]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
sem.adb: Minor reformatting
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
19d846a0 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
35ae2ed8 29with Elists; use Elists;
996ae0b0
RK
30with Errout; use Errout;
31with Exp_Util; use Exp_Util;
d935a36e 32with Fname; use Fname;
996ae0b0 33with Itypes; use Itypes;
d935a36e 34with Lib; use Lib;
996ae0b0
RK
35with Lib.Xref; use Lib.Xref;
36with Namet; use Namet;
d469eabe 37with Namet.Sp; use Namet.Sp;
996ae0b0
RK
38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
41with Output; use Output;
42with Restrict; use Restrict;
6e937c1c 43with Rident; use Rident;
996ae0b0 44with Sem; use Sem;
a4100e55 45with Sem_Aux; use Sem_Aux;
19d846a0 46with Sem_Case; use Sem_Case;
996ae0b0
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch3; use Sem_Ch3;
d469eabe 49with Sem_Ch6; use Sem_Ch6;
996ae0b0 50with Sem_Ch8; use Sem_Ch8;
b67a385c 51with Sem_Disp; use Sem_Disp;
996ae0b0
RK
52with Sem_Dist; use Sem_Dist;
53with Sem_Eval; use Sem_Eval;
54with Sem_Res; use Sem_Res;
996ae0b0 55with Sem_Type; use Sem_Type;
19d846a0
RD
56with Sem_Util; use Sem_Util;
57with Sem_Warn; use Sem_Warn;
996ae0b0
RK
58with Stand; use Stand;
59with Sinfo; use Sinfo;
60with Snames; use Snames;
61with Tbuild; use Tbuild;
62
996ae0b0
RK
63package body Sem_Ch4 is
64
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
68
fe39cf20
BD
69 procedure Analyze_Concatenation_Rest (N : Node_Id);
70 -- Does the "rest" of the work of Analyze_Concatenation, after the left
71 -- operand has been analyzed. See Analyze_Concatenation for details.
72
996ae0b0
RK
73 procedure Analyze_Expression (N : Node_Id);
74 -- For expressions that are not names, this is just a call to analyze.
75 -- If the expression is a name, it may be a call to a parameterless
76 -- function, and if so must be converted into an explicit call node
77 -- and analyzed as such. This deproceduring must be done during the first
78 -- pass of overload resolution, because otherwise a procedure call with
b4592168 79 -- overloaded actuals may fail to resolve.
996ae0b0
RK
80
81 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
82 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
83 -- is an operator name or an expanded name whose selector is an operator
84 -- name, and one possible interpretation is as a predefined operator.
85
86 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
87 -- If the prefix of a selected_component is overloaded, the proper
88 -- interpretation that yields a record type with the proper selector
89 -- name must be selected.
90
91 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
92 -- Procedure to analyze a user defined binary operator, which is resolved
93 -- like a function, but instead of a list of actuals it is presented
94 -- with the left and right operands of an operator node.
95
96 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
97 -- Procedure to analyze a user defined unary operator, which is resolved
98 -- like a function, but instead of a list of actuals, it is presented with
99 -- the operand of the operator node.
100
101 procedure Ambiguous_Operands (N : Node_Id);
102 -- for equality, membership, and comparison operators with overloaded
103 -- arguments, list possible interpretations.
104
996ae0b0 105 procedure Analyze_One_Call
ec6078e3
ES
106 (N : Node_Id;
107 Nam : Entity_Id;
108 Report : Boolean;
109 Success : out Boolean;
110 Skip_First : Boolean := False);
996ae0b0
RK
111 -- Check one interpretation of an overloaded subprogram name for
112 -- compatibility with the types of the actuals in a call. If there is a
113 -- single interpretation which does not match, post error if Report is
114 -- set to True.
115 --
116 -- Nam is the entity that provides the formals against which the actuals
117 -- are checked. Nam is either the name of a subprogram, or the internal
118 -- subprogram type constructed for an access_to_subprogram. If the actuals
119 -- are compatible with Nam, then Nam is added to the list of candidate
120 -- interpretations for N, and Success is set to True.
ec6078e3
ES
121 --
122 -- The flag Skip_First is used when analyzing a call that was rewritten
123 -- from object notation. In this case the first actual may have to receive
124 -- an explicit dereference, depending on the first formal of the operation
125 -- being called. The caller will have verified that the object is legal
126 -- for the call. If the remaining parameters match, the first parameter
127 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
128
129 procedure Check_Misspelled_Selector
130 (Prefix : Entity_Id;
131 Sel : Node_Id);
8dbf3473
AC
132 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
133 -- spelling of one of the selectors of the Prefix. This is called by
134 -- Analyze_Selected_Component after producing an invalid selector error
135 -- message.
996ae0b0
RK
136
137 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 138 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
139 -- for operators given by expanded names. This is abstracted as a separate
140 -- function to handle extensions to System, where S is System, but T is
141 -- declared in the extension.
142
143 procedure Find_Arithmetic_Types
144 (L, R : Node_Id;
145 Op_Id : Entity_Id;
146 N : Node_Id);
147 -- L and R are the operands of an arithmetic operator. Find
148 -- consistent pairs of interpretations for L and R that have a
149 -- numeric type consistent with the semantics of the operator.
150
151 procedure Find_Comparison_Types
152 (L, R : Node_Id;
153 Op_Id : Entity_Id;
154 N : Node_Id);
155 -- L and R are operands of a comparison operator. Find consistent
156 -- pairs of interpretations for L and R.
157
158 procedure Find_Concatenation_Types
159 (L, R : Node_Id;
160 Op_Id : Entity_Id;
161 N : Node_Id);
6e73e3ab 162 -- For the four varieties of concatenation
996ae0b0
RK
163
164 procedure Find_Equality_Types
165 (L, R : Node_Id;
166 Op_Id : Entity_Id;
167 N : Node_Id);
6e73e3ab 168 -- Ditto for equality operators
996ae0b0
RK
169
170 procedure Find_Boolean_Types
171 (L, R : Node_Id;
172 Op_Id : Entity_Id;
173 N : Node_Id);
6e73e3ab 174 -- Ditto for binary logical operations
996ae0b0
RK
175
176 procedure Find_Negation_Types
177 (R : Node_Id;
178 Op_Id : Entity_Id;
179 N : Node_Id);
6e73e3ab 180 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
181
182 procedure Find_Non_Universal_Interpretations
183 (N : Node_Id;
184 R : Node_Id;
185 Op_Id : Entity_Id;
186 T1 : Entity_Id);
187 -- For equality and comparison operators, the result is always boolean,
188 -- and the legality of the operation is determined from the visibility
189 -- of the operand types. If one of the operands has a universal interpre-
190 -- tation, the legality check uses some compatible non-universal
191 -- interpretation of the other operand. N can be an operator node, or
192 -- a function call whose name is an operator designator.
193
d469eabe
HK
194 function Find_Primitive_Operation (N : Node_Id) return Boolean;
195 -- Find candidate interpretations for the name Obj.Proc when it appears
196 -- in a subprogram renaming declaration.
197
996ae0b0
RK
198 procedure Find_Unary_Types
199 (R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
6e73e3ab 202 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
203
204 procedure Check_Arithmetic_Pair
205 (T1, T2 : Entity_Id;
206 Op_Id : Entity_Id;
207 N : Node_Id);
208 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
209 -- types for left and right operand. Determine whether they constitute
210 -- a valid pair for the given operator, and record the corresponding
211 -- interpretation of the operator node. The node N may be an operator
212 -- node (the usual case) or a function call whose prefix is an operator
401093c1 213 -- designator. In both cases Op_Id is the operator name itself.
996ae0b0
RK
214
215 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
216 -- Give detailed information on overloaded call where none of the
217 -- interpretations match. N is the call node, Nam the designator for
218 -- the overloaded entity being called.
219
220 function Junk_Operand (N : Node_Id) return Boolean;
221 -- Test for an operand that is an inappropriate entity (e.g. a package
222 -- name or a label). If so, issue an error message and return True. If
223 -- the operand is not an inappropriate entity kind, return False.
224
225 procedure Operator_Check (N : Node_Id);
da709d08
AC
226 -- Verify that an operator has received some valid interpretation. If none
227 -- was found, determine whether a use clause would make the operation
228 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
229 -- every type compatible with the operator, even if the operator for the
230 -- type is not directly visible. The routine uses this type to emit a more
231 -- informative message.
996ae0b0 232
d469eabe 233 function Process_Implicit_Dereference_Prefix
da709d08 234 (E : Entity_Id;
d469eabe 235 P : Node_Id) return Entity_Id;
da709d08 236 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
237 -- object E. The function returns the designated type of the prefix, taking
238 -- into account that the designated type of an anonymous access type may be
239 -- a limited view, when the non-limited view is visible.
240 -- If in semantics only mode (-gnatc or generic), the function also records
241 -- that the prefix is a reference to E, if any. Normally, such a reference
242 -- is generated only when the implicit dereference is expanded into an
243 -- explicit one, but for consistency we must generate the reference when
244 -- expansion is disabled as well.
6e73e3ab 245
30c20106
AC
246 procedure Remove_Abstract_Operations (N : Node_Id);
247 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
248 -- operation is not a candidate interpretation.
249
996ae0b0 250 function Try_Indexed_Call
aab883ec
ES
251 (N : Node_Id;
252 Nam : Entity_Id;
253 Typ : Entity_Id;
254 Skip_First : Boolean) return Boolean;
255 -- If a function has defaults for all its actuals, a call to it may in fact
256 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
257 -- interpretation as an indexing, prior to analysis as a call. If both are
258 -- possible, the node is overloaded with both interpretations (same symbol
259 -- but two different types). If the call is written in prefix form, the
260 -- prefix becomes the first parameter in the call, and only the remaining
261 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
262
263 function Try_Indirect_Call
91b1417d
AC
264 (N : Node_Id;
265 Nam : Entity_Id;
266 Typ : Entity_Id) return Boolean;
aab883ec
ES
267 -- Similarly, a function F that needs no actuals can return an access to a
268 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
269 -- the call may be overloaded with both interpretations.
996ae0b0 270
35ae2ed8 271 function Try_Object_Operation (N : Node_Id) return Boolean;
aab883ec 272 -- Ada 2005 (AI-252): Support the object.operation notation
35ae2ed8 273
b4592168
GD
274 procedure wpo (T : Entity_Id);
275 pragma Warnings (Off, wpo);
276 -- Used for debugging: obtain list of primitive operations even if
277 -- type is not frozen and dispatch table is not built yet.
278
996ae0b0
RK
279 ------------------------
280 -- Ambiguous_Operands --
281 ------------------------
282
283 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 284 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 285
4c46b835
AC
286 --------------------------
287 -- List_Operand_Interps --
288 --------------------------
289
fbf5a39b 290 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
291 Nam : Node_Id;
292 Err : Node_Id := N;
293
294 begin
295 if Is_Overloaded (Opnd) then
296 if Nkind (Opnd) in N_Op then
297 Nam := Opnd;
996ae0b0
RK
298 elsif Nkind (Opnd) = N_Function_Call then
299 Nam := Name (Opnd);
996ae0b0
RK
300 else
301 return;
302 end if;
303
304 else
305 return;
306 end if;
307
308 if Opnd = Left_Opnd (N) then
ed2233dc 309 Error_Msg_N ("\left operand has the following interpretations", N);
996ae0b0 310 else
ed2233dc 311 Error_Msg_N
996ae0b0
RK
312 ("\right operand has the following interpretations", N);
313 Err := Opnd;
314 end if;
315
fbf5a39b
AC
316 List_Interps (Nam, Err);
317 end List_Operand_Interps;
996ae0b0 318
4c46b835
AC
319 -- Start of processing for Ambiguous_Operands
320
996ae0b0 321 begin
b67a385c 322 if Nkind (N) in N_Membership_Test then
ed2233dc 323 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 324
d469eabe 325 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 326 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
327
328 else
ed2233dc 329 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
330 end if;
331
332 if All_Errors_Mode then
fbf5a39b
AC
333 List_Operand_Interps (Left_Opnd (N));
334 List_Operand_Interps (Right_Opnd (N));
996ae0b0 335 else
555360a5 336 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
337 end if;
338 end Ambiguous_Operands;
339
340 -----------------------
341 -- Analyze_Aggregate --
342 -----------------------
343
344 -- Most of the analysis of Aggregates requires that the type be known,
345 -- and is therefore put off until resolution.
346
347 procedure Analyze_Aggregate (N : Node_Id) is
348 begin
349 if No (Etype (N)) then
350 Set_Etype (N, Any_Composite);
351 end if;
352 end Analyze_Aggregate;
353
354 -----------------------
355 -- Analyze_Allocator --
356 -----------------------
357
358 procedure Analyze_Allocator (N : Node_Id) is
359 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 360 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 361 E : Node_Id := Expression (N);
996ae0b0
RK
362 Acc_Type : Entity_Id;
363 Type_Id : Entity_Id;
364
365 begin
50cff367
GD
366 -- In accordance with H.4(7), the No_Allocators restriction only applies
367 -- to user-written allocators.
368
369 if Comes_From_Source (N) then
370 Check_Restriction (No_Allocators, N);
371 end if;
996ae0b0
RK
372
373 if Nkind (E) = N_Qualified_Expression then
374 Acc_Type := Create_Itype (E_Allocator_Type, N);
375 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 376 Find_Type (Subtype_Mark (E));
45c8b94b
ES
377
378 -- Analyze the qualified expression, and apply the name resolution
379 -- rule given in 4.7 (3).
380
381 Analyze (E);
382 Type_Id := Etype (E);
996ae0b0
RK
383 Set_Directly_Designated_Type (Acc_Type, Type_Id);
384
45c8b94b 385 Resolve (Expression (E), Type_Id);
b67a385c 386
d05ef0ab 387 if Is_Limited_Type (Type_Id)
996ae0b0
RK
388 and then Comes_From_Source (N)
389 and then not In_Instance_Body
390 then
2a31c32b 391 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
392 Error_Msg_N ("initialization not allowed for limited types", N);
393 Explain_Limited_Type (Type_Id, N);
394 end if;
996ae0b0
RK
395 end if;
396
996ae0b0
RK
397 -- A qualified expression requires an exact match of the type,
398 -- class-wide matching is not allowed.
399
45c8b94b
ES
400 -- if Is_Class_Wide_Type (Type_Id)
401 -- and then Base_Type
402 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
403 -- then
404 -- Wrong_Type (Expression (E), Type_Id);
405 -- end if;
996ae0b0
RK
406
407 Check_Non_Static_Context (Expression (E));
408
409 -- We don't analyze the qualified expression itself because it's
410 -- part of the allocator
411
412 Set_Etype (E, Type_Id);
413
aab883ec 414 -- Case where allocator has a subtype indication
4c46b835 415
996ae0b0
RK
416 else
417 declare
758c442c
GD
418 Def_Id : Entity_Id;
419 Base_Typ : Entity_Id;
996ae0b0
RK
420
421 begin
422 -- If the allocator includes a N_Subtype_Indication then a
423 -- constraint is present, otherwise the node is a subtype mark.
424 -- Introduce an explicit subtype declaration into the tree
425 -- defining some anonymous subtype and rewrite the allocator to
426 -- use this subtype rather than the subtype indication.
427
428 -- It is important to introduce the explicit subtype declaration
429 -- so that the bounds of the subtype indication are attached to
430 -- the tree in case the allocator is inside a generic unit.
431
432 if Nkind (E) = N_Subtype_Indication then
433
434 -- A constraint is only allowed for a composite type in Ada
435 -- 95. In Ada 83, a constraint is also allowed for an
436 -- access-to-composite type, but the constraint is ignored.
437
438 Find_Type (Subtype_Mark (E));
758c442c 439 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 440
758c442c 441 if Is_Elementary_Type (Base_Typ) then
0ab80019 442 if not (Ada_Version = Ada_83
758c442c 443 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
444 then
445 Error_Msg_N ("constraint not allowed here", E);
446
24657705
HK
447 if Nkind (Constraint (E)) =
448 N_Index_Or_Discriminant_Constraint
996ae0b0 449 then
4e7a4f6e 450 Error_Msg_N -- CODEFIX
996ae0b0
RK
451 ("\if qualified expression was meant, " &
452 "use apostrophe", Constraint (E));
453 end if;
454 end if;
455
456 -- Get rid of the bogus constraint:
457
458 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
459 Analyze_Allocator (N);
460 return;
758c442c
GD
461
462 -- Ada 2005, AI-363: if the designated type has a constrained
463 -- partial view, it cannot receive a discriminant constraint,
464 -- and the allocated object is unconstrained.
465
466 elsif Ada_Version >= Ada_05
467 and then Has_Constrained_Partial_View (Base_Typ)
468 then
469 Error_Msg_N
470 ("constraint no allowed when type " &
471 "has a constrained partial view", Constraint (E));
996ae0b0
RK
472 end if;
473
474 if Expander_Active then
092ef350 475 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
476
477 Insert_Action (E,
478 Make_Subtype_Declaration (Loc,
479 Defining_Identifier => Def_Id,
480 Subtype_Indication => Relocate_Node (E)));
481
07fc65c4 482 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
483 and then Nkind (Constraint (E)) =
484 N_Index_Or_Discriminant_Constraint
996ae0b0 485 then
4e7a4f6e 486 Error_Msg_N -- CODEFIX
996ae0b0
RK
487 ("if qualified expression was meant, " &
488 "use apostrophe!", Constraint (E));
489 end if;
490
491 E := New_Occurrence_Of (Def_Id, Loc);
492 Rewrite (Expression (N), E);
493 end if;
494 end if;
495
496 Type_Id := Process_Subtype (E, N);
497 Acc_Type := Create_Itype (E_Allocator_Type, N);
498 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
499 Set_Directly_Designated_Type (Acc_Type, Type_Id);
500 Check_Fully_Declared (Type_Id, N);
501
1baa4d2d 502 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 503 -- type that excludes null, its default initialization will
75ad5042
ES
504 -- be a null object, and we can insert an unconditional raise
505 -- before the allocator.
2820d220
AC
506
507 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
508 declare
509 Not_Null_Check : constant Node_Id :=
510 Make_Raise_Constraint_Error (Sloc (E),
511 Reason => CE_Null_Not_Allowed);
512 begin
513 if Expander_Active then
514 Insert_Action (N, Not_Null_Check);
515 Analyze (Not_Null_Check);
516 else
517 Error_Msg_N ("null value not allowed here?", E);
518 end if;
519 end;
2820d220
AC
520 end if;
521
91b1417d
AC
522 -- Check restriction against dynamically allocated protected
523 -- objects. Note that when limited aggregates are supported,
524 -- a similar test should be applied to an allocator with a
525 -- qualified expression ???
526
527 if Is_Protected_Type (Type_Id) then
528 Check_Restriction (No_Protected_Type_Allocators, N);
529 end if;
530
996ae0b0
RK
531 -- Check for missing initialization. Skip this check if we already
532 -- had errors on analyzing the allocator, since in that case these
24657705 533 -- are probably cascaded errors.
996ae0b0
RK
534
535 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 536 and then Serious_Errors_Detected = Sav_Errs
996ae0b0
RK
537 then
538 if Is_Class_Wide_Type (Type_Id) then
539 Error_Msg_N
540 ("initialization required in class-wide allocation", N);
541 else
24657705
HK
542 if Ada_Version < Ada_05
543 and then Is_Limited_Type (Type_Id)
544 then
545 Error_Msg_N ("unconstrained allocation not allowed", N);
546
547 if Is_Array_Type (Type_Id) then
548 Error_Msg_N
549 ("\constraint with array bounds required", N);
550
551 elsif Has_Unknown_Discriminants (Type_Id) then
552 null;
553
554 else pragma Assert (Has_Discriminants (Type_Id));
555 Error_Msg_N
556 ("\constraint with discriminant values required", N);
557 end if;
558
559 -- Limited Ada 2005 and general non-limited case
560
561 else
562 Error_Msg_N
563 ("uninitialized unconstrained allocation not allowed",
564 N);
565
566 if Is_Array_Type (Type_Id) then
567 Error_Msg_N
568 ("\qualified expression or constraint with " &
569 "array bounds required", N);
570
571 elsif Has_Unknown_Discriminants (Type_Id) then
572 Error_Msg_N ("\qualified expression required", N);
573
574 else pragma Assert (Has_Discriminants (Type_Id));
575 Error_Msg_N
576 ("\qualified expression or constraint with " &
577 "discriminant values required", N);
578 end if;
579 end if;
996ae0b0
RK
580 end if;
581 end if;
582 end;
583 end if;
584
aab883ec 585 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
586 Error_Msg_N ("cannot allocate abstract object", E);
587 end if;
588
589 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 590 Check_Restriction (No_Tasking, N);
fbf5a39b 591 Check_Restriction (Max_Tasks, N);
996ae0b0
RK
592 Check_Restriction (No_Task_Allocators, N);
593 end if;
594
ffe9aba8
AC
595 -- If the No_Streams restriction is set, check that the type of the
596 -- object is not, and does not contain, any subtype derived from
597 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
598 -- Has_Stream just for efficiency reasons. There is no point in
599 -- spending time on a Has_Stream check if the restriction is not set.
600
601 if Restrictions.Set (No_Streams) then
602 if Has_Stream (Designated_Type (Acc_Type)) then
603 Check_Restriction (No_Streams, N);
604 end if;
605 end if;
606
996ae0b0
RK
607 Set_Etype (N, Acc_Type);
608
609 if not Is_Library_Level_Entity (Acc_Type) then
610 Check_Restriction (No_Local_Allocators, N);
611 end if;
2820d220 612
07fc65c4 613 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
614 Set_Error_Posted (N);
615 Set_Etype (N, Any_Type);
616 end if;
996ae0b0
RK
617 end Analyze_Allocator;
618
619 ---------------------------
620 -- Analyze_Arithmetic_Op --
621 ---------------------------
622
623 procedure Analyze_Arithmetic_Op (N : Node_Id) is
624 L : constant Node_Id := Left_Opnd (N);
625 R : constant Node_Id := Right_Opnd (N);
626 Op_Id : Entity_Id;
627
628 begin
629 Candidate_Type := Empty;
630 Analyze_Expression (L);
631 Analyze_Expression (R);
632
d469eabe
HK
633 -- If the entity is already set, the node is the instantiation of a
634 -- generic node with a non-local reference, or was manufactured by a
635 -- call to Make_Op_xxx. In either case the entity is known to be valid,
636 -- and we do not need to collect interpretations, instead we just get
637 -- the single possible interpretation.
996ae0b0
RK
638
639 Op_Id := Entity (N);
640
641 if Present (Op_Id) then
642 if Ekind (Op_Id) = E_Operator then
643
d469eabe 644 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
645 and then Treat_Fixed_As_Integer (N)
646 then
647 null;
648 else
649 Set_Etype (N, Any_Type);
650 Find_Arithmetic_Types (L, R, Op_Id, N);
651 end if;
652
653 else
654 Set_Etype (N, Any_Type);
655 Add_One_Interp (N, Op_Id, Etype (Op_Id));
656 end if;
657
658 -- Entity is not already set, so we do need to collect interpretations
659
660 else
661 Op_Id := Get_Name_Entity_Id (Chars (N));
662 Set_Etype (N, Any_Type);
663
664 while Present (Op_Id) loop
665 if Ekind (Op_Id) = E_Operator
666 and then Present (Next_Entity (First_Entity (Op_Id)))
667 then
668 Find_Arithmetic_Types (L, R, Op_Id, N);
669
670 -- The following may seem superfluous, because an operator cannot
671 -- be generic, but this ignores the cleverness of the author of
672 -- ACVC bc1013a.
673
674 elsif Is_Overloadable (Op_Id) then
675 Analyze_User_Defined_Binary_Op (N, Op_Id);
676 end if;
677
678 Op_Id := Homonym (Op_Id);
679 end loop;
680 end if;
681
682 Operator_Check (N);
683 end Analyze_Arithmetic_Op;
684
685 ------------------
686 -- Analyze_Call --
687 ------------------
688
4c46b835
AC
689 -- Function, procedure, and entry calls are checked here. The Name in
690 -- the call may be overloaded. The actuals have been analyzed and may
691 -- themselves be overloaded. On exit from this procedure, the node N
692 -- may have zero, one or more interpretations. In the first case an
693 -- error message is produced. In the last case, the node is flagged
694 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
695
696 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
697 -- the type-checking is similar to that of other calls.
698
699 procedure Analyze_Call (N : Node_Id) is
700 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 701 Nam : Node_Id;
996ae0b0
RK
702 X : Interp_Index;
703 It : Interp;
704 Nam_Ent : Entity_Id;
63319f58
RD
705 Success : Boolean := False;
706
707 Deref : Boolean := False;
1cb17b78
AC
708 -- Flag indicates whether an interpretation of the prefix is a
709 -- parameterless call that returns an access_to_subprogram.
996ae0b0
RK
710
711 function Name_Denotes_Function return Boolean;
5ff22245
ES
712 -- If the type of the name is an access to subprogram, this may be the
713 -- type of a name, or the return type of the function being called. If
714 -- the name is not an entity then it can denote a protected function.
715 -- Until we distinguish Etype from Return_Type, we must use this routine
716 -- to resolve the meaning of the name in the call.
717
718 procedure No_Interpretation;
719 -- Output error message when no valid interpretation exists
996ae0b0
RK
720
721 ---------------------------
722 -- Name_Denotes_Function --
723 ---------------------------
724
725 function Name_Denotes_Function return Boolean is
726 begin
727 if Is_Entity_Name (Nam) then
728 return Ekind (Entity (Nam)) = E_Function;
729
730 elsif Nkind (Nam) = N_Selected_Component then
731 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
732
733 else
734 return False;
735 end if;
736 end Name_Denotes_Function;
737
5ff22245
ES
738 -----------------------
739 -- No_Interpretation --
740 -----------------------
741
742 procedure No_Interpretation is
743 L : constant Boolean := Is_List_Member (N);
744 K : constant Node_Kind := Nkind (Parent (N));
745
746 begin
747 -- If the node is in a list whose parent is not an expression then it
748 -- must be an attempted procedure call.
749
750 if L and then K not in N_Subexpr then
751 if Ekind (Entity (Nam)) = E_Generic_Procedure then
752 Error_Msg_NE
753 ("must instantiate generic procedure& before call",
754 Nam, Entity (Nam));
755 else
756 Error_Msg_N
757 ("procedure or entry name expected", Nam);
758 end if;
759
760 -- Check for tasking cases where only an entry call will do
761
762 elsif not L
763 and then Nkind_In (K, N_Entry_Call_Alternative,
764 N_Triggering_Alternative)
765 then
766 Error_Msg_N ("entry name expected", Nam);
767
768 -- Otherwise give general error message
769
770 else
771 Error_Msg_N ("invalid prefix in call", Nam);
772 end if;
773 end No_Interpretation;
774
996ae0b0
RK
775 -- Start of processing for Analyze_Call
776
777 begin
778 -- Initialize the type of the result of the call to the error type,
779 -- which will be reset if the type is successfully resolved.
780
781 Set_Etype (N, Any_Type);
782
63319f58
RD
783 Nam := Name (N);
784
996ae0b0
RK
785 if not Is_Overloaded (Nam) then
786
787 -- Only one interpretation to check
788
789 if Ekind (Etype (Nam)) = E_Subprogram_Type then
790 Nam_Ent := Etype (Nam);
791
758c442c
GD
792 -- If the prefix is an access_to_subprogram, this may be an indirect
793 -- call. This is the case if the name in the call is not an entity
794 -- name, or if it is a function name in the context of a procedure
795 -- call. In this latter case, we have a call to a parameterless
796 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
797 -- being called. Finally, F (X) may be a call to a parameterless
798 -- function that returns a pointer to a function with parameters.
758c442c 799
996ae0b0
RK
800 elsif Is_Access_Type (Etype (Nam))
801 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
802 and then
803 (not Name_Denotes_Function
5ff22245
ES
804 or else Nkind (N) = N_Procedure_Call_Statement
805 or else
806 (Nkind (Parent (N)) /= N_Explicit_Dereference
807 and then Is_Entity_Name (Nam)
808 and then No (First_Formal (Entity (Nam)))
809 and then Present (Actuals)))
996ae0b0
RK
810 then
811 Nam_Ent := Designated_Type (Etype (Nam));
812 Insert_Explicit_Dereference (Nam);
813
814 -- Selected component case. Simple entry or protected operation,
815 -- where the entry name is given by the selector name.
816
817 elsif Nkind (Nam) = N_Selected_Component then
818 Nam_Ent := Entity (Selector_Name (Nam));
819
bce79204
AC
820 if not Ekind_In (Nam_Ent, E_Entry,
821 E_Entry_Family,
822 E_Function,
823 E_Procedure)
996ae0b0
RK
824 then
825 Error_Msg_N ("name in call is not a callable entity", Nam);
826 Set_Etype (N, Any_Type);
827 return;
828 end if;
829
830 -- If the name is an Indexed component, it can be a call to a member
831 -- of an entry family. The prefix must be a selected component whose
832 -- selector is the entry. Analyze_Procedure_Call normalizes several
833 -- kinds of call into this form.
834
835 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
836 if Nkind (Prefix (Nam)) = N_Selected_Component then
837 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
838 else
839 Error_Msg_N ("name in call is not a callable entity", Nam);
840 Set_Etype (N, Any_Type);
841 return;
996ae0b0
RK
842 end if;
843
844 elsif not Is_Entity_Name (Nam) then
845 Error_Msg_N ("name in call is not a callable entity", Nam);
846 Set_Etype (N, Any_Type);
847 return;
848
849 else
850 Nam_Ent := Entity (Nam);
851
852 -- If no interpretations, give error message
853
854 if not Is_Overloadable (Nam_Ent) then
5ff22245
ES
855 No_Interpretation;
856 return;
857 end if;
858 end if;
996ae0b0 859
5ff22245
ES
860 -- Operations generated for RACW stub types are called only through
861 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 862
5ff22245
ES
863 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
864 No_Interpretation;
865 return;
996ae0b0
RK
866 end if;
867
868 Analyze_One_Call (N, Nam_Ent, True, Success);
869
ec6078e3
ES
870 -- If this is an indirect call, the return type of the access_to
871 -- subprogram may be an incomplete type. At the point of the call,
872 -- use the full type if available, and at the same time update
873 -- the return type of the access_to_subprogram.
874
875 if Success
d469eabe 876 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
877 and then Ekind (Etype (N)) = E_Incomplete_Type
878 and then Present (Full_View (Etype (N)))
879 then
880 Set_Etype (N, Full_View (Etype (N)));
881 Set_Etype (Nam_Ent, Etype (N));
882 end if;
883
996ae0b0 884 else
5ff22245
ES
885 -- An overloaded selected component must denote overloaded operations
886 -- of a concurrent type. The interpretations are attached to the
887 -- simple name of those operations.
