]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
6e937c1c 9-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
2820d220 28with Checks; use Checks;
996ae0b0
RK
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
996ae0b0
RK
33with Itypes; use Itypes;
34with Lib.Xref; use Lib.Xref;
35with Namet; use Namet;
36with Nlists; use Nlists;
37with Nmake; use Nmake;
38with Opt; use Opt;
39with Output; use Output;
40with Restrict; use Restrict;
6e937c1c 41with Rident; use Rident;
996ae0b0
RK
42with Sem; use Sem;
43with Sem_Cat; use Sem_Cat;
44with Sem_Ch3; use Sem_Ch3;
45with Sem_Ch8; use Sem_Ch8;
46with Sem_Dist; use Sem_Dist;
47with Sem_Eval; use Sem_Eval;
48with Sem_Res; use Sem_Res;
49with Sem_Util; use Sem_Util;
50with Sem_Type; use Sem_Type;
51with Stand; use Stand;
52with Sinfo; use Sinfo;
53with Snames; use Snames;
54with Tbuild; use Tbuild;
55
56with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
57
58package body Sem_Ch4 is
59
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
63
64 procedure Analyze_Expression (N : Node_Id);
65 -- For expressions that are not names, this is just a call to analyze.
66 -- If the expression is a name, it may be a call to a parameterless
67 -- function, and if so must be converted into an explicit call node
68 -- and analyzed as such. This deproceduring must be done during the first
69 -- pass of overload resolution, because otherwise a procedure call with
70 -- overloaded actuals may fail to resolve. See 4327-001 for an example.
71
72 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
73 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
74 -- is an operator name or an expanded name whose selector is an operator
75 -- name, and one possible interpretation is as a predefined operator.
76
77 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
78 -- If the prefix of a selected_component is overloaded, the proper
79 -- interpretation that yields a record type with the proper selector
80 -- name must be selected.
81
82 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
83 -- Procedure to analyze a user defined binary operator, which is resolved
84 -- like a function, but instead of a list of actuals it is presented
85 -- with the left and right operands of an operator node.
86
87 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
88 -- Procedure to analyze a user defined unary operator, which is resolved
89 -- like a function, but instead of a list of actuals, it is presented with
90 -- the operand of the operator node.
91
92 procedure Ambiguous_Operands (N : Node_Id);
93 -- for equality, membership, and comparison operators with overloaded
94 -- arguments, list possible interpretations.
95
996ae0b0
RK
96 procedure Analyze_One_Call
97 (N : Node_Id;
98 Nam : Entity_Id;
99 Report : Boolean;
100 Success : out Boolean);
101 -- Check one interpretation of an overloaded subprogram name for
102 -- compatibility with the types of the actuals in a call. If there is a
103 -- single interpretation which does not match, post error if Report is
104 -- set to True.
105 --
106 -- Nam is the entity that provides the formals against which the actuals
107 -- are checked. Nam is either the name of a subprogram, or the internal
108 -- subprogram type constructed for an access_to_subprogram. If the actuals
109 -- are compatible with Nam, then Nam is added to the list of candidate
110 -- interpretations for N, and Success is set to True.
111
112 procedure Check_Misspelled_Selector
113 (Prefix : Entity_Id;
114 Sel : Node_Id);
115 -- Give possible misspelling diagnostic if Sel is likely to be
116 -- a misspelling of one of the selectors of the Prefix.
117 -- This is called by Analyze_Selected_Component after producing
118 -- an invalid selector error message.
119
120 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
121 -- Verify that type T is declared in scope S. Used to find intepretations
122 -- for operators given by expanded names. This is abstracted as a separate
123 -- function to handle extensions to System, where S is System, but T is
124 -- declared in the extension.
125
126 procedure Find_Arithmetic_Types
127 (L, R : Node_Id;
128 Op_Id : Entity_Id;
129 N : Node_Id);
130 -- L and R are the operands of an arithmetic operator. Find
131 -- consistent pairs of interpretations for L and R that have a
132 -- numeric type consistent with the semantics of the operator.
133
134 procedure Find_Comparison_Types
135 (L, R : Node_Id;
136 Op_Id : Entity_Id;
137 N : Node_Id);
138 -- L and R are operands of a comparison operator. Find consistent
139 -- pairs of interpretations for L and R.
140
141 procedure Find_Concatenation_Types
142 (L, R : Node_Id;
143 Op_Id : Entity_Id;
144 N : Node_Id);
145 -- For the four varieties of concatenation.
146
147 procedure Find_Equality_Types
148 (L, R : Node_Id;
149 Op_Id : Entity_Id;
150 N : Node_Id);
151 -- Ditto for equality operators.
152
153 procedure Find_Boolean_Types
154 (L, R : Node_Id;
155 Op_Id : Entity_Id;
156 N : Node_Id);
157 -- Ditto for binary logical operations.
158
159 procedure Find_Negation_Types
160 (R : Node_Id;
161 Op_Id : Entity_Id;
162 N : Node_Id);
163 -- Find consistent interpretation for operand of negation operator.
164
165 procedure Find_Non_Universal_Interpretations
166 (N : Node_Id;
167 R : Node_Id;
168 Op_Id : Entity_Id;
169 T1 : Entity_Id);
170 -- For equality and comparison operators, the result is always boolean,
171 -- and the legality of the operation is determined from the visibility
172 -- of the operand types. If one of the operands has a universal interpre-
173 -- tation, the legality check uses some compatible non-universal
174 -- interpretation of the other operand. N can be an operator node, or
175 -- a function call whose name is an operator designator.
176
177 procedure Find_Unary_Types
178 (R : Node_Id;
179 Op_Id : Entity_Id;
180 N : Node_Id);
181 -- Unary arithmetic types: plus, minus, abs.
182
183 procedure Check_Arithmetic_Pair
184 (T1, T2 : Entity_Id;
185 Op_Id : Entity_Id;
186 N : Node_Id);
187 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
188 -- types for left and right operand. Determine whether they constitute
189 -- a valid pair for the given operator, and record the corresponding
190 -- interpretation of the operator node. The node N may be an operator
191 -- node (the usual case) or a function call whose prefix is an operator
192 -- designator. In both cases Op_Id is the operator name itself.
193
194 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
195 -- Give detailed information on overloaded call where none of the
196 -- interpretations match. N is the call node, Nam the designator for
197 -- the overloaded entity being called.
198
199 function Junk_Operand (N : Node_Id) return Boolean;
200 -- Test for an operand that is an inappropriate entity (e.g. a package
201 -- name or a label). If so, issue an error message and return True. If
202 -- the operand is not an inappropriate entity kind, return False.
203
204 procedure Operator_Check (N : Node_Id);
205 -- Verify that an operator has received some valid interpretation.
206 -- If none was found, determine whether a use clause would make the
207 -- operation legal. The variable Candidate_Type (defined in Sem_Type) is
208 -- set for every type compatible with the operator, even if the operator
209 -- for the type is not directly visible. The routine uses this type to emit
210 -- a more informative message.
211
30c20106
AC
212 procedure Remove_Abstract_Operations (N : Node_Id);
213 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
214 -- operation is not a candidate interpretation.
215
996ae0b0 216 function Try_Indexed_Call
91b1417d
AC
217 (N : Node_Id;
218 Nam : Entity_Id;
219 Typ : Entity_Id) return Boolean;
996ae0b0
RK
220 -- If a function has defaults for all its actuals, a call to it may
221 -- in fact be an indexing on the result of the call. Try_Indexed_Call
222 -- attempts the interpretation as an indexing, prior to analysis as
223 -- a call. If both are possible, the node is overloaded with both
224 -- interpretations (same symbol but two different types).
225
226 function Try_Indirect_Call
91b1417d
AC
227 (N : Node_Id;
228 Nam : Entity_Id;
229 Typ : Entity_Id) return Boolean;
996ae0b0
RK
230 -- Similarly, a function F that needs no actuals can return an access
231 -- to a subprogram, and the call F (X) interpreted as F.all (X). In
232 -- this case the call may be overloaded with both interpretations.
233
234 ------------------------
235 -- Ambiguous_Operands --
236 ------------------------
237
238 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 239 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 240
fbf5a39b 241 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
242 Nam : Node_Id;
243 Err : Node_Id := N;
244
245 begin
246 if Is_Overloaded (Opnd) then
247 if Nkind (Opnd) in N_Op then
248 Nam := Opnd;
249
250 elsif Nkind (Opnd) = N_Function_Call then
251 Nam := Name (Opnd);
252
253 else
254 return;
255 end if;
256
257 else
258 return;
259 end if;
260
261 if Opnd = Left_Opnd (N) then
262 Error_Msg_N
263 ("\left operand has the following interpretations", N);
264 else
265 Error_Msg_N
266 ("\right operand has the following interpretations", N);
267 Err := Opnd;
268 end if;
269
fbf5a39b
AC
270 List_Interps (Nam, Err);
271 end List_Operand_Interps;
996ae0b0
RK
272
273 begin
274 if Nkind (N) = N_In
275 or else Nkind (N) = N_Not_In
276 then
277 Error_Msg_N ("ambiguous operands for membership", N);
278
279 elsif Nkind (N) = N_Op_Eq
280 or else Nkind (N) = N_Op_Ne
281 then
282 Error_Msg_N ("ambiguous operands for equality", N);
283
284 else
285 Error_Msg_N ("ambiguous operands for comparison", N);
286 end if;
287
288 if All_Errors_Mode then
fbf5a39b
AC
289 List_Operand_Interps (Left_Opnd (N));
290 List_Operand_Interps (Right_Opnd (N));
996ae0b0 291 else
555360a5 292 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
293 end if;
294 end Ambiguous_Operands;
295
296 -----------------------
297 -- Analyze_Aggregate --
298 -----------------------
299
300 -- Most of the analysis of Aggregates requires that the type be known,
301 -- and is therefore put off until resolution.
302
303 procedure Analyze_Aggregate (N : Node_Id) is
304 begin
305 if No (Etype (N)) then
306 Set_Etype (N, Any_Composite);
307 end if;
308 end Analyze_Aggregate;
309
310 -----------------------
311 -- Analyze_Allocator --
312 -----------------------
313
314 procedure Analyze_Allocator (N : Node_Id) is
315 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 316 Sav_Errs : constant Nat := Serious_Errors_Detected;
996ae0b0
RK
317 E : Node_Id := Expression (N);
318 Acc_Type : Entity_Id;
319 Type_Id : Entity_Id;
320
321 begin
322 Check_Restriction (No_Allocators, N);
323
324 if Nkind (E) = N_Qualified_Expression then
325 Acc_Type := Create_Itype (E_Allocator_Type, N);
326 Set_Etype (Acc_Type, Acc_Type);
327 Init_Size_Align (Acc_Type);
328 Find_Type (Subtype_Mark (E));
329 Type_Id := Entity (Subtype_Mark (E));
330 Check_Fully_Declared (Type_Id, N);
331 Set_Directly_Designated_Type (Acc_Type, Type_Id);
332
d05ef0ab 333 if Is_Limited_Type (Type_Id)
996ae0b0
RK
334 and then Comes_From_Source (N)
335 and then not In_Instance_Body
336 then
6e937c1c
AC
337 -- Ada 0Y (AI-287): Do not post an error if the expression
338 -- corresponds to a limited aggregate. Limited aggregates
339 -- are checked in sem_aggr in a per-component manner
340 -- (compare with handling of Get_Value subprogram).
19f0526a 341
d05ef0ab
AC
342 if Extensions_Allowed
343 and then Nkind (Expression (E)) = N_Aggregate
344 then
345 null;
346 else
347 Error_Msg_N ("initialization not allowed for limited types", N);
348 Explain_Limited_Type (Type_Id, N);
349 end if;
996ae0b0
RK
350 end if;
351
352 Analyze_And_Resolve (Expression (E), Type_Id);
353
354 -- A qualified expression requires an exact match of the type,
355 -- class-wide matching is not allowed.
356
357 if Is_Class_Wide_Type (Type_Id)
358 and then Base_Type (Etype (Expression (E))) /= Base_Type (Type_Id)
359 then
360 Wrong_Type (Expression (E), Type_Id);
361 end if;
362
363 Check_Non_Static_Context (Expression (E));
364
365 -- We don't analyze the qualified expression itself because it's
366 -- part of the allocator
367
368 Set_Etype (E, Type_Id);
369
370 else
371 declare
372 Def_Id : Entity_Id;
373
374 begin
375 -- If the allocator includes a N_Subtype_Indication then a
376 -- constraint is present, otherwise the node is a subtype mark.
377 -- Introduce an explicit subtype declaration into the tree
378 -- defining some anonymous subtype and rewrite the allocator to
379 -- use this subtype rather than the subtype indication.
380
381 -- It is important to introduce the explicit subtype declaration
382 -- so that the bounds of the subtype indication are attached to
383 -- the tree in case the allocator is inside a generic unit.
384
385 if Nkind (E) = N_Subtype_Indication then
386
387 -- A constraint is only allowed for a composite type in Ada
388 -- 95. In Ada 83, a constraint is also allowed for an
389 -- access-to-composite type, but the constraint is ignored.
390
391 Find_Type (Subtype_Mark (E));
392
393 if Is_Elementary_Type (Entity (Subtype_Mark (E))) then
394 if not (Ada_83
395 and then Is_Access_Type (Entity (Subtype_Mark (E))))
396 then
397 Error_Msg_N ("constraint not allowed here", E);
398
399 if Nkind (Constraint (E))
400 = N_Index_Or_Discriminant_Constraint
401 then
402 Error_Msg_N
403 ("\if qualified expression was meant, " &
404 "use apostrophe", Constraint (E));
405 end if;
406 end if;
407
408 -- Get rid of the bogus constraint:
409
410 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
411 Analyze_Allocator (N);
412 return;
413 end if;
414
415 if Expander_Active then
416 Def_Id :=
417 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
418
419 Insert_Action (E,
420 Make_Subtype_Declaration (Loc,
421 Defining_Identifier => Def_Id,
422 Subtype_Indication => Relocate_Node (E)));
423
07fc65c4 424 if Sav_Errs /= Serious_Errors_Detected
996ae0b0
RK
425 and then Nkind (Constraint (E))
426 = N_Index_Or_Discriminant_Constraint
427 then
428 Error_Msg_N
429 ("if qualified expression was meant, " &
430 "use apostrophe!", Constraint (E));
431 end if;
432
433 E := New_Occurrence_Of (Def_Id, Loc);
434 Rewrite (Expression (N), E);
435 end if;
436 end if;
437
438 Type_Id := Process_Subtype (E, N);
439 Acc_Type := Create_Itype (E_Allocator_Type, N);
440 Set_Etype (Acc_Type, Acc_Type);
441 Init_Size_Align (Acc_Type);
442 Set_Directly_Designated_Type (Acc_Type, Type_Id);
443 Check_Fully_Declared (Type_Id, N);
444
2820d220
AC
445 -- Ada 0Y (AI-231)
446
447 if Can_Never_Be_Null (Type_Id) then
448 Error_Msg_N ("(Ada 0Y) qualified expression required",
449 Expression (N));
450 end if;
451
91b1417d
AC
452 -- Check restriction against dynamically allocated protected
453 -- objects. Note that when limited aggregates are supported,
454 -- a similar test should be applied to an allocator with a
455 -- qualified expression ???
456
457 if Is_Protected_Type (Type_Id) then
458 Check_Restriction (No_Protected_Type_Allocators, N);
459 end if;
460
996ae0b0
RK
461 -- Check for missing initialization. Skip this check if we already
462 -- had errors on analyzing the allocator, since in that case these
463 -- are probably cascaded errors
464
465 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 466 and then Serious_Errors_Detected = Sav_Errs
996ae0b0
RK
467 then
468 if Is_Class_Wide_Type (Type_Id) then
469 Error_Msg_N
470 ("initialization required in class-wide allocation", N);
471 else
472 Error_Msg_N
473 ("initialization required in unconstrained allocation", N);
474 end if;
475 end if;
476 end;
477 end if;
478
479 if Is_Abstract (Type_Id) then
480 Error_Msg_N ("cannot allocate abstract object", E);
481 end if;
482
483 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 484 Check_Restriction (No_Tasking, N);
fbf5a39b 485 Check_Restriction (Max_Tasks, N);
996ae0b0
RK
486 Check_Restriction (No_Task_Allocators, N);
487 end if;
488
489 Set_Etype (N, Acc_Type);
490
491 if not Is_Library_Level_Entity (Acc_Type) then
492 Check_Restriction (No_Local_Allocators, N);
493 end if;
2820d220
AC
494
495 -- Ada 0Y (AI-231): Static checks
496
497 if Extensions_Allowed
498 and then (Null_Exclusion_Present (N)
499 or else Can_Never_Be_Null (Etype (N)))
500 then
501 Null_Exclusion_Static_Checks (N);
502 end if;
996ae0b0 503
07fc65c4 504 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
505 Set_Error_Posted (N);
506 Set_Etype (N, Any_Type);
507 end if;
996ae0b0
RK
508 end Analyze_Allocator;
509
510 ---------------------------
511 -- Analyze_Arithmetic_Op --
512 ---------------------------
513
514 procedure Analyze_Arithmetic_Op (N : Node_Id) is
515 L : constant Node_Id := Left_Opnd (N);
516 R : constant Node_Id := Right_Opnd (N);
517 Op_Id : Entity_Id;
518
519 begin
520 Candidate_Type := Empty;
521 Analyze_Expression (L);
522 Analyze_Expression (R);
523
524 -- If the entity is already set, the node is the instantiation of
525 -- a generic node with a non-local reference, or was manufactured
526 -- by a call to Make_Op_xxx. In either case the entity is known to
527 -- be valid, and we do not need to collect interpretations, instead
528 -- we just get the single possible interpretation.
529
530 Op_Id := Entity (N);
531
532 if Present (Op_Id) then
533 if Ekind (Op_Id) = E_Operator then
534
535 if (Nkind (N) = N_Op_Divide or else
536 Nkind (N) = N_Op_Mod or else
537 Nkind (N) = N_Op_Multiply or else
538 Nkind (N) = N_Op_Rem)
539 and then Treat_Fixed_As_Integer (N)
540 then
541 null;
542 else
543 Set_Etype (N, Any_Type);
544 Find_Arithmetic_Types (L, R, Op_Id, N);
545 end if;
546
547 else
548 Set_Etype (N, Any_Type);
549 Add_One_Interp (N, Op_Id, Etype (Op_Id));
550 end if;
551
552 -- Entity is not already set, so we do need to collect interpretations
553
554 else
555 Op_Id := Get_Name_Entity_Id (Chars (N));
556 Set_Etype (N, Any_Type);
557
558 while Present (Op_Id) loop
559 if Ekind (Op_Id) = E_Operator
560 and then Present (Next_Entity (First_Entity (Op_Id)))
561 then
562 Find_Arithmetic_Types (L, R, Op_Id, N);
563
564 -- The following may seem superfluous, because an operator cannot
565 -- be generic, but this ignores the cleverness of the author of
566 -- ACVC bc1013a.
