]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
Code cleanup.
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
74d7e7f5 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
175a6969 29with Debug; use Debug;
d6f39728 30with Einfo; use Einfo;
d00681a7 31with Elists; use Elists;
d6f39728 32with Errout; use Errout;
76a6b7c7 33with Expander; use Expander;
d00681a7 34with Exp_Disp; use Exp_Disp;
d6f39728 35with Exp_Tss; use Exp_Tss;
36with Exp_Util; use Exp_Util;
37c6552c 37with Freeze; use Freeze;
f9e26ff7 38with Ghost; use Ghost;
d6f39728 39with Lib; use Lib;
83f8f0a6 40with Lib.Xref; use Lib.Xref;
15ebb600 41with Namet; use Namet;
d6f39728 42with Nlists; use Nlists;
43with Nmake; use Nmake;
44with Opt; use Opt;
e0521a36 45with Restrict; use Restrict;
46with Rident; use Rident;
d6f39728 47with Rtsfind; use Rtsfind;
48with Sem; use Sem;
d60c9ff7 49with Sem_Aux; use Sem_Aux;
be9124d0 50with Sem_Case; use Sem_Case;
40ca69b9 51with Sem_Ch3; use Sem_Ch3;
490beba6 52with Sem_Ch6; use Sem_Ch6;
d6f39728 53with Sem_Ch8; use Sem_Ch8;
85696508 54with Sem_Dim; use Sem_Dim;
85377c9b 55with Sem_Disp; use Sem_Disp;
d6f39728 56with Sem_Eval; use Sem_Eval;
51ea9c94 57with Sem_Prag; use Sem_Prag;
d6f39728 58with Sem_Res; use Sem_Res;
59with Sem_Type; use Sem_Type;
60with Sem_Util; use Sem_Util;
44e4341e 61with Sem_Warn; use Sem_Warn;
738ec25b 62with Sinfo; use Sinfo;
1e3c4ae6 63with Sinput; use Sinput;
9dfe12ae 64with Snames; use Snames;
d6f39728 65with Stand; use Stand;
93735cb8 66with Targparm; use Targparm;
d6f39728 67with Ttypes; use Ttypes;
68with Tbuild; use Tbuild;
69with Urealp; use Urealp;
f42f24d7 70with Warnsw; use Warnsw;
d6f39728 71
bfa5a9d9 72with GNAT.Heap_Sort_G;
d6f39728 73
74package body Sem_Ch13 is
75
76 SSU : constant Pos := System_Storage_Unit;
77 -- Convenient short hand for commonly used constant
78
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
82
d95b8c89 83 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
2d9fff4f 84 -- Helper routine providing the original (pre-AI95-0133) behavior for
d95b8c89 85 -- Adjust_Record_For_Reverse_Bit_Order.
86
1d366b32 87 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
88 -- This routine is called after setting one of the sizes of type entity
89 -- Typ to Size. The purpose is to deal with the situation of a derived
90 -- type whose inherited alignment is no longer appropriate for the new
91 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 92
eb66e842 93 procedure Build_Discrete_Static_Predicate
d97beb2f 94 (Typ : Entity_Id;
95 Expr : Node_Id;
96 Nam : Name_Id);
d7c2851f 97 -- Given a predicated type Typ, where Typ is a discrete static subtype,
98 -- whose predicate expression is Expr, tests if Expr is a static predicate,
99 -- and if so, builds the predicate range list. Nam is the name of the one
100 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 101 -- predicate expression have been replaced by identifier references to this
d7c2851f 102 -- name, which is unique, so any identifier with Chars matching Nam must be
103 -- a reference to the type. If the predicate is non-static, this procedure
104 -- returns doing nothing. If the predicate is static, then the predicate
5c6a5792 105 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
106 -- rewritten as a canonicalized membership operation.
d97beb2f 107
ee2b7923 108 function Build_Export_Import_Pragma
109 (Asp : Node_Id;
110 Id : Entity_Id) return Node_Id;
111 -- Create the corresponding pragma for aspect Export or Import denoted by
112 -- Asp. Id is the related entity subject to the aspect. Return Empty when
113 -- the expression of aspect Asp evaluates to False or is erroneous.
114
9c20237a 115 function Build_Predicate_Function_Declaration
116 (Typ : Entity_Id) return Node_Id;
117 -- Build the declaration for a predicate function. The declaration is built
118 -- at the end of the declarative part containing the type definition, which
119 -- may be before the freeze point of the type. The predicate expression is
120 -- pre-analyzed at this point, to catch visibility errors.
121
eb66e842 122 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
123 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
124 -- then either there are pragma Predicate entries on the rep chain for the
125 -- type (note that Predicate aspects are converted to pragma Predicate), or
126 -- there are inherited aspects from a parent type, or ancestor subtypes.
9c20237a 127 -- This procedure builds body for the Predicate function that tests these
128 -- predicates. N is the freeze node for the type. The spec of the function
129 -- is inserted before the freeze node, and the body of the function is
130 -- inserted after the freeze node. If the predicate expression has a least
131 -- one Raise_Expression, then this procedure also builds the M version of
132 -- the predicate function for use in membership tests.
eb66e842 133
6653b695 134 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
135 -- Called if both Storage_Pool and Storage_Size attribute definition
136 -- clauses (SP and SS) are present for entity Ent. Issue error message.
137
d9f6a4ee 138 procedure Freeze_Entity_Checks (N : Node_Id);
139 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
140 -- to generate appropriate semantic checks that are delayed until this
141 -- point (they had to be delayed this long for cases of delayed aspects,
142 -- e.g. analysis of statically predicated subtypes in choices, for which
5f067114 143 -- we have to be sure the subtypes in question are frozen before checking).
d9f6a4ee 144
d6f39728 145 function Get_Alignment_Value (Expr : Node_Id) return Uint;
146 -- Given the expression for an alignment value, returns the corresponding
147 -- Uint value. If the value is inappropriate, then error messages are
148 -- posted as required, and a value of No_Uint is returned.
149
150 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 151 -- A specification for a stream attribute is allowed before the full type
152 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
153 -- that do not specify a representation characteristic are operational
154 -- attributes.
d6f39728 155
3b23aaa0 156 function Is_Predicate_Static
157 (Expr : Node_Id;
158 Nam : Name_Id) return Boolean;
159 -- Given predicate expression Expr, tests if Expr is predicate-static in
160 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
161 -- name in the predicate expression have been replaced by references to
162 -- an identifier whose Chars field is Nam. This name is unique, so any
163 -- identifier with Chars matching Nam must be a reference to the type.
164 -- Returns True if the expression is predicate-static and False otherwise,
165 -- but is not in the business of setting flags or issuing error messages.
166 --
167 -- Only scalar types can have static predicates, so False is always
168 -- returned for non-scalar types.
169 --
170 -- Note: the RM seems to suggest that string types can also have static
171 -- predicates. But that really makes lttle sense as very few useful
172 -- predicates can be constructed for strings. Remember that:
173 --
174 -- "ABC" < "DEF"
175 --
176 -- is not a static expression. So even though the clearly faulty RM wording
177 -- allows the following:
178 --
179 -- subtype S is String with Static_Predicate => S < "DEF"
180 --
181 -- We can't allow this, otherwise we have predicate-static applying to a
182 -- larger class than static expressions, which was never intended.
183
44e4341e 184 procedure New_Stream_Subprogram
d6f39728 185 (N : Node_Id;
186 Ent : Entity_Id;
187 Subp : Entity_Id;
9dfe12ae 188 Nam : TSS_Name_Type);
44e4341e 189 -- Create a subprogram renaming of a given stream attribute to the
190 -- designated subprogram and then in the tagged case, provide this as a
d1a2e31b 191 -- primitive operation, or in the untagged case make an appropriate TSS
44e4341e 192 -- entry. This is more properly an expansion activity than just semantics,
d1a2e31b 193 -- but the presence of user-defined stream functions for limited types
194 -- is a legality check, which is why this takes place here rather than in
44e4341e 195 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
196 -- function to be generated.
9dfe12ae 197 --
f15731c4 198 -- To avoid elaboration anomalies with freeze nodes, for untagged types
199 -- we generate both a subprogram declaration and a subprogram renaming
200 -- declaration, so that the attribute specification is handled as a
201 -- renaming_as_body. For tagged types, the specification is one of the
202 -- primitive specs.
203
3061ffde 204 procedure Resolve_Iterable_Operation
205 (N : Node_Id;
206 Cursor : Entity_Id;
207 Typ : Entity_Id;
208 Nam : Name_Id);
209 -- If the name of a primitive operation for an Iterable aspect is
210 -- overloaded, resolve according to required signature.
211
b77e4501 212 procedure Set_Biased
213 (E : Entity_Id;
214 N : Node_Id;
215 Msg : String;
216 Biased : Boolean := True);
217 -- If Biased is True, sets Has_Biased_Representation flag for E, and
218 -- outputs a warning message at node N if Warn_On_Biased_Representation is
219 -- is True. This warning inserts the string Msg to describe the construct
220 -- causing biasing.
221
76a6b7c7 222 ---------------------------------------------------
223 -- Table for Validate_Compile_Time_Warning_Error --
224 ---------------------------------------------------
225
226 -- The following table collects pragmas Compile_Time_Error and Compile_
227 -- Time_Warning for validation. Entries are made by calls to subprogram
228 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
229 -- Validate_Compile_Time_Warning_Errors does the actual error checking
230 -- and posting of warning and error messages. The reason for this delayed
231 -- processing is to take advantage of back-annotations of attributes size
232 -- and alignment values performed by the back end.
233
234 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
235 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
236 -- already have modified all Sloc values if the -gnatD option is set.
237
238 type CTWE_Entry is record
239 Eloc : Source_Ptr;
240 -- Source location used in warnings and error messages
241
242 Prag : Node_Id;
243 -- Pragma Compile_Time_Error or Compile_Time_Warning
244
245 Scope : Node_Id;
246 -- The scope which encloses the pragma
247 end record;
248
249 package Compile_Time_Warnings_Errors is new Table.Table (
250 Table_Component_Type => CTWE_Entry,
251 Table_Index_Type => Int,
252 Table_Low_Bound => 1,
253 Table_Initial => 50,
254 Table_Increment => 200,
255 Table_Name => "Compile_Time_Warnings_Errors");
256
d6f39728 257 ----------------------------------------------
258 -- Table for Validate_Unchecked_Conversions --
259 ----------------------------------------------
260
261 -- The following table collects unchecked conversions for validation.
95deda50 262 -- Entries are made by Validate_Unchecked_Conversion and then the call
263 -- to Validate_Unchecked_Conversions does the actual error checking and
264 -- posting of warnings. The reason for this delayed processing is to take
265 -- advantage of back-annotations of size and alignment values performed by
266 -- the back end.
d6f39728 267
95deda50 268 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
269 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
270 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 271
d6f39728 272 type UC_Entry is record
86d32751 273 Eloc : Source_Ptr; -- node used for posting warnings
274 Source : Entity_Id; -- source type for unchecked conversion
275 Target : Entity_Id; -- target type for unchecked conversion
276 Act_Unit : Entity_Id; -- actual function instantiated
d6f39728 277 end record;
278
279 package Unchecked_Conversions is new Table.Table (
280 Table_Component_Type => UC_Entry,
281 Table_Index_Type => Int,
282 Table_Low_Bound => 1,
283 Table_Initial => 50,
284 Table_Increment => 200,
285 Table_Name => "Unchecked_Conversions");
286
83f8f0a6 287 ----------------------------------------
288 -- Table for Validate_Address_Clauses --
289 ----------------------------------------
290
291 -- If an address clause has the form
292
293 -- for X'Address use Expr
294
514a5555 295 -- where Expr has a value known at compile time or is of the form Y'Address
296 -- or recursively is a reference to a constant initialized with either of
297 -- these forms, and the value of Expr is not a multiple of X's alignment,
298 -- or if Y has a smaller alignment than X, then that merits a warning about
95deda50 299 -- possible bad alignment. The following table collects address clauses of
300 -- this kind. We put these in a table so that they can be checked after the
301 -- back end has completed annotation of the alignments of objects, since we
302 -- can catch more cases that way.
83f8f0a6 303
304 type Address_Clause_Check_Record is record
305 N : Node_Id;
306 -- The address clause
307
308 X : Entity_Id;
514a5555 309 -- The entity of the object subject to the address clause
310
311 A : Uint;
312 -- The value of the address in the first case
83f8f0a6 313
314 Y : Entity_Id;
514a5555 315 -- The entity of the object being overlaid in the second case
d6da7448 316
317 Off : Boolean;
514a5555 318 -- Whether the address is offset within Y in the second case
83f8f0a6 319 end record;
320
321 package Address_Clause_Checks is new Table.Table (
322 Table_Component_Type => Address_Clause_Check_Record,
323 Table_Index_Type => Int,
324 Table_Low_Bound => 1,
325 Table_Initial => 20,
326 Table_Increment => 200,
327 Table_Name => "Address_Clause_Checks");
328
59ac57b5 329 -----------------------------------------
330 -- Adjust_Record_For_Reverse_Bit_Order --
331 -----------------------------------------
332
333 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
d95b8c89 334 Max_Machine_Scalar_Size : constant Uint :=
335 UI_From_Int
336 (Standard_Long_Long_Integer_Size);
337 -- We use this as the maximum machine scalar size
59ac57b5 338
7748ccb2 339 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
340
341 CC : Node_Id;
342 Comp : Node_Id;
d95b8c89 343 Num_CC : Natural;
6797073f 344
d95b8c89 345 begin
2d9fff4f 346 -- Processing here used to depend on Ada version: the behavior was
d95b8c89 347 -- changed by AI95-0133. However this AI is a Binding interpretation,
2d9fff4f 348 -- so we now implement it even in Ada 95 mode. The original behavior
d95b8c89 349 -- from unamended Ada 95 is still available for compatibility under
350 -- debugging switch -gnatd.
351
352 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
353 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
354 return;
355 end if;
356
357 -- For Ada 2005, we do machine scalar processing, as fully described In
358 -- AI-133. This involves gathering all components which start at the
359 -- same byte offset and processing them together. Same approach is still
360 -- valid in later versions including Ada 2012.
6797073f 361
7748ccb2 362 -- This first loop through components does two things. First it deals
363 -- with the case of components with component clauses whose length is
364 -- greater than the maximum machine scalar size (either accepting them
365 -- or rejecting as needed). Second, it counts the number of components
366 -- with component clauses whose length does not exceed this maximum for
367 -- later processing.
6797073f 368
d95b8c89 369 Num_CC := 0;
370 Comp := First_Component_Or_Discriminant (R);
371 while Present (Comp) loop
372 CC := Component_Clause (Comp);
6797073f 373
d95b8c89 374 if Present (CC) then
375 declare
376 Fbit : constant Uint := Static_Integer (First_Bit (CC));
377 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 378
d95b8c89 379 begin
380 -- Case of component with last bit >= max machine scalar
6797073f 381
d95b8c89 382 if Lbit >= Max_Machine_Scalar_Size then
59ac57b5 383
7748ccb2 384 -- This is allowed only if first bit is zero, and last bit
385 -- + 1 is a multiple of storage unit size.
59ac57b5 386
d95b8c89 387 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
59ac57b5 388
d95b8c89 389 -- This is the case to give a warning if enabled
59ac57b5 390
d95b8c89 391 if Warn_On_Reverse_Bit_Order then
6797073f 392 Error_Msg_N
7a41db5b 393 ("info: multi-byte field specified with "
d95b8c89 394 & "non-standard Bit_Order?V?", CC);
31486bc0 395
6797073f 396 if Bytes_Big_Endian then
31486bc0 397 Error_Msg_N
7a41db5b 398 ("\bytes are not reversed "
d95b8c89 399 & "(component is big-endian)?V?", CC);
31486bc0 400 else
401 Error_Msg_N
7a41db5b 402 ("\bytes are not reversed "
d95b8c89 403 & "(component is little-endian)?V?", CC);
31486bc0 404 end if;
d95b8c89 405 end if;
59ac57b5 406
d95b8c89 407 -- Give error message for RM 13.5.1(10) violation
408
409 else
410 Error_Msg_FE
411 ("machine scalar rules not followed for&",
412 First_Bit (CC), Comp);
413
414 Error_Msg_Uint_1 := Lbit + 1;
415 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
416 Error_Msg_F
7748ccb2 417 ("\last bit + 1 (^) exceeds maximum machine scalar "
418 & "size (^)", First_Bit (CC));
d95b8c89 419
420 if (Lbit + 1) mod SSU /= 0 then
421 Error_Msg_Uint_1 := SSU;
422 Error_Msg_F
423 ("\and is not a multiple of Storage_Unit (^) "
7748ccb2 424 & "(RM 13.5.1(10))", First_Bit (CC));
59ac57b5 425
67278d60 426 else
d95b8c89 427 Error_Msg_Uint_1 := Fbit;
428 Error_Msg_F
429 ("\and first bit (^) is non-zero "
7748ccb2 430 & "(RM 13.4.1(10))", First_Bit (CC));
6797073f 431 end if;
d95b8c89 432 end if;
59ac57b5 433
7748ccb2 434 -- OK case of machine scalar related component clause. For now,
435 -- just count them.
59ac57b5 436
d95b8c89 437 else
438 Num_CC := Num_CC + 1;
439 end if;
440 end;
441 end if;
59ac57b5 442
d95b8c89 443 Next_Component_Or_Discriminant (Comp);
444 end loop;
59ac57b5 445
7748ccb2 446 -- We need to sort the component clauses on the basis of the Position
447 -- values in the clause, so we can group clauses with the same Position
448 -- together to determine the relevant machine scalar size.
bfa5a9d9 449
d95b8c89 450 Sort_CC : declare
451 Comps : array (0 .. Num_CC) of Entity_Id;
7748ccb2 452 -- Array to collect component and discriminant entities. The data
453 -- starts at index 1, the 0'th entry is for the sort routine.
59ac57b5 454
d95b8c89 455 function CP_Lt (Op1, Op2 : Natural) return Boolean;
456 -- Compare routine for Sort
59ac57b5 457
d95b8c89 458 procedure CP_Move (From : Natural; To : Natural);
459 -- Move routine for Sort
59ac57b5 460
d95b8c89 461 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 462
7748ccb2 463 MaxL : Uint;
464 -- Maximum last bit value of any component in this set
465
466 MSS : Uint;
467 -- Corresponding machine scalar size
468
d95b8c89 469 Start : Natural;
470 Stop : Natural;
471 -- Start and stop positions in the component list of the set of
472 -- components with the same starting position (that constitute
473 -- components in a single machine scalar).
59ac57b5 474
d95b8c89 475 -----------
476 -- CP_Lt --
477 -----------
6797073f 478
d95b8c89 479 function CP_Lt (Op1, Op2 : Natural) return Boolean is
480 begin
7748ccb2 481 return
482 Position (Component_Clause (Comps (Op1))) <
d95b8c89 483 Position (Component_Clause (Comps (Op2)));
484 end CP_Lt;
59ac57b5 485
d95b8c89 486 -------------
487 -- CP_Move --
488 -------------
59ac57b5 489
d95b8c89 490 procedure CP_Move (From : Natural; To : Natural) is
6797073f 491 begin
d95b8c89 492 Comps (To) := Comps (From);
493 end CP_Move;
494
495 -- Start of processing for Sort_CC
496
497 begin
498 -- Collect the machine scalar relevant component clauses
67278d60 499
d95b8c89 500 Num_CC := 0;
501 Comp := First_Component_Or_Discriminant (R);
502 while Present (Comp) loop
503 declare
504 CC : constant Node_Id := Component_Clause (Comp);
67278d60 505
d95b8c89 506 begin
7748ccb2 507 -- Collect only component clauses whose last bit is less than
508 -- machine scalar size. Any component clause whose last bit
509 -- exceeds this value does not take part in machine scalar
510 -- layout considerations. The test for Error_Posted makes sure
511 -- we exclude component clauses for which we already posted an
512 -- error.
d95b8c89 513
514 if Present (CC)
515 and then not Error_Posted (Last_Bit (CC))
516 and then Static_Integer (Last_Bit (CC)) <
517 Max_Machine_Scalar_Size
518 then
519 Num_CC := Num_CC + 1;
520 Comps (Num_CC) := Comp;
521 end if;
522 end;
67278d60 523
d95b8c89 524 Next_Component_Or_Discriminant (Comp);
525 end loop;
67278d60 526
d95b8c89 527 -- Sort by ascending position number
528
529 Sorting.Sort (Num_CC);
530
7748ccb2 531 -- We now have all the components whose size does not exceed the max
532 -- machine scalar value, sorted by starting position. In this loop we
533 -- gather groups of clauses starting at the same position, to process
534 -- them in accordance with AI-133.
d95b8c89 535
536 Stop := 0;
537 while Stop < Num_CC loop
538 Start := Stop + 1;
539 Stop := Start;
540 MaxL :=
541 Static_Integer
542 (Last_Bit (Component_Clause (Comps (Start))));
543 while Stop < Num_CC loop
544 if Static_Integer
545 (Position (Component_Clause (Comps (Stop + 1)))) =
546 Static_Integer
547 (Position (Component_Clause (Comps (Stop))))
548 then
549 Stop := Stop + 1;
550 MaxL :=
551 UI_Max
552 (MaxL,
553 Static_Integer
554 (Last_Bit
555 (Component_Clause (Comps (Stop)))));
556 else
557 exit;
558 end if;
559 end loop;
67278d60 560
7748ccb2 561 -- Now we have a group of component clauses from Start to Stop
562 -- whose positions are identical, and MaxL is the maximum last
563 -- bit value of any of these components.
d95b8c89 564
7748ccb2 565 -- We need to determine the corresponding machine scalar size.
566 -- This loop assumes that machine scalar sizes are even, and that
567 -- each possible machine scalar has twice as many bits as the next
568 -- smaller one.
d95b8c89 569
570 MSS := Max_Machine_Scalar_Size;
571 while MSS mod 2 = 0
572 and then (MSS / 2) >= SSU
573 and then (MSS / 2) > MaxL
574 loop
575 MSS := MSS / 2;
576 end loop;
67278d60 577
7748ccb2 578 -- Here is where we fix up the Component_Bit_Offset value to
579 -- account for the reverse bit order. Some examples of what needs
580 -- to be done for the case of a machine scalar size of 8 are:
67278d60 581
d95b8c89 582 -- First_Bit .. Last_Bit Component_Bit_Offset
583 -- old new old new
67278d60 584
d95b8c89 585 -- 0 .. 0 7 .. 7 0 7
586 -- 0 .. 1 6 .. 7 0 6
587 -- 0 .. 2 5 .. 7 0 5
588 -- 0 .. 7 0 .. 7 0 4
b38e4131 589
d95b8c89 590 -- 1 .. 1 6 .. 6 1 6
591 -- 1 .. 4 3 .. 6 1 3
592 -- 4 .. 7 0 .. 3 4 0
67278d60 593
7748ccb2 594 -- The rule is that the first bit is obtained by subtracting the
595 -- old ending bit from machine scalar size - 1.
67278d60 596
d95b8c89 597 for C in Start .. Stop loop
598 declare
599 Comp : constant Entity_Id := Comps (C);
600 CC : constant Node_Id := Component_Clause (Comp);
59ac57b5 601
d95b8c89 602 LB : constant Uint := Static_Integer (Last_Bit (CC));
603 NFB : constant Uint := MSS - Uint_1 - LB;
604 NLB : constant Uint := NFB + Esize (Comp) - 1;
605 Pos : constant Uint := Static_Integer (Position (CC));
59ac57b5 606
d95b8c89 607 begin
608 if Warn_On_Reverse_Bit_Order then
609 Error_Msg_Uint_1 := MSS;
610 Error_Msg_N
7748ccb2 611 ("info: reverse bit order in machine scalar of "
612 & "length^?V?", First_Bit (CC));
d95b8c89 613 Error_Msg_Uint_1 := NFB;
614 Error_Msg_Uint_2 := NLB;
615
616 if Bytes_Big_Endian then
617 Error_Msg_NE
7748ccb2 618 ("\big-endian range for component & is ^ .. ^?V?",
619 First_Bit (CC), Comp);
6797073f 620 else
d95b8c89 621 Error_Msg_NE
7748ccb2 622 ("\little-endian range for component & is ^ .. ^?V?",
623 First_Bit (CC), Comp);
6797073f 624 end if;
d95b8c89 625 end if;
59ac57b5 626
d95b8c89 627 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
628 Set_Normalized_First_Bit (Comp, NFB mod SSU);
629 end;
6797073f 630 end loop;
d95b8c89 631 end loop;
632 end Sort_CC;
633 end Adjust_Record_For_Reverse_Bit_Order;
59ac57b5 634
d95b8c89 635 ------------------------------------------------
636 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
637 ------------------------------------------------
59ac57b5 638
d95b8c89 639 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
d95b8c89 640 CC : Node_Id;
7748ccb2 641 Comp : Node_Id;
59ac57b5 642
d95b8c89 643 begin
644 -- For Ada 95, we just renumber bits within a storage unit. We do the
645 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
646 -- Ada 83, and are free to add this extension.
59ac57b5 647
d95b8c89 648 Comp := First_Component_Or_Discriminant (R);
649 while Present (Comp) loop
650 CC := Component_Clause (Comp);
59ac57b5 651
d95b8c89 652 -- If component clause is present, then deal with the non-default
653 -- bit order case for Ada 95 mode.
59ac57b5 654
d95b8c89 655 -- We only do this processing for the base type, and in fact that
656 -- is important, since otherwise if there are record subtypes, we
657 -- could reverse the bits once for each subtype, which is wrong.
59ac57b5 658
d95b8c89 659 if Present (CC) and then Ekind (R) = E_Record_Type then
660 declare
661 CFB : constant Uint := Component_Bit_Offset (Comp);
662 CSZ : constant Uint := Esize (Comp);
663 CLC : constant Node_Id := Component_Clause (Comp);
664 Pos : constant Node_Id := Position (CLC);
665 FB : constant Node_Id := First_Bit (CLC);
59ac57b5 666
d95b8c89 667 Storage_Unit_Offset : constant Uint :=
668 CFB / System_Storage_Unit;
67278d60 669
d95b8c89 670 Start_Bit : constant Uint :=
671 CFB mod System_Storage_Unit;
67278d60 672
d95b8c89 673 begin
674 -- Cases where field goes over storage unit boundary
67278d60 675
d95b8c89 676 if Start_Bit + CSZ > System_Storage_Unit then
67278d60 677
d95b8c89 678 -- Allow multi-byte field but generate warning
67278d60 679
d95b8c89 680 if Start_Bit mod System_Storage_Unit = 0
681 and then CSZ mod System_Storage_Unit = 0
682 then
683 Error_Msg_N
7748ccb2 684 ("info: multi-byte field specified with non-standard "
685 & "Bit_Order?V?", CLC);
59ac57b5 686
d95b8c89 687 if Bytes_Big_Endian then
688 Error_Msg_N
689 ("\bytes are not reversed "
690 & "(component is big-endian)?V?", CLC);
6797073f 691 else
d95b8c89 692 Error_Msg_N
693 ("\bytes are not reversed "
694 & "(component is little-endian)?V?", CLC);
6797073f 695 end if;
67278d60 696
d95b8c89 697 -- Do not allow non-contiguous field
6797073f 698
d95b8c89 699 else
700 Error_Msg_N
7748ccb2 701 ("attempt to specify non-contiguous field not "
702 & "permitted", CLC);
d95b8c89 703 Error_Msg_N
7748ccb2 704 ("\caused by non-standard Bit_Order specified in "
705 & "legacy Ada 95 mode", CLC);
d95b8c89 706 end if;
6797073f 707
d95b8c89 708 -- Case where field fits in one storage unit
709
710 else
711 -- Give warning if suspicious component clause
712
713 if Intval (FB) >= System_Storage_Unit
714 and then Warn_On_Reverse_Bit_Order
715 then
716 Error_Msg_N
7748ccb2 717 ("info: Bit_Order clause does not affect byte "
718 & "ordering?V?", Pos);
d95b8c89 719 Error_Msg_Uint_1 :=
720 Intval (Pos) + Intval (FB) /
721 System_Storage_Unit;
722 Error_Msg_N
7748ccb2 723 ("info: position normalized to ^ before bit order "
724 & "interpreted?V?", Pos);
d95b8c89 725 end if;
67278d60 726
6797073f 727 -- Here is where we fix up the Component_Bit_Offset value
728 -- to account for the reverse bit order. Some examples of
d95b8c89 729 -- what needs to be done are:
67278d60 730
6797073f 731 -- First_Bit .. Last_Bit Component_Bit_Offset
732 -- old new old new
67278d60 733
6797073f 734 -- 0 .. 0 7 .. 7 0 7
735 -- 0 .. 1 6 .. 7 0 6
736 -- 0 .. 2 5 .. 7 0 5
737 -- 0 .. 7 0 .. 7 0 4
67278d60 738
6797073f 739 -- 1 .. 1 6 .. 6 1 6
740 -- 1 .. 4 3 .. 6 1 3
741 -- 4 .. 7 0 .. 3 4 0
67278d60 742
d95b8c89 743 -- The rule is that the first bit is is obtained by
744 -- subtracting the old ending bit from storage_unit - 1.
67278d60 745
7748ccb2 746 Set_Component_Bit_Offset (Comp,
747 (Storage_Unit_Offset * System_Storage_Unit) +
748 (System_Storage_Unit - 1) -
749 (Start_Bit + CSZ - 1));
b9e61b2a 750
7748ccb2 751 Set_Normalized_First_Bit (Comp,
752 Component_Bit_Offset (Comp) mod System_Storage_Unit);
d95b8c89 753 end if;
754 end;
755 end if;
67278d60 756
d95b8c89 757 Next_Component_Or_Discriminant (Comp);
758 end loop;
759 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
59ac57b5 760
1d366b32 761 -------------------------------------
762 -- Alignment_Check_For_Size_Change --
763 -------------------------------------
d6f39728 764
1d366b32 765 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 766 begin
767 -- If the alignment is known, and not set by a rep clause, and is
768 -- inconsistent with the size being set, then reset it to unknown,
769 -- we assume in this case that the size overrides the inherited
770 -- alignment, and that the alignment must be recomputed.
771
772 if Known_Alignment (Typ)
773 and then not Has_Alignment_Clause (Typ)
1d366b32 774 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 775 then
776 Init_Alignment (Typ);
777 end if;
1d366b32 778 end Alignment_Check_For_Size_Change;
d6f39728 779
06ef5f86 780 -------------------------------------
781 -- Analyze_Aspects_At_Freeze_Point --
782 -------------------------------------
783
784 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
06ef5f86 785 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
786 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
787 -- the aspect specification node ASN.
788
37c6e44c 789 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
790 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
791 -- a derived type can inherit aspects from its parent which have been
792 -- specified at the time of the derivation using an aspect, as in:
793 --
794 -- type A is range 1 .. 10
795 -- with Size => Not_Defined_Yet;
796 -- ..
797 -- type B is new A;
798 -- ..
799 -- Not_Defined_Yet : constant := 64;
800 --
801 -- In this example, the Size of A is considered to be specified prior
802 -- to the derivation, and thus inherited, even though the value is not
803 -- known at the time of derivation. To deal with this, we use two entity
804 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
805 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
806 -- the derived type (B here). If this flag is set when the derived type
807 -- is frozen, then this procedure is called to ensure proper inheritance
b21edad9 808 -- of all delayed aspects from the parent type. The derived type is E,
37c6e44c 809 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
810 -- aspect specification node in the Rep_Item chain for the parent type.
811
06ef5f86 812 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
813 -- Given an aspect specification node ASN whose expression is an
814 -- optional Boolean, this routines creates the corresponding pragma
815 -- at the freezing point.
816
817 ----------------------------------
818 -- Analyze_Aspect_Default_Value --
819 ----------------------------------
820
821 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
ee2b7923 822 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
06ef5f86 823 Ent : constant Entity_Id := Entity (ASN);
824 Expr : constant Node_Id := Expression (ASN);
825 Id : constant Node_Id := Identifier (ASN);
826
827 begin
828 Error_Msg_Name_1 := Chars (Id);
829
830 if not Is_Type (Ent) then
831 Error_Msg_N ("aspect% can only apply to a type", Id);
832 return;
833
834 elsif not Is_First_Subtype (Ent) then
835 Error_Msg_N ("aspect% cannot apply to subtype", Id);
836 return;
837
838 elsif A_Id = Aspect_Default_Value
839 and then not Is_Scalar_Type (Ent)
840 then
841 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
842 return;
843
844 elsif A_Id = Aspect_Default_Component_Value then
845 if not Is_Array_Type (Ent) then
846 Error_Msg_N ("aspect% can only be applied to array type", Id);
847 return;
848
849 elsif not Is_Scalar_Type (Component_Type (Ent)) then
850 Error_Msg_N ("aspect% requires scalar components", Id);
851 return;
852 end if;
853 end if;
854
855 Set_Has_Default_Aspect (Base_Type (Ent));
856
857 if Is_Scalar_Type (Ent) then
9f36e3fb 858 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
06ef5f86 859 else
f3d70f08 860 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
06ef5f86 861 end if;
862 end Analyze_Aspect_Default_Value;
863
37c6e44c 864 ---------------------------------
865 -- Inherit_Delayed_Rep_Aspects --
866 ---------------------------------
867
868 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
ee2b7923 869 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
870 P : constant Entity_Id := Entity (ASN);
37c6e44c 871 -- Entithy for parent type
872
873 N : Node_Id;
874 -- Item from Rep_Item chain
875
876 A : Aspect_Id;
877
878 begin
879 -- Loop through delayed aspects for the parent type
880
881 N := ASN;
882 while Present (N) loop
883 if Nkind (N) = N_Aspect_Specification then
884 exit when Entity (N) /= P;
885
886 if Is_Delayed_Aspect (N) then
887 A := Get_Aspect_Id (Chars (Identifier (N)));
888
889 -- Process delayed rep aspect. For Boolean attributes it is
890 -- not possible to cancel an attribute once set (the attempt
891 -- to use an aspect with xxx => False is an error) for a
892 -- derived type. So for those cases, we do not have to check
893 -- if a clause has been given for the derived type, since it
894 -- is harmless to set it again if it is already set.
895
896 case A is
897
898 -- Alignment
899
900 when Aspect_Alignment =>
901 if not Has_Alignment_Clause (E) then
902 Set_Alignment (E, Alignment (P));
903 end if;
904
905 -- Atomic
906
907 when Aspect_Atomic =>
908 if Is_Atomic (P) then
909 Set_Is_Atomic (E);
910 end if;
911
912 -- Atomic_Components
913
914 when Aspect_Atomic_Components =>
915 if Has_Atomic_Components (P) then
916 Set_Has_Atomic_Components (Base_Type (E));
917 end if;
918
919 -- Bit_Order
920
921 when Aspect_Bit_Order =>
922 if Is_Record_Type (E)
923 and then No (Get_Attribute_Definition_Clause
924 (E, Attribute_Bit_Order))
925 and then Reverse_Bit_Order (P)
926 then
927 Set_Reverse_Bit_Order (Base_Type (E));
928 end if;
929
930 -- Component_Size
931
932 when Aspect_Component_Size =>
933 if Is_Array_Type (E)
934 and then not Has_Component_Size_Clause (E)
935 then
936 Set_Component_Size
937 (Base_Type (E), Component_Size (P));
938 end if;
939
940 -- Machine_Radix
941
942 when Aspect_Machine_Radix =>
943 if Is_Decimal_Fixed_Point_Type (E)
944 and then not Has_Machine_Radix_Clause (E)
945 then
946 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
947 end if;
948
949 -- Object_Size (also Size which also sets Object_Size)
950
99378362 951 when Aspect_Object_Size
952 | Aspect_Size
953 =>
37c6e44c 954 if not Has_Size_Clause (E)
955 and then
956 No (Get_Attribute_Definition_Clause
957 (E, Attribute_Object_Size))
958 then
959 Set_Esize (E, Esize (P));
960 end if;
961
962 -- Pack
963
964 when Aspect_Pack =>
965 if not Is_Packed (E) then
966 Set_Is_Packed (Base_Type (E));
967
968 if Is_Bit_Packed_Array (P) then
969 Set_Is_Bit_Packed_Array (Base_Type (E));
a88a5773 970 Set_Packed_Array_Impl_Type
971 (E, Packed_Array_Impl_Type (P));
37c6e44c 972 end if;
973 end if;
974
975 -- Scalar_Storage_Order
976
977 when Aspect_Scalar_Storage_Order =>
978 if (Is_Record_Type (E) or else Is_Array_Type (E))
979 and then No (Get_Attribute_Definition_Clause
e163cac8 980 (E, Attribute_Scalar_Storage_Order))
37c6e44c 981 and then Reverse_Storage_Order (P)
982 then
983 Set_Reverse_Storage_Order (Base_Type (E));
b64082f2 984
985 -- Clear default SSO indications, since the aspect
986 -- overrides the default.
987
988 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
989 Set_SSO_Set_High_By_Default (Base_Type (E), False);
37c6e44c 990 end if;
991
992 -- Small
993
994 when Aspect_Small =>
995 if Is_Fixed_Point_Type (E)
996 and then not Has_Small_Clause (E)
997 then
998 Set_Small_Value (E, Small_Value (P));
999 end if;
1000
1001 -- Storage_Size
1002
1003 when Aspect_Storage_Size =>
1004 if (Is_Access_Type (E) or else Is_Task_Type (E))
1005 and then not Has_Storage_Size_Clause (E)
1006 then
1007 Set_Storage_Size_Variable
1008 (Base_Type (E), Storage_Size_Variable (P));
1009 end if;
1010
1011 -- Value_Size
1012
1013 when Aspect_Value_Size =>
1014
1015 -- Value_Size is never inherited, it is either set by
1016 -- default, or it is explicitly set for the derived
1017 -- type. So nothing to do here.
1018
1019 null;
1020
1021 -- Volatile
1022
1023 when Aspect_Volatile =>
1024 if Is_Volatile (P) then
1025 Set_Is_Volatile (E);
1026 end if;
1027
2fe893b9 1028 -- Volatile_Full_Access
1029
1030 when Aspect_Volatile_Full_Access =>
4bf2acc9 1031 if Is_Volatile_Full_Access (P) then
1032 Set_Is_Volatile_Full_Access (E);
2fe893b9 1033 end if;
1034
37c6e44c 1035 -- Volatile_Components
1036
1037 when Aspect_Volatile_Components =>
1038 if Has_Volatile_Components (P) then
1039 Set_Has_Volatile_Components (Base_Type (E));
1040 end if;
1041
1042 -- That should be all the Rep Aspects
1043
1044 when others =>
1045 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1046 null;
37c6e44c 1047 end case;
1048 end if;
1049 end if;
1050
1051 N := Next_Rep_Item (N);
1052 end loop;
1053 end Inherit_Delayed_Rep_Aspects;
1054
06ef5f86 1055 -------------------------------------
1056 -- Make_Pragma_From_Boolean_Aspect --
1057 -------------------------------------
1058
1059 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1060 Ident : constant Node_Id := Identifier (ASN);
1061 A_Name : constant Name_Id := Chars (Ident);
1062 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1063 Ent : constant Entity_Id := Entity (ASN);
1064 Expr : constant Node_Id := Expression (ASN);
1065 Loc : constant Source_Ptr := Sloc (ASN);
1066
06ef5f86 1067 procedure Check_False_Aspect_For_Derived_Type;
1068 -- This procedure checks for the case of a false aspect for a derived
1069 -- type, which improperly tries to cancel an aspect inherited from
1070 -- the parent.
1071
1072 -----------------------------------------
1073 -- Check_False_Aspect_For_Derived_Type --
1074 -----------------------------------------
1075
1076 procedure Check_False_Aspect_For_Derived_Type is
1077 Par : Node_Id;
1078
1079 begin
1080 -- We are only checking derived types
1081
1082 if not Is_Derived_Type (E) then
1083 return;
1084 end if;
1085
1086 Par := Nearest_Ancestor (E);
1087
1088 case A_Id is
99378362 1089 when Aspect_Atomic
1090 | Aspect_Shared
1091 =>
06ef5f86 1092 if not Is_Atomic (Par) then
1093 return;
1094 end if;
1095
1096 when Aspect_Atomic_Components =>
1097 if not Has_Atomic_Components (Par) then
1098 return;
1099 end if;
1100
1101 when Aspect_Discard_Names =>
1102 if not Discard_Names (Par) then
1103 return;
1104 end if;
1105
1106 when Aspect_Pack =>
1107 if not Is_Packed (Par) then
1108 return;
1109 end if;
1110
1111 when Aspect_Unchecked_Union =>
1112 if not Is_Unchecked_Union (Par) then
1113 return;
1114 end if;
1115
1116 when Aspect_Volatile =>
1117 if not Is_Volatile (Par) then
1118 return;
1119 end if;
1120
1121 when Aspect_Volatile_Components =>
1122 if not Has_Volatile_Components (Par) then
1123 return;
1124 end if;
1125
2fe893b9 1126 when Aspect_Volatile_Full_Access =>
4bf2acc9 1127 if not Is_Volatile_Full_Access (Par) then
2fe893b9 1128 return;
1129 end if;
1130
06ef5f86 1131 when others =>
1132 return;
1133 end case;
1134
1135 -- Fall through means we are canceling an inherited aspect
1136
1137 Error_Msg_Name_1 := A_Name;
37c6e44c 1138 Error_Msg_NE
1139 ("derived type& inherits aspect%, cannot cancel", Expr, E);
06ef5f86 1140 end Check_False_Aspect_For_Derived_Type;
1141
ee2b7923 1142 -- Local variables
1143
1144 Prag : Node_Id;
1145
06ef5f86 1146 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1147
1148 begin
37c6e44c 1149 -- Note that we know Expr is present, because for a missing Expr
1150 -- argument, we knew it was True and did not need to delay the
1151 -- evaluation to the freeze point.
1152
06ef5f86 1153 if Is_False (Static_Boolean (Expr)) then
1154 Check_False_Aspect_For_Derived_Type;
1155
1156 else
1157 Prag :=
1158 Make_Pragma (Loc,
ee2b7923 1159 Pragma_Identifier =>
1160 Make_Identifier (Sloc (Ident), Chars (Ident)),
06ef5f86 1161 Pragma_Argument_Associations => New_List (
57cd943b 1162 Make_Pragma_Argument_Association (Sloc (Ident),
ee2b7923 1163 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
06ef5f86 1164
1165 Set_From_Aspect_Specification (Prag, True);
1166 Set_Corresponding_Aspect (Prag, ASN);
1167 Set_Aspect_Rep_Item (ASN, Prag);
1168 Set_Is_Delayed_Aspect (Prag);
1169 Set_Parent (Prag, ASN);
1170 end if;
06ef5f86 1171 end Make_Pragma_From_Boolean_Aspect;
1172
ee2b7923 1173 -- Local variables
1174
1175 A_Id : Aspect_Id;
1176 ASN : Node_Id;
1177 Ritem : Node_Id;
1178
06ef5f86 1179 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1180
1181 begin
29a9d4be 1182 -- Must be visible in current scope
06ef5f86 1183
ace3389d 1184 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 1185 return;
1186 end if;
1187
1188 -- Look for aspect specification entries for this entity
1189
1190 ASN := First_Rep_Item (E);
06ef5f86 1191 while Present (ASN) loop
37c6e44c 1192 if Nkind (ASN) = N_Aspect_Specification then
1193 exit when Entity (ASN) /= E;
06ef5f86 1194
37c6e44c 1195 if Is_Delayed_Aspect (ASN) then
1196 A_Id := Get_Aspect_Id (ASN);
1197
1198 case A_Id is
e4c87fa5 1199
37c6e44c 1200 -- For aspects whose expression is an optional Boolean, make
7d6fb253 1201 -- the corresponding pragma at the freeze point.
06ef5f86 1202
99378362 1203 when Boolean_Aspects
1204 | Library_Unit_Aspects
1205 =>
ee2b7923 1206 -- Aspects Export and Import require special handling.
1207 -- Both are by definition Boolean and may benefit from
1208 -- forward references, however their expressions are
1209 -- treated as static. In addition, the syntax of their
1210 -- corresponding pragmas requires extra "pieces" which
1211 -- may also contain forward references. To account for
1212 -- all of this, the corresponding pragma is created by
1213 -- Analyze_Aspect_Export_Import, but is not analyzed as
1214 -- the complete analysis must happen now.
1215
1216 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1217 null;
1218
1219 -- Otherwise create a corresponding pragma
1220
1221 else
1222 Make_Pragma_From_Boolean_Aspect (ASN);
1223 end if;
06ef5f86 1224
37c6e44c 1225 -- Special handling for aspects that don't correspond to
1226 -- pragmas/attributes.
06ef5f86 1227
99378362 1228 when Aspect_Default_Value
1229 | Aspect_Default_Component_Value
1230 =>
81c2bc19 1231 -- Do not inherit aspect for anonymous base type of a
1232 -- scalar or array type, because they apply to the first
1233 -- subtype of the type, and will be processed when that
1234 -- first subtype is frozen.
1235
1236 if Is_Derived_Type (E)
1237 and then not Comes_From_Source (E)
1238 and then E /= First_Subtype (E)
1239 then
1240 null;
1241 else
1242 Analyze_Aspect_Default_Value (ASN);
1243 end if;
06ef5f86 1244
37c6e44c 1245 -- Ditto for iterator aspects, because the corresponding
1246 -- attributes may not have been analyzed yet.
af9fed8f 1247
99378362 1248 when Aspect_Constant_Indexing
1249 | Aspect_Default_Iterator
1250 | Aspect_Iterator_Element
1251 | Aspect_Variable_Indexing
1252 =>
7d6fb253 1253 Analyze (Expression (ASN));
af9fed8f 1254
7d6fb253 1255 if Etype (Expression (ASN)) = Any_Type then
1256 Error_Msg_NE
1257 ("\aspect must be fully defined before & is frozen",
1258 ASN, E);
1259 end if;
b3f8228a 1260
7d6fb253 1261 when Aspect_Iterable =>
1262 Validate_Iterable_Aspect (E, ASN);
1263
1264 when others =>
1265 null;
37c6e44c 1266 end case;
06ef5f86 1267
37c6e44c 1268 Ritem := Aspect_Rep_Item (ASN);
06ef5f86 1269
37c6e44c 1270 if Present (Ritem) then
1271 Analyze (Ritem);
1272 end if;
06ef5f86 1273 end if;
1274 end if;
1275
1276 Next_Rep_Item (ASN);
1277 end loop;
37c6e44c 1278
1279 -- This is where we inherit delayed rep aspects from our parent. Note
1280 -- that if we fell out of the above loop with ASN non-empty, it means
1281 -- we hit an aspect for an entity other than E, and it must be the
1282 -- type from which we were derived.
1283
1284 if May_Inherit_Delayed_Rep_Aspects (E) then
1285 Inherit_Delayed_Rep_Aspects (ASN);
1286 end if;
06ef5f86 1287 end Analyze_Aspects_At_Freeze_Point;
1288
ae888dbd 1289 -----------------------------------
1290 -- Analyze_Aspect_Specifications --
1291 -----------------------------------
1292
21ea3a4f 1293 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
e2bf777d 1294 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
6c5793cd 1295 -- Establish linkages between an aspect and its corresponding pragma
5ddd846b 1296
5655be8a 1297 procedure Insert_Pragma
1298 (Prag : Node_Id;
1299 Is_Instance : Boolean := False);
2f06c88a 1300 -- Subsidiary to the analysis of aspects
1301 -- Abstract_State
2f06c88a 1302 -- Attach_Handler
1303 -- Contract_Cases
1304 -- Depends
5655be8a 1305 -- Ghost
2f06c88a 1306 -- Global
5655be8a 1307 -- Initial_Condition
1308 -- Initializes
2f06c88a 1309 -- Post
1310 -- Pre
1311 -- Refined_Depends
1312 -- Refined_Global
5655be8a 1313 -- Refined_State
2f06c88a 1314 -- SPARK_Mode
1315 -- Warnings
e2bf777d 1316 -- Insert pragma Prag such that it mimics the placement of a source
5655be8a 1317 -- pragma of the same kind. Flag Is_Generic should be set when the
1318 -- context denotes a generic instance.
e2bf777d 1319
1320 --------------
1321 -- Decorate --
1322 --------------
1323
1324 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5ddd846b 1325 begin
6c5793cd 1326 Set_Aspect_Rep_Item (Asp, Prag);
5ddd846b 1327 Set_Corresponding_Aspect (Prag, Asp);
1328 Set_From_Aspect_Specification (Prag);
5ddd846b 1329 Set_Parent (Prag, Asp);
e2bf777d 1330 end Decorate;
f0813d71 1331
e2bf777d 1332 -------------------
1333 -- Insert_Pragma --
1334 -------------------
c1006d6d 1335
5655be8a 1336 procedure Insert_Pragma
1337 (Prag : Node_Id;
1338 Is_Instance : Boolean := False)
1339 is
3ff5e35d 1340 Aux : Node_Id;
1341 Decl : Node_Id;
1342 Decls : List_Id;
1343 Def : Node_Id;
1344 Inserted : Boolean := False;
c1006d6d 1345
1346 begin
3ff5e35d 1347 -- When the aspect appears on an entry, package, protected unit,
1348 -- subprogram, or task unit body, insert the generated pragma at the
1349 -- top of the body declarations to emulate the behavior of a source
1350 -- pragma.
2f06c88a 1351
1352 -- package body Pack with Aspect is
1353
1354 -- package body Pack is
1355 -- pragma Prag;
1356
3ff5e35d 1357 if Nkind_In (N, N_Entry_Body,
1358 N_Package_Body,
2f06c88a 1359 N_Protected_Body,
1360 N_Subprogram_Body,
1361 N_Task_Body)
1362 then
1363 Decls := Declarations (N);
1364
1365 if No (Decls) then
1366 Decls := New_List;
1367 Set_Declarations (N, Decls);
1368 end if;
e2bf777d 1369
3ff5e35d 1370 Prepend_To (Decls, Prag);
2f06c88a 1371
1372 -- When the aspect is associated with a [generic] package declaration
1373 -- insert the generated pragma at the top of the visible declarations
1374 -- to emulate the behavior of a source pragma.
1375
1376 -- package Pack with Aspect is
1377
1378 -- package Pack is
1379 -- pragma Prag;
1380
1381 elsif Nkind_In (N, N_Generic_Package_Declaration,
1382 N_Package_Declaration)
1383 then
1384 Decls := Visible_Declarations (Specification (N));
1385
1386 if No (Decls) then
1387 Decls := New_List;
1388 Set_Visible_Declarations (Specification (N), Decls);
1389 end if;
1390
5655be8a 1391 -- The visible declarations of a generic instance have the
1392 -- following structure:
1393
1394 -- <renamings of generic formals>
1395 -- <renamings of internally-generated spec and body>
1396 -- <first source declaration>
1397
1398 -- Insert the pragma before the first source declaration by
3ff5e35d 1399 -- skipping the instance "header" to ensure proper visibility of
1400 -- all formals.
5655be8a 1401
1402 if Is_Instance then
1403 Decl := First (Decls);
3ff5e35d 1404 while Present (Decl) loop
1405 if Comes_From_Source (Decl) then
1406 Insert_Before (Decl, Prag);
1407 Inserted := True;
1408 exit;
1409 else
1410 Next (Decl);
1411 end if;
5655be8a 1412 end loop;
1413
3ff5e35d 1414 -- The pragma is placed after the instance "header"
5655be8a 1415
3ff5e35d 1416 if not Inserted then
5655be8a 1417 Append_To (Decls, Prag);
1418 end if;
1419
1420 -- Otherwise this is not a generic instance
1421
1422 else
1423 Prepend_To (Decls, Prag);
1424 end if;
2f06c88a 1425
1426 -- When the aspect is associated with a protected unit declaration,
1427 -- insert the generated pragma at the top of the visible declarations
1428 -- the emulate the behavior of a source pragma.
1429
1430 -- protected [type] Prot with Aspect is
1431
1432 -- protected [type] Prot is
1433 -- pragma Prag;
1434
1435 elsif Nkind (N) = N_Protected_Type_Declaration then
736b80cc 1436 Def := Protected_Definition (N);
1437
1438 if No (Def) then
1439 Def :=
1440 Make_Protected_Definition (Sloc (N),
1441 Visible_Declarations => New_List,
1442 End_Label => Empty);
1443
1444 Set_Protected_Definition (N, Def);
1445 end if;
1446
1447 Decls := Visible_Declarations (Def);
2f06c88a 1448
1449 if No (Decls) then
1450 Decls := New_List;
736b80cc 1451 Set_Visible_Declarations (Def, Decls);
2f06c88a 1452 end if;
1453
1454 Prepend_To (Decls, Prag);
1455
736b80cc 1456 -- When the aspect is associated with a task unit declaration, insert
1457 -- insert the generated pragma at the top of the visible declarations
1458 -- the emulate the behavior of a source pragma.
2f06c88a 1459
1460 -- task [type] Prot with Aspect is
1461
1462 -- task [type] Prot is
1463 -- pragma Prag;
1464
736b80cc 1465 elsif Nkind (N) = N_Task_Type_Declaration then
1466 Def := Task_Definition (N);
1467
1468 if No (Def) then
1469 Def :=
1470 Make_Task_Definition (Sloc (N),
1471 Visible_Declarations => New_List,
1472 End_Label => Empty);
1473
1474 Set_Task_Definition (N, Def);
1475 end if;
1476
1477 Decls := Visible_Declarations (Def);
2f06c88a 1478
1479 if No (Decls) then
1480 Decls := New_List;
736b80cc 1481 Set_Visible_Declarations (Def, Decls);
d324c418 1482 end if;
c1006d6d 1483
2f06c88a 1484 Prepend_To (Decls, Prag);
1485
ed695684 1486 -- When the context is a library unit, the pragma is added to the
1487 -- Pragmas_After list.
1488
1489 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1490 Aux := Aux_Decls_Node (Parent (N));
1491
1492 if No (Pragmas_After (Aux)) then
1493 Set_Pragmas_After (Aux, New_List);
1494 end if;
1495
1496 Prepend (Prag, Pragmas_After (Aux));
1497
2f06c88a 1498 -- Default, the pragma is inserted after the context
c1006d6d 1499
1500 else
1501 Insert_After (N, Prag);
c1006d6d 1502 end if;
e2bf777d 1503 end Insert_Pragma;
c1006d6d 1504
1505 -- Local variables
1506
ae888dbd 1507 Aspect : Node_Id;
d74fc39a 1508 Aitem : Node_Id;
ae888dbd 1509 Ent : Node_Id;
ae888dbd 1510
21ea3a4f 1511 L : constant List_Id := Aspect_Specifications (N);
1512
ae888dbd 1513 Ins_Node : Node_Id := N;
89f1e35c 1514 -- Insert pragmas/attribute definition clause after this node when no
1515 -- delayed analysis is required.
d74fc39a 1516
ee2b7923 1517 -- Start of processing for Analyze_Aspect_Specifications
f0813d71 1518
ee2b7923 1519 begin
d74fc39a 1520 -- The general processing involves building an attribute definition
89f1e35c 1521 -- clause or a pragma node that corresponds to the aspect. Then in order
1522 -- to delay the evaluation of this aspect to the freeze point, we attach
1523 -- the corresponding pragma/attribute definition clause to the aspect
1524 -- specification node, which is then placed in the Rep Item chain. In
1525 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1526 -- and we evaluate the rep item at the freeze point. When the aspect
1527 -- doesn't have a corresponding pragma/attribute definition clause, then
1528 -- its analysis is simply delayed at the freeze point.
1529
1530 -- Some special cases don't require delay analysis, thus the aspect is
1531 -- analyzed right now.
1532
51ea9c94 1533 -- Note that there is a special handling for Pre, Post, Test_Case,
e66f4e2a 1534 -- Contract_Cases aspects. In these cases, we do not have to worry
51ea9c94 1535 -- about delay issues, since the pragmas themselves deal with delay
1536 -- of visibility for the expression analysis. Thus, we just insert
1537 -- the pragma after the node N.
ae888dbd 1538
21ea3a4f 1539 pragma Assert (Present (L));
1540
6fb3c314 1541 -- Loop through aspects
f93e7257 1542
ae888dbd 1543 Aspect := First (L);
21ea3a4f 1544 Aspect_Loop : while Present (Aspect) loop
0fd13d32 1545 Analyze_One_Aspect : declare
94153a42 1546 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 1547 Id : constant Node_Id := Identifier (Aspect);
1548 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 1549 Nam : constant Name_Id := Chars (Id);
1550 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 1551 Anod : Node_Id;
1552
37c6e44c 1553 Delay_Required : Boolean;
89f1e35c 1554 -- Set False if delay is not required
1555
c0793fff 1556 Eloc : Source_Ptr := No_Location;
1557 -- Source location of expression, modified when we split PPC's. It
1558 -- is set below when Expr is present.
39e1f22f 1559
ee2b7923 1560 procedure Analyze_Aspect_Convention;
1561 -- Perform analysis of aspect Convention
1562
1563 procedure Analyze_Aspect_Export_Import;
1564 -- Perform analysis of aspects Export or Import
1565
1566 procedure Analyze_Aspect_External_Link_Name;
1567 -- Perform analysis of aspects External_Name or Link_Name
21ea3a4f 1568
89f1e35c 1569 procedure Analyze_Aspect_Implicit_Dereference;
9ab32fe9 1570 -- Perform analysis of the Implicit_Dereference aspects
0fd13d32 1571
1572 procedure Make_Aitem_Pragma
1573 (Pragma_Argument_Associations : List_Id;
1574 Pragma_Name : Name_Id);
1575 -- This is a wrapper for Make_Pragma used for converting aspects
1576 -- to pragmas. It takes care of Sloc (set from Loc) and building
1577 -- the pragma identifier from the given name. In addition the
1578 -- flags Class_Present and Split_PPC are set from the aspect
1579 -- node, as well as Is_Ignored. This routine also sets the
1580 -- From_Aspect_Specification in the resulting pragma node to
1581 -- True, and sets Corresponding_Aspect to point to the aspect.
1582 -- The resulting pragma is assigned to Aitem.
21ea3a4f 1583
ee2b7923 1584 -------------------------------
1585 -- Analyze_Aspect_Convention --
1586 -------------------------------
1587
1588 procedure Analyze_Aspect_Convention is
1589 Conv : Node_Id;
1590 Dummy_1 : Node_Id;
1591 Dummy_2 : Node_Id;
1592 Dummy_3 : Node_Id;
1593 Expo : Node_Id;
1594 Imp : Node_Id;
89f1e35c 1595
21ea3a4f 1596 begin
ee2b7923 1597 -- Obtain all interfacing aspects that apply to the related
1598 -- entity.
1599
1600 Get_Interfacing_Aspects
1601 (Iface_Asp => Aspect,
1602 Conv_Asp => Dummy_1,
1603 EN_Asp => Dummy_2,
1604 Expo_Asp => Expo,
1605 Imp_Asp => Imp,
1606 LN_Asp => Dummy_3,
1607 Do_Checks => True);
1608
1609 -- The related entity is subject to aspect Export or Import.
1610 -- Do not process Convention now because it must be analysed
1611 -- as part of Export or Import.
1612
1613 if Present (Expo) or else Present (Imp) then
1614 return;
21ea3a4f 1615
ee2b7923 1616 -- Otherwise Convention appears by itself
21ea3a4f 1617
ee2b7923 1618 else
1619 -- The aspect specifies a particular convention
1620
1621 if Present (Expr) then
1622 Conv := New_Copy_Tree (Expr);
1623
1624 -- Otherwise assume convention Ada
1625
1626 else
1627 Conv := Make_Identifier (Loc, Name_Ada);
1628 end if;
1629
1630 -- Generate:
1631 -- pragma Convention (<Conv>, <E>);
1632
1633 Make_Aitem_Pragma
1634 (Pragma_Name => Name_Convention,
1635 Pragma_Argument_Associations => New_List (
1636 Make_Pragma_Argument_Association (Loc,
1637 Expression => Conv),
1638 Make_Pragma_Argument_Association (Loc,
1639 Expression => New_Occurrence_Of (E, Loc))));
1640
1641 Decorate (Aspect, Aitem);
1642 Insert_Pragma (Aitem);
1643 end if;
1644 end Analyze_Aspect_Convention;
1645
1646 ----------------------------------
1647 -- Analyze_Aspect_Export_Import --
1648 ----------------------------------
21ea3a4f 1649
ee2b7923 1650 procedure Analyze_Aspect_Export_Import is
1651 Dummy_1 : Node_Id;
1652 Dummy_2 : Node_Id;
1653 Dummy_3 : Node_Id;
1654 Expo : Node_Id;
1655 Imp : Node_Id;
1656
1657 begin
1658 -- Obtain all interfacing aspects that apply to the related
1659 -- entity.
1660
1661 Get_Interfacing_Aspects
1662 (Iface_Asp => Aspect,
1663 Conv_Asp => Dummy_1,
1664 EN_Asp => Dummy_2,
1665 Expo_Asp => Expo,
1666 Imp_Asp => Imp,
1667 LN_Asp => Dummy_3,
1668 Do_Checks => True);
1669
1670 -- The related entity cannot be subject to both aspects Export
1671 -- and Import.
1672
1673 if Present (Expo) and then Present (Imp) then
1674 Error_Msg_N
1675 ("incompatible interfacing aspects given for &", E);
1676 Error_Msg_Sloc := Sloc (Expo);
1677 Error_Msg_N ("\aspect `Export` #", E);
1678 Error_Msg_Sloc := Sloc (Imp);
1679 Error_Msg_N ("\aspect `Import` #", E);
1680 end if;
1681
1682 -- A variable is most likely modified from the outside. Take
051826ee 1683 -- the optimistic approach to avoid spurious errors.
ee2b7923 1684
1685 if Ekind (E) = E_Variable then
1686 Set_Never_Set_In_Source (E, False);
1687 end if;
1688
1689 -- Resolve the expression of an Import or Export here, and
1690 -- require it to be of type Boolean and static. This is not
1691 -- quite right, because in general this should be delayed,
1692 -- but that seems tricky for these, because normally Boolean
1693 -- aspects are replaced with pragmas at the freeze point in
1694 -- Make_Pragma_From_Boolean_Aspect.
1695
1696 if not Present (Expr)
1697 or else Is_True (Static_Boolean (Expr))
1698 then
1699 if A_Id = Aspect_Import then
1700 Set_Has_Completion (E);
1701 Set_Is_Imported (E);
1702
1703 -- An imported object cannot be explicitly initialized
1704
1705 if Nkind (N) = N_Object_Declaration
1706 and then Present (Expression (N))
1707 then
1708 Error_Msg_N
1709 ("imported entities cannot be initialized "
1710 & "(RM B.1(24))", Expression (N));
1711 end if;
1712
1713 else
1714 pragma Assert (A_Id = Aspect_Export);
1715 Set_Is_Exported (E);
1716 end if;
1717
1718 -- Create the proper form of pragma Export or Import taking
1719 -- into account Conversion, External_Name, and Link_Name.
1720
1721 Aitem := Build_Export_Import_Pragma (Aspect, E);
d8e539ae 1722
1723 -- Otherwise the expression is either False or erroneous. There
1724 -- is no corresponding pragma.
1725
1726 else
1727 Aitem := Empty;
ee2b7923 1728 end if;
1729 end Analyze_Aspect_Export_Import;
1730
1731 ---------------------------------------
1732 -- Analyze_Aspect_External_Link_Name --
1733 ---------------------------------------
1734
1735 procedure Analyze_Aspect_External_Link_Name is
1736 Dummy_1 : Node_Id;
1737 Dummy_2 : Node_Id;
1738 Dummy_3 : Node_Id;
1739 Expo : Node_Id;
1740 Imp : Node_Id;
1741
1742 begin
1743 -- Obtain all interfacing aspects that apply to the related
1744 -- entity.
1745
1746 Get_Interfacing_Aspects
1747 (Iface_Asp => Aspect,
1748 Conv_Asp => Dummy_1,
1749 EN_Asp => Dummy_2,
1750 Expo_Asp => Expo,
1751 Imp_Asp => Imp,
1752 LN_Asp => Dummy_3,
1753 Do_Checks => True);
1754
1755 -- Ensure that aspect External_Name applies to aspect Export or
1756 -- Import.
