -- For Pre/Post cases, insert immediately after the entity
3502 -- declaration, since that is the required pragma placement.
3503 -- Note that for these aspects, we do not have to worry
3504 -- about delay issues, since the pragmas themselves deal
3505 -- with delay of visibility for the expression analysis.
3506
4e6768ab 3507 Insert_Pragma (Aitem);
5c5e108f 3508
c775c209 3509 goto Continue;
5afe5d2d 3510 end Pre_Post;
0f1a6a0b 3511
9d5598bf
AC
3512 -- Test_Case
3513
541fb4d9
YM
3514 when Aspect_Test_Case => Test_Case : declare
3515 Args : List_Id;
3516 Comp_Expr : Node_Id;
3517 Comp_Assn : Node_Id;
3518 New_Expr : Node_Id;
3860d469 3519
541fb4d9
YM
3520 begin
3521 Args := New_List;
5accd7b6 3522
541fb4d9
YM
3523 if Nkind (Parent (N)) = N_Compilation_Unit then
3524 Error_Msg_Name_1 := Nam;
3525 Error_Msg_N ("incorrect placement of aspect `%`", E);
3526 goto Continue;
3527 end if;
dac3bede 3528
541fb4d9
YM
3529 if Nkind (Expr) /= N_Aggregate then
3530 Error_Msg_Name_1 := Nam;
3531 Error_Msg_NE
3532 ("wrong syntax for aspect `%` for &", Id, E);
3533 goto Continue;
3534 end if;
dac3bede 3535
541fb4d9 3536 -- Make pragma expressions refer to the original aspect
33c9f9af
AC
3537 -- expressions through the Original_Node link. This is used
3538 -- in semantic analysis for ASIS mode, so that the original
3539 -- expression also gets analyzed.
541fb4d9
YM
3540
3541 Comp_Expr := First (Expressions (Expr));
3542 while Present (Comp_Expr) loop
3543 New_Expr := Relocate_Node (Comp_Expr);
541fb4d9
YM
3544 Append_To (Args,
3545 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3546 Expression => New_Expr));
3547 Next (Comp_Expr);
3548 end loop;
3549
3550 Comp_Assn := First (Component_Associations (Expr));
3551 while Present (Comp_Assn) loop
3552 if List_Length (Choices (Comp_Assn)) /= 1
3553 or else
3554 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3555 then
90e85233 3556 Error_Msg_Name_1 := Nam;
dac3bede 3557 Error_Msg_NE
90e85233 3558 ("wrong syntax for aspect `%` for &", Id, E);
dac3bede
YM
3559 goto Continue;
3560 end if;
3561
541fb4d9
YM
3562 Append_To (Args,
3563 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
c9d70ab1
AC
3564 Chars => Chars (First (Choices (Comp_Assn))),
3565 Expression =>
3566 Relocate_Node (Expression (Comp_Assn))));
541fb4d9
YM
3567 Next (Comp_Assn);
3568 end loop;
dac3bede 3569
541fb4d9 3570 -- Build the test-case pragma
dac3bede 3571
9d5598bf
AC
3572 Make_Aitem_Pragma
3573 (Pragma_Argument_Associations => Args,
3574 Pragma_Name => Nam);
541fb4d9 3575 end Test_Case;
dec6faf1 3576
9d5598bf
AC
3577 -- Contract_Cases
3578
5afe5d2d 3579 when Aspect_Contract_Cases =>
9d5598bf
AC
3580 Make_Aitem_Pragma
3581 (Pragma_Argument_Associations => New_List (
3582 Make_Pragma_Argument_Association (Loc,
3583 Expression => Relocate_Node (Expr))),
3584 Pragma_Name => Nam);
570104df 3585
4e6768ab
AC
3586 Decorate (Aspect, Aitem);
3587 Insert_Pragma (Aitem);
5afe5d2d 3588 goto Continue;
570104df 3589
b98e2969
AC
3590 -- Case 5: Special handling for aspects with an optional
3591 -- boolean argument.
dec6faf1 3592
c8593453 3593 -- In the delayed case, the corresponding pragma cannot be
9d5598bf
AC
3594 -- generated yet because the evaluation of the boolean needs
3595 -- to be delayed till the freeze point.
3596
d8f43ee6
HK
3597 when Boolean_Aspects
3598 | Library_Unit_Aspects
3599 =>
b98e2969 3600 Set_Is_Boolean_Aspect (Aspect);
9d6e4157 3601
b98e2969 3602 -- Lock_Free aspect only apply to protected objects
4169b895 3603
b98e2969
AC
3604 if A_Id = Aspect_Lock_Free then
3605 if Ekind (E) /= E_Protected_Type then
dc3af7e2 3606 Error_Msg_Name_1 := Nam;
9d6e4157 3607 Error_Msg_N
b98e2969
AC
3608 ("aspect % only applies to a protected object",
3609 Aspect);
3610
3611 else
3612 -- Set the Uses_Lock_Free flag to True if there is no
15e934bf 3613 -- expression or if the expression is True. The
b98e2969 3614 -- evaluation of this aspect should be delayed to the
15e934bf 3615 -- freeze point (why???)
b98e2969 3616
eefd2467
AC
3617 if No (Expr)
3618 or else Is_True (Static_Boolean (Expr))
b98e2969
AC
3619 then
3620 Set_Uses_Lock_Free (E);
3621 end if;
2a290fec
AC
3622
3623 Record_Rep_Item (E, Aspect);
9d6e4157 3624 end if;
4169b895 3625
b98e2969 3626 goto Continue;
0f1a6a0b 3627
2e885a6f
AC
3628 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3629 Analyze_Aspect_Export_Import;
c8593453
AC
3630
3631 -- Disable_Controlled
3632
3633 elsif A_Id = Aspect_Disable_Controlled then
0cb81445 3634 Analyze_Aspect_Disable_Controlled;
b98e2969
AC
3635 goto Continue;
3636 end if;
c159409f 3637
15e934bf
AC
3638 -- Library unit aspects require special handling in the case
3639 -- of a package declaration, the pragma needs to be inserted
3640 -- in the list of declarations for the associated package.
3641 -- There is no issue of visibility delay for these aspects.
a01b9df6 3642
b98e2969 3643 if A_Id in Library_Unit_Aspects
7271429c
AC
3644 and then
3645 Nkind_In (N, N_Package_Declaration,
3646 N_Generic_Package_Declaration)
b98e2969 3647 and then Nkind (Parent (N)) /= N_Compilation_Unit
4d1429b2
AC
3648
3649 -- Aspect is legal on a local instantiation of a library-
3650 -- level generic unit.
3651
c9f95e4c 3652 and then not Is_Generic_Instance (Defining_Entity (N))
b98e2969
AC
3653 then
3654 Error_Msg_N
8894aa20 3655 ("incorrect context for library unit aspect&", Id);
b98e2969
AC
3656 goto Continue;
3657 end if;
ba759acd 3658
33c9f9af
AC
3659 -- Cases where we do not delay, includes all cases where the
3660 -- expression is missing other than the above cases.
c159409f 3661
847d950d 3662 if not Delay_Required or else No (Expr) then
2e885a6f
AC
3663
3664 -- Exclude aspects Export and Import because their pragma
3665 -- syntax does not map directly to a Boolean aspect.
3666
3667 if A_Id /= Aspect_Export
3668 and then A_Id /= Aspect_Import
3669 then
3670 Make_Aitem_Pragma
3671 (Pragma_Argument_Associations => New_List (
3672 Make_Pragma_Argument_Association (Sloc (Ent),
3673 Expression => Ent)),
3674 Pragma_Name => Chars (Id));
3675 end if;
3676
b98e2969 3677 Delay_Required := False;
1c54829e 3678
b98e2969
AC
3679 -- In general cases, the corresponding pragma/attribute
3680 -- definition clause will be inserted later at the freezing
2f6f8285 3681 -- point, and we do not need to build it now.
1c54829e 3682
b98e2969
AC
3683 else
3684 Aitem := Empty;
3685 end if;
2cbac6c6
AC
3686
3687 -- Storage_Size
3688
3689 -- This is special because for access types we need to generate
3690 -- an attribute definition clause. This also works for single
3691 -- task declarations, but it does not work for task type
3692 -- declarations, because we have the case where the expression
3693 -- references a discriminant of the task type. That can't use
3694 -- an attribute definition clause because we would not have
3695 -- visibility on the discriminant. For that case we must
3696 -- generate a pragma in the task definition.
3697
3698 when Aspect_Storage_Size =>
3699
3700 -- Task type case
3701
3702 if Ekind (E) = E_Task_Type then
3703 declare
3704 Decl : constant Node_Id := Declaration_Node (E);
3705
3706 begin
3707 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3708
3709 -- If no task definition, create one
3710
3711 if No (Task_Definition (Decl)) then
3712 Set_Task_Definition (Decl,
3713 Make_Task_Definition (Loc,
3714 Visible_Declarations => Empty_List,
3715 End_Label => Empty));
3716 end if;
3717
33c9f9af
AC
3718 -- Create a pragma and put it at the start of the task
3719 -- definition for the task type declaration.
2cbac6c6
AC
3720
3721 Make_Aitem_Pragma
3722 (Pragma_Argument_Associations => New_List (
3723 Make_Pragma_Argument_Association (Loc,
3724 Expression => Relocate_Node (Expr))),
3725 Pragma_Name => Name_Storage_Size);
3726
3727 Prepend
3728 (Aitem,
3729 Visible_Declarations (Task_Definition (Decl)));
3730 goto Continue;
3731 end;
3732
3733 -- All other cases, generate attribute definition
3734
3735 else
3736 Aitem :=
3737 Make_Attribute_Definition_Clause (Loc,
3738 Name => Ent,
3739 Chars => Chars (Id),
3740 Expression => Relocate_Node (Expr));
3741 end if;
b98e2969 3742 end case;
1c54829e 3743
b98e2969
AC
3744 -- Attach the corresponding pragma/attribute definition clause to
3745 -- the aspect specification node.
c159409f 3746
b98e2969 3747 if Present (Aitem) then
4e6768ab 3748 Set_From_Aspect_Specification (Aitem);
b98e2969 3749 end if;
ca5af305 3750
b98e2969 3751 -- In the context of a compilation unit, we directly put the
9d5598bf
AC
3752 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3753 -- node (no delay is required here) except for aspects on a
33c9f9af
AC
3754 -- subprogram body (see below) and a generic package, for which we
3755 -- need to introduce the pragma before building the generic copy
3756 -- (see sem_ch12), and for package instantiations, where the
3757 -- library unit pragmas are better handled early.
1c54829e 3758
39af2bac 3759 if Nkind (Parent (N)) = N_Compilation_Unit
b98e2969
AC
3760 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3761 then
3762 declare
3763 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
2ef48385 3764
b98e2969
AC
3765 begin
3766 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
2ef48385 3767
b98e2969
AC
3768 -- For a Boolean aspect, create the corresponding pragma if
3769 -- no expression or if the value is True.
2ef48385 3770
616547fa 3771 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
b98e2969 3772 if Is_True (Static_Boolean (Expr)) then
9d5598bf
AC
3773 Make_Aitem_Pragma
3774 (Pragma_Argument_Associations => New_List (
3775 Make_Pragma_Argument_Association (Sloc (Ent),
3776 Expression => Ent)),
3777 Pragma_Name => Chars (Id));
2ef48385 3778
b98e2969
AC
3779 Set_From_Aspect_Specification (Aitem, True);
3780 Set_Corresponding_Aspect (Aitem, Aspect);
3781
3782 else
3783 goto Continue;
3784 end if;
3785 end if;
2ef48385 3786
cf3b97ef
AC
3787 -- If the aspect is on a subprogram body (relevant aspect
3788 -- is Inline), add the pragma in front of the declarations.
473e20df
AC
3789
3790 if Nkind (N) = N_Subprogram_Body then
3791 if No (Declarations (N)) then
3792 Set_Declarations (N, New_List);
3793 end if;
3794
3795 Prepend (Aitem, Declarations (N));
3796
7271429c
AC
3797 elsif Nkind (N) = N_Generic_Package_Declaration then
3798 if No (Visible_Declarations (Specification (N))) then
3799 Set_Visible_Declarations (Specification (N), New_List);
3800 end if;
3801
3802 Prepend (Aitem,
3803 Visible_Declarations (Specification (N)));
3804
f5da7a97 3805 elsif Nkind (N) = N_Package_Instantiation then
31dd3f4b
ES
3806 declare
3807 Spec : constant Node_Id :=
3808 Specification (Instance_Spec (N));
3809 begin
3810 if No (Visible_Declarations (Spec)) then
3811 Set_Visible_Declarations (Spec, New_List);
3812 end if;
3813
3814 Prepend (Aitem, Visible_Declarations (Spec));
3815 end;
3816
473e20df
AC
3817 else
3818 if No (Pragmas_After (Aux)) then
6a04272a 3819 Set_Pragmas_After (Aux, New_List);
473e20df
AC
3820 end if;
3821
3822 Append (Aitem, Pragmas_After (Aux));
b98e2969 3823 end if;
2ef48385 3824
b98e2969
AC
3825 goto Continue;
3826 end;
3827 end if;
2ef48385 3828
b98e2969
AC
3829 -- The evaluation of the aspect is delayed to the freezing point.
3830 -- The pragma or attribute clause if there is one is then attached
15e934bf 3831 -- to the aspect specification which is put in the rep item list.
b8789727 3832
b98e2969
AC
3833 if Delay_Required then
3834 if Present (Aitem) then
3835 Set_Is_Delayed_Aspect (Aitem);
3836 Set_Aspect_Rep_Item (Aspect, Aitem);
3837 Set_Parent (Aitem, Aspect);
3838 end if;
b8789727 3839
b98e2969 3840 Set_Is_Delayed_Aspect (Aspect);
7b55fea6 3841
289a994b
AC
3842 -- In the case of Default_Value, link the aspect to base type
3843 -- as well, even though it appears on a first subtype. This is
3844 -- mandated by the semantics of the aspect. Do not establish
3845 -- the link when processing the base type itself as this leads
3846 -- to a rep item circularity. Verify that we are dealing with
3847 -- a scalar type to prevent cascaded errors.
3848
3849 if A_Id = Aspect_Default_Value
3850 and then Is_Scalar_Type (E)
3851 and then Base_Type (E) /= E
3852 then
7b55fea6
AC
3853 Set_Has_Delayed_Aspects (Base_Type (E));
3854 Record_Rep_Item (Base_Type (E), Aspect);
3855 end if;
3856
b98e2969
AC
3857 Set_Has_Delayed_Aspects (E);
3858 Record_Rep_Item (E, Aspect);
1c54829e 3859
80e59506
AC
3860 -- When delay is not required and the context is a package or a
3861 -- subprogram body, insert the pragma in the body declarations.
cdcf1c7a 3862
80e59506 3863 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
cdcf1c7a
AC
3864 if No (Declarations (N)) then
3865 Set_Declarations (N, New_List);
3866 end if;
3867
3868 -- The pragma is added before source declarations
3869
3870 Prepend_To (Declarations (N), Aitem);
3871
b98e2969
AC
3872 -- When delay is not required and the context is not a compilation
3873 -- unit, we simply insert the pragma/attribute definition clause
3874 -- in sequence.
1c54829e 3875
2e885a6f 3876 elsif Present (Aitem) then
b98e2969
AC
3877 Insert_After (Ins_Node, Aitem);
3878 Ins_Node := Aitem;
c159409f 3879 end if;
9d5598bf 3880 end Analyze_One_Aspect;
0f1a6a0b 3881
a01b9df6
AC
3882 <<Continue>>
3883 Next (Aspect);
eaba57fb 3884 end loop Aspect_Loop;
b98e2969
AC
3885
3886 if Has_Delayed_Aspects (E) then
3887 Ensure_Freeze_Node (E);
3888 end if;
eaba57fb 3889 end Analyze_Aspect_Specifications;
0f1a6a0b 3890
e9d08fd7
HK
3891 ------------------------------------------------
3892 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
3893 ------------------------------------------------
caf07df9 3894
e9d08fd7 3895 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
caf07df9
AC
3896 Body_Id : constant Entity_Id := Defining_Entity (N);
3897
3898 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
f99ff327
AC
3899 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3900 -- error message depending on the aspects involved. Spec_Id denotes the
3901 -- entity of the corresponding spec.
caf07df9
AC
3902
3903 --------------------------------
3904 -- Diagnose_Misplaced_Aspects --
3905 --------------------------------
3906
3907 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3908 procedure Misplaced_Aspect_Error
3909 (Asp : Node_Id;
3910 Ref_Nam : Name_Id);
3911 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3912 -- the name of the refined version of the aspect.
3913
3914 ----------------------------
3915 -- Misplaced_Aspect_Error --
3916 ----------------------------
3917
3918 procedure Misplaced_Aspect_Error
3919 (Asp : Node_Id;
3920 Ref_Nam : Name_Id)
3921 is
3922 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3923 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3924
3925 begin
3926 -- The corresponding spec already contains the aspect in question
3927 -- and the one appearing on the body must be the refined form:
3928
3929 -- procedure P with Global ...;
3930 -- procedure P with Global ... is ... end P;
3931 -- ^
3932 -- Refined_Global
3933
3934 if Has_Aspect (Spec_Id, Asp_Id) then
3935 Error_Msg_Name_1 := Asp_Nam;
3936
3937 -- Subunits cannot carry aspects that apply to a subprogram
3938 -- declaration.
3939
3940 if Nkind (Parent (N)) = N_Subunit then
3941 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3942
3943 -- Otherwise suggest the refined form
3944
3945 else
3946 Error_Msg_Name_2 := Ref_Nam;
3947 Error_Msg_N ("aspect % should be %", Asp);
3948 end if;
3949
3950 -- Otherwise the aspect must appear on the spec, not on the body
3951
3952 -- procedure P;
3953 -- procedure P with Global ... is ... end P;
3954
3955 else
3956 Error_Msg_N
f99ff327 3957 ("aspect specification must appear on initial declaration",
caf07df9
AC
3958 Asp);
3959 end if;
3960 end Misplaced_Aspect_Error;
3961
3962 -- Local variables
3963
3964 Asp : Node_Id;
3965 Asp_Nam : Name_Id;
3966
3967 -- Start of processing for Diagnose_Misplaced_Aspects
3968
3969 begin
3970 -- Iterate over the aspect specifications and emit specific errors
3971 -- where applicable.
3972
3973 Asp := First (Aspect_Specifications (N));
3974 while Present (Asp) loop
3975 Asp_Nam := Chars (Identifier (Asp));
3976
3977 -- Do not emit errors on aspects that can appear on a subprogram
3978 -- body. This scenario occurs when the aspect specification list
3979 -- contains both misplaced and properly placed aspects.
3980
3981 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3982 null;
3983
3984 -- Special diagnostics for SPARK aspects
3985
3986 elsif Asp_Nam = Name_Depends then
3987 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3988
3989 elsif Asp_Nam = Name_Global then
3990 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3991
3992 elsif Asp_Nam = Name_Post then
3993 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3994
3995 -- Otherwise a language-defined aspect is misplaced
3996
3997 else
3998 Error_Msg_N
f99ff327 3999 ("aspect specification must appear on initial declaration",
caf07df9
AC
4000 Asp);
4001 end if;
4002
4003 Next (Asp);
4004 end loop;
4005 end Diagnose_Misplaced_Aspects;
4006
4007 -- Local variables
4008
f99ff327 4009 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
caf07df9 4010
e9d08fd7 4011 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
caf07df9
AC
4012
4013 begin
caf07df9
AC
4014 -- Language-defined aspects cannot be associated with a subprogram body
4015 -- [stub] if the subprogram has a spec. Certain implementation defined
4016 -- aspects are allowed to break this rule (for all applicable cases, see
4017 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
4018
f99ff327 4019 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
caf07df9
AC
4020 Diagnose_Misplaced_Aspects (Spec_Id);
4021 else
4022 Analyze_Aspect_Specifications (N, Body_Id);
4023 end if;
e9d08fd7 4024 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
caf07df9 4025
996ae0b0
RK
4026 -----------------------
4027 -- Analyze_At_Clause --
4028 -----------------------
4029
4030 -- An at clause is replaced by the corresponding Address attribute
4031 -- definition clause that is the preferred approach in Ada 95.
4032
4033 procedure Analyze_At_Clause (N : Node_Id) is
45fc7ddb
HK
4034 CS : constant Boolean := Comes_From_Source (N);
4035
996ae0b0 4036 begin
45fc7ddb
HK
4037 -- This is an obsolescent feature
4038
5f3ab6fb
AC
4039 Check_Restriction (No_Obsolescent_Features, N);
4040
fbf5a39b
AC
4041 if Warn_On_Obsolescent_Feature then
4042 Error_Msg_N
a3633438 4043 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
fbf5a39b 4044 Error_Msg_N
a3633438 4045 ("\?j?use address attribute definition clause instead", N);
fbf5a39b
AC
4046 end if;
4047
45fc7ddb
HK
4048 -- Rewrite as address clause
4049
996ae0b0
RK
4050 Rewrite (N,
4051 Make_Attribute_Definition_Clause (Sloc (N),
c5d00db0
AC
4052 Name => Identifier (N),
4053 Chars => Name_Address,
996ae0b0 4054 Expression => Expression (N)));
45fc7ddb 4055
29ba9f52
RD
4056 -- We preserve Comes_From_Source, since logically the clause still comes
4057 -- from the source program even though it is changed in form.
45fc7ddb
HK
4058
4059 Set_Comes_From_Source (N, CS);
4060
4061 -- Analyze rewritten clause
4062
996ae0b0
RK
4063 Analyze_Attribute_Definition_Clause (N);
4064 end Analyze_At_Clause;
4065
4066 -----------------------------------------
4067 -- Analyze_Attribute_Definition_Clause --
4068 -----------------------------------------
4069
4070 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4071 Loc : constant Source_Ptr := Sloc (N);
4072 Nam : constant Node_Id := Name (N);
4073 Attr : constant Name_Id := Chars (N);
4074 Expr : constant Node_Id := Expression (N);
4075 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
a01b9df6
AC
4076
4077 Ent : Entity_Id;
4078 -- The entity of Nam after it is analyzed. In the case of an incomplete
4079 -- type, this is the underlying type.
4080
996ae0b0 4081 U_Ent : Entity_Id;
a01b9df6
AC
4082 -- The underlying entity to which the attribute applies. Generally this
4083 -- is the Underlying_Type of Ent, except in the case where the clause
0e77949e
AC
4084 -- applies to the full view of an incomplete or private type, in which
4085 -- case U_Ent is just a copy of Ent.
996ae0b0
RK
4086
4087 FOnly : Boolean := False;
4088 -- Reset to True for subtype specific attribute (Alignment, Size)
33c9f9af
AC
4089 -- and for stream attributes, i.e. those cases where in the call to
4090 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4091 -- are checked. Note that the case of stream attributes is not clear
4092 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4093 -- Storage_Size for derived task types, but that is also clearly
4094 -- unintentional.
996ae0b0 4095
edd63e9b
ES
4096 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4097 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4098 -- definition clauses.
4099
0f1a6a0b
AC
4100 function Duplicate_Clause return Boolean;
4101 -- This routine checks if the aspect for U_Ent being given by attribute
4102 -- definition clause N is for an aspect that has already been specified,
4103 -- and if so gives an error message. If there is a duplicate, True is
4104 -- returned, otherwise if there is no error, False is returned.
4105
d50f4827
AC
4106 procedure Check_Indexing_Functions;
4107 -- Check that the function in Constant_Indexing or Variable_Indexing
4108 -- attribute has the proper type structure. If the name is overloaded,
2a7b8e18 4109 -- check that some interpretation is legal.
d50f4827 4110
d941cee6
AC
4111 procedure Check_Iterator_Functions;
4112 -- Check that there is a single function in Default_Iterator attribute
b2c3160c 4113 -- that has the proper type structure.
d941cee6
AC
4114
4115 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
cb25faf8 4116 -- Common legality check for the previous two
d941cee6 4117
45fc7ddb
HK
4118 -----------------------------------
4119 -- Analyze_Stream_TSS_Definition --
4120 -----------------------------------
4121
edd63e9b
ES
4122 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4123 Subp : Entity_Id := Empty;
4124 I : Interp_Index;
4125 It : Interp;
4126 Pnam : Entity_Id;
4127
4128 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
876f1624 4129 -- True for Read attribute, False for other attributes
edd63e9b 4130
87feba05
AC
4131 function Has_Good_Profile
4132 (Subp : Entity_Id;
4133 Report : Boolean := False) return Boolean;
edd63e9b 4134 -- Return true if the entity is a subprogram with an appropriate
876f1624
AC
4135 -- profile for the attribute being defined. If result is False and
4136 -- Report is True, function emits appropriate error.
edd63e9b
ES
4137
4138 ----------------------
4139 -- Has_Good_Profile --
4140 ----------------------
4141
87feba05
AC
4142 function Has_Good_Profile
4143 (Subp : Entity_Id;
4144 Report : Boolean := False) return Boolean
4145 is
edd63e9b
ES
4146 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4147 (False => E_Procedure, True => E_Function);
77039fe2
AC
4148 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4149 F : Entity_Id;
edd63e9b
ES
4150 Typ : Entity_Id;
4151
4152 begin
4153 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4154 return False;
4155 end if;
4156
4157 F := First_Formal (Subp);
4158
4159 if No (F)
4160 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4161 or else Designated_Type (Etype (F)) /=
77039fe2 4162 Class_Wide_Type (RTE (RE_Root_Stream_Type))
edd63e9b
ES
4163 then
4164 return False;
4165 end if;
4166
4167 if not Is_Function then
4168 Next_Formal (F);
4169
4170 declare
4171 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4172 (False => E_In_Parameter,
4173 True => E_Out_Parameter);
4174 begin
4175 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4176 return False;
4177 end if;
4178 end;
4179
4180 Typ := Etype (F);
4181
220d1fd9 4182 -- If the attribute specification comes from an aspect
33c9f9af
AC
4183 -- specification for a class-wide stream, the parameter must be
4184 -- a class-wide type of the entity to which the aspect applies.
220d1fd9
AC
4185
4186 if From_Aspect_Specification (N)
4187 and then Class_Present (Parent (N))
4188 and then Is_Class_Wide_Type (Typ)
4189 then
4190 Typ := Etype (Typ);
4191 end if;
4192
edd63e9b
ES
4193 else
4194 Typ := Etype (Subp);
4195 end if;
4196
33c9f9af 4197 -- Verify that the prefix of the attribute and the local name for
d18b1548
AC
4198 -- the type of the formal match, or one is the class-wide of the
4199 -- other, in the case of a class-wide stream operation.
dda38714 4200
9fe696a3 4201 if Base_Type (Typ) = Base_Type (Ent)
d18b1548 4202 or else (Is_Class_Wide_Type (Typ)
3fbbbd1e 4203 and then Typ = Class_Wide_Type (Base_Type (Ent)))
72eaa365
AC
4204 or else (Is_Class_Wide_Type (Ent)
4205 and then Ent = Class_Wide_Type (Base_Type (Typ)))
d18b1548
AC
4206 then
4207 null;
4208 else
4209 return False;
4210 end if;
4211
77039fe2 4212 if Present (Next_Formal (F)) then
dda38714
AC
4213 return False;
4214
4215 elsif not Is_Scalar_Type (Typ)
4216 and then not Is_First_Subtype (Typ)
4217 and then not Is_Class_Wide_Type (Typ)
4218 then
87feba05
AC
4219 if Report and not Is_First_Subtype (Typ) then
4220 Error_Msg_N
876f1624
AC
4221 ("subtype of formal in stream operation must be a first "
4222 & "subtype", Parameter_Type (Parent (F)));
87feba05
AC
4223 end if;
4224
dda38714
AC
4225 return False;
4226
4227 else
4228 return True;
4229 end if;
edd63e9b
ES
4230 end Has_Good_Profile;
4231
4232 -- Start of processing for Analyze_Stream_TSS_Definition
4233
4234 begin
4235 FOnly := True;
4236
4237 if not Is_Type (U_Ent) then
4238 Error_Msg_N ("local name must be a subtype", Nam);
4239 return;
dda38714
AC
4240
4241 elsif not Is_First_Subtype (U_Ent) then
4242 Error_Msg_N ("local name must be a first subtype", Nam);
4243 return;
edd63e9b
ES
4244 end if;
4245
4246 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4247
affbee12
RD
4248 -- If Pnam is present, it can be either inherited from an ancestor
4249 -- type (in which case it is legal to redefine it for this type), or
4250 -- be a previous definition of the attribute for the same type (in
4251 -- which case it is illegal).
4252
4253 -- In the first case, it will have been analyzed already, and we
4254 -- can check that its profile does not match the expected profile
4255 -- for a stream attribute of U_Ent. In the second case, either Pnam
4256 -- has been analyzed (and has the expected profile), or it has not
4257 -- been analyzed yet (case of a type that has not been frozen yet
4258 -- and for which the stream attribute has been set using Set_TSS).
4259
4260 if Present (Pnam)
4261 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4262 then
edd63e9b
ES
4263 Error_Msg_Sloc := Sloc (Pnam);
4264 Error_Msg_Name_1 := Attr;
4265 Error_Msg_N ("% attribute already defined #", Nam);
4266 return;
4267 end if;
4268
4269 Analyze (Expr);
4270
4271 if Is_Entity_Name (Expr) then
4272 if not Is_Overloaded (Expr) then
87feba05 4273 if Has_Good_Profile (Entity (Expr), Report => True) then
edd63e9b
ES
4274 Subp := Entity (Expr);
4275 end if;
4276
4277 else
4278 Get_First_Interp (Expr, I, It);
edd63e9b
ES
4279 while Present (It.Nam) loop
4280 if Has_Good_Profile (It.Nam) then
4281 Subp := It.Nam;
4282 exit;
4283 end if;
4284
4285 Get_Next_Interp (I, It);
4286 end loop;
4287 end if;
4288 end if;
4289
4290 if Present (Subp) then
a9a5b8ac 4291 if Is_Abstract_Subprogram (Subp) then
edd63e9b
ES
4292 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4293 return;
3e65bfab 4294
5c5e108f 4295 -- A stream subprogram for an interface type must be a null
6dc87f5f
AC
4296 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4297 -- of an interface is not an interface type (3.9.4 (6.b/2)).
3e65bfab
AC
4298
4299 elsif Is_Interface (U_Ent)
d18b1548 4300 and then not Is_Class_Wide_Type (U_Ent)
3e65bfab 4301 and then not Inside_A_Generic
3e65bfab 4302 and then
d18b1548
AC
4303 (Ekind (Subp) = E_Function
4304 or else
4305 not Null_Present
3fbbbd1e
AC
4306 (Specification
4307 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
3e65bfab
AC
4308 then
4309 Error_Msg_N
77039fe2
AC
4310 ("stream subprogram for interface type must be null "
4311 & "procedure", Expr);
edd63e9b
ES
4312 end if;
4313
4314 Set_Entity (Expr, Subp);
4315 Set_Etype (Expr, Etype (Subp));
4316
affbee12 4317 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
edd63e9b
ES
4318
4319 else
4320 Error_Msg_Name_1 := Attr;
4321 Error_Msg_N ("incorrect expression for% attribute", Expr);
4322 end if;
4323 end Analyze_Stream_TSS_Definition;
4324
d50f4827
AC
4325 ------------------------------
4326 -- Check_Indexing_Functions --
4327 ------------------------------
4328
4329 procedure Check_Indexing_Functions is
7b536495 4330 Indexing_Found : Boolean := False;
d986066d 4331
8c14315a
ES
4332 procedure Check_Inherited_Indexing;
4333 -- For a derived type, check that no indexing aspect is specified
4334 -- for the type if it is also inherited
4335
d50f4827 4336 procedure Check_One_Function (Subp : Entity_Id);
d7a93e45
AC
4337 -- Check one possible interpretation. Sets Indexing_Found True if a
4338 -- legal indexing function is found.
d50f4827 4339
f3296dd3
AC
4340 procedure Illegal_Indexing (Msg : String);
4341 -- Diagnose illegal indexing function if not overloaded. In the
4342 -- overloaded case indicate that no legal interpretation exists.
4343
8c14315a
ES
4344 ------------------------------
4345 -- Check_Inherited_Indexing --
4346 ------------------------------
4347
4348 procedure Check_Inherited_Indexing is
4349 Inherited : Node_Id;
4350
4351 begin
4352 if Attr = Name_Constant_Indexing then
4353 Inherited :=
4354 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4355 else pragma Assert (Attr = Name_Variable_Indexing);
4356 Inherited :=
4357 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4358 end if;
4359
4360 if Present (Inherited) then
4361 if Debug_Flag_Dot_XX then
4362 null;
4363
078b1a5f
AC
4364 -- OK if current attribute_definition_clause is expansion of
4365 -- inherited aspect.
8c14315a
ES
4366
4367 elsif Aspect_Rep_Item (Inherited) = N then
4368 null;
4369
078b1a5f
AC
4370 -- Indicate the operation that must be overridden, rather than
4371 -- redefining the indexing aspect.
8c14315a
ES
4372
4373 else
4374 Illegal_Indexing
a9fdbccb 4375 ("indexing function already inherited from parent type");
8c14315a
ES
4376 Error_Msg_NE
4377 ("!override & instead",
4378 N, Entity (Expression (Inherited)));
4379 end if;
4380 end if;
4381 end Check_Inherited_Indexing;
4382
d50f4827
AC
4383 ------------------------
4384 -- Check_One_Function --
4385 ------------------------
4386
4387 procedure Check_One_Function (Subp : Entity_Id) is
f3296dd3
AC
4388 Default_Element : Node_Id;
4389 Ret_Type : constant Entity_Id := Etype (Subp);
76d49f49 4390
d50f4827 4391 begin
f3296dd3
AC
4392 if not Is_Overloadable (Subp) then
4393 Illegal_Indexing ("illegal indexing function for type&");
4394 return;
4395
d7a93e45
AC
4396 elsif Scope (Subp) /= Scope (Ent) then
4397 if Nkind (Expr) = N_Expanded_Name then
4398
4399 -- Indexing function can't be declared elsewhere
4400
4401 Illegal_Indexing
4402 ("indexing function must be declared in scope of type&");
4403 end if;
4404
f3296dd3
AC
4405 return;
4406
4407 elsif No (First_Formal (Subp)) then
4408 Illegal_Indexing
4409 ("Indexing requires a function that applies to type&");
4410 return;
4411
4412 elsif No (Next_Formal (First_Formal (Subp))) then
4413 Illegal_Indexing
eb9008b7 4414 ("indexing function must have at least two parameters");
f3296dd3
AC
4415 return;
4416
4417 elsif Is_Derived_Type (Ent) then
8c14315a 4418 Check_Inherited_Indexing;
f3296dd3
AC
4419 end if;
4420
eefd2467 4421 if not Check_Primitive_Function (Subp) then
f3296dd3
AC
4422 Illegal_Indexing
4423 ("Indexing aspect requires a function that applies to type&");
4424 return;
d50f4827
AC
4425 end if;
4426
d7a93e45
AC
4427 -- If partial declaration exists, verify that it is not tagged.
4428
4429 if Ekind (Current_Scope) = E_Package
4430 and then Has_Private_Declaration (Ent)
4431 and then From_Aspect_Specification (N)
fd7215d7
AC
4432 and then
4433 List_Containing (Parent (Ent)) =
4434 Private_Declarations
d7a93e45
AC
4435 (Specification (Unit_Declaration_Node (Current_Scope)))
4436 and then Nkind (N) = N_Attribute_Definition_Clause
4437 then
4438 declare
4439 Decl : Node_Id;
4440
4441 begin
4442 Decl :=
4443 First (Visible_Declarations
fd7215d7
AC
4444 (Specification
4445 (Unit_Declaration_Node (Current_Scope))));
d7a93e45
AC
4446
4447 while Present (Decl) loop
4448 if Nkind (Decl) = N_Private_Type_Declaration
4449 and then Ent = Full_View (Defining_Identifier (Decl))
4450 and then Tagged_Present (Decl)
4451 and then No (Aspect_Specifications (Decl))
4452 then
4453 Illegal_Indexing
4454 ("Indexing aspect cannot be specified on full view "
fd7215d7 4455 & "if partial view is tagged");
d7a93e45
AC
4456 return;
4457 end if;
4458
4459 Next (Decl);
4460 end loop;
4461 end;
4462 end if;
4463
76d49f49 4464 -- An indexing function must return either the default element of
2a7b8e18 4465 -- the container, or a reference type. For variable indexing it
9a6dc470 4466 -- must be the latter.
76d49f49 4467
f3296dd3
AC
4468 Default_Element :=
4469 Find_Value_Of_Aspect
4470 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4471
76d49f49
ES
4472 if Present (Default_Element) then
4473 Analyze (Default_Element);
76d49f49
ES
4474 end if;
4475
9a6dc470 4476 -- For variable_indexing the return type must be a reference type
76d49f49 4477
f3296dd3
AC
4478 if Attr = Name_Variable_Indexing then
4479 if not Has_Implicit_Dereference (Ret_Type) then
4480 Illegal_Indexing
4481 ("variable indexing must return a reference type");
4482 return;
4483
35e7063a
AC
4484 elsif Is_Access_Constant
4485 (Etype (First_Discriminant (Ret_Type)))
f3296dd3
AC
4486 then
4487 Illegal_Indexing
4488 ("variable indexing must return an access to variable");
4489 return;
4490 end if;
2a7b8e18
AC
4491
4492 else
f3296dd3
AC
4493 if Has_Implicit_Dereference (Ret_Type)
4494 and then not
4495 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4496 then
4497 Illegal_Indexing
4498 ("constant indexing must return an access to constant");
4499 return;
4500
4501 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4502 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4503 then
4504 Illegal_Indexing
4505 ("constant indexing must apply to an access to constant");
4506 return;
4507 end if;
d50f4827 4508 end if;
f3296dd3
AC
4509
4510 -- All checks succeeded.
4511
4512 Indexing_Found := True;
d50f4827
AC
4513 end Check_One_Function;
4514
f3296dd3
AC
4515 -----------------------
4516 -- Illegal_Indexing --
4517 -----------------------
4518
4519 procedure Illegal_Indexing (Msg : String) is
4520 begin
d7a93e45 4521 Error_Msg_NE (Msg, N, Ent);
f3296dd3
AC
4522 end Illegal_Indexing;
4523
d50f4827
AC
4524 -- Start of processing for Check_Indexing_Functions
4525
4526 begin
d941cee6 4527 if In_Instance then
8c14315a 4528 Check_Inherited_Indexing;
d941cee6
AC
4529 end if;
4530
d50f4827
AC
4531 Analyze (Expr);
4532
4533 if not Is_Overloaded (Expr) then
4534 Check_One_Function (Entity (Expr));
4535
4536 else
4537 declare
b26f70a0 4538 I : Interp_Index;
d50f4827
AC
4539 It : Interp;
4540
4541 begin
2a7b8e18 4542 Indexing_Found := False;
d50f4827
AC
4543 Get_First_Interp (Expr, I, It);
4544 while Present (It.Nam) loop
4545
4546 -- Note that analysis will have added the interpretation
4547 -- that corresponds to the dereference. We only check the
a267d8cc
AC
4548 -- subprogram itself. Ignore homonyms that may come from
4549 -- derived types in the context.
d50f4827 4550
a267d8cc
AC
4551 if Is_Overloadable (It.Nam)
4552 and then Comes_From_Source (It.Nam)
4553 then
4554 Check_One_Function (It.Nam);
d50f4827
AC
4555 end if;
4556
4557 Get_Next_Interp (I, It);
4558 end loop;
4559 end;
4560 end if;
d7a93e45 4561
fd7215d7 4562 if not Indexing_Found and then not Error_Posted (N) then
d7a93e45 4563 Error_Msg_NE
a267d8cc
AC
4564 ("aspect Indexing requires a local function that applies to "
4565 & "type&", Expr, Ent);
d7a93e45 4566 end if;
d50f4827
AC
4567 end Check_Indexing_Functions;
4568
d941cee6
AC
4569 ------------------------------
4570 -- Check_Iterator_Functions --
4571 ------------------------------
4572
4573 procedure Check_Iterator_Functions is
d941cee6 4574 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
d986066d 4575 -- Check one possible interpretation for validity
d941cee6
AC
4576
4577 ----------------------------
4578 -- Valid_Default_Iterator --
4579 ----------------------------
4580
4581 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
437244c7 4582 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
3702225c 4583 Formal : Entity_Id;
d941cee6
AC
4584
4585 begin
4586 if not Check_Primitive_Function (Subp) then
4587 return False;
437244c7
AC
4588
4589 -- The return type must be derived from a type in an instance
4590 -- of Iterator.Interfaces, and thus its root type must have a
4591 -- predefined name.
4592
4593 elsif Chars (Root_T) /= Name_Forward_Iterator
4594 and then Chars (Root_T) /= Name_Reversible_Iterator
4595 then
4596 return False;
4597
d941cee6
AC
4598 else
4599 Formal := First_Formal (Subp);
4600 end if;
4601
d986066d 4602 -- False if any subsequent formal has no default expression
d941cee6 4603
d986066d
AC
4604 Formal := Next_Formal (Formal);
4605 while Present (Formal) loop
4606 if No (Expression (Parent (Formal))) then
4607 return False;
4608 end if;
d941cee6 4609
d986066d
AC
4610 Next_Formal (Formal);
4611 end loop;
d941cee6 4612
d986066d 4613 -- True if all subsequent formals have default expressions
d941cee6
AC
4614
4615 return True;
4616 end Valid_Default_Iterator;
4617
4618 -- Start of processing for Check_Iterator_Functions
4619
4620 begin
4621 Analyze (Expr);
4622
4623 if not Is_Entity_Name (Expr) then
4624 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4625 end if;
4626
4627 if not Is_Overloaded (Expr) then
4628 if not Check_Primitive_Function (Entity (Expr)) then
4629 Error_Msg_NE
4630 ("aspect Indexing requires a function that applies to type&",
4631 Entity (Expr), Ent);
4632 end if;
4633
4f2cae4a
ES
4634 -- Flag the default_iterator as well as the denoted function.
4635
d941cee6 4636 if not Valid_Default_Iterator (Entity (Expr)) then
4f2cae4a 4637 Error_Msg_N ("improper function for default iterator!", Expr);
d941cee6
AC
4638 end if;
4639
4640 else
d941cee6 4641 declare
02886c2e 4642 Default : Entity_Id := Empty;
77237288
AC
4643 I : Interp_Index;
4644 It : Interp;
d941cee6
AC
4645
4646 begin
4647 Get_First_Interp (Expr, I, It);
4648 while Present (It.Nam) loop
4649 if not Check_Primitive_Function (It.Nam)
57a8057a 4650 or else not Valid_Default_Iterator (It.Nam)
d941cee6
AC
4651 then
4652 Remove_Interp (I);
4653
4654 elsif Present (Default) then
d941cee6 4655
77237288
AC
4656 -- An explicit one should override an implicit one
4657
4658 if Comes_From_Source (Default) =
4659 Comes_From_Source (It.Nam)
4660 then
4661 Error_Msg_N ("default iterator must be unique", Expr);
4662 Error_Msg_Sloc := Sloc (Default);
4663 Error_Msg_N ("\\possible interpretation#", Expr);
4664 Error_Msg_Sloc := Sloc (It.Nam);
4665 Error_Msg_N ("\\possible interpretation#", Expr);
4666
4667 elsif Comes_From_Source (It.Nam) then
4668 Default := It.Nam;
4669 end if;
d941cee6
AC
4670 else
4671 Default := It.Nam;
4672 end if;
4673
4674 Get_Next_Interp (I, It);
4675 end loop;
d941cee6 4676
02886c2e
AC
4677 if Present (Default) then
4678 Set_Entity (Expr, Default);
4679 Set_Is_Overloaded (Expr, False);
437244c7
AC
4680 else
4681 Error_Msg_N
3702225c 4682 ("no interpretation is a valid default iterator!", Expr);
02886c2e
AC
4683 end if;
4684 end;
d941cee6
AC
4685 end if;
4686 end Check_Iterator_Functions;
4687
4688 -------------------------------
4689 -- Check_Primitive_Function --
4690 -------------------------------
4691
4692 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4693 Ctrl : Entity_Id;
4694
4695 begin
4696 if Ekind (Subp) /= E_Function then
4697 return False;
4698 end if;
4699
4700 if No (First_Formal (Subp)) then
4701 return False;
4702 else
4703 Ctrl := Etype (First_Formal (Subp));
4704 end if;
4705
4f2cae4a
ES
4706 -- To be a primitive operation subprogram has to be in same scope.
4707
4708 if Scope (Ctrl) /= Scope (Subp) then
4709 return False;
4710 end if;
4711
3e1862b1
ES
4712 -- Type of formal may be the class-wide type, an access to such,
4713 -- or an incomplete view.
4714
d941cee6
AC
4715 if Ctrl = Ent
4716 or else Ctrl = Class_Wide_Type (Ent)
4717 or else
4718 (Ekind (Ctrl) = E_Anonymous_Access_Type
2e215573
RD
4719 and then (Designated_Type (Ctrl) = Ent
4720 or else
4721 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
3e1862b1
ES
4722 or else
4723 (Ekind (Ctrl) = E_Incomplete_Type
4724 and then Full_View (Ctrl) = Ent)
d941cee6
AC
4725 then
4726 null;
d941cee6
AC
4727 else
4728 return False;
4729 end if;
4730
4731 return True;
4732 end Check_Primitive_Function;
4733
0f1a6a0b
AC
4734 ----------------------
4735 -- Duplicate_Clause --
4736 ----------------------
4737
4738 function Duplicate_Clause return Boolean is
c159409f 4739 A : Node_Id;
0f1a6a0b
AC
4740
4741 begin
1928f450
AC
4742 -- Nothing to do if this attribute definition clause comes from
4743 -- an aspect specification, since we could not be duplicating an
0f1a6a0b
AC
4744 -- explicit clause, and we dealt with the case of duplicated aspects
4745 -- in Analyze_Aspect_Specifications.
4746
4747 if From_Aspect_Specification (N) then
4748 return False;
4749 end if;
4750
b98e2969
AC
4751 -- Otherwise current clause may duplicate previous clause, or a
4752 -- previously given pragma or aspect specification for the same
4753 -- aspect.
c159409f 4754
34f3a701 4755 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
0f1a6a0b
AC
4756
4757 if Present (A) then
b98e2969
AC
4758 Error_Msg_Name_1 := Chars (N);
4759 Error_Msg_Sloc := Sloc (A);
4760
34f3a701 4761 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
b98e2969 4762 return True;
0f1a6a0b
AC
4763 end if;
4764
4765 return False;
4766 end Duplicate_Clause;
4767
edd63e9b
ES
4768 -- Start of processing for Analyze_Attribute_Definition_Clause
4769
996ae0b0 4770 begin
a01b9df6 4771 -- The following code is a defense against recursion. Not clear that
33c9f9af
AC
4772 -- this can happen legitimately, but perhaps some error situations can
4773 -- cause it, and we did see this recursion during testing.
a01b9df6
AC
4774
4775 if Analyzed (N) then
4776 return;
4777 else
4778 Set_Analyzed (N, True);
4779 end if;
4780
58ba2415
HK
4781 Check_Restriction_No_Use_Of_Attribute (N);
4782
5ebfaacf
AC
4783 -- Ignore some selected attributes in CodePeer mode since they are not
4784 -- relevant in this context.
4785
4786 if CodePeer_Mode then
4787 case Id is
4788
4789 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4790 -- internal representation of types by implicitly packing them.
4791
4792 when Attribute_Component_Size =>
4793 Rewrite (N, Make_Null_Statement (Sloc (N)));
4794 return;
4795
4796 when others =>
4797 null;
4798 end case;
4799 end if;
4800
1c163178 4801 -- Process Ignore_Rep_Clauses option
55c078ac 4802
1c163178 4803 if Ignore_Rep_Clauses then
70b70ce8
AC
4804 case Id is
4805
55c078ac
AC
4806 -- The following should be ignored. They do not affect legality
4807 -- and may be target dependent. The basic idea of -gnatI is to
4808 -- ignore any rep clauses that may be target dependent but do not
4809 -- affect legality (except possibly to be rejected because they
4810 -- are incompatible with the compilation target).
70b70ce8 4811
d8f43ee6
HK
4812 when Attribute_Alignment
4813 | Attribute_Bit_Order
4814 | Attribute_Component_Size
7a71a7c4 4815 | Attribute_Default_Scalar_Storage_Order
d8f43ee6
HK
4816 | Attribute_Machine_Radix
4817 | Attribute_Object_Size
7a71a7c4 4818 | Attribute_Scalar_Storage_Order
d8f43ee6
HK
4819 | Attribute_Size
4820 | Attribute_Small
4821 | Attribute_Stream_Size
4822 | Attribute_Value_Size
4823 =>
cf28c974 4824 Kill_Rep_Clause (N);
70b70ce8
AC
4825 return;
4826
55c078ac 4827 -- The following should not be ignored, because in the first place
33c9f9af
AC
4828 -- they are reasonably portable, and should not cause problems
4829 -- in compiling code from another target, and also they do affect
4830 -- legality, e.g. failing to provide a stream attribute for a type
4831 -- may make a program illegal.
70b70ce8 4832
d8f43ee6
HK
4833 when Attribute_External_Tag
4834 | Attribute_Input
4835 | Attribute_Output
4836 | Attribute_Read
4837 | Attribute_Simple_Storage_Pool
4838 | Attribute_Storage_Pool
4839 | Attribute_Storage_Size
4840 | Attribute_Write
4841 =>
70b70ce8
AC
4842 null;
4843
cf28c974
RD
4844 -- We do not do anything here with address clauses, they will be
4845 -- removed by Freeze later on, but for now, it works better to
c1025b4e 4846 -- keep them in the tree.
cf28c974
RD
4847
4848 when Attribute_Address =>
4849 null;
4850
b91fccb3
BD
4851 -- Other cases are errors ("attribute& cannot be set with
4852 -- definition clause"), which will be caught below.
70b70ce8
AC
4853
4854 when others =>
4855 null;
4856 end case;
c690a2ec
RD
4857 end if;
4858
996ae0b0
RK
4859 Analyze (Nam);
4860 Ent := Entity (Nam);
4861
4862 if Rep_Item_Too_Early (Ent, N) then
4863 return;
4864 end if;
4865
edd63e9b
ES
4866 -- Rep clause applies to full view of incomplete type or private type if
4867 -- we have one (if not, this is a premature use of the type). However,
4868 -- certain semantic checks need to be done on the specified entity (i.e.
4869 -- the private view), so we save it in Ent.
996ae0b0
RK
4870
4871 if Is_Private_Type (Ent)
4872 and then Is_Derived_Type (Ent)
4873 and then not Is_Tagged_Type (Ent)
4874 and then No (Full_View (Ent))
4875 then
edd63e9b
ES
4876 -- If this is a private type whose completion is a derivation from
4877 -- another private type, there is no full view, and the attribute
4878 -- belongs to the type itself, not its underlying parent.
996ae0b0
RK
4879
4880 U_Ent := Ent;
4881
4882 elsif Ekind (Ent) = E_Incomplete_Type then
b7e429ab 4883
edd63e9b
ES
4884 -- The attribute applies to the full view, set the entity of the
4885 -- attribute definition accordingly.
b7e429ab 4886
996ae0b0
RK
4887 Ent := Underlying_Type (Ent);
4888 U_Ent := Ent;
b7e429ab
AC
4889 Set_Entity (Nam, Ent);
4890
996ae0b0
RK
4891 else
4892 U_Ent := Underlying_Type (Ent);
4893 end if;
4894
54c04d6c 4895 -- Avoid cascaded error
996ae0b0
RK
4896
4897 if Etype (Nam) = Any_Type then
4898 return;
4899
b98e2969 4900 -- Must be declared in current scope or in case of an aspect
5eeeed5e 4901 -- specification, must be visible in current scope.
54c04d6c 4902
b98e2969 4903 elsif Scope (Ent) /= Current_Scope
5eeeed5e
AC
4904 and then
4905 not (From_Aspect_Specification (N)
4906 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
b98e2969 4907 then
996ae0b0
RK
4908 Error_Msg_N ("entity must be declared in this scope", Nam);
4909 return;
4910
54c04d6c
AC
4911 -- Must not be a source renaming (we do have some cases where the
4912 -- expander generates a renaming, and those cases are OK, in such
51e641f8 4913 -- cases any attribute applies to the renamed object as well).
54c04d6c
AC
4914
4915 elsif Is_Object (Ent)
4916 and then Present (Renamed_Object (Ent))
54c04d6c 4917 then
866000e7
GD
4918 -- In the case of a renamed object from source, this is an error
4919 -- unless the object is an aggregate and the renaming is created
4920 -- for an object declaration.
