]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch13.adb
2014-11-20 Bob Duff <duff@adacore.com>
[thirdparty/gcc.git] / gcc / ada / sem_ch13.adb
CommitLineData
d6f39728 1------------------------------------------------------------------------------
7189d17f 2-- --
d6f39728 3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 1 3 --
6-- --
7-- B o d y --
8-- --
2625eb01 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
d6f39728 10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
80df182a 13-- ware Foundation; either version 3, or (at your option) any later ver- --
d6f39728 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
80df182a 18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
d6f39728 20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
e78e8c8e 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
d6f39728 23-- --
24------------------------------------------------------------------------------
25
ae888dbd 26with Aspects; use Aspects;
d6f39728 27with Atree; use Atree;
713c00d6 28with Checks; use Checks;
175a6969 29with Debug; use Debug;
d6f39728 30with Einfo; use Einfo;
d00681a7 31with Elists; use Elists;
d6f39728 32with Errout; use Errout;
d00681a7 33with Exp_Disp; use Exp_Disp;
d6f39728 34with Exp_Tss; use Exp_Tss;
35with Exp_Util; use Exp_Util;
37c6552c 36with Freeze; use Freeze;
d6f39728 37with Lib; use Lib;
83f8f0a6 38with Lib.Xref; use Lib.Xref;
15ebb600 39with Namet; use Namet;
d6f39728 40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
e0521a36 43with Restrict; use Restrict;
44with Rident; use Rident;
d6f39728 45with Rtsfind; use Rtsfind;
46with Sem; use Sem;
d60c9ff7 47with Sem_Aux; use Sem_Aux;
be9124d0 48with Sem_Case; use Sem_Case;
40ca69b9 49with Sem_Ch3; use Sem_Ch3;
490beba6 50with Sem_Ch6; use Sem_Ch6;
d6f39728 51with Sem_Ch8; use Sem_Ch8;
85696508 52with Sem_Dim; use Sem_Dim;
85377c9b 53with Sem_Disp; use Sem_Disp;
d6f39728 54with Sem_Eval; use Sem_Eval;
51ea9c94 55with Sem_Prag; use Sem_Prag;
d6f39728 56with Sem_Res; use Sem_Res;
57with Sem_Type; use Sem_Type;
58with Sem_Util; use Sem_Util;
44e4341e 59with Sem_Warn; use Sem_Warn;
1e3c4ae6 60with Sinput; use Sinput;
9dfe12ae 61with Snames; use Snames;
d6f39728 62with Stand; use Stand;
63with Sinfo; use Sinfo;
5b5df4a9 64with Stringt; use Stringt;
93735cb8 65with Targparm; use Targparm;
d6f39728 66with Ttypes; use Ttypes;
67with Tbuild; use Tbuild;
68with Urealp; use Urealp;
f42f24d7 69with Warnsw; use Warnsw;
d6f39728 70
bfa5a9d9 71with GNAT.Heap_Sort_G;
d6f39728 72
73package body Sem_Ch13 is
74
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
77
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
81
1d366b32 82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
d6f39728 87
eb66e842 88 procedure Build_Discrete_Static_Predicate
d97beb2f 89 (Typ : Entity_Id;
90 Expr : Node_Id;
91 Nam : Name_Id);
d7c2851f 92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
6fb3c314 96 -- predicate expression have been replaced by identifier references to this
d7c2851f 97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
5c6a5792 100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
d97beb2f 102
eb66e842 103 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
114
6653b695 115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
118
d9f6a4ee 119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
125
d6f39728 126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
130
131 function Is_Operational_Item (N : Node_Id) return Boolean;
1e3c4ae6 132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
d6f39728 136
3b23aaa0 137 function Is_Predicate_Static
138 (Expr : Node_Id;
139 Nam : Name_Id) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
147 --
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
150 --
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
154 --
155 -- "ABC" < "DEF"
156 --
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
159 --
160 -- subtype S is String with Static_Predicate => S < "DEF"
161 --
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
164
44e4341e 165 procedure New_Stream_Subprogram
d6f39728 166 (N : Node_Id;
167 Ent : Entity_Id;
168 Subp : Entity_Id;
9dfe12ae 169 Nam : TSS_Name_Type);
44e4341e 170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
d1a2e31b 172 -- primitive operation, or in the untagged case make an appropriate TSS
44e4341e 173 -- entry. This is more properly an expansion activity than just semantics,
d1a2e31b 174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
44e4341e 176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
9dfe12ae 178 --
f15731c4 179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
183 -- primitive specs.
184
3061ffde 185 procedure Resolve_Iterable_Operation
186 (N : Node_Id;
187 Cursor : Entity_Id;
188 Typ : Entity_Id;
189 Nam : Name_Id);
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
192
b77e4501 193 procedure Set_Biased
194 (E : Entity_Id;
195 N : Node_Id;
196 Msg : String;
197 Biased : Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
201 -- causing biasing.
202
d6f39728 203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
206
207 -- The following table collects unchecked conversions for validation.
95deda50 208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
212 -- the back end.
d6f39728 213
95deda50 214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
299480f9 217
d6f39728 218 type UC_Entry is record
86d32751 219 Eloc : Source_Ptr; -- node used for posting warnings
220 Source : Entity_Id; -- source type for unchecked conversion
221 Target : Entity_Id; -- target type for unchecked conversion
222 Act_Unit : Entity_Id; -- actual function instantiated
d6f39728 223 end record;
224
225 package Unchecked_Conversions is new Table.Table (
226 Table_Component_Type => UC_Entry,
227 Table_Index_Type => Int,
228 Table_Low_Bound => 1,
229 Table_Initial => 50,
230 Table_Increment => 200,
231 Table_Name => "Unchecked_Conversions");
232
83f8f0a6 233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
236
237 -- If an address clause has the form
238
239 -- for X'Address use Expr
240
95deda50 241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
83f8f0a6 248
249 type Address_Clause_Check_Record is record
250 N : Node_Id;
251 -- The address clause
252
253 X : Entity_Id;
254 -- The entity of the object overlaying Y
255
256 Y : Entity_Id;
257 -- The entity of the object being overlaid
d6da7448 258
259 Off : Boolean;
6fb3c314 260 -- Whether the address is offset within Y
83f8f0a6 261 end record;
262
263 package Address_Clause_Checks is new Table.Table (
264 Table_Component_Type => Address_Clause_Check_Record,
265 Table_Index_Type => Int,
266 Table_Low_Bound => 1,
267 Table_Initial => 20,
268 Table_Increment => 200,
269 Table_Name => "Address_Clause_Checks");
270
59ac57b5 271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
274
275 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
67278d60 276 Comp : Node_Id;
277 CC : Node_Id;
59ac57b5 278
279 begin
67278d60 280 -- Processing depends on version of Ada
59ac57b5 281
6797073f 282 -- For Ada 95, we just renumber bits within a storage unit. We do the
568b0f6a 283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
ab19a652 284 -- Ada 83, and are free to add this extension.
6797073f 285
286 if Ada_Version < Ada_2005 then
287 Comp := First_Component_Or_Discriminant (R);
288 while Present (Comp) loop
289 CC := Component_Clause (Comp);
290
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
293
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
297
b9e61b2a 298 if Present (CC) and then Ekind (R) = E_Record_Type then
6797073f 299 declare
300 CFB : constant Uint := Component_Bit_Offset (Comp);
301 CSZ : constant Uint := Esize (Comp);
302 CLC : constant Node_Id := Component_Clause (Comp);
303 Pos : constant Node_Id := Position (CLC);
304 FB : constant Node_Id := First_Bit (CLC);
305
306 Storage_Unit_Offset : constant Uint :=
307 CFB / System_Storage_Unit;
308
309 Start_Bit : constant Uint :=
310 CFB mod System_Storage_Unit;
59ac57b5 311
6797073f 312 begin
313 -- Cases where field goes over storage unit boundary
59ac57b5 314
6797073f 315 if Start_Bit + CSZ > System_Storage_Unit then
59ac57b5 316
6797073f 317 -- Allow multi-byte field but generate warning
59ac57b5 318
6797073f 319 if Start_Bit mod System_Storage_Unit = 0
320 and then CSZ mod System_Storage_Unit = 0
321 then
322 Error_Msg_N
7a41db5b 323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC);
31486bc0 325
6797073f 326 if Bytes_Big_Endian then
31486bc0 327 Error_Msg_N
7a41db5b 328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC);
31486bc0 330 else
331 Error_Msg_N
7a41db5b 332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC);
31486bc0 334 end if;
59ac57b5 335
6797073f 336 -- Do not allow non-contiguous field
59ac57b5 337
67278d60 338 else
6797073f 339 Error_Msg_N
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC);
342 Error_Msg_N
343 ("\caused by non-standard Bit_Order "
344 & "specified", CLC);
345 Error_Msg_N
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC);
348 end if;
59ac57b5 349
6797073f 350 -- Case where field fits in one storage unit
59ac57b5 351
6797073f 352 else
353 -- Give warning if suspicious component clause
59ac57b5 354
6797073f 355 if Intval (FB) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
357 then
358 Error_Msg_N
7a41db5b 359 ("info: Bit_Order clause does not affect " &
1e3532e7 360 "byte ordering?V?", Pos);
6797073f 361 Error_Msg_Uint_1 :=
362 Intval (Pos) + Intval (FB) /
363 System_Storage_Unit;
364 Error_Msg_N
7a41db5b 365 ("info: position normalized to ^ before bit " &
1e3532e7 366 "order interpreted?V?", Pos);
6797073f 367 end if;
59ac57b5 368
6797073f 369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
bfa5a9d9 372
6797073f 373 -- First_Bit .. Last_Bit Component_Bit_Offset
374 -- old new old new
59ac57b5 375
6797073f 376 -- 0 .. 0 7 .. 7 0 7
377 -- 0 .. 1 6 .. 7 0 6
378 -- 0 .. 2 5 .. 7 0 5
379 -- 0 .. 7 0 .. 7 0 4
59ac57b5 380
6797073f 381 -- 1 .. 1 6 .. 6 1 6
382 -- 1 .. 4 3 .. 6 1 3
383 -- 4 .. 7 0 .. 3 4 0
59ac57b5 384
6797073f 385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
59ac57b5 387
6797073f 388 Set_Component_Bit_Offset
389 (Comp,
390 (Storage_Unit_Offset * System_Storage_Unit) +
391 (System_Storage_Unit - 1) -
392 (Start_Bit + CSZ - 1));
59ac57b5 393
6797073f 394 Set_Normalized_First_Bit
395 (Comp,
396 Component_Bit_Offset (Comp) mod
397 System_Storage_Unit);
398 end if;
399 end;
400 end if;
401
402 Next_Component_Or_Discriminant (Comp);
403 end loop;
404
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
409
410 else
411 declare
412 Max_Machine_Scalar_Size : constant Uint :=
413 UI_From_Int
414 (Standard_Long_Long_Integer_Size);
67278d60 415 -- We use this as the maximum machine scalar size
59ac57b5 416
6797073f 417 Num_CC : Natural;
418 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
59ac57b5 419
6797073f 420 begin
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
67278d60 427
6797073f 428 Num_CC := 0;
429 Comp := First_Component_Or_Discriminant (R);
430 while Present (Comp) loop
431 CC := Component_Clause (Comp);
67278d60 432
6797073f 433 if Present (CC) then
434 declare
1e3532e7 435 Fbit : constant Uint := Static_Integer (First_Bit (CC));
436 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
67278d60 437
6797073f 438 begin
b38e4131 439 -- Case of component with last bit >= max machine scalar
67278d60 440
b38e4131 441 if Lbit >= Max_Machine_Scalar_Size then
67278d60 442
b38e4131 443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
67278d60 445
b38e4131 446 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
67278d60 447
b38e4131 448 -- This is the case to give a warning if enabled
67278d60 449
b38e4131 450 if Warn_On_Reverse_Bit_Order then
451 Error_Msg_N
7a41db5b 452 ("info: multi-byte field specified with "
1e3532e7 453 & " non-standard Bit_Order?V?", CC);
b38e4131 454
455 if Bytes_Big_Endian then
456 Error_Msg_N
457 ("\bytes are not reversed "
1e3532e7 458 & "(component is big-endian)?V?", CC);
b38e4131 459 else
460 Error_Msg_N
461 ("\bytes are not reversed "
1e3532e7 462 & "(component is little-endian)?V?", CC);
b38e4131 463 end if;
464 end if;
67278d60 465
7eb0e22f 466 -- Give error message for RM 13.5.1(10) violation
67278d60 467
b38e4131 468 else
469 Error_Msg_FE
470 ("machine scalar rules not followed for&",
471 First_Bit (CC), Comp);
67278d60 472
b38e4131 473 Error_Msg_Uint_1 := Lbit;
474 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
475 Error_Msg_F
476 ("\last bit (^) exceeds maximum machine "
477 & "scalar size (^)",
478 First_Bit (CC));
67278d60 479
b38e4131 480 if (Lbit + 1) mod SSU /= 0 then
481 Error_Msg_Uint_1 := SSU;
482 Error_Msg_F
483 ("\and is not a multiple of Storage_Unit (^) "
0cafb066 484 & "(RM 13.4.1(10))",
b38e4131 485 First_Bit (CC));
6797073f 486
6797073f 487 else
b38e4131 488 Error_Msg_Uint_1 := Fbit;
489 Error_Msg_F
490 ("\and first bit (^) is non-zero "
0cafb066 491 & "(RM 13.4.1(10))",
b38e4131 492 First_Bit (CC));
67278d60 493 end if;
6797073f 494 end if;
59ac57b5 495
b38e4131 496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
59ac57b5 498
6797073f 499 else
500 Num_CC := Num_CC + 1;
501 end if;
502 end;
503 end if;
59ac57b5 504
6797073f 505 Next_Component_Or_Discriminant (Comp);
506 end loop;
59ac57b5 507
6797073f 508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
4a87c513 510 -- the same Position together to determine the relevant machine
6797073f 511 -- scalar size.
59ac57b5 512
6797073f 513 Sort_CC : declare
514 Comps : array (0 .. Num_CC) of Entity_Id;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
517 -- routine.
59ac57b5 518
6797073f 519 function CP_Lt (Op1, Op2 : Natural) return Boolean;
520 -- Compare routine for Sort
59ac57b5 521
6797073f 522 procedure CP_Move (From : Natural; To : Natural);
523 -- Move routine for Sort
59ac57b5 524
6797073f 525 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
59ac57b5 526
6797073f 527 Start : Natural;
528 Stop : Natural;
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
59ac57b5 532
6797073f 533 MaxL : Uint;
534 -- Maximum last bit value of any component in this set
59ac57b5 535
6797073f 536 MSS : Uint;
537 -- Corresponding machine scalar size
67278d60 538
6797073f 539 -----------
540 -- CP_Lt --
541 -----------
67278d60 542
6797073f 543 function CP_Lt (Op1, Op2 : Natural) return Boolean is
544 begin
545 return Position (Component_Clause (Comps (Op1))) <
546 Position (Component_Clause (Comps (Op2)));
547 end CP_Lt;
67278d60 548
6797073f 549 -------------
550 -- CP_Move --
551 -------------
67278d60 552
6797073f 553 procedure CP_Move (From : Natural; To : Natural) is
554 begin
555 Comps (To) := Comps (From);
556 end CP_Move;
67278d60 557
4a87c513 558 -- Start of processing for Sort_CC
59ac57b5 559
6797073f 560 begin
b38e4131 561 -- Collect the machine scalar relevant component clauses
59ac57b5 562
6797073f 563 Num_CC := 0;
564 Comp := First_Component_Or_Discriminant (R);
565 while Present (Comp) loop
b38e4131 566 declare
567 CC : constant Node_Id := Component_Clause (Comp);
568
569 begin
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
576
577 if Present (CC)
578 and then not Error_Posted (Last_Bit (CC))
579 and then Static_Integer (Last_Bit (CC)) <
d64221a7 580 Max_Machine_Scalar_Size
b38e4131 581 then
582 Num_CC := Num_CC + 1;
583 Comps (Num_CC) := Comp;
584 end if;
585 end;
59ac57b5 586
6797073f 587 Next_Component_Or_Discriminant (Comp);
588 end loop;
67278d60 589
6797073f 590 -- Sort by ascending position number
67278d60 591
6797073f 592 Sorting.Sort (Num_CC);
67278d60 593
6797073f 594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
67278d60 598
6797073f 599 Stop := 0;
600 while Stop < Num_CC loop
601 Start := Stop + 1;
602 Stop := Start;
603 MaxL :=
604 Static_Integer
605 (Last_Bit (Component_Clause (Comps (Start))));
67278d60 606 while Stop < Num_CC loop
6797073f 607 if Static_Integer
608 (Position (Component_Clause (Comps (Stop + 1)))) =
609 Static_Integer
610 (Position (Component_Clause (Comps (Stop))))
611 then
612 Stop := Stop + 1;
613 MaxL :=
614 UI_Max
615 (MaxL,
616 Static_Integer
617 (Last_Bit
618 (Component_Clause (Comps (Stop)))));
619 else
620 exit;
621 end if;
622 end loop;
67278d60 623
6797073f 624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
627
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
632
633 MSS := Max_Machine_Scalar_Size;
634 while MSS mod 2 = 0
635 and then (MSS / 2) >= SSU
636 and then (MSS / 2) > MaxL
637 loop
638 MSS := MSS / 2;
639 end loop;
67278d60 640
6797073f 641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
644 -- size of 8 are:
67278d60 645
6797073f 646 -- First_Bit .. Last_Bit Component_Bit_Offset
647 -- old new old new
67278d60 648
6797073f 649 -- 0 .. 0 7 .. 7 0 7
650 -- 0 .. 1 6 .. 7 0 6
651 -- 0 .. 2 5 .. 7 0 5
652 -- 0 .. 7 0 .. 7 0 4
67278d60 653
6797073f 654 -- 1 .. 1 6 .. 6 1 6
655 -- 1 .. 4 3 .. 6 1 3
656 -- 4 .. 7 0 .. 3 4 0
67278d60 657
6797073f 658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
67278d60 660
6797073f 661 for C in Start .. Stop loop
662 declare
663 Comp : constant Entity_Id := Comps (C);
b9e61b2a 664 CC : constant Node_Id := Component_Clause (Comp);
665
666 LB : constant Uint := Static_Integer (Last_Bit (CC));
6797073f 667 NFB : constant Uint := MSS - Uint_1 - LB;
668 NLB : constant Uint := NFB + Esize (Comp) - 1;
b9e61b2a 669 Pos : constant Uint := Static_Integer (Position (CC));
67278d60 670
6797073f 671 begin
672 if Warn_On_Reverse_Bit_Order then
673 Error_Msg_Uint_1 := MSS;
674 Error_Msg_N
675 ("info: reverse bit order in machine " &
1e3532e7 676 "scalar of length^?V?", First_Bit (CC));
6797073f 677 Error_Msg_Uint_1 := NFB;
678 Error_Msg_Uint_2 := NLB;
679
680 if Bytes_Big_Endian then
681 Error_Msg_NE
7a41db5b 682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
6797073f 684 else
685 Error_Msg_NE
7a41db5b 686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
67278d60 688 end if;
6797073f 689 end if;
67278d60 690
6797073f 691 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
692 Set_Normalized_First_Bit (Comp, NFB mod SSU);
693 end;
67278d60 694 end loop;
6797073f 695 end loop;
696 end Sort_CC;
697 end;
698 end if;
59ac57b5 699 end Adjust_Record_For_Reverse_Bit_Order;
700
1d366b32 701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
d6f39728 704
1d366b32 705 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
d6f39728 706 begin
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
711
712 if Known_Alignment (Typ)
713 and then not Has_Alignment_Clause (Typ)
1d366b32 714 and then Size mod (Alignment (Typ) * SSU) /= 0
d6f39728 715 then
716 Init_Alignment (Typ);
717 end if;
1d366b32 718 end Alignment_Check_For_Size_Change;
d6f39728 719
06ef5f86 720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
723
724 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
725 ASN : Node_Id;
726 A_Id : Aspect_Id;
727 Ritem : Node_Id;
728
729 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
732
37c6e44c 733 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
737 --
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
740 -- ..
741 -- type B is new A;
742 -- ..
743 -- Not_Defined_Yet : constant := 64;
744 --
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
b21edad9 752 -- of all delayed aspects from the parent type. The derived type is E,
37c6e44c 753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
755
06ef5f86 756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
760
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
764
765 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
766 Ent : constant Entity_Id := Entity (ASN);
767 Expr : constant Node_Id := Expression (ASN);
768 Id : constant Node_Id := Identifier (ASN);
769
770 begin
771 Error_Msg_Name_1 := Chars (Id);
772
773 if not Is_Type (Ent) then
774 Error_Msg_N ("aspect% can only apply to a type", Id);
775 return;
776
777 elsif not Is_First_Subtype (Ent) then
778 Error_Msg_N ("aspect% cannot apply to subtype", Id);
779 return;
780
781 elsif A_Id = Aspect_Default_Value
782 and then not Is_Scalar_Type (Ent)
783 then
784 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
785 return;
786
787 elsif A_Id = Aspect_Default_Component_Value then
788 if not Is_Array_Type (Ent) then
789 Error_Msg_N ("aspect% can only be applied to array type", Id);
790 return;
791
792 elsif not Is_Scalar_Type (Component_Type (Ent)) then
793 Error_Msg_N ("aspect% requires scalar components", Id);
794 return;
795 end if;
796 end if;
797
798 Set_Has_Default_Aspect (Base_Type (Ent));
799
800 if Is_Scalar_Type (Ent) then
9f36e3fb 801 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
06ef5f86 802 else
f3d70f08 803 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
06ef5f86 804 end if;
805 end Analyze_Aspect_Default_Value;
806
37c6e44c 807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
810
811 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
812 P : constant Entity_Id := Entity (ASN);
813 -- Entithy for parent type
814
815 N : Node_Id;
816 -- Item from Rep_Item chain
817
818 A : Aspect_Id;
819
820 begin
821 -- Loop through delayed aspects for the parent type
822
823 N := ASN;
824 while Present (N) loop
825 if Nkind (N) = N_Aspect_Specification then
826 exit when Entity (N) /= P;
827
828 if Is_Delayed_Aspect (N) then
829 A := Get_Aspect_Id (Chars (Identifier (N)));
830
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
837
838 case A is
839
840 -- Alignment
841
842 when Aspect_Alignment =>
843 if not Has_Alignment_Clause (E) then
844 Set_Alignment (E, Alignment (P));
845 end if;
846
847 -- Atomic
848
849 when Aspect_Atomic =>
850 if Is_Atomic (P) then
851 Set_Is_Atomic (E);
852 end if;
853
854 -- Atomic_Components
855
856 when Aspect_Atomic_Components =>
857 if Has_Atomic_Components (P) then
858 Set_Has_Atomic_Components (Base_Type (E));
859 end if;
860
861 -- Bit_Order
862
863 when Aspect_Bit_Order =>
864 if Is_Record_Type (E)
865 and then No (Get_Attribute_Definition_Clause
866 (E, Attribute_Bit_Order))
867 and then Reverse_Bit_Order (P)
868 then
869 Set_Reverse_Bit_Order (Base_Type (E));
870 end if;
871
872 -- Component_Size
873
874 when Aspect_Component_Size =>
875 if Is_Array_Type (E)
876 and then not Has_Component_Size_Clause (E)
877 then
878 Set_Component_Size
879 (Base_Type (E), Component_Size (P));
880 end if;
881
882 -- Machine_Radix
883
884 when Aspect_Machine_Radix =>
885 if Is_Decimal_Fixed_Point_Type (E)
886 and then not Has_Machine_Radix_Clause (E)
887 then
888 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
889 end if;
890
891 -- Object_Size (also Size which also sets Object_Size)
892
893 when Aspect_Object_Size | Aspect_Size =>
894 if not Has_Size_Clause (E)
895 and then
896 No (Get_Attribute_Definition_Clause
897 (E, Attribute_Object_Size))
898 then
899 Set_Esize (E, Esize (P));
900 end if;
901
902 -- Pack
903
904 when Aspect_Pack =>
905 if not Is_Packed (E) then
906 Set_Is_Packed (Base_Type (E));
907
908 if Is_Bit_Packed_Array (P) then
909 Set_Is_Bit_Packed_Array (Base_Type (E));
a88a5773 910 Set_Packed_Array_Impl_Type
911 (E, Packed_Array_Impl_Type (P));
37c6e44c 912 end if;
913 end if;
914
915 -- Scalar_Storage_Order
916
917 when Aspect_Scalar_Storage_Order =>
918 if (Is_Record_Type (E) or else Is_Array_Type (E))
919 and then No (Get_Attribute_Definition_Clause
e163cac8 920 (E, Attribute_Scalar_Storage_Order))
37c6e44c 921 and then Reverse_Storage_Order (P)
922 then
923 Set_Reverse_Storage_Order (Base_Type (E));
b64082f2 924
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
927
928 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
929 Set_SSO_Set_High_By_Default (Base_Type (E), False);
37c6e44c 930 end if;
931
932 -- Small
933
934 when Aspect_Small =>
935 if Is_Fixed_Point_Type (E)
936 and then not Has_Small_Clause (E)
937 then
938 Set_Small_Value (E, Small_Value (P));
939 end if;
940
941 -- Storage_Size
942
943 when Aspect_Storage_Size =>
944 if (Is_Access_Type (E) or else Is_Task_Type (E))
945 and then not Has_Storage_Size_Clause (E)
946 then
947 Set_Storage_Size_Variable
948 (Base_Type (E), Storage_Size_Variable (P));
949 end if;
950
951 -- Value_Size
952
953 when Aspect_Value_Size =>
954
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
958
959 null;
960
961 -- Volatile
962
963 when Aspect_Volatile =>
964 if Is_Volatile (P) then
965 Set_Is_Volatile (E);
966 end if;
967
968 -- Volatile_Components
969
970 when Aspect_Volatile_Components =>
971 if Has_Volatile_Components (P) then
972 Set_Has_Volatile_Components (Base_Type (E));
973 end if;
974
975 -- That should be all the Rep Aspects
976
977 when others =>
978 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
979 null;
980
981 end case;
982 end if;
983 end if;
984
985 N := Next_Rep_Item (N);
986 end loop;
987 end Inherit_Delayed_Rep_Aspects;
988
06ef5f86 989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
992
993 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
994 Ident : constant Node_Id := Identifier (ASN);
995 A_Name : constant Name_Id := Chars (Ident);
996 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
997 Ent : constant Entity_Id := Entity (ASN);
998 Expr : constant Node_Id := Expression (ASN);
999 Loc : constant Source_Ptr := Sloc (ASN);
1000
1001 Prag : Node_Id;
1002
1003 procedure Check_False_Aspect_For_Derived_Type;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1006 -- the parent.
1007
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1011
1012 procedure Check_False_Aspect_For_Derived_Type is
1013 Par : Node_Id;
1014
1015 begin
1016 -- We are only checking derived types
1017
1018 if not Is_Derived_Type (E) then
1019 return;
1020 end if;
1021
1022 Par := Nearest_Ancestor (E);
1023
1024 case A_Id is
1025 when Aspect_Atomic | Aspect_Shared =>
1026 if not Is_Atomic (Par) then
1027 return;
1028 end if;
1029
1030 when Aspect_Atomic_Components =>
1031 if not Has_Atomic_Components (Par) then
1032 return;
1033 end if;
1034
1035 when Aspect_Discard_Names =>
1036 if not Discard_Names (Par) then
1037 return;
1038 end if;
1039
1040 when Aspect_Pack =>
1041 if not Is_Packed (Par) then
1042 return;
1043 end if;
1044
1045 when Aspect_Unchecked_Union =>
1046 if not Is_Unchecked_Union (Par) then
1047 return;
1048 end if;
1049
1050 when Aspect_Volatile =>
1051 if not Is_Volatile (Par) then
1052 return;
1053 end if;
1054
1055 when Aspect_Volatile_Components =>
1056 if not Has_Volatile_Components (Par) then
1057 return;
1058 end if;
1059
1060 when others =>
1061 return;
1062 end case;
1063
1064 -- Fall through means we are canceling an inherited aspect
1065
1066 Error_Msg_Name_1 := A_Name;
37c6e44c 1067 Error_Msg_NE
1068 ("derived type& inherits aspect%, cannot cancel", Expr, E);
06ef5f86 1069
1070 end Check_False_Aspect_For_Derived_Type;
1071
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1073
1074 begin
37c6e44c 1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1078
06ef5f86 1079 if Is_False (Static_Boolean (Expr)) then
1080 Check_False_Aspect_For_Derived_Type;
1081
1082 else
1083 Prag :=
1084 Make_Pragma (Loc,
1085 Pragma_Argument_Associations => New_List (
57cd943b 1086 Make_Pragma_Argument_Association (Sloc (Ident),
1087 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1088
06ef5f86 1089 Pragma_Identifier =>
1090 Make_Identifier (Sloc (Ident), Chars (Ident)));
1091
1092 Set_From_Aspect_Specification (Prag, True);
1093 Set_Corresponding_Aspect (Prag, ASN);
1094 Set_Aspect_Rep_Item (ASN, Prag);
1095 Set_Is_Delayed_Aspect (Prag);
1096 Set_Parent (Prag, ASN);
1097 end if;
06ef5f86 1098 end Make_Pragma_From_Boolean_Aspect;
1099
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1101
1102 begin
29a9d4be 1103 -- Must be visible in current scope
06ef5f86 1104
ace3389d 1105 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
06ef5f86 1106 return;
1107 end if;
1108
1109 -- Look for aspect specification entries for this entity
1110
1111 ASN := First_Rep_Item (E);
06ef5f86 1112 while Present (ASN) loop
37c6e44c 1113 if Nkind (ASN) = N_Aspect_Specification then
1114 exit when Entity (ASN) /= E;
06ef5f86 1115
37c6e44c 1116 if Is_Delayed_Aspect (ASN) then
1117 A_Id := Get_Aspect_Id (ASN);
1118
1119 case A_Id is
e4c87fa5 1120
37c6e44c 1121 -- For aspects whose expression is an optional Boolean, make
7d6fb253 1122 -- the corresponding pragma at the freeze point.
06ef5f86 1123
7d6fb253 1124 when Boolean_Aspects |
1125 Library_Unit_Aspects =>
1126 Make_Pragma_From_Boolean_Aspect (ASN);
06ef5f86 1127
37c6e44c 1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
06ef5f86 1130
7d6fb253 1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value =>
1133 Analyze_Aspect_Default_Value (ASN);
06ef5f86 1134
37c6e44c 1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
af9fed8f 1137
7d6fb253 1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element =>
1142 Analyze (Expression (ASN));
af9fed8f 1143
7d6fb253 1144 if Etype (Expression (ASN)) = Any_Type then
1145 Error_Msg_NE
1146 ("\aspect must be fully defined before & is frozen",
1147 ASN, E);
1148 end if;
b3f8228a 1149
7d6fb253 1150 when Aspect_Iterable =>
1151 Validate_Iterable_Aspect (E, ASN);
1152
1153 when others =>
1154 null;
37c6e44c 1155 end case;
06ef5f86 1156
37c6e44c 1157 Ritem := Aspect_Rep_Item (ASN);
06ef5f86 1158
37c6e44c 1159 if Present (Ritem) then
1160 Analyze (Ritem);
1161 end if;
06ef5f86 1162 end if;
1163 end if;
1164
1165 Next_Rep_Item (ASN);
1166 end loop;
37c6e44c 1167
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1172
1173 if May_Inherit_Delayed_Rep_Aspects (E) then
1174 Inherit_Delayed_Rep_Aspects (ASN);
1175 end if;
06ef5f86 1176 end Analyze_Aspects_At_Freeze_Point;
1177
ae888dbd 1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1181
21ea3a4f 1182 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
e2bf777d 1183 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
c4369687 1184 -- Establish linkages between an aspect and its corresponding
e2bf777d 1185 -- pragma.
5ddd846b 1186
50e44732 1187 procedure Insert_After_SPARK_Mode
1188 (Prag : Node_Id;
1189 Ins_Nod : Node_Id;
1190 Decls : List_Id);
3dbe7a69 1191 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1192 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1193 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1194 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1195 -- reside.
e2bf777d 1196
1197 procedure Insert_Pragma (Prag : Node_Id);
1198 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1199 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1200 -- Insert pragma Prag such that it mimics the placement of a source
1201 -- pragma of the same kind.
1202 --
1203 -- procedure Proc (Formal : ...) with Global => ...;
1204 --
1205 -- procedure Proc (Formal : ...);
1206 -- pragma Global (...);
1207
1208 --------------
1209 -- Decorate --
1210 --------------
1211
1212 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
5ddd846b 1213 begin
5cc6f0cf 1214 Set_Aspect_Rep_Item (Asp, Prag);
5ddd846b 1215 Set_Corresponding_Aspect (Prag, Asp);
1216 Set_From_Aspect_Specification (Prag);
5ddd846b 1217 Set_Parent (Prag, Asp);
e2bf777d 1218 end Decorate;
f0813d71 1219
50e44732 1220 -----------------------------
1221 -- Insert_After_SPARK_Mode --
1222 -----------------------------
1223
1224 procedure Insert_After_SPARK_Mode
1225 (Prag : Node_Id;
1226 Ins_Nod : Node_Id;
1227 Decls : List_Id)
1228 is
1229 Decl : Node_Id := Ins_Nod;
1230
1231 begin
1232 -- Skip SPARK_Mode
1233
1234 if Present (Decl)
1235 and then Nkind (Decl) = N_Pragma
1236 and then Pragma_Name (Decl) = Name_SPARK_Mode
1237 then
1238 Decl := Next (Decl);
1239 end if;
1240
1241 if Present (Decl) then
1242 Insert_Before (Decl, Prag);
1243
1244 -- Aitem acts as the last declaration
1245
1246 else
1247 Append_To (Decls, Prag);
1248 end if;
1249 end Insert_After_SPARK_Mode;
1250
e2bf777d 1251 -------------------
1252 -- Insert_Pragma --
1253 -------------------
c1006d6d 1254
e2bf777d 1255 procedure Insert_Pragma (Prag : Node_Id) is
1256 Aux : Node_Id;
1257 Decl : Node_Id;
c1006d6d 1258
1259 begin
1260 -- When the context is a library unit, the pragma is added to the
1261 -- Pragmas_After list.
1262
1263 if Nkind (Parent (N)) = N_Compilation_Unit then
1264 Aux := Aux_Decls_Node (Parent (N));
1265
1266 if No (Pragmas_After (Aux)) then
1267 Set_Pragmas_After (Aux, New_List);
1268 end if;
1269
1270 Prepend (Prag, Pragmas_After (Aux));
1271
1272 -- Pragmas associated with subprogram bodies are inserted in the
1273 -- declarative part.
1274
1275 elsif Nkind (N) = N_Subprogram_Body then
e2bf777d 1276 if Present (Declarations (N)) then
d324c418 1277
e2bf777d 1278 -- Skip other internally generated pragmas from aspects to find
1279 -- the proper insertion point. As a result the order of pragmas
1280 -- is the same as the order of aspects.
d324c418 1281
607bc8f5 1282 -- As precondition pragmas generated from conjuncts in the
1283 -- precondition aspect are presented in reverse order to
1284 -- Insert_Pragma, insert them in the correct order here by not
1285 -- skipping previously inserted precondition pragmas when the
1286 -- current pragma is a precondition.
1287
e2bf777d 1288 Decl := First (Declarations (N));
1289 while Present (Decl) loop
1290 if Nkind (Decl) = N_Pragma
1291 and then From_Aspect_Specification (Decl)
607bc8f5 1292 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1293 and then
1294 Get_Pragma_Id (Prag) = Pragma_Precondition)
e2bf777d 1295 then
1296 Next (Decl);
d324c418 1297 else
e2bf777d 1298 exit;
d324c418 1299 end if;
e2bf777d 1300 end loop;
1301
1302 if Present (Decl) then
1303 Insert_Before (Decl, Prag);
1304 else
1305 Append (Prag, Declarations (N));
1306 end if;
1307 else
1308 Set_Declarations (N, New_List (Prag));
d324c418 1309 end if;
c1006d6d 1310
1311 -- Default
1312
1313 else
1314 Insert_After (N, Prag);
c1006d6d 1315 end if;
e2bf777d 1316 end Insert_Pragma;
c1006d6d 1317
1318 -- Local variables
1319
ae888dbd 1320 Aspect : Node_Id;
d74fc39a 1321 Aitem : Node_Id;
ae888dbd 1322 Ent : Node_Id;
ae888dbd 1323
21ea3a4f 1324 L : constant List_Id := Aspect_Specifications (N);
1325
ae888dbd 1326 Ins_Node : Node_Id := N;
89f1e35c 1327 -- Insert pragmas/attribute definition clause after this node when no
1328 -- delayed analysis is required.
d74fc39a 1329
f0813d71 1330 -- Start of processing for Analyze_Aspect_Specifications
1331
d74fc39a 1332 -- The general processing involves building an attribute definition
89f1e35c 1333 -- clause or a pragma node that corresponds to the aspect. Then in order
1334 -- to delay the evaluation of this aspect to the freeze point, we attach
1335 -- the corresponding pragma/attribute definition clause to the aspect
1336 -- specification node, which is then placed in the Rep Item chain. In
1337 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1338 -- and we evaluate the rep item at the freeze point. When the aspect
1339 -- doesn't have a corresponding pragma/attribute definition clause, then
1340 -- its analysis is simply delayed at the freeze point.
1341
1342 -- Some special cases don't require delay analysis, thus the aspect is
1343 -- analyzed right now.
1344
51ea9c94 1345 -- Note that there is a special handling for Pre, Post, Test_Case,
e66f4e2a 1346 -- Contract_Cases aspects. In these cases, we do not have to worry
51ea9c94 1347 -- about delay issues, since the pragmas themselves deal with delay
1348 -- of visibility for the expression analysis. Thus, we just insert
1349 -- the pragma after the node N.
ae888dbd 1350
1351 begin
21ea3a4f 1352 pragma Assert (Present (L));
1353
6fb3c314 1354 -- Loop through aspects
f93e7257 1355
ae888dbd 1356 Aspect := First (L);
21ea3a4f 1357 Aspect_Loop : while Present (Aspect) loop
0fd13d32 1358 Analyze_One_Aspect : declare
94153a42 1359 Expr : constant Node_Id := Expression (Aspect);
89f1e35c 1360 Id : constant Node_Id := Identifier (Aspect);
1361 Loc : constant Source_Ptr := Sloc (Aspect);
94153a42 1362 Nam : constant Name_Id := Chars (Id);
1363 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
ae888dbd 1364 Anod : Node_Id;
1365
37c6e44c 1366 Delay_Required : Boolean;
89f1e35c 1367 -- Set False if delay is not required
1368
c0793fff 1369 Eloc : Source_Ptr := No_Location;
1370 -- Source location of expression, modified when we split PPC's. It
1371 -- is set below when Expr is present.
39e1f22f 1372
89f1e35c 1373 procedure Analyze_Aspect_External_Or_Link_Name;
0fd13d32 1374 -- Perform analysis of the External_Name or Link_Name aspects
21ea3a4f 1375
89f1e35c 1376 procedure Analyze_Aspect_Implicit_Dereference;
9ab32fe9 1377 -- Perform analysis of the Implicit_Dereference aspects
0fd13d32 1378
1379 procedure Make_Aitem_Pragma
1380 (Pragma_Argument_Associations : List_Id;
1381 Pragma_Name : Name_Id);
1382 -- This is a wrapper for Make_Pragma used for converting aspects
1383 -- to pragmas. It takes care of Sloc (set from Loc) and building
1384 -- the pragma identifier from the given name. In addition the
1385 -- flags Class_Present and Split_PPC are set from the aspect
1386 -- node, as well as Is_Ignored. This routine also sets the
1387 -- From_Aspect_Specification in the resulting pragma node to
1388 -- True, and sets Corresponding_Aspect to point to the aspect.
1389 -- The resulting pragma is assigned to Aitem.
21ea3a4f 1390
89f1e35c 1391 ------------------------------------------
1392 -- Analyze_Aspect_External_Or_Link_Name --
1393 ------------------------------------------
1394
1395 procedure Analyze_Aspect_External_Or_Link_Name is
21ea3a4f 1396 begin
89f1e35c 1397 -- Verify that there is an Import/Export aspect defined for the
1398 -- entity. The processing of that aspect in turn checks that
1399 -- there is a Convention aspect declared. The pragma is
1400 -- constructed when processing the Convention aspect.
21ea3a4f 1401
89f1e35c 1402 declare
1403 A : Node_Id;
21ea3a4f 1404
89f1e35c 1405 begin
1406 A := First (L);
89f1e35c 1407 while Present (A) loop
18393965 1408 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1409 Name_Import);
89f1e35c 1410 Next (A);
1411 end loop;
21ea3a4f 1412
89f1e35c 1413 if No (A) then
1414 Error_Msg_N
51ea9c94 1415 ("missing Import/Export for Link/External name",
8a1e3cde 1416 Aspect);
89f1e35c 1417 end if;
1418 end;
1419 end Analyze_Aspect_External_Or_Link_Name;
21ea3a4f 1420
89f1e35c 1421 -----------------------------------------
1422 -- Analyze_Aspect_Implicit_Dereference --
1423 -----------------------------------------
21ea3a4f 1424
89f1e35c 1425 procedure Analyze_Aspect_Implicit_Dereference is
1426 begin
b9e61b2a 1427 if not Is_Type (E) or else not Has_Discriminants (E) then
89f1e35c 1428 Error_Msg_N
51ea9c94 1429 ("aspect must apply to a type with discriminants", N);
21ea3a4f 1430
89f1e35c 1431 else
1432 declare
1433 Disc : Entity_Id;
21ea3a4f 1434
89f1e35c 1435 begin
1436 Disc := First_Discriminant (E);
89f1e35c 1437 while Present (Disc) loop
1438 if Chars (Expr) = Chars (Disc)
1439 and then Ekind (Etype (Disc)) =
1440 E_Anonymous_Access_Type
1441 then
1442 Set_Has_Implicit_Dereference (E);
1443 Set_Has_Implicit_Dereference (Disc);
1444 return;
1445 end if;
21ea3a4f 1446
89f1e35c 1447 Next_Discriminant (Disc);
1448 end loop;
21ea3a4f 1449
89f1e35c 1450 -- Error if no proper access discriminant.
21ea3a4f 1451
89f1e35c 1452 Error_Msg_NE
1453 ("not an access discriminant of&", Expr, E);
1454 end;
1455 end if;
1456 end Analyze_Aspect_Implicit_Dereference;
21ea3a4f 1457
0fd13d32 1458 -----------------------
1459 -- Make_Aitem_Pragma --
1460 -----------------------
1461
1462 procedure Make_Aitem_Pragma
1463 (Pragma_Argument_Associations : List_Id;
1464 Pragma_Name : Name_Id)
1465 is
b855559d 1466 Args : List_Id := Pragma_Argument_Associations;
1467
0fd13d32 1468 begin
1469 -- We should never get here if aspect was disabled
1470
1471 pragma Assert (not Is_Disabled (Aspect));
1472
056dc987 1473 -- Certain aspects allow for an optional name or expression. Do
1474 -- not generate a pragma with empty argument association list.
b855559d 1475
1476 if No (Args) or else No (Expression (First (Args))) then
1477 Args := No_List;
1478 end if;
1479
0fd13d32 1480 -- Build the pragma
1481
1482 Aitem :=
1483 Make_Pragma (Loc,
b855559d 1484 Pragma_Argument_Associations => Args,
0fd13d32 1485 Pragma_Identifier =>
1486 Make_Identifier (Sloc (Id), Pragma_Name),
9ab32fe9 1487 Class_Present => Class_Present (Aspect),
1488 Split_PPC => Split_PPC (Aspect));
0fd13d32 1489
1490 -- Set additional semantic fields
1491
1492 if Is_Ignored (Aspect) then
1493 Set_Is_Ignored (Aitem);
57d8d1f3 1494 elsif Is_Checked (Aspect) then
a5109493 1495 Set_Is_Checked (Aitem);
0fd13d32 1496 end if;
1497
1498 Set_Corresponding_Aspect (Aitem, Aspect);
1499 Set_From_Aspect_Specification (Aitem, True);
1500 end Make_Aitem_Pragma;
1501
1502 -- Start of processing for Analyze_One_Aspect
1503
ae888dbd 1504 begin
2d1acfa7 1505 -- Skip aspect if already analyzed, to avoid looping in some cases
fb7f2fc4 1506
1507 if Analyzed (Aspect) then
1508 goto Continue;
1509 end if;
1510
ef957022 1511 -- Skip looking at aspect if it is totally disabled. Just mark it
1512 -- as such for later reference in the tree. This also sets the
1513 -- Is_Ignored and Is_Checked flags appropriately.
51ea9c94 1514
1515 Check_Applicable_Policy (Aspect);
1516
1517 if Is_Disabled (Aspect) then
1518 goto Continue;
1519 end if;
1520
c0793fff 1521 -- Set the source location of expression, used in the case of
1522 -- a failed precondition/postcondition or invariant. Note that
1523 -- the source location of the expression is not usually the best
1524 -- choice here. For example, it gets located on the last AND
1525 -- keyword in a chain of boolean expressiond AND'ed together.
1526 -- It is best to put the message on the first character of the
1527 -- assertion, which is the effect of the First_Node call here.
1528
1529 if Present (Expr) then
1530 Eloc := Sloc (First_Node (Expr));
1531 end if;
1532
d7ed83a2 1533 -- Check restriction No_Implementation_Aspect_Specifications
1534
c171e1be 1535 if Implementation_Defined_Aspect (A_Id) then
d7ed83a2 1536 Check_Restriction
1537 (No_Implementation_Aspect_Specifications, Aspect);
1538 end if;
1539
1540 -- Check restriction No_Specification_Of_Aspect
1541
1542 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1543
f67ed4f5 1544 -- Mark aspect analyzed (actual analysis is delayed till later)
d7ed83a2 1545
fb7f2fc4 1546 Set_Analyzed (Aspect);
d74fc39a 1547 Set_Entity (Aspect, E);
1548 Ent := New_Occurrence_Of (E, Sloc (Id));
1549
1e3c4ae6 1550 -- Check for duplicate aspect. Note that the Comes_From_Source
1551 -- test allows duplicate Pre/Post's that we generate internally
1552 -- to escape being flagged here.
ae888dbd 1553
6c545057 1554 if No_Duplicates_Allowed (A_Id) then
1555 Anod := First (L);
1556 while Anod /= Aspect loop
c171e1be 1557 if Comes_From_Source (Aspect)
1558 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
6c545057 1559 then
1560 Error_Msg_Name_1 := Nam;
1561 Error_Msg_Sloc := Sloc (Anod);
39e1f22f 1562
6c545057 1563 -- Case of same aspect specified twice
39e1f22f 1564
6c545057 1565 if Class_Present (Anod) = Class_Present (Aspect) then
1566 if not Class_Present (Anod) then
1567 Error_Msg_NE
1568 ("aspect% for & previously given#",
1569 Id, E);
1570 else
1571 Error_Msg_NE
1572 ("aspect `%''Class` for & previously given#",
1573 Id, E);
1574 end if;
39e1f22f 1575 end if;
6c545057 1576 end if;
ae888dbd 1577
6c545057 1578 Next (Anod);
1579 end loop;
1580 end if;
ae888dbd 1581
4db325e6 1582 -- Check some general restrictions on language defined aspects
1583
c171e1be 1584 if not Implementation_Defined_Aspect (A_Id) then
4db325e6 1585 Error_Msg_Name_1 := Nam;
1586
1587 -- Not allowed for renaming declarations
1588
1589 if Nkind (N) in N_Renaming_Declaration then
1590 Error_Msg_N
1591 ("aspect % not allowed for renaming declaration",
1592 Aspect);
1593 end if;
1594
1595 -- Not allowed for formal type declarations
1596
1597 if Nkind (N) = N_Formal_Type_Declaration then
1598 Error_Msg_N
1599 ("aspect % not allowed for formal type declaration",
1600 Aspect);
1601 end if;
1602 end if;
1603
7d20685d 1604 -- Copy expression for later processing by the procedures
1605 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1606
1607 Set_Entity (Id, New_Copy_Tree (Expr));
1608
37c6e44c 1609 -- Set Delay_Required as appropriate to aspect
1610
1611 case Aspect_Delay (A_Id) is
1612 when Always_Delay =>
1613 Delay_Required := True;
1614
1615 when Never_Delay =>
1616 Delay_Required := False;
1617
1618 when Rep_Aspect =>
1619
1620 -- If expression has the form of an integer literal, then
1621 -- do not delay, since we know the value cannot change.
1622 -- This optimization catches most rep clause cases.
1623
1624 if (Present (Expr) and then Nkind (Expr) = N_Integer_Literal)
1625 or else (A_Id in Boolean_Aspects and then No (Expr))
1626 then
1627 Delay_Required := False;
1628 else
1629 Delay_Required := True;
1630 Set_Has_Delayed_Rep_Aspects (E);
1631 end if;
1632 end case;
1633
ae888dbd 1634 -- Processing based on specific aspect
1635
d74fc39a 1636 case A_Id is
ae888dbd 1637
1638 -- No_Aspect should be impossible
1639
1640 when No_Aspect =>
1641 raise Program_Error;
1642
89f1e35c 1643 -- Case 1: Aspects corresponding to attribute definition
1644 -- clauses.
ae888dbd 1645
b7b74740 1646 when Aspect_Address |
1647 Aspect_Alignment |
1648 Aspect_Bit_Order |
1649 Aspect_Component_Size |
89f1e35c 1650 Aspect_Constant_Indexing |
89f1e35c 1651 Aspect_Default_Iterator |
1652 Aspect_Dispatching_Domain |
b7b74740 1653 Aspect_External_Tag |
1654 Aspect_Input |
b3f8228a 1655 Aspect_Iterable |
89f1e35c 1656 Aspect_Iterator_Element |
b7b74740 1657 Aspect_Machine_Radix |
1658 Aspect_Object_Size |
1659 Aspect_Output |
1660 Aspect_Read |
1661 Aspect_Scalar_Storage_Order |
1662 Aspect_Size |
1663 Aspect_Small |
1664 Aspect_Simple_Storage_Pool |
1665 Aspect_Storage_Pool |
b7b74740 1666 Aspect_Stream_Size |
1667 Aspect_Value_Size |
89f1e35c 1668 Aspect_Variable_Indexing |
b7b74740 1669 Aspect_Write =>
d74fc39a 1670
89f1e35c 1671 -- Indexing aspects apply only to tagged type
1672
1673 if (A_Id = Aspect_Constant_Indexing
37c6e44c 1674 or else
1675 A_Id = Aspect_Variable_Indexing)
89f1e35c 1676 and then not (Is_Type (E)
1677 and then Is_Tagged_Type (E))
1678 then
05987af3 1679 Error_Msg_N
1680 ("indexing aspect can only apply to a tagged type",
3f4c9ffc 1681 Aspect);
89f1e35c 1682 goto Continue;
1683 end if;
1684
39616053 1685 -- For the case of aspect Address, we don't consider that we
588e7f97 1686 -- know the entity is never set in the source, since it is
1687 -- is likely aliasing is occurring.
1688
1689 -- Note: one might think that the analysis of the resulting
1690 -- attribute definition clause would take care of that, but
1691 -- that's not the case since it won't be from source.
1692
1693 if A_Id = Aspect_Address then
1694 Set_Never_Set_In_Source (E, False);
1695 end if;
1696
5ac76cee 1697 -- Correctness of the profile of a stream operation is
1698 -- verified at the freeze point, but we must detect the
1699 -- illegal specification of this aspect for a subtype now,
1700 -- to prevent malformed rep_item chains.
1701
cda40848 1702 if (A_Id = Aspect_Input or else
1703 A_Id = Aspect_Output or else
1704 A_Id = Aspect_Read or else
1705 A_Id = Aspect_Write)
5ac76cee 1706 and not Is_First_Subtype (E)
1707 then
1708 Error_Msg_N
1709 ("local name must be a first subtype", Aspect);
1710 goto Continue;
1711 end if;
1712
d74fc39a 1713 -- Construct the attribute definition clause
1714
1715 Aitem :=
94153a42 1716 Make_Attribute_Definition_Clause (Loc,
d74fc39a 1717 Name => Ent,
ae888dbd 1718 Chars => Chars (Id),
1719 Expression => Relocate_Node (Expr));
1720
af9a0cc3 1721 -- If the address is specified, then we treat the entity as
41f06abf 1722 -- referenced, to avoid spurious warnings. This is analogous
1723 -- to what is done with an attribute definition clause, but
1724 -- here we don't want to generate a reference because this
1725 -- is the point of definition of the entity.
1726
1727 if A_Id = Aspect_Address then
1728 Set_Referenced (E);
1729 end if;
1730
51ea9c94 1731 -- Case 2: Aspects corresponding to pragmas
d74fc39a 1732
89f1e35c 1733 -- Case 2a: Aspects corresponding to pragmas with two
1734 -- arguments, where the first argument is a local name
1735 -- referring to the entity, and the second argument is the
1736 -- aspect definition expression.
ae888dbd 1737
04ae062f 1738 -- Linker_Section/Suppress/Unsuppress
0fd13d32 1739
04ae062f 1740 when Aspect_Linker_Section |
1741 Aspect_Suppress |
1742 Aspect_Unsuppress =>
ae888dbd 1743
0fd13d32 1744 Make_Aitem_Pragma
1745 (Pragma_Argument_Associations => New_List (
1746 Make_Pragma_Argument_Association (Loc,
1747 Expression => New_Occurrence_Of (E, Loc)),
1748 Make_Pragma_Argument_Association (Sloc (Expr),
1749 Expression => Relocate_Node (Expr))),
1750 Pragma_Name => Chars (Id));
57cd943b 1751
0fd13d32 1752 -- Synchronization
d74fc39a 1753
0fd13d32 1754 -- Corresponds to pragma Implemented, construct the pragma
49213728 1755
5bbfbad2 1756 when Aspect_Synchronization =>
0fd13d32 1757 Make_Aitem_Pragma
1758 (Pragma_Argument_Associations => New_List (
1759 Make_Pragma_Argument_Association (Loc,
1760 Expression => New_Occurrence_Of (E, Loc)),
1761 Make_Pragma_Argument_Association (Sloc (Expr),
1762 Expression => Relocate_Node (Expr))),
1763 Pragma_Name => Name_Implemented);
49213728 1764
e2bf777d 1765 -- Attach_Handler
0fd13d32 1766
89f1e35c 1767 when Aspect_Attach_Handler =>
0fd13d32 1768 Make_Aitem_Pragma
1769 (Pragma_Argument_Associations => New_List (
1770 Make_Pragma_Argument_Association (Sloc (Ent),
1771 Expression => Ent),
1772 Make_Pragma_Argument_Association (Sloc (Expr),
1773 Expression => Relocate_Node (Expr))),
1774 Pragma_Name => Name_Attach_Handler);
1775
f67ed4f5 1776 -- We need to insert this pragma into the tree to get proper
1777 -- processing and to look valid from a placement viewpoint.
1778
e2bf777d 1779 Insert_Pragma (Aitem);
f67ed4f5 1780 goto Continue;
1781
0fd13d32 1782 -- Dynamic_Predicate, Predicate, Static_Predicate
89f1e35c 1783
1784 when Aspect_Dynamic_Predicate |
1785 Aspect_Predicate |
1786 Aspect_Static_Predicate =>
1787
a47ce82d 1788 -- These aspects apply only to subtypes
1789
1790 if not Is_Type (E) then
1791 Error_Msg_N
1792 ("predicate can only be specified for a subtype",
1793 Aspect);
1794 goto Continue;
7c0c95b8 1795
1796 elsif Is_Incomplete_Type (E) then
1797 Error_Msg_N
1798 ("predicate cannot apply to incomplete view", Aspect);
1799 goto Continue;
a47ce82d 1800 end if;
1801
89f1e35c 1802 -- Construct the pragma (always a pragma Predicate, with
51ea9c94 1803 -- flags recording whether it is static/dynamic). We also
1804 -- set flags recording this in the type itself.
89f1e35c 1805
0fd13d32 1806 Make_Aitem_Pragma
1807 (Pragma_Argument_Associations => New_List (
1808 Make_Pragma_Argument_Association (Sloc (Ent),
1809 Expression => Ent),
1810 Make_Pragma_Argument_Association (Sloc (Expr),
1811 Expression => Relocate_Node (Expr))),
1812 Pragma_Name => Name_Predicate);
89f1e35c 1813
51ea9c94 1814 -- Mark type has predicates, and remember what kind of
1815 -- aspect lead to this predicate (we need this to access
1816 -- the right set of check policies later on).
1817
1818 Set_Has_Predicates (E);
1819
1820 if A_Id = Aspect_Dynamic_Predicate then
1821 Set_Has_Dynamic_Predicate_Aspect (E);
1822 elsif A_Id = Aspect_Static_Predicate then
1823 Set_Has_Static_Predicate_Aspect (E);
1824 end if;
1825
89f1e35c 1826 -- If the type is private, indicate that its completion
6653b695 1827 -- has a freeze node, because that is the one that will
1828 -- be visible at freeze time.
89f1e35c 1829
0fd13d32 1830 if Is_Private_Type (E) and then Present (Full_View (E)) then
89f1e35c 1831 Set_Has_Predicates (Full_View (E));
51ea9c94 1832
1833 if A_Id = Aspect_Dynamic_Predicate then
1834 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1835 elsif A_Id = Aspect_Static_Predicate then
1836 Set_Has_Static_Predicate_Aspect (Full_View (E));
1837 end if;
1838
89f1e35c 1839 Set_Has_Delayed_Aspects (Full_View (E));
1840 Ensure_Freeze_Node (Full_View (E));
1841 end if;
1842
1843 -- Case 2b: Aspects corresponding to pragmas with two
1844 -- arguments, where the second argument is a local name
1845 -- referring to the entity, and the first argument is the
1846 -- aspect definition expression.
ae888dbd 1847
0fd13d32 1848 -- Convention
1849
a5a64273 1850 when Aspect_Convention =>
1851
1852 -- The aspect may be part of the specification of an import
1853 -- or export pragma. Scan the aspect list to gather the
1854 -- other components, if any. The name of the generated
1855 -- pragma is one of Convention/Import/Export.
1856
1857 declare
97bf66e6 1858 Args : constant List_Id := New_List (
1859 Make_Pragma_Argument_Association (Sloc (Expr),
1860 Expression => Relocate_Node (Expr)),
1861 Make_Pragma_Argument_Association (Sloc (Ent),
1862 Expression => Ent));
1863
1864 Imp_Exp_Seen : Boolean := False;
1865 -- Flag set when aspect Import or Export has been seen
1866
1867 Imp_Seen : Boolean := False;
1868 -- Flag set when aspect Import has been seen
1869
1870 Asp : Node_Id;
1871 Asp_Nam : Name_Id;
1872 Extern_Arg : Node_Id;
1873 Link_Arg : Node_Id;
1874 Prag_Nam : Name_Id;
a5a64273 1875
1876 begin
97bf66e6 1877 Extern_Arg := Empty;
1878 Link_Arg := Empty;
1879 Prag_Nam := Chars (Id);
1880
1881 Asp := First (L);
1882 while Present (Asp) loop
1883 Asp_Nam := Chars (Identifier (Asp));
1884
1885 -- Aspects Import and Export take precedence over
1886 -- aspect Convention. As a result the generated pragma
1887 -- must carry the proper interfacing aspect's name.
1888
1889 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1890 if Imp_Exp_Seen then
1891 Error_Msg_N ("conflicting", Asp);
a5a64273 1892 else
97bf66e6 1893 Imp_Exp_Seen := True;
1894
1895 if Asp_Nam = Name_Import then
1896 Imp_Seen := True;
1897 end if;
a5a64273 1898 end if;
1899
97bf66e6 1900 Prag_Nam := Asp_Nam;
a5a64273 1901
97bf66e6 1902 -- Aspect External_Name adds an extra argument to the
1903 -- generated pragma.