996ae0b0
RK
888
889 if Nkind (Nam) = N_Selected_Component then
890 Nam := Selector_Name (Nam);
891 end if;
892
893 Get_First_Interp (Nam, X, It);
894
895 while Present (It.Nam) loop
896 Nam_Ent := It.Nam;
1cb17b78 897 Deref := False;
996ae0b0
RK
898
899 -- Name may be call that returns an access to subprogram, or more
900 -- generally an overloaded expression one of whose interpretations
901 -- yields an access to subprogram. If the name is an entity, we
902 -- do not dereference, because the node is a call that returns
903 -- the access type: note difference between f(x), where the call
904 -- may return an access subprogram type, and f(x)(y), where the
905 -- type returned by the call to f is implicitly dereferenced to
906 -- analyze the outer call.
907
908 if Is_Access_Type (Nam_Ent) then
909 Nam_Ent := Designated_Type (Nam_Ent);
910
911 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
912 and then
913 (not Is_Entity_Name (Nam)
914 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
915 and then Ekind (Designated_Type (Etype (Nam_Ent)))
916 = E_Subprogram_Type
917 then
918 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
919
920 if Is_Entity_Name (Nam) then
921 Deref := True;
922 end if;
996ae0b0
RK
923 end if;
924
7415029d
AC
925 -- If the call has been rewritten from a prefixed call, the first
926 -- parameter has been analyzed, but may need a subsequent
927 -- dereference, so skip its analysis now.
928
929 if N /= Original_Node (N)
930 and then Nkind (Original_Node (N)) = Nkind (N)
931 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
932 and then Present (Parameter_Associations (N))
933 and then Present (Etype (First (Parameter_Associations (N))))
934 then
935 Analyze_One_Call
936 (N, Nam_Ent, False, Success, Skip_First => True);
937 else
938 Analyze_One_Call (N, Nam_Ent, False, Success);
939 end if;
996ae0b0
RK
940
941 -- If the interpretation succeeds, mark the proper type of the
942 -- prefix (any valid candidate will do). If not, remove the
943 -- candidate interpretation. This only needs to be done for
944 -- overloaded protected operations, for other entities disambi-
945 -- guation is done directly in Resolve.
946
947 if Success then
1cb17b78
AC
948 if Deref
949 and then Nkind (Parent (N)) /= N_Explicit_Dereference
950 then
951 Set_Entity (Nam, It.Nam);
952 Insert_Explicit_Dereference (Nam);
953 Set_Etype (Nam, Nam_Ent);
954
955 else
956 Set_Etype (Nam, It.Typ);
957 end if;
996ae0b0 958
d469eabe
HK
959 elsif Nkind_In (Name (N), N_Selected_Component,
960 N_Function_Call)
fbf5a39b 961 then
996ae0b0
RK
962 Remove_Interp (X);
963 end if;
964
965 Get_Next_Interp (X, It);
966 end loop;
967
968 -- If the name is the result of a function call, it can only
969 -- be a call to a function returning an access to subprogram.
970 -- Insert explicit dereference.
971
972 if Nkind (Nam) = N_Function_Call then
973 Insert_Explicit_Dereference (Nam);
974 end if;
975
976 if Etype (N) = Any_Type then
977
978 -- None of the interpretations is compatible with the actuals
979
980 Diagnose_Call (N, Nam);
981
982 -- Special checks for uninstantiated put routines
983
984 if Nkind (N) = N_Procedure_Call_Statement
985 and then Is_Entity_Name (Nam)
986 and then Chars (Nam) = Name_Put
987 and then List_Length (Actuals) = 1
988 then
989 declare
990 Arg : constant Node_Id := First (Actuals);
991 Typ : Entity_Id;
992
993 begin
994 if Nkind (Arg) = N_Parameter_Association then
995 Typ := Etype (Explicit_Actual_Parameter (Arg));
996 else
997 Typ := Etype (Arg);
998 end if;
999
1000 if Is_Signed_Integer_Type (Typ) then
1001 Error_Msg_N
1002 ("possible missing instantiation of " &
1003 "'Text_'I'O.'Integer_'I'O!", Nam);
1004
1005 elsif Is_Modular_Integer_Type (Typ) then
1006 Error_Msg_N
1007 ("possible missing instantiation of " &
1008 "'Text_'I'O.'Modular_'I'O!", Nam);
1009
1010 elsif Is_Floating_Point_Type (Typ) then
1011 Error_Msg_N
1012 ("possible missing instantiation of " &
1013 "'Text_'I'O.'Float_'I'O!", Nam);
1014
1015 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1016 Error_Msg_N
1017 ("possible missing instantiation of " &
1018 "'Text_'I'O.'Fixed_'I'O!", Nam);
1019
1020 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1021 Error_Msg_N
1022 ("possible missing instantiation of " &
1023 "'Text_'I'O.'Decimal_'I'O!", Nam);
1024
1025 elsif Is_Enumeration_Type (Typ) then
1026 Error_Msg_N
1027 ("possible missing instantiation of " &
1028 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1029 end if;
1030 end;
1031 end if;
1032
1033 elsif not Is_Overloaded (N)
1034 and then Is_Entity_Name (Nam)
1035 then
aab883ec
ES
1036 -- Resolution yields a single interpretation. Verify that the
1037 -- reference has capitalization consistent with the declaration.
996ae0b0
RK
1038
1039 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1040 Generate_Reference (Entity (Nam), Nam);
1041
1042 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1043 else
1044 Remove_Abstract_Operations (N);
996ae0b0
RK
1045 end if;
1046
1047 End_Interp_List;
1048 end if;
1049 end Analyze_Call;
1050
19d846a0
RD
1051 -----------------------------
1052 -- Analyze_Case_Expression --
1053 -----------------------------
1054
1055 procedure Analyze_Case_Expression (N : Node_Id) is
1056 Expr : constant Node_Id := Expression (N);
1057 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1058 Alt : Node_Id;
1059 Exp_Type : Entity_Id;
1060 Exp_Btype : Entity_Id;
1061
1062 Last_Choice : Nat;
1063 Dont_Care : Boolean;
1064 Others_Present : Boolean;
1065
1066 procedure Non_Static_Choice_Error (Choice : Node_Id);
1067 -- Error routine invoked by the generic instantiation below when
1068 -- the case expression has a non static choice.
1069
1070 package Case_Choices_Processing is new
1071 Generic_Choices_Processing
1072 (Get_Alternatives => Alternatives,
1073 Get_Choices => Discrete_Choices,
1074 Process_Empty_Choice => No_OP,
1075 Process_Non_Static_Choice => Non_Static_Choice_Error,
1076 Process_Associated_Node => No_OP);
1077 use Case_Choices_Processing;
1078
1079 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1080
1081 -----------------------------
1082 -- Non_Static_Choice_Error --
1083 -----------------------------
1084
1085 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1086 begin
1087 Flag_Non_Static_Expr
1088 ("choice given in case expression is not static!", Choice);
1089 end Non_Static_Choice_Error;
1090
1091 -- Start of processing for Analyze_Case_Expression
1092
1093 begin
1094 if Comes_From_Source (N) then
1095 Check_Compiler_Unit (N);
1096 end if;
1097
1098 Analyze_And_Resolve (Expr, Any_Discrete);
1099 Check_Unset_Reference (Expr);
1100 Exp_Type := Etype (Expr);
1101 Exp_Btype := Base_Type (Exp_Type);
1102
1103 Alt := First (Alternatives (N));
1104 while Present (Alt) loop
1105 Analyze (Expression (Alt));
1106 Next (Alt);
1107 end loop;
1108
1109 if not Is_Overloaded (FirstX) then
1110 Set_Etype (N, Etype (FirstX));
1111
1112 else
1113 declare
1114 I : Interp_Index;
1115 It : Interp;
1116
1117 begin
1118 Set_Etype (N, Any_Type);
1119
1120 Get_First_Interp (FirstX, I, It);
1121 while Present (It.Nam) loop
1122
1123 -- For each intepretation of the first expression, we only
1124 -- add the intepretation if every other expression in the
1125 -- case expression alternatives has a compatible type.
1126
1127 Alt := Next (First (Alternatives (N)));
1128 while Present (Alt) loop
1129 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1130 Next (Alt);
1131 end loop;
1132
1133 if No (Alt) then
1134 Add_One_Interp (N, It.Typ, It.Typ);
1135 end if;
1136
1137 Get_Next_Interp (I, It);
1138 end loop;
1139 end;
1140 end if;
1141
1142 Exp_Btype := Base_Type (Exp_Type);
1143
1144 -- The expression must be of a discrete type which must be determinable
1145 -- independently of the context in which the expression occurs, but
1146 -- using the fact that the expression must be of a discrete type.
1147 -- Moreover, the type this expression must not be a character literal
1148 -- (which is always ambiguous).
1149
1150 -- If error already reported by Resolve, nothing more to do
1151
1152 if Exp_Btype = Any_Discrete
1153 or else Exp_Btype = Any_Type
1154 then
1155 return;
1156
1157 elsif Exp_Btype = Any_Character then
1158 Error_Msg_N
1159 ("character literal as case expression is ambiguous", Expr);
1160 return;
1161 end if;
1162
1163 -- If the case expression is a formal object of mode in out, then
1164 -- treat it as having a nonstatic subtype by forcing use of the base
1165 -- type (which has to get passed to Check_Case_Choices below). Also
1166 -- use base type when the case expression is parenthesized.
1167
1168 if Paren_Count (Expr) > 0
1169 or else (Is_Entity_Name (Expr)
1170 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1171 then
1172 Exp_Type := Exp_Btype;
1173 end if;
1174
1175 -- Call instantiated Analyze_Choices which does the rest of the work
1176
1177 Analyze_Choices
1178 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1179
1180 if Exp_Type = Universal_Integer and then not Others_Present then
1181 Error_Msg_N
1182 ("case on universal integer requires OTHERS choice", Expr);
1183 end if;
1184 end Analyze_Case_Expression;
1185
996ae0b0
RK
1186 ---------------------------
1187 -- Analyze_Comparison_Op --
1188 ---------------------------
1189
1190 procedure Analyze_Comparison_Op (N : Node_Id) is
1191 L : constant Node_Id := Left_Opnd (N);
1192 R : constant Node_Id := Right_Opnd (N);
1193 Op_Id : Entity_Id := Entity (N);
1194
1195 begin
1196 Set_Etype (N, Any_Type);
1197 Candidate_Type := Empty;
1198
1199 Analyze_Expression (L);
1200 Analyze_Expression (R);
1201
1202 if Present (Op_Id) then
996ae0b0
RK
1203 if Ekind (Op_Id) = E_Operator then
1204 Find_Comparison_Types (L, R, Op_Id, N);
1205 else
1206 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1207 end if;
1208
1209 if Is_Overloaded (L) then
1210 Set_Etype (L, Intersect_Types (L, R));
1211 end if;
1212
1213 else
1214 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1215 while Present (Op_Id) loop
996ae0b0
RK
1216 if Ekind (Op_Id) = E_Operator then
1217 Find_Comparison_Types (L, R, Op_Id, N);
1218 else
1219 Analyze_User_Defined_Binary_Op (N, Op_Id);
1220 end if;
1221
1222 Op_Id := Homonym (Op_Id);
1223 end loop;
1224 end if;
1225
1226 Operator_Check (N);
1227 end Analyze_Comparison_Op;
1228
1229 ---------------------------
1230 -- Analyze_Concatenation --
1231 ---------------------------
1232
fe39cf20
BD
1233 procedure Analyze_Concatenation (N : Node_Id) is
1234
1235 -- We wish to avoid deep recursion, because concatenations are often
1236 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1237 -- operands nonrecursively until we find something that is not a
1238 -- concatenation (A in this case), or has already been analyzed. We
1239 -- analyze that, and then walk back up the tree following Parent
1240 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1241 -- work at each level. The Parent pointers allow us to avoid recursion,
1242 -- and thus avoid running out of memory.
1243
1244 NN : Node_Id := N;
1245 L : Node_Id;
1246
1247 begin
1248 Candidate_Type := Empty;
1249
1250 -- The following code is equivalent to:
1251
1252 -- Set_Etype (N, Any_Type);
1253 -- Analyze_Expression (Left_Opnd (N));
1254 -- Analyze_Concatenation_Rest (N);
1255
1256 -- where the Analyze_Expression call recurses back here if the left
1257 -- operand is a concatenation.
1258
1259 -- Walk down left operands
1260
1261 loop
1262 Set_Etype (NN, Any_Type);
1263 L := Left_Opnd (NN);
1264 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1265 NN := L;
1266 end loop;
1267
1268 -- Now (given the above example) NN is A&B and L is A
1269
1270 -- First analyze L ...
1271
1272 Analyze_Expression (L);
1273
1274 -- ... then walk NN back up until we reach N (where we started), calling
1275 -- Analyze_Concatenation_Rest along the way.
1276
1277 loop
1278 Analyze_Concatenation_Rest (NN);
1279 exit when NN = N;
1280 NN := Parent (NN);
1281 end loop;
1282 end Analyze_Concatenation;
1283
1284 --------------------------------
1285 -- Analyze_Concatenation_Rest --
1286 --------------------------------
1287
996ae0b0
RK
1288 -- If the only one-dimensional array type in scope is String,
1289 -- this is the resulting type of the operation. Otherwise there
1290 -- will be a concatenation operation defined for each user-defined
1291 -- one-dimensional array.
1292
fe39cf20 1293 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1294 L : constant Node_Id := Left_Opnd (N);
1295 R : constant Node_Id := Right_Opnd (N);
1296 Op_Id : Entity_Id := Entity (N);
1297 LT : Entity_Id;
1298 RT : Entity_Id;
1299
1300 begin
996ae0b0
RK
1301 Analyze_Expression (R);
1302
cd3cd5b1
AC
1303 -- If the entity is present, the node appears in an instance, and
1304 -- denotes a predefined concatenation operation. The resulting type is
1305 -- obtained from the arguments when possible. If the arguments are
1306 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1307 -- visible.
996ae0b0
RK
1308
1309 if Present (Op_Id) then
1310 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1311 LT := Base_Type (Etype (L));
1312 RT := Base_Type (Etype (R));
1313
1314 if Is_Array_Type (LT)
1315 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1316 then
1317 Add_One_Interp (N, Op_Id, LT);
1318
1319 elsif Is_Array_Type (RT)
1320 and then LT = Base_Type (Component_Type (RT))
1321 then
1322 Add_One_Interp (N, Op_Id, RT);
1323
fbf5a39b
AC
1324 -- If one operand is a string type or a user-defined array type,
1325 -- and the other is a literal, result is of the specific type.
1326
1327 elsif
1328 (Root_Type (LT) = Standard_String
1329 or else Scope (LT) /= Standard_Standard)
1330 and then Etype (R) = Any_String
1331 then
1332 Add_One_Interp (N, Op_Id, LT);
1333
1334 elsif
1335 (Root_Type (RT) = Standard_String
1336 or else Scope (RT) /= Standard_Standard)
1337 and then Etype (L) = Any_String
1338 then
1339 Add_One_Interp (N, Op_Id, RT);
1340
1341 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1342 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1343
1344 else
4c46b835 1345 -- Type and its operations must be visible
fbf5a39b
AC
1346
1347 Set_Entity (N, Empty);
1348 Analyze_Concatenation (N);
996ae0b0
RK
1349 end if;
1350
1351 else
1352 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1353 end if;
1354
1355 else
1a8fae99 1356 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1357 while Present (Op_Id) loop
1358 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1359
1360 -- Do not consider operators declared in dead code, they can
1361 -- not be part of the resolution.
1362
1363 if Is_Eliminated (Op_Id) then
1364 null;
1365 else
1366 Find_Concatenation_Types (L, R, Op_Id, N);
1367 end if;
1368
996ae0b0
RK
1369 else
1370 Analyze_User_Defined_Binary_Op (N, Op_Id);
1371 end if;
1372
1373 Op_Id := Homonym (Op_Id);
1374 end loop;
1375 end if;
1376
1377 Operator_Check (N);
fe39cf20 1378 end Analyze_Concatenation_Rest;
996ae0b0
RK
1379
1380 ------------------------------------
1381 -- Analyze_Conditional_Expression --
1382 ------------------------------------
1383
1384 procedure Analyze_Conditional_Expression (N : Node_Id) is
1385 Condition : constant Node_Id := First (Expressions (N));
1386 Then_Expr : constant Node_Id := Next (Condition);
6c994759 1387 Else_Expr : Node_Id;
b46be8a2 1388
996ae0b0 1389 begin
6c994759
AC
1390 -- Defend against error of missing expressions from previous error
1391
1392 if No (Then_Expr) then
1393 return;
1394 end if;
1395
1396 Else_Expr := Next (Then_Expr);
1397
b46be8a2
RD
1398 if Comes_From_Source (N) then
1399 Check_Compiler_Unit (N);
1400 end if;
1401
996ae0b0
RK
1402 Analyze_Expression (Condition);
1403 Analyze_Expression (Then_Expr);
b46be8a2
RD
1404
1405 if Present (Else_Expr) then
1406 Analyze_Expression (Else_Expr);
1407 end if;
1408
19d846a0
RD
1409 -- If then expression not overloaded, then that decides the type
1410
bee2a781 1411 if not Is_Overloaded (Then_Expr) then
e0ba1bfd 1412 Set_Etype (N, Etype (Then_Expr));
19d846a0
RD
1413
1414 -- Case where then expression is overloaded
1415
e0ba1bfd
ES
1416 else
1417 declare
1418 I : Interp_Index;
1419 It : Interp;
1420
1421 begin
1422 Set_Etype (N, Any_Type);
1423 Get_First_Interp (Then_Expr, I, It);
1424 while Present (It.Nam) loop
19d846a0
RD
1425
1426 -- For each possible intepretation of the Then Expression,
1427 -- add it only if the else expression has a compatible type.
1428
1429 -- Is this right if Else_Expr is empty?
1430
e0ba1bfd
ES
1431 if Has_Compatible_Type (Else_Expr, It.Typ) then
1432 Add_One_Interp (N, It.Typ, It.Typ);
1433 end if;
1434
1435 Get_Next_Interp (I, It);
1436 end loop;
1437 end;
1438 end if;
996ae0b0
RK
1439 end Analyze_Conditional_Expression;
1440
1441 -------------------------
1442 -- Analyze_Equality_Op --
1443 -------------------------
1444
1445 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1446 Loc : constant Source_Ptr := Sloc (N);
1447 L : constant Node_Id := Left_Opnd (N);
1448 R : constant Node_Id := Right_Opnd (N);
1449 Op_Id : Entity_Id;
996ae0b0
RK
1450
1451 begin
1452 Set_Etype (N, Any_Type);
1453 Candidate_Type := Empty;
1454
1455 Analyze_Expression (L);
1456 Analyze_Expression (R);
1457
1458 -- If the entity is set, the node is a generic instance with a non-local
1459 -- reference to the predefined operator or to a user-defined function.
1460 -- It can also be an inequality that is expanded into the negation of a
1461 -- call to a user-defined equality operator.
1462
1463 -- For the predefined case, the result is Boolean, regardless of the
1464 -- type of the operands. The operands may even be limited, if they are
1465 -- generic actuals. If they are overloaded, label the left argument with
1466 -- the common type that must be present, or with the type of the formal
1467 -- of the user-defined function.
1468
1469 if Present (Entity (N)) then
996ae0b0
RK
1470 Op_Id := Entity (N);
1471
1472 if Ekind (Op_Id) = E_Operator then
1473 Add_One_Interp (N, Op_Id, Standard_Boolean);
1474 else
1475 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1476 end if;
1477
1478 if Is_Overloaded (L) then
996ae0b0
RK
1479 if Ekind (Op_Id) = E_Operator then
1480 Set_Etype (L, Intersect_Types (L, R));
1481 else
1482 Set_Etype (L, Etype (First_Formal (Op_Id)));
1483 end if;
1484 end if;
1485
1486 else
1487 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1488 while Present (Op_Id) loop
996ae0b0
RK
1489 if Ekind (Op_Id) = E_Operator then
1490 Find_Equality_Types (L, R, Op_Id, N);
1491 else
1492 Analyze_User_Defined_Binary_Op (N, Op_Id);
1493 end if;
1494
1495 Op_Id := Homonym (Op_Id);
1496 end loop;
1497 end if;
1498
1499 -- If there was no match, and the operator is inequality, this may
1500 -- be a case where inequality has not been made explicit, as for
1501 -- tagged types. Analyze the node as the negation of an equality
1502 -- operation. This cannot be done earlier, because before analysis
1503 -- we cannot rule out the presence of an explicit inequality.
1504
1505 if Etype (N) = Any_Type
1506 and then Nkind (N) = N_Op_Ne
1507 then
1508 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1509 while Present (Op_Id) loop
996ae0b0
RK
1510 if Ekind (Op_Id) = E_Operator then
1511 Find_Equality_Types (L, R, Op_Id, N);
1512 else
1513 Analyze_User_Defined_Binary_Op (N, Op_Id);
1514 end if;
1515
1516 Op_Id := Homonym (Op_Id);
1517 end loop;
1518
1519 if Etype (N) /= Any_Type then
1520 Op_Id := Entity (N);
1521
1522 Rewrite (N,
1523 Make_Op_Not (Loc,
1524 Right_Opnd =>
1525 Make_Op_Eq (Loc,
aab883ec
ES
1526 Left_Opnd => Left_Opnd (N),
1527 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1528
1529 Set_Entity (Right_Opnd (N), Op_Id);
1530 Analyze (N);
1531 end if;
1532 end if;
1533
1534 Operator_Check (N);
1535 end Analyze_Equality_Op;
1536
1537 ----------------------------------
1538 -- Analyze_Explicit_Dereference --
1539 ----------------------------------
1540
1541 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1542 Loc : constant Source_Ptr := Sloc (N);
1543 P : constant Node_Id := Prefix (N);
1544 T : Entity_Id;
1545 I : Interp_Index;
1546 It : Interp;
1547 New_N : Node_Id;
1548
1549 function Is_Function_Type return Boolean;
4c46b835
AC
1550 -- Check whether node may be interpreted as an implicit function call
1551
1552 ----------------------
1553 -- Is_Function_Type --
1554 ----------------------
996ae0b0
RK
1555
1556 function Is_Function_Type return Boolean is
4c46b835
AC
1557 I : Interp_Index;
1558 It : Interp;
996ae0b0
RK
1559
1560 begin
1561 if not Is_Overloaded (N) then
1562 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1563 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1564
1565 else
1566 Get_First_Interp (N, I, It);
996ae0b0
RK
1567 while Present (It.Nam) loop
1568 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1569 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1570 then
1571 return False;
1572 end if;
1573
1574 Get_Next_Interp (I, It);
1575 end loop;
1576
1577 return True;
1578 end if;
1579 end Is_Function_Type;
1580
98123480 1581 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1582
996ae0b0
RK
1583 begin
1584 Analyze (P);
1585 Set_Etype (N, Any_Type);
1586
1587 -- Test for remote access to subprogram type, and if so return
1588 -- after rewriting the original tree.
1589
1590 if Remote_AST_E_Dereference (P) then
1591 return;
1592 end if;
1593
1594 -- Normal processing for other than remote access to subprogram type
1595
1596 if not Is_Overloaded (P) then
1597 if Is_Access_Type (Etype (P)) then
1598
f3d57416 1599 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1600 -- avoid other problems caused by the Private_Subtype and it is
1601 -- safe to go to the Base_Type because this is the same as
1602 -- converting the access value to its Base_Type.
996ae0b0
RK
1603
1604 declare
1605 DT : Entity_Id := Designated_Type (Etype (P));
1606
1607 begin
1608 if Ekind (DT) = E_Private_Subtype
1609 and then Is_For_Access_Subtype (DT)
1610 then
1611 DT := Base_Type (DT);
1612 end if;
1613
0a36105d
JM
1614 -- An explicit dereference is a legal occurrence of an
1615 -- incomplete type imported through a limited_with clause,
1616 -- if the full view is visible.
1617
1618 if From_With_Type (DT)
1619 and then not From_With_Type (Scope (DT))
1620 and then
1621 (Is_Immediately_Visible (Scope (DT))
1622 or else
1623 (Is_Child_Unit (Scope (DT))
1624 and then Is_Visible_Child_Unit (Scope (DT))))
1625 then
1626 Set_Etype (N, Available_View (DT));
1627
1628 else
1629 Set_Etype (N, DT);
1630 end if;
996ae0b0
RK
1631 end;
1632
1633 elsif Etype (P) /= Any_Type then
1634 Error_Msg_N ("prefix of dereference must be an access type", N);
1635 return;
1636 end if;
1637
1638 else
1639 Get_First_Interp (P, I, It);
996ae0b0
RK
1640 while Present (It.Nam) loop
1641 T := It.Typ;
1642
1643 if Is_Access_Type (T) then
1644 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1645 end if;
1646
1647 Get_Next_Interp (I, It);
1648 end loop;
1649
6e73e3ab 1650 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1651
1652 if Etype (N) = Any_Type then
1653 Error_Msg_N
1654 ("access type required in prefix of explicit dereference", P);
1655 Set_Etype (N, Any_Type);
1656 return;
1657 end if;
1658 end if;
1659
1660 if Is_Function_Type
1661 and then Nkind (Parent (N)) /= N_Indexed_Component
1662
1663 and then (Nkind (Parent (N)) /= N_Function_Call
1664 or else N /= Name (Parent (N)))
1665
1666 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1667 or else N /= Name (Parent (N)))
1668
1669 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1670 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1671 or else
1672 (Attribute_Name (Parent (N)) /= Name_Address
1673 and then
1674 Attribute_Name (Parent (N)) /= Name_Access))
1675 then
1676 -- Name is a function call with no actuals, in a context that
1677 -- requires deproceduring (including as an actual in an enclosing
98123480 1678 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1679 -- where the prefix might include functions that return access to
1680 -- subprograms and others that return a regular type. Disambiguation
98123480 1681 -- of those has to take place in Resolve.
996ae0b0
RK
1682
1683 New_N :=
1684 Make_Function_Call (Loc,
1685 Name => Make_Explicit_Dereference (Loc, P),
1686 Parameter_Associations => New_List);
1687
1688 -- If the prefix is overloaded, remove operations that have formals,
1689 -- we know that this is a parameterless call.
1690
1691 if Is_Overloaded (P) then
1692 Get_First_Interp (P, I, It);
996ae0b0
RK
1693 while Present (It.Nam) loop
1694 T := It.Typ;
1695
1696 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1697 Set_Etype (P, T);
1698 else
1699 Remove_Interp (I);
1700 end if;
1701
1702 Get_Next_Interp (I, It);
1703 end loop;
1704 end if;
1705
1706 Rewrite (N, New_N);
1707 Analyze (N);
98123480
ES
1708
1709 elsif not Is_Function_Type
1710 and then Is_Overloaded (N)
1711 then
1712 -- The prefix may include access to subprograms and other access
1cb17b78 1713 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1714 -- function call (not a procedure call) we cannot rewrite the node
1715 -- yet, but we include the result of the call interpretation.
98123480
ES
1716
1717 Get_First_Interp (N, I, It);
1718 while Present (It.Nam) loop
1719 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1720 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 1721 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
1722 then
1723 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1724 end if;
1725
1726 Get_Next_Interp (I, It);
1727 end loop;
996ae0b0
RK
1728 end if;
1729
1730 -- A value of remote access-to-class-wide must not be dereferenced
1731 -- (RM E.2.2(16)).
1732
1733 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
1734 end Analyze_Explicit_Dereference;
1735
1736 ------------------------
1737 -- Analyze_Expression --
1738 ------------------------
1739
1740 procedure Analyze_Expression (N : Node_Id) is
1741 begin
1742 Analyze (N);
1743 Check_Parameterless_Call (N);
1744 end Analyze_Expression;
1745
955871d3
AC
1746 -------------------------------------
1747 -- Analyze_Expression_With_Actions --
1748 -------------------------------------
1749
1750 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1751 A : Node_Id;
1752
1753 begin
1754 A := First (Actions (N));
1755 loop
1756 Analyze (A);
1757 Next (A);
1758 exit when No (A);
1759 end loop;
1760
1761 Analyze_Expression (Expression (N));
1762 Set_Etype (N, Etype (Expression (N)));
1763 end Analyze_Expression_With_Actions;
1764
996ae0b0
RK
1765 ------------------------------------
1766 -- Analyze_Indexed_Component_Form --
1767 ------------------------------------
1768
1769 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
1770 P : constant Node_Id := Prefix (N);
1771 Exprs : constant List_Id := Expressions (N);
1772 Exp : Node_Id;
1773 P_T : Entity_Id;
1774 E : Node_Id;
1775 U_N : Entity_Id;
996ae0b0
RK
1776
1777 procedure Process_Function_Call;
1778 -- Prefix in indexed component form is an overloadable entity,
1779 -- so the node is a function call. Reformat it as such.
1780
1781 procedure Process_Indexed_Component;
1782 -- Prefix in indexed component form is actually an indexed component.
1783 -- This routine processes it, knowing that the prefix is already
1784 -- resolved.
1785
1786 procedure Process_Indexed_Component_Or_Slice;
1787 -- An indexed component with a single index may designate a slice if
1788 -- the index is a subtype mark. This routine disambiguates these two
1789 -- cases by resolving the prefix to see if it is a subtype mark.
1790
1791 procedure Process_Overloaded_Indexed_Component;
1792 -- If the prefix of an indexed component is overloaded, the proper
1793 -- interpretation is selected by the index types and the context.
1794
1795 ---------------------------
1796 -- Process_Function_Call --
1797 ---------------------------
1798
1799 procedure Process_Function_Call is
1800 Actual : Node_Id;
1801
1802 begin
1803 Change_Node (N, N_Function_Call);
1804 Set_Name (N, P);
1805 Set_Parameter_Associations (N, Exprs);
996ae0b0 1806
401093c1 1807 -- Analyze actuals prior to analyzing the call itself
0a36105d 1808
4c46b835 1809 Actual := First (Parameter_Associations (N));
996ae0b0
RK
1810 while Present (Actual) loop
1811 Analyze (Actual);
1812 Check_Parameterless_Call (Actual);
0a36105d
JM
1813
1814 -- Move to next actual. Note that we use Next, not Next_Actual
1815 -- here. The reason for this is a bit subtle. If a function call
1816 -- includes named associations, the parser recognizes the node as
1817 -- a call, and it is analyzed as such. If all associations are
1818 -- positional, the parser builds an indexed_component node, and
1819 -- it is only after analysis of the prefix that the construct
1820 -- is recognized as a call, in which case Process_Function_Call
1821 -- rewrites the node and analyzes the actuals. If the list of
1822 -- actuals is malformed, the parser may leave the node as an
1823 -- indexed component (despite the presence of named associations).