51e641f8 4921
8334176a
ES
4922 if Comes_From_Source (Renamed_Object (Ent))
4923 and then Nkind (Renamed_Object (Ent)) /= N_Aggregate
4924 then
51e641f8
AC
4925 Get_Name_String (Chars (N));
4926 Error_Msg_Strlen := Name_Len;
4927 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4928 Error_Msg_N
4929 ("~ clause not allowed for a renaming declaration "
4930 & "(RM 13.1(6))", Nam);
4931 return;
4932
4933 -- For the case of a compiler generated renaming, the attribute
4934 -- definition clause applies to the renamed object created by the
4935 -- expander. The easiest general way to handle this is to create a
4936 -- copy of the attribute definition clause for this object.
4937
81bd8c90 4938 elsif Is_Entity_Name (Renamed_Object (Ent)) then
51e641f8
AC
4939 Insert_Action (N,
4940 Make_Attribute_Definition_Clause (Loc,
4941 Name =>
4942 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4943 Chars => Chars (N),
4944 Expression => Duplicate_Subexpr (Expression (N))));
81bd8c90
AC
4945
4946 -- If the renamed object is not an entity, it must be a dereference
4947 -- of an unconstrained function call, and we must introduce a new
4948 -- declaration to capture the expression. This is needed in the case
4949 -- of 'Alignment, where the original declaration must be rewritten.
4950
4951 else
4952 pragma Assert
4953 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4954 null;
51e641f8 4955 end if;
54c04d6c
AC
4956
4957 -- If no underlying entity, use entity itself, applies to some
4958 -- previously detected error cases ???
4959
07fc65c4
GB
4960 elsif No (U_Ent) then
4961 U_Ent := Ent;
4962
54c04d6c
AC
4963 -- Cannot specify for a subtype (exception Object/Value_Size)
4964
996ae0b0
RK
4965 elsif Is_Type (U_Ent)
4966 and then not Is_First_Subtype (U_Ent)
4967 and then Id /= Attribute_Object_Size
4968 and then Id /= Attribute_Value_Size
4969 and then not From_At_Mod (N)
4970 then
4971 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4972 return;
996ae0b0
RK
4973 end if;
4974
0f1a6a0b
AC
4975 Set_Entity (N, U_Ent);
4976
996ae0b0
RK
4977 -- Switch on particular attribute
4978
4979 case Id is
4980
4981 -------------
4982 -- Address --
4983 -------------
4984
4985 -- Address attribute definition clause
4986
4987 when Attribute_Address => Address : begin
45fc7ddb
HK
4988
4989 -- A little error check, catch for X'Address use X'Address;
4990
4991 if Nkind (Nam) = N_Identifier
4992 and then Nkind (Expr) = N_Attribute_Reference
4993 and then Attribute_Name (Expr) = Name_Address
4994 and then Nkind (Prefix (Expr)) = N_Identifier
4995 and then Chars (Nam) = Chars (Prefix (Expr))
4996 then
4997 Error_Msg_NE
4998 ("address for & is self-referencing", Prefix (Expr), Ent);
4999 return;
5000 end if;
5001
5002 -- Not that special case, carry on with analysis of expression
5003
996ae0b0
RK
5004 Analyze_And_Resolve (Expr, RTE (RE_Address));
5005
9d0c3761
AC
5006 -- Even when ignoring rep clauses we need to indicate that the
5007 -- entity has an address clause and thus it is legal to declare
cf28c974 5008 -- it imported. Freeze will get rid of the address clause later.
c1025b4e
AC
5009 -- Also call Set_Address_Taken to indicate that an address clause
5010 -- was present, even if we are about to remove it.
9d0c3761
AC
5011
5012 if Ignore_Rep_Clauses then
c1025b4e
AC
5013 Set_Address_Taken (U_Ent);
5014
bce79204 5015 if Ekind_In (U_Ent, E_Variable, E_Constant) then
9d0c3761
AC
5016 Record_Rep_Item (U_Ent, N);
5017 end if;
5018
5019 return;
5020 end if;
5021
0f1a6a0b
AC
5022 if Duplicate_Clause then
5023 null;
996ae0b0
RK
5024
5025 -- Case of address clause for subprogram
5026
5027 elsif Is_Subprogram (U_Ent) then
996ae0b0
RK
5028 if Has_Homonym (U_Ent) then
5029 Error_Msg_N
32b794c8
AC
5030 ("address clause cannot be given for overloaded "
5031 & "subprogram", Nam);
2642f998 5032 return;
996ae0b0
RK
5033 end if;
5034
2642f998
RD
5035 -- For subprograms, all address clauses are permitted, and we
5036 -- mark the subprogram as having a deferred freeze so that Gigi
5037 -- will not elaborate it too soon.
996ae0b0
RK
5038
5039 -- Above needs more comments, what is too soon about???
5040
5041 Set_Has_Delayed_Freeze (U_Ent);
5042
5043 -- Case of address clause for entry
5044
5045 elsif Ekind (U_Ent) = E_Entry then
996ae0b0
RK
5046 if Nkind (Parent (N)) = N_Task_Body then
5047 Error_Msg_N
5048 ("entry address must be specified in task spec", Nam);
2642f998 5049 return;
996ae0b0
RK
5050 end if;
5051
5052 -- For entries, we require a constant address
5053
5054 Check_Constant_Address_Clause (Expr, U_Ent);
5055
2642f998
RD
5056 -- Special checks for task types
5057
07fc65c4
GB
5058 if Is_Task_Type (Scope (U_Ent))
5059 and then Comes_From_Source (Scope (U_Ent))
5060 then
5061 Error_Msg_N
dbfeb4fa 5062 ("??entry address declared for entry in task type", N);
07fc65c4 5063 Error_Msg_N
dbfeb4fa 5064 ("\??only one task can be declared of this type", N);
07fc65c4
GB
5065 end if;
5066
2642f998
RD
5067 -- Entry address clauses are obsolescent
5068
5f3ab6fb
AC
5069 Check_Restriction (No_Obsolescent_Features, N);
5070
fbf5a39b
AC
5071 if Warn_On_Obsolescent_Feature then
5072 Error_Msg_N
32b794c8
AC
5073 ("?j?attaching interrupt to task entry is an obsolescent "
5074 & "feature (RM J.7.1)", N);
fbf5a39b 5075 Error_Msg_N
dbfeb4fa 5076 ("\?j?use interrupt procedure instead", N);
fbf5a39b
AC
5077 end if;
5078
42f9f0fc 5079 -- Case of an address clause for a class-wide object, which is
a51368fa
AC
5080 -- considered erroneous.
5081
5082 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5083 Error_Msg_NE
5084 ("??class-wide object & must not be overlaid", Nam, U_Ent);
fbf5a39b 5085 Error_Msg_N
dbfeb4fa 5086 ("\??Program_Error will be raised at run time", Nam);
fbf5a39b
AC
5087 Insert_Action (Declaration_Node (U_Ent),
5088 Make_Raise_Program_Error (Loc,
5089 Reason => PE_Overlaid_Controlled_Object));
2642f998 5090 return;
fbf5a39b 5091
d9049849 5092 -- Case of address clause for an object
996ae0b0 5093
d9049849 5094 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
996ae0b0 5095 declare
f4cd2542
EB
5096 Expr : constant Node_Id := Expression (N);
5097 O_Ent : Entity_Id;
5098 Off : Boolean;
996ae0b0
RK
5099
5100 begin
5132708f
RD
5101 -- Exported variables cannot have an address clause, because
5102 -- this cancels the effect of the pragma Export.
996ae0b0
RK
5103
5104 if Is_Exported (U_Ent) then
5105 Error_Msg_N
5106 ("cannot export object with address clause", Nam);
2642f998 5107 return;
f4cd2542
EB
5108 end if;
5109
5110 Find_Overlaid_Entity (N, O_Ent, Off);
996ae0b0 5111
b3b5c6a2 5112 if Present (O_Ent) then
d6dffa66 5113
b3b5c6a2 5114 -- If the object overlays a constant object, mark it so
c31b57af 5115
b3b5c6a2
EB
5116 if Is_Constant_Object (O_Ent) then
5117 Set_Overlays_Constant (U_Ent);
5118 end if;
d6dffa66 5119
f26a3587
AC
5120 -- If the address clause is of the form:
5121
5122 -- for X'Address use Y'Address;
5123
5124 -- or
5125
5126 -- C : constant Address := Y'Address;
5127 -- ...
5128 -- for X'Address use C;
5129
5130 -- then we make an entry in the table to check the size
5131 -- and alignment of the overlaying variable. But we defer
5132 -- this check till after code generation to take full
5133 -- advantage of the annotation done by the back end.
5134
5135 -- If the entity has a generic type, the check will be
5136 -- performed in the instance if the actual type justifies
5137 -- it, and we do not insert the clause in the table to
5138 -- prevent spurious warnings.
5139
5140 -- Note: we used to test Comes_From_Source and only give
5141 -- this warning for source entities, but we have removed
5142 -- this test. It really seems bogus to generate overlays
5143 -- that would trigger this warning in generated code.
5144 -- Furthermore, by removing the test, we handle the
5145 -- aspect case properly.
5146
5147 if Is_Object (O_Ent)
570d5bbc 5148 and then not Is_Generic_Formal (O_Ent)
f26a3587
AC
5149 and then not Is_Generic_Type (Etype (U_Ent))
5150 and then Address_Clause_Overlay_Warnings
5151 then
5067f3a0
PMR
5152 Register_Address_Clause_Check
5153 (N, U_Ent, No_Uint, O_Ent, Off);
f26a3587 5154 end if;
845af9e6
PMR
5155
5156 -- If the overlay changes the storage order, mark the
5157 -- entity as being volatile to block any optimization
5158 -- for it since the construct is not really supported
5159 -- by the back end.
5160
5161 if (Is_Record_Type (Etype (U_Ent))
5162 or else Is_Array_Type (Etype (U_Ent)))
5163 and then (Is_Record_Type (Etype (O_Ent))
5164 or else Is_Array_Type (Etype (O_Ent)))
aa11d1dd
PMR
5165 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5166 Reverse_Storage_Order (Etype (O_Ent))
845af9e6
PMR
5167 then
5168 Set_Treat_As_Volatile (U_Ent);
5169 end if;
5170
b3b5c6a2
EB
5171 else
5172 -- If this is not an overlay, mark a variable as being
5173 -- volatile to prevent unwanted optimizations. It's a
5174 -- conservative interpretation of RM 13.3(19) for the
5175 -- cases where the compiler cannot detect potential
5176 -- aliasing issues easily and it also covers the case
5177 -- of an absolute address where the volatile aspect is
5178 -- kind of implicit.
5179
5180 if Ekind (U_Ent) = E_Variable then
5181 Set_Treat_As_Volatile (U_Ent);
5182 end if;
f26a3587
AC
5183
5184 -- Make an entry in the table for an absolute address as
5185 -- above to check that the value is compatible with the
5186 -- alignment of the object.
5187
5188 declare
5189 Addr : constant Node_Id := Address_Value (Expr);
5190 begin
5191 if Compile_Time_Known_Value (Addr)
5192 and then Address_Clause_Overlay_Warnings
5193 then
5067f3a0
PMR
5194 Register_Address_Clause_Check
5195 (N, U_Ent, Expr_Value (Addr), Empty, False);
f26a3587
AC
5196 end if;
5197 end;
c31b57af
EB
5198 end if;
5199
ed11bbfe
AC
5200 -- Issue an unconditional warning for a constant overlaying
5201 -- a variable. For the reverse case, we will issue it only
c31b57af 5202 -- if the variable is modified.
ed11bbfe 5203
d9049849 5204 if Ekind (U_Ent) = E_Constant
ed11bbfe 5205 and then Present (O_Ent)
c31b57af
EB
5206 and then not Overlays_Constant (U_Ent)
5207 and then Address_Clause_Overlay_Warnings
fbf5a39b 5208 then
dbfeb4fa 5209 Error_Msg_N ("??constant overlays a variable", Expr);
fbf5a39b 5210
996ae0b0
RK
5211 -- Imported variables can have an address clause, but then
5212 -- the import is pretty meaningless except to suppress
5213 -- initializations, so we do not need such variables to
5214 -- be statically allocated (and in fact it causes trouble
5215 -- if the address clause is a local value).
5216
5217 elsif Is_Imported (U_Ent) then
5218 Set_Is_Statically_Allocated (U_Ent, False);
5219 end if;
5220
5221 -- We mark a possible modification of a variable with an
5222 -- address clause, since it is likely aliasing is occurring.
5223
45fc7ddb 5224 Note_Possible_Modification (Nam, Sure => False);
996ae0b0 5225
fbf5a39b
AC
5226 -- Legality checks on the address clause for initialized
5227 -- objects is deferred until the freeze point, because
29ba9f52 5228 -- a subsequent pragma might indicate that the object
02217452
AC
5229 -- is imported and thus not initialized. Also, the address
5230 -- clause might involve entities that have yet to be
5231 -- elaborated.
fbf5a39b
AC
5232
5233 Set_Has_Delayed_Freeze (U_Ent);
5234
f3b57ab0
AC
5235 -- If an initialization call has been generated for this
5236 -- object, it needs to be deferred to after the freeze node
5237 -- we have just now added, otherwise GIGI will see a
5238 -- reference to the variable (as actual to the IP call)
5239 -- before its definition.
5240
5241 declare
3a3af4c3
AC
5242 Init_Call : constant Node_Id :=
5243 Remove_Init_Call (U_Ent, N);
ae05cdd6 5244
f3b57ab0
AC
5245 begin
5246 if Present (Init_Call) then
c6d2191a 5247 Append_Freeze_Action (U_Ent, Init_Call);
3a3af4c3 5248
c6d2191a
AC
5249 -- Reset Initialization_Statements pointer so that
5250 -- if there is a pragma Import further down, it can
5251 -- clear any default initialization.
3a3af4c3 5252
c6d2191a 5253 Set_Initialization_Statements (U_Ent, Init_Call);
f3b57ab0
AC
5254 end if;
5255 end;
5256
affbee12
RD
5257 -- Entity has delayed freeze, so we will generate an
5258 -- alignment check at the freeze point unless suppressed.
996ae0b0 5259
affbee12
RD
5260 if not Range_Checks_Suppressed (U_Ent)
5261 and then not Alignment_Checks_Suppressed (U_Ent)
5262 then
5263 Set_Check_Address_Alignment (N);
5264 end if;
996ae0b0
RK
5265
5266 -- Kill the size check code, since we are not allocating
5267 -- the variable, it is somewhere else.
5268
5269 Kill_Size_Check_Code (U_Ent);
f4cd2542 5270 end;
2642f998 5271
996ae0b0
RK
5272 -- Not a valid entity for an address clause
5273
5274 else
5275 Error_Msg_N ("address cannot be given for &", Nam);
5276 end if;
5277 end Address;
5278
5279 ---------------
5280 -- Alignment --
5281 ---------------
5282
5283 -- Alignment attribute definition clause
5284
f8c6086b 5285 when Attribute_Alignment => Alignment : declare
6bed26b5
AC
5286 Align : constant Uint := Get_Alignment_Value (Expr);
5287 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
033eaf85 5288
996ae0b0
RK
5289 begin
5290 FOnly := True;
5291
5292 if not Is_Type (U_Ent)
5293 and then Ekind (U_Ent) /= E_Variable
5294 and then Ekind (U_Ent) /= E_Constant
5295 then
5296 Error_Msg_N ("alignment cannot be given for &", Nam);
5297
0f1a6a0b
AC
5298 elsif Duplicate_Clause then
5299 null;
996ae0b0
RK
5300
5301 elsif Align /= No_Uint then
5302 Set_Has_Alignment_Clause (U_Ent);
6bed26b5 5303
54c04d6c 5304 -- Tagged type case, check for attempt to set alignment to a
32b794c8
AC
5305 -- value greater than Max_Align, and reset if so. This error
5306 -- is suppressed in ASIS mode to allow for different ASIS
2cc2e964 5307 -- back ends or ASIS-based tools to query the illegal clause.
54c04d6c 5308
32b794c8
AC
5309 if Is_Tagged_Type (U_Ent)
5310 and then Align > Max_Align
5311 and then not ASIS_Mode
5312 then
6bed26b5 5313 Error_Msg_N
dbfeb4fa 5314 ("alignment for & set to Maximum_Aligment??", Nam);
32b794c8 5315 Set_Alignment (U_Ent, Max_Align);
54c04d6c
AC
5316
5317 -- All other cases
5318
6bed26b5
AC
5319 else
5320 Set_Alignment (U_Ent, Align);
5321 end if;
f8c6086b
AC
5322
5323 -- For an array type, U_Ent is the first subtype. In that case,
5324 -- also set the alignment of the anonymous base type so that
5325 -- other subtypes (such as the itypes for aggregates of the
5326 -- type) also receive the expected alignment.
5327
5328 if Is_Array_Type (U_Ent) then
5329 Set_Alignment (Base_Type (U_Ent), Align);
5330 end if;
996ae0b0 5331 end if;
f8c6086b 5332 end Alignment;
996ae0b0
RK
5333
5334 ---------------
5335 -- Bit_Order --
5336 ---------------
5337
5338 -- Bit_Order attribute definition clause
5339
d8f43ee6 5340 when Attribute_Bit_Order =>
996ae0b0
RK
5341 if not Is_Record_Type (U_Ent) then
5342 Error_Msg_N
5343 ("Bit_Order can only be defined for record type", Nam);
5344
400ad4e9 5345 elsif Is_Tagged_Type (U_Ent) and then Is_Derived_Type (U_Ent) then
2588c36c
JM
5346 Error_Msg_N
5347 ("Bit_Order cannot be defined for record extensions", Nam);
5348
0f1a6a0b
AC
5349 elsif Duplicate_Clause then
5350 null;
5351
996ae0b0
RK
5352 else
5353 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5354
5355 if Etype (Expr) = Any_Type then
5356 return;
5357
edab6088 5358 elsif not Is_OK_Static_Expression (Expr) then
fbf5a39b
AC
5359 Flag_Non_Static_Expr
5360 ("Bit_Order requires static expression!", Expr);
996ae0b0 5361
400ad4e9
HK
5362 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5363 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
996ae0b0
RK
5364 end if;
5365 end if;
996ae0b0
RK
5366
5367 --------------------
5368 -- Component_Size --
5369 --------------------
5370
5371 -- Component_Size attribute definition clause
5372
5373 when Attribute_Component_Size => Component_Size_Case : declare
5374 Csize : constant Uint := Static_Integer (Expr);
b3f48fd4 5375 Ctyp : Entity_Id;
996ae0b0
RK
5376 Btype : Entity_Id;
5377 Biased : Boolean;
5378 New_Ctyp : Entity_Id;
5379 Decl : Node_Id;
5380
5381 begin
5382 if not Is_Array_Type (U_Ent) then
5383 Error_Msg_N ("component size requires array type", Nam);
5384 return;
5385 end if;
5386
5387 Btype := Base_Type (U_Ent);
32b794c8 5388 Ctyp := Component_Type (Btype);
996ae0b0 5389
0f1a6a0b
AC
5390 if Duplicate_Clause then
5391 null;
996ae0b0 5392
094cefda
AC
5393 elsif Rep_Item_Too_Early (Btype, N) then
5394 null;
5395
996ae0b0 5396 elsif Csize /= No_Uint then
b3f48fd4 5397 Check_Size (Expr, Ctyp, Csize, Biased);
996ae0b0 5398
c159409f
AC
5399 -- For the biased case, build a declaration for a subtype that
5400 -- will be used to represent the biased subtype that reflects
5401 -- the biased representation of components. We need the subtype
5402 -- to get proper conversions on referencing elements of the
535a8637 5403 -- array.
800621e0 5404
535a8637
AC
5405 if Biased then
5406 New_Ctyp :=
5407 Make_Defining_Identifier (Loc,
5408 Chars =>
5409 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
800621e0 5410
535a8637
AC
5411 Decl :=
5412 Make_Subtype_Declaration (Loc,
5413 Defining_Identifier => New_Ctyp,
5414 Subtype_Indication =>
5415 New_Occurrence_Of (Component_Type (Btype), Loc));
5416
5417 Set_Parent (Decl, N);
5418 Analyze (Decl, Suppress => All_Checks);
5419
5420 Set_Has_Delayed_Freeze (New_Ctyp, False);
5421 Set_Esize (New_Ctyp, Csize);
5422 Set_RM_Size (New_Ctyp, Csize);
5423 Init_Alignment (New_Ctyp);
5424 Set_Is_Itype (New_Ctyp, True);
5425 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5426
5427 Set_Component_Type (Btype, New_Ctyp);
5428 Set_Biased (New_Ctyp, N, "component size clause");
996ae0b0
RK
5429 end if;
5430
535a8637
AC
5431 Set_Component_Size (Btype, Csize);
5432
b3f48fd4
AC
5433 -- Deal with warning on overridden size
5434
5435 if Warn_On_Overridden_Size
5436 and then Has_Size_Clause (Ctyp)
5437 and then RM_Size (Ctyp) /= Csize
5438 then
5439 Error_Msg_NE
dbfeb4fa 5440 ("component size overrides size clause for&?S?", N, Ctyp);
b3f48fd4
AC
5441 end if;
5442
996ae0b0 5443 Set_Has_Component_Size_Clause (Btype, True);
094cefda 5444 Set_Has_Non_Standard_Rep (Btype, True);
996ae0b0
RK
5445 end if;
5446 end Component_Size_Case;
5447
d50f4827
AC
5448 -----------------------
5449 -- Constant_Indexing --
5450 -----------------------
5451
5452 when Attribute_Constant_Indexing =>
5453 Check_Indexing_Functions;
5454
b98e2969
AC
5455 ---------
5456 -- CPU --
5457 ---------
5458
d8f43ee6
HK
5459 when Attribute_CPU =>
5460
b98e2969
AC
5461 -- CPU attribute definition clause not allowed except from aspect
5462 -- specification.
5463
5464 if From_Aspect_Specification (N) then
5465 if not Is_Task_Type (U_Ent) then
5466 Error_Msg_N ("CPU can only be defined for task", Nam);
5467
5468 elsif Duplicate_Clause then
5469 null;
5470
5471 else
5472 -- The expression must be analyzed in the special manner
5473 -- described in "Handling of Default and Per-Object
5474 -- Expressions" in sem.ads.
5475
5f531fef
ES
5476 -- The visibility to the components must be established
5477 -- and restored before and after analysis.
b98e2969 5478
5f531fef 5479 Push_Type (U_Ent);
b98e2969 5480 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5f531fef 5481 Pop_Type (U_Ent);
b98e2969 5482
edab6088 5483 if not Is_OK_Static_Expression (Expr) then
b98e2969
AC
5484 Check_Restriction (Static_Priorities, Expr);
5485 end if;
5486 end if;
5487
5488 else
5489 Error_Msg_N
5490 ("attribute& cannot be set with definition clause", N);
5491 end if;
b98e2969 5492
d941cee6
AC
5493 ----------------------
5494 -- Default_Iterator --
5495 ----------------------
5496
eedc5882 5497 when Attribute_Default_Iterator => Default_Iterator : declare
d941cee6 5498 Func : Entity_Id;
72eaa365 5499 Typ : Entity_Id;
d941cee6
AC
5500
5501 begin
4f2cae4a
ES
5502 -- If target type is untagged, further checks are irrelevant
5503
d941cee6
AC
5504 if not Is_Tagged_Type (U_Ent) then
5505 Error_Msg_N
4f2cae4a
ES
5506 ("aspect Default_Iterator applies to tagged type", Nam);
5507 return;
d941cee6
AC
5508 end if;
5509
5510 Check_Iterator_Functions;
5511
5512 Analyze (Expr);
5513
5514 if not Is_Entity_Name (Expr)
5515 or else Ekind (Entity (Expr)) /= E_Function
5516 then
5517 Error_Msg_N ("aspect Iterator must be a function", Expr);
4f2cae4a 5518 return;
d941cee6
AC
5519 else
5520 Func := Entity (Expr);
5521 end if;
5522
72eaa365 5523 -- The type of the first parameter must be T, T'class, or a
4f2cae4a
ES
5524 -- corresponding access type (5.5.1 (8/3). If function is
5525 -- parameterless label type accordingly.
72eaa365
AC
5526
5527 if No (First_Formal (Func)) then
4f2cae4a 5528 Typ := Any_Type;
72eaa365
AC
5529 else
5530 Typ := Etype (First_Formal (Func));
5531 end if;
5532
5533 if Typ = U_Ent
5534 or else Typ = Class_Wide_Type (U_Ent)
5535 or else (Is_Access_Type (Typ)
5536 and then Designated_Type (Typ) = U_Ent)
5537 or else (Is_Access_Type (Typ)
5538 and then Designated_Type (Typ) =
5539 Class_Wide_Type (U_Ent))
d941cee6 5540 then
72eaa365
AC
5541 null;
5542
5543 else
d941cee6
AC
5544 Error_Msg_NE
5545 ("Default Iterator must be a primitive of&", Func, U_Ent);
5546 end if;
5547 end Default_Iterator;
5548
b98e2969
AC
5549 ------------------------
5550 -- Dispatching_Domain --
5551 ------------------------
5552
d8f43ee6
HK
5553 when Attribute_Dispatching_Domain =>
5554
b98e2969
AC
5555 -- Dispatching_Domain attribute definition clause not allowed
5556 -- except from aspect specification.
5557
5558 if From_Aspect_Specification (N) then
5559 if not Is_Task_Type (U_Ent) then
72eaa365
AC
5560 Error_Msg_N
5561 ("Dispatching_Domain can only be defined for task", Nam);
b98e2969
AC
5562
5563 elsif Duplicate_Clause then
5564 null;
5565
5566 else
5567 -- The expression must be analyzed in the special manner
5568 -- described in "Handling of Default and Per-Object
5569 -- Expressions" in sem.ads.
5570
5f531fef 5571 -- The visibility to the components must be restored
b98e2969 5572
5f531fef 5573 Push_Type (U_Ent);
b98e2969
AC
5574
5575 Preanalyze_Spec_Expression
5576 (Expr, RTE (RE_Dispatching_Domain));
5577
5f531fef 5578 Pop_Type (U_Ent);
b98e2969
AC
5579 end if;
5580
5581 else
5582 Error_Msg_N
5583 ("attribute& cannot be set with definition clause", N);
5584 end if;
b98e2969 5585
996ae0b0
RK
5586 ------------------
5587 -- External_Tag --
5588 ------------------
5589
d8f43ee6 5590 when Attribute_External_Tag =>
996ae0b0
RK
5591 if not Is_Tagged_Type (U_Ent) then
5592 Error_Msg_N ("should be a tagged type", Nam);
5593 end if;
5594
0f1a6a0b
AC
5595 if Duplicate_Clause then
5596 null;
996ae0b0 5597
76efd572 5598 else
0f1a6a0b 5599 Analyze_And_Resolve (Expr, Standard_String);
c690a2ec 5600
edab6088 5601 if not Is_OK_Static_Expression (Expr) then
0f1a6a0b
AC
5602 Flag_Non_Static_Expr
5603 ("static string required for tag name!", Nam);
5604 end if;
5605
0f1a6a0b
AC
5606 if not Is_Library_Level_Entity (U_Ent) then
5607 Error_Msg_NE
dbfeb4fa 5608 ("??non-unique external tag supplied for &", N, U_Ent);
0f1a6a0b 5609 Error_Msg_N
32b794c8
AC
5610 ("\??same external tag applies to all subprogram calls",
5611 N);
0f1a6a0b 5612 Error_Msg_N
dbfeb4fa 5613 ("\??corresponding internal tag cannot be obtained", N);
0f1a6a0b 5614 end if;
c690a2ec 5615 end if;
996ae0b0 5616
0da80d7d
AC
5617 --------------------------
5618 -- Implicit_Dereference --
5619 --------------------------
bb3c784c 5620
0da80d7d 5621 when Attribute_Implicit_Dereference =>
bb3c784c 5622
29ba9f52
RD
5623 -- Legality checks already performed at the point of the type
5624 -- declaration, aspect is not delayed.
bb3c784c 5625
d941cee6 5626 null;
0da80d7d 5627
996ae0b0
RK
5628 -----------
5629 -- Input --
5630 -----------
5631
edd63e9b
ES
5632 when Attribute_Input =>
5633 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5634 Set_Has_Specified_Stream_Input (Ent);
996ae0b0 5635
b98e2969
AC
5636 ------------------------
5637 -- Interrupt_Priority --
5638 ------------------------
5639
d8f43ee6
HK
5640 when Attribute_Interrupt_Priority =>
5641
b98e2969
AC
5642 -- Interrupt_Priority attribute definition clause not allowed
5643 -- except from aspect specification.
5644
5645 if From_Aspect_Specification (N) then
dc06dd83 5646 if not Is_Concurrent_Type (U_Ent) then
b98e2969 5647 Error_Msg_N
32b794c8
AC
5648 ("Interrupt_Priority can only be defined for task and "
5649 & "protected object", Nam);
b98e2969
AC
5650
5651 elsif Duplicate_Clause then
5652 null;
5653
5654 else
5655 -- The expression must be analyzed in the special manner
5656 -- described in "Handling of Default and Per-Object
5657 -- Expressions" in sem.ads.
5658
5f531fef 5659 -- The visibility to the components must be restored
b98e2969 5660
5f531fef 5661 Push_Type (U_Ent);
b98e2969
AC
5662
5663 Preanalyze_Spec_Expression
5664 (Expr, RTE (RE_Interrupt_Priority));
5665
5f531fef 5666 Pop_Type (U_Ent);
6bf8c157
TG
5667
5668 -- Check the No_Task_At_Interrupt_Priority restriction
5669
5670 if Is_Task_Type (U_Ent) then
5671 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5672 end if;
b98e2969
AC
5673 end if;
5674
5675 else
5676 Error_Msg_N
5677 ("attribute& cannot be set with definition clause", N);
5678 end if;
b98e2969 5679
dd2bf554
ES
5680 --------------
5681 -- Iterable --
5682 --------------
5683
5684 when Attribute_Iterable =>
5685 Analyze (Expr);
82d4f390 5686
dd2bf554
ES
5687 if Nkind (Expr) /= N_Aggregate then
5688 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5689 end if;
5690
5691 declare
5692 Assoc : Node_Id;
5693
5694 begin
5695 Assoc := First (Component_Associations (Expr));
5696 while Present (Assoc) loop
5f531fef 5697 Analyze (Expression (Assoc));
2401c98f 5698
dd2bf554
ES
5699 if not Is_Entity_Name (Expression (Assoc)) then
5700 Error_Msg_N ("value must be a function", Assoc);
5701 end if;
82d4f390 5702
dd2bf554
ES
5703 Next (Assoc);
5704 end loop;
5705 end;
5706
d941cee6
AC
5707 ----------------------
5708 -- Iterator_Element --
5709 ----------------------
5710
5711 when Attribute_Iterator_Element =>
5712 Analyze (Expr);
5713
5714 if not Is_Entity_Name (Expr)
5715 or else not Is_Type (Entity (Expr))
5716 then
5717 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5718 end if;
5719
996ae0b0
RK
5720 -------------------
5721 -- Machine_Radix --
5722 -------------------
5723
5724 -- Machine radix attribute definition clause
5725
5726 when Attribute_Machine_Radix => Machine_Radix : declare
5727 Radix : constant Uint := Static_Integer (Expr);
5728
5729 begin
5730 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5731 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5732
0f1a6a0b
AC
5733 elsif Duplicate_Clause then
5734 null;
996ae0b0
RK
5735
5736 elsif Radix /= No_Uint then
5737 Set_Has_Machine_Radix_Clause (U_Ent);
5738 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5739
5740 if Radix = 2 then
5741 null;
32b794c8 5742
996ae0b0
RK
5743 elsif Radix = 10 then
5744 Set_Machine_Radix_10 (U_Ent);
32b794c8
AC
5745
5746 -- The following error is suppressed in ASIS mode to allow for
2cc2e964 5747 -- different ASIS back ends or ASIS-based tools to query the
32b794c8
AC
5748 -- illegal clause.
5749
5750 elsif not ASIS_Mode then
996ae0b0
RK
5751 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5752 end if;
5753 end if;
5754 end Machine_Radix;
5755
5756 -----------------
5757 -- Object_Size --
5758 -----------------
5759
5760 -- Object_Size attribute definition clause
5761
5762 when Attribute_Object_Size => Object_Size : declare
d4731b80
BD
5763 Size : constant Uint := Static_Integer (Expr);
5764
996ae0b0 5765 Biased : Boolean;
d4731b80 5766 pragma Warnings (Off, Biased);
996ae0b0
RK
5767
5768 begin
5769 if not Is_Type (U_Ent) then
5770 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5771
0f1a6a0b
AC
5772 elsif Duplicate_Clause then
5773 null;
996ae0b0
RK
5774
5775 else
5776 Check_Size (Expr, U_Ent, Size, Biased);
5777
32b794c8 5778 -- The following errors are suppressed in ASIS mode to allow
2cc2e964 5779 -- for different ASIS back ends or ASIS-based tools to query
32b794c8
AC
5780 -- the illegal clause.
5781
5782 if ASIS_Mode then
5783 null;
5784
5785 elsif Is_Scalar_Type (U_Ent) then
3e586e10
AC
5786 if Size /= 8 and then Size /= 16 and then Size /= 32
5787 and then UI_Mod (Size, 64) /= 0
5788 then
5789 Error_Msg_N
5790 ("Object_Size must be 8, 16, 32, or multiple of 64",
5791 Expr);
5792 end if;
5793
5794 elsif Size mod 8 /= 0 then
5795 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
996ae0b0
RK
5796 end if;
5797
5798 Set_Esize (U_Ent, Size);
5799 Set_Has_Object_Size_Clause (U_Ent);
76af4137 5800 Alignment_Check_For_Size_Change (U_Ent, Size);
996ae0b0
RK
5801 end if;
5802 end Object_Size;
5803
5804 ------------
5805 -- Output --
5806 ------------
5807
edd63e9b
ES
5808 when Attribute_Output =>
5809 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5810 Set_Has_Specified_Stream_Output (Ent);
996ae0b0 5811
b98e2969
AC
5812 --------------
5813 -- Priority --
5814 --------------
5815
d8f43ee6
HK
5816 when Attribute_Priority =>
5817
b98e2969
AC
5818 -- Priority attribute definition clause not allowed except from
5819 -- aspect specification.
5820
5821 if From_Aspect_Specification (N) then
dc06dd83 5822 if not (Is_Concurrent_Type (U_Ent)
473e20df 5823 or else Ekind (U_Ent) = E_Procedure)
b98e2969
AC
5824 then
5825 Error_Msg_N
dc06dd83
AC
5826 ("Priority can only be defined for task and protected "
5827 & "object", Nam);
b98e2969
AC
5828
5829 elsif Duplicate_Clause then
5830 null;
5831
5832 else
5833 -- The expression must be analyzed in the special manner
5834 -- described in "Handling of Default and Per-Object
5835 -- Expressions" in sem.ads.
5836
5f531fef 5837 -- The visibility to the components must be restored
b98e2969 5838
5f531fef 5839 Push_Type (U_Ent);
b98e2969 5840 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5f531fef 5841 Pop_Type (U_Ent);
b98e2969 5842
edab6088 5843 if not Is_OK_Static_Expression (Expr) then
b98e2969
AC
5844 Check_Restriction (Static_Priorities, Expr);
5845 end if;
5846 end if;
5847
5848 else
5849 Error_Msg_N
5850 ("attribute& cannot be set with definition clause", N);
5851 end if;
b98e2969 5852
996ae0b0
RK
5853 ----------
5854 -- Read --
5855 ----------
5856
edd63e9b
ES
5857 when Attribute_Read =>
5858 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5859 Set_Has_Specified_Stream_Read (Ent);
996ae0b0 5860
f91510fc
AC
5861 --------------------------
5862 -- Scalar_Storage_Order --
5863 --------------------------
5864
5865 -- Scalar_Storage_Order attribute definition clause
5866
d8f43ee6 5867 when Attribute_Scalar_Storage_Order =>
a2c1791d 5868 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
f91510fc 5869 Error_Msg_N
32b794c8
AC
5870 ("Scalar_Storage_Order can only be defined for record or "
5871 & "array type", Nam);
f91510fc
AC
5872
5873 elsif Duplicate_Clause then
5874 null;
5875
5876 else
5877 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5878
5879 if Etype (Expr) = Any_Type then
5880 return;
5881
edab6088 5882 elsif not Is_OK_Static_Expression (Expr) then
f91510fc
AC
5883 Flag_Non_Static_Expr
5884 ("Scalar_Storage_Order requires static expression!", Expr);
5885
d7761b2d
AC
5886 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5887
5888 -- Here for the case of a non-default (i.e. non-confirming)
5889 -- Scalar_Storage_Order attribute definition.
5890
5891 if Support_Nondefault_SSO_On_Target then
1e4b91fc 5892 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
d7761b2d
AC
5893 else
5894 Error_Msg_N
32b794c8
AC
5895 ("non-default Scalar_Storage_Order not supported on "
5896 & "target", Expr);
f91510fc
AC
5897 end if;
5898 end if;
220d1fd9
AC
5899
5900 -- Clear SSO default indications since explicit setting of the
5901 -- order overrides the defaults.
5902
5903 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5904 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
f91510fc 5905 end if;
f91510fc 5906
996ae0b0
RK
5907 ----------
5908 -- Size --
5909 ----------
5910
5911 -- Size attribute definition clause
5912
5913 when Attribute_Size => Size : declare
5914 Size : constant Uint := Static_Integer (Expr);
5915 Etyp : Entity_Id;
5916 Biased : Boolean;
5917
5918 begin
5919 FOnly := True;
5920
0f1a6a0b
AC
5921 if Duplicate_Clause then
5922 null;
996ae0b0
RK
5923
5924 elsif not Is_Type (U_Ent)
5925 and then Ekind (U_Ent) /= E_Variable
5926 and then Ekind (U_Ent) /= E_Constant
5927 then
5928 Error_Msg_N ("size cannot be given for &", Nam);
5929
5930 elsif Is_Array_Type (U_Ent)
5931 and then not Is_Constrained (U_Ent)
5932 then
5933 Error_Msg_N
5934 ("size cannot be given for unconstrained array", Nam);
5935
f4b049db 5936 elsif Size /= No_Uint then
996ae0b0
RK
5937 if Is_Type (U_Ent) then
5938 Etyp := U_Ent;
5939 else
5940 Etyp := Etype (U_Ent);
5941 end if;
5942
a9a5b8ac
RD
5943 -- Check size, note that Gigi is in charge of checking that the
5944 -- size of an array or record type is OK. Also we do not check
5945 -- the size in the ordinary fixed-point case, since it is too
5946 -- early to do so (there may be subsequent small clause that
5947 -- affects the size). We can check the size if a small clause
5948 -- has already been given.
996ae0b0
RK
5949
5950 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5951 or else Has_Small_Clause (U_Ent)
5952 then
5953 Check_Size (Expr, Etyp, Size, Biased);
a3f2babd 5954 Set_Biased (U_Ent, N, "size clause", Biased);
996ae0b0
RK
5955 end if;
5956
5957 -- For types set RM_Size and Esize if possible
5958
5959 if Is_Type (U_Ent) then
5960 Set_RM_Size (U_Ent, Size);
5961
fc893455
AC
5962 -- For elementary types, increase Object_Size to power of 2,
5963 -- but not less than a storage unit in any case (normally
a9a5b8ac 5964 -- this means it will be byte addressable).
996ae0b0 5965
fc893455
AC
5966 -- For all other types, nothing else to do, we leave Esize
5967 -- (object size) unset, the back end will set it from the
5968 -- size and alignment in an appropriate manner.
5969
76af4137
AC
5970 -- In both cases, we check whether the alignment must be
5971 -- reset in the wake of the size change.
5972
fc893455 5973 if Is_Elementary_Type (U_Ent) then
07fc65c4
GB
5974 if Size <= System_Storage_Unit then
5975 Init_Esize (U_Ent, System_Storage_Unit);
996ae0b0
RK
5976 elsif Size <= 16 then
5977 Init_Esize (U_Ent, 16);
5978 elsif Size <= 32 then
5979 Init_Esize (U_Ent, 32);
5980 else
5981 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5982 end if;
5983
76af4137
AC
5984 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5985 else
5986 Alignment_Check_For_Size_Change (U_Ent, Size);
996ae0b0
RK
5987 end if;
5988
996ae0b0
RK
5989 -- For objects, set Esize only
5990
5991 else
32b794c8 5992 -- The following error is suppressed in ASIS mode to allow
2cc2e964 5993 -- for different ASIS back ends or ASIS-based tools to query
32b794c8
AC
5994 -- the illegal clause.
5995
5996 if Is_Elementary_Type (Etyp)
5997 and then Size /= System_Storage_Unit
5998 and then Size /= System_Storage_Unit * 2
5999 and then Size /= System_Storage_Unit * 4
6000 and then Size /= System_Storage_Unit * 8
6001 and then not ASIS_Mode
6002 then
6003 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6004 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
6005 Error_Msg_N
6006 ("size for primitive object must be a power of 2 in "
6007 & "the range ^-^", N);
fbf5a39b
AC
6008 end if;
6009
996ae0b0
RK
6010 Set_Esize (U_Ent, Size);
6011 end if;
6012
6013 Set_Has_Size_Clause (U_Ent);
6014 end if;
6015 end Size;
6016
6017 -----------
6018 -- Small --
6019 -----------
6020
6021 -- Small attribute definition clause
6022
6023 when Attribute_Small => Small : declare
6024 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
6025 Small : Ureal;
6026
6027 begin
6028 Analyze_And_Resolve (Expr, Any_Real);
6029
6030 if Etype (Expr) = Any_Type then
6031 return;
6032
edab6088 6033 elsif not Is_OK_Static_Expression (Expr) then
fbf5a39b
AC
6034 Flag_Non_Static_Expr
6035 ("small requires static expression!", Expr);
996ae0b0
RK
6036 return;
6037
6038 else
6039 Small := Expr_Value_R (Expr);
6040
6041 if Small <= Ureal_0 then
6042 Error_Msg_N ("small value must be greater than zero", Expr);
6043 return;
6044 end if;
6045
6046 end if;
6047
6048 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6049 Error_Msg_N
6050 ("small requires an ordinary fixed point type", Nam);
6051
6052 elsif Has_Small_Clause (U_Ent) then
6053 Error_Msg_N ("small already given for &", Nam);
6054
6055 elsif Small > Delta_Value (U_Ent) then
6056 Error_Msg_N
d99ff0f4 6057 ("small value must not be greater than delta value", Nam);
996ae0b0
RK
6058
6059 else
6060 Set_Small_Value (U_Ent, Small);
6061 Set_Small_Value (Implicit_Base, Small);
6062 Set_Has_Small_Clause (U_Ent);
6063 Set_Has_Small_Clause (Implicit_Base);
6064 Set_Has_Non_Standard_Rep (Implicit_Base);
6065 end if;
6066 end Small;
6067
996ae0b0
RK
6068 ------------------
6069 -- Storage_Pool --
6070 ------------------
6071
6072 -- Storage_Pool attribute definition clause
6073
d8f43ee6
HK
6074 when Attribute_Simple_Storage_Pool
6075 | Attribute_Storage_Pool
6076 =>
6077 Storage_Pool : declare
996ae0b0 6078 Pool : Entity_Id;
fe98a6aa 6079 T : Entity_Id;
996ae0b0
RK
6080
6081 begin
affbee12
RD
6082 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6083 Error_Msg_N
6084 ("storage pool cannot be given for access-to-subprogram type",
6085 Nam);
6086 return;
6087
d8f43ee6 6088 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
996ae0b0 6089 then
affbee12
RD
6090 Error_Msg_N
6091 ("storage pool can only be given for access types", Nam);
996ae0b0
RK
6092 return;
6093
6094 elsif Is_Derived_Type (U_Ent) then
6095 Error_Msg_N
6096 ("storage pool cannot be given for a derived access type",
6097 Nam);
6098
0f1a6a0b 6099 elsif Duplicate_Clause then
996ae0b0
RK
6100 return;
6101
6102 elsif Present (Associated_Storage_Pool (U_Ent)) then
6103 Error_Msg_N ("storage pool already given for &", Nam);
6104 return;
6105 end if;
6106
113a62d9
RD
6107 -- Check for Storage_Size previously given
6108
6109 declare
6110 SS : constant Node_Id :=
6111 Get_Attribute_Definition_Clause
6112 (U_Ent, Attribute_Storage_Size);
6113 begin
6114 if Present (SS) then
6115 Check_Pool_Size_Clash (U_Ent, N, SS);
6116 end if;
6117 end;
6118
6119 -- Storage_Pool case
6120
a8551b5f
AC
6121 if Id = Attribute_Storage_Pool then
6122 Analyze_And_Resolve
6123 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6124
6125 -- In the Simple_Storage_Pool case, we allow a variable of any
f6205414 6126 -- simple storage pool type, so we Resolve without imposing an
a8551b5f
AC
6127 -- expected type.
6128
6129 else
6130 Analyze_And_Resolve (Expr);
6131
6132 if not Present (Get_Rep_Pragma
f6205414 6133 (Etype (Expr), Name_Simple_Storage_Pool_Type))
a8551b5f
AC
6134 then
6135 Error_Msg_N
6136 ("expression must be of a simple storage pool type", Expr);
6137 end if;
6138 end if;
996ae0b0 6139
cb572b75
ST
6140 if not Denotes_Variable (Expr) then
6141 Error_Msg_N ("storage pool must be a variable", Expr);
6142 return;
6143 end if;
6144
fe98a6aa
CC
6145 if Nkind (Expr) = N_Type_Conversion then
6146 T := Etype (Expression (Expr));
6147 else
6148 T := Etype (Expr);
6149 end if;
6150
6151 -- The Stack_Bounded_Pool is used internally for implementing
a01b9df6
AC
6152 -- access types with a Storage_Size. Since it only work properly
6153 -- when used on one specific type, we need to check that it is not
6154 -- hijacked improperly:
6155
fe98a6aa
CC
6156 -- type T is access Integer;
6157 -- for T'Storage_Size use n;
6158 -- type Q is access Float;
6159 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6160
8f7770f9
RD
6161 if RTE_Available (RE_Stack_Bounded_Pool)
6162 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6163 then
6164 Error_Msg_N ("non-shareable internal Pool", Expr);
fe98a6aa
CC
6165 return;
6166 end if;
6167
996ae0b0
RK
6168 -- If the argument is a name that is not an entity name, then
6169 -- we construct a renaming operation to define an entity of
6170 -- type storage pool.
6171
6172 if not Is_Entity_Name (Expr)
6173 and then Is_Object_Reference (Expr)
6174 then
092ef350 6175 Pool := Make_Temporary (Loc, 'P', Expr);
996ae0b0
RK
6176
6177 declare
6178 Rnode : constant Node_Id :=
6179 Make_Object_Renaming_Declaration (Loc,
6180 Defining_Identifier => Pool,
6181 Subtype_Mark =>
6182 New_Occurrence_Of (Etype (Expr), Loc),
092ef350 6183 Name => Expr);
996ae0b0
RK
6184
6185 begin
9e92ad49
AC
6186 -- If the attribute definition clause comes from an aspect
6187 -- clause, then insert the renaming before the associated
6188 -- entity's declaration, since the attribute clause has
6189 -- not yet been appended to the declaration list.
6190
6191 if From_Aspect_Specification (N) then
6192 Insert_Before (Parent (Entity (N)), Rnode);
6193 else
6194 Insert_Before (N, Rnode);
6195 end if;
6196
996ae0b0
RK
6197 Analyze (Rnode);
6198 Set_Associated_Storage_Pool (U_Ent, Pool);
6199 end;
6200
6201 elsif Is_Entity_Name (Expr) then
6202 Pool := Entity (Expr);
6203
6204 -- If pool is a renamed object, get original one. This can
6205 -- happen with an explicit renaming, and within instances.
6206
6207 while Present (Renamed_Object (Pool))
6208 and then Is_Entity_Name (Renamed_Object (Pool))
6209 loop
6210 Pool := Entity (Renamed_Object (Pool));
6211 end loop;
6212
6213 if Present (Renamed_Object (Pool))
6214 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6215 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6216 then
6217 Pool := Entity (Expression (Renamed_Object (Pool)));
6218 end if;
6219
fe98a6aa 6220 Set_Associated_Storage_Pool (U_Ent, Pool);
996ae0b0
RK
6221
6222 elsif Nkind (Expr) = N_Type_Conversion
6223 and then Is_Entity_Name (Expression (Expr))
6224 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6225 then
6226 Pool := Entity (Expression (Expr));
fe98a6aa 6227 Set_Associated_Storage_Pool (U_Ent, Pool);
996ae0b0
RK
6228
6229 else
6230 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6231 return;
6232 end if;
d8f43ee6 6233 end Storage_Pool;
996ae0b0 6234
affbee12
RD
6235 ------------------
6236 -- Storage_Size --
6237 ------------------
6238
6239 -- Storage_Size attribute definition clause
6240
6241 when Attribute_Storage_Size => Storage_Size : declare
6242 Btype : constant Entity_Id := Base_Type (U_Ent);
affbee12
RD
6243
6244 begin
6245 if Is_Task_Type (U_Ent) then
affbee12 6246
a90bd866 6247 -- Check obsolescent (but never obsolescent if from aspect)
2cbac6c6
AC
6248
6249 if not From_Aspect_Specification (N) then
6250 Check_Restriction (No_Obsolescent_Features, N);
6251
6252 if Warn_On_Obsolescent_Feature then
6253 Error_Msg_N
32b794c8
AC
6254 ("?j?storage size clause for task is an obsolescent "
6255 & "feature (RM J.9)", N);
2cbac6c6
AC
6256 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6257 end if;
affbee12
RD
6258 end if;
6259
6260 FOnly := True;
6261 end if;
6262
6263 if not Is_Access_Type (U_Ent)
6264 and then Ekind (U_Ent) /= E_Task_Type
6265 then
6266 Error_Msg_N ("storage size cannot be given for &", Nam);
6267
6268 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6269 Error_Msg_N
6270 ("storage size cannot be given for a derived access type",
6271 Nam);
6272
0f1a6a0b
AC
6273 elsif Duplicate_Clause then
6274 null;
affbee12
RD
6275
6276 else
6277 Analyze_And_Resolve (Expr, Any_Integer);
6278
6279 if Is_Access_Type (U_Ent) then
113a62d9
RD
6280
6281 -- Check for Storage_Pool previously given
6282
6283 declare
6284 SP : constant Node_Id :=
6285 Get_Attribute_Definition_Clause
6286 (U_Ent, Attribute_Storage_Pool);
6287
6288 begin
6289 if Present (SP) then
6290 Check_Pool_Size_Clash (U_Ent, SP, N);
6291 end if;
6292 end;
6293
6294 -- Special case of for x'Storage_Size use 0
affbee12 6295
8da337c5 6296 if Is_OK_Static_Expression (Expr)
affbee12
RD
6297 and then Expr_Value (Expr) = 0
6298 then
6299 Set_No_Pool_Assigned (Btype);
6300 end if;
affbee12
RD
6301 end if;
6302
6303 Set_Has_Storage_Size_Clause (Btype);
6304 end if;
6305 end Storage_Size;
6306
82c80734
RD
6307 -----------------
6308 -- Stream_Size --
6309 -----------------
6310
6311 when Attribute_Stream_Size => Stream_Size : declare
6312 Size : constant Uint := Static_Integer (Expr);
6313
6314 begin
8f7770f9
RD
6315 if Ada_Version <= Ada_95 then
6316 Check_Restriction (No_Implementation_Attributes, N);
6317 end if;
6318
0f1a6a0b
AC
6319 if Duplicate_Clause then
6320 null;
82c80734
RD
6321
6322 elsif Is_Elementary_Type (U_Ent) then
32b794c8
AC
6323
6324 -- The following errors are suppressed in ASIS mode to allow
2cc2e964 6325 -- for different ASIS back ends or ASIS-based tools to query
32b794c8
AC
6326 -- the illegal clause.
