]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
a-cgcaso.adb, [...]: (Swap, Sift): Avoid use of complex renaming.
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
76a69663 9-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Expander; use Expander;
ec4867fa 33with Exp_Ch6; use Exp_Ch6;
996ae0b0 34with Exp_Ch7; use Exp_Ch7;
e660dbf7 35with Exp_Tss; use Exp_Tss;
ec4867fa 36with Exp_Util; use Exp_Util;
fbf5a39b 37with Fname; use Fname;
996ae0b0 38with Freeze; use Freeze;
41251c60 39with Itypes; use Itypes;
996ae0b0 40with Lib.Xref; use Lib.Xref;
ec4867fa 41with Layout; use Layout;
996ae0b0
RK
42with Namet; use Namet;
43with Lib; use Lib;
44with Nlists; use Nlists;
45with Nmake; use Nmake;
46with Opt; use Opt;
47with Output; use Output;
48with Rtsfind; use Rtsfind;
49with Sem; use Sem;
50with Sem_Cat; use Sem_Cat;
51with Sem_Ch3; use Sem_Ch3;
52with Sem_Ch4; use Sem_Ch4;
53with Sem_Ch5; use Sem_Ch5;
54with Sem_Ch8; use Sem_Ch8;
9bc856dd 55with Sem_Ch10; use Sem_Ch10;
996ae0b0
RK
56with Sem_Ch12; use Sem_Ch12;
57with Sem_Disp; use Sem_Disp;
58with Sem_Dist; use Sem_Dist;
59with Sem_Elim; use Sem_Elim;
60with Sem_Eval; use Sem_Eval;
61with Sem_Mech; use Sem_Mech;
62with Sem_Prag; use Sem_Prag;
63with Sem_Res; use Sem_Res;
64with Sem_Util; use Sem_Util;
65with Sem_Type; use Sem_Type;
66with Sem_Warn; use Sem_Warn;
67with Sinput; use Sinput;
68with Stand; use Stand;
69with Sinfo; use Sinfo;
70with Sinfo.CN; use Sinfo.CN;
71with Snames; use Snames;
72with Stringt; use Stringt;
73with Style;
74with Stylesw; use Stylesw;
75with Tbuild; use Tbuild;
76with Uintp; use Uintp;
77with Urealp; use Urealp;
78with Validsw; use Validsw;
79
80package body Sem_Ch6 is
81
c8ef728f 82 May_Hide_Profile : Boolean := False;
ec4867fa
ES
83 -- This flag is used to indicate that two formals in two subprograms being
84 -- checked for conformance differ only in that one is an access parameter
85 -- while the other is of a general access type with the same designated
86 -- type. In this case, if the rest of the signatures match, a call to
87 -- either subprogram may be ambiguous, which is worth a warning. The flag
88 -- is set in Compatible_Types, and the warning emitted in
89 -- New_Overloaded_Entity.
c8ef728f 90
996ae0b0
RK
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
5d37ba92 95 procedure Analyze_Return_Statement (N : Node_Id);
ec4867fa
ES
96 -- Common processing for simple_ and extended_return_statements
97
98 procedure Analyze_Function_Return (N : Node_Id);
81db9d77
ES
99 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
100 -- applies to a [generic] function.
ec4867fa 101
82c80734
RD
102 procedure Analyze_Return_Type (N : Node_Id);
103 -- Subsidiary to Process_Formals: analyze subtype mark in function
104 -- specification, in a context where the formals are visible and hide
105 -- outer homographs.
106
996ae0b0 107 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
82c80734
RD
108 -- Analyze a generic subprogram body. N is the body to be analyzed, and
109 -- Gen_Id is the defining entity Id for the corresponding spec.
996ae0b0 110
d05ef0ab 111 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
996ae0b0
RK
112 -- If a subprogram has pragma Inline and inlining is active, use generic
113 -- machinery to build an unexpanded body for the subprogram. This body is
114 -- subsequenty used for inline expansions at call sites. If subprogram can
115 -- be inlined (depending on size and nature of local declarations) this
116 -- function returns true. Otherwise subprogram body is treated normally.
aa720a54
AC
117 -- If proper warnings are enabled and the subprogram contains a construct
118 -- that cannot be inlined, the offending construct is flagged accordingly.
996ae0b0 119
996ae0b0 120 procedure Check_Conformance
41251c60
JM
121 (New_Id : Entity_Id;
122 Old_Id : Entity_Id;
123 Ctype : Conformance_Type;
124 Errmsg : Boolean;
125 Conforms : out Boolean;
126 Err_Loc : Node_Id := Empty;
127 Get_Inst : Boolean := False;
128 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
129 -- Given two entities, this procedure checks that the profiles associated
130 -- with these entities meet the conformance criterion given by the third
131 -- parameter. If they conform, Conforms is set True and control returns
132 -- to the caller. If they do not conform, Conforms is set to False, and
133 -- in addition, if Errmsg is True on the call, proper messages are output
134 -- to complain about the conformance failure. If Err_Loc is non_Empty
135 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
136 -- error messages are placed on the appropriate part of the construct
137 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
138 -- against a formal access-to-subprogram type so Get_Instance_Of must
139 -- be called.
140
758c442c 141 procedure Check_Overriding_Indicator
ec4867fa 142 (Subp : Entity_Id;
5d37ba92
ES
143 Overridden_Subp : Entity_Id;
144 Is_Primitive : Boolean);
758c442c 145 -- Verify the consistency of an overriding_indicator given for subprogram
5d37ba92
ES
146 -- declaration, body, renaming, or instantiation. Overridden_Subp is set
147 -- if the scope where we are introducing the subprogram contains a
ec4867fa 148 -- type-conformant subprogram that becomes hidden by the new subprogram.
5d37ba92 149 -- Is_Primitive indicates whether the subprogram is primitive.
fbf5a39b 150
996ae0b0
RK
151 procedure Check_Subprogram_Order (N : Node_Id);
152 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
153 -- the alpha ordering rule for N if this ordering requirement applicable.
154
996ae0b0
RK
155 procedure Check_Returns
156 (HSS : Node_Id;
157 Mode : Character;
c8ef728f
ES
158 Err : out Boolean;
159 Proc : Entity_Id := Empty);
160 -- Called to check for missing return statements in a function body, or for
0a36105d 161 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
162 -- handled statement sequence for the subprogram body. This procedure
163 -- checks all flow paths to make sure they either have return (Mode = 'F',
164 -- used for functions) or do not have a return (Mode = 'P', used for
165 -- No_Return procedures). The flag Err is set if there are any control
166 -- paths not explicitly terminated by a return in the function case, and is
167 -- True otherwise. Proc is the entity for the procedure case and is used
168 -- in posting the warning message.
996ae0b0 169
996ae0b0 170 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
171 -- This procedure makes S, a new overloaded entity, into the first visible
172 -- entity with that name.
996ae0b0
RK
173
174 procedure Install_Entity (E : Entity_Id);
e895b435 175 -- Make single entity visible. Used for generic formals as well
996ae0b0
RK
176
177 procedure Install_Formals (Id : Entity_Id);
82c80734
RD
178 -- On entry to a subprogram body, make the formals visible. Note that
179 -- simply placing the subprogram on the scope stack is not sufficient:
180 -- the formals must become the current entities for their names.
996ae0b0 181
a5b62485
AC
182 function Is_Non_Overriding_Operation
183 (Prev_E : Entity_Id;
184 New_E : Entity_Id) return Boolean;
185 -- Enforce the rule given in 12.3(18): a private operation in an instance
186 -- overrides an inherited operation only if the corresponding operation
187 -- was overriding in the generic. This can happen for primitive operations
188 -- of types derived (in the generic unit) from formal private or formal
189 -- derived types.
190
996ae0b0
RK
191 procedure Make_Inequality_Operator (S : Entity_Id);
192 -- Create the declaration for an inequality operator that is implicitly
193 -- created by a user-defined equality operator that yields a boolean.
194
195 procedure May_Need_Actuals (Fun : Entity_Id);
196 -- Flag functions that can be called without parameters, i.e. those that
197 -- have no parameters, or those for which defaults exist for all parameters
198
199 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
200 -- Formal_Id is an formal parameter entity. This procedure deals with
201 -- setting the proper validity status for this entity, which depends
202 -- on the kind of parameter and the validity checking mode.
203
5d37ba92
ES
204 ------------------------------
205 -- Analyze_Return_Statement --
206 ------------------------------
ec4867fa 207
5d37ba92 208 procedure Analyze_Return_Statement (N : Node_Id) is
ec4867fa 209
800621e0
RD
210 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
211 N_Extended_Return_Statement));
ec4867fa
ES
212
213 Returns_Object : constant Boolean :=
5d37ba92
ES
214 Nkind (N) = N_Extended_Return_Statement
215 or else
216 (Nkind (N) = N_Simple_Return_Statement
217 and then Present (Expression (N)));
ec4867fa 218 -- True if we're returning something; that is, "return <expression>;"
5d37ba92
ES
219 -- or "return Result : T [:= ...]". False for "return;". Used for error
220 -- checking: If Returns_Object is True, N should apply to a function
221 -- body; otherwise N should apply to a procedure body, entry body,
222 -- accept statement, or extended return statement.
ec4867fa
ES
223
224 function Find_What_It_Applies_To return Entity_Id;
225 -- Find the entity representing the innermost enclosing body, accept
5d37ba92
ES
226 -- statement, or extended return statement. If the result is a callable
227 -- construct or extended return statement, then this will be the value
228 -- of the Return_Applies_To attribute. Otherwise, the program is
229 -- illegal. See RM-6.5(4/2).
ec4867fa
ES
230
231 -----------------------------
232 -- Find_What_It_Applies_To --
233 -----------------------------
234
235 function Find_What_It_Applies_To return Entity_Id is
236 Result : Entity_Id := Empty;
237
238 begin
239 -- Loop outward through the Scope_Stack, skipping blocks and loops
240
241 for J in reverse 0 .. Scope_Stack.Last loop
242 Result := Scope_Stack.Table (J).Entity;
243 exit when Ekind (Result) /= E_Block and then
244 Ekind (Result) /= E_Loop;
245 end loop;
246
247 pragma Assert (Present (Result));
248 return Result;
ec4867fa
ES
249 end Find_What_It_Applies_To;
250
5d37ba92
ES
251 -- Local declarations
252
ec4867fa
ES
253 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
254 Kind : constant Entity_Kind := Ekind (Scope_Id);
ec4867fa
ES
255 Loc : constant Source_Ptr := Sloc (N);
256 Stm_Entity : constant Entity_Id :=
257 New_Internal_Entity
258 (E_Return_Statement, Current_Scope, Loc, 'R');
259
5d37ba92 260 -- Start of processing for Analyze_Return_Statement
ec4867fa
ES
261
262 begin
ec4867fa
ES
263 Set_Return_Statement_Entity (N, Stm_Entity);
264
265 Set_Etype (Stm_Entity, Standard_Void_Type);
266 Set_Return_Applies_To (Stm_Entity, Scope_Id);
267
5d37ba92
ES
268 -- Place Return entity on scope stack, to simplify enforcement of 6.5
269 -- (4/2): an inner return statement will apply to this extended return.
ec4867fa
ES
270
271 if Nkind (N) = N_Extended_Return_Statement then
0a36105d 272 Push_Scope (Stm_Entity);
ec4867fa
ES
273 end if;
274
5d37ba92 275 -- Check that pragma No_Return is obeyed
ec4867fa
ES
276
277 if No_Return (Scope_Id) then
278 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
279 end if;
280
5d37ba92
ES
281 -- Warn on any unassigned OUT parameters if in procedure
282
283 if Ekind (Scope_Id) = E_Procedure then
284 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
285 end if;
286
287 -- Check that functions return objects, and other things do not
ec4867fa
ES
288
289 if Kind = E_Function or else Kind = E_Generic_Function then
290 if not Returns_Object then
291 Error_Msg_N ("missing expression in return from function", N);
292 end if;
293
294 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
295 if Returns_Object then
296 Error_Msg_N ("procedure cannot return value (use function)", N);
297 end if;
298
299 elsif Kind = E_Entry or else Kind = E_Entry_Family then
300 if Returns_Object then
301 if Is_Protected_Type (Scope (Scope_Id)) then
302 Error_Msg_N ("entry body cannot return value", N);
303 else
304 Error_Msg_N ("accept statement cannot return value", N);
305 end if;
306 end if;
307
308 elsif Kind = E_Return_Statement then
309
310 -- We are nested within another return statement, which must be an
311 -- extended_return_statement.
312
313 if Returns_Object then
314 Error_Msg_N
315 ("extended_return_statement cannot return value; " &
316 "use `""RETURN;""`", N);
317 end if;
318
319 else
320 Error_Msg_N ("illegal context for return statement", N);
321 end if;
322
323 if Kind = E_Function or else Kind = E_Generic_Function then
324 Analyze_Function_Return (N);
325 end if;
326
327 if Nkind (N) = N_Extended_Return_Statement then
328 End_Scope;
329 end if;
330
81db9d77 331 Kill_Current_Values (Last_Assignment_Only => True);
ec4867fa 332 Check_Unreachable_Code (N);
5d37ba92 333 end Analyze_Return_Statement;
ec4867fa 334
996ae0b0
RK
335 ---------------------------------------------
336 -- Analyze_Abstract_Subprogram_Declaration --
337 ---------------------------------------------
338
339 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
340 Designator : constant Entity_Id :=
341 Analyze_Subprogram_Specification (Specification (N));
996ae0b0
RK
342 Scop : constant Entity_Id := Current_Scope;
343
344 begin
345 Generate_Definition (Designator);
f937473f 346 Set_Is_Abstract_Subprogram (Designator);
996ae0b0
RK
347 New_Overloaded_Entity (Designator);
348 Check_Delayed_Subprogram (Designator);
349
fbf5a39b 350 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0
RK
351
352 if Ekind (Scope (Designator)) = E_Protected_Type then
353 Error_Msg_N
354 ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
355
356 -- Issue a warning if the abstract subprogram is neither a dispatching
357 -- operation nor an operation that overrides an inherited subprogram or
358 -- predefined operator, since this most likely indicates a mistake.
359
360 elsif Warn_On_Redundant_Constructs
361 and then not Is_Dispatching_Operation (Designator)
362 and then not Is_Overriding_Operation (Designator)
363 and then (not Is_Operator_Symbol_Name (Chars (Designator))
364 or else Scop /= Scope (Etype (First_Formal (Designator))))
365 then
366 Error_Msg_N
367 ("?abstract subprogram is not dispatching or overriding", N);
996ae0b0 368 end if;
fbf5a39b
AC
369
370 Generate_Reference_To_Formals (Designator);
996ae0b0
RK
371 end Analyze_Abstract_Subprogram_Declaration;
372
ec4867fa
ES
373 ----------------------------------------
374 -- Analyze_Extended_Return_Statement --
375 ----------------------------------------
376
377 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
378 begin
5d37ba92 379 Analyze_Return_Statement (N);
ec4867fa
ES
380 end Analyze_Extended_Return_Statement;
381
996ae0b0
RK
382 ----------------------------
383 -- Analyze_Function_Call --
384 ----------------------------
385
386 procedure Analyze_Function_Call (N : Node_Id) is
387 P : constant Node_Id := Name (N);
388 L : constant List_Id := Parameter_Associations (N);
389 Actual : Node_Id;
390
391 begin
392 Analyze (P);
393
82c80734 394 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
e660dbf7 395 -- as B (A, X). If the rewriting is successful, the call has been
82c80734
RD
396 -- analyzed and we just return.
397
398 if Nkind (P) = N_Selected_Component
399 and then Name (N) /= P
400 and then Is_Rewrite_Substitution (N)
401 and then Present (Etype (N))
402 then
403 return;
404 end if;
405
996ae0b0
RK
406 -- If error analyzing name, then set Any_Type as result type and return
407
408 if Etype (P) = Any_Type then
409 Set_Etype (N, Any_Type);
410 return;
411 end if;
412
413 -- Otherwise analyze the parameters
414
415 if Present (L) then
416 Actual := First (L);
996ae0b0
RK
417 while Present (Actual) loop
418 Analyze (Actual);
419 Check_Parameterless_Call (Actual);
420 Next (Actual);
421 end loop;
422 end if;
423
424 Analyze_Call (N);
996ae0b0
RK
425 end Analyze_Function_Call;
426
ec4867fa
ES
427 -----------------------------
428 -- Analyze_Function_Return --
429 -----------------------------
430
431 procedure Analyze_Function_Return (N : Node_Id) is
432 Loc : constant Source_Ptr := Sloc (N);
433 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
434 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
435
5d37ba92 436 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
437 -- Function result subtype
438
439 procedure Check_Limited_Return (Expr : Node_Id);
440 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
441 -- limited types. Used only for simple return statements.
442 -- Expr is the expression returned.
443
444 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
445 -- Check that the return_subtype_indication properly matches the result
446 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
447
448 --------------------------
449 -- Check_Limited_Return --
450 --------------------------
451
452 procedure Check_Limited_Return (Expr : Node_Id) is
453 begin
454 -- Ada 2005 (AI-318-02): Return-by-reference types have been
455 -- removed and replaced by anonymous access results. This is an
456 -- incompatibility with Ada 95. Not clear whether this should be
457 -- enforced yet or perhaps controllable with special switch. ???
458
459 if Is_Limited_Type (R_Type)
460 and then Comes_From_Source (N)
461 and then not In_Instance_Body
462 and then not OK_For_Limited_Init_In_05 (Expr)
463 then
464 -- Error in Ada 2005
465
466 if Ada_Version >= Ada_05
467 and then not Debug_Flag_Dot_L
468 and then not GNAT_Mode
469 then
470 Error_Msg_N
471 ("(Ada 2005) cannot copy object of a limited type " &
5d37ba92 472 "(RM-2005 6.5(5.5/2))", Expr);
ec4867fa
ES
473 if Is_Inherently_Limited_Type (R_Type) then
474 Error_Msg_N
475 ("\return by reference not permitted in Ada 2005", Expr);
476 end if;
477
478 -- Warn in Ada 95 mode, to give folks a heads up about this
479 -- incompatibility.
480
481 -- In GNAT mode, this is just a warning, to allow it to be
482 -- evilly turned off. Otherwise it is a real error.