1824 -- The iterator Next_Actual is equivalent to Next if the list is
1825 -- positional, but follows the normalized chain of actuals when
1826 -- named associations are present. In this case normalization has
1827 -- not taken place, and actuals remain unanalyzed, which leads to
1828 -- subsequent crashes or loops if there is an attempt to continue
1829 -- analysis of the program.
1830
1831 Next (Actual);
996ae0b0
RK
1832 end loop;
1833
1834 Analyze_Call (N);
1835 end Process_Function_Call;
1836
1837 -------------------------------
1838 -- Process_Indexed_Component --
1839 -------------------------------
1840
1841 procedure Process_Indexed_Component is
fe39cf20
BD
1842 Exp : Node_Id;
1843 Array_Type : Entity_Id;
1844 Index : Node_Id;
1845 Pent : Entity_Id := Empty;
996ae0b0
RK
1846
1847 begin
1848 Exp := First (Exprs);
1849
1850 if Is_Overloaded (P) then
1851 Process_Overloaded_Indexed_Component;
1852
1853 else
1854 Array_Type := Etype (P);
1855
6e73e3ab
AC
1856 if Is_Entity_Name (P) then
1857 Pent := Entity (P);
1858 elsif Nkind (P) = N_Selected_Component
1859 and then Is_Entity_Name (Selector_Name (P))
1860 then
1861 Pent := Entity (Selector_Name (P));
1862 end if;
1863
1864 -- Prefix must be appropriate for an array type, taking into
1865 -- account a possible implicit dereference.
996ae0b0
RK
1866
1867 if Is_Access_Type (Array_Type) then
fbf5a39b 1868 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
d469eabe 1869 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
1870 end if;
1871
1872 if Is_Array_Type (Array_Type) then
1873 null;
1874
6e73e3ab 1875 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
1876 Analyze (Exp);
1877 Set_Etype (N, Any_Type);
1878
1879 if not Has_Compatible_Type
6e73e3ab 1880 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
1881 then
1882 Error_Msg_N ("invalid index type in entry name", N);
1883
1884 elsif Present (Next (Exp)) then
1885 Error_Msg_N ("too many subscripts in entry reference", N);
1886
1887 else
1888 Set_Etype (N, Etype (P));
1889 end if;
1890
1891 return;
1892
1893 elsif Is_Record_Type (Array_Type)
1894 and then Remote_AST_I_Dereference (P)
1895 then
1896 return;
1897
1898 elsif Array_Type = Any_Type then
1899 Set_Etype (N, Any_Type);
6465b6a7
AC
1900
1901 -- In most cases the analysis of the prefix will have emitted
1902 -- an error already, but if the prefix may be interpreted as a
1903 -- call in prefixed notation, the report is left to the caller.
1904 -- To prevent cascaded errors, report only if no previous ones.
1905
1906 if Serious_Errors_Detected = 0 then
1907 Error_Msg_N ("invalid prefix in indexed component", P);
1908
1909 if Nkind (P) = N_Expanded_Name then
1910 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
1911 end if;
1912 end if;
1913
996ae0b0
RK
1914 return;
1915
1916 -- Here we definitely have a bad indexing
1917
1918 else
1919 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 1920 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
1921 then
1922 Error_Msg_N
1923 ("REQUEUE does not permit parameters", First (Exprs));
1924
1925 elsif Is_Entity_Name (P)
1926 and then Etype (P) = Standard_Void_Type
1927 then
1928 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1929
1930 else
1931 Error_Msg_N ("array type required in indexed component", P);
1932 end if;
1933
1934 Set_Etype (N, Any_Type);
1935 return;
1936 end if;
1937
1938 Index := First_Index (Array_Type);
996ae0b0
RK
1939 while Present (Index) and then Present (Exp) loop
1940 if not Has_Compatible_Type (Exp, Etype (Index)) then
1941 Wrong_Type (Exp, Etype (Index));
1942 Set_Etype (N, Any_Type);
1943 return;
1944 end if;
1945
1946 Next_Index (Index);
1947 Next (Exp);
1948 end loop;
1949
1950 Set_Etype (N, Component_Type (Array_Type));
1951
1952 if Present (Index) then
1953 Error_Msg_N
1954 ("too few subscripts in array reference", First (Exprs));
1955
1956 elsif Present (Exp) then
1957 Error_Msg_N ("too many subscripts in array reference", Exp);
1958 end if;
1959 end if;
996ae0b0
RK
1960 end Process_Indexed_Component;
1961
1962 ----------------------------------------
1963 -- Process_Indexed_Component_Or_Slice --
1964 ----------------------------------------
1965
1966 procedure Process_Indexed_Component_Or_Slice is
1967 begin
1968 Exp := First (Exprs);
996ae0b0
RK
1969 while Present (Exp) loop
1970 Analyze_Expression (Exp);
1971 Next (Exp);
1972 end loop;
1973
1974 Exp := First (Exprs);
1975
1976 -- If one index is present, and it is a subtype name, then the
1977 -- node denotes a slice (note that the case of an explicit range
1978 -- for a slice was already built as an N_Slice node in the first
1979 -- place, so that case is not handled here).
1980
1981 -- We use a replace rather than a rewrite here because this is one
1982 -- of the cases in which the tree built by the parser is plain wrong.
1983
1984 if No (Next (Exp))
1985 and then Is_Entity_Name (Exp)
1986 and then Is_Type (Entity (Exp))
1987 then
1988 Replace (N,
1989 Make_Slice (Sloc (N),
1990 Prefix => P,
1991 Discrete_Range => New_Copy (Exp)));
1992 Analyze (N);
1993
1994 -- Otherwise (more than one index present, or single index is not
1995 -- a subtype name), then we have the indexed component case.
1996
1997 else
1998 Process_Indexed_Component;
1999 end if;
2000 end Process_Indexed_Component_Or_Slice;
2001
2002 ------------------------------------------
2003 -- Process_Overloaded_Indexed_Component --
2004 ------------------------------------------
2005
2006 procedure Process_Overloaded_Indexed_Component is
2007 Exp : Node_Id;
2008 I : Interp_Index;
2009 It : Interp;
2010 Typ : Entity_Id;
2011 Index : Node_Id;
2012 Found : Boolean;
2013
2014 begin
2015 Set_Etype (N, Any_Type);
996ae0b0 2016
4c46b835 2017 Get_First_Interp (P, I, It);
996ae0b0
RK
2018 while Present (It.Nam) loop
2019 Typ := It.Typ;
2020
2021 if Is_Access_Type (Typ) then
2022 Typ := Designated_Type (Typ);
fbf5a39b 2023 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2024 end if;
2025
2026 if Is_Array_Type (Typ) then
2027
2028 -- Got a candidate: verify that index types are compatible
2029
2030 Index := First_Index (Typ);
2031 Found := True;
996ae0b0 2032 Exp := First (Exprs);
996ae0b0
RK
2033 while Present (Index) and then Present (Exp) loop
2034 if Has_Compatible_Type (Exp, Etype (Index)) then
2035 null;
2036 else
2037 Found := False;
2038 Remove_Interp (I);
2039 exit;
2040 end if;
2041
2042 Next_Index (Index);
2043 Next (Exp);
2044 end loop;
2045
2046 if Found and then No (Index) and then No (Exp) then
2047 Add_One_Interp (N,
2048 Etype (Component_Type (Typ)),
2049 Etype (Component_Type (Typ)));
2050 end if;
2051 end if;
2052
2053 Get_Next_Interp (I, It);
2054 end loop;
2055
2056 if Etype (N) = Any_Type then
ad6b5b00 2057 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2058 Set_Is_Overloaded (N, False);
2059 end if;
2060
2061 End_Interp_List;
2062 end Process_Overloaded_Indexed_Component;
2063
4c46b835 2064 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2065
2066 begin
2067 -- Get name of array, function or type
2068
2069 Analyze (P);
d469eabe
HK
2070
2071 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2072
fbf5a39b
AC
2073 -- If P is an explicit dereference whose prefix is of a
2074 -- remote access-to-subprogram type, then N has already
2075 -- been rewritten as a subprogram call and analyzed.
2076
2077 return;
2078 end if;
2079
2080 pragma Assert (Nkind (N) = N_Indexed_Component);
2081
996ae0b0
RK
2082 P_T := Base_Type (Etype (P));
2083
2084 if Is_Entity_Name (P)
2085 or else Nkind (P) = N_Operator_Symbol
2086 then
2087 U_N := Entity (P);
2088
aab883ec 2089 if Is_Type (U_N) then
996ae0b0 2090
4c46b835 2091 -- Reformat node as a type conversion
996ae0b0
RK
2092
2093 E := Remove_Head (Exprs);
2094
2095 if Present (First (Exprs)) then
2096 Error_Msg_N
2097 ("argument of type conversion must be single expression", N);
2098 end if;
2099
2100 Change_Node (N, N_Type_Conversion);
2101 Set_Subtype_Mark (N, P);
2102 Set_Etype (N, U_N);
2103 Set_Expression (N, E);
2104
2105 -- After changing the node, call for the specific Analysis
2106 -- routine directly, to avoid a double call to the expander.
2107
2108 Analyze_Type_Conversion (N);
2109 return;
2110 end if;
2111
2112 if Is_Overloadable (U_N) then
2113 Process_Function_Call;
2114
2115 elsif Ekind (Etype (P)) = E_Subprogram_Type
2116 or else (Is_Access_Type (Etype (P))
2117 and then
bce79204
AC
2118 Ekind (Designated_Type (Etype (P))) =
2119 E_Subprogram_Type)
996ae0b0
RK
2120 then
2121 -- Call to access_to-subprogram with possible implicit dereference
2122
2123 Process_Function_Call;
2124
fbf5a39b
AC
2125 elsif Is_Generic_Subprogram (U_N) then
2126
4c46b835 2127 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2128
2129 Error_Msg_N ("generic subprogram cannot be called", N);
2130 Set_Etype (N, Any_Type);
2131 return;
2132
2133 else
2134 Process_Indexed_Component_Or_Slice;
2135 end if;
2136
2137 -- If not an entity name, prefix is an expression that may denote
2138 -- an array or an access-to-subprogram.
2139
2140 else
fbf5a39b 2141 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2142 or else (Is_Access_Type (P_T)
2143 and then
bce79204 2144 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2145 then
2146 Process_Function_Call;
2147
2148 elsif Nkind (P) = N_Selected_Component
ffe9aba8 2149 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2150 then
2151 Process_Function_Call;
2152
2153 else
2154 -- Indexed component, slice, or a call to a member of a family
2155 -- entry, which will be converted to an entry call later.
fbf5a39b 2156
996ae0b0
RK
2157 Process_Indexed_Component_Or_Slice;
2158 end if;
2159 end if;
2160 end Analyze_Indexed_Component_Form;
2161
2162 ------------------------
2163 -- Analyze_Logical_Op --
2164 ------------------------
2165
2166 procedure Analyze_Logical_Op (N : Node_Id) is
2167 L : constant Node_Id := Left_Opnd (N);
2168 R : constant Node_Id := Right_Opnd (N);
2169 Op_Id : Entity_Id := Entity (N);
2170
2171 begin
2172 Set_Etype (N, Any_Type);
2173 Candidate_Type := Empty;
2174
2175 Analyze_Expression (L);
2176 Analyze_Expression (R);
2177
2178 if Present (Op_Id) then
2179
2180 if Ekind (Op_Id) = E_Operator then
2181 Find_Boolean_Types (L, R, Op_Id, N);
2182 else
2183 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2184 end if;
2185
2186 else
2187 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2188 while Present (Op_Id) loop
2189 if Ekind (Op_Id) = E_Operator then
2190 Find_Boolean_Types (L, R, Op_Id, N);
2191 else
2192 Analyze_User_Defined_Binary_Op (N, Op_Id);
2193 end if;
2194
2195 Op_Id := Homonym (Op_Id);
2196 end loop;
2197 end if;
2198
2199 Operator_Check (N);
2200 end Analyze_Logical_Op;
2201
2202 ---------------------------
2203 -- Analyze_Membership_Op --
2204 ---------------------------
2205
2206 procedure Analyze_Membership_Op (N : Node_Id) is
2207 L : constant Node_Id := Left_Opnd (N);
2208 R : constant Node_Id := Right_Opnd (N);
2209
2210 Index : Interp_Index;
2211 It : Interp;
2212 Found : Boolean := False;
2213 I_F : Interp_Index;
2214 T_F : Entity_Id;
2215
2216 procedure Try_One_Interp (T1 : Entity_Id);
2217 -- Routine to try one proposed interpretation. Note that the context
2218 -- of the operation plays no role in resolving the arguments, so that
2219 -- if there is more than one interpretation of the operands that is
2220 -- compatible with a membership test, the operation is ambiguous.
2221
4c46b835
AC
2222 --------------------
2223 -- Try_One_Interp --
2224 --------------------
2225
996ae0b0
RK
2226 procedure Try_One_Interp (T1 : Entity_Id) is
2227 begin
2228 if Has_Compatible_Type (R, T1) then
2229 if Found
2230 and then Base_Type (T1) /= Base_Type (T_F)
2231 then
2232 It := Disambiguate (L, I_F, Index, Any_Type);
2233
2234 if It = No_Interp then
2235 Ambiguous_Operands (N);
2236 Set_Etype (L, Any_Type);
2237 return;
2238
2239 else
2240 T_F := It.Typ;
2241 end if;
2242
2243 else
2244 Found := True;
2245 T_F := T1;
2246 I_F := Index;
2247 end if;
2248
2249 Set_Etype (L, T_F);
2250 end if;
996ae0b0
RK
2251 end Try_One_Interp;
2252
197e4514
AC
2253 procedure Analyze_Set_Membership;
2254 -- If a set of alternatives is present, analyze each and find the
2255 -- common type to which they must all resolve.
2256
2257 ----------------------------
2258 -- Analyze_Set_Membership --
2259 ----------------------------
2260
2261 procedure Analyze_Set_Membership is
2262 Alt : Node_Id;
2263 Index : Interp_Index;
2264 It : Interp;
197e4514
AC
2265 Candidate_Interps : Node_Id;
2266 Common_Type : Entity_Id := Empty;
2267
2268 begin
2269 Analyze (L);
2270 Candidate_Interps := L;
2271
2272 if not Is_Overloaded (L) then
2273 Common_Type := Etype (L);
2274
2275 Alt := First (Alternatives (N));
2276 while Present (Alt) loop
2277 Analyze (Alt);
2278
2279 if not Has_Compatible_Type (Alt, Common_Type) then
2280 Wrong_Type (Alt, Common_Type);
2281 end if;
2282
2283 Next (Alt);
2284 end loop;
2285
2286 else
2287 Alt := First (Alternatives (N));
2288 while Present (Alt) loop
2289 Analyze (Alt);
2290 if not Is_Overloaded (Alt) then
2291 Common_Type := Etype (Alt);
2292
2293 else
2294 Get_First_Interp (Alt, Index, It);
2295 while Present (It.Typ) loop
442c0581
RD
2296 if not
2297 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2298 then
2299 Remove_Interp (Index);
2300 end if;
442c0581 2301
197e4514
AC
2302 Get_Next_Interp (Index, It);
2303 end loop;
2304
2305 Get_First_Interp (Alt, Index, It);
442c0581 2306
197e4514
AC
2307 if No (It.Typ) then
2308 Error_Msg_N ("alternative has no legal type", Alt);
2309 return;
2310 end if;
2311
442c0581
RD
2312 -- If alternative is not overloaded, we have a unique type
2313 -- for all of them.
197e4514
AC
2314
2315 Set_Etype (Alt, It.Typ);
2316 Get_Next_Interp (Index, It);
2317
2318 if No (It.Typ) then
2319 Set_Is_Overloaded (Alt, False);
2320 Common_Type := Etype (Alt);
2321 end if;
2322
2323 Candidate_Interps := Alt;
2324 end if;
2325
2326 Next (Alt);
2327 end loop;
2328 end if;
2329
2330 Set_Etype (N, Standard_Boolean);
2331
2332 if Present (Common_Type) then
2333 Set_Etype (L, Common_Type);
2334 Set_Is_Overloaded (L, False);
2335
2336 else
2337 Error_Msg_N ("cannot resolve membership operation", N);
2338 end if;
2339 end Analyze_Set_Membership;
2340
996ae0b0
RK
2341 -- Start of processing for Analyze_Membership_Op
2342
2343 begin
2344 Analyze_Expression (L);
2345
197e4514 2346 if No (R)
0eed45bb 2347 and then Ada_Version >= Ada_12
197e4514
AC
2348 then
2349 Analyze_Set_Membership;
2350 return;
2351 end if;
2352
996ae0b0
RK
2353 if Nkind (R) = N_Range
2354 or else (Nkind (R) = N_Attribute_Reference
2355 and then Attribute_Name (R) = Name_Range)
2356 then
2357 Analyze (R);
2358
2359 if not Is_Overloaded (L) then
2360 Try_One_Interp (Etype (L));
2361
2362 else
2363 Get_First_Interp (L, Index, It);
996ae0b0
RK
2364 while Present (It.Typ) loop
2365 Try_One_Interp (It.Typ);
2366 Get_Next_Interp (Index, It);
2367 end loop;
2368 end if;
2369
2370 -- If not a range, it can only be a subtype mark, or else there
2371 -- is a more basic error, to be diagnosed in Find_Type.
2372
2373 else
2374 Find_Type (R);
2375
2376 if Is_Entity_Name (R) then
2377 Check_Fully_Declared (Entity (R), R);
2378 end if;
2379 end if;
2380
2381 -- Compatibility between expression and subtype mark or range is
2382 -- checked during resolution. The result of the operation is Boolean
2383 -- in any case.
2384
2385 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2386
2387 if Comes_From_Source (N)
197e4514 2388 and then Present (Right_Opnd (N))
fe45e59e
ES
2389 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2390 then
2391 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2392 end if;
996ae0b0
RK
2393 end Analyze_Membership_Op;
2394
2395 ----------------------
2396 -- Analyze_Negation --
2397 ----------------------
2398
2399 procedure Analyze_Negation (N : Node_Id) is
2400 R : constant Node_Id := Right_Opnd (N);
2401 Op_Id : Entity_Id := Entity (N);
2402
2403 begin
2404 Set_Etype (N, Any_Type);
2405 Candidate_Type := Empty;
2406
2407 Analyze_Expression (R);
2408
2409 if Present (Op_Id) then
2410 if Ekind (Op_Id) = E_Operator then
2411 Find_Negation_Types (R, Op_Id, N);
2412 else
2413 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2414 end if;
2415
2416 else
2417 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2418 while Present (Op_Id) loop
2419 if Ekind (Op_Id) = E_Operator then
2420 Find_Negation_Types (R, Op_Id, N);
2421 else
2422 Analyze_User_Defined_Unary_Op (N, Op_Id);
2423 end if;
2424
2425 Op_Id := Homonym (Op_Id);
2426 end loop;
2427 end if;
2428
2429 Operator_Check (N);
2430 end Analyze_Negation;
2431
15ce9ca2
AC
2432 ------------------
2433 -- Analyze_Null --
2434 ------------------
996ae0b0
RK
2435
2436 procedure Analyze_Null (N : Node_Id) is
2437 begin
2438 Set_Etype (N, Any_Access);
2439 end Analyze_Null;
2440
2441 ----------------------
2442 -- Analyze_One_Call --
2443 ----------------------
2444
2445 procedure Analyze_One_Call
ec6078e3
ES
2446 (N : Node_Id;
2447 Nam : Entity_Id;
2448 Report : Boolean;
2449 Success : out Boolean;
2450 Skip_First : Boolean := False)
996ae0b0 2451 is
d469eabe
HK
2452 Actuals : constant List_Id := Parameter_Associations (N);
2453 Prev_T : constant Entity_Id := Etype (N);
2454
aab883ec
ES
2455 Must_Skip : constant Boolean := Skip_First
2456 or else Nkind (Original_Node (N)) = N_Selected_Component
2457 or else
2458 (Nkind (Original_Node (N)) = N_Indexed_Component
2459 and then Nkind (Prefix (Original_Node (N)))
2460 = N_Selected_Component);
2461 -- The first formal must be omitted from the match when trying to find
2462 -- a primitive operation that is a possible interpretation, and also
2463 -- after the call has been rewritten, because the corresponding actual
2464 -- is already known to be compatible, and because this may be an
2465 -- indexing of a call with default parameters.
2466
53cf4600
ES
2467 Formal : Entity_Id;
2468 Actual : Node_Id;
2469 Is_Indexed : Boolean := False;
2470 Is_Indirect : Boolean := False;
2471 Subp_Type : constant Entity_Id := Etype (Nam);
2472 Norm_OK : Boolean;
996ae0b0 2473
157a9bf5
ES
2474 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2475 -- There may be a user-defined operator that hides the current
2476 -- interpretation. We must check for this independently of the
2477 -- analysis of the call with the user-defined operation, because
2478 -- the parameter names may be wrong and yet the hiding takes place.
2479 -- This fixes a problem with ACATS test B34014O.
2480 --
2481 -- When the type Address is a visible integer type, and the DEC
2482 -- system extension is visible, the predefined operator may be
2483 -- hidden as well, by one of the address operations in auxdec.
2484 -- Finally, The abstract operations on address do not hide the
2485 -- predefined operator (this is the purpose of making them abstract).
2486
fbf5a39b 2487 procedure Indicate_Name_And_Type;
996ae0b0
RK
2488 -- If candidate interpretation matches, indicate name and type of
2489 -- result on call node.
2490
fbf5a39b
AC
2491 ----------------------------
2492 -- Indicate_Name_And_Type --
2493 ----------------------------
996ae0b0 2494
fbf5a39b 2495 procedure Indicate_Name_And_Type is
996ae0b0
RK
2496 begin
2497 Add_One_Interp (N, Nam, Etype (Nam));
2498 Success := True;
2499
2500 -- If the prefix of the call is a name, indicate the entity
2501 -- being called. If it is not a name, it is an expression that
2502 -- denotes an access to subprogram or else an entry or family. In
2503 -- the latter case, the name is a selected component, and the entity
2504 -- being called is noted on the selector.
2505
2506 if not Is_Type (Nam) then
2507 if Is_Entity_Name (Name (N))
2508 or else Nkind (Name (N)) = N_Operator_Symbol
2509 then
2510 Set_Entity (Name (N), Nam);
2511
2512 elsif Nkind (Name (N)) = N_Selected_Component then
2513 Set_Entity (Selector_Name (Name (N)), Nam);
2514 end if;
2515 end if;
2516
2517 if Debug_Flag_E and not Report then
2518 Write_Str (" Overloaded call ");
2519 Write_Int (Int (N));
2520 Write_Str (" compatible with ");
2521 Write_Int (Int (Nam));
2522 Write_Eol;
2523 end if;
fbf5a39b 2524 end Indicate_Name_And_Type;
996ae0b0 2525
157a9bf5
ES
2526 ------------------------
2527 -- Operator_Hidden_By --
2528 ------------------------
2529
2530 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2531 Act1 : constant Node_Id := First_Actual (N);
2532 Act2 : constant Node_Id := Next_Actual (Act1);
2533 Form1 : constant Entity_Id := First_Formal (Fun);
2534 Form2 : constant Entity_Id := Next_Formal (Form1);
2535
2536 begin
2537 if Ekind (Fun) /= E_Function
2538 or else Is_Abstract_Subprogram (Fun)
2539 then
2540 return False;
2541
2542 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2543 return False;
2544
2545 elsif Present (Form2) then
2546 if
2547 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2548 then
2549 return False;
2550 end if;
2551
2552 elsif Present (Act2) then
2553 return False;
2554 end if;
2555
2556 -- Now we know that the arity of the operator matches the function,
2557 -- and the function call is a valid interpretation. The function
2558 -- hides the operator if it has the right signature, or if one of
2559 -- its operands is a non-abstract operation on Address when this is
2560 -- a visible integer type.
2561
2562 return Hides_Op (Fun, Nam)
2563 or else Is_Descendent_Of_Address (Etype (Form1))
2564 or else
2565 (Present (Form2)
2566 and then Is_Descendent_Of_Address (Etype (Form2)));
2567 end Operator_Hidden_By;
2568
996ae0b0
RK
2569 -- Start of processing for Analyze_One_Call
2570
2571 begin
2572 Success := False;
2573
157a9bf5
ES
2574 -- If the subprogram has no formals or if all the formals have defaults,
2575 -- and the return type is an array type, the node may denote an indexing
2576 -- of the result of a parameterless call. In Ada 2005, the subprogram
2577 -- may have one non-defaulted formal, and the call may have been written
2578 -- in prefix notation, so that the rebuilt parameter list has more than
2579 -- one actual.
996ae0b0 2580
53cf4600
ES
2581 if not Is_Overloadable (Nam)
2582 and then Ekind (Nam) /= E_Subprogram_Type
2583 and then Ekind (Nam) /= E_Entry_Family
2584 then
2585 return;
2586 end if;
2587
8f2eeab7 2588 -- An indexing requires at least one actual
e1f3cb58
AC
2589
2590 if not Is_Empty_List (Actuals)
aab883ec
ES
2591 and then
2592 (Needs_No_Actuals (Nam)
2593 or else
2594 (Needs_One_Actual (Nam)
2595 and then Present (Next_Actual (First (Actuals)))))
996ae0b0
RK
2596 then
2597 if Is_Array_Type (Subp_Type) then
aab883ec 2598 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
2599
2600 elsif Is_Access_Type (Subp_Type)
2601 and then Is_Array_Type (Designated_Type (Subp_Type))
2602 then
2603 Is_Indexed :=
aab883ec
ES
2604 Try_Indexed_Call
2605 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 2606
758c442c 2607 -- The prefix can also be a parameterless function that returns an
f3d57416 2608 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
2609 -- If this succeeds, an explicit dereference is added later on,
2610 -- in Analyze_Call or Resolve_Call.
758c442c 2611
996ae0b0 2612 elsif Is_Access_Type (Subp_Type)
401093c1 2613 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 2614 then
53cf4600 2615 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
2616 end if;
2617
2618 end if;
2619
5ff22245 2620 -- If the call has been transformed into a slice, it is of the form
30783513 2621 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
2622 -- Try_Indexed_Call and there is nothing else to do.
2623
2624 if Is_Indexed
2625 and then Nkind (N) = N_Slice
2626 then
2627 return;
2628 end if;
2629
53cf4600
ES
2630 Normalize_Actuals
2631 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
2632
2633 if not Norm_OK then
2634
53cf4600
ES
2635 -- If an indirect call is a possible interpretation, indicate
2636 -- success to the caller.
2637
2638 if Is_Indirect then
2639 Success := True;
2640 return;
2641
996ae0b0
RK
2642 -- Mismatch in number or names of parameters
2643
53cf4600 2644 elsif Debug_Flag_E then
996ae0b0
RK
2645 Write_Str (" normalization fails in call ");
2646 Write_Int (Int (N));
2647 Write_Str (" with subprogram ");
2648 Write_Int (Int (Nam));
2649 Write_Eol;
2650 end if;
2651
2652 -- If the context expects a function call, discard any interpretation
2653 -- that is a procedure. If the node is not overloaded, leave as is for
2654 -- better error reporting when type mismatch is found.
2655
2656 elsif Nkind (N) = N_Function_Call
2657 and then Is_Overloaded (Name (N))
2658 and then Ekind (Nam) = E_Procedure
2659 then
2660 return;
2661
4c46b835 2662 -- Ditto for function calls in a procedure context
996ae0b0
RK
2663
2664 elsif Nkind (N) = N_Procedure_Call_Statement
2665 and then Is_Overloaded (Name (N))
2666 and then Etype (Nam) /= Standard_Void_Type
2667 then
2668 return;
2669
fe45e59e 2670 elsif No (Actuals) then
996ae0b0
RK
2671
2672 -- If Normalize succeeds, then there are default parameters for
2673 -- all formals.
2674
fbf5a39b 2675 Indicate_Name_And_Type;
996ae0b0
RK
2676
2677 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
2678 if Nkind (N) = N_Procedure_Call_Statement then
2679 return;
2680 end if;
2681
2682 -- This can occur when the prefix of the call is an operator
2683 -- name or an expanded name whose selector is an operator name.
2684
2685 Analyze_Operator_Call (N, Nam);
2686
2687 if Etype (N) /= Prev_T then
2688
157a9bf5 2689 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
2690
2691 if Is_Overloaded (Name (N)) then
2692 declare
2693 I : Interp_Index;
2694 It : Interp;
2695
2696 begin
2697 Get_First_Interp (Name (N), I, It);
996ae0b0 2698 while Present (It.Nam) loop
157a9bf5 2699 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
2700 Set_Etype (N, Prev_T);
2701 return;
2702 end if;
2703
2704 Get_Next_Interp (I, It);
2705 end loop;
2706 end;
2707 end if;
2708
2709 -- If operator matches formals, record its name on the call.
2710 -- If the operator is overloaded, Resolve will select the
2711 -- correct one from the list of interpretations. The call
2712 -- node itself carries the first candidate.
2713
2714 Set_Entity (Name (N), Nam);
2715 Success := True;
2716
2717 elsif Report and then Etype (N) = Any_Type then
2718 Error_Msg_N ("incompatible arguments for operator", N);
2719 end if;
2720
2721 else
2722 -- Normalize_Actuals has chained the named associations in the
2723 -- correct order of the formals.
2724
2725 Actual := First_Actual (N);
2726 Formal := First_Formal (Nam);
ec6078e3
ES
2727
2728 -- If we are analyzing a call rewritten from object notation,
2729 -- skip first actual, which may be rewritten later as an
2730 -- explicit dereference.
2731
aab883ec 2732 if Must_Skip then
ec6078e3
ES
2733 Next_Actual (Actual);
2734 Next_Formal (Formal);
2735 end if;
2736
996ae0b0 2737 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
2738 if Nkind (Parent (Actual)) /= N_Parameter_Association
2739 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 2740 then
9c510803
ES
2741 -- The actual can be compatible with the formal, but we must
2742 -- also check that the context is not an address type that is
2743 -- visibly an integer type, as is the case in VMS_64. In this
2744 -- case the use of literals is illegal, except in the body of
2745 -- descendents of system, where arithmetic operations on
2746 -- address are of course used.