6327
6328 if ASIS_Mode then
6329 null;
6330
6331 elsif Size /= System_Storage_Unit
6332 and then Size /= System_Storage_Unit * 2
6333 and then Size /= System_Storage_Unit * 4
6334 and then Size /= System_Storage_Unit * 8
82c80734
RD
6335 then
6336 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6337 Error_Msg_N
32b794c8
AC
6338 ("stream size for elementary type must be a power of 2 "
6339 & "and at least ^", N);
82c80734
RD
6340
6341 elsif RM_Size (U_Ent) > Size then
6342 Error_Msg_Uint_1 := RM_Size (U_Ent);
6343 Error_Msg_N
32b794c8
AC
6344 ("stream size for elementary type must be a power of 2 "
6345 & "and at least ^", N);
82c80734
RD
6346 end if;
6347
6348 Set_Has_Stream_Size_Clause (U_Ent);
6349
6350 else
6351 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6352 end if;
6353 end Stream_Size;
6354
996ae0b0
RK
6355 ----------------
6356 -- Value_Size --
6357 ----------------
6358
6359 -- Value_Size attribute definition clause
6360
6361 when Attribute_Value_Size => Value_Size : declare
6362 Size : constant Uint := Static_Integer (Expr);
6363 Biased : Boolean;
6364
6365 begin
6366 if not Is_Type (U_Ent) then
6367 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6368
0f1a6a0b
AC
6369 elsif Duplicate_Clause then
6370 null;
996ae0b0 6371
a9a5b8ac
RD
6372 elsif Is_Array_Type (U_Ent)
6373 and then not Is_Constrained (U_Ent)
6374 then
6375 Error_Msg_N
6376 ("Value_Size cannot be given for unconstrained array", Nam);
6377
996ae0b0
RK
6378 else
6379 if Is_Elementary_Type (U_Ent) then
6380 Check_Size (Expr, U_Ent, Size, Biased);
a3f2babd 6381 Set_Biased (U_Ent, N, "value size clause", Biased);
996ae0b0
RK
6382 end if;
6383
6384 Set_RM_Size (U_Ent, Size);
6385 end if;
6386 end Value_Size;
6387
d50f4827
AC
6388 -----------------------
6389 -- Variable_Indexing --
6390 -----------------------
6391
6392 when Attribute_Variable_Indexing =>
6393 Check_Indexing_Functions;
6394
996ae0b0
RK
6395 -----------
6396 -- Write --
6397 -----------
6398
edd63e9b
ES
6399 when Attribute_Write =>
6400 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6401 Set_Has_Specified_Stream_Write (Ent);
996ae0b0
RK
6402
6403 -- All other attributes cannot be set
6404
6405 when others =>
6406 Error_Msg_N
6407 ("attribute& cannot be set with definition clause", N);
996ae0b0
RK
6408 end case;
6409
a01b9df6
AC
6410 -- The test for the type being frozen must be performed after any
6411 -- expression the clause has been analyzed since the expression itself
6412 -- might cause freezing that makes the clause illegal.
996ae0b0
RK
6413
6414 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6415 return;
6416 end if;
6417 end Analyze_Attribute_Definition_Clause;
6418
6419 ----------------------------
6420 -- Analyze_Code_Statement --
6421 ----------------------------
6422
6423 procedure Analyze_Code_Statement (N : Node_Id) is
6424 HSS : constant Node_Id := Parent (N);
6425 SBody : constant Node_Id := Parent (HSS);
6426 Subp : constant Entity_Id := Current_Scope;
6427 Stmt : Node_Id;
6428 Decl : Node_Id;
6429 StmtO : Node_Id;
6430 DeclO : Node_Id;
6431
6432 begin
0fe797c5
SB
6433 -- Accept foreign code statements for CodePeer. The analysis is skipped
6434 -- to avoid rejecting unrecognized constructs.
6435
6436 if CodePeer_Mode then
6437 Set_Analyzed (N);
6438 return;
6439 end if;
6440
996ae0b0 6441 -- Analyze and check we get right type, note that this implements the
0fe797c5
SB
6442 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6443 -- the only way that Asm_Insn could possibly be visible.
996ae0b0
RK
6444
6445 Analyze_And_Resolve (Expression (N));
6446
6447 if Etype (Expression (N)) = Any_Type then
6448 return;
6449 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6450 Error_Msg_N ("incorrect type for code statement", N);
6451 return;
6452 end if;
6453
affbee12
RD
6454 Check_Code_Statement (N);
6455
0fe797c5
SB
6456 -- Make sure we appear in the handled statement sequence of a subprogram
6457 -- (RM 13.8(3)).
996ae0b0
RK
6458
6459 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6460 or else Nkind (SBody) /= N_Subprogram_Body
6461 then
6462 Error_Msg_N
6463 ("code statement can only appear in body of subprogram", N);
6464 return;
6465 end if;
6466
6467 -- Do remaining checks (RM 13.8(3)) if not already done
6468
6469 if not Is_Machine_Code_Subprogram (Subp) then
6470 Set_Is_Machine_Code_Subprogram (Subp);
6471
6472 -- No exception handlers allowed
6473
6474 if Present (Exception_Handlers (HSS)) then
6475 Error_Msg_N
6476 ("exception handlers not permitted in machine code subprogram",
6477 First (Exception_Handlers (HSS)));
6478 end if;
6479
6480 -- No declarations other than use clauses and pragmas (we allow
6481 -- certain internally generated declarations as well).
6482
6483 Decl := First (Declarations (SBody));
6484 while Present (Decl) loop
6485 DeclO := Original_Node (Decl);
6486 if Comes_From_Source (DeclO)
0503c53a
RD
6487 and not Nkind_In (DeclO, N_Pragma,
6488 N_Use_Package_Clause,
6489 N_Use_Type_Clause,
6490 N_Implicit_Label_Declaration)
996ae0b0
RK
6491 then
6492 Error_Msg_N
6493 ("this declaration not allowed in machine code subprogram",
6494 DeclO);
6495 end if;
6496
6497 Next (Decl);
6498 end loop;
6499
6500 -- No statements other than code statements, pragmas, and labels.
6501 -- Again we allow certain internally generated statements.
3e7302c3 6502
9f8d1e5c
AC
6503 -- In Ada 2012, qualified expressions are names, and the code
6504 -- statement is initially parsed as a procedure call.
996ae0b0
RK
6505
6506 Stmt := First (Statements (HSS));
6507 while Present (Stmt) loop
6508 StmtO := Original_Node (Stmt);
9f8d1e5c 6509
0fe797c5 6510 -- A procedure call transformed into a code statement is OK
af89615f 6511
9f8d1e5c
AC
6512 if Ada_Version >= Ada_2012
6513 and then Nkind (StmtO) = N_Procedure_Call_Statement
af89615f 6514 and then Nkind (Name (StmtO)) = N_Qualified_Expression
9f8d1e5c
AC
6515 then
6516 null;
6517
6518 elsif Comes_From_Source (StmtO)
0503c53a
RD
6519 and then not Nkind_In (StmtO, N_Pragma,
6520 N_Label,
6521 N_Code_Statement)
996ae0b0
RK
6522 then
6523 Error_Msg_N
6524 ("this statement is not allowed in machine code subprogram",
6525 StmtO);
6526 end if;
6527
6528 Next (Stmt);
6529 end loop;
6530 end if;
996ae0b0
RK
6531 end Analyze_Code_Statement;
6532
6533 -----------------------------------------------
6534 -- Analyze_Enumeration_Representation_Clause --
6535 -----------------------------------------------
6536
6537 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
ac566cbe
AC
6538 Ident : constant Node_Id := Identifier (N);
6539 Aggr : constant Node_Id := Array_Aggregate (N);
996ae0b0
RK
6540 Enumtype : Entity_Id;
6541 Elit : Entity_Id;
6542 Expr : Node_Id;
6543 Assoc : Node_Id;
6544 Choice : Node_Id;
6545 Val : Uint;
2c1b72d7
AC
6546
6547 Err : Boolean := False;
686d0984 6548 -- Set True to avoid cascade errors and crashes on incorrect source code
996ae0b0 6549
d69cf005
AC
6550 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6551 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6552 -- Allowed range of universal integer (= allowed range of enum lit vals)
6553
996ae0b0
RK
6554 Min : Uint;
6555 Max : Uint;
d69cf005
AC
6556 -- Minimum and maximum values of entries
6557
5612989e 6558 Max_Node : Node_Id := Empty; -- init to avoid warning
d69cf005 6559 -- Pointer to node for literal providing max value
996ae0b0
RK
6560
6561 begin
f5afb270 6562 if Ignore_Rep_Clauses then
cf28c974 6563 Kill_Rep_Clause (N);
c690a2ec
RD
6564 return;
6565 end if;
6566
8bfbd380
AC
6567 -- Ignore enumeration rep clauses by default in CodePeer mode,
6568 -- unless -gnatd.I is specified, as a work around for potential false
6569 -- positive messages.
6570
6571 if CodePeer_Mode and not Debug_Flag_Dot_II then
6572 return;
6573 end if;
6574
996ae0b0
RK
6575 -- First some basic error checks
6576
6577 Find_Type (Ident);
6578 Enumtype := Entity (Ident);
6579
6580 if Enumtype = Any_Type
6581 or else Rep_Item_Too_Early (Enumtype, N)
6582 then
6583 return;
6584 else
6585 Enumtype := Underlying_Type (Enumtype);
6586 end if;
6587
6588 if not Is_Enumeration_Type (Enumtype) then
6589 Error_Msg_NE
6590 ("enumeration type required, found}",
6591 Ident, First_Subtype (Enumtype));
6592 return;
6593 end if;
6594
fbf5a39b
AC
6595 -- Ignore rep clause on generic actual type. This will already have
6596 -- been flagged on the template as an error, and this is the safest
6597 -- way to ensure we don't get a junk cascaded message in the instance.
6598
6599 if Is_Generic_Actual_Type (Enumtype) then
6600 return;
6601
6602 -- Type must be in current scope
6603
6604 elsif Scope (Enumtype) /= Current_Scope then
996ae0b0
RK
6605 Error_Msg_N ("type must be declared in this scope", Ident);
6606 return;
6607
fbf5a39b
AC
6608 -- Type must be a first subtype
6609
996ae0b0
RK
6610 elsif not Is_First_Subtype (Enumtype) then
6611 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6612 return;
6613
fbf5a39b
AC
6614 -- Ignore duplicate rep clause
6615
996ae0b0
RK
6616 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6617 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6618 return;
6619
82c80734 6620 -- Don't allow rep clause for standard [wide_[wide_]]character
fbf5a39b 6621
45fc7ddb 6622 elsif Is_Standard_Character_Type (Enumtype) then
996ae0b0 6623 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
fbf5a39b
AC
6624 return;
6625
27e6455d
TQ
6626 -- Check that the expression is a proper aggregate (no parentheses)
6627
6628 elsif Paren_Count (Aggr) /= 0 then
6629 Error_Msg
6630 ("extra parentheses surrounding aggregate not allowed",
6631 First_Sloc (Aggr));
6632 return;
6633
fbf5a39b 6634 -- All tests passed, so set rep clause in place
996ae0b0
RK
6635
6636 else
6637 Set_Has_Enumeration_Rep_Clause (Enumtype);
6638 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6639 end if;
6640
6641 -- Now we process the aggregate. Note that we don't use the normal
6642 -- aggregate code for this purpose, because we don't want any of the
6643 -- normal expansion activities, and a number of special semantic
6644 -- rules apply (including the component type being any integer type)
6645
996ae0b0
RK
6646 Elit := First_Literal (Enumtype);
6647
6648 -- First the positional entries if any
6649
6650 if Present (Expressions (Aggr)) then
6651 Expr := First (Expressions (Aggr));
6652 while Present (Expr) loop
6653 if No (Elit) then
6654 Error_Msg_N ("too many entries in aggregate", Expr);
6655 return;
6656 end if;
6657
6658 Val := Static_Integer (Expr);
6659
27e6455d
TQ
6660 -- Err signals that we found some incorrect entries processing
6661 -- the list. The final checks for completeness and ordering are
6662 -- skipped in this case.
6663
996ae0b0
RK
6664 if Val = No_Uint then
6665 Err := True;
dc06dd83 6666
996ae0b0
RK
6667 elsif Val < Lo or else Hi < Val then
6668 Error_Msg_N ("value outside permitted range", Expr);
6669 Err := True;
6670 end if;
6671
6672 Set_Enumeration_Rep (Elit, Val);
6673 Set_Enumeration_Rep_Expr (Elit, Expr);
6674 Next (Expr);
6675 Next (Elit);
6676 end loop;
6677 end if;
6678
6679 -- Now process the named entries if present
6680
6681 if Present (Component_Associations (Aggr)) then
6682 Assoc := First (Component_Associations (Aggr));
6683 while Present (Assoc) loop
6684 Choice := First (Choices (Assoc));
6685
6686 if Present (Next (Choice)) then
6687 Error_Msg_N
6688 ("multiple choice not allowed here", Next (Choice));
6689 Err := True;
6690 end if;
6691
6692 if Nkind (Choice) = N_Others_Choice then
6693 Error_Msg_N ("others choice not allowed here", Choice);
6694 Err := True;
6695
6696 elsif Nkind (Choice) = N_Range then
2c1b72d7 6697
996ae0b0 6698 -- ??? should allow zero/one element range here
2c1b72d7 6699
996ae0b0
RK
6700 Error_Msg_N ("range not allowed here", Choice);
6701 Err := True;
6702
6703 else
6704 Analyze_And_Resolve (Choice, Enumtype);
2c1b72d7 6705
686d0984 6706 if Error_Posted (Choice) then
996ae0b0 6707 Err := True;
686d0984 6708 end if;
996ae0b0 6709
686d0984
AC
6710 if not Err then
6711 if Is_Entity_Name (Choice)
6712 and then Is_Type (Entity (Choice))
6713 then
6714 Error_Msg_N ("subtype name not allowed here", Choice);
996ae0b0 6715 Err := True;
2c1b72d7 6716
686d0984 6717 -- ??? should allow static subtype with zero/one entry
996ae0b0 6718
686d0984 6719 elsif Etype (Choice) = Base_Type (Enumtype) then
edab6088 6720 if not Is_OK_Static_Expression (Choice) then
686d0984
AC
6721 Flag_Non_Static_Expr
6722 ("non-static expression used for choice!", Choice);
996ae0b0 6723 Err := True;
996ae0b0 6724
686d0984
AC
6725 else
6726 Elit := Expr_Value_E (Choice);
6727
6728 if Present (Enumeration_Rep_Expr (Elit)) then
6729 Error_Msg_Sloc :=
6730 Sloc (Enumeration_Rep_Expr (Elit));
6731 Error_Msg_NE
6732 ("representation for& previously given#",
6733 Choice, Elit);
6734 Err := True;
6735 end if;
996ae0b0 6736
686d0984 6737 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
996ae0b0 6738
686d0984
AC
6739 Expr := Expression (Assoc);
6740 Val := Static_Integer (Expr);
996ae0b0 6741
686d0984
AC
6742 if Val = No_Uint then
6743 Err := True;
6744
6745 elsif Val < Lo or else Hi < Val then
6746 Error_Msg_N ("value outside permitted range", Expr);
6747 Err := True;
6748 end if;
996ae0b0 6749
686d0984
AC
6750 Set_Enumeration_Rep (Elit, Val);
6751 end if;
996ae0b0
RK
6752 end if;
6753 end if;
6754 end if;
6755
6756 Next (Assoc);
6757 end loop;
6758 end if;
6759
6760 -- Aggregate is fully processed. Now we check that a full set of
6761 -- representations was given, and that they are in range and in order.
6762 -- These checks are only done if no other errors occurred.
6763
6764 if not Err then
6765 Min := No_Uint;
6766 Max := No_Uint;
6767
6768 Elit := First_Literal (Enumtype);
6769 while Present (Elit) loop
6770 if No (Enumeration_Rep_Expr (Elit)) then
6771 Error_Msg_NE ("missing representation for&!", N, Elit);
6772
6773 else
6774 Val := Enumeration_Rep (Elit);
6775
6776 if Min = No_Uint then
6777 Min := Val;
6778 end if;
6779
6780 if Val /= No_Uint then
6781 if Max /= No_Uint and then Val <= Max then
6782 Error_Msg_NE
6783 ("enumeration value for& not ordered!",
d69cf005 6784 Enumeration_Rep_Expr (Elit), Elit);
996ae0b0
RK
6785 end if;
6786
d69cf005 6787 Max_Node := Enumeration_Rep_Expr (Elit);
996ae0b0
RK
6788 Max := Val;
6789 end if;
6790
d69cf005
AC
6791 -- If there is at least one literal whose representation is not
6792 -- equal to the Pos value, then note that this enumeration type
6793 -- has a non-standard representation.
996ae0b0
RK
6794
6795 if Val /= Enumeration_Pos (Elit) then
6796 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6797 end if;
6798 end if;
6799
6800 Next (Elit);
6801 end loop;
6802
6803 -- Now set proper size information
6804
6805 declare
6806 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6807
6808 begin
6809 if Has_Size_Clause (Enumtype) then
d69cf005
AC
6810
6811 -- All OK, if size is OK now
6812
6813 if RM_Size (Enumtype) >= Minsize then
996ae0b0
RK
6814 null;
6815
6816 else
d69cf005
AC
6817 -- Try if we can get by with biasing
6818
996ae0b0
RK
6819 Minsize :=
6820 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6821
d69cf005
AC
6822 -- Error message if even biasing does not work
6823
6824 if RM_Size (Enumtype) < Minsize then
6825 Error_Msg_Uint_1 := RM_Size (Enumtype);
6826 Error_Msg_Uint_2 := Max;
6827 Error_Msg_N
6828 ("previously given size (^) is too small "
6829 & "for this value (^)", Max_Node);
6830
6831 -- If biasing worked, indicate that we now have biased rep
996ae0b0
RK
6832
6833 else
a3f2babd
AC
6834 Set_Biased
6835 (Enumtype, Size_Clause (Enumtype), "size clause");
996ae0b0
RK
6836 end if;
6837 end if;
6838
6839 else
6840 Set_RM_Size (Enumtype, Minsize);
6841 Set_Enum_Esize (Enumtype);
6842 end if;
6843
6844 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6845 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6846 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6847 end;
6848 end if;
6849
a90bd866 6850 -- We repeat the too late test in case it froze itself
996ae0b0
RK
6851
6852 if Rep_Item_Too_Late (Enumtype, N) then
6853 null;
6854 end if;
996ae0b0
RK
6855 end Analyze_Enumeration_Representation_Clause;
6856
6857 ----------------------------
6858 -- Analyze_Free_Statement --
6859 ----------------------------
6860
6861 procedure Analyze_Free_Statement (N : Node_Id) is
6862 begin
6863 Analyze (Expression (N));
6864 end Analyze_Free_Statement;
6865
3ff38f33
JM
6866 ---------------------------
6867 -- Analyze_Freeze_Entity --
6868 ---------------------------
6869
6870 procedure Analyze_Freeze_Entity (N : Node_Id) is
3ff38f33 6871 begin
5a8a6763
RD
6872 Freeze_Entity_Checks (N);
6873 end Analyze_Freeze_Entity;
947430d5 6874
5a8a6763
RD
6875 -----------------------------------
6876 -- Analyze_Freeze_Generic_Entity --
6877 -----------------------------------
947430d5 6878
5a8a6763 6879 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
d030f3a4
AC
6880 E : constant Entity_Id := Entity (N);
6881
5a8a6763 6882 begin
d030f3a4
AC
6883 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6884 Analyze_Aspects_At_Freeze_Point (E);
6885 end if;
6886
5a8a6763
RD
6887 Freeze_Entity_Checks (N);
6888 end Analyze_Freeze_Generic_Entity;
3ff38f33 6889
5a8a6763
RD
6890 ------------------------------------------
6891 -- Analyze_Record_Representation_Clause --
6892 ------------------------------------------
b4d7b435 6893
5a8a6763
RD
6894 -- Note: we check as much as we can here, but we can't do any checks
6895 -- based on the position values (e.g. overlap checks) until freeze time
6896 -- because especially in Ada 2005 (machine scalar mode), the processing
6897 -- for non-standard bit order can substantially change the positions.
6898 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6899 -- for the remainder of this processing.
cefce34c 6900
5a8a6763
RD
6901 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6902 Ident : constant Node_Id := Identifier (N);
6903 Biased : Boolean;
6904 CC : Node_Id;
6905 Comp : Entity_Id;
6906 Fbit : Uint;
6907 Hbit : Uint := Uint_0;
6908 Lbit : Uint;
6909 Ocomp : Entity_Id;
6910 Posit : Uint;
6911 Rectype : Entity_Id;
6912 Recdef : Node_Id;
cefce34c 6913
5a8a6763
RD
6914 function Is_Inherited (Comp : Entity_Id) return Boolean;
6915 -- True if Comp is an inherited component in a record extension
cefce34c 6916
5a8a6763
RD
6917 ------------------
6918 -- Is_Inherited --
6919 ------------------
cefce34c 6920
5a8a6763
RD
6921 function Is_Inherited (Comp : Entity_Id) return Boolean is
6922 Comp_Base : Entity_Id;
cefce34c 6923
5a8a6763
RD
6924 begin
6925 if Ekind (Rectype) = E_Record_Subtype then
6926 Comp_Base := Original_Record_Component (Comp);
6927 else
6928 Comp_Base := Comp;
cefce34c
JM
6929 end if;
6930
5a8a6763
RD
6931 return Comp_Base /= Original_Record_Component (Comp_Base);
6932 end Is_Inherited;
cefce34c 6933
5a8a6763 6934 -- Local variables
cefce34c 6935
5a8a6763
RD
6936 Is_Record_Extension : Boolean;
6937 -- True if Rectype is a record extension
cefce34c 6938
5a8a6763
RD
6939 CR_Pragma : Node_Id := Empty;
6940 -- Points to N_Pragma node if Complete_Representation pragma present
cefce34c 6941
5a8a6763 6942 -- Start of processing for Analyze_Record_Representation_Clause
cefce34c 6943
5a8a6763
RD
6944 begin
6945 if Ignore_Rep_Clauses then
cf28c974 6946 Kill_Rep_Clause (N);
5a8a6763 6947 return;
cefce34c 6948 end if;
947430d5 6949
5a8a6763
RD
6950 Find_Type (Ident);
6951 Rectype := Entity (Ident);
70805b88 6952
5a8a6763
RD
6953 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6954 return;
6955 else
6956 Rectype := Underlying_Type (Rectype);
6957 end if;
70805b88 6958
5a8a6763 6959 -- First some basic error checks
70805b88 6960
5a8a6763
RD
6961 if not Is_Record_Type (Rectype) then
6962 Error_Msg_NE
6963 ("record type required, found}", Ident, First_Subtype (Rectype));
6964 return;
70805b88 6965
5a8a6763
RD
6966 elsif Scope (Rectype) /= Current_Scope then
6967 Error_Msg_N ("type must be declared in this scope", N);
6968 return;
70805b88 6969
5a8a6763
RD
6970 elsif not Is_First_Subtype (Rectype) then
6971 Error_Msg_N ("cannot give record rep clause for subtype", N);
6972 return;
86200f66 6973
5a8a6763
RD
6974 elsif Has_Record_Rep_Clause (Rectype) then
6975 Error_Msg_N ("duplicate record rep clause ignored", N);
6976 return;
86200f66 6977
5a8a6763
RD
6978 elsif Rep_Item_Too_Late (Rectype, N) then
6979 return;
86200f66 6980 end if;
bd949ee2 6981
7d9880c9 6982 -- We know we have a first subtype, now possibly go to the anonymous
5a8a6763 6983 -- base type to determine whether Rectype is a record extension.
b98e2969 6984
5a8a6763
RD
6985 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6986 Is_Record_Extension :=
6987 Nkind (Recdef) = N_Derived_Type_Definition
6988 and then Present (Record_Extension_Part (Recdef));
b98e2969 6989
5a8a6763 6990 if Present (Mod_Clause (N)) then
bd949ee2 6991 declare
5a8a6763
RD
6992 Loc : constant Source_Ptr := Sloc (N);
6993 M : constant Node_Id := Mod_Clause (N);
6994 P : constant List_Id := Pragmas_Before (M);
6995 AtM_Nod : Node_Id;
6996
6997 Mod_Val : Uint;
6998 pragma Warnings (Off, Mod_Val);
bd949ee2
RD
6999
7000 begin
5a8a6763 7001 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
bd949ee2 7002
5a8a6763
RD
7003 if Warn_On_Obsolescent_Feature then
7004 Error_Msg_N
7005 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
7006 Error_Msg_N
7007 ("\?j?use alignment attribute definition clause instead", N);
7008 end if;
bd949ee2 7009
5a8a6763
RD
7010 if Present (P) then
7011 Analyze_List (P);
7012 end if;
b98e2969 7013
5a8a6763
RD
7014 -- In ASIS_Mode mode, expansion is disabled, but we must convert
7015 -- the Mod clause into an alignment clause anyway, so that the
8a0183fd 7016 -- back end can compute and back-annotate properly the size and
5a8a6763 7017 -- alignment of types that may include this record.
c76bf0bf 7018
5a8a6763
RD
7019 -- This seems dubious, this destroys the source tree in a manner
7020 -- not detectable by ASIS ???
c76bf0bf 7021
5a8a6763
RD
7022 if Operating_Mode = Check_Semantics and then ASIS_Mode then
7023 AtM_Nod :=
7024 Make_Attribute_Definition_Clause (Loc,
e4494292 7025 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
5a8a6763
RD
7026 Chars => Name_Alignment,
7027 Expression => Relocate_Node (Expression (M)));
c76bf0bf 7028
5a8a6763
RD
7029 Set_From_At_Mod (AtM_Nod);
7030 Insert_After (N, AtM_Nod);
7031 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
7032 Set_Mod_Clause (N, Empty);
c76bf0bf 7033
5a8a6763
RD
7034 else
7035 -- Get the alignment value to perform error checking
c76bf0bf 7036
5a8a6763
RD
7037 Mod_Val := Get_Alignment_Value (Expression (M));
7038 end if;
7039 end;
7040 end if;
c76bf0bf 7041
5a8a6763
RD
7042 -- For untagged types, clear any existing component clauses for the
7043 -- type. If the type is derived, this is what allows us to override
7044 -- a rep clause for the parent. For type extensions, the representation
7045 -- of the inherited components is inherited, so we want to keep previous
7046 -- component clauses for completeness.
c76bf0bf 7047
5a8a6763
RD
7048 if not Is_Tagged_Type (Rectype) then
7049 Comp := First_Component_Or_Discriminant (Rectype);
7050 while Present (Comp) loop
7051 Set_Component_Clause (Comp, Empty);
7052 Next_Component_Or_Discriminant (Comp);
7053 end loop;
7054 end if;
c76bf0bf 7055
5a8a6763 7056 -- All done if no component clauses
c76bf0bf 7057
5a8a6763 7058 CC := First (Component_Clauses (N));
c76bf0bf 7059
5a8a6763
RD
7060 if No (CC) then
7061 return;
7062 end if;
c76bf0bf 7063
5a8a6763 7064 -- A representation like this applies to the base type
c76bf0bf 7065
5a8a6763
RD
7066 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7067 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7068 Set_Has_Specified_Layout (Base_Type (Rectype));
c76bf0bf 7069
5a8a6763 7070 -- Process the component clauses
c76bf0bf 7071
5a8a6763 7072 while Present (CC) loop
c76bf0bf 7073
5a8a6763 7074 -- Pragma
c76bf0bf 7075
5a8a6763
RD
7076 if Nkind (CC) = N_Pragma then
7077 Analyze (CC);
c76bf0bf 7078
5a8a6763 7079 -- The only pragma of interest is Complete_Representation
c76bf0bf 7080
6e759c2a 7081 if Pragma_Name (CC) = Name_Complete_Representation then
5a8a6763
RD
7082 CR_Pragma := CC;
7083 end if;
c76bf0bf 7084
5a8a6763 7085 -- Processing for real component clause
c76bf0bf 7086
5a8a6763
RD
7087 else
7088 Posit := Static_Integer (Position (CC));
7089 Fbit := Static_Integer (First_Bit (CC));
7090 Lbit := Static_Integer (Last_Bit (CC));
c76bf0bf 7091
5a8a6763
RD
7092 if Posit /= No_Uint
7093 and then Fbit /= No_Uint
7094 and then Lbit /= No_Uint
7095 then
7096 if Posit < 0 then
32b794c8 7097 Error_Msg_N ("position cannot be negative", Position (CC));
c76bf0bf 7098
5a8a6763 7099 elsif Fbit < 0 then
32b794c8 7100 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
c76bf0bf 7101
5a8a6763
RD
7102 -- The Last_Bit specified in a component clause must not be
7103 -- less than the First_Bit minus one (RM-13.5.1(10)).
c76bf0bf 7104
5a8a6763
RD
7105 elsif Lbit < Fbit - 1 then
7106 Error_Msg_N
7107 ("last bit cannot be less than first bit minus one",
7108 Last_Bit (CC));
c76bf0bf 7109
5a8a6763
RD
7110 -- Values look OK, so find the corresponding record component
7111 -- Even though the syntax allows an attribute reference for
7112 -- implementation-defined components, GNAT does not allow the
7113 -- tag to get an explicit position.
c76bf0bf 7114
5a8a6763
RD
7115 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7116 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7117 Error_Msg_N ("position of tag cannot be specified", CC);
7118 else
7119 Error_Msg_N ("illegal component name", CC);
7120 end if;
c76bf0bf 7121
5a8a6763
RD
7122 else
7123 Comp := First_Entity (Rectype);
7124 while Present (Comp) loop
7125 exit when Chars (Comp) = Chars (Component_Name (CC));
7126 Next_Entity (Comp);
7127 end loop;
c76bf0bf 7128
5a8a6763 7129 if No (Comp) then
c76bf0bf 7130
5a8a6763
RD
7131 -- Maybe component of base type that is absent from
7132 -- statically constrained first subtype.
c76bf0bf 7133
5a8a6763
RD
7134 Comp := First_Entity (Base_Type (Rectype));
7135 while Present (Comp) loop
7136 exit when Chars (Comp) = Chars (Component_Name (CC));
7137 Next_Entity (Comp);
7138 end loop;
7139 end if;
c76bf0bf 7140
5a8a6763
RD
7141 if No (Comp) then
7142 Error_Msg_N
7143 ("component clause is for non-existent field", CC);
c76bf0bf 7144
5a8a6763
RD
7145 -- Ada 2012 (AI05-0026): Any name that denotes a
7146 -- discriminant of an object of an unchecked union type
7147 -- shall not occur within a record_representation_clause.
c76bf0bf 7148
5a8a6763
RD
7149 -- The general restriction of using record rep clauses on
7150 -- Unchecked_Union types has now been lifted. Since it is
7151 -- possible to introduce a record rep clause which mentions
7152 -- the discriminant of an Unchecked_Union in non-Ada 2012
7153 -- code, this check is applied to all versions of the
7154 -- language.
c76bf0bf 7155
5a8a6763
RD
7156 elsif Ekind (Comp) = E_Discriminant
7157 and then Is_Unchecked_Union (Rectype)
7158 then
7159 Error_Msg_N
7160 ("cannot reference discriminant of unchecked union",
7161 Component_Name (CC));
c76bf0bf 7162
5a8a6763
RD
7163 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7164 Error_Msg_NE
7165 ("component clause not allowed for inherited "
7166 & "component&", CC, Comp);
3ff38f33 7167
5a8a6763 7168 elsif Present (Component_Clause (Comp)) then
3cd4a210 7169
5a8a6763
RD
7170 -- Diagnose duplicate rep clause, or check consistency
7171 -- if this is an inherited component. In a double fault,
7172 -- there may be a duplicate inconsistent clause for an
7173 -- inherited component.
3cd4a210 7174
5a8a6763
RD
7175 if Scope (Original_Record_Component (Comp)) = Rectype
7176 or else Parent (Component_Clause (Comp)) = N
7177 then
7178 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7179 Error_Msg_N ("component clause previously given#", CC);
800621e0
RD
7180
7181 else
7182 declare
7183 Rep1 : constant Node_Id := Component_Clause (Comp);
800621e0
RD
7184 begin
7185 if Intval (Position (Rep1)) /=
7186 Intval (Position (CC))
7187 or else Intval (First_Bit (Rep1)) /=
7188 Intval (First_Bit (CC))
7189 or else Intval (Last_Bit (Rep1)) /=
7190 Intval (Last_Bit (CC))
7191 then
616547fa 7192 Error_Msg_N
32b794c8
AC
7193 ("component clause inconsistent with "
7194 & "representation of ancestor", CC);
8190087e 7195
800621e0 7196 elsif Warn_On_Redundant_Constructs then
616547fa 7197 Error_Msg_N
8190087e
AC
7198 ("?r?redundant confirming component clause "
7199 & "for component!", CC);
800621e0
RD
7200 end if;
7201 end;
7202 end if;
996ae0b0 7203
6fb4cdde
AC
7204 -- Normal case where this is the first component clause we
7205 -- have seen for this entity, so set it up properly.
7206
996ae0b0 7207 else
2642f998
RD
7208 -- Make reference for field in record rep clause and set
7209 -- appropriate entity field in the field identifier.
7210
7211 Generate_Reference
7212 (Comp, Component_Name (CC), Set_Ref => False);
7213 Set_Entity (Component_Name (CC), Comp);
7214
a5b62485 7215 -- Update Fbit and Lbit to the actual bit number
996ae0b0
RK
7216
7217 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7218 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7219
996ae0b0 7220 if Has_Size_Clause (Rectype)
fc893455 7221 and then RM_Size (Rectype) <= Lbit
996ae0b0
RK
7222 then
7223 Error_Msg_N
7224 ("bit number out of range of specified size",
7225 Last_Bit (CC));
7226 else
7227 Set_Component_Clause (Comp, CC);
7228 Set_Component_Bit_Offset (Comp, Fbit);
7229 Set_Esize (Comp, 1 + (Lbit - Fbit));
7230 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7231 Set_Normalized_Position (Comp, Fbit / SSU);
7232
b3f48fd4
AC
7233 if Warn_On_Overridden_Size
7234 and then Has_Size_Clause (Etype (Comp))
7235 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7236 then
7237 Error_Msg_NE
dbfeb4fa 7238 ("?S?component size overrides size clause for&",
b3f48fd4
AC
7239 Component_Name (CC), Etype (Comp));
7240 end if;
7241
d05ef0ab
AC
7242 -- This information is also set in the corresponding
7243 -- component of the base type, found by accessing the
7244 -- Original_Record_Component link if it is present.
996ae0b0
RK
7245
7246 Ocomp := Original_Record_Component (Comp);
7247
7248 if Hbit < Lbit then
7249 Hbit := Lbit;
7250 end if;
7251
7252 Check_Size
7253 (Component_Name (CC),
7254 Etype (Comp),
7255 Esize (Comp),
7256 Biased);
7257
a3f2babd
AC
7258 Set_Biased
7259 (Comp, First_Node (CC), "component clause", Biased);
4ae23b62 7260
996ae0b0
RK
7261 if Present (Ocomp) then
7262 Set_Component_Clause (Ocomp, CC);
7263 Set_Component_Bit_Offset (Ocomp, Fbit);
7264 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7265 Set_Normalized_Position (Ocomp, Fbit / SSU);
7266 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7267
7268 Set_Normalized_Position_Max
7269 (Ocomp, Normalized_Position (Ocomp));
7270
a3f2babd
AC
7271 -- Note: we don't use Set_Biased here, because we
7272 -- already gave a warning above if needed, and we
7273 -- would get a duplicate for the same name here.
7274
996ae0b0
RK
7275 Set_Has_Biased_Representation
7276 (Ocomp, Has_Biased_Representation (Comp));
7277 end if;
7278
7279 if Esize (Comp) < 0 then
7280 Error_Msg_N ("component size is negative", CC);
7281 end if;
7282 end if;
7283 end if;
7284 end if;
7285 end if;
7286 end if;
7287
7288 Next (CC);
7289 end loop;
7290
8a95f4e8 7291 -- Check missing components if Complete_Representation pragma appeared
996ae0b0 7292
8a95f4e8
RD
7293 if Present (CR_Pragma) then
7294 Comp := First_Component_Or_Discriminant (Rectype);
7295 while Present (Comp) loop
7296 if No (Component_Clause (Comp)) then
7297 Error_Msg_NE
7298 ("missing component clause for &", CR_Pragma, Comp);
7299 end if;
996ae0b0 7300
8a95f4e8
RD
7301 Next_Component_Or_Discriminant (Comp);
7302 end loop;
996ae0b0 7303
dbfeb4fa 7304 -- Give missing components warning if required
8f7770f9 7305
0503c53a 7306 elsif Warn_On_Unrepped_Components then
8f7770f9
RD
7307 declare
7308 Num_Repped_Components : Nat := 0;
7309 Num_Unrepped_Components : Nat := 0;
7310
7311 begin
7312 -- First count number of repped and unrepped components
7313
7314 Comp := First_Component_Or_Discriminant (Rectype);
7315 while Present (Comp) loop
7316 if Present (Component_Clause (Comp)) then
7317 Num_Repped_Components := Num_Repped_Components + 1;
7318 else
7319 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7320 end if;
7321
7322 Next_Component_Or_Discriminant (Comp);
7323 end loop;
7324
7325 -- We are only interested in the case where there is at least one
7326 -- unrepped component, and at least half the components have rep
7327 -- clauses. We figure that if less than half have them, then the
f5c064ab
ST
7328 -- partial rep clause is really intentional. If the component
7329 -- type has no underlying type set at this point (as for a generic
7330 -- formal type), we don't know enough to give a warning on the
7331 -- component.
8f7770f9
RD
7332
7333 if Num_Unrepped_Components > 0
7334 and then Num_Unrepped_Components < Num_Repped_Components
7335 then
7336 Comp := First_Component_Or_Discriminant (Rectype);
7337 while Present (Comp) loop
2642f998 7338 if No (Component_Clause (Comp))
800621e0 7339 and then Comes_From_Source (Comp)
f5c064ab 7340 and then Present (Underlying_Type (Etype (Comp)))
2642f998 7341 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
8a95f4e8
RD
7342 or else Size_Known_At_Compile_Time
7343 (Underlying_Type (Etype (Comp))))
0503c53a 7344 and then not Has_Warnings_Off (Rectype)
3fbbbd1e
AC
7345
7346 -- Ignore discriminant in unchecked union, since it is
7347 -- not there, and cannot have a component clause.
7348
7349 and then (not Is_Unchecked_Union (Rectype)
7350 or else Ekind (Comp) /= E_Discriminant)
2642f998 7351 then
8f7770f9
RD
7352 Error_Msg_Sloc := Sloc (Comp);
7353 Error_Msg_NE
dbfeb4fa 7354 ("?C?no component clause given for & declared #",
8f7770f9
RD
7355 N, Comp);
7356 end if;
7357
7358 Next_Component_Or_Discriminant (Comp);
7359 end loop;
7360 end if;
7361 end;
996ae0b0 7362 end if;
996ae0b0
RK
7363 end Analyze_Record_Representation_Clause;
7364
baa571ab
AC
7365 -------------------------------------
7366 -- Build_Discrete_Static_Predicate --
7367 -------------------------------------
95081e99 7368
baa571ab
AC
7369 procedure Build_Discrete_Static_Predicate
7370 (Typ : Entity_Id;
7371 Expr : Node_Id;
7372 Nam : Name_Id)
95081e99 7373 is
baa571ab 7374 Loc : constant Source_Ptr := Sloc (Expr);
95081e99 7375
baa571ab
AC
7376 Non_Static : exception;
7377 -- Raised if something non-static is found
95081e99 7378
baa571ab 7379 Btyp : constant Entity_Id := Base_Type (Typ);
95081e99 7380
baa571ab
AC
7381 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7382 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7383 -- Low bound and high bound value of base type of Typ
95081e99 7384
67c0e662
RD
7385 TLo : Uint;
7386 THi : Uint;
7387 -- Bounds for constructing the static predicate. We use the bound of the
7388 -- subtype if it is static, otherwise the corresponding base type bound.
7389 -- Note: a non-static subtype can have a static predicate.
95081e99 7390
baa571ab
AC
7391 type REnt is record
7392 Lo, Hi : Uint;
7393 end record;
7394 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7395 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7396 -- value.
95081e99 7397
baa571ab
AC
7398 type RList is array (Nat range <>) of REnt;
7399 -- A list of ranges. The ranges are sorted in increasing order, and are
7400 -- disjoint (there is a gap of at least one value between each range in
7401 -- the table). A value is in the set of ranges in Rlist if it lies
7402 -- within one of these ranges.
95081e99 7403
baa571ab
AC
7404 False_Range : constant RList :=
7405 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7406 -- An empty set of ranges represents a range list that can never be
7407 -- satisfied, since there are no ranges in which the value could lie,
7408 -- so it does not lie in any of them. False_Range is a canonical value
7409 -- for this empty set, but general processing should test for an Rlist
7410 -- with length zero (see Is_False predicate), since other null ranges
7411 -- may appear which must be treated as False.
e606088a 7412
baa571ab
AC
7413 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7414 -- Range representing True, value must be in the base range
e606088a 7415
baa571ab
AC
7416 function "and" (Left : RList; Right : RList) return RList;
7417 -- And's together two range lists, returning a range list. This is a set
7418 -- intersection operation.
e606088a 7419
baa571ab
AC
7420 function "or" (Left : RList; Right : RList) return RList;
7421 -- Or's together two range lists, returning a range list. This is a set
7422 -- union operation.
f2264ac2 7423
baa571ab
AC
7424 function "not" (Right : RList) return RList;
7425 -- Returns complement of a given range list, i.e. a range list
7426 -- representing all the values in TLo .. THi that are not in the input
7427 -- operand Right.
6ccdd977 7428
baa571ab
AC
7429 function Build_Val (V : Uint) return Node_Id;
7430 -- Return an analyzed N_Identifier node referencing this value, suitable
60f908dd
RD
7431 -- for use as an entry in the Static_Discrte_Predicate list. This node
7432 -- is typed with the base type.
e606088a 7433
baa571ab
AC
7434 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7435 -- Return an analyzed N_Range node referencing this range, suitable for
60f908dd
RD
7436 -- use as an entry in the Static_Discrete_Predicate list. This node is
7437 -- typed with the base type.
e606088a 7438
baa571ab
AC
7439 function Get_RList (Exp : Node_Id) return RList;
7440 -- This is a recursive routine that converts the given expression into a
7441 -- list of ranges, suitable for use in building the static predicate.
e606088a 7442
baa571ab
AC
7443 function Is_False (R : RList) return Boolean;
7444 pragma Inline (Is_False);
7445 -- Returns True if the given range list is empty, and thus represents a
7446 -- False list of ranges that can never be satisfied.
f2264ac2 7447
baa571ab
AC
7448 function Is_True (R : RList) return Boolean;
7449 -- Returns True if R trivially represents the True predicate by having a
7450 -- single range from BLo to BHi.
e606088a 7451
baa571ab
AC
7452 function Is_Type_Ref (N : Node_Id) return Boolean;
7453 pragma Inline (Is_Type_Ref);
7454 -- Returns if True if N is a reference to the type for the predicate in
7455 -- the expression (i.e. if it is an identifier whose Chars field matches
623267dc
AC
7456 -- the Nam given in the call). N must not be parenthesized, if the type
7457 -- name appears in parens, this routine will return False.
e606088a 7458
baa571ab 7459 function Lo_Val (N : Node_Id) return Uint;
60f908dd
RD
7460 -- Given an entry from a Static_Discrete_Predicate list that is either
7461 -- a static expression or static range, gets either the expression value
7462 -- or the low bound of the range.
e606088a 7463
baa571ab 7464 function Hi_Val (N : Node_Id) return Uint;
60f908dd
RD
7465 -- Given an entry from a Static_Discrete_Predicate list that is either
7466 -- a static expression or static range, gets either the expression value
7467 -- or the high bound of the range.
e606088a 7468
baa571ab
AC
7469 function Membership_Entry (N : Node_Id) return RList;
7470 -- Given a single membership entry (range, value, or subtype), returns
7471 -- the corresponding range list. Raises Static_Error if not static.
e606088a 7472
baa571ab
AC
7473 function Membership_Entries (N : Node_Id) return RList;
7474 -- Given an element on an alternatives list of a membership operation,
7475 -- returns the range list corresponding to this entry and all following
7476 -- entries (i.e. returns the "or" of this list of values).
616547fa 7477
baa571ab
AC
7478 function Stat_Pred (Typ : Entity_Id) return RList;
7479 -- Given a type, if it has a static predicate, then return the predicate
7480 -- as a range list, otherwise raise Non_Static.
43417b90 7481
baa571ab
AC
7482 -----------
7483 -- "and" --
7484 -----------
43417b90 7485
baa571ab
AC
7486 function "and" (Left : RList; Right : RList) return RList is
7487 FEnt : REnt;
7488 -- First range of result
43417b90 7489
baa571ab
AC
7490 SLeft : Nat := Left'First;
7491 -- Start of rest of left entries
43417b90 7492
baa571ab
AC
7493 SRight : Nat := Right'First;
7494 -- Start of rest of right entries
3b097d11 7495
baa571ab
AC
7496 begin
7497 -- If either range is True, return the other
e606088a 7498
baa571ab
AC
7499 if Is_True (Left) then
7500 return Right;
7501 elsif Is_True (Right) then
7502 return Left;
7503 end if;
f2264ac2 7504
baa571ab 7505 -- If either range is False, return False
e606088a 7506
baa571ab
AC
7507 if Is_False (Left) or else Is_False (Right) then
7508 return False_Range;
7509 end if;
30ebb114 7510
baa571ab
AC
7511 -- Loop to remove entries at start that are disjoint, and thus just
7512 -- get discarded from the result entirely.
e606088a 7513
baa571ab
AC
7514 loop
7515 -- If no operands left in either operand, result is false
e606088a 7516
baa571ab
AC
7517 if SLeft > Left'Last or else SRight > Right'Last then
7518 return False_Range;
e606088a 7519
baa571ab 7520 -- Discard first left operand entry if disjoint with right
e606088a 7521
baa571ab
AC
7522 elsif Left (SLeft).Hi < Right (SRight).Lo then
7523 SLeft := SLeft + 1;
e606088a 7524
baa571ab 7525 -- Discard first right operand entry if disjoint with left
e606088a 7526
baa571ab
AC
7527 elsif Right (SRight).Hi < Left (SLeft).Lo then
7528 SRight := SRight + 1;
e606088a 7529
baa571ab 7530 -- Otherwise we have an overlapping entry
e606088a 7531
baa571ab
AC
7532 else
7533 exit;
7534 end if;
7535 end loop;
e606088a 7536
baa571ab
AC
7537 -- Now we have two non-null operands, and first entries overlap. The
7538 -- first entry in the result will be the overlapping part of these
7539 -- two entries.
c116143c 7540
baa571ab
AC
7541 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7542 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
c116143c 7543
baa571ab
AC
7544 -- Now we can remove the entry that ended at a lower value, since its
7545 -- contribution is entirely contained in Fent.
e606088a 7546
baa571ab
AC
7547 if Left (SLeft).Hi <= Right (SRight).Hi then
7548 SLeft := SLeft + 1;
7549 else
7550 SRight := SRight + 1;
7551 end if;
e606088a 7552
baa571ab
AC
7553 -- Compute result by concatenating this first entry with the "and" of
7554 -- the remaining parts of the left and right operands. Note that if
7555 -- either of these is empty, "and" will yield empty, so that we will
7556 -- end up with just Fent, which is what we want in that case.
e606088a 7557
baa571ab
AC
7558 return
7559 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7560 end "and";
bd949ee2 7561
baa571ab
AC
7562 -----------
7563 -- "not" --
7564 -----------
bd949ee2 7565
baa571ab
AC
7566 function "not" (Right : RList) return RList is
7567 begin
7568 -- Return True if False range
bd949ee2 7569
baa571ab
AC
7570 if Is_False (Right) then
7571 return True_Range;
7572 end if;
6ccdd977 7573
baa571ab 7574 -- Return False if True range
bd949ee2 7575
baa571ab
AC
7576 if Is_True (Right) then
7577 return False_Range;
7578 end if;
bd949ee2 7579
baa571ab 7580 -- Here if not trivial case
f2264ac2 7581
baa571ab
AC
7582 declare
7583 Result : RList (1 .. Right'Length + 1);
7584 -- May need one more entry for gap at beginning and end
f2264ac2 7585
baa571ab
AC
7586 Count : Nat := 0;
7587 -- Number of entries stored in Result
4a28b181 7588
baa571ab
AC
7589 begin
7590 -- Gap at start
4a28b181 7591
baa571ab
AC
7592 if Right (Right'First).Lo > TLo then
7593 Count := Count + 1;
7594 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7595 end if;
6ccdd977 7596
baa571ab 7597 -- Gaps between ranges
6ccdd977 7598
baa571ab
AC
7599 for J in Right'First .. Right'Last - 1 loop
7600 Count := Count + 1;
7601 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7602 end loop;
e606088a 7603
baa571ab 7604 -- Gap at end
e606088a 7605
baa571ab
AC
7606 if Right (Right'Last).Hi < THi then
7607 Count := Count + 1;
7608 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7609 end if;
e606088a 7610
baa571ab
AC
7611 return Result (1 .. Count);
7612 end;
7613 end "not";
e606088a 7614
baa571ab
AC
7615 ----------
7616 -- "or" --
7617 ----------
e606088a 7618
baa571ab
AC
7619 function "or" (Left : RList; Right : RList) return RList is
7620 FEnt : REnt;
7621 -- First range of result
e606088a 7622
baa571ab
AC
7623 SLeft : Nat := Left'First;
7624 -- Start of rest of left entries
e606088a 7625
baa571ab
AC
7626 SRight : Nat := Right'First;
7627 -- Start of rest of right entries
e606088a 7628
baa571ab
AC
7629 begin
7630 -- If either range is True, return True
e606088a 7631
baa571ab
AC
7632 if Is_True (Left) or else Is_True (Right) then
7633 return True_Range;
7634 end if;
e606088a 7635
baa571ab 7636 -- If either range is False (empty), return the other
e606088a 7637
baa571ab
AC
7638 if Is_False (Left) then
7639 return Right;
7640 elsif Is_False (Right) then
7641 return Left;
7642 end if;
e606088a 7643
baa571ab
AC
7644 -- Initialize result first entry from left or right operand depending
7645 -- on which starts with the lower range.
e606088a 7646
baa571ab
AC
7647 if Left (SLeft).Lo < Right (SRight).Lo then
7648 FEnt := Left (SLeft);
7649 SLeft := SLeft + 1;
7650 else
7651 FEnt := Right (SRight);
7652 SRight := SRight + 1;
7653 end if;
e606088a 7654
baa571ab
AC
7655 -- This loop eats ranges from left and right operands that are
7656 -- contiguous with the first range we are gathering.
95081e99 7657
baa571ab
AC
7658 loop
7659 -- Eat first entry in left operand if contiguous or overlapped by
7660 -- gathered first operand of result.
95081e99 7661
baa571ab
AC
7662 if SLeft <= Left'Last
7663 and then Left (SLeft).Lo <= FEnt.Hi + 1
7664 then
7665 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7666 SLeft := SLeft + 1;
95081e99 7667
baa571ab
AC
7668 -- Eat first entry in right operand if contiguous or overlapped by
7669 -- gathered right operand of result.