1757
1758 if A_Id = Aspect_External_Name then
1759 if No (Expo) and then No (Imp) then
89f1e35c 1760 Error_Msg_N
ee2b7923 1761 ("aspect `External_Name` requires aspect `Import` or "
1762 & "`Export`", Aspect);
89f1e35c 1763 end if;
ee2b7923 1764
1765 -- Otherwise ensure that aspect Link_Name applies to aspect
1766 -- Export or Import.
1767
1768 else
1769 pragma Assert (A_Id = Aspect_Link_Name);
1770 if No (Expo) and then No (Imp) then
1771 Error_Msg_N
1772 ("aspect `Link_Name` requires aspect `Import` or "
1773 & "`Export`", Aspect);
1774 end if;
1775 end if;
1776 end Analyze_Aspect_External_Link_Name;
21ea3a4f 1777
89f1e35c 1778 -----------------------------------------
1779 -- Analyze_Aspect_Implicit_Dereference --
1780 -----------------------------------------
21ea3a4f 1781
89f1e35c 1782 procedure Analyze_Aspect_Implicit_Dereference is
1ff43c00 1783 Disc : Entity_Id;
1784 Parent_Disc : Entity_Id;
1785
89f1e35c 1786 begin
b9e61b2a 1787 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1788 Error_Msg_N
1ff43c00 1789 ("aspect must apply to a type with discriminants", Expr);
21ea3a4f 1790
1ff43c00 1791 elsif not Is_Entity_Name (Expr) then
1792 Error_Msg_N
1793 ("aspect must name a discriminant of current type", Expr);
21ea3a4f 1794
1ff43c00 1795 else
f021ee0f 1796 -- Discriminant type be an anonymous access type or an
1797 -- anonymous access to subprogram.
0d0a4e9b 1798
f021ee0f 1799 -- Missing synchronized types???
1800
1ff43c00 1801 Disc := First_Discriminant (E);
1802 while Present (Disc) loop
1803 if Chars (Expr) = Chars (Disc)
f021ee0f 1804 and then Ekind_In (Etype (Disc),
0d0a4e9b 1805 E_Anonymous_Access_Subprogram_Type,
1806 E_Anonymous_Access_Type)
1ff43c00 1807 then
1808 Set_Has_Implicit_Dereference (E);
1809 Set_Has_Implicit_Dereference (Disc);
1810 exit;
1811 end if;
21ea3a4f 1812
1ff43c00 1813 Next_Discriminant (Disc);
1814 end loop;
21ea3a4f 1815
9b5b11fb 1816 -- Error if no proper access discriminant
21ea3a4f 1817
1ff43c00 1818 if No (Disc) then
ee2b7923 1819 Error_Msg_NE ("not an access discriminant of&", Expr, E);
1ff43c00 1820 return;
1821 end if;
1822 end if;
1823
9b5b11fb 1824 -- For a type extension, check whether parent has a
1825 -- reference discriminant, to verify that use is proper.
1826
1ff43c00 1827 if Is_Derived_Type (E)
1828 and then Has_Discriminants (Etype (E))
1829 then
1830 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1831
1832 if Present (Parent_Disc)
1833 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1834 then
ee2b7923 1835 Error_Msg_N
1836 ("reference discriminant does not match discriminant "
1837 & "of parent type", Expr);
1ff43c00 1838 end if;
89f1e35c 1839 end if;
1840 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1841
0fd13d32 1842 -----------------------
1843 -- Make_Aitem_Pragma --
1844 -----------------------
1845
1846 procedure Make_Aitem_Pragma
1847 (Pragma_Argument_Associations : List_Id;
1848 Pragma_Name : Name_Id)
1849 is
b855559d 1850 Args : List_Id := Pragma_Argument_Associations;
1851
0fd13d32 1852 begin
1853 -- We should never get here if aspect was disabled
1854
1855 pragma Assert (not Is_Disabled (Aspect));
1856
056dc987 1857 -- Certain aspects allow for an optional name or expression. Do
1858 -- not generate a pragma with empty argument association list.
b855559d 1859
1860 if No (Args) or else No (Expression (First (Args))) then
1861 Args := No_List;
1862 end if;
1863
0fd13d32 1864 -- Build the pragma
1865
1866 Aitem :=
1867 Make_Pragma (Loc,
b855559d 1868 Pragma_Argument_Associations => Args,
0fd13d32 1869 Pragma_Identifier =>
1870 Make_Identifier (Sloc (Id), Pragma_Name),
9ab32fe9 1871 Class_Present => Class_Present (Aspect),
1872 Split_PPC => Split_PPC (Aspect));
0fd13d32 1873
1874 -- Set additional semantic fields
1875
1876 if Is_Ignored (Aspect) then
1877 Set_Is_Ignored (Aitem);
57d8d1f3 1878 elsif Is_Checked (Aspect) then
a5109493 1879 Set_Is_Checked (Aitem);
0fd13d32 1880 end if;
1881
1882 Set_Corresponding_Aspect (Aitem, Aspect);
fdec445e 1883 Set_From_Aspect_Specification (Aitem);
0fd13d32 1884 end Make_Aitem_Pragma;
1885
738ec25b 1886 -- Start of processing for Analyze_One_Aspect
0fd13d32 1887
ae888dbd 1888 begin
2d1acfa7 1889 -- Skip aspect if already analyzed, to avoid looping in some cases
fb7f2fc4 1890
1891 if Analyzed (Aspect) then
1892 goto Continue;
1893 end if;
1894
ef957022 1895 -- Skip looking at aspect if it is totally disabled. Just mark it
1896 -- as such for later reference in the tree. This also sets the
1897 -- Is_Ignored and Is_Checked flags appropriately.
51ea9c94 1898
1899 Check_Applicable_Policy (Aspect);
1900
1901 if Is_Disabled (Aspect) then
1902 goto Continue;
1903 end if;
1904
c0793fff 1905 -- Set the source location of expression, used in the case of
1906 -- a failed precondition/postcondition or invariant. Note that
1907 -- the source location of the expression is not usually the best
1908 -- choice here. For example, it gets located on the last AND
1909 -- keyword in a chain of boolean expressiond AND'ed together.
1910 -- It is best to put the message on the first character of the
1911 -- assertion, which is the effect of the First_Node call here.
1912
1913 if Present (Expr) then
1914 Eloc := Sloc (First_Node (Expr));
1915 end if;
1916
d7ed83a2 1917 -- Check restriction No_Implementation_Aspect_Specifications
1918
c171e1be 1919 if Implementation_Defined_Aspect (A_Id) then
d7ed83a2 1920 Check_Restriction
1921 (No_Implementation_Aspect_Specifications, Aspect);
1922 end if;
1923
1924 -- Check restriction No_Specification_Of_Aspect
1925
1926 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1927
f67ed4f5 1928 -- Mark aspect analyzed (actual analysis is delayed till later)
d7ed83a2 1929
fb7f2fc4 1930 Set_Analyzed (Aspect);
d74fc39a 1931 Set_Entity (Aspect, E);
738ec25b 1932
1933 -- Build the reference to E that will be used in the built pragmas
1934
d74fc39a 1935 Ent := New_Occurrence_Of (E, Sloc (Id));
1936
738ec25b 1937 if A_Id = Aspect_Attach_Handler
1938 or else A_Id = Aspect_Interrupt_Handler
1939 then
1940 -- Decorate the reference as comming from the sources and force
1941 -- its reanalysis to generate the reference to E; required to
1942 -- avoid reporting spurious warning on E as unreferenced entity
1943 -- (because aspects are not fully analyzed).
1944
1945 Set_Comes_From_Source (Ent, Comes_From_Source (Id));
1946 Set_Entity (Ent, Empty);
1947
1948 Analyze (Ent);
1949 end if;
1950
1e3c4ae6 1951 -- Check for duplicate aspect. Note that the Comes_From_Source
1952 -- test allows duplicate Pre/Post's that we generate internally
1953 -- to escape being flagged here.
ae888dbd 1954
6c545057 1955 if No_Duplicates_Allowed (A_Id) then
1956 Anod := First (L);
1957 while Anod /= Aspect loop
c171e1be 1958 if Comes_From_Source (Aspect)
1959 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
6c545057 1960 then
1961 Error_Msg_Name_1 := Nam;
1962 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1963
6c545057 1964 -- Case of same aspect specified twice
39e1f22f 1965
6c545057 1966 if Class_Present (Anod) = Class_Present (Aspect) then
1967 if not Class_Present (Anod) then
1968 Error_Msg_NE
1969 ("aspect% for & previously given#",
1970 Id, E);
1971 else
1972 Error_Msg_NE
1973 ("aspect `%''Class` for & previously given#",
1974 Id, E);
1975 end if;
39e1f22f 1976 end if;
6c545057 1977 end if;
ae888dbd 1978
6c545057 1979 Next (Anod);
1980 end loop;
1981 end if;
ae888dbd 1982
4db325e6 1983 -- Check some general restrictions on language defined aspects
1984
c171e1be 1985 if not Implementation_Defined_Aspect (A_Id) then
4db325e6 1986 Error_Msg_Name_1 := Nam;
1987
d1edd78e 1988 -- Not allowed for renaming declarations. Examine the original
da1b7592 1989 -- node because a subprogram renaming may have been rewritten
1990 -- as a body.
4db325e6 1991
da1b7592 1992 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
4db325e6 1993 Error_Msg_N
1994 ("aspect % not allowed for renaming declaration",
1995 Aspect);
1996 end if;
1997
1998 -- Not allowed for formal type declarations
1999
2000 if Nkind (N) = N_Formal_Type_Declaration then
2001 Error_Msg_N
2002 ("aspect % not allowed for formal type declaration",
2003 Aspect);
2004 end if;
2005 end if;
2006
7d20685d 2007 -- Copy expression for later processing by the procedures
2008 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2009
2010 Set_Entity (Id, New_Copy_Tree (Expr));
2011
37c6e44c 2012 -- Set Delay_Required as appropriate to aspect
2013
2014 case Aspect_Delay (A_Id) is
2015 when Always_Delay =>
2016 Delay_Required := True;
2017
2018 when Never_Delay =>
2019 Delay_Required := False;
2020
2021 when Rep_Aspect =>
2022
2023 -- If expression has the form of an integer literal, then
2024 -- do not delay, since we know the value cannot change.
2025 -- This optimization catches most rep clause cases.
2026
e43fc5c5 2027 -- For Boolean aspects, don't delay if no expression
2028
2029 if A_Id in Boolean_Aspects and then No (Expr) then
2030 Delay_Required := False;
2031
c5c6a638 2032 -- For non-Boolean aspects, don't delay if integer literal,
2033 -- unless the aspect is Alignment, which affects the
2034 -- freezing of an initialized object.
e43fc5c5 2035
2036 elsif A_Id not in Boolean_Aspects
c5c6a638 2037 and then A_Id /= Aspect_Alignment
e43fc5c5 2038 and then Present (Expr)
2039 and then Nkind (Expr) = N_Integer_Literal
2040 then
2041 Delay_Required := False;
2042
2043 -- All other cases are delayed
2044
2045 else
2046 Delay_Required := True;
2047 Set_Has_Delayed_Rep_Aspects (E);
2048 end if;
37c6e44c 2049 end case;
2050
ae888dbd 2051 -- Processing based on specific aspect
2052
d74fc39a 2053 case A_Id is
aa2f48d2 2054 when Aspect_Unimplemented =>
2055 null; -- ??? temp for now
ae888dbd 2056
2057 -- No_Aspect should be impossible
2058
2059 when No_Aspect =>
2060 raise Program_Error;
2061
89f1e35c 2062 -- Case 1: Aspects corresponding to attribute definition
2063 -- clauses.
ae888dbd 2064
99378362 2065 when Aspect_Address
2066 | Aspect_Alignment
2067 | Aspect_Bit_Order
2068 | Aspect_Component_Size
2069 | Aspect_Constant_Indexing
2070 | Aspect_Default_Iterator
2071 | Aspect_Dispatching_Domain
2072 | Aspect_External_Tag
2073 | Aspect_Input
2074 | Aspect_Iterable
2075 | Aspect_Iterator_Element
2076 | Aspect_Machine_Radix
2077 | Aspect_Object_Size
2078 | Aspect_Output
2079 | Aspect_Read
2080 | Aspect_Scalar_Storage_Order
2081 | Aspect_Secondary_Stack_Size
2082 | Aspect_Simple_Storage_Pool
2083 | Aspect_Size
2084 | Aspect_Small
2085 | Aspect_Storage_Pool
2086 | Aspect_Stream_Size
2087 | Aspect_Value_Size
2088 | Aspect_Variable_Indexing
2089 | Aspect_Write
2090 =>
89f1e35c 2091 -- Indexing aspects apply only to tagged type
2092
2093 if (A_Id = Aspect_Constant_Indexing
37c6e44c 2094 or else
2095 A_Id = Aspect_Variable_Indexing)
89f1e35c 2096 and then not (Is_Type (E)
2097 and then Is_Tagged_Type (E))
2098 then
05987af3 2099 Error_Msg_N
2100 ("indexing aspect can only apply to a tagged type",
3f4c9ffc 2101 Aspect);
89f1e35c 2102 goto Continue;
2103 end if;
2104
39616053 2105 -- For the case of aspect Address, we don't consider that we
588e7f97 2106 -- know the entity is never set in the source, since it is
2107 -- is likely aliasing is occurring.
2108
2109 -- Note: one might think that the analysis of the resulting
2110 -- attribute definition clause would take care of that, but
2111 -- that's not the case since it won't be from source.
2112
2113 if A_Id = Aspect_Address then
2114 Set_Never_Set_In_Source (E, False);
2115 end if;
2116
5ac76cee 2117 -- Correctness of the profile of a stream operation is
2118 -- verified at the freeze point, but we must detect the
2119 -- illegal specification of this aspect for a subtype now,
2120 -- to prevent malformed rep_item chains.
2121
fbf4d6ef 2122 if A_Id = Aspect_Input or else
2123 A_Id = Aspect_Output or else
2124 A_Id = Aspect_Read or else
2125 A_Id = Aspect_Write
5ac76cee 2126 then
fbf4d6ef 2127 if not Is_First_Subtype (E) then
2128 Error_Msg_N
2129 ("local name must be a first subtype", Aspect);
2130 goto Continue;
2131
2132 -- If stream aspect applies to the class-wide type,
2133 -- the generated attribute definition applies to the
2134 -- class-wide type as well.
2135
2136 elsif Class_Present (Aspect) then
2137 Ent :=
2138 Make_Attribute_Reference (Loc,
2139 Prefix => Ent,
2140 Attribute_Name => Name_Class);
2141 end if;
5ac76cee 2142 end if;
2143
d74fc39a 2144 -- Construct the attribute definition clause
2145
2146 Aitem :=
94153a42 2147 Make_Attribute_Definition_Clause (Loc,
d74fc39a 2148 Name => Ent,
ae888dbd 2149 Chars => Chars (Id),
2150 Expression => Relocate_Node (Expr));
2151
af9a0cc3 2152 -- If the address is specified, then we treat the entity as
41f06abf 2153 -- referenced, to avoid spurious warnings. This is analogous
2154 -- to what is done with an attribute definition clause, but
2155 -- here we don't want to generate a reference because this
2156 -- is the point of definition of the entity.
2157
2158 if A_Id = Aspect_Address then
2159 Set_Referenced (E);
2160 end if;
2161
51ea9c94 2162 -- Case 2: Aspects corresponding to pragmas
d74fc39a 2163
89f1e35c 2164 -- Case 2a: Aspects corresponding to pragmas with two
2165 -- arguments, where the first argument is a local name
2166 -- referring to the entity, and the second argument is the
2167 -- aspect definition expression.
ae888dbd 2168
04ae062f 2169 -- Linker_Section/Suppress/Unsuppress
0fd13d32 2170
99378362 2171 when Aspect_Linker_Section
2172 | Aspect_Suppress
2173 | Aspect_Unsuppress
2174 =>
0fd13d32 2175 Make_Aitem_Pragma
2176 (Pragma_Argument_Associations => New_List (
2177 Make_Pragma_Argument_Association (Loc,
2178 Expression => New_Occurrence_Of (E, Loc)),
2179 Make_Pragma_Argument_Association (Sloc (Expr),
2180 Expression => Relocate_Node (Expr))),
2181 Pragma_Name => Chars (Id));
57cd943b 2182
0fd13d32 2183 -- Synchronization
d74fc39a 2184
0fd13d32 2185 -- Corresponds to pragma Implemented, construct the pragma
49213728 2186
5bbfbad2 2187 when Aspect_Synchronization =>
0fd13d32 2188 Make_Aitem_Pragma
2189 (Pragma_Argument_Associations => New_List (
2190 Make_Pragma_Argument_Association (Loc,
2191 Expression => New_Occurrence_Of (E, Loc)),
2192 Make_Pragma_Argument_Association (Sloc (Expr),
2193 Expression => Relocate_Node (Expr))),
2194 Pragma_Name => Name_Implemented);
49213728 2195
e2bf777d 2196 -- Attach_Handler
0fd13d32 2197
89f1e35c 2198 when Aspect_Attach_Handler =>
0fd13d32 2199 Make_Aitem_Pragma
2200 (Pragma_Argument_Associations => New_List (
2201 Make_Pragma_Argument_Association (Sloc (Ent),
2202 Expression => Ent),
2203 Make_Pragma_Argument_Association (Sloc (Expr),
2204 Expression => Relocate_Node (Expr))),
2205 Pragma_Name => Name_Attach_Handler);
2206
f67ed4f5 2207 -- We need to insert this pragma into the tree to get proper
2208 -- processing and to look valid from a placement viewpoint.
2209
e2bf777d 2210 Insert_Pragma (Aitem);
f67ed4f5 2211 goto Continue;
2212
0fd13d32 2213 -- Dynamic_Predicate, Predicate, Static_Predicate
89f1e35c 2214
99378362 2215 when Aspect_Dynamic_Predicate
2216 | Aspect_Predicate
2217 | Aspect_Static_Predicate
2218 =>
a47ce82d 2219 -- These aspects apply only to subtypes
2220
2221 if not Is_Type (E) then
2222 Error_Msg_N
2223 ("predicate can only be specified for a subtype",
2224 Aspect);
2225 goto Continue;
7c0c95b8 2226
2227 elsif Is_Incomplete_Type (E) then
2228 Error_Msg_N
2229 ("predicate cannot apply to incomplete view", Aspect);
2230 goto Continue;
a47ce82d 2231 end if;
2232
89f1e35c 2233 -- Construct the pragma (always a pragma Predicate, with
51ea9c94 2234 -- flags recording whether it is static/dynamic). We also
2235 -- set flags recording this in the type itself.
89f1e35c 2236
0fd13d32 2237 Make_Aitem_Pragma
2238 (Pragma_Argument_Associations => New_List (
2239 Make_Pragma_Argument_Association (Sloc (Ent),
2240 Expression => Ent),
2241 Make_Pragma_Argument_Association (Sloc (Expr),
2242 Expression => Relocate_Node (Expr))),
fdec445e 2243 Pragma_Name => Name_Predicate);
89f1e35c 2244
51ea9c94 2245 -- Mark type has predicates, and remember what kind of
2246 -- aspect lead to this predicate (we need this to access
2247 -- the right set of check policies later on).
2248
2249 Set_Has_Predicates (E);
2250
2251 if A_Id = Aspect_Dynamic_Predicate then
2252 Set_Has_Dynamic_Predicate_Aspect (E);
0ec8f3e0 2253
2254 -- If the entity has a dynamic predicate, any inherited
2255 -- static predicate becomes dynamic as well, and the
2256 -- predicate function includes the conjunction of both.
2257
2258 Set_Has_Static_Predicate_Aspect (E, False);
2259
51ea9c94 2260 elsif A_Id = Aspect_Static_Predicate then
2261 Set_Has_Static_Predicate_Aspect (E);
2262 end if;
2263
89f1e35c 2264 -- If the type is private, indicate that its completion
6653b695 2265 -- has a freeze node, because that is the one that will
2266 -- be visible at freeze time.
89f1e35c 2267
0fd13d32 2268 if Is_Private_Type (E) and then Present (Full_View (E)) then
89f1e35c 2269 Set_Has_Predicates (Full_View (E));
51ea9c94 2270
2271 if A_Id = Aspect_Dynamic_Predicate then
2272 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2273 elsif A_Id = Aspect_Static_Predicate then
2274 Set_Has_Static_Predicate_Aspect (Full_View (E));
2275 end if;
2276
89f1e35c 2277 Set_Has_Delayed_Aspects (Full_View (E));
2278 Ensure_Freeze_Node (Full_View (E));
2279 end if;
2280
fdec445e 2281 -- Predicate_Failure
2282
2283 when Aspect_Predicate_Failure =>
2284
2285 -- This aspect applies only to subtypes
2286
2287 if not Is_Type (E) then
2288 Error_Msg_N
2289 ("predicate can only be specified for a subtype",
2290 Aspect);
2291 goto Continue;
2292
2293 elsif Is_Incomplete_Type (E) then
2294 Error_Msg_N
2295 ("predicate cannot apply to incomplete view", Aspect);
2296 goto Continue;
2297 end if;
2298
2299 -- Construct the pragma
2300
2301 Make_Aitem_Pragma
2302 (Pragma_Argument_Associations => New_List (
2303 Make_Pragma_Argument_Association (Sloc (Ent),
2304 Expression => Ent),
2305 Make_Pragma_Argument_Association (Sloc (Expr),
2306 Expression => Relocate_Node (Expr))),
2307 Pragma_Name => Name_Predicate_Failure);
2308
2309 Set_Has_Predicates (E);
2310
2311 -- If the type is private, indicate that its completion
2312 -- has a freeze node, because that is the one that will
2313 -- be visible at freeze time.
2314
2315 if Is_Private_Type (E) and then Present (Full_View (E)) then
2316 Set_Has_Predicates (Full_View (E));
2317 Set_Has_Delayed_Aspects (Full_View (E));
2318 Ensure_Freeze_Node (Full_View (E));
2319 end if;
2320
89f1e35c 2321 -- Case 2b: Aspects corresponding to pragmas with two
2322 -- arguments, where the second argument is a local name
2323 -- referring to the entity, and the first argument is the
2324 -- aspect definition expression.
ae888dbd 2325
0fd13d32 2326 -- Convention
2327
ee2b7923 2328 when Aspect_Convention =>
2329 Analyze_Aspect_Convention;
2330 goto Continue;
97bf66e6 2331
ee2b7923 2332 -- External_Name, Link_Name
97bf66e6 2333
99378362 2334 when Aspect_External_Name
2335 | Aspect_Link_Name
2336 =>
ee2b7923 2337 Analyze_Aspect_External_Link_Name;
2338 goto Continue;
e1cedbae 2339
0fd13d32 2340 -- CPU, Interrupt_Priority, Priority
2341
d6814978 2342 -- These three aspects can be specified for a subprogram spec
2343 -- or body, in which case we analyze the expression and export
2344 -- the value of the aspect.
2345
2346 -- Previously, we generated an equivalent pragma for bodies
2347 -- (note that the specs cannot contain these pragmas). The
2348 -- pragma was inserted ahead of local declarations, rather than
2349 -- after the body. This leads to a certain duplication between
2350 -- the processing performed for the aspect and the pragma, but
2351 -- given the straightforward handling required it is simpler
2352 -- to duplicate than to translate the aspect in the spec into
2353 -- a pragma in the declarative part of the body.
3a72f9c3 2354
99378362 2355 when Aspect_CPU
2356 | Aspect_Interrupt_Priority
2357 | Aspect_Priority
2358 =>
d6814978 2359 if Nkind_In (N, N_Subprogram_Body,
2360 N_Subprogram_Declaration)
2361 then
2362 -- Analyze the aspect expression
2363
2364 Analyze_And_Resolve (Expr, Standard_Integer);
2365
2366 -- Interrupt_Priority aspect not allowed for main
078a74b8 2367 -- subprograms. RM D.1 does not forbid this explicitly,
2368 -- but RM J.15.11(6/3) does not permit pragma
d6814978 2369 -- Interrupt_Priority for subprograms.
2370
2371 if A_Id = Aspect_Interrupt_Priority then
2372 Error_Msg_N
2373 ("Interrupt_Priority aspect cannot apply to "
2374 & "subprogram", Expr);
2375
2376 -- The expression must be static
2377
cda40848 2378 elsif not Is_OK_Static_Expression (Expr) then
d6814978 2379 Flag_Non_Static_Expr
2380 ("aspect requires static expression!", Expr);
2381
24d7b9d6 2382 -- Check whether this is the main subprogram. Issue a
2383 -- warning only if it is obviously not a main program
2384 -- (when it has parameters or when the subprogram is
2385 -- within a package).
2386
2387 elsif Present (Parameter_Specifications
2388 (Specification (N)))
2389 or else not Is_Compilation_Unit (Defining_Entity (N))
d6814978 2390 then
078a74b8 2391 -- See RM D.1(14/3) and D.16(12/3)
d6814978 2392
2393 Error_Msg_N
2394 ("aspect applied to subprogram other than the "
2395 & "main subprogram has no effect??", Expr);
2396
2397 -- Otherwise check in range and export the value
2398
2399 -- For the CPU aspect
2400
2401 elsif A_Id = Aspect_CPU then
2402 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2403
2404 -- Value is correct so we export the value to make
2405 -- it available at execution time.
2406
2407 Set_Main_CPU
2408 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2409
2410 else
2411 Error_Msg_N
2412 ("main subprogram CPU is out of range", Expr);
2413 end if;
2414
2415 -- For the Priority aspect
2416
2417 elsif A_Id = Aspect_Priority then
2418 if Is_In_Range (Expr, RTE (RE_Priority)) then
2419
2420 -- Value is correct so we export the value to make
2421 -- it available at execution time.
2422
2423 Set_Main_Priority
2424 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2425
32572384 2426 -- Ignore pragma if Relaxed_RM_Semantics to support
2427 -- other targets/non GNAT compilers.
2428
2429 elsif not Relaxed_RM_Semantics then
d6814978 2430 Error_Msg_N
2431 ("main subprogram priority is out of range",
2432 Expr);
2433 end if;
2434 end if;
2435
2436 -- Load an arbitrary entity from System.Tasking.Stages
2437 -- or System.Tasking.Restricted.Stages (depending on
2438 -- the supported profile) to make sure that one of these
2439 -- packages is implicitly with'ed, since we need to have
2440 -- the tasking run time active for the pragma Priority to
a0c3eeb9 2441 -- have any effect. Previously we with'ed the package
d6814978 2442 -- System.Tasking, but this package does not trigger the
2443 -- required initialization of the run-time library.
2444
2445 declare
2446 Discard : Entity_Id;
d6814978 2447 begin
2448 if Restricted_Profile then
2449 Discard := RTE (RE_Activate_Restricted_Tasks);
2450 else
2451 Discard := RTE (RE_Activate_Tasks);
2452 end if;
2453 end;
2454
e6ce0468 2455 -- Handling for these aspects in subprograms is complete
d6814978 2456
2457 goto Continue;
2458
2f06c88a 2459 -- For tasks pass the aspect as an attribute
0fd13d32 2460
3a72f9c3 2461 else
2462 Aitem :=
2463 Make_Attribute_Definition_Clause (Loc,
2464 Name => Ent,
2465 Chars => Chars (Id),
2466 Expression => Relocate_Node (Expr));
2467 end if;
2468
0fd13d32 2469 -- Warnings
2470
ae888dbd 2471 when Aspect_Warnings =>
0fd13d32 2472 Make_Aitem_Pragma
2473 (Pragma_Argument_Associations => New_List (
2474 Make_Pragma_Argument_Association (Sloc (Expr),
2475 Expression => Relocate_Node (Expr)),
2476 Make_Pragma_Argument_Association (Loc,
2477 Expression => New_Occurrence_Of (E, Loc))),
2478 Pragma_Name => Chars (Id));
ae888dbd 2479
2f06c88a 2480 Decorate (Aspect, Aitem);
2481 Insert_Pragma (Aitem);
2482 goto Continue;
2483
89f1e35c 2484 -- Case 2c: Aspects corresponding to pragmas with three
2485 -- arguments.
d64221a7 2486
89f1e35c 2487 -- Invariant aspects have a first argument that references the
2488 -- entity, a second argument that is the expression and a third
2489 -- argument that is an appropriate message.
d64221a7 2490
0fd13d32 2491 -- Invariant, Type_Invariant
2492
99378362 2493 when Aspect_Invariant
2494 | Aspect_Type_Invariant
2495 =>
89f1e35c 2496 -- Analysis of the pragma will verify placement legality:
2497 -- an invariant must apply to a private type, or appear in
2498 -- the private part of a spec and apply to a completion.
d64221a7 2499
0fd13d32 2500 Make_Aitem_Pragma
2501 (Pragma_Argument_Associations => New_List (
2502 Make_Pragma_Argument_Association (Sloc (Ent),
2503 Expression => Ent),
2504 Make_Pragma_Argument_Association (Sloc (Expr),
2505 Expression => Relocate_Node (Expr))),
2506 Pragma_Name => Name_Invariant);
89f1e35c 2507
2508 -- Add message unless exception messages are suppressed
2509
2510 if not Opt.Exception_Locations_Suppressed then
2511 Append_To (Pragma_Argument_Associations (Aitem),
2512 Make_Pragma_Argument_Association (Eloc,
2513 Chars => Name_Message,
2514 Expression =>
2515 Make_String_Literal (Eloc,
2516 Strval => "failed invariant from "
2517 & Build_Location_String (Eloc))));
d64221a7 2518 end if;
2519
89f1e35c 2520 -- For Invariant case, insert immediately after the entity
2521 -- declaration. We do not have to worry about delay issues
2522 -- since the pragma processing takes care of this.
2523
89f1e35c 2524 Delay_Required := False;
d64221a7 2525
47a46747 2526 -- Case 2d : Aspects that correspond to a pragma with one
2527 -- argument.
2528
0fd13d32 2529 -- Abstract_State
115f7b08 2530
d4e369ad 2531 -- Aspect Abstract_State introduces implicit declarations for
2532 -- all state abstraction entities it defines. To emulate this
2533 -- behavior, insert the pragma at the beginning of the visible
2534 -- declarations of the related package so that it is analyzed
2535 -- immediately.
2536
9129c28f 2537 when Aspect_Abstract_State => Abstract_State : declare
eb4f7efa 2538 Context : Node_Id := N;
9129c28f 2539
2540 begin
eb4f7efa 2541 -- When aspect Abstract_State appears on a generic package,
2542 -- it is propageted to the package instance. The context in
2543 -- this case is the instance spec.
2544
2545 if Nkind (Context) = N_Package_Instantiation then
2546 Context := Instance_Spec (Context);
2547 end if;
2548
2549 if Nkind_In (Context, N_Generic_Package_Declaration,
2550 N_Package_Declaration)
9129c28f 2551 then
9129c28f 2552 Make_Aitem_Pragma
2553 (Pragma_Argument_Associations => New_List (
2554 Make_Pragma_Argument_Association (Loc,
2555 Expression => Relocate_Node (Expr))),
2556 Pragma_Name => Name_Abstract_State);
630b6d55 2557
5655be8a 2558 Decorate (Aspect, Aitem);
2559 Insert_Pragma
2560 (Prag => Aitem,
2561 Is_Instance =>
2562 Is_Generic_Instance (Defining_Entity (Context)));
9129c28f 2563
2564 else
2565 Error_Msg_NE
2566 ("aspect & must apply to a package declaration",
2567 Aspect, Id);
2568 end if;
2569
2570 goto Continue;
2571 end Abstract_State;
115f7b08 2572
85ee12c0 2573 -- Aspect Async_Readers is never delayed because it is
2574 -- equivalent to a source pragma which appears after the
2575 -- related object declaration.
2576
2577 when Aspect_Async_Readers =>
2578 Make_Aitem_Pragma
2579 (Pragma_Argument_Associations => New_List (
2580 Make_Pragma_Argument_Association (Loc,
2581 Expression => Relocate_Node (Expr))),
2582 Pragma_Name => Name_Async_Readers);
2583
2584 Decorate (Aspect, Aitem);
2585 Insert_Pragma (Aitem);
2586 goto Continue;
2587
2588 -- Aspect Async_Writers is never delayed because it is
2589 -- equivalent to a source pragma which appears after the
2590 -- related object declaration.
2591
2592 when Aspect_Async_Writers =>
2593 Make_Aitem_Pragma
2594 (Pragma_Argument_Associations => New_List (
2595 Make_Pragma_Argument_Association (Loc,
2596 Expression => Relocate_Node (Expr))),
2597 Pragma_Name => Name_Async_Writers);
2598
2599 Decorate (Aspect, Aitem);
2600 Insert_Pragma (Aitem);
2601 goto Continue;
2602
d0849c23 2603 -- Aspect Constant_After_Elaboration is never delayed because
2604 -- it is equivalent to a source pragma which appears after the
2605 -- related object declaration.
2606
2607 when Aspect_Constant_After_Elaboration =>
2608 Make_Aitem_Pragma
2609 (Pragma_Argument_Associations => New_List (
2610 Make_Pragma_Argument_Association (Loc,
2611 Expression => Relocate_Node (Expr))),
2612 Pragma_Name =>
2613 Name_Constant_After_Elaboration);
2614
2615 Decorate (Aspect, Aitem);
2616 Insert_Pragma (Aitem);
2617 goto Continue;
2618
ec6f6da5 2619 -- Aspect Default_Internal_Condition is never delayed because
2620 -- it is equivalent to a source pragma which appears after the
2621 -- related private type. To deal with forward references, the
2622 -- generated pragma is stored in the rep chain of the related
2623 -- private type as types do not carry contracts. The pragma is
2624 -- wrapped inside of a procedure at the freeze point of the
2625 -- private type's full view.
2626
2627 when Aspect_Default_Initial_Condition =>
2628 Make_Aitem_Pragma
2629 (Pragma_Argument_Associations => New_List (
2630 Make_Pragma_Argument_Association (Loc,
2631 Expression => Relocate_Node (Expr))),
2632 Pragma_Name =>
2633 Name_Default_Initial_Condition);
2634
2635 Decorate (Aspect, Aitem);
2636 Insert_Pragma (Aitem);
2637 goto Continue;
2638
647fab54 2639 -- Default_Storage_Pool
2640
2641 when Aspect_Default_Storage_Pool =>
2642 Make_Aitem_Pragma
2643 (Pragma_Argument_Associations => New_List (
2644 Make_Pragma_Argument_Association (Loc,
2645 Expression => Relocate_Node (Expr))),
2646 Pragma_Name =>
2647 Name_Default_Storage_Pool);
2648
2649 Decorate (Aspect, Aitem);
2650 Insert_Pragma (Aitem);
2651 goto Continue;
2652
0fd13d32 2653 -- Depends
2654
e2bf777d 2655 -- Aspect Depends is never delayed because it is equivalent to
2656 -- a source pragma which appears after the related subprogram.
2657 -- To deal with forward references, the generated pragma is
2658 -- stored in the contract of the related subprogram and later
2659 -- analyzed at the end of the declarative region. See routine
2660 -- Analyze_Depends_In_Decl_Part for details.
6144c105 2661
12334c57 2662 when Aspect_Depends =>
0fd13d32 2663 Make_Aitem_Pragma
2664 (Pragma_Argument_Associations => New_List (
2665 Make_Pragma_Argument_Association (Loc,
2666 Expression => Relocate_Node (Expr))),
2667 Pragma_Name => Name_Depends);
2668
e2bf777d 2669 Decorate (Aspect, Aitem);
2670 Insert_Pragma (Aitem);
c1006d6d 2671 goto Continue;
2672
85ee12c0 2673 -- Aspect Effecitve_Reads is never delayed because it is
2674 -- equivalent to a source pragma which appears after the
2675 -- related object declaration.
2676
2677 when Aspect_Effective_Reads =>
2678 Make_Aitem_Pragma
2679 (Pragma_Argument_Associations => New_List (
2680 Make_Pragma_Argument_Association (Loc,
2681 Expression => Relocate_Node (Expr))),
2682 Pragma_Name => Name_Effective_Reads);
2683
2684 Decorate (Aspect, Aitem);
2685 Insert_Pragma (Aitem);
2686 goto Continue;
2687
2688 -- Aspect Effective_Writes is never delayed because it is
2689 -- equivalent to a source pragma which appears after the
2690 -- related object declaration.
2691
2692 when Aspect_Effective_Writes =>
2693 Make_Aitem_Pragma
2694 (Pragma_Argument_Associations => New_List (
2695 Make_Pragma_Argument_Association (Loc,
2696 Expression => Relocate_Node (Expr))),
2697 Pragma_Name => Name_Effective_Writes);
2698
2699 Decorate (Aspect, Aitem);
2700 Insert_Pragma (Aitem);
2701 goto Continue;
2702
cab27d2a 2703 -- Aspect Extensions_Visible is never delayed because it is
2704 -- equivalent to a source pragma which appears after the
2705 -- related subprogram.
2706
2707 when Aspect_Extensions_Visible =>
2708 Make_Aitem_Pragma
2709 (Pragma_Argument_Associations => New_List (
2710 Make_Pragma_Argument_Association (Loc,
2711 Expression => Relocate_Node (Expr))),
2712 Pragma_Name => Name_Extensions_Visible);
2713
2714 Decorate (Aspect, Aitem);
2715 Insert_Pragma (Aitem);
2716 goto Continue;
2717
3dbe7a69 2718 -- Aspect Ghost is never delayed because it is equivalent to a
2719 -- source pragma which appears at the top of [generic] package
2720 -- declarations or after an object, a [generic] subprogram, or
2721 -- a type declaration.
2722
5655be8a 2723 when Aspect_Ghost =>
3dbe7a69 2724 Make_Aitem_Pragma
2725 (Pragma_Argument_Associations => New_List (
2726 Make_Pragma_Argument_Association (Loc,
2727 Expression => Relocate_Node (Expr))),
2728 Pragma_Name => Name_Ghost);
2729
2730 Decorate (Aspect, Aitem);
5655be8a 2731 Insert_Pragma (Aitem);
3dbe7a69 2732 goto Continue;
3dbe7a69 2733
0fd13d32 2734 -- Global
12334c57 2735
e2bf777d 2736 -- Aspect Global is never delayed because it is equivalent to
2737 -- a source pragma which appears after the related subprogram.
2738 -- To deal with forward references, the generated pragma is
2739 -- stored in the contract of the related subprogram and later
2740 -- analyzed at the end of the declarative region. See routine
2741 -- Analyze_Global_In_Decl_Part for details.
3cdbaa5a 2742
2743 when Aspect_Global =>
0fd13d32 2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Global);
2749
e2bf777d 2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
c1006d6d 2752 goto Continue;
2753
9c138530 2754 -- Initial_Condition
2755
e2bf777d 2756 -- Aspect Initial_Condition is never delayed because it is
2757 -- equivalent to a source pragma which appears after the
2758 -- related package. To deal with forward references, the
2759 -- generated pragma is stored in the contract of the related
2760 -- package and later analyzed at the end of the declarative
2761 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2762 -- for details.
9c138530 2763
2764 when Aspect_Initial_Condition => Initial_Condition : declare
eb4f7efa 2765 Context : Node_Id := N;
9c138530 2766
2767 begin
e2bf777d 2768 -- When aspect Initial_Condition appears on a generic
2769 -- package, it is propageted to the package instance. The
2770 -- context in this case is the instance spec.
eb4f7efa 2771
2772 if Nkind (Context) = N_Package_Instantiation then
2773 Context := Instance_Spec (Context);
2774 end if;
2775
2776 if Nkind_In (Context, N_Generic_Package_Declaration,
2777 N_Package_Declaration)
9c138530 2778 then
9c138530 2779 Make_Aitem_Pragma
2780 (Pragma_Argument_Associations => New_List (
2781 Make_Pragma_Argument_Association (Loc,
2782 Expression => Relocate_Node (Expr))),
2783 Pragma_Name =>
2784 Name_Initial_Condition);
9c138530 2785
5655be8a 2786 Decorate (Aspect, Aitem);
2787 Insert_Pragma
2788 (Prag => Aitem,
2789 Is_Instance =>
2790 Is_Generic_Instance (Defining_Entity (Context)));
50e44732 2791
5655be8a 2792 -- Otherwise the context is illegal
9c138530 2793
2794 else
2795 Error_Msg_NE
2796 ("aspect & must apply to a package declaration",
2797 Aspect, Id);
2798 end if;
2799
2800 goto Continue;
2801 end Initial_Condition;
2802
d4e369ad 2803 -- Initializes
2804
e2bf777d 2805 -- Aspect Initializes is never delayed because it is equivalent
2806 -- to a source pragma appearing after the related package. To
2807 -- deal with forward references, the generated pragma is stored
2808 -- in the contract of the related package and later analyzed at
2809 -- the end of the declarative region. For details, see routine
2810 -- Analyze_Initializes_In_Decl_Part.
d4e369ad 2811
2812 when Aspect_Initializes => Initializes : declare
eb4f7efa 2813 Context : Node_Id := N;
d4e369ad 2814
2815 begin
50e44732 2816 -- When aspect Initializes appears on a generic package,
2817 -- it is propageted to the package instance. The context
2818 -- in this case is the instance spec.
eb4f7efa 2819
2820 if Nkind (Context) = N_Package_Instantiation then
2821 Context := Instance_Spec (Context);
2822 end if;
2823
2824 if Nkind_In (Context, N_Generic_Package_Declaration,
2825 N_Package_Declaration)
d4e369ad 2826 then
d4e369ad 2827 Make_Aitem_Pragma
2828 (Pragma_Argument_Associations => New_List (
2829 Make_Pragma_Argument_Association (Loc,
2830 Expression => Relocate_Node (Expr))),
2831 Pragma_Name => Name_Initializes);
d4e369ad 2832
5655be8a 2833 Decorate (Aspect, Aitem);
2834 Insert_Pragma
2835 (Prag => Aitem,
2836 Is_Instance =>
2837 Is_Generic_Instance (Defining_Entity (Context)));
50e44732 2838
5655be8a 2839 -- Otherwise the context is illegal
d4e369ad 2840
2841 else
2842 Error_Msg_NE
2843 ("aspect & must apply to a package declaration",
2844 Aspect, Id);
2845 end if;
2846
2847 goto Continue;
2848 end Initializes;
2849
cbd45084 2850 -- Max_Queue_Length
2851
2852 when Aspect_Max_Queue_Length =>
2853 Make_Aitem_Pragma
2854 (Pragma_Argument_Associations => New_List (
2855 Make_Pragma_Argument_Association (Loc,
2856 Expression => Relocate_Node (Expr))),
2857 Pragma_Name => Name_Max_Queue_Length);
2858
2859 Decorate (Aspect, Aitem);
2860 Insert_Pragma (Aitem);
2861 goto Continue;
2862
1fd4313f 2863 -- Obsolescent
2864
2865 when Aspect_Obsolescent => declare
2866 Args : List_Id;
2867
2868 begin
2869 if No (Expr) then
2870 Args := No_List;
2871 else
2872 Args := New_List (
2873 Make_Pragma_Argument_Association (Sloc (Expr),
2874 Expression => Relocate_Node (Expr)));
2875 end if;
2876
2877 Make_Aitem_Pragma
2878 (Pragma_Argument_Associations => Args,
2879 Pragma_Name => Chars (Id));
2880 end;
2881
5cc6f0cf 2882 -- Part_Of
2883
2884 when Aspect_Part_Of =>
2885 if Nkind_In (N, N_Object_Declaration,
2886 N_Package_Instantiation)
736b80cc 2887 or else Is_Single_Concurrent_Type_Declaration (N)
5cc6f0cf 2888 then
2889 Make_Aitem_Pragma
2890 (Pragma_Argument_Associations => New_List (
2891 Make_Pragma_Argument_Association (Loc,
2892 Expression => Relocate_Node (Expr))),
2893 Pragma_Name => Name_Part_Of);
2894
736b80cc 2895 Decorate (Aspect, Aitem);
2896 Insert_Pragma (Aitem);
736b80cc 2897
5cc6f0cf 2898 else
2899 Error_Msg_NE
736b80cc 2900 ("aspect & must apply to package instantiation, "
2901 & "object, single protected type or single task type",
2902 Aspect, Id);
5cc6f0cf 2903 end if;
2904
d5c65b80 2905 goto Continue;
2906
5dd93a61 2907 -- SPARK_Mode
2908
2f06c88a 2909 when Aspect_SPARK_Mode =>
5dd93a61 2910 Make_Aitem_Pragma
2911 (Pragma_Argument_Associations => New_List (
2912 Make_Pragma_Argument_Association (Loc,
2913 Expression => Relocate_Node (Expr))),
2914 Pragma_Name => Name_SPARK_Mode);
5dd93a61 2915
2f06c88a 2916 Decorate (Aspect, Aitem);
2917 Insert_Pragma (Aitem);
2918 goto Continue;
778ebf56 2919
4befb1a0 2920 -- Refined_Depends
2921
e2bf777d 2922 -- Aspect Refined_Depends is never delayed because it is
2923 -- equivalent to a source pragma which appears in the
2924 -- declarations of the related subprogram body. To deal with
2925 -- forward references, the generated pragma is stored in the
2926 -- contract of the related subprogram body and later analyzed
2927 -- at the end of the declarative region. For details, see
2928 -- routine Analyze_Refined_Depends_In_Decl_Part.
4befb1a0 2929
2930 when Aspect_Refined_Depends =>
422073ed 2931 Make_Aitem_Pragma
2932 (Pragma_Argument_Associations => New_List (
2933 Make_Pragma_Argument_Association (Loc,
2934 Expression => Relocate_Node (Expr))),
2935 Pragma_Name => Name_Refined_Depends);
2936
e2bf777d 2937 Decorate (Aspect, Aitem);
2938 Insert_Pragma (Aitem);
422073ed 2939 goto Continue;
4befb1a0 2940
2941 -- Refined_Global
2942
e2bf777d 2943 -- Aspect Refined_Global is never delayed because it is
2944 -- equivalent to a source pragma which appears in the
2945 -- declarations of the related subprogram body. To deal with
2946 -- forward references, the generated pragma is stored in the
2947 -- contract of the related subprogram body and later analyzed
2948 -- at the end of the declarative region. For details, see
2949 -- routine Analyze_Refined_Global_In_Decl_Part.
4befb1a0 2950
2951 when Aspect_Refined_Global =>
28ff117f 2952 Make_Aitem_Pragma
2953 (Pragma_Argument_Associations => New_List (
2954 Make_Pragma_Argument_Association (Loc,
2955 Expression => Relocate_Node (Expr))),
2956 Pragma_Name => Name_Refined_Global);
2957
e2bf777d 2958 Decorate (Aspect, Aitem);
2959 Insert_Pragma (Aitem);
28ff117f 2960 goto Continue;
4befb1a0 2961
63b65b2d 2962 -- Refined_Post
2963
2964 when Aspect_Refined_Post =>
2965 Make_Aitem_Pragma
2966 (Pragma_Argument_Associations => New_List (
2967 Make_Pragma_Argument_Association (Loc,
2968 Expression => Relocate_Node (Expr))),
2969 Pragma_Name => Name_Refined_Post);
2970
3ff5e35d 2971 Decorate (Aspect, Aitem);
2972 Insert_Pragma (Aitem);
2973 goto Continue;
2974
9129c28f 2975 -- Refined_State
2976
5655be8a 2977 when Aspect_Refined_State =>
9129c28f 2978
9129c28f 2979 -- The corresponding pragma for Refined_State is inserted in
2980 -- the declarations of the related package body. This action
2981 -- synchronizes both the source and from-aspect versions of
2982 -- the pragma.
2983
2984 if Nkind (N) = N_Package_Body then
9129c28f 2985 Make_Aitem_Pragma
2986 (Pragma_Argument_Associations => New_List (
2987 Make_Pragma_Argument_Association (Loc,
2988 Expression => Relocate_Node (Expr))),
2989 Pragma_Name => Name_Refined_State);
b9b2d6e5 2990
5655be8a 2991 Decorate (Aspect, Aitem);
2992 Insert_Pragma (Aitem);
b9b2d6e5 2993
5655be8a 2994 -- Otherwise the context is illegal
9129c28f 2995
2996 else
2997 Error_Msg_NE
2998 ("aspect & must apply to a package body", Aspect, Id);
2999 end if;
3000
3001 goto Continue;
9129c28f 3002
0fd13d32 3003 -- Relative_Deadline
3cdbaa5a 3004
3005 when Aspect_Relative_Deadline =>
0fd13d32 3006 Make_Aitem_Pragma
3007 (Pragma_Argument_Associations => New_List (
3008 Make_Pragma_Argument_Association (Loc,
3009 Expression => Relocate_Node (Expr))),
3010 Pragma_Name => Name_Relative_Deadline);
47a46747 3011
3012 -- If the aspect applies to a task, the corresponding pragma
3013 -- must appear within its declarations, not after.
3014
3015 if Nkind (N) = N_Task_Type_Declaration then
3016 declare
3017 Def : Node_Id;
3018 V : List_Id;
3019
3020 begin
3021 if No (Task_Definition (N)) then
3022 Set_Task_Definition (N,
3023 Make_Task_Definition (Loc,
3024 Visible_Declarations => New_List,
3025 End_Label => Empty));
3026 end if;
3027
3028 Def := Task_Definition (N);
3029 V := Visible_Declarations (Def);
3030 if not Is_Empty_List (V) then
3031 Insert_Before (First (V), Aitem);
3032
3033 else
3034 Set_Visible_Declarations (Def, New_List (Aitem));
3035 end if;
3036
3037 goto Continue;
3038 end;
3039 end if;
3040
85ee12c0 3041 -- Aspect Volatile_Function is never delayed because it is
3042 -- equivalent to a source pragma which appears after the
3043 -- related subprogram.
3044
3045 when Aspect_Volatile_Function =>
3046 Make_Aitem_Pragma
3047 (Pragma_Argument_Associations => New_List (
3048 Make_Pragma_Argument_Association (Loc,
3049 Expression => Relocate_Node (Expr))),
3050 Pragma_Name => Name_Volatile_Function);
3051
3052 Decorate (Aspect, Aitem);
3053 Insert_Pragma (Aitem);
3054 goto Continue;
3055
956ffaf4 3056 -- Case 2e: Annotate aspect
3057
3058 when Aspect_Annotate =>
3059 declare
3060 Args : List_Id;
3061 Pargs : List_Id;
3062 Arg : Node_Id;
3063
3064 begin
3065 -- The argument can be a single identifier
3066
3067 if Nkind (Expr) = N_Identifier then
3068
3069 -- One level of parens is allowed
3070
3071 if Paren_Count (Expr) > 1 then
3072 Error_Msg_F ("extra parentheses ignored", Expr);
3073 end if;
3074
3075 Set_Paren_Count (Expr, 0);
3076
3077 -- Add the single item to the list
3078
3079 Args := New_List (Expr);
3080
3081 -- Otherwise we must have an aggregate
3082
3083 elsif Nkind (Expr) = N_Aggregate then
3084
3085 -- Must be positional
3086
3087 if Present (Component_Associations (Expr)) then
3088 Error_Msg_F
3089 ("purely positional aggregate required", Expr);
3090 goto Continue;
3091 end if;
3092
3093 -- Must not be parenthesized
3094
3095 if Paren_Count (Expr) /= 0 then
3096 Error_Msg_F ("extra parentheses ignored", Expr);
3097 end if;
3098
3099 -- List of arguments is list of aggregate expressions
3100
3101 Args := Expressions (Expr);
3102
3103 -- Anything else is illegal
3104
3105 else
3106 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3107 goto Continue;
3108 end if;
3109
3110 -- Prepare pragma arguments
3111
3112 Pargs := New_List;
3113 Arg := First (Args);
3114 while Present (Arg) loop
3115 Append_To (Pargs,
3116 Make_Pragma_Argument_Association (Sloc (Arg),
3117 Expression => Relocate_Node (Arg)));
3118 Next (Arg);
3119 end loop;
3120
3121 Append_To (Pargs,
3122 Make_Pragma_Argument_Association (Sloc (Ent),
3123 Chars => Name_Entity,
3124 Expression => Ent));
3125
3126 Make_Aitem_Pragma
3127 (Pragma_Argument_Associations => Pargs,
3128 Pragma_Name => Name_Annotate);
3129 end;
3130
89f1e35c 3131 -- Case 3 : Aspects that don't correspond to pragma/attribute
3132 -- definition clause.
7b9b2f05 3133
89f1e35c 3134 -- Case 3a: The aspects listed below don't correspond to
3135 -- pragmas/attributes but do require delayed analysis.
7f694ca2 3136
51fa2a45 3137 -- Default_Value can only apply to a scalar type
3138
3139 when Aspect_Default_Value =>
3140 if not Is_Scalar_Type (E) then
3141 Error_Msg_N
1089ff19 3142 ("aspect Default_Value must apply to a scalar type", N);
51fa2a45 3143 end if;
3144
3145 Aitem := Empty;
3146
3147 -- Default_Component_Value can only apply to an array type
3148 -- with scalar components.
3149
3150 when Aspect_Default_Component_Value =>
3151 if not (Is_Array_Type (E)
3f4c9ffc 3152 and then Is_Scalar_Type (Component_Type (E)))
51fa2a45 3153 then
ee2b7923 3154 Error_Msg_N
3155 ("aspect Default_Component_Value can only apply to an "
3156 & "array of scalar components", N);
51fa2a45 3157 end if;
0fd13d32 3158
89f1e35c 3159 Aitem := Empty;
7f694ca2 3160
89f1e35c 3161 -- Case 3b: The aspects listed below don't correspond to
3162 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 3163
0fd13d32 3164 -- Implicit_Dereference
3165
89f1e35c 3166 -- For Implicit_Dereference, External_Name and Link_Name, only
3167 -- the legality checks are done during the analysis, thus no
3168 -- delay is required.
a8e38e1d 3169
89f1e35c 3170 when Aspect_Implicit_Dereference =>
3171 Analyze_Aspect_Implicit_Dereference;
3172 goto Continue;
7f694ca2 3173
0fd13d32 3174 -- Dimension
3175
89f1e35c 3176 when Aspect_Dimension =>
3177 Analyze_Aspect_Dimension (N, Id, Expr);
3178 goto Continue;
cb4c311d 3179
0fd13d32 3180 -- Dimension_System
3181
89f1e35c 3182 when Aspect_Dimension_System =>
3183 Analyze_Aspect_Dimension_System (N, Id, Expr);
3184 goto Continue;
7f694ca2 3185
ceec4f7c 3186 -- Case 4: Aspects requiring special handling
51ea9c94 3187
e66f4e2a 3188 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3189 -- pragmas take care of the delay.
7f694ca2 3190
0fd13d32 3191 -- Pre/Post
3192
1e3c4ae6 3193 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3194 -- with a first argument that is the expression, and a second
3195 -- argument that is an informative message if the test fails.
3196 -- This is inserted right after the declaration, to get the
5b5df4a9 3197 -- required pragma placement. The processing for the pragmas
3198 -- takes care of the required delay.
ae888dbd 3199
5ddd846b 3200 when Pre_Post_Aspects => Pre_Post : declare
1e3c4ae6 3201 Pname : Name_Id;
ae888dbd 3202
1e3c4ae6 3203 begin
77ae6789 3204 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 3205 Pname := Name_Precondition;
3206 else
3207 Pname := Name_Postcondition;
3208 end if;
d74fc39a 3209
26062729 3210 -- Check that the class-wide predicate cannot be applied to
051826ee 3211 -- an operation of a synchronized type. AI12-0182 forbids
3212 -- these altogether, while earlier language semantics made
3213 -- them legal on tagged synchronized types.
3214
3215 -- Other legality checks are performed when analyzing the
3216 -- contract of the operation.
26062729 3217
3218 if Class_Present (Aspect)
3219 and then Is_Concurrent_Type (Current_Scope)
26062729 3220 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3221 then
3222 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3223 Error_Msg_N
3224 ("aspect % can only be specified for a primitive "
3225 & "operation of a tagged type", Aspect);
3226
3227 goto Continue;
3228 end if;
3229
1e3c4ae6 3230 -- If the expressions is of the form A and then B, then
3231 -- we generate separate Pre/Post aspects for the separate
3232 -- clauses. Since we allow multiple pragmas, there is no
3233 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 3234 -- These should be treated in reverse order (B first and
3235 -- A second) since they are later inserted just after N in
3236 -- the order they are treated. This way, the pragma for A
3237 -- ends up preceding the pragma for B, which may have an
3238 -- importance for the error raised (either constraint error
3239 -- or precondition error).
1e3c4ae6 3240
39e1f22f 3241 -- We do not do this for Pre'Class, since we have to put
51fa2a45 3242 -- these conditions together in a complex OR expression.
ae888dbd 3243
4282d342 3244 -- We do not do this in ASIS mode, as ASIS relies on the
3245 -- original node representing the complete expression, when
3246 -- retrieving it through the source aspect table.
3247
3248 if not ASIS_Mode
3249 and then (Pname = Name_Postcondition
3250 or else not Class_Present (Aspect))
39e1f22f 3251 then
3252 while Nkind (Expr) = N_And_Then loop
3253 Insert_After (Aspect,
a273015d 3254 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 3255 Identifier => Identifier (Aspect),
a273015d 3256 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 3257 Class_Present => Class_Present (Aspect),
3258 Split_PPC => True));
a273015d 3259 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 3260 Eloc := Sloc (Expr);
3261 end loop;
3262 end if;
ae888dbd 3263
48d6f069 3264 -- Build the precondition/postcondition pragma
3265
51fa2a45 3266 -- Add note about why we do NOT need Copy_Tree here???
d74fc39a 3267
0fd13d32 3268 Make_Aitem_Pragma
3269 (Pragma_Argument_Associations => New_List (
3270 Make_Pragma_Argument_Association (Eloc,
3271 Chars => Name_Check,
a19e1763 3272 Expression => Relocate_Node (Expr))),
0fd13d32 3273 Pragma_Name => Pname);
39e1f22f 3274
3275 -- Add message unless exception messages are suppressed
3276
3277 if not Opt.Exception_Locations_Suppressed then
3278 Append_To (Pragma_Argument_Associations (Aitem),
3279 Make_Pragma_Argument_Association (Eloc,
ed695684 3280 Chars => Name_Message,
39e1f22f 3281 Expression =>
3282 Make_String_Literal (Eloc,
3283 Strval => "failed "
3284 & Get_Name_String (Pname)
3285 & " from "
3286 & Build_Location_String (Eloc))));
3287 end if;
d74fc39a 3288
7d20685d 3289 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 3290
1e3c4ae6 3291 -- For Pre/Post cases, insert immediately after the entity
3292 -- declaration, since that is the required pragma placement.
3293 -- Note that for these aspects, we do not have to worry
3294 -- about delay issues, since the pragmas themselves deal
3295 -- with delay of visibility for the expression analysis.
3296
e2bf777d 3297 Insert_Pragma (Aitem);
299b347e 3298
1e3c4ae6 3299 goto Continue;
5ddd846b 3300 end Pre_Post;
ae888dbd 3301
0fd13d32 3302 -- Test_Case
3303
e66f4e2a 3304 when Aspect_Test_Case => Test_Case : declare
3305 Args : List_Id;
3306 Comp_Expr : Node_Id;
3307 Comp_Assn : Node_Id;
3308 New_Expr : Node_Id;
57cd943b 3309
e66f4e2a 3310 begin
3311 Args := New_List;
b0bc40fd 3312
e66f4e2a 3313 if Nkind (Parent (N)) = N_Compilation_Unit then
3314 Error_Msg_Name_1 := Nam;
3315 Error_Msg_N ("incorrect placement of aspect `%`", E);
3316 goto Continue;
3317 end if;
6c545057 3318
e66f4e2a 3319 if Nkind (Expr) /= N_Aggregate then
3320 Error_Msg_Name_1 := Nam;
3321 Error_Msg_NE
3322 ("wrong syntax for aspect `%` for &", Id, E);
3323 goto Continue;
3324 end if;
6c545057 3325
e66f4e2a 3326 -- Make pragma expressions refer to the original aspect
51fa2a45 3327 -- expressions through the Original_Node link. This is used
3328 -- in semantic analysis for ASIS mode, so that the original
3329 -- expression also gets analyzed.
e66f4e2a 3330
3331 Comp_Expr := First (Expressions (Expr));
3332 while Present (Comp_Expr) loop
3333 New_Expr := Relocate_Node (Comp_Expr);
e66f4e2a 3334 Append_To (Args,
3335 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3336 Expression => New_Expr));
3337 Next (Comp_Expr);
3338 end loop;
3339
3340 Comp_Assn := First (Component_Associations (Expr));
3341 while Present (Comp_Assn) loop
3342 if List_Length (Choices (Comp_Assn)) /= 1
3343 or else
3344 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3345 then
fad014fe 3346 Error_Msg_Name_1 := Nam;
6c545057 3347 Error_Msg_NE
fad014fe 3348 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 3349 goto Continue;
3350 end if;
3351
e66f4e2a 3352 Append_To (Args,
3353 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
ed695684 3354 Chars => Chars (First (Choices (Comp_Assn))),
3355 Expression =>
3356 Relocate_Node (Expression (Comp_Assn))));
e66f4e2a 3357 Next (Comp_Assn);
3358 end loop;
6c545057 3359
e66f4e2a 3360 -- Build the test-case pragma
6c545057 3361
0fd13d32 3362 Make_Aitem_Pragma
3363 (Pragma_Argument_Associations => Args,
3364 Pragma_Name => Nam);
e66f4e2a 3365 end Test_Case;
85696508 3366
0fd13d32 3367 -- Contract_Cases
3368
5ddd846b 3369 when Aspect_Contract_Cases =>
0fd13d32 3370 Make_Aitem_Pragma
3371 (Pragma_Argument_Associations => New_List (
3372 Make_Pragma_Argument_Association (Loc,
3373 Expression => Relocate_Node (Expr))),
3374 Pragma_Name => Nam);
3a128918 3375
e2bf777d 3376 Decorate (Aspect, Aitem);
3377 Insert_Pragma (Aitem);
5ddd846b 3378 goto Continue;
3a128918 3379
89f1e35c 3380 -- Case 5: Special handling for aspects with an optional
3381 -- boolean argument.
85696508 3382
6c5793cd 3383 -- In the delayed case, the corresponding pragma cannot be
0fd13d32 3384 -- generated yet because the evaluation of the boolean needs
3385 -- to be delayed till the freeze point.
3386
99378362 3387 when Boolean_Aspects
3388 | Library_Unit_Aspects
3389 =>
89f1e35c 3390 Set_Is_Boolean_Aspect (Aspect);
a5a64273 3391
89f1e35c 3392 -- Lock_Free aspect only apply to protected objects
e1cedbae 3393
89f1e35c 3394 if A_Id = Aspect_Lock_Free then
3395 if Ekind (E) /= E_Protected_Type then
99a2d5bd 3396 Error_Msg_Name_1 := Nam;
a5a64273 3397 Error_Msg_N
89f1e35c 3398 ("aspect % only applies to a protected object",
3399 Aspect);
3400
3401 else
3402 -- Set the Uses_Lock_Free flag to True if there is no
37c6e44c 3403 -- expression or if the expression is True. The
89f1e35c 3404 -- evaluation of this aspect should be delayed to the
37c6e44c 3405 -- freeze point (why???)
89f1e35c 3406
e81df51c 3407 if No (Expr)
3408 or else Is_True (Static_Boolean (Expr))
89f1e35c 3409 then
3410 Set_Uses_Lock_Free (E);
3411 end if;
caf125ce 3412
3413 Record_Rep_Item (E, Aspect);
a5a64273 3414 end if;
e1cedbae 3415
89f1e35c 3416 goto Continue;
ae888dbd 3417
ee2b7923 3418 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3419 Analyze_Aspect_Export_Import;
6c5793cd 3420
3421 -- Disable_Controlled
3422
3423 elsif A_Id = Aspect_Disable_Controlled then
3424 if Ekind (E) /= E_Record_Type
3425 or else not Is_Controlled (E)
3426 then
3427 Error_Msg_N
3428 ("aspect % requires controlled record type", Aspect);
3429 goto Continue;
3430 end if;
3431
3f716509 3432 -- If we're in a generic template, we don't want to try
3433 -- to disable controlled types, because typical usage is
3434 -- "Disable_Controlled => not <some_check>'Enabled", and
3435 -- the value of Enabled is not known until we see a
7e2d3667 3436 -- particular instance. In such a context, we just need
3437 -- to preanalyze the expression for legality.