2747
2748 if Has_Compatible_Type (Actual, Etype (Formal))
2749 and then
2750 (Etype (Actual) /= Universal_Integer
2751 or else not Is_Descendent_Of_Address (Etype (Formal))
2752 or else
2753 Is_Predefined_File_Name
2754 (Unit_File_Name (Get_Source_Unit (N))))
2755 then
996ae0b0
RK
2756 Next_Actual (Actual);
2757 Next_Formal (Formal);
2758
2759 else
2760 if Debug_Flag_E then
2761 Write_Str (" type checking fails in call ");
2762 Write_Int (Int (N));
2763 Write_Str (" with formal ");
2764 Write_Int (Int (Formal));
2765 Write_Str (" in subprogram ");
2766 Write_Int (Int (Nam));
2767 Write_Eol;
2768 end if;
2769
53cf4600 2770 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
2771
2772 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 2773 -- to help new Ada 2005 users.
758c442c
GD
2774
2775 if Is_Class_Wide_Type (Etype (Formal))
2776 and then Is_Interface (Etype (Etype (Formal)))
2777 and then not Interface_Present_In_Ancestor
2778 (Typ => Etype (Actual),
2779 Iface => Etype (Etype (Formal)))
2780 then
758c442c 2781 Error_Msg_NE
ec6078e3 2782 ("(Ada 2005) does not implement interface }",
758c442c
GD
2783 Actual, Etype (Etype (Formal)));
2784 end if;
2785
996ae0b0
RK
2786 Wrong_Type (Actual, Etype (Formal));
2787
2788 if Nkind (Actual) = N_Op_Eq
2789 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2790 then
2791 Formal := First_Formal (Nam);
996ae0b0 2792 while Present (Formal) loop
996ae0b0 2793 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 2794 Error_Msg_N -- CODEFIX
fbf5a39b 2795 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
2796 exit;
2797 end if;
2798
2799 Next_Formal (Formal);
2800 end loop;
2801 end if;
2802
2803 if All_Errors_Mode then
2804 Error_Msg_Sloc := Sloc (Nam);
2805
2806 if Is_Overloadable (Nam)
2807 and then Present (Alias (Nam))
2808 and then not Comes_From_Source (Nam)
2809 then
2810 Error_Msg_NE
401093c1
ES
2811 ("\\ =='> in call to inherited operation & #!",
2812 Actual, Nam);
7324bf49
AC
2813
2814 elsif Ekind (Nam) = E_Subprogram_Type then
2815 declare
2816 Access_To_Subprogram_Typ :
2817 constant Entity_Id :=
2818 Defining_Identifier
2819 (Associated_Node_For_Itype (Nam));
2820 begin
2821 Error_Msg_NE (
401093c1 2822 "\\ =='> in call to dereference of &#!",
7324bf49
AC
2823 Actual, Access_To_Subprogram_Typ);
2824 end;
2825
996ae0b0 2826 else
401093c1
ES
2827 Error_Msg_NE
2828 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 2829
996ae0b0
RK
2830 end if;
2831 end if;
2832 end if;
2833
2834 return;
2835 end if;
2836
2837 else
2838 -- Normalize_Actuals has verified that a default value exists
2839 -- for this formal. Current actual names a subsequent formal.
2840
2841 Next_Formal (Formal);
2842 end if;
2843 end loop;
2844
4c46b835 2845 -- On exit, all actuals match
996ae0b0 2846
fbf5a39b 2847 Indicate_Name_And_Type;
996ae0b0
RK
2848 end if;
2849 end Analyze_One_Call;
2850
15ce9ca2
AC
2851 ---------------------------
2852 -- Analyze_Operator_Call --
2853 ---------------------------
996ae0b0
RK
2854
2855 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2856 Op_Name : constant Name_Id := Chars (Op_Id);
2857 Act1 : constant Node_Id := First_Actual (N);
2858 Act2 : constant Node_Id := Next_Actual (Act1);
2859
2860 begin
4c46b835
AC
2861 -- Binary operator case
2862
996ae0b0
RK
2863 if Present (Act2) then
2864
4c46b835 2865 -- If more than two operands, then not binary operator after all
996ae0b0
RK
2866
2867 if Present (Next_Actual (Act2)) then
996ae0b0
RK
2868 return;
2869
2870 elsif Op_Name = Name_Op_Add
2871 or else Op_Name = Name_Op_Subtract
2872 or else Op_Name = Name_Op_Multiply
2873 or else Op_Name = Name_Op_Divide
2874 or else Op_Name = Name_Op_Mod
2875 or else Op_Name = Name_Op_Rem
2876 or else Op_Name = Name_Op_Expon
2877 then
2878 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2879
2880 elsif Op_Name = Name_Op_And
2881 or else Op_Name = Name_Op_Or
2882 or else Op_Name = Name_Op_Xor
2883 then
2884 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2885
2886 elsif Op_Name = Name_Op_Lt
2887 or else Op_Name = Name_Op_Le
2888 or else Op_Name = Name_Op_Gt
2889 or else Op_Name = Name_Op_Ge
2890 then
2891 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2892
2893 elsif Op_Name = Name_Op_Eq
2894 or else Op_Name = Name_Op_Ne
2895 then
2896 Find_Equality_Types (Act1, Act2, Op_Id, N);
2897
2898 elsif Op_Name = Name_Op_Concat then
2899 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2900
2901 -- Is this else null correct, or should it be an abort???
2902
2903 else
2904 null;
2905 end if;
2906
4c46b835 2907 -- Unary operator case
996ae0b0 2908
4c46b835 2909 else
996ae0b0
RK
2910 if Op_Name = Name_Op_Subtract or else
2911 Op_Name = Name_Op_Add or else
2912 Op_Name = Name_Op_Abs
2913 then
2914 Find_Unary_Types (Act1, Op_Id, N);
2915
2916 elsif
2917 Op_Name = Name_Op_Not
2918 then
2919 Find_Negation_Types (Act1, Op_Id, N);
2920
2921 -- Is this else null correct, or should it be an abort???
2922
2923 else
2924 null;
2925 end if;
2926 end if;
2927 end Analyze_Operator_Call;
2928
2929 -------------------------------------------
2930 -- Analyze_Overloaded_Selected_Component --
2931 -------------------------------------------
2932
2933 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
2934 Nam : constant Node_Id := Prefix (N);
2935 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 2936 Comp : Entity_Id;
996ae0b0
RK
2937 I : Interp_Index;
2938 It : Interp;
2939 T : Entity_Id;
2940
2941 begin
4c46b835 2942 Set_Etype (Sel, Any_Type);
996ae0b0 2943
4c46b835 2944 Get_First_Interp (Nam, I, It);
996ae0b0
RK
2945 while Present (It.Typ) loop
2946 if Is_Access_Type (It.Typ) then
2947 T := Designated_Type (It.Typ);
fbf5a39b 2948 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2949 else
2950 T := It.Typ;
2951 end if;
2952
2953 if Is_Record_Type (T) then
d469eabe
HK
2954
2955 -- If the prefix is a class-wide type, the visible components are
2956 -- those of the base type.
2957
2958 if Is_Class_Wide_Type (T) then
2959 T := Etype (T);
2960 end if;
2961
996ae0b0 2962 Comp := First_Entity (T);
996ae0b0 2963 while Present (Comp) loop
996ae0b0
RK
2964 if Chars (Comp) = Chars (Sel)
2965 and then Is_Visible_Component (Comp)
2966 then
996ae0b0 2967
f16d05d9
AC
2968 -- AI05-105: if the context is an object renaming with
2969 -- an anonymous access type, the expected type of the
2970 -- object must be anonymous. This is a name resolution rule.
996ae0b0 2971
f16d05d9
AC
2972 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2973 or else No (Access_Definition (Parent (N)))
2974 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2975 or else
2976 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2977 then
2978 Set_Entity (Sel, Comp);
2979 Set_Etype (Sel, Etype (Comp));
2980 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2981
2982 -- This also specifies a candidate to resolve the name.
2983 -- Further overloading will be resolved from context.
2984 -- The selector name itself does not carry overloading
2985 -- information.
2986
2987 Set_Etype (Nam, It.Typ);
2988
2989 else
b61ee1aa 2990 -- Named access type in the context of a renaming
f16d05d9
AC
2991 -- declaration with an access definition. Remove
2992 -- inapplicable candidate.
2993
2994 Remove_Interp (I);
2995 end if;
996ae0b0
RK
2996 end if;
2997
2998 Next_Entity (Comp);
2999 end loop;
3000
3001 elsif Is_Concurrent_Type (T) then
3002 Comp := First_Entity (T);
996ae0b0
RK
3003 while Present (Comp)
3004 and then Comp /= First_Private_Entity (T)
3005 loop
3006 if Chars (Comp) = Chars (Sel) then
3007 if Is_Overloadable (Comp) then
3008 Add_One_Interp (Sel, Comp, Etype (Comp));
3009 else
3010 Set_Entity_With_Style_Check (Sel, Comp);
3011 Generate_Reference (Comp, Sel);
3012 end if;
3013
3014 Set_Etype (Sel, Etype (Comp));
3015 Set_Etype (N, Etype (Comp));
3016 Set_Etype (Nam, It.Typ);
3017
09494c32
AC
3018 -- For access type case, introduce explicit dereference for
3019 -- more uniform treatment of entry calls. Do this only once
3020 -- if several interpretations yield an access type.
996ae0b0 3021
d469eabe
HK
3022 if Is_Access_Type (Etype (Nam))
3023 and then Nkind (Nam) /= N_Explicit_Dereference
3024 then
996ae0b0 3025 Insert_Explicit_Dereference (Nam);
fbf5a39b
AC
3026 Error_Msg_NW
3027 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3028 end if;
3029 end if;
3030
3031 Next_Entity (Comp);
3032 end loop;
3033
3034 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3035 end if;
3036
3037 Get_Next_Interp (I, It);
3038 end loop;
3039
0a36105d
JM
3040 if Etype (N) = Any_Type
3041 and then not Try_Object_Operation (N)
3042 then
996ae0b0
RK
3043 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3044 Set_Entity (Sel, Any_Id);
3045 Set_Etype (Sel, Any_Type);
3046 end if;
996ae0b0
RK
3047 end Analyze_Overloaded_Selected_Component;
3048
3049 ----------------------------------
3050 -- Analyze_Qualified_Expression --
3051 ----------------------------------
3052
3053 procedure Analyze_Qualified_Expression (N : Node_Id) is
3054 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3055 Expr : constant Node_Id := Expression (N);
3056 I : Interp_Index;
3057 It : Interp;
996ae0b0
RK
3058 T : Entity_Id;
3059
3060 begin
45c8b94b
ES
3061 Analyze_Expression (Expr);
3062
996ae0b0
RK
3063 Set_Etype (N, Any_Type);
3064 Find_Type (Mark);
3065 T := Entity (Mark);
45c8b94b 3066 Set_Etype (N, T);
996ae0b0
RK
3067
3068 if T = Any_Type then
3069 return;
3070 end if;
996ae0b0 3071
4c46b835 3072 Check_Fully_Declared (T, N);
45c8b94b
ES
3073
3074 -- If expected type is class-wide, check for exact match before
3075 -- expansion, because if the expression is a dispatching call it
3076 -- may be rewritten as explicit dereference with class-wide result.
3077 -- If expression is overloaded, retain only interpretations that
3078 -- will yield exact matches.
3079
3080 if Is_Class_Wide_Type (T) then
3081 if not Is_Overloaded (Expr) then
3082 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3083 if Nkind (Expr) = N_Aggregate then
3084 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3085 else
3086 Wrong_Type (Expr, T);
3087 end if;
3088 end if;
3089
3090 else
3091 Get_First_Interp (Expr, I, It);
3092
3093 while Present (It.Nam) loop
3094 if Base_Type (It.Typ) /= Base_Type (T) then
3095 Remove_Interp (I);
3096 end if;
3097
3098 Get_Next_Interp (I, It);
3099 end loop;
3100 end if;
3101 end if;
3102
996ae0b0
RK
3103 Set_Etype (N, T);
3104 end Analyze_Qualified_Expression;
3105
3106 -------------------
3107 -- Analyze_Range --
3108 -------------------
3109
3110 procedure Analyze_Range (N : Node_Id) is
3111 L : constant Node_Id := Low_Bound (N);
3112 H : constant Node_Id := High_Bound (N);
3113 I1, I2 : Interp_Index;
3114 It1, It2 : Interp;
3115
3116 procedure Check_Common_Type (T1, T2 : Entity_Id);
3117 -- Verify the compatibility of two types, and choose the
3118 -- non universal one if the other is universal.
3119
3120 procedure Check_High_Bound (T : Entity_Id);
3121 -- Test one interpretation of the low bound against all those
3122 -- of the high bound.
3123
fbf5a39b
AC
3124 procedure Check_Universal_Expression (N : Node_Id);
3125 -- In Ada83, reject bounds of a universal range that are not
3126 -- literals or entity names.
3127
996ae0b0
RK
3128 -----------------------
3129 -- Check_Common_Type --
3130 -----------------------
3131
3132 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3133 begin
b4592168
GD
3134 if Covers (T1 => T1, T2 => T2)
3135 or else
3136 Covers (T1 => T2, T2 => T1)
3137 then
996ae0b0
RK
3138 if T1 = Universal_Integer
3139 or else T1 = Universal_Real
3140 or else T1 = Any_Character
3141 then
3142 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3143
fbf5a39b 3144 elsif T1 = T2 then
996ae0b0
RK
3145 Add_One_Interp (N, T1, T1);
3146
3147 else
3148 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3149 end if;
3150 end if;
3151 end Check_Common_Type;
3152
3153 ----------------------
3154 -- Check_High_Bound --
3155 ----------------------
3156
3157 procedure Check_High_Bound (T : Entity_Id) is
3158 begin
3159 if not Is_Overloaded (H) then
3160 Check_Common_Type (T, Etype (H));
3161 else
3162 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3163 while Present (It2.Typ) loop
3164 Check_Common_Type (T, It2.Typ);
3165 Get_Next_Interp (I2, It2);
3166 end loop;
3167 end if;
3168 end Check_High_Bound;
3169
fbf5a39b
AC
3170 -----------------------------
3171 -- Is_Universal_Expression --
3172 -----------------------------
3173
3174 procedure Check_Universal_Expression (N : Node_Id) is
3175 begin
3176 if Etype (N) = Universal_Integer
3177 and then Nkind (N) /= N_Integer_Literal
3178 and then not Is_Entity_Name (N)
3179 and then Nkind (N) /= N_Attribute_Reference
3180 then
3181 Error_Msg_N ("illegal bound in discrete range", N);
3182 end if;
3183 end Check_Universal_Expression;
3184
996ae0b0
RK
3185 -- Start of processing for Analyze_Range
3186
3187 begin
3188 Set_Etype (N, Any_Type);
3189 Analyze_Expression (L);
3190 Analyze_Expression (H);
3191
3192 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3193 return;
3194
3195 else
3196 if not Is_Overloaded (L) then
3197 Check_High_Bound (Etype (L));
3198 else
3199 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3200 while Present (It1.Typ) loop
3201 Check_High_Bound (It1.Typ);
3202 Get_Next_Interp (I1, It1);
3203 end loop;
3204 end if;
3205
3206 -- If result is Any_Type, then we did not find a compatible pair
3207
3208 if Etype (N) = Any_Type then
3209 Error_Msg_N ("incompatible types in range ", N);
3210 end if;
3211 end if;
fbf5a39b 3212
0ab80019 3213 if Ada_Version = Ada_83
fbf5a39b
AC
3214 and then
3215 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3216 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3217 then
3218 Check_Universal_Expression (L);
3219 Check_Universal_Expression (H);
3220 end if;
996ae0b0
RK
3221 end Analyze_Range;
3222
3223 -----------------------
3224 -- Analyze_Reference --
3225 -----------------------
3226
3227 procedure Analyze_Reference (N : Node_Id) is
3228 P : constant Node_Id := Prefix (N);
b4592168
GD
3229 E : Entity_Id;
3230 T : Entity_Id;
996ae0b0 3231 Acc_Type : Entity_Id;
b4592168 3232
996ae0b0
RK
3233 begin
3234 Analyze (P);
b4592168
GD
3235
3236 -- An interesting error check, if we take the 'Reference of an object
3237 -- for which a pragma Atomic or Volatile has been given, and the type
3238 -- of the object is not Atomic or Volatile, then we are in trouble. The
3239 -- problem is that no trace of the atomic/volatile status will remain
3240 -- for the backend to respect when it deals with the resulting pointer,
3241 -- since the pointer type will not be marked atomic (it is a pointer to
3242 -- the base type of the object).
3243
3244 -- It is not clear if that can ever occur, but in case it does, we will
3245 -- generate an error message. Not clear if this message can ever be
3246 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3247 -- seems worth checking, except in CodePeer mode where we do not really
3248 -- care and don't want to bother the user.
b4592168
GD
3249
3250 T := Etype (P);
3251
3252 if Is_Entity_Name (P)
3253 and then Is_Object_Reference (P)
d2f25cd1 3254 and then not CodePeer_Mode
b4592168
GD
3255 then
3256 E := Entity (P);
3257 T := Etype (P);
3258
3259 if (Has_Atomic_Components (E)
3260 and then not Has_Atomic_Components (T))
3261 or else
3262 (Has_Volatile_Components (E)
3263 and then not Has_Volatile_Components (T))
3264 or else (Is_Atomic (E) and then not Is_Atomic (T))
3265 or else (Is_Volatile (E) and then not Is_Volatile (T))
3266 then
3267 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3268 end if;
3269 end if;
3270
3271 -- Carry on with normal processing
3272
996ae0b0 3273 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3274 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3275 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3276 Set_Etype (N, Acc_Type);
3277 end Analyze_Reference;
3278
3279 --------------------------------
3280 -- Analyze_Selected_Component --
3281 --------------------------------
3282
2383acbd
AC
3283 -- Prefix is a record type or a task or protected type. In the latter case,
3284 -- the selector must denote a visible entry.
996ae0b0
RK
3285
3286 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3287 Name : constant Node_Id := Prefix (N);
3288 Sel : constant Node_Id := Selector_Name (N);
3289 Act_Decl : Node_Id;
3290 Comp : Entity_Id;
3291 Has_Candidate : Boolean := False;
3292 In_Scope : Boolean;
3293 Parent_N : Node_Id;
3294 Pent : Entity_Id := Empty;
3295 Prefix_Type : Entity_Id;
401093c1
ES
3296
3297 Type_To_Use : Entity_Id;
3298 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3299 -- a class-wide type, we use its root type, whose components are
3300 -- present in the class-wide type.
3301
2383acbd
AC
3302 Is_Single_Concurrent_Object : Boolean;
3303 -- Set True if the prefix is a single task or a single protected object
3304
d469eabe
HK
3305 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3306 -- It is known that the parent of N denotes a subprogram call. Comp
3307 -- is an overloadable component of the concurrent type of the prefix.
3308 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
3309 -- conformant. If the parent node is not analyzed yet it may be an
3310 -- indexed component rather than a function call.
d469eabe
HK
3311
3312 ------------------------------
3313 -- Has_Mode_Conformant_Spec --
3314 ------------------------------
3315
3316 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3317 Comp_Param : Entity_Id;
3318 Param : Node_Id;
3319 Param_Typ : Entity_Id;
3320
3321 begin
3322 Comp_Param := First_Formal (Comp);
b4592168
GD
3323
3324 if Nkind (Parent (N)) = N_Indexed_Component then
3325 Param := First (Expressions (Parent (N)));
3326 else
3327 Param := First (Parameter_Associations (Parent (N)));
3328 end if;
3329
d469eabe
HK
3330 while Present (Comp_Param)
3331 and then Present (Param)
3332 loop
3333 Param_Typ := Find_Parameter_Type (Param);
3334
3335 if Present (Param_Typ)
3336 and then
3337 not Conforming_Types
3338 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3339 then
3340 return False;
3341 end if;
3342
3343 Next_Formal (Comp_Param);
3344 Next (Param);
3345 end loop;
3346
3347 -- One of the specs has additional formals
3348
3349 if Present (Comp_Param) or else Present (Param) then
3350 return False;
3351 end if;
3352
3353 return True;
3354 end Has_Mode_Conformant_Spec;
996ae0b0
RK
3355
3356 -- Start of processing for Analyze_Selected_Component
3357
3358 begin
3359 Set_Etype (N, Any_Type);
3360
3361 if Is_Overloaded (Name) then
3362 Analyze_Overloaded_Selected_Component (N);
3363 return;
3364
3365 elsif Etype (Name) = Any_Type then
3366 Set_Entity (Sel, Any_Id);
3367 Set_Etype (Sel, Any_Type);
3368 return;
3369
3370 else
996ae0b0
RK
3371 Prefix_Type := Etype (Name);
3372 end if;
3373
3374 if Is_Access_Type (Prefix_Type) then
07fc65c4
GB
3375
3376 -- A RACW object can never be used as prefix of a selected
3377 -- component since that means it is dereferenced without
3378 -- being a controlling operand of a dispatching operation
b4592168
GD
3379 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3380 -- whether this is actually a dispatching call in prefix form.
07fc65c4 3381
996ae0b0
RK
3382 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3383 and then Comes_From_Source (N)
3384 then
b4592168
GD
3385 if Try_Object_Operation (N) then
3386 return;
3387 else
3388 Error_Msg_N
3389 ("invalid dereference of a remote access-to-class-wide value",
3390 N);
3391 end if;
07fc65c4
GB
3392
3393 -- Normal case of selected component applied to access type
3394
3395 else
fbf5a39b 3396 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
da709d08 3397
6e73e3ab
AC
3398 if Is_Entity_Name (Name) then
3399 Pent := Entity (Name);
3400 elsif Nkind (Name) = N_Selected_Component
3401 and then Is_Entity_Name (Selector_Name (Name))
3402 then
3403 Pent := Entity (Selector_Name (Name));
3404 end if;
da709d08 3405
d469eabe 3406 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 3407 end if;
b4592168
GD
3408
3409 -- If we have an explicit dereference of a remote access-to-class-wide
3410 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3411 -- have to check for the case of a prefix that is a controlling operand
3412 -- of a prefixed dispatching call, as the dereference is legal in that
3413 -- case. Normally this condition is checked in Validate_Remote_Access_
3414 -- To_Class_Wide_Type, but we have to defer the checking for selected
3415 -- component prefixes because of the prefixed dispatching call case.
3416 -- Note that implicit dereferences are checked for this just above.
3417
3418 elsif Nkind (Name) = N_Explicit_Dereference
3419 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3420 and then Comes_From_Source (N)
3421 then
3422 if Try_Object_Operation (N) then
3423 return;
3424 else
3425 Error_Msg_N
3426 ("invalid dereference of a remote access-to-class-wide value",
3427 N);
3428 end if;
aab883ec 3429 end if;
b67a385c 3430
aab883ec
ES
3431 -- (Ada 2005): if the prefix is the limited view of a type, and
3432 -- the context already includes the full view, use the full view
3433 -- in what follows, either to retrieve a component of to find
3434 -- a primitive operation. If the prefix is an explicit dereference,
3435 -- set the type of the prefix to reflect this transformation.
401093c1
ES
3436 -- If the non-limited view is itself an incomplete type, get the
3437 -- full view if available.
aab883ec
ES
3438
3439 if Is_Incomplete_Type (Prefix_Type)
3440 and then From_With_Type (Prefix_Type)
3441 and then Present (Non_Limited_View (Prefix_Type))
3442 then
401093c1 3443 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
3444
3445 if Nkind (N) = N_Explicit_Dereference then
3446 Set_Etype (Prefix (N), Prefix_Type);
3447 end if;
3448
3449 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3450 and then From_With_Type (Prefix_Type)
3451 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3452 then
3453 Prefix_Type :=
3454 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3455
3456 if Nkind (N) = N_Explicit_Dereference then
3457 Set_Etype (Prefix (N), Prefix_Type);
b67a385c 3458 end if;
996ae0b0
RK
3459 end if;
3460
3461 if Ekind (Prefix_Type) = E_Private_Subtype then
3462 Prefix_Type := Base_Type (Prefix_Type);
3463 end if;
3464
401093c1 3465 Type_To_Use := Prefix_Type;
996ae0b0
RK
3466
3467 -- For class-wide types, use the entity list of the root type. This
3468 -- indirection is specially important for private extensions because
3469 -- only the root type get switched (not the class-wide type).
3470
3471 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 3472 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
3473 end if;
3474
2383acbd
AC
3475 -- If the prefix is a single concurrent object, use its name in error
3476 -- messages, rather than that of its anonymous type.
3477
3478 Is_Single_Concurrent_Object :=
3479 Is_Concurrent_Type (Prefix_Type)
3480 and then Is_Internal_Name (Chars (Prefix_Type))
3481 and then not Is_Derived_Type (Prefix_Type)
3482 and then Is_Entity_Name (Name);
3483
401093c1 3484 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
3485
3486 -- If the selector has an original discriminant, the node appears in
3487 -- an instance. Replace the discriminant with the corresponding one
3488 -- in the current discriminated type. For nested generics, this must
3489 -- be done transitively, so note the new original discriminant.
3490
3491 if Nkind (Sel) = N_Identifier
3492 and then Present (Original_Discriminant (Sel))
3493 then
3494 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3495
3496 -- Mark entity before rewriting, for completeness and because
3497 -- subsequent semantic checks might examine the original node.
3498
3499 Set_Entity (Sel, Comp);
3500 Rewrite (Selector_Name (N),
3501 New_Occurrence_Of (Comp, Sloc (N)));
3502 Set_Original_Discriminant (Selector_Name (N), Comp);
3503 Set_Etype (N, Etype (Comp));
3504
3505 if Is_Access_Type (Etype (Name)) then
3506 Insert_Explicit_Dereference (Name);
fbf5a39b 3507 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3508 end if;
3509
3510 elsif Is_Record_Type (Prefix_Type) then
3511
3512 -- Find component with given name
3513
3514 while Present (Comp) loop
996ae0b0
RK
3515 if Chars (Comp) = Chars (Sel)
3516 and then Is_Visible_Component (Comp)
3517 then
3518 Set_Entity_With_Style_Check (Sel, Comp);
996ae0b0
RK
3519 Set_Etype (Sel, Etype (Comp));
3520
3521 if Ekind (Comp) = E_Discriminant then
5d09245e 3522 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0
RK
3523 Error_Msg_N
3524 ("cannot reference discriminant of Unchecked_Union",
3525 Sel);
3526 end if;
3527
3528 if Is_Generic_Type (Prefix_Type)
3529 or else
3530 Is_Generic_Type (Root_Type (Prefix_Type))
3531 then
3532 Set_Original_Discriminant (Sel, Comp);
3533 end if;
3534 end if;
3535
3536 -- Resolve the prefix early otherwise it is not possible to
3537 -- build the actual subtype of the component: it may need
3538 -- to duplicate this prefix and duplication is only allowed
3539 -- on fully resolved expressions.
3540
fbf5a39b 3541 Resolve (Name);
996ae0b0 3542
b67a385c
ES
3543 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3544 -- subtypes in a package specification.
28be29ce
ES
3545 -- Example:
3546
3547 -- limited with Pkg;
3548 -- package Pkg is
3549 -- type Acc_Inc is access Pkg.T;
3550 -- X : Acc_Inc;
b67a385c
ES
3551 -- N : Natural := X.all.Comp; -- ERROR, limited view
3552 -- end Pkg; -- Comp is not visible
28be29ce
ES
3553
3554 if Nkind (Name) = N_Explicit_Dereference
3555 and then From_With_Type (Etype (Prefix (Name)))
3556 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
3557 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3558 N_Package_Specification
28be29ce
ES
3559 then
3560 Error_Msg_NE
3561 ("premature usage of incomplete}", Prefix (Name),
3562 Etype (Prefix (Name)));
3563 end if;
3564
996ae0b0
RK
3565 -- We never need an actual subtype for the case of a selection
3566 -- for a indexed component of a non-packed array, since in
3567 -- this case gigi generates all the checks and can find the
3568 -- necessary bounds information.
3569
3570 -- We also do not need an actual subtype for the case of
3571 -- a first, last, length, or range attribute applied to a
3572 -- non-packed array, since gigi can again get the bounds in
3573 -- these cases (gigi cannot handle the packed case, since it
3574 -- has the bounds of the packed array type, not the original
3575 -- bounds of the type). However, if the prefix is itself a
3576 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3577 -- as a dynamic-sized temporary, so we do generate an actual
3578 -- subtype for this case.
3579
3580 Parent_N := Parent (N);
3581
3582 if not Is_Packed (Etype (Comp))
3583 and then
3584 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 3585 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
3586 or else
3587 (Nkind (Parent_N) = N_Attribute_Reference
3588 and then (Attribute_Name (Parent_N) = Name_First
ffe9aba8 3589 or else
996ae0b0 3590 Attribute_Name (Parent_N) = Name_Last
ffe9aba8 3591 or else
996ae0b0 3592 Attribute_Name (Parent_N) = Name_Length
ffe9aba8 3593 or else
996ae0b0
RK
3594 Attribute_Name (Parent_N) = Name_Range)))
3595 then
3596 Set_Etype (N, Etype (Comp));
3597
98123480
ES
3598 -- If full analysis is not enabled, we do not generate an
3599 -- actual subtype, because in the absence of expansion
3600 -- reference to a formal of a protected type, for example,
3601 -- will not be properly transformed, and will lead to
3602 -- out-of-scope references in gigi.
3603
3604 -- In all other cases, we currently build an actual subtype.
3605 -- It seems likely that many of these cases can be avoided,
3606 -- but right now, the front end makes direct references to the
fbf5a39b 3607 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 3608 -- not make an actual subtype, we end up getting a direct
98123480 3609 -- reference to a discriminant, which will not do.
996ae0b0 3610
98123480 3611 elsif Full_Analysis then
996ae0b0
RK
3612 Act_Decl :=
3613 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3614 Insert_Action (N, Act_Decl);
3615
3616 if No (Act_Decl) then
3617 Set_Etype (N, Etype (Comp));
3618
3619 else
3620 -- Component type depends on discriminants. Enter the
3621 -- main attributes of the subtype.