567
568 elsif Is_Overloadable (Op_Id) then
569 Analyze_User_Defined_Binary_Op (N, Op_Id);
570 end if;
571
572 Op_Id := Homonym (Op_Id);
573 end loop;
574 end if;
575
576 Operator_Check (N);
577 end Analyze_Arithmetic_Op;
578
579 ------------------
580 -- Analyze_Call --
581 ------------------
582
583 -- Function, procedure, and entry calls are checked here. The Name
584 -- in the call may be overloaded. The actuals have been analyzed
585 -- and may themselves be overloaded. On exit from this procedure, the node
586 -- N may have zero, one or more interpretations. In the first case an error
587 -- message is produced. In the last case, the node is flagged as overloaded
588 -- and the interpretations are collected in All_Interp.
589
590 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
591 -- the type-checking is similar to that of other calls.
592
593 procedure Analyze_Call (N : Node_Id) is
594 Actuals : constant List_Id := Parameter_Associations (N);
595 Nam : Node_Id := Name (N);
596 X : Interp_Index;
597 It : Interp;
598 Nam_Ent : Entity_Id;
599 Success : Boolean := False;
600
601 function Name_Denotes_Function return Boolean;
602 -- If the type of the name is an access to subprogram, this may be
603 -- the type of a name, or the return type of the function being called.
604 -- If the name is not an entity then it can denote a protected function.
605 -- Until we distinguish Etype from Return_Type, we must use this
606 -- routine to resolve the meaning of the name in the call.
607
608 ---------------------------
609 -- Name_Denotes_Function --
610 ---------------------------
611
612 function Name_Denotes_Function return Boolean is
613 begin
614 if Is_Entity_Name (Nam) then
615 return Ekind (Entity (Nam)) = E_Function;
616
617 elsif Nkind (Nam) = N_Selected_Component then
618 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
619
620 else
621 return False;
622 end if;
623 end Name_Denotes_Function;
624
625 -- Start of processing for Analyze_Call
626
627 begin
628 -- Initialize the type of the result of the call to the error type,
629 -- which will be reset if the type is successfully resolved.
630
631 Set_Etype (N, Any_Type);
632
633 if not Is_Overloaded (Nam) then
634
635 -- Only one interpretation to check
636
637 if Ekind (Etype (Nam)) = E_Subprogram_Type then
638 Nam_Ent := Etype (Nam);
639
640 elsif Is_Access_Type (Etype (Nam))
641 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
642 and then not Name_Denotes_Function
643 then
644 Nam_Ent := Designated_Type (Etype (Nam));
645 Insert_Explicit_Dereference (Nam);
646
647 -- Selected component case. Simple entry or protected operation,
648 -- where the entry name is given by the selector name.
649
650 elsif Nkind (Nam) = N_Selected_Component then
651 Nam_Ent := Entity (Selector_Name (Nam));
652
653 if Ekind (Nam_Ent) /= E_Entry
654 and then Ekind (Nam_Ent) /= E_Entry_Family
655 and then Ekind (Nam_Ent) /= E_Function
656 and then Ekind (Nam_Ent) /= E_Procedure
657 then
658 Error_Msg_N ("name in call is not a callable entity", Nam);
659 Set_Etype (N, Any_Type);
660 return;
661 end if;
662
663 -- If the name is an Indexed component, it can be a call to a member
664 -- of an entry family. The prefix must be a selected component whose
665 -- selector is the entry. Analyze_Procedure_Call normalizes several
666 -- kinds of call into this form.
667
668 elsif Nkind (Nam) = N_Indexed_Component then
669
670 if Nkind (Prefix (Nam)) = N_Selected_Component then
671 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
672
673 else
674 Error_Msg_N ("name in call is not a callable entity", Nam);
675 Set_Etype (N, Any_Type);
676 return;
677
678 end if;
679
680 elsif not Is_Entity_Name (Nam) then
681 Error_Msg_N ("name in call is not a callable entity", Nam);
682 Set_Etype (N, Any_Type);
683 return;
684
685 else
686 Nam_Ent := Entity (Nam);
687
688 -- If no interpretations, give error message
689
690 if not Is_Overloadable (Nam_Ent) then
691 declare
692 L : constant Boolean := Is_List_Member (N);
693 K : constant Node_Kind := Nkind (Parent (N));
694
695 begin
696 -- If the node is in a list whose parent is not an
697 -- expression then it must be an attempted procedure call.
698
699 if L and then K not in N_Subexpr then
700 if Ekind (Entity (Nam)) = E_Generic_Procedure then
701 Error_Msg_NE
702 ("must instantiate generic procedure& before call",
703 Nam, Entity (Nam));
704 else
705 Error_Msg_N
706 ("procedure or entry name expected", Nam);
707 end if;
708
709 -- Check for tasking cases where only an entry call will do
710
711 elsif not L
712 and then (K = N_Entry_Call_Alternative
713 or else K = N_Triggering_Alternative)
714 then
715 Error_Msg_N ("entry name expected", Nam);
716
717 -- Otherwise give general error message
718
719 else
720 Error_Msg_N ("invalid prefix in call", Nam);
721 end if;
722
723 return;
724 end;
725 end if;
726 end if;
727
728 Analyze_One_Call (N, Nam_Ent, True, Success);
729
730 else
731 -- An overloaded selected component must denote overloaded
732 -- operations of a concurrent type. The interpretations are
733 -- attached to the simple name of those operations.
734
735 if Nkind (Nam) = N_Selected_Component then
736 Nam := Selector_Name (Nam);
737 end if;
738
739 Get_First_Interp (Nam, X, It);
740
741 while Present (It.Nam) loop
742 Nam_Ent := It.Nam;
743
744 -- Name may be call that returns an access to subprogram, or more
745 -- generally an overloaded expression one of whose interpretations
746 -- yields an access to subprogram. If the name is an entity, we
747 -- do not dereference, because the node is a call that returns
748 -- the access type: note difference between f(x), where the call
749 -- may return an access subprogram type, and f(x)(y), where the
750 -- type returned by the call to f is implicitly dereferenced to
751 -- analyze the outer call.
752
753 if Is_Access_Type (Nam_Ent) then
754 Nam_Ent := Designated_Type (Nam_Ent);
755
756 elsif Is_Access_Type (Etype (Nam_Ent))
757 and then not Is_Entity_Name (Nam)
758 and then Ekind (Designated_Type (Etype (Nam_Ent)))
759 = E_Subprogram_Type
760 then
761 Nam_Ent := Designated_Type (Etype (Nam_Ent));
762 end if;
763
764 Analyze_One_Call (N, Nam_Ent, False, Success);
765
766 -- If the interpretation succeeds, mark the proper type of the
767 -- prefix (any valid candidate will do). If not, remove the
768 -- candidate interpretation. This only needs to be done for
769 -- overloaded protected operations, for other entities disambi-
770 -- guation is done directly in Resolve.
771
772 if Success then
773 Set_Etype (Nam, It.Typ);
774
fbf5a39b
AC
775 elsif Nkind (Name (N)) = N_Selected_Component
776 or else Nkind (Name (N)) = N_Function_Call
777 then
996ae0b0
RK
778 Remove_Interp (X);
779 end if;
780
781 Get_Next_Interp (X, It);
782 end loop;
783
784 -- If the name is the result of a function call, it can only
785 -- be a call to a function returning an access to subprogram.
786 -- Insert explicit dereference.
787
788 if Nkind (Nam) = N_Function_Call then
789 Insert_Explicit_Dereference (Nam);
790 end if;
791
792 if Etype (N) = Any_Type then
793
794 -- None of the interpretations is compatible with the actuals
795
796 Diagnose_Call (N, Nam);
797
798 -- Special checks for uninstantiated put routines
799
800 if Nkind (N) = N_Procedure_Call_Statement
801 and then Is_Entity_Name (Nam)
802 and then Chars (Nam) = Name_Put
803 and then List_Length (Actuals) = 1
804 then
805 declare
806 Arg : constant Node_Id := First (Actuals);
807 Typ : Entity_Id;
808
809 begin
810 if Nkind (Arg) = N_Parameter_Association then
811 Typ := Etype (Explicit_Actual_Parameter (Arg));
812 else
813 Typ := Etype (Arg);
814 end if;
815
816 if Is_Signed_Integer_Type (Typ) then
817 Error_Msg_N
818 ("possible missing instantiation of " &
819 "'Text_'I'O.'Integer_'I'O!", Nam);
820
821 elsif Is_Modular_Integer_Type (Typ) then
822 Error_Msg_N
823 ("possible missing instantiation of " &
824 "'Text_'I'O.'Modular_'I'O!", Nam);
825
826 elsif Is_Floating_Point_Type (Typ) then
827 Error_Msg_N
828 ("possible missing instantiation of " &
829 "'Text_'I'O.'Float_'I'O!", Nam);
830
831 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
832 Error_Msg_N
833 ("possible missing instantiation of " &
834 "'Text_'I'O.'Fixed_'I'O!", Nam);
835
836 elsif Is_Decimal_Fixed_Point_Type (Typ) then
837 Error_Msg_N
838 ("possible missing instantiation of " &
839 "'Text_'I'O.'Decimal_'I'O!", Nam);
840
841 elsif Is_Enumeration_Type (Typ) then
842 Error_Msg_N
843 ("possible missing instantiation of " &
844 "'Text_'I'O.'Enumeration_'I'O!", Nam);
845 end if;
846 end;
847 end if;
848
849 elsif not Is_Overloaded (N)
850 and then Is_Entity_Name (Nam)
851 then
852 -- Resolution yields a single interpretation. Verify that
853 -- is has the proper capitalization.
854
855 Set_Entity_With_Style_Check (Nam, Entity (Nam));
856 Generate_Reference (Entity (Nam), Nam);
857
858 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
859 else
860 Remove_Abstract_Operations (N);
996ae0b0
RK
861 end if;
862
863 End_Interp_List;
864 end if;
865 end Analyze_Call;
866
867 ---------------------------
868 -- Analyze_Comparison_Op --
869 ---------------------------
870
871 procedure Analyze_Comparison_Op (N : Node_Id) is
872 L : constant Node_Id := Left_Opnd (N);
873 R : constant Node_Id := Right_Opnd (N);
874 Op_Id : Entity_Id := Entity (N);
875
876 begin
877 Set_Etype (N, Any_Type);
878 Candidate_Type := Empty;
879
880 Analyze_Expression (L);
881 Analyze_Expression (R);
882
883 if Present (Op_Id) then
884
885 if Ekind (Op_Id) = E_Operator then
886 Find_Comparison_Types (L, R, Op_Id, N);
887 else
888 Add_One_Interp (N, Op_Id, Etype (Op_Id));
889 end if;
890
891 if Is_Overloaded (L) then
892 Set_Etype (L, Intersect_Types (L, R));
893 end if;
894
895 else
896 Op_Id := Get_Name_Entity_Id (Chars (N));
897
898 while Present (Op_Id) loop
899
900 if Ekind (Op_Id) = E_Operator then
901 Find_Comparison_Types (L, R, Op_Id, N);
902 else
903 Analyze_User_Defined_Binary_Op (N, Op_Id);
904 end if;
905
906 Op_Id := Homonym (Op_Id);
907 end loop;
908 end if;
909
910 Operator_Check (N);
911 end Analyze_Comparison_Op;
912
913 ---------------------------
914 -- Analyze_Concatenation --
915 ---------------------------
916
917 -- If the only one-dimensional array type in scope is String,
918 -- this is the resulting type of the operation. Otherwise there
919 -- will be a concatenation operation defined for each user-defined
920 -- one-dimensional array.
921
922 procedure Analyze_Concatenation (N : Node_Id) is
923 L : constant Node_Id := Left_Opnd (N);
924 R : constant Node_Id := Right_Opnd (N);
925 Op_Id : Entity_Id := Entity (N);
926 LT : Entity_Id;
927 RT : Entity_Id;
928
929 begin
930 Set_Etype (N, Any_Type);
931 Candidate_Type := Empty;
932
933 Analyze_Expression (L);
934 Analyze_Expression (R);
935
936 -- If the entity is present, the node appears in an instance,
937 -- and denotes a predefined concatenation operation. The resulting
fbf5a39b
AC
938 -- type is obtained from the arguments when possible. If the arguments
939 -- are aggregates, the array type and the concatenation type must be
940 -- visible.
996ae0b0
RK
941
942 if Present (Op_Id) then
943 if Ekind (Op_Id) = E_Operator then
944
945 LT := Base_Type (Etype (L));
946 RT := Base_Type (Etype (R));
947
948 if Is_Array_Type (LT)
949 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
950 then
951 Add_One_Interp (N, Op_Id, LT);
952
953 elsif Is_Array_Type (RT)
954 and then LT = Base_Type (Component_Type (RT))
955 then
956 Add_One_Interp (N, Op_Id, RT);
957
fbf5a39b
AC
958 -- If one operand is a string type or a user-defined array type,
959 -- and the other is a literal, result is of the specific type.
960
961 elsif
962 (Root_Type (LT) = Standard_String
963 or else Scope (LT) /= Standard_Standard)
964 and then Etype (R) = Any_String
965 then
966 Add_One_Interp (N, Op_Id, LT);
967
968 elsif
969 (Root_Type (RT) = Standard_String
970 or else Scope (RT) /= Standard_Standard)
971 and then Etype (L) = Any_String
972 then
973 Add_One_Interp (N, Op_Id, RT);
974
975 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 976 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
977
978 else
979 -- Type and its operations must be visible.
980
981 Set_Entity (N, Empty);
982 Analyze_Concatenation (N);
983
996ae0b0
RK
984 end if;
985
986 else
987 Add_One_Interp (N, Op_Id, Etype (Op_Id));
988 end if;
989
990 else
991 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
992
993 while Present (Op_Id) loop
994 if Ekind (Op_Id) = E_Operator then
995 Find_Concatenation_Types (L, R, Op_Id, N);
996 else
997 Analyze_User_Defined_Binary_Op (N, Op_Id);
998 end if;
999
1000 Op_Id := Homonym (Op_Id);
1001 end loop;
1002 end if;
1003
1004 Operator_Check (N);
1005 end Analyze_Concatenation;
1006
1007 ------------------------------------
1008 -- Analyze_Conditional_Expression --
1009 ------------------------------------
1010
1011 procedure Analyze_Conditional_Expression (N : Node_Id) is
1012 Condition : constant Node_Id := First (Expressions (N));
1013 Then_Expr : constant Node_Id := Next (Condition);
1014 Else_Expr : constant Node_Id := Next (Then_Expr);
1015
1016 begin
1017 Analyze_Expression (Condition);
1018 Analyze_Expression (Then_Expr);
1019 Analyze_Expression (Else_Expr);
1020 Set_Etype (N, Etype (Then_Expr));
1021 end Analyze_Conditional_Expression;
1022
1023 -------------------------
1024 -- Analyze_Equality_Op --
1025 -------------------------
1026
1027 procedure Analyze_Equality_Op (N : Node_Id) is
1028 Loc : constant Source_Ptr := Sloc (N);
1029 L : constant Node_Id := Left_Opnd (N);
1030 R : constant Node_Id := Right_Opnd (N);
1031 Op_Id : Entity_Id;
1032
1033 begin
1034 Set_Etype (N, Any_Type);
1035 Candidate_Type := Empty;
1036
1037 Analyze_Expression (L);
1038 Analyze_Expression (R);
1039
1040 -- If the entity is set, the node is a generic instance with a non-local
1041 -- reference to the predefined operator or to a user-defined function.
1042 -- It can also be an inequality that is expanded into the negation of a
1043 -- call to a user-defined equality operator.
1044
1045 -- For the predefined case, the result is Boolean, regardless of the
1046 -- type of the operands. The operands may even be limited, if they are
1047 -- generic actuals. If they are overloaded, label the left argument with
1048 -- the common type that must be present, or with the type of the formal
1049 -- of the user-defined function.
1050
1051 if Present (Entity (N)) then
1052
1053 Op_Id := Entity (N);
1054
1055 if Ekind (Op_Id) = E_Operator then
1056 Add_One_Interp (N, Op_Id, Standard_Boolean);
1057 else
1058 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1059 end if;
1060
1061 if Is_Overloaded (L) then
1062
1063 if Ekind (Op_Id) = E_Operator then
1064 Set_Etype (L, Intersect_Types (L, R));
1065 else
1066 Set_Etype (L, Etype (First_Formal (Op_Id)));
1067 end if;
1068 end if;
1069
1070 else
1071 Op_Id := Get_Name_Entity_Id (Chars (N));
1072
1073 while Present (Op_Id) loop
1074
1075 if Ekind (Op_Id) = E_Operator then
1076 Find_Equality_Types (L, R, Op_Id, N);
1077 else
1078 Analyze_User_Defined_Binary_Op (N, Op_Id);
1079 end if;
1080
1081 Op_Id := Homonym (Op_Id);
1082 end loop;
1083 end if;
1084
1085 -- If there was no match, and the operator is inequality, this may
1086 -- be a case where inequality has not been made explicit, as for
1087 -- tagged types. Analyze the node as the negation of an equality
1088 -- operation. This cannot be done earlier, because before analysis
1089 -- we cannot rule out the presence of an explicit inequality.
1090
1091 if Etype (N) = Any_Type
1092 and then Nkind (N) = N_Op_Ne
1093 then
1094 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1095
1096 while Present (Op_Id) loop
1097
1098 if Ekind (Op_Id) = E_Operator then
1099 Find_Equality_Types (L, R, Op_Id, N);
1100 else
1101 Analyze_User_Defined_Binary_Op (N, Op_Id);
1102 end if;
1103
1104 Op_Id := Homonym (Op_Id);
1105 end loop;
1106
1107 if Etype (N) /= Any_Type then
1108 Op_Id := Entity (N);
1109
1110 Rewrite (N,
1111 Make_Op_Not (Loc,
1112 Right_Opnd =>
1113 Make_Op_Eq (Loc,
1114 Left_Opnd => Relocate_Node (Left_Opnd (N)),
1115 Right_Opnd => Relocate_Node (Right_Opnd (N)))));
1116
1117 Set_Entity (Right_Opnd (N), Op_Id);
1118 Analyze (N);
1119 end if;
1120 end if;
1121
1122 Operator_Check (N);
1123 end Analyze_Equality_Op;
1124
1125 ----------------------------------
1126 -- Analyze_Explicit_Dereference --
1127 ----------------------------------
1128
1129 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1130 Loc : constant Source_Ptr := Sloc (N);
1131 P : constant Node_Id := Prefix (N);
1132 T : Entity_Id;
1133 I : Interp_Index;
1134 It : Interp;
1135 New_N : Node_Id;
1136
1137 function Is_Function_Type return Boolean;
1138 -- Check whether node may be interpreted as an implicit function call.