483
484 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
485 if Is_Inherently_Limited_Type (R_Type) then
486 Error_Msg_N
487 ("return by reference not permitted in Ada 2005 " &
5d37ba92 488 "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
489 else
490 Error_Msg_N
491 ("cannot copy object of a limited type in Ada 2005 " &
5d37ba92 492 "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
493 end if;
494
495 -- Ada 95 mode, compatibility warnings disabled
496
497 else
498 return; -- skip continuation messages below
499 end if;
500
501 Error_Msg_N
502 ("\consider switching to return of access type", Expr);
503 Explain_Limited_Type (R_Type, Expr);
504 end if;
505 end Check_Limited_Return;
506
507 -------------------------------------
508 -- Check_Return_Subtype_Indication --
509 -------------------------------------
510
511 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
512 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
513 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
514 -- Subtype given in the extended return statement;
515 -- this must match R_Type.
516
517 Subtype_Ind : constant Node_Id :=
518 Object_Definition (Original_Node (Obj_Decl));
519
520 R_Type_Is_Anon_Access :
521 constant Boolean :=
522 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
523 or else
524 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
525 or else
526 Ekind (R_Type) = E_Anonymous_Access_Type;
527 -- True if return type of the function is an anonymous access type
528 -- Can't we make Is_Anonymous_Access_Type in einfo ???
529
530 R_Stm_Type_Is_Anon_Access :
531 constant Boolean :=
0a36105d 532 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
ec4867fa 533 or else
0a36105d 534 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
ec4867fa 535 or else
0a36105d 536 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
ec4867fa
ES
537 -- True if type of the return object is an anonymous access type
538
539 begin
540 -- First, avoid cascade errors:
541
542 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
543 return;
544 end if;
545
546 -- "return access T" case; check that the return statement also has
547 -- "access T", and that the subtypes statically match:
548
549 if R_Type_Is_Anon_Access then
550 if R_Stm_Type_Is_Anon_Access then
0a36105d
JM
551 if Base_Type (Designated_Type (R_Stm_Type)) /=
552 Base_Type (Designated_Type (R_Type))
553 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
554 then
ec4867fa 555 Error_Msg_N
0a36105d
JM
556 ("subtype must statically match function result subtype",
557 Subtype_Mark (Subtype_Ind));
ec4867fa 558 end if;
0a36105d 559
ec4867fa
ES
560 else
561 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
562 end if;
563
564 -- Subtype_indication case; check that the types are the same, and
565 -- statically match if appropriate:
566
567 elsif Base_Type (R_Stm_Type) = Base_Type (R_Type) then
568 if Is_Constrained (R_Type) then
569 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
570 Error_Msg_N
0a36105d
JM
571 ("subtype must statically match function result subtype",
572 Subtype_Ind);
ec4867fa
ES
573 end if;
574 end if;
575
0a36105d
JM
576 -- If the function's result type doesn't match the return object
577 -- entity's type, then we check for the case where the result type
578 -- is class-wide, and allow the declaration if the type of the object
579 -- definition matches the class-wide type. This prevents rejection
580 -- in the case where the object declaration is initialized by a call
581 -- to a build-in-place function with a specific result type and the
582 -- object entity had its type changed to that specific type. (Note
583 -- that the ARG believes that return objects should be allowed to
584 -- have a type covered by a class-wide result type in any case, so
585 -- once that relaxation is made (see AI05-32), the above check for
586 -- type compatibility should be changed to test Covers rather than
587 -- equality, and then the following special test will no longer be
588 -- needed. ???)
589
590 elsif Is_Class_Wide_Type (R_Type)
5d37ba92
ES
591 and then
592 R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
0a36105d
JM
593 then
594 null;
595
ec4867fa
ES
596 else
597 Error_Msg_N
598 ("wrong type for return_subtype_indication", Subtype_Ind);
599 end if;
600 end Check_Return_Subtype_Indication;
601
602 ---------------------
603 -- Local Variables --
604 ---------------------
605
606 Expr : Node_Id;
607
608 -- Start of processing for Analyze_Function_Return
609
610 begin
611 Set_Return_Present (Scope_Id);
612
5d37ba92 613 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa
ES
614 Expr := Expression (N);
615 Analyze_And_Resolve (Expr, R_Type);
616 Check_Limited_Return (Expr);
617
618 else
619 -- Analyze parts specific to extended_return_statement:
620
621 declare
622 Obj_Decl : constant Node_Id :=
623 Last (Return_Object_Declarations (N));
624
625 HSS : constant Node_Id := Handled_Statement_Sequence (N);
626
627 begin
628 Expr := Expression (Obj_Decl);
629
630 -- Note: The check for OK_For_Limited_Init will happen in
631 -- Analyze_Object_Declaration; we treat it as a normal
632 -- object declaration.
633
634 Analyze (Obj_Decl);
635
636 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
637 Check_Return_Subtype_Indication (Obj_Decl);
638
639 if Present (HSS) then
640 Analyze (HSS);
641
642 if Present (Exception_Handlers (HSS)) then
643
644 -- ???Has_Nested_Block_With_Handler needs to be set.
645 -- Probably by creating an actual N_Block_Statement.
646 -- Probably in Expand.
647
648 null;
649 end if;
650 end if;
651
652 Check_References (Stm_Entity);
653 end;
654 end if;
655
5d37ba92
ES
656 -- Case of Expr present (Etype check defends against previous errors)
657
ec4867fa 658 if Present (Expr)
5d37ba92 659 and then Present (Etype (Expr))
ec4867fa 660 then
5d37ba92
ES
661 -- Apply constraint check. Note that this is done before the implicit
662 -- conversion of the expression done for anonymous access types to
663 -- ensure correct generation of the null-excluding check asssociated
664 -- with null-excluding expressions found in return statements.
665
666 Apply_Constraint_Check (Expr, R_Type);
667
668 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
669 -- type, apply an implicit conversion of the expression to that type
670 -- to force appropriate static and run-time accessibility checks.
ec4867fa
ES
671
672 if Ada_Version >= Ada_05
673 and then Ekind (R_Type) = E_Anonymous_Access_Type
674 then
675 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
676 Analyze_And_Resolve (Expr, R_Type);
677 end if;
678
679 if (Is_Class_Wide_Type (Etype (Expr))
680 or else Is_Dynamically_Tagged (Expr))
681 and then not Is_Class_Wide_Type (R_Type)
682 then
683 Error_Msg_N
684 ("dynamically tagged expression not allowed!", Expr);
685 end if;
686
ec4867fa
ES
687 -- ??? A real run-time accessibility check is needed in cases
688 -- involving dereferences of access parameters. For now we just
689 -- check the static cases.
690
691 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
692 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
693 and then Object_Access_Level (Expr) >
694 Subprogram_Access_Level (Scope_Id)
695 then
696 Rewrite (N,
697 Make_Raise_Program_Error (Loc,
698 Reason => PE_Accessibility_Check_Failed));
699 Analyze (N);
700
701 Error_Msg_N
702 ("cannot return a local value by reference?", N);
703 Error_Msg_NE
704 ("\& will be raised at run time?",
705 N, Standard_Program_Error);
706 end if;
5d37ba92
ES
707
708 if Known_Null (Expr)
709 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
710 and then Null_Exclusion_Present (Parent (Scope_Id))
711 then
712 Apply_Compile_Time_Constraint_Error
713 (N => Expr,
714 Msg => "(Ada 2005) null not allowed for "
715 & "null-excluding return?",
716 Reason => CE_Null_Not_Allowed);
717 end if;
ec4867fa
ES
718 end if;
719 end Analyze_Function_Return;
720
996ae0b0
RK
721 -------------------------------------
722 -- Analyze_Generic_Subprogram_Body --
723 -------------------------------------
724
725 procedure Analyze_Generic_Subprogram_Body
726 (N : Node_Id;
727 Gen_Id : Entity_Id)
728 is
fbf5a39b 729 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 730 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 731 Body_Id : Entity_Id;
996ae0b0 732 New_N : Node_Id;
fbf5a39b 733 Spec : Node_Id;
996ae0b0
RK
734
735 begin
82c80734
RD
736 -- Copy body and disable expansion while analyzing the generic For a
737 -- stub, do not copy the stub (which would load the proper body), this
738 -- will be done when the proper body is analyzed.
996ae0b0
RK
739
740 if Nkind (N) /= N_Subprogram_Body_Stub then
741 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
742 Rewrite (N, New_N);
743 Start_Generic;
744 end if;
745
746 Spec := Specification (N);
747
748 -- Within the body of the generic, the subprogram is callable, and
749 -- behaves like the corresponding non-generic unit.
750
fbf5a39b 751 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
752
753 if Kind = E_Generic_Procedure
754 and then Nkind (Spec) /= N_Procedure_Specification
755 then
fbf5a39b 756 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
757 return;
758
759 elsif Kind = E_Generic_Function
760 and then Nkind (Spec) /= N_Function_Specification
761 then
fbf5a39b 762 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
763 return;
764 end if;
765
fbf5a39b 766 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
767
768 if Has_Completion (Gen_Id)
769 and then Nkind (Parent (N)) /= N_Subunit
770 then
771 Error_Msg_N ("duplicate generic body", N);
772 return;
773 else
774 Set_Has_Completion (Gen_Id);
775 end if;
776
777 if Nkind (N) = N_Subprogram_Body_Stub then
778 Set_Ekind (Defining_Entity (Specification (N)), Kind);
779 else
780 Set_Corresponding_Spec (N, Gen_Id);
781 end if;
782
783 if Nkind (Parent (N)) = N_Compilation_Unit then
784 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
785 end if;
786
787 -- Make generic parameters immediately visible in the body. They are
788 -- needed to process the formals declarations. Then make the formals
789 -- visible in a separate step.
790
0a36105d 791 Push_Scope (Gen_Id);
996ae0b0
RK
792
793 declare
794 E : Entity_Id;
795 First_Ent : Entity_Id;
796
797 begin
798 First_Ent := First_Entity (Gen_Id);
799
800 E := First_Ent;
801 while Present (E) and then not Is_Formal (E) loop
802 Install_Entity (E);
803 Next_Entity (E);
804 end loop;
805
806 Set_Use (Generic_Formal_Declarations (Gen_Decl));
807
808 -- Now generic formals are visible, and the specification can be
809 -- analyzed, for subsequent conformance check.
810
fbf5a39b 811 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 812
fbf5a39b 813 -- Make formal parameters visible
996ae0b0
RK
814
815 if Present (E) then
816
fbf5a39b
AC
817 -- E is the first formal parameter, we loop through the formals
818 -- installing them so that they will be visible.
996ae0b0
RK
819
820 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
821 while Present (E) loop
822 Install_Entity (E);
823 Next_Formal (E);
824 end loop;
825 end if;
826
e895b435 827 -- Visible generic entity is callable within its own body
996ae0b0 828
ec4867fa
ES
829 Set_Ekind (Gen_Id, Ekind (Body_Id));
830 Set_Ekind (Body_Id, E_Subprogram_Body);
831 Set_Convention (Body_Id, Convention (Gen_Id));
832 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
833 Set_Scope (Body_Id, Scope (Gen_Id));
fbf5a39b
AC
834 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
835
836 if Nkind (N) = N_Subprogram_Body_Stub then
837
e895b435 838 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
839
840 Set_Ekind (Gen_Id, Kind);
841 Set_Ekind (Body_Id, Kind);
842
843 if Present (First_Ent) then
844 Set_First_Entity (Gen_Id, First_Ent);
845 end if;
846
847 End_Scope;
848 return;
849 end if;
996ae0b0 850
82c80734
RD
851 -- If this is a compilation unit, it must be made visible explicitly,
852 -- because the compilation of the declaration, unlike other library
853 -- unit declarations, does not. If it is not a unit, the following
854 -- is redundant but harmless.
996ae0b0
RK
855
856 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 857 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 858
ec4867fa
ES
859 if Is_Child_Unit (Gen_Id) then
860 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
861 end if;
862
996ae0b0
RK
863 Set_Actual_Subtypes (N, Current_Scope);
864 Analyze_Declarations (Declarations (N));
865 Check_Completion;
866 Analyze (Handled_Statement_Sequence (N));
867
868 Save_Global_References (Original_Node (N));
869
82c80734
RD
870 -- Prior to exiting the scope, include generic formals again (if any
871 -- are present) in the set of local entities.
996ae0b0
RK
872
873 if Present (First_Ent) then
874 Set_First_Entity (Gen_Id, First_Ent);
875 end if;
876
fbf5a39b 877 Check_References (Gen_Id);
996ae0b0
RK
878 end;
879
e6f69614 880 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
881 End_Scope;
882 Check_Subprogram_Order (N);
883
e895b435 884 -- Outside of its body, unit is generic again
996ae0b0
RK
885
886 Set_Ekind (Gen_Id, Kind);
fbf5a39b 887 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
888
889 if Style_Check then
890 Style.Check_Identifier (Body_Id, Gen_Id);
891 end if;
996ae0b0 892 End_Generic;
996ae0b0
RK
893 end Analyze_Generic_Subprogram_Body;
894
895 -----------------------------
896 -- Analyze_Operator_Symbol --
897 -----------------------------
898
82c80734
RD
899 -- An operator symbol such as "+" or "and" may appear in context where the
900 -- literal denotes an entity name, such as "+"(x, y) or in context when it
901 -- is just a string, as in (conjunction = "or"). In these cases the parser
902 -- generates this node, and the semantics does the disambiguation. Other
903 -- such case are actuals in an instantiation, the generic unit in an
904 -- instantiation, and pragma arguments.
996ae0b0
RK
905
906 procedure Analyze_Operator_Symbol (N : Node_Id) is
907 Par : constant Node_Id := Parent (N);
908
909 begin
800621e0
RD
910 if (Nkind (Par) = N_Function_Call
911 and then N = Name (Par))
996ae0b0 912 or else Nkind (Par) = N_Function_Instantiation
800621e0
RD
913 or else (Nkind (Par) = N_Indexed_Component
914 and then N = Prefix (Par))
996ae0b0
RK
915 or else (Nkind (Par) = N_Pragma_Argument_Association
916 and then not Is_Pragma_String_Literal (Par))
917 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
918 or else (Nkind (Par) = N_Attribute_Reference
919 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
920 then
921 Find_Direct_Name (N);
922
923 else
924 Change_Operator_Symbol_To_String_Literal (N);
925 Analyze (N);
926 end if;
927 end Analyze_Operator_Symbol;
928
929 -----------------------------------
930 -- Analyze_Parameter_Association --
931 -----------------------------------
932
933 procedure Analyze_Parameter_Association (N : Node_Id) is
934 begin
935 Analyze (Explicit_Actual_Parameter (N));
936 end Analyze_Parameter_Association;
937
938 ----------------------------
939 -- Analyze_Procedure_Call --
940 ----------------------------
941
942 procedure Analyze_Procedure_Call (N : Node_Id) is
943 Loc : constant Source_Ptr := Sloc (N);
944 P : constant Node_Id := Name (N);
945 Actuals : constant List_Id := Parameter_Associations (N);
946 Actual : Node_Id;
947 New_N : Node_Id;
948
949 procedure Analyze_Call_And_Resolve;
950 -- Do Analyze and Resolve calls for procedure call
951
fbf5a39b
AC
952 ------------------------------
953 -- Analyze_Call_And_Resolve --
954 ------------------------------
955
996ae0b0
RK
956 procedure Analyze_Call_And_Resolve is
957 begin
958 if Nkind (N) = N_Procedure_Call_Statement then
959 Analyze_Call (N);
960 Resolve (N, Standard_Void_Type);
961 else
962 Analyze (N);
963 end if;
964 end Analyze_Call_And_Resolve;
965
966 -- Start of processing for Analyze_Procedure_Call
967
968 begin
969 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
970 -- a procedure call or an entry call. The prefix may denote an access
971 -- to subprogram type, in which case an implicit dereference applies.
972 -- If the prefix is an indexed component (without implicit defererence)
973 -- then the construct denotes a call to a member of an entire family.
974 -- If the prefix is a simple name, it may still denote a call to a
975 -- parameterless member of an entry family. Resolution of these various
976 -- interpretations is delicate.
977
978 Analyze (P);
979
758c442c
GD
980 -- If this is a call of the form Obj.Op, the call may have been
981 -- analyzed and possibly rewritten into a block, in which case
982 -- we are done.
983
984 if Analyzed (N) then
985 return;
986 end if;
987
996ae0b0
RK
988 -- If error analyzing prefix, then set Any_Type as result and return
989
990 if Etype (P) = Any_Type then
991 Set_Etype (N, Any_Type);
992 return;
993 end if;
994
995 -- Otherwise analyze the parameters
996
997 if Present (Actuals) then
998 Actual := First (Actuals);
999
1000 while Present (Actual) loop
1001 Analyze (Actual);
1002 Check_Parameterless_Call (Actual);
1003 Next (Actual);
1004 end loop;
1005 end if;
1006
1007 -- Special processing for Elab_Spec and Elab_Body calls
1008
1009 if Nkind (P) = N_Attribute_Reference
1010 and then (Attribute_Name (P) = Name_Elab_Spec
1011 or else Attribute_Name (P) = Name_Elab_Body)
1012 then
1013 if Present (Actuals) then
1014 Error_Msg_N
1015 ("no parameters allowed for this call", First (Actuals));
1016 return;
1017 end if;
1018
1019 Set_Etype (N, Standard_Void_Type);
1020 Set_Analyzed (N);
1021
1022 elsif Is_Entity_Name (P)
1023 and then Is_Record_Type (Etype (Entity (P)))
1024 and then Remote_AST_I_Dereference (P)
1025 then
1026 return;
1027
1028 elsif Is_Entity_Name (P)
1029 and then Ekind (Entity (P)) /= E_Entry_Family
1030 then
1031 if Is_Access_Type (Etype (P))
1032 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1033 and then No (Actuals)
1034 and then Comes_From_Source (N)
1035 then
1036 Error_Msg_N ("missing explicit dereference in call", N);
1037 end if;
1038
1039 Analyze_Call_And_Resolve;
1040
1041 -- If the prefix is the simple name of an entry family, this is
1042 -- a parameterless call from within the task body itself.
1043
1044 elsif Is_Entity_Name (P)
1045 and then Nkind (P) = N_Identifier
1046 and then Ekind (Entity (P)) = E_Entry_Family
1047 and then Present (Actuals)
1048 and then No (Next (First (Actuals)))
1049 then
82c80734
RD
1050 -- Can be call to parameterless entry family. What appears to be the
1051 -- sole argument is in fact the entry index. Rewrite prefix of node
1052 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1053 -- transformation.