3622
3623 declare
fbf5a39b
AC
3624 Subt : constant Entity_Id :=
3625 Defining_Identifier (Act_Decl);
996ae0b0
RK
3626
3627 begin
3628 Set_Etype (Subt, Base_Type (Etype (Comp)));
3629 Set_Ekind (Subt, Ekind (Etype (Comp)));
3630 Set_Etype (N, Subt);
3631 end;
3632 end if;
98123480
ES
3633
3634 -- If Full_Analysis not enabled, just set the Etype
3635
3636 else
3637 Set_Etype (N, Etype (Comp));
996ae0b0
RK
3638 end if;
3639
3640 return;
3641 end if;
3642
aab883ec 3643 -- If the prefix is a private extension, check only the visible
9c510803 3644 -- components of the partial view. This must include the tag,
f3d57416 3645 -- which can appear in expanded code in a tag check.
aab883ec 3646
9c510803
ES
3647 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3648 and then Chars (Selector_Name (N)) /= Name_uTag
3649 then
401093c1 3650 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
3651 end if;
3652
996ae0b0
RK
3653 Next_Entity (Comp);
3654 end loop;
3655
d469eabe
HK
3656 -- Ada 2005 (AI-252): The selected component can be interpreted as
3657 -- a prefixed view of a subprogram. Depending on the context, this is
3658 -- either a name that can appear in a renaming declaration, or part
3659 -- of an enclosing call given in prefix form.
3660
3661 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3662 -- selected component should resolve to a name.
35ae2ed8
AC
3663
3664 if Ada_Version >= Ada_05
3665 and then Is_Tagged_Type (Prefix_Type)
d469eabe 3666 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 3667 then
d469eabe
HK
3668 if Nkind (Parent (N)) = N_Generic_Association
3669 or else Nkind (Parent (N)) = N_Requeue_Statement
3670 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3671 then
3672 if Find_Primitive_Operation (N) then
3673 return;
3674 end if;
3675
3676 elsif Try_Object_Operation (N) then
3677 return;
3678 end if;
4c46b835 3679
98123480
ES
3680 -- If the transformation fails, it will be necessary to redo the
3681 -- analysis with all errors enabled, to indicate candidate
3682 -- interpretations and reasons for each failure ???
4c46b835 3683
35ae2ed8
AC
3684 end if;
3685
996ae0b0 3686 elsif Is_Private_Type (Prefix_Type) then
d469eabe 3687
98123480
ES
3688 -- Allow access only to discriminants of the type. If the type has
3689 -- no full view, gigi uses the parent type for the components, so we
3690 -- do the same here.
996ae0b0
RK
3691
3692 if No (Full_View (Prefix_Type)) then
401093c1
ES
3693 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3694 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
3695 end if;
3696
3697 while Present (Comp) loop
996ae0b0
RK
3698 if Chars (Comp) = Chars (Sel) then
3699 if Ekind (Comp) = E_Discriminant then
3700 Set_Entity_With_Style_Check (Sel, Comp);
3701 Generate_Reference (Comp, Sel);
3702
3703 Set_Etype (Sel, Etype (Comp));
3704 Set_Etype (N, Etype (Comp));
3705
3706 if Is_Generic_Type (Prefix_Type)
d469eabe 3707 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
3708 then
3709 Set_Original_Discriminant (Sel, Comp);
3710 end if;
3711
f3d57416 3712 -- Before declaring an error, check whether this is tagged
aab883ec
ES
3713 -- private type and a call to a primitive operation.
3714
3715 elsif Ada_Version >= Ada_05
3716 and then Is_Tagged_Type (Prefix_Type)
3717 and then Try_Object_Operation (N)
3718 then
3719 return;
3720
996ae0b0 3721 else
2383acbd
AC
3722 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3723 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
3724 Set_Entity (Sel, Any_Id);
3725 Set_Etype (N, Any_Type);
3726 end if;
3727
3728 return;
3729 end if;
3730
3731 Next_Entity (Comp);
3732 end loop;
3733
3734 elsif Is_Concurrent_Type (Prefix_Type) then
3735
d469eabe
HK
3736 -- Find visible operation with given name. For a protected type,
3737 -- the possible candidates are discriminants, entries or protected
3738 -- procedures. For a task type, the set can only include entries or
3739 -- discriminants if the task type is not an enclosing scope. If it
3740 -- is an enclosing scope (e.g. in an inner task) then all entities
3741 -- are visible, but the prefix must denote the enclosing scope, i.e.
3742 -- can only be a direct name or an expanded name.
996ae0b0 3743
d469eabe 3744 Set_Etype (Sel, Any_Type);
996ae0b0
RK
3745 In_Scope := In_Open_Scopes (Prefix_Type);
3746
3747 while Present (Comp) loop
3748 if Chars (Comp) = Chars (Sel) then
3749 if Is_Overloadable (Comp) then
3750 Add_One_Interp (Sel, Comp, Etype (Comp));
3751
d469eabe
HK
3752 -- If the prefix is tagged, the correct interpretation may
3753 -- lie in the primitive or class-wide operations of the
3754 -- type. Perform a simple conformance check to determine
3755 -- whether Try_Object_Operation should be invoked even if
3756 -- a visible entity is found.
3757
3758 if Is_Tagged_Type (Prefix_Type)
3759 and then
3760 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
3761 N_Function_Call,
3762 N_Indexed_Component)
d469eabe
HK
3763 and then Has_Mode_Conformant_Spec (Comp)
3764 then
3765 Has_Candidate := True;
3766 end if;
3767
2383acbd
AC
3768 -- Note: a selected component may not denote a component of a
3769 -- protected type (4.1.3(7)).
3770
bce79204 3771 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
3772 or else (In_Scope
3773 and then not Is_Protected_Type (Prefix_Type)
3774 and then Is_Entity_Name (Name))
996ae0b0
RK
3775 then
3776 Set_Entity_With_Style_Check (Sel, Comp);
3777 Generate_Reference (Comp, Sel);
3778
3779 else
3780 goto Next_Comp;
3781 end if;
3782
3783 Set_Etype (Sel, Etype (Comp));
3784 Set_Etype (N, Etype (Comp));
3785
3786 if Ekind (Comp) = E_Discriminant then
3787 Set_Original_Discriminant (Sel, Comp);
3788 end if;
3789
09494c32
AC
3790 -- For access type case, introduce explicit dereference for
3791 -- more uniform treatment of entry calls.
996ae0b0
RK
3792
3793 if Is_Access_Type (Etype (Name)) then
3794 Insert_Explicit_Dereference (Name);
fbf5a39b
AC
3795 Error_Msg_NW
3796 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3797 end if;
3798 end if;
3799
3800 <<Next_Comp>>
3801 Next_Entity (Comp);
3802 exit when not In_Scope
9bc856dd
AC
3803 and then
3804 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
3805 end loop;
3806
d469eabe
HK
3807 -- If there is no visible entity with the given name or none of the
3808 -- visible entities are plausible interpretations, check whether
3809 -- there is some other primitive operation with that name.
aab883ec 3810
0a36105d 3811 if Ada_Version >= Ada_05
aab883ec 3812 and then Is_Tagged_Type (Prefix_Type)
aab883ec 3813 then
d469eabe
HK
3814 if (Etype (N) = Any_Type
3815 or else not Has_Candidate)
0a36105d
JM
3816 and then Try_Object_Operation (N)
3817 then
3818 return;
3819
3820 -- If the context is not syntactically a procedure call, it
3821 -- may be a call to a primitive function declared outside of
3822 -- the synchronized type.
3823
3824 -- If the context is a procedure call, there might still be
3825 -- an overloading between an entry and a primitive procedure
3826 -- declared outside of the synchronized type, called in prefix
3827 -- notation. This is harder to disambiguate because in one case
3828 -- the controlling formal is implicit ???
3829
3830 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 3831 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
3832 and then Try_Object_Operation (N)
3833 then
3834 return;
3835 end if;
aab883ec
ES
3836 end if;
3837
2383acbd
AC
3838 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
3839 -- Case of a prefix of a protected type: selector might denote
3840 -- an invisible private component.
3841
3842 Comp := First_Private_Entity (Base_Type (Prefix_Type));
3843 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
3844 Next_Entity (Comp);
3845 end loop;
3846
3847 if Present (Comp) then
3848 if Is_Single_Concurrent_Object then
3849 Error_Msg_Node_2 := Entity (Name);
3850 Error_Msg_NE ("invisible selector& for &", N, Sel);
3851
3852 else
3853 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3854 Error_Msg_NE ("invisible selector& for }", N, Sel);
3855 end if;
3856 return;
3857 end if;
3858 end if;
3859
996ae0b0
RK
3860 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3861
3862 else
3863 -- Invalid prefix
3864
3865 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3866 end if;
3867
4c46b835 3868 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
3869
3870 if Etype (N) = Any_Type then
3871
2383acbd 3872 if Is_Single_Concurrent_Object then
996ae0b0
RK
3873 Error_Msg_Node_2 := Entity (Name);
3874 Error_Msg_NE ("no selector& for&", N, Sel);
3875
401093c1 3876 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 3877
de76a39c
GB
3878 elsif Is_Generic_Type (Prefix_Type)
3879 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 3880 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
3881 and then Is_Record_Type (Etype (Prefix_Type))
3882 then
98123480 3883 -- If this is a derived formal type, the parent may have
de76a39c
GB
3884 -- different visibility at this point. Try for an inherited
3885 -- component before reporting an error.
3886
3887 Set_Etype (Prefix (N), Etype (Prefix_Type));
3888 Analyze_Selected_Component (N);
3889 return;
3890
fbf5a39b
AC
3891 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3892 and then Is_Generic_Actual_Type (Prefix_Type)
3893 and then Present (Full_View (Prefix_Type))
3894 then
4c46b835
AC
3895 -- Similarly, if this the actual for a formal derived type, the
3896 -- component inherited from the generic parent may not be visible
3897 -- in the actual, but the selected component is legal.
fbf5a39b
AC
3898
3899 declare
3900 Comp : Entity_Id;
4c46b835 3901
fbf5a39b
AC
3902 begin
3903 Comp :=
3904 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
fbf5a39b
AC
3905 while Present (Comp) loop
3906 if Chars (Comp) = Chars (Sel) then
3907 Set_Entity_With_Style_Check (Sel, Comp);
3908 Set_Etype (Sel, Etype (Comp));
3909 Set_Etype (N, Etype (Comp));
69e6a03e 3910 return;
fbf5a39b
AC
3911 end if;
3912
3913 Next_Component (Comp);
3914 end loop;
3915
3916 pragma Assert (Etype (N) /= Any_Type);
3917 end;
3918
996ae0b0
RK
3919 else
3920 if Ekind (Prefix_Type) = E_Record_Subtype then
3921
3922 -- Check whether this is a component of the base type
3923 -- which is absent from a statically constrained subtype.
3924 -- This will raise constraint error at run-time, but is
3925 -- not a compile-time error. When the selector is illegal
3926 -- for base type as well fall through and generate a
3927 -- compilation error anyway.
3928
3929 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 3930 while Present (Comp) loop
996ae0b0
RK
3931 if Chars (Comp) = Chars (Sel)
3932 and then Is_Visible_Component (Comp)
3933 then
3934 Set_Entity_With_Style_Check (Sel, Comp);
3935 Generate_Reference (Comp, Sel);
3936 Set_Etype (Sel, Etype (Comp));
3937 Set_Etype (N, Etype (Comp));
3938
3939 -- Emit appropriate message. Gigi will replace the
3940 -- node subsequently with the appropriate Raise.
3941
3942 Apply_Compile_Time_Constraint_Error
3943 (N, "component not present in }?",
07fc65c4 3944 CE_Discriminant_Check_Failed,
996ae0b0
RK
3945 Ent => Prefix_Type, Rep => False);
3946 Set_Raises_Constraint_Error (N);
3947 return;
3948 end if;
3949
3950 Next_Component (Comp);
3951 end loop;
3952
3953 end if;
3954
3955 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3956 Error_Msg_NE ("no selector& for}", N, Sel);
3957
401093c1 3958 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
3959 end if;
3960
3961 Set_Entity (Sel, Any_Id);
3962 Set_Etype (Sel, Any_Type);
3963 end if;
3964 end Analyze_Selected_Component;
3965
3966 ---------------------------
3967 -- Analyze_Short_Circuit --
3968 ---------------------------
3969
3970 procedure Analyze_Short_Circuit (N : Node_Id) is
3971 L : constant Node_Id := Left_Opnd (N);
3972 R : constant Node_Id := Right_Opnd (N);
3973 Ind : Interp_Index;
3974 It : Interp;
3975
3976 begin
3977 Analyze_Expression (L);
3978 Analyze_Expression (R);
3979 Set_Etype (N, Any_Type);
3980
3981 if not Is_Overloaded (L) then
996ae0b0
RK
3982 if Root_Type (Etype (L)) = Standard_Boolean
3983 and then Has_Compatible_Type (R, Etype (L))
3984 then
3985 Add_One_Interp (N, Etype (L), Etype (L));
3986 end if;
3987
3988 else
3989 Get_First_Interp (L, Ind, It);
996ae0b0
RK
3990 while Present (It.Typ) loop
3991 if Root_Type (It.Typ) = Standard_Boolean
3992 and then Has_Compatible_Type (R, It.Typ)
3993 then
3994 Add_One_Interp (N, It.Typ, It.Typ);
3995 end if;
3996
3997 Get_Next_Interp (Ind, It);
3998 end loop;
3999 end if;
4000
d469eabe
HK
4001 -- Here we have failed to find an interpretation. Clearly we know that
4002 -- it is not the case that both operands can have an interpretation of
4003 -- Boolean, but this is by far the most likely intended interpretation.
4004 -- So we simply resolve both operands as Booleans, and at least one of
4005 -- these resolutions will generate an error message, and we do not need
4006 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4007
4008 if Etype (N) = Any_Type then
4009 Resolve (L, Standard_Boolean);
4010 Resolve (R, Standard_Boolean);
4011 Set_Etype (N, Standard_Boolean);
4012 end if;
4013 end Analyze_Short_Circuit;
4014
4015 -------------------
4016 -- Analyze_Slice --
4017 -------------------
4018
4019 procedure Analyze_Slice (N : Node_Id) is
4020 P : constant Node_Id := Prefix (N);
4021 D : constant Node_Id := Discrete_Range (N);
4022 Array_Type : Entity_Id;
4023
4024 procedure Analyze_Overloaded_Slice;
4025 -- If the prefix is overloaded, select those interpretations that
4026 -- yield a one-dimensional array type.
4027
4c46b835
AC
4028 ------------------------------
4029 -- Analyze_Overloaded_Slice --
4030 ------------------------------
4031
996ae0b0
RK
4032 procedure Analyze_Overloaded_Slice is
4033 I : Interp_Index;
4034 It : Interp;
4035 Typ : Entity_Id;
4036
4037 begin
4038 Set_Etype (N, Any_Type);
996ae0b0 4039
4c46b835 4040 Get_First_Interp (P, I, It);
996ae0b0
RK
4041 while Present (It.Nam) loop
4042 Typ := It.Typ;
4043
4044 if Is_Access_Type (Typ) then
4045 Typ := Designated_Type (Typ);
fbf5a39b 4046 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4047 end if;
4048
4049 if Is_Array_Type (Typ)
4050 and then Number_Dimensions (Typ) = 1
4051 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4052 then
4053 Add_One_Interp (N, Typ, Typ);
4054 end if;
4055
4056 Get_Next_Interp (I, It);
4057 end loop;
4058
4059 if Etype (N) = Any_Type then
4060 Error_Msg_N ("expect array type in prefix of slice", N);
4061 end if;
4062 end Analyze_Overloaded_Slice;
4063
4064 -- Start of processing for Analyze_Slice
4065
4066 begin
523456db 4067 Analyze (P);
996ae0b0
RK
4068 Analyze (D);
4069
4070 if Is_Overloaded (P) then
4071 Analyze_Overloaded_Slice;
4072
4073 else
4074 Array_Type := Etype (P);
4075 Set_Etype (N, Any_Type);
4076
4077 if Is_Access_Type (Array_Type) then
4078 Array_Type := Designated_Type (Array_Type);
fbf5a39b 4079 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4080 end if;
4081
4082 if not Is_Array_Type (Array_Type) then
4083 Wrong_Type (P, Any_Array);
4084
4085 elsif Number_Dimensions (Array_Type) > 1 then
4086 Error_Msg_N
4087 ("type is not one-dimensional array in slice prefix", N);
4088
4089 elsif not
4090 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4091 then
4092 Wrong_Type (D, Etype (First_Index (Array_Type)));
4093
4094 else
4095 Set_Etype (N, Array_Type);
4096 end if;
4097 end if;
4098 end Analyze_Slice;
4099
4100 -----------------------------
4101 -- Analyze_Type_Conversion --
4102 -----------------------------
4103
4104 procedure Analyze_Type_Conversion (N : Node_Id) is
4105 Expr : constant Node_Id := Expression (N);
4106 T : Entity_Id;
4107
4108 begin
4109 -- If Conversion_OK is set, then the Etype is already set, and the
4110 -- only processing required is to analyze the expression. This is
4111 -- used to construct certain "illegal" conversions which are not
4112 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4113 -- Sinfo for further details.
4114
4115 if Conversion_OK (N) then
4116 Analyze (Expr);
4117 return;
4118 end if;
4119
4120 -- Otherwise full type analysis is required, as well as some semantic
4121 -- checks to make sure the argument of the conversion is appropriate.
4122
4123 Find_Type (Subtype_Mark (N));
4124 T := Entity (Subtype_Mark (N));
4125 Set_Etype (N, T);
4126 Check_Fully_Declared (T, N);
4127 Analyze_Expression (Expr);
4128 Validate_Remote_Type_Type_Conversion (N);
4129
4130 -- Only remaining step is validity checks on the argument. These
4131 -- are skipped if the conversion does not come from the source.
4132
4133 if not Comes_From_Source (N) then
4134 return;
4135
b67a385c
ES
4136 -- If there was an error in a generic unit, no need to replicate the
4137 -- error message. Conversely, constant-folding in the generic may
4138 -- transform the argument of a conversion into a string literal, which
4139 -- is legal. Therefore the following tests are not performed in an
4140 -- instance.
4141
4142 elsif In_Instance then
4143 return;
4144
996ae0b0
RK
4145 elsif Nkind (Expr) = N_Null then
4146 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4147 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4148 Set_Etype (N, Any_Type);
4149
4150 elsif Nkind (Expr) = N_Aggregate then
4151 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4152 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4153
4154 elsif Nkind (Expr) = N_Allocator then
4155 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4156 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4157
4158 elsif Nkind (Expr) = N_String_Literal then
4159 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 4160 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4161
4162 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 4163 if Ada_Version = Ada_83 then
996ae0b0
RK
4164 Resolve (Expr, T);
4165 else
4166 Error_Msg_N ("argument of conversion cannot be character literal",
4167 N);
ed2233dc 4168 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4169 end if;
4170
4171 elsif Nkind (Expr) = N_Attribute_Reference
4172 and then
4173 (Attribute_Name (Expr) = Name_Access or else
4174 Attribute_Name (Expr) = Name_Unchecked_Access or else
4175 Attribute_Name (Expr) = Name_Unrestricted_Access)
4176 then
4177 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 4178 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 4179 end if;
996ae0b0
RK
4180 end Analyze_Type_Conversion;
4181
4182 ----------------------
4183 -- Analyze_Unary_Op --
4184 ----------------------
4185
4186 procedure Analyze_Unary_Op (N : Node_Id) is
4187 R : constant Node_Id := Right_Opnd (N);
4188 Op_Id : Entity_Id := Entity (N);
4189
4190 begin
4191 Set_Etype (N, Any_Type);
4192 Candidate_Type := Empty;
4193
4194 Analyze_Expression (R);
4195
4196 if Present (Op_Id) then
4197 if Ekind (Op_Id) = E_Operator then
4198 Find_Unary_Types (R, Op_Id, N);
4199 else
4200 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4201 end if;
4202
4203 else
4204 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 4205 while Present (Op_Id) loop
996ae0b0
RK
4206 if Ekind (Op_Id) = E_Operator then
4207 if No (Next_Entity (First_Entity (Op_Id))) then
4208 Find_Unary_Types (R, Op_Id, N);
4209 end if;
4210
4211 elsif Is_Overloadable (Op_Id) then
4212 Analyze_User_Defined_Unary_Op (N, Op_Id);
4213 end if;
4214
4215 Op_Id := Homonym (Op_Id);
4216 end loop;
4217 end if;
4218
4219 Operator_Check (N);
4220 end Analyze_Unary_Op;
4221
4222 ----------------------------------
4223 -- Analyze_Unchecked_Expression --
4224 ----------------------------------
4225
4226 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4227 begin
4228 Analyze (Expression (N), Suppress => All_Checks);
4229 Set_Etype (N, Etype (Expression (N)));
4230 Save_Interps (Expression (N), N);
4231 end Analyze_Unchecked_Expression;
4232
4233 ---------------------------------------
4234 -- Analyze_Unchecked_Type_Conversion --
4235 ---------------------------------------
4236
4237 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4238 begin
4239 Find_Type (Subtype_Mark (N));
4240 Analyze_Expression (Expression (N));
4241 Set_Etype (N, Entity (Subtype_Mark (N)));
4242 end Analyze_Unchecked_Type_Conversion;
4243
4244 ------------------------------------
4245 -- Analyze_User_Defined_Binary_Op --
4246 ------------------------------------
4247
4248 procedure Analyze_User_Defined_Binary_Op
4249 (N : Node_Id;
4250 Op_Id : Entity_Id)
4251 is
4252 begin
4253 -- Only do analysis if the operator Comes_From_Source, since otherwise
4254 -- the operator was generated by the expander, and all such operators
4255 -- always refer to the operators in package Standard.
4256
4257 if Comes_From_Source (N) then
4258 declare
4259 F1 : constant Entity_Id := First_Formal (Op_Id);
4260 F2 : constant Entity_Id := Next_Formal (F1);
4261
4262 begin
4263 -- Verify that Op_Id is a visible binary function. Note that since
4264 -- we know Op_Id is overloaded, potentially use visible means use
4265 -- visible for sure (RM 9.4(11)).
4266
4267 if Ekind (Op_Id) = E_Function
4268 and then Present (F2)
4269 and then (Is_Immediately_Visible (Op_Id)
4270 or else Is_Potentially_Use_Visible (Op_Id))
4271 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4272 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4273 then
4274 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4275
7340e432
AC
4276 -- If the left operand is overloaded, indicate that the
4277 -- current type is a viable candidate. This is redundant
4278 -- in most cases, but for equality and comparison operators
4279 -- where the context does not impose a type on the operands,
4280 -- setting the proper type is necessary to avoid subsequent
4281 -- ambiguities during resolution, when both user-defined and
4282 -- predefined operators may be candidates.
4283
4284 if Is_Overloaded (Left_Opnd (N)) then
4285 Set_Etype (Left_Opnd (N), Etype (F1));
4286 end if;
4287
996ae0b0
RK
4288 if Debug_Flag_E then
4289 Write_Str ("user defined operator ");
4290 Write_Name (Chars (Op_Id));
4291 Write_Str (" on node ");
4292 Write_Int (Int (N));
4293 Write_Eol;
4294 end if;
4295 end if;
4296 end;
4297 end if;
4298 end Analyze_User_Defined_Binary_Op;
4299
4300 -----------------------------------
4301 -- Analyze_User_Defined_Unary_Op --
4302 -----------------------------------
4303
4304 procedure Analyze_User_Defined_Unary_Op
4305 (N : Node_Id;
4306 Op_Id : Entity_Id)
4307 is
4308 begin
4309 -- Only do analysis if the operator Comes_From_Source, since otherwise
4310 -- the operator was generated by the expander, and all such operators
4311 -- always refer to the operators in package Standard.
4312
4313 if Comes_From_Source (N) then
4314 declare
4315 F : constant Entity_Id := First_Formal (Op_Id);
4316
4317 begin
4318 -- Verify that Op_Id is a visible unary function. Note that since
4319 -- we know Op_Id is overloaded, potentially use visible means use
4320 -- visible for sure (RM 9.4(11)).
4321
4322 if Ekind (Op_Id) = E_Function
4323 and then No (Next_Formal (F))
4324 and then (Is_Immediately_Visible (Op_Id)
4325 or else Is_Potentially_Use_Visible (Op_Id))
4326 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4327 then
4328 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4329 end if;
4330 end;
4331 end if;
4332 end Analyze_User_Defined_Unary_Op;
4333
4334 ---------------------------
4335 -- Check_Arithmetic_Pair --
4336 ---------------------------
4337
4338 procedure Check_Arithmetic_Pair
4339 (T1, T2 : Entity_Id;
4340 Op_Id : Entity_Id;
4341 N : Node_Id)
4342 is
401093c1 4343 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 4344
da709d08
AC
4345 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4346 -- Check whether the fixed-point type Typ has a user-defined operator
4347 -- (multiplication or division) that should hide the corresponding
4348 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4349 -- such operators more visible and therefore useful.
4350
50cff367
GD
4351 -- If the name of the operation is an expanded name with prefix
4352 -- Standard, the predefined universal fixed operator is available,
4353 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4354
996ae0b0
RK
4355 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4356 -- Get specific type (i.e. non-universal type if there is one)
4357
da709d08
AC
4358 ------------------
4359 -- Has_Fixed_Op --
4360 ------------------
4361
4362 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 4363 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
4364 Ent : Entity_Id;
4365 F1 : Entity_Id;
4366 F2 : Entity_Id;
4367
4368 begin
50cff367
GD
4369 -- If the universal_fixed operation is given explicitly the rule
4370 -- concerning primitive operations of the type do not apply.
4371
4372 if Nkind (N) = N_Function_Call
4373 and then Nkind (Name (N)) = N_Expanded_Name
4374 and then Entity (Prefix (Name (N))) = Standard_Standard
4375 then
4376 return False;
4377 end if;
4378
da709d08
AC
4379 -- The operation is treated as primitive if it is declared in the
4380 -- same scope as the type, and therefore on the same entity chain.
4381
4382 Ent := Next_Entity (Typ);
4383 while Present (Ent) loop
4384 if Chars (Ent) = Chars (Op) then
4385 F1 := First_Formal (Ent);
4386 F2 := Next_Formal (F1);
4387
4388 -- The operation counts as primitive if either operand or
401093c1
ES
4389 -- result are of the given base type, and both operands are
4390 -- fixed point types.
da709d08 4391
401093c1 4392 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
4393 and then Is_Fixed_Point_Type (Etype (F2)))
4394
4395 or else
401093c1 4396 (Base_Type (Etype (F2)) = Bas
da709d08
AC
4397 and then Is_Fixed_Point_Type (Etype (F1)))
4398
4399 or else
401093c1 4400 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
4401 and then Is_Fixed_Point_Type (Etype (F1))
4402 and then Is_Fixed_Point_Type (Etype (F2)))
4403 then
4404 return True;
4405 end if;
4406 end if;
4407
4408 Next_Entity (Ent);
4409 end loop;
4410
4411 return False;
4412 end Has_Fixed_Op;
4413
4c46b835
AC
4414 -------------------
4415 -- Specific_Type --
4416 -------------------
4417
996ae0b0
RK
4418 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4419 begin
4420 if T1 = Universal_Integer or else T1 = Universal_Real then
4421 return Base_Type (T2);
4422 else
4423 return Base_Type (T1);
4424 end if;
4425 end Specific_Type;
4426
4427 -- Start of processing for Check_Arithmetic_Pair
4428
4429 begin
4430 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4431
4432 if Is_Numeric_Type (T1)
4433 and then Is_Numeric_Type (T2)
b4592168
GD
4434 and then (Covers (T1 => T1, T2 => T2)
4435 or else
4436 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4437 then
4438 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4439 end if;
4440
4441 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4442
4443 if Is_Fixed_Point_Type (T1)
4444 and then (Is_Fixed_Point_Type (T2)
4445 or else T2 = Universal_Real)
4446 then
4447 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4448 -- and no further processing is required (this is the case of an
4449 -- operator constructed by Exp_Fixd for a fixed point operation)
4450 -- Otherwise add one interpretation with universal fixed result
4451 -- If the operator is given in functional notation, it comes
4452 -- from source and Fixed_As_Integer cannot apply.
4453
da709d08
AC
4454 if (Nkind (N) not in N_Op
4455 or else not Treat_Fixed_As_Integer (N))
4456 and then
401093c1 4457 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4458 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 4459 then
996ae0b0
RK
4460 Add_One_Interp (N, Op_Id, Universal_Fixed);
4461 end if;
4462
4463 elsif Is_Fixed_Point_Type (T2)
4464 and then (Nkind (N) not in N_Op
4465 or else not Treat_Fixed_As_Integer (N))
4466 and then T1 = Universal_Real
da709d08 4467 and then
401093c1 4468 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4469 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
4470 then
4471 Add_One_Interp (N, Op_Id, Universal_Fixed);
4472
4473 elsif Is_Numeric_Type (T1)
4474 and then Is_Numeric_Type (T2)
b4592168
GD
4475 and then (Covers (T1 => T1, T2 => T2)
4476 or else
4477 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4478 then
4479 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4480
4481 elsif Is_Fixed_Point_Type (T1)
4482 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4483 or else T2 = Universal_Integer)
4484 then
4485 Add_One_Interp (N, Op_Id, T1);
4486
4487 elsif T2 = Universal_Real
4488 and then Base_Type (T1) = Base_Type (Standard_Integer)
4489 and then Op_Name = Name_Op_Multiply
4490 then
4491 Add_One_Interp (N, Op_Id, Any_Fixed);
4492
4493 elsif T1 = Universal_Real
4494 and then Base_Type (T2) = Base_Type (Standard_Integer)
4495 then
4496 Add_One_Interp (N, Op_Id, Any_Fixed);
4497
4498 elsif Is_Fixed_Point_Type (T2)
4499 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4500 or else T1 = Universal_Integer)
4501 and then Op_Name = Name_Op_Multiply
4502 then
4503 Add_One_Interp (N, Op_Id, T2);
4504
4505 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4506 Add_One_Interp (N, Op_Id, T1);
4507
4508 elsif T2 = Universal_Real
4509 and then T1 = Universal_Integer
4510 and then Op_Name = Name_Op_Multiply
4511 then
4512 Add_One_Interp (N, Op_Id, T2);
4513 end if;
4514
4515 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4516
4517 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4518 -- set does not require any special processing, since the Etype is
4519 -- already set (case of operation constructed by Exp_Fixed).
4520
4521 if Is_Integer_Type (T1)
b4592168
GD
4522 and then (Covers (T1 => T1, T2 => T2)
4523 or else
4524 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4525 then
4526 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4527 end if;
4528
4529 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
4530 if Is_Numeric_Type (T1)
4531 and then not Is_Fixed_Point_Type (T1)
4532 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4533 or else T2 = Universal_Integer)
4534 then
4535 Add_One_Interp (N, Op_Id, Base_Type (T1));
4536 end if;
4537
4538 else pragma Assert (Nkind (N) in N_Op_Shift);
4539
4540 -- If not one of the predefined operators, the node may be one
4541 -- of the intrinsic functions. Its kind is always specific, and
4542 -- we can use it directly, rather than the name of the operation.