1139
1140 function Is_Function_Type return Boolean is
1141 I : Interp_Index;
1142 It : Interp;
1143
1144 begin
1145 if not Is_Overloaded (N) then
1146 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1147 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1148
1149 else
1150 Get_First_Interp (N, I, It);
1151
1152 while Present (It.Nam) loop
1153 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1154 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1155 then
1156 return False;
1157 end if;
1158
1159 Get_Next_Interp (I, It);
1160 end loop;
1161
1162 return True;
1163 end if;
1164 end Is_Function_Type;
1165
1166 begin
1167 Analyze (P);
1168 Set_Etype (N, Any_Type);
1169
1170 -- Test for remote access to subprogram type, and if so return
1171 -- after rewriting the original tree.
1172
1173 if Remote_AST_E_Dereference (P) then
1174 return;
1175 end if;
1176
1177 -- Normal processing for other than remote access to subprogram type
1178
1179 if not Is_Overloaded (P) then
1180 if Is_Access_Type (Etype (P)) then
1181
1182 -- Set the Etype. We need to go thru Is_For_Access_Subtypes
1183 -- to avoid other problems caused by the Private_Subtype
1184 -- and it is safe to go to the Base_Type because this is the
1185 -- same as converting the access value to its Base_Type.
1186
1187 declare
1188 DT : Entity_Id := Designated_Type (Etype (P));
1189
1190 begin
1191 if Ekind (DT) = E_Private_Subtype
1192 and then Is_For_Access_Subtype (DT)
1193 then
1194 DT := Base_Type (DT);
1195 end if;
1196
1197 Set_Etype (N, DT);
1198 end;
1199
1200 elsif Etype (P) /= Any_Type then
1201 Error_Msg_N ("prefix of dereference must be an access type", N);
1202 return;
1203 end if;
1204
1205 else
1206 Get_First_Interp (P, I, It);
1207
1208 while Present (It.Nam) loop
1209 T := It.Typ;
1210
1211 if Is_Access_Type (T) then
1212 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1213 end if;
1214
1215 Get_Next_Interp (I, It);
1216 end loop;
1217
1218 End_Interp_List;
1219
1220 -- Error if no interpretation of the prefix has an access type.
1221
1222 if Etype (N) = Any_Type then
1223 Error_Msg_N
1224 ("access type required in prefix of explicit dereference", P);
1225 Set_Etype (N, Any_Type);
1226 return;
1227 end if;
1228 end if;
1229
1230 if Is_Function_Type
1231 and then Nkind (Parent (N)) /= N_Indexed_Component
1232
1233 and then (Nkind (Parent (N)) /= N_Function_Call
1234 or else N /= Name (Parent (N)))
1235
1236 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1237 or else N /= Name (Parent (N)))
1238
1239 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1240 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1241 or else
1242 (Attribute_Name (Parent (N)) /= Name_Address
1243 and then
1244 Attribute_Name (Parent (N)) /= Name_Access))
1245 then
1246 -- Name is a function call with no actuals, in a context that
1247 -- requires deproceduring (including as an actual in an enclosing
1248 -- function or procedure call). We can conceive of pathological cases
1249 -- where the prefix might include functions that return access to
1250 -- subprograms and others that return a regular type. Disambiguation
1251 -- of those will have to take place in Resolve. See e.g. 7117-014.
1252
1253 New_N :=
1254 Make_Function_Call (Loc,
1255 Name => Make_Explicit_Dereference (Loc, P),
1256 Parameter_Associations => New_List);
1257
1258 -- If the prefix is overloaded, remove operations that have formals,
1259 -- we know that this is a parameterless call.
1260
1261 if Is_Overloaded (P) then
1262 Get_First_Interp (P, I, It);
1263
1264 while Present (It.Nam) loop
1265 T := It.Typ;
1266
1267 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1268 Set_Etype (P, T);
1269 else
1270 Remove_Interp (I);
1271 end if;
1272
1273 Get_Next_Interp (I, It);
1274 end loop;
1275 end if;
1276
1277 Rewrite (N, New_N);
1278 Analyze (N);
1279 end if;
1280
1281 -- A value of remote access-to-class-wide must not be dereferenced
1282 -- (RM E.2.2(16)).
1283
1284 Validate_Remote_Access_To_Class_Wide_Type (N);
1285
1286 end Analyze_Explicit_Dereference;
1287
1288 ------------------------
1289 -- Analyze_Expression --
1290 ------------------------
1291
1292 procedure Analyze_Expression (N : Node_Id) is
1293 begin
1294 Analyze (N);
1295 Check_Parameterless_Call (N);
1296 end Analyze_Expression;
1297
1298 ------------------------------------
1299 -- Analyze_Indexed_Component_Form --
1300 ------------------------------------
1301
1302 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
1303 P : constant Node_Id := Prefix (N);
1304 Exprs : constant List_Id := Expressions (N);
1305 Exp : Node_Id;
1306 P_T : Entity_Id;
1307 E : Node_Id;
1308 U_N : Entity_Id;
996ae0b0
RK
1309
1310 procedure Process_Function_Call;
1311 -- Prefix in indexed component form is an overloadable entity,
1312 -- so the node is a function call. Reformat it as such.
1313
1314 procedure Process_Indexed_Component;
1315 -- Prefix in indexed component form is actually an indexed component.
1316 -- This routine processes it, knowing that the prefix is already
1317 -- resolved.
1318
1319 procedure Process_Indexed_Component_Or_Slice;
1320 -- An indexed component with a single index may designate a slice if
1321 -- the index is a subtype mark. This routine disambiguates these two
1322 -- cases by resolving the prefix to see if it is a subtype mark.
1323
1324 procedure Process_Overloaded_Indexed_Component;
1325 -- If the prefix of an indexed component is overloaded, the proper
1326 -- interpretation is selected by the index types and the context.
1327
1328 ---------------------------
1329 -- Process_Function_Call --
1330 ---------------------------
1331
1332 procedure Process_Function_Call is
1333 Actual : Node_Id;
1334
1335 begin
1336 Change_Node (N, N_Function_Call);
1337 Set_Name (N, P);
1338 Set_Parameter_Associations (N, Exprs);
1339 Actual := First (Parameter_Associations (N));
1340
1341 while Present (Actual) loop
1342 Analyze (Actual);
1343 Check_Parameterless_Call (Actual);
1344 Next_Actual (Actual);
1345 end loop;
1346
1347 Analyze_Call (N);
1348 end Process_Function_Call;
1349
1350 -------------------------------
1351 -- Process_Indexed_Component --
1352 -------------------------------
1353
1354 procedure Process_Indexed_Component is
1355 Exp : Node_Id;
1356 Array_Type : Entity_Id;
1357 Index : Node_Id;
1358 Entry_Family : Entity_Id;
1359
1360 begin
1361 Exp := First (Exprs);
1362
1363 if Is_Overloaded (P) then
1364 Process_Overloaded_Indexed_Component;
1365
1366 else
1367 Array_Type := Etype (P);
1368
1369 -- Prefix must be appropriate for an array type.
1370 -- Dereference the prefix if it is an access type.
1371
1372 if Is_Access_Type (Array_Type) then
1373 Array_Type := Designated_Type (Array_Type);
fbf5a39b 1374 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
1375 end if;
1376
1377 if Is_Array_Type (Array_Type) then
1378 null;
1379
1380 elsif (Is_Entity_Name (P)
1381 and then
1382 Ekind (Entity (P)) = E_Entry_Family)
1383 or else
1384 (Nkind (P) = N_Selected_Component
1385 and then
1386 Is_Entity_Name (Selector_Name (P))
1387 and then
1388 Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1389 then
1390 if Is_Entity_Name (P) then
1391 Entry_Family := Entity (P);
1392 else
1393 Entry_Family := Entity (Selector_Name (P));
1394 end if;
1395
1396 Analyze (Exp);
1397 Set_Etype (N, Any_Type);
1398
1399 if not Has_Compatible_Type
1400 (Exp, Entry_Index_Type (Entry_Family))
1401 then
1402 Error_Msg_N ("invalid index type in entry name", N);
1403
1404 elsif Present (Next (Exp)) then
1405 Error_Msg_N ("too many subscripts in entry reference", N);
1406
1407 else
1408 Set_Etype (N, Etype (P));
1409 end if;
1410
1411 return;
1412
1413 elsif Is_Record_Type (Array_Type)
1414 and then Remote_AST_I_Dereference (P)
1415 then
1416 return;
1417
1418 elsif Array_Type = Any_Type then
1419 Set_Etype (N, Any_Type);
1420 return;
1421
1422 -- Here we definitely have a bad indexing
1423
1424 else
1425 if Nkind (Parent (N)) = N_Requeue_Statement
1426 and then
1427 ((Is_Entity_Name (P)
1428 and then Ekind (Entity (P)) = E_Entry)
1429 or else
1430 (Nkind (P) = N_Selected_Component
1431 and then Is_Entity_Name (Selector_Name (P))
1432 and then Ekind (Entity (Selector_Name (P))) = E_Entry))
1433 then
1434 Error_Msg_N
1435 ("REQUEUE does not permit parameters", First (Exprs));
1436
1437 elsif Is_Entity_Name (P)
1438 and then Etype (P) = Standard_Void_Type
1439 then
1440 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1441
1442 else
1443 Error_Msg_N ("array type required in indexed component", P);
1444 end if;
1445
1446 Set_Etype (N, Any_Type);
1447 return;
1448 end if;
1449
1450 Index := First_Index (Array_Type);
1451
1452 while Present (Index) and then Present (Exp) loop
1453 if not Has_Compatible_Type (Exp, Etype (Index)) then
1454 Wrong_Type (Exp, Etype (Index));
1455 Set_Etype (N, Any_Type);
1456 return;
1457 end if;
1458
1459 Next_Index (Index);
1460 Next (Exp);
1461 end loop;
1462
1463 Set_Etype (N, Component_Type (Array_Type));
1464
1465 if Present (Index) then
1466 Error_Msg_N
1467 ("too few subscripts in array reference", First (Exprs));
1468
1469 elsif Present (Exp) then
1470 Error_Msg_N ("too many subscripts in array reference", Exp);
1471 end if;
1472 end if;
1473
1474 end Process_Indexed_Component;
1475
1476 ----------------------------------------
1477 -- Process_Indexed_Component_Or_Slice --
1478 ----------------------------------------
1479
1480 procedure Process_Indexed_Component_Or_Slice is
1481 begin
1482 Exp := First (Exprs);
1483
1484 while Present (Exp) loop
1485 Analyze_Expression (Exp);
1486 Next (Exp);
1487 end loop;
1488
1489 Exp := First (Exprs);
1490
1491 -- If one index is present, and it is a subtype name, then the
1492 -- node denotes a slice (note that the case of an explicit range
1493 -- for a slice was already built as an N_Slice node in the first
1494 -- place, so that case is not handled here).
1495
1496 -- We use a replace rather than a rewrite here because this is one
1497 -- of the cases in which the tree built by the parser is plain wrong.
1498
1499 if No (Next (Exp))
1500 and then Is_Entity_Name (Exp)
1501 and then Is_Type (Entity (Exp))
1502 then
1503 Replace (N,
1504 Make_Slice (Sloc (N),
1505 Prefix => P,
1506 Discrete_Range => New_Copy (Exp)));
1507 Analyze (N);
1508
1509 -- Otherwise (more than one index present, or single index is not
1510 -- a subtype name), then we have the indexed component case.
1511
1512 else
1513 Process_Indexed_Component;
1514 end if;
1515 end Process_Indexed_Component_Or_Slice;
1516
1517 ------------------------------------------
1518 -- Process_Overloaded_Indexed_Component --
1519 ------------------------------------------
1520
1521 procedure Process_Overloaded_Indexed_Component is
1522 Exp : Node_Id;
1523 I : Interp_Index;
1524 It : Interp;
1525 Typ : Entity_Id;
1526 Index : Node_Id;
1527 Found : Boolean;
1528
1529 begin
1530 Set_Etype (N, Any_Type);
1531 Get_First_Interp (P, I, It);
1532
1533 while Present (It.Nam) loop
1534 Typ := It.Typ;
1535
1536 if Is_Access_Type (Typ) then
1537 Typ := Designated_Type (Typ);
fbf5a39b 1538 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
1539 end if;
1540
1541 if Is_Array_Type (Typ) then
1542
1543 -- Got a candidate: verify that index types are compatible
1544
1545 Index := First_Index (Typ);
1546 Found := True;
1547
1548 Exp := First (Exprs);
1549
1550 while Present (Index) and then Present (Exp) loop
1551 if Has_Compatible_Type (Exp, Etype (Index)) then
1552 null;
1553 else
1554 Found := False;
1555 Remove_Interp (I);
1556 exit;
1557 end if;
1558
1559 Next_Index (Index);
1560 Next (Exp);
1561 end loop;
1562
1563 if Found and then No (Index) and then No (Exp) then
1564 Add_One_Interp (N,
1565 Etype (Component_Type (Typ)),
1566 Etype (Component_Type (Typ)));
1567 end if;
1568 end if;
1569
1570 Get_Next_Interp (I, It);
1571 end loop;
1572
1573 if Etype (N) = Any_Type then
1574 Error_Msg_N ("no legal interpetation for indexed component", N);
1575 Set_Is_Overloaded (N, False);
1576 end if;
1577
1578 End_Interp_List;
1579 end Process_Overloaded_Indexed_Component;
1580
1581 ------------------------------------
1582 -- Analyze_Indexed_Component_Form --
1583 ------------------------------------
1584
1585 begin
1586 -- Get name of array, function or type
1587
1588 Analyze (P);
fbf5a39b
AC
1589 if Nkind (N) = N_Function_Call
1590 or else Nkind (N) = N_Procedure_Call_Statement
1591 then
1592 -- If P is an explicit dereference whose prefix is of a
1593 -- remote access-to-subprogram type, then N has already
1594 -- been rewritten as a subprogram call and analyzed.
1595
1596 return;
1597 end if;
1598
1599 pragma Assert (Nkind (N) = N_Indexed_Component);
1600
996ae0b0
RK
1601 P_T := Base_Type (Etype (P));
1602
1603 if Is_Entity_Name (P)
1604 or else Nkind (P) = N_Operator_Symbol
1605 then
1606 U_N := Entity (P);
1607
1608 if Ekind (U_N) in Type_Kind then
1609
1610 -- Reformat node as a type conversion.
1611
1612 E := Remove_Head (Exprs);
1613
1614 if Present (First (Exprs)) then
1615 Error_Msg_N
1616 ("argument of type conversion must be single expression", N);
1617 end if;
1618
1619 Change_Node (N, N_Type_Conversion);
1620 Set_Subtype_Mark (N, P);
1621 Set_Etype (N, U_N);
1622 Set_Expression (N, E);
1623
1624 -- After changing the node, call for the specific Analysis
1625 -- routine directly, to avoid a double call to the expander.
1626
1627 Analyze_Type_Conversion (N);
1628 return;
1629 end if;
1630
1631 if Is_Overloadable (U_N) then
1632 Process_Function_Call;
1633
1634 elsif Ekind (Etype (P)) = E_Subprogram_Type
1635 or else (Is_Access_Type (Etype (P))
1636 and then
1637 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1638 then
1639 -- Call to access_to-subprogram with possible implicit dereference
1640
1641 Process_Function_Call;
1642
fbf5a39b
AC
1643 elsif Is_Generic_Subprogram (U_N) then
1644
996ae0b0
RK
1645 -- A common beginner's (or C++ templates fan) error.
1646
1647 Error_Msg_N ("generic subprogram cannot be called", N);
1648 Set_Etype (N, Any_Type);
1649 return;
1650
1651 else
1652 Process_Indexed_Component_Or_Slice;
1653 end if;
1654
1655 -- If not an entity name, prefix is an expression that may denote
1656 -- an array or an access-to-subprogram.
1657
1658 else
fbf5a39b 1659 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
1660 or else (Is_Access_Type (P_T)
1661 and then
1662 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1663 then
1664 Process_Function_Call;
1665
1666 elsif Nkind (P) = N_Selected_Component
1667 and then Ekind (Entity (Selector_Name (P))) = E_Function
1668 then
1669 Process_Function_Call;
1670
1671 else
1672 -- Indexed component, slice, or a call to a member of a family
1673 -- entry, which will be converted to an entry call later.
fbf5a39b 1674
996ae0b0
RK
1675 Process_Indexed_Component_Or_Slice;
1676 end if;
1677 end if;
1678 end Analyze_Indexed_Component_Form;
1679
1680 ------------------------
1681 -- Analyze_Logical_Op --
1682 ------------------------
1683
1684 procedure Analyze_Logical_Op (N : Node_Id) is
1685 L : constant Node_Id := Left_Opnd (N);
1686 R : constant Node_Id := Right_Opnd (N);
1687 Op_Id : Entity_Id := Entity (N);
1688
1689 begin
1690 Set_Etype (N, Any_Type);
1691 Candidate_Type := Empty;
1692
1693 Analyze_Expression (L);
1694 Analyze_Expression (R);
1695
1696 if Present (Op_Id) then
1697
1698 if Ekind (Op_Id) = E_Operator then
1699 Find_Boolean_Types (L, R, Op_Id, N);
1700 else
1701 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1702 end if;
1703
1704 else
1705 Op_Id := Get_Name_Entity_Id (Chars (N));
1706
1707 while Present (Op_Id) loop
1708 if Ekind (Op_Id) = E_Operator then
1709 Find_Boolean_Types (L, R, Op_Id, N);
1710 else
1711 Analyze_User_Defined_Binary_Op (N, Op_Id);
1712 end if;
1713
1714 Op_Id := Homonym (Op_Id);
1715 end loop;
1716 end if;
1717
1718 Operator_Check (N);
1719 end Analyze_Logical_Op;
1720
1721 ---------------------------
1722 -- Analyze_Membership_Op --
1723 ---------------------------
1724
1725 procedure Analyze_Membership_Op (N : Node_Id) is
1726 L : constant Node_Id := Left_Opnd (N);
1727 R : constant Node_Id := Right_Opnd (N);
1728
1729 Index : Interp_Index;
1730 It : Interp;
1731 Found : Boolean := False;
1732 I_F : Interp_Index;
1733 T_F : Entity_Id;
1734
1735 procedure Try_One_Interp (T1 : Entity_Id);
1736 -- Routine to try one proposed interpretation. Note that the context
1737 -- of the operation plays no role in resolving the arguments, so that
1738 -- if there is more than one interpretation of the operands that is
1739 -- compatible with a membership test, the operation is ambiguous.