1904
1905 elsif Asp_Nam = Name_External_Name then
1906 Extern_Arg :=
4bba0a8d 1907 Make_Pragma_Argument_Association (Loc,
97bf66e6 1908 Chars => Asp_Nam,
1909 Expression => Relocate_Node (Expression (Asp)));
1910
1911 -- Aspect Link_Name adds an extra argument to the
1912 -- generated pragma.
a5a64273 1913
97bf66e6 1914 elsif Asp_Nam = Name_Link_Name then
1915 Link_Arg :=
4bba0a8d 1916 Make_Pragma_Argument_Association (Loc,
97bf66e6 1917 Chars => Asp_Nam,
1918 Expression => Relocate_Node (Expression (Asp)));
a5a64273 1919 end if;
1920
97bf66e6 1921 Next (Asp);
a5a64273 1922 end loop;
1923
97bf66e6 1924 -- Assemble the full argument list
b9e61b2a 1925
97bf66e6 1926 if Present (Extern_Arg) then
1927 Append_To (Args, Extern_Arg);
a5a64273 1928 end if;
1929
8a1e3cde 1930 if Present (Link_Arg) then
1931 Append_To (Args, Link_Arg);
1932 end if;
1933
0fd13d32 1934 Make_Aitem_Pragma
97bf66e6 1935 (Pragma_Argument_Associations => Args,
1936 Pragma_Name => Prag_Nam);
1937
1938 -- Store the generated pragma Import in the related
1939 -- subprogram.
1940
1941 if Imp_Seen and then Is_Subprogram (E) then
1942 Set_Import_Pragma (E, Aitem);
1943 end if;
a5a64273 1944 end;
e1cedbae 1945
0fd13d32 1946 -- CPU, Interrupt_Priority, Priority
1947
d6814978 1948 -- These three aspects can be specified for a subprogram spec
1949 -- or body, in which case we analyze the expression and export
1950 -- the value of the aspect.
1951
1952 -- Previously, we generated an equivalent pragma for bodies
1953 -- (note that the specs cannot contain these pragmas). The
1954 -- pragma was inserted ahead of local declarations, rather than
1955 -- after the body. This leads to a certain duplication between
1956 -- the processing performed for the aspect and the pragma, but
1957 -- given the straightforward handling required it is simpler
1958 -- to duplicate than to translate the aspect in the spec into
1959 -- a pragma in the declarative part of the body.
3a72f9c3 1960
1961 when Aspect_CPU |
1962 Aspect_Interrupt_Priority |
1963 Aspect_Priority =>
51ea9c94 1964
d6814978 1965 if Nkind_In (N, N_Subprogram_Body,
1966 N_Subprogram_Declaration)
1967 then
1968 -- Analyze the aspect expression
1969
1970 Analyze_And_Resolve (Expr, Standard_Integer);
1971
1972 -- Interrupt_Priority aspect not allowed for main
1973 -- subprograms. ARM D.1 does not forbid this explicitly,
1974 -- but ARM J.15.11 (6/3) does not permit pragma
1975 -- Interrupt_Priority for subprograms.
1976
1977 if A_Id = Aspect_Interrupt_Priority then
1978 Error_Msg_N
1979 ("Interrupt_Priority aspect cannot apply to "
1980 & "subprogram", Expr);
1981
1982 -- The expression must be static
1983
cda40848 1984 elsif not Is_OK_Static_Expression (Expr) then
d6814978 1985 Flag_Non_Static_Expr
1986 ("aspect requires static expression!", Expr);
1987
24d7b9d6 1988 -- Check whether this is the main subprogram. Issue a
1989 -- warning only if it is obviously not a main program
1990 -- (when it has parameters or when the subprogram is
1991 -- within a package).
1992
1993 elsif Present (Parameter_Specifications
1994 (Specification (N)))
1995 or else not Is_Compilation_Unit (Defining_Entity (N))
d6814978 1996 then
1997 -- See ARM D.1 (14/3) and D.16 (12/3)
1998
1999 Error_Msg_N
2000 ("aspect applied to subprogram other than the "
2001 & "main subprogram has no effect??", Expr);
2002
2003 -- Otherwise check in range and export the value
2004
2005 -- For the CPU aspect
2006
2007 elsif A_Id = Aspect_CPU then
2008 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2009
2010 -- Value is correct so we export the value to make
2011 -- it available at execution time.
2012
2013 Set_Main_CPU
2014 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2015
2016 else
2017 Error_Msg_N
2018 ("main subprogram CPU is out of range", Expr);
2019 end if;
2020
2021 -- For the Priority aspect
2022
2023 elsif A_Id = Aspect_Priority then
2024 if Is_In_Range (Expr, RTE (RE_Priority)) then
2025
2026 -- Value is correct so we export the value to make
2027 -- it available at execution time.
2028
2029 Set_Main_Priority
2030 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2031
32572384 2032 -- Ignore pragma if Relaxed_RM_Semantics to support
2033 -- other targets/non GNAT compilers.
2034
2035 elsif not Relaxed_RM_Semantics then
d6814978 2036 Error_Msg_N
2037 ("main subprogram priority is out of range",
2038 Expr);
2039 end if;
2040 end if;
2041
2042 -- Load an arbitrary entity from System.Tasking.Stages
2043 -- or System.Tasking.Restricted.Stages (depending on
2044 -- the supported profile) to make sure that one of these
2045 -- packages is implicitly with'ed, since we need to have
2046 -- the tasking run time active for the pragma Priority to
a0c3eeb9 2047 -- have any effect. Previously we with'ed the package
d6814978 2048 -- System.Tasking, but this package does not trigger the
2049 -- required initialization of the run-time library.
2050
2051 declare
2052 Discard : Entity_Id;
d6814978 2053 begin
2054 if Restricted_Profile then
2055 Discard := RTE (RE_Activate_Restricted_Tasks);
2056 else
2057 Discard := RTE (RE_Activate_Tasks);
2058 end if;
2059 end;
2060
2061 -- Handling for these Aspects in subprograms is complete
2062
2063 goto Continue;
2064
2065 -- For tasks
0fd13d32 2066
3a72f9c3 2067 else
d6814978 2068 -- Pass the aspect as an attribute
2069
3a72f9c3 2070 Aitem :=
2071 Make_Attribute_Definition_Clause (Loc,
2072 Name => Ent,
2073 Chars => Chars (Id),
2074 Expression => Relocate_Node (Expr));
2075 end if;
2076
0fd13d32 2077 -- Warnings
2078
ae888dbd 2079 when Aspect_Warnings =>
0fd13d32 2080 Make_Aitem_Pragma
2081 (Pragma_Argument_Associations => New_List (
2082 Make_Pragma_Argument_Association (Sloc (Expr),
2083 Expression => Relocate_Node (Expr)),
2084 Make_Pragma_Argument_Association (Loc,
2085 Expression => New_Occurrence_Of (E, Loc))),
2086 Pragma_Name => Chars (Id));
ae888dbd 2087
89f1e35c 2088 -- Case 2c: Aspects corresponding to pragmas with three
2089 -- arguments.
d64221a7 2090
89f1e35c 2091 -- Invariant aspects have a first argument that references the
2092 -- entity, a second argument that is the expression and a third
2093 -- argument that is an appropriate message.
d64221a7 2094
0fd13d32 2095 -- Invariant, Type_Invariant
2096
89f1e35c 2097 when Aspect_Invariant |
2098 Aspect_Type_Invariant =>
d64221a7 2099
89f1e35c 2100 -- Analysis of the pragma will verify placement legality:
2101 -- an invariant must apply to a private type, or appear in
2102 -- the private part of a spec and apply to a completion.
d64221a7 2103
0fd13d32 2104 Make_Aitem_Pragma
2105 (Pragma_Argument_Associations => New_List (
2106 Make_Pragma_Argument_Association (Sloc (Ent),
2107 Expression => Ent),
2108 Make_Pragma_Argument_Association (Sloc (Expr),
2109 Expression => Relocate_Node (Expr))),
2110 Pragma_Name => Name_Invariant);
89f1e35c 2111
2112 -- Add message unless exception messages are suppressed
2113
2114 if not Opt.Exception_Locations_Suppressed then
2115 Append_To (Pragma_Argument_Associations (Aitem),
2116 Make_Pragma_Argument_Association (Eloc,
2117 Chars => Name_Message,
2118 Expression =>
2119 Make_String_Literal (Eloc,
2120 Strval => "failed invariant from "
2121 & Build_Location_String (Eloc))));
d64221a7 2122 end if;
2123
89f1e35c 2124 -- For Invariant case, insert immediately after the entity
2125 -- declaration. We do not have to worry about delay issues
2126 -- since the pragma processing takes care of this.
2127
89f1e35c 2128 Delay_Required := False;
d64221a7 2129
47a46747 2130 -- Case 2d : Aspects that correspond to a pragma with one
2131 -- argument.
2132
0fd13d32 2133 -- Abstract_State
115f7b08 2134
d4e369ad 2135 -- Aspect Abstract_State introduces implicit declarations for
2136 -- all state abstraction entities it defines. To emulate this
2137 -- behavior, insert the pragma at the beginning of the visible
2138 -- declarations of the related package so that it is analyzed
2139 -- immediately.
2140
9129c28f 2141 when Aspect_Abstract_State => Abstract_State : declare
eb4f7efa 2142 Context : Node_Id := N;
630b6d55 2143 Decl : Node_Id;
eb4f7efa 2144 Decls : List_Id;
9129c28f 2145
2146 begin
eb4f7efa 2147 -- When aspect Abstract_State appears on a generic package,
2148 -- it is propageted to the package instance. The context in
2149 -- this case is the instance spec.
2150
2151 if Nkind (Context) = N_Package_Instantiation then
2152 Context := Instance_Spec (Context);
2153 end if;
2154
2155 if Nkind_In (Context, N_Generic_Package_Declaration,
2156 N_Package_Declaration)
9129c28f 2157 then
9129c28f 2158 Make_Aitem_Pragma
2159 (Pragma_Argument_Associations => New_List (
2160 Make_Pragma_Argument_Association (Loc,
2161 Expression => Relocate_Node (Expr))),
2162 Pragma_Name => Name_Abstract_State);
e2bf777d 2163 Decorate (Aspect, Aitem);
9129c28f 2164
630b6d55 2165 Decls := Visible_Declarations (Specification (Context));
2166
2167 -- In general pragma Abstract_State must be at the top
2168 -- of the existing visible declarations to emulate its
2169 -- source counterpart. The only exception to this is a
2170 -- generic instance in which case the pragma must be
2171 -- inserted after the association renamings.
2172
2173 if Present (Decls) then
50e44732 2174 Decl := First (Decls);
630b6d55 2175
2176 -- The visible declarations of a generic instance have
2177 -- the following structure:
2178
2179 -- <renamings of generic formals>
2180 -- <renamings of internally-generated spec and body>
2181 -- <first source declaration>
2182
2183 -- The pragma must be inserted before the first source
50e44732 2184 -- declaration, skip the instance "header".
630b6d55 2185
2186 if Is_Generic_Instance (Defining_Entity (Context)) then
630b6d55 2187 while Present (Decl)
2188 and then not Comes_From_Source (Decl)
2189 loop
2190 Decl := Next (Decl);
2191 end loop;
50e44732 2192 end if;
630b6d55 2193
3dbe7a69 2194 -- When aspects Abstract_State, Ghost,
2195 -- Initial_Condition and Initializes are out of order,
2196 -- ensure that pragma SPARK_Mode is always at the top
2197 -- of the declarations to properly enabled/suppress
2198 -- errors.
630b6d55 2199
50e44732 2200 Insert_After_SPARK_Mode
2201 (Prag => Aitem,
2202 Ins_Nod => Decl,
2203 Decls => Decls);
630b6d55 2204
2205 -- Otherwise the pragma forms a new declarative list
2206
2207 else
2208 Set_Visible_Declarations
2209 (Specification (Context), New_List (Aitem));
2210 end if;
9129c28f 2211
2212 else
2213 Error_Msg_NE
2214 ("aspect & must apply to a package declaration",
2215 Aspect, Id);
2216 end if;
2217
2218 goto Continue;
2219 end Abstract_State;
115f7b08 2220
ec6f6da5 2221 -- Aspect Default_Internal_Condition is never delayed because
2222 -- it is equivalent to a source pragma which appears after the
2223 -- related private type. To deal with forward references, the
2224 -- generated pragma is stored in the rep chain of the related
2225 -- private type as types do not carry contracts. The pragma is
2226 -- wrapped inside of a procedure at the freeze point of the
2227 -- private type's full view.
2228
2229 when Aspect_Default_Initial_Condition =>
2230 Make_Aitem_Pragma
2231 (Pragma_Argument_Associations => New_List (
2232 Make_Pragma_Argument_Association (Loc,
2233 Expression => Relocate_Node (Expr))),
2234 Pragma_Name =>
2235 Name_Default_Initial_Condition);
2236
2237 Decorate (Aspect, Aitem);
2238 Insert_Pragma (Aitem);
2239 goto Continue;
2240
647fab54 2241 -- Default_Storage_Pool
2242
2243 when Aspect_Default_Storage_Pool =>
2244 Make_Aitem_Pragma
2245 (Pragma_Argument_Associations => New_List (
2246 Make_Pragma_Argument_Association (Loc,
2247 Expression => Relocate_Node (Expr))),
2248 Pragma_Name =>
2249 Name_Default_Storage_Pool);
2250
2251 Decorate (Aspect, Aitem);
2252 Insert_Pragma (Aitem);
2253 goto Continue;
2254
0fd13d32 2255 -- Depends
2256
e2bf777d 2257 -- Aspect Depends is never delayed because it is equivalent to
2258 -- a source pragma which appears after the related subprogram.
2259 -- To deal with forward references, the generated pragma is
2260 -- stored in the contract of the related subprogram and later
2261 -- analyzed at the end of the declarative region. See routine
2262 -- Analyze_Depends_In_Decl_Part for details.
6144c105 2263
12334c57 2264 when Aspect_Depends =>
0fd13d32 2265 Make_Aitem_Pragma
2266 (Pragma_Argument_Associations => New_List (
2267 Make_Pragma_Argument_Association (Loc,
2268 Expression => Relocate_Node (Expr))),
2269 Pragma_Name => Name_Depends);
2270
e2bf777d 2271 Decorate (Aspect, Aitem);
2272 Insert_Pragma (Aitem);
c1006d6d 2273 goto Continue;
2274
cab27d2a 2275 -- Aspect Extensions_Visible is never delayed because it is
2276 -- equivalent to a source pragma which appears after the
2277 -- related subprogram.
2278
2279 when Aspect_Extensions_Visible =>
2280 Make_Aitem_Pragma
2281 (Pragma_Argument_Associations => New_List (
2282 Make_Pragma_Argument_Association (Loc,
2283 Expression => Relocate_Node (Expr))),
2284 Pragma_Name => Name_Extensions_Visible);
2285
2286 Decorate (Aspect, Aitem);
2287 Insert_Pragma (Aitem);
2288 goto Continue;
2289
3dbe7a69 2290 -- Aspect Ghost is never delayed because it is equivalent to a
2291 -- source pragma which appears at the top of [generic] package
2292 -- declarations or after an object, a [generic] subprogram, or
2293 -- a type declaration.
2294
2295 when Aspect_Ghost => Ghost : declare
2296 Decls : List_Id;
2297
2298 begin
2299 Make_Aitem_Pragma
2300 (Pragma_Argument_Associations => New_List (
2301 Make_Pragma_Argument_Association (Loc,
2302 Expression => Relocate_Node (Expr))),
2303 Pragma_Name => Name_Ghost);
2304
2305 Decorate (Aspect, Aitem);
2306
2307 -- When the aspect applies to a [generic] package, insert
2308 -- the pragma at the top of the visible declarations. This
2309 -- emulates the placement of a source pragma.
2310
2311 if Nkind_In (N, N_Generic_Package_Declaration,
2312 N_Package_Declaration)
2313 then
2314 Decls := Visible_Declarations (Specification (N));
2315
2316 if No (Decls) then
2317 Decls := New_List;
2318 Set_Visible_Declarations (N, Decls);
2319 end if;
2320
2321 -- When aspects Abstract_State, Ghost, Initial_Condition
2322 -- and Initializes are out of order, ensure that pragma
2323 -- SPARK_Mode is always at the top of the declarations to
2324 -- properly enabled/suppress errors.
2325
2326 Insert_After_SPARK_Mode
2327 (Prag => Aitem,
2328 Ins_Nod => First (Decls),
2329 Decls => Decls);
2330
2331 -- Otherwise the context is an object, [generic] subprogram
2332 -- or type declaration.
2333
2334 else
2335 Insert_Pragma (Aitem);
2336 end if;
2337
2338 goto Continue;
2339 end Ghost;
2340
0fd13d32 2341 -- Global
12334c57 2342
e2bf777d 2343 -- Aspect Global is never delayed because it is equivalent to
2344 -- a source pragma which appears after the related subprogram.
2345 -- To deal with forward references, the generated pragma is
2346 -- stored in the contract of the related subprogram and later
2347 -- analyzed at the end of the declarative region. See routine
2348 -- Analyze_Global_In_Decl_Part for details.
3cdbaa5a 2349
2350 when Aspect_Global =>
0fd13d32 2351 Make_Aitem_Pragma
2352 (Pragma_Argument_Associations => New_List (
2353 Make_Pragma_Argument_Association (Loc,
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Global);
2356
e2bf777d 2357 Decorate (Aspect, Aitem);
2358 Insert_Pragma (Aitem);
c1006d6d 2359 goto Continue;
2360
9c138530 2361 -- Initial_Condition
2362
e2bf777d 2363 -- Aspect Initial_Condition is never delayed because it is
2364 -- equivalent to a source pragma which appears after the
2365 -- related package. To deal with forward references, the
2366 -- generated pragma is stored in the contract of the related
2367 -- package and later analyzed at the end of the declarative
2368 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2369 -- for details.
9c138530 2370
2371 when Aspect_Initial_Condition => Initial_Condition : declare
eb4f7efa 2372 Context : Node_Id := N;
2373 Decls : List_Id;
9c138530 2374
2375 begin
e2bf777d 2376 -- When aspect Initial_Condition appears on a generic
2377 -- package, it is propageted to the package instance. The
2378 -- context in this case is the instance spec.
eb4f7efa 2379
2380 if Nkind (Context) = N_Package_Instantiation then
2381 Context := Instance_Spec (Context);
2382 end if;
2383
2384 if Nkind_In (Context, N_Generic_Package_Declaration,
2385 N_Package_Declaration)
9c138530 2386 then
eb4f7efa 2387 Decls := Visible_Declarations (Specification (Context));
9c138530 2388
2389 Make_Aitem_Pragma
2390 (Pragma_Argument_Associations => New_List (
2391 Make_Pragma_Argument_Association (Loc,
2392 Expression => Relocate_Node (Expr))),
2393 Pragma_Name =>
2394 Name_Initial_Condition);
e2bf777d 2395 Decorate (Aspect, Aitem);
9c138530 2396
2397 if No (Decls) then
2398 Decls := New_List;
eb4f7efa 2399 Set_Visible_Declarations (Context, Decls);
9c138530 2400 end if;
2401
3dbe7a69 2402 -- When aspects Abstract_State, Ghost, Initial_Condition
2403 -- and Initializes are out of order, ensure that pragma
2404 -- SPARK_Mode is always at the top of the declarations to
2405 -- properly enabled/suppress errors.
50e44732 2406
2407 Insert_After_SPARK_Mode
2408 (Prag => Aitem,
2409 Ins_Nod => First (Decls),
2410 Decls => Decls);
9c138530 2411
2412 else
2413 Error_Msg_NE
2414 ("aspect & must apply to a package declaration",
2415 Aspect, Id);
2416 end if;
2417
2418 goto Continue;
2419 end Initial_Condition;
2420
d4e369ad 2421 -- Initializes
2422
e2bf777d 2423 -- Aspect Initializes is never delayed because it is equivalent
2424 -- to a source pragma appearing after the related package. To
2425 -- deal with forward references, the generated pragma is stored
2426 -- in the contract of the related package and later analyzed at
2427 -- the end of the declarative region. For details, see routine
2428 -- Analyze_Initializes_In_Decl_Part.
d4e369ad 2429
2430 when Aspect_Initializes => Initializes : declare
eb4f7efa 2431 Context : Node_Id := N;
2432 Decls : List_Id;
d4e369ad 2433
2434 begin
50e44732 2435 -- When aspect Initializes appears on a generic package,
2436 -- it is propageted to the package instance. The context
2437 -- in this case is the instance spec.
eb4f7efa 2438
2439 if Nkind (Context) = N_Package_Instantiation then
2440 Context := Instance_Spec (Context);
2441 end if;
2442
2443 if Nkind_In (Context, N_Generic_Package_Declaration,
2444 N_Package_Declaration)
d4e369ad 2445 then
eb4f7efa 2446 Decls := Visible_Declarations (Specification (Context));
d4e369ad 2447
2448 Make_Aitem_Pragma
2449 (Pragma_Argument_Associations => New_List (
2450 Make_Pragma_Argument_Association (Loc,
2451 Expression => Relocate_Node (Expr))),
2452 Pragma_Name => Name_Initializes);
e2bf777d 2453 Decorate (Aspect, Aitem);
d4e369ad 2454
2455 if No (Decls) then
2456 Decls := New_List;
eb4f7efa 2457 Set_Visible_Declarations (Context, Decls);
d4e369ad 2458 end if;
2459
3dbe7a69 2460 -- When aspects Abstract_State, Ghost, Initial_Condition
2461 -- and Initializes are out of order, ensure that pragma
2462 -- SPARK_Mode is always at the top of the declarations to
2463 -- properly enabled/suppress errors.
50e44732 2464
2465 Insert_After_SPARK_Mode
2466 (Prag => Aitem,
2467 Ins_Nod => First (Decls),
2468 Decls => Decls);
d4e369ad 2469
2470 else
2471 Error_Msg_NE
2472 ("aspect & must apply to a package declaration",
2473 Aspect, Id);
2474 end if;
2475
2476 goto Continue;
2477 end Initializes;
2478
1fd4313f 2479 -- Obsolescent
2480
2481 when Aspect_Obsolescent => declare
2482 Args : List_Id;
2483
2484 begin
2485 if No (Expr) then
2486 Args := No_List;
2487 else
2488 Args := New_List (
2489 Make_Pragma_Argument_Association (Sloc (Expr),
2490 Expression => Relocate_Node (Expr)));
2491 end if;
2492
2493 Make_Aitem_Pragma
2494 (Pragma_Argument_Associations => Args,
2495 Pragma_Name => Chars (Id));
2496 end;
2497
5cc6f0cf 2498 -- Part_Of
2499
2500 when Aspect_Part_Of =>
2501 if Nkind_In (N, N_Object_Declaration,
2502 N_Package_Instantiation)
2503 then
2504 Make_Aitem_Pragma
2505 (Pragma_Argument_Associations => New_List (
2506 Make_Pragma_Argument_Association (Loc,
2507 Expression => Relocate_Node (Expr))),
2508 Pragma_Name => Name_Part_Of);
2509
2510 else
2511 Error_Msg_NE
2512 ("aspect & must apply to a variable or package "
2513 & "instantiation", Aspect, Id);
2514 end if;
2515
5dd93a61 2516 -- SPARK_Mode
2517
778ebf56 2518 when Aspect_SPARK_Mode => SPARK_Mode : declare
2519 Decls : List_Id;
2520
2521 begin
5dd93a61 2522 Make_Aitem_Pragma
2523 (Pragma_Argument_Associations => New_List (
2524 Make_Pragma_Argument_Association (Loc,
2525 Expression => Relocate_Node (Expr))),
2526 Pragma_Name => Name_SPARK_Mode);
5dd93a61 2527
b90d9656 2528 -- When the aspect appears on a package or a subprogram
2529 -- body, insert the generated pragma at the top of the body
2530 -- declarations to emulate the behavior of a source pragma.
778ebf56 2531
b90d9656 2532 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
e2bf777d 2533 Decorate (Aspect, Aitem);
5cc6f0cf 2534
778ebf56 2535 Decls := Declarations (N);
2536
2537 if No (Decls) then
2538 Decls := New_List;
2539 Set_Declarations (N, Decls);
2540 end if;
2541
a04f9d2e 2542 Prepend_To (Decls, Aitem);
2543 goto Continue;
2544
b90d9656 2545 -- When the aspect is associated with a [generic] package
2546 -- declaration, insert the generated pragma at the top of
2547 -- the visible declarations to emulate the behavior of a
2548 -- source pragma.
a04f9d2e 2549
b90d9656 2550 elsif Nkind_In (N, N_Generic_Package_Declaration,
2551 N_Package_Declaration)
2552 then
e2bf777d 2553 Decorate (Aspect, Aitem);
5cc6f0cf 2554
a04f9d2e 2555 Decls := Visible_Declarations (Specification (N));
2556
2557 if No (Decls) then
2558 Decls := New_List;
2559 Set_Visible_Declarations (Specification (N), Decls);
2560 end if;
2561
778ebf56 2562 Prepend_To (Decls, Aitem);
2563 goto Continue;
2564 end if;
2565 end SPARK_Mode;
2566
4befb1a0 2567 -- Refined_Depends
2568
e2bf777d 2569 -- Aspect Refined_Depends is never delayed because it is
2570 -- equivalent to a source pragma which appears in the
2571 -- declarations of the related subprogram body. To deal with
2572 -- forward references, the generated pragma is stored in the
2573 -- contract of the related subprogram body and later analyzed
2574 -- at the end of the declarative region. For details, see
2575 -- routine Analyze_Refined_Depends_In_Decl_Part.
4befb1a0 2576
2577 when Aspect_Refined_Depends =>
422073ed 2578 Make_Aitem_Pragma
2579 (Pragma_Argument_Associations => New_List (
2580 Make_Pragma_Argument_Association (Loc,
2581 Expression => Relocate_Node (Expr))),
2582 Pragma_Name => Name_Refined_Depends);
2583
e2bf777d 2584 Decorate (Aspect, Aitem);
2585 Insert_Pragma (Aitem);
422073ed 2586 goto Continue;
4befb1a0 2587
2588 -- Refined_Global
2589
e2bf777d 2590 -- Aspect Refined_Global is never delayed because it is
2591 -- equivalent to a source pragma which appears in the
2592 -- declarations of the related subprogram body. To deal with
2593 -- forward references, the generated pragma is stored in the
2594 -- contract of the related subprogram body and later analyzed
2595 -- at the end of the declarative region. For details, see
2596 -- routine Analyze_Refined_Global_In_Decl_Part.
4befb1a0 2597
2598 when Aspect_Refined_Global =>
28ff117f 2599 Make_Aitem_Pragma
2600 (Pragma_Argument_Associations => New_List (
2601 Make_Pragma_Argument_Association (Loc,
2602 Expression => Relocate_Node (Expr))),
2603 Pragma_Name => Name_Refined_Global);
2604
e2bf777d 2605 Decorate (Aspect, Aitem);
2606 Insert_Pragma (Aitem);
28ff117f 2607 goto Continue;
4befb1a0 2608
63b65b2d 2609 -- Refined_Post
2610
2611 when Aspect_Refined_Post =>
2612 Make_Aitem_Pragma
2613 (Pragma_Argument_Associations => New_List (
2614 Make_Pragma_Argument_Association (Loc,
2615 Expression => Relocate_Node (Expr))),
2616 Pragma_Name => Name_Refined_Post);
2617
9129c28f 2618 -- Refined_State
2619
2620 when Aspect_Refined_State => Refined_State : declare
2621 Decls : List_Id;
2622
2623 begin
2624 -- The corresponding pragma for Refined_State is inserted in
2625 -- the declarations of the related package body. This action
2626 -- synchronizes both the source and from-aspect versions of
2627 -- the pragma.
2628
2629 if Nkind (N) = N_Package_Body then
e2bf777d 2630 Decls := Declarations (N);
2631
9129c28f 2632 Make_Aitem_Pragma
2633 (Pragma_Argument_Associations => New_List (
2634 Make_Pragma_Argument_Association (Loc,
2635 Expression => Relocate_Node (Expr))),
2636 Pragma_Name => Name_Refined_State);
e2bf777d 2637 Decorate (Aspect, Aitem);
b9b2d6e5 2638
e2bf777d 2639 if No (Decls) then
2640 Decls := New_List;
2641 Set_Declarations (N, Decls);
2642 end if;
b9b2d6e5 2643
e2bf777d 2644 -- Pragma Refined_State must be inserted after pragma
2645 -- SPARK_Mode in the tree. This ensures that any error
2646 -- messages dependent on SPARK_Mode will be properly
2647 -- enabled/suppressed.
b9b2d6e5 2648
e2bf777d 2649 Insert_After_SPARK_Mode
2650 (Prag => Aitem,
2651 Ins_Nod => First (Decls),
2652 Decls => Decls);
9129c28f 2653
2654 else
2655 Error_Msg_NE
2656 ("aspect & must apply to a package body", Aspect, Id);
2657 end if;
2658
2659 goto Continue;
2660 end Refined_State;
2661
0fd13d32 2662 -- Relative_Deadline
3cdbaa5a 2663
2664 when Aspect_Relative_Deadline =>
0fd13d32 2665 Make_Aitem_Pragma
2666 (Pragma_Argument_Associations => New_List (
2667 Make_Pragma_Argument_Association (Loc,
2668 Expression => Relocate_Node (Expr))),
2669 Pragma_Name => Name_Relative_Deadline);
47a46747 2670
2671 -- If the aspect applies to a task, the corresponding pragma
2672 -- must appear within its declarations, not after.
2673
2674 if Nkind (N) = N_Task_Type_Declaration then
2675 declare
2676 Def : Node_Id;
2677 V : List_Id;
2678
2679 begin
2680 if No (Task_Definition (N)) then
2681 Set_Task_Definition (N,
2682 Make_Task_Definition (Loc,
2683 Visible_Declarations => New_List,
2684 End_Label => Empty));
2685 end if;
2686
2687 Def := Task_Definition (N);
2688 V := Visible_Declarations (Def);
2689 if not Is_Empty_List (V) then
2690 Insert_Before (First (V), Aitem);
2691
2692 else
2693 Set_Visible_Declarations (Def, New_List (Aitem));
2694 end if;
2695
2696 goto Continue;
2697 end;
2698 end if;
2699
956ffaf4 2700 -- Case 2e: Annotate aspect
2701
2702 when Aspect_Annotate =>
2703 declare
2704 Args : List_Id;
2705 Pargs : List_Id;
2706 Arg : Node_Id;
2707
2708 begin
2709 -- The argument can be a single identifier
2710
2711 if Nkind (Expr) = N_Identifier then
2712
2713 -- One level of parens is allowed
2714
2715 if Paren_Count (Expr) > 1 then
2716 Error_Msg_F ("extra parentheses ignored", Expr);
2717 end if;
2718
2719 Set_Paren_Count (Expr, 0);
2720
2721 -- Add the single item to the list
2722
2723 Args := New_List (Expr);
2724
2725 -- Otherwise we must have an aggregate
2726
2727 elsif Nkind (Expr) = N_Aggregate then
2728
2729 -- Must be positional
2730
2731 if Present (Component_Associations (Expr)) then
2732 Error_Msg_F
2733 ("purely positional aggregate required", Expr);
2734 goto Continue;
2735 end if;
2736
2737 -- Must not be parenthesized
2738
2739 if Paren_Count (Expr) /= 0 then
2740 Error_Msg_F ("extra parentheses ignored", Expr);
2741 end if;
2742
2743 -- List of arguments is list of aggregate expressions
2744
2745 Args := Expressions (Expr);
2746
2747 -- Anything else is illegal
2748
2749 else
2750 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2751 goto Continue;
2752 end if;
2753
2754 -- Prepare pragma arguments
2755
2756 Pargs := New_List;
2757 Arg := First (Args);
2758 while Present (Arg) loop
2759 Append_To (Pargs,
2760 Make_Pragma_Argument_Association (Sloc (Arg),
2761 Expression => Relocate_Node (Arg)));
2762 Next (Arg);
2763 end loop;
2764
2765 Append_To (Pargs,
2766 Make_Pragma_Argument_Association (Sloc (Ent),
2767 Chars => Name_Entity,
2768 Expression => Ent));
2769
2770 Make_Aitem_Pragma
2771 (Pragma_Argument_Associations => Pargs,
2772 Pragma_Name => Name_Annotate);
2773 end;
2774
89f1e35c 2775 -- Case 3 : Aspects that don't correspond to pragma/attribute
2776 -- definition clause.
7b9b2f05 2777
89f1e35c 2778 -- Case 3a: The aspects listed below don't correspond to
2779 -- pragmas/attributes but do require delayed analysis.
7f694ca2 2780
51fa2a45 2781 -- Default_Value can only apply to a scalar type
2782
2783 when Aspect_Default_Value =>
2784 if not Is_Scalar_Type (E) then
2785 Error_Msg_N
1089ff19 2786 ("aspect Default_Value must apply to a scalar type", N);
51fa2a45 2787 end if;
2788
2789 Aitem := Empty;
2790
2791 -- Default_Component_Value can only apply to an array type
2792 -- with scalar components.
2793
2794 when Aspect_Default_Component_Value =>
2795 if not (Is_Array_Type (E)
3f4c9ffc 2796 and then Is_Scalar_Type (Component_Type (E)))
51fa2a45 2797 then
2798 Error_Msg_N ("aspect Default_Component_Value can only "
2799 & "apply to an array of scalar components", N);
2800 end if;
0fd13d32 2801
89f1e35c 2802 Aitem := Empty;
7f694ca2 2803
89f1e35c 2804 -- Case 3b: The aspects listed below don't correspond to
2805 -- pragmas/attributes and don't need delayed analysis.
95bc75fa 2806
0fd13d32 2807 -- Implicit_Dereference
2808
89f1e35c 2809 -- For Implicit_Dereference, External_Name and Link_Name, only
2810 -- the legality checks are done during the analysis, thus no
2811 -- delay is required.
a8e38e1d 2812
89f1e35c 2813 when Aspect_Implicit_Dereference =>
2814 Analyze_Aspect_Implicit_Dereference;
2815 goto Continue;
7f694ca2 2816
0fd13d32 2817 -- External_Name, Link_Name
2818
89f1e35c 2819 when Aspect_External_Name |
2820 Aspect_Link_Name =>
2821 Analyze_Aspect_External_Or_Link_Name;
2822 goto Continue;
7f694ca2 2823
0fd13d32 2824 -- Dimension
2825
89f1e35c 2826 when Aspect_Dimension =>
2827 Analyze_Aspect_Dimension (N, Id, Expr);
2828 goto Continue;
cb4c311d 2829
0fd13d32 2830 -- Dimension_System
2831
89f1e35c 2832 when Aspect_Dimension_System =>
2833 Analyze_Aspect_Dimension_System (N, Id, Expr);
2834 goto Continue;
7f694ca2 2835
ceec4f7c 2836 -- Case 4: Aspects requiring special handling
51ea9c94 2837
e66f4e2a 2838 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2839 -- pragmas take care of the delay.
7f694ca2 2840
0fd13d32 2841 -- Pre/Post
2842
1e3c4ae6 2843 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2844 -- with a first argument that is the expression, and a second
2845 -- argument that is an informative message if the test fails.
2846 -- This is inserted right after the declaration, to get the
5b5df4a9 2847 -- required pragma placement. The processing for the pragmas
2848 -- takes care of the required delay.
ae888dbd 2849
5ddd846b 2850 when Pre_Post_Aspects => Pre_Post : declare
1e3c4ae6 2851 Pname : Name_Id;
ae888dbd 2852
1e3c4ae6 2853 begin
77ae6789 2854 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
1e3c4ae6 2855 Pname := Name_Precondition;
2856 else
2857 Pname := Name_Postcondition;
2858 end if;
d74fc39a 2859
1e3c4ae6 2860 -- If the expressions is of the form A and then B, then
2861 -- we generate separate Pre/Post aspects for the separate
2862 -- clauses. Since we allow multiple pragmas, there is no
2863 -- problem in allowing multiple Pre/Post aspects internally.
a273015d 2864 -- These should be treated in reverse order (B first and
2865 -- A second) since they are later inserted just after N in
2866 -- the order they are treated. This way, the pragma for A
2867 -- ends up preceding the pragma for B, which may have an
2868 -- importance for the error raised (either constraint error
2869 -- or precondition error).
1e3c4ae6 2870
39e1f22f 2871 -- We do not do this for Pre'Class, since we have to put
51fa2a45 2872 -- these conditions together in a complex OR expression.
ae888dbd 2873
4282d342 2874 -- We do not do this in ASIS mode, as ASIS relies on the
2875 -- original node representing the complete expression, when
2876 -- retrieving it through the source aspect table.
2877
2878 if not ASIS_Mode
2879 and then (Pname = Name_Postcondition
2880 or else not Class_Present (Aspect))
39e1f22f 2881 then
2882 while Nkind (Expr) = N_And_Then loop
2883 Insert_After (Aspect,
a273015d 2884 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
39e1f22f 2885 Identifier => Identifier (Aspect),
a273015d 2886 Expression => Relocate_Node (Left_Opnd (Expr)),
39e1f22f 2887 Class_Present => Class_Present (Aspect),
2888 Split_PPC => True));
a273015d 2889 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
39e1f22f 2890 Eloc := Sloc (Expr);
2891 end loop;
2892 end if;
ae888dbd 2893
48d6f069 2894 -- Build the precondition/postcondition pragma
2895
51fa2a45 2896 -- Add note about why we do NOT need Copy_Tree here???
d74fc39a 2897
0fd13d32 2898 Make_Aitem_Pragma
2899 (Pragma_Argument_Associations => New_List (
2900 Make_Pragma_Argument_Association (Eloc,
2901 Chars => Name_Check,
a19e1763 2902 Expression => Relocate_Node (Expr))),
0fd13d32 2903 Pragma_Name => Pname);
39e1f22f 2904
2905 -- Add message unless exception messages are suppressed
2906
2907 if not Opt.Exception_Locations_Suppressed then
2908 Append_To (Pragma_Argument_Associations (Aitem),
2909 Make_Pragma_Argument_Association (Eloc,
2910 Chars => Name_Message,
2911 Expression =>
2912 Make_String_Literal (Eloc,
2913 Strval => "failed "
2914 & Get_Name_String (Pname)
2915 & " from "
2916 & Build_Location_String (Eloc))));
2917 end if;
d74fc39a 2918
7d20685d 2919 Set_Is_Delayed_Aspect (Aspect);
d74fc39a 2920
1e3c4ae6 2921 -- For Pre/Post cases, insert immediately after the entity
2922 -- declaration, since that is the required pragma placement.
2923 -- Note that for these aspects, we do not have to worry
2924 -- about delay issues, since the pragmas themselves deal
2925 -- with delay of visibility for the expression analysis.
2926
e2bf777d 2927 Insert_Pragma (Aitem);
299b347e 2928
1e3c4ae6 2929 goto Continue;
5ddd846b 2930 end Pre_Post;
ae888dbd 2931
0fd13d32 2932 -- Test_Case
2933
e66f4e2a 2934 when Aspect_Test_Case => Test_Case : declare
2935 Args : List_Id;
2936 Comp_Expr : Node_Id;
2937 Comp_Assn : Node_Id;
2938 New_Expr : Node_Id;
57cd943b 2939
e66f4e2a 2940 begin
2941 Args := New_List;
b0bc40fd 2942
e66f4e2a 2943 if Nkind (Parent (N)) = N_Compilation_Unit then
2944 Error_Msg_Name_1 := Nam;
2945 Error_Msg_N ("incorrect placement of aspect `%`", E);
2946 goto Continue;
2947 end if;
6c545057 2948
e66f4e2a 2949 if Nkind (Expr) /= N_Aggregate then
2950 Error_Msg_Name_1 := Nam;
2951 Error_Msg_NE
2952 ("wrong syntax for aspect `%` for &", Id, E);
2953 goto Continue;
2954 end if;
6c545057 2955
e66f4e2a 2956 -- Make pragma expressions refer to the original aspect
51fa2a45 2957 -- expressions through the Original_Node link. This is used
2958 -- in semantic analysis for ASIS mode, so that the original
2959 -- expression also gets analyzed.
e66f4e2a 2960
2961 Comp_Expr := First (Expressions (Expr));
2962 while Present (Comp_Expr) loop
2963 New_Expr := Relocate_Node (Comp_Expr);
2964 Set_Original_Node (New_Expr, Comp_Expr);
2965 Append_To (Args,
2966 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
2967 Expression => New_Expr));
2968 Next (Comp_Expr);
2969 end loop;
2970
2971 Comp_Assn := First (Component_Associations (Expr));
2972 while Present (Comp_Assn) loop
2973 if List_Length (Choices (Comp_Assn)) /= 1
2974 or else
2975 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
2976 then
fad014fe 2977 Error_Msg_Name_1 := Nam;
6c545057 2978 Error_Msg_NE
fad014fe 2979 ("wrong syntax for aspect `%` for &", Id, E);
6c545057 2980 goto Continue;
2981 end if;
2982
e66f4e2a 2983 New_Expr := Relocate_Node (Expression (Comp_Assn));
2984 Set_Original_Node (New_Expr, Expression (Comp_Assn));
2985 Append_To (Args,
2986 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
2987 Chars => Chars (First (Choices (Comp_Assn))),
2988 Expression => New_Expr));
2989 Next (Comp_Assn);
2990 end loop;
6c545057 2991
e66f4e2a 2992 -- Build the test-case pragma
6c545057 2993
0fd13d32 2994 Make_Aitem_Pragma
2995 (Pragma_Argument_Associations => Args,
2996 Pragma_Name => Nam);
e66f4e2a 2997 end Test_Case;
85696508 2998
0fd13d32 2999 -- Contract_Cases
3000
5ddd846b 3001 when Aspect_Contract_Cases =>
0fd13d32 3002 Make_Aitem_Pragma
3003 (Pragma_Argument_Associations => New_List (
3004 Make_Pragma_Argument_Association (Loc,
3005 Expression => Relocate_Node (Expr))),
3006 Pragma_Name => Nam);
3a128918 3007
e2bf777d 3008 Decorate (Aspect, Aitem);
3009 Insert_Pragma (Aitem);
5ddd846b 3010 goto Continue;
3a128918 3011
89f1e35c 3012 -- Case 5: Special handling for aspects with an optional
3013 -- boolean argument.
85696508 3014
89f1e35c 3015 -- In the general case, the corresponding pragma cannot be
0fd13d32 3016 -- generated yet because the evaluation of the boolean needs
3017 -- to be delayed till the freeze point.
3018
89f1e35c 3019 when Boolean_Aspects |
3020 Library_Unit_Aspects =>
a5a64273 3021
89f1e35c 3022 Set_Is_Boolean_Aspect (Aspect);
a5a64273 3023
89f1e35c 3024 -- Lock_Free aspect only apply to protected objects
e1cedbae 3025
89f1e35c 3026 if A_Id = Aspect_Lock_Free then
3027 if Ekind (E) /= E_Protected_Type then
99a2d5bd 3028 Error_Msg_Name_1 := Nam;
a5a64273 3029 Error_Msg_N
89f1e35c 3030 ("aspect % only applies to a protected object",
3031 Aspect);
3032
3033 else
3034 -- Set the Uses_Lock_Free flag to True if there is no
37c6e44c 3035 -- expression or if the expression is True. The
89f1e35c 3036 -- evaluation of this aspect should be delayed to the
37c6e44c 3037 -- freeze point (why???)
89f1e35c 3038
e81df51c 3039 if No (Expr)
3040 or else Is_True (Static_Boolean (Expr))
89f1e35c 3041 then
3042 Set_Uses_Lock_Free (E);
3043 end if;
caf125ce 3044
3045 Record_Rep_Item (E, Aspect);
a5a64273 3046 end if;
e1cedbae 3047
89f1e35c 3048 goto Continue;
ae888dbd 3049
17631aa0 3050 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
d74fc39a 3051
39616053 3052 -- For the case of aspects Import and Export, we don't
3053 -- consider that we know the entity is never set in the
3054 -- source, since it is is likely modified outside the
3055 -- program.
3056
3057 -- Note: one might think that the analysis of the
3058 -- resulting pragma would take care of that, but
3059 -- that's not the case since it won't be from source.
3060
3061 if Ekind (E) = E_Variable then
3062 Set_Never_Set_In_Source (E, False);
3063 end if;
3064
2e1821c9 3065 -- In older versions of Ada the corresponding pragmas
51fa2a45 3066 -- specified a Convention. In Ada 2012 the convention is
3067 -- specified as a separate aspect, and it is optional,
2e1821c9 3068 -- given that it defaults to Convention_Ada. The code
3069 -- that verifed that there was a matching convention
3070 -- is now obsolete.
d74fc39a 3071
718d0d92 3072 -- Resolve the expression of an Import or Export here,
3073 -- and require it to be of type Boolean and static. This
3074 -- is not quite right, because in general this should be
3075 -- delayed, but that seems tricky for these, because
3076 -- normally Boolean aspects are replaced with pragmas at
3077 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3078 -- but in the case of these aspects we can't generate
3079 -- a simple pragma with just the entity name. ???
3080
3081 if not Present (Expr)
3082 or else Is_True (Static_Boolean (Expr))
3083 then
3084 if A_Id = Aspect_Import then
3085 Set_Is_Imported (E);
dd4c44af 3086
718d0d92 3087 -- An imported entity cannot have an explicit
3088 -- initialization.
dd4c44af 3089
718d0d92 3090 if Nkind (N) = N_Object_Declaration
3091 and then Present (Expression (N))
3092 then
3093 Error_Msg_N
3094 ("imported entities cannot be initialized "
3095 & "(RM B.1(24))", Expression (N));
3096 end if;
3097
3098 elsif A_Id = Aspect_Export then
3099 Set_Is_Exported (E);
dd4c44af 3100 end if;
3101 end if;
3102
89f1e35c 3103 goto Continue;
3104 end if;
d74fc39a 3105
37c6e44c 3106 -- Library unit aspects require special handling in the case
3107 -- of a package declaration, the pragma needs to be inserted
3108 -- in the list of declarations for the associated package.
3109 -- There is no issue of visibility delay for these aspects.
d64221a7 3110
89f1e35c 3111 if A_Id in Library_Unit_Aspects
178fec9b 3112 and then
3113 Nkind_In (N, N_Package_Declaration,
3114 N_Generic_Package_Declaration)
89f1e35c 3115 and then Nkind (Parent (N)) /= N_Compilation_Unit
3ad60f63 3116
3117 -- Aspect is legal on a local instantiation of a library-
3118 -- level generic unit.
3119
b94a633e 3120 and then not Is_Generic_Instance (Defining_Entity (N))
89f1e35c 3121 then
3122 Error_Msg_N
dd4c44af 3123 ("incorrect context for library unit aspect&", Id);
89f1e35c 3124 goto Continue;
3125 end if;
cce84b09 3126
294709fa 3127 -- External property aspects are Boolean by nature, but
3128 -- their pragmas must contain two arguments, the second
3129 -- being the optional Boolean expression.
3130
a7ed0410 3131 if A_Id = Aspect_Async_Readers or else
3132 A_Id = Aspect_Async_Writers or else
3133 A_Id = Aspect_Effective_Reads or else
3134 A_Id = Aspect_Effective_Writes
294709fa 3135 then
3136 declare
3137 Args : List_Id;
3138
3139 begin
3140 -- The first argument of the external property pragma
3141 -- is the related object.
3142
a7ed0410 3143 Args :=
3144 New_List (
3145 Make_Pragma_Argument_Association (Sloc (Ent),
3146 Expression => Ent));
294709fa 3147
3148 -- The second argument is the optional Boolean
3149 -- expression which must be propagated even if it
3150 -- evaluates to False as this has special semantic
3151 -- meaning.
3152
3153 if Present (Expr) then
3154 Append_To (Args,
3155 Make_Pragma_Argument_Association (Loc,
3156 Expression => Relocate_Node (Expr)));
3157 end if;
3158
3159 Make_Aitem_Pragma
3160 (Pragma_Argument_Associations => Args,
3161 Pragma_Name => Nam);
3162 end;
3163
51fa2a45 3164 -- Cases where we do not delay, includes all cases where the
3165 -- expression is missing other than the above cases.
d74fc39a 3166
294709fa 3167 elsif not Delay_Required or else No (Expr) then
0fd13d32 3168 Make_Aitem_Pragma
3169 (Pragma_Argument_Associations => New_List (
3170 Make_Pragma_Argument_Association (Sloc (Ent),
3171 Expression => Ent)),
3172 Pragma_Name => Chars (Id));
89f1e35c 3173 Delay_Required := False;
ddf1337b 3174
89f1e35c 3175 -- In general cases, the corresponding pragma/attribute
3176 -- definition clause will be inserted later at the freezing
294709fa 3177 -- point, and we do not need to build it now.
ddf1337b 3178
89f1e35c 3179 else
3180 Aitem := Empty;
3181 end if;
ceec4f7c 3182
3183 -- Storage_Size
3184
3185 -- This is special because for access types we need to generate
3186 -- an attribute definition clause. This also works for single
3187 -- task declarations, but it does not work for task type
3188 -- declarations, because we have the case where the expression
3189 -- references a discriminant of the task type. That can't use
3190 -- an attribute definition clause because we would not have
3191 -- visibility on the discriminant. For that case we must
3192 -- generate a pragma in the task definition.
3193
3194 when Aspect_Storage_Size =>
3195
3196 -- Task type case
3197
3198 if Ekind (E) = E_Task_Type then
3199 declare
3200 Decl : constant Node_Id := Declaration_Node (E);
3201
3202 begin
3203 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3204
3205 -- If no task definition, create one
3206
3207 if No (Task_Definition (Decl)) then
3208 Set_Task_Definition (Decl,
3209 Make_Task_Definition (Loc,
3210 Visible_Declarations => Empty_List,
3211 End_Label => Empty));
3212 end if;
3213
51fa2a45 3214 -- Create a pragma and put it at the start of the task
3215 -- definition for the task type declaration.
ceec4f7c 3216
3217 Make_Aitem_Pragma
3218 (Pragma_Argument_Associations => New_List (
3219 Make_Pragma_Argument_Association (Loc,
3220 Expression => Relocate_Node (Expr))),
3221 Pragma_Name => Name_Storage_Size);
3222
3223 Prepend
3224 (Aitem,
3225 Visible_Declarations (Task_Definition (Decl)));
3226 goto Continue;
3227 end;
3228
3229 -- All other cases, generate attribute definition
3230
3231 else
3232 Aitem :=
3233 Make_Attribute_Definition_Clause (Loc,
3234 Name => Ent,
3235 Chars => Chars (Id),
3236 Expression => Relocate_Node (Expr));
3237 end if;
89f1e35c 3238 end case;
ddf1337b 3239
89f1e35c 3240 -- Attach the corresponding pragma/attribute definition clause to
3241 -- the aspect specification node.
d74fc39a 3242
89f1e35c 3243 if Present (Aitem) then
e2bf777d 3244 Set_From_Aspect_Specification (Aitem);
89f1e35c 3245 end if;
53c179ea 3246
89f1e35c 3247 -- In the context of a compilation unit, we directly put the
0fd13d32 3248 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3249 -- node (no delay is required here) except for aspects on a
51fa2a45 3250 -- subprogram body (see below) and a generic package, for which we
3251 -- need to introduce the pragma before building the generic copy
3252 -- (see sem_ch12), and for package instantiations, where the
3253 -- library unit pragmas are better handled early.
ddf1337b 3254
9129c28f 3255 if Nkind (Parent (N)) = N_Compilation_Unit
89f1e35c 3256 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3257 then
3258 declare
3259 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
7f694ca2 3260
89f1e35c 3261 begin
3262 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
7f694ca2 3263
89f1e35c 3264 -- For a Boolean aspect, create the corresponding pragma if
3265 -- no expression or if the value is True.
7f694ca2 3266
b9e61b2a 3267 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
89f1e35c 3268 if Is_True (Static_Boolean (Expr)) then
0fd13d32 3269 Make_Aitem_Pragma
3270 (Pragma_Argument_Associations => New_List (
3271 Make_Pragma_Argument_Association (Sloc (Ent),
3272 Expression => Ent)),
3273 Pragma_Name => Chars (Id));
7f694ca2 3274
89f1e35c 3275 Set_From_Aspect_Specification (Aitem, True);
3276 Set_Corresponding_Aspect (Aitem, Aspect);
3277
3278 else
3279 goto Continue;
3280 end if;
3281 end if;
7f694ca2 3282
d6814978 3283 -- If the aspect is on a subprogram body (relevant aspect
3284 -- is Inline), add the pragma in front of the declarations.
3a72f9c3 3285
3286 if Nkind (N) = N_Subprogram_Body then
3287 if No (Declarations (N)) then
3288 Set_Declarations (N, New_List);
3289 end if;
3290
3291 Prepend (Aitem, Declarations (N));
3292
178fec9b 3293 elsif Nkind (N) = N_Generic_Package_Declaration then
3294 if No (Visible_Declarations (Specification (N))) then
3295 Set_Visible_Declarations (Specification (N), New_List);
3296 end if;
3297
3298 Prepend (Aitem,
3299 Visible_Declarations (Specification (N)));
3300
c39cce40 3301 elsif Nkind (N) = N_Package_Instantiation then
df8b0dae 3302 declare
3303 Spec : constant Node_Id :=
3304 Specification (Instance_Spec (N));
3305 begin
3306 if No (Visible_Declarations (Spec)) then
3307 Set_Visible_Declarations (Spec, New_List);
3308 end if;
3309
3310 Prepend (Aitem, Visible_Declarations (Spec));
3311 end;
3312
3a72f9c3 3313 else
3314 if No (Pragmas_After (Aux)) then
d4596fbe 3315 Set_Pragmas_After (Aux, New_List);
3a72f9c3 3316 end if;
3317
3318 Append (Aitem, Pragmas_After (Aux));
89f1e35c 3319 end if;
7f694ca2 3320
89f1e35c 3321 goto Continue;
3322 end;
3323 end if;
7f694ca2 3324
89f1e35c 3325 -- The evaluation of the aspect is delayed to the freezing point.
3326 -- The pragma or attribute clause if there is one is then attached
37c6e44c 3327 -- to the aspect specification which is put in the rep item list.
1a814552 3328
89f1e35c 3329 if Delay_Required then
3330 if Present (Aitem) then
3331 Set_Is_Delayed_Aspect (Aitem);
3332 Set_Aspect_Rep_Item (Aspect, Aitem);
3333 Set_Parent (Aitem, Aspect);
3334 end if;
1a814552 3335
89f1e35c 3336 Set_Is_Delayed_Aspect (Aspect);
9f36e3fb 3337
cba2ae82 3338 -- In the case of Default_Value, link the aspect to base type
3339 -- as well, even though it appears on a first subtype. This is
3340 -- mandated by the semantics of the aspect. Do not establish
3341 -- the link when processing the base type itself as this leads
3342 -- to a rep item circularity. Verify that we are dealing with
3343 -- a scalar type to prevent cascaded errors.
3344
3345 if A_Id = Aspect_Default_Value
3346 and then Is_Scalar_Type (E)
3347 and then Base_Type (E) /= E
3348 then
9f36e3fb 3349 Set_Has_Delayed_Aspects (Base_Type (E));
3350 Record_Rep_Item (Base_Type (E), Aspect);
3351 end if;
3352
89f1e35c 3353 Set_Has_Delayed_Aspects (E);
3354 Record_Rep_Item (E, Aspect);
ddf1337b 3355
b855559d 3356 -- When delay is not required and the context is a package or a
3357 -- subprogram body, insert the pragma in the body declarations.
f55ce169 3358
b855559d 3359 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
f55ce169 3360 if No (Declarations (N)) then
3361 Set_Declarations (N, New_List);
3362 end if;
3363
3364 -- The pragma is added before source declarations
3365
3366 Prepend_To (Declarations (N), Aitem);
3367
89f1e35c 3368 -- When delay is not required and the context is not a compilation
3369 -- unit, we simply insert the pragma/attribute definition clause
3370 -- in sequence.
ddf1337b 3371
89f1e35c 3372 else
3373 Insert_After (Ins_Node, Aitem);
3374 Ins_Node := Aitem;
d74fc39a 3375 end if;
0fd13d32 3376 end Analyze_One_Aspect;
ae888dbd 3377
d64221a7 3378 <<Continue>>
3379 Next (Aspect);
21ea3a4f 3380 end loop Aspect_Loop;
89f1e35c 3381
3382 if Has_Delayed_Aspects (E) then
3383 Ensure_Freeze_Node (E);
3384 end if;
21ea3a4f 3385 end Analyze_Aspect_Specifications;
ae888dbd 3386
d6f39728 3387 -----------------------
3388 -- Analyze_At_Clause --
3389 -----------------------
3390
3391 -- An at clause is replaced by the corresponding Address attribute
3392 -- definition clause that is the preferred approach in Ada 95.
3393
3394 procedure Analyze_At_Clause (N : Node_Id) is
177675a7 3395 CS : constant Boolean := Comes_From_Source (N);
3396
d6f39728 3397 begin
177675a7 3398 -- This is an obsolescent feature
3399
e0521a36 3400 Check_Restriction (No_Obsolescent_Features, N);
3401
9dfe12ae 3402 if Warn_On_Obsolescent_Feature then
3403 Error_Msg_N
b174444e 3404 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
9dfe12ae 3405 Error_Msg_N
b174444e 3406 ("\?j?use address attribute definition clause instead", N);
9dfe12ae 3407 end if;
3408
177675a7 3409 -- Rewrite as address clause
3410
d6f39728 3411 Rewrite (N,
3412 Make_Attribute_Definition_Clause (Sloc (N),
935e86e0 3413 Name => Identifier (N),
3414 Chars => Name_Address,
d6f39728 3415 Expression => Expression (N)));
177675a7 3416
2beb22b1 3417 -- We preserve Comes_From_Source, since logically the clause still comes
3418 -- from the source program even though it is changed in form.
177675a7 3419
3420 Set_Comes_From_Source (N, CS);
3421
3422 -- Analyze rewritten clause
3423
d6f39728 3424 Analyze_Attribute_Definition_Clause (N);
3425 end Analyze_At_Clause;
3426
3427 -----------------------------------------
3428 -- Analyze_Attribute_Definition_Clause --
3429 -----------------------------------------
3430
3431 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3432 Loc : constant Source_Ptr := Sloc (N);
3433 Nam : constant Node_Id := Name (N);
3434 Attr : constant Name_Id := Chars (N);
3435 Expr : constant Node_Id := Expression (N);
3436 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
d64221a7 3437
3438 Ent : Entity_Id;
3439 -- The entity of Nam after it is analyzed. In the case of an incomplete
3440 -- type, this is the underlying type.
3441
d6f39728 3442 U_Ent : Entity_Id;
d64221a7 3443 -- The underlying entity to which the attribute applies. Generally this
3444 -- is the Underlying_Type of Ent, except in the case where the clause
3445 -- applies to full view of incomplete type or private type in which case
3446 -- U_Ent is just a copy of Ent.
d6f39728 3447
3448 FOnly : Boolean := False;
3449 -- Reset to True for subtype specific attribute (Alignment, Size)
51fa2a45 3450 -- and for stream attributes, i.e. those cases where in the call to
3451 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3452 -- are checked. Note that the case of stream attributes is not clear
3453 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3454 -- Storage_Size for derived task types, but that is also clearly
3455 -- unintentional.
d6f39728 3456
9f373bb8 3457 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3458 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3459 -- definition clauses.