3f716509 3438
3439 if Expander_Active then
aae9bc79 3440 Analyze_And_Resolve (Expr, Standard_Boolean);
3441
3f716509 3442 if not Present (Expr)
3443 or else Is_True (Static_Boolean (Expr))
3444 then
3445 Set_Disable_Controlled (E);
3446 end if;
7e2d3667 3447
3448 elsif Serious_Errors_Detected = 0 then
3449 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6c5793cd 3450 end if;
3451
89f1e35c 3452 goto Continue;
3453 end if;
d74fc39a 3454
37c6e44c 3455 -- Library unit aspects require special handling in the case
3456 -- of a package declaration, the pragma needs to be inserted
3457 -- in the list of declarations for the associated package.
3458 -- There is no issue of visibility delay for these aspects.
d64221a7 3459
89f1e35c 3460 if A_Id in Library_Unit_Aspects
178fec9b 3461 and then
3462 Nkind_In (N, N_Package_Declaration,
3463 N_Generic_Package_Declaration)
89f1e35c 3464 and then Nkind (Parent (N)) /= N_Compilation_Unit
3ad60f63 3465
3466 -- Aspect is legal on a local instantiation of a library-
3467 -- level generic unit.
3468
b94a633e 3469 and then not Is_Generic_Instance (Defining_Entity (N))
89f1e35c 3470 then
3471 Error_Msg_N
dd4c44af 3472 ("incorrect context for library unit aspect&", Id);
89f1e35c 3473 goto Continue;
3474 end if;
cce84b09 3475
51fa2a45 3476 -- Cases where we do not delay, includes all cases where the
3477 -- expression is missing other than the above cases.
d74fc39a 3478
85ee12c0 3479 if not Delay_Required or else No (Expr) then
ee2b7923 3480
3481 -- Exclude aspects Export and Import because their pragma
3482 -- syntax does not map directly to a Boolean aspect.
3483
3484 if A_Id /= Aspect_Export
3485 and then A_Id /= Aspect_Import
3486 then
3487 Make_Aitem_Pragma
3488 (Pragma_Argument_Associations => New_List (
3489 Make_Pragma_Argument_Association (Sloc (Ent),
3490 Expression => Ent)),
3491 Pragma_Name => Chars (Id));
3492 end if;
3493
89f1e35c 3494 Delay_Required := False;
ddf1337b 3495
89f1e35c 3496 -- In general cases, the corresponding pragma/attribute
3497 -- definition clause will be inserted later at the freezing
294709fa 3498 -- point, and we do not need to build it now.
ddf1337b 3499
89f1e35c 3500 else
3501 Aitem := Empty;
3502 end if;
ceec4f7c 3503
3504 -- Storage_Size
3505
3506 -- This is special because for access types we need to generate
3507 -- an attribute definition clause. This also works for single
3508 -- task declarations, but it does not work for task type
3509 -- declarations, because we have the case where the expression
3510 -- references a discriminant of the task type. That can't use
3511 -- an attribute definition clause because we would not have
3512 -- visibility on the discriminant. For that case we must
3513 -- generate a pragma in the task definition.
3514
3515 when Aspect_Storage_Size =>
3516
3517 -- Task type case
3518
3519 if Ekind (E) = E_Task_Type then
3520 declare
3521 Decl : constant Node_Id := Declaration_Node (E);
3522
3523 begin
3524 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3525
3526 -- If no task definition, create one
3527
3528 if No (Task_Definition (Decl)) then
3529 Set_Task_Definition (Decl,
3530 Make_Task_Definition (Loc,
3531 Visible_Declarations => Empty_List,
3532 End_Label => Empty));
3533 end if;
3534
51fa2a45 3535 -- Create a pragma and put it at the start of the task
3536 -- definition for the task type declaration.
ceec4f7c 3537
3538 Make_Aitem_Pragma
3539 (Pragma_Argument_Associations => New_List (
3540 Make_Pragma_Argument_Association (Loc,
3541 Expression => Relocate_Node (Expr))),
3542 Pragma_Name => Name_Storage_Size);
3543
3544 Prepend
3545 (Aitem,
3546 Visible_Declarations (Task_Definition (Decl)));
3547 goto Continue;
3548 end;
3549
3550 -- All other cases, generate attribute definition
3551
3552 else
3553 Aitem :=
3554 Make_Attribute_Definition_Clause (Loc,
3555 Name => Ent,
3556 Chars => Chars (Id),
3557 Expression => Relocate_Node (Expr));
3558 end if;
89f1e35c 3559 end case;
ddf1337b 3560
89f1e35c 3561 -- Attach the corresponding pragma/attribute definition clause to
3562 -- the aspect specification node.
d74fc39a 3563
89f1e35c 3564 if Present (Aitem) then
e2bf777d 3565 Set_From_Aspect_Specification (Aitem);
89f1e35c 3566 end if;
53c179ea 3567
89f1e35c 3568 -- In the context of a compilation unit, we directly put the
0fd13d32 3569 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3570 -- node (no delay is required here) except for aspects on a
51fa2a45 3571 -- subprogram body (see below) and a generic package, for which we
3572 -- need to introduce the pragma before building the generic copy
3573 -- (see sem_ch12), and for package instantiations, where the
3574 -- library unit pragmas are better handled early.
ddf1337b 3575
9129c28f 3576 if Nkind (Parent (N)) = N_Compilation_Unit
89f1e35c 3577 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3578 then
3579 declare
3580 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 3581
89f1e35c 3582 begin
3583 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 3584
89f1e35c 3585 -- For a Boolean aspect, create the corresponding pragma if
3586 -- no expression or if the value is True.
7f694ca2 3587
b9e61b2a 3588 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 3589 if Is_True (Static_Boolean (Expr)) then
0fd13d32 3590 Make_Aitem_Pragma
3591 (Pragma_Argument_Associations => New_List (
3592 Make_Pragma_Argument_Association (Sloc (Ent),
3593 Expression => Ent)),
3594 Pragma_Name => Chars (Id));
7f694ca2 3595
89f1e35c 3596 Set_From_Aspect_Specification (Aitem, True);
3597 Set_Corresponding_Aspect (Aitem, Aspect);
3598
3599 else
3600 goto Continue;
3601 end if;
3602 end if;
7f694ca2 3603
d6814978 3604 -- If the aspect is on a subprogram body (relevant aspect
3605 -- is Inline), add the pragma in front of the declarations.
3a72f9c3 3606
3607 if Nkind (N) = N_Subprogram_Body then
3608 if No (Declarations (N)) then
3609 Set_Declarations (N, New_List);
3610 end if;
3611
3612 Prepend (Aitem, Declarations (N));
3613
178fec9b 3614 elsif Nkind (N) = N_Generic_Package_Declaration then
3615 if No (Visible_Declarations (Specification (N))) then
3616 Set_Visible_Declarations (Specification (N), New_List);
3617 end if;
3618
3619 Prepend (Aitem,
3620 Visible_Declarations (Specification (N)));
3621
c39cce40 3622 elsif Nkind (N) = N_Package_Instantiation then
df8b0dae 3623 declare
3624 Spec : constant Node_Id :=
3625 Specification (Instance_Spec (N));
3626 begin
3627 if No (Visible_Declarations (Spec)) then
3628 Set_Visible_Declarations (Spec, New_List);
3629 end if;
3630
3631 Prepend (Aitem, Visible_Declarations (Spec));
3632 end;
3633
3a72f9c3 3634 else
3635 if No (Pragmas_After (Aux)) then
d4596fbe 3636 Set_Pragmas_After (Aux, New_List);
3a72f9c3 3637 end if;
3638
3639 Append (Aitem, Pragmas_After (Aux));
89f1e35c 3640 end if;
7f694ca2 3641
89f1e35c 3642 goto Continue;
3643 end;
3644 end if;
7f694ca2 3645
89f1e35c 3646 -- The evaluation of the aspect is delayed to the freezing point.
3647 -- The pragma or attribute clause if there is one is then attached
37c6e44c 3648 -- to the aspect specification which is put in the rep item list.
1a814552 3649
89f1e35c 3650 if Delay_Required then
3651 if Present (Aitem) then
3652 Set_Is_Delayed_Aspect (Aitem);
3653 Set_Aspect_Rep_Item (Aspect, Aitem);
3654 Set_Parent (Aitem, Aspect);
3655 end if;
1a814552 3656
89f1e35c 3657 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 3658
cba2ae82 3659 -- In the case of Default_Value, link the aspect to base type
3660 -- as well, even though it appears on a first subtype. This is
3661 -- mandated by the semantics of the aspect. Do not establish
3662 -- the link when processing the base type itself as this leads
3663 -- to a rep item circularity. Verify that we are dealing with
3664 -- a scalar type to prevent cascaded errors.
3665
3666 if A_Id = Aspect_Default_Value
3667 and then Is_Scalar_Type (E)
3668 and then Base_Type (E) /= E
3669 then
9f36e3fb 3670 Set_Has_Delayed_Aspects (Base_Type (E));
3671 Record_Rep_Item (Base_Type (E), Aspect);
3672 end if;
3673
89f1e35c 3674 Set_Has_Delayed_Aspects (E);
3675 Record_Rep_Item (E, Aspect);
ddf1337b 3676
b855559d 3677 -- When delay is not required and the context is a package or a
3678 -- subprogram body, insert the pragma in the body declarations.
f55ce169 3679
b855559d 3680 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
f55ce169 3681 if No (Declarations (N)) then
3682 Set_Declarations (N, New_List);
3683 end if;
3684
3685 -- The pragma is added before source declarations
3686
3687 Prepend_To (Declarations (N), Aitem);
3688
89f1e35c 3689 -- When delay is not required and the context is not a compilation
3690 -- unit, we simply insert the pragma/attribute definition clause
3691 -- in sequence.
ddf1337b 3692
ee2b7923 3693 elsif Present (Aitem) then
89f1e35c 3694 Insert_After (Ins_Node, Aitem);
3695 Ins_Node := Aitem;
d74fc39a 3696 end if;
0fd13d32 3697 end Analyze_One_Aspect;
ae888dbd 3698
d64221a7 3699 <<Continue>>
3700 Next (Aspect);
21ea3a4f 3701 end loop Aspect_Loop;
89f1e35c 3702
3703 if Has_Delayed_Aspects (E) then
3704 Ensure_Freeze_Node (E);
3705 end if;
21ea3a4f 3706 end Analyze_Aspect_Specifications;
ae888dbd 3707
eb8aeefc 3708 ---------------------------------------------------
3709 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3710 ---------------------------------------------------
3711
3712 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3713 Body_Id : constant Entity_Id := Defining_Entity (N);
3714
3715 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
c02dccca 3716 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3717 -- error message depending on the aspects involved. Spec_Id denotes the
3718 -- entity of the corresponding spec.
eb8aeefc 3719
3720 --------------------------------
3721 -- Diagnose_Misplaced_Aspects --
3722 --------------------------------
3723
3724 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3725 procedure Misplaced_Aspect_Error
3726 (Asp : Node_Id;
3727 Ref_Nam : Name_Id);
3728 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3729 -- the name of the refined version of the aspect.
3730
3731 ----------------------------
3732 -- Misplaced_Aspect_Error --
3733 ----------------------------
3734
3735 procedure Misplaced_Aspect_Error
3736 (Asp : Node_Id;
3737 Ref_Nam : Name_Id)
3738 is
3739 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3740 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3741
3742 begin
3743 -- The corresponding spec already contains the aspect in question
3744 -- and the one appearing on the body must be the refined form:
3745
3746 -- procedure P with Global ...;
3747 -- procedure P with Global ... is ... end P;
3748 -- ^
3749 -- Refined_Global
3750
3751 if Has_Aspect (Spec_Id, Asp_Id) then
3752 Error_Msg_Name_1 := Asp_Nam;
3753
3754 -- Subunits cannot carry aspects that apply to a subprogram
3755 -- declaration.
3756
3757 if Nkind (Parent (N)) = N_Subunit then
3758 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3759
3760 -- Otherwise suggest the refined form
3761
3762 else
3763 Error_Msg_Name_2 := Ref_Nam;
3764 Error_Msg_N ("aspect % should be %", Asp);
3765 end if;
3766
3767 -- Otherwise the aspect must appear on the spec, not on the body
3768
3769 -- procedure P;
3770 -- procedure P with Global ... is ... end P;
3771
3772 else
3773 Error_Msg_N
c02dccca 3774 ("aspect specification must appear on initial declaration",
eb8aeefc 3775 Asp);
3776 end if;
3777 end Misplaced_Aspect_Error;
3778
3779 -- Local variables
3780
3781 Asp : Node_Id;
3782 Asp_Nam : Name_Id;
3783
3784 -- Start of processing for Diagnose_Misplaced_Aspects
3785
3786 begin
3787 -- Iterate over the aspect specifications and emit specific errors
3788 -- where applicable.
3789
3790 Asp := First (Aspect_Specifications (N));
3791 while Present (Asp) loop
3792 Asp_Nam := Chars (Identifier (Asp));
3793
3794 -- Do not emit errors on aspects that can appear on a subprogram
3795 -- body. This scenario occurs when the aspect specification list
3796 -- contains both misplaced and properly placed aspects.
3797
3798 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3799 null;
3800
3801 -- Special diagnostics for SPARK aspects
3802
3803 elsif Asp_Nam = Name_Depends then
3804 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3805
3806 elsif Asp_Nam = Name_Global then
3807 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3808
3809 elsif Asp_Nam = Name_Post then
3810 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3811
3812 -- Otherwise a language-defined aspect is misplaced
3813
3814 else
3815 Error_Msg_N
c02dccca 3816 ("aspect specification must appear on initial declaration",
eb8aeefc 3817 Asp);
3818 end if;
3819
3820 Next (Asp);
3821 end loop;
3822 end Diagnose_Misplaced_Aspects;
3823
3824 -- Local variables
3825
c02dccca 3826 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
eb8aeefc 3827
3828 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3829
3830 begin
eb8aeefc 3831 -- Language-defined aspects cannot be associated with a subprogram body
3832 -- [stub] if the subprogram has a spec. Certain implementation defined
3833 -- aspects are allowed to break this rule (for all applicable cases, see
3834 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3835
c02dccca 3836 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
eb8aeefc 3837 Diagnose_Misplaced_Aspects (Spec_Id);
3838 else
3839 Analyze_Aspect_Specifications (N, Body_Id);
3840 end if;
3841 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3842
d6f39728 3843 -----------------------
3844 -- Analyze_At_Clause --
3845 -----------------------
3846
3847 -- An at clause is replaced by the corresponding Address attribute
3848 -- definition clause that is the preferred approach in Ada 95.
3849
3850 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 3851 CS : constant Boolean := Comes_From_Source (N);
3852
d6f39728 3853 begin
177675a7 3854 -- This is an obsolescent feature
3855
e0521a36 3856 Check_Restriction (No_Obsolescent_Features, N);
3857
9dfe12ae 3858 if Warn_On_Obsolescent_Feature then
3859 Error_Msg_N
b174444e 3860 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 3861 Error_Msg_N
b174444e 3862 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 3863 end if;
3864
177675a7 3865 -- Rewrite as address clause
3866
d6f39728 3867 Rewrite (N,
3868 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 3869 Name => Identifier (N),
3870 Chars => Name_Address,
d6f39728 3871 Expression => Expression (N)));
177675a7 3872
2beb22b1 3873 -- We preserve Comes_From_Source, since logically the clause still comes
3874 -- from the source program even though it is changed in form.
177675a7 3875
3876 Set_Comes_From_Source (N, CS);
3877
3878 -- Analyze rewritten clause
3879
d6f39728 3880 Analyze_Attribute_Definition_Clause (N);
3881 end Analyze_At_Clause;
3882
3883 -----------------------------------------
3884 -- Analyze_Attribute_Definition_Clause --
3885 -----------------------------------------
3886
3887 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3888 Loc : constant Source_Ptr := Sloc (N);
3889 Nam : constant Node_Id := Name (N);
3890 Attr : constant Name_Id := Chars (N);
3891 Expr : constant Node_Id := Expression (N);
3892 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 3893
3894 Ent : Entity_Id;
3895 -- The entity of Nam after it is analyzed. In the case of an incomplete
3896 -- type, this is the underlying type.
3897
d6f39728 3898 U_Ent : Entity_Id;
d64221a7 3899 -- The underlying entity to which the attribute applies. Generally this
3900 -- is the Underlying_Type of Ent, except in the case where the clause
69069c76 3901 -- applies to the full view of an incomplete or private type, in which
3902 -- case U_Ent is just a copy of Ent.
d6f39728 3903
3904 FOnly : Boolean := False;
3905 -- Reset to True for subtype specific attribute (Alignment, Size)
51fa2a45 3906 -- and for stream attributes, i.e. those cases where in the call to
3907 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3908 -- are checked. Note that the case of stream attributes is not clear
3909 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3910 -- Storage_Size for derived task types, but that is also clearly
3911 -- unintentional.
d6f39728 3912
9f373bb8 3913 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3914 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3915 -- definition clauses.
3916
ae888dbd 3917 function Duplicate_Clause return Boolean;
3918 -- This routine checks if the aspect for U_Ent being given by attribute
3919 -- definition clause N is for an aspect that has already been specified,
3920 -- and if so gives an error message. If there is a duplicate, True is
3921 -- returned, otherwise if there is no error, False is returned.
3922
81b424ac 3923 procedure Check_Indexing_Functions;
3924 -- Check that the function in Constant_Indexing or Variable_Indexing
3925 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 3926 -- check that some interpretation is legal.
81b424ac 3927
89cc7147 3928 procedure Check_Iterator_Functions;
3929 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 3930 -- has the proper type structure.
89cc7147 3931
3932 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 3933 -- Common legality check for the previous two
89cc7147 3934
177675a7 3935 -----------------------------------
3936 -- Analyze_Stream_TSS_Definition --
3937 -----------------------------------
3938
9f373bb8 3939 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3940 Subp : Entity_Id := Empty;
3941 I : Interp_Index;
3942 It : Interp;
3943 Pnam : Entity_Id;
3944
3945 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
ba662f09 3946 -- True for Read attribute, False for other attributes
9f373bb8 3947
c41e404d 3948 function Has_Good_Profile
3949 (Subp : Entity_Id;
3950 Report : Boolean := False) return Boolean;
9f373bb8 3951 -- Return true if the entity is a subprogram with an appropriate
ba662f09 3952 -- profile for the attribute being defined. If result is False and
3953 -- Report is True, function emits appropriate error.
9f373bb8 3954
3955 ----------------------
3956 -- Has_Good_Profile --
3957 ----------------------
3958
c41e404d 3959 function Has_Good_Profile
3960 (Subp : Entity_Id;
3961 Report : Boolean := False) return Boolean
3962 is
9f373bb8 3963 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3964 (False => E_Procedure, True => E_Function);
4a83cc35 3965 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3966 F : Entity_Id;
9f373bb8 3967 Typ : Entity_Id;
3968
3969 begin
3970 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3971 return False;
3972 end if;
3973
3974 F := First_Formal (Subp);
3975
3976 if No (F)
3977 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3978 or else Designated_Type (Etype (F)) /=
4a83cc35 3979 Class_Wide_Type (RTE (RE_Root_Stream_Type))
9f373bb8 3980 then
3981 return False;
3982 end if;
3983
3984 if not Is_Function then
3985 Next_Formal (F);
3986
3987 declare
3988 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3989 (False => E_In_Parameter,
3990 True => E_Out_Parameter);
3991 begin
3992 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3993 return False;
3994 end if;
3995 end;
3996
3997 Typ := Etype (F);
3998
b64082f2 3999 -- If the attribute specification comes from an aspect
51fa2a45 4000 -- specification for a class-wide stream, the parameter must be
4001 -- a class-wide type of the entity to which the aspect applies.
b64082f2 4002
4003 if From_Aspect_Specification (N)
4004 and then Class_Present (Parent (N))
4005 and then Is_Class_Wide_Type (Typ)
4006 then
4007 Typ := Etype (Typ);
4008 end if;
4009
9f373bb8 4010 else
4011 Typ := Etype (Subp);
4012 end if;
4013
51fa2a45 4014 -- Verify that the prefix of the attribute and the local name for
5a8fe506 4015 -- the type of the formal match, or one is the class-wide of the
4016 -- other, in the case of a class-wide stream operation.
48680a09 4017
b8eacb12 4018 if Base_Type (Typ) = Base_Type (Ent)
5a8fe506 4019 or else (Is_Class_Wide_Type (Typ)
2be1f7d7 4020 and then Typ = Class_Wide_Type (Base_Type (Ent)))
fbf4d6ef 4021 or else (Is_Class_Wide_Type (Ent)
4022 and then Ent = Class_Wide_Type (Base_Type (Typ)))
5a8fe506 4023 then
4024 null;
4025 else
4026 return False;
4027 end if;
4028
4a83cc35 4029 if Present (Next_Formal (F)) then
48680a09 4030 return False;
4031
4032 elsif not Is_Scalar_Type (Typ)
4033 and then not Is_First_Subtype (Typ)
4034 and then not Is_Class_Wide_Type (Typ)
4035 then
c41e404d 4036 if Report and not Is_First_Subtype (Typ) then
4037 Error_Msg_N
ba662f09 4038 ("subtype of formal in stream operation must be a first "
4039 & "subtype", Parameter_Type (Parent (F)));
c41e404d 4040 end if;
4041
48680a09 4042 return False;
4043
4044 else
4045 return True;
4046 end if;
9f373bb8 4047 end Has_Good_Profile;
4048
4049 -- Start of processing for Analyze_Stream_TSS_Definition
4050
4051 begin
4052 FOnly := True;
4053
4054 if not Is_Type (U_Ent) then
4055 Error_Msg_N ("local name must be a subtype", Nam);
4056 return;
48680a09 4057
4058 elsif not Is_First_Subtype (U_Ent) then
4059 Error_Msg_N ("local name must be a first subtype", Nam);
4060 return;
9f373bb8 4061 end if;
4062
4063 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4064
44e4341e 4065 -- If Pnam is present, it can be either inherited from an ancestor
4066 -- type (in which case it is legal to redefine it for this type), or
4067 -- be a previous definition of the attribute for the same type (in
4068 -- which case it is illegal).
4069
4070 -- In the first case, it will have been analyzed already, and we
4071 -- can check that its profile does not match the expected profile
4072 -- for a stream attribute of U_Ent. In the second case, either Pnam
4073 -- has been analyzed (and has the expected profile), or it has not
4074 -- been analyzed yet (case of a type that has not been frozen yet
4075 -- and for which the stream attribute has been set using Set_TSS).
4076
4077 if Present (Pnam)
4078 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4079 then
9f373bb8 4080 Error_Msg_Sloc := Sloc (Pnam);
4081 Error_Msg_Name_1 := Attr;
4082 Error_Msg_N ("% attribute already defined #", Nam);
4083 return;
4084 end if;
4085
4086 Analyze (Expr);
4087
4088 if Is_Entity_Name (Expr) then
4089 if not Is_Overloaded (Expr) then
c41e404d 4090 if Has_Good_Profile (Entity (Expr), Report => True) then
9f373bb8 4091 Subp := Entity (Expr);
4092 end if;
4093
4094 else
4095 Get_First_Interp (Expr, I, It);
9f373bb8 4096 while Present (It.Nam) loop
4097 if Has_Good_Profile (It.Nam) then
4098 Subp := It.Nam;
4099 exit;
4100 end if;
4101
4102 Get_Next_Interp (I, It);
4103 end loop;
4104 end if;
4105 end if;
4106
4107 if Present (Subp) then
59ac57b5 4108 if Is_Abstract_Subprogram (Subp) then
9f373bb8 4109 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4110 return;
e12b2502 4111
299b347e 4112 -- A stream subprogram for an interface type must be a null
bfbd9cf4 4113 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4114 -- of an interface is not an interface type (3.9.4 (6.b/2)).
e12b2502 4115
4116 elsif Is_Interface (U_Ent)
5a8fe506 4117 and then not Is_Class_Wide_Type (U_Ent)
e12b2502 4118 and then not Inside_A_Generic
e12b2502 4119 and then
5a8fe506 4120 (Ekind (Subp) = E_Function
4121 or else
4122 not Null_Present
2be1f7d7 4123 (Specification
4124 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
e12b2502 4125 then
4126 Error_Msg_N
4a83cc35 4127 ("stream subprogram for interface type must be null "
4128 & "procedure", Expr);
9f373bb8 4129 end if;
4130
4131 Set_Entity (Expr, Subp);
4132 Set_Etype (Expr, Etype (Subp));
4133
44e4341e 4134 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 4135
4136 else
4137 Error_Msg_Name_1 := Attr;
4138 Error_Msg_N ("incorrect expression for% attribute", Expr);
4139 end if;
4140 end Analyze_Stream_TSS_Definition;
4141
81b424ac 4142 ------------------------------
4143 -- Check_Indexing_Functions --
4144 ------------------------------
4145
4146 procedure Check_Indexing_Functions is
c8a2d809 4147 Indexing_Found : Boolean := False;
8df4f2a5 4148
44d567c8 4149 procedure Check_Inherited_Indexing;
4150 -- For a derived type, check that no indexing aspect is specified
4151 -- for the type if it is also inherited
4152
81b424ac 4153 procedure Check_One_Function (Subp : Entity_Id);
7796365f 4154 -- Check one possible interpretation. Sets Indexing_Found True if a
4155 -- legal indexing function is found.
81b424ac 4156
05987af3 4157 procedure Illegal_Indexing (Msg : String);
4158 -- Diagnose illegal indexing function if not overloaded. In the
4159 -- overloaded case indicate that no legal interpretation exists.
4160
44d567c8 4161 ------------------------------
4162 -- Check_Inherited_Indexing --
4163 ------------------------------
4164
4165 procedure Check_Inherited_Indexing is
4166 Inherited : Node_Id;
4167
4168 begin
4169 if Attr = Name_Constant_Indexing then
4170 Inherited :=
4171 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4172 else pragma Assert (Attr = Name_Variable_Indexing);
4173 Inherited :=
4174 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4175 end if;
4176
4177 if Present (Inherited) then
4178 if Debug_Flag_Dot_XX then
4179 null;
4180
83d39cd3 4181 -- OK if current attribute_definition_clause is expansion of
4182 -- inherited aspect.
44d567c8 4183
4184 elsif Aspect_Rep_Item (Inherited) = N then
4185 null;
4186
83d39cd3 4187 -- Indicate the operation that must be overridden, rather than
4188 -- redefining the indexing aspect.
44d567c8 4189
4190 else
4191 Illegal_Indexing
f2837ceb 4192 ("indexing function already inherited from parent type");
44d567c8 4193 Error_Msg_NE
4194 ("!override & instead",
4195 N, Entity (Expression (Inherited)));
4196 end if;
4197 end if;
4198 end Check_Inherited_Indexing;
4199
81b424ac 4200 ------------------------
4201 -- Check_One_Function --
4202 ------------------------
4203
4204 procedure Check_One_Function (Subp : Entity_Id) is
05987af3 4205 Default_Element : Node_Id;
4206 Ret_Type : constant Entity_Id := Etype (Subp);
1b7510f9 4207
81b424ac 4208 begin
05987af3 4209 if not Is_Overloadable (Subp) then
4210 Illegal_Indexing ("illegal indexing function for type&");
4211 return;
4212
7796365f 4213 elsif Scope (Subp) /= Scope (Ent) then
4214 if Nkind (Expr) = N_Expanded_Name then
4215
4216 -- Indexing function can't be declared elsewhere
4217
4218 Illegal_Indexing
4219 ("indexing function must be declared in scope of type&");
4220 end if;
4221
05987af3 4222 return;
4223
4224 elsif No (First_Formal (Subp)) then
4225 Illegal_Indexing
4226 ("Indexing requires a function that applies to type&");
4227 return;
4228
4229 elsif No (Next_Formal (First_Formal (Subp))) then
4230 Illegal_Indexing
2eb0ff42 4231 ("indexing function must have at least two parameters");
05987af3 4232 return;
4233
4234 elsif Is_Derived_Type (Ent) then
44d567c8 4235 Check_Inherited_Indexing;
05987af3 4236 end if;
4237
e81df51c 4238 if not Check_Primitive_Function (Subp) then
05987af3 4239 Illegal_Indexing
4240 ("Indexing aspect requires a function that applies to type&");
4241 return;
81b424ac 4242 end if;
4243
7796365f 4244 -- If partial declaration exists, verify that it is not tagged.
4245
4246 if Ekind (Current_Scope) = E_Package
4247 and then Has_Private_Declaration (Ent)
4248 and then From_Aspect_Specification (N)
7c0c95b8 4249 and then
4250 List_Containing (Parent (Ent)) =
4251 Private_Declarations
7796365f 4252 (Specification (Unit_Declaration_Node (Current_Scope)))
4253 and then Nkind (N) = N_Attribute_Definition_Clause
4254 then
4255 declare
4256 Decl : Node_Id;
4257
4258 begin
4259 Decl :=
4260 First (Visible_Declarations
7c0c95b8 4261 (Specification
4262 (Unit_Declaration_Node (Current_Scope))));
7796365f 4263
4264 while Present (Decl) loop
4265 if Nkind (Decl) = N_Private_Type_Declaration
4266 and then Ent = Full_View (Defining_Identifier (Decl))
4267 and then Tagged_Present (Decl)
4268 and then No (Aspect_Specifications (Decl))
4269 then
4270 Illegal_Indexing
4271 ("Indexing aspect cannot be specified on full view "
7c0c95b8 4272 & "if partial view is tagged");
7796365f 4273 return;
4274 end if;
4275
4276 Next (Decl);
4277 end loop;
4278 end;
4279 end if;
4280
1b7510f9 4281 -- An indexing function must return either the default element of
cac18f71 4282 -- the container, or a reference type. For variable indexing it
a45d946f 4283 -- must be the latter.
1b7510f9 4284
05987af3 4285 Default_Element :=
4286 Find_Value_Of_Aspect
4287 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4288
1b7510f9 4289 if Present (Default_Element) then
4290 Analyze (Default_Element);
a45d946f 4291
1b7510f9 4292 if Is_Entity_Name (Default_Element)
05987af3 4293 and then not Covers (Entity (Default_Element), Ret_Type)
4294 and then False
1b7510f9 4295 then
05987af3 4296 Illegal_Indexing
4297 ("wrong return type for indexing function");
1b7510f9 4298 return;
4299 end if;
4300 end if;
4301
a45d946f 4302 -- For variable_indexing the return type must be a reference type
1b7510f9 4303
05987af3 4304 if Attr = Name_Variable_Indexing then
4305 if not Has_Implicit_Dereference (Ret_Type) then
4306 Illegal_Indexing
4307 ("variable indexing must return a reference type");
4308 return;
4309
423b89fd 4310 elsif Is_Access_Constant
4311 (Etype (First_Discriminant (Ret_Type)))
05987af3 4312 then
4313 Illegal_Indexing
4314 ("variable indexing must return an access to variable");
4315 return;
4316 end if;
cac18f71 4317
4318 else
05987af3 4319 if Has_Implicit_Dereference (Ret_Type)
4320 and then not
4321 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4322 then
4323 Illegal_Indexing
4324 ("constant indexing must return an access to constant");
4325 return;
4326
4327 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4328 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4329 then
4330 Illegal_Indexing
4331 ("constant indexing must apply to an access to constant");
4332 return;
4333 end if;
81b424ac 4334 end if;
05987af3 4335
4336 -- All checks succeeded.
4337
4338 Indexing_Found := True;
81b424ac 4339 end Check_One_Function;
4340
05987af3 4341 -----------------------
4342 -- Illegal_Indexing --
4343 -----------------------
4344
4345 procedure Illegal_Indexing (Msg : String) is
4346 begin
7796365f 4347 Error_Msg_NE (Msg, N, Ent);
05987af3 4348 end Illegal_Indexing;
4349
81b424ac 4350 -- Start of processing for Check_Indexing_Functions
4351
4352 begin
89cc7147 4353 if In_Instance then
44d567c8 4354 Check_Inherited_Indexing;
89cc7147 4355 end if;
4356
81b424ac 4357 Analyze (Expr);
4358
4359 if not Is_Overloaded (Expr) then
4360 Check_One_Function (Entity (Expr));
4361
4362 else
4363 declare
2c5754de 4364 I : Interp_Index;
81b424ac 4365 It : Interp;
4366
4367 begin
cac18f71 4368 Indexing_Found := False;
81b424ac 4369 Get_First_Interp (Expr, I, It);
4370 while Present (It.Nam) loop
4371
4372 -- Note that analysis will have added the interpretation
4373 -- that corresponds to the dereference. We only check the
1ef2e6ef 4374 -- subprogram itself. Ignore homonyms that may come from
4375 -- derived types in the context.
81b424ac 4376
1ef2e6ef 4377 if Is_Overloadable (It.Nam)
4378 and then Comes_From_Source (It.Nam)
4379 then
4380 Check_One_Function (It.Nam);
81b424ac 4381 end if;
4382
4383 Get_Next_Interp (I, It);
4384 end loop;
4385 end;
4386 end if;
7796365f 4387
7c0c95b8 4388 if not Indexing_Found and then not Error_Posted (N) then
7796365f 4389 Error_Msg_NE
1ef2e6ef 4390 ("aspect Indexing requires a local function that applies to "
4391 & "type&", Expr, Ent);
7796365f 4392 end if;
81b424ac 4393 end Check_Indexing_Functions;
4394
89cc7147 4395 ------------------------------
4396 -- Check_Iterator_Functions --
4397 ------------------------------
4398
4399 procedure Check_Iterator_Functions is
89cc7147 4400 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 4401 -- Check one possible interpretation for validity
89cc7147 4402
4403 ----------------------------
4404 -- Valid_Default_Iterator --
4405 ----------------------------
4406
4407 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
8b8be176 4408 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
7f5dd8d8 4409 Formal : Entity_Id;
89cc7147 4410
4411 begin
4412 if not Check_Primitive_Function (Subp) then
4413 return False;
8b8be176 4414
4415 -- The return type must be derived from a type in an instance
4416 -- of Iterator.Interfaces, and thus its root type must have a
4417 -- predefined name.
4418
4419 elsif Chars (Root_T) /= Name_Forward_Iterator
4420 and then Chars (Root_T) /= Name_Reversible_Iterator
4421 then
4422 return False;
4423
89cc7147 4424 else
4425 Formal := First_Formal (Subp);
4426 end if;
4427
8df4f2a5 4428 -- False if any subsequent formal has no default expression
89cc7147 4429
8df4f2a5 4430 Formal := Next_Formal (Formal);
4431 while Present (Formal) loop
4432 if No (Expression (Parent (Formal))) then
4433 return False;
4434 end if;
89cc7147 4435
8df4f2a5 4436 Next_Formal (Formal);
4437 end loop;
89cc7147 4438
8df4f2a5 4439 -- True if all subsequent formals have default expressions
89cc7147 4440
4441 return True;
4442 end Valid_Default_Iterator;
4443
4444 -- Start of processing for Check_Iterator_Functions
4445
4446 begin
4447 Analyze (Expr);
4448
4449 if not Is_Entity_Name (Expr) then
4450 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4451 end if;
4452
4453 if not Is_Overloaded (Expr) then
4454 if not Check_Primitive_Function (Entity (Expr)) then
4455 Error_Msg_NE
4456 ("aspect Indexing requires a function that applies to type&",
4457 Entity (Expr), Ent);
4458 end if;
4459
05f6f999 4460 -- Flag the default_iterator as well as the denoted function.
4461
89cc7147 4462 if not Valid_Default_Iterator (Entity (Expr)) then
05f6f999 4463 Error_Msg_N ("improper function for default iterator!", Expr);
89cc7147 4464 end if;
4465
4466 else
89cc7147 4467 declare
270ee9c5 4468 Default : Entity_Id := Empty;
8be33fbe 4469 I : Interp_Index;
4470 It : Interp;
89cc7147 4471
4472 begin
4473 Get_First_Interp (Expr, I, It);
4474 while Present (It.Nam) loop
4475 if not Check_Primitive_Function (It.Nam)
59f3e675 4476 or else not Valid_Default_Iterator (It.Nam)
89cc7147 4477 then
4478 Remove_Interp (I);
4479
4480 elsif Present (Default) then
89cc7147 4481
8be33fbe 4482 -- An explicit one should override an implicit one
4483
4484 if Comes_From_Source (Default) =
4485 Comes_From_Source (It.Nam)
4486 then
4487 Error_Msg_N ("default iterator must be unique", Expr);
4488 Error_Msg_Sloc := Sloc (Default);
4489 Error_Msg_N ("\\possible interpretation#", Expr);
4490 Error_Msg_Sloc := Sloc (It.Nam);
4491 Error_Msg_N ("\\possible interpretation#", Expr);
4492
4493 elsif Comes_From_Source (It.Nam) then
4494 Default := It.Nam;
4495 end if;
89cc7147 4496 else
4497 Default := It.Nam;
4498 end if;
4499
4500 Get_Next_Interp (I, It);
4501 end loop;
89cc7147 4502
270ee9c5 4503 if Present (Default) then
4504 Set_Entity (Expr, Default);
4505 Set_Is_Overloaded (Expr, False);
8b8be176 4506 else
4507 Error_Msg_N
7f5dd8d8 4508 ("no interpretation is a valid default iterator!", Expr);
270ee9c5 4509 end if;
4510 end;
89cc7147 4511 end if;
4512 end Check_Iterator_Functions;
4513
4514 -------------------------------
4515 -- Check_Primitive_Function --
4516 -------------------------------
4517
4518 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4519 Ctrl : Entity_Id;
4520
4521 begin
4522 if Ekind (Subp) /= E_Function then
4523 return False;
4524 end if;
4525
4526 if No (First_Formal (Subp)) then
4527 return False;
4528 else
4529 Ctrl := Etype (First_Formal (Subp));
4530 end if;
4531
05f6f999 4532 -- To be a primitive operation subprogram has to be in same scope.
4533
4534 if Scope (Ctrl) /= Scope (Subp) then
4535 return False;
4536 end if;
4537
7d6fb253 4538 -- Type of formal may be the class-wide type, an access to such,
4539 -- or an incomplete view.
4540
89cc7147 4541 if Ctrl = Ent
4542 or else Ctrl = Class_Wide_Type (Ent)
4543 or else
4544 (Ekind (Ctrl) = E_Anonymous_Access_Type
b85d62ec 4545 and then (Designated_Type (Ctrl) = Ent
4546 or else
4547 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
7d6fb253 4548 or else
4549 (Ekind (Ctrl) = E_Incomplete_Type
4550 and then Full_View (Ctrl) = Ent)
89cc7147 4551 then
4552 null;
89cc7147 4553 else
4554 return False;
4555 end if;
4556
4557 return True;
4558 end Check_Primitive_Function;
4559
ae888dbd 4560 ----------------------
4561 -- Duplicate_Clause --
4562 ----------------------
4563
4564 function Duplicate_Clause return Boolean is
d74fc39a 4565 A : Node_Id;
ae888dbd 4566
4567 begin
c8969ba6 4568 -- Nothing to do if this attribute definition clause comes from
4569 -- an aspect specification, since we could not be duplicating an
ae888dbd 4570 -- explicit clause, and we dealt with the case of duplicated aspects
4571 -- in Analyze_Aspect_Specifications.
4572
4573 if From_Aspect_Specification (N) then
4574 return False;
4575 end if;
4576
89f1e35c 4577 -- Otherwise current clause may duplicate previous clause, or a
4578 -- previously given pragma or aspect specification for the same
4579 -- aspect.
d74fc39a 4580
89b3b365 4581 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 4582
4583 if Present (A) then
89f1e35c 4584 Error_Msg_Name_1 := Chars (N);
4585 Error_Msg_Sloc := Sloc (A);
4586
89b3b365 4587 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 4588 return True;
ae888dbd 4589 end if;
4590
4591 return False;
4592 end Duplicate_Clause;
4593
9f373bb8 4594 -- Start of processing for Analyze_Attribute_Definition_Clause
4595
d6f39728 4596 begin
d64221a7 4597 -- The following code is a defense against recursion. Not clear that
51fa2a45 4598 -- this can happen legitimately, but perhaps some error situations can
4599 -- cause it, and we did see this recursion during testing.
d64221a7 4600
4601 if Analyzed (N) then
4602 return;
4603 else
4604 Set_Analyzed (N, True);
4605 end if;
4606
2609e4d0 4607 Check_Restriction_No_Use_Of_Attribute (N);
4608
a29bc1d9 4609 -- Ignore some selected attributes in CodePeer mode since they are not
4610 -- relevant in this context.
4611
4612 if CodePeer_Mode then
4613 case Id is
4614
4615 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4616 -- internal representation of types by implicitly packing them.
4617
4618 when Attribute_Component_Size =>
4619 Rewrite (N, Make_Null_Statement (Sloc (N)));
4620 return;
4621
4622 when others =>
4623 null;
4624 end case;
4625 end if;
4626
d8ba53a8 4627 -- Process Ignore_Rep_Clauses option
eef1ca1e 4628
d8ba53a8 4629 if Ignore_Rep_Clauses then
9d627c41 4630 case Id is
4631
eef1ca1e 4632 -- The following should be ignored. They do not affect legality
4633 -- and may be target dependent. The basic idea of -gnatI is to
4634 -- ignore any rep clauses that may be target dependent but do not
4635 -- affect legality (except possibly to be rejected because they
4636 -- are incompatible with the compilation target).
9d627c41 4637
99378362 4638 when Attribute_Alignment
4639 | Attribute_Bit_Order
4640 | Attribute_Component_Size
4641 | Attribute_Machine_Radix
4642 | Attribute_Object_Size
4643 | Attribute_Size
4644 | Attribute_Small
4645 | Attribute_Stream_Size
4646 | Attribute_Value_Size
4647 =>
2ff55065 4648 Kill_Rep_Clause (N);
9d627c41 4649 return;
4650
eef1ca1e 4651 -- The following should not be ignored, because in the first place
51fa2a45 4652 -- they are reasonably portable, and should not cause problems
4653 -- in compiling code from another target, and also they do affect
4654 -- legality, e.g. failing to provide a stream attribute for a type
4655 -- may make a program illegal.
9d627c41 4656
99378362 4657 when Attribute_External_Tag
4658 | Attribute_Input
4659 | Attribute_Output
4660 | Attribute_Read
4661 | Attribute_Simple_Storage_Pool
4662 | Attribute_Storage_Pool
4663 | Attribute_Storage_Size
4664 | Attribute_Write
4665 =>
9d627c41 4666 null;
4667
2ff55065 4668 -- We do not do anything here with address clauses, they will be
4669 -- removed by Freeze later on, but for now, it works better to
4670 -- keep then in the tree.
4671
4672 when Attribute_Address =>
4673 null;
4674
b593a52c 4675 -- Other cases are errors ("attribute& cannot be set with
4676 -- definition clause"), which will be caught below.
9d627c41 4677
4678 when others =>
4679 null;
4680 end case;
fbc67f84 4681 end if;
4682
d6f39728 4683 Analyze (Nam);
4684 Ent := Entity (Nam);
4685
4686 if Rep_Item_Too_Early (Ent, N) then
4687 return;
4688 end if;
4689
9f373bb8 4690 -- Rep clause applies to full view of incomplete type or private type if
4691 -- we have one (if not, this is a premature use of the type). However,
4692 -- certain semantic checks need to be done on the specified entity (i.e.
4693 -- the private view), so we save it in Ent.
d6f39728 4694
4695 if Is_Private_Type (Ent)
4696 and then Is_Derived_Type (Ent)
4697 and then not Is_Tagged_Type (Ent)
4698 and then No (Full_View (Ent))
4699 then
9f373bb8 4700 -- If this is a private type whose completion is a derivation from
4701 -- another private type, there is no full view, and the attribute
4702 -- belongs to the type itself, not its underlying parent.
d6f39728 4703
4704 U_Ent := Ent;
4705
4706 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 4707
9f373bb8 4708 -- The attribute applies to the full view, set the entity of the
4709 -- attribute definition accordingly.
d5b349fa 4710
d6f39728 4711 Ent := Underlying_Type (Ent);
4712 U_Ent := Ent;
d5b349fa 4713 Set_Entity (Nam, Ent);
4714
d6f39728 4715 else
4716 U_Ent := Underlying_Type (Ent);
4717 end if;
4718
44705307 4719 -- Avoid cascaded error
d6f39728 4720
4721 if Etype (Nam) = Any_Type then
4722 return;
4723
89f1e35c 4724 -- Must be declared in current scope or in case of an aspect
ace3389d 4725 -- specification, must be visible in current scope.
44705307 4726
89f1e35c 4727 elsif Scope (Ent) /= Current_Scope
ace3389d 4728 and then
4729 not (From_Aspect_Specification (N)
4730 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 4731 then
d6f39728 4732 Error_Msg_N ("entity must be declared in this scope", Nam);
4733 return;
4734
44705307 4735 -- Must not be a source renaming (we do have some cases where the
4736 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 4737 -- cases any attribute applies to the renamed object as well).
44705307 4738
4739 elsif Is_Object (Ent)
4740 and then Present (Renamed_Object (Ent))
44705307 4741 then
a3248fc4 4742 -- Case of renamed object from source, this is an error
4743
4744 if Comes_From_Source (Renamed_Object (Ent)) then
4745 Get_Name_String (Chars (N));
4746 Error_Msg_Strlen := Name_Len;
4747 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4748 Error_Msg_N
4749 ("~ clause not allowed for a renaming declaration "
4750 & "(RM 13.1(6))", Nam);
4751 return;
4752
4753 -- For the case of a compiler generated renaming, the attribute
4754 -- definition clause applies to the renamed object created by the
4755 -- expander. The easiest general way to handle this is to create a
4756 -- copy of the attribute definition clause for this object.
4757
9a48fc56 4758 elsif Is_Entity_Name (Renamed_Object (Ent)) then
a3248fc4 4759 Insert_Action (N,
4760 Make_Attribute_Definition_Clause (Loc,
4761 Name =>
4762 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4763 Chars => Chars (N),
4764 Expression => Duplicate_Subexpr (Expression (N))));
9a48fc56 4765
4766 -- If the renamed object is not an entity, it must be a dereference
4767 -- of an unconstrained function call, and we must introduce a new
4768 -- declaration to capture the expression. This is needed in the case
4769 -- of 'Alignment, where the original declaration must be rewritten.
4770
4771 else
4772 pragma Assert
4773 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4774 null;
a3248fc4 4775 end if;
44705307 4776
4777 -- If no underlying entity, use entity itself, applies to some
4778 -- previously detected error cases ???
4779
f15731c4 4780 elsif No (U_Ent) then
4781 U_Ent := Ent;
4782
44705307 4783 -- Cannot specify for a subtype (exception Object/Value_Size)
4784
d6f39728 4785 elsif Is_Type (U_Ent)
4786 and then not Is_First_Subtype (U_Ent)
4787 and then Id /= Attribute_Object_Size
4788 and then Id /= Attribute_Value_Size
4789 and then not From_At_Mod (N)
4790 then
4791 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4792 return;
d6f39728 4793 end if;
4794
ae888dbd 4795 Set_Entity (N, U_Ent);
4796
d6f39728 4797 -- Switch on particular attribute
4798
4799 case Id is
4800
4801 -------------
4802 -- Address --
4803 -------------
4804
4805 -- Address attribute definition clause
4806
4807 when Attribute_Address => Address : begin
177675a7 4808
4809 -- A little error check, catch for X'Address use X'Address;
4810
4811 if Nkind (Nam) = N_Identifier
4812 and then Nkind (Expr) = N_Attribute_Reference
4813 and then Attribute_Name (Expr) = Name_Address
4814 and then Nkind (Prefix (Expr)) = N_Identifier
4815 and then Chars (Nam) = Chars (Prefix (Expr))
4816 then
4817 Error_Msg_NE
4818 ("address for & is self-referencing", Prefix (Expr), Ent);
4819 return;
4820 end if;
4821
4822 -- Not that special case, carry on with analysis of expression
4823
d6f39728 4824 Analyze_And_Resolve (Expr, RTE (RE_Address));
4825
2f1aac99 4826 -- Even when ignoring rep clauses we need to indicate that the
4827 -- entity has an address clause and thus it is legal to declare
2ff55065 4828 -- it imported. Freeze will get rid of the address clause later.
2f1aac99 4829
4830 if Ignore_Rep_Clauses then
d3ef794c 4831 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 4832 Record_Rep_Item (U_Ent, N);
4833 end if;
4834
4835 return;
4836 end if;
4837
ae888dbd 4838 if Duplicate_Clause then
4839 null;
d6f39728 4840
4841 -- Case of address clause for subprogram
4842
4843 elsif Is_Subprogram (U_Ent) then
d6f39728 4844 if Has_Homonym (U_Ent) then
4845 Error_Msg_N
f74a102b 4846 ("address clause cannot be given for overloaded "
4847 & "subprogram", Nam);
83f8f0a6 4848 return;
d6f39728 4849 end if;
4850
83f8f0a6 4851 -- For subprograms, all address clauses are permitted, and we
4852 -- mark the subprogram as having a deferred freeze so that Gigi
4853 -- will not elaborate it too soon.
d6f39728 4854
4855 -- Above needs more comments, what is too soon about???
4856
4857 Set_Has_Delayed_Freeze (U_Ent);
4858
4859 -- Case of address clause for entry
4860
4861 elsif Ekind (U_Ent) = E_Entry then
d6f39728 4862 if Nkind (Parent (N)) = N_Task_Body then
4863 Error_Msg_N
4864 ("entry address must be specified in task spec", Nam);
83f8f0a6 4865 return;
d6f39728 4866 end if;
4867
4868 -- For entries, we require a constant address
4869
4870 Check_Constant_Address_Clause (Expr, U_Ent);
4871
83f8f0a6 4872 -- Special checks for task types
4873
f15731c4 4874 if Is_Task_Type (Scope (U_Ent))
4875 and then Comes_From_Source (Scope (U_Ent))
4876 then
4877 Error_Msg_N
1e3532e7 4878 ("??entry address declared for entry in task type", N);
f15731c4 4879 Error_Msg_N
1e3532e7 4880 ("\??only one task can be declared of this type", N);
f15731c4 4881 end if;
4882
83f8f0a6 4883 -- Entry address clauses are obsolescent
4884
e0521a36 4885 Check_Restriction (No_Obsolescent_Features, N);
4886
9dfe12ae 4887 if Warn_On_Obsolescent_Feature then
4888 Error_Msg_N
f74a102b 4889 ("?j?attaching interrupt to task entry is an obsolescent "
4890 & "feature (RM J.7.1)", N);
9dfe12ae 4891 Error_Msg_N
1e3532e7 4892 ("\?j?use interrupt procedure instead", N);
9dfe12ae 4893 end if;
4894
8c252f6f 4895 -- Case of an address clause for a class-wide object, which is
5110559b 4896 -- considered erroneous.
4897
4898 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
4899 Error_Msg_NE
4900 ("??class-wide object & must not be overlaid", Nam, U_Ent);
9dfe12ae 4901 Error_Msg_N
1e3532e7 4902 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 4903 Insert_Action (Declaration_Node (U_Ent),
4904 Make_Raise_Program_Error (Loc,
4905 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4906 return;
9dfe12ae 4907
76be83f9 4908 -- Case of address clause for an object
d6f39728 4909
76be83f9 4910 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
d6f39728 4911 declare
d6da7448 4912 Expr : constant Node_Id := Expression (N);
4913 O_Ent : Entity_Id;
4914 Off : Boolean;
d6f39728 4915
4916 begin
7ee315cc 4917 -- Exported variables cannot have an address clause, because
4918 -- this cancels the effect of the pragma Export.
d6f39728 4919
4920 if Is_Exported (U_Ent) then
4921 Error_Msg_N
4922 ("cannot export object with address clause", Nam);
83f8f0a6 4923 return;
d6da7448 4924 end if;
4925
4926 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 4927
a9dd889b 4928 if Present (O_Ent) then
798dec73 4929
a9dd889b 4930 -- If the object overlays a constant object, mark it so
b2d32174 4931
a9dd889b 4932 if Is_Constant_Object (O_Ent) then
4933 Set_Overlays_Constant (U_Ent);
4934 end if;
798dec73 4935
514a5555 4936 -- If the address clause is of the form:
4937
4938 -- for X'Address use Y'Address;
4939
4940 -- or
4941
4942 -- C : constant Address := Y'Address;
4943 -- ...
4944 -- for X'Address use C;
4945
4946 -- then we make an entry in the table to check the size
4947 -- and alignment of the overlaying variable. But we defer
4948 -- this check till after code generation to take full
4949 -- advantage of the annotation done by the back end.
4950
4951 -- If the entity has a generic type, the check will be
4952 -- performed in the instance if the actual type justifies
4953 -- it, and we do not insert the clause in the table to
4954 -- prevent spurious warnings.
4955
4956 -- Note: we used to test Comes_From_Source and only give
4957 -- this warning for source entities, but we have removed
4958 -- this test. It really seems bogus to generate overlays
4959 -- that would trigger this warning in generated code.
4960 -- Furthermore, by removing the test, we handle the
4961 -- aspect case properly.
4962
4963 if Is_Object (O_Ent)
4964 and then not Is_Generic_Type (Etype (U_Ent))
4965 and then Address_Clause_Overlay_Warnings
4966 then
4967 Address_Clause_Checks.Append
4968 ((N, U_Ent, No_Uint, O_Ent, Off));
4969 end if;
a9dd889b 4970 else
4971 -- If this is not an overlay, mark a variable as being
4972 -- volatile to prevent unwanted optimizations. It's a
4973 -- conservative interpretation of RM 13.3(19) for the
4974 -- cases where the compiler cannot detect potential
4975 -- aliasing issues easily and it also covers the case
4976 -- of an absolute address where the volatile aspect is
4977 -- kind of implicit.
4978
4979 if Ekind (U_Ent) = E_Variable then
4980 Set_Treat_As_Volatile (U_Ent);
4981 end if;
514a5555 4982
4983 -- Make an entry in the table for an absolute address as
4984 -- above to check that the value is compatible with the
4985 -- alignment of the object.
4986
4987 declare
4988 Addr : constant Node_Id := Address_Value (Expr);
4989 begin
4990 if Compile_Time_Known_Value (Addr)
4991 and then Address_Clause_Overlay_Warnings
4992 then
4993 Address_Clause_Checks.Append
4994 ((N, U_Ent, Expr_Value (Addr), Empty, False));
4995 end if;
4996 end;
b2d32174 4997 end if;
4998
95009d64 4999 -- Issue an unconditional warning for a constant overlaying
5000 -- a variable. For the reverse case, we will issue it only
b2d32174 5001 -- if the variable is modified.
95009d64 5002
76be83f9 5003 if Ekind (U_Ent) = E_Constant
95009d64 5004 and then Present (O_Ent)
b2d32174 5005 and then not Overlays_Constant (U_Ent)
5006 and then Address_Clause_Overlay_Warnings
9dfe12ae 5007 then
1e3532e7 5008 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 5009
d6f39728 5010 -- Imported variables can have an address clause, but then
5011 -- the import is pretty meaningless except to suppress
5012 -- initializations, so we do not need such variables to
5013 -- be statically allocated (and in fact it causes trouble
5014 -- if the address clause is a local value).
5015
5016 elsif Is_Imported (U_Ent) then
5017 Set_Is_Statically_Allocated (U_Ent, False);
5018 end if;
5019
5020 -- We mark a possible modification of a variable with an
5021 -- address clause, since it is likely aliasing is occurring.
5022
177675a7 5023 Note_Possible_Modification (Nam, Sure => False);
d6f39728 5024
9dfe12ae 5025 -- Legality checks on the address clause for initialized
5026 -- objects is deferred until the freeze point, because
2beb22b1 5027 -- a subsequent pragma might indicate that the object
42e09e36 5028 -- is imported and thus not initialized. Also, the address
5029 -- clause might involve entities that have yet to be
5030 -- elaborated.
9dfe12ae 5031
5032 Set_Has_Delayed_Freeze (U_Ent);
5033
51ad5ad2 5034 -- If an initialization call has been generated for this
5035 -- object, it needs to be deferred to after the freeze node
5036 -- we have just now added, otherwise GIGI will see a
5037 -- reference to the variable (as actual to the IP call)
5038 -- before its definition.
5039
5040 declare
df9fba45 5041 Init_Call : constant Node_Id :=
5042 Remove_Init_Call (U_Ent, N);
4bba0a8d 5043
51ad5ad2 5044 begin
5045 if Present (Init_Call) then
28a4283c 5046 Append_Freeze_Action (U_Ent, Init_Call);
df9fba45 5047
28a4283c 5048 -- Reset Initialization_Statements pointer so that
5049 -- if there is a pragma Import further down, it can
5050 -- clear any default initialization.
df9fba45 5051
28a4283c 5052 Set_Initialization_Statements (U_Ent, Init_Call);
51ad5ad2 5053 end if;
5054 end;
5055
44e4341e 5056 -- Entity has delayed freeze, so we will generate an
5057 -- alignment check at the freeze point unless suppressed.
d6f39728 5058
44e4341e 5059 if not Range_Checks_Suppressed (U_Ent)
5060 and then not Alignment_Checks_Suppressed (U_Ent)
5061 then
5062 Set_Check_Address_Alignment (N);
5063 end if;
d6f39728 5064
5065 -- Kill the size check code, since we are not allocating
5066 -- the variable, it is somewhere else.
5067
5068 Kill_Size_Check_Code (U_Ent);
d6da7448 5069 end;
83f8f0a6 5070
d6f39728 5071 -- Not a valid entity for an address clause
5072
5073 else
5074 Error_Msg_N ("address cannot be given for &", Nam);
5075 end if;
5076 end Address;
5077
5078 ---------------
5079 -- Alignment --
5080 ---------------
5081
5082 -- Alignment attribute definition clause
5083
b47769f0 5084 when Attribute_Alignment => Alignment : declare
208fd589 5085 Align : constant Uint := Get_Alignment_Value (Expr);
5086 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 5087
d6f39728 5088 begin
5089 FOnly := True;
5090
5091 if not Is_Type (U_Ent)
5092 and then Ekind (U_Ent) /= E_Variable
5093 and then Ekind (U_Ent) /= E_Constant
5094 then
5095 Error_Msg_N ("alignment cannot be given for &", Nam);
5096
ae888dbd 5097 elsif Duplicate_Clause then
5098 null;
d6f39728 5099
5100 elsif Align /= No_Uint then
5101 Set_Has_Alignment_Clause (U_Ent);
208fd589 5102
44705307 5103 -- Tagged type case, check for attempt to set alignment to a
f74a102b 5104 -- value greater than Max_Align, and reset if so. This error
5105 -- is suppressed in ASIS mode to allow for different ASIS
f9906591 5106 -- back ends or ASIS-based tools to query the illegal clause.
44705307 5107
f74a102b 5108 if Is_Tagged_Type (U_Ent)
5109 and then Align > Max_Align
5110 and then not ASIS_Mode
5111 then
208fd589 5112 Error_Msg_N
1e3532e7 5113 ("alignment for & set to Maximum_Aligment??", Nam);
f74a102b 5114 Set_Alignment (U_Ent, Max_Align);
44705307 5115
5116 -- All other cases
5117
208fd589 5118 else
5119 Set_Alignment (U_Ent, Align);
5120 end if;
b47769f0 5121
5122 -- For an array type, U_Ent is the first subtype. In that case,
5123 -- also set the alignment of the anonymous base type so that
5124 -- other subtypes (such as the itypes for aggregates of the
5125 -- type) also receive the expected alignment.
5126
5127 if Is_Array_Type (U_Ent) then
5128 Set_Alignment (Base_Type (U_Ent), Align);
5129 end if;
d6f39728 5130 end if;
b47769f0 5131 end Alignment;
d6f39728 5132
5133 ---------------
5134 -- Bit_Order --
5135 ---------------
5136
5137 -- Bit_Order attribute definition clause
5138
99378362 5139 when Attribute_Bit_Order =>
d6f39728 5140 if not Is_Record_Type (U_Ent) then
5141 Error_Msg_N
5142 ("Bit_Order can only be defined for record type", Nam);
5143
ae888dbd 5144 elsif Duplicate_Clause then
5145 null;
5146
d6f39728 5147 else
5148 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5149
5150 if Etype (Expr) = Any_Type then
5151 return;
5152
cda40848 5153 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5154 Flag_Non_Static_Expr
5155 ("Bit_Order requires static expression!", Expr);
d6f39728 5156
5157 else
5158 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
fae4ea1f 5159 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
d6f39728 5160 end if;
5161 end if;
5162 end if;
d6f39728 5163
5164 --------------------
5165 -- Component_Size --
5166 --------------------
5167
5168 -- Component_Size attribute definition clause
5169
5170 when Attribute_Component_Size => Component_Size_Case : declare
5171 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 5172 Ctyp : Entity_Id;
d6f39728 5173 Btype : Entity_Id;
5174 Biased : Boolean;
5175 New_Ctyp : Entity_Id;
5176 Decl : Node_Id;
5177
5178 begin
5179 if not Is_Array_Type (U_Ent) then
5180 Error_Msg_N ("component size requires array type", Nam);
5181 return;
5182 end if;
5183
5184 Btype := Base_Type (U_Ent);
f74a102b 5185 Ctyp := Component_Type (Btype);
d6f39728 5186
ae888dbd 5187 if Duplicate_Clause then
5188 null;
d6f39728 5189
f3e4db96 5190 elsif Rep_Item_Too_Early (Btype, N) then
5191 null;
5192
d6f39728 5193 elsif Csize /= No_Uint then
a0fc8c5b 5194 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 5195
d74fc39a 5196 -- For the biased case, build a declaration for a subtype that
5197 -- will be used to represent the biased subtype that reflects
5198 -- the biased representation of components. We need the subtype
5199 -- to get proper conversions on referencing elements of the
36ac5fbb 5200 -- array.
3062c401 5201
36ac5fbb 5202 if Biased then
5203 New_Ctyp :=
5204 Make_Defining_Identifier (Loc,
5205 Chars =>
5206 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
3062c401 5207
36ac5fbb 5208 Decl :=
5209 Make_Subtype_Declaration (Loc,
5210 Defining_Identifier => New_Ctyp,
5211 Subtype_Indication =>
5212 New_Occurrence_Of (Component_Type (Btype), Loc));
5213
5214 Set_Parent (Decl, N);
5215 Analyze (Decl, Suppress => All_Checks);
5216
5217 Set_Has_Delayed_Freeze (New_Ctyp, False);
5218 Set_Esize (New_Ctyp, Csize);
5219 Set_RM_Size (New_Ctyp, Csize);
5220 Init_Alignment (New_Ctyp);
5221 Set_Is_Itype (New_Ctyp, True);
5222 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5223
5224 Set_Component_Type (Btype, New_Ctyp);
5225 Set_Biased (New_Ctyp, N, "component size clause");
d6f39728 5226 end if;
5227
36ac5fbb 5228 Set_Component_Size (Btype, Csize);
5229
a0fc8c5b 5230 -- Deal with warning on overridden size
5231
5232 if Warn_On_Overridden_Size
5233 and then Has_Size_Clause (Ctyp)
5234 and then RM_Size (Ctyp) /= Csize
5235 then
5236 Error_Msg_NE
1e3532e7 5237 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 5238 end if;
5239
d6f39728 5240 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 5241 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 5242 end if;
5243 end Component_Size_Case;
5244
81b424ac 5245 -----------------------
5246 -- Constant_Indexing --
5247 -----------------------
5248
5249 when Attribute_Constant_Indexing =>
5250 Check_Indexing_Functions;
5251
89f1e35c 5252 ---------
5253 -- CPU --
5254 ---------
5255
99378362 5256 when Attribute_CPU =>
5257
89f1e35c 5258 -- CPU attribute definition clause not allowed except from aspect
5259 -- specification.