1740
1741 procedure Try_One_Interp (T1 : Entity_Id) is
1742 begin
1743 if Has_Compatible_Type (R, T1) then
1744 if Found
1745 and then Base_Type (T1) /= Base_Type (T_F)
1746 then
1747 It := Disambiguate (L, I_F, Index, Any_Type);
1748
1749 if It = No_Interp then
1750 Ambiguous_Operands (N);
1751 Set_Etype (L, Any_Type);
1752 return;
1753
1754 else
1755 T_F := It.Typ;
1756 end if;
1757
1758 else
1759 Found := True;
1760 T_F := T1;
1761 I_F := Index;
1762 end if;
1763
1764 Set_Etype (L, T_F);
1765 end if;
1766
1767 end Try_One_Interp;
1768
1769 -- Start of processing for Analyze_Membership_Op
1770
1771 begin
1772 Analyze_Expression (L);
1773
1774 if Nkind (R) = N_Range
1775 or else (Nkind (R) = N_Attribute_Reference
1776 and then Attribute_Name (R) = Name_Range)
1777 then
1778 Analyze (R);
1779
1780 if not Is_Overloaded (L) then
1781 Try_One_Interp (Etype (L));
1782
1783 else
1784 Get_First_Interp (L, Index, It);
1785
1786 while Present (It.Typ) loop
1787 Try_One_Interp (It.Typ);
1788 Get_Next_Interp (Index, It);
1789 end loop;
1790 end if;
1791
1792 -- If not a range, it can only be a subtype mark, or else there
1793 -- is a more basic error, to be diagnosed in Find_Type.
1794
1795 else
1796 Find_Type (R);
1797
1798 if Is_Entity_Name (R) then
1799 Check_Fully_Declared (Entity (R), R);
1800 end if;
1801 end if;
1802
1803 -- Compatibility between expression and subtype mark or range is
1804 -- checked during resolution. The result of the operation is Boolean
1805 -- in any case.
1806
1807 Set_Etype (N, Standard_Boolean);
1808 end Analyze_Membership_Op;
1809
1810 ----------------------
1811 -- Analyze_Negation --
1812 ----------------------
1813
1814 procedure Analyze_Negation (N : Node_Id) is
1815 R : constant Node_Id := Right_Opnd (N);
1816 Op_Id : Entity_Id := Entity (N);
1817
1818 begin
1819 Set_Etype (N, Any_Type);
1820 Candidate_Type := Empty;
1821
1822 Analyze_Expression (R);
1823
1824 if Present (Op_Id) then
1825 if Ekind (Op_Id) = E_Operator then
1826 Find_Negation_Types (R, Op_Id, N);
1827 else
1828 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1829 end if;
1830
1831 else
1832 Op_Id := Get_Name_Entity_Id (Chars (N));
1833
1834 while Present (Op_Id) loop
1835 if Ekind (Op_Id) = E_Operator then
1836 Find_Negation_Types (R, Op_Id, N);
1837 else
1838 Analyze_User_Defined_Unary_Op (N, Op_Id);
1839 end if;
1840
1841 Op_Id := Homonym (Op_Id);
1842 end loop;
1843 end if;
1844
1845 Operator_Check (N);
1846 end Analyze_Negation;
1847
1848 -------------------
1849 -- Analyze_Null --
1850 -------------------
1851
1852 procedure Analyze_Null (N : Node_Id) is
1853 begin
1854 Set_Etype (N, Any_Access);
1855 end Analyze_Null;
1856
1857 ----------------------
1858 -- Analyze_One_Call --
1859 ----------------------
1860
1861 procedure Analyze_One_Call
1862 (N : Node_Id;
1863 Nam : Entity_Id;
1864 Report : Boolean;
1865 Success : out Boolean)
1866 is
1867 Actuals : constant List_Id := Parameter_Associations (N);
1868 Prev_T : constant Entity_Id := Etype (N);
1869 Formal : Entity_Id;
1870 Actual : Node_Id;
1871 Is_Indexed : Boolean := False;
1872 Subp_Type : constant Entity_Id := Etype (Nam);
1873 Norm_OK : Boolean;
1874
fbf5a39b 1875 procedure Indicate_Name_And_Type;
996ae0b0
RK
1876 -- If candidate interpretation matches, indicate name and type of
1877 -- result on call node.
1878
fbf5a39b
AC
1879 ----------------------------
1880 -- Indicate_Name_And_Type --
1881 ----------------------------
996ae0b0 1882
fbf5a39b 1883 procedure Indicate_Name_And_Type is
996ae0b0
RK
1884 begin
1885 Add_One_Interp (N, Nam, Etype (Nam));
1886 Success := True;
1887
1888 -- If the prefix of the call is a name, indicate the entity
1889 -- being called. If it is not a name, it is an expression that
1890 -- denotes an access to subprogram or else an entry or family. In
1891 -- the latter case, the name is a selected component, and the entity
1892 -- being called is noted on the selector.
1893
1894 if not Is_Type (Nam) then
1895 if Is_Entity_Name (Name (N))
1896 or else Nkind (Name (N)) = N_Operator_Symbol
1897 then
1898 Set_Entity (Name (N), Nam);
1899
1900 elsif Nkind (Name (N)) = N_Selected_Component then
1901 Set_Entity (Selector_Name (Name (N)), Nam);
1902 end if;
1903 end if;
1904
1905 if Debug_Flag_E and not Report then
1906 Write_Str (" Overloaded call ");
1907 Write_Int (Int (N));
1908 Write_Str (" compatible with ");
1909 Write_Int (Int (Nam));
1910 Write_Eol;
1911 end if;
fbf5a39b 1912 end Indicate_Name_And_Type;
996ae0b0
RK
1913
1914 -- Start of processing for Analyze_One_Call
1915
1916 begin
1917 Success := False;
1918
1919 -- If the subprogram has no formals, or if all the formals have
1920 -- defaults, and the return type is an array type, the node may
1921 -- denote an indexing of the result of a parameterless call.
1922
1923 if Needs_No_Actuals (Nam)
1924 and then Present (Actuals)
1925 then
1926 if Is_Array_Type (Subp_Type) then
1927 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type);
1928
1929 elsif Is_Access_Type (Subp_Type)
1930 and then Is_Array_Type (Designated_Type (Subp_Type))
1931 then
1932 Is_Indexed :=
1933 Try_Indexed_Call (N, Nam, Designated_Type (Subp_Type));
1934
1935 elsif Is_Access_Type (Subp_Type)
1936 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
1937 then
1938 Is_Indexed := Try_Indirect_Call (N, Nam, Subp_Type);
1939 end if;
1940
1941 end if;
1942
1943 Normalize_Actuals (N, Nam, (Report and not Is_Indexed), Norm_OK);
1944
1945 if not Norm_OK then
1946
1947 -- Mismatch in number or names of parameters
1948
1949 if Debug_Flag_E then
1950 Write_Str (" normalization fails in call ");
1951 Write_Int (Int (N));
1952 Write_Str (" with subprogram ");
1953 Write_Int (Int (Nam));
1954 Write_Eol;
1955 end if;
1956
1957 -- If the context expects a function call, discard any interpretation
1958 -- that is a procedure. If the node is not overloaded, leave as is for
1959 -- better error reporting when type mismatch is found.
1960
1961 elsif Nkind (N) = N_Function_Call
1962 and then Is_Overloaded (Name (N))
1963 and then Ekind (Nam) = E_Procedure
1964 then
1965 return;
1966
1967 -- Ditto for function calls in a procedure context.
1968
1969 elsif Nkind (N) = N_Procedure_Call_Statement
1970 and then Is_Overloaded (Name (N))
1971 and then Etype (Nam) /= Standard_Void_Type
1972 then
1973 return;
1974
1975 elsif not Present (Actuals) then
1976
1977 -- If Normalize succeeds, then there are default parameters for
1978 -- all formals.
1979
fbf5a39b 1980 Indicate_Name_And_Type;
996ae0b0
RK
1981
1982 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
1983 if Nkind (N) = N_Procedure_Call_Statement then
1984 return;
1985 end if;
1986
1987 -- This can occur when the prefix of the call is an operator
1988 -- name or an expanded name whose selector is an operator name.
1989
1990 Analyze_Operator_Call (N, Nam);
1991
1992 if Etype (N) /= Prev_T then
1993
1994 -- There may be a user-defined operator that hides the
1995 -- current interpretation. We must check for this independently
1996 -- of the analysis of the call with the user-defined operation,
1997 -- because the parameter names may be wrong and yet the hiding
1998 -- takes place. Fixes b34014o.
1999
2000 if Is_Overloaded (Name (N)) then
2001 declare
2002 I : Interp_Index;
2003 It : Interp;
2004
2005 begin
2006 Get_First_Interp (Name (N), I, It);
2007
2008 while Present (It.Nam) loop
2009
2010 if Ekind (It.Nam) /= E_Operator
2011 and then Hides_Op (It.Nam, Nam)
2012 and then
2013 Has_Compatible_Type
2014 (First_Actual (N), Etype (First_Formal (It.Nam)))
2015 and then (No (Next_Actual (First_Actual (N)))
2016 or else Has_Compatible_Type
2017 (Next_Actual (First_Actual (N)),
2018 Etype (Next_Formal (First_Formal (It.Nam)))))
2019 then
2020 Set_Etype (N, Prev_T);
2021 return;
2022 end if;
2023
2024 Get_Next_Interp (I, It);
2025 end loop;
2026 end;
2027 end if;
2028
2029 -- If operator matches formals, record its name on the call.
2030 -- If the operator is overloaded, Resolve will select the
2031 -- correct one from the list of interpretations. The call
2032 -- node itself carries the first candidate.
2033
2034 Set_Entity (Name (N), Nam);
2035 Success := True;
2036
2037 elsif Report and then Etype (N) = Any_Type then
2038 Error_Msg_N ("incompatible arguments for operator", N);
2039 end if;
2040
2041 else
2042 -- Normalize_Actuals has chained the named associations in the
2043 -- correct order of the formals.
2044
2045 Actual := First_Actual (N);
2046 Formal := First_Formal (Nam);
2047
2048 while Present (Actual) and then Present (Formal) loop
2049
fbf5a39b
AC
2050 if Nkind (Parent (Actual)) /= N_Parameter_Association
2051 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0
RK
2052 then
2053 if Has_Compatible_Type (Actual, Etype (Formal)) then
2054 Next_Actual (Actual);
2055 Next_Formal (Formal);
2056
2057 else
2058 if Debug_Flag_E then
2059 Write_Str (" type checking fails in call ");
2060 Write_Int (Int (N));
2061 Write_Str (" with formal ");
2062 Write_Int (Int (Formal));
2063 Write_Str (" in subprogram ");
2064 Write_Int (Int (Nam));
2065 Write_Eol;
2066 end if;
2067
2068 if Report and not Is_Indexed then
2069
2070 Wrong_Type (Actual, Etype (Formal));
2071
2072 if Nkind (Actual) = N_Op_Eq
2073 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2074 then
2075 Formal := First_Formal (Nam);
2076
2077 while Present (Formal) loop
2078
2079 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2080 Error_Msg_N
fbf5a39b 2081 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
2082 exit;
2083 end if;
2084
2085 Next_Formal (Formal);
2086 end loop;
2087 end if;
2088
2089 if All_Errors_Mode then
2090 Error_Msg_Sloc := Sloc (Nam);
2091
2092 if Is_Overloadable (Nam)
2093 and then Present (Alias (Nam))
2094 and then not Comes_From_Source (Nam)
2095 then
2096 Error_Msg_NE
fbf5a39b 2097 (" =='> in call to &#(inherited)!", Actual, Nam);
996ae0b0 2098 else
fbf5a39b 2099 Error_Msg_NE (" =='> in call to &#!", Actual, Nam);
996ae0b0
RK
2100 end if;
2101 end if;
2102 end if;
2103
2104 return;
2105 end if;
2106
2107 else
2108 -- Normalize_Actuals has verified that a default value exists
2109 -- for this formal. Current actual names a subsequent formal.
2110
2111 Next_Formal (Formal);
2112 end if;
2113 end loop;
2114
2115 -- On exit, all actuals match.
2116
fbf5a39b 2117 Indicate_Name_And_Type;
996ae0b0
RK
2118 end if;
2119 end Analyze_One_Call;
2120
2121 ----------------------------
2122 -- Analyze_Operator_Call --
2123 ----------------------------
2124
2125 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2126 Op_Name : constant Name_Id := Chars (Op_Id);
2127 Act1 : constant Node_Id := First_Actual (N);
2128 Act2 : constant Node_Id := Next_Actual (Act1);
2129
2130 begin
2131 if Present (Act2) then
2132
2133 -- Maybe binary operators
2134
2135 if Present (Next_Actual (Act2)) then
2136
2137 -- Too many actuals for an operator
2138
2139 return;
2140
2141 elsif Op_Name = Name_Op_Add
2142 or else Op_Name = Name_Op_Subtract
2143 or else Op_Name = Name_Op_Multiply
2144 or else Op_Name = Name_Op_Divide
2145 or else Op_Name = Name_Op_Mod
2146 or else Op_Name = Name_Op_Rem
2147 or else Op_Name = Name_Op_Expon
2148 then
2149 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2150
2151 elsif Op_Name = Name_Op_And
2152 or else Op_Name = Name_Op_Or
2153 or else Op_Name = Name_Op_Xor
2154 then
2155 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2156
2157 elsif Op_Name = Name_Op_Lt
2158 or else Op_Name = Name_Op_Le
2159 or else Op_Name = Name_Op_Gt
2160 or else Op_Name = Name_Op_Ge
2161 then
2162 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2163
2164 elsif Op_Name = Name_Op_Eq
2165 or else Op_Name = Name_Op_Ne
2166 then
2167 Find_Equality_Types (Act1, Act2, Op_Id, N);
2168
2169 elsif Op_Name = Name_Op_Concat then
2170 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2171
2172 -- Is this else null correct, or should it be an abort???
2173
2174 else
2175 null;
2176 end if;
2177
2178 else
2179 -- Unary operators
2180
2181 if Op_Name = Name_Op_Subtract or else
2182 Op_Name = Name_Op_Add or else
2183 Op_Name = Name_Op_Abs
2184 then
2185 Find_Unary_Types (Act1, Op_Id, N);
2186
2187 elsif
2188 Op_Name = Name_Op_Not
2189 then
2190 Find_Negation_Types (Act1, Op_Id, N);
2191
2192 -- Is this else null correct, or should it be an abort???
2193
2194 else
2195 null;
2196 end if;
2197 end if;
2198 end Analyze_Operator_Call;
2199
2200 -------------------------------------------
2201 -- Analyze_Overloaded_Selected_Component --
2202 -------------------------------------------
2203
2204 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
2205 Nam : constant Node_Id := Prefix (N);
2206 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 2207 Comp : Entity_Id;
996ae0b0
RK
2208 I : Interp_Index;
2209 It : Interp;
2210 T : Entity_Id;
2211
2212 begin
2213 Get_First_Interp (Nam, I, It);
2214
2215 Set_Etype (Sel, Any_Type);
2216
2217 while Present (It.Typ) loop
2218 if Is_Access_Type (It.Typ) then
2219 T := Designated_Type (It.Typ);
fbf5a39b 2220 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
07fc65c4 2221
996ae0b0
RK
2222 else
2223 T := It.Typ;
2224 end if;
2225
2226 if Is_Record_Type (T) then
2227 Comp := First_Entity (T);
2228
2229 while Present (Comp) loop
2230
2231 if Chars (Comp) = Chars (Sel)
2232 and then Is_Visible_Component (Comp)
2233 then
2234 Set_Entity_With_Style_Check (Sel, Comp);
2235 Generate_Reference (Comp, Sel);
2236
2237 Set_Etype (Sel, Etype (Comp));
2238 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2239
2240 -- This also specifies a candidate to resolve the name.
2241 -- Further overloading will be resolved from context.
2242
2243 Set_Etype (Nam, It.Typ);
2244 end if;
2245
2246 Next_Entity (Comp);
2247 end loop;
2248
2249 elsif Is_Concurrent_Type (T) then
2250 Comp := First_Entity (T);
2251
2252 while Present (Comp)
2253 and then Comp /= First_Private_Entity (T)
2254 loop
2255 if Chars (Comp) = Chars (Sel) then
2256 if Is_Overloadable (Comp) then
2257 Add_One_Interp (Sel, Comp, Etype (Comp));
2258 else
2259 Set_Entity_With_Style_Check (Sel, Comp);
2260 Generate_Reference (Comp, Sel);
2261 end if;
2262
2263 Set_Etype (Sel, Etype (Comp));
2264 Set_Etype (N, Etype (Comp));
2265 Set_Etype (Nam, It.Typ);
2266
2267 -- For access type case, introduce explicit deference for
2268 -- more uniform treatment of entry calls.
2269
2270 if Is_Access_Type (Etype (Nam)) then
2271 Insert_Explicit_Dereference (Nam);
fbf5a39b
AC
2272 Error_Msg_NW
2273 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2274 end if;
2275 end if;
2276
2277 Next_Entity (Comp);
2278 end loop;
2279
2280 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
2281 end if;
2282
2283 Get_Next_Interp (I, It);
2284 end loop;
2285
2286 if Etype (N) = Any_Type then
2287 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2288 Set_Entity (Sel, Any_Id);
2289 Set_Etype (Sel, Any_Type);
2290 end if;
2291
2292 end Analyze_Overloaded_Selected_Component;
2293
2294 ----------------------------------
2295 -- Analyze_Qualified_Expression --
2296 ----------------------------------
2297
2298 procedure Analyze_Qualified_Expression (N : Node_Id) is
2299 Mark : constant Entity_Id := Subtype_Mark (N);
2300 T : Entity_Id;
2301
2302 begin
2303 Set_Etype (N, Any_Type);
2304 Find_Type (Mark);
2305 T := Entity (Mark);
2306
2307 if T = Any_Type then
2308 return;
2309 end if;
2310 Check_Fully_Declared (T, N);
2311
2312 Analyze_Expression (Expression (N));
2313 Set_Etype (N, T);
2314 end Analyze_Qualified_Expression;
2315
2316 -------------------
2317 -- Analyze_Range --
2318 -------------------
2319
2320 procedure Analyze_Range (N : Node_Id) is
2321 L : constant Node_Id := Low_Bound (N);
2322 H : constant Node_Id := High_Bound (N);
2323 I1, I2 : Interp_Index;
2324 It1, It2 : Interp;
2325
2326 procedure Check_Common_Type (T1, T2 : Entity_Id);
2327 -- Verify the compatibility of two types, and choose the
2328 -- non universal one if the other is universal.
