]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
Complete log of previous change.
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
2ba431e5 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
a961aa79 50with Sem_Ch5; use Sem_Ch5;
d469eabe 51with Sem_Ch6; use Sem_Ch6;
996ae0b0 52with Sem_Ch8; use Sem_Ch8;
b67a385c 53with Sem_Disp; use Sem_Disp;
996ae0b0
RK
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
996ae0b0 57with Sem_Type; use Sem_Type;
19d846a0
RD
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
996ae0b0
RK
60with Stand; use Stand;
61with Sinfo; use Sinfo;
62with Snames; use Snames;
63with Tbuild; use Tbuild;
64
996ae0b0
RK
65package body Sem_Ch4 is
66
67 -----------------------
68 -- Local Subprograms --
69 -----------------------
70
fe39cf20
BD
71 procedure Analyze_Concatenation_Rest (N : Node_Id);
72 -- Does the "rest" of the work of Analyze_Concatenation, after the left
73 -- operand has been analyzed. See Analyze_Concatenation for details.
74
996ae0b0
RK
75 procedure Analyze_Expression (N : Node_Id);
76 -- For expressions that are not names, this is just a call to analyze.
77 -- If the expression is a name, it may be a call to a parameterless
78 -- function, and if so must be converted into an explicit call node
79 -- and analyzed as such. This deproceduring must be done during the first
80 -- pass of overload resolution, because otherwise a procedure call with
b4592168 81 -- overloaded actuals may fail to resolve.
996ae0b0
RK
82
83 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
84 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
85 -- is an operator name or an expanded name whose selector is an operator
86 -- name, and one possible interpretation is as a predefined operator.
87
88 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
89 -- If the prefix of a selected_component is overloaded, the proper
90 -- interpretation that yields a record type with the proper selector
91 -- name must be selected.
92
93 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
94 -- Procedure to analyze a user defined binary operator, which is resolved
95 -- like a function, but instead of a list of actuals it is presented
96 -- with the left and right operands of an operator node.
97
98 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
99 -- Procedure to analyze a user defined unary operator, which is resolved
100 -- like a function, but instead of a list of actuals, it is presented with
101 -- the operand of the operator node.
102
103 procedure Ambiguous_Operands (N : Node_Id);
0877856b 104 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
105 -- arguments, list possible interpretations.
106
996ae0b0 107 procedure Analyze_One_Call
ec6078e3
ES
108 (N : Node_Id;
109 Nam : Entity_Id;
110 Report : Boolean;
111 Success : out Boolean;
112 Skip_First : Boolean := False);
996ae0b0
RK
113 -- Check one interpretation of an overloaded subprogram name for
114 -- compatibility with the types of the actuals in a call. If there is a
115 -- single interpretation which does not match, post error if Report is
116 -- set to True.
117 --
118 -- Nam is the entity that provides the formals against which the actuals
119 -- are checked. Nam is either the name of a subprogram, or the internal
120 -- subprogram type constructed for an access_to_subprogram. If the actuals
121 -- are compatible with Nam, then Nam is added to the list of candidate
122 -- interpretations for N, and Success is set to True.
ec6078e3
ES
123 --
124 -- The flag Skip_First is used when analyzing a call that was rewritten
125 -- from object notation. In this case the first actual may have to receive
126 -- an explicit dereference, depending on the first formal of the operation
127 -- being called. The caller will have verified that the object is legal
128 -- for the call. If the remaining parameters match, the first parameter
129 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
130
131 procedure Check_Misspelled_Selector
132 (Prefix : Entity_Id;
133 Sel : Node_Id);
8dbf3473
AC
134 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
135 -- spelling of one of the selectors of the Prefix. This is called by
136 -- Analyze_Selected_Component after producing an invalid selector error
137 -- message.
996ae0b0
RK
138
139 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 140 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
141 -- for operators given by expanded names. This is abstracted as a separate
142 -- function to handle extensions to System, where S is System, but T is
143 -- declared in the extension.
144
145 procedure Find_Arithmetic_Types
146 (L, R : Node_Id;
147 Op_Id : Entity_Id;
148 N : Node_Id);
149 -- L and R are the operands of an arithmetic operator. Find
150 -- consistent pairs of interpretations for L and R that have a
151 -- numeric type consistent with the semantics of the operator.
152
153 procedure Find_Comparison_Types
154 (L, R : Node_Id;
155 Op_Id : Entity_Id;
156 N : Node_Id);
157 -- L and R are operands of a comparison operator. Find consistent
158 -- pairs of interpretations for L and R.
159
160 procedure Find_Concatenation_Types
161 (L, R : Node_Id;
162 Op_Id : Entity_Id;
163 N : Node_Id);
6e73e3ab 164 -- For the four varieties of concatenation
996ae0b0
RK
165
166 procedure Find_Equality_Types
167 (L, R : Node_Id;
168 Op_Id : Entity_Id;
169 N : Node_Id);
6e73e3ab 170 -- Ditto for equality operators
996ae0b0
RK
171
172 procedure Find_Boolean_Types
173 (L, R : Node_Id;
174 Op_Id : Entity_Id;
175 N : Node_Id);
6e73e3ab 176 -- Ditto for binary logical operations
996ae0b0
RK
177
178 procedure Find_Negation_Types
179 (R : Node_Id;
180 Op_Id : Entity_Id;
181 N : Node_Id);
6e73e3ab 182 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
183
184 procedure Find_Non_Universal_Interpretations
185 (N : Node_Id;
186 R : Node_Id;
187 Op_Id : Entity_Id;
188 T1 : Entity_Id);
189 -- For equality and comparison operators, the result is always boolean,
190 -- and the legality of the operation is determined from the visibility
191 -- of the operand types. If one of the operands has a universal interpre-
192 -- tation, the legality check uses some compatible non-universal
193 -- interpretation of the other operand. N can be an operator node, or
194 -- a function call whose name is an operator designator.
195
d469eabe
HK
196 function Find_Primitive_Operation (N : Node_Id) return Boolean;
197 -- Find candidate interpretations for the name Obj.Proc when it appears
198 -- in a subprogram renaming declaration.
199
996ae0b0
RK
200 procedure Find_Unary_Types
201 (R : Node_Id;
202 Op_Id : Entity_Id;
203 N : Node_Id);
6e73e3ab 204 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
205
206 procedure Check_Arithmetic_Pair
207 (T1, T2 : Entity_Id;
208 Op_Id : Entity_Id;
209 N : Node_Id);
210 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
211 -- types for left and right operand. Determine whether they constitute
212 -- a valid pair for the given operator, and record the corresponding
213 -- interpretation of the operator node. The node N may be an operator
214 -- node (the usual case) or a function call whose prefix is an operator
401093c1 215 -- designator. In both cases Op_Id is the operator name itself.
996ae0b0
RK
216
217 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
218 -- Give detailed information on overloaded call where none of the
219 -- interpretations match. N is the call node, Nam the designator for
220 -- the overloaded entity being called.
221
222 function Junk_Operand (N : Node_Id) return Boolean;
223 -- Test for an operand that is an inappropriate entity (e.g. a package
224 -- name or a label). If so, issue an error message and return True. If
225 -- the operand is not an inappropriate entity kind, return False.
226
227 procedure Operator_Check (N : Node_Id);
da709d08
AC
228 -- Verify that an operator has received some valid interpretation. If none
229 -- was found, determine whether a use clause would make the operation
230 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
231 -- every type compatible with the operator, even if the operator for the
232 -- type is not directly visible. The routine uses this type to emit a more
233 -- informative message.
996ae0b0 234
d469eabe 235 function Process_Implicit_Dereference_Prefix
da709d08 236 (E : Entity_Id;
d469eabe 237 P : Node_Id) return Entity_Id;
da709d08 238 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
239 -- object E. The function returns the designated type of the prefix, taking
240 -- into account that the designated type of an anonymous access type may be
241 -- a limited view, when the non-limited view is visible.
242 -- If in semantics only mode (-gnatc or generic), the function also records
243 -- that the prefix is a reference to E, if any. Normally, such a reference
244 -- is generated only when the implicit dereference is expanded into an
245 -- explicit one, but for consistency we must generate the reference when
246 -- expansion is disabled as well.
6e73e3ab 247
30c20106
AC
248 procedure Remove_Abstract_Operations (N : Node_Id);
249 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
250 -- operation is not a candidate interpretation.
251
d50f4827
AC
252 function Try_Container_Indexing
253 (N : Node_Id;
254 Prefix : Node_Id;
255 Expr : Node_Id) return Boolean;
256 -- AI05-0139: Generalized indexing to support iterators over containers
257
996ae0b0 258 function Try_Indexed_Call
aab883ec
ES
259 (N : Node_Id;
260 Nam : Entity_Id;
261 Typ : Entity_Id;
262 Skip_First : Boolean) return Boolean;
263 -- If a function has defaults for all its actuals, a call to it may in fact
264 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
265 -- interpretation as an indexing, prior to analysis as a call. If both are
266 -- possible, the node is overloaded with both interpretations (same symbol
267 -- but two different types). If the call is written in prefix form, the
268 -- prefix becomes the first parameter in the call, and only the remaining
269 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
270
271 function Try_Indirect_Call
91b1417d
AC
272 (N : Node_Id;
273 Nam : Entity_Id;
274 Typ : Entity_Id) return Boolean;
aab883ec
ES
275 -- Similarly, a function F that needs no actuals can return an access to a
276 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
277 -- the call may be overloaded with both interpretations.
996ae0b0 278
35ae2ed8 279 function Try_Object_Operation (N : Node_Id) return Boolean;
0d57c6f4
RD
280 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
281 -- is a call in this notation, it is transformed into a normal subprogram
282 -- call where the prefix is a parameter, and True is returned. If node
283 -- N is not of this form, it is unchanged, and False is returned.
35ae2ed8 284
b4592168
GD
285 procedure wpo (T : Entity_Id);
286 pragma Warnings (Off, wpo);
287 -- Used for debugging: obtain list of primitive operations even if
288 -- type is not frozen and dispatch table is not built yet.
289
996ae0b0
RK
290 ------------------------
291 -- Ambiguous_Operands --
292 ------------------------
293
294 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 295 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 296
4c46b835
AC
297 --------------------------
298 -- List_Operand_Interps --
299 --------------------------
300
fbf5a39b 301 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
302 Nam : Node_Id;
303 Err : Node_Id := N;
304
305 begin
306 if Is_Overloaded (Opnd) then
307 if Nkind (Opnd) in N_Op then
308 Nam := Opnd;
996ae0b0
RK
309 elsif Nkind (Opnd) = N_Function_Call then
310 Nam := Name (Opnd);
44a10091
AC
311 elsif Ada_Version >= Ada_2012 then
312 declare
313 It : Interp;
314 I : Interp_Index;
315
316 begin
317 Get_First_Interp (Opnd, I, It);
318 while Present (It.Nam) loop
319 if Has_Implicit_Dereference (It.Typ) then
320 Error_Msg_N
321 ("can be interpreted as implicit dereference", Opnd);
322 return;
323 end if;
324
325 Get_Next_Interp (I, It);
326 end loop;
327 end;
328
996ae0b0
RK
329 return;
330 end if;
331
332 else
333 return;
334 end if;
335
336 if Opnd = Left_Opnd (N) then
ed2233dc 337 Error_Msg_N ("\left operand has the following interpretations", N);
996ae0b0 338 else
ed2233dc 339 Error_Msg_N
996ae0b0
RK
340 ("\right operand has the following interpretations", N);
341 Err := Opnd;
342 end if;
343
fbf5a39b
AC
344 List_Interps (Nam, Err);
345 end List_Operand_Interps;
996ae0b0 346
4c46b835
AC
347 -- Start of processing for Ambiguous_Operands
348
996ae0b0 349 begin
b67a385c 350 if Nkind (N) in N_Membership_Test then
ed2233dc 351 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 352
d469eabe 353 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 354 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
355
356 else
ed2233dc 357 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
358 end if;
359
360 if All_Errors_Mode then
fbf5a39b
AC
361 List_Operand_Interps (Left_Opnd (N));
362 List_Operand_Interps (Right_Opnd (N));
996ae0b0 363 else
555360a5 364 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
365 end if;
366 end Ambiguous_Operands;
367
368 -----------------------
369 -- Analyze_Aggregate --
370 -----------------------
371
372 -- Most of the analysis of Aggregates requires that the type be known,
373 -- and is therefore put off until resolution.
374
375 procedure Analyze_Aggregate (N : Node_Id) is
376 begin
377 if No (Etype (N)) then
378 Set_Etype (N, Any_Composite);
379 end if;
380 end Analyze_Aggregate;
381
382 -----------------------
383 -- Analyze_Allocator --
384 -----------------------
385
386 procedure Analyze_Allocator (N : Node_Id) is
387 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 388 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 389 E : Node_Id := Expression (N);
996ae0b0
RK
390 Acc_Type : Entity_Id;
391 Type_Id : Entity_Id;
87003b28
RD
392 P : Node_Id;
393 C : Node_Id;
996ae0b0
RK
394
395 begin
2ba431e5 396 Check_SPARK_Restriction ("allocator is not allowed", N);
1d801f21 397
87003b28
RD
398 -- Deal with allocator restrictions
399
50cff367 400 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28
RD
401 -- to user-written allocators. The same consideration applies to the
402 -- No_Allocators_Before_Elaboration restriction.
50cff367
GD
403
404 if Comes_From_Source (N) then
405 Check_Restriction (No_Allocators, N);
87003b28
RD
406
407 -- Processing for No_Allocators_After_Elaboration, loop to look at
408 -- enclosing context, checking task case and main subprogram case.
409
410 C := N;
411 P := Parent (C);
412 while Present (P) loop
413
414 -- In both cases we need a handled sequence of statements, where
415 -- the occurrence of the allocator is within the statements.
416
417 if Nkind (P) = N_Handled_Sequence_Of_Statements
418 and then Is_List_Member (C)
419 and then List_Containing (C) = Statements (P)
420 then
421 -- Check for allocator within task body, this is a definite
422 -- violation of No_Allocators_After_Elaboration we can detect.
423
424 if Nkind (Original_Node (Parent (P))) = N_Task_Body then
425 Check_Restriction (No_Allocators_After_Elaboration, N);
426 exit;
427 end if;
428
308e6f3a 429 -- The other case is appearance in a subprogram body. This may
87003b28
RD
430 -- be a violation if this is a library level subprogram, and it
431 -- turns out to be used as the main program, but only the
432 -- binder knows that, so just record the occurrence.
433
434 if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
435 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
436 then
437 Set_Has_Allocator (Current_Sem_Unit);
438 end if;
439 end if;
440
441 C := P;
442 P := Parent (C);
443 end loop;
50cff367 444 end if;
996ae0b0 445
df170605
AC
446 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
447 -- any. The expected type for the name is any type. A non-overloading
448 -- rule then requires it to be of a type descended from
f0f88eb6
RD
449 -- System.Storage_Pools.Subpools.Subpool_Handle.
450
451 -- This isn't exactly what the AI says, but it seems to be the right
452 -- rule. The AI should be fixed.???
df170605
AC
453
454 declare
455 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 456
df170605
AC
457 begin
458 if Present (Subpool) then
459 Analyze (Subpool);
f0f88eb6 460
df170605
AC
461 if Is_Overloaded (Subpool) then
462 Error_Msg_N ("ambiguous subpool handle", Subpool);
463 end if;
464
f0f88eb6 465 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
466
467 Resolve (Subpool);
468 end if;
469 end;
470
471 -- Analyze the qualified expression or subtype indication
87003b28 472
996ae0b0
RK
473 if Nkind (E) = N_Qualified_Expression then
474 Acc_Type := Create_Itype (E_Allocator_Type, N);
475 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 476 Find_Type (Subtype_Mark (E));
45c8b94b
ES
477
478 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 479 -- rule given in 4.7(3).
45c8b94b
ES
480
481 Analyze (E);
482 Type_Id := Etype (E);
996ae0b0
RK
483 Set_Directly_Designated_Type (Acc_Type, Type_Id);
484
45c8b94b 485 Resolve (Expression (E), Type_Id);
b67a385c 486
d05ef0ab 487 if Is_Limited_Type (Type_Id)
996ae0b0
RK
488 and then Comes_From_Source (N)
489 and then not In_Instance_Body
490 then
2a31c32b 491 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
492 Error_Msg_N ("initialization not allowed for limited types", N);
493 Explain_Limited_Type (Type_Id, N);
494 end if;
996ae0b0
RK
495 end if;
496
996ae0b0
RK
497 -- A qualified expression requires an exact match of the type,
498 -- class-wide matching is not allowed.
499
45c8b94b
ES
500 -- if Is_Class_Wide_Type (Type_Id)
501 -- and then Base_Type
502 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
503 -- then
504 -- Wrong_Type (Expression (E), Type_Id);
505 -- end if;
996ae0b0
RK
506
507 Check_Non_Static_Context (Expression (E));
508
509 -- We don't analyze the qualified expression itself because it's
510 -- part of the allocator
511
512 Set_Etype (E, Type_Id);
513
aab883ec 514 -- Case where allocator has a subtype indication
4c46b835 515
996ae0b0
RK
516 else
517 declare
758c442c
GD
518 Def_Id : Entity_Id;
519 Base_Typ : Entity_Id;
996ae0b0
RK
520
521 begin
522 -- If the allocator includes a N_Subtype_Indication then a
523 -- constraint is present, otherwise the node is a subtype mark.
524 -- Introduce an explicit subtype declaration into the tree
525 -- defining some anonymous subtype and rewrite the allocator to
526 -- use this subtype rather than the subtype indication.
527
528 -- It is important to introduce the explicit subtype declaration
529 -- so that the bounds of the subtype indication are attached to
530 -- the tree in case the allocator is inside a generic unit.
531
532 if Nkind (E) = N_Subtype_Indication then
533
534 -- A constraint is only allowed for a composite type in Ada
535 -- 95. In Ada 83, a constraint is also allowed for an
536 -- access-to-composite type, but the constraint is ignored.
537
538 Find_Type (Subtype_Mark (E));
758c442c 539 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 540
758c442c 541 if Is_Elementary_Type (Base_Typ) then
0ab80019 542 if not (Ada_Version = Ada_83
758c442c 543 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
544 then
545 Error_Msg_N ("constraint not allowed here", E);
546
24657705
HK
547 if Nkind (Constraint (E)) =
548 N_Index_Or_Discriminant_Constraint
996ae0b0 549 then
4e7a4f6e 550 Error_Msg_N -- CODEFIX
996ae0b0
RK
551 ("\if qualified expression was meant, " &
552 "use apostrophe", Constraint (E));
553 end if;
554 end if;
555
556 -- Get rid of the bogus constraint:
557
558 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
559 Analyze_Allocator (N);
560 return;
758c442c
GD
561
562 -- Ada 2005, AI-363: if the designated type has a constrained
563 -- partial view, it cannot receive a discriminant constraint,
564 -- and the allocated object is unconstrained.
565
0791fbe9 566 elsif Ada_Version >= Ada_2005
758c442c
GD
567 and then Has_Constrained_Partial_View (Base_Typ)
568 then
569 Error_Msg_N
570 ("constraint no allowed when type " &
571 "has a constrained partial view", Constraint (E));
996ae0b0
RK
572 end if;
573
574 if Expander_Active then
092ef350 575 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
576
577 Insert_Action (E,
578 Make_Subtype_Declaration (Loc,
579 Defining_Identifier => Def_Id,
580 Subtype_Indication => Relocate_Node (E)));
581
07fc65c4 582 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
583 and then Nkind (Constraint (E)) =
584 N_Index_Or_Discriminant_Constraint
996ae0b0 585 then
4e7a4f6e 586 Error_Msg_N -- CODEFIX
996ae0b0
RK
587 ("if qualified expression was meant, " &
588 "use apostrophe!", Constraint (E));
589 end if;
590
591 E := New_Occurrence_Of (Def_Id, Loc);
592 Rewrite (Expression (N), E);
593 end if;
594 end if;
595
596 Type_Id := Process_Subtype (E, N);
597 Acc_Type := Create_Itype (E_Allocator_Type, N);
598 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
599 Set_Directly_Designated_Type (Acc_Type, Type_Id);
600 Check_Fully_Declared (Type_Id, N);
601
1baa4d2d 602 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 603 -- type that excludes null, its default initialization will
75ad5042
ES
604 -- be a null object, and we can insert an unconditional raise
605 -- before the allocator.
2820d220 606
bfae1846 607 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
608 -- illegal.
609
2820d220 610 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
611 declare
612 Not_Null_Check : constant Node_Id :=
613 Make_Raise_Constraint_Error (Sloc (E),
614 Reason => CE_Null_Not_Allowed);
40b93859 615
75ad5042 616 begin
dbe945f1 617 if Ada_Version >= Ada_2012 then
518ade91
AC
618 Error_Msg_N
619 ("an uninitialized allocator cannot have"
620 & " a null exclusion", N);
621
622 elsif Expander_Active then
75ad5042
ES
623 Insert_Action (N, Not_Null_Check);
624 Analyze (Not_Null_Check);
40b93859 625
75ad5042
ES
626 else
627 Error_Msg_N ("null value not allowed here?", E);
628 end if;
629 end;
2820d220
AC
630 end if;
631
91b1417d
AC
632 -- Check restriction against dynamically allocated protected
633 -- objects. Note that when limited aggregates are supported,
634 -- a similar test should be applied to an allocator with a
635 -- qualified expression ???
636
637 if Is_Protected_Type (Type_Id) then
638 Check_Restriction (No_Protected_Type_Allocators, N);
639 end if;
640
996ae0b0
RK
641 -- Check for missing initialization. Skip this check if we already
642 -- had errors on analyzing the allocator, since in that case these
24657705 643 -- are probably cascaded errors.
996ae0b0
RK
644
645 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 646 and then Serious_Errors_Detected = Sav_Errs
996ae0b0
RK
647 then
648 if Is_Class_Wide_Type (Type_Id) then
649 Error_Msg_N
650 ("initialization required in class-wide allocation", N);
651 else
0791fbe9 652 if Ada_Version < Ada_2005
24657705
HK
653 and then Is_Limited_Type (Type_Id)
654 then
655 Error_Msg_N ("unconstrained allocation not allowed", N);
656
657 if Is_Array_Type (Type_Id) then
658 Error_Msg_N
659 ("\constraint with array bounds required", N);
660
661 elsif Has_Unknown_Discriminants (Type_Id) then
662 null;
663
664 else pragma Assert (Has_Discriminants (Type_Id));
665 Error_Msg_N
666 ("\constraint with discriminant values required", N);
667 end if;
668
669 -- Limited Ada 2005 and general non-limited case
670
671 else
672 Error_Msg_N
673 ("uninitialized unconstrained allocation not allowed",
674 N);
675
676 if Is_Array_Type (Type_Id) then
677 Error_Msg_N
678 ("\qualified expression or constraint with " &
679 "array bounds required", N);
680
681 elsif Has_Unknown_Discriminants (Type_Id) then
682 Error_Msg_N ("\qualified expression required", N);
683
684 else pragma Assert (Has_Discriminants (Type_Id));
685 Error_Msg_N
686 ("\qualified expression or constraint with " &
687 "discriminant values required", N);
688 end if;
689 end if;
996ae0b0
RK
690 end if;
691 end if;
692 end;
693 end if;
694
aab883ec 695 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
696 Error_Msg_N ("cannot allocate abstract object", E);
697 end if;
698
699 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 700 Check_Restriction (No_Tasking, N);
fbf5a39b 701 Check_Restriction (Max_Tasks, N);
996ae0b0 702 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
703 end if;
704
646e2823
AC
705 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
706 -- type is nested, and the designated type needs finalization. The rule
707 -- is conservative in that class-wide types need finalization.
708
709 if Needs_Finalization (Designated_Type (Acc_Type))
710 and then not Is_Library_Level_Entity (Acc_Type)
711 then
712 Check_Restriction (No_Nested_Finalization, N);
713 end if;
714
70b3b953
GD
715 -- Check that an allocator of a nested access type doesn't create a
716 -- protected object when restriction No_Local_Protected_Objects applies.
717 -- We don't have an equivalent to Has_Task for protected types, so only
718 -- cases where the designated type itself is a protected type are
719 -- currently checked. ???
720
721 if Is_Protected_Type (Designated_Type (Acc_Type))
722 and then not Is_Library_Level_Entity (Acc_Type)
723 then
724 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
725 end if;
726
ffe9aba8
AC
727 -- If the No_Streams restriction is set, check that the type of the
728 -- object is not, and does not contain, any subtype derived from
729 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
730 -- Has_Stream just for efficiency reasons. There is no point in
731 -- spending time on a Has_Stream check if the restriction is not set.
732
7a963087 733 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
734 if Has_Stream (Designated_Type (Acc_Type)) then
735 Check_Restriction (No_Streams, N);
736 end if;
737 end if;
738
996ae0b0
RK
739 Set_Etype (N, Acc_Type);
740
741 if not Is_Library_Level_Entity (Acc_Type) then
742 Check_Restriction (No_Local_Allocators, N);
743 end if;
2820d220 744
07fc65c4 745 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
746 Set_Error_Posted (N);
747 Set_Etype (N, Any_Type);
748 end if;
996ae0b0
RK
749 end Analyze_Allocator;
750
751 ---------------------------
752 -- Analyze_Arithmetic_Op --
753 ---------------------------
754
755 procedure Analyze_Arithmetic_Op (N : Node_Id) is
756 L : constant Node_Id := Left_Opnd (N);
757 R : constant Node_Id := Right_Opnd (N);
758 Op_Id : Entity_Id;
759
760 begin
761 Candidate_Type := Empty;
762 Analyze_Expression (L);
763 Analyze_Expression (R);
764
d469eabe
HK
765 -- If the entity is already set, the node is the instantiation of a
766 -- generic node with a non-local reference, or was manufactured by a
767 -- call to Make_Op_xxx. In either case the entity is known to be valid,
768 -- and we do not need to collect interpretations, instead we just get
769 -- the single possible interpretation.
996ae0b0
RK
770
771 Op_Id := Entity (N);
772
773 if Present (Op_Id) then
774 if Ekind (Op_Id) = E_Operator then
775
d469eabe 776 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
777 and then Treat_Fixed_As_Integer (N)
778 then
779 null;
780 else
781 Set_Etype (N, Any_Type);
782 Find_Arithmetic_Types (L, R, Op_Id, N);
783 end if;
784
785 else
786 Set_Etype (N, Any_Type);
787 Add_One_Interp (N, Op_Id, Etype (Op_Id));
788 end if;
789
790 -- Entity is not already set, so we do need to collect interpretations
791
792 else
793 Op_Id := Get_Name_Entity_Id (Chars (N));
794 Set_Etype (N, Any_Type);
795
796 while Present (Op_Id) loop
797 if Ekind (Op_Id) = E_Operator
798 and then Present (Next_Entity (First_Entity (Op_Id)))
799 then
800 Find_Arithmetic_Types (L, R, Op_Id, N);
801
802 -- The following may seem superfluous, because an operator cannot
803 -- be generic, but this ignores the cleverness of the author of
804 -- ACVC bc1013a.
805
806 elsif Is_Overloadable (Op_Id) then
807 Analyze_User_Defined_Binary_Op (N, Op_Id);
808 end if;
809
810 Op_Id := Homonym (Op_Id);
811 end loop;
812 end if;
813
814 Operator_Check (N);
815 end Analyze_Arithmetic_Op;
816
817 ------------------
818 -- Analyze_Call --
819 ------------------
820
4c46b835
AC
821 -- Function, procedure, and entry calls are checked here. The Name in
822 -- the call may be overloaded. The actuals have been analyzed and may
823 -- themselves be overloaded. On exit from this procedure, the node N
824 -- may have zero, one or more interpretations. In the first case an
825 -- error message is produced. In the last case, the node is flagged
826 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
827
828 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
829 -- the type-checking is similar to that of other calls.
830
831 procedure Analyze_Call (N : Node_Id) is
832 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 833 Nam : Node_Id;
996ae0b0
RK
834 X : Interp_Index;
835 It : Interp;
836 Nam_Ent : Entity_Id;
63319f58
RD
837 Success : Boolean := False;
838
839 Deref : Boolean := False;
1cb17b78
AC
840 -- Flag indicates whether an interpretation of the prefix is a
841 -- parameterless call that returns an access_to_subprogram.
996ae0b0 842
23685ae6
AC
843 procedure Check_Mixed_Parameter_And_Named_Associations;
844 -- Check that parameter and named associations are not mixed. This is
845 -- a restriction in SPARK mode.
846
996ae0b0 847 function Name_Denotes_Function return Boolean;
5ff22245
ES
848 -- If the type of the name is an access to subprogram, this may be the
849 -- type of a name, or the return type of the function being called. If
850 -- the name is not an entity then it can denote a protected function.
851 -- Until we distinguish Etype from Return_Type, we must use this routine
852 -- to resolve the meaning of the name in the call.
853
854 procedure No_Interpretation;
855 -- Output error message when no valid interpretation exists
996ae0b0 856
23685ae6
AC
857 --------------------------------------------------
858 -- Check_Mixed_Parameter_And_Named_Associations --
859 --------------------------------------------------
860
861 procedure Check_Mixed_Parameter_And_Named_Associations is
862 Actual : Node_Id;
863 Named_Seen : Boolean;
f5afb270 864
23685ae6 865 begin
23685ae6 866 Named_Seen := False;
f5afb270
AC
867
868 Actual := First (Actuals);
23685ae6
AC
869 while Present (Actual) loop
870 case Nkind (Actual) is
871 when N_Parameter_Association =>
872 if Named_Seen then
2ba431e5 873 Check_SPARK_Restriction
23685ae6
AC
874 ("named association cannot follow positional one",
875 Actual);
876 exit;
877 end if;
878 when others =>
879 Named_Seen := True;
880 end case;
881
882 Next (Actual);
883 end loop;
884 end Check_Mixed_Parameter_And_Named_Associations;
885
996ae0b0
RK
886 ---------------------------
887 -- Name_Denotes_Function --
888 ---------------------------
889
890 function Name_Denotes_Function return Boolean is
891 begin
892 if Is_Entity_Name (Nam) then
893 return Ekind (Entity (Nam)) = E_Function;
894
895 elsif Nkind (Nam) = N_Selected_Component then
896 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
897
898 else
899 return False;
900 end if;
901 end Name_Denotes_Function;
902
5ff22245
ES
903 -----------------------
904 -- No_Interpretation --
905 -----------------------
906
907 procedure No_Interpretation is
908 L : constant Boolean := Is_List_Member (N);
909 K : constant Node_Kind := Nkind (Parent (N));
910
911 begin
912 -- If the node is in a list whose parent is not an expression then it
913 -- must be an attempted procedure call.
914
915 if L and then K not in N_Subexpr then
916 if Ekind (Entity (Nam)) = E_Generic_Procedure then
917 Error_Msg_NE
918 ("must instantiate generic procedure& before call",
919 Nam, Entity (Nam));
920 else
921 Error_Msg_N
922 ("procedure or entry name expected", Nam);
923 end if;
924
925 -- Check for tasking cases where only an entry call will do
926
927 elsif not L
928 and then Nkind_In (K, N_Entry_Call_Alternative,
929 N_Triggering_Alternative)
930 then
931 Error_Msg_N ("entry name expected", Nam);
932
933 -- Otherwise give general error message
934
935 else
936 Error_Msg_N ("invalid prefix in call", Nam);
937 end if;
938 end No_Interpretation;
939
996ae0b0
RK
940 -- Start of processing for Analyze_Call
941
942 begin
24558db8 943 if Restriction_Check_Required (SPARK) then
23685ae6
AC
944 Check_Mixed_Parameter_And_Named_Associations;
945 end if;
946
996ae0b0
RK
947 -- Initialize the type of the result of the call to the error type,
948 -- which will be reset if the type is successfully resolved.
949
950 Set_Etype (N, Any_Type);
951
63319f58
RD
952 Nam := Name (N);
953
996ae0b0
RK
954 if not Is_Overloaded (Nam) then
955
956 -- Only one interpretation to check
957
958 if Ekind (Etype (Nam)) = E_Subprogram_Type then
959 Nam_Ent := Etype (Nam);
960
758c442c
GD
961 -- If the prefix is an access_to_subprogram, this may be an indirect
962 -- call. This is the case if the name in the call is not an entity
963 -- name, or if it is a function name in the context of a procedure
964 -- call. In this latter case, we have a call to a parameterless
965 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
966 -- being called. Finally, F (X) may be a call to a parameterless
967 -- function that returns a pointer to a function with parameters.
