]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
3e2399ba 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
0f1a6a0b 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Expander; use Expander;
ec4867fa 34with Exp_Ch6; use Exp_Ch6;
996ae0b0 35with Exp_Ch7; use Exp_Ch7;
21d27997 36with Exp_Ch9; use Exp_Ch9;
ce2b6ba5 37with Exp_Disp; use Exp_Disp;
e660dbf7 38with Exp_Tss; use Exp_Tss;
ec4867fa 39with Exp_Util; use Exp_Util;
fbf5a39b 40with Fname; use Fname;
996ae0b0 41with Freeze; use Freeze;
41251c60 42with Itypes; use Itypes;
996ae0b0 43with Lib.Xref; use Lib.Xref;
ec4867fa 44with Layout; use Layout;
996ae0b0
RK
45with Namet; use Namet;
46with Lib; use Lib;
47with Nlists; use Nlists;
48with Nmake; use Nmake;
49with Opt; use Opt;
50with Output; use Output;
b20de9b9
AC
51with Restrict; use Restrict;
52with Rident; use Rident;
996ae0b0
RK
53with Rtsfind; use Rtsfind;
54with Sem; use Sem;
a4100e55 55with Sem_Aux; use Sem_Aux;
996ae0b0
RK
56with Sem_Cat; use Sem_Cat;
57with Sem_Ch3; use Sem_Ch3;
58with Sem_Ch4; use Sem_Ch4;
59with Sem_Ch5; use Sem_Ch5;
60with Sem_Ch8; use Sem_Ch8;
9bc856dd 61with Sem_Ch10; use Sem_Ch10;
996ae0b0 62with Sem_Ch12; use Sem_Ch12;
0f1a6a0b 63with Sem_Ch13; use Sem_Ch13;
996ae0b0
RK
64with Sem_Disp; use Sem_Disp;
65with Sem_Dist; use Sem_Dist;
66with Sem_Elim; use Sem_Elim;
67with Sem_Eval; use Sem_Eval;
68with Sem_Mech; use Sem_Mech;
69with Sem_Prag; use Sem_Prag;
70with Sem_Res; use Sem_Res;
71with Sem_Util; use Sem_Util;
72with Sem_Type; use Sem_Type;
73with Sem_Warn; use Sem_Warn;
74with Sinput; use Sinput;
75with Stand; use Stand;
76with Sinfo; use Sinfo;
77with Sinfo.CN; use Sinfo.CN;
78with Snames; use Snames;
79with Stringt; use Stringt;
80with Style;
81with Stylesw; use Stylesw;
82with Tbuild; use Tbuild;
83with Uintp; use Uintp;
84with Urealp; use Urealp;
85with Validsw; use Validsw;
86
87package body Sem_Ch6 is
88
c8ef728f 89 May_Hide_Profile : Boolean := False;
ec4867fa
ES
90 -- This flag is used to indicate that two formals in two subprograms being
91 -- checked for conformance differ only in that one is an access parameter
92 -- while the other is of a general access type with the same designated
93 -- type. In this case, if the rest of the signatures match, a call to
94 -- either subprogram may be ambiguous, which is worth a warning. The flag
95 -- is set in Compatible_Types, and the warning emitted in
96 -- New_Overloaded_Entity.
c8ef728f 97
996ae0b0
RK
98 -----------------------
99 -- Local Subprograms --
100 -----------------------
101
5d37ba92 102 procedure Analyze_Return_Statement (N : Node_Id);
5b9c3fc4 103 -- Common processing for simple and extended return statements
ec4867fa
ES
104
105 procedure Analyze_Function_Return (N : Node_Id);
81db9d77
ES
106 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
107 -- applies to a [generic] function.
ec4867fa 108
82c80734
RD
109 procedure Analyze_Return_Type (N : Node_Id);
110 -- Subsidiary to Process_Formals: analyze subtype mark in function
5b9c3fc4 111 -- specification in a context where the formals are visible and hide
82c80734
RD
112 -- outer homographs.
113
b1b543d2 114 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
13d923cc
RD
115 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
116 -- that we can use RETURN but not skip the debug output at the end.
b1b543d2 117
996ae0b0 118 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
82c80734
RD
119 -- Analyze a generic subprogram body. N is the body to be analyzed, and
120 -- Gen_Id is the defining entity Id for the corresponding spec.
996ae0b0 121
d05ef0ab 122 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
996ae0b0
RK
123 -- If a subprogram has pragma Inline and inlining is active, use generic
124 -- machinery to build an unexpanded body for the subprogram. This body is
f3d57416 125 -- subsequently used for inline expansions at call sites. If subprogram can
996ae0b0
RK
126 -- be inlined (depending on size and nature of local declarations) this
127 -- function returns true. Otherwise subprogram body is treated normally.
aa720a54
AC
128 -- If proper warnings are enabled and the subprogram contains a construct
129 -- that cannot be inlined, the offending construct is flagged accordingly.
996ae0b0 130
996ae0b0 131 procedure Check_Conformance
41251c60
JM
132 (New_Id : Entity_Id;
133 Old_Id : Entity_Id;
134 Ctype : Conformance_Type;
135 Errmsg : Boolean;
136 Conforms : out Boolean;
137 Err_Loc : Node_Id := Empty;
138 Get_Inst : Boolean := False;
139 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
140 -- Given two entities, this procedure checks that the profiles associated
141 -- with these entities meet the conformance criterion given by the third
142 -- parameter. If they conform, Conforms is set True and control returns
143 -- to the caller. If they do not conform, Conforms is set to False, and
144 -- in addition, if Errmsg is True on the call, proper messages are output
145 -- to complain about the conformance failure. If Err_Loc is non_Empty
146 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
147 -- error messages are placed on the appropriate part of the construct
148 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
149 -- against a formal access-to-subprogram type so Get_Instance_Of must
150 -- be called.
151
152 procedure Check_Subprogram_Order (N : Node_Id);
153 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
154 -- the alpha ordering rule for N if this ordering requirement applicable.
155
996ae0b0
RK
156 procedure Check_Returns
157 (HSS : Node_Id;
158 Mode : Character;
c8ef728f
ES
159 Err : out Boolean;
160 Proc : Entity_Id := Empty);
161 -- Called to check for missing return statements in a function body, or for
0a36105d 162 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
163 -- handled statement sequence for the subprogram body. This procedure
164 -- checks all flow paths to make sure they either have return (Mode = 'F',
165 -- used for functions) or do not have a return (Mode = 'P', used for
166 -- No_Return procedures). The flag Err is set if there are any control
167 -- paths not explicitly terminated by a return in the function case, and is
168 -- True otherwise. Proc is the entity for the procedure case and is used
169 -- in posting the warning message.
996ae0b0 170
e5a58fac
AC
171 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
172 -- In Ada 2012, a primitive equality operator on an untagged record type
173 -- must appear before the type is frozen, and have the same visibility as
174 -- that of the type. This procedure checks that this rule is met, and
175 -- otherwise emits an error on the subprogram declaration and a warning
176 -- on the earlier freeze point if it is easy to locate.
177
996ae0b0 178 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
179 -- This procedure makes S, a new overloaded entity, into the first visible
180 -- entity with that name.
996ae0b0
RK
181
182 procedure Install_Entity (E : Entity_Id);
e895b435 183 -- Make single entity visible. Used for generic formals as well
996ae0b0 184
a5b62485
AC
185 function Is_Non_Overriding_Operation
186 (Prev_E : Entity_Id;
187 New_E : Entity_Id) return Boolean;
188 -- Enforce the rule given in 12.3(18): a private operation in an instance
189 -- overrides an inherited operation only if the corresponding operation
190 -- was overriding in the generic. This can happen for primitive operations
191 -- of types derived (in the generic unit) from formal private or formal
192 -- derived types.
193
996ae0b0
RK
194 procedure Make_Inequality_Operator (S : Entity_Id);
195 -- Create the declaration for an inequality operator that is implicitly
196 -- created by a user-defined equality operator that yields a boolean.
197
198 procedure May_Need_Actuals (Fun : Entity_Id);
199 -- Flag functions that can be called without parameters, i.e. those that
200 -- have no parameters, or those for which defaults exist for all parameters
201
21d27997
RD
202 procedure Process_PPCs
203 (N : Node_Id;
204 Spec_Id : Entity_Id;
205 Body_Id : Entity_Id);
3764bb00
BD
206 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
207 -- conditions for the body and assembling and inserting the _postconditions
208 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
209 -- the entities for the body and separate spec (if there is no separate
210 -- spec, Spec_Id is Empty).
21d27997 211
996ae0b0
RK
212 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
213 -- Formal_Id is an formal parameter entity. This procedure deals with
e358346d
AC
214 -- setting the proper validity status for this entity, which depends on
215 -- the kind of parameter and the validity checking mode.
996ae0b0 216
5d37ba92
ES
217 ------------------------------
218 -- Analyze_Return_Statement --
219 ------------------------------
ec4867fa 220
5d37ba92 221 procedure Analyze_Return_Statement (N : Node_Id) is
ec4867fa 222
800621e0
RD
223 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
224 N_Extended_Return_Statement));
ec4867fa
ES
225
226 Returns_Object : constant Boolean :=
5d37ba92
ES
227 Nkind (N) = N_Extended_Return_Statement
228 or else
229 (Nkind (N) = N_Simple_Return_Statement
230 and then Present (Expression (N)));
ec4867fa 231 -- True if we're returning something; that is, "return <expression>;"
5d37ba92
ES
232 -- or "return Result : T [:= ...]". False for "return;". Used for error
233 -- checking: If Returns_Object is True, N should apply to a function
234 -- body; otherwise N should apply to a procedure body, entry body,
235 -- accept statement, or extended return statement.
ec4867fa
ES
236
237 function Find_What_It_Applies_To return Entity_Id;
238 -- Find the entity representing the innermost enclosing body, accept
5d37ba92
ES
239 -- statement, or extended return statement. If the result is a callable
240 -- construct or extended return statement, then this will be the value
241 -- of the Return_Applies_To attribute. Otherwise, the program is
242 -- illegal. See RM-6.5(4/2).
ec4867fa
ES
243
244 -----------------------------
245 -- Find_What_It_Applies_To --
246 -----------------------------
247
248 function Find_What_It_Applies_To return Entity_Id is
249 Result : Entity_Id := Empty;
250
251 begin
252 -- Loop outward through the Scope_Stack, skipping blocks and loops
253
254 for J in reverse 0 .. Scope_Stack.Last loop
255 Result := Scope_Stack.Table (J).Entity;
256 exit when Ekind (Result) /= E_Block and then
257 Ekind (Result) /= E_Loop;
258 end loop;
259
260 pragma Assert (Present (Result));
261 return Result;
ec4867fa
ES
262 end Find_What_It_Applies_To;
263
5d37ba92
ES
264 -- Local declarations
265
ec4867fa
ES
266 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
267 Kind : constant Entity_Kind := Ekind (Scope_Id);
ec4867fa
ES
268 Loc : constant Source_Ptr := Sloc (N);
269 Stm_Entity : constant Entity_Id :=
270 New_Internal_Entity
271 (E_Return_Statement, Current_Scope, Loc, 'R');
272
5d37ba92 273 -- Start of processing for Analyze_Return_Statement
ec4867fa
ES
274
275 begin
ec4867fa
ES
276 Set_Return_Statement_Entity (N, Stm_Entity);
277
278 Set_Etype (Stm_Entity, Standard_Void_Type);
279 Set_Return_Applies_To (Stm_Entity, Scope_Id);
280
5d37ba92
ES
281 -- Place Return entity on scope stack, to simplify enforcement of 6.5
282 -- (4/2): an inner return statement will apply to this extended return.
ec4867fa
ES
283
284 if Nkind (N) = N_Extended_Return_Statement then
0a36105d 285 Push_Scope (Stm_Entity);
ec4867fa
ES
286 end if;
287
5334d18f
BD
288 -- Check that pragma No_Return is obeyed. Don't complain about the
289 -- implicitly-generated return that is placed at the end.
ec4867fa 290
5334d18f 291 if No_Return (Scope_Id) and then Comes_From_Source (N) then
ec4867fa
ES
292 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
293 end if;
294
5d37ba92
ES
295 -- Warn on any unassigned OUT parameters if in procedure
296
297 if Ekind (Scope_Id) = E_Procedure then
298 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
299 end if;
300
301 -- Check that functions return objects, and other things do not
ec4867fa
ES
302
303 if Kind = E_Function or else Kind = E_Generic_Function then
304 if not Returns_Object then
305 Error_Msg_N ("missing expression in return from function", N);
306 end if;
307
308 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
309 if Returns_Object then
310 Error_Msg_N ("procedure cannot return value (use function)", N);
311 end if;
312
313 elsif Kind = E_Entry or else Kind = E_Entry_Family then
314 if Returns_Object then
315 if Is_Protected_Type (Scope (Scope_Id)) then
316 Error_Msg_N ("entry body cannot return value", N);
317 else
318 Error_Msg_N ("accept statement cannot return value", N);
319 end if;
320 end if;
321
322 elsif Kind = E_Return_Statement then
323
324 -- We are nested within another return statement, which must be an
325 -- extended_return_statement.
326
327 if Returns_Object then
ed2233dc 328 Error_Msg_N
ec4867fa
ES
329 ("extended_return_statement cannot return value; " &
330 "use `""RETURN;""`", N);
331 end if;
332
333 else
334 Error_Msg_N ("illegal context for return statement", N);
335 end if;
336
337 if Kind = E_Function or else Kind = E_Generic_Function then
338 Analyze_Function_Return (N);
339 end if;
340
341 if Nkind (N) = N_Extended_Return_Statement then
342 End_Scope;
343 end if;
344
81db9d77 345 Kill_Current_Values (Last_Assignment_Only => True);
ec4867fa 346 Check_Unreachable_Code (N);
5d37ba92 347 end Analyze_Return_Statement;
ec4867fa 348
996ae0b0
RK
349 ---------------------------------------------
350 -- Analyze_Abstract_Subprogram_Declaration --
351 ---------------------------------------------
352
353 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
354 Designator : constant Entity_Id :=
355 Analyze_Subprogram_Specification (Specification (N));
996ae0b0 356 Scop : constant Entity_Id := Current_Scope;
0f1a6a0b 357 AS : constant List_Id := Aspect_Specifications (N);
996ae0b0
RK
358
359 begin
360 Generate_Definition (Designator);
f937473f 361 Set_Is_Abstract_Subprogram (Designator);
996ae0b0
RK
362 New_Overloaded_Entity (Designator);
363 Check_Delayed_Subprogram (Designator);
364
fbf5a39b 365 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0
RK
366
367 if Ekind (Scope (Designator)) = E_Protected_Type then
368 Error_Msg_N
369 ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
370
371 -- Issue a warning if the abstract subprogram is neither a dispatching
372 -- operation nor an operation that overrides an inherited subprogram or
373 -- predefined operator, since this most likely indicates a mistake.
374
375 elsif Warn_On_Redundant_Constructs
376 and then not Is_Dispatching_Operation (Designator)
377 and then not Is_Overriding_Operation (Designator)
378 and then (not Is_Operator_Symbol_Name (Chars (Designator))
379 or else Scop /= Scope (Etype (First_Formal (Designator))))
380 then
381 Error_Msg_N
382 ("?abstract subprogram is not dispatching or overriding", N);
996ae0b0 383 end if;
fbf5a39b
AC
384
385 Generate_Reference_To_Formals (Designator);
361effb1 386 Check_Eliminated (Designator);
0f1a6a0b 387 Analyze_Aspect_Specifications (N, Designator, AS);
996ae0b0
RK
388 end Analyze_Abstract_Subprogram_Declaration;
389
ec4867fa
ES
390 ----------------------------------------
391 -- Analyze_Extended_Return_Statement --
392 ----------------------------------------
393
394 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
395 begin
5d37ba92 396 Analyze_Return_Statement (N);
ec4867fa
ES
397 end Analyze_Extended_Return_Statement;
398
996ae0b0
RK
399 ----------------------------
400 -- Analyze_Function_Call --
401 ----------------------------
402
403 procedure Analyze_Function_Call (N : Node_Id) is
404 P : constant Node_Id := Name (N);
405 L : constant List_Id := Parameter_Associations (N);
406 Actual : Node_Id;
407
408 begin
409 Analyze (P);
410
82c80734 411 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
e660dbf7 412 -- as B (A, X). If the rewriting is successful, the call has been
82c80734
RD
413 -- analyzed and we just return.
414
415 if Nkind (P) = N_Selected_Component
416 and then Name (N) /= P
417 and then Is_Rewrite_Substitution (N)
418 and then Present (Etype (N))
419 then
420 return;
421 end if;
422
996ae0b0
RK
423 -- If error analyzing name, then set Any_Type as result type and return
424
425 if Etype (P) = Any_Type then
426 Set_Etype (N, Any_Type);
427 return;
428 end if;
429
430 -- Otherwise analyze the parameters
431
432 if Present (L) then
433 Actual := First (L);
996ae0b0
RK
434 while Present (Actual) loop
435 Analyze (Actual);
436 Check_Parameterless_Call (Actual);
437 Next (Actual);
438 end loop;
439 end if;
440
441 Analyze_Call (N);
996ae0b0
RK
442 end Analyze_Function_Call;
443
ec4867fa
ES
444 -----------------------------
445 -- Analyze_Function_Return --
446 -----------------------------
447
448 procedure Analyze_Function_Return (N : Node_Id) is
449 Loc : constant Source_Ptr := Sloc (N);
450 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
451 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
452
5d37ba92 453 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
454 -- Function result subtype
455
456 procedure Check_Limited_Return (Expr : Node_Id);
457 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
458 -- limited types. Used only for simple return statements.
459 -- Expr is the expression returned.
460
461 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
462 -- Check that the return_subtype_indication properly matches the result
463 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
464
465 --------------------------
466 -- Check_Limited_Return --
467 --------------------------
468
469 procedure Check_Limited_Return (Expr : Node_Id) is
470 begin
471 -- Ada 2005 (AI-318-02): Return-by-reference types have been
472 -- removed and replaced by anonymous access results. This is an
473 -- incompatibility with Ada 95. Not clear whether this should be
474 -- enforced yet or perhaps controllable with special switch. ???
475
476 if Is_Limited_Type (R_Type)
477 and then Comes_From_Source (N)
478 and then not In_Instance_Body
2a31c32b 479 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
ec4867fa
ES
480 then
481 -- Error in Ada 2005
482
0791fbe9 483 if Ada_Version >= Ada_2005
ec4867fa
ES
484 and then not Debug_Flag_Dot_L
485 and then not GNAT_Mode
486 then
487 Error_Msg_N
488 ("(Ada 2005) cannot copy object of a limited type " &
5d37ba92 489 "(RM-2005 6.5(5.5/2))", Expr);
e0ae93e2 490
40f07b4b 491 if Is_Immutably_Limited_Type (R_Type) then
ec4867fa
ES
492 Error_Msg_N
493 ("\return by reference not permitted in Ada 2005", Expr);
494 end if;
495
496 -- Warn in Ada 95 mode, to give folks a heads up about this
497 -- incompatibility.
498
499 -- In GNAT mode, this is just a warning, to allow it to be
500 -- evilly turned off. Otherwise it is a real error.
501
9694c039
AC
502 -- In a generic context, simplify the warning because it makes
503 -- no sense to discuss pass-by-reference or copy.
504
ec4867fa 505 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
9694c039
AC
506 if Inside_A_Generic then
507 Error_Msg_N
20261dc1
AC
508 ("return of limited object not permitted in Ada2005 "
509 & "(RM-2005 6.5(5.5/2))?", Expr);
9694c039
AC
510
511 elsif Is_Immutably_Limited_Type (R_Type) then
ec4867fa 512 Error_Msg_N
20261dc1
AC
513 ("return by reference not permitted in Ada 2005 "
514 & "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
515 else
516 Error_Msg_N
20261dc1
AC
517 ("cannot copy object of a limited type in Ada 2005 "
518 & "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
519 end if;
520
521 -- Ada 95 mode, compatibility warnings disabled
522
523 else
524 return; -- skip continuation messages below
525 end if;
526
9694c039
AC
527 if not Inside_A_Generic then
528 Error_Msg_N
529 ("\consider switching to return of access type", Expr);
530 Explain_Limited_Type (R_Type, Expr);
531 end if;
ec4867fa
ES
532 end if;
533 end Check_Limited_Return;
534
535 -------------------------------------
536 -- Check_Return_Subtype_Indication --
537 -------------------------------------
538
539 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
7665e4bd
AC
540 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
541
542 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
543 -- Subtype given in the extended return statement (must match R_Type)
ec4867fa
ES
544
545 Subtype_Ind : constant Node_Id :=
546 Object_Definition (Original_Node (Obj_Decl));
547
548 R_Type_Is_Anon_Access :
549 constant Boolean :=
550 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
551 or else
552 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
553 or else
554 Ekind (R_Type) = E_Anonymous_Access_Type;
555 -- True if return type of the function is an anonymous access type
556 -- Can't we make Is_Anonymous_Access_Type in einfo ???
557
558 R_Stm_Type_Is_Anon_Access :
559 constant Boolean :=
0a36105d 560 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
ec4867fa 561 or else
0a36105d 562 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
ec4867fa 563 or else
0a36105d 564 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
ec4867fa
ES
565 -- True if type of the return object is an anonymous access type
566
567 begin
7665e4bd 568 -- First, avoid cascaded errors
ec4867fa
ES
569
570 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
571 return;
572 end if;
573
574 -- "return access T" case; check that the return statement also has
575 -- "access T", and that the subtypes statically match:
53cf4600 576 -- if this is an access to subprogram the signatures must match.
ec4867fa
ES
577
578 if R_Type_Is_Anon_Access then
579 if R_Stm_Type_Is_Anon_Access then
53cf4600
ES
580 if
581 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
0a36105d 582 then
53cf4600
ES
583 if Base_Type (Designated_Type (R_Stm_Type)) /=
584 Base_Type (Designated_Type (R_Type))
585 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
586 then
587 Error_Msg_N
588 ("subtype must statically match function result subtype",
589 Subtype_Mark (Subtype_Ind));
590 end if;
591
592 else
593 -- For two anonymous access to subprogram types, the
594 -- types themselves must be type conformant.
595
596 if not Conforming_Types
597 (R_Stm_Type, R_Type, Fully_Conformant)
598 then
599 Error_Msg_N
600 ("subtype must statically match function result subtype",
601 Subtype_Ind);
602 end if;
ec4867fa 603 end if;
0a36105d 604
ec4867fa
ES
605 else
606 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
607 end if;
608
81d93365
AC
609 -- Subtype indication case: check that the return object's type is
610 -- covered by the result type, and that the subtypes statically match
611 -- when the result subtype is constrained. Also handle record types
612 -- with unknown discriminants for which we have built the underlying
613 -- record view. Coverage is needed to allow specific-type return
614 -- objects when the result type is class-wide (see AI05-32).
615
616 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
9013065b 617 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
212863c0
AC
618 and then
619 Covers
620 (Base_Type (R_Type),
621 Underlying_Record_View (Base_Type (R_Stm_Type))))
9013065b
AC
622 then
623 -- A null exclusion may be present on the return type, on the
624 -- function specification, on the object declaration or on the
625 -- subtype itself.
ec4867fa 626
21d27997
RD
627 if Is_Access_Type (R_Type)
628 and then
629 (Can_Never_Be_Null (R_Type)
630 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
631 Can_Never_Be_Null (R_Stm_Type)
632 then
633 Error_Msg_N
634 ("subtype must statically match function result subtype",
635 Subtype_Ind);
636 end if;
637
105b5e65 638 -- AI05-103: for elementary types, subtypes must statically match
8779dffa
AC
639
640 if Is_Constrained (R_Type)
641 or else Is_Access_Type (R_Type)
642 then
ec4867fa
ES
643 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
644 Error_Msg_N
0a36105d
JM
645 ("subtype must statically match function result subtype",
646 Subtype_Ind);
ec4867fa
ES
647 end if;
648 end if;
649
ff7139c3
AC
650 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
651 and then Is_Null_Extension (Base_Type (R_Type))
652 then
653 null;
654
ec4867fa
ES
655 else
656 Error_Msg_N
657 ("wrong type for return_subtype_indication", Subtype_Ind);
658 end if;
659 end Check_Return_Subtype_Indication;
660
661 ---------------------
662 -- Local Variables --
663 ---------------------
664
665 Expr : Node_Id;
666
667 -- Start of processing for Analyze_Function_Return
668
669 begin
670 Set_Return_Present (Scope_Id);
671
5d37ba92 672 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa
ES
673 Expr := Expression (N);
674 Analyze_And_Resolve (Expr, R_Type);
675 Check_Limited_Return (Expr);
676
677 else
678 -- Analyze parts specific to extended_return_statement:
679
680 declare
681 Obj_Decl : constant Node_Id :=
682 Last (Return_Object_Declarations (N));
683
684 HSS : constant Node_Id := Handled_Statement_Sequence (N);
685
686 begin
687 Expr := Expression (Obj_Decl);
688
689 -- Note: The check for OK_For_Limited_Init will happen in
690 -- Analyze_Object_Declaration; we treat it as a normal
691 -- object declaration.
692
cd1c668b 693 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
ec4867fa
ES
694 Analyze (Obj_Decl);
695
ec4867fa
ES
696 Check_Return_Subtype_Indication (Obj_Decl);
697
698 if Present (HSS) then
699 Analyze (HSS);
700
701 if Present (Exception_Handlers (HSS)) then
702
703 -- ???Has_Nested_Block_With_Handler needs to be set.
704 -- Probably by creating an actual N_Block_Statement.
705 -- Probably in Expand.
706
707 null;
708 end if;
709 end if;
710
9337aa0a
AC
711 -- Mark the return object as referenced, since the return is an
712 -- implicit reference of the object.
713
714 Set_Referenced (Defining_Identifier (Obj_Decl));
715
ec4867fa
ES
716 Check_References (Stm_Entity);
717 end;
718 end if;
719
21d27997 720 -- Case of Expr present
5d37ba92 721
ec4867fa 722 if Present (Expr)
21d27997
RD
723
724 -- Defend against previous errors
725
726 and then Nkind (Expr) /= N_Empty
5d37ba92 727 and then Present (Etype (Expr))
ec4867fa 728 then
5d37ba92
ES
729 -- Apply constraint check. Note that this is done before the implicit
730 -- conversion of the expression done for anonymous access types to
f3d57416 731 -- ensure correct generation of the null-excluding check associated
5d37ba92
ES
732 -- with null-excluding expressions found in return statements.
733
734 Apply_Constraint_Check (Expr, R_Type);
735
736 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
737 -- type, apply an implicit conversion of the expression to that type
738 -- to force appropriate static and run-time accessibility checks.
ec4867fa 739
0791fbe9 740 if Ada_Version >= Ada_2005
ec4867fa
ES
741 and then Ekind (R_Type) = E_Anonymous_Access_Type
742 then
743 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
744 Analyze_And_Resolve (Expr, R_Type);
745 end if;
746
21d27997
RD
747 -- If the result type is class-wide, then check that the return
748 -- expression's type is not declared at a deeper level than the
749 -- function (RM05-6.5(5.6/2)).
750
0791fbe9 751 if Ada_Version >= Ada_2005
21d27997
RD
752 and then Is_Class_Wide_Type (R_Type)
753 then
754 if Type_Access_Level (Etype (Expr)) >
755 Subprogram_Access_Level (Scope_Id)
756 then
757 Error_Msg_N
758 ("level of return expression type is deeper than " &
759 "class-wide function!", Expr);
760 end if;
761 end if;
762
4755cce9
JM
763 -- Check incorrect use of dynamically tagged expression
764
765 if Is_Tagged_Type (R_Type) then
766 Check_Dynamically_Tagged_Expression
767 (Expr => Expr,
768 Typ => R_Type,
769 Related_Nod => N);
ec4867fa
ES
770 end if;
771
ec4867fa
ES
772 -- ??? A real run-time accessibility check is needed in cases
773 -- involving dereferences of access parameters. For now we just
774 -- check the static cases.
775
0791fbe9 776 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
40f07b4b 777 and then Is_Immutably_Limited_Type (Etype (Scope_Id))
ec4867fa
ES
778 and then Object_Access_Level (Expr) >
779 Subprogram_Access_Level (Scope_Id)
780 then
ec4867fa 781
9694c039
AC
782 -- Suppress the message in a generic, where the rewriting
783 -- is irrelevant.
784
785 if Inside_A_Generic then
786 null;
787
788 else
789 Rewrite (N,
790 Make_Raise_Program_Error (Loc,
791 Reason => PE_Accessibility_Check_Failed));
792 Analyze (N);
793
794 Error_Msg_N
795 ("cannot return a local value by reference?", N);
796 Error_Msg_NE
797 ("\& will be raised at run time?",
798 N, Standard_Program_Error);
799 end if;
ec4867fa 800 end if;
5d37ba92
ES
801
802 if Known_Null (Expr)
803 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
804 and then Null_Exclusion_Present (Parent (Scope_Id))
805 then
806 Apply_Compile_Time_Constraint_Error
807 (N => Expr,
808 Msg => "(Ada 2005) null not allowed for "
809 & "null-excluding return?",
810 Reason => CE_Null_Not_Allowed);
811 end if;
cd5a9750
AC
812
813 -- Apply checks suggested by AI05-0144 (dangerous order dependence)
814 -- (Disabled for now)
815
816 -- Check_Order_Dependence;
ec4867fa
ES
817 end if;
818 end Analyze_Function_Return;
819
996ae0b0
RK
820 -------------------------------------
821 -- Analyze_Generic_Subprogram_Body --
822 -------------------------------------
823
824 procedure Analyze_Generic_Subprogram_Body
825 (N : Node_Id;
826 Gen_Id : Entity_Id)
827 is
fbf5a39b 828 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 829 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 830 Body_Id : Entity_Id;
996ae0b0 831 New_N : Node_Id;
fbf5a39b 832 Spec : Node_Id;
996ae0b0
RK
833
834 begin
82c80734
RD
835 -- Copy body and disable expansion while analyzing the generic For a
836 -- stub, do not copy the stub (which would load the proper body), this
837 -- will be done when the proper body is analyzed.
996ae0b0
RK
838
839 if Nkind (N) /= N_Subprogram_Body_Stub then
840 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
841 Rewrite (N, New_N);
842 Start_Generic;
843 end if;
844
845 Spec := Specification (N);
846
847 -- Within the body of the generic, the subprogram is callable, and
848 -- behaves like the corresponding non-generic unit.
849
fbf5a39b 850 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
851
852 if Kind = E_Generic_Procedure
853 and then Nkind (Spec) /= N_Procedure_Specification
854 then
fbf5a39b 855 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
856 return;
857
858 elsif Kind = E_Generic_Function
859 and then Nkind (Spec) /= N_Function_Specification
860 then
fbf5a39b 861 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
862 return;
863 end if;
864
fbf5a39b 865 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
866
867 if Has_Completion (Gen_Id)
868 and then Nkind (Parent (N)) /= N_Subunit
869 then
870 Error_Msg_N ("duplicate generic body", N);
871 return;
872 else
873 Set_Has_Completion (Gen_Id);
874 end if;
875
876 if Nkind (N) = N_Subprogram_Body_Stub then
877 Set_Ekind (Defining_Entity (Specification (N)), Kind);
878 else
879 Set_Corresponding_Spec (N, Gen_Id);
880 end if;
881
882 if Nkind (Parent (N)) = N_Compilation_Unit then
883 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
884 end if;
885
886 -- Make generic parameters immediately visible in the body. They are
887 -- needed to process the formals declarations. Then make the formals
888 -- visible in a separate step.
889
0a36105d 890 Push_Scope (Gen_Id);
996ae0b0
RK
891
892 declare
893 E : Entity_Id;
894 First_Ent : Entity_Id;
895
896 begin
897 First_Ent := First_Entity (Gen_Id);
898
899 E := First_Ent;
900 while Present (E) and then not Is_Formal (E) loop
901 Install_Entity (E);
902 Next_Entity (E);
903 end loop;
904
905 Set_Use (Generic_Formal_Declarations (Gen_Decl));
906
907 -- Now generic formals are visible, and the specification can be
908 -- analyzed, for subsequent conformance check.
909
fbf5a39b 910 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 911
fbf5a39b 912 -- Make formal parameters visible
996ae0b0
RK
913
914 if Present (E) then
915
fbf5a39b
AC
916 -- E is the first formal parameter, we loop through the formals
917 -- installing them so that they will be visible.
996ae0b0
RK
918
919 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
920 while Present (E) loop
921 Install_Entity (E);
922 Next_Formal (E);
923 end loop;
924 end if;
925
e895b435 926 -- Visible generic entity is callable within its own body
996ae0b0 927
ec4867fa
ES
928 Set_Ekind (Gen_Id, Ekind (Body_Id));
929 Set_Ekind (Body_Id, E_Subprogram_Body);
930 Set_Convention (Body_Id, Convention (Gen_Id));
931 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
932 Set_Scope (Body_Id, Scope (Gen_Id));
fbf5a39b
AC
933 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
934
935 if Nkind (N) = N_Subprogram_Body_Stub then
936
e895b435 937 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
938
939 Set_Ekind (Gen_Id, Kind);
940 Set_Ekind (Body_Id, Kind);
941
942 if Present (First_Ent) then
943 Set_First_Entity (Gen_Id, First_Ent);
944 end if;
945
946 End_Scope;
947 return;
948 end if;
996ae0b0 949
82c80734
RD
950 -- If this is a compilation unit, it must be made visible explicitly,
951 -- because the compilation of the declaration, unlike other library
952 -- unit declarations, does not. If it is not a unit, the following
953 -- is redundant but harmless.
996ae0b0
RK
954
955 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 956 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 957
ec4867fa
ES
958 if Is_Child_Unit (Gen_Id) then
959 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
960 end if;
961
996ae0b0 962 Set_Actual_Subtypes (N, Current_Scope);
0dabde3a
ES
963 Process_PPCs (N, Gen_Id, Body_Id);
964
965 -- If the generic unit carries pre- or post-conditions, copy them
966 -- to the original generic tree, so that they are properly added
967 -- to any instantiation.
968
969 declare
970 Orig : constant Node_Id := Original_Node (N);
971 Cond : Node_Id;
972
973 begin
974 Cond := First (Declarations (N));
975 while Present (Cond) loop
976 if Nkind (Cond) = N_Pragma
977 and then Pragma_Name (Cond) = Name_Check
978 then
979 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
980
981 elsif Nkind (Cond) = N_Pragma
982 and then Pragma_Name (Cond) = Name_Postcondition
983 then
984 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
985 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
986 else
987 exit;
988 end if;
989
990 Next (Cond);
991 end loop;
992 end;
993
996ae0b0
RK
994 Analyze_Declarations (Declarations (N));
995 Check_Completion;
996 Analyze (Handled_Statement_Sequence (N));
997
998 Save_Global_References (Original_Node (N));
999
82c80734
RD
1000 -- Prior to exiting the scope, include generic formals again (if any
1001 -- are present) in the set of local entities.
996ae0b0
RK
1002
1003 if Present (First_Ent) then
1004 Set_First_Entity (Gen_Id, First_Ent);
1005 end if;
1006
fbf5a39b 1007 Check_References (Gen_Id);
996ae0b0
RK
1008 end;
1009
e6f69614 1010 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
1011 End_Scope;
1012 Check_Subprogram_Order (N);
1013
e895b435 1014 -- Outside of its body, unit is generic again
996ae0b0
RK
1015
1016 Set_Ekind (Gen_Id, Kind);
fbf5a39b 1017 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
1018
1019 if Style_Check then
1020 Style.Check_Identifier (Body_Id, Gen_Id);
1021 end if;
13d923cc 1022
996ae0b0 1023 End_Generic;
996ae0b0
RK
1024 end Analyze_Generic_Subprogram_Body;
1025
1026 -----------------------------
1027 -- Analyze_Operator_Symbol --
1028 -----------------------------
1029
82c80734
RD
1030 -- An operator symbol such as "+" or "and" may appear in context where the
1031 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1032 -- is just a string, as in (conjunction = "or"). In these cases the parser
1033 -- generates this node, and the semantics does the disambiguation. Other
1034 -- such case are actuals in an instantiation, the generic unit in an
1035 -- instantiation, and pragma arguments.
996ae0b0
RK
1036
1037 procedure Analyze_Operator_Symbol (N : Node_Id) is
1038 Par : constant Node_Id := Parent (N);
1039
1040 begin
800621e0
RD
1041 if (Nkind (Par) = N_Function_Call
1042 and then N = Name (Par))
996ae0b0 1043 or else Nkind (Par) = N_Function_Instantiation
800621e0
RD
1044 or else (Nkind (Par) = N_Indexed_Component
1045 and then N = Prefix (Par))
996ae0b0
RK
1046 or else (Nkind (Par) = N_Pragma_Argument_Association
1047 and then not Is_Pragma_String_Literal (Par))
1048 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
1049 or else (Nkind (Par) = N_Attribute_Reference
1050 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
1051 then
1052 Find_Direct_Name (N);
1053
1054 else
1055 Change_Operator_Symbol_To_String_Literal (N);
1056 Analyze (N);
1057 end if;
1058 end Analyze_Operator_Symbol;
1059
1060 -----------------------------------
1061 -- Analyze_Parameter_Association --
1062 -----------------------------------
1063
1064 procedure Analyze_Parameter_Association (N : Node_Id) is
1065 begin
1066 Analyze (Explicit_Actual_Parameter (N));
1067 end Analyze_Parameter_Association;
1068
dcffd515
RD
1069 --------------------------------------
1070 -- Analyze_Parameterized_Expression --
1071 --------------------------------------
ad110ee8 1072
dcffd515 1073 procedure Analyze_Parameterized_Expression (N : Node_Id) is
ad110ee8
RD
1074 Loc : constant Source_Ptr := Sloc (N);
1075 LocX : constant Source_Ptr := Sloc (Expression (N));
1076
1077 begin
1078 -- This is one of the occasions on which we write things during semantic
dcffd515 1079 -- analysis. Transform the parameterized expression into an equivalent
ad110ee8
RD
1080 -- subprogram body, and then analyze that.
1081
1082 Rewrite (N,
1083 Make_Subprogram_Body (Loc,
1084 Specification => Specification (N),
1085 Declarations => Empty_List,
1086 Handled_Statement_Sequence =>
1087 Make_Handled_Sequence_Of_Statements (LocX,
1088 Statements => New_List (
1089 Make_Simple_Return_Statement (LocX,
1090 Expression => Expression (N))))));
1091 Analyze (N);
dcffd515 1092 end Analyze_Parameterized_Expression;
ad110ee8 1093
996ae0b0
RK
1094 ----------------------------
1095 -- Analyze_Procedure_Call --
1096 ----------------------------
1097
1098 procedure Analyze_Procedure_Call (N : Node_Id) is
1099 Loc : constant Source_Ptr := Sloc (N);
1100 P : constant Node_Id := Name (N);
1101 Actuals : constant List_Id := Parameter_Associations (N);
1102 Actual : Node_Id;
1103 New_N : Node_Id;
1104
1105 procedure Analyze_Call_And_Resolve;
1106 -- Do Analyze and Resolve calls for procedure call
cd5a9750 1107 -- At end, check illegal order dependence.
996ae0b0 1108
fbf5a39b
AC
1109 ------------------------------
1110 -- Analyze_Call_And_Resolve --
1111 ------------------------------
1112
996ae0b0
RK
1113 procedure Analyze_Call_And_Resolve is
1114 begin
1115 if Nkind (N) = N_Procedure_Call_Statement then
1116 Analyze_Call (N);
1117 Resolve (N, Standard_Void_Type);
cd5a9750
AC
1118
1119 -- Apply checks suggested by AI05-0144 (Disabled for now)
1120
1121 -- Check_Order_Dependence;
1122
996ae0b0
RK
1123 else
1124 Analyze (N);
1125 end if;
1126 end Analyze_Call_And_Resolve;
1127
1128 -- Start of processing for Analyze_Procedure_Call
1129
1130 begin
1131 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1132 -- a procedure call or an entry call. The prefix may denote an access
1133 -- to subprogram type, in which case an implicit dereference applies.
f3d57416 1134 -- If the prefix is an indexed component (without implicit dereference)
996ae0b0
RK
1135 -- then the construct denotes a call to a member of an entire family.
1136 -- If the prefix is a simple name, it may still denote a call to a
1137 -- parameterless member of an entry family. Resolution of these various
1138 -- interpretations is delicate.
1139
1140 Analyze (P);
1141
758c442c
GD
1142 -- If this is a call of the form Obj.Op, the call may have been
1143 -- analyzed and possibly rewritten into a block, in which case
1144 -- we are done.
1145
1146 if Analyzed (N) then
1147 return;
1148 end if;
1149
7415029d
AC
1150 -- If there is an error analyzing the name (which may have been
1151 -- rewritten if the original call was in prefix notation) then error
1152 -- has been emitted already, mark node and return.