95081e99 7670
baa571ab
AC
7671 elsif SRight <= Right'Last
7672 and then Right (SRight).Lo <= FEnt.Hi + 1
7673 then
7674 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7675 SRight := SRight + 1;
95081e99 7676
baa571ab 7677 -- All done if no more entries to eat
e606088a 7678
baa571ab
AC
7679 else
7680 exit;
7681 end if;
7682 end loop;
e606088a 7683
baa571ab
AC
7684 -- Obtain result as the first entry we just computed, concatenated
7685 -- to the "or" of the remaining results (if one operand is empty,
7686 -- this will just concatenate with the other
e606088a 7687
baa571ab
AC
7688 return
7689 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7690 end "or";
e606088a 7691
baa571ab
AC
7692 -----------------
7693 -- Build_Range --
7694 -----------------
e606088a 7695
baa571ab
AC
7696 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7697 Result : Node_Id;
e606088a 7698 begin
baa571ab
AC
7699 Result :=
7700 Make_Range (Loc,
7701 Low_Bound => Build_Val (Lo),
7702 High_Bound => Build_Val (Hi));
7703 Set_Etype (Result, Btyp);
7704 Set_Analyzed (Result);
7705 return Result;
7706 end Build_Range;
e606088a 7707
baa571ab
AC
7708 ---------------
7709 -- Build_Val --
7710 ---------------
e606088a 7711
baa571ab
AC
7712 function Build_Val (V : Uint) return Node_Id is
7713 Result : Node_Id;
e606088a 7714
baa571ab
AC
7715 begin
7716 if Is_Enumeration_Type (Typ) then
7717 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7718 else
7719 Result := Make_Integer_Literal (Loc, V);
7720 end if;
e606088a 7721
baa571ab
AC
7722 Set_Etype (Result, Btyp);
7723 Set_Is_Static_Expression (Result);
7724 Set_Analyzed (Result);
7725 return Result;
7726 end Build_Val;
f2264ac2 7727
baa571ab
AC
7728 ---------------
7729 -- Get_RList --
7730 ---------------
f2264ac2 7731
baa571ab
AC
7732 function Get_RList (Exp : Node_Id) return RList is
7733 Op : Node_Kind;
7734 Val : Uint;
f2264ac2 7735
baa571ab
AC
7736 begin
7737 -- Static expression can only be true or false
f2264ac2 7738
baa571ab
AC
7739 if Is_OK_Static_Expression (Exp) then
7740 if Expr_Value (Exp) = 0 then
7741 return False_Range;
7742 else
7743 return True_Range;
95081e99 7744 end if;
baa571ab 7745 end if;
f2264ac2 7746
baa571ab 7747 -- Otherwise test node type
4172a8e3 7748
baa571ab 7749 Op := Nkind (Exp);
4172a8e3 7750
baa571ab 7751 case Op is
9e1902a9 7752
baa571ab 7753 -- And
9e1902a9 7754
d8f43ee6
HK
7755 when N_And_Then
7756 | N_Op_And
7757 =>
baa571ab
AC
7758 return Get_RList (Left_Opnd (Exp))
7759 and
7760 Get_RList (Right_Opnd (Exp));
e606088a 7761
baa571ab 7762 -- Or
86200f66 7763
d8f43ee6
HK
7764 when N_Op_Or
7765 | N_Or_Else
7766 =>
baa571ab
AC
7767 return Get_RList (Left_Opnd (Exp))
7768 or
7769 Get_RList (Right_Opnd (Exp));
c5a26133 7770
baa571ab 7771 -- Not
86200f66 7772
baa571ab
AC
7773 when N_Op_Not =>
7774 return not Get_RList (Right_Opnd (Exp));
86200f66 7775
baa571ab 7776 -- Comparisons of type with static value
fc142f63 7777
baa571ab 7778 when N_Op_Compare =>
f2acf80c 7779
baa571ab 7780 -- Type is left operand
86200f66 7781
baa571ab
AC
7782 if Is_Type_Ref (Left_Opnd (Exp))
7783 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7784 then
7785 Val := Expr_Value (Right_Opnd (Exp));
fc142f63 7786
baa571ab 7787 -- Typ is right operand
fc142f63 7788
baa571ab
AC
7789 elsif Is_Type_Ref (Right_Opnd (Exp))
7790 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7791 then
7792 Val := Expr_Value (Left_Opnd (Exp));
fc142f63 7793
baa571ab 7794 -- Invert sense of comparison
fc142f63 7795
baa571ab
AC
7796 case Op is
7797 when N_Op_Gt => Op := N_Op_Lt;
7798 when N_Op_Lt => Op := N_Op_Gt;
7799 when N_Op_Ge => Op := N_Op_Le;
7800 when N_Op_Le => Op := N_Op_Ge;
7801 when others => null;
7802 end case;
fc142f63 7803
baa571ab 7804 -- Other cases are non-static
42fdc85b 7805
baa571ab
AC
7806 else
7807 raise Non_Static;
7808 end if;
86200f66 7809
baa571ab 7810 -- Construct range according to comparison operation
86200f66 7811
baa571ab
AC
7812 case Op is
7813 when N_Op_Eq =>
7814 return RList'(1 => REnt'(Val, Val));
86200f66 7815
baa571ab
AC
7816 when N_Op_Ge =>
7817 return RList'(1 => REnt'(Val, BHi));
fc142f63 7818
baa571ab
AC
7819 when N_Op_Gt =>
7820 return RList'(1 => REnt'(Val + 1, BHi));
fc142f63 7821
baa571ab
AC
7822 when N_Op_Le =>
7823 return RList'(1 => REnt'(BLo, Val));
bd949ee2 7824
baa571ab
AC
7825 when N_Op_Lt =>
7826 return RList'(1 => REnt'(BLo, Val - 1));
86200f66 7827
baa571ab
AC
7828 when N_Op_Ne =>
7829 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
86200f66 7830
baa571ab
AC
7831 when others =>
7832 raise Program_Error;
7833 end case;
86200f66 7834
baa571ab 7835 -- Membership (IN)
86200f66 7836
baa571ab
AC
7837 when N_In =>
7838 if not Is_Type_Ref (Left_Opnd (Exp)) then
7839 raise Non_Static;
7840 end if;
86200f66 7841
baa571ab
AC
7842 if Present (Right_Opnd (Exp)) then
7843 return Membership_Entry (Right_Opnd (Exp));
7844 else
7845 return Membership_Entries (First (Alternatives (Exp)));
7846 end if;
86200f66 7847
baa571ab 7848 -- Negative membership (NOT IN)
86200f66 7849
baa571ab
AC
7850 when N_Not_In =>
7851 if not Is_Type_Ref (Left_Opnd (Exp)) then
7852 raise Non_Static;
7853 end if;
86200f66 7854
baa571ab
AC
7855 if Present (Right_Opnd (Exp)) then
7856 return not Membership_Entry (Right_Opnd (Exp));
7857 else
7858 return not Membership_Entries (First (Alternatives (Exp)));
7859 end if;
86200f66 7860
baa571ab 7861 -- Function call, may be call to static predicate
86200f66 7862
baa571ab
AC
7863 when N_Function_Call =>
7864 if Is_Entity_Name (Name (Exp)) then
7865 declare
7866 Ent : constant Entity_Id := Entity (Name (Exp));
7867 begin
7868 if Is_Predicate_Function (Ent)
7869 or else
7870 Is_Predicate_Function_M (Ent)
7871 then
7872 return Stat_Pred (Etype (First_Formal (Ent)));
7873 end if;
7874 end;
7875 end if;
86200f66 7876
baa571ab 7877 -- Other function call cases are non-static
86200f66 7878
baa571ab 7879 raise Non_Static;
f2acf80c 7880
baa571ab 7881 -- Qualified expression, dig out the expression
415450ea 7882
baa571ab
AC
7883 when N_Qualified_Expression =>
7884 return Get_RList (Expression (Exp));
30ebb114 7885
baa571ab
AC
7886 when N_Case_Expression =>
7887 declare
7888 Alt : Node_Id;
7889 Choices : List_Id;
7890 Dep : Node_Id;
30ebb114 7891
baa571ab
AC
7892 begin
7893 if not Is_Entity_Name (Expression (Expr))
7894 or else Etype (Expression (Expr)) /= Typ
7895 then
7896 Error_Msg_N
7897 ("expression must denaote subtype", Expression (Expr));
7898 return False_Range;
7899 end if;
86200f66 7900
baa571ab 7901 -- Collect discrete choices in all True alternatives
86200f66 7902
baa571ab
AC
7903 Choices := New_List;
7904 Alt := First (Alternatives (Exp));
7905 while Present (Alt) loop
7906 Dep := Expression (Alt);
42fdc85b 7907
edab6088 7908 if not Is_OK_Static_Expression (Dep) then
baa571ab 7909 raise Non_Static;
f1c952af 7910
baa571ab
AC
7911 elsif Is_True (Expr_Value (Dep)) then
7912 Append_List_To (Choices,
7913 New_Copy_List (Discrete_Choices (Alt)));
7914 end if;
bd949ee2 7915
baa571ab
AC
7916 Next (Alt);
7917 end loop;
86200f66 7918
baa571ab
AC
7919 return Membership_Entries (First (Choices));
7920 end;
86200f66 7921
baa571ab 7922 -- Expression with actions: if no actions, dig out expression
86200f66 7923
baa571ab
AC
7924 when N_Expression_With_Actions =>
7925 if Is_Empty_List (Actions (Exp)) then
7926 return Get_RList (Expression (Exp));
7927 else
7928 raise Non_Static;
7929 end if;
86200f66 7930
baa571ab 7931 -- Xor operator
f2acf80c 7932
baa571ab
AC
7933 when N_Op_Xor =>
7934 return (Get_RList (Left_Opnd (Exp))
7935 and not Get_RList (Right_Opnd (Exp)))
7936 or (Get_RList (Right_Opnd (Exp))
7937 and not Get_RList (Left_Opnd (Exp)));
86200f66 7938
baa571ab 7939 -- Any other node type is non-static
bd949ee2 7940
baa571ab
AC
7941 when others =>
7942 raise Non_Static;
7943 end case;
7944 end Get_RList;
bd949ee2 7945
baa571ab
AC
7946 ------------
7947 -- Hi_Val --
7948 ------------
bd949ee2 7949
baa571ab
AC
7950 function Hi_Val (N : Node_Id) return Uint is
7951 begin
edab6088 7952 if Is_OK_Static_Expression (N) then
baa571ab
AC
7953 return Expr_Value (N);
7954 else
7955 pragma Assert (Nkind (N) = N_Range);
7956 return Expr_Value (High_Bound (N));
7957 end if;
7958 end Hi_Val;
bd949ee2 7959
baa571ab
AC
7960 --------------
7961 -- Is_False --
7962 --------------
bd949ee2 7963
baa571ab
AC
7964 function Is_False (R : RList) return Boolean is
7965 begin
7966 return R'Length = 0;
7967 end Is_False;
86200f66 7968
baa571ab
AC
7969 -------------
7970 -- Is_True --
7971 -------------
86200f66 7972
baa571ab
AC
7973 function Is_True (R : RList) return Boolean is
7974 begin
7975 return R'Length = 1
7976 and then R (R'First).Lo = BLo
7977 and then R (R'First).Hi = BHi;
7978 end Is_True;
86200f66 7979
baa571ab
AC
7980 -----------------
7981 -- Is_Type_Ref --
7982 -----------------
86200f66 7983
baa571ab
AC
7984 function Is_Type_Ref (N : Node_Id) return Boolean is
7985 begin
623267dc
AC
7986 return Nkind (N) = N_Identifier
7987 and then Chars (N) = Nam
7988 and then Paren_Count (N) = 0;
baa571ab 7989 end Is_Type_Ref;
86200f66 7990
baa571ab
AC
7991 ------------
7992 -- Lo_Val --
7993 ------------
86200f66 7994
baa571ab 7995 function Lo_Val (N : Node_Id) return Uint is
fc142f63 7996 begin
edab6088 7997 if Is_OK_Static_Expression (N) then
baa571ab 7998 return Expr_Value (N);
fc142f63 7999 else
baa571ab
AC
8000 pragma Assert (Nkind (N) = N_Range);
8001 return Expr_Value (Low_Bound (N));
fc142f63 8002 end if;
baa571ab 8003 end Lo_Val;
1e194575 8004
baa571ab
AC
8005 ------------------------
8006 -- Membership_Entries --
8007 ------------------------
1e194575 8008
baa571ab 8009 function Membership_Entries (N : Node_Id) return RList is
fc142f63 8010 begin
baa571ab
AC
8011 if No (Next (N)) then
8012 return Membership_Entry (N);
fc142f63 8013 else
baa571ab 8014 return Membership_Entry (N) or Membership_Entries (Next (N));
fc142f63 8015 end if;
baa571ab 8016 end Membership_Entries;
fc142f63 8017
baa571ab
AC
8018 ----------------------
8019 -- Membership_Entry --
8020 ----------------------
fc142f63 8021
baa571ab
AC
8022 function Membership_Entry (N : Node_Id) return RList is
8023 Val : Uint;
8024 SLo : Uint;
8025 SHi : Uint;
1e194575 8026
baa571ab
AC
8027 begin
8028 -- Range case
1e194575 8029
baa571ab 8030 if Nkind (N) = N_Range then
edab6088 8031 if not Is_OK_Static_Expression (Low_Bound (N))
baa571ab 8032 or else
edab6088 8033 not Is_OK_Static_Expression (High_Bound (N))
baa571ab
AC
8034 then
8035 raise Non_Static;
8036 else
8037 SLo := Expr_Value (Low_Bound (N));
8038 SHi := Expr_Value (High_Bound (N));
8039 return RList'(1 => REnt'(SLo, SHi));
8040 end if;
fc142f63 8041
baa571ab 8042 -- Static expression case
fc142f63 8043
edab6088 8044 elsif Is_OK_Static_Expression (N) then
baa571ab
AC
8045 Val := Expr_Value (N);
8046 return RList'(1 => REnt'(Val, Val));
1e194575 8047
baa571ab 8048 -- Identifier (other than static expression) case
1e194575 8049
baa571ab 8050 else pragma Assert (Nkind (N) = N_Identifier);
1e194575 8051
baa571ab 8052 -- Type case
1e194575 8053
baa571ab 8054 if Is_Type (Entity (N)) then
1e194575 8055
baa571ab 8056 -- If type has predicates, process them
1e194575 8057
baa571ab
AC
8058 if Has_Predicates (Entity (N)) then
8059 return Stat_Pred (Entity (N));
1e194575 8060
baa571ab 8061 -- For static subtype without predicates, get range
86200f66 8062
edab6088 8063 elsif Is_OK_Static_Subtype (Entity (N)) then
baa571ab
AC
8064 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8065 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8066 return RList'(1 => REnt'(SLo, SHi));
de6e4fc4 8067
baa571ab 8068 -- Any other type makes us non-static
de6e4fc4 8069
baa571ab
AC
8070 else
8071 raise Non_Static;
8072 end if;
fc142f63 8073
baa571ab
AC
8074 -- Any other kind of identifier in predicate (e.g. a non-static
8075 -- expression value) means this is not a static predicate.
fc142f63 8076
baa571ab
AC
8077 else
8078 raise Non_Static;
8079 end if;
8080 end if;
8081 end Membership_Entry;
fc142f63 8082
baa571ab
AC
8083 ---------------
8084 -- Stat_Pred --
8085 ---------------
fc142f63 8086
baa571ab
AC
8087 function Stat_Pred (Typ : Entity_Id) return RList is
8088 begin
8089 -- Not static if type does not have static predicates
fc142f63 8090
60f908dd 8091 if not Has_Static_Predicate (Typ) then
baa571ab
AC
8092 raise Non_Static;
8093 end if;
fc142f63 8094
baa571ab 8095 -- Otherwise we convert the predicate list to a range list
fc142f63 8096
baa571ab 8097 declare
60f908dd
RD
8098 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8099 Result : RList (1 .. List_Length (Spred));
baa571ab 8100 P : Node_Id;
fc142f63 8101
baa571ab 8102 begin
60f908dd 8103 P := First (Static_Discrete_Predicate (Typ));
baa571ab
AC
8104 for J in Result'Range loop
8105 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8106 Next (P);
8107 end loop;
fc142f63 8108
baa571ab
AC
8109 return Result;
8110 end;
8111 end Stat_Pred;
fc142f63 8112
baa571ab 8113 -- Start of processing for Build_Discrete_Static_Predicate
fc142f63 8114
baa571ab 8115 begin
a2c314c7 8116 -- Establish bounds for the predicate
67c0e662
RD
8117
8118 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8119 TLo := Expr_Value (Type_Low_Bound (Typ));
8120 else
8121 TLo := BLo;
8122 end if;
8123
8124 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8125 THi := Expr_Value (Type_High_Bound (Typ));
8126 else
8127 THi := BHi;
8128 end if;
8129
baa571ab 8130 -- Analyze the expression to see if it is a static predicate
fc142f63 8131
baa571ab
AC
8132 declare
8133 Ranges : constant RList := Get_RList (Expr);
8134 -- Range list from expression if it is static
fc142f63 8135
baa571ab 8136 Plist : List_Id;
fc142f63 8137
baa571ab
AC
8138 begin
8139 -- Convert range list into a form for the static predicate. In the
8140 -- Ranges array, we just have raw ranges, these must be converted
8141 -- to properly typed and analyzed static expressions or range nodes.
fc142f63 8142
baa571ab
AC
8143 -- Note: here we limit ranges to the ranges of the subtype, so that
8144 -- a predicate is always false for values outside the subtype. That
8145 -- seems fine, such values are invalid anyway, and considering them
8146 -- to fail the predicate seems allowed and friendly, and furthermore
8147 -- simplifies processing for case statements and loops.
fc142f63 8148
baa571ab
AC
8149 Plist := New_List;
8150
8151 for J in Ranges'Range loop
fc142f63 8152 declare
baa571ab
AC
8153 Lo : Uint := Ranges (J).Lo;
8154 Hi : Uint := Ranges (J).Hi;
fc142f63 8155
baa571ab
AC
8156 begin
8157 -- Ignore completely out of range entry
fc142f63 8158
baa571ab
AC
8159 if Hi < TLo or else Lo > THi then
8160 null;
fc142f63 8161
baa571ab 8162 -- Otherwise process entry
fc142f63 8163
baa571ab
AC
8164 else
8165 -- Adjust out of range value to subtype range
f2acf80c 8166
baa571ab
AC
8167 if Lo < TLo then
8168 Lo := TLo;
8169 end if;
f2acf80c 8170
baa571ab
AC
8171 if Hi > THi then
8172 Hi := THi;
8173 end if;
fc142f63 8174
baa571ab 8175 -- Convert range into required form
fc142f63 8176
baa571ab 8177 Append_To (Plist, Build_Range (Lo, Hi));
fc142f63 8178 end if;
baa571ab
AC
8179 end;
8180 end loop;
fc142f63 8181
baa571ab
AC
8182 -- Processing was successful and all entries were static, so now we
8183 -- can store the result as the predicate list.
fc142f63 8184
60f908dd 8185 Set_Static_Discrete_Predicate (Typ, Plist);
fc142f63 8186
558241c0
ES
8187 -- Within a generic the predicate functions themselves need not
8188 -- be constructed.
8189
8190 if Inside_A_Generic then
8191 return;
8192 end if;
8193
baa571ab
AC
8194 -- The processing for static predicates put the expression into
8195 -- canonical form as a series of ranges. It also eliminated
8196 -- duplicates and collapsed and combined ranges. We might as well
8197 -- replace the alternatives list of the right operand of the
8198 -- membership test with the static predicate list, which will
8199 -- usually be more efficient.
fc142f63 8200
baa571ab
AC
8201 declare
8202 New_Alts : constant List_Id := New_List;
8203 Old_Node : Node_Id;
8204 New_Node : Node_Id;
fc142f63 8205
baa571ab
AC
8206 begin
8207 Old_Node := First (Plist);
8208 while Present (Old_Node) loop
8209 New_Node := New_Copy (Old_Node);
fc142f63 8210
baa571ab
AC
8211 if Nkind (New_Node) = N_Range then
8212 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8213 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8214 end if;
fc142f63 8215
baa571ab
AC
8216 Append_To (New_Alts, New_Node);
8217 Next (Old_Node);
8218 end loop;
fc142f63 8219
baa571ab 8220 -- If empty list, replace by False
fc142f63 8221
baa571ab
AC
8222 if Is_Empty_List (New_Alts) then
8223 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
fc142f63 8224
baa571ab 8225 -- Else replace by set membership test
fc142f63 8226
baa571ab
AC
8227 else
8228 Rewrite (Expr,
8229 Make_In (Loc,
8230 Left_Opnd => Make_Identifier (Loc, Nam),
8231 Right_Opnd => Empty,
8232 Alternatives => New_Alts));
f2acf80c 8233
baa571ab 8234 -- Resolve new expression in function context
f2acf80c 8235
baa571ab
AC
8236 Install_Formals (Predicate_Function (Typ));
8237 Push_Scope (Predicate_Function (Typ));
8238 Analyze_And_Resolve (Expr, Standard_Boolean);
8239 Pop_Scope;
8240 end if;
8241 end;
8242 end;
3b1d4d82 8243
baa571ab 8244 -- If non-static, return doing nothing
3b1d4d82 8245
baa571ab
AC
8246 exception
8247 when Non_Static =>
8248 return;
8249 end Build_Discrete_Static_Predicate;
0d5fbf52 8250
2e885a6f
AC
8251 --------------------------------
8252 -- Build_Export_Import_Pragma --
8253 --------------------------------
8254
8255 function Build_Export_Import_Pragma
8256 (Asp : Node_Id;
8257 Id : Entity_Id) return Node_Id
8258 is
8259 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8260 Expr : constant Node_Id := Expression (Asp);
8261 Loc : constant Source_Ptr := Sloc (Asp);
8262
8263 Args : List_Id;
8264 Conv : Node_Id;
8265 Conv_Arg : Node_Id;
8266 Dummy_1 : Node_Id;
8267 Dummy_2 : Node_Id;
8268 EN : Node_Id;
8269 LN : Node_Id;
8270 Prag : Node_Id;
8271
8272 Create_Pragma : Boolean := False;
8273 -- This flag is set when the aspect form is such that it warrants the
8274 -- creation of a corresponding pragma.
8275
8276 begin
8277 if Present (Expr) then
8278 if Error_Posted (Expr) then
8279 null;
8280
8281 elsif Is_True (Expr_Value (Expr)) then
8282 Create_Pragma := True;
8283 end if;
8284
8285 -- Otherwise the aspect defaults to True
8286
8287 else
8288 Create_Pragma := True;
8289 end if;
8290
8291 -- Nothing to do when the expression is False or is erroneous
8292
8293 if not Create_Pragma then
8294 return Empty;
8295 end if;
8296
8297 -- Obtain all interfacing aspects that apply to the related entity
8298
8299 Get_Interfacing_Aspects
8300 (Iface_Asp => Asp,
8301 Conv_Asp => Conv,
8302 EN_Asp => EN,
8303 Expo_Asp => Dummy_1,
8304 Imp_Asp => Dummy_2,
8305 LN_Asp => LN);
8306
8307 Args := New_List;
8308
8309 -- Handle the convention argument
8310
8311 if Present (Conv) then
8312 Conv_Arg := New_Copy_Tree (Expression (Conv));
8313
8314 -- Assume convention "Ada' when aspect Convention is missing
8315
8316 else
8317 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8318 end if;
8319
8320 Append_To (Args,
8321 Make_Pragma_Argument_Association (Loc,
8322 Chars => Name_Convention,
8323 Expression => Conv_Arg));
8324
8325 -- Handle the entity argument
8326
8327 Append_To (Args,
8328 Make_Pragma_Argument_Association (Loc,
8329 Chars => Name_Entity,
8330 Expression => New_Occurrence_Of (Id, Loc)));
8331
8332 -- Handle the External_Name argument
8333
8334 if Present (EN) then
8335 Append_To (Args,
8336 Make_Pragma_Argument_Association (Loc,
8337 Chars => Name_External_Name,
8338 Expression => New_Copy_Tree (Expression (EN))));
8339 end if;
8340
8341 -- Handle the Link_Name argument
8342
8343 if Present (LN) then
8344 Append_To (Args,
8345 Make_Pragma_Argument_Association (Loc,
8346 Chars => Name_Link_Name,
8347 Expression => New_Copy_Tree (Expression (LN))));
8348 end if;
8349
8350 -- Generate:
8351 -- pragma Export/Import
8352 -- (Convention => <Conv>/Ada,
8353 -- Entity => <Id>,
8354 -- [External_Name => <EN>,]
8355 -- [Link_Name => <LN>]);
8356
8357 Prag :=
8358 Make_Pragma (Loc,
8359 Pragma_Identifier =>
8360 Make_Identifier (Loc, Chars (Identifier (Asp))),
8361 Pragma_Argument_Associations => Args);
8362
8363 -- Decorate the relevant aspect and the pragma
8364
8365 Set_Aspect_Rep_Item (Asp, Prag);
8366
8367 Set_Corresponding_Aspect (Prag, Asp);
8368 Set_From_Aspect_Specification (Prag);
8369 Set_Parent (Prag, Asp);
8370
8371 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8372 Set_Import_Pragma (Id, Prag);
8373 end if;
8374
8375 return Prag;
8376 end Build_Export_Import_Pragma;
8377
baa571ab
AC
8378 -------------------------------
8379 -- Build_Predicate_Functions --
8380 -------------------------------
5a8a6763 8381
593e3172 8382 -- The functions that are constructed here have the form:
5a8a6763 8383
baa571ab
AC
8384 -- function typPredicate (Ixxx : typ) return Boolean is
8385 -- begin
8386 -- return
9bdc432a 8387 -- typ1Predicate (typ1 (Ixxx))
baa571ab 8388 -- and then typ2Predicate (typ2 (Ixxx))
593e3172
PT
8389 -- and then ...
8390 -- and then exp1 and then exp2 and then ...;
baa571ab 8391 -- end typPredicate;
5a8a6763 8392
baa571ab
AC
8393 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8394 -- this is the point at which these expressions get analyzed, providing the
8395 -- required delay, and typ1, typ2, are entities from which predicates are
8396 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8397 -- use this function even if checks are off, e.g. for membership tests.
5a8a6763 8398
9bdc432a
AC
8399 -- Note that the inherited predicates are evaluated first, as required by
8400 -- AI12-0071-1.
8401
8402 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8403 -- the form of this return expression.
8404
baa571ab
AC
8405 -- If the expression has at least one Raise_Expression, then we also build
8406 -- the typPredicateM version of the function, in which any occurrence of a
8407 -- Raise_Expression is converted to "return False".
5a8a6763 8408
b0bf18ad
AC
8409 -- WARNING: This routine manages Ghost regions. Return statements must be
8410 -- replaced by gotos which jump to the end of the routine and restore the
8411 -- Ghost mode.
8412
baa571ab
AC
8413 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8414 Loc : constant Source_Ptr := Sloc (Typ);
5a8a6763 8415
baa571ab
AC
8416 Expr : Node_Id;
8417 -- This is the expression for the result of the function. It is
8418 -- is build by connecting the component predicates with AND THEN.
5a8a6763 8419
5612989e 8420 Expr_M : Node_Id := Empty; -- init to avoid warning
baa571ab
AC
8421 -- This is the corresponding return expression for the Predicate_M
8422 -- function. It differs in that raise expressions are marked for
8423 -- special expansion (see Process_REs).
5a8a6763 8424
6905a049 8425 Object_Name : Name_Id;
baa571ab 8426 -- Name for argument of Predicate procedure. Note that we use the same
87e69720 8427 -- name for both predicate functions. That way the reference within the
baa571ab 8428 -- predicate expression is the same in both functions.
5a8a6763 8429
6905a049 8430 Object_Entity : Entity_Id;
baa571ab 8431 -- Entity for argument of Predicate procedure
5a8a6763 8432
6905a049
AC
8433 Object_Entity_M : Entity_Id;
8434 -- Entity for argument of separate Predicate procedure when exceptions
8435 -- are present in expression.
8436
2cc7967f
AC
8437 FDecl : Node_Id;
8438 -- The function declaration
6905a049 8439
2cc7967f
AC
8440 SId : Entity_Id;
8441 -- Its entity
5a8a6763 8442
baa571ab
AC
8443 Raise_Expression_Present : Boolean := False;
8444 -- Set True if Expr has at least one Raise_Expression
5a8a6763 8445
9bdc432a
AC
8446 procedure Add_Condition (Cond : Node_Id);
8447 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8448 -- Expr is empty).
5a8a6763 8449
baa571ab
AC
8450 procedure Add_Predicates;
8451 -- Appends expressions for any Predicate pragmas in the rep item chain
8452 -- Typ to Expr. Note that we look only at items for this exact entity.
8453 -- Inheritance of predicates for the parent type is done by calling the
8454 -- Predicate_Function of the parent type, using Add_Call above.
5a8a6763 8455
9bdc432a
AC
8456 procedure Add_Call (T : Entity_Id);
8457 -- Includes a call to the predicate function for type T in Expr if T
8458 -- has predicates and Predicate_Function (T) is non-empty.
8459
baa571ab
AC
8460 function Process_RE (N : Node_Id) return Traverse_Result;
8461 -- Used in Process REs, tests if node N is a raise expression, and if
8462 -- so, marks it to be converted to return False.
5a8a6763 8463
baa571ab
AC
8464 procedure Process_REs is new Traverse_Proc (Process_RE);
8465 -- Marks any raise expressions in Expr_M to return False
5a8a6763 8466
241ebe89
HK
8467 function Test_RE (N : Node_Id) return Traverse_Result;
8468 -- Used in Test_REs, tests one node for being a raise expression, and if
8469 -- so sets Raise_Expression_Present True.
8470
8471 procedure Test_REs is new Traverse_Proc (Test_RE);
8472 -- Tests to see if Expr contains any raise expressions
8473
baa571ab
AC
8474 --------------
8475 -- Add_Call --
8476 --------------
5a8a6763 8477
baa571ab
AC
8478 procedure Add_Call (T : Entity_Id) is
8479 Exp : Node_Id;
5a8a6763 8480
baa571ab
AC
8481 begin
8482 if Present (T) and then Present (Predicate_Function (T)) then
8483 Set_Has_Predicates (Typ);
5a8a6763 8484
e7c25229
AC
8485 -- Build the call to the predicate function of T. The type may be
8486 -- derived, so use an unchecked conversion for the actual.
5a8a6763 8487
baa571ab
AC
8488 Exp :=
8489 Make_Predicate_Call
e7c25229
AC
8490 (Typ => T,
8491 Expr =>
8492 Unchecked_Convert_To (T,
8493 Make_Identifier (Loc, Object_Name)));
5a8a6763 8494
9bdc432a 8495 -- "and"-in the call to evolving expression
5a8a6763 8496
9bdc432a 8497 Add_Condition (Exp);
5a8a6763 8498
baa571ab
AC
8499 -- Output info message on inheritance if required. Note we do not
8500 -- give this information for generic actual types, since it is
8501 -- unwelcome noise in that case in instantiations. We also
8502 -- generally suppress the message in instantiations, and also
8503 -- if it involves internal names.
5a8a6763 8504
baa571ab
AC
8505 if Opt.List_Inherited_Aspects
8506 and then not Is_Generic_Actual_Type (Typ)
8507 and then Instantiation_Depth (Sloc (Typ)) = 0
8508 and then not Is_Internal_Name (Chars (T))
8509 and then not Is_Internal_Name (Chars (Typ))
8510 then
8511 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8512 Error_Msg_Node_2 := T;
8513 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8514 end if;
8515 end if;
8516 end Add_Call;
5a8a6763 8517
9bdc432a
AC
8518 -------------------
8519 -- Add_Condition --
8520 -------------------
8521
8522 procedure Add_Condition (Cond : Node_Id) is
8523 begin
8524 -- This is the first predicate expression
8525
8526 if No (Expr) then
8527 Expr := Cond;
8528
8529 -- Otherwise concatenate to the existing predicate expressions by
8530 -- using "and then".
8531
8532 else
8533 Expr :=
8534 Make_And_Then (Loc,
8535 Left_Opnd => Relocate_Node (Expr),
8536 Right_Opnd => Cond);
8537 end if;
8538 end Add_Condition;
8539
baa571ab
AC
8540 --------------------
8541 -- Add_Predicates --
8542 --------------------
5a8a6763 8543
baa571ab 8544 procedure Add_Predicates is
241ebe89
HK
8545 procedure Add_Predicate (Prag : Node_Id);
8546 -- Concatenate the expression of predicate pragma Prag to Expr by
8547 -- using a short circuit "and then" operator.
5a8a6763 8548
241ebe89
HK
8549 -------------------
8550 -- Add_Predicate --
8551 -------------------
5a8a6763 8552
241ebe89
HK
8553 procedure Add_Predicate (Prag : Node_Id) is
8554 procedure Replace_Type_Reference (N : Node_Id);
8555 -- Replace a single occurrence N of the subtype name with a
8556 -- reference to the formal of the predicate function. N can be an
8557 -- identifier referencing the subtype, or a selected component,
8558 -- representing an appropriately qualified occurrence of the
8559 -- subtype name.
8560
8561 procedure Replace_Type_References is
8562 new Replace_Type_References_Generic (Replace_Type_Reference);
8563 -- Traverse an expression changing every occurrence of an
8564 -- identifier whose name matches the name of the subtype with a
8565 -- reference to the formal parameter of the predicate function.
8566
8567 ----------------------------
8568 -- Replace_Type_Reference --
8569 ----------------------------
8570
8571 procedure Replace_Type_Reference (N : Node_Id) is
8572 begin
8573 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8574 -- Use the Sloc of the usage name, not the defining name
5a8a6763 8575
241ebe89
HK
8576 Set_Etype (N, Typ);
8577 Set_Entity (N, Object_Entity);
1e194575 8578
241ebe89
HK
8579 -- We want to treat the node as if it comes from source, so
8580 -- that ASIS will not ignore it.
1e194575 8581
241ebe89
HK
8582 Set_Comes_From_Source (N, True);
8583 end Replace_Type_Reference;
1e194575 8584
241ebe89 8585 -- Local variables
1e194575 8586
241ebe89
HK
8587 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8588 Arg1 : Node_Id;
8589 Arg2 : Node_Id;
1e194575 8590
241ebe89 8591 -- Start of processing for Add_Predicate
596b25f9 8592
241ebe89 8593 begin
62807842
AC
8594 -- Mark corresponding SCO as enabled
8595
8596 Set_SCO_Pragma_Enabled (Sloc (Prag));
8597
241ebe89
HK
8598 -- Extract the arguments of the pragma. The expression itself
8599 -- is copied for use in the predicate function, to preserve the
8600 -- original version for ASIS use.
1e194575 8601
241ebe89
HK
8602 Arg1 := First (Pragma_Argument_Associations (Prag));
8603 Arg2 := Next (Arg1);
1e194575 8604
241ebe89
HK
8605 Arg1 := Get_Pragma_Arg (Arg1);
8606 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
1e194575 8607
241ebe89
HK
8608 -- When the predicate pragma applies to the current type or its
8609 -- full view, replace all occurrences of the subtype name with
8610 -- references to the formal parameter of the predicate function.
ff1f1705 8611
241ebe89
HK
8612 if Entity (Arg1) = Typ
8613 or else Full_View (Entity (Arg1)) = Typ
8614 then
8615 Replace_Type_References (Arg2, Typ);
ff1f1705 8616
241ebe89
HK
8617 -- If the predicate pragma comes from an aspect, replace the
8618 -- saved expression because we need the subtype references
8619 -- replaced for the calls to Preanalyze_Spec_Expression in
8620 -- Check_Aspect_At_xxx routines.
ff1f1705 8621
241ebe89 8622 if Present (Asp) then
241ebe89
HK
8623 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8624 end if;
596b25f9 8625
9bdc432a 8626 -- "and"-in the Arg2 condition to evolving expression
ff1f1705 8627
9bdc432a 8628 Add_Condition (Relocate_Node (Arg2));
241ebe89
HK
8629 end if;
8630 end Add_Predicate;
064f4527 8631
241ebe89 8632 -- Local variables
064f4527 8633
241ebe89 8634 Ritem : Node_Id;
1e194575 8635
241ebe89 8636 -- Start of processing for Add_Predicates
1e194575 8637
241ebe89
HK
8638 begin
8639 Ritem := First_Rep_Item (Typ);
e7c25229
AC
8640
8641 -- If the type is private, check whether full view has inherited
8642 -- predicates.
8643
8644 if Is_Private_Type (Typ) and then No (Ritem) then
8645 Ritem := First_Rep_Item (Full_View (Typ));
8646 end if;
8647
241ebe89
HK
8648 while Present (Ritem) loop
8649 if Nkind (Ritem) = N_Pragma
6e759c2a 8650 and then Pragma_Name (Ritem) = Name_Predicate
241ebe89
HK
8651 then
8652 Add_Predicate (Ritem);
22a4f9d5
AC
8653
8654 -- If the type is declared in an inner package it may be frozen
8655 -- outside of the package, and the generated pragma has not been
8656 -- analyzed yet, so capture the expression for the predicate
8657 -- function at this point.
8658
8659 elsif Nkind (Ritem) = N_Aspect_Specification
f76647c2
AC
8660 and then Present (Aspect_Rep_Item (Ritem))
8661 and then Scope (Typ) /= Current_Scope
22a4f9d5
AC
8662 then
8663 declare
8664 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8665
8666 begin
8667 if Nkind (Prag) = N_Pragma
6e759c2a 8668 and then Pragma_Name (Prag) = Name_Predicate
22a4f9d5
AC
8669 then
8670 Add_Predicate (Prag);
8671 end if;
8672 end;
baa571ab 8673 end if;
1e194575 8674
baa571ab
AC
8675 Next_Rep_Item (Ritem);
8676 end loop;
8677 end Add_Predicates;
1e194575 8678
baa571ab
AC
8679 ----------------
8680 -- Process_RE --
8681 ----------------
1e194575 8682
baa571ab 8683 function Process_RE (N : Node_Id) return Traverse_Result is
5a8a6763 8684 begin
baa571ab
AC
8685 if Nkind (N) = N_Raise_Expression then
8686 Set_Convert_To_Return_False (N);
8687 return Skip;
5a8a6763 8688 else
baa571ab 8689 return OK;
5a8a6763 8690 end if;
baa571ab 8691 end Process_RE;
f6b5dc8e 8692
5a8a6763 8693 -------------
baa571ab 8694 -- Test_RE --
5a8a6763 8695 -------------
f6b5dc8e 8696
baa571ab 8697 function Test_RE (N : Node_Id) return Traverse_Result is
1e194575 8698 begin
baa571ab
AC
8699 if Nkind (N) = N_Raise_Expression then
8700 Raise_Expression_Present := True;
8701 return Abandon;
8702 else
8703 return OK;
8704 end if;
8705 end Test_RE;
1e194575 8706
241ebe89
HK
8707 -- Local variables
8708
9057bd6a
HK
8709 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8710 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
8711 -- Save the Ghost-related attributes to restore on exit
241ebe89 8712
baa571ab 8713 -- Start of processing for Build_Predicate_Functions
1e194575 8714
baa571ab
AC
8715 begin
8716 -- Return if already built or if type does not have predicates
86200f66 8717
6905a049 8718 SId := Predicate_Function (Typ);
baa571ab 8719 if not Has_Predicates (Typ)
6905a049 8720 or else (Present (SId) and then Has_Completion (SId))
baa571ab
AC
8721 then
8722 return;
5f531fef
ES
8723
8724 -- Do not generate predicate bodies within a generic unit. The
8725 -- expressions have been analyzed already, and the bodies play
558241c0
ES
8726 -- no role if not within an executable unit. However, if a statc
8727 -- predicate is present it must be processed for legality checks
8728 -- such as case coverage in an expression.
5f531fef 8729
558241c0
ES
8730 elsif Inside_A_Generic
8731 and then not Has_Static_Predicate_Aspect (Typ)
8732 then
5f531fef 8733 return;
baa571ab 8734 end if;
5a8a6763 8735
1af4455a
HK
8736 -- The related type may be subject to pragma Ghost. Set the mode now to
8737 -- ensure that the predicate functions are properly marked as Ghost.
241ebe89 8738
f9a8f910 8739 Set_Ghost_Mode (Typ);
241ebe89 8740
baa571ab 8741 -- Prepare to construct predicate expression
1e194575 8742
baa571ab 8743 Expr := Empty;
1e194575 8744
6905a049
AC
8745 if Present (SId) then
8746 FDecl := Unit_Declaration_Node (SId);
8747
8748 else
8749 FDecl := Build_Predicate_Function_Declaration (Typ);
8750 SId := Defining_Entity (FDecl);
8751 end if;
8752
8753 -- Recover name of formal parameter of function that replaces references
8754 -- to the type in predicate expressions.
8755
8756 Object_Entity :=
8757 Defining_Identifier
8758 (First (Parameter_Specifications (Specification (FDecl))));
8759
8760 Object_Name := Chars (Object_Entity);
8761 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8762
9bdc432a
AC
8763 -- Add predicates for ancestor if present. These must come before the
8764 -- ones for the current type, as required by AI12-0071-1.
1e194575 8765
baa571ab 8766 declare
e7c25229 8767 Atyp : Entity_Id;
5a8a6763 8768 begin
e7c25229
AC
8769 Atyp := Nearest_Ancestor (Typ);
8770
8771 -- The type may be private but the full view may inherit predicates
8772
8773 if No (Atyp) and then Is_Private_Type (Typ) then
8774 Atyp := Nearest_Ancestor (Full_View (Typ));
8775 end if;
8776
baa571ab
AC
8777 if Present (Atyp) then
8778 Add_Call (Atyp);
8779 end if;
8780 end;
2cc7967f 8781
9bdc432a
AC
8782 -- Add Predicates for the current type
8783
8784 Add_Predicates;
8785
baa571ab 8786 -- Case where predicates are present
86200f66 8787
baa571ab 8788 if Present (Expr) then
92a68a04 8789
baa571ab 8790 -- Test for raise expression present
752b81d9 8791
baa571ab 8792 Test_REs (Expr);
86200f66 8793
baa571ab
AC
8794 -- If raise expression is present, capture a copy of Expr for use
8795 -- in building the predicateM function version later on. For this
8796 -- copy we replace references to Object_Entity by Object_Entity_M.
86200f66 8797
baa571ab
AC
8798 if Raise_Expression_Present then
8799 declare
92a68a04
HK
8800 function Reset_Loop_Variable
8801 (N : Node_Id) return Traverse_Result;
5c5e108f 8802
92a68a04 8803 procedure Reset_Loop_Variables is
5c5e108f
AC
8804 new Traverse_Proc (Reset_Loop_Variable);
8805
8806 ------------------------
8807 -- Reset_Loop_Variable --
8808 ------------------------
8809
92a68a04
HK
8810 function Reset_Loop_Variable
8811 (N : Node_Id) return Traverse_Result
5c5e108f
AC
8812 is
8813 begin
8814 if Nkind (N) = N_Iterator_Specification then
92a68a04
HK
8815 Set_Defining_Identifier (N,
8816 Make_Defining_Identifier
8817 (Sloc (N), Chars (Defining_Identifier (N))));
5c5e108f
AC
8818 end if;
8819
8820 return OK;
8821 end Reset_Loop_Variable;
8822
92a68a04
HK
8823 -- Local variables
8824
8825 Map : constant Elist_Id := New_Elmt_List;
8826
baa571ab
AC
8827 begin
8828 Append_Elmt (Object_Entity, Map);
8829 Append_Elmt (Object_Entity_M, Map);
8830 Expr_M := New_Copy_Tree (Expr, Map => Map);
92a68a04
HK
8831
8832 -- The unanalyzed expression will be copied and appear in
8833 -- both functions. Normally expressions do not declare new
8834 -- entities, but quantified expressions do, so we need to
8835 -- create new entities for their bound variables, to prevent
8836 -- multiple definitions in gigi.
8837
8838 Reset_Loop_Variables (Expr_M);
baa571ab
AC
8839 end;
8840 end if;
1e194575 8841
baa571ab 8842 -- Build the main predicate function
86200f66 8843
baa571ab 8844 declare
baa571ab
AC
8845 SIdB : constant Entity_Id :=
8846 Make_Defining_Identifier (Loc,
8847 Chars => New_External_Name (Chars (Typ), "Predicate"));
8848 -- The entity for the function body
86200f66 8849
baa571ab 8850 Spec : Node_Id;
baa571ab 8851 FBody : Node_Id;
86200f66 8852
baa571ab 8853 begin
0691ed6b
AC
8854 Set_Ekind (SIdB, E_Function);
8855 Set_Is_Predicate_Function (SIdB);
8856
baa571ab 8857 -- The predicate function is shared between views of a type
1e194575 8858
baa571ab
AC
8859 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8860 Set_Predicate_Function (Full_View (Typ), SId);
1e194575 8861 end if;
1e194575 8862
baa571ab 8863 -- Build function body
1e194575 8864
baa571ab
AC
8865 Spec :=
8866 Make_Function_Specification (Loc,
8867 Defining_Unit_Name => SIdB,
8868 Parameter_Specifications => New_List (
8869 Make_Parameter_Specification (Loc,
8870 Defining_Identifier =>
8871 Make_Defining_Identifier (Loc, Object_Name),
8872 Parameter_Type =>
8873 New_Occurrence_Of (Typ, Loc))),
8874 Result_Definition =>
8875 New_Occurrence_Of (Standard_Boolean, Loc));
1e194575 8876
baa571ab
AC
8877 FBody :=
8878 Make_Subprogram_Body (Loc,
8879 Specification => Spec,
8880 Declarations => Empty_List,
8881 Handled_Statement_Sequence =>
8882 Make_Handled_Sequence_Of_Statements (Loc,
8883 Statements => New_List (
8884 Make_Simple_Return_Statement (Loc,
8885 Expression => Expr))));
86200f66 8886
8218cfde 8887 -- The declaration has been analyzed when created, and placed
c365eb26
ES
8888 -- after type declaration. Insert body itself after freeze node,
8889 -- unless subprogram declaration is already there, in which case
8890 -- body better be placed afterwards.
1e194575 8891
c365eb26
ES
8892 if FDecl = Next (N) then
8893 Insert_After_And_Analyze (FDecl, FBody);
8894 else
8895 Insert_After_And_Analyze (N, FBody);
8896 end if;
e3d9f448 8897
6989a2bb
ES
8898 -- The defining identifier of a quantified expression carries the
8899 -- scope in which the type appears, but when unnesting we need
8900 -- to indicate that its proper scope is the constructed predicate
8901 -- function. The quantified expressions have been converted into
8902 -- loops during analysis and expansion.
8903
8904 declare
92a68a04
HK
8905 function Reset_Quantified_Variable_Scope
8906 (N : Node_Id) return Traverse_Result;
6989a2bb
ES
8907
8908 procedure Reset_Quantified_Variables_Scope is
8909 new Traverse_Proc (Reset_Quantified_Variable_Scope);
8910
8911 -------------------------------------
8912 -- Reset_Quantified_Variable_Scope --
8913 -------------------------------------
8914
92a68a04
HK
8915 function Reset_Quantified_Variable_Scope
8916 (N : Node_Id) return Traverse_Result
6989a2bb
ES
8917 is
8918 begin
8919 if Nkind_In (N, N_Iterator_Specification,
8920 N_Loop_Parameter_Specification)
8921 then
8922 Set_Scope (Defining_Identifier (N),
8923 Predicate_Function (Typ));
8924 end if;
92a68a04 8925
6989a2bb
ES
8926 return OK;
8927 end Reset_Quantified_Variable_Scope;
8928
8929 begin
8930 if Unnest_Subprogram_Mode then
8931 Reset_Quantified_Variables_Scope (Expr);
8932 end if;
8933 end;
8934
8218cfde
ES
8935 -- within a generic unit, prevent a double analysis of the body
8936 -- which will not be marked analyzed yet. This will happen when
812e6118 8937 -- the freeze node is created during the preanalysis of an
8218cfde
ES
8938 -- expression function.
8939
8940 if Inside_A_Generic then
8941 Set_Analyzed (FBody);
8942 end if;
8943
e3d9f448
AC
8944 -- Static predicate functions are always side-effect free, and
8945 -- in most cases dynamic predicate functions are as well. Mark
8946 -- them as such whenever possible, so redundant predicate checks
33398e3c
AC
8947 -- can be optimized. If there is a variable reference within the
8948 -- expression, the function is not pure.
00c93ba2 8949
e3d9f448 8950 if Expander_Active then
33398e3c
AC
8951 Set_Is_Pure (SId,
8952 Side_Effect_Free (Expr, Variable_Ref => True));
e3d9f448
AC
8953 Set_Is_Inlined (SId);
8954 end if;
5a8a6763 8955 end;
1e194575 8956
baa571ab 8957 -- Test for raise expressions present and if so build M version
1e194575 8958
baa571ab
AC
8959 if Raise_Expression_Present then
8960 declare
8961 SId : constant Entity_Id :=
8962 Make_Defining_Identifier (Loc,
8963 Chars => New_External_Name (Chars (Typ), "PredicateM"));
50ef946c 8964 -- The entity for the function spec
1e194575 8965
baa571ab
AC
8966 SIdB : constant Entity_Id :=
8967 Make_Defining_Identifier (Loc,
8968 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8969 -- The entity for the function body
616547fa 8970
baa571ab 8971 Spec : Node_Id;
baa571ab 8972 FBody : Node_Id;
6905a049 8973 FDecl : Node_Id;
baa571ab 8974 BTemp : Entity_Id;
1e194575 8975
baa571ab
AC
8976 begin
8977 -- Mark any raise expressions for special expansion
1e194575 8978
baa571ab 8979 Process_REs (Expr_M);
1e194575 8980
baa571ab 8981 -- Build function declaration
1e194575 8982
baa571ab
AC
8983 Set_Ekind (SId, E_Function);
8984 Set_Is_Predicate_Function_M (SId);
8985 Set_Predicate_Function_M (Typ, SId);
1e194575 8986
baa571ab 8987 -- The predicate function is shared between views of a type
1e194575 8988
baa571ab
AC
8989 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8990 Set_Predicate_Function_M (Full_View (Typ), SId);
8991 end if;
86200f66 8992
baa571ab
AC
8993 Spec :=
8994 Make_Function_Specification (Loc,
8995 Defining_Unit_Name => SId,
8996 Parameter_Specifications => New_List (
8997 Make_Parameter_Specification (Loc,
8998 Defining_Identifier => Object_Entity_M,
8999 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9000 Result_Definition =>
9001 New_Occurrence_Of (Standard_Boolean, Loc));
86200f66 9002
baa571ab
AC
9003 FDecl :=
9004 Make_Subprogram_Declaration (Loc,
9005 Specification => Spec);
86200f66 9006
baa571ab 9007 -- Build function body
86200f66 9008
baa571ab
AC
9009 Spec :=
9010 Make_Function_Specification (Loc,
9011 Defining_Unit_Name => SIdB,
9012 Parameter_Specifications => New_List (
9013 Make_Parameter_Specification (Loc,
9014 Defining_Identifier =>
9015 Make_Defining_Identifier (Loc, Object_Name),
9016 Parameter_Type =>
9017 New_Occurrence_Of (Typ, Loc))),
9018 Result_Definition =>
9019 New_Occurrence_Of (Standard_Boolean, Loc));
86200f66 9020
baa571ab
AC
9021 -- Build the body, we declare the boolean expression before
9022 -- doing the return, because we are not really confident of
9023 -- what happens if a return appears within a return.
86200f66 9024
baa571ab
AC
9025 BTemp :=
9026 Make_Defining_Identifier (Loc,
9027 Chars => New_Internal_Name ('B'));
86200f66 9028
baa571ab
AC
9029 FBody :=
9030 Make_Subprogram_Body (Loc,
9031 Specification => Spec,
86200f66 9032
baa571ab
AC
9033 Declarations => New_List (
9034 Make_Object_Declaration (Loc,
9035 Defining_Identifier => BTemp,
9036 Constant_Present => True,
9037 Object_Definition =>
9038 New_Occurrence_Of (Standard_Boolean, Loc),
9039 Expression => Expr_M)),
1e194575 9040
baa571ab
AC
9041 Handled_Statement_Sequence =>
9042 Make_Handled_Sequence_Of_Statements (Loc,
9043 Statements => New_List (
9044 Make_Simple_Return_Statement (Loc,
9045 Expression => New_Occurrence_Of (BTemp, Loc)))));
1e194575 9046
baa571ab 9047 -- Insert declaration before freeze node and body after
1e194575 9048
baa571ab
AC
9049 Insert_Before_And_Analyze (N, FDecl);
9050 Insert_After_And_Analyze (N, FBody);
6989a2bb
ES
9051
9052 -- Should quantified expressions be handled here as well ???
baa571ab
AC
9053 end;
9054 end if;
86200f66 9055
ee4eee0a
AC
9056 -- See if we have a static predicate. Note that the answer may be
9057 -- yes even if we have an explicit Dynamic_Predicate present.
86200f66 9058
ee4eee0a 9059 declare
fc3a3f3b 9060 PS : Boolean;
ee4eee0a 9061 EN : Node_Id;
86200f66 9062
ee4eee0a 9063 begin
fc3a3f3b
RD
9064 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
9065 PS := False;
9066 else
9067 PS := Is_Predicate_Static (Expr, Object_Name);
9068 end if;
9069
c624298a 9070 -- Case where we have a predicate-static aspect
86200f66 9071
ee4eee0a 9072 if PS then
86200f66 9073
ee4eee0a
AC
9074 -- We don't set Has_Static_Predicate_Aspect, since we can have
9075 -- any of the three cases (Predicate, Dynamic_Predicate, or
9076 -- Static_Predicate) generating a predicate with an expression
c624298a 9077 -- that is predicate-static. We just indicate that we have a
ee4eee0a 9078 -- predicate that can be treated as static.
f6b5dc8e 9079
ee4eee0a 9080 Set_Has_Static_Predicate (Typ);
f6b5dc8e 9081
ee4eee0a 9082 -- For discrete subtype, build the static predicate list
86200f66 9083
ee4eee0a
AC
9084 if Is_Discrete_Type (Typ) then
9085 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
9086
9087 -- If we don't get a static predicate list, it means that we
9088 -- have a case where this is not possible, most typically in
9089 -- the case where we inherit a dynamic predicate. We do not
9090 -- consider this an error, we just leave the predicate as
9091 -- dynamic. But if we do succeed in building the list, then
9092 -- we mark the predicate as static.