2329
2330 procedure Check_High_Bound (T : Entity_Id);
2331 -- Test one interpretation of the low bound against all those
2332 -- of the high bound.
2333
fbf5a39b
AC
2334 procedure Check_Universal_Expression (N : Node_Id);
2335 -- In Ada83, reject bounds of a universal range that are not
2336 -- literals or entity names.
2337
996ae0b0
RK
2338 -----------------------
2339 -- Check_Common_Type --
2340 -----------------------
2341
2342 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2343 begin
2344 if Covers (T1, T2) or else Covers (T2, T1) then
2345 if T1 = Universal_Integer
2346 or else T1 = Universal_Real
2347 or else T1 = Any_Character
2348 then
2349 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2350
fbf5a39b 2351 elsif T1 = T2 then
996ae0b0
RK
2352 Add_One_Interp (N, T1, T1);
2353
2354 else
2355 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2356 end if;
2357 end if;
2358 end Check_Common_Type;
2359
2360 ----------------------
2361 -- Check_High_Bound --
2362 ----------------------
2363
2364 procedure Check_High_Bound (T : Entity_Id) is
2365 begin
2366 if not Is_Overloaded (H) then
2367 Check_Common_Type (T, Etype (H));
2368 else
2369 Get_First_Interp (H, I2, It2);
2370
2371 while Present (It2.Typ) loop
2372 Check_Common_Type (T, It2.Typ);
2373 Get_Next_Interp (I2, It2);
2374 end loop;
2375 end if;
2376 end Check_High_Bound;
2377
fbf5a39b
AC
2378 -----------------------------
2379 -- Is_Universal_Expression --
2380 -----------------------------
2381
2382 procedure Check_Universal_Expression (N : Node_Id) is
2383 begin
2384 if Etype (N) = Universal_Integer
2385 and then Nkind (N) /= N_Integer_Literal
2386 and then not Is_Entity_Name (N)
2387 and then Nkind (N) /= N_Attribute_Reference
2388 then
2389 Error_Msg_N ("illegal bound in discrete range", N);
2390 end if;
2391 end Check_Universal_Expression;
2392
996ae0b0
RK
2393 -- Start of processing for Analyze_Range
2394
2395 begin
2396 Set_Etype (N, Any_Type);
2397 Analyze_Expression (L);
2398 Analyze_Expression (H);
2399
2400 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
2401 return;
2402
2403 else
2404 if not Is_Overloaded (L) then
2405 Check_High_Bound (Etype (L));
2406 else
2407 Get_First_Interp (L, I1, It1);
2408
2409 while Present (It1.Typ) loop
2410 Check_High_Bound (It1.Typ);
2411 Get_Next_Interp (I1, It1);
2412 end loop;
2413 end if;
2414
2415 -- If result is Any_Type, then we did not find a compatible pair
2416
2417 if Etype (N) = Any_Type then
2418 Error_Msg_N ("incompatible types in range ", N);
2419 end if;
2420 end if;
fbf5a39b
AC
2421
2422 if Ada_83
2423 and then
2424 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
2425 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
2426 then
2427 Check_Universal_Expression (L);
2428 Check_Universal_Expression (H);
2429 end if;
996ae0b0
RK
2430 end Analyze_Range;
2431
2432 -----------------------
2433 -- Analyze_Reference --
2434 -----------------------
2435
2436 procedure Analyze_Reference (N : Node_Id) is
2437 P : constant Node_Id := Prefix (N);
2438 Acc_Type : Entity_Id;
2439
2440 begin
2441 Analyze (P);
2442 Acc_Type := Create_Itype (E_Allocator_Type, N);
2443 Set_Etype (Acc_Type, Acc_Type);
2444 Init_Size_Align (Acc_Type);
2445 Set_Directly_Designated_Type (Acc_Type, Etype (P));
2446 Set_Etype (N, Acc_Type);
2447 end Analyze_Reference;
2448
2449 --------------------------------
2450 -- Analyze_Selected_Component --
2451 --------------------------------
2452
2453 -- Prefix is a record type or a task or protected type. In the
2454 -- later case, the selector must denote a visible entry.
2455
2456 procedure Analyze_Selected_Component (N : Node_Id) is
2457 Name : constant Node_Id := Prefix (N);
2458 Sel : constant Node_Id := Selector_Name (N);
2459 Comp : Entity_Id;
2460 Entity_List : Entity_Id;
2461 Prefix_Type : Entity_Id;
2462 Act_Decl : Node_Id;
2463 In_Scope : Boolean;
2464 Parent_N : Node_Id;
2465
2466 -- Start of processing for Analyze_Selected_Component
2467
2468 begin
2469 Set_Etype (N, Any_Type);
2470
2471 if Is_Overloaded (Name) then
2472 Analyze_Overloaded_Selected_Component (N);
2473 return;
2474
2475 elsif Etype (Name) = Any_Type then
2476 Set_Entity (Sel, Any_Id);
2477 Set_Etype (Sel, Any_Type);
2478 return;
2479
2480 else
2481 -- Function calls that are prefixes of selected components must be
2482 -- fully resolved in case we need to build an actual subtype, or
2483 -- do some other operation requiring a fully resolved prefix.
2484
2485 -- Note: Resolving all Nkinds of nodes here doesn't work.
2486 -- (Breaks 2129-008) ???.
2487
2488 if Nkind (Name) = N_Function_Call then
fbf5a39b 2489 Resolve (Name);
996ae0b0
RK
2490 end if;
2491
2492 Prefix_Type := Etype (Name);
2493 end if;
2494
2495 if Is_Access_Type (Prefix_Type) then
07fc65c4
GB
2496
2497 -- A RACW object can never be used as prefix of a selected
2498 -- component since that means it is dereferenced without
2499 -- being a controlling operand of a dispatching operation
2500 -- (RM E.2.2(15)).
2501
996ae0b0
RK
2502 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
2503 and then Comes_From_Source (N)
2504 then
996ae0b0
RK
2505 Error_Msg_N
2506 ("invalid dereference of a remote access to class-wide value",
2507 N);
07fc65c4
GB
2508
2509 -- Normal case of selected component applied to access type
2510
2511 else
fbf5a39b 2512 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0 2513 end if;
07fc65c4 2514
996ae0b0
RK
2515 Prefix_Type := Designated_Type (Prefix_Type);
2516 end if;
2517
2518 if Ekind (Prefix_Type) = E_Private_Subtype then
2519 Prefix_Type := Base_Type (Prefix_Type);
2520 end if;
2521
2522 Entity_List := Prefix_Type;
2523
2524 -- For class-wide types, use the entity list of the root type. This
2525 -- indirection is specially important for private extensions because
2526 -- only the root type get switched (not the class-wide type).
2527
2528 if Is_Class_Wide_Type (Prefix_Type) then
2529 Entity_List := Root_Type (Prefix_Type);
2530 end if;
2531
2532 Comp := First_Entity (Entity_List);
2533
2534 -- If the selector has an original discriminant, the node appears in
2535 -- an instance. Replace the discriminant with the corresponding one
2536 -- in the current discriminated type. For nested generics, this must
2537 -- be done transitively, so note the new original discriminant.
2538
2539 if Nkind (Sel) = N_Identifier
2540 and then Present (Original_Discriminant (Sel))
2541 then
2542 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
2543
2544 -- Mark entity before rewriting, for completeness and because
2545 -- subsequent semantic checks might examine the original node.
2546
2547 Set_Entity (Sel, Comp);
2548 Rewrite (Selector_Name (N),
2549 New_Occurrence_Of (Comp, Sloc (N)));
2550 Set_Original_Discriminant (Selector_Name (N), Comp);
2551 Set_Etype (N, Etype (Comp));
2552
2553 if Is_Access_Type (Etype (Name)) then
2554 Insert_Explicit_Dereference (Name);
fbf5a39b 2555 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2556 end if;
2557
2558 elsif Is_Record_Type (Prefix_Type) then
2559
2560 -- Find component with given name
2561
2562 while Present (Comp) loop
2563
2564 if Chars (Comp) = Chars (Sel)
2565 and then Is_Visible_Component (Comp)
2566 then
2567 Set_Entity_With_Style_Check (Sel, Comp);
2568 Generate_Reference (Comp, Sel);
2569
2570 Set_Etype (Sel, Etype (Comp));
2571
2572 if Ekind (Comp) = E_Discriminant then
2573 if Is_Unchecked_Union (Prefix_Type) then
2574 Error_Msg_N
2575 ("cannot reference discriminant of Unchecked_Union",
2576 Sel);
2577 end if;
2578
2579 if Is_Generic_Type (Prefix_Type)
2580 or else
2581 Is_Generic_Type (Root_Type (Prefix_Type))
2582 then
2583 Set_Original_Discriminant (Sel, Comp);
2584 end if;
2585 end if;
2586
2587 -- Resolve the prefix early otherwise it is not possible to
2588 -- build the actual subtype of the component: it may need
2589 -- to duplicate this prefix and duplication is only allowed
2590 -- on fully resolved expressions.
2591
fbf5a39b 2592 Resolve (Name);
996ae0b0
RK
2593
2594 -- We never need an actual subtype for the case of a selection
2595 -- for a indexed component of a non-packed array, since in
2596 -- this case gigi generates all the checks and can find the
2597 -- necessary bounds information.
2598
2599 -- We also do not need an actual subtype for the case of
2600 -- a first, last, length, or range attribute applied to a
2601 -- non-packed array, since gigi can again get the bounds in
2602 -- these cases (gigi cannot handle the packed case, since it
2603 -- has the bounds of the packed array type, not the original
2604 -- bounds of the type). However, if the prefix is itself a
2605 -- selected component, as in a.b.c (i), gigi may regard a.b.c
2606 -- as a dynamic-sized temporary, so we do generate an actual
2607 -- subtype for this case.
2608
2609 Parent_N := Parent (N);
2610
2611 if not Is_Packed (Etype (Comp))
2612 and then
2613 ((Nkind (Parent_N) = N_Indexed_Component
2614 and then Nkind (Name) /= N_Selected_Component)
2615 or else
2616 (Nkind (Parent_N) = N_Attribute_Reference
2617 and then (Attribute_Name (Parent_N) = Name_First
2618 or else
2619 Attribute_Name (Parent_N) = Name_Last
2620 or else
2621 Attribute_Name (Parent_N) = Name_Length
2622 or else
2623 Attribute_Name (Parent_N) = Name_Range)))
2624 then
2625 Set_Etype (N, Etype (Comp));
2626
2627 -- In all other cases, we currently build an actual subtype. It
2628 -- seems likely that many of these cases can be avoided, but
2629 -- right now, the front end makes direct references to the
fbf5a39b 2630 -- bounds (e.g. in generating a length check), and if we do
996ae0b0
RK
2631 -- not make an actual subtype, we end up getting a direct
2632 -- reference to a discriminant which will not do.
2633
2634 else
2635 Act_Decl :=
2636 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
2637 Insert_Action (N, Act_Decl);
2638
2639 if No (Act_Decl) then
2640 Set_Etype (N, Etype (Comp));
2641
2642 else
2643 -- Component type depends on discriminants. Enter the
2644 -- main attributes of the subtype.
2645
2646 declare
fbf5a39b
AC
2647 Subt : constant Entity_Id :=
2648 Defining_Identifier (Act_Decl);
996ae0b0
RK
2649
2650 begin
2651 Set_Etype (Subt, Base_Type (Etype (Comp)));
2652 Set_Ekind (Subt, Ekind (Etype (Comp)));
2653 Set_Etype (N, Subt);
2654 end;
2655 end if;
2656 end if;
2657
2658 return;
2659 end if;
2660
2661 Next_Entity (Comp);
2662 end loop;
2663
2664 elsif Is_Private_Type (Prefix_Type) then
2665
2666 -- Allow access only to discriminants of the type. If the
2667 -- type has no full view, gigi uses the parent type for
2668 -- the components, so we do the same here.
2669
2670 if No (Full_View (Prefix_Type)) then
2671 Entity_List := Root_Type (Base_Type (Prefix_Type));
2672 Comp := First_Entity (Entity_List);
2673 end if;
2674
2675 while Present (Comp) loop
2676
2677 if Chars (Comp) = Chars (Sel) then
2678 if Ekind (Comp) = E_Discriminant then
2679 Set_Entity_With_Style_Check (Sel, Comp);
2680 Generate_Reference (Comp, Sel);
2681
2682 Set_Etype (Sel, Etype (Comp));
2683 Set_Etype (N, Etype (Comp));
2684
2685 if Is_Generic_Type (Prefix_Type)
2686 or else
2687 Is_Generic_Type (Root_Type (Prefix_Type))
2688 then
2689 Set_Original_Discriminant (Sel, Comp);
2690 end if;
2691
2692 else
2693 Error_Msg_NE
2694 ("invisible selector for }",
2695 N, First_Subtype (Prefix_Type));
2696 Set_Entity (Sel, Any_Id);
2697 Set_Etype (N, Any_Type);
2698 end if;
2699
2700 return;
2701 end if;
2702
2703 Next_Entity (Comp);
2704 end loop;
2705
2706 elsif Is_Concurrent_Type (Prefix_Type) then
2707
2708 -- Prefix is concurrent type. Find visible operation with given name
2709 -- For a task, this can only include entries or discriminants if
2710 -- the task type is not an enclosing scope. If it is an enclosing
2711 -- scope (e.g. in an inner task) then all entities are visible, but
2712 -- the prefix must denote the enclosing scope, i.e. can only be
2713 -- a direct name or an expanded name.
2714
2715 Set_Etype (Sel, Any_Type);
2716 In_Scope := In_Open_Scopes (Prefix_Type);
2717
2718 while Present (Comp) loop
2719 if Chars (Comp) = Chars (Sel) then
2720 if Is_Overloadable (Comp) then
2721 Add_One_Interp (Sel, Comp, Etype (Comp));
2722
2723 elsif Ekind (Comp) = E_Discriminant
2724 or else Ekind (Comp) = E_Entry_Family
2725 or else (In_Scope
2726 and then Is_Entity_Name (Name))
2727 then
2728 Set_Entity_With_Style_Check (Sel, Comp);
2729 Generate_Reference (Comp, Sel);
2730
2731 else
2732 goto Next_Comp;
2733 end if;
2734
2735 Set_Etype (Sel, Etype (Comp));
2736 Set_Etype (N, Etype (Comp));
2737
2738 if Ekind (Comp) = E_Discriminant then
2739 Set_Original_Discriminant (Sel, Comp);
2740 end if;
2741
2742 -- For access type case, introduce explicit deference for
2743 -- more uniform treatment of entry calls.
2744
2745 if Is_Access_Type (Etype (Name)) then
2746 Insert_Explicit_Dereference (Name);
fbf5a39b
AC
2747 Error_Msg_NW
2748 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2749 end if;
2750 end if;
2751
2752 <<Next_Comp>>
2753 Next_Entity (Comp);
2754 exit when not In_Scope
2755 and then Comp = First_Private_Entity (Prefix_Type);
2756 end loop;
2757
2758 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2759
2760 else
2761 -- Invalid prefix
2762
2763 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
2764 end if;
2765
2766 -- If N still has no type, the component is not defined in the prefix.
2767
2768 if Etype (N) = Any_Type then
2769
2770 -- If the prefix is a single concurrent object, use its name in
2771 -- the error message, rather than that of its anonymous type.
2772
2773 if Is_Concurrent_Type (Prefix_Type)
2774 and then Is_Internal_Name (Chars (Prefix_Type))
2775 and then not Is_Derived_Type (Prefix_Type)
2776 and then Is_Entity_Name (Name)
2777 then
2778
2779 Error_Msg_Node_2 := Entity (Name);
2780 Error_Msg_NE ("no selector& for&", N, Sel);
2781
2782 Check_Misspelled_Selector (Entity_List, Sel);
2783
de76a39c
GB
2784 elsif Is_Generic_Type (Prefix_Type)
2785 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 2786 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
2787 and then Is_Record_Type (Etype (Prefix_Type))
2788 then
2789 -- If this is a derived formal type, the parent may have a
2790 -- different visibility at this point. Try for an inherited
2791 -- component before reporting an error.
2792
2793 Set_Etype (Prefix (N), Etype (Prefix_Type));
2794 Analyze_Selected_Component (N);
2795 return;
2796
fbf5a39b
AC
2797 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
2798 and then Is_Generic_Actual_Type (Prefix_Type)
2799 and then Present (Full_View (Prefix_Type))
2800 then
2801 -- Similarly, if this the actual for a formal derived type,
2802 -- the component inherited from the generic parent may not
2803 -- be visible in the actual, but the selected component is
2804 -- legal.
2805
2806 declare
2807 Comp : Entity_Id;
2808 begin
2809 Comp :=
2810 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
2811
2812 while Present (Comp) loop
2813 if Chars (Comp) = Chars (Sel) then
2814 Set_Entity_With_Style_Check (Sel, Comp);
2815 Set_Etype (Sel, Etype (Comp));
2816 Set_Etype (N, Etype (Comp));
2817 exit;
2818 end if;
2819
2820 Next_Component (Comp);
2821 end loop;
2822
2823 pragma Assert (Etype (N) /= Any_Type);
2824 end;
2825
996ae0b0
RK
2826 else
2827 if Ekind (Prefix_Type) = E_Record_Subtype then
2828
2829 -- Check whether this is a component of the base type
2830 -- which is absent from a statically constrained subtype.
2831 -- This will raise constraint error at run-time, but is
2832 -- not a compile-time error. When the selector is illegal
2833 -- for base type as well fall through and generate a
2834 -- compilation error anyway.
2835
2836 Comp := First_Component (Base_Type (Prefix_Type));
2837
2838 while Present (Comp) loop
2839
2840 if Chars (Comp) = Chars (Sel)
2841 and then Is_Visible_Component (Comp)
2842 then
2843 Set_Entity_With_Style_Check (Sel, Comp);
2844 Generate_Reference (Comp, Sel);
2845 Set_Etype (Sel, Etype (Comp));
2846 Set_Etype (N, Etype (Comp));
2847
2848 -- Emit appropriate message. Gigi will replace the
2849 -- node subsequently with the appropriate Raise.