996ae0b0 1153
7415029d
AC
1154 if Error_Posted (N)
1155 or else Etype (Name (N)) = Any_Type
1156 then
996ae0b0
RK
1157 Set_Etype (N, Any_Type);
1158 return;
1159 end if;
1160
1161 -- Otherwise analyze the parameters
1162
1163 if Present (Actuals) then
1164 Actual := First (Actuals);
1165
1166 while Present (Actual) loop
1167 Analyze (Actual);
1168 Check_Parameterless_Call (Actual);
1169 Next (Actual);
1170 end loop;
1171 end if;
1172
1173 -- Special processing for Elab_Spec and Elab_Body calls
1174
1175 if Nkind (P) = N_Attribute_Reference
1176 and then (Attribute_Name (P) = Name_Elab_Spec
1177 or else Attribute_Name (P) = Name_Elab_Body)
1178 then
1179 if Present (Actuals) then
1180 Error_Msg_N
1181 ("no parameters allowed for this call", First (Actuals));
1182 return;
1183 end if;
1184
1185 Set_Etype (N, Standard_Void_Type);
1186 Set_Analyzed (N);
1187
1188 elsif Is_Entity_Name (P)
1189 and then Is_Record_Type (Etype (Entity (P)))
1190 and then Remote_AST_I_Dereference (P)
1191 then
1192 return;
1193
1194 elsif Is_Entity_Name (P)
1195 and then Ekind (Entity (P)) /= E_Entry_Family
1196 then
1197 if Is_Access_Type (Etype (P))
1198 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1199 and then No (Actuals)
1200 and then Comes_From_Source (N)
1201 then
ed2233dc 1202 Error_Msg_N ("missing explicit dereference in call", N);
996ae0b0
RK
1203 end if;
1204
1205 Analyze_Call_And_Resolve;
1206
1207 -- If the prefix is the simple name of an entry family, this is
1208 -- a parameterless call from within the task body itself.
1209
1210 elsif Is_Entity_Name (P)
1211 and then Nkind (P) = N_Identifier
1212 and then Ekind (Entity (P)) = E_Entry_Family
1213 and then Present (Actuals)
1214 and then No (Next (First (Actuals)))
1215 then
82c80734
RD
1216 -- Can be call to parameterless entry family. What appears to be the
1217 -- sole argument is in fact the entry index. Rewrite prefix of node
1218 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1219 -- transformation.
1220
1221 New_N :=
1222 Make_Indexed_Component (Loc,
1223 Prefix =>
1224 Make_Selected_Component (Loc,
1225 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1226 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1227 Expressions => Actuals);
1228 Set_Name (N, New_N);
1229 Set_Etype (New_N, Standard_Void_Type);
1230 Set_Parameter_Associations (N, No_List);
1231 Analyze_Call_And_Resolve;
1232
1233 elsif Nkind (P) = N_Explicit_Dereference then
1234 if Ekind (Etype (P)) = E_Subprogram_Type then
1235 Analyze_Call_And_Resolve;
1236 else
1237 Error_Msg_N ("expect access to procedure in call", P);
1238 end if;
1239
82c80734
RD
1240 -- The name can be a selected component or an indexed component that
1241 -- yields an access to subprogram. Such a prefix is legal if the call
1242 -- has parameter associations.
996ae0b0
RK
1243
1244 elsif Is_Access_Type (Etype (P))
1245 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1246 then
1247 if Present (Actuals) then
1248 Analyze_Call_And_Resolve;
1249 else
ed2233dc 1250 Error_Msg_N ("missing explicit dereference in call ", N);
996ae0b0
RK
1251 end if;
1252
82c80734
RD
1253 -- If not an access to subprogram, then the prefix must resolve to the
1254 -- name of an entry, entry family, or protected operation.
996ae0b0 1255
82c80734
RD
1256 -- For the case of a simple entry call, P is a selected component where
1257 -- the prefix is the task and the selector name is the entry. A call to
1258 -- a protected procedure will have the same syntax. If the protected
1259 -- object contains overloaded operations, the entity may appear as a
1260 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1261
1262 elsif Nkind (P) = N_Selected_Component
1263 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1264 or else
1265 Ekind (Entity (Selector_Name (P))) = E_Procedure
1266 or else
1267 Ekind (Entity (Selector_Name (P))) = E_Function)
1268 then
1269 Analyze_Call_And_Resolve;
1270
1271 elsif Nkind (P) = N_Selected_Component
1272 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1273 and then Present (Actuals)
1274 and then No (Next (First (Actuals)))
1275 then
82c80734
RD
1276 -- Can be call to parameterless entry family. What appears to be the
1277 -- sole argument is in fact the entry index. Rewrite prefix of node
1278 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1279 -- transformation.
1280
1281 New_N :=
1282 Make_Indexed_Component (Loc,
1283 Prefix => New_Copy (P),
1284 Expressions => Actuals);
1285 Set_Name (N, New_N);
1286 Set_Etype (New_N, Standard_Void_Type);
1287 Set_Parameter_Associations (N, No_List);
1288 Analyze_Call_And_Resolve;
1289
1290 -- For the case of a reference to an element of an entry family, P is
1291 -- an indexed component whose prefix is a selected component (task and
1292 -- entry family), and whose index is the entry family index.
1293
1294 elsif Nkind (P) = N_Indexed_Component
1295 and then Nkind (Prefix (P)) = N_Selected_Component
1296 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1297 then
1298 Analyze_Call_And_Resolve;
1299
1300 -- If the prefix is the name of an entry family, it is a call from
1301 -- within the task body itself.
1302
1303 elsif Nkind (P) = N_Indexed_Component
1304 and then Nkind (Prefix (P)) = N_Identifier
1305 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1306 then
1307 New_N :=
1308 Make_Selected_Component (Loc,
1309 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1310 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1311 Rewrite (Prefix (P), New_N);
1312 Analyze (P);
1313 Analyze_Call_And_Resolve;
1314
e895b435 1315 -- Anything else is an error
996ae0b0
RK
1316
1317 else
758c442c 1318 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0
RK
1319 end if;
1320 end Analyze_Procedure_Call;
1321
5d37ba92
ES
1322 -------------------------------------
1323 -- Analyze_Simple_Return_Statement --
1324 -------------------------------------
ec4867fa 1325
5d37ba92 1326 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1327 begin
5d37ba92
ES
1328 if Present (Expression (N)) then
1329 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1330 end if;
1331
5d37ba92
ES
1332 Analyze_Return_Statement (N);
1333 end Analyze_Simple_Return_Statement;
996ae0b0 1334
82c80734
RD
1335 -------------------------
1336 -- Analyze_Return_Type --
1337 -------------------------
1338
1339 procedure Analyze_Return_Type (N : Node_Id) is
1340 Designator : constant Entity_Id := Defining_Entity (N);
1341 Typ : Entity_Id := Empty;
1342
1343 begin
ec4867fa
ES
1344 -- Normal case where result definition does not indicate an error
1345
41251c60
JM
1346 if Result_Definition (N) /= Error then
1347 if Nkind (Result_Definition (N)) = N_Access_Definition then
b1c11e0e
JM
1348
1349 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1350
1351 declare
1352 AD : constant Node_Id :=
1353 Access_To_Subprogram_Definition (Result_Definition (N));
1354 begin
1355 if Present (AD) and then Protected_Present (AD) then
1356 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1357 else
1358 Typ := Access_Definition (N, Result_Definition (N));
1359 end if;
1360 end;
1361
41251c60
JM
1362 Set_Parent (Typ, Result_Definition (N));
1363 Set_Is_Local_Anonymous_Access (Typ);
1364 Set_Etype (Designator, Typ);
1365
b66c3ff4
AC
1366 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1367
1368 Null_Exclusion_Static_Checks (N);
1369
41251c60
JM
1370 -- Subtype_Mark case
1371
1372 else
1373 Find_Type (Result_Definition (N));
1374 Typ := Entity (Result_Definition (N));
1375 Set_Etype (Designator, Typ);
1376
b66c3ff4
AC
1377 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1378
1379 Null_Exclusion_Static_Checks (N);
1380
1381 -- If a null exclusion is imposed on the result type, then create
1382 -- a null-excluding itype (an access subtype) and use it as the
1383 -- function's Etype. Note that the null exclusion checks are done
1384 -- right before this, because they don't get applied to types that
1385 -- do not come from source.
1386
1387 if Is_Access_Type (Typ)
1388 and then Null_Exclusion_Present (N)
1389 then
1390 Set_Etype (Designator,
1391 Create_Null_Excluding_Itype
ff7139c3
AC
1392 (T => Typ,
1393 Related_Nod => N,
1394 Scope_Id => Scope (Current_Scope)));
1395
1396 -- The new subtype must be elaborated before use because
1397 -- it is visible outside of the function. However its base
1398 -- type may not be frozen yet, so the reference that will
1399 -- force elaboration must be attached to the freezing of
1400 -- the base type.
1401
212863c0
AC
1402 -- If the return specification appears on a proper body,
1403 -- the subtype will have been created already on the spec.
1404
ff7139c3 1405 if Is_Frozen (Typ) then
212863c0
AC
1406 if Nkind (Parent (N)) = N_Subprogram_Body
1407 and then Nkind (Parent (Parent (N))) = N_Subunit
1408 then
1409 null;
1410 else
1411 Build_Itype_Reference (Etype (Designator), Parent (N));
1412 end if;
1413
ff7139c3
AC
1414 else
1415 Ensure_Freeze_Node (Typ);
1416
1417 declare
212863c0 1418 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
ff7139c3
AC
1419 begin
1420 Set_Itype (IR, Etype (Designator));
1421 Append_Freeze_Actions (Typ, New_List (IR));
1422 end;
1423 end if;
1424
b66c3ff4
AC
1425 else
1426 Set_Etype (Designator, Typ);
1427 end if;
1428
41251c60 1429 if Ekind (Typ) = E_Incomplete_Type
0a36105d
JM
1430 and then Is_Value_Type (Typ)
1431 then
1432 null;
1433
1434 elsif Ekind (Typ) = E_Incomplete_Type
41251c60
JM
1435 or else (Is_Class_Wide_Type (Typ)
1436 and then
1437 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1438 then
dd386db0
AC
1439 -- AI05-0151: Tagged incomplete types are allowed in all formal
1440 -- parts. Untagged incomplete types are not allowed in bodies.
1441
1442 if Ada_Version >= Ada_2012 then
1443 if Is_Tagged_Type (Typ) then
1444 null;
1445
1446 elsif Nkind_In (Parent (Parent (N)),
1447 N_Accept_Statement,
1448 N_Entry_Body,
1449 N_Subprogram_Body)
1450 then
1451 Error_Msg_NE
1452 ("invalid use of untagged incomplete type&",
1453 Designator, Typ);
1454 end if;
1455
1456 else
1457 Error_Msg_NE
1458 ("invalid use of incomplete type&", Designator, Typ);
1459 end if;
41251c60 1460 end if;
82c80734
RD
1461 end if;
1462
ec4867fa
ES
1463 -- Case where result definition does indicate an error
1464
82c80734
RD
1465 else
1466 Set_Etype (Designator, Any_Type);
1467 end if;
1468 end Analyze_Return_Type;
1469
996ae0b0
RK
1470 -----------------------------
1471 -- Analyze_Subprogram_Body --
1472 -----------------------------
1473
b1b543d2
BD
1474 procedure Analyze_Subprogram_Body (N : Node_Id) is
1475 Loc : constant Source_Ptr := Sloc (N);
1476 Body_Spec : constant Node_Id := Specification (N);
1477 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1478
1479 begin
1480 if Debug_Flag_C then
1481 Write_Str ("==> subprogram body ");
1482 Write_Name (Chars (Body_Id));
1483 Write_Str (" from ");
1484 Write_Location (Loc);
1485 Write_Eol;
1486 Indent;
1487 end if;
1488
1489 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1490
1491 -- The real work is split out into the helper, so it can do "return;"
1492 -- without skipping the debug output:
1493
1494 Analyze_Subprogram_Body_Helper (N);
1495
1496 if Debug_Flag_C then
1497 Outdent;
1498 Write_Str ("<== subprogram body ");
1499 Write_Name (Chars (Body_Id));
1500 Write_Str (" from ");
1501 Write_Location (Loc);
1502 Write_Eol;
1503 end if;
1504 end Analyze_Subprogram_Body;
1505
1506 ------------------------------------
1507 -- Analyze_Subprogram_Body_Helper --
1508 ------------------------------------
1509
996ae0b0
RK
1510 -- This procedure is called for regular subprogram bodies, generic bodies,
1511 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1512 -- specification matters, and is used to create a proper declaration for
1513 -- the subprogram, or to perform conformance checks.
1514
b1b543d2 1515 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
fbf5a39b 1516 Loc : constant Source_Ptr := Sloc (N);
33931112 1517 Body_Deleted : constant Boolean := False;
fbf5a39b
AC
1518 Body_Spec : constant Node_Id := Specification (N);
1519 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1520 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
0868e09c 1521 Conformant : Boolean;
21d27997 1522 HSS : Node_Id;
07fc65c4 1523 P_Ent : Entity_Id;
21d27997
RD
1524 Prot_Typ : Entity_Id := Empty;
1525 Spec_Id : Entity_Id;
1526 Spec_Decl : Node_Id := Empty;
1527
1528 Last_Real_Spec_Entity : Entity_Id := Empty;
1529 -- When we analyze a separate spec, the entity chain ends up containing
1530 -- the formals, as well as any itypes generated during analysis of the
1531 -- default expressions for parameters, or the arguments of associated
1532 -- precondition/postcondition pragmas (which are analyzed in the context
1533 -- of the spec since they have visibility on formals).
1534 --
1535 -- These entities belong with the spec and not the body. However we do
1536 -- the analysis of the body in the context of the spec (again to obtain
1537 -- visibility to the formals), and all the entities generated during
1538 -- this analysis end up also chained to the entity chain of the spec.
1539 -- But they really belong to the body, and there is circuitry to move
1540 -- them from the spec to the body.
1541 --
1542 -- However, when we do this move, we don't want to move the real spec
1543 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1544 -- variable points to the last real spec entity, so we only move those
1545 -- chained beyond that point. It is initialized to Empty to deal with
1546 -- the case where there is no separate spec.
996ae0b0 1547
ec4867fa 1548 procedure Check_Anonymous_Return;
e50e1c5e 1549 -- Ada 2005: if a function returns an access type that denotes a task,
ec4867fa
ES
1550 -- or a type that contains tasks, we must create a master entity for
1551 -- the anonymous type, which typically will be used in an allocator
1552 -- in the body of the function.
1553
e660dbf7
JM
1554 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1555 -- Look ahead to recognize a pragma that may appear after the body.
1556 -- If there is a previous spec, check that it appears in the same
1557 -- declarative part. If the pragma is Inline_Always, perform inlining
1558 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1559 -- If the body acts as a spec, and inlining is required, we create a
1560 -- subprogram declaration for it, in order to attach the body to inline.
21d27997
RD
1561 -- If pragma does not appear after the body, check whether there is
1562 -- an inline pragma before any local declarations.
c37bb106 1563
7665e4bd
AC
1564 procedure Check_Missing_Return;
1565 -- Checks for a function with a no return statements, and also performs
1566 -- the warning checks implemented by Check_Returns.
1567
d44202ba
HK
1568 function Disambiguate_Spec return Entity_Id;
1569 -- When a primitive is declared between the private view and the full
1570 -- view of a concurrent type which implements an interface, a special
1571 -- mechanism is used to find the corresponding spec of the primitive
1572 -- body.
1573
1574 function Is_Private_Concurrent_Primitive
1575 (Subp_Id : Entity_Id) return Boolean;
1576 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1577 -- type that implements an interface and has a private view.
1578
76a69663
ES
1579 procedure Set_Trivial_Subprogram (N : Node_Id);
1580 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1581 -- subprogram whose body is being analyzed. N is the statement node
1582 -- causing the flag to be set, if the following statement is a return
1583 -- of an entity, we mark the entity as set in source to suppress any
1584 -- warning on the stylized use of function stubs with a dummy return.
1585
758c442c
GD
1586 procedure Verify_Overriding_Indicator;
1587 -- If there was a previous spec, the entity has been entered in the
1588 -- current scope previously. If the body itself carries an overriding
1589 -- indicator, check that it is consistent with the known status of the
1590 -- entity.
1591
ec4867fa
ES
1592 ----------------------------
1593 -- Check_Anonymous_Return --
1594 ----------------------------
1595
1596 procedure Check_Anonymous_Return is
1597 Decl : Node_Id;
a523b302 1598 Par : Node_Id;
ec4867fa
ES
1599 Scop : Entity_Id;
1600
1601 begin
1602 if Present (Spec_Id) then
1603 Scop := Spec_Id;
1604 else
1605 Scop := Body_Id;
1606 end if;
1607
1608 if Ekind (Scop) = E_Function
1609 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
a523b302
JM
1610 and then not Is_Thunk (Scop)
1611 and then (Has_Task (Designated_Type (Etype (Scop)))
1612 or else
1613 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1614 and then
1615 Is_Limited_Record (Designated_Type (Etype (Scop)))))
ec4867fa 1616 and then Expander_Active
b20de9b9
AC
1617
1618 -- Avoid cases with no tasking support
1619
1620 and then RTE_Available (RE_Current_Master)
1621 and then not Restriction_Active (No_Task_Hierarchy)
ec4867fa
ES
1622 then
1623 Decl :=
1624 Make_Object_Declaration (Loc,
1625 Defining_Identifier =>
1626 Make_Defining_Identifier (Loc, Name_uMaster),
1627 Constant_Present => True,
1628 Object_Definition =>
1629 New_Reference_To (RTE (RE_Master_Id), Loc),
1630 Expression =>
1631 Make_Explicit_Dereference (Loc,
1632 New_Reference_To (RTE (RE_Current_Master), Loc)));
1633
1634 if Present (Declarations (N)) then
1635 Prepend (Decl, Declarations (N));
1636 else
1637 Set_Declarations (N, New_List (Decl));
1638 end if;
1639
1640 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1641 Set_Has_Master_Entity (Scop);
a523b302
JM
1642
1643 -- Now mark the containing scope as a task master
1644
1645 Par := N;
1646 while Nkind (Par) /= N_Compilation_Unit loop
1647 Par := Parent (Par);
1648 pragma Assert (Present (Par));
1649
1650 -- If we fall off the top, we are at the outer level, and
1651 -- the environment task is our effective master, so nothing
1652 -- to mark.
1653
1654 if Nkind_In
1655 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1656 then
1657 Set_Is_Task_Master (Par, True);
1658 exit;
1659 end if;
1660 end loop;
ec4867fa
ES
1661 end if;
1662 end Check_Anonymous_Return;
1663
e660dbf7
JM
1664 -------------------------
1665 -- Check_Inline_Pragma --
1666 -------------------------
758c442c 1667
e660dbf7
JM
1668 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1669 Prag : Node_Id;
1670 Plist : List_Id;
0fb2ea01 1671
21d27997 1672 function Is_Inline_Pragma (N : Node_Id) return Boolean;
30783513 1673 -- True when N is a pragma Inline or Inline_Always that applies
33931112 1674 -- to this subprogram.
21d27997
RD
1675
1676 -----------------------
1677 -- Is_Inline_Pragma --
1678 -----------------------
1679
1680 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1681 begin
1682 return
1683 Nkind (N) = N_Pragma
1684 and then
1685 (Pragma_Name (N) = Name_Inline_Always
1686 or else
1687 (Front_End_Inlining
1688 and then Pragma_Name (N) = Name_Inline))
1689 and then
1690 Chars
1691 (Expression (First (Pragma_Argument_Associations (N))))
1692 = Chars (Body_Id);
1693 end Is_Inline_Pragma;
1694
1695 -- Start of processing for Check_Inline_Pragma
1696
c37bb106 1697 begin
e660dbf7
JM
1698 if not Expander_Active then
1699 return;
1700 end if;
1701
1702 if Is_List_Member (N)
1703 and then Present (Next (N))
21d27997 1704 and then Is_Inline_Pragma (Next (N))
c37bb106
AC
1705 then
1706 Prag := Next (N);
1707
21d27997
RD
1708 elsif Nkind (N) /= N_Subprogram_Body_Stub
1709 and then Present (Declarations (N))
1710 and then Is_Inline_Pragma (First (Declarations (N)))
1711 then
1712 Prag := First (Declarations (N));
1713
e660dbf7
JM
1714 else
1715 Prag := Empty;
c37bb106 1716 end if;
e660dbf7
JM
1717
1718 if Present (Prag) then
1719 if Present (Spec_Id) then
30196a76 1720 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
e660dbf7
JM
1721 Analyze (Prag);
1722 end if;
1723
1724 else
d39d6bb8 1725 -- Create a subprogram declaration, to make treatment uniform
e660dbf7
JM
1726
1727 declare
1728 Subp : constant Entity_Id :=
30196a76 1729 Make_Defining_Identifier (Loc, Chars (Body_Id));
e660dbf7 1730 Decl : constant Node_Id :=
30196a76
RD
1731 Make_Subprogram_Declaration (Loc,
1732 Specification =>
1733 New_Copy_Tree (Specification (N)));
1734
e660dbf7
JM
1735 begin
1736 Set_Defining_Unit_Name (Specification (Decl), Subp);
1737
1738 if Present (First_Formal (Body_Id)) then
21d27997 1739 Plist := Copy_Parameter_List (Body_Id);
e660dbf7
JM
1740 Set_Parameter_Specifications
1741 (Specification (Decl), Plist);
1742 end if;
1743
1744 Insert_Before (N, Decl);
1745 Analyze (Decl);
1746 Analyze (Prag);
1747 Set_Has_Pragma_Inline (Subp);
1748
76a69663 1749 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7 1750 Set_Is_Inlined (Subp);
21d27997 1751 Set_Has_Pragma_Inline_Always (Subp);
e660dbf7
JM
1752 end if;
1753
1754 Spec := Subp;
1755 end;
1756 end if;
1757 end if;
1758 end Check_Inline_Pragma;
1759
7665e4bd
AC
1760 --------------------------
1761 -- Check_Missing_Return --
1762 --------------------------
1763
1764 procedure Check_Missing_Return is
1765 Id : Entity_Id;
1766 Missing_Ret : Boolean;
1767
1768 begin
1769 if Nkind (Body_Spec) = N_Function_Specification then
1770 if Present (Spec_Id) then
1771 Id := Spec_Id;
1772 else
1773 Id := Body_Id;
1774 end if;
1775
1776 if Return_Present (Id) then
1777 Check_Returns (HSS, 'F', Missing_Ret);
1778
1779 if Missing_Ret then
1780 Set_Has_Missing_Return (Id);
1781 end if;
1782
1783 elsif (Is_Generic_Subprogram (Id)
1784 or else not Is_Machine_Code_Subprogram (Id))
1785 and then not Body_Deleted
1786 then
1787 Error_Msg_N ("missing RETURN statement in function body", N);
1788 end if;
1789
1790 -- If procedure with No_Return, check returns
1791
1792 elsif Nkind (Body_Spec) = N_Procedure_Specification
1793 and then Present (Spec_Id)
1794 and then No_Return (Spec_Id)
1795 then
0052da20 1796 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
7665e4bd
AC
1797 end if;
1798 end Check_Missing_Return;
1799
d44202ba
HK
1800 -----------------------
1801 -- Disambiguate_Spec --
1802 -----------------------
1803
1804 function Disambiguate_Spec return Entity_Id is
1805 Priv_Spec : Entity_Id;
1806 Spec_N : Entity_Id;
1807
1808 procedure Replace_Types (To_Corresponding : Boolean);
1809 -- Depending on the flag, replace the type of formal parameters of
1810 -- Body_Id if it is a concurrent type implementing interfaces with
1811 -- the corresponding record type or the other way around.
1812
1813 procedure Replace_Types (To_Corresponding : Boolean) is
1814 Formal : Entity_Id;
1815 Formal_Typ : Entity_Id;
1816
1817 begin
1818 Formal := First_Formal (Body_Id);
1819 while Present (Formal) loop
1820 Formal_Typ := Etype (Formal);
1821
1822 -- From concurrent type to corresponding record
1823
1824 if To_Corresponding then
1825 if Is_Concurrent_Type (Formal_Typ)
1826 and then Present (Corresponding_Record_Type (Formal_Typ))
1827 and then Present (Interfaces (
1828 Corresponding_Record_Type (Formal_Typ)))
1829 then
1830 Set_Etype (Formal,
1831 Corresponding_Record_Type (Formal_Typ));
1832 end if;
1833
1834 -- From corresponding record to concurrent type
1835
1836 else
1837 if Is_Concurrent_Record_Type (Formal_Typ)
1838 and then Present (Interfaces (Formal_Typ))
1839 then
1840 Set_Etype (Formal,
1841 Corresponding_Concurrent_Type (Formal_Typ));
1842 end if;
1843 end if;
1844
1845 Next_Formal (Formal);
1846 end loop;
1847 end Replace_Types;
1848
1849 -- Start of processing for Disambiguate_Spec
1850
1851 begin
1852 -- Try to retrieve the specification of the body as is. All error
1853 -- messages are suppressed because the body may not have a spec in
1854 -- its current state.
1855
1856 Spec_N := Find_Corresponding_Spec (N, False);
1857
1858 -- It is possible that this is the body of a primitive declared
1859 -- between a private and a full view of a concurrent type. The
1860 -- controlling parameter of the spec carries the concurrent type,
1861 -- not the corresponding record type as transformed by Analyze_
1862 -- Subprogram_Specification. In such cases, we undo the change
1863 -- made by the analysis of the specification and try to find the
1864 -- spec again.
766d7add 1865
8198b93d
HK
1866 -- Note that wrappers already have their corresponding specs and
1867 -- bodies set during their creation, so if the candidate spec is
16b05213 1868 -- a wrapper, then we definitely need to swap all types to their
8198b93d 1869 -- original concurrent status.
d44202ba 1870
8198b93d
HK
1871 if No (Spec_N)
1872 or else Is_Primitive_Wrapper (Spec_N)
1873 then
d44202ba
HK
1874 -- Restore all references of corresponding record types to the
1875 -- original concurrent types.
1876
1877 Replace_Types (To_Corresponding => False);
1878 Priv_Spec := Find_Corresponding_Spec (N, False);
1879
1880 -- The current body truly belongs to a primitive declared between
1881 -- a private and a full view. We leave the modified body as is,
1882 -- and return the true spec.
1883
1884 if Present (Priv_Spec)
1885 and then Is_Private_Primitive (Priv_Spec)
1886 then
1887 return Priv_Spec;
1888 end if;
1889
1890 -- In case that this is some sort of error, restore the original
1891 -- state of the body.
1892
1893 Replace_Types (To_Corresponding => True);
1894 end if;
1895
1896 return Spec_N;
1897 end Disambiguate_Spec;
1898
1899 -------------------------------------
1900 -- Is_Private_Concurrent_Primitive --
1901 -------------------------------------
1902
1903 function Is_Private_Concurrent_Primitive
1904 (Subp_Id : Entity_Id) return Boolean
1905 is
1906 Formal_Typ : Entity_Id;
1907
1908 begin
1909 if Present (First_Formal (Subp_Id)) then
1910 Formal_Typ := Etype (First_Formal (Subp_Id));
1911
1912 if Is_Concurrent_Record_Type (Formal_Typ) then
1913 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1914 end if;
1915
1916 -- The type of the first formal is a concurrent tagged type with
1917 -- a private view.
1918
1919 return
1920 Is_Concurrent_Type (Formal_Typ)
1921 and then Is_Tagged_Type (Formal_Typ)
1922 and then Has_Private_Declaration (Formal_Typ);
1923 end if;
1924
1925 return False;
1926 end Is_Private_Concurrent_Primitive;
1927
76a69663
ES
1928 ----------------------------
1929 -- Set_Trivial_Subprogram --
1930 ----------------------------
1931
1932 procedure Set_Trivial_Subprogram (N : Node_Id) is
1933 Nxt : constant Node_Id := Next (N);
1934
1935 begin
1936 Set_Is_Trivial_Subprogram (Body_Id);
1937
1938 if Present (Spec_Id) then
1939 Set_Is_Trivial_Subprogram (Spec_Id);
1940 end if;
1941
1942 if Present (Nxt)
1943 and then Nkind (Nxt) = N_Simple_Return_Statement
1944 and then No (Next (Nxt))
1945 and then Present (Expression (Nxt))
1946 and then Is_Entity_Name (Expression (Nxt))
1947 then
1948 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1949 end if;
1950 end Set_Trivial_Subprogram;
1951
758c442c
GD
1952 ---------------------------------
1953 -- Verify_Overriding_Indicator --
1954 ---------------------------------
1955
1956 procedure Verify_Overriding_Indicator is
1957 begin
21d27997
RD
1958 if Must_Override (Body_Spec) then
1959 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1960 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1961 then
1962 null;
1963
1964 elsif not Is_Overriding_Operation (Spec_Id) then
ed2233dc 1965 Error_Msg_NE
21d27997
RD
1966 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1967 end if;
758c442c 1968
5d37ba92
ES
1969 elsif Must_Not_Override (Body_Spec) then
1970 if Is_Overriding_Operation (Spec_Id) then
ed2233dc 1971 Error_Msg_NE
5d37ba92 1972 ("subprogram& overrides inherited operation",
76a69663 1973 Body_Spec, Spec_Id);
5d37ba92 1974
21d27997
RD
1975 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1976 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1977 then
ed2233dc 1978 Error_Msg_NE
21d27997
RD
1979 ("subprogram & overrides predefined operator ",
1980 Body_Spec, Spec_Id);
1981
618fb570
AC
1982 -- If this is not a primitive operation or protected subprogram,
1983 -- then the overriding indicator is altogether illegal.
5d37ba92 1984
618fb570
AC
1985 elsif not Is_Primitive (Spec_Id)
1986 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
1987 then
ed2233dc 1988 Error_Msg_N
19d846a0
RD
1989 ("overriding indicator only allowed " &
1990 "if subprogram is primitive",
1991 Body_Spec);
5d37ba92 1992 end if;
235f4375 1993
d88a51b1 1994 elsif Style_Check -- ??? incorrect use of Style_Check!
235f4375
AC
1995 and then Is_Overriding_Operation (Spec_Id)
1996 then
1997 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
1998 Style.Missing_Overriding (N, Body_Id);
758c442c
GD
1999 end if;
2000 end Verify_Overriding_Indicator;
2001
b1b543d2 2002 -- Start of processing for Analyze_Subprogram_Body_Helper
0fb2ea01 2003
996ae0b0 2004 begin
82c80734
RD
2005 -- Generic subprograms are handled separately. They always have a
2006 -- generic specification. Determine whether current scope has a
2007 -- previous declaration.
996ae0b0 2008
82c80734
RD
2009 -- If the subprogram body is defined within an instance of the same
2010 -- name, the instance appears as a package renaming, and will be hidden
2011 -- within the subprogram.
996ae0b0
RK
2012
2013 if Present (Prev_Id)
2014 and then not Is_Overloadable (Prev_Id)
2015 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2016 or else Comes_From_Source (Prev_Id))
2017 then
fbf5a39b 2018 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0
RK
2019 Spec_Id := Prev_Id;
2020 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2021 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2022
2023 Analyze_Generic_Subprogram_Body (N, Spec_Id);
7665e4bd
AC
2024
2025 if Nkind (N) = N_Subprogram_Body then
2026 HSS := Handled_Statement_Sequence (N);
2027 Check_Missing_Return;
2028 end if;
2029
996ae0b0
RK
2030 return;
2031
2032 else
82c80734
RD
2033 -- Previous entity conflicts with subprogram name. Attempting to
2034 -- enter name will post error.
996ae0b0
RK
2035
2036 Enter_Name (Body_Id);
2037 return;
2038 end if;
2039
82c80734
RD
2040 -- Non-generic case, find the subprogram declaration, if one was seen,
2041 -- or enter new overloaded entity in the current scope. If the
2042 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2043 -- part of the context of one of its subunits. No need to redo the
2044 -- analysis.
996ae0b0
RK
2045
2046 elsif Prev_Id = Body_Id
2047 and then Has_Completion (Body_Id)
2048 then
2049 return;
2050
2051 else
fbf5a39b 2052 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
2053
2054 if Nkind (N) = N_Subprogram_Body_Stub
2055 or else No (Corresponding_Spec (N))
2056 then
d44202ba
HK
2057 if Is_Private_Concurrent_Primitive (Body_Id) then
2058 Spec_Id := Disambiguate_Spec;
2059 else
2060 Spec_Id := Find_Corresponding_Spec (N);
2061 end if;
996ae0b0
RK
2062
2063 -- If this is a duplicate body, no point in analyzing it
2064
2065 if Error_Posted (N) then
2066 return;
2067 end if;
2068
82c80734
RD
2069 -- A subprogram body should cause freezing of its own declaration,
2070 -- but if there was no previous explicit declaration, then the
2071 -- subprogram will get frozen too late (there may be code within
2072 -- the body that depends on the subprogram having been frozen,
2073 -- such as uses of extra formals), so we force it to be frozen
76a69663 2074 -- here. Same holds if the body and spec are compilation units.
cd1c668b
ES
2075 -- Finally, if the return type is an anonymous access to protected
2076 -- subprogram, it must be frozen before the body because its
2077 -- expansion has generated an equivalent type that is used when
2078 -- elaborating the body.
996ae0b0
RK
2079
2080 if No (Spec_Id) then
2081 Freeze_Before (N, Body_Id);
2082
2083 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2084 Freeze_Before (N, Spec_Id);
cd1c668b
ES
2085
2086 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2087 Freeze_Before (N, Etype (Body_Id));
996ae0b0 2088 end if;
a38ff9b1 2089
996ae0b0
RK
2090 else
2091 Spec_Id := Corresponding_Spec (N);
2092 end if;
2093 end if;
2094
82c80734
RD
2095 -- Do not inline any subprogram that contains nested subprograms, since
2096 -- the backend inlining circuit seems to generate uninitialized
07fc65c4 2097 -- references in this case. We know this happens in the case of front
82c80734
RD
2098 -- end ZCX support, but it also appears it can happen in other cases as
2099 -- well. The backend often rejects attempts to inline in the case of
2100 -- nested procedures anyway, so little if anything is lost by this.
2101 -- Note that this is test is for the benefit of the back-end. There is
2102 -- a separate test for front-end inlining that also rejects nested
2103 -- subprograms.
07fc65c4
GB
2104
2105 -- Do not do this test if errors have been detected, because in some
2106 -- error cases, this code blows up, and we don't need it anyway if
2107 -- there have been errors, since we won't get to the linker anyway.
2108
82c80734
RD
2109 if Comes_From_Source (Body_Id)
2110 and then Serious_Errors_Detected = 0
2111 then
07fc65c4
GB
2112 P_Ent := Body_Id;
2113 loop
2114 P_Ent := Scope (P_Ent);
2115 exit when No (P_Ent) or else P_Ent = Standard_Standard;
2116
fbf5a39b 2117 if Is_Subprogram (P_Ent) then
07fc65c4
GB
2118 Set_Is_Inlined (P_Ent, False);
2119
2120 if Comes_From_Source (P_Ent)
07fc65c4
GB
2121 and then Has_Pragma_Inline (P_Ent)
2122 then
fbf5a39b
AC
2123 Cannot_Inline
2124 ("cannot inline& (nested subprogram)?",
2125 N, P_Ent);
07fc65c4
GB
2126 end if;
2127 end if;
2128 end loop;
2129 end if;
2130
e660dbf7
JM
2131 Check_Inline_Pragma (Spec_Id);
2132
701b7fbb
RD
2133 -- Deal with special case of a fully private operation in the body of
2134 -- the protected type. We must create a declaration for the subprogram,
2135 -- in order to attach the protected subprogram that will be used in
2136 -- internal calls. We exclude compiler generated bodies from the
2137 -- expander since the issue does not arise for those cases.
07fc65c4 2138
996ae0b0
RK
2139 if No (Spec_Id)
2140 and then Comes_From_Source (N)
2141 and then Is_Protected_Type (Current_Scope)
2142 then
47bfea3a 2143 Spec_Id := Build_Private_Protected_Declaration (N);
701b7fbb 2144 end if;
996ae0b0 2145
5334d18f 2146 -- If a separate spec is present, then deal with freezing issues
7ca78bba 2147
701b7fbb 2148 if Present (Spec_Id) then
996ae0b0 2149 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 2150 Verify_Overriding_Indicator;
5d37ba92
ES
2151
2152 -- In general, the spec will be frozen when we start analyzing the
2153 -- body. However, for internally generated operations, such as
2154 -- wrapper functions for inherited operations with controlling
2155 -- results, the spec may not have been frozen by the time we
2156 -- expand the freeze actions that include the bodies. In particular,
2157 -- extra formals for accessibility or for return-in-place may need
2158 -- to be generated. Freeze nodes, if any, are inserted before the
2159 -- current body.
2160
2161 if not Is_Frozen (Spec_Id)
2162 and then Expander_Active
2163 then
2164 -- Force the generation of its freezing node to ensure proper
2165 -- management of access types in the backend.
2166
2167 -- This is definitely needed for some cases, but it is not clear
2168 -- why, to be investigated further???
2169
2170 Set_Has_Delayed_Freeze (Spec_Id);
2171 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
2172 end if;
996ae0b0
RK
2173 end if;
2174
a5d83d61
AC
2175 -- Mark presence of postcondition procedure in current scope and mark
2176 -- the procedure itself as needing debug info. The latter is important
2177 -- when analyzing decision coverage (for example, for MC/DC coverage).
7ca78bba 2178
0dabde3a
ES
2179 if Chars (Body_Id) = Name_uPostconditions then
2180 Set_Has_Postconditions (Current_Scope);
a5d83d61 2181 Set_Debug_Info_Needed (Body_Id);
0dabde3a
ES
2182 end if;
2183
996ae0b0
RK
2184 -- Place subprogram on scope stack, and make formals visible. If there
2185 -- is a spec, the visible entity remains that of the spec.
2186
2187 if Present (Spec_Id) then
07fc65c4 2188 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
2189
2190 if Is_Child_Unit (Spec_Id) then
2191 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2192 end if;
2193
fbf5a39b
AC
2194 if Style_Check then
2195 Style.Check_Identifier (Body_Id, Spec_Id);
2196 end if;
996ae0b0
RK
2197
2198 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2199 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2200
f937473f 2201 if Is_Abstract_Subprogram (Spec_Id) then
ed2233dc 2202 Error_Msg_N ("an abstract subprogram cannot have a body", N);
996ae0b0 2203 return;
21d27997 2204
996ae0b0
RK
2205 else
2206 Set_Convention (Body_Id, Convention (Spec_Id));
2207 Set_Has_Completion (Spec_Id);
2208
2209 if Is_Protected_Type (Scope (Spec_Id)) then
21d27997 2210 Prot_Typ := Scope (Spec_Id);
996ae0b0
RK
2211 end if;
2212
2213 -- If this is a body generated for a renaming, do not check for
2214 -- full conformance. The check is redundant, because the spec of
2215 -- the body is a copy of the spec in the renaming declaration,
2216 -- and the test can lead to spurious errors on nested defaults.
2217
2218 if Present (Spec_Decl)
996ae0b0 2219 and then not Comes_From_Source (N)
93a81b02
GB
2220 and then
2221 (Nkind (Original_Node (Spec_Decl)) =
d2f97d3e
GB
2222 N_Subprogram_Renaming_Declaration
2223 or else (Present (Corresponding_Body (Spec_Decl))
2224 and then
2225 Nkind (Unit_Declaration_Node
2226 (Corresponding_Body (Spec_Decl))) =
2227 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
2228 then
2229 Conformant := True;
cabe9abc
AC
2230
2231 -- Conversely, the spec may have been generated for specless body
2232 -- with an inline pragma.
2233
2234 elsif Comes_From_Source (N)
2235 and then not Comes_From_Source (Spec_Id)
2236 and then Has_Pragma_Inline (Spec_Id)
2237 then
2238 Conformant := True;
76a69663 2239
996ae0b0
RK
2240 else
2241 Check_Conformance
2242 (Body_Id, Spec_Id,
76a69663 2243 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
2244 end if;
2245
2246 -- If the body is not fully conformant, we have to decide if we
2247 -- should analyze it or not. If it has a really messed up profile
2248 -- then we probably should not analyze it, since we will get too
2249 -- many bogus messages.
2250
2251 -- Our decision is to go ahead in the non-fully conformant case
2252 -- only if it is at least mode conformant with the spec. Note
2253 -- that the call to Check_Fully_Conformant has issued the proper
2254 -- error messages to complain about the lack of conformance.
2255
2256 if not Conformant
2257 and then not Mode_Conformant (Body_Id, Spec_Id)
2258 then
2259 return;
2260 end if;
2261 end if;
2262
996ae0b0 2263 if Spec_Id /= Body_Id then
fbf5a39b 2264 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
2265 end if;
2266
2267 if Nkind (N) /= N_Subprogram_Body_Stub then
2268 Set_Corresponding_Spec (N, Spec_Id);
758c442c 2269
5d37ba92
ES
2270 -- Ada 2005 (AI-345): If the operation is a primitive operation
2271 -- of a concurrent type, the type of the first parameter has been
2272 -- replaced with the corresponding record, which is the proper
2273 -- run-time structure to use. However, within the body there may
2274 -- be uses of the formals that depend on primitive operations
2275 -- of the type (in particular calls in prefixed form) for which
2276 -- we need the original concurrent type. The operation may have
2277 -- several controlling formals, so the replacement must be done
2278 -- for all of them.