5260
5261 if From_Aspect_Specification (N) then
5262 if not Is_Task_Type (U_Ent) then
5263 Error_Msg_N ("CPU can only be defined for task", Nam);
5264
5265 elsif Duplicate_Clause then
5266 null;
5267
5268 else
5269 -- The expression must be analyzed in the special manner
5270 -- described in "Handling of Default and Per-Object
5271 -- Expressions" in sem.ads.
5272
5273 -- The visibility to the discriminants must be restored
5274
5275 Push_Scope_And_Install_Discriminants (U_Ent);
5276 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5277 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5278
cda40848 5279 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5280 Check_Restriction (Static_Priorities, Expr);
5281 end if;
5282 end if;
5283
5284 else
5285 Error_Msg_N
5286 ("attribute& cannot be set with definition clause", N);
5287 end if;
89f1e35c 5288
89cc7147 5289 ----------------------
5290 -- Default_Iterator --
5291 ----------------------
5292
5293 when Attribute_Default_Iterator => Default_Iterator : declare
5294 Func : Entity_Id;
fbf4d6ef 5295 Typ : Entity_Id;
89cc7147 5296
5297 begin
05f6f999 5298 -- If target type is untagged, further checks are irrelevant
5299
89cc7147 5300 if not Is_Tagged_Type (U_Ent) then
5301 Error_Msg_N
05f6f999 5302 ("aspect Default_Iterator applies to tagged type", Nam);
5303 return;
89cc7147 5304 end if;
5305
5306 Check_Iterator_Functions;
5307
5308 Analyze (Expr);
5309
5310 if not Is_Entity_Name (Expr)
5311 or else Ekind (Entity (Expr)) /= E_Function
5312 then
5313 Error_Msg_N ("aspect Iterator must be a function", Expr);
05f6f999 5314 return;
89cc7147 5315 else
5316 Func := Entity (Expr);
5317 end if;
5318
fbf4d6ef 5319 -- The type of the first parameter must be T, T'class, or a
05f6f999 5320 -- corresponding access type (5.5.1 (8/3). If function is
5321 -- parameterless label type accordingly.
fbf4d6ef 5322
5323 if No (First_Formal (Func)) then
05f6f999 5324 Typ := Any_Type;
fbf4d6ef 5325 else
5326 Typ := Etype (First_Formal (Func));
5327 end if;
5328
5329 if Typ = U_Ent
5330 or else Typ = Class_Wide_Type (U_Ent)
5331 or else (Is_Access_Type (Typ)
5332 and then Designated_Type (Typ) = U_Ent)
5333 or else (Is_Access_Type (Typ)
5334 and then Designated_Type (Typ) =
5335 Class_Wide_Type (U_Ent))
89cc7147 5336 then
fbf4d6ef 5337 null;
5338
5339 else
89cc7147 5340 Error_Msg_NE
5341 ("Default Iterator must be a primitive of&", Func, U_Ent);
5342 end if;
5343 end Default_Iterator;
5344
89f1e35c 5345 ------------------------
5346 -- Dispatching_Domain --
5347 ------------------------
5348
99378362 5349 when Attribute_Dispatching_Domain =>
5350
89f1e35c 5351 -- Dispatching_Domain attribute definition clause not allowed
5352 -- except from aspect specification.
5353
5354 if From_Aspect_Specification (N) then
5355 if not Is_Task_Type (U_Ent) then
fbf4d6ef 5356 Error_Msg_N
5357 ("Dispatching_Domain can only be defined for task", Nam);
89f1e35c 5358
5359 elsif Duplicate_Clause then
5360 null;
5361
5362 else
5363 -- The expression must be analyzed in the special manner
5364 -- described in "Handling of Default and Per-Object
5365 -- Expressions" in sem.ads.
5366
5367 -- The visibility to the discriminants must be restored
5368
5369 Push_Scope_And_Install_Discriminants (U_Ent);
5370
5371 Preanalyze_Spec_Expression
5372 (Expr, RTE (RE_Dispatching_Domain));
5373
5374 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5375 end if;
5376
5377 else
5378 Error_Msg_N
5379 ("attribute& cannot be set with definition clause", N);
5380 end if;
89f1e35c 5381
d6f39728 5382 ------------------
5383 -- External_Tag --
5384 ------------------
5385
99378362 5386 when Attribute_External_Tag =>
d6f39728 5387 if not Is_Tagged_Type (U_Ent) then
5388 Error_Msg_N ("should be a tagged type", Nam);
5389 end if;
5390
ae888dbd 5391 if Duplicate_Clause then
5392 null;
d6f39728 5393
9af0ddc7 5394 else
ae888dbd 5395 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 5396
cda40848 5397 if not Is_OK_Static_Expression (Expr) then
ae888dbd 5398 Flag_Non_Static_Expr
5399 ("static string required for tag name!", Nam);
5400 end if;
5401
ae888dbd 5402 if not Is_Library_Level_Entity (U_Ent) then
5403 Error_Msg_NE
1e3532e7 5404 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 5405 Error_Msg_N
f74a102b 5406 ("\??same external tag applies to all subprogram calls",
5407 N);
ae888dbd 5408 Error_Msg_N
1e3532e7 5409 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 5410 end if;
fbc67f84 5411 end if;
d6f39728 5412
b57530b8 5413 --------------------------
5414 -- Implicit_Dereference --
5415 --------------------------
7947a439 5416
b57530b8 5417 when Attribute_Implicit_Dereference =>
7947a439 5418
2beb22b1 5419 -- Legality checks already performed at the point of the type
5420 -- declaration, aspect is not delayed.
7947a439 5421
89cc7147 5422 null;
b57530b8 5423
d6f39728 5424 -----------
5425 -- Input --
5426 -----------
5427
9f373bb8 5428 when Attribute_Input =>
5429 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5430 Set_Has_Specified_Stream_Input (Ent);
d6f39728 5431
89f1e35c 5432 ------------------------
5433 -- Interrupt_Priority --
5434 ------------------------
5435
99378362 5436 when Attribute_Interrupt_Priority =>
5437
89f1e35c 5438 -- Interrupt_Priority attribute definition clause not allowed
5439 -- except from aspect specification.
5440
5441 if From_Aspect_Specification (N) then
f02a9a9a 5442 if not Is_Concurrent_Type (U_Ent) then
89f1e35c 5443 Error_Msg_N
f74a102b 5444 ("Interrupt_Priority can only be defined for task and "
5445 & "protected object", Nam);
89f1e35c 5446
5447 elsif Duplicate_Clause then
5448 null;
5449
5450 else
5451 -- The expression must be analyzed in the special manner
5452 -- described in "Handling of Default and Per-Object
5453 -- Expressions" in sem.ads.
5454
5455 -- The visibility to the discriminants must be restored
5456
5457 Push_Scope_And_Install_Discriminants (U_Ent);
5458
5459 Preanalyze_Spec_Expression
5460 (Expr, RTE (RE_Interrupt_Priority));
5461
5462 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
d4e1acfa 5463
5464 -- Check the No_Task_At_Interrupt_Priority restriction
5465
5466 if Is_Task_Type (U_Ent) then
5467 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5468 end if;
89f1e35c 5469 end if;
5470
5471 else
5472 Error_Msg_N
5473 ("attribute& cannot be set with definition clause", N);
5474 end if;
89f1e35c 5475
b3f8228a 5476 --------------
5477 -- Iterable --
5478 --------------
5479
5480 when Attribute_Iterable =>
5481 Analyze (Expr);
bde03454 5482
b3f8228a 5483 if Nkind (Expr) /= N_Aggregate then
5484 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5485 end if;
5486
5487 declare
5488 Assoc : Node_Id;
5489
5490 begin
5491 Assoc := First (Component_Associations (Expr));
5492 while Present (Assoc) loop
5493 if not Is_Entity_Name (Expression (Assoc)) then
5494 Error_Msg_N ("value must be a function", Assoc);
5495 end if;
bde03454 5496
b3f8228a 5497 Next (Assoc);
5498 end loop;
5499 end;
5500
89cc7147 5501 ----------------------
5502 -- Iterator_Element --
5503 ----------------------
5504
5505 when Attribute_Iterator_Element =>
5506 Analyze (Expr);
5507
5508 if not Is_Entity_Name (Expr)
5509 or else not Is_Type (Entity (Expr))
5510 then
5511 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5512 end if;
5513
d6f39728 5514 -------------------
5515 -- Machine_Radix --
5516 -------------------
5517
5518 -- Machine radix attribute definition clause
5519
5520 when Attribute_Machine_Radix => Machine_Radix : declare
5521 Radix : constant Uint := Static_Integer (Expr);
5522
5523 begin
5524 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5525 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5526
ae888dbd 5527 elsif Duplicate_Clause then
5528 null;
d6f39728 5529
5530 elsif Radix /= No_Uint then
5531 Set_Has_Machine_Radix_Clause (U_Ent);
5532 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5533
5534 if Radix = 2 then
5535 null;
f74a102b 5536
d6f39728 5537 elsif Radix = 10 then
5538 Set_Machine_Radix_10 (U_Ent);
f74a102b 5539
5540 -- The following error is suppressed in ASIS mode to allow for
f9906591 5541 -- different ASIS back ends or ASIS-based tools to query the
f74a102b 5542 -- illegal clause.
5543
5544 elsif not ASIS_Mode then
d6f39728 5545 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5546 end if;
5547 end if;
5548 end Machine_Radix;
5549
5550 -----------------
5551 -- Object_Size --
5552 -----------------
5553
5554 -- Object_Size attribute definition clause
5555
5556 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 5557 Size : constant Uint := Static_Integer (Expr);
5558
d6f39728 5559 Biased : Boolean;
bfa5a9d9 5560 pragma Warnings (Off, Biased);
d6f39728 5561
5562 begin
5563 if not Is_Type (U_Ent) then
5564 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5565
ae888dbd 5566 elsif Duplicate_Clause then
5567 null;
d6f39728 5568
5569 else
5570 Check_Size (Expr, U_Ent, Size, Biased);
5571
f74a102b 5572 -- The following errors are suppressed in ASIS mode to allow
f9906591 5573 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 5574 -- the illegal clause.
5575
5576 if ASIS_Mode then
5577 null;
5578
5579 elsif Is_Scalar_Type (U_Ent) then
829cd457 5580 if Size /= 8 and then Size /= 16 and then Size /= 32
5581 and then UI_Mod (Size, 64) /= 0
5582 then
5583 Error_Msg_N
5584 ("Object_Size must be 8, 16, 32, or multiple of 64",
5585 Expr);
5586 end if;
5587
5588 elsif Size mod 8 /= 0 then
5589 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
d6f39728 5590 end if;
5591
5592 Set_Esize (U_Ent, Size);
5593 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 5594 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5595 end if;
5596 end Object_Size;
5597
5598 ------------
5599 -- Output --
5600 ------------
5601
9f373bb8 5602 when Attribute_Output =>
5603 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5604 Set_Has_Specified_Stream_Output (Ent);
d6f39728 5605
89f1e35c 5606 --------------
5607 -- Priority --
5608 --------------
5609
99378362 5610 when Attribute_Priority =>
5611
89f1e35c 5612 -- Priority attribute definition clause not allowed except from
5613 -- aspect specification.
5614
5615 if From_Aspect_Specification (N) then
f02a9a9a 5616 if not (Is_Concurrent_Type (U_Ent)
3a72f9c3 5617 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 5618 then
5619 Error_Msg_N
f02a9a9a 5620 ("Priority can only be defined for task and protected "
5621 & "object", Nam);
89f1e35c 5622
5623 elsif Duplicate_Clause then
5624 null;
5625
5626 else
5627 -- The expression must be analyzed in the special manner
5628 -- described in "Handling of Default and Per-Object
5629 -- Expressions" in sem.ads.
5630
5631 -- The visibility to the discriminants must be restored
5632
5633 Push_Scope_And_Install_Discriminants (U_Ent);
5634 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5635 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5636
cda40848 5637 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5638 Check_Restriction (Static_Priorities, Expr);
5639 end if;
5640 end if;
5641
5642 else
5643 Error_Msg_N
5644 ("attribute& cannot be set with definition clause", N);
5645 end if;
89f1e35c 5646
d6f39728 5647 ----------
5648 -- Read --
5649 ----------
5650
9f373bb8 5651 when Attribute_Read =>
5652 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5653 Set_Has_Specified_Stream_Read (Ent);
d6f39728 5654
b7b74740 5655 --------------------------
5656 -- Scalar_Storage_Order --
5657 --------------------------
5658
5659 -- Scalar_Storage_Order attribute definition clause
5660
99378362 5661 when Attribute_Scalar_Storage_Order =>
b43a5770 5662 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 5663 Error_Msg_N
f74a102b 5664 ("Scalar_Storage_Order can only be defined for record or "
5665 & "array type", Nam);
b7b74740 5666
5667 elsif Duplicate_Clause then
5668 null;
5669
5670 else
5671 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5672
5673 if Etype (Expr) = Any_Type then
5674 return;
5675
cda40848 5676 elsif not Is_OK_Static_Expression (Expr) then
b7b74740 5677 Flag_Non_Static_Expr
5678 ("Scalar_Storage_Order requires static expression!", Expr);
5679
c0912570 5680 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5681
5682 -- Here for the case of a non-default (i.e. non-confirming)
5683 -- Scalar_Storage_Order attribute definition.
5684
5685 if Support_Nondefault_SSO_On_Target then
d0a9ea3b 5686 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
c0912570 5687 else
5688 Error_Msg_N
f74a102b 5689 ("non-default Scalar_Storage_Order not supported on "
5690 & "target", Expr);
b7b74740 5691 end if;
5692 end if;
b64082f2 5693
5694 -- Clear SSO default indications since explicit setting of the
5695 -- order overrides the defaults.
5696
5697 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5698 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
b7b74740 5699 end if;
b7b74740 5700
e6ce0468 5701 --------------------------
5702 -- Secondary_Stack_Size --
5703 --------------------------
5704
99378362 5705 when Attribute_Secondary_Stack_Size =>
5706
e6ce0468 5707 -- Secondary_Stack_Size attribute definition clause not allowed
5708 -- except from aspect specification.
5709
5710 if From_Aspect_Specification (N) then
5711 if not Is_Task_Type (U_Ent) then
fe696bd7 5712 Error_Msg_N
5713 ("Secondary Stack Size can only be defined for task", Nam);
e6ce0468 5714
5715 elsif Duplicate_Clause then
5716 null;
5717
5718 else
5719 Check_Restriction (No_Secondary_Stack, Expr);
5720
5721 -- The expression must be analyzed in the special manner
5722 -- described in "Handling of Default and Per-Object
5723 -- Expressions" in sem.ads.
5724
5725 -- The visibility to the discriminants must be restored
5726
5727 Push_Scope_And_Install_Discriminants (U_Ent);
5728 Preanalyze_Spec_Expression (Expr, Any_Integer);
5729 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5730
5731 if not Is_OK_Static_Expression (Expr) then
5732 Check_Restriction (Static_Storage_Size, Expr);
5733 end if;
5734 end if;
5735
5736 else
5737 Error_Msg_N
5738 ("attribute& cannot be set with definition clause", N);
5739 end if;
e6ce0468 5740
d6f39728 5741 ----------
5742 -- Size --
5743 ----------
5744
5745 -- Size attribute definition clause
5746
5747 when Attribute_Size => Size : declare
5748 Size : constant Uint := Static_Integer (Expr);
5749 Etyp : Entity_Id;
5750 Biased : Boolean;
5751
5752 begin
5753 FOnly := True;
5754
ae888dbd 5755 if Duplicate_Clause then
5756 null;
d6f39728 5757
5758 elsif not Is_Type (U_Ent)
5759 and then Ekind (U_Ent) /= E_Variable
5760 and then Ekind (U_Ent) /= E_Constant
5761 then
5762 Error_Msg_N ("size cannot be given for &", Nam);
5763
5764 elsif Is_Array_Type (U_Ent)
5765 and then not Is_Constrained (U_Ent)
5766 then
5767 Error_Msg_N
5768 ("size cannot be given for unconstrained array", Nam);
5769
c2b89d6e 5770 elsif Size /= No_Uint then
d6f39728 5771 if Is_Type (U_Ent) then
5772 Etyp := U_Ent;
5773 else
5774 Etyp := Etype (U_Ent);
5775 end if;
5776
59ac57b5 5777 -- Check size, note that Gigi is in charge of checking that the
5778 -- size of an array or record type is OK. Also we do not check
5779 -- the size in the ordinary fixed-point case, since it is too
5780 -- early to do so (there may be subsequent small clause that
5781 -- affects the size). We can check the size if a small clause
5782 -- has already been given.
d6f39728 5783
5784 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5785 or else Has_Small_Clause (U_Ent)
5786 then
5787 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 5788 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 5789 end if;
5790
5791 -- For types set RM_Size and Esize if possible
5792
5793 if Is_Type (U_Ent) then
5794 Set_RM_Size (U_Ent, Size);
5795
ada34def 5796 -- For elementary types, increase Object_Size to power of 2,
5797 -- but not less than a storage unit in any case (normally
59ac57b5 5798 -- this means it will be byte addressable).
d6f39728 5799
ada34def 5800 -- For all other types, nothing else to do, we leave Esize
5801 -- (object size) unset, the back end will set it from the
5802 -- size and alignment in an appropriate manner.
5803
1d366b32 5804 -- In both cases, we check whether the alignment must be
5805 -- reset in the wake of the size change.
5806
ada34def 5807 if Is_Elementary_Type (U_Ent) then
f15731c4 5808 if Size <= System_Storage_Unit then
5809 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 5810 elsif Size <= 16 then
5811 Init_Esize (U_Ent, 16);
5812 elsif Size <= 32 then
5813 Init_Esize (U_Ent, 32);
5814 else
5815 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5816 end if;
5817
1d366b32 5818 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5819 else
5820 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5821 end if;
5822
d6f39728 5823 -- For objects, set Esize only
5824
5825 else
f74a102b 5826 -- The following error is suppressed in ASIS mode to allow
f9906591 5827 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 5828 -- the illegal clause.
5829
5830 if Is_Elementary_Type (Etyp)
5831 and then Size /= System_Storage_Unit
5832 and then Size /= System_Storage_Unit * 2
5833 and then Size /= System_Storage_Unit * 4
5834 and then Size /= System_Storage_Unit * 8
5835 and then not ASIS_Mode
5836 then
5837 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5838 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5839 Error_Msg_N
5840 ("size for primitive object must be a power of 2 in "
5841 & "the range ^-^", N);
9dfe12ae 5842 end if;
5843
d6f39728 5844 Set_Esize (U_Ent, Size);
5845 end if;
5846
5847 Set_Has_Size_Clause (U_Ent);
5848 end if;
5849 end Size;
5850
5851 -----------
5852 -- Small --
5853 -----------
5854
5855 -- Small attribute definition clause
5856
5857 when Attribute_Small => Small : declare
5858 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5859 Small : Ureal;
5860
5861 begin
5862 Analyze_And_Resolve (Expr, Any_Real);
5863
5864 if Etype (Expr) = Any_Type then
5865 return;
5866
cda40848 5867 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5868 Flag_Non_Static_Expr
5869 ("small requires static expression!", Expr);
d6f39728 5870 return;
5871
5872 else
5873 Small := Expr_Value_R (Expr);
5874
5875 if Small <= Ureal_0 then
5876 Error_Msg_N ("small value must be greater than zero", Expr);
5877 return;
5878 end if;
5879
5880 end if;
5881
5882 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5883 Error_Msg_N
5884 ("small requires an ordinary fixed point type", Nam);
5885
5886 elsif Has_Small_Clause (U_Ent) then
5887 Error_Msg_N ("small already given for &", Nam);
5888
5889 elsif Small > Delta_Value (U_Ent) then
5890 Error_Msg_N
ce3e25d6 5891 ("small value must not be greater than delta value", Nam);
d6f39728 5892
5893 else
5894 Set_Small_Value (U_Ent, Small);
5895 Set_Small_Value (Implicit_Base, Small);
5896 Set_Has_Small_Clause (U_Ent);
5897 Set_Has_Small_Clause (Implicit_Base);
5898 Set_Has_Non_Standard_Rep (Implicit_Base);
5899 end if;
5900 end Small;
5901
d6f39728 5902 ------------------
5903 -- Storage_Pool --
5904 ------------------
5905
5906 -- Storage_Pool attribute definition clause
5907
99378362 5908 when Attribute_Simple_Storage_Pool
5909 | Attribute_Storage_Pool
5910 =>
5911 Storage_Pool : declare
d6f39728 5912 Pool : Entity_Id;
6b567c71 5913 T : Entity_Id;
d6f39728 5914
5915 begin
44e4341e 5916 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5917 Error_Msg_N
5918 ("storage pool cannot be given for access-to-subprogram type",
5919 Nam);
5920 return;
5921
99378362 5922 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 5923 then
44e4341e 5924 Error_Msg_N
5925 ("storage pool can only be given for access types", Nam);
d6f39728 5926 return;
5927
5928 elsif Is_Derived_Type (U_Ent) then
5929 Error_Msg_N
5930 ("storage pool cannot be given for a derived access type",
5931 Nam);
5932
ae888dbd 5933 elsif Duplicate_Clause then
d6f39728 5934 return;
5935
5936 elsif Present (Associated_Storage_Pool (U_Ent)) then
5937 Error_Msg_N ("storage pool already given for &", Nam);
5938 return;
5939 end if;
5940
6653b695 5941 -- Check for Storage_Size previously given
5942
5943 declare
5944 SS : constant Node_Id :=
5945 Get_Attribute_Definition_Clause
5946 (U_Ent, Attribute_Storage_Size);
5947 begin
5948 if Present (SS) then
5949 Check_Pool_Size_Clash (U_Ent, N, SS);
5950 end if;
5951 end;
5952
5953 -- Storage_Pool case
5954
b55f7641 5955 if Id = Attribute_Storage_Pool then
5956 Analyze_And_Resolve
5957 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5958
5959 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 5960 -- simple storage pool type, so we Resolve without imposing an
b55f7641 5961 -- expected type.
5962
5963 else
5964 Analyze_And_Resolve (Expr);
5965
5966 if not Present (Get_Rep_Pragma
b15003c3 5967 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 5968 then
5969 Error_Msg_N
5970 ("expression must be of a simple storage pool type", Expr);
5971 end if;
5972 end if;
d6f39728 5973
8c5c7277 5974 if not Denotes_Variable (Expr) then
5975 Error_Msg_N ("storage pool must be a variable", Expr);
5976 return;
5977 end if;
5978
6b567c71 5979 if Nkind (Expr) = N_Type_Conversion then
5980 T := Etype (Expression (Expr));
5981 else
5982 T := Etype (Expr);
5983 end if;
5984
5985 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 5986 -- access types with a Storage_Size. Since it only work properly
5987 -- when used on one specific type, we need to check that it is not
5988 -- hijacked improperly:
5989
6b567c71 5990 -- type T is access Integer;
5991 -- for T'Storage_Size use n;
5992 -- type Q is access Float;
5993 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5994
15ebb600 5995 if RTE_Available (RE_Stack_Bounded_Pool)
5996 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5997 then
5998 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 5999 return;
6000 end if;
6001
d6f39728 6002 -- If the argument is a name that is not an entity name, then
6003 -- we construct a renaming operation to define an entity of
6004 -- type storage pool.
6005
6006 if not Is_Entity_Name (Expr)
6007 and then Is_Object_Reference (Expr)
6008 then
11deeeb6 6009 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 6010
6011 declare
6012 Rnode : constant Node_Id :=
6013 Make_Object_Renaming_Declaration (Loc,
6014 Defining_Identifier => Pool,
6015 Subtype_Mark =>
6016 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 6017 Name => Expr);
d6f39728 6018
6019 begin
f65f7fdf 6020 -- If the attribute definition clause comes from an aspect
6021 -- clause, then insert the renaming before the associated
6022 -- entity's declaration, since the attribute clause has
6023 -- not yet been appended to the declaration list.
6024
6025 if From_Aspect_Specification (N) then
6026 Insert_Before (Parent (Entity (N)), Rnode);
6027 else
6028 Insert_Before (N, Rnode);
6029 end if;
6030
d6f39728 6031 Analyze (Rnode);
6032 Set_Associated_Storage_Pool (U_Ent, Pool);
6033 end;
6034
6035 elsif Is_Entity_Name (Expr) then
6036 Pool := Entity (Expr);
6037
6038 -- If pool is a renamed object, get original one. This can
6039 -- happen with an explicit renaming, and within instances.
6040
6041 while Present (Renamed_Object (Pool))
6042 and then Is_Entity_Name (Renamed_Object (Pool))
6043 loop
6044 Pool := Entity (Renamed_Object (Pool));
6045 end loop;
6046
6047 if Present (Renamed_Object (Pool))
6048 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6049 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6050 then
6051 Pool := Entity (Expression (Renamed_Object (Pool)));
6052 end if;
6053
6b567c71 6054 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 6055
6056 elsif Nkind (Expr) = N_Type_Conversion
6057 and then Is_Entity_Name (Expression (Expr))
6058 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6059 then
6060 Pool := Entity (Expression (Expr));
6b567c71 6061 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 6062
6063 else
6064 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6065 return;
6066 end if;
99378362 6067 end Storage_Pool;
d6f39728 6068
44e4341e 6069 ------------------
6070 -- Storage_Size --
6071 ------------------
6072
6073 -- Storage_Size attribute definition clause
6074
6075 when Attribute_Storage_Size => Storage_Size : declare
6076 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 6077
6078 begin
6079 if Is_Task_Type (U_Ent) then
44e4341e 6080
39a0c1d3 6081 -- Check obsolescent (but never obsolescent if from aspect)
ceec4f7c 6082
6083 if not From_Aspect_Specification (N) then
6084 Check_Restriction (No_Obsolescent_Features, N);
6085
6086 if Warn_On_Obsolescent_Feature then
6087 Error_Msg_N
f74a102b 6088 ("?j?storage size clause for task is an obsolescent "
6089 & "feature (RM J.9)", N);
ceec4f7c 6090 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6091 end if;
44e4341e 6092 end if;
6093
6094 FOnly := True;
6095 end if;
6096
6097 if not Is_Access_Type (U_Ent)
6098 and then Ekind (U_Ent) /= E_Task_Type
6099 then
6100 Error_Msg_N ("storage size cannot be given for &", Nam);
6101
6102 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6103 Error_Msg_N
6104 ("storage size cannot be given for a derived access type",
6105 Nam);
6106
ae888dbd 6107 elsif Duplicate_Clause then
6108 null;
44e4341e 6109
6110 else
6111 Analyze_And_Resolve (Expr, Any_Integer);
6112
6113 if Is_Access_Type (U_Ent) then
6653b695 6114
6115 -- Check for Storage_Pool previously given
6116
6117 declare
6118 SP : constant Node_Id :=
6119 Get_Attribute_Definition_Clause
6120 (U_Ent, Attribute_Storage_Pool);
6121
6122 begin
6123 if Present (SP) then
6124 Check_Pool_Size_Clash (U_Ent, SP, N);
6125 end if;
6126 end;
6127
6128 -- Special case of for x'Storage_Size use 0
44e4341e 6129
5941a4e9 6130 if Is_OK_Static_Expression (Expr)
44e4341e 6131 and then Expr_Value (Expr) = 0
6132 then
6133 Set_No_Pool_Assigned (Btype);
6134 end if;
44e4341e 6135 end if;
6136
6137 Set_Has_Storage_Size_Clause (Btype);
6138 end if;
6139 end Storage_Size;
6140
7189d17f 6141 -----------------
6142 -- Stream_Size --
6143 -----------------
6144
6145 when Attribute_Stream_Size => Stream_Size : declare
6146 Size : constant Uint := Static_Integer (Expr);
6147
6148 begin
15ebb600 6149 if Ada_Version <= Ada_95 then
6150 Check_Restriction (No_Implementation_Attributes, N);
6151 end if;
6152
ae888dbd 6153 if Duplicate_Clause then
6154 null;
7189d17f 6155
6156 elsif Is_Elementary_Type (U_Ent) then
f74a102b 6157
6158 -- The following errors are suppressed in ASIS mode to allow
f9906591 6159 -- for different ASIS back ends or ASIS-based tools to query
f74a102b 6160 -- the illegal clause.
6161
6162 if ASIS_Mode then
6163 null;
6164
6165 elsif Size /= System_Storage_Unit
6166 and then Size /= System_Storage_Unit * 2
6167 and then Size /= System_Storage_Unit * 4
6168 and then Size /= System_Storage_Unit * 8
7189d17f 6169 then
6170 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6171 Error_Msg_N
f74a102b 6172 ("stream size for elementary type must be a power of 2 "
6173 & "and at least ^", N);
7189d17f 6174
6175 elsif RM_Size (U_Ent) > Size then
6176 Error_Msg_Uint_1 := RM_Size (U_Ent);
6177 Error_Msg_N
f74a102b 6178 ("stream size for elementary type must be a power of 2 "
6179 & "and at least ^", N);
7189d17f 6180 end if;
6181
6182 Set_Has_Stream_Size_Clause (U_Ent);
6183
6184 else
6185 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6186 end if;
6187 end Stream_Size;
6188
d6f39728 6189 ----------------
6190 -- Value_Size --
6191 ----------------
6192
6193 -- Value_Size attribute definition clause
6194
6195 when Attribute_Value_Size => Value_Size : declare
6196 Size : constant Uint := Static_Integer (Expr);
6197 Biased : Boolean;
6198
6199 begin
6200 if not Is_Type (U_Ent) then
6201 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6202
ae888dbd 6203 elsif Duplicate_Clause then
6204 null;
d6f39728 6205
59ac57b5 6206 elsif Is_Array_Type (U_Ent)
6207 and then not Is_Constrained (U_Ent)
6208 then
6209 Error_Msg_N
6210 ("Value_Size cannot be given for unconstrained array", Nam);
6211
d6f39728 6212 else
6213 if Is_Elementary_Type (U_Ent) then
6214 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 6215 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 6216 end if;
6217
6218 Set_RM_Size (U_Ent, Size);
6219 end if;
6220 end Value_Size;
6221
81b424ac 6222 -----------------------
6223 -- Variable_Indexing --
6224 -----------------------
6225
6226 when Attribute_Variable_Indexing =>
6227 Check_Indexing_Functions;
6228
d6f39728 6229 -----------
6230 -- Write --
6231 -----------
6232
9f373bb8 6233 when Attribute_Write =>
6234 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6235 Set_Has_Specified_Stream_Write (Ent);
d6f39728 6236
6237 -- All other attributes cannot be set
6238
6239 when others =>
6240 Error_Msg_N
6241 ("attribute& cannot be set with definition clause", N);
d6f39728 6242 end case;
6243
d64221a7 6244 -- The test for the type being frozen must be performed after any
6245 -- expression the clause has been analyzed since the expression itself
6246 -- might cause freezing that makes the clause illegal.
d6f39728 6247
6248 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6249 return;
6250 end if;
6251 end Analyze_Attribute_Definition_Clause;
6252
6253 ----------------------------
6254 -- Analyze_Code_Statement --
6255 ----------------------------
6256
6257 procedure Analyze_Code_Statement (N : Node_Id) is
6258 HSS : constant Node_Id := Parent (N);
6259 SBody : constant Node_Id := Parent (HSS);
6260 Subp : constant Entity_Id := Current_Scope;
6261 Stmt : Node_Id;
6262 Decl : Node_Id;
6263 StmtO : Node_Id;
6264 DeclO : Node_Id;
6265
6266 begin
1d3f0c6b 6267 -- Accept foreign code statements for CodePeer. The analysis is skipped
6268 -- to avoid rejecting unrecognized constructs.
6269
6270 if CodePeer_Mode then
6271 Set_Analyzed (N);
6272 return;
6273 end if;
6274
d6f39728 6275 -- Analyze and check we get right type, note that this implements the
1d3f0c6b 6276 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6277 -- the only way that Asm_Insn could possibly be visible.
d6f39728 6278
6279 Analyze_And_Resolve (Expression (N));
6280
6281 if Etype (Expression (N)) = Any_Type then
6282 return;
6283 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6284 Error_Msg_N ("incorrect type for code statement", N);
6285 return;
6286 end if;
6287
44e4341e 6288 Check_Code_Statement (N);
6289
1d3f0c6b 6290 -- Make sure we appear in the handled statement sequence of a subprogram
6291 -- (RM 13.8(3)).
d6f39728 6292
6293 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6294 or else Nkind (SBody) /= N_Subprogram_Body
6295 then
6296 Error_Msg_N
6297 ("code statement can only appear in body of subprogram", N);
6298 return;
6299 end if;
6300
6301 -- Do remaining checks (RM 13.8(3)) if not already done
6302
6303 if not Is_Machine_Code_Subprogram (Subp) then
6304 Set_Is_Machine_Code_Subprogram (Subp);
6305
6306 -- No exception handlers allowed
6307
6308 if Present (Exception_Handlers (HSS)) then
6309 Error_Msg_N
6310 ("exception handlers not permitted in machine code subprogram",
6311 First (Exception_Handlers (HSS)));
6312 end if;
6313
6314 -- No declarations other than use clauses and pragmas (we allow
6315 -- certain internally generated declarations as well).
6316
6317 Decl := First (Declarations (SBody));
6318 while Present (Decl) loop
6319 DeclO := Original_Node (Decl);
6320 if Comes_From_Source (DeclO)
fdd294d1 6321 and not Nkind_In (DeclO, N_Pragma,
6322 N_Use_Package_Clause,
6323 N_Use_Type_Clause,
6324 N_Implicit_Label_Declaration)
d6f39728 6325 then
6326 Error_Msg_N
6327 ("this declaration not allowed in machine code subprogram",
6328 DeclO);
6329 end if;
6330
6331 Next (Decl);
6332 end loop;
6333
6334 -- No statements other than code statements, pragmas, and labels.
6335 -- Again we allow certain internally generated statements.
3ab42ff7 6336
c3107527 6337 -- In Ada 2012, qualified expressions are names, and the code
6338 -- statement is initially parsed as a procedure call.
d6f39728 6339
6340 Stmt := First (Statements (HSS));
6341 while Present (Stmt) loop
6342 StmtO := Original_Node (Stmt);
c3107527 6343
1d3f0c6b 6344 -- A procedure call transformed into a code statement is OK
59f2fcab 6345
c3107527 6346 if Ada_Version >= Ada_2012
6347 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 6348 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 6349 then
6350 null;
6351
6352 elsif Comes_From_Source (StmtO)
fdd294d1 6353 and then not Nkind_In (StmtO, N_Pragma,
6354 N_Label,
6355 N_Code_Statement)
d6f39728 6356 then
6357 Error_Msg_N
6358 ("this statement is not allowed in machine code subprogram",
6359 StmtO);
6360 end if;
6361
6362 Next (Stmt);
6363 end loop;
6364 end if;
d6f39728 6365 end Analyze_Code_Statement;
6366
6367 -----------------------------------------------
6368 -- Analyze_Enumeration_Representation_Clause --
6369 -----------------------------------------------
6370
6371 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
21647c2d 6372 Ident : constant Node_Id := Identifier (N);
6373 Aggr : constant Node_Id := Array_Aggregate (N);
d6f39728 6374 Enumtype : Entity_Id;
6375 Elit : Entity_Id;
6376 Expr : Node_Id;
6377 Assoc : Node_Id;
6378 Choice : Node_Id;
6379 Val : Uint;
b3190af0 6380
6381 Err : Boolean := False;
098d3082 6382 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 6383
e30c7d84 6384 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6385 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6386 -- Allowed range of universal integer (= allowed range of enum lit vals)
6387
d6f39728 6388 Min : Uint;
6389 Max : Uint;
e30c7d84 6390 -- Minimum and maximum values of entries
6391
6392 Max_Node : Node_Id;
6393 -- Pointer to node for literal providing max value
d6f39728 6394
6395 begin
ca301e17 6396 if Ignore_Rep_Clauses then
2ff55065 6397 Kill_Rep_Clause (N);
fbc67f84 6398 return;
6399 end if;
6400
175a6969 6401 -- Ignore enumeration rep clauses by default in CodePeer mode,
6402 -- unless -gnatd.I is specified, as a work around for potential false
6403 -- positive messages.
6404
6405 if CodePeer_Mode and not Debug_Flag_Dot_II then
6406 return;
6407 end if;
6408
d6f39728 6409 -- First some basic error checks
6410
6411 Find_Type (Ident);
6412 Enumtype := Entity (Ident);
6413
6414 if Enumtype = Any_Type
6415 or else Rep_Item_Too_Early (Enumtype, N)
6416 then
6417 return;
6418 else
6419 Enumtype := Underlying_Type (Enumtype);
6420 end if;
6421
6422 if not Is_Enumeration_Type (Enumtype) then
6423 Error_Msg_NE
6424 ("enumeration type required, found}",
6425 Ident, First_Subtype (Enumtype));
6426 return;
6427 end if;
6428
9dfe12ae 6429 -- Ignore rep clause on generic actual type. This will already have
6430 -- been flagged on the template as an error, and this is the safest
6431 -- way to ensure we don't get a junk cascaded message in the instance.
6432
6433 if Is_Generic_Actual_Type (Enumtype) then
6434 return;
6435
6436 -- Type must be in current scope
6437
6438 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 6439 Error_Msg_N ("type must be declared in this scope", Ident);
6440 return;
6441
9dfe12ae 6442 -- Type must be a first subtype
6443
d6f39728 6444 elsif not Is_First_Subtype (Enumtype) then
6445 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6446 return;
6447
9dfe12ae 6448 -- Ignore duplicate rep clause
6449
d6f39728 6450 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6451 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6452 return;
6453
7189d17f 6454 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 6455
177675a7 6456 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 6457 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 6458 return;
6459
d9125581 6460 -- Check that the expression is a proper aggregate (no parentheses)
6461
6462 elsif Paren_Count (Aggr) /= 0 then
6463 Error_Msg
6464 ("extra parentheses surrounding aggregate not allowed",
6465 First_Sloc (Aggr));
6466 return;
6467
9dfe12ae 6468 -- All tests passed, so set rep clause in place
d6f39728 6469
6470 else
6471 Set_Has_Enumeration_Rep_Clause (Enumtype);
6472 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6473 end if;
6474
6475 -- Now we process the aggregate. Note that we don't use the normal
6476 -- aggregate code for this purpose, because we don't want any of the
6477 -- normal expansion activities, and a number of special semantic
6478 -- rules apply (including the component type being any integer type)
6479
d6f39728 6480 Elit := First_Literal (Enumtype);
6481
6482 -- First the positional entries if any
6483
6484 if Present (Expressions (Aggr)) then
6485 Expr := First (Expressions (Aggr));
6486 while Present (Expr) loop
6487 if No (Elit) then
6488 Error_Msg_N ("too many entries in aggregate", Expr);
6489 return;
6490 end if;
6491
6492 Val := Static_Integer (Expr);
6493
d9125581 6494 -- Err signals that we found some incorrect entries processing
6495 -- the list. The final checks for completeness and ordering are
6496 -- skipped in this case.
6497
d6f39728 6498 if Val = No_Uint then
6499 Err := True;
f02a9a9a 6500
d6f39728 6501 elsif Val < Lo or else Hi < Val then
6502 Error_Msg_N ("value outside permitted range", Expr);
6503 Err := True;
6504 end if;
6505
6506 Set_Enumeration_Rep (Elit, Val);
6507 Set_Enumeration_Rep_Expr (Elit, Expr);
6508 Next (Expr);
6509 Next (Elit);
6510 end loop;
6511 end if;
6512
6513 -- Now process the named entries if present
6514
6515 if Present (Component_Associations (Aggr)) then
6516 Assoc := First (Component_Associations (Aggr));
6517 while Present (Assoc) loop
6518 Choice := First (Choices (Assoc));
6519
6520 if Present (Next (Choice)) then
6521 Error_Msg_N
6522 ("multiple choice not allowed here", Next (Choice));
6523 Err := True;
6524 end if;
6525
6526 if Nkind (Choice) = N_Others_Choice then
6527 Error_Msg_N ("others choice not allowed here", Choice);
6528 Err := True;
6529
6530 elsif Nkind (Choice) = N_Range then
b3190af0 6531
d6f39728 6532 -- ??? should allow zero/one element range here
b3190af0 6533
d6f39728 6534 Error_Msg_N ("range not allowed here", Choice);
6535 Err := True;
6536
6537 else
6538 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 6539
098d3082 6540 if Error_Posted (Choice) then
d6f39728 6541 Err := True;
098d3082 6542 end if;
d6f39728 6543
098d3082 6544 if not Err then
6545 if Is_Entity_Name (Choice)
6546 and then Is_Type (Entity (Choice))
6547 then
6548 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 6549 Err := True;
b3190af0 6550
098d3082 6551 -- ??? should allow static subtype with zero/one entry
d6f39728 6552
098d3082 6553 elsif Etype (Choice) = Base_Type (Enumtype) then
cda40848 6554 if not Is_OK_Static_Expression (Choice) then
098d3082 6555 Flag_Non_Static_Expr
6556 ("non-static expression used for choice!", Choice);
d6f39728 6557 Err := True;
d6f39728 6558
098d3082 6559 else
6560 Elit := Expr_Value_E (Choice);
6561
6562 if Present (Enumeration_Rep_Expr (Elit)) then
6563 Error_Msg_Sloc :=
6564 Sloc (Enumeration_Rep_Expr (Elit));
6565 Error_Msg_NE
6566 ("representation for& previously given#",
6567 Choice, Elit);
6568 Err := True;
6569 end if;
d6f39728 6570
098d3082 6571 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 6572
098d3082 6573 Expr := Expression (Assoc);
6574 Val := Static_Integer (Expr);
d6f39728 6575
098d3082 6576 if Val = No_Uint then
6577 Err := True;
6578
6579 elsif Val < Lo or else Hi < Val then
6580 Error_Msg_N ("value outside permitted range", Expr);
6581 Err := True;
6582 end if;
d6f39728 6583
098d3082 6584 Set_Enumeration_Rep (Elit, Val);
6585 end if;
d6f39728 6586 end if;
6587 end if;
6588 end if;
6589
6590 Next (Assoc);
6591 end loop;
6592 end if;
6593
6594 -- Aggregate is fully processed. Now we check that a full set of
6595 -- representations was given, and that they are in range and in order.
6596 -- These checks are only done if no other errors occurred.
6597
6598 if not Err then
6599 Min := No_Uint;
6600 Max := No_Uint;
6601
6602 Elit := First_Literal (Enumtype);
6603 while Present (Elit) loop
6604 if No (Enumeration_Rep_Expr (Elit)) then
6605 Error_Msg_NE ("missing representation for&!", N, Elit);
6606
6607 else
6608 Val := Enumeration_Rep (Elit);
6609
6610 if Min = No_Uint then
6611 Min := Val;
6612 end if;
6613
6614 if Val /= No_Uint then
6615 if Max /= No_Uint and then Val <= Max then
6616 Error_Msg_NE
6617 ("enumeration value for& not ordered!",
e30c7d84 6618 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 6619 end if;
6620
e30c7d84 6621 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 6622 Max := Val;
6623 end if;
6624
e30c7d84 6625 -- If there is at least one literal whose representation is not
6626 -- equal to the Pos value, then note that this enumeration type
6627 -- has a non-standard representation.
d6f39728 6628
6629 if Val /= Enumeration_Pos (Elit) then
6630 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6631 end if;
6632 end if;
6633
6634 Next (Elit);
6635 end loop;
6636
6637 -- Now set proper size information
6638
6639 declare
6640 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6641
6642 begin
6643 if Has_Size_Clause (Enumtype) then
e30c7d84 6644
6645 -- All OK, if size is OK now
6646
6647 if RM_Size (Enumtype) >= Minsize then
d6f39728 6648 null;
6649
6650 else
e30c7d84 6651 -- Try if we can get by with biasing
6652
d6f39728 6653 Minsize :=
6654 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6655
e30c7d84 6656 -- Error message if even biasing does not work
6657
6658 if RM_Size (Enumtype) < Minsize then
6659 Error_Msg_Uint_1 := RM_Size (Enumtype);
6660 Error_Msg_Uint_2 := Max;
6661 Error_Msg_N
6662 ("previously given size (^) is too small "
6663 & "for this value (^)", Max_Node);
6664
6665 -- If biasing worked, indicate that we now have biased rep
d6f39728 6666
6667 else
b77e4501 6668 Set_Biased
6669 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 6670 end if;
6671 end if;
6672
6673 else
6674 Set_RM_Size (Enumtype, Minsize);
6675 Set_Enum_Esize (Enumtype);
6676 end if;
6677
6678 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6679 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6680 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6681 end;
6682 end if;
6683
39a0c1d3 6684 -- We repeat the too late test in case it froze itself
d6f39728 6685
6686 if Rep_Item_Too_Late (Enumtype, N) then
6687 null;
6688 end if;
d6f39728 6689 end Analyze_Enumeration_Representation_Clause;
6690
6691 ----------------------------
6692 -- Analyze_Free_Statement --
6693 ----------------------------
6694
6695 procedure Analyze_Free_Statement (N : Node_Id) is
6696 begin
6697 Analyze (Expression (N));
6698 end Analyze_Free_Statement;
6699
40ca69b9 6700 ---------------------------
6701 -- Analyze_Freeze_Entity --
6702 ---------------------------
6703
6704 procedure Analyze_Freeze_Entity (N : Node_Id) is
40ca69b9 6705 begin
d9f6a4ee 6706 Freeze_Entity_Checks (N);
6707 end Analyze_Freeze_Entity;
98f7db28 6708
d9f6a4ee 6709 -----------------------------------
6710 -- Analyze_Freeze_Generic_Entity --
6711 -----------------------------------
98f7db28 6712
d9f6a4ee 6713 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
61989dbb 6714 E : constant Entity_Id := Entity (N);
6715
d9f6a4ee 6716 begin
61989dbb 6717 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6718 Analyze_Aspects_At_Freeze_Point (E);
6719 end if;
6720
d9f6a4ee 6721 Freeze_Entity_Checks (N);
6722 end Analyze_Freeze_Generic_Entity;
40ca69b9 6723
d9f6a4ee 6724 ------------------------------------------
6725 -- Analyze_Record_Representation_Clause --
6726 ------------------------------------------
c8da6114 6727
d9f6a4ee 6728 -- Note: we check as much as we can here, but we can't do any checks
6729 -- based on the position values (e.g. overlap checks) until freeze time
6730 -- because especially in Ada 2005 (machine scalar mode), the processing
6731 -- for non-standard bit order can substantially change the positions.
6732 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6733 -- for the remainder of this processing.
d00681a7 6734
d9f6a4ee 6735 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6736 Ident : constant Node_Id := Identifier (N);
6737 Biased : Boolean;
6738 CC : Node_Id;
6739 Comp : Entity_Id;
6740 Fbit : Uint;
6741 Hbit : Uint := Uint_0;
6742 Lbit : Uint;
6743 Ocomp : Entity_Id;
6744 Posit : Uint;
6745 Rectype : Entity_Id;
6746 Recdef : Node_Id;
d00681a7 6747
d9f6a4ee 6748 function Is_Inherited (Comp : Entity_Id) return Boolean;
6749 -- True if Comp is an inherited component in a record extension
d00681a7 6750
d9f6a4ee 6751 ------------------
6752 -- Is_Inherited --
6753 ------------------
d00681a7 6754
d9f6a4ee 6755 function Is_Inherited (Comp : Entity_Id) return Boolean is
6756 Comp_Base : Entity_Id;
d00681a7 6757
d9f6a4ee 6758 begin
6759 if Ekind (Rectype) = E_Record_Subtype then
6760 Comp_Base := Original_Record_Component (Comp);
6761 else
6762 Comp_Base := Comp;
d00681a7 6763 end if;
6764
d9f6a4ee 6765 return Comp_Base /= Original_Record_Component (Comp_Base);
6766 end Is_Inherited;
d00681a7 6767
d9f6a4ee 6768 -- Local variables
d00681a7 6769
d9f6a4ee 6770 Is_Record_Extension : Boolean;
6771 -- True if Rectype is a record extension
d00681a7 6772
d9f6a4ee 6773 CR_Pragma : Node_Id := Empty;
6774 -- Points to N_Pragma node if Complete_Representation pragma present
d00681a7 6775
d9f6a4ee 6776 -- Start of processing for Analyze_Record_Representation_Clause
d00681a7 6777
d9f6a4ee 6778 begin
6779 if Ignore_Rep_Clauses then
2ff55065 6780 Kill_Rep_Clause (N);
d9f6a4ee 6781 return;
d00681a7 6782 end if;
98f7db28 6783
d9f6a4ee 6784 Find_Type (Ident);
6785 Rectype := Entity (Ident);
85377c9b 6786
d9f6a4ee 6787 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6788 return;
6789 else
6790 Rectype := Underlying_Type (Rectype);
6791 end if;
85377c9b 6792
d9f6a4ee 6793 -- First some basic error checks
85377c9b 6794
d9f6a4ee 6795 if not Is_Record_Type (Rectype) then
6796 Error_Msg_NE
6797 ("record type required, found}", Ident, First_Subtype (Rectype));
6798 return;
85377c9b 6799
d9f6a4ee 6800 elsif Scope (Rectype) /= Current_Scope then
6801 Error_Msg_N ("type must be declared in this scope", N);
6802 return;
85377c9b 6803
d9f6a4ee 6804 elsif not Is_First_Subtype (Rectype) then
6805 Error_Msg_N ("cannot give record rep clause for subtype", N);
6806 return;
9dc88aea 6807
d9f6a4ee 6808 elsif Has_Record_Rep_Clause (Rectype) then
6809 Error_Msg_N ("duplicate record rep clause ignored", N);
6810 return;
9dc88aea 6811
d9f6a4ee 6812 elsif Rep_Item_Too_Late (Rectype, N) then
6813 return;
9dc88aea 6814 end if;
fb7f2fc4 6815
2ced3742 6816 -- We know we have a first subtype, now possibly go to the anonymous
d9f6a4ee 6817 -- base type to determine whether Rectype is a record extension.
89f1e35c 6818
d9f6a4ee 6819 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6820 Is_Record_Extension :=
6821 Nkind (Recdef) = N_Derived_Type_Definition
6822 and then Present (Record_Extension_Part (Recdef));
89f1e35c 6823
d9f6a4ee 6824 if Present (Mod_Clause (N)) then
fb7f2fc4 6825 declare
d9f6a4ee 6826 Loc : constant Source_Ptr := Sloc (N);
6827 M : constant Node_Id := Mod_Clause (N);
6828 P : constant List_Id := Pragmas_Before (M);
6829 AtM_Nod : Node_Id;
6830
6831 Mod_Val : Uint;
6832 pragma Warnings (Off, Mod_Val);
fb7f2fc4 6833
6834 begin
d9f6a4ee 6835 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
fb7f2fc4 6836
d9f6a4ee 6837 if Warn_On_Obsolescent_Feature then
6838 Error_Msg_N
6839 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6840 Error_Msg_N
6841 ("\?j?use alignment attribute definition clause instead", N);
6842 end if;
fb7f2fc4 6843
d9f6a4ee 6844 if Present (P) then
6845 Analyze_List (P);
6846 end if;
89f1e35c 6847
d9f6a4ee 6848 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6849 -- the Mod clause into an alignment clause anyway, so that the
3ff5e35d 6850 -- back end can compute and back-annotate properly the size and
d9f6a4ee 6851 -- alignment of types that may include this record.
be9124d0 6852
d9f6a4ee 6853 -- This seems dubious, this destroys the source tree in a manner
6854 -- not detectable by ASIS ???
be9124d0 6855
d9f6a4ee 6856 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6857 AtM_Nod :=
6858 Make_Attribute_Definition_Clause (Loc,
83c6c069 6859 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
d9f6a4ee 6860 Chars => Name_Alignment,
6861 Expression => Relocate_Node (Expression (M)));
be9124d0 6862
d9f6a4ee 6863 Set_From_At_Mod (AtM_Nod);
6864 Insert_After (N, AtM_Nod);
6865 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6866 Set_Mod_Clause (N, Empty);
be9124d0 6867
d9f6a4ee 6868 else
6869 -- Get the alignment value to perform error checking
be9124d0 6870
d9f6a4ee 6871 Mod_Val := Get_Alignment_Value (Expression (M));
6872 end if;
6873 end;
6874 end if;
be9124d0 6875
d9f6a4ee 6876 -- For untagged types, clear any existing component clauses for the
6877 -- type. If the type is derived, this is what allows us to override
6878 -- a rep clause for the parent. For type extensions, the representation
6879 -- of the inherited components is inherited, so we want to keep previous
6880 -- component clauses for completeness.
be9124d0 6881
d9f6a4ee 6882 if not Is_Tagged_Type (Rectype) then
6883 Comp := First_Component_Or_Discriminant (Rectype);
6884 while Present (Comp) loop
6885 Set_Component_Clause (Comp, Empty);
6886 Next_Component_Or_Discriminant (Comp);
6887 end loop;
6888 end if;
be9124d0 6889
d9f6a4ee 6890 -- All done if no component clauses
be9124d0 6891
d9f6a4ee 6892 CC := First (Component_Clauses (N));
be9124d0 6893
d9f6a4ee 6894 if No (CC) then
6895 return;
6896 end if;
be9124d0 6897
d9f6a4ee 6898 -- A representation like this applies to the base type
be9124d0 6899
d9f6a4ee 6900 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6901 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6902 Set_Has_Specified_Layout (Base_Type (Rectype));
be9124d0 6903
d9f6a4ee 6904 -- Process the component clauses
be9124d0 6905
d9f6a4ee 6906 while Present (CC) loop
be9124d0 6907
d9f6a4ee 6908 -- Pragma
be9124d0 6909
d9f6a4ee 6910 if Nkind (CC) = N_Pragma then
6911 Analyze (CC);
be9124d0 6912
d9f6a4ee 6913 -- The only pragma of interest is Complete_Representation
be9124d0 6914
ddccc924 6915 if Pragma_Name (CC) = Name_Complete_Representation then
d9f6a4ee 6916 CR_Pragma := CC;
6917 end if;
be9124d0 6918
d9f6a4ee 6919 -- Processing for real component clause
be9124d0 6920
d9f6a4ee 6921 else
6922 Posit := Static_Integer (Position (CC));
6923 Fbit := Static_Integer (First_Bit (CC));
6924 Lbit := Static_Integer (Last_Bit (CC));
be9124d0 6925
d9f6a4ee 6926 if Posit /= No_Uint
6927 and then Fbit /= No_Uint
6928 and then Lbit /= No_Uint
6929 then
6930 if Posit < 0 then
f74a102b 6931 Error_Msg_N ("position cannot be negative", Position (CC));
be9124d0 6932
d9f6a4ee 6933 elsif Fbit < 0 then
f74a102b 6934 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
be9124d0 6935
d9f6a4ee 6936 -- The Last_Bit specified in a component clause must not be
6937 -- less than the First_Bit minus one (RM-13.5.1(10)).
be9124d0 6938
d9f6a4ee 6939 elsif Lbit < Fbit - 1 then
6940 Error_Msg_N
6941 ("last bit cannot be less than first bit minus one",
6942 Last_Bit (CC));
be9124d0 6943
d9f6a4ee 6944 -- Values look OK, so find the corresponding record component
6945 -- Even though the syntax allows an attribute reference for
6946 -- implementation-defined components, GNAT does not allow the
6947 -- tag to get an explicit position.
be9124d0 6948
d9f6a4ee 6949 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6950 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6951 Error_Msg_N ("position of tag cannot be specified", CC);
6952 else
6953 Error_Msg_N ("illegal component name", CC);
6954 end if;
be9124d0 6955
d9f6a4ee 6956 else
6957 Comp := First_Entity (Rectype);
6958 while Present (Comp) loop
6959 exit when Chars (Comp) = Chars (Component_Name (CC));
6960 Next_Entity (Comp);
6961 end loop;
be9124d0 6962
d9f6a4ee 6963 if No (Comp) then
be9124d0 6964
d9f6a4ee 6965 -- Maybe component of base type that is absent from
6966 -- statically constrained first subtype.
be9124d0 6967
d9f6a4ee 6968 Comp := First_Entity (Base_Type (Rectype));
6969 while Present (Comp) loop
6970 exit when Chars (Comp) = Chars (Component_Name (CC));
6971 Next_Entity (Comp);
6972 end loop;
6973 end if;
be9124d0 6974
d9f6a4ee 6975 if No (Comp) then
6976 Error_Msg_N
6977 ("component clause is for non-existent field", CC);
be9124d0 6978
d9f6a4ee 6979 -- Ada 2012 (AI05-0026): Any name that denotes a
6980 -- discriminant of an object of an unchecked union type
6981 -- shall not occur within a record_representation_clause.
be9124d0 6982
d9f6a4ee 6983 -- The general restriction of using record rep clauses on
6984 -- Unchecked_Union types has now been lifted. Since it is
6985 -- possible to introduce a record rep clause which mentions
6986 -- the discriminant of an Unchecked_Union in non-Ada 2012
6987 -- code, this check is applied to all versions of the
6988 -- language.
be9124d0 6989
d9f6a4ee 6990 elsif Ekind (Comp) = E_Discriminant
6991 and then Is_Unchecked_Union (Rectype)
6992 then
6993 Error_Msg_N
6994 ("cannot reference discriminant of unchecked union",
6995 Component_Name (CC));
be9124d0 6996
d9f6a4ee 6997 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6998 Error_Msg_NE
6999 ("component clause not allowed for inherited "
7000 & "component&", CC, Comp);
40ca69b9 7001
d9f6a4ee 7002 elsif Present (Component_Clause (Comp)) then
462a079f 7003
d9f6a4ee 7004 -- Diagnose duplicate rep clause, or check consistency
7005 -- if this is an inherited component. In a double fault,
7006 -- there may be a duplicate inconsistent clause for an
7007 -- inherited component.
462a079f 7008
d9f6a4ee 7009 if Scope (Original_Record_Component (Comp)) = Rectype
7010 or else Parent (Component_Clause (Comp)) = N
7011 then
7012 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7013 Error_Msg_N ("component clause previously given#", CC);
3062c401 7014
7015 else
7016 declare
7017 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 7018 begin
7019 if Intval (Position (Rep1)) /=
7020 Intval (Position (CC))
7021 or else Intval (First_Bit (Rep1)) /=
7022 Intval (First_Bit (CC))
7023 or else Intval (Last_Bit (Rep1)) /=
7024 Intval (Last_Bit (CC))
7025 then
b9e61b2a 7026 Error_Msg_N
f74a102b 7027 ("component clause inconsistent with "
7028 & "representation of ancestor", CC);
6a06584c 7029
3062c401 7030 elsif Warn_On_Redundant_Constructs then
b9e61b2a 7031 Error_Msg_N
6a06584c 7032 ("?r?redundant confirming component clause "
7033 & "for component!", CC);
3062c401 7034 end if;
7035 end;
7036 end if;
d6f39728 7037
d2b860b4 7038 -- Normal case where this is the first component clause we
7039 -- have seen for this entity, so set it up properly.
7040
d6f39728 7041 else
83f8f0a6 7042 -- Make reference for field in record rep clause and set
7043 -- appropriate entity field in the field identifier.
7044
7045 Generate_Reference
7046 (Comp, Component_Name (CC), Set_Ref => False);
7047 Set_Entity (Component_Name (CC), Comp);
7048
2866d595 7049 -- Update Fbit and Lbit to the actual bit number
d6f39728 7050
7051 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7052 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7053
d6f39728 7054 if Has_Size_Clause (Rectype)
ada34def 7055 and then RM_Size (Rectype) <= Lbit
d6f39728 7056 then
7057 Error_Msg_N
7058 ("bit number out of range of specified size",
7059 Last_Bit (CC));
7060 else
7061 Set_Component_Clause (Comp, CC);
7062 Set_Component_Bit_Offset (Comp, Fbit);
7063 Set_Esize (Comp, 1 + (Lbit - Fbit));
7064 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7065 Set_Normalized_Position (Comp, Fbit / SSU);
7066
a0fc8c5b 7067 if Warn_On_Overridden_Size
7068 and then Has_Size_Clause (Etype (Comp))
7069 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7070 then
7071 Error_Msg_NE
1e3532e7 7072 ("?S?component size overrides size clause for&",
a0fc8c5b 7073 Component_Name (CC), Etype (Comp));
7074 end if;
7075
ea61a7ea 7076 -- This information is also set in the corresponding
7077 -- component of the base type, found by accessing the
7078 -- Original_Record_Component link if it is present.
d6f39728 7079
7080 Ocomp := Original_Record_Component (Comp);
7081
7082 if Hbit < Lbit then
7083 Hbit := Lbit;
7084 end if;
7085
7086 Check_Size
7087 (Component_Name (CC),
7088 Etype (Comp),
7089 Esize (Comp),
7090 Biased);
7091
b77e4501 7092 Set_Biased
7093 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 7094
d6f39728 7095 if Present (Ocomp) then
7096 Set_Component_Clause (Ocomp, CC);
7097 Set_Component_Bit_Offset (Ocomp, Fbit);
7098 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7099 Set_Normalized_Position (Ocomp, Fbit / SSU);
7100 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7101
7102 Set_Normalized_Position_Max
7103 (Ocomp, Normalized_Position (Ocomp));
7104
b77e4501 7105 -- Note: we don't use Set_Biased here, because we
7106 -- already gave a warning above if needed, and we
7107 -- would get a duplicate for the same name here.
7108
d6f39728 7109 Set_Has_Biased_Representation
7110 (Ocomp, Has_Biased_Representation (Comp));
7111 end if;
7112
7113 if Esize (Comp) < 0 then
7114 Error_Msg_N ("component size is negative", CC);
7115 end if;
7116 end if;
7117 end if;
7118 end if;
7119 end if;
7120 end if;
7121
7122 Next (CC);
7123 end loop;
7124
67278d60 7125 -- Check missing components if Complete_Representation pragma appeared
d6f39728 7126
67278d60 7127 if Present (CR_Pragma) then
7128 Comp := First_Component_Or_Discriminant (Rectype);
7129 while Present (Comp) loop
7130 if No (Component_Clause (Comp)) then
7131 Error_Msg_NE
7132 ("missing component clause for &", CR_Pragma, Comp);
7133 end if;
d6f39728 7134
67278d60 7135 Next_Component_Or_Discriminant (Comp);
7136 end loop;
d6f39728 7137
1e3532e7 7138 -- Give missing components warning if required
15ebb600 7139
fdd294d1 7140 elsif Warn_On_Unrepped_Components then
15ebb600 7141 declare
7142 Num_Repped_Components : Nat := 0;
7143 Num_Unrepped_Components : Nat := 0;
7144
7145 begin
7146 -- First count number of repped and unrepped components
7147
7148 Comp := First_Component_Or_Discriminant (Rectype);
7149 while Present (Comp) loop
7150 if Present (Component_Clause (Comp)) then
7151 Num_Repped_Components := Num_Repped_Components + 1;
7152 else
7153 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7154 end if;
7155
7156 Next_Component_Or_Discriminant (Comp);
7157 end loop;
7158
7159 -- We are only interested in the case where there is at least one
7160 -- unrepped component, and at least half the components have rep
7161 -- clauses. We figure that if less than half have them, then the
87f9eef5 7162 -- partial rep clause is really intentional. If the component
7163 -- type has no underlying type set at this point (as for a generic
7164 -- formal type), we don't know enough to give a warning on the
7165 -- component.
15ebb600 7166
7167 if Num_Unrepped_Components > 0
7168 and then Num_Unrepped_Components < Num_Repped_Components
7169 then
7170 Comp := First_Component_Or_Discriminant (Rectype);
7171 while Present (Comp) loop
83f8f0a6 7172 if No (Component_Clause (Comp))
3062c401 7173 and then Comes_From_Source (Comp)
87f9eef5 7174 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 7175 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 7176 or else Size_Known_At_Compile_Time
7177 (Underlying_Type (Etype (Comp))))
fdd294d1 7178 and then not Has_Warnings_Off (Rectype)
2be1f7d7 7179
7180 -- Ignore discriminant in unchecked union, since it is
7181 -- not there, and cannot have a component clause.