2850
2851 Apply_Compile_Time_Constraint_Error
2852 (N, "component not present in }?",
07fc65c4 2853 CE_Discriminant_Check_Failed,
996ae0b0
RK
2854 Ent => Prefix_Type, Rep => False);
2855 Set_Raises_Constraint_Error (N);
2856 return;
2857 end if;
2858
2859 Next_Component (Comp);
2860 end loop;
2861
2862 end if;
2863
2864 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
2865 Error_Msg_NE ("no selector& for}", N, Sel);
2866
2867 Check_Misspelled_Selector (Entity_List, Sel);
2868
2869 end if;
2870
2871 Set_Entity (Sel, Any_Id);
2872 Set_Etype (Sel, Any_Type);
2873 end if;
2874 end Analyze_Selected_Component;
2875
2876 ---------------------------
2877 -- Analyze_Short_Circuit --
2878 ---------------------------
2879
2880 procedure Analyze_Short_Circuit (N : Node_Id) is
2881 L : constant Node_Id := Left_Opnd (N);
2882 R : constant Node_Id := Right_Opnd (N);
2883 Ind : Interp_Index;
2884 It : Interp;
2885
2886 begin
2887 Analyze_Expression (L);
2888 Analyze_Expression (R);
2889 Set_Etype (N, Any_Type);
2890
2891 if not Is_Overloaded (L) then
2892
2893 if Root_Type (Etype (L)) = Standard_Boolean
2894 and then Has_Compatible_Type (R, Etype (L))
2895 then
2896 Add_One_Interp (N, Etype (L), Etype (L));
2897 end if;
2898
2899 else
2900 Get_First_Interp (L, Ind, It);
2901
2902 while Present (It.Typ) loop
2903 if Root_Type (It.Typ) = Standard_Boolean
2904 and then Has_Compatible_Type (R, It.Typ)
2905 then
2906 Add_One_Interp (N, It.Typ, It.Typ);
2907 end if;
2908
2909 Get_Next_Interp (Ind, It);
2910 end loop;
2911 end if;
2912
2913 -- Here we have failed to find an interpretation. Clearly we
2914 -- know that it is not the case that both operands can have
2915 -- an interpretation of Boolean, but this is by far the most
2916 -- likely intended interpretation. So we simply resolve both
2917 -- operands as Booleans, and at least one of these resolutions
2918 -- will generate an error message, and we do not need to give
2919 -- a further error message on the short circuit operation itself.
2920
2921 if Etype (N) = Any_Type then
2922 Resolve (L, Standard_Boolean);
2923 Resolve (R, Standard_Boolean);
2924 Set_Etype (N, Standard_Boolean);
2925 end if;
2926 end Analyze_Short_Circuit;
2927
2928 -------------------
2929 -- Analyze_Slice --
2930 -------------------
2931
2932 procedure Analyze_Slice (N : Node_Id) is
2933 P : constant Node_Id := Prefix (N);
2934 D : constant Node_Id := Discrete_Range (N);
2935 Array_Type : Entity_Id;
2936
2937 procedure Analyze_Overloaded_Slice;
2938 -- If the prefix is overloaded, select those interpretations that
2939 -- yield a one-dimensional array type.
2940
2941 procedure Analyze_Overloaded_Slice is
2942 I : Interp_Index;
2943 It : Interp;
2944 Typ : Entity_Id;
2945
2946 begin
2947 Set_Etype (N, Any_Type);
2948 Get_First_Interp (P, I, It);
2949
2950 while Present (It.Nam) loop
2951 Typ := It.Typ;
2952
2953 if Is_Access_Type (Typ) then
2954 Typ := Designated_Type (Typ);
fbf5a39b 2955 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2956 end if;
2957
2958 if Is_Array_Type (Typ)
2959 and then Number_Dimensions (Typ) = 1
2960 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
2961 then
2962 Add_One_Interp (N, Typ, Typ);
2963 end if;
2964
2965 Get_Next_Interp (I, It);
2966 end loop;
2967
2968 if Etype (N) = Any_Type then
2969 Error_Msg_N ("expect array type in prefix of slice", N);
2970 end if;
2971 end Analyze_Overloaded_Slice;
2972
2973 -- Start of processing for Analyze_Slice
2974
2975 begin
2976 -- Analyze the prefix if not done already
2977
2978 if No (Etype (P)) then
2979 Analyze (P);
2980 end if;
2981
2982 Analyze (D);
2983
2984 if Is_Overloaded (P) then
2985 Analyze_Overloaded_Slice;
2986
2987 else
2988 Array_Type := Etype (P);
2989 Set_Etype (N, Any_Type);
2990
2991 if Is_Access_Type (Array_Type) then
2992 Array_Type := Designated_Type (Array_Type);
fbf5a39b 2993 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2994 end if;
2995
2996 if not Is_Array_Type (Array_Type) then
2997 Wrong_Type (P, Any_Array);
2998
2999 elsif Number_Dimensions (Array_Type) > 1 then
3000 Error_Msg_N
3001 ("type is not one-dimensional array in slice prefix", N);
3002
3003 elsif not
3004 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
3005 then
3006 Wrong_Type (D, Etype (First_Index (Array_Type)));
3007
3008 else
3009 Set_Etype (N, Array_Type);
3010 end if;
3011 end if;
3012 end Analyze_Slice;
3013
3014 -----------------------------
3015 -- Analyze_Type_Conversion --
3016 -----------------------------
3017
3018 procedure Analyze_Type_Conversion (N : Node_Id) is
3019 Expr : constant Node_Id := Expression (N);
3020 T : Entity_Id;
3021
3022 begin
3023 -- If Conversion_OK is set, then the Etype is already set, and the
3024 -- only processing required is to analyze the expression. This is
3025 -- used to construct certain "illegal" conversions which are not
3026 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3027 -- Sinfo for further details.
3028
3029 if Conversion_OK (N) then
3030 Analyze (Expr);
3031 return;
3032 end if;
3033
3034 -- Otherwise full type analysis is required, as well as some semantic
3035 -- checks to make sure the argument of the conversion is appropriate.
3036
3037 Find_Type (Subtype_Mark (N));
3038 T := Entity (Subtype_Mark (N));
3039 Set_Etype (N, T);
3040 Check_Fully_Declared (T, N);
3041 Analyze_Expression (Expr);
3042 Validate_Remote_Type_Type_Conversion (N);
3043
3044 -- Only remaining step is validity checks on the argument. These
3045 -- are skipped if the conversion does not come from the source.
3046
3047 if not Comes_From_Source (N) then
3048 return;
3049
3050 elsif Nkind (Expr) = N_Null then
3051 Error_Msg_N ("argument of conversion cannot be null", N);
3052 Error_Msg_N ("\use qualified expression instead", N);
3053 Set_Etype (N, Any_Type);
3054
3055 elsif Nkind (Expr) = N_Aggregate then
3056 Error_Msg_N ("argument of conversion cannot be aggregate", N);
3057 Error_Msg_N ("\use qualified expression instead", N);
3058
3059 elsif Nkind (Expr) = N_Allocator then
3060 Error_Msg_N ("argument of conversion cannot be an allocator", N);
3061 Error_Msg_N ("\use qualified expression instead", N);
3062
3063 elsif Nkind (Expr) = N_String_Literal then
3064 Error_Msg_N ("argument of conversion cannot be string literal", N);
3065 Error_Msg_N ("\use qualified expression instead", N);
3066
3067 elsif Nkind (Expr) = N_Character_Literal then
3068 if Ada_83 then
3069 Resolve (Expr, T);
3070 else
3071 Error_Msg_N ("argument of conversion cannot be character literal",
3072 N);
3073 Error_Msg_N ("\use qualified expression instead", N);
3074 end if;
3075
3076 elsif Nkind (Expr) = N_Attribute_Reference
3077 and then
3078 (Attribute_Name (Expr) = Name_Access or else
3079 Attribute_Name (Expr) = Name_Unchecked_Access or else
3080 Attribute_Name (Expr) = Name_Unrestricted_Access)
3081 then
3082 Error_Msg_N ("argument of conversion cannot be access", N);
3083 Error_Msg_N ("\use qualified expression instead", N);
3084 end if;
3085
3086 end Analyze_Type_Conversion;
3087
3088 ----------------------
3089 -- Analyze_Unary_Op --
3090 ----------------------
3091
3092 procedure Analyze_Unary_Op (N : Node_Id) is
3093 R : constant Node_Id := Right_Opnd (N);
3094 Op_Id : Entity_Id := Entity (N);
3095
3096 begin
3097 Set_Etype (N, Any_Type);
3098 Candidate_Type := Empty;
3099
3100 Analyze_Expression (R);
3101
3102 if Present (Op_Id) then
3103 if Ekind (Op_Id) = E_Operator then
3104 Find_Unary_Types (R, Op_Id, N);
3105 else
3106 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3107 end if;
3108
3109 else
3110 Op_Id := Get_Name_Entity_Id (Chars (N));
3111
3112 while Present (Op_Id) loop
3113
3114 if Ekind (Op_Id) = E_Operator then
3115 if No (Next_Entity (First_Entity (Op_Id))) then
3116 Find_Unary_Types (R, Op_Id, N);
3117 end if;
3118
3119 elsif Is_Overloadable (Op_Id) then
3120 Analyze_User_Defined_Unary_Op (N, Op_Id);
3121 end if;
3122
3123 Op_Id := Homonym (Op_Id);
3124 end loop;
3125 end if;
3126
3127 Operator_Check (N);
3128 end Analyze_Unary_Op;
3129
3130 ----------------------------------
3131 -- Analyze_Unchecked_Expression --
3132 ----------------------------------
3133
3134 procedure Analyze_Unchecked_Expression (N : Node_Id) is
3135 begin
3136 Analyze (Expression (N), Suppress => All_Checks);
3137 Set_Etype (N, Etype (Expression (N)));
3138 Save_Interps (Expression (N), N);
3139 end Analyze_Unchecked_Expression;
3140
3141 ---------------------------------------
3142 -- Analyze_Unchecked_Type_Conversion --
3143 ---------------------------------------
3144
3145 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
3146 begin
3147 Find_Type (Subtype_Mark (N));
3148 Analyze_Expression (Expression (N));
3149 Set_Etype (N, Entity (Subtype_Mark (N)));
3150 end Analyze_Unchecked_Type_Conversion;
3151
3152 ------------------------------------
3153 -- Analyze_User_Defined_Binary_Op --
3154 ------------------------------------
3155
3156 procedure Analyze_User_Defined_Binary_Op
3157 (N : Node_Id;
3158 Op_Id : Entity_Id)
3159 is
3160 begin
3161 -- Only do analysis if the operator Comes_From_Source, since otherwise
3162 -- the operator was generated by the expander, and all such operators
3163 -- always refer to the operators in package Standard.
3164
3165 if Comes_From_Source (N) then
3166 declare
3167 F1 : constant Entity_Id := First_Formal (Op_Id);
3168 F2 : constant Entity_Id := Next_Formal (F1);
3169
3170 begin
3171 -- Verify that Op_Id is a visible binary function. Note that since
3172 -- we know Op_Id is overloaded, potentially use visible means use
3173 -- visible for sure (RM 9.4(11)).
3174
3175 if Ekind (Op_Id) = E_Function
3176 and then Present (F2)
3177 and then (Is_Immediately_Visible (Op_Id)
3178 or else Is_Potentially_Use_Visible (Op_Id))
3179 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
3180 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
3181 then
3182 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3183
3184 if Debug_Flag_E then
3185 Write_Str ("user defined operator ");
3186 Write_Name (Chars (Op_Id));
3187 Write_Str (" on node ");
3188 Write_Int (Int (N));
3189 Write_Eol;
3190 end if;
3191 end if;
3192 end;
3193 end if;
3194 end Analyze_User_Defined_Binary_Op;
3195
3196 -----------------------------------
3197 -- Analyze_User_Defined_Unary_Op --
3198 -----------------------------------
3199
3200 procedure Analyze_User_Defined_Unary_Op
3201 (N : Node_Id;
3202 Op_Id : Entity_Id)
3203 is
3204 begin
3205 -- Only do analysis if the operator Comes_From_Source, since otherwise
3206 -- the operator was generated by the expander, and all such operators
3207 -- always refer to the operators in package Standard.
3208
3209 if Comes_From_Source (N) then
3210 declare
3211 F : constant Entity_Id := First_Formal (Op_Id);
3212
3213 begin
3214 -- Verify that Op_Id is a visible unary function. Note that since
3215 -- we know Op_Id is overloaded, potentially use visible means use
3216 -- visible for sure (RM 9.4(11)).
3217
3218 if Ekind (Op_Id) = E_Function
3219 and then No (Next_Formal (F))
3220 and then (Is_Immediately_Visible (Op_Id)
3221 or else Is_Potentially_Use_Visible (Op_Id))
3222 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
3223 then
3224 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3225 end if;
3226 end;
3227 end if;
3228 end Analyze_User_Defined_Unary_Op;
3229
3230 ---------------------------
3231 -- Check_Arithmetic_Pair --
3232 ---------------------------
3233
3234 procedure Check_Arithmetic_Pair
3235 (T1, T2 : Entity_Id;
3236 Op_Id : Entity_Id;
3237 N : Node_Id)
3238 is
3239 Op_Name : constant Name_Id := Chars (Op_Id);
3240
3241 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
3242 -- Get specific type (i.e. non-universal type if there is one)
3243
3244 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
3245 begin
3246 if T1 = Universal_Integer or else T1 = Universal_Real then
3247 return Base_Type (T2);
3248 else
3249 return Base_Type (T1);
3250 end if;
3251 end Specific_Type;
3252
3253 -- Start of processing for Check_Arithmetic_Pair
3254
3255 begin
3256 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
3257
3258 if Is_Numeric_Type (T1)
3259 and then Is_Numeric_Type (T2)
3260 and then (Covers (T1, T2) or else Covers (T2, T1))
3261 then
3262 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3263 end if;
3264
3265 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
3266
3267 if Is_Fixed_Point_Type (T1)
3268 and then (Is_Fixed_Point_Type (T2)
3269 or else T2 = Universal_Real)
3270 then
3271 -- If Treat_Fixed_As_Integer is set then the Etype is already set
3272 -- and no further processing is required (this is the case of an
3273 -- operator constructed by Exp_Fixd for a fixed point operation)
3274 -- Otherwise add one interpretation with universal fixed result
3275 -- If the operator is given in functional notation, it comes
3276 -- from source and Fixed_As_Integer cannot apply.
3277
3278 if Nkind (N) not in N_Op
fbf5a39b
AC
3279 or else not Treat_Fixed_As_Integer (N)
3280 then
996ae0b0
RK
3281 Add_One_Interp (N, Op_Id, Universal_Fixed);
3282 end if;
3283
3284 elsif Is_Fixed_Point_Type (T2)
3285 and then (Nkind (N) not in N_Op
3286 or else not Treat_Fixed_As_Integer (N))
3287 and then T1 = Universal_Real
3288 then
3289 Add_One_Interp (N, Op_Id, Universal_Fixed);
3290
3291 elsif Is_Numeric_Type (T1)
3292 and then Is_Numeric_Type (T2)
3293 and then (Covers (T1, T2) or else Covers (T2, T1))
3294 then
3295 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3296
3297 elsif Is_Fixed_Point_Type (T1)
3298 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3299 or else T2 = Universal_Integer)
3300 then
3301 Add_One_Interp (N, Op_Id, T1);
3302
3303 elsif T2 = Universal_Real
3304 and then Base_Type (T1) = Base_Type (Standard_Integer)
3305 and then Op_Name = Name_Op_Multiply
3306 then
3307 Add_One_Interp (N, Op_Id, Any_Fixed);
3308
3309 elsif T1 = Universal_Real
3310 and then Base_Type (T2) = Base_Type (Standard_Integer)
3311 then
3312 Add_One_Interp (N, Op_Id, Any_Fixed);
3313
3314 elsif Is_Fixed_Point_Type (T2)
3315 and then (Base_Type (T1) = Base_Type (Standard_Integer)
3316 or else T1 = Universal_Integer)
3317 and then Op_Name = Name_Op_Multiply
3318 then
3319 Add_One_Interp (N, Op_Id, T2);
3320
3321 elsif T1 = Universal_Real and then T2 = Universal_Integer then
3322 Add_One_Interp (N, Op_Id, T1);
3323
3324 elsif T2 = Universal_Real
3325 and then T1 = Universal_Integer
3326 and then Op_Name = Name_Op_Multiply
3327 then
3328 Add_One_Interp (N, Op_Id, T2);
3329 end if;
3330
3331 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
3332
3333 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
3334 -- set does not require any special processing, since the Etype is
3335 -- already set (case of operation constructed by Exp_Fixed).
3336
3337 if Is_Integer_Type (T1)
3338 and then (Covers (T1, T2) or else Covers (T2, T1))
3339 then
3340 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3341 end if;
3342
3343 elsif Op_Name = Name_Op_Expon then
3344
3345 if Is_Numeric_Type (T1)
3346 and then not Is_Fixed_Point_Type (T1)
3347 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3348 or else T2 = Universal_Integer)
3349 then
3350 Add_One_Interp (N, Op_Id, Base_Type (T1));
3351 end if;
3352
3353 else pragma Assert (Nkind (N) in N_Op_Shift);
3354
3355 -- If not one of the predefined operators, the node may be one
3356 -- of the intrinsic functions. Its kind is always specific, and
3357 -- we can use it directly, rather than the name of the operation.
3358
3359 if Is_Integer_Type (T1)
3360 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3361 or else T2 = Universal_Integer)
3362 then
3363 Add_One_Interp (N, Op_Id, Base_Type (T1));
3364 end if;
3365 end if;
3366 end Check_Arithmetic_Pair;
3367
3368 -------------------------------
3369 -- Check_Misspelled_Selector --
3370 -------------------------------
3371
3372 procedure Check_Misspelled_Selector
3373 (Prefix : Entity_Id;
3374 Sel : Node_Id)
3375 is
3376 Max_Suggestions : constant := 2;
3377 Nr_Of_Suggestions : Natural := 0;
3378
3379 Suggestion_1 : Entity_Id := Empty;
3380 Suggestion_2 : Entity_Id := Empty;
3381
3382 Comp : Entity_Id;
3383
3384 begin
3385 -- All the components of the prefix of selector Sel are matched
3386 -- against Sel and a count is maintained of possible misspellings.
3387 -- When at the end of the analysis there are one or two (not more!)
3388 -- possible misspellings, these misspellings will be suggested as
3389 -- possible correction.