758c442c
GD
2279
2280 if Comes_From_Source (Spec_Id)
2281 and then Present (First_Entity (Spec_Id))
2282 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2283 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
5d37ba92 2284 and then
ce2b6ba5 2285 Present (Interfaces (Etype (First_Entity (Spec_Id))))
5d37ba92
ES
2286 and then
2287 Present
21d27997
RD
2288 (Corresponding_Concurrent_Type
2289 (Etype (First_Entity (Spec_Id))))
758c442c 2290 then
5d37ba92
ES
2291 declare
2292 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2293 Form : Entity_Id;
2294
2295 begin
2296 Form := First_Formal (Spec_Id);
2297 while Present (Form) loop
2298 if Etype (Form) = Typ then
2299 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2300 end if;
2301
2302 Next_Formal (Form);
2303 end loop;
2304 end;
758c442c
GD
2305 end if;
2306
21d27997
RD
2307 -- Make the formals visible, and place subprogram on scope stack.
2308 -- This is also the point at which we set Last_Real_Spec_Entity
2309 -- to mark the entities which will not be moved to the body.
758c442c 2310
996ae0b0 2311 Install_Formals (Spec_Id);
21d27997 2312 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
0a36105d 2313 Push_Scope (Spec_Id);
996ae0b0
RK
2314
2315 -- Make sure that the subprogram is immediately visible. For
2316 -- child units that have no separate spec this is indispensable.
2317 -- Otherwise it is safe albeit redundant.
2318
2319 Set_Is_Immediately_Visible (Spec_Id);
2320 end if;
2321
2322 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2323 Set_Ekind (Body_Id, E_Subprogram_Body);
2324 Set_Scope (Body_Id, Scope (Spec_Id));
ec4867fa 2325 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
996ae0b0
RK
2326
2327 -- Case of subprogram body with no previous spec
2328
2329 else
2330 if Style_Check
2331 and then Comes_From_Source (Body_Id)
2332 and then not Suppress_Style_Checks (Body_Id)
2333 and then not In_Instance
2334 then
2335 Style.Body_With_No_Spec (N);
2336 end if;
2337
2338 New_Overloaded_Entity (Body_Id);
2339
2340 if Nkind (N) /= N_Subprogram_Body_Stub then
2341 Set_Acts_As_Spec (N);
2342 Generate_Definition (Body_Id);
fbf5a39b
AC
2343 Generate_Reference
2344 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2345 Generate_Reference_To_Formals (Body_Id);
996ae0b0 2346 Install_Formals (Body_Id);
0a36105d 2347 Push_Scope (Body_Id);
996ae0b0
RK
2348 end if;
2349 end if;
2350
76a69663
ES
2351 -- If the return type is an anonymous access type whose designated type
2352 -- is the limited view of a class-wide type and the non-limited view is
2353 -- available, update the return type accordingly.
ec4867fa 2354
0791fbe9 2355 if Ada_Version >= Ada_2005
ec4867fa
ES
2356 and then Comes_From_Source (N)
2357 then
2358 declare
ec4867fa 2359 Etyp : Entity_Id;
0a36105d 2360 Rtyp : Entity_Id;
ec4867fa
ES
2361
2362 begin
0a36105d
JM
2363 Rtyp := Etype (Current_Scope);
2364
2365 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2366 Etyp := Directly_Designated_Type (Rtyp);
2367
2368 if Is_Class_Wide_Type (Etyp)
2369 and then From_With_Type (Etyp)
2370 then
2371 Set_Directly_Designated_Type
2372 (Etype (Current_Scope), Available_View (Etyp));
2373 end if;
2374 end if;
ec4867fa
ES
2375 end;
2376 end if;
2377
996ae0b0
RK
2378 -- If this is the proper body of a stub, we must verify that the stub
2379 -- conforms to the body, and to the previous spec if one was present.
2380 -- we know already that the body conforms to that spec. This test is
2381 -- only required for subprograms that come from source.
2382
2383 if Nkind (Parent (N)) = N_Subunit
2384 and then Comes_From_Source (N)
2385 and then not Error_Posted (Body_Id)
e895b435
ES
2386 and then Nkind (Corresponding_Stub (Parent (N))) =
2387 N_Subprogram_Body_Stub
996ae0b0
RK
2388 then
2389 declare
fbf5a39b
AC
2390 Old_Id : constant Entity_Id :=
2391 Defining_Entity
2392 (Specification (Corresponding_Stub (Parent (N))));
2393
996ae0b0 2394 Conformant : Boolean := False;
996ae0b0
RK
2395
2396 begin
2397 if No (Spec_Id) then
2398 Check_Fully_Conformant (Body_Id, Old_Id);
2399
2400 else
2401 Check_Conformance
2402 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2403
2404 if not Conformant then
2405
2406 -- The stub was taken to be a new declaration. Indicate
2407 -- that it lacks a body.
2408
2409 Set_Has_Completion (Old_Id, False);
2410 end if;
2411 end if;
2412 end;
2413 end if;
2414
2415 Set_Has_Completion (Body_Id);
2416 Check_Eliminated (Body_Id);
2417
2418 if Nkind (N) = N_Subprogram_Body_Stub then
2419 return;
2420
ec4867fa 2421 elsif Present (Spec_Id)
996ae0b0 2422 and then Expander_Active
e660dbf7 2423 and then
800621e0 2424 (Has_Pragma_Inline_Always (Spec_Id)
e660dbf7 2425 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
996ae0b0 2426 then
e660dbf7 2427 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
2428 end if;
2429
0ab80019 2430 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
9bc856dd 2431 -- if its specification we have to install the private withed units.
21d27997 2432 -- This holds for child units as well.
9bc856dd
AC
2433
2434 if Is_Compilation_Unit (Body_Id)
21d27997 2435 or else Nkind (Parent (N)) = N_Compilation_Unit
9bc856dd
AC
2436 then
2437 Install_Private_With_Clauses (Body_Id);
2438 end if;
2439
ec4867fa
ES
2440 Check_Anonymous_Return;
2441
fdce4bb7
JM
2442 -- Set the Protected_Formal field of each extra formal of the protected
2443 -- subprogram to reference the corresponding extra formal of the
2444 -- subprogram that implements it. For regular formals this occurs when
2445 -- the protected subprogram's declaration is expanded, but the extra
2446 -- formals don't get created until the subprogram is frozen. We need to
2447 -- do this before analyzing the protected subprogram's body so that any
2448 -- references to the original subprogram's extra formals will be changed
2449 -- refer to the implementing subprogram's formals (see Expand_Formal).
2450
2451 if Present (Spec_Id)
2452 and then Is_Protected_Type (Scope (Spec_Id))
2453 and then Present (Protected_Body_Subprogram (Spec_Id))
2454 then
2455 declare
2456 Impl_Subp : constant Entity_Id :=
2457 Protected_Body_Subprogram (Spec_Id);
2458 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2459 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
fdce4bb7
JM
2460 begin
2461 while Present (Prot_Ext_Formal) loop
2462 pragma Assert (Present (Impl_Ext_Formal));
fdce4bb7 2463 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
fdce4bb7
JM
2464 Next_Formal_With_Extras (Prot_Ext_Formal);
2465 Next_Formal_With_Extras (Impl_Ext_Formal);
2466 end loop;
2467 end;
2468 end if;
2469
0868e09c 2470 -- Now we can go on to analyze the body
996ae0b0
RK
2471
2472 HSS := Handled_Statement_Sequence (N);
2473 Set_Actual_Subtypes (N, Current_Scope);
21d27997
RD
2474
2475 -- Deal with preconditions and postconditions
2476
2477 Process_PPCs (N, Spec_Id, Body_Id);
2478
f3d0f304 2479 -- Add a declaration for the Protection object, renaming declarations
21d27997
RD
2480 -- for discriminals and privals and finally a declaration for the entry
2481 -- family index (if applicable). This form of early expansion is done
2482 -- when the Expander is active because Install_Private_Data_Declarations
2483 -- references entities which were created during regular expansion.
2484
2485 if Expander_Active
2486 and then Comes_From_Source (N)
2487 and then Present (Prot_Typ)
2488 and then Present (Spec_Id)
2489 and then not Is_Eliminated (Spec_Id)
2490 then
2491 Install_Private_Data_Declarations
2492 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2493 end if;
2494
2495 -- Analyze the declarations (this call will analyze the precondition
2496 -- Check pragmas we prepended to the list, as well as the declaration
2497 -- of the _Postconditions procedure).
2498
996ae0b0 2499 Analyze_Declarations (Declarations (N));
21d27997
RD
2500
2501 -- Check completion, and analyze the statements
2502
996ae0b0 2503 Check_Completion;
33931112 2504 Inspect_Deferred_Constant_Completion (Declarations (N));
996ae0b0 2505 Analyze (HSS);
21d27997
RD
2506
2507 -- Deal with end of scope processing for the body
2508
07fc65c4 2509 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0
RK
2510 End_Scope;
2511 Check_Subprogram_Order (N);
c37bb106 2512 Set_Analyzed (Body_Id);
996ae0b0
RK
2513
2514 -- If we have a separate spec, then the analysis of the declarations
2515 -- caused the entities in the body to be chained to the spec id, but
2516 -- we want them chained to the body id. Only the formal parameters
2517 -- end up chained to the spec id in this case.
2518
2519 if Present (Spec_Id) then
2520
d39d6bb8 2521 -- We must conform to the categorization of our spec
996ae0b0 2522
d39d6bb8 2523 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 2524
d39d6bb8
RD
2525 -- And if this is a child unit, the parent units must conform
2526
2527 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
2528 Validate_Categorization_Dependency
2529 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2530 end if;
2531
21d27997
RD
2532 -- Here is where we move entities from the spec to the body
2533
2534 -- Case where there are entities that stay with the spec
2535
2536 if Present (Last_Real_Spec_Entity) then
2537
2538 -- No body entities (happens when the only real spec entities
2539 -- come from precondition and postcondition pragmas)
2540
2541 if No (Last_Entity (Body_Id)) then
2542 Set_First_Entity
2543 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2544
2545 -- Body entities present (formals), so chain stuff past them
2546
2547 else
2548 Set_Next_Entity
2549 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2550 end if;
2551
2552 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
996ae0b0 2553 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
21d27997
RD
2554 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2555
2556 -- Case where there are no spec entities, in this case there can
2557 -- be no body entities either, so just move everything.
996ae0b0
RK
2558
2559 else
21d27997 2560 pragma Assert (No (Last_Entity (Body_Id)));
996ae0b0
RK
2561 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2562 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2563 Set_First_Entity (Spec_Id, Empty);
2564 Set_Last_Entity (Spec_Id, Empty);
2565 end if;
2566 end if;
2567
7665e4bd 2568 Check_Missing_Return;
996ae0b0 2569
82c80734 2570 -- Now we are going to check for variables that are never modified in
76a69663
ES
2571 -- the body of the procedure. But first we deal with a special case
2572 -- where we want to modify this check. If the body of the subprogram
2573 -- starts with a raise statement or its equivalent, or if the body
2574 -- consists entirely of a null statement, then it is pretty obvious
2575 -- that it is OK to not reference the parameters. For example, this
2576 -- might be the following common idiom for a stubbed function:
82c80734
RD
2577 -- statement of the procedure raises an exception. In particular this
2578 -- deals with the common idiom of a stubbed function, which might
2579 -- appear as something like
fbf5a39b
AC
2580
2581 -- function F (A : Integer) return Some_Type;
2582 -- X : Some_Type;
2583 -- begin
2584 -- raise Program_Error;
2585 -- return X;
2586 -- end F;
2587
76a69663
ES
2588 -- Here the purpose of X is simply to satisfy the annoying requirement
2589 -- in Ada that there be at least one return, and we certainly do not
2590 -- want to go posting warnings on X that it is not initialized! On
2591 -- the other hand, if X is entirely unreferenced that should still
2592 -- get a warning.
2593
2594 -- What we do is to detect these cases, and if we find them, flag the
2595 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2596 -- suppress unwanted warnings. For the case of the function stub above
2597 -- we have a special test to set X as apparently assigned to suppress
2598 -- the warning.
996ae0b0
RK
2599
2600 declare
800621e0 2601 Stm : Node_Id;
996ae0b0
RK
2602
2603 begin
0a36105d
JM
2604 -- Skip initial labels (for one thing this occurs when we are in
2605 -- front end ZCX mode, but in any case it is irrelevant), and also
2606 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 2607
800621e0 2608 Stm := First (Statements (HSS));
0a36105d
JM
2609 while Nkind (Stm) = N_Label
2610 or else Nkind (Stm) in N_Push_xxx_Label
2611 loop
996ae0b0 2612 Next (Stm);
0a36105d 2613 end loop;
996ae0b0 2614
fbf5a39b
AC
2615 -- Do the test on the original statement before expansion
2616
2617 declare
2618 Ostm : constant Node_Id := Original_Node (Stm);
2619
2620 begin
76a69663 2621 -- If explicit raise statement, turn on flag
fbf5a39b
AC
2622
2623 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
2624 Set_Trivial_Subprogram (Stm);
2625
f3d57416 2626 -- If null statement, and no following statements, turn on flag
76a69663
ES
2627
2628 elsif Nkind (Stm) = N_Null_Statement
2629 and then Comes_From_Source (Stm)
2630 and then No (Next (Stm))
2631 then
2632 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
2633
2634 -- Check for explicit call cases which likely raise an exception
2635
2636 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2637 if Is_Entity_Name (Name (Ostm)) then
2638 declare
2639 Ent : constant Entity_Id := Entity (Name (Ostm));
2640
2641 begin
2642 -- If the procedure is marked No_Return, then likely it
2643 -- raises an exception, but in any case it is not coming
76a69663 2644 -- back here, so turn on the flag.
fbf5a39b
AC
2645
2646 if Ekind (Ent) = E_Procedure
2647 and then No_Return (Ent)
2648 then
76a69663 2649 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
2650 end if;
2651 end;
2652 end if;
2653 end if;
2654 end;
996ae0b0
RK
2655 end;
2656
2657 -- Check for variables that are never modified
2658
2659 declare
2660 E1, E2 : Entity_Id;
2661
2662 begin
fbf5a39b 2663 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
2664 -- flags from out parameters to the corresponding entities in the
2665 -- body. The reason we do that is we want to post error flags on
2666 -- the body entities, not the spec entities.
2667
2668 if Present (Spec_Id) then
2669 E1 := First_Entity (Spec_Id);
996ae0b0
RK
2670 while Present (E1) loop
2671 if Ekind (E1) = E_Out_Parameter then
2672 E2 := First_Entity (Body_Id);
fbf5a39b 2673 while Present (E2) loop
996ae0b0
RK
2674 exit when Chars (E1) = Chars (E2);
2675 Next_Entity (E2);
2676 end loop;
2677
fbf5a39b
AC
2678 if Present (E2) then
2679 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2680 end if;
996ae0b0
RK
2681 end if;
2682
2683 Next_Entity (E1);
2684 end loop;
2685 end if;
2686
0868e09c
RD
2687 -- Check references in body unless it was deleted. Note that the
2688 -- check of Body_Deleted here is not just for efficiency, it is
2689 -- necessary to avoid junk warnings on formal parameters.
2690
2691 if not Body_Deleted then
2692 Check_References (Body_Id);
2693 end if;
996ae0b0 2694 end;
b1b543d2 2695 end Analyze_Subprogram_Body_Helper;
996ae0b0
RK
2696
2697 ------------------------------------
2698 -- Analyze_Subprogram_Declaration --
2699 ------------------------------------
2700
2701 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
5d5832bc 2702 Loc : constant Source_Ptr := Sloc (N);
0f1a6a0b
AC
2703 AS : constant List_Id := Aspect_Specifications (N);
2704 Scop : constant Entity_Id := Current_Scope;
5d5832bc
AC
2705 Designator : Entity_Id;
2706 Form : Node_Id;
5d5832bc 2707 Null_Body : Node_Id := Empty;
996ae0b0
RK
2708
2709 -- Start of processing for Analyze_Subprogram_Declaration
2710
2711 begin
349ff68f
AC
2712 -- For a null procedure, capture the profile before analysis, for
2713 -- expansion at the freeze point and at each point of call.
5d5832bc
AC
2714 -- The body will only be used if the procedure has preconditions.
2715 -- In that case the body is analyzed at the freeze point.
2716
2717 if Nkind (Specification (N)) = N_Procedure_Specification
2718 and then Null_Present (Specification (N))
2719 and then Expander_Active
2720 then
2721 Null_Body :=
2722 Make_Subprogram_Body (Loc,
2723 Specification =>
2724 New_Copy_Tree (Specification (N)),
349ff68f
AC
2725 Declarations =>
2726 New_List,
5d5832bc
AC
2727 Handled_Statement_Sequence =>
2728 Make_Handled_Sequence_Of_Statements (Loc,
2729 Statements => New_List (Make_Null_Statement (Loc))));
2730
01957849 2731 -- Create new entities for body and formals
5d5832bc
AC
2732
2733 Set_Defining_Unit_Name (Specification (Null_Body),
2734 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2735 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2736
2737 Form := First (Parameter_Specifications (Specification (Null_Body)));
2738 while Present (Form) loop
2739 Set_Defining_Identifier (Form,
2740 Make_Defining_Identifier (Loc,
2741 Chars (Defining_Identifier (Form))));
2742 Next (Form);
2743 end loop;
2744
2745 if Is_Protected_Type (Current_Scope) then
ed2233dc 2746 Error_Msg_N ("protected operation cannot be a null procedure", N);
5d5832bc
AC
2747 end if;
2748 end if;
2749
2750 Designator := Analyze_Subprogram_Specification (Specification (N));
2751 Generate_Definition (Designator);
2752
b1b543d2
BD
2753 if Debug_Flag_C then
2754 Write_Str ("==> subprogram spec ");
2755 Write_Name (Chars (Designator));
2756 Write_Str (" from ");
2757 Write_Location (Sloc (N));
2758 Write_Eol;
2759 Indent;
2760 end if;
2761
5d5832bc
AC
2762 if Nkind (Specification (N)) = N_Procedure_Specification
2763 and then Null_Present (Specification (N))
2764 then
2765 Set_Has_Completion (Designator);
996ae0b0 2766
5d5832bc
AC
2767 if Present (Null_Body) then
2768 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2769 Set_Body_To_Inline (N, Null_Body);
2770 Set_Is_Inlined (Designator);
2771 end if;
2772 end if;
996ae0b0
RK
2773
2774 Validate_RCI_Subprogram_Declaration (N);
996ae0b0
RK
2775 New_Overloaded_Entity (Designator);
2776 Check_Delayed_Subprogram (Designator);
fbf5a39b 2777
6ca063eb
AC
2778 -- If the type of the first formal of the current subprogram is a
2779 -- nongeneric tagged private type, mark the subprogram as being a
2780 -- private primitive. Ditto if this is a function with controlling
b7d5e87b
AC
2781 -- result, and the return type is currently private. In both cases,
2782 -- the type of the controlling argument or result must be in the
2783 -- current scope for the operation to be primitive.
6ca063eb
AC
2784
2785 if Has_Controlling_Result (Designator)
2786 and then Is_Private_Type (Etype (Designator))
b7d5e87b 2787 and then Scope (Etype (Designator)) = Current_Scope
6ca063eb
AC
2788 and then not Is_Generic_Actual_Type (Etype (Designator))
2789 then
2790 Set_Is_Private_Primitive (Designator);
d44202ba 2791
6ca063eb 2792 elsif Present (First_Formal (Designator)) then
d44202ba
HK
2793 declare
2794 Formal_Typ : constant Entity_Id :=
2795 Etype (First_Formal (Designator));
2796 begin
2797 Set_Is_Private_Primitive (Designator,
2798 Is_Tagged_Type (Formal_Typ)
b7d5e87b 2799 and then Scope (Formal_Typ) = Current_Scope
d44202ba
HK
2800 and then Is_Private_Type (Formal_Typ)
2801 and then not Is_Generic_Actual_Type (Formal_Typ));
2802 end;
2803 end if;
2804
ec4867fa
ES
2805 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2806 -- or null.
2807
0791fbe9 2808 if Ada_Version >= Ada_2005
ec4867fa
ES
2809 and then Comes_From_Source (N)
2810 and then Is_Dispatching_Operation (Designator)
2811 then
2812 declare
2813 E : Entity_Id;
2814 Etyp : Entity_Id;
2815
2816 begin
2817 if Has_Controlling_Result (Designator) then
2818 Etyp := Etype (Designator);
2819
2820 else
2821 E := First_Entity (Designator);
2822 while Present (E)
2823 and then Is_Formal (E)
2824 and then not Is_Controlling_Formal (E)
2825 loop
2826 Next_Entity (E);
2827 end loop;
2828
2829 Etyp := Etype (E);
2830 end if;
2831
2832 if Is_Access_Type (Etyp) then
2833 Etyp := Directly_Designated_Type (Etyp);
2834 end if;
2835
2836 if Is_Interface (Etyp)
f937473f 2837 and then not Is_Abstract_Subprogram (Designator)
ec4867fa
ES
2838 and then not (Ekind (Designator) = E_Procedure
2839 and then Null_Present (Specification (N)))
2840 then
2841 Error_Msg_Name_1 := Chars (Defining_Entity (N));
ed2233dc 2842 Error_Msg_N
ec4867fa
ES
2843 ("(Ada 2005) interface subprogram % must be abstract or null",
2844 N);
2845 end if;
2846 end;
2847 end if;
2848
fbf5a39b
AC
2849 -- What is the following code for, it used to be
2850
2851 -- ??? Set_Suppress_Elaboration_Checks
2852 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2853
2854 -- The following seems equivalent, but a bit dubious
2855
2856 if Elaboration_Checks_Suppressed (Designator) then
2857 Set_Kill_Elaboration_Checks (Designator);
2858 end if;
996ae0b0
RK
2859
2860 if Scop /= Standard_Standard
2861 and then not Is_Child_Unit (Designator)
2862 then
fbf5a39b 2863 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0 2864 else
e895b435 2865 -- For a compilation unit, check for library-unit pragmas
996ae0b0 2866
0a36105d 2867 Push_Scope (Designator);
996ae0b0
RK
2868 Set_Categorization_From_Pragmas (N);
2869 Validate_Categorization_Dependency (N, Designator);
2870 Pop_Scope;
2871 end if;
2872
2873 -- For a compilation unit, set body required. This flag will only be
2874 -- reset if a valid Import or Interface pragma is processed later on.
2875
2876 if Nkind (Parent (N)) = N_Compilation_Unit then
2877 Set_Body_Required (Parent (N), True);
758c442c 2878
0791fbe9 2879 if Ada_Version >= Ada_2005
758c442c
GD
2880 and then Nkind (Specification (N)) = N_Procedure_Specification
2881 and then Null_Present (Specification (N))
2882 then
2883 Error_Msg_N
2884 ("null procedure cannot be declared at library level", N);
2885 end if;
996ae0b0
RK
2886 end if;
2887
fbf5a39b 2888 Generate_Reference_To_Formals (Designator);
996ae0b0 2889 Check_Eliminated (Designator);
fbf5a39b 2890
b1b543d2
BD
2891 if Debug_Flag_C then
2892 Outdent;
2893 Write_Str ("<== subprogram spec ");
2894 Write_Name (Chars (Designator));
2895 Write_Str (" from ");
2896 Write_Location (Sloc (N));
2897 Write_Eol;
2898 end if;
0f1a6a0b
AC
2899
2900 Analyze_Aspect_Specifications (N, Designator, AS);
996ae0b0
RK
2901 end Analyze_Subprogram_Declaration;
2902
fbf5a39b
AC
2903 --------------------------------------
2904 -- Analyze_Subprogram_Specification --
2905 --------------------------------------
2906
2907 -- Reminder: N here really is a subprogram specification (not a subprogram
2908 -- declaration). This procedure is called to analyze the specification in
2909 -- both subprogram bodies and subprogram declarations (specs).
2910
2911 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2912 Designator : constant Entity_Id := Defining_Entity (N);
21d27997 2913 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 2914
758c442c
GD
2915 -- Start of processing for Analyze_Subprogram_Specification
2916
fbf5a39b
AC
2917 begin
2918 Generate_Definition (Designator);
2919
2920 if Nkind (N) = N_Function_Specification then
2921 Set_Ekind (Designator, E_Function);
2922 Set_Mechanism (Designator, Default_Mechanism);
2923
fbf5a39b
AC
2924 else
2925 Set_Ekind (Designator, E_Procedure);
2926 Set_Etype (Designator, Standard_Void_Type);
2927 end if;
2928
800621e0 2929 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
2930
2931 Set_Scope (Designator, Current_Scope);
2932
fbf5a39b 2933 if Present (Formals) then
0a36105d 2934 Push_Scope (Designator);
fbf5a39b 2935 Process_Formals (Formals, N);
758c442c 2936
a38ff9b1
ES
2937 -- Ada 2005 (AI-345): If this is an overriding operation of an
2938 -- inherited interface operation, and the controlling type is
2939 -- a synchronized type, replace the type with its corresponding
2940 -- record, to match the proper signature of an overriding operation.
69cb258c
AC
2941 -- Same processing for an access parameter whose designated type is
2942 -- derived from a synchronized interface.
758c442c 2943
0791fbe9 2944 if Ada_Version >= Ada_2005 then
d44202ba
HK
2945 declare
2946 Formal : Entity_Id;
2947 Formal_Typ : Entity_Id;
2948 Rec_Typ : Entity_Id;
69cb258c 2949 Desig_Typ : Entity_Id;
0a36105d 2950
d44202ba
HK
2951 begin
2952 Formal := First_Formal (Designator);
2953 while Present (Formal) loop
2954 Formal_Typ := Etype (Formal);
0a36105d 2955
d44202ba
HK
2956 if Is_Concurrent_Type (Formal_Typ)
2957 and then Present (Corresponding_Record_Type (Formal_Typ))
2958 then
2959 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2960
2961 if Present (Interfaces (Rec_Typ)) then
2962 Set_Etype (Formal, Rec_Typ);
2963 end if;
69cb258c
AC
2964
2965 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
2966 Desig_Typ := Designated_Type (Formal_Typ);
2967
2968 if Is_Concurrent_Type (Desig_Typ)
2969 and then Present (Corresponding_Record_Type (Desig_Typ))
2970 then
2971 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
2972
2973 if Present (Interfaces (Rec_Typ)) then
2974 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
2975 end if;
2976 end if;
d44202ba
HK
2977 end if;
2978
2979 Next_Formal (Formal);
2980 end loop;
2981 end;
758c442c
GD
2982 end if;
2983
fbf5a39b 2984 End_Scope;
82c80734 2985
b66c3ff4
AC
2986 -- The subprogram scope is pushed and popped around the processing of
2987 -- the return type for consistency with call above to Process_Formals
2988 -- (which itself can call Analyze_Return_Type), and to ensure that any
2989 -- itype created for the return type will be associated with the proper
2990 -- scope.
2991
82c80734 2992 elsif Nkind (N) = N_Function_Specification then
b66c3ff4
AC
2993 Push_Scope (Designator);
2994
82c80734 2995 Analyze_Return_Type (N);
b66c3ff4
AC
2996
2997 End_Scope;
fbf5a39b
AC
2998 end if;
2999
3000 if Nkind (N) = N_Function_Specification then
3001 if Nkind (Designator) = N_Defining_Operator_Symbol then
3002 Valid_Operator_Definition (Designator);
3003 end if;
3004
3005 May_Need_Actuals (Designator);
3006
fe63b1b1
ES
3007 -- Ada 2005 (AI-251): If the return type is abstract, verify that
3008 -- the subprogram is abstract also. This does not apply to renaming
3009 -- declarations, where abstractness is inherited.
2bfb1b72 3010
fe63b1b1
ES
3011 -- In case of primitives associated with abstract interface types
3012 -- the check is applied later (see Analyze_Subprogram_Declaration).
ec4867fa 3013
2bfb1b72
RD
3014 if not Nkind_In (Parent (N), N_Subprogram_Renaming_Declaration,
3015 N_Abstract_Subprogram_Declaration,
3016 N_Formal_Abstract_Subprogram_Declaration)
fbf5a39b 3017 then
2e79de51
AC
3018 if Is_Abstract_Type (Etype (Designator))
3019 and then not Is_Interface (Etype (Designator))
3020 then
3021 Error_Msg_N
3022 ("function that returns abstract type must be abstract", N);
3023
2bfb1b72 3024 -- Ada 2012 (AI-0073): extend this test to subprograms with an
2e79de51
AC
3025 -- access result whose designated type is abstract.
3026
3027 elsif Nkind (Result_Definition (N)) = N_Access_Definition
3028 and then
3029 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3030 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
dbe945f1 3031 and then Ada_Version >= Ada_2012
2e79de51
AC
3032 then
3033 Error_Msg_N ("function whose access result designates "
3034 & "abstract type must be abstract", N);
3035 end if;
fbf5a39b
AC
3036 end if;
3037 end if;
3038
3039 return Designator;
3040 end Analyze_Subprogram_Specification;
3041
996ae0b0
RK
3042 --------------------------
3043 -- Build_Body_To_Inline --
3044 --------------------------
3045
d05ef0ab 3046 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
f937473f 3047 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
996ae0b0
RK
3048 Original_Body : Node_Id;
3049 Body_To_Analyze : Node_Id;
3050 Max_Size : constant := 10;
3051 Stat_Count : Integer := 0;
3052
3053 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
e895b435 3054 -- Check for declarations that make inlining not worthwhile
996ae0b0
RK
3055
3056 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
82c80734
RD
3057 -- Check for statements that make inlining not worthwhile: any tasking
3058 -- statement, nested at any level. Keep track of total number of
3059 -- elementary statements, as a measure of acceptable size.
996ae0b0
RK
3060
3061 function Has_Pending_Instantiation return Boolean;
f937473f
RD
3062 -- If some enclosing body contains instantiations that appear before the
3063 -- corresponding generic body, the enclosing body has a freeze node so
3064 -- that it can be elaborated after the generic itself. This might
996ae0b0
RK
3065 -- conflict with subsequent inlinings, so that it is unsafe to try to
3066 -- inline in such a case.
3067
c8ef728f 3068 function Has_Single_Return return Boolean;
f937473f
RD
3069 -- In general we cannot inline functions that return unconstrained type.
3070 -- However, we can handle such functions if all return statements return
3071 -- a local variable that is the only declaration in the body of the
3072 -- function. In that case the call can be replaced by that local
3073 -- variable as is done for other inlined calls.
c8ef728f 3074
fbf5a39b 3075 procedure Remove_Pragmas;
76a69663
ES
3076 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
3077 -- parameter has no meaning when the body is inlined and the formals
3078 -- are rewritten. Remove it from body to inline. The analysis of the
3079 -- non-inlined body will handle the pragma properly.
996ae0b0 3080
e895b435
ES
3081 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
3082 -- If the body of the subprogram includes a call that returns an
3083 -- unconstrained type, the secondary stack is involved, and it
3084 -- is not worth inlining.
3085
996ae0b0
RK
3086 ------------------------------
3087 -- Has_Excluded_Declaration --
3088 ------------------------------
3089
3090 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3091 D : Node_Id;
3092
fbf5a39b 3093 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
82c80734
RD
3094 -- Nested subprograms make a given body ineligible for inlining, but
3095 -- we make an exception for instantiations of unchecked conversion.
3096 -- The body has not been analyzed yet, so check the name, and verify
3097 -- that the visible entity with that name is the predefined unit.
3098
3099 -----------------------------
3100 -- Is_Unchecked_Conversion --
3101 -----------------------------
fbf5a39b
AC
3102
3103 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
82c80734 3104 Id : constant Node_Id := Name (D);
fbf5a39b
AC
3105 Conv : Entity_Id;
3106
3107 begin
3108 if Nkind (Id) = N_Identifier
3109 and then Chars (Id) = Name_Unchecked_Conversion
3110 then
3111 Conv := Current_Entity (Id);
3112
800621e0 3113 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
fbf5a39b
AC
3114 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3115 then
3116 Conv := Current_Entity (Selector_Name (Id));
fbf5a39b
AC
3117 else
3118 return False;
3119 end if;
3120
758c442c
GD
3121 return Present (Conv)
3122 and then Is_Predefined_File_Name
3123 (Unit_File_Name (Get_Source_Unit (Conv)))
fbf5a39b
AC
3124 and then Is_Intrinsic_Subprogram (Conv);
3125 end Is_Unchecked_Conversion;
3126
3127 -- Start of processing for Has_Excluded_Declaration
3128
996ae0b0
RK
3129 begin
3130 D := First (Decls);
996ae0b0 3131 while Present (D) loop
800621e0
RD
3132 if (Nkind (D) = N_Function_Instantiation
3133 and then not Is_Unchecked_Conversion (D))
3134 or else Nkind_In (D, N_Protected_Type_Declaration,
3135 N_Package_Declaration,
3136 N_Package_Instantiation,
3137 N_Subprogram_Body,
3138 N_Procedure_Instantiation,
3139 N_Task_Type_Declaration)
996ae0b0
RK
3140 then
3141 Cannot_Inline
fbf5a39b 3142 ("cannot inline & (non-allowed declaration)?", D, Subp);
996ae0b0
RK
3143 return True;
3144 end if;
3145
3146 Next (D);
3147 end loop;
3148
3149 return False;
996ae0b0
RK
3150 end Has_Excluded_Declaration;
3151
3152 ----------------------------
3153 -- Has_Excluded_Statement --
3154 ----------------------------
3155
3156 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3157 S : Node_Id;
3158 E : Node_Id;
3159
3160 begin
3161 S := First (Stats);
996ae0b0
RK
3162 while Present (S) loop
3163 Stat_Count := Stat_Count + 1;
3164
800621e0
RD
3165 if Nkind_In (S, N_Abort_Statement,
3166 N_Asynchronous_Select,
3167 N_Conditional_Entry_Call,
3168 N_Delay_Relative_Statement,
3169 N_Delay_Until_Statement,
3170 N_Selective_Accept,
3171 N_Timed_Entry_Call)
996ae0b0
RK
3172 then
3173 Cannot_Inline
fbf5a39b 3174 ("cannot inline & (non-allowed statement)?", S, Subp);
996ae0b0
RK
3175 return True;
3176
3177 elsif Nkind (S) = N_Block_Statement then
3178 if Present (Declarations (S))
3179 and then Has_Excluded_Declaration (Declarations (S))
3180 then
3181 return True;
3182
3183 elsif Present (Handled_Statement_Sequence (S))
3184 and then
3185 (Present
3186 (Exception_Handlers (Handled_Statement_Sequence (S)))
3187 or else
3188 Has_Excluded_Statement
3189 (Statements (Handled_Statement_Sequence (S))))
3190 then
3191 return True;
3192 end if;
3193
3194 elsif Nkind (S) = N_Case_Statement then
3195 E := First (Alternatives (S));
996ae0b0
RK
3196 while Present (E) loop
3197 if Has_Excluded_Statement (Statements (E)) then
3198 return True;
3199 end if;
3200
3201 Next (E);
3202 end loop;
3203
3204 elsif Nkind (S) = N_If_Statement then
3205 if Has_Excluded_Statement (Then_Statements (S)) then
3206 return True;
3207 end if;
3208
3209 if Present (Elsif_Parts (S)) then
3210 E := First (Elsif_Parts (S));
996ae0b0
RK
3211 while Present (E) loop
3212 if Has_Excluded_Statement (Then_Statements (E)) then
3213 return True;
3214 end if;
3215 Next (E);
3216 end loop;
3217 end if;
3218
3219 if Present (Else_Statements (S))
3220 and then Has_Excluded_Statement (Else_Statements (S))
3221 then
3222 return True;
3223 end if;
3224
3225 elsif Nkind (S) = N_Loop_Statement
3226 and then Has_Excluded_Statement (Statements (S))
3227 then
3228 return True;
3e2399ba
AC
3229
3230 elsif Nkind (S) = N_Extended_Return_Statement then
3231 if Has_Excluded_Statement
3232 (Statements (Handled_Statement_Sequence (S)))
3233 or else Present
3234 (Exception_Handlers (Handled_Statement_Sequence (S)))
3235 then
3236 return True;
3237 end if;
996ae0b0
RK
3238 end if;
3239
3240 Next (S);
3241 end loop;
3242
3243 return False;
3244 end Has_Excluded_Statement;
3245
3246 -------------------------------
3247 -- Has_Pending_Instantiation --
3248 -------------------------------
3249
3250 function Has_Pending_Instantiation return Boolean is
ec4867fa 3251 S : Entity_Id;
996ae0b0
RK
3252
3253 begin
ec4867fa 3254 S := Current_Scope;
996ae0b0
RK
3255 while Present (S) loop
3256 if Is_Compilation_Unit (S)
3257 or else Is_Child_Unit (S)
3258 then
3259 return False;
bce79204 3260
996ae0b0
RK
3261 elsif Ekind (S) = E_Package
3262 and then Has_Forward_Instantiation (S)
3263 then
3264 return True;
3265 end if;
3266
3267 S := Scope (S);
3268 end loop;
3269
3270 return False;
3271 end Has_Pending_Instantiation;
3272
c8ef728f
ES
3273 ------------------------
3274 -- Has_Single_Return --
3275 ------------------------
3276
3277 function Has_Single_Return return Boolean is
3278 Return_Statement : Node_Id := Empty;
3279
3280 function Check_Return (N : Node_Id) return Traverse_Result;
3281
3282 ------------------
3283 -- Check_Return --
3284 ------------------
3285
3286 function Check_Return (N : Node_Id) return Traverse_Result is
3287 begin
5d37ba92 3288 if Nkind (N) = N_Simple_Return_Statement then
c8ef728f
ES
3289 if Present (Expression (N))
3290 and then Is_Entity_Name (Expression (N))
3291 then
3292 if No (Return_Statement) then
3293 Return_Statement := N;
3294 return OK;
3295
3296 elsif Chars (Expression (N)) =
3297 Chars (Expression (Return_Statement))
3298 then
3299 return OK;
3300
3301 else
3302 return Abandon;
3303 end if;
3304
3e2399ba
AC
3305 -- A return statement within an extended return is a noop
3306 -- after inlining.
3307
3308 elsif No (Expression (N))
3309 and then Nkind (Parent (Parent (N))) =
3310 N_Extended_Return_Statement
3311 then
3312 return OK;
3313
c8ef728f
ES
3314 else
3315 -- Expression has wrong form
3316
3317 return Abandon;
3318 end if;
3319
3e2399ba
AC
3320 -- We can only inline a build-in-place function if
3321 -- it has a single extended return.
3322
3323 elsif Nkind (N) = N_Extended_Return_Statement then
3324 if No (Return_Statement) then
3325 Return_Statement := N;
3326 return OK;
3327
3328 else
3329 return Abandon;
3330 end if;
3331
c8ef728f
ES
3332 else
3333 return OK;
3334 end if;
3335 end Check_Return;
3336
3337 function Check_All_Returns is new Traverse_Func (Check_Return);
3338
3339 -- Start of processing for Has_Single_Return
3340
3341 begin
3e2399ba
AC
3342 if Check_All_Returns (N) /= OK then
3343 return False;
3344
3345 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3346 return True;
3347
3348 else
3349 return Present (Declarations (N))
3350 and then Present (First (Declarations (N)))
3351 and then Chars (Expression (Return_Statement)) =
3352 Chars (Defining_Identifier (First (Declarations (N))));
3353 end if;
c8ef728f
ES
3354 end Has_Single_Return;
3355
fbf5a39b
AC
3356 --------------------
3357 -- Remove_Pragmas --
3358 --------------------
3359
3360 procedure Remove_Pragmas is
3361 Decl : Node_Id;
3362 Nxt : Node_Id;
3363
3364 begin
3365 Decl := First (Declarations (Body_To_Analyze));
3366 while Present (Decl) loop
3367 Nxt := Next (Decl);
3368
3369 if Nkind (Decl) = N_Pragma
76a69663
ES
3370 and then (Pragma_Name (Decl) = Name_Unreferenced
3371 or else
3372 Pragma_Name (Decl) = Name_Unmodified)
fbf5a39b
AC
3373 then
3374 Remove (Decl);
3375 end if;
3376
3377 Decl := Nxt;
3378 end loop;
3379 end Remove_Pragmas;
3380
e895b435
ES
3381 --------------------------
3382 -- Uses_Secondary_Stack --
3383 --------------------------
3384
3385 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3386 function Check_Call (N : Node_Id) return Traverse_Result;
3387 -- Look for function calls that return an unconstrained type
3388
3389 ----------------
3390 -- Check_Call --
3391 ----------------
3392
3393 function Check_Call (N : Node_Id) return Traverse_Result is
3394 begin
3395 if Nkind (N) = N_Function_Call
3396 and then Is_Entity_Name (Name (N))
3397 and then Is_Composite_Type (Etype (Entity (Name (N))))
3398 and then not Is_Constrained (Etype (Entity (Name (N))))
3399 then
3400 Cannot_Inline
3401 ("cannot inline & (call returns unconstrained type)?",
3402 N, Subp);
3403 return Abandon;
3404 else
3405 return OK;
3406 end if;
3407 end Check_Call;
3408
3409 function Check_Calls is new Traverse_Func (Check_Call);
3410
3411 begin
3412 return Check_Calls (Bod) = Abandon;
3413 end Uses_Secondary_Stack;
3414
996ae0b0
RK
3415 -- Start of processing for Build_Body_To_Inline
3416
3417 begin
8dbd1460
AC
3418 -- Return immediately if done already
3419
996ae0b0
RK
3420 if Nkind (Decl) = N_Subprogram_Declaration
3421 and then Present (Body_To_Inline (Decl))
3422 then
8dbd1460 3423 return;
996ae0b0 3424
08402a6d
ES
3425 -- Functions that return unconstrained composite types require
3426 -- secondary stack handling, and cannot currently be inlined, unless
3427 -- all return statements return a local variable that is the first
3428 -- local declaration in the body.