3460
ae888dbd 3461 function Duplicate_Clause return Boolean;
3462 -- This routine checks if the aspect for U_Ent being given by attribute
3463 -- definition clause N is for an aspect that has already been specified,
3464 -- and if so gives an error message. If there is a duplicate, True is
3465 -- returned, otherwise if there is no error, False is returned.
3466
81b424ac 3467 procedure Check_Indexing_Functions;
3468 -- Check that the function in Constant_Indexing or Variable_Indexing
3469 -- attribute has the proper type structure. If the name is overloaded,
cac18f71 3470 -- check that some interpretation is legal.
81b424ac 3471
89cc7147 3472 procedure Check_Iterator_Functions;
3473 -- Check that there is a single function in Default_Iterator attribute
8df4f2a5 3474 -- has the proper type structure.
89cc7147 3475
3476 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
d03bfaa1 3477 -- Common legality check for the previous two
89cc7147 3478
177675a7 3479 -----------------------------------
3480 -- Analyze_Stream_TSS_Definition --
3481 -----------------------------------
3482
9f373bb8 3483 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3484 Subp : Entity_Id := Empty;
3485 I : Interp_Index;
3486 It : Interp;
3487 Pnam : Entity_Id;
3488
3489 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
d64221a7 3490 -- True for Read attribute, false for other attributes
9f373bb8 3491
3492 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3493 -- Return true if the entity is a subprogram with an appropriate
3494 -- profile for the attribute being defined.
3495
3496 ----------------------
3497 -- Has_Good_Profile --
3498 ----------------------
3499
3500 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3501 F : Entity_Id;
3502 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3503 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3504 (False => E_Procedure, True => E_Function);
3505 Typ : Entity_Id;
3506
3507 begin
3508 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3509 return False;
3510 end if;
3511
3512 F := First_Formal (Subp);
3513
3514 if No (F)
3515 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3516 or else Designated_Type (Etype (F)) /=
3517 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3518 then
3519 return False;
3520 end if;
3521
3522 if not Is_Function then
3523 Next_Formal (F);
3524
3525 declare
3526 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3527 (False => E_In_Parameter,
3528 True => E_Out_Parameter);
3529 begin
3530 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3531 return False;
3532 end if;
3533 end;
3534
3535 Typ := Etype (F);
3536
b64082f2 3537 -- If the attribute specification comes from an aspect
51fa2a45 3538 -- specification for a class-wide stream, the parameter must be
3539 -- a class-wide type of the entity to which the aspect applies.
b64082f2 3540
3541 if From_Aspect_Specification (N)
3542 and then Class_Present (Parent (N))
3543 and then Is_Class_Wide_Type (Typ)
3544 then
3545 Typ := Etype (Typ);
3546 end if;
3547
9f373bb8 3548 else
3549 Typ := Etype (Subp);
3550 end if;
3551
51fa2a45 3552 -- Verify that the prefix of the attribute and the local name for
3553 -- the type of the formal match.
48680a09 3554
3555 if Base_Type (Typ) /= Base_Type (Ent)
299b347e 3556 or else Present (Next_Formal (F))
48680a09 3557 then
3558 return False;
3559
3560 elsif not Is_Scalar_Type (Typ)
3561 and then not Is_First_Subtype (Typ)
3562 and then not Is_Class_Wide_Type (Typ)
3563 then
3564 return False;
3565
3566 else
3567 return True;
3568 end if;
9f373bb8 3569 end Has_Good_Profile;
3570
3571 -- Start of processing for Analyze_Stream_TSS_Definition
3572
3573 begin
3574 FOnly := True;
3575
3576 if not Is_Type (U_Ent) then
3577 Error_Msg_N ("local name must be a subtype", Nam);
3578 return;
48680a09 3579
3580 elsif not Is_First_Subtype (U_Ent) then
3581 Error_Msg_N ("local name must be a first subtype", Nam);
3582 return;
9f373bb8 3583 end if;
3584
3585 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3586
44e4341e 3587 -- If Pnam is present, it can be either inherited from an ancestor
3588 -- type (in which case it is legal to redefine it for this type), or
3589 -- be a previous definition of the attribute for the same type (in
3590 -- which case it is illegal).
3591
3592 -- In the first case, it will have been analyzed already, and we
3593 -- can check that its profile does not match the expected profile
3594 -- for a stream attribute of U_Ent. In the second case, either Pnam
3595 -- has been analyzed (and has the expected profile), or it has not
3596 -- been analyzed yet (case of a type that has not been frozen yet
3597 -- and for which the stream attribute has been set using Set_TSS).
3598
3599 if Present (Pnam)
3600 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3601 then
9f373bb8 3602 Error_Msg_Sloc := Sloc (Pnam);
3603 Error_Msg_Name_1 := Attr;
3604 Error_Msg_N ("% attribute already defined #", Nam);
3605 return;
3606 end if;
3607
3608 Analyze (Expr);
3609
3610 if Is_Entity_Name (Expr) then
3611 if not Is_Overloaded (Expr) then
3612 if Has_Good_Profile (Entity (Expr)) then
3613 Subp := Entity (Expr);
3614 end if;
3615
3616 else
3617 Get_First_Interp (Expr, I, It);
9f373bb8 3618 while Present (It.Nam) loop
3619 if Has_Good_Profile (It.Nam) then
3620 Subp := It.Nam;
3621 exit;
3622 end if;
3623
3624 Get_Next_Interp (I, It);
3625 end loop;
3626 end if;
3627 end if;
3628
3629 if Present (Subp) then
59ac57b5 3630 if Is_Abstract_Subprogram (Subp) then
9f373bb8 3631 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3632 return;
e12b2502 3633
299b347e 3634 -- A stream subprogram for an interface type must be a null
3635 -- procedure (RM 13.13.2 (38/3)).
e12b2502 3636
3637 elsif Is_Interface (U_Ent)
3638 and then not Inside_A_Generic
3639 and then Ekind (Subp) = E_Procedure
3640 and then
3641 not Null_Present
3642 (Specification
3643 (Unit_Declaration_Node (Ultimate_Alias (Subp))))
e12b2502 3644 then
3645 Error_Msg_N
3646 ("stream subprogram for interface type "
3647 & "must be null procedure", Expr);
9f373bb8 3648 end if;
3649
3650 Set_Entity (Expr, Subp);
3651 Set_Etype (Expr, Etype (Subp));
3652
44e4341e 3653 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
9f373bb8 3654
3655 else
3656 Error_Msg_Name_1 := Attr;
3657 Error_Msg_N ("incorrect expression for% attribute", Expr);
3658 end if;
3659 end Analyze_Stream_TSS_Definition;
3660
81b424ac 3661 ------------------------------
3662 -- Check_Indexing_Functions --
3663 ------------------------------
3664
3665 procedure Check_Indexing_Functions is
c8a2d809 3666 Indexing_Found : Boolean := False;
8df4f2a5 3667
81b424ac 3668 procedure Check_One_Function (Subp : Entity_Id);
7796365f 3669 -- Check one possible interpretation. Sets Indexing_Found True if a
3670 -- legal indexing function is found.
81b424ac 3671
05987af3 3672 procedure Illegal_Indexing (Msg : String);
3673 -- Diagnose illegal indexing function if not overloaded. In the
3674 -- overloaded case indicate that no legal interpretation exists.
3675
81b424ac 3676 ------------------------
3677 -- Check_One_Function --
3678 ------------------------
3679
3680 procedure Check_One_Function (Subp : Entity_Id) is
05987af3 3681 Default_Element : Node_Id;
3682 Ret_Type : constant Entity_Id := Etype (Subp);
1b7510f9 3683
81b424ac 3684 begin
05987af3 3685 if not Is_Overloadable (Subp) then
3686 Illegal_Indexing ("illegal indexing function for type&");
3687 return;
3688
7796365f 3689 elsif Scope (Subp) /= Scope (Ent) then
3690 if Nkind (Expr) = N_Expanded_Name then
3691
3692 -- Indexing function can't be declared elsewhere
3693
3694 Illegal_Indexing
3695 ("indexing function must be declared in scope of type&");
3696 end if;
3697
05987af3 3698 return;
3699
3700 elsif No (First_Formal (Subp)) then
3701 Illegal_Indexing
3702 ("Indexing requires a function that applies to type&");
3703 return;
3704
3705 elsif No (Next_Formal (First_Formal (Subp))) then
3706 Illegal_Indexing
3707 ("indexing function must have at least two parameters");
3708 return;
3709
3710 elsif Is_Derived_Type (Ent) then
3711 if (Attr = Name_Constant_Indexing
3712 and then Present
3713 (Find_Aspect (Etype (Ent), Aspect_Constant_Indexing)))
f02a9a9a 3714 or else
3715 (Attr = Name_Variable_Indexing
3716 and then Present
3717 (Find_Aspect (Etype (Ent), Aspect_Variable_Indexing)))
05987af3 3718 then
3719 if Debug_Flag_Dot_XX then
3720 null;
3721
3722 else
3723 Illegal_Indexing
3724 ("indexing function already inherited "
3725 & "from parent type");
7796365f 3726 return;
05987af3 3727 end if;
05987af3 3728 end if;
3729 end if;
3730
e81df51c 3731 if not Check_Primitive_Function (Subp) then
05987af3 3732 Illegal_Indexing
3733 ("Indexing aspect requires a function that applies to type&");
3734 return;
81b424ac 3735 end if;
3736
7796365f 3737 -- If partial declaration exists, verify that it is not tagged.
3738
3739 if Ekind (Current_Scope) = E_Package
3740 and then Has_Private_Declaration (Ent)
3741 and then From_Aspect_Specification (N)
7c0c95b8 3742 and then
3743 List_Containing (Parent (Ent)) =
3744 Private_Declarations
7796365f 3745 (Specification (Unit_Declaration_Node (Current_Scope)))
3746 and then Nkind (N) = N_Attribute_Definition_Clause
3747 then
3748 declare
3749 Decl : Node_Id;
3750
3751 begin
3752 Decl :=
3753 First (Visible_Declarations
7c0c95b8 3754 (Specification
3755 (Unit_Declaration_Node (Current_Scope))));
7796365f 3756
3757 while Present (Decl) loop
3758 if Nkind (Decl) = N_Private_Type_Declaration
3759 and then Ent = Full_View (Defining_Identifier (Decl))
3760 and then Tagged_Present (Decl)
3761 and then No (Aspect_Specifications (Decl))
3762 then
3763 Illegal_Indexing
3764 ("Indexing aspect cannot be specified on full view "
7c0c95b8 3765 & "if partial view is tagged");
7796365f 3766 return;
3767 end if;
3768
3769 Next (Decl);
3770 end loop;
3771 end;
3772 end if;
3773
1b7510f9 3774 -- An indexing function must return either the default element of
cac18f71 3775 -- the container, or a reference type. For variable indexing it
a45d946f 3776 -- must be the latter.
1b7510f9 3777
05987af3 3778 Default_Element :=
3779 Find_Value_Of_Aspect
3780 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
3781
1b7510f9 3782 if Present (Default_Element) then
3783 Analyze (Default_Element);
a45d946f 3784
1b7510f9 3785 if Is_Entity_Name (Default_Element)
05987af3 3786 and then not Covers (Entity (Default_Element), Ret_Type)
3787 and then False
1b7510f9 3788 then
05987af3 3789 Illegal_Indexing
3790 ("wrong return type for indexing function");
1b7510f9 3791 return;
3792 end if;
3793 end if;
3794
a45d946f 3795 -- For variable_indexing the return type must be a reference type
1b7510f9 3796
05987af3 3797 if Attr = Name_Variable_Indexing then
3798 if not Has_Implicit_Dereference (Ret_Type) then
3799 Illegal_Indexing
3800 ("variable indexing must return a reference type");
3801 return;
3802
423b89fd 3803 elsif Is_Access_Constant
3804 (Etype (First_Discriminant (Ret_Type)))
05987af3 3805 then
3806 Illegal_Indexing
3807 ("variable indexing must return an access to variable");
3808 return;
3809 end if;
cac18f71 3810
3811 else
05987af3 3812 if Has_Implicit_Dereference (Ret_Type)
3813 and then not
3814 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
3815 then
3816 Illegal_Indexing
3817 ("constant indexing must return an access to constant");
3818 return;
3819
3820 elsif Is_Access_Type (Etype (First_Formal (Subp)))
3821 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
3822 then
3823 Illegal_Indexing
3824 ("constant indexing must apply to an access to constant");
3825 return;
3826 end if;
81b424ac 3827 end if;
05987af3 3828
3829 -- All checks succeeded.
3830
3831 Indexing_Found := True;
81b424ac 3832 end Check_One_Function;
3833
05987af3 3834 -----------------------
3835 -- Illegal_Indexing --
3836 -----------------------
3837
3838 procedure Illegal_Indexing (Msg : String) is
3839 begin
7796365f 3840 Error_Msg_NE (Msg, N, Ent);
05987af3 3841 end Illegal_Indexing;
3842
81b424ac 3843 -- Start of processing for Check_Indexing_Functions
3844
3845 begin
89cc7147 3846 if In_Instance then
3847 return;
3848 end if;
3849
81b424ac 3850 Analyze (Expr);
3851
3852 if not Is_Overloaded (Expr) then
3853 Check_One_Function (Entity (Expr));
3854
3855 else
3856 declare
2c5754de 3857 I : Interp_Index;
81b424ac 3858 It : Interp;
3859
3860 begin
cac18f71 3861 Indexing_Found := False;
81b424ac 3862 Get_First_Interp (Expr, I, It);
3863 while Present (It.Nam) loop
3864
3865 -- Note that analysis will have added the interpretation
3866 -- that corresponds to the dereference. We only check the
3867 -- subprogram itself.
3868
3869 if Is_Overloadable (It.Nam) then
3870 Check_One_Function (It.Nam);
3871 end if;
3872
3873 Get_Next_Interp (I, It);
3874 end loop;
3875 end;
3876 end if;
7796365f 3877
7c0c95b8 3878 if not Indexing_Found and then not Error_Posted (N) then
7796365f 3879 Error_Msg_NE
3880 ("aspect Indexing requires a local function that "
3881 & "applies to type&", Expr, Ent);
3882 end if;
81b424ac 3883 end Check_Indexing_Functions;
3884
89cc7147 3885 ------------------------------
3886 -- Check_Iterator_Functions --
3887 ------------------------------
3888
3889 procedure Check_Iterator_Functions is
3890 Default : Entity_Id;
3891
3892 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
8df4f2a5 3893 -- Check one possible interpretation for validity
89cc7147 3894
3895 ----------------------------
3896 -- Valid_Default_Iterator --
3897 ----------------------------
3898
3899 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
3900 Formal : Entity_Id;
3901
3902 begin
3903 if not Check_Primitive_Function (Subp) then
3904 return False;
3905 else
3906 Formal := First_Formal (Subp);
3907 end if;
3908
8df4f2a5 3909 -- False if any subsequent formal has no default expression
89cc7147 3910
8df4f2a5 3911 Formal := Next_Formal (Formal);
3912 while Present (Formal) loop
3913 if No (Expression (Parent (Formal))) then
3914 return False;
3915 end if;
89cc7147 3916
8df4f2a5 3917 Next_Formal (Formal);
3918 end loop;
89cc7147 3919
8df4f2a5 3920 -- True if all subsequent formals have default expressions
89cc7147 3921
3922 return True;
3923 end Valid_Default_Iterator;
3924
3925 -- Start of processing for Check_Iterator_Functions
3926
3927 begin
3928 Analyze (Expr);
3929
3930 if not Is_Entity_Name (Expr) then
3931 Error_Msg_N ("aspect Iterator must be a function name", Expr);
3932 end if;
3933
3934 if not Is_Overloaded (Expr) then
3935 if not Check_Primitive_Function (Entity (Expr)) then
3936 Error_Msg_NE
3937 ("aspect Indexing requires a function that applies to type&",
3938 Entity (Expr), Ent);
3939 end if;
3940
3941 if not Valid_Default_Iterator (Entity (Expr)) then
3942 Error_Msg_N ("improper function for default iterator", Expr);
3943 end if;
3944
3945 else
3946 Default := Empty;
3947 declare
3948 I : Interp_Index;
3949 It : Interp;
3950
3951 begin
3952 Get_First_Interp (Expr, I, It);
3953 while Present (It.Nam) loop
3954 if not Check_Primitive_Function (It.Nam)
59f3e675 3955 or else not Valid_Default_Iterator (It.Nam)
89cc7147 3956 then
3957 Remove_Interp (I);
3958
3959 elsif Present (Default) then
3960 Error_Msg_N ("default iterator must be unique", Expr);
3961
3962 else
3963 Default := It.Nam;
3964 end if;
3965
3966 Get_Next_Interp (I, It);
3967 end loop;
3968 end;
3969
3970 if Present (Default) then
3971 Set_Entity (Expr, Default);
3972 Set_Is_Overloaded (Expr, False);
3973 end if;
3974 end if;
3975 end Check_Iterator_Functions;
3976
3977 -------------------------------
3978 -- Check_Primitive_Function --
3979 -------------------------------
3980
3981 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
3982 Ctrl : Entity_Id;
3983
3984 begin
3985 if Ekind (Subp) /= E_Function then
3986 return False;
3987 end if;
3988
3989 if No (First_Formal (Subp)) then
3990 return False;
3991 else
3992 Ctrl := Etype (First_Formal (Subp));
3993 end if;
3994
7d6fb253 3995 -- Type of formal may be the class-wide type, an access to such,
3996 -- or an incomplete view.
3997
89cc7147 3998 if Ctrl = Ent
3999 or else Ctrl = Class_Wide_Type (Ent)
4000 or else
4001 (Ekind (Ctrl) = E_Anonymous_Access_Type
b85d62ec 4002 and then (Designated_Type (Ctrl) = Ent
4003 or else
4004 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
7d6fb253 4005 or else
4006 (Ekind (Ctrl) = E_Incomplete_Type
4007 and then Full_View (Ctrl) = Ent)
89cc7147 4008 then
4009 null;
89cc7147 4010 else
4011 return False;
4012 end if;
4013
4014 return True;
4015 end Check_Primitive_Function;
4016
ae888dbd 4017 ----------------------
4018 -- Duplicate_Clause --
4019 ----------------------
4020
4021 function Duplicate_Clause return Boolean is
d74fc39a 4022 A : Node_Id;
ae888dbd 4023
4024 begin
c8969ba6 4025 -- Nothing to do if this attribute definition clause comes from
4026 -- an aspect specification, since we could not be duplicating an
ae888dbd 4027 -- explicit clause, and we dealt with the case of duplicated aspects
4028 -- in Analyze_Aspect_Specifications.
4029
4030 if From_Aspect_Specification (N) then
4031 return False;
4032 end if;
4033
89f1e35c 4034 -- Otherwise current clause may duplicate previous clause, or a
4035 -- previously given pragma or aspect specification for the same
4036 -- aspect.
d74fc39a 4037
89b3b365 4038 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
ae888dbd 4039
4040 if Present (A) then
89f1e35c 4041 Error_Msg_Name_1 := Chars (N);
4042 Error_Msg_Sloc := Sloc (A);
4043
89b3b365 4044 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
89f1e35c 4045 return True;
ae888dbd 4046 end if;
4047
4048 return False;
4049 end Duplicate_Clause;
4050
9f373bb8 4051 -- Start of processing for Analyze_Attribute_Definition_Clause
4052
d6f39728 4053 begin
d64221a7 4054 -- The following code is a defense against recursion. Not clear that
51fa2a45 4055 -- this can happen legitimately, but perhaps some error situations can
4056 -- cause it, and we did see this recursion during testing.
d64221a7 4057
4058 if Analyzed (N) then
4059 return;
4060 else
4061 Set_Analyzed (N, True);
4062 end if;
4063
a29bc1d9 4064 -- Ignore some selected attributes in CodePeer mode since they are not
4065 -- relevant in this context.
4066
4067 if CodePeer_Mode then
4068 case Id is
4069
4070 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4071 -- internal representation of types by implicitly packing them.
4072
4073 when Attribute_Component_Size =>
4074 Rewrite (N, Make_Null_Statement (Sloc (N)));
4075 return;
4076
4077 when others =>
4078 null;
4079 end case;
4080 end if;
4081
d8ba53a8 4082 -- Process Ignore_Rep_Clauses option
eef1ca1e 4083
d8ba53a8 4084 if Ignore_Rep_Clauses then
9d627c41 4085 case Id is
4086
eef1ca1e 4087 -- The following should be ignored. They do not affect legality
4088 -- and may be target dependent. The basic idea of -gnatI is to
4089 -- ignore any rep clauses that may be target dependent but do not
4090 -- affect legality (except possibly to be rejected because they
4091 -- are incompatible with the compilation target).
9d627c41 4092
2f1aac99 4093 when Attribute_Alignment |
9d627c41 4094 Attribute_Bit_Order |
4095 Attribute_Component_Size |
4096 Attribute_Machine_Radix |
4097 Attribute_Object_Size |
4098 Attribute_Size |
2ff55065 4099 Attribute_Small |
9d627c41 4100 Attribute_Stream_Size |
4101 Attribute_Value_Size =>
2ff55065 4102 Kill_Rep_Clause (N);
9d627c41 4103 return;
4104
eef1ca1e 4105 -- The following should not be ignored, because in the first place
51fa2a45 4106 -- they are reasonably portable, and should not cause problems
4107 -- in compiling code from another target, and also they do affect
4108 -- legality, e.g. failing to provide a stream attribute for a type
4109 -- may make a program illegal.
9d627c41 4110
b55f7641 4111 when Attribute_External_Tag |
4112 Attribute_Input |
4113 Attribute_Output |
4114 Attribute_Read |
4115 Attribute_Simple_Storage_Pool |
4116 Attribute_Storage_Pool |
4117 Attribute_Storage_Size |
4118 Attribute_Write =>
9d627c41 4119 null;
4120
2ff55065 4121 -- We do not do anything here with address clauses, they will be
4122 -- removed by Freeze later on, but for now, it works better to
4123 -- keep then in the tree.
4124
4125 when Attribute_Address =>
4126 null;
4127
b593a52c 4128 -- Other cases are errors ("attribute& cannot be set with
4129 -- definition clause"), which will be caught below.
9d627c41 4130
4131 when others =>
4132 null;
4133 end case;
fbc67f84 4134 end if;
4135
d6f39728 4136 Analyze (Nam);
4137 Ent := Entity (Nam);
4138
4139 if Rep_Item_Too_Early (Ent, N) then
4140 return;
4141 end if;
4142
9f373bb8 4143 -- Rep clause applies to full view of incomplete type or private type if
4144 -- we have one (if not, this is a premature use of the type). However,
4145 -- certain semantic checks need to be done on the specified entity (i.e.
4146 -- the private view), so we save it in Ent.
d6f39728 4147
4148 if Is_Private_Type (Ent)
4149 and then Is_Derived_Type (Ent)
4150 and then not Is_Tagged_Type (Ent)
4151 and then No (Full_View (Ent))
4152 then
9f373bb8 4153 -- If this is a private type whose completion is a derivation from
4154 -- another private type, there is no full view, and the attribute
4155 -- belongs to the type itself, not its underlying parent.
d6f39728 4156
4157 U_Ent := Ent;
4158
4159 elsif Ekind (Ent) = E_Incomplete_Type then
d5b349fa 4160
9f373bb8 4161 -- The attribute applies to the full view, set the entity of the
4162 -- attribute definition accordingly.
d5b349fa 4163
d6f39728 4164 Ent := Underlying_Type (Ent);
4165 U_Ent := Ent;
d5b349fa 4166 Set_Entity (Nam, Ent);
4167
d6f39728 4168 else
4169 U_Ent := Underlying_Type (Ent);
4170 end if;
4171
44705307 4172 -- Avoid cascaded error
d6f39728 4173
4174 if Etype (Nam) = Any_Type then
4175 return;
4176
89f1e35c 4177 -- Must be declared in current scope or in case of an aspect
ace3389d 4178 -- specification, must be visible in current scope.
44705307 4179
89f1e35c 4180 elsif Scope (Ent) /= Current_Scope
ace3389d 4181 and then
4182 not (From_Aspect_Specification (N)
4183 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
89f1e35c 4184 then
d6f39728 4185 Error_Msg_N ("entity must be declared in this scope", Nam);
4186 return;
4187
44705307 4188 -- Must not be a source renaming (we do have some cases where the
4189 -- expander generates a renaming, and those cases are OK, in such
a3248fc4 4190 -- cases any attribute applies to the renamed object as well).
44705307 4191
4192 elsif Is_Object (Ent)
4193 and then Present (Renamed_Object (Ent))
44705307 4194 then
a3248fc4 4195 -- Case of renamed object from source, this is an error
4196
4197 if Comes_From_Source (Renamed_Object (Ent)) then
4198 Get_Name_String (Chars (N));
4199 Error_Msg_Strlen := Name_Len;
4200 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4201 Error_Msg_N
4202 ("~ clause not allowed for a renaming declaration "
4203 & "(RM 13.1(6))", Nam);
4204 return;
4205
4206 -- For the case of a compiler generated renaming, the attribute
4207 -- definition clause applies to the renamed object created by the
4208 -- expander. The easiest general way to handle this is to create a
4209 -- copy of the attribute definition clause for this object.
4210
9a48fc56 4211 elsif Is_Entity_Name (Renamed_Object (Ent)) then
a3248fc4 4212 Insert_Action (N,
4213 Make_Attribute_Definition_Clause (Loc,
4214 Name =>
4215 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4216 Chars => Chars (N),
4217 Expression => Duplicate_Subexpr (Expression (N))));
9a48fc56 4218
4219 -- If the renamed object is not an entity, it must be a dereference
4220 -- of an unconstrained function call, and we must introduce a new
4221 -- declaration to capture the expression. This is needed in the case
4222 -- of 'Alignment, where the original declaration must be rewritten.
4223
4224 else
4225 pragma Assert
4226 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4227 null;
a3248fc4 4228 end if;
44705307 4229
4230 -- If no underlying entity, use entity itself, applies to some
4231 -- previously detected error cases ???
4232
f15731c4 4233 elsif No (U_Ent) then
4234 U_Ent := Ent;
4235
44705307 4236 -- Cannot specify for a subtype (exception Object/Value_Size)
4237
d6f39728 4238 elsif Is_Type (U_Ent)
4239 and then not Is_First_Subtype (U_Ent)
4240 and then Id /= Attribute_Object_Size
4241 and then Id /= Attribute_Value_Size
4242 and then not From_At_Mod (N)
4243 then
4244 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4245 return;
d6f39728 4246 end if;
4247
ae888dbd 4248 Set_Entity (N, U_Ent);
25e23a77 4249 Check_Restriction_No_Use_Of_Attribute (N);
ae888dbd 4250
d6f39728 4251 -- Switch on particular attribute
4252
4253 case Id is
4254
4255 -------------
4256 -- Address --
4257 -------------
4258
4259 -- Address attribute definition clause
4260
4261 when Attribute_Address => Address : begin
177675a7 4262
4263 -- A little error check, catch for X'Address use X'Address;
4264
4265 if Nkind (Nam) = N_Identifier
4266 and then Nkind (Expr) = N_Attribute_Reference
4267 and then Attribute_Name (Expr) = Name_Address
4268 and then Nkind (Prefix (Expr)) = N_Identifier
4269 and then Chars (Nam) = Chars (Prefix (Expr))
4270 then
4271 Error_Msg_NE
4272 ("address for & is self-referencing", Prefix (Expr), Ent);
4273 return;
4274 end if;
4275
4276 -- Not that special case, carry on with analysis of expression
4277
d6f39728 4278 Analyze_And_Resolve (Expr, RTE (RE_Address));
4279
2f1aac99 4280 -- Even when ignoring rep clauses we need to indicate that the
4281 -- entity has an address clause and thus it is legal to declare
2ff55065 4282 -- it imported. Freeze will get rid of the address clause later.
2f1aac99 4283
4284 if Ignore_Rep_Clauses then
d3ef794c 4285 if Ekind_In (U_Ent, E_Variable, E_Constant) then
2f1aac99 4286 Record_Rep_Item (U_Ent, N);
4287 end if;
4288
4289 return;
4290 end if;
4291
ae888dbd 4292 if Duplicate_Clause then
4293 null;
d6f39728 4294
4295 -- Case of address clause for subprogram
4296
4297 elsif Is_Subprogram (U_Ent) then
d6f39728 4298 if Has_Homonym (U_Ent) then
4299 Error_Msg_N
4300 ("address clause cannot be given " &
4301 "for overloaded subprogram",
4302 Nam);
83f8f0a6 4303 return;
d6f39728 4304 end if;
4305
83f8f0a6 4306 -- For subprograms, all address clauses are permitted, and we
4307 -- mark the subprogram as having a deferred freeze so that Gigi
4308 -- will not elaborate it too soon.
d6f39728 4309
4310 -- Above needs more comments, what is too soon about???
4311
4312 Set_Has_Delayed_Freeze (U_Ent);
4313
4314 -- Case of address clause for entry
4315
4316 elsif Ekind (U_Ent) = E_Entry then
d6f39728 4317 if Nkind (Parent (N)) = N_Task_Body then
4318 Error_Msg_N
4319 ("entry address must be specified in task spec", Nam);
83f8f0a6 4320 return;
d6f39728 4321 end if;
4322
4323 -- For entries, we require a constant address
4324
4325 Check_Constant_Address_Clause (Expr, U_Ent);
4326
83f8f0a6 4327 -- Special checks for task types
4328
f15731c4 4329 if Is_Task_Type (Scope (U_Ent))
4330 and then Comes_From_Source (Scope (U_Ent))
4331 then
4332 Error_Msg_N
1e3532e7 4333 ("??entry address declared for entry in task type", N);
f15731c4 4334 Error_Msg_N
1e3532e7 4335 ("\??only one task can be declared of this type", N);
f15731c4 4336 end if;
4337
83f8f0a6 4338 -- Entry address clauses are obsolescent
4339
e0521a36 4340 Check_Restriction (No_Obsolescent_Features, N);
4341
9dfe12ae 4342 if Warn_On_Obsolescent_Feature then
4343 Error_Msg_N
1e3532e7 4344 ("?j?attaching interrupt to task entry is an " &
4345 "obsolescent feature (RM J.7.1)", N);
9dfe12ae 4346 Error_Msg_N
1e3532e7 4347 ("\?j?use interrupt procedure instead", N);
9dfe12ae 4348 end if;
4349
83f8f0a6 4350 -- Case of an address clause for a controlled object which we
4351 -- consider to be erroneous.
9dfe12ae 4352
83f8f0a6 4353 elsif Is_Controlled (Etype (U_Ent))
4354 or else Has_Controlled_Component (Etype (U_Ent))
4355 then
9dfe12ae 4356 Error_Msg_NE
1e3532e7 4357 ("??controlled object& must not be overlaid", Nam, U_Ent);
9dfe12ae 4358 Error_Msg_N
1e3532e7 4359 ("\??Program_Error will be raised at run time", Nam);
9dfe12ae 4360 Insert_Action (Declaration_Node (U_Ent),
4361 Make_Raise_Program_Error (Loc,
4362 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4363 return;
9dfe12ae 4364
4365 -- Case of address clause for a (non-controlled) object
d6f39728 4366
f02a9a9a 4367 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
d6f39728 4368 declare
d6da7448 4369 Expr : constant Node_Id := Expression (N);
4370 O_Ent : Entity_Id;
4371 Off : Boolean;
d6f39728 4372
4373 begin
7ee315cc 4374 -- Exported variables cannot have an address clause, because
4375 -- this cancels the effect of the pragma Export.
d6f39728 4376
4377 if Is_Exported (U_Ent) then
4378 Error_Msg_N
4379 ("cannot export object with address clause", Nam);
83f8f0a6 4380 return;
d6da7448 4381 end if;
4382
4383 Find_Overlaid_Entity (N, O_Ent, Off);
d6f39728 4384
9dfe12ae 4385 -- Overlaying controlled objects is erroneous
4386
d6da7448 4387 if Present (O_Ent)
4388 and then (Has_Controlled_Component (Etype (O_Ent))
f02a9a9a 4389 or else Is_Controlled (Etype (O_Ent)))
9dfe12ae 4390 then
4391 Error_Msg_N
1e3532e7 4392 ("??cannot overlay with controlled object", Expr);
9dfe12ae 4393 Error_Msg_N
1e3532e7 4394 ("\??Program_Error will be raised at run time", Expr);
9dfe12ae 4395 Insert_Action (Declaration_Node (U_Ent),
4396 Make_Raise_Program_Error (Loc,
4397 Reason => PE_Overlaid_Controlled_Object));
83f8f0a6 4398 return;
9dfe12ae 4399
d6da7448 4400 elsif Present (O_Ent)
9dfe12ae 4401 and then Ekind (U_Ent) = E_Constant
d6da7448 4402 and then not Is_Constant_Object (O_Ent)
9dfe12ae 4403 then
1e3532e7 4404 Error_Msg_N ("??constant overlays a variable", Expr);
9dfe12ae 4405
d6f39728 4406 -- Imported variables can have an address clause, but then
4407 -- the import is pretty meaningless except to suppress
4408 -- initializations, so we do not need such variables to
4409 -- be statically allocated (and in fact it causes trouble
4410 -- if the address clause is a local value).
4411
4412 elsif Is_Imported (U_Ent) then
4413 Set_Is_Statically_Allocated (U_Ent, False);
4414 end if;
4415
4416 -- We mark a possible modification of a variable with an
4417 -- address clause, since it is likely aliasing is occurring.
4418
177675a7 4419 Note_Possible_Modification (Nam, Sure => False);
d6f39728 4420
83f8f0a6 4421 -- Here we are checking for explicit overlap of one variable
4422 -- by another, and if we find this then mark the overlapped
4423 -- variable as also being volatile to prevent unwanted
d6da7448 4424 -- optimizations. This is a significant pessimization so
4425 -- avoid it when there is an offset, i.e. when the object
4426 -- is composite; they cannot be optimized easily anyway.
d6f39728 4427
d6da7448 4428 if Present (O_Ent)
4429 and then Is_Object (O_Ent)
4430 and then not Off
ba5efa21 4431
4432 -- The following test is an expedient solution to what
4433 -- is really a problem in CodePeer. Suppressing the
4434 -- Set_Treat_As_Volatile call here prevents later
4435 -- generation (in some cases) of trees that CodePeer
4436 -- should, but currently does not, handle correctly.
4437 -- This test should probably be removed when CodePeer
4438 -- is improved, just because we want the tree CodePeer
4439 -- analyzes to match the tree for which we generate code
4440 -- as closely as is practical. ???
4441
4442 and then not CodePeer_Mode
d6da7448 4443 then
ba5efa21 4444 -- ??? O_Ent might not be in current unit
4445
d6da7448 4446 Set_Treat_As_Volatile (O_Ent);
d6f39728 4447 end if;
4448
9dfe12ae 4449 -- Legality checks on the address clause for initialized
4450 -- objects is deferred until the freeze point, because
2beb22b1 4451 -- a subsequent pragma might indicate that the object
42e09e36 4452 -- is imported and thus not initialized. Also, the address
4453 -- clause might involve entities that have yet to be
4454 -- elaborated.
9dfe12ae 4455
4456 Set_Has_Delayed_Freeze (U_Ent);
4457
51ad5ad2 4458 -- If an initialization call has been generated for this
4459 -- object, it needs to be deferred to after the freeze node
4460 -- we have just now added, otherwise GIGI will see a
4461 -- reference to the variable (as actual to the IP call)
4462 -- before its definition.
4463
4464 declare
df9fba45 4465 Init_Call : constant Node_Id :=
4466 Remove_Init_Call (U_Ent, N);
4bba0a8d 4467
51ad5ad2 4468 begin
4469 if Present (Init_Call) then
28a4283c 4470 Append_Freeze_Action (U_Ent, Init_Call);
df9fba45 4471
28a4283c 4472 -- Reset Initialization_Statements pointer so that
4473 -- if there is a pragma Import further down, it can
4474 -- clear any default initialization.
df9fba45 4475
28a4283c 4476 Set_Initialization_Statements (U_Ent, Init_Call);
51ad5ad2 4477 end if;
4478 end;
4479
d6f39728 4480 if Is_Exported (U_Ent) then
4481 Error_Msg_N
4482 ("& cannot be exported if an address clause is given",
4483 Nam);
4484 Error_Msg_N
4bba0a8d 4485 ("\define and export a variable "
4486 & "that holds its address instead", Nam);
d6f39728 4487 end if;
4488
44e4341e 4489 -- Entity has delayed freeze, so we will generate an
4490 -- alignment check at the freeze point unless suppressed.
d6f39728 4491
44e4341e 4492 if not Range_Checks_Suppressed (U_Ent)
4493 and then not Alignment_Checks_Suppressed (U_Ent)
4494 then
4495 Set_Check_Address_Alignment (N);
4496 end if;
d6f39728 4497
4498 -- Kill the size check code, since we are not allocating
4499 -- the variable, it is somewhere else.
4500
4501 Kill_Size_Check_Code (U_Ent);
83f8f0a6 4502
d6da7448 4503 -- If the address clause is of the form:
83f8f0a6 4504
d6da7448 4505 -- for Y'Address use X'Address
83f8f0a6 4506
d6da7448 4507 -- or
83f8f0a6 4508
d6da7448 4509 -- Const : constant Address := X'Address;
4510 -- ...
4511 -- for Y'Address use Const;
83f8f0a6 4512
d6da7448 4513 -- then we make an entry in the table for checking the size
4514 -- and alignment of the overlaying variable. We defer this
4515 -- check till after code generation to take full advantage
f4623c89 4516 -- of the annotation done by the back end.
d64221a7 4517
9474aa9c 4518 -- If the entity has a generic type, the check will be
43dd6937 4519 -- performed in the instance if the actual type justifies
4520 -- it, and we do not insert the clause in the table to
4521 -- prevent spurious warnings.
83f8f0a6 4522
f4623c89 4523 -- Note: we used to test Comes_From_Source and only give
4524 -- this warning for source entities, but we have removed
4525 -- this test. It really seems bogus to generate overlays
4526 -- that would trigger this warning in generated code.
4527 -- Furthermore, by removing the test, we handle the
4528 -- aspect case properly.
4529
d6da7448 4530 if Address_Clause_Overlay_Warnings
d6da7448 4531 and then Present (O_Ent)
4532 and then Is_Object (O_Ent)
4533 then
9474aa9c 4534 if not Is_Generic_Type (Etype (U_Ent)) then
4535 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4536 end if;
177675a7 4537
d6da7448 4538 -- If variable overlays a constant view, and we are
4539 -- warning on overlays, then mark the variable as
4540 -- overlaying a constant (we will give warnings later
4541 -- if this variable is assigned).
177675a7 4542
d6da7448 4543 if Is_Constant_Object (O_Ent)
4544 and then Ekind (U_Ent) = E_Variable
4545 then
4546 Set_Overlays_Constant (U_Ent);
83f8f0a6 4547 end if;
d6da7448 4548 end if;
4549 end;
83f8f0a6 4550
d6f39728 4551 -- Not a valid entity for an address clause
4552
4553 else
4554 Error_Msg_N ("address cannot be given for &", Nam);
4555 end if;
4556 end Address;
4557
4558 ---------------
4559 -- Alignment --
4560 ---------------
4561
4562 -- Alignment attribute definition clause
4563
b47769f0 4564 when Attribute_Alignment => Alignment : declare
208fd589 4565 Align : constant Uint := Get_Alignment_Value (Expr);
4566 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
41331dcf 4567
d6f39728 4568 begin
4569 FOnly := True;
4570
4571 if not Is_Type (U_Ent)
4572 and then Ekind (U_Ent) /= E_Variable
4573 and then Ekind (U_Ent) /= E_Constant
4574 then
4575 Error_Msg_N ("alignment cannot be given for &", Nam);
4576
ae888dbd 4577 elsif Duplicate_Clause then
4578 null;
d6f39728 4579
4580 elsif Align /= No_Uint then
4581 Set_Has_Alignment_Clause (U_Ent);
208fd589 4582
44705307 4583 -- Tagged type case, check for attempt to set alignment to a
4584 -- value greater than Max_Align, and reset if so.
4585
41331dcf 4586 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
208fd589 4587 Error_Msg_N
1e3532e7 4588 ("alignment for & set to Maximum_Aligment??", Nam);
44705307 4589 Set_Alignment (U_Ent, Max_Align);
4590
4591 -- All other cases
4592
208fd589 4593 else
4594 Set_Alignment (U_Ent, Align);
4595 end if;
b47769f0 4596
4597 -- For an array type, U_Ent is the first subtype. In that case,
4598 -- also set the alignment of the anonymous base type so that
4599 -- other subtypes (such as the itypes for aggregates of the
4600 -- type) also receive the expected alignment.
4601
4602 if Is_Array_Type (U_Ent) then
4603 Set_Alignment (Base_Type (U_Ent), Align);
4604 end if;
d6f39728 4605 end if;
b47769f0 4606 end Alignment;
d6f39728 4607
4608 ---------------
4609 -- Bit_Order --
4610 ---------------
4611
4612 -- Bit_Order attribute definition clause
4613
4614 when Attribute_Bit_Order => Bit_Order : declare
4615 begin
4616 if not Is_Record_Type (U_Ent) then
4617 Error_Msg_N
4618 ("Bit_Order can only be defined for record type", Nam);
4619
ae888dbd 4620 elsif Duplicate_Clause then
4621 null;
4622
d6f39728 4623 else
4624 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4625
4626 if Etype (Expr) = Any_Type then
4627 return;
4628
cda40848 4629 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 4630 Flag_Non_Static_Expr
4631 ("Bit_Order requires static expression!", Expr);
d6f39728 4632
4633 else
4634 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
fae4ea1f 4635 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
d6f39728 4636 end if;
4637 end if;
4638 end if;
4639 end Bit_Order;
4640
4641 --------------------
4642 -- Component_Size --
4643 --------------------
4644
4645 -- Component_Size attribute definition clause
4646
4647 when Attribute_Component_Size => Component_Size_Case : declare
4648 Csize : constant Uint := Static_Integer (Expr);
a0fc8c5b 4649 Ctyp : Entity_Id;
d6f39728 4650 Btype : Entity_Id;
4651 Biased : Boolean;
4652 New_Ctyp : Entity_Id;
4653 Decl : Node_Id;
4654
4655 begin
4656 if not Is_Array_Type (U_Ent) then
4657 Error_Msg_N ("component size requires array type", Nam);
4658 return;
4659 end if;
4660
4661 Btype := Base_Type (U_Ent);
a0fc8c5b 4662 Ctyp := Component_Type (Btype);
d6f39728 4663
ae888dbd 4664 if Duplicate_Clause then
4665 null;
d6f39728 4666
f3e4db96 4667 elsif Rep_Item_Too_Early (Btype, N) then
4668 null;
4669
d6f39728 4670 elsif Csize /= No_Uint then
a0fc8c5b 4671 Check_Size (Expr, Ctyp, Csize, Biased);
d6f39728 4672
d74fc39a 4673 -- For the biased case, build a declaration for a subtype that
4674 -- will be used to represent the biased subtype that reflects
4675 -- the biased representation of components. We need the subtype
4676 -- to get proper conversions on referencing elements of the
4677 -- array. Note: component size clauses are ignored in VM mode.
3062c401 4678
4679 if VM_Target = No_VM then
4680 if Biased then
4681 New_Ctyp :=
4682 Make_Defining_Identifier (Loc,
4683 Chars =>
4684 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4685
4686 Decl :=
4687 Make_Subtype_Declaration (Loc,
4688 Defining_Identifier => New_Ctyp,
4689 Subtype_Indication =>
4690 New_Occurrence_Of (Component_Type (Btype), Loc));
4691
4692 Set_Parent (Decl, N);
4693 Analyze (Decl, Suppress => All_Checks);
4694
4695 Set_Has_Delayed_Freeze (New_Ctyp, False);
4696 Set_Esize (New_Ctyp, Csize);
4697 Set_RM_Size (New_Ctyp, Csize);
4698 Init_Alignment (New_Ctyp);
3062c401 4699 Set_Is_Itype (New_Ctyp, True);
4700 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4701
4702 Set_Component_Type (Btype, New_Ctyp);
b77e4501 4703 Set_Biased (New_Ctyp, N, "component size clause");
3062c401 4704 end if;
4705
4706 Set_Component_Size (Btype, Csize);
4707
4708 -- For VM case, we ignore component size clauses
4709
4710 else
4711 -- Give a warning unless we are in GNAT mode, in which case
4712 -- the warning is suppressed since it is not useful.
4713
4714 if not GNAT_Mode then
4715 Error_Msg_N
1e3532e7 4716 ("component size ignored in this configuration??", N);
3062c401 4717 end if;
d6f39728 4718 end if;
4719
a0fc8c5b 4720 -- Deal with warning on overridden size
4721
4722 if Warn_On_Overridden_Size
4723 and then Has_Size_Clause (Ctyp)
4724 and then RM_Size (Ctyp) /= Csize
4725 then
4726 Error_Msg_NE
1e3532e7 4727 ("component size overrides size clause for&?S?", N, Ctyp);
a0fc8c5b 4728 end if;
4729
d6f39728 4730 Set_Has_Component_Size_Clause (Btype, True);
f3e4db96 4731 Set_Has_Non_Standard_Rep (Btype, True);
d6f39728 4732 end if;
4733 end Component_Size_Case;
4734
81b424ac 4735 -----------------------
4736 -- Constant_Indexing --
4737 -----------------------
4738
4739 when Attribute_Constant_Indexing =>
4740 Check_Indexing_Functions;
4741
89f1e35c 4742 ---------
4743 -- CPU --
4744 ---------
4745
4746 when Attribute_CPU => CPU :
4747 begin
4748 -- CPU attribute definition clause not allowed except from aspect
4749 -- specification.
4750
4751 if From_Aspect_Specification (N) then
4752 if not Is_Task_Type (U_Ent) then
4753 Error_Msg_N ("CPU can only be defined for task", Nam);
4754
4755 elsif Duplicate_Clause then
4756 null;
4757
4758 else
4759 -- The expression must be analyzed in the special manner
4760 -- described in "Handling of Default and Per-Object
4761 -- Expressions" in sem.ads.
4762
4763 -- The visibility to the discriminants must be restored
4764
4765 Push_Scope_And_Install_Discriminants (U_Ent);
4766 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4767 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4768
cda40848 4769 if not Is_OK_Static_Expression (Expr) then
89f1e35c 4770 Check_Restriction (Static_Priorities, Expr);
4771 end if;
4772 end if;
4773
4774 else
4775 Error_Msg_N
4776 ("attribute& cannot be set with definition clause", N);
4777 end if;
4778 end CPU;
4779
89cc7147 4780 ----------------------
4781 -- Default_Iterator --
4782 ----------------------
4783
4784 when Attribute_Default_Iterator => Default_Iterator : declare
4785 Func : Entity_Id;
4786
4787 begin
4788 if not Is_Tagged_Type (U_Ent) then
4789 Error_Msg_N
4790 ("aspect Default_Iterator applies to tagged type", Nam);
4791 end if;
4792
4793 Check_Iterator_Functions;
4794
4795 Analyze (Expr);
4796
4797 if not Is_Entity_Name (Expr)
4798 or else Ekind (Entity (Expr)) /= E_Function
4799 then
4800 Error_Msg_N ("aspect Iterator must be a function", Expr);
4801 else
4802 Func := Entity (Expr);
4803 end if;
4804
4805 if No (First_Formal (Func))
4806 or else Etype (First_Formal (Func)) /= U_Ent
4807 then
4808 Error_Msg_NE
4809 ("Default Iterator must be a primitive of&", Func, U_Ent);
4810 end if;
4811 end Default_Iterator;
4812
89f1e35c 4813 ------------------------
4814 -- Dispatching_Domain --
4815 ------------------------
4816
4817 when Attribute_Dispatching_Domain => Dispatching_Domain :
4818 begin
4819 -- Dispatching_Domain attribute definition clause not allowed
4820 -- except from aspect specification.
4821
4822 if From_Aspect_Specification (N) then
4823 if not Is_Task_Type (U_Ent) then
4824 Error_Msg_N ("Dispatching_Domain can only be defined" &
4825 "for task",
4826 Nam);
4827
4828 elsif Duplicate_Clause then
4829 null;
4830
4831 else
4832 -- The expression must be analyzed in the special manner
4833 -- described in "Handling of Default and Per-Object
4834 -- Expressions" in sem.ads.
4835
4836 -- The visibility to the discriminants must be restored
4837
4838 Push_Scope_And_Install_Discriminants (U_Ent);
4839
4840 Preanalyze_Spec_Expression
4841 (Expr, RTE (RE_Dispatching_Domain));
4842
4843 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4844 end if;
4845
4846 else
4847 Error_Msg_N
4848 ("attribute& cannot be set with definition clause", N);
4849 end if;
4850 end Dispatching_Domain;
4851
d6f39728 4852 ------------------
4853 -- External_Tag --
4854 ------------------
4855
4856 when Attribute_External_Tag => External_Tag :
4857 begin
4858 if not Is_Tagged_Type (U_Ent) then
4859 Error_Msg_N ("should be a tagged type", Nam);
4860 end if;
4861
ae888dbd 4862 if Duplicate_Clause then
4863 null;
d6f39728 4864
9af0ddc7 4865 else
ae888dbd 4866 Analyze_And_Resolve (Expr, Standard_String);
fbc67f84 4867
cda40848 4868 if not Is_OK_Static_Expression (Expr) then
ae888dbd 4869 Flag_Non_Static_Expr
4870 ("static string required for tag name!", Nam);
4871 end if;
4872
15a67a0a 4873 if VM_Target /= No_VM then
ae888dbd 4874 Error_Msg_Name_1 := Attr;
4875 Error_Msg_N
4876 ("% attribute unsupported in this configuration", Nam);
4877 end if;
4878
4879 if not Is_Library_Level_Entity (U_Ent) then
4880 Error_Msg_NE
1e3532e7 4881 ("??non-unique external tag supplied for &", N, U_Ent);
ae888dbd 4882 Error_Msg_N
1e3532e7 4883 ("\??same external tag applies to all "
4884 & "subprogram calls", N);
ae888dbd 4885 Error_Msg_N
1e3532e7 4886 ("\??corresponding internal tag cannot be obtained", N);
ae888dbd 4887 end if;
fbc67f84 4888 end if;
d6f39728 4889 end External_Tag;
4890
b57530b8 4891 --------------------------
4892 -- Implicit_Dereference --
4893 --------------------------
7947a439 4894
b57530b8 4895 when Attribute_Implicit_Dereference =>
7947a439 4896
2beb22b1 4897 -- Legality checks already performed at the point of the type
4898 -- declaration, aspect is not delayed.
7947a439 4899
89cc7147 4900 null;
b57530b8 4901
d6f39728 4902 -----------
4903 -- Input --
4904 -----------
4905
9f373bb8 4906 when Attribute_Input =>
4907 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
4908 Set_Has_Specified_Stream_Input (Ent);
d6f39728 4909
89f1e35c 4910 ------------------------
4911 -- Interrupt_Priority --
4912 ------------------------
4913
4914 when Attribute_Interrupt_Priority => Interrupt_Priority :
4915 begin
4916 -- Interrupt_Priority attribute definition clause not allowed
4917 -- except from aspect specification.
4918
4919 if From_Aspect_Specification (N) then
f02a9a9a 4920 if not Is_Concurrent_Type (U_Ent) then
89f1e35c 4921 Error_Msg_N
f02a9a9a 4922 ("Interrupt_Priority can only be defined for task "
4923 & "and protected object", Nam);
89f1e35c 4924
4925 elsif Duplicate_Clause then
4926 null;
4927
4928 else
4929 -- The expression must be analyzed in the special manner
4930 -- described in "Handling of Default and Per-Object
4931 -- Expressions" in sem.ads.
4932
4933 -- The visibility to the discriminants must be restored
4934
4935 Push_Scope_And_Install_Discriminants (U_Ent);
4936
4937 Preanalyze_Spec_Expression
4938 (Expr, RTE (RE_Interrupt_Priority));
4939
4940 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4941 end if;
4942
4943 else
4944 Error_Msg_N
4945 ("attribute& cannot be set with definition clause", N);
4946 end if;
4947 end Interrupt_Priority;
4948
b3f8228a 4949 --------------
4950 -- Iterable --
4951 --------------
4952
4953 when Attribute_Iterable =>
4954 Analyze (Expr);
bde03454 4955
b3f8228a 4956 if Nkind (Expr) /= N_Aggregate then
4957 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
4958 end if;
4959
4960 declare
4961 Assoc : Node_Id;
4962
4963 begin
4964 Assoc := First (Component_Associations (Expr));
4965 while Present (Assoc) loop
4966 if not Is_Entity_Name (Expression (Assoc)) then
4967 Error_Msg_N ("value must be a function", Assoc);
4968 end if;
bde03454 4969
b3f8228a 4970 Next (Assoc);
4971 end loop;
4972 end;
4973
89cc7147 4974 ----------------------
4975 -- Iterator_Element --
4976 ----------------------
4977
4978 when Attribute_Iterator_Element =>
4979 Analyze (Expr);
4980
4981 if not Is_Entity_Name (Expr)
4982 or else not Is_Type (Entity (Expr))
4983 then
4984 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
4985 end if;
4986
d6f39728 4987 -------------------
4988 -- Machine_Radix --
4989 -------------------
4990
4991 -- Machine radix attribute definition clause
4992
4993 when Attribute_Machine_Radix => Machine_Radix : declare
4994 Radix : constant Uint := Static_Integer (Expr);
4995
4996 begin
4997 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
4998 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
4999
ae888dbd 5000 elsif Duplicate_Clause then
5001 null;
d6f39728 5002
5003 elsif Radix /= No_Uint then
5004 Set_Has_Machine_Radix_Clause (U_Ent);
5005 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5006
5007 if Radix = 2 then
5008 null;
5009 elsif Radix = 10 then
5010 Set_Machine_Radix_10 (U_Ent);
5011 else
5012 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5013 end if;
5014 end if;
5015 end Machine_Radix;
5016
5017 -----------------
5018 -- Object_Size --
5019 -----------------
5020
5021 -- Object_Size attribute definition clause
5022
5023 when Attribute_Object_Size => Object_Size : declare
bfa5a9d9 5024 Size : constant Uint := Static_Integer (Expr);
5025
d6f39728 5026 Biased : Boolean;
bfa5a9d9 5027 pragma Warnings (Off, Biased);
d6f39728 5028
5029 begin
5030 if not Is_Type (U_Ent) then
5031 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5032
ae888dbd 5033 elsif Duplicate_Clause then
5034 null;
d6f39728 5035
5036 else
5037 Check_Size (Expr, U_Ent, Size, Biased);
5038
829cd457 5039 if Is_Scalar_Type (U_Ent) then
5040 if Size /= 8 and then Size /= 16 and then Size /= 32
5041 and then UI_Mod (Size, 64) /= 0
5042 then
5043 Error_Msg_N
5044 ("Object_Size must be 8, 16, 32, or multiple of 64",
5045 Expr);
5046 end if;
5047
5048 elsif Size mod 8 /= 0 then
5049 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
d6f39728 5050 end if;
5051
5052 Set_Esize (U_Ent, Size);
5053 Set_Has_Object_Size_Clause (U_Ent);
1d366b32 5054 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5055 end if;
5056 end Object_Size;
5057
5058 ------------
5059 -- Output --
5060 ------------
5061
9f373bb8 5062 when Attribute_Output =>
5063 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5064 Set_Has_Specified_Stream_Output (Ent);
d6f39728 5065
89f1e35c 5066 --------------
5067 -- Priority --
5068 --------------
5069
5070 when Attribute_Priority => Priority :
5071 begin
5072 -- Priority attribute definition clause not allowed except from
5073 -- aspect specification.
5074
5075 if From_Aspect_Specification (N) then
f02a9a9a 5076 if not (Is_Concurrent_Type (U_Ent)
3a72f9c3 5077 or else Ekind (U_Ent) = E_Procedure)
89f1e35c 5078 then
5079 Error_Msg_N
f02a9a9a 5080 ("Priority can only be defined for task and protected "
5081 & "object", Nam);
89f1e35c 5082
5083 elsif Duplicate_Clause then
5084 null;
5085
5086 else
5087 -- The expression must be analyzed in the special manner
5088 -- described in "Handling of Default and Per-Object
5089 -- Expressions" in sem.ads.
5090
5091 -- The visibility to the discriminants must be restored
5092
5093 Push_Scope_And_Install_Discriminants (U_Ent);
5094 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5095 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5096
cda40848 5097 if not Is_OK_Static_Expression (Expr) then
89f1e35c 5098 Check_Restriction (Static_Priorities, Expr);
5099 end if;
5100 end if;
5101
5102 else
5103 Error_Msg_N
5104 ("attribute& cannot be set with definition clause", N);
5105 end if;
5106 end Priority;
5107
d6f39728 5108 ----------
5109 -- Read --
5110 ----------
5111
9f373bb8 5112 when Attribute_Read =>
5113 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5114 Set_Has_Specified_Stream_Read (Ent);
d6f39728 5115
b7b74740 5116 --------------------------
5117 -- Scalar_Storage_Order --
5118 --------------------------
5119
5120 -- Scalar_Storage_Order attribute definition clause
5121
5122 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5123 begin
b43a5770 5124 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
b7b74740 5125 Error_Msg_N
b43a5770 5126 ("Scalar_Storage_Order can only be defined for "
5127 & "record or array type", Nam);
b7b74740 5128
5129 elsif Duplicate_Clause then
5130 null;
5131
5132 else
5133 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5134
5135 if Etype (Expr) = Any_Type then
5136 return;
5137
cda40848 5138 elsif not Is_OK_Static_Expression (Expr) then
b7b74740 5139 Flag_Non_Static_Expr
5140 ("Scalar_Storage_Order requires static expression!", Expr);
5141
c0912570 5142 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5143
5144 -- Here for the case of a non-default (i.e. non-confirming)
5145 -- Scalar_Storage_Order attribute definition.
5146
5147 if Support_Nondefault_SSO_On_Target then
d0a9ea3b 5148 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
c0912570 5149 else
5150 Error_Msg_N
5151 ("non-default Scalar_Storage_Order "
5152 & "not supported on target", Expr);
b7b74740 5153 end if;
5154 end if;
b64082f2 5155
5156 -- Clear SSO default indications since explicit setting of the
5157 -- order overrides the defaults.
5158
5159 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5160 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
b7b74740 5161 end if;
5162 end Scalar_Storage_Order;
5163
d6f39728 5164 ----------
5165 -- Size --
5166 ----------
5167
5168 -- Size attribute definition clause
5169
5170 when Attribute_Size => Size : declare
5171 Size : constant Uint := Static_Integer (Expr);
5172 Etyp : Entity_Id;
5173 Biased : Boolean;
5174
5175 begin
5176 FOnly := True;
5177
ae888dbd 5178 if Duplicate_Clause then
5179 null;
d6f39728 5180
5181 elsif not Is_Type (U_Ent)
5182 and then Ekind (U_Ent) /= E_Variable
5183 and then Ekind (U_Ent) /= E_Constant
5184 then
5185 Error_Msg_N ("size cannot be given for &", Nam);
5186
5187 elsif Is_Array_Type (U_Ent)
5188 and then not Is_Constrained (U_Ent)
5189 then
5190 Error_Msg_N
5191 ("size cannot be given for unconstrained array", Nam);
5192
c2b89d6e 5193 elsif Size /= No_Uint then
c2b89d6e 5194 if VM_Target /= No_VM and then not GNAT_Mode then
47495553 5195
c2b89d6e 5196 -- Size clause is not handled properly on VM targets.
5197 -- Display a warning unless we are in GNAT mode, in which
5198 -- case this is useless.