7182
7183 and then (not Is_Unchecked_Union (Rectype)
7184 or else Ekind (Comp) /= E_Discriminant)
83f8f0a6 7185 then
15ebb600 7186 Error_Msg_Sloc := Sloc (Comp);
7187 Error_Msg_NE
1e3532e7 7188 ("?C?no component clause given for & declared #",
15ebb600 7189 N, Comp);
7190 end if;
7191
7192 Next_Component_Or_Discriminant (Comp);
7193 end loop;
7194 end if;
7195 end;
d6f39728 7196 end if;
d6f39728 7197 end Analyze_Record_Representation_Clause;
7198
eb66e842 7199 -------------------------------------
7200 -- Build_Discrete_Static_Predicate --
7201 -------------------------------------
9ea61fdd 7202
eb66e842 7203 procedure Build_Discrete_Static_Predicate
7204 (Typ : Entity_Id;
7205 Expr : Node_Id;
7206 Nam : Name_Id)
9ea61fdd 7207 is
eb66e842 7208 Loc : constant Source_Ptr := Sloc (Expr);
9ea61fdd 7209
eb66e842 7210 Non_Static : exception;
7211 -- Raised if something non-static is found
9ea61fdd 7212
eb66e842 7213 Btyp : constant Entity_Id := Base_Type (Typ);
9ea61fdd 7214
eb66e842 7215 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7216 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7217 -- Low bound and high bound value of base type of Typ
9ea61fdd 7218
afc229da 7219 TLo : Uint;
7220 THi : Uint;
7221 -- Bounds for constructing the static predicate. We use the bound of the
7222 -- subtype if it is static, otherwise the corresponding base type bound.
7223 -- Note: a non-static subtype can have a static predicate.
9ea61fdd 7224
eb66e842 7225 type REnt is record
7226 Lo, Hi : Uint;
7227 end record;
7228 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7229 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7230 -- value.
9ea61fdd 7231
eb66e842 7232 type RList is array (Nat range <>) of REnt;
7233 -- A list of ranges. The ranges are sorted in increasing order, and are
7234 -- disjoint (there is a gap of at least one value between each range in
7235 -- the table). A value is in the set of ranges in Rlist if it lies
7236 -- within one of these ranges.
9ea61fdd 7237
eb66e842 7238 False_Range : constant RList :=
7239 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7240 -- An empty set of ranges represents a range list that can never be
7241 -- satisfied, since there are no ranges in which the value could lie,
7242 -- so it does not lie in any of them. False_Range is a canonical value
7243 -- for this empty set, but general processing should test for an Rlist
7244 -- with length zero (see Is_False predicate), since other null ranges
7245 -- may appear which must be treated as False.
5b5df4a9 7246
eb66e842 7247 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7248 -- Range representing True, value must be in the base range
5b5df4a9 7249
eb66e842 7250 function "and" (Left : RList; Right : RList) return RList;
7251 -- And's together two range lists, returning a range list. This is a set
7252 -- intersection operation.
5b5df4a9 7253
eb66e842 7254 function "or" (Left : RList; Right : RList) return RList;
7255 -- Or's together two range lists, returning a range list. This is a set
7256 -- union operation.
87f3d5d3 7257
eb66e842 7258 function "not" (Right : RList) return RList;
7259 -- Returns complement of a given range list, i.e. a range list
7260 -- representing all the values in TLo .. THi that are not in the input
7261 -- operand Right.
ed4adc99 7262
eb66e842 7263 function Build_Val (V : Uint) return Node_Id;
7264 -- Return an analyzed N_Identifier node referencing this value, suitable
5c6a5792 7265 -- for use as an entry in the Static_Discrte_Predicate list. This node
7266 -- is typed with the base type.
5b5df4a9 7267
eb66e842 7268 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7269 -- Return an analyzed N_Range node referencing this range, suitable for
5c6a5792 7270 -- use as an entry in the Static_Discrete_Predicate list. This node is
7271 -- typed with the base type.
5b5df4a9 7272
eb66e842 7273 function Get_RList (Exp : Node_Id) return RList;
7274 -- This is a recursive routine that converts the given expression into a
7275 -- list of ranges, suitable for use in building the static predicate.
5b5df4a9 7276
eb66e842 7277 function Is_False (R : RList) return Boolean;
7278 pragma Inline (Is_False);
7279 -- Returns True if the given range list is empty, and thus represents a
7280 -- False list of ranges that can never be satisfied.
87f3d5d3 7281
eb66e842 7282 function Is_True (R : RList) return Boolean;
7283 -- Returns True if R trivially represents the True predicate by having a
7284 -- single range from BLo to BHi.
5b5df4a9 7285
eb66e842 7286 function Is_Type_Ref (N : Node_Id) return Boolean;
7287 pragma Inline (Is_Type_Ref);
7288 -- Returns if True if N is a reference to the type for the predicate in
7289 -- the expression (i.e. if it is an identifier whose Chars field matches
7de4cba3 7290 -- the Nam given in the call). N must not be parenthesized, if the type
7291 -- name appears in parens, this routine will return False.
5b5df4a9 7292
eb66e842 7293 function Lo_Val (N : Node_Id) return Uint;
5c6a5792 7294 -- Given an entry from a Static_Discrete_Predicate list that is either
7295 -- a static expression or static range, gets either the expression value
7296 -- or the low bound of the range.
5b5df4a9 7297
eb66e842 7298 function Hi_Val (N : Node_Id) return Uint;
5c6a5792 7299 -- Given an entry from a Static_Discrete_Predicate list that is either
7300 -- a static expression or static range, gets either the expression value
7301 -- or the high bound of the range.
5b5df4a9 7302
eb66e842 7303 function Membership_Entry (N : Node_Id) return RList;
7304 -- Given a single membership entry (range, value, or subtype), returns
7305 -- the corresponding range list. Raises Static_Error if not static.
5b5df4a9 7306
eb66e842 7307 function Membership_Entries (N : Node_Id) return RList;
7308 -- Given an element on an alternatives list of a membership operation,
7309 -- returns the range list corresponding to this entry and all following
7310 -- entries (i.e. returns the "or" of this list of values).
b9e61b2a 7311
eb66e842 7312 function Stat_Pred (Typ : Entity_Id) return RList;
7313 -- Given a type, if it has a static predicate, then return the predicate
7314 -- as a range list, otherwise raise Non_Static.
c4968aa2 7315
eb66e842 7316 -----------
7317 -- "and" --
7318 -----------
c4968aa2 7319
eb66e842 7320 function "and" (Left : RList; Right : RList) return RList is
7321 FEnt : REnt;
7322 -- First range of result
c4968aa2 7323
eb66e842 7324 SLeft : Nat := Left'First;
7325 -- Start of rest of left entries
c4968aa2 7326
eb66e842 7327 SRight : Nat := Right'First;
7328 -- Start of rest of right entries
2072eaa9 7329
eb66e842 7330 begin
7331 -- If either range is True, return the other
5b5df4a9 7332
eb66e842 7333 if Is_True (Left) then
7334 return Right;
7335 elsif Is_True (Right) then
7336 return Left;
7337 end if;
87f3d5d3 7338
eb66e842 7339 -- If either range is False, return False
5b5df4a9 7340
eb66e842 7341 if Is_False (Left) or else Is_False (Right) then
7342 return False_Range;
7343 end if;
4c1fd062 7344
eb66e842 7345 -- Loop to remove entries at start that are disjoint, and thus just
7346 -- get discarded from the result entirely.
5b5df4a9 7347
eb66e842 7348 loop
7349 -- If no operands left in either operand, result is false
5b5df4a9 7350
eb66e842 7351 if SLeft > Left'Last or else SRight > Right'Last then
7352 return False_Range;
5b5df4a9 7353
eb66e842 7354 -- Discard first left operand entry if disjoint with right
5b5df4a9 7355
eb66e842 7356 elsif Left (SLeft).Hi < Right (SRight).Lo then
7357 SLeft := SLeft + 1;
5b5df4a9 7358
eb66e842 7359 -- Discard first right operand entry if disjoint with left
5b5df4a9 7360
eb66e842 7361 elsif Right (SRight).Hi < Left (SLeft).Lo then
7362 SRight := SRight + 1;
5b5df4a9 7363
eb66e842 7364 -- Otherwise we have an overlapping entry
5b5df4a9 7365
eb66e842 7366 else
7367 exit;
7368 end if;
7369 end loop;
5b5df4a9 7370
eb66e842 7371 -- Now we have two non-null operands, and first entries overlap. The
7372 -- first entry in the result will be the overlapping part of these
7373 -- two entries.
47a46747 7374
eb66e842 7375 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7376 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
47a46747 7377
eb66e842 7378 -- Now we can remove the entry that ended at a lower value, since its
7379 -- contribution is entirely contained in Fent.
5b5df4a9 7380
eb66e842 7381 if Left (SLeft).Hi <= Right (SRight).Hi then
7382 SLeft := SLeft + 1;
7383 else
7384 SRight := SRight + 1;
7385 end if;
5b5df4a9 7386
eb66e842 7387 -- Compute result by concatenating this first entry with the "and" of
7388 -- the remaining parts of the left and right operands. Note that if
7389 -- either of these is empty, "and" will yield empty, so that we will
7390 -- end up with just Fent, which is what we want in that case.
5b5df4a9 7391
eb66e842 7392 return
7393 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7394 end "and";
fb7f2fc4 7395
eb66e842 7396 -----------
7397 -- "not" --
7398 -----------
fb7f2fc4 7399
eb66e842 7400 function "not" (Right : RList) return RList is
7401 begin
7402 -- Return True if False range
fb7f2fc4 7403
eb66e842 7404 if Is_False (Right) then
7405 return True_Range;
7406 end if;
ed4adc99 7407
eb66e842 7408 -- Return False if True range
fb7f2fc4 7409
eb66e842 7410 if Is_True (Right) then
7411 return False_Range;
7412 end if;
fb7f2fc4 7413
eb66e842 7414 -- Here if not trivial case
87f3d5d3 7415
eb66e842 7416 declare
7417 Result : RList (1 .. Right'Length + 1);
7418 -- May need one more entry for gap at beginning and end
87f3d5d3 7419
eb66e842 7420 Count : Nat := 0;
7421 -- Number of entries stored in Result
4098232e 7422
eb66e842 7423 begin
7424 -- Gap at start
4098232e 7425
eb66e842 7426 if Right (Right'First).Lo > TLo then
7427 Count := Count + 1;
7428 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7429 end if;
ed4adc99 7430
eb66e842 7431 -- Gaps between ranges
ed4adc99 7432
eb66e842 7433 for J in Right'First .. Right'Last - 1 loop
7434 Count := Count + 1;
7435 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7436 end loop;
5b5df4a9 7437
eb66e842 7438 -- Gap at end
5b5df4a9 7439
eb66e842 7440 if Right (Right'Last).Hi < THi then
7441 Count := Count + 1;
7442 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7443 end if;
5b5df4a9 7444
eb66e842 7445 return Result (1 .. Count);
7446 end;
7447 end "not";
5b5df4a9 7448
eb66e842 7449 ----------
7450 -- "or" --
7451 ----------
5b5df4a9 7452
eb66e842 7453 function "or" (Left : RList; Right : RList) return RList is
7454 FEnt : REnt;
7455 -- First range of result
5b5df4a9 7456
eb66e842 7457 SLeft : Nat := Left'First;
7458 -- Start of rest of left entries
5b5df4a9 7459
eb66e842 7460 SRight : Nat := Right'First;
7461 -- Start of rest of right entries
5b5df4a9 7462
eb66e842 7463 begin
7464 -- If either range is True, return True
5b5df4a9 7465
eb66e842 7466 if Is_True (Left) or else Is_True (Right) then
7467 return True_Range;
7468 end if;
5b5df4a9 7469
eb66e842 7470 -- If either range is False (empty), return the other
5b5df4a9 7471
eb66e842 7472 if Is_False (Left) then
7473 return Right;
7474 elsif Is_False (Right) then
7475 return Left;
7476 end if;
5b5df4a9 7477
eb66e842 7478 -- Initialize result first entry from left or right operand depending
7479 -- on which starts with the lower range.
5b5df4a9 7480
eb66e842 7481 if Left (SLeft).Lo < Right (SRight).Lo then
7482 FEnt := Left (SLeft);
7483 SLeft := SLeft + 1;
7484 else
7485 FEnt := Right (SRight);
7486 SRight := SRight + 1;
7487 end if;
5b5df4a9 7488
eb66e842 7489 -- This loop eats ranges from left and right operands that are
7490 -- contiguous with the first range we are gathering.
9ea61fdd 7491
eb66e842 7492 loop
7493 -- Eat first entry in left operand if contiguous or overlapped by
7494 -- gathered first operand of result.
9ea61fdd 7495
eb66e842 7496 if SLeft <= Left'Last
7497 and then Left (SLeft).Lo <= FEnt.Hi + 1
7498 then
7499 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7500 SLeft := SLeft + 1;
9ea61fdd 7501
eb66e842 7502 -- Eat first entry in right operand if contiguous or overlapped by
7503 -- gathered right operand of result.
9ea61fdd 7504
eb66e842 7505 elsif SRight <= Right'Last
7506 and then Right (SRight).Lo <= FEnt.Hi + 1
7507 then
7508 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7509 SRight := SRight + 1;
9ea61fdd 7510
eb66e842 7511 -- All done if no more entries to eat
5b5df4a9 7512
eb66e842 7513 else
7514 exit;
7515 end if;
7516 end loop;
5b5df4a9 7517
eb66e842 7518 -- Obtain result as the first entry we just computed, concatenated
7519 -- to the "or" of the remaining results (if one operand is empty,
7520 -- this will just concatenate with the other
5b5df4a9 7521
eb66e842 7522 return
7523 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7524 end "or";
5b5df4a9 7525
eb66e842 7526 -----------------
7527 -- Build_Range --
7528 -----------------
5b5df4a9 7529
eb66e842 7530 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7531 Result : Node_Id;
5b5df4a9 7532 begin
eb66e842 7533 Result :=
7534 Make_Range (Loc,
7535 Low_Bound => Build_Val (Lo),
7536 High_Bound => Build_Val (Hi));
7537 Set_Etype (Result, Btyp);
7538 Set_Analyzed (Result);
7539 return Result;
7540 end Build_Range;
5b5df4a9 7541
eb66e842 7542 ---------------
7543 -- Build_Val --
7544 ---------------
5b5df4a9 7545
eb66e842 7546 function Build_Val (V : Uint) return Node_Id is
7547 Result : Node_Id;
5b5df4a9 7548
eb66e842 7549 begin
7550 if Is_Enumeration_Type (Typ) then
7551 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7552 else
7553 Result := Make_Integer_Literal (Loc, V);
7554 end if;
5b5df4a9 7555
eb66e842 7556 Set_Etype (Result, Btyp);
7557 Set_Is_Static_Expression (Result);
7558 Set_Analyzed (Result);
7559 return Result;
7560 end Build_Val;
87f3d5d3 7561
eb66e842 7562 ---------------
7563 -- Get_RList --
7564 ---------------
87f3d5d3 7565
eb66e842 7566 function Get_RList (Exp : Node_Id) return RList is
7567 Op : Node_Kind;
7568 Val : Uint;
87f3d5d3 7569
eb66e842 7570 begin
7571 -- Static expression can only be true or false
87f3d5d3 7572
eb66e842 7573 if Is_OK_Static_Expression (Exp) then
7574 if Expr_Value (Exp) = 0 then
7575 return False_Range;
7576 else
7577 return True_Range;
9ea61fdd 7578 end if;
eb66e842 7579 end if;
87f3d5d3 7580
eb66e842 7581 -- Otherwise test node type
192b8dab 7582
eb66e842 7583 Op := Nkind (Exp);
192b8dab 7584
eb66e842 7585 case Op is
5d3fb947 7586
eb66e842 7587 -- And
5d3fb947 7588
99378362 7589 when N_And_Then
7590 | N_Op_And
7591 =>
eb66e842 7592 return Get_RList (Left_Opnd (Exp))
7593 and
7594 Get_RList (Right_Opnd (Exp));
5b5df4a9 7595
eb66e842 7596 -- Or
9dc88aea 7597
99378362 7598 when N_Op_Or
7599 | N_Or_Else
7600 =>
eb66e842 7601 return Get_RList (Left_Opnd (Exp))
7602 or
7603 Get_RList (Right_Opnd (Exp));
7c443ae8 7604
eb66e842 7605 -- Not
9dc88aea 7606
eb66e842 7607 when N_Op_Not =>
7608 return not Get_RList (Right_Opnd (Exp));
9dc88aea 7609
eb66e842 7610 -- Comparisons of type with static value
84c8f0b8 7611
eb66e842 7612 when N_Op_Compare =>
490beba6 7613
eb66e842 7614 -- Type is left operand
9dc88aea 7615
eb66e842 7616 if Is_Type_Ref (Left_Opnd (Exp))
7617 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7618 then
7619 Val := Expr_Value (Right_Opnd (Exp));
84c8f0b8 7620
eb66e842 7621 -- Typ is right operand
84c8f0b8 7622
eb66e842 7623 elsif Is_Type_Ref (Right_Opnd (Exp))
7624 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7625 then
7626 Val := Expr_Value (Left_Opnd (Exp));
84c8f0b8 7627
eb66e842 7628 -- Invert sense of comparison
84c8f0b8 7629
eb66e842 7630 case Op is
7631 when N_Op_Gt => Op := N_Op_Lt;
7632 when N_Op_Lt => Op := N_Op_Gt;
7633 when N_Op_Ge => Op := N_Op_Le;
7634 when N_Op_Le => Op := N_Op_Ge;
7635 when others => null;
7636 end case;
84c8f0b8 7637
eb66e842 7638 -- Other cases are non-static
34d045d3 7639
eb66e842 7640 else
7641 raise Non_Static;
7642 end if;
9dc88aea 7643
eb66e842 7644 -- Construct range according to comparison operation
9dc88aea 7645
eb66e842 7646 case Op is
7647 when N_Op_Eq =>
7648 return RList'(1 => REnt'(Val, Val));
9dc88aea 7649
eb66e842 7650 when N_Op_Ge =>
7651 return RList'(1 => REnt'(Val, BHi));
84c8f0b8 7652
eb66e842 7653 when N_Op_Gt =>
7654 return RList'(1 => REnt'(Val + 1, BHi));
84c8f0b8 7655
eb66e842 7656 when N_Op_Le =>
7657 return RList'(1 => REnt'(BLo, Val));
fb7f2fc4 7658
eb66e842 7659 when N_Op_Lt =>
7660 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 7661
eb66e842 7662 when N_Op_Ne =>
7663 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9dc88aea 7664
eb66e842 7665 when others =>
7666 raise Program_Error;
7667 end case;
9dc88aea 7668
eb66e842 7669 -- Membership (IN)
9dc88aea 7670
eb66e842 7671 when N_In =>
7672 if not Is_Type_Ref (Left_Opnd (Exp)) then
7673 raise Non_Static;
7674 end if;
9dc88aea 7675
eb66e842 7676 if Present (Right_Opnd (Exp)) then
7677 return Membership_Entry (Right_Opnd (Exp));
7678 else
7679 return Membership_Entries (First (Alternatives (Exp)));
7680 end if;
9dc88aea 7681
eb66e842 7682 -- Negative membership (NOT IN)
9dc88aea 7683
eb66e842 7684 when N_Not_In =>
7685 if not Is_Type_Ref (Left_Opnd (Exp)) then
7686 raise Non_Static;
7687 end if;
9dc88aea 7688
eb66e842 7689 if Present (Right_Opnd (Exp)) then
7690 return not Membership_Entry (Right_Opnd (Exp));
7691 else
7692 return not Membership_Entries (First (Alternatives (Exp)));
7693 end if;
9dc88aea 7694
eb66e842 7695 -- Function call, may be call to static predicate
9dc88aea 7696
eb66e842 7697 when N_Function_Call =>
7698 if Is_Entity_Name (Name (Exp)) then
7699 declare
7700 Ent : constant Entity_Id := Entity (Name (Exp));
7701 begin
7702 if Is_Predicate_Function (Ent)
7703 or else
7704 Is_Predicate_Function_M (Ent)
7705 then
7706 return Stat_Pred (Etype (First_Formal (Ent)));
7707 end if;
7708 end;
7709 end if;
9dc88aea 7710
eb66e842 7711 -- Other function call cases are non-static
9dc88aea 7712
eb66e842 7713 raise Non_Static;
490beba6 7714
eb66e842 7715 -- Qualified expression, dig out the expression
c92e878b 7716
eb66e842 7717 when N_Qualified_Expression =>
7718 return Get_RList (Expression (Exp));
4c1fd062 7719
eb66e842 7720 when N_Case_Expression =>
7721 declare
7722 Alt : Node_Id;
7723 Choices : List_Id;
7724 Dep : Node_Id;
4c1fd062 7725
eb66e842 7726 begin
7727 if not Is_Entity_Name (Expression (Expr))
7728 or else Etype (Expression (Expr)) /= Typ
7729 then
7730 Error_Msg_N
7731 ("expression must denaote subtype", Expression (Expr));
7732 return False_Range;
7733 end if;
9dc88aea 7734
eb66e842 7735 -- Collect discrete choices in all True alternatives
9dc88aea 7736
eb66e842 7737 Choices := New_List;
7738 Alt := First (Alternatives (Exp));
7739 while Present (Alt) loop
7740 Dep := Expression (Alt);
34d045d3 7741
cda40848 7742 if not Is_OK_Static_Expression (Dep) then
eb66e842 7743 raise Non_Static;
ebbab42d 7744
eb66e842 7745 elsif Is_True (Expr_Value (Dep)) then
7746 Append_List_To (Choices,
7747 New_Copy_List (Discrete_Choices (Alt)));
7748 end if;
fb7f2fc4 7749
eb66e842 7750 Next (Alt);
7751 end loop;
9dc88aea 7752
eb66e842 7753 return Membership_Entries (First (Choices));
7754 end;
9dc88aea 7755
eb66e842 7756 -- Expression with actions: if no actions, dig out expression
9dc88aea 7757
eb66e842 7758 when N_Expression_With_Actions =>
7759 if Is_Empty_List (Actions (Exp)) then
7760 return Get_RList (Expression (Exp));
7761 else
7762 raise Non_Static;
7763 end if;
9dc88aea 7764
eb66e842 7765 -- Xor operator
490beba6 7766
eb66e842 7767 when N_Op_Xor =>
7768 return (Get_RList (Left_Opnd (Exp))
7769 and not Get_RList (Right_Opnd (Exp)))
7770 or (Get_RList (Right_Opnd (Exp))
7771 and not Get_RList (Left_Opnd (Exp)));
9dc88aea 7772
eb66e842 7773 -- Any other node type is non-static
fb7f2fc4 7774
eb66e842 7775 when others =>
7776 raise Non_Static;
7777 end case;
7778 end Get_RList;
fb7f2fc4 7779
eb66e842 7780 ------------
7781 -- Hi_Val --
7782 ------------
fb7f2fc4 7783
eb66e842 7784 function Hi_Val (N : Node_Id) return Uint is
7785 begin
cda40848 7786 if Is_OK_Static_Expression (N) then
eb66e842 7787 return Expr_Value (N);
7788 else
7789 pragma Assert (Nkind (N) = N_Range);
7790 return Expr_Value (High_Bound (N));
7791 end if;
7792 end Hi_Val;
fb7f2fc4 7793
eb66e842 7794 --------------
7795 -- Is_False --
7796 --------------
fb7f2fc4 7797
eb66e842 7798 function Is_False (R : RList) return Boolean is
7799 begin
7800 return R'Length = 0;
7801 end Is_False;
9dc88aea 7802
eb66e842 7803 -------------
7804 -- Is_True --
7805 -------------
9dc88aea 7806
eb66e842 7807 function Is_True (R : RList) return Boolean is
7808 begin
7809 return R'Length = 1
7810 and then R (R'First).Lo = BLo
7811 and then R (R'First).Hi = BHi;
7812 end Is_True;
9dc88aea 7813
eb66e842 7814 -----------------
7815 -- Is_Type_Ref --
7816 -----------------
9dc88aea 7817
eb66e842 7818 function Is_Type_Ref (N : Node_Id) return Boolean is
7819 begin
7de4cba3 7820 return Nkind (N) = N_Identifier
7821 and then Chars (N) = Nam
7822 and then Paren_Count (N) = 0;
eb66e842 7823 end Is_Type_Ref;
9dc88aea 7824
eb66e842 7825 ------------
7826 -- Lo_Val --
7827 ------------
9dc88aea 7828
eb66e842 7829 function Lo_Val (N : Node_Id) return Uint is
84c8f0b8 7830 begin
cda40848 7831 if Is_OK_Static_Expression (N) then
eb66e842 7832 return Expr_Value (N);
84c8f0b8 7833 else
eb66e842 7834 pragma Assert (Nkind (N) = N_Range);
7835 return Expr_Value (Low_Bound (N));
84c8f0b8 7836 end if;
eb66e842 7837 end Lo_Val;
d97beb2f 7838
eb66e842 7839 ------------------------
7840 -- Membership_Entries --
7841 ------------------------
d97beb2f 7842
eb66e842 7843 function Membership_Entries (N : Node_Id) return RList is
84c8f0b8 7844 begin
eb66e842 7845 if No (Next (N)) then
7846 return Membership_Entry (N);
84c8f0b8 7847 else
eb66e842 7848 return Membership_Entry (N) or Membership_Entries (Next (N));
84c8f0b8 7849 end if;
eb66e842 7850 end Membership_Entries;
84c8f0b8 7851
eb66e842 7852 ----------------------
7853 -- Membership_Entry --
7854 ----------------------
84c8f0b8 7855
eb66e842 7856 function Membership_Entry (N : Node_Id) return RList is
7857 Val : Uint;
7858 SLo : Uint;
7859 SHi : Uint;
d97beb2f 7860
eb66e842 7861 begin
7862 -- Range case
d97beb2f 7863
eb66e842 7864 if Nkind (N) = N_Range then
cda40848 7865 if not Is_OK_Static_Expression (Low_Bound (N))
eb66e842 7866 or else
cda40848 7867 not Is_OK_Static_Expression (High_Bound (N))
eb66e842 7868 then
7869 raise Non_Static;
7870 else
7871 SLo := Expr_Value (Low_Bound (N));
7872 SHi := Expr_Value (High_Bound (N));
7873 return RList'(1 => REnt'(SLo, SHi));
7874 end if;
84c8f0b8 7875
eb66e842 7876 -- Static expression case
84c8f0b8 7877
cda40848 7878 elsif Is_OK_Static_Expression (N) then
eb66e842 7879 Val := Expr_Value (N);
7880 return RList'(1 => REnt'(Val, Val));
d97beb2f 7881
eb66e842 7882 -- Identifier (other than static expression) case
d97beb2f 7883
eb66e842 7884 else pragma Assert (Nkind (N) = N_Identifier);
d97beb2f 7885
eb66e842 7886 -- Type case
d97beb2f 7887
eb66e842 7888 if Is_Type (Entity (N)) then
d97beb2f 7889
eb66e842 7890 -- If type has predicates, process them
d97beb2f 7891
eb66e842 7892 if Has_Predicates (Entity (N)) then
7893 return Stat_Pred (Entity (N));
d97beb2f 7894
eb66e842 7895 -- For static subtype without predicates, get range
9dc88aea 7896
cda40848 7897 elsif Is_OK_Static_Subtype (Entity (N)) then
eb66e842 7898 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7899 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7900 return RList'(1 => REnt'(SLo, SHi));
9f269bd8 7901
eb66e842 7902 -- Any other type makes us non-static
9f269bd8 7903
eb66e842 7904 else
7905 raise Non_Static;
7906 end if;
84c8f0b8 7907
eb66e842 7908 -- Any other kind of identifier in predicate (e.g. a non-static
7909 -- expression value) means this is not a static predicate.
84c8f0b8 7910
eb66e842 7911 else
7912 raise Non_Static;
7913 end if;
7914 end if;
7915 end Membership_Entry;
84c8f0b8 7916
eb66e842 7917 ---------------
7918 -- Stat_Pred --
7919 ---------------
84c8f0b8 7920
eb66e842 7921 function Stat_Pred (Typ : Entity_Id) return RList is
7922 begin
7923 -- Not static if type does not have static predicates
84c8f0b8 7924
5c6a5792 7925 if not Has_Static_Predicate (Typ) then
eb66e842 7926 raise Non_Static;
7927 end if;
84c8f0b8 7928
eb66e842 7929 -- Otherwise we convert the predicate list to a range list
84c8f0b8 7930
eb66e842 7931 declare
5c6a5792 7932 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7933 Result : RList (1 .. List_Length (Spred));
eb66e842 7934 P : Node_Id;
84c8f0b8 7935
eb66e842 7936 begin
5c6a5792 7937 P := First (Static_Discrete_Predicate (Typ));
eb66e842 7938 for J in Result'Range loop
7939 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7940 Next (P);
7941 end loop;
84c8f0b8 7942
eb66e842 7943 return Result;
7944 end;
7945 end Stat_Pred;
84c8f0b8 7946
eb66e842 7947 -- Start of processing for Build_Discrete_Static_Predicate
84c8f0b8 7948
eb66e842 7949 begin
fdec445e 7950 -- Establish bounds for the predicate
afc229da 7951
7952 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7953 TLo := Expr_Value (Type_Low_Bound (Typ));
7954 else
7955 TLo := BLo;
7956 end if;
7957
7958 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7959 THi := Expr_Value (Type_High_Bound (Typ));
7960 else
7961 THi := BHi;
7962 end if;
7963
eb66e842 7964 -- Analyze the expression to see if it is a static predicate
84c8f0b8 7965
eb66e842 7966 declare
7967 Ranges : constant RList := Get_RList (Expr);
7968 -- Range list from expression if it is static
84c8f0b8 7969
eb66e842 7970 Plist : List_Id;
84c8f0b8 7971
eb66e842 7972 begin
7973 -- Convert range list into a form for the static predicate. In the
7974 -- Ranges array, we just have raw ranges, these must be converted
7975 -- to properly typed and analyzed static expressions or range nodes.
84c8f0b8 7976
eb66e842 7977 -- Note: here we limit ranges to the ranges of the subtype, so that
7978 -- a predicate is always false for values outside the subtype. That
7979 -- seems fine, such values are invalid anyway, and considering them
7980 -- to fail the predicate seems allowed and friendly, and furthermore
7981 -- simplifies processing for case statements and loops.
84c8f0b8 7982
eb66e842 7983 Plist := New_List;
7984
7985 for J in Ranges'Range loop
84c8f0b8 7986 declare
eb66e842 7987 Lo : Uint := Ranges (J).Lo;
7988 Hi : Uint := Ranges (J).Hi;
84c8f0b8 7989
eb66e842 7990 begin
7991 -- Ignore completely out of range entry
84c8f0b8 7992
eb66e842 7993 if Hi < TLo or else Lo > THi then
7994 null;
84c8f0b8 7995
eb66e842 7996 -- Otherwise process entry
84c8f0b8 7997
eb66e842 7998 else
7999 -- Adjust out of range value to subtype range
490beba6 8000
eb66e842 8001 if Lo < TLo then
8002 Lo := TLo;
8003 end if;
490beba6 8004
eb66e842 8005 if Hi > THi then
8006 Hi := THi;
8007 end if;
84c8f0b8 8008
eb66e842 8009 -- Convert range into required form
84c8f0b8 8010
eb66e842 8011 Append_To (Plist, Build_Range (Lo, Hi));
84c8f0b8 8012 end if;
eb66e842 8013 end;
8014 end loop;
84c8f0b8 8015
eb66e842 8016 -- Processing was successful and all entries were static, so now we
8017 -- can store the result as the predicate list.
84c8f0b8 8018
5c6a5792 8019 Set_Static_Discrete_Predicate (Typ, Plist);
84c8f0b8 8020
eb66e842 8021 -- The processing for static predicates put the expression into
8022 -- canonical form as a series of ranges. It also eliminated
8023 -- duplicates and collapsed and combined ranges. We might as well
8024 -- replace the alternatives list of the right operand of the
8025 -- membership test with the static predicate list, which will
8026 -- usually be more efficient.
84c8f0b8 8027
eb66e842 8028 declare
8029 New_Alts : constant List_Id := New_List;
8030 Old_Node : Node_Id;
8031 New_Node : Node_Id;
84c8f0b8 8032
eb66e842 8033 begin
8034 Old_Node := First (Plist);
8035 while Present (Old_Node) loop
8036 New_Node := New_Copy (Old_Node);
84c8f0b8 8037
eb66e842 8038 if Nkind (New_Node) = N_Range then
8039 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8040 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8041 end if;
84c8f0b8 8042
eb66e842 8043 Append_To (New_Alts, New_Node);
8044 Next (Old_Node);
8045 end loop;
84c8f0b8 8046
eb66e842 8047 -- If empty list, replace by False
84c8f0b8 8048
eb66e842 8049 if Is_Empty_List (New_Alts) then
8050 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
84c8f0b8 8051
eb66e842 8052 -- Else replace by set membership test
84c8f0b8 8053
eb66e842 8054 else
8055 Rewrite (Expr,
8056 Make_In (Loc,
8057 Left_Opnd => Make_Identifier (Loc, Nam),
8058 Right_Opnd => Empty,
8059 Alternatives => New_Alts));
490beba6 8060
eb66e842 8061 -- Resolve new expression in function context
490beba6 8062
eb66e842 8063 Install_Formals (Predicate_Function (Typ));
8064 Push_Scope (Predicate_Function (Typ));
8065 Analyze_And_Resolve (Expr, Standard_Boolean);
8066 Pop_Scope;
8067 end if;
8068 end;
8069 end;
9ab32fe9 8070
eb66e842 8071 -- If non-static, return doing nothing
9ab32fe9 8072
eb66e842 8073 exception
8074 when Non_Static =>
8075 return;
8076 end Build_Discrete_Static_Predicate;
64cc9e5d 8077
ee2b7923 8078 --------------------------------
8079 -- Build_Export_Import_Pragma --
8080 --------------------------------
8081
8082 function Build_Export_Import_Pragma
8083 (Asp : Node_Id;
8084 Id : Entity_Id) return Node_Id
8085 is
8086 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8087 Expr : constant Node_Id := Expression (Asp);
8088 Loc : constant Source_Ptr := Sloc (Asp);
8089
8090 Args : List_Id;
8091 Conv : Node_Id;
8092 Conv_Arg : Node_Id;
8093 Dummy_1 : Node_Id;
8094 Dummy_2 : Node_Id;
8095 EN : Node_Id;
8096 LN : Node_Id;
8097 Prag : Node_Id;
8098
8099 Create_Pragma : Boolean := False;
8100 -- This flag is set when the aspect form is such that it warrants the
8101 -- creation of a corresponding pragma.
8102
8103 begin
8104 if Present (Expr) then
8105 if Error_Posted (Expr) then
8106 null;
8107
8108 elsif Is_True (Expr_Value (Expr)) then
8109 Create_Pragma := True;
8110 end if;
8111
8112 -- Otherwise the aspect defaults to True
8113
8114 else
8115 Create_Pragma := True;
8116 end if;
8117
8118 -- Nothing to do when the expression is False or is erroneous
8119
8120 if not Create_Pragma then
8121 return Empty;
8122 end if;
8123
8124 -- Obtain all interfacing aspects that apply to the related entity
8125
8126 Get_Interfacing_Aspects
8127 (Iface_Asp => Asp,
8128 Conv_Asp => Conv,
8129 EN_Asp => EN,
8130 Expo_Asp => Dummy_1,
8131 Imp_Asp => Dummy_2,
8132 LN_Asp => LN);
8133
8134 Args := New_List;
8135
8136 -- Handle the convention argument
8137
8138 if Present (Conv) then
8139 Conv_Arg := New_Copy_Tree (Expression (Conv));
8140
8141 -- Assume convention "Ada' when aspect Convention is missing
8142
8143 else
8144 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8145 end if;
8146
8147 Append_To (Args,
8148 Make_Pragma_Argument_Association (Loc,
8149 Chars => Name_Convention,
8150 Expression => Conv_Arg));
8151
8152 -- Handle the entity argument
8153
8154 Append_To (Args,
8155 Make_Pragma_Argument_Association (Loc,
8156 Chars => Name_Entity,
8157 Expression => New_Occurrence_Of (Id, Loc)));
8158
8159 -- Handle the External_Name argument
8160
8161 if Present (EN) then
8162 Append_To (Args,
8163 Make_Pragma_Argument_Association (Loc,
8164 Chars => Name_External_Name,
8165 Expression => New_Copy_Tree (Expression (EN))));
8166 end if;
8167
8168 -- Handle the Link_Name argument
8169
8170 if Present (LN) then
8171 Append_To (Args,
8172 Make_Pragma_Argument_Association (Loc,
8173 Chars => Name_Link_Name,
8174 Expression => New_Copy_Tree (Expression (LN))));
8175 end if;
8176
8177 -- Generate:
8178 -- pragma Export/Import
8179 -- (Convention => <Conv>/Ada,
8180 -- Entity => <Id>,
8181 -- [External_Name => <EN>,]
8182 -- [Link_Name => <LN>]);
8183
8184 Prag :=
8185 Make_Pragma (Loc,
8186 Pragma_Identifier =>
8187 Make_Identifier (Loc, Chars (Identifier (Asp))),
8188 Pragma_Argument_Associations => Args);
8189
8190 -- Decorate the relevant aspect and the pragma
8191
8192 Set_Aspect_Rep_Item (Asp, Prag);
8193
8194 Set_Corresponding_Aspect (Prag, Asp);
8195 Set_From_Aspect_Specification (Prag);
8196 Set_Parent (Prag, Asp);
8197
8198 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8199 Set_Import_Pragma (Id, Prag);
8200 end if;
8201
8202 return Prag;
8203 end Build_Export_Import_Pragma;
8204
eb66e842 8205 -------------------------------
8206 -- Build_Predicate_Functions --
8207 -------------------------------
d9f6a4ee 8208
eb66e842 8209 -- The procedures that are constructed here have the form:
d9f6a4ee 8210
eb66e842 8211 -- function typPredicate (Ixxx : typ) return Boolean is
8212 -- begin
8213 -- return
75491446 8214 -- typ1Predicate (typ1 (Ixxx))
eb66e842 8215 -- and then typ2Predicate (typ2 (Ixxx))
8216 -- and then ...;
75491446 8217 -- exp1 and then exp2 and then ...
eb66e842 8218 -- end typPredicate;
d9f6a4ee 8219
eb66e842 8220 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8221 -- this is the point at which these expressions get analyzed, providing the
8222 -- required delay, and typ1, typ2, are entities from which predicates are
8223 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8224 -- use this function even if checks are off, e.g. for membership tests.
d9f6a4ee 8225
75491446 8226 -- Note that the inherited predicates are evaluated first, as required by
8227 -- AI12-0071-1.
8228
8229 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8230 -- the form of this return expression.
8231
eb66e842 8232 -- If the expression has at least one Raise_Expression, then we also build
8233 -- the typPredicateM version of the function, in which any occurrence of a
8234 -- Raise_Expression is converted to "return False".
d9f6a4ee 8235
1ecdfe4b 8236 -- WARNING: This routine manages Ghost regions. Return statements must be
8237 -- replaced by gotos which jump to the end of the routine and restore the
8238 -- Ghost mode.
8239
eb66e842 8240 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8241 Loc : constant Source_Ptr := Sloc (Typ);
d9f6a4ee 8242
eb66e842 8243 Expr : Node_Id;
8244 -- This is the expression for the result of the function. It is
8245 -- is build by connecting the component predicates with AND THEN.
d9f6a4ee 8246
eb66e842 8247 Expr_M : Node_Id;
8248 -- This is the corresponding return expression for the Predicate_M
8249 -- function. It differs in that raise expressions are marked for
8250 -- special expansion (see Process_REs).
d9f6a4ee 8251
9c20237a 8252 Object_Name : Name_Id;
eb66e842 8253 -- Name for argument of Predicate procedure. Note that we use the same
499918a7 8254 -- name for both predicate functions. That way the reference within the
eb66e842 8255 -- predicate expression is the same in both functions.
d9f6a4ee 8256
9c20237a 8257 Object_Entity : Entity_Id;
eb66e842 8258 -- Entity for argument of Predicate procedure
d9f6a4ee 8259
9c20237a 8260 Object_Entity_M : Entity_Id;
8261 -- Entity for argument of separate Predicate procedure when exceptions
8262 -- are present in expression.
8263
02e5d0d0 8264 FDecl : Node_Id;
8265 -- The function declaration
9c20237a 8266
02e5d0d0 8267 SId : Entity_Id;
8268 -- Its entity
d9f6a4ee 8269
eb66e842 8270 Raise_Expression_Present : Boolean := False;
8271 -- Set True if Expr has at least one Raise_Expression
d9f6a4ee 8272
75491446 8273 procedure Add_Condition (Cond : Node_Id);
8274 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8275 -- Expr is empty).
d9f6a4ee 8276
eb66e842 8277 procedure Add_Predicates;
8278 -- Appends expressions for any Predicate pragmas in the rep item chain
8279 -- Typ to Expr. Note that we look only at items for this exact entity.
8280 -- Inheritance of predicates for the parent type is done by calling the
8281 -- Predicate_Function of the parent type, using Add_Call above.
d9f6a4ee 8282
75491446 8283 procedure Add_Call (T : Entity_Id);
8284 -- Includes a call to the predicate function for type T in Expr if T
8285 -- has predicates and Predicate_Function (T) is non-empty.
8286
eb66e842 8287 function Process_RE (N : Node_Id) return Traverse_Result;
8288 -- Used in Process REs, tests if node N is a raise expression, and if
8289 -- so, marks it to be converted to return False.
d9f6a4ee 8290
eb66e842 8291 procedure Process_REs is new Traverse_Proc (Process_RE);
8292 -- Marks any raise expressions in Expr_M to return False
d9f6a4ee 8293
f9e26ff7 8294 function Test_RE (N : Node_Id) return Traverse_Result;
8295 -- Used in Test_REs, tests one node for being a raise expression, and if
8296 -- so sets Raise_Expression_Present True.
8297
8298 procedure Test_REs is new Traverse_Proc (Test_RE);
8299 -- Tests to see if Expr contains any raise expressions
8300
eb66e842 8301 --------------
8302 -- Add_Call --
8303 --------------
d9f6a4ee 8304
eb66e842 8305 procedure Add_Call (T : Entity_Id) is
8306 Exp : Node_Id;
d9f6a4ee 8307
eb66e842 8308 begin
8309 if Present (T) and then Present (Predicate_Function (T)) then
8310 Set_Has_Predicates (Typ);
d9f6a4ee 8311
74d7e7f5 8312 -- Build the call to the predicate function of T. The type may be
8313 -- derived, so use an unchecked conversion for the actual.
d9f6a4ee 8314
eb66e842 8315 Exp :=
8316 Make_Predicate_Call
74d7e7f5 8317 (Typ => T,
8318 Expr =>
8319 Unchecked_Convert_To (T,
8320 Make_Identifier (Loc, Object_Name)));
d9f6a4ee 8321
75491446 8322 -- "and"-in the call to evolving expression
d9f6a4ee 8323
75491446 8324 Add_Condition (Exp);
d9f6a4ee 8325
eb66e842 8326 -- Output info message on inheritance if required. Note we do not
8327 -- give this information for generic actual types, since it is
8328 -- unwelcome noise in that case in instantiations. We also
8329 -- generally suppress the message in instantiations, and also
8330 -- if it involves internal names.
d9f6a4ee 8331
eb66e842 8332 if Opt.List_Inherited_Aspects
8333 and then not Is_Generic_Actual_Type (Typ)
8334 and then Instantiation_Depth (Sloc (Typ)) = 0
8335 and then not Is_Internal_Name (Chars (T))
8336 and then not Is_Internal_Name (Chars (Typ))
8337 then
8338 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8339 Error_Msg_Node_2 := T;
8340 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8341 end if;
8342 end if;
8343 end Add_Call;
d9f6a4ee 8344
75491446 8345 -------------------
8346 -- Add_Condition --
8347 -------------------
8348
8349 procedure Add_Condition (Cond : Node_Id) is
8350 begin
8351 -- This is the first predicate expression
8352
8353 if No (Expr) then
8354 Expr := Cond;
8355
8356 -- Otherwise concatenate to the existing predicate expressions by
8357 -- using "and then".
8358
8359 else
8360 Expr :=
8361 Make_And_Then (Loc,
8362 Left_Opnd => Relocate_Node (Expr),
8363 Right_Opnd => Cond);
8364 end if;
8365 end Add_Condition;
8366
eb66e842 8367 --------------------
8368 -- Add_Predicates --
8369 --------------------
d9f6a4ee 8370
eb66e842 8371 procedure Add_Predicates is
f9e26ff7 8372 procedure Add_Predicate (Prag : Node_Id);
8373 -- Concatenate the expression of predicate pragma Prag to Expr by
8374 -- using a short circuit "and then" operator.
d9f6a4ee 8375
f9e26ff7 8376 -------------------
8377 -- Add_Predicate --
8378 -------------------
d9f6a4ee 8379
f9e26ff7 8380 procedure Add_Predicate (Prag : Node_Id) is
8381 procedure Replace_Type_Reference (N : Node_Id);
8382 -- Replace a single occurrence N of the subtype name with a
8383 -- reference to the formal of the predicate function. N can be an
8384 -- identifier referencing the subtype, or a selected component,
8385 -- representing an appropriately qualified occurrence of the
8386 -- subtype name.
8387
8388 procedure Replace_Type_References is
8389 new Replace_Type_References_Generic (Replace_Type_Reference);
8390 -- Traverse an expression changing every occurrence of an
8391 -- identifier whose name matches the name of the subtype with a
8392 -- reference to the formal parameter of the predicate function.
8393
8394 ----------------------------
8395 -- Replace_Type_Reference --
8396 ----------------------------
8397
8398 procedure Replace_Type_Reference (N : Node_Id) is
8399 begin
8400 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8401 -- Use the Sloc of the usage name, not the defining name
d9f6a4ee 8402
f9e26ff7 8403 Set_Etype (N, Typ);
8404 Set_Entity (N, Object_Entity);
d97beb2f 8405
f9e26ff7 8406 -- We want to treat the node as if it comes from source, so
8407 -- that ASIS will not ignore it.
d97beb2f 8408
f9e26ff7 8409 Set_Comes_From_Source (N, True);
8410 end Replace_Type_Reference;
d97beb2f 8411
f9e26ff7 8412 -- Local variables
d97beb2f 8413
f9e26ff7 8414 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8415 Arg1 : Node_Id;
8416 Arg2 : Node_Id;
d97beb2f 8417
f9e26ff7 8418 -- Start of processing for Add_Predicate
24c8d764 8419
f9e26ff7 8420 begin
8421 -- Extract the arguments of the pragma. The expression itself
8422 -- is copied for use in the predicate function, to preserve the
8423 -- original version for ASIS use.
d97beb2f 8424
f9e26ff7 8425 Arg1 := First (Pragma_Argument_Associations (Prag));
8426 Arg2 := Next (Arg1);
d97beb2f 8427
f9e26ff7 8428 Arg1 := Get_Pragma_Arg (Arg1);
8429 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
d97beb2f 8430
f9e26ff7 8431 -- When the predicate pragma applies to the current type or its
8432 -- full view, replace all occurrences of the subtype name with
8433 -- references to the formal parameter of the predicate function.
639c3741 8434
f9e26ff7 8435 if Entity (Arg1) = Typ
8436 or else Full_View (Entity (Arg1)) = Typ
8437 then
8438 Replace_Type_References (Arg2, Typ);
639c3741 8439
f9e26ff7 8440 -- If the predicate pragma comes from an aspect, replace the
8441 -- saved expression because we need the subtype references
8442 -- replaced for the calls to Preanalyze_Spec_Expression in
8443 -- Check_Aspect_At_xxx routines.
639c3741 8444
f9e26ff7 8445 if Present (Asp) then
f9e26ff7 8446 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8447 end if;
24c8d764 8448
75491446 8449 -- "and"-in the Arg2 condition to evolving expression
639c3741 8450
75491446 8451 Add_Condition (Relocate_Node (Arg2));
f9e26ff7 8452 end if;
8453 end Add_Predicate;
737e8460 8454
f9e26ff7 8455 -- Local variables
737e8460 8456
f9e26ff7 8457 Ritem : Node_Id;
d97beb2f 8458
f9e26ff7 8459 -- Start of processing for Add_Predicates
d97beb2f 8460
f9e26ff7 8461 begin
8462 Ritem := First_Rep_Item (Typ);
74d7e7f5 8463
8464 -- If the type is private, check whether full view has inherited
8465 -- predicates.
8466
8467 if Is_Private_Type (Typ) and then No (Ritem) then
8468 Ritem := First_Rep_Item (Full_View (Typ));
8469 end if;
8470
f9e26ff7 8471 while Present (Ritem) loop
8472 if Nkind (Ritem) = N_Pragma
ddccc924 8473 and then Pragma_Name (Ritem) = Name_Predicate
f9e26ff7 8474 then
8475 Add_Predicate (Ritem);
0ea02224 8476
8477 -- If the type is declared in an inner package it may be frozen
8478 -- outside of the package, and the generated pragma has not been
8479 -- analyzed yet, so capture the expression for the predicate
8480 -- function at this point.
8481
8482 elsif Nkind (Ritem) = N_Aspect_Specification
238921ae 8483 and then Present (Aspect_Rep_Item (Ritem))
8484 and then Scope (Typ) /= Current_Scope
0ea02224 8485 then
8486 declare
8487 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8488
8489 begin
8490 if Nkind (Prag) = N_Pragma
ddccc924 8491 and then Pragma_Name (Prag) = Name_Predicate
0ea02224 8492 then
8493 Add_Predicate (Prag);
8494 end if;
8495 end;
eb66e842 8496 end if;
d97beb2f 8497
eb66e842 8498 Next_Rep_Item (Ritem);
8499 end loop;
8500 end Add_Predicates;
d97beb2f 8501
eb66e842 8502 ----------------
8503 -- Process_RE --
8504 ----------------
d97beb2f 8505
eb66e842 8506 function Process_RE (N : Node_Id) return Traverse_Result is
d9f6a4ee 8507 begin
eb66e842 8508 if Nkind (N) = N_Raise_Expression then
8509 Set_Convert_To_Return_False (N);
8510 return Skip;
d9f6a4ee 8511 else
eb66e842 8512 return OK;
d9f6a4ee 8513 end if;
eb66e842 8514 end Process_RE;
d7c2851f 8515
d9f6a4ee 8516 -------------
eb66e842 8517 -- Test_RE --
d9f6a4ee 8518 -------------
d7c2851f 8519
eb66e842 8520 function Test_RE (N : Node_Id) return Traverse_Result is
d97beb2f 8521 begin
eb66e842 8522 if Nkind (N) = N_Raise_Expression then
8523 Raise_Expression_Present := True;
8524 return Abandon;
8525 else
8526 return OK;
8527 end if;
8528 end Test_RE;
d97beb2f 8529
f9e26ff7 8530 -- Local variables
8531
72a98436 8532 Mode : Ghost_Mode_Type;
f9e26ff7 8533
eb66e842 8534 -- Start of processing for Build_Predicate_Functions
d97beb2f 8535
eb66e842 8536 begin
8537 -- Return if already built or if type does not have predicates
9dc88aea 8538
9c20237a 8539 SId := Predicate_Function (Typ);
eb66e842 8540 if not Has_Predicates (Typ)
9c20237a 8541 or else (Present (SId) and then Has_Completion (SId))
eb66e842 8542 then
8543 return;
8544 end if;
d9f6a4ee 8545
30f8d103 8546 -- The related type may be subject to pragma Ghost. Set the mode now to
8547 -- ensure that the predicate functions are properly marked as Ghost.
f9e26ff7 8548
72a98436 8549 Set_Ghost_Mode (Typ, Mode);
f9e26ff7 8550
eb66e842 8551 -- Prepare to construct predicate expression
d97beb2f 8552
eb66e842 8553 Expr := Empty;
d97beb2f 8554
9c20237a 8555 if Present (SId) then
8556 FDecl := Unit_Declaration_Node (SId);
8557
8558 else
8559 FDecl := Build_Predicate_Function_Declaration (Typ);
8560 SId := Defining_Entity (FDecl);
8561 end if;
8562
8563 -- Recover name of formal parameter of function that replaces references
8564 -- to the type in predicate expressions.
8565
8566 Object_Entity :=
8567 Defining_Identifier
8568 (First (Parameter_Specifications (Specification (FDecl))));
8569
8570 Object_Name := Chars (Object_Entity);
8571 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8572
75491446 8573 -- Add predicates for ancestor if present. These must come before the
8574 -- ones for the current type, as required by AI12-0071-1.
d97beb2f 8575
eb66e842 8576 declare
74d7e7f5 8577 Atyp : Entity_Id;
d9f6a4ee 8578 begin
74d7e7f5 8579 Atyp := Nearest_Ancestor (Typ);
8580
8581 -- The type may be private but the full view may inherit predicates
8582
8583 if No (Atyp) and then Is_Private_Type (Typ) then
8584 Atyp := Nearest_Ancestor (Full_View (Typ));
8585 end if;
8586
eb66e842 8587 if Present (Atyp) then
8588 Add_Call (Atyp);
8589 end if;
8590 end;
02e5d0d0 8591
75491446 8592 -- Add Predicates for the current type
8593
8594 Add_Predicates;
8595
eb66e842 8596 -- Case where predicates are present
9dc88aea 8597
eb66e842 8598 if Present (Expr) then
726fd56a 8599
eb66e842 8600 -- Test for raise expression present
726fd56a 8601
eb66e842 8602 Test_REs (Expr);
9dc88aea 8603
eb66e842 8604 -- If raise expression is present, capture a copy of Expr for use
8605 -- in building the predicateM function version later on. For this
8606 -- copy we replace references to Object_Entity by Object_Entity_M.
9dc88aea 8607
eb66e842 8608 if Raise_Expression_Present then
8609 declare
299b347e 8610 Map : constant Elist_Id := New_Elmt_List;
8611 New_V : Entity_Id := Empty;
8612
8613 -- The unanalyzed expression will be copied and appear in
8614 -- both functions. Normally expressions do not declare new
8615 -- entities, but quantified expressions do, so we need to
8616 -- create new entities for their bound variables, to prevent
8617 -- multiple definitions in gigi.
8618
8619 function Reset_Loop_Variable (N : Node_Id)
8620 return Traverse_Result;
8621
8622 procedure Collect_Loop_Variables is
8623 new Traverse_Proc (Reset_Loop_Variable);
8624
8625 ------------------------
8626 -- Reset_Loop_Variable --
8627 ------------------------
8628
8629 function Reset_Loop_Variable (N : Node_Id)
8630 return Traverse_Result
8631 is
8632 begin
8633 if Nkind (N) = N_Iterator_Specification then
8634 New_V := Make_Defining_Identifier
8635 (Sloc (N), Chars (Defining_Identifier (N)));
8636
8637 Set_Defining_Identifier (N, New_V);
8638 end if;
8639
8640 return OK;
8641 end Reset_Loop_Variable;
8642
eb66e842 8643 begin
8644 Append_Elmt (Object_Entity, Map);
8645 Append_Elmt (Object_Entity_M, Map);
8646 Expr_M := New_Copy_Tree (Expr, Map => Map);
299b347e 8647 Collect_Loop_Variables (Expr_M);
eb66e842 8648 end;
8649 end if;
d97beb2f 8650
eb66e842 8651 -- Build the main predicate function
9dc88aea 8652
eb66e842 8653 declare
eb66e842 8654 SIdB : constant Entity_Id :=
8655 Make_Defining_Identifier (Loc,
8656 Chars => New_External_Name (Chars (Typ), "Predicate"));
8657 -- The entity for the function body
9dc88aea 8658
eb66e842 8659 Spec : Node_Id;
eb66e842 8660 FBody : Node_Id;
9dc88aea 8661
eb66e842 8662 begin
eb66e842 8663 -- The predicate function is shared between views of a type
d97beb2f 8664
eb66e842 8665 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8666 Set_Predicate_Function (Full_View (Typ), SId);
d97beb2f 8667 end if;
d97beb2f 8668
eb66e842 8669 -- Build function body
d97beb2f 8670
eb66e842 8671 Spec :=
8672 Make_Function_Specification (Loc,
8673 Defining_Unit_Name => SIdB,
8674 Parameter_Specifications => New_List (
8675 Make_Parameter_Specification (Loc,
8676 Defining_Identifier =>
8677 Make_Defining_Identifier (Loc, Object_Name),
8678 Parameter_Type =>
8679 New_Occurrence_Of (Typ, Loc))),
8680 Result_Definition =>
8681 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8682
eb66e842 8683 FBody :=
8684 Make_Subprogram_Body (Loc,
8685 Specification => Spec,
8686 Declarations => Empty_List,
8687 Handled_Statement_Sequence =>
8688 Make_Handled_Sequence_Of_Statements (Loc,
8689 Statements => New_List (
8690 Make_Simple_Return_Statement (Loc,
8691 Expression => Expr))));
9dc88aea 8692
9c20237a 8693 -- If declaration has not been analyzed yet, Insert declaration
f021ee0f 8694 -- before freeze node. Insert body itself after freeze node.
9c20237a 8695
8696 if not Analyzed (FDecl) then
8697 Insert_Before_And_Analyze (N, FDecl);
8698 end if;
d97beb2f 8699
02e5d0d0 8700 Insert_After_And_Analyze (N, FBody);
6958c62c 8701
8702 -- Static predicate functions are always side-effect free, and
8703 -- in most cases dynamic predicate functions are as well. Mark
8704 -- them as such whenever possible, so redundant predicate checks
7dd0b9b3 8705 -- can be optimized. If there is a variable reference within the
8706 -- expression, the function is not pure.
b2e821de 8707
6958c62c 8708 if Expander_Active then
7dd0b9b3 8709 Set_Is_Pure (SId,
8710 Side_Effect_Free (Expr, Variable_Ref => True));
6958c62c 8711 Set_Is_Inlined (SId);
8712 end if;
d9f6a4ee 8713 end;
d97beb2f 8714
eb66e842 8715 -- Test for raise expressions present and if so build M version
d97beb2f 8716
eb66e842 8717 if Raise_Expression_Present then
8718 declare
8719 SId : constant Entity_Id :=
8720 Make_Defining_Identifier (Loc,
8721 Chars => New_External_Name (Chars (Typ), "PredicateM"));
c96806b2 8722 -- The entity for the function spec
d97beb2f 8723
eb66e842 8724 SIdB : constant Entity_Id :=
8725 Make_Defining_Identifier (Loc,
8726 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8727 -- The entity for the function body
b9e61b2a 8728
eb66e842 8729 Spec : Node_Id;
eb66e842 8730 FBody : Node_Id;
9c20237a 8731 FDecl : Node_Id;
eb66e842 8732 BTemp : Entity_Id;
d97beb2f 8733
eb66e842 8734 begin
8735 -- Mark any raise expressions for special expansion
d97beb2f 8736
eb66e842 8737 Process_REs (Expr_M);
d97beb2f 8738
eb66e842 8739 -- Build function declaration
d97beb2f 8740
eb66e842 8741 Set_Ekind (SId, E_Function);
8742 Set_Is_Predicate_Function_M (SId);
8743 Set_Predicate_Function_M (Typ, SId);
d97beb2f 8744
eb66e842 8745 -- The predicate function is shared between views of a type
d97beb2f 8746
eb66e842 8747 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8748 Set_Predicate_Function_M (Full_View (Typ), SId);
8749 end if;
9dc88aea 8750
eb66e842 8751 Spec :=
8752 Make_Function_Specification (Loc,
8753 Defining_Unit_Name => SId,
8754 Parameter_Specifications => New_List (
8755 Make_Parameter_Specification (Loc,
8756 Defining_Identifier => Object_Entity_M,
8757 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8758 Result_Definition =>
8759 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8760
eb66e842 8761 FDecl :=
8762 Make_Subprogram_Declaration (Loc,
8763 Specification => Spec);
9dc88aea 8764
eb66e842 8765 -- Build function body
9dc88aea 8766
eb66e842 8767 Spec :=
8768 Make_Function_Specification (Loc,
8769 Defining_Unit_Name => SIdB,
8770 Parameter_Specifications => New_List (
8771 Make_Parameter_Specification (Loc,
8772 Defining_Identifier =>
8773 Make_Defining_Identifier (Loc, Object_Name),
8774 Parameter_Type =>
8775 New_Occurrence_Of (Typ, Loc))),
8776 Result_Definition =>
8777 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8778
eb66e842 8779 -- Build the body, we declare the boolean expression before
8780 -- doing the return, because we are not really confident of
8781 -- what happens if a return appears within a return.
9dc88aea 8782
eb66e842 8783 BTemp :=
8784 Make_Defining_Identifier (Loc,
8785 Chars => New_Internal_Name ('B'));
9dc88aea 8786
eb66e842 8787 FBody :=
8788 Make_Subprogram_Body (Loc,
8789 Specification => Spec,
9dc88aea 8790
eb66e842 8791 Declarations => New_List (
8792 Make_Object_Declaration (Loc,
8793 Defining_Identifier => BTemp,
8794 Constant_Present => True,
8795 Object_Definition =>
8796 New_Occurrence_Of (Standard_Boolean, Loc),
8797 Expression => Expr_M)),
d97beb2f 8798
eb66e842 8799 Handled_Statement_Sequence =>
8800 Make_Handled_Sequence_Of_Statements (Loc,
8801 Statements => New_List (
8802 Make_Simple_Return_Statement (Loc,
8803 Expression => New_Occurrence_Of (BTemp, Loc)))));
d97beb2f 8804
eb66e842 8805 -- Insert declaration before freeze node and body after
d97beb2f 8806
eb66e842 8807 Insert_Before_And_Analyze (N, FDecl);
8808 Insert_After_And_Analyze (N, FBody);
8809 end;
8810 end if;
9dc88aea 8811
3b23aaa0 8812 -- See if we have a static predicate. Note that the answer may be
8813 -- yes even if we have an explicit Dynamic_Predicate present.
9dc88aea 8814
3b23aaa0 8815 declare
94d896aa 8816 PS : Boolean;
3b23aaa0 8817 EN : Node_Id;
9dc88aea 8818
3b23aaa0 8819 begin
94d896aa 8820 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8821 PS := False;
8822 else
8823 PS := Is_Predicate_Static (Expr, Object_Name);
8824 end if;
8825
a360a0f7 8826 -- Case where we have a predicate-static aspect
9dc88aea 8827
3b23aaa0 8828 if PS then
9dc88aea 8829
3b23aaa0 8830 -- We don't set Has_Static_Predicate_Aspect, since we can have
8831 -- any of the three cases (Predicate, Dynamic_Predicate, or
8832 -- Static_Predicate) generating a predicate with an expression
a360a0f7 8833 -- that is predicate-static. We just indicate that we have a
3b23aaa0 8834 -- predicate that can be treated as static.
d7c2851f 8835
3b23aaa0 8836 Set_Has_Static_Predicate (Typ);
d7c2851f 8837
3b23aaa0 8838 -- For discrete subtype, build the static predicate list
9dc88aea 8839
3b23aaa0 8840 if Is_Discrete_Type (Typ) then
8841 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8842
8843 -- If we don't get a static predicate list, it means that we
8844 -- have a case where this is not possible, most typically in
8845 -- the case where we inherit a dynamic predicate. We do not
8846 -- consider this an error, we just leave the predicate as
8847 -- dynamic. But if we do succeed in building the list, then
8848 -- we mark the predicate as static.