996ae0b0
RK
3429
3430 elsif Ekind (Subp) = E_Function
3431 and then not Is_Scalar_Type (Etype (Subp))
3432 and then not Is_Access_Type (Etype (Subp))
3433 and then not Is_Constrained (Etype (Subp))
3434 then
08402a6d
ES
3435 if not Has_Single_Return then
3436 Cannot_Inline
3437 ("cannot inline & (unconstrained return type)?", N, Subp);
3438 return;
3439 end if;
3440
3441 -- Ditto for functions that return controlled types, where controlled
3442 -- actions interfere in complex ways with inlining.
2820d220
AC
3443
3444 elsif Ekind (Subp) = E_Function
048e5cef 3445 and then Needs_Finalization (Etype (Subp))
2820d220
AC
3446 then
3447 Cannot_Inline
3448 ("cannot inline & (controlled return type)?", N, Subp);
3449 return;
996ae0b0
RK
3450 end if;
3451
d05ef0ab
AC
3452 if Present (Declarations (N))
3453 and then Has_Excluded_Declaration (Declarations (N))
996ae0b0 3454 then
d05ef0ab 3455 return;
996ae0b0
RK
3456 end if;
3457
3458 if Present (Handled_Statement_Sequence (N)) then
fbf5a39b
AC
3459 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3460 Cannot_Inline
3461 ("cannot inline& (exception handler)?",
3462 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3463 Subp);
d05ef0ab 3464 return;
996ae0b0
RK
3465 elsif
3466 Has_Excluded_Statement
3467 (Statements (Handled_Statement_Sequence (N)))
3468 then
d05ef0ab 3469 return;
996ae0b0
RK
3470 end if;
3471 end if;
3472
3473 -- We do not inline a subprogram that is too large, unless it is
3474 -- marked Inline_Always. This pragma does not suppress the other
3475 -- checks on inlining (forbidden declarations, handlers, etc).
3476
3477 if Stat_Count > Max_Size
800621e0 3478 and then not Has_Pragma_Inline_Always (Subp)
996ae0b0 3479 then
fbf5a39b 3480 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
d05ef0ab 3481 return;
996ae0b0
RK
3482 end if;
3483
3484 if Has_Pending_Instantiation then
3485 Cannot_Inline
fbf5a39b
AC
3486 ("cannot inline& (forward instance within enclosing body)?",
3487 N, Subp);
d05ef0ab
AC
3488 return;
3489 end if;
3490
3491 -- Within an instance, the body to inline must be treated as a nested
3492 -- generic, so that the proper global references are preserved.
3493
ce4e59c4
ST
3494 -- Note that we do not do this at the library level, because it is not
3495 -- needed, and furthermore this causes trouble if front end inlining
3496 -- is activated (-gnatN).
3497
3498 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
d05ef0ab
AC
3499 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3500 Original_Body := Copy_Generic_Node (N, Empty, True);
3501 else
3502 Original_Body := Copy_Separate_Tree (N);
996ae0b0
RK
3503 end if;
3504
d05ef0ab
AC
3505 -- We need to capture references to the formals in order to substitute
3506 -- the actuals at the point of inlining, i.e. instantiation. To treat
3507 -- the formals as globals to the body to inline, we nest it within
3508 -- a dummy parameterless subprogram, declared within the real one.
24105bab
AC
3509 -- To avoid generating an internal name (which is never public, and
3510 -- which affects serial numbers of other generated names), we use
3511 -- an internal symbol that cannot conflict with user declarations.
d05ef0ab
AC
3512
3513 Set_Parameter_Specifications (Specification (Original_Body), No_List);
24105bab
AC
3514 Set_Defining_Unit_Name
3515 (Specification (Original_Body),
3516 Make_Defining_Identifier (Sloc (N), Name_uParent));
d05ef0ab
AC
3517 Set_Corresponding_Spec (Original_Body, Empty);
3518
996ae0b0
RK
3519 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3520
3521 -- Set return type of function, which is also global and does not need
3522 -- to be resolved.
3523
3524 if Ekind (Subp) = E_Function then
41251c60 3525 Set_Result_Definition (Specification (Body_To_Analyze),
996ae0b0
RK
3526 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3527 end if;
3528
3529 if No (Declarations (N)) then
3530 Set_Declarations (N, New_List (Body_To_Analyze));
3531 else
3532 Append (Body_To_Analyze, Declarations (N));
3533 end if;
3534
3535 Expander_Mode_Save_And_Set (False);
fbf5a39b 3536 Remove_Pragmas;
996ae0b0
RK
3537
3538 Analyze (Body_To_Analyze);
0a36105d 3539 Push_Scope (Defining_Entity (Body_To_Analyze));
996ae0b0
RK
3540 Save_Global_References (Original_Body);
3541 End_Scope;
3542 Remove (Body_To_Analyze);
3543
3544 Expander_Mode_Restore;
d05ef0ab 3545
ce4e59c4
ST
3546 -- Restore environment if previously saved
3547
3548 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
d05ef0ab
AC
3549 Restore_Env;
3550 end if;
e895b435
ES
3551
3552 -- If secondary stk used there is no point in inlining. We have
3553 -- already issued the warning in this case, so nothing to do.
3554
3555 if Uses_Secondary_Stack (Body_To_Analyze) then
3556 return;
3557 end if;
3558
3559 Set_Body_To_Inline (Decl, Original_Body);
3560 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3561 Set_Is_Inlined (Subp);
996ae0b0
RK
3562 end Build_Body_To_Inline;
3563
fbf5a39b
AC
3564 -------------------
3565 -- Cannot_Inline --
3566 -------------------
3567
3568 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3569 begin
676e8420
AC
3570 -- Do not emit warning if this is a predefined unit which is not the
3571 -- main unit. With validity checks enabled, some predefined subprograms
3572 -- may contain nested subprograms and become ineligible for inlining.
fbf5a39b
AC
3573
3574 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3575 and then not In_Extended_Main_Source_Unit (Subp)
3576 then
3577 null;
3578
800621e0 3579 elsif Has_Pragma_Inline_Always (Subp) then
e895b435
ES
3580
3581 -- Remove last character (question mark) to make this into an error,
3582 -- because the Inline_Always pragma cannot be obeyed.
3583
ec4867fa 3584 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
fbf5a39b
AC
3585
3586 elsif Ineffective_Inline_Warnings then
3587 Error_Msg_NE (Msg, N, Subp);
3588 end if;
3589 end Cannot_Inline;
3590
996ae0b0
RK
3591 -----------------------
3592 -- Check_Conformance --
3593 -----------------------
3594
3595 procedure Check_Conformance
41251c60
JM
3596 (New_Id : Entity_Id;
3597 Old_Id : Entity_Id;
3598 Ctype : Conformance_Type;
3599 Errmsg : Boolean;
3600 Conforms : out Boolean;
3601 Err_Loc : Node_Id := Empty;
3602 Get_Inst : Boolean := False;
3603 Skip_Controlling_Formals : Boolean := False)
996ae0b0 3604 is
996ae0b0 3605 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
c27f2f15
RD
3606 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3607 -- If Errmsg is True, then processing continues to post an error message
3608 -- for conformance error on given node. Two messages are output. The
3609 -- first message points to the previous declaration with a general "no
3610 -- conformance" message. The second is the detailed reason, supplied as
3611 -- Msg. The parameter N provide information for a possible & insertion
3612 -- in the message, and also provides the location for posting the
3613 -- message in the absence of a specified Err_Loc location.
996ae0b0
RK
3614
3615 -----------------------
3616 -- Conformance_Error --
3617 -----------------------
3618
3619 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3620 Enode : Node_Id;
3621
3622 begin
3623 Conforms := False;
3624
3625 if Errmsg then
3626 if No (Err_Loc) then
3627 Enode := N;
3628 else
3629 Enode := Err_Loc;
3630 end if;
3631
3632 Error_Msg_Sloc := Sloc (Old_Id);
3633
3634 case Ctype is
3635 when Type_Conformant =>
483c78cb 3636 Error_Msg_N -- CODEFIX
996ae0b0
RK
3637 ("not type conformant with declaration#!", Enode);
3638
3639 when Mode_Conformant =>
19590d70 3640 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 3641 Error_Msg_N
19590d70
GD
3642 ("not mode conformant with operation inherited#!",
3643 Enode);
3644 else
ed2233dc 3645 Error_Msg_N
19590d70
GD
3646 ("not mode conformant with declaration#!", Enode);
3647 end if;
996ae0b0
RK
3648
3649 when Subtype_Conformant =>
19590d70 3650 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 3651 Error_Msg_N
19590d70
GD
3652 ("not subtype conformant with operation inherited#!",
3653 Enode);
3654 else
ed2233dc 3655 Error_Msg_N
19590d70
GD
3656 ("not subtype conformant with declaration#!", Enode);
3657 end if;
996ae0b0
RK
3658
3659 when Fully_Conformant =>
19590d70 3660 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
483c78cb 3661 Error_Msg_N -- CODEFIX
19590d70
GD
3662 ("not fully conformant with operation inherited#!",
3663 Enode);
3664 else
483c78cb 3665 Error_Msg_N -- CODEFIX
19590d70
GD
3666 ("not fully conformant with declaration#!", Enode);
3667 end if;
996ae0b0
RK
3668 end case;
3669
3670 Error_Msg_NE (Msg, Enode, N);
3671 end if;
3672 end Conformance_Error;
3673
ec4867fa
ES
3674 -- Local Variables
3675
3676 Old_Type : constant Entity_Id := Etype (Old_Id);
3677 New_Type : constant Entity_Id := Etype (New_Id);
3678 Old_Formal : Entity_Id;
3679 New_Formal : Entity_Id;
3680 Access_Types_Match : Boolean;
3681 Old_Formal_Base : Entity_Id;
3682 New_Formal_Base : Entity_Id;
3683
996ae0b0
RK
3684 -- Start of processing for Check_Conformance
3685
3686 begin
3687 Conforms := True;
3688
82c80734
RD
3689 -- We need a special case for operators, since they don't appear
3690 -- explicitly.
996ae0b0
RK
3691
3692 if Ctype = Type_Conformant then
3693 if Ekind (New_Id) = E_Operator
3694 and then Operator_Matches_Spec (New_Id, Old_Id)
3695 then
3696 return;
3697 end if;
3698 end if;
3699
3700 -- If both are functions/operators, check return types conform
3701
3702 if Old_Type /= Standard_Void_Type
3703 and then New_Type /= Standard_Void_Type
3704 then
fceeaab6
ES
3705
3706 -- If we are checking interface conformance we omit controlling
3707 -- arguments and result, because we are only checking the conformance
3708 -- of the remaining parameters.
3709
3710 if Has_Controlling_Result (Old_Id)
3711 and then Has_Controlling_Result (New_Id)
3712 and then Skip_Controlling_Formals
3713 then
3714 null;
3715
3716 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5d37ba92 3717 Conformance_Error ("\return type does not match!", New_Id);
996ae0b0
RK
3718 return;
3719 end if;
3720
41251c60 3721 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 3722 -- null-exclusion and access-to-constant attributes match.
41251c60 3723
0791fbe9 3724 if Ada_Version >= Ada_2005
41251c60
JM
3725 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3726 and then
3727 (Can_Never_Be_Null (Old_Type)
3728 /= Can_Never_Be_Null (New_Type)
3729 or else Is_Access_Constant (Etype (Old_Type))
3730 /= Is_Access_Constant (Etype (New_Type)))
3731 then
5d37ba92 3732 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
3733 return;
3734 end if;
3735
996ae0b0
RK
3736 -- If either is a function/operator and the other isn't, error
3737
3738 elsif Old_Type /= Standard_Void_Type
3739 or else New_Type /= Standard_Void_Type
3740 then
5d37ba92 3741 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
3742 return;
3743 end if;
3744
0a36105d 3745 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
3746 -- If this is a renaming as body, refine error message to indicate that
3747 -- the conflict is with the original declaration. If the entity is not
3748 -- frozen, the conventions don't have to match, the one of the renamed
3749 -- entity is inherited.
3750
3751 if Ctype >= Subtype_Conformant then
996ae0b0
RK
3752 if Convention (Old_Id) /= Convention (New_Id) then
3753
3754 if not Is_Frozen (New_Id) then
3755 null;
3756
3757 elsif Present (Err_Loc)
3758 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3759 and then Present (Corresponding_Spec (Err_Loc))
3760 then
3761 Error_Msg_Name_1 := Chars (New_Id);
3762 Error_Msg_Name_2 :=
3763 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5d37ba92 3764 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
3765
3766 else
5d37ba92 3767 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
3768 end if;
3769
3770 return;
3771
3772 elsif Is_Formal_Subprogram (Old_Id)
3773 or else Is_Formal_Subprogram (New_Id)
3774 then
5d37ba92 3775 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0
RK
3776 return;
3777 end if;
3778 end if;
3779
3780 -- Deal with parameters
3781
3782 -- Note: we use the entity information, rather than going directly
3783 -- to the specification in the tree. This is not only simpler, but
3784 -- absolutely necessary for some cases of conformance tests between
3785 -- operators, where the declaration tree simply does not exist!
3786
3787 Old_Formal := First_Formal (Old_Id);
3788 New_Formal := First_Formal (New_Id);
996ae0b0 3789 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
3790 if Is_Controlling_Formal (Old_Formal)
3791 and then Is_Controlling_Formal (New_Formal)
3792 and then Skip_Controlling_Formals
3793 then
a2dc5812
AC
3794 -- The controlling formals will have different types when
3795 -- comparing an interface operation with its match, but both
3796 -- or neither must be access parameters.
3797
3798 if Is_Access_Type (Etype (Old_Formal))
3799 =
3800 Is_Access_Type (Etype (New_Formal))
3801 then
3802 goto Skip_Controlling_Formal;
3803 else
3804 Conformance_Error
3805 ("\access parameter does not match!", New_Formal);
3806 end if;
41251c60
JM
3807 end if;
3808
fbf5a39b
AC
3809 if Ctype = Fully_Conformant then
3810
3811 -- Names must match. Error message is more accurate if we do
3812 -- this before checking that the types of the formals match.
3813
3814 if Chars (Old_Formal) /= Chars (New_Formal) then
5d37ba92 3815 Conformance_Error ("\name & does not match!", New_Formal);
fbf5a39b
AC
3816
3817 -- Set error posted flag on new formal as well to stop
3818 -- junk cascaded messages in some cases.
3819
3820 Set_Error_Posted (New_Formal);
3821 return;
3822 end if;
40b93859
RD
3823
3824 -- Null exclusion must match
3825
3826 if Null_Exclusion_Present (Parent (Old_Formal))
3827 /=
3828 Null_Exclusion_Present (Parent (New_Formal))
3829 then
3830 -- Only give error if both come from source. This should be
3831 -- investigated some time, since it should not be needed ???
3832
3833 if Comes_From_Source (Old_Formal)
3834 and then
3835 Comes_From_Source (New_Formal)
3836 then
3837 Conformance_Error
3838 ("\null exclusion for & does not match", New_Formal);
3839
3840 -- Mark error posted on the new formal to avoid duplicated
3841 -- complaint about types not matching.
3842
3843 Set_Error_Posted (New_Formal);
3844 end if;
3845 end if;
fbf5a39b 3846 end if;
996ae0b0 3847
ec4867fa
ES
3848 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3849 -- case occurs whenever a subprogram is being renamed and one of its
3850 -- parameters imposes a null exclusion. For example:
3851
3852 -- type T is null record;
3853 -- type Acc_T is access T;
3854 -- subtype Acc_T_Sub is Acc_T;
3855
3856 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3857 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3858 -- renames P;
3859
3860 Old_Formal_Base := Etype (Old_Formal);
3861 New_Formal_Base := Etype (New_Formal);
3862
3863 if Get_Inst then
3864 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3865 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3866 end if;
3867
0791fbe9 3868 Access_Types_Match := Ada_Version >= Ada_2005
ec4867fa
ES
3869
3870 -- Ensure that this rule is only applied when New_Id is a
5d37ba92 3871 -- renaming of Old_Id.
ec4867fa 3872
5d37ba92
ES
3873 and then Nkind (Parent (Parent (New_Id))) =
3874 N_Subprogram_Renaming_Declaration
ec4867fa
ES
3875 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3876 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3877 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3878
3879 -- Now handle the allowed access-type case
3880
3881 and then Is_Access_Type (Old_Formal_Base)
3882 and then Is_Access_Type (New_Formal_Base)
5d37ba92
ES
3883
3884 -- The type kinds must match. The only exception occurs with
3885 -- multiple generics of the form:
3886
3887 -- generic generic
3888 -- type F is private; type A is private;
3889 -- type F_Ptr is access F; type A_Ptr is access A;
3890 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3891 -- package F_Pack is ... package A_Pack is
3892 -- package F_Inst is
3893 -- new F_Pack (A, A_Ptr, A_P);
3894
3895 -- When checking for conformance between the parameters of A_P
3896 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3897 -- because the compiler has transformed A_Ptr into a subtype of
3898 -- F_Ptr. We catch this case in the code below.
3899
3900 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3901 or else
3902 (Is_Generic_Type (Old_Formal_Base)
3903 and then Is_Generic_Type (New_Formal_Base)
3904 and then Is_Internal (New_Formal_Base)
3905 and then Etype (Etype (New_Formal_Base)) =
3906 Old_Formal_Base))
ec4867fa
ES
3907 and then Directly_Designated_Type (Old_Formal_Base) =
3908 Directly_Designated_Type (New_Formal_Base)
3909 and then ((Is_Itype (Old_Formal_Base)
3910 and then Can_Never_Be_Null (Old_Formal_Base))
3911 or else
3912 (Is_Itype (New_Formal_Base)
3913 and then Can_Never_Be_Null (New_Formal_Base)));
3914
996ae0b0
RK
3915 -- Types must always match. In the visible part of an instance,
3916 -- usual overloading rules for dispatching operations apply, and
3917 -- we check base types (not the actual subtypes).
3918
3919 if In_Instance_Visible_Part
3920 and then Is_Dispatching_Operation (New_Id)
3921 then
3922 if not Conforming_Types
ec4867fa
ES
3923 (T1 => Base_Type (Etype (Old_Formal)),
3924 T2 => Base_Type (Etype (New_Formal)),
3925 Ctype => Ctype,
3926 Get_Inst => Get_Inst)
3927 and then not Access_Types_Match
996ae0b0 3928 then
5d37ba92 3929 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
3930 return;
3931 end if;
3932
3933 elsif not Conforming_Types
5d37ba92
ES
3934 (T1 => Old_Formal_Base,
3935 T2 => New_Formal_Base,
ec4867fa
ES
3936 Ctype => Ctype,
3937 Get_Inst => Get_Inst)
3938 and then not Access_Types_Match
996ae0b0 3939 then
c27f2f15
RD
3940 -- Don't give error message if old type is Any_Type. This test
3941 -- avoids some cascaded errors, e.g. in case of a bad spec.
3942
3943 if Errmsg and then Old_Formal_Base = Any_Type then
3944 Conforms := False;
3945 else
3946 Conformance_Error ("\type of & does not match!", New_Formal);
3947 end if;
3948
996ae0b0
RK
3949 return;
3950 end if;
3951
3952 -- For mode conformance, mode must match
3953
5d37ba92
ES
3954 if Ctype >= Mode_Conformant then
3955 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3956 Conformance_Error ("\mode of & does not match!", New_Formal);
3957 return;
3958
3959 -- Part of mode conformance for access types is having the same
3960 -- constant modifier.
3961
3962 elsif Access_Types_Match
3963 and then Is_Access_Constant (Old_Formal_Base) /=
3964 Is_Access_Constant (New_Formal_Base)
3965 then
3966 Conformance_Error
3967 ("\constant modifier does not match!", New_Formal);
3968 return;
3969 end if;
996ae0b0
RK
3970 end if;
3971
0a36105d 3972 if Ctype >= Subtype_Conformant then
996ae0b0 3973
0a36105d
JM
3974 -- Ada 2005 (AI-231): In case of anonymous access types check
3975 -- the null-exclusion and access-to-constant attributes must
3976 -- match.
996ae0b0 3977
0791fbe9 3978 if Ada_Version >= Ada_2005
0a36105d
JM
3979 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3980 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3981 and then
3982 (Can_Never_Be_Null (Old_Formal) /=
3983 Can_Never_Be_Null (New_Formal)
3984 or else
3985 Is_Access_Constant (Etype (Old_Formal)) /=
3986 Is_Access_Constant (Etype (New_Formal)))
40b93859
RD
3987
3988 -- Do not complain if error already posted on New_Formal. This
3989 -- avoids some redundant error messages.
3990
3991 and then not Error_Posted (New_Formal)
0a36105d
JM
3992 then
3993 -- It is allowed to omit the null-exclusion in case of stream
3994 -- attribute subprograms. We recognize stream subprograms
3995 -- through their TSS-generated suffix.
996ae0b0 3996
0a36105d
JM
3997 declare
3998 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3999 begin
4000 if TSS_Name /= TSS_Stream_Read
4001 and then TSS_Name /= TSS_Stream_Write
4002 and then TSS_Name /= TSS_Stream_Input
4003 and then TSS_Name /= TSS_Stream_Output
4004 then
4005 Conformance_Error
5d37ba92 4006 ("\type of & does not match!", New_Formal);
0a36105d
JM
4007 return;
4008 end if;
4009 end;
4010 end if;
4011 end if;
41251c60 4012
0a36105d 4013 -- Full conformance checks
41251c60 4014
0a36105d 4015 if Ctype = Fully_Conformant then
e660dbf7 4016
0a36105d 4017 -- We have checked already that names match
e660dbf7 4018
0a36105d 4019 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
4020
4021 -- Check default expressions for in parameters
4022
996ae0b0
RK
4023 declare
4024 NewD : constant Boolean :=
4025 Present (Default_Value (New_Formal));
4026 OldD : constant Boolean :=
4027 Present (Default_Value (Old_Formal));
4028 begin
4029 if NewD or OldD then
4030
82c80734
RD
4031 -- The old default value has been analyzed because the
4032 -- current full declaration will have frozen everything
0a36105d
JM
4033 -- before. The new default value has not been analyzed,
4034 -- so analyze it now before we check for conformance.
996ae0b0
RK
4035
4036 if NewD then
0a36105d 4037 Push_Scope (New_Id);
21d27997 4038 Preanalyze_Spec_Expression
fbf5a39b 4039 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
4040 End_Scope;
4041 end if;
4042
4043 if not (NewD and OldD)
4044 or else not Fully_Conformant_Expressions
4045 (Default_Value (Old_Formal),
4046 Default_Value (New_Formal))
4047 then
4048 Conformance_Error
5d37ba92 4049 ("\default expression for & does not match!",
996ae0b0
RK
4050 New_Formal);
4051 return;
4052 end if;
4053 end if;
4054 end;
4055 end if;
4056 end if;
4057
4058 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 4059 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
4060 -- or if either old or new instance is not from the source program.
4061
0ab80019 4062 if Ada_Version = Ada_83
996ae0b0
RK
4063 and then Sloc (Old_Id) > Standard_Location
4064 and then Sloc (New_Id) > Standard_Location
4065 and then Comes_From_Source (Old_Id)
4066 and then Comes_From_Source (New_Id)
4067 then
4068 declare
4069 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
4070 New_Param : constant Node_Id := Declaration_Node (New_Formal);
4071
4072 begin
4073 -- Explicit IN must be present or absent in both cases. This
4074 -- test is required only in the full conformance case.
4075
4076 if In_Present (Old_Param) /= In_Present (New_Param)
4077 and then Ctype = Fully_Conformant
4078 then
4079 Conformance_Error
5d37ba92 4080 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
4081 New_Formal);
4082 return;
4083 end if;
4084
4085 -- Grouping (use of comma in param lists) must be the same
4086 -- This is where we catch a misconformance like:
4087
0a36105d 4088 -- A, B : Integer
996ae0b0
RK
4089 -- A : Integer; B : Integer
4090
4091 -- which are represented identically in the tree except
4092 -- for the setting of the flags More_Ids and Prev_Ids.
4093
4094 if More_Ids (Old_Param) /= More_Ids (New_Param)
4095 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
4096 then
4097 Conformance_Error
5d37ba92 4098 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
4099 return;
4100 end if;
4101 end;
4102 end if;
4103
41251c60
JM
4104 -- This label is required when skipping controlling formals
4105
4106 <<Skip_Controlling_Formal>>
4107
996ae0b0
RK
4108 Next_Formal (Old_Formal);
4109 Next_Formal (New_Formal);
4110 end loop;
4111
4112 if Present (Old_Formal) then
5d37ba92 4113 Conformance_Error ("\too few parameters!");
996ae0b0
RK
4114 return;
4115
4116 elsif Present (New_Formal) then
5d37ba92 4117 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
4118 return;
4119 end if;
996ae0b0
RK
4120 end Check_Conformance;
4121
ec4867fa
ES
4122 -----------------------
4123 -- Check_Conventions --
4124 -----------------------
4125
4126 procedure Check_Conventions (Typ : Entity_Id) is
ce2b6ba5 4127 Ifaces_List : Elist_Id;
0a36105d 4128
ce2b6ba5 4129 procedure Check_Convention (Op : Entity_Id);
0a36105d
JM
4130 -- Verify that the convention of inherited dispatching operation Op is
4131 -- consistent among all subprograms it overrides. In order to minimize
4132 -- the search, Search_From is utilized to designate a specific point in
4133 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
4134
4135 ----------------------
4136 -- Check_Convention --
4137 ----------------------
4138
ce2b6ba5
JM
4139 procedure Check_Convention (Op : Entity_Id) is
4140 Iface_Elmt : Elmt_Id;
4141 Iface_Prim_Elmt : Elmt_Id;
4142 Iface_Prim : Entity_Id;
ec4867fa 4143
ce2b6ba5
JM
4144 begin
4145 Iface_Elmt := First_Elmt (Ifaces_List);
4146 while Present (Iface_Elmt) loop
4147 Iface_Prim_Elmt :=
4148 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
4149 while Present (Iface_Prim_Elmt) loop
4150 Iface_Prim := Node (Iface_Prim_Elmt);
4151
4152 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4153 and then Convention (Iface_Prim) /= Convention (Op)
4154 then
ed2233dc 4155 Error_Msg_N
ce2b6ba5 4156 ("inconsistent conventions in primitive operations", Typ);
ec4867fa 4157
ce2b6ba5
JM
4158 Error_Msg_Name_1 := Chars (Op);
4159 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4160 Error_Msg_Sloc := Sloc (Op);
ec4867fa 4161
7a963087 4162 if Comes_From_Source (Op) or else No (Alias (Op)) then
ce2b6ba5 4163 if not Is_Overriding_Operation (Op) then
ed2233dc 4164 Error_Msg_N ("\\primitive % defined #", Typ);
ce2b6ba5 4165 else
ed2233dc 4166 Error_Msg_N
19d846a0
RD
4167 ("\\overriding operation % with " &
4168 "convention % defined #", Typ);
ce2b6ba5 4169 end if;
ec4867fa 4170
ce2b6ba5
JM
4171 else pragma Assert (Present (Alias (Op)));
4172 Error_Msg_Sloc := Sloc (Alias (Op));
ed2233dc 4173 Error_Msg_N
19d846a0
RD
4174 ("\\inherited operation % with " &
4175 "convention % defined #", Typ);
ce2b6ba5 4176 end if;
ec4867fa 4177
ce2b6ba5
JM
4178 Error_Msg_Name_1 := Chars (Op);
4179 Error_Msg_Name_2 :=
4180 Get_Convention_Name (Convention (Iface_Prim));
4181 Error_Msg_Sloc := Sloc (Iface_Prim);
ed2233dc 4182 Error_Msg_N
19d846a0
RD
4183 ("\\overridden operation % with " &
4184 "convention % defined #", Typ);
ec4867fa 4185
ce2b6ba5 4186 -- Avoid cascading errors
ec4867fa 4187
ce2b6ba5
JM
4188 return;
4189 end if;
ec4867fa 4190
ce2b6ba5
JM
4191 Next_Elmt (Iface_Prim_Elmt);
4192 end loop;
ec4867fa 4193
ce2b6ba5 4194 Next_Elmt (Iface_Elmt);
ec4867fa
ES
4195 end loop;
4196 end Check_Convention;
4197
4198 -- Local variables
4199
4200 Prim_Op : Entity_Id;
4201 Prim_Op_Elmt : Elmt_Id;
4202
4203 -- Start of processing for Check_Conventions
4204
4205 begin
ce2b6ba5
JM
4206 if not Has_Interfaces (Typ) then
4207 return;
4208 end if;
4209
4210 Collect_Interfaces (Typ, Ifaces_List);
4211
0a36105d
JM
4212 -- The algorithm checks every overriding dispatching operation against
4213 -- all the corresponding overridden dispatching operations, detecting
f3d57416 4214 -- differences in conventions.
ec4867fa
ES
4215
4216 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4217 while Present (Prim_Op_Elmt) loop
4218 Prim_Op := Node (Prim_Op_Elmt);
4219
0a36105d 4220 -- A small optimization: skip the predefined dispatching operations
ce2b6ba5 4221 -- since they always have the same convention.
ec4867fa 4222
ce2b6ba5
JM
4223 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4224 Check_Convention (Prim_Op);
ec4867fa
ES
4225 end if;
4226
4227 Next_Elmt (Prim_Op_Elmt);
4228 end loop;
4229 end Check_Conventions;
4230
996ae0b0
RK
4231 ------------------------------
4232 -- Check_Delayed_Subprogram --
4233 ------------------------------
4234
4235 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4236 F : Entity_Id;
4237
4238 procedure Possible_Freeze (T : Entity_Id);
4239 -- T is the type of either a formal parameter or of the return type.
4240 -- If T is not yet frozen and needs a delayed freeze, then the
4a13695c
AC
4241 -- subprogram itself must be delayed. If T is the limited view of an
4242 -- incomplete type the subprogram must be frozen as well, because
4243 -- T may depend on local types that have not been frozen yet.
996ae0b0 4244
82c80734
RD
4245 ---------------------
4246 -- Possible_Freeze --
4247 ---------------------
4248
996ae0b0
RK
4249 procedure Possible_Freeze (T : Entity_Id) is
4250 begin
4a13695c 4251 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
996ae0b0
RK
4252 Set_Has_Delayed_Freeze (Designator);
4253
4254 elsif Is_Access_Type (T)
4255 and then Has_Delayed_Freeze (Designated_Type (T))
4256 and then not Is_Frozen (Designated_Type (T))
4257 then
4258 Set_Has_Delayed_Freeze (Designator);
e358346d 4259
4a13695c 4260 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
e358346d 4261 Set_Has_Delayed_Freeze (Designator);
996ae0b0 4262 end if;
4a13695c 4263
996ae0b0
RK
4264 end Possible_Freeze;
4265
4266 -- Start of processing for Check_Delayed_Subprogram
4267
4268 begin
76e3504f
AC
4269 -- All subprograms, including abstract subprograms, may need a freeze
4270 -- node if some formal type or the return type needs one.
996ae0b0 4271
76e3504f
AC
4272 Possible_Freeze (Etype (Designator));
4273 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
996ae0b0 4274
76e3504f
AC
4275 -- Need delayed freeze if any of the formal types themselves need
4276 -- a delayed freeze and are not yet frozen.
996ae0b0 4277
76e3504f
AC
4278 F := First_Formal (Designator);
4279 while Present (F) loop
4280 Possible_Freeze (Etype (F));
4281 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4282 Next_Formal (F);
4283 end loop;
996ae0b0
RK
4284
4285 -- Mark functions that return by reference. Note that it cannot be
4286 -- done for delayed_freeze subprograms because the underlying
4287 -- returned type may not be known yet (for private types)
4288
4289 if not Has_Delayed_Freeze (Designator)
4290 and then Expander_Active
4291 then
4292 declare
4293 Typ : constant Entity_Id := Etype (Designator);
4294 Utyp : constant Entity_Id := Underlying_Type (Typ);
9694c039 4295
996ae0b0 4296 begin
40f07b4b 4297 if Is_Immutably_Limited_Type (Typ) then
996ae0b0 4298 Set_Returns_By_Ref (Designator);
9694c039 4299
048e5cef 4300 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
996ae0b0
RK
4301 Set_Returns_By_Ref (Designator);
4302 end if;
4303 end;
4304 end if;
4305 end Check_Delayed_Subprogram;
4306
4307 ------------------------------------
4308 -- Check_Discriminant_Conformance --
4309 ------------------------------------
4310
4311 procedure Check_Discriminant_Conformance
4312 (N : Node_Id;
4313 Prev : Entity_Id;
4314 Prev_Loc : Node_Id)
4315 is
4316 Old_Discr : Entity_Id := First_Discriminant (Prev);
4317 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4318 New_Discr_Id : Entity_Id;
4319 New_Discr_Type : Entity_Id;
4320
4321 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
4322 -- Post error message for conformance error on given node. Two messages
4323 -- are output. The first points to the previous declaration with a
4324 -- general "no conformance" message. The second is the detailed reason,
4325 -- supplied as Msg. The parameter N provide information for a possible
4326 -- & insertion in the message.
996ae0b0
RK
4327
4328 -----------------------
4329 -- Conformance_Error --
4330 -----------------------
4331
4332 procedure Conformance_Error (Msg : String; N : Node_Id) is
4333 begin
4334 Error_Msg_Sloc := Sloc (Prev_Loc);
483c78cb
RD
4335 Error_Msg_N -- CODEFIX
4336 ("not fully conformant with declaration#!", N);
996ae0b0
RK
4337 Error_Msg_NE (Msg, N, N);
4338 end Conformance_Error;
4339
4340 -- Start of processing for Check_Discriminant_Conformance
4341
4342 begin
4343 while Present (Old_Discr) and then Present (New_Discr) loop
4344
4345 New_Discr_Id := Defining_Identifier (New_Discr);
4346
82c80734
RD
4347 -- The subtype mark of the discriminant on the full type has not
4348 -- been analyzed so we do it here. For an access discriminant a new
4349 -- type is created.
996ae0b0
RK
4350
4351 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4352 New_Discr_Type :=
4353 Access_Definition (N, Discriminant_Type (New_Discr));
4354
4355 else
4356 Analyze (Discriminant_Type (New_Discr));
4357 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
e50e1c5e
AC
4358
4359 -- Ada 2005: if the discriminant definition carries a null
4360 -- exclusion, create an itype to check properly for consistency
4361 -- with partial declaration.
4362
4363 if Is_Access_Type (New_Discr_Type)
4364 and then Null_Exclusion_Present (New_Discr)
4365 then
4366 New_Discr_Type :=
4367 Create_Null_Excluding_Itype
4368 (T => New_Discr_Type,
4369 Related_Nod => New_Discr,
4370 Scope_Id => Current_Scope);
4371 end if;
996ae0b0
RK
4372 end if;
4373
4374 if not Conforming_Types
4375 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4376 then
4377 Conformance_Error ("type of & does not match!", New_Discr_Id);
4378 return;
fbf5a39b 4379 else
82c80734
RD
4380 -- Treat the new discriminant as an occurrence of the old one,
4381 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
4382 -- information, for completeness.
4383
4384 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4385 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4386 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
4387 end if;
4388
4389 -- Names must match
4390
4391 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4392 Conformance_Error ("name & does not match!", New_Discr_Id);
4393 return;
4394 end if;
4395
4396 -- Default expressions must match
4397
4398 declare
4399 NewD : constant Boolean :=
4400 Present (Expression (New_Discr));
4401 OldD : constant Boolean :=
4402 Present (Expression (Parent (Old_Discr)));
4403
4404 begin
4405 if NewD or OldD then
4406
4407 -- The old default value has been analyzed and expanded,
4408 -- because the current full declaration will have frozen
82c80734
RD
4409 -- everything before. The new default values have not been
4410 -- expanded, so expand now to check conformance.
996ae0b0
RK
4411
4412 if NewD then
21d27997 4413 Preanalyze_Spec_Expression
996ae0b0
RK
4414 (Expression (New_Discr), New_Discr_Type);
4415 end if;
4416
4417 if not (NewD and OldD)
4418 or else not Fully_Conformant_Expressions
4419 (Expression (Parent (Old_Discr)),
4420 Expression (New_Discr))
4421
4422 then
4423 Conformance_Error
4424 ("default expression for & does not match!",
4425 New_Discr_Id);
4426 return;
4427 end if;
4428 end if;
4429 end;
4430
4431 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4432
0ab80019 4433 if Ada_Version = Ada_83 then
996ae0b0
RK
4434 declare
4435 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4436
4437 begin
4438 -- Grouping (use of comma in param lists) must be the same
4439 -- This is where we catch a misconformance like:
4440
4441 -- A,B : Integer
4442 -- A : Integer; B : Integer
4443
4444 -- which are represented identically in the tree except
4445 -- for the setting of the flags More_Ids and Prev_Ids.
4446
4447 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4448 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4449 then
4450 Conformance_Error
4451 ("grouping of & does not match!", New_Discr_Id);
4452 return;
4453 end if;
4454 end;
4455 end if;
4456
4457 Next_Discriminant (Old_Discr);
4458 Next (New_Discr);
4459 end loop;
4460
4461 if Present (Old_Discr) then
4462 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4463 return;
4464
4465 elsif Present (New_Discr) then
4466 Conformance_Error
4467 ("too many discriminants!", Defining_Identifier (New_Discr));
4468 return;
4469 end if;
4470 end Check_Discriminant_Conformance;
4471
4472 ----------------------------
4473 -- Check_Fully_Conformant --
4474 ----------------------------
4475
4476 procedure Check_Fully_Conformant
4477 (New_Id : Entity_Id;
4478 Old_Id : Entity_Id;
4479 Err_Loc : Node_Id := Empty)
4480 is
4481 Result : Boolean;
81db9d77 4482 pragma Warnings (Off, Result);
996ae0b0
RK
4483 begin
4484 Check_Conformance
4485 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4486 end Check_Fully_Conformant;
4487
4488 ---------------------------
4489 -- Check_Mode_Conformant --
4490 ---------------------------
4491
4492 procedure Check_Mode_Conformant
4493 (New_Id : Entity_Id;
4494 Old_Id : Entity_Id;
4495 Err_Loc : Node_Id := Empty;
4496 Get_Inst : Boolean := False)
4497 is
4498 Result : Boolean;
81db9d77 4499 pragma Warnings (Off, Result);
996ae0b0
RK
4500 begin
4501 Check_Conformance
4502 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4503 end Check_Mode_Conformant;
4504
fbf5a39b 4505 --------------------------------
758c442c 4506 -- Check_Overriding_Indicator --
fbf5a39b
AC
4507 --------------------------------
4508
758c442c 4509 procedure Check_Overriding_Indicator
ec4867fa 4510 (Subp : Entity_Id;
5d37ba92
ES
4511 Overridden_Subp : Entity_Id;
4512 Is_Primitive : Boolean)
fbf5a39b 4513 is
758c442c
GD
4514 Decl : Node_Id;
4515 Spec : Node_Id;
fbf5a39b
AC
4516
4517 begin
ec4867fa 4518 -- No overriding indicator for literals
fbf5a39b 4519
ec4867fa 4520 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 4521 return;
fbf5a39b 4522
ec4867fa
ES
4523 elsif Ekind (Subp) = E_Entry then
4524 Decl := Parent (Subp);
4525
53b10ce9
AC
4526 -- No point in analyzing a malformed operator
4527
4528 elsif Nkind (Subp) = N_Defining_Operator_Symbol
4529 and then Error_Posted (Subp)
4530 then
4531 return;
4532
758c442c
GD
4533 else
4534 Decl := Unit_Declaration_Node (Subp);
4535 end if;
fbf5a39b 4536
800621e0
RD
4537 if Nkind_In (Decl, N_Subprogram_Body,
4538 N_Subprogram_Body_Stub,
4539 N_Subprogram_Declaration,
4540 N_Abstract_Subprogram_Declaration,
4541 N_Subprogram_Renaming_Declaration)
758c442c
GD
4542 then
4543 Spec := Specification (Decl);
ec4867fa
ES
4544
4545 elsif Nkind (Decl) = N_Entry_Declaration then
4546 Spec := Decl;
4547
758c442c
GD
4548 else
4549 return;
4550 end if;
fbf5a39b 4551
e7d72fb9
AC
4552 -- The overriding operation is type conformant with the overridden one,
4553 -- but the names of the formals are not required to match. If the names
6823270c 4554 -- appear permuted in the overriding operation, this is a possible
e7d72fb9
AC
4555 -- source of confusion that is worth diagnosing. Controlling formals
4556 -- often carry names that reflect the type, and it is not worthwhile
4557 -- requiring that their names match.