9093
60f908dd 9094 if No (Static_Discrete_Predicate (Typ)) then
ee4eee0a
AC
9095 Set_Has_Static_Predicate (Typ, False);
9096 end if;
fc3a3f3b
RD
9097
9098 -- For real or string subtype, save predicate expression
9099
9100 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9101 Set_Static_Real_Or_String_Predicate (Typ, Expr);
ee4eee0a
AC
9102 end if;
9103
9104 -- Case of dynamic predicate (expression is not predicate-static)
86200f66 9105
baa571ab 9106 else
ee4eee0a
AC
9107 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9108 -- is only set if we have an explicit Dynamic_Predicate aspect
9109 -- given. Here we may simply have a Predicate aspect where the
9110 -- expression happens not to be predicate-static.
9111
9112 -- Emit an error when the predicate is categorized as static
9113 -- but its expression is not predicate-static.
9114
9115 -- First a little fiddling to get a nice location for the
9116 -- message. If the expression is of the form (A and then B),
9bdc432a
AC
9117 -- where A is an inherited predicate, then use the right
9118 -- operand for the Sloc. This avoids getting confused by a call
9119 -- to an inherited predicate with a less convenient source
9120 -- location.
ee4eee0a
AC
9121
9122 EN := Expr;
9bdc432a
AC
9123 while Nkind (EN) = N_And_Then
9124 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9125 and then Is_Predicate_Function
9126 (Entity (Name (Left_Opnd (EN))))
9127 loop
9128 EN := Right_Opnd (EN);
ee4eee0a
AC
9129 end loop;
9130
9131 -- Now post appropriate message
9132
9133 if Has_Static_Predicate_Aspect (Typ) then
fc3a3f3b 9134 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
ee4eee0a 9135 Error_Msg_F
28e18b4f 9136 ("expression is not predicate-static (RM 3.2.4(16-22))",
ee4eee0a
AC
9137 EN);
9138 else
fc3a3f3b
RD
9139 Error_Msg_F
9140 ("static predicate requires scalar or string type", EN);
ee4eee0a
AC
9141 end if;
9142 end if;
baa571ab 9143 end if;
ee4eee0a 9144 end;
baa571ab 9145 end if;
241ebe89 9146
9057bd6a 9147 Restore_Ghost_Region (Saved_GM, Saved_IGR);
baa571ab 9148 end Build_Predicate_Functions;
86200f66 9149
6905a049
AC
9150 ------------------------------------------
9151 -- Build_Predicate_Function_Declaration --
9152 ------------------------------------------
9153
b0bf18ad
AC
9154 -- WARNING: This routine manages Ghost regions. Return statements must be
9155 -- replaced by gotos which jump to the end of the routine and restore the
9156 -- Ghost mode.
9157
6905a049
AC
9158 function Build_Predicate_Function_Declaration
9159 (Typ : Entity_Id) return Node_Id
9160 is
9161 Loc : constant Source_Ptr := Sloc (Typ);
9162
9057bd6a
HK
9163 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9164 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
9165 -- Save the Ghost-related attributes to restore on exit
f9a8f910 9166
d65a80fd
HK
9167 Func_Decl : Node_Id;
9168 Func_Id : Entity_Id;
d65a80fd 9169 Spec : Node_Id;
6905a049 9170
d65a80fd
HK
9171 begin
9172 -- The related type may be subject to pragma Ghost. Set the mode now to
9173 -- ensure that the predicate functions are properly marked as Ghost.
6905a049 9174
f9a8f910 9175 Set_Ghost_Mode (Typ);
6905a049 9176
d65a80fd
HK
9177 Func_Id :=
9178 Make_Defining_Identifier (Loc,
9179 Chars => New_External_Name (Chars (Typ), "Predicate"));
6905a049 9180
cccb761b
AC
9181 -- The predicate function requires debug info when the predicates are
9182 -- subject to Source Coverage Obligations.
9183
9184 if Opt.Generate_SCO then
9185 Set_Debug_Info_Needed (Func_Id);
9186 end if;
9187
6905a049
AC
9188 Spec :=
9189 Make_Function_Specification (Loc,
d65a80fd 9190 Defining_Unit_Name => Func_Id,
6905a049
AC
9191 Parameter_Specifications => New_List (
9192 Make_Parameter_Specification (Loc,
d65a80fd 9193 Defining_Identifier => Make_Temporary (Loc, 'I'),
6905a049
AC
9194 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9195 Result_Definition =>
9196 New_Occurrence_Of (Standard_Boolean, Loc));
9197
d65a80fd 9198 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
6905a049 9199
d65a80fd
HK
9200 Set_Ekind (Func_Id, E_Function);
9201 Set_Etype (Func_Id, Standard_Boolean);
9202 Set_Is_Internal (Func_Id);
9203 Set_Is_Predicate_Function (Func_Id);
9204 Set_Predicate_Function (Typ, Func_Id);
6905a049 9205
d65a80fd
HK
9206 Insert_After (Parent (Typ), Func_Decl);
9207 Analyze (Func_Decl);
6905a049 9208
9057bd6a 9209 Restore_Ghost_Region (Saved_GM, Saved_IGR);
6905a049 9210
d65a80fd 9211 return Func_Decl;
6905a049
AC
9212 end Build_Predicate_Function_Declaration;
9213
5a8a6763
RD
9214 -----------------------------------------
9215 -- Check_Aspect_At_End_Of_Declarations --
9216 -----------------------------------------
86200f66 9217
5a8a6763
RD
9218 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9219 Ent : constant Entity_Id := Entity (ASN);
9220 Ident : constant Node_Id := Identifier (ASN);
9221 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
f6b5dc8e 9222
5a8a6763
RD
9223 End_Decl_Expr : constant Node_Id := Entity (Ident);
9224 -- Expression to be analyzed at end of declarations
f6b5dc8e 9225
5a8a6763 9226 Freeze_Expr : constant Node_Id := Expression (ASN);
ef74daea 9227 -- Expression from call to Check_Aspect_At_Freeze_Point.
f6b5dc8e 9228
da9683f4 9229 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
ef74daea
AC
9230 -- Type required for preanalyze call. We use the original expression to
9231 -- get the proper type, to prevent cascaded errors when the expression
9232 -- is constant-folded.
f6b5dc8e 9233
5a8a6763
RD
9234 Err : Boolean;
9235 -- Set False if error
86200f66 9236
5a8a6763
RD
9237 -- On entry to this procedure, Entity (Ident) contains a copy of the
9238 -- original expression from the aspect, saved for this purpose, and
9239 -- but Expression (Ident) is a preanalyzed copy of the expression,
9240 -- preanalyzed just after the freeze point.
86200f66 9241
5a8a6763
RD
9242 procedure Check_Overloaded_Name;
9243 -- For aspects whose expression is simply a name, this routine checks if
9244 -- the name is overloaded or not. If so, it verifies there is an
9245 -- interpretation that matches the entity obtained at the freeze point,
9246 -- otherwise the compiler complains.
86200f66 9247
5a8a6763
RD
9248 ---------------------------
9249 -- Check_Overloaded_Name --
9250 ---------------------------
9251
9252 procedure Check_Overloaded_Name is
1e194575 9253 begin
5a8a6763 9254 if not Is_Overloaded (End_Decl_Expr) then
c74afd84
AC
9255 Err := not Is_Entity_Name (End_Decl_Expr)
9256 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
5a8a6763 9257
1e194575 9258 else
5a8a6763 9259 Err := True;
86200f66 9260
5a8a6763
RD
9261 declare
9262 Index : Interp_Index;
9263 It : Interp;
86200f66 9264
5a8a6763
RD
9265 begin
9266 Get_First_Interp (End_Decl_Expr, Index, It);
9267 while Present (It.Typ) loop
9268 if It.Nam = Entity (Freeze_Expr) then
9269 Err := False;
9270 exit;
9271 end if;
9272
9273 Get_Next_Interp (Index, It);
9274 end loop;
9275 end;
86200f66 9276 end if;
5a8a6763 9277 end Check_Overloaded_Name;
86200f66 9278
5a8a6763 9279 -- Start of processing for Check_Aspect_At_End_Of_Declarations
86200f66 9280
5a8a6763 9281 begin
e96b7045
AC
9282 -- In an instance we do not perform the consistency check between freeze
9283 -- point and end of declarations, because it was done already in the
9284 -- analysis of the generic. Furthermore, the delayed analysis of an
9285 -- aspect of the instance may produce spurious errors when the generic
9286 -- is a child unit that references entities in the parent (which might
9287 -- not be in scope at the freeze point of the instance).
9288
9289 if In_Instance then
9290 return;
9291
62c7d441
AC
9292 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9293 -- task body is rewritten as a procedure) after this conformance check
9294 -- has been performed, so do not perform it again (it may not easily be
9295 -- done if full visibility of local entities is not available).
522aa6ee
AC
9296
9297 elsif not Comes_From_Source (Current_Scope) then
9298 return;
9299
5a8a6763 9300 -- Case of aspects Dimension, Dimension_System and Synchronization
86200f66 9301
e96b7045 9302 elsif A_Id = Aspect_Synchronization then
5a8a6763 9303 return;
1e194575 9304
5a8a6763
RD
9305 -- Case of stream attributes, just have to compare entities. However,
9306 -- the expression is just a name (possibly overloaded), and there may
9307 -- be stream operations declared for unrelated types, so we just need
9308 -- to verify that one of these interpretations is the one available at
9309 -- at the freeze point.
86200f66 9310
5a8a6763 9311 elsif A_Id = Aspect_Input or else
dc06dd83
AC
9312 A_Id = Aspect_Output or else
9313 A_Id = Aspect_Read or else
9314 A_Id = Aspect_Write
5a8a6763
RD
9315 then
9316 Analyze (End_Decl_Expr);
9317 Check_Overloaded_Name;
86200f66 9318
5a8a6763
RD
9319 elsif A_Id = Aspect_Variable_Indexing or else
9320 A_Id = Aspect_Constant_Indexing or else
9321 A_Id = Aspect_Default_Iterator or else
9322 A_Id = Aspect_Iterator_Element
9323 then
9324 -- Make type unfrozen before analysis, to prevent spurious errors
9325 -- about late attributes.
86200f66 9326
5a8a6763
RD
9327 Set_Is_Frozen (Ent, False);
9328 Analyze (End_Decl_Expr);
9329 Set_Is_Frozen (Ent, True);
86200f66 9330
b5c8da6b
HK
9331 -- If the end of declarations comes before any other freeze point,
9332 -- the Freeze_Expr is not analyzed: no check needed.
86200f66 9333
5a8a6763
RD
9334 if Analyzed (Freeze_Expr) and then not In_Instance then
9335 Check_Overloaded_Name;
9336 else
9337 Err := False;
9338 end if;
c7532b2d 9339
5a8a6763 9340 -- All other cases
c7532b2d 9341
5a8a6763 9342 else
b5c8da6b 9343 -- In a generic context freeze nodes are not always generated, so
e87f67eb
ES
9344 -- analyze the expression now. If the aspect is for a type, this
9345 -- makes its potential components accessible.
8334176a 9346
b5c8da6b 9347 if not Analyzed (Freeze_Expr) and then Inside_A_Generic then
e87f67eb
ES
9348 if A_Id = Aspect_Dynamic_Predicate
9349 or else A_Id = Aspect_Predicate
9350 or else A_Id = Aspect_Priority
9351 then
9352 Push_Type (Ent);
9353 Preanalyze (Freeze_Expr);
9354 Pop_Type (Ent);
9355 else
9356 Preanalyze (Freeze_Expr);
9357 end if;
8334176a
ES
9358 end if;
9359
d2d8b2a7
AC
9360 -- Indicate that the expression comes from an aspect specification,
9361 -- which is used in subsequent analysis even if expansion is off.
9362
9363 Set_Parent (End_Decl_Expr, ASN);
9364
5a8a6763
RD
9365 -- In a generic context the aspect expressions have not been
9366 -- preanalyzed, so do it now. There are no conformance checks
9367 -- to perform in this case.
c7532b2d 9368
5a8a6763
RD
9369 if No (T) then
9370 Check_Aspect_At_Freeze_Point (ASN);
9371 return;
c7532b2d 9372
5a8a6763
RD
9373 -- The default values attributes may be defined in the private part,
9374 -- and the analysis of the expression may take place when only the
9375 -- partial view is visible. The expression must be scalar, so use
9376 -- the full view to resolve.
c7532b2d 9377
5a8a6763
RD
9378 elsif (A_Id = Aspect_Default_Value
9379 or else
9380 A_Id = Aspect_Default_Component_Value)
9381 and then Is_Private_Type (T)
9382 then
9383 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
d2d8b2a7 9384
5f531fef
ES
9385 -- The following aspect expressions may contain references to
9386 -- components and discriminants of the type.
9387
2401c98f 9388 elsif A_Id = Aspect_Dynamic_Predicate
f5d4b6ab 9389 or else A_Id = Aspect_Predicate
5f531fef
ES
9390 or else A_Id = Aspect_Priority
9391 then
9392 Push_Type (Ent);
9393 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9394 Pop_Type (Ent);
9395
5a8a6763
RD
9396 else
9397 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9398 end if;
1e194575 9399
2401c98f
HK
9400 Err :=
9401 not Fully_Conformant_Expressions
5f531fef 9402 (End_Decl_Expr, Freeze_Expr, Report => True);
5a8a6763 9403 end if;
c7532b2d 9404
d2d8b2a7
AC
9405 -- Output error message if error. Force error on aspect specification
9406 -- even if there is an error on the expression itself.
c7532b2d 9407
5a8a6763
RD
9408 if Err then
9409 Error_Msg_NE
d2d8b2a7 9410 ("!visibility of aspect for& changes after freeze point",
5a8a6763
RD
9411 ASN, Ent);
9412 Error_Msg_NE
5f531fef 9413 ("info: & is frozen here, (RM 13.1.1 (13/3))??",
5a8a6763
RD
9414 Freeze_Node (Ent), Ent);
9415 end if;
9416 end Check_Aspect_At_End_Of_Declarations;
c7532b2d 9417
5a8a6763
RD
9418 ----------------------------------
9419 -- Check_Aspect_At_Freeze_Point --
9420 ----------------------------------
86200f66 9421
5a8a6763
RD
9422 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9423 Ident : constant Node_Id := Identifier (ASN);
9424 -- Identifier (use Entity field to save expression)
86200f66 9425
5a8a6763 9426 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
86200f66 9427
5a8a6763
RD
9428 T : Entity_Id := Empty;
9429 -- Type required for preanalyze call
86200f66 9430
5a8a6763
RD
9431 begin
9432 -- On entry to this procedure, Entity (Ident) contains a copy of the
9433 -- original expression from the aspect, saved for this purpose.
86200f66 9434
5a8a6763
RD
9435 -- On exit from this procedure Entity (Ident) is unchanged, still
9436 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9437 -- of the expression, preanalyzed just after the freeze point.
1e194575 9438
5a8a6763 9439 -- Make a copy of the expression to be preanalyzed
1e194575 9440
5a8a6763 9441 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
1e194575 9442
5a8a6763 9443 -- Find type for preanalyze call
1e194575 9444
5a8a6763 9445 case A_Id is
86200f66 9446
5a8a6763 9447 -- No_Aspect should be impossible
1e194575 9448
5a8a6763
RD
9449 when No_Aspect =>
9450 raise Program_Error;
9451
9452 -- Aspects taking an optional boolean argument
1e194575 9453
d8f43ee6
HK
9454 when Boolean_Aspects
9455 | Library_Unit_Aspects
9456 =>
5a8a6763 9457 T := Standard_Boolean;
f6b5dc8e 9458
5a8a6763 9459 -- Aspects corresponding to attribute definition clauses
86200f66 9460
5a8a6763
RD
9461 when Aspect_Address =>
9462 T := RTE (RE_Address);
86200f66 9463
5a8a6763
RD
9464 when Aspect_Attach_Handler =>
9465 T := RTE (RE_Interrupt_ID);
f6b5dc8e 9466
d8f43ee6
HK
9467 when Aspect_Bit_Order
9468 | Aspect_Scalar_Storage_Order
9469 =>
5a8a6763 9470 T := RTE (RE_Bit_Order);
f6b5dc8e 9471
5a8a6763
RD
9472 when Aspect_Convention =>
9473 return;
f6b5dc8e 9474
5a8a6763
RD
9475 when Aspect_CPU =>
9476 T := RTE (RE_CPU_Range);
f6b5dc8e 9477
5a8a6763 9478 -- Default_Component_Value is resolved with the component type
f6b5dc8e 9479
5a8a6763
RD
9480 when Aspect_Default_Component_Value =>
9481 T := Component_Type (Entity (ASN));
f6b5dc8e 9482
2ef05128
AC
9483 when Aspect_Default_Storage_Pool =>
9484 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9485
5a8a6763 9486 -- Default_Value is resolved with the type entity in question
f6b5dc8e 9487
5a8a6763
RD
9488 when Aspect_Default_Value =>
9489 T := Entity (ASN);
86200f66 9490
5a8a6763
RD
9491 when Aspect_Dispatching_Domain =>
9492 T := RTE (RE_Dispatching_Domain);
86200f66 9493
5a8a6763
RD
9494 when Aspect_External_Tag =>
9495 T := Standard_String;
86200f66 9496
5a8a6763
RD
9497 when Aspect_External_Name =>
9498 T := Standard_String;
86200f66 9499
5a8a6763
RD
9500 when Aspect_Link_Name =>
9501 T := Standard_String;
86200f66 9502
d8f43ee6
HK
9503 when Aspect_Interrupt_Priority
9504 | Aspect_Priority
9505 =>
5a8a6763 9506 T := Standard_Integer;
1e194575 9507
5a8a6763
RD
9508 when Aspect_Relative_Deadline =>
9509 T := RTE (RE_Time_Span);
1e194575 9510
eacfa9bc
AC
9511 when Aspect_Secondary_Stack_Size =>
9512 T := Standard_Integer;
9513
5a8a6763 9514 when Aspect_Small =>
ed323421
AC
9515
9516 -- Note that the expression can be of any real type (not just a
9517 -- real universal literal) as long as it is a static constant.
83b77c5c
AC
9518
9519 T := Any_Real;
f2acf80c 9520
5a8a6763
RD
9521 -- For a simple storage pool, we have to retrieve the type of the
9522 -- pool object associated with the aspect's corresponding attribute
9523 -- definition clause.
f2acf80c 9524
5a8a6763
RD
9525 when Aspect_Simple_Storage_Pool =>
9526 T := Etype (Expression (Aspect_Rep_Item (ASN)));
1e194575 9527
5a8a6763
RD
9528 when Aspect_Storage_Pool =>
9529 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
1e194575 9530
d8f43ee6
HK
9531 when Aspect_Alignment
9532 | Aspect_Component_Size
9533 | Aspect_Machine_Radix
9534 | Aspect_Object_Size
9535 | Aspect_Size
9536 | Aspect_Storage_Size
9537 | Aspect_Stream_Size
9538 | Aspect_Value_Size
9539 =>
5a8a6763 9540 T := Any_Integer;
86200f66 9541
19992053
AC
9542 when Aspect_Linker_Section =>
9543 T := Standard_String;
9544
5a8a6763
RD
9545 when Aspect_Synchronization =>
9546 return;
47e11d08 9547
5a8a6763
RD
9548 -- Special case, the expression of these aspects is just an entity
9549 -- that does not need any resolution, so just analyze.
47e11d08 9550
d8f43ee6
HK
9551 when Aspect_Input
9552 | Aspect_Output
9553 | Aspect_Read
9554 | Aspect_Suppress
9555 | Aspect_Unsuppress
9556 | Aspect_Warnings
9557 | Aspect_Write
9558 =>
5a8a6763
RD
9559 Analyze (Expression (ASN));
9560 return;
47e11d08 9561
5a8a6763
RD
9562 -- Same for Iterator aspects, where the expression is a function
9563 -- name. Legality rules are checked separately.
b98e2969 9564
d8f43ee6
HK
9565 when Aspect_Constant_Indexing
9566 | Aspect_Default_Iterator
9567 | Aspect_Iterator_Element
9568 | Aspect_Variable_Indexing
9569 =>
5a8a6763
RD
9570 Analyze (Expression (ASN));
9571 return;
47e11d08 9572
dd2bf554
ES
9573 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9574
9575 when Aspect_Iterable =>
b4f149c2
AC
9576 T := Entity (ASN);
9577
dd2bf554 9578 declare
a6ce7e76 9579 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
b4f149c2
AC
9580 Assoc : Node_Id;
9581 Expr : Node_Id;
a6ce7e76 9582
dd2bf554 9583 begin
a6ce7e76
AC
9584 if Cursor = Any_Type then
9585 return;
9586 end if;
9587
dd2bf554
ES
9588 Assoc := First (Component_Associations (Expression (ASN)));
9589 while Present (Assoc) loop
b4f149c2
AC
9590 Expr := Expression (Assoc);
9591 Analyze (Expr);
a6ce7e76
AC
9592
9593 if not Error_Posted (Expr) then
9594 Resolve_Iterable_Operation
9595 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9596 end if;
9597
dd2bf554
ES
9598 Next (Assoc);
9599 end loop;
9600 end;
b4f149c2 9601
dd2bf554
ES
9602 return;
9603
5a8a6763 9604 -- Invariant/Predicate take boolean expressions
47e11d08 9605
d8f43ee6
HK
9606 when Aspect_Dynamic_Predicate
9607 | Aspect_Invariant
9608 | Aspect_Predicate
9609 | Aspect_Static_Predicate
9610 | Aspect_Type_Invariant
9611 =>
5a8a6763 9612 T := Standard_Boolean;
47e11d08 9613
a2c314c7
AC
9614 when Aspect_Predicate_Failure =>
9615 T := Standard_String;
9616
5a8a6763 9617 -- Here is the list of aspects that don't require delay analysis
b98e2969 9618
d8f43ee6
HK
9619 when Aspect_Abstract_State
9620 | Aspect_Annotate
9621 | Aspect_Async_Readers
9622 | Aspect_Async_Writers
9623 | Aspect_Constant_After_Elaboration
9624 | Aspect_Contract_Cases
9625 | Aspect_Default_Initial_Condition
9626 | Aspect_Depends
9627 | Aspect_Dimension
9628 | Aspect_Dimension_System
9629 | Aspect_Effective_Reads
9630 | Aspect_Effective_Writes
9631 | Aspect_Extensions_Visible
9632 | Aspect_Ghost
9633 | Aspect_Global
9634 | Aspect_Implicit_Dereference
9635 | Aspect_Initial_Condition
9636 | Aspect_Initializes
656d1fba 9637 | Aspect_Max_Entry_Queue_Depth
d8f43ee6
HK
9638 | Aspect_Max_Queue_Length
9639 | Aspect_Obsolescent
9640 | Aspect_Part_Of
9641 | Aspect_Post
9642 | Aspect_Postcondition
9643 | Aspect_Pre
9644 | Aspect_Precondition
9645 | Aspect_Refined_Depends
9646 | Aspect_Refined_Global
9647 | Aspect_Refined_Post
9648 | Aspect_Refined_State
9649 | Aspect_SPARK_Mode
9650 | Aspect_Test_Case
9651 | Aspect_Unimplemented
9652 | Aspect_Volatile_Function
9653 =>
5a8a6763 9654 raise Program_Error;
df378148 9655
5a8a6763 9656 end case;
df378148 9657
5a8a6763 9658 -- Do the preanalyze call
df378148 9659
5a8a6763
RD
9660 Preanalyze_Spec_Expression (Expression (ASN), T);
9661 end Check_Aspect_At_Freeze_Point;
df378148 9662
5a8a6763
RD
9663 -----------------------------------
9664 -- Check_Constant_Address_Clause --
9665 -----------------------------------
df378148 9666
5a8a6763
RD
9667 procedure Check_Constant_Address_Clause
9668 (Expr : Node_Id;
9669 U_Ent : Entity_Id)
9670 is
9671 procedure Check_At_Constant_Address (Nod : Node_Id);
9672 -- Checks that the given node N represents a name whose 'Address is
9673 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9674 -- address value is the same at the point of declaration of U_Ent and at
9675 -- the time of elaboration of the address clause.
b3f532ce 9676
5a8a6763
RD
9677 procedure Check_Expr_Constants (Nod : Node_Id);
9678 -- Checks that Nod meets the requirements for a constant address clause
9679 -- in the sense of the enclosing procedure.
b3f532ce 9680
5a8a6763
RD
9681 procedure Check_List_Constants (Lst : List_Id);
9682 -- Check that all elements of list Lst meet the requirements for a
9683 -- constant address clause in the sense of the enclosing procedure.
b3f532ce 9684
5a8a6763
RD
9685 -------------------------------
9686 -- Check_At_Constant_Address --
9687 -------------------------------
b3f532ce 9688
5a8a6763
RD
9689 procedure Check_At_Constant_Address (Nod : Node_Id) is
9690 begin
9691 if Is_Entity_Name (Nod) then
9692 if Present (Address_Clause (Entity ((Nod)))) then
9693 Error_Msg_NE
9694 ("invalid address clause for initialized object &!",
5a8a6763 9695 Nod, U_Ent);
d8f43ee6
HK
9696 Error_Msg_NE
9697 ("address for& cannot depend on another address clause! "
9698 & "(RM 13.1(22))!", Nod, U_Ent);
b3f532ce 9699
5a8a6763
RD
9700 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9701 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9702 then
9703 Error_Msg_NE
9704 ("invalid address clause for initialized object &!",
9705 Nod, U_Ent);
9706 Error_Msg_Node_2 := U_Ent;
9707 Error_Msg_NE
9708 ("\& must be defined before & (RM 13.1(22))!",
9709 Nod, Entity (Nod));
9710 end if;
47e11d08 9711
5a8a6763
RD
9712 elsif Nkind (Nod) = N_Selected_Component then
9713 declare
9714 T : constant Entity_Id := Etype (Prefix (Nod));
57a8057a 9715
5a8a6763
RD
9716 begin
9717 if (Is_Record_Type (T)
9718 and then Has_Discriminants (T))
9719 or else
9720 (Is_Access_Type (T)
dc06dd83
AC
9721 and then Is_Record_Type (Designated_Type (T))
9722 and then Has_Discriminants (Designated_Type (T)))
5a8a6763
RD
9723 then
9724 Error_Msg_NE
9725 ("invalid address clause for initialized object &!",
9726 Nod, U_Ent);
9727 Error_Msg_N
d8f43ee6
HK
9728 ("\address cannot depend on component of discriminated "
9729 & "record (RM 13.1(22))!", Nod);
5a8a6763
RD
9730 else
9731 Check_At_Constant_Address (Prefix (Nod));
9732 end if;
9733 end;
d941cee6 9734
5a8a6763
RD
9735 elsif Nkind (Nod) = N_Indexed_Component then
9736 Check_At_Constant_Address (Prefix (Nod));
9737 Check_List_Constants (Expressions (Nod));
d941cee6 9738
b3f532ce 9739 else
5a8a6763 9740 Check_Expr_Constants (Nod);
b3f532ce 9741 end if;
5a8a6763 9742 end Check_At_Constant_Address;
d50f4827 9743
5a8a6763
RD
9744 --------------------------
9745 -- Check_Expr_Constants --
9746 --------------------------
6d9e03cb 9747
5a8a6763
RD
9748 procedure Check_Expr_Constants (Nod : Node_Id) is
9749 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9750 Ent : Entity_Id := Empty;
6d9e03cb 9751
5a8a6763
RD
9752 begin
9753 if Nkind (Nod) in N_Has_Etype
9754 and then Etype (Nod) = Any_Type
6d9e03cb 9755 then
5a8a6763 9756 return;
e8bd500e
AC
9757 end if;
9758
5a8a6763 9759 case Nkind (Nod) is
d8f43ee6
HK
9760 when N_Empty
9761 | N_Error
9762 =>
5a8a6763 9763 return;
47e11d08 9764
d8f43ee6
HK
9765 when N_Expanded_Name
9766 | N_Identifier
9767 =>
5a8a6763 9768 Ent := Entity (Nod);
47e11d08 9769
5a8a6763
RD
9770 -- We need to look at the original node if it is different
9771 -- from the node, since we may have rewritten things and
9772 -- substituted an identifier representing the rewrite.
47e11d08 9773
dc67cfea 9774 if Is_Rewrite_Substitution (Nod) then
5a8a6763 9775 Check_Expr_Constants (Original_Node (Nod));
47e11d08 9776
5a8a6763
RD
9777 -- If the node is an object declaration without initial
9778 -- value, some code has been expanded, and the expression
9779 -- is not constant, even if the constituents might be
9780 -- acceptable, as in A'Address + offset.
47e11d08 9781
5a8a6763
RD
9782 if Ekind (Ent) = E_Variable
9783 and then
9784 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9785 and then
9786 No (Expression (Declaration_Node (Ent)))
9787 then
9788 Error_Msg_NE
9789 ("invalid address clause for initialized object &!",
9790 Nod, U_Ent);
b98e2969 9791
5a8a6763
RD
9792 -- If entity is constant, it may be the result of expanding
9793 -- a check. We must verify that its declaration appears
9794 -- before the object in question, else we also reject the
9795 -- address clause.
47e11d08 9796
5a8a6763
RD
9797 elsif Ekind (Ent) = E_Constant
9798 and then In_Same_Source_Unit (Ent, U_Ent)
9799 and then Sloc (Ent) > Loc_U_Ent
9800 then
9801 Error_Msg_NE
9802 ("invalid address clause for initialized object &!",
9803 Nod, U_Ent);
9804 end if;
47e11d08 9805
5a8a6763
RD
9806 return;
9807 end if;
47e11d08 9808
5a8a6763 9809 -- Otherwise look at the identifier and see if it is OK
47e11d08 9810
5a8a6763
RD
9811 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9812 or else Is_Type (Ent)
9813 then
9814 return;
47e11d08 9815
dc06dd83
AC
9816 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9817
5a8a6763
RD
9818 -- This is the case where we must have Ent defined before
9819 -- U_Ent. Clearly if they are in different units this
9820 -- requirement is met since the unit containing Ent is
9821 -- already processed.
47e11d08 9822
5a8a6763
RD
9823 if not In_Same_Source_Unit (Ent, U_Ent) then
9824 return;
47e11d08 9825
5a8a6763
RD
9826 -- Otherwise location of Ent must be before the location
9827 -- of U_Ent, that's what prior defined means.
47e11d08 9828
5a8a6763
RD
9829 elsif Sloc (Ent) < Loc_U_Ent then
9830 return;
dac3bede 9831
5a8a6763
RD
9832 else
9833 Error_Msg_NE
9834 ("invalid address clause for initialized object &!",
9835 Nod, U_Ent);
9836 Error_Msg_Node_2 := U_Ent;
9837 Error_Msg_NE
9838 ("\& must be defined before & (RM 13.1(22))!",
9839 Nod, Ent);
9840 end if;
15e934bf 9841
5a8a6763
RD
9842 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9843 Check_Expr_Constants (Original_Node (Nod));
dac3bede 9844
5a8a6763
RD
9845 else
9846 Error_Msg_NE
9847 ("invalid address clause for initialized object &!",
9848 Nod, U_Ent);
7a1f1775 9849
5a8a6763
RD
9850 if Comes_From_Source (Ent) then
9851 Error_Msg_NE
9852 ("\reference to variable& not allowed"
9853 & " (RM 13.1(22))!", Nod, Ent);
9854 else
9855 Error_Msg_N
9856 ("non-static expression not allowed"
9857 & " (RM 13.1(22))!", Nod);
9858 end if;
9859 end if;
7a1f1775 9860
5a8a6763 9861 when N_Integer_Literal =>
2ef48385 9862
5a8a6763
RD
9863 -- If this is a rewritten unchecked conversion, in a system
9864 -- where Address is an integer type, always use the base type
9865 -- for a literal value. This is user-friendly and prevents
9866 -- order-of-elaboration issues with instances of unchecked
9867 -- conversion.
7a1f1775 9868
5a8a6763
RD
9869 if Nkind (Original_Node (Nod)) = N_Function_Call then
9870 Set_Etype (Nod, Base_Type (Etype (Nod)));
9871 end if;
4169b895 9872
d8f43ee6
HK
9873 when N_Character_Literal
9874 | N_Real_Literal
9875 | N_String_Literal
9876 =>
5a8a6763 9877 return;
47e11d08 9878
5a8a6763
RD
9879 when N_Range =>
9880 Check_Expr_Constants (Low_Bound (Nod));
9881 Check_Expr_Constants (High_Bound (Nod));
d8b962d8 9882
5a8a6763
RD
9883 when N_Explicit_Dereference =>
9884 Check_Expr_Constants (Prefix (Nod));
d8b962d8 9885
5a8a6763
RD
9886 when N_Indexed_Component =>
9887 Check_Expr_Constants (Prefix (Nod));
9888 Check_List_Constants (Expressions (Nod));
47e11d08 9889
5a8a6763
RD
9890 when N_Slice =>
9891 Check_Expr_Constants (Prefix (Nod));
9892 Check_Expr_Constants (Discrete_Range (Nod));
516f608f 9893
5a8a6763
RD
9894 when N_Selected_Component =>
9895 Check_Expr_Constants (Prefix (Nod));
fd8b4053 9896
5a8a6763
RD
9897 when N_Attribute_Reference =>
9898 if Nam_In (Attribute_Name (Nod), Name_Address,
9899 Name_Access,
9900 Name_Unchecked_Access,
9901 Name_Unrestricted_Access)
9902 then
9903 Check_At_Constant_Address (Prefix (Nod));
fd8b4053 9904
403bc026
PMR
9905 -- Normally, System'To_Address will have been transformed into
9906 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9907 -- and we don't want to give an error, because the whole point
9908 -- of 'To_Address is that it is static.
9909
9910 elsif Attribute_Name (Nod) = Name_To_Address then
9911 pragma Assert (Operating_Mode = Check_Semantics);
9912 null;
9913
5a8a6763
RD
9914 else
9915 Check_Expr_Constants (Prefix (Nod));
9916 Check_List_Constants (Expressions (Nod));
9917 end if;
67645bde 9918
5a8a6763
RD
9919 when N_Aggregate =>
9920 Check_List_Constants (Component_Associations (Nod));
9921 Check_List_Constants (Expressions (Nod));
47e11d08 9922
5a8a6763
RD
9923 when N_Component_Association =>
9924 Check_Expr_Constants (Expression (Nod));
4169b895 9925
5a8a6763
RD
9926 when N_Extension_Aggregate =>
9927 Check_Expr_Constants (Ancestor_Part (Nod));
9928 Check_List_Constants (Component_Associations (Nod));
9929 Check_List_Constants (Expressions (Nod));
7a1f1775 9930
5a8a6763
RD
9931 when N_Null =>
9932 return;
7a1f1775 9933
d8f43ee6
HK
9934 when N_Binary_Op
9935 | N_Membership_Test
9936 | N_Short_Circuit
9937 =>
5a8a6763
RD
9938 Check_Expr_Constants (Left_Opnd (Nod));
9939 Check_Expr_Constants (Right_Opnd (Nod));
4169b895 9940
5a8a6763
RD
9941 when N_Unary_Op =>
9942 Check_Expr_Constants (Right_Opnd (Nod));
2ef48385 9943
d8f43ee6
HK
9944 when N_Allocator
9945 | N_Qualified_Expression
9946 | N_Type_Conversion
9947 | N_Unchecked_Type_Conversion
9948 =>
5a8a6763 9949 Check_Expr_Constants (Expression (Nod));
c116143c 9950
5a8a6763
RD
9951 when N_Function_Call =>
9952 if not Is_Pure (Entity (Name (Nod))) then
9953 Error_Msg_NE
9954 ("invalid address clause for initialized object &!",
9955 Nod, U_Ent);
2ef48385 9956
5a8a6763
RD
9957 Error_Msg_NE
9958 ("\function & is not pure (RM 13.1(22))!",
9959 Nod, Entity (Name (Nod)));
a8551b5f 9960
5a8a6763
RD
9961 else
9962 Check_List_Constants (Parameter_Associations (Nod));
9963 end if;
a8551b5f 9964
5a8a6763
RD
9965 when N_Parameter_Association =>
9966 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
47e11d08 9967
5a8a6763
RD
9968 when others =>
9969 Error_Msg_NE
9970 ("invalid address clause for initialized object &!",
9971 Nod, U_Ent);
9972 Error_Msg_NE
9973 ("\must be constant defined before& (RM 13.1(22))!",
9974 Nod, U_Ent);
9975 end case;
9976 end Check_Expr_Constants;
47e11d08 9977
5a8a6763
RD
9978 --------------------------
9979 -- Check_List_Constants --
9980 --------------------------
b98e2969 9981
5a8a6763
RD
9982 procedure Check_List_Constants (Lst : List_Id) is
9983 Nod1 : Node_Id;
47e11d08 9984
5a8a6763
RD
9985 begin
9986 if Present (Lst) then
9987 Nod1 := First (Lst);
9988 while Present (Nod1) loop
9989 Check_Expr_Constants (Nod1);
9990 Next (Nod1);
9991 end loop;
9992 end if;
9993 end Check_List_Constants;
d50f4827 9994
5a8a6763 9995 -- Start of processing for Check_Constant_Address_Clause
d50f4827 9996
5a8a6763
RD
9997 begin
9998 -- If rep_clauses are to be ignored, no need for legality checks. In
3c756b76
AC
9999 -- particular, no need to pester user about rep clauses that violate the
10000 -- rule on constant addresses, given that these clauses will be removed
10001 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
10002 -- we want to relax these checks.
47e11d08 10003
d99565f8 10004 if not Ignore_Rep_Clauses and not CodePeer_Mode then
5a8a6763
RD
10005 Check_Expr_Constants (Expr);
10006 end if;
10007 end Check_Constant_Address_Clause;
47e11d08 10008
113a62d9
RD
10009 ---------------------------
10010 -- Check_Pool_Size_Clash --
10011 ---------------------------
10012
10013 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
10014 Post : Node_Id;
10015
10016 begin
10017 -- We need to find out which one came first. Note that in the case of
10018 -- aspects mixed with pragmas there are cases where the processing order
10019 -- is reversed, which is why we do the check here.
10020
10021 if Sloc (SP) < Sloc (SS) then
10022 Error_Msg_Sloc := Sloc (SP);
10023 Post := SS;
10024 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
10025
10026 else
10027 Error_Msg_Sloc := Sloc (SS);
10028 Post := SP;
10029 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
10030 end if;
10031
10032 Error_Msg_N
10033 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
10034 end Check_Pool_Size_Clash;
10035
5a8a6763
RD
10036 ----------------------------------------
10037 -- Check_Record_Representation_Clause --
10038 ----------------------------------------
dec6faf1 10039
5a8a6763
RD
10040 procedure Check_Record_Representation_Clause (N : Node_Id) is
10041 Loc : constant Source_Ptr := Sloc (N);
10042 Ident : constant Node_Id := Identifier (N);
10043 Rectype : Entity_Id;
10044 Fent : Entity_Id;
10045 CC : Node_Id;
10046 Fbit : Uint;
10047 Lbit : Uint;
10048 Hbit : Uint := Uint_0;
10049 Comp : Entity_Id;
10050 Pcomp : Entity_Id;
b98e2969 10051
5a8a6763
RD
10052 Max_Bit_So_Far : Uint;
10053 -- Records the maximum bit position so far. If all field positions
10054 -- are monotonically increasing, then we can skip the circuit for
10055 -- checking for overlap, since no overlap is possible.
dec6faf1 10056
5a8a6763 10057 Tagged_Parent : Entity_Id := Empty;
315f0c42
AC
10058 -- This is set in the case of an extension for which we have either a
10059 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
10060 -- components are positioned by record representation clauses) on the
10061 -- parent type. In this case we check for overlap between components of
10062 -- this tagged type and the parent component. Tagged_Parent will point
10063 -- to this parent type. For all other cases, Tagged_Parent is Empty.
47e11d08 10064
5612989e 10065 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
5a8a6763
RD
10066 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
10067 -- last bit position for any field in the parent type. We only need to
10068 -- check overlap for fields starting below this point.
47e11d08 10069
5a8a6763
RD
10070 Overlap_Check_Required : Boolean;
10071 -- Used to keep track of whether or not an overlap check is required
47e11d08 10072
5a8a6763
RD
10073 Overlap_Detected : Boolean := False;
10074 -- Set True if an overlap is detected
996ae0b0 10075
5a8a6763
RD
10076 Ccount : Natural := 0;
10077 -- Number of component clauses in record rep clause
996ae0b0 10078
5a8a6763
RD
10079 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
10080 -- Given two entities for record components or discriminants, checks
10081 -- if they have overlapping component clauses and issues errors if so.
996ae0b0 10082
5a8a6763
RD
10083 procedure Find_Component;
10084 -- Finds component entity corresponding to current component clause (in
10085 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
10086 -- start/stop bits for the field. If there is no matching component or
10087 -- if the matching component does not have a component clause, then
10088 -- that's an error and Comp is set to Empty, but no error message is
10089 -- issued, since the message was already given. Comp is also set to
10090 -- Empty if the current "component clause" is in fact a pragma.
996ae0b0 10091
5a8a6763
RD
10092 -----------------------------
10093 -- Check_Component_Overlap --
10094 -----------------------------
10095
10096 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
10097 CC1 : constant Node_Id := Component_Clause (C1_Ent);
10098 CC2 : constant Node_Id := Component_Clause (C2_Ent);
996ae0b0 10099
996ae0b0 10100 begin
5a8a6763 10101 if Present (CC1) and then Present (CC2) then
996ae0b0 10102
5a8a6763
RD
10103 -- Exclude odd case where we have two tag components in the same
10104 -- record, both at location zero. This seems a bit strange, but
10105 -- it seems to happen in some circumstances, perhaps on an error.
10106
10107 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
10108 return;
996ae0b0
RK
10109 end if;
10110
5a8a6763
RD
10111 -- Here we check if the two fields overlap
10112
996ae0b0 10113 declare
5a8a6763
RD
10114 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
10115 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
10116 E1 : constant Uint := S1 + Esize (C1_Ent);
10117 E2 : constant Uint := S2 + Esize (C2_Ent);
996ae0b0
RK
10118
10119 begin
5a8a6763
RD
10120 if E2 <= S1 or else E1 <= S2 then
10121 null;
996ae0b0 10122 else
5a8a6763
RD
10123 Error_Msg_Node_2 := Component_Name (CC2);
10124 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
10125 Error_Msg_Node_1 := Component_Name (CC1);
10126 Error_Msg_N
10127 ("component& overlaps & #", Component_Name (CC1));
10128 Overlap_Detected := True;
996ae0b0
RK
10129 end if;
10130 end;
996ae0b0 10131 end if;
5a8a6763 10132 end Check_Component_Overlap;
996ae0b0 10133
5a8a6763
RD
10134 --------------------
10135 -- Find_Component --
10136 --------------------
fbf5a39b 10137
5a8a6763 10138 procedure Find_Component is
fbf5a39b 10139
5a8a6763
RD
10140 procedure Search_Component (R : Entity_Id);
10141 -- Search components of R for a match. If found, Comp is set
fbf5a39b 10142
5a8a6763
RD
10143 ----------------------
10144 -- Search_Component --
10145 ----------------------
9596236a 10146
5a8a6763
RD
10147 procedure Search_Component (R : Entity_Id) is
10148 begin
10149 Comp := First_Component_Or_Discriminant (R);
10150 while Present (Comp) loop
9596236a 10151
5a8a6763
RD
10152 -- Ignore error of attribute name for component name (we
10153 -- already gave an error message for this, so no need to
10154 -- complain here)
9596236a 10155
5a8a6763
RD
10156 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10157 null;
10158 else
10159 exit when Chars (Comp) = Chars (Component_Name (CC));
fbf5a39b
AC
10160 end if;
10161
5a8a6763
RD
10162 Next_Component_Or_Discriminant (Comp);
10163 end loop;
10164 end Search_Component;
996ae0b0 10165
5a8a6763 10166 -- Start of processing for Find_Component
996ae0b0 10167
5a8a6763
RD
10168 begin
10169 -- Return with Comp set to Empty if we have a pragma
996ae0b0 10170
5a8a6763
RD
10171 if Nkind (CC) = N_Pragma then
10172 Comp := Empty;
10173 return;
10174 end if;
996ae0b0 10175
5a8a6763 10176 -- Search current record for matching component
996ae0b0 10177
5a8a6763 10178 Search_Component (Rectype);
fbf5a39b 10179
5a8a6763
RD
10180 -- If not found, maybe component of base type discriminant that is
10181 -- absent from statically constrained first subtype.
9596236a 10182
5a8a6763
RD
10183 if No (Comp) then
10184 Search_Component (Base_Type (Rectype));
10185 end if;
9596236a 10186
5a8a6763
RD
10187 -- If no component, or the component does not reference the component
10188 -- clause in question, then there was some previous error for which
10189 -- we already gave a message, so just return with Comp Empty.
996ae0b0 10190
5a8a6763
RD
10191 if No (Comp) or else Component_Clause (Comp) /= CC then
10192 Check_Error_Detected;
10193 Comp := Empty;
9f4fd324 10194
5a8a6763 10195 -- Normal case where we have a component clause
9f4fd324 10196
5a8a6763
RD
10197 else
10198 Fbit := Component_Bit_Offset (Comp);
10199 Lbit := Fbit + Esize (Comp) - 1;
10200 end if;
10201 end Find_Component;
9f4fd324 10202
5a8a6763 10203 -- Start of processing for Check_Record_Representation_Clause
996ae0b0 10204
5a8a6763
RD
10205 begin
10206 Find_Type (Ident);
10207 Rectype := Entity (Ident);
996ae0b0 10208
5a8a6763
RD
10209 if Rectype = Any_Type then
10210 return;
5a8a6763 10211 end if;
996ae0b0 10212
315f0c42
AC
10213 Rectype := Underlying_Type (Rectype);
10214
5a8a6763 10215 -- See if we have a fully repped derived tagged type
996ae0b0 10216
5a8a6763
RD
10217 declare
10218 PS : constant Entity_Id := Parent_Subtype (Rectype);
996ae0b0 10219
5a8a6763 10220 begin
315f0c42
AC
10221 if Present (PS) and then Known_Static_RM_Size (PS) then
10222 Tagged_Parent := PS;
10223 Parent_Last_Bit := RM_Size (PS) - 1;
10224
10225 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
5a8a6763 10226 Tagged_Parent := PS;
996ae0b0 10227
5a8a6763 10228 -- Find maximum bit of any component of the parent type
996ae0b0 10229
5a8a6763
RD
10230 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10231 Pcomp := First_Entity (Tagged_Parent);
10232 while Present (Pcomp) loop
10233 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10234 if Component_Bit_Offset (Pcomp) /= No_Uint
10235 and then Known_Static_Esize (Pcomp)
10236 then
10237 Parent_Last_Bit :=
10238 UI_Max
10239 (Parent_Last_Bit,
10240 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10241 end if;
2a738b34
AC
10242 else
10243
10244 -- Skip anonymous types generated for constrained array
10245 -- or record components.
5a8a6763 10246
2a738b34 10247 null;
996ae0b0 10248 end if;
2a738b34
AC
10249
10250 Next_Entity (Pcomp);
5a8a6763
RD
10251 end loop;
10252 end if;
10253 end;
996ae0b0 10254
5a8a6763 10255 -- All done if no component clauses
996ae0b0 10256
5a8a6763 10257 CC := First (Component_Clauses (N));
996ae0b0 10258
5a8a6763
RD
10259 if No (CC) then
10260 return;
10261 end if;
996ae0b0 10262
5a8a6763
RD
10263 -- If a tag is present, then create a component clause that places it
10264 -- at the start of the record (otherwise gigi may place it after other
10265 -- fields that have rep clauses).
996ae0b0 10266
5a8a6763 10267 Fent := First_Entity (Rectype);
996ae0b0 10268
5a8a6763
RD
10269 if Nkind (Fent) = N_Defining_Identifier
10270 and then Chars (Fent) = Name_uTag
10271 then
10272 Set_Component_Bit_Offset (Fent, Uint_0);
10273 Set_Normalized_Position (Fent, Uint_0);
10274 Set_Normalized_First_Bit (Fent, Uint_0);
10275 Set_Normalized_Position_Max (Fent, Uint_0);
10276 Init_Esize (Fent, System_Address_Size);
996ae0b0 10277
5a8a6763
RD
10278 Set_Component_Clause (Fent,
10279 Make_Component_Clause (Loc,
10280 Component_Name => Make_Identifier (Loc, Name_uTag),
996ae0b0 10281
5a8a6763
RD
10282 Position => Make_Integer_Literal (Loc, Uint_0),
10283 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10284 Last_Bit =>
10285 Make_Integer_Literal (Loc,
10286 UI_From_Int (System_Address_Size))));
996ae0b0 10287
5a8a6763
RD
10288 Ccount := Ccount + 1;
10289 end if;
996ae0b0 10290
5a8a6763
RD
10291 Max_Bit_So_Far := Uint_Minus_1;
10292 Overlap_Check_Required := False;
996ae0b0 10293
5a8a6763 10294 -- Process the component clauses
996ae0b0 10295
5a8a6763
RD
10296 while Present (CC) loop
10297 Find_Component;
996ae0b0 10298
5a8a6763
RD
10299 if Present (Comp) then
10300 Ccount := Ccount + 1;
996ae0b0 10301
5a8a6763 10302 -- We need a full overlap check if record positions non-monotonic
996ae0b0 10303
5a8a6763
RD
10304 if Fbit <= Max_Bit_So_Far then
10305 Overlap_Check_Required := True;
10306 end if;
996ae0b0 10307
5a8a6763 10308 Max_Bit_So_Far := Lbit;
996ae0b0 10309
5a8a6763 10310 -- Check bit position out of range of specified size
1d57c04f 10311
5a8a6763
RD
10312 if Has_Size_Clause (Rectype)
10313 and then RM_Size (Rectype) <= Lbit
10314 then
10315 Error_Msg_N
10316 ("bit number out of range of specified size",
10317 Last_Bit (CC));
996ae0b0 10318
315f0c42 10319 -- Check for overlap with tag or parent component
8a95f4e8 10320
5a8a6763
RD
10321 else
10322 if Is_Tagged_Type (Rectype)
10323 and then Fbit < System_Address_Size
10324 then
10325 Error_Msg_NE
10326 ("component overlaps tag field of&",
10327 Component_Name (CC), Rectype);
10328 Overlap_Detected := True;
315f0c42
AC
10329
10330 elsif Present (Tagged_Parent)
10331 and then Fbit <= Parent_Last_Bit
10332 then
10333 Error_Msg_NE
10334 ("component overlaps parent field of&",
10335 Component_Name (CC), Rectype);
10336 Overlap_Detected := True;
5a8a6763 10337 end if;
8a95f4e8 10338
5a8a6763
RD
10339 if Hbit < Lbit then
10340 Hbit := Lbit;
10341 end if;
10342 end if;
5a8a6763 10343 end if;
8a95f4e8 10344
5a8a6763
RD
10345 Next (CC);
10346 end loop;
9a1bc6d5 10347
5a8a6763
RD
10348 -- Now that we have processed all the component clauses, check for
10349 -- overlap. We have to leave this till last, since the components can
10350 -- appear in any arbitrary order in the representation clause.
8a95f4e8 10351
5a8a6763
RD
10352 -- We do not need this check if all specified ranges were monotonic,
10353 -- as recorded by Overlap_Check_Required being False at this stage.
8a95f4e8 10354
5a8a6763
RD
10355 -- This first section checks if there are any overlapping entries at
10356 -- all. It does this by sorting all entries and then seeing if there are
10357 -- any overlaps. If there are none, then that is decisive, but if there
10358 -- are overlaps, they may still be OK (they may result from fields in
10359 -- different variants).
8a95f4e8 10360
5a8a6763
RD
10361 if Overlap_Check_Required then
10362 Overlap_Check1 : declare
8a95f4e8 10363
5a8a6763
RD
10364 OC_Fbit : array (0 .. Ccount) of Uint;
10365 -- First-bit values for component clauses, the value is the offset
10366 -- of the first bit of the field from start of record. The zero
10367 -- entry is for use in sorting.
9a1bc6d5 10368
5a8a6763
RD
10369 OC_Lbit : array (0 .. Ccount) of Uint;
10370 -- Last-bit values for component clauses, the value is the offset
10371 -- of the last bit of the field from start of record. The zero
10372 -- entry is for use in sorting.