758c442c 968
996ae0b0
RK
969 elsif Is_Access_Type (Etype (Nam))
970 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
971 and then
972 (not Name_Denotes_Function
5ff22245
ES
973 or else Nkind (N) = N_Procedure_Call_Statement
974 or else
975 (Nkind (Parent (N)) /= N_Explicit_Dereference
976 and then Is_Entity_Name (Nam)
977 and then No (First_Formal (Entity (Nam)))
978 and then Present (Actuals)))
996ae0b0
RK
979 then
980 Nam_Ent := Designated_Type (Etype (Nam));
981 Insert_Explicit_Dereference (Nam);
982
983 -- Selected component case. Simple entry or protected operation,
984 -- where the entry name is given by the selector name.
985
986 elsif Nkind (Nam) = N_Selected_Component then
987 Nam_Ent := Entity (Selector_Name (Nam));
988
bce79204
AC
989 if not Ekind_In (Nam_Ent, E_Entry,
990 E_Entry_Family,
991 E_Function,
992 E_Procedure)
996ae0b0
RK
993 then
994 Error_Msg_N ("name in call is not a callable entity", Nam);
995 Set_Etype (N, Any_Type);
996 return;
997 end if;
998
999 -- If the name is an Indexed component, it can be a call to a member
1000 -- of an entry family. The prefix must be a selected component whose
1001 -- selector is the entry. Analyze_Procedure_Call normalizes several
1002 -- kinds of call into this form.
1003
1004 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1005 if Nkind (Prefix (Nam)) = N_Selected_Component then
1006 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1007 else
1008 Error_Msg_N ("name in call is not a callable entity", Nam);
1009 Set_Etype (N, Any_Type);
1010 return;
996ae0b0
RK
1011 end if;
1012
1013 elsif not Is_Entity_Name (Nam) then
1014 Error_Msg_N ("name in call is not a callable entity", Nam);
1015 Set_Etype (N, Any_Type);
1016 return;
1017
1018 else
1019 Nam_Ent := Entity (Nam);
1020
1021 -- If no interpretations, give error message
1022
1023 if not Is_Overloadable (Nam_Ent) then
5ff22245
ES
1024 No_Interpretation;
1025 return;
1026 end if;
1027 end if;
996ae0b0 1028
5ff22245
ES
1029 -- Operations generated for RACW stub types are called only through
1030 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1031
5ff22245
ES
1032 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1033 No_Interpretation;
1034 return;
996ae0b0
RK
1035 end if;
1036
1037 Analyze_One_Call (N, Nam_Ent, True, Success);
1038
ec6078e3
ES
1039 -- If this is an indirect call, the return type of the access_to
1040 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1041 -- use the full type if available, and at the same time update the
1042 -- return type of the access_to_subprogram.
ec6078e3
ES
1043
1044 if Success
d469eabe 1045 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1046 and then Ekind (Etype (N)) = E_Incomplete_Type
1047 and then Present (Full_View (Etype (N)))
1048 then
1049 Set_Etype (N, Full_View (Etype (N)));
1050 Set_Etype (Nam_Ent, Etype (N));
1051 end if;
1052
996ae0b0 1053 else
5ff22245
ES
1054 -- An overloaded selected component must denote overloaded operations
1055 -- of a concurrent type. The interpretations are attached to the
1056 -- simple name of those operations.
996ae0b0
RK
1057
1058 if Nkind (Nam) = N_Selected_Component then
1059 Nam := Selector_Name (Nam);
1060 end if;
1061
1062 Get_First_Interp (Nam, X, It);
1063
1064 while Present (It.Nam) loop
1065 Nam_Ent := It.Nam;
1cb17b78 1066 Deref := False;
996ae0b0
RK
1067
1068 -- Name may be call that returns an access to subprogram, or more
1069 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1070 -- yields an access to subprogram. If the name is an entity, we do
1071 -- not dereference, because the node is a call that returns the
1072 -- access type: note difference between f(x), where the call may
1073 -- return an access subprogram type, and f(x)(y), where the type
1074 -- returned by the call to f is implicitly dereferenced to analyze
1075 -- the outer call.
996ae0b0
RK
1076
1077 if Is_Access_Type (Nam_Ent) then
1078 Nam_Ent := Designated_Type (Nam_Ent);
1079
1080 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1081 and then
1082 (not Is_Entity_Name (Nam)
1083 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1084 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1085 = E_Subprogram_Type
1086 then
1087 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1088
1089 if Is_Entity_Name (Nam) then
1090 Deref := True;
1091 end if;
996ae0b0
RK
1092 end if;
1093
7415029d
AC
1094 -- If the call has been rewritten from a prefixed call, the first
1095 -- parameter has been analyzed, but may need a subsequent
1096 -- dereference, so skip its analysis now.
1097
1098 if N /= Original_Node (N)
1099 and then Nkind (Original_Node (N)) = Nkind (N)
1100 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1101 and then Present (Parameter_Associations (N))
1102 and then Present (Etype (First (Parameter_Associations (N))))
1103 then
1104 Analyze_One_Call
1105 (N, Nam_Ent, False, Success, Skip_First => True);
1106 else
1107 Analyze_One_Call (N, Nam_Ent, False, Success);
1108 end if;
996ae0b0
RK
1109
1110 -- If the interpretation succeeds, mark the proper type of the
1111 -- prefix (any valid candidate will do). If not, remove the
1112 -- candidate interpretation. This only needs to be done for
1113 -- overloaded protected operations, for other entities disambi-
1114 -- guation is done directly in Resolve.
1115
1116 if Success then
1cb17b78
AC
1117 if Deref
1118 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1119 then
1120 Set_Entity (Nam, It.Nam);
1121 Insert_Explicit_Dereference (Nam);
1122 Set_Etype (Nam, Nam_Ent);
1123
1124 else
1125 Set_Etype (Nam, It.Typ);
1126 end if;
996ae0b0 1127
d469eabe
HK
1128 elsif Nkind_In (Name (N), N_Selected_Component,
1129 N_Function_Call)
fbf5a39b 1130 then
996ae0b0
RK
1131 Remove_Interp (X);
1132 end if;
1133
1134 Get_Next_Interp (X, It);
1135 end loop;
1136
1137 -- If the name is the result of a function call, it can only
1138 -- be a call to a function returning an access to subprogram.
1139 -- Insert explicit dereference.
1140
1141 if Nkind (Nam) = N_Function_Call then
1142 Insert_Explicit_Dereference (Nam);
1143 end if;
1144
1145 if Etype (N) = Any_Type then
1146
1147 -- None of the interpretations is compatible with the actuals
1148
1149 Diagnose_Call (N, Nam);
1150
1151 -- Special checks for uninstantiated put routines
1152
1153 if Nkind (N) = N_Procedure_Call_Statement
1154 and then Is_Entity_Name (Nam)
1155 and then Chars (Nam) = Name_Put
1156 and then List_Length (Actuals) = 1
1157 then
1158 declare
1159 Arg : constant Node_Id := First (Actuals);
1160 Typ : Entity_Id;
1161
1162 begin
1163 if Nkind (Arg) = N_Parameter_Association then
1164 Typ := Etype (Explicit_Actual_Parameter (Arg));
1165 else
1166 Typ := Etype (Arg);
1167 end if;
1168
1169 if Is_Signed_Integer_Type (Typ) then
1170 Error_Msg_N
1171 ("possible missing instantiation of " &
1172 "'Text_'I'O.'Integer_'I'O!", Nam);
1173
1174 elsif Is_Modular_Integer_Type (Typ) then
1175 Error_Msg_N
1176 ("possible missing instantiation of " &
1177 "'Text_'I'O.'Modular_'I'O!", Nam);
1178
1179 elsif Is_Floating_Point_Type (Typ) then
1180 Error_Msg_N
1181 ("possible missing instantiation of " &
1182 "'Text_'I'O.'Float_'I'O!", Nam);
1183
1184 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1185 Error_Msg_N
1186 ("possible missing instantiation of " &
1187 "'Text_'I'O.'Fixed_'I'O!", Nam);
1188
1189 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1190 Error_Msg_N
1191 ("possible missing instantiation of " &
1192 "'Text_'I'O.'Decimal_'I'O!", Nam);
1193
1194 elsif Is_Enumeration_Type (Typ) then
1195 Error_Msg_N
1196 ("possible missing instantiation of " &
1197 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1198 end if;
1199 end;
1200 end if;
1201
1202 elsif not Is_Overloaded (N)
1203 and then Is_Entity_Name (Nam)
1204 then
aab883ec
ES
1205 -- Resolution yields a single interpretation. Verify that the
1206 -- reference has capitalization consistent with the declaration.
996ae0b0
RK
1207
1208 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1209 Generate_Reference (Entity (Nam), Nam);
1210
1211 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1212 else
1213 Remove_Abstract_Operations (N);
996ae0b0
RK
1214 end if;
1215
1216 End_Interp_List;
1217 end if;
1218 end Analyze_Call;
1219
19d846a0
RD
1220 -----------------------------
1221 -- Analyze_Case_Expression --
1222 -----------------------------
1223
1224 procedure Analyze_Case_Expression (N : Node_Id) is
1225 Expr : constant Node_Id := Expression (N);
1226 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1227 Alt : Node_Id;
1228 Exp_Type : Entity_Id;
1229 Exp_Btype : Entity_Id;
1230
19d846a0
RD
1231 Dont_Care : Boolean;
1232 Others_Present : Boolean;
1233
1234 procedure Non_Static_Choice_Error (Choice : Node_Id);
1235 -- Error routine invoked by the generic instantiation below when
1236 -- the case expression has a non static choice.
1237
1238 package Case_Choices_Processing is new
1239 Generic_Choices_Processing
1240 (Get_Alternatives => Alternatives,
1241 Get_Choices => Discrete_Choices,
1242 Process_Empty_Choice => No_OP,
1243 Process_Non_Static_Choice => Non_Static_Choice_Error,
1244 Process_Associated_Node => No_OP);
1245 use Case_Choices_Processing;
1246
19d846a0
RD
1247 -----------------------------
1248 -- Non_Static_Choice_Error --
1249 -----------------------------
1250
1251 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1252 begin
1253 Flag_Non_Static_Expr
1254 ("choice given in case expression is not static!", Choice);
1255 end Non_Static_Choice_Error;
1256
1257 -- Start of processing for Analyze_Case_Expression
1258
1259 begin
1260 if Comes_From_Source (N) then
1261 Check_Compiler_Unit (N);
1262 end if;
1263
1264 Analyze_And_Resolve (Expr, Any_Discrete);
1265 Check_Unset_Reference (Expr);
1266 Exp_Type := Etype (Expr);
1267 Exp_Btype := Base_Type (Exp_Type);
1268
1269 Alt := First (Alternatives (N));
1270 while Present (Alt) loop
1271 Analyze (Expression (Alt));
1272 Next (Alt);
1273 end loop;
1274
1275 if not Is_Overloaded (FirstX) then
1276 Set_Etype (N, Etype (FirstX));
1277
1278 else
1279 declare
1280 I : Interp_Index;
1281 It : Interp;
1282
1283 begin
1284 Set_Etype (N, Any_Type);
1285
1286 Get_First_Interp (FirstX, I, It);
1287 while Present (It.Nam) loop
1288
308e6f3a
RW
1289 -- For each interpretation of the first expression, we only
1290 -- add the interpretation if every other expression in the
19d846a0
RD
1291 -- case expression alternatives has a compatible type.
1292
1293 Alt := Next (First (Alternatives (N)));
1294 while Present (Alt) loop
1295 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1296 Next (Alt);
1297 end loop;
1298
1299 if No (Alt) then
1300 Add_One_Interp (N, It.Typ, It.Typ);
1301 end if;
1302
1303 Get_Next_Interp (I, It);
1304 end loop;
1305 end;
1306 end if;
1307
1308 Exp_Btype := Base_Type (Exp_Type);
1309
1310 -- The expression must be of a discrete type which must be determinable
1311 -- independently of the context in which the expression occurs, but
1312 -- using the fact that the expression must be of a discrete type.
1313 -- Moreover, the type this expression must not be a character literal
1314 -- (which is always ambiguous).
1315
1316 -- If error already reported by Resolve, nothing more to do
1317
1318 if Exp_Btype = Any_Discrete
1319 or else Exp_Btype = Any_Type
1320 then
1321 return;
1322
1323 elsif Exp_Btype = Any_Character then
1324 Error_Msg_N
1325 ("character literal as case expression is ambiguous", Expr);
1326 return;
1327 end if;
1328
1329 -- If the case expression is a formal object of mode in out, then
1330 -- treat it as having a nonstatic subtype by forcing use of the base
1331 -- type (which has to get passed to Check_Case_Choices below). Also
1332 -- use base type when the case expression is parenthesized.
1333
1334 if Paren_Count (Expr) > 0
1335 or else (Is_Entity_Name (Expr)
1336 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1337 then
1338 Exp_Type := Exp_Btype;
1339 end if;
1340
1341 -- Call instantiated Analyze_Choices which does the rest of the work
1342
86200f66 1343 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
19d846a0
RD
1344
1345 if Exp_Type = Universal_Integer and then not Others_Present then
1346 Error_Msg_N
1347 ("case on universal integer requires OTHERS choice", Expr);
1348 end if;
1349 end Analyze_Case_Expression;
1350
996ae0b0
RK
1351 ---------------------------
1352 -- Analyze_Comparison_Op --
1353 ---------------------------
1354
1355 procedure Analyze_Comparison_Op (N : Node_Id) is
1356 L : constant Node_Id := Left_Opnd (N);
1357 R : constant Node_Id := Right_Opnd (N);
1358 Op_Id : Entity_Id := Entity (N);
1359
1360 begin
1361 Set_Etype (N, Any_Type);
1362 Candidate_Type := Empty;
1363
1364 Analyze_Expression (L);
1365 Analyze_Expression (R);
1366
1367 if Present (Op_Id) then
996ae0b0
RK
1368 if Ekind (Op_Id) = E_Operator then
1369 Find_Comparison_Types (L, R, Op_Id, N);
1370 else
1371 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1372 end if;
1373
1374 if Is_Overloaded (L) then
1375 Set_Etype (L, Intersect_Types (L, R));
1376 end if;
1377
1378 else
1379 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1380 while Present (Op_Id) loop
996ae0b0
RK
1381 if Ekind (Op_Id) = E_Operator then
1382 Find_Comparison_Types (L, R, Op_Id, N);
1383 else
1384 Analyze_User_Defined_Binary_Op (N, Op_Id);
1385 end if;
1386
1387 Op_Id := Homonym (Op_Id);
1388 end loop;
1389 end if;
1390
1391 Operator_Check (N);
1392 end Analyze_Comparison_Op;
1393
1394 ---------------------------
1395 -- Analyze_Concatenation --
1396 ---------------------------
1397
fe39cf20
BD
1398 procedure Analyze_Concatenation (N : Node_Id) is
1399
1400 -- We wish to avoid deep recursion, because concatenations are often
1401 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1402 -- operands nonrecursively until we find something that is not a
1403 -- concatenation (A in this case), or has already been analyzed. We
1404 -- analyze that, and then walk back up the tree following Parent
1405 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1406 -- work at each level. The Parent pointers allow us to avoid recursion,
1407 -- and thus avoid running out of memory.
1408
1409 NN : Node_Id := N;
1410 L : Node_Id;
1411
1412 begin
1413 Candidate_Type := Empty;
1414
1415 -- The following code is equivalent to:
1416
1417 -- Set_Etype (N, Any_Type);
1418 -- Analyze_Expression (Left_Opnd (N));
1419 -- Analyze_Concatenation_Rest (N);
1420
1421 -- where the Analyze_Expression call recurses back here if the left
1422 -- operand is a concatenation.
1423
1424 -- Walk down left operands
1425
1426 loop
1427 Set_Etype (NN, Any_Type);
1428 L := Left_Opnd (NN);
1429 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1430 NN := L;
1431 end loop;
1432
1433 -- Now (given the above example) NN is A&B and L is A
1434
1435 -- First analyze L ...
1436
1437 Analyze_Expression (L);
1438
1439 -- ... then walk NN back up until we reach N (where we started), calling
1440 -- Analyze_Concatenation_Rest along the way.
1441
1442 loop
1443 Analyze_Concatenation_Rest (NN);
1444 exit when NN = N;
1445 NN := Parent (NN);
1446 end loop;
1447 end Analyze_Concatenation;
1448
1449 --------------------------------
1450 -- Analyze_Concatenation_Rest --
1451 --------------------------------
1452
996ae0b0
RK
1453 -- If the only one-dimensional array type in scope is String,
1454 -- this is the resulting type of the operation. Otherwise there
1455 -- will be a concatenation operation defined for each user-defined
1456 -- one-dimensional array.
1457
fe39cf20 1458 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1459 L : constant Node_Id := Left_Opnd (N);
1460 R : constant Node_Id := Right_Opnd (N);
1461 Op_Id : Entity_Id := Entity (N);
1462 LT : Entity_Id;
1463 RT : Entity_Id;
1464
1465 begin
996ae0b0
RK
1466 Analyze_Expression (R);
1467
cd3cd5b1
AC
1468 -- If the entity is present, the node appears in an instance, and
1469 -- denotes a predefined concatenation operation. The resulting type is
1470 -- obtained from the arguments when possible. If the arguments are
1471 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1472 -- visible.
996ae0b0
RK
1473
1474 if Present (Op_Id) then
1475 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1476 LT := Base_Type (Etype (L));
1477 RT := Base_Type (Etype (R));
1478
1479 if Is_Array_Type (LT)
1480 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1481 then
1482 Add_One_Interp (N, Op_Id, LT);
1483
1484 elsif Is_Array_Type (RT)
1485 and then LT = Base_Type (Component_Type (RT))
1486 then
1487 Add_One_Interp (N, Op_Id, RT);
1488
fbf5a39b
AC
1489 -- If one operand is a string type or a user-defined array type,
1490 -- and the other is a literal, result is of the specific type.
1491
1492 elsif
1493 (Root_Type (LT) = Standard_String
1494 or else Scope (LT) /= Standard_Standard)
1495 and then Etype (R) = Any_String
1496 then
1497 Add_One_Interp (N, Op_Id, LT);
1498
1499 elsif
1500 (Root_Type (RT) = Standard_String
1501 or else Scope (RT) /= Standard_Standard)
1502 and then Etype (L) = Any_String
1503 then
1504 Add_One_Interp (N, Op_Id, RT);
1505
1506 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1507 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1508
1509 else
4c46b835 1510 -- Type and its operations must be visible
fbf5a39b
AC
1511
1512 Set_Entity (N, Empty);
1513 Analyze_Concatenation (N);
996ae0b0
RK
1514 end if;
1515
1516 else
1517 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1518 end if;
1519
1520 else
1a8fae99 1521 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1522 while Present (Op_Id) loop
1523 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1524
1525 -- Do not consider operators declared in dead code, they can
1526 -- not be part of the resolution.
1527
1528 if Is_Eliminated (Op_Id) then
1529 null;
1530 else
1531 Find_Concatenation_Types (L, R, Op_Id, N);
1532 end if;
1533
996ae0b0
RK
1534 else
1535 Analyze_User_Defined_Binary_Op (N, Op_Id);
1536 end if;
1537
1538 Op_Id := Homonym (Op_Id);
1539 end loop;
1540 end if;
1541
1542 Operator_Check (N);
fe39cf20 1543 end Analyze_Concatenation_Rest;
996ae0b0
RK
1544
1545 ------------------------------------
1546 -- Analyze_Conditional_Expression --
1547 ------------------------------------
1548
1549 procedure Analyze_Conditional_Expression (N : Node_Id) is
1550 Condition : constant Node_Id := First (Expressions (N));
1551 Then_Expr : constant Node_Id := Next (Condition);
6c994759 1552 Else_Expr : Node_Id;
b46be8a2 1553
996ae0b0 1554 begin
6c994759
AC
1555 -- Defend against error of missing expressions from previous error
1556
1557 if No (Then_Expr) then
1558 return;
1559 end if;
1560
2ba431e5 1561 Check_SPARK_Restriction ("conditional expression is not allowed", N);
1d801f21 1562
6c994759
AC
1563 Else_Expr := Next (Then_Expr);
1564
b46be8a2
RD
1565 if Comes_From_Source (N) then
1566 Check_Compiler_Unit (N);
1567 end if;
1568
996ae0b0
RK
1569 Analyze_Expression (Condition);
1570 Analyze_Expression (Then_Expr);
b46be8a2
RD
1571
1572 if Present (Else_Expr) then
1573 Analyze_Expression (Else_Expr);
1574 end if;
1575
19d846a0
RD
1576 -- If then expression not overloaded, then that decides the type
1577
bee2a781 1578 if not Is_Overloaded (Then_Expr) then
e0ba1bfd 1579 Set_Etype (N, Etype (Then_Expr));
19d846a0
RD
1580
1581 -- Case where then expression is overloaded
1582
e0ba1bfd
ES
1583 else
1584 declare
1585 I : Interp_Index;
1586 It : Interp;
1587
1588 begin
1589 Set_Etype (N, Any_Type);
8d606a78
RD
1590
1591 -- Shouldn't the following statement be down in the ELSE of the
1592 -- following loop? ???
1593
e0ba1bfd 1594 Get_First_Interp (Then_Expr, I, It);
19d846a0 1595
8d606a78
RD
1596 -- if no Else_Expression the conditional must be boolean
1597
1598 if No (Else_Expr) then
2010d078 1599 Set_Etype (N, Standard_Boolean);
19d846a0 1600
8d606a78
RD
1601 -- Else_Expression Present. For each possible intepretation of
1602 -- the Then_Expression, add it only if the Else_Expression has
1603 -- a compatible type.
19d846a0 1604
8d606a78
RD
1605 else
1606 while Present (It.Nam) loop
2010d078
AC
1607 if Has_Compatible_Type (Else_Expr, It.Typ) then
1608 Add_One_Interp (N, It.Typ, It.Typ);
1609 end if;
e0ba1bfd 1610
2010d078
AC
1611 Get_Next_Interp (I, It);
1612 end loop;
1613 end if;
e0ba1bfd
ES
1614 end;
1615 end if;
996ae0b0
RK
1616 end Analyze_Conditional_Expression;
1617
1618 -------------------------
1619 -- Analyze_Equality_Op --
1620 -------------------------
1621
1622 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1623 Loc : constant Source_Ptr := Sloc (N);
1624 L : constant Node_Id := Left_Opnd (N);
1625 R : constant Node_Id := Right_Opnd (N);
1626 Op_Id : Entity_Id;
996ae0b0
RK
1627
1628 begin
1629 Set_Etype (N, Any_Type);
1630 Candidate_Type := Empty;
1631
1632 Analyze_Expression (L);
1633 Analyze_Expression (R);
1634
1635 -- If the entity is set, the node is a generic instance with a non-local
1636 -- reference to the predefined operator or to a user-defined function.
1637 -- It can also be an inequality that is expanded into the negation of a
1638 -- call to a user-defined equality operator.
1639
1640 -- For the predefined case, the result is Boolean, regardless of the
1641 -- type of the operands. The operands may even be limited, if they are
1642 -- generic actuals. If they are overloaded, label the left argument with
1643 -- the common type that must be present, or with the type of the formal
1644 -- of the user-defined function.
1645
1646 if Present (Entity (N)) then
996ae0b0
RK
1647 Op_Id := Entity (N);
1648
1649 if Ekind (Op_Id) = E_Operator then
1650 Add_One_Interp (N, Op_Id, Standard_Boolean);
1651 else
1652 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1653 end if;
1654
1655 if Is_Overloaded (L) then
996ae0b0
RK
1656 if Ekind (Op_Id) = E_Operator then
1657 Set_Etype (L, Intersect_Types (L, R));
1658 else
1659 Set_Etype (L, Etype (First_Formal (Op_Id)));
1660 end if;
1661 end if;
1662
1663 else
1664 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1665 while Present (Op_Id) loop
996ae0b0
RK
1666 if Ekind (Op_Id) = E_Operator then
1667 Find_Equality_Types (L, R, Op_Id, N);
1668 else
1669 Analyze_User_Defined_Binary_Op (N, Op_Id);
1670 end if;
1671
1672 Op_Id := Homonym (Op_Id);
1673 end loop;
1674 end if;
1675
1676 -- If there was no match, and the operator is inequality, this may
1677 -- be a case where inequality has not been made explicit, as for
1678 -- tagged types. Analyze the node as the negation of an equality
1679 -- operation. This cannot be done earlier, because before analysis
1680 -- we cannot rule out the presence of an explicit inequality.
1681
1682 if Etype (N) = Any_Type
1683 and then Nkind (N) = N_Op_Ne
1684 then
1685 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1686 while Present (Op_Id) loop
996ae0b0
RK
1687 if Ekind (Op_Id) = E_Operator then
1688 Find_Equality_Types (L, R, Op_Id, N);
1689 else
1690 Analyze_User_Defined_Binary_Op (N, Op_Id);
1691 end if;
1692
1693 Op_Id := Homonym (Op_Id);
1694 end loop;
1695
1696 if Etype (N) /= Any_Type then
1697 Op_Id := Entity (N);
1698
1699 Rewrite (N,
1700 Make_Op_Not (Loc,
1701 Right_Opnd =>
1702 Make_Op_Eq (Loc,
aab883ec
ES
1703 Left_Opnd => Left_Opnd (N),
1704 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1705
1706 Set_Entity (Right_Opnd (N), Op_Id);
1707 Analyze (N);
1708 end if;
1709 end if;
1710
1711 Operator_Check (N);
1712 end Analyze_Equality_Op;
1713
1714 ----------------------------------
1715 -- Analyze_Explicit_Dereference --
1716 ----------------------------------
1717
1718 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1719 Loc : constant Source_Ptr := Sloc (N);
1720 P : constant Node_Id := Prefix (N);
1721 T : Entity_Id;
1722 I : Interp_Index;
1723 It : Interp;
1724 New_N : Node_Id;
1725
1726 function Is_Function_Type return Boolean;
4c46b835
AC
1727 -- Check whether node may be interpreted as an implicit function call
1728
1729 ----------------------
1730 -- Is_Function_Type --
1731 ----------------------
996ae0b0
RK
1732
1733 function Is_Function_Type return Boolean is
4c46b835
AC
1734 I : Interp_Index;
1735 It : Interp;
996ae0b0
RK
1736
1737 begin
1738 if not Is_Overloaded (N) then
1739 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1740 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1741
1742 else
1743 Get_First_Interp (N, I, It);
996ae0b0
RK
1744 while Present (It.Nam) loop
1745 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1746 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1747 then
1748 return False;
1749 end if;
1750
1751 Get_Next_Interp (I, It);
1752 end loop;
1753
1754 return True;
1755 end if;
1756 end Is_Function_Type;
1757
98123480 1758 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1759
996ae0b0 1760 begin
2ba431e5 1761 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1d801f21 1762
226a7fa4
AC
1763 -- In formal verification mode, keep track of all reads and writes
1764 -- through explicit dereferences.
1765
56812278
AC
1766 if Alfa_Mode then
1767 Alfa.Generate_Dereference (N);
226a7fa4
AC
1768 end if;
1769
996ae0b0
RK
1770 Analyze (P);
1771 Set_Etype (N, Any_Type);
1772
1773 -- Test for remote access to subprogram type, and if so return
1774 -- after rewriting the original tree.
1775
1776 if Remote_AST_E_Dereference (P) then
1777 return;
1778 end if;
1779
1780 -- Normal processing for other than remote access to subprogram type
1781
1782 if not Is_Overloaded (P) then
1783 if Is_Access_Type (Etype (P)) then
1784
f3d57416 1785 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1786 -- avoid other problems caused by the Private_Subtype and it is
1787 -- safe to go to the Base_Type because this is the same as
1788 -- converting the access value to its Base_Type.
996ae0b0
RK
1789
1790 declare
1791 DT : Entity_Id := Designated_Type (Etype (P));
1792
1793 begin
1794 if Ekind (DT) = E_Private_Subtype
1795 and then Is_For_Access_Subtype (DT)
1796 then
1797 DT := Base_Type (DT);
1798 end if;
1799
0a36105d
JM
1800 -- An explicit dereference is a legal occurrence of an
1801 -- incomplete type imported through a limited_with clause,
1802 -- if the full view is visible.
1803
1804 if From_With_Type (DT)
1805 and then not From_With_Type (Scope (DT))
1806 and then
1807 (Is_Immediately_Visible (Scope (DT))
1808 or else
1809 (Is_Child_Unit (Scope (DT))
1810 and then Is_Visible_Child_Unit (Scope (DT))))
1811 then
1812 Set_Etype (N, Available_View (DT));
1813
1814 else
1815 Set_Etype (N, DT);
1816 end if;
996ae0b0
RK
1817 end;
1818
1819 elsif Etype (P) /= Any_Type then
1820 Error_Msg_N ("prefix of dereference must be an access type", N);
1821 return;
1822 end if;
1823
1824 else
1825 Get_First_Interp (P, I, It);
996ae0b0
RK
1826 while Present (It.Nam) loop
1827 T := It.Typ;
1828
1829 if Is_Access_Type (T) then
1830 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1831 end if;
1832
1833 Get_Next_Interp (I, It);
1834 end loop;
1835
6e73e3ab 1836 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1837
1838 if Etype (N) = Any_Type then
1839 Error_Msg_N
1840 ("access type required in prefix of explicit dereference", P);
1841 Set_Etype (N, Any_Type);
1842 return;
1843 end if;
1844 end if;
1845
1846 if Is_Function_Type
1847 and then Nkind (Parent (N)) /= N_Indexed_Component
1848
1849 and then (Nkind (Parent (N)) /= N_Function_Call
1850 or else N /= Name (Parent (N)))
1851
1852 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1853 or else N /= Name (Parent (N)))
1854
1855 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1856 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1857 or else
1858 (Attribute_Name (Parent (N)) /= Name_Address
1859 and then
1860 Attribute_Name (Parent (N)) /= Name_Access))
1861 then
1862 -- Name is a function call with no actuals, in a context that
1863 -- requires deproceduring (including as an actual in an enclosing
98123480 1864 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1865 -- where the prefix might include functions that return access to
1866 -- subprograms and others that return a regular type. Disambiguation
98123480 1867 -- of those has to take place in Resolve.
996ae0b0
RK
1868
1869 New_N :=
1870 Make_Function_Call (Loc,
1871 Name => Make_Explicit_Dereference (Loc, P),
1872 Parameter_Associations => New_List);
1873
1874 -- If the prefix is overloaded, remove operations that have formals,
1875 -- we know that this is a parameterless call.
1876
1877 if Is_Overloaded (P) then
1878 Get_First_Interp (P, I, It);
996ae0b0
RK
1879 while Present (It.Nam) loop
1880 T := It.Typ;
1881
1882 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1883 Set_Etype (P, T);
1884 else
1885 Remove_Interp (I);
1886 end if;
1887
1888 Get_Next_Interp (I, It);
1889 end loop;
1890 end if;
1891
1892 Rewrite (N, New_N);
1893 Analyze (N);
98123480
ES
1894
1895 elsif not Is_Function_Type
1896 and then Is_Overloaded (N)
1897 then
1898 -- The prefix may include access to subprograms and other access
1cb17b78 1899 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1900 -- function call (not a procedure call) we cannot rewrite the node
1901 -- yet, but we include the result of the call interpretation.
98123480
ES
1902
1903 Get_First_Interp (N, I, It);
1904 while Present (It.Nam) loop
1905 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1906 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 1907 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
1908 then
1909 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1910 end if;
1911
1912 Get_Next_Interp (I, It);
1913 end loop;
996ae0b0
RK
1914 end if;
1915
1916 -- A value of remote access-to-class-wide must not be dereferenced
1917 -- (RM E.2.2(16)).
1918
1919 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
1920 end Analyze_Explicit_Dereference;
1921
1922 ------------------------
1923 -- Analyze_Expression --
1924 ------------------------
1925
1926 procedure Analyze_Expression (N : Node_Id) is
1927 begin
1928 Analyze (N);
1929 Check_Parameterless_Call (N);
1930 end Analyze_Expression;
1931
955871d3
AC
1932 -------------------------------------
1933 -- Analyze_Expression_With_Actions --
1934 -------------------------------------
1935
1936 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1937 A : Node_Id;
1938
1939 begin
1940 A := First (Actions (N));
1941 loop
1942 Analyze (A);
1943 Next (A);
1944 exit when No (A);
1945 end loop;
1946
1947 Analyze_Expression (Expression (N));
1948 Set_Etype (N, Etype (Expression (N)));
1949 end Analyze_Expression_With_Actions;
1950
996ae0b0
RK
1951 ------------------------------------
1952 -- Analyze_Indexed_Component_Form --
1953 ------------------------------------
1954
1955 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
1956 P : constant Node_Id := Prefix (N);
1957 Exprs : constant List_Id := Expressions (N);
1958 Exp : Node_Id;
1959 P_T : Entity_Id;
1960 E : Node_Id;
1961 U_N : Entity_Id;
996ae0b0
RK
1962
1963 procedure Process_Function_Call;
1964 -- Prefix in indexed component form is an overloadable entity,
1965 -- so the node is a function call. Reformat it as such.