4558
c9e7bd8e 4559 if Present (Overridden_Subp)
e7d72fb9
AC
4560 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4561 then
4562 declare
4563 Form1 : Entity_Id;
4564 Form2 : Entity_Id;
4565
4566 begin
4567 Form1 := First_Formal (Subp);
4568 Form2 := First_Formal (Overridden_Subp);
4569
c9e7bd8e
AC
4570 -- If the overriding operation is a synchronized operation, skip
4571 -- the first parameter of the overridden operation, which is
6823270c
AC
4572 -- implicit in the new one. If the operation is declared in the
4573 -- body it is not primitive and all formals must match.
c9e7bd8e 4574
6823270c
AC
4575 if Is_Concurrent_Type (Scope (Subp))
4576 and then Is_Tagged_Type (Scope (Subp))
4577 and then not Has_Completion (Scope (Subp))
4578 then
c9e7bd8e
AC
4579 Form2 := Next_Formal (Form2);
4580 end if;
4581
e7d72fb9
AC
4582 if Present (Form1) then
4583 Form1 := Next_Formal (Form1);
4584 Form2 := Next_Formal (Form2);
4585 end if;
4586
4587 while Present (Form1) loop
4588 if not Is_Controlling_Formal (Form1)
4589 and then Present (Next_Formal (Form2))
4590 and then Chars (Form1) = Chars (Next_Formal (Form2))
4591 then
4592 Error_Msg_Node_2 := Alias (Overridden_Subp);
4593 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
ed2233dc 4594 Error_Msg_NE
19d846a0 4595 ("& does not match corresponding formal of&#",
e7d72fb9
AC
4596 Form1, Form1);
4597 exit;
4598 end if;
4599
4600 Next_Formal (Form1);
4601 Next_Formal (Form2);
4602 end loop;
4603 end;
4604 end if;
4605
676e8420
AC
4606 -- If there is an overridden subprogram, then check that there is no
4607 -- "not overriding" indicator, and mark the subprogram as overriding.
51bf9bdf
AC
4608 -- This is not done if the overridden subprogram is marked as hidden,
4609 -- which can occur for the case of inherited controlled operations
4610 -- (see Derive_Subprogram), unless the inherited subprogram's parent
4611 -- subprogram is not itself hidden. (Note: This condition could probably
4612 -- be simplified, leaving out the testing for the specific controlled
4613 -- cases, but it seems safer and clearer this way, and echoes similar
4614 -- special-case tests of this kind in other places.)
4615
fd0d899b 4616 if Present (Overridden_Subp)
51bf9bdf
AC
4617 and then (not Is_Hidden (Overridden_Subp)
4618 or else
4619 ((Chars (Overridden_Subp) = Name_Initialize
4620 or else Chars (Overridden_Subp) = Name_Adjust
4621 or else Chars (Overridden_Subp) = Name_Finalize)
4622 and then Present (Alias (Overridden_Subp))
4623 and then not Is_Hidden (Alias (Overridden_Subp))))
fd0d899b 4624 then
ec4867fa
ES
4625 if Must_Not_Override (Spec) then
4626 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 4627
ec4867fa 4628 if Ekind (Subp) = E_Entry then
ed2233dc 4629 Error_Msg_NE
5d37ba92 4630 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 4631 else
ed2233dc 4632 Error_Msg_NE
5d37ba92 4633 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa 4634 end if;
21d27997
RD
4635
4636 elsif Is_Subprogram (Subp) then
4637 Set_Is_Overriding_Operation (Subp);
ec4867fa 4638 end if;
f937473f 4639
618fb570
AC
4640 -- If primitive flag is set or this is a protected operation, then
4641 -- the operation is overriding at the point of its declaration, so
4642 -- warn if necessary. Otherwise it may have been declared before the
4643 -- operation it overrides and no check is required.
3c25856a
AC
4644
4645 if Style_Check
618fb570
AC
4646 and then not Must_Override (Spec)
4647 and then (Is_Primitive
4648 or else Ekind (Scope (Subp)) = E_Protected_Type)
3c25856a 4649 then
235f4375
AC
4650 Style.Missing_Overriding (Decl, Subp);
4651 end if;
4652
53b10ce9
AC
4653 -- If Subp is an operator, it may override a predefined operation, if
4654 -- it is defined in the same scope as the type to which it applies.
676e8420 4655 -- In that case Overridden_Subp is empty because of our implicit
5d37ba92
ES
4656 -- representation for predefined operators. We have to check whether the
4657 -- signature of Subp matches that of a predefined operator. Note that
4658 -- first argument provides the name of the operator, and the second
4659 -- argument the signature that may match that of a standard operation.
21d27997
RD
4660 -- If the indicator is overriding, then the operator must match a
4661 -- predefined signature, because we know already that there is no
4662 -- explicit overridden operation.
f937473f 4663
21d27997 4664 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
53b10ce9 4665 declare
16c5f1c6 4666 Typ : constant Entity_Id :=
676e8420 4667 Base_Type (Etype (First_Formal (Subp)));
16c5f1c6 4668
53b10ce9 4669 Can_Override : constant Boolean :=
16c5f1c6
RD
4670 Operator_Matches_Spec (Subp, Subp)
4671 and then Scope (Subp) = Scope (Typ)
4672 and then not Is_Class_Wide_Type (Typ);
f937473f 4673
53b10ce9
AC
4674 begin
4675 if Must_Not_Override (Spec) then
618fb570 4676
16c5f1c6
RD
4677 -- If this is not a primitive or a protected subprogram, then
4678 -- "not overriding" is illegal.
618fb570 4679
53b10ce9
AC
4680 if not Is_Primitive
4681 and then Ekind (Scope (Subp)) /= E_Protected_Type
4682 then
ed2233dc 4683 Error_Msg_N
53b10ce9 4684 ("overriding indicator only allowed "
16c5f1c6 4685 & "if subprogram is primitive", Subp);
f937473f 4686
53b10ce9 4687 elsif Can_Override then
ed2233dc 4688 Error_Msg_NE
676e8420 4689 ("subprogram& overrides predefined operator ", Spec, Subp);
53b10ce9 4690 end if;
5d37ba92 4691
53b10ce9
AC
4692 elsif Must_Override (Spec) then
4693 if Is_Overriding_Operation (Subp) then
b4d7b435 4694 null;
235f4375 4695
53b10ce9 4696 elsif not Can_Override then
ed2233dc 4697 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
53b10ce9 4698 end if;
235f4375 4699
53b10ce9
AC
4700 elsif not Error_Posted (Subp)
4701 and then Style_Check
4702 and then Can_Override
4703 and then
4704 not Is_Predefined_File_Name
16c5f1c6 4705 (Unit_File_Name (Get_Source_Unit (Subp)))
53b10ce9
AC
4706 then
4707 Set_Is_Overriding_Operation (Subp);
5d5832bc 4708
53b10ce9
AC
4709 -- If style checks are enabled, indicate that the indicator is
4710 -- missing. However, at the point of declaration, the type of
4711 -- which this is a primitive operation may be private, in which
4712 -- case the indicator would be premature.
5d5832bc 4713
53b10ce9
AC
4714 if Has_Private_Declaration (Etype (Subp))
4715 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
4716 then
4717 null;
4718 else
4719 Style.Missing_Overriding (Decl, Subp);
4720 end if;
5d5832bc 4721 end if;
53b10ce9 4722 end;
21d27997
RD
4723
4724 elsif Must_Override (Spec) then
4725 if Ekind (Subp) = E_Entry then
ed2233dc 4726 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5d37ba92 4727 else
ed2233dc 4728 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 4729 end if;
5d37ba92
ES
4730
4731 -- If the operation is marked "not overriding" and it's not primitive
4732 -- then an error is issued, unless this is an operation of a task or
4733 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4734 -- has been specified have already been checked above.
4735
4736 elsif Must_Not_Override (Spec)
4737 and then not Is_Primitive
4738 and then Ekind (Subp) /= E_Entry
4739 and then Ekind (Scope (Subp)) /= E_Protected_Type
4740 then
ed2233dc 4741 Error_Msg_N
5d37ba92
ES
4742 ("overriding indicator only allowed if subprogram is primitive",
4743 Subp);
5d37ba92 4744 return;
fbf5a39b 4745 end if;
758c442c 4746 end Check_Overriding_Indicator;
fbf5a39b 4747
996ae0b0
RK
4748 -------------------
4749 -- Check_Returns --
4750 -------------------
4751
0a36105d
JM
4752 -- Note: this procedure needs to know far too much about how the expander
4753 -- messes with exceptions. The use of the flag Exception_Junk and the
4754 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4755 -- works, but is not very clean. It would be better if the expansion
4756 -- routines would leave Original_Node working nicely, and we could use
4757 -- Original_Node here to ignore all the peculiar expander messing ???
4758
996ae0b0
RK
4759 procedure Check_Returns
4760 (HSS : Node_Id;
4761 Mode : Character;
c8ef728f
ES
4762 Err : out Boolean;
4763 Proc : Entity_Id := Empty)
996ae0b0
RK
4764 is
4765 Handler : Node_Id;
4766
4767 procedure Check_Statement_Sequence (L : List_Id);
4768 -- Internal recursive procedure to check a list of statements for proper
4769 -- termination by a return statement (or a transfer of control or a
4770 -- compound statement that is itself internally properly terminated).
4771
4772 ------------------------------
4773 -- Check_Statement_Sequence --
4774 ------------------------------
4775
4776 procedure Check_Statement_Sequence (L : List_Id) is
4777 Last_Stm : Node_Id;
0a36105d 4778 Stm : Node_Id;
996ae0b0
RK
4779 Kind : Node_Kind;
4780
4781 Raise_Exception_Call : Boolean;
4782 -- Set True if statement sequence terminated by Raise_Exception call
4783 -- or a Reraise_Occurrence call.
4784
4785 begin
4786 Raise_Exception_Call := False;
4787
4788 -- Get last real statement
4789
4790 Last_Stm := Last (L);
4791
0a36105d
JM
4792 -- Deal with digging out exception handler statement sequences that
4793 -- have been transformed by the local raise to goto optimization.
4794 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4795 -- optimization has occurred, we are looking at something like:
4796
4797 -- begin
4798 -- original stmts in block
4799
4800 -- exception \
4801 -- when excep1 => |
4802 -- goto L1; | omitted if No_Exception_Propagation
4803 -- when excep2 => |
4804 -- goto L2; /
4805 -- end;
4806
4807 -- goto L3; -- skip handler when exception not raised
4808
4809 -- <<L1>> -- target label for local exception
4810 -- begin
4811 -- estmts1
4812 -- end;
4813
4814 -- goto L3;
4815
4816 -- <<L2>>
4817 -- begin
4818 -- estmts2
4819 -- end;
4820
4821 -- <<L3>>
4822
4823 -- and what we have to do is to dig out the estmts1 and estmts2
4824 -- sequences (which were the original sequences of statements in
4825 -- the exception handlers) and check them.
4826
4827 if Nkind (Last_Stm) = N_Label
4828 and then Exception_Junk (Last_Stm)
4829 then
4830 Stm := Last_Stm;
4831 loop
4832 Prev (Stm);
4833 exit when No (Stm);
4834 exit when Nkind (Stm) /= N_Block_Statement;
4835 exit when not Exception_Junk (Stm);
4836 Prev (Stm);
4837 exit when No (Stm);
4838 exit when Nkind (Stm) /= N_Label;
4839 exit when not Exception_Junk (Stm);
4840 Check_Statement_Sequence
4841 (Statements (Handled_Statement_Sequence (Next (Stm))));
4842
4843 Prev (Stm);
4844 Last_Stm := Stm;
4845 exit when No (Stm);
4846 exit when Nkind (Stm) /= N_Goto_Statement;
4847 exit when not Exception_Junk (Stm);
4848 end loop;
4849 end if;
4850
996ae0b0
RK
4851 -- Don't count pragmas
4852
4853 while Nkind (Last_Stm) = N_Pragma
4854
4855 -- Don't count call to SS_Release (can happen after Raise_Exception)
4856
4857 or else
4858 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4859 and then
4860 Nkind (Name (Last_Stm)) = N_Identifier
4861 and then
4862 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4863
4864 -- Don't count exception junk
4865
4866 or else
800621e0
RD
4867 (Nkind_In (Last_Stm, N_Goto_Statement,
4868 N_Label,
4869 N_Object_Declaration)
0a36105d
JM
4870 and then Exception_Junk (Last_Stm))
4871 or else Nkind (Last_Stm) in N_Push_xxx_Label
4872 or else Nkind (Last_Stm) in N_Pop_xxx_Label
996ae0b0
RK
4873 loop
4874 Prev (Last_Stm);
4875 end loop;
4876
4877 -- Here we have the "real" last statement
4878
4879 Kind := Nkind (Last_Stm);
4880
4881 -- Transfer of control, OK. Note that in the No_Return procedure
4882 -- case, we already diagnosed any explicit return statements, so
4883 -- we can treat them as OK in this context.
4884
4885 if Is_Transfer (Last_Stm) then
4886 return;
4887
4888 -- Check cases of explicit non-indirect procedure calls
4889
4890 elsif Kind = N_Procedure_Call_Statement
4891 and then Is_Entity_Name (Name (Last_Stm))
4892 then
4893 -- Check call to Raise_Exception procedure which is treated
4894 -- specially, as is a call to Reraise_Occurrence.
4895
4896 -- We suppress the warning in these cases since it is likely that
4897 -- the programmer really does not expect to deal with the case
4898 -- of Null_Occurrence, and thus would find a warning about a
4899 -- missing return curious, and raising Program_Error does not
4900 -- seem such a bad behavior if this does occur.
4901
c8ef728f
ES
4902 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4903 -- behavior will be to raise Constraint_Error (see AI-329).
4904
996ae0b0
RK
4905 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4906 or else
4907 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4908 then
4909 Raise_Exception_Call := True;
4910
4911 -- For Raise_Exception call, test first argument, if it is
4912 -- an attribute reference for a 'Identity call, then we know
4913 -- that the call cannot possibly return.
4914
4915 declare
4916 Arg : constant Node_Id :=
4917 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
4918 begin
4919 if Nkind (Arg) = N_Attribute_Reference
4920 and then Attribute_Name (Arg) = Name_Identity
4921 then
4922 return;
4923 end if;
4924 end;
4925 end if;
4926
4927 -- If statement, need to look inside if there is an else and check
4928 -- each constituent statement sequence for proper termination.
4929
4930 elsif Kind = N_If_Statement
4931 and then Present (Else_Statements (Last_Stm))
4932 then
4933 Check_Statement_Sequence (Then_Statements (Last_Stm));
4934 Check_Statement_Sequence (Else_Statements (Last_Stm));
4935
4936 if Present (Elsif_Parts (Last_Stm)) then
4937 declare
4938 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4939
4940 begin
4941 while Present (Elsif_Part) loop
4942 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4943 Next (Elsif_Part);
4944 end loop;
4945 end;
4946 end if;
4947
4948 return;
4949
4950 -- Case statement, check each case for proper termination
4951
4952 elsif Kind = N_Case_Statement then
4953 declare
4954 Case_Alt : Node_Id;
996ae0b0
RK
4955 begin
4956 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4957 while Present (Case_Alt) loop
4958 Check_Statement_Sequence (Statements (Case_Alt));
4959 Next_Non_Pragma (Case_Alt);
4960 end loop;
4961 end;
4962
4963 return;
4964
4965 -- Block statement, check its handled sequence of statements
4966
4967 elsif Kind = N_Block_Statement then
4968 declare
4969 Err1 : Boolean;
4970
4971 begin
4972 Check_Returns
4973 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4974
4975 if Err1 then
4976 Err := True;
4977 end if;
4978
4979 return;
4980 end;
4981
4982 -- Loop statement. If there is an iteration scheme, we can definitely
4983 -- fall out of the loop. Similarly if there is an exit statement, we
4984 -- can fall out. In either case we need a following return.
4985
4986 elsif Kind = N_Loop_Statement then
4987 if Present (Iteration_Scheme (Last_Stm))
4988 or else Has_Exit (Entity (Identifier (Last_Stm)))
4989 then
4990 null;
4991
f3d57416
RW
4992 -- A loop with no exit statement or iteration scheme is either
4993 -- an infinite loop, or it has some other exit (raise/return).
996ae0b0
RK
4994 -- In either case, no warning is required.
4995
4996 else
4997 return;
4998 end if;
4999
5000 -- Timed entry call, check entry call and delay alternatives
5001
5002 -- Note: in expanded code, the timed entry call has been converted
5003 -- to a set of expanded statements on which the check will work
5004 -- correctly in any case.
5005
5006 elsif Kind = N_Timed_Entry_Call then
5007 declare
5008 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5009 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
5010
5011 begin
5012 -- If statement sequence of entry call alternative is missing,
5013 -- then we can definitely fall through, and we post the error
5014 -- message on the entry call alternative itself.
5015
5016 if No (Statements (ECA)) then
5017 Last_Stm := ECA;
5018
5019 -- If statement sequence of delay alternative is missing, then
5020 -- we can definitely fall through, and we post the error
5021 -- message on the delay alternative itself.
5022
5023 -- Note: if both ECA and DCA are missing the return, then we
5024 -- post only one message, should be enough to fix the bugs.
5025 -- If not we will get a message next time on the DCA when the
5026 -- ECA is fixed!
5027
5028 elsif No (Statements (DCA)) then
5029 Last_Stm := DCA;
5030
5031 -- Else check both statement sequences
5032
5033 else
5034 Check_Statement_Sequence (Statements (ECA));
5035 Check_Statement_Sequence (Statements (DCA));
5036 return;
5037 end if;
5038 end;
5039
5040 -- Conditional entry call, check entry call and else part
5041
5042 -- Note: in expanded code, the conditional entry call has been
5043 -- converted to a set of expanded statements on which the check
5044 -- will work correctly in any case.
5045
5046 elsif Kind = N_Conditional_Entry_Call then
5047 declare
5048 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5049
5050 begin
5051 -- If statement sequence of entry call alternative is missing,
5052 -- then we can definitely fall through, and we post the error
5053 -- message on the entry call alternative itself.
5054
5055 if No (Statements (ECA)) then
5056 Last_Stm := ECA;
5057
5058 -- Else check statement sequence and else part
5059
5060 else
5061 Check_Statement_Sequence (Statements (ECA));
5062 Check_Statement_Sequence (Else_Statements (Last_Stm));
5063 return;
5064 end if;
5065 end;
5066 end if;
5067
5068 -- If we fall through, issue appropriate message
5069
5070 if Mode = 'F' then
996ae0b0
RK
5071 if not Raise_Exception_Call then
5072 Error_Msg_N
5d37ba92 5073 ("?RETURN statement missing following this statement!",
996ae0b0
RK
5074 Last_Stm);
5075 Error_Msg_N
5d37ba92 5076 ("\?Program_Error may be raised at run time!",
996ae0b0
RK
5077 Last_Stm);
5078 end if;
5079
5080 -- Note: we set Err even though we have not issued a warning
5081 -- because we still have a case of a missing return. This is
5082 -- an extremely marginal case, probably will never be noticed
5083 -- but we might as well get it right.
5084
5085 Err := True;
5086
c8ef728f
ES
5087 -- Otherwise we have the case of a procedure marked No_Return
5088
996ae0b0 5089 else
800621e0
RD
5090 if not Raise_Exception_Call then
5091 Error_Msg_N
5092 ("?implied return after this statement " &
5093 "will raise Program_Error",
5094 Last_Stm);
5095 Error_Msg_NE
5096 ("\?procedure & is marked as No_Return!",
5097 Last_Stm, Proc);
5098 end if;
c8ef728f
ES
5099
5100 declare
5101 RE : constant Node_Id :=
5102 Make_Raise_Program_Error (Sloc (Last_Stm),
5103 Reason => PE_Implicit_Return);
5104 begin
5105 Insert_After (Last_Stm, RE);
5106 Analyze (RE);
5107 end;
996ae0b0
RK
5108 end if;
5109 end Check_Statement_Sequence;
5110
5111 -- Start of processing for Check_Returns
5112
5113 begin
5114 Err := False;
5115 Check_Statement_Sequence (Statements (HSS));
5116
5117 if Present (Exception_Handlers (HSS)) then
5118 Handler := First_Non_Pragma (Exception_Handlers (HSS));
5119 while Present (Handler) loop
5120 Check_Statement_Sequence (Statements (Handler));
5121 Next_Non_Pragma (Handler);
5122 end loop;
5123 end if;
5124 end Check_Returns;
5125
5126 ----------------------------
5127 -- Check_Subprogram_Order --
5128 ----------------------------
5129
5130 procedure Check_Subprogram_Order (N : Node_Id) is
5131
5132 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
5133 -- This is used to check if S1 > S2 in the sense required by this
5134 -- test, for example nameab < namec, but name2 < name10.
5135
82c80734
RD
5136 -----------------------------
5137 -- Subprogram_Name_Greater --
5138 -----------------------------
5139
996ae0b0
RK
5140 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
5141 L1, L2 : Positive;
5142 N1, N2 : Natural;
5143
5144 begin
5145 -- Remove trailing numeric parts
5146
5147 L1 := S1'Last;
5148 while S1 (L1) in '0' .. '9' loop
5149 L1 := L1 - 1;
5150 end loop;
5151
5152 L2 := S2'Last;
5153 while S2 (L2) in '0' .. '9' loop
5154 L2 := L2 - 1;
5155 end loop;
5156
5157 -- If non-numeric parts non-equal, that's decisive
5158
5159 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
5160 return False;
5161
5162 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
5163 return True;
5164
5165 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5166 -- that a missing suffix is treated as numeric zero in this test.
5167
5168 else
5169 N1 := 0;
5170 while L1 < S1'Last loop
5171 L1 := L1 + 1;
5172 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5173 end loop;
5174
5175 N2 := 0;
5176 while L2 < S2'Last loop
5177 L2 := L2 + 1;
5178 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5179 end loop;
5180
5181 return N1 > N2;
5182 end if;
5183 end Subprogram_Name_Greater;
5184
5185 -- Start of processing for Check_Subprogram_Order
5186
5187 begin
5188 -- Check body in alpha order if this is option
5189
fbf5a39b 5190 if Style_Check
bc202b70 5191 and then Style_Check_Order_Subprograms
996ae0b0
RK
5192 and then Nkind (N) = N_Subprogram_Body
5193 and then Comes_From_Source (N)
5194 and then In_Extended_Main_Source_Unit (N)
5195 then
5196 declare
5197 LSN : String_Ptr
5198 renames Scope_Stack.Table
5199 (Scope_Stack.Last).Last_Subprogram_Name;
5200
5201 Body_Id : constant Entity_Id :=
5202 Defining_Entity (Specification (N));
5203
5204 begin
5205 Get_Decoded_Name_String (Chars (Body_Id));
5206
5207 if LSN /= null then
5208 if Subprogram_Name_Greater
5209 (LSN.all, Name_Buffer (1 .. Name_Len))
5210 then
5211 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5212 end if;
5213
5214 Free (LSN);
5215 end if;
5216
5217 LSN := new String'(Name_Buffer (1 .. Name_Len));
5218 end;
5219 end if;
5220 end Check_Subprogram_Order;
5221
5222 ------------------------------
5223 -- Check_Subtype_Conformant --
5224 ------------------------------
5225
5226 procedure Check_Subtype_Conformant
ce2b6ba5
JM
5227 (New_Id : Entity_Id;
5228 Old_Id : Entity_Id;
5229 Err_Loc : Node_Id := Empty;
5230 Skip_Controlling_Formals : Boolean := False)
996ae0b0
RK
5231 is
5232 Result : Boolean;
81db9d77 5233 pragma Warnings (Off, Result);
996ae0b0
RK
5234 begin
5235 Check_Conformance
ce2b6ba5
JM
5236 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5237 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
5238 end Check_Subtype_Conformant;
5239
5240 ---------------------------
5241 -- Check_Type_Conformant --
5242 ---------------------------
5243
5244 procedure Check_Type_Conformant
5245 (New_Id : Entity_Id;
5246 Old_Id : Entity_Id;
5247 Err_Loc : Node_Id := Empty)
5248 is
5249 Result : Boolean;
81db9d77 5250 pragma Warnings (Off, Result);
996ae0b0
RK
5251 begin
5252 Check_Conformance
5253 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5254 end Check_Type_Conformant;
5255
5256 ----------------------
5257 -- Conforming_Types --
5258 ----------------------
5259
5260 function Conforming_Types
5261 (T1 : Entity_Id;
5262 T2 : Entity_Id;
5263 Ctype : Conformance_Type;
d05ef0ab 5264 Get_Inst : Boolean := False) return Boolean
996ae0b0
RK
5265 is
5266 Type_1 : Entity_Id := T1;
5267 Type_2 : Entity_Id := T2;
af4b9434 5268 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
996ae0b0
RK
5269
5270 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
0a36105d
JM
5271 -- If neither T1 nor T2 are generic actual types, or if they are in
5272 -- different scopes (e.g. parent and child instances), then verify that
5273 -- the base types are equal. Otherwise T1 and T2 must be on the same
5274 -- subtype chain. The whole purpose of this procedure is to prevent
5275 -- spurious ambiguities in an instantiation that may arise if two
5276 -- distinct generic types are instantiated with the same actual.
5277
5d37ba92
ES
5278 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5279 -- An access parameter can designate an incomplete type. If the
5280 -- incomplete type is the limited view of a type from a limited_
5281 -- with_clause, check whether the non-limited view is available. If
5282 -- it is a (non-limited) incomplete type, get the full view.
5283
0a36105d
JM
5284 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5285 -- Returns True if and only if either T1 denotes a limited view of T2
5286 -- or T2 denotes a limited view of T1. This can arise when the limited
5287 -- with view of a type is used in a subprogram declaration and the
5288 -- subprogram body is in the scope of a regular with clause for the
5289 -- same unit. In such a case, the two type entities can be considered
5290 -- identical for purposes of conformance checking.
996ae0b0
RK
5291
5292 ----------------------
5293 -- Base_Types_Match --
5294 ----------------------
5295
5296 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5297 begin
5298 if T1 = T2 then
5299 return True;
5300
5301 elsif Base_Type (T1) = Base_Type (T2) then
5302
0a36105d 5303 -- The following is too permissive. A more precise test should
996ae0b0
RK
5304 -- check that the generic actual is an ancestor subtype of the
5305 -- other ???.
5306
5307 return not Is_Generic_Actual_Type (T1)
07fc65c4
GB
5308 or else not Is_Generic_Actual_Type (T2)
5309 or else Scope (T1) /= Scope (T2);
996ae0b0 5310
0a36105d
JM
5311 else
5312 return False;
5313 end if;
5314 end Base_Types_Match;
aa720a54 5315
5d37ba92
ES
5316 --------------------------
5317 -- Find_Designated_Type --
5318 --------------------------
5319
5320 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5321 Desig : Entity_Id;
5322
5323 begin
5324 Desig := Directly_Designated_Type (T);
5325
5326 if Ekind (Desig) = E_Incomplete_Type then
5327
5328 -- If regular incomplete type, get full view if available
5329
5330 if Present (Full_View (Desig)) then
5331 Desig := Full_View (Desig);
5332
5333 -- If limited view of a type, get non-limited view if available,
5334 -- and check again for a regular incomplete type.
5335
5336 elsif Present (Non_Limited_View (Desig)) then
5337 Desig := Get_Full_View (Non_Limited_View (Desig));
5338 end if;
5339 end if;
5340
5341 return Desig;
5342 end Find_Designated_Type;
5343
0a36105d
JM
5344 -------------------------------
5345 -- Matches_Limited_With_View --
5346 -------------------------------
5347
5348 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5349 begin
5350 -- In some cases a type imported through a limited_with clause, and
5351 -- its nonlimited view are both visible, for example in an anonymous
5352 -- access-to-class-wide type in a formal. Both entities designate the
5353 -- same type.
5354
5355 if From_With_Type (T1)
5356 and then T2 = Available_View (T1)
aa720a54
AC
5357 then
5358 return True;
5359
41251c60 5360 elsif From_With_Type (T2)
0a36105d 5361 and then T1 = Available_View (T2)
41251c60
JM
5362 then
5363 return True;
5364
996ae0b0
RK
5365 else
5366 return False;
5367 end if;
0a36105d 5368 end Matches_Limited_With_View;
996ae0b0 5369
ec4867fa 5370 -- Start of processing for Conforming_Types
758c442c 5371
996ae0b0
RK
5372 begin
5373 -- The context is an instance association for a formal
82c80734
RD
5374 -- access-to-subprogram type; the formal parameter types require
5375 -- mapping because they may denote other formal parameters of the
5376 -- generic unit.
996ae0b0
RK
5377
5378 if Get_Inst then
5379 Type_1 := Get_Instance_Of (T1);
5380 Type_2 := Get_Instance_Of (T2);
5381 end if;
5382
0a36105d
JM
5383 -- If one of the types is a view of the other introduced by a limited
5384 -- with clause, treat these as conforming for all purposes.
996ae0b0 5385
0a36105d
JM
5386 if Matches_Limited_With_View (T1, T2) then
5387 return True;
5388
5389 elsif Base_Types_Match (Type_1, Type_2) then
996ae0b0
RK
5390 return Ctype <= Mode_Conformant
5391 or else Subtypes_Statically_Match (Type_1, Type_2);
5392
5393 elsif Is_Incomplete_Or_Private_Type (Type_1)
5394 and then Present (Full_View (Type_1))
5395 and then Base_Types_Match (Full_View (Type_1), Type_2)
5396 then
5397 return Ctype <= Mode_Conformant
5398 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5399
5400 elsif Ekind (Type_2) = E_Incomplete_Type
5401 and then Present (Full_View (Type_2))
5402 and then Base_Types_Match (Type_1, Full_View (Type_2))
5403 then
5404 return Ctype <= Mode_Conformant
5405 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
5406
5407 elsif Is_Private_Type (Type_2)
5408 and then In_Instance
5409 and then Present (Full_View (Type_2))
5410 and then Base_Types_Match (Type_1, Full_View (Type_2))
5411 then
5412 return Ctype <= Mode_Conformant
5413 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
996ae0b0
RK
5414 end if;
5415
0a36105d 5416 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
758c442c 5417 -- treated recursively because they carry a signature.
af4b9434
AC
5418
5419 Are_Anonymous_Access_To_Subprogram_Types :=
f937473f
RD
5420 Ekind (Type_1) = Ekind (Type_2)
5421 and then
800621e0 5422 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
f937473f
RD
5423 or else
5424 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 5425
996ae0b0 5426 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
5427 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5428 -- the base types because we may have built internal subtype entities
5429 -- to handle null-excluding types (see Process_Formals).
996ae0b0 5430
5d37ba92
ES
5431 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5432 and then
5433 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
0ab80019 5434 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
996ae0b0
RK
5435 then
5436 declare
5437 Desig_1 : Entity_Id;
5438 Desig_2 : Entity_Id;
5439
5440 begin
5d37ba92
ES
5441 -- In Ada2005, access constant indicators must match for
5442 -- subtype conformance.
9dcb52e1 5443
0791fbe9 5444 if Ada_Version >= Ada_2005
5d37ba92
ES
5445 and then Ctype >= Subtype_Conformant
5446 and then
5447 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5448 then
5449 return False;
996ae0b0
RK
5450 end if;
5451
5d37ba92 5452 Desig_1 := Find_Designated_Type (Type_1);
996ae0b0 5453
5d37ba92 5454 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 5455
5d37ba92 5456 -- If the context is an instance association for a formal
82c80734
RD
5457 -- access-to-subprogram type; formal access parameter designated
5458 -- types require mapping because they may denote other formal
5459 -- parameters of the generic unit.
996ae0b0
RK
5460
5461 if Get_Inst then
5462 Desig_1 := Get_Instance_Of (Desig_1);
5463 Desig_2 := Get_Instance_Of (Desig_2);
5464 end if;
5465
82c80734
RD
5466 -- It is possible for a Class_Wide_Type to be introduced for an
5467 -- incomplete type, in which case there is a separate class_ wide
5468 -- type for the full view. The types conform if their Etypes
5469 -- conform, i.e. one may be the full view of the other. This can
5470 -- only happen in the context of an access parameter, other uses
5471 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 5472
fbf5a39b
AC
5473 if Is_Class_Wide_Type (Desig_1)
5474 and then Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
5475 then
5476 return
fbf5a39b
AC
5477 Conforming_Types
5478 (Etype (Base_Type (Desig_1)),
5479 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
5480
5481 elsif Are_Anonymous_Access_To_Subprogram_Types then
0791fbe9 5482 if Ada_Version < Ada_2005 then
758c442c
GD
5483 return Ctype = Type_Conformant
5484 or else
af4b9434
AC
5485 Subtypes_Statically_Match (Desig_1, Desig_2);
5486
758c442c
GD
5487 -- We must check the conformance of the signatures themselves
5488
5489 else
5490 declare
5491 Conformant : Boolean;
5492 begin
5493 Check_Conformance
5494 (Desig_1, Desig_2, Ctype, False, Conformant);
5495 return Conformant;
5496 end;
5497 end if;
5498
996ae0b0
RK
5499 else
5500 return Base_Type (Desig_1) = Base_Type (Desig_2)
5501 and then (Ctype = Type_Conformant
af4b9434
AC
5502 or else
5503 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
5504 end if;
5505 end;
5506
5507 -- Otherwise definitely no match
5508
5509 else
c8ef728f
ES
5510 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5511 and then Is_Access_Type (Type_2))
5512 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5513 and then Is_Access_Type (Type_1)))
5514 and then
5515 Conforming_Types
5516 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5517 then
5518 May_Hide_Profile := True;
5519 end if;
5520
996ae0b0
RK
5521 return False;
5522 end if;
996ae0b0
RK
5523 end Conforming_Types;
5524
5525 --------------------------
5526 -- Create_Extra_Formals --
5527 --------------------------
5528
5529 procedure Create_Extra_Formals (E : Entity_Id) is
5530 Formal : Entity_Id;
ec4867fa 5531 First_Extra : Entity_Id := Empty;
996ae0b0
RK
5532 Last_Extra : Entity_Id;
5533 Formal_Type : Entity_Id;
5534 P_Formal : Entity_Id := Empty;
5535
ec4867fa
ES
5536 function Add_Extra_Formal
5537 (Assoc_Entity : Entity_Id;
5538 Typ : Entity_Id;
5539 Scope : Entity_Id;
5540 Suffix : String) return Entity_Id;
5541 -- Add an extra formal to the current list of formals and extra formals.
5542 -- The extra formal is added to the end of the list of extra formals,
5543 -- and also returned as the result. These formals are always of mode IN.
5544 -- The new formal has the type Typ, is declared in Scope, and its name
5545 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
cd5a9750
AC
5546 -- The following suffixes are currently used. They should not be changed
5547 -- without coordinating with CodePeer, which makes use of these to
5548 -- provide better messages.
5549
d92eccc3
AC
5550 -- O denotes the Constrained bit.
5551 -- L denotes the accessibility level.
cd5a9750
AC
5552 -- BIP_xxx denotes an extra formal for a build-in-place function. See
5553 -- the full list in exp_ch6.BIP_Formal_Kind.
996ae0b0 5554
fbf5a39b
AC
5555 ----------------------
5556 -- Add_Extra_Formal --
5557 ----------------------
5558
ec4867fa
ES
5559 function Add_Extra_Formal
5560 (Assoc_Entity : Entity_Id;
5561 Typ : Entity_Id;
5562 Scope : Entity_Id;
5563 Suffix : String) return Entity_Id
5564 is
996ae0b0 5565 EF : constant Entity_Id :=
ec4867fa
ES
5566 Make_Defining_Identifier (Sloc (Assoc_Entity),
5567 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 5568 Suffix => Suffix));
996ae0b0
RK
5569
5570 begin
82c80734
RD
5571 -- A little optimization. Never generate an extra formal for the
5572 -- _init operand of an initialization procedure, since it could
5573 -- never be used.
996ae0b0
RK
5574
5575 if Chars (Formal) = Name_uInit then
5576 return Empty;
5577 end if;
5578
5579 Set_Ekind (EF, E_In_Parameter);
5580 Set_Actual_Subtype (EF, Typ);
5581 Set_Etype (EF, Typ);
ec4867fa 5582 Set_Scope (EF, Scope);
996ae0b0
RK
5583 Set_Mechanism (EF, Default_Mechanism);
5584 Set_Formal_Validity (EF);
5585
ec4867fa
ES
5586 if No (First_Extra) then
5587 First_Extra := EF;
5588 Set_Extra_Formals (Scope, First_Extra);
5589 end if;
5590
5591 if Present (Last_Extra) then
5592 Set_Extra_Formal (Last_Extra, EF);
5593 end if;
5594
996ae0b0 5595 Last_Extra := EF;
ec4867fa 5596
996ae0b0
RK
5597 return EF;
5598 end Add_Extra_Formal;
5599
5600 -- Start of processing for Create_Extra_Formals
5601
5602 begin
f937473f
RD
5603 -- We never generate extra formals if expansion is not active
5604 -- because we don't need them unless we are generating code.
5605
5606 if not Expander_Active then
5607 return;
5608 end if;
5609
82c80734 5610 -- If this is a derived subprogram then the subtypes of the parent
16b05213 5611 -- subprogram's formal parameters will be used to determine the need
82c80734 5612 -- for extra formals.
996ae0b0
RK
5613
5614 if Is_Overloadable (E) and then Present (Alias (E)) then
5615 P_Formal := First_Formal (Alias (E));
5616 end if;
5617
5618 Last_Extra := Empty;
5619 Formal := First_Formal (E);
5620 while Present (Formal) loop
5621 Last_Extra := Formal;
5622 Next_Formal (Formal);
5623 end loop;
5624
f937473f 5625 -- If Extra_formals were already created, don't do it again. This
82c80734
RD
5626 -- situation may arise for subprogram types created as part of
5627 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0
RK
5628
5629 if Present (Last_Extra) and then
5630 Present (Extra_Formal (Last_Extra))
5631 then
5632 return;
5633 end if;
5634
19590d70
GD
5635 -- If the subprogram is a predefined dispatching subprogram then don't
5636 -- generate any extra constrained or accessibility level formals. In
5637 -- general we suppress these for internal subprograms (by not calling
5638 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5639 -- generated stream attributes do get passed through because extra
5640 -- build-in-place formals are needed in some cases (limited 'Input).
5641
bac7206d 5642 if Is_Predefined_Internal_Operation (E) then
19590d70
GD
5643 goto Test_For_BIP_Extras;
5644 end if;
5645
996ae0b0 5646 Formal := First_Formal (E);
996ae0b0
RK
5647 while Present (Formal) loop
5648
5649 -- Create extra formal for supporting the attribute 'Constrained.
5650 -- The case of a private type view without discriminants also
5651 -- requires the extra formal if the underlying type has defaulted
5652 -- discriminants.
5653
5654 if Ekind (Formal) /= E_In_Parameter then
5655 if Present (P_Formal) then
5656 Formal_Type := Etype (P_Formal);
5657 else
5658 Formal_Type := Etype (Formal);
5659 end if;
5660
5d09245e
AC
5661 -- Do not produce extra formals for Unchecked_Union parameters.
5662 -- Jump directly to the end of the loop.
5663
5664 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5665 goto Skip_Extra_Formal_Generation;
5666 end if;
5667
996ae0b0
RK
5668 if not Has_Discriminants (Formal_Type)
5669 and then Ekind (Formal_Type) in Private_Kind
5670 and then Present (Underlying_Type (Formal_Type))
5671 then
5672 Formal_Type := Underlying_Type (Formal_Type);
5673 end if;
5674
5675 if Has_Discriminants (Formal_Type)
f937473f
RD
5676 and then not Is_Constrained (Formal_Type)
5677 and then not Is_Indefinite_Subtype (Formal_Type)
996ae0b0
RK
5678 then
5679 Set_Extra_Constrained
d92eccc3 5680 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
996ae0b0
RK
5681 end if;
5682 end if;
5683
0a36105d
JM
5684 -- Create extra formal for supporting accessibility checking. This
5685 -- is done for both anonymous access formals and formals of named
5686 -- access types that are marked as controlling formals. The latter
5687 -- case can occur when Expand_Dispatching_Call creates a subprogram
5688 -- type and substitutes the types of access-to-class-wide actuals
5689 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
5690 -- Base_Type is applied because in cases where there is a null
5691 -- exclusion the formal may have an access subtype.