3390
3391 if not (Is_Private_Type (Prefix) or Is_Record_Type (Prefix)) then
3392 -- Concurrent types should be handled as well ???
3393 return;
3394 end if;
3395
3396 Get_Name_String (Chars (Sel));
3397
3398 declare
3399 S : constant String (1 .. Name_Len) :=
3400 Name_Buffer (1 .. Name_Len);
3401
3402 begin
3403 Comp := First_Entity (Prefix);
3404
3405 while Nr_Of_Suggestions <= Max_Suggestions
3406 and then Present (Comp)
3407 loop
3408
3409 if Is_Visible_Component (Comp) then
3410 Get_Name_String (Chars (Comp));
3411
3412 if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
3413 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
3414
3415 case Nr_Of_Suggestions is
3416 when 1 => Suggestion_1 := Comp;
3417 when 2 => Suggestion_2 := Comp;
3418 when others => exit;
3419 end case;
3420 end if;
3421 end if;
3422
3423 Comp := Next_Entity (Comp);
3424 end loop;
3425
3426 -- Report at most two suggestions
3427
3428 if Nr_Of_Suggestions = 1 then
3429 Error_Msg_NE ("\possible misspelling of&", Sel, Suggestion_1);
3430
3431 elsif Nr_Of_Suggestions = 2 then
3432 Error_Msg_Node_2 := Suggestion_2;
3433 Error_Msg_NE ("\possible misspelling of& or&",
3434 Sel, Suggestion_1);
3435 end if;
3436 end;
3437 end Check_Misspelled_Selector;
3438
3439 ----------------------
3440 -- Defined_In_Scope --
3441 ----------------------
3442
3443 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
3444 is
3445 S1 : constant Entity_Id := Scope (Base_Type (T));
3446
3447 begin
3448 return S1 = S
3449 or else (S1 = System_Aux_Id and then S = Scope (S1));
3450 end Defined_In_Scope;
3451
3452 -------------------
3453 -- Diagnose_Call --
3454 -------------------
3455
3456 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
3457 Actual : Node_Id;
3458 X : Interp_Index;
3459 It : Interp;
3460 Success : Boolean;
3461 Err_Mode : Boolean;
3462 New_Nam : Node_Id;
3463 Void_Interp_Seen : Boolean := False;
996ae0b0
RK
3464
3465 begin
3466 if Extensions_Allowed then
3467 Actual := First_Actual (N);
3468
3469 while Present (Actual) loop
6e937c1c 3470 -- Ada 0Y (AI-50217): Post an error in case of premature usage of
19f0526a
AC
3471 -- an entity from the limited view.
3472
996ae0b0
RK
3473 if not Analyzed (Etype (Actual))
3474 and then From_With_Type (Etype (Actual))
3475 then
3476 Error_Msg_Qual_Level := 1;
3477 Error_Msg_NE
3478 ("missing with_clause for scope of imported type&",
3479 Actual, Etype (Actual));
3480 Error_Msg_Qual_Level := 0;
3481 end if;
3482
3483 Next_Actual (Actual);
3484 end loop;
3485 end if;
3486
fbf5a39b
AC
3487 -- Analyze each candidate call again, with full error reporting
3488 -- for each.
3489
3490 Error_Msg_N
3491 ("no candidate interpretations match the actuals:!", Nam);
3492 Err_Mode := All_Errors_Mode;
3493 All_Errors_Mode := True;
3494
3495 -- If this is a call to an operation of a concurrent type,
3496 -- the failed interpretations have been removed from the
3497 -- name. Recover them to provide full diagnostics.
3498
3499 if Nkind (Parent (Nam)) = N_Selected_Component then
3500 Set_Entity (Nam, Empty);
3501 New_Nam := New_Copy_Tree (Parent (Nam));
3502 Set_Is_Overloaded (New_Nam, False);
3503 Set_Is_Overloaded (Selector_Name (New_Nam), False);
3504 Set_Parent (New_Nam, Parent (Parent (Nam)));
3505 Analyze_Selected_Component (New_Nam);
3506 Get_First_Interp (Selector_Name (New_Nam), X, It);
3507 else
996ae0b0 3508 Get_First_Interp (Nam, X, It);
fbf5a39b 3509 end if;
996ae0b0 3510
fbf5a39b
AC
3511 while Present (It.Nam) loop
3512 if Etype (It.Nam) = Standard_Void_Type then
3513 Void_Interp_Seen := True;
996ae0b0 3514 end if;
fbf5a39b
AC
3515
3516 Analyze_One_Call (N, It.Nam, True, Success);
3517 Get_Next_Interp (X, It);
3518 end loop;
996ae0b0
RK
3519
3520 if Nkind (N) = N_Function_Call then
3521 Get_First_Interp (Nam, X, It);
3522
3523 while Present (It.Nam) loop
3524 if Ekind (It.Nam) = E_Function
3525 or else Ekind (It.Nam) = E_Operator
3526 then
3527 return;
3528 else
3529 Get_Next_Interp (X, It);
3530 end if;
3531 end loop;
3532
3533 -- If all interpretations are procedures, this deserves a
3534 -- more precise message. Ditto if this appears as the prefix
3535 -- of a selected component, which may be a lexical error.
3536
3537 Error_Msg_N (
3538 "\context requires function call, found procedure name", Nam);
3539
3540 if Nkind (Parent (N)) = N_Selected_Component
3541 and then N = Prefix (Parent (N))
3542 then
3543 Error_Msg_N (
3544 "\period should probably be semicolon", Parent (N));
3545 end if;
fbf5a39b
AC
3546
3547 elsif Nkind (N) = N_Procedure_Call_Statement
3548 and then not Void_Interp_Seen
3549 then
3550 Error_Msg_N (
3551 "\function name found in procedure call", Nam);
996ae0b0 3552 end if;
fbf5a39b
AC
3553
3554 All_Errors_Mode := Err_Mode;
996ae0b0
RK
3555 end Diagnose_Call;
3556
3557 ---------------------------
3558 -- Find_Arithmetic_Types --
3559 ---------------------------
3560
3561 procedure Find_Arithmetic_Types
3562 (L, R : Node_Id;
3563 Op_Id : Entity_Id;
3564 N : Node_Id)
3565 is
3566 Index1, Index2 : Interp_Index;
3567 It1, It2 : Interp;
3568
3569 procedure Check_Right_Argument (T : Entity_Id);
3570 -- Check right operand of operator
3571
3572 procedure Check_Right_Argument (T : Entity_Id) is
3573 begin
3574 if not Is_Overloaded (R) then
3575 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
3576 else
3577 Get_First_Interp (R, Index2, It2);
3578
3579 while Present (It2.Typ) loop
3580 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
3581 Get_Next_Interp (Index2, It2);
3582 end loop;
3583 end if;
3584 end Check_Right_Argument;
3585
3586 -- Start processing for Find_Arithmetic_Types
3587
3588 begin
3589 if not Is_Overloaded (L) then
3590 Check_Right_Argument (Etype (L));
3591
3592 else
3593 Get_First_Interp (L, Index1, It1);
3594
3595 while Present (It1.Typ) loop
3596 Check_Right_Argument (It1.Typ);
3597 Get_Next_Interp (Index1, It1);
3598 end loop;
3599 end if;
3600
3601 end Find_Arithmetic_Types;
3602
3603 ------------------------
3604 -- Find_Boolean_Types --
3605 ------------------------
3606
3607 procedure Find_Boolean_Types
3608 (L, R : Node_Id;
3609 Op_Id : Entity_Id;
3610 N : Node_Id)
3611 is
3612 Index : Interp_Index;
3613 It : Interp;
3614
3615 procedure Check_Numeric_Argument (T : Entity_Id);
3616 -- Special case for logical operations one of whose operands is an
3617 -- integer literal. If both are literal the result is any modular type.
3618
3619 procedure Check_Numeric_Argument (T : Entity_Id) is
3620 begin
3621 if T = Universal_Integer then
3622 Add_One_Interp (N, Op_Id, Any_Modular);
3623
3624 elsif Is_Modular_Integer_Type (T) then
3625 Add_One_Interp (N, Op_Id, T);
3626 end if;
3627 end Check_Numeric_Argument;
3628
3629 -- Start of processing for Find_Boolean_Types
3630
3631 begin
3632 if not Is_Overloaded (L) then
3633
3634 if Etype (L) = Universal_Integer
3635 or else Etype (L) = Any_Modular
3636 then
3637 if not Is_Overloaded (R) then
3638 Check_Numeric_Argument (Etype (R));
3639
3640 else
3641 Get_First_Interp (R, Index, It);
3642
3643 while Present (It.Typ) loop
3644 Check_Numeric_Argument (It.Typ);
3645
3646 Get_Next_Interp (Index, It);
3647 end loop;
3648 end if;
3649
3650 elsif Valid_Boolean_Arg (Etype (L))
3651 and then Has_Compatible_Type (R, Etype (L))
3652 then
3653 Add_One_Interp (N, Op_Id, Etype (L));
3654 end if;
3655
3656 else
3657 Get_First_Interp (L, Index, It);
3658
3659 while Present (It.Typ) loop
3660 if Valid_Boolean_Arg (It.Typ)
3661 and then Has_Compatible_Type (R, It.Typ)
3662 then
3663 Add_One_Interp (N, Op_Id, It.Typ);
3664 end if;
3665
3666 Get_Next_Interp (Index, It);
3667 end loop;
3668 end if;
3669 end Find_Boolean_Types;
3670
3671 ---------------------------
3672 -- Find_Comparison_Types --
3673 ---------------------------
3674
3675 procedure Find_Comparison_Types
3676 (L, R : Node_Id;
3677 Op_Id : Entity_Id;
3678 N : Node_Id)
3679 is
3680 Index : Interp_Index;
3681 It : Interp;
3682 Found : Boolean := False;
3683 I_F : Interp_Index;
3684 T_F : Entity_Id;
3685 Scop : Entity_Id := Empty;
3686
3687 procedure Try_One_Interp (T1 : Entity_Id);
3688 -- Routine to try one proposed interpretation. Note that the context
3689 -- of the operator plays no role in resolving the arguments, so that
3690 -- if there is more than one interpretation of the operands that is
3691 -- compatible with comparison, the operation is ambiguous.
3692
3693 procedure Try_One_Interp (T1 : Entity_Id) is
3694 begin
3695
3696 -- If the operator is an expanded name, then the type of the operand
3697 -- must be defined in the corresponding scope. If the type is
3698 -- universal, the context will impose the correct type.
3699
3700 if Present (Scop)
3701 and then not Defined_In_Scope (T1, Scop)
3702 and then T1 /= Universal_Integer
3703 and then T1 /= Universal_Real
3704 and then T1 /= Any_String
3705 and then T1 /= Any_Composite
3706 then
3707 return;
3708 end if;
3709
3710 if Valid_Comparison_Arg (T1)
3711 and then Has_Compatible_Type (R, T1)
3712 then
3713 if Found
3714 and then Base_Type (T1) /= Base_Type (T_F)
3715 then
3716 It := Disambiguate (L, I_F, Index, Any_Type);
3717
3718 if It = No_Interp then
3719 Ambiguous_Operands (N);
3720 Set_Etype (L, Any_Type);
3721 return;
3722
3723 else
3724 T_F := It.Typ;
3725 end if;
3726
3727 else
3728 Found := True;
3729 T_F := T1;
3730 I_F := Index;
3731 end if;
3732
3733 Set_Etype (L, T_F);
3734 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
3735
3736 end if;
3737 end Try_One_Interp;
3738
3739 -- Start processing for Find_Comparison_Types
3740
3741 begin
fbf5a39b
AC
3742 -- If left operand is aggregate, the right operand has to
3743 -- provide a usable type for it.
3744
3745 if Nkind (L) = N_Aggregate
3746 and then Nkind (R) /= N_Aggregate
3747 then
3748 Find_Comparison_Types (R, L, Op_Id, N);
3749 return;
3750 end if;
996ae0b0
RK
3751
3752 if Nkind (N) = N_Function_Call
3753 and then Nkind (Name (N)) = N_Expanded_Name
3754 then
3755 Scop := Entity (Prefix (Name (N)));
3756
3757 -- The prefix may be a package renaming, and the subsequent test
3758 -- requires the original package.
3759
3760 if Ekind (Scop) = E_Package
3761 and then Present (Renamed_Entity (Scop))
3762 then
3763 Scop := Renamed_Entity (Scop);
3764 Set_Entity (Prefix (Name (N)), Scop);
3765 end if;
3766 end if;
3767
3768 if not Is_Overloaded (L) then
3769 Try_One_Interp (Etype (L));
3770
3771 else
3772 Get_First_Interp (L, Index, It);
3773
3774 while Present (It.Typ) loop
3775 Try_One_Interp (It.Typ);
3776 Get_Next_Interp (Index, It);
3777 end loop;
3778 end if;
3779 end Find_Comparison_Types;
3780
3781 ----------------------------------------
3782 -- Find_Non_Universal_Interpretations --
3783 ----------------------------------------
3784
3785 procedure Find_Non_Universal_Interpretations
3786 (N : Node_Id;
3787 R : Node_Id;
3788 Op_Id : Entity_Id;
3789 T1 : Entity_Id)
3790 is
3791 Index : Interp_Index;
3792 It : Interp;
3793
3794 begin
3795 if T1 = Universal_Integer
3796 or else T1 = Universal_Real
3797 then
3798 if not Is_Overloaded (R) then
3799 Add_One_Interp
3800 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
3801 else
3802 Get_First_Interp (R, Index, It);
3803
3804 while Present (It.Typ) loop
3805 if Covers (It.Typ, T1) then
3806 Add_One_Interp
3807 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
3808 end if;
3809
3810 Get_Next_Interp (Index, It);
3811 end loop;
3812 end if;
3813 else
3814 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
3815 end if;
3816 end Find_Non_Universal_Interpretations;
3817
3818 ------------------------------
3819 -- Find_Concatenation_Types --
3820 ------------------------------
3821
3822 procedure Find_Concatenation_Types
3823 (L, R : Node_Id;
3824 Op_Id : Entity_Id;
3825 N : Node_Id)
3826 is
3827 Op_Type : constant Entity_Id := Etype (Op_Id);
3828
3829 begin
3830 if Is_Array_Type (Op_Type)
3831 and then not Is_Limited_Type (Op_Type)
3832
3833 and then (Has_Compatible_Type (L, Op_Type)
3834 or else
3835 Has_Compatible_Type (L, Component_Type (Op_Type)))
3836
3837 and then (Has_Compatible_Type (R, Op_Type)
3838 or else
3839 Has_Compatible_Type (R, Component_Type (Op_Type)))
3840 then
3841 Add_One_Interp (N, Op_Id, Op_Type);
3842 end if;
3843 end Find_Concatenation_Types;
3844
3845 -------------------------
3846 -- Find_Equality_Types --
3847 -------------------------
3848
3849 procedure Find_Equality_Types
3850 (L, R : Node_Id;
3851 Op_Id : Entity_Id;
3852 N : Node_Id)
3853 is
3854 Index : Interp_Index;
3855 It : Interp;
3856 Found : Boolean := False;
3857 I_F : Interp_Index;
3858 T_F : Entity_Id;
3859 Scop : Entity_Id := Empty;
3860
3861 procedure Try_One_Interp (T1 : Entity_Id);
3862 -- The context of the operator plays no role in resolving the
3863 -- arguments, so that if there is more than one interpretation
3864 -- of the operands that is compatible with equality, the construct
3865 -- is ambiguous and an error can be emitted now, after trying to
3866 -- disambiguate, i.e. applying preference rules.
3867
3868 procedure Try_One_Interp (T1 : Entity_Id) is
3869 begin
3870
3871 -- If the operator is an expanded name, then the type of the operand
3872 -- must be defined in the corresponding scope. If the type is
3873 -- universal, the context will impose the correct type. An anonymous
3874 -- type for a 'Access reference is also universal in this sense, as
3875 -- the actual type is obtained from context.
3876
3877 if Present (Scop)
3878 and then not Defined_In_Scope (T1, Scop)
3879 and then T1 /= Universal_Integer
3880 and then T1 /= Universal_Real
3881 and then T1 /= Any_Access
3882 and then T1 /= Any_String
3883 and then T1 /= Any_Composite
3884 and then (Ekind (T1) /= E_Access_Subprogram_Type
3885 or else Comes_From_Source (T1))
3886 then
3887 return;
3888 end if;
3889
6e937c1c
AC
3890 -- Ada 0Y (AI-230): Keep restriction imposed by Ada 83 and 95: Do not
3891 -- allow anonymous access types in equality operators.
3892
3893 if not Extensions_Allowed
3894 and then Ekind (T1) = E_Anonymous_Access_Type
3895 then
3896 return;
3897 end if;
3898
996ae0b0
RK
3899 if T1 /= Standard_Void_Type
3900 and then not Is_Limited_Type (T1)
3901 and then not Is_Limited_Composite (T1)
996ae0b0
RK
3902 and then Has_Compatible_Type (R, T1)
3903 then
3904 if Found
3905 and then Base_Type (T1) /= Base_Type (T_F)
3906 then
3907 It := Disambiguate (L, I_F, Index, Any_Type);
3908
3909 if It = No_Interp then
3910 Ambiguous_Operands (N);
3911 Set_Etype (L, Any_Type);
3912 return;
3913
3914 else
3915 T_F := It.Typ;
3916 end if;
3917
3918 else
3919 Found := True;
3920 T_F := T1;
3921 I_F := Index;
3922 end if;
3923
3924 if not Analyzed (L) then
3925 Set_Etype (L, T_F);
3926 end if;
3927
3928 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
3929
3930 if Etype (N) = Any_Type then
3931
3932 -- Operator was not visible.
3933
3934 Found := False;
3935 end if;
3936 end if;
3937 end Try_One_Interp;
3938
3939 -- Start of processing for Find_Equality_Types
3940
3941 begin
fbf5a39b
AC
3942 -- If left operand is aggregate, the right operand has to
3943 -- provide a usable type for it.
3944
3945 if Nkind (L) = N_Aggregate
3946 and then Nkind (R) /= N_Aggregate
3947 then
3948 Find_Equality_Types (R, L, Op_Id, N);
3949 return;
3950 end if;
996ae0b0
RK
3951
3952 if Nkind (N) = N_Function_Call
3953 and then Nkind (Name (N)) = N_Expanded_Name
3954 then
3955 Scop := Entity (Prefix (Name (N)));
3956
3957 -- The prefix may be a package renaming, and the subsequent test
3958 -- requires the original package.