1054
1055 New_N :=
1056 Make_Indexed_Component (Loc,
1057 Prefix =>
1058 Make_Selected_Component (Loc,
1059 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1060 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1061 Expressions => Actuals);
1062 Set_Name (N, New_N);
1063 Set_Etype (New_N, Standard_Void_Type);
1064 Set_Parameter_Associations (N, No_List);
1065 Analyze_Call_And_Resolve;
1066
1067 elsif Nkind (P) = N_Explicit_Dereference then
1068 if Ekind (Etype (P)) = E_Subprogram_Type then
1069 Analyze_Call_And_Resolve;
1070 else
1071 Error_Msg_N ("expect access to procedure in call", P);
1072 end if;
1073
82c80734
RD
1074 -- The name can be a selected component or an indexed component that
1075 -- yields an access to subprogram. Such a prefix is legal if the call
1076 -- has parameter associations.
996ae0b0
RK
1077
1078 elsif Is_Access_Type (Etype (P))
1079 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1080 then
1081 if Present (Actuals) then
1082 Analyze_Call_And_Resolve;
1083 else
1084 Error_Msg_N ("missing explicit dereference in call ", N);
1085 end if;
1086
82c80734
RD
1087 -- If not an access to subprogram, then the prefix must resolve to the
1088 -- name of an entry, entry family, or protected operation.
996ae0b0 1089
82c80734
RD
1090 -- For the case of a simple entry call, P is a selected component where
1091 -- the prefix is the task and the selector name is the entry. A call to
1092 -- a protected procedure will have the same syntax. If the protected
1093 -- object contains overloaded operations, the entity may appear as a
1094 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1095
1096 elsif Nkind (P) = N_Selected_Component
1097 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1098 or else
1099 Ekind (Entity (Selector_Name (P))) = E_Procedure
1100 or else
1101 Ekind (Entity (Selector_Name (P))) = E_Function)
1102 then
1103 Analyze_Call_And_Resolve;
1104
1105 elsif Nkind (P) = N_Selected_Component
1106 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1107 and then Present (Actuals)
1108 and then No (Next (First (Actuals)))
1109 then
82c80734
RD
1110 -- Can be call to parameterless entry family. What appears to be the
1111 -- sole argument is in fact the entry index. Rewrite prefix of node
1112 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1113 -- transformation.
1114
1115 New_N :=
1116 Make_Indexed_Component (Loc,
1117 Prefix => New_Copy (P),
1118 Expressions => Actuals);
1119 Set_Name (N, New_N);
1120 Set_Etype (New_N, Standard_Void_Type);
1121 Set_Parameter_Associations (N, No_List);
1122 Analyze_Call_And_Resolve;
1123
1124 -- For the case of a reference to an element of an entry family, P is
1125 -- an indexed component whose prefix is a selected component (task and
1126 -- entry family), and whose index is the entry family index.
1127
1128 elsif Nkind (P) = N_Indexed_Component
1129 and then Nkind (Prefix (P)) = N_Selected_Component
1130 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1131 then
1132 Analyze_Call_And_Resolve;
1133
1134 -- If the prefix is the name of an entry family, it is a call from
1135 -- within the task body itself.
1136
1137 elsif Nkind (P) = N_Indexed_Component
1138 and then Nkind (Prefix (P)) = N_Identifier
1139 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1140 then
1141 New_N :=
1142 Make_Selected_Component (Loc,
1143 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1144 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1145 Rewrite (Prefix (P), New_N);
1146 Analyze (P);
1147 Analyze_Call_And_Resolve;
1148
e895b435 1149 -- Anything else is an error
996ae0b0
RK
1150
1151 else
758c442c 1152 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0
RK
1153 end if;
1154 end Analyze_Procedure_Call;
1155
5d37ba92
ES
1156 -------------------------------------
1157 -- Analyze_Simple_Return_Statement --
1158 -------------------------------------
ec4867fa 1159
5d37ba92 1160 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1161 begin
5d37ba92
ES
1162 if Present (Expression (N)) then
1163 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1164 end if;
1165
5d37ba92
ES
1166 Analyze_Return_Statement (N);
1167 end Analyze_Simple_Return_Statement;
996ae0b0 1168
82c80734
RD
1169 -------------------------
1170 -- Analyze_Return_Type --
1171 -------------------------
1172
1173 procedure Analyze_Return_Type (N : Node_Id) is
1174 Designator : constant Entity_Id := Defining_Entity (N);
1175 Typ : Entity_Id := Empty;
1176
1177 begin
ec4867fa
ES
1178 -- Normal case where result definition does not indicate an error
1179
41251c60
JM
1180 if Result_Definition (N) /= Error then
1181 if Nkind (Result_Definition (N)) = N_Access_Definition then
1182 Typ := Access_Definition (N, Result_Definition (N));
1183 Set_Parent (Typ, Result_Definition (N));
1184 Set_Is_Local_Anonymous_Access (Typ);
1185 Set_Etype (Designator, Typ);
1186
41251c60
JM
1187 -- Subtype_Mark case
1188
1189 else
1190 Find_Type (Result_Definition (N));
1191 Typ := Entity (Result_Definition (N));
1192 Set_Etype (Designator, Typ);
1193
1194 if Ekind (Typ) = E_Incomplete_Type
0a36105d
JM
1195 and then Is_Value_Type (Typ)
1196 then
1197 null;
1198
1199 elsif Ekind (Typ) = E_Incomplete_Type
41251c60
JM
1200 or else (Is_Class_Wide_Type (Typ)
1201 and then
1202 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1203 then
1204 Error_Msg_N
1205 ("invalid use of incomplete type", Result_Definition (N));
1206 end if;
82c80734
RD
1207 end if;
1208
ec4867fa
ES
1209 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1210
1211 Null_Exclusion_Static_Checks (N);
1212
1213 -- Case where result definition does indicate an error
1214
82c80734
RD
1215 else
1216 Set_Etype (Designator, Any_Type);
1217 end if;
1218 end Analyze_Return_Type;
1219
996ae0b0
RK
1220 -----------------------------
1221 -- Analyze_Subprogram_Body --
1222 -----------------------------
1223
1224 -- This procedure is called for regular subprogram bodies, generic bodies,
1225 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1226 -- specification matters, and is used to create a proper declaration for
1227 -- the subprogram, or to perform conformance checks.
1228
1229 procedure Analyze_Subprogram_Body (N : Node_Id) is
fbf5a39b
AC
1230 Loc : constant Source_Ptr := Sloc (N);
1231 Body_Spec : constant Node_Id := Specification (N);
1232 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1233 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1234 Body_Deleted : constant Boolean := False;
996ae0b0 1235
0868e09c
RD
1236 HSS : Node_Id;
1237 Spec_Id : Entity_Id;
1238 Spec_Decl : Node_Id := Empty;
1239 Last_Formal : Entity_Id := Empty;
1240 Conformant : Boolean;
1241 Missing_Ret : Boolean;
07fc65c4 1242 P_Ent : Entity_Id;
996ae0b0 1243
ec4867fa
ES
1244 procedure Check_Anonymous_Return;
1245 -- (Ada 2005): if a function returns an access type that denotes a task,
1246 -- or a type that contains tasks, we must create a master entity for
1247 -- the anonymous type, which typically will be used in an allocator
1248 -- in the body of the function.
1249
e660dbf7
JM
1250 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1251 -- Look ahead to recognize a pragma that may appear after the body.
1252 -- If there is a previous spec, check that it appears in the same
1253 -- declarative part. If the pragma is Inline_Always, perform inlining
1254 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1255 -- If the body acts as a spec, and inlining is required, we create a
1256 -- subprogram declaration for it, in order to attach the body to inline.
1257
1258 procedure Copy_Parameter_List (Plist : List_Id);
f937473f
RD
1259 -- Utility to create a parameter profile for a new subprogram spec,
1260 -- when the subprogram has a body that acts as spec. This is done for
1261 -- some cases of inlining, and for private protected ops.
c37bb106 1262
76a69663
ES
1263 procedure Set_Trivial_Subprogram (N : Node_Id);
1264 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1265 -- subprogram whose body is being analyzed. N is the statement node
1266 -- causing the flag to be set, if the following statement is a return
1267 -- of an entity, we mark the entity as set in source to suppress any
1268 -- warning on the stylized use of function stubs with a dummy return.
1269
758c442c
GD
1270 procedure Verify_Overriding_Indicator;
1271 -- If there was a previous spec, the entity has been entered in the
1272 -- current scope previously. If the body itself carries an overriding
1273 -- indicator, check that it is consistent with the known status of the
1274 -- entity.
1275
ec4867fa
ES
1276 ----------------------------
1277 -- Check_Anonymous_Return --
1278 ----------------------------
1279
1280 procedure Check_Anonymous_Return is
1281 Decl : Node_Id;
1282 Scop : Entity_Id;
1283
1284 begin
1285 if Present (Spec_Id) then
1286 Scop := Spec_Id;
1287 else
1288 Scop := Body_Id;
1289 end if;
1290
1291 if Ekind (Scop) = E_Function
1292 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1293 and then Has_Task (Designated_Type (Etype (Scop)))
1294 and then Expander_Active
1295 then
1296 Decl :=
1297 Make_Object_Declaration (Loc,
1298 Defining_Identifier =>
1299 Make_Defining_Identifier (Loc, Name_uMaster),
1300 Constant_Present => True,
1301 Object_Definition =>
1302 New_Reference_To (RTE (RE_Master_Id), Loc),
1303 Expression =>
1304 Make_Explicit_Dereference (Loc,
1305 New_Reference_To (RTE (RE_Current_Master), Loc)));
1306
1307 if Present (Declarations (N)) then
1308 Prepend (Decl, Declarations (N));
1309 else
1310 Set_Declarations (N, New_List (Decl));
1311 end if;
1312
1313 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1314 Set_Has_Master_Entity (Scop);
1315 end if;
1316 end Check_Anonymous_Return;
1317
e660dbf7
JM
1318 -------------------------
1319 -- Check_Inline_Pragma --
1320 -------------------------
758c442c 1321
e660dbf7
JM
1322 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1323 Prag : Node_Id;
1324 Plist : List_Id;
0fb2ea01 1325
c37bb106 1326 begin
e660dbf7
JM
1327 if not Expander_Active then
1328 return;
1329 end if;
1330
1331 if Is_List_Member (N)
1332 and then Present (Next (N))
1333 and then Nkind (Next (N)) = N_Pragma
c37bb106
AC
1334 then
1335 Prag := Next (N);
1336
e660dbf7
JM
1337 if Nkind (Prag) = N_Pragma
1338 and then
76a69663
ES
1339 (Pragma_Name (Prag) = Name_Inline_Always
1340 or else
e660dbf7 1341 (Front_End_Inlining
76a69663 1342 and then Pragma_Name (Prag) = Name_Inline))
c37bb106 1343 and then
e660dbf7
JM
1344 Chars
1345 (Expression (First (Pragma_Argument_Associations (Prag))))
1346 = Chars (Body_Id)
c37bb106 1347 then
e660dbf7
JM
1348 Prag := Next (N);
1349 else
1350 Prag := Empty;
c37bb106 1351 end if;
e660dbf7
JM
1352 else
1353 Prag := Empty;
c37bb106 1354 end if;
e660dbf7
JM
1355
1356 if Present (Prag) then
1357 if Present (Spec_Id) then
1358 if List_Containing (N) =
1359 List_Containing (Unit_Declaration_Node (Spec_Id))
1360 then
1361 Analyze (Prag);
1362 end if;
1363
1364 else
d39d6bb8 1365 -- Create a subprogram declaration, to make treatment uniform
e660dbf7
JM
1366
1367 declare
1368 Subp : constant Entity_Id :=
1369 Make_Defining_Identifier (Loc, Chars (Body_Id));
1370 Decl : constant Node_Id :=
1371 Make_Subprogram_Declaration (Loc,
1372 Specification => New_Copy_Tree (Specification (N)));
1373 begin
1374 Set_Defining_Unit_Name (Specification (Decl), Subp);
1375
1376 if Present (First_Formal (Body_Id)) then
1377 Plist := New_List;
1378 Copy_Parameter_List (Plist);
1379 Set_Parameter_Specifications
1380 (Specification (Decl), Plist);
1381 end if;
1382
1383 Insert_Before (N, Decl);
1384 Analyze (Decl);
1385 Analyze (Prag);
1386 Set_Has_Pragma_Inline (Subp);
1387
76a69663 1388 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7
JM
1389 Set_Is_Inlined (Subp);
1390 Set_Next_Rep_Item (Prag, First_Rep_Item (Subp));
1391 Set_First_Rep_Item (Subp, Prag);
1392 end if;
1393
1394 Spec := Subp;
1395 end;
1396 end if;
1397 end if;
1398 end Check_Inline_Pragma;
1399
1400 -------------------------
1401 -- Copy_Parameter_List --
1402 -------------------------
1403
1404 procedure Copy_Parameter_List (Plist : List_Id) is
1405 Formal : Entity_Id;
1406
1407 begin
1408 Formal := First_Formal (Body_Id);
1409
1410 while Present (Formal) loop
1411 Append
1412 (Make_Parameter_Specification (Loc,
1413 Defining_Identifier =>
1414 Make_Defining_Identifier (Sloc (Formal),
1415 Chars => Chars (Formal)),
1416 In_Present => In_Present (Parent (Formal)),
1417 Out_Present => Out_Present (Parent (Formal)),
1418 Parameter_Type =>
1419 New_Reference_To (Etype (Formal), Loc),
1420 Expression =>
1421 New_Copy_Tree (Expression (Parent (Formal)))),
1422 Plist);
1423
1424 Next_Formal (Formal);
1425 end loop;
1426 end Copy_Parameter_List;
c37bb106 1427
76a69663
ES
1428 ----------------------------
1429 -- Set_Trivial_Subprogram --
1430 ----------------------------
1431
1432 procedure Set_Trivial_Subprogram (N : Node_Id) is
1433 Nxt : constant Node_Id := Next (N);
1434
1435 begin
1436 Set_Is_Trivial_Subprogram (Body_Id);
1437
1438 if Present (Spec_Id) then
1439 Set_Is_Trivial_Subprogram (Spec_Id);
1440 end if;
1441
1442 if Present (Nxt)
1443 and then Nkind (Nxt) = N_Simple_Return_Statement
1444 and then No (Next (Nxt))
1445 and then Present (Expression (Nxt))
1446 and then Is_Entity_Name (Expression (Nxt))
1447 then
1448 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1449 end if;
1450 end Set_Trivial_Subprogram;
1451
758c442c
GD
1452 ---------------------------------
1453 -- Verify_Overriding_Indicator --
1454 ---------------------------------
1455
1456 procedure Verify_Overriding_Indicator is
1457 begin
1458 if Must_Override (Body_Spec)
1459 and then not Is_Overriding_Operation (Spec_Id)
1460 then
1461 Error_Msg_NE
1462 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1463
5d37ba92
ES
1464 elsif Must_Not_Override (Body_Spec) then
1465 if Is_Overriding_Operation (Spec_Id) then
1466 Error_Msg_NE
1467 ("subprogram& overrides inherited operation",
76a69663 1468 Body_Spec, Spec_Id);
5d37ba92
ES
1469
1470 -- If this is not a primitive operation the overriding indicator
1471 -- is altogether illegal.
1472
1473 elsif not Is_Primitive (Spec_Id) then
1474 Error_Msg_N ("overriding indicator only allowed " &
1475 "if subprogram is primitive",
1476 Body_Spec);
1477 end if;
758c442c
GD
1478 end if;
1479 end Verify_Overriding_Indicator;
1480
0fb2ea01
AC
1481 -- Start of processing for Analyze_Subprogram_Body
1482
996ae0b0
RK
1483 begin
1484 if Debug_Flag_C then
1485 Write_Str ("==== Compiling subprogram body ");
1486 Write_Name (Chars (Body_Id));
1487 Write_Str (" from ");
0868e09c 1488 Write_Location (Loc);
996ae0b0
RK
1489 Write_Eol;
1490 end if;
1491
800621e0 1492 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
996ae0b0 1493
82c80734
RD
1494 -- Generic subprograms are handled separately. They always have a
1495 -- generic specification. Determine whether current scope has a
1496 -- previous declaration.
996ae0b0 1497
82c80734
RD
1498 -- If the subprogram body is defined within an instance of the same
1499 -- name, the instance appears as a package renaming, and will be hidden
1500 -- within the subprogram.
996ae0b0
RK
1501
1502 if Present (Prev_Id)
1503 and then not Is_Overloadable (Prev_Id)
1504 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1505 or else Comes_From_Source (Prev_Id))
1506 then
fbf5a39b 1507 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0
RK
1508 Spec_Id := Prev_Id;
1509 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1510 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1511
1512 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1513 return;
1514
1515 else
82c80734
RD
1516 -- Previous entity conflicts with subprogram name. Attempting to
1517 -- enter name will post error.
996ae0b0
RK
1518
1519 Enter_Name (Body_Id);
1520 return;
1521 end if;
1522
82c80734
RD
1523 -- Non-generic case, find the subprogram declaration, if one was seen,
1524 -- or enter new overloaded entity in the current scope. If the
1525 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1526 -- part of the context of one of its subunits. No need to redo the
1527 -- analysis.
996ae0b0
RK
1528
1529 elsif Prev_Id = Body_Id
1530 and then Has_Completion (Body_Id)
1531 then
1532 return;
1533
1534 else
fbf5a39b 1535 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
1536
1537 if Nkind (N) = N_Subprogram_Body_Stub
1538 or else No (Corresponding_Spec (N))
1539 then
1540 Spec_Id := Find_Corresponding_Spec (N);
1541
1542 -- If this is a duplicate body, no point in analyzing it
1543
1544 if Error_Posted (N) then
1545 return;
1546 end if;
1547
82c80734
RD
1548 -- A subprogram body should cause freezing of its own declaration,
1549 -- but if there was no previous explicit declaration, then the
1550 -- subprogram will get frozen too late (there may be code within
1551 -- the body that depends on the subprogram having been frozen,
1552 -- such as uses of extra formals), so we force it to be frozen
76a69663 1553 -- here. Same holds if the body and spec are compilation units.
996ae0b0
RK
1554
1555 if No (Spec_Id) then
1556 Freeze_Before (N, Body_Id);
1557
1558 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1559 Freeze_Before (N, Spec_Id);
1560 end if;
1561 else
1562 Spec_Id := Corresponding_Spec (N);
1563 end if;
1564 end if;
1565
82c80734
RD
1566 -- Do not inline any subprogram that contains nested subprograms, since
1567 -- the backend inlining circuit seems to generate uninitialized
07fc65c4 1568 -- references in this case. We know this happens in the case of front
82c80734
RD
1569 -- end ZCX support, but it also appears it can happen in other cases as
1570 -- well. The backend often rejects attempts to inline in the case of
1571 -- nested procedures anyway, so little if anything is lost by this.