996ae0b0
RK
5692
5693 -- This is suppressed if we specifically suppress accessibility
f937473f 5694 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
5695 -- package in which it resides. However, we do not suppress it
5696 -- simply if the scope has accessibility checks suppressed, since
5697 -- this could cause trouble when clients are compiled with a
5698 -- different suppression setting. The explicit checks at the
5699 -- package level are safe from this point of view.
996ae0b0 5700
5d37ba92 5701 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 5702 or else (Is_Controlling_Formal (Formal)
5d37ba92 5703 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 5704 and then not
fbf5a39b 5705 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 5706 or else
fbf5a39b 5707 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 5708 and then
c8ef728f 5709 (No (P_Formal)
996ae0b0
RK
5710 or else Present (Extra_Accessibility (P_Formal)))
5711 then
811c6a85 5712 Set_Extra_Accessibility
d92eccc3 5713 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
996ae0b0
RK
5714 end if;
5715
5d09245e
AC
5716 -- This label is required when skipping extra formal generation for
5717 -- Unchecked_Union parameters.
5718
5719 <<Skip_Extra_Formal_Generation>>
5720
f937473f
RD
5721 if Present (P_Formal) then
5722 Next_Formal (P_Formal);
5723 end if;
5724
996ae0b0
RK
5725 Next_Formal (Formal);
5726 end loop;
ec4867fa 5727
19590d70
GD
5728 <<Test_For_BIP_Extras>>
5729
ec4867fa 5730 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
5731 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5732
0791fbe9 5733 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
ec4867fa 5734 declare
f937473f
RD
5735 Result_Subt : constant Entity_Id := Etype (E);
5736
5737 Discard : Entity_Id;
5738 pragma Warnings (Off, Discard);
ec4867fa
ES
5739
5740 begin
f937473f 5741 -- In the case of functions with unconstrained result subtypes,
9a1bc6d5
AC
5742 -- add a 4-state formal indicating whether the return object is
5743 -- allocated by the caller (1), or should be allocated by the
5744 -- callee on the secondary stack (2), in the global heap (3), or
5745 -- in a user-defined storage pool (4). For the moment we just use
5746 -- Natural for the type of this formal. Note that this formal
5747 -- isn't usually needed in the case where the result subtype is
5748 -- constrained, but it is needed when the function has a tagged
5749 -- result, because generally such functions can be called in a
5750 -- dispatching context and such calls must be handled like calls
5751 -- to a class-wide function.
0a36105d 5752
a38ff9b1 5753 if not Is_Constrained (Underlying_Type (Result_Subt))
0a36105d
JM
5754 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5755 then
f937473f
RD
5756 Discard :=
5757 Add_Extra_Formal
5758 (E, Standard_Natural,
5759 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5760 end if;
ec4867fa 5761
e5536c09
AC
5762 -- For functions whose result type has controlled parts, we have
5763 -- an extra formal of type System.Finalization_Implementation.
5764 -- Finalizable_Ptr_Ptr. That is, we are passing a pointer to a
5765 -- finalization list (which is itself a pointer). This extra
5766 -- formal is then passed along to Move_Final_List in case of
5767 -- successful completion of a return statement. We cannot pass an
5768 -- 'in out' parameter, because we need to update the finalization
5769 -- list during an abort-deferred region, rather than using
5770 -- copy-back after the function returns. This is true even if we
5771 -- are able to get away with having 'in out' parameters, which are
5772 -- normally illegal for functions. This formal is also needed when
5773 -- the function has a tagged result.
f937473f 5774
048e5cef 5775 if Needs_BIP_Final_List (E) then
f937473f
RD
5776 Discard :=
5777 Add_Extra_Formal
5778 (E, RTE (RE_Finalizable_Ptr_Ptr),
5779 E, BIP_Formal_Suffix (BIP_Final_List));
5780 end if;
5781
5782 -- If the result type contains tasks, we have two extra formals:
5783 -- the master of the tasks to be created, and the caller's
5784 -- activation chain.
5785
5786 if Has_Task (Result_Subt) then
5787 Discard :=
5788 Add_Extra_Formal
5789 (E, RTE (RE_Master_Id),
5790 E, BIP_Formal_Suffix (BIP_Master));
5791 Discard :=
5792 Add_Extra_Formal
5793 (E, RTE (RE_Activation_Chain_Access),
5794 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5795 end if;
ec4867fa 5796
f937473f
RD
5797 -- All build-in-place functions get an extra formal that will be
5798 -- passed the address of the return object within the caller.
ec4867fa 5799
f937473f
RD
5800 declare
5801 Formal_Type : constant Entity_Id :=
5802 Create_Itype
5803 (E_Anonymous_Access_Type, E,
5804 Scope_Id => Scope (E));
5805 begin
5806 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5807 Set_Etype (Formal_Type, Formal_Type);
f937473f
RD
5808 Set_Depends_On_Private
5809 (Formal_Type, Has_Private_Component (Formal_Type));
5810 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5811 Set_Is_Access_Constant (Formal_Type, False);
ec4867fa 5812
f937473f
RD
5813 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5814 -- the designated type comes from the limited view (for
5815 -- back-end purposes).
ec4867fa 5816
f937473f 5817 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
ec4867fa 5818
f937473f
RD
5819 Layout_Type (Formal_Type);
5820
5821 Discard :=
5822 Add_Extra_Formal
5823 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5824 end;
ec4867fa
ES
5825 end;
5826 end if;
996ae0b0
RK
5827 end Create_Extra_Formals;
5828
5829 -----------------------------
5830 -- Enter_Overloaded_Entity --
5831 -----------------------------
5832
5833 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5834 E : Entity_Id := Current_Entity_In_Scope (S);
5835 C_E : Entity_Id := Current_Entity (S);
5836
5837 begin
5838 if Present (E) then
5839 Set_Has_Homonym (E);
5840 Set_Has_Homonym (S);
5841 end if;
5842
5843 Set_Is_Immediately_Visible (S);
5844 Set_Scope (S, Current_Scope);
5845
5846 -- Chain new entity if front of homonym in current scope, so that
5847 -- homonyms are contiguous.
5848
5849 if Present (E)
5850 and then E /= C_E
5851 then
5852 while Homonym (C_E) /= E loop
5853 C_E := Homonym (C_E);
5854 end loop;
5855
5856 Set_Homonym (C_E, S);
5857
5858 else
5859 E := C_E;
5860 Set_Current_Entity (S);
5861 end if;
5862
5863 Set_Homonym (S, E);
5864
5865 Append_Entity (S, Current_Scope);
5866 Set_Public_Status (S);
5867
5868 if Debug_Flag_E then
5869 Write_Str ("New overloaded entity chain: ");
5870 Write_Name (Chars (S));
996ae0b0 5871
82c80734 5872 E := S;
996ae0b0
RK
5873 while Present (E) loop
5874 Write_Str (" "); Write_Int (Int (E));
5875 E := Homonym (E);
5876 end loop;
5877
5878 Write_Eol;
5879 end if;
5880
5881 -- Generate warning for hiding
5882
5883 if Warn_On_Hiding
5884 and then Comes_From_Source (S)
5885 and then In_Extended_Main_Source_Unit (S)
5886 then
5887 E := S;
5888 loop
5889 E := Homonym (E);
5890 exit when No (E);
5891
5892 -- Warn unless genuine overloading
5893
f937473f
RD
5894 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5895 and then (Is_Immediately_Visible (E)
5896 or else
5897 Is_Potentially_Use_Visible (S))
996ae0b0
RK
5898 then
5899 Error_Msg_Sloc := Sloc (E);
5900 Error_Msg_N ("declaration of & hides one#?", S);
5901 end if;
5902 end loop;
5903 end if;
5904 end Enter_Overloaded_Entity;
5905
e5a58fac
AC
5906 -----------------------------
5907 -- Check_Untagged_Equality --
5908 -----------------------------
5909
5910 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
5911 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
5912 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
5913 Obj_Decl : Node_Id;
5914
5915 begin
5916 if Nkind (Decl) = N_Subprogram_Declaration
5917 and then Is_Record_Type (Typ)
5918 and then not Is_Tagged_Type (Typ)
5919 then
21a5b575
AC
5920 -- If the type is not declared in a package, or if we are in the
5921 -- body of the package or in some other scope, the new operation is
5922 -- not primitive, and therefore legal, though suspicious. If the
5923 -- type is a generic actual (sub)type, the operation is not primitive
5924 -- either because the base type is declared elsewhere.
5925
e5a58fac 5926 if Is_Frozen (Typ) then
21a5b575
AC
5927 if Ekind (Scope (Typ)) /= E_Package
5928 or else Scope (Typ) /= Current_Scope
5929 then
5930 null;
e5a58fac 5931
21a5b575
AC
5932 elsif Is_Generic_Actual_Type (Typ) then
5933 null;
e5a58fac 5934
21a5b575 5935 elsif In_Package_Body (Scope (Typ)) then
ae6ede77
AC
5936 Error_Msg_NE
5937 ("equality operator must be declared "
5938 & "before type& is frozen", Eq_Op, Typ);
5939 Error_Msg_N
5940 ("\move declaration to package spec", Eq_Op);
21a5b575
AC
5941
5942 else
5943 Error_Msg_NE
5944 ("equality operator must be declared "
5945 & "before type& is frozen", Eq_Op, Typ);
5946
5947 Obj_Decl := Next (Parent (Typ));
5948 while Present (Obj_Decl)
5949 and then Obj_Decl /= Decl
5950 loop
5951 if Nkind (Obj_Decl) = N_Object_Declaration
5952 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
5953 then
5954 Error_Msg_NE ("type& is frozen by declaration?",
5955 Obj_Decl, Typ);
5956 Error_Msg_N
5957 ("\an equality operator cannot be declared after this "
5958 & "point ('R'M 4.5.2 (9.8)) (Ada 2012))?", Obj_Decl);
5959 exit;
5960 end if;
5961
5962 Next (Obj_Decl);
5963 end loop;
5964 end if;
e5a58fac
AC
5965
5966 elsif not In_Same_List (Parent (Typ), Decl)
5967 and then not Is_Limited_Type (Typ)
5968 then
21a5b575
AC
5969
5970 -- This makes it illegal to have a primitive equality declared in
5971 -- the private part if the type is visible.
5972
e5a58fac
AC
5973 Error_Msg_N ("equality operator appears too late", Eq_Op);
5974 end if;
5975 end if;
5976 end Check_Untagged_Equality;
5977
996ae0b0
RK
5978 -----------------------------
5979 -- Find_Corresponding_Spec --
5980 -----------------------------
5981
d44202ba
HK
5982 function Find_Corresponding_Spec
5983 (N : Node_Id;
5984 Post_Error : Boolean := True) return Entity_Id
5985 is
996ae0b0
RK
5986 Spec : constant Node_Id := Specification (N);
5987 Designator : constant Entity_Id := Defining_Entity (Spec);
5988
5989 E : Entity_Id;
5990
5991 begin
5992 E := Current_Entity (Designator);
996ae0b0
RK
5993 while Present (E) loop
5994
5995 -- We are looking for a matching spec. It must have the same scope,
5996 -- and the same name, and either be type conformant, or be the case
5997 -- of a library procedure spec and its body (which belong to one
5998 -- another regardless of whether they are type conformant or not).
5999
6000 if Scope (E) = Current_Scope then
fbf5a39b
AC
6001 if Current_Scope = Standard_Standard
6002 or else (Ekind (E) = Ekind (Designator)
6003 and then Type_Conformant (E, Designator))
996ae0b0
RK
6004 then
6005 -- Within an instantiation, we know that spec and body are
6006 -- subtype conformant, because they were subtype conformant
6007 -- in the generic. We choose the subtype-conformant entity
6008 -- here as well, to resolve spurious ambiguities in the
6009 -- instance that were not present in the generic (i.e. when
6010 -- two different types are given the same actual). If we are
6011 -- looking for a spec to match a body, full conformance is
6012 -- expected.
6013
6014 if In_Instance then
6015 Set_Convention (Designator, Convention (E));
6016
6017 if Nkind (N) = N_Subprogram_Body
6018 and then Present (Homonym (E))
6019 and then not Fully_Conformant (E, Designator)
6020 then
6021 goto Next_Entity;
6022
6023 elsif not Subtype_Conformant (E, Designator) then
6024 goto Next_Entity;
6025 end if;
6026 end if;
6027
6028 if not Has_Completion (E) then
996ae0b0
RK
6029 if Nkind (N) /= N_Subprogram_Body_Stub then
6030 Set_Corresponding_Spec (N, E);
6031 end if;
6032
6033 Set_Has_Completion (E);
6034 return E;
6035
6036 elsif Nkind (Parent (N)) = N_Subunit then
6037
6038 -- If this is the proper body of a subunit, the completion
6039 -- flag is set when analyzing the stub.
6040
6041 return E;
6042
81db9d77
ES
6043 -- If E is an internal function with a controlling result
6044 -- that was created for an operation inherited by a null
6045 -- extension, it may be overridden by a body without a previous
6046 -- spec (one more reason why these should be shunned). In that
1366997b
AC
6047 -- case remove the generated body if present, because the
6048 -- current one is the explicit overriding.
81db9d77
ES
6049
6050 elsif Ekind (E) = E_Function
0791fbe9 6051 and then Ada_Version >= Ada_2005
81db9d77
ES
6052 and then not Comes_From_Source (E)
6053 and then Has_Controlling_Result (E)
6054 and then Is_Null_Extension (Etype (E))
6055 and then Comes_From_Source (Spec)
6056 then
6057 Set_Has_Completion (E, False);
6058
1366997b
AC
6059 if Expander_Active
6060 and then Nkind (Parent (E)) = N_Function_Specification
6061 then
81db9d77
ES
6062 Remove
6063 (Unit_Declaration_Node
1366997b
AC
6064 (Corresponding_Body (Unit_Declaration_Node (E))));
6065
81db9d77
ES
6066 return E;
6067
1366997b
AC
6068 -- If expansion is disabled, or if the wrapper function has
6069 -- not been generated yet, this a late body overriding an
6070 -- inherited operation, or it is an overriding by some other
6071 -- declaration before the controlling result is frozen. In
6072 -- either case this is a declaration of a new entity.
81db9d77
ES
6073
6074 else
6075 return Empty;
6076 end if;
6077
d44202ba
HK
6078 -- If the body already exists, then this is an error unless
6079 -- the previous declaration is the implicit declaration of a
6080 -- derived subprogram, or this is a spurious overloading in an
6081 -- instance.
996ae0b0
RK
6082
6083 elsif No (Alias (E))
6084 and then not Is_Intrinsic_Subprogram (E)
6085 and then not In_Instance
d44202ba 6086 and then Post_Error
996ae0b0
RK
6087 then
6088 Error_Msg_Sloc := Sloc (E);
8dbd1460 6089
07fc65c4
GB
6090 if Is_Imported (E) then
6091 Error_Msg_NE
6092 ("body not allowed for imported subprogram & declared#",
6093 N, E);
6094 else
6095 Error_Msg_NE ("duplicate body for & declared#", N, E);
6096 end if;
996ae0b0
RK
6097 end if;
6098
d44202ba
HK
6099 -- Child units cannot be overloaded, so a conformance mismatch
6100 -- between body and a previous spec is an error.
6101
996ae0b0
RK
6102 elsif Is_Child_Unit (E)
6103 and then
6104 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
6105 and then
5d37ba92 6106 Nkind (Parent (Unit_Declaration_Node (Designator))) =
d44202ba
HK
6107 N_Compilation_Unit
6108 and then Post_Error
996ae0b0 6109 then
996ae0b0
RK
6110 Error_Msg_N
6111 ("body of child unit does not match previous declaration", N);
6112 end if;
6113 end if;
6114
6115 <<Next_Entity>>
6116 E := Homonym (E);
6117 end loop;
6118
6119 -- On exit, we know that no previous declaration of subprogram exists
6120
6121 return Empty;
6122 end Find_Corresponding_Spec;
6123
6124 ----------------------
6125 -- Fully_Conformant --
6126 ----------------------
6127
6128 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6129 Result : Boolean;
996ae0b0
RK
6130 begin
6131 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
6132 return Result;
6133 end Fully_Conformant;
6134
6135 ----------------------------------
6136 -- Fully_Conformant_Expressions --
6137 ----------------------------------
6138
6139 function Fully_Conformant_Expressions
6140 (Given_E1 : Node_Id;
d05ef0ab 6141 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
6142 is
6143 E1 : constant Node_Id := Original_Node (Given_E1);
6144 E2 : constant Node_Id := Original_Node (Given_E2);
6145 -- We always test conformance on original nodes, since it is possible
6146 -- for analysis and/or expansion to make things look as though they
6147 -- conform when they do not, e.g. by converting 1+2 into 3.
6148
6149 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
6150 renames Fully_Conformant_Expressions;
6151
6152 function FCL (L1, L2 : List_Id) return Boolean;
6153 -- Compare elements of two lists for conformance. Elements have to
6154 -- be conformant, and actuals inserted as default parameters do not
6155 -- match explicit actuals with the same value.
6156
6157 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 6158 -- Compare an operator node with a function call
996ae0b0
RK
6159
6160 ---------
6161 -- FCL --
6162 ---------
6163
6164 function FCL (L1, L2 : List_Id) return Boolean is
6165 N1, N2 : Node_Id;
6166
6167 begin
6168 if L1 = No_List then
6169 N1 := Empty;
6170 else
6171 N1 := First (L1);
6172 end if;
6173
6174 if L2 = No_List then
6175 N2 := Empty;
6176 else
6177 N2 := First (L2);
6178 end if;
6179
6180 -- Compare two lists, skipping rewrite insertions (we want to
6181 -- compare the original trees, not the expanded versions!)
6182
6183 loop
6184 if Is_Rewrite_Insertion (N1) then
6185 Next (N1);
6186 elsif Is_Rewrite_Insertion (N2) then
6187 Next (N2);
6188 elsif No (N1) then
6189 return No (N2);
6190 elsif No (N2) then
6191 return False;
6192 elsif not FCE (N1, N2) then
6193 return False;
6194 else
6195 Next (N1);
6196 Next (N2);
6197 end if;
6198 end loop;
6199 end FCL;
6200
6201 ---------
6202 -- FCO --
6203 ---------
6204
6205 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
6206 Actuals : constant List_Id := Parameter_Associations (Call_Node);
6207 Act : Node_Id;
6208
6209 begin
6210 if No (Actuals)
6211 or else Entity (Op_Node) /= Entity (Name (Call_Node))
6212 then
6213 return False;
6214
6215 else
6216 Act := First (Actuals);
6217
6218 if Nkind (Op_Node) in N_Binary_Op then
996ae0b0
RK
6219 if not FCE (Left_Opnd (Op_Node), Act) then
6220 return False;
6221 end if;
6222
6223 Next (Act);
6224 end if;
6225
6226 return Present (Act)
6227 and then FCE (Right_Opnd (Op_Node), Act)
6228 and then No (Next (Act));
6229 end if;
6230 end FCO;
6231
6232 -- Start of processing for Fully_Conformant_Expressions
6233
6234 begin
6235 -- Non-conformant if paren count does not match. Note: if some idiot
6236 -- complains that we don't do this right for more than 3 levels of
0a36105d 6237 -- parentheses, they will be treated with the respect they deserve!
996ae0b0
RK
6238
6239 if Paren_Count (E1) /= Paren_Count (E2) then
6240 return False;
6241
82c80734
RD
6242 -- If same entities are referenced, then they are conformant even if
6243 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
6244
6245 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
6246 if Present (Entity (E1)) then
6247 return Entity (E1) = Entity (E2)
6248 or else (Chars (Entity (E1)) = Chars (Entity (E2))
6249 and then Ekind (Entity (E1)) = E_Discriminant
6250 and then Ekind (Entity (E2)) = E_In_Parameter);
6251
6252 elsif Nkind (E1) = N_Expanded_Name
6253 and then Nkind (E2) = N_Expanded_Name
6254 and then Nkind (Selector_Name (E1)) = N_Character_Literal
6255 and then Nkind (Selector_Name (E2)) = N_Character_Literal
6256 then
6257 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
6258
6259 else
6260 -- Identifiers in component associations don't always have
6261 -- entities, but their names must conform.
6262
6263 return Nkind (E1) = N_Identifier
6264 and then Nkind (E2) = N_Identifier
6265 and then Chars (E1) = Chars (E2);
6266 end if;
6267
6268 elsif Nkind (E1) = N_Character_Literal
6269 and then Nkind (E2) = N_Expanded_Name
6270 then
6271 return Nkind (Selector_Name (E2)) = N_Character_Literal
6272 and then Chars (E1) = Chars (Selector_Name (E2));
6273
6274 elsif Nkind (E2) = N_Character_Literal
6275 and then Nkind (E1) = N_Expanded_Name
6276 then
6277 return Nkind (Selector_Name (E1)) = N_Character_Literal
6278 and then Chars (E2) = Chars (Selector_Name (E1));
6279
6280 elsif Nkind (E1) in N_Op
6281 and then Nkind (E2) = N_Function_Call
6282 then
6283 return FCO (E1, E2);
6284
6285 elsif Nkind (E2) in N_Op
6286 and then Nkind (E1) = N_Function_Call
6287 then
6288 return FCO (E2, E1);
6289
6290 -- Otherwise we must have the same syntactic entity
6291
6292 elsif Nkind (E1) /= Nkind (E2) then
6293 return False;
6294
6295 -- At this point, we specialize by node type
6296
6297 else
6298 case Nkind (E1) is
6299
6300 when N_Aggregate =>
6301 return
6302 FCL (Expressions (E1), Expressions (E2))
19d846a0
RD
6303 and then
6304 FCL (Component_Associations (E1),
6305 Component_Associations (E2));
996ae0b0
RK
6306
6307 when N_Allocator =>
6308 if Nkind (Expression (E1)) = N_Qualified_Expression
6309 or else
6310 Nkind (Expression (E2)) = N_Qualified_Expression
6311 then
6312 return FCE (Expression (E1), Expression (E2));
6313
6314 -- Check that the subtype marks and any constraints
6315 -- are conformant
6316
6317 else
6318 declare
6319 Indic1 : constant Node_Id := Expression (E1);
6320 Indic2 : constant Node_Id := Expression (E2);
6321 Elt1 : Node_Id;
6322 Elt2 : Node_Id;
6323
6324 begin
6325 if Nkind (Indic1) /= N_Subtype_Indication then
6326 return
6327 Nkind (Indic2) /= N_Subtype_Indication
6328 and then Entity (Indic1) = Entity (Indic2);
6329
6330 elsif Nkind (Indic2) /= N_Subtype_Indication then
6331 return
6332 Nkind (Indic1) /= N_Subtype_Indication
6333 and then Entity (Indic1) = Entity (Indic2);
6334
6335 else
6336 if Entity (Subtype_Mark (Indic1)) /=
6337 Entity (Subtype_Mark (Indic2))
6338 then
6339 return False;
6340 end if;
6341
6342 Elt1 := First (Constraints (Constraint (Indic1)));
6343 Elt2 := First (Constraints (Constraint (Indic2)));
996ae0b0
RK
6344 while Present (Elt1) and then Present (Elt2) loop
6345 if not FCE (Elt1, Elt2) then
6346 return False;
6347 end if;
6348
6349 Next (Elt1);
6350 Next (Elt2);
6351 end loop;
6352
6353 return True;
6354 end if;
6355 end;
6356 end if;
6357
6358 when N_Attribute_Reference =>
6359 return
6360 Attribute_Name (E1) = Attribute_Name (E2)
6361 and then FCL (Expressions (E1), Expressions (E2));
6362
6363 when N_Binary_Op =>
6364 return
6365 Entity (E1) = Entity (E2)
6366 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6367 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6368
514d0fc5 6369 when N_Short_Circuit | N_Membership_Test =>
996ae0b0
RK
6370 return
6371 FCE (Left_Opnd (E1), Left_Opnd (E2))
6372 and then
6373 FCE (Right_Opnd (E1), Right_Opnd (E2));
6374
19d846a0
RD
6375 when N_Case_Expression =>
6376 declare
6377 Alt1 : Node_Id;
6378 Alt2 : Node_Id;
6379
6380 begin
6381 if not FCE (Expression (E1), Expression (E2)) then
6382 return False;
6383
6384 else
6385 Alt1 := First (Alternatives (E1));
6386 Alt2 := First (Alternatives (E2));
6387 loop
6388 if Present (Alt1) /= Present (Alt2) then
6389 return False;
6390 elsif No (Alt1) then
6391 return True;
6392 end if;
6393
6394 if not FCE (Expression (Alt1), Expression (Alt2))
6395 or else not FCL (Discrete_Choices (Alt1),
6396 Discrete_Choices (Alt2))
6397 then
6398 return False;
6399 end if;
6400
6401 Next (Alt1);
6402 Next (Alt2);
6403 end loop;
6404 end if;
6405 end;
6406
996ae0b0
RK
6407 when N_Character_Literal =>
6408 return
6409 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6410
6411 when N_Component_Association =>
6412 return
6413 FCL (Choices (E1), Choices (E2))
19d846a0
RD
6414 and then
6415 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
6416
6417 when N_Conditional_Expression =>
6418 return
6419 FCL (Expressions (E1), Expressions (E2));
6420
6421 when N_Explicit_Dereference =>
6422 return
6423 FCE (Prefix (E1), Prefix (E2));
6424
6425 when N_Extension_Aggregate =>
6426 return
6427 FCL (Expressions (E1), Expressions (E2))
6428 and then Null_Record_Present (E1) =
6429 Null_Record_Present (E2)
6430 and then FCL (Component_Associations (E1),
6431 Component_Associations (E2));
6432
6433 when N_Function_Call =>
6434 return
6435 FCE (Name (E1), Name (E2))
19d846a0
RD
6436 and then
6437 FCL (Parameter_Associations (E1),
6438 Parameter_Associations (E2));
996ae0b0
RK
6439
6440 when N_Indexed_Component =>
6441 return
6442 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
6443 and then
6444 FCL (Expressions (E1), Expressions (E2));
996ae0b0
RK
6445
6446 when N_Integer_Literal =>
6447 return (Intval (E1) = Intval (E2));
6448
6449 when N_Null =>
6450 return True;
6451
6452 when N_Operator_Symbol =>
6453 return
6454 Chars (E1) = Chars (E2);
6455
6456 when N_Others_Choice =>
6457 return True;
6458
6459 when N_Parameter_Association =>
6460 return
996ae0b0
RK
6461 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6462 and then FCE (Explicit_Actual_Parameter (E1),
6463 Explicit_Actual_Parameter (E2));
6464
6465 when N_Qualified_Expression =>
6466 return
6467 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
6468 and then
6469 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
6470
6471 when N_Range =>
6472 return
6473 FCE (Low_Bound (E1), Low_Bound (E2))
19d846a0
RD
6474 and then
6475 FCE (High_Bound (E1), High_Bound (E2));
996ae0b0
RK
6476
6477 when N_Real_Literal =>
6478 return (Realval (E1) = Realval (E2));
6479
6480 when N_Selected_Component =>
6481 return
6482 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
6483 and then
6484 FCE (Selector_Name (E1), Selector_Name (E2));
996ae0b0
RK
6485
6486 when N_Slice =>
6487 return
6488 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
6489 and then
6490 FCE (Discrete_Range (E1), Discrete_Range (E2));
996ae0b0
RK
6491
6492 when N_String_Literal =>
6493 declare
6494 S1 : constant String_Id := Strval (E1);
6495 S2 : constant String_Id := Strval (E2);
6496 L1 : constant Nat := String_Length (S1);
6497 L2 : constant Nat := String_Length (S2);
6498
6499 begin
6500 if L1 /= L2 then
6501 return False;
6502
6503 else
6504 for J in 1 .. L1 loop
6505 if Get_String_Char (S1, J) /=
6506 Get_String_Char (S2, J)
6507 then
6508 return False;
6509 end if;
6510 end loop;
6511
6512 return True;
6513 end if;
6514 end;
6515
6516 when N_Type_Conversion =>
6517 return
6518 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
6519 and then
6520 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
6521
6522 when N_Unary_Op =>
6523 return
6524 Entity (E1) = Entity (E2)
19d846a0
RD
6525 and then
6526 FCE (Right_Opnd (E1), Right_Opnd (E2));
996ae0b0
RK
6527
6528 when N_Unchecked_Type_Conversion =>
6529 return
6530 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
6531 and then
6532 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
6533
6534 -- All other node types cannot appear in this context. Strictly
6535 -- we should raise a fatal internal error. Instead we just ignore
6536 -- the nodes. This means that if anyone makes a mistake in the
6537 -- expander and mucks an expression tree irretrievably, the
6538 -- result will be a failure to detect a (probably very obscure)
6539 -- case of non-conformance, which is better than bombing on some
6540 -- case where two expressions do in fact conform.
6541
6542 when others =>
6543 return True;
6544
6545 end case;
6546 end if;
6547 end Fully_Conformant_Expressions;
6548
fbf5a39b
AC
6549 ----------------------------------------
6550 -- Fully_Conformant_Discrete_Subtypes --
6551 ----------------------------------------
6552
6553 function Fully_Conformant_Discrete_Subtypes
6554 (Given_S1 : Node_Id;
d05ef0ab 6555 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
6556 is
6557 S1 : constant Node_Id := Original_Node (Given_S1);
6558 S2 : constant Node_Id := Original_Node (Given_S2);
6559
6560 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
6561 -- Special-case for a bound given by a discriminant, which in the body
6562 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
6563
6564 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 6565 -- Check both bounds
fbf5a39b 6566
5d37ba92
ES
6567 -----------------------
6568 -- Conforming_Bounds --
6569 -----------------------
6570
fbf5a39b
AC
6571 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6572 begin
6573 if Is_Entity_Name (B1)
6574 and then Is_Entity_Name (B2)
6575 and then Ekind (Entity (B1)) = E_Discriminant
6576 then
6577 return Chars (B1) = Chars (B2);
6578
6579 else
6580 return Fully_Conformant_Expressions (B1, B2);
6581 end if;
6582 end Conforming_Bounds;
6583
5d37ba92
ES
6584 -----------------------
6585 -- Conforming_Ranges --
6586 -----------------------
6587
fbf5a39b
AC
6588 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6589 begin
6590 return
6591 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6592 and then
6593 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6594 end Conforming_Ranges;
6595
6596 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6597
6598 begin
6599 if Nkind (S1) /= Nkind (S2) then
6600 return False;
6601
6602 elsif Is_Entity_Name (S1) then
6603 return Entity (S1) = Entity (S2);
6604
6605 elsif Nkind (S1) = N_Range then
6606 return Conforming_Ranges (S1, S2);
6607
6608 elsif Nkind (S1) = N_Subtype_Indication then
6609 return
6610 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
6611 and then
6612 Conforming_Ranges
6613 (Range_Expression (Constraint (S1)),
6614 Range_Expression (Constraint (S2)));
6615 else
6616 return True;
6617 end if;
6618 end Fully_Conformant_Discrete_Subtypes;
6619
996ae0b0
RK
6620 --------------------
6621 -- Install_Entity --
6622 --------------------
6623
6624 procedure Install_Entity (E : Entity_Id) is
6625 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
6626 begin
6627 Set_Is_Immediately_Visible (E);
6628 Set_Current_Entity (E);
6629 Set_Homonym (E, Prev);
6630 end Install_Entity;
6631
6632 ---------------------
6633 -- Install_Formals --
6634 ---------------------
6635
6636 procedure Install_Formals (Id : Entity_Id) is
6637 F : Entity_Id;
996ae0b0
RK
6638 begin
6639 F := First_Formal (Id);
996ae0b0
RK
6640 while Present (F) loop
6641 Install_Entity (F);
6642 Next_Formal (F);
6643 end loop;
6644 end Install_Formals;
6645
ce2b6ba5
JM
6646 -----------------------------
6647 -- Is_Interface_Conformant --
6648 -----------------------------
6649
6650 function Is_Interface_Conformant
6651 (Tagged_Type : Entity_Id;
6652 Iface_Prim : Entity_Id;
6653 Prim : Entity_Id) return Boolean
6654 is
fceeaab6
ES
6655 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
6656 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
6657
ce2b6ba5
JM
6658 begin
6659 pragma Assert (Is_Subprogram (Iface_Prim)
6660 and then Is_Subprogram (Prim)
6661 and then Is_Dispatching_Operation (Iface_Prim)
6662 and then Is_Dispatching_Operation (Prim));
6663
fceeaab6 6664 pragma Assert (Is_Interface (Iface)
ce2b6ba5
JM
6665 or else (Present (Alias (Iface_Prim))
6666 and then
6667 Is_Interface
6668 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6669
6670 if Prim = Iface_Prim
6671 or else not Is_Subprogram (Prim)
6672 or else Ekind (Prim) /= Ekind (Iface_Prim)
6673 or else not Is_Dispatching_Operation (Prim)
6674 or else Scope (Prim) /= Scope (Tagged_Type)
fceeaab6
ES
6675 or else No (Typ)
6676 or else Base_Type (Typ) /= Tagged_Type
ce2b6ba5
JM
6677 or else not Primitive_Names_Match (Iface_Prim, Prim)
6678 then
6679 return False;
6680
fceeaab6
ES
6681 -- Case of a procedure, or a function that does not have a controlling
6682 -- result (I or access I).
ce2b6ba5
JM
6683
6684 elsif Ekind (Iface_Prim) = E_Procedure
6685 or else Etype (Prim) = Etype (Iface_Prim)
fceeaab6 6686 or else not Has_Controlling_Result (Prim)
ce2b6ba5 6687 then
b4d7b435
AC
6688 return Type_Conformant
6689 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
ce2b6ba5 6690
fceeaab6
ES
6691 -- Case of a function returning an interface, or an access to one.
6692 -- Check that the return types correspond.
ce2b6ba5 6693
fceeaab6
ES
6694 elsif Implements_Interface (Typ, Iface) then
6695 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9a3c9940
RD
6696 /=
6697 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
fceeaab6
ES
6698 then
6699 return False;
fceeaab6
ES
6700 else
6701 return
ce2b6ba5
JM
6702 Type_Conformant (Prim, Iface_Prim,
6703 Skip_Controlling_Formals => True);
fceeaab6 6704 end if;
ce2b6ba5 6705
fceeaab6
ES
6706 else
6707 return False;
ce2b6ba5 6708 end if;
ce2b6ba5
JM
6709 end Is_Interface_Conformant;
6710
996ae0b0
RK
6711 ---------------------------------
6712 -- Is_Non_Overriding_Operation --
6713 ---------------------------------
6714
6715 function Is_Non_Overriding_Operation
6716 (Prev_E : Entity_Id;
d05ef0ab 6717 New_E : Entity_Id) return Boolean
996ae0b0
RK
6718 is
6719 Formal : Entity_Id;
6720 F_Typ : Entity_Id;
6721 G_Typ : Entity_Id := Empty;
6722
6723 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
6724 -- If F_Type is a derived type associated with a generic actual subtype,
6725 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
6726
6727 function Types_Correspond
6728 (P_Type : Entity_Id;
d05ef0ab 6729 N_Type : Entity_Id) return Boolean;
82c80734
RD
6730 -- Returns true if and only if the types (or designated types in the
6731 -- case of anonymous access types) are the same or N_Type is derived
6732 -- directly or indirectly from P_Type.
996ae0b0
RK
6733
6734 -----------------------------
6735 -- Get_Generic_Parent_Type --
6736 -----------------------------
6737
6738 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6739 G_Typ : Entity_Id;
6740 Indic : Node_Id;
6741
6742 begin
6743 if Is_Derived_Type (F_Typ)
6744 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6745 then
82c80734
RD
6746 -- The tree must be traversed to determine the parent subtype in
6747 -- the generic unit, which unfortunately isn't always available
6748 -- via semantic attributes. ??? (Note: The use of Original_Node
6749 -- is needed for cases where a full derived type has been
6750 -- rewritten.)
996ae0b0
RK
6751
6752 Indic := Subtype_Indication
6753 (Type_Definition (Original_Node (Parent (F_Typ))));
6754
6755 if Nkind (Indic) = N_Subtype_Indication then
6756 G_Typ := Entity (Subtype_Mark (Indic));
6757 else
6758 G_Typ := Entity (Indic);
6759 end if;
6760
6761 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6762 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6763 then
6764 return Generic_Parent_Type (Parent (G_Typ));
6765 end if;
6766 end if;
6767
6768 return Empty;
6769 end Get_Generic_Parent_Type;
6770
6771 ----------------------
6772 -- Types_Correspond --
6773 ----------------------
6774
6775 function Types_Correspond
6776 (P_Type : Entity_Id;
d05ef0ab 6777 N_Type : Entity_Id) return Boolean
996ae0b0
RK
6778 is
6779 Prev_Type : Entity_Id := Base_Type (P_Type);
6780 New_Type : Entity_Id := Base_Type (N_Type);
6781
6782 begin
6783 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6784 Prev_Type := Designated_Type (Prev_Type);
6785 end if;
6786
6787 if Ekind (New_Type) = E_Anonymous_Access_Type then
6788 New_Type := Designated_Type (New_Type);
6789 end if;
6790
6791 if Prev_Type = New_Type then
6792 return True;
6793
6794 elsif not Is_Class_Wide_Type (New_Type) then
6795 while Etype (New_Type) /= New_Type loop
6796 New_Type := Etype (New_Type);
6797 if New_Type = Prev_Type then
6798 return True;
6799 end if;
6800 end loop;
6801 end if;
6802 return False;
6803 end Types_Correspond;
6804
6805 -- Start of processing for Is_Non_Overriding_Operation
6806
6807 begin
82c80734
RD
6808 -- In the case where both operations are implicit derived subprograms
6809 -- then neither overrides the other. This can only occur in certain
6810 -- obscure cases (e.g., derivation from homographs created in a generic
6811 -- instantiation).
996ae0b0
RK
6812
6813 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6814 return True;
6815
6816 elsif Ekind (Current_Scope) = E_Package
6817 and then Is_Generic_Instance (Current_Scope)
6818 and then In_Private_Part (Current_Scope)
6819 and then Comes_From_Source (New_E)
6820 then
6821 -- We examine the formals and result subtype of the inherited
82c80734
RD
6822 -- operation, to determine whether their type is derived from (the
6823 -- instance of) a generic type.
996ae0b0
RK
6824
6825 Formal := First_Formal (Prev_E);
996ae0b0
RK
6826 while Present (Formal) loop
6827 F_Typ := Base_Type (Etype (Formal));
6828
6829 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6830 F_Typ := Designated_Type (F_Typ);
6831 end if;
6832
6833 G_Typ := Get_Generic_Parent_Type (F_Typ);
6834
6835 Next_Formal (Formal);
6836 end loop;
6837
c8ef728f 6838 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
6839 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6840 end if;
6841
6842 if No (G_Typ) then
6843 return False;
6844 end if;
6845
8dbd1460
AC
6846 -- If the generic type is a private type, then the original operation
6847 -- was not overriding in the generic, because there was no primitive
6848 -- operation to override.
996ae0b0
RK
6849
6850 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6851 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8dbd1460 6852 N_Formal_Private_Type_Definition
996ae0b0
RK
6853 then
6854 return True;
6855
6856 -- The generic parent type is the ancestor of a formal derived
6857 -- type declaration. We need to check whether it has a primitive
6858 -- operation that should be overridden by New_E in the generic.
6859
6860 else
6861 declare
6862 P_Formal : Entity_Id;
6863 N_Formal : Entity_Id;
6864 P_Typ : Entity_Id;
6865 N_Typ : Entity_Id;
6866 P_Prim : Entity_Id;
6867 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6868
6869 begin
6870 while Present (Prim_Elt) loop
6871 P_Prim := Node (Prim_Elt);
fbf5a39b 6872
996ae0b0
RK
6873 if Chars (P_Prim) = Chars (New_E)
6874 and then Ekind (P_Prim) = Ekind (New_E)
6875 then
6876 P_Formal := First_Formal (P_Prim);
6877 N_Formal := First_Formal (New_E);
6878 while Present (P_Formal) and then Present (N_Formal) loop
6879 P_Typ := Etype (P_Formal);
6880 N_Typ := Etype (N_Formal);
6881
6882 if not Types_Correspond (P_Typ, N_Typ) then
6883 exit;
6884 end if;
6885
6886 Next_Entity (P_Formal);
6887 Next_Entity (N_Formal);
6888 end loop;
6889
82c80734
RD
6890 -- Found a matching primitive operation belonging to the
6891 -- formal ancestor type, so the new subprogram is
6892 -- overriding.
996ae0b0 6893
c8ef728f
ES
6894 if No (P_Formal)
6895 and then No (N_Formal)
996ae0b0
RK
6896 and then (Ekind (New_E) /= E_Function
6897 or else
6898 Types_Correspond
6899 (Etype (P_Prim), Etype (New_E)))
6900 then
6901 return False;
6902 end if;
6903 end if;
6904
6905 Next_Elmt (Prim_Elt);
6906 end loop;
6907
82c80734
RD
6908 -- If no match found, then the new subprogram does not
6909 -- override in the generic (nor in the instance).