1966
1967 procedure Process_Indexed_Component;
1968 -- Prefix in indexed component form is actually an indexed component.
1969 -- This routine processes it, knowing that the prefix is already
1970 -- resolved.
1971
1972 procedure Process_Indexed_Component_Or_Slice;
1973 -- An indexed component with a single index may designate a slice if
1974 -- the index is a subtype mark. This routine disambiguates these two
1975 -- cases by resolving the prefix to see if it is a subtype mark.
1976
1977 procedure Process_Overloaded_Indexed_Component;
1978 -- If the prefix of an indexed component is overloaded, the proper
1979 -- interpretation is selected by the index types and the context.
1980
1981 ---------------------------
1982 -- Process_Function_Call --
1983 ---------------------------
1984
1985 procedure Process_Function_Call is
f5afb270
AC
1986 Actual : Node_Id;
1987
996ae0b0
RK
1988 begin
1989 Change_Node (N, N_Function_Call);
1990 Set_Name (N, P);
1991 Set_Parameter_Associations (N, Exprs);
996ae0b0 1992
401093c1 1993 -- Analyze actuals prior to analyzing the call itself
0a36105d 1994
4c46b835 1995 Actual := First (Parameter_Associations (N));
996ae0b0
RK
1996 while Present (Actual) loop
1997 Analyze (Actual);
1998 Check_Parameterless_Call (Actual);
0a36105d
JM
1999
2000 -- Move to next actual. Note that we use Next, not Next_Actual
2001 -- here. The reason for this is a bit subtle. If a function call
2002 -- includes named associations, the parser recognizes the node as
2003 -- a call, and it is analyzed as such. If all associations are
2004 -- positional, the parser builds an indexed_component node, and
2005 -- it is only after analysis of the prefix that the construct
2006 -- is recognized as a call, in which case Process_Function_Call
2007 -- rewrites the node and analyzes the actuals. If the list of
2008 -- actuals is malformed, the parser may leave the node as an
2009 -- indexed component (despite the presence of named associations).
2010 -- The iterator Next_Actual is equivalent to Next if the list is
2011 -- positional, but follows the normalized chain of actuals when
2012 -- named associations are present. In this case normalization has
2013 -- not taken place, and actuals remain unanalyzed, which leads to
2014 -- subsequent crashes or loops if there is an attempt to continue
2015 -- analysis of the program.
2016
2017 Next (Actual);
996ae0b0
RK
2018 end loop;
2019
2020 Analyze_Call (N);
2021 end Process_Function_Call;
2022
2023 -------------------------------
2024 -- Process_Indexed_Component --
2025 -------------------------------
2026
2027 procedure Process_Indexed_Component is
fe39cf20
BD
2028 Exp : Node_Id;
2029 Array_Type : Entity_Id;
2030 Index : Node_Id;
2031 Pent : Entity_Id := Empty;
996ae0b0
RK
2032
2033 begin
2034 Exp := First (Exprs);
2035
2036 if Is_Overloaded (P) then
2037 Process_Overloaded_Indexed_Component;
2038
2039 else
2040 Array_Type := Etype (P);
2041
6e73e3ab
AC
2042 if Is_Entity_Name (P) then
2043 Pent := Entity (P);
2044 elsif Nkind (P) = N_Selected_Component
2045 and then Is_Entity_Name (Selector_Name (P))
2046 then
2047 Pent := Entity (Selector_Name (P));
2048 end if;
2049
2050 -- Prefix must be appropriate for an array type, taking into
2051 -- account a possible implicit dereference.
996ae0b0
RK
2052
2053 if Is_Access_Type (Array_Type) then
fbf5a39b 2054 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
d469eabe 2055 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2056 end if;
2057
2058 if Is_Array_Type (Array_Type) then
2059 null;
2060
6e73e3ab 2061 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2062 Analyze (Exp);
2063 Set_Etype (N, Any_Type);
2064
2065 if not Has_Compatible_Type
6e73e3ab 2066 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2067 then
2068 Error_Msg_N ("invalid index type in entry name", N);
2069
2070 elsif Present (Next (Exp)) then
2071 Error_Msg_N ("too many subscripts in entry reference", N);
2072
2073 else
2074 Set_Etype (N, Etype (P));
2075 end if;
2076
2077 return;
2078
2079 elsif Is_Record_Type (Array_Type)
2080 and then Remote_AST_I_Dereference (P)
2081 then
2082 return;
2083
d50f4827
AC
2084 elsif Try_Container_Indexing (N, P, Exp) then
2085 return;
2086
996ae0b0
RK
2087 elsif Array_Type = Any_Type then
2088 Set_Etype (N, Any_Type);
6465b6a7
AC
2089
2090 -- In most cases the analysis of the prefix will have emitted
2091 -- an error already, but if the prefix may be interpreted as a
2092 -- call in prefixed notation, the report is left to the caller.
2093 -- To prevent cascaded errors, report only if no previous ones.
2094
2095 if Serious_Errors_Detected = 0 then
2096 Error_Msg_N ("invalid prefix in indexed component", P);
2097
2098 if Nkind (P) = N_Expanded_Name then
2099 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2100 end if;
2101 end if;
2102
996ae0b0
RK
2103 return;
2104
2105 -- Here we definitely have a bad indexing
2106
2107 else
2108 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2109 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2110 then
2111 Error_Msg_N
2112 ("REQUEUE does not permit parameters", First (Exprs));
2113
2114 elsif Is_Entity_Name (P)
2115 and then Etype (P) = Standard_Void_Type
2116 then
2117 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2118
2119 else
2120 Error_Msg_N ("array type required in indexed component", P);
2121 end if;
2122
2123 Set_Etype (N, Any_Type);
2124 return;
2125 end if;
2126
2127 Index := First_Index (Array_Type);
996ae0b0
RK
2128 while Present (Index) and then Present (Exp) loop
2129 if not Has_Compatible_Type (Exp, Etype (Index)) then
2130 Wrong_Type (Exp, Etype (Index));
2131 Set_Etype (N, Any_Type);
2132 return;
2133 end if;
2134
2135 Next_Index (Index);
2136 Next (Exp);
2137 end loop;
2138
2139 Set_Etype (N, Component_Type (Array_Type));
44a10091 2140 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2141
2142 if Present (Index) then
2143 Error_Msg_N
2144 ("too few subscripts in array reference", First (Exprs));
2145
2146 elsif Present (Exp) then
2147 Error_Msg_N ("too many subscripts in array reference", Exp);
2148 end if;
2149 end if;
996ae0b0
RK
2150 end Process_Indexed_Component;
2151
2152 ----------------------------------------
2153 -- Process_Indexed_Component_Or_Slice --
2154 ----------------------------------------
2155
2156 procedure Process_Indexed_Component_Or_Slice is
2157 begin
2158 Exp := First (Exprs);
996ae0b0
RK
2159 while Present (Exp) loop
2160 Analyze_Expression (Exp);
2161 Next (Exp);
2162 end loop;
2163
2164 Exp := First (Exprs);
2165
2166 -- If one index is present, and it is a subtype name, then the
2167 -- node denotes a slice (note that the case of an explicit range
2168 -- for a slice was already built as an N_Slice node in the first
2169 -- place, so that case is not handled here).
2170
2171 -- We use a replace rather than a rewrite here because this is one
2172 -- of the cases in which the tree built by the parser is plain wrong.
2173
2174 if No (Next (Exp))
2175 and then Is_Entity_Name (Exp)
2176 and then Is_Type (Entity (Exp))
2177 then
2178 Replace (N,
2179 Make_Slice (Sloc (N),
2180 Prefix => P,
2181 Discrete_Range => New_Copy (Exp)));
2182 Analyze (N);
2183
2184 -- Otherwise (more than one index present, or single index is not
2185 -- a subtype name), then we have the indexed component case.
2186
2187 else
2188 Process_Indexed_Component;
2189 end if;
2190 end Process_Indexed_Component_Or_Slice;
2191
2192 ------------------------------------------
2193 -- Process_Overloaded_Indexed_Component --
2194 ------------------------------------------
2195
2196 procedure Process_Overloaded_Indexed_Component is
2197 Exp : Node_Id;
2198 I : Interp_Index;
2199 It : Interp;
2200 Typ : Entity_Id;
2201 Index : Node_Id;
2202 Found : Boolean;
2203
2204 begin
2205 Set_Etype (N, Any_Type);
996ae0b0 2206
4c46b835 2207 Get_First_Interp (P, I, It);
996ae0b0
RK
2208 while Present (It.Nam) loop
2209 Typ := It.Typ;
2210
2211 if Is_Access_Type (Typ) then
2212 Typ := Designated_Type (Typ);
fbf5a39b 2213 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2214 end if;
2215
2216 if Is_Array_Type (Typ) then
2217
2218 -- Got a candidate: verify that index types are compatible
2219
2220 Index := First_Index (Typ);
2221 Found := True;
996ae0b0 2222 Exp := First (Exprs);
996ae0b0
RK
2223 while Present (Index) and then Present (Exp) loop
2224 if Has_Compatible_Type (Exp, Etype (Index)) then
2225 null;
2226 else
2227 Found := False;
2228 Remove_Interp (I);
2229 exit;
2230 end if;
2231
2232 Next_Index (Index);
2233 Next (Exp);
2234 end loop;
2235
2236 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2237 declare
2238 CT : constant Entity_Id :=
2239 Base_Type (Component_Type (Typ));
2240 begin
2241 Add_One_Interp (N, CT, CT);
2242 Check_Implicit_Dereference (N, CT);
2243 end;
996ae0b0 2244 end if;
57a8057a
AC
2245
2246 elsif Try_Container_Indexing (N, P, First (Exprs)) then
2247 return;
2248
996ae0b0
RK
2249 end if;
2250
2251 Get_Next_Interp (I, It);
2252 end loop;
2253
2254 if Etype (N) = Any_Type then
ad6b5b00 2255 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2256 Set_Is_Overloaded (N, False);
2257 end if;
2258
2259 End_Interp_List;
2260 end Process_Overloaded_Indexed_Component;
2261
4c46b835 2262 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2263
2264 begin
2265 -- Get name of array, function or type
2266
2267 Analyze (P);
d469eabe
HK
2268
2269 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2270
fbf5a39b
AC
2271 -- If P is an explicit dereference whose prefix is of a
2272 -- remote access-to-subprogram type, then N has already
2273 -- been rewritten as a subprogram call and analyzed.
2274
2275 return;
2276 end if;
2277
2278 pragma Assert (Nkind (N) = N_Indexed_Component);
2279
996ae0b0
RK
2280 P_T := Base_Type (Etype (P));
2281
878f708a 2282 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2283 U_N := Entity (P);
2284
aab883ec 2285 if Is_Type (U_N) then
996ae0b0 2286
4c46b835 2287 -- Reformat node as a type conversion
996ae0b0
RK
2288
2289 E := Remove_Head (Exprs);
2290
2291 if Present (First (Exprs)) then
2292 Error_Msg_N
2293 ("argument of type conversion must be single expression", N);
2294 end if;
2295
2296 Change_Node (N, N_Type_Conversion);
2297 Set_Subtype_Mark (N, P);
2298 Set_Etype (N, U_N);
2299 Set_Expression (N, E);
2300
2301 -- After changing the node, call for the specific Analysis
2302 -- routine directly, to avoid a double call to the expander.
2303
2304 Analyze_Type_Conversion (N);
2305 return;
2306 end if;
2307
2308 if Is_Overloadable (U_N) then
2309 Process_Function_Call;
2310
2311 elsif Ekind (Etype (P)) = E_Subprogram_Type
2312 or else (Is_Access_Type (Etype (P))
2313 and then
bce79204
AC
2314 Ekind (Designated_Type (Etype (P))) =
2315 E_Subprogram_Type)
996ae0b0
RK
2316 then
2317 -- Call to access_to-subprogram with possible implicit dereference
2318
2319 Process_Function_Call;
2320
fbf5a39b
AC
2321 elsif Is_Generic_Subprogram (U_N) then
2322
4c46b835 2323 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2324
2325 Error_Msg_N ("generic subprogram cannot be called", N);
2326 Set_Etype (N, Any_Type);
2327 return;
2328
2329 else
2330 Process_Indexed_Component_Or_Slice;
2331 end if;
2332
2333 -- If not an entity name, prefix is an expression that may denote
2334 -- an array or an access-to-subprogram.
2335
2336 else
fbf5a39b 2337 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2338 or else (Is_Access_Type (P_T)
2339 and then
bce79204 2340 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2341 then
2342 Process_Function_Call;
2343
2344 elsif Nkind (P) = N_Selected_Component
ffe9aba8 2345 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2346 then
2347 Process_Function_Call;
2348
2349 else
2350 -- Indexed component, slice, or a call to a member of a family
2351 -- entry, which will be converted to an entry call later.
fbf5a39b 2352
996ae0b0
RK
2353 Process_Indexed_Component_Or_Slice;
2354 end if;
2355 end if;
2356 end Analyze_Indexed_Component_Form;
2357
2358 ------------------------
2359 -- Analyze_Logical_Op --
2360 ------------------------
2361
2362 procedure Analyze_Logical_Op (N : Node_Id) is
2363 L : constant Node_Id := Left_Opnd (N);
2364 R : constant Node_Id := Right_Opnd (N);
2365 Op_Id : Entity_Id := Entity (N);
2366
2367 begin
2368 Set_Etype (N, Any_Type);
2369 Candidate_Type := Empty;
2370
2371 Analyze_Expression (L);
2372 Analyze_Expression (R);
2373
2374 if Present (Op_Id) then
2375
2376 if Ekind (Op_Id) = E_Operator then
2377 Find_Boolean_Types (L, R, Op_Id, N);
2378 else
2379 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2380 end if;
2381
2382 else
2383 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2384 while Present (Op_Id) loop
2385 if Ekind (Op_Id) = E_Operator then
2386 Find_Boolean_Types (L, R, Op_Id, N);
2387 else
2388 Analyze_User_Defined_Binary_Op (N, Op_Id);
2389 end if;
2390
2391 Op_Id := Homonym (Op_Id);
2392 end loop;
2393 end if;
2394
2395 Operator_Check (N);
2396 end Analyze_Logical_Op;
2397
2398 ---------------------------
2399 -- Analyze_Membership_Op --
2400 ---------------------------
2401
2402 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2403 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2404 L : constant Node_Id := Left_Opnd (N);
2405 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2406
2407 Index : Interp_Index;
2408 It : Interp;
2409 Found : Boolean := False;
2410 I_F : Interp_Index;
2411 T_F : Entity_Id;
2412
2413 procedure Try_One_Interp (T1 : Entity_Id);
2414 -- Routine to try one proposed interpretation. Note that the context
2415 -- of the operation plays no role in resolving the arguments, so that
2416 -- if there is more than one interpretation of the operands that is
2417 -- compatible with a membership test, the operation is ambiguous.
2418
4c46b835
AC
2419 --------------------
2420 -- Try_One_Interp --
2421 --------------------
2422
996ae0b0
RK
2423 procedure Try_One_Interp (T1 : Entity_Id) is
2424 begin
2425 if Has_Compatible_Type (R, T1) then
2426 if Found
2427 and then Base_Type (T1) /= Base_Type (T_F)
2428 then
2429 It := Disambiguate (L, I_F, Index, Any_Type);
2430
2431 if It = No_Interp then
2432 Ambiguous_Operands (N);
2433 Set_Etype (L, Any_Type);
2434 return;
2435
2436 else
2437 T_F := It.Typ;
2438 end if;
2439
2440 else
2441 Found := True;
2442 T_F := T1;
2443 I_F := Index;
2444 end if;
2445
2446 Set_Etype (L, T_F);
2447 end if;
996ae0b0
RK
2448 end Try_One_Interp;
2449
197e4514
AC
2450 procedure Analyze_Set_Membership;
2451 -- If a set of alternatives is present, analyze each and find the
2452 -- common type to which they must all resolve.
2453
2454 ----------------------------
2455 -- Analyze_Set_Membership --
2456 ----------------------------
2457
2458 procedure Analyze_Set_Membership is
2459 Alt : Node_Id;
2460 Index : Interp_Index;
2461 It : Interp;
197e4514
AC
2462 Candidate_Interps : Node_Id;
2463 Common_Type : Entity_Id := Empty;
2464
2465 begin
2466 Analyze (L);
2467 Candidate_Interps := L;
2468
2469 if not Is_Overloaded (L) then
2470 Common_Type := Etype (L);
2471
2472 Alt := First (Alternatives (N));
2473 while Present (Alt) loop
2474 Analyze (Alt);
2475
2476 if not Has_Compatible_Type (Alt, Common_Type) then
2477 Wrong_Type (Alt, Common_Type);
2478 end if;
2479
2480 Next (Alt);
2481 end loop;
2482
2483 else
2484 Alt := First (Alternatives (N));
2485 while Present (Alt) loop
2486 Analyze (Alt);
2487 if not Is_Overloaded (Alt) then
2488 Common_Type := Etype (Alt);
2489
2490 else
2491 Get_First_Interp (Alt, Index, It);
2492 while Present (It.Typ) loop
442c0581
RD
2493 if not
2494 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2495 then
2496 Remove_Interp (Index);
2497 end if;
442c0581 2498
197e4514
AC
2499 Get_Next_Interp (Index, It);
2500 end loop;
2501
2502 Get_First_Interp (Alt, Index, It);
442c0581 2503
197e4514
AC
2504 if No (It.Typ) then
2505 Error_Msg_N ("alternative has no legal type", Alt);
2506 return;
2507 end if;
2508
442c0581
RD
2509 -- If alternative is not overloaded, we have a unique type
2510 -- for all of them.
197e4514
AC
2511
2512 Set_Etype (Alt, It.Typ);
2513 Get_Next_Interp (Index, It);
2514
2515 if No (It.Typ) then
2516 Set_Is_Overloaded (Alt, False);
2517 Common_Type := Etype (Alt);
2518 end if;
2519
2520 Candidate_Interps := Alt;
2521 end if;
2522
2523 Next (Alt);
2524 end loop;
2525 end if;
2526
2527 Set_Etype (N, Standard_Boolean);
2528
2529 if Present (Common_Type) then
2530 Set_Etype (L, Common_Type);
2531 Set_Is_Overloaded (L, False);
2532
2533 else
2534 Error_Msg_N ("cannot resolve membership operation", N);
2535 end if;
2536 end Analyze_Set_Membership;
2537
996ae0b0
RK
2538 -- Start of processing for Analyze_Membership_Op
2539
2540 begin
2541 Analyze_Expression (L);
2542
197e4514 2543 if No (R)
dbe945f1 2544 and then Ada_Version >= Ada_2012
197e4514
AC
2545 then
2546 Analyze_Set_Membership;
2547 return;
2548 end if;
2549
996ae0b0
RK
2550 if Nkind (R) = N_Range
2551 or else (Nkind (R) = N_Attribute_Reference
2552 and then Attribute_Name (R) = Name_Range)
2553 then
2554 Analyze (R);
2555
2556 if not Is_Overloaded (L) then
2557 Try_One_Interp (Etype (L));
2558
2559 else
2560 Get_First_Interp (L, Index, It);
996ae0b0
RK
2561 while Present (It.Typ) loop
2562 Try_One_Interp (It.Typ);
2563 Get_Next_Interp (Index, It);
2564 end loop;
2565 end if;
2566
f6b5dc8e 2567 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2568 -- membership test with a singleton value, i.e. a test for equality,
2569 -- if the types are compatible.
996ae0b0
RK
2570
2571 else
66150d01 2572 Analyze (R);
7483c888 2573
66150d01
AC
2574 if Is_Entity_Name (R)
2575 and then Is_Type (Entity (R))
2576 then
2577 Find_Type (R);
996ae0b0 2578 Check_Fully_Declared (Entity (R), R);
66150d01 2579
b0186f71
AC
2580 elsif Ada_Version >= Ada_2012
2581 and then Has_Compatible_Type (R, Etype (L))
2582 then
66150d01
AC
2583 if Nkind (N) = N_In then
2584 Rewrite (N,
2585 Make_Op_Eq (Loc,
2586 Left_Opnd => L,
2587 Right_Opnd => R));
2588 else
2589 Rewrite (N,
2590 Make_Op_Ne (Loc,
2591 Left_Opnd => L,
2592 Right_Opnd => R));
2593 end if;
2594
2595 Analyze (N);
2596 return;
2597
2598 else
b0186f71
AC
2599 -- In all versions of the language, if we reach this point there
2600 -- is a previous error that will be diagnosed below.
66150d01
AC
2601
2602 Find_Type (R);
996ae0b0
RK
2603 end if;
2604 end if;
2605
2606 -- Compatibility between expression and subtype mark or range is
2607 -- checked during resolution. The result of the operation is Boolean
2608 -- in any case.
2609
2610 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2611
2612 if Comes_From_Source (N)
197e4514 2613 and then Present (Right_Opnd (N))
fe45e59e
ES
2614 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2615 then
2616 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2617 end if;
996ae0b0
RK
2618 end Analyze_Membership_Op;
2619
2620 ----------------------
2621 -- Analyze_Negation --
2622 ----------------------
2623
2624 procedure Analyze_Negation (N : Node_Id) is
2625 R : constant Node_Id := Right_Opnd (N);
2626 Op_Id : Entity_Id := Entity (N);
2627
2628 begin
2629 Set_Etype (N, Any_Type);
2630 Candidate_Type := Empty;
2631
2632 Analyze_Expression (R);
2633
2634 if Present (Op_Id) then
2635 if Ekind (Op_Id) = E_Operator then
2636 Find_Negation_Types (R, Op_Id, N);
2637 else
2638 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2639 end if;
2640
2641 else
2642 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2643 while Present (Op_Id) loop
2644 if Ekind (Op_Id) = E_Operator then
2645 Find_Negation_Types (R, Op_Id, N);
2646 else
2647 Analyze_User_Defined_Unary_Op (N, Op_Id);
2648 end if;
2649
2650 Op_Id := Homonym (Op_Id);
2651 end loop;
2652 end if;
2653
2654 Operator_Check (N);
2655 end Analyze_Negation;
2656
15ce9ca2
AC
2657 ------------------
2658 -- Analyze_Null --
2659 ------------------
996ae0b0
RK
2660
2661 procedure Analyze_Null (N : Node_Id) is
2662 begin
2ba431e5 2663 Check_SPARK_Restriction ("null is not allowed", N);
1d801f21 2664
996ae0b0
RK
2665 Set_Etype (N, Any_Access);
2666 end Analyze_Null;
2667
2668 ----------------------
2669 -- Analyze_One_Call --
2670 ----------------------
2671
2672 procedure Analyze_One_Call
ec6078e3
ES
2673 (N : Node_Id;
2674 Nam : Entity_Id;
2675 Report : Boolean;
2676 Success : out Boolean;
2677 Skip_First : Boolean := False)
996ae0b0 2678 is
d469eabe
HK
2679 Actuals : constant List_Id := Parameter_Associations (N);
2680 Prev_T : constant Entity_Id := Etype (N);
2681
aab883ec
ES
2682 Must_Skip : constant Boolean := Skip_First
2683 or else Nkind (Original_Node (N)) = N_Selected_Component
2684 or else
2685 (Nkind (Original_Node (N)) = N_Indexed_Component
2686 and then Nkind (Prefix (Original_Node (N)))
2687 = N_Selected_Component);
2688 -- The first formal must be omitted from the match when trying to find
2689 -- a primitive operation that is a possible interpretation, and also
2690 -- after the call has been rewritten, because the corresponding actual
2691 -- is already known to be compatible, and because this may be an
2692 -- indexing of a call with default parameters.
2693
53cf4600
ES
2694 Formal : Entity_Id;
2695 Actual : Node_Id;
2696 Is_Indexed : Boolean := False;
2697 Is_Indirect : Boolean := False;
2698 Subp_Type : constant Entity_Id := Etype (Nam);
2699 Norm_OK : Boolean;
996ae0b0 2700
157a9bf5
ES
2701 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2702 -- There may be a user-defined operator that hides the current
2703 -- interpretation. We must check for this independently of the
2704 -- analysis of the call with the user-defined operation, because
2705 -- the parameter names may be wrong and yet the hiding takes place.
2706 -- This fixes a problem with ACATS test B34014O.
2707 --
2708 -- When the type Address is a visible integer type, and the DEC
2709 -- system extension is visible, the predefined operator may be
2710 -- hidden as well, by one of the address operations in auxdec.
2711 -- Finally, The abstract operations on address do not hide the
2712 -- predefined operator (this is the purpose of making them abstract).
2713
fbf5a39b 2714 procedure Indicate_Name_And_Type;
996ae0b0
RK
2715 -- If candidate interpretation matches, indicate name and type of
2716 -- result on call node.
2717
fbf5a39b
AC
2718 ----------------------------
2719 -- Indicate_Name_And_Type --
2720 ----------------------------
996ae0b0 2721
fbf5a39b 2722 procedure Indicate_Name_And_Type is
996ae0b0
RK
2723 begin
2724 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 2725 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
2726 Success := True;
2727
2728 -- If the prefix of the call is a name, indicate the entity
2729 -- being called. If it is not a name, it is an expression that
2730 -- denotes an access to subprogram or else an entry or family. In
2731 -- the latter case, the name is a selected component, and the entity
2732 -- being called is noted on the selector.
2733
2734 if not Is_Type (Nam) then
a3f2babd 2735 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
2736 Set_Entity (Name (N), Nam);
2737
2738 elsif Nkind (Name (N)) = N_Selected_Component then
2739 Set_Entity (Selector_Name (Name (N)), Nam);
2740 end if;
2741 end if;
2742
2743 if Debug_Flag_E and not Report then
2744 Write_Str (" Overloaded call ");
2745 Write_Int (Int (N));
2746 Write_Str (" compatible with ");
2747 Write_Int (Int (Nam));
2748 Write_Eol;
2749 end if;
fbf5a39b 2750 end Indicate_Name_And_Type;
996ae0b0 2751
157a9bf5
ES
2752 ------------------------
2753 -- Operator_Hidden_By --
2754 ------------------------
2755
2756 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2757 Act1 : constant Node_Id := First_Actual (N);
2758 Act2 : constant Node_Id := Next_Actual (Act1);
2759 Form1 : constant Entity_Id := First_Formal (Fun);
2760 Form2 : constant Entity_Id := Next_Formal (Form1);
2761
2762 begin
2763 if Ekind (Fun) /= E_Function
2764 or else Is_Abstract_Subprogram (Fun)
2765 then
2766 return False;
2767
2768 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2769 return False;
2770
2771 elsif Present (Form2) then
2772 if
2773 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2774 then
2775 return False;
2776 end if;
2777
2778 elsif Present (Act2) then
2779 return False;
2780 end if;
2781
2782 -- Now we know that the arity of the operator matches the function,
2783 -- and the function call is a valid interpretation. The function
2784 -- hides the operator if it has the right signature, or if one of
2785 -- its operands is a non-abstract operation on Address when this is
2786 -- a visible integer type.
2787
2788 return Hides_Op (Fun, Nam)
2789 or else Is_Descendent_Of_Address (Etype (Form1))
2790 or else
2791 (Present (Form2)
2792 and then Is_Descendent_Of_Address (Etype (Form2)));
2793 end Operator_Hidden_By;
2794
996ae0b0
RK
2795 -- Start of processing for Analyze_One_Call
2796
2797 begin
2798 Success := False;
2799
157a9bf5
ES
2800 -- If the subprogram has no formals or if all the formals have defaults,
2801 -- and the return type is an array type, the node may denote an indexing
2802 -- of the result of a parameterless call. In Ada 2005, the subprogram
2803 -- may have one non-defaulted formal, and the call may have been written
2804 -- in prefix notation, so that the rebuilt parameter list has more than
2805 -- one actual.
996ae0b0 2806
53cf4600
ES
2807 if not Is_Overloadable (Nam)
2808 and then Ekind (Nam) /= E_Subprogram_Type
2809 and then Ekind (Nam) /= E_Entry_Family
2810 then
2811 return;
2812 end if;
2813
8f2eeab7 2814 -- An indexing requires at least one actual
e1f3cb58
AC
2815
2816 if not Is_Empty_List (Actuals)
aab883ec
ES
2817 and then
2818 (Needs_No_Actuals (Nam)
2819 or else
2820 (Needs_One_Actual (Nam)
2821 and then Present (Next_Actual (First (Actuals)))))
996ae0b0
RK
2822 then
2823 if Is_Array_Type (Subp_Type) then
aab883ec 2824 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
2825
2826 elsif Is_Access_Type (Subp_Type)
2827 and then Is_Array_Type (Designated_Type (Subp_Type))
2828 then
2829 Is_Indexed :=
aab883ec
ES
2830 Try_Indexed_Call
2831 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 2832
758c442c 2833 -- The prefix can also be a parameterless function that returns an
f3d57416 2834 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
2835 -- If this succeeds, an explicit dereference is added later on,
2836 -- in Analyze_Call or Resolve_Call.
758c442c 2837
996ae0b0 2838 elsif Is_Access_Type (Subp_Type)
401093c1 2839 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 2840 then
53cf4600 2841 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
2842 end if;
2843
2844 end if;
2845
5ff22245 2846 -- If the call has been transformed into a slice, it is of the form
30783513 2847 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
2848 -- Try_Indexed_Call and there is nothing else to do.
2849
2850 if Is_Indexed
2851 and then Nkind (N) = N_Slice
2852 then
2853 return;
2854 end if;
2855
53cf4600
ES
2856 Normalize_Actuals
2857 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
2858
2859 if not Norm_OK then
2860
53cf4600
ES
2861 -- If an indirect call is a possible interpretation, indicate
2862 -- success to the caller.
2863
2864 if Is_Indirect then
2865 Success := True;
2866 return;
2867
996ae0b0
RK
2868 -- Mismatch in number or names of parameters
2869
53cf4600 2870 elsif Debug_Flag_E then
996ae0b0
RK
2871 Write_Str (" normalization fails in call ");
2872 Write_Int (Int (N));
2873 Write_Str (" with subprogram ");
2874 Write_Int (Int (Nam));
2875 Write_Eol;
2876 end if;
2877
2878 -- If the context expects a function call, discard any interpretation
2879 -- that is a procedure. If the node is not overloaded, leave as is for
2880 -- better error reporting when type mismatch is found.
2881
2882 elsif Nkind (N) = N_Function_Call
2883 and then Is_Overloaded (Name (N))
2884 and then Ekind (Nam) = E_Procedure
2885 then
2886 return;
2887
4c46b835 2888 -- Ditto for function calls in a procedure context
996ae0b0
RK
2889
2890 elsif Nkind (N) = N_Procedure_Call_Statement
2891 and then Is_Overloaded (Name (N))
2892 and then Etype (Nam) /= Standard_Void_Type
2893 then
2894 return;
2895
fe45e59e 2896 elsif No (Actuals) then
996ae0b0
RK
2897
2898 -- If Normalize succeeds, then there are default parameters for
2899 -- all formals.
2900
fbf5a39b 2901 Indicate_Name_And_Type;
996ae0b0
RK
2902
2903 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
2904 if Nkind (N) = N_Procedure_Call_Statement then
2905 return;
2906 end if;
2907
2908 -- This can occur when the prefix of the call is an operator
2909 -- name or an expanded name whose selector is an operator name.
2910
2911 Analyze_Operator_Call (N, Nam);
2912
2913 if Etype (N) /= Prev_T then
2914
157a9bf5 2915 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
2916
2917 if Is_Overloaded (Name (N)) then
2918 declare
2919 I : Interp_Index;
2920 It : Interp;
2921
2922 begin
2923 Get_First_Interp (Name (N), I, It);
996ae0b0 2924 while Present (It.Nam) loop
157a9bf5 2925 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
2926 Set_Etype (N, Prev_T);
2927 return;
2928 end if;
2929
2930 Get_Next_Interp (I, It);
2931 end loop;
2932 end;
2933 end if;
2934
2935 -- If operator matches formals, record its name on the call.
2936 -- If the operator is overloaded, Resolve will select the
2937 -- correct one from the list of interpretations. The call
2938 -- node itself carries the first candidate.