8849
5c6a5792 8850 if No (Static_Discrete_Predicate (Typ)) then
3b23aaa0 8851 Set_Has_Static_Predicate (Typ, False);
8852 end if;
94d896aa 8853
8854 -- For real or string subtype, save predicate expression
8855
8856 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8857 Set_Static_Real_Or_String_Predicate (Typ, Expr);
3b23aaa0 8858 end if;
8859
8860 -- Case of dynamic predicate (expression is not predicate-static)
9dc88aea 8861
eb66e842 8862 else
3b23aaa0 8863 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8864 -- is only set if we have an explicit Dynamic_Predicate aspect
8865 -- given. Here we may simply have a Predicate aspect where the
8866 -- expression happens not to be predicate-static.
8867
8868 -- Emit an error when the predicate is categorized as static
8869 -- but its expression is not predicate-static.
8870
8871 -- First a little fiddling to get a nice location for the
8872 -- message. If the expression is of the form (A and then B),
75491446 8873 -- where A is an inherited predicate, then use the right
8874 -- operand for the Sloc. This avoids getting confused by a call
8875 -- to an inherited predicate with a less convenient source
8876 -- location.
3b23aaa0 8877
8878 EN := Expr;
75491446 8879 while Nkind (EN) = N_And_Then
8880 and then Nkind (Left_Opnd (EN)) = N_Function_Call
8881 and then Is_Predicate_Function
8882 (Entity (Name (Left_Opnd (EN))))
8883 loop
8884 EN := Right_Opnd (EN);
3b23aaa0 8885 end loop;
8886
8887 -- Now post appropriate message
8888
8889 if Has_Static_Predicate_Aspect (Typ) then
94d896aa 8890 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
3b23aaa0 8891 Error_Msg_F
26279d91 8892 ("expression is not predicate-static (RM 3.2.4(16-22))",
3b23aaa0 8893 EN);
8894 else
94d896aa 8895 Error_Msg_F
8896 ("static predicate requires scalar or string type", EN);
3b23aaa0 8897 end if;
8898 end if;
eb66e842 8899 end if;
3b23aaa0 8900 end;
eb66e842 8901 end if;
f9e26ff7 8902
72a98436 8903 Restore_Ghost_Mode (Mode);
eb66e842 8904 end Build_Predicate_Functions;
9dc88aea 8905
9c20237a 8906 ------------------------------------------
8907 -- Build_Predicate_Function_Declaration --
8908 ------------------------------------------
8909
1ecdfe4b 8910 -- WARNING: This routine manages Ghost regions. Return statements must be
8911 -- replaced by gotos which jump to the end of the routine and restore the
8912 -- Ghost mode.
8913
9c20237a 8914 function Build_Predicate_Function_Declaration
8915 (Typ : Entity_Id) return Node_Id
8916 is
8917 Loc : constant Source_Ptr := Sloc (Typ);
8918
72a98436 8919 Func_Decl : Node_Id;
8920 Func_Id : Entity_Id;
8921 Mode : Ghost_Mode_Type;
8922 Spec : Node_Id;
9c20237a 8923
72a98436 8924 begin
8925 -- The related type may be subject to pragma Ghost. Set the mode now to
8926 -- ensure that the predicate functions are properly marked as Ghost.
9c20237a 8927
72a98436 8928 Set_Ghost_Mode (Typ, Mode);
9c20237a 8929
72a98436 8930 Func_Id :=
8931 Make_Defining_Identifier (Loc,
8932 Chars => New_External_Name (Chars (Typ), "Predicate"));
9c20237a 8933
3db675d2 8934 -- The predicate function requires debug info when the predicates are
8935 -- subject to Source Coverage Obligations.
8936
8937 if Opt.Generate_SCO then
8938 Set_Debug_Info_Needed (Func_Id);
8939 end if;
8940
9c20237a 8941 Spec :=
8942 Make_Function_Specification (Loc,
72a98436 8943 Defining_Unit_Name => Func_Id,
9c20237a 8944 Parameter_Specifications => New_List (
8945 Make_Parameter_Specification (Loc,
72a98436 8946 Defining_Identifier => Make_Temporary (Loc, 'I'),
9c20237a 8947 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8948 Result_Definition =>
8949 New_Occurrence_Of (Standard_Boolean, Loc));
8950
72a98436 8951 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9c20237a 8952
72a98436 8953 Set_Ekind (Func_Id, E_Function);
8954 Set_Etype (Func_Id, Standard_Boolean);
8955 Set_Is_Internal (Func_Id);
8956 Set_Is_Predicate_Function (Func_Id);
8957 Set_Predicate_Function (Typ, Func_Id);
9c20237a 8958
72a98436 8959 Insert_After (Parent (Typ), Func_Decl);
8960 Analyze (Func_Decl);
9c20237a 8961
72a98436 8962 Restore_Ghost_Mode (Mode);
9c20237a 8963
72a98436 8964 return Func_Decl;
9c20237a 8965 end Build_Predicate_Function_Declaration;
8966
d9f6a4ee 8967 -----------------------------------------
8968 -- Check_Aspect_At_End_Of_Declarations --
8969 -----------------------------------------
9dc88aea 8970
d9f6a4ee 8971 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8972 Ent : constant Entity_Id := Entity (ASN);
8973 Ident : constant Node_Id := Identifier (ASN);
8974 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
d7c2851f 8975
d9f6a4ee 8976 End_Decl_Expr : constant Node_Id := Entity (Ident);
8977 -- Expression to be analyzed at end of declarations
d7c2851f 8978
d9f6a4ee 8979 Freeze_Expr : constant Node_Id := Expression (ASN);
6da581c1 8980 -- Expression from call to Check_Aspect_At_Freeze_Point.
d7c2851f 8981
25e4fa47 8982 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
6da581c1 8983 -- Type required for preanalyze call. We use the original expression to
8984 -- get the proper type, to prevent cascaded errors when the expression
8985 -- is constant-folded.
d7c2851f 8986
d9f6a4ee 8987 Err : Boolean;
8988 -- Set False if error
9dc88aea 8989
d9f6a4ee 8990 -- On entry to this procedure, Entity (Ident) contains a copy of the
8991 -- original expression from the aspect, saved for this purpose, and
8992 -- but Expression (Ident) is a preanalyzed copy of the expression,
8993 -- preanalyzed just after the freeze point.
9dc88aea 8994
d9f6a4ee 8995 procedure Check_Overloaded_Name;
8996 -- For aspects whose expression is simply a name, this routine checks if
8997 -- the name is overloaded or not. If so, it verifies there is an
8998 -- interpretation that matches the entity obtained at the freeze point,
8999 -- otherwise the compiler complains.
9dc88aea 9000
d9f6a4ee 9001 ---------------------------
9002 -- Check_Overloaded_Name --
9003 ---------------------------
9004
9005 procedure Check_Overloaded_Name is
d97beb2f 9006 begin
d9f6a4ee 9007 if not Is_Overloaded (End_Decl_Expr) then
5ac76cee 9008 Err := not Is_Entity_Name (End_Decl_Expr)
9009 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
d9f6a4ee 9010
d97beb2f 9011 else
d9f6a4ee 9012 Err := True;
9dc88aea 9013
d9f6a4ee 9014 declare
9015 Index : Interp_Index;
9016 It : Interp;
9dc88aea 9017
d9f6a4ee 9018 begin
9019 Get_First_Interp (End_Decl_Expr, Index, It);
9020 while Present (It.Typ) loop
9021 if It.Nam = Entity (Freeze_Expr) then
9022 Err := False;
9023 exit;
9024 end if;
9025
9026 Get_Next_Interp (Index, It);
9027 end loop;
9028 end;
9dc88aea 9029 end if;
d9f6a4ee 9030 end Check_Overloaded_Name;
9dc88aea 9031
d9f6a4ee 9032 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9dc88aea 9033
d9f6a4ee 9034 begin
da3cad01 9035 -- In an instance we do not perform the consistency check between freeze
9036 -- point and end of declarations, because it was done already in the
9037 -- analysis of the generic. Furthermore, the delayed analysis of an
9038 -- aspect of the instance may produce spurious errors when the generic
9039 -- is a child unit that references entities in the parent (which might
9040 -- not be in scope at the freeze point of the instance).
9041
9042 if In_Instance then
9043 return;
9044
d9f6a4ee 9045 -- Case of aspects Dimension, Dimension_System and Synchronization
9dc88aea 9046
da3cad01 9047 elsif A_Id = Aspect_Synchronization then
d9f6a4ee 9048 return;
d97beb2f 9049
d9f6a4ee 9050 -- Case of stream attributes, just have to compare entities. However,
9051 -- the expression is just a name (possibly overloaded), and there may
9052 -- be stream operations declared for unrelated types, so we just need
9053 -- to verify that one of these interpretations is the one available at
9054 -- at the freeze point.
9dc88aea 9055
d9f6a4ee 9056 elsif A_Id = Aspect_Input or else
f02a9a9a 9057 A_Id = Aspect_Output or else
9058 A_Id = Aspect_Read or else
9059 A_Id = Aspect_Write
d9f6a4ee 9060 then
9061 Analyze (End_Decl_Expr);
9062 Check_Overloaded_Name;
9dc88aea 9063
d9f6a4ee 9064 elsif A_Id = Aspect_Variable_Indexing or else
9065 A_Id = Aspect_Constant_Indexing or else
9066 A_Id = Aspect_Default_Iterator or else
9067 A_Id = Aspect_Iterator_Element
9068 then
9069 -- Make type unfrozen before analysis, to prevent spurious errors
9070 -- about late attributes.
9dc88aea 9071
d9f6a4ee 9072 Set_Is_Frozen (Ent, False);
9073 Analyze (End_Decl_Expr);
9074 Set_Is_Frozen (Ent, True);
9dc88aea 9075
d9f6a4ee 9076 -- If the end of declarations comes before any other freeze
9077 -- point, the Freeze_Expr is not analyzed: no check needed.
9dc88aea 9078
d9f6a4ee 9079 if Analyzed (Freeze_Expr) and then not In_Instance then
9080 Check_Overloaded_Name;
9081 else
9082 Err := False;
9083 end if;
55e8372b 9084
d9f6a4ee 9085 -- All other cases
55e8372b 9086
d9f6a4ee 9087 else
c1efebf9 9088 -- Indicate that the expression comes from an aspect specification,
9089 -- which is used in subsequent analysis even if expansion is off.
9090
9091 Set_Parent (End_Decl_Expr, ASN);
9092
d9f6a4ee 9093 -- In a generic context the aspect expressions have not been
9094 -- preanalyzed, so do it now. There are no conformance checks
9095 -- to perform in this case.
55e8372b 9096
d9f6a4ee 9097 if No (T) then
9098 Check_Aspect_At_Freeze_Point (ASN);
9099 return;
55e8372b 9100
d9f6a4ee 9101 -- The default values attributes may be defined in the private part,
9102 -- and the analysis of the expression may take place when only the
9103 -- partial view is visible. The expression must be scalar, so use
9104 -- the full view to resolve.
55e8372b 9105
d9f6a4ee 9106 elsif (A_Id = Aspect_Default_Value
9107 or else
9108 A_Id = Aspect_Default_Component_Value)
9109 and then Is_Private_Type (T)
9110 then
9111 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
c1efebf9 9112
d9f6a4ee 9113 else
9114 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9115 end if;
d97beb2f 9116
d9f6a4ee 9117 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9118 end if;
55e8372b 9119
c1efebf9 9120 -- Output error message if error. Force error on aspect specification
9121 -- even if there is an error on the expression itself.
55e8372b 9122
d9f6a4ee 9123 if Err then
9124 Error_Msg_NE
c1efebf9 9125 ("!visibility of aspect for& changes after freeze point",
d9f6a4ee 9126 ASN, Ent);
9127 Error_Msg_NE
9128 ("info: & is frozen here, aspects evaluated at this point??",
9129 Freeze_Node (Ent), Ent);
9130 end if;
9131 end Check_Aspect_At_End_Of_Declarations;
55e8372b 9132
d9f6a4ee 9133 ----------------------------------
9134 -- Check_Aspect_At_Freeze_Point --
9135 ----------------------------------
9dc88aea 9136
d9f6a4ee 9137 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9138 Ident : constant Node_Id := Identifier (ASN);
9139 -- Identifier (use Entity field to save expression)
9dc88aea 9140
d9f6a4ee 9141 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9dc88aea 9142
d9f6a4ee 9143 T : Entity_Id := Empty;
9144 -- Type required for preanalyze call
9dc88aea 9145
d9f6a4ee 9146 begin
9147 -- On entry to this procedure, Entity (Ident) contains a copy of the
9148 -- original expression from the aspect, saved for this purpose.
9dc88aea 9149
d9f6a4ee 9150 -- On exit from this procedure Entity (Ident) is unchanged, still
9151 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9152 -- of the expression, preanalyzed just after the freeze point.
d97beb2f 9153
d9f6a4ee 9154 -- Make a copy of the expression to be preanalyzed
d97beb2f 9155
d9f6a4ee 9156 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
d97beb2f 9157
d9f6a4ee 9158 -- Find type for preanalyze call
d97beb2f 9159
d9f6a4ee 9160 case A_Id is
9dc88aea 9161
d9f6a4ee 9162 -- No_Aspect should be impossible
d97beb2f 9163
d9f6a4ee 9164 when No_Aspect =>
9165 raise Program_Error;
9166
9167 -- Aspects taking an optional boolean argument
d97beb2f 9168
99378362 9169 when Boolean_Aspects
9170 | Library_Unit_Aspects
9171 =>
d9f6a4ee 9172 T := Standard_Boolean;
d7c2851f 9173
d9f6a4ee 9174 -- Aspects corresponding to attribute definition clauses
9dc88aea 9175
d9f6a4ee 9176 when Aspect_Address =>
9177 T := RTE (RE_Address);
9dc88aea 9178
d9f6a4ee 9179 when Aspect_Attach_Handler =>
9180 T := RTE (RE_Interrupt_ID);
d7c2851f 9181
99378362 9182 when Aspect_Bit_Order
9183 | Aspect_Scalar_Storage_Order
9184 =>
d9f6a4ee 9185 T := RTE (RE_Bit_Order);
d7c2851f 9186
d9f6a4ee 9187 when Aspect_Convention =>
9188 return;
d7c2851f 9189
d9f6a4ee 9190 when Aspect_CPU =>
9191 T := RTE (RE_CPU_Range);
d7c2851f 9192
d9f6a4ee 9193 -- Default_Component_Value is resolved with the component type
d7c2851f 9194
d9f6a4ee 9195 when Aspect_Default_Component_Value =>
9196 T := Component_Type (Entity (ASN));
d7c2851f 9197
647fab54 9198 when Aspect_Default_Storage_Pool =>
9199 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9200
d9f6a4ee 9201 -- Default_Value is resolved with the type entity in question
d7c2851f 9202
d9f6a4ee 9203 when Aspect_Default_Value =>
9204 T := Entity (ASN);
9dc88aea 9205
d9f6a4ee 9206 when Aspect_Dispatching_Domain =>
9207 T := RTE (RE_Dispatching_Domain);
9dc88aea 9208
d9f6a4ee 9209 when Aspect_External_Tag =>
9210 T := Standard_String;
9dc88aea 9211
d9f6a4ee 9212 when Aspect_External_Name =>
9213 T := Standard_String;
9dc88aea 9214
d9f6a4ee 9215 when Aspect_Link_Name =>
9216 T := Standard_String;
9dc88aea 9217
99378362 9218 when Aspect_Interrupt_Priority
9219 | Aspect_Priority
9220 =>
d9f6a4ee 9221 T := Standard_Integer;
d97beb2f 9222
d9f6a4ee 9223 when Aspect_Relative_Deadline =>
9224 T := RTE (RE_Time_Span);
d97beb2f 9225
e6ce0468 9226 when Aspect_Secondary_Stack_Size =>
9227 T := Standard_Integer;
9228
d9f6a4ee 9229 when Aspect_Small =>
9230 T := Universal_Real;
490beba6 9231
d9f6a4ee 9232 -- For a simple storage pool, we have to retrieve the type of the
9233 -- pool object associated with the aspect's corresponding attribute
9234 -- definition clause.
490beba6 9235
d9f6a4ee 9236 when Aspect_Simple_Storage_Pool =>
9237 T := Etype (Expression (Aspect_Rep_Item (ASN)));
d97beb2f 9238
d9f6a4ee 9239 when Aspect_Storage_Pool =>
9240 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
d97beb2f 9241
99378362 9242 when Aspect_Alignment
9243 | Aspect_Component_Size
9244 | Aspect_Machine_Radix
9245 | Aspect_Object_Size
9246 | Aspect_Size
9247 | Aspect_Storage_Size
9248 | Aspect_Stream_Size
9249 | Aspect_Value_Size
9250 =>
d9f6a4ee 9251 T := Any_Integer;
9dc88aea 9252
04ae062f 9253 when Aspect_Linker_Section =>
9254 T := Standard_String;
9255
d9f6a4ee 9256 when Aspect_Synchronization =>
9257 return;
7d20685d 9258
d9f6a4ee 9259 -- Special case, the expression of these aspects is just an entity
9260 -- that does not need any resolution, so just analyze.
7d20685d 9261
99378362 9262 when Aspect_Input
9263 | Aspect_Output
9264 | Aspect_Read
9265 | Aspect_Suppress
9266 | Aspect_Unsuppress
9267 | Aspect_Warnings
9268 | Aspect_Write
9269 =>
d9f6a4ee 9270 Analyze (Expression (ASN));
9271 return;
7d20685d 9272
d9f6a4ee 9273 -- Same for Iterator aspects, where the expression is a function
9274 -- name. Legality rules are checked separately.
89f1e35c 9275
99378362 9276 when Aspect_Constant_Indexing
9277 | Aspect_Default_Iterator
9278 | Aspect_Iterator_Element
9279 | Aspect_Variable_Indexing
9280 =>
d9f6a4ee 9281 Analyze (Expression (ASN));
9282 return;
7d20685d 9283
b3f8228a 9284 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9285
9286 when Aspect_Iterable =>
3061ffde 9287 T := Entity (ASN);
9288
b3f8228a 9289 declare
a9f5fea7 9290 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
3061ffde 9291 Assoc : Node_Id;
9292 Expr : Node_Id;
a9f5fea7 9293
b3f8228a 9294 begin
a9f5fea7 9295 if Cursor = Any_Type then
9296 return;
9297 end if;
9298
b3f8228a 9299 Assoc := First (Component_Associations (Expression (ASN)));
9300 while Present (Assoc) loop
3061ffde 9301 Expr := Expression (Assoc);
9302 Analyze (Expr);
a9f5fea7 9303
9304 if not Error_Posted (Expr) then
9305 Resolve_Iterable_Operation
9306 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9307 end if;
9308
b3f8228a 9309 Next (Assoc);
9310 end loop;
9311 end;
3061ffde 9312
b3f8228a 9313 return;
9314
d9f6a4ee 9315 -- Invariant/Predicate take boolean expressions
7d20685d 9316
99378362 9317 when Aspect_Dynamic_Predicate
9318 | Aspect_Invariant
9319 | Aspect_Predicate
9320 | Aspect_Static_Predicate
9321 | Aspect_Type_Invariant
9322 =>
d9f6a4ee 9323 T := Standard_Boolean;
7d20685d 9324
fdec445e 9325 when Aspect_Predicate_Failure =>
9326 T := Standard_String;
9327
d9f6a4ee 9328 -- Here is the list of aspects that don't require delay analysis
89f1e35c 9329
99378362 9330 when Aspect_Abstract_State
9331 | Aspect_Annotate
9332 | Aspect_Async_Readers
9333 | Aspect_Async_Writers
9334 | Aspect_Constant_After_Elaboration
9335 | Aspect_Contract_Cases
9336 | Aspect_Default_Initial_Condition
9337 | Aspect_Depends
9338 | Aspect_Dimension
9339 | Aspect_Dimension_System
9340 | Aspect_Effective_Reads
9341 | Aspect_Effective_Writes
9342 | Aspect_Extensions_Visible
9343 | Aspect_Ghost
9344 | Aspect_Global
9345 | Aspect_Implicit_Dereference
9346 | Aspect_Initial_Condition
9347 | Aspect_Initializes
9348 | Aspect_Max_Queue_Length
9349 | Aspect_Obsolescent
9350 | Aspect_Part_Of
9351 | Aspect_Post
9352 | Aspect_Postcondition
9353 | Aspect_Pre
9354 | Aspect_Precondition
9355 | Aspect_Refined_Depends
9356 | Aspect_Refined_Global
9357 | Aspect_Refined_Post
9358 | Aspect_Refined_State
9359 | Aspect_SPARK_Mode
9360 | Aspect_Test_Case
9361 | Aspect_Unimplemented
9362 | Aspect_Volatile_Function
9363 =>
d9f6a4ee 9364 raise Program_Error;
2b184b2f 9365
d9f6a4ee 9366 end case;
2b184b2f 9367
d9f6a4ee 9368 -- Do the preanalyze call
2b184b2f 9369
d9f6a4ee 9370 Preanalyze_Spec_Expression (Expression (ASN), T);
9371 end Check_Aspect_At_Freeze_Point;
2b184b2f 9372
d9f6a4ee 9373 -----------------------------------
9374 -- Check_Constant_Address_Clause --
9375 -----------------------------------
2b184b2f 9376
d9f6a4ee 9377 procedure Check_Constant_Address_Clause
9378 (Expr : Node_Id;
9379 U_Ent : Entity_Id)
9380 is
9381 procedure Check_At_Constant_Address (Nod : Node_Id);
9382 -- Checks that the given node N represents a name whose 'Address is
9383 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9384 -- address value is the same at the point of declaration of U_Ent and at
9385 -- the time of elaboration of the address clause.
84ed7523 9386
d9f6a4ee 9387 procedure Check_Expr_Constants (Nod : Node_Id);
9388 -- Checks that Nod meets the requirements for a constant address clause
9389 -- in the sense of the enclosing procedure.
84ed7523 9390
d9f6a4ee 9391 procedure Check_List_Constants (Lst : List_Id);
9392 -- Check that all elements of list Lst meet the requirements for a
9393 -- constant address clause in the sense of the enclosing procedure.
84ed7523 9394
d9f6a4ee 9395 -------------------------------
9396 -- Check_At_Constant_Address --
9397 -------------------------------
84ed7523 9398
d9f6a4ee 9399 procedure Check_At_Constant_Address (Nod : Node_Id) is
9400 begin
9401 if Is_Entity_Name (Nod) then
9402 if Present (Address_Clause (Entity ((Nod)))) then
9403 Error_Msg_NE
9404 ("invalid address clause for initialized object &!",
d9f6a4ee 9405 Nod, U_Ent);
99378362 9406 Error_Msg_NE
9407 ("address for& cannot depend on another address clause! "
9408 & "(RM 13.1(22))!", Nod, U_Ent);
84ed7523 9409
d9f6a4ee 9410 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9411 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9412 then
9413 Error_Msg_NE
9414 ("invalid address clause for initialized object &!",
9415 Nod, U_Ent);
9416 Error_Msg_Node_2 := U_Ent;
9417 Error_Msg_NE
9418 ("\& must be defined before & (RM 13.1(22))!",
9419 Nod, Entity (Nod));
9420 end if;
7d20685d 9421
d9f6a4ee 9422 elsif Nkind (Nod) = N_Selected_Component then
9423 declare
9424 T : constant Entity_Id := Etype (Prefix (Nod));
59f3e675 9425
d9f6a4ee 9426 begin
9427 if (Is_Record_Type (T)
9428 and then Has_Discriminants (T))
9429 or else
9430 (Is_Access_Type (T)
f02a9a9a 9431 and then Is_Record_Type (Designated_Type (T))
9432 and then Has_Discriminants (Designated_Type (T)))
d9f6a4ee 9433 then
9434 Error_Msg_NE
9435 ("invalid address clause for initialized object &!",
9436 Nod, U_Ent);
9437 Error_Msg_N
99378362 9438 ("\address cannot depend on component of discriminated "
9439 & "record (RM 13.1(22))!", Nod);
d9f6a4ee 9440 else
9441 Check_At_Constant_Address (Prefix (Nod));
9442 end if;
9443 end;
89cc7147 9444
d9f6a4ee 9445 elsif Nkind (Nod) = N_Indexed_Component then
9446 Check_At_Constant_Address (Prefix (Nod));
9447 Check_List_Constants (Expressions (Nod));
89cc7147 9448
84ed7523 9449 else
d9f6a4ee 9450 Check_Expr_Constants (Nod);
84ed7523 9451 end if;
d9f6a4ee 9452 end Check_At_Constant_Address;
81b424ac 9453
d9f6a4ee 9454 --------------------------
9455 -- Check_Expr_Constants --
9456 --------------------------
7b9b2f05 9457
d9f6a4ee 9458 procedure Check_Expr_Constants (Nod : Node_Id) is
9459 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9460 Ent : Entity_Id := Empty;
7b9b2f05 9461
d9f6a4ee 9462 begin
9463 if Nkind (Nod) in N_Has_Etype
9464 and then Etype (Nod) = Any_Type
7b9b2f05 9465 then
d9f6a4ee 9466 return;
309c3053 9467 end if;
9468
d9f6a4ee 9469 case Nkind (Nod) is
99378362 9470 when N_Empty
9471 | N_Error
9472 =>
d9f6a4ee 9473 return;
7d20685d 9474
99378362 9475 when N_Expanded_Name
9476 | N_Identifier
9477 =>
d9f6a4ee 9478 Ent := Entity (Nod);
7d20685d 9479
d9f6a4ee 9480 -- We need to look at the original node if it is different
9481 -- from the node, since we may have rewritten things and
9482 -- substituted an identifier representing the rewrite.
7d20685d 9483
d9f6a4ee 9484 if Original_Node (Nod) /= Nod then
9485 Check_Expr_Constants (Original_Node (Nod));
7d20685d 9486
d9f6a4ee 9487 -- If the node is an object declaration without initial
9488 -- value, some code has been expanded, and the expression
9489 -- is not constant, even if the constituents might be
9490 -- acceptable, as in A'Address + offset.
7d20685d 9491
d9f6a4ee 9492 if Ekind (Ent) = E_Variable
9493 and then
9494 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9495 and then
9496 No (Expression (Declaration_Node (Ent)))
9497 then
9498 Error_Msg_NE
9499 ("invalid address clause for initialized object &!",
9500 Nod, U_Ent);
89f1e35c 9501
d9f6a4ee 9502 -- If entity is constant, it may be the result of expanding
9503 -- a check. We must verify that its declaration appears
9504 -- before the object in question, else we also reject the
9505 -- address clause.
7d20685d 9506
d9f6a4ee 9507 elsif Ekind (Ent) = E_Constant
9508 and then In_Same_Source_Unit (Ent, U_Ent)
9509 and then Sloc (Ent) > Loc_U_Ent
9510 then
9511 Error_Msg_NE
9512 ("invalid address clause for initialized object &!",
9513 Nod, U_Ent);
9514 end if;
7d20685d 9515
d9f6a4ee 9516 return;
9517 end if;
7d20685d 9518
d9f6a4ee 9519 -- Otherwise look at the identifier and see if it is OK
7d20685d 9520
d9f6a4ee 9521 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9522 or else Is_Type (Ent)
9523 then
9524 return;
7d20685d 9525
f02a9a9a 9526 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9527
d9f6a4ee 9528 -- This is the case where we must have Ent defined before
9529 -- U_Ent. Clearly if they are in different units this
9530 -- requirement is met since the unit containing Ent is
9531 -- already processed.
7d20685d 9532
d9f6a4ee 9533 if not In_Same_Source_Unit (Ent, U_Ent) then
9534 return;
7d20685d 9535
d9f6a4ee 9536 -- Otherwise location of Ent must be before the location
9537 -- of U_Ent, that's what prior defined means.
7d20685d 9538
d9f6a4ee 9539 elsif Sloc (Ent) < Loc_U_Ent then
9540 return;
6c545057 9541
d9f6a4ee 9542 else
9543 Error_Msg_NE
9544 ("invalid address clause for initialized object &!",
9545 Nod, U_Ent);
9546 Error_Msg_Node_2 := U_Ent;
9547 Error_Msg_NE
9548 ("\& must be defined before & (RM 13.1(22))!",
9549 Nod, Ent);
9550 end if;
37c6e44c 9551
d9f6a4ee 9552 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9553 Check_Expr_Constants (Original_Node (Nod));
6c545057 9554
d9f6a4ee 9555 else
9556 Error_Msg_NE
9557 ("invalid address clause for initialized object &!",
9558 Nod, U_Ent);
3cdbaa5a 9559
d9f6a4ee 9560 if Comes_From_Source (Ent) then
9561 Error_Msg_NE
9562 ("\reference to variable& not allowed"
9563 & " (RM 13.1(22))!", Nod, Ent);
9564 else
9565 Error_Msg_N
9566 ("non-static expression not allowed"
9567 & " (RM 13.1(22))!", Nod);
9568 end if;
9569 end if;
3cdbaa5a 9570
d9f6a4ee 9571 when N_Integer_Literal =>
7f694ca2 9572
d9f6a4ee 9573 -- If this is a rewritten unchecked conversion, in a system
9574 -- where Address is an integer type, always use the base type
9575 -- for a literal value. This is user-friendly and prevents
9576 -- order-of-elaboration issues with instances of unchecked
9577 -- conversion.
3cdbaa5a 9578
d9f6a4ee 9579 if Nkind (Original_Node (Nod)) = N_Function_Call then
9580 Set_Etype (Nod, Base_Type (Etype (Nod)));
9581 end if;
e1cedbae 9582
99378362 9583 when N_Character_Literal
9584 | N_Real_Literal
9585 | N_String_Literal
9586 =>
d9f6a4ee 9587 return;
7d20685d 9588
d9f6a4ee 9589 when N_Range =>
9590 Check_Expr_Constants (Low_Bound (Nod));
9591 Check_Expr_Constants (High_Bound (Nod));
231eb581 9592
d9f6a4ee 9593 when N_Explicit_Dereference =>
9594 Check_Expr_Constants (Prefix (Nod));
231eb581 9595
d9f6a4ee 9596 when N_Indexed_Component =>
9597 Check_Expr_Constants (Prefix (Nod));
9598 Check_List_Constants (Expressions (Nod));
7d20685d 9599
d9f6a4ee 9600 when N_Slice =>
9601 Check_Expr_Constants (Prefix (Nod));
9602 Check_Expr_Constants (Discrete_Range (Nod));
cb4c311d 9603
d9f6a4ee 9604 when N_Selected_Component =>
9605 Check_Expr_Constants (Prefix (Nod));
6144c105 9606
d9f6a4ee 9607 when N_Attribute_Reference =>
9608 if Nam_In (Attribute_Name (Nod), Name_Address,
9609 Name_Access,
9610 Name_Unchecked_Access,
9611 Name_Unrestricted_Access)
9612 then
9613 Check_At_Constant_Address (Prefix (Nod));
6144c105 9614
d9f6a4ee 9615 else
9616 Check_Expr_Constants (Prefix (Nod));
9617 Check_List_Constants (Expressions (Nod));
9618 end if;
a7a4a7c2 9619
d9f6a4ee 9620 when N_Aggregate =>
9621 Check_List_Constants (Component_Associations (Nod));
9622 Check_List_Constants (Expressions (Nod));
7d20685d 9623
d9f6a4ee 9624 when N_Component_Association =>
9625 Check_Expr_Constants (Expression (Nod));
e1cedbae 9626
d9f6a4ee 9627 when N_Extension_Aggregate =>
9628 Check_Expr_Constants (Ancestor_Part (Nod));
9629 Check_List_Constants (Component_Associations (Nod));
9630 Check_List_Constants (Expressions (Nod));
3cdbaa5a 9631
d9f6a4ee 9632 when N_Null =>
9633 return;
3cdbaa5a 9634
99378362 9635 when N_Binary_Op
9636 | N_Membership_Test
9637 | N_Short_Circuit
9638 =>
d9f6a4ee 9639 Check_Expr_Constants (Left_Opnd (Nod));
9640 Check_Expr_Constants (Right_Opnd (Nod));
e1cedbae 9641
d9f6a4ee 9642 when N_Unary_Op =>
9643 Check_Expr_Constants (Right_Opnd (Nod));
7f694ca2 9644
99378362 9645 when N_Allocator
9646 | N_Qualified_Expression
9647 | N_Type_Conversion
9648 | N_Unchecked_Type_Conversion
9649 =>
d9f6a4ee 9650 Check_Expr_Constants (Expression (Nod));
47a46747 9651
d9f6a4ee 9652 when N_Function_Call =>
9653 if not Is_Pure (Entity (Name (Nod))) then
9654 Error_Msg_NE
9655 ("invalid address clause for initialized object &!",
9656 Nod, U_Ent);
7f694ca2 9657
d9f6a4ee 9658 Error_Msg_NE
9659 ("\function & is not pure (RM 13.1(22))!",
9660 Nod, Entity (Name (Nod)));
b55f7641 9661
d9f6a4ee 9662 else
9663 Check_List_Constants (Parameter_Associations (Nod));
9664 end if;
b55f7641 9665
d9f6a4ee 9666 when N_Parameter_Association =>
9667 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7d20685d 9668
d9f6a4ee 9669 when others =>
9670 Error_Msg_NE
9671 ("invalid address clause for initialized object &!",
9672 Nod, U_Ent);
9673 Error_Msg_NE
9674 ("\must be constant defined before& (RM 13.1(22))!",
9675 Nod, U_Ent);
9676 end case;
9677 end Check_Expr_Constants;
7d20685d 9678
d9f6a4ee 9679 --------------------------
9680 -- Check_List_Constants --
9681 --------------------------
89f1e35c 9682
d9f6a4ee 9683 procedure Check_List_Constants (Lst : List_Id) is
9684 Nod1 : Node_Id;
7d20685d 9685
d9f6a4ee 9686 begin
9687 if Present (Lst) then
9688 Nod1 := First (Lst);
9689 while Present (Nod1) loop
9690 Check_Expr_Constants (Nod1);
9691 Next (Nod1);
9692 end loop;
9693 end if;
9694 end Check_List_Constants;
81b424ac 9695
d9f6a4ee 9696 -- Start of processing for Check_Constant_Address_Clause
81b424ac 9697
d9f6a4ee 9698 begin
9699 -- If rep_clauses are to be ignored, no need for legality checks. In
9c7948d7 9700 -- particular, no need to pester user about rep clauses that violate the
9701 -- rule on constant addresses, given that these clauses will be removed
9702 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9703 -- we want to relax these checks.
7d20685d 9704
f1a9be43 9705 if not Ignore_Rep_Clauses and not CodePeer_Mode then
d9f6a4ee 9706 Check_Expr_Constants (Expr);
9707 end if;
9708 end Check_Constant_Address_Clause;
7d20685d 9709
6653b695 9710 ---------------------------
9711 -- Check_Pool_Size_Clash --
9712 ---------------------------
9713
9714 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9715 Post : Node_Id;
9716
9717 begin
9718 -- We need to find out which one came first. Note that in the case of
9719 -- aspects mixed with pragmas there are cases where the processing order
9720 -- is reversed, which is why we do the check here.
9721
9722 if Sloc (SP) < Sloc (SS) then
9723 Error_Msg_Sloc := Sloc (SP);
9724 Post := SS;
9725 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9726
9727 else
9728 Error_Msg_Sloc := Sloc (SS);
9729 Post := SP;
9730 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9731 end if;
9732
9733 Error_Msg_N
9734 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9735 end Check_Pool_Size_Clash;
9736
d9f6a4ee 9737 ----------------------------------------
9738 -- Check_Record_Representation_Clause --
9739 ----------------------------------------
85696508 9740
d9f6a4ee 9741 procedure Check_Record_Representation_Clause (N : Node_Id) is
9742 Loc : constant Source_Ptr := Sloc (N);
9743 Ident : constant Node_Id := Identifier (N);
9744 Rectype : Entity_Id;
9745 Fent : Entity_Id;
9746 CC : Node_Id;
9747 Fbit : Uint;
9748 Lbit : Uint;
9749 Hbit : Uint := Uint_0;
9750 Comp : Entity_Id;
9751 Pcomp : Entity_Id;
89f1e35c 9752
d9f6a4ee 9753 Max_Bit_So_Far : Uint;
9754 -- Records the maximum bit position so far. If all field positions
9755 -- are monotonically increasing, then we can skip the circuit for
9756 -- checking for overlap, since no overlap is possible.
85696508 9757
d9f6a4ee 9758 Tagged_Parent : Entity_Id := Empty;
9759 -- This is set in the case of a derived tagged type for which we have
9760 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9761 -- positioned by record representation clauses). In this case we must
9762 -- check for overlap between components of this tagged type, and the
9763 -- components of its parent. Tagged_Parent will point to this parent
9764 -- type. For all other cases Tagged_Parent is left set to Empty.
7d20685d 9765
d9f6a4ee 9766 Parent_Last_Bit : Uint;
9767 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9768 -- last bit position for any field in the parent type. We only need to
9769 -- check overlap for fields starting below this point.
7d20685d 9770
d9f6a4ee 9771 Overlap_Check_Required : Boolean;
9772 -- Used to keep track of whether or not an overlap check is required
7d20685d 9773
d9f6a4ee 9774 Overlap_Detected : Boolean := False;
9775 -- Set True if an overlap is detected
d6f39728 9776
d9f6a4ee 9777 Ccount : Natural := 0;
9778 -- Number of component clauses in record rep clause
d6f39728 9779
d9f6a4ee 9780 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9781 -- Given two entities for record components or discriminants, checks
9782 -- if they have overlapping component clauses and issues errors if so.
d6f39728 9783
d9f6a4ee 9784 procedure Find_Component;
9785 -- Finds component entity corresponding to current component clause (in
9786 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9787 -- start/stop bits for the field. If there is no matching component or
9788 -- if the matching component does not have a component clause, then
9789 -- that's an error and Comp is set to Empty, but no error message is
9790 -- issued, since the message was already given. Comp is also set to
9791 -- Empty if the current "component clause" is in fact a pragma.
d6f39728 9792
d9f6a4ee 9793 -----------------------------
9794 -- Check_Component_Overlap --
9795 -----------------------------
9796
9797 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9798 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9799 CC2 : constant Node_Id := Component_Clause (C2_Ent);
d6f39728 9800
d6f39728 9801 begin
d9f6a4ee 9802 if Present (CC1) and then Present (CC2) then
d6f39728 9803
d9f6a4ee 9804 -- Exclude odd case where we have two tag components in the same
9805 -- record, both at location zero. This seems a bit strange, but
9806 -- it seems to happen in some circumstances, perhaps on an error.
9807
9808 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9809 return;
d6f39728 9810 end if;
9811
d9f6a4ee 9812 -- Here we check if the two fields overlap
9813
d6f39728 9814 declare
d9f6a4ee 9815 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9816 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9817 E1 : constant Uint := S1 + Esize (C1_Ent);
9818 E2 : constant Uint := S2 + Esize (C2_Ent);
d6f39728 9819
9820 begin
d9f6a4ee 9821 if E2 <= S1 or else E1 <= S2 then
9822 null;
d6f39728 9823 else
d9f6a4ee 9824 Error_Msg_Node_2 := Component_Name (CC2);
9825 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9826 Error_Msg_Node_1 := Component_Name (CC1);
9827 Error_Msg_N
9828 ("component& overlaps & #", Component_Name (CC1));
9829 Overlap_Detected := True;
d6f39728 9830 end if;
9831 end;
d6f39728 9832 end if;
d9f6a4ee 9833 end Check_Component_Overlap;
d6f39728 9834
d9f6a4ee 9835 --------------------
9836 -- Find_Component --
9837 --------------------
9dfe12ae 9838
d9f6a4ee 9839 procedure Find_Component is
9dfe12ae 9840
d9f6a4ee 9841 procedure Search_Component (R : Entity_Id);
9842 -- Search components of R for a match. If found, Comp is set
9dfe12ae 9843
d9f6a4ee 9844 ----------------------
9845 -- Search_Component --
9846 ----------------------
e7b2d6bc 9847
d9f6a4ee 9848 procedure Search_Component (R : Entity_Id) is
9849 begin
9850 Comp := First_Component_Or_Discriminant (R);
9851 while Present (Comp) loop
e7b2d6bc 9852
d9f6a4ee 9853 -- Ignore error of attribute name for component name (we
9854 -- already gave an error message for this, so no need to
9855 -- complain here)
e7b2d6bc 9856
d9f6a4ee 9857 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9858 null;
9859 else
9860 exit when Chars (Comp) = Chars (Component_Name (CC));
9dfe12ae 9861 end if;
9862
d9f6a4ee 9863 Next_Component_Or_Discriminant (Comp);
9864 end loop;
9865 end Search_Component;
d6f39728 9866
d9f6a4ee 9867 -- Start of processing for Find_Component
d6f39728 9868
d9f6a4ee 9869 begin
9870 -- Return with Comp set to Empty if we have a pragma
d6f39728 9871
d9f6a4ee 9872 if Nkind (CC) = N_Pragma then
9873 Comp := Empty;
9874 return;
9875 end if;
d6f39728 9876
d9f6a4ee 9877 -- Search current record for matching component
d6f39728 9878
d9f6a4ee 9879 Search_Component (Rectype);
9dfe12ae 9880
d9f6a4ee 9881 -- If not found, maybe component of base type discriminant that is
9882 -- absent from statically constrained first subtype.
e7b2d6bc 9883
d9f6a4ee 9884 if No (Comp) then
9885 Search_Component (Base_Type (Rectype));
9886 end if;
e7b2d6bc 9887
d9f6a4ee 9888 -- If no component, or the component does not reference the component
9889 -- clause in question, then there was some previous error for which
9890 -- we already gave a message, so just return with Comp Empty.
d6f39728 9891
d9f6a4ee 9892 if No (Comp) or else Component_Clause (Comp) /= CC then
9893 Check_Error_Detected;
9894 Comp := Empty;
93735cb8 9895
d9f6a4ee 9896 -- Normal case where we have a component clause
93735cb8 9897
d9f6a4ee 9898 else
9899 Fbit := Component_Bit_Offset (Comp);
9900 Lbit := Fbit + Esize (Comp) - 1;
9901 end if;
9902 end Find_Component;
93735cb8 9903
d9f6a4ee 9904 -- Start of processing for Check_Record_Representation_Clause
d6f39728 9905
d9f6a4ee 9906 begin
9907 Find_Type (Ident);
9908 Rectype := Entity (Ident);
d6f39728 9909
d9f6a4ee 9910 if Rectype = Any_Type then
9911 return;
9912 else
9913 Rectype := Underlying_Type (Rectype);
9914 end if;
d6f39728 9915
d9f6a4ee 9916 -- See if we have a fully repped derived tagged type
d6f39728 9917
d9f6a4ee 9918 declare
9919 PS : constant Entity_Id := Parent_Subtype (Rectype);
d6f39728 9920
d9f6a4ee 9921 begin
9922 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9923 Tagged_Parent := PS;
d6f39728 9924
d9f6a4ee 9925 -- Find maximum bit of any component of the parent type
d6f39728 9926
d9f6a4ee 9927 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9928 Pcomp := First_Entity (Tagged_Parent);
9929 while Present (Pcomp) loop
9930 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9931 if Component_Bit_Offset (Pcomp) /= No_Uint
9932 and then Known_Static_Esize (Pcomp)
9933 then
9934 Parent_Last_Bit :=
9935 UI_Max
9936 (Parent_Last_Bit,
9937 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9938 end if;
b7df4cda 9939 else
9940
9941 -- Skip anonymous types generated for constrained array
9942 -- or record components.
d9f6a4ee 9943
b7df4cda 9944 null;
d6f39728 9945 end if;
b7df4cda 9946
9947 Next_Entity (Pcomp);
d9f6a4ee 9948 end loop;
9949 end if;
9950 end;
d6f39728 9951
d9f6a4ee 9952 -- All done if no component clauses
d6f39728 9953
d9f6a4ee 9954 CC := First (Component_Clauses (N));
d6f39728 9955
d9f6a4ee 9956 if No (CC) then
9957 return;
9958 end if;
d6f39728 9959
d9f6a4ee 9960 -- If a tag is present, then create a component clause that places it
9961 -- at the start of the record (otherwise gigi may place it after other
9962 -- fields that have rep clauses).
d6f39728 9963
d9f6a4ee 9964 Fent := First_Entity (Rectype);
d6f39728 9965
d9f6a4ee 9966 if Nkind (Fent) = N_Defining_Identifier
9967 and then Chars (Fent) = Name_uTag
9968 then
9969 Set_Component_Bit_Offset (Fent, Uint_0);
9970 Set_Normalized_Position (Fent, Uint_0);
9971 Set_Normalized_First_Bit (Fent, Uint_0);
9972 Set_Normalized_Position_Max (Fent, Uint_0);
9973 Init_Esize (Fent, System_Address_Size);
d6f39728 9974
d9f6a4ee 9975 Set_Component_Clause (Fent,
9976 Make_Component_Clause (Loc,
9977 Component_Name => Make_Identifier (Loc, Name_uTag),
d6f39728 9978
d9f6a4ee 9979 Position => Make_Integer_Literal (Loc, Uint_0),
9980 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9981 Last_Bit =>
9982 Make_Integer_Literal (Loc,
9983 UI_From_Int (System_Address_Size))));
d6f39728 9984
d9f6a4ee 9985 Ccount := Ccount + 1;
9986 end if;
d6f39728 9987
d9f6a4ee 9988 Max_Bit_So_Far := Uint_Minus_1;
9989 Overlap_Check_Required := False;
d6f39728 9990
d9f6a4ee 9991 -- Process the component clauses
d6f39728 9992
d9f6a4ee 9993 while Present (CC) loop
9994 Find_Component;
d6f39728 9995
d9f6a4ee 9996 if Present (Comp) then
9997 Ccount := Ccount + 1;
d6f39728 9998
d9f6a4ee 9999 -- We need a full overlap check if record positions non-monotonic
d6f39728 10000
d9f6a4ee 10001 if Fbit <= Max_Bit_So_Far then
10002 Overlap_Check_Required := True;
10003 end if;
d6f39728 10004
d9f6a4ee 10005 Max_Bit_So_Far := Lbit;
d6f39728 10006
d9f6a4ee 10007 -- Check bit position out of range of specified size
01cb2726 10008
d9f6a4ee 10009 if Has_Size_Clause (Rectype)
10010 and then RM_Size (Rectype) <= Lbit
10011 then
10012 Error_Msg_N
10013 ("bit number out of range of specified size",
10014 Last_Bit (CC));
d6f39728 10015
d9f6a4ee 10016 -- Check for overlap with tag component
67278d60 10017
d9f6a4ee 10018 else
10019 if Is_Tagged_Type (Rectype)
10020 and then Fbit < System_Address_Size
10021 then
10022 Error_Msg_NE
10023 ("component overlaps tag field of&",
10024 Component_Name (CC), Rectype);
10025 Overlap_Detected := True;
10026 end if;
67278d60 10027
d9f6a4ee 10028 if Hbit < Lbit then
10029 Hbit := Lbit;
10030 end if;
10031 end if;
67278d60 10032
d9f6a4ee 10033 -- Check parent overlap if component might overlap parent field
67278d60 10034
d9f6a4ee 10035 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
10036 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
10037 while Present (Pcomp) loop
10038 if not Is_Tag (Pcomp)
10039 and then Chars (Pcomp) /= Name_uParent
10040 then
10041 Check_Component_Overlap (Comp, Pcomp);
10042 end if;
67278d60 10043
d9f6a4ee 10044 Next_Component_Or_Discriminant (Pcomp);
10045 end loop;
10046 end if;
10047 end if;
67278d60 10048
d9f6a4ee 10049 Next (CC);
10050 end loop;
47495553 10051
d9f6a4ee 10052 -- Now that we have processed all the component clauses, check for
10053 -- overlap. We have to leave this till last, since the components can
10054 -- appear in any arbitrary order in the representation clause.
67278d60 10055
d9f6a4ee 10056 -- We do not need this check if all specified ranges were monotonic,
10057 -- as recorded by Overlap_Check_Required being False at this stage.
67278d60 10058
d9f6a4ee 10059 -- This first section checks if there are any overlapping entries at
10060 -- all. It does this by sorting all entries and then seeing if there are
10061 -- any overlaps. If there are none, then that is decisive, but if there
10062 -- are overlaps, they may still be OK (they may result from fields in
10063 -- different variants).
67278d60 10064
d9f6a4ee 10065 if Overlap_Check_Required then
10066 Overlap_Check1 : declare
67278d60 10067
d9f6a4ee 10068 OC_Fbit : array (0 .. Ccount) of Uint;
10069 -- First-bit values for component clauses, the value is the offset
10070 -- of the first bit of the field from start of record. The zero
10071 -- entry is for use in sorting.
47495553 10072
d9f6a4ee 10073 OC_Lbit : array (0 .. Ccount) of Uint;
10074 -- Last-bit values for component clauses, the value is the offset
10075 -- of the last bit of the field from start of record. The zero
10076 -- entry is for use in sorting.
10077
10078 OC_Count : Natural := 0;
10079 -- Count of entries in OC_Fbit and OC_Lbit
67278d60 10080
d9f6a4ee 10081 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10082 -- Compare routine for Sort
67278d60 10083
d9f6a4ee 10084 procedure OC_Move (From : Natural; To : Natural);
10085 -- Move routine for Sort
67278d60 10086
d9f6a4ee 10087 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
67278d60 10088
d9f6a4ee 10089 -----------
10090 -- OC_Lt --
10091 -----------
67278d60 10092
d9f6a4ee 10093 function OC_Lt (Op1, Op2 : Natural) return Boolean is
67278d60 10094 begin
d9f6a4ee 10095 return OC_Fbit (Op1) < OC_Fbit (Op2);
10096 end OC_Lt;
67278d60 10097
d9f6a4ee 10098 -------------
10099 -- OC_Move --
10100 -------------
67278d60 10101
d9f6a4ee 10102 procedure OC_Move (From : Natural; To : Natural) is
10103 begin
10104 OC_Fbit (To) := OC_Fbit (From);
10105 OC_Lbit (To) := OC_Lbit (From);
10106 end OC_Move;
67278d60 10107
d9f6a4ee 10108 -- Start of processing for Overlap_Check
67278d60 10109
67278d60 10110 begin
d9f6a4ee 10111 CC := First (Component_Clauses (N));
10112 while Present (CC) loop
67278d60 10113
d9f6a4ee 10114 -- Exclude component clause already marked in error
67278d60 10115
d9f6a4ee 10116 if not Error_Posted (CC) then
10117 Find_Component;
10118
10119 if Present (Comp) then
10120 OC_Count := OC_Count + 1;
10121 OC_Fbit (OC_Count) := Fbit;
10122 OC_Lbit (OC_Count) := Lbit;
10123 end if;
67278d60 10124 end if;
10125
d9f6a4ee 10126 Next (CC);
67278d60 10127 end loop;
67278d60 10128
d9f6a4ee 10129 Sorting.Sort (OC_Count);
67278d60 10130
d9f6a4ee 10131 Overlap_Check_Required := False;
10132 for J in 1 .. OC_Count - 1 loop
10133 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10134 Overlap_Check_Required := True;
10135 exit;
10136 end if;
10137 end loop;
10138 end Overlap_Check1;
10139 end if;
67278d60 10140
d9f6a4ee 10141 -- If Overlap_Check_Required is still True, then we have to do the full
10142 -- scale overlap check, since we have at least two fields that do
10143 -- overlap, and we need to know if that is OK since they are in
10144 -- different variant, or whether we have a definite problem.
67278d60 10145
d9f6a4ee 10146 if Overlap_Check_Required then
10147 Overlap_Check2 : declare
10148 C1_Ent, C2_Ent : Entity_Id;
10149 -- Entities of components being checked for overlap
67278d60 10150
d9f6a4ee 10151 Clist : Node_Id;
10152 -- Component_List node whose Component_Items are being checked
67278d60 10153
d9f6a4ee 10154 Citem : Node_Id;
10155 -- Component declaration for component being checked
67278d60 10156
d9f6a4ee 10157 begin
10158 C1_Ent := First_Entity (Base_Type (Rectype));
67278d60 10159
d9f6a4ee 10160 -- Loop through all components in record. For each component check
10161 -- for overlap with any of the preceding elements on the component
10162 -- list containing the component and also, if the component is in
10163 -- a variant, check against components outside the case structure.
10164 -- This latter test is repeated recursively up the variant tree.
67278d60 10165
d9f6a4ee 10166 Main_Component_Loop : while Present (C1_Ent) loop
10167 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10168 goto Continue_Main_Component_Loop;
10169 end if;
67278d60 10170
d9f6a4ee 10171 -- Skip overlap check if entity has no declaration node. This
10172 -- happens with discriminants in constrained derived types.
10173 -- Possibly we are missing some checks as a result, but that
10174 -- does not seem terribly serious.
67278d60 10175
d9f6a4ee 10176 if No (Declaration_Node (C1_Ent)) then
10177 goto Continue_Main_Component_Loop;
10178 end if;
67278d60 10179
d9f6a4ee 10180 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
67278d60 10181
d9f6a4ee 10182 -- Loop through component lists that need checking. Check the
10183 -- current component list and all lists in variants above us.
67278d60 10184
d9f6a4ee 10185 Component_List_Loop : loop
67278d60 10186
d9f6a4ee 10187 -- If derived type definition, go to full declaration
10188 -- If at outer level, check discriminants if there are any.
67278d60 10189
d9f6a4ee 10190 if Nkind (Clist) = N_Derived_Type_Definition then
10191 Clist := Parent (Clist);
10192 end if;
67278d60 10193
d9f6a4ee 10194 -- Outer level of record definition, check discriminants
67278d60 10195
d9f6a4ee 10196 if Nkind_In (Clist, N_Full_Type_Declaration,
10197 N_Private_Type_Declaration)
67278d60 10198 then
d9f6a4ee 10199 if Has_Discriminants (Defining_Identifier (Clist)) then
10200 C2_Ent :=
10201 First_Discriminant (Defining_Identifier (Clist));
10202 while Present (C2_Ent) loop
10203 exit when C1_Ent = C2_Ent;
10204 Check_Component_Overlap (C1_Ent, C2_Ent);
10205 Next_Discriminant (C2_Ent);
10206 end loop;
10207 end if;
67278d60 10208
d9f6a4ee 10209 -- Record extension case
67278d60 10210
d9f6a4ee 10211 elsif Nkind (Clist) = N_Derived_Type_Definition then
10212 Clist := Empty;
67278d60 10213
d9f6a4ee 10214 -- Otherwise check one component list
67278d60 10215
d9f6a4ee 10216 else
10217 Citem := First (Component_Items (Clist));
10218 while Present (Citem) loop
10219 if Nkind (Citem) = N_Component_Declaration then
10220 C2_Ent := Defining_Identifier (Citem);
10221 exit when C1_Ent = C2_Ent;
10222 Check_Component_Overlap (C1_Ent, C2_Ent);
10223 end if;
67278d60 10224
d9f6a4ee 10225 Next (Citem);
10226 end loop;
10227 end if;
67278d60 10228
d9f6a4ee 10229 -- Check for variants above us (the parent of the Clist can
10230 -- be a variant, in which case its parent is a variant part,
10231 -- and the parent of the variant part is a component list
10232 -- whose components must all be checked against the current
10233 -- component for overlap).
67278d60 10234
d9f6a4ee 10235 if Nkind (Parent (Clist)) = N_Variant then
10236 Clist := Parent (Parent (Parent (Clist)));
67278d60 10237
d9f6a4ee 10238 -- Check for possible discriminant part in record, this
10239 -- is treated essentially as another level in the
10240 -- recursion. For this case the parent of the component
10241 -- list is the record definition, and its parent is the
10242 -- full type declaration containing the discriminant
10243 -- specifications.
10244
10245 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10246 Clist := Parent (Parent ((Clist)));
10247
10248 -- If neither of these two cases, we are at the top of
10249 -- the tree.
10250
10251 else
10252 exit Component_List_Loop;
10253 end if;
10254 end loop Component_List_Loop;
67278d60 10255
d9f6a4ee 10256 <<Continue_Main_Component_Loop>>
10257 Next_Entity (C1_Ent);
67278d60 10258
d9f6a4ee 10259 end loop Main_Component_Loop;
10260 end Overlap_Check2;
67278d60 10261 end if;
10262
d9f6a4ee 10263 -- The following circuit deals with warning on record holes (gaps). We
10264 -- skip this check if overlap was detected, since it makes sense for the
10265 -- programmer to fix this illegality before worrying about warnings.
67278d60 10266
d9f6a4ee 10267 if not Overlap_Detected and Warn_On_Record_Holes then
10268 Record_Hole_Check : declare
10269 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10270 -- Full declaration of record type
67278d60 10271
d9f6a4ee 10272 procedure Check_Component_List
10273 (CL : Node_Id;
10274 Sbit : Uint;
10275 DS : List_Id);
10276 -- Check component list CL for holes. The starting bit should be
10277 -- Sbit. which is zero for the main record component list and set
10278 -- appropriately for recursive calls for variants. DS is set to
10279 -- a list of discriminant specifications to be included in the
10280 -- consideration of components. It is No_List if none to consider.
67278d60 10281
d9f6a4ee 10282 --------------------------
10283 -- Check_Component_List --
10284 --------------------------
47495553 10285
d9f6a4ee 10286 procedure Check_Component_List
10287 (CL : Node_Id;
10288 Sbit : Uint;
10289 DS : List_Id)
10290 is
10291 Compl : Integer;
67278d60 10292
d9f6a4ee 10293 begin
10294 Compl := Integer (List_Length (Component_Items (CL)));
47495553 10295
d9f6a4ee 10296 if DS /= No_List then
10297 Compl := Compl + Integer (List_Length (DS));
10298 end if;
67278d60 10299
d9f6a4ee 10300 declare
10301 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10302 -- Gather components (zero entry is for sort routine)
67278d60 10303
d9f6a4ee 10304 Ncomps : Natural := 0;
10305 -- Number of entries stored in Comps (starting at Comps (1))
67278d60 10306
d9f6a4ee 10307 Citem : Node_Id;
10308 -- One component item or discriminant specification
67278d60 10309
d9f6a4ee 10310 Nbit : Uint;
10311 -- Starting bit for next component
67278d60 10312
d9f6a4ee 10313 CEnt : Entity_Id;
10314 -- Component entity
67278d60 10315
d9f6a4ee 10316 Variant : Node_Id;
10317 -- One variant
67278d60 10318
d9f6a4ee 10319 function Lt (Op1, Op2 : Natural) return Boolean;
10320 -- Compare routine for Sort
67278d60 10321
d9f6a4ee 10322 procedure Move (From : Natural; To : Natural);
10323 -- Move routine for Sort
67278d60 10324
d9f6a4ee 10325 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
67278d60 10326
d9f6a4ee 10327 --------
10328 -- Lt --
10329 --------
67278d60 10330
d9f6a4ee 10331 function Lt (Op1, Op2 : Natural) return Boolean is
10332 begin
10333 return Component_Bit_Offset (Comps (Op1))
10334 <
10335 Component_Bit_Offset (Comps (Op2));
10336 end Lt;
67278d60 10337
d9f6a4ee 10338 ----------
10339 -- Move --
10340 ----------
67278d60 10341
d9f6a4ee 10342 procedure Move (From : Natural; To : Natural) is
10343 begin
10344 Comps (To) := Comps (From);
10345 end Move;
67278d60 10346
d9f6a4ee 10347 begin
10348 -- Gather discriminants into Comp
67278d60 10349
d9f6a4ee 10350 if DS /= No_List then
10351 Citem := First (DS);
10352 while Present (Citem) loop
10353 if Nkind (Citem) = N_Discriminant_Specification then
10354 declare
10355 Ent : constant Entity_Id :=
10356 Defining_Identifier (Citem);
10357 begin
10358 if Ekind (Ent) = E_Discriminant then
10359 Ncomps := Ncomps + 1;
10360 Comps (Ncomps) := Ent;
10361 end if;
10362 end;
10363 end if;
67278d60 10364
d9f6a4ee 10365 Next (Citem);
10366 end loop;
10367 end if;
67278d60 10368
d9f6a4ee 10369 -- Gather component entities into Comp
67278d60 10370
d9f6a4ee 10371 Citem := First (Component_Items (CL));
10372 while Present (Citem) loop
10373 if Nkind (Citem) = N_Component_Declaration then
10374 Ncomps := Ncomps + 1;
10375 Comps (Ncomps) := Defining_Identifier (Citem);
10376 end if;
67278d60 10377
d9f6a4ee 10378 Next (Citem);
10379 end loop;
67278d60 10380
d9f6a4ee 10381 -- Now sort the component entities based on the first bit.
10382 -- Note we already know there are no overlapping components.
67278d60 10383
d9f6a4ee 10384 Sorting.Sort (Ncomps);
67278d60 10385
d9f6a4ee 10386 -- Loop through entries checking for holes
67278d60 10387
d9f6a4ee 10388 Nbit := Sbit;
10389 for J in 1 .. Ncomps loop
10390 CEnt := Comps (J);
67278d60 10391
f55a6472 10392 declare
10393 CBO : constant Uint := Component_Bit_Offset (CEnt);
10394
10395 begin
10396 -- Skip components with unknown offsets
10397
10398 if CBO /= No_Uint and then CBO >= 0 then
10399 Error_Msg_Uint_1 := CBO - Nbit;
67278d60 10400
f55a6472 10401 if Error_Msg_Uint_1 > 0 then
10402 Error_Msg_NE
10403 ("?H?^-bit gap before component&",
10404 Component_Name (Component_Clause (CEnt)),
10405 CEnt);
10406 end if;
10407
10408 Nbit := CBO + Esize (CEnt);
10409 end if;
10410 end;
d9f6a4ee 10411 end loop;
67278d60 10412
d9f6a4ee 10413 -- Process variant parts recursively if present
67278d60 10414
d9f6a4ee 10415 if Present (Variant_Part (CL)) then
10416 Variant := First (Variants (Variant_Part (CL)));
10417 while Present (Variant) loop
10418 Check_Component_List
10419 (Component_List (Variant), Nbit, No_List);
10420 Next (Variant);
10421 end loop;
67278d60 10422 end if;
d9f6a4ee 10423 end;
10424 end Check_Component_List;
67278d60 10425
d9f6a4ee 10426 -- Start of processing for Record_Hole_Check
67278d60 10427
d9f6a4ee 10428 begin
10429 declare
10430 Sbit : Uint;
67278d60 10431
d9f6a4ee 10432 begin
10433 if Is_Tagged_Type (Rectype) then
10434 Sbit := UI_From_Int (System_Address_Size);
10435 else
10436 Sbit := Uint_0;
10437 end if;
10438
10439 if Nkind (Decl) = N_Full_Type_Declaration
10440 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10441 then
10442 Check_Component_List
10443 (Component_List (Type_Definition (Decl)),
10444 Sbit,
10445 Discriminant_Specifications (Decl));
67278d60 10446 end if;
d9f6a4ee 10447 end;
10448 end Record_Hole_Check;
67278d60 10449 end if;
10450
d9f6a4ee 10451 -- For records that have component clauses for all components, and whose
10452 -- size is less than or equal to 32, we need to know the size in the
10453 -- front end to activate possible packed array processing where the
10454 -- component type is a record.
67278d60 10455
d9f6a4ee 10456 -- At this stage Hbit + 1 represents the first unused bit from all the
10457 -- component clauses processed, so if the component clauses are
10458 -- complete, then this is the length of the record.
67278d60 10459
d9f6a4ee 10460 -- For records longer than System.Storage_Unit, and for those where not
10461 -- all components have component clauses, the back end determines the
10462 -- length (it may for example be appropriate to round up the size
10463 -- to some convenient boundary, based on alignment considerations, etc).
67278d60 10464
d9f6a4ee 10465 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
67278d60 10466
d9f6a4ee 10467 -- Nothing to do if at least one component has no component clause
67278d60 10468
d9f6a4ee 10469 Comp := First_Component_Or_Discriminant (Rectype);
10470 while Present (Comp) loop
10471 exit when No (Component_Clause (Comp));
10472 Next_Component_Or_Discriminant (Comp);
10473 end loop;
67278d60 10474
d9f6a4ee 10475 -- If we fall out of loop, all components have component clauses
10476 -- and so we can set the size to the maximum value.