3959
3960 if Ekind (Scop) = E_Package
3961 and then Present (Renamed_Entity (Scop))
3962 then
3963 Scop := Renamed_Entity (Scop);
3964 Set_Entity (Prefix (Name (N)), Scop);
3965 end if;
3966 end if;
3967
3968 if not Is_Overloaded (L) then
3969 Try_One_Interp (Etype (L));
3970 else
3971
3972 Get_First_Interp (L, Index, It);
3973
3974 while Present (It.Typ) loop
3975 Try_One_Interp (It.Typ);
3976 Get_Next_Interp (Index, It);
3977 end loop;
3978 end if;
3979 end Find_Equality_Types;
3980
3981 -------------------------
3982 -- Find_Negation_Types --
3983 -------------------------
3984
3985 procedure Find_Negation_Types
3986 (R : Node_Id;
3987 Op_Id : Entity_Id;
3988 N : Node_Id)
3989 is
3990 Index : Interp_Index;
3991 It : Interp;
3992
3993 begin
3994 if not Is_Overloaded (R) then
3995
3996 if Etype (R) = Universal_Integer then
3997 Add_One_Interp (N, Op_Id, Any_Modular);
3998
3999 elsif Valid_Boolean_Arg (Etype (R)) then
4000 Add_One_Interp (N, Op_Id, Etype (R));
4001 end if;
4002
4003 else
4004 Get_First_Interp (R, Index, It);
4005
4006 while Present (It.Typ) loop
4007 if Valid_Boolean_Arg (It.Typ) then
4008 Add_One_Interp (N, Op_Id, It.Typ);
4009 end if;
4010
4011 Get_Next_Interp (Index, It);
4012 end loop;
4013 end if;
4014 end Find_Negation_Types;
4015
4016 ----------------------
4017 -- Find_Unary_Types --
4018 ----------------------
4019
4020 procedure Find_Unary_Types
4021 (R : Node_Id;
4022 Op_Id : Entity_Id;
4023 N : Node_Id)
4024 is
4025 Index : Interp_Index;
4026 It : Interp;
4027
4028 begin
4029 if not Is_Overloaded (R) then
4030 if Is_Numeric_Type (Etype (R)) then
4031 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
4032 end if;
4033
4034 else
4035 Get_First_Interp (R, Index, It);
4036
4037 while Present (It.Typ) loop
4038 if Is_Numeric_Type (It.Typ) then
4039 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
4040 end if;
4041
4042 Get_Next_Interp (Index, It);
4043 end loop;
4044 end if;
4045 end Find_Unary_Types;
4046
996ae0b0
RK
4047 ------------------
4048 -- Junk_Operand --
4049 ------------------
4050
4051 function Junk_Operand (N : Node_Id) return Boolean is
4052 Enode : Node_Id;
4053
4054 begin
4055 if Error_Posted (N) then
4056 return False;
4057 end if;
4058
4059 -- Get entity to be tested
4060
4061 if Is_Entity_Name (N)
4062 and then Present (Entity (N))
4063 then
4064 Enode := N;
4065
4066 -- An odd case, a procedure name gets converted to a very peculiar
4067 -- function call, and here is where we detect this happening.
4068
4069 elsif Nkind (N) = N_Function_Call
4070 and then Is_Entity_Name (Name (N))
4071 and then Present (Entity (Name (N)))
4072 then
4073 Enode := Name (N);
4074
4075 -- Another odd case, there are at least some cases of selected
4076 -- components where the selected component is not marked as having
4077 -- an entity, even though the selector does have an entity
4078
4079 elsif Nkind (N) = N_Selected_Component
4080 and then Present (Entity (Selector_Name (N)))
4081 then
4082 Enode := Selector_Name (N);
4083
4084 else
4085 return False;
4086 end if;
4087
4088 -- Now test the entity we got to see if it a bad case
4089
4090 case Ekind (Entity (Enode)) is
4091
4092 when E_Package =>
4093 Error_Msg_N
4094 ("package name cannot be used as operand", Enode);
4095
4096 when Generic_Unit_Kind =>
4097 Error_Msg_N
4098 ("generic unit name cannot be used as operand", Enode);
4099
4100 when Type_Kind =>
4101 Error_Msg_N
4102 ("subtype name cannot be used as operand", Enode);
4103
4104 when Entry_Kind =>
4105 Error_Msg_N
4106 ("entry name cannot be used as operand", Enode);
4107
4108 when E_Procedure =>
4109 Error_Msg_N
4110 ("procedure name cannot be used as operand", Enode);
4111
4112 when E_Exception =>
4113 Error_Msg_N
4114 ("exception name cannot be used as operand", Enode);
4115
4116 when E_Block | E_Label | E_Loop =>
4117 Error_Msg_N
4118 ("label name cannot be used as operand", Enode);
4119
4120 when others =>
4121 return False;
4122
4123 end case;
4124
4125 return True;
4126 end Junk_Operand;
4127
4128 --------------------
4129 -- Operator_Check --
4130 --------------------
4131
4132 procedure Operator_Check (N : Node_Id) is
4133 begin
30c20106
AC
4134 Remove_Abstract_Operations (N);
4135
996ae0b0
RK
4136 -- Test for case of no interpretation found for operator
4137
4138 if Etype (N) = Any_Type then
4139 declare
4140 L : Node_Id;
4141 R : Node_Id;
4142
4143 begin
4144 R := Right_Opnd (N);
4145
4146 if Nkind (N) in N_Binary_Op then
4147 L := Left_Opnd (N);
4148 else
4149 L := Empty;
4150 end if;
4151
4152 -- If either operand has no type, then don't complain further,
4153 -- since this simply means that we have a propragated error.
4154
4155 if R = Error
4156 or else Etype (R) = Any_Type
4157 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
4158 then
4159 return;
4160
4161 -- We explicitly check for the case of concatenation of
4162 -- component with component to avoid reporting spurious
4163 -- matching array types that might happen to be lurking
4164 -- in distant packages (such as run-time packages). This
4165 -- also prevents inconsistencies in the messages for certain
4166 -- ACVC B tests, which can vary depending on types declared
4167 -- in run-time interfaces. A further improvement, when
4168 -- aggregates are present, is to look for a well-typed operand.
4169
4170 elsif Present (Candidate_Type)
4171 and then (Nkind (N) /= N_Op_Concat
4172 or else Is_Array_Type (Etype (L))
4173 or else Is_Array_Type (Etype (R)))
4174 then
4175
4176 if Nkind (N) = N_Op_Concat then
4177 if Etype (L) /= Any_Composite
4178 and then Is_Array_Type (Etype (L))
4179 then
4180 Candidate_Type := Etype (L);
4181
4182 elsif Etype (R) /= Any_Composite
4183 and then Is_Array_Type (Etype (R))
4184 then
4185 Candidate_Type := Etype (R);
4186 end if;
4187 end if;
4188
4189 Error_Msg_NE
4190 ("operator for} is not directly visible!",
4191 N, First_Subtype (Candidate_Type));
4192 Error_Msg_N ("use clause would make operation legal!", N);
4193 return;
4194
4195 -- If either operand is a junk operand (e.g. package name), then
4196 -- post appropriate error messages, but do not complain further.
4197
4198 -- Note that the use of OR in this test instead of OR ELSE
4199 -- is quite deliberate, we may as well check both operands
4200 -- in the binary operator case.
4201
4202 elsif Junk_Operand (R)
4203 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
4204 then
4205 return;
4206
4207 -- If we have a logical operator, one of whose operands is
4208 -- Boolean, then we know that the other operand cannot resolve
4209 -- to Boolean (since we got no interpretations), but in that
4210 -- case we pretty much know that the other operand should be
4211 -- Boolean, so resolve it that way (generating an error)
4212
4213 elsif Nkind (N) = N_Op_And
4214 or else
4215 Nkind (N) = N_Op_Or
4216 or else
4217 Nkind (N) = N_Op_Xor
4218 then
4219 if Etype (L) = Standard_Boolean then
4220 Resolve (R, Standard_Boolean);
4221 return;
4222 elsif Etype (R) = Standard_Boolean then
4223 Resolve (L, Standard_Boolean);
4224 return;
4225 end if;
4226
4227 -- For an arithmetic operator or comparison operator, if one
4228 -- of the operands is numeric, then we know the other operand
4229 -- is not the same numeric type. If it is a non-numeric type,
4230 -- then probably it is intended to match the other operand.
4231
4232 elsif Nkind (N) = N_Op_Add or else
4233 Nkind (N) = N_Op_Divide or else
4234 Nkind (N) = N_Op_Ge or else
4235 Nkind (N) = N_Op_Gt or else
4236 Nkind (N) = N_Op_Le or else
4237 Nkind (N) = N_Op_Lt or else
4238 Nkind (N) = N_Op_Mod or else
4239 Nkind (N) = N_Op_Multiply or else
4240 Nkind (N) = N_Op_Rem or else
4241 Nkind (N) = N_Op_Subtract
4242 then
4243 if Is_Numeric_Type (Etype (L))
4244 and then not Is_Numeric_Type (Etype (R))
4245 then
4246 Resolve (R, Etype (L));
4247 return;
4248
4249 elsif Is_Numeric_Type (Etype (R))
4250 and then not Is_Numeric_Type (Etype (L))
4251 then
4252 Resolve (L, Etype (R));
4253 return;
4254 end if;
4255
4256 -- Comparisons on A'Access are common enough to deserve a
4257 -- special message.
4258
4259 elsif (Nkind (N) = N_Op_Eq or else
4260 Nkind (N) = N_Op_Ne)
4261 and then Ekind (Etype (L)) = E_Access_Attribute_Type
4262 and then Ekind (Etype (R)) = E_Access_Attribute_Type
4263 then
4264 Error_Msg_N
4265 ("two access attributes cannot be compared directly", N);
4266 Error_Msg_N
4267 ("\they must be converted to an explicit type for comparison",
4268 N);
4269 return;
4270
4271 -- Another one for C programmers
4272
4273 elsif Nkind (N) = N_Op_Concat
4274 and then Valid_Boolean_Arg (Etype (L))
4275 and then Valid_Boolean_Arg (Etype (R))
4276 then
4277 Error_Msg_N ("invalid operands for concatenation", N);
4278 Error_Msg_N ("\maybe AND was meant", N);
4279 return;
4280
4281 -- A special case for comparison of access parameter with null
4282
4283 elsif Nkind (N) = N_Op_Eq
4284 and then Is_Entity_Name (L)
4285 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
4286 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
4287 N_Access_Definition
4288 and then Nkind (R) = N_Null
4289 then
4290 Error_Msg_N ("access parameter is not allowed to be null", L);
4291 Error_Msg_N ("\(call would raise Constraint_Error)", L);
4292 return;
4293 end if;
4294
4295 -- If we fall through then just give general message. Note
4296 -- that in the following messages, if the operand is overloaded
4297 -- we choose an arbitrary type to complain about, but that is
4298 -- probably more useful than not giving a type at all.
4299
4300 if Nkind (N) in N_Unary_Op then
4301 Error_Msg_Node_2 := Etype (R);
4302 Error_Msg_N ("operator& not defined for}", N);
4303 return;
4304
4305 else
fbf5a39b
AC
4306 if Nkind (N) in N_Binary_Op then
4307 if not Is_Overloaded (L)
4308 and then not Is_Overloaded (R)
4309 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
4310 then
4311 Error_Msg_Node_2 := Etype (R);
4312 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 4313
fbf5a39b
AC
4314 else
4315 Error_Msg_N ("invalid operand types for operator&", N);
4316
4317 if Nkind (N) /= N_Op_Concat then
4318 Error_Msg_NE ("\left operand has}!", N, Etype (L));
4319 Error_Msg_NE ("\right operand has}!", N, Etype (R));
4320 end if;
4321 end if;
996ae0b0
RK
4322 end if;
4323 end if;
4324 end;
4325 end if;
4326 end Operator_Check;
4327
30c20106
AC
4328 --------------------------------
4329 -- Remove_Abstract_Operations --
4330 --------------------------------
4331
4332 procedure Remove_Abstract_Operations (N : Node_Id) is
4333 I : Interp_Index;
4334 It : Interp;
af152989 4335 Abstract_Op : Entity_Id := Empty;
30c20106
AC
4336
4337 -- AI-310: If overloaded, remove abstract non-dispatching
4338 -- operations.
4339
4340 begin
4341 if Extensions_Allowed
4342 and then Is_Overloaded (N)
4343 then
4344 Get_First_Interp (N, I, It);
4345 while Present (It.Nam) loop
4346 if not Is_Type (It.Nam)
4347 and then Is_Abstract (It.Nam)
4348 and then not Is_Dispatching_Operation (It.Nam)
4349 then
af152989 4350 Abstract_Op := It.Nam;
30c20106
AC
4351 Remove_Interp (I);
4352 exit;
4353 end if;
4354
4355 Get_Next_Interp (I, It);
4356 end loop;
4357
4358 -- Remove corresponding predefined operator, which is
4359 -- always added to the overload set, unless it is a universal
4360 -- operation.
4361
af152989 4362 if No (Abstract_Op) then
3984e89a
AC
4363 return;
4364
4365 elsif Nkind (N) in N_Op then
30c20106 4366 if Nkind (N) in N_Unary_Op
3984e89a 4367 and then Present (Universal_Interpretation (Right_Opnd (N)))
30c20106
AC
4368 then
4369 return;
4370
4371 elsif Nkind (N) in N_Binary_Op
3984e89a
AC
4372 and then Present (Universal_Interpretation (Right_Opnd (N)))
4373 and then Present (Universal_Interpretation (Left_Opnd (N)))
30c20106
AC
4374 then
4375 return;
4376
4377 else
4378 Get_First_Interp (N, I, It);
4379 while Present (It.Nam) loop
4380 if Scope (It.Nam) = Standard_Standard then
4381 Remove_Interp (I);
4382 end if;
4383
4384 Get_Next_Interp (I, It);
4385 end loop;
4386 end if;
3984e89a
AC
4387
4388 elsif Nkind (N) = N_Function_Call
4389 and then
4390 (Nkind (Name (N)) = N_Operator_Symbol
4391 or else
4392 (Nkind (Name (N)) = N_Expanded_Name
4393 and then
4394 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
4395 then
4396 declare
4397 Arg1 : constant Node_Id := First (Parameter_Associations (N));
4398
4399 begin
4400 if Present (Universal_Interpretation (Arg1))
af152989
AC
4401 and then
4402 (No (Next (Arg1))
4403 or else Present (Universal_Interpretation (Next (Arg1))))
3984e89a
AC
4404 then
4405 return;
4406
4407 else
4408 Get_First_Interp (N, I, It);
4409 while Present (It.Nam) loop
4410 if Scope (It.Nam) = Standard_Standard then
4411 Remove_Interp (I);
4412 end if;
4413
4414 Get_Next_Interp (I, It);
4415 end loop;
4416 end if;
4417 end;
30c20106 4418 end if;
af152989
AC
4419
4420 -- If the removal has left no valid interpretations, emit
4421 -- error message now an label node as illegal.
4422
4423 if Present (Abstract_Op) then
4424 Get_First_Interp (N, I, It);
4425
4426 if No (It.Nam) then
4427
4428 -- Removal of abstract operation left no viable candidate.
4429
4430 Set_Etype (N, Any_Type);
4431 Error_Msg_Sloc := Sloc (Abstract_Op);
4432 Error_Msg_NE
4433 ("cannot call abstract operation& declared#", N, Abstract_Op);
4434 end if;
4435 end if;
30c20106
AC
4436 end if;
4437 end Remove_Abstract_Operations;
4438
996ae0b0
RK
4439 -----------------------
4440 -- Try_Indirect_Call --
4441 -----------------------
4442
4443 function Try_Indirect_Call
91b1417d
AC
4444 (N : Node_Id;
4445 Nam : Entity_Id;
4446 Typ : Entity_Id) return Boolean
996ae0b0 4447 is
fbf5a39b
AC
4448 Actual : Node_Id;
4449 Formal : Entity_Id;
8a7988f5 4450 Call_OK : Boolean;
996ae0b0
RK
4451
4452 begin
8a7988f5
AC
4453 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
4454 Actual := First_Actual (N);
fbf5a39b 4455 Formal := First_Formal (Designated_Type (Typ));
8a7988f5 4456
996ae0b0
RK
4457 while Present (Actual)
4458 and then Present (Formal)
4459 loop
4460 if not Has_Compatible_Type (Actual, Etype (Formal)) then
4461 return False;
4462 end if;
4463
4464 Next (Actual);
4465 Next_Formal (Formal);
4466 end loop;
4467
4468 if No (Actual) and then No (Formal) then
4469 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
4470
4471 -- Nam is a candidate interpretation for the name in the call,
4472 -- if it is not an indirect call.
4473
4474 if not Is_Type (Nam)
4475 and then Is_Entity_Name (Name (N))
4476 then
4477 Set_Entity (Name (N), Nam);
4478 end if;
4479
4480 return True;
4481 else
4482 return False;
4483 end if;
4484 end Try_Indirect_Call;
4485
4486 ----------------------
4487 -- Try_Indexed_Call --
4488 ----------------------
4489
4490 function Try_Indexed_Call
91b1417d
AC
4491 (N : Node_Id;
4492 Nam : Entity_Id;
4493 Typ : Entity_Id) return Boolean
996ae0b0 4494 is
fbf5a39b
AC
4495 Actuals : constant List_Id := Parameter_Associations (N);
4496 Actual : Node_Id;
4497 Index : Entity_Id;
996ae0b0
RK
4498
4499 begin
fbf5a39b
AC
4500 Actual := First (Actuals);
4501 Index := First_Index (Typ);
996ae0b0
RK
4502 while Present (Actual)
4503 and then Present (Index)
4504 loop
4505 -- If the parameter list has a named association, the expression
4506 -- is definitely a call and not an indexed component.
4507
4508 if Nkind (Actual) = N_Parameter_Association then
4509 return False;
4510 end if;
4511
4512 if not Has_Compatible_Type (Actual, Etype (Index)) then
4513 return False;
4514 end if;
4515
4516 Next (Actual);
4517 Next_Index (Index);
4518 end loop;
4519
4520 if No (Actual) and then No (Index) then
4521 Add_One_Interp (N, Nam, Component_Type (Typ));
4522
4523 -- Nam is a candidate interpretation for the name in the call,
4524 -- if it is not an indirect call.
4525
4526 if not Is_Type (Nam)
4527 and then Is_Entity_Name (Name (N))
4528 then
4529 Set_Entity (Name (N), Nam);
4530 end if;
4531
4532 return True;
4533 else
4534 return False;
4535 end if;
4536
4537 end Try_Indexed_Call;
4538
4539end Sem_Ch4;