2939
2940 Set_Entity (Name (N), Nam);
2941 Success := True;
2942
2943 elsif Report and then Etype (N) = Any_Type then
2944 Error_Msg_N ("incompatible arguments for operator", N);
2945 end if;
2946
2947 else
2948 -- Normalize_Actuals has chained the named associations in the
2949 -- correct order of the formals.
2950
2951 Actual := First_Actual (N);
2952 Formal := First_Formal (Nam);
ec6078e3 2953
df3e68b1
HK
2954 -- If we are analyzing a call rewritten from object notation, skip
2955 -- first actual, which may be rewritten later as an explicit
2956 -- dereference.
ec6078e3 2957
aab883ec 2958 if Must_Skip then
ec6078e3
ES
2959 Next_Actual (Actual);
2960 Next_Formal (Formal);
2961 end if;
2962
996ae0b0 2963 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
2964 if Nkind (Parent (Actual)) /= N_Parameter_Association
2965 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 2966 then
9c510803
ES
2967 -- The actual can be compatible with the formal, but we must
2968 -- also check that the context is not an address type that is
2969 -- visibly an integer type, as is the case in VMS_64. In this
2970 -- case the use of literals is illegal, except in the body of
2971 -- descendents of system, where arithmetic operations on
2972 -- address are of course used.
2973
2974 if Has_Compatible_Type (Actual, Etype (Formal))
2975 and then
2976 (Etype (Actual) /= Universal_Integer
2977 or else not Is_Descendent_Of_Address (Etype (Formal))
2978 or else
2979 Is_Predefined_File_Name
2980 (Unit_File_Name (Get_Source_Unit (N))))
2981 then
996ae0b0
RK
2982 Next_Actual (Actual);
2983 Next_Formal (Formal);
2984
2985 else
2986 if Debug_Flag_E then
2987 Write_Str (" type checking fails in call ");
2988 Write_Int (Int (N));
2989 Write_Str (" with formal ");
2990 Write_Int (Int (Formal));
2991 Write_Str (" in subprogram ");
2992 Write_Int (Int (Nam));
2993 Write_Eol;
2994 end if;
2995
53cf4600 2996 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
2997
2998 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 2999 -- to help new Ada 2005 users.
758c442c
GD
3000
3001 if Is_Class_Wide_Type (Etype (Formal))
3002 and then Is_Interface (Etype (Etype (Formal)))
3003 and then not Interface_Present_In_Ancestor
3004 (Typ => Etype (Actual),
3005 Iface => Etype (Etype (Formal)))
3006 then
758c442c 3007 Error_Msg_NE
ec6078e3 3008 ("(Ada 2005) does not implement interface }",
758c442c
GD
3009 Actual, Etype (Etype (Formal)));
3010 end if;
3011
996ae0b0
RK
3012 Wrong_Type (Actual, Etype (Formal));
3013
3014 if Nkind (Actual) = N_Op_Eq
3015 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3016 then
3017 Formal := First_Formal (Nam);
996ae0b0 3018 while Present (Formal) loop
996ae0b0 3019 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3020 Error_Msg_N -- CODEFIX
fbf5a39b 3021 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3022 exit;
3023 end if;
3024
3025 Next_Formal (Formal);
3026 end loop;
3027 end if;
3028
3029 if All_Errors_Mode then
3030 Error_Msg_Sloc := Sloc (Nam);
3031
3b42c566
RD
3032 if Etype (Formal) = Any_Type then
3033 Error_Msg_N
3034 ("there is no legal actual parameter", Actual);
3035 end if;
3036
996ae0b0
RK
3037 if Is_Overloadable (Nam)
3038 and then Present (Alias (Nam))
3039 and then not Comes_From_Source (Nam)
3040 then
3041 Error_Msg_NE
401093c1
ES
3042 ("\\ =='> in call to inherited operation & #!",
3043 Actual, Nam);
7324bf49
AC
3044
3045 elsif Ekind (Nam) = E_Subprogram_Type then
3046 declare
3047 Access_To_Subprogram_Typ :
3048 constant Entity_Id :=
3049 Defining_Identifier
3050 (Associated_Node_For_Itype (Nam));
3051 begin
3052 Error_Msg_NE (
401093c1 3053 "\\ =='> in call to dereference of &#!",
7324bf49
AC
3054 Actual, Access_To_Subprogram_Typ);
3055 end;
3056
996ae0b0 3057 else
401093c1
ES
3058 Error_Msg_NE
3059 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3060
996ae0b0
RK
3061 end if;
3062 end if;
3063 end if;
3064
3065 return;
3066 end if;
3067
3068 else
3069 -- Normalize_Actuals has verified that a default value exists
3070 -- for this formal. Current actual names a subsequent formal.
3071
3072 Next_Formal (Formal);
3073 end if;
3074 end loop;
3075
4c46b835 3076 -- On exit, all actuals match
996ae0b0 3077
fbf5a39b 3078 Indicate_Name_And_Type;
996ae0b0
RK
3079 end if;
3080 end Analyze_One_Call;
3081
15ce9ca2
AC
3082 ---------------------------
3083 -- Analyze_Operator_Call --
3084 ---------------------------
996ae0b0
RK
3085
3086 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3087 Op_Name : constant Name_Id := Chars (Op_Id);
3088 Act1 : constant Node_Id := First_Actual (N);
3089 Act2 : constant Node_Id := Next_Actual (Act1);
3090
3091 begin
4c46b835
AC
3092 -- Binary operator case
3093
996ae0b0
RK
3094 if Present (Act2) then
3095
4c46b835 3096 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3097
3098 if Present (Next_Actual (Act2)) then
996ae0b0
RK
3099 return;
3100
3101 elsif Op_Name = Name_Op_Add
3102 or else Op_Name = Name_Op_Subtract
3103 or else Op_Name = Name_Op_Multiply
3104 or else Op_Name = Name_Op_Divide
3105 or else Op_Name = Name_Op_Mod
3106 or else Op_Name = Name_Op_Rem
3107 or else Op_Name = Name_Op_Expon
3108 then
3109 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3110
3111 elsif Op_Name = Name_Op_And
3112 or else Op_Name = Name_Op_Or
3113 or else Op_Name = Name_Op_Xor
3114 then
3115 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3116
3117 elsif Op_Name = Name_Op_Lt
3118 or else Op_Name = Name_Op_Le
3119 or else Op_Name = Name_Op_Gt
3120 or else Op_Name = Name_Op_Ge
3121 then
3122 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3123
3124 elsif Op_Name = Name_Op_Eq
3125 or else Op_Name = Name_Op_Ne
3126 then
3127 Find_Equality_Types (Act1, Act2, Op_Id, N);
3128
3129 elsif Op_Name = Name_Op_Concat then
3130 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3131
3132 -- Is this else null correct, or should it be an abort???
3133
3134 else
3135 null;
3136 end if;
3137
4c46b835 3138 -- Unary operator case
996ae0b0 3139
4c46b835 3140 else
996ae0b0
RK
3141 if Op_Name = Name_Op_Subtract or else
3142 Op_Name = Name_Op_Add or else
3143 Op_Name = Name_Op_Abs
3144 then
3145 Find_Unary_Types (Act1, Op_Id, N);
3146
3147 elsif
3148 Op_Name = Name_Op_Not
3149 then
3150 Find_Negation_Types (Act1, Op_Id, N);
3151
3152 -- Is this else null correct, or should it be an abort???
3153
3154 else
3155 null;
3156 end if;
3157 end if;
3158 end Analyze_Operator_Call;
3159
3160 -------------------------------------------
3161 -- Analyze_Overloaded_Selected_Component --
3162 -------------------------------------------
3163
3164 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3165 Nam : constant Node_Id := Prefix (N);
3166 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3167 Comp : Entity_Id;
996ae0b0
RK
3168 I : Interp_Index;
3169 It : Interp;
3170 T : Entity_Id;
3171
3172 begin
4c46b835 3173 Set_Etype (Sel, Any_Type);
996ae0b0 3174
4c46b835 3175 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3176 while Present (It.Typ) loop
3177 if Is_Access_Type (It.Typ) then
3178 T := Designated_Type (It.Typ);
fbf5a39b 3179 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3180 else
3181 T := It.Typ;
3182 end if;
3183
95eb8b69
AC
3184 -- Locate the component. For a private prefix the selector can denote
3185 -- a discriminant.
3186
3187 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3188
3189 -- If the prefix is a class-wide type, the visible components are
3190 -- those of the base type.
3191
3192 if Is_Class_Wide_Type (T) then
3193 T := Etype (T);
3194 end if;
3195
996ae0b0 3196 Comp := First_Entity (T);
996ae0b0 3197 while Present (Comp) loop
996ae0b0
RK
3198 if Chars (Comp) = Chars (Sel)
3199 and then Is_Visible_Component (Comp)
3200 then
996ae0b0 3201
f16d05d9
AC
3202 -- AI05-105: if the context is an object renaming with
3203 -- an anonymous access type, the expected type of the
3204 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3205
f16d05d9
AC
3206 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3207 or else No (Access_Definition (Parent (N)))
3208 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3209 or else
3210 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3211 then
3212 Set_Entity (Sel, Comp);
3213 Set_Etype (Sel, Etype (Comp));
3214 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3215 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3216
3217 -- This also specifies a candidate to resolve the name.
3218 -- Further overloading will be resolved from context.
3219 -- The selector name itself does not carry overloading
3220 -- information.
3221
3222 Set_Etype (Nam, It.Typ);
3223
3224 else
b61ee1aa 3225 -- Named access type in the context of a renaming
f16d05d9
AC
3226 -- declaration with an access definition. Remove
3227 -- inapplicable candidate.
3228
3229 Remove_Interp (I);
3230 end if;
996ae0b0
RK
3231 end if;
3232
3233 Next_Entity (Comp);
3234 end loop;
3235
3236 elsif Is_Concurrent_Type (T) then
3237 Comp := First_Entity (T);
996ae0b0
RK
3238 while Present (Comp)
3239 and then Comp /= First_Private_Entity (T)
3240 loop
3241 if Chars (Comp) = Chars (Sel) then
3242 if Is_Overloadable (Comp) then
3243 Add_One_Interp (Sel, Comp, Etype (Comp));
3244 else
3245 Set_Entity_With_Style_Check (Sel, Comp);
3246 Generate_Reference (Comp, Sel);
3247 end if;
3248
3249 Set_Etype (Sel, Etype (Comp));
3250 Set_Etype (N, Etype (Comp));
3251 Set_Etype (Nam, It.Typ);
3252
09494c32
AC
3253 -- For access type case, introduce explicit dereference for
3254 -- more uniform treatment of entry calls. Do this only once
3255 -- if several interpretations yield an access type.
996ae0b0 3256
d469eabe
HK
3257 if Is_Access_Type (Etype (Nam))
3258 and then Nkind (Nam) /= N_Explicit_Dereference
3259 then
996ae0b0 3260 Insert_Explicit_Dereference (Nam);
fbf5a39b
AC
3261 Error_Msg_NW
3262 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3263 end if;
3264 end if;
3265
3266 Next_Entity (Comp);
3267 end loop;
3268
3269 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3270 end if;
3271
3272 Get_Next_Interp (I, It);
3273 end loop;
3274
0a36105d
JM
3275 if Etype (N) = Any_Type
3276 and then not Try_Object_Operation (N)
3277 then
996ae0b0
RK
3278 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3279 Set_Entity (Sel, Any_Id);
3280 Set_Etype (Sel, Any_Type);
3281 end if;
996ae0b0
RK
3282 end Analyze_Overloaded_Selected_Component;
3283
3284 ----------------------------------
3285 -- Analyze_Qualified_Expression --
3286 ----------------------------------
3287
3288 procedure Analyze_Qualified_Expression (N : Node_Id) is
3289 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3290 Expr : constant Node_Id := Expression (N);
3291 I : Interp_Index;
3292 It : Interp;
996ae0b0
RK
3293 T : Entity_Id;
3294
3295 begin
45c8b94b
ES
3296 Analyze_Expression (Expr);
3297
996ae0b0
RK
3298 Set_Etype (N, Any_Type);
3299 Find_Type (Mark);
3300 T := Entity (Mark);
45c8b94b 3301 Set_Etype (N, T);
996ae0b0
RK
3302
3303 if T = Any_Type then
3304 return;
3305 end if;
996ae0b0 3306
4c46b835 3307 Check_Fully_Declared (T, N);
45c8b94b
ES
3308
3309 -- If expected type is class-wide, check for exact match before
3310 -- expansion, because if the expression is a dispatching call it
3311 -- may be rewritten as explicit dereference with class-wide result.
3312 -- If expression is overloaded, retain only interpretations that
3313 -- will yield exact matches.
3314
3315 if Is_Class_Wide_Type (T) then
3316 if not Is_Overloaded (Expr) then
3317 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3318 if Nkind (Expr) = N_Aggregate then
3319 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3320 else
3321 Wrong_Type (Expr, T);
3322 end if;
3323 end if;
3324
3325 else
3326 Get_First_Interp (Expr, I, It);
3327
3328 while Present (It.Nam) loop
3329 if Base_Type (It.Typ) /= Base_Type (T) then
3330 Remove_Interp (I);
3331 end if;
3332
3333 Get_Next_Interp (I, It);
3334 end loop;
3335 end if;
3336 end if;
3337
996ae0b0
RK
3338 Set_Etype (N, T);
3339 end Analyze_Qualified_Expression;
3340
a961aa79
AC
3341 -----------------------------------
3342 -- Analyze_Quantified_Expression --
3343 -----------------------------------
3344
3345 procedure Analyze_Quantified_Expression (N : Node_Id) is
3346 Loc : constant Source_Ptr := Sloc (N);
3347 Ent : constant Entity_Id :=
3348 New_Internal_Entity
3349 (E_Loop, Current_Scope, Sloc (N), 'L');
3350
3351 Iterator : Node_Id;
90c63b09 3352
a961aa79 3353 begin
c37cbdc3
AC
3354 Set_Etype (Ent, Standard_Void_Type);
3355 Set_Scope (Ent, Current_Scope);
3356 Set_Parent (Ent, N);
833eaa8a 3357
2ba431e5 3358 Check_SPARK_Restriction ("quantified expression is not allowed", N);
1d801f21 3359
c37cbdc3
AC
3360 -- If expansion is enabled, the condition is analyzed after rewritten
3361 -- as a loop. Otherwise we only need to set the type.
3362
3363 if Operating_Mode /= Check_Semantics then
3364 Set_Etype (N, Standard_Boolean);
3365 return;
3366 end if;
a961aa79 3367
c56a9ba4
AC
3368 if Present (Loop_Parameter_Specification (N)) then
3369 Iterator :=
3370 Make_Iteration_Scheme (Loc,
4561baf7
ES
3371 Loop_Parameter_Specification =>
3372 Loop_Parameter_Specification (N));
c56a9ba4
AC
3373 else
3374 Iterator :=
3375 Make_Iteration_Scheme (Loc,
3376 Iterator_Specification =>
3377 Iterator_Specification (N));
3378 end if;
a961aa79
AC
3379
3380 Push_Scope (Ent);
c56a9ba4 3381 Set_Parent (Iterator, N);
a961aa79 3382 Analyze_Iteration_Scheme (Iterator);
c56a9ba4 3383
833eaa8a
AC
3384 -- The loop specification may have been converted into an iterator
3385 -- specification during its analysis. Update the quantified node
3386 -- accordingly.
c56a9ba4
AC
3387
3388 if Present (Iterator_Specification (Iterator)) then
3389 Set_Iterator_Specification
3390 (N, Iterator_Specification (Iterator));
3391 Set_Loop_Parameter_Specification (N, Empty);
3392 end if;
3393
a961aa79
AC
3394 Analyze (Condition (N));
3395 End_Scope;
3396 Set_Etype (N, Standard_Boolean);
3397 end Analyze_Quantified_Expression;
3398
996ae0b0
RK
3399 -------------------
3400 -- Analyze_Range --
3401 -------------------
3402
3403 procedure Analyze_Range (N : Node_Id) is
3404 L : constant Node_Id := Low_Bound (N);
3405 H : constant Node_Id := High_Bound (N);
3406 I1, I2 : Interp_Index;
3407 It1, It2 : Interp;
3408
3409 procedure Check_Common_Type (T1, T2 : Entity_Id);
3410 -- Verify the compatibility of two types, and choose the
3411 -- non universal one if the other is universal.
3412
3413 procedure Check_High_Bound (T : Entity_Id);
3414 -- Test one interpretation of the low bound against all those
3415 -- of the high bound.
3416
fbf5a39b
AC
3417 procedure Check_Universal_Expression (N : Node_Id);
3418 -- In Ada83, reject bounds of a universal range that are not
3419 -- literals or entity names.
3420
996ae0b0
RK
3421 -----------------------
3422 -- Check_Common_Type --
3423 -----------------------
3424
3425 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3426 begin
b4592168
GD
3427 if Covers (T1 => T1, T2 => T2)
3428 or else
3429 Covers (T1 => T2, T2 => T1)
3430 then
996ae0b0
RK
3431 if T1 = Universal_Integer
3432 or else T1 = Universal_Real
3433 or else T1 = Any_Character
3434 then
3435 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3436
fbf5a39b 3437 elsif T1 = T2 then
996ae0b0
RK
3438 Add_One_Interp (N, T1, T1);
3439
3440 else
3441 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3442 end if;
3443 end if;
3444 end Check_Common_Type;
3445
3446 ----------------------
3447 -- Check_High_Bound --
3448 ----------------------
3449
3450 procedure Check_High_Bound (T : Entity_Id) is
3451 begin
3452 if not Is_Overloaded (H) then
3453 Check_Common_Type (T, Etype (H));
3454 else
3455 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3456 while Present (It2.Typ) loop
3457 Check_Common_Type (T, It2.Typ);
3458 Get_Next_Interp (I2, It2);
3459 end loop;
3460 end if;
3461 end Check_High_Bound;
3462
fbf5a39b
AC
3463 -----------------------------
3464 -- Is_Universal_Expression --
3465 -----------------------------
3466
3467 procedure Check_Universal_Expression (N : Node_Id) is
3468 begin
3469 if Etype (N) = Universal_Integer
3470 and then Nkind (N) /= N_Integer_Literal
3471 and then not Is_Entity_Name (N)
3472 and then Nkind (N) /= N_Attribute_Reference
3473 then
3474 Error_Msg_N ("illegal bound in discrete range", N);
3475 end if;
3476 end Check_Universal_Expression;
3477
996ae0b0
RK
3478 -- Start of processing for Analyze_Range
3479
3480 begin
3481 Set_Etype (N, Any_Type);
3482 Analyze_Expression (L);
3483 Analyze_Expression (H);
3484
3485 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3486 return;
3487
3488 else
3489 if not Is_Overloaded (L) then
3490 Check_High_Bound (Etype (L));
3491 else
3492 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3493 while Present (It1.Typ) loop
3494 Check_High_Bound (It1.Typ);
3495 Get_Next_Interp (I1, It1);
3496 end loop;
3497 end if;
3498
3499 -- If result is Any_Type, then we did not find a compatible pair
3500
3501 if Etype (N) = Any_Type then
3502 Error_Msg_N ("incompatible types in range ", N);
3503 end if;
3504 end if;
fbf5a39b 3505
0ab80019 3506 if Ada_Version = Ada_83
fbf5a39b
AC
3507 and then
3508 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3509 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3510 then
3511 Check_Universal_Expression (L);
3512 Check_Universal_Expression (H);
3513 end if;
996ae0b0
RK
3514 end Analyze_Range;
3515
3516 -----------------------
3517 -- Analyze_Reference --
3518 -----------------------
3519
3520 procedure Analyze_Reference (N : Node_Id) is
3521 P : constant Node_Id := Prefix (N);
b4592168
GD
3522 E : Entity_Id;
3523 T : Entity_Id;
996ae0b0 3524 Acc_Type : Entity_Id;
b4592168 3525
996ae0b0
RK
3526 begin
3527 Analyze (P);
b4592168
GD
3528
3529 -- An interesting error check, if we take the 'Reference of an object
3530 -- for which a pragma Atomic or Volatile has been given, and the type
3531 -- of the object is not Atomic or Volatile, then we are in trouble. The
3532 -- problem is that no trace of the atomic/volatile status will remain
3533 -- for the backend to respect when it deals with the resulting pointer,
3534 -- since the pointer type will not be marked atomic (it is a pointer to
3535 -- the base type of the object).
3536
3537 -- It is not clear if that can ever occur, but in case it does, we will
3538 -- generate an error message. Not clear if this message can ever be
3539 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3540 -- seems worth checking, except in CodePeer mode where we do not really
3541 -- care and don't want to bother the user.
b4592168
GD
3542
3543 T := Etype (P);
3544
3545 if Is_Entity_Name (P)
3546 and then Is_Object_Reference (P)
d2f25cd1 3547 and then not CodePeer_Mode
b4592168
GD
3548 then
3549 E := Entity (P);
3550 T := Etype (P);
3551
3552 if (Has_Atomic_Components (E)
3553 and then not Has_Atomic_Components (T))
3554 or else
3555 (Has_Volatile_Components (E)
3556 and then not Has_Volatile_Components (T))
3557 or else (Is_Atomic (E) and then not Is_Atomic (T))
3558 or else (Is_Volatile (E) and then not Is_Volatile (T))
3559 then
3560 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3561 end if;
3562 end if;
3563
3564 -- Carry on with normal processing
3565
996ae0b0 3566 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3567 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3568 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3569 Set_Etype (N, Acc_Type);
3570 end Analyze_Reference;
3571
3572 --------------------------------
3573 -- Analyze_Selected_Component --
3574 --------------------------------
3575
2383acbd
AC
3576 -- Prefix is a record type or a task or protected type. In the latter case,
3577 -- the selector must denote a visible entry.
996ae0b0
RK
3578
3579 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3580 Name : constant Node_Id := Prefix (N);
3581 Sel : constant Node_Id := Selector_Name (N);
3582 Act_Decl : Node_Id;
3583 Comp : Entity_Id;
3584 Has_Candidate : Boolean := False;
3585 In_Scope : Boolean;
3586 Parent_N : Node_Id;
3587 Pent : Entity_Id := Empty;
3588 Prefix_Type : Entity_Id;
401093c1
ES
3589
3590 Type_To_Use : Entity_Id;
3591 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3592 -- a class-wide type, we use its root type, whose components are
3593 -- present in the class-wide type.
3594
2383acbd
AC
3595 Is_Single_Concurrent_Object : Boolean;
3596 -- Set True if the prefix is a single task or a single protected object
3597
20261dc1
AC
3598 procedure Find_Component_In_Instance (Rec : Entity_Id);
3599 -- In an instance, a component of a private extension may not be visible
3600 -- while it was visible in the generic. Search candidate scope for a
3601 -- component with the proper identifier. This is only done if all other
3602 -- searches have failed. When the match is found (it always will be),
3603 -- the Etype of both N and Sel are set from this component, and the
3604 -- entity of Sel is set to reference this component.
3605
d469eabe
HK
3606 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3607 -- It is known that the parent of N denotes a subprogram call. Comp
3608 -- is an overloadable component of the concurrent type of the prefix.
3609 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
3610 -- conformant. If the parent node is not analyzed yet it may be an
3611 -- indexed component rather than a function call.
d469eabe 3612
20261dc1
AC
3613 --------------------------------
3614 -- Find_Component_In_Instance --
3615 --------------------------------
3616
3617 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3618 Comp : Entity_Id;
3619
3620 begin
3621 Comp := First_Component (Rec);
3622 while Present (Comp) loop
3623 if Chars (Comp) = Chars (Sel) then
3624 Set_Entity_With_Style_Check (Sel, Comp);
3625 Set_Etype (Sel, Etype (Comp));
3626 Set_Etype (N, Etype (Comp));
3627 return;
3628 end if;
3629
3630 Next_Component (Comp);
3631 end loop;
3632
3633 -- This must succeed because code was legal in the generic
3634
3635 raise Program_Error;
3636 end Find_Component_In_Instance;
3637
d469eabe
HK
3638 ------------------------------
3639 -- Has_Mode_Conformant_Spec --
3640 ------------------------------
3641
3642 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3643 Comp_Param : Entity_Id;
3644 Param : Node_Id;
3645 Param_Typ : Entity_Id;
3646
3647 begin
3648 Comp_Param := First_Formal (Comp);
b4592168
GD
3649
3650 if Nkind (Parent (N)) = N_Indexed_Component then
3651 Param := First (Expressions (Parent (N)));
3652 else
3653 Param := First (Parameter_Associations (Parent (N)));
3654 end if;
3655
d469eabe
HK
3656 while Present (Comp_Param)
3657 and then Present (Param)
3658 loop
3659 Param_Typ := Find_Parameter_Type (Param);
3660
3661 if Present (Param_Typ)
3662 and then
3663 not Conforming_Types
3664 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3665 then
3666 return False;
3667 end if;
3668
3669 Next_Formal (Comp_Param);
3670 Next (Param);
3671 end loop;
3672
3673 -- One of the specs has additional formals
3674
3675 if Present (Comp_Param) or else Present (Param) then
3676 return False;
3677 end if;
3678
3679 return True;
3680 end Has_Mode_Conformant_Spec;
996ae0b0
RK
3681
3682 -- Start of processing for Analyze_Selected_Component
3683
3684 begin
3685 Set_Etype (N, Any_Type);
3686
3687 if Is_Overloaded (Name) then
3688 Analyze_Overloaded_Selected_Component (N);
3689 return;
3690
3691 elsif Etype (Name) = Any_Type then
3692 Set_Entity (Sel, Any_Id);
3693 Set_Etype (Sel, Any_Type);
3694 return;
3695
3696 else
996ae0b0
RK
3697 Prefix_Type := Etype (Name);
3698 end if;
3699
3700 if Is_Access_Type (Prefix_Type) then
07fc65c4 3701
0d57c6f4
RD
3702 -- A RACW object can never be used as prefix of a selected component
3703 -- since that means it is dereferenced without being a controlling
3704 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3705 -- reporting an error, we must check whether this is actually a
3706 -- dispatching call in prefix form.
07fc65c4 3707
996ae0b0
RK
3708 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3709 and then Comes_From_Source (N)
3710 then
b4592168
GD
3711 if Try_Object_Operation (N) then
3712 return;
3713 else
3714 Error_Msg_N
3715 ("invalid dereference of a remote access-to-class-wide value",
3716 N);
3717 end if;
07fc65c4
GB
3718
3719 -- Normal case of selected component applied to access type
3720
3721 else
fbf5a39b 3722 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
da709d08 3723
6e73e3ab
AC
3724 if Is_Entity_Name (Name) then
3725 Pent := Entity (Name);
3726 elsif Nkind (Name) = N_Selected_Component
3727 and then Is_Entity_Name (Selector_Name (Name))
3728 then
3729 Pent := Entity (Selector_Name (Name));
3730 end if;
da709d08 3731
d469eabe 3732 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 3733 end if;
b4592168
GD
3734
3735 -- If we have an explicit dereference of a remote access-to-class-wide
3736 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3737 -- have to check for the case of a prefix that is a controlling operand
3738 -- of a prefixed dispatching call, as the dereference is legal in that
3739 -- case. Normally this condition is checked in Validate_Remote_Access_
3740 -- To_Class_Wide_Type, but we have to defer the checking for selected
3741 -- component prefixes because of the prefixed dispatching call case.
3742 -- Note that implicit dereferences are checked for this just above.
3743
3744 elsif Nkind (Name) = N_Explicit_Dereference
3745 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3746 and then Comes_From_Source (N)
3747 then
3748 if Try_Object_Operation (N) then
3749 return;
3750 else
3751 Error_Msg_N
3752 ("invalid dereference of a remote access-to-class-wide value",
3753 N);
3754 end if;
aab883ec 3755 end if;
b67a385c 3756
aab883ec
ES
3757 -- (Ada 2005): if the prefix is the limited view of a type, and
3758 -- the context already includes the full view, use the full view
3759 -- in what follows, either to retrieve a component of to find
3760 -- a primitive operation. If the prefix is an explicit dereference,
3761 -- set the type of the prefix to reflect this transformation.
401093c1
ES
3762 -- If the non-limited view is itself an incomplete type, get the
3763 -- full view if available.
aab883ec
ES
3764
3765 if Is_Incomplete_Type (Prefix_Type)
3766 and then From_With_Type (Prefix_Type)
3767 and then Present (Non_Limited_View (Prefix_Type))
3768 then
401093c1 3769 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
3770
3771 if Nkind (N) = N_Explicit_Dereference then
3772 Set_Etype (Prefix (N), Prefix_Type);
3773 end if;
3774
3775 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3776 and then From_With_Type (Prefix_Type)
3777 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3778 then
3779 Prefix_Type :=
3780 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3781
3782 if Nkind (N) = N_Explicit_Dereference then
3783 Set_Etype (Prefix (N), Prefix_Type);
b67a385c 3784 end if;
996ae0b0
RK
3785 end if;
3786
3787 if Ekind (Prefix_Type) = E_Private_Subtype then
3788 Prefix_Type := Base_Type (Prefix_Type);
3789 end if;
3790
401093c1 3791 Type_To_Use := Prefix_Type;
996ae0b0
RK
3792
3793 -- For class-wide types, use the entity list of the root type. This
3794 -- indirection is specially important for private extensions because
3795 -- only the root type get switched (not the class-wide type).
3796
3797 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 3798 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
3799 end if;
3800
2383acbd
AC
3801 -- If the prefix is a single concurrent object, use its name in error
3802 -- messages, rather than that of its anonymous type.
3803
3804 Is_Single_Concurrent_Object :=
3805 Is_Concurrent_Type (Prefix_Type)
3806 and then Is_Internal_Name (Chars (Prefix_Type))
3807 and then not Is_Derived_Type (Prefix_Type)
3808 and then Is_Entity_Name (Name);
3809
401093c1 3810 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
3811
3812 -- If the selector has an original discriminant, the node appears in
3813 -- an instance. Replace the discriminant with the corresponding one
3814 -- in the current discriminated type. For nested generics, this must
3815 -- be done transitively, so note the new original discriminant.
3816
3817 if Nkind (Sel) = N_Identifier
c0b11850 3818 and then In_Instance
996ae0b0
RK
3819 and then Present (Original_Discriminant (Sel))
3820 then
3821 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3822
3823 -- Mark entity before rewriting, for completeness and because
3824 -- subsequent semantic checks might examine the original node.
3825
3826 Set_Entity (Sel, Comp);
3827 Rewrite (Selector_Name (N),
3828 New_Occurrence_Of (Comp, Sloc (N)));
3829 Set_Original_Discriminant (Selector_Name (N), Comp);
3830 Set_Etype (N, Etype (Comp));
44a10091 3831 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
3832
3833 if Is_Access_Type (Etype (Name)) then
3834 Insert_Explicit_Dereference (Name);
fbf5a39b 3835 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3836 end if;
3837
3838 elsif Is_Record_Type (Prefix_Type) then
3839
3840 -- Find component with given name
3841
3842 while Present (Comp) loop
996ae0b0
RK
3843 if Chars (Comp) = Chars (Sel)
3844 and then Is_Visible_Component (Comp)
3845 then
3846 Set_Entity_With_Style_Check (Sel, Comp);
996ae0b0
RK
3847 Set_Etype (Sel, Etype (Comp));
3848
3849 if Ekind (Comp) = E_Discriminant then
5d09245e 3850 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0
RK
3851 Error_Msg_N
3852 ("cannot reference discriminant of Unchecked_Union",
3853 Sel);
3854 end if;
3855
3856 if Is_Generic_Type (Prefix_Type)
3857 or else
3858 Is_Generic_Type (Root_Type (Prefix_Type))
3859 then
3860 Set_Original_Discriminant (Sel, Comp);
3861 end if;
3862 end if;
3863
3864 -- Resolve the prefix early otherwise it is not possible to
3865 -- build the actual subtype of the component: it may need
3866 -- to duplicate this prefix and duplication is only allowed
3867 -- on fully resolved expressions.
3868
fbf5a39b 3869 Resolve (Name);
996ae0b0 3870
b67a385c
ES
3871 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3872 -- subtypes in a package specification.
28be29ce
ES
3873 -- Example:
3874
3875 -- limited with Pkg;
3876 -- package Pkg is
3877 -- type Acc_Inc is access Pkg.T;
3878 -- X : Acc_Inc;
b67a385c
ES
3879 -- N : Natural := X.all.Comp; -- ERROR, limited view
3880 -- end Pkg; -- Comp is not visible
28be29ce
ES
3881
3882 if Nkind (Name) = N_Explicit_Dereference
3883 and then From_With_Type (Etype (Prefix (Name)))
3884 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
3885 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3886 N_Package_Specification
28be29ce
ES
3887 then
3888 Error_Msg_NE
3889 ("premature usage of incomplete}", Prefix (Name),
3890 Etype (Prefix (Name)));
3891 end if;
3892
996ae0b0
RK
3893 -- We never need an actual subtype for the case of a selection
3894 -- for a indexed component of a non-packed array, since in
3895 -- this case gigi generates all the checks and can find the
3896 -- necessary bounds information.