1572 -- Note that this is test is for the benefit of the back-end. There is
1573 -- a separate test for front-end inlining that also rejects nested
1574 -- subprograms.
07fc65c4
GB
1575
1576 -- Do not do this test if errors have been detected, because in some
1577 -- error cases, this code blows up, and we don't need it anyway if
1578 -- there have been errors, since we won't get to the linker anyway.
1579
82c80734
RD
1580 if Comes_From_Source (Body_Id)
1581 and then Serious_Errors_Detected = 0
1582 then
07fc65c4
GB
1583 P_Ent := Body_Id;
1584 loop
1585 P_Ent := Scope (P_Ent);
1586 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1587
fbf5a39b 1588 if Is_Subprogram (P_Ent) then
07fc65c4
GB
1589 Set_Is_Inlined (P_Ent, False);
1590
1591 if Comes_From_Source (P_Ent)
07fc65c4
GB
1592 and then Has_Pragma_Inline (P_Ent)
1593 then
fbf5a39b
AC
1594 Cannot_Inline
1595 ("cannot inline& (nested subprogram)?",
1596 N, P_Ent);
07fc65c4
GB
1597 end if;
1598 end if;
1599 end loop;
1600 end if;
1601
e660dbf7
JM
1602 Check_Inline_Pragma (Spec_Id);
1603
07fc65c4
GB
1604 -- Case of fully private operation in the body of the protected type.
1605 -- We must create a declaration for the subprogram, in order to attach
1606 -- the protected subprogram that will be used in internal calls.
1607
996ae0b0
RK
1608 if No (Spec_Id)
1609 and then Comes_From_Source (N)
1610 and then Is_Protected_Type (Current_Scope)
1611 then
996ae0b0 1612 declare
996ae0b0
RK
1613 Decl : Node_Id;
1614 Plist : List_Id;
1615 Formal : Entity_Id;
1616 New_Spec : Node_Id;
1617
1618 begin
1619 Formal := First_Formal (Body_Id);
1620
82c80734
RD
1621 -- The protected operation always has at least one formal, namely
1622 -- the object itself, but it is only placed in the parameter list
1623 -- if expansion is enabled.
996ae0b0
RK
1624
1625 if Present (Formal)
1626 or else Expander_Active
1627 then
1628 Plist := New_List;
1629
1630 else
1631 Plist := No_List;
1632 end if;
1633
e660dbf7 1634 Copy_Parameter_List (Plist);
996ae0b0
RK
1635
1636 if Nkind (Body_Spec) = N_Procedure_Specification then
1637 New_Spec :=
1638 Make_Procedure_Specification (Loc,
1639 Defining_Unit_Name =>
1640 Make_Defining_Identifier (Sloc (Body_Id),
1641 Chars => Chars (Body_Id)),
1642 Parameter_Specifications => Plist);
1643 else
1644 New_Spec :=
1645 Make_Function_Specification (Loc,
1646 Defining_Unit_Name =>
1647 Make_Defining_Identifier (Sloc (Body_Id),
1648 Chars => Chars (Body_Id)),
1649 Parameter_Specifications => Plist,
41251c60
JM
1650 Result_Definition =>
1651 New_Occurrence_Of (Etype (Body_Id), Loc));
996ae0b0
RK
1652 end if;
1653
1654 Decl :=
1655 Make_Subprogram_Declaration (Loc,
1656 Specification => New_Spec);
1657 Insert_Before (N, Decl);
996ae0b0 1658 Spec_Id := Defining_Unit_Name (New_Spec);
2820d220
AC
1659
1660 -- Indicate that the entity comes from source, to ensure that
82c80734
RD
1661 -- cross-reference information is properly generated. The body
1662 -- itself is rewritten during expansion, and the body entity will
1663 -- not appear in calls to the operation.
2820d220
AC
1664
1665 Set_Comes_From_Source (Spec_Id, True);
1666 Analyze (Decl);
996ae0b0
RK
1667 Set_Has_Completion (Spec_Id);
1668 Set_Convention (Spec_Id, Convention_Protected);
1669 end;
1670
1671 elsif Present (Spec_Id) then
1672 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 1673 Verify_Overriding_Indicator;
5d37ba92
ES
1674
1675 -- In general, the spec will be frozen when we start analyzing the
1676 -- body. However, for internally generated operations, such as
1677 -- wrapper functions for inherited operations with controlling
1678 -- results, the spec may not have been frozen by the time we
1679 -- expand the freeze actions that include the bodies. In particular,
1680 -- extra formals for accessibility or for return-in-place may need
1681 -- to be generated. Freeze nodes, if any, are inserted before the
1682 -- current body.
1683
1684 if not Is_Frozen (Spec_Id)
1685 and then Expander_Active
1686 then
1687 -- Force the generation of its freezing node to ensure proper
1688 -- management of access types in the backend.
1689
1690 -- This is definitely needed for some cases, but it is not clear
1691 -- why, to be investigated further???
1692
1693 Set_Has_Delayed_Freeze (Spec_Id);
1694 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
1695 end if;
996ae0b0
RK
1696 end if;
1697
1698 -- Place subprogram on scope stack, and make formals visible. If there
1699 -- is a spec, the visible entity remains that of the spec.
1700
1701 if Present (Spec_Id) then
07fc65c4 1702 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
1703
1704 if Is_Child_Unit (Spec_Id) then
1705 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
1706 end if;
1707
fbf5a39b
AC
1708 if Style_Check then
1709 Style.Check_Identifier (Body_Id, Spec_Id);
1710 end if;
996ae0b0
RK
1711
1712 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1713 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1714
f937473f 1715 if Is_Abstract_Subprogram (Spec_Id) then
996ae0b0
RK
1716 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1717 return;
1718 else
1719 Set_Convention (Body_Id, Convention (Spec_Id));
1720 Set_Has_Completion (Spec_Id);
1721
1722 if Is_Protected_Type (Scope (Spec_Id)) then
1723 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1724 end if;
1725
1726 -- If this is a body generated for a renaming, do not check for
1727 -- full conformance. The check is redundant, because the spec of
1728 -- the body is a copy of the spec in the renaming declaration,
1729 -- and the test can lead to spurious errors on nested defaults.
1730
1731 if Present (Spec_Decl)
996ae0b0 1732 and then not Comes_From_Source (N)
93a81b02
GB
1733 and then
1734 (Nkind (Original_Node (Spec_Decl)) =
d2f97d3e
GB
1735 N_Subprogram_Renaming_Declaration
1736 or else (Present (Corresponding_Body (Spec_Decl))
1737 and then
1738 Nkind (Unit_Declaration_Node
1739 (Corresponding_Body (Spec_Decl))) =
1740 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
1741 then
1742 Conformant := True;
76a69663 1743
996ae0b0
RK
1744 else
1745 Check_Conformance
1746 (Body_Id, Spec_Id,
76a69663 1747 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
1748 end if;
1749
1750 -- If the body is not fully conformant, we have to decide if we
1751 -- should analyze it or not. If it has a really messed up profile
1752 -- then we probably should not analyze it, since we will get too
1753 -- many bogus messages.
1754
1755 -- Our decision is to go ahead in the non-fully conformant case
1756 -- only if it is at least mode conformant with the spec. Note
1757 -- that the call to Check_Fully_Conformant has issued the proper
1758 -- error messages to complain about the lack of conformance.
1759
1760 if not Conformant
1761 and then not Mode_Conformant (Body_Id, Spec_Id)
1762 then
1763 return;
1764 end if;
1765 end if;
1766
996ae0b0 1767 if Spec_Id /= Body_Id then
fbf5a39b 1768 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
1769 end if;
1770
1771 if Nkind (N) /= N_Subprogram_Body_Stub then
1772 Set_Corresponding_Spec (N, Spec_Id);
758c442c 1773
5d37ba92
ES
1774 -- Ada 2005 (AI-345): If the operation is a primitive operation
1775 -- of a concurrent type, the type of the first parameter has been
1776 -- replaced with the corresponding record, which is the proper
1777 -- run-time structure to use. However, within the body there may
1778 -- be uses of the formals that depend on primitive operations
1779 -- of the type (in particular calls in prefixed form) for which
1780 -- we need the original concurrent type. The operation may have
1781 -- several controlling formals, so the replacement must be done
1782 -- for all of them.
758c442c
GD
1783
1784 if Comes_From_Source (Spec_Id)
1785 and then Present (First_Entity (Spec_Id))
1786 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
1787 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
5d37ba92
ES
1788 and then
1789 Present (Abstract_Interfaces (Etype (First_Entity (Spec_Id))))
1790 and then
1791 Present
1792 (Corresponding_Concurrent_Type
1793 (Etype (First_Entity (Spec_Id))))
758c442c 1794 then
5d37ba92
ES
1795 declare
1796 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
1797 Form : Entity_Id;
1798
1799 begin
1800 Form := First_Formal (Spec_Id);
1801 while Present (Form) loop
1802 if Etype (Form) = Typ then
1803 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
1804 end if;
1805
1806 Next_Formal (Form);
1807 end loop;
1808 end;
758c442c
GD
1809 end if;
1810
76a69663 1811 -- Make the formals visible, and place subprogram on scope stack
758c442c 1812
996ae0b0
RK
1813 Install_Formals (Spec_Id);
1814 Last_Formal := Last_Entity (Spec_Id);
0a36105d 1815 Push_Scope (Spec_Id);
996ae0b0
RK
1816
1817 -- Make sure that the subprogram is immediately visible. For
1818 -- child units that have no separate spec this is indispensable.
1819 -- Otherwise it is safe albeit redundant.
1820
1821 Set_Is_Immediately_Visible (Spec_Id);
1822 end if;
1823
1824 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1825 Set_Ekind (Body_Id, E_Subprogram_Body);
1826 Set_Scope (Body_Id, Scope (Spec_Id));
ec4867fa 1827 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
996ae0b0
RK
1828
1829 -- Case of subprogram body with no previous spec
1830
1831 else
1832 if Style_Check
1833 and then Comes_From_Source (Body_Id)
1834 and then not Suppress_Style_Checks (Body_Id)
1835 and then not In_Instance
1836 then
1837 Style.Body_With_No_Spec (N);
1838 end if;
1839
1840 New_Overloaded_Entity (Body_Id);
1841
1842 if Nkind (N) /= N_Subprogram_Body_Stub then
1843 Set_Acts_As_Spec (N);
1844 Generate_Definition (Body_Id);
fbf5a39b
AC
1845 Generate_Reference
1846 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
1847 Generate_Reference_To_Formals (Body_Id);
996ae0b0 1848 Install_Formals (Body_Id);
0a36105d 1849 Push_Scope (Body_Id);
996ae0b0
RK
1850 end if;
1851 end if;
1852
76a69663
ES
1853 -- If the return type is an anonymous access type whose designated type
1854 -- is the limited view of a class-wide type and the non-limited view is
1855 -- available, update the return type accordingly.
ec4867fa
ES
1856
1857 if Ada_Version >= Ada_05
1858 and then Comes_From_Source (N)
1859 then
1860 declare
ec4867fa 1861 Etyp : Entity_Id;
0a36105d 1862 Rtyp : Entity_Id;
ec4867fa
ES
1863
1864 begin
0a36105d
JM
1865 Rtyp := Etype (Current_Scope);
1866
1867 if Ekind (Rtyp) = E_Anonymous_Access_Type then
1868 Etyp := Directly_Designated_Type (Rtyp);
1869
1870 if Is_Class_Wide_Type (Etyp)
1871 and then From_With_Type (Etyp)
1872 then
1873 Set_Directly_Designated_Type
1874 (Etype (Current_Scope), Available_View (Etyp));
1875 end if;
1876 end if;
ec4867fa
ES
1877 end;
1878 end if;
1879
996ae0b0
RK
1880 -- If this is the proper body of a stub, we must verify that the stub
1881 -- conforms to the body, and to the previous spec if one was present.
1882 -- we know already that the body conforms to that spec. This test is
1883 -- only required for subprograms that come from source.
1884
1885 if Nkind (Parent (N)) = N_Subunit
1886 and then Comes_From_Source (N)
1887 and then not Error_Posted (Body_Id)
e895b435
ES
1888 and then Nkind (Corresponding_Stub (Parent (N))) =
1889 N_Subprogram_Body_Stub
996ae0b0
RK
1890 then
1891 declare
fbf5a39b
AC
1892 Old_Id : constant Entity_Id :=
1893 Defining_Entity
1894 (Specification (Corresponding_Stub (Parent (N))));
1895
996ae0b0 1896 Conformant : Boolean := False;
996ae0b0
RK
1897
1898 begin
1899 if No (Spec_Id) then
1900 Check_Fully_Conformant (Body_Id, Old_Id);
1901
1902 else
1903 Check_Conformance
1904 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1905
1906 if not Conformant then
1907
1908 -- The stub was taken to be a new declaration. Indicate
1909 -- that it lacks a body.
1910
1911 Set_Has_Completion (Old_Id, False);
1912 end if;
1913 end if;
1914 end;
1915 end if;
1916
1917 Set_Has_Completion (Body_Id);
1918 Check_Eliminated (Body_Id);
1919
1920 if Nkind (N) = N_Subprogram_Body_Stub then
1921 return;
1922
ec4867fa 1923 elsif Present (Spec_Id)
996ae0b0 1924 and then Expander_Active
e660dbf7 1925 and then
800621e0 1926 (Has_Pragma_Inline_Always (Spec_Id)
e660dbf7 1927 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
996ae0b0 1928 then
e660dbf7 1929 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
1930 end if;
1931
0ab80019 1932 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
9bc856dd
AC
1933 -- if its specification we have to install the private withed units.
1934
1935 if Is_Compilation_Unit (Body_Id)
1936 and then Scope (Body_Id) = Standard_Standard
1937 then
1938 Install_Private_With_Clauses (Body_Id);
1939 end if;
1940
ec4867fa
ES
1941 Check_Anonymous_Return;
1942
fdce4bb7
JM
1943 -- Set the Protected_Formal field of each extra formal of the protected
1944 -- subprogram to reference the corresponding extra formal of the
1945 -- subprogram that implements it. For regular formals this occurs when
1946 -- the protected subprogram's declaration is expanded, but the extra
1947 -- formals don't get created until the subprogram is frozen. We need to
1948 -- do this before analyzing the protected subprogram's body so that any
1949 -- references to the original subprogram's extra formals will be changed
1950 -- refer to the implementing subprogram's formals (see Expand_Formal).
1951
1952 if Present (Spec_Id)
1953 and then Is_Protected_Type (Scope (Spec_Id))
1954 and then Present (Protected_Body_Subprogram (Spec_Id))
1955 then
1956 declare
1957 Impl_Subp : constant Entity_Id :=
1958 Protected_Body_Subprogram (Spec_Id);
1959 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
1960 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
fdce4bb7
JM
1961 begin
1962 while Present (Prot_Ext_Formal) loop
1963 pragma Assert (Present (Impl_Ext_Formal));
1964
1965 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
1966
1967 Next_Formal_With_Extras (Prot_Ext_Formal);
1968 Next_Formal_With_Extras (Impl_Ext_Formal);
1969 end loop;
1970 end;
1971 end if;
1972
0868e09c 1973 -- Now we can go on to analyze the body
996ae0b0
RK
1974
1975 HSS := Handled_Statement_Sequence (N);
1976 Set_Actual_Subtypes (N, Current_Scope);
1977 Analyze_Declarations (Declarations (N));
1978 Check_Completion;
1979 Analyze (HSS);
07fc65c4 1980 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0
RK
1981 End_Scope;
1982 Check_Subprogram_Order (N);
c37bb106 1983 Set_Analyzed (Body_Id);
996ae0b0
RK
1984
1985 -- If we have a separate spec, then the analysis of the declarations
1986 -- caused the entities in the body to be chained to the spec id, but
1987 -- we want them chained to the body id. Only the formal parameters
1988 -- end up chained to the spec id in this case.
1989
1990 if Present (Spec_Id) then
1991
d39d6bb8 1992 -- We must conform to the categorization of our spec
996ae0b0 1993
d39d6bb8 1994 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 1995
d39d6bb8
RD
1996 -- And if this is a child unit, the parent units must conform
1997
1998 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
1999 Validate_Categorization_Dependency
2000 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2001 end if;
2002
2003 if Present (Last_Formal) then
2004 Set_Next_Entity
2005 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
2006 Set_Next_Entity (Last_Formal, Empty);
2007 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2008 Set_Last_Entity (Spec_Id, Last_Formal);
2009
2010 else
2011 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2012 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2013 Set_First_Entity (Spec_Id, Empty);
2014 Set_Last_Entity (Spec_Id, Empty);
2015 end if;
2016 end if;
2017
2018 -- If function, check return statements
2019
2020 if Nkind (Body_Spec) = N_Function_Specification then
2021 declare
2022 Id : Entity_Id;
2023
2024 begin
2025 if Present (Spec_Id) then
2026 Id := Spec_Id;
2027 else
2028 Id := Body_Id;
2029 end if;
2030
2031 if Return_Present (Id) then
2032 Check_Returns (HSS, 'F', Missing_Ret);
2033
2034 if Missing_Ret then
2035 Set_Has_Missing_Return (Id);
2036 end if;
2037
0868e09c
RD
2038 elsif not Is_Machine_Code_Subprogram (Id)
2039 and then not Body_Deleted
2040 then
996ae0b0
RK
2041 Error_Msg_N ("missing RETURN statement in function body", N);
2042 end if;
2043 end;
2044
2045 -- If procedure with No_Return, check returns
2046
2047 elsif Nkind (Body_Spec) = N_Procedure_Specification
2048 and then Present (Spec_Id)
2049 and then No_Return (Spec_Id)
2050 then
c8ef728f 2051 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
996ae0b0
RK
2052 end if;
2053
82c80734 2054 -- Now we are going to check for variables that are never modified in
76a69663
ES
2055 -- the body of the procedure. But first we deal with a special case
2056 -- where we want to modify this check. If the body of the subprogram
2057 -- starts with a raise statement or its equivalent, or if the body
2058 -- consists entirely of a null statement, then it is pretty obvious
2059 -- that it is OK to not reference the parameters. For example, this
2060 -- might be the following common idiom for a stubbed function:
82c80734
RD
2061 -- statement of the procedure raises an exception. In particular this
2062 -- deals with the common idiom of a stubbed function, which might
2063 -- appear as something like
fbf5a39b
AC
2064
2065 -- function F (A : Integer) return Some_Type;
2066 -- X : Some_Type;
2067 -- begin
2068 -- raise Program_Error;
2069 -- return X;
2070 -- end F;
2071
76a69663
ES
2072 -- Here the purpose of X is simply to satisfy the annoying requirement
2073 -- in Ada that there be at least one return, and we certainly do not
2074 -- want to go posting warnings on X that it is not initialized! On
2075 -- the other hand, if X is entirely unreferenced that should still
2076 -- get a warning.