67278d60 10477
d9f6a4ee 10478 if No (Comp) then
10479 Set_RM_Size (Rectype, Hbit + 1);
10480 end if;
10481 end if;
10482 end Check_Record_Representation_Clause;
67278d60 10483
d9f6a4ee 10484 ----------------
10485 -- Check_Size --
10486 ----------------
67278d60 10487
d9f6a4ee 10488 procedure Check_Size
10489 (N : Node_Id;
10490 T : Entity_Id;
10491 Siz : Uint;
10492 Biased : out Boolean)
10493 is
f74a102b 10494 procedure Size_Too_Small_Error (Min_Siz : Uint);
10495 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10496 -- minimum size.
10497
10498 --------------------------
10499 -- Size_Too_Small_Error --
10500 --------------------------
10501
10502 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10503 begin
10504 -- This error is suppressed in ASIS mode to allow for different ASIS
f9906591 10505 -- back ends or ASIS-based tools to query the illegal clause.
f74a102b 10506
10507 if not ASIS_Mode then
10508 Error_Msg_Uint_1 := Min_Siz;
6d22398d 10509 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
f74a102b 10510 end if;
10511 end Size_Too_Small_Error;
10512
10513 -- Local variables
10514
d9f6a4ee 10515 UT : constant Entity_Id := Underlying_Type (T);
10516 M : Uint;
67278d60 10517
f74a102b 10518 -- Start of processing for Check_Size
10519
d9f6a4ee 10520 begin
10521 Biased := False;
67278d60 10522
f74a102b 10523 -- Reject patently improper size values
67278d60 10524
d9f6a4ee 10525 if Is_Elementary_Type (T)
10526 and then Siz > UI_From_Int (Int'Last)
10527 then
10528 Error_Msg_N ("Size value too large for elementary type", N);
67278d60 10529
d9f6a4ee 10530 if Nkind (Original_Node (N)) = N_Op_Expon then
10531 Error_Msg_N
10532 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10533 end if;
10534 end if;
67278d60 10535
d9f6a4ee 10536 -- Dismiss generic types
67278d60 10537
d9f6a4ee 10538 if Is_Generic_Type (T)
10539 or else
10540 Is_Generic_Type (UT)
10541 or else
10542 Is_Generic_Type (Root_Type (UT))
10543 then
10544 return;
67278d60 10545
d9f6a4ee 10546 -- Guard against previous errors
67278d60 10547
d9f6a4ee 10548 elsif No (UT) or else UT = Any_Type then
10549 Check_Error_Detected;
10550 return;
67278d60 10551
d9f6a4ee 10552 -- Check case of bit packed array
67278d60 10553
d9f6a4ee 10554 elsif Is_Array_Type (UT)
10555 and then Known_Static_Component_Size (UT)
10556 and then Is_Bit_Packed_Array (UT)
10557 then
10558 declare
10559 Asiz : Uint;
10560 Indx : Node_Id;
10561 Ityp : Entity_Id;
67278d60 10562
d9f6a4ee 10563 begin
10564 Asiz := Component_Size (UT);
10565 Indx := First_Index (UT);
10566 loop
10567 Ityp := Etype (Indx);
67278d60 10568
d9f6a4ee 10569 -- If non-static bound, then we are not in the business of
10570 -- trying to check the length, and indeed an error will be
10571 -- issued elsewhere, since sizes of non-static array types
10572 -- cannot be set implicitly or explicitly.
67278d60 10573
cda40848 10574 if not Is_OK_Static_Subtype (Ityp) then
d9f6a4ee 10575 return;
10576 end if;
67278d60 10577
d9f6a4ee 10578 -- Otherwise accumulate next dimension
67278d60 10579
d9f6a4ee 10580 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10581 Expr_Value (Type_Low_Bound (Ityp)) +
10582 Uint_1);
67278d60 10583
d9f6a4ee 10584 Next_Index (Indx);
10585 exit when No (Indx);
10586 end loop;
67278d60 10587
d9f6a4ee 10588 if Asiz <= Siz then
10589 return;
67278d60 10590
d9f6a4ee 10591 else
f74a102b 10592 Size_Too_Small_Error (Asiz);
d9f6a4ee 10593 Set_Esize (T, Asiz);
10594 Set_RM_Size (T, Asiz);
10595 end if;
10596 end;
67278d60 10597
d9f6a4ee 10598 -- All other composite types are ignored
67278d60 10599
d9f6a4ee 10600 elsif Is_Composite_Type (UT) then
10601 return;
47495553 10602
d9f6a4ee 10603 -- For fixed-point types, don't check minimum if type is not frozen,
10604 -- since we don't know all the characteristics of the type that can
10605 -- affect the size (e.g. a specified small) till freeze time.
47495553 10606
f74a102b 10607 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
d9f6a4ee 10608 null;
47495553 10609
d9f6a4ee 10610 -- Cases for which a minimum check is required
47495553 10611
d9f6a4ee 10612 else
10613 -- Ignore if specified size is correct for the type
47495553 10614
d9f6a4ee 10615 if Known_Esize (UT) and then Siz = Esize (UT) then
10616 return;
10617 end if;
47495553 10618
d9f6a4ee 10619 -- Otherwise get minimum size
47495553 10620
d9f6a4ee 10621 M := UI_From_Int (Minimum_Size (UT));
47495553 10622
d9f6a4ee 10623 if Siz < M then
47495553 10624
d9f6a4ee 10625 -- Size is less than minimum size, but one possibility remains
10626 -- that we can manage with the new size if we bias the type.
47495553 10627
d9f6a4ee 10628 M := UI_From_Int (Minimum_Size (UT, Biased => True));
47495553 10629
d9f6a4ee 10630 if Siz < M then
f74a102b 10631 Size_Too_Small_Error (M);
10632 Set_Esize (T, M);
d9f6a4ee 10633 Set_RM_Size (T, M);
10634 else
10635 Biased := True;
10636 end if;
10637 end if;
10638 end if;
10639 end Check_Size;
47495553 10640
d9f6a4ee 10641 --------------------------
10642 -- Freeze_Entity_Checks --
10643 --------------------------
47495553 10644
d9f6a4ee 10645 procedure Freeze_Entity_Checks (N : Node_Id) is
8cf481c9 10646 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10647 -- Inspect the primitive operations of type Typ and hide all pairs of
3118058b 10648 -- implicitly declared non-overridden non-fully conformant homographs
10649 -- (Ada RM 8.3 12.3/2).
8cf481c9 10650
10651 -------------------------------------
10652 -- Hide_Non_Overridden_Subprograms --
10653 -------------------------------------
10654
10655 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10656 procedure Hide_Matching_Homographs
10657 (Subp_Id : Entity_Id;
10658 Start_Elmt : Elmt_Id);
10659 -- Inspect a list of primitive operations starting with Start_Elmt
3118058b 10660 -- and find matching implicitly declared non-overridden non-fully
10661 -- conformant homographs of Subp_Id. If found, all matches along
10662 -- with Subp_Id are hidden from all visibility.
8cf481c9 10663
10664 function Is_Non_Overridden_Or_Null_Procedure
10665 (Subp_Id : Entity_Id) return Boolean;
10666 -- Determine whether subprogram Subp_Id is implicitly declared non-
10667 -- overridden subprogram or an implicitly declared null procedure.
10668
10669 ------------------------------
10670 -- Hide_Matching_Homographs --
10671 ------------------------------
10672
10673 procedure Hide_Matching_Homographs
10674 (Subp_Id : Entity_Id;
10675 Start_Elmt : Elmt_Id)
10676 is
10677 Prim : Entity_Id;
10678 Prim_Elmt : Elmt_Id;
10679
10680 begin
10681 Prim_Elmt := Start_Elmt;
10682 while Present (Prim_Elmt) loop
10683 Prim := Node (Prim_Elmt);
10684
10685 -- The current primitive is implicitly declared non-overridden
3118058b 10686 -- non-fully conformant homograph of Subp_Id. Both subprograms
10687 -- must be hidden from visibility.
8cf481c9 10688
10689 if Chars (Prim) = Chars (Subp_Id)
8cf481c9 10690 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
3118058b 10691 and then not Fully_Conformant (Prim, Subp_Id)
8cf481c9 10692 then
8c7ee4ac 10693 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10694 Set_Is_Immediately_Visible (Prim, False);
10695 Set_Is_Potentially_Use_Visible (Prim, False);
8cf481c9 10696
8c7ee4ac 10697 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10698 Set_Is_Immediately_Visible (Subp_Id, False);
10699 Set_Is_Potentially_Use_Visible (Subp_Id, False);
8cf481c9 10700 end if;
10701
10702 Next_Elmt (Prim_Elmt);
10703 end loop;
10704 end Hide_Matching_Homographs;
10705
10706 -----------------------------------------
10707 -- Is_Non_Overridden_Or_Null_Procedure --
10708 -----------------------------------------
10709
10710 function Is_Non_Overridden_Or_Null_Procedure
10711 (Subp_Id : Entity_Id) return Boolean
10712 is
10713 Alias_Id : Entity_Id;
10714
10715 begin
10716 -- The subprogram is inherited (implicitly declared), it does not
10717 -- override and does not cover a primitive of an interface.
10718
10719 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10720 and then Present (Alias (Subp_Id))
10721 and then No (Interface_Alias (Subp_Id))
10722 and then No (Overridden_Operation (Subp_Id))
10723 then
10724 Alias_Id := Alias (Subp_Id);
10725
10726 if Requires_Overriding (Alias_Id) then
10727 return True;
10728
10729 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10730 and then Null_Present (Parent (Alias_Id))
10731 then
10732 return True;
10733 end if;
10734 end if;
10735
10736 return False;
10737 end Is_Non_Overridden_Or_Null_Procedure;
10738
10739 -- Local variables
10740
10741 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10742 Prim : Entity_Id;
10743 Prim_Elmt : Elmt_Id;
10744
10745 -- Start of processing for Hide_Non_Overridden_Subprograms
10746
10747 begin
3118058b 10748 -- Inspect the list of primitives looking for non-overridden
10749 -- subprograms.
8cf481c9 10750
10751 if Present (Prim_Ops) then
10752 Prim_Elmt := First_Elmt (Prim_Ops);
10753 while Present (Prim_Elmt) loop
10754 Prim := Node (Prim_Elmt);
10755 Next_Elmt (Prim_Elmt);
10756
10757 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10758 Hide_Matching_Homographs
10759 (Subp_Id => Prim,
10760 Start_Elmt => Prim_Elmt);
10761 end if;
10762 end loop;
10763 end if;
10764 end Hide_Non_Overridden_Subprograms;
10765
97c23bbe 10766 -- Local variables
8cf481c9 10767
d9f6a4ee 10768 E : constant Entity_Id := Entity (N);
47495553 10769
d9f6a4ee 10770 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10771 -- True in non-generic case. Some of the processing here is skipped
10772 -- for the generic case since it is not needed. Basically in the
10773 -- generic case, we only need to do stuff that might generate error
10774 -- messages or warnings.
8cf481c9 10775
10776 -- Start of processing for Freeze_Entity_Checks
10777
d9f6a4ee 10778 begin
10779 -- Remember that we are processing a freezing entity. Required to
10780 -- ensure correct decoration of internal entities associated with
10781 -- interfaces (see New_Overloaded_Entity).
47495553 10782
d9f6a4ee 10783 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
47495553 10784
d9f6a4ee 10785 -- For tagged types covering interfaces add internal entities that link
10786 -- the primitives of the interfaces with the primitives that cover them.
10787 -- Note: These entities were originally generated only when generating
10788 -- code because their main purpose was to provide support to initialize
10789 -- the secondary dispatch tables. They are now generated also when
10790 -- compiling with no code generation to provide ASIS the relationship
10791 -- between interface primitives and tagged type primitives. They are
10792 -- also used to locate primitives covering interfaces when processing
10793 -- generics (see Derive_Subprograms).
47495553 10794
d9f6a4ee 10795 -- This is not needed in the generic case
47495553 10796
d9f6a4ee 10797 if Ada_Version >= Ada_2005
10798 and then Non_Generic_Case
10799 and then Ekind (E) = E_Record_Type
10800 and then Is_Tagged_Type (E)
10801 and then not Is_Interface (E)
10802 and then Has_Interfaces (E)
10803 then
10804 -- This would be a good common place to call the routine that checks
10805 -- overriding of interface primitives (and thus factorize calls to
10806 -- Check_Abstract_Overriding located at different contexts in the
10807 -- compiler). However, this is not possible because it causes
10808 -- spurious errors in case of late overriding.
47495553 10809
d9f6a4ee 10810 Add_Internal_Interface_Entities (E);
10811 end if;
47495553 10812
8cf481c9 10813 -- After all forms of overriding have been resolved, a tagged type may
10814 -- be left with a set of implicitly declared and possibly erroneous
10815 -- abstract subprograms, null procedures and subprograms that require
0c4e0575 10816 -- overriding. If this set contains fully conformant homographs, then
10817 -- one is chosen arbitrarily (already done during resolution), otherwise
10818 -- all remaining non-fully conformant homographs are hidden from
10819 -- visibility (Ada RM 8.3 12.3/2).
8cf481c9 10820
10821 if Is_Tagged_Type (E) then
10822 Hide_Non_Overridden_Subprograms (E);
10823 end if;
10824
d9f6a4ee 10825 -- Check CPP types
47495553 10826
d9f6a4ee 10827 if Ekind (E) = E_Record_Type
10828 and then Is_CPP_Class (E)
10829 and then Is_Tagged_Type (E)
10830 and then Tagged_Type_Expansion
d9f6a4ee 10831 then
10832 if CPP_Num_Prims (E) = 0 then
47495553 10833
d9f6a4ee 10834 -- If the CPP type has user defined components then it must import
10835 -- primitives from C++. This is required because if the C++ class
10836 -- has no primitives then the C++ compiler does not added the _tag
10837 -- component to the type.
47495553 10838
d9f6a4ee 10839 if First_Entity (E) /= Last_Entity (E) then
10840 Error_Msg_N
10841 ("'C'P'P type must import at least one primitive from C++??",
10842 E);
10843 end if;
10844 end if;
47495553 10845
d9f6a4ee 10846 -- Check that all its primitives are abstract or imported from C++.
10847 -- Check also availability of the C++ constructor.
47495553 10848
d9f6a4ee 10849 declare
10850 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10851 Elmt : Elmt_Id;
10852 Error_Reported : Boolean := False;
10853 Prim : Node_Id;
47495553 10854
d9f6a4ee 10855 begin
10856 Elmt := First_Elmt (Primitive_Operations (E));
10857 while Present (Elmt) loop
10858 Prim := Node (Elmt);
47495553 10859
d9f6a4ee 10860 if Comes_From_Source (Prim) then
10861 if Is_Abstract_Subprogram (Prim) then
10862 null;
47495553 10863
d9f6a4ee 10864 elsif not Is_Imported (Prim)
10865 or else Convention (Prim) /= Convention_CPP
10866 then
10867 Error_Msg_N
10868 ("primitives of 'C'P'P types must be imported from C++ "
10869 & "or abstract??", Prim);
47495553 10870
d9f6a4ee 10871 elsif not Has_Constructors
10872 and then not Error_Reported
10873 then
10874 Error_Msg_Name_1 := Chars (E);
10875 Error_Msg_N
10876 ("??'C'P'P constructor required for type %", Prim);
10877 Error_Reported := True;
10878 end if;
10879 end if;
47495553 10880
d9f6a4ee 10881 Next_Elmt (Elmt);
10882 end loop;
10883 end;
10884 end if;
47495553 10885
d9f6a4ee 10886 -- Check Ada derivation of CPP type
47495553 10887
30ab103b 10888 if Expander_Active -- why? losing errors in -gnatc mode???
10889 and then Present (Etype (E)) -- defend against errors
d9f6a4ee 10890 and then Tagged_Type_Expansion
10891 and then Ekind (E) = E_Record_Type
10892 and then Etype (E) /= E
10893 and then Is_CPP_Class (Etype (E))
10894 and then CPP_Num_Prims (Etype (E)) > 0
10895 and then not Is_CPP_Class (E)
10896 and then not Has_CPP_Constructors (Etype (E))
10897 then
10898 -- If the parent has C++ primitives but it has no constructor then
10899 -- check that all the primitives are overridden in this derivation;
10900 -- otherwise the constructor of the parent is needed to build the
10901 -- dispatch table.
47495553 10902
d9f6a4ee 10903 declare
10904 Elmt : Elmt_Id;
10905 Prim : Node_Id;
47495553 10906
10907 begin
d9f6a4ee 10908 Elmt := First_Elmt (Primitive_Operations (E));
10909 while Present (Elmt) loop
10910 Prim := Node (Elmt);
47495553 10911
d9f6a4ee 10912 if not Is_Abstract_Subprogram (Prim)
10913 and then No (Interface_Alias (Prim))
10914 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
47495553 10915 then
d9f6a4ee 10916 Error_Msg_Name_1 := Chars (Etype (E));
10917 Error_Msg_N
10918 ("'C'P'P constructor required for parent type %", E);
10919 exit;
47495553 10920 end if;
d9f6a4ee 10921
10922 Next_Elmt (Elmt);
10923 end loop;
10924 end;
47495553 10925 end if;
10926
d9f6a4ee 10927 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
67278d60 10928
97c23bbe 10929 -- If we have a type with predicates, build predicate function. This is
10930 -- not needed in the generic case, nor within TSS subprograms and other
10931 -- predefined primitives.
67278d60 10932
97c23bbe 10933 if Is_Type (E)
10934 and then Non_Generic_Case
ea822fd4 10935 and then not Within_Internal_Subprogram
97c23bbe 10936 and then Has_Predicates (E)
ea822fd4 10937 then
d9f6a4ee 10938 Build_Predicate_Functions (E, N);
10939 end if;
67278d60 10940
d9f6a4ee 10941 -- If type has delayed aspects, this is where we do the preanalysis at
10942 -- the freeze point, as part of the consistent visibility check. Note
10943 -- that this must be done after calling Build_Predicate_Functions or
10944 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10945 -- the subtype name in the saved expression so that they will not cause
10946 -- trouble in the preanalysis.
67278d60 10947
61989dbb 10948 -- This is also not needed in the generic case
d9f6a4ee 10949
61989dbb 10950 if Non_Generic_Case
10951 and then Has_Delayed_Aspects (E)
d9f6a4ee 10952 and then Scope (E) = Current_Scope
10953 then
10954 -- Retrieve the visibility to the discriminants in order to properly
10955 -- analyze the aspects.
10956
10957 Push_Scope_And_Install_Discriminants (E);
10958
10959 declare
10960 Ritem : Node_Id;
10961
10962 begin
10963 -- Look for aspect specification entries for this entity
67278d60 10964
d9f6a4ee 10965 Ritem := First_Rep_Item (E);
10966 while Present (Ritem) loop
10967 if Nkind (Ritem) = N_Aspect_Specification
10968 and then Entity (Ritem) = E
10969 and then Is_Delayed_Aspect (Ritem)
10970 then
10971 Check_Aspect_At_Freeze_Point (Ritem);
10972 end if;
67278d60 10973
d9f6a4ee 10974 Next_Rep_Item (Ritem);
10975 end loop;
10976 end;
67278d60 10977
d9f6a4ee 10978 Uninstall_Discriminants_And_Pop_Scope (E);
67278d60 10979 end if;
67278d60 10980
d9f6a4ee 10981 -- For a record type, deal with variant parts. This has to be delayed
d0988351 10982 -- to this point, because of the issue of statically predicated
d9f6a4ee 10983 -- subtypes, which we have to ensure are frozen before checking
10984 -- choices, since we need to have the static choice list set.
d6f39728 10985
d9f6a4ee 10986 if Is_Record_Type (E) then
10987 Check_Variant_Part : declare
10988 D : constant Node_Id := Declaration_Node (E);
10989 T : Node_Id;
10990 C : Node_Id;
10991 VP : Node_Id;
d6f39728 10992
d9f6a4ee 10993 Others_Present : Boolean;
10994 pragma Warnings (Off, Others_Present);
10995 -- Indicates others present, not used in this case
d6f39728 10996
d9f6a4ee 10997 procedure Non_Static_Choice_Error (Choice : Node_Id);
10998 -- Error routine invoked by the generic instantiation below when
10999 -- the variant part has a non static choice.
f117057b 11000
d9f6a4ee 11001 procedure Process_Declarations (Variant : Node_Id);
11002 -- Processes declarations associated with a variant. We analyzed
11003 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11004 -- but we still need the recursive call to Check_Choices for any
11005 -- nested variant to get its choices properly processed. This is
11006 -- also where we expand out the choices if expansion is active.
1f526845 11007
d9f6a4ee 11008 package Variant_Choices_Processing is new
11009 Generic_Check_Choices
11010 (Process_Empty_Choice => No_OP,
11011 Process_Non_Static_Choice => Non_Static_Choice_Error,
11012 Process_Associated_Node => Process_Declarations);
11013 use Variant_Choices_Processing;
f117057b 11014
d9f6a4ee 11015 -----------------------------
11016 -- Non_Static_Choice_Error --
11017 -----------------------------
d6f39728 11018
d9f6a4ee 11019 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11020 begin
11021 Flag_Non_Static_Expr
11022 ("choice given in variant part is not static!", Choice);
11023 end Non_Static_Choice_Error;
d6f39728 11024
d9f6a4ee 11025 --------------------------
11026 -- Process_Declarations --
11027 --------------------------
dba36b60 11028
d9f6a4ee 11029 procedure Process_Declarations (Variant : Node_Id) is
11030 CL : constant Node_Id := Component_List (Variant);
11031 VP : Node_Id;
dba36b60 11032
d9f6a4ee 11033 begin
11034 -- Check for static predicate present in this variant
ea61a7ea 11035
d9f6a4ee 11036 if Has_SP_Choice (Variant) then
ea61a7ea 11037
d9f6a4ee 11038 -- Here we expand. You might expect to find this call in
11039 -- Expand_N_Variant_Part, but that is called when we first
11040 -- see the variant part, and we cannot do this expansion
11041 -- earlier than the freeze point, since for statically
11042 -- predicated subtypes, the predicate is not known till
11043 -- the freeze point.
ea61a7ea 11044
d9f6a4ee 11045 -- Furthermore, we do this expansion even if the expander
11046 -- is not active, because other semantic processing, e.g.
11047 -- for aggregates, requires the expanded list of choices.
ea61a7ea 11048
d9f6a4ee 11049 -- If the expander is not active, then we can't just clobber
11050 -- the list since it would invalidate the ASIS -gnatct tree.
11051 -- So we have to rewrite the variant part with a Rewrite
11052 -- call that replaces it with a copy and clobber the copy.
11053
11054 if not Expander_Active then
11055 declare
11056 NewV : constant Node_Id := New_Copy (Variant);
11057 begin
11058 Set_Discrete_Choices
11059 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11060 Rewrite (Variant, NewV);
11061 end;
11062 end if;
11063
11064 Expand_Static_Predicates_In_Choices (Variant);
ea61a7ea 11065 end if;
11066
d9f6a4ee 11067 -- We don't need to worry about the declarations in the variant
11068 -- (since they were analyzed by Analyze_Choices when we first
11069 -- encountered the variant), but we do need to take care of
11070 -- expansion of any nested variants.
ea61a7ea 11071
d9f6a4ee 11072 if not Null_Present (CL) then
11073 VP := Variant_Part (CL);
ea61a7ea 11074
d9f6a4ee 11075 if Present (VP) then
11076 Check_Choices
11077 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11078 end if;
11079 end if;
11080 end Process_Declarations;
ea61a7ea 11081
d9f6a4ee 11082 -- Start of processing for Check_Variant_Part
b9e61b2a 11083
d9f6a4ee 11084 begin
11085 -- Find component list
ea61a7ea 11086
d9f6a4ee 11087 C := Empty;
ea61a7ea 11088
d9f6a4ee 11089 if Nkind (D) = N_Full_Type_Declaration then
11090 T := Type_Definition (D);
ea61a7ea 11091
d9f6a4ee 11092 if Nkind (T) = N_Record_Definition then
11093 C := Component_List (T);
d6f39728 11094
d9f6a4ee 11095 elsif Nkind (T) = N_Derived_Type_Definition
11096 and then Present (Record_Extension_Part (T))
11097 then
11098 C := Component_List (Record_Extension_Part (T));
11099 end if;
11100 end if;
d6f39728 11101
d9f6a4ee 11102 -- Case of variant part present
d6f39728 11103
d9f6a4ee 11104 if Present (C) and then Present (Variant_Part (C)) then
11105 VP := Variant_Part (C);
ea61a7ea 11106
d9f6a4ee 11107 -- Check choices
ea61a7ea 11108
d9f6a4ee 11109 Check_Choices
11110 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
ea61a7ea 11111
d9f6a4ee 11112 -- If the last variant does not contain the Others choice,
11113 -- replace it with an N_Others_Choice node since Gigi always
11114 -- wants an Others. Note that we do not bother to call Analyze
11115 -- on the modified variant part, since its only effect would be
11116 -- to compute the Others_Discrete_Choices node laboriously, and
11117 -- of course we already know the list of choices corresponding
39a0c1d3 11118 -- to the others choice (it's the list we're replacing).
d6f39728 11119
d9f6a4ee 11120 -- We only want to do this if the expander is active, since
39a0c1d3 11121 -- we do not want to clobber the ASIS tree.
d6f39728 11122
d9f6a4ee 11123 if Expander_Active then
11124 declare
11125 Last_Var : constant Node_Id :=
11126 Last_Non_Pragma (Variants (VP));
d6f39728 11127
d9f6a4ee 11128 Others_Node : Node_Id;
d6f39728 11129
d9f6a4ee 11130 begin
11131 if Nkind (First (Discrete_Choices (Last_Var))) /=
11132 N_Others_Choice
11133 then
11134 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11135 Set_Others_Discrete_Choices
11136 (Others_Node, Discrete_Choices (Last_Var));
11137 Set_Discrete_Choices
11138 (Last_Var, New_List (Others_Node));
11139 end if;
11140 end;
11141 end if;
d6f39728 11142 end if;
d9f6a4ee 11143 end Check_Variant_Part;
d6f39728 11144 end if;
d9f6a4ee 11145 end Freeze_Entity_Checks;
d6f39728 11146
11147 -------------------------
11148 -- Get_Alignment_Value --
11149 -------------------------
11150
11151 function Get_Alignment_Value (Expr : Node_Id) return Uint is
f5d97bf5 11152 Align : constant Uint := Static_Integer (Expr);
f74a102b 11153
f5d97bf5 11154 begin
11155 if Align = No_Uint then
11156 return No_Uint;
11157
11158 elsif Align <= 0 then
f74a102b 11159
f74a102b 11160 -- This error is suppressed in ASIS mode to allow for different ASIS
f9906591 11161 -- back ends or ASIS-based tools to query the illegal clause.
f74a102b 11162
11163 if not ASIS_Mode then
11164 Error_Msg_N ("alignment value must be positive", Expr);
11165 end if;
f74a102b 11166
d6f39728 11167 return No_Uint;
11168
11169 else
11170 for J in Int range 0 .. 64 loop
11171 declare
11172 M : constant Uint := Uint_2 ** J;
11173
11174 begin
11175 exit when M = Align;
11176
11177 if M > Align then
f5d97bf5 11178
11179 -- This error is suppressed in ASIS mode to allow for
f9906591 11180 -- different ASIS back ends or ASIS-based tools to query the
f5d97bf5 11181 -- illegal clause.
11182
11183 if not ASIS_Mode then
11184 Error_Msg_N ("alignment value must be power of 2", Expr);
11185 end if;
11186
d6f39728 11187 return No_Uint;
11188 end if;
11189 end;
11190 end loop;
11191
11192 return Align;
11193 end if;
11194 end Get_Alignment_Value;
11195
99a2d5bd 11196 -------------------------------------
11197 -- Inherit_Aspects_At_Freeze_Point --
11198 -------------------------------------
11199
11200 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11201 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11202 (Rep_Item : Node_Id) return Boolean;
11203 -- This routine checks if Rep_Item is either a pragma or an aspect
11204 -- specification node whose correponding pragma (if any) is present in
11205 -- the Rep Item chain of the entity it has been specified to.
11206
11207 --------------------------------------------------
11208 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11209 --------------------------------------------------
11210
11211 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11212 (Rep_Item : Node_Id) return Boolean
11213 is
11214 begin
ec6f6da5 11215 return
11216 Nkind (Rep_Item) = N_Pragma
11217 or else Present_In_Rep_Item
11218 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
99a2d5bd 11219 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11220
29a9d4be 11221 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11222
99a2d5bd 11223 begin
11224 -- A representation item is either subtype-specific (Size and Alignment
11225 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 11226 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 11227
11228 -- A derived type inherits each type-related representation aspect of
11229 -- its parent type that was directly specified before the declaration of
29a9d4be 11230 -- the derived type (RM 13.1.15).
99a2d5bd 11231
11232 -- A derived subtype inherits each subtype-specific representation
11233 -- aspect of its parent subtype that was directly specified before the
29a9d4be 11234 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 11235
11236 -- The general processing involves inheriting a representation aspect
11237 -- from a parent type whenever the first rep item (aspect specification,
11238 -- attribute definition clause, pragma) corresponding to the given
11239 -- representation aspect in the rep item chain of Typ, if any, isn't
11240 -- directly specified to Typ but to one of its parents.
11241
11242 -- ??? Note that, for now, just a limited number of representation
29a9d4be 11243 -- aspects have been inherited here so far. Many of them are
11244 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11245 -- a non- exhaustive list of aspects that likely also need to
11246 -- be moved to this routine: Alignment, Component_Alignment,
11247 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 11248 -- Preelaborable_Initialization, RM_Size and Small.
11249
8b6e9bf2 11250 -- In addition, Convention must be propagated from base type to subtype,
11251 -- because the subtype may have been declared on an incomplete view.
11252
99a2d5bd 11253 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11254 return;
11255 end if;
11256
11257 -- Ada_05/Ada_2005
11258
11259 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11260 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11261 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11262 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11263 then
11264 Set_Is_Ada_2005_Only (Typ);
11265 end if;
11266
11267 -- Ada_12/Ada_2012
11268
11269 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11270 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11271 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11272 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11273 then
11274 Set_Is_Ada_2012_Only (Typ);
11275 end if;
11276
11277 -- Atomic/Shared
11278
11279 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11280 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11281 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11282 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11283 then
11284 Set_Is_Atomic (Typ);
99a2d5bd 11285 Set_Is_Volatile (Typ);
4bf2acc9 11286 Set_Treat_As_Volatile (Typ);
99a2d5bd 11287 end if;
11288
8b6e9bf2 11289 -- Convention
11290
7ac4254e 11291 if Is_Record_Type (Typ)
11292 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11293 then
8b6e9bf2 11294 Set_Convention (Typ, Convention (Base_Type (Typ)));
11295 end if;
11296
29a9d4be 11297 -- Default_Component_Value
99a2d5bd 11298
81c2bc19 11299 -- Verify that there is no rep_item declared for the type, and there
11300 -- is one coming from an ancestor.
11301
99a2d5bd 11302 if Is_Array_Type (Typ)
f3d70f08 11303 and then Is_Base_Type (Typ)
81c2bc19 11304 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
99a2d5bd 11305 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11306 then
11307 Set_Default_Aspect_Component_Value (Typ,
11308 Default_Aspect_Component_Value
11309 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11310 end if;
11311
29a9d4be 11312 -- Default_Value
99a2d5bd 11313
11314 if Is_Scalar_Type (Typ)
f3d70f08 11315 and then Is_Base_Type (Typ)
81c2bc19 11316 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
99a2d5bd 11317 and then Has_Rep_Item (Typ, Name_Default_Value)
11318 then
81c2bc19 11319 Set_Has_Default_Aspect (Typ);
99a2d5bd 11320 Set_Default_Aspect_Value (Typ,
11321 Default_Aspect_Value
11322 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11323 end if;
11324
11325 -- Discard_Names
11326
11327 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11328 and then Has_Rep_Item (Typ, Name_Discard_Names)
11329 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11330 (Get_Rep_Item (Typ, Name_Discard_Names))
11331 then
11332 Set_Discard_Names (Typ);
11333 end if;
11334
99a2d5bd 11335 -- Volatile
11336
11337 if not Has_Rep_Item (Typ, Name_Volatile, False)
11338 and then Has_Rep_Item (Typ, Name_Volatile)
11339 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11340 (Get_Rep_Item (Typ, Name_Volatile))
11341 then
99a2d5bd 11342 Set_Is_Volatile (Typ);
4bf2acc9 11343 Set_Treat_As_Volatile (Typ);
99a2d5bd 11344 end if;
11345
2fe893b9 11346 -- Volatile_Full_Access
11347
11348 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11349 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11350 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11351 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11352 then
4bf2acc9 11353 Set_Is_Volatile_Full_Access (Typ);
2fe893b9 11354 Set_Is_Volatile (Typ);
4bf2acc9 11355 Set_Treat_As_Volatile (Typ);
2fe893b9 11356 end if;
11357
99a2d5bd 11358 -- Inheritance for derived types only
11359
11360 if Is_Derived_Type (Typ) then
11361 declare
11362 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11363 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11364
11365 begin
11366 -- Atomic_Components
11367
11368 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11369 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11370 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11371 (Get_Rep_Item (Typ, Name_Atomic_Components))
11372 then
11373 Set_Has_Atomic_Components (Imp_Bas_Typ);
11374 end if;
11375
11376 -- Volatile_Components
11377
11378 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11379 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11380 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11381 (Get_Rep_Item (Typ, Name_Volatile_Components))
11382 then
11383 Set_Has_Volatile_Components (Imp_Bas_Typ);
11384 end if;
11385
e81df51c 11386 -- Finalize_Storage_Only
99a2d5bd 11387
11388 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11389 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11390 then
11391 Set_Finalize_Storage_Only (Bas_Typ);
11392 end if;
11393
11394 -- Universal_Aliasing
11395
11396 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11397 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11398 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11399 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11400 then
11401 Set_Universal_Aliasing (Imp_Bas_Typ);
11402 end if;
11403
e81df51c 11404 -- Bit_Order
99a2d5bd 11405
11406 if Is_Record_Type (Typ) then
99a2d5bd 11407 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11408 and then Has_Rep_Item (Typ, Name_Bit_Order)
11409 then
11410 Set_Reverse_Bit_Order (Bas_Typ,
11411 Reverse_Bit_Order (Entity (Name
11412 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11413 end if;
e81df51c 11414 end if;
11415
e9218716 11416 -- Scalar_Storage_Order
11417
11418 -- Note: the aspect is specified on a first subtype, but recorded
11419 -- in a flag of the base type!
e81df51c 11420
11421 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
29b91bc7 11422 and then Typ = Bas_Typ
e81df51c 11423 then
e81df51c 11424 -- For a type extension, always inherit from parent; otherwise
11425 -- inherit if no default applies. Note: we do not check for
11426 -- an explicit rep item on the parent type when inheriting,
11427 -- because the parent SSO may itself have been set by default.
99a2d5bd 11428
e9218716 11429 if not Has_Rep_Item (First_Subtype (Typ),
11430 Name_Scalar_Storage_Order, False)
e81df51c 11431 and then (Is_Tagged_Type (Bas_Typ)
29b91bc7 11432 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11433 or else
11434 SSO_Set_High_By_Default (Bas_Typ)))
99a2d5bd 11435 then
11436 Set_Reverse_Storage_Order (Bas_Typ,
423b89fd 11437 Reverse_Storage_Order
11438 (Implementation_Base_Type (Etype (Bas_Typ))));
b64082f2 11439
11440 -- Clear default SSO indications, since the inherited aspect
11441 -- which was set explicitly overrides the default.
11442
11443 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11444 Set_SSO_Set_High_By_Default (Bas_Typ, False);
99a2d5bd 11445 end if;
11446 end if;
11447 end;
11448 end if;
11449 end Inherit_Aspects_At_Freeze_Point;
11450
d6f39728 11451 ----------------
11452 -- Initialize --
11453 ----------------
11454
11455 procedure Initialize is
11456 begin
7717ea00 11457 Address_Clause_Checks.Init;
76a6b7c7 11458 Compile_Time_Warnings_Errors.Init;
d6f39728 11459 Unchecked_Conversions.Init;
dba38d2f 11460
36ac5fbb 11461 if AAMP_On_Target then
dba38d2f 11462 Independence_Checks.Init;
11463 end if;
d6f39728 11464 end Initialize;
11465
2625eb01 11466 ---------------------------
11467 -- Install_Discriminants --
11468 ---------------------------
11469
11470 procedure Install_Discriminants (E : Entity_Id) is
11471 Disc : Entity_Id;
11472 Prev : Entity_Id;
11473 begin
11474 Disc := First_Discriminant (E);
11475 while Present (Disc) loop
11476 Prev := Current_Entity (Disc);
11477 Set_Current_Entity (Disc);
11478 Set_Is_Immediately_Visible (Disc);
11479 Set_Homonym (Disc, Prev);
11480 Next_Discriminant (Disc);
11481 end loop;
11482 end Install_Discriminants;
11483
d6f39728 11484 -------------------------
11485 -- Is_Operational_Item --
11486 -------------------------
11487
11488 function Is_Operational_Item (N : Node_Id) return Boolean is
11489 begin
11490 if Nkind (N) /= N_Attribute_Definition_Clause then
11491 return False;
b9e61b2a 11492
d6f39728 11493 else
11494 declare
b9e61b2a 11495 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 11496 begin
078a74b8 11497
55ab5265 11498 -- List of operational items is given in AARM 13.1(8.mm/1).
078a74b8 11499 -- It is clearly incomplete, as it does not include iterator
11500 -- aspects, among others.
11501
11502 return Id = Attribute_Constant_Indexing
11503 or else Id = Attribute_Default_Iterator
11504 or else Id = Attribute_Implicit_Dereference
11505 or else Id = Attribute_Input
11506 or else Id = Attribute_Iterator_Element
11507 or else Id = Attribute_Iterable
d6f39728 11508 or else Id = Attribute_Output
11509 or else Id = Attribute_Read
078a74b8 11510 or else Id = Attribute_Variable_Indexing
f15731c4 11511 or else Id = Attribute_Write
11512 or else Id = Attribute_External_Tag;
d6f39728 11513 end;
11514 end if;
11515 end Is_Operational_Item;
11516
3b23aaa0 11517 -------------------------
11518 -- Is_Predicate_Static --
11519 -------------------------
11520
94d896aa 11521 -- Note: the basic legality of the expression has already been checked, so
11522 -- we don't need to worry about cases or ranges on strings for example.
11523
3b23aaa0 11524 function Is_Predicate_Static
11525 (Expr : Node_Id;
11526 Nam : Name_Id) return Boolean
11527 is
11528 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
973c2fba 11529 -- Given a list of case expression alternatives, returns True if all
11530 -- the alternatives are static (have all static choices, and a static
11531 -- expression).
3b23aaa0 11532
11533 function All_Static_Choices (L : List_Id) return Boolean;
a360a0f7 11534 -- Returns true if all elements of the list are OK static choices
3b23aaa0 11535 -- as defined below for Is_Static_Choice. Used for case expression
973c2fba 11536 -- alternatives and for the right operand of a membership test. An
11537 -- others_choice is static if the corresponding expression is static.
7c0c95b8 11538 -- The staticness of the bounds is checked separately.
3b23aaa0 11539
11540 function Is_Static_Choice (N : Node_Id) return Boolean;
11541 -- Returns True if N represents a static choice (static subtype, or
a360a0f7 11542 -- static subtype indication, or static expression, or static range).
3b23aaa0 11543 --
11544 -- Note that this is a bit more inclusive than we actually need
11545 -- (in particular membership tests do not allow the use of subtype
a360a0f7 11546 -- indications). But that doesn't matter, we have already checked
3b23aaa0 11547 -- that the construct is legal to get this far.
11548
11549 function Is_Type_Ref (N : Node_Id) return Boolean;
11550 pragma Inline (Is_Type_Ref);
973c2fba 11551 -- Returns True if N is a reference to the type for the predicate in the
11552 -- expression (i.e. if it is an identifier whose Chars field matches the
11553 -- Nam given in the call). N must not be parenthesized, if the type name
11554 -- appears in parens, this routine will return False.
10f62e3a 11555 --
ea90be0f 11556 -- The routine also returns True for function calls generated during the
11557 -- expansion of comparison operators on strings, which are intended to
11558 -- be legal in static predicates, and are converted into calls to array
11559 -- comparison routines in the body of the corresponding predicate
11560 -- function.
11561
3b23aaa0 11562 ----------------------------------
11563 -- All_Static_Case_Alternatives --
11564 ----------------------------------
11565
11566 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11567 N : Node_Id;
11568
11569 begin
11570 N := First (L);
11571 while Present (N) loop
11572 if not (All_Static_Choices (Discrete_Choices (N))
11573 and then Is_OK_Static_Expression (Expression (N)))
11574 then
11575 return False;
11576 end if;
11577
11578 Next (N);
11579 end loop;
11580
11581 return True;
11582 end All_Static_Case_Alternatives;
11583
11584 ------------------------
11585 -- All_Static_Choices --
11586 ------------------------
11587
11588 function All_Static_Choices (L : List_Id) return Boolean is
11589 N : Node_Id;
11590
11591 begin
11592 N := First (L);
11593 while Present (N) loop
11594 if not Is_Static_Choice (N) then
11595 return False;
11596 end if;
11597
11598 Next (N);
11599 end loop;
11600
11601 return True;
11602 end All_Static_Choices;
11603
11604 ----------------------
11605 -- Is_Static_Choice --
11606 ----------------------
11607
11608 function Is_Static_Choice (N : Node_Id) return Boolean is
11609 begin
7c0c95b8 11610 return Nkind (N) = N_Others_Choice
11611 or else Is_OK_Static_Expression (N)
3b23aaa0 11612 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11613 and then Is_OK_Static_Subtype (Entity (N)))
11614 or else (Nkind (N) = N_Subtype_Indication
11615 and then Is_OK_Static_Subtype (Entity (N)))
11616 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11617 end Is_Static_Choice;
11618
11619 -----------------
11620 -- Is_Type_Ref --
11621 -----------------
11622
11623 function Is_Type_Ref (N : Node_Id) return Boolean is
11624 begin
ea90be0f 11625 return (Nkind (N) = N_Identifier
11626 and then Chars (N) = Nam
11627 and then Paren_Count (N) = 0)
11628 or else Nkind (N) = N_Function_Call;
3b23aaa0 11629 end Is_Type_Ref;
11630
11631 -- Start of processing for Is_Predicate_Static
11632
11633 begin
3b23aaa0 11634 -- Predicate_Static means one of the following holds. Numbers are the
11635 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11636
11637 -- 16: A static expression
11638
11639 if Is_OK_Static_Expression (Expr) then
11640 return True;
11641
11642 -- 17: A membership test whose simple_expression is the current
11643 -- instance, and whose membership_choice_list meets the requirements
11644 -- for a static membership test.
11645
11646 elsif Nkind (Expr) in N_Membership_Test
11647 and then ((Present (Right_Opnd (Expr))
11648 and then Is_Static_Choice (Right_Opnd (Expr)))
11649 or else
11650 (Present (Alternatives (Expr))
11651 and then All_Static_Choices (Alternatives (Expr))))
11652 then
11653 return True;
11654
11655 -- 18. A case_expression whose selecting_expression is the current
11656 -- instance, and whose dependent expressions are static expressions.
11657
11658 elsif Nkind (Expr) = N_Case_Expression
11659 and then Is_Type_Ref (Expression (Expr))
11660 and then All_Static_Case_Alternatives (Alternatives (Expr))
11661 then
11662 return True;
11663
11664 -- 19. A call to a predefined equality or ordering operator, where one
11665 -- operand is the current instance, and the other is a static
11666 -- expression.
11667
94d896aa 11668 -- Note: the RM is clearly wrong here in not excluding string types.
11669 -- Without this exclusion, we would allow expressions like X > "ABC"
11670 -- to be considered as predicate-static, which is clearly not intended,
11671 -- since the idea is for predicate-static to be a subset of normal
11672 -- static expressions (and "DEF" > "ABC" is not a static expression).
11673
11674 -- However, we do allow internally generated (not from source) equality
11675 -- and inequality operations to be valid on strings (this helps deal
11676 -- with cases where we transform A in "ABC" to A = "ABC).
11677
ea90be0f 11678 -- In fact, it appears that the intent of the ARG is to extend static
11679 -- predicates to strings, and that the extension should probably apply
11680 -- to static expressions themselves. The code below accepts comparison
11681 -- operators that apply to static strings.
11682
3b23aaa0 11683 elsif Nkind (Expr) in N_Op_Compare
11684 and then ((Is_Type_Ref (Left_Opnd (Expr))
11685 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11686 or else
11687 (Is_Type_Ref (Right_Opnd (Expr))
11688 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11689 then
11690 return True;
11691
11692 -- 20. A call to a predefined boolean logical operator, where each
11693 -- operand is predicate-static.
11694
11695 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11696 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11697 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11698 or else
11699 (Nkind (Expr) = N_Op_Not
11700 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11701 then
11702 return True;
11703
11704 -- 21. A short-circuit control form where both operands are
11705 -- predicate-static.
11706
11707 elsif Nkind (Expr) in N_Short_Circuit
11708 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11709 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11710 then
11711 return True;
11712
11713 -- 22. A parenthesized predicate-static expression. This does not
11714 -- require any special test, since we just ignore paren levels in
11715 -- all the cases above.
11716
11717 -- One more test that is an implementation artifact caused by the fact
499918a7 11718 -- that we are analyzing not the original expression, but the generated
3b23aaa0 11719 -- expression in the body of the predicate function. This can include
a360a0f7 11720 -- references to inherited predicates, so that the expression we are
3b23aaa0 11721 -- processing looks like:
11722
75491446 11723 -- xxPredicate (typ (Inns)) and then expression
3b23aaa0 11724
11725 -- Where the call is to a Predicate function for an inherited predicate.
60a4a5af 11726 -- We simply ignore such a call, which could be to either a dynamic or
11727 -- a static predicate. Note that if the parent predicate is dynamic then
11728 -- eventually this type will be marked as dynamic, but you are allowed
11729 -- to specify a static predicate for a subtype which is inheriting a
11730 -- dynamic predicate, so the static predicate validation here ignores
11731 -- the inherited predicate even if it is dynamic.
7db33803 11732 -- In all cases, a static predicate can only apply to a scalar type.
3b23aaa0 11733
11734 elsif Nkind (Expr) = N_Function_Call
11735 and then Is_Predicate_Function (Entity (Name (Expr)))
7db33803 11736 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
3b23aaa0 11737 then
11738 return True;
11739
11740 -- That's an exhaustive list of tests, all other cases are not
a360a0f7 11741 -- predicate-static, so we return False.
3b23aaa0 11742
11743 else
11744 return False;
11745 end if;
11746 end Is_Predicate_Static;
11747
2ff55065 11748 ---------------------
11749 -- Kill_Rep_Clause --
11750 ---------------------
11751
11752 procedure Kill_Rep_Clause (N : Node_Id) is
11753 begin
11754 pragma Assert (Ignore_Rep_Clauses);
360f426f 11755
11756 -- Note: we use Replace rather than Rewrite, because we don't want
11757 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11758 -- rep clause that is being replaced.
11759
4949ddd5 11760 Replace (N, Make_Null_Statement (Sloc (N)));
360f426f 11761
11762 -- The null statement must be marked as not coming from source. This is
37c6552c 11763 -- so that ASIS ignores it, and also the back end does not expect bogus
360f426f 11764 -- "from source" null statements in weird places (e.g. in declarative
11765 -- regions where such null statements are not allowed).
11766
11767 Set_Comes_From_Source (N, False);
2ff55065 11768 end Kill_Rep_Clause;
11769
d6f39728 11770 ------------------
11771 -- Minimum_Size --
11772 ------------------
11773
11774 function Minimum_Size
11775 (T : Entity_Id;
d5b349fa 11776 Biased : Boolean := False) return Nat
d6f39728 11777 is
11778 Lo : Uint := No_Uint;
11779 Hi : Uint := No_Uint;
11780 LoR : Ureal := No_Ureal;
11781 HiR : Ureal := No_Ureal;
11782 LoSet : Boolean := False;
11783 HiSet : Boolean := False;
11784 B : Uint;
11785 S : Nat;
11786 Ancest : Entity_Id;
f15731c4 11787 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 11788
11789 begin
11790 -- If bad type, return 0
11791
11792 if T = Any_Type then
11793 return 0;
11794
11795 -- For generic types, just return zero. There cannot be any legitimate
11796 -- need to know such a size, but this routine may be called with a
11797 -- generic type as part of normal processing.
11798
f02a9a9a 11799 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
d6f39728 11800 return 0;
11801
74c7ae52 11802 -- Access types (cannot have size smaller than System.Address)
d6f39728 11803
11804 elsif Is_Access_Type (T) then
74c7ae52 11805 return System_Address_Size;
d6f39728 11806
11807 -- Floating-point types
11808
11809 elsif Is_Floating_Point_Type (T) then
f15731c4 11810 return UI_To_Int (Esize (R_Typ));
d6f39728 11811
11812 -- Discrete types
11813
11814 elsif Is_Discrete_Type (T) then
11815
fdd294d1 11816 -- The following loop is looking for the nearest compile time known
11817 -- bounds following the ancestor subtype chain. The idea is to find
11818 -- the most restrictive known bounds information.
d6f39728 11819
11820 Ancest := T;
11821 loop
11822 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11823 return 0;
11824 end if;
11825
11826 if not LoSet then
11827 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11828 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11829 LoSet := True;
11830 exit when HiSet;
11831 end if;
11832 end if;
11833
11834 if not HiSet then
11835 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11836 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11837 HiSet := True;
11838 exit when LoSet;
11839 end if;
11840 end if;
11841
11842 Ancest := Ancestor_Subtype (Ancest);
11843
11844 if No (Ancest) then
11845 Ancest := Base_Type (T);
11846
11847 if Is_Generic_Type (Ancest) then
11848 return 0;
11849 end if;
11850 end if;
11851 end loop;
11852
11853 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 11854 -- Corresponding_Integer_Value values of the bounds, since these do not
11855 -- get set till the type is frozen, and this routine can be called
11856 -- before the type is frozen. Similarly the test for bounds being static
11857 -- needs to include the case where we have unanalyzed real literals for
11858 -- the same reason.
d6f39728 11859
11860 elsif Is_Fixed_Point_Type (T) then
11861
fdd294d1 11862 -- The following loop is looking for the nearest compile time known
11863 -- bounds following the ancestor subtype chain. The idea is to find
11864 -- the most restrictive known bounds information.
d6f39728 11865
11866 Ancest := T;
11867 loop
11868 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11869 return 0;
11870 end if;
11871
3062c401 11872 -- Note: In the following two tests for LoSet and HiSet, it may
11873 -- seem redundant to test for N_Real_Literal here since normally
11874 -- one would assume that the test for the value being known at
11875 -- compile time includes this case. However, there is a glitch.
11876 -- If the real literal comes from folding a non-static expression,
11877 -- then we don't consider any non- static expression to be known
11878 -- at compile time if we are in configurable run time mode (needed
11879 -- in some cases to give a clearer definition of what is and what
11880 -- is not accepted). So the test is indeed needed. Without it, we
11881 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11882
d6f39728 11883 if not LoSet then
11884 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11885 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11886 then
11887 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11888 LoSet := True;
11889 exit when HiSet;
11890 end if;
11891 end if;
11892
11893 if not HiSet then
11894 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11895 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11896 then
11897 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11898 HiSet := True;
11899 exit when LoSet;
11900 end if;
11901 end if;
11902
11903 Ancest := Ancestor_Subtype (Ancest);
11904
11905 if No (Ancest) then
11906 Ancest := Base_Type (T);
11907
11908 if Is_Generic_Type (Ancest) then
11909 return 0;
11910 end if;
11911 end if;
11912 end loop;
11913
11914 Lo := UR_To_Uint (LoR / Small_Value (T));
11915 Hi := UR_To_Uint (HiR / Small_Value (T));
11916
11917 -- No other types allowed
11918
11919 else
11920 raise Program_Error;
11921 end if;
11922
2866d595 11923 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 11924
cc46ff4b 11925 if (Biased
11926 and then not Is_Fixed_Point_Type (T)
11927 and then not (Is_Enumeration_Type (T)
11928 and then Has_Non_Standard_Rep (T)))
d6f39728 11929 or else Has_Biased_Representation (T)
11930 then
11931 Hi := Hi - Lo;
11932 Lo := Uint_0;
11933 end if;
11934
005366f7 11935 -- Null range case, size is always zero. We only do this in the discrete
11936 -- type case, since that's the odd case that came up. Probably we should
11937 -- also do this in the fixed-point case, but doing so causes peculiar
11938 -- gigi failures, and it is not worth worrying about this incredibly
11939 -- marginal case (explicit null-range fixed-point type declarations)???
11940
11941 if Lo > Hi and then Is_Discrete_Type (T) then
11942 S := 0;
11943
d6f39728 11944 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 11945 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 11946 -- to be accommodated in the base type.
d6f39728 11947
005366f7 11948 elsif Lo < 0 or else Hi < 0 then
d6f39728 11949 S := 1;
11950 B := Uint_1;
11951
da253936 11952 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11953 -- Note that we accommodate the case where the bounds cross. This
d6f39728 11954 -- can happen either because of the way the bounds are declared
11955 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11956
11957 while Lo < -B
11958 or else Hi < -B
11959 or else Lo >= B
11960 or else Hi >= B
11961 loop
11962 B := Uint_2 ** S;
11963 S := S + 1;
11964 end loop;
11965
11966 -- Unsigned case
11967
11968 else
11969 -- If both bounds are positive, make sure that both are represen-
11970 -- table in the case where the bounds are crossed. This can happen
11971 -- either because of the way the bounds are declared, or because of
11972 -- the algorithm in Freeze_Fixed_Point_Type.
11973
11974 if Lo > Hi then
11975 Hi := Lo;
11976 end if;
11977
da253936 11978 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 11979
11980 S := 0;
11981 while Hi >= Uint_2 ** S loop
11982 S := S + 1;
11983 end loop;
11984 end if;
11985
11986 return S;
11987 end Minimum_Size;
11988
44e4341e 11989 ---------------------------
11990 -- New_Stream_Subprogram --
11991 ---------------------------
d6f39728 11992
44e4341e 11993 procedure New_Stream_Subprogram
11994 (N : Node_Id;
11995 Ent : Entity_Id;
11996 Subp : Entity_Id;
11997 Nam : TSS_Name_Type)
d6f39728 11998 is
11999 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 12000 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 12001 Subp_Id : Entity_Id;
d6f39728 12002 Subp_Decl : Node_Id;
12003 F : Entity_Id;
12004 Etyp : Entity_Id;
12005
44e4341e 12006 Defer_Declaration : constant Boolean :=
12007 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12008 -- For a tagged type, there is a declaration for each stream attribute
12009 -- at the freeze point, and we must generate only a completion of this
12010 -- declaration. We do the same for private types, because the full view
12011 -- might be tagged. Otherwise we generate a declaration at the point of
449c4f58 12012 -- the attribute definition clause. If the attribute definition comes
12013 -- from an aspect specification the declaration is part of the freeze
12014 -- actions of the type.
44e4341e 12015
f15731c4 12016 function Build_Spec return Node_Id;
12017 -- Used for declaration and renaming declaration, so that this is
12018 -- treated as a renaming_as_body.
12019
12020 ----------------
12021 -- Build_Spec --
12022 ----------------
12023
d5b349fa 12024 function Build_Spec return Node_Id is
44e4341e 12025 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12026 Formals : List_Id;
12027 Spec : Node_Id;
83c6c069 12028 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
44e4341e 12029
f15731c4 12030 begin
9dfe12ae 12031 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 12032
44e4341e 12033 -- S : access Root_Stream_Type'Class
12034
12035 Formals := New_List (
12036 Make_Parameter_Specification (Loc,
12037 Defining_Identifier =>
12038 Make_Defining_Identifier (Loc, Name_S),
12039 Parameter_Type =>
12040 Make_Access_Definition (Loc,
12041 Subtype_Mark =>
83c6c069 12042 New_Occurrence_Of (
44e4341e 12043 Designated_Type (Etype (F)), Loc))));
12044
12045 if Nam = TSS_Stream_Input then
4bba0a8d 12046 Spec :=
12047 Make_Function_Specification (Loc,
12048 Defining_Unit_Name => Subp_Id,
12049 Parameter_Specifications => Formals,
12050 Result_Definition => T_Ref);
44e4341e 12051 else
12052 -- V : [out] T
f15731c4 12053
44e4341e 12054 Append_To (Formals,
12055 Make_Parameter_Specification (Loc,
12056 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12057 Out_Present => Out_P,
12058 Parameter_Type => T_Ref));
f15731c4 12059
d3ef794c 12060 Spec :=
12061 Make_Procedure_Specification (Loc,
12062 Defining_Unit_Name => Subp_Id,
12063 Parameter_Specifications => Formals);
44e4341e 12064 end if;
f15731c4 12065
44e4341e 12066 return Spec;
12067 end Build_Spec;
d6f39728 12068
44e4341e 12069 -- Start of processing for New_Stream_Subprogram
d6f39728 12070
44e4341e 12071 begin
12072 F := First_Formal (Subp);
12073
12074 if Ekind (Subp) = E_Procedure then
12075 Etyp := Etype (Next_Formal (F));
d6f39728 12076 else
44e4341e 12077 Etyp := Etype (Subp);
d6f39728 12078 end if;
f15731c4 12079
44e4341e 12080 -- Prepare subprogram declaration and insert it as an action on the
12081 -- clause node. The visibility for this entity is used to test for
12082 -- visibility of the attribute definition clause (in the sense of
12083 -- 8.3(23) as amended by AI-195).
9dfe12ae 12084
44e4341e 12085 if not Defer_Declaration then
f15731c4 12086 Subp_Decl :=
12087 Make_Subprogram_Declaration (Loc,
12088 Specification => Build_Spec);
44e4341e 12089
12090 -- For a tagged type, there is always a visible declaration for each
15ebb600 12091 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 12092 -- completion of this declaration occurs at the freeze point, which is
12093 -- not always visible at places where the attribute definition clause is
12094 -- visible. So, we create a dummy entity here for the purpose of
12095 -- tracking the visibility of the attribute definition clause itself.
12096
12097 else
12098 Subp_Id :=
55868293 12099 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 12100 Subp_Decl :=
12101 Make_Object_Declaration (Loc,
12102 Defining_Identifier => Subp_Id,
12103 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 12104 end if;
12105
449c4f58 12106 if not Defer_Declaration
12107 and then From_Aspect_Specification (N)
12108 and then Has_Delayed_Freeze (Ent)
12109 then
12110 Append_Freeze_Action (Ent, Subp_Decl);
12111
12112 else
12113 Insert_Action (N, Subp_Decl);
12114 Set_Entity (N, Subp_Id);
12115 end if;
44e4341e 12116
d6f39728 12117 Subp_Decl :=
12118 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 12119 Specification => Build_Spec,
8acb75b4 12120 Name => New_Occurrence_Of (Subp, Loc));
d6f39728 12121
44e4341e 12122 if Defer_Declaration then
d6f39728 12123 Set_TSS (Base_Type (Ent), Subp_Id);
449c4f58 12124
d6f39728 12125 else
449c4f58 12126 if From_Aspect_Specification (N) then
12127 Append_Freeze_Action (Ent, Subp_Decl);
449c4f58 12128 else
12129 Insert_Action (N, Subp_Decl);
12130 end if;
12131
d6f39728 12132 Copy_TSS (Subp_Id, Base_Type (Ent));
12133 end if;
44e4341e 12134 end New_Stream_Subprogram;
d6f39728 12135
2625eb01 12136 ------------------------------------------
12137 -- Push_Scope_And_Install_Discriminants --
12138 ------------------------------------------
12139
12140 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12141 begin
12142 if Has_Discriminants (E) then
12143 Push_Scope (E);
12144
97c23bbe 12145 -- Make the discriminants visible for type declarations and protected
2625eb01 12146 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12147
12148 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12149 Install_Discriminants (E);
12150 end if;
12151 end if;
12152 end Push_Scope_And_Install_Discriminants;
12153
d6f39728 12154 ------------------------
12155 -- Rep_Item_Too_Early --
12156 ------------------------
12157
80d4fec4 12158 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 12159 begin
44e4341e 12160 -- Cannot apply non-operational rep items to generic types
d6f39728 12161
f15731c4 12162 if Is_Operational_Item (N) then
12163 return False;
12164
12165 elsif Is_Type (T)
d6f39728 12166 and then Is_Generic_Type (Root_Type (T))
e17c5076 12167 and then (Nkind (N) /= N_Pragma
12168 or else Get_Pragma_Id (N) /= Pragma_Convention)
d6f39728 12169 then
503f7fd3 12170 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 12171 return True;
12172 end if;
12173
fdd294d1 12174 -- Otherwise check for incomplete type
d6f39728 12175
12176 if Is_Incomplete_Or_Private_Type (T)
12177 and then No (Underlying_Type (T))
d64221a7 12178 and then
12179 (Nkind (N) /= N_Pragma
60014bc9 12180 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 12181 then
12182 Error_Msg_N
12183 ("representation item must be after full type declaration", N);
12184 return True;
12185
1a34e48c 12186 -- If the type has incomplete components, a representation clause is
d6f39728 12187 -- illegal but stream attributes and Convention pragmas are correct.
12188
12189 elsif Has_Private_Component (T) then
f15731c4 12190 if Nkind (N) = N_Pragma then
d6f39728 12191 return False;
b9e61b2a 12192
d6f39728 12193 else
12194 Error_Msg_N
12195 ("representation item must appear after type is fully defined",
12196 N);
12197 return True;
12198 end if;
12199 else
12200 return False;
12201 end if;
12202 end Rep_Item_Too_Early;
12203
12204 -----------------------
12205 -- Rep_Item_Too_Late --
12206 -----------------------
12207
12208 function Rep_Item_Too_Late
12209 (T : Entity_Id;
12210 N : Node_Id;
d5b349fa 12211 FOnly : Boolean := False) return Boolean
d6f39728 12212 is
12213 S : Entity_Id;
12214 Parent_Type : Entity_Id;
12215
4d0944e9 12216 procedure No_Type_Rep_Item;
12217 -- Output message indicating that no type-related aspects can be
12218 -- specified due to some property of the parent type.
12219
d6f39728 12220 procedure Too_Late;
4d0944e9 12221 -- Output message for an aspect being specified too late
12222
12223 -- Note that neither of the above errors is considered a serious one,
12224 -- since the effect is simply that we ignore the representation clause
12225 -- in these cases.
04d38ee4 12226 -- Is this really true? In any case if we make this change we must
12227 -- document the requirement in the spec of Rep_Item_Too_Late that
12228 -- if True is returned, then the rep item must be completely ignored???
4d0944e9 12229
12230 ----------------------
12231 -- No_Type_Rep_Item --
12232 ----------------------
12233
12234 procedure No_Type_Rep_Item is
12235 begin
12236 Error_Msg_N ("|type-related representation item not permitted!", N);
12237 end No_Type_Rep_Item;
d53a018a 12238
12239 --------------
12240 -- Too_Late --
12241 --------------
d6f39728 12242
12243 procedure Too_Late is
12244 begin
ce4da1ed 12245 -- Other compilers seem more relaxed about rep items appearing too
12246 -- late. Since analysis tools typically don't care about rep items
12247 -- anyway, no reason to be too strict about this.
12248
a9cd517c 12249 if not Relaxed_RM_Semantics then
12250 Error_Msg_N ("|representation item appears too late!", N);
12251 end if;
d6f39728 12252 end Too_Late;
12253
12254 -- Start of processing for Rep_Item_Too_Late
12255
12256 begin
a3248fc4 12257 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 12258
12259 if Is_Frozen (T)
a3248fc4 12260
12261 -- Exclude imported types, which may be frozen if they appear in a
12262 -- representation clause for a local type.