3897
0d57c6f4
RD
3898 -- We also do not need an actual subtype for the case of a
3899 -- first, last, length, or range attribute applied to a
996ae0b0
RK
3900 -- non-packed array, since gigi can again get the bounds in
3901 -- these cases (gigi cannot handle the packed case, since it
3902 -- has the bounds of the packed array type, not the original
3903 -- bounds of the type). However, if the prefix is itself a
3904 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3905 -- as a dynamic-sized temporary, so we do generate an actual
3906 -- subtype for this case.
3907
3908 Parent_N := Parent (N);
3909
3910 if not Is_Packed (Etype (Comp))
3911 and then
3912 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 3913 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
3914 or else
3915 (Nkind (Parent_N) = N_Attribute_Reference
3916 and then (Attribute_Name (Parent_N) = Name_First
ffe9aba8 3917 or else
996ae0b0 3918 Attribute_Name (Parent_N) = Name_Last
ffe9aba8 3919 or else
996ae0b0 3920 Attribute_Name (Parent_N) = Name_Length
ffe9aba8 3921 or else
996ae0b0
RK
3922 Attribute_Name (Parent_N) = Name_Range)))
3923 then
3924 Set_Etype (N, Etype (Comp));
3925
98123480
ES
3926 -- If full analysis is not enabled, we do not generate an
3927 -- actual subtype, because in the absence of expansion
3928 -- reference to a formal of a protected type, for example,
3929 -- will not be properly transformed, and will lead to
3930 -- out-of-scope references in gigi.
3931
3932 -- In all other cases, we currently build an actual subtype.
3933 -- It seems likely that many of these cases can be avoided,
3934 -- but right now, the front end makes direct references to the
fbf5a39b 3935 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 3936 -- not make an actual subtype, we end up getting a direct
98123480 3937 -- reference to a discriminant, which will not do.
996ae0b0 3938
98123480 3939 elsif Full_Analysis then
996ae0b0
RK
3940 Act_Decl :=
3941 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3942 Insert_Action (N, Act_Decl);
3943
3944 if No (Act_Decl) then
3945 Set_Etype (N, Etype (Comp));
3946
3947 else
3948 -- Component type depends on discriminants. Enter the
3949 -- main attributes of the subtype.
3950
3951 declare
fbf5a39b
AC
3952 Subt : constant Entity_Id :=
3953 Defining_Identifier (Act_Decl);
996ae0b0
RK
3954
3955 begin
3956 Set_Etype (Subt, Base_Type (Etype (Comp)));
3957 Set_Ekind (Subt, Ekind (Etype (Comp)));
3958 Set_Etype (N, Subt);
3959 end;
3960 end if;
98123480
ES
3961
3962 -- If Full_Analysis not enabled, just set the Etype
3963
3964 else
3965 Set_Etype (N, Etype (Comp));
996ae0b0
RK
3966 end if;
3967
44a10091 3968 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
3969 return;
3970 end if;
3971
aab883ec 3972 -- If the prefix is a private extension, check only the visible
9c510803 3973 -- components of the partial view. This must include the tag,
f3d57416 3974 -- which can appear in expanded code in a tag check.
aab883ec 3975
9c510803 3976 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 3977 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 3978 then
401093c1 3979 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
3980 end if;
3981
996ae0b0
RK
3982 Next_Entity (Comp);
3983 end loop;
3984
d469eabe
HK
3985 -- Ada 2005 (AI-252): The selected component can be interpreted as
3986 -- a prefixed view of a subprogram. Depending on the context, this is
3987 -- either a name that can appear in a renaming declaration, or part
3988 -- of an enclosing call given in prefix form.
3989
3990 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3991 -- selected component should resolve to a name.
35ae2ed8 3992
0791fbe9 3993 if Ada_Version >= Ada_2005
35ae2ed8 3994 and then Is_Tagged_Type (Prefix_Type)
d469eabe 3995 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 3996 then
d469eabe
HK
3997 if Nkind (Parent (N)) = N_Generic_Association
3998 or else Nkind (Parent (N)) = N_Requeue_Statement
3999 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4000 then
4001 if Find_Primitive_Operation (N) then
4002 return;
4003 end if;
4004
4005 elsif Try_Object_Operation (N) then
4006 return;
4007 end if;
4c46b835 4008
98123480
ES
4009 -- If the transformation fails, it will be necessary to redo the
4010 -- analysis with all errors enabled, to indicate candidate
4011 -- interpretations and reasons for each failure ???
4c46b835 4012
35ae2ed8
AC
4013 end if;
4014
996ae0b0 4015 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4016
98123480
ES
4017 -- Allow access only to discriminants of the type. If the type has
4018 -- no full view, gigi uses the parent type for the components, so we
4019 -- do the same here.
996ae0b0
RK
4020
4021 if No (Full_View (Prefix_Type)) then
401093c1
ES
4022 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4023 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4024 end if;
4025
4026 while Present (Comp) loop
996ae0b0
RK
4027 if Chars (Comp) = Chars (Sel) then
4028 if Ekind (Comp) = E_Discriminant then
4029 Set_Entity_With_Style_Check (Sel, Comp);
4030 Generate_Reference (Comp, Sel);
4031
4032 Set_Etype (Sel, Etype (Comp));
4033 Set_Etype (N, Etype (Comp));
44a10091 4034 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4035
4036 if Is_Generic_Type (Prefix_Type)
d469eabe 4037 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4038 then
4039 Set_Original_Discriminant (Sel, Comp);
4040 end if;
4041
f3d57416 4042 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4043 -- private type and a call to a primitive operation.
4044
0791fbe9 4045 elsif Ada_Version >= Ada_2005
aab883ec
ES
4046 and then Is_Tagged_Type (Prefix_Type)
4047 and then Try_Object_Operation (N)
4048 then
4049 return;
4050
996ae0b0 4051 else
2383acbd
AC
4052 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4053 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4054 Set_Entity (Sel, Any_Id);
4055 Set_Etype (N, Any_Type);
4056 end if;
4057
4058 return;
4059 end if;
4060
4061 Next_Entity (Comp);
4062 end loop;
4063
4064 elsif Is_Concurrent_Type (Prefix_Type) then
4065
d469eabe
HK
4066 -- Find visible operation with given name. For a protected type,
4067 -- the possible candidates are discriminants, entries or protected
4068 -- procedures. For a task type, the set can only include entries or
4069 -- discriminants if the task type is not an enclosing scope. If it
4070 -- is an enclosing scope (e.g. in an inner task) then all entities
4071 -- are visible, but the prefix must denote the enclosing scope, i.e.
4072 -- can only be a direct name or an expanded name.
996ae0b0 4073
d469eabe 4074 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4075 In_Scope := In_Open_Scopes (Prefix_Type);
4076
4077 while Present (Comp) loop
4078 if Chars (Comp) = Chars (Sel) then
4079 if Is_Overloadable (Comp) then
4080 Add_One_Interp (Sel, Comp, Etype (Comp));
4081
d469eabe
HK
4082 -- If the prefix is tagged, the correct interpretation may
4083 -- lie in the primitive or class-wide operations of the
4084 -- type. Perform a simple conformance check to determine
4085 -- whether Try_Object_Operation should be invoked even if
4086 -- a visible entity is found.
4087
4088 if Is_Tagged_Type (Prefix_Type)
4089 and then
4090 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4091 N_Function_Call,
4092 N_Indexed_Component)
d469eabe
HK
4093 and then Has_Mode_Conformant_Spec (Comp)
4094 then
4095 Has_Candidate := True;
4096 end if;
4097
2383acbd
AC
4098 -- Note: a selected component may not denote a component of a
4099 -- protected type (4.1.3(7)).
4100
bce79204 4101 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4102 or else (In_Scope
4103 and then not Is_Protected_Type (Prefix_Type)
4104 and then Is_Entity_Name (Name))
996ae0b0
RK
4105 then
4106 Set_Entity_With_Style_Check (Sel, Comp);
4107 Generate_Reference (Comp, Sel);
4108
4109 else
4110 goto Next_Comp;
4111 end if;
4112
4113 Set_Etype (Sel, Etype (Comp));
4114 Set_Etype (N, Etype (Comp));
4115
4116 if Ekind (Comp) = E_Discriminant then
4117 Set_Original_Discriminant (Sel, Comp);
4118 end if;
4119
09494c32
AC
4120 -- For access type case, introduce explicit dereference for
4121 -- more uniform treatment of entry calls.
996ae0b0
RK
4122
4123 if Is_Access_Type (Etype (Name)) then
4124 Insert_Explicit_Dereference (Name);
fbf5a39b
AC
4125 Error_Msg_NW
4126 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4127 end if;
4128 end if;
4129
4130 <<Next_Comp>>
4131 Next_Entity (Comp);
4132 exit when not In_Scope
9bc856dd
AC
4133 and then
4134 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4135 end loop;
4136
d469eabe
HK
4137 -- If there is no visible entity with the given name or none of the
4138 -- visible entities are plausible interpretations, check whether
4139 -- there is some other primitive operation with that name.
aab883ec 4140
0791fbe9 4141 if Ada_Version >= Ada_2005
aab883ec 4142 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4143 then
d469eabe
HK
4144 if (Etype (N) = Any_Type
4145 or else not Has_Candidate)
0a36105d
JM
4146 and then Try_Object_Operation (N)
4147 then
4148 return;
4149
4150 -- If the context is not syntactically a procedure call, it
4151 -- may be a call to a primitive function declared outside of
4152 -- the synchronized type.
4153
4154 -- If the context is a procedure call, there might still be
4155 -- an overloading between an entry and a primitive procedure
4156 -- declared outside of the synchronized type, called in prefix
4157 -- notation. This is harder to disambiguate because in one case
4158 -- the controlling formal is implicit ???
4159
4160 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4161 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4162 and then Try_Object_Operation (N)
4163 then
4164 return;
4165 end if;
aab883ec
ES
4166 end if;
4167
2383acbd
AC
4168 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4169 -- Case of a prefix of a protected type: selector might denote
4170 -- an invisible private component.
4171
4172 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4173 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4174 Next_Entity (Comp);
4175 end loop;
4176
4177 if Present (Comp) then
4178 if Is_Single_Concurrent_Object then
4179 Error_Msg_Node_2 := Entity (Name);
4180 Error_Msg_NE ("invisible selector& for &", N, Sel);
4181
4182 else
4183 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4184 Error_Msg_NE ("invisible selector& for }", N, Sel);
4185 end if;
4186 return;
4187 end if;
4188 end if;
4189
996ae0b0
RK
4190 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4191
4192 else
4193 -- Invalid prefix
4194
4195 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4196 end if;
4197
4c46b835 4198 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4199
4200 if Etype (N) = Any_Type then
4201
2383acbd 4202 if Is_Single_Concurrent_Object then
996ae0b0
RK
4203 Error_Msg_Node_2 := Entity (Name);
4204 Error_Msg_NE ("no selector& for&", N, Sel);
4205
401093c1 4206 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4207
de76a39c
GB
4208 elsif Is_Generic_Type (Prefix_Type)
4209 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4210 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4211 and then Is_Record_Type (Etype (Prefix_Type))
4212 then
98123480 4213 -- If this is a derived formal type, the parent may have
de76a39c
GB
4214 -- different visibility at this point. Try for an inherited
4215 -- component before reporting an error.
4216
4217 Set_Etype (Prefix (N), Etype (Prefix_Type));
4218 Analyze_Selected_Component (N);
4219 return;
4220
20261dc1
AC
4221 -- Similarly, if this is the actual for a formal derived type, the
4222 -- component inherited from the generic parent may not be visible
4223 -- in the actual, but the selected component is legal.
4224
fbf5a39b
AC
4225 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
4226 and then Is_Generic_Actual_Type (Prefix_Type)
4227 and then Present (Full_View (Prefix_Type))
4228 then
fbf5a39b 4229
20261dc1
AC
4230 Find_Component_In_Instance
4231 (Generic_Parent_Type (Parent (Prefix_Type)));
4232 return;
4c46b835 4233
20261dc1
AC
4234 -- Finally, the formal and the actual may be private extensions,
4235 -- but the generic is declared in a child unit of the parent, and
308e6f3a 4236 -- an additional step is needed to retrieve the proper scope.
fbf5a39b 4237
20261dc1
AC
4238 elsif In_Instance
4239 and then Present (Parent_Subtype (Etype (Base_Type (Prefix_Type))))
4240 then
4241 Find_Component_In_Instance
4242 (Parent_Subtype (Etype (Base_Type (Prefix_Type))));
4243 return;
fbf5a39b 4244
20261dc1 4245 -- Component not found, specialize error message when appropriate
fbf5a39b 4246
996ae0b0
RK
4247 else
4248 if Ekind (Prefix_Type) = E_Record_Subtype then
4249
f4b049db
AC
4250 -- Check whether this is a component of the base type which
4251 -- is absent from a statically constrained subtype. This will
4252 -- raise constraint error at run time, but is not a compile-
4253 -- time error. When the selector is illegal for base type as
4254 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4255
4256 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4257 while Present (Comp) loop
996ae0b0
RK
4258 if Chars (Comp) = Chars (Sel)
4259 and then Is_Visible_Component (Comp)
4260 then
4261 Set_Entity_With_Style_Check (Sel, Comp);
4262 Generate_Reference (Comp, Sel);
4263 Set_Etype (Sel, Etype (Comp));
4264 Set_Etype (N, Etype (Comp));
4265
4266 -- Emit appropriate message. Gigi will replace the
4267 -- node subsequently with the appropriate Raise.
4268
4269 Apply_Compile_Time_Constraint_Error
4270 (N, "component not present in }?",
07fc65c4 4271 CE_Discriminant_Check_Failed,
996ae0b0
RK
4272 Ent => Prefix_Type, Rep => False);
4273 Set_Raises_Constraint_Error (N);
4274 return;
4275 end if;
4276
4277 Next_Component (Comp);
4278 end loop;
4279
4280 end if;
4281
4282 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4283 Error_Msg_NE ("no selector& for}", N, Sel);
4284
401093c1 4285 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4286 end if;
4287
4288 Set_Entity (Sel, Any_Id);
4289 Set_Etype (Sel, Any_Type);
4290 end if;
4291 end Analyze_Selected_Component;
4292
4293 ---------------------------
4294 -- Analyze_Short_Circuit --
4295 ---------------------------
4296
4297 procedure Analyze_Short_Circuit (N : Node_Id) is
4298 L : constant Node_Id := Left_Opnd (N);
4299 R : constant Node_Id := Right_Opnd (N);
4300 Ind : Interp_Index;
4301 It : Interp;
4302
4303 begin
4304 Analyze_Expression (L);
4305 Analyze_Expression (R);
4306 Set_Etype (N, Any_Type);
4307
4308 if not Is_Overloaded (L) then
996ae0b0
RK
4309 if Root_Type (Etype (L)) = Standard_Boolean
4310 and then Has_Compatible_Type (R, Etype (L))
4311 then
4312 Add_One_Interp (N, Etype (L), Etype (L));
4313 end if;
4314
4315 else
4316 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4317 while Present (It.Typ) loop
4318 if Root_Type (It.Typ) = Standard_Boolean
4319 and then Has_Compatible_Type (R, It.Typ)
4320 then
4321 Add_One_Interp (N, It.Typ, It.Typ);
4322 end if;
4323
4324 Get_Next_Interp (Ind, It);
4325 end loop;
4326 end if;
4327
d469eabe
HK
4328 -- Here we have failed to find an interpretation. Clearly we know that
4329 -- it is not the case that both operands can have an interpretation of
4330 -- Boolean, but this is by far the most likely intended interpretation.
4331 -- So we simply resolve both operands as Booleans, and at least one of
4332 -- these resolutions will generate an error message, and we do not need
4333 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4334
4335 if Etype (N) = Any_Type then
4336 Resolve (L, Standard_Boolean);
4337 Resolve (R, Standard_Boolean);
4338 Set_Etype (N, Standard_Boolean);
4339 end if;
4340 end Analyze_Short_Circuit;
4341
4342 -------------------
4343 -- Analyze_Slice --
4344 -------------------
4345
4346 procedure Analyze_Slice (N : Node_Id) is
4347 P : constant Node_Id := Prefix (N);
4348 D : constant Node_Id := Discrete_Range (N);
4349 Array_Type : Entity_Id;
4350
4351 procedure Analyze_Overloaded_Slice;
4352 -- If the prefix is overloaded, select those interpretations that
4353 -- yield a one-dimensional array type.
4354
4c46b835
AC
4355 ------------------------------
4356 -- Analyze_Overloaded_Slice --
4357 ------------------------------
4358
996ae0b0
RK
4359 procedure Analyze_Overloaded_Slice is
4360 I : Interp_Index;
4361 It : Interp;
4362 Typ : Entity_Id;
4363
4364 begin
4365 Set_Etype (N, Any_Type);
996ae0b0 4366
4c46b835 4367 Get_First_Interp (P, I, It);
996ae0b0
RK
4368 while Present (It.Nam) loop
4369 Typ := It.Typ;
4370
4371 if Is_Access_Type (Typ) then
4372 Typ := Designated_Type (Typ);
fbf5a39b 4373 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4374 end if;
4375
4376 if Is_Array_Type (Typ)
4377 and then Number_Dimensions (Typ) = 1
4378 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4379 then
4380 Add_One_Interp (N, Typ, Typ);
4381 end if;
4382
4383 Get_Next_Interp (I, It);
4384 end loop;
4385
4386 if Etype (N) = Any_Type then
4387 Error_Msg_N ("expect array type in prefix of slice", N);
4388 end if;
4389 end Analyze_Overloaded_Slice;
4390
4391 -- Start of processing for Analyze_Slice
4392
4393 begin
2ba431e5 4394 Check_SPARK_Restriction ("slice is not allowed", N);
1d801f21 4395
523456db 4396 Analyze (P);
996ae0b0
RK
4397 Analyze (D);
4398
4399 if Is_Overloaded (P) then
4400 Analyze_Overloaded_Slice;
4401
4402 else
4403 Array_Type := Etype (P);
4404 Set_Etype (N, Any_Type);
4405
4406 if Is_Access_Type (Array_Type) then
4407 Array_Type := Designated_Type (Array_Type);
fbf5a39b 4408 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4409 end if;
4410
4411 if not Is_Array_Type (Array_Type) then
4412 Wrong_Type (P, Any_Array);
4413
4414 elsif Number_Dimensions (Array_Type) > 1 then
4415 Error_Msg_N
4416 ("type is not one-dimensional array in slice prefix", N);
4417
4418 elsif not
4419 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4420 then
4421 Wrong_Type (D, Etype (First_Index (Array_Type)));
4422
4423 else
4424 Set_Etype (N, Array_Type);
4425 end if;
4426 end if;
4427 end Analyze_Slice;
4428
4429 -----------------------------
4430 -- Analyze_Type_Conversion --
4431 -----------------------------
4432
4433 procedure Analyze_Type_Conversion (N : Node_Id) is
4434 Expr : constant Node_Id := Expression (N);
4435 T : Entity_Id;
4436
4437 begin
4438 -- If Conversion_OK is set, then the Etype is already set, and the
4439 -- only processing required is to analyze the expression. This is
4440 -- used to construct certain "illegal" conversions which are not
4441 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4442 -- Sinfo for further details.
4443
4444 if Conversion_OK (N) then
4445 Analyze (Expr);
4446 return;
4447 end if;
4448
4449 -- Otherwise full type analysis is required, as well as some semantic
4450 -- checks to make sure the argument of the conversion is appropriate.
4451
4452 Find_Type (Subtype_Mark (N));
4453 T := Entity (Subtype_Mark (N));
4454 Set_Etype (N, T);
4455 Check_Fully_Declared (T, N);
4456 Analyze_Expression (Expr);
4457 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 4458
996ae0b0
RK
4459 -- Only remaining step is validity checks on the argument. These
4460 -- are skipped if the conversion does not come from the source.
4461
4462 if not Comes_From_Source (N) then
4463 return;
4464
b67a385c
ES
4465 -- If there was an error in a generic unit, no need to replicate the
4466 -- error message. Conversely, constant-folding in the generic may
4467 -- transform the argument of a conversion into a string literal, which
4468 -- is legal. Therefore the following tests are not performed in an
4469 -- instance.
4470
4471 elsif In_Instance then
4472 return;
4473
996ae0b0
RK
4474 elsif Nkind (Expr) = N_Null then
4475 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4476 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4477 Set_Etype (N, Any_Type);
4478
4479 elsif Nkind (Expr) = N_Aggregate then
4480 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4481 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4482
4483 elsif Nkind (Expr) = N_Allocator then
4484 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4485 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4486
4487 elsif Nkind (Expr) = N_String_Literal then
4488 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 4489 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4490
4491 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 4492 if Ada_Version = Ada_83 then
996ae0b0
RK
4493 Resolve (Expr, T);
4494 else
4495 Error_Msg_N ("argument of conversion cannot be character literal",
4496 N);
ed2233dc 4497 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4498 end if;
4499
4500 elsif Nkind (Expr) = N_Attribute_Reference
4501 and then
4502 (Attribute_Name (Expr) = Name_Access or else
4503 Attribute_Name (Expr) = Name_Unchecked_Access or else
4504 Attribute_Name (Expr) = Name_Unrestricted_Access)
4505 then
4506 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 4507 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 4508 end if;
996ae0b0
RK
4509 end Analyze_Type_Conversion;
4510
4511 ----------------------
4512 -- Analyze_Unary_Op --
4513 ----------------------
4514
4515 procedure Analyze_Unary_Op (N : Node_Id) is
4516 R : constant Node_Id := Right_Opnd (N);
4517 Op_Id : Entity_Id := Entity (N);
4518
4519 begin
4520 Set_Etype (N, Any_Type);
4521 Candidate_Type := Empty;
4522
4523 Analyze_Expression (R);
4524
4525 if Present (Op_Id) then
4526 if Ekind (Op_Id) = E_Operator then
4527 Find_Unary_Types (R, Op_Id, N);
4528 else
4529 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4530 end if;
4531
4532 else
4533 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 4534 while Present (Op_Id) loop
996ae0b0
RK
4535 if Ekind (Op_Id) = E_Operator then
4536 if No (Next_Entity (First_Entity (Op_Id))) then
4537 Find_Unary_Types (R, Op_Id, N);
4538 end if;
4539
4540 elsif Is_Overloadable (Op_Id) then
4541 Analyze_User_Defined_Unary_Op (N, Op_Id);
4542 end if;
4543
4544 Op_Id := Homonym (Op_Id);
4545 end loop;
4546 end if;
4547
4548 Operator_Check (N);
4549 end Analyze_Unary_Op;
4550
4551 ----------------------------------
4552 -- Analyze_Unchecked_Expression --
4553 ----------------------------------
4554
4555 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4556 begin
4557 Analyze (Expression (N), Suppress => All_Checks);
4558 Set_Etype (N, Etype (Expression (N)));
4559 Save_Interps (Expression (N), N);
4560 end Analyze_Unchecked_Expression;
4561
4562 ---------------------------------------
4563 -- Analyze_Unchecked_Type_Conversion --
4564 ---------------------------------------
4565
4566 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4567 begin
4568 Find_Type (Subtype_Mark (N));
4569 Analyze_Expression (Expression (N));
4570 Set_Etype (N, Entity (Subtype_Mark (N)));
4571 end Analyze_Unchecked_Type_Conversion;
4572
4573 ------------------------------------
4574 -- Analyze_User_Defined_Binary_Op --
4575 ------------------------------------
4576
4577 procedure Analyze_User_Defined_Binary_Op
4578 (N : Node_Id;
4579 Op_Id : Entity_Id)
4580 is
4581 begin
4582 -- Only do analysis if the operator Comes_From_Source, since otherwise
4583 -- the operator was generated by the expander, and all such operators
4584 -- always refer to the operators in package Standard.
4585
4586 if Comes_From_Source (N) then
4587 declare
4588 F1 : constant Entity_Id := First_Formal (Op_Id);
4589 F2 : constant Entity_Id := Next_Formal (F1);
4590
4591 begin
4592 -- Verify that Op_Id is a visible binary function. Note that since
4593 -- we know Op_Id is overloaded, potentially use visible means use
4594 -- visible for sure (RM 9.4(11)).
4595
4596 if Ekind (Op_Id) = E_Function
4597 and then Present (F2)
4598 and then (Is_Immediately_Visible (Op_Id)
4599 or else Is_Potentially_Use_Visible (Op_Id))
4600 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4601 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4602 then
4603 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4604
7340e432
AC
4605 -- If the left operand is overloaded, indicate that the
4606 -- current type is a viable candidate. This is redundant
4607 -- in most cases, but for equality and comparison operators
4608 -- where the context does not impose a type on the operands,
4609 -- setting the proper type is necessary to avoid subsequent
4610 -- ambiguities during resolution, when both user-defined and
4611 -- predefined operators may be candidates.
4612
4613 if Is_Overloaded (Left_Opnd (N)) then
4614 Set_Etype (Left_Opnd (N), Etype (F1));
4615 end if;
4616
996ae0b0
RK
4617 if Debug_Flag_E then
4618 Write_Str ("user defined operator ");
4619 Write_Name (Chars (Op_Id));
4620 Write_Str (" on node ");
4621 Write_Int (Int (N));
4622 Write_Eol;
4623 end if;
4624 end if;
4625 end;
4626 end if;
4627 end Analyze_User_Defined_Binary_Op;
4628
4629 -----------------------------------
4630 -- Analyze_User_Defined_Unary_Op --
4631 -----------------------------------
4632
4633 procedure Analyze_User_Defined_Unary_Op
4634 (N : Node_Id;
4635 Op_Id : Entity_Id)
4636 is
4637 begin
4638 -- Only do analysis if the operator Comes_From_Source, since otherwise
4639 -- the operator was generated by the expander, and all such operators
4640 -- always refer to the operators in package Standard.
4641
4642 if Comes_From_Source (N) then
4643 declare
4644 F : constant Entity_Id := First_Formal (Op_Id);
4645
4646 begin
4647 -- Verify that Op_Id is a visible unary function. Note that since
4648 -- we know Op_Id is overloaded, potentially use visible means use
4649 -- visible for sure (RM 9.4(11)).
4650
4651 if Ekind (Op_Id) = E_Function
4652 and then No (Next_Formal (F))
4653 and then (Is_Immediately_Visible (Op_Id)
4654 or else Is_Potentially_Use_Visible (Op_Id))
4655 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4656 then
4657 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4658 end if;
4659 end;
4660 end if;
4661 end Analyze_User_Defined_Unary_Op;
4662
4663 ---------------------------
4664 -- Check_Arithmetic_Pair --
4665 ---------------------------
4666
4667 procedure Check_Arithmetic_Pair
4668 (T1, T2 : Entity_Id;
4669 Op_Id : Entity_Id;
4670 N : Node_Id)
4671 is
401093c1 4672 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 4673
da709d08
AC
4674 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4675 -- Check whether the fixed-point type Typ has a user-defined operator
4676 -- (multiplication or division) that should hide the corresponding
4677 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4678 -- such operators more visible and therefore useful.
4679
50cff367
GD
4680 -- If the name of the operation is an expanded name with prefix
4681 -- Standard, the predefined universal fixed operator is available,
4682 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4683
996ae0b0
RK
4684 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4685 -- Get specific type (i.e. non-universal type if there is one)
4686
da709d08
AC
4687 ------------------
4688 -- Has_Fixed_Op --
4689 ------------------
4690
4691 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 4692 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
4693 Ent : Entity_Id;
4694 F1 : Entity_Id;
4695 F2 : Entity_Id;
4696
4697 begin
50cff367
GD
4698 -- If the universal_fixed operation is given explicitly the rule
4699 -- concerning primitive operations of the type do not apply.
4700
4701 if Nkind (N) = N_Function_Call
4702 and then Nkind (Name (N)) = N_Expanded_Name
4703 and then Entity (Prefix (Name (N))) = Standard_Standard
4704 then
4705 return False;
4706 end if;
4707
da709d08
AC
4708 -- The operation is treated as primitive if it is declared in the
4709 -- same scope as the type, and therefore on the same entity chain.
4710
4711 Ent := Next_Entity (Typ);
4712 while Present (Ent) loop
4713 if Chars (Ent) = Chars (Op) then
4714 F1 := First_Formal (Ent);
4715 F2 := Next_Formal (F1);
4716
4717 -- The operation counts as primitive if either operand or
401093c1
ES
4718 -- result are of the given base type, and both operands are
4719 -- fixed point types.
da709d08 4720
401093c1 4721 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
4722 and then Is_Fixed_Point_Type (Etype (F2)))
4723
4724 or else
401093c1 4725 (Base_Type (Etype (F2)) = Bas
da709d08
AC
4726 and then Is_Fixed_Point_Type (Etype (F1)))
4727
4728 or else
401093c1 4729 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
4730 and then Is_Fixed_Point_Type (Etype (F1))
4731 and then Is_Fixed_Point_Type (Etype (F2)))
4732 then
4733 return True;
4734 end if;
4735 end if;
4736
4737 Next_Entity (Ent);
4738 end loop;
4739
4740 return False;
4741 end Has_Fixed_Op;
4742
4c46b835
AC
4743 -------------------
4744 -- Specific_Type --
4745 -------------------
4746
996ae0b0
RK
4747 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4748 begin
4749 if T1 = Universal_Integer or else T1 = Universal_Real then
4750 return Base_Type (T2);
4751 else
4752 return Base_Type (T1);
4753 end if;
4754 end Specific_Type;
4755
4756 -- Start of processing for Check_Arithmetic_Pair
4757
4758 begin
4759 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4760
4761 if Is_Numeric_Type (T1)
4762 and then Is_Numeric_Type (T2)
b4592168
GD
4763 and then (Covers (T1 => T1, T2 => T2)
4764 or else
4765 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4766 then
4767 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4768 end if;
4769
4770 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4771
4772 if Is_Fixed_Point_Type (T1)
4773 and then (Is_Fixed_Point_Type (T2)
4774 or else T2 = Universal_Real)
4775 then
4776 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4777 -- and no further processing is required (this is the case of an
4778 -- operator constructed by Exp_Fixd for a fixed point operation)
4779 -- Otherwise add one interpretation with universal fixed result
4780 -- If the operator is given in functional notation, it comes
4781 -- from source and Fixed_As_Integer cannot apply.
4782
da709d08
AC
4783 if (Nkind (N) not in N_Op
4784 or else not Treat_Fixed_As_Integer (N))
4785 and then
401093c1 4786 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4787 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 4788 then
996ae0b0
RK
4789 Add_One_Interp (N, Op_Id, Universal_Fixed);
4790 end if;
4791
4792 elsif Is_Fixed_Point_Type (T2)
4793 and then (Nkind (N) not in N_Op
4794 or else not Treat_Fixed_As_Integer (N))
4795 and then T1 = Universal_Real
da709d08 4796 and then
401093c1 4797 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4798 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
4799 then
4800 Add_One_Interp (N, Op_Id, Universal_Fixed);
4801
4802 elsif Is_Numeric_Type (T1)
4803 and then Is_Numeric_Type (T2)
b4592168
GD
4804 and then (Covers (T1 => T1, T2 => T2)
4805 or else
4806 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4807 then
4808 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4809
4810 elsif Is_Fixed_Point_Type (T1)
4811 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4812 or else T2 = Universal_Integer)
4813 then
4814 Add_One_Interp (N, Op_Id, T1);
4815
4816 elsif T2 = Universal_Real
4817 and then Base_Type (T1) = Base_Type (Standard_Integer)
4818 and then Op_Name = Name_Op_Multiply
4819 then
4820 Add_One_Interp (N, Op_Id, Any_Fixed);
4821
4822 elsif T1 = Universal_Real
4823 and then Base_Type (T2) = Base_Type (Standard_Integer)
4824 then
4825 Add_One_Interp (N, Op_Id, Any_Fixed);
4826
4827 elsif Is_Fixed_Point_Type (T2)
4828 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4829 or else T1 = Universal_Integer)
4830 and then Op_Name = Name_Op_Multiply
4831 then
4832 Add_One_Interp (N, Op_Id, T2);
4833
4834 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4835 Add_One_Interp (N, Op_Id, T1);
4836
4837 elsif T2 = Universal_Real
4838 and then T1 = Universal_Integer
4839 and then Op_Name = Name_Op_Multiply
4840 then
4841 Add_One_Interp (N, Op_Id, T2);
4842 end if;
4843
4844 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4845
4846 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4847 -- set does not require any special processing, since the Etype is
4848 -- already set (case of operation constructed by Exp_Fixed).