47495553 5199
682fa897 5200 Error_Msg_N
1e3532e7 5201 ("size clauses are ignored in this configuration??", N);
682fa897 5202 end if;
5203
d6f39728 5204 if Is_Type (U_Ent) then
5205 Etyp := U_Ent;
5206 else
5207 Etyp := Etype (U_Ent);
5208 end if;
5209
59ac57b5 5210 -- Check size, note that Gigi is in charge of checking that the
5211 -- size of an array or record type is OK. Also we do not check
5212 -- the size in the ordinary fixed-point case, since it is too
5213 -- early to do so (there may be subsequent small clause that
5214 -- affects the size). We can check the size if a small clause
5215 -- has already been given.
d6f39728 5216
5217 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5218 or else Has_Small_Clause (U_Ent)
5219 then
5220 Check_Size (Expr, Etyp, Size, Biased);
b77e4501 5221 Set_Biased (U_Ent, N, "size clause", Biased);
d6f39728 5222 end if;
5223
5224 -- For types set RM_Size and Esize if possible
5225
5226 if Is_Type (U_Ent) then
5227 Set_RM_Size (U_Ent, Size);
5228
ada34def 5229 -- For elementary types, increase Object_Size to power of 2,
5230 -- but not less than a storage unit in any case (normally
59ac57b5 5231 -- this means it will be byte addressable).
d6f39728 5232
ada34def 5233 -- For all other types, nothing else to do, we leave Esize
5234 -- (object size) unset, the back end will set it from the
5235 -- size and alignment in an appropriate manner.
5236
1d366b32 5237 -- In both cases, we check whether the alignment must be
5238 -- reset in the wake of the size change.
5239
ada34def 5240 if Is_Elementary_Type (U_Ent) then
f15731c4 5241 if Size <= System_Storage_Unit then
5242 Init_Esize (U_Ent, System_Storage_Unit);
d6f39728 5243 elsif Size <= 16 then
5244 Init_Esize (U_Ent, 16);
5245 elsif Size <= 32 then
5246 Init_Esize (U_Ent, 32);
5247 else
5248 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5249 end if;
5250
1d366b32 5251 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5252 else
5253 Alignment_Check_For_Size_Change (U_Ent, Size);
d6f39728 5254 end if;
5255
d6f39728 5256 -- For objects, set Esize only
5257
5258 else
9dfe12ae 5259 if Is_Elementary_Type (Etyp) then
5260 if Size /= System_Storage_Unit
5261 and then
5262 Size /= System_Storage_Unit * 2
5263 and then
5264 Size /= System_Storage_Unit * 4
5265 and then
5266 Size /= System_Storage_Unit * 8
5267 then
5c99c290 5268 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
87d5c1d0 5269 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
9dfe12ae 5270 Error_Msg_N
5c99c290 5271 ("size for primitive object must be a power of 2"
87d5c1d0 5272 & " in the range ^-^", N);
9dfe12ae 5273 end if;
5274 end if;
5275
d6f39728 5276 Set_Esize (U_Ent, Size);
5277 end if;
5278
5279 Set_Has_Size_Clause (U_Ent);
5280 end if;
5281 end Size;
5282
5283 -----------
5284 -- Small --
5285 -----------
5286
5287 -- Small attribute definition clause
5288
5289 when Attribute_Small => Small : declare
5290 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5291 Small : Ureal;
5292
5293 begin
5294 Analyze_And_Resolve (Expr, Any_Real);
5295
5296 if Etype (Expr) = Any_Type then
5297 return;
5298
cda40848 5299 elsif not Is_OK_Static_Expression (Expr) then
9dfe12ae 5300 Flag_Non_Static_Expr
5301 ("small requires static expression!", Expr);
d6f39728 5302 return;
5303
5304 else
5305 Small := Expr_Value_R (Expr);
5306
5307 if Small <= Ureal_0 then
5308 Error_Msg_N ("small value must be greater than zero", Expr);
5309 return;
5310 end if;
5311
5312 end if;
5313
5314 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5315 Error_Msg_N
5316 ("small requires an ordinary fixed point type", Nam);
5317
5318 elsif Has_Small_Clause (U_Ent) then
5319 Error_Msg_N ("small already given for &", Nam);
5320
5321 elsif Small > Delta_Value (U_Ent) then
5322 Error_Msg_N
ce3e25d6 5323 ("small value must not be greater than delta value", Nam);
d6f39728 5324
5325 else
5326 Set_Small_Value (U_Ent, Small);
5327 Set_Small_Value (Implicit_Base, Small);
5328 Set_Has_Small_Clause (U_Ent);
5329 Set_Has_Small_Clause (Implicit_Base);
5330 Set_Has_Non_Standard_Rep (Implicit_Base);
5331 end if;
5332 end Small;
5333
d6f39728 5334 ------------------
5335 -- Storage_Pool --
5336 ------------------
5337
5338 -- Storage_Pool attribute definition clause
5339
b55f7641 5340 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
d6f39728 5341 Pool : Entity_Id;
6b567c71 5342 T : Entity_Id;
d6f39728 5343
5344 begin
44e4341e 5345 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5346 Error_Msg_N
5347 ("storage pool cannot be given for access-to-subprogram type",
5348 Nam);
5349 return;
5350
d3ef794c 5351 elsif not
5352 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
d6f39728 5353 then
44e4341e 5354 Error_Msg_N
5355 ("storage pool can only be given for access types", Nam);
d6f39728 5356 return;
5357
5358 elsif Is_Derived_Type (U_Ent) then
5359 Error_Msg_N
5360 ("storage pool cannot be given for a derived access type",
5361 Nam);
5362
ae888dbd 5363 elsif Duplicate_Clause then
d6f39728 5364 return;
5365
5366 elsif Present (Associated_Storage_Pool (U_Ent)) then
5367 Error_Msg_N ("storage pool already given for &", Nam);
5368 return;
5369 end if;
5370
6653b695 5371 -- Check for Storage_Size previously given
5372
5373 declare
5374 SS : constant Node_Id :=
5375 Get_Attribute_Definition_Clause
5376 (U_Ent, Attribute_Storage_Size);
5377 begin
5378 if Present (SS) then
5379 Check_Pool_Size_Clash (U_Ent, N, SS);
5380 end if;
5381 end;
5382
5383 -- Storage_Pool case
5384
b55f7641 5385 if Id = Attribute_Storage_Pool then
5386 Analyze_And_Resolve
5387 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5388
5389 -- In the Simple_Storage_Pool case, we allow a variable of any
b15003c3 5390 -- simple storage pool type, so we Resolve without imposing an
b55f7641 5391 -- expected type.
5392
5393 else
5394 Analyze_And_Resolve (Expr);
5395
5396 if not Present (Get_Rep_Pragma
b15003c3 5397 (Etype (Expr), Name_Simple_Storage_Pool_Type))
b55f7641 5398 then
5399 Error_Msg_N
5400 ("expression must be of a simple storage pool type", Expr);
5401 end if;
5402 end if;
d6f39728 5403
8c5c7277 5404 if not Denotes_Variable (Expr) then
5405 Error_Msg_N ("storage pool must be a variable", Expr);
5406 return;
5407 end if;
5408
6b567c71 5409 if Nkind (Expr) = N_Type_Conversion then
5410 T := Etype (Expression (Expr));
5411 else
5412 T := Etype (Expr);
5413 end if;
5414
5415 -- The Stack_Bounded_Pool is used internally for implementing
d64221a7 5416 -- access types with a Storage_Size. Since it only work properly
5417 -- when used on one specific type, we need to check that it is not
5418 -- hijacked improperly:
5419
6b567c71 5420 -- type T is access Integer;
5421 -- for T'Storage_Size use n;
5422 -- type Q is access Float;
5423 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5424
15ebb600 5425 if RTE_Available (RE_Stack_Bounded_Pool)
5426 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5427 then
5428 Error_Msg_N ("non-shareable internal Pool", Expr);
6b567c71 5429 return;
5430 end if;
5431
d6f39728 5432 -- If the argument is a name that is not an entity name, then
5433 -- we construct a renaming operation to define an entity of
5434 -- type storage pool.
5435
5436 if not Is_Entity_Name (Expr)
5437 and then Is_Object_Reference (Expr)
5438 then
11deeeb6 5439 Pool := Make_Temporary (Loc, 'P', Expr);
d6f39728 5440
5441 declare
5442 Rnode : constant Node_Id :=
5443 Make_Object_Renaming_Declaration (Loc,
5444 Defining_Identifier => Pool,
5445 Subtype_Mark =>
5446 New_Occurrence_Of (Etype (Expr), Loc),
11deeeb6 5447 Name => Expr);
d6f39728 5448
5449 begin
f65f7fdf 5450 -- If the attribute definition clause comes from an aspect
5451 -- clause, then insert the renaming before the associated
5452 -- entity's declaration, since the attribute clause has
5453 -- not yet been appended to the declaration list.
5454
5455 if From_Aspect_Specification (N) then
5456 Insert_Before (Parent (Entity (N)), Rnode);
5457 else
5458 Insert_Before (N, Rnode);
5459 end if;
5460
d6f39728 5461 Analyze (Rnode);
5462 Set_Associated_Storage_Pool (U_Ent, Pool);
5463 end;
5464
5465 elsif Is_Entity_Name (Expr) then
5466 Pool := Entity (Expr);
5467
5468 -- If pool is a renamed object, get original one. This can
5469 -- happen with an explicit renaming, and within instances.
5470
5471 while Present (Renamed_Object (Pool))
5472 and then Is_Entity_Name (Renamed_Object (Pool))
5473 loop
5474 Pool := Entity (Renamed_Object (Pool));
5475 end loop;
5476
5477 if Present (Renamed_Object (Pool))
5478 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5479 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5480 then
5481 Pool := Entity (Expression (Renamed_Object (Pool)));
5482 end if;
5483
6b567c71 5484 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5485
5486 elsif Nkind (Expr) = N_Type_Conversion
5487 and then Is_Entity_Name (Expression (Expr))
5488 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5489 then
5490 Pool := Entity (Expression (Expr));
6b567c71 5491 Set_Associated_Storage_Pool (U_Ent, Pool);
d6f39728 5492
5493 else
5494 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5495 return;
5496 end if;
b55f7641 5497 end;
d6f39728 5498
44e4341e 5499 ------------------
5500 -- Storage_Size --
5501 ------------------
5502
5503 -- Storage_Size attribute definition clause
5504
5505 when Attribute_Storage_Size => Storage_Size : declare
5506 Btype : constant Entity_Id := Base_Type (U_Ent);
44e4341e 5507
5508 begin
5509 if Is_Task_Type (U_Ent) then
44e4341e 5510
39a0c1d3 5511 -- Check obsolescent (but never obsolescent if from aspect)
ceec4f7c 5512
5513 if not From_Aspect_Specification (N) then
5514 Check_Restriction (No_Obsolescent_Features, N);
5515
5516 if Warn_On_Obsolescent_Feature then
5517 Error_Msg_N
5518 ("?j?storage size clause for task is an " &
5519 "obsolescent feature (RM J.9)", N);
5520 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5521 end if;
44e4341e 5522 end if;
5523
5524 FOnly := True;
5525 end if;
5526
5527 if not Is_Access_Type (U_Ent)
5528 and then Ekind (U_Ent) /= E_Task_Type
5529 then
5530 Error_Msg_N ("storage size cannot be given for &", Nam);
5531
5532 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5533 Error_Msg_N
5534 ("storage size cannot be given for a derived access type",
5535 Nam);
5536
ae888dbd 5537 elsif Duplicate_Clause then
5538 null;
44e4341e 5539
5540 else
5541 Analyze_And_Resolve (Expr, Any_Integer);
5542
5543 if Is_Access_Type (U_Ent) then
6653b695 5544
5545 -- Check for Storage_Pool previously given
5546
5547 declare
5548 SP : constant Node_Id :=
5549 Get_Attribute_Definition_Clause
5550 (U_Ent, Attribute_Storage_Pool);
5551
5552 begin
5553 if Present (SP) then
5554 Check_Pool_Size_Clash (U_Ent, SP, N);
5555 end if;
5556 end;
5557
5558 -- Special case of for x'Storage_Size use 0
44e4341e 5559
5941a4e9 5560 if Is_OK_Static_Expression (Expr)
44e4341e 5561 and then Expr_Value (Expr) = 0
5562 then
5563 Set_No_Pool_Assigned (Btype);
5564 end if;
44e4341e 5565 end if;
5566
5567 Set_Has_Storage_Size_Clause (Btype);
5568 end if;
5569 end Storage_Size;
5570
7189d17f 5571 -----------------
5572 -- Stream_Size --
5573 -----------------
5574
5575 when Attribute_Stream_Size => Stream_Size : declare
5576 Size : constant Uint := Static_Integer (Expr);
5577
5578 begin
15ebb600 5579 if Ada_Version <= Ada_95 then
5580 Check_Restriction (No_Implementation_Attributes, N);
5581 end if;
5582
ae888dbd 5583 if Duplicate_Clause then
5584 null;
7189d17f 5585
5586 elsif Is_Elementary_Type (U_Ent) then
5587 if Size /= System_Storage_Unit
5588 and then
5589 Size /= System_Storage_Unit * 2
5590 and then
5591 Size /= System_Storage_Unit * 4
5592 and then
5593 Size /= System_Storage_Unit * 8
5594 then
5595 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5596 Error_Msg_N
5597 ("stream size for elementary type must be a"
5598 & " power of 2 and at least ^", N);
5599
5600 elsif RM_Size (U_Ent) > Size then
5601 Error_Msg_Uint_1 := RM_Size (U_Ent);
5602 Error_Msg_N
5603 ("stream size for elementary type must be a"
5604 & " power of 2 and at least ^", N);
5605 end if;
5606
5607 Set_Has_Stream_Size_Clause (U_Ent);
5608
5609 else
5610 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5611 end if;
5612 end Stream_Size;
5613
d6f39728 5614 ----------------
5615 -- Value_Size --
5616 ----------------
5617
5618 -- Value_Size attribute definition clause
5619
5620 when Attribute_Value_Size => Value_Size : declare
5621 Size : constant Uint := Static_Integer (Expr);
5622 Biased : Boolean;
5623
5624 begin
5625 if not Is_Type (U_Ent) then
5626 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5627
ae888dbd 5628 elsif Duplicate_Clause then
5629 null;
d6f39728 5630
59ac57b5 5631 elsif Is_Array_Type (U_Ent)
5632 and then not Is_Constrained (U_Ent)
5633 then
5634 Error_Msg_N
5635 ("Value_Size cannot be given for unconstrained array", Nam);
5636
d6f39728 5637 else
5638 if Is_Elementary_Type (U_Ent) then
5639 Check_Size (Expr, U_Ent, Size, Biased);
b77e4501 5640 Set_Biased (U_Ent, N, "value size clause", Biased);
d6f39728 5641 end if;
5642
5643 Set_RM_Size (U_Ent, Size);
5644 end if;
5645 end Value_Size;
5646
81b424ac 5647 -----------------------
5648 -- Variable_Indexing --
5649 -----------------------
5650
5651 when Attribute_Variable_Indexing =>
5652 Check_Indexing_Functions;
5653
d6f39728 5654 -----------
5655 -- Write --
5656 -----------
5657
9f373bb8 5658 when Attribute_Write =>
5659 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5660 Set_Has_Specified_Stream_Write (Ent);
d6f39728 5661
5662 -- All other attributes cannot be set
5663
5664 when others =>
5665 Error_Msg_N
5666 ("attribute& cannot be set with definition clause", N);
d6f39728 5667 end case;
5668
d64221a7 5669 -- The test for the type being frozen must be performed after any
5670 -- expression the clause has been analyzed since the expression itself
5671 -- might cause freezing that makes the clause illegal.
d6f39728 5672
5673 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5674 return;
5675 end if;
5676 end Analyze_Attribute_Definition_Clause;
5677
5678 ----------------------------
5679 -- Analyze_Code_Statement --
5680 ----------------------------
5681
5682 procedure Analyze_Code_Statement (N : Node_Id) is
5683 HSS : constant Node_Id := Parent (N);
5684 SBody : constant Node_Id := Parent (HSS);
5685 Subp : constant Entity_Id := Current_Scope;
5686 Stmt : Node_Id;
5687 Decl : Node_Id;
5688 StmtO : Node_Id;
5689 DeclO : Node_Id;
5690
5691 begin
5692 -- Analyze and check we get right type, note that this implements the
5693 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5694 -- is the only way that Asm_Insn could possibly be visible.
5695
5696 Analyze_And_Resolve (Expression (N));
5697
5698 if Etype (Expression (N)) = Any_Type then
5699 return;
5700 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
5701 Error_Msg_N ("incorrect type for code statement", N);
5702 return;
5703 end if;
5704
44e4341e 5705 Check_Code_Statement (N);
5706
d6f39728 5707 -- Make sure we appear in the handled statement sequence of a
5708 -- subprogram (RM 13.8(3)).
5709
5710 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5711 or else Nkind (SBody) /= N_Subprogram_Body
5712 then
5713 Error_Msg_N
5714 ("code statement can only appear in body of subprogram", N);
5715 return;
5716 end if;
5717
5718 -- Do remaining checks (RM 13.8(3)) if not already done
5719
5720 if not Is_Machine_Code_Subprogram (Subp) then
5721 Set_Is_Machine_Code_Subprogram (Subp);
5722
5723 -- No exception handlers allowed
5724
5725 if Present (Exception_Handlers (HSS)) then
5726 Error_Msg_N
5727 ("exception handlers not permitted in machine code subprogram",
5728 First (Exception_Handlers (HSS)));
5729 end if;
5730
5731 -- No declarations other than use clauses and pragmas (we allow
5732 -- certain internally generated declarations as well).
5733
5734 Decl := First (Declarations (SBody));
5735 while Present (Decl) loop
5736 DeclO := Original_Node (Decl);
5737 if Comes_From_Source (DeclO)
fdd294d1 5738 and not Nkind_In (DeclO, N_Pragma,
5739 N_Use_Package_Clause,
5740 N_Use_Type_Clause,
5741 N_Implicit_Label_Declaration)
d6f39728 5742 then
5743 Error_Msg_N
5744 ("this declaration not allowed in machine code subprogram",
5745 DeclO);
5746 end if;
5747
5748 Next (Decl);
5749 end loop;
5750
5751 -- No statements other than code statements, pragmas, and labels.
5752 -- Again we allow certain internally generated statements.
3ab42ff7 5753
c3107527 5754 -- In Ada 2012, qualified expressions are names, and the code
5755 -- statement is initially parsed as a procedure call.
d6f39728 5756
5757 Stmt := First (Statements (HSS));
5758 while Present (Stmt) loop
5759 StmtO := Original_Node (Stmt);
c3107527 5760
59f2fcab 5761 -- A procedure call transformed into a code statement is OK.
5762
c3107527 5763 if Ada_Version >= Ada_2012
5764 and then Nkind (StmtO) = N_Procedure_Call_Statement
59f2fcab 5765 and then Nkind (Name (StmtO)) = N_Qualified_Expression
c3107527 5766 then
5767 null;
5768
5769 elsif Comes_From_Source (StmtO)
fdd294d1 5770 and then not Nkind_In (StmtO, N_Pragma,
5771 N_Label,
5772 N_Code_Statement)
d6f39728 5773 then
5774 Error_Msg_N
5775 ("this statement is not allowed in machine code subprogram",
5776 StmtO);
5777 end if;
5778
5779 Next (Stmt);
5780 end loop;
5781 end if;
d6f39728 5782 end Analyze_Code_Statement;
5783
5784 -----------------------------------------------
5785 -- Analyze_Enumeration_Representation_Clause --
5786 -----------------------------------------------
5787
5788 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
5789 Ident : constant Node_Id := Identifier (N);
5790 Aggr : constant Node_Id := Array_Aggregate (N);
5791 Enumtype : Entity_Id;
5792 Elit : Entity_Id;
5793 Expr : Node_Id;
5794 Assoc : Node_Id;
5795 Choice : Node_Id;
5796 Val : Uint;
b3190af0 5797
5798 Err : Boolean := False;
098d3082 5799 -- Set True to avoid cascade errors and crashes on incorrect source code
d6f39728 5800
e30c7d84 5801 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
5802 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
5803 -- Allowed range of universal integer (= allowed range of enum lit vals)
5804
d6f39728 5805 Min : Uint;
5806 Max : Uint;
e30c7d84 5807 -- Minimum and maximum values of entries
5808
5809 Max_Node : Node_Id;
5810 -- Pointer to node for literal providing max value
d6f39728 5811
5812 begin
ca301e17 5813 if Ignore_Rep_Clauses then
2ff55065 5814 Kill_Rep_Clause (N);
fbc67f84 5815 return;
5816 end if;
5817
175a6969 5818 -- Ignore enumeration rep clauses by default in CodePeer mode,
5819 -- unless -gnatd.I is specified, as a work around for potential false
5820 -- positive messages.
5821
5822 if CodePeer_Mode and not Debug_Flag_Dot_II then
5823 return;
5824 end if;
5825
d6f39728 5826 -- First some basic error checks
5827
5828 Find_Type (Ident);
5829 Enumtype := Entity (Ident);
5830
5831 if Enumtype = Any_Type
5832 or else Rep_Item_Too_Early (Enumtype, N)
5833 then
5834 return;
5835 else
5836 Enumtype := Underlying_Type (Enumtype);
5837 end if;
5838
5839 if not Is_Enumeration_Type (Enumtype) then
5840 Error_Msg_NE
5841 ("enumeration type required, found}",
5842 Ident, First_Subtype (Enumtype));
5843 return;
5844 end if;
5845
9dfe12ae 5846 -- Ignore rep clause on generic actual type. This will already have
5847 -- been flagged on the template as an error, and this is the safest
5848 -- way to ensure we don't get a junk cascaded message in the instance.
5849
5850 if Is_Generic_Actual_Type (Enumtype) then
5851 return;
5852
5853 -- Type must be in current scope
5854
5855 elsif Scope (Enumtype) /= Current_Scope then
d6f39728 5856 Error_Msg_N ("type must be declared in this scope", Ident);
5857 return;
5858
9dfe12ae 5859 -- Type must be a first subtype
5860
d6f39728 5861 elsif not Is_First_Subtype (Enumtype) then
5862 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
5863 return;
5864
9dfe12ae 5865 -- Ignore duplicate rep clause
5866
d6f39728 5867 elsif Has_Enumeration_Rep_Clause (Enumtype) then
5868 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
5869 return;
5870
7189d17f 5871 -- Don't allow rep clause for standard [wide_[wide_]]character
9dfe12ae 5872
177675a7 5873 elsif Is_Standard_Character_Type (Enumtype) then
d6f39728 5874 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
9dfe12ae 5875 return;
5876
d9125581 5877 -- Check that the expression is a proper aggregate (no parentheses)
5878
5879 elsif Paren_Count (Aggr) /= 0 then
5880 Error_Msg
5881 ("extra parentheses surrounding aggregate not allowed",
5882 First_Sloc (Aggr));
5883 return;
5884
9dfe12ae 5885 -- All tests passed, so set rep clause in place
d6f39728 5886
5887 else
5888 Set_Has_Enumeration_Rep_Clause (Enumtype);
5889 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
5890 end if;
5891
5892 -- Now we process the aggregate. Note that we don't use the normal
5893 -- aggregate code for this purpose, because we don't want any of the
5894 -- normal expansion activities, and a number of special semantic
5895 -- rules apply (including the component type being any integer type)
5896
d6f39728 5897 Elit := First_Literal (Enumtype);
5898
5899 -- First the positional entries if any
5900
5901 if Present (Expressions (Aggr)) then
5902 Expr := First (Expressions (Aggr));
5903 while Present (Expr) loop
5904 if No (Elit) then
5905 Error_Msg_N ("too many entries in aggregate", Expr);
5906 return;
5907 end if;
5908
5909 Val := Static_Integer (Expr);
5910
d9125581 5911 -- Err signals that we found some incorrect entries processing
5912 -- the list. The final checks for completeness and ordering are
5913 -- skipped in this case.
5914
d6f39728 5915 if Val = No_Uint then
5916 Err := True;
f02a9a9a 5917
d6f39728 5918 elsif Val < Lo or else Hi < Val then
5919 Error_Msg_N ("value outside permitted range", Expr);
5920 Err := True;
5921 end if;
5922
5923 Set_Enumeration_Rep (Elit, Val);
5924 Set_Enumeration_Rep_Expr (Elit, Expr);
5925 Next (Expr);
5926 Next (Elit);
5927 end loop;
5928 end if;
5929
5930 -- Now process the named entries if present
5931
5932 if Present (Component_Associations (Aggr)) then
5933 Assoc := First (Component_Associations (Aggr));
5934 while Present (Assoc) loop
5935 Choice := First (Choices (Assoc));
5936
5937 if Present (Next (Choice)) then
5938 Error_Msg_N
5939 ("multiple choice not allowed here", Next (Choice));
5940 Err := True;
5941 end if;
5942
5943 if Nkind (Choice) = N_Others_Choice then
5944 Error_Msg_N ("others choice not allowed here", Choice);
5945 Err := True;
5946
5947 elsif Nkind (Choice) = N_Range then
b3190af0 5948
d6f39728 5949 -- ??? should allow zero/one element range here
b3190af0 5950
d6f39728 5951 Error_Msg_N ("range not allowed here", Choice);
5952 Err := True;
5953
5954 else
5955 Analyze_And_Resolve (Choice, Enumtype);
b3190af0 5956
098d3082 5957 if Error_Posted (Choice) then
d6f39728 5958 Err := True;
098d3082 5959 end if;
d6f39728 5960
098d3082 5961 if not Err then
5962 if Is_Entity_Name (Choice)
5963 and then Is_Type (Entity (Choice))
5964 then
5965 Error_Msg_N ("subtype name not allowed here", Choice);
d6f39728 5966 Err := True;
b3190af0 5967
098d3082 5968 -- ??? should allow static subtype with zero/one entry
d6f39728 5969
098d3082 5970 elsif Etype (Choice) = Base_Type (Enumtype) then
cda40848 5971 if not Is_OK_Static_Expression (Choice) then
098d3082 5972 Flag_Non_Static_Expr
5973 ("non-static expression used for choice!", Choice);
d6f39728 5974 Err := True;
d6f39728 5975
098d3082 5976 else
5977 Elit := Expr_Value_E (Choice);
5978
5979 if Present (Enumeration_Rep_Expr (Elit)) then
5980 Error_Msg_Sloc :=
5981 Sloc (Enumeration_Rep_Expr (Elit));
5982 Error_Msg_NE
5983 ("representation for& previously given#",
5984 Choice, Elit);
5985 Err := True;
5986 end if;
d6f39728 5987
098d3082 5988 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
d6f39728 5989
098d3082 5990 Expr := Expression (Assoc);
5991 Val := Static_Integer (Expr);
d6f39728 5992
098d3082 5993 if Val = No_Uint then
5994 Err := True;
5995
5996 elsif Val < Lo or else Hi < Val then
5997 Error_Msg_N ("value outside permitted range", Expr);
5998 Err := True;
5999 end if;
d6f39728 6000
098d3082 6001 Set_Enumeration_Rep (Elit, Val);
6002 end if;
d6f39728 6003 end if;
6004 end if;
6005 end if;
6006
6007 Next (Assoc);
6008 end loop;
6009 end if;
6010
6011 -- Aggregate is fully processed. Now we check that a full set of
6012 -- representations was given, and that they are in range and in order.
6013 -- These checks are only done if no other errors occurred.
6014
6015 if not Err then
6016 Min := No_Uint;
6017 Max := No_Uint;
6018
6019 Elit := First_Literal (Enumtype);
6020 while Present (Elit) loop
6021 if No (Enumeration_Rep_Expr (Elit)) then
6022 Error_Msg_NE ("missing representation for&!", N, Elit);
6023
6024 else
6025 Val := Enumeration_Rep (Elit);
6026
6027 if Min = No_Uint then
6028 Min := Val;
6029 end if;
6030
6031 if Val /= No_Uint then
6032 if Max /= No_Uint and then Val <= Max then
6033 Error_Msg_NE
6034 ("enumeration value for& not ordered!",
e30c7d84 6035 Enumeration_Rep_Expr (Elit), Elit);
d6f39728 6036 end if;
6037
e30c7d84 6038 Max_Node := Enumeration_Rep_Expr (Elit);
d6f39728 6039 Max := Val;
6040 end if;
6041
e30c7d84 6042 -- If there is at least one literal whose representation is not
6043 -- equal to the Pos value, then note that this enumeration type
6044 -- has a non-standard representation.
d6f39728 6045
6046 if Val /= Enumeration_Pos (Elit) then
6047 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6048 end if;
6049 end if;
6050
6051 Next (Elit);
6052 end loop;
6053
6054 -- Now set proper size information
6055
6056 declare
6057 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6058
6059 begin
6060 if Has_Size_Clause (Enumtype) then
e30c7d84 6061
6062 -- All OK, if size is OK now
6063
6064 if RM_Size (Enumtype) >= Minsize then
d6f39728 6065 null;
6066
6067 else
e30c7d84 6068 -- Try if we can get by with biasing
6069
d6f39728 6070 Minsize :=
6071 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6072
e30c7d84 6073 -- Error message if even biasing does not work
6074
6075 if RM_Size (Enumtype) < Minsize then
6076 Error_Msg_Uint_1 := RM_Size (Enumtype);
6077 Error_Msg_Uint_2 := Max;
6078 Error_Msg_N
6079 ("previously given size (^) is too small "
6080 & "for this value (^)", Max_Node);
6081
6082 -- If biasing worked, indicate that we now have biased rep
d6f39728 6083
6084 else
b77e4501 6085 Set_Biased
6086 (Enumtype, Size_Clause (Enumtype), "size clause");
d6f39728 6087 end if;
6088 end if;
6089
6090 else
6091 Set_RM_Size (Enumtype, Minsize);
6092 Set_Enum_Esize (Enumtype);
6093 end if;
6094
6095 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6096 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6097 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6098 end;
6099 end if;
6100
39a0c1d3 6101 -- We repeat the too late test in case it froze itself
d6f39728 6102
6103 if Rep_Item_Too_Late (Enumtype, N) then
6104 null;
6105 end if;
d6f39728 6106 end Analyze_Enumeration_Representation_Clause;
6107
6108 ----------------------------
6109 -- Analyze_Free_Statement --
6110 ----------------------------
6111
6112 procedure Analyze_Free_Statement (N : Node_Id) is
6113 begin
6114 Analyze (Expression (N));
6115 end Analyze_Free_Statement;
6116
40ca69b9 6117 ---------------------------
6118 -- Analyze_Freeze_Entity --
6119 ---------------------------
6120
6121 procedure Analyze_Freeze_Entity (N : Node_Id) is
40ca69b9 6122 begin
d9f6a4ee 6123 Freeze_Entity_Checks (N);
6124 end Analyze_Freeze_Entity;
98f7db28 6125
d9f6a4ee 6126 -----------------------------------
6127 -- Analyze_Freeze_Generic_Entity --
6128 -----------------------------------
98f7db28 6129
d9f6a4ee 6130 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6131 begin
6132 Freeze_Entity_Checks (N);
6133 end Analyze_Freeze_Generic_Entity;
40ca69b9 6134
d9f6a4ee 6135 ------------------------------------------
6136 -- Analyze_Record_Representation_Clause --
6137 ------------------------------------------
c8da6114 6138
d9f6a4ee 6139 -- Note: we check as much as we can here, but we can't do any checks
6140 -- based on the position values (e.g. overlap checks) until freeze time
6141 -- because especially in Ada 2005 (machine scalar mode), the processing
6142 -- for non-standard bit order can substantially change the positions.
6143 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6144 -- for the remainder of this processing.
d00681a7 6145
d9f6a4ee 6146 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6147 Ident : constant Node_Id := Identifier (N);
6148 Biased : Boolean;
6149 CC : Node_Id;
6150 Comp : Entity_Id;
6151 Fbit : Uint;
6152 Hbit : Uint := Uint_0;
6153 Lbit : Uint;
6154 Ocomp : Entity_Id;
6155 Posit : Uint;
6156 Rectype : Entity_Id;
6157 Recdef : Node_Id;
d00681a7 6158
d9f6a4ee 6159 function Is_Inherited (Comp : Entity_Id) return Boolean;
6160 -- True if Comp is an inherited component in a record extension
d00681a7 6161
d9f6a4ee 6162 ------------------
6163 -- Is_Inherited --
6164 ------------------
d00681a7 6165
d9f6a4ee 6166 function Is_Inherited (Comp : Entity_Id) return Boolean is
6167 Comp_Base : Entity_Id;
d00681a7 6168
d9f6a4ee 6169 begin
6170 if Ekind (Rectype) = E_Record_Subtype then
6171 Comp_Base := Original_Record_Component (Comp);
6172 else
6173 Comp_Base := Comp;
d00681a7 6174 end if;
6175
d9f6a4ee 6176 return Comp_Base /= Original_Record_Component (Comp_Base);
6177 end Is_Inherited;
d00681a7 6178
d9f6a4ee 6179 -- Local variables
d00681a7 6180
d9f6a4ee 6181 Is_Record_Extension : Boolean;
6182 -- True if Rectype is a record extension
d00681a7 6183
d9f6a4ee 6184 CR_Pragma : Node_Id := Empty;
6185 -- Points to N_Pragma node if Complete_Representation pragma present
d00681a7 6186
d9f6a4ee 6187 -- Start of processing for Analyze_Record_Representation_Clause
d00681a7 6188
d9f6a4ee 6189 begin
6190 if Ignore_Rep_Clauses then
2ff55065 6191 Kill_Rep_Clause (N);
d9f6a4ee 6192 return;
d00681a7 6193 end if;
98f7db28 6194
d9f6a4ee 6195 Find_Type (Ident);
6196 Rectype := Entity (Ident);
85377c9b 6197
d9f6a4ee 6198 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6199 return;
6200 else
6201 Rectype := Underlying_Type (Rectype);
6202 end if;
85377c9b 6203
d9f6a4ee 6204 -- First some basic error checks
85377c9b 6205
d9f6a4ee 6206 if not Is_Record_Type (Rectype) then
6207 Error_Msg_NE
6208 ("record type required, found}", Ident, First_Subtype (Rectype));
6209 return;
85377c9b 6210
d9f6a4ee 6211 elsif Scope (Rectype) /= Current_Scope then
6212 Error_Msg_N ("type must be declared in this scope", N);
6213 return;
85377c9b 6214
d9f6a4ee 6215 elsif not Is_First_Subtype (Rectype) then
6216 Error_Msg_N ("cannot give record rep clause for subtype", N);
6217 return;
9dc88aea 6218
d9f6a4ee 6219 elsif Has_Record_Rep_Clause (Rectype) then
6220 Error_Msg_N ("duplicate record rep clause ignored", N);
6221 return;
9dc88aea 6222
d9f6a4ee 6223 elsif Rep_Item_Too_Late (Rectype, N) then
6224 return;
9dc88aea 6225 end if;
fb7f2fc4 6226
d9f6a4ee 6227 -- We know we have a first subtype, now possibly go the the anonymous
6228 -- base type to determine whether Rectype is a record extension.
89f1e35c 6229
d9f6a4ee 6230 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6231 Is_Record_Extension :=
6232 Nkind (Recdef) = N_Derived_Type_Definition
6233 and then Present (Record_Extension_Part (Recdef));
89f1e35c 6234
d9f6a4ee 6235 if Present (Mod_Clause (N)) then
fb7f2fc4 6236 declare
d9f6a4ee 6237 Loc : constant Source_Ptr := Sloc (N);
6238 M : constant Node_Id := Mod_Clause (N);
6239 P : constant List_Id := Pragmas_Before (M);
6240 AtM_Nod : Node_Id;
6241
6242 Mod_Val : Uint;
6243 pragma Warnings (Off, Mod_Val);
fb7f2fc4 6244
6245 begin
d9f6a4ee 6246 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
fb7f2fc4 6247
d9f6a4ee 6248 if Warn_On_Obsolescent_Feature then
6249 Error_Msg_N
6250 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6251 Error_Msg_N
6252 ("\?j?use alignment attribute definition clause instead", N);
6253 end if;
fb7f2fc4 6254
d9f6a4ee 6255 if Present (P) then
6256 Analyze_List (P);
6257 end if;
89f1e35c 6258
d9f6a4ee 6259 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6260 -- the Mod clause into an alignment clause anyway, so that the
6261 -- back-end can compute and back-annotate properly the size and
6262 -- alignment of types that may include this record.
be9124d0 6263
d9f6a4ee 6264 -- This seems dubious, this destroys the source tree in a manner
6265 -- not detectable by ASIS ???
be9124d0 6266
d9f6a4ee 6267 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6268 AtM_Nod :=
6269 Make_Attribute_Definition_Clause (Loc,
83c6c069 6270 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
d9f6a4ee 6271 Chars => Name_Alignment,
6272 Expression => Relocate_Node (Expression (M)));
be9124d0 6273
d9f6a4ee 6274 Set_From_At_Mod (AtM_Nod);
6275 Insert_After (N, AtM_Nod);
6276 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6277 Set_Mod_Clause (N, Empty);
be9124d0 6278
d9f6a4ee 6279 else
6280 -- Get the alignment value to perform error checking
be9124d0 6281
d9f6a4ee 6282 Mod_Val := Get_Alignment_Value (Expression (M));
6283 end if;
6284 end;
6285 end if;
be9124d0 6286
d9f6a4ee 6287 -- For untagged types, clear any existing component clauses for the
6288 -- type. If the type is derived, this is what allows us to override
6289 -- a rep clause for the parent. For type extensions, the representation
6290 -- of the inherited components is inherited, so we want to keep previous
6291 -- component clauses for completeness.
be9124d0 6292
d9f6a4ee 6293 if not Is_Tagged_Type (Rectype) then
6294 Comp := First_Component_Or_Discriminant (Rectype);
6295 while Present (Comp) loop
6296 Set_Component_Clause (Comp, Empty);
6297 Next_Component_Or_Discriminant (Comp);
6298 end loop;
6299 end if;
be9124d0 6300
d9f6a4ee 6301 -- All done if no component clauses
be9124d0 6302
d9f6a4ee 6303 CC := First (Component_Clauses (N));
be9124d0 6304
d9f6a4ee 6305 if No (CC) then
6306 return;
6307 end if;
be9124d0 6308
d9f6a4ee 6309 -- A representation like this applies to the base type
be9124d0 6310
d9f6a4ee 6311 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6312 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6313 Set_Has_Specified_Layout (Base_Type (Rectype));
be9124d0 6314
d9f6a4ee 6315 -- Process the component clauses
be9124d0 6316
d9f6a4ee 6317 while Present (CC) loop
be9124d0 6318
d9f6a4ee 6319 -- Pragma
be9124d0 6320
d9f6a4ee 6321 if Nkind (CC) = N_Pragma then
6322 Analyze (CC);
be9124d0 6323
d9f6a4ee 6324 -- The only pragma of interest is Complete_Representation
be9124d0 6325
d9f6a4ee 6326 if Pragma_Name (CC) = Name_Complete_Representation then
6327 CR_Pragma := CC;
6328 end if;
be9124d0 6329
d9f6a4ee 6330 -- Processing for real component clause
be9124d0 6331
d9f6a4ee 6332 else
6333 Posit := Static_Integer (Position (CC));
6334 Fbit := Static_Integer (First_Bit (CC));
6335 Lbit := Static_Integer (Last_Bit (CC));
be9124d0 6336
d9f6a4ee 6337 if Posit /= No_Uint
6338 and then Fbit /= No_Uint
6339 and then Lbit /= No_Uint
6340 then
6341 if Posit < 0 then
6342 Error_Msg_N
6343 ("position cannot be negative", Position (CC));
be9124d0 6344
d9f6a4ee 6345 elsif Fbit < 0 then
6346 Error_Msg_N
6347 ("first bit cannot be negative", First_Bit (CC));
be9124d0 6348
d9f6a4ee 6349 -- The Last_Bit specified in a component clause must not be
6350 -- less than the First_Bit minus one (RM-13.5.1(10)).
be9124d0 6351
d9f6a4ee 6352 elsif Lbit < Fbit - 1 then
6353 Error_Msg_N
6354 ("last bit cannot be less than first bit minus one",
6355 Last_Bit (CC));
be9124d0 6356
d9f6a4ee 6357 -- Values look OK, so find the corresponding record component
6358 -- Even though the syntax allows an attribute reference for
6359 -- implementation-defined components, GNAT does not allow the
6360 -- tag to get an explicit position.
be9124d0 6361
d9f6a4ee 6362 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6363 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6364 Error_Msg_N ("position of tag cannot be specified", CC);
6365 else
6366 Error_Msg_N ("illegal component name", CC);
6367 end if;
be9124d0 6368
d9f6a4ee 6369 else
6370 Comp := First_Entity (Rectype);
6371 while Present (Comp) loop
6372 exit when Chars (Comp) = Chars (Component_Name (CC));
6373 Next_Entity (Comp);
6374 end loop;
be9124d0 6375
d9f6a4ee 6376 if No (Comp) then
be9124d0 6377
d9f6a4ee 6378 -- Maybe component of base type that is absent from
6379 -- statically constrained first subtype.
be9124d0 6380
d9f6a4ee 6381 Comp := First_Entity (Base_Type (Rectype));
6382 while Present (Comp) loop
6383 exit when Chars (Comp) = Chars (Component_Name (CC));
6384 Next_Entity (Comp);
6385 end loop;
6386 end if;
be9124d0 6387
d9f6a4ee 6388 if No (Comp) then
6389 Error_Msg_N
6390 ("component clause is for non-existent field", CC);
be9124d0 6391
d9f6a4ee 6392 -- Ada 2012 (AI05-0026): Any name that denotes a
6393 -- discriminant of an object of an unchecked union type
6394 -- shall not occur within a record_representation_clause.
be9124d0 6395
d9f6a4ee 6396 -- The general restriction of using record rep clauses on
6397 -- Unchecked_Union types has now been lifted. Since it is
6398 -- possible to introduce a record rep clause which mentions
6399 -- the discriminant of an Unchecked_Union in non-Ada 2012
6400 -- code, this check is applied to all versions of the
6401 -- language.
be9124d0 6402
d9f6a4ee 6403 elsif Ekind (Comp) = E_Discriminant
6404 and then Is_Unchecked_Union (Rectype)
6405 then
6406 Error_Msg_N
6407 ("cannot reference discriminant of unchecked union",
6408 Component_Name (CC));
be9124d0 6409
d9f6a4ee 6410 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6411 Error_Msg_NE
6412 ("component clause not allowed for inherited "
6413 & "component&", CC, Comp);
40ca69b9 6414
d9f6a4ee 6415 elsif Present (Component_Clause (Comp)) then
462a079f 6416
d9f6a4ee 6417 -- Diagnose duplicate rep clause, or check consistency
6418 -- if this is an inherited component. In a double fault,
6419 -- there may be a duplicate inconsistent clause for an
6420 -- inherited component.
462a079f 6421
d9f6a4ee 6422 if Scope (Original_Record_Component (Comp)) = Rectype
6423 or else Parent (Component_Clause (Comp)) = N
6424 then
6425 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6426 Error_Msg_N ("component clause previously given#", CC);
3062c401 6427
6428 else
6429 declare
6430 Rep1 : constant Node_Id := Component_Clause (Comp);
3062c401 6431 begin
6432 if Intval (Position (Rep1)) /=
6433 Intval (Position (CC))
6434 or else Intval (First_Bit (Rep1)) /=
6435 Intval (First_Bit (CC))
6436 or else Intval (Last_Bit (Rep1)) /=
6437 Intval (Last_Bit (CC))
6438 then
b9e61b2a 6439 Error_Msg_N
6440 ("component clause inconsistent "
6441 & "with representation of ancestor", CC);
6a06584c 6442
3062c401 6443 elsif Warn_On_Redundant_Constructs then
b9e61b2a 6444 Error_Msg_N
6a06584c 6445 ("?r?redundant confirming component clause "
6446 & "for component!", CC);
3062c401 6447 end if;
6448 end;
6449 end if;
d6f39728 6450
d2b860b4 6451 -- Normal case where this is the first component clause we
6452 -- have seen for this entity, so set it up properly.
6453
d6f39728 6454 else
83f8f0a6 6455 -- Make reference for field in record rep clause and set
6456 -- appropriate entity field in the field identifier.
6457
6458 Generate_Reference
6459 (Comp, Component_Name (CC), Set_Ref => False);
6460 Set_Entity (Component_Name (CC), Comp);
6461
2866d595 6462 -- Update Fbit and Lbit to the actual bit number
d6f39728 6463
6464 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6465 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6466
d6f39728 6467 if Has_Size_Clause (Rectype)
ada34def 6468 and then RM_Size (Rectype) <= Lbit
d6f39728 6469 then
6470 Error_Msg_N
6471 ("bit number out of range of specified size",
6472 Last_Bit (CC));
6473 else
6474 Set_Component_Clause (Comp, CC);
6475 Set_Component_Bit_Offset (Comp, Fbit);
6476 Set_Esize (Comp, 1 + (Lbit - Fbit));
6477 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6478 Set_Normalized_Position (Comp, Fbit / SSU);
6479
a0fc8c5b 6480 if Warn_On_Overridden_Size
6481 and then Has_Size_Clause (Etype (Comp))
6482 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6483 then
6484 Error_Msg_NE
1e3532e7 6485 ("?S?component size overrides size clause for&",
a0fc8c5b 6486 Component_Name (CC), Etype (Comp));
6487 end if;
6488
ea61a7ea 6489 -- This information is also set in the corresponding
6490 -- component of the base type, found by accessing the
6491 -- Original_Record_Component link if it is present.
d6f39728 6492
6493 Ocomp := Original_Record_Component (Comp);
6494
6495 if Hbit < Lbit then
6496 Hbit := Lbit;
6497 end if;
6498
6499 Check_Size
6500 (Component_Name (CC),
6501 Etype (Comp),
6502 Esize (Comp),
6503 Biased);
6504
b77e4501 6505 Set_Biased
6506 (Comp, First_Node (CC), "component clause", Biased);
cc46ff4b 6507
d6f39728 6508 if Present (Ocomp) then
6509 Set_Component_Clause (Ocomp, CC);
6510 Set_Component_Bit_Offset (Ocomp, Fbit);
6511 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6512 Set_Normalized_Position (Ocomp, Fbit / SSU);
6513 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6514
6515 Set_Normalized_Position_Max
6516 (Ocomp, Normalized_Position (Ocomp));
6517
b77e4501 6518 -- Note: we don't use Set_Biased here, because we
6519 -- already gave a warning above if needed, and we
6520 -- would get a duplicate for the same name here.
6521
d6f39728 6522 Set_Has_Biased_Representation
6523 (Ocomp, Has_Biased_Representation (Comp));
6524 end if;
6525
6526 if Esize (Comp) < 0 then
6527 Error_Msg_N ("component size is negative", CC);
6528 end if;
6529 end if;
6530 end if;
6531 end if;
6532 end if;
6533 end if;
6534
6535 Next (CC);
6536 end loop;
6537
67278d60 6538 -- Check missing components if Complete_Representation pragma appeared
d6f39728 6539
67278d60 6540 if Present (CR_Pragma) then
6541 Comp := First_Component_Or_Discriminant (Rectype);
6542 while Present (Comp) loop
6543 if No (Component_Clause (Comp)) then
6544 Error_Msg_NE
6545 ("missing component clause for &", CR_Pragma, Comp);
6546 end if;
d6f39728 6547
67278d60 6548 Next_Component_Or_Discriminant (Comp);
6549 end loop;
d6f39728 6550
1e3532e7 6551 -- Give missing components warning if required
15ebb600 6552
fdd294d1 6553 elsif Warn_On_Unrepped_Components then
15ebb600 6554 declare
6555 Num_Repped_Components : Nat := 0;
6556 Num_Unrepped_Components : Nat := 0;
6557
6558 begin
6559 -- First count number of repped and unrepped components
6560
6561 Comp := First_Component_Or_Discriminant (Rectype);
6562 while Present (Comp) loop
6563 if Present (Component_Clause (Comp)) then
6564 Num_Repped_Components := Num_Repped_Components + 1;
6565 else
6566 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6567 end if;
6568
6569 Next_Component_Or_Discriminant (Comp);
6570 end loop;
6571
6572 -- We are only interested in the case where there is at least one
6573 -- unrepped component, and at least half the components have rep
6574 -- clauses. We figure that if less than half have them, then the
87f9eef5 6575 -- partial rep clause is really intentional. If the component
6576 -- type has no underlying type set at this point (as for a generic
6577 -- formal type), we don't know enough to give a warning on the
6578 -- component.
15ebb600 6579
6580 if Num_Unrepped_Components > 0
6581 and then Num_Unrepped_Components < Num_Repped_Components
6582 then
6583 Comp := First_Component_Or_Discriminant (Rectype);
6584 while Present (Comp) loop
83f8f0a6 6585 if No (Component_Clause (Comp))
3062c401 6586 and then Comes_From_Source (Comp)
87f9eef5 6587 and then Present (Underlying_Type (Etype (Comp)))
83f8f0a6 6588 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
67278d60 6589 or else Size_Known_At_Compile_Time
6590 (Underlying_Type (Etype (Comp))))
fdd294d1 6591 and then not Has_Warnings_Off (Rectype)
83f8f0a6 6592 then
15ebb600 6593 Error_Msg_Sloc := Sloc (Comp);
6594 Error_Msg_NE
1e3532e7 6595 ("?C?no component clause given for & declared #",
15ebb600 6596 N, Comp);
6597 end if;
6598
6599 Next_Component_Or_Discriminant (Comp);
6600 end loop;
6601 end if;
6602 end;
d6f39728 6603 end if;
d6f39728 6604 end Analyze_Record_Representation_Clause;
6605
eb66e842 6606 -------------------------------------
6607 -- Build_Discrete_Static_Predicate --
6608 -------------------------------------
9ea61fdd 6609
eb66e842 6610 procedure Build_Discrete_Static_Predicate
6611 (Typ : Entity_Id;
6612 Expr : Node_Id;
6613 Nam : Name_Id)
9ea61fdd 6614 is
eb66e842 6615 Loc : constant Source_Ptr := Sloc (Expr);
9ea61fdd 6616
eb66e842 6617 Non_Static : exception;
6618 -- Raised if something non-static is found
9ea61fdd 6619
eb66e842 6620 Btyp : constant Entity_Id := Base_Type (Typ);
9ea61fdd 6621
eb66e842 6622 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6623 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6624 -- Low bound and high bound value of base type of Typ
9ea61fdd 6625
eb66e842 6626 TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
6627 THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
6628 -- Low bound and high bound values of static subtype Typ
9ea61fdd 6629
eb66e842 6630 type REnt is record
6631 Lo, Hi : Uint;
6632 end record;
6633 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6634 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6635 -- value.
9ea61fdd 6636
eb66e842 6637 type RList is array (Nat range <>) of REnt;
6638 -- A list of ranges. The ranges are sorted in increasing order, and are
6639 -- disjoint (there is a gap of at least one value between each range in
6640 -- the table). A value is in the set of ranges in Rlist if it lies
6641 -- within one of these ranges.
9ea61fdd 6642
eb66e842 6643 False_Range : constant RList :=
6644 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6645 -- An empty set of ranges represents a range list that can never be
6646 -- satisfied, since there are no ranges in which the value could lie,
6647 -- so it does not lie in any of them. False_Range is a canonical value
6648 -- for this empty set, but general processing should test for an Rlist
6649 -- with length zero (see Is_False predicate), since other null ranges
6650 -- may appear which must be treated as False.
5b5df4a9 6651
eb66e842 6652 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6653 -- Range representing True, value must be in the base range
5b5df4a9 6654
eb66e842 6655 function "and" (Left : RList; Right : RList) return RList;
6656 -- And's together two range lists, returning a range list. This is a set
6657 -- intersection operation.
5b5df4a9 6658
eb66e842 6659 function "or" (Left : RList; Right : RList) return RList;
6660 -- Or's together two range lists, returning a range list. This is a set
6661 -- union operation.
87f3d5d3 6662
eb66e842 6663 function "not" (Right : RList) return RList;
6664 -- Returns complement of a given range list, i.e. a range list
6665 -- representing all the values in TLo .. THi that are not in the input
6666 -- operand Right.
ed4adc99 6667
eb66e842 6668 function Build_Val (V : Uint) return Node_Id;
6669 -- Return an analyzed N_Identifier node referencing this value, suitable
5c6a5792 6670 -- for use as an entry in the Static_Discrte_Predicate list. This node
6671 -- is typed with the base type.
5b5df4a9 6672
eb66e842 6673 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6674 -- Return an analyzed N_Range node referencing this range, suitable for
5c6a5792 6675 -- use as an entry in the Static_Discrete_Predicate list. This node is
6676 -- typed with the base type.
5b5df4a9 6677
eb66e842 6678 function Get_RList (Exp : Node_Id) return RList;
6679 -- This is a recursive routine that converts the given expression into a
6680 -- list of ranges, suitable for use in building the static predicate.
5b5df4a9 6681
eb66e842 6682 function Is_False (R : RList) return Boolean;
6683 pragma Inline (Is_False);
6684 -- Returns True if the given range list is empty, and thus represents a
6685 -- False list of ranges that can never be satisfied.
87f3d5d3 6686
eb66e842 6687 function Is_True (R : RList) return Boolean;
6688 -- Returns True if R trivially represents the True predicate by having a
6689 -- single range from BLo to BHi.
5b5df4a9 6690
eb66e842 6691 function Is_Type_Ref (N : Node_Id) return Boolean;
6692 pragma Inline (Is_Type_Ref);
6693 -- Returns if True if N is a reference to the type for the predicate in
6694 -- the expression (i.e. if it is an identifier whose Chars field matches
7de4cba3 6695 -- the Nam given in the call). N must not be parenthesized, if the type
6696 -- name appears in parens, this routine will return False.
5b5df4a9 6697
eb66e842 6698 function Lo_Val (N : Node_Id) return Uint;
5c6a5792 6699 -- Given an entry from a Static_Discrete_Predicate list that is either
6700 -- a static expression or static range, gets either the expression value
6701 -- or the low bound of the range.
5b5df4a9 6702
eb66e842 6703 function Hi_Val (N : Node_Id) return Uint;
5c6a5792 6704 -- Given an entry from a Static_Discrete_Predicate list that is either
6705 -- a static expression or static range, gets either the expression value
6706 -- or the high bound of the range.
5b5df4a9 6707
eb66e842 6708 function Membership_Entry (N : Node_Id) return RList;
6709 -- Given a single membership entry (range, value, or subtype), returns
6710 -- the corresponding range list. Raises Static_Error if not static.
5b5df4a9 6711
eb66e842 6712 function Membership_Entries (N : Node_Id) return RList;
6713 -- Given an element on an alternatives list of a membership operation,
6714 -- returns the range list corresponding to this entry and all following
6715 -- entries (i.e. returns the "or" of this list of values).
b9e61b2a 6716
eb66e842 6717 function Stat_Pred (Typ : Entity_Id) return RList;
6718 -- Given a type, if it has a static predicate, then return the predicate
6719 -- as a range list, otherwise raise Non_Static.
c4968aa2 6720
eb66e842 6721 -----------
6722 -- "and" --
6723 -----------
c4968aa2 6724
eb66e842 6725 function "and" (Left : RList; Right : RList) return RList is
6726 FEnt : REnt;
6727 -- First range of result
c4968aa2 6728
eb66e842 6729 SLeft : Nat := Left'First;
6730 -- Start of rest of left entries
c4968aa2 6731
eb66e842 6732 SRight : Nat := Right'First;
6733 -- Start of rest of right entries
2072eaa9 6734
eb66e842 6735 begin
6736 -- If either range is True, return the other
5b5df4a9 6737
eb66e842 6738 if Is_True (Left) then
6739 return Right;
6740 elsif Is_True (Right) then
6741 return Left;
6742 end if;
87f3d5d3 6743
eb66e842 6744 -- If either range is False, return False
5b5df4a9 6745
eb66e842 6746 if Is_False (Left) or else Is_False (Right) then
6747 return False_Range;
6748 end if;
4c1fd062 6749
eb66e842 6750 -- Loop to remove entries at start that are disjoint, and thus just
6751 -- get discarded from the result entirely.
5b5df4a9 6752
eb66e842 6753 loop
6754 -- If no operands left in either operand, result is false
5b5df4a9 6755
eb66e842 6756 if SLeft > Left'Last or else SRight > Right'Last then
6757 return False_Range;
5b5df4a9 6758
eb66e842 6759 -- Discard first left operand entry if disjoint with right
5b5df4a9 6760
eb66e842 6761 elsif Left (SLeft).Hi < Right (SRight).Lo then
6762 SLeft := SLeft + 1;
5b5df4a9 6763
eb66e842 6764 -- Discard first right operand entry if disjoint with left
5b5df4a9 6765
eb66e842 6766 elsif Right (SRight).Hi < Left (SLeft).Lo then
6767 SRight := SRight + 1;
5b5df4a9 6768
eb66e842 6769 -- Otherwise we have an overlapping entry
5b5df4a9 6770
eb66e842 6771 else
6772 exit;
6773 end if;
6774 end loop;
5b5df4a9 6775
eb66e842 6776 -- Now we have two non-null operands, and first entries overlap. The
6777 -- first entry in the result will be the overlapping part of these
6778 -- two entries.
47a46747 6779
eb66e842 6780 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6781 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
47a46747 6782
eb66e842 6783 -- Now we can remove the entry that ended at a lower value, since its
6784 -- contribution is entirely contained in Fent.
5b5df4a9 6785
eb66e842 6786 if Left (SLeft).Hi <= Right (SRight).Hi then
6787 SLeft := SLeft + 1;
6788 else
6789 SRight := SRight + 1;
6790 end if;
5b5df4a9 6791
eb66e842 6792 -- Compute result by concatenating this first entry with the "and" of
6793 -- the remaining parts of the left and right operands. Note that if
6794 -- either of these is empty, "and" will yield empty, so that we will
6795 -- end up with just Fent, which is what we want in that case.
5b5df4a9 6796
eb66e842 6797 return
6798 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6799 end "and";
fb7f2fc4 6800
eb66e842 6801 -----------
6802 -- "not" --
6803 -----------
fb7f2fc4 6804
eb66e842 6805 function "not" (Right : RList) return RList is
6806 begin
6807 -- Return True if False range
fb7f2fc4 6808
eb66e842 6809 if Is_False (Right) then
6810 return True_Range;
6811 end if;
ed4adc99 6812
eb66e842 6813 -- Return False if True range
fb7f2fc4 6814
eb66e842 6815 if Is_True (Right) then
6816 return False_Range;
6817 end if;
fb7f2fc4 6818
eb66e842 6819 -- Here if not trivial case
87f3d5d3 6820
eb66e842 6821 declare
6822 Result : RList (1 .. Right'Length + 1);
6823 -- May need one more entry for gap at beginning and end
87f3d5d3 6824
eb66e842 6825 Count : Nat := 0;
6826 -- Number of entries stored in Result
4098232e 6827
eb66e842 6828 begin
6829 -- Gap at start
4098232e 6830
eb66e842 6831 if Right (Right'First).Lo > TLo then
6832 Count := Count + 1;
6833 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
6834 end if;
ed4adc99 6835
eb66e842 6836 -- Gaps between ranges
ed4adc99 6837
eb66e842 6838 for J in Right'First .. Right'Last - 1 loop
6839 Count := Count + 1;
6840 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6841 end loop;
5b5df4a9 6842
eb66e842 6843 -- Gap at end
5b5df4a9 6844
eb66e842 6845 if Right (Right'Last).Hi < THi then
6846 Count := Count + 1;
6847 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
6848 end if;
5b5df4a9 6849
eb66e842 6850 return Result (1 .. Count);
6851 end;
6852 end "not";
5b5df4a9 6853
eb66e842 6854 ----------
6855 -- "or" --
6856 ----------
5b5df4a9 6857
eb66e842 6858 function "or" (Left : RList; Right : RList) return RList is
6859 FEnt : REnt;
6860 -- First range of result
5b5df4a9 6861
eb66e842 6862 SLeft : Nat := Left'First;
6863 -- Start of rest of left entries
5b5df4a9 6864
eb66e842 6865 SRight : Nat := Right'First;
6866 -- Start of rest of right entries
5b5df4a9 6867
eb66e842 6868 begin
6869 -- If either range is True, return True
5b5df4a9 6870
eb66e842 6871 if Is_True (Left) or else Is_True (Right) then
6872 return True_Range;
6873 end if;
5b5df4a9 6874
eb66e842 6875 -- If either range is False (empty), return the other
5b5df4a9 6876
eb66e842 6877 if Is_False (Left) then
6878 return Right;
6879 elsif Is_False (Right) then
6880 return Left;
6881 end if;
5b5df4a9 6882
eb66e842 6883 -- Initialize result first entry from left or right operand depending
6884 -- on which starts with the lower range.