12263
4aa270d8 12264 and then not From_Limited_With (T)
a3248fc4 12265
a9cd517c 12266 -- Exclude generated entities (not coming from source). The common
a3248fc4 12267 -- case is when we generate a renaming which prematurely freezes the
12268 -- renamed internal entity, but we still want to be able to set copies
12269 -- of attribute values such as Size/Alignment.
12270
12271 and then Comes_From_Source (T)
d6f39728 12272 then
58e133a6 12273 -- A self-referential aspect is illegal if it forces freezing the
12274 -- entity before the corresponding pragma has been analyzed.
12275
12276 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12277 and then From_Aspect_Specification (N)
12278 then
12279 Error_Msg_NE
ea90be0f 12280 ("aspect specification causes premature freezing of&", N, T);
58e133a6 12281 Set_Has_Delayed_Freeze (T, False);
12282 return True;
12283 end if;
12284
d6f39728 12285 Too_Late;
12286 S := First_Subtype (T);
12287
12288 if Present (Freeze_Node (S)) then
04d38ee4 12289 if not Relaxed_RM_Semantics then
12290 Error_Msg_NE
12291 ("??no more representation items for }", Freeze_Node (S), S);
12292 end if;
d6f39728 12293 end if;
12294
12295 return True;
12296
d1a2e31b 12297 -- Check for case of untagged derived type whose parent either has
4d0944e9 12298 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12299 -- this case we do not output a Too_Late message, since there is no
12300 -- earlier point where the rep item could be placed to make it legal.
d6f39728 12301
12302 elsif Is_Type (T)
12303 and then not FOnly
12304 and then Is_Derived_Type (T)
12305 and then not Is_Tagged_Type (T)
12306 then
12307 Parent_Type := Etype (Base_Type (T));
12308
12309 if Has_Primitive_Operations (Parent_Type) then
4d0944e9 12310 No_Type_Rep_Item;
04d38ee4 12311
12312 if not Relaxed_RM_Semantics then
12313 Error_Msg_NE
12314 ("\parent type & has primitive operations!", N, Parent_Type);
12315 end if;
12316
d6f39728 12317 return True;
12318
12319 elsif Is_By_Reference_Type (Parent_Type) then
4d0944e9 12320 No_Type_Rep_Item;
04d38ee4 12321
12322 if not Relaxed_RM_Semantics then
12323 Error_Msg_NE
12324 ("\parent type & is a by reference type!", N, Parent_Type);
12325 end if;
12326
d6f39728 12327 return True;
12328 end if;
12329 end if;
12330
04d38ee4 12331 -- No error, but one more warning to consider. The RM (surprisingly)
12332 -- allows this pattern:
12333
12334 -- type S is ...
12335 -- primitive operations for S
12336 -- type R is new S;
12337 -- rep clause for S
12338
12339 -- Meaning that calls on the primitive operations of S for values of
12340 -- type R may require possibly expensive implicit conversion operations.
12341 -- This is not an error, but is worth a warning.
12342
12343 if not Relaxed_RM_Semantics and then Is_Type (T) then
12344 declare
12345 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12346
12347 begin
12348 if Present (DTL)
12349 and then Has_Primitive_Operations (Base_Type (T))
12350
12351 -- For now, do not generate this warning for the case of aspect
12352 -- specification using Ada 2012 syntax, since we get wrong
12353 -- messages we do not understand. The whole business of derived
12354 -- types and rep items seems a bit confused when aspects are
12355 -- used, since the aspects are not evaluated till freeze time.
12356
12357 and then not From_Aspect_Specification (N)
12358 then
12359 Error_Msg_Sloc := Sloc (DTL);
12360 Error_Msg_N
12361 ("representation item for& appears after derived type "
12362 & "declaration#??", N);
12363 Error_Msg_NE
12364 ("\may result in implicit conversions for primitive "
12365 & "operations of&??", N, T);
12366 Error_Msg_NE
12367 ("\to change representations when called with arguments "
12368 & "of type&??", N, DTL);
12369 end if;
12370 end;
12371 end if;
12372
3062c401 12373 -- No error, link item into head of chain of rep items for the entity,
12374 -- but avoid chaining if we have an overloadable entity, and the pragma
12375 -- is one that can apply to multiple overloaded entities.
12376
b9e61b2a 12377 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 12378 declare
ddccc924 12379 Pname : constant Name_Id := Pragma_Name (N);
fdd294d1 12380 begin
18393965 12381 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12382 Name_External, Name_Interface)
fdd294d1 12383 then
12384 return False;
12385 end if;
12386 end;
3062c401 12387 end if;
12388
fdd294d1 12389 Record_Rep_Item (T, N);
d6f39728 12390 return False;
12391 end Rep_Item_Too_Late;
12392
2072eaa9 12393 -------------------------------------
12394 -- Replace_Type_References_Generic --
12395 -------------------------------------
12396
37c6552c 12397 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12398 TName : constant Name_Id := Chars (T);
2072eaa9 12399
97c23bbe 12400 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
2072eaa9 12401 -- Processes a single node in the traversal procedure below, checking
12402 -- if node N should be replaced, and if so, doing the replacement.
12403
d0931270 12404 function Visible_Component (Comp : Name_Id) return Entity_Id;
12405 -- Given an identifier in the expression, check whether there is a
12406 -- discriminant or component of the type that is directy visible, and
12407 -- rewrite it as the corresponding selected component of the formal of
12408 -- the subprogram. The entity is located by a sequential search, which
12409 -- seems acceptable given the typical size of component lists and check
12410 -- expressions. Possible optimization ???
12411
97c23bbe 12412 ----------------------
12413 -- Replace_Type_Ref --
12414 ----------------------
2072eaa9 12415
97c23bbe 12416 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
d0931270 12417 Loc : constant Source_Ptr := Sloc (N);
2072eaa9 12418
d0931270 12419 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
77fd9c7a 12420 -- Add the proper prefix to a reference to a component of the type
12421 -- when it is not already a selected component.
d0931270 12422
12423 ----------------
12424 -- Add_Prefix --
12425 ----------------
2072eaa9 12426
d0931270 12427 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12428 begin
12429 Rewrite (Ref,
12430 Make_Selected_Component (Loc,
77fd9c7a 12431 Prefix => New_Occurrence_Of (T, Loc),
d0931270 12432 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12433 Replace_Type_Reference (Prefix (Ref));
12434 end Add_Prefix;
12435
77fd9c7a 12436 -- Local variables
12437
12438 Comp : Entity_Id;
12439 Pref : Node_Id;
12440 Scop : Entity_Id;
12441
d0931270 12442 -- Start of processing for Replace_Type_Ref
12443
12444 begin
2072eaa9 12445 if Nkind (N) = N_Identifier then
12446
97c23bbe 12447 -- If not the type name, check whether it is a reference to some
12448 -- other type, which must be frozen before the predicate function
12449 -- is analyzed, i.e. before the freeze node of the type to which
12450 -- the predicate applies.
2072eaa9 12451
12452 if Chars (N) /= TName then
37c6552c 12453 if Present (Current_Entity (N))
46532462 12454 and then Is_Type (Current_Entity (N))
37c6552c 12455 then
12456 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12457 end if;
12458
d0931270 12459 -- The components of the type are directly visible and can
12460 -- be referenced without a prefix.
12461
12462 if Nkind (Parent (N)) = N_Selected_Component then
12463 null;
12464
12465 -- In expression C (I), C may be a directly visible function
12466 -- or a visible component that has an array type. Disambiguate
12467 -- by examining the component type.
12468
12469 elsif Nkind (Parent (N)) = N_Indexed_Component
12470 and then N = Prefix (Parent (N))
12471 then
77fd9c7a 12472 Comp := Visible_Component (Chars (N));
d0931270 12473
77fd9c7a 12474 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12475 Add_Prefix (N, Comp);
d0931270 12476 end if;
12477
12478 else
77fd9c7a 12479 Comp := Visible_Component (Chars (N));
d0931270 12480
77fd9c7a 12481 if Present (Comp) then
12482 Add_Prefix (N, Comp);
d0931270 12483 end if;
12484 end if;
12485
2072eaa9 12486 return Skip;
12487
12488 -- Otherwise do the replacement and we are done with this node
12489
12490 else
12491 Replace_Type_Reference (N);
12492 return Skip;
12493 end if;
12494
97c23bbe 12495 -- Case of selected component (which is what a qualification looks
12496 -- like in the unanalyzed tree, which is what we have.
2072eaa9 12497
12498 elsif Nkind (N) = N_Selected_Component then
12499
97c23bbe 12500 -- If selector name is not our type, keeping going (we might still
12501 -- have an occurrence of the type in the prefix).
2072eaa9 12502
12503 if Nkind (Selector_Name (N)) /= N_Identifier
12504 or else Chars (Selector_Name (N)) /= TName
12505 then
12506 return OK;
12507
12508 -- Selector name is our type, check qualification
12509
12510 else
12511 -- Loop through scopes and prefixes, doing comparison
12512
77fd9c7a 12513 Scop := Current_Scope;
12514 Pref := Prefix (N);
2072eaa9 12515 loop
12516 -- Continue if no more scopes or scope with no name
12517
77fd9c7a 12518 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
2072eaa9 12519 return OK;
12520 end if;
12521
97c23bbe 12522 -- Do replace if prefix is an identifier matching the scope
12523 -- that we are currently looking at.
2072eaa9 12524
77fd9c7a 12525 if Nkind (Pref) = N_Identifier
12526 and then Chars (Pref) = Chars (Scop)
2072eaa9 12527 then
12528 Replace_Type_Reference (N);
12529 return Skip;
12530 end if;
12531
97c23bbe 12532 -- Go check scope above us if prefix is itself of the form
12533 -- of a selected component, whose selector matches the scope
12534 -- we are currently looking at.
2072eaa9 12535
77fd9c7a 12536 if Nkind (Pref) = N_Selected_Component
12537 and then Nkind (Selector_Name (Pref)) = N_Identifier
12538 and then Chars (Selector_Name (Pref)) = Chars (Scop)
2072eaa9 12539 then
77fd9c7a 12540 Scop := Scope (Scop);
12541 Pref := Prefix (Pref);
2072eaa9 12542
12543 -- For anything else, we don't have a match, so keep on
12544 -- going, there are still some weird cases where we may
12545 -- still have a replacement within the prefix.
12546
12547 else
12548 return OK;
12549 end if;
12550 end loop;
12551 end if;
12552
ec6f6da5 12553 -- Continue for any other node kind
2072eaa9 12554
12555 else
12556 return OK;
12557 end if;
97c23bbe 12558 end Replace_Type_Ref;
12559
77fd9c7a 12560 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12561
d0931270 12562 -----------------------
12563 -- Visible_Component --
12564 -----------------------
12565
12566 function Visible_Component (Comp : Name_Id) return Entity_Id is
12567 E : Entity_Id;
77fd9c7a 12568
d0931270 12569 begin
1a5b3a27 12570 -- Types with nameable components are records and discriminated
12571 -- private types.
12572
12573 if Ekind (T) = E_Record_Type
12574 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12575 then
d0931270 12576 E := First_Entity (T);
12577 while Present (E) loop
77fd9c7a 12578 if Comes_From_Source (E) and then Chars (E) = Comp then
d0931270 12579 return E;
12580 end if;
12581
12582 Next_Entity (E);
12583 end loop;
d0931270 12584 end if;
1a5b3a27 12585
b58a7126 12586 -- Nothing by that name, or the type has no components
1a5b3a27 12587
12588 return Empty;
d0931270 12589 end Visible_Component;
12590
77fd9c7a 12591 -- Start of processing for Replace_Type_References_Generic
2072eaa9 12592
12593 begin
12594 Replace_Type_Refs (N);
12595 end Replace_Type_References_Generic;
12596
81bd1c0d 12597 --------------------------------
12598 -- Resolve_Aspect_Expressions --
12599 --------------------------------
12600
12601 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12602 ASN : Node_Id;
12603 A_Id : Aspect_Id;
12604 Expr : Node_Id;
12605
9c20237a 12606 function Resolve_Name (N : Node_Id) return Traverse_Result;
12607 -- Verify that all identifiers in the expression, with the exception
12608 -- of references to the current entity, denote visible entities. This
12609 -- is done only to detect visibility errors, as the expression will be
12610 -- properly analyzed/expanded during analysis of the predicate function
c098acfb 12611 -- body. We omit quantified expressions from this test, given that they
12612 -- introduce a local identifier that would require proper expansion to
12613 -- handle properly.
9c20237a 12614
25e4fa47 12615 -- In ASIS_Mode we preserve the entity in the source because there is
12616 -- no subsequent expansion to decorate the tree.
12617
9c20237a 12618 ------------------
12619 -- Resolve_Name --
12620 ------------------
12621
12622 function Resolve_Name (N : Node_Id) return Traverse_Result is
12623 begin
12624 if Nkind (N) = N_Selected_Component then
12625 if Nkind (Prefix (N)) = N_Identifier
12626 and then Chars (Prefix (N)) /= Chars (E)
12627 then
f4e18891 12628 Find_Selected_Component (N);
9c20237a 12629 end if;
02e5d0d0 12630
9c20237a 12631 return Skip;
12632
02e5d0d0 12633 elsif Nkind (N) = N_Identifier and then Chars (N) /= Chars (E) then
9c20237a 12634 Find_Direct_Name (N);
25e4fa47 12635
6b1f5205 12636 if not ASIS_Mode then
25e4fa47 12637 Set_Entity (N, Empty);
12638 end if;
c098acfb 12639
12640 elsif Nkind (N) = N_Quantified_Expression then
12641 return Skip;
9c20237a 12642 end if;
12643
12644 return OK;
12645 end Resolve_Name;
12646
12647 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12648
02e5d0d0 12649 -- Start of processing for Resolve_Aspect_Expressions
12650
81bd1c0d 12651 begin
12652 ASN := First_Rep_Item (E);
12653 while Present (ASN) loop
12654 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12655 A_Id := Get_Aspect_Id (ASN);
12656 Expr := Expression (ASN);
12657
12658 case A_Id is
97c23bbe 12659
81bd1c0d 12660 -- For now we only deal with aspects that do not generate
12661 -- subprograms, or that may mention current instances of
fdec445e 12662 -- types. These will require special handling (???TBD).
81bd1c0d 12663
99378362 12664 when Aspect_Invariant
12665 | Aspect_Predicate
12666 | Aspect_Predicate_Failure
12667 =>
81bd1c0d 12668 null;
12669
99378362 12670 when Aspect_Dynamic_Predicate
12671 | Aspect_Static_Predicate
12672 =>
02e5d0d0 12673 -- Build predicate function specification and preanalyze
9c20237a 12674 -- expression after type replacement.
12675
12676 if No (Predicate_Function (E)) then
12677 declare
12678 FDecl : constant Node_Id :=
02e5d0d0 12679 Build_Predicate_Function_Declaration (E);
9c20237a 12680 pragma Unreferenced (FDecl);
12681 begin
12682 Resolve_Aspect_Expression (Expr);
12683 end;
12684 end if;
12685
81bd1c0d 12686 when Pre_Post_Aspects =>
12687 null;
12688
12689 when Aspect_Iterable =>
12690 if Nkind (Expr) = N_Aggregate then
12691 declare
12692 Assoc : Node_Id;
12693
12694 begin
12695 Assoc := First (Component_Associations (Expr));
12696 while Present (Assoc) loop
12697 Find_Direct_Name (Expression (Assoc));
12698 Next (Assoc);
12699 end loop;
12700 end;
12701 end if;
12702
12703 when others =>
12704 if Present (Expr) then
12705 case Aspect_Argument (A_Id) is
99378362 12706 when Expression
12707 | Optional_Expression
12708 =>
81bd1c0d 12709 Analyze_And_Resolve (Expression (ASN));
12710
99378362 12711 when Name
12712 | Optional_Name
12713 =>
81bd1c0d 12714 if Nkind (Expr) = N_Identifier then
12715 Find_Direct_Name (Expr);
12716
12717 elsif Nkind (Expr) = N_Selected_Component then
12718 Find_Selected_Component (Expr);
81bd1c0d 12719 end if;
12720 end case;
12721 end if;
12722 end case;
12723 end if;
12724
a738763e 12725 ASN := Next_Rep_Item (ASN);
81bd1c0d 12726 end loop;
12727 end Resolve_Aspect_Expressions;
12728
d6f39728 12729 -------------------------
12730 -- Same_Representation --
12731 -------------------------
12732
12733 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12734 T1 : constant Entity_Id := Underlying_Type (Typ1);
12735 T2 : constant Entity_Id := Underlying_Type (Typ2);
12736
12737 begin
12738 -- A quick check, if base types are the same, then we definitely have
12739 -- the same representation, because the subtype specific representation
12740 -- attributes (Size and Alignment) do not affect representation from
12741 -- the point of view of this test.
12742
12743 if Base_Type (T1) = Base_Type (T2) then
12744 return True;
12745
12746 elsif Is_Private_Type (Base_Type (T2))
12747 and then Base_Type (T1) = Full_View (Base_Type (T2))
12748 then
12749 return True;
12750 end if;
12751
12752 -- Tagged types never have differing representations
12753
12754 if Is_Tagged_Type (T1) then
12755 return True;
12756 end if;
12757
12758 -- Representations are definitely different if conventions differ
12759
12760 if Convention (T1) /= Convention (T2) then
12761 return False;
12762 end if;
12763
ef0772bc 12764 -- Representations are different if component alignments or scalar
12765 -- storage orders differ.
d6f39728 12766
12767 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
726fd56a 12768 and then
d6f39728 12769 (Is_Record_Type (T2) or else Is_Array_Type (T2))
ef0772bc 12770 and then
12771 (Component_Alignment (T1) /= Component_Alignment (T2)
f02a9a9a 12772 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
d6f39728 12773 then
12774 return False;
12775 end if;
12776
12777 -- For arrays, the only real issue is component size. If we know the
12778 -- component size for both arrays, and it is the same, then that's
12779 -- good enough to know we don't have a change of representation.
12780
12781 if Is_Array_Type (T1) then
12782 if Known_Component_Size (T1)
12783 and then Known_Component_Size (T2)
12784 and then Component_Size (T1) = Component_Size (T2)
12785 then
36ac5fbb 12786 return True;
d6f39728 12787 end if;
12788 end if;
12789
12790 -- Types definitely have same representation if neither has non-standard
12791 -- representation since default representations are always consistent.
12792 -- If only one has non-standard representation, and the other does not,
12793 -- then we consider that they do not have the same representation. They
12794 -- might, but there is no way of telling early enough.
12795
12796 if Has_Non_Standard_Rep (T1) then
12797 if not Has_Non_Standard_Rep (T2) then
12798 return False;
12799 end if;
12800 else
12801 return not Has_Non_Standard_Rep (T2);
12802 end if;
12803
fdd294d1 12804 -- Here the two types both have non-standard representation, and we need
12805 -- to determine if they have the same non-standard representation.
d6f39728 12806
12807 -- For arrays, we simply need to test if the component sizes are the
12808 -- same. Pragma Pack is reflected in modified component sizes, so this
12809 -- check also deals with pragma Pack.
12810
12811 if Is_Array_Type (T1) then
12812 return Component_Size (T1) = Component_Size (T2);
12813
12814 -- Tagged types always have the same representation, because it is not
12815 -- possible to specify different representations for common fields.
12816
12817 elsif Is_Tagged_Type (T1) then
12818 return True;
12819
12820 -- Case of record types
12821
12822 elsif Is_Record_Type (T1) then
12823
12824 -- Packed status must conform
12825
12826 if Is_Packed (T1) /= Is_Packed (T2) then
12827 return False;
12828
12829 -- Otherwise we must check components. Typ2 maybe a constrained
12830 -- subtype with fewer components, so we compare the components
12831 -- of the base types.
12832
12833 else
12834 Record_Case : declare
12835 CD1, CD2 : Entity_Id;
12836
12837 function Same_Rep return Boolean;
12838 -- CD1 and CD2 are either components or discriminants. This
ef0772bc 12839 -- function tests whether they have the same representation.
d6f39728 12840
80d4fec4 12841 --------------
12842 -- Same_Rep --
12843 --------------
12844
d6f39728 12845 function Same_Rep return Boolean is
12846 begin
12847 if No (Component_Clause (CD1)) then
12848 return No (Component_Clause (CD2));
d6f39728 12849 else
ef0772bc 12850 -- Note: at this point, component clauses have been
12851 -- normalized to the default bit order, so that the
12852 -- comparison of Component_Bit_Offsets is meaningful.
12853
d6f39728 12854 return
12855 Present (Component_Clause (CD2))
12856 and then
12857 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12858 and then
12859 Esize (CD1) = Esize (CD2);
12860 end if;
12861 end Same_Rep;
12862
1e35409d 12863 -- Start of processing for Record_Case
d6f39728 12864
12865 begin
12866 if Has_Discriminants (T1) then
d6f39728 12867
9dfe12ae 12868 -- The number of discriminants may be different if the
12869 -- derived type has fewer (constrained by values). The
12870 -- invisible discriminants retain the representation of
12871 -- the original, so the discrepancy does not per se
12872 -- indicate a different representation.
12873
b9e61b2a 12874 CD1 := First_Discriminant (T1);
12875 CD2 := First_Discriminant (T2);
12876 while Present (CD1) and then Present (CD2) loop
d6f39728 12877 if not Same_Rep then
12878 return False;
12879 else
12880 Next_Discriminant (CD1);
12881 Next_Discriminant (CD2);
12882 end if;
12883 end loop;
12884 end if;
12885
12886 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12887 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 12888 while Present (CD1) loop
12889 if not Same_Rep then
12890 return False;
12891 else
12892 Next_Component (CD1);
12893 Next_Component (CD2);
12894 end if;
12895 end loop;
12896
12897 return True;
12898 end Record_Case;
12899 end if;
12900
12901 -- For enumeration types, we must check each literal to see if the
12902 -- representation is the same. Note that we do not permit enumeration
1a34e48c 12903 -- representation clauses for Character and Wide_Character, so these
d6f39728 12904 -- cases were already dealt with.
12905
12906 elsif Is_Enumeration_Type (T1) then
d6f39728 12907 Enumeration_Case : declare
12908 L1, L2 : Entity_Id;
12909
12910 begin
12911 L1 := First_Literal (T1);
12912 L2 := First_Literal (T2);
d6f39728 12913 while Present (L1) loop
12914 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12915 return False;
12916 else
12917 Next_Literal (L1);
12918 Next_Literal (L2);
12919 end if;
12920 end loop;
12921
12922 return True;
d6f39728 12923 end Enumeration_Case;
12924
12925 -- Any other types have the same representation for these purposes
12926
12927 else
12928 return True;
12929 end if;
d6f39728 12930 end Same_Representation;
12931
3061ffde 12932 --------------------------------
12933 -- Resolve_Iterable_Operation --
12934 --------------------------------
12935
12936 procedure Resolve_Iterable_Operation
12937 (N : Node_Id;
12938 Cursor : Entity_Id;
12939 Typ : Entity_Id;
12940 Nam : Name_Id)
12941 is
12942 Ent : Entity_Id;
12943 F1 : Entity_Id;
12944 F2 : Entity_Id;
12945
12946 begin
12947 if not Is_Overloaded (N) then
12948 if not Is_Entity_Name (N)
12949 or else Ekind (Entity (N)) /= E_Function
12950 or else Scope (Entity (N)) /= Scope (Typ)
12951 or else No (First_Formal (Entity (N)))
12952 or else Etype (First_Formal (Entity (N))) /= Typ
12953 then
12954 Error_Msg_N ("iterable primitive must be local function name "
12955 & "whose first formal is an iterable type", N);
a9f5fea7 12956 return;
3061ffde 12957 end if;
12958
12959 Ent := Entity (N);
12960 F1 := First_Formal (Ent);
12961 if Nam = Name_First then
12962
12963 -- First (Container) => Cursor
12964
12965 if Etype (Ent) /= Cursor then
12966 Error_Msg_N ("primitive for First must yield a curosr", N);
12967 end if;
12968
12969 elsif Nam = Name_Next then
12970
12971 -- Next (Container, Cursor) => Cursor
12972
12973 F2 := Next_Formal (F1);
12974
12975 if Etype (F2) /= Cursor
12976 or else Etype (Ent) /= Cursor
12977 or else Present (Next_Formal (F2))
12978 then
12979 Error_Msg_N ("no match for Next iterable primitive", N);
12980 end if;
12981
12982 elsif Nam = Name_Has_Element then
12983
12984 -- Has_Element (Container, Cursor) => Boolean
12985
12986 F2 := Next_Formal (F1);
12987 if Etype (F2) /= Cursor
12988 or else Etype (Ent) /= Standard_Boolean
12989 or else Present (Next_Formal (F2))
12990 then
12991 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12992 end if;
12993
12994 elsif Nam = Name_Element then
b9b03799 12995 F2 := Next_Formal (F1);
12996
12997 if No (F2)
12998 or else Etype (F2) /= Cursor
12999 or else Present (Next_Formal (F2))
13000 then
13001 Error_Msg_N ("no match for Element iterable primitive", N);
13002 end if;
3061ffde 13003 null;
13004
13005 else
13006 raise Program_Error;
13007 end if;
13008
13009 else
13010 -- Overloaded case: find subprogram with proper signature.
13011 -- Caller will report error if no match is found.
13012
13013 declare
13014 I : Interp_Index;
13015 It : Interp;
13016
13017 begin
13018 Get_First_Interp (N, I, It);
13019 while Present (It.Typ) loop
13020 if Ekind (It.Nam) = E_Function
b9b03799 13021 and then Scope (It.Nam) = Scope (Typ)
3061ffde 13022 and then Etype (First_Formal (It.Nam)) = Typ
13023 then
13024 F1 := First_Formal (It.Nam);
13025
13026 if Nam = Name_First then
13027 if Etype (It.Nam) = Cursor
13028 and then No (Next_Formal (F1))
13029 then
13030 Set_Entity (N, It.Nam);
13031 exit;
13032 end if;
13033
13034 elsif Nam = Name_Next then
13035 F2 := Next_Formal (F1);
13036
13037 if Present (F2)
13038 and then No (Next_Formal (F2))
13039 and then Etype (F2) = Cursor
13040 and then Etype (It.Nam) = Cursor
13041 then
13042 Set_Entity (N, It.Nam);
13043 exit;
13044 end if;
13045
13046 elsif Nam = Name_Has_Element then
13047 F2 := Next_Formal (F1);
13048
13049 if Present (F2)
13050 and then No (Next_Formal (F2))
13051 and then Etype (F2) = Cursor
13052 and then Etype (It.Nam) = Standard_Boolean
13053 then
13054 Set_Entity (N, It.Nam);
13055 F2 := Next_Formal (F1);
13056 exit;
13057 end if;
13058
13059 elsif Nam = Name_Element then
b9b03799 13060 F2 := Next_Formal (F1);
13061
3061ffde 13062 if Present (F2)
13063 and then No (Next_Formal (F2))
13064 and then Etype (F2) = Cursor
13065 then
13066 Set_Entity (N, It.Nam);
13067 exit;
13068 end if;
13069 end if;
13070 end if;
13071
13072 Get_Next_Interp (I, It);
13073 end loop;
13074 end;
13075 end if;
13076 end Resolve_Iterable_Operation;
13077
b77e4501 13078 ----------------
13079 -- Set_Biased --
13080 ----------------
13081
13082 procedure Set_Biased
13083 (E : Entity_Id;
13084 N : Node_Id;
13085 Msg : String;
13086 Biased : Boolean := True)
13087 is
13088 begin
13089 if Biased then
13090 Set_Has_Biased_Representation (E);
13091
13092 if Warn_On_Biased_Representation then
13093 Error_Msg_NE
1e3532e7 13094 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 13095 end if;
13096 end if;
13097 end Set_Biased;
13098
d6f39728 13099 --------------------
13100 -- Set_Enum_Esize --
13101 --------------------
13102
13103 procedure Set_Enum_Esize (T : Entity_Id) is
13104 Lo : Uint;
13105 Hi : Uint;
13106 Sz : Nat;
13107
13108 begin
13109 Init_Alignment (T);
13110
13111 -- Find the minimum standard size (8,16,32,64) that fits
13112
13113 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13114 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13115
13116 if Lo < 0 then
13117 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 13118 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 13119
13120 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13121 Sz := 16;
13122
13123 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13124 Sz := 32;
13125
13126 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13127 Sz := 64;
13128 end if;
13129
13130 else
13131 if Hi < Uint_2**08 then
f15731c4 13132 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 13133
13134 elsif Hi < Uint_2**16 then
13135 Sz := 16;
13136
13137 elsif Hi < Uint_2**32 then
13138 Sz := 32;
13139
13140 else pragma Assert (Hi < Uint_2**63);
13141 Sz := 64;
13142 end if;
13143 end if;
13144
13145 -- That minimum is the proper size unless we have a foreign convention
13146 -- and the size required is 32 or less, in which case we bump the size
13147 -- up to 32. This is required for C and C++ and seems reasonable for
13148 -- all other foreign conventions.
13149
13150 if Has_Foreign_Convention (T)
13151 and then Esize (T) < Standard_Integer_Size
db1eed69 13152
13153 -- Don't do this if Short_Enums on target
13154
e9185b9d 13155 and then not Target_Short_Enums
d6f39728 13156 then
13157 Init_Esize (T, Standard_Integer_Size);
d6f39728 13158 else
13159 Init_Esize (T, Sz);
13160 end if;
d6f39728 13161 end Set_Enum_Esize;
13162
2625eb01 13163 -----------------------------
13164 -- Uninstall_Discriminants --
13165 -----------------------------
13166
13167 procedure Uninstall_Discriminants (E : Entity_Id) is
13168 Disc : Entity_Id;
13169 Prev : Entity_Id;
13170 Outer : Entity_Id;
13171
13172 begin
13173 -- Discriminants have been made visible for type declarations and
13174 -- protected type declarations, not for subtype declarations.
13175
13176 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13177 Disc := First_Discriminant (E);
13178 while Present (Disc) loop
13179 if Disc /= Current_Entity (Disc) then
13180 Prev := Current_Entity (Disc);
13181 while Present (Prev)
13182 and then Present (Homonym (Prev))
13183 and then Homonym (Prev) /= Disc
13184 loop
13185 Prev := Homonym (Prev);
13186 end loop;
13187 else
13188 Prev := Empty;
13189 end if;
13190
13191 Set_Is_Immediately_Visible (Disc, False);
13192
13193 Outer := Homonym (Disc);
13194 while Present (Outer) and then Scope (Outer) = E loop
13195 Outer := Homonym (Outer);
13196 end loop;
13197
13198 -- Reset homonym link of other entities, but do not modify link
3ff5e35d 13199 -- between entities in current scope, so that the back end can
2625eb01 13200 -- have a proper count of local overloadings.
13201
13202 if No (Prev) then
13203 Set_Name_Entity_Id (Chars (Disc), Outer);
13204
13205 elsif Scope (Prev) /= Scope (Disc) then
13206 Set_Homonym (Prev, Outer);
13207 end if;
13208
13209 Next_Discriminant (Disc);
13210 end loop;
13211 end if;
13212 end Uninstall_Discriminants;
13213
13214 -------------------------------------------
13215 -- Uninstall_Discriminants_And_Pop_Scope --
13216 -------------------------------------------
13217
13218 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13219 begin
13220 if Has_Discriminants (E) then
13221 Uninstall_Discriminants (E);
13222 Pop_Scope;
13223 end if;
13224 end Uninstall_Discriminants_And_Pop_Scope;
13225
83f8f0a6 13226 ------------------------------
13227 -- Validate_Address_Clauses --
13228 ------------------------------
13229
13230 procedure Validate_Address_Clauses is
c7a1569a 13231 function Offset_Value (Expr : Node_Id) return Uint;
13232 -- Given an Address attribute reference, return the value in bits of its
13233 -- offset from the first bit of the underlying entity, or 0 if it is not
13234 -- known at compile time.
13235
13236 ------------------
13237 -- Offset_Value --
13238 ------------------
13239
13240 function Offset_Value (Expr : Node_Id) return Uint is
13241 N : Node_Id := Prefix (Expr);
13242 Off : Uint;
13243 Val : Uint := Uint_0;
13244
13245 begin
13246 -- Climb the prefix chain and compute the cumulative offset
13247
13248 loop
13249 if Is_Entity_Name (N) then
13250 return Val;
13251
13252 elsif Nkind (N) = N_Selected_Component then
13253 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13254 if Off /= No_Uint and then Off >= Uint_0 then
13255 Val := Val + Off;
13256 N := Prefix (N);
13257 else
13258 return Uint_0;
13259 end if;
13260
13261 elsif Nkind (N) = N_Indexed_Component then
13262 Off := Indexed_Component_Bit_Offset (N);
13263 if Off /= No_Uint then
13264 Val := Val + Off;
13265 N := Prefix (N);
13266 else
13267 return Uint_0;
13268 end if;
13269
13270 else
13271 return Uint_0;
13272 end if;
13273 end loop;
13274 end Offset_Value;
13275
13276 -- Start of processing for Validate_Address_Clauses
13277
83f8f0a6 13278 begin
13279 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13280 declare
13281 ACCR : Address_Clause_Check_Record
13282 renames Address_Clause_Checks.Table (J);
13283
d6da7448 13284 Expr : Node_Id;
13285
83f8f0a6 13286 X_Alignment : Uint;
13287 Y_Alignment : Uint;
13288
13289 X_Size : Uint;
13290 Y_Size : Uint;
13291
c7a1569a 13292 X_Offs : Uint;
13293
83f8f0a6 13294 begin
13295 -- Skip processing of this entry if warning already posted
13296
13297 if not Address_Warning_Posted (ACCR.N) then
d6da7448 13298 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 13299
514a5555 13300 -- Get alignments, sizes and offset, if any
83f8f0a6 13301
d6da7448 13302 X_Alignment := Alignment (ACCR.X);
8650387e 13303 X_Size := Esize (ACCR.X);
514a5555 13304
13305 if Present (ACCR.Y) then
13306 Y_Alignment := Alignment (ACCR.Y);
8650387e 13307 Y_Size := Esize (ACCR.Y);
514a5555 13308 end if;
83f8f0a6 13309
c7a1569a 13310 if ACCR.Off
13311 and then Nkind (Expr) = N_Attribute_Reference
13312 and then Attribute_Name (Expr) = Name_Address
13313 then
13314 X_Offs := Offset_Value (Expr);
13315 else
13316 X_Offs := Uint_0;
13317 end if;
13318
514a5555 13319 -- Check for known value not multiple of alignment
13320
13321 if No (ACCR.Y) then
13322 if not Alignment_Checks_Suppressed (ACCR.X)
13323 and then X_Alignment /= 0
13324 and then ACCR.A mod X_Alignment /= 0
13325 then
13326 Error_Msg_NE
13327 ("??specified address for& is inconsistent with "
13328 & "alignment", ACCR.N, ACCR.X);
13329 Error_Msg_N
13330 ("\??program execution may be erroneous (RM 13.3(27))",
13331 ACCR.N);
13332
13333 Error_Msg_Uint_1 := X_Alignment;
13334 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13335 end if;
13336
83f8f0a6 13337 -- Check for large object overlaying smaller one
13338
514a5555 13339 elsif Y_Size > Uint_0
83f8f0a6 13340 and then X_Size > Uint_0
c7a1569a 13341 and then X_Offs + X_Size > Y_Size
83f8f0a6 13342 then
7161e166 13343 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 13344 Error_Msg_N
1e3532e7 13345 ("\??program execution may be erroneous", ACCR.N);
7161e166 13346
83f8f0a6 13347 Error_Msg_Uint_1 := X_Size;
7161e166 13348 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13349
83f8f0a6 13350 Error_Msg_Uint_1 := Y_Size;
7161e166 13351 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 13352
f5cc2579 13353 if Y_Size >= X_Size then
c7a1569a 13354 Error_Msg_Uint_1 := X_Offs;
f5cc2579 13355 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
c7a1569a 13356 end if;
13357
d6da7448 13358 -- Check for inadequate alignment, both of the base object
e556831e 13359 -- and of the offset, if any. We only do this check if the
13360 -- run-time Alignment_Check is active. No point in warning
13361 -- if this check has been suppressed (or is suppressed by
13362 -- default in the non-strict alignment machine case).
83f8f0a6 13363
d6da7448 13364 -- Note: we do not check the alignment if we gave a size
13365 -- warning, since it would likely be redundant.
83f8f0a6 13366
514a5555 13367 elsif not Alignment_Checks_Suppressed (ACCR.X)
e556831e 13368 and then Y_Alignment /= Uint_0
7161e166 13369 and then
13370 (Y_Alignment < X_Alignment
13371 or else
13372 (ACCR.Off
13373 and then Nkind (Expr) = N_Attribute_Reference
13374 and then Attribute_Name (Expr) = Name_Address
13375 and then Has_Compatible_Alignment
13376 (ACCR.X, Prefix (Expr), True) /=
13377 Known_Compatible))
83f8f0a6 13378 then
13379 Error_Msg_NE
7161e166 13380 ("??specified address for& may be inconsistent with "
13381 & "alignment", ACCR.N, ACCR.X);
83f8f0a6 13382 Error_Msg_N
1e3532e7 13383 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 13384 ACCR.N);
7161e166 13385
83f8f0a6 13386 Error_Msg_Uint_1 := X_Alignment;
7161e166 13387 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13388
83f8f0a6 13389 Error_Msg_Uint_1 := Y_Alignment;
7161e166 13390 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13391
d6da7448 13392 if Y_Alignment >= X_Alignment then
13393 Error_Msg_N
7161e166 13394 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 13395 end if;
83f8f0a6 13396 end if;
13397 end if;
13398 end;
13399 end loop;
13400 end Validate_Address_Clauses;
13401
76a6b7c7 13402 -----------------------------------------
13403 -- Validate_Compile_Time_Warning_Error --
13404 -----------------------------------------
13405
13406 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13407 begin
13408 Compile_Time_Warnings_Errors.Append
13409 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13410 Scope => Current_Scope,
13411 Prag => N));
13412 end Validate_Compile_Time_Warning_Error;
13413
13414 ------------------------------------------
13415 -- Validate_Compile_Time_Warning_Errors --
13416 ------------------------------------------
13417
13418 procedure Validate_Compile_Time_Warning_Errors is
13419 procedure Set_Scope (S : Entity_Id);
13420 -- Install all enclosing scopes of S along with S itself
13421
13422 procedure Unset_Scope (S : Entity_Id);
13423 -- Uninstall all enclosing scopes of S along with S itself
13424
13425 ---------------
13426 -- Set_Scope --
13427 ---------------
13428
13429 procedure Set_Scope (S : Entity_Id) is
13430 begin
13431 if S /= Standard_Standard then
13432 Set_Scope (Scope (S));
13433 end if;
13434
13435 Push_Scope (S);
13436 end Set_Scope;
13437
13438 -----------------
13439 -- Unset_Scope --
13440 -----------------
13441
13442 procedure Unset_Scope (S : Entity_Id) is
13443 begin
13444 if S /= Standard_Standard then
13445 Unset_Scope (Scope (S));
13446 end if;
13447
13448 Pop_Scope;
13449 end Unset_Scope;
13450
13451 -- Start of processing for Validate_Compile_Time_Warning_Errors
13452
13453 begin
13454 Expander_Mode_Save_And_Set (False);
13455 In_Compile_Time_Warning_Or_Error := True;
13456
13457 for N in Compile_Time_Warnings_Errors.First ..
13458 Compile_Time_Warnings_Errors.Last
13459 loop
13460 declare
13461 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13462
13463 begin
13464 Set_Scope (T.Scope);
13465 Reset_Analyzed_Flags (T.Prag);
13466 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13467 Unset_Scope (T.Scope);
13468 end;
13469 end loop;
13470
13471 In_Compile_Time_Warning_Or_Error := False;
13472 Expander_Mode_Restore;
13473 end Validate_Compile_Time_Warning_Errors;
13474
7717ea00 13475 ---------------------------
13476 -- Validate_Independence --
13477 ---------------------------
13478
13479 procedure Validate_Independence is
13480 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13481 N : Node_Id;
13482 E : Entity_Id;
13483 IC : Boolean;
13484 Comp : Entity_Id;
13485 Addr : Node_Id;
13486 P : Node_Id;
13487
13488 procedure Check_Array_Type (Atyp : Entity_Id);
13489 -- Checks if the array type Atyp has independent components, and
13490 -- if not, outputs an appropriate set of error messages.
13491
13492 procedure No_Independence;
13493 -- Output message that independence cannot be guaranteed
13494
13495 function OK_Component (C : Entity_Id) return Boolean;
13496 -- Checks one component to see if it is independently accessible, and
13497 -- if so yields True, otherwise yields False if independent access
13498 -- cannot be guaranteed. This is a conservative routine, it only
13499 -- returns True if it knows for sure, it returns False if it knows
13500 -- there is a problem, or it cannot be sure there is no problem.
13501
13502 procedure Reason_Bad_Component (C : Entity_Id);
13503 -- Outputs continuation message if a reason can be determined for
13504 -- the component C being bad.
13505
13506 ----------------------
13507 -- Check_Array_Type --
13508 ----------------------
13509
13510 procedure Check_Array_Type (Atyp : Entity_Id) is
13511 Ctyp : constant Entity_Id := Component_Type (Atyp);
13512
13513 begin
13514 -- OK if no alignment clause, no pack, and no component size
13515
13516 if not Has_Component_Size_Clause (Atyp)
13517 and then not Has_Alignment_Clause (Atyp)
13518 and then not Is_Packed (Atyp)
13519 then
13520 return;
13521 end if;
13522
aa0a69ab 13523 -- Case of component size is greater than or equal to 64 and the
13524 -- alignment of the array is at least as large as the alignment
13525 -- of the component. We are definitely OK in this situation.
13526
13527 if Known_Component_Size (Atyp)
13528 and then Component_Size (Atyp) >= 64
13529 and then Known_Alignment (Atyp)
13530 and then Known_Alignment (Ctyp)
13531 and then Alignment (Atyp) >= Alignment (Ctyp)
13532 then
13533 return;
13534 end if;
13535
7717ea00 13536 -- Check actual component size
13537
13538 if not Known_Component_Size (Atyp)
13539 or else not (Addressable (Component_Size (Atyp))
aa0a69ab 13540 and then Component_Size (Atyp) < 64)
7717ea00 13541 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13542 then
13543 No_Independence;
13544
13545 -- Bad component size, check reason
13546
13547 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 13548 P := Get_Attribute_Definition_Clause
13549 (Atyp, Attribute_Component_Size);
7717ea00 13550
13551 if Present (P) then
13552 Error_Msg_Sloc := Sloc (P);
13553 Error_Msg_N ("\because of Component_Size clause#", N);
13554 return;
13555 end if;
13556 end if;
13557
13558 if Is_Packed (Atyp) then
13559 P := Get_Rep_Pragma (Atyp, Name_Pack);
13560
13561 if Present (P) then
13562 Error_Msg_Sloc := Sloc (P);
13563 Error_Msg_N ("\because of pragma Pack#", N);
13564 return;
13565 end if;
13566 end if;
13567
13568 -- No reason found, just return
13569
13570 return;
13571 end if;
13572
13573 -- Array type is OK independence-wise
13574
13575 return;
13576 end Check_Array_Type;
13577
13578 ---------------------
13579 -- No_Independence --
13580 ---------------------
13581
13582 procedure No_Independence is
13583 begin
ddccc924 13584 if Pragma_Name (N) = Name_Independent then
18393965 13585 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
7717ea00 13586 else
13587 Error_Msg_NE
13588 ("independent components cannot be guaranteed for&", N, E);
13589 end if;
13590 end No_Independence;
13591
13592 ------------------
13593 -- OK_Component --
13594 ------------------
13595
13596 function OK_Component (C : Entity_Id) return Boolean is
13597 Rec : constant Entity_Id := Scope (C);
13598 Ctyp : constant Entity_Id := Etype (C);
13599
13600 begin
13601 -- OK if no component clause, no Pack, and no alignment clause
13602
13603 if No (Component_Clause (C))
13604 and then not Is_Packed (Rec)
13605 and then not Has_Alignment_Clause (Rec)
13606 then
13607 return True;
13608 end if;
13609
13610 -- Here we look at the actual component layout. A component is
13611 -- addressable if its size is a multiple of the Esize of the
13612 -- component type, and its starting position in the record has
13613 -- appropriate alignment, and the record itself has appropriate
13614 -- alignment to guarantee the component alignment.
13615
13616 -- Make sure sizes are static, always assume the worst for any
13617 -- cases where we cannot check static values.
13618
13619 if not (Known_Static_Esize (C)
b9e61b2a 13620 and then
13621 Known_Static_Esize (Ctyp))
7717ea00 13622 then
13623 return False;
13624 end if;
13625
13626 -- Size of component must be addressable or greater than 64 bits
13627 -- and a multiple of bytes.
13628
b9e61b2a 13629 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 13630 return False;
13631 end if;
13632
13633 -- Check size is proper multiple
13634
13635 if Esize (C) mod Esize (Ctyp) /= 0 then
13636 return False;
13637 end if;
13638
13639 -- Check alignment of component is OK
13640
13641 if not Known_Component_Bit_Offset (C)
13642 or else Component_Bit_Offset (C) < Uint_0
13643 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13644 then
13645 return False;
13646 end if;
13647
13648 -- Check alignment of record type is OK
13649
13650 if not Known_Alignment (Rec)
13651 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13652 then
13653 return False;
13654 end if;
13655
13656 -- All tests passed, component is addressable
13657
13658 return True;
13659 end OK_Component;
13660
13661 --------------------------
13662 -- Reason_Bad_Component --
13663 --------------------------
13664
13665 procedure Reason_Bad_Component (C : Entity_Id) is
13666 Rec : constant Entity_Id := Scope (C);
13667 Ctyp : constant Entity_Id := Etype (C);
13668
13669 begin
13670 -- If component clause present assume that's the problem
13671
13672 if Present (Component_Clause (C)) then
13673 Error_Msg_Sloc := Sloc (Component_Clause (C));
13674 Error_Msg_N ("\because of Component_Clause#", N);
13675 return;
13676 end if;
13677
13678 -- If pragma Pack clause present, assume that's the problem
13679
13680 if Is_Packed (Rec) then
13681 P := Get_Rep_Pragma (Rec, Name_Pack);
13682
13683 if Present (P) then
13684 Error_Msg_Sloc := Sloc (P);
13685 Error_Msg_N ("\because of pragma Pack#", N);
13686 return;
13687 end if;
13688 end if;
13689
13690 -- See if record has bad alignment clause
13691
13692 if Has_Alignment_Clause (Rec)
13693 and then Known_Alignment (Rec)
13694 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13695 then
13696 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13697
13698 if Present (P) then
13699 Error_Msg_Sloc := Sloc (P);
13700 Error_Msg_N ("\because of Alignment clause#", N);
13701 end if;
13702 end if;
13703
13704 -- Couldn't find a reason, so return without a message
13705
13706 return;
13707 end Reason_Bad_Component;
13708
13709 -- Start of processing for Validate_Independence
13710
13711 begin
13712 for J in Independence_Checks.First .. Independence_Checks.Last loop
13713 N := Independence_Checks.Table (J).N;
13714 E := Independence_Checks.Table (J).E;
ddccc924 13715 IC := Pragma_Name (N) = Name_Independent_Components;
7717ea00 13716
13717 -- Deal with component case
13718
13719 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13720 if not OK_Component (E) then
13721 No_Independence;
13722 Reason_Bad_Component (E);
13723 goto Continue;
13724 end if;
13725 end if;
13726
13727 -- Deal with record with Independent_Components
13728
13729 if IC and then Is_Record_Type (E) then
13730 Comp := First_Component_Or_Discriminant (E);
13731 while Present (Comp) loop
13732 if not OK_Component (Comp) then
13733 No_Independence;
13734 Reason_Bad_Component (Comp);
13735 goto Continue;
13736 end if;
13737
13738 Next_Component_Or_Discriminant (Comp);
13739 end loop;
13740 end if;
13741
13742 -- Deal with address clause case
13743
13744 if Is_Object (E) then
13745 Addr := Address_Clause (E);
13746
13747 if Present (Addr) then
13748 No_Independence;
13749 Error_Msg_Sloc := Sloc (Addr);
13750 Error_Msg_N ("\because of Address clause#", N);
13751 goto Continue;
13752 end if;
13753 end if;
13754
13755 -- Deal with independent components for array type
13756
13757 if IC and then Is_Array_Type (E) then
13758 Check_Array_Type (E);
13759 end if;
13760
13761 -- Deal with independent components for array object
13762
13763 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13764 Check_Array_Type (Etype (E));
13765 end if;
13766
13767 <<Continue>> null;
13768 end loop;
13769 end Validate_Independence;
13770
b3f8228a 13771 ------------------------------
13772 -- Validate_Iterable_Aspect --
13773 ------------------------------
13774
13775 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
3061ffde 13776 Assoc : Node_Id;
13777 Expr : Node_Id;
b3f8228a 13778
bde03454 13779 Prim : Node_Id;
a9f5fea7 13780 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
b3f8228a 13781
13782 First_Id : Entity_Id;
13783 Next_Id : Entity_Id;
13784 Has_Element_Id : Entity_Id;
13785 Element_Id : Entity_Id;
13786
b3f8228a 13787 begin
9698629c 13788 -- If previous error aspect is unusable
a9f5fea7 13789
13790 if Cursor = Any_Type then
3061ffde 13791 return;
13792 end if;
b3f8228a 13793
13794 First_Id := Empty;
13795 Next_Id := Empty;
13796 Has_Element_Id := Empty;
32de816b 13797 Element_Id := Empty;
b3f8228a 13798
13799 -- Each expression must resolve to a function with the proper signature
13800
13801 Assoc := First (Component_Associations (Expression (ASN)));
13802 while Present (Assoc) loop
13803 Expr := Expression (Assoc);
13804 Analyze (Expr);
13805
b3f8228a 13806 Prim := First (Choices (Assoc));
bde03454 13807
f02a9a9a 13808 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
b3f8228a 13809 Error_Msg_N ("illegal name in association", Prim);
13810
13811 elsif Chars (Prim) = Name_First then
3061ffde 13812 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
b3f8228a 13813 First_Id := Entity (Expr);
b3f8228a 13814
13815 elsif Chars (Prim) = Name_Next then
3061ffde 13816 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
b3f8228a 13817 Next_Id := Entity (Expr);
b3f8228a 13818
13819 elsif Chars (Prim) = Name_Has_Element then
3061ffde 13820 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
b3f8228a 13821 Has_Element_Id := Entity (Expr);
bde03454 13822
b3f8228a 13823 elsif Chars (Prim) = Name_Element then
3061ffde 13824 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
b3f8228a 13825 Element_Id := Entity (Expr);
b3f8228a 13826
13827 else
13828 Error_Msg_N ("invalid name for iterable function", Prim);
13829 end if;
13830
13831 Next (Assoc);
13832 end loop;
13833
13834 if No (First_Id) then
3061ffde 13835 Error_Msg_N ("match for First primitive not found", ASN);
b3f8228a 13836
13837 elsif No (Next_Id) then
3061ffde 13838 Error_Msg_N ("match for Next primitive not found", ASN);
b3f8228a 13839
13840 elsif No (Has_Element_Id) then
3061ffde 13841 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13842
13843 elsif No (Element_Id) then
13844 null; -- Optional.
b3f8228a 13845 end if;
13846 end Validate_Iterable_Aspect;
13847
d6f39728 13848 -----------------------------------
13849 -- Validate_Unchecked_Conversion --
13850 -----------------------------------
13851
13852 procedure Validate_Unchecked_Conversion
13853 (N : Node_Id;
13854 Act_Unit : Entity_Id)
13855 is
13856 Source : Entity_Id;
13857 Target : Entity_Id;
13858 Vnode : Node_Id;
13859
13860 begin
13861 -- Obtain source and target types. Note that we call Ancestor_Subtype
13862 -- here because the processing for generic instantiation always makes
13863 -- subtypes, and we want the original frozen actual types.
13864
13865 -- If we are dealing with private types, then do the check on their
13866 -- fully declared counterparts if the full declarations have been
39a0c1d3 13867 -- encountered (they don't have to be visible, but they must exist).
d6f39728 13868
13869 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13870
13871 if Is_Private_Type (Source)
13872 and then Present (Underlying_Type (Source))
13873 then
13874 Source := Underlying_Type (Source);
13875 end if;
13876
13877 Target := Ancestor_Subtype (Etype (Act_Unit));
13878
fdd294d1 13879 -- If either type is generic, the instantiation happens within a generic
95deda50 13880 -- unit, and there is nothing to check. The proper check will happen
13881 -- when the enclosing generic is instantiated.
d6f39728 13882
13883 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13884 return;
13885 end if;
13886
13887 if Is_Private_Type (Target)
13888 and then Present (Underlying_Type (Target))
13889 then
13890 Target := Underlying_Type (Target);
13891 end if;
13892
0924014e 13893 -- Source may be unconstrained array, but not target, except in relaxed
13894 -- semantics mode.
d6f39728 13895
0924014e 13896 if Is_Array_Type (Target)
13897 and then not Is_Constrained (Target)
13898 and then not Relaxed_RM_Semantics
13899 then
d6f39728 13900 Error_Msg_N
13901 ("unchecked conversion to unconstrained array not allowed", N);
13902 return;
13903 end if;
13904
fbc67f84 13905 -- Warn if conversion between two different convention pointers
13906
13907 if Is_Access_Type (Target)
13908 and then Is_Access_Type (Source)
13909 and then Convention (Target) /= Convention (Source)
13910 and then Warn_On_Unchecked_Conversion
13911 then
74c7ae52 13912 -- Give warnings for subprogram pointers only on most targets
fdd294d1 13913
13914 if Is_Access_Subprogram_Type (Target)
13915 or else Is_Access_Subprogram_Type (Source)
fdd294d1 13916 then
13917 Error_Msg_N
cb97ae5c 13918 ("?z?conversion between pointers with different conventions!",
1e3532e7 13919 N);
fdd294d1 13920 end if;
fbc67f84 13921 end if;
13922
3062c401 13923 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13924 -- warning when compiling GNAT-related sources.
13925
13926 if Warn_On_Unchecked_Conversion
13927 and then not In_Predefined_Unit (N)
13928 and then RTU_Loaded (Ada_Calendar)
f02a9a9a 13929 and then (Chars (Source) = Name_Time
13930 or else
13931 Chars (Target) = Name_Time)
3062c401 13932 then
13933 -- If Ada.Calendar is loaded and the name of one of the operands is
13934 -- Time, there is a good chance that this is Ada.Calendar.Time.
13935
13936 declare
f02a9a9a 13937 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
3062c401 13938 begin
13939 pragma Assert (Present (Calendar_Time));
13940
b9e61b2a 13941 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 13942 Error_Msg_N
f02a9a9a 13943 ("?z?representation of 'Time values may change between "
13944 & "'G'N'A'T versions", N);
3062c401 13945 end if;
13946 end;
13947 end if;
13948
fdd294d1 13949 -- Make entry in unchecked conversion table for later processing by
13950 -- Validate_Unchecked_Conversions, which will check sizes and alignments
3ff5e35d 13951 -- (using values set by the back end where possible). This is only done
fdd294d1 13952 -- if the appropriate warning is active.
d6f39728 13953
9dfe12ae 13954 if Warn_On_Unchecked_Conversion then
13955 Unchecked_Conversions.Append
86d32751 13956 (New_Val => UC_Entry'(Eloc => Sloc (N),
13957 Source => Source,
13958 Target => Target,
13959 Act_Unit => Act_Unit));
9dfe12ae 13960
f9906591 13961 -- If both sizes are known statically now, then back-end annotation
9dfe12ae 13962 -- is not required to do a proper check but if either size is not
13963 -- known statically, then we need the annotation.
13964
13965 if Known_Static_RM_Size (Source)
1e3532e7 13966 and then
13967 Known_Static_RM_Size (Target)
9dfe12ae 13968 then
13969 null;
13970 else
13971 Back_Annotate_Rep_Info := True;
13972 end if;
13973 end if;
d6f39728 13974
fdd294d1 13975 -- If unchecked conversion to access type, and access type is declared
95deda50 13976 -- in the same unit as the unchecked conversion, then set the flag
13977 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 13978
13979 if Is_Access_Type (Target) and then
13980 In_Same_Source_Unit (Target, N)
13981 then
13982 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13983 end if;
3d875462 13984
95deda50 13985 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13986 -- the back end needs to perform special validation checks.
3d875462 13987
95deda50 13988 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13989 -- have full expansion and the back end is called ???
3d875462 13990
13991 Vnode :=
13992 Make_Validate_Unchecked_Conversion (Sloc (N));
13993 Set_Source_Type (Vnode, Source);
13994 Set_Target_Type (Vnode, Target);
13995
fdd294d1 13996 -- If the unchecked conversion node is in a list, just insert before it.
13997 -- If not we have some strange case, not worth bothering about.
3d875462 13998
13999 if Is_List_Member (N) then
d6f39728 14000 Insert_After (N, Vnode);
14001 end if;
14002 end Validate_Unchecked_Conversion;
14003
14004 ------------------------------------
14005 -- Validate_Unchecked_Conversions --
14006 ------------------------------------
14007
14008 procedure Validate_Unchecked_Conversions is
14009 begin
14010 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14011 declare
14012 T : UC_Entry renames Unchecked_Conversions.Table (N);
14013
e13b1635 14014 Act_Unit : constant Entity_Id := T.Act_Unit;
86d32751 14015 Eloc : constant Source_Ptr := T.Eloc;
14016 Source : constant Entity_Id := T.Source;
14017 Target : constant Entity_Id := T.Target;
d6f39728 14018
44705307 14019 Source_Siz : Uint;
14020 Target_Siz : Uint;
d6f39728 14021
14022 begin
86d32751 14023 -- Skip if function marked as warnings off
14024
14025 if Warnings_Off (Act_Unit) then
14026 goto Continue;
14027 end if;
14028
fdd294d1 14029 -- This validation check, which warns if we have unequal sizes for
14030 -- unchecked conversion, and thus potentially implementation
d6f39728 14031 -- dependent semantics, is one of the few occasions on which we
fdd294d1 14032 -- use the official RM size instead of Esize. See description in
14033 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 14034
f15731c4 14035 if Serious_Errors_Detected = 0
d6f39728 14036 and then Known_Static_RM_Size (Source)
14037 and then Known_Static_RM_Size (Target)
f25f4252 14038
14039 -- Don't do the check if warnings off for either type, note the
14040 -- deliberate use of OR here instead of OR ELSE to get the flag
14041 -- Warnings_Off_Used set for both types if appropriate.
14042
14043 and then not (Has_Warnings_Off (Source)
14044 or
14045 Has_Warnings_Off (Target))
d6f39728 14046 then
14047 Source_Siz := RM_Size (Source);
14048 Target_Siz := RM_Size (Target);
14049
14050 if Source_Siz /= Target_Siz then
299480f9 14051 Error_Msg
cb97ae5c 14052 ("?z?types for unchecked conversion have different sizes!",
299480f9 14053 Eloc);
d6f39728 14054
14055 if All_Errors_Mode then
14056 Error_Msg_Name_1 := Chars (Source);
14057 Error_Msg_Uint_1 := Source_Siz;
14058 Error_Msg_Name_2 := Chars (Target);
14059 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 14060 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 14061
14062 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14063
14064 if Is_Discrete_Type (Source)
b9e61b2a 14065 and then
14066 Is_Discrete_Type (Target)
d6f39728 14067 then
14068 if Source_Siz > Target_Siz then
299480f9 14069 Error_Msg
cb97ae5c 14070 ("\?z?^ high order bits of source will "
1e3532e7 14071 & "be ignored!", Eloc);
d6f39728 14072
9dfe12ae 14073 elsif Is_Unsigned_Type (Source) then
299480f9 14074 Error_Msg
cb97ae5c 14075 ("\?z?source will be extended with ^ high order "
1581f2d7 14076 & "zero bits!", Eloc);
d6f39728 14077
14078 else
299480f9 14079 Error_Msg
cb97ae5c 14080 ("\?z?source will be extended with ^ high order "
1e3532e7 14081 & "sign bits!", Eloc);
d6f39728 14082 end if;
14083
14084 elsif Source_Siz < Target_Siz then
14085 if Is_Discrete_Type (Target) then
14086 if Bytes_Big_Endian then
299480f9 14087 Error_Msg
cb97ae5c 14088 ("\?z?target value will include ^ undefined "
1e3532e7 14089 & "low order bits!", Eloc);
d6f39728 14090 else
299480f9 14091 Error_Msg
cb97ae5c 14092 ("\?z?target value will include ^ undefined "
1e3532e7 14093 & "high order bits!", Eloc);
d6f39728 14094 end if;
14095
14096 else
299480f9 14097 Error_Msg
cb97ae5c 14098 ("\?z?^ trailing bits of target value will be "
1e3532e7 14099 & "undefined!", Eloc);
d6f39728 14100 end if;
14101
14102 else pragma Assert (Source_Siz > Target_Siz);
0388e54e 14103 if Is_Discrete_Type (Source) then
14104 if Bytes_Big_Endian then
14105 Error_Msg
14106 ("\?z?^ low order bits of source will be "
14107 & "ignored!", Eloc);
14108 else
14109 Error_Msg
14110 ("\?z?^ high order bits of source will be "
14111 & "ignored!", Eloc);
14112 end if;
14113
14114 else
14115 Error_Msg
14116 ("\?z?^ trailing bits of source will be "
14117 & "ignored!", Eloc);
14118 end if;
d6f39728 14119 end if;
14120 end if;
d6f39728 14121 end if;
14122 end if;
14123
14124 -- If both types are access types, we need to check the alignment.
14125 -- If the alignment of both is specified, we can do it here.
14126
f15731c4 14127 if Serious_Errors_Detected = 0
2a10e737 14128 and then Is_Access_Type (Source)
14129 and then Is_Access_Type (Target)
d6f39728 14130 and then Target_Strict_Alignment
14131 and then Present (Designated_Type (Source))
14132 and then Present (Designated_Type (Target))
14133 then
14134 declare
14135 D_Source : constant Entity_Id := Designated_Type (Source);
14136 D_Target : constant Entity_Id := Designated_Type (Target);
14137
14138 begin
14139 if Known_Alignment (D_Source)
b9e61b2a 14140 and then
14141 Known_Alignment (D_Target)
d6f39728 14142 then
14143 declare
14144 Source_Align : constant Uint := Alignment (D_Source);
14145 Target_Align : constant Uint := Alignment (D_Target);
14146
14147 begin
14148 if Source_Align < Target_Align
14149 and then not Is_Tagged_Type (D_Source)
f25f4252 14150
14151 -- Suppress warning if warnings suppressed on either
14152 -- type or either designated type. Note the use of
14153 -- OR here instead of OR ELSE. That is intentional,
14154 -- we would like to set flag Warnings_Off_Used in
14155 -- all types for which warnings are suppressed.
14156
14157 and then not (Has_Warnings_Off (D_Source)
14158 or
14159 Has_Warnings_Off (D_Target)
14160 or
14161 Has_Warnings_Off (Source)
14162 or
14163 Has_Warnings_Off (Target))
d6f39728 14164 then
d6f39728 14165 Error_Msg_Uint_1 := Target_Align;
14166 Error_Msg_Uint_2 := Source_Align;
299480f9 14167 Error_Msg_Node_1 := D_Target;
d6f39728 14168 Error_Msg_Node_2 := D_Source;
299480f9 14169 Error_Msg
cb97ae5c 14170 ("?z?alignment of & (^) is stricter than "
1e3532e7 14171 & "alignment of & (^)!", Eloc);
f25f4252 14172 Error_Msg
cb97ae5c 14173 ("\?z?resulting access value may have invalid "
1e3532e7 14174 & "alignment!", Eloc);
d6f39728 14175 end if;
14176 end;
14177 end if;
14178 end;
14179 end if;
14180 end;
86d32751 14181
14182 <<Continue>>
14183 null;
d6f39728 14184 end loop;
14185 end Validate_Unchecked_Conversions;
14186
d6f39728 14187end Sem_Ch13;