4849
4850 if Is_Integer_Type (T1)
b4592168
GD
4851 and then (Covers (T1 => T1, T2 => T2)
4852 or else
4853 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4854 then
4855 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4856 end if;
4857
4858 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
4859 if Is_Numeric_Type (T1)
4860 and then not Is_Fixed_Point_Type (T1)
4861 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4862 or else T2 = Universal_Integer)
4863 then
4864 Add_One_Interp (N, Op_Id, Base_Type (T1));
4865 end if;
4866
4867 else pragma Assert (Nkind (N) in N_Op_Shift);
4868
4869 -- If not one of the predefined operators, the node may be one
4870 -- of the intrinsic functions. Its kind is always specific, and
4871 -- we can use it directly, rather than the name of the operation.
4872
4873 if Is_Integer_Type (T1)
4874 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4875 or else T2 = Universal_Integer)
4876 then
4877 Add_One_Interp (N, Op_Id, Base_Type (T1));
4878 end if;
4879 end if;
4880 end Check_Arithmetic_Pair;
4881
4882 -------------------------------
4883 -- Check_Misspelled_Selector --
4884 -------------------------------
4885
4886 procedure Check_Misspelled_Selector
4887 (Prefix : Entity_Id;
4888 Sel : Node_Id)
4889 is
4890 Max_Suggestions : constant := 2;
4891 Nr_Of_Suggestions : Natural := 0;
4892
4893 Suggestion_1 : Entity_Id := Empty;
4894 Suggestion_2 : Entity_Id := Empty;
4895
4896 Comp : Entity_Id;
4897
4898 begin
4899 -- All the components of the prefix of selector Sel are matched
4900 -- against Sel and a count is maintained of possible misspellings.
4901 -- When at the end of the analysis there are one or two (not more!)
4902 -- possible misspellings, these misspellings will be suggested as
4903 -- possible correction.
4904
4c46b835
AC
4905 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4906
996ae0b0 4907 -- Concurrent types should be handled as well ???
4c46b835 4908
996ae0b0
RK
4909 return;
4910 end if;
4911
d469eabe
HK
4912 Comp := First_Entity (Prefix);
4913 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4914 if Is_Visible_Component (Comp) then
4915 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4916 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4917
4918 case Nr_Of_Suggestions is
4919 when 1 => Suggestion_1 := Comp;
4920 when 2 => Suggestion_2 := Comp;
4921 when others => exit;
4922 end case;
996ae0b0 4923 end if;
d469eabe 4924 end if;
996ae0b0 4925
d469eabe
HK
4926 Comp := Next_Entity (Comp);
4927 end loop;
996ae0b0 4928
d469eabe 4929 -- Report at most two suggestions
996ae0b0 4930
d469eabe 4931 if Nr_Of_Suggestions = 1 then
4e7a4f6e 4932 Error_Msg_NE -- CODEFIX
d469eabe 4933 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 4934
d469eabe
HK
4935 elsif Nr_Of_Suggestions = 2 then
4936 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 4937 Error_Msg_NE -- CODEFIX
d469eabe
HK
4938 ("\possible misspelling of& or&", Sel, Suggestion_1);
4939 end if;
996ae0b0
RK
4940 end Check_Misspelled_Selector;
4941
4942 ----------------------
4943 -- Defined_In_Scope --
4944 ----------------------
4945
4946 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4947 is
4948 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
4949 begin
4950 return S1 = S
4951 or else (S1 = System_Aux_Id and then S = Scope (S1));
4952 end Defined_In_Scope;
4953
4954 -------------------
4955 -- Diagnose_Call --
4956 -------------------
4957
4958 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
4959 Actual : Node_Id;
4960 X : Interp_Index;
4961 It : Interp;
fbf5a39b
AC
4962 Err_Mode : Boolean;
4963 New_Nam : Node_Id;
4964 Void_Interp_Seen : Boolean := False;
996ae0b0 4965
24657705
HK
4966 Success : Boolean;
4967 pragma Warnings (Off, Boolean);
4968
996ae0b0 4969 begin
0791fbe9 4970 if Ada_Version >= Ada_2005 then
996ae0b0 4971 Actual := First_Actual (N);
996ae0b0 4972 while Present (Actual) loop
0ab80019
AC
4973
4974 -- Ada 2005 (AI-50217): Post an error in case of premature
4975 -- usage of an entity from the limited view.
19f0526a 4976
996ae0b0
RK
4977 if not Analyzed (Etype (Actual))
4978 and then From_With_Type (Etype (Actual))
4979 then
4980 Error_Msg_Qual_Level := 1;
ed2233dc 4981 Error_Msg_NE
996ae0b0
RK
4982 ("missing with_clause for scope of imported type&",
4983 Actual, Etype (Actual));
4984 Error_Msg_Qual_Level := 0;
4985 end if;
4986
4987 Next_Actual (Actual);
4988 end loop;
4989 end if;
4990
fbf5a39b
AC
4991 -- Analyze each candidate call again, with full error reporting
4992 -- for each.
4993
4994 Error_Msg_N
4995 ("no candidate interpretations match the actuals:!", Nam);
4996 Err_Mode := All_Errors_Mode;
4997 All_Errors_Mode := True;
4998
4999 -- If this is a call to an operation of a concurrent type,
5000 -- the failed interpretations have been removed from the
5001 -- name. Recover them to provide full diagnostics.
5002
5003 if Nkind (Parent (Nam)) = N_Selected_Component then
5004 Set_Entity (Nam, Empty);
5005 New_Nam := New_Copy_Tree (Parent (Nam));
5006 Set_Is_Overloaded (New_Nam, False);
5007 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5008 Set_Parent (New_Nam, Parent (Parent (Nam)));
5009 Analyze_Selected_Component (New_Nam);
5010 Get_First_Interp (Selector_Name (New_Nam), X, It);
5011 else
996ae0b0 5012 Get_First_Interp (Nam, X, It);
fbf5a39b 5013 end if;
996ae0b0 5014
fbf5a39b
AC
5015 while Present (It.Nam) loop
5016 if Etype (It.Nam) = Standard_Void_Type then
5017 Void_Interp_Seen := True;
996ae0b0 5018 end if;
fbf5a39b
AC
5019
5020 Analyze_One_Call (N, It.Nam, True, Success);
5021 Get_Next_Interp (X, It);
5022 end loop;
996ae0b0
RK
5023
5024 if Nkind (N) = N_Function_Call then
5025 Get_First_Interp (Nam, X, It);
996ae0b0 5026 while Present (It.Nam) loop
bce79204 5027 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5028 return;
5029 else
5030 Get_Next_Interp (X, It);
5031 end if;
5032 end loop;
5033
5034 -- If all interpretations are procedures, this deserves a
5035 -- more precise message. Ditto if this appears as the prefix
5036 -- of a selected component, which may be a lexical error.
5037
4c46b835
AC
5038 Error_Msg_N
5039 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5040
5041 if Nkind (Parent (N)) = N_Selected_Component
5042 and then N = Prefix (Parent (N))
5043 then
4e7a4f6e
AC
5044 Error_Msg_N -- CODEFIX
5045 ("\period should probably be semicolon", Parent (N));
996ae0b0 5046 end if;
fbf5a39b
AC
5047
5048 elsif Nkind (N) = N_Procedure_Call_Statement
5049 and then not Void_Interp_Seen
5050 then
5051 Error_Msg_N (
5052 "\function name found in procedure call", Nam);
996ae0b0 5053 end if;
fbf5a39b
AC
5054
5055 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5056 end Diagnose_Call;
5057
5058 ---------------------------
5059 -- Find_Arithmetic_Types --
5060 ---------------------------
5061
5062 procedure Find_Arithmetic_Types
5063 (L, R : Node_Id;
5064 Op_Id : Entity_Id;
5065 N : Node_Id)
5066 is
4c46b835
AC
5067 Index1 : Interp_Index;
5068 Index2 : Interp_Index;
5069 It1 : Interp;
5070 It2 : Interp;
996ae0b0
RK
5071
5072 procedure Check_Right_Argument (T : Entity_Id);
5073 -- Check right operand of operator
5074
4c46b835
AC
5075 --------------------------
5076 -- Check_Right_Argument --
5077 --------------------------
5078
996ae0b0
RK
5079 procedure Check_Right_Argument (T : Entity_Id) is
5080 begin
5081 if not Is_Overloaded (R) then
5082 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5083 else
5084 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5085 while Present (It2.Typ) loop
5086 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5087 Get_Next_Interp (Index2, It2);
5088 end loop;
5089 end if;
5090 end Check_Right_Argument;
5091
d8221f45 5092 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5093
5094 begin
5095 if not Is_Overloaded (L) then
5096 Check_Right_Argument (Etype (L));
5097
5098 else
5099 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5100 while Present (It1.Typ) loop
5101 Check_Right_Argument (It1.Typ);
5102 Get_Next_Interp (Index1, It1);
5103 end loop;
5104 end if;
5105
5106 end Find_Arithmetic_Types;
5107
5108 ------------------------
5109 -- Find_Boolean_Types --
5110 ------------------------
5111
5112 procedure Find_Boolean_Types
5113 (L, R : Node_Id;
5114 Op_Id : Entity_Id;
5115 N : Node_Id)
5116 is
5117 Index : Interp_Index;
5118 It : Interp;
5119
5120 procedure Check_Numeric_Argument (T : Entity_Id);
5121 -- Special case for logical operations one of whose operands is an
5122 -- integer literal. If both are literal the result is any modular type.
5123
4c46b835
AC
5124 ----------------------------
5125 -- Check_Numeric_Argument --
5126 ----------------------------
5127
996ae0b0
RK
5128 procedure Check_Numeric_Argument (T : Entity_Id) is
5129 begin
5130 if T = Universal_Integer then
5131 Add_One_Interp (N, Op_Id, Any_Modular);
5132
5133 elsif Is_Modular_Integer_Type (T) then
5134 Add_One_Interp (N, Op_Id, T);
5135 end if;
5136 end Check_Numeric_Argument;
5137
5138 -- Start of processing for Find_Boolean_Types
5139
5140 begin
5141 if not Is_Overloaded (L) then
996ae0b0
RK
5142 if Etype (L) = Universal_Integer
5143 or else Etype (L) = Any_Modular
5144 then
5145 if not Is_Overloaded (R) then
5146 Check_Numeric_Argument (Etype (R));
5147
5148 else
5149 Get_First_Interp (R, Index, It);
996ae0b0
RK
5150 while Present (It.Typ) loop
5151 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5152 Get_Next_Interp (Index, It);
5153 end loop;
5154 end if;
5155
69e6a03e
ES
5156 -- If operands are aggregates, we must assume that they may be
5157 -- boolean arrays, and leave disambiguation for the second pass.
5158 -- If only one is an aggregate, verify that the other one has an
5159 -- interpretation as a boolean array
5160
5161 elsif Nkind (L) = N_Aggregate then
5162 if Nkind (R) = N_Aggregate then
5163 Add_One_Interp (N, Op_Id, Etype (L));
5164
5165 elsif not Is_Overloaded (R) then
5166 if Valid_Boolean_Arg (Etype (R)) then
5167 Add_One_Interp (N, Op_Id, Etype (R));
5168 end if;
5169
5170 else
5171 Get_First_Interp (R, Index, It);
5172 while Present (It.Typ) loop
5173 if Valid_Boolean_Arg (It.Typ) then
5174 Add_One_Interp (N, Op_Id, It.Typ);
5175 end if;
5176
5177 Get_Next_Interp (Index, It);
5178 end loop;
5179 end if;
5180
996ae0b0
RK
5181 elsif Valid_Boolean_Arg (Etype (L))
5182 and then Has_Compatible_Type (R, Etype (L))
5183 then
5184 Add_One_Interp (N, Op_Id, Etype (L));
5185 end if;
5186
5187 else
5188 Get_First_Interp (L, Index, It);
996ae0b0
RK
5189 while Present (It.Typ) loop
5190 if Valid_Boolean_Arg (It.Typ)
5191 and then Has_Compatible_Type (R, It.Typ)
5192 then
5193 Add_One_Interp (N, Op_Id, It.Typ);
5194 end if;
5195
5196 Get_Next_Interp (Index, It);
5197 end loop;
5198 end if;
5199 end Find_Boolean_Types;
5200
5201 ---------------------------
5202 -- Find_Comparison_Types --
5203 ---------------------------
5204
5205 procedure Find_Comparison_Types
5206 (L, R : Node_Id;
5207 Op_Id : Entity_Id;
5208 N : Node_Id)
5209 is
5210 Index : Interp_Index;
5211 It : Interp;
5212 Found : Boolean := False;
5213 I_F : Interp_Index;
5214 T_F : Entity_Id;
5215 Scop : Entity_Id := Empty;
5216
5217 procedure Try_One_Interp (T1 : Entity_Id);
5218 -- Routine to try one proposed interpretation. Note that the context
5219 -- of the operator plays no role in resolving the arguments, so that
5220 -- if there is more than one interpretation of the operands that is
5221 -- compatible with comparison, the operation is ambiguous.
5222
4c46b835
AC
5223 --------------------
5224 -- Try_One_Interp --
5225 --------------------
5226
996ae0b0
RK
5227 procedure Try_One_Interp (T1 : Entity_Id) is
5228 begin
5229
5230 -- If the operator is an expanded name, then the type of the operand
5231 -- must be defined in the corresponding scope. If the type is
5232 -- universal, the context will impose the correct type.
5233
5234 if Present (Scop)
5235 and then not Defined_In_Scope (T1, Scop)
5236 and then T1 /= Universal_Integer
5237 and then T1 /= Universal_Real
5238 and then T1 /= Any_String
5239 and then T1 /= Any_Composite
5240 then
5241 return;
5242 end if;
5243
5244 if Valid_Comparison_Arg (T1)
5245 and then Has_Compatible_Type (R, T1)
5246 then
5247 if Found
5248 and then Base_Type (T1) /= Base_Type (T_F)
5249 then
5250 It := Disambiguate (L, I_F, Index, Any_Type);
5251
5252 if It = No_Interp then
5253 Ambiguous_Operands (N);
5254 Set_Etype (L, Any_Type);
5255 return;
5256
5257 else
5258 T_F := It.Typ;
5259 end if;
5260
5261 else
5262 Found := True;
5263 T_F := T1;
5264 I_F := Index;
5265 end if;
5266
5267 Set_Etype (L, T_F);
5268 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5269
5270 end if;
5271 end Try_One_Interp;
5272
d8221f45 5273 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5274
5275 begin
fbf5a39b
AC
5276 -- If left operand is aggregate, the right operand has to
5277 -- provide a usable type for it.
5278
5279 if Nkind (L) = N_Aggregate
5280 and then Nkind (R) /= N_Aggregate
5281 then
b4592168 5282 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5283 return;
5284 end if;
996ae0b0
RK
5285
5286 if Nkind (N) = N_Function_Call
5287 and then Nkind (Name (N)) = N_Expanded_Name
5288 then
5289 Scop := Entity (Prefix (Name (N)));
5290
5291 -- The prefix may be a package renaming, and the subsequent test
5292 -- requires the original package.
5293
5294 if Ekind (Scop) = E_Package
5295 and then Present (Renamed_Entity (Scop))
5296 then
5297 Scop := Renamed_Entity (Scop);
5298 Set_Entity (Prefix (Name (N)), Scop);
5299 end if;
5300 end if;
5301
5302 if not Is_Overloaded (L) then
5303 Try_One_Interp (Etype (L));
5304
5305 else
5306 Get_First_Interp (L, Index, It);
996ae0b0
RK
5307 while Present (It.Typ) loop
5308 Try_One_Interp (It.Typ);
5309 Get_Next_Interp (Index, It);
5310 end loop;
5311 end if;
5312 end Find_Comparison_Types;
5313
5314 ----------------------------------------
5315 -- Find_Non_Universal_Interpretations --
5316 ----------------------------------------
5317
5318 procedure Find_Non_Universal_Interpretations
5319 (N : Node_Id;
5320 R : Node_Id;
5321 Op_Id : Entity_Id;
5322 T1 : Entity_Id)
5323 is
5324 Index : Interp_Index;
4c46b835 5325 It : Interp;
996ae0b0
RK
5326
5327 begin
5328 if T1 = Universal_Integer
5329 or else T1 = Universal_Real
5330 then
5331 if not Is_Overloaded (R) then
5332 Add_One_Interp
5333 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5334 else
5335 Get_First_Interp (R, Index, It);
996ae0b0
RK
5336 while Present (It.Typ) loop
5337 if Covers (It.Typ, T1) then
5338 Add_One_Interp
5339 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5340 end if;
5341
5342 Get_Next_Interp (Index, It);
5343 end loop;
5344 end if;
5345 else
5346 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5347 end if;
5348 end Find_Non_Universal_Interpretations;
5349
5350 ------------------------------
5351 -- Find_Concatenation_Types --
5352 ------------------------------
5353
5354 procedure Find_Concatenation_Types
5355 (L, R : Node_Id;
5356 Op_Id : Entity_Id;
5357 N : Node_Id)
5358 is
5359 Op_Type : constant Entity_Id := Etype (Op_Id);
5360
5361 begin
5362 if Is_Array_Type (Op_Type)
5363 and then not Is_Limited_Type (Op_Type)
5364
5365 and then (Has_Compatible_Type (L, Op_Type)
5366 or else
5367 Has_Compatible_Type (L, Component_Type (Op_Type)))
5368
5369 and then (Has_Compatible_Type (R, Op_Type)
5370 or else
5371 Has_Compatible_Type (R, Component_Type (Op_Type)))
5372 then
5373 Add_One_Interp (N, Op_Id, Op_Type);
5374 end if;
5375 end Find_Concatenation_Types;
5376
5377 -------------------------
5378 -- Find_Equality_Types --
5379 -------------------------
5380
5381 procedure Find_Equality_Types
5382 (L, R : Node_Id;
5383 Op_Id : Entity_Id;
5384 N : Node_Id)
5385 is
5386 Index : Interp_Index;
5387 It : Interp;
5388 Found : Boolean := False;
5389 I_F : Interp_Index;
5390 T_F : Entity_Id;
5391 Scop : Entity_Id := Empty;
5392
5393 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5394 -- The context of the equality operator plays no role in resolving the
5395 -- arguments, so that if there is more than one interpretation of the
5396 -- operands that is compatible with equality, the construct is ambiguous
5397 -- and an error can be emitted now, after trying to disambiguate, i.e.
5398 -- applying preference rules.
996ae0b0 5399
4c46b835
AC
5400 --------------------
5401 -- Try_One_Interp --
5402 --------------------
5403
996ae0b0 5404 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5405 Bas : constant Entity_Id := Base_Type (T1);
5406
996ae0b0 5407 begin
996ae0b0
RK
5408 -- If the operator is an expanded name, then the type of the operand
5409 -- must be defined in the corresponding scope. If the type is
5410 -- universal, the context will impose the correct type. An anonymous
5411 -- type for a 'Access reference is also universal in this sense, as
5412 -- the actual type is obtained from context.
fe45e59e
ES
5413 -- In Ada 2005, the equality operator for anonymous access types
5414 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5415
fe45e59e
ES
5416 if Present (Scop) then
5417 if Defined_In_Scope (T1, Scop)
5418 or else T1 = Universal_Integer
5419 or else T1 = Universal_Real
5420 or else T1 = Any_Access
5421 or else T1 = Any_String
5422 or else T1 = Any_Composite
5423 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5424 and then not Comes_From_Source (T1))
fe45e59e
ES
5425 then
5426 null;
5427
5428 elsif Ekind (T1) = E_Anonymous_Access_Type
5429 and then Scop = Standard_Standard
5430 then
5431 null;
5432
5433 else
5434 -- The scope does not contain an operator for the type
5435
5436 return;
5437 end if;
a8e65aa5
AC
5438
5439 -- If we have infix notation, the operator must be usable.
5440 -- Within an instance, if the type is already established we
5441 -- know it is correct.
5442 -- In Ada 2005, the equality on anonymous access types is declared
5443 -- in Standard, and is always visible.
5444
5445 elsif In_Open_Scopes (Scope (Bas))
5446 or else Is_Potentially_Use_Visible (Bas)
5447 or else In_Use (Bas)
5448 or else (In_Use (Scope (Bas))
5449 and then not Is_Hidden (Bas))
5450 or else (In_Instance
5451 and then First_Subtype (T1) = First_Subtype (Etype (R)))
5452 or else Ekind (T1) = E_Anonymous_Access_Type
5453 then
5454 null;
5455
5456 else
308e6f3a 5457 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
5458
5459 if not Is_Limited_Type (T1) then
5460 Candidate_Type := T1;
5461 end if;
5462
5463 return;
996ae0b0
RK
5464 end if;
5465
0ab80019
AC
5466 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5467 -- Do not allow anonymous access types in equality operators.
6e937c1c 5468
0791fbe9 5469 if Ada_Version < Ada_2005
6e937c1c
AC
5470 and then Ekind (T1) = E_Anonymous_Access_Type
5471 then
5472 return;
5473 end if;
5474
996ae0b0
RK
5475 if T1 /= Standard_Void_Type
5476 and then not Is_Limited_Type (T1)
5477 and then not Is_Limited_Composite (T1)
996ae0b0
RK
5478 and then Has_Compatible_Type (R, T1)
5479 then
5480 if Found
5481 and then Base_Type (T1) /= Base_Type (T_F)
5482 then
5483 It := Disambiguate (L, I_F, Index, Any_Type);
5484
5485 if It = No_Interp then
5486 Ambiguous_Operands (N);
5487 Set_Etype (L, Any_Type);
5488 return;
5489
5490 else
5491 T_F := It.Typ;
5492 end if;
5493
5494 else
5495 Found := True;
5496 T_F := T1;
5497 I_F := Index;
5498 end if;
5499
5500 if not Analyzed (L) then
5501 Set_Etype (L, T_F);
5502 end if;
5503
5504 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5505
6e73e3ab 5506 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 5507
6e73e3ab 5508 if Etype (N) = Any_Type then
996ae0b0
RK
5509 Found := False;
5510 end if;
fe45e59e
ES
5511
5512 elsif Scop = Standard_Standard
5513 and then Ekind (T1) = E_Anonymous_Access_Type
5514 then
5515 Found := True;
996ae0b0
RK
5516 end if;
5517 end Try_One_Interp;
5518
5519 -- Start of processing for Find_Equality_Types
5520
5521 begin
fbf5a39b
AC
5522 -- If left operand is aggregate, the right operand has to
5523 -- provide a usable type for it.
5524
5525 if Nkind (L) = N_Aggregate
5526 and then Nkind (R) /= N_Aggregate
5527 then
b4592168 5528 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5529 return;
5530 end if;
996ae0b0
RK
5531
5532 if Nkind (N) = N_Function_Call
5533 and then Nkind (Name (N)) = N_Expanded_Name
5534 then
5535 Scop := Entity (Prefix (Name (N)));
5536
5537 -- The prefix may be a package renaming, and the subsequent test
5538 -- requires the original package.
5539
5540 if Ekind (Scop) = E_Package
5541 and then Present (Renamed_Entity (Scop))
5542 then
5543 Scop := Renamed_Entity (Scop);
5544 Set_Entity (Prefix (Name (N)), Scop);
5545 end if;
5546 end if;
5547
5548 if not Is_Overloaded (L) then
5549 Try_One_Interp (Etype (L));
996ae0b0 5550
4c46b835 5551 else
996ae0b0 5552 Get_First_Interp (L, Index, It);
996ae0b0
RK
5553 while Present (It.Typ) loop
5554 Try_One_Interp (It.Typ);
5555 Get_Next_Interp (Index, It);
5556 end loop;
5557 end if;
5558 end Find_Equality_Types;
5559
5560 -------------------------
5561 -- Find_Negation_Types --
5562 -------------------------
5563
5564 procedure Find_Negation_Types
5565 (R : Node_Id;
5566 Op_Id : Entity_Id;
5567 N : Node_Id)
5568 is
5569 Index : Interp_Index;
5570 It : Interp;
5571
5572 begin
5573 if not Is_Overloaded (R) then
996ae0b0
RK
5574 if Etype (R) = Universal_Integer then
5575 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
5576 elsif Valid_Boolean_Arg (Etype (R)) then
5577 Add_One_Interp (N, Op_Id, Etype (R));
5578 end if;
5579
5580 else
5581 Get_First_Interp (R, Index, It);
996ae0b0
RK
5582 while Present (It.Typ) loop
5583 if Valid_Boolean_Arg (It.Typ) then
5584 Add_One_Interp (N, Op_Id, It.Typ);
5585 end if;
5586
5587 Get_Next_Interp (Index, It);
5588 end loop;
5589 end if;
5590 end Find_Negation_Types;
5591
d469eabe
HK
5592 ------------------------------
5593 -- Find_Primitive_Operation --
5594 ------------------------------
5595
5596 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5597 Obj : constant Node_Id := Prefix (N);
5598 Op : constant Node_Id := Selector_Name (N);
5599
5600 Prim : Elmt_Id;
5601 Prims : Elist_Id;
5602 Typ : Entity_Id;
5603
5604 begin
5605 Set_Etype (Op, Any_Type);
5606
5607 if Is_Access_Type (Etype (Obj)) then
5608 Typ := Designated_Type (Etype (Obj));
5609 else
5610 Typ := Etype (Obj);
5611 end if;
5612
5613 if Is_Class_Wide_Type (Typ) then
5614 Typ := Root_Type (Typ);
5615 end if;
5616
5617 Prims := Primitive_Operations (Typ);
5618
5619 Prim := First_Elmt (Prims);
5620 while Present (Prim) loop
5621 if Chars (Node (Prim)) = Chars (Op) then
5622 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5623 Set_Etype (N, Etype (Node (Prim)));
5624 end if;
5625
5626 Next_Elmt (Prim);
5627 end loop;
5628
5629 -- Now look for class-wide operations of the type or any of its
5630 -- ancestors by iterating over the homonyms of the selector.
5631
5632 declare
5633 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5634 Hom : Entity_Id;
5635
5636 begin
5637 Hom := Current_Entity (Op);
5638 while Present (Hom) loop
5639 if (Ekind (Hom) = E_Procedure
5640 or else
5641 Ekind (Hom) = E_Function)
5642 and then Scope (Hom) = Scope (Typ)
5643 and then Present (First_Formal (Hom))
5644 and then
5645 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5646 or else
5647 (Is_Access_Type (Etype (First_Formal (Hom)))
5648 and then
5649 Ekind (Etype (First_Formal (Hom))) =
5650 E_Anonymous_Access_Type
5651 and then
5652 Base_Type
5653 (Designated_Type (Etype (First_Formal (Hom)))) =
5654 Cls_Type))
5655 then
5656 Add_One_Interp (Op, Hom, Etype (Hom));
5657 Set_Etype (N, Etype (Hom));
5658 end if;
5659
5660 Hom := Homonym (Hom);
5661 end loop;
5662 end;
5663
5664 return Etype (Op) /= Any_Type;
5665 end Find_Primitive_Operation;
5666
996ae0b0
RK
5667 ----------------------
5668 -- Find_Unary_Types --
5669 ----------------------
5670
5671 procedure Find_Unary_Types
5672 (R : Node_Id;
5673 Op_Id : Entity_Id;
5674 N : Node_Id)
5675 is
5676 Index : Interp_Index;
5677 It : Interp;
5678
5679 begin
5680 if not Is_Overloaded (R) then
5681 if Is_Numeric_Type (Etype (R)) then
5682 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5683 end if;
5684
5685 else
5686 Get_First_Interp (R, Index, It);
996ae0b0
RK
5687 while Present (It.Typ) loop
5688 if Is_Numeric_Type (It.Typ) then
5689 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5690 end if;
5691
5692 Get_Next_Interp (Index, It);
5693 end loop;
5694 end if;
5695 end Find_Unary_Types;
5696
996ae0b0
RK
5697 ------------------
5698 -- Junk_Operand --
5699 ------------------
5700
5701 function Junk_Operand (N : Node_Id) return Boolean is
5702 Enode : Node_Id;
5703
5704 begin
5705 if Error_Posted (N) then
5706 return False;
5707 end if;
5708
5709 -- Get entity to be tested
5710
5711 if Is_Entity_Name (N)
5712 and then Present (Entity (N))
5713 then
5714 Enode := N;
5715
5716 -- An odd case, a procedure name gets converted to a very peculiar
5717 -- function call, and here is where we detect this happening.
5718
5719 elsif Nkind (N) = N_Function_Call
5720 and then Is_Entity_Name (Name (N))
5721 and then Present (Entity (Name (N)))
5722 then
5723 Enode := Name (N);
5724
5725 -- Another odd case, there are at least some cases of selected
5726 -- components where the selected component is not marked as having
5727 -- an entity, even though the selector does have an entity
5728
5729 elsif Nkind (N) = N_Selected_Component
5730 and then Present (Entity (Selector_Name (N)))
5731 then
5732 Enode := Selector_Name (N);
5733
5734 else
5735 return False;
5736 end if;
5737
9de61fcb 5738 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
5739
5740 case Ekind (Entity (Enode)) is
5741
5742 when E_Package =>
5743 Error_Msg_N
5744 ("package name cannot be used as operand", Enode);
5745
5746 when Generic_Unit_Kind =>
5747 Error_Msg_N
5748 ("generic unit name cannot be used as operand", Enode);
5749
5750 when Type_Kind =>
5751 Error_Msg_N
5752 ("subtype name cannot be used as operand", Enode);
5753
5754 when Entry_Kind =>
5755 Error_Msg_N
5756 ("entry name cannot be used as operand", Enode);
5757
5758 when E_Procedure =>
5759 Error_Msg_N
5760 ("procedure name cannot be used as operand", Enode);
5761
5762 when E_Exception =>
5763 Error_Msg_N
5764 ("exception name cannot be used as operand", Enode);
5765
5766 when E_Block | E_Label | E_Loop =>
5767 Error_Msg_N
5768 ("label name cannot be used as operand", Enode);
5769
5770 when others =>
5771 return False;
5772
5773 end case;
5774
5775 return True;
5776 end Junk_Operand;
5777
5778 --------------------
5779 -- Operator_Check --
5780 --------------------
5781
5782 procedure Operator_Check (N : Node_Id) is
5783 begin
30c20106
AC
5784 Remove_Abstract_Operations (N);
5785
996ae0b0
RK
5786 -- Test for case of no interpretation found for operator
5787
5788 if Etype (N) = Any_Type then
5789 declare
b67a385c
ES
5790 L : Node_Id;
5791 R : Node_Id;
5792 Op_Id : Entity_Id := Empty;
996ae0b0
RK
5793
5794 begin
5795 R := Right_Opnd (N);
5796
5797 if Nkind (N) in N_Binary_Op then
5798 L := Left_Opnd (N);
5799 else
5800 L := Empty;
5801 end if;
5802
5803 -- If either operand has no type, then don't complain further,
9de61fcb 5804 -- since this simply means that we have a propagated error.
996ae0b0
RK
5805
5806 if R = Error
5807 or else Etype (R) = Any_Type
5808 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5809 then
5810 return;
5811
4c46b835
AC
5812 -- We explicitly check for the case of concatenation of component
5813 -- with component to avoid reporting spurious matching array types
5814 -- that might happen to be lurking in distant packages (such as
5815 -- run-time packages). This also prevents inconsistencies in the
5816 -- messages for certain ACVC B tests, which can vary depending on
5817 -- types declared in run-time interfaces. Another improvement when
5818 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
5819
5820 elsif Present (Candidate_Type)
5821 and then (Nkind (N) /= N_Op_Concat
5822 or else Is_Array_Type (Etype (L))
5823 or else Is_Array_Type (Etype (R)))
5824 then
996ae0b0
RK
5825 if Nkind (N) = N_Op_Concat then
5826 if Etype (L) /= Any_Composite
5827 and then Is_Array_Type (Etype (L))
5828 then
5829 Candidate_Type := Etype (L);
5830
5831 elsif Etype (R) /= Any_Composite
5832 and then Is_Array_Type (Etype (R))
5833 then
5834 Candidate_Type := Etype (R);
5835 end if;
5836 end if;
5837
19d846a0 5838 Error_Msg_NE -- CODEFIX
996ae0b0
RK
5839 ("operator for} is not directly visible!",
5840 N, First_Subtype (Candidate_Type));
4561baf7
ES
5841
5842 declare
5843 U : constant Node_Id :=
5844 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
5845 begin
5846 if Unit_Is_Visible (U) then
5847 Error_Msg_N -- CODEFIX
5848 ("use clause would make operation legal!", N);
4561baf7
ES
5849 else
5850 Error_Msg_NE -- CODEFIX
5851 ("add with_clause and use_clause for&!",
5852 N, Defining_Entity (Unit (U)));
5853 end if;
5854 end;
996ae0b0
RK
5855 return;
5856
5857 -- If either operand is a junk operand (e.g. package name), then
5858 -- post appropriate error messages, but do not complain further.