5b5df4a9 6885
eb66e842 6886 if Left (SLeft).Lo < Right (SRight).Lo then
6887 FEnt := Left (SLeft);
6888 SLeft := SLeft + 1;
6889 else
6890 FEnt := Right (SRight);
6891 SRight := SRight + 1;
6892 end if;
5b5df4a9 6893
eb66e842 6894 -- This loop eats ranges from left and right operands that are
6895 -- contiguous with the first range we are gathering.
9ea61fdd 6896
eb66e842 6897 loop
6898 -- Eat first entry in left operand if contiguous or overlapped by
6899 -- gathered first operand of result.
9ea61fdd 6900
eb66e842 6901 if SLeft <= Left'Last
6902 and then Left (SLeft).Lo <= FEnt.Hi + 1
6903 then
6904 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
6905 SLeft := SLeft + 1;
9ea61fdd 6906
eb66e842 6907 -- Eat first entry in right operand if contiguous or overlapped by
6908 -- gathered right operand of result.
9ea61fdd 6909
eb66e842 6910 elsif SRight <= Right'Last
6911 and then Right (SRight).Lo <= FEnt.Hi + 1
6912 then
6913 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
6914 SRight := SRight + 1;
9ea61fdd 6915
eb66e842 6916 -- All done if no more entries to eat
5b5df4a9 6917
eb66e842 6918 else
6919 exit;
6920 end if;
6921 end loop;
5b5df4a9 6922
eb66e842 6923 -- Obtain result as the first entry we just computed, concatenated
6924 -- to the "or" of the remaining results (if one operand is empty,
6925 -- this will just concatenate with the other
5b5df4a9 6926
eb66e842 6927 return
6928 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
6929 end "or";
5b5df4a9 6930
eb66e842 6931 -----------------
6932 -- Build_Range --
6933 -----------------
5b5df4a9 6934
eb66e842 6935 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
6936 Result : Node_Id;
5b5df4a9 6937 begin
eb66e842 6938 Result :=
6939 Make_Range (Loc,
6940 Low_Bound => Build_Val (Lo),
6941 High_Bound => Build_Val (Hi));
6942 Set_Etype (Result, Btyp);
6943 Set_Analyzed (Result);
6944 return Result;
6945 end Build_Range;
5b5df4a9 6946
eb66e842 6947 ---------------
6948 -- Build_Val --
6949 ---------------
5b5df4a9 6950
eb66e842 6951 function Build_Val (V : Uint) return Node_Id is
6952 Result : Node_Id;
5b5df4a9 6953
eb66e842 6954 begin
6955 if Is_Enumeration_Type (Typ) then
6956 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
6957 else
6958 Result := Make_Integer_Literal (Loc, V);
6959 end if;
5b5df4a9 6960
eb66e842 6961 Set_Etype (Result, Btyp);
6962 Set_Is_Static_Expression (Result);
6963 Set_Analyzed (Result);
6964 return Result;
6965 end Build_Val;
87f3d5d3 6966
eb66e842 6967 ---------------
6968 -- Get_RList --
6969 ---------------
87f3d5d3 6970
eb66e842 6971 function Get_RList (Exp : Node_Id) return RList is
6972 Op : Node_Kind;
6973 Val : Uint;
87f3d5d3 6974
eb66e842 6975 begin
6976 -- Static expression can only be true or false
87f3d5d3 6977
eb66e842 6978 if Is_OK_Static_Expression (Exp) then
6979 if Expr_Value (Exp) = 0 then
6980 return False_Range;
6981 else
6982 return True_Range;
9ea61fdd 6983 end if;
eb66e842 6984 end if;
87f3d5d3 6985
eb66e842 6986 -- Otherwise test node type
192b8dab 6987
eb66e842 6988 Op := Nkind (Exp);
192b8dab 6989
eb66e842 6990 case Op is
5d3fb947 6991
eb66e842 6992 -- And
5d3fb947 6993
eb66e842 6994 when N_Op_And | N_And_Then =>
6995 return Get_RList (Left_Opnd (Exp))
6996 and
6997 Get_RList (Right_Opnd (Exp));
5b5df4a9 6998
eb66e842 6999 -- Or
9dc88aea 7000
eb66e842 7001 when N_Op_Or | N_Or_Else =>
7002 return Get_RList (Left_Opnd (Exp))
7003 or
7004 Get_RList (Right_Opnd (Exp));
7c443ae8 7005
eb66e842 7006 -- Not
9dc88aea 7007
eb66e842 7008 when N_Op_Not =>
7009 return not Get_RList (Right_Opnd (Exp));
9dc88aea 7010
eb66e842 7011 -- Comparisons of type with static value
84c8f0b8 7012
eb66e842 7013 when N_Op_Compare =>
490beba6 7014
eb66e842 7015 -- Type is left operand
9dc88aea 7016
eb66e842 7017 if Is_Type_Ref (Left_Opnd (Exp))
7018 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7019 then
7020 Val := Expr_Value (Right_Opnd (Exp));
84c8f0b8 7021
eb66e842 7022 -- Typ is right operand
84c8f0b8 7023
eb66e842 7024 elsif Is_Type_Ref (Right_Opnd (Exp))
7025 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7026 then
7027 Val := Expr_Value (Left_Opnd (Exp));
84c8f0b8 7028
eb66e842 7029 -- Invert sense of comparison
84c8f0b8 7030
eb66e842 7031 case Op is
7032 when N_Op_Gt => Op := N_Op_Lt;
7033 when N_Op_Lt => Op := N_Op_Gt;
7034 when N_Op_Ge => Op := N_Op_Le;
7035 when N_Op_Le => Op := N_Op_Ge;
7036 when others => null;
7037 end case;
84c8f0b8 7038
eb66e842 7039 -- Other cases are non-static
34d045d3 7040
eb66e842 7041 else
7042 raise Non_Static;
7043 end if;
9dc88aea 7044
eb66e842 7045 -- Construct range according to comparison operation
9dc88aea 7046
eb66e842 7047 case Op is
7048 when N_Op_Eq =>
7049 return RList'(1 => REnt'(Val, Val));
9dc88aea 7050
eb66e842 7051 when N_Op_Ge =>
7052 return RList'(1 => REnt'(Val, BHi));
84c8f0b8 7053
eb66e842 7054 when N_Op_Gt =>
7055 return RList'(1 => REnt'(Val + 1, BHi));
84c8f0b8 7056
eb66e842 7057 when N_Op_Le =>
7058 return RList'(1 => REnt'(BLo, Val));
fb7f2fc4 7059
eb66e842 7060 when N_Op_Lt =>
7061 return RList'(1 => REnt'(BLo, Val - 1));
9dc88aea 7062
eb66e842 7063 when N_Op_Ne =>
7064 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
9dc88aea 7065
eb66e842 7066 when others =>
7067 raise Program_Error;
7068 end case;
9dc88aea 7069
eb66e842 7070 -- Membership (IN)
9dc88aea 7071
eb66e842 7072 when N_In =>
7073 if not Is_Type_Ref (Left_Opnd (Exp)) then
7074 raise Non_Static;
7075 end if;
9dc88aea 7076
eb66e842 7077 if Present (Right_Opnd (Exp)) then
7078 return Membership_Entry (Right_Opnd (Exp));
7079 else
7080 return Membership_Entries (First (Alternatives (Exp)));
7081 end if;
9dc88aea 7082
eb66e842 7083 -- Negative membership (NOT IN)
9dc88aea 7084
eb66e842 7085 when N_Not_In =>
7086 if not Is_Type_Ref (Left_Opnd (Exp)) then
7087 raise Non_Static;
7088 end if;
9dc88aea 7089
eb66e842 7090 if Present (Right_Opnd (Exp)) then
7091 return not Membership_Entry (Right_Opnd (Exp));
7092 else
7093 return not Membership_Entries (First (Alternatives (Exp)));
7094 end if;
9dc88aea 7095
eb66e842 7096 -- Function call, may be call to static predicate
9dc88aea 7097
eb66e842 7098 when N_Function_Call =>
7099 if Is_Entity_Name (Name (Exp)) then
7100 declare
7101 Ent : constant Entity_Id := Entity (Name (Exp));
7102 begin
7103 if Is_Predicate_Function (Ent)
7104 or else
7105 Is_Predicate_Function_M (Ent)
7106 then
7107 return Stat_Pred (Etype (First_Formal (Ent)));
7108 end if;
7109 end;
7110 end if;
9dc88aea 7111
eb66e842 7112 -- Other function call cases are non-static
9dc88aea 7113
eb66e842 7114 raise Non_Static;
490beba6 7115
eb66e842 7116 -- Qualified expression, dig out the expression
c92e878b 7117
eb66e842 7118 when N_Qualified_Expression =>
7119 return Get_RList (Expression (Exp));
4c1fd062 7120
eb66e842 7121 when N_Case_Expression =>
7122 declare
7123 Alt : Node_Id;
7124 Choices : List_Id;
7125 Dep : Node_Id;
4c1fd062 7126
eb66e842 7127 begin
7128 if not Is_Entity_Name (Expression (Expr))
7129 or else Etype (Expression (Expr)) /= Typ
7130 then
7131 Error_Msg_N
7132 ("expression must denaote subtype", Expression (Expr));
7133 return False_Range;
7134 end if;
9dc88aea 7135
eb66e842 7136 -- Collect discrete choices in all True alternatives
9dc88aea 7137
eb66e842 7138 Choices := New_List;
7139 Alt := First (Alternatives (Exp));
7140 while Present (Alt) loop
7141 Dep := Expression (Alt);
34d045d3 7142
cda40848 7143 if not Is_OK_Static_Expression (Dep) then
eb66e842 7144 raise Non_Static;
ebbab42d 7145
eb66e842 7146 elsif Is_True (Expr_Value (Dep)) then
7147 Append_List_To (Choices,
7148 New_Copy_List (Discrete_Choices (Alt)));
7149 end if;
fb7f2fc4 7150
eb66e842 7151 Next (Alt);
7152 end loop;
9dc88aea 7153
eb66e842 7154 return Membership_Entries (First (Choices));
7155 end;
9dc88aea 7156
eb66e842 7157 -- Expression with actions: if no actions, dig out expression
9dc88aea 7158
eb66e842 7159 when N_Expression_With_Actions =>
7160 if Is_Empty_List (Actions (Exp)) then
7161 return Get_RList (Expression (Exp));
7162 else
7163 raise Non_Static;
7164 end if;
9dc88aea 7165
eb66e842 7166 -- Xor operator
490beba6 7167
eb66e842 7168 when N_Op_Xor =>
7169 return (Get_RList (Left_Opnd (Exp))
7170 and not Get_RList (Right_Opnd (Exp)))
7171 or (Get_RList (Right_Opnd (Exp))
7172 and not Get_RList (Left_Opnd (Exp)));
9dc88aea 7173
eb66e842 7174 -- Any other node type is non-static
fb7f2fc4 7175
eb66e842 7176 when others =>
7177 raise Non_Static;
7178 end case;
7179 end Get_RList;
fb7f2fc4 7180
eb66e842 7181 ------------
7182 -- Hi_Val --
7183 ------------
fb7f2fc4 7184
eb66e842 7185 function Hi_Val (N : Node_Id) return Uint is
7186 begin
cda40848 7187 if Is_OK_Static_Expression (N) then
eb66e842 7188 return Expr_Value (N);
7189 else
7190 pragma Assert (Nkind (N) = N_Range);
7191 return Expr_Value (High_Bound (N));
7192 end if;
7193 end Hi_Val;
fb7f2fc4 7194
eb66e842 7195 --------------
7196 -- Is_False --
7197 --------------
fb7f2fc4 7198
eb66e842 7199 function Is_False (R : RList) return Boolean is
7200 begin
7201 return R'Length = 0;
7202 end Is_False;
9dc88aea 7203
eb66e842 7204 -------------
7205 -- Is_True --
7206 -------------
9dc88aea 7207
eb66e842 7208 function Is_True (R : RList) return Boolean is
7209 begin
7210 return R'Length = 1
7211 and then R (R'First).Lo = BLo
7212 and then R (R'First).Hi = BHi;
7213 end Is_True;
9dc88aea 7214
eb66e842 7215 -----------------
7216 -- Is_Type_Ref --
7217 -----------------
9dc88aea 7218
eb66e842 7219 function Is_Type_Ref (N : Node_Id) return Boolean is
7220 begin
7de4cba3 7221 return Nkind (N) = N_Identifier
7222 and then Chars (N) = Nam
7223 and then Paren_Count (N) = 0;
eb66e842 7224 end Is_Type_Ref;
9dc88aea 7225
eb66e842 7226 ------------
7227 -- Lo_Val --
7228 ------------
9dc88aea 7229
eb66e842 7230 function Lo_Val (N : Node_Id) return Uint is
84c8f0b8 7231 begin
cda40848 7232 if Is_OK_Static_Expression (N) then
eb66e842 7233 return Expr_Value (N);
84c8f0b8 7234 else
eb66e842 7235 pragma Assert (Nkind (N) = N_Range);
7236 return Expr_Value (Low_Bound (N));
84c8f0b8 7237 end if;
eb66e842 7238 end Lo_Val;
d97beb2f 7239
eb66e842 7240 ------------------------
7241 -- Membership_Entries --
7242 ------------------------
d97beb2f 7243
eb66e842 7244 function Membership_Entries (N : Node_Id) return RList is
84c8f0b8 7245 begin
eb66e842 7246 if No (Next (N)) then
7247 return Membership_Entry (N);
84c8f0b8 7248 else
eb66e842 7249 return Membership_Entry (N) or Membership_Entries (Next (N));
84c8f0b8 7250 end if;
eb66e842 7251 end Membership_Entries;
84c8f0b8 7252
eb66e842 7253 ----------------------
7254 -- Membership_Entry --
7255 ----------------------
84c8f0b8 7256
eb66e842 7257 function Membership_Entry (N : Node_Id) return RList is
7258 Val : Uint;
7259 SLo : Uint;
7260 SHi : Uint;
d97beb2f 7261
eb66e842 7262 begin
7263 -- Range case
d97beb2f 7264
eb66e842 7265 if Nkind (N) = N_Range then
cda40848 7266 if not Is_OK_Static_Expression (Low_Bound (N))
eb66e842 7267 or else
cda40848 7268 not Is_OK_Static_Expression (High_Bound (N))
eb66e842 7269 then
7270 raise Non_Static;
7271 else
7272 SLo := Expr_Value (Low_Bound (N));
7273 SHi := Expr_Value (High_Bound (N));
7274 return RList'(1 => REnt'(SLo, SHi));
7275 end if;
84c8f0b8 7276
eb66e842 7277 -- Static expression case
84c8f0b8 7278
cda40848 7279 elsif Is_OK_Static_Expression (N) then
eb66e842 7280 Val := Expr_Value (N);
7281 return RList'(1 => REnt'(Val, Val));
d97beb2f 7282
eb66e842 7283 -- Identifier (other than static expression) case
d97beb2f 7284
eb66e842 7285 else pragma Assert (Nkind (N) = N_Identifier);
d97beb2f 7286
eb66e842 7287 -- Type case
d97beb2f 7288
eb66e842 7289 if Is_Type (Entity (N)) then
d97beb2f 7290
eb66e842 7291 -- If type has predicates, process them
d97beb2f 7292
eb66e842 7293 if Has_Predicates (Entity (N)) then
7294 return Stat_Pred (Entity (N));
d97beb2f 7295
eb66e842 7296 -- For static subtype without predicates, get range
9dc88aea 7297
cda40848 7298 elsif Is_OK_Static_Subtype (Entity (N)) then
eb66e842 7299 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7300 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7301 return RList'(1 => REnt'(SLo, SHi));
9f269bd8 7302
eb66e842 7303 -- Any other type makes us non-static
9f269bd8 7304
eb66e842 7305 else
7306 raise Non_Static;
7307 end if;
84c8f0b8 7308
eb66e842 7309 -- Any other kind of identifier in predicate (e.g. a non-static
7310 -- expression value) means this is not a static predicate.
84c8f0b8 7311
eb66e842 7312 else
7313 raise Non_Static;
7314 end if;
7315 end if;
7316 end Membership_Entry;
84c8f0b8 7317
eb66e842 7318 ---------------
7319 -- Stat_Pred --
7320 ---------------
84c8f0b8 7321
eb66e842 7322 function Stat_Pred (Typ : Entity_Id) return RList is
7323 begin
7324 -- Not static if type does not have static predicates
84c8f0b8 7325
5c6a5792 7326 if not Has_Static_Predicate (Typ) then
eb66e842 7327 raise Non_Static;
7328 end if;
84c8f0b8 7329
eb66e842 7330 -- Otherwise we convert the predicate list to a range list
84c8f0b8 7331
eb66e842 7332 declare
5c6a5792 7333 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7334 Result : RList (1 .. List_Length (Spred));
eb66e842 7335 P : Node_Id;
84c8f0b8 7336
eb66e842 7337 begin
5c6a5792 7338 P := First (Static_Discrete_Predicate (Typ));
eb66e842 7339 for J in Result'Range loop
7340 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7341 Next (P);
7342 end loop;
84c8f0b8 7343
eb66e842 7344 return Result;
7345 end;
7346 end Stat_Pred;
84c8f0b8 7347
eb66e842 7348 -- Start of processing for Build_Discrete_Static_Predicate
84c8f0b8 7349
eb66e842 7350 begin
7351 -- Analyze the expression to see if it is a static predicate
84c8f0b8 7352
eb66e842 7353 declare
7354 Ranges : constant RList := Get_RList (Expr);
7355 -- Range list from expression if it is static
84c8f0b8 7356
eb66e842 7357 Plist : List_Id;
84c8f0b8 7358
eb66e842 7359 begin
7360 -- Convert range list into a form for the static predicate. In the
7361 -- Ranges array, we just have raw ranges, these must be converted
7362 -- to properly typed and analyzed static expressions or range nodes.
84c8f0b8 7363
eb66e842 7364 -- Note: here we limit ranges to the ranges of the subtype, so that
7365 -- a predicate is always false for values outside the subtype. That
7366 -- seems fine, such values are invalid anyway, and considering them
7367 -- to fail the predicate seems allowed and friendly, and furthermore
7368 -- simplifies processing for case statements and loops.
84c8f0b8 7369
eb66e842 7370 Plist := New_List;
7371
7372 for J in Ranges'Range loop
84c8f0b8 7373 declare
eb66e842 7374 Lo : Uint := Ranges (J).Lo;
7375 Hi : Uint := Ranges (J).Hi;
84c8f0b8 7376
eb66e842 7377 begin
7378 -- Ignore completely out of range entry
84c8f0b8 7379
eb66e842 7380 if Hi < TLo or else Lo > THi then
7381 null;
84c8f0b8 7382
eb66e842 7383 -- Otherwise process entry
84c8f0b8 7384
eb66e842 7385 else
7386 -- Adjust out of range value to subtype range
490beba6 7387
eb66e842 7388 if Lo < TLo then
7389 Lo := TLo;
7390 end if;
490beba6 7391
eb66e842 7392 if Hi > THi then
7393 Hi := THi;
7394 end if;
84c8f0b8 7395
eb66e842 7396 -- Convert range into required form
84c8f0b8 7397
eb66e842 7398 Append_To (Plist, Build_Range (Lo, Hi));
84c8f0b8 7399 end if;
eb66e842 7400 end;
7401 end loop;
84c8f0b8 7402
eb66e842 7403 -- Processing was successful and all entries were static, so now we
7404 -- can store the result as the predicate list.
84c8f0b8 7405
5c6a5792 7406 Set_Static_Discrete_Predicate (Typ, Plist);
84c8f0b8 7407
eb66e842 7408 -- The processing for static predicates put the expression into
7409 -- canonical form as a series of ranges. It also eliminated
7410 -- duplicates and collapsed and combined ranges. We might as well
7411 -- replace the alternatives list of the right operand of the
7412 -- membership test with the static predicate list, which will
7413 -- usually be more efficient.
84c8f0b8 7414
eb66e842 7415 declare
7416 New_Alts : constant List_Id := New_List;
7417 Old_Node : Node_Id;
7418 New_Node : Node_Id;
84c8f0b8 7419
eb66e842 7420 begin
7421 Old_Node := First (Plist);
7422 while Present (Old_Node) loop
7423 New_Node := New_Copy (Old_Node);
84c8f0b8 7424
eb66e842 7425 if Nkind (New_Node) = N_Range then
7426 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7427 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7428 end if;
84c8f0b8 7429
eb66e842 7430 Append_To (New_Alts, New_Node);
7431 Next (Old_Node);
7432 end loop;
84c8f0b8 7433
eb66e842 7434 -- If empty list, replace by False
84c8f0b8 7435
eb66e842 7436 if Is_Empty_List (New_Alts) then
7437 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
84c8f0b8 7438
eb66e842 7439 -- Else replace by set membership test
84c8f0b8 7440
eb66e842 7441 else
7442 Rewrite (Expr,
7443 Make_In (Loc,
7444 Left_Opnd => Make_Identifier (Loc, Nam),
7445 Right_Opnd => Empty,
7446 Alternatives => New_Alts));
490beba6 7447
eb66e842 7448 -- Resolve new expression in function context
490beba6 7449
eb66e842 7450 Install_Formals (Predicate_Function (Typ));
7451 Push_Scope (Predicate_Function (Typ));
7452 Analyze_And_Resolve (Expr, Standard_Boolean);
7453 Pop_Scope;
7454 end if;
7455 end;
7456 end;
9ab32fe9 7457
eb66e842 7458 -- If non-static, return doing nothing
9ab32fe9 7459
eb66e842 7460 exception
7461 when Non_Static =>
7462 return;
7463 end Build_Discrete_Static_Predicate;
64cc9e5d 7464
eb66e842 7465 -------------------------------------------
7466 -- Build_Invariant_Procedure_Declaration --
7467 -------------------------------------------
9ab32fe9 7468
eb66e842 7469 function Build_Invariant_Procedure_Declaration
7470 (Typ : Entity_Id) return Node_Id
7471 is
7472 Loc : constant Source_Ptr := Sloc (Typ);
7473 Object_Entity : constant Entity_Id :=
7474 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7475 Spec : Node_Id;
7476 SId : Entity_Id;
9ab32fe9 7477
eb66e842 7478 begin
7479 Set_Etype (Object_Entity, Typ);
7480
7481 -- Check for duplicate definiations.
7482
7483 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7484 return Empty;
d97beb2f 7485 end if;
d97beb2f 7486
eb66e842 7487 SId :=
7488 Make_Defining_Identifier (Loc,
7489 Chars => New_External_Name (Chars (Typ), "Invariant"));
7490 Set_Has_Invariants (Typ);
7491 Set_Ekind (SId, E_Procedure);
856a9917 7492 Set_Etype (SId, Standard_Void_Type);
eb66e842 7493 Set_Is_Invariant_Procedure (SId);
7494 Set_Invariant_Procedure (Typ, SId);
d97beb2f 7495
eb66e842 7496 Spec :=
7497 Make_Procedure_Specification (Loc,
7498 Defining_Unit_Name => SId,
7499 Parameter_Specifications => New_List (
7500 Make_Parameter_Specification (Loc,
7501 Defining_Identifier => Object_Entity,
7502 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
d97beb2f 7503
eb66e842 7504 return Make_Subprogram_Declaration (Loc, Specification => Spec);
7505 end Build_Invariant_Procedure_Declaration;
7506
7507 -------------------------------
7508 -- Build_Invariant_Procedure --
7509 -------------------------------
7510
7511 -- The procedure that is constructed here has the form
7512
7513 -- procedure typInvariant (Ixxx : typ) is
7514 -- begin
7515 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7516 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7517 -- ...
7518 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7519 -- ...
7520 -- end typInvariant;
7521
7522 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7523 Loc : constant Source_Ptr := Sloc (Typ);
7524 Stmts : List_Id;
7525 Spec : Node_Id;
7526 SId : Entity_Id;
7527 PDecl : Node_Id;
7528 PBody : Node_Id;
d97beb2f 7529
eb66e842 7530 Nam : Name_Id;
7531 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7532 -- if we come from a Type_Invariant aspect, we make sure to build the
7533 -- Check pragma with the right name, so that Check_Policy works right.
d7c2851f 7534
eb66e842 7535 Visible_Decls : constant List_Id := Visible_Declarations (N);
7536 Private_Decls : constant List_Id := Private_Declarations (N);
d7c2851f 7537
eb66e842 7538 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
7539 -- Appends statements to Stmts for any invariants in the rep item chain
7540 -- of the given type. If Inherit is False, then we only process entries
7541 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7542 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7543 -- "inherited" to the exception message and generating an informational
7544 -- message about the inheritance of an invariant.
d97beb2f 7545
eb66e842 7546 Object_Name : Name_Id;
7547 -- Name for argument of invariant procedure
d97beb2f 7548
eb66e842 7549 Object_Entity : Node_Id;
7550 -- The entity of the formal for the procedure
d97beb2f 7551
eb66e842 7552 --------------------
7553 -- Add_Invariants --
7554 --------------------
d97beb2f 7555
eb66e842 7556 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
7557 Ritem : Node_Id;
7558 Arg1 : Node_Id;
7559 Arg2 : Node_Id;
7560 Arg3 : Node_Id;
7561 Exp : Node_Id;
7562 Loc : Source_Ptr;
7563 Assoc : List_Id;
7564 Str : String_Id;
d97beb2f 7565
eb66e842 7566 procedure Replace_Type_Reference (N : Node_Id);
7567 -- Replace a single occurrence N of the subtype name with a reference
7568 -- to the formal of the predicate function. N can be an identifier
7569 -- referencing the subtype, or a selected component, representing an
7570 -- appropriately qualified occurrence of the subtype name.
d97beb2f 7571
eb66e842 7572 procedure Replace_Type_References is
7573 new Replace_Type_References_Generic (Replace_Type_Reference);
7574 -- Traverse an expression replacing all occurrences of the subtype
7575 -- name with appropriate references to the object that is the formal
7576 -- parameter of the predicate function. Note that we must ensure
7577 -- that the type and entity information is properly set in the
7578 -- replacement node, since we will do a Preanalyze call of this
7579 -- expression without proper visibility of the procedure argument.
d97beb2f 7580
eb66e842 7581 ----------------------------
7582 -- Replace_Type_Reference --
7583 ----------------------------
d97beb2f 7584
eb66e842 7585 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7586 -- regarding handling of Sloc and Comes_From_Source.
d97beb2f 7587
eb66e842 7588 procedure Replace_Type_Reference (N : Node_Id) is
7589 begin
d97beb2f 7590
eb66e842 7591 -- Add semantic information to node to be rewritten, for ASIS
7592 -- navigation needs.
d97beb2f 7593
eb66e842 7594 if Nkind (N) = N_Identifier then
7595 Set_Entity (N, T);
7596 Set_Etype (N, T);
d7c2851f 7597
eb66e842 7598 elsif Nkind (N) = N_Selected_Component then
7599 Analyze (Prefix (N));
7600 Set_Entity (Selector_Name (N), T);
7601 Set_Etype (Selector_Name (N), T);
7602 end if;
d7c2851f 7603
eb66e842 7604 -- Invariant'Class, replace with T'Class (obj)
69004fe6 7605 -- In ASIS mode, an inherited item is analyzed already, and the
7606 -- replacement has been done, so do not repeat transformation
7607 -- to prevent ill-formed tree.
d97beb2f 7608
eb66e842 7609 if Class_Present (Ritem) then
69004fe6 7610 if ASIS_Mode
7611 and then Nkind (Parent (N)) = N_Attribute_Reference
7612 and then Attribute_Name (Parent (N)) = Name_Class
7613 then
7614 null;
7615
7616 else
7617 Rewrite (N,
7618 Make_Type_Conversion (Sloc (N),
7619 Subtype_Mark =>
7620 Make_Attribute_Reference (Sloc (N),
7621 Prefix => New_Occurrence_Of (T, Sloc (N)),
7622 Attribute_Name => Name_Class),
7623 Expression =>
7624 Make_Identifier (Sloc (N), Object_Name)));
7625
7626 Set_Entity (Expression (N), Object_Entity);
7627 Set_Etype (Expression (N), Typ);
7628 end if;
d9f6a4ee 7629
eb66e842 7630 -- Invariant, replace with obj
d9f6a4ee 7631
eb66e842 7632 else
7633 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
7634 Set_Entity (N, Object_Entity);
7635 Set_Etype (N, Typ);
7636 end if;
d9f6a4ee 7637
eb66e842 7638 Set_Comes_From_Source (N, True);
7639 end Replace_Type_Reference;
d9f6a4ee 7640
eb66e842 7641 -- Start of processing for Add_Invariants
d9f6a4ee 7642
eb66e842 7643 begin
7644 Ritem := First_Rep_Item (T);
7645 while Present (Ritem) loop
7646 if Nkind (Ritem) = N_Pragma
7647 and then Pragma_Name (Ritem) = Name_Invariant
7648 then
7649 Arg1 := First (Pragma_Argument_Associations (Ritem));
7650 Arg2 := Next (Arg1);
7651 Arg3 := Next (Arg2);
d9f6a4ee 7652
eb66e842 7653 Arg1 := Get_Pragma_Arg (Arg1);
7654 Arg2 := Get_Pragma_Arg (Arg2);
d9f6a4ee 7655
eb66e842 7656 -- For Inherit case, ignore Invariant, process only Class case
d9f6a4ee 7657
eb66e842 7658 if Inherit then
7659 if not Class_Present (Ritem) then
7660 goto Continue;
7661 end if;
d9f6a4ee 7662
eb66e842 7663 -- For Inherit false, process only item for right type
d9f6a4ee 7664
eb66e842 7665 else
7666 if Entity (Arg1) /= Typ then
7667 goto Continue;
7668 end if;
7669 end if;
d9f6a4ee 7670
eb66e842 7671 if No (Stmts) then
7672 Stmts := Empty_List;
7673 end if;
d9f6a4ee 7674
eb66e842 7675 Exp := New_Copy_Tree (Arg2);
d9f6a4ee 7676
eb66e842 7677 -- Preserve sloc of original pragma Invariant
d9f6a4ee 7678
eb66e842 7679 Loc := Sloc (Ritem);
d9f6a4ee 7680
eb66e842 7681 -- We need to replace any occurrences of the name of the type
7682 -- with references to the object, converted to type'Class in
7683 -- the case of Invariant'Class aspects.
d9f6a4ee 7684
37c6552c 7685 Replace_Type_References (Exp, T);
d9f6a4ee 7686
eb66e842 7687 -- If this invariant comes from an aspect, find the aspect
7688 -- specification, and replace the saved expression because
7689 -- we need the subtype references replaced for the calls to
7690 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7691 -- and Check_Aspect_At_End_Of_Declarations.
d9f6a4ee 7692
eb66e842 7693 if From_Aspect_Specification (Ritem) then
7694 declare
7695 Aitem : Node_Id;
d9f6a4ee 7696
eb66e842 7697 begin
7698 -- Loop to find corresponding aspect, note that this
7699 -- must be present given the pragma is marked delayed.
d9f6a4ee 7700
eb66e842 7701 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7702 -- this loop does nothing. Furthermore, why isn't this
7703 -- simply Corresponding_Aspect ???
d9f6a4ee 7704
eb66e842 7705 Aitem := Next_Rep_Item (Ritem);
7706 while Present (Aitem) loop
7707 if Nkind (Aitem) = N_Aspect_Specification
7708 and then Aspect_Rep_Item (Aitem) = Ritem
7709 then
7710 Set_Entity
7711 (Identifier (Aitem), New_Copy_Tree (Exp));
7712 exit;
7713 end if;
d9f6a4ee 7714
eb66e842 7715 Aitem := Next_Rep_Item (Aitem);
7716 end loop;
7717 end;
7718 end if;
d9f6a4ee 7719
eb66e842 7720 -- Now we need to preanalyze the expression to properly capture
7721 -- the visibility in the visible part. The expression will not
7722 -- be analyzed for real until the body is analyzed, but that is
7723 -- at the end of the private part and has the wrong visibility.
d9f6a4ee 7724
eb66e842 7725 Set_Parent (Exp, N);
7726 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
d9f6a4ee 7727
f02a9a9a 7728 -- A class-wide invariant may be inherited in a separate unit,
7729 -- where the corresponding expression cannot be resolved by
7730 -- visibility, because it refers to a local function. Propagate
7731 -- semantic information to the original representation item, to
7732 -- be used when an invariant procedure for a derived type is
7733 -- constructed.
7734
7735 -- Unclear how to handle class-wide invariants that are not
7736 -- function calls ???
7737
7738 if not Inherit
7739 and then Class_Present (Ritem)
7740 and then Nkind (Exp) = N_Function_Call
7741 and then Nkind (Arg2) = N_Indexed_Component
7742 then
7743 Rewrite (Arg2,
7744 Make_Function_Call (Loc,
7745 Name =>
7746 New_Occurrence_Of (Entity (Name (Exp)), Loc),
7747 Parameter_Associations =>
7748 New_Copy_List (Expressions (Arg2))));
7749 end if;
7750
eb66e842 7751 -- In ASIS mode, even if assertions are not enabled, we must
7752 -- analyze the original expression in the aspect specification
7753 -- because it is part of the original tree.
d9f6a4ee 7754
eb66e842 7755 if ASIS_Mode and then From_Aspect_Specification (Ritem) then
7756 declare
7757 Inv : constant Node_Id :=
7758 Expression (Corresponding_Aspect (Ritem));
7759 begin
37c6552c 7760 Replace_Type_References (Inv, T);
eb66e842 7761 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
7762 end;
7763 end if;
d9f6a4ee 7764
eb66e842 7765 -- Get name to be used for Check pragma
d9f6a4ee 7766
eb66e842 7767 if not From_Aspect_Specification (Ritem) then
7768 Nam := Name_Invariant;
7769 else
7770 Nam := Chars (Identifier (Corresponding_Aspect (Ritem)));
7771 end if;
d9f6a4ee 7772
eb66e842 7773 -- Build first two arguments for Check pragma
d9f6a4ee 7774
eb66e842 7775 Assoc :=
7776 New_List (
7777 Make_Pragma_Argument_Association (Loc,
7778 Expression => Make_Identifier (Loc, Chars => Nam)),
7779 Make_Pragma_Argument_Association (Loc,
7780 Expression => Exp));
d9f6a4ee 7781
eb66e842 7782 -- Add message if present in Invariant pragma
d9f6a4ee 7783
eb66e842 7784 if Present (Arg3) then
7785 Str := Strval (Get_Pragma_Arg (Arg3));
d9f6a4ee 7786
eb66e842 7787 -- If inherited case, and message starts "failed invariant",
7788 -- change it to be "failed inherited invariant".
d9f6a4ee 7789
eb66e842 7790 if Inherit then
7791 String_To_Name_Buffer (Str);
d9f6a4ee 7792
eb66e842 7793 if Name_Buffer (1 .. 16) = "failed invariant" then
7794 Insert_Str_In_Name_Buffer ("inherited ", 8);
7795 Str := String_From_Name_Buffer;
7796 end if;
7797 end if;
d9f6a4ee 7798
eb66e842 7799 Append_To (Assoc,
7800 Make_Pragma_Argument_Association (Loc,
7801 Expression => Make_String_Literal (Loc, Str)));
7802 end if;
d9f6a4ee 7803
eb66e842 7804 -- Add Check pragma to list of statements
d97beb2f 7805
eb66e842 7806 Append_To (Stmts,
7807 Make_Pragma (Loc,
7808 Pragma_Identifier =>
7809 Make_Identifier (Loc, Name_Check),
7810 Pragma_Argument_Associations => Assoc));
d97beb2f 7811
eb66e842 7812 -- If Inherited case and option enabled, output info msg. Note
7813 -- that we know this is a case of Invariant'Class.
d97beb2f 7814
eb66e842 7815 if Inherit and Opt.List_Inherited_Aspects then
7816 Error_Msg_Sloc := Sloc (Ritem);
7817 Error_Msg_N
7818 ("info: & inherits `Invariant''Class` aspect from #?L?",
7819 Typ);
7820 end if;
d9f6a4ee 7821 end if;
d97beb2f 7822
eb66e842 7823 <<Continue>>
7824 Next_Rep_Item (Ritem);
7825 end loop;
7826 end Add_Invariants;
d97beb2f 7827
eb66e842 7828 -- Start of processing for Build_Invariant_Procedure
d97beb2f 7829
eb66e842 7830 begin
7831 Stmts := No_List;
7832 PDecl := Empty;
7833 PBody := Empty;
7834 SId := Empty;
d97beb2f 7835
eb66e842 7836 -- If the aspect specification exists for some view of the type, the
7837 -- declaration for the procedure has been created.
d97beb2f 7838
eb66e842 7839 if Has_Invariants (Typ) then
7840 SId := Invariant_Procedure (Typ);
7841 end if;
9dc88aea 7842
0c2bde47 7843 -- If the body is already present, nothing to do. This will occur when
7844 -- the type is already frozen, which is the case when the invariant
7845 -- appears in a private part, and the freezing takes place before the
7846 -- final pass over full declarations.
aba11c12 7847
7848 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
0c2bde47 7849
eb66e842 7850 if Present (SId) then
7851 PDecl := Unit_Declaration_Node (SId);
0c2bde47 7852
7853 if Present (PDecl)
7854 and then Nkind (PDecl) = N_Subprogram_Declaration
7855 and then Present (Corresponding_Body (PDecl))
7856 then
7857 return;
7858 end if;
7859
eb66e842 7860 else
7861 PDecl := Build_Invariant_Procedure_Declaration (Typ);
7862 end if;
9dc88aea 7863
eb66e842 7864 -- Recover formal of procedure, for use in the calls to invariant
7865 -- functions (including inherited ones).
d9f6a4ee 7866
eb66e842 7867 Object_Entity :=
7868 Defining_Identifier
7869 (First (Parameter_Specifications (Specification (PDecl))));
7870 Object_Name := Chars (Object_Entity);
d9f6a4ee 7871
eb66e842 7872 -- Add invariants for the current type
9dc88aea 7873
eb66e842 7874 Add_Invariants (Typ, Inherit => False);
9dc88aea 7875
eb66e842 7876 -- Add invariants for parent types
9dc88aea 7877
eb66e842 7878 declare
7879 Current_Typ : Entity_Id;
7880 Parent_Typ : Entity_Id;
9dc88aea 7881
eb66e842 7882 begin
7883 Current_Typ := Typ;
d97beb2f 7884 loop
eb66e842 7885 Parent_Typ := Etype (Current_Typ);
9dc88aea 7886
eb66e842 7887 if Is_Private_Type (Parent_Typ)
7888 and then Present (Full_View (Base_Type (Parent_Typ)))
d9f6a4ee 7889 then
eb66e842 7890 Parent_Typ := Full_View (Base_Type (Parent_Typ));
7891 end if;
9dc88aea 7892
eb66e842 7893 exit when Parent_Typ = Current_Typ;
9dc88aea 7894
eb66e842 7895 Current_Typ := Parent_Typ;
7896 Add_Invariants (Current_Typ, Inherit => True);
7897 end loop;
7898 end;
9dc88aea 7899
eb66e842 7900 -- Build the procedure if we generated at least one Check pragma
9dc88aea 7901
eb66e842 7902 if Stmts /= No_List then
7903 Spec := Copy_Separate_Tree (Specification (PDecl));
9dc88aea 7904
eb66e842 7905 PBody :=
7906 Make_Subprogram_Body (Loc,
7907 Specification => Spec,
7908 Declarations => Empty_List,
7909 Handled_Statement_Sequence =>
7910 Make_Handled_Sequence_Of_Statements (Loc,
7911 Statements => Stmts));
9dc88aea 7912
eb66e842 7913 -- Insert procedure declaration and spec at the appropriate points.
7914 -- If declaration is already analyzed, it was processed by the
7915 -- generated pragma.
9dc88aea 7916
eb66e842 7917 if Present (Private_Decls) then
d97beb2f 7918
eb66e842 7919 -- The spec goes at the end of visible declarations, but they have
7920 -- already been analyzed, so we need to explicitly do the analyze.
d9f6a4ee 7921
eb66e842 7922 if not Analyzed (PDecl) then
7923 Append_To (Visible_Decls, PDecl);
7924 Analyze (PDecl);
7925 end if;
d9f6a4ee 7926
eb66e842 7927 -- The body goes at the end of the private declarations, which we
7928 -- have not analyzed yet, so we do not need to perform an explicit
7929 -- analyze call. We skip this if there are no private declarations
7930 -- (this is an error that will be caught elsewhere);
d9f6a4ee 7931
eb66e842 7932 Append_To (Private_Decls, PBody);
d9f6a4ee 7933
eb66e842 7934 -- If the invariant appears on the full view of a type, the
7935 -- analysis of the private part is complete, and we must
7936 -- analyze the new body explicitly.
d9f6a4ee 7937
eb66e842 7938 if In_Private_Part (Current_Scope) then
7939 Analyze (PBody);
7940 end if;
d97beb2f 7941
eb66e842 7942 -- If there are no private declarations this may be an error that
7943 -- will be diagnosed elsewhere. However, if this is a non-private
7944 -- type that inherits invariants, it needs no completion and there
7945 -- may be no private part. In this case insert invariant procedure
7946 -- at end of current declarative list, and analyze at once, given
7947 -- that the type is about to be frozen.
d97beb2f 7948
eb66e842 7949 elsif not Is_Private_Type (Typ) then
7950 Append_To (Visible_Decls, PDecl);
7951 Append_To (Visible_Decls, PBody);
7952 Analyze (PDecl);
7953 Analyze (PBody);
7954 end if;
7955 end if;
7956 end Build_Invariant_Procedure;
d9f6a4ee 7957
eb66e842 7958 -------------------------------
7959 -- Build_Predicate_Functions --
7960 -------------------------------
d9f6a4ee 7961
eb66e842 7962 -- The procedures that are constructed here have the form:
d9f6a4ee 7963
eb66e842 7964 -- function typPredicate (Ixxx : typ) return Boolean is
7965 -- begin
7966 -- return
7967 -- exp1 and then exp2 and then ...
7968 -- and then typ1Predicate (typ1 (Ixxx))
7969 -- and then typ2Predicate (typ2 (Ixxx))
7970 -- and then ...;
7971 -- end typPredicate;
d9f6a4ee 7972
eb66e842 7973 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
7974 -- this is the point at which these expressions get analyzed, providing the
7975 -- required delay, and typ1, typ2, are entities from which predicates are
7976 -- inherited. Note that we do NOT generate Check pragmas, that's because we
7977 -- use this function even if checks are off, e.g. for membership tests.
d9f6a4ee 7978
eb66e842 7979 -- If the expression has at least one Raise_Expression, then we also build
7980 -- the typPredicateM version of the function, in which any occurrence of a
7981 -- Raise_Expression is converted to "return False".
d9f6a4ee 7982
eb66e842 7983 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
7984 Loc : constant Source_Ptr := Sloc (Typ);
d9f6a4ee 7985
eb66e842 7986 Expr : Node_Id;
7987 -- This is the expression for the result of the function. It is
7988 -- is build by connecting the component predicates with AND THEN.
d9f6a4ee 7989
eb66e842 7990 Expr_M : Node_Id;
7991 -- This is the corresponding return expression for the Predicate_M
7992 -- function. It differs in that raise expressions are marked for
7993 -- special expansion (see Process_REs).
d9f6a4ee 7994
eb66e842 7995 Object_Name : constant Name_Id := New_Internal_Name ('I');
7996 -- Name for argument of Predicate procedure. Note that we use the same
499918a7 7997 -- name for both predicate functions. That way the reference within the
eb66e842 7998 -- predicate expression is the same in both functions.
d9f6a4ee 7999
eb66e842 8000 Object_Entity : constant Entity_Id :=
8001 Make_Defining_Identifier (Loc, Chars => Object_Name);
8002 -- Entity for argument of Predicate procedure
d9f6a4ee 8003
eb66e842 8004 Object_Entity_M : constant Entity_Id :=
8005 Make_Defining_Identifier (Loc, Chars => Object_Name);
8006 -- Entity for argument of Predicate_M procedure
d9f6a4ee 8007
eb66e842 8008 Raise_Expression_Present : Boolean := False;
8009 -- Set True if Expr has at least one Raise_Expression
d9f6a4ee 8010
eb66e842 8011 procedure Add_Call (T : Entity_Id);
8012 -- Includes a call to the predicate function for type T in Expr if T
8013 -- has predicates and Predicate_Function (T) is non-empty.
d9f6a4ee 8014
eb66e842 8015 procedure Add_Predicates;
8016 -- Appends expressions for any Predicate pragmas in the rep item chain
8017 -- Typ to Expr. Note that we look only at items for this exact entity.
8018 -- Inheritance of predicates for the parent type is done by calling the
8019 -- Predicate_Function of the parent type, using Add_Call above.
d9f6a4ee 8020
eb66e842 8021 function Test_RE (N : Node_Id) return Traverse_Result;
8022 -- Used in Test_REs, tests one node for being a raise expression, and if
8023 -- so sets Raise_Expression_Present True.
d9f6a4ee 8024
eb66e842 8025 procedure Test_REs is new Traverse_Proc (Test_RE);
8026 -- Tests to see if Expr contains any raise expressions
d9f6a4ee 8027
eb66e842 8028 function Process_RE (N : Node_Id) return Traverse_Result;
8029 -- Used in Process REs, tests if node N is a raise expression, and if
8030 -- so, marks it to be converted to return False.
d9f6a4ee 8031
eb66e842 8032 procedure Process_REs is new Traverse_Proc (Process_RE);
8033 -- Marks any raise expressions in Expr_M to return False
d9f6a4ee 8034
eb66e842 8035 --------------
8036 -- Add_Call --
8037 --------------
d9f6a4ee 8038
eb66e842 8039 procedure Add_Call (T : Entity_Id) is
8040 Exp : Node_Id;
d9f6a4ee 8041
eb66e842 8042 begin
8043 if Present (T) and then Present (Predicate_Function (T)) then
8044 Set_Has_Predicates (Typ);
d9f6a4ee 8045
eb66e842 8046 -- Build the call to the predicate function of T
d9f6a4ee 8047
eb66e842 8048 Exp :=
8049 Make_Predicate_Call
8050 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
d9f6a4ee 8051
eb66e842 8052 -- Add call to evolving expression, using AND THEN if needed
d9f6a4ee 8053
eb66e842 8054 if No (Expr) then
8055 Expr := Exp;
3b23aaa0 8056
eb66e842 8057 else
8058 Expr :=
3b23aaa0 8059 Make_And_Then (Sloc (Expr),
eb66e842 8060 Left_Opnd => Relocate_Node (Expr),
8061 Right_Opnd => Exp);
8062 end if;
d9f6a4ee 8063
eb66e842 8064 -- Output info message on inheritance if required. Note we do not
8065 -- give this information for generic actual types, since it is
8066 -- unwelcome noise in that case in instantiations. We also
8067 -- generally suppress the message in instantiations, and also
8068 -- if it involves internal names.
d9f6a4ee 8069
eb66e842 8070 if Opt.List_Inherited_Aspects
8071 and then not Is_Generic_Actual_Type (Typ)
8072 and then Instantiation_Depth (Sloc (Typ)) = 0
8073 and then not Is_Internal_Name (Chars (T))
8074 and then not Is_Internal_Name (Chars (Typ))
8075 then
8076 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8077 Error_Msg_Node_2 := T;
8078 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8079 end if;
8080 end if;
8081 end Add_Call;
d9f6a4ee 8082
eb66e842 8083 --------------------
8084 -- Add_Predicates --
8085 --------------------
d9f6a4ee 8086
eb66e842 8087 procedure Add_Predicates is
8088 Ritem : Node_Id;
8089 Arg1 : Node_Id;
8090 Arg2 : Node_Id;
d9f6a4ee 8091
eb66e842 8092 procedure Replace_Type_Reference (N : Node_Id);
8093 -- Replace a single occurrence N of the subtype name with a reference
8094 -- to the formal of the predicate function. N can be an identifier
8095 -- referencing the subtype, or a selected component, representing an
8096 -- appropriately qualified occurrence of the subtype name.
d9f6a4ee 8097
eb66e842 8098 procedure Replace_Type_References is
8099 new Replace_Type_References_Generic (Replace_Type_Reference);
8100 -- Traverse an expression changing every occurrence of an identifier
8101 -- whose name matches the name of the subtype with a reference to
8102 -- the formal parameter of the predicate function.
d9f6a4ee 8103
eb66e842 8104 ----------------------------
8105 -- Replace_Type_Reference --
8106 ----------------------------
d9f6a4ee 8107
eb66e842 8108 procedure Replace_Type_Reference (N : Node_Id) is
8109 begin
8110 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8111 -- Use the Sloc of the usage name, not the defining name
d97beb2f 8112
eb66e842 8113 Set_Etype (N, Typ);
8114 Set_Entity (N, Object_Entity);
d97beb2f 8115
eb66e842 8116 -- We want to treat the node as if it comes from source, so that
8117 -- ASIS will not ignore it
d97beb2f 8118
eb66e842 8119 Set_Comes_From_Source (N, True);
8120 end Replace_Type_Reference;
d97beb2f 8121
eb66e842 8122 -- Start of processing for Add_Predicates
d97beb2f 8123
eb66e842 8124 begin
8125 Ritem := First_Rep_Item (Typ);
8126 while Present (Ritem) loop
8127 if Nkind (Ritem) = N_Pragma
8128 and then Pragma_Name (Ritem) = Name_Predicate
8129 then
eb66e842 8130 -- Acquire arguments
d97beb2f 8131
eb66e842 8132 Arg1 := First (Pragma_Argument_Associations (Ritem));
8133 Arg2 := Next (Arg1);
d97beb2f 8134
eb66e842 8135 Arg1 := Get_Pragma_Arg (Arg1);
8136 Arg2 := Get_Pragma_Arg (Arg2);
d97beb2f 8137
eb66e842 8138 -- See if this predicate pragma is for the current type or for
8139 -- its full view. A predicate on a private completion is placed
8140 -- on the partial view beause this is the visible entity that
8141 -- is frozen.
639c3741 8142
eb66e842 8143 if Entity (Arg1) = Typ
8144 or else Full_View (Entity (Arg1)) = Typ
639c3741 8145 then
eb66e842 8146 -- We have a match, this entry is for our subtype
639c3741 8147
eb66e842 8148 -- We need to replace any occurrences of the name of the
8149 -- type with references to the object.
639c3741 8150
37c6552c 8151 Replace_Type_References (Arg2, Typ);
639c3741 8152
eb66e842 8153 -- If this predicate comes from an aspect, find the aspect
8154 -- specification, and replace the saved expression because
8155 -- we need the subtype references replaced for the calls to
8156 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8157 -- and Check_Aspect_At_End_Of_Declarations.
639c3741 8158
eb66e842 8159 if From_Aspect_Specification (Ritem) then
8160 declare
8161 Aitem : Node_Id;
639c3741 8162
eb66e842 8163 begin
8164 -- Loop to find corresponding aspect, note that this
8165 -- must be present given the pragma is marked delayed.
639c3741 8166
eb66e842 8167 Aitem := Next_Rep_Item (Ritem);
8168 loop
8169 if Nkind (Aitem) = N_Aspect_Specification
8170 and then Aspect_Rep_Item (Aitem) = Ritem
8171 then
8172 Set_Entity
8173 (Identifier (Aitem), New_Copy_Tree (Arg2));
8174 exit;
8175 end if;
639c3741 8176
eb66e842 8177 Aitem := Next_Rep_Item (Aitem);
8178 end loop;
8179 end;
8180 end if;
737e8460 8181
eb66e842 8182 -- Now we can add the expression
737e8460 8183
eb66e842 8184 if No (Expr) then
8185 Expr := Relocate_Node (Arg2);
d97beb2f 8186
eb66e842 8187 -- There already was a predicate, so add to it
d97beb2f 8188
eb66e842 8189 else
8190 Expr :=
8191 Make_And_Then (Loc,
8192 Left_Opnd => Relocate_Node (Expr),
8193 Right_Opnd => Relocate_Node (Arg2));
8194 end if;
8195 end if;
8196 end if;
d97beb2f 8197
eb66e842 8198 Next_Rep_Item (Ritem);
8199 end loop;
8200 end Add_Predicates;
d97beb2f 8201
eb66e842 8202 ----------------
8203 -- Process_RE --
8204 ----------------
d97beb2f 8205
eb66e842 8206 function Process_RE (N : Node_Id) return Traverse_Result is
d9f6a4ee 8207 begin
eb66e842 8208 if Nkind (N) = N_Raise_Expression then
8209 Set_Convert_To_Return_False (N);
8210 return Skip;
d9f6a4ee 8211 else
eb66e842 8212 return OK;
d9f6a4ee 8213 end if;
eb66e842 8214 end Process_RE;
d7c2851f 8215
d9f6a4ee 8216 -------------
eb66e842 8217 -- Test_RE --
d9f6a4ee 8218 -------------
d7c2851f 8219
eb66e842 8220 function Test_RE (N : Node_Id) return Traverse_Result is
d97beb2f 8221 begin
eb66e842 8222 if Nkind (N) = N_Raise_Expression then
8223 Raise_Expression_Present := True;
8224 return Abandon;
8225 else
8226 return OK;
8227 end if;
8228 end Test_RE;
d97beb2f 8229
eb66e842 8230 -- Start of processing for Build_Predicate_Functions
d97beb2f 8231
eb66e842 8232 begin
8233 -- Return if already built or if type does not have predicates
9dc88aea 8234
eb66e842 8235 if not Has_Predicates (Typ)
8236 or else Present (Predicate_Function (Typ))
8237 then
8238 return;
8239 end if;
d9f6a4ee 8240
eb66e842 8241 -- Prepare to construct predicate expression
d97beb2f 8242
eb66e842 8243 Expr := Empty;
d97beb2f 8244
eb66e842 8245 -- Add Predicates for the current type
d97beb2f 8246
eb66e842 8247 Add_Predicates;
d97beb2f 8248
eb66e842 8249 -- Add predicates for ancestor if present
d97beb2f 8250
eb66e842 8251 declare
8252 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
d9f6a4ee 8253 begin
eb66e842 8254 if Present (Atyp) then
8255 Add_Call (Atyp);
8256 end if;
8257 end;
9dc88aea 8258
eb66e842 8259 -- Case where predicates are present
9dc88aea 8260
eb66e842 8261 if Present (Expr) then
726fd56a 8262
eb66e842 8263 -- Test for raise expression present
726fd56a 8264
eb66e842 8265 Test_REs (Expr);
9dc88aea 8266
eb66e842 8267 -- If raise expression is present, capture a copy of Expr for use
8268 -- in building the predicateM function version later on. For this
8269 -- copy we replace references to Object_Entity by Object_Entity_M.
9dc88aea 8270
eb66e842 8271 if Raise_Expression_Present then
8272 declare
299b347e 8273 Map : constant Elist_Id := New_Elmt_List;
8274 New_V : Entity_Id := Empty;
8275
8276 -- The unanalyzed expression will be copied and appear in
8277 -- both functions. Normally expressions do not declare new
8278 -- entities, but quantified expressions do, so we need to
8279 -- create new entities for their bound variables, to prevent
8280 -- multiple definitions in gigi.
8281
8282 function Reset_Loop_Variable (N : Node_Id)
8283 return Traverse_Result;
8284
8285 procedure Collect_Loop_Variables is
8286 new Traverse_Proc (Reset_Loop_Variable);
8287
8288 ------------------------
8289 -- Reset_Loop_Variable --
8290 ------------------------
8291
8292 function Reset_Loop_Variable (N : Node_Id)
8293 return Traverse_Result
8294 is
8295 begin
8296 if Nkind (N) = N_Iterator_Specification then
8297 New_V := Make_Defining_Identifier
8298 (Sloc (N), Chars (Defining_Identifier (N)));
8299
8300 Set_Defining_Identifier (N, New_V);
8301 end if;
8302
8303 return OK;
8304 end Reset_Loop_Variable;
8305
eb66e842 8306 begin
8307 Append_Elmt (Object_Entity, Map);
8308 Append_Elmt (Object_Entity_M, Map);
8309 Expr_M := New_Copy_Tree (Expr, Map => Map);
299b347e 8310 Collect_Loop_Variables (Expr_M);
eb66e842 8311 end;
8312 end if;
d97beb2f 8313
eb66e842 8314 -- Build the main predicate function
9dc88aea 8315
eb66e842 8316 declare
8317 SId : constant Entity_Id :=
8318 Make_Defining_Identifier (Loc,
8319 Chars => New_External_Name (Chars (Typ), "Predicate"));
8320 -- The entity for the the function spec
9dc88aea 8321
eb66e842 8322 SIdB : constant Entity_Id :=
8323 Make_Defining_Identifier (Loc,
8324 Chars => New_External_Name (Chars (Typ), "Predicate"));
8325 -- The entity for the function body
9dc88aea 8326
eb66e842 8327 Spec : Node_Id;
8328 FDecl : Node_Id;
8329 FBody : Node_Id;
9dc88aea 8330
eb66e842 8331 begin
8332 -- Build function declaration
d97beb2f 8333
eb66e842 8334 Set_Ekind (SId, E_Function);
8335 Set_Is_Internal (SId);
8336 Set_Is_Predicate_Function (SId);
8337 Set_Predicate_Function (Typ, SId);
d97beb2f 8338
eb66e842 8339 -- The predicate function is shared between views of a type
d97beb2f 8340
eb66e842 8341 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8342 Set_Predicate_Function (Full_View (Typ), SId);
d97beb2f 8343 end if;
d97beb2f 8344
eb66e842 8345 Spec :=
8346 Make_Function_Specification (Loc,
8347 Defining_Unit_Name => SId,
8348 Parameter_Specifications => New_List (
8349 Make_Parameter_Specification (Loc,
8350 Defining_Identifier => Object_Entity,
8351 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8352 Result_Definition =>
8353 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8354
eb66e842 8355 FDecl :=
8356 Make_Subprogram_Declaration (Loc,
8357 Specification => Spec);
d97beb2f 8358
eb66e842 8359 -- Build function body
d97beb2f 8360
eb66e842 8361 Spec :=
8362 Make_Function_Specification (Loc,
8363 Defining_Unit_Name => SIdB,
8364 Parameter_Specifications => New_List (
8365 Make_Parameter_Specification (Loc,
8366 Defining_Identifier =>
8367 Make_Defining_Identifier (Loc, Object_Name),
8368 Parameter_Type =>
8369 New_Occurrence_Of (Typ, Loc))),
8370 Result_Definition =>
8371 New_Occurrence_Of (Standard_Boolean, Loc));
d97beb2f 8372
eb66e842 8373 FBody :=
8374 Make_Subprogram_Body (Loc,
8375 Specification => Spec,
8376 Declarations => Empty_List,
8377 Handled_Statement_Sequence =>
8378 Make_Handled_Sequence_Of_Statements (Loc,
8379 Statements => New_List (
8380 Make_Simple_Return_Statement (Loc,
8381 Expression => Expr))));
9dc88aea 8382
eb66e842 8383 -- Insert declaration before freeze node and body after
d97beb2f 8384
eb66e842 8385 Insert_Before_And_Analyze (N, FDecl);
8386 Insert_After_And_Analyze (N, FBody);
d9f6a4ee 8387 end;
d97beb2f 8388
eb66e842 8389 -- Test for raise expressions present and if so build M version
d97beb2f 8390
eb66e842 8391 if Raise_Expression_Present then
8392 declare
8393 SId : constant Entity_Id :=
8394 Make_Defining_Identifier (Loc,
8395 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8396 -- The entity for the the function spec
d97beb2f 8397
eb66e842 8398 SIdB : constant Entity_Id :=
8399 Make_Defining_Identifier (Loc,
8400 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8401 -- The entity for the function body
b9e61b2a 8402
eb66e842 8403 Spec : Node_Id;
8404 FDecl : Node_Id;
8405 FBody : Node_Id;
8406 BTemp : Entity_Id;
d97beb2f 8407
eb66e842 8408 begin
8409 -- Mark any raise expressions for special expansion
d97beb2f 8410
eb66e842 8411 Process_REs (Expr_M);
d97beb2f 8412
eb66e842 8413 -- Build function declaration
d97beb2f 8414
eb66e842 8415 Set_Ekind (SId, E_Function);
8416 Set_Is_Predicate_Function_M (SId);
8417 Set_Predicate_Function_M (Typ, SId);
d97beb2f 8418
eb66e842 8419 -- The predicate function is shared between views of a type
d97beb2f 8420
eb66e842 8421 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8422 Set_Predicate_Function_M (Full_View (Typ), SId);
8423 end if;
9dc88aea 8424
eb66e842 8425 Spec :=
8426 Make_Function_Specification (Loc,
8427 Defining_Unit_Name => SId,
8428 Parameter_Specifications => New_List (
8429 Make_Parameter_Specification (Loc,
8430 Defining_Identifier => Object_Entity_M,
8431 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8432 Result_Definition =>
8433 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8434
eb66e842 8435 FDecl :=
8436 Make_Subprogram_Declaration (Loc,
8437 Specification => Spec);
9dc88aea 8438
eb66e842 8439 -- Build function body
9dc88aea 8440
eb66e842 8441 Spec :=
8442 Make_Function_Specification (Loc,
8443 Defining_Unit_Name => SIdB,
8444 Parameter_Specifications => New_List (
8445 Make_Parameter_Specification (Loc,
8446 Defining_Identifier =>
8447 Make_Defining_Identifier (Loc, Object_Name),
8448 Parameter_Type =>
8449 New_Occurrence_Of (Typ, Loc))),
8450 Result_Definition =>
8451 New_Occurrence_Of (Standard_Boolean, Loc));
9dc88aea 8452
eb66e842 8453 -- Build the body, we declare the boolean expression before
8454 -- doing the return, because we are not really confident of
8455 -- what happens if a return appears within a return.