4543
4544 if Is_Integer_Type (T1)
4545 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4546 or else T2 = Universal_Integer)
4547 then
4548 Add_One_Interp (N, Op_Id, Base_Type (T1));
4549 end if;
4550 end if;
4551 end Check_Arithmetic_Pair;
4552
4553 -------------------------------
4554 -- Check_Misspelled_Selector --
4555 -------------------------------
4556
4557 procedure Check_Misspelled_Selector
4558 (Prefix : Entity_Id;
4559 Sel : Node_Id)
4560 is
4561 Max_Suggestions : constant := 2;
4562 Nr_Of_Suggestions : Natural := 0;
4563
4564 Suggestion_1 : Entity_Id := Empty;
4565 Suggestion_2 : Entity_Id := Empty;
4566
4567 Comp : Entity_Id;
4568
4569 begin
4570 -- All the components of the prefix of selector Sel are matched
4571 -- against Sel and a count is maintained of possible misspellings.
4572 -- When at the end of the analysis there are one or two (not more!)
4573 -- possible misspellings, these misspellings will be suggested as
4574 -- possible correction.
4575
4c46b835
AC
4576 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4577
996ae0b0 4578 -- Concurrent types should be handled as well ???
4c46b835 4579
996ae0b0
RK
4580 return;
4581 end if;
4582
d469eabe
HK
4583 Comp := First_Entity (Prefix);
4584 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4585 if Is_Visible_Component (Comp) then
4586 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4587 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4588
4589 case Nr_Of_Suggestions is
4590 when 1 => Suggestion_1 := Comp;
4591 when 2 => Suggestion_2 := Comp;
4592 when others => exit;
4593 end case;
996ae0b0 4594 end if;
d469eabe 4595 end if;
996ae0b0 4596
d469eabe
HK
4597 Comp := Next_Entity (Comp);
4598 end loop;
996ae0b0 4599
d469eabe 4600 -- Report at most two suggestions
996ae0b0 4601
d469eabe 4602 if Nr_Of_Suggestions = 1 then
4e7a4f6e 4603 Error_Msg_NE -- CODEFIX
d469eabe 4604 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 4605
d469eabe
HK
4606 elsif Nr_Of_Suggestions = 2 then
4607 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 4608 Error_Msg_NE -- CODEFIX
d469eabe
HK
4609 ("\possible misspelling of& or&", Sel, Suggestion_1);
4610 end if;
996ae0b0
RK
4611 end Check_Misspelled_Selector;
4612
4613 ----------------------
4614 -- Defined_In_Scope --
4615 ----------------------
4616
4617 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4618 is
4619 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
4620 begin
4621 return S1 = S
4622 or else (S1 = System_Aux_Id and then S = Scope (S1));
4623 end Defined_In_Scope;
4624
4625 -------------------
4626 -- Diagnose_Call --
4627 -------------------
4628
4629 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
4630 Actual : Node_Id;
4631 X : Interp_Index;
4632 It : Interp;
fbf5a39b
AC
4633 Err_Mode : Boolean;
4634 New_Nam : Node_Id;
4635 Void_Interp_Seen : Boolean := False;
996ae0b0 4636
24657705
HK
4637 Success : Boolean;
4638 pragma Warnings (Off, Boolean);
4639
996ae0b0 4640 begin
0ab80019 4641 if Ada_Version >= Ada_05 then
996ae0b0 4642 Actual := First_Actual (N);
996ae0b0 4643 while Present (Actual) loop
0ab80019
AC
4644
4645 -- Ada 2005 (AI-50217): Post an error in case of premature
4646 -- usage of an entity from the limited view.
19f0526a 4647
996ae0b0
RK
4648 if not Analyzed (Etype (Actual))
4649 and then From_With_Type (Etype (Actual))
4650 then
4651 Error_Msg_Qual_Level := 1;
ed2233dc 4652 Error_Msg_NE
996ae0b0
RK
4653 ("missing with_clause for scope of imported type&",
4654 Actual, Etype (Actual));
4655 Error_Msg_Qual_Level := 0;
4656 end if;
4657
4658 Next_Actual (Actual);
4659 end loop;
4660 end if;
4661
fbf5a39b
AC
4662 -- Analyze each candidate call again, with full error reporting
4663 -- for each.
4664
4665 Error_Msg_N
4666 ("no candidate interpretations match the actuals:!", Nam);
4667 Err_Mode := All_Errors_Mode;
4668 All_Errors_Mode := True;
4669
4670 -- If this is a call to an operation of a concurrent type,
4671 -- the failed interpretations have been removed from the
4672 -- name. Recover them to provide full diagnostics.
4673
4674 if Nkind (Parent (Nam)) = N_Selected_Component then
4675 Set_Entity (Nam, Empty);
4676 New_Nam := New_Copy_Tree (Parent (Nam));
4677 Set_Is_Overloaded (New_Nam, False);
4678 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4679 Set_Parent (New_Nam, Parent (Parent (Nam)));
4680 Analyze_Selected_Component (New_Nam);
4681 Get_First_Interp (Selector_Name (New_Nam), X, It);
4682 else
996ae0b0 4683 Get_First_Interp (Nam, X, It);
fbf5a39b 4684 end if;
996ae0b0 4685
fbf5a39b
AC
4686 while Present (It.Nam) loop
4687 if Etype (It.Nam) = Standard_Void_Type then
4688 Void_Interp_Seen := True;
996ae0b0 4689 end if;
fbf5a39b
AC
4690
4691 Analyze_One_Call (N, It.Nam, True, Success);
4692 Get_Next_Interp (X, It);
4693 end loop;
996ae0b0
RK
4694
4695 if Nkind (N) = N_Function_Call then
4696 Get_First_Interp (Nam, X, It);
996ae0b0 4697 while Present (It.Nam) loop
bce79204 4698 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
4699 return;
4700 else
4701 Get_Next_Interp (X, It);
4702 end if;
4703 end loop;
4704
4705 -- If all interpretations are procedures, this deserves a
4706 -- more precise message. Ditto if this appears as the prefix
4707 -- of a selected component, which may be a lexical error.
4708
4c46b835
AC
4709 Error_Msg_N
4710 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
4711
4712 if Nkind (Parent (N)) = N_Selected_Component
4713 and then N = Prefix (Parent (N))
4714 then
4e7a4f6e
AC
4715 Error_Msg_N -- CODEFIX
4716 ("\period should probably be semicolon", Parent (N));
996ae0b0 4717 end if;
fbf5a39b
AC
4718
4719 elsif Nkind (N) = N_Procedure_Call_Statement
4720 and then not Void_Interp_Seen
4721 then
4722 Error_Msg_N (
4723 "\function name found in procedure call", Nam);
996ae0b0 4724 end if;
fbf5a39b
AC
4725
4726 All_Errors_Mode := Err_Mode;
996ae0b0
RK
4727 end Diagnose_Call;
4728
4729 ---------------------------
4730 -- Find_Arithmetic_Types --
4731 ---------------------------
4732
4733 procedure Find_Arithmetic_Types
4734 (L, R : Node_Id;
4735 Op_Id : Entity_Id;
4736 N : Node_Id)
4737 is
4c46b835
AC
4738 Index1 : Interp_Index;
4739 Index2 : Interp_Index;
4740 It1 : Interp;
4741 It2 : Interp;
996ae0b0
RK
4742
4743 procedure Check_Right_Argument (T : Entity_Id);
4744 -- Check right operand of operator
4745
4c46b835
AC
4746 --------------------------
4747 -- Check_Right_Argument --
4748 --------------------------
4749
996ae0b0
RK
4750 procedure Check_Right_Argument (T : Entity_Id) is
4751 begin
4752 if not Is_Overloaded (R) then
4753 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4754 else
4755 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
4756 while Present (It2.Typ) loop
4757 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4758 Get_Next_Interp (Index2, It2);
4759 end loop;
4760 end if;
4761 end Check_Right_Argument;
4762
d8221f45 4763 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
4764
4765 begin
4766 if not Is_Overloaded (L) then
4767 Check_Right_Argument (Etype (L));
4768
4769 else
4770 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
4771 while Present (It1.Typ) loop
4772 Check_Right_Argument (It1.Typ);
4773 Get_Next_Interp (Index1, It1);
4774 end loop;
4775 end if;
4776
4777 end Find_Arithmetic_Types;
4778
4779 ------------------------
4780 -- Find_Boolean_Types --
4781 ------------------------
4782
4783 procedure Find_Boolean_Types
4784 (L, R : Node_Id;
4785 Op_Id : Entity_Id;
4786 N : Node_Id)
4787 is
4788 Index : Interp_Index;
4789 It : Interp;
4790
4791 procedure Check_Numeric_Argument (T : Entity_Id);
4792 -- Special case for logical operations one of whose operands is an
4793 -- integer literal. If both are literal the result is any modular type.
4794
4c46b835
AC
4795 ----------------------------
4796 -- Check_Numeric_Argument --
4797 ----------------------------
4798
996ae0b0
RK
4799 procedure Check_Numeric_Argument (T : Entity_Id) is
4800 begin
4801 if T = Universal_Integer then
4802 Add_One_Interp (N, Op_Id, Any_Modular);
4803
4804 elsif Is_Modular_Integer_Type (T) then
4805 Add_One_Interp (N, Op_Id, T);
4806 end if;
4807 end Check_Numeric_Argument;
4808
4809 -- Start of processing for Find_Boolean_Types
4810
4811 begin
4812 if not Is_Overloaded (L) then
996ae0b0
RK
4813 if Etype (L) = Universal_Integer
4814 or else Etype (L) = Any_Modular
4815 then
4816 if not Is_Overloaded (R) then
4817 Check_Numeric_Argument (Etype (R));
4818
4819 else
4820 Get_First_Interp (R, Index, It);
996ae0b0
RK
4821 while Present (It.Typ) loop
4822 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
4823 Get_Next_Interp (Index, It);
4824 end loop;
4825 end if;
4826
69e6a03e
ES
4827 -- If operands are aggregates, we must assume that they may be
4828 -- boolean arrays, and leave disambiguation for the second pass.
4829 -- If only one is an aggregate, verify that the other one has an
4830 -- interpretation as a boolean array
4831
4832 elsif Nkind (L) = N_Aggregate then
4833 if Nkind (R) = N_Aggregate then
4834 Add_One_Interp (N, Op_Id, Etype (L));
4835
4836 elsif not Is_Overloaded (R) then
4837 if Valid_Boolean_Arg (Etype (R)) then
4838 Add_One_Interp (N, Op_Id, Etype (R));
4839 end if;
4840
4841 else
4842 Get_First_Interp (R, Index, It);
4843 while Present (It.Typ) loop
4844 if Valid_Boolean_Arg (It.Typ) then
4845 Add_One_Interp (N, Op_Id, It.Typ);
4846 end if;
4847
4848 Get_Next_Interp (Index, It);
4849 end loop;
4850 end if;
4851
996ae0b0
RK
4852 elsif Valid_Boolean_Arg (Etype (L))
4853 and then Has_Compatible_Type (R, Etype (L))
4854 then
4855 Add_One_Interp (N, Op_Id, Etype (L));
4856 end if;
4857
4858 else
4859 Get_First_Interp (L, Index, It);
996ae0b0
RK
4860 while Present (It.Typ) loop
4861 if Valid_Boolean_Arg (It.Typ)
4862 and then Has_Compatible_Type (R, It.Typ)
4863 then
4864 Add_One_Interp (N, Op_Id, It.Typ);
4865 end if;
4866
4867 Get_Next_Interp (Index, It);
4868 end loop;
4869 end if;
4870 end Find_Boolean_Types;
4871
4872 ---------------------------
4873 -- Find_Comparison_Types --
4874 ---------------------------
4875
4876 procedure Find_Comparison_Types
4877 (L, R : Node_Id;
4878 Op_Id : Entity_Id;
4879 N : Node_Id)
4880 is
4881 Index : Interp_Index;
4882 It : Interp;
4883 Found : Boolean := False;
4884 I_F : Interp_Index;
4885 T_F : Entity_Id;
4886 Scop : Entity_Id := Empty;
4887
4888 procedure Try_One_Interp (T1 : Entity_Id);
4889 -- Routine to try one proposed interpretation. Note that the context
4890 -- of the operator plays no role in resolving the arguments, so that
4891 -- if there is more than one interpretation of the operands that is
4892 -- compatible with comparison, the operation is ambiguous.
4893
4c46b835
AC
4894 --------------------
4895 -- Try_One_Interp --
4896 --------------------
4897
996ae0b0
RK
4898 procedure Try_One_Interp (T1 : Entity_Id) is
4899 begin
4900
4901 -- If the operator is an expanded name, then the type of the operand
4902 -- must be defined in the corresponding scope. If the type is
4903 -- universal, the context will impose the correct type.
4904
4905 if Present (Scop)
4906 and then not Defined_In_Scope (T1, Scop)
4907 and then T1 /= Universal_Integer
4908 and then T1 /= Universal_Real
4909 and then T1 /= Any_String
4910 and then T1 /= Any_Composite
4911 then
4912 return;
4913 end if;
4914
4915 if Valid_Comparison_Arg (T1)
4916 and then Has_Compatible_Type (R, T1)
4917 then
4918 if Found
4919 and then Base_Type (T1) /= Base_Type (T_F)
4920 then
4921 It := Disambiguate (L, I_F, Index, Any_Type);
4922
4923 if It = No_Interp then
4924 Ambiguous_Operands (N);
4925 Set_Etype (L, Any_Type);
4926 return;
4927
4928 else
4929 T_F := It.Typ;
4930 end if;
4931
4932 else
4933 Found := True;
4934 T_F := T1;
4935 I_F := Index;
4936 end if;
4937
4938 Set_Etype (L, T_F);
4939 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4940
4941 end if;
4942 end Try_One_Interp;
4943
d8221f45 4944 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
4945
4946 begin
fbf5a39b
AC
4947 -- If left operand is aggregate, the right operand has to
4948 -- provide a usable type for it.
4949
4950 if Nkind (L) = N_Aggregate
4951 and then Nkind (R) /= N_Aggregate
4952 then
b4592168 4953 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
4954 return;
4955 end if;
996ae0b0
RK
4956
4957 if Nkind (N) = N_Function_Call
4958 and then Nkind (Name (N)) = N_Expanded_Name
4959 then
4960 Scop := Entity (Prefix (Name (N)));
4961
4962 -- The prefix may be a package renaming, and the subsequent test
4963 -- requires the original package.
4964
4965 if Ekind (Scop) = E_Package
4966 and then Present (Renamed_Entity (Scop))
4967 then
4968 Scop := Renamed_Entity (Scop);
4969 Set_Entity (Prefix (Name (N)), Scop);
4970 end if;
4971 end if;
4972
4973 if not Is_Overloaded (L) then
4974 Try_One_Interp (Etype (L));
4975
4976 else
4977 Get_First_Interp (L, Index, It);
996ae0b0
RK
4978 while Present (It.Typ) loop
4979 Try_One_Interp (It.Typ);
4980 Get_Next_Interp (Index, It);
4981 end loop;
4982 end if;
4983 end Find_Comparison_Types;
4984
4985 ----------------------------------------
4986 -- Find_Non_Universal_Interpretations --
4987 ----------------------------------------
4988
4989 procedure Find_Non_Universal_Interpretations
4990 (N : Node_Id;
4991 R : Node_Id;
4992 Op_Id : Entity_Id;
4993 T1 : Entity_Id)
4994 is
4995 Index : Interp_Index;
4c46b835 4996 It : Interp;
996ae0b0
RK
4997
4998 begin
4999 if T1 = Universal_Integer
5000 or else T1 = Universal_Real
5001 then
5002 if not Is_Overloaded (R) then
5003 Add_One_Interp
5004 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5005 else
5006 Get_First_Interp (R, Index, It);
996ae0b0
RK
5007 while Present (It.Typ) loop
5008 if Covers (It.Typ, T1) then
5009 Add_One_Interp
5010 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5011 end if;
5012
5013 Get_Next_Interp (Index, It);
5014 end loop;
5015 end if;
5016 else
5017 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5018 end if;
5019 end Find_Non_Universal_Interpretations;
5020
5021 ------------------------------
5022 -- Find_Concatenation_Types --
5023 ------------------------------
5024
5025 procedure Find_Concatenation_Types
5026 (L, R : Node_Id;
5027 Op_Id : Entity_Id;
5028 N : Node_Id)
5029 is
5030 Op_Type : constant Entity_Id := Etype (Op_Id);
5031
5032 begin
5033 if Is_Array_Type (Op_Type)
5034 and then not Is_Limited_Type (Op_Type)
5035
5036 and then (Has_Compatible_Type (L, Op_Type)
5037 or else
5038 Has_Compatible_Type (L, Component_Type (Op_Type)))
5039
5040 and then (Has_Compatible_Type (R, Op_Type)
5041 or else
5042 Has_Compatible_Type (R, Component_Type (Op_Type)))
5043 then
5044 Add_One_Interp (N, Op_Id, Op_Type);
5045 end if;
5046 end Find_Concatenation_Types;
5047
5048 -------------------------
5049 -- Find_Equality_Types --
5050 -------------------------
5051
5052 procedure Find_Equality_Types
5053 (L, R : Node_Id;
5054 Op_Id : Entity_Id;
5055 N : Node_Id)
5056 is
5057 Index : Interp_Index;
5058 It : Interp;
5059 Found : Boolean := False;
5060 I_F : Interp_Index;
5061 T_F : Entity_Id;
5062 Scop : Entity_Id := Empty;
5063
5064 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5065 -- The context of the equality operator plays no role in resolving the
5066 -- arguments, so that if there is more than one interpretation of the
5067 -- operands that is compatible with equality, the construct is ambiguous
5068 -- and an error can be emitted now, after trying to disambiguate, i.e.
5069 -- applying preference rules.
996ae0b0 5070
4c46b835
AC
5071 --------------------
5072 -- Try_One_Interp --
5073 --------------------
5074
996ae0b0 5075 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5076 Bas : constant Entity_Id := Base_Type (T1);
5077
996ae0b0 5078 begin
996ae0b0
RK
5079 -- If the operator is an expanded name, then the type of the operand
5080 -- must be defined in the corresponding scope. If the type is
5081 -- universal, the context will impose the correct type. An anonymous
5082 -- type for a 'Access reference is also universal in this sense, as
5083 -- the actual type is obtained from context.
fe45e59e
ES
5084 -- In Ada 2005, the equality operator for anonymous access types
5085 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5086
fe45e59e
ES
5087 if Present (Scop) then
5088 if Defined_In_Scope (T1, Scop)
5089 or else T1 = Universal_Integer
5090 or else T1 = Universal_Real
5091 or else T1 = Any_Access
5092 or else T1 = Any_String
5093 or else T1 = Any_Composite
5094 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5095 and then not Comes_From_Source (T1))
fe45e59e
ES
5096 then
5097 null;
5098
5099 elsif Ekind (T1) = E_Anonymous_Access_Type
5100 and then Scop = Standard_Standard
5101 then
5102 null;
5103
5104 else
5105 -- The scope does not contain an operator for the type
5106
5107 return;
5108 end if;
a8e65aa5
AC
5109
5110 -- If we have infix notation, the operator must be usable.
5111 -- Within an instance, if the type is already established we
5112 -- know it is correct.
5113 -- In Ada 2005, the equality on anonymous access types is declared
5114 -- in Standard, and is always visible.
5115
5116 elsif In_Open_Scopes (Scope (Bas))
5117 or else Is_Potentially_Use_Visible (Bas)
5118 or else In_Use (Bas)
5119 or else (In_Use (Scope (Bas))
5120 and then not Is_Hidden (Bas))
5121 or else (In_Instance
5122 and then First_Subtype (T1) = First_Subtype (Etype (R)))
5123 or else Ekind (T1) = E_Anonymous_Access_Type
5124 then
5125 null;
5126
5127 else
2794f022 5128 -- Save candidate type for subsquent error message, if any
a8e65aa5
AC
5129
5130 if not Is_Limited_Type (T1) then
5131 Candidate_Type := T1;
5132 end if;
5133
5134 return;
996ae0b0
RK
5135 end if;
5136
0ab80019
AC
5137 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5138 -- Do not allow anonymous access types in equality operators.
6e937c1c 5139
0ab80019 5140 if Ada_Version < Ada_05
6e937c1c
AC
5141 and then Ekind (T1) = E_Anonymous_Access_Type
5142 then
5143 return;
5144 end if;
5145
996ae0b0
RK
5146 if T1 /= Standard_Void_Type
5147 and then not Is_Limited_Type (T1)
5148 and then not Is_Limited_Composite (T1)
996ae0b0
RK
5149 and then Has_Compatible_Type (R, T1)
5150 then
5151 if Found
5152 and then Base_Type (T1) /= Base_Type (T_F)
5153 then
5154 It := Disambiguate (L, I_F, Index, Any_Type);
5155
5156 if It = No_Interp then
5157 Ambiguous_Operands (N);
5158 Set_Etype (L, Any_Type);
5159 return;
5160
5161 else
5162 T_F := It.Typ;
5163 end if;
5164
5165 else
5166 Found := True;
5167 T_F := T1;
5168 I_F := Index;
5169 end if;
5170
5171 if not Analyzed (L) then
5172 Set_Etype (L, T_F);
5173 end if;
5174
5175 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5176
6e73e3ab 5177 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 5178
6e73e3ab 5179 if Etype (N) = Any_Type then
996ae0b0
RK
5180 Found := False;
5181 end if;
fe45e59e
ES
5182
5183 elsif Scop = Standard_Standard
5184 and then Ekind (T1) = E_Anonymous_Access_Type
5185 then
5186 Found := True;
996ae0b0
RK
5187 end if;
5188 end Try_One_Interp;
5189
5190 -- Start of processing for Find_Equality_Types
5191
5192 begin
fbf5a39b
AC
5193 -- If left operand is aggregate, the right operand has to
5194 -- provide a usable type for it.
5195
5196 if Nkind (L) = N_Aggregate
5197 and then Nkind (R) /= N_Aggregate
5198 then
b4592168 5199 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5200 return;
5201 end if;
996ae0b0
RK
5202
5203 if Nkind (N) = N_Function_Call
5204 and then Nkind (Name (N)) = N_Expanded_Name
5205 then
5206 Scop := Entity (Prefix (Name (N)));
5207
5208 -- The prefix may be a package renaming, and the subsequent test
5209 -- requires the original package.
5210
5211 if Ekind (Scop) = E_Package
5212 and then Present (Renamed_Entity (Scop))
5213 then
5214 Scop := Renamed_Entity (Scop);
5215 Set_Entity (Prefix (Name (N)), Scop);
5216 end if;
5217 end if;
5218
5219 if not Is_Overloaded (L) then
5220 Try_One_Interp (Etype (L));
996ae0b0 5221
4c46b835 5222 else
996ae0b0 5223 Get_First_Interp (L, Index, It);
996ae0b0
RK
5224 while Present (It.Typ) loop
5225 Try_One_Interp (It.Typ);
5226 Get_Next_Interp (Index, It);
5227 end loop;
5228 end if;
5229 end Find_Equality_Types;
5230
5231 -------------------------
5232 -- Find_Negation_Types --
5233 -------------------------
5234
5235 procedure Find_Negation_Types
5236 (R : Node_Id;
5237 Op_Id : Entity_Id;
5238 N : Node_Id)
5239 is
5240 Index : Interp_Index;
5241 It : Interp;
5242
5243 begin
5244 if not Is_Overloaded (R) then
996ae0b0
RK
5245 if Etype (R) = Universal_Integer then
5246 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
5247 elsif Valid_Boolean_Arg (Etype (R)) then
5248 Add_One_Interp (N, Op_Id, Etype (R));
5249 end if;
5250
5251 else
5252 Get_First_Interp (R, Index, It);
996ae0b0
RK
5253 while Present (It.Typ) loop
5254 if Valid_Boolean_Arg (It.Typ) then
5255 Add_One_Interp (N, Op_Id, It.Typ);
5256 end if;
5257
5258 Get_Next_Interp (Index, It);
5259 end loop;
5260 end if;
5261 end Find_Negation_Types;
5262
d469eabe
HK
5263 ------------------------------
5264 -- Find_Primitive_Operation --
5265 ------------------------------
5266
5267 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5268 Obj : constant Node_Id := Prefix (N);
5269 Op : constant Node_Id := Selector_Name (N);
5270
5271 Prim : Elmt_Id;
5272 Prims : Elist_Id;
5273 Typ : Entity_Id;
5274
5275 begin
5276 Set_Etype (Op, Any_Type);
5277
5278 if Is_Access_Type (Etype (Obj)) then
5279 Typ := Designated_Type (Etype (Obj));
5280 else
5281 Typ := Etype (Obj);
5282 end if;
5283
5284 if Is_Class_Wide_Type (Typ) then
5285 Typ := Root_Type (Typ);
5286 end if;
5287
5288 Prims := Primitive_Operations (Typ);
5289
5290 Prim := First_Elmt (Prims);
5291 while Present (Prim) loop
5292 if Chars (Node (Prim)) = Chars (Op) then
5293 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5294 Set_Etype (N, Etype (Node (Prim)));
5295 end if;
5296
5297 Next_Elmt (Prim);
5298 end loop;
5299
5300 -- Now look for class-wide operations of the type or any of its
5301 -- ancestors by iterating over the homonyms of the selector.
5302
5303 declare
5304 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5305 Hom : Entity_Id;
5306
5307 begin
5308 Hom := Current_Entity (Op);
5309 while Present (Hom) loop
5310 if (Ekind (Hom) = E_Procedure
5311 or else
5312 Ekind (Hom) = E_Function)
5313 and then Scope (Hom) = Scope (Typ)
5314 and then Present (First_Formal (Hom))
5315 and then
5316 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5317 or else
5318 (Is_Access_Type (Etype (First_Formal (Hom)))
5319 and then
5320 Ekind (Etype (First_Formal (Hom))) =
5321 E_Anonymous_Access_Type
5322 and then
5323 Base_Type
5324 (Designated_Type (Etype (First_Formal (Hom)))) =
5325 Cls_Type))
5326 then
5327 Add_One_Interp (Op, Hom, Etype (Hom));
5328 Set_Etype (N, Etype (Hom));
5329 end if;
5330
5331 Hom := Homonym (Hom);
5332 end loop;
5333 end;
5334
5335 return Etype (Op) /= Any_Type;
5336 end Find_Primitive_Operation;
5337
996ae0b0
RK
5338 ----------------------
5339 -- Find_Unary_Types --
5340 ----------------------
5341
5342 procedure Find_Unary_Types
5343 (R : Node_Id;
5344 Op_Id : Entity_Id;
5345 N : Node_Id)
5346 is
5347 Index : Interp_Index;
5348 It : Interp;
5349
5350 begin
5351 if not Is_Overloaded (R) then
5352 if Is_Numeric_Type (Etype (R)) then
5353 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5354 end if;
5355
5356 else
5357 Get_First_Interp (R, Index, It);
996ae0b0
RK
5358 while Present (It.Typ) loop
5359 if Is_Numeric_Type (It.Typ) then
5360 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5361 end if;
5362
5363 Get_Next_Interp (Index, It);
5364 end loop;
5365 end if;
5366 end Find_Unary_Types;
5367
996ae0b0
RK
5368 ------------------
5369 -- Junk_Operand --
5370 ------------------
5371
5372 function Junk_Operand (N : Node_Id) return Boolean is
5373 Enode : Node_Id;
5374
5375 begin
5376 if Error_Posted (N) then
5377 return False;
5378 end if;
5379
5380 -- Get entity to be tested
5381
5382 if Is_Entity_Name (N)
5383 and then Present (Entity (N))
5384 then
5385 Enode := N;
5386
5387 -- An odd case, a procedure name gets converted to a very peculiar
5388 -- function call, and here is where we detect this happening.
5389
5390 elsif Nkind (N) = N_Function_Call
5391 and then Is_Entity_Name (Name (N))
5392 and then Present (Entity (Name (N)))
5393 then
5394 Enode := Name (N);
5395
5396 -- Another odd case, there are at least some cases of selected
5397 -- components where the selected component is not marked as having
5398 -- an entity, even though the selector does have an entity
5399
5400 elsif Nkind (N) = N_Selected_Component
5401 and then Present (Entity (Selector_Name (N)))
5402 then
5403 Enode := Selector_Name (N);
5404
5405 else
5406 return False;
5407 end if;
5408
9de61fcb 5409 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
5410
5411 case Ekind (Entity (Enode)) is
5412
5413 when E_Package =>
5414 Error_Msg_N
5415 ("package name cannot be used as operand", Enode);
5416
5417 when Generic_Unit_Kind =>
5418 Error_Msg_N
5419 ("generic unit name cannot be used as operand", Enode);
5420
5421 when Type_Kind =>
5422 Error_Msg_N
5423 ("subtype name cannot be used as operand", Enode);
5424
5425 when Entry_Kind =>
5426 Error_Msg_N
5427 ("entry name cannot be used as operand", Enode);
5428
5429 when E_Procedure =>
5430 Error_Msg_N
5431 ("procedure name cannot be used as operand", Enode);
5432
5433 when E_Exception =>
5434 Error_Msg_N
5435 ("exception name cannot be used as operand", Enode);
5436
5437 when E_Block | E_Label | E_Loop =>
5438 Error_Msg_N
5439 ("label name cannot be used as operand", Enode);
5440
5441 when others =>
5442 return False;
5443
5444 end case;
5445
5446 return True;
5447 end Junk_Operand;
5448
5449 --------------------
5450 -- Operator_Check --
5451 --------------------
5452
5453 procedure Operator_Check (N : Node_Id) is
5454 begin
30c20106
AC
5455 Remove_Abstract_Operations (N);
5456
996ae0b0
RK
5457 -- Test for case of no interpretation found for operator
5458
5459 if Etype (N) = Any_Type then
5460 declare
b67a385c
ES
5461 L : Node_Id;
5462 R : Node_Id;
5463 Op_Id : Entity_Id := Empty;
996ae0b0
RK
5464
5465 begin
5466 R := Right_Opnd (N);
5467
5468 if Nkind (N) in N_Binary_Op then
5469 L := Left_Opnd (N);
5470 else
5471 L := Empty;
5472 end if;
5473
5474 -- If either operand has no type, then don't complain further,
9de61fcb 5475 -- since this simply means that we have a propagated error.