2077
2078 -- What we do is to detect these cases, and if we find them, flag the
2079 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2080 -- suppress unwanted warnings. For the case of the function stub above
2081 -- we have a special test to set X as apparently assigned to suppress
2082 -- the warning.
996ae0b0
RK
2083
2084 declare
800621e0 2085 Stm : Node_Id;
996ae0b0
RK
2086
2087 begin
0a36105d
JM
2088 -- Skip initial labels (for one thing this occurs when we are in
2089 -- front end ZCX mode, but in any case it is irrelevant), and also
2090 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 2091
800621e0 2092 Stm := First (Statements (HSS));
0a36105d
JM
2093 while Nkind (Stm) = N_Label
2094 or else Nkind (Stm) in N_Push_xxx_Label
2095 loop
996ae0b0 2096 Next (Stm);
0a36105d 2097 end loop;
996ae0b0 2098
fbf5a39b
AC
2099 -- Do the test on the original statement before expansion
2100
2101 declare
2102 Ostm : constant Node_Id := Original_Node (Stm);
2103
2104 begin
76a69663 2105 -- If explicit raise statement, turn on flag
fbf5a39b
AC
2106
2107 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
2108 Set_Trivial_Subprogram (Stm);
2109
2110 -- If null statement, and no following statemennts, turn on flag
2111
2112 elsif Nkind (Stm) = N_Null_Statement
2113 and then Comes_From_Source (Stm)
2114 and then No (Next (Stm))
2115 then
2116 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
2117
2118 -- Check for explicit call cases which likely raise an exception
2119
2120 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2121 if Is_Entity_Name (Name (Ostm)) then
2122 declare
2123 Ent : constant Entity_Id := Entity (Name (Ostm));
2124
2125 begin
2126 -- If the procedure is marked No_Return, then likely it
2127 -- raises an exception, but in any case it is not coming
76a69663 2128 -- back here, so turn on the flag.
fbf5a39b
AC
2129
2130 if Ekind (Ent) = E_Procedure
2131 and then No_Return (Ent)
2132 then
76a69663 2133 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
2134
2135 -- If the procedure name is Raise_Exception, then also
2136 -- assume that it raises an exception. The main target
2137 -- here is Ada.Exceptions.Raise_Exception, but this name
2138 -- is pretty evocative in any context! Note that the
2139 -- procedure in Ada.Exceptions is not marked No_Return
76a69663
ES
2140 -- because of the annoying case of the null exception Id
2141 -- when operating in Ada 95 mode.
fbf5a39b
AC
2142
2143 elsif Chars (Ent) = Name_Raise_Exception then
76a69663 2144 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
2145 end if;
2146 end;
2147 end if;
2148 end if;
2149 end;
996ae0b0
RK
2150 end;
2151
2152 -- Check for variables that are never modified
2153
2154 declare
2155 E1, E2 : Entity_Id;
2156
2157 begin
fbf5a39b 2158 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
2159 -- flags from out parameters to the corresponding entities in the
2160 -- body. The reason we do that is we want to post error flags on
2161 -- the body entities, not the spec entities.
2162
2163 if Present (Spec_Id) then
2164 E1 := First_Entity (Spec_Id);
996ae0b0
RK
2165 while Present (E1) loop
2166 if Ekind (E1) = E_Out_Parameter then
2167 E2 := First_Entity (Body_Id);
fbf5a39b 2168 while Present (E2) loop
996ae0b0
RK
2169 exit when Chars (E1) = Chars (E2);
2170 Next_Entity (E2);
2171 end loop;
2172
fbf5a39b
AC
2173 if Present (E2) then
2174 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2175 end if;
996ae0b0
RK
2176 end if;
2177
2178 Next_Entity (E1);
2179 end loop;
2180 end if;
2181
0868e09c
RD
2182 -- Check references in body unless it was deleted. Note that the
2183 -- check of Body_Deleted here is not just for efficiency, it is
2184 -- necessary to avoid junk warnings on formal parameters.
2185
2186 if not Body_Deleted then
2187 Check_References (Body_Id);
2188 end if;
996ae0b0
RK
2189 end;
2190 end Analyze_Subprogram_Body;
2191
2192 ------------------------------------
2193 -- Analyze_Subprogram_Declaration --
2194 ------------------------------------
2195
2196 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
2197 Designator : constant Entity_Id :=
2198 Analyze_Subprogram_Specification (Specification (N));
2199 Scop : constant Entity_Id := Current_Scope;
996ae0b0
RK
2200
2201 -- Start of processing for Analyze_Subprogram_Declaration
2202
2203 begin
2204 Generate_Definition (Designator);
2205
0a36105d 2206 -- Check for RCI unit subprogram declarations for illegal inlined
996ae0b0 2207 -- subprograms and subprograms having access parameter or limited
0a36105d 2208 -- parameter without Read and Write attributes (RM E.2.3(12-13)).
996ae0b0
RK
2209
2210 Validate_RCI_Subprogram_Declaration (N);
2211
2212 Trace_Scope
2213 (N,
2214 Defining_Entity (N),
800621e0 2215 " Analyze subprogram spec: ");
996ae0b0
RK
2216
2217 if Debug_Flag_C then
2218 Write_Str ("==== Compiling subprogram spec ");
2219 Write_Name (Chars (Designator));
2220 Write_Str (" from ");
2221 Write_Location (Sloc (N));
2222 Write_Eol;
2223 end if;
2224
2225 New_Overloaded_Entity (Designator);
2226 Check_Delayed_Subprogram (Designator);
fbf5a39b 2227
ec4867fa
ES
2228 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2229 -- or null.
2230
2231 if Ada_Version >= Ada_05
2232 and then Comes_From_Source (N)
2233 and then Is_Dispatching_Operation (Designator)
2234 then
2235 declare
2236 E : Entity_Id;
2237 Etyp : Entity_Id;
2238
2239 begin
2240 if Has_Controlling_Result (Designator) then
2241 Etyp := Etype (Designator);
2242
2243 else
2244 E := First_Entity (Designator);
2245 while Present (E)
2246 and then Is_Formal (E)
2247 and then not Is_Controlling_Formal (E)
2248 loop
2249 Next_Entity (E);
2250 end loop;
2251
2252 Etyp := Etype (E);
2253 end if;
2254
2255 if Is_Access_Type (Etyp) then
2256 Etyp := Directly_Designated_Type (Etyp);
2257 end if;
2258
2259 if Is_Interface (Etyp)
f937473f 2260 and then not Is_Abstract_Subprogram (Designator)
ec4867fa
ES
2261 and then not (Ekind (Designator) = E_Procedure
2262 and then Null_Present (Specification (N)))
2263 then
2264 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2265 Error_Msg_N
2266 ("(Ada 2005) interface subprogram % must be abstract or null",
2267 N);
2268 end if;
2269 end;
2270 end if;
2271
fbf5a39b
AC
2272 -- What is the following code for, it used to be
2273
2274 -- ??? Set_Suppress_Elaboration_Checks
2275 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2276
2277 -- The following seems equivalent, but a bit dubious
2278
2279 if Elaboration_Checks_Suppressed (Designator) then
2280 Set_Kill_Elaboration_Checks (Designator);
2281 end if;
996ae0b0
RK
2282
2283 if Scop /= Standard_Standard
2284 and then not Is_Child_Unit (Designator)
2285 then
fbf5a39b 2286 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0 2287 else
e895b435 2288 -- For a compilation unit, check for library-unit pragmas
996ae0b0 2289
0a36105d 2290 Push_Scope (Designator);
996ae0b0
RK
2291 Set_Categorization_From_Pragmas (N);
2292 Validate_Categorization_Dependency (N, Designator);
2293 Pop_Scope;
2294 end if;
2295
2296 -- For a compilation unit, set body required. This flag will only be
2297 -- reset if a valid Import or Interface pragma is processed later on.
2298
2299 if Nkind (Parent (N)) = N_Compilation_Unit then
2300 Set_Body_Required (Parent (N), True);
758c442c
GD
2301
2302 if Ada_Version >= Ada_05
2303 and then Nkind (Specification (N)) = N_Procedure_Specification
2304 and then Null_Present (Specification (N))
2305 then
2306 Error_Msg_N
2307 ("null procedure cannot be declared at library level", N);
2308 end if;
996ae0b0
RK
2309 end if;
2310
fbf5a39b 2311 Generate_Reference_To_Formals (Designator);
996ae0b0 2312 Check_Eliminated (Designator);
fbf5a39b 2313
758c442c
GD
2314 -- Ada 2005: if procedure is declared with "is null" qualifier,
2315 -- it requires no body.
2316
2317 if Nkind (Specification (N)) = N_Procedure_Specification
2318 and then Null_Present (Specification (N))
fbf5a39b 2319 then
758c442c
GD
2320 Set_Has_Completion (Designator);
2321 Set_Is_Inlined (Designator);
ec4867fa
ES
2322
2323 if Is_Protected_Type (Current_Scope) then
2324 Error_Msg_N
2325 ("protected operation cannot be a null procedure", N);
2326 end if;
fbf5a39b 2327 end if;
996ae0b0
RK
2328 end Analyze_Subprogram_Declaration;
2329
fbf5a39b
AC
2330 --------------------------------------
2331 -- Analyze_Subprogram_Specification --
2332 --------------------------------------
2333
2334 -- Reminder: N here really is a subprogram specification (not a subprogram
2335 -- declaration). This procedure is called to analyze the specification in
2336 -- both subprogram bodies and subprogram declarations (specs).
2337
2338 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2339 Designator : constant Entity_Id := Defining_Entity (N);
0a36105d
JM
2340 Formal : Entity_Id;
2341 Formal_Typ : Entity_Id;
fbf5a39b 2342 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 2343
758c442c
GD
2344 -- Start of processing for Analyze_Subprogram_Specification
2345
fbf5a39b
AC
2346 begin
2347 Generate_Definition (Designator);
2348
2349 if Nkind (N) = N_Function_Specification then
2350 Set_Ekind (Designator, E_Function);
2351 Set_Mechanism (Designator, Default_Mechanism);
2352
fbf5a39b
AC
2353 else
2354 Set_Ekind (Designator, E_Procedure);
2355 Set_Etype (Designator, Standard_Void_Type);
2356 end if;
2357
800621e0 2358 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
2359
2360 Set_Scope (Designator, Current_Scope);
2361
fbf5a39b 2362 if Present (Formals) then
0a36105d 2363 Push_Scope (Designator);
fbf5a39b 2364 Process_Formals (Formals, N);
758c442c 2365
0a36105d
JM
2366 -- Ada 2005 (AI-345): Allow the overriding of interface primitives
2367 -- by subprograms which belong to a concurrent type implementing an
2368 -- interface. Set the parameter type of each controlling formal to
2369 -- the corresponding record type.
758c442c 2370
0a36105d
JM
2371 if Ada_Version >= Ada_05 then
2372 Formal := First_Formal (Designator);
2373 while Present (Formal) loop
2374 Formal_Typ := Etype (Formal);
2375
2376 if (Ekind (Formal_Typ) = E_Protected_Type
2377 or else Ekind (Formal_Typ) = E_Task_Type)
2378 and then Present (Corresponding_Record_Type (Formal_Typ))
2379 and then Present (Abstract_Interfaces
2380 (Corresponding_Record_Type (Formal_Typ)))
2381 then
2382 Set_Etype (Formal,
2383 Corresponding_Record_Type (Formal_Typ));
2384 end if;
2385
2386 Formal := Next_Formal (Formal);
2387 end loop;
758c442c
GD
2388 end if;
2389
fbf5a39b 2390 End_Scope;
82c80734
RD
2391
2392 elsif Nkind (N) = N_Function_Specification then
2393 Analyze_Return_Type (N);
fbf5a39b
AC
2394 end if;
2395
2396 if Nkind (N) = N_Function_Specification then
2397 if Nkind (Designator) = N_Defining_Operator_Symbol then
2398 Valid_Operator_Definition (Designator);
2399 end if;
2400
2401 May_Need_Actuals (Designator);
2402
ec4867fa
ES
2403 -- Ada 2005 (AI-251): In case of primitives associated with abstract
2404 -- interface types the following error message will be reported later
2405 -- (see Analyze_Subprogram_Declaration).
2406
f937473f 2407 if Is_Abstract_Type (Etype (Designator))
ec4867fa 2408 and then not Is_Interface (Etype (Designator))
82c80734
RD
2409 and then Nkind (Parent (N))
2410 /= N_Abstract_Subprogram_Declaration
2411 and then (Nkind (Parent (N)))
2412 /= N_Formal_Abstract_Subprogram_Declaration
2413 and then (Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2414 or else not Is_Entity_Name (Name (Parent (N)))
f937473f
RD
2415 or else not Is_Abstract_Subprogram
2416 (Entity (Name (Parent (N)))))
fbf5a39b
AC
2417 then
2418 Error_Msg_N
2419 ("function that returns abstract type must be abstract", N);
2420 end if;
2421 end if;
2422
2423 return Designator;
2424 end Analyze_Subprogram_Specification;
2425
996ae0b0
RK
2426 --------------------------
2427 -- Build_Body_To_Inline --
2428 --------------------------
2429
d05ef0ab 2430 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
f937473f 2431 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
996ae0b0
RK
2432 Original_Body : Node_Id;
2433 Body_To_Analyze : Node_Id;
2434 Max_Size : constant := 10;
2435 Stat_Count : Integer := 0;
2436
2437 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
e895b435 2438 -- Check for declarations that make inlining not worthwhile
996ae0b0
RK
2439
2440 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
82c80734
RD
2441 -- Check for statements that make inlining not worthwhile: any tasking
2442 -- statement, nested at any level. Keep track of total number of
2443 -- elementary statements, as a measure of acceptable size.
996ae0b0
RK
2444
2445 function Has_Pending_Instantiation return Boolean;
f937473f
RD
2446 -- If some enclosing body contains instantiations that appear before the
2447 -- corresponding generic body, the enclosing body has a freeze node so
2448 -- that it can be elaborated after the generic itself. This might
996ae0b0
RK
2449 -- conflict with subsequent inlinings, so that it is unsafe to try to
2450 -- inline in such a case.
2451
c8ef728f 2452 function Has_Single_Return return Boolean;
f937473f
RD
2453 -- In general we cannot inline functions that return unconstrained type.
2454 -- However, we can handle such functions if all return statements return
2455 -- a local variable that is the only declaration in the body of the
2456 -- function. In that case the call can be replaced by that local
2457 -- variable as is done for other inlined calls.
c8ef728f 2458
fbf5a39b 2459 procedure Remove_Pragmas;
76a69663
ES
2460 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2461 -- parameter has no meaning when the body is inlined and the formals
2462 -- are rewritten. Remove it from body to inline. The analysis of the
2463 -- non-inlined body will handle the pragma properly.
996ae0b0 2464
e895b435
ES
2465 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2466 -- If the body of the subprogram includes a call that returns an
2467 -- unconstrained type, the secondary stack is involved, and it
2468 -- is not worth inlining.
2469
996ae0b0
RK
2470 ------------------------------
2471 -- Has_Excluded_Declaration --
2472 ------------------------------
2473
2474 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
2475 D : Node_Id;
2476
fbf5a39b 2477 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
82c80734
RD
2478 -- Nested subprograms make a given body ineligible for inlining, but
2479 -- we make an exception for instantiations of unchecked conversion.
2480 -- The body has not been analyzed yet, so check the name, and verify
2481 -- that the visible entity with that name is the predefined unit.