5859
0e0eecec
ES
5860 -- Note that the use of OR in this test instead of OR ELSE is
5861 -- quite deliberate, we may as well check both operands in the
5862 -- binary operator case.
996ae0b0
RK
5863
5864 elsif Junk_Operand (R)
5865 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5866 then
5867 return;
5868
5869 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
5870 -- Boolean, then we know that the other operand cannot resolve to
5871 -- Boolean (since we got no interpretations), but in that case we
5872 -- pretty much know that the other operand should be Boolean, so
5873 -- resolve it that way (generating an error)
996ae0b0 5874
d469eabe 5875 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
5876 if Etype (L) = Standard_Boolean then
5877 Resolve (R, Standard_Boolean);
5878 return;
5879 elsif Etype (R) = Standard_Boolean then
5880 Resolve (L, Standard_Boolean);
5881 return;
5882 end if;
5883
5884 -- For an arithmetic operator or comparison operator, if one
5885 -- of the operands is numeric, then we know the other operand
5886 -- is not the same numeric type. If it is a non-numeric type,
5887 -- then probably it is intended to match the other operand.
5888
d469eabe
HK
5889 elsif Nkind_In (N, N_Op_Add,
5890 N_Op_Divide,
5891 N_Op_Ge,
5892 N_Op_Gt,
5893 N_Op_Le)
5894 or else
5895 Nkind_In (N, N_Op_Lt,
5896 N_Op_Mod,
5897 N_Op_Multiply,
5898 N_Op_Rem,
5899 N_Op_Subtract)
996ae0b0
RK
5900 then
5901 if Is_Numeric_Type (Etype (L))
5902 and then not Is_Numeric_Type (Etype (R))
5903 then
5904 Resolve (R, Etype (L));
5905 return;
5906
5907 elsif Is_Numeric_Type (Etype (R))
5908 and then not Is_Numeric_Type (Etype (L))
5909 then
5910 Resolve (L, Etype (R));
5911 return;
5912 end if;
5913
5914 -- Comparisons on A'Access are common enough to deserve a
5915 -- special message.
5916
d469eabe 5917 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
5918 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5919 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5920 then
5921 Error_Msg_N
5922 ("two access attributes cannot be compared directly", N);
5923 Error_Msg_N
aab883ec 5924 ("\use qualified expression for one of the operands",
996ae0b0
RK
5925 N);
5926 return;
5927
5928 -- Another one for C programmers
5929
5930 elsif Nkind (N) = N_Op_Concat
5931 and then Valid_Boolean_Arg (Etype (L))
5932 and then Valid_Boolean_Arg (Etype (R))
5933 then
5934 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
5935 Error_Msg_N -- CODEFIX
5936 ("\maybe AND was meant", N);
996ae0b0
RK
5937 return;
5938
5939 -- A special case for comparison of access parameter with null
5940
5941 elsif Nkind (N) = N_Op_Eq
5942 and then Is_Entity_Name (L)
5943 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5944 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5945 N_Access_Definition
5946 and then Nkind (R) = N_Null
5947 then
5948 Error_Msg_N ("access parameter is not allowed to be null", L);
5949 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5950 return;
61bee0e3
AC
5951
5952 -- Another special case for exponentiation, where the right
5953 -- operand must be Natural, independently of the base.
5954
5955 elsif Nkind (N) = N_Op_Expon
5956 and then Is_Numeric_Type (Etype (L))
5957 and then not Is_Overloaded (R)
5958 and then
5959 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5960 and then Base_Type (Etype (R)) /= Universal_Integer
5961 then
5962 Error_Msg_NE
5963 ("exponent must be of type Natural, found}", R, Etype (R));
5964 return;
996ae0b0
RK
5965 end if;
5966
0e0eecec
ES
5967 -- If we fall through then just give general message. Note that in
5968 -- the following messages, if the operand is overloaded we choose
5969 -- an arbitrary type to complain about, but that is probably more
5970 -- useful than not giving a type at all.
996ae0b0
RK
5971
5972 if Nkind (N) in N_Unary_Op then
5973 Error_Msg_Node_2 := Etype (R);
5974 Error_Msg_N ("operator& not defined for}", N);
5975 return;
5976
5977 else
fbf5a39b
AC
5978 if Nkind (N) in N_Binary_Op then
5979 if not Is_Overloaded (L)
5980 and then not Is_Overloaded (R)
5981 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5982 then
7ffd9312 5983 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 5984 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 5985
fbf5a39b 5986 else
b67a385c
ES
5987 -- Another attempt to find a fix: one of the candidate
5988 -- interpretations may not be use-visible. This has
5989 -- already been checked for predefined operators, so
5990 -- we examine only user-defined functions.
5991
5992 Op_Id := Get_Name_Entity_Id (Chars (N));
5993
5994 while Present (Op_Id) loop
5995 if Ekind (Op_Id) /= E_Operator
5996 and then Is_Overloadable (Op_Id)
5997 then
5998 if not Is_Immediately_Visible (Op_Id)
5999 and then not In_Use (Scope (Op_Id))
aab883ec 6000 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6001 and then not Is_Hidden (Op_Id)
6002 and then Ekind (Scope (Op_Id)) = E_Package
6003 and then
6004 Has_Compatible_Type
6005 (L, Etype (First_Formal (Op_Id)))
6006 and then Present
6007 (Next_Formal (First_Formal (Op_Id)))
6008 and then
6009 Has_Compatible_Type
6010 (R,
6011 Etype (Next_Formal (First_Formal (Op_Id))))
6012 then
ed2233dc 6013 Error_Msg_N
b67a385c 6014 ("No legal interpretation for operator&", N);
ed2233dc 6015 Error_Msg_NE
b67a385c
ES
6016 ("\use clause on& would make operation legal",
6017 N, Scope (Op_Id));
6018 exit;
6019 end if;
6020 end if;
fbf5a39b 6021
b67a385c
ES
6022 Op_Id := Homonym (Op_Id);
6023 end loop;
6024
6025 if No (Op_Id) then
6026 Error_Msg_N ("invalid operand types for operator&", N);
6027
6028 if Nkind (N) /= N_Op_Concat then
6029 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6030 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6031 end if;
fbf5a39b
AC
6032 end if;
6033 end if;
996ae0b0
RK
6034 end if;
6035 end if;
6036 end;
6037 end if;
6038 end Operator_Check;
6039
6e73e3ab
AC
6040 -----------------------------------------
6041 -- Process_Implicit_Dereference_Prefix --
6042 -----------------------------------------
6043
d469eabe 6044 function Process_Implicit_Dereference_Prefix
da709d08 6045 (E : Entity_Id;
d469eabe 6046 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6047 is
6048 Ref : Node_Id;
d469eabe 6049 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6050
6e73e3ab 6051 begin
1a8fae99
ES
6052 if Present (E)
6053 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6054 then
6e73e3ab
AC
6055 -- We create a dummy reference to E to ensure that the reference
6056 -- is not considered as part of an assignment (an implicit
6057 -- dereference can never assign to its prefix). The Comes_From_Source
6058 -- attribute needs to be propagated for accurate warnings.
6059
6060 Ref := New_Reference_To (E, Sloc (P));
6061 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6062 Generate_Reference (E, Ref);
6063 end if;
d469eabe
HK
6064
6065 -- An implicit dereference is a legal occurrence of an
6066 -- incomplete type imported through a limited_with clause,
6067 -- if the full view is visible.
6068
6069 if From_With_Type (Typ)
6070 and then not From_With_Type (Scope (Typ))
6071 and then
6072 (Is_Immediately_Visible (Scope (Typ))
6073 or else
6074 (Is_Child_Unit (Scope (Typ))
6075 and then Is_Visible_Child_Unit (Scope (Typ))))
6076 then
6077 return Available_View (Typ);
6078 else
6079 return Typ;
6080 end if;
6081
6e73e3ab
AC
6082 end Process_Implicit_Dereference_Prefix;
6083
30c20106
AC
6084 --------------------------------
6085 -- Remove_Abstract_Operations --
6086 --------------------------------
6087
6088 procedure Remove_Abstract_Operations (N : Node_Id) is
401093c1
ES
6089 Abstract_Op : Entity_Id := Empty;
6090 Address_Kludge : Boolean := False;
6091 I : Interp_Index;
6092 It : Interp;
30c20106 6093
0e0eecec
ES
6094 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6095 -- activate this if either extensions are enabled, or if the abstract
6096 -- operation in question comes from a predefined file. This latter test
6097 -- allows us to use abstract to make operations invisible to users. In
6098 -- particular, if type Address is non-private and abstract subprograms
6099 -- are used to hide its operators, they will be truly hidden.
30c20106 6100
5950a3ac 6101 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6102 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6103
6104 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6105 -- Ambiguities may arise when the operands are literal and the address
6106 -- operations in s-auxdec are visible. In that case, remove the
6107 -- interpretation of a literal as Address, to retain the semantics of
6108 -- Address as a private type.
9f4fd324
AC
6109
6110 ------------------------------------
5950a3ac 6111 -- Remove_Address_Interpretations --
9f4fd324
AC
6112 ------------------------------------
6113
5950a3ac 6114 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6115 Formal : Entity_Id;
6116
6117 begin
6118 if Is_Overloaded (N) then
6119 Get_First_Interp (N, I, It);
6120 while Present (It.Nam) loop
6121 Formal := First_Entity (It.Nam);
6122
5950a3ac
AC
6123 if Op = Second_Op then
6124 Formal := Next_Entity (Formal);
6125 end if;
6126
6127 if Is_Descendent_Of_Address (Etype (Formal)) then
401093c1 6128 Address_Kludge := True;
9f4fd324
AC
6129 Remove_Interp (I);
6130 end if;
6131
6132 Get_Next_Interp (I, It);
6133 end loop;
6134 end if;
6135 end Remove_Address_Interpretations;
6136
6137 -- Start of processing for Remove_Abstract_Operations
6138
30c20106 6139 begin
d935a36e 6140 if Is_Overloaded (N) then
30c20106 6141 Get_First_Interp (N, I, It);
d935a36e 6142
30c20106 6143 while Present (It.Nam) loop
aab883ec
ES
6144 if Is_Overloadable (It.Nam)
6145 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6146 and then not Is_Dispatching_Operation (It.Nam)
6147 then
af152989 6148 Abstract_Op := It.Nam;
fe45e59e 6149
401093c1
ES
6150 if Is_Descendent_Of_Address (It.Typ) then
6151 Address_Kludge := True;
6152 Remove_Interp (I);
6153 exit;
6154
fe45e59e 6155 -- In Ada 2005, this operation does not participate in Overload
9c510803 6156 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6157 -- unit, it is one of the operations declared abstract in some
6158 -- variants of System, and it must be removed as well.
6159
0791fbe9 6160 elsif Ada_Version >= Ada_2005
401093c1
ES
6161 or else Is_Predefined_File_Name
6162 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6163 then
6164 Remove_Interp (I);
6165 exit;
6166 end if;
30c20106
AC
6167 end if;
6168
6169 Get_Next_Interp (I, It);
6170 end loop;
6171
af152989 6172 if No (Abstract_Op) then
fe45e59e
ES
6173
6174 -- If some interpretation yields an integer type, it is still
6175 -- possible that there are address interpretations. Remove them
6176 -- if one operand is a literal, to avoid spurious ambiguities
6177 -- on systems where Address is a visible integer type.
6178
6179 if Is_Overloaded (N)
401093c1 6180 and then Nkind (N) in N_Op
fe45e59e
ES
6181 and then Is_Integer_Type (Etype (N))
6182 then
6183 if Nkind (N) in N_Binary_Op then
6184 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6185 Remove_Address_Interpretations (Second_Op);
6186
6187 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6188 Remove_Address_Interpretations (First_Op);
6189 end if;
6190 end if;
6191 end if;
3984e89a
AC
6192
6193 elsif Nkind (N) in N_Op then
4c46b835 6194
fe45e59e
ES
6195 -- Remove interpretations that treat literals as addresses. This
6196 -- is never appropriate, even when Address is defined as a visible
6197 -- Integer type. The reason is that we would really prefer Address
6198 -- to behave as a private type, even in this case, which is there
f3d57416
RW
6199 -- only to accommodate oddities of VMS address sizes. If Address
6200 -- is a visible integer type, we get lots of overload ambiguities.
30c20106 6201
5950a3ac
AC
6202 if Nkind (N) in N_Binary_Op then
6203 declare
6204 U1 : constant Boolean :=
6205 Present (Universal_Interpretation (Right_Opnd (N)));
6206 U2 : constant Boolean :=
6207 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 6208
5950a3ac 6209 begin
0e0eecec 6210 if U1 then
5950a3ac 6211 Remove_Address_Interpretations (Second_Op);
0e0eecec 6212 end if;
5950a3ac 6213
0e0eecec 6214 if U2 then
5950a3ac 6215 Remove_Address_Interpretations (First_Op);
30c20106
AC
6216 end if;
6217
5950a3ac
AC
6218 if not (U1 and U2) then
6219
6220 -- Remove corresponding predefined operator, which is
6221 -- always added to the overload set.
6222
6223 Get_First_Interp (N, I, It);
6224 while Present (It.Nam) loop
0ab80019
AC
6225 if Scope (It.Nam) = Standard_Standard
6226 and then Base_Type (It.Typ) =
6227 Base_Type (Etype (Abstract_Op))
6228 then
5950a3ac
AC
6229 Remove_Interp (I);
6230 end if;
6231
8a36a0cc
AC
6232 Get_Next_Interp (I, It);
6233 end loop;
6234
6235 elsif Is_Overloaded (N)
6236 and then Present (Univ_Type)
6237 then
6238 -- If both operands have a universal interpretation,
0e0eecec
ES
6239 -- it is still necessary to remove interpretations that
6240 -- yield Address. Any remaining ambiguities will be
6241 -- removed in Disambiguate.
8a36a0cc
AC
6242
6243 Get_First_Interp (N, I, It);
8a36a0cc 6244 while Present (It.Nam) loop
0e0eecec
ES
6245 if Is_Descendent_Of_Address (It.Typ) then
6246 Remove_Interp (I);
6247
6248 elsif not Is_Type (It.Nam) then
8a36a0cc 6249 Set_Entity (N, It.Nam);
8a36a0cc
AC
6250 end if;
6251
5950a3ac
AC
6252 Get_Next_Interp (I, It);
6253 end loop;
6254 end if;
6255 end;
30c20106 6256 end if;
3984e89a
AC
6257
6258 elsif Nkind (N) = N_Function_Call
6259 and then
6260 (Nkind (Name (N)) = N_Operator_Symbol
6261 or else
6262 (Nkind (Name (N)) = N_Expanded_Name
6263 and then
6264 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6265 then
5950a3ac 6266
3984e89a
AC
6267 declare
6268 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
6269 U1 : constant Boolean :=
6270 Present (Universal_Interpretation (Arg1));
6271 U2 : constant Boolean :=
6272 Present (Next (Arg1)) and then
6273 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
6274
6275 begin
0e0eecec 6276 if U1 then
5950a3ac 6277 Remove_Address_Interpretations (First_Op);
0e0eecec 6278 end if;
3984e89a 6279
0e0eecec 6280 if U2 then
5950a3ac
AC
6281 Remove_Address_Interpretations (Second_Op);
6282 end if;
6283
6284 if not (U1 and U2) then
3984e89a
AC
6285 Get_First_Interp (N, I, It);
6286 while Present (It.Nam) loop
9f4fd324
AC
6287 if Scope (It.Nam) = Standard_Standard
6288 and then It.Typ = Base_Type (Etype (Abstract_Op))
6289 then
3984e89a
AC
6290 Remove_Interp (I);
6291 end if;
6292
6293 Get_Next_Interp (I, It);
6294 end loop;
6295 end if;
6296 end;
30c20106 6297 end if;
af152989 6298
401093c1
ES
6299 -- If the removal has left no valid interpretations, emit an error
6300 -- message now and label node as illegal.
af152989
AC
6301
6302 if Present (Abstract_Op) then
6303 Get_First_Interp (N, I, It);
6304
6305 if No (It.Nam) then
6306
6e73e3ab 6307 -- Removal of abstract operation left no viable candidate
af152989
AC
6308
6309 Set_Etype (N, Any_Type);
6310 Error_Msg_Sloc := Sloc (Abstract_Op);
6311 Error_Msg_NE
6312 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
6313
6314 -- In Ada 2005, an abstract operation may disable predefined
6315 -- operators. Since the context is not yet known, we mark the
6316 -- predefined operators as potentially hidden. Do not include
6317 -- predefined operators when addresses are involved since this
6318 -- case is handled separately.
6319
0791fbe9 6320 elsif Ada_Version >= Ada_2005
401093c1
ES
6321 and then not Address_Kludge
6322 then
6323 while Present (It.Nam) loop
6324 if Is_Numeric_Type (It.Typ)
6325 and then Scope (It.Typ) = Standard_Standard
6326 then
6327 Set_Abstract_Op (I, Abstract_Op);
6328 end if;
6329
6330 Get_Next_Interp (I, It);
6331 end loop;
af152989
AC
6332 end if;
6333 end if;
30c20106
AC
6334 end if;
6335 end Remove_Abstract_Operations;
6336
d50f4827
AC
6337 ----------------------------
6338 -- Try_Container_Indexing --
6339 ----------------------------
6340
6341 function Try_Container_Indexing
6342 (N : Node_Id;
6343 Prefix : Node_Id;
6344 Expr : Node_Id) return Boolean
6345 is
6346 Loc : constant Source_Ptr := Sloc (N);
6347 Disc : Entity_Id;
6348 Func : Entity_Id;
6349 Func_Name : Node_Id;
6350 Indexing : Node_Id;
6351 Is_Var : Boolean;
6352 Ritem : Node_Id;
6353
6354 begin
6355
6356 -- Check whether type has a specified indexing aspect.
6357
6358 Func_Name := Empty;
6359 Is_Var := False;
d50f4827 6360
dedac3eb 6361 Ritem := First_Rep_Item (Etype (Prefix));
d50f4827
AC
6362 while Present (Ritem) loop
6363 if Nkind (Ritem) = N_Aspect_Specification then
6364
6365 -- Prefer Variable_Indexing, but will settle for Constant.
6366
6367 if Get_Aspect_Id (Chars (Identifier (Ritem))) =
dedac3eb 6368 Aspect_Constant_Indexing
d50f4827
AC
6369 then
6370 Func_Name := Expression (Ritem);
6371
6372 elsif Get_Aspect_Id (Chars (Identifier (Ritem))) =
dedac3eb 6373 Aspect_Variable_Indexing
d50f4827
AC
6374 then
6375 Func_Name := Expression (Ritem);
6376 Is_Var := True;
6377 exit;
6378 end if;
6379 end if;
dedac3eb 6380
d50f4827
AC
6381 Next_Rep_Item (Ritem);
6382 end loop;
6383
6384 -- If aspect does not exist the expression is illegal. Error is
6385 -- diagnosed in caller.
6386
6387 if No (Func_Name) then
57a8057a
AC
6388
6389 -- The prefix itself may be an indexing of a container
6390 -- rewrite as such and re-analyze.
6391
6392 if Has_Implicit_Dereference (Etype (Prefix)) then
6393 Build_Explicit_Dereference
6394 (Prefix, First_Discriminant (Etype (Prefix)));
6395 return Try_Container_Indexing (N, Prefix, Expr);
6396
6397 else
6398 return False;
6399 end if;
d50f4827
AC
6400 end if;
6401
6402 if Is_Var
6403 and then not Is_Variable (Prefix)
6404 then
6405 Error_Msg_N ("Variable indexing cannot be applied to a constant", N);
6406 end if;
6407
6408 if not Is_Overloaded (Func_Name) then
6409 Func := Entity (Func_Name);
6410 Indexing := Make_Function_Call (Loc,
6411 Name => New_Occurrence_Of (Func, Loc),
6412 Parameter_Associations =>
6413 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6414 Rewrite (N, Indexing);
6415 Analyze (N);
6416
6417 -- The return type of the indexing function is a reference type, so
6418 -- add the dereference as a possible interpretation.
6419
6420 Disc := First_Discriminant (Etype (Func));
6421 while Present (Disc) loop
6422 if Has_Implicit_Dereference (Disc) then
6423 Add_One_Interp (N, Disc, Designated_Type (Etype (Disc)));
6424 exit;
6425 end if;
6426
6427 Next_Discriminant (Disc);
6428 end loop;
6429
6430 else
6431 Indexing := Make_Function_Call (Loc,
6432 Name => Make_Identifier (Loc, Chars (Func_Name)),
6433 Parameter_Associations =>
6434 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6435
6436 Rewrite (N, Indexing);
6437
6438 declare
6439 I : Interp_Index;
6440 It : Interp;
6441 Success : Boolean;
6442
6443 begin
6444 Get_First_Interp (Func_Name, I, It);
6445 Set_Etype (N, Any_Type);
6446 while Present (It.Nam) loop
6447 Analyze_One_Call (N, It.Nam, False, Success);
6448 if Success then
6449 Set_Etype (Name (N), It.Typ);
6450
6451 -- Add implicit dereference interpretation.
6452
6453 Disc := First_Discriminant (Etype (It.Nam));
6454
6455 while Present (Disc) loop
6456 if Has_Implicit_Dereference (Disc) then
6457 Add_One_Interp
6458 (N, Disc, Designated_Type (Etype (Disc)));
6459 exit;
6460 end if;
6461
6462 Next_Discriminant (Disc);
6463 end loop;
6464 end if;
6465 Get_Next_Interp (I, It);
6466 end loop;
6467 end;
6468 end if;
6469
6470 return True;
6471 end Try_Container_Indexing;
6472
996ae0b0
RK
6473 -----------------------
6474 -- Try_Indirect_Call --
6475 -----------------------
6476
6477 function Try_Indirect_Call
91b1417d
AC
6478 (N : Node_Id;
6479 Nam : Entity_Id;
6480 Typ : Entity_Id) return Boolean
996ae0b0 6481 is
24657705
HK
6482 Actual : Node_Id;
6483 Formal : Entity_Id;
6484
8a7988f5 6485 Call_OK : Boolean;
24657705 6486 pragma Warnings (Off, Call_OK);
996ae0b0
RK
6487
6488 begin
8a7988f5 6489 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 6490
8a7988f5 6491 Actual := First_Actual (N);
fbf5a39b 6492 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 6493 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
6494 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6495 return False;
6496 end if;
6497
6498 Next (Actual);
6499 Next_Formal (Formal);
6500 end loop;
6501
6502 if No (Actual) and then No (Formal) then
6503 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6504
6505 -- Nam is a candidate interpretation for the name in the call,
6506 -- if it is not an indirect call.
6507
6508 if not Is_Type (Nam)
6509 and then Is_Entity_Name (Name (N))
6510 then
6511 Set_Entity (Name (N), Nam);
6512 end if;
6513
6514 return True;
6515 else
6516 return False;
6517 end if;
6518 end Try_Indirect_Call;
6519
6520 ----------------------
6521 -- Try_Indexed_Call --
6522 ----------------------
6523
6524 function Try_Indexed_Call
aab883ec
ES
6525 (N : Node_Id;
6526 Nam : Entity_Id;
6527 Typ : Entity_Id;
6528 Skip_First : Boolean) return Boolean
996ae0b0 6529 is
5ff22245
ES
6530 Loc : constant Source_Ptr := Sloc (N);
6531 Actuals : constant List_Id := Parameter_Associations (N);
6532 Actual : Node_Id;
6533 Index : Entity_Id;
996ae0b0
RK
6534
6535 begin
fbf5a39b 6536 Actual := First (Actuals);
aab883ec
ES
6537
6538 -- If the call was originally written in prefix form, skip the first
6539 -- actual, which is obviously not defaulted.
6540
6541 if Skip_First then
6542 Next (Actual);
6543 end if;
6544
fbf5a39b 6545 Index := First_Index (Typ);
9de61fcb
RD
6546 while Present (Actual) and then Present (Index) loop
6547
996ae0b0
RK
6548 -- If the parameter list has a named association, the expression
6549 -- is definitely a call and not an indexed component.
6550
6551 if Nkind (Actual) = N_Parameter_Association then
6552 return False;
6553 end if;
6554
5ff22245
ES
6555 if Is_Entity_Name (Actual)
6556 and then Is_Type (Entity (Actual))
6557 and then No (Next (Actual))
6558 then
1c218ac3
AC
6559 -- A single actual that is a type name indicates a slice if the
6560 -- type is discrete, and an error otherwise.
6561
6562 if Is_Discrete_Type (Entity (Actual)) then
6563 Rewrite (N,
6564 Make_Slice (Loc,
22b77f68
RD
6565 Prefix =>
6566 Make_Function_Call (Loc,
6567 Name => Relocate_Node (Name (N))),
6568 Discrete_Range =>
1c218ac3
AC
6569 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6570
6571 Analyze (N);
6572
6573 else
6574 Error_Msg_N ("invalid use of type in expression", Actual);
6575 Set_Etype (N, Any_Type);
6576 end if;
5ff22245 6577
5ff22245
ES
6578 return True;
6579
6580 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
6581 return False;
6582 end if;
6583
6584 Next (Actual);
6585 Next_Index (Index);
6586 end loop;
6587
6588 if No (Actual) and then No (Index) then
6589 Add_One_Interp (N, Nam, Component_Type (Typ));
6590
6591 -- Nam is a candidate interpretation for the name in the call,
6592 -- if it is not an indirect call.
6593
6594 if not Is_Type (Nam)
6595 and then Is_Entity_Name (Name (N))
6596 then
6597 Set_Entity (Name (N), Nam);
6598 end if;
6599
6600 return True;
6601 else
6602 return False;
6603 end if;
996ae0b0
RK
6604 end Try_Indexed_Call;
6605
35ae2ed8
AC
6606 --------------------------
6607 -- Try_Object_Operation --
6608 --------------------------
6609
6610 function Try_Object_Operation (N : Node_Id) return Boolean is
b67a385c 6611 K : constant Node_Kind := Nkind (Parent (N));
d469eabe
HK
6612 Is_Subprg_Call : constant Boolean := Nkind_In
6613 (K, N_Procedure_Call_Statement,
6614 N_Function_Call);
b67a385c 6615 Loc : constant Source_Ptr := Sloc (N);
b67a385c 6616 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
6617
6618 Subprog : constant Node_Id :=
6619 Make_Identifier (Sloc (Selector_Name (N)),
6620 Chars => Chars (Selector_Name (N)));
401093c1 6621 -- Identifier on which possible interpretations will be collected
0a36105d 6622
b67a385c
ES
6623 Report_Error : Boolean := False;
6624 -- If no candidate interpretation matches the context, redo the
6625 -- analysis with error enabled to provide additional information.
28d6470f
JM
6626
6627 Actual : Node_Id;
d469eabe 6628 Candidate : Entity_Id := Empty;
b67a385c 6629 New_Call_Node : Node_Id := Empty;
4c46b835 6630 Node_To_Replace : Node_Id;
28d6470f 6631 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 6632 Success : Boolean := False;
4c46b835 6633
0a36105d
JM
6634 function Valid_Candidate
6635 (Success : Boolean;
6636 Call : Node_Id;
6637 Subp : Entity_Id) return Entity_Id;
6638 -- If the subprogram is a valid interpretation, record it, and add
6639 -- to the list of interpretations of Subprog.
6640
4c46b835
AC
6641 procedure Complete_Object_Operation
6642 (Call_Node : Node_Id;
0a36105d 6643 Node_To_Replace : Node_Id);
ec6078e3
ES
6644 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6645 -- Call_Node, insert the object (or its dereference) as the first actual
6646 -- in the call, and complete the analysis of the call.
4c46b835 6647
0a36105d
JM
6648 procedure Report_Ambiguity (Op : Entity_Id);
6649 -- If a prefixed procedure call is ambiguous, indicate whether the
6650 -- call includes an implicit dereference or an implicit 'Access.
6651
4c46b835
AC
6652 procedure Transform_Object_Operation
6653 (Call_Node : out Node_Id;
0a36105d 6654 Node_To_Replace : out Node_Id);
ec6078e3 6655 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
6656 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6657 -- either N or the parent of N, and Subprog is a reference to the
6658 -- subprogram we are trying to match.
35ae2ed8
AC
6659
6660 function Try_Class_Wide_Operation
4c46b835
AC
6661 (Call_Node : Node_Id;
6662 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6663 -- Traverse all ancestor types looking for a class-wide subprogram
6664 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 6665
0a36105d
JM
6666 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6667 -- If prefix is overloaded, its interpretation may include different
6668 -- tagged types, and we must examine the primitive operations and
6669 -- the class-wide operations of each in order to find candidate
6670 -- interpretations for the call as a whole.
6671
4c46b835
AC
6672 function Try_Primitive_Operation
6673 (Call_Node : Node_Id;
6674 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6675 -- Traverse the list of primitive subprograms looking for a dispatching
6676 -- operation for which the current node is a valid call .
4c46b835 6677
0a36105d
JM
6678 ---------------------
6679 -- Valid_Candidate --
6680 ---------------------
6681
6682 function Valid_Candidate
6683 (Success : Boolean;
6684 Call : Node_Id;
6685 Subp : Entity_Id) return Entity_Id
6686 is
ee9aa7b6 6687 Arr_Type : Entity_Id;
0a36105d
JM
6688 Comp_Type : Entity_Id;
6689
6690 begin
6691 -- If the subprogram is a valid interpretation, record it in global
6692 -- variable Subprog, to collect all possible overloadings.
6693
6694 if Success then
6695 if Subp /= Entity (Subprog) then
6696 Add_One_Interp (Subprog, Subp, Etype (Subp));
6697 end if;
6698 end if;
6699
d469eabe
HK
6700 -- If the call may be an indexed call, retrieve component type of
6701 -- resulting expression, and add possible interpretation.
0a36105d 6702
ee9aa7b6 6703 Arr_Type := Empty;
0a36105d
JM
6704 Comp_Type := Empty;
6705
6706 if Nkind (Call) = N_Function_Call
d469eabe
HK
6707 and then Nkind (Parent (N)) = N_Indexed_Component
6708 and then Needs_One_Actual (Subp)
0a36105d
JM
6709 then
6710 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 6711 Arr_Type := Etype (Subp);
0a36105d
JM
6712
6713 elsif Is_Access_Type (Etype (Subp))
6714 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6715 then
ee9aa7b6 6716 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
6717 end if;
6718 end if;
6719
ee9aa7b6
AC
6720 if Present (Arr_Type) then
6721
3b42c566
RD
6722 -- Verify that the actuals (excluding the object) match the types
6723 -- of the indexes.
ee9aa7b6
AC
6724
6725 declare
6726 Actual : Node_Id;
6727 Index : Node_Id;
6728
6729 begin
6730 Actual := Next (First_Actual (Call));
6731 Index := First_Index (Arr_Type);
ee9aa7b6
AC
6732 while Present (Actual) and then Present (Index) loop
6733 if not Has_Compatible_Type (Actual, Etype (Index)) then
6734 Arr_Type := Empty;
6735 exit;
6736 end if;
6737
6738 Next_Actual (Actual);
6739 Next_Index (Index);
6740 end loop;
6741
6742 if No (Actual)
6743 and then No (Index)
6744 and then Present (Arr_Type)
6745 then
6746 Comp_Type := Component_Type (Arr_Type);
6747 end if;
6748 end;
6749
6750 if Present (Comp_Type)
6751 and then Etype (Subprog) /= Comp_Type
6752 then
6753 Add_One_Interp (Subprog, Subp, Comp_Type);
6754 end if;
0a36105d
JM
6755 end if;
6756
6757 if Etype (Call) /= Any_Type then
6758 return Subp;
6759 else
6760 return Empty;
6761 end if;
6762 end Valid_Candidate;
6763
4c46b835
AC
6764 -------------------------------
6765 -- Complete_Object_Operation --
6766 -------------------------------
6767
6768 procedure Complete_Object_Operation
6769 (Call_Node : Node_Id;
0a36105d 6770 Node_To_Replace : Node_Id)
4c46b835 6771 is
b4592168
GD
6772 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6773 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
6774 First_Actual : Node_Id;
6775
4c46b835 6776 begin
955871d3
AC
6777 -- Place the name of the operation, with its interpretations,
6778 -- on the rewritten call.