10373
10374 OC_Count : Natural := 0;
10375 -- Count of entries in OC_Fbit and OC_Lbit
8a95f4e8 10376
5a8a6763
RD
10377 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10378 -- Compare routine for Sort
8a95f4e8 10379
5a8a6763
RD
10380 procedure OC_Move (From : Natural; To : Natural);
10381 -- Move routine for Sort
8a95f4e8 10382
5a8a6763 10383 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
8a95f4e8 10384
5a8a6763
RD
10385 -----------
10386 -- OC_Lt --
10387 -----------
8a95f4e8 10388
5a8a6763 10389 function OC_Lt (Op1, Op2 : Natural) return Boolean is
8a95f4e8 10390 begin
5a8a6763
RD
10391 return OC_Fbit (Op1) < OC_Fbit (Op2);
10392 end OC_Lt;
8a95f4e8 10393
5a8a6763
RD
10394 -------------
10395 -- OC_Move --
10396 -------------
8a95f4e8 10397
5a8a6763
RD
10398 procedure OC_Move (From : Natural; To : Natural) is
10399 begin
10400 OC_Fbit (To) := OC_Fbit (From);
10401 OC_Lbit (To) := OC_Lbit (From);
10402 end OC_Move;
8a95f4e8 10403
5a8a6763 10404 -- Start of processing for Overlap_Check
8a95f4e8 10405
8a95f4e8 10406 begin
5a8a6763
RD
10407 CC := First (Component_Clauses (N));
10408 while Present (CC) loop
8a95f4e8 10409
5a8a6763 10410 -- Exclude component clause already marked in error
8a95f4e8 10411
5a8a6763
RD
10412 if not Error_Posted (CC) then
10413 Find_Component;
10414
10415 if Present (Comp) then
10416 OC_Count := OC_Count + 1;
10417 OC_Fbit (OC_Count) := Fbit;
10418 OC_Lbit (OC_Count) := Lbit;
10419 end if;
8a95f4e8
RD
10420 end if;
10421
5a8a6763 10422 Next (CC);
8a95f4e8 10423 end loop;
8a95f4e8 10424
5a8a6763 10425 Sorting.Sort (OC_Count);
8a95f4e8 10426
5a8a6763
RD
10427 Overlap_Check_Required := False;
10428 for J in 1 .. OC_Count - 1 loop
10429 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10430 Overlap_Check_Required := True;
10431 exit;
10432 end if;
10433 end loop;
10434 end Overlap_Check1;
10435 end if;
8a95f4e8 10436
5a8a6763
RD
10437 -- If Overlap_Check_Required is still True, then we have to do the full
10438 -- scale overlap check, since we have at least two fields that do
10439 -- overlap, and we need to know if that is OK since they are in
10440 -- different variant, or whether we have a definite problem.
8a95f4e8 10441
5a8a6763
RD
10442 if Overlap_Check_Required then
10443 Overlap_Check2 : declare
10444 C1_Ent, C2_Ent : Entity_Id;
10445 -- Entities of components being checked for overlap
8a95f4e8 10446
5a8a6763
RD
10447 Clist : Node_Id;
10448 -- Component_List node whose Component_Items are being checked
8a95f4e8 10449
5a8a6763
RD
10450 Citem : Node_Id;
10451 -- Component declaration for component being checked
8a95f4e8 10452
5a8a6763
RD
10453 begin
10454 C1_Ent := First_Entity (Base_Type (Rectype));
8a95f4e8 10455
5a8a6763
RD
10456 -- Loop through all components in record. For each component check
10457 -- for overlap with any of the preceding elements on the component
10458 -- list containing the component and also, if the component is in
10459 -- a variant, check against components outside the case structure.
10460 -- This latter test is repeated recursively up the variant tree.
8a95f4e8 10461
5a8a6763
RD
10462 Main_Component_Loop : while Present (C1_Ent) loop
10463 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10464 goto Continue_Main_Component_Loop;
10465 end if;
8a95f4e8 10466
5a8a6763
RD
10467 -- Skip overlap check if entity has no declaration node. This
10468 -- happens with discriminants in constrained derived types.
10469 -- Possibly we are missing some checks as a result, but that
10470 -- does not seem terribly serious.
8a95f4e8 10471
5a8a6763
RD
10472 if No (Declaration_Node (C1_Ent)) then
10473 goto Continue_Main_Component_Loop;
10474 end if;
8a95f4e8 10475
5a8a6763 10476 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
8a95f4e8 10477
5a8a6763
RD
10478 -- Loop through component lists that need checking. Check the
10479 -- current component list and all lists in variants above us.
8a95f4e8 10480
5a8a6763 10481 Component_List_Loop : loop
8a95f4e8 10482
5a8a6763
RD
10483 -- If derived type definition, go to full declaration
10484 -- If at outer level, check discriminants if there are any.
8a95f4e8 10485
5a8a6763
RD
10486 if Nkind (Clist) = N_Derived_Type_Definition then
10487 Clist := Parent (Clist);
10488 end if;
8a95f4e8 10489
5a8a6763 10490 -- Outer level of record definition, check discriminants
8a95f4e8 10491
5a8a6763
RD
10492 if Nkind_In (Clist, N_Full_Type_Declaration,
10493 N_Private_Type_Declaration)
8a95f4e8 10494 then
5a8a6763
RD
10495 if Has_Discriminants (Defining_Identifier (Clist)) then
10496 C2_Ent :=
10497 First_Discriminant (Defining_Identifier (Clist));
10498 while Present (C2_Ent) loop
10499 exit when C1_Ent = C2_Ent;
10500 Check_Component_Overlap (C1_Ent, C2_Ent);
10501 Next_Discriminant (C2_Ent);
10502 end loop;
10503 end if;
8a95f4e8 10504
5a8a6763 10505 -- Record extension case
8a95f4e8 10506
5a8a6763
RD
10507 elsif Nkind (Clist) = N_Derived_Type_Definition then
10508 Clist := Empty;
8a95f4e8 10509
5a8a6763 10510 -- Otherwise check one component list
8a95f4e8 10511
5a8a6763
RD
10512 else
10513 Citem := First (Component_Items (Clist));
10514 while Present (Citem) loop
10515 if Nkind (Citem) = N_Component_Declaration then
10516 C2_Ent := Defining_Identifier (Citem);
10517 exit when C1_Ent = C2_Ent;
10518 Check_Component_Overlap (C1_Ent, C2_Ent);
10519 end if;
8a95f4e8 10520
5a8a6763
RD
10521 Next (Citem);
10522 end loop;
10523 end if;
8a95f4e8 10524
5a8a6763
RD
10525 -- Check for variants above us (the parent of the Clist can
10526 -- be a variant, in which case its parent is a variant part,
10527 -- and the parent of the variant part is a component list
10528 -- whose components must all be checked against the current
10529 -- component for overlap).
8a95f4e8 10530
5a8a6763
RD
10531 if Nkind (Parent (Clist)) = N_Variant then
10532 Clist := Parent (Parent (Parent (Clist)));
8a95f4e8 10533
5a8a6763
RD
10534 -- Check for possible discriminant part in record, this
10535 -- is treated essentially as another level in the
10536 -- recursion. For this case the parent of the component
10537 -- list is the record definition, and its parent is the
10538 -- full type declaration containing the discriminant
10539 -- specifications.
10540
10541 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10542 Clist := Parent (Parent ((Clist)));
10543
10544 -- If neither of these two cases, we are at the top of
10545 -- the tree.
10546
10547 else
10548 exit Component_List_Loop;
10549 end if;
10550 end loop Component_List_Loop;
8a95f4e8 10551
5a8a6763
RD
10552 <<Continue_Main_Component_Loop>>
10553 Next_Entity (C1_Ent);
8a95f4e8 10554
5a8a6763
RD
10555 end loop Main_Component_Loop;
10556 end Overlap_Check2;
8a95f4e8
RD
10557 end if;
10558
5a8a6763
RD
10559 -- The following circuit deals with warning on record holes (gaps). We
10560 -- skip this check if overlap was detected, since it makes sense for the
10561 -- programmer to fix this illegality before worrying about warnings.
8a95f4e8 10562
5a8a6763
RD
10563 if not Overlap_Detected and Warn_On_Record_Holes then
10564 Record_Hole_Check : declare
10565 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10566 -- Full declaration of record type
8a95f4e8 10567
5a8a6763
RD
10568 procedure Check_Component_List
10569 (CL : Node_Id;
10570 Sbit : Uint;
10571 DS : List_Id);
10572 -- Check component list CL for holes. The starting bit should be
10573 -- Sbit. which is zero for the main record component list and set
10574 -- appropriately for recursive calls for variants. DS is set to
10575 -- a list of discriminant specifications to be included in the
10576 -- consideration of components. It is No_List if none to consider.
8a95f4e8 10577
5a8a6763
RD
10578 --------------------------
10579 -- Check_Component_List --
10580 --------------------------
9a1bc6d5 10581
5a8a6763
RD
10582 procedure Check_Component_List
10583 (CL : Node_Id;
10584 Sbit : Uint;
10585 DS : List_Id)
10586 is
10587 Compl : Integer;
8a95f4e8 10588
5a8a6763
RD
10589 begin
10590 Compl := Integer (List_Length (Component_Items (CL)));
9a1bc6d5 10591
5a8a6763
RD
10592 if DS /= No_List then
10593 Compl := Compl + Integer (List_Length (DS));
10594 end if;
8a95f4e8 10595
5a8a6763
RD
10596 declare
10597 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10598 -- Gather components (zero entry is for sort routine)
8a95f4e8 10599
5a8a6763
RD
10600 Ncomps : Natural := 0;
10601 -- Number of entries stored in Comps (starting at Comps (1))
8a95f4e8 10602
5a8a6763
RD
10603 Citem : Node_Id;
10604 -- One component item or discriminant specification
8a95f4e8 10605
5a8a6763
RD
10606 Nbit : Uint;
10607 -- Starting bit for next component
8a95f4e8 10608
5a8a6763
RD
10609 CEnt : Entity_Id;
10610 -- Component entity
8a95f4e8 10611
5a8a6763
RD
10612 Variant : Node_Id;
10613 -- One variant
8a95f4e8 10614
5a8a6763
RD
10615 function Lt (Op1, Op2 : Natural) return Boolean;
10616 -- Compare routine for Sort
8a95f4e8 10617
5a8a6763
RD
10618 procedure Move (From : Natural; To : Natural);
10619 -- Move routine for Sort
8a95f4e8 10620
5a8a6763 10621 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
8a95f4e8 10622
5a8a6763
RD
10623 --------
10624 -- Lt --
10625 --------
8a95f4e8 10626
5a8a6763
RD
10627 function Lt (Op1, Op2 : Natural) return Boolean is
10628 begin
10629 return Component_Bit_Offset (Comps (Op1))
10630 <
10631 Component_Bit_Offset (Comps (Op2));
10632 end Lt;
8a95f4e8 10633
5a8a6763
RD
10634 ----------
10635 -- Move --
10636 ----------
8a95f4e8 10637
5a8a6763
RD
10638 procedure Move (From : Natural; To : Natural) is
10639 begin
10640 Comps (To) := Comps (From);
10641 end Move;
8a95f4e8 10642
5a8a6763
RD
10643 begin
10644 -- Gather discriminants into Comp
8a95f4e8 10645
5a8a6763
RD
10646 if DS /= No_List then
10647 Citem := First (DS);
10648 while Present (Citem) loop
10649 if Nkind (Citem) = N_Discriminant_Specification then
10650 declare
10651 Ent : constant Entity_Id :=
10652 Defining_Identifier (Citem);
10653 begin
10654 if Ekind (Ent) = E_Discriminant then
10655 Ncomps := Ncomps + 1;
10656 Comps (Ncomps) := Ent;
10657 end if;
10658 end;
10659 end if;
8a95f4e8 10660
5a8a6763
RD
10661 Next (Citem);
10662 end loop;
10663 end if;
8a95f4e8 10664
5a8a6763 10665 -- Gather component entities into Comp
8a95f4e8 10666
5a8a6763
RD
10667 Citem := First (Component_Items (CL));
10668 while Present (Citem) loop
10669 if Nkind (Citem) = N_Component_Declaration then
10670 Ncomps := Ncomps + 1;
10671 Comps (Ncomps) := Defining_Identifier (Citem);
10672 end if;
8a95f4e8 10673
5a8a6763
RD
10674 Next (Citem);
10675 end loop;
8a95f4e8 10676
5a8a6763
RD
10677 -- Now sort the component entities based on the first bit.
10678 -- Note we already know there are no overlapping components.
8a95f4e8 10679
5a8a6763 10680 Sorting.Sort (Ncomps);
8a95f4e8 10681
5a8a6763 10682 -- Loop through entries checking for holes
8a95f4e8 10683
5a8a6763
RD
10684 Nbit := Sbit;
10685 for J in 1 .. Ncomps loop
10686 CEnt := Comps (J);
8a95f4e8 10687
354ae449
AC
10688 declare
10689 CBO : constant Uint := Component_Bit_Offset (CEnt);
10690
10691 begin
10692 -- Skip components with unknown offsets
10693
10694 if CBO /= No_Uint and then CBO >= 0 then
10695 Error_Msg_Uint_1 := CBO - Nbit;
8a95f4e8 10696
354ae449
AC
10697 if Error_Msg_Uint_1 > 0 then
10698 Error_Msg_NE
10699 ("?H?^-bit gap before component&",
10700 Component_Name (Component_Clause (CEnt)),
10701 CEnt);
10702 end if;
10703
10704 Nbit := CBO + Esize (CEnt);
10705 end if;
10706 end;
5a8a6763 10707 end loop;
8a95f4e8 10708
5a8a6763 10709 -- Process variant parts recursively if present
8a95f4e8 10710
5a8a6763
RD
10711 if Present (Variant_Part (CL)) then
10712 Variant := First (Variants (Variant_Part (CL)));
10713 while Present (Variant) loop
10714 Check_Component_List
10715 (Component_List (Variant), Nbit, No_List);
10716 Next (Variant);
10717 end loop;
8a95f4e8 10718 end if;
5a8a6763
RD
10719 end;
10720 end Check_Component_List;
8a95f4e8 10721
5a8a6763 10722 -- Start of processing for Record_Hole_Check
8a95f4e8 10723
5a8a6763
RD
10724 begin
10725 declare
10726 Sbit : Uint;
8a95f4e8 10727
5a8a6763
RD
10728 begin
10729 if Is_Tagged_Type (Rectype) then
10730 Sbit := UI_From_Int (System_Address_Size);
10731 else
10732 Sbit := Uint_0;
10733 end if;
10734
10735 if Nkind (Decl) = N_Full_Type_Declaration
10736 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10737 then
10738 Check_Component_List
10739 (Component_List (Type_Definition (Decl)),
10740 Sbit,
10741 Discriminant_Specifications (Decl));
8a95f4e8 10742 end if;
5a8a6763
RD
10743 end;
10744 end Record_Hole_Check;
8a95f4e8
RD
10745 end if;
10746
5a8a6763
RD
10747 -- For records that have component clauses for all components, and whose
10748 -- size is less than or equal to 32, we need to know the size in the
10749 -- front end to activate possible packed array processing where the
10750 -- component type is a record.
8a95f4e8 10751
5a8a6763
RD
10752 -- At this stage Hbit + 1 represents the first unused bit from all the
10753 -- component clauses processed, so if the component clauses are
10754 -- complete, then this is the length of the record.
8a95f4e8 10755
5a8a6763
RD
10756 -- For records longer than System.Storage_Unit, and for those where not
10757 -- all components have component clauses, the back end determines the
10758 -- length (it may for example be appropriate to round up the size
10759 -- to some convenient boundary, based on alignment considerations, etc).
8a95f4e8 10760
5a8a6763 10761 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
8a95f4e8 10762
5a8a6763 10763 -- Nothing to do if at least one component has no component clause
8a95f4e8 10764
5a8a6763
RD
10765 Comp := First_Component_Or_Discriminant (Rectype);
10766 while Present (Comp) loop
10767 exit when No (Component_Clause (Comp));
10768 Next_Component_Or_Discriminant (Comp);
10769 end loop;
8a95f4e8 10770
5a8a6763
RD
10771 -- If we fall out of loop, all components have component clauses
10772 -- and so we can set the size to the maximum value.
8a95f4e8 10773
5a8a6763
RD
10774 if No (Comp) then
10775 Set_RM_Size (Rectype, Hbit + 1);
10776 end if;
10777 end if;
10778 end Check_Record_Representation_Clause;
8a95f4e8 10779
5a8a6763
RD
10780 ----------------
10781 -- Check_Size --
10782 ----------------
8a95f4e8 10783
5a8a6763
RD
10784 procedure Check_Size
10785 (N : Node_Id;
10786 T : Entity_Id;
10787 Siz : Uint;
10788 Biased : out Boolean)
10789 is
32b794c8
AC
10790 procedure Size_Too_Small_Error (Min_Siz : Uint);
10791 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10792 -- minimum size.
10793
10794 --------------------------
10795 -- Size_Too_Small_Error --
10796 --------------------------
10797
10798 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10799 begin
10800 -- This error is suppressed in ASIS mode to allow for different ASIS
2cc2e964 10801 -- back ends or ASIS-based tools to query the illegal clause.
32b794c8
AC
10802
10803 if not ASIS_Mode then
10804 Error_Msg_Uint_1 := Min_Siz;
331e5015 10805 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
32b794c8
AC
10806 end if;
10807 end Size_Too_Small_Error;
10808
10809 -- Local variables
10810
5a8a6763
RD
10811 UT : constant Entity_Id := Underlying_Type (T);
10812 M : Uint;
8a95f4e8 10813
32b794c8
AC
10814 -- Start of processing for Check_Size
10815
5a8a6763
RD
10816 begin
10817 Biased := False;
8a95f4e8 10818
32b794c8 10819 -- Reject patently improper size values
8a95f4e8 10820
5a8a6763
RD
10821 if Is_Elementary_Type (T)
10822 and then Siz > UI_From_Int (Int'Last)
10823 then
10824 Error_Msg_N ("Size value too large for elementary type", N);
8a95f4e8 10825
5a8a6763
RD
10826 if Nkind (Original_Node (N)) = N_Op_Expon then
10827 Error_Msg_N
10828 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10829 end if;
10830 end if;
8a95f4e8 10831
5a8a6763 10832 -- Dismiss generic types
8a95f4e8 10833
5a8a6763
RD
10834 if Is_Generic_Type (T)
10835 or else
10836 Is_Generic_Type (UT)
10837 or else
10838 Is_Generic_Type (Root_Type (UT))
10839 then
10840 return;
8a95f4e8 10841
5a8a6763 10842 -- Guard against previous errors
8a95f4e8 10843
5a8a6763
RD
10844 elsif No (UT) or else UT = Any_Type then
10845 Check_Error_Detected;
10846 return;
8a95f4e8 10847
5a8a6763 10848 -- Check case of bit packed array
8a95f4e8 10849
5a8a6763
RD
10850 elsif Is_Array_Type (UT)
10851 and then Known_Static_Component_Size (UT)
10852 and then Is_Bit_Packed_Array (UT)
10853 then
10854 declare
10855 Asiz : Uint;
10856 Indx : Node_Id;
10857 Ityp : Entity_Id;
8a95f4e8 10858
5a8a6763
RD
10859 begin
10860 Asiz := Component_Size (UT);
10861 Indx := First_Index (UT);
10862 loop
10863 Ityp := Etype (Indx);
8a95f4e8 10864
5a8a6763
RD
10865 -- If non-static bound, then we are not in the business of
10866 -- trying to check the length, and indeed an error will be
10867 -- issued elsewhere, since sizes of non-static array types
10868 -- cannot be set implicitly or explicitly.
8a95f4e8 10869
edab6088 10870 if not Is_OK_Static_Subtype (Ityp) then
5a8a6763
RD
10871 return;
10872 end if;
8a95f4e8 10873
5a8a6763 10874 -- Otherwise accumulate next dimension
8a95f4e8 10875
5a8a6763
RD
10876 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10877 Expr_Value (Type_Low_Bound (Ityp)) +
10878 Uint_1);
8a95f4e8 10879
5a8a6763
RD
10880 Next_Index (Indx);
10881 exit when No (Indx);
10882 end loop;
8a95f4e8 10883
5a8a6763
RD
10884 if Asiz <= Siz then
10885 return;
8a95f4e8 10886
5a8a6763 10887 else
32b794c8 10888 Size_Too_Small_Error (Asiz);
5a8a6763
RD
10889 Set_Esize (T, Asiz);
10890 Set_RM_Size (T, Asiz);
10891 end if;
10892 end;
8a95f4e8 10893
5a8a6763 10894 -- All other composite types are ignored
8a95f4e8 10895
5a8a6763
RD
10896 elsif Is_Composite_Type (UT) then
10897 return;
9a1bc6d5 10898
5a8a6763
RD
10899 -- For fixed-point types, don't check minimum if type is not frozen,
10900 -- since we don't know all the characteristics of the type that can
10901 -- affect the size (e.g. a specified small) till freeze time.
9a1bc6d5 10902
32b794c8 10903 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
5a8a6763 10904 null;
9a1bc6d5 10905
5a8a6763 10906 -- Cases for which a minimum check is required
9a1bc6d5 10907
5a8a6763
RD
10908 else
10909 -- Ignore if specified size is correct for the type
9a1bc6d5 10910
5a8a6763
RD
10911 if Known_Esize (UT) and then Siz = Esize (UT) then
10912 return;
10913 end if;
9a1bc6d5 10914
5a8a6763 10915 -- Otherwise get minimum size
9a1bc6d5 10916
5a8a6763 10917 M := UI_From_Int (Minimum_Size (UT));
9a1bc6d5 10918
5a8a6763 10919 if Siz < M then
9a1bc6d5 10920
5a8a6763
RD
10921 -- Size is less than minimum size, but one possibility remains
10922 -- that we can manage with the new size if we bias the type.
9a1bc6d5 10923
5a8a6763 10924 M := UI_From_Int (Minimum_Size (UT, Biased => True));
9a1bc6d5 10925
5a8a6763 10926 if Siz < M then
32b794c8
AC
10927 Size_Too_Small_Error (M);
10928 Set_Esize (T, M);
5a8a6763
RD
10929 Set_RM_Size (T, M);
10930 else
10931 Biased := True;
10932 end if;
10933 end if;
10934 end if;
10935 end Check_Size;
9a1bc6d5 10936
5a8a6763
RD
10937 --------------------------
10938 -- Freeze_Entity_Checks --
10939 --------------------------
9a1bc6d5 10940
5a8a6763 10941 procedure Freeze_Entity_Checks (N : Node_Id) is
09c954dc
AC
10942 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10943 -- Inspect the primitive operations of type Typ and hide all pairs of
79859568
AC
10944 -- implicitly declared non-overridden non-fully conformant homographs
10945 -- (Ada RM 8.3 12.3/2).
09c954dc
AC
10946
10947 -------------------------------------
10948 -- Hide_Non_Overridden_Subprograms --
10949 -------------------------------------
10950
10951 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10952 procedure Hide_Matching_Homographs
10953 (Subp_Id : Entity_Id;
10954 Start_Elmt : Elmt_Id);
10955 -- Inspect a list of primitive operations starting with Start_Elmt
79859568
AC
10956 -- and find matching implicitly declared non-overridden non-fully
10957 -- conformant homographs of Subp_Id. If found, all matches along
10958 -- with Subp_Id are hidden from all visibility.
09c954dc
AC
10959
10960 function Is_Non_Overridden_Or_Null_Procedure
10961 (Subp_Id : Entity_Id) return Boolean;
10962 -- Determine whether subprogram Subp_Id is implicitly declared non-
10963 -- overridden subprogram or an implicitly declared null procedure.
10964
10965 ------------------------------
10966 -- Hide_Matching_Homographs --
10967 ------------------------------
10968
10969 procedure Hide_Matching_Homographs
10970 (Subp_Id : Entity_Id;
10971 Start_Elmt : Elmt_Id)
10972 is
10973 Prim : Entity_Id;
10974 Prim_Elmt : Elmt_Id;
10975
10976 begin
10977 Prim_Elmt := Start_Elmt;
10978 while Present (Prim_Elmt) loop
10979 Prim := Node (Prim_Elmt);
10980
10981 -- The current primitive is implicitly declared non-overridden
79859568
AC
10982 -- non-fully conformant homograph of Subp_Id. Both subprograms
10983 -- must be hidden from visibility.
09c954dc
AC
10984
10985 if Chars (Prim) = Chars (Subp_Id)
09c954dc 10986 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
79859568 10987 and then not Fully_Conformant (Prim, Subp_Id)
09c954dc 10988 then
7b4ebba5
AC
10989 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10990 Set_Is_Immediately_Visible (Prim, False);
10991 Set_Is_Potentially_Use_Visible (Prim, False);
09c954dc 10992
7b4ebba5
AC
10993 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10994 Set_Is_Immediately_Visible (Subp_Id, False);
10995 Set_Is_Potentially_Use_Visible (Subp_Id, False);
09c954dc
AC
10996 end if;
10997
10998 Next_Elmt (Prim_Elmt);
10999 end loop;
11000 end Hide_Matching_Homographs;
11001
11002 -----------------------------------------
11003 -- Is_Non_Overridden_Or_Null_Procedure --
11004 -----------------------------------------
11005
11006 function Is_Non_Overridden_Or_Null_Procedure
11007 (Subp_Id : Entity_Id) return Boolean
11008 is
11009 Alias_Id : Entity_Id;
11010
11011 begin
11012 -- The subprogram is inherited (implicitly declared), it does not
11013 -- override and does not cover a primitive of an interface.
11014
11015 if Ekind_In (Subp_Id, E_Function, E_Procedure)
11016 and then Present (Alias (Subp_Id))
11017 and then No (Interface_Alias (Subp_Id))
11018 and then No (Overridden_Operation (Subp_Id))
11019 then
11020 Alias_Id := Alias (Subp_Id);
11021
11022 if Requires_Overriding (Alias_Id) then
11023 return True;
11024
11025 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
11026 and then Null_Present (Parent (Alias_Id))
11027 then
11028 return True;
11029 end if;
11030 end if;
11031
11032 return False;
11033 end Is_Non_Overridden_Or_Null_Procedure;
11034
11035 -- Local variables
11036
11037 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
11038 Prim : Entity_Id;
11039 Prim_Elmt : Elmt_Id;
11040
11041 -- Start of processing for Hide_Non_Overridden_Subprograms
11042
11043 begin
79859568
AC
11044 -- Inspect the list of primitives looking for non-overridden
11045 -- subprograms.
09c954dc
AC
11046
11047 if Present (Prim_Ops) then
11048 Prim_Elmt := First_Elmt (Prim_Ops);
11049 while Present (Prim_Elmt) loop
11050 Prim := Node (Prim_Elmt);
11051 Next_Elmt (Prim_Elmt);
11052
11053 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
11054 Hide_Matching_Homographs
11055 (Subp_Id => Prim,
11056 Start_Elmt => Prim_Elmt);
11057 end if;
11058 end loop;
11059 end if;
11060 end Hide_Non_Overridden_Subprograms;
11061
3ddfabe3 11062 -- Local variables
09c954dc 11063
5a8a6763 11064 E : constant Entity_Id := Entity (N);
9a1bc6d5 11065
0cb81445
PMR
11066 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
11067 -- True in nongeneric case. Some of the processing here is skipped
5a8a6763
RD
11068 -- for the generic case since it is not needed. Basically in the
11069 -- generic case, we only need to do stuff that might generate error
11070 -- messages or warnings.
09c954dc
AC
11071
11072 -- Start of processing for Freeze_Entity_Checks
11073
5a8a6763
RD
11074 begin
11075 -- Remember that we are processing a freezing entity. Required to
11076 -- ensure correct decoration of internal entities associated with
11077 -- interfaces (see New_Overloaded_Entity).
9a1bc6d5 11078
5a8a6763 11079 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
9a1bc6d5 11080
5a8a6763
RD
11081 -- For tagged types covering interfaces add internal entities that link
11082 -- the primitives of the interfaces with the primitives that cover them.
11083 -- Note: These entities were originally generated only when generating
11084 -- code because their main purpose was to provide support to initialize
11085 -- the secondary dispatch tables. They are now generated also when
11086 -- compiling with no code generation to provide ASIS the relationship
11087 -- between interface primitives and tagged type primitives. They are
11088 -- also used to locate primitives covering interfaces when processing
11089 -- generics (see Derive_Subprograms).
9a1bc6d5 11090
5a8a6763 11091 -- This is not needed in the generic case
9a1bc6d5 11092
5a8a6763 11093 if Ada_Version >= Ada_2005
0cb81445 11094 and then Nongeneric_Case
5a8a6763
RD
11095 and then Ekind (E) = E_Record_Type
11096 and then Is_Tagged_Type (E)
11097 and then not Is_Interface (E)
11098 and then Has_Interfaces (E)
11099 then
11100 -- This would be a good common place to call the routine that checks
11101 -- overriding of interface primitives (and thus factorize calls to
11102 -- Check_Abstract_Overriding located at different contexts in the
11103 -- compiler). However, this is not possible because it causes
11104 -- spurious errors in case of late overriding.
9a1bc6d5 11105
5a8a6763
RD
11106 Add_Internal_Interface_Entities (E);
11107 end if;
9a1bc6d5 11108
09c954dc
AC
11109 -- After all forms of overriding have been resolved, a tagged type may
11110 -- be left with a set of implicitly declared and possibly erroneous
11111 -- abstract subprograms, null procedures and subprograms that require
75a957f5
AC
11112 -- overriding. If this set contains fully conformant homographs, then
11113 -- one is chosen arbitrarily (already done during resolution), otherwise
11114 -- all remaining non-fully conformant homographs are hidden from
11115 -- visibility (Ada RM 8.3 12.3/2).
09c954dc
AC
11116
11117 if Is_Tagged_Type (E) then
11118 Hide_Non_Overridden_Subprograms (E);
11119 end if;
11120
5a8a6763 11121 -- Check CPP types
9a1bc6d5 11122
5a8a6763
RD
11123 if Ekind (E) = E_Record_Type
11124 and then Is_CPP_Class (E)
11125 and then Is_Tagged_Type (E)
11126 and then Tagged_Type_Expansion
5a8a6763
RD
11127 then
11128 if CPP_Num_Prims (E) = 0 then
9a1bc6d5 11129
5a8a6763
RD
11130 -- If the CPP type has user defined components then it must import
11131 -- primitives from C++. This is required because if the C++ class
11132 -- has no primitives then the C++ compiler does not added the _tag
11133 -- component to the type.
9a1bc6d5 11134
5a8a6763
RD
11135 if First_Entity (E) /= Last_Entity (E) then
11136 Error_Msg_N
11137 ("'C'P'P type must import at least one primitive from C++??",
11138 E);
11139 end if;
11140 end if;
9a1bc6d5 11141
5a8a6763
RD
11142 -- Check that all its primitives are abstract or imported from C++.
11143 -- Check also availability of the C++ constructor.
9a1bc6d5 11144
5a8a6763
RD
11145 declare
11146 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11147 Elmt : Elmt_Id;
11148 Error_Reported : Boolean := False;
11149 Prim : Node_Id;
9a1bc6d5 11150
5a8a6763
RD
11151 begin
11152 Elmt := First_Elmt (Primitive_Operations (E));
11153 while Present (Elmt) loop
11154 Prim := Node (Elmt);
9a1bc6d5 11155
5a8a6763
RD
11156 if Comes_From_Source (Prim) then
11157 if Is_Abstract_Subprogram (Prim) then
11158 null;
9a1bc6d5 11159
5a8a6763
RD
11160 elsif not Is_Imported (Prim)
11161 or else Convention (Prim) /= Convention_CPP
11162 then
11163 Error_Msg_N
11164 ("primitives of 'C'P'P types must be imported from C++ "
11165 & "or abstract??", Prim);
9a1bc6d5 11166
5a8a6763
RD
11167 elsif not Has_Constructors
11168 and then not Error_Reported
11169 then
11170 Error_Msg_Name_1 := Chars (E);
11171 Error_Msg_N
11172 ("??'C'P'P constructor required for type %", Prim);
11173 Error_Reported := True;
11174 end if;
11175 end if;
9a1bc6d5 11176
5a8a6763
RD
11177 Next_Elmt (Elmt);
11178 end loop;
11179 end;
11180 end if;
9a1bc6d5 11181
5a8a6763 11182 -- Check Ada derivation of CPP type
9a1bc6d5 11183
43c58950
AC
11184 if Expander_Active -- why? losing errors in -gnatc mode???
11185 and then Present (Etype (E)) -- defend against errors
5a8a6763
RD
11186 and then Tagged_Type_Expansion
11187 and then Ekind (E) = E_Record_Type
11188 and then Etype (E) /= E
11189 and then Is_CPP_Class (Etype (E))
11190 and then CPP_Num_Prims (Etype (E)) > 0
11191 and then not Is_CPP_Class (E)
11192 and then not Has_CPP_Constructors (Etype (E))
11193 then
11194 -- If the parent has C++ primitives but it has no constructor then
11195 -- check that all the primitives are overridden in this derivation;
11196 -- otherwise the constructor of the parent is needed to build the
11197 -- dispatch table.
9a1bc6d5 11198
5a8a6763
RD
11199 declare
11200 Elmt : Elmt_Id;
11201 Prim : Node_Id;
9a1bc6d5
AC
11202
11203 begin
5a8a6763
RD
11204 Elmt := First_Elmt (Primitive_Operations (E));
11205 while Present (Elmt) loop
11206 Prim := Node (Elmt);
9a1bc6d5 11207
5a8a6763
RD
11208 if not Is_Abstract_Subprogram (Prim)
11209 and then No (Interface_Alias (Prim))
11210 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
9a1bc6d5 11211 then
5a8a6763
RD
11212 Error_Msg_Name_1 := Chars (Etype (E));
11213 Error_Msg_N
11214 ("'C'P'P constructor required for parent type %", E);
11215 exit;
9a1bc6d5 11216 end if;
5a8a6763
RD
11217
11218 Next_Elmt (Elmt);
11219 end loop;
11220 end;
9a1bc6d5
AC
11221 end if;
11222
5a8a6763 11223 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
8a95f4e8 11224
3ddfabe3
AC
11225 -- If we have a type with predicates, build predicate function. This is
11226 -- not needed in the generic case, nor within TSS subprograms and other
20643f50
ES
11227 -- predefined primitives. For a derived type, ensure that the parent
11228 -- type is already frozen so that its predicate function has been
11229 -- constructed already. This is necessary if the parent is declared
11230 -- in a nested package and its own freeze point has not been reached.
8a95f4e8 11231
3ddfabe3 11232 if Is_Type (E)
0cb81445 11233 and then Nongeneric_Case
8e1e62e3 11234 and then not Within_Internal_Subprogram
3ddfabe3 11235 and then Has_Predicates (E)
8e1e62e3 11236 then
20643f50
ES
11237 declare
11238 Atyp : constant Entity_Id := Nearest_Ancestor (E);
11239 begin
11240 if Present (Atyp)
11241 and then Has_Predicates (Atyp)
11242 and then not Is_Frozen (Atyp)
11243 then
11244 Freeze_Before (N, Atyp);
11245 end if;
11246 end;
11247
5a8a6763
RD
11248 Build_Predicate_Functions (E, N);
11249 end if;
8a95f4e8 11250
5a8a6763
RD
11251 -- If type has delayed aspects, this is where we do the preanalysis at
11252 -- the freeze point, as part of the consistent visibility check. Note
11253 -- that this must be done after calling Build_Predicate_Functions or
11254 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11255 -- the subtype name in the saved expression so that they will not cause
11256 -- trouble in the preanalysis.
8a95f4e8 11257
d030f3a4 11258 -- This is also not needed in the generic case
5a8a6763 11259
0cb81445 11260 if Nongeneric_Case
d030f3a4 11261 and then Has_Delayed_Aspects (E)
5a8a6763
RD
11262 and then Scope (E) = Current_Scope
11263 then
5a8a6763 11264 declare
2401c98f 11265 A_Id : Aspect_Id;
5a8a6763
RD
11266 Ritem : Node_Id;
11267
11268 begin
11269 -- Look for aspect specification entries for this entity
8a95f4e8 11270
5a8a6763
RD
11271 Ritem := First_Rep_Item (E);
11272 while Present (Ritem) loop
11273 if Nkind (Ritem) = N_Aspect_Specification
11274 and then Entity (Ritem) = E
11275 and then Is_Delayed_Aspect (Ritem)
11276 then
5f531fef 11277 A_Id := Get_Aspect_Id (Ritem);
2401c98f 11278
5f531fef 11279 if A_Id = Aspect_Dynamic_Predicate
f5d4b6ab 11280 or else A_Id = Aspect_Predicate
5f531fef
ES
11281 or else A_Id = Aspect_Priority
11282 then
11283 -- Retrieve the visibility to components and discriminants
11284 -- in order to properly analyze the aspects.
11285
11286 Push_Type (E);
11287 Check_Aspect_At_Freeze_Point (Ritem);
11288 Pop_Type (E);
11289
11290 else
11291 Check_Aspect_At_Freeze_Point (Ritem);
11292 end if;
5a8a6763 11293 end if;
8a95f4e8 11294
5a8a6763
RD
11295 Next_Rep_Item (Ritem);
11296 end loop;
11297 end;
8a95f4e8 11298
8a95f4e8 11299 end if;
8a95f4e8 11300
2401c98f
HK
11301 -- For a record type, deal with variant parts. This has to be delayed to
11302 -- this point, because of the issue of statically predicated subtypes,
11303 -- which we have to ensure are frozen before checking choices, since we
11304 -- need to have the static choice list set.
996ae0b0 11305
5a8a6763
RD
11306 if Is_Record_Type (E) then
11307 Check_Variant_Part : declare
11308 D : constant Node_Id := Declaration_Node (E);
11309 T : Node_Id;
11310 C : Node_Id;
11311 VP : Node_Id;
996ae0b0 11312
5a8a6763
RD
11313 Others_Present : Boolean;
11314 pragma Warnings (Off, Others_Present);
11315 -- Indicates others present, not used in this case
996ae0b0 11316
5a8a6763
RD
11317 procedure Non_Static_Choice_Error (Choice : Node_Id);
11318 -- Error routine invoked by the generic instantiation below when
11319 -- the variant part has a non static choice.
22a83cea 11320
5a8a6763
RD
11321 procedure Process_Declarations (Variant : Node_Id);
11322 -- Processes declarations associated with a variant. We analyzed
11323 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11324 -- but we still need the recursive call to Check_Choices for any
11325 -- nested variant to get its choices properly processed. This is
11326 -- also where we expand out the choices if expansion is active.
d27f3ff4 11327
5a8a6763
RD
11328 package Variant_Choices_Processing is new
11329 Generic_Check_Choices
11330 (Process_Empty_Choice => No_OP,
11331 Process_Non_Static_Choice => Non_Static_Choice_Error,
11332 Process_Associated_Node => Process_Declarations);
11333 use Variant_Choices_Processing;
22a83cea 11334
5a8a6763
RD
11335 -----------------------------
11336 -- Non_Static_Choice_Error --
11337 -----------------------------
996ae0b0 11338
5a8a6763
RD
11339 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11340 begin
11341 Flag_Non_Static_Expr
11342 ("choice given in variant part is not static!", Choice);
11343 end Non_Static_Choice_Error;
996ae0b0 11344
5a8a6763
RD
11345 --------------------------
11346 -- Process_Declarations --
11347 --------------------------
ee2ba856 11348
5a8a6763
RD
11349 procedure Process_Declarations (Variant : Node_Id) is
11350 CL : constant Node_Id := Component_List (Variant);
11351 VP : Node_Id;
ee2ba856 11352
5a8a6763
RD
11353 begin
11354 -- Check for static predicate present in this variant
d05ef0ab 11355
5a8a6763 11356 if Has_SP_Choice (Variant) then
d05ef0ab 11357
5a8a6763
RD
11358 -- Here we expand. You might expect to find this call in
11359 -- Expand_N_Variant_Part, but that is called when we first
11360 -- see the variant part, and we cannot do this expansion
11361 -- earlier than the freeze point, since for statically
11362 -- predicated subtypes, the predicate is not known till
11363 -- the freeze point.
d05ef0ab 11364
5a8a6763
RD
11365 -- Furthermore, we do this expansion even if the expander
11366 -- is not active, because other semantic processing, e.g.
11367 -- for aggregates, requires the expanded list of choices.
d05ef0ab 11368
5a8a6763
RD
11369 -- If the expander is not active, then we can't just clobber
11370 -- the list since it would invalidate the ASIS -gnatct tree.
11371 -- So we have to rewrite the variant part with a Rewrite
11372 -- call that replaces it with a copy and clobber the copy.
11373
11374 if not Expander_Active then
11375 declare
11376 NewV : constant Node_Id := New_Copy (Variant);
11377 begin
11378 Set_Discrete_Choices
11379 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11380 Rewrite (Variant, NewV);
11381 end;
11382 end if;
11383
11384 Expand_Static_Predicates_In_Choices (Variant);
d05ef0ab
AC
11385 end if;
11386
5a8a6763
RD
11387 -- We don't need to worry about the declarations in the variant
11388 -- (since they were analyzed by Analyze_Choices when we first
11389 -- encountered the variant), but we do need to take care of
11390 -- expansion of any nested variants.
d05ef0ab 11391
5a8a6763
RD
11392 if not Null_Present (CL) then
11393 VP := Variant_Part (CL);
d05ef0ab 11394
5a8a6763
RD
11395 if Present (VP) then
11396 Check_Choices
11397 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11398 end if;
11399 end if;
11400 end Process_Declarations;
d05ef0ab 11401
5a8a6763 11402 -- Start of processing for Check_Variant_Part
616547fa 11403
5a8a6763
RD
11404 begin
11405 -- Find component list
d05ef0ab 11406
5a8a6763 11407 C := Empty;
d05ef0ab 11408
5a8a6763
RD
11409 if Nkind (D) = N_Full_Type_Declaration then
11410 T := Type_Definition (D);
d05ef0ab 11411
5a8a6763
RD
11412 if Nkind (T) = N_Record_Definition then
11413 C := Component_List (T);
996ae0b0 11414
5a8a6763
RD
11415 elsif Nkind (T) = N_Derived_Type_Definition
11416 and then Present (Record_Extension_Part (T))
11417 then
11418 C := Component_List (Record_Extension_Part (T));
11419 end if;
11420 end if;
996ae0b0 11421
5a8a6763 11422 -- Case of variant part present
996ae0b0 11423
5a8a6763
RD
11424 if Present (C) and then Present (Variant_Part (C)) then
11425 VP := Variant_Part (C);
d05ef0ab 11426
5a8a6763 11427 -- Check choices
d05ef0ab 11428
5a8a6763
RD
11429 Check_Choices
11430 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
d05ef0ab 11431
5a8a6763
RD
11432 -- If the last variant does not contain the Others choice,
11433 -- replace it with an N_Others_Choice node since Gigi always
11434 -- wants an Others. Note that we do not bother to call Analyze
11435 -- on the modified variant part, since its only effect would be
11436 -- to compute the Others_Discrete_Choices node laboriously, and
11437 -- of course we already know the list of choices corresponding
a90bd866 11438 -- to the others choice (it's the list we're replacing).
996ae0b0 11439
5a8a6763 11440 -- We only want to do this if the expander is active, since
a90bd866 11441 -- we do not want to clobber the ASIS tree.
996ae0b0 11442
5a8a6763
RD
11443 if Expander_Active then
11444 declare
11445 Last_Var : constant Node_Id :=
11446 Last_Non_Pragma (Variants (VP));
996ae0b0 11447
5a8a6763 11448 Others_Node : Node_Id;
996ae0b0 11449
5a8a6763
RD
11450 begin
11451 if Nkind (First (Discrete_Choices (Last_Var))) /=
11452 N_Others_Choice
11453 then
11454 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11455 Set_Others_Discrete_Choices
11456 (Others_Node, Discrete_Choices (Last_Var));
11457 Set_Discrete_Choices
11458 (Last_Var, New_List (Others_Node));
11459 end if;
11460 end;
11461 end if;
996ae0b0 11462 end if;
5a8a6763 11463 end Check_Variant_Part;
996ae0b0 11464 end if;
5a8a6763 11465 end Freeze_Entity_Checks;
996ae0b0
RK
11466
11467 -------------------------
11468 -- Get_Alignment_Value --
11469 -------------------------
11470
11471 function Get_Alignment_Value (Expr : Node_Id) return Uint is
51122913 11472 Align : constant Uint := Static_Integer (Expr);
32b794c8 11473
51122913
HK
11474 begin
11475 if Align = No_Uint then
11476 return No_Uint;
11477
11478 elsif Align <= 0 then
32b794c8 11479
32b794c8 11480 -- This error is suppressed in ASIS mode to allow for different ASIS
2cc2e964 11481 -- back ends or ASIS-based tools to query the illegal clause.
32b794c8
AC
11482
11483 if not ASIS_Mode then
11484 Error_Msg_N ("alignment value must be positive", Expr);
11485 end if;
32b794c8 11486
996ae0b0
RK
11487 return No_Uint;
11488
11489 else
11490 for J in Int range 0 .. 64 loop
11491 declare
11492 M : constant Uint := Uint_2 ** J;
11493
11494 begin
11495 exit when M = Align;
11496
11497 if M > Align then
51122913
HK
11498
11499 -- This error is suppressed in ASIS mode to allow for
2cc2e964 11500 -- different ASIS back ends or ASIS-based tools to query the
51122913
HK
11501 -- illegal clause.
11502
11503 if not ASIS_Mode then
11504 Error_Msg_N ("alignment value must be power of 2", Expr);
11505 end if;
11506
996ae0b0
RK
11507 return No_Uint;
11508 end if;
11509 end;
11510 end loop;
11511
11512 return Align;
11513 end if;
11514 end Get_Alignment_Value;
11515
dc3af7e2
AC
11516 -------------------------------------
11517 -- Inherit_Aspects_At_Freeze_Point --
11518 -------------------------------------
11519
11520 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11521 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11522 (Rep_Item : Node_Id) return Boolean;
11523 -- This routine checks if Rep_Item is either a pragma or an aspect
11524 -- specification node whose correponding pragma (if any) is present in
11525 -- the Rep Item chain of the entity it has been specified to.
11526
def15641
TQ
11527 function Rep_Item_Entity (Rep_Item : Node_Id) return Entity_Id;
11528 -- Return the entity for which Rep_Item is specified
11529
c7862167
HK
11530 --------------------------------------------------
11531 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11532 --------------------------------------------------
11533
11534 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11535 (Rep_Item : Node_Id) return Boolean
11536 is
11537 begin
11538 return
11539 Nkind (Rep_Item) = N_Pragma
11540 or else Present_In_Rep_Item
11541 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11542 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11543
def15641
TQ
11544 ---------------------
11545 -- Rep_Item_Entity --
11546 ---------------------
11547
11548 function Rep_Item_Entity (Rep_Item : Node_Id) return Entity_Id is
11549 begin
11550 if Nkind (Rep_Item) = N_Aspect_Specification then
11551 return Entity (Rep_Item);
11552
11553 else
11554 pragma Assert (Nkind_In (Rep_Item,
c7862167
HK
11555 N_Attribute_Definition_Clause,
11556 N_Pragma));
def15641
TQ
11557 return Entity (Name (Rep_Item));
11558 end if;
11559 end Rep_Item_Entity;
11560
2791be24
AC
11561 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11562
dc3af7e2
AC
11563 begin
11564 -- A representation item is either subtype-specific (Size and Alignment
11565 -- clauses) or type-related (all others). Subtype-specific aspects may
2791be24 11566 -- differ for different subtypes of the same type (RM 13.1.8).
dc3af7e2
AC
11567
11568 -- A derived type inherits each type-related representation aspect of
11569 -- its parent type that was directly specified before the declaration of
2791be24 11570 -- the derived type (RM 13.1.15).
dc3af7e2
AC
11571
11572 -- A derived subtype inherits each subtype-specific representation
11573 -- aspect of its parent subtype that was directly specified before the
2791be24 11574 -- declaration of the derived type (RM 13.1.15).
dc3af7e2
AC
11575
11576 -- The general processing involves inheriting a representation aspect
11577 -- from a parent type whenever the first rep item (aspect specification,
11578 -- attribute definition clause, pragma) corresponding to the given
11579 -- representation aspect in the rep item chain of Typ, if any, isn't
11580 -- directly specified to Typ but to one of its parents.
11581
11582 -- ??? Note that, for now, just a limited number of representation
2791be24
AC
11583 -- aspects have been inherited here so far. Many of them are
11584 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11585 -- a non- exhaustive list of aspects that likely also need to
11586 -- be moved to this routine: Alignment, Component_Alignment,
11587 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
dc3af7e2
AC
11588 -- Preelaborable_Initialization, RM_Size and Small.
11589
dbb4cfef
AC
11590 -- In addition, Convention must be propagated from base type to subtype,
11591 -- because the subtype may have been declared on an incomplete view.
11592
dc3af7e2
AC
11593 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11594 return;
11595 end if;
11596
11597 -- Ada_05/Ada_2005
11598
11599 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11600 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11601 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11602 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11603 then
11604 Set_Is_Ada_2005_Only (Typ);
11605 end if;
11606
11607 -- Ada_12/Ada_2012
11608
11609 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11610 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11611 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11612 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11613 then
11614 Set_Is_Ada_2012_Only (Typ);
11615 end if;
11616
11617 -- Atomic/Shared
11618
11619 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11620 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11621 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11622 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11623 then
11624 Set_Is_Atomic (Typ);
dc3af7e2 11625 Set_Is_Volatile (Typ);
57abdadd 11626 Set_Treat_As_Volatile (Typ);
dc3af7e2
AC
11627 end if;
11628
dbb4cfef
AC
11629 -- Convention
11630
64dbfdec
AC
11631 if Is_Record_Type (Typ)
11632 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11633 then
dbb4cfef
AC
11634 Set_Convention (Typ, Convention (Base_Type (Typ)));
11635 end if;
11636
2791be24 11637 -- Default_Component_Value
dc3af7e2 11638
731261c3
AC
11639 -- Verify that there is no rep_item declared for the type, and there
11640 -- is one coming from an ancestor.
11641
dc3af7e2 11642 if Is_Array_Type (Typ)
688a9b51 11643 and then Is_Base_Type (Typ)
731261c3 11644 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
dc3af7e2
AC
11645 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11646 then
11647 Set_Default_Aspect_Component_Value (Typ,
11648 Default_Aspect_Component_Value
11649 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11650 end if;
11651
2791be24 11652 -- Default_Value
dc3af7e2
AC
11653
11654 if Is_Scalar_Type (Typ)
688a9b51 11655 and then Is_Base_Type (Typ)
731261c3 11656 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
dc3af7e2
AC
11657 and then Has_Rep_Item (Typ, Name_Default_Value)
11658 then
731261c3 11659 Set_Has_Default_Aspect (Typ);
dc3af7e2
AC
11660 Set_Default_Aspect_Value (Typ,
11661 Default_Aspect_Value
11662 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11663 end if;
11664
11665 -- Discard_Names
11666
11667 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11668 and then Has_Rep_Item (Typ, Name_Discard_Names)
11669 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11670 (Get_Rep_Item (Typ, Name_Discard_Names))
11671 then
11672 Set_Discard_Names (Typ);
11673 end if;
11674
dc3af7e2
AC
11675 -- Volatile
11676
11677 if not Has_Rep_Item (Typ, Name_Volatile, False)
11678 and then Has_Rep_Item (Typ, Name_Volatile)
11679 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11680 (Get_Rep_Item (Typ, Name_Volatile))
11681 then
dc3af7e2 11682 Set_Is_Volatile (Typ);
57abdadd 11683 Set_Treat_As_Volatile (Typ);
dc3af7e2
AC
11684 end if;
11685
f280dd8f
RD
11686 -- Volatile_Full_Access
11687
11688 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11689 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11690 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11691 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11692 then
57abdadd 11693 Set_Is_Volatile_Full_Access (Typ);
f280dd8f 11694 Set_Is_Volatile (Typ);
57abdadd 11695 Set_Treat_As_Volatile (Typ);
f280dd8f
RD
11696 end if;
11697
dc3af7e2
AC
11698 -- Inheritance for derived types only
11699
11700 if Is_Derived_Type (Typ) then
11701 declare
11702 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11703 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11704
11705 begin
11706 -- Atomic_Components
11707
11708 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11709 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11710 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11711 (Get_Rep_Item (Typ, Name_Atomic_Components))
11712 then
11713 Set_Has_Atomic_Components (Imp_Bas_Typ);
11714 end if;
11715
11716 -- Volatile_Components
11717
11718 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11719 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11720 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11721 (Get_Rep_Item (Typ, Name_Volatile_Components))
11722 then
11723 Set_Has_Volatile_Components (Imp_Bas_Typ);
11724 end if;
11725
eefd2467 11726 -- Finalize_Storage_Only
dc3af7e2
AC
11727
11728 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11729 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11730 then
11731 Set_Finalize_Storage_Only (Bas_Typ);
11732 end if;
11733
11734 -- Universal_Aliasing
11735
11736 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11737 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11738 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11739 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11740 then
11741 Set_Universal_Aliasing (Imp_Bas_Typ);
11742 end if;
11743
eefd2467 11744 -- Bit_Order
dc3af7e2
AC
11745
11746 if Is_Record_Type (Typ) then
dc3af7e2
AC
11747 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11748 and then Has_Rep_Item (Typ, Name_Bit_Order)
11749 then
11750 Set_Reverse_Bit_Order (Bas_Typ,
def15641
TQ
11751 Reverse_Bit_Order (Rep_Item_Entity
11752 (Get_Rep_Item (Typ, Name_Bit_Order))));
dc3af7e2 11753 end if;
eefd2467
AC
11754 end if;
11755
8b64ed4c
TQ
11756 -- Scalar_Storage_Order
11757
11758 -- Note: the aspect is specified on a first subtype, but recorded
11759 -- in a flag of the base type!
eefd2467
AC
11760
11761 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
bcdb6b04 11762 and then Typ = Bas_Typ
eefd2467 11763 then
eefd2467
AC
11764 -- For a type extension, always inherit from parent; otherwise
11765 -- inherit if no default applies. Note: we do not check for
11766 -- an explicit rep item on the parent type when inheriting,
11767 -- because the parent SSO may itself have been set by default.
dc3af7e2 11768
8b64ed4c
TQ
11769 if not Has_Rep_Item (First_Subtype (Typ),
11770 Name_Scalar_Storage_Order, False)
eefd2467 11771 and then (Is_Tagged_Type (Bas_Typ)
bcdb6b04
AC
11772 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11773 or else
11774 SSO_Set_High_By_Default (Bas_Typ)))
dc3af7e2
AC
11775 then
11776 Set_Reverse_Storage_Order (Bas_Typ,
35e7063a
AC
11777 Reverse_Storage_Order
11778 (Implementation_Base_Type (Etype (Bas_Typ))));
220d1fd9
AC
11779
11780 -- Clear default SSO indications, since the inherited aspect
11781 -- which was set explicitly overrides the default.