2482
2483 -----------------------------
2484 -- Is_Unchecked_Conversion --
2485 -----------------------------
fbf5a39b
AC
2486
2487 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
82c80734 2488 Id : constant Node_Id := Name (D);
fbf5a39b
AC
2489 Conv : Entity_Id;
2490
2491 begin
2492 if Nkind (Id) = N_Identifier
2493 and then Chars (Id) = Name_Unchecked_Conversion
2494 then
2495 Conv := Current_Entity (Id);
2496
800621e0 2497 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
fbf5a39b
AC
2498 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
2499 then
2500 Conv := Current_Entity (Selector_Name (Id));
fbf5a39b
AC
2501 else
2502 return False;
2503 end if;
2504
758c442c
GD
2505 return Present (Conv)
2506 and then Is_Predefined_File_Name
2507 (Unit_File_Name (Get_Source_Unit (Conv)))
fbf5a39b
AC
2508 and then Is_Intrinsic_Subprogram (Conv);
2509 end Is_Unchecked_Conversion;
2510
2511 -- Start of processing for Has_Excluded_Declaration
2512
996ae0b0
RK
2513 begin
2514 D := First (Decls);
996ae0b0 2515 while Present (D) loop
800621e0
RD
2516 if (Nkind (D) = N_Function_Instantiation
2517 and then not Is_Unchecked_Conversion (D))
2518 or else Nkind_In (D, N_Protected_Type_Declaration,
2519 N_Package_Declaration,
2520 N_Package_Instantiation,
2521 N_Subprogram_Body,
2522 N_Procedure_Instantiation,
2523 N_Task_Type_Declaration)
996ae0b0
RK
2524 then
2525 Cannot_Inline
fbf5a39b 2526 ("cannot inline & (non-allowed declaration)?", D, Subp);
996ae0b0
RK
2527 return True;
2528 end if;
2529
2530 Next (D);
2531 end loop;
2532
2533 return False;
996ae0b0
RK
2534 end Has_Excluded_Declaration;
2535
2536 ----------------------------
2537 -- Has_Excluded_Statement --
2538 ----------------------------
2539
2540 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
2541 S : Node_Id;
2542 E : Node_Id;
2543
2544 begin
2545 S := First (Stats);
996ae0b0
RK
2546 while Present (S) loop
2547 Stat_Count := Stat_Count + 1;
2548
800621e0
RD
2549 if Nkind_In (S, N_Abort_Statement,
2550 N_Asynchronous_Select,
2551 N_Conditional_Entry_Call,
2552 N_Delay_Relative_Statement,
2553 N_Delay_Until_Statement,
2554 N_Selective_Accept,
2555 N_Timed_Entry_Call)
996ae0b0
RK
2556 then
2557 Cannot_Inline
fbf5a39b 2558 ("cannot inline & (non-allowed statement)?", S, Subp);
996ae0b0
RK
2559 return True;
2560
2561 elsif Nkind (S) = N_Block_Statement then
2562 if Present (Declarations (S))
2563 and then Has_Excluded_Declaration (Declarations (S))
2564 then
2565 return True;
2566
2567 elsif Present (Handled_Statement_Sequence (S))
2568 and then
2569 (Present
2570 (Exception_Handlers (Handled_Statement_Sequence (S)))
2571 or else
2572 Has_Excluded_Statement
2573 (Statements (Handled_Statement_Sequence (S))))
2574 then
2575 return True;
2576 end if;
2577
2578 elsif Nkind (S) = N_Case_Statement then
2579 E := First (Alternatives (S));
996ae0b0
RK
2580 while Present (E) loop
2581 if Has_Excluded_Statement (Statements (E)) then
2582 return True;
2583 end if;
2584
2585 Next (E);
2586 end loop;
2587
2588 elsif Nkind (S) = N_If_Statement then
2589 if Has_Excluded_Statement (Then_Statements (S)) then
2590 return True;
2591 end if;
2592
2593 if Present (Elsif_Parts (S)) then
2594 E := First (Elsif_Parts (S));
996ae0b0
RK
2595 while Present (E) loop
2596 if Has_Excluded_Statement (Then_Statements (E)) then
2597 return True;
2598 end if;
2599 Next (E);
2600 end loop;
2601 end if;
2602
2603 if Present (Else_Statements (S))
2604 and then Has_Excluded_Statement (Else_Statements (S))
2605 then
2606 return True;
2607 end if;
2608
2609 elsif Nkind (S) = N_Loop_Statement
2610 and then Has_Excluded_Statement (Statements (S))
2611 then
2612 return True;
2613 end if;
2614
2615 Next (S);
2616 end loop;
2617
2618 return False;
2619 end Has_Excluded_Statement;
2620
2621 -------------------------------
2622 -- Has_Pending_Instantiation --
2623 -------------------------------
2624
2625 function Has_Pending_Instantiation return Boolean is
ec4867fa 2626 S : Entity_Id;
996ae0b0
RK
2627
2628 begin
ec4867fa 2629 S := Current_Scope;
996ae0b0
RK
2630 while Present (S) loop
2631 if Is_Compilation_Unit (S)
2632 or else Is_Child_Unit (S)
2633 then
2634 return False;
2635 elsif Ekind (S) = E_Package
2636 and then Has_Forward_Instantiation (S)
2637 then
2638 return True;
2639 end if;
2640
2641 S := Scope (S);
2642 end loop;
2643
2644 return False;
2645 end Has_Pending_Instantiation;
2646
c8ef728f
ES
2647 ------------------------
2648 -- Has_Single_Return --
2649 ------------------------
2650
2651 function Has_Single_Return return Boolean is
2652 Return_Statement : Node_Id := Empty;
2653
2654 function Check_Return (N : Node_Id) return Traverse_Result;
2655
2656 ------------------
2657 -- Check_Return --
2658 ------------------
2659
2660 function Check_Return (N : Node_Id) return Traverse_Result is
2661 begin
5d37ba92 2662 if Nkind (N) = N_Simple_Return_Statement then
c8ef728f
ES
2663 if Present (Expression (N))
2664 and then Is_Entity_Name (Expression (N))
2665 then
2666 if No (Return_Statement) then
2667 Return_Statement := N;
2668 return OK;
2669
2670 elsif Chars (Expression (N)) =
2671 Chars (Expression (Return_Statement))
2672 then
2673 return OK;
2674
2675 else
2676 return Abandon;
2677 end if;
2678
2679 else
2680 -- Expression has wrong form
2681
2682 return Abandon;
2683 end if;
2684
2685 else
2686 return OK;
2687 end if;
2688 end Check_Return;
2689
2690 function Check_All_Returns is new Traverse_Func (Check_Return);
2691
2692 -- Start of processing for Has_Single_Return
2693
2694 begin
08402a6d
ES
2695 return Check_All_Returns (N) = OK
2696 and then Present (Declarations (N))
0a36105d 2697 and then Present (First (Declarations (N)))
08402a6d
ES
2698 and then Chars (Expression (Return_Statement)) =
2699 Chars (Defining_Identifier (First (Declarations (N))));
c8ef728f
ES
2700 end Has_Single_Return;
2701
fbf5a39b
AC
2702 --------------------
2703 -- Remove_Pragmas --
2704 --------------------
2705
2706 procedure Remove_Pragmas is
2707 Decl : Node_Id;
2708 Nxt : Node_Id;
2709
2710 begin
2711 Decl := First (Declarations (Body_To_Analyze));
2712 while Present (Decl) loop
2713 Nxt := Next (Decl);
2714
2715 if Nkind (Decl) = N_Pragma
76a69663
ES
2716 and then (Pragma_Name (Decl) = Name_Unreferenced
2717 or else
2718 Pragma_Name (Decl) = Name_Unmodified)
fbf5a39b
AC
2719 then
2720 Remove (Decl);
2721 end if;
2722
2723 Decl := Nxt;
2724 end loop;
2725 end Remove_Pragmas;
2726
e895b435
ES
2727 --------------------------
2728 -- Uses_Secondary_Stack --
2729 --------------------------
2730
2731 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
2732 function Check_Call (N : Node_Id) return Traverse_Result;
2733 -- Look for function calls that return an unconstrained type
2734
2735 ----------------
2736 -- Check_Call --
2737 ----------------
2738
2739 function Check_Call (N : Node_Id) return Traverse_Result is
2740 begin
2741 if Nkind (N) = N_Function_Call
2742 and then Is_Entity_Name (Name (N))
2743 and then Is_Composite_Type (Etype (Entity (Name (N))))
2744 and then not Is_Constrained (Etype (Entity (Name (N))))
2745 then
2746 Cannot_Inline
2747 ("cannot inline & (call returns unconstrained type)?",
2748 N, Subp);
2749 return Abandon;
2750 else
2751 return OK;
2752 end if;
2753 end Check_Call;
2754
2755 function Check_Calls is new Traverse_Func (Check_Call);
2756
2757 begin
2758 return Check_Calls (Bod) = Abandon;
2759 end Uses_Secondary_Stack;
2760
996ae0b0
RK
2761 -- Start of processing for Build_Body_To_Inline
2762
2763 begin
2764 if Nkind (Decl) = N_Subprogram_Declaration
2765 and then Present (Body_To_Inline (Decl))
2766 then
d05ef0ab 2767 return; -- Done already.
996ae0b0 2768
08402a6d
ES
2769 -- Functions that return unconstrained composite types require
2770 -- secondary stack handling, and cannot currently be inlined, unless
2771 -- all return statements return a local variable that is the first
2772 -- local declaration in the body.
996ae0b0
RK
2773
2774 elsif Ekind (Subp) = E_Function
2775 and then not Is_Scalar_Type (Etype (Subp))
2776 and then not Is_Access_Type (Etype (Subp))
2777 and then not Is_Constrained (Etype (Subp))
2778 then
08402a6d
ES
2779 if not Has_Single_Return then
2780 Cannot_Inline
2781 ("cannot inline & (unconstrained return type)?", N, Subp);
2782 return;
2783 end if;
2784
2785 -- Ditto for functions that return controlled types, where controlled
2786 -- actions interfere in complex ways with inlining.
2820d220
AC
2787
2788 elsif Ekind (Subp) = E_Function
2789 and then Controlled_Type (Etype (Subp))
2790 then
2791 Cannot_Inline
2792 ("cannot inline & (controlled return type)?", N, Subp);
2793 return;
996ae0b0
RK
2794 end if;
2795
d05ef0ab
AC
2796 if Present (Declarations (N))
2797 and then Has_Excluded_Declaration (Declarations (N))
996ae0b0 2798 then
d05ef0ab 2799 return;
996ae0b0
RK
2800 end if;
2801
2802 if Present (Handled_Statement_Sequence (N)) then
fbf5a39b
AC
2803 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
2804 Cannot_Inline
2805 ("cannot inline& (exception handler)?",
2806 First (Exception_Handlers (Handled_Statement_Sequence (N))),
2807 Subp);
d05ef0ab 2808 return;
996ae0b0
RK
2809 elsif
2810 Has_Excluded_Statement
2811 (Statements (Handled_Statement_Sequence (N)))
2812 then
d05ef0ab 2813 return;
996ae0b0
RK
2814 end if;
2815 end if;
2816
2817 -- We do not inline a subprogram that is too large, unless it is
2818 -- marked Inline_Always. This pragma does not suppress the other
2819 -- checks on inlining (forbidden declarations, handlers, etc).
2820
2821 if Stat_Count > Max_Size
800621e0 2822 and then not Has_Pragma_Inline_Always (Subp)
996ae0b0 2823 then
fbf5a39b 2824 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
d05ef0ab 2825 return;
996ae0b0
RK
2826 end if;
2827
2828 if Has_Pending_Instantiation then
2829 Cannot_Inline
fbf5a39b
AC
2830 ("cannot inline& (forward instance within enclosing body)?",
2831 N, Subp);
d05ef0ab
AC
2832 return;
2833 end if;
2834
2835 -- Within an instance, the body to inline must be treated as a nested
2836 -- generic, so that the proper global references are preserved.
2837
2838 if In_Instance then
2839 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2840 Original_Body := Copy_Generic_Node (N, Empty, True);
2841 else
2842 Original_Body := Copy_Separate_Tree (N);
996ae0b0
RK
2843 end if;
2844
d05ef0ab
AC
2845 -- We need to capture references to the formals in order to substitute
2846 -- the actuals at the point of inlining, i.e. instantiation. To treat
2847 -- the formals as globals to the body to inline, we nest it within
2848 -- a dummy parameterless subprogram, declared within the real one.
24105bab
AC
2849 -- To avoid generating an internal name (which is never public, and
2850 -- which affects serial numbers of other generated names), we use
2851 -- an internal symbol that cannot conflict with user declarations.
d05ef0ab
AC
2852
2853 Set_Parameter_Specifications (Specification (Original_Body), No_List);
24105bab
AC
2854 Set_Defining_Unit_Name
2855 (Specification (Original_Body),
2856 Make_Defining_Identifier (Sloc (N), Name_uParent));
d05ef0ab
AC
2857 Set_Corresponding_Spec (Original_Body, Empty);
2858
996ae0b0
RK
2859 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
2860
2861 -- Set return type of function, which is also global and does not need
2862 -- to be resolved.
2863
2864 if Ekind (Subp) = E_Function then
41251c60 2865 Set_Result_Definition (Specification (Body_To_Analyze),
996ae0b0
RK
2866 New_Occurrence_Of (Etype (Subp), Sloc (N)));
2867 end if;
2868
2869 if No (Declarations (N)) then
2870 Set_Declarations (N, New_List (Body_To_Analyze));
2871 else
2872 Append (Body_To_Analyze, Declarations (N));
2873 end if;
2874
2875 Expander_Mode_Save_And_Set (False);
fbf5a39b 2876 Remove_Pragmas;
996ae0b0
RK
2877
2878 Analyze (Body_To_Analyze);
0a36105d 2879 Push_Scope (Defining_Entity (Body_To_Analyze));
996ae0b0
RK
2880 Save_Global_References (Original_Body);
2881 End_Scope;
2882 Remove (Body_To_Analyze);
2883
2884 Expander_Mode_Restore;
d05ef0ab
AC
2885
2886 if In_Instance then
2887 Restore_Env;
2888 end if;
e895b435
ES
2889
2890 -- If secondary stk used there is no point in inlining. We have
2891 -- already issued the warning in this case, so nothing to do.
2892
2893 if Uses_Secondary_Stack (Body_To_Analyze) then
2894 return;
2895 end if;
2896
2897 Set_Body_To_Inline (Decl, Original_Body);
2898 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
2899 Set_Is_Inlined (Subp);
996ae0b0
RK
2900 end Build_Body_To_Inline;
2901
fbf5a39b
AC
2902 -------------------
2903 -- Cannot_Inline --
2904 -------------------
2905
2906 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
2907 begin
2908 -- Do not emit warning if this is a predefined unit which is not
2909 -- the main unit. With validity checks enabled, some predefined
2910 -- subprograms may contain nested subprograms and become ineligible
2911 -- for inlining.
2912
2913 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
2914 and then not In_Extended_Main_Source_Unit (Subp)
2915 then
2916 null;
2917
800621e0 2918 elsif Has_Pragma_Inline_Always (Subp) then
e895b435
ES
2919
2920 -- Remove last character (question mark) to make this into an error,
2921 -- because the Inline_Always pragma cannot be obeyed.
2922
ec4867fa 2923 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
fbf5a39b
AC
2924
2925 elsif Ineffective_Inline_Warnings then
2926 Error_Msg_NE (Msg, N, Subp);
2927 end if;
2928 end Cannot_Inline;
2929
996ae0b0
RK
2930 -----------------------
2931 -- Check_Conformance --
2932 -----------------------
2933
2934 procedure Check_Conformance
41251c60
JM
2935 (New_Id : Entity_Id;
2936 Old_Id : Entity_Id;
2937 Ctype : Conformance_Type;
2938 Errmsg : Boolean;
2939 Conforms : out Boolean;
2940 Err_Loc : Node_Id := Empty;
2941 Get_Inst : Boolean := False;
2942 Skip_Controlling_Formals : Boolean := False)
996ae0b0 2943 is
996ae0b0 2944 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
82c80734
RD
2945 -- Post error message for conformance error on given node. Two messages
2946 -- are output. The first points to the previous declaration with a
2947 -- general "no conformance" message. The second is the detailed reason,
2948 -- supplied as Msg. The parameter N provide information for a possible
2949 -- & insertion in the message, and also provides the location for
2950 -- posting the message in the absence of a specified Err_Loc location.
996ae0b0
RK
2951
2952 -----------------------
2953 -- Conformance_Error --
2954 -----------------------
2955
2956 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
2957 Enode : Node_Id;
2958
2959 begin
2960 Conforms := False;
2961
2962 if Errmsg then
2963 if No (Err_Loc) then
2964 Enode := N;
2965 else
2966 Enode := Err_Loc;
2967 end if;
2968
2969 Error_Msg_Sloc := Sloc (Old_Id);
2970
2971 case Ctype is
2972 when Type_Conformant =>
2973 Error_Msg_N
2974 ("not type conformant with declaration#!", Enode);
2975
2976 when Mode_Conformant =>
19590d70
GD
2977 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
2978 Error_Msg_N
2979 ("not mode conformant with operation inherited#!",
2980 Enode);
2981 else
2982 Error_Msg_N
2983 ("not mode conformant with declaration#!", Enode);
2984 end if;
996ae0b0
RK
2985
2986 when Subtype_Conformant =>
19590d70
GD
2987 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
2988 Error_Msg_N
2989 ("not subtype conformant with operation inherited#!",
2990 Enode);
2991 else
2992 Error_Msg_N
2993 ("not subtype conformant with declaration#!", Enode);
2994 end if;
996ae0b0
RK
2995
2996 when Fully_Conformant =>
19590d70
GD
2997 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
2998 Error_Msg_N
2999 ("not fully conformant with operation inherited#!",
3000 Enode);
3001 else
3002 Error_Msg_N
3003 ("not fully conformant with declaration#!", Enode);
3004 end if;
996ae0b0
RK
3005 end case;
3006
3007 Error_Msg_NE (Msg, Enode, N);
3008 end if;
3009 end Conformance_Error;
3010
ec4867fa
ES
3011 -- Local Variables
3012
3013 Old_Type : constant Entity_Id := Etype (Old_Id);
3014 New_Type : constant Entity_Id := Etype (New_Id);
3015 Old_Formal : Entity_Id;
3016 New_Formal : Entity_Id;
3017 Access_Types_Match : Boolean;
3018 Old_Formal_Base : Entity_Id;
3019 New_Formal_Base : Entity_Id;
3020
996ae0b0
RK
3021 -- Start of processing for Check_Conformance
3022
3023 begin
3024 Conforms := True;
3025
82c80734
RD
3026 -- We need a special case for operators, since they don't appear
3027 -- explicitly.
996ae0b0
RK
3028
3029 if Ctype = Type_Conformant then
3030 if Ekind (New_Id) = E_Operator
3031 and then Operator_Matches_Spec (New_Id, Old_Id)
3032 then
3033 return;
3034 end if;
3035 end if;
3036
3037 -- If both are functions/operators, check return types conform
3038
3039 if Old_Type /= Standard_Void_Type
3040 and then New_Type /= Standard_Void_Type
3041 then
3042 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5d37ba92 3043 Conformance_Error ("\return type does not match!", New_Id);
996ae0b0
RK
3044 return;
3045 end if;
3046
41251c60 3047 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 3048 -- null-exclusion and access-to-constant attributes match.
41251c60
JM
3049
3050 if Ada_Version >= Ada_05
3051 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3052 and then
3053 (Can_Never_Be_Null (Old_Type)
3054 /= Can_Never_Be_Null (New_Type)
3055 or else Is_Access_Constant (Etype (Old_Type))
3056 /= Is_Access_Constant (Etype (New_Type)))
3057 then
5d37ba92 3058 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
3059 return;
3060 end if;
3061
996ae0b0
RK
3062 -- If either is a function/operator and the other isn't, error
3063
3064 elsif Old_Type /= Standard_Void_Type
3065 or else New_Type /= Standard_Void_Type
3066 then
5d37ba92 3067 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
3068 return;
3069 end if;
3070
0a36105d 3071 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
3072 -- If this is a renaming as body, refine error message to indicate that
3073 -- the conflict is with the original declaration. If the entity is not
3074 -- frozen, the conventions don't have to match, the one of the renamed
3075 -- entity is inherited.
3076
3077 if Ctype >= Subtype_Conformant then
996ae0b0
RK
3078 if Convention (Old_Id) /= Convention (New_Id) then
3079
3080 if not Is_Frozen (New_Id) then
3081 null;
3082
3083 elsif Present (Err_Loc)
3084 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3085 and then Present (Corresponding_Spec (Err_Loc))
3086 then
3087 Error_Msg_Name_1 := Chars (New_Id);
3088 Error_Msg_Name_2 :=
3089 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3090
5d37ba92 3091 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
3092
3093 else
5d37ba92 3094 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
3095 end if;
3096
3097 return;
3098
3099 elsif Is_Formal_Subprogram (Old_Id)
3100 or else Is_Formal_Subprogram (New_Id)
3101 then
5d37ba92 3102 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0
RK
3103 return;
3104 end if;
3105 end if;
3106
3107 -- Deal with parameters
3108
3109 -- Note: we use the entity information, rather than going directly
3110 -- to the specification in the tree. This is not only simpler, but
3111 -- absolutely necessary for some cases of conformance tests between
3112 -- operators, where the declaration tree simply does not exist!