9dc88aea 8456
eb66e842 8457 BTemp :=
8458 Make_Defining_Identifier (Loc,
8459 Chars => New_Internal_Name ('B'));
9dc88aea 8460
eb66e842 8461 FBody :=
8462 Make_Subprogram_Body (Loc,
8463 Specification => Spec,
9dc88aea 8464
eb66e842 8465 Declarations => New_List (
8466 Make_Object_Declaration (Loc,
8467 Defining_Identifier => BTemp,
8468 Constant_Present => True,
8469 Object_Definition =>
8470 New_Occurrence_Of (Standard_Boolean, Loc),
8471 Expression => Expr_M)),
d97beb2f 8472
eb66e842 8473 Handled_Statement_Sequence =>
8474 Make_Handled_Sequence_Of_Statements (Loc,
8475 Statements => New_List (
8476 Make_Simple_Return_Statement (Loc,
8477 Expression => New_Occurrence_Of (BTemp, Loc)))));
d97beb2f 8478
eb66e842 8479 -- Insert declaration before freeze node and body after
d97beb2f 8480
eb66e842 8481 Insert_Before_And_Analyze (N, FDecl);
8482 Insert_After_And_Analyze (N, FBody);
8483 end;
8484 end if;
9dc88aea 8485
3b23aaa0 8486 -- See if we have a static predicate. Note that the answer may be
8487 -- yes even if we have an explicit Dynamic_Predicate present.
9dc88aea 8488
3b23aaa0 8489 declare
94d896aa 8490 PS : Boolean;
3b23aaa0 8491 EN : Node_Id;
9dc88aea 8492
3b23aaa0 8493 begin
94d896aa 8494 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8495 PS := False;
8496 else
8497 PS := Is_Predicate_Static (Expr, Object_Name);
8498 end if;
8499
a360a0f7 8500 -- Case where we have a predicate-static aspect
9dc88aea 8501
3b23aaa0 8502 if PS then
9dc88aea 8503
3b23aaa0 8504 -- We don't set Has_Static_Predicate_Aspect, since we can have
8505 -- any of the three cases (Predicate, Dynamic_Predicate, or
8506 -- Static_Predicate) generating a predicate with an expression
a360a0f7 8507 -- that is predicate-static. We just indicate that we have a
3b23aaa0 8508 -- predicate that can be treated as static.
d7c2851f 8509
3b23aaa0 8510 Set_Has_Static_Predicate (Typ);
d7c2851f 8511
3b23aaa0 8512 -- For discrete subtype, build the static predicate list
9dc88aea 8513
3b23aaa0 8514 if Is_Discrete_Type (Typ) then
d0988351 8515 if not Is_Static_Subtype (Typ) then
8516
8517 -- This can only happen in the presence of previous
8518 -- semantic errors.
8519
8520 pragma Assert (Serious_Errors_Detected > 0);
8521 return;
8522 end if;
8523
3b23aaa0 8524 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8525
8526 -- If we don't get a static predicate list, it means that we
8527 -- have a case where this is not possible, most typically in
8528 -- the case where we inherit a dynamic predicate. We do not
8529 -- consider this an error, we just leave the predicate as
8530 -- dynamic. But if we do succeed in building the list, then
8531 -- we mark the predicate as static.
8532
5c6a5792 8533 if No (Static_Discrete_Predicate (Typ)) then
3b23aaa0 8534 Set_Has_Static_Predicate (Typ, False);
8535 end if;
94d896aa 8536
8537 -- For real or string subtype, save predicate expression
8538
8539 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8540 Set_Static_Real_Or_String_Predicate (Typ, Expr);
3b23aaa0 8541 end if;
8542
8543 -- Case of dynamic predicate (expression is not predicate-static)
9dc88aea 8544
eb66e842 8545 else
3b23aaa0 8546 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8547 -- is only set if we have an explicit Dynamic_Predicate aspect
8548 -- given. Here we may simply have a Predicate aspect where the
8549 -- expression happens not to be predicate-static.
8550
8551 -- Emit an error when the predicate is categorized as static
8552 -- but its expression is not predicate-static.
8553
8554 -- First a little fiddling to get a nice location for the
8555 -- message. If the expression is of the form (A and then B),
8556 -- then use the left operand for the Sloc. This avoids getting
a360a0f7 8557 -- confused by a call to a higher-level predicate with a less
3b23aaa0 8558 -- convenient source location.
8559
8560 EN := Expr;
8561 while Nkind (EN) = N_And_Then loop
8562 EN := Left_Opnd (EN);
8563 end loop;
8564
8565 -- Now post appropriate message
8566
8567 if Has_Static_Predicate_Aspect (Typ) then
94d896aa 8568 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
3b23aaa0 8569 Error_Msg_F
26279d91 8570 ("expression is not predicate-static (RM 3.2.4(16-22))",
3b23aaa0 8571 EN);
8572 else
94d896aa 8573 Error_Msg_F
8574 ("static predicate requires scalar or string type", EN);
3b23aaa0 8575 end if;
8576 end if;
eb66e842 8577 end if;
3b23aaa0 8578 end;
eb66e842 8579 end if;
8580 end Build_Predicate_Functions;
9dc88aea 8581
d9f6a4ee 8582 -----------------------------------------
8583 -- Check_Aspect_At_End_Of_Declarations --
8584 -----------------------------------------
9dc88aea 8585
d9f6a4ee 8586 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8587 Ent : constant Entity_Id := Entity (ASN);
8588 Ident : constant Node_Id := Identifier (ASN);
8589 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
d7c2851f 8590
d9f6a4ee 8591 End_Decl_Expr : constant Node_Id := Entity (Ident);
8592 -- Expression to be analyzed at end of declarations
d7c2851f 8593
d9f6a4ee 8594 Freeze_Expr : constant Node_Id := Expression (ASN);
8595 -- Expression from call to Check_Aspect_At_Freeze_Point
d7c2851f 8596
d9f6a4ee 8597 T : constant Entity_Id := Etype (Freeze_Expr);
8598 -- Type required for preanalyze call
d7c2851f 8599
d9f6a4ee 8600 Err : Boolean;
8601 -- Set False if error
9dc88aea 8602
d9f6a4ee 8603 -- On entry to this procedure, Entity (Ident) contains a copy of the
8604 -- original expression from the aspect, saved for this purpose, and
8605 -- but Expression (Ident) is a preanalyzed copy of the expression,
8606 -- preanalyzed just after the freeze point.
9dc88aea 8607
d9f6a4ee 8608 procedure Check_Overloaded_Name;
8609 -- For aspects whose expression is simply a name, this routine checks if
8610 -- the name is overloaded or not. If so, it verifies there is an
8611 -- interpretation that matches the entity obtained at the freeze point,
8612 -- otherwise the compiler complains.
9dc88aea 8613
d9f6a4ee 8614 ---------------------------
8615 -- Check_Overloaded_Name --
8616 ---------------------------
8617
8618 procedure Check_Overloaded_Name is
d97beb2f 8619 begin
d9f6a4ee 8620 if not Is_Overloaded (End_Decl_Expr) then
5ac76cee 8621 Err := not Is_Entity_Name (End_Decl_Expr)
8622 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
d9f6a4ee 8623
d97beb2f 8624 else
d9f6a4ee 8625 Err := True;
9dc88aea 8626
d9f6a4ee 8627 declare
8628 Index : Interp_Index;
8629 It : Interp;
9dc88aea 8630
d9f6a4ee 8631 begin
8632 Get_First_Interp (End_Decl_Expr, Index, It);
8633 while Present (It.Typ) loop
8634 if It.Nam = Entity (Freeze_Expr) then
8635 Err := False;
8636 exit;
8637 end if;
8638
8639 Get_Next_Interp (Index, It);
8640 end loop;
8641 end;
9dc88aea 8642 end if;
d9f6a4ee 8643 end Check_Overloaded_Name;
9dc88aea 8644
d9f6a4ee 8645 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9dc88aea 8646
d9f6a4ee 8647 begin
8648 -- Case of aspects Dimension, Dimension_System and Synchronization
9dc88aea 8649
d9f6a4ee 8650 if A_Id = Aspect_Synchronization then
8651 return;
d97beb2f 8652
d9f6a4ee 8653 -- Case of stream attributes, just have to compare entities. However,
8654 -- the expression is just a name (possibly overloaded), and there may
8655 -- be stream operations declared for unrelated types, so we just need
8656 -- to verify that one of these interpretations is the one available at
8657 -- at the freeze point.
9dc88aea 8658
d9f6a4ee 8659 elsif A_Id = Aspect_Input or else
f02a9a9a 8660 A_Id = Aspect_Output or else
8661 A_Id = Aspect_Read or else
8662 A_Id = Aspect_Write
d9f6a4ee 8663 then
8664 Analyze (End_Decl_Expr);
8665 Check_Overloaded_Name;
9dc88aea 8666
d9f6a4ee 8667 elsif A_Id = Aspect_Variable_Indexing or else
8668 A_Id = Aspect_Constant_Indexing or else
8669 A_Id = Aspect_Default_Iterator or else
8670 A_Id = Aspect_Iterator_Element
8671 then
8672 -- Make type unfrozen before analysis, to prevent spurious errors
8673 -- about late attributes.
9dc88aea 8674
d9f6a4ee 8675 Set_Is_Frozen (Ent, False);
8676 Analyze (End_Decl_Expr);
8677 Set_Is_Frozen (Ent, True);
9dc88aea 8678
d9f6a4ee 8679 -- If the end of declarations comes before any other freeze
8680 -- point, the Freeze_Expr is not analyzed: no check needed.
9dc88aea 8681
d9f6a4ee 8682 if Analyzed (Freeze_Expr) and then not In_Instance then
8683 Check_Overloaded_Name;
8684 else
8685 Err := False;
8686 end if;
55e8372b 8687
d9f6a4ee 8688 -- All other cases
55e8372b 8689
d9f6a4ee 8690 else
c1efebf9 8691 -- Indicate that the expression comes from an aspect specification,
8692 -- which is used in subsequent analysis even if expansion is off.
8693
8694 Set_Parent (End_Decl_Expr, ASN);
8695
d9f6a4ee 8696 -- In a generic context the aspect expressions have not been
8697 -- preanalyzed, so do it now. There are no conformance checks
8698 -- to perform in this case.
55e8372b 8699
d9f6a4ee 8700 if No (T) then
8701 Check_Aspect_At_Freeze_Point (ASN);
8702 return;
55e8372b 8703
d9f6a4ee 8704 -- The default values attributes may be defined in the private part,
8705 -- and the analysis of the expression may take place when only the
8706 -- partial view is visible. The expression must be scalar, so use
8707 -- the full view to resolve.
55e8372b 8708
d9f6a4ee 8709 elsif (A_Id = Aspect_Default_Value
8710 or else
8711 A_Id = Aspect_Default_Component_Value)
8712 and then Is_Private_Type (T)
8713 then
8714 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
c1efebf9 8715
d9f6a4ee 8716 else
8717 Preanalyze_Spec_Expression (End_Decl_Expr, T);
8718 end if;
d97beb2f 8719
d9f6a4ee 8720 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
8721 end if;
55e8372b 8722
c1efebf9 8723 -- Output error message if error. Force error on aspect specification
8724 -- even if there is an error on the expression itself.
55e8372b 8725
d9f6a4ee 8726 if Err then
8727 Error_Msg_NE
c1efebf9 8728 ("!visibility of aspect for& changes after freeze point",
d9f6a4ee 8729 ASN, Ent);
8730 Error_Msg_NE
8731 ("info: & is frozen here, aspects evaluated at this point??",
8732 Freeze_Node (Ent), Ent);
8733 end if;
8734 end Check_Aspect_At_End_Of_Declarations;
55e8372b 8735
d9f6a4ee 8736 ----------------------------------
8737 -- Check_Aspect_At_Freeze_Point --
8738 ----------------------------------
9dc88aea 8739
d9f6a4ee 8740 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
8741 Ident : constant Node_Id := Identifier (ASN);
8742 -- Identifier (use Entity field to save expression)
9dc88aea 8743
d9f6a4ee 8744 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9dc88aea 8745
d9f6a4ee 8746 T : Entity_Id := Empty;
8747 -- Type required for preanalyze call
9dc88aea 8748
d9f6a4ee 8749 begin
8750 -- On entry to this procedure, Entity (Ident) contains a copy of the
8751 -- original expression from the aspect, saved for this purpose.
9dc88aea 8752
d9f6a4ee 8753 -- On exit from this procedure Entity (Ident) is unchanged, still
8754 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8755 -- of the expression, preanalyzed just after the freeze point.
d97beb2f 8756
d9f6a4ee 8757 -- Make a copy of the expression to be preanalyzed
d97beb2f 8758
d9f6a4ee 8759 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
d97beb2f 8760
d9f6a4ee 8761 -- Find type for preanalyze call
d97beb2f 8762
d9f6a4ee 8763 case A_Id is
9dc88aea 8764
d9f6a4ee 8765 -- No_Aspect should be impossible
d97beb2f 8766
d9f6a4ee 8767 when No_Aspect =>
8768 raise Program_Error;
8769
8770 -- Aspects taking an optional boolean argument
d97beb2f 8771
d9f6a4ee 8772 when Boolean_Aspects |
8773 Library_Unit_Aspects =>
9dc88aea 8774
d9f6a4ee 8775 T := Standard_Boolean;
d7c2851f 8776
d9f6a4ee 8777 -- Aspects corresponding to attribute definition clauses
9dc88aea 8778
d9f6a4ee 8779 when Aspect_Address =>
8780 T := RTE (RE_Address);
9dc88aea 8781
d9f6a4ee 8782 when Aspect_Attach_Handler =>
8783 T := RTE (RE_Interrupt_ID);
d7c2851f 8784
d9f6a4ee 8785 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
8786 T := RTE (RE_Bit_Order);
d7c2851f 8787
d9f6a4ee 8788 when Aspect_Convention =>
8789 return;
d7c2851f 8790
d9f6a4ee 8791 when Aspect_CPU =>
8792 T := RTE (RE_CPU_Range);
d7c2851f 8793
d9f6a4ee 8794 -- Default_Component_Value is resolved with the component type
d7c2851f 8795
d9f6a4ee 8796 when Aspect_Default_Component_Value =>
8797 T := Component_Type (Entity (ASN));
d7c2851f 8798
647fab54 8799 when Aspect_Default_Storage_Pool =>
8800 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
8801
d9f6a4ee 8802 -- Default_Value is resolved with the type entity in question
d7c2851f 8803
d9f6a4ee 8804 when Aspect_Default_Value =>
8805 T := Entity (ASN);
9dc88aea 8806
d9f6a4ee 8807 when Aspect_Dispatching_Domain =>
8808 T := RTE (RE_Dispatching_Domain);
9dc88aea 8809
d9f6a4ee 8810 when Aspect_External_Tag =>
8811 T := Standard_String;
9dc88aea 8812
d9f6a4ee 8813 when Aspect_External_Name =>
8814 T := Standard_String;
9dc88aea 8815
d9f6a4ee 8816 when Aspect_Link_Name =>
8817 T := Standard_String;
9dc88aea 8818
d9f6a4ee 8819 when Aspect_Priority | Aspect_Interrupt_Priority =>
8820 T := Standard_Integer;
d97beb2f 8821
d9f6a4ee 8822 when Aspect_Relative_Deadline =>
8823 T := RTE (RE_Time_Span);
d97beb2f 8824
d9f6a4ee 8825 when Aspect_Small =>
8826 T := Universal_Real;
490beba6 8827
d9f6a4ee 8828 -- For a simple storage pool, we have to retrieve the type of the
8829 -- pool object associated with the aspect's corresponding attribute
8830 -- definition clause.
490beba6 8831
d9f6a4ee 8832 when Aspect_Simple_Storage_Pool =>
8833 T := Etype (Expression (Aspect_Rep_Item (ASN)));
d97beb2f 8834
d9f6a4ee 8835 when Aspect_Storage_Pool =>
8836 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
d97beb2f 8837
d9f6a4ee 8838 when Aspect_Alignment |
8839 Aspect_Component_Size |
8840 Aspect_Machine_Radix |
8841 Aspect_Object_Size |
8842 Aspect_Size |
8843 Aspect_Storage_Size |
8844 Aspect_Stream_Size |
8845 Aspect_Value_Size =>
8846 T := Any_Integer;
9dc88aea 8847
04ae062f 8848 when Aspect_Linker_Section =>
8849 T := Standard_String;
8850
d9f6a4ee 8851 when Aspect_Synchronization =>
8852 return;
7d20685d 8853
d9f6a4ee 8854 -- Special case, the expression of these aspects is just an entity
8855 -- that does not need any resolution, so just analyze.
7d20685d 8856
d9f6a4ee 8857 when Aspect_Input |
8858 Aspect_Output |
8859 Aspect_Read |
8860 Aspect_Suppress |
8861 Aspect_Unsuppress |
8862 Aspect_Warnings |
8863 Aspect_Write =>
8864 Analyze (Expression (ASN));
8865 return;
7d20685d 8866
d9f6a4ee 8867 -- Same for Iterator aspects, where the expression is a function
8868 -- name. Legality rules are checked separately.
89f1e35c 8869
d9f6a4ee 8870 when Aspect_Constant_Indexing |
8871 Aspect_Default_Iterator |
8872 Aspect_Iterator_Element |
8873 Aspect_Variable_Indexing =>
8874 Analyze (Expression (ASN));
8875 return;
7d20685d 8876
b3f8228a 8877 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8878
8879 when Aspect_Iterable =>
3061ffde 8880 T := Entity (ASN);
8881
b3f8228a 8882 declare
a9f5fea7 8883 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
3061ffde 8884 Assoc : Node_Id;
8885 Expr : Node_Id;
a9f5fea7 8886
b3f8228a 8887 begin
a9f5fea7 8888 if Cursor = Any_Type then
8889 return;
8890 end if;
8891
b3f8228a 8892 Assoc := First (Component_Associations (Expression (ASN)));
8893 while Present (Assoc) loop
3061ffde 8894 Expr := Expression (Assoc);
8895 Analyze (Expr);
a9f5fea7 8896
8897 if not Error_Posted (Expr) then
8898 Resolve_Iterable_Operation
8899 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
8900 end if;
8901
b3f8228a 8902 Next (Assoc);
8903 end loop;
8904 end;
3061ffde 8905
b3f8228a 8906 return;
8907
d9f6a4ee 8908 -- Invariant/Predicate take boolean expressions
7d20685d 8909
d9f6a4ee 8910 when Aspect_Dynamic_Predicate |
8911 Aspect_Invariant |
8912 Aspect_Predicate |
8913 Aspect_Static_Predicate |
8914 Aspect_Type_Invariant =>
8915 T := Standard_Boolean;
7d20685d 8916
d9f6a4ee 8917 -- Here is the list of aspects that don't require delay analysis
89f1e35c 8918
ec6f6da5 8919 when Aspect_Abstract_State |
8920 Aspect_Annotate |
8921 Aspect_Contract_Cases |
8922 Aspect_Default_Initial_Condition |
3dbe7a69 8923 Aspect_Depends |
ec6f6da5 8924 Aspect_Dimension |
8925 Aspect_Dimension_System |
cab27d2a 8926 Aspect_Extensions_Visible |
3dbe7a69 8927 Aspect_Ghost |
8928 Aspect_Global |
ec6f6da5 8929 Aspect_Implicit_Dereference |
8930 Aspect_Initial_Condition |
8931 Aspect_Initializes |
1fd4313f 8932 Aspect_Obsolescent |
ec6f6da5 8933 Aspect_Part_Of |
8934 Aspect_Post |
8935 Aspect_Postcondition |
8936 Aspect_Pre |
8937 Aspect_Precondition |
8938 Aspect_Refined_Depends |
8939 Aspect_Refined_Global |
8940 Aspect_Refined_Post |
8941 Aspect_Refined_State |
8942 Aspect_SPARK_Mode |
8943 Aspect_Test_Case =>
d9f6a4ee 8944 raise Program_Error;
2b184b2f 8945
d9f6a4ee 8946 end case;
2b184b2f 8947
d9f6a4ee 8948 -- Do the preanalyze call
2b184b2f 8949
d9f6a4ee 8950 Preanalyze_Spec_Expression (Expression (ASN), T);
8951 end Check_Aspect_At_Freeze_Point;
2b184b2f 8952
d9f6a4ee 8953 -----------------------------------
8954 -- Check_Constant_Address_Clause --
8955 -----------------------------------
2b184b2f 8956
d9f6a4ee 8957 procedure Check_Constant_Address_Clause
8958 (Expr : Node_Id;
8959 U_Ent : Entity_Id)
8960 is
8961 procedure Check_At_Constant_Address (Nod : Node_Id);
8962 -- Checks that the given node N represents a name whose 'Address is
8963 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
8964 -- address value is the same at the point of declaration of U_Ent and at
8965 -- the time of elaboration of the address clause.
84ed7523 8966
d9f6a4ee 8967 procedure Check_Expr_Constants (Nod : Node_Id);
8968 -- Checks that Nod meets the requirements for a constant address clause
8969 -- in the sense of the enclosing procedure.
84ed7523 8970
d9f6a4ee 8971 procedure Check_List_Constants (Lst : List_Id);
8972 -- Check that all elements of list Lst meet the requirements for a
8973 -- constant address clause in the sense of the enclosing procedure.
84ed7523 8974
d9f6a4ee 8975 -------------------------------
8976 -- Check_At_Constant_Address --
8977 -------------------------------
84ed7523 8978
d9f6a4ee 8979 procedure Check_At_Constant_Address (Nod : Node_Id) is
8980 begin
8981 if Is_Entity_Name (Nod) then
8982 if Present (Address_Clause (Entity ((Nod)))) then
8983 Error_Msg_NE
8984 ("invalid address clause for initialized object &!",
8985 Nod, U_Ent);
8986 Error_Msg_NE
8987 ("address for& cannot" &
8988 " depend on another address clause! (RM 13.1(22))!",
8989 Nod, U_Ent);
84ed7523 8990
d9f6a4ee 8991 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
8992 and then Sloc (U_Ent) < Sloc (Entity (Nod))
8993 then
8994 Error_Msg_NE
8995 ("invalid address clause for initialized object &!",
8996 Nod, U_Ent);
8997 Error_Msg_Node_2 := U_Ent;
8998 Error_Msg_NE
8999 ("\& must be defined before & (RM 13.1(22))!",
9000 Nod, Entity (Nod));
9001 end if;
7d20685d 9002
d9f6a4ee 9003 elsif Nkind (Nod) = N_Selected_Component then
9004 declare
9005 T : constant Entity_Id := Etype (Prefix (Nod));
59f3e675 9006
d9f6a4ee 9007 begin
9008 if (Is_Record_Type (T)
9009 and then Has_Discriminants (T))
9010 or else
9011 (Is_Access_Type (T)
f02a9a9a 9012 and then Is_Record_Type (Designated_Type (T))
9013 and then Has_Discriminants (Designated_Type (T)))
d9f6a4ee 9014 then
9015 Error_Msg_NE
9016 ("invalid address clause for initialized object &!",
9017 Nod, U_Ent);
9018 Error_Msg_N
9019 ("\address cannot depend on component" &
9020 " of discriminated record (RM 13.1(22))!",
9021 Nod);
9022 else
9023 Check_At_Constant_Address (Prefix (Nod));
9024 end if;
9025 end;
89cc7147 9026
d9f6a4ee 9027 elsif Nkind (Nod) = N_Indexed_Component then
9028 Check_At_Constant_Address (Prefix (Nod));
9029 Check_List_Constants (Expressions (Nod));
89cc7147 9030
84ed7523 9031 else
d9f6a4ee 9032 Check_Expr_Constants (Nod);
84ed7523 9033 end if;
d9f6a4ee 9034 end Check_At_Constant_Address;
81b424ac 9035
d9f6a4ee 9036 --------------------------
9037 -- Check_Expr_Constants --
9038 --------------------------
7b9b2f05 9039
d9f6a4ee 9040 procedure Check_Expr_Constants (Nod : Node_Id) is
9041 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9042 Ent : Entity_Id := Empty;
7b9b2f05 9043
d9f6a4ee 9044 begin
9045 if Nkind (Nod) in N_Has_Etype
9046 and then Etype (Nod) = Any_Type
7b9b2f05 9047 then
d9f6a4ee 9048 return;
309c3053 9049 end if;
9050
d9f6a4ee 9051 case Nkind (Nod) is
9052 when N_Empty | N_Error =>
9053 return;
7d20685d 9054
d9f6a4ee 9055 when N_Identifier | N_Expanded_Name =>
9056 Ent := Entity (Nod);
7d20685d 9057
d9f6a4ee 9058 -- We need to look at the original node if it is different
9059 -- from the node, since we may have rewritten things and
9060 -- substituted an identifier representing the rewrite.
7d20685d 9061
d9f6a4ee 9062 if Original_Node (Nod) /= Nod then
9063 Check_Expr_Constants (Original_Node (Nod));
7d20685d 9064
d9f6a4ee 9065 -- If the node is an object declaration without initial
9066 -- value, some code has been expanded, and the expression
9067 -- is not constant, even if the constituents might be
9068 -- acceptable, as in A'Address + offset.
7d20685d 9069
d9f6a4ee 9070 if Ekind (Ent) = E_Variable
9071 and then
9072 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9073 and then
9074 No (Expression (Declaration_Node (Ent)))
9075 then
9076 Error_Msg_NE
9077 ("invalid address clause for initialized object &!",
9078 Nod, U_Ent);
89f1e35c 9079
d9f6a4ee 9080 -- If entity is constant, it may be the result of expanding
9081 -- a check. We must verify that its declaration appears
9082 -- before the object in question, else we also reject the
9083 -- address clause.
7d20685d 9084
d9f6a4ee 9085 elsif Ekind (Ent) = E_Constant
9086 and then In_Same_Source_Unit (Ent, U_Ent)
9087 and then Sloc (Ent) > Loc_U_Ent
9088 then
9089 Error_Msg_NE
9090 ("invalid address clause for initialized object &!",
9091 Nod, U_Ent);
9092 end if;
7d20685d 9093
d9f6a4ee 9094 return;
9095 end if;
7d20685d 9096
d9f6a4ee 9097 -- Otherwise look at the identifier and see if it is OK
7d20685d 9098
d9f6a4ee 9099 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9100 or else Is_Type (Ent)
9101 then
9102 return;
7d20685d 9103
f02a9a9a 9104 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9105
d9f6a4ee 9106 -- This is the case where we must have Ent defined before
9107 -- U_Ent. Clearly if they are in different units this
9108 -- requirement is met since the unit containing Ent is
9109 -- already processed.
7d20685d 9110
d9f6a4ee 9111 if not In_Same_Source_Unit (Ent, U_Ent) then
9112 return;
7d20685d 9113
d9f6a4ee 9114 -- Otherwise location of Ent must be before the location
9115 -- of U_Ent, that's what prior defined means.
7d20685d 9116
d9f6a4ee 9117 elsif Sloc (Ent) < Loc_U_Ent then
9118 return;
6c545057 9119
d9f6a4ee 9120 else
9121 Error_Msg_NE
9122 ("invalid address clause for initialized object &!",
9123 Nod, U_Ent);
9124 Error_Msg_Node_2 := U_Ent;
9125 Error_Msg_NE
9126 ("\& must be defined before & (RM 13.1(22))!",
9127 Nod, Ent);
9128 end if;
37c6e44c 9129
d9f6a4ee 9130 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9131 Check_Expr_Constants (Original_Node (Nod));
6c545057 9132
d9f6a4ee 9133 else
9134 Error_Msg_NE
9135 ("invalid address clause for initialized object &!",
9136 Nod, U_Ent);
3cdbaa5a 9137
d9f6a4ee 9138 if Comes_From_Source (Ent) then
9139 Error_Msg_NE
9140 ("\reference to variable& not allowed"
9141 & " (RM 13.1(22))!", Nod, Ent);
9142 else
9143 Error_Msg_N
9144 ("non-static expression not allowed"
9145 & " (RM 13.1(22))!", Nod);
9146 end if;
9147 end if;
3cdbaa5a 9148
d9f6a4ee 9149 when N_Integer_Literal =>
7f694ca2 9150
d9f6a4ee 9151 -- If this is a rewritten unchecked conversion, in a system
9152 -- where Address is an integer type, always use the base type
9153 -- for a literal value. This is user-friendly and prevents
9154 -- order-of-elaboration issues with instances of unchecked
9155 -- conversion.
3cdbaa5a 9156
d9f6a4ee 9157 if Nkind (Original_Node (Nod)) = N_Function_Call then
9158 Set_Etype (Nod, Base_Type (Etype (Nod)));
9159 end if;
e1cedbae 9160
d9f6a4ee 9161 when N_Real_Literal |
9162 N_String_Literal |
9163 N_Character_Literal =>
9164 return;
7d20685d 9165
d9f6a4ee 9166 when N_Range =>
9167 Check_Expr_Constants (Low_Bound (Nod));
9168 Check_Expr_Constants (High_Bound (Nod));
231eb581 9169
d9f6a4ee 9170 when N_Explicit_Dereference =>
9171 Check_Expr_Constants (Prefix (Nod));
231eb581 9172
d9f6a4ee 9173 when N_Indexed_Component =>
9174 Check_Expr_Constants (Prefix (Nod));
9175 Check_List_Constants (Expressions (Nod));
7d20685d 9176
d9f6a4ee 9177 when N_Slice =>
9178 Check_Expr_Constants (Prefix (Nod));
9179 Check_Expr_Constants (Discrete_Range (Nod));
cb4c311d 9180
d9f6a4ee 9181 when N_Selected_Component =>
9182 Check_Expr_Constants (Prefix (Nod));
6144c105 9183
d9f6a4ee 9184 when N_Attribute_Reference =>
9185 if Nam_In (Attribute_Name (Nod), Name_Address,
9186 Name_Access,
9187 Name_Unchecked_Access,
9188 Name_Unrestricted_Access)
9189 then
9190 Check_At_Constant_Address (Prefix (Nod));
6144c105 9191
d9f6a4ee 9192 else
9193 Check_Expr_Constants (Prefix (Nod));
9194 Check_List_Constants (Expressions (Nod));
9195 end if;
a7a4a7c2 9196
d9f6a4ee 9197 when N_Aggregate =>
9198 Check_List_Constants (Component_Associations (Nod));
9199 Check_List_Constants (Expressions (Nod));
7d20685d 9200
d9f6a4ee 9201 when N_Component_Association =>
9202 Check_Expr_Constants (Expression (Nod));
e1cedbae 9203
d9f6a4ee 9204 when N_Extension_Aggregate =>
9205 Check_Expr_Constants (Ancestor_Part (Nod));
9206 Check_List_Constants (Component_Associations (Nod));
9207 Check_List_Constants (Expressions (Nod));
3cdbaa5a 9208
d9f6a4ee 9209 when N_Null =>
9210 return;
3cdbaa5a 9211
d9f6a4ee 9212 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9213 Check_Expr_Constants (Left_Opnd (Nod));
9214 Check_Expr_Constants (Right_Opnd (Nod));
e1cedbae 9215
d9f6a4ee 9216 when N_Unary_Op =>
9217 Check_Expr_Constants (Right_Opnd (Nod));
7f694ca2 9218
d9f6a4ee 9219 when N_Type_Conversion |
9220 N_Qualified_Expression |
9221 N_Allocator |
9222 N_Unchecked_Type_Conversion =>
9223 Check_Expr_Constants (Expression (Nod));
47a46747 9224
d9f6a4ee 9225 when N_Function_Call =>
9226 if not Is_Pure (Entity (Name (Nod))) then
9227 Error_Msg_NE
9228 ("invalid address clause for initialized object &!",
9229 Nod, U_Ent);
7f694ca2 9230
d9f6a4ee 9231 Error_Msg_NE
9232 ("\function & is not pure (RM 13.1(22))!",
9233 Nod, Entity (Name (Nod)));
b55f7641 9234
d9f6a4ee 9235 else
9236 Check_List_Constants (Parameter_Associations (Nod));
9237 end if;
b55f7641 9238
d9f6a4ee 9239 when N_Parameter_Association =>
9240 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
7d20685d 9241
d9f6a4ee 9242 when others =>
9243 Error_Msg_NE
9244 ("invalid address clause for initialized object &!",
9245 Nod, U_Ent);
9246 Error_Msg_NE
9247 ("\must be constant defined before& (RM 13.1(22))!",
9248 Nod, U_Ent);
9249 end case;
9250 end Check_Expr_Constants;
7d20685d 9251
d9f6a4ee 9252 --------------------------
9253 -- Check_List_Constants --
9254 --------------------------
89f1e35c 9255
d9f6a4ee 9256 procedure Check_List_Constants (Lst : List_Id) is
9257 Nod1 : Node_Id;
7d20685d 9258
d9f6a4ee 9259 begin
9260 if Present (Lst) then
9261 Nod1 := First (Lst);
9262 while Present (Nod1) loop
9263 Check_Expr_Constants (Nod1);
9264 Next (Nod1);
9265 end loop;
9266 end if;
9267 end Check_List_Constants;
81b424ac 9268
d9f6a4ee 9269 -- Start of processing for Check_Constant_Address_Clause
81b424ac 9270
d9f6a4ee 9271 begin
9272 -- If rep_clauses are to be ignored, no need for legality checks. In
9c7948d7 9273 -- particular, no need to pester user about rep clauses that violate the
9274 -- rule on constant addresses, given that these clauses will be removed
9275 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9276 -- we want to relax these checks.
7d20685d 9277
f1a9be43 9278 if not Ignore_Rep_Clauses and not CodePeer_Mode then
d9f6a4ee 9279 Check_Expr_Constants (Expr);
9280 end if;
9281 end Check_Constant_Address_Clause;
7d20685d 9282
6653b695 9283 ---------------------------
9284 -- Check_Pool_Size_Clash --
9285 ---------------------------
9286
9287 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9288 Post : Node_Id;
9289
9290 begin
9291 -- We need to find out which one came first. Note that in the case of
9292 -- aspects mixed with pragmas there are cases where the processing order
9293 -- is reversed, which is why we do the check here.
9294
9295 if Sloc (SP) < Sloc (SS) then
9296 Error_Msg_Sloc := Sloc (SP);
9297 Post := SS;
9298 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9299
9300 else
9301 Error_Msg_Sloc := Sloc (SS);
9302 Post := SP;
9303 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9304 end if;
9305
9306 Error_Msg_N
9307 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9308 end Check_Pool_Size_Clash;
9309
d9f6a4ee 9310 ----------------------------------------
9311 -- Check_Record_Representation_Clause --
9312 ----------------------------------------
85696508 9313
d9f6a4ee 9314 procedure Check_Record_Representation_Clause (N : Node_Id) is
9315 Loc : constant Source_Ptr := Sloc (N);
9316 Ident : constant Node_Id := Identifier (N);
9317 Rectype : Entity_Id;
9318 Fent : Entity_Id;
9319 CC : Node_Id;
9320 Fbit : Uint;
9321 Lbit : Uint;
9322 Hbit : Uint := Uint_0;
9323 Comp : Entity_Id;
9324 Pcomp : Entity_Id;
89f1e35c 9325
d9f6a4ee 9326 Max_Bit_So_Far : Uint;
9327 -- Records the maximum bit position so far. If all field positions
9328 -- are monotonically increasing, then we can skip the circuit for
9329 -- checking for overlap, since no overlap is possible.
85696508 9330
d9f6a4ee 9331 Tagged_Parent : Entity_Id := Empty;
9332 -- This is set in the case of a derived tagged type for which we have
9333 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9334 -- positioned by record representation clauses). In this case we must
9335 -- check for overlap between components of this tagged type, and the
9336 -- components of its parent. Tagged_Parent will point to this parent
9337 -- type. For all other cases Tagged_Parent is left set to Empty.
7d20685d 9338
d9f6a4ee 9339 Parent_Last_Bit : Uint;
9340 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9341 -- last bit position for any field in the parent type. We only need to
9342 -- check overlap for fields starting below this point.
7d20685d 9343
d9f6a4ee 9344 Overlap_Check_Required : Boolean;
9345 -- Used to keep track of whether or not an overlap check is required
7d20685d 9346
d9f6a4ee 9347 Overlap_Detected : Boolean := False;
9348 -- Set True if an overlap is detected
d6f39728 9349
d9f6a4ee 9350 Ccount : Natural := 0;
9351 -- Number of component clauses in record rep clause
d6f39728 9352
d9f6a4ee 9353 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9354 -- Given two entities for record components or discriminants, checks
9355 -- if they have overlapping component clauses and issues errors if so.
d6f39728 9356
d9f6a4ee 9357 procedure Find_Component;
9358 -- Finds component entity corresponding to current component clause (in
9359 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9360 -- start/stop bits for the field. If there is no matching component or
9361 -- if the matching component does not have a component clause, then
9362 -- that's an error and Comp is set to Empty, but no error message is
9363 -- issued, since the message was already given. Comp is also set to
9364 -- Empty if the current "component clause" is in fact a pragma.
d6f39728 9365
d9f6a4ee 9366 -----------------------------
9367 -- Check_Component_Overlap --
9368 -----------------------------
9369
9370 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9371 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9372 CC2 : constant Node_Id := Component_Clause (C2_Ent);
d6f39728 9373
d6f39728 9374 begin
d9f6a4ee 9375 if Present (CC1) and then Present (CC2) then
d6f39728 9376
d9f6a4ee 9377 -- Exclude odd case where we have two tag components in the same
9378 -- record, both at location zero. This seems a bit strange, but
9379 -- it seems to happen in some circumstances, perhaps on an error.
9380
9381 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9382 return;
d6f39728 9383 end if;
9384
d9f6a4ee 9385 -- Here we check if the two fields overlap
9386
d6f39728 9387 declare
d9f6a4ee 9388 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9389 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9390 E1 : constant Uint := S1 + Esize (C1_Ent);
9391 E2 : constant Uint := S2 + Esize (C2_Ent);
d6f39728 9392
9393 begin
d9f6a4ee 9394 if E2 <= S1 or else E1 <= S2 then
9395 null;
d6f39728 9396 else
d9f6a4ee 9397 Error_Msg_Node_2 := Component_Name (CC2);
9398 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9399 Error_Msg_Node_1 := Component_Name (CC1);
9400 Error_Msg_N
9401 ("component& overlaps & #", Component_Name (CC1));
9402 Overlap_Detected := True;
d6f39728 9403 end if;
9404 end;
d6f39728 9405 end if;
d9f6a4ee 9406 end Check_Component_Overlap;
d6f39728 9407
d9f6a4ee 9408 --------------------
9409 -- Find_Component --
9410 --------------------
9dfe12ae 9411
d9f6a4ee 9412 procedure Find_Component is
9dfe12ae 9413
d9f6a4ee 9414 procedure Search_Component (R : Entity_Id);
9415 -- Search components of R for a match. If found, Comp is set
9dfe12ae 9416
d9f6a4ee 9417 ----------------------
9418 -- Search_Component --
9419 ----------------------
e7b2d6bc 9420
d9f6a4ee 9421 procedure Search_Component (R : Entity_Id) is
9422 begin
9423 Comp := First_Component_Or_Discriminant (R);
9424 while Present (Comp) loop
e7b2d6bc 9425
d9f6a4ee 9426 -- Ignore error of attribute name for component name (we
9427 -- already gave an error message for this, so no need to
9428 -- complain here)
e7b2d6bc 9429
d9f6a4ee 9430 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9431 null;
9432 else
9433 exit when Chars (Comp) = Chars (Component_Name (CC));
9dfe12ae 9434 end if;
9435
d9f6a4ee 9436 Next_Component_Or_Discriminant (Comp);
9437 end loop;
9438 end Search_Component;
d6f39728 9439
d9f6a4ee 9440 -- Start of processing for Find_Component
d6f39728 9441
d9f6a4ee 9442 begin
9443 -- Return with Comp set to Empty if we have a pragma
d6f39728 9444
d9f6a4ee 9445 if Nkind (CC) = N_Pragma then
9446 Comp := Empty;
9447 return;
9448 end if;
d6f39728 9449
d9f6a4ee 9450 -- Search current record for matching component
d6f39728 9451
d9f6a4ee 9452 Search_Component (Rectype);
9dfe12ae 9453
d9f6a4ee 9454 -- If not found, maybe component of base type discriminant that is
9455 -- absent from statically constrained first subtype.
e7b2d6bc 9456
d9f6a4ee 9457 if No (Comp) then
9458 Search_Component (Base_Type (Rectype));
9459 end if;
e7b2d6bc 9460
d9f6a4ee 9461 -- If no component, or the component does not reference the component
9462 -- clause in question, then there was some previous error for which
9463 -- we already gave a message, so just return with Comp Empty.
d6f39728 9464
d9f6a4ee 9465 if No (Comp) or else Component_Clause (Comp) /= CC then
9466 Check_Error_Detected;
9467 Comp := Empty;
93735cb8 9468
d9f6a4ee 9469 -- Normal case where we have a component clause
93735cb8 9470
d9f6a4ee 9471 else
9472 Fbit := Component_Bit_Offset (Comp);
9473 Lbit := Fbit + Esize (Comp) - 1;
9474 end if;
9475 end Find_Component;
93735cb8 9476
d9f6a4ee 9477 -- Start of processing for Check_Record_Representation_Clause
d6f39728 9478
d9f6a4ee 9479 begin
9480 Find_Type (Ident);
9481 Rectype := Entity (Ident);
d6f39728 9482
d9f6a4ee 9483 if Rectype = Any_Type then
9484 return;
9485 else
9486 Rectype := Underlying_Type (Rectype);
9487 end if;
d6f39728 9488
d9f6a4ee 9489 -- See if we have a fully repped derived tagged type
d6f39728 9490
d9f6a4ee 9491 declare
9492 PS : constant Entity_Id := Parent_Subtype (Rectype);
d6f39728 9493
d9f6a4ee 9494 begin
9495 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9496 Tagged_Parent := PS;
d6f39728 9497
d9f6a4ee 9498 -- Find maximum bit of any component of the parent type
d6f39728 9499
d9f6a4ee 9500 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9501 Pcomp := First_Entity (Tagged_Parent);
9502 while Present (Pcomp) loop
9503 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9504 if Component_Bit_Offset (Pcomp) /= No_Uint
9505 and then Known_Static_Esize (Pcomp)
9506 then
9507 Parent_Last_Bit :=
9508 UI_Max
9509 (Parent_Last_Bit,
9510 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9511 end if;
9512
9513 Next_Entity (Pcomp);
d6f39728 9514 end if;
d9f6a4ee 9515 end loop;
9516 end if;
9517 end;
d6f39728 9518
d9f6a4ee 9519 -- All done if no component clauses
d6f39728 9520
d9f6a4ee 9521 CC := First (Component_Clauses (N));
d6f39728 9522
d9f6a4ee 9523 if No (CC) then
9524 return;
9525 end if;
d6f39728 9526
d9f6a4ee 9527 -- If a tag is present, then create a component clause that places it
9528 -- at the start of the record (otherwise gigi may place it after other
9529 -- fields that have rep clauses).
d6f39728 9530
d9f6a4ee 9531 Fent := First_Entity (Rectype);
d6f39728 9532
d9f6a4ee 9533 if Nkind (Fent) = N_Defining_Identifier
9534 and then Chars (Fent) = Name_uTag
9535 then
9536 Set_Component_Bit_Offset (Fent, Uint_0);
9537 Set_Normalized_Position (Fent, Uint_0);
9538 Set_Normalized_First_Bit (Fent, Uint_0);
9539 Set_Normalized_Position_Max (Fent, Uint_0);
9540 Init_Esize (Fent, System_Address_Size);
d6f39728 9541
d9f6a4ee 9542 Set_Component_Clause (Fent,
9543 Make_Component_Clause (Loc,
9544 Component_Name => Make_Identifier (Loc, Name_uTag),
d6f39728 9545
d9f6a4ee 9546 Position => Make_Integer_Literal (Loc, Uint_0),
9547 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9548 Last_Bit =>
9549 Make_Integer_Literal (Loc,
9550 UI_From_Int (System_Address_Size))));
d6f39728 9551
d9f6a4ee 9552 Ccount := Ccount + 1;
9553 end if;
d6f39728 9554
d9f6a4ee 9555 Max_Bit_So_Far := Uint_Minus_1;
9556 Overlap_Check_Required := False;
d6f39728 9557
d9f6a4ee 9558 -- Process the component clauses
d6f39728 9559
d9f6a4ee 9560 while Present (CC) loop
9561 Find_Component;
d6f39728 9562
d9f6a4ee 9563 if Present (Comp) then
9564 Ccount := Ccount + 1;
d6f39728 9565
d9f6a4ee 9566 -- We need a full overlap check if record positions non-monotonic
d6f39728 9567
d9f6a4ee 9568 if Fbit <= Max_Bit_So_Far then
9569 Overlap_Check_Required := True;
9570 end if;
d6f39728 9571
d9f6a4ee 9572 Max_Bit_So_Far := Lbit;
d6f39728 9573
d9f6a4ee 9574 -- Check bit position out of range of specified size
01cb2726 9575
d9f6a4ee 9576 if Has_Size_Clause (Rectype)
9577 and then RM_Size (Rectype) <= Lbit
9578 then
9579 Error_Msg_N
9580 ("bit number out of range of specified size",
9581 Last_Bit (CC));
d6f39728 9582
d9f6a4ee 9583 -- Check for overlap with tag component
67278d60 9584
d9f6a4ee 9585 else
9586 if Is_Tagged_Type (Rectype)
9587 and then Fbit < System_Address_Size
9588 then
9589 Error_Msg_NE
9590 ("component overlaps tag field of&",
9591 Component_Name (CC), Rectype);
9592 Overlap_Detected := True;
9593 end if;
67278d60 9594
d9f6a4ee 9595 if Hbit < Lbit then
9596 Hbit := Lbit;
9597 end if;
9598 end if;
67278d60 9599
d9f6a4ee 9600 -- Check parent overlap if component might overlap parent field
67278d60 9601
d9f6a4ee 9602 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9603 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9604 while Present (Pcomp) loop
9605 if not Is_Tag (Pcomp)
9606 and then Chars (Pcomp) /= Name_uParent
9607 then
9608 Check_Component_Overlap (Comp, Pcomp);
9609 end if;
67278d60 9610
d9f6a4ee 9611 Next_Component_Or_Discriminant (Pcomp);
9612 end loop;
9613 end if;
9614 end if;
67278d60 9615
d9f6a4ee 9616 Next (CC);
9617 end loop;
47495553 9618
d9f6a4ee 9619 -- Now that we have processed all the component clauses, check for
9620 -- overlap. We have to leave this till last, since the components can
9621 -- appear in any arbitrary order in the representation clause.
67278d60 9622
d9f6a4ee 9623 -- We do not need this check if all specified ranges were monotonic,
9624 -- as recorded by Overlap_Check_Required being False at this stage.
67278d60 9625
d9f6a4ee 9626 -- This first section checks if there are any overlapping entries at
9627 -- all. It does this by sorting all entries and then seeing if there are
9628 -- any overlaps. If there are none, then that is decisive, but if there
9629 -- are overlaps, they may still be OK (they may result from fields in
9630 -- different variants).
67278d60 9631
d9f6a4ee 9632 if Overlap_Check_Required then
9633 Overlap_Check1 : declare
67278d60 9634
d9f6a4ee 9635 OC_Fbit : array (0 .. Ccount) of Uint;
9636 -- First-bit values for component clauses, the value is the offset
9637 -- of the first bit of the field from start of record. The zero
9638 -- entry is for use in sorting.
47495553 9639
d9f6a4ee 9640 OC_Lbit : array (0 .. Ccount) of Uint;
9641 -- Last-bit values for component clauses, the value is the offset
9642 -- of the last bit of the field from start of record. The zero
9643 -- entry is for use in sorting.
9644
9645 OC_Count : Natural := 0;
9646 -- Count of entries in OC_Fbit and OC_Lbit
67278d60 9647
d9f6a4ee 9648 function OC_Lt (Op1, Op2 : Natural) return Boolean;
9649 -- Compare routine for Sort
67278d60 9650
d9f6a4ee 9651 procedure OC_Move (From : Natural; To : Natural);
9652 -- Move routine for Sort
67278d60 9653
d9f6a4ee 9654 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
67278d60 9655
d9f6a4ee 9656 -----------
9657 -- OC_Lt --
9658 -----------
67278d60 9659
d9f6a4ee 9660 function OC_Lt (Op1, Op2 : Natural) return Boolean is
67278d60 9661 begin
d9f6a4ee 9662 return OC_Fbit (Op1) < OC_Fbit (Op2);
9663 end OC_Lt;
67278d60 9664
d9f6a4ee 9665 -------------
9666 -- OC_Move --
9667 -------------
67278d60 9668
d9f6a4ee 9669 procedure OC_Move (From : Natural; To : Natural) is
9670 begin
9671 OC_Fbit (To) := OC_Fbit (From);
9672 OC_Lbit (To) := OC_Lbit (From);
9673 end OC_Move;
67278d60 9674
d9f6a4ee 9675 -- Start of processing for Overlap_Check
67278d60 9676
67278d60 9677 begin
d9f6a4ee 9678 CC := First (Component_Clauses (N));
9679 while Present (CC) loop
67278d60 9680
d9f6a4ee 9681 -- Exclude component clause already marked in error
67278d60 9682
d9f6a4ee 9683 if not Error_Posted (CC) then
9684 Find_Component;
9685
9686 if Present (Comp) then
9687 OC_Count := OC_Count + 1;
9688 OC_Fbit (OC_Count) := Fbit;
9689 OC_Lbit (OC_Count) := Lbit;
9690 end if;
67278d60 9691 end if;
9692
d9f6a4ee 9693 Next (CC);
67278d60 9694 end loop;
67278d60 9695
d9f6a4ee 9696 Sorting.Sort (OC_Count);
67278d60 9697
d9f6a4ee 9698 Overlap_Check_Required := False;
9699 for J in 1 .. OC_Count - 1 loop
9700 if OC_Lbit (J) >= OC_Fbit (J + 1) then
9701 Overlap_Check_Required := True;
9702 exit;
9703 end if;
9704 end loop;
9705 end Overlap_Check1;
9706 end if;
67278d60 9707
d9f6a4ee 9708 -- If Overlap_Check_Required is still True, then we have to do the full
9709 -- scale overlap check, since we have at least two fields that do
9710 -- overlap, and we need to know if that is OK since they are in
9711 -- different variant, or whether we have a definite problem.
67278d60 9712
d9f6a4ee 9713 if Overlap_Check_Required then
9714 Overlap_Check2 : declare
9715 C1_Ent, C2_Ent : Entity_Id;
9716 -- Entities of components being checked for overlap
67278d60 9717
d9f6a4ee 9718 Clist : Node_Id;
9719 -- Component_List node whose Component_Items are being checked
67278d60 9720
d9f6a4ee 9721 Citem : Node_Id;
9722 -- Component declaration for component being checked
67278d60 9723
d9f6a4ee 9724 begin
9725 C1_Ent := First_Entity (Base_Type (Rectype));
67278d60 9726
d9f6a4ee 9727 -- Loop through all components in record. For each component check
9728 -- for overlap with any of the preceding elements on the component
9729 -- list containing the component and also, if the component is in
9730 -- a variant, check against components outside the case structure.
9731 -- This latter test is repeated recursively up the variant tree.
67278d60 9732
d9f6a4ee 9733 Main_Component_Loop : while Present (C1_Ent) loop
9734 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
9735 goto Continue_Main_Component_Loop;
9736 end if;
67278d60 9737
d9f6a4ee 9738 -- Skip overlap check if entity has no declaration node. This
9739 -- happens with discriminants in constrained derived types.
9740 -- Possibly we are missing some checks as a result, but that
9741 -- does not seem terribly serious.
67278d60 9742
d9f6a4ee 9743 if No (Declaration_Node (C1_Ent)) then
9744 goto Continue_Main_Component_Loop;
9745 end if;
67278d60 9746
d9f6a4ee 9747 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
67278d60 9748
d9f6a4ee 9749 -- Loop through component lists that need checking. Check the
9750 -- current component list and all lists in variants above us.
67278d60 9751
d9f6a4ee 9752 Component_List_Loop : loop
67278d60 9753
d9f6a4ee 9754 -- If derived type definition, go to full declaration
9755 -- If at outer level, check discriminants if there are any.
67278d60 9756
d9f6a4ee 9757 if Nkind (Clist) = N_Derived_Type_Definition then
9758 Clist := Parent (Clist);
9759 end if;
67278d60 9760
d9f6a4ee 9761 -- Outer level of record definition, check discriminants
67278d60 9762
d9f6a4ee 9763 if Nkind_In (Clist, N_Full_Type_Declaration,
9764 N_Private_Type_Declaration)
67278d60 9765 then
d9f6a4ee 9766 if Has_Discriminants (Defining_Identifier (Clist)) then
9767 C2_Ent :=
9768 First_Discriminant (Defining_Identifier (Clist));
9769 while Present (C2_Ent) loop
9770 exit when C1_Ent = C2_Ent;
9771 Check_Component_Overlap (C1_Ent, C2_Ent);
9772 Next_Discriminant (C2_Ent);
9773 end loop;
9774 end if;
67278d60 9775
d9f6a4ee 9776 -- Record extension case
67278d60 9777
d9f6a4ee 9778 elsif Nkind (Clist) = N_Derived_Type_Definition then
9779 Clist := Empty;
67278d60 9780
d9f6a4ee 9781 -- Otherwise check one component list
67278d60 9782
d9f6a4ee 9783 else
9784 Citem := First (Component_Items (Clist));
9785 while Present (Citem) loop
9786 if Nkind (Citem) = N_Component_Declaration then
9787 C2_Ent := Defining_Identifier (Citem);
9788 exit when C1_Ent = C2_Ent;
9789 Check_Component_Overlap (C1_Ent, C2_Ent);
9790 end if;
67278d60 9791
d9f6a4ee 9792 Next (Citem);
9793 end loop;
9794 end if;
67278d60 9795
d9f6a4ee 9796 -- Check for variants above us (the parent of the Clist can
9797 -- be a variant, in which case its parent is a variant part,
9798 -- and the parent of the variant part is a component list
9799 -- whose components must all be checked against the current
9800 -- component for overlap).
67278d60 9801
d9f6a4ee 9802 if Nkind (Parent (Clist)) = N_Variant then
9803 Clist := Parent (Parent (Parent (Clist)));
67278d60 9804
d9f6a4ee 9805 -- Check for possible discriminant part in record, this
9806 -- is treated essentially as another level in the
9807 -- recursion. For this case the parent of the component
9808 -- list is the record definition, and its parent is the
9809 -- full type declaration containing the discriminant
9810 -- specifications.
9811
9812 elsif Nkind (Parent (Clist)) = N_Record_Definition then
9813 Clist := Parent (Parent ((Clist)));
9814
9815 -- If neither of these two cases, we are at the top of
9816 -- the tree.
9817
9818 else
9819 exit Component_List_Loop;
9820 end if;
9821 end loop Component_List_Loop;
67278d60 9822
d9f6a4ee 9823 <<Continue_Main_Component_Loop>>
9824 Next_Entity (C1_Ent);
67278d60 9825
d9f6a4ee 9826 end loop Main_Component_Loop;
9827 end Overlap_Check2;
67278d60 9828 end if;
9829
d9f6a4ee 9830 -- The following circuit deals with warning on record holes (gaps). We
9831 -- skip this check if overlap was detected, since it makes sense for the
9832 -- programmer to fix this illegality before worrying about warnings.
67278d60 9833
d9f6a4ee 9834 if not Overlap_Detected and Warn_On_Record_Holes then
9835 Record_Hole_Check : declare
9836 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
9837 -- Full declaration of record type
67278d60 9838
d9f6a4ee 9839 procedure Check_Component_List
9840 (CL : Node_Id;
9841 Sbit : Uint;
9842 DS : List_Id);
9843 -- Check component list CL for holes. The starting bit should be
9844 -- Sbit. which is zero for the main record component list and set
9845 -- appropriately for recursive calls for variants. DS is set to
9846 -- a list of discriminant specifications to be included in the
9847 -- consideration of components. It is No_List if none to consider.