11782
11783 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11784 Set_SSO_Set_High_By_Default (Bas_Typ, False);
dc3af7e2
AC
11785 end if;
11786 end if;
11787 end;
11788 end if;
11789 end Inherit_Aspects_At_Freeze_Point;
11790
996ae0b0
RK
11791 ----------------
11792 -- Initialize --
11793 ----------------
11794
11795 procedure Initialize is
11796 begin
105b5e65 11797 Address_Clause_Checks.Init;
996ae0b0 11798 Unchecked_Conversions.Init;
07aff4e3 11799
f8f50235
AC
11800 -- ??? Might be needed in the future for some non GCC back-ends
11801 -- if AAMP_On_Target then
11802 -- Independence_Checks.Init;
11803 -- end if;
996ae0b0
RK
11804 end Initialize;
11805
77a40ec1
AC
11806 ---------------------------
11807 -- Install_Discriminants --
11808 ---------------------------
11809
11810 procedure Install_Discriminants (E : Entity_Id) is
11811 Disc : Entity_Id;
11812 Prev : Entity_Id;
11813 begin
11814 Disc := First_Discriminant (E);
11815 while Present (Disc) loop
11816 Prev := Current_Entity (Disc);
11817 Set_Current_Entity (Disc);
11818 Set_Is_Immediately_Visible (Disc);
11819 Set_Homonym (Disc, Prev);
11820 Next_Discriminant (Disc);
11821 end loop;
11822 end Install_Discriminants;
11823
996ae0b0
RK
11824 -------------------------
11825 -- Is_Operational_Item --
11826 -------------------------
11827
11828 function Is_Operational_Item (N : Node_Id) return Boolean is
11829 begin
11830 if Nkind (N) /= N_Attribute_Definition_Clause then
11831 return False;
616547fa 11832
996ae0b0
RK
11833 else
11834 declare
616547fa 11835 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
996ae0b0 11836 begin
e9f97e79 11837
47b79f78 11838 -- List of operational items is given in AARM 13.1(8.mm/1).
e9f97e79
AC
11839 -- It is clearly incomplete, as it does not include iterator
11840 -- aspects, among others.
11841
11842 return Id = Attribute_Constant_Indexing
11843 or else Id = Attribute_Default_Iterator
11844 or else Id = Attribute_Implicit_Dereference
11845 or else Id = Attribute_Input
11846 or else Id = Attribute_Iterator_Element
11847 or else Id = Attribute_Iterable
996ae0b0
RK
11848 or else Id = Attribute_Output
11849 or else Id = Attribute_Read
e9f97e79 11850 or else Id = Attribute_Variable_Indexing
07fc65c4
GB
11851 or else Id = Attribute_Write
11852 or else Id = Attribute_External_Tag;
996ae0b0
RK
11853 end;
11854 end if;
11855 end Is_Operational_Item;
11856
ee4eee0a
AC
11857 -------------------------
11858 -- Is_Predicate_Static --
11859 -------------------------
11860
fc3a3f3b
RD
11861 -- Note: the basic legality of the expression has already been checked, so
11862 -- we don't need to worry about cases or ranges on strings for example.
11863
ee4eee0a
AC
11864 function Is_Predicate_Static
11865 (Expr : Node_Id;
11866 Nam : Name_Id) return Boolean
11867 is
11868 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
f9648959
AC
11869 -- Given a list of case expression alternatives, returns True if all
11870 -- the alternatives are static (have all static choices, and a static
11871 -- expression).
ee4eee0a
AC
11872
11873 function All_Static_Choices (L : List_Id) return Boolean;
c624298a 11874 -- Returns true if all elements of the list are OK static choices
ee4eee0a 11875 -- as defined below for Is_Static_Choice. Used for case expression
f9648959
AC
11876 -- alternatives and for the right operand of a membership test. An
11877 -- others_choice is static if the corresponding expression is static.
fd7215d7 11878 -- The staticness of the bounds is checked separately.
ee4eee0a
AC
11879
11880 function Is_Static_Choice (N : Node_Id) return Boolean;
11881 -- Returns True if N represents a static choice (static subtype, or
c624298a 11882 -- static subtype indication, or static expression, or static range).
ee4eee0a
AC
11883 --
11884 -- Note that this is a bit more inclusive than we actually need
11885 -- (in particular membership tests do not allow the use of subtype
c624298a 11886 -- indications). But that doesn't matter, we have already checked
ee4eee0a
AC
11887 -- that the construct is legal to get this far.
11888
11889 function Is_Type_Ref (N : Node_Id) return Boolean;
11890 pragma Inline (Is_Type_Ref);
f9648959
AC
11891 -- Returns True if N is a reference to the type for the predicate in the
11892 -- expression (i.e. if it is an identifier whose Chars field matches the
11893 -- Nam given in the call). N must not be parenthesized, if the type name
11894 -- appears in parens, this routine will return False.
582dbb53 11895 --
e4d04166
AC
11896 -- The routine also returns True for function calls generated during the
11897 -- expansion of comparison operators on strings, which are intended to
11898 -- be legal in static predicates, and are converted into calls to array
11899 -- comparison routines in the body of the corresponding predicate
11900 -- function.
11901
ee4eee0a
AC
11902 ----------------------------------
11903 -- All_Static_Case_Alternatives --
11904 ----------------------------------
11905
11906 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11907 N : Node_Id;
11908
11909 begin
11910 N := First (L);
11911 while Present (N) loop
11912 if not (All_Static_Choices (Discrete_Choices (N))
11913 and then Is_OK_Static_Expression (Expression (N)))
11914 then
11915 return False;
11916 end if;
11917
11918 Next (N);
11919 end loop;
11920
11921 return True;
11922 end All_Static_Case_Alternatives;
11923
11924 ------------------------
11925 -- All_Static_Choices --
11926 ------------------------
11927
11928 function All_Static_Choices (L : List_Id) return Boolean is
11929 N : Node_Id;
11930
11931 begin
11932 N := First (L);
11933 while Present (N) loop
11934 if not Is_Static_Choice (N) then
11935 return False;
11936 end if;
11937
11938 Next (N);
11939 end loop;
11940
11941 return True;
11942 end All_Static_Choices;
11943
11944 ----------------------
11945 -- Is_Static_Choice --
11946 ----------------------
11947
11948 function Is_Static_Choice (N : Node_Id) return Boolean is
11949 begin
fd7215d7
AC
11950 return Nkind (N) = N_Others_Choice
11951 or else Is_OK_Static_Expression (N)
ee4eee0a
AC
11952 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11953 and then Is_OK_Static_Subtype (Entity (N)))
11954 or else (Nkind (N) = N_Subtype_Indication
11955 and then Is_OK_Static_Subtype (Entity (N)))
11956 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11957 end Is_Static_Choice;
11958
11959 -----------------
11960 -- Is_Type_Ref --
11961 -----------------
11962
11963 function Is_Type_Ref (N : Node_Id) return Boolean is
11964 begin
e4d04166
AC
11965 return (Nkind (N) = N_Identifier
11966 and then Chars (N) = Nam
11967 and then Paren_Count (N) = 0)
11968 or else Nkind (N) = N_Function_Call;
ee4eee0a
AC
11969 end Is_Type_Ref;
11970
11971 -- Start of processing for Is_Predicate_Static
11972
11973 begin
ee4eee0a
AC
11974 -- Predicate_Static means one of the following holds. Numbers are the
11975 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11976
11977 -- 16: A static expression
11978
11979 if Is_OK_Static_Expression (Expr) then
11980 return True;
11981
11982 -- 17: A membership test whose simple_expression is the current
11983 -- instance, and whose membership_choice_list meets the requirements
11984 -- for a static membership test.
11985
11986 elsif Nkind (Expr) in N_Membership_Test
11987 and then ((Present (Right_Opnd (Expr))
11988 and then Is_Static_Choice (Right_Opnd (Expr)))
11989 or else
11990 (Present (Alternatives (Expr))
11991 and then All_Static_Choices (Alternatives (Expr))))
11992 then
11993 return True;
11994
11995 -- 18. A case_expression whose selecting_expression is the current
11996 -- instance, and whose dependent expressions are static expressions.
11997
11998 elsif Nkind (Expr) = N_Case_Expression
11999 and then Is_Type_Ref (Expression (Expr))
12000 and then All_Static_Case_Alternatives (Alternatives (Expr))
12001 then
12002 return True;
12003
12004 -- 19. A call to a predefined equality or ordering operator, where one
12005 -- operand is the current instance, and the other is a static
12006 -- expression.
12007
fc3a3f3b
RD
12008 -- Note: the RM is clearly wrong here in not excluding string types.
12009 -- Without this exclusion, we would allow expressions like X > "ABC"
12010 -- to be considered as predicate-static, which is clearly not intended,
12011 -- since the idea is for predicate-static to be a subset of normal
12012 -- static expressions (and "DEF" > "ABC" is not a static expression).
12013
12014 -- However, we do allow internally generated (not from source) equality
12015 -- and inequality operations to be valid on strings (this helps deal
12016 -- with cases where we transform A in "ABC" to A = "ABC).
12017
e4d04166
AC
12018 -- In fact, it appears that the intent of the ARG is to extend static
12019 -- predicates to strings, and that the extension should probably apply
12020 -- to static expressions themselves. The code below accepts comparison
12021 -- operators that apply to static strings.
12022
ee4eee0a
AC
12023 elsif Nkind (Expr) in N_Op_Compare
12024 and then ((Is_Type_Ref (Left_Opnd (Expr))
12025 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
12026 or else
12027 (Is_Type_Ref (Right_Opnd (Expr))
12028 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
12029 then
12030 return True;
12031
12032 -- 20. A call to a predefined boolean logical operator, where each
12033 -- operand is predicate-static.
12034
12035 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
12036 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
12037 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
12038 or else
12039 (Nkind (Expr) = N_Op_Not
12040 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
12041 then
12042 return True;
12043
12044 -- 21. A short-circuit control form where both operands are
12045 -- predicate-static.
12046
12047 elsif Nkind (Expr) in N_Short_Circuit
12048 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
12049 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
12050 then
12051 return True;
12052
12053 -- 22. A parenthesized predicate-static expression. This does not
12054 -- require any special test, since we just ignore paren levels in
12055 -- all the cases above.
12056
12057 -- One more test that is an implementation artifact caused by the fact
87e69720 12058 -- that we are analyzing not the original expression, but the generated
ee4eee0a 12059 -- expression in the body of the predicate function. This can include
c624298a 12060 -- references to inherited predicates, so that the expression we are
ee4eee0a
AC
12061 -- processing looks like:
12062
9bdc432a 12063 -- xxPredicate (typ (Inns)) and then expression
ee4eee0a
AC
12064
12065 -- Where the call is to a Predicate function for an inherited predicate.
622599c6
RD
12066 -- We simply ignore such a call, which could be to either a dynamic or
12067 -- a static predicate. Note that if the parent predicate is dynamic then
12068 -- eventually this type will be marked as dynamic, but you are allowed
12069 -- to specify a static predicate for a subtype which is inheriting a
12070 -- dynamic predicate, so the static predicate validation here ignores
12071 -- the inherited predicate even if it is dynamic.
f24ea912 12072 -- In all cases, a static predicate can only apply to a scalar type.
ee4eee0a
AC
12073
12074 elsif Nkind (Expr) = N_Function_Call
12075 and then Is_Predicate_Function (Entity (Name (Expr)))
f24ea912 12076 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
ee4eee0a
AC
12077 then
12078 return True;
12079
5b85ad7d
PMR
12080 elsif Is_Entity_Name (Expr)
12081 and then Entity (Expr) = Standard_True
12082 then
12083 Error_Msg_N ("predicate is redundant (always True)?", Expr);
12084 return True;
12085
ee4eee0a 12086 -- That's an exhaustive list of tests, all other cases are not
c624298a 12087 -- predicate-static, so we return False.
ee4eee0a
AC
12088
12089 else
12090 return False;
12091 end if;
12092 end Is_Predicate_Static;
12093
cf28c974
RD
12094 ---------------------
12095 -- Kill_Rep_Clause --
12096 ---------------------
12097
12098 procedure Kill_Rep_Clause (N : Node_Id) is
12099 begin
12100 pragma Assert (Ignore_Rep_Clauses);
783d035b
AC
12101
12102 -- Note: we use Replace rather than Rewrite, because we don't want
12103 -- ASIS to be able to use Original_Node to dig out the (undecorated)
12104 -- rep clause that is being replaced.
12105
39678b1c 12106 Replace (N, Make_Null_Statement (Sloc (N)));
783d035b
AC
12107
12108 -- The null statement must be marked as not coming from source. This is
8b034336 12109 -- so that ASIS ignores it, and also the back end does not expect bogus
783d035b
AC
12110 -- "from source" null statements in weird places (e.g. in declarative
12111 -- regions where such null statements are not allowed).
12112
12113 Set_Comes_From_Source (N, False);
cf28c974
RD
12114 end Kill_Rep_Clause;
12115
996ae0b0
RK
12116 ------------------
12117 -- Minimum_Size --
12118 ------------------
12119
12120 function Minimum_Size
12121 (T : Entity_Id;
b7e429ab 12122 Biased : Boolean := False) return Nat
996ae0b0
RK
12123 is
12124 Lo : Uint := No_Uint;
12125 Hi : Uint := No_Uint;
12126 LoR : Ureal := No_Ureal;
12127 HiR : Ureal := No_Ureal;
12128 LoSet : Boolean := False;
12129 HiSet : Boolean := False;
12130 B : Uint;
12131 S : Nat;
12132 Ancest : Entity_Id;
07fc65c4 12133 R_Typ : constant Entity_Id := Root_Type (T);
996ae0b0
RK
12134
12135 begin
12136 -- If bad type, return 0
12137
12138 if T = Any_Type then
12139 return 0;
12140
12141 -- For generic types, just return zero. There cannot be any legitimate
12142 -- need to know such a size, but this routine may be called with a
12143 -- generic type as part of normal processing.
12144
dc06dd83 12145 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
996ae0b0
RK
12146 return 0;
12147
ba0c6e47 12148 -- Access types (cannot have size smaller than System.Address)
996ae0b0
RK
12149
12150 elsif Is_Access_Type (T) then
ba0c6e47 12151 return System_Address_Size;
996ae0b0
RK
12152
12153 -- Floating-point types
12154
12155 elsif Is_Floating_Point_Type (T) then
07fc65c4 12156 return UI_To_Int (Esize (R_Typ));
996ae0b0
RK
12157
12158 -- Discrete types
12159
12160 elsif Is_Discrete_Type (T) then
12161
0503c53a
RD
12162 -- The following loop is looking for the nearest compile time known
12163 -- bounds following the ancestor subtype chain. The idea is to find
12164 -- the most restrictive known bounds information.
996ae0b0
RK
12165
12166 Ancest := T;
12167 loop
12168 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12169 return 0;
12170 end if;
12171
12172 if not LoSet then
12173 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12174 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12175 LoSet := True;
12176 exit when HiSet;
12177 end if;
12178 end if;
12179
12180 if not HiSet then
12181 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12182 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12183 HiSet := True;
12184 exit when LoSet;
12185 end if;
12186 end if;
12187
12188 Ancest := Ancestor_Subtype (Ancest);
12189
12190 if No (Ancest) then
12191 Ancest := Base_Type (T);
12192
12193 if Is_Generic_Type (Ancest) then
12194 return 0;
12195 end if;
12196 end if;
12197 end loop;
12198
12199 -- Fixed-point types. We can't simply use Expr_Value to get the
0503c53a
RD
12200 -- Corresponding_Integer_Value values of the bounds, since these do not
12201 -- get set till the type is frozen, and this routine can be called
12202 -- before the type is frozen. Similarly the test for bounds being static
12203 -- needs to include the case where we have unanalyzed real literals for
12204 -- the same reason.
996ae0b0
RK
12205
12206 elsif Is_Fixed_Point_Type (T) then
12207
0503c53a
RD
12208 -- The following loop is looking for the nearest compile time known
12209 -- bounds following the ancestor subtype chain. The idea is to find
12210 -- the most restrictive known bounds information.
996ae0b0
RK
12211
12212 Ancest := T;
12213 loop
12214 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12215 return 0;
12216 end if;
12217
800621e0
RD
12218 -- Note: In the following two tests for LoSet and HiSet, it may
12219 -- seem redundant to test for N_Real_Literal here since normally
12220 -- one would assume that the test for the value being known at
12221 -- compile time includes this case. However, there is a glitch.
12222 -- If the real literal comes from folding a non-static expression,
12223 -- then we don't consider any non- static expression to be known
12224 -- at compile time if we are in configurable run time mode (needed
12225 -- in some cases to give a clearer definition of what is and what
12226 -- is not accepted). So the test is indeed needed. Without it, we
12227 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12228
996ae0b0
RK
12229 if not LoSet then
12230 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12231 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12232 then
12233 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12234 LoSet := True;
12235 exit when HiSet;
12236 end if;
12237 end if;
12238
12239 if not HiSet then
12240 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12241 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12242 then
12243 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12244 HiSet := True;
12245 exit when LoSet;
12246 end if;
12247 end if;
12248
12249 Ancest := Ancestor_Subtype (Ancest);
12250
12251 if No (Ancest) then
12252 Ancest := Base_Type (T);
12253
12254 if Is_Generic_Type (Ancest) then
12255 return 0;
12256 end if;
12257 end if;
12258 end loop;
12259
12260 Lo := UR_To_Uint (LoR / Small_Value (T));
12261 Hi := UR_To_Uint (HiR / Small_Value (T));
12262
12263 -- No other types allowed
12264
12265 else
12266 raise Program_Error;
12267 end if;
12268
a5b62485 12269 -- Fall through with Hi and Lo set. Deal with biased case
996ae0b0 12270
4ae23b62
AC
12271 if (Biased
12272 and then not Is_Fixed_Point_Type (T)
12273 and then not (Is_Enumeration_Type (T)
12274 and then Has_Non_Standard_Rep (T)))
996ae0b0
RK
12275 or else Has_Biased_Representation (T)
12276 then
12277 Hi := Hi - Lo;
12278 Lo := Uint_0;
12279 end if;
12280
57d22af2
AC
12281 -- Null range case, size is always zero. We only do this in the discrete
12282 -- type case, since that's the odd case that came up. Probably we should
12283 -- also do this in the fixed-point case, but doing so causes peculiar
12284 -- gigi failures, and it is not worth worrying about this incredibly
12285 -- marginal case (explicit null-range fixed-point type declarations)???
12286
12287 if Lo > Hi and then Is_Discrete_Type (T) then
12288 S := 0;
12289
996ae0b0 12290 -- Signed case. Note that we consider types like range 1 .. -1 to be
0503c53a 12291 -- signed for the purpose of computing the size, since the bounds have
f3d57416 12292 -- to be accommodated in the base type.
996ae0b0 12293
57d22af2 12294 elsif Lo < 0 or else Hi < 0 then
996ae0b0
RK
12295 S := 1;
12296 B := Uint_1;
12297
638e383e
JM
12298 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12299 -- Note that we accommodate the case where the bounds cross. This
996ae0b0
RK
12300 -- can happen either because of the way the bounds are declared
12301 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12302
12303 while Lo < -B
12304 or else Hi < -B
12305 or else Lo >= B
12306 or else Hi >= B
12307 loop
12308 B := Uint_2 ** S;
12309 S := S + 1;
12310 end loop;
12311
12312 -- Unsigned case
12313
12314 else
12315 -- If both bounds are positive, make sure that both are represen-
12316 -- table in the case where the bounds are crossed. This can happen
12317 -- either because of the way the bounds are declared, or because of
12318 -- the algorithm in Freeze_Fixed_Point_Type.
12319
12320 if Lo > Hi then
12321 Hi := Lo;
12322 end if;
12323
638e383e 12324 -- S = size, (can accommodate 0 .. (2**size - 1))
996ae0b0
RK
12325
12326 S := 0;
12327 while Hi >= Uint_2 ** S loop
12328 S := S + 1;
12329 end loop;
12330 end if;
12331
12332 return S;
12333 end Minimum_Size;
12334
affbee12
RD
12335 ---------------------------
12336 -- New_Stream_Subprogram --
12337 ---------------------------
996ae0b0 12338
affbee12
RD
12339 procedure New_Stream_Subprogram
12340 (N : Node_Id;
12341 Ent : Entity_Id;
12342 Subp : Entity_Id;
12343 Nam : TSS_Name_Type)
996ae0b0
RK
12344 is
12345 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 12346 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
07fc65c4 12347 Subp_Id : Entity_Id;
996ae0b0
RK
12348 Subp_Decl : Node_Id;
12349 F : Entity_Id;
12350 Etyp : Entity_Id;
12351
affbee12
RD
12352 Defer_Declaration : constant Boolean :=
12353 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12354 -- For a tagged type, there is a declaration for each stream attribute
12355 -- at the freeze point, and we must generate only a completion of this
12356 -- declaration. We do the same for private types, because the full view
12357 -- might be tagged. Otherwise we generate a declaration at the point of
d4b56371
AC
12358 -- the attribute definition clause. If the attribute definition comes
12359 -- from an aspect specification the declaration is part of the freeze
12360 -- actions of the type.
affbee12 12361
07fc65c4
GB
12362 function Build_Spec return Node_Id;
12363 -- Used for declaration and renaming declaration, so that this is
12364 -- treated as a renaming_as_body.
12365
12366 ----------------
12367 -- Build_Spec --
12368 ----------------
12369
b7e429ab 12370 function Build_Spec return Node_Id is
affbee12
RD
12371 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12372 Formals : List_Id;
12373 Spec : Node_Id;
e4494292 12374 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
affbee12 12375
07fc65c4 12376 begin
fbf5a39b 12377 Subp_Id := Make_Defining_Identifier (Loc, Sname);
07fc65c4 12378
affbee12
RD
12379 -- S : access Root_Stream_Type'Class
12380
12381 Formals := New_List (
12382 Make_Parameter_Specification (Loc,
12383 Defining_Identifier =>
12384 Make_Defining_Identifier (Loc, Name_S),
12385 Parameter_Type =>
12386 Make_Access_Definition (Loc,
12387 Subtype_Mark =>
e4494292 12388 New_Occurrence_Of (
affbee12
RD
12389 Designated_Type (Etype (F)), Loc))));
12390
12391 if Nam = TSS_Stream_Input then
ae05cdd6
RD
12392 Spec :=
12393 Make_Function_Specification (Loc,
12394 Defining_Unit_Name => Subp_Id,
12395 Parameter_Specifications => Formals,
12396 Result_Definition => T_Ref);
affbee12
RD
12397 else
12398 -- V : [out] T
07fc65c4 12399
affbee12
RD
12400 Append_To (Formals,
12401 Make_Parameter_Specification (Loc,
12402 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12403 Out_Present => Out_P,
12404 Parameter_Type => T_Ref));
07fc65c4 12405
bce79204
AC
12406 Spec :=
12407 Make_Procedure_Specification (Loc,
12408 Defining_Unit_Name => Subp_Id,
12409 Parameter_Specifications => Formals);
affbee12 12410 end if;
07fc65c4 12411
affbee12
RD
12412 return Spec;
12413 end Build_Spec;
996ae0b0 12414
affbee12 12415 -- Start of processing for New_Stream_Subprogram
996ae0b0 12416
affbee12
RD
12417 begin
12418 F := First_Formal (Subp);
12419
12420 if Ekind (Subp) = E_Procedure then
12421 Etyp := Etype (Next_Formal (F));
996ae0b0 12422 else
affbee12 12423 Etyp := Etype (Subp);
996ae0b0 12424 end if;
07fc65c4 12425
affbee12
RD
12426 -- Prepare subprogram declaration and insert it as an action on the
12427 -- clause node. The visibility for this entity is used to test for
12428 -- visibility of the attribute definition clause (in the sense of
12429 -- 8.3(23) as amended by AI-195).
fbf5a39b 12430
affbee12 12431 if not Defer_Declaration then
07fc65c4
GB
12432 Subp_Decl :=
12433 Make_Subprogram_Declaration (Loc,
12434 Specification => Build_Spec);
affbee12
RD
12435
12436 -- For a tagged type, there is always a visible declaration for each
8f7770f9 12437 -- stream TSS (it is a predefined primitive operation), and the
affbee12
RD
12438 -- completion of this declaration occurs at the freeze point, which is
12439 -- not always visible at places where the attribute definition clause is
12440 -- visible. So, we create a dummy entity here for the purpose of
12441 -- tracking the visibility of the attribute definition clause itself.
12442
12443 else
12444 Subp_Id :=
7675ad4f 12445 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
affbee12
RD
12446 Subp_Decl :=
12447 Make_Object_Declaration (Loc,
12448 Defining_Identifier => Subp_Id,
12449 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
07fc65c4
GB
12450 end if;
12451
d4b56371
AC
12452 if not Defer_Declaration
12453 and then From_Aspect_Specification (N)
12454 and then Has_Delayed_Freeze (Ent)
12455 then
12456 Append_Freeze_Action (Ent, Subp_Decl);
12457
12458 else
12459 Insert_Action (N, Subp_Decl);
12460 Set_Entity (N, Subp_Id);
12461 end if;
affbee12 12462
996ae0b0
RK
12463 Subp_Decl :=
12464 Make_Subprogram_Renaming_Declaration (Loc,
07fc65c4 12465 Specification => Build_Spec,
c70cf4f8 12466 Name => New_Occurrence_Of (Subp, Loc));
996ae0b0 12467
affbee12 12468 if Defer_Declaration then
996ae0b0 12469 Set_TSS (Base_Type (Ent), Subp_Id);
d4b56371 12470
996ae0b0 12471 else
d4b56371
AC
12472 if From_Aspect_Specification (N) then
12473 Append_Freeze_Action (Ent, Subp_Decl);
d4b56371
AC
12474 else
12475 Insert_Action (N, Subp_Decl);
12476 end if;
12477
996ae0b0
RK
12478 Copy_TSS (Subp_Id, Base_Type (Ent));
12479 end if;
affbee12 12480 end New_Stream_Subprogram;
996ae0b0 12481
2401c98f
HK
12482 --------------
12483 -- Pop_Type --
12484 --------------
12485
12486 procedure Pop_Type (E : Entity_Id) is
12487 begin
12488 if Ekind (E) = E_Record_Type and then E = Current_Scope then
12489 End_Scope;
12490
12491 elsif Is_Type (E)
12492 and then Has_Discriminants (E)
12493 and then Nkind (Parent (E)) /= N_Subtype_Declaration
12494 then
12495 Uninstall_Discriminants (E);
12496 Pop_Scope;
12497 end if;
12498 end Pop_Type;
12499
5f531fef
ES
12500 ---------------
12501 -- Push_Type --
12502 ---------------
77a40ec1 12503
5f531fef
ES
12504 procedure Push_Type (E : Entity_Id) is
12505 Comp : Entity_Id;
2401c98f 12506
77a40ec1 12507 begin
5f531fef 12508 if Ekind (E) = E_Record_Type then
77a40ec1 12509 Push_Scope (E);
2401c98f 12510
5f531fef
ES
12511 Comp := First_Component (E);
12512 while Present (Comp) loop
12513 Install_Entity (Comp);
12514 Next_Component (Comp);
12515 end loop;
77a40ec1 12516
5f531fef 12517 if Has_Discriminants (E) then
77a40ec1
AC
12518 Install_Discriminants (E);
12519 end if;
5f531fef
ES
12520
12521 elsif Is_Type (E)
2401c98f
HK
12522 and then Has_Discriminants (E)
12523 and then Nkind (Parent (E)) /= N_Subtype_Declaration
5f531fef
ES
12524 then
12525 Push_Scope (E);
12526 Install_Discriminants (E);
77a40ec1 12527 end if;
5f531fef 12528 end Push_Type;
77a40ec1 12529
5067f3a0
PMR
12530 -----------------------------------
12531 -- Register_Address_Clause_Check --
12532 -----------------------------------
12533
12534 procedure Register_Address_Clause_Check
12535 (N : Node_Id;
12536 X : Entity_Id;
12537 A : Uint;
12538 Y : Entity_Id;
12539 Off : Boolean)
12540 is
12541 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12542 begin
12543 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12544 end Register_Address_Clause_Check;
12545
996ae0b0
RK
12546 ------------------------
12547 -- Rep_Item_Too_Early --
12548 ------------------------
12549
0da2c8ac 12550 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
c7854dbd
JM
12551 function Has_Generic_Parent (E : Entity_Id) return Boolean;
12552 -- Return True if any ancestor is a generic type
12553
12554 function Has_Generic_Parent (E : Entity_Id) return Boolean is
12555 Ancestor_Type : Entity_Id := Etype (E);
12556
12557 begin
12558 while Present (Ancestor_Type)
12559 and then not Is_Generic_Type (Ancestor_Type)
12560 and then Etype (Ancestor_Type) /= Ancestor_Type
12561 loop
12562 Ancestor_Type := Etype (Ancestor_Type);
12563 end loop;
12564
12565 return Present (Ancestor_Type)
12566 and then Is_Generic_Type (Ancestor_Type);
12567 end Has_Generic_Parent;
12568
996ae0b0 12569 begin
affbee12 12570 -- Cannot apply non-operational rep items to generic types
996ae0b0 12571
07fc65c4
GB
12572 if Is_Operational_Item (N) then
12573 return False;
12574
12575 elsif Is_Type (T)
c7854dbd 12576 and then Has_Generic_Parent (T)
5f6061af
AC
12577 and then (Nkind (N) /= N_Pragma
12578 or else Get_Pragma_Id (N) /= Pragma_Convention)
996ae0b0 12579 then
ed2233dc 12580 Error_Msg_N ("representation item not allowed for generic type", N);
996ae0b0
RK
12581 return True;
12582 end if;
12583
0503c53a 12584 -- Otherwise check for incomplete type
996ae0b0
RK
12585
12586 if Is_Incomplete_Or_Private_Type (T)
12587 and then No (Underlying_Type (T))
a01b9df6
AC
12588 and then
12589 (Nkind (N) /= N_Pragma
d2d9cc22 12590 or else Get_Pragma_Id (N) /= Pragma_Import)
996ae0b0
RK
12591 then
12592 Error_Msg_N
12593 ("representation item must be after full type declaration", N);
12594 return True;
12595
f3d57416 12596 -- If the type has incomplete components, a representation clause is
996ae0b0
RK
12597 -- illegal but stream attributes and Convention pragmas are correct.
12598
12599 elsif Has_Private_Component (T) then
07fc65c4 12600 if Nkind (N) = N_Pragma then
996ae0b0 12601 return False;
616547fa 12602
996ae0b0
RK
12603 else
12604 Error_Msg_N
12605 ("representation item must appear after type is fully defined",
12606 N);
12607 return True;
12608 end if;
12609 else
12610 return False;
12611 end if;
12612 end Rep_Item_Too_Early;
12613
12614 -----------------------
12615 -- Rep_Item_Too_Late --
12616 -----------------------
12617
12618 function Rep_Item_Too_Late
12619 (T : Entity_Id;
12620 N : Node_Id;
b7e429ab 12621 FOnly : Boolean := False) return Boolean
996ae0b0 12622 is
5f531fef
ES
12623 function Is_Derived_Type_With_Constraint return Boolean;
12624 -- Check whether T is a derived type with an explicit constraint, in
12625 -- which case the constraint has frozen the type and the item is too
12626 -- late. This compensates for the fact that for derived scalar types
12627 -- we freeze the base type unconditionally on account of a long-standing
12628 -- issue in gigi.
12629
84c0a895
AC
12630 procedure No_Type_Rep_Item;
12631 -- Output message indicating that no type-related aspects can be
12632 -- specified due to some property of the parent type.
12633
996ae0b0 12634 procedure Too_Late;
84c0a895
AC
12635 -- Output message for an aspect being specified too late
12636
12637 -- Note that neither of the above errors is considered a serious one,
12638 -- since the effect is simply that we ignore the representation clause
12639 -- in these cases.
ab01e614
AC
12640 -- Is this really true? In any case if we make this change we must
12641 -- document the requirement in the spec of Rep_Item_Too_Late that
12642 -- if True is returned, then the rep item must be completely ignored???
84c0a895 12643
5f531fef
ES
12644 --------------------------------------
12645 -- Is_Derived_Type_With_Constraint --
12646 --------------------------------------
12647
12648 function Is_Derived_Type_With_Constraint return Boolean is
12649 Decl : constant Node_Id := Declaration_Node (T);
2401c98f 12650
5f531fef
ES
12651 begin
12652 return Is_Derived_Type (T)
12653 and then Is_Frozen (Base_Type (T))
12654 and then Is_Enumeration_Type (T)
12655 and then False
12656 and then Nkind (N) = N_Enumeration_Representation_Clause
12657 and then Nkind (Decl) = N_Subtype_Declaration
12658 and then not Is_Entity_Name (Subtype_Indication (Decl));
12659 end Is_Derived_Type_With_Constraint;
12660
84c0a895
AC
12661 ----------------------
12662 -- No_Type_Rep_Item --
12663 ----------------------
12664
12665 procedure No_Type_Rep_Item is
12666 begin
12667 Error_Msg_N ("|type-related representation item not permitted!", N);
12668 end No_Type_Rep_Item;
1c6c6771
ES
12669
12670 --------------
12671 -- Too_Late --
12672 --------------
996ae0b0
RK
12673
12674 procedure Too_Late is
12675 begin
5b75bf57
AC
12676 -- Other compilers seem more relaxed about rep items appearing too
12677 -- late. Since analysis tools typically don't care about rep items
12678 -- anyway, no reason to be too strict about this.
12679
303fbb20
AC
12680 if not Relaxed_RM_Semantics then
12681 Error_Msg_N ("|representation item appears too late!", N);
12682 end if;
996ae0b0
RK
12683 end Too_Late;
12684
2401c98f
HK
12685 -- Local variables
12686
12687 Parent_Type : Entity_Id;
12688 S : Entity_Id;
12689
996ae0b0
RK
12690 -- Start of processing for Rep_Item_Too_Late
12691
12692 begin
51e641f8 12693 -- First make sure entity is not frozen (RM 13.1(9))
996ae0b0 12694
5f531fef 12695 if (Is_Frozen (T)
2401c98f
HK
12696 or else (Is_Type (T)
12697 and then Is_Derived_Type_With_Constraint))
51e641f8
AC
12698
12699 -- Exclude imported types, which may be frozen if they appear in a
12700 -- representation clause for a local type.
12701
7b56a91b 12702 and then not From_Limited_With (T)
51e641f8 12703
303fbb20 12704 -- Exclude generated entities (not coming from source). The common
51e641f8
AC
12705 -- case is when we generate a renaming which prematurely freezes the
12706 -- renamed internal entity, but we still want to be able to set copies
12707 -- of attribute values such as Size/Alignment.
12708
12709 and then Comes_From_Source (T)
996ae0b0 12710 then
7e22a38c
AC
12711 -- A self-referential aspect is illegal if it forces freezing the
12712 -- entity before the corresponding pragma has been analyzed.
12713
12714 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12715 and then From_Aspect_Specification (N)
12716 then
12717 Error_Msg_NE
e4d04166 12718 ("aspect specification causes premature freezing of&", N, T);
7e22a38c
AC
12719 Set_Has_Delayed_Freeze (T, False);
12720 return True;
12721 end if;
12722
996ae0b0
RK
12723 Too_Late;
12724 S := First_Subtype (T);
12725
12726 if Present (Freeze_Node (S)) then
ab01e614
AC
12727 if not Relaxed_RM_Semantics then
12728 Error_Msg_NE
12729 ("??no more representation items for }", Freeze_Node (S), S);
12730 end if;
996ae0b0
RK
12731 end if;
12732
12733 return True;
12734
1fb63e89 12735 -- Check for case of untagged derived type whose parent either has
84c0a895
AC
12736 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12737 -- this case we do not output a Too_Late message, since there is no
12738 -- earlier point where the rep item could be placed to make it legal.
996ae0b0
RK
12739
12740 elsif Is_Type (T)
12741 and then not FOnly
12742 and then Is_Derived_Type (T)
12743 and then not Is_Tagged_Type (T)
12744 then
12745 Parent_Type := Etype (Base_Type (T));
12746
12747 if Has_Primitive_Operations (Parent_Type) then
84c0a895 12748 No_Type_Rep_Item;
ab01e614
AC
12749
12750 if not Relaxed_RM_Semantics then
12751 Error_Msg_NE
12752 ("\parent type & has primitive operations!", N, Parent_Type);
12753 end if;
12754
996ae0b0
RK
12755 return True;
12756
12757 elsif Is_By_Reference_Type (Parent_Type) then
84c0a895 12758 No_Type_Rep_Item;
ab01e614
AC
12759
12760 if not Relaxed_RM_Semantics then
12761 Error_Msg_NE
12762 ("\parent type & is a by reference type!", N, Parent_Type);
12763 end if;
12764
996ae0b0
RK
12765 return True;
12766 end if;
12767 end if;
12768
ab01e614
AC
12769 -- No error, but one more warning to consider. The RM (surprisingly)
12770 -- allows this pattern:
12771
12772 -- type S is ...
12773 -- primitive operations for S
12774 -- type R is new S;
12775 -- rep clause for S
12776
12777 -- Meaning that calls on the primitive operations of S for values of
12778 -- type R may require possibly expensive implicit conversion operations.
12779 -- This is not an error, but is worth a warning.
12780
12781 if not Relaxed_RM_Semantics and then Is_Type (T) then
12782 declare
12783 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12784
12785 begin
12786 if Present (DTL)
12787 and then Has_Primitive_Operations (Base_Type (T))
12788
12789 -- For now, do not generate this warning for the case of aspect
12790 -- specification using Ada 2012 syntax, since we get wrong
12791 -- messages we do not understand. The whole business of derived
12792 -- types and rep items seems a bit confused when aspects are
12793 -- used, since the aspects are not evaluated till freeze time.
12794
12795 and then not From_Aspect_Specification (N)
12796 then
12797 Error_Msg_Sloc := Sloc (DTL);
12798 Error_Msg_N
12799 ("representation item for& appears after derived type "
12800 & "declaration#??", N);
12801 Error_Msg_NE
12802 ("\may result in implicit conversions for primitive "
12803 & "operations of&??", N, T);
12804 Error_Msg_NE
12805 ("\to change representations when called with arguments "
12806 & "of type&??", N, DTL);
12807 end if;
12808 end;
12809 end if;
12810
800621e0
RD
12811 -- No error, link item into head of chain of rep items for the entity,
12812 -- but avoid chaining if we have an overloadable entity, and the pragma
12813 -- is one that can apply to multiple overloaded entities.
12814
616547fa 12815 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
0503c53a 12816 declare
6e759c2a 12817 Pname : constant Name_Id := Pragma_Name (N);
0503c53a 12818 begin
b69cd36a
AC
12819 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12820 Name_External, Name_Interface)
0503c53a
RD
12821 then
12822 return False;
12823 end if;
12824 end;
800621e0
RD
12825 end if;
12826
0503c53a 12827 Record_Rep_Item (T, N);
996ae0b0
RK
12828 return False;
12829 end Rep_Item_Too_Late;
12830
3b097d11
AC
12831 -------------------------------------
12832 -- Replace_Type_References_Generic --
12833 -------------------------------------
12834
8b034336
AC
12835 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12836 TName : constant Name_Id := Chars (T);
3b097d11 12837
3ddfabe3 12838 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
3b097d11
AC
12839 -- Processes a single node in the traversal procedure below, checking
12840 -- if node N should be replaced, and if so, doing the replacement.
12841
9e3be36e
ES
12842 function Visible_Component (Comp : Name_Id) return Entity_Id;
12843 -- Given an identifier in the expression, check whether there is a
12844 -- discriminant or component of the type that is directy visible, and
12845 -- rewrite it as the corresponding selected component of the formal of
12846 -- the subprogram. The entity is located by a sequential search, which
12847 -- seems acceptable given the typical size of component lists and check
12848 -- expressions. Possible optimization ???
12849
3ddfabe3
AC
12850 ----------------------
12851 -- Replace_Type_Ref --
12852 ----------------------
3b097d11 12853
3ddfabe3 12854 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
9e3be36e 12855 Loc : constant Source_Ptr := Sloc (N);
3b097d11 12856
9e3be36e 12857 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
20250fb8
AC
12858 -- Add the proper prefix to a reference to a component of the type
12859 -- when it is not already a selected component.
9e3be36e
ES
12860
12861 ----------------
12862 -- Add_Prefix --
12863 ----------------
3b097d11 12864
9e3be36e
ES
12865 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12866 begin
12867 Rewrite (Ref,
12868 Make_Selected_Component (Loc,
20250fb8 12869 Prefix => New_Occurrence_Of (T, Loc),
9e3be36e
ES
12870 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12871 Replace_Type_Reference (Prefix (Ref));
12872 end Add_Prefix;
12873
20250fb8
AC
12874 -- Local variables
12875
12876 Comp : Entity_Id;
12877 Pref : Node_Id;
12878 Scop : Entity_Id;
12879
9e3be36e
ES
12880 -- Start of processing for Replace_Type_Ref
12881
12882 begin
3b097d11
AC
12883 if Nkind (N) = N_Identifier then
12884
3ddfabe3
AC
12885 -- If not the type name, check whether it is a reference to some
12886 -- other type, which must be frozen before the predicate function
12887 -- is analyzed, i.e. before the freeze node of the type to which
12888 -- the predicate applies.
3b097d11
AC
12889
12890 if Chars (N) /= TName then
8b034336 12891 if Present (Current_Entity (N))
497a660d 12892 and then Is_Type (Current_Entity (N))
8b034336
AC
12893 then
12894 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12895 end if;
12896
9e3be36e
ES
12897 -- The components of the type are directly visible and can
12898 -- be referenced without a prefix.
12899
12900 if Nkind (Parent (N)) = N_Selected_Component then
12901 null;
12902
12903 -- In expression C (I), C may be a directly visible function
12904 -- or a visible component that has an array type. Disambiguate
12905 -- by examining the component type.
12906
12907 elsif Nkind (Parent (N)) = N_Indexed_Component
12908 and then N = Prefix (Parent (N))
12909 then
20250fb8 12910 Comp := Visible_Component (Chars (N));
9e3be36e 12911
20250fb8
AC
12912 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12913 Add_Prefix (N, Comp);
9e3be36e
ES
12914 end if;
12915
12916 else
20250fb8 12917 Comp := Visible_Component (Chars (N));
9e3be36e 12918
20250fb8
AC
12919 if Present (Comp) then
12920 Add_Prefix (N, Comp);
9e3be36e
ES
12921 end if;
12922 end if;
12923
3b097d11
AC
12924 return Skip;
12925
98b779ae
PMR
12926 -- Otherwise do the replacement if this is not a qualified
12927 -- reference to a homograph of the type itself. Note that the
12928 -- current instance could not appear in such a context, e.g.
12929 -- the prefix of a type conversion.
3b097d11
AC
12930
12931 else
98b779ae
PMR
12932 if Nkind (Parent (N)) /= N_Selected_Component
12933 or else N /= Selector_Name (Parent (N))
12934 then
12935 Replace_Type_Reference (N);
12936 end if;
12937
3b097d11
AC
12938 return Skip;
12939 end if;
12940
a2fd4f0e
ES
12941 -- Case of selected component, which may be a subcomponent of the
12942 -- current instance, or an expanded name which is still unanalyzed.
3b097d11
AC
12943
12944 elsif Nkind (N) = N_Selected_Component then
12945
98b779ae 12946 -- If selector name is not our type, keep going (we might still
27d357ca
HK
12947 -- have an occurrence of the type in the prefix). If it is a
12948 -- subcomponent of the current entity, add prefix.
3b097d11
AC
12949
12950 if Nkind (Selector_Name (N)) /= N_Identifier
12951 or else Chars (Selector_Name (N)) /= TName
12952 then
a2fd4f0e
ES
12953 if Nkind (Prefix (N)) = N_Identifier then
12954 Comp := Visible_Component (Chars (Prefix (N)));
12955
12956 if Present (Comp) then
12957 Add_Prefix (Prefix (N), Comp);
12958 end if;
12959 end if;
12960
3b097d11
AC
12961 return OK;
12962
12963 -- Selector name is our type, check qualification
12964
12965 else
12966 -- Loop through scopes and prefixes, doing comparison
12967
20250fb8
AC
12968 Scop := Current_Scope;
12969 Pref := Prefix (N);
3b097d11
AC
12970 loop
12971 -- Continue if no more scopes or scope with no name
12972
20250fb8 12973 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
3b097d11
AC
12974 return OK;
12975 end if;
12976
3ddfabe3
AC
12977 -- Do replace if prefix is an identifier matching the scope
12978 -- that we are currently looking at.
3b097d11 12979
20250fb8
AC
12980 if Nkind (Pref) = N_Identifier
12981 and then Chars (Pref) = Chars (Scop)
3b097d11
AC
12982 then
12983 Replace_Type_Reference (N);
12984 return Skip;
12985 end if;
12986
3ddfabe3
AC
12987 -- Go check scope above us if prefix is itself of the form
12988 -- of a selected component, whose selector matches the scope
12989 -- we are currently looking at.
3b097d11 12990
20250fb8
AC
12991 if Nkind (Pref) = N_Selected_Component
12992 and then Nkind (Selector_Name (Pref)) = N_Identifier
12993 and then Chars (Selector_Name (Pref)) = Chars (Scop)
3b097d11 12994 then
20250fb8
AC
12995 Scop := Scope (Scop);
12996 Pref := Prefix (Pref);
3b097d11
AC
12997
12998 -- For anything else, we don't have a match, so keep on
12999 -- going, there are still some weird cases where we may
13000 -- still have a replacement within the prefix.
13001
13002 else
13003 return OK;
13004 end if;
13005 end loop;
13006 end if;
13007
e477d718 13008 -- Continue for any other node kind
3b097d11
AC
13009
13010 else
13011 return OK;
13012 end if;
3ddfabe3
AC
13013 end Replace_Type_Ref;
13014
20250fb8
AC
13015 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
13016
9e3be36e
ES
13017 -----------------------
13018 -- Visible_Component --
13019 -----------------------
13020
13021 function Visible_Component (Comp : Name_Id) return Entity_Id is
13022 E : Entity_Id;
20250fb8 13023
9e3be36e 13024 begin
d268147d
ES
13025 -- Types with nameable components are records and discriminated
13026 -- private types.
13027
13028 if Ekind (T) = E_Record_Type
13029 or else (Is_Private_Type (T) and then Has_Discriminants (T))
13030 then
9e3be36e
ES
13031 E := First_Entity (T);
13032 while Present (E) loop
20250fb8 13033 if Comes_From_Source (E) and then Chars (E) = Comp then
9e3be36e
ES
13034 return E;
13035 end if;
13036
13037 Next_Entity (E);
13038 end loop;
9e3be36e 13039 end if;
d268147d 13040
611d5e3c 13041 -- Nothing by that name, or the type has no components
d268147d
ES
13042
13043 return Empty;
9e3be36e
ES
13044 end Visible_Component;
13045
20250fb8 13046 -- Start of processing for Replace_Type_References_Generic
3b097d11
AC
13047
13048 begin
13049 Replace_Type_Refs (N);
13050 end Replace_Type_References_Generic;
13051
f06f5f6b
AC
13052 --------------------------------
13053 -- Resolve_Aspect_Expressions --
13054 --------------------------------
13055
13056 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
6905a049
AC
13057 function Resolve_Name (N : Node_Id) return Traverse_Result;
13058 -- Verify that all identifiers in the expression, with the exception
13059 -- of references to the current entity, denote visible entities. This
13060 -- is done only to detect visibility errors, as the expression will be
13061 -- properly analyzed/expanded during analysis of the predicate function
d74716b3
AC
13062 -- body. We omit quantified expressions from this test, given that they
13063 -- introduce a local identifier that would require proper expansion to
13064 -- handle properly.
6905a049 13065
da9683f4
AC
13066 -- In ASIS_Mode we preserve the entity in the source because there is
13067 -- no subsequent expansion to decorate the tree.
13068
6905a049
AC
13069 ------------------
13070 -- Resolve_Name --
13071 ------------------
13072
13073 function Resolve_Name (N : Node_Id) return Traverse_Result is
0691ed6b 13074 Dummy : Traverse_Result;
1155ae01 13075
6905a049
AC
13076 begin
13077 if Nkind (N) = N_Selected_Component then
13078 if Nkind (Prefix (N)) = N_Identifier
13079 and then Chars (Prefix (N)) /= Chars (E)
13080 then
a14bbbb4 13081 Find_Selected_Component (N);
6905a049 13082 end if;
2cc7967f 13083
6905a049
AC
13084 return Skip;
13085
e98cd75f
PMR
13086 -- Resolve identifiers that are not selectors in parameter
13087 -- associations (these are never resolved by visibility).
13088
13089 elsif Nkind (N) = N_Identifier
13090 and then Chars (N) /= Chars (E)
13091 and then (Nkind (Parent (N)) /= N_Parameter_Association
13092 or else N /= Selector_Name (Parent (N)))
13093 then
6905a049 13094 Find_Direct_Name (N);
da9683f4 13095
ae5115dd
AC
13096 -- In ASIS mode we must analyze overloaded identifiers to ensure
13097 -- their correct decoration because expansion is disabled (and
13098 -- the expansion of freeze nodes takes care of resolving aspect
13099 -- expressions).
13100
13101 if ASIS_Mode then
13102 if Is_Overloaded (N) then
13103 Analyze (Parent (N));
13104 end if;
13105 else
da9683f4
AC
13106 Set_Entity (N, Empty);
13107 end if;
d74716b3 13108
0691ed6b
AC
13109 -- The name is component association needs no resolution.
13110
13111 elsif Nkind (N) = N_Component_Association then
13112 Dummy := Resolve_Name (Expression (N));
13113 return Skip;
13114
d74716b3
AC
13115 elsif Nkind (N) = N_Quantified_Expression then
13116 return Skip;
6905a049
AC
13117 end if;
13118
13119 return OK;
13120 end Resolve_Name;
13121
13122 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
13123
1155ae01
AC
13124 -- Local variables
13125
66f95f60
AC
13126 ASN : Node_Id := First_Rep_Item (E);
13127
2cc7967f
AC
13128 -- Start of processing for Resolve_Aspect_Expressions
13129
f06f5f6b 13130 begin
5f531fef
ES
13131 if No (ASN) then
13132 return;
13133 end if;
3ddfabe3 13134
66f95f60
AC
13135 while Present (ASN) loop
13136 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
13137 declare
13138 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
13139 Expr : constant Node_Id := Expression (ASN);
643827e9 13140
66f95f60
AC
13141 begin
13142 case A_Id is
643827e9 13143
66f95f60
AC
13144 -- For now we only deal with aspects that do not generate
13145 -- subprograms, or that may mention current instances of
13146 -- types. These will require special handling (???TBD).
f06f5f6b 13147
66f95f60
AC
13148 when Aspect_Invariant
13149 | Aspect_Predicate
13150 | Aspect_Predicate_Failure
13151 =>
13152 null;
f06f5f6b 13153
66f95f60
AC
13154 when Aspect_Dynamic_Predicate
13155 | Aspect_Static_Predicate
13156 =>
13157 -- Build predicate function specification and preanalyze
0691ed6b
AC
13158 -- expression after type replacement. The function
13159 -- declaration must be analyzed in the scope of the
5f531fef
ES
13160 -- type, but the the expression can reference components
13161 -- and discriminants of the type.