996ae0b0
RK
6910
6911 return True;
6912 end;
6913 end if;
6914 else
6915 return False;
6916 end if;
6917 end Is_Non_Overriding_Operation;
6918
6919 ------------------------------
6920 -- Make_Inequality_Operator --
6921 ------------------------------
6922
6923 -- S is the defining identifier of an equality operator. We build a
6924 -- subprogram declaration with the right signature. This operation is
6925 -- intrinsic, because it is always expanded as the negation of the
6926 -- call to the equality function.
6927
6928 procedure Make_Inequality_Operator (S : Entity_Id) is
6929 Loc : constant Source_Ptr := Sloc (S);
6930 Decl : Node_Id;
6931 Formals : List_Id;
6932 Op_Name : Entity_Id;
6933
c8ef728f
ES
6934 FF : constant Entity_Id := First_Formal (S);
6935 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
6936
6937 begin
c8ef728f 6938 -- Check that equality was properly defined, ignore call if not
996ae0b0 6939
c8ef728f 6940 if No (NF) then
996ae0b0
RK
6941 return;
6942 end if;
6943
c8ef728f
ES
6944 declare
6945 A : constant Entity_Id :=
6946 Make_Defining_Identifier (Sloc (FF),
6947 Chars => Chars (FF));
6948
5d37ba92
ES
6949 B : constant Entity_Id :=
6950 Make_Defining_Identifier (Sloc (NF),
6951 Chars => Chars (NF));
c8ef728f
ES
6952
6953 begin
6954 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
6955
6956 Formals := New_List (
6957 Make_Parameter_Specification (Loc,
6958 Defining_Identifier => A,
6959 Parameter_Type =>
6960 New_Reference_To (Etype (First_Formal (S)),
6961 Sloc (Etype (First_Formal (S))))),
6962
6963 Make_Parameter_Specification (Loc,
6964 Defining_Identifier => B,
6965 Parameter_Type =>
6966 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
6967 Sloc (Etype (Next_Formal (First_Formal (S)))))));
6968
6969 Decl :=
6970 Make_Subprogram_Declaration (Loc,
6971 Specification =>
6972 Make_Function_Specification (Loc,
6973 Defining_Unit_Name => Op_Name,
6974 Parameter_Specifications => Formals,
6975 Result_Definition =>
6976 New_Reference_To (Standard_Boolean, Loc)));
6977
6978 -- Insert inequality right after equality if it is explicit or after
6979 -- the derived type when implicit. These entities are created only
6980 -- for visibility purposes, and eventually replaced in the course of
6981 -- expansion, so they do not need to be attached to the tree and seen
6982 -- by the back-end. Keeping them internal also avoids spurious
6983 -- freezing problems. The declaration is inserted in the tree for
6984 -- analysis, and removed afterwards. If the equality operator comes
6985 -- from an explicit declaration, attach the inequality immediately
6986 -- after. Else the equality is inherited from a derived type
6987 -- declaration, so insert inequality after that declaration.
6988
6989 if No (Alias (S)) then
6990 Insert_After (Unit_Declaration_Node (S), Decl);
6991 elsif Is_List_Member (Parent (S)) then
6992 Insert_After (Parent (S), Decl);
6993 else
6994 Insert_After (Parent (Etype (First_Formal (S))), Decl);
6995 end if;
996ae0b0 6996
c8ef728f
ES
6997 Mark_Rewrite_Insertion (Decl);
6998 Set_Is_Intrinsic_Subprogram (Op_Name);
6999 Analyze (Decl);
7000 Remove (Decl);
7001 Set_Has_Completion (Op_Name);
7002 Set_Corresponding_Equality (Op_Name, S);
f937473f 7003 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 7004 end;
996ae0b0
RK
7005 end Make_Inequality_Operator;
7006
7007 ----------------------
7008 -- May_Need_Actuals --
7009 ----------------------
7010
7011 procedure May_Need_Actuals (Fun : Entity_Id) is
7012 F : Entity_Id;
7013 B : Boolean;
7014
7015 begin
7016 F := First_Formal (Fun);
7017 B := True;
996ae0b0
RK
7018 while Present (F) loop
7019 if No (Default_Value (F)) then
7020 B := False;
7021 exit;
7022 end if;
7023
7024 Next_Formal (F);
7025 end loop;
7026
7027 Set_Needs_No_Actuals (Fun, B);
7028 end May_Need_Actuals;
7029
7030 ---------------------
7031 -- Mode_Conformant --
7032 ---------------------
7033
7034 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7035 Result : Boolean;
996ae0b0
RK
7036 begin
7037 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
7038 return Result;
7039 end Mode_Conformant;
7040
7041 ---------------------------
7042 -- New_Overloaded_Entity --
7043 ---------------------------
7044
7045 procedure New_Overloaded_Entity
7046 (S : Entity_Id;
7047 Derived_Type : Entity_Id := Empty)
7048 is
ec4867fa 7049 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
7050 -- Set if the current scope has an operation that is type-conformant
7051 -- with S, and becomes hidden by S.
7052
5d37ba92
ES
7053 Is_Primitive_Subp : Boolean;
7054 -- Set to True if the new subprogram is primitive
7055
fbf5a39b
AC
7056 E : Entity_Id;
7057 -- Entity that S overrides
7058
996ae0b0 7059 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
7060 -- Predecessor of E in Homonym chain
7061
5d37ba92
ES
7062 procedure Check_For_Primitive_Subprogram
7063 (Is_Primitive : out Boolean;
7064 Is_Overriding : Boolean := False);
7065 -- If the subprogram being analyzed is a primitive operation of the type
7066 -- of a formal or result, set the Has_Primitive_Operations flag on the
7067 -- type, and set Is_Primitive to True (otherwise set to False). Set the
7068 -- corresponding flag on the entity itself for later use.
7069
ec4867fa
ES
7070 procedure Check_Synchronized_Overriding
7071 (Def_Id : Entity_Id;
ec4867fa
ES
7072 Overridden_Subp : out Entity_Id);
7073 -- First determine if Def_Id is an entry or a subprogram either defined
7074 -- in the scope of a task or protected type, or is a primitive of such
7075 -- a type. Check whether Def_Id overrides a subprogram of an interface
7076 -- implemented by the synchronized type, return the overridden entity
7077 -- or Empty.
758c442c 7078
996ae0b0
RK
7079 function Is_Private_Declaration (E : Entity_Id) return Boolean;
7080 -- Check that E is declared in the private part of the current package,
7081 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 7082 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
7083 -- set when freezing entities, so we must examine the place of the
7084 -- declaration in the tree, and recognize wrapper packages as well.
7085
2ddc2000
AC
7086 function Is_Overriding_Alias
7087 (Old_E : Entity_Id;
7088 New_E : Entity_Id) return Boolean;
7089 -- Check whether new subprogram and old subprogram are both inherited
7090 -- from subprograms that have distinct dispatch table entries. This can
7091 -- occur with derivations from instances with accidental homonyms.
7092 -- The function is conservative given that the converse is only true
7093 -- within instances that contain accidental overloadings.
7094
5d37ba92
ES
7095 ------------------------------------
7096 -- Check_For_Primitive_Subprogram --
7097 ------------------------------------
996ae0b0 7098
5d37ba92
ES
7099 procedure Check_For_Primitive_Subprogram
7100 (Is_Primitive : out Boolean;
7101 Is_Overriding : Boolean := False)
ec4867fa 7102 is
996ae0b0
RK
7103 Formal : Entity_Id;
7104 F_Typ : Entity_Id;
07fc65c4 7105 B_Typ : Entity_Id;
996ae0b0
RK
7106
7107 function Visible_Part_Type (T : Entity_Id) return Boolean;
8dbd1460
AC
7108 -- Returns true if T is declared in the visible part of the current
7109 -- package scope; otherwise returns false. Assumes that T is declared
7110 -- in a package.
996ae0b0
RK
7111
7112 procedure Check_Private_Overriding (T : Entity_Id);
7113 -- Checks that if a primitive abstract subprogram of a visible
8dbd1460
AC
7114 -- abstract type is declared in a private part, then it must override
7115 -- an abstract subprogram declared in the visible part. Also checks
7116 -- that if a primitive function with a controlling result is declared
7117 -- in a private part, then it must override a function declared in
7118 -- the visible part.
996ae0b0
RK
7119
7120 ------------------------------
7121 -- Check_Private_Overriding --
7122 ------------------------------
7123
7124 procedure Check_Private_Overriding (T : Entity_Id) is
7125 begin
51c16e29 7126 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
7127 and then In_Private_Part (Current_Scope)
7128 and then Visible_Part_Type (T)
7129 and then not In_Instance
7130 then
f937473f
RD
7131 if Is_Abstract_Type (T)
7132 and then Is_Abstract_Subprogram (S)
7133 and then (not Is_Overriding
8dbd1460 7134 or else not Is_Abstract_Subprogram (E))
996ae0b0 7135 then
ed2233dc 7136 Error_Msg_N
19d846a0
RD
7137 ("abstract subprograms must be visible "
7138 & "(RM 3.9.3(10))!", S);
758c442c 7139
996ae0b0 7140 elsif Ekind (S) = E_Function
82c80734 7141 and then not Is_Overriding
996ae0b0 7142 then
2e79de51
AC
7143 if Is_Tagged_Type (T)
7144 and then T = Base_Type (Etype (S))
7145 then
7146 Error_Msg_N
7147 ("private function with tagged result must"
7148 & " override visible-part function", S);
7149 Error_Msg_N
7150 ("\move subprogram to the visible part"
7151 & " (RM 3.9.3(10))", S);
7152
7153 -- AI05-0073: extend this test to the case of a function
7154 -- with a controlling access result.
7155
7156 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
7157 and then Is_Tagged_Type (Designated_Type (Etype (S)))
7158 and then
7159 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
dbe945f1 7160 and then Ada_Version >= Ada_2012
2e79de51
AC
7161 then
7162 Error_Msg_N
7163 ("private function with controlling access result "
7164 & "must override visible-part function", S);
7165 Error_Msg_N
7166 ("\move subprogram to the visible part"
7167 & " (RM 3.9.3(10))", S);
7168 end if;
996ae0b0
RK
7169 end if;
7170 end if;
7171 end Check_Private_Overriding;
7172
7173 -----------------------
7174 -- Visible_Part_Type --
7175 -----------------------
7176
7177 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
7178 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
7179 N : Node_Id;
996ae0b0
RK
7180
7181 begin
8dbd1460
AC
7182 -- If the entity is a private type, then it must be declared in a
7183 -- visible part.
996ae0b0
RK
7184
7185 if Ekind (T) in Private_Kind then
7186 return True;
7187 end if;
7188
7189 -- Otherwise, we traverse the visible part looking for its
7190 -- corresponding declaration. We cannot use the declaration
7191 -- node directly because in the private part the entity of a
7192 -- private type is the one in the full view, which does not
7193 -- indicate that it is the completion of something visible.
7194
07fc65c4 7195 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
7196 while Present (N) loop
7197 if Nkind (N) = N_Full_Type_Declaration
7198 and then Present (Defining_Identifier (N))
7199 and then T = Defining_Identifier (N)
7200 then
7201 return True;
7202
800621e0
RD
7203 elsif Nkind_In (N, N_Private_Type_Declaration,
7204 N_Private_Extension_Declaration)
996ae0b0
RK
7205 and then Present (Defining_Identifier (N))
7206 and then T = Full_View (Defining_Identifier (N))
7207 then
7208 return True;
7209 end if;
7210
7211 Next (N);
7212 end loop;
7213
7214 return False;
7215 end Visible_Part_Type;
7216
5d37ba92 7217 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
7218
7219 begin
5d37ba92
ES
7220 Is_Primitive := False;
7221
996ae0b0
RK
7222 if not Comes_From_Source (S) then
7223 null;
7224
5d37ba92 7225 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
7226
7227 elsif Current_Scope = Standard_Standard then
7228 null;
7229
b9b2405f 7230 elsif (Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0 7231 and then not In_Package_Body (Current_Scope))
82c80734 7232 or else Is_Overriding
996ae0b0 7233 then
07fc65c4 7234 -- For function, check return type
996ae0b0 7235
07fc65c4 7236 if Ekind (S) = E_Function then
5d37ba92
ES
7237 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
7238 F_Typ := Designated_Type (Etype (S));
7239 else
7240 F_Typ := Etype (S);
7241 end if;
7242
7243 B_Typ := Base_Type (F_Typ);
07fc65c4 7244
5d37ba92
ES
7245 if Scope (B_Typ) = Current_Scope
7246 and then not Is_Class_Wide_Type (B_Typ)
7247 and then not Is_Generic_Type (B_Typ)
7248 then
7249 Is_Primitive := True;
07fc65c4 7250 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 7251 Set_Is_Primitive (S);
07fc65c4
GB
7252 Check_Private_Overriding (B_Typ);
7253 end if;
996ae0b0
RK
7254 end if;
7255
07fc65c4 7256 -- For all subprograms, check formals
996ae0b0 7257
07fc65c4 7258 Formal := First_Formal (S);
996ae0b0
RK
7259 while Present (Formal) loop
7260 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
7261 F_Typ := Designated_Type (Etype (Formal));
7262 else
7263 F_Typ := Etype (Formal);
7264 end if;
7265
07fc65c4
GB
7266 B_Typ := Base_Type (F_Typ);
7267
ec4867fa
ES
7268 if Ekind (B_Typ) = E_Access_Subtype then
7269 B_Typ := Base_Type (B_Typ);
7270 end if;
7271
5d37ba92
ES
7272 if Scope (B_Typ) = Current_Scope
7273 and then not Is_Class_Wide_Type (B_Typ)
7274 and then not Is_Generic_Type (B_Typ)
7275 then
7276 Is_Primitive := True;
7277 Set_Is_Primitive (S);
07fc65c4
GB
7278 Set_Has_Primitive_Operations (B_Typ);
7279 Check_Private_Overriding (B_Typ);
996ae0b0
RK
7280 end if;
7281
7282 Next_Formal (Formal);
7283 end loop;
996ae0b0 7284 end if;
5d37ba92
ES
7285 end Check_For_Primitive_Subprogram;
7286
7287 -----------------------------------
7288 -- Check_Synchronized_Overriding --
7289 -----------------------------------
7290
7291 procedure Check_Synchronized_Overriding
7292 (Def_Id : Entity_Id;
5d37ba92
ES
7293 Overridden_Subp : out Entity_Id)
7294 is
5d37ba92
ES
7295 Ifaces_List : Elist_Id;
7296 In_Scope : Boolean;
7297 Typ : Entity_Id;
7298
8aa15e3b
JM
7299 function Matches_Prefixed_View_Profile
7300 (Prim_Params : List_Id;
7301 Iface_Params : List_Id) return Boolean;
7302 -- Determine whether a subprogram's parameter profile Prim_Params
7303 -- matches that of a potentially overridden interface subprogram
7304 -- Iface_Params. Also determine if the type of first parameter of
7305 -- Iface_Params is an implemented interface.
7306
8aa15e3b
JM
7307 -----------------------------------
7308 -- Matches_Prefixed_View_Profile --
7309 -----------------------------------
7310
7311 function Matches_Prefixed_View_Profile
7312 (Prim_Params : List_Id;
7313 Iface_Params : List_Id) return Boolean
7314 is
7315 Iface_Id : Entity_Id;
7316 Iface_Param : Node_Id;
7317 Iface_Typ : Entity_Id;
7318 Prim_Id : Entity_Id;
7319 Prim_Param : Node_Id;
7320 Prim_Typ : Entity_Id;
7321
7322 function Is_Implemented
7323 (Ifaces_List : Elist_Id;
7324 Iface : Entity_Id) return Boolean;
7325 -- Determine if Iface is implemented by the current task or
7326 -- protected type.
7327
7328 --------------------
7329 -- Is_Implemented --
7330 --------------------
7331
7332 function Is_Implemented
7333 (Ifaces_List : Elist_Id;
7334 Iface : Entity_Id) return Boolean
7335 is
7336 Iface_Elmt : Elmt_Id;
7337
7338 begin
7339 Iface_Elmt := First_Elmt (Ifaces_List);
7340 while Present (Iface_Elmt) loop
7341 if Node (Iface_Elmt) = Iface then
7342 return True;
7343 end if;
7344
7345 Next_Elmt (Iface_Elmt);
7346 end loop;
7347
7348 return False;
7349 end Is_Implemented;
7350
7351 -- Start of processing for Matches_Prefixed_View_Profile
7352
7353 begin
7354 Iface_Param := First (Iface_Params);
7355 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7356
7357 if Is_Access_Type (Iface_Typ) then
7358 Iface_Typ := Designated_Type (Iface_Typ);
7359 end if;
7360
7361 Prim_Param := First (Prim_Params);
7362
7363 -- The first parameter of the potentially overridden subprogram
7364 -- must be an interface implemented by Prim.
7365
7366 if not Is_Interface (Iface_Typ)
7367 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7368 then
7369 return False;
7370 end if;
7371
7372 -- The checks on the object parameters are done, move onto the
7373 -- rest of the parameters.
7374
7375 if not In_Scope then
7376 Prim_Param := Next (Prim_Param);
7377 end if;
7378
7379 Iface_Param := Next (Iface_Param);
7380 while Present (Iface_Param) and then Present (Prim_Param) loop
7381 Iface_Id := Defining_Identifier (Iface_Param);
7382 Iface_Typ := Find_Parameter_Type (Iface_Param);
7383
8aa15e3b
JM
7384 Prim_Id := Defining_Identifier (Prim_Param);
7385 Prim_Typ := Find_Parameter_Type (Prim_Param);
7386
15e4986c
JM
7387 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7388 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7389 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7390 then
7391 Iface_Typ := Designated_Type (Iface_Typ);
7392 Prim_Typ := Designated_Type (Prim_Typ);
8aa15e3b
JM
7393 end if;
7394
7395 -- Case of multiple interface types inside a parameter profile
7396
7397 -- (Obj_Param : in out Iface; ...; Param : Iface)
7398
7399 -- If the interface type is implemented, then the matching type
7400 -- in the primitive should be the implementing record type.
7401
7402 if Ekind (Iface_Typ) = E_Record_Type
7403 and then Is_Interface (Iface_Typ)
7404 and then Is_Implemented (Ifaces_List, Iface_Typ)
7405 then
7406 if Prim_Typ /= Typ then
7407 return False;
7408 end if;
7409
7410 -- The two parameters must be both mode and subtype conformant
7411
7412 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7413 or else not
7414 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7415 then
7416 return False;
7417 end if;
7418
7419 Next (Iface_Param);
7420 Next (Prim_Param);
7421 end loop;
7422
7423 -- One of the two lists contains more parameters than the other
7424
7425 if Present (Iface_Param) or else Present (Prim_Param) then
7426 return False;
7427 end if;
7428
7429 return True;
7430 end Matches_Prefixed_View_Profile;
7431
7432 -- Start of processing for Check_Synchronized_Overriding
7433
5d37ba92
ES
7434 begin
7435 Overridden_Subp := Empty;
7436
8aa15e3b
JM
7437 -- Def_Id must be an entry or a subprogram. We should skip predefined
7438 -- primitives internally generated by the frontend; however at this
7439 -- stage predefined primitives are still not fully decorated. As a
7440 -- minor optimization we skip here internally generated subprograms.
5d37ba92 7441
8aa15e3b
JM
7442 if (Ekind (Def_Id) /= E_Entry
7443 and then Ekind (Def_Id) /= E_Function
7444 and then Ekind (Def_Id) /= E_Procedure)
7445 or else not Comes_From_Source (Def_Id)
5d37ba92
ES
7446 then
7447 return;
7448 end if;
7449
7450 -- Search for the concurrent declaration since it contains the list
7451 -- of all implemented interfaces. In this case, the subprogram is
7452 -- declared within the scope of a protected or a task type.
7453
7454 if Present (Scope (Def_Id))
7455 and then Is_Concurrent_Type (Scope (Def_Id))
7456 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7457 then
7458 Typ := Scope (Def_Id);
7459 In_Scope := True;
7460
8aa15e3b
JM
7461 -- The enclosing scope is not a synchronized type and the subprogram
7462 -- has no formals
7463
7464 elsif No (First_Formal (Def_Id)) then
7465 return;
5d37ba92 7466
8aa15e3b
JM
7467 -- The subprogram has formals and hence it may be a primitive of a
7468 -- concurrent type
5d37ba92 7469
8aa15e3b
JM
7470 else
7471 Typ := Etype (First_Formal (Def_Id));
7472
7473 if Is_Access_Type (Typ) then
7474 Typ := Directly_Designated_Type (Typ);
8c3dd7a8
JM
7475 end if;
7476
8aa15e3b
JM
7477 if Is_Concurrent_Type (Typ)
7478 and then not Is_Generic_Actual_Type (Typ)
5d37ba92 7479 then
5d37ba92
ES
7480 In_Scope := False;
7481
7482 -- This case occurs when the concurrent type is declared within
7483 -- a generic unit. As a result the corresponding record has been
7484 -- built and used as the type of the first formal, we just have
7485 -- to retrieve the corresponding concurrent type.
7486
8aa15e3b
JM
7487 elsif Is_Concurrent_Record_Type (Typ)
7488 and then Present (Corresponding_Concurrent_Type (Typ))
5d37ba92 7489 then
8aa15e3b 7490 Typ := Corresponding_Concurrent_Type (Typ);
5d37ba92
ES
7491 In_Scope := False;
7492
7493 else
7494 return;
7495 end if;
8aa15e3b
JM
7496 end if;
7497
7498 -- There is no overriding to check if is an inherited operation in a
7499 -- type derivation on for a generic actual.
7500
7501 Collect_Interfaces (Typ, Ifaces_List);
7502
7503 if Is_Empty_Elmt_List (Ifaces_List) then
5d37ba92
ES
7504 return;
7505 end if;
7506
8aa15e3b
JM
7507 -- Determine whether entry or subprogram Def_Id overrides a primitive
7508 -- operation that belongs to one of the interfaces in Ifaces_List.
5d37ba92 7509
8aa15e3b
JM
7510 declare
7511 Candidate : Entity_Id := Empty;
7512 Hom : Entity_Id := Empty;
7513 Iface_Typ : Entity_Id;
7514 Subp : Entity_Id := Empty;
7515
7516 begin
7517 -- Traverse the homonym chain, looking at a potentially
7518 -- overridden subprogram that belongs to an implemented
7519 -- interface.
7520
7521 Hom := Current_Entity_In_Scope (Def_Id);
7522 while Present (Hom) loop
7523 Subp := Hom;
7524
15e4986c
JM
7525 if Subp = Def_Id
7526 or else not Is_Overloadable (Subp)
7527 or else not Is_Primitive (Subp)
7528 or else not Is_Dispatching_Operation (Subp)
79afa047 7529 or else not Present (Find_Dispatching_Type (Subp))
15e4986c 7530 or else not Is_Interface (Find_Dispatching_Type (Subp))
8aa15e3b 7531 then
15e4986c 7532 null;
8aa15e3b 7533
15e4986c
JM
7534 -- Entries and procedures can override abstract or null
7535 -- interface procedures
8aa15e3b 7536
15e4986c
JM
7537 elsif (Ekind (Def_Id) = E_Procedure
7538 or else Ekind (Def_Id) = E_Entry)
8aa15e3b 7539 and then Ekind (Subp) = E_Procedure
8aa15e3b
JM
7540 and then Matches_Prefixed_View_Profile
7541 (Parameter_Specifications (Parent (Def_Id)),
7542 Parameter_Specifications (Parent (Subp)))
7543 then
7544 Candidate := Subp;
7545
15e4986c
JM
7546 -- For an overridden subprogram Subp, check whether the mode
7547 -- of its first parameter is correct depending on the kind
7548 -- of synchronized type.
8aa15e3b 7549
15e4986c
JM
7550 declare
7551 Formal : constant Node_Id := First_Formal (Candidate);
7552
7553 begin
7554 -- In order for an entry or a protected procedure to
7555 -- override, the first parameter of the overridden
7556 -- routine must be of mode "out", "in out" or
7557 -- access-to-variable.
7558
7559 if (Ekind (Candidate) = E_Entry
7560 or else Ekind (Candidate) = E_Procedure)
7561 and then Is_Protected_Type (Typ)
7562 and then Ekind (Formal) /= E_In_Out_Parameter
7563 and then Ekind (Formal) /= E_Out_Parameter
7564 and then Nkind (Parameter_Type (Parent (Formal)))
7565 /= N_Access_Definition
7566 then
7567 null;
7568
7569 -- All other cases are OK since a task entry or routine
7570 -- does not have a restriction on the mode of the first
7571 -- parameter of the overridden interface routine.
7572
7573 else
7574 Overridden_Subp := Candidate;
7575 return;
7576 end if;
7577 end;
8aa15e3b
JM
7578
7579 -- Functions can override abstract interface functions
7580
7581 elsif Ekind (Def_Id) = E_Function
7582 and then Ekind (Subp) = E_Function
8aa15e3b
JM
7583 and then Matches_Prefixed_View_Profile
7584 (Parameter_Specifications (Parent (Def_Id)),
7585 Parameter_Specifications (Parent (Subp)))
7586 and then Etype (Result_Definition (Parent (Def_Id))) =
7587 Etype (Result_Definition (Parent (Subp)))
7588 then
7589 Overridden_Subp := Subp;
7590 return;
7591 end if;
7592
7593 Hom := Homonym (Hom);
7594 end loop;
7595
7596 -- After examining all candidates for overriding, we are
7597 -- left with the best match which is a mode incompatible
7598 -- interface routine. Do not emit an error if the Expander
7599 -- is active since this error will be detected later on
7600 -- after all concurrent types are expanded and all wrappers
7601 -- are built. This check is meant for spec-only
7602 -- compilations.
7603
7604 if Present (Candidate)
7605 and then not Expander_Active
7606 then
7607 Iface_Typ :=
7608 Find_Parameter_Type (Parent (First_Formal (Candidate)));
7609
7610 -- Def_Id is primitive of a protected type, declared
7611 -- inside the type, and the candidate is primitive of a
7612 -- limited or synchronized interface.
7613
7614 if In_Scope
7615 and then Is_Protected_Type (Typ)
7616 and then
7617 (Is_Limited_Interface (Iface_Typ)
7618 or else Is_Protected_Interface (Iface_Typ)
7619 or else Is_Synchronized_Interface (Iface_Typ)
7620 or else Is_Task_Interface (Iface_Typ))
7621 then
7622 -- Must reword this message, comma before to in -gnatj
7623 -- mode ???
7624
7625 Error_Msg_NE
7626 ("first formal of & must be of mode `OUT`, `IN OUT`"
7627 & " or access-to-variable", Typ, Candidate);
7628 Error_Msg_N
7629 ("\to be overridden by protected procedure or entry "
7630 & "(RM 9.4(11.9/2))", Typ);
7631 end if;
5d37ba92 7632 end if;
8aa15e3b
JM
7633
7634 Overridden_Subp := Candidate;
7635 return;
7636 end;
5d37ba92
ES
7637 end Check_Synchronized_Overriding;
7638
7639 ----------------------------
7640 -- Is_Private_Declaration --
7641 ----------------------------
7642
7643 function Is_Private_Declaration (E : Entity_Id) return Boolean is
7644 Priv_Decls : List_Id;
7645 Decl : constant Node_Id := Unit_Declaration_Node (E);
7646
7647 begin
7648 if Is_Package_Or_Generic_Package (Current_Scope)
7649 and then In_Private_Part (Current_Scope)
7650 then
7651 Priv_Decls :=
7652 Private_Declarations (
7653 Specification (Unit_Declaration_Node (Current_Scope)));
7654
7655 return In_Package_Body (Current_Scope)
7656 or else
7657 (Is_List_Member (Decl)
7658 and then List_Containing (Decl) = Priv_Decls)
7659 or else (Nkind (Parent (Decl)) = N_Package_Specification
8dbd1460
AC
7660 and then not
7661 Is_Compilation_Unit
7662 (Defining_Entity (Parent (Decl)))
5d37ba92 7663 and then List_Containing (Parent (Parent (Decl)))
8dbd1460 7664 = Priv_Decls);
5d37ba92
ES
7665 else
7666 return False;
7667 end if;
7668 end Is_Private_Declaration;
996ae0b0 7669
2ddc2000
AC
7670 --------------------------
7671 -- Is_Overriding_Alias --
7672 --------------------------
7673
7674 function Is_Overriding_Alias
7675 (Old_E : Entity_Id;
7676 New_E : Entity_Id) return Boolean
7677 is
7678 AO : constant Entity_Id := Alias (Old_E);
7679 AN : constant Entity_Id := Alias (New_E);
7680
7681 begin
7682 return Scope (AO) /= Scope (AN)
7683 or else No (DTC_Entity (AO))
7684 or else No (DTC_Entity (AN))
7685 or else DT_Position (AO) = DT_Position (AN);
7686 end Is_Overriding_Alias;
7687
996ae0b0
RK
7688 -- Start of processing for New_Overloaded_Entity
7689
7690 begin
fbf5a39b
AC
7691 -- We need to look for an entity that S may override. This must be a
7692 -- homonym in the current scope, so we look for the first homonym of
7693 -- S in the current scope as the starting point for the search.
7694
7695 E := Current_Entity_In_Scope (S);
7696
947430d5
AC
7697 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
7698 -- They are directly added to the list of primitive operations of
7699 -- Derived_Type, unless this is a rederivation in the private part
7700 -- of an operation that was already derived in the visible part of
7701 -- the current package.
7702
0791fbe9 7703 if Ada_Version >= Ada_2005
947430d5
AC
7704 and then Present (Derived_Type)
7705 and then Present (Alias (S))
7706 and then Is_Dispatching_Operation (Alias (S))
7707 and then Present (Find_Dispatching_Type (Alias (S)))
7708 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7709 then
7710 -- For private types, when the full-view is processed we propagate to
7711 -- the full view the non-overridden entities whose attribute "alias"
7712 -- references an interface primitive. These entities were added by
7713 -- Derive_Subprograms to ensure that interface primitives are
7714 -- covered.
7715
7716 -- Inside_Freeze_Actions is non zero when S corresponds with an
7717 -- internal entity that links an interface primitive with its
7718 -- covering primitive through attribute Interface_Alias (see
7719 -- Add_Internal_Interface_Entities)
7720
7721 if Inside_Freezing_Actions = 0
7722 and then Is_Package_Or_Generic_Package (Current_Scope)
7723 and then In_Private_Part (Current_Scope)
7724 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
7725 and then Nkind (Parent (S)) = N_Full_Type_Declaration
7726 and then Full_View (Defining_Identifier (Parent (E)))
7727 = Defining_Identifier (Parent (S))
7728 and then Alias (E) = Alias (S)
7729 then
7730 Check_Operation_From_Private_View (S, E);
7731 Set_Is_Dispatching_Operation (S);
7732
7733 -- Common case
7734
7735 else
7736 Enter_Overloaded_Entity (S);
7737 Check_Dispatching_Operation (S, Empty);
7738 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7739 end if;
7740
7741 return;
7742 end if;
7743
fbf5a39b
AC
7744 -- If there is no homonym then this is definitely not overriding
7745
996ae0b0
RK
7746 if No (E) then
7747 Enter_Overloaded_Entity (S);
7748 Check_Dispatching_Operation (S, Empty);
5d37ba92 7749 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 7750
ec4867fa
ES
7751 -- If subprogram has an explicit declaration, check whether it
7752 -- has an overriding indicator.
758c442c 7753
ec4867fa 7754 if Comes_From_Source (S) then
8aa15e3b 7755 Check_Synchronized_Overriding (S, Overridden_Subp);
5d37ba92
ES
7756 Check_Overriding_Indicator
7757 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
758c442c
GD
7758 end if;
7759
fbf5a39b
AC
7760 -- If there is a homonym that is not overloadable, then we have an
7761 -- error, except for the special cases checked explicitly below.
7762
996ae0b0
RK
7763 elsif not Is_Overloadable (E) then
7764
7765 -- Check for spurious conflict produced by a subprogram that has the
7766 -- same name as that of the enclosing generic package. The conflict
7767 -- occurs within an instance, between the subprogram and the renaming
7768 -- declaration for the package. After the subprogram, the package
7769 -- renaming declaration becomes hidden.
7770
7771 if Ekind (E) = E_Package
7772 and then Present (Renamed_Object (E))
7773 and then Renamed_Object (E) = Current_Scope
7774 and then Nkind (Parent (Renamed_Object (E))) =
7775 N_Package_Specification
7776 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7777 then
7778 Set_Is_Hidden (E);
7779 Set_Is_Immediately_Visible (E, False);
7780 Enter_Overloaded_Entity (S);
7781 Set_Homonym (S, Homonym (E));
7782 Check_Dispatching_Operation (S, Empty);
5d37ba92 7783 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
7784
7785 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
7786 -- declaration. However if it is dispatching, it must appear in the
7787 -- dispatch table anyway, because it can be dispatched to even if it
7788 -- cannot be called directly.
996ae0b0
RK
7789
7790 elsif Present (Alias (S))
7791 and then not Comes_From_Source (S)
7792 then
7793 Set_Scope (S, Current_Scope);
7794
7795 if Is_Dispatching_Operation (Alias (S)) then
7796 Check_Dispatching_Operation (S, Empty);
7797 end if;
7798
7799 return;
7800
7801 else
7802 Error_Msg_Sloc := Sloc (E);
996ae0b0 7803
f3d57416 7804 -- Generate message, with useful additional warning if in generic
996ae0b0
RK
7805
7806 if Is_Generic_Unit (E) then
5d37ba92
ES
7807 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7808 Error_Msg_N ("\& conflicts with declaration#", S);
7809 else
7810 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
7811 end if;
7812
7813 return;
7814 end if;
7815
fbf5a39b
AC
7816 -- E exists and is overloadable
7817
996ae0b0 7818 else
8aa15e3b 7819 Check_Synchronized_Overriding (S, Overridden_Subp);
758c442c 7820
82c80734
RD
7821 -- Loop through E and its homonyms to determine if any of them is
7822 -- the candidate for overriding by S.
996ae0b0
RK
7823
7824 while Present (E) loop
fbf5a39b
AC
7825
7826 -- Definitely not interesting if not in the current scope
7827
996ae0b0
RK
7828 if Scope (E) /= Current_Scope then
7829 null;
7830
fbf5a39b
AC
7831 -- Check if we have type conformance
7832
ec4867fa 7833 elsif Type_Conformant (E, S) then
c8ef728f 7834
82c80734
RD
7835 -- If the old and new entities have the same profile and one
7836 -- is not the body of the other, then this is an error, unless
7837 -- one of them is implicitly declared.
996ae0b0
RK
7838
7839 -- There are some cases when both can be implicit, for example
7840 -- when both a literal and a function that overrides it are
f3d57416 7841 -- inherited in a derivation, or when an inherited operation
ec4867fa 7842 -- of a tagged full type overrides the inherited operation of
f3d57416 7843 -- a private extension. Ada 83 had a special rule for the
82c80734
RD
7844 -- literal case. In Ada95, the later implicit operation hides
7845 -- the former, and the literal is always the former. In the
7846 -- odd case where both are derived operations declared at the
7847 -- same point, both operations should be declared, and in that
7848 -- case we bypass the following test and proceed to the next
df46b832
AC
7849 -- part. This can only occur for certain obscure cases in
7850 -- instances, when an operation on a type derived from a formal
7851 -- private type does not override a homograph inherited from
7852 -- the actual. In subsequent derivations of such a type, the
7853 -- DT positions of these operations remain distinct, if they
7854 -- have been set.
996ae0b0
RK
7855
7856 if Present (Alias (S))
7857 and then (No (Alias (E))
7858 or else Comes_From_Source (E)
2ddc2000 7859 or else Is_Abstract_Subprogram (S)
df46b832
AC
7860 or else
7861 (Is_Dispatching_Operation (E)
2ddc2000 7862 and then Is_Overriding_Alias (E, S)))
df46b832 7863 and then Ekind (E) /= E_Enumeration_Literal
996ae0b0 7864 then
82c80734
RD
7865 -- When an derived operation is overloaded it may be due to
7866 -- the fact that the full view of a private extension
996ae0b0
RK
7867 -- re-inherits. It has to be dealt with.
7868
e660dbf7 7869 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
7870 and then In_Private_Part (Current_Scope)
7871 then
7872 Check_Operation_From_Private_View (S, E);
7873 end if;
7874
7875 -- In any case the implicit operation remains hidden by
5950a3ac 7876 -- the existing declaration, which is overriding.
996ae0b0 7877
5950a3ac 7878 Set_Is_Overriding_Operation (E);
758c442c
GD
7879
7880 if Comes_From_Source (E) then
5d37ba92 7881 Check_Overriding_Indicator (E, S, Is_Primitive => False);
41251c60
JM
7882
7883 -- Indicate that E overrides the operation from which
7884 -- S is inherited.
7885
0a36105d 7886 if Present (Alias (S)) then
41251c60
JM
7887 Set_Overridden_Operation (E, Alias (S));
7888 else
7889 Set_Overridden_Operation (E, S);
7890 end if;
758c442c
GD
7891 end if;
7892
996ae0b0
RK
7893 return;
7894
26a43556
AC
7895 -- Within an instance, the renaming declarations for actual
7896 -- subprograms may become ambiguous, but they do not hide each
7897 -- other.
996ae0b0
RK
7898
7899 elsif Ekind (E) /= E_Entry
7900 and then not Comes_From_Source (E)
7901 and then not Is_Generic_Instance (E)
7902 and then (Present (Alias (E))
7903 or else Is_Intrinsic_Subprogram (E))
7904 and then (not In_Instance
7905 or else No (Parent (E))
7906 or else Nkind (Unit_Declaration_Node (E)) /=
8dbd1460 7907 N_Subprogram_Renaming_Declaration)
996ae0b0 7908 then
26a43556
AC
7909 -- A subprogram child unit is not allowed to override an
7910 -- inherited subprogram (10.1.1(20)).
996ae0b0
RK
7911
7912 if Is_Child_Unit (S) then
7913 Error_Msg_N
7914 ("child unit overrides inherited subprogram in parent",
7915 S);
7916 return;
7917 end if;
7918
7919 if Is_Non_Overriding_Operation (E, S) then
7920 Enter_Overloaded_Entity (S);
8dbd1460 7921
c8ef728f 7922 if No (Derived_Type)
996ae0b0
RK
7923 or else Is_Tagged_Type (Derived_Type)
7924 then
7925 Check_Dispatching_Operation (S, Empty);
7926 end if;
7927
7928 return;
7929 end if;
7930
7931 -- E is a derived operation or an internal operator which
7932 -- is being overridden. Remove E from further visibility.
7933 -- Furthermore, if E is a dispatching operation, it must be
7934 -- replaced in the list of primitive operations of its type
7935 -- (see Override_Dispatching_Operation).
7936
ec4867fa 7937 Overridden_Subp := E;
758c442c 7938
996ae0b0
RK
7939 declare
7940 Prev : Entity_Id;
7941
7942 begin
7943 Prev := First_Entity (Current_Scope);
996ae0b0
RK
7944 while Present (Prev)
7945 and then Next_Entity (Prev) /= E
7946 loop
7947 Next_Entity (Prev);
7948 end loop;
7949
7950 -- It is possible for E to be in the current scope and
7951 -- yet not in the entity chain. This can only occur in a
7952 -- generic context where E is an implicit concatenation
7953 -- in the formal part, because in a generic body the
7954 -- entity chain starts with the formals.
7955
7956 pragma Assert
7957 (Present (Prev) or else Chars (E) = Name_Op_Concat);
7958
7959 -- E must be removed both from the entity_list of the
7960 -- current scope, and from the visibility chain
7961
7962 if Debug_Flag_E then
7963 Write_Str ("Override implicit operation ");
7964 Write_Int (Int (E));
7965 Write_Eol;
7966 end if;
7967
7968 -- If E is a predefined concatenation, it stands for four
7969 -- different operations. As a result, a single explicit
7970 -- declaration does not hide it. In a possible ambiguous
7971 -- situation, Disambiguate chooses the user-defined op,
7972 -- so it is correct to retain the previous internal one.
7973
7974 if Chars (E) /= Name_Op_Concat
7975 or else Ekind (E) /= E_Operator
7976 then
7977 -- For nondispatching derived operations that are
7978 -- overridden by a subprogram declared in the private
8dbd1460
AC
7979 -- part of a package, we retain the derived subprogram
7980 -- but mark it as not immediately visible. If the
7981 -- derived operation was declared in the visible part
7982 -- then this ensures that it will still be visible
7983 -- outside the package with the proper signature
7984 -- (calls from outside must also be directed to this
7985 -- version rather than the overriding one, unlike the
7986 -- dispatching case). Calls from inside the package
7987 -- will still resolve to the overriding subprogram
7988 -- since the derived one is marked as not visible
7989 -- within the package.