67278d60 9848
d9f6a4ee 9849 --------------------------
9850 -- Check_Component_List --
9851 --------------------------
47495553 9852
d9f6a4ee 9853 procedure Check_Component_List
9854 (CL : Node_Id;
9855 Sbit : Uint;
9856 DS : List_Id)
9857 is
9858 Compl : Integer;
67278d60 9859
d9f6a4ee 9860 begin
9861 Compl := Integer (List_Length (Component_Items (CL)));
47495553 9862
d9f6a4ee 9863 if DS /= No_List then
9864 Compl := Compl + Integer (List_Length (DS));
9865 end if;
67278d60 9866
d9f6a4ee 9867 declare
9868 Comps : array (Natural range 0 .. Compl) of Entity_Id;
9869 -- Gather components (zero entry is for sort routine)
67278d60 9870
d9f6a4ee 9871 Ncomps : Natural := 0;
9872 -- Number of entries stored in Comps (starting at Comps (1))
67278d60 9873
d9f6a4ee 9874 Citem : Node_Id;
9875 -- One component item or discriminant specification
67278d60 9876
d9f6a4ee 9877 Nbit : Uint;
9878 -- Starting bit for next component
67278d60 9879
d9f6a4ee 9880 CEnt : Entity_Id;
9881 -- Component entity
67278d60 9882
d9f6a4ee 9883 Variant : Node_Id;
9884 -- One variant
67278d60 9885
d9f6a4ee 9886 function Lt (Op1, Op2 : Natural) return Boolean;
9887 -- Compare routine for Sort
67278d60 9888
d9f6a4ee 9889 procedure Move (From : Natural; To : Natural);
9890 -- Move routine for Sort
67278d60 9891
d9f6a4ee 9892 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
67278d60 9893
d9f6a4ee 9894 --------
9895 -- Lt --
9896 --------
67278d60 9897
d9f6a4ee 9898 function Lt (Op1, Op2 : Natural) return Boolean is
9899 begin
9900 return Component_Bit_Offset (Comps (Op1))
9901 <
9902 Component_Bit_Offset (Comps (Op2));
9903 end Lt;
67278d60 9904
d9f6a4ee 9905 ----------
9906 -- Move --
9907 ----------
67278d60 9908
d9f6a4ee 9909 procedure Move (From : Natural; To : Natural) is
9910 begin
9911 Comps (To) := Comps (From);
9912 end Move;
67278d60 9913
d9f6a4ee 9914 begin
9915 -- Gather discriminants into Comp
67278d60 9916
d9f6a4ee 9917 if DS /= No_List then
9918 Citem := First (DS);
9919 while Present (Citem) loop
9920 if Nkind (Citem) = N_Discriminant_Specification then
9921 declare
9922 Ent : constant Entity_Id :=
9923 Defining_Identifier (Citem);
9924 begin
9925 if Ekind (Ent) = E_Discriminant then
9926 Ncomps := Ncomps + 1;
9927 Comps (Ncomps) := Ent;
9928 end if;
9929 end;
9930 end if;
67278d60 9931
d9f6a4ee 9932 Next (Citem);
9933 end loop;
9934 end if;
67278d60 9935
d9f6a4ee 9936 -- Gather component entities into Comp
67278d60 9937
d9f6a4ee 9938 Citem := First (Component_Items (CL));
9939 while Present (Citem) loop
9940 if Nkind (Citem) = N_Component_Declaration then
9941 Ncomps := Ncomps + 1;
9942 Comps (Ncomps) := Defining_Identifier (Citem);
9943 end if;
67278d60 9944
d9f6a4ee 9945 Next (Citem);
9946 end loop;
67278d60 9947
d9f6a4ee 9948 -- Now sort the component entities based on the first bit.
9949 -- Note we already know there are no overlapping components.
67278d60 9950
d9f6a4ee 9951 Sorting.Sort (Ncomps);
67278d60 9952
d9f6a4ee 9953 -- Loop through entries checking for holes
67278d60 9954
d9f6a4ee 9955 Nbit := Sbit;
9956 for J in 1 .. Ncomps loop
9957 CEnt := Comps (J);
9958 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
67278d60 9959
d9f6a4ee 9960 if Error_Msg_Uint_1 > 0 then
9961 Error_Msg_NE
9962 ("?H?^-bit gap before component&",
9963 Component_Name (Component_Clause (CEnt)), CEnt);
9964 end if;
67278d60 9965
d9f6a4ee 9966 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
9967 end loop;
67278d60 9968
d9f6a4ee 9969 -- Process variant parts recursively if present
67278d60 9970
d9f6a4ee 9971 if Present (Variant_Part (CL)) then
9972 Variant := First (Variants (Variant_Part (CL)));
9973 while Present (Variant) loop
9974 Check_Component_List
9975 (Component_List (Variant), Nbit, No_List);
9976 Next (Variant);
9977 end loop;
67278d60 9978 end if;
d9f6a4ee 9979 end;
9980 end Check_Component_List;
67278d60 9981
d9f6a4ee 9982 -- Start of processing for Record_Hole_Check
67278d60 9983
d9f6a4ee 9984 begin
9985 declare
9986 Sbit : Uint;
67278d60 9987
d9f6a4ee 9988 begin
9989 if Is_Tagged_Type (Rectype) then
9990 Sbit := UI_From_Int (System_Address_Size);
9991 else
9992 Sbit := Uint_0;
9993 end if;
9994
9995 if Nkind (Decl) = N_Full_Type_Declaration
9996 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
9997 then
9998 Check_Component_List
9999 (Component_List (Type_Definition (Decl)),
10000 Sbit,
10001 Discriminant_Specifications (Decl));
67278d60 10002 end if;
d9f6a4ee 10003 end;
10004 end Record_Hole_Check;
67278d60 10005 end if;
10006
d9f6a4ee 10007 -- For records that have component clauses for all components, and whose
10008 -- size is less than or equal to 32, we need to know the size in the
10009 -- front end to activate possible packed array processing where the
10010 -- component type is a record.
67278d60 10011
d9f6a4ee 10012 -- At this stage Hbit + 1 represents the first unused bit from all the
10013 -- component clauses processed, so if the component clauses are
10014 -- complete, then this is the length of the record.
67278d60 10015
d9f6a4ee 10016 -- For records longer than System.Storage_Unit, and for those where not
10017 -- all components have component clauses, the back end determines the
10018 -- length (it may for example be appropriate to round up the size
10019 -- to some convenient boundary, based on alignment considerations, etc).
67278d60 10020
d9f6a4ee 10021 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
67278d60 10022
d9f6a4ee 10023 -- Nothing to do if at least one component has no component clause
67278d60 10024
d9f6a4ee 10025 Comp := First_Component_Or_Discriminant (Rectype);
10026 while Present (Comp) loop
10027 exit when No (Component_Clause (Comp));
10028 Next_Component_Or_Discriminant (Comp);
10029 end loop;
67278d60 10030
d9f6a4ee 10031 -- If we fall out of loop, all components have component clauses
10032 -- and so we can set the size to the maximum value.
67278d60 10033
d9f6a4ee 10034 if No (Comp) then
10035 Set_RM_Size (Rectype, Hbit + 1);
10036 end if;
10037 end if;
10038 end Check_Record_Representation_Clause;
67278d60 10039
d9f6a4ee 10040 ----------------
10041 -- Check_Size --
10042 ----------------
67278d60 10043
d9f6a4ee 10044 procedure Check_Size
10045 (N : Node_Id;
10046 T : Entity_Id;
10047 Siz : Uint;
10048 Biased : out Boolean)
10049 is
10050 UT : constant Entity_Id := Underlying_Type (T);
10051 M : Uint;
67278d60 10052
d9f6a4ee 10053 begin
10054 Biased := False;
67278d60 10055
d9f6a4ee 10056 -- Reject patently improper size values.
67278d60 10057
d9f6a4ee 10058 if Is_Elementary_Type (T)
10059 and then Siz > UI_From_Int (Int'Last)
10060 then
10061 Error_Msg_N ("Size value too large for elementary type", N);
67278d60 10062
d9f6a4ee 10063 if Nkind (Original_Node (N)) = N_Op_Expon then
10064 Error_Msg_N
10065 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10066 end if;
10067 end if;
67278d60 10068
d9f6a4ee 10069 -- Dismiss generic types
67278d60 10070
d9f6a4ee 10071 if Is_Generic_Type (T)
10072 or else
10073 Is_Generic_Type (UT)
10074 or else
10075 Is_Generic_Type (Root_Type (UT))
10076 then
10077 return;
67278d60 10078
d9f6a4ee 10079 -- Guard against previous errors
67278d60 10080
d9f6a4ee 10081 elsif No (UT) or else UT = Any_Type then
10082 Check_Error_Detected;
10083 return;
67278d60 10084
d9f6a4ee 10085 -- Check case of bit packed array
67278d60 10086
d9f6a4ee 10087 elsif Is_Array_Type (UT)
10088 and then Known_Static_Component_Size (UT)
10089 and then Is_Bit_Packed_Array (UT)
10090 then
10091 declare
10092 Asiz : Uint;
10093 Indx : Node_Id;
10094 Ityp : Entity_Id;
67278d60 10095
d9f6a4ee 10096 begin
10097 Asiz := Component_Size (UT);
10098 Indx := First_Index (UT);
10099 loop
10100 Ityp := Etype (Indx);
67278d60 10101
d9f6a4ee 10102 -- If non-static bound, then we are not in the business of
10103 -- trying to check the length, and indeed an error will be
10104 -- issued elsewhere, since sizes of non-static array types
10105 -- cannot be set implicitly or explicitly.
67278d60 10106
cda40848 10107 if not Is_OK_Static_Subtype (Ityp) then
d9f6a4ee 10108 return;
10109 end if;
67278d60 10110
d9f6a4ee 10111 -- Otherwise accumulate next dimension
67278d60 10112
d9f6a4ee 10113 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10114 Expr_Value (Type_Low_Bound (Ityp)) +
10115 Uint_1);
67278d60 10116
d9f6a4ee 10117 Next_Index (Indx);
10118 exit when No (Indx);
10119 end loop;
67278d60 10120
d9f6a4ee 10121 if Asiz <= Siz then
10122 return;
67278d60 10123
d9f6a4ee 10124 else
10125 Error_Msg_Uint_1 := Asiz;
10126 Error_Msg_NE
10127 ("size for& too small, minimum allowed is ^", N, T);
10128 Set_Esize (T, Asiz);
10129 Set_RM_Size (T, Asiz);
10130 end if;
10131 end;
67278d60 10132
d9f6a4ee 10133 -- All other composite types are ignored
67278d60 10134
d9f6a4ee 10135 elsif Is_Composite_Type (UT) then
10136 return;
47495553 10137
d9f6a4ee 10138 -- For fixed-point types, don't check minimum if type is not frozen,
10139 -- since we don't know all the characteristics of the type that can
10140 -- affect the size (e.g. a specified small) till freeze time.
47495553 10141
d9f6a4ee 10142 elsif Is_Fixed_Point_Type (UT)
10143 and then not Is_Frozen (UT)
10144 then
10145 null;
47495553 10146
d9f6a4ee 10147 -- Cases for which a minimum check is required
47495553 10148
d9f6a4ee 10149 else
10150 -- Ignore if specified size is correct for the type
47495553 10151
d9f6a4ee 10152 if Known_Esize (UT) and then Siz = Esize (UT) then
10153 return;
10154 end if;
47495553 10155
d9f6a4ee 10156 -- Otherwise get minimum size
47495553 10157
d9f6a4ee 10158 M := UI_From_Int (Minimum_Size (UT));
47495553 10159
d9f6a4ee 10160 if Siz < M then
47495553 10161
d9f6a4ee 10162 -- Size is less than minimum size, but one possibility remains
10163 -- that we can manage with the new size if we bias the type.
47495553 10164
d9f6a4ee 10165 M := UI_From_Int (Minimum_Size (UT, Biased => True));
47495553 10166
d9f6a4ee 10167 if Siz < M then
10168 Error_Msg_Uint_1 := M;
10169 Error_Msg_NE
10170 ("size for& too small, minimum allowed is ^", N, T);
10171 Set_Esize (T, M);
10172 Set_RM_Size (T, M);
10173 else
10174 Biased := True;
10175 end if;
10176 end if;
10177 end if;
10178 end Check_Size;
47495553 10179
d9f6a4ee 10180 --------------------------
10181 -- Freeze_Entity_Checks --
10182 --------------------------
47495553 10183
d9f6a4ee 10184 procedure Freeze_Entity_Checks (N : Node_Id) is
8cf481c9 10185 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10186 -- Inspect the primitive operations of type Typ and hide all pairs of
3118058b 10187 -- implicitly declared non-overridden non-fully conformant homographs
10188 -- (Ada RM 8.3 12.3/2).
8cf481c9 10189
10190 -------------------------------------
10191 -- Hide_Non_Overridden_Subprograms --
10192 -------------------------------------
10193
10194 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10195 procedure Hide_Matching_Homographs
10196 (Subp_Id : Entity_Id;
10197 Start_Elmt : Elmt_Id);
10198 -- Inspect a list of primitive operations starting with Start_Elmt
3118058b 10199 -- and find matching implicitly declared non-overridden non-fully
10200 -- conformant homographs of Subp_Id. If found, all matches along
10201 -- with Subp_Id are hidden from all visibility.
8cf481c9 10202
10203 function Is_Non_Overridden_Or_Null_Procedure
10204 (Subp_Id : Entity_Id) return Boolean;
10205 -- Determine whether subprogram Subp_Id is implicitly declared non-
10206 -- overridden subprogram or an implicitly declared null procedure.
10207
10208 ------------------------------
10209 -- Hide_Matching_Homographs --
10210 ------------------------------
10211
10212 procedure Hide_Matching_Homographs
10213 (Subp_Id : Entity_Id;
10214 Start_Elmt : Elmt_Id)
10215 is
10216 Prim : Entity_Id;
10217 Prim_Elmt : Elmt_Id;
10218
10219 begin
10220 Prim_Elmt := Start_Elmt;
10221 while Present (Prim_Elmt) loop
10222 Prim := Node (Prim_Elmt);
10223
10224 -- The current primitive is implicitly declared non-overridden
3118058b 10225 -- non-fully conformant homograph of Subp_Id. Both subprograms
10226 -- must be hidden from visibility.
8cf481c9 10227
10228 if Chars (Prim) = Chars (Subp_Id)
8cf481c9 10229 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
3118058b 10230 and then not Fully_Conformant (Prim, Subp_Id)
8cf481c9 10231 then
8c7ee4ac 10232 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10233 Set_Is_Immediately_Visible (Prim, False);
10234 Set_Is_Potentially_Use_Visible (Prim, False);
8cf481c9 10235
8c7ee4ac 10236 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10237 Set_Is_Immediately_Visible (Subp_Id, False);
10238 Set_Is_Potentially_Use_Visible (Subp_Id, False);
8cf481c9 10239 end if;
10240
10241 Next_Elmt (Prim_Elmt);
10242 end loop;
10243 end Hide_Matching_Homographs;
10244
10245 -----------------------------------------
10246 -- Is_Non_Overridden_Or_Null_Procedure --
10247 -----------------------------------------
10248
10249 function Is_Non_Overridden_Or_Null_Procedure
10250 (Subp_Id : Entity_Id) return Boolean
10251 is
10252 Alias_Id : Entity_Id;
10253
10254 begin
10255 -- The subprogram is inherited (implicitly declared), it does not
10256 -- override and does not cover a primitive of an interface.
10257
10258 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10259 and then Present (Alias (Subp_Id))
10260 and then No (Interface_Alias (Subp_Id))
10261 and then No (Overridden_Operation (Subp_Id))
10262 then
10263 Alias_Id := Alias (Subp_Id);
10264
10265 if Requires_Overriding (Alias_Id) then
10266 return True;
10267
10268 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10269 and then Null_Present (Parent (Alias_Id))
10270 then
10271 return True;
10272 end if;
10273 end if;
10274
10275 return False;
10276 end Is_Non_Overridden_Or_Null_Procedure;
10277
10278 -- Local variables
10279
10280 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10281 Prim : Entity_Id;
10282 Prim_Elmt : Elmt_Id;
10283
10284 -- Start of processing for Hide_Non_Overridden_Subprograms
10285
10286 begin
3118058b 10287 -- Inspect the list of primitives looking for non-overridden
10288 -- subprograms.
8cf481c9 10289
10290 if Present (Prim_Ops) then
10291 Prim_Elmt := First_Elmt (Prim_Ops);
10292 while Present (Prim_Elmt) loop
10293 Prim := Node (Prim_Elmt);
10294 Next_Elmt (Prim_Elmt);
10295
10296 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10297 Hide_Matching_Homographs
10298 (Subp_Id => Prim,
10299 Start_Elmt => Prim_Elmt);
10300 end if;
10301 end loop;
10302 end if;
10303 end Hide_Non_Overridden_Subprograms;
10304
10305 ---------------------
10306 -- Local variables --
10307 ---------------------
10308
d9f6a4ee 10309 E : constant Entity_Id := Entity (N);
47495553 10310
d9f6a4ee 10311 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10312 -- True in non-generic case. Some of the processing here is skipped
10313 -- for the generic case since it is not needed. Basically in the
10314 -- generic case, we only need to do stuff that might generate error
10315 -- messages or warnings.
8cf481c9 10316
10317 -- Start of processing for Freeze_Entity_Checks
10318
d9f6a4ee 10319 begin
10320 -- Remember that we are processing a freezing entity. Required to
10321 -- ensure correct decoration of internal entities associated with
10322 -- interfaces (see New_Overloaded_Entity).
47495553 10323
d9f6a4ee 10324 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
47495553 10325
d9f6a4ee 10326 -- For tagged types covering interfaces add internal entities that link
10327 -- the primitives of the interfaces with the primitives that cover them.
10328 -- Note: These entities were originally generated only when generating
10329 -- code because their main purpose was to provide support to initialize
10330 -- the secondary dispatch tables. They are now generated also when
10331 -- compiling with no code generation to provide ASIS the relationship
10332 -- between interface primitives and tagged type primitives. They are
10333 -- also used to locate primitives covering interfaces when processing
10334 -- generics (see Derive_Subprograms).
47495553 10335
d9f6a4ee 10336 -- This is not needed in the generic case
47495553 10337
d9f6a4ee 10338 if Ada_Version >= Ada_2005
10339 and then Non_Generic_Case
10340 and then Ekind (E) = E_Record_Type
10341 and then Is_Tagged_Type (E)
10342 and then not Is_Interface (E)
10343 and then Has_Interfaces (E)
10344 then
10345 -- This would be a good common place to call the routine that checks
10346 -- overriding of interface primitives (and thus factorize calls to
10347 -- Check_Abstract_Overriding located at different contexts in the
10348 -- compiler). However, this is not possible because it causes
10349 -- spurious errors in case of late overriding.
47495553 10350
d9f6a4ee 10351 Add_Internal_Interface_Entities (E);
10352 end if;
47495553 10353
8cf481c9 10354 -- After all forms of overriding have been resolved, a tagged type may
10355 -- be left with a set of implicitly declared and possibly erroneous
10356 -- abstract subprograms, null procedures and subprograms that require
10357 -- overriding. If this set contains fully conformat homographs, then one
10358 -- is chosen arbitrarily (already done during resolution), otherwise all
3118058b 10359 -- remaining non-fully conformant homographs are hidden from visibility
8cf481c9 10360 -- (Ada RM 8.3 12.3/2).
10361
10362 if Is_Tagged_Type (E) then
10363 Hide_Non_Overridden_Subprograms (E);
10364 end if;
10365
d9f6a4ee 10366 -- Check CPP types
47495553 10367
d9f6a4ee 10368 if Ekind (E) = E_Record_Type
10369 and then Is_CPP_Class (E)
10370 and then Is_Tagged_Type (E)
10371 and then Tagged_Type_Expansion
d9f6a4ee 10372 then
10373 if CPP_Num_Prims (E) = 0 then
47495553 10374
d9f6a4ee 10375 -- If the CPP type has user defined components then it must import
10376 -- primitives from C++. This is required because if the C++ class
10377 -- has no primitives then the C++ compiler does not added the _tag
10378 -- component to the type.
47495553 10379
d9f6a4ee 10380 if First_Entity (E) /= Last_Entity (E) then
10381 Error_Msg_N
10382 ("'C'P'P type must import at least one primitive from C++??",
10383 E);
10384 end if;
10385 end if;
47495553 10386
d9f6a4ee 10387 -- Check that all its primitives are abstract or imported from C++.
10388 -- Check also availability of the C++ constructor.
47495553 10389
d9f6a4ee 10390 declare
10391 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10392 Elmt : Elmt_Id;
10393 Error_Reported : Boolean := False;
10394 Prim : Node_Id;
47495553 10395
d9f6a4ee 10396 begin
10397 Elmt := First_Elmt (Primitive_Operations (E));
10398 while Present (Elmt) loop
10399 Prim := Node (Elmt);
47495553 10400
d9f6a4ee 10401 if Comes_From_Source (Prim) then
10402 if Is_Abstract_Subprogram (Prim) then
10403 null;
47495553 10404
d9f6a4ee 10405 elsif not Is_Imported (Prim)
10406 or else Convention (Prim) /= Convention_CPP
10407 then
10408 Error_Msg_N
10409 ("primitives of 'C'P'P types must be imported from C++ "
10410 & "or abstract??", Prim);
47495553 10411
d9f6a4ee 10412 elsif not Has_Constructors
10413 and then not Error_Reported
10414 then
10415 Error_Msg_Name_1 := Chars (E);
10416 Error_Msg_N
10417 ("??'C'P'P constructor required for type %", Prim);
10418 Error_Reported := True;
10419 end if;
10420 end if;
47495553 10421
d9f6a4ee 10422 Next_Elmt (Elmt);
10423 end loop;
10424 end;
10425 end if;
47495553 10426
d9f6a4ee 10427 -- Check Ada derivation of CPP type
47495553 10428
30ab103b 10429 if Expander_Active -- why? losing errors in -gnatc mode???
10430 and then Present (Etype (E)) -- defend against errors
d9f6a4ee 10431 and then Tagged_Type_Expansion
10432 and then Ekind (E) = E_Record_Type
10433 and then Etype (E) /= E
10434 and then Is_CPP_Class (Etype (E))
10435 and then CPP_Num_Prims (Etype (E)) > 0
10436 and then not Is_CPP_Class (E)
10437 and then not Has_CPP_Constructors (Etype (E))
10438 then
10439 -- If the parent has C++ primitives but it has no constructor then
10440 -- check that all the primitives are overridden in this derivation;
10441 -- otherwise the constructor of the parent is needed to build the
10442 -- dispatch table.
47495553 10443
d9f6a4ee 10444 declare
10445 Elmt : Elmt_Id;
10446 Prim : Node_Id;
47495553 10447
10448 begin
d9f6a4ee 10449 Elmt := First_Elmt (Primitive_Operations (E));
10450 while Present (Elmt) loop
10451 Prim := Node (Elmt);
47495553 10452
d9f6a4ee 10453 if not Is_Abstract_Subprogram (Prim)
10454 and then No (Interface_Alias (Prim))
10455 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
47495553 10456 then
d9f6a4ee 10457 Error_Msg_Name_1 := Chars (Etype (E));
10458 Error_Msg_N
10459 ("'C'P'P constructor required for parent type %", E);
10460 exit;
47495553 10461 end if;
d9f6a4ee 10462
10463 Next_Elmt (Elmt);
10464 end loop;
10465 end;
47495553 10466 end if;
10467
d9f6a4ee 10468 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
67278d60 10469
d9f6a4ee 10470 -- If we have a type with predicates, build predicate function. This
0e9014a7 10471 -- is not needed in the generic case, and is not needed within TSS
ea822fd4 10472 -- subprograms and other predefined primitives.
67278d60 10473
ea822fd4 10474 if Non_Generic_Case
10475 and then Is_Type (E)
10476 and then Has_Predicates (E)
10477 and then not Within_Internal_Subprogram
10478 then
d9f6a4ee 10479 Build_Predicate_Functions (E, N);
10480 end if;
67278d60 10481
d9f6a4ee 10482 -- If type has delayed aspects, this is where we do the preanalysis at
10483 -- the freeze point, as part of the consistent visibility check. Note
10484 -- that this must be done after calling Build_Predicate_Functions or
10485 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10486 -- the subtype name in the saved expression so that they will not cause
10487 -- trouble in the preanalysis.
67278d60 10488
d9f6a4ee 10489 -- This is also not needed in the generic case
10490
10491 if Non_Generic_Case
10492 and then Has_Delayed_Aspects (E)
10493 and then Scope (E) = Current_Scope
10494 then
10495 -- Retrieve the visibility to the discriminants in order to properly
10496 -- analyze the aspects.
10497
10498 Push_Scope_And_Install_Discriminants (E);
10499
10500 declare
10501 Ritem : Node_Id;
10502
10503 begin
10504 -- Look for aspect specification entries for this entity
67278d60 10505
d9f6a4ee 10506 Ritem := First_Rep_Item (E);
10507 while Present (Ritem) loop
10508 if Nkind (Ritem) = N_Aspect_Specification
10509 and then Entity (Ritem) = E
10510 and then Is_Delayed_Aspect (Ritem)
10511 then
10512 Check_Aspect_At_Freeze_Point (Ritem);
10513 end if;
67278d60 10514
d9f6a4ee 10515 Next_Rep_Item (Ritem);
10516 end loop;
10517 end;
67278d60 10518
d9f6a4ee 10519 Uninstall_Discriminants_And_Pop_Scope (E);
67278d60 10520 end if;
67278d60 10521
d9f6a4ee 10522 -- For a record type, deal with variant parts. This has to be delayed
d0988351 10523 -- to this point, because of the issue of statically predicated
d9f6a4ee 10524 -- subtypes, which we have to ensure are frozen before checking
10525 -- choices, since we need to have the static choice list set.
d6f39728 10526
d9f6a4ee 10527 if Is_Record_Type (E) then
10528 Check_Variant_Part : declare
10529 D : constant Node_Id := Declaration_Node (E);
10530 T : Node_Id;
10531 C : Node_Id;
10532 VP : Node_Id;
d6f39728 10533
d9f6a4ee 10534 Others_Present : Boolean;
10535 pragma Warnings (Off, Others_Present);
10536 -- Indicates others present, not used in this case
d6f39728 10537
d9f6a4ee 10538 procedure Non_Static_Choice_Error (Choice : Node_Id);
10539 -- Error routine invoked by the generic instantiation below when
10540 -- the variant part has a non static choice.
f117057b 10541
d9f6a4ee 10542 procedure Process_Declarations (Variant : Node_Id);
10543 -- Processes declarations associated with a variant. We analyzed
10544 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10545 -- but we still need the recursive call to Check_Choices for any
10546 -- nested variant to get its choices properly processed. This is
10547 -- also where we expand out the choices if expansion is active.
1f526845 10548
d9f6a4ee 10549 package Variant_Choices_Processing is new
10550 Generic_Check_Choices
10551 (Process_Empty_Choice => No_OP,
10552 Process_Non_Static_Choice => Non_Static_Choice_Error,
10553 Process_Associated_Node => Process_Declarations);
10554 use Variant_Choices_Processing;
f117057b 10555
d9f6a4ee 10556 -----------------------------
10557 -- Non_Static_Choice_Error --
10558 -----------------------------
d6f39728 10559
d9f6a4ee 10560 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10561 begin
10562 Flag_Non_Static_Expr
10563 ("choice given in variant part is not static!", Choice);
10564 end Non_Static_Choice_Error;
d6f39728 10565
d9f6a4ee 10566 --------------------------
10567 -- Process_Declarations --
10568 --------------------------
dba36b60 10569
d9f6a4ee 10570 procedure Process_Declarations (Variant : Node_Id) is
10571 CL : constant Node_Id := Component_List (Variant);
10572 VP : Node_Id;
dba36b60 10573
d9f6a4ee 10574 begin
10575 -- Check for static predicate present in this variant
ea61a7ea 10576
d9f6a4ee 10577 if Has_SP_Choice (Variant) then
ea61a7ea 10578
d9f6a4ee 10579 -- Here we expand. You might expect to find this call in
10580 -- Expand_N_Variant_Part, but that is called when we first
10581 -- see the variant part, and we cannot do this expansion
10582 -- earlier than the freeze point, since for statically
10583 -- predicated subtypes, the predicate is not known till
10584 -- the freeze point.
ea61a7ea 10585
d9f6a4ee 10586 -- Furthermore, we do this expansion even if the expander
10587 -- is not active, because other semantic processing, e.g.
10588 -- for aggregates, requires the expanded list of choices.
ea61a7ea 10589
d9f6a4ee 10590 -- If the expander is not active, then we can't just clobber
10591 -- the list since it would invalidate the ASIS -gnatct tree.
10592 -- So we have to rewrite the variant part with a Rewrite
10593 -- call that replaces it with a copy and clobber the copy.
10594
10595 if not Expander_Active then
10596 declare
10597 NewV : constant Node_Id := New_Copy (Variant);
10598 begin
10599 Set_Discrete_Choices
10600 (NewV, New_Copy_List (Discrete_Choices (Variant)));
10601 Rewrite (Variant, NewV);
10602 end;
10603 end if;
10604
10605 Expand_Static_Predicates_In_Choices (Variant);
ea61a7ea 10606 end if;
10607
d9f6a4ee 10608 -- We don't need to worry about the declarations in the variant
10609 -- (since they were analyzed by Analyze_Choices when we first
10610 -- encountered the variant), but we do need to take care of
10611 -- expansion of any nested variants.
ea61a7ea 10612
d9f6a4ee 10613 if not Null_Present (CL) then
10614 VP := Variant_Part (CL);
ea61a7ea 10615
d9f6a4ee 10616 if Present (VP) then
10617 Check_Choices
10618 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10619 end if;
10620 end if;
10621 end Process_Declarations;
ea61a7ea 10622
d9f6a4ee 10623 -- Start of processing for Check_Variant_Part
b9e61b2a 10624
d9f6a4ee 10625 begin
10626 -- Find component list
ea61a7ea 10627
d9f6a4ee 10628 C := Empty;
ea61a7ea 10629
d9f6a4ee 10630 if Nkind (D) = N_Full_Type_Declaration then
10631 T := Type_Definition (D);
ea61a7ea 10632
d9f6a4ee 10633 if Nkind (T) = N_Record_Definition then
10634 C := Component_List (T);
d6f39728 10635
d9f6a4ee 10636 elsif Nkind (T) = N_Derived_Type_Definition
10637 and then Present (Record_Extension_Part (T))
10638 then
10639 C := Component_List (Record_Extension_Part (T));
10640 end if;
10641 end if;
d6f39728 10642
d9f6a4ee 10643 -- Case of variant part present
d6f39728 10644
d9f6a4ee 10645 if Present (C) and then Present (Variant_Part (C)) then
10646 VP := Variant_Part (C);
ea61a7ea 10647
d9f6a4ee 10648 -- Check choices
ea61a7ea 10649
d9f6a4ee 10650 Check_Choices
10651 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
ea61a7ea 10652
d9f6a4ee 10653 -- If the last variant does not contain the Others choice,
10654 -- replace it with an N_Others_Choice node since Gigi always
10655 -- wants an Others. Note that we do not bother to call Analyze
10656 -- on the modified variant part, since its only effect would be
10657 -- to compute the Others_Discrete_Choices node laboriously, and
10658 -- of course we already know the list of choices corresponding
39a0c1d3 10659 -- to the others choice (it's the list we're replacing).
d6f39728 10660
d9f6a4ee 10661 -- We only want to do this if the expander is active, since
39a0c1d3 10662 -- we do not want to clobber the ASIS tree.
d6f39728 10663
d9f6a4ee 10664 if Expander_Active then
10665 declare
10666 Last_Var : constant Node_Id :=
10667 Last_Non_Pragma (Variants (VP));
d6f39728 10668
d9f6a4ee 10669 Others_Node : Node_Id;
d6f39728 10670
d9f6a4ee 10671 begin
10672 if Nkind (First (Discrete_Choices (Last_Var))) /=
10673 N_Others_Choice
10674 then
10675 Others_Node := Make_Others_Choice (Sloc (Last_Var));
10676 Set_Others_Discrete_Choices
10677 (Others_Node, Discrete_Choices (Last_Var));
10678 Set_Discrete_Choices
10679 (Last_Var, New_List (Others_Node));
10680 end if;
10681 end;
10682 end if;
d6f39728 10683 end if;
d9f6a4ee 10684 end Check_Variant_Part;
d6f39728 10685 end if;
d9f6a4ee 10686 end Freeze_Entity_Checks;
d6f39728 10687
10688 -------------------------
10689 -- Get_Alignment_Value --
10690 -------------------------
10691
10692 function Get_Alignment_Value (Expr : Node_Id) return Uint is
10693 Align : constant Uint := Static_Integer (Expr);
10694
10695 begin
10696 if Align = No_Uint then
10697 return No_Uint;
10698
10699 elsif Align <= 0 then
10700 Error_Msg_N ("alignment value must be positive", Expr);
10701 return No_Uint;
10702
10703 else
10704 for J in Int range 0 .. 64 loop
10705 declare
10706 M : constant Uint := Uint_2 ** J;
10707
10708 begin
10709 exit when M = Align;
10710
10711 if M > Align then
10712 Error_Msg_N
10713 ("alignment value must be power of 2", Expr);
10714 return No_Uint;
10715 end if;
10716 end;
10717 end loop;
10718
10719 return Align;
10720 end if;
10721 end Get_Alignment_Value;
10722
99a2d5bd 10723 -------------------------------------
10724 -- Inherit_Aspects_At_Freeze_Point --
10725 -------------------------------------
10726
10727 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
10728 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10729 (Rep_Item : Node_Id) return Boolean;
10730 -- This routine checks if Rep_Item is either a pragma or an aspect
10731 -- specification node whose correponding pragma (if any) is present in
10732 -- the Rep Item chain of the entity it has been specified to.
10733
10734 --------------------------------------------------
10735 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10736 --------------------------------------------------
10737
10738 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10739 (Rep_Item : Node_Id) return Boolean
10740 is
10741 begin
ec6f6da5 10742 return
10743 Nkind (Rep_Item) = N_Pragma
10744 or else Present_In_Rep_Item
10745 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
99a2d5bd 10746 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
10747
29a9d4be 10748 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10749
99a2d5bd 10750 begin
10751 -- A representation item is either subtype-specific (Size and Alignment
10752 -- clauses) or type-related (all others). Subtype-specific aspects may
29a9d4be 10753 -- differ for different subtypes of the same type (RM 13.1.8).
99a2d5bd 10754
10755 -- A derived type inherits each type-related representation aspect of
10756 -- its parent type that was directly specified before the declaration of
29a9d4be 10757 -- the derived type (RM 13.1.15).
99a2d5bd 10758
10759 -- A derived subtype inherits each subtype-specific representation
10760 -- aspect of its parent subtype that was directly specified before the
29a9d4be 10761 -- declaration of the derived type (RM 13.1.15).
99a2d5bd 10762
10763 -- The general processing involves inheriting a representation aspect
10764 -- from a parent type whenever the first rep item (aspect specification,
10765 -- attribute definition clause, pragma) corresponding to the given
10766 -- representation aspect in the rep item chain of Typ, if any, isn't
10767 -- directly specified to Typ but to one of its parents.
10768
10769 -- ??? Note that, for now, just a limited number of representation
29a9d4be 10770 -- aspects have been inherited here so far. Many of them are
10771 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10772 -- a non- exhaustive list of aspects that likely also need to
10773 -- be moved to this routine: Alignment, Component_Alignment,
10774 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
99a2d5bd 10775 -- Preelaborable_Initialization, RM_Size and Small.
10776
8b6e9bf2 10777 -- In addition, Convention must be propagated from base type to subtype,
10778 -- because the subtype may have been declared on an incomplete view.
10779
99a2d5bd 10780 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
10781 return;
10782 end if;
10783
10784 -- Ada_05/Ada_2005
10785
10786 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
10787 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
10788 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10789 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
10790 then
10791 Set_Is_Ada_2005_Only (Typ);
10792 end if;
10793
10794 -- Ada_12/Ada_2012
10795
10796 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
10797 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
10798 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10799 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
10800 then
10801 Set_Is_Ada_2012_Only (Typ);
10802 end if;
10803
10804 -- Atomic/Shared
10805
10806 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
10807 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
10808 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10809 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
10810 then
10811 Set_Is_Atomic (Typ);
10812 Set_Treat_As_Volatile (Typ);
10813 Set_Is_Volatile (Typ);
10814 end if;
10815
8b6e9bf2 10816 -- Convention
10817
7ac4254e 10818 if Is_Record_Type (Typ)
10819 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
10820 then
8b6e9bf2 10821 Set_Convention (Typ, Convention (Base_Type (Typ)));
10822 end if;
10823
29a9d4be 10824 -- Default_Component_Value
99a2d5bd 10825
10826 if Is_Array_Type (Typ)
f3d70f08 10827 and then Is_Base_Type (Typ)
99a2d5bd 10828 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
10829 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
10830 then
10831 Set_Default_Aspect_Component_Value (Typ,
10832 Default_Aspect_Component_Value
10833 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
10834 end if;
10835
29a9d4be 10836 -- Default_Value
99a2d5bd 10837
10838 if Is_Scalar_Type (Typ)
f3d70f08 10839 and then Is_Base_Type (Typ)
99a2d5bd 10840 and then Has_Rep_Item (Typ, Name_Default_Value, False)
10841 and then Has_Rep_Item (Typ, Name_Default_Value)
10842 then
10843 Set_Default_Aspect_Value (Typ,
10844 Default_Aspect_Value
10845 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
10846 end if;
10847
10848 -- Discard_Names
10849
10850 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
10851 and then Has_Rep_Item (Typ, Name_Discard_Names)
10852 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10853 (Get_Rep_Item (Typ, Name_Discard_Names))
10854 then
10855 Set_Discard_Names (Typ);
10856 end if;
10857
10858 -- Invariants
10859
10860 if not Has_Rep_Item (Typ, Name_Invariant, False)
10861 and then Has_Rep_Item (Typ, Name_Invariant)
10862 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10863 (Get_Rep_Item (Typ, Name_Invariant))
10864 then
10865 Set_Has_Invariants (Typ);
10866
10867 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
10868 Set_Has_Inheritable_Invariants (Typ);
10869 end if;
d7487d7d 10870
953378ae 10871 -- If we have a subtype with invariants, whose base type does not have
10872 -- invariants, copy these invariants to the base type. This happens for
10873 -- the case of implicit base types created for scalar and array types.
d7487d7d 10874
953378ae 10875 elsif Has_Invariants (Typ)
d7487d7d 10876 and then not Has_Invariants (Base_Type (Typ))
10877 then
10878 Set_Has_Invariants (Base_Type (Typ));
10879 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
99a2d5bd 10880 end if;
10881
10882 -- Volatile
10883
10884 if not Has_Rep_Item (Typ, Name_Volatile, False)
10885 and then Has_Rep_Item (Typ, Name_Volatile)
10886 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10887 (Get_Rep_Item (Typ, Name_Volatile))
10888 then
10889 Set_Treat_As_Volatile (Typ);
10890 Set_Is_Volatile (Typ);
10891 end if;
10892
10893 -- Inheritance for derived types only
10894
10895 if Is_Derived_Type (Typ) then
10896 declare
10897 Bas_Typ : constant Entity_Id := Base_Type (Typ);
10898 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
10899
10900 begin
10901 -- Atomic_Components
10902
10903 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
10904 and then Has_Rep_Item (Typ, Name_Atomic_Components)
10905 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10906 (Get_Rep_Item (Typ, Name_Atomic_Components))
10907 then
10908 Set_Has_Atomic_Components (Imp_Bas_Typ);
10909 end if;
10910
10911 -- Volatile_Components
10912
10913 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
10914 and then Has_Rep_Item (Typ, Name_Volatile_Components)
10915 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10916 (Get_Rep_Item (Typ, Name_Volatile_Components))
10917 then
10918 Set_Has_Volatile_Components (Imp_Bas_Typ);
10919 end if;
10920
e81df51c 10921 -- Finalize_Storage_Only
99a2d5bd 10922
10923 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
10924 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
10925 then
10926 Set_Finalize_Storage_Only (Bas_Typ);
10927 end if;
10928
10929 -- Universal_Aliasing
10930
10931 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
10932 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
10933 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10934 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
10935 then
10936 Set_Universal_Aliasing (Imp_Bas_Typ);
10937 end if;
10938
e81df51c 10939 -- Bit_Order
99a2d5bd 10940
10941 if Is_Record_Type (Typ) then
99a2d5bd 10942 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
10943 and then Has_Rep_Item (Typ, Name_Bit_Order)
10944 then
10945 Set_Reverse_Bit_Order (Bas_Typ,
10946 Reverse_Bit_Order (Entity (Name
10947 (Get_Rep_Item (Typ, Name_Bit_Order)))));
10948 end if;
e81df51c 10949 end if;
10950
e9218716 10951 -- Scalar_Storage_Order
10952
10953 -- Note: the aspect is specified on a first subtype, but recorded
10954 -- in a flag of the base type!
e81df51c 10955
10956 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
10957 and then
e9218716 10958 Typ = Bas_Typ
e81df51c 10959 then
99a2d5bd 10960
e81df51c 10961 -- For a type extension, always inherit from parent; otherwise
10962 -- inherit if no default applies. Note: we do not check for
10963 -- an explicit rep item on the parent type when inheriting,
10964 -- because the parent SSO may itself have been set by default.
99a2d5bd 10965
e9218716 10966 if not Has_Rep_Item (First_Subtype (Typ),
10967 Name_Scalar_Storage_Order, False)
e81df51c 10968 and then (Is_Tagged_Type (Bas_Typ)
10969 or else
10970 not (SSO_Set_Low_By_Default (Bas_Typ)
10971 or else
10972 SSO_Set_High_By_Default (Bas_Typ)))
99a2d5bd 10973 then
10974 Set_Reverse_Storage_Order (Bas_Typ,
423b89fd 10975 Reverse_Storage_Order
10976 (Implementation_Base_Type (Etype (Bas_Typ))));
b64082f2 10977
10978 -- Clear default SSO indications, since the inherited aspect
10979 -- which was set explicitly overrides the default.
10980
10981 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
10982 Set_SSO_Set_High_By_Default (Bas_Typ, False);
99a2d5bd 10983 end if;
10984 end if;
10985 end;
10986 end if;
10987 end Inherit_Aspects_At_Freeze_Point;
10988
d6f39728 10989 ----------------
10990 -- Initialize --
10991 ----------------
10992
10993 procedure Initialize is
10994 begin
7717ea00 10995 Address_Clause_Checks.Init;
10996 Independence_Checks.Init;
d6f39728 10997 Unchecked_Conversions.Init;
10998 end Initialize;
10999
2625eb01 11000 ---------------------------
11001 -- Install_Discriminants --
11002 ---------------------------
11003
11004 procedure Install_Discriminants (E : Entity_Id) is
11005 Disc : Entity_Id;
11006 Prev : Entity_Id;
11007 begin
11008 Disc := First_Discriminant (E);
11009 while Present (Disc) loop
11010 Prev := Current_Entity (Disc);
11011 Set_Current_Entity (Disc);
11012 Set_Is_Immediately_Visible (Disc);
11013 Set_Homonym (Disc, Prev);
11014 Next_Discriminant (Disc);
11015 end loop;
11016 end Install_Discriminants;
11017
d6f39728 11018 -------------------------
11019 -- Is_Operational_Item --
11020 -------------------------
11021
11022 function Is_Operational_Item (N : Node_Id) return Boolean is
11023 begin
11024 if Nkind (N) /= N_Attribute_Definition_Clause then
11025 return False;
b9e61b2a 11026
d6f39728 11027 else
11028 declare
b9e61b2a 11029 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
d6f39728 11030 begin
b9e61b2a 11031 return Id = Attribute_Input
d6f39728 11032 or else Id = Attribute_Output
11033 or else Id = Attribute_Read
f15731c4 11034 or else Id = Attribute_Write
11035 or else Id = Attribute_External_Tag;
d6f39728 11036 end;
11037 end if;
11038 end Is_Operational_Item;
11039
3b23aaa0 11040 -------------------------
11041 -- Is_Predicate_Static --
11042 -------------------------
11043
94d896aa 11044 -- Note: the basic legality of the expression has already been checked, so
11045 -- we don't need to worry about cases or ranges on strings for example.
11046
3b23aaa0 11047 function Is_Predicate_Static
11048 (Expr : Node_Id;
11049 Nam : Name_Id) return Boolean
11050 is
11051 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
973c2fba 11052 -- Given a list of case expression alternatives, returns True if all
11053 -- the alternatives are static (have all static choices, and a static
11054 -- expression).
3b23aaa0 11055
11056 function All_Static_Choices (L : List_Id) return Boolean;
a360a0f7 11057 -- Returns true if all elements of the list are OK static choices
3b23aaa0 11058 -- as defined below for Is_Static_Choice. Used for case expression
973c2fba 11059 -- alternatives and for the right operand of a membership test. An
11060 -- others_choice is static if the corresponding expression is static.
7c0c95b8 11061 -- The staticness of the bounds is checked separately.
3b23aaa0 11062
11063 function Is_Static_Choice (N : Node_Id) return Boolean;
11064 -- Returns True if N represents a static choice (static subtype, or
a360a0f7 11065 -- static subtype indication, or static expression, or static range).
3b23aaa0 11066 --
11067 -- Note that this is a bit more inclusive than we actually need
11068 -- (in particular membership tests do not allow the use of subtype
a360a0f7 11069 -- indications). But that doesn't matter, we have already checked
3b23aaa0 11070 -- that the construct is legal to get this far.
11071
11072 function Is_Type_Ref (N : Node_Id) return Boolean;
11073 pragma Inline (Is_Type_Ref);
973c2fba 11074 -- Returns True if N is a reference to the type for the predicate in the
11075 -- expression (i.e. if it is an identifier whose Chars field matches the
11076 -- Nam given in the call). N must not be parenthesized, if the type name
11077 -- appears in parens, this routine will return False.
3b23aaa0 11078
11079 ----------------------------------
11080 -- All_Static_Case_Alternatives --
11081 ----------------------------------
11082
11083 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11084 N : Node_Id;
11085
11086 begin
11087 N := First (L);
11088 while Present (N) loop
11089 if not (All_Static_Choices (Discrete_Choices (N))
11090 and then Is_OK_Static_Expression (Expression (N)))
11091 then
11092 return False;
11093 end if;
11094
11095 Next (N);
11096 end loop;
11097
11098 return True;
11099 end All_Static_Case_Alternatives;
11100
11101 ------------------------
11102 -- All_Static_Choices --
11103 ------------------------
11104
11105 function All_Static_Choices (L : List_Id) return Boolean is
11106 N : Node_Id;
11107
11108 begin
11109 N := First (L);
11110 while Present (N) loop
11111 if not Is_Static_Choice (N) then
11112 return False;
11113 end if;
11114
11115 Next (N);
11116 end loop;
11117
11118 return True;
11119 end All_Static_Choices;
11120
11121 ----------------------
11122 -- Is_Static_Choice --
11123 ----------------------
11124
11125 function Is_Static_Choice (N : Node_Id) return Boolean is
11126 begin
7c0c95b8 11127 return Nkind (N) = N_Others_Choice
11128 or else Is_OK_Static_Expression (N)
3b23aaa0 11129 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11130 and then Is_OK_Static_Subtype (Entity (N)))
11131 or else (Nkind (N) = N_Subtype_Indication
11132 and then Is_OK_Static_Subtype (Entity (N)))
11133 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11134 end Is_Static_Choice;
11135
11136 -----------------
11137 -- Is_Type_Ref --
11138 -----------------
11139
11140 function Is_Type_Ref (N : Node_Id) return Boolean is
11141 begin
11142 return Nkind (N) = N_Identifier
11143 and then Chars (N) = Nam
11144 and then Paren_Count (N) = 0;
11145 end Is_Type_Ref;
11146
11147 -- Start of processing for Is_Predicate_Static
11148
11149 begin
3b23aaa0 11150 -- Predicate_Static means one of the following holds. Numbers are the
11151 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11152
11153 -- 16: A static expression
11154
11155 if Is_OK_Static_Expression (Expr) then
11156 return True;
11157
11158 -- 17: A membership test whose simple_expression is the current
11159 -- instance, and whose membership_choice_list meets the requirements
11160 -- for a static membership test.
11161
11162 elsif Nkind (Expr) in N_Membership_Test
11163 and then ((Present (Right_Opnd (Expr))
11164 and then Is_Static_Choice (Right_Opnd (Expr)))
11165 or else
11166 (Present (Alternatives (Expr))
11167 and then All_Static_Choices (Alternatives (Expr))))
11168 then
11169 return True;
11170
11171 -- 18. A case_expression whose selecting_expression is the current
11172 -- instance, and whose dependent expressions are static expressions.
11173
11174 elsif Nkind (Expr) = N_Case_Expression
11175 and then Is_Type_Ref (Expression (Expr))
11176 and then All_Static_Case_Alternatives (Alternatives (Expr))
11177 then
11178 return True;
11179
11180 -- 19. A call to a predefined equality or ordering operator, where one
11181 -- operand is the current instance, and the other is a static
11182 -- expression.
11183
94d896aa 11184 -- Note: the RM is clearly wrong here in not excluding string types.
11185 -- Without this exclusion, we would allow expressions like X > "ABC"
11186 -- to be considered as predicate-static, which is clearly not intended,
11187 -- since the idea is for predicate-static to be a subset of normal
11188 -- static expressions (and "DEF" > "ABC" is not a static expression).
11189
11190 -- However, we do allow internally generated (not from source) equality
11191 -- and inequality operations to be valid on strings (this helps deal
11192 -- with cases where we transform A in "ABC" to A = "ABC).
11193
3b23aaa0 11194 elsif Nkind (Expr) in N_Op_Compare
94d896aa 11195 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11196 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11197 and then not Comes_From_Source (Expr)))
3b23aaa0 11198 and then ((Is_Type_Ref (Left_Opnd (Expr))
11199 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11200 or else
11201 (Is_Type_Ref (Right_Opnd (Expr))
11202 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11203 then
11204 return True;
11205
11206 -- 20. A call to a predefined boolean logical operator, where each
11207 -- operand is predicate-static.
11208
11209 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11210 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11211 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11212 or else
11213 (Nkind (Expr) = N_Op_Not
11214 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11215 then
11216 return True;
11217
11218 -- 21. A short-circuit control form where both operands are
11219 -- predicate-static.
11220
11221 elsif Nkind (Expr) in N_Short_Circuit
11222 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11223 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11224 then
11225 return True;
11226
11227 -- 22. A parenthesized predicate-static expression. This does not
11228 -- require any special test, since we just ignore paren levels in
11229 -- all the cases above.
11230
11231 -- One more test that is an implementation artifact caused by the fact
499918a7 11232 -- that we are analyzing not the original expression, but the generated
3b23aaa0 11233 -- expression in the body of the predicate function. This can include
a360a0f7 11234 -- references to inherited predicates, so that the expression we are
3b23aaa0 11235 -- processing looks like:
11236
11237 -- expression and then xxPredicate (typ (Inns))
11238
11239 -- Where the call is to a Predicate function for an inherited predicate.
11240 -- We simply ignore such a call (which could be to either a dynamic or
499918a7 11241 -- a static predicate, but remember that we can have a Static_Predicate
3b23aaa0 11242 -- for a non-static subtype).
11243
11244 elsif Nkind (Expr) = N_Function_Call
11245 and then Is_Predicate_Function (Entity (Name (Expr)))
11246 then
11247 return True;
11248
11249 -- That's an exhaustive list of tests, all other cases are not
a360a0f7 11250 -- predicate-static, so we return False.
3b23aaa0 11251
11252 else
11253 return False;
11254 end if;
11255 end Is_Predicate_Static;
11256
2ff55065 11257 ---------------------
11258 -- Kill_Rep_Clause --
11259 ---------------------
11260
11261 procedure Kill_Rep_Clause (N : Node_Id) is
11262 begin
11263 pragma Assert (Ignore_Rep_Clauses);
360f426f 11264
11265 -- Note: we use Replace rather than Rewrite, because we don't want
11266 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11267 -- rep clause that is being replaced.
11268
4949ddd5 11269 Replace (N, Make_Null_Statement (Sloc (N)));
360f426f 11270
11271 -- The null statement must be marked as not coming from source. This is
37c6552c 11272 -- so that ASIS ignores it, and also the back end does not expect bogus
360f426f 11273 -- "from source" null statements in weird places (e.g. in declarative
11274 -- regions where such null statements are not allowed).
11275
11276 Set_Comes_From_Source (N, False);
2ff55065 11277 end Kill_Rep_Clause;
11278
d6f39728 11279 ------------------
11280 -- Minimum_Size --
11281 ------------------
11282
11283 function Minimum_Size
11284 (T : Entity_Id;
d5b349fa 11285 Biased : Boolean := False) return Nat
d6f39728 11286 is
11287 Lo : Uint := No_Uint;
11288 Hi : Uint := No_Uint;
11289 LoR : Ureal := No_Ureal;
11290 HiR : Ureal := No_Ureal;
11291 LoSet : Boolean := False;
11292 HiSet : Boolean := False;
11293 B : Uint;
11294 S : Nat;
11295 Ancest : Entity_Id;
f15731c4 11296 R_Typ : constant Entity_Id := Root_Type (T);
d6f39728 11297
11298 begin
11299 -- If bad type, return 0
11300
11301 if T = Any_Type then
11302 return 0;
11303
11304 -- For generic types, just return zero. There cannot be any legitimate
11305 -- need to know such a size, but this routine may be called with a
11306 -- generic type as part of normal processing.
11307
f02a9a9a 11308 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
d6f39728 11309 return 0;
11310
74c7ae52 11311 -- Access types (cannot have size smaller than System.Address)
d6f39728 11312
11313 elsif Is_Access_Type (T) then
74c7ae52 11314 return System_Address_Size;
d6f39728 11315
11316 -- Floating-point types
11317
11318 elsif Is_Floating_Point_Type (T) then
f15731c4 11319 return UI_To_Int (Esize (R_Typ));
d6f39728 11320
11321 -- Discrete types
11322
11323 elsif Is_Discrete_Type (T) then
11324
fdd294d1 11325 -- The following loop is looking for the nearest compile time known
11326 -- bounds following the ancestor subtype chain. The idea is to find
11327 -- the most restrictive known bounds information.
d6f39728 11328
11329 Ancest := T;
11330 loop
11331 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11332 return 0;
11333 end if;
11334
11335 if not LoSet then
11336 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11337 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11338 LoSet := True;
11339 exit when HiSet;
11340 end if;
11341 end if;
11342
11343 if not HiSet then
11344 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11345 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11346 HiSet := True;
11347 exit when LoSet;
11348 end if;
11349 end if;
11350
11351 Ancest := Ancestor_Subtype (Ancest);
11352
11353 if No (Ancest) then
11354 Ancest := Base_Type (T);
11355
11356 if Is_Generic_Type (Ancest) then
11357 return 0;
11358 end if;
11359 end if;
11360 end loop;
11361
11362 -- Fixed-point types. We can't simply use Expr_Value to get the
fdd294d1 11363 -- Corresponding_Integer_Value values of the bounds, since these do not
11364 -- get set till the type is frozen, and this routine can be called
11365 -- before the type is frozen. Similarly the test for bounds being static
11366 -- needs to include the case where we have unanalyzed real literals for
11367 -- the same reason.
d6f39728 11368
11369 elsif Is_Fixed_Point_Type (T) then
11370
fdd294d1 11371 -- The following loop is looking for the nearest compile time known
11372 -- bounds following the ancestor subtype chain. The idea is to find
11373 -- the most restrictive known bounds information.
d6f39728 11374
11375 Ancest := T;
11376 loop
11377 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11378 return 0;
11379 end if;
11380
3062c401 11381 -- Note: In the following two tests for LoSet and HiSet, it may
11382 -- seem redundant to test for N_Real_Literal here since normally
11383 -- one would assume that the test for the value being known at
11384 -- compile time includes this case. However, there is a glitch.
11385 -- If the real literal comes from folding a non-static expression,
11386 -- then we don't consider any non- static expression to be known
11387 -- at compile time if we are in configurable run time mode (needed
11388 -- in some cases to give a clearer definition of what is and what
11389 -- is not accepted). So the test is indeed needed. Without it, we
11390 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11391
d6f39728 11392 if not LoSet then
11393 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11394 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11395 then
11396 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11397 LoSet := True;
11398 exit when HiSet;
11399 end if;
11400 end if;
11401
11402 if not HiSet then
11403 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11404 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11405 then
11406 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11407 HiSet := True;
11408 exit when LoSet;
11409 end if;
11410 end if;
11411
11412 Ancest := Ancestor_Subtype (Ancest);
11413
11414 if No (Ancest) then
11415 Ancest := Base_Type (T);
11416
11417 if Is_Generic_Type (Ancest) then
11418 return 0;
11419 end if;
11420 end if;
11421 end loop;
11422
11423 Lo := UR_To_Uint (LoR / Small_Value (T));
11424 Hi := UR_To_Uint (HiR / Small_Value (T));
11425
11426 -- No other types allowed
11427
11428 else
11429 raise Program_Error;
11430 end if;
11431
2866d595 11432 -- Fall through with Hi and Lo set. Deal with biased case
d6f39728 11433
cc46ff4b 11434 if (Biased
11435 and then not Is_Fixed_Point_Type (T)
11436 and then not (Is_Enumeration_Type (T)
11437 and then Has_Non_Standard_Rep (T)))
d6f39728 11438 or else Has_Biased_Representation (T)
11439 then
11440 Hi := Hi - Lo;
11441 Lo := Uint_0;
11442 end if;
11443
11444 -- Signed case. Note that we consider types like range 1 .. -1 to be
fdd294d1 11445 -- signed for the purpose of computing the size, since the bounds have
1a34e48c 11446 -- to be accommodated in the base type.
d6f39728 11447
11448 if Lo < 0 or else Hi < 0 then
11449 S := 1;
11450 B := Uint_1;
11451
da253936 11452 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11453 -- Note that we accommodate the case where the bounds cross. This
d6f39728 11454 -- can happen either because of the way the bounds are declared
11455 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11456
11457 while Lo < -B
11458 or else Hi < -B
11459 or else Lo >= B
11460 or else Hi >= B
11461 loop
11462 B := Uint_2 ** S;
11463 S := S + 1;
11464 end loop;
11465
11466 -- Unsigned case
11467
11468 else
11469 -- If both bounds are positive, make sure that both are represen-
11470 -- table in the case where the bounds are crossed. This can happen
11471 -- either because of the way the bounds are declared, or because of
11472 -- the algorithm in Freeze_Fixed_Point_Type.
11473
11474 if Lo > Hi then
11475 Hi := Lo;
11476 end if;
11477
da253936 11478 -- S = size, (can accommodate 0 .. (2**size - 1))
d6f39728 11479
11480 S := 0;
11481 while Hi >= Uint_2 ** S loop
11482 S := S + 1;
11483 end loop;
11484 end if;
11485
11486 return S;
11487 end Minimum_Size;
11488
44e4341e 11489 ---------------------------
11490 -- New_Stream_Subprogram --
11491 ---------------------------
d6f39728 11492
44e4341e 11493 procedure New_Stream_Subprogram
11494 (N : Node_Id;
11495 Ent : Entity_Id;
11496 Subp : Entity_Id;
11497 Nam : TSS_Name_Type)
d6f39728 11498 is
11499 Loc : constant Source_Ptr := Sloc (N);
9dfe12ae 11500 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
f15731c4 11501 Subp_Id : Entity_Id;
d6f39728 11502 Subp_Decl : Node_Id;
11503 F : Entity_Id;
11504 Etyp : Entity_Id;
11505
44e4341e 11506 Defer_Declaration : constant Boolean :=
11507 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
11508 -- For a tagged type, there is a declaration for each stream attribute
11509 -- at the freeze point, and we must generate only a completion of this
11510 -- declaration. We do the same for private types, because the full view
11511 -- might be tagged. Otherwise we generate a declaration at the point of
11512 -- the attribute definition clause.
11513
f15731c4 11514 function Build_Spec return Node_Id;
11515 -- Used for declaration and renaming declaration, so that this is
11516 -- treated as a renaming_as_body.