6905a049 13162
66f95f60
AC
13163 if No (Predicate_Function (E)) then
13164 declare
13165 FDecl : constant Node_Id :=
13166 Build_Predicate_Function_Declaration (E);
13167 pragma Unreferenced (FDecl);
0691ed6b 13168
66f95f60 13169 begin
5f531fef 13170 Push_Type (E);
66f95f60 13171 Resolve_Aspect_Expression (Expr);
5f531fef 13172 Pop_Type (E);
66f95f60
AC
13173 end;
13174 end if;
6905a049 13175
66f95f60
AC
13176 when Pre_Post_Aspects =>
13177 null;
f06f5f6b 13178
66f95f60
AC
13179 when Aspect_Iterable =>
13180 if Nkind (Expr) = N_Aggregate then
13181 declare
13182 Assoc : Node_Id;
f06f5f6b 13183
66f95f60
AC
13184 begin
13185 Assoc := First (Component_Associations (Expr));
13186 while Present (Assoc) loop
13187 Find_Direct_Name (Expression (Assoc));
13188 Next (Assoc);
13189 end loop;
13190 end;
13191 end if;
f06f5f6b 13192
683af98c
AC
13193 -- The expression for Default_Value is a static expression
13194 -- of the type, but this expression does not freeze the
13195 -- type, so it can still appear in a representation clause
13196 -- before the actual freeze point.
13197
13198 when Aspect_Default_Value =>
13199 Set_Must_Not_Freeze (Expr);
13200 Preanalyze_Spec_Expression (Expr, E);
13201
5f531fef
ES
13202 when Aspect_Priority =>
13203 Push_Type (E);
13204 Preanalyze_Spec_Expression (Expr, Any_Integer);
13205 Pop_Type (E);
13206
f71b4cd4
PMR
13207 -- Ditto for Storage_Size. Any other aspects that carry
13208 -- expressions that should not freeze ??? This is only
13209 -- relevant to the misuse of deferred constants.
13210
13211 when Aspect_Storage_Size =>
13212 Set_Must_Not_Freeze (Expr);
13213 Preanalyze_Spec_Expression (Expr, Any_Integer);
13214
66f95f60
AC
13215 when others =>
13216 if Present (Expr) then
13217 case Aspect_Argument (A_Id) is
13218 when Expression
13219 | Optional_Expression
13220 =>
13221 Analyze_And_Resolve (Expr);
13222
13223 when Name
13224 | Optional_Name
13225 =>
13226 if Nkind (Expr) = N_Identifier then
13227 Find_Direct_Name (Expr);
13228
13229 elsif Nkind (Expr) = N_Selected_Component then
13230 Find_Selected_Component (Expr);
13231 end if;
13232 end case;
13233 end if;
13234 end case;
13235 end;
f06f5f6b
AC
13236 end if;
13237
b7737d1d 13238 ASN := Next_Rep_Item (ASN);
f06f5f6b
AC
13239 end loop;
13240 end Resolve_Aspect_Expressions;
13241
996ae0b0
RK
13242 -------------------------
13243 -- Same_Representation --
13244 -------------------------
13245
13246 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
13247 T1 : constant Entity_Id := Underlying_Type (Typ1);
13248 T2 : constant Entity_Id := Underlying_Type (Typ2);
13249
13250 begin
13251 -- A quick check, if base types are the same, then we definitely have
13252 -- the same representation, because the subtype specific representation
13253 -- attributes (Size and Alignment) do not affect representation from
13254 -- the point of view of this test.
13255
13256 if Base_Type (T1) = Base_Type (T2) then
13257 return True;
13258
13259 elsif Is_Private_Type (Base_Type (T2))
13260 and then Base_Type (T1) = Full_View (Base_Type (T2))
13261 then
13262 return True;
13263 end if;
13264
8489c295
AC
13265 -- Tagged types always have the same representation, because it is not
13266 -- possible to specify different representations for common fields.
996ae0b0
RK
13267
13268 if Is_Tagged_Type (T1) then
13269 return True;
13270 end if;
13271
13272 -- Representations are definitely different if conventions differ
13273
13274 if Convention (T1) /= Convention (T2) then
13275 return False;
13276 end if;
13277
03eb6036
AC
13278 -- Representations are different if component alignments or scalar
13279 -- storage orders differ.
996ae0b0
RK
13280
13281 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
752b81d9 13282 and then
996ae0b0 13283 (Is_Record_Type (T2) or else Is_Array_Type (T2))
03eb6036
AC
13284 and then
13285 (Component_Alignment (T1) /= Component_Alignment (T2)
dc06dd83 13286 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
996ae0b0
RK
13287 then
13288 return False;
13289 end if;
13290
13291 -- For arrays, the only real issue is component size. If we know the
13292 -- component size for both arrays, and it is the same, then that's
13293 -- good enough to know we don't have a change of representation.
13294
13295 if Is_Array_Type (T1) then
13296 if Known_Component_Size (T1)
13297 and then Known_Component_Size (T2)
13298 and then Component_Size (T1) = Component_Size (T2)
13299 then
535a8637 13300 return True;
996ae0b0
RK
13301 end if;
13302 end if;
13303
8489c295
AC
13304 -- For records, representations are different if reorderings differ
13305
13306 if Is_Record_Type (T1)
13307 and then Is_Record_Type (T2)
13308 and then No_Reordering (T1) /= No_Reordering (T2)
13309 then
13310 return False;
13311 end if;
13312
996ae0b0
RK
13313 -- Types definitely have same representation if neither has non-standard
13314 -- representation since default representations are always consistent.
13315 -- If only one has non-standard representation, and the other does not,
13316 -- then we consider that they do not have the same representation. They
13317 -- might, but there is no way of telling early enough.
13318
13319 if Has_Non_Standard_Rep (T1) then
13320 if not Has_Non_Standard_Rep (T2) then
13321 return False;
13322 end if;
13323 else
13324 return not Has_Non_Standard_Rep (T2);
13325 end if;
13326
0503c53a
RD
13327 -- Here the two types both have non-standard representation, and we need
13328 -- to determine if they have the same non-standard representation.
996ae0b0
RK
13329
13330 -- For arrays, we simply need to test if the component sizes are the
13331 -- same. Pragma Pack is reflected in modified component sizes, so this
13332 -- check also deals with pragma Pack.
13333
13334 if Is_Array_Type (T1) then
13335 return Component_Size (T1) = Component_Size (T2);
13336
996ae0b0
RK
13337 -- Case of record types
13338
13339 elsif Is_Record_Type (T1) then
13340
13341 -- Packed status must conform
13342
13343 if Is_Packed (T1) /= Is_Packed (T2) then
13344 return False;
13345
13346 -- Otherwise we must check components. Typ2 maybe a constrained
13347 -- subtype with fewer components, so we compare the components
13348 -- of the base types.
13349
13350 else
13351 Record_Case : declare
13352 CD1, CD2 : Entity_Id;
13353
13354 function Same_Rep return Boolean;
13355 -- CD1 and CD2 are either components or discriminants. This
03eb6036 13356 -- function tests whether they have the same representation.
996ae0b0 13357
0da2c8ac
AC
13358 --------------
13359 -- Same_Rep --
13360 --------------
13361
996ae0b0
RK
13362 function Same_Rep return Boolean is
13363 begin
13364 if No (Component_Clause (CD1)) then
13365 return No (Component_Clause (CD2));
996ae0b0 13366 else
03eb6036
AC
13367 -- Note: at this point, component clauses have been
13368 -- normalized to the default bit order, so that the
13369 -- comparison of Component_Bit_Offsets is meaningful.
13370
996ae0b0
RK
13371 return
13372 Present (Component_Clause (CD2))
13373 and then
13374 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13375 and then
13376 Esize (CD1) = Esize (CD2);
13377 end if;
13378 end Same_Rep;
13379
d8221f45 13380 -- Start of processing for Record_Case
996ae0b0
RK
13381
13382 begin
13383 if Has_Discriminants (T1) then
996ae0b0 13384
fbf5a39b
AC
13385 -- The number of discriminants may be different if the
13386 -- derived type has fewer (constrained by values). The
13387 -- invisible discriminants retain the representation of
13388 -- the original, so the discrepancy does not per se
13389 -- indicate a different representation.
13390
616547fa
AC
13391 CD1 := First_Discriminant (T1);
13392 CD2 := First_Discriminant (T2);
13393 while Present (CD1) and then Present (CD2) loop
996ae0b0
RK
13394 if not Same_Rep then
13395 return False;
13396 else
13397 Next_Discriminant (CD1);
13398 Next_Discriminant (CD2);
13399 end if;
13400 end loop;
13401 end if;
13402
13403 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13404 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
996ae0b0
RK
13405 while Present (CD1) loop
13406 if not Same_Rep then
13407 return False;
13408 else
13409 Next_Component (CD1);
13410 Next_Component (CD2);
13411 end if;
13412 end loop;
13413
13414 return True;
13415 end Record_Case;
13416 end if;
13417
13418 -- For enumeration types, we must check each literal to see if the
13419 -- representation is the same. Note that we do not permit enumeration
f3d57416 13420 -- representation clauses for Character and Wide_Character, so these
996ae0b0
RK
13421 -- cases were already dealt with.
13422
13423 elsif Is_Enumeration_Type (T1) then
996ae0b0
RK
13424 Enumeration_Case : declare
13425 L1, L2 : Entity_Id;
13426
13427 begin
13428 L1 := First_Literal (T1);
13429 L2 := First_Literal (T2);
996ae0b0
RK
13430 while Present (L1) loop
13431 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13432 return False;
13433 else
13434 Next_Literal (L1);
13435 Next_Literal (L2);
13436 end if;
13437 end loop;
13438
13439 return True;
996ae0b0
RK
13440 end Enumeration_Case;
13441
13442 -- Any other types have the same representation for these purposes
13443
13444 else
13445 return True;
13446 end if;
996ae0b0
RK
13447 end Same_Representation;
13448
b4f149c2
AC
13449 --------------------------------
13450 -- Resolve_Iterable_Operation --
13451 --------------------------------
13452
13453 procedure Resolve_Iterable_Operation
13454 (N : Node_Id;
13455 Cursor : Entity_Id;
13456 Typ : Entity_Id;
13457 Nam : Name_Id)
13458 is
13459 Ent : Entity_Id;
13460 F1 : Entity_Id;
13461 F2 : Entity_Id;
13462
13463 begin
13464 if not Is_Overloaded (N) then
13465 if not Is_Entity_Name (N)
13466 or else Ekind (Entity (N)) /= E_Function
13467 or else Scope (Entity (N)) /= Scope (Typ)
13468 or else No (First_Formal (Entity (N)))
13469 or else Etype (First_Formal (Entity (N))) /= Typ
13470 then
3fc40cd7
PMR
13471 Error_Msg_N
13472 ("iterable primitive must be local function name whose first "
13473 & "formal is an iterable type", N);
a6ce7e76 13474 return;
b4f149c2
AC
13475 end if;
13476
13477 Ent := Entity (N);
3fc40cd7 13478 F1 := First_Formal (Ent);
b4f149c2 13479
3fc40cd7 13480 if Nam = Name_First or else Nam = Name_Last then
367601d1
PMR
13481
13482 -- First or Last (Container) => Cursor
b4f149c2
AC
13483
13484 if Etype (Ent) /= Cursor then
13485 Error_Msg_N ("primitive for First must yield a curosr", N);
13486 end if;
13487
13488 elsif Nam = Name_Next then
13489
13490 -- Next (Container, Cursor) => Cursor
13491
13492 F2 := Next_Formal (F1);
13493
13494 if Etype (F2) /= Cursor
13495 or else Etype (Ent) /= Cursor
13496 or else Present (Next_Formal (F2))
13497 then
13498 Error_Msg_N ("no match for Next iterable primitive", N);
13499 end if;
13500
367601d1
PMR
13501 elsif Nam = Name_Previous then
13502
13503 -- Previous (Container, Cursor) => Cursor
13504
13505 F2 := Next_Formal (F1);
13506
13507 if Etype (F2) /= Cursor
13508 or else Etype (Ent) /= Cursor
13509 or else Present (Next_Formal (F2))
13510 then
13511 Error_Msg_N ("no match for Previous iterable primitive", N);
13512 end if;
13513
b4f149c2
AC
13514 elsif Nam = Name_Has_Element then
13515
13516 -- Has_Element (Container, Cursor) => Boolean
13517
13518 F2 := Next_Formal (F1);
3fc40cd7 13519
b4f149c2
AC
13520 if Etype (F2) /= Cursor
13521 or else Etype (Ent) /= Standard_Boolean
13522 or else Present (Next_Formal (F2))
13523 then
13524 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13525 end if;
13526
13527 elsif Nam = Name_Element then
ffdeb702
AC
13528 F2 := Next_Formal (F1);
13529
13530 if No (F2)
13531 or else Etype (F2) /= Cursor
13532 or else Present (Next_Formal (F2))
13533 then
13534 Error_Msg_N ("no match for Element iterable primitive", N);
13535 end if;
b4f149c2
AC
13536
13537 else
13538 raise Program_Error;
13539 end if;
13540
13541 else
3fc40cd7
PMR
13542 -- Overloaded case: find subprogram with proper signature. Caller
13543 -- will report error if no match is found.
b4f149c2
AC
13544
13545 declare
13546 I : Interp_Index;
13547 It : Interp;
13548
13549 begin
13550 Get_First_Interp (N, I, It);
13551 while Present (It.Typ) loop
13552 if Ekind (It.Nam) = E_Function
ffdeb702 13553 and then Scope (It.Nam) = Scope (Typ)
b4f149c2
AC
13554 and then Etype (First_Formal (It.Nam)) = Typ
13555 then
13556 F1 := First_Formal (It.Nam);
13557
13558 if Nam = Name_First then
13559 if Etype (It.Nam) = Cursor
13560 and then No (Next_Formal (F1))
13561 then
13562 Set_Entity (N, It.Nam);
13563 exit;
13564 end if;
13565
13566 elsif Nam = Name_Next then
13567 F2 := Next_Formal (F1);
13568
13569 if Present (F2)
13570 and then No (Next_Formal (F2))
13571 and then Etype (F2) = Cursor
13572 and then Etype (It.Nam) = Cursor
13573 then
13574 Set_Entity (N, It.Nam);
13575 exit;
13576 end if;
13577
13578 elsif Nam = Name_Has_Element then
13579 F2 := Next_Formal (F1);
13580
13581 if Present (F2)
13582 and then No (Next_Formal (F2))
13583 and then Etype (F2) = Cursor
13584 and then Etype (It.Nam) = Standard_Boolean
13585 then
13586 Set_Entity (N, It.Nam);
13587 F2 := Next_Formal (F1);
13588 exit;
13589 end if;
13590
13591 elsif Nam = Name_Element then
ffdeb702
AC
13592 F2 := Next_Formal (F1);
13593
b4f149c2
AC
13594 if Present (F2)
13595 and then No (Next_Formal (F2))
13596 and then Etype (F2) = Cursor
13597 then
13598 Set_Entity (N, It.Nam);
13599 exit;
13600 end if;
13601 end if;
13602 end if;
13603
13604 Get_Next_Interp (I, It);
13605 end loop;
13606 end;
13607 end if;
13608 end Resolve_Iterable_Operation;
13609
a3f2babd
AC
13610 ----------------
13611 -- Set_Biased --
13612 ----------------
13613
13614 procedure Set_Biased
13615 (E : Entity_Id;
13616 N : Node_Id;
13617 Msg : String;
13618 Biased : Boolean := True)
13619 is
13620 begin
13621 if Biased then
13622 Set_Has_Biased_Representation (E);
13623
13624 if Warn_On_Biased_Representation then
13625 Error_Msg_NE
dbfeb4fa 13626 ("?B?" & Msg & " forces biased representation for&", N, E);
a3f2babd
AC
13627 end if;
13628 end if;
13629 end Set_Biased;
13630
996ae0b0
RK
13631 --------------------
13632 -- Set_Enum_Esize --
13633 --------------------
13634
13635 procedure Set_Enum_Esize (T : Entity_Id) is
13636 Lo : Uint;
13637 Hi : Uint;
13638 Sz : Nat;
13639
13640 begin
13641 Init_Alignment (T);
13642
13643 -- Find the minimum standard size (8,16,32,64) that fits
13644
13645 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13646 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13647
13648 if Lo < 0 then
13649 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
07fc65c4 13650 Sz := Standard_Character_Size; -- May be > 8 on some targets
996ae0b0
RK
13651
13652 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13653 Sz := 16;
13654
13655 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13656 Sz := 32;
13657
13658 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13659 Sz := 64;
13660 end if;
13661
13662 else
13663 if Hi < Uint_2**08 then
07fc65c4 13664 Sz := Standard_Character_Size; -- May be > 8 on some targets
996ae0b0
RK
13665
13666 elsif Hi < Uint_2**16 then
13667 Sz := 16;
13668
13669 elsif Hi < Uint_2**32 then
13670 Sz := 32;
13671
13672 else pragma Assert (Hi < Uint_2**63);
13673 Sz := 64;
13674 end if;
13675 end if;
13676
13677 -- That minimum is the proper size unless we have a foreign convention
13678 -- and the size required is 32 or less, in which case we bump the size
13679 -- up to 32. This is required for C and C++ and seems reasonable for
13680 -- all other foreign conventions.
13681
13682 if Has_Foreign_Convention (T)
13683 and then Esize (T) < Standard_Integer_Size
d0ef7921
AC
13684
13685 -- Don't do this if Short_Enums on target
13686
f27ad2b2 13687 and then not Target_Short_Enums
996ae0b0
RK
13688 then
13689 Init_Esize (T, Standard_Integer_Size);
996ae0b0
RK
13690 else
13691 Init_Esize (T, Sz);
13692 end if;
996ae0b0
RK
13693 end Set_Enum_Esize;
13694
77a40ec1
AC
13695 -----------------------------
13696 -- Uninstall_Discriminants --
13697 -----------------------------
13698
13699 procedure Uninstall_Discriminants (E : Entity_Id) is
13700 Disc : Entity_Id;
13701 Prev : Entity_Id;
13702 Outer : Entity_Id;
13703
13704 begin
13705 -- Discriminants have been made visible for type declarations and
13706 -- protected type declarations, not for subtype declarations.
13707
13708 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13709 Disc := First_Discriminant (E);
13710 while Present (Disc) loop
13711 if Disc /= Current_Entity (Disc) then
13712 Prev := Current_Entity (Disc);
13713 while Present (Prev)
13714 and then Present (Homonym (Prev))
13715 and then Homonym (Prev) /= Disc
13716 loop
13717 Prev := Homonym (Prev);
13718 end loop;
13719 else
13720 Prev := Empty;
13721 end if;
13722
13723 Set_Is_Immediately_Visible (Disc, False);
13724
13725 Outer := Homonym (Disc);
13726 while Present (Outer) and then Scope (Outer) = E loop
13727 Outer := Homonym (Outer);
13728 end loop;
13729
13730 -- Reset homonym link of other entities, but do not modify link
8a0183fd 13731 -- between entities in current scope, so that the back end can
77a40ec1
AC
13732 -- have a proper count of local overloadings.
13733
13734 if No (Prev) then
13735 Set_Name_Entity_Id (Chars (Disc), Outer);
13736
13737 elsif Scope (Prev) /= Scope (Disc) then
13738 Set_Homonym (Prev, Outer);
13739 end if;
13740
13741 Next_Discriminant (Disc);
13742 end loop;
13743 end if;
13744 end Uninstall_Discriminants;
13745
2642f998
RD
13746 ------------------------------
13747 -- Validate_Address_Clauses --
13748 ------------------------------
13749
13750 procedure Validate_Address_Clauses is
36d3d5d3
EB
13751 function Offset_Value (Expr : Node_Id) return Uint;
13752 -- Given an Address attribute reference, return the value in bits of its
13753 -- offset from the first bit of the underlying entity, or 0 if it is not
13754 -- known at compile time.
13755
13756 ------------------
13757 -- Offset_Value --
13758 ------------------
13759
13760 function Offset_Value (Expr : Node_Id) return Uint is
13761 N : Node_Id := Prefix (Expr);
13762 Off : Uint;
13763 Val : Uint := Uint_0;
13764
13765 begin
13766 -- Climb the prefix chain and compute the cumulative offset
13767
13768 loop
13769 if Is_Entity_Name (N) then
13770 return Val;
13771
13772 elsif Nkind (N) = N_Selected_Component then
13773 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13774 if Off /= No_Uint and then Off >= Uint_0 then
13775 Val := Val + Off;
13776 N := Prefix (N);
13777 else
13778 return Uint_0;
13779 end if;
13780
13781 elsif Nkind (N) = N_Indexed_Component then
13782 Off := Indexed_Component_Bit_Offset (N);
13783 if Off /= No_Uint then
13784 Val := Val + Off;
13785 N := Prefix (N);
13786 else
13787 return Uint_0;
13788 end if;
13789
13790 else
13791 return Uint_0;
13792 end if;
13793 end loop;
13794 end Offset_Value;
13795
13796 -- Start of processing for Validate_Address_Clauses
13797
2642f998
RD
13798 begin
13799 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13800 declare
13801 ACCR : Address_Clause_Check_Record
13802 renames Address_Clause_Checks.Table (J);
13803
f4cd2542
EB
13804 Expr : Node_Id;
13805
2642f998 13806 X_Alignment : Uint;
66c19cd4 13807 Y_Alignment : Uint := Uint_0;
2642f998
RD
13808
13809 X_Size : Uint;
66c19cd4 13810 Y_Size : Uint := Uint_0;
2642f998 13811
36d3d5d3
EB
13812 X_Offs : Uint;
13813
2642f998
RD
13814 begin
13815 -- Skip processing of this entry if warning already posted
13816
13817 if not Address_Warning_Posted (ACCR.N) then
f4cd2542 13818 Expr := Original_Node (Expression (ACCR.N));
2642f998 13819
f26a3587 13820 -- Get alignments, sizes and offset, if any
2642f998 13821
f4cd2542 13822 X_Alignment := Alignment (ACCR.X);
80007176 13823 X_Size := Esize (ACCR.X);
f26a3587
AC
13824
13825 if Present (ACCR.Y) then
13826 Y_Alignment := Alignment (ACCR.Y);
80007176 13827 Y_Size := Esize (ACCR.Y);
f26a3587 13828 end if;
2642f998 13829
36d3d5d3
EB
13830 if ACCR.Off
13831 and then Nkind (Expr) = N_Attribute_Reference
13832 and then Attribute_Name (Expr) = Name_Address
13833 then
13834 X_Offs := Offset_Value (Expr);
13835 else
13836 X_Offs := Uint_0;
13837 end if;
13838
f26a3587
AC
13839 -- Check for known value not multiple of alignment
13840
13841 if No (ACCR.Y) then
5067f3a0 13842 if not Alignment_Checks_Suppressed (ACCR)
f26a3587
AC
13843 and then X_Alignment /= 0
13844 and then ACCR.A mod X_Alignment /= 0
13845 then
13846 Error_Msg_NE
13847 ("??specified address for& is inconsistent with "
13848 & "alignment", ACCR.N, ACCR.X);
13849 Error_Msg_N
13850 ("\??program execution may be erroneous (RM 13.3(27))",
13851 ACCR.N);
13852
13853 Error_Msg_Uint_1 := X_Alignment;
13854 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13855 end if;
13856
2642f998
RD
13857 -- Check for large object overlaying smaller one
13858
f26a3587 13859 elsif Y_Size > Uint_0
2642f998 13860 and then X_Size > Uint_0
36d3d5d3 13861 and then X_Offs + X_Size > Y_Size
2642f998 13862 then
e9c12b91 13863 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
2642f998 13864 Error_Msg_N
dbfeb4fa 13865 ("\??program execution may be erroneous", ACCR.N);
e9c12b91 13866
2642f998 13867 Error_Msg_Uint_1 := X_Size;
e9c12b91
AC
13868 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13869
2642f998 13870 Error_Msg_Uint_1 := Y_Size;
e9c12b91 13871 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
2642f998 13872
73170f9e 13873 if Y_Size >= X_Size then
36d3d5d3 13874 Error_Msg_Uint_1 := X_Offs;
73170f9e 13875 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
36d3d5d3
EB
13876 end if;
13877
f4cd2542 13878 -- Check for inadequate alignment, both of the base object
c944345b
RD
13879 -- and of the offset, if any. We only do this check if the
13880 -- run-time Alignment_Check is active. No point in warning
13881 -- if this check has been suppressed (or is suppressed by
13882 -- default in the non-strict alignment machine case).
2642f998 13883
f4cd2542
EB
13884 -- Note: we do not check the alignment if we gave a size
13885 -- warning, since it would likely be redundant.
2642f998 13886
5067f3a0 13887 elsif not Alignment_Checks_Suppressed (ACCR)
c944345b 13888 and then Y_Alignment /= Uint_0
e9c12b91
AC
13889 and then
13890 (Y_Alignment < X_Alignment
13891 or else
13892 (ACCR.Off
13893 and then Nkind (Expr) = N_Attribute_Reference
13894 and then Attribute_Name (Expr) = Name_Address
13895 and then Has_Compatible_Alignment
13896 (ACCR.X, Prefix (Expr), True) /=
13897 Known_Compatible))
2642f998
RD
13898 then
13899 Error_Msg_NE
e9c12b91
AC
13900 ("??specified address for& may be inconsistent with "
13901 & "alignment", ACCR.N, ACCR.X);
2642f998 13902 Error_Msg_N
dbfeb4fa 13903 ("\??program execution may be erroneous (RM 13.3(27))",
2642f998 13904 ACCR.N);
e9c12b91 13905
2642f998 13906 Error_Msg_Uint_1 := X_Alignment;
e9c12b91
AC
13907 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13908
2642f998 13909 Error_Msg_Uint_1 := Y_Alignment;
e9c12b91
AC
13910 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13911
f4cd2542
EB
13912 if Y_Alignment >= X_Alignment then
13913 Error_Msg_N
e9c12b91 13914 ("\??but offset is not multiple of alignment", ACCR.N);
f4cd2542 13915 end if;
2642f998
RD
13916 end if;
13917 end if;
13918 end;
13919 end loop;
13920 end Validate_Address_Clauses;
13921
105b5e65
AC
13922 ---------------------------
13923 -- Validate_Independence --
13924 ---------------------------
13925
13926 procedure Validate_Independence is
13927 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13928 N : Node_Id;
13929 E : Entity_Id;
13930 IC : Boolean;
13931 Comp : Entity_Id;
13932 Addr : Node_Id;
13933 P : Node_Id;
13934
13935 procedure Check_Array_Type (Atyp : Entity_Id);
13936 -- Checks if the array type Atyp has independent components, and
13937 -- if not, outputs an appropriate set of error messages.
13938
13939 procedure No_Independence;
13940 -- Output message that independence cannot be guaranteed
13941
13942 function OK_Component (C : Entity_Id) return Boolean;
13943 -- Checks one component to see if it is independently accessible, and
13944 -- if so yields True, otherwise yields False if independent access
13945 -- cannot be guaranteed. This is a conservative routine, it only
13946 -- returns True if it knows for sure, it returns False if it knows
13947 -- there is a problem, or it cannot be sure there is no problem.
13948
13949 procedure Reason_Bad_Component (C : Entity_Id);
13950 -- Outputs continuation message if a reason can be determined for
13951 -- the component C being bad.
13952
13953 ----------------------
13954 -- Check_Array_Type --
13955 ----------------------
13956
13957 procedure Check_Array_Type (Atyp : Entity_Id) is
13958 Ctyp : constant Entity_Id := Component_Type (Atyp);
13959
13960 begin
13961 -- OK if no alignment clause, no pack, and no component size
13962
13963 if not Has_Component_Size_Clause (Atyp)
13964 and then not Has_Alignment_Clause (Atyp)
13965 and then not Is_Packed (Atyp)
13966 then
13967 return;
13968 end if;
13969
9d2a2071
AC
13970 -- Case of component size is greater than or equal to 64 and the
13971 -- alignment of the array is at least as large as the alignment
13972 -- of the component. We are definitely OK in this situation.
13973
13974 if Known_Component_Size (Atyp)
13975 and then Component_Size (Atyp) >= 64
13976 and then Known_Alignment (Atyp)
13977 and then Known_Alignment (Ctyp)
13978 and then Alignment (Atyp) >= Alignment (Ctyp)
13979 then
13980 return;
13981 end if;
13982
105b5e65
AC
13983 -- Check actual component size
13984
13985 if not Known_Component_Size (Atyp)
13986 or else not (Addressable (Component_Size (Atyp))
9d2a2071 13987 and then Component_Size (Atyp) < 64)
105b5e65
AC
13988 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13989 then
13990 No_Independence;
13991
13992 -- Bad component size, check reason
13993
13994 if Has_Component_Size_Clause (Atyp) then
616547fa
AC
13995 P := Get_Attribute_Definition_Clause
13996 (Atyp, Attribute_Component_Size);
105b5e65
AC
13997
13998 if Present (P) then
13999 Error_Msg_Sloc := Sloc (P);
14000 Error_Msg_N ("\because of Component_Size clause#", N);
14001 return;
14002 end if;
14003 end if;
14004
14005 if Is_Packed (Atyp) then
14006 P := Get_Rep_Pragma (Atyp, Name_Pack);
14007
14008 if Present (P) then
14009 Error_Msg_Sloc := Sloc (P);
14010 Error_Msg_N ("\because of pragma Pack#", N);
14011 return;
14012 end if;
14013 end if;
14014
14015 -- No reason found, just return
14016
14017 return;
14018 end if;
14019
14020 -- Array type is OK independence-wise
14021
14022 return;
14023 end Check_Array_Type;
14024
14025 ---------------------
14026 -- No_Independence --
14027 ---------------------
14028
14029 procedure No_Independence is
14030 begin
6e759c2a 14031 if Pragma_Name (N) = Name_Independent then
b69cd36a 14032 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
105b5e65
AC
14033 else
14034 Error_Msg_NE
14035 ("independent components cannot be guaranteed for&", N, E);
14036 end if;
14037 end No_Independence;
14038
14039 ------------------
14040 -- OK_Component --
14041 ------------------
14042
14043 function OK_Component (C : Entity_Id) return Boolean is
14044 Rec : constant Entity_Id := Scope (C);
14045 Ctyp : constant Entity_Id := Etype (C);
14046
14047 begin
14048 -- OK if no component clause, no Pack, and no alignment clause
14049
14050 if No (Component_Clause (C))
14051 and then not Is_Packed (Rec)
14052 and then not Has_Alignment_Clause (Rec)
14053 then
14054 return True;
14055 end if;
14056
14057 -- Here we look at the actual component layout. A component is
14058 -- addressable if its size is a multiple of the Esize of the
14059 -- component type, and its starting position in the record has
14060 -- appropriate alignment, and the record itself has appropriate
14061 -- alignment to guarantee the component alignment.
14062
14063 -- Make sure sizes are static, always assume the worst for any
14064 -- cases where we cannot check static values.
14065
14066 if not (Known_Static_Esize (C)
616547fa
AC
14067 and then
14068 Known_Static_Esize (Ctyp))
105b5e65
AC
14069 then
14070 return False;
14071 end if;
14072
14073 -- Size of component must be addressable or greater than 64 bits
14074 -- and a multiple of bytes.
14075
616547fa 14076 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
105b5e65
AC
14077 return False;
14078 end if;
14079
14080 -- Check size is proper multiple
14081
14082 if Esize (C) mod Esize (Ctyp) /= 0 then
14083 return False;
14084 end if;
14085
14086 -- Check alignment of component is OK
14087
14088 if not Known_Component_Bit_Offset (C)
14089 or else Component_Bit_Offset (C) < Uint_0
14090 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
14091 then
14092 return False;
14093 end if;
14094
14095 -- Check alignment of record type is OK
14096
14097 if not Known_Alignment (Rec)
14098 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14099 then
14100 return False;
14101 end if;
14102
14103 -- All tests passed, component is addressable
14104
14105 return True;
14106 end OK_Component;
14107
14108 --------------------------
14109 -- Reason_Bad_Component --
14110 --------------------------
14111
14112 procedure Reason_Bad_Component (C : Entity_Id) is
14113 Rec : constant Entity_Id := Scope (C);
14114 Ctyp : constant Entity_Id := Etype (C);
14115
14116 begin
14117 -- If component clause present assume that's the problem
14118
14119 if Present (Component_Clause (C)) then
14120 Error_Msg_Sloc := Sloc (Component_Clause (C));
14121 Error_Msg_N ("\because of Component_Clause#", N);
14122 return;
14123 end if;
14124
14125 -- If pragma Pack clause present, assume that's the problem
14126
14127 if Is_Packed (Rec) then
14128 P := Get_Rep_Pragma (Rec, Name_Pack);
14129
14130 if Present (P) then
14131 Error_Msg_Sloc := Sloc (P);
14132 Error_Msg_N ("\because of pragma Pack#", N);
14133 return;
14134 end if;
14135 end if;
14136
14137 -- See if record has bad alignment clause
14138
14139 if Has_Alignment_Clause (Rec)
14140 and then Known_Alignment (Rec)
14141 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14142 then
14143 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
14144
14145 if Present (P) then
14146 Error_Msg_Sloc := Sloc (P);
14147 Error_Msg_N ("\because of Alignment clause#", N);
14148 end if;
14149 end if;
14150
14151 -- Couldn't find a reason, so return without a message
14152
14153 return;
14154 end Reason_Bad_Component;
14155
14156 -- Start of processing for Validate_Independence
14157
14158 begin
14159 for J in Independence_Checks.First .. Independence_Checks.Last loop
14160 N := Independence_Checks.Table (J).N;
14161 E := Independence_Checks.Table (J).E;
6e759c2a 14162 IC := Pragma_Name (N) = Name_Independent_Components;
105b5e65
AC
14163
14164 -- Deal with component case
14165
14166 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
14167 if not OK_Component (E) then
14168 No_Independence;
14169 Reason_Bad_Component (E);
14170 goto Continue;
14171 end if;
14172 end if;
14173
14174 -- Deal with record with Independent_Components
14175
14176 if IC and then Is_Record_Type (E) then
14177 Comp := First_Component_Or_Discriminant (E);
14178 while Present (Comp) loop
14179 if not OK_Component (Comp) then
14180 No_Independence;
14181 Reason_Bad_Component (Comp);
14182 goto Continue;
14183 end if;
14184
14185 Next_Component_Or_Discriminant (Comp);
14186 end loop;
14187 end if;
14188
14189 -- Deal with address clause case
14190
14191 if Is_Object (E) then
14192 Addr := Address_Clause (E);
14193
14194 if Present (Addr) then
14195 No_Independence;
14196 Error_Msg_Sloc := Sloc (Addr);
14197 Error_Msg_N ("\because of Address clause#", N);
14198 goto Continue;
14199 end if;
14200 end if;
14201
14202 -- Deal with independent components for array type
14203
14204 if IC and then Is_Array_Type (E) then
14205 Check_Array_Type (E);
14206 end if;
14207
14208 -- Deal with independent components for array object
14209
14210 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14211 Check_Array_Type (Etype (E));
14212 end if;
14213
14214 <<Continue>> null;
14215 end loop;
14216 end Validate_Independence;
14217
dd2bf554
ES
14218 ------------------------------
14219 -- Validate_Iterable_Aspect --
14220 ------------------------------
14221
14222 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
b4f149c2
AC
14223 Assoc : Node_Id;
14224 Expr : Node_Id;
dd2bf554 14225
82d4f390 14226 Prim : Node_Id;
a6ce7e76 14227 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
dd2bf554
ES
14228
14229 First_Id : Entity_Id;
367601d1 14230 Last_Id : Entity_Id;
dd2bf554
ES
14231 Next_Id : Entity_Id;
14232 Has_Element_Id : Entity_Id;
14233 Element_Id : Entity_Id;
14234
dd2bf554 14235 begin
edbd98c4 14236 -- If previous error aspect is unusable
a6ce7e76
AC
14237
14238 if Cursor = Any_Type then
b4f149c2
AC
14239 return;
14240 end if;
dd2bf554
ES
14241
14242 First_Id := Empty;
367601d1 14243 Last_Id := Empty;
dd2bf554
ES
14244 Next_Id := Empty;
14245 Has_Element_Id := Empty;
0f361206 14246 Element_Id := Empty;
dd2bf554
ES
14247
14248 -- Each expression must resolve to a function with the proper signature
14249
14250 Assoc := First (Component_Associations (Expression (ASN)));
14251 while Present (Assoc) loop
14252 Expr := Expression (Assoc);
14253 Analyze (Expr);
14254
dd2bf554 14255 Prim := First (Choices (Assoc));
82d4f390 14256
dc06dd83 14257 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
dd2bf554
ES
14258 Error_Msg_N ("illegal name in association", Prim);
14259
14260 elsif Chars (Prim) = Name_First then
b4f149c2 14261 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
dd2bf554 14262 First_Id := Entity (Expr);
dd2bf554 14263
367601d1
PMR
14264 elsif Chars (Prim) = Name_Last then
14265 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14266 Last_Id := Entity (Expr);
14267
14268 elsif Chars (Prim) = Name_Previous then
14269 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14270 Last_Id := Entity (Expr);
14271
dd2bf554 14272 elsif Chars (Prim) = Name_Next then
b4f149c2 14273 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
dd2bf554 14274 Next_Id := Entity (Expr);
dd2bf554
ES
14275
14276 elsif Chars (Prim) = Name_Has_Element then
b4f149c2 14277 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
dd2bf554 14278 Has_Element_Id := Entity (Expr);
82d4f390 14279
dd2bf554 14280 elsif Chars (Prim) = Name_Element then
b4f149c2 14281 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
dd2bf554 14282 Element_Id := Entity (Expr);
dd2bf554
ES
14283
14284 else
14285 Error_Msg_N ("invalid name for iterable function", Prim);
14286 end if;
14287
14288 Next (Assoc);
14289 end loop;
14290
14291 if No (First_Id) then
b4f149c2 14292 Error_Msg_N ("match for First primitive not found", ASN);
dd2bf554
ES
14293
14294 elsif No (Next_Id) then
b4f149c2 14295 Error_Msg_N ("match for Next primitive not found", ASN);
dd2bf554
ES
14296
14297 elsif No (Has_Element_Id) then
b4f149c2
AC
14298 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14299
3fc40cd7
PMR
14300 elsif No (Element_Id) or else No (Last_Id) then
14301 null; -- optional
dd2bf554
ES
14302 end if;
14303 end Validate_Iterable_Aspect;
14304
996ae0b0
RK
14305 -----------------------------------
14306 -- Validate_Unchecked_Conversion --
14307 -----------------------------------
14308
14309 procedure Validate_Unchecked_Conversion
14310 (N : Node_Id;
14311 Act_Unit : Entity_Id)
14312 is
14313 Source : Entity_Id;
14314 Target : Entity_Id;
14315 Vnode : Node_Id;
14316
14317 begin
14318 -- Obtain source and target types. Note that we call Ancestor_Subtype
14319 -- here because the processing for generic instantiation always makes
14320 -- subtypes, and we want the original frozen actual types.
14321
14322 -- If we are dealing with private types, then do the check on their
14323 -- fully declared counterparts if the full declarations have been
a90bd866 14324 -- encountered (they don't have to be visible, but they must exist).
996ae0b0
RK
14325
14326 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14327
14328 if Is_Private_Type (Source)
14329 and then Present (Underlying_Type (Source))
14330 then
14331 Source := Underlying_Type (Source);
14332 end if;
14333
14334 Target := Ancestor_Subtype (Etype (Act_Unit));
14335
0503c53a 14336 -- If either type is generic, the instantiation happens within a generic
a1092b48
AC
14337 -- unit, and there is nothing to check. The proper check will happen
14338 -- when the enclosing generic is instantiated.
996ae0b0
RK
14339
14340 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14341 return;
14342 end if;
14343
14344 if Is_Private_Type (Target)
14345 and then Present (Underlying_Type (Target))
14346 then
14347 Target := Underlying_Type (Target);
14348 end if;
14349
5a99fda7
AC
14350 -- Source may be unconstrained array, but not target, except in relaxed
14351 -- semantics mode.
996ae0b0 14352
5a99fda7
AC
14353 if Is_Array_Type (Target)
14354 and then not Is_Constrained (Target)
14355 and then not Relaxed_RM_Semantics
14356 then
996ae0b0
RK
14357 Error_Msg_N
14358 ("unchecked conversion to unconstrained array not allowed", N);
14359 return;
14360 end if;
14361
c690a2ec
RD
14362 -- Warn if conversion between two different convention pointers
14363
14364 if Is_Access_Type (Target)
14365 and then Is_Access_Type (Source)
14366 and then Convention (Target) /= Convention (Source)
14367 and then Warn_On_Unchecked_Conversion
14368 then
ba0c6e47 14369 -- Give warnings for subprogram pointers only on most targets
0503c53a
RD
14370
14371 if Is_Access_Subprogram_Type (Target)
14372 or else Is_Access_Subprogram_Type (Source)
0503c53a
RD
14373 then
14374 Error_Msg_N
685bc70f 14375 ("?z?conversion between pointers with different conventions!",
dbfeb4fa 14376 N);
0503c53a 14377 end if;
c690a2ec
RD
14378 end if;
14379
800621e0
RD
14380 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14381 -- warning when compiling GNAT-related sources.
14382
14383 if Warn_On_Unchecked_Conversion
14384 and then not In_Predefined_Unit (N)
14385 and then RTU_Loaded (Ada_Calendar)
dc06dd83
AC
14386 and then (Chars (Source) = Name_Time
14387 or else
14388 Chars (Target) = Name_Time)
800621e0
RD
14389 then
14390 -- If Ada.Calendar is loaded and the name of one of the operands is
14391 -- Time, there is a good chance that this is Ada.Calendar.Time.
14392
14393 declare
dc06dd83 14394 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
800621e0
RD
14395 begin
14396 pragma Assert (Present (Calendar_Time));
14397
616547fa 14398 if Source = Calendar_Time or else Target = Calendar_Time then
800621e0 14399 Error_Msg_N
dc06dd83
AC
14400 ("?z?representation of 'Time values may change between "
14401 & "'G'N'A'T versions", N);
800621e0
RD
14402 end if;
14403 end;
14404 end if;
14405
0503c53a
RD
14406 -- Make entry in unchecked conversion table for later processing by
14407 -- Validate_Unchecked_Conversions, which will check sizes and alignments
8a0183fd 14408 -- (using values set by the back end where possible). This is only done
0503c53a 14409 -- if the appropriate warning is active.
996ae0b0 14410
fbf5a39b
AC
14411 if Warn_On_Unchecked_Conversion then
14412 Unchecked_Conversions.Append
4c51ff88
AC
14413 (New_Val => UC_Entry'(Eloc => Sloc (N),
14414 Source => Source,
14415 Target => Target,
14416 Act_Unit => Act_Unit));
fbf5a39b 14417
2cc2e964 14418 -- If both sizes are known statically now, then back-end annotation
fbf5a39b
AC
14419 -- is not required to do a proper check but if either size is not
14420 -- known statically, then we need the annotation.
14421
14422 if Known_Static_RM_Size (Source)
dbfeb4fa
RD
14423 and then
14424 Known_Static_RM_Size (Target)
fbf5a39b
AC
14425 then
14426 null;
14427 else
14428 Back_Annotate_Rep_Info := True;
14429 end if;
14430 end if;
996ae0b0 14431
0503c53a 14432 -- If unchecked conversion to access type, and access type is declared
a1092b48
AC
14433 -- in the same unit as the unchecked conversion, then set the flag
14434 -- No_Strict_Aliasing (no strict aliasing is implicit here)
e6f69614
AC
14435
14436 if Is_Access_Type (Target) and then
14437 In_Same_Source_Unit (Target, N)
14438 then
14439 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14440 end if;
8a6a52dc 14441
a1092b48
AC
14442 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14443 -- the back end needs to perform special validation checks.
8a6a52dc 14444
a1092b48
AC
14445 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14446 -- have full expansion and the back end is called ???
8a6a52dc
AC
14447
14448 Vnode :=
14449 Make_Validate_Unchecked_Conversion (Sloc (N));
14450 Set_Source_Type (Vnode, Source);
14451 Set_Target_Type (Vnode, Target);
14452
0503c53a
RD
14453 -- If the unchecked conversion node is in a list, just insert before it.
14454 -- If not we have some strange case, not worth bothering about.
8a6a52dc
AC
14455
14456 if Is_List_Member (N) then
996ae0b0
RK
14457 Insert_After (N, Vnode);
14458 end if;
14459 end Validate_Unchecked_Conversion;
14460
14461 ------------------------------------
14462 -- Validate_Unchecked_Conversions --
14463 ------------------------------------
14464
14465 procedure Validate_Unchecked_Conversions is
14466 begin
14467 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14468 declare
14469 T : UC_Entry renames Unchecked_Conversions.Table (N);
14470
2f8d7dfe 14471 Act_Unit : constant Entity_Id := T.Act_Unit;
4c51ff88
AC
14472 Eloc : constant Source_Ptr := T.Eloc;
14473 Source : constant Entity_Id := T.Source;
14474 Target : constant Entity_Id := T.Target;
996ae0b0 14475
54c04d6c
AC
14476 Source_Siz : Uint;
14477 Target_Siz : Uint;
996ae0b0
RK
14478
14479 begin
4c51ff88
AC
14480 -- Skip if function marked as warnings off
14481
14482 if Warnings_Off (Act_Unit) then
14483 goto Continue;
14484 end if;
14485
0503c53a
RD
14486 -- This validation check, which warns if we have unequal sizes for
14487 -- unchecked conversion, and thus potentially implementation
996ae0b0 14488 -- dependent semantics, is one of the few occasions on which we
0503c53a
RD
14489 -- use the official RM size instead of Esize. See description in
14490 -- Einfo "Handling of Type'Size Values" for details.
996ae0b0 14491
07fc65c4 14492 if Serious_Errors_Detected = 0
996ae0b0
RK
14493 and then Known_Static_RM_Size (Source)
14494 and then Known_Static_RM_Size (Target)
9fcf2a0b
AC
14495
14496 -- Don't do the check if warnings off for either type, note the
14497 -- deliberate use of OR here instead of OR ELSE to get the flag
14498 -- Warnings_Off_Used set for both types if appropriate.
14499
14500 and then not (Has_Warnings_Off (Source)
14501 or
14502 Has_Warnings_Off (Target))
996ae0b0
RK
14503 then
14504 Source_Siz := RM_Size (Source);
14505 Target_Siz := RM_Size (Target);
14506
14507 if Source_Siz /= Target_Siz then
f66d46ec 14508 Error_Msg
685bc70f 14509 ("?z?types for unchecked conversion have different sizes!",
e5148da0 14510 Eloc, Act_Unit);
996ae0b0
RK
14511
14512 if All_Errors_Mode then
14513 Error_Msg_Name_1 := Chars (Source);
14514 Error_Msg_Uint_1 := Source_Siz;
14515 Error_Msg_Name_2 := Chars (Target);
14516 Error_Msg_Uint_2 := Target_Siz;
685bc70f 14517 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
996ae0b0
RK
14518
14519 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14520
14521 if Is_Discrete_Type (Source)
616547fa
AC
14522 and then
14523 Is_Discrete_Type (Target)
996ae0b0
RK
14524 then
14525 if Source_Siz > Target_Siz then
f66d46ec 14526 Error_Msg
685bc70f 14527 ("\?z?^ high order bits of source will "
dbfeb4fa 14528 & "be ignored!", Eloc);
996ae0b0 14529
fbf5a39b 14530 elsif Is_Unsigned_Type (Source) then
f66d46ec 14531 Error_Msg
685bc70f 14532 ("\?z?source will be extended with ^ high order "
b785e0b8 14533 & "zero bits!", Eloc);
996ae0b0
RK
14534
14535 else
f66d46ec 14536 Error_Msg
685bc70f 14537 ("\?z?source will be extended with ^ high order "
dbfeb4fa 14538 & "sign bits!", Eloc);
996ae0b0
RK
14539 end if;
14540
14541 elsif Source_Siz < Target_Siz then
14542 if Is_Discrete_Type (Target) then
14543 if Bytes_Big_Endian then
f66d46ec 14544 Error_Msg
685bc70f 14545 ("\?z?target value will include ^ undefined "
e5148da0 14546 & "low order bits!", Eloc, Act_Unit);
996ae0b0 14547 else
f66d46ec 14548 Error_Msg
685bc70f 14549 ("\?z?target value will include ^ undefined "
e5148da0 14550 & "high order bits!", Eloc, Act_Unit);
996ae0b0
RK
14551 end if;
14552
14553 else
f66d46ec 14554 Error_Msg
685bc70f 14555 ("\?z?^ trailing bits of target value will be "
e5148da0 14556 & "undefined!", Eloc, Act_Unit);
996ae0b0
RK
14557 end if;
14558
14559 else pragma Assert (Source_Siz > Target_Siz);
ccd6f414
AC
14560 if Is_Discrete_Type (Source) then
14561 if Bytes_Big_Endian then
14562 Error_Msg
14563 ("\?z?^ low order bits of source will be "
e5148da0 14564 & "ignored!", Eloc, Act_Unit);
ccd6f414
AC
14565 else
14566 Error_Msg
14567 ("\?z?^ high order bits of source will be "
e5148da0 14568 & "ignored!", Eloc, Act_Unit);
ccd6f414
AC
14569 end if;
14570
14571 else
14572 Error_Msg
14573 ("\?z?^ trailing bits of source will be "
e5148da0 14574 & "ignored!", Eloc, Act_Unit);
ccd6f414 14575 end if;
996ae0b0
RK
14576 end if;
14577 end if;
996ae0b0
RK
14578 end if;
14579 end if;
14580
14581 -- If both types are access types, we need to check the alignment.
14582 -- If the alignment of both is specified, we can do it here.
14583
07fc65c4 14584 if Serious_Errors_Detected = 0
3f1bc2cf
AC
14585 and then Is_Access_Type (Source)
14586 and then Is_Access_Type (Target)
996ae0b0
RK
14587 and then Target_Strict_Alignment
14588 and then Present (Designated_Type (Source))
14589 and then Present (Designated_Type (Target))
14590 then
14591 declare
14592 D_Source : constant Entity_Id := Designated_Type (Source);
14593 D_Target : constant Entity_Id := Designated_Type (Target);
14594
14595 begin
14596 if Known_Alignment (D_Source)
616547fa
AC
14597 and then
14598 Known_Alignment (D_Target)
996ae0b0
RK
14599 then
14600 declare
14601 Source_Align : constant Uint := Alignment (D_Source);
14602 Target_Align : constant Uint := Alignment (D_Target);
14603
14604 begin
14605 if Source_Align < Target_Align
14606 and then not Is_Tagged_Type (D_Source)
9fcf2a0b
AC
14607
14608 -- Suppress warning if warnings suppressed on either
14609 -- type or either designated type. Note the use of
14610 -- OR here instead of OR ELSE. That is intentional,
14611 -- we would like to set flag Warnings_Off_Used in
14612 -- all types for which warnings are suppressed.
14613
14614 and then not (Has_Warnings_Off (D_Source)
14615 or
14616 Has_Warnings_Off (D_Target)
14617 or
14618 Has_Warnings_Off (Source)
14619 or
14620 Has_Warnings_Off (Target))
996ae0b0 14621 then
996ae0b0
RK
14622 Error_Msg_Uint_1 := Target_Align;
14623 Error_Msg_Uint_2 := Source_Align;
f66d46ec 14624 Error_Msg_Node_1 := D_Target;
996ae0b0 14625 Error_Msg_Node_2 := D_Source;
f66d46ec 14626 Error_Msg
685bc70f 14627 ("?z?alignment of & (^) is stricter than "
e5148da0 14628 & "alignment of & (^)!", Eloc, Act_Unit);
9fcf2a0b 14629 Error_Msg
685bc70f 14630 ("\?z?resulting access value may have invalid "
e5148da0 14631 & "alignment!", Eloc, Act_Unit);
996ae0b0
RK
14632 end if;
14633 end;
14634 end if;
14635 end;
14636 end if;
14637 end;
4c51ff88
AC
14638
14639 <<Continue>>
14640 null;
996ae0b0
RK
14641 end loop;
14642 end Validate_Unchecked_Conversions;
14643
996ae0b0 14644end Sem_Ch13;