0a36105d 6779
ec6078e3
ES
6780 Set_Name (Call_Node, Subprog);
6781
0a36105d
JM
6782 First_Actual := First (Parameter_Associations (Call_Node));
6783
b67a385c
ES
6784 -- For cross-reference purposes, treat the new node as being in
6785 -- the source if the original one is.
6786
6787 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6788 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6789
ec6078e3
ES
6790 if Nkind (N) = N_Selected_Component
6791 and then not Inside_A_Generic
6792 then
6793 Set_Entity (Selector_Name (N), Entity (Subprog));
6794 end if;
6795
6796 -- If need be, rewrite first actual as an explicit dereference
0a36105d
JM
6797 -- If the call is overloaded, the rewriting can only be done
6798 -- once the primitive operation is identified.
6799
6800 if Is_Overloaded (Subprog) then
ec6078e3 6801
0a36105d
JM
6802 -- The prefix itself may be overloaded, and its interpretations
6803 -- must be propagated to the new actual in the call.
6804
6805 if Is_Overloaded (Obj) then
6806 Save_Interps (Obj, First_Actual);
6807 end if;
6808
6809 Rewrite (First_Actual, Obj);
6810
6811 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
6812 and then Is_Access_Type (Etype (Obj))
6813 then
6814 Rewrite (First_Actual,
6815 Make_Explicit_Dereference (Sloc (Obj), Obj));
6816 Analyze (First_Actual);
fe45e59e 6817
401093c1
ES
6818 -- If we need to introduce an explicit dereference, verify that
6819 -- the resulting actual is compatible with the mode of the formal.
6820
6821 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6822 and then Is_Access_Constant (Etype (Obj))
6823 then
6824 Error_Msg_NE
6825 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6826 end if;
6827
d469eabe
HK
6828 -- Conversely, if the formal is an access parameter and the object
6829 -- is not, replace the actual with a 'Access reference. Its analysis
6830 -- will check that the object is aliased.
fe45e59e
ES
6831
6832 elsif Is_Access_Type (Formal_Type)
6833 and then not Is_Access_Type (Etype (Obj))
6834 then
b4592168
GD
6835 -- A special case: A.all'access is illegal if A is an access to a
6836 -- constant and the context requires an access to a variable.
6837
6838 if not Is_Access_Constant (Formal_Type) then
6839 if (Nkind (Obj) = N_Explicit_Dereference
6840 and then Is_Access_Constant (Etype (Prefix (Obj))))
6841 or else not Is_Variable (Obj)
6842 then
6843 Error_Msg_NE
6844 ("actual for& must be a variable", Obj, Control);
6845 end if;
6846 end if;
6847
fe45e59e
ES
6848 Rewrite (First_Actual,
6849 Make_Attribute_Reference (Loc,
6850 Attribute_Name => Name_Access,
6851 Prefix => Relocate_Node (Obj)));
0a36105d
JM
6852
6853 if not Is_Aliased_View (Obj) then
ed2233dc 6854 Error_Msg_NE
0a36105d 6855 ("object in prefixed call to& must be aliased"
401093c1 6856 & " (RM-2005 4.3.1 (13))",
0a36105d
JM
6857 Prefix (First_Actual), Subprog);
6858 end if;
6859
fe45e59e
ES
6860 Analyze (First_Actual);
6861
ec6078e3 6862 else
0a36105d
JM
6863 if Is_Overloaded (Obj) then
6864 Save_Interps (Obj, First_Actual);
6865 end if;
ec6078e3 6866
0a36105d 6867 Rewrite (First_Actual, Obj);
aab883ec
ES
6868 end if;
6869
7ffd9312 6870 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
6871
6872 -- Propagate the interpretations collected in subprog to the new
6873 -- function call node, to be resolved from context.
6874
6875 if Is_Overloaded (Subprog) then
6876 Save_Interps (Subprog, Node_To_Replace);
7415029d 6877
0a36105d
JM
6878 else
6879 Analyze (Node_To_Replace);
438ff97c 6880
199c6a10
AC
6881 -- If the operation has been rewritten into a call, which may get
6882 -- subsequently an explicit dereference, preserve the type on the
6883 -- original node (selected component or indexed component) for
6884 -- subsequent legality tests, e.g. Is_Variable. which examines
6885 -- the original node.
438ff97c
ES
6886
6887 if Nkind (Node_To_Replace) = N_Function_Call then
6888 Set_Etype
6889 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
6890 end if;
0a36105d 6891 end if;
4c46b835
AC
6892 end Complete_Object_Operation;
6893
0a36105d
JM
6894 ----------------------
6895 -- Report_Ambiguity --
6896 ----------------------
6897
6898 procedure Report_Ambiguity (Op : Entity_Id) is
6899 Access_Formal : constant Boolean :=
6900 Is_Access_Type (Etype (First_Formal (Op)));
6901 Access_Actual : constant Boolean :=
6902 Is_Access_Type (Etype (Prefix (N)));
6903
6904 begin
6905 Error_Msg_Sloc := Sloc (Op);
6906
6907 if Access_Formal and then not Access_Actual then
6908 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6909 Error_Msg_N
0a36105d
JM
6910 ("\possible interpretation"
6911 & " (inherited, with implicit 'Access) #", N);
6912 else
ed2233dc 6913 Error_Msg_N
0a36105d
JM
6914 ("\possible interpretation (with implicit 'Access) #", N);
6915 end if;
6916
6917 elsif not Access_Formal and then Access_Actual then
6918 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6919 Error_Msg_N
0a36105d
JM
6920 ("\possible interpretation"
6921 & " ( inherited, with implicit dereference) #", N);
6922 else
ed2233dc 6923 Error_Msg_N
0a36105d
JM
6924 ("\possible interpretation (with implicit dereference) #", N);
6925 end if;
6926
6927 else
6928 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6929 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 6930 else
4e7a4f6e
AC
6931 Error_Msg_N -- CODEFIX
6932 ("\possible interpretation#", N);
0a36105d
JM
6933 end if;
6934 end if;
6935 end Report_Ambiguity;
6936
4c46b835
AC
6937 --------------------------------
6938 -- Transform_Object_Operation --
6939 --------------------------------
6940
6941 procedure Transform_Object_Operation
6942 (Call_Node : out Node_Id;
0a36105d 6943 Node_To_Replace : out Node_Id)
35ae2ed8 6944 is
ec6078e3
ES
6945 Dummy : constant Node_Id := New_Copy (Obj);
6946 -- Placeholder used as a first parameter in the call, replaced
6947 -- eventually by the proper object.
6948
d469eabe
HK
6949 Parent_Node : constant Node_Id := Parent (N);
6950
ec6078e3 6951 Actual : Node_Id;
d469eabe 6952 Actuals : List_Id;
ec6078e3 6953
35ae2ed8 6954 begin
ec6078e3
ES
6955 -- Common case covering 1) Call to a procedure and 2) Call to a
6956 -- function that has some additional actuals.
35ae2ed8 6957
d469eabe
HK
6958 if Nkind_In (Parent_Node, N_Function_Call,
6959 N_Procedure_Call_Statement)
35ae2ed8 6960
ec6078e3
ES
6961 -- N is a selected component node containing the name of the
6962 -- subprogram. If N is not the name of the parent node we must
6963 -- not replace the parent node by the new construct. This case
6964 -- occurs when N is a parameterless call to a subprogram that
6965 -- is an actual parameter of a call to another subprogram. For
6966 -- example:
6967 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 6968
ec6078e3 6969 and then Name (Parent_Node) = N
4c46b835
AC
6970 then
6971 Node_To_Replace := Parent_Node;
35ae2ed8 6972
ec6078e3 6973 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 6974
ec6078e3
ES
6975 if Present (Actuals) then
6976 Prepend (Dummy, Actuals);
6977 else
6978 Actuals := New_List (Dummy);
6979 end if;
4c46b835
AC
6980
6981 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6982 Call_Node :=
6983 Make_Procedure_Call_Statement (Loc,
0a36105d 6984 Name => New_Copy (Subprog),
4c46b835
AC
6985 Parameter_Associations => Actuals);
6986
6987 else
4c46b835
AC
6988 Call_Node :=
6989 Make_Function_Call (Loc,
0a36105d 6990 Name => New_Copy (Subprog),
4c46b835 6991 Parameter_Associations => Actuals);
35ae2ed8 6992
35ae2ed8
AC
6993 end if;
6994
d469eabe 6995 -- Before analysis, a function call appears as an indexed component
ec6078e3 6996 -- if there are no named associations.
758c442c 6997
ec6078e3
ES
6998 elsif Nkind (Parent_Node) = N_Indexed_Component
6999 and then N = Prefix (Parent_Node)
7000 then
758c442c 7001 Node_To_Replace := Parent_Node;
ec6078e3
ES
7002 Actuals := Expressions (Parent_Node);
7003
7004 Actual := First (Actuals);
7005 while Present (Actual) loop
7006 Analyze (Actual);
7007 Next (Actual);
7008 end loop;
7009
7010 Prepend (Dummy, Actuals);
758c442c
GD
7011
7012 Call_Node :=
7013 Make_Function_Call (Loc,
0a36105d 7014 Name => New_Copy (Subprog),
758c442c
GD
7015 Parameter_Associations => Actuals);
7016
d469eabe 7017 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 7018
4c46b835
AC
7019 else
7020 Node_To_Replace := N;
7021
7022 Call_Node :=
7023 Make_Function_Call (Loc,
0a36105d 7024 Name => New_Copy (Subprog),
ec6078e3 7025 Parameter_Associations => New_List (Dummy));
4c46b835
AC
7026 end if;
7027 end Transform_Object_Operation;
35ae2ed8
AC
7028
7029 ------------------------------
7030 -- Try_Class_Wide_Operation --
7031 ------------------------------
7032
7033 function Try_Class_Wide_Operation
4c46b835
AC
7034 (Call_Node : Node_Id;
7035 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7036 is
0a36105d
JM
7037 Anc_Type : Entity_Id;
7038 Matching_Op : Entity_Id := Empty;
7039 Error : Boolean;
7040
7041 procedure Traverse_Homonyms
7042 (Anc_Type : Entity_Id;
7043 Error : out Boolean);
7044 -- Traverse the homonym chain of the subprogram searching for those
7045 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
7046 -- or an anonymous access type designating the class-wide type. If
7047 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
7048
7049 procedure Traverse_Interfaces
7050 (Anc_Type : Entity_Id;
7051 Error : out Boolean);
7052 -- Traverse the list of interfaces, if any, associated with Anc_Type
7053 -- and search for acceptable class-wide homonyms associated with each
7054 -- interface. If an ambiguity is detected, then Error is set to True.
7055
7056 -----------------------
7057 -- Traverse_Homonyms --
7058 -----------------------
7059
7060 procedure Traverse_Homonyms
7061 (Anc_Type : Entity_Id;
7062 Error : out Boolean)
7063 is
7064 Cls_Type : Entity_Id;
7065 Hom : Entity_Id;
7066 Hom_Ref : Node_Id;
7067 Success : Boolean;
35ae2ed8 7068
0a36105d
JM
7069 begin
7070 Error := False;
ec6078e3 7071
b67a385c
ES
7072 Cls_Type := Class_Wide_Type (Anc_Type);
7073
4c46b835 7074 Hom := Current_Entity (Subprog);
401093c1 7075
383e179e
AC
7076 -- Find a non-hidden operation whose first parameter is of the
7077 -- class-wide type, a subtype thereof, or an anonymous access
7078 -- to same.
401093c1 7079
35ae2ed8 7080 while Present (Hom) loop
6a2e4f0b 7081 if Ekind_In (Hom, E_Procedure, E_Function)
383e179e 7082 and then not Is_Hidden (Hom)
b67a385c 7083 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 7084 and then Present (First_Formal (Hom))
b67a385c 7085 and then
401093c1 7086 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
7087 or else
7088 (Is_Access_Type (Etype (First_Formal (Hom)))
0a36105d
JM
7089 and then
7090 Ekind (Etype (First_Formal (Hom))) =
7091 E_Anonymous_Access_Type
b67a385c 7092 and then
401093c1
ES
7093 Base_Type
7094 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 7095 Cls_Type))
35ae2ed8 7096 then
88f47280
AC
7097 -- If the context is a procedure call, ignore functions
7098 -- in the name of the call.
7099
7100 if Ekind (Hom) = E_Function
7101 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7102 and then N = Name (Parent (N))
7103 then
7104 goto Next_Hom;
7105 end if;
7106
ec6078e3 7107 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
7108 Set_Is_Overloaded (Call_Node, False);
7109 Success := False;
4c46b835 7110
0a36105d
JM
7111 if No (Matching_Op) then
7112 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
7113 Set_Etype (Call_Node, Any_Type);
7114 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 7115
0a36105d 7116 Set_Name (Call_Node, Hom_Ref);
4c46b835 7117
0a36105d
JM
7118 Analyze_One_Call
7119 (N => Call_Node,
7120 Nam => Hom,
7121 Report => Report_Error,
7122 Success => Success,
7123 Skip_First => True);
4c46b835 7124
0a36105d
JM
7125 Matching_Op :=
7126 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 7127
0a36105d
JM
7128 else
7129 Analyze_One_Call
7130 (N => Call_Node,
7131 Nam => Hom,
7132 Report => Report_Error,
7133 Success => Success,
7134 Skip_First => True);
7135
7136 if Present (Valid_Candidate (Success, Call_Node, Hom))
7137 and then Nkind (Call_Node) /= N_Function_Call
7138 then
ed2233dc 7139 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
7140 Report_Ambiguity (Matching_Op);
7141 Report_Ambiguity (Hom);
7142 Error := True;
7143 return;
7144 end if;
35ae2ed8
AC
7145 end if;
7146 end if;
7147
88f47280
AC
7148 <<Next_Hom>>
7149 Hom := Homonym (Hom);
35ae2ed8 7150 end loop;
0a36105d
JM
7151 end Traverse_Homonyms;
7152
7153 -------------------------
7154 -- Traverse_Interfaces --
7155 -------------------------
35ae2ed8 7156
0a36105d
JM
7157 procedure Traverse_Interfaces
7158 (Anc_Type : Entity_Id;
7159 Error : out Boolean)
7160 is
0a36105d
JM
7161 Intface_List : constant List_Id :=
7162 Abstract_Interface_List (Anc_Type);
d469eabe 7163 Intface : Node_Id;
0a36105d
JM
7164
7165 begin
7166 Error := False;
7167
7168 if Is_Non_Empty_List (Intface_List) then
7169 Intface := First (Intface_List);
7170 while Present (Intface) loop
7171
7172 -- Look for acceptable class-wide homonyms associated with
7173 -- the interface.
7174
7175 Traverse_Homonyms (Etype (Intface), Error);
7176
7177 if Error then
7178 return;
7179 end if;
7180
7181 -- Continue the search by looking at each of the interface's
7182 -- associated interface ancestors.
7183
7184 Traverse_Interfaces (Etype (Intface), Error);
7185
7186 if Error then
7187 return;
7188 end if;
7189
7190 Next (Intface);
7191 end loop;
7192 end if;
7193 end Traverse_Interfaces;
7194
7195 -- Start of processing for Try_Class_Wide_Operation
7196
7197 begin
d469eabe
HK
7198 -- Loop through ancestor types (including interfaces), traversing
7199 -- the homonym chain of the subprogram, trying out those homonyms
7200 -- whose first formal has the class-wide type of the ancestor, or
7201 -- an anonymous access type designating the class-wide type.
0a36105d
JM
7202
7203 Anc_Type := Obj_Type;
7204 loop
7205 -- Look for a match among homonyms associated with the ancestor
7206
7207 Traverse_Homonyms (Anc_Type, Error);
7208
7209 if Error then
7210 return True;
7211 end if;
7212
7213 -- Continue the search for matches among homonyms associated with
7214 -- any interfaces implemented by the ancestor.
7215
7216 Traverse_Interfaces (Anc_Type, Error);
7217
7218 if Error then
7219 return True;
7220 end if;
35ae2ed8 7221
4c46b835
AC
7222 exit when Etype (Anc_Type) = Anc_Type;
7223 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
7224 end loop;
7225
0a36105d
JM
7226 if Present (Matching_Op) then
7227 Set_Etype (Call_Node, Etype (Matching_Op));
7228 end if;
ec6078e3 7229
0a36105d 7230 return Present (Matching_Op);
35ae2ed8
AC
7231 end Try_Class_Wide_Operation;
7232
0a36105d
JM
7233 -----------------------------------
7234 -- Try_One_Prefix_Interpretation --
7235 -----------------------------------
7236
7237 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7238 begin
7239 Obj_Type := T;
7240
7241 if Is_Access_Type (Obj_Type) then
7242 Obj_Type := Designated_Type (Obj_Type);
7243 end if;
7244
7245 if Ekind (Obj_Type) = E_Private_Subtype then
7246 Obj_Type := Base_Type (Obj_Type);
7247 end if;
7248
7249 if Is_Class_Wide_Type (Obj_Type) then
7250 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7251 end if;
7252
7253 -- The type may have be obtained through a limited_with clause,
7254 -- in which case the primitive operations are available on its
401093c1 7255 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
7256
7257 if Ekind (Obj_Type) = E_Incomplete_Type
7258 and then From_With_Type (Obj_Type)
7259 then
401093c1 7260 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
7261 end if;
7262
7263 -- If the object is not tagged, or the type is still an incomplete
7264 -- type, this is not a prefixed call.
7265
7266 if not Is_Tagged_Type (Obj_Type)
7267 or else Is_Incomplete_Type (Obj_Type)
7268 then
7269 return;
7270 end if;
7271
7272 if Try_Primitive_Operation
7273 (Call_Node => New_Call_Node,
7274 Node_To_Replace => Node_To_Replace)
7275 or else
7276 Try_Class_Wide_Operation
7277 (Call_Node => New_Call_Node,
7278 Node_To_Replace => Node_To_Replace)
7279 then
7280 null;
7281 end if;
7282 end Try_One_Prefix_Interpretation;
7283
4c46b835
AC
7284 -----------------------------
7285 -- Try_Primitive_Operation --
7286 -----------------------------
35ae2ed8 7287
4c46b835
AC
7288 function Try_Primitive_Operation
7289 (Call_Node : Node_Id;
7290 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7291 is
6e73e3ab
AC
7292 Elmt : Elmt_Id;
7293 Prim_Op : Entity_Id;
0a36105d
JM
7294 Matching_Op : Entity_Id := Empty;
7295 Prim_Op_Ref : Node_Id := Empty;
7296
7297 Corr_Type : Entity_Id := Empty;
7298 -- If the prefix is a synchronized type, the controlling type of
7299 -- the primitive operation is the corresponding record type, else
7300 -- this is the object type itself.
7301
7302 Success : Boolean := False;
35ae2ed8 7303
401093c1
ES
7304 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
7305 -- For tagged types the candidate interpretations are found in
7306 -- the list of primitive operations of the type and its ancestors.
7307 -- For formal tagged types we have to find the operations declared
7308 -- in the same scope as the type (including in the generic formal
7309 -- part) because the type itself carries no primitive operations,
7310 -- except for formal derived types that inherit the operations of
7311 -- the parent and progenitors.
d469eabe
HK
7312 -- If the context is a generic subprogram body, the generic formals
7313 -- are visible by name, but are not in the entity list of the
7314 -- subprogram because that list starts with the subprogram formals.
7315 -- We retrieve the candidate operations from the generic declaration.
401093c1 7316
dfcfdc0a
AC
7317 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
7318 -- An operation that overrides an inherited operation in the private
7319 -- part of its package may be hidden, but if the inherited operation
7320 -- is visible a direct call to it will dispatch to the private one,
7321 -- which is therefore a valid candidate.
7322
ec6078e3
ES
7323 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
7324 -- Verify that the prefix, dereferenced if need be, is a valid
7325 -- controlling argument in a call to Op. The remaining actuals
7326 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 7327
401093c1
ES
7328 ------------------------------
7329 -- Collect_Generic_Type_Ops --
7330 ------------------------------
7331
7332 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
7333 Bas : constant Entity_Id := Base_Type (T);
7334 Candidates : constant Elist_Id := New_Elmt_List;
7335 Subp : Entity_Id;
7336 Formal : Entity_Id;
7337
d469eabe
HK
7338 procedure Check_Candidate;
7339 -- The operation is a candidate if its first parameter is a
7340 -- controlling operand of the desired type.
7341
7342 -----------------------
7343 -- Check_Candidate; --
7344 -----------------------
7345
7346 procedure Check_Candidate is
7347 begin
7348 Formal := First_Formal (Subp);
7349
7350 if Present (Formal)
7351 and then Is_Controlling_Formal (Formal)
7352 and then
7353 (Base_Type (Etype (Formal)) = Bas
7354 or else
7355 (Is_Access_Type (Etype (Formal))
7356 and then Designated_Type (Etype (Formal)) = Bas))
7357 then
7358 Append_Elmt (Subp, Candidates);
7359 end if;
7360 end Check_Candidate;
7361
7362 -- Start of processing for Collect_Generic_Type_Ops
7363
401093c1
ES
7364 begin
7365 if Is_Derived_Type (T) then
7366 return Primitive_Operations (T);
7367
bce79204
AC
7368 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
7369
d469eabe
HK
7370 -- Scan the list of generic formals to find subprograms
7371 -- that may have a first controlling formal of the type.
7372
bb10b891
AC
7373 if Nkind (Unit_Declaration_Node (Scope (T)))
7374 = N_Generic_Subprogram_Declaration
7375 then
7376 declare
7377 Decl : Node_Id;
7378
7379 begin
7380 Decl :=
7381 First (Generic_Formal_Declarations
7382 (Unit_Declaration_Node (Scope (T))));
7383 while Present (Decl) loop
7384 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
7385 Subp := Defining_Entity (Decl);
7386 Check_Candidate;
7387 end if;
d469eabe 7388
bb10b891
AC
7389 Next (Decl);
7390 end loop;
7391 end;
7392 end if;
d469eabe
HK
7393 return Candidates;
7394
401093c1
ES
7395 else
7396 -- Scan the list of entities declared in the same scope as
7397 -- the type. In general this will be an open scope, given that
7398 -- the call we are analyzing can only appear within a generic
7399 -- declaration or body (either the one that declares T, or a
7400 -- child unit).
7401
bb10b891
AC
7402 -- For a subtype representing a generic actual type, go to the
7403 -- base type.
7404
7405 if Is_Generic_Actual_Type (T) then
7406 Subp := First_Entity (Scope (Base_Type (T)));
7407 else
7408 Subp := First_Entity (Scope (T));
7409 end if;
7410
401093c1
ES
7411 while Present (Subp) loop
7412 if Is_Overloadable (Subp) then
d469eabe 7413 Check_Candidate;
401093c1
ES
7414 end if;
7415
7416 Next_Entity (Subp);
7417 end loop;
7418
7419 return Candidates;
7420 end if;
7421 end Collect_Generic_Type_Ops;
7422
dfcfdc0a
AC
7423 ---------------------------
7424 -- Is_Private_Overriding --
7425 ---------------------------
7426
7427 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
7428 Visible_Op : constant Entity_Id := Homonym (Op);
7429
7430 begin
7431 return Present (Visible_Op)
6465b6a7 7432 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
7433 and then not Comes_From_Source (Visible_Op)
7434 and then Alias (Visible_Op) = Op
7435 and then not Is_Hidden (Visible_Op);
7436 end Is_Private_Overriding;
7437
ec6078e3
ES
7438 -----------------------------
7439 -- Valid_First_Argument_Of --
7440 -----------------------------
35ae2ed8 7441
ec6078e3 7442 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 7443 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 7444
ec6078e3 7445 begin
9febb58f
JM
7446 if Is_Concurrent_Type (Typ)
7447 and then Present (Corresponding_Record_Type (Typ))
7448 then
7449 Typ := Corresponding_Record_Type (Typ);
7450 end if;
7451
d469eabe
HK
7452 -- Simple case. Object may be a subtype of the tagged type or
7453 -- may be the corresponding record of a synchronized type.
5d09245e 7454
aab883ec 7455 return Obj_Type = Typ
d469eabe 7456 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
7457 or else Corr_Type = Typ
7458
7459 -- Prefix can be dereferenced
725e2a15 7460
ec6078e3 7461 or else
0a36105d
JM
7462 (Is_Access_Type (Corr_Type)
7463 and then Designated_Type (Corr_Type) = Typ)
5d09245e 7464
0a36105d
JM
7465 -- Formal is an access parameter, for which the object
7466 -- can provide an access.
35ae2ed8 7467
ec6078e3
ES
7468 or else
7469 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
7470 and then
7471 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 7472 end Valid_First_Argument_Of;
35ae2ed8 7473
ec6078e3 7474 -- Start of processing for Try_Primitive_Operation
35ae2ed8 7475
ec6078e3 7476 begin
d469eabe 7477 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
7478 -- must be identical, and the kind of call indicates the expected
7479 -- kind of operation (function or procedure). If the type is a
d469eabe 7480 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 7481 -- corresponding record (base) type.
aab883ec
ES
7482
7483 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
7484 if Present (Corresponding_Record_Type (Obj_Type)) then
7485 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7486 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7487 else
7488 Corr_Type := Obj_Type;
7489 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
7490 end if;
7491
401093c1 7492 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 7493 Corr_Type := Obj_Type;
aab883ec 7494 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
401093c1
ES
7495
7496 else
7497 Corr_Type := Obj_Type;
7498 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 7499 end if;
35ae2ed8 7500
ec6078e3
ES
7501 while Present (Elmt) loop
7502 Prim_Op := Node (Elmt);
7503
7504 if Chars (Prim_Op) = Chars (Subprog)
7505 and then Present (First_Formal (Prim_Op))
7506 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 7507 and then
7415029d 7508 (Nkind (Call_Node) = N_Function_Call)
fe45e59e 7509 = (Ekind (Prim_Op) = E_Function)
ec6078e3 7510 then
b67a385c
ES
7511 -- Ada 2005 (AI-251): If this primitive operation corresponds
7512 -- with an immediate ancestor interface there is no need to add
7513 -- it to the list of interpretations; the corresponding aliased
7514 -- primitive is also in this list of primitive operations and
7515 -- will be used instead.
fe45e59e 7516
ce2b6ba5
JM
7517 if (Present (Interface_Alias (Prim_Op))
7518 and then Is_Ancestor (Find_Dispatching_Type
7519 (Alias (Prim_Op)), Corr_Type))
0a36105d 7520
dfcfdc0a
AC
7521 -- Do not consider hidden primitives unless the type is in an
7522 -- open scope or we are within an instance, where visibility
7523 -- is known to be correct, or else if this is an overriding
7524 -- operation in the private part for an inherited operation.
0a36105d 7525
dfcfdc0a
AC
7526 or else (Is_Hidden (Prim_Op)
7527 and then not Is_Immediately_Visible (Obj_Type)
7528 and then not In_Instance
7529 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
7530 then
7531 goto Continue;
7532 end if;
7533
0a36105d
JM
7534 Set_Etype (Call_Node, Any_Type);
7535 Set_Is_Overloaded (Call_Node, False);
7536
7537 if No (Matching_Op) then
fe45e59e 7538 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
b67a385c 7539 Candidate := Prim_Op;
35ae2ed8 7540
fe45e59e 7541 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 7542
fe45e59e 7543 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 7544 Success := False;
35ae2ed8 7545
fe45e59e
ES
7546 Analyze_One_Call
7547 (N => Call_Node,
7548 Nam => Prim_Op,
b67a385c 7549 Report => Report_Error,
fe45e59e
ES
7550 Success => Success,
7551 Skip_First => True);
35ae2ed8 7552
0a36105d 7553 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 7554
d469eabe
HK
7555 -- More than one interpretation, collect for subsequent
7556 -- disambiguation. If this is a procedure call and there
7557 -- is another match, report ambiguity now.
0a36105d 7558
d469eabe 7559 else
0a36105d
JM
7560 Analyze_One_Call
7561 (N => Call_Node,
7562 Nam => Prim_Op,
7563 Report => Report_Error,
7564 Success => Success,
7565 Skip_First => True);
fe45e59e 7566
0a36105d
JM
7567 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7568 and then Nkind (Call_Node) /= N_Function_Call
7569 then
ed2233dc 7570 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
7571 Report_Ambiguity (Matching_Op);
7572 Report_Ambiguity (Prim_Op);
7573 return True;
7574 end if;
4c46b835
AC
7575 end if;
7576 end if;
35ae2ed8 7577
fe45e59e 7578 <<Continue>>
4c46b835
AC
7579 Next_Elmt (Elmt);
7580 end loop;
35ae2ed8 7581
0a36105d
JM
7582 if Present (Matching_Op) then
7583 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
7584 end if;
7585
0a36105d 7586 return Present (Matching_Op);
4c46b835 7587 end Try_Primitive_Operation;
35ae2ed8 7588
4c46b835 7589 -- Start of processing for Try_Object_Operation
35ae2ed8 7590
4c46b835 7591 begin
0a36105d 7592 Analyze_Expression (Obj);
ec6078e3 7593
0a36105d 7594 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
7595
7596 if Is_Subprg_Call and then N = Name (Parent (N)) then
7597 Actual := First (Parameter_Associations (Parent (N)));
7598 while Present (Actual) loop
725e2a15 7599 Analyze_Expression (Actual);
28d6470f
JM
7600 Next (Actual);
7601 end loop;
7602 end if;
5d09245e 7603
ec6078e3
ES
7604 -- Build a subprogram call node, using a copy of Obj as its first
7605 -- actual. This is a placeholder, to be replaced by an explicit
7606 -- dereference when needed.
4c46b835 7607
ec6078e3
ES
7608 Transform_Object_Operation
7609 (Call_Node => New_Call_Node,
0a36105d 7610 Node_To_Replace => Node_To_Replace);
4c46b835 7611
ec6078e3 7612 Set_Etype (New_Call_Node, Any_Type);
0a36105d 7613 Set_Etype (Subprog, Any_Type);
ec6078e3 7614 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 7615
0a36105d
JM
7616 if not Is_Overloaded (Obj) then
7617 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 7618
0a36105d
JM
7619 else
7620 declare
7621 I : Interp_Index;
7622 It : Interp;
7623 begin
7624 Get_First_Interp (Obj, I, It);
7625 while Present (It.Nam) loop
7626 Try_One_Prefix_Interpretation (It.Typ);
7627 Get_Next_Interp (I, It);
7628 end loop;
7629 end;
7630 end if;
7631
7632 if Etype (New_Call_Node) /= Any_Type then
7633 Complete_Object_Operation
7634 (Call_Node => New_Call_Node,
7635 Node_To_Replace => Node_To_Replace);
b67a385c
ES
7636 return True;
7637
7638 elsif Present (Candidate) then
7639
7640 -- The argument list is not type correct. Re-analyze with error
7641 -- reporting enabled, and use one of the possible candidates.
d469eabe 7642 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
7643
7644 if All_Errors_Mode then
7645 Report_Error := True;
7646 if Try_Primitive_Operation
7647 (Call_Node => New_Call_Node,
7648 Node_To_Replace => Node_To_Replace)
7649
7650 or else
7651 Try_Class_Wide_Operation
7652 (Call_Node => New_Call_Node,
7653 Node_To_Replace => Node_To_Replace)
7654 then
7655 null;
7656 end if;
7657
7658 else
7659 Analyze_One_Call
7660 (N => New_Call_Node,
7661 Nam => Candidate,
7662 Report => True,
7663 Success => Success,
7664 Skip_First => True);
7665 end if;
7666
d469eabe
HK
7667 -- No need for further errors
7668
7669 return True;
b67a385c
ES
7670
7671 else
7672 -- There was no candidate operation, so report it as an error
7673 -- in the caller: Analyze_Selected_Component.
7674
7675 return False;
7676 end if;
35ae2ed8
AC
7677 end Try_Object_Operation;
7678
b4592168
GD
7679 ---------
7680 -- wpo --
7681 ---------
7682
7683 procedure wpo (T : Entity_Id) is
7684 Op : Entity_Id;
7685 E : Elmt_Id;
7686
7687 begin
7688 if not Is_Tagged_Type (T) then
7689 return;
7690 end if;
7691
7692 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7693 while Present (E) loop
7694 Op := Node (E);
7695 Write_Int (Int (Op));
7696 Write_Str (" === ");
7697 Write_Name (Chars (Op));
7698 Write_Str (" in ");
7699 Write_Name (Chars (Scope (Op)));
7700 Next_Elmt (E);
7701 Write_Eol;
7702 end loop;
7703 end wpo;
7704
996ae0b0 7705end Sem_Ch4;