11517
11518 ----------------
11519 -- Build_Spec --
11520 ----------------
11521
d5b349fa 11522 function Build_Spec return Node_Id is
44e4341e 11523 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
11524 Formals : List_Id;
11525 Spec : Node_Id;
83c6c069 11526 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
44e4341e 11527
f15731c4 11528 begin
9dfe12ae 11529 Subp_Id := Make_Defining_Identifier (Loc, Sname);
f15731c4 11530
44e4341e 11531 -- S : access Root_Stream_Type'Class
11532
11533 Formals := New_List (
11534 Make_Parameter_Specification (Loc,
11535 Defining_Identifier =>
11536 Make_Defining_Identifier (Loc, Name_S),
11537 Parameter_Type =>
11538 Make_Access_Definition (Loc,
11539 Subtype_Mark =>
83c6c069 11540 New_Occurrence_Of (
44e4341e 11541 Designated_Type (Etype (F)), Loc))));
11542
11543 if Nam = TSS_Stream_Input then
4bba0a8d 11544 Spec :=
11545 Make_Function_Specification (Loc,
11546 Defining_Unit_Name => Subp_Id,
11547 Parameter_Specifications => Formals,
11548 Result_Definition => T_Ref);
44e4341e 11549 else
11550 -- V : [out] T
f15731c4 11551
44e4341e 11552 Append_To (Formals,
11553 Make_Parameter_Specification (Loc,
11554 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
11555 Out_Present => Out_P,
11556 Parameter_Type => T_Ref));
f15731c4 11557
d3ef794c 11558 Spec :=
11559 Make_Procedure_Specification (Loc,
11560 Defining_Unit_Name => Subp_Id,
11561 Parameter_Specifications => Formals);
44e4341e 11562 end if;
f15731c4 11563
44e4341e 11564 return Spec;
11565 end Build_Spec;
d6f39728 11566
44e4341e 11567 -- Start of processing for New_Stream_Subprogram
d6f39728 11568
44e4341e 11569 begin
11570 F := First_Formal (Subp);
11571
11572 if Ekind (Subp) = E_Procedure then
11573 Etyp := Etype (Next_Formal (F));
d6f39728 11574 else
44e4341e 11575 Etyp := Etype (Subp);
d6f39728 11576 end if;
f15731c4 11577
44e4341e 11578 -- Prepare subprogram declaration and insert it as an action on the
11579 -- clause node. The visibility for this entity is used to test for
11580 -- visibility of the attribute definition clause (in the sense of
11581 -- 8.3(23) as amended by AI-195).
9dfe12ae 11582
44e4341e 11583 if not Defer_Declaration then
f15731c4 11584 Subp_Decl :=
11585 Make_Subprogram_Declaration (Loc,
11586 Specification => Build_Spec);
44e4341e 11587
11588 -- For a tagged type, there is always a visible declaration for each
15ebb600 11589 -- stream TSS (it is a predefined primitive operation), and the
44e4341e 11590 -- completion of this declaration occurs at the freeze point, which is
11591 -- not always visible at places where the attribute definition clause is
11592 -- visible. So, we create a dummy entity here for the purpose of
11593 -- tracking the visibility of the attribute definition clause itself.
11594
11595 else
11596 Subp_Id :=
55868293 11597 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
44e4341e 11598 Subp_Decl :=
11599 Make_Object_Declaration (Loc,
11600 Defining_Identifier => Subp_Id,
11601 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
f15731c4 11602 end if;
11603
44e4341e 11604 Insert_Action (N, Subp_Decl);
11605 Set_Entity (N, Subp_Id);
11606
d6f39728 11607 Subp_Decl :=
11608 Make_Subprogram_Renaming_Declaration (Loc,
f15731c4 11609 Specification => Build_Spec,
83c6c069 11610 Name => New_Occurrence_Of (Subp, Loc));
d6f39728 11611
44e4341e 11612 if Defer_Declaration then
d6f39728 11613 Set_TSS (Base_Type (Ent), Subp_Id);
11614 else
11615 Insert_Action (N, Subp_Decl);
11616 Copy_TSS (Subp_Id, Base_Type (Ent));
11617 end if;
44e4341e 11618 end New_Stream_Subprogram;
d6f39728 11619
2625eb01 11620 ------------------------------------------
11621 -- Push_Scope_And_Install_Discriminants --
11622 ------------------------------------------
11623
11624 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
11625 begin
11626 if Has_Discriminants (E) then
11627 Push_Scope (E);
11628
11629 -- Make discriminants visible for type declarations and protected
11630 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11631
11632 if Nkind (Parent (E)) /= N_Subtype_Declaration then
11633 Install_Discriminants (E);
11634 end if;
11635 end if;
11636 end Push_Scope_And_Install_Discriminants;
11637
d6f39728 11638 ------------------------
11639 -- Rep_Item_Too_Early --
11640 ------------------------
11641
80d4fec4 11642 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
d6f39728 11643 begin
44e4341e 11644 -- Cannot apply non-operational rep items to generic types
d6f39728 11645
f15731c4 11646 if Is_Operational_Item (N) then
11647 return False;
11648
11649 elsif Is_Type (T)
d6f39728 11650 and then Is_Generic_Type (Root_Type (T))
11651 then
503f7fd3 11652 Error_Msg_N ("representation item not allowed for generic type", N);
d6f39728 11653 return True;
11654 end if;
11655
fdd294d1 11656 -- Otherwise check for incomplete type
d6f39728 11657
11658 if Is_Incomplete_Or_Private_Type (T)
11659 and then No (Underlying_Type (T))
d64221a7 11660 and then
11661 (Nkind (N) /= N_Pragma
60014bc9 11662 or else Get_Pragma_Id (N) /= Pragma_Import)
d6f39728 11663 then
11664 Error_Msg_N
11665 ("representation item must be after full type declaration", N);
11666 return True;
11667
1a34e48c 11668 -- If the type has incomplete components, a representation clause is
d6f39728 11669 -- illegal but stream attributes and Convention pragmas are correct.
11670
11671 elsif Has_Private_Component (T) then
f15731c4 11672 if Nkind (N) = N_Pragma then
d6f39728 11673 return False;
b9e61b2a 11674
d6f39728 11675 else
11676 Error_Msg_N
11677 ("representation item must appear after type is fully defined",
11678 N);
11679 return True;
11680 end if;
11681 else
11682 return False;
11683 end if;
11684 end Rep_Item_Too_Early;
11685
11686 -----------------------
11687 -- Rep_Item_Too_Late --
11688 -----------------------
11689
11690 function Rep_Item_Too_Late
11691 (T : Entity_Id;
11692 N : Node_Id;
d5b349fa 11693 FOnly : Boolean := False) return Boolean
d6f39728 11694 is
11695 S : Entity_Id;
11696 Parent_Type : Entity_Id;
11697
4d0944e9 11698 procedure No_Type_Rep_Item;
11699 -- Output message indicating that no type-related aspects can be
11700 -- specified due to some property of the parent type.
11701
d6f39728 11702 procedure Too_Late;
4d0944e9 11703 -- Output message for an aspect being specified too late
11704
11705 -- Note that neither of the above errors is considered a serious one,
11706 -- since the effect is simply that we ignore the representation clause
11707 -- in these cases.
04d38ee4 11708 -- Is this really true? In any case if we make this change we must
11709 -- document the requirement in the spec of Rep_Item_Too_Late that
11710 -- if True is returned, then the rep item must be completely ignored???
4d0944e9 11711
11712 ----------------------
11713 -- No_Type_Rep_Item --
11714 ----------------------
11715
11716 procedure No_Type_Rep_Item is
11717 begin
11718 Error_Msg_N ("|type-related representation item not permitted!", N);
11719 end No_Type_Rep_Item;
d53a018a 11720
11721 --------------
11722 -- Too_Late --
11723 --------------
d6f39728 11724
11725 procedure Too_Late is
11726 begin
ce4da1ed 11727 -- Other compilers seem more relaxed about rep items appearing too
11728 -- late. Since analysis tools typically don't care about rep items
11729 -- anyway, no reason to be too strict about this.
11730
a9cd517c 11731 if not Relaxed_RM_Semantics then
11732 Error_Msg_N ("|representation item appears too late!", N);
11733 end if;
d6f39728 11734 end Too_Late;
11735
11736 -- Start of processing for Rep_Item_Too_Late
11737
11738 begin
a3248fc4 11739 -- First make sure entity is not frozen (RM 13.1(9))
d6f39728 11740
11741 if Is_Frozen (T)
a3248fc4 11742
11743 -- Exclude imported types, which may be frozen if they appear in a
11744 -- representation clause for a local type.
11745
4aa270d8 11746 and then not From_Limited_With (T)
a3248fc4 11747
a9cd517c 11748 -- Exclude generated entities (not coming from source). The common
a3248fc4 11749 -- case is when we generate a renaming which prematurely freezes the
11750 -- renamed internal entity, but we still want to be able to set copies
11751 -- of attribute values such as Size/Alignment.
11752
11753 and then Comes_From_Source (T)
d6f39728 11754 then
11755 Too_Late;
11756 S := First_Subtype (T);
11757
11758 if Present (Freeze_Node (S)) then
04d38ee4 11759 if not Relaxed_RM_Semantics then
11760 Error_Msg_NE
11761 ("??no more representation items for }", Freeze_Node (S), S);
11762 end if;
d6f39728 11763 end if;
11764
11765 return True;
11766
d1a2e31b 11767 -- Check for case of untagged derived type whose parent either has
4d0944e9 11768 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11769 -- this case we do not output a Too_Late message, since there is no
11770 -- earlier point where the rep item could be placed to make it legal.
d6f39728 11771
11772 elsif Is_Type (T)
11773 and then not FOnly
11774 and then Is_Derived_Type (T)
11775 and then not Is_Tagged_Type (T)
11776 then
11777 Parent_Type := Etype (Base_Type (T));
11778
11779 if Has_Primitive_Operations (Parent_Type) then
4d0944e9 11780 No_Type_Rep_Item;
04d38ee4 11781
11782 if not Relaxed_RM_Semantics then
11783 Error_Msg_NE
11784 ("\parent type & has primitive operations!", N, Parent_Type);
11785 end if;
11786
d6f39728 11787 return True;
11788
11789 elsif Is_By_Reference_Type (Parent_Type) then
4d0944e9 11790 No_Type_Rep_Item;
04d38ee4 11791
11792 if not Relaxed_RM_Semantics then
11793 Error_Msg_NE
11794 ("\parent type & is a by reference type!", N, Parent_Type);
11795 end if;
11796
d6f39728 11797 return True;
11798 end if;
11799 end if;
11800
04d38ee4 11801 -- No error, but one more warning to consider. The RM (surprisingly)
11802 -- allows this pattern:
11803
11804 -- type S is ...
11805 -- primitive operations for S
11806 -- type R is new S;
11807 -- rep clause for S
11808
11809 -- Meaning that calls on the primitive operations of S for values of
11810 -- type R may require possibly expensive implicit conversion operations.
11811 -- This is not an error, but is worth a warning.
11812
11813 if not Relaxed_RM_Semantics and then Is_Type (T) then
11814 declare
11815 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
11816
11817 begin
11818 if Present (DTL)
11819 and then Has_Primitive_Operations (Base_Type (T))
11820
11821 -- For now, do not generate this warning for the case of aspect
11822 -- specification using Ada 2012 syntax, since we get wrong
11823 -- messages we do not understand. The whole business of derived
11824 -- types and rep items seems a bit confused when aspects are
11825 -- used, since the aspects are not evaluated till freeze time.
11826
11827 and then not From_Aspect_Specification (N)
11828 then
11829 Error_Msg_Sloc := Sloc (DTL);
11830 Error_Msg_N
11831 ("representation item for& appears after derived type "
11832 & "declaration#??", N);
11833 Error_Msg_NE
11834 ("\may result in implicit conversions for primitive "
11835 & "operations of&??", N, T);
11836 Error_Msg_NE
11837 ("\to change representations when called with arguments "
11838 & "of type&??", N, DTL);
11839 end if;
11840 end;
11841 end if;
11842
3062c401 11843 -- No error, link item into head of chain of rep items for the entity,
11844 -- but avoid chaining if we have an overloadable entity, and the pragma
11845 -- is one that can apply to multiple overloaded entities.
11846
b9e61b2a 11847 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
fdd294d1 11848 declare
11849 Pname : constant Name_Id := Pragma_Name (N);
11850 begin
18393965 11851 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
11852 Name_External, Name_Interface)
fdd294d1 11853 then
11854 return False;
11855 end if;
11856 end;
3062c401 11857 end if;
11858
fdd294d1 11859 Record_Rep_Item (T, N);
d6f39728 11860 return False;
11861 end Rep_Item_Too_Late;
11862
2072eaa9 11863 -------------------------------------
11864 -- Replace_Type_References_Generic --
11865 -------------------------------------
11866
37c6552c 11867 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
11868 TName : constant Name_Id := Chars (T);
2072eaa9 11869
11870 function Replace_Node (N : Node_Id) return Traverse_Result;
11871 -- Processes a single node in the traversal procedure below, checking
11872 -- if node N should be replaced, and if so, doing the replacement.
11873
11874 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
11875 -- This instantiation provides the body of Replace_Type_References
11876
11877 ------------------
11878 -- Replace_Node --
11879 ------------------
11880
11881 function Replace_Node (N : Node_Id) return Traverse_Result is
11882 S : Entity_Id;
11883 P : Node_Id;
11884
11885 begin
11886 -- Case of identifier
11887
11888 if Nkind (N) = N_Identifier then
11889
37c6552c 11890 -- If not the type name, check whether it is a reference to
11891 -- some other type, which must be frozen before the predicate
11892 -- function is analyzed, i.e. before the freeze node of the
11893 -- type to which the predicate applies.
2072eaa9 11894
11895 if Chars (N) /= TName then
37c6552c 11896 if Present (Current_Entity (N))
11897 and then Is_Type (Current_Entity (N))
11898 then
11899 Freeze_Before (Freeze_Node (T), Current_Entity (N));
11900 end if;
11901
2072eaa9 11902 return Skip;
11903
11904 -- Otherwise do the replacement and we are done with this node
11905
11906 else
11907 Replace_Type_Reference (N);
11908 return Skip;
11909 end if;
11910
11911 -- Case of selected component (which is what a qualification
11912 -- looks like in the unanalyzed tree, which is what we have.
11913
11914 elsif Nkind (N) = N_Selected_Component then
11915
11916 -- If selector name is not our type, keeping going (we might
11917 -- still have an occurrence of the type in the prefix).
11918
11919 if Nkind (Selector_Name (N)) /= N_Identifier
11920 or else Chars (Selector_Name (N)) /= TName
11921 then
11922 return OK;
11923
11924 -- Selector name is our type, check qualification
11925
11926 else
11927 -- Loop through scopes and prefixes, doing comparison
11928
11929 S := Current_Scope;
11930 P := Prefix (N);
11931 loop
11932 -- Continue if no more scopes or scope with no name
11933
11934 if No (S) or else Nkind (S) not in N_Has_Chars then
11935 return OK;
11936 end if;
11937
11938 -- Do replace if prefix is an identifier matching the
11939 -- scope that we are currently looking at.
11940
11941 if Nkind (P) = N_Identifier
11942 and then Chars (P) = Chars (S)
11943 then
11944 Replace_Type_Reference (N);
11945 return Skip;
11946 end if;
11947
11948 -- Go check scope above us if prefix is itself of the
11949 -- form of a selected component, whose selector matches
11950 -- the scope we are currently looking at.
11951
11952 if Nkind (P) = N_Selected_Component
11953 and then Nkind (Selector_Name (P)) = N_Identifier
11954 and then Chars (Selector_Name (P)) = Chars (S)
11955 then
11956 S := Scope (S);
11957 P := Prefix (P);
11958
11959 -- For anything else, we don't have a match, so keep on
11960 -- going, there are still some weird cases where we may
11961 -- still have a replacement within the prefix.
11962
11963 else
11964 return OK;
11965 end if;
11966 end loop;
11967 end if;
11968
ec6f6da5 11969 -- Continue for any other node kind
2072eaa9 11970
11971 else
11972 return OK;
11973 end if;
11974 end Replace_Node;
11975
11976 begin
11977 Replace_Type_Refs (N);
11978 end Replace_Type_References_Generic;
11979
d6f39728 11980 -------------------------
11981 -- Same_Representation --
11982 -------------------------
11983
11984 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
11985 T1 : constant Entity_Id := Underlying_Type (Typ1);
11986 T2 : constant Entity_Id := Underlying_Type (Typ2);
11987
11988 begin
11989 -- A quick check, if base types are the same, then we definitely have
11990 -- the same representation, because the subtype specific representation
11991 -- attributes (Size and Alignment) do not affect representation from
11992 -- the point of view of this test.
11993
11994 if Base_Type (T1) = Base_Type (T2) then
11995 return True;
11996
11997 elsif Is_Private_Type (Base_Type (T2))
11998 and then Base_Type (T1) = Full_View (Base_Type (T2))
11999 then
12000 return True;
12001 end if;
12002
12003 -- Tagged types never have differing representations
12004
12005 if Is_Tagged_Type (T1) then
12006 return True;
12007 end if;
12008
12009 -- Representations are definitely different if conventions differ
12010
12011 if Convention (T1) /= Convention (T2) then
12012 return False;
12013 end if;
12014
ef0772bc 12015 -- Representations are different if component alignments or scalar
12016 -- storage orders differ.
d6f39728 12017
12018 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
726fd56a 12019 and then
d6f39728 12020 (Is_Record_Type (T2) or else Is_Array_Type (T2))
ef0772bc 12021 and then
12022 (Component_Alignment (T1) /= Component_Alignment (T2)
f02a9a9a 12023 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
d6f39728 12024 then
12025 return False;
12026 end if;
12027
12028 -- For arrays, the only real issue is component size. If we know the
12029 -- component size for both arrays, and it is the same, then that's
12030 -- good enough to know we don't have a change of representation.
12031
12032 if Is_Array_Type (T1) then
12033 if Known_Component_Size (T1)
12034 and then Known_Component_Size (T2)
12035 and then Component_Size (T1) = Component_Size (T2)
12036 then
9f1130cc 12037 if VM_Target = No_VM then
12038 return True;
12039
12040 -- In VM targets the representation of arrays with aliased
12041 -- components differs from arrays with non-aliased components
12042
12043 else
12044 return Has_Aliased_Components (Base_Type (T1))
0ba3592b 12045 =
12046 Has_Aliased_Components (Base_Type (T2));
9f1130cc 12047 end if;
d6f39728 12048 end if;
12049 end if;
12050
12051 -- Types definitely have same representation if neither has non-standard
12052 -- representation since default representations are always consistent.
12053 -- If only one has non-standard representation, and the other does not,
12054 -- then we consider that they do not have the same representation. They
12055 -- might, but there is no way of telling early enough.
12056
12057 if Has_Non_Standard_Rep (T1) then
12058 if not Has_Non_Standard_Rep (T2) then
12059 return False;
12060 end if;
12061 else
12062 return not Has_Non_Standard_Rep (T2);
12063 end if;
12064
fdd294d1 12065 -- Here the two types both have non-standard representation, and we need
12066 -- to determine if they have the same non-standard representation.
d6f39728 12067
12068 -- For arrays, we simply need to test if the component sizes are the
12069 -- same. Pragma Pack is reflected in modified component sizes, so this
12070 -- check also deals with pragma Pack.
12071
12072 if Is_Array_Type (T1) then
12073 return Component_Size (T1) = Component_Size (T2);
12074
12075 -- Tagged types always have the same representation, because it is not
12076 -- possible to specify different representations for common fields.
12077
12078 elsif Is_Tagged_Type (T1) then
12079 return True;
12080
12081 -- Case of record types
12082
12083 elsif Is_Record_Type (T1) then
12084
12085 -- Packed status must conform
12086
12087 if Is_Packed (T1) /= Is_Packed (T2) then
12088 return False;
12089
12090 -- Otherwise we must check components. Typ2 maybe a constrained
12091 -- subtype with fewer components, so we compare the components
12092 -- of the base types.
12093
12094 else
12095 Record_Case : declare
12096 CD1, CD2 : Entity_Id;
12097
12098 function Same_Rep return Boolean;
12099 -- CD1 and CD2 are either components or discriminants. This
ef0772bc 12100 -- function tests whether they have the same representation.
d6f39728 12101
80d4fec4 12102 --------------
12103 -- Same_Rep --
12104 --------------
12105
d6f39728 12106 function Same_Rep return Boolean is
12107 begin
12108 if No (Component_Clause (CD1)) then
12109 return No (Component_Clause (CD2));
d6f39728 12110 else
ef0772bc 12111 -- Note: at this point, component clauses have been
12112 -- normalized to the default bit order, so that the
12113 -- comparison of Component_Bit_Offsets is meaningful.
12114
d6f39728 12115 return
12116 Present (Component_Clause (CD2))
12117 and then
12118 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12119 and then
12120 Esize (CD1) = Esize (CD2);
12121 end if;
12122 end Same_Rep;
12123
1e35409d 12124 -- Start of processing for Record_Case
d6f39728 12125
12126 begin
12127 if Has_Discriminants (T1) then
d6f39728 12128
9dfe12ae 12129 -- The number of discriminants may be different if the
12130 -- derived type has fewer (constrained by values). The
12131 -- invisible discriminants retain the representation of
12132 -- the original, so the discrepancy does not per se
12133 -- indicate a different representation.
12134
b9e61b2a 12135 CD1 := First_Discriminant (T1);
12136 CD2 := First_Discriminant (T2);
12137 while Present (CD1) and then Present (CD2) loop
d6f39728 12138 if not Same_Rep then
12139 return False;
12140 else
12141 Next_Discriminant (CD1);
12142 Next_Discriminant (CD2);
12143 end if;
12144 end loop;
12145 end if;
12146
12147 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12148 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
d6f39728 12149 while Present (CD1) loop
12150 if not Same_Rep then
12151 return False;
12152 else
12153 Next_Component (CD1);
12154 Next_Component (CD2);
12155 end if;
12156 end loop;
12157
12158 return True;
12159 end Record_Case;
12160 end if;
12161
12162 -- For enumeration types, we must check each literal to see if the
12163 -- representation is the same. Note that we do not permit enumeration
1a34e48c 12164 -- representation clauses for Character and Wide_Character, so these
d6f39728 12165 -- cases were already dealt with.
12166
12167 elsif Is_Enumeration_Type (T1) then
d6f39728 12168 Enumeration_Case : declare
12169 L1, L2 : Entity_Id;
12170
12171 begin
12172 L1 := First_Literal (T1);
12173 L2 := First_Literal (T2);
d6f39728 12174 while Present (L1) loop
12175 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12176 return False;
12177 else
12178 Next_Literal (L1);
12179 Next_Literal (L2);
12180 end if;
12181 end loop;
12182
12183 return True;
d6f39728 12184 end Enumeration_Case;
12185
12186 -- Any other types have the same representation for these purposes
12187
12188 else
12189 return True;
12190 end if;
d6f39728 12191 end Same_Representation;
12192
3061ffde 12193 --------------------------------
12194 -- Resolve_Iterable_Operation --
12195 --------------------------------
12196
12197 procedure Resolve_Iterable_Operation
12198 (N : Node_Id;
12199 Cursor : Entity_Id;
12200 Typ : Entity_Id;
12201 Nam : Name_Id)
12202 is
12203 Ent : Entity_Id;
12204 F1 : Entity_Id;
12205 F2 : Entity_Id;
12206
12207 begin
12208 if not Is_Overloaded (N) then
12209 if not Is_Entity_Name (N)
12210 or else Ekind (Entity (N)) /= E_Function
12211 or else Scope (Entity (N)) /= Scope (Typ)
12212 or else No (First_Formal (Entity (N)))
12213 or else Etype (First_Formal (Entity (N))) /= Typ
12214 then
12215 Error_Msg_N ("iterable primitive must be local function name "
12216 & "whose first formal is an iterable type", N);
a9f5fea7 12217 return;
3061ffde 12218 end if;
12219
12220 Ent := Entity (N);
12221 F1 := First_Formal (Ent);
12222 if Nam = Name_First then
12223
12224 -- First (Container) => Cursor
12225
12226 if Etype (Ent) /= Cursor then
12227 Error_Msg_N ("primitive for First must yield a curosr", N);
12228 end if;
12229
12230 elsif Nam = Name_Next then
12231
12232 -- Next (Container, Cursor) => Cursor
12233
12234 F2 := Next_Formal (F1);
12235
12236 if Etype (F2) /= Cursor
12237 or else Etype (Ent) /= Cursor
12238 or else Present (Next_Formal (F2))
12239 then
12240 Error_Msg_N ("no match for Next iterable primitive", N);
12241 end if;
12242
12243 elsif Nam = Name_Has_Element then
12244
12245 -- Has_Element (Container, Cursor) => Boolean
12246
12247 F2 := Next_Formal (F1);
12248 if Etype (F2) /= Cursor
12249 or else Etype (Ent) /= Standard_Boolean
12250 or else Present (Next_Formal (F2))
12251 then
12252 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12253 end if;
12254
12255 elsif Nam = Name_Element then
b9b03799 12256 F2 := Next_Formal (F1);
12257
12258 if No (F2)
12259 or else Etype (F2) /= Cursor
12260 or else Present (Next_Formal (F2))
12261 then
12262 Error_Msg_N ("no match for Element iterable primitive", N);
12263 end if;
3061ffde 12264 null;
12265
12266 else
12267 raise Program_Error;
12268 end if;
12269
12270 else
12271 -- Overloaded case: find subprogram with proper signature.
12272 -- Caller will report error if no match is found.
12273
12274 declare
12275 I : Interp_Index;
12276 It : Interp;
12277
12278 begin
12279 Get_First_Interp (N, I, It);
12280 while Present (It.Typ) loop
12281 if Ekind (It.Nam) = E_Function
b9b03799 12282 and then Scope (It.Nam) = Scope (Typ)
3061ffde 12283 and then Etype (First_Formal (It.Nam)) = Typ
12284 then
12285 F1 := First_Formal (It.Nam);
12286
12287 if Nam = Name_First then
12288 if Etype (It.Nam) = Cursor
12289 and then No (Next_Formal (F1))
12290 then
12291 Set_Entity (N, It.Nam);
12292 exit;
12293 end if;
12294
12295 elsif Nam = Name_Next then
12296 F2 := Next_Formal (F1);
12297
12298 if Present (F2)
12299 and then No (Next_Formal (F2))
12300 and then Etype (F2) = Cursor
12301 and then Etype (It.Nam) = Cursor
12302 then
12303 Set_Entity (N, It.Nam);
12304 exit;
12305 end if;
12306
12307 elsif Nam = Name_Has_Element then
12308 F2 := Next_Formal (F1);
12309
12310 if Present (F2)
12311 and then No (Next_Formal (F2))
12312 and then Etype (F2) = Cursor
12313 and then Etype (It.Nam) = Standard_Boolean
12314 then
12315 Set_Entity (N, It.Nam);
12316 F2 := Next_Formal (F1);
12317 exit;
12318 end if;
12319
12320 elsif Nam = Name_Element then
b9b03799 12321 F2 := Next_Formal (F1);
12322
3061ffde 12323 if Present (F2)
12324 and then No (Next_Formal (F2))
12325 and then Etype (F2) = Cursor
12326 then
12327 Set_Entity (N, It.Nam);
12328 exit;
12329 end if;
12330 end if;
12331 end if;
12332
12333 Get_Next_Interp (I, It);
12334 end loop;
12335 end;
12336 end if;
12337 end Resolve_Iterable_Operation;
12338
b77e4501 12339 ----------------
12340 -- Set_Biased --
12341 ----------------
12342
12343 procedure Set_Biased
12344 (E : Entity_Id;
12345 N : Node_Id;
12346 Msg : String;
12347 Biased : Boolean := True)
12348 is
12349 begin
12350 if Biased then
12351 Set_Has_Biased_Representation (E);
12352
12353 if Warn_On_Biased_Representation then
12354 Error_Msg_NE
1e3532e7 12355 ("?B?" & Msg & " forces biased representation for&", N, E);
b77e4501 12356 end if;
12357 end if;
12358 end Set_Biased;
12359
d6f39728 12360 --------------------
12361 -- Set_Enum_Esize --
12362 --------------------
12363
12364 procedure Set_Enum_Esize (T : Entity_Id) is
12365 Lo : Uint;
12366 Hi : Uint;
12367 Sz : Nat;
12368
12369 begin
12370 Init_Alignment (T);
12371
12372 -- Find the minimum standard size (8,16,32,64) that fits
12373
12374 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12375 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12376
12377 if Lo < 0 then
12378 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
f15731c4 12379 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12380
12381 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12382 Sz := 16;
12383
12384 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12385 Sz := 32;
12386
12387 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12388 Sz := 64;
12389 end if;
12390
12391 else
12392 if Hi < Uint_2**08 then
f15731c4 12393 Sz := Standard_Character_Size; -- May be > 8 on some targets
d6f39728 12394
12395 elsif Hi < Uint_2**16 then
12396 Sz := 16;
12397
12398 elsif Hi < Uint_2**32 then
12399 Sz := 32;
12400
12401 else pragma Assert (Hi < Uint_2**63);
12402 Sz := 64;
12403 end if;
12404 end if;
12405
12406 -- That minimum is the proper size unless we have a foreign convention
12407 -- and the size required is 32 or less, in which case we bump the size
12408 -- up to 32. This is required for C and C++ and seems reasonable for
12409 -- all other foreign conventions.
12410
12411 if Has_Foreign_Convention (T)
12412 and then Esize (T) < Standard_Integer_Size
db1eed69 12413
12414 -- Don't do this if Short_Enums on target
12415
e9185b9d 12416 and then not Target_Short_Enums
d6f39728 12417 then
12418 Init_Esize (T, Standard_Integer_Size);
d6f39728 12419 else
12420 Init_Esize (T, Sz);
12421 end if;
d6f39728 12422 end Set_Enum_Esize;
12423
2625eb01 12424 -----------------------------
12425 -- Uninstall_Discriminants --
12426 -----------------------------
12427
12428 procedure Uninstall_Discriminants (E : Entity_Id) is
12429 Disc : Entity_Id;
12430 Prev : Entity_Id;
12431 Outer : Entity_Id;
12432
12433 begin
12434 -- Discriminants have been made visible for type declarations and
12435 -- protected type declarations, not for subtype declarations.
12436
12437 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12438 Disc := First_Discriminant (E);
12439 while Present (Disc) loop
12440 if Disc /= Current_Entity (Disc) then
12441 Prev := Current_Entity (Disc);
12442 while Present (Prev)
12443 and then Present (Homonym (Prev))
12444 and then Homonym (Prev) /= Disc
12445 loop
12446 Prev := Homonym (Prev);
12447 end loop;
12448 else
12449 Prev := Empty;
12450 end if;
12451
12452 Set_Is_Immediately_Visible (Disc, False);
12453
12454 Outer := Homonym (Disc);
12455 while Present (Outer) and then Scope (Outer) = E loop
12456 Outer := Homonym (Outer);
12457 end loop;
12458
12459 -- Reset homonym link of other entities, but do not modify link
12460 -- between entities in current scope, so that the back-end can
12461 -- have a proper count of local overloadings.
12462
12463 if No (Prev) then
12464 Set_Name_Entity_Id (Chars (Disc), Outer);
12465
12466 elsif Scope (Prev) /= Scope (Disc) then
12467 Set_Homonym (Prev, Outer);
12468 end if;
12469
12470 Next_Discriminant (Disc);
12471 end loop;
12472 end if;
12473 end Uninstall_Discriminants;
12474
12475 -------------------------------------------
12476 -- Uninstall_Discriminants_And_Pop_Scope --
12477 -------------------------------------------
12478
12479 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
12480 begin
12481 if Has_Discriminants (E) then
12482 Uninstall_Discriminants (E);
12483 Pop_Scope;
12484 end if;
12485 end Uninstall_Discriminants_And_Pop_Scope;
12486
83f8f0a6 12487 ------------------------------
12488 -- Validate_Address_Clauses --
12489 ------------------------------
12490
12491 procedure Validate_Address_Clauses is
12492 begin
12493 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
12494 declare
12495 ACCR : Address_Clause_Check_Record
12496 renames Address_Clause_Checks.Table (J);
12497
d6da7448 12498 Expr : Node_Id;
12499
83f8f0a6 12500 X_Alignment : Uint;
12501 Y_Alignment : Uint;
12502
12503 X_Size : Uint;
12504 Y_Size : Uint;
12505
12506 begin
12507 -- Skip processing of this entry if warning already posted
12508
12509 if not Address_Warning_Posted (ACCR.N) then
d6da7448 12510 Expr := Original_Node (Expression (ACCR.N));
83f8f0a6 12511
d6da7448 12512 -- Get alignments
83f8f0a6 12513
d6da7448 12514 X_Alignment := Alignment (ACCR.X);
12515 Y_Alignment := Alignment (ACCR.Y);
83f8f0a6 12516
12517 -- Similarly obtain sizes
12518
d6da7448 12519 X_Size := Esize (ACCR.X);
12520 Y_Size := Esize (ACCR.Y);
83f8f0a6 12521
12522 -- Check for large object overlaying smaller one
12523
12524 if Y_Size > Uint_0
12525 and then X_Size > Uint_0
12526 and then X_Size > Y_Size
12527 then
d6da7448 12528 Error_Msg_NE
1581f2d7 12529 ("??& overlays smaller object", ACCR.N, ACCR.X);
83f8f0a6 12530 Error_Msg_N
1e3532e7 12531 ("\??program execution may be erroneous", ACCR.N);
83f8f0a6 12532 Error_Msg_Uint_1 := X_Size;
12533 Error_Msg_NE
1e3532e7 12534 ("\??size of & is ^", ACCR.N, ACCR.X);
83f8f0a6 12535 Error_Msg_Uint_1 := Y_Size;
12536 Error_Msg_NE
1e3532e7 12537 ("\??size of & is ^", ACCR.N, ACCR.Y);
83f8f0a6 12538
d6da7448 12539 -- Check for inadequate alignment, both of the base object
12540 -- and of the offset, if any.
83f8f0a6 12541
d6da7448 12542 -- Note: we do not check the alignment if we gave a size
12543 -- warning, since it would likely be redundant.
83f8f0a6 12544
12545 elsif Y_Alignment /= Uint_0
d6da7448 12546 and then (Y_Alignment < X_Alignment
12547 or else (ACCR.Off
12548 and then
12549 Nkind (Expr) = N_Attribute_Reference
12550 and then
12551 Attribute_Name (Expr) = Name_Address
12552 and then
12553 Has_Compatible_Alignment
12554 (ACCR.X, Prefix (Expr))
12555 /= Known_Compatible))
83f8f0a6 12556 then
12557 Error_Msg_NE
1e3532e7 12558 ("??specified address for& may be inconsistent "
12559 & "with alignment", ACCR.N, ACCR.X);
83f8f0a6 12560 Error_Msg_N
1e3532e7 12561 ("\??program execution may be erroneous (RM 13.3(27))",
83f8f0a6 12562 ACCR.N);
12563 Error_Msg_Uint_1 := X_Alignment;
12564 Error_Msg_NE
1e3532e7 12565 ("\??alignment of & is ^", ACCR.N, ACCR.X);
83f8f0a6 12566 Error_Msg_Uint_1 := Y_Alignment;
12567 Error_Msg_NE
1e3532e7 12568 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
d6da7448 12569 if Y_Alignment >= X_Alignment then
12570 Error_Msg_N
1e3532e7 12571 ("\??but offset is not multiple of alignment", ACCR.N);
d6da7448 12572 end if;
83f8f0a6 12573 end if;
12574 end if;
12575 end;
12576 end loop;
12577 end Validate_Address_Clauses;
12578
7717ea00 12579 ---------------------------
12580 -- Validate_Independence --
12581 ---------------------------
12582
12583 procedure Validate_Independence is
12584 SU : constant Uint := UI_From_Int (System_Storage_Unit);
12585 N : Node_Id;
12586 E : Entity_Id;
12587 IC : Boolean;
12588 Comp : Entity_Id;
12589 Addr : Node_Id;
12590 P : Node_Id;
12591
12592 procedure Check_Array_Type (Atyp : Entity_Id);
12593 -- Checks if the array type Atyp has independent components, and
12594 -- if not, outputs an appropriate set of error messages.
12595
12596 procedure No_Independence;
12597 -- Output message that independence cannot be guaranteed
12598
12599 function OK_Component (C : Entity_Id) return Boolean;
12600 -- Checks one component to see if it is independently accessible, and
12601 -- if so yields True, otherwise yields False if independent access
12602 -- cannot be guaranteed. This is a conservative routine, it only
12603 -- returns True if it knows for sure, it returns False if it knows
12604 -- there is a problem, or it cannot be sure there is no problem.
12605
12606 procedure Reason_Bad_Component (C : Entity_Id);
12607 -- Outputs continuation message if a reason can be determined for
12608 -- the component C being bad.
12609
12610 ----------------------
12611 -- Check_Array_Type --
12612 ----------------------
12613
12614 procedure Check_Array_Type (Atyp : Entity_Id) is
12615 Ctyp : constant Entity_Id := Component_Type (Atyp);
12616
12617 begin
12618 -- OK if no alignment clause, no pack, and no component size
12619
12620 if not Has_Component_Size_Clause (Atyp)
12621 and then not Has_Alignment_Clause (Atyp)
12622 and then not Is_Packed (Atyp)
12623 then
12624 return;
12625 end if;
12626
aa0a69ab 12627 -- Case of component size is greater than or equal to 64 and the
12628 -- alignment of the array is at least as large as the alignment
12629 -- of the component. We are definitely OK in this situation.
12630
12631 if Known_Component_Size (Atyp)
12632 and then Component_Size (Atyp) >= 64
12633 and then Known_Alignment (Atyp)
12634 and then Known_Alignment (Ctyp)
12635 and then Alignment (Atyp) >= Alignment (Ctyp)
12636 then
12637 return;
12638 end if;
12639
7717ea00 12640 -- Check actual component size
12641
12642 if not Known_Component_Size (Atyp)
12643 or else not (Addressable (Component_Size (Atyp))
aa0a69ab 12644 and then Component_Size (Atyp) < 64)
7717ea00 12645 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
12646 then
12647 No_Independence;
12648
12649 -- Bad component size, check reason
12650
12651 if Has_Component_Size_Clause (Atyp) then
b9e61b2a 12652 P := Get_Attribute_Definition_Clause
12653 (Atyp, Attribute_Component_Size);
7717ea00 12654
12655 if Present (P) then
12656 Error_Msg_Sloc := Sloc (P);
12657 Error_Msg_N ("\because of Component_Size clause#", N);
12658 return;
12659 end if;
12660 end if;
12661
12662 if Is_Packed (Atyp) then
12663 P := Get_Rep_Pragma (Atyp, Name_Pack);
12664
12665 if Present (P) then
12666 Error_Msg_Sloc := Sloc (P);
12667 Error_Msg_N ("\because of pragma Pack#", N);
12668 return;
12669 end if;
12670 end if;
12671
12672 -- No reason found, just return
12673
12674 return;
12675 end if;
12676
12677 -- Array type is OK independence-wise
12678
12679 return;
12680 end Check_Array_Type;
12681
12682 ---------------------
12683 -- No_Independence --
12684 ---------------------
12685
12686 procedure No_Independence is
12687 begin
12688 if Pragma_Name (N) = Name_Independent then
18393965 12689 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
7717ea00 12690 else
12691 Error_Msg_NE
12692 ("independent components cannot be guaranteed for&", N, E);
12693 end if;
12694 end No_Independence;
12695
12696 ------------------
12697 -- OK_Component --
12698 ------------------
12699
12700 function OK_Component (C : Entity_Id) return Boolean is
12701 Rec : constant Entity_Id := Scope (C);
12702 Ctyp : constant Entity_Id := Etype (C);
12703
12704 begin
12705 -- OK if no component clause, no Pack, and no alignment clause
12706
12707 if No (Component_Clause (C))
12708 and then not Is_Packed (Rec)
12709 and then not Has_Alignment_Clause (Rec)
12710 then
12711 return True;
12712 end if;
12713
12714 -- Here we look at the actual component layout. A component is
12715 -- addressable if its size is a multiple of the Esize of the
12716 -- component type, and its starting position in the record has
12717 -- appropriate alignment, and the record itself has appropriate
12718 -- alignment to guarantee the component alignment.
12719
12720 -- Make sure sizes are static, always assume the worst for any
12721 -- cases where we cannot check static values.
12722
12723 if not (Known_Static_Esize (C)
b9e61b2a 12724 and then
12725 Known_Static_Esize (Ctyp))
7717ea00 12726 then
12727 return False;
12728 end if;
12729
12730 -- Size of component must be addressable or greater than 64 bits
12731 -- and a multiple of bytes.
12732
b9e61b2a 12733 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
7717ea00 12734 return False;
12735 end if;
12736
12737 -- Check size is proper multiple
12738
12739 if Esize (C) mod Esize (Ctyp) /= 0 then
12740 return False;
12741 end if;
12742
12743 -- Check alignment of component is OK
12744
12745 if not Known_Component_Bit_Offset (C)
12746 or else Component_Bit_Offset (C) < Uint_0
12747 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
12748 then
12749 return False;
12750 end if;
12751
12752 -- Check alignment of record type is OK
12753
12754 if not Known_Alignment (Rec)
12755 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12756 then
12757 return False;
12758 end if;
12759
12760 -- All tests passed, component is addressable
12761
12762 return True;
12763 end OK_Component;
12764
12765 --------------------------
12766 -- Reason_Bad_Component --
12767 --------------------------
12768
12769 procedure Reason_Bad_Component (C : Entity_Id) is
12770 Rec : constant Entity_Id := Scope (C);
12771 Ctyp : constant Entity_Id := Etype (C);
12772
12773 begin
12774 -- If component clause present assume that's the problem
12775
12776 if Present (Component_Clause (C)) then
12777 Error_Msg_Sloc := Sloc (Component_Clause (C));
12778 Error_Msg_N ("\because of Component_Clause#", N);
12779 return;
12780 end if;
12781
12782 -- If pragma Pack clause present, assume that's the problem
12783
12784 if Is_Packed (Rec) then
12785 P := Get_Rep_Pragma (Rec, Name_Pack);
12786
12787 if Present (P) then
12788 Error_Msg_Sloc := Sloc (P);
12789 Error_Msg_N ("\because of pragma Pack#", N);
12790 return;
12791 end if;
12792 end if;
12793
12794 -- See if record has bad alignment clause
12795
12796 if Has_Alignment_Clause (Rec)
12797 and then Known_Alignment (Rec)
12798 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12799 then
12800 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
12801
12802 if Present (P) then
12803 Error_Msg_Sloc := Sloc (P);
12804 Error_Msg_N ("\because of Alignment clause#", N);
12805 end if;
12806 end if;
12807
12808 -- Couldn't find a reason, so return without a message
12809
12810 return;
12811 end Reason_Bad_Component;
12812
12813 -- Start of processing for Validate_Independence
12814
12815 begin
12816 for J in Independence_Checks.First .. Independence_Checks.Last loop
12817 N := Independence_Checks.Table (J).N;
12818 E := Independence_Checks.Table (J).E;
12819 IC := Pragma_Name (N) = Name_Independent_Components;
12820
12821 -- Deal with component case
12822
12823 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
12824 if not OK_Component (E) then
12825 No_Independence;
12826 Reason_Bad_Component (E);
12827 goto Continue;
12828 end if;
12829 end if;
12830
12831 -- Deal with record with Independent_Components
12832
12833 if IC and then Is_Record_Type (E) then
12834 Comp := First_Component_Or_Discriminant (E);
12835 while Present (Comp) loop
12836 if not OK_Component (Comp) then
12837 No_Independence;
12838 Reason_Bad_Component (Comp);
12839 goto Continue;
12840 end if;
12841
12842 Next_Component_Or_Discriminant (Comp);
12843 end loop;
12844 end if;
12845
12846 -- Deal with address clause case
12847
12848 if Is_Object (E) then
12849 Addr := Address_Clause (E);
12850
12851 if Present (Addr) then
12852 No_Independence;
12853 Error_Msg_Sloc := Sloc (Addr);
12854 Error_Msg_N ("\because of Address clause#", N);
12855 goto Continue;
12856 end if;
12857 end if;
12858
12859 -- Deal with independent components for array type
12860
12861 if IC and then Is_Array_Type (E) then
12862 Check_Array_Type (E);
12863 end if;
12864
12865 -- Deal with independent components for array object
12866
12867 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
12868 Check_Array_Type (Etype (E));
12869 end if;
12870
12871 <<Continue>> null;
12872 end loop;
12873 end Validate_Independence;
12874
b3f8228a 12875 ------------------------------
12876 -- Validate_Iterable_Aspect --
12877 ------------------------------
12878
12879 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
3061ffde 12880 Assoc : Node_Id;
12881 Expr : Node_Id;
b3f8228a 12882
bde03454 12883 Prim : Node_Id;
a9f5fea7 12884 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
b3f8228a 12885
12886 First_Id : Entity_Id;
12887 Next_Id : Entity_Id;
12888 Has_Element_Id : Entity_Id;
12889 Element_Id : Entity_Id;
12890
b3f8228a 12891 begin
9698629c 12892 -- If previous error aspect is unusable
a9f5fea7 12893
12894 if Cursor = Any_Type then
3061ffde 12895 return;
12896 end if;
b3f8228a 12897
12898 First_Id := Empty;
12899 Next_Id := Empty;
12900 Has_Element_Id := Empty;
32de816b 12901 Element_Id := Empty;
b3f8228a 12902
12903 -- Each expression must resolve to a function with the proper signature
12904
12905 Assoc := First (Component_Associations (Expression (ASN)));
12906 while Present (Assoc) loop
12907 Expr := Expression (Assoc);
12908 Analyze (Expr);
12909
b3f8228a 12910 Prim := First (Choices (Assoc));
bde03454 12911
f02a9a9a 12912 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
b3f8228a 12913 Error_Msg_N ("illegal name in association", Prim);
12914
12915 elsif Chars (Prim) = Name_First then
3061ffde 12916 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
b3f8228a 12917 First_Id := Entity (Expr);
b3f8228a 12918
12919 elsif Chars (Prim) = Name_Next then
3061ffde 12920 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
b3f8228a 12921 Next_Id := Entity (Expr);
b3f8228a 12922
12923 elsif Chars (Prim) = Name_Has_Element then
3061ffde 12924 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
b3f8228a 12925 Has_Element_Id := Entity (Expr);
bde03454 12926
b3f8228a 12927 elsif Chars (Prim) = Name_Element then
3061ffde 12928 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
b3f8228a 12929 Element_Id := Entity (Expr);
b3f8228a 12930
12931 else
12932 Error_Msg_N ("invalid name for iterable function", Prim);
12933 end if;
12934
12935 Next (Assoc);
12936 end loop;
12937
12938 if No (First_Id) then
3061ffde 12939 Error_Msg_N ("match for First primitive not found", ASN);
b3f8228a 12940
12941 elsif No (Next_Id) then
3061ffde 12942 Error_Msg_N ("match for Next primitive not found", ASN);
b3f8228a 12943
12944 elsif No (Has_Element_Id) then
3061ffde 12945 Error_Msg_N ("match for Has_Element primitive not found", ASN);
12946
12947 elsif No (Element_Id) then
12948 null; -- Optional.
b3f8228a 12949 end if;
12950 end Validate_Iterable_Aspect;
12951
d6f39728 12952 -----------------------------------
12953 -- Validate_Unchecked_Conversion --
12954 -----------------------------------
12955
12956 procedure Validate_Unchecked_Conversion
12957 (N : Node_Id;
12958 Act_Unit : Entity_Id)
12959 is
12960 Source : Entity_Id;
12961 Target : Entity_Id;
12962 Vnode : Node_Id;
12963
12964 begin
12965 -- Obtain source and target types. Note that we call Ancestor_Subtype
12966 -- here because the processing for generic instantiation always makes
12967 -- subtypes, and we want the original frozen actual types.
12968
12969 -- If we are dealing with private types, then do the check on their
12970 -- fully declared counterparts if the full declarations have been
39a0c1d3 12971 -- encountered (they don't have to be visible, but they must exist).
d6f39728 12972
12973 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
12974
12975 if Is_Private_Type (Source)
12976 and then Present (Underlying_Type (Source))
12977 then
12978 Source := Underlying_Type (Source);
12979 end if;
12980
12981 Target := Ancestor_Subtype (Etype (Act_Unit));
12982
fdd294d1 12983 -- If either type is generic, the instantiation happens within a generic
95deda50 12984 -- unit, and there is nothing to check. The proper check will happen
12985 -- when the enclosing generic is instantiated.
d6f39728 12986
12987 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
12988 return;
12989 end if;
12990
12991 if Is_Private_Type (Target)
12992 and then Present (Underlying_Type (Target))
12993 then
12994 Target := Underlying_Type (Target);
12995 end if;
12996
12997 -- Source may be unconstrained array, but not target
12998
b9e61b2a 12999 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
d6f39728 13000 Error_Msg_N
13001 ("unchecked conversion to unconstrained array not allowed", N);
13002 return;
13003 end if;
13004
fbc67f84 13005 -- Warn if conversion between two different convention pointers
13006
13007 if Is_Access_Type (Target)
13008 and then Is_Access_Type (Source)
13009 and then Convention (Target) /= Convention (Source)
13010 and then Warn_On_Unchecked_Conversion
13011 then
74c7ae52 13012 -- Give warnings for subprogram pointers only on most targets
fdd294d1 13013
13014 if Is_Access_Subprogram_Type (Target)
13015 or else Is_Access_Subprogram_Type (Source)
fdd294d1 13016 then
13017 Error_Msg_N
cb97ae5c 13018 ("?z?conversion between pointers with different conventions!",
1e3532e7 13019 N);
fdd294d1 13020 end if;
fbc67f84 13021 end if;
13022
3062c401 13023 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13024 -- warning when compiling GNAT-related sources.
13025
13026 if Warn_On_Unchecked_Conversion
13027 and then not In_Predefined_Unit (N)
13028 and then RTU_Loaded (Ada_Calendar)
f02a9a9a 13029 and then (Chars (Source) = Name_Time
13030 or else
13031 Chars (Target) = Name_Time)
3062c401 13032 then
13033 -- If Ada.Calendar is loaded and the name of one of the operands is
13034 -- Time, there is a good chance that this is Ada.Calendar.Time.
13035
13036 declare
f02a9a9a 13037 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
3062c401 13038 begin
13039 pragma Assert (Present (Calendar_Time));
13040
b9e61b2a 13041 if Source = Calendar_Time or else Target = Calendar_Time then
3062c401 13042 Error_Msg_N
f02a9a9a 13043 ("?z?representation of 'Time values may change between "
13044 & "'G'N'A'T versions", N);
3062c401 13045 end if;
13046 end;
13047 end if;
13048
fdd294d1 13049 -- Make entry in unchecked conversion table for later processing by
13050 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13051 -- (using values set by the back-end where possible). This is only done
13052 -- if the appropriate warning is active.
d6f39728 13053
9dfe12ae 13054 if Warn_On_Unchecked_Conversion then
13055 Unchecked_Conversions.Append
86d32751 13056 (New_Val => UC_Entry'(Eloc => Sloc (N),
13057 Source => Source,
13058 Target => Target,
13059 Act_Unit => Act_Unit));
9dfe12ae 13060
13061 -- If both sizes are known statically now, then back end annotation
13062 -- is not required to do a proper check but if either size is not
13063 -- known statically, then we need the annotation.
13064
13065 if Known_Static_RM_Size (Source)
1e3532e7 13066 and then
13067 Known_Static_RM_Size (Target)
9dfe12ae 13068 then
13069 null;
13070 else
13071 Back_Annotate_Rep_Info := True;
13072 end if;
13073 end if;
d6f39728 13074
fdd294d1 13075 -- If unchecked conversion to access type, and access type is declared
95deda50 13076 -- in the same unit as the unchecked conversion, then set the flag
13077 -- No_Strict_Aliasing (no strict aliasing is implicit here)
28ed91d4 13078
13079 if Is_Access_Type (Target) and then
13080 In_Same_Source_Unit (Target, N)
13081 then
13082 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13083 end if;
3d875462 13084
95deda50 13085 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13086 -- the back end needs to perform special validation checks.
3d875462 13087
95deda50 13088 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13089 -- have full expansion and the back end is called ???
3d875462 13090
13091 Vnode :=
13092 Make_Validate_Unchecked_Conversion (Sloc (N));
13093 Set_Source_Type (Vnode, Source);
13094 Set_Target_Type (Vnode, Target);
13095
fdd294d1 13096 -- If the unchecked conversion node is in a list, just insert before it.
13097 -- If not we have some strange case, not worth bothering about.
3d875462 13098
13099 if Is_List_Member (N) then
d6f39728 13100 Insert_After (N, Vnode);
13101 end if;
13102 end Validate_Unchecked_Conversion;
13103
13104 ------------------------------------
13105 -- Validate_Unchecked_Conversions --
13106 ------------------------------------
13107
13108 procedure Validate_Unchecked_Conversions is
13109 begin
13110 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13111 declare
13112 T : UC_Entry renames Unchecked_Conversions.Table (N);
13113
86d32751 13114 Eloc : constant Source_Ptr := T.Eloc;
13115 Source : constant Entity_Id := T.Source;
13116 Target : constant Entity_Id := T.Target;
13117 Act_Unit : constant Entity_Id := T.Act_Unit;
d6f39728 13118
44705307 13119 Source_Siz : Uint;
13120 Target_Siz : Uint;
d6f39728 13121
13122 begin
86d32751 13123 -- Skip if function marked as warnings off
13124
13125 if Warnings_Off (Act_Unit) then
13126 goto Continue;
13127 end if;
13128
fdd294d1 13129 -- This validation check, which warns if we have unequal sizes for
13130 -- unchecked conversion, and thus potentially implementation
d6f39728 13131 -- dependent semantics, is one of the few occasions on which we
fdd294d1 13132 -- use the official RM size instead of Esize. See description in
13133 -- Einfo "Handling of Type'Size Values" for details.
d6f39728 13134
f15731c4 13135 if Serious_Errors_Detected = 0
d6f39728 13136 and then Known_Static_RM_Size (Source)
13137 and then Known_Static_RM_Size (Target)
f25f4252 13138
13139 -- Don't do the check if warnings off for either type, note the
13140 -- deliberate use of OR here instead of OR ELSE to get the flag
13141 -- Warnings_Off_Used set for both types if appropriate.
13142
13143 and then not (Has_Warnings_Off (Source)
13144 or
13145 Has_Warnings_Off (Target))
d6f39728 13146 then
13147 Source_Siz := RM_Size (Source);
13148 Target_Siz := RM_Size (Target);
13149
13150 if Source_Siz /= Target_Siz then
299480f9 13151 Error_Msg
cb97ae5c 13152 ("?z?types for unchecked conversion have different sizes!",
299480f9 13153 Eloc);
d6f39728 13154
13155 if All_Errors_Mode then
13156 Error_Msg_Name_1 := Chars (Source);
13157 Error_Msg_Uint_1 := Source_Siz;
13158 Error_Msg_Name_2 := Chars (Target);
13159 Error_Msg_Uint_2 := Target_Siz;
cb97ae5c 13160 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
d6f39728 13161
13162 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13163
13164 if Is_Discrete_Type (Source)
b9e61b2a 13165 and then
13166 Is_Discrete_Type (Target)
d6f39728 13167 then
13168 if Source_Siz > Target_Siz then
299480f9 13169 Error_Msg
cb97ae5c 13170 ("\?z?^ high order bits of source will "
1e3532e7 13171 & "be ignored!", Eloc);
d6f39728 13172
9dfe12ae 13173 elsif Is_Unsigned_Type (Source) then
299480f9 13174 Error_Msg
cb97ae5c 13175 ("\?z?source will be extended with ^ high order "
1581f2d7 13176 & "zero bits!", Eloc);
d6f39728 13177
13178 else
299480f9 13179 Error_Msg
cb97ae5c 13180 ("\?z?source will be extended with ^ high order "
1e3532e7 13181 & "sign bits!", Eloc);
d6f39728 13182 end if;
13183
13184 elsif Source_Siz < Target_Siz then
13185 if Is_Discrete_Type (Target) then
13186 if Bytes_Big_Endian then
299480f9 13187 Error_Msg
cb97ae5c 13188 ("\?z?target value will include ^ undefined "
1e3532e7 13189 & "low order bits!", Eloc);
d6f39728 13190 else
299480f9 13191 Error_Msg
cb97ae5c 13192 ("\?z?target value will include ^ undefined "
1e3532e7 13193 & "high order bits!", Eloc);
d6f39728 13194 end if;
13195
13196 else
299480f9 13197 Error_Msg
cb97ae5c 13198 ("\?z?^ trailing bits of target value will be "
1e3532e7 13199 & "undefined!", Eloc);
d6f39728 13200 end if;
13201
13202 else pragma Assert (Source_Siz > Target_Siz);
299480f9 13203 Error_Msg
cb97ae5c 13204 ("\?z?^ trailing bits of source will be ignored!",
299480f9 13205 Eloc);
d6f39728 13206 end if;
13207 end if;
d6f39728 13208 end if;
13209 end if;
13210
13211 -- If both types are access types, we need to check the alignment.
13212 -- If the alignment of both is specified, we can do it here.
13213
f15731c4 13214 if Serious_Errors_Detected = 0
2a10e737 13215 and then Is_Access_Type (Source)
13216 and then Is_Access_Type (Target)
d6f39728 13217 and then Target_Strict_Alignment
13218 and then Present (Designated_Type (Source))
13219 and then Present (Designated_Type (Target))
13220 then
13221 declare
13222 D_Source : constant Entity_Id := Designated_Type (Source);
13223 D_Target : constant Entity_Id := Designated_Type (Target);
13224
13225 begin
13226 if Known_Alignment (D_Source)
b9e61b2a 13227 and then
13228 Known_Alignment (D_Target)
d6f39728 13229 then
13230 declare
13231 Source_Align : constant Uint := Alignment (D_Source);
13232 Target_Align : constant Uint := Alignment (D_Target);
13233
13234 begin
13235 if Source_Align < Target_Align
13236 and then not Is_Tagged_Type (D_Source)
f25f4252 13237
13238 -- Suppress warning if warnings suppressed on either
13239 -- type or either designated type. Note the use of
13240 -- OR here instead of OR ELSE. That is intentional,
13241 -- we would like to set flag Warnings_Off_Used in
13242 -- all types for which warnings are suppressed.
13243
13244 and then not (Has_Warnings_Off (D_Source)
13245 or
13246 Has_Warnings_Off (D_Target)
13247 or
13248 Has_Warnings_Off (Source)
13249 or
13250 Has_Warnings_Off (Target))
d6f39728 13251 then
d6f39728 13252 Error_Msg_Uint_1 := Target_Align;
13253 Error_Msg_Uint_2 := Source_Align;
299480f9 13254 Error_Msg_Node_1 := D_Target;
d6f39728 13255 Error_Msg_Node_2 := D_Source;
299480f9 13256 Error_Msg
cb97ae5c 13257 ("?z?alignment of & (^) is stricter than "
1e3532e7 13258 & "alignment of & (^)!", Eloc);
f25f4252 13259 Error_Msg
cb97ae5c 13260 ("\?z?resulting access value may have invalid "
1e3532e7 13261 & "alignment!", Eloc);
d6f39728 13262 end if;
13263 end;
13264 end if;
13265 end;
13266 end if;
13267 end;
86d32751 13268
13269 <<Continue>>
13270 null;
d6f39728 13271 end loop;
13272 end Validate_Unchecked_Conversions;
13273
d6f39728 13274end Sem_Ch13;