996ae0b0
RK
7990
7991 -- If the private operation is dispatching, we achieve
7992 -- the overriding by keeping the implicit operation
9865d858 7993 -- but setting its alias to be the overriding one. In
996ae0b0
RK
7994 -- this fashion the proper body is executed in all
7995 -- cases, but the original signature is used outside
7996 -- of the package.
7997
7998 -- If the overriding is not in the private part, we
7999 -- remove the implicit operation altogether.
8000
8001 if Is_Private_Declaration (S) then
996ae0b0
RK
8002 if not Is_Dispatching_Operation (E) then
8003 Set_Is_Immediately_Visible (E, False);
8004 else
e895b435
ES
8005 -- Work done in Override_Dispatching_Operation,
8006 -- so nothing else need to be done here.
996ae0b0
RK
8007
8008 null;
8009 end if;
996ae0b0 8010
fbf5a39b
AC
8011 else
8012 -- Find predecessor of E in Homonym chain
996ae0b0
RK
8013
8014 if E = Current_Entity (E) then
8015 Prev_Vis := Empty;
8016 else
8017 Prev_Vis := Current_Entity (E);
8018 while Homonym (Prev_Vis) /= E loop
8019 Prev_Vis := Homonym (Prev_Vis);
8020 end loop;
8021 end if;
8022
8023 if Prev_Vis /= Empty then
8024
8025 -- Skip E in the visibility chain
8026
8027 Set_Homonym (Prev_Vis, Homonym (E));
8028
8029 else
8030 Set_Name_Entity_Id (Chars (E), Homonym (E));
8031 end if;
8032
8033 Set_Next_Entity (Prev, Next_Entity (E));
8034
8035 if No (Next_Entity (Prev)) then
8036 Set_Last_Entity (Current_Scope, Prev);
8037 end if;
8038
8039 end if;
8040 end if;
8041
8042 Enter_Overloaded_Entity (S);
fbf5a39b 8043 Set_Is_Overriding_Operation (S);
5d37ba92 8044 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 8045
fc53fe76
AC
8046 -- If S is a user-defined subprogram or a null procedure
8047 -- expanded to override an inherited null procedure, then
8048 -- indicate that E overrides the operation from which S
8049 -- is inherited. It seems odd that Overridden_Operation
8050 -- isn't set in all cases where Is_Overriding_Operation
8051 -- is true, but doing so causes infinite loops in the
8052 -- compiler for implicit overriding subprograms. ???
8053
8054 if Comes_From_Source (S)
8055 or else
8056 (Present (Parent (S))
8057 and then
8058 Nkind (Parent (S)) = N_Procedure_Specification
8059 and then
8060 Null_Present (Parent (S)))
8061 then
c8ef728f 8062 if Present (Alias (E)) then
41251c60
JM
8063 Set_Overridden_Operation (S, Alias (E));
8064 else
8065 Set_Overridden_Operation (S, E);
8066 end if;
8067 end if;
8068
996ae0b0 8069 if Is_Dispatching_Operation (E) then
fbf5a39b 8070
82c80734
RD
8071 -- An overriding dispatching subprogram inherits the
8072 -- convention of the overridden subprogram (by
8073 -- AI-117).
996ae0b0
RK
8074
8075 Set_Convention (S, Convention (E));
41251c60
JM
8076 Check_Dispatching_Operation (S, E);
8077
996ae0b0
RK
8078 else
8079 Check_Dispatching_Operation (S, Empty);
8080 end if;
8081
5d37ba92
ES
8082 Check_For_Primitive_Subprogram
8083 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
8084 goto Check_Inequality;
8085 end;
8086
8087 -- Apparent redeclarations in instances can occur when two
8088 -- formal types get the same actual type. The subprograms in
8089 -- in the instance are legal, even if not callable from the
8090 -- outside. Calls from within are disambiguated elsewhere.
8091 -- For dispatching operations in the visible part, the usual
8092 -- rules apply, and operations with the same profile are not
8093 -- legal (B830001).
8094
8095 elsif (In_Instance_Visible_Part
8096 and then not Is_Dispatching_Operation (E))
8097 or else In_Instance_Not_Visible
8098 then
8099 null;
8100
8101 -- Here we have a real error (identical profile)
8102
8103 else
8104 Error_Msg_Sloc := Sloc (E);
8105
8106 -- Avoid cascaded errors if the entity appears in
8107 -- subsequent calls.
8108
8109 Set_Scope (S, Current_Scope);
8110
5d37ba92
ES
8111 -- Generate error, with extra useful warning for the case
8112 -- of a generic instance with no completion.
996ae0b0
RK
8113
8114 if Is_Generic_Instance (S)
8115 and then not Has_Completion (E)
8116 then
8117 Error_Msg_N
5d37ba92
ES
8118 ("instantiation cannot provide body for&", S);
8119 Error_Msg_N ("\& conflicts with declaration#", S);
8120 else
8121 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
8122 end if;
8123
8124 return;
8125 end if;
8126
8127 else
c8ef728f
ES
8128 -- If one subprogram has an access parameter and the other
8129 -- a parameter of an access type, calls to either might be
8130 -- ambiguous. Verify that parameters match except for the
8131 -- access parameter.
8132
8133 if May_Hide_Profile then
8134 declare
ec4867fa
ES
8135 F1 : Entity_Id;
8136 F2 : Entity_Id;
8dbd1460 8137
c8ef728f
ES
8138 begin
8139 F1 := First_Formal (S);
8140 F2 := First_Formal (E);
8141 while Present (F1) and then Present (F2) loop
8142 if Is_Access_Type (Etype (F1)) then
8143 if not Is_Access_Type (Etype (F2))
8144 or else not Conforming_Types
8145 (Designated_Type (Etype (F1)),
8146 Designated_Type (Etype (F2)),
8147 Type_Conformant)
8148 then
8149 May_Hide_Profile := False;
8150 end if;
8151
8152 elsif
8153 not Conforming_Types
8154 (Etype (F1), Etype (F2), Type_Conformant)
8155 then
8156 May_Hide_Profile := False;
8157 end if;
8158
8159 Next_Formal (F1);
8160 Next_Formal (F2);
8161 end loop;
8162
8163 if May_Hide_Profile
8164 and then No (F1)
8165 and then No (F2)
8166 then
8167 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
8168 end if;
8169 end;
8170 end if;
996ae0b0
RK
8171 end if;
8172
996ae0b0
RK
8173 E := Homonym (E);
8174 end loop;
8175
8176 -- On exit, we know that S is a new entity
8177
8178 Enter_Overloaded_Entity (S);
5d37ba92
ES
8179 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8180 Check_Overriding_Indicator
8181 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 8182
82c80734
RD
8183 -- If S is a derived operation for an untagged type then by
8184 -- definition it's not a dispatching operation (even if the parent
8185 -- operation was dispatching), so we don't call
8186 -- Check_Dispatching_Operation in that case.
996ae0b0 8187
c8ef728f 8188 if No (Derived_Type)
996ae0b0
RK
8189 or else Is_Tagged_Type (Derived_Type)
8190 then
8191 Check_Dispatching_Operation (S, Empty);
8192 end if;
8193 end if;
8194
82c80734
RD
8195 -- If this is a user-defined equality operator that is not a derived
8196 -- subprogram, create the corresponding inequality. If the operation is
8197 -- dispatching, the expansion is done elsewhere, and we do not create
8198 -- an explicit inequality operation.
996ae0b0
RK
8199
8200 <<Check_Inequality>>
8201 if Chars (S) = Name_Op_Eq
8202 and then Etype (S) = Standard_Boolean
8203 and then Present (Parent (S))
8204 and then not Is_Dispatching_Operation (S)
8205 then
8206 Make_Inequality_Operator (S);
d151d6a3 8207
dbe945f1 8208 if Ada_Version >= Ada_2012 then
e5a58fac
AC
8209 Check_Untagged_Equality (S);
8210 end if;
996ae0b0 8211 end if;
996ae0b0
RK
8212 end New_Overloaded_Entity;
8213
8214 ---------------------
8215 -- Process_Formals --
8216 ---------------------
8217
8218 procedure Process_Formals
07fc65c4 8219 (T : List_Id;
996ae0b0
RK
8220 Related_Nod : Node_Id)
8221 is
8222 Param_Spec : Node_Id;
8223 Formal : Entity_Id;
8224 Formal_Type : Entity_Id;
8225 Default : Node_Id;
8226 Ptype : Entity_Id;
8227
800621e0
RD
8228 Num_Out_Params : Nat := 0;
8229 First_Out_Param : Entity_Id := Empty;
21d27997 8230 -- Used for setting Is_Only_Out_Parameter
800621e0 8231
950d217a
AC
8232 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
8233 -- Determine whether an access type designates a type coming from a
8234 -- limited view.
8235
07fc65c4 8236 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
8237 -- Check whether the default has a class-wide type. After analysis the
8238 -- default has the type of the formal, so we must also check explicitly
8239 -- for an access attribute.
07fc65c4 8240
950d217a
AC
8241 -------------------------------
8242 -- Designates_From_With_Type --
8243 -------------------------------
8244
8245 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
8246 Desig : Entity_Id := Typ;
8247
8248 begin
8249 if Is_Access_Type (Desig) then
8250 Desig := Directly_Designated_Type (Desig);
8251 end if;
8252
8253 if Is_Class_Wide_Type (Desig) then
8254 Desig := Root_Type (Desig);
8255 end if;
8256
8257 return
8258 Ekind (Desig) = E_Incomplete_Type
8259 and then From_With_Type (Desig);
8260 end Designates_From_With_Type;
8261
07fc65c4
GB
8262 ---------------------------
8263 -- Is_Class_Wide_Default --
8264 ---------------------------
8265
8266 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
8267 begin
8268 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
8269 or else (Nkind (D) = N_Attribute_Reference
8270 and then Attribute_Name (D) = Name_Access
8271 and then Is_Class_Wide_Type (Etype (Prefix (D))));
8272 end Is_Class_Wide_Default;
8273
8274 -- Start of processing for Process_Formals
8275
996ae0b0
RK
8276 begin
8277 -- In order to prevent premature use of the formals in the same formal
8278 -- part, the Ekind is left undefined until all default expressions are
8279 -- analyzed. The Ekind is established in a separate loop at the end.
8280
8281 Param_Spec := First (T);
996ae0b0 8282 while Present (Param_Spec) loop
996ae0b0 8283 Formal := Defining_Identifier (Param_Spec);
5d37ba92 8284 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
8285 Enter_Name (Formal);
8286
8287 -- Case of ordinary parameters
8288
8289 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
8290 Find_Type (Parameter_Type (Param_Spec));
8291 Ptype := Parameter_Type (Param_Spec);
8292
8293 if Ptype = Error then
8294 goto Continue;
8295 end if;
8296
8297 Formal_Type := Entity (Ptype);
8298
ec4867fa
ES
8299 if Is_Incomplete_Type (Formal_Type)
8300 or else
8301 (Is_Class_Wide_Type (Formal_Type)
8302 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 8303 then
93bcda23
AC
8304 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
8305 -- primitive operations, as long as their completion is
8306 -- in the same declarative part. If in the private part
8307 -- this means that the type cannot be a Taft-amendment type.
cec29135
ES
8308 -- Check is done on package exit. For access to subprograms,
8309 -- the use is legal for Taft-amendment types.
fbf5a39b 8310
d8db0bca 8311 if Is_Tagged_Type (Formal_Type) then
93bcda23
AC
8312 if Ekind (Scope (Current_Scope)) = E_Package
8313 and then In_Private_Part (Scope (Current_Scope))
8314 and then not From_With_Type (Formal_Type)
8315 and then not Is_Class_Wide_Type (Formal_Type)
8316 then
cec29135
ES
8317 if not Nkind_In
8318 (Parent (T), N_Access_Function_Definition,
8319 N_Access_Procedure_Definition)
8320 then
8321 Append_Elmt
8322 (Current_Scope,
8323 Private_Dependents (Base_Type (Formal_Type)));
8324 end if;
93bcda23 8325 end if;
fbf5a39b 8326
0a36105d
JM
8327 -- Special handling of Value_Type for CIL case
8328
8329 elsif Is_Value_Type (Formal_Type) then
8330 null;
8331
800621e0
RD
8332 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
8333 N_Access_Procedure_Definition)
996ae0b0 8334 then
0a36105d 8335
dd386db0
AC
8336 -- AI05-0151: Tagged incomplete types are allowed in all
8337 -- formal parts. Untagged incomplete types are not allowed
8338 -- in bodies.
8339
8340 if Ada_Version >= Ada_2012 then
8341 if Is_Tagged_Type (Formal_Type) then
8342 null;
8343
0f1a6a0b
AC
8344 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
8345 N_Entry_Body,
8346 N_Subprogram_Body)
dd386db0
AC
8347 then
8348 Error_Msg_NE
8349 ("invalid use of untagged incomplete type&",
0f1a6a0b 8350 Ptype, Formal_Type);
dd386db0
AC
8351 end if;
8352
8353 else
8354 Error_Msg_NE
8355 ("invalid use of incomplete type&",
0f1a6a0b 8356 Param_Spec, Formal_Type);
dd386db0
AC
8357
8358 -- Further checks on the legality of incomplete types
8359 -- in formal parts are delayed until the freeze point
8360 -- of the enclosing subprogram or access to subprogram.
8361 end if;
996ae0b0
RK
8362 end if;
8363
8364 elsif Ekind (Formal_Type) = E_Void then
0f1a6a0b
AC
8365 Error_Msg_NE
8366 ("premature use of&",
8367 Parameter_Type (Param_Spec), Formal_Type);
996ae0b0
RK
8368 end if;
8369
0ab80019 8370 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 8371 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
8372 -- formal in the enclosing scope. Finally, replace the parameter
8373 -- type of the formal with the internal subtype.
7324bf49 8374
0791fbe9 8375 if Ada_Version >= Ada_2005
41251c60 8376 and then Null_Exclusion_Present (Param_Spec)
7324bf49 8377 then
ec4867fa 8378 if not Is_Access_Type (Formal_Type) then
ed2233dc 8379 Error_Msg_N
0a36105d
JM
8380 ("`NOT NULL` allowed only for an access type", Param_Spec);
8381
ec4867fa
ES
8382 else
8383 if Can_Never_Be_Null (Formal_Type)
8384 and then Comes_From_Source (Related_Nod)
8385 then
ed2233dc 8386 Error_Msg_NE
0a36105d 8387 ("`NOT NULL` not allowed (& already excludes null)",
0f1a6a0b 8388 Param_Spec, Formal_Type);
ec4867fa 8389 end if;
41251c60 8390
ec4867fa
ES
8391 Formal_Type :=
8392 Create_Null_Excluding_Itype
8393 (T => Formal_Type,
8394 Related_Nod => Related_Nod,
8395 Scope_Id => Scope (Current_Scope));
0a36105d
JM
8396
8397 -- If the designated type of the itype is an itype we
8398 -- decorate it with the Has_Delayed_Freeze attribute to
8399 -- avoid problems with the backend.
8400
8401 -- Example:
8402 -- type T is access procedure;
8403 -- procedure Op (O : not null T);
8404
8405 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
8406 Set_Has_Delayed_Freeze (Formal_Type);
8407 end if;
ec4867fa 8408 end if;
7324bf49
AC
8409 end if;
8410
996ae0b0
RK
8411 -- An access formal type
8412
8413 else
8414 Formal_Type :=
8415 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 8416
f937473f
RD
8417 -- No need to continue if we already notified errors
8418
8419 if not Present (Formal_Type) then
8420 return;
8421 end if;
8422
0ab80019 8423 -- Ada 2005 (AI-254)
7324bf49 8424
af4b9434
AC
8425 declare
8426 AD : constant Node_Id :=
8427 Access_To_Subprogram_Definition
8428 (Parameter_Type (Param_Spec));
8429 begin
8430 if Present (AD) and then Protected_Present (AD) then
8431 Formal_Type :=
8432 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 8433 (Param_Spec);
af4b9434
AC
8434 end if;
8435 end;
996ae0b0
RK
8436 end if;
8437
8438 Set_Etype (Formal, Formal_Type);
fbf5a39b 8439 Default := Expression (Param_Spec);
996ae0b0
RK
8440
8441 if Present (Default) then
8442 if Out_Present (Param_Spec) then
ed2233dc 8443 Error_Msg_N
996ae0b0
RK
8444 ("default initialization only allowed for IN parameters",
8445 Param_Spec);
8446 end if;
8447
8448 -- Do the special preanalysis of the expression (see section on
8449 -- "Handling of Default Expressions" in the spec of package Sem).
8450
21d27997 8451 Preanalyze_Spec_Expression (Default, Formal_Type);
996ae0b0 8452
f29b857f
ES
8453 -- An access to constant cannot be the default for
8454 -- an access parameter that is an access to variable.
2eb160f2
ST
8455
8456 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8457 and then not Is_Access_Constant (Formal_Type)
8458 and then Is_Access_Type (Etype (Default))
8459 and then Is_Access_Constant (Etype (Default))
8460 then
f29b857f
ES
8461 Error_Msg_N
8462 ("formal that is access to variable cannot be initialized " &
8463 "with an access-to-constant expression", Default);
2eb160f2
ST
8464 end if;
8465
d8db0bca
JM
8466 -- Check that the designated type of an access parameter's default
8467 -- is not a class-wide type unless the parameter's designated type
8468 -- is also class-wide.
996ae0b0
RK
8469
8470 if Ekind (Formal_Type) = E_Anonymous_Access_Type
950d217a 8471 and then not Designates_From_With_Type (Formal_Type)
07fc65c4 8472 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
8473 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
8474 then
07fc65c4
GB
8475 Error_Msg_N
8476 ("access to class-wide expression not allowed here", Default);
996ae0b0 8477 end if;
4755cce9
JM
8478
8479 -- Check incorrect use of dynamically tagged expressions
8480
8481 if Is_Tagged_Type (Formal_Type) then
8482 Check_Dynamically_Tagged_Expression
8483 (Expr => Default,
8484 Typ => Formal_Type,
8485 Related_Nod => Default);
8486 end if;
996ae0b0
RK
8487 end if;
8488
41251c60
JM
8489 -- Ada 2005 (AI-231): Static checks
8490
0791fbe9 8491 if Ada_Version >= Ada_2005
41251c60
JM
8492 and then Is_Access_Type (Etype (Formal))
8493 and then Can_Never_Be_Null (Etype (Formal))
8494 then
8495 Null_Exclusion_Static_Checks (Param_Spec);
8496 end if;
8497
996ae0b0
RK
8498 <<Continue>>
8499 Next (Param_Spec);
8500 end loop;
8501
82c80734
RD
8502 -- If this is the formal part of a function specification, analyze the
8503 -- subtype mark in the context where the formals are visible but not
8504 -- yet usable, and may hide outer homographs.
8505
8506 if Nkind (Related_Nod) = N_Function_Specification then
8507 Analyze_Return_Type (Related_Nod);
8508 end if;
8509
996ae0b0
RK
8510 -- Now set the kind (mode) of each formal
8511
8512 Param_Spec := First (T);
8513
8514 while Present (Param_Spec) loop
8515 Formal := Defining_Identifier (Param_Spec);
8516 Set_Formal_Mode (Formal);
8517
8518 if Ekind (Formal) = E_In_Parameter then
8519 Set_Default_Value (Formal, Expression (Param_Spec));
8520
8521 if Present (Expression (Param_Spec)) then
8522 Default := Expression (Param_Spec);
8523
8524 if Is_Scalar_Type (Etype (Default)) then
8525 if Nkind
8526 (Parameter_Type (Param_Spec)) /= N_Access_Definition
8527 then
8528 Formal_Type := Entity (Parameter_Type (Param_Spec));
8529
8530 else
8531 Formal_Type := Access_Definition
8532 (Related_Nod, Parameter_Type (Param_Spec));
8533 end if;
8534
8535 Apply_Scalar_Range_Check (Default, Formal_Type);
8536 end if;
2820d220 8537 end if;
800621e0
RD
8538
8539 elsif Ekind (Formal) = E_Out_Parameter then
8540 Num_Out_Params := Num_Out_Params + 1;
8541
8542 if Num_Out_Params = 1 then
8543 First_Out_Param := Formal;
8544 end if;
8545
8546 elsif Ekind (Formal) = E_In_Out_Parameter then
8547 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
8548 end if;
8549
8550 Next (Param_Spec);
8551 end loop;
800621e0
RD
8552
8553 if Present (First_Out_Param) and then Num_Out_Params = 1 then
8554 Set_Is_Only_Out_Parameter (First_Out_Param);
8555 end if;
996ae0b0
RK
8556 end Process_Formals;
8557
21d27997
RD
8558 ------------------
8559 -- Process_PPCs --
8560 ------------------
8561
8562 procedure Process_PPCs
8563 (N : Node_Id;
8564 Spec_Id : Entity_Id;
8565 Body_Id : Entity_Id)
8566 is
8567 Loc : constant Source_Ptr := Sloc (N);
8568 Prag : Node_Id;
8569 Plist : List_Id := No_List;
8570 Subp : Entity_Id;
8571 Parms : List_Id;
8572
8573 function Grab_PPC (Nam : Name_Id) return Node_Id;
8574 -- Prag contains an analyzed precondition or postcondition pragma.
8575 -- This function copies the pragma, changes it to the corresponding
8576 -- Check pragma and returns the Check pragma as the result. The
8577 -- argument Nam is either Name_Precondition or Name_Postcondition.
8578
8579 --------------
8580 -- Grab_PPC --
8581 --------------
8582
8583 function Grab_PPC (Nam : Name_Id) return Node_Id is
8584 CP : constant Node_Id := New_Copy_Tree (Prag);
8585
8586 begin
8587 -- Set Analyzed to false, since we want to reanalyze the check
8588 -- procedure. Note that it is only at the outer level that we
8589 -- do this fiddling, for the spec cases, the already preanalyzed
8590 -- parameters are not affected.
766d7add 8591
0dabde3a
ES
8592 -- For a postcondition pragma within a generic, preserve the pragma
8593 -- for later expansion.
21d27997
RD
8594
8595 Set_Analyzed (CP, False);
8596
0dabde3a
ES
8597 if Nam = Name_Postcondition
8598 and then not Expander_Active
8599 then
8600 return CP;
8601 end if;
8602
21d27997
RD
8603 -- Change pragma into corresponding pragma Check
8604
8605 Prepend_To (Pragma_Argument_Associations (CP),
8606 Make_Pragma_Argument_Association (Sloc (Prag),
8607 Expression =>
8608 Make_Identifier (Loc,
8609 Chars => Nam)));
8610 Set_Pragma_Identifier (CP,
8611 Make_Identifier (Sloc (Prag),
8612 Chars => Name_Check));
8613
8614 return CP;
8615 end Grab_PPC;
8616
8617 -- Start of processing for Process_PPCs
8618
8619 begin
b4311214
RD
8620 -- Nothing to do if we are not generating code
8621
8622 if Operating_Mode /= Generate_Code then
8623 return;
8624 end if;
8625
21d27997
RD
8626 -- Grab preconditions from spec
8627
8628 if Present (Spec_Id) then
8629
8630 -- Loop through PPC pragmas from spec. Note that preconditions from
8631 -- the body will be analyzed and converted when we scan the body
8632 -- declarations below.
8633
8634 Prag := Spec_PPC_List (Spec_Id);
8635 while Present (Prag) loop
8636 if Pragma_Name (Prag) = Name_Precondition
65564d08 8637 and then Pragma_Enabled (Prag)
21d27997
RD
8638 then
8639 -- Add pragma Check at the start of the declarations of N.
8640 -- Note that this processing reverses the order of the list,
8641 -- which is what we want since new entries were chained to
8642 -- the head of the list.
8643
8644 Prepend (Grab_PPC (Name_Precondition), Declarations (N));
8645 end if;
8646
8647 Prag := Next_Pragma (Prag);
8648 end loop;
8649 end if;
8650
8651 -- Build postconditions procedure if needed and prepend the following
8652 -- declaration to the start of the declarations for the subprogram.
8653
8654 -- procedure _postconditions [(_Result : resulttype)] is
8655 -- begin
8656 -- pragma Check (Postcondition, condition [,message]);
8657 -- pragma Check (Postcondition, condition [,message]);
8658 -- ...
8659 -- end;
8660
8661 -- First we deal with the postconditions in the body
8662
8663 if Is_Non_Empty_List (Declarations (N)) then
8664
8665 -- Loop through declarations
8666
8667 Prag := First (Declarations (N));
8668 while Present (Prag) loop
8669 if Nkind (Prag) = N_Pragma then
8670
8671 -- If pragma, capture if enabled postcondition, else ignore
8672
8673 if Pragma_Name (Prag) = Name_Postcondition
8674 and then Check_Enabled (Name_Postcondition)
8675 then
8676 if Plist = No_List then
8677 Plist := Empty_List;
8678 end if;
8679
8680 Analyze (Prag);
0dabde3a
ES
8681
8682 -- If expansion is disabled, as in a generic unit,
8683 -- save pragma for later expansion.
8684
8685 if not Expander_Active then
8686 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8687 else
8688 Append (Grab_PPC (Name_Postcondition), Plist);
8689 end if;
21d27997
RD
8690 end if;
8691
8692 Next (Prag);
8693
043ce308 8694 -- Not a pragma, if comes from source, then end scan
21d27997
RD
8695
8696 elsif Comes_From_Source (Prag) then
8697 exit;
8698
043ce308 8699 -- Skip stuff not coming from source
21d27997
RD
8700
8701 else
8702 Next (Prag);
8703 end if;
8704 end loop;
8705 end if;
8706
8707 -- Now deal with any postconditions from the spec
8708
8709 if Present (Spec_Id) then
8710
8711 -- Loop through PPC pragmas from spec
8712
8713 Prag := Spec_PPC_List (Spec_Id);
8714 while Present (Prag) loop
8715 if Pragma_Name (Prag) = Name_Postcondition
65564d08 8716 and then Pragma_Enabled (Prag)
21d27997
RD
8717 then
8718 if Plist = No_List then
8719 Plist := Empty_List;
8720 end if;
8721
0dabde3a
ES
8722 if not Expander_Active then
8723 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8724 else
8725 Append (Grab_PPC (Name_Postcondition), Plist);
8726 end if;
21d27997
RD
8727 end if;
8728
8729 Prag := Next_Pragma (Prag);
8730 end loop;
8731 end if;
8732
766d7add 8733 -- If we had any postconditions and expansion is enabled, build
043ce308 8734 -- the _Postconditions procedure.
21d27997 8735
0dabde3a
ES
8736 if Present (Plist)
8737 and then Expander_Active
8738 then
21d27997
RD
8739 Subp := Defining_Entity (N);
8740
8741 if Etype (Subp) /= Standard_Void_Type then
8742 Parms := New_List (
8743 Make_Parameter_Specification (Loc,
8744 Defining_Identifier =>
8745 Make_Defining_Identifier (Loc,
8746 Chars => Name_uResult),
8747 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
8748 else
8749 Parms := No_List;
8750 end if;
8751
043ce308
AC
8752 declare
8753 Post_Proc : constant Entity_Id :=
21d27997 8754 Make_Defining_Identifier (Loc,
043ce308
AC
8755 Chars => Name_uPostconditions);
8756 -- The entity for the _Postconditions procedure
043ce308 8757 begin
043ce308
AC
8758 Prepend_To (Declarations (N),
8759 Make_Subprogram_Body (Loc,
8760 Specification =>
8761 Make_Procedure_Specification (Loc,
8762 Defining_Unit_Name => Post_Proc,
8763 Parameter_Specifications => Parms),
8764
8765 Declarations => Empty_List,
8766
8767 Handled_Statement_Sequence =>
8768 Make_Handled_Sequence_Of_Statements (Loc,
8769 Statements => Plist)));
21d27997 8770
3bb3f6d6
AC
8771 -- If this is a procedure, set the Postcondition_Proc attribute on
8772 -- the proper defining entity for the subprogram.
21d27997 8773
043ce308 8774 if Etype (Subp) = Standard_Void_Type then
3bb3f6d6
AC
8775 if Present (Spec_Id) then
8776 Set_Postcondition_Proc (Spec_Id, Post_Proc);
8777 else
8778 Set_Postcondition_Proc (Body_Id, Post_Proc);
8779 end if;
043ce308
AC
8780 end if;
8781 end;
21d27997
RD
8782
8783 if Present (Spec_Id) then
8784 Set_Has_Postconditions (Spec_Id);
8785 else
8786 Set_Has_Postconditions (Body_Id);
8787 end if;
8788 end if;
8789 end Process_PPCs;
8790
fbf5a39b
AC
8791 ----------------------------
8792 -- Reference_Body_Formals --
8793 ----------------------------
8794
8795 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
8796 Fs : Entity_Id;
8797 Fb : Entity_Id;
8798
8799 begin
8800 if Error_Posted (Spec) then
8801 return;
8802 end if;
8803
0a36105d
JM
8804 -- Iterate over both lists. They may be of different lengths if the two
8805 -- specs are not conformant.
8806
fbf5a39b
AC
8807 Fs := First_Formal (Spec);
8808 Fb := First_Formal (Bod);
0a36105d 8809 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
8810 Generate_Reference (Fs, Fb, 'b');
8811
8812 if Style_Check then
8813 Style.Check_Identifier (Fb, Fs);
8814 end if;
8815
8816 Set_Spec_Entity (Fb, Fs);
8817 Set_Referenced (Fs, False);
8818 Next_Formal (Fs);
8819 Next_Formal (Fb);
8820 end loop;
8821 end Reference_Body_Formals;
8822
996ae0b0
RK
8823 -------------------------
8824 -- Set_Actual_Subtypes --
8825 -------------------------
8826
8827 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
2820d220
AC
8828 Loc : constant Source_Ptr := Sloc (N);
8829 Decl : Node_Id;
8830 Formal : Entity_Id;
8831 T : Entity_Id;
8832 First_Stmt : Node_Id := Empty;
8833 AS_Needed : Boolean;
996ae0b0
RK
8834
8835 begin
f3d57416 8836 -- If this is an empty initialization procedure, no need to create
fbf5a39b
AC
8837 -- actual subtypes (small optimization).
8838
8839 if Ekind (Subp) = E_Procedure
8840 and then Is_Null_Init_Proc (Subp)
8841 then
8842 return;
8843 end if;
8844
996ae0b0
RK
8845 Formal := First_Formal (Subp);
8846 while Present (Formal) loop
8847 T := Etype (Formal);
8848
e895b435 8849 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
8850
8851 if Is_Constrained (T) then
8852 AS_Needed := False;
8853
82c80734
RD
8854 -- If we have unknown discriminants, then we do not need an actual
8855 -- subtype, or more accurately we cannot figure it out! Note that
8856 -- all class-wide types have unknown discriminants.
996ae0b0
RK
8857
8858 elsif Has_Unknown_Discriminants (T) then
8859 AS_Needed := False;
8860
82c80734
RD
8861 -- At this stage we have an unconstrained type that may need an
8862 -- actual subtype. For sure the actual subtype is needed if we have
8863 -- an unconstrained array type.
996ae0b0
RK
8864
8865 elsif Is_Array_Type (T) then
8866 AS_Needed := True;
8867
d8db0bca
JM
8868 -- The only other case needing an actual subtype is an unconstrained
8869 -- record type which is an IN parameter (we cannot generate actual
8870 -- subtypes for the OUT or IN OUT case, since an assignment can
8871 -- change the discriminant values. However we exclude the case of
8872 -- initialization procedures, since discriminants are handled very
8873 -- specially in this context, see the section entitled "Handling of
8874 -- Discriminants" in Einfo.
8875
8876 -- We also exclude the case of Discrim_SO_Functions (functions used
8877 -- in front end layout mode for size/offset values), since in such
8878 -- functions only discriminants are referenced, and not only are such
8879 -- subtypes not needed, but they cannot always be generated, because
8880 -- of order of elaboration issues.
996ae0b0
RK
8881
8882 elsif Is_Record_Type (T)
8883 and then Ekind (Formal) = E_In_Parameter
8884 and then Chars (Formal) /= Name_uInit
5d09245e 8885 and then not Is_Unchecked_Union (T)
996ae0b0
RK
8886 and then not Is_Discrim_SO_Function (Subp)
8887 then
8888 AS_Needed := True;
8889
8890 -- All other cases do not need an actual subtype
8891
8892 else
8893 AS_Needed := False;
8894 end if;
8895
8896 -- Generate actual subtypes for unconstrained arrays and
8897 -- unconstrained discriminated records.
8898
8899 if AS_Needed then
7324bf49 8900 if Nkind (N) = N_Accept_Statement then
fbf5a39b
AC
8901
8902 -- If expansion is active, The formal is replaced by a local
8903 -- variable that renames the corresponding entry of the
8904 -- parameter block, and it is this local variable that may
8905 -- require an actual subtype.
8906
8907 if Expander_Active then
8908 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
8909 else
8910 Decl := Build_Actual_Subtype (T, Formal);
8911 end if;
8912
996ae0b0
RK
8913 if Present (Handled_Statement_Sequence (N)) then
8914 First_Stmt :=
8915 First (Statements (Handled_Statement_Sequence (N)));
8916 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
8917 Mark_Rewrite_Insertion (Decl);
8918 else
82c80734
RD
8919 -- If the accept statement has no body, there will be no
8920 -- reference to the actuals, so no need to compute actual
8921 -- subtypes.
996ae0b0
RK
8922
8923 return;
8924 end if;
8925
8926 else
fbf5a39b 8927 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
8928 Prepend (Decl, Declarations (N));
8929 Mark_Rewrite_Insertion (Decl);
8930 end if;
8931
82c80734
RD
8932 -- The declaration uses the bounds of an existing object, and
8933 -- therefore needs no constraint checks.
2820d220 8934
7324bf49 8935 Analyze (Decl, Suppress => All_Checks);
2820d220 8936
996ae0b0
RK
8937 -- We need to freeze manually the generated type when it is
8938 -- inserted anywhere else than in a declarative part.
8939
8940 if Present (First_Stmt) then
8941 Insert_List_Before_And_Analyze (First_Stmt,
8942 Freeze_Entity (Defining_Identifier (Decl), Loc));
8943 end if;
8944
fbf5a39b
AC
8945 if Nkind (N) = N_Accept_Statement
8946 and then Expander_Active
8947 then
8948 Set_Actual_Subtype (Renamed_Object (Formal),
8949 Defining_Identifier (Decl));
8950 else
8951 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
8952 end if;
996ae0b0
RK
8953 end if;
8954
8955 Next_Formal (Formal);
8956 end loop;
8957 end Set_Actual_Subtypes;
8958
8959 ---------------------
8960 -- Set_Formal_Mode --
8961 ---------------------
8962
8963 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
8964 Spec : constant Node_Id := Parent (Formal_Id);
8965
8966 begin
8967 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8968 -- since we ensure that corresponding actuals are always valid at the
8969 -- point of the call.
8970
8971 if Out_Present (Spec) then
996ae0b0
RK
8972 if Ekind (Scope (Formal_Id)) = E_Function
8973 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
8974 then
8975 Error_Msg_N ("functions can only have IN parameters", Spec);
8976 Set_Ekind (Formal_Id, E_In_Parameter);
8977
8978 elsif In_Present (Spec) then
8979 Set_Ekind (Formal_Id, E_In_Out_Parameter);
8980
8981 else
fbf5a39b
AC
8982 Set_Ekind (Formal_Id, E_Out_Parameter);
8983 Set_Never_Set_In_Source (Formal_Id, True);
8984 Set_Is_True_Constant (Formal_Id, False);
8985 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
8986 end if;
8987
8988 else
8989 Set_Ekind (Formal_Id, E_In_Parameter);
8990 end if;
8991
fbf5a39b 8992 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
8993 -- guarantees that access parameters are always non-null. We also set
8994 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
8995
8996 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 8997
2813bb6b
ES
8998 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8999 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 9000
0791fbe9 9001 if Ada_Version < Ada_2005
2813bb6b 9002 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
9003 then
9004 Set_Is_Known_Non_Null (Formal_Id);
9005 Set_Can_Never_Be_Null (Formal_Id);
9006 end if;
2813bb6b 9007
41251c60
JM
9008 -- Ada 2005 (AI-231): Null-exclusion access subtype
9009
2813bb6b
ES
9010 elsif Is_Access_Type (Etype (Formal_Id))
9011 and then Can_Never_Be_Null (Etype (Formal_Id))
9012 then
2813bb6b 9013 Set_Is_Known_Non_Null (Formal_Id);
fbf5a39b
AC
9014 end if;
9015
996ae0b0
RK
9016 Set_Mechanism (Formal_Id, Default_Mechanism);
9017 Set_Formal_Validity (Formal_Id);
9018 end Set_Formal_Mode;
9019
9020 -------------------------
9021 -- Set_Formal_Validity --
9022 -------------------------
9023
9024 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
9025 begin
82c80734
RD
9026 -- If no validity checking, then we cannot assume anything about the
9027 -- validity of parameters, since we do not know there is any checking
9028 -- of the validity on the call side.
996ae0b0
RK
9029
9030 if not Validity_Checks_On then
9031 return;
9032
fbf5a39b
AC
9033 -- If validity checking for parameters is enabled, this means we are
9034 -- not supposed to make any assumptions about argument values.
9035
9036 elsif Validity_Check_Parameters then
9037 return;
9038
9039 -- If we are checking in parameters, we will assume that the caller is
9040 -- also checking parameters, so we can assume the parameter is valid.
9041
996ae0b0
RK
9042 elsif Ekind (Formal_Id) = E_In_Parameter
9043 and then Validity_Check_In_Params
9044 then
9045 Set_Is_Known_Valid (Formal_Id, True);
9046
fbf5a39b
AC
9047 -- Similar treatment for IN OUT parameters
9048
996ae0b0
RK
9049 elsif Ekind (Formal_Id) = E_In_Out_Parameter
9050 and then Validity_Check_In_Out_Params
9051 then
9052 Set_Is_Known_Valid (Formal_Id, True);
9053 end if;
9054 end Set_Formal_Validity;
9055
9056 ------------------------
9057 -- Subtype_Conformant --
9058 ------------------------
9059
ce2b6ba5
JM
9060 function Subtype_Conformant
9061 (New_Id : Entity_Id;
9062 Old_Id : Entity_Id;
9063 Skip_Controlling_Formals : Boolean := False) return Boolean
9064 is
996ae0b0 9065 Result : Boolean;
996ae0b0 9066 begin
ce2b6ba5
JM
9067 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
9068 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
9069 return Result;
9070 end Subtype_Conformant;
9071
9072 ---------------------
9073 -- Type_Conformant --
9074 ---------------------
9075
41251c60
JM
9076 function Type_Conformant
9077 (New_Id : Entity_Id;
9078 Old_Id : Entity_Id;
9079 Skip_Controlling_Formals : Boolean := False) return Boolean
9080 is
996ae0b0 9081 Result : Boolean;
996ae0b0 9082 begin
c8ef728f
ES
9083 May_Hide_Profile := False;
9084
41251c60
JM
9085 Check_Conformance
9086 (New_Id, Old_Id, Type_Conformant, False, Result,
9087 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
9088 return Result;
9089 end Type_Conformant;
9090
9091 -------------------------------
9092 -- Valid_Operator_Definition --
9093 -------------------------------
9094
9095 procedure Valid_Operator_Definition (Designator : Entity_Id) is
9096 N : Integer := 0;
9097 F : Entity_Id;
9098 Id : constant Name_Id := Chars (Designator);
9099 N_OK : Boolean;
9100
9101 begin
9102 F := First_Formal (Designator);
996ae0b0
RK
9103 while Present (F) loop
9104 N := N + 1;
9105
9106 if Present (Default_Value (F)) then
ed2233dc 9107 Error_Msg_N
996ae0b0
RK
9108 ("default values not allowed for operator parameters",
9109 Parent (F));
9110 end if;
9111
9112 Next_Formal (F);
9113 end loop;
9114
9115 -- Verify that user-defined operators have proper number of arguments
9116 -- First case of operators which can only be unary
9117
9118 if Id = Name_Op_Not
9119 or else Id = Name_Op_Abs
9120 then
9121 N_OK := (N = 1);
9122
9123 -- Case of operators which can be unary or binary
9124
9125 elsif Id = Name_Op_Add
9126 or Id = Name_Op_Subtract
9127 then
9128 N_OK := (N in 1 .. 2);
9129
9130 -- All other operators can only be binary
9131
9132 else
9133 N_OK := (N = 2);
9134 end if;
9135
9136 if not N_OK then
9137 Error_Msg_N
9138 ("incorrect number of arguments for operator", Designator);
9139 end if;
9140
9141 if Id = Name_Op_Ne
9142 and then Base_Type (Etype (Designator)) = Standard_Boolean
9143 and then not Is_Intrinsic_Subprogram (Designator)
9144 then
9145 Error_Msg_N
9146 ("explicit definition of inequality not allowed", Designator);
9147 end if;
9148 end Valid_Operator_Definition;
9149
9150end Sem_Ch6;