3113
3114 Old_Formal := First_Formal (Old_Id);
3115 New_Formal := First_Formal (New_Id);
3116
3117 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
3118 if Is_Controlling_Formal (Old_Formal)
3119 and then Is_Controlling_Formal (New_Formal)
3120 and then Skip_Controlling_Formals
3121 then
3122 goto Skip_Controlling_Formal;
3123 end if;
3124
fbf5a39b
AC
3125 if Ctype = Fully_Conformant then
3126
3127 -- Names must match. Error message is more accurate if we do
3128 -- this before checking that the types of the formals match.
3129
3130 if Chars (Old_Formal) /= Chars (New_Formal) then
5d37ba92 3131 Conformance_Error ("\name & does not match!", New_Formal);
fbf5a39b
AC
3132
3133 -- Set error posted flag on new formal as well to stop
3134 -- junk cascaded messages in some cases.
3135
3136 Set_Error_Posted (New_Formal);
3137 return;
3138 end if;
3139 end if;
996ae0b0 3140
ec4867fa
ES
3141 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3142 -- case occurs whenever a subprogram is being renamed and one of its
3143 -- parameters imposes a null exclusion. For example:
3144
3145 -- type T is null record;
3146 -- type Acc_T is access T;
3147 -- subtype Acc_T_Sub is Acc_T;
3148
3149 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3150 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3151 -- renames P;
3152
3153 Old_Formal_Base := Etype (Old_Formal);
3154 New_Formal_Base := Etype (New_Formal);
3155
3156 if Get_Inst then
3157 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3158 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3159 end if;
3160
3161 Access_Types_Match := Ada_Version >= Ada_05
3162
3163 -- Ensure that this rule is only applied when New_Id is a
5d37ba92 3164 -- renaming of Old_Id.
ec4867fa 3165
5d37ba92
ES
3166 and then Nkind (Parent (Parent (New_Id))) =
3167 N_Subprogram_Renaming_Declaration
ec4867fa
ES
3168 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3169 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3170 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3171
3172 -- Now handle the allowed access-type case
3173
3174 and then Is_Access_Type (Old_Formal_Base)
3175 and then Is_Access_Type (New_Formal_Base)
5d37ba92
ES
3176
3177 -- The type kinds must match. The only exception occurs with
3178 -- multiple generics of the form:
3179
3180 -- generic generic
3181 -- type F is private; type A is private;
3182 -- type F_Ptr is access F; type A_Ptr is access A;
3183 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3184 -- package F_Pack is ... package A_Pack is
3185 -- package F_Inst is
3186 -- new F_Pack (A, A_Ptr, A_P);
3187
3188 -- When checking for conformance between the parameters of A_P
3189 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3190 -- because the compiler has transformed A_Ptr into a subtype of
3191 -- F_Ptr. We catch this case in the code below.
3192
3193 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3194 or else
3195 (Is_Generic_Type (Old_Formal_Base)
3196 and then Is_Generic_Type (New_Formal_Base)
3197 and then Is_Internal (New_Formal_Base)
3198 and then Etype (Etype (New_Formal_Base)) =
3199 Old_Formal_Base))
ec4867fa
ES
3200 and then Directly_Designated_Type (Old_Formal_Base) =
3201 Directly_Designated_Type (New_Formal_Base)
3202 and then ((Is_Itype (Old_Formal_Base)
3203 and then Can_Never_Be_Null (Old_Formal_Base))
3204 or else
3205 (Is_Itype (New_Formal_Base)
3206 and then Can_Never_Be_Null (New_Formal_Base)));
3207
996ae0b0
RK
3208 -- Types must always match. In the visible part of an instance,
3209 -- usual overloading rules for dispatching operations apply, and
3210 -- we check base types (not the actual subtypes).
3211
3212 if In_Instance_Visible_Part
3213 and then Is_Dispatching_Operation (New_Id)
3214 then
3215 if not Conforming_Types
ec4867fa
ES
3216 (T1 => Base_Type (Etype (Old_Formal)),
3217 T2 => Base_Type (Etype (New_Formal)),
3218 Ctype => Ctype,
3219 Get_Inst => Get_Inst)
3220 and then not Access_Types_Match
996ae0b0 3221 then
5d37ba92 3222 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
3223 return;
3224 end if;
3225
3226 elsif not Conforming_Types
5d37ba92
ES
3227 (T1 => Old_Formal_Base,
3228 T2 => New_Formal_Base,
ec4867fa
ES
3229 Ctype => Ctype,
3230 Get_Inst => Get_Inst)
3231 and then not Access_Types_Match
996ae0b0 3232 then
5d37ba92 3233 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
3234 return;
3235 end if;
3236
3237 -- For mode conformance, mode must match
3238
5d37ba92
ES
3239 if Ctype >= Mode_Conformant then
3240 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3241 Conformance_Error ("\mode of & does not match!", New_Formal);
3242 return;
3243
3244 -- Part of mode conformance for access types is having the same
3245 -- constant modifier.
3246
3247 elsif Access_Types_Match
3248 and then Is_Access_Constant (Old_Formal_Base) /=
3249 Is_Access_Constant (New_Formal_Base)
3250 then
3251 Conformance_Error
3252 ("\constant modifier does not match!", New_Formal);
3253 return;
3254 end if;
996ae0b0
RK
3255 end if;
3256
0a36105d 3257 if Ctype >= Subtype_Conformant then
996ae0b0 3258
0a36105d
JM
3259 -- Ada 2005 (AI-231): In case of anonymous access types check
3260 -- the null-exclusion and access-to-constant attributes must
3261 -- match.
996ae0b0 3262
0a36105d
JM
3263 if Ada_Version >= Ada_05
3264 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3265 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3266 and then
3267 (Can_Never_Be_Null (Old_Formal) /=
3268 Can_Never_Be_Null (New_Formal)
3269 or else
3270 Is_Access_Constant (Etype (Old_Formal)) /=
3271 Is_Access_Constant (Etype (New_Formal)))
3272 then
3273 -- It is allowed to omit the null-exclusion in case of stream
3274 -- attribute subprograms. We recognize stream subprograms
3275 -- through their TSS-generated suffix.
996ae0b0 3276
0a36105d
JM
3277 declare
3278 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3279 begin
3280 if TSS_Name /= TSS_Stream_Read
3281 and then TSS_Name /= TSS_Stream_Write
3282 and then TSS_Name /= TSS_Stream_Input
3283 and then TSS_Name /= TSS_Stream_Output
3284 then
3285 Conformance_Error
5d37ba92 3286 ("\type of & does not match!", New_Formal);
0a36105d
JM
3287 return;
3288 end if;
3289 end;
3290 end if;
3291 end if;
41251c60 3292
0a36105d 3293 -- Full conformance checks
41251c60 3294
0a36105d 3295 if Ctype = Fully_Conformant then
e660dbf7 3296
0a36105d 3297 -- We have checked already that names match
e660dbf7 3298
0a36105d 3299 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
3300
3301 -- Check default expressions for in parameters
3302
996ae0b0
RK
3303 declare
3304 NewD : constant Boolean :=
3305 Present (Default_Value (New_Formal));
3306 OldD : constant Boolean :=
3307 Present (Default_Value (Old_Formal));
3308 begin
3309 if NewD or OldD then
3310
82c80734
RD
3311 -- The old default value has been analyzed because the
3312 -- current full declaration will have frozen everything
0a36105d
JM
3313 -- before. The new default value has not been analyzed,
3314 -- so analyze it now before we check for conformance.
996ae0b0
RK
3315
3316 if NewD then
0a36105d 3317 Push_Scope (New_Id);
fbf5a39b
AC
3318 Analyze_Per_Use_Expression
3319 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
3320 End_Scope;
3321 end if;
3322
3323 if not (NewD and OldD)
3324 or else not Fully_Conformant_Expressions
3325 (Default_Value (Old_Formal),
3326 Default_Value (New_Formal))
3327 then
3328 Conformance_Error
5d37ba92 3329 ("\default expression for & does not match!",
996ae0b0
RK
3330 New_Formal);
3331 return;
3332 end if;
3333 end if;
3334 end;
3335 end if;
3336 end if;
3337
3338 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 3339 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
3340 -- or if either old or new instance is not from the source program.
3341
0ab80019 3342 if Ada_Version = Ada_83
996ae0b0
RK
3343 and then Sloc (Old_Id) > Standard_Location
3344 and then Sloc (New_Id) > Standard_Location
3345 and then Comes_From_Source (Old_Id)
3346 and then Comes_From_Source (New_Id)
3347 then
3348 declare
3349 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3350 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3351
3352 begin
3353 -- Explicit IN must be present or absent in both cases. This
3354 -- test is required only in the full conformance case.
3355
3356 if In_Present (Old_Param) /= In_Present (New_Param)
3357 and then Ctype = Fully_Conformant
3358 then
3359 Conformance_Error
5d37ba92 3360 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
3361 New_Formal);
3362 return;
3363 end if;
3364
3365 -- Grouping (use of comma in param lists) must be the same
3366 -- This is where we catch a misconformance like:
3367
0a36105d 3368 -- A, B : Integer
996ae0b0
RK
3369 -- A : Integer; B : Integer
3370
3371 -- which are represented identically in the tree except
3372 -- for the setting of the flags More_Ids and Prev_Ids.
3373
3374 if More_Ids (Old_Param) /= More_Ids (New_Param)
3375 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3376 then
3377 Conformance_Error
5d37ba92 3378 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
3379 return;
3380 end if;
3381 end;
3382 end if;
3383
41251c60
JM
3384 -- This label is required when skipping controlling formals
3385
3386 <<Skip_Controlling_Formal>>
3387
996ae0b0
RK
3388 Next_Formal (Old_Formal);
3389 Next_Formal (New_Formal);
3390 end loop;
3391
3392 if Present (Old_Formal) then
5d37ba92 3393 Conformance_Error ("\too few parameters!");
996ae0b0
RK
3394 return;
3395
3396 elsif Present (New_Formal) then
5d37ba92 3397 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
3398 return;
3399 end if;
996ae0b0
RK
3400 end Check_Conformance;
3401
ec4867fa
ES
3402 -----------------------
3403 -- Check_Conventions --
3404 -----------------------
3405
3406 procedure Check_Conventions (Typ : Entity_Id) is
0a36105d
JM
3407
3408 function Skip_Check (Op : Entity_Id) return Boolean;
3409 pragma Inline (Skip_Check);
3410 -- A small optimization: skip the predefined dispatching operations,
3411 -- since they always have the same convention. Also do not consider
3412 -- abstract primitives since those are left by an erroneous overriding.
3413 -- This function returns True for any operation that is thus exempted
3414 -- exempted from checking.
3415
ec4867fa
ES
3416 procedure Check_Convention
3417 (Op : Entity_Id;
3418 Search_From : Elmt_Id);
0a36105d
JM
3419 -- Verify that the convention of inherited dispatching operation Op is
3420 -- consistent among all subprograms it overrides. In order to minimize
3421 -- the search, Search_From is utilized to designate a specific point in
3422 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
3423
3424 ----------------------
3425 -- Check_Convention --
3426 ----------------------
3427
3428 procedure Check_Convention
3429 (Op : Entity_Id;
3430 Search_From : Elmt_Id)
3431 is
3432 procedure Error_Msg_Operation (Op : Entity_Id);
0a36105d
JM
3433 -- Emit a continuation to an error message depicting the kind, name,
3434 -- convention and source location of subprogram Op.
ec4867fa
ES
3435
3436 -------------------------
3437 -- Error_Msg_Operation --
3438 -------------------------
3439
3440 procedure Error_Msg_Operation (Op : Entity_Id) is
3441 begin
3442 Error_Msg_Name_1 := Chars (Op);
3443
3444 -- Error messages of primitive subprograms do not contain a
0a36105d
JM
3445 -- convention attribute since the convention may have been first
3446 -- inherited from a parent subprogram, then changed by a pragma.
ec4867fa
ES
3447
3448 if Comes_From_Source (Op) then
3449 Error_Msg_Sloc := Sloc (Op);
3450 Error_Msg_N
3451 ("\ primitive % defined #", Typ);
3452
3453 else
3454 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
3455
3456 if Present (Abstract_Interface_Alias (Op)) then
3457 Error_Msg_Sloc := Sloc (Abstract_Interface_Alias (Op));
3458 Error_Msg_N ("\\overridden operation % with " &
3459 "convention % defined #", Typ);
3460
3461 else pragma Assert (Present (Alias (Op)));
3462 Error_Msg_Sloc := Sloc (Alias (Op));
3463 Error_Msg_N ("\\inherited operation % with " &
3464 "convention % defined #", Typ);
3465 end if;
3466 end if;
3467 end Error_Msg_Operation;
3468
3469 -- Local variables
3470
0a36105d
JM
3471 Second_Prim_Op : Entity_Id;
3472 Second_Prim_Op_Elmt : Elmt_Id;
ec4867fa
ES
3473
3474 -- Start of processing for Check_Convention
3475
3476 begin
0a36105d
JM
3477 Second_Prim_Op_Elmt := Next_Elmt (Search_From);
3478 while Present (Second_Prim_Op_Elmt) loop
3479 Second_Prim_Op := Node (Second_Prim_Op_Elmt);
3480
3481 if not Skip_Check (Second_Prim_Op)
3482 and then Chars (Second_Prim_Op) = Chars (Op)
3483 and then Type_Conformant (Second_Prim_Op, Op)
3484 and then Convention (Second_Prim_Op) /= Convention (Op)
ec4867fa
ES
3485 then
3486 Error_Msg_N
3487 ("inconsistent conventions in primitive operations", Typ);
3488
3489 Error_Msg_Operation (Op);
0a36105d 3490 Error_Msg_Operation (Second_Prim_Op);
ec4867fa
ES
3491
3492 -- Avoid cascading errors
3493
3494 return;
3495 end if;
3496
0a36105d 3497 Next_Elmt (Second_Prim_Op_Elmt);
ec4867fa
ES
3498 end loop;
3499 end Check_Convention;
3500
0a36105d
JM
3501 ----------------
3502 -- Skip_Check --
3503 ----------------
3504
3505 function Skip_Check (Op : Entity_Id) return Boolean is
3506 begin
3507 return Is_Predefined_Dispatching_Operation (Op)
3508 or else Is_Abstract_Subprogram (Op);
3509 end Skip_Check;
3510
ec4867fa
ES
3511 -- Local variables
3512
3513 Prim_Op : Entity_Id;
3514 Prim_Op_Elmt : Elmt_Id;
3515
3516 -- Start of processing for Check_Conventions
3517
3518 begin
0a36105d
JM
3519 -- The algorithm checks every overriding dispatching operation against
3520 -- all the corresponding overridden dispatching operations, detecting
3521 -- differences in coventions.
ec4867fa
ES
3522
3523 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
3524 while Present (Prim_Op_Elmt) loop
3525 Prim_Op := Node (Prim_Op_Elmt);
3526
0a36105d 3527 -- A small optimization: skip the predefined dispatching operations
ec4867fa
ES
3528 -- since they always have the same convention. Also avoid processing
3529 -- of abstract primitives left from an erroneous overriding.
3530
0a36105d 3531 if not Skip_Check (Prim_Op) then
ec4867fa
ES
3532 Check_Convention
3533 (Op => Prim_Op,
3534 Search_From => Prim_Op_Elmt);
3535 end if;
3536
3537 Next_Elmt (Prim_Op_Elmt);
3538 end loop;
3539 end Check_Conventions;
3540
996ae0b0
RK
3541 ------------------------------
3542 -- Check_Delayed_Subprogram --
3543 ------------------------------
3544
3545 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
3546 F : Entity_Id;
3547
3548 procedure Possible_Freeze (T : Entity_Id);
3549 -- T is the type of either a formal parameter or of the return type.
3550 -- If T is not yet frozen and needs a delayed freeze, then the
3551 -- subprogram itself must be delayed.
3552
82c80734
RD
3553 ---------------------
3554 -- Possible_Freeze --
3555 ---------------------
3556
996ae0b0
RK
3557 procedure Possible_Freeze (T : Entity_Id) is
3558 begin
3559 if Has_Delayed_Freeze (T)
3560 and then not Is_Frozen (T)
3561 then
3562 Set_Has_Delayed_Freeze (Designator);
3563
3564 elsif Is_Access_Type (T)
3565 and then Has_Delayed_Freeze (Designated_Type (T))
3566 and then not Is_Frozen (Designated_Type (T))
3567 then
3568 Set_Has_Delayed_Freeze (Designator);
3569 end if;
3570 end Possible_Freeze;
3571
3572 -- Start of processing for Check_Delayed_Subprogram
3573
3574 begin
3575 -- Never need to freeze abstract subprogram
3576
f937473f
RD
3577 if Ekind (Designator) /= E_Subprogram_Type
3578 and then Is_Abstract_Subprogram (Designator)
3579 then
996ae0b0
RK
3580 null;
3581 else
3582 -- Need delayed freeze if return type itself needs a delayed
3583 -- freeze and is not yet frozen.
3584
3585 Possible_Freeze (Etype (Designator));
3586 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
3587
3588 -- Need delayed freeze if any of the formal types themselves need
3589 -- a delayed freeze and are not yet frozen.
3590
3591 F := First_Formal (Designator);
3592 while Present (F) loop
3593 Possible_Freeze (Etype (F));
3594 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
3595 Next_Formal (F);
3596 end loop;
3597 end if;
3598
3599 -- Mark functions that return by reference. Note that it cannot be
3600 -- done for delayed_freeze subprograms because the underlying
3601 -- returned type may not be known yet (for private types)
3602
3603 if not Has_Delayed_Freeze (Designator)
3604 and then Expander_Active
3605 then
3606 declare
3607 Typ : constant Entity_Id := Etype (Designator);
3608 Utyp : constant Entity_Id := Underlying_Type (Typ);
3609
3610 begin
ec4867fa 3611 if Is_Inherently_Limited_Type (Typ) then
996ae0b0
RK
3612 Set_Returns_By_Ref (Designator);
3613
f937473f 3614 elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
996ae0b0
RK
3615 Set_Returns_By_Ref (Designator);
3616 end if;
3617 end;
3618 end if;
3619 end Check_Delayed_Subprogram;
3620
3621 ------------------------------------
3622 -- Check_Discriminant_Conformance --
3623 ------------------------------------
3624
3625 procedure Check_Discriminant_Conformance
3626 (N : Node_Id;
3627 Prev : Entity_Id;
3628 Prev_Loc : Node_Id)
3629 is
3630 Old_Discr : Entity_Id := First_Discriminant (Prev);
3631 New_Discr : Node_Id := First (Discriminant_Specifications (N));
3632 New_Discr_Id : Entity_Id;
3633 New_Discr_Type : Entity_Id;
3634
3635 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
3636 -- Post error message for conformance error on given node. Two messages
3637 -- are output. The first points to the previous declaration with a
3638 -- general "no conformance" message. The second is the detailed reason,
3639 -- supplied as Msg. The parameter N provide information for a possible
3640 -- & insertion in the message.