996ae0b0
RK
5476
5477 if R = Error
5478 or else Etype (R) = Any_Type
5479 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5480 then
5481 return;
5482
4c46b835
AC
5483 -- We explicitly check for the case of concatenation of component
5484 -- with component to avoid reporting spurious matching array types
5485 -- that might happen to be lurking in distant packages (such as
5486 -- run-time packages). This also prevents inconsistencies in the
5487 -- messages for certain ACVC B tests, which can vary depending on
5488 -- types declared in run-time interfaces. Another improvement when
5489 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
5490
5491 elsif Present (Candidate_Type)
5492 and then (Nkind (N) /= N_Op_Concat
5493 or else Is_Array_Type (Etype (L))
5494 or else Is_Array_Type (Etype (R)))
5495 then
5496
5497 if Nkind (N) = N_Op_Concat then
5498 if Etype (L) /= Any_Composite
5499 and then Is_Array_Type (Etype (L))
5500 then
5501 Candidate_Type := Etype (L);
5502
5503 elsif Etype (R) /= Any_Composite
5504 and then Is_Array_Type (Etype (R))
5505 then
5506 Candidate_Type := Etype (R);
5507 end if;
5508 end if;
5509
19d846a0 5510 Error_Msg_NE -- CODEFIX
996ae0b0
RK
5511 ("operator for} is not directly visible!",
5512 N, First_Subtype (Candidate_Type));
19d846a0
RD
5513 Error_Msg_N -- CODEFIX
5514 ("use clause would make operation legal!", N);
996ae0b0
RK
5515 return;
5516
5517 -- If either operand is a junk operand (e.g. package name), then
5518 -- post appropriate error messages, but do not complain further.
5519
0e0eecec
ES
5520 -- Note that the use of OR in this test instead of OR ELSE is
5521 -- quite deliberate, we may as well check both operands in the
5522 -- binary operator case.
996ae0b0
RK
5523
5524 elsif Junk_Operand (R)
5525 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5526 then
5527 return;
5528
5529 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
5530 -- Boolean, then we know that the other operand cannot resolve to
5531 -- Boolean (since we got no interpretations), but in that case we
5532 -- pretty much know that the other operand should be Boolean, so
5533 -- resolve it that way (generating an error)
996ae0b0 5534
d469eabe 5535 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
5536 if Etype (L) = Standard_Boolean then
5537 Resolve (R, Standard_Boolean);
5538 return;
5539 elsif Etype (R) = Standard_Boolean then
5540 Resolve (L, Standard_Boolean);
5541 return;
5542 end if;
5543
5544 -- For an arithmetic operator or comparison operator, if one
5545 -- of the operands is numeric, then we know the other operand
5546 -- is not the same numeric type. If it is a non-numeric type,
5547 -- then probably it is intended to match the other operand.
5548
d469eabe
HK
5549 elsif Nkind_In (N, N_Op_Add,
5550 N_Op_Divide,
5551 N_Op_Ge,
5552 N_Op_Gt,
5553 N_Op_Le)
5554 or else
5555 Nkind_In (N, N_Op_Lt,
5556 N_Op_Mod,
5557 N_Op_Multiply,
5558 N_Op_Rem,
5559 N_Op_Subtract)
996ae0b0
RK
5560 then
5561 if Is_Numeric_Type (Etype (L))
5562 and then not Is_Numeric_Type (Etype (R))
5563 then
5564 Resolve (R, Etype (L));
5565 return;
5566
5567 elsif Is_Numeric_Type (Etype (R))
5568 and then not Is_Numeric_Type (Etype (L))
5569 then
5570 Resolve (L, Etype (R));
5571 return;
5572 end if;
5573
5574 -- Comparisons on A'Access are common enough to deserve a
5575 -- special message.
5576
d469eabe 5577 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
5578 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5579 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5580 then
5581 Error_Msg_N
5582 ("two access attributes cannot be compared directly", N);
5583 Error_Msg_N
aab883ec 5584 ("\use qualified expression for one of the operands",
996ae0b0
RK
5585 N);
5586 return;
5587
5588 -- Another one for C programmers
5589
5590 elsif Nkind (N) = N_Op_Concat
5591 and then Valid_Boolean_Arg (Etype (L))
5592 and then Valid_Boolean_Arg (Etype (R))
5593 then
5594 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
5595 Error_Msg_N -- CODEFIX
5596 ("\maybe AND was meant", N);
996ae0b0
RK
5597 return;
5598
5599 -- A special case for comparison of access parameter with null
5600
5601 elsif Nkind (N) = N_Op_Eq
5602 and then Is_Entity_Name (L)
5603 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5604 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5605 N_Access_Definition
5606 and then Nkind (R) = N_Null
5607 then
5608 Error_Msg_N ("access parameter is not allowed to be null", L);
5609 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5610 return;
61bee0e3
AC
5611
5612 -- Another special case for exponentiation, where the right
5613 -- operand must be Natural, independently of the base.
5614
5615 elsif Nkind (N) = N_Op_Expon
5616 and then Is_Numeric_Type (Etype (L))
5617 and then not Is_Overloaded (R)
5618 and then
5619 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5620 and then Base_Type (Etype (R)) /= Universal_Integer
5621 then
5622 Error_Msg_NE
5623 ("exponent must be of type Natural, found}", R, Etype (R));
5624 return;
996ae0b0
RK
5625 end if;
5626
0e0eecec
ES
5627 -- If we fall through then just give general message. Note that in
5628 -- the following messages, if the operand is overloaded we choose
5629 -- an arbitrary type to complain about, but that is probably more
5630 -- useful than not giving a type at all.
996ae0b0
RK
5631
5632 if Nkind (N) in N_Unary_Op then
5633 Error_Msg_Node_2 := Etype (R);
5634 Error_Msg_N ("operator& not defined for}", N);
5635 return;
5636
5637 else
fbf5a39b
AC
5638 if Nkind (N) in N_Binary_Op then
5639 if not Is_Overloaded (L)
5640 and then not Is_Overloaded (R)
5641 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5642 then
7ffd9312 5643 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 5644 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 5645
fbf5a39b 5646 else
b67a385c
ES
5647 -- Another attempt to find a fix: one of the candidate
5648 -- interpretations may not be use-visible. This has
5649 -- already been checked for predefined operators, so
5650 -- we examine only user-defined functions.
5651
5652 Op_Id := Get_Name_Entity_Id (Chars (N));
5653
5654 while Present (Op_Id) loop
5655 if Ekind (Op_Id) /= E_Operator
5656 and then Is_Overloadable (Op_Id)
5657 then
5658 if not Is_Immediately_Visible (Op_Id)
5659 and then not In_Use (Scope (Op_Id))
aab883ec 5660 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
5661 and then not Is_Hidden (Op_Id)
5662 and then Ekind (Scope (Op_Id)) = E_Package
5663 and then
5664 Has_Compatible_Type
5665 (L, Etype (First_Formal (Op_Id)))
5666 and then Present
5667 (Next_Formal (First_Formal (Op_Id)))
5668 and then
5669 Has_Compatible_Type
5670 (R,
5671 Etype (Next_Formal (First_Formal (Op_Id))))
5672 then
ed2233dc 5673 Error_Msg_N
b67a385c 5674 ("No legal interpretation for operator&", N);
ed2233dc 5675 Error_Msg_NE
b67a385c
ES
5676 ("\use clause on& would make operation legal",
5677 N, Scope (Op_Id));
5678 exit;
5679 end if;
5680 end if;
fbf5a39b 5681
b67a385c
ES
5682 Op_Id := Homonym (Op_Id);
5683 end loop;
5684
5685 if No (Op_Id) then
5686 Error_Msg_N ("invalid operand types for operator&", N);
5687
5688 if Nkind (N) /= N_Op_Concat then
5689 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5690 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5691 end if;
fbf5a39b
AC
5692 end if;
5693 end if;
996ae0b0
RK
5694 end if;
5695 end if;
5696 end;
5697 end if;
5698 end Operator_Check;
5699
6e73e3ab
AC
5700 -----------------------------------------
5701 -- Process_Implicit_Dereference_Prefix --
5702 -----------------------------------------
5703
d469eabe 5704 function Process_Implicit_Dereference_Prefix
da709d08 5705 (E : Entity_Id;
d469eabe 5706 P : Entity_Id) return Entity_Id
6e73e3ab
AC
5707 is
5708 Ref : Node_Id;
d469eabe 5709 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 5710
6e73e3ab 5711 begin
1a8fae99
ES
5712 if Present (E)
5713 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5714 then
6e73e3ab
AC
5715 -- We create a dummy reference to E to ensure that the reference
5716 -- is not considered as part of an assignment (an implicit
5717 -- dereference can never assign to its prefix). The Comes_From_Source
5718 -- attribute needs to be propagated for accurate warnings.
5719
5720 Ref := New_Reference_To (E, Sloc (P));
5721 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5722 Generate_Reference (E, Ref);
5723 end if;
d469eabe
HK
5724
5725 -- An implicit dereference is a legal occurrence of an
5726 -- incomplete type imported through a limited_with clause,
5727 -- if the full view is visible.
5728
5729 if From_With_Type (Typ)
5730 and then not From_With_Type (Scope (Typ))
5731 and then
5732 (Is_Immediately_Visible (Scope (Typ))
5733 or else
5734 (Is_Child_Unit (Scope (Typ))
5735 and then Is_Visible_Child_Unit (Scope (Typ))))
5736 then
5737 return Available_View (Typ);
5738 else
5739 return Typ;
5740 end if;
5741
6e73e3ab
AC
5742 end Process_Implicit_Dereference_Prefix;
5743
30c20106
AC
5744 --------------------------------
5745 -- Remove_Abstract_Operations --
5746 --------------------------------
5747
5748 procedure Remove_Abstract_Operations (N : Node_Id) is
401093c1
ES
5749 Abstract_Op : Entity_Id := Empty;
5750 Address_Kludge : Boolean := False;
5751 I : Interp_Index;
5752 It : Interp;
30c20106 5753
0e0eecec
ES
5754 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5755 -- activate this if either extensions are enabled, or if the abstract
5756 -- operation in question comes from a predefined file. This latter test
5757 -- allows us to use abstract to make operations invisible to users. In
5758 -- particular, if type Address is non-private and abstract subprograms
5759 -- are used to hide its operators, they will be truly hidden.
30c20106 5760
5950a3ac 5761 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 5762 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
5763
5764 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
5765 -- Ambiguities may arise when the operands are literal and the address
5766 -- operations in s-auxdec are visible. In that case, remove the
5767 -- interpretation of a literal as Address, to retain the semantics of
5768 -- Address as a private type.
9f4fd324
AC
5769
5770 ------------------------------------
5950a3ac 5771 -- Remove_Address_Interpretations --
9f4fd324
AC
5772 ------------------------------------
5773
5950a3ac 5774 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
5775 Formal : Entity_Id;
5776
5777 begin
5778 if Is_Overloaded (N) then
5779 Get_First_Interp (N, I, It);
5780 while Present (It.Nam) loop
5781 Formal := First_Entity (It.Nam);
5782
5950a3ac
AC
5783 if Op = Second_Op then
5784 Formal := Next_Entity (Formal);
5785 end if;
5786
5787 if Is_Descendent_Of_Address (Etype (Formal)) then
401093c1 5788 Address_Kludge := True;
9f4fd324
AC
5789 Remove_Interp (I);
5790 end if;
5791
5792 Get_Next_Interp (I, It);
5793 end loop;
5794 end if;
5795 end Remove_Address_Interpretations;
5796
5797 -- Start of processing for Remove_Abstract_Operations
5798
30c20106 5799 begin
d935a36e 5800 if Is_Overloaded (N) then
30c20106 5801 Get_First_Interp (N, I, It);
d935a36e 5802
30c20106 5803 while Present (It.Nam) loop
aab883ec
ES
5804 if Is_Overloadable (It.Nam)
5805 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
5806 and then not Is_Dispatching_Operation (It.Nam)
5807 then
af152989 5808 Abstract_Op := It.Nam;
fe45e59e 5809
401093c1
ES
5810 if Is_Descendent_Of_Address (It.Typ) then
5811 Address_Kludge := True;
5812 Remove_Interp (I);
5813 exit;
5814
fe45e59e 5815 -- In Ada 2005, this operation does not participate in Overload
9c510803 5816 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
5817 -- unit, it is one of the operations declared abstract in some
5818 -- variants of System, and it must be removed as well.
5819
401093c1
ES
5820 elsif Ada_Version >= Ada_05
5821 or else Is_Predefined_File_Name
5822 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
5823 then
5824 Remove_Interp (I);
5825 exit;
5826 end if;
30c20106
AC
5827 end if;
5828
5829 Get_Next_Interp (I, It);
5830 end loop;
5831
af152989 5832 if No (Abstract_Op) then
fe45e59e
ES
5833
5834 -- If some interpretation yields an integer type, it is still
5835 -- possible that there are address interpretations. Remove them
5836 -- if one operand is a literal, to avoid spurious ambiguities
5837 -- on systems where Address is a visible integer type.
5838
5839 if Is_Overloaded (N)
401093c1 5840 and then Nkind (N) in N_Op
fe45e59e
ES
5841 and then Is_Integer_Type (Etype (N))
5842 then
5843 if Nkind (N) in N_Binary_Op then
5844 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5845 Remove_Address_Interpretations (Second_Op);
5846
5847 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5848 Remove_Address_Interpretations (First_Op);
5849 end if;
5850 end if;
5851 end if;
3984e89a
AC
5852
5853 elsif Nkind (N) in N_Op then
4c46b835 5854
fe45e59e
ES
5855 -- Remove interpretations that treat literals as addresses. This
5856 -- is never appropriate, even when Address is defined as a visible
5857 -- Integer type. The reason is that we would really prefer Address
5858 -- to behave as a private type, even in this case, which is there
f3d57416
RW
5859 -- only to accommodate oddities of VMS address sizes. If Address
5860 -- is a visible integer type, we get lots of overload ambiguities.
30c20106 5861
5950a3ac
AC
5862 if Nkind (N) in N_Binary_Op then
5863 declare
5864 U1 : constant Boolean :=
5865 Present (Universal_Interpretation (Right_Opnd (N)));
5866 U2 : constant Boolean :=
5867 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 5868
5950a3ac 5869 begin
0e0eecec 5870 if U1 then
5950a3ac 5871 Remove_Address_Interpretations (Second_Op);
0e0eecec 5872 end if;
5950a3ac 5873
0e0eecec 5874 if U2 then
5950a3ac 5875 Remove_Address_Interpretations (First_Op);
30c20106
AC
5876 end if;
5877
5950a3ac
AC
5878 if not (U1 and U2) then
5879
5880 -- Remove corresponding predefined operator, which is
5881 -- always added to the overload set.
5882
5883 Get_First_Interp (N, I, It);
5884 while Present (It.Nam) loop
0ab80019
AC
5885 if Scope (It.Nam) = Standard_Standard
5886 and then Base_Type (It.Typ) =
5887 Base_Type (Etype (Abstract_Op))
5888 then
5950a3ac
AC
5889 Remove_Interp (I);
5890 end if;
5891
8a36a0cc
AC
5892 Get_Next_Interp (I, It);
5893 end loop;
5894
5895 elsif Is_Overloaded (N)
5896 and then Present (Univ_Type)
5897 then
5898 -- If both operands have a universal interpretation,
0e0eecec
ES
5899 -- it is still necessary to remove interpretations that
5900 -- yield Address. Any remaining ambiguities will be
5901 -- removed in Disambiguate.
8a36a0cc
AC
5902
5903 Get_First_Interp (N, I, It);
8a36a0cc 5904 while Present (It.Nam) loop
0e0eecec
ES
5905 if Is_Descendent_Of_Address (It.Typ) then
5906 Remove_Interp (I);
5907
5908 elsif not Is_Type (It.Nam) then
8a36a0cc 5909 Set_Entity (N, It.Nam);
8a36a0cc
AC
5910 end if;
5911
5950a3ac
AC
5912 Get_Next_Interp (I, It);
5913 end loop;
5914 end if;
5915 end;
30c20106 5916 end if;
3984e89a
AC
5917
5918 elsif Nkind (N) = N_Function_Call
5919 and then
5920 (Nkind (Name (N)) = N_Operator_Symbol
5921 or else
5922 (Nkind (Name (N)) = N_Expanded_Name
5923 and then
5924 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5925 then
5950a3ac 5926
3984e89a
AC
5927 declare
5928 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
5929 U1 : constant Boolean :=
5930 Present (Universal_Interpretation (Arg1));
5931 U2 : constant Boolean :=
5932 Present (Next (Arg1)) and then
5933 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
5934
5935 begin
0e0eecec 5936 if U1 then
5950a3ac 5937 Remove_Address_Interpretations (First_Op);
0e0eecec 5938 end if;
3984e89a 5939
0e0eecec 5940 if U2 then
5950a3ac
AC
5941 Remove_Address_Interpretations (Second_Op);
5942 end if;
5943
5944 if not (U1 and U2) then
3984e89a
AC
5945 Get_First_Interp (N, I, It);
5946 while Present (It.Nam) loop
9f4fd324
AC
5947 if Scope (It.Nam) = Standard_Standard
5948 and then It.Typ = Base_Type (Etype (Abstract_Op))
5949 then
3984e89a
AC
5950 Remove_Interp (I);
5951 end if;
5952
5953 Get_Next_Interp (I, It);
5954 end loop;
5955 end if;
5956 end;
30c20106 5957 end if;
af152989 5958
401093c1
ES
5959 -- If the removal has left no valid interpretations, emit an error
5960 -- message now and label node as illegal.
af152989
AC
5961
5962 if Present (Abstract_Op) then
5963 Get_First_Interp (N, I, It);
5964
5965 if No (It.Nam) then
5966
6e73e3ab 5967 -- Removal of abstract operation left no viable candidate
af152989
AC
5968
5969 Set_Etype (N, Any_Type);
5970 Error_Msg_Sloc := Sloc (Abstract_Op);
5971 Error_Msg_NE
5972 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
5973
5974 -- In Ada 2005, an abstract operation may disable predefined
5975 -- operators. Since the context is not yet known, we mark the
5976 -- predefined operators as potentially hidden. Do not include
5977 -- predefined operators when addresses are involved since this
5978 -- case is handled separately.
5979
5980 elsif Ada_Version >= Ada_05
5981 and then not Address_Kludge
5982 then
5983 while Present (It.Nam) loop
5984 if Is_Numeric_Type (It.Typ)
5985 and then Scope (It.Typ) = Standard_Standard
5986 then
5987 Set_Abstract_Op (I, Abstract_Op);
5988 end if;
5989
5990 Get_Next_Interp (I, It);
5991 end loop;
af152989
AC
5992 end if;
5993 end if;
30c20106
AC
5994 end if;
5995 end Remove_Abstract_Operations;
5996
996ae0b0
RK
5997 -----------------------
5998 -- Try_Indirect_Call --
5999 -----------------------
6000
6001 function Try_Indirect_Call
91b1417d
AC
6002 (N : Node_Id;
6003 Nam : Entity_Id;
6004 Typ : Entity_Id) return Boolean
996ae0b0 6005 is
24657705
HK
6006 Actual : Node_Id;
6007 Formal : Entity_Id;
6008
8a7988f5 6009 Call_OK : Boolean;
24657705 6010 pragma Warnings (Off, Call_OK);
996ae0b0
RK
6011
6012 begin
8a7988f5 6013 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 6014
8a7988f5 6015 Actual := First_Actual (N);
fbf5a39b 6016 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 6017 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
6018 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6019 return False;
6020 end if;
6021
6022 Next (Actual);
6023 Next_Formal (Formal);
6024 end loop;
6025
6026 if No (Actual) and then No (Formal) then
6027 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6028
6029 -- Nam is a candidate interpretation for the name in the call,
6030 -- if it is not an indirect call.
6031
6032 if not Is_Type (Nam)
6033 and then Is_Entity_Name (Name (N))
6034 then
6035 Set_Entity (Name (N), Nam);
6036 end if;
6037
6038 return True;
6039 else
6040 return False;
6041 end if;
6042 end Try_Indirect_Call;
6043
6044 ----------------------
6045 -- Try_Indexed_Call --
6046 ----------------------
6047
6048 function Try_Indexed_Call
aab883ec
ES
6049 (N : Node_Id;
6050 Nam : Entity_Id;
6051 Typ : Entity_Id;
6052 Skip_First : Boolean) return Boolean
996ae0b0 6053 is
5ff22245
ES
6054 Loc : constant Source_Ptr := Sloc (N);
6055 Actuals : constant List_Id := Parameter_Associations (N);
6056 Actual : Node_Id;
6057 Index : Entity_Id;
996ae0b0
RK
6058
6059 begin
fbf5a39b 6060 Actual := First (Actuals);
aab883ec
ES
6061
6062 -- If the call was originally written in prefix form, skip the first
6063 -- actual, which is obviously not defaulted.
6064
6065 if Skip_First then
6066 Next (Actual);
6067 end if;
6068
fbf5a39b 6069 Index := First_Index (Typ);
9de61fcb
RD
6070 while Present (Actual) and then Present (Index) loop
6071
996ae0b0
RK
6072 -- If the parameter list has a named association, the expression
6073 -- is definitely a call and not an indexed component.
6074
6075 if Nkind (Actual) = N_Parameter_Association then
6076 return False;
6077 end if;
6078
5ff22245
ES
6079 if Is_Entity_Name (Actual)
6080 and then Is_Type (Entity (Actual))
6081 and then No (Next (Actual))
6082 then
6083 Rewrite (N,
6084 Make_Slice (Loc,
6085 Prefix => Make_Function_Call (Loc,
6086 Name => Relocate_Node (Name (N))),
6087 Discrete_Range =>
6088 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6089
6090 Analyze (N);
6091 return True;
6092
6093 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
6094 return False;
6095 end if;
6096
6097 Next (Actual);
6098 Next_Index (Index);
6099 end loop;
6100
6101 if No (Actual) and then No (Index) then
6102 Add_One_Interp (N, Nam, Component_Type (Typ));
6103
6104 -- Nam is a candidate interpretation for the name in the call,
6105 -- if it is not an indirect call.
6106
6107 if not Is_Type (Nam)
6108 and then Is_Entity_Name (Name (N))
6109 then
6110 Set_Entity (Name (N), Nam);
6111 end if;
6112
6113 return True;
6114 else
6115 return False;
6116 end if;
996ae0b0
RK
6117 end Try_Indexed_Call;
6118
35ae2ed8
AC
6119 --------------------------
6120 -- Try_Object_Operation --
6121 --------------------------
6122
6123 function Try_Object_Operation (N : Node_Id) return Boolean is
b67a385c 6124 K : constant Node_Kind := Nkind (Parent (N));
d469eabe
HK
6125 Is_Subprg_Call : constant Boolean := Nkind_In
6126 (K, N_Procedure_Call_Statement,
6127 N_Function_Call);
b67a385c 6128 Loc : constant Source_Ptr := Sloc (N);
b67a385c 6129 Obj : constant Node_Id := Prefix (N);
0a36105d
JM
6130 Subprog : constant Node_Id :=
6131 Make_Identifier (Sloc (Selector_Name (N)),
6132 Chars => Chars (Selector_Name (N)));
401093c1 6133 -- Identifier on which possible interpretations will be collected
0a36105d 6134
b67a385c
ES
6135 Report_Error : Boolean := False;
6136 -- If no candidate interpretation matches the context, redo the
6137 -- analysis with error enabled to provide additional information.
28d6470f
JM
6138
6139 Actual : Node_Id;
d469eabe 6140 Candidate : Entity_Id := Empty;
b67a385c 6141 New_Call_Node : Node_Id := Empty;
4c46b835 6142 Node_To_Replace : Node_Id;
28d6470f 6143 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 6144 Success : Boolean := False;
4c46b835 6145
0a36105d
JM
6146 function Valid_Candidate
6147 (Success : Boolean;
6148 Call : Node_Id;
6149 Subp : Entity_Id) return Entity_Id;
6150 -- If the subprogram is a valid interpretation, record it, and add
6151 -- to the list of interpretations of Subprog.
6152
4c46b835
AC
6153 procedure Complete_Object_Operation
6154 (Call_Node : Node_Id;
0a36105d 6155 Node_To_Replace : Node_Id);
ec6078e3
ES
6156 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6157 -- Call_Node, insert the object (or its dereference) as the first actual
6158 -- in the call, and complete the analysis of the call.
4c46b835 6159
0a36105d
JM
6160 procedure Report_Ambiguity (Op : Entity_Id);
6161 -- If a prefixed procedure call is ambiguous, indicate whether the
6162 -- call includes an implicit dereference or an implicit 'Access.
6163
4c46b835
AC
6164 procedure Transform_Object_Operation
6165 (Call_Node : out Node_Id;
0a36105d 6166 Node_To_Replace : out Node_Id);
ec6078e3 6167 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
6168 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6169 -- either N or the parent of N, and Subprog is a reference to the
6170 -- subprogram we are trying to match.
35ae2ed8
AC
6171
6172 function Try_Class_Wide_Operation
4c46b835
AC
6173 (Call_Node : Node_Id;
6174 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6175 -- Traverse all ancestor types looking for a class-wide subprogram
6176 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 6177
0a36105d
JM
6178 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6179 -- If prefix is overloaded, its interpretation may include different
6180 -- tagged types, and we must examine the primitive operations and
6181 -- the class-wide operations of each in order to find candidate
6182 -- interpretations for the call as a whole.
6183
4c46b835
AC
6184 function Try_Primitive_Operation
6185 (Call_Node : Node_Id;
6186 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6187 -- Traverse the list of primitive subprograms looking for a dispatching
6188 -- operation for which the current node is a valid call .
4c46b835 6189
0a36105d
JM
6190 ---------------------
6191 -- Valid_Candidate --
6192 ---------------------
6193
6194 function Valid_Candidate
6195 (Success : Boolean;
6196 Call : Node_Id;
6197 Subp : Entity_Id) return Entity_Id
6198 is
ee9aa7b6 6199 Arr_Type : Entity_Id;
0a36105d
JM
6200 Comp_Type : Entity_Id;
6201
6202 begin
6203 -- If the subprogram is a valid interpretation, record it in global
6204 -- variable Subprog, to collect all possible overloadings.
6205
6206 if Success then
6207 if Subp /= Entity (Subprog) then
6208 Add_One_Interp (Subprog, Subp, Etype (Subp));
6209 end if;
6210 end if;
6211
d469eabe
HK
6212 -- If the call may be an indexed call, retrieve component type of
6213 -- resulting expression, and add possible interpretation.
0a36105d 6214
ee9aa7b6 6215 Arr_Type := Empty;
0a36105d
JM
6216 Comp_Type := Empty;
6217
6218 if Nkind (Call) = N_Function_Call
d469eabe
HK
6219 and then Nkind (Parent (N)) = N_Indexed_Component
6220 and then Needs_One_Actual (Subp)
0a36105d
JM
6221 then
6222 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 6223 Arr_Type := Etype (Subp);
0a36105d
JM
6224
6225 elsif Is_Access_Type (Etype (Subp))
6226 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6227 then
ee9aa7b6 6228 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
6229 end if;
6230 end if;
6231
ee9aa7b6
AC
6232 if Present (Arr_Type) then
6233
6234 -- Verify that the actuals (excluding the object)
6235 -- match the types of the indices.
6236
6237 declare
6238 Actual : Node_Id;
6239 Index : Node_Id;
6240
6241 begin
6242 Actual := Next (First_Actual (Call));
6243 Index := First_Index (Arr_Type);
ee9aa7b6
AC
6244 while Present (Actual) and then Present (Index) loop
6245 if not Has_Compatible_Type (Actual, Etype (Index)) then
6246 Arr_Type := Empty;
6247 exit;
6248 end if;
6249
6250 Next_Actual (Actual);
6251 Next_Index (Index);
6252 end loop;
6253
6254 if No (Actual)
6255 and then No (Index)
6256 and then Present (Arr_Type)
6257 then
6258 Comp_Type := Component_Type (Arr_Type);
6259 end if;
6260 end;
6261
6262 if Present (Comp_Type)
6263 and then Etype (Subprog) /= Comp_Type
6264 then
6265 Add_One_Interp (Subprog, Subp, Comp_Type);
6266 end if;
0a36105d
JM
6267 end if;
6268
6269 if Etype (Call) /= Any_Type then
6270 return Subp;
6271 else
6272 return Empty;
6273 end if;
6274 end Valid_Candidate;
6275
4c46b835
AC
6276 -------------------------------
6277 -- Complete_Object_Operation --
6278 -------------------------------
6279
6280 procedure Complete_Object_Operation
6281 (Call_Node : Node_Id;
0a36105d 6282 Node_To_Replace : Node_Id)
4c46b835 6283 is
b4592168
GD
6284 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6285 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
6286 First_Actual : Node_Id;
6287
4c46b835 6288 begin
955871d3
AC
6289 -- Place the name of the operation, with its interpretations,
6290 -- on the rewritten call.
0a36105d 6291
ec6078e3
ES
6292 Set_Name (Call_Node, Subprog);
6293
0a36105d
JM
6294 First_Actual := First (Parameter_Associations (Call_Node));
6295
b67a385c
ES
6296 -- For cross-reference purposes, treat the new node as being in
6297 -- the source if the original one is.
6298
6299 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6300 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6301
ec6078e3
ES
6302 if Nkind (N) = N_Selected_Component
6303 and then not Inside_A_Generic
6304 then
6305 Set_Entity (Selector_Name (N), Entity (Subprog));
6306 end if;
6307
6308 -- If need be, rewrite first actual as an explicit dereference
0a36105d
JM
6309 -- If the call is overloaded, the rewriting can only be done
6310 -- once the primitive operation is identified.
6311
6312 if Is_Overloaded (Subprog) then
ec6078e3 6313
0a36105d
JM
6314 -- The prefix itself may be overloaded, and its interpretations
6315 -- must be propagated to the new actual in the call.
6316
6317 if Is_Overloaded (Obj) then
6318 Save_Interps (Obj, First_Actual);
6319 end if;
6320
6321 Rewrite (First_Actual, Obj);
6322
6323 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
6324 and then Is_Access_Type (Etype (Obj))
6325 then
6326 Rewrite (First_Actual,
6327 Make_Explicit_Dereference (Sloc (Obj), Obj));
6328 Analyze (First_Actual);
fe45e59e 6329
401093c1
ES
6330 -- If we need to introduce an explicit dereference, verify that
6331 -- the resulting actual is compatible with the mode of the formal.
6332
6333 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6334 and then Is_Access_Constant (Etype (Obj))
6335 then
6336 Error_Msg_NE
6337 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6338 end if;
6339
d469eabe
HK
6340 -- Conversely, if the formal is an access parameter and the object
6341 -- is not, replace the actual with a 'Access reference. Its analysis
6342 -- will check that the object is aliased.
fe45e59e
ES
6343
6344 elsif Is_Access_Type (Formal_Type)
6345 and then not Is_Access_Type (Etype (Obj))
6346 then
b4592168
GD
6347 -- A special case: A.all'access is illegal if A is an access to a
6348 -- constant and the context requires an access to a variable.
6349
6350 if not Is_Access_Constant (Formal_Type) then
6351 if (Nkind (Obj) = N_Explicit_Dereference
6352 and then Is_Access_Constant (Etype (Prefix (Obj))))
6353 or else not Is_Variable (Obj)
6354 then
6355 Error_Msg_NE
6356 ("actual for& must be a variable", Obj, Control);
6357 end if;
6358 end if;
6359
fe45e59e
ES
6360 Rewrite (First_Actual,
6361 Make_Attribute_Reference (Loc,
6362 Attribute_Name => Name_Access,
6363 Prefix => Relocate_Node (Obj)));
0a36105d
JM
6364
6365 if not Is_Aliased_View (Obj) then
ed2233dc 6366 Error_Msg_NE
0a36105d 6367 ("object in prefixed call to& must be aliased"
401093c1 6368 & " (RM-2005 4.3.1 (13))",
0a36105d
JM
6369 Prefix (First_Actual), Subprog);
6370 end if;
6371
fe45e59e
ES
6372 Analyze (First_Actual);
6373
ec6078e3 6374 else
0a36105d
JM
6375 if Is_Overloaded (Obj) then
6376 Save_Interps (Obj, First_Actual);
6377 end if;
ec6078e3 6378
0a36105d 6379 Rewrite (First_Actual, Obj);
aab883ec
ES
6380 end if;
6381
7ffd9312 6382 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
6383
6384 -- Propagate the interpretations collected in subprog to the new
6385 -- function call node, to be resolved from context.
6386
6387 if Is_Overloaded (Subprog) then
6388 Save_Interps (Subprog, Node_To_Replace);
7415029d 6389
0a36105d
JM
6390 else
6391 Analyze (Node_To_Replace);
438ff97c
ES
6392
6393 -- If the operation has been rewritten into a call, which may
6394 -- get subsequently an explicit dereference, preserve the
6395 -- type on the original node (selected component or indexed
6396 -- component) for subsequent legality tests, e.g. Is_Variable.
6397 -- which examines the original node.
6398
6399 if Nkind (Node_To_Replace) = N_Function_Call then
6400 Set_Etype
6401 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
6402 end if;
0a36105d 6403 end if;
4c46b835
AC
6404 end Complete_Object_Operation;
6405
0a36105d
JM
6406 ----------------------
6407 -- Report_Ambiguity --
6408 ----------------------
6409
6410 procedure Report_Ambiguity (Op : Entity_Id) is
6411 Access_Formal : constant Boolean :=
6412 Is_Access_Type (Etype (First_Formal (Op)));
6413 Access_Actual : constant Boolean :=
6414 Is_Access_Type (Etype (Prefix (N)));
6415
6416 begin
6417 Error_Msg_Sloc := Sloc (Op);
6418
6419 if Access_Formal and then not Access_Actual then
6420 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6421 Error_Msg_N
0a36105d
JM
6422 ("\possible interpretation"
6423 & " (inherited, with implicit 'Access) #", N);
6424 else
ed2233dc 6425 Error_Msg_N
0a36105d
JM
6426 ("\possible interpretation (with implicit 'Access) #", N);
6427 end if;
6428
6429 elsif not Access_Formal and then Access_Actual then
6430 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6431 Error_Msg_N
0a36105d
JM
6432 ("\possible interpretation"
6433 & " ( inherited, with implicit dereference) #", N);
6434 else
ed2233dc 6435 Error_Msg_N
0a36105d
JM
6436 ("\possible interpretation (with implicit dereference) #", N);
6437 end if;
6438
6439 else
6440 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 6441 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 6442 else
4e7a4f6e
AC
6443 Error_Msg_N -- CODEFIX
6444 ("\possible interpretation#", N);
0a36105d
JM
6445 end if;
6446 end if;
6447 end Report_Ambiguity;
6448
4c46b835
AC
6449 --------------------------------
6450 -- Transform_Object_Operation --
6451 --------------------------------
6452
6453 procedure Transform_Object_Operation
6454 (Call_Node : out Node_Id;
0a36105d 6455 Node_To_Replace : out Node_Id)
35ae2ed8 6456 is
ec6078e3
ES
6457 Dummy : constant Node_Id := New_Copy (Obj);
6458 -- Placeholder used as a first parameter in the call, replaced
6459 -- eventually by the proper object.
6460
d469eabe
HK
6461 Parent_Node : constant Node_Id := Parent (N);
6462
ec6078e3 6463 Actual : Node_Id;
d469eabe 6464 Actuals : List_Id;
ec6078e3 6465
35ae2ed8 6466 begin
ec6078e3
ES
6467 -- Common case covering 1) Call to a procedure and 2) Call to a
6468 -- function that has some additional actuals.
35ae2ed8 6469
d469eabe
HK
6470 if Nkind_In (Parent_Node, N_Function_Call,
6471 N_Procedure_Call_Statement)
35ae2ed8 6472
ec6078e3
ES
6473 -- N is a selected component node containing the name of the
6474 -- subprogram. If N is not the name of the parent node we must
6475 -- not replace the parent node by the new construct. This case
6476 -- occurs when N is a parameterless call to a subprogram that
6477 -- is an actual parameter of a call to another subprogram. For
6478 -- example:
6479 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 6480
ec6078e3 6481 and then Name (Parent_Node) = N
4c46b835
AC
6482 then
6483 Node_To_Replace := Parent_Node;
35ae2ed8 6484
ec6078e3 6485 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 6486
ec6078e3
ES
6487 if Present (Actuals) then
6488 Prepend (Dummy, Actuals);
6489 else
6490 Actuals := New_List (Dummy);
6491 end if;
4c46b835
AC
6492
6493 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6494 Call_Node :=
6495 Make_Procedure_Call_Statement (Loc,
0a36105d 6496 Name => New_Copy (Subprog),
4c46b835
AC
6497 Parameter_Associations => Actuals);
6498
6499 else
4c46b835
AC
6500 Call_Node :=
6501 Make_Function_Call (Loc,
0a36105d 6502 Name => New_Copy (Subprog),
4c46b835 6503 Parameter_Associations => Actuals);
35ae2ed8 6504
35ae2ed8
AC
6505 end if;
6506
d469eabe 6507 -- Before analysis, a function call appears as an indexed component
ec6078e3 6508 -- if there are no named associations.
758c442c 6509
ec6078e3
ES
6510 elsif Nkind (Parent_Node) = N_Indexed_Component
6511 and then N = Prefix (Parent_Node)
6512 then
758c442c
GD
6513 Node_To_Replace := Parent_Node;
6514
ec6078e3
ES
6515 Actuals := Expressions (Parent_Node);
6516
6517 Actual := First (Actuals);
6518 while Present (Actual) loop
6519 Analyze (Actual);
6520 Next (Actual);
6521 end loop;
6522
6523 Prepend (Dummy, Actuals);
758c442c
GD
6524
6525 Call_Node :=
6526 Make_Function_Call (Loc,
0a36105d 6527 Name => New_Copy (Subprog),
758c442c
GD
6528 Parameter_Associations => Actuals);
6529
d469eabe 6530 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 6531
4c46b835
AC
6532 else
6533 Node_To_Replace := N;
6534
6535 Call_Node :=
6536 Make_Function_Call (Loc,
0a36105d 6537 Name => New_Copy (Subprog),
ec6078e3 6538 Parameter_Associations => New_List (Dummy));
4c46b835
AC
6539 end if;
6540 end Transform_Object_Operation;
35ae2ed8
AC
6541
6542 ------------------------------
6543 -- Try_Class_Wide_Operation --
6544 ------------------------------
6545
6546 function Try_Class_Wide_Operation
4c46b835
AC
6547 (Call_Node : Node_Id;
6548 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 6549 is
0a36105d
JM
6550 Anc_Type : Entity_Id;
6551 Matching_Op : Entity_Id := Empty;
6552 Error : Boolean;
6553
6554 procedure Traverse_Homonyms
6555 (Anc_Type : Entity_Id;
6556 Error : out Boolean);
6557 -- Traverse the homonym chain of the subprogram searching for those
6558 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
6559 -- or an anonymous access type designating the class-wide type. If
6560 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
6561
6562 procedure Traverse_Interfaces
6563 (Anc_Type : Entity_Id;
6564 Error : out Boolean);
6565 -- Traverse the list of interfaces, if any, associated with Anc_Type
6566 -- and search for acceptable class-wide homonyms associated with each
6567 -- interface. If an ambiguity is detected, then Error is set to True.
6568
6569 -----------------------
6570 -- Traverse_Homonyms --
6571 -----------------------
6572
6573 procedure Traverse_Homonyms
6574 (Anc_Type : Entity_Id;
6575 Error : out Boolean)
6576 is
6577 Cls_Type : Entity_Id;
6578 Hom : Entity_Id;
6579 Hom_Ref : Node_Id;
6580 Success : Boolean;
35ae2ed8 6581
0a36105d
JM
6582 begin
6583 Error := False;
ec6078e3 6584
b67a385c
ES
6585 Cls_Type := Class_Wide_Type (Anc_Type);
6586
4c46b835 6587 Hom := Current_Entity (Subprog);
401093c1
ES
6588
6589 -- Find operation whose first parameter is of the class-wide
6590 -- type, a subtype thereof, or an anonymous access to same.
6591
35ae2ed8
AC
6592 while Present (Hom) loop
6593 if (Ekind (Hom) = E_Procedure
4c46b835
AC
6594 or else
6595 Ekind (Hom) = E_Function)
b67a385c 6596 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 6597 and then Present (First_Formal (Hom))
b67a385c 6598 and then
401093c1 6599 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
6600 or else
6601 (Is_Access_Type (Etype (First_Formal (Hom)))
0a36105d
JM
6602 and then
6603 Ekind (Etype (First_Formal (Hom))) =
6604 E_Anonymous_Access_Type
b67a385c 6605 and then
401093c1
ES
6606 Base_Type
6607 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 6608 Cls_Type))
35ae2ed8 6609 then
ec6078e3 6610 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
6611 Set_Is_Overloaded (Call_Node, False);
6612 Success := False;
4c46b835 6613
0a36105d
JM
6614 if No (Matching_Op) then
6615 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6616 Set_Etype (Call_Node, Any_Type);
6617 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 6618
0a36105d 6619 Set_Name (Call_Node, Hom_Ref);
4c46b835 6620
0a36105d
JM
6621 Analyze_One_Call
6622 (N => Call_Node,
6623 Nam => Hom,
6624 Report => Report_Error,
6625 Success => Success,
6626 Skip_First => True);
4c46b835 6627
0a36105d
JM
6628 Matching_Op :=
6629 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 6630
0a36105d
JM
6631 else
6632 Analyze_One_Call
6633 (N => Call_Node,
6634 Nam => Hom,
6635 Report => Report_Error,
6636 Success => Success,
6637 Skip_First => True);
6638
6639 if Present (Valid_Candidate (Success, Call_Node, Hom))
6640 and then Nkind (Call_Node) /= N_Function_Call
6641 then
ed2233dc 6642 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
6643 Report_Ambiguity (Matching_Op);
6644 Report_Ambiguity (Hom);
6645 Error := True;
6646 return;
6647 end if;
35ae2ed8
AC
6648 end if;
6649 end if;
6650
6651 Hom := Homonym (Hom);
6652 end loop;
0a36105d
JM
6653 end Traverse_Homonyms;
6654
6655 -------------------------
6656 -- Traverse_Interfaces --
6657 -------------------------
35ae2ed8 6658
0a36105d
JM
6659 procedure Traverse_Interfaces
6660 (Anc_Type : Entity_Id;
6661 Error : out Boolean)
6662 is
0a36105d
JM
6663 Intface_List : constant List_Id :=
6664 Abstract_Interface_List (Anc_Type);
d469eabe 6665 Intface : Node_Id;
0a36105d
JM
6666
6667 begin
6668 Error := False;
6669
6670 if Is_Non_Empty_List (Intface_List) then
6671 Intface := First (Intface_List);
6672 while Present (Intface) loop
6673
6674 -- Look for acceptable class-wide homonyms associated with
6675 -- the interface.
6676
6677 Traverse_Homonyms (Etype (Intface), Error);
6678
6679 if Error then
6680 return;
6681 end if;
6682
6683 -- Continue the search by looking at each of the interface's
6684 -- associated interface ancestors.
6685
6686 Traverse_Interfaces (Etype (Intface), Error);
6687
6688 if Error then
6689 return;
6690 end if;
6691
6692 Next (Intface);
6693 end loop;
6694 end if;
6695 end Traverse_Interfaces;
6696
6697 -- Start of processing for Try_Class_Wide_Operation
6698
6699 begin
d469eabe
HK
6700 -- Loop through ancestor types (including interfaces), traversing
6701 -- the homonym chain of the subprogram, trying out those homonyms
6702 -- whose first formal has the class-wide type of the ancestor, or
6703 -- an anonymous access type designating the class-wide type.
0a36105d
JM
6704
6705 Anc_Type := Obj_Type;
6706 loop
6707 -- Look for a match among homonyms associated with the ancestor
6708
6709 Traverse_Homonyms (Anc_Type, Error);
6710
6711 if Error then
6712 return True;
6713 end if;
6714
6715 -- Continue the search for matches among homonyms associated with
6716 -- any interfaces implemented by the ancestor.
6717
6718 Traverse_Interfaces (Anc_Type, Error);
6719
6720 if Error then
6721 return True;
6722 end if;
35ae2ed8 6723
4c46b835
AC
6724 exit when Etype (Anc_Type) = Anc_Type;
6725 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
6726 end loop;
6727
0a36105d
JM
6728 if Present (Matching_Op) then
6729 Set_Etype (Call_Node, Etype (Matching_Op));
6730 end if;
ec6078e3 6731
0a36105d 6732 return Present (Matching_Op);
35ae2ed8
AC
6733 end Try_Class_Wide_Operation;
6734
0a36105d
JM
6735 -----------------------------------
6736 -- Try_One_Prefix_Interpretation --
6737 -----------------------------------
6738
6739 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6740 begin
6741 Obj_Type := T;
6742
6743 if Is_Access_Type (Obj_Type) then
6744 Obj_Type := Designated_Type (Obj_Type);
6745 end if;
6746
6747 if Ekind (Obj_Type) = E_Private_Subtype then
6748 Obj_Type := Base_Type (Obj_Type);
6749 end if;
6750
6751 if Is_Class_Wide_Type (Obj_Type) then
6752 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6753 end if;
6754
6755 -- The type may have be obtained through a limited_with clause,
6756 -- in which case the primitive operations are available on its
401093c1 6757 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
6758
6759 if Ekind (Obj_Type) = E_Incomplete_Type
6760 and then From_With_Type (Obj_Type)
6761 then
401093c1 6762 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
6763 end if;
6764
6765 -- If the object is not tagged, or the type is still an incomplete
6766 -- type, this is not a prefixed call.
6767
6768 if not Is_Tagged_Type (Obj_Type)
6769 or else Is_Incomplete_Type (Obj_Type)
6770 then
6771 return;
6772 end if;
6773
6774 if Try_Primitive_Operation
6775 (Call_Node => New_Call_Node,
6776 Node_To_Replace => Node_To_Replace)
6777 or else
6778 Try_Class_Wide_Operation
6779 (Call_Node => New_Call_Node,
6780 Node_To_Replace => Node_To_Replace)
6781 then
6782 null;
6783 end if;
6784 end Try_One_Prefix_Interpretation;
6785
4c46b835
AC
6786 -----------------------------
6787 -- Try_Primitive_Operation --
6788 -----------------------------
35ae2ed8 6789
4c46b835
AC
6790 function Try_Primitive_Operation
6791 (Call_Node : Node_Id;
6792 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 6793 is
6e73e3ab
AC
6794 Elmt : Elmt_Id;
6795 Prim_Op : Entity_Id;
0a36105d
JM
6796 Matching_Op : Entity_Id := Empty;
6797 Prim_Op_Ref : Node_Id := Empty;
6798
6799 Corr_Type : Entity_Id := Empty;
6800 -- If the prefix is a synchronized type, the controlling type of
6801 -- the primitive operation is the corresponding record type, else
6802 -- this is the object type itself.
6803
6804 Success : Boolean := False;
35ae2ed8 6805
401093c1
ES
6806 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6807 -- For tagged types the candidate interpretations are found in
6808 -- the list of primitive operations of the type and its ancestors.
6809 -- For formal tagged types we have to find the operations declared
6810 -- in the same scope as the type (including in the generic formal
6811 -- part) because the type itself carries no primitive operations,
6812 -- except for formal derived types that inherit the operations of
6813 -- the parent and progenitors.
d469eabe
HK
6814 -- If the context is a generic subprogram body, the generic formals
6815 -- are visible by name, but are not in the entity list of the
6816 -- subprogram because that list starts with the subprogram formals.
6817 -- We retrieve the candidate operations from the generic declaration.
401093c1 6818
dfcfdc0a
AC
6819 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
6820 -- An operation that overrides an inherited operation in the private
6821 -- part of its package may be hidden, but if the inherited operation
6822 -- is visible a direct call to it will dispatch to the private one,
6823 -- which is therefore a valid candidate.
6824
ec6078e3
ES
6825 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6826 -- Verify that the prefix, dereferenced if need be, is a valid
6827 -- controlling argument in a call to Op. The remaining actuals
6828 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 6829
401093c1
ES
6830 ------------------------------
6831 -- Collect_Generic_Type_Ops --
6832 ------------------------------
6833
6834 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6835 Bas : constant Entity_Id := Base_Type (T);
6836 Candidates : constant Elist_Id := New_Elmt_List;
6837 Subp : Entity_Id;
6838 Formal : Entity_Id;
6839
d469eabe
HK
6840 procedure Check_Candidate;
6841 -- The operation is a candidate if its first parameter is a
6842 -- controlling operand of the desired type.
6843
6844 -----------------------
6845 -- Check_Candidate; --
6846 -----------------------
6847
6848 procedure Check_Candidate is
6849 begin
6850 Formal := First_Formal (Subp);
6851
6852 if Present (Formal)
6853 and then Is_Controlling_Formal (Formal)
6854 and then
6855 (Base_Type (Etype (Formal)) = Bas
6856 or else
6857 (Is_Access_Type (Etype (Formal))
6858 and then Designated_Type (Etype (Formal)) = Bas))
6859 then
6860 Append_Elmt (Subp, Candidates);
6861 end if;
6862 end Check_Candidate;
6863
6864 -- Start of processing for Collect_Generic_Type_Ops
6865
401093c1
ES
6866 begin
6867 if Is_Derived_Type (T) then
6868 return Primitive_Operations (T);
6869
bce79204
AC
6870 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
6871
d469eabe
HK
6872 -- Scan the list of generic formals to find subprograms
6873 -- that may have a first controlling formal of the type.
6874
bb10b891
AC
6875 if Nkind (Unit_Declaration_Node (Scope (T)))
6876 = N_Generic_Subprogram_Declaration
6877 then
6878 declare
6879 Decl : Node_Id;
6880
6881 begin
6882 Decl :=
6883 First (Generic_Formal_Declarations
6884 (Unit_Declaration_Node (Scope (T))));
6885 while Present (Decl) loop
6886 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6887 Subp := Defining_Entity (Decl);
6888 Check_Candidate;
6889 end if;
d469eabe 6890
bb10b891
AC
6891 Next (Decl);
6892 end loop;
6893 end;
6894 end if;
d469eabe
HK
6895 return Candidates;
6896
401093c1
ES
6897 else
6898 -- Scan the list of entities declared in the same scope as
6899 -- the type. In general this will be an open scope, given that
6900 -- the call we are analyzing can only appear within a generic
6901 -- declaration or body (either the one that declares T, or a
6902 -- child unit).
6903
bb10b891
AC
6904 -- For a subtype representing a generic actual type, go to the
6905 -- base type.
6906
6907 if Is_Generic_Actual_Type (T) then
6908 Subp := First_Entity (Scope (Base_Type (T)));
6909 else
6910 Subp := First_Entity (Scope (T));
6911 end if;
6912
401093c1
ES
6913 while Present (Subp) loop
6914 if Is_Overloadable (Subp) then
d469eabe 6915 Check_Candidate;
401093c1
ES
6916 end if;
6917
6918 Next_Entity (Subp);
6919 end loop;
6920
6921 return Candidates;
6922 end if;
6923 end Collect_Generic_Type_Ops;
6924
dfcfdc0a
AC
6925 ---------------------------
6926 -- Is_Private_Overriding --
6927 ---------------------------
6928
6929 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
6930 Visible_Op : constant Entity_Id := Homonym (Op);
6931
6932 begin
6933 return Present (Visible_Op)
6465b6a7 6934 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
6935 and then not Comes_From_Source (Visible_Op)
6936 and then Alias (Visible_Op) = Op
6937 and then not Is_Hidden (Visible_Op);
6938 end Is_Private_Overriding;
6939
ec6078e3
ES
6940 -----------------------------
6941 -- Valid_First_Argument_Of --
6942 -----------------------------
35ae2ed8 6943
ec6078e3 6944 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 6945 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 6946
ec6078e3 6947 begin
9febb58f
JM
6948 if Is_Concurrent_Type (Typ)
6949 and then Present (Corresponding_Record_Type (Typ))
6950 then
6951 Typ := Corresponding_Record_Type (Typ);
6952 end if;
6953
d469eabe
HK
6954 -- Simple case. Object may be a subtype of the tagged type or
6955 -- may be the corresponding record of a synchronized type.
5d09245e 6956
aab883ec 6957 return Obj_Type = Typ
d469eabe 6958 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
6959 or else Corr_Type = Typ
6960
6961 -- Prefix can be dereferenced
725e2a15 6962
ec6078e3 6963 or else
0a36105d
JM
6964 (Is_Access_Type (Corr_Type)
6965 and then Designated_Type (Corr_Type) = Typ)
5d09245e 6966
0a36105d
JM
6967 -- Formal is an access parameter, for which the object
6968 -- can provide an access.
35ae2ed8 6969
ec6078e3
ES
6970 or else
6971 (Ekind (Typ) = E_Anonymous_Access_Type
0a36105d 6972 and then Designated_Type (Typ) = Base_Type (Corr_Type));
ec6078e3 6973 end Valid_First_Argument_Of;
35ae2ed8 6974
ec6078e3 6975 -- Start of processing for Try_Primitive_Operation
35ae2ed8 6976
ec6078e3 6977 begin
d469eabe 6978 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
6979 -- must be identical, and the kind of call indicates the expected
6980 -- kind of operation (function or procedure). If the type is a
d469eabe 6981 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 6982 -- corresponding record (base) type.
aab883ec
ES
6983
6984 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
6985 if Present (Corresponding_Record_Type (Obj_Type)) then
6986 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6987 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6988 else
6989 Corr_Type := Obj_Type;
6990 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
6991 end if;
6992
401093c1 6993 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 6994 Corr_Type := Obj_Type;
aab883ec 6995 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
401093c1
ES
6996
6997 else
6998 Corr_Type := Obj_Type;
6999 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 7000 end if;
35ae2ed8 7001
ec6078e3
ES
7002 while Present (Elmt) loop
7003 Prim_Op := Node (Elmt);
7004
7005 if Chars (Prim_Op) = Chars (Subprog)
7006 and then Present (First_Formal (Prim_Op))
7007 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 7008 and then
7415029d 7009 (Nkind (Call_Node) = N_Function_Call)
fe45e59e 7010 = (Ekind (Prim_Op) = E_Function)
ec6078e3 7011 then
b67a385c
ES
7012 -- Ada 2005 (AI-251): If this primitive operation corresponds
7013 -- with an immediate ancestor interface there is no need to add
7014 -- it to the list of interpretations; the corresponding aliased
7015 -- primitive is also in this list of primitive operations and
7016 -- will be used instead.
fe45e59e 7017
ce2b6ba5
JM
7018 if (Present (Interface_Alias (Prim_Op))
7019 and then Is_Ancestor (Find_Dispatching_Type
7020 (Alias (Prim_Op)), Corr_Type))
0a36105d 7021
dfcfdc0a
AC
7022 -- Do not consider hidden primitives unless the type is in an
7023 -- open scope or we are within an instance, where visibility
7024 -- is known to be correct, or else if this is an overriding
7025 -- operation in the private part for an inherited operation.
0a36105d 7026
dfcfdc0a
AC
7027 or else (Is_Hidden (Prim_Op)
7028 and then not Is_Immediately_Visible (Obj_Type)
7029 and then not In_Instance
7030 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
7031 then
7032 goto Continue;
7033 end if;
7034
0a36105d
JM
7035 Set_Etype (Call_Node, Any_Type);
7036 Set_Is_Overloaded (Call_Node, False);
7037
7038 if No (Matching_Op) then
fe45e59e 7039 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
b67a385c 7040 Candidate := Prim_Op;
35ae2ed8 7041
fe45e59e 7042 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 7043
fe45e59e 7044 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 7045 Success := False;
35ae2ed8 7046
fe45e59e
ES
7047 Analyze_One_Call
7048 (N => Call_Node,
7049 Nam => Prim_Op,
b67a385c 7050 Report => Report_Error,
fe45e59e
ES
7051 Success => Success,
7052 Skip_First => True);
35ae2ed8 7053
0a36105d 7054 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 7055
d469eabe
HK
7056 -- More than one interpretation, collect for subsequent
7057 -- disambiguation. If this is a procedure call and there
7058 -- is another match, report ambiguity now.
0a36105d 7059
d469eabe 7060 else
0a36105d
JM
7061 Analyze_One_Call
7062 (N => Call_Node,
7063 Nam => Prim_Op,
7064 Report => Report_Error,
7065 Success => Success,
7066 Skip_First => True);
fe45e59e 7067
0a36105d
JM
7068 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7069 and then Nkind (Call_Node) /= N_Function_Call
7070 then
ed2233dc 7071 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
7072 Report_Ambiguity (Matching_Op);
7073 Report_Ambiguity (Prim_Op);
7074 return True;
7075 end if;
4c46b835
AC
7076 end if;
7077 end if;
35ae2ed8 7078
fe45e59e 7079 <<Continue>>
4c46b835
AC
7080 Next_Elmt (Elmt);
7081 end loop;
35ae2ed8 7082
0a36105d
JM
7083 if Present (Matching_Op) then
7084 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
7085 end if;
7086
0a36105d 7087 return Present (Matching_Op);
4c46b835 7088 end Try_Primitive_Operation;
35ae2ed8 7089
4c46b835 7090 -- Start of processing for Try_Object_Operation
35ae2ed8 7091
4c46b835 7092 begin
0a36105d 7093 Analyze_Expression (Obj);
ec6078e3 7094
0a36105d 7095 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
7096
7097 if Is_Subprg_Call and then N = Name (Parent (N)) then
7098 Actual := First (Parameter_Associations (Parent (N)));
7099 while Present (Actual) loop
725e2a15 7100 Analyze_Expression (Actual);
28d6470f
JM
7101 Next (Actual);
7102 end loop;
7103 end if;
5d09245e 7104
ec6078e3
ES
7105 -- Build a subprogram call node, using a copy of Obj as its first
7106 -- actual. This is a placeholder, to be replaced by an explicit
7107 -- dereference when needed.
4c46b835 7108
ec6078e3
ES
7109 Transform_Object_Operation
7110 (Call_Node => New_Call_Node,
0a36105d 7111 Node_To_Replace => Node_To_Replace);
4c46b835 7112
ec6078e3 7113 Set_Etype (New_Call_Node, Any_Type);
0a36105d 7114 Set_Etype (Subprog, Any_Type);
ec6078e3 7115 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 7116
0a36105d
JM
7117 if not Is_Overloaded (Obj) then
7118 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 7119
0a36105d
JM
7120 else
7121 declare
7122 I : Interp_Index;
7123 It : Interp;
7124 begin
7125 Get_First_Interp (Obj, I, It);
7126 while Present (It.Nam) loop
7127 Try_One_Prefix_Interpretation (It.Typ);
7128 Get_Next_Interp (I, It);
7129 end loop;
7130 end;
7131 end if;
7132
7133 if Etype (New_Call_Node) /= Any_Type then
7134 Complete_Object_Operation
7135 (Call_Node => New_Call_Node,
7136 Node_To_Replace => Node_To_Replace);
b67a385c
ES
7137 return True;
7138
7139 elsif Present (Candidate) then
7140
7141 -- The argument list is not type correct. Re-analyze with error
7142 -- reporting enabled, and use one of the possible candidates.
d469eabe 7143 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
7144
7145 if All_Errors_Mode then
7146 Report_Error := True;
7147 if Try_Primitive_Operation
7148 (Call_Node => New_Call_Node,
7149 Node_To_Replace => Node_To_Replace)
7150
7151 or else
7152 Try_Class_Wide_Operation
7153 (Call_Node => New_Call_Node,
7154 Node_To_Replace => Node_To_Replace)
7155 then
7156 null;
7157 end if;
7158
7159 else
7160 Analyze_One_Call
7161 (N => New_Call_Node,
7162 Nam => Candidate,
7163 Report => True,
7164 Success => Success,
7165 Skip_First => True);
7166 end if;
7167
d469eabe
HK
7168 -- No need for further errors
7169
7170 return True;
b67a385c
ES
7171
7172 else
7173 -- There was no candidate operation, so report it as an error
7174 -- in the caller: Analyze_Selected_Component.
7175
7176 return False;
7177 end if;
35ae2ed8
AC
7178 end Try_Object_Operation;
7179
b4592168
GD
7180 ---------
7181 -- wpo --
7182 ---------
7183
7184 procedure wpo (T : Entity_Id) is
7185 Op : Entity_Id;
7186 E : Elmt_Id;
7187
7188 begin
7189 if not Is_Tagged_Type (T) then
7190 return;
7191 end if;
7192
7193 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7194 while Present (E) loop
7195 Op := Node (E);
7196 Write_Int (Int (Op));
7197 Write_Str (" === ");
7198 Write_Name (Chars (Op));
7199 Write_Str (" in ");
7200 Write_Name (Chars (Scope (Op)));
7201 Next_Elmt (E);
7202 Write_Eol;
7203 end loop;
7204 end wpo;
7205
996ae0b0 7206end Sem_Ch4;