996ae0b0
RK
3641
3642 -----------------------
3643 -- Conformance_Error --
3644 -----------------------
3645
3646 procedure Conformance_Error (Msg : String; N : Node_Id) is
3647 begin
3648 Error_Msg_Sloc := Sloc (Prev_Loc);
3649 Error_Msg_N ("not fully conformant with declaration#!", N);
3650 Error_Msg_NE (Msg, N, N);
3651 end Conformance_Error;
3652
3653 -- Start of processing for Check_Discriminant_Conformance
3654
3655 begin
3656 while Present (Old_Discr) and then Present (New_Discr) loop
3657
3658 New_Discr_Id := Defining_Identifier (New_Discr);
3659
82c80734
RD
3660 -- The subtype mark of the discriminant on the full type has not
3661 -- been analyzed so we do it here. For an access discriminant a new
3662 -- type is created.
996ae0b0
RK
3663
3664 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
3665 New_Discr_Type :=
3666 Access_Definition (N, Discriminant_Type (New_Discr));
3667
3668 else
3669 Analyze (Discriminant_Type (New_Discr));
3670 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
3671 end if;
3672
3673 if not Conforming_Types
3674 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
3675 then
3676 Conformance_Error ("type of & does not match!", New_Discr_Id);
3677 return;
fbf5a39b 3678 else
82c80734
RD
3679 -- Treat the new discriminant as an occurrence of the old one,
3680 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
3681 -- information, for completeness.
3682
3683 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
3684 Set_Etype (New_Discr_Id, Etype (Old_Discr));
3685 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
3686 end if;
3687
3688 -- Names must match
3689
3690 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
3691 Conformance_Error ("name & does not match!", New_Discr_Id);
3692 return;
3693 end if;
3694
3695 -- Default expressions must match
3696
3697 declare
3698 NewD : constant Boolean :=
3699 Present (Expression (New_Discr));
3700 OldD : constant Boolean :=
3701 Present (Expression (Parent (Old_Discr)));
3702
3703 begin
3704 if NewD or OldD then
3705
3706 -- The old default value has been analyzed and expanded,
3707 -- because the current full declaration will have frozen
82c80734
RD
3708 -- everything before. The new default values have not been
3709 -- expanded, so expand now to check conformance.
996ae0b0
RK
3710
3711 if NewD then
fbf5a39b 3712 Analyze_Per_Use_Expression
996ae0b0
RK
3713 (Expression (New_Discr), New_Discr_Type);
3714 end if;
3715
3716 if not (NewD and OldD)
3717 or else not Fully_Conformant_Expressions
3718 (Expression (Parent (Old_Discr)),
3719 Expression (New_Discr))
3720
3721 then
3722 Conformance_Error
3723 ("default expression for & does not match!",
3724 New_Discr_Id);
3725 return;
3726 end if;
3727 end if;
3728 end;
3729
3730 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
3731
0ab80019 3732 if Ada_Version = Ada_83 then
996ae0b0
RK
3733 declare
3734 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
3735
3736 begin
3737 -- Grouping (use of comma in param lists) must be the same
3738 -- This is where we catch a misconformance like:
3739
3740 -- A,B : Integer
3741 -- A : Integer; B : Integer
3742
3743 -- which are represented identically in the tree except
3744 -- for the setting of the flags More_Ids and Prev_Ids.
3745
3746 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
3747 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
3748 then
3749 Conformance_Error
3750 ("grouping of & does not match!", New_Discr_Id);
3751 return;
3752 end if;
3753 end;
3754 end if;
3755
3756 Next_Discriminant (Old_Discr);
3757 Next (New_Discr);
3758 end loop;
3759
3760 if Present (Old_Discr) then
3761 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
3762 return;
3763
3764 elsif Present (New_Discr) then
3765 Conformance_Error
3766 ("too many discriminants!", Defining_Identifier (New_Discr));
3767 return;
3768 end if;
3769 end Check_Discriminant_Conformance;
3770
3771 ----------------------------
3772 -- Check_Fully_Conformant --
3773 ----------------------------
3774
3775 procedure Check_Fully_Conformant
3776 (New_Id : Entity_Id;
3777 Old_Id : Entity_Id;
3778 Err_Loc : Node_Id := Empty)
3779 is
3780 Result : Boolean;
81db9d77 3781 pragma Warnings (Off, Result);
996ae0b0
RK
3782 begin
3783 Check_Conformance
3784 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
3785 end Check_Fully_Conformant;
3786
3787 ---------------------------
3788 -- Check_Mode_Conformant --
3789 ---------------------------
3790
3791 procedure Check_Mode_Conformant
3792 (New_Id : Entity_Id;
3793 Old_Id : Entity_Id;
3794 Err_Loc : Node_Id := Empty;
3795 Get_Inst : Boolean := False)
3796 is
3797 Result : Boolean;
81db9d77 3798 pragma Warnings (Off, Result);
996ae0b0
RK
3799 begin
3800 Check_Conformance
3801 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
3802 end Check_Mode_Conformant;
3803
fbf5a39b 3804 --------------------------------
758c442c 3805 -- Check_Overriding_Indicator --
fbf5a39b
AC
3806 --------------------------------
3807
758c442c 3808 procedure Check_Overriding_Indicator
ec4867fa 3809 (Subp : Entity_Id;
5d37ba92
ES
3810 Overridden_Subp : Entity_Id;
3811 Is_Primitive : Boolean)
fbf5a39b 3812 is
758c442c
GD
3813 Decl : Node_Id;
3814 Spec : Node_Id;
fbf5a39b
AC
3815
3816 begin
ec4867fa 3817 -- No overriding indicator for literals
fbf5a39b 3818
ec4867fa 3819 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 3820 return;
fbf5a39b 3821
ec4867fa
ES
3822 elsif Ekind (Subp) = E_Entry then
3823 Decl := Parent (Subp);
3824
758c442c
GD
3825 else
3826 Decl := Unit_Declaration_Node (Subp);
3827 end if;
fbf5a39b 3828
800621e0
RD
3829 if Nkind_In (Decl, N_Subprogram_Body,
3830 N_Subprogram_Body_Stub,
3831 N_Subprogram_Declaration,
3832 N_Abstract_Subprogram_Declaration,
3833 N_Subprogram_Renaming_Declaration)
758c442c
GD
3834 then
3835 Spec := Specification (Decl);
ec4867fa
ES
3836
3837 elsif Nkind (Decl) = N_Entry_Declaration then
3838 Spec := Decl;
3839
758c442c
GD
3840 else
3841 return;
3842 end if;
fbf5a39b 3843
ec4867fa
ES
3844 if Present (Overridden_Subp) then
3845 if Must_Not_Override (Spec) then
3846 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 3847
ec4867fa 3848 if Ekind (Subp) = E_Entry then
5d37ba92
ES
3849 Error_Msg_NE
3850 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 3851 else
5d37ba92
ES
3852 Error_Msg_NE
3853 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa
ES
3854 end if;
3855 end if;
f937473f
RD
3856
3857 -- If Subp is an operator, it may override a predefined operation.
3858 -- In that case overridden_subp is empty because of our implicit
5d37ba92
ES
3859 -- representation for predefined operators. We have to check whether the
3860 -- signature of Subp matches that of a predefined operator. Note that
3861 -- first argument provides the name of the operator, and the second
3862 -- argument the signature that may match that of a standard operation.
f937473f
RD
3863
3864 elsif Nkind (Subp) = N_Defining_Operator_Symbol
800621e0 3865 and then Must_Not_Override (Spec)
f937473f
RD
3866 then
3867 if Operator_Matches_Spec (Subp, Subp) then
3868 Error_Msg_NE
5d37ba92 3869 ("subprogram & overrides predefined operator ",
f937473f
RD
3870 Spec, Subp);
3871 end if;
3872
5d37ba92
ES
3873 elsif Must_Override (Spec) then
3874 if Ekind (Subp) = E_Entry then
3875 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
f937473f 3876
5d37ba92
ES
3877 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
3878 if not Operator_Matches_Spec (Subp, Subp) then
3879 Error_Msg_NE
3880 ("subprogram & is not overriding", Spec, Subp);
ec4867fa 3881 end if;
5d37ba92
ES
3882
3883 else
3884 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 3885 end if;
5d37ba92
ES
3886
3887 -- If the operation is marked "not overriding" and it's not primitive
3888 -- then an error is issued, unless this is an operation of a task or
3889 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
3890 -- has been specified have already been checked above.
3891
3892 elsif Must_Not_Override (Spec)
3893 and then not Is_Primitive
3894 and then Ekind (Subp) /= E_Entry
3895 and then Ekind (Scope (Subp)) /= E_Protected_Type
3896 then
3897 Error_Msg_N
3898 ("overriding indicator only allowed if subprogram is primitive",
3899 Subp);
3900
3901 return;
fbf5a39b 3902 end if;
758c442c 3903 end Check_Overriding_Indicator;
fbf5a39b 3904
996ae0b0
RK
3905 -------------------
3906 -- Check_Returns --
3907 -------------------
3908
0a36105d
JM
3909 -- Note: this procedure needs to know far too much about how the expander
3910 -- messes with exceptions. The use of the flag Exception_Junk and the
3911 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
3912 -- works, but is not very clean. It would be better if the expansion
3913 -- routines would leave Original_Node working nicely, and we could use
3914 -- Original_Node here to ignore all the peculiar expander messing ???
3915
996ae0b0
RK
3916 procedure Check_Returns
3917 (HSS : Node_Id;
3918 Mode : Character;
c8ef728f
ES
3919 Err : out Boolean;
3920 Proc : Entity_Id := Empty)
996ae0b0
RK
3921 is
3922 Handler : Node_Id;
3923
3924 procedure Check_Statement_Sequence (L : List_Id);
3925 -- Internal recursive procedure to check a list of statements for proper
3926 -- termination by a return statement (or a transfer of control or a
3927 -- compound statement that is itself internally properly terminated).
3928
3929 ------------------------------
3930 -- Check_Statement_Sequence --
3931 ------------------------------
3932
3933 procedure Check_Statement_Sequence (L : List_Id) is
3934 Last_Stm : Node_Id;
0a36105d 3935 Stm : Node_Id;
996ae0b0
RK
3936 Kind : Node_Kind;
3937
3938 Raise_Exception_Call : Boolean;
3939 -- Set True if statement sequence terminated by Raise_Exception call
3940 -- or a Reraise_Occurrence call.
3941
3942 begin
3943 Raise_Exception_Call := False;
3944
3945 -- Get last real statement
3946
3947 Last_Stm := Last (L);
3948
0a36105d
JM
3949 -- Deal with digging out exception handler statement sequences that
3950 -- have been transformed by the local raise to goto optimization.
3951 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
3952 -- optimization has occurred, we are looking at something like:
3953
3954 -- begin
3955 -- original stmts in block
3956
3957 -- exception \
3958 -- when excep1 => |
3959 -- goto L1; | omitted if No_Exception_Propagation
3960 -- when excep2 => |
3961 -- goto L2; /
3962 -- end;
3963
3964 -- goto L3; -- skip handler when exception not raised
3965
3966 -- <<L1>> -- target label for local exception
3967 -- begin
3968 -- estmts1
3969 -- end;
3970
3971 -- goto L3;
3972
3973 -- <<L2>>
3974 -- begin
3975 -- estmts2
3976 -- end;
3977
3978 -- <<L3>>
3979
3980 -- and what we have to do is to dig out the estmts1 and estmts2
3981 -- sequences (which were the original sequences of statements in
3982 -- the exception handlers) and check them.
3983
3984 if Nkind (Last_Stm) = N_Label
3985 and then Exception_Junk (Last_Stm)
3986 then
3987 Stm := Last_Stm;
3988 loop
3989 Prev (Stm);
3990 exit when No (Stm);
3991 exit when Nkind (Stm) /= N_Block_Statement;
3992 exit when not Exception_Junk (Stm);
3993 Prev (Stm);
3994 exit when No (Stm);
3995 exit when Nkind (Stm) /= N_Label;
3996 exit when not Exception_Junk (Stm);
3997 Check_Statement_Sequence
3998 (Statements (Handled_Statement_Sequence (Next (Stm))));
3999
4000 Prev (Stm);
4001 Last_Stm := Stm;
4002 exit when No (Stm);
4003 exit when Nkind (Stm) /= N_Goto_Statement;
4004 exit when not Exception_Junk (Stm);
4005 end loop;
4006 end if;
4007
996ae0b0
RK
4008 -- Don't count pragmas
4009
4010 while Nkind (Last_Stm) = N_Pragma
4011
4012 -- Don't count call to SS_Release (can happen after Raise_Exception)
4013
4014 or else
4015 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4016 and then
4017 Nkind (Name (Last_Stm)) = N_Identifier
4018 and then
4019 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4020
4021 -- Don't count exception junk
4022
4023 or else
800621e0
RD
4024 (Nkind_In (Last_Stm, N_Goto_Statement,
4025 N_Label,
4026 N_Object_Declaration)
0a36105d
JM
4027 and then Exception_Junk (Last_Stm))
4028 or else Nkind (Last_Stm) in N_Push_xxx_Label
4029 or else Nkind (Last_Stm) in N_Pop_xxx_Label
996ae0b0
RK
4030 loop
4031 Prev (Last_Stm);
4032 end loop;
4033
4034 -- Here we have the "real" last statement
4035
4036 Kind := Nkind (Last_Stm);
4037
4038 -- Transfer of control, OK. Note that in the No_Return procedure
4039 -- case, we already diagnosed any explicit return statements, so
4040 -- we can treat them as OK in this context.
4041
4042 if Is_Transfer (Last_Stm) then
4043 return;
4044
4045 -- Check cases of explicit non-indirect procedure calls
4046
4047 elsif Kind = N_Procedure_Call_Statement
4048 and then Is_Entity_Name (Name (Last_Stm))
4049 then
4050 -- Check call to Raise_Exception procedure which is treated
4051 -- specially, as is a call to Reraise_Occurrence.
4052
4053 -- We suppress the warning in these cases since it is likely that
4054 -- the programmer really does not expect to deal with the case
4055 -- of Null_Occurrence, and thus would find a warning about a
4056 -- missing return curious, and raising Program_Error does not
4057 -- seem such a bad behavior if this does occur.
4058
c8ef728f
ES
4059 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4060 -- behavior will be to raise Constraint_Error (see AI-329).
4061
996ae0b0
RK
4062 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4063 or else
4064 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4065 then
4066 Raise_Exception_Call := True;
4067
4068 -- For Raise_Exception call, test first argument, if it is
4069 -- an attribute reference for a 'Identity call, then we know
4070 -- that the call cannot possibly return.
4071
4072 declare
4073 Arg : constant Node_Id :=
4074 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
4075 begin
4076 if Nkind (Arg) = N_Attribute_Reference
4077 and then Attribute_Name (Arg) = Name_Identity
4078 then
4079 return;
4080 end if;
4081 end;
4082 end if;
4083
4084 -- If statement, need to look inside if there is an else and check
4085 -- each constituent statement sequence for proper termination.
4086
4087 elsif Kind = N_If_Statement
4088 and then Present (Else_Statements (Last_Stm))
4089 then
4090 Check_Statement_Sequence (Then_Statements (Last_Stm));
4091 Check_Statement_Sequence (Else_Statements (Last_Stm));
4092
4093 if Present (Elsif_Parts (Last_Stm)) then
4094 declare
4095 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4096
4097 begin
4098 while Present (Elsif_Part) loop
4099 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4100 Next (Elsif_Part);
4101 end loop;
4102 end;
4103 end if;
4104
4105 return;
4106
4107 -- Case statement, check each case for proper termination
4108
4109 elsif Kind = N_Case_Statement then
4110 declare
4111 Case_Alt : Node_Id;
996ae0b0
RK
4112 begin
4113 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4114 while Present (Case_Alt) loop
4115 Check_Statement_Sequence (Statements (Case_Alt));
4116 Next_Non_Pragma (Case_Alt);
4117 end loop;
4118 end;
4119
4120 return;
4121
4122 -- Block statement, check its handled sequence of statements
4123
4124 elsif Kind = N_Block_Statement then
4125 declare
4126 Err1 : Boolean;
4127
4128 begin
4129 Check_Returns
4130 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4131
4132 if Err1 then
4133 Err := True;
4134 end if;
4135
4136 return;
4137 end;
4138
4139 -- Loop statement. If there is an iteration scheme, we can definitely
4140 -- fall out of the loop. Similarly if there is an exit statement, we
4141 -- can fall out. In either case we need a following return.
4142
4143 elsif Kind = N_Loop_Statement then
4144 if Present (Iteration_Scheme (Last_Stm))
4145 or else Has_Exit (Entity (Identifier (Last_Stm)))
4146 then
4147 null;
4148
4149 -- A loop with no exit statement or iteration scheme if either
4150 -- an inifite loop, or it has some other exit (raise/return).
4151 -- In either case, no warning is required.
4152
4153 else
4154 return;
4155 end if;
4156
4157 -- Timed entry call, check entry call and delay alternatives
4158
4159 -- Note: in expanded code, the timed entry call has been converted
4160 -- to a set of expanded statements on which the check will work
4161 -- correctly in any case.
4162
4163 elsif Kind = N_Timed_Entry_Call then
4164 declare
4165 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4166 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4167
4168 begin
4169 -- If statement sequence of entry call alternative is missing,
4170 -- then we can definitely fall through, and we post the error
4171 -- message on the entry call alternative itself.
4172
4173 if No (Statements (ECA)) then
4174 Last_Stm := ECA;
4175
4176 -- If statement sequence of delay alternative is missing, then
4177 -- we can definitely fall through, and we post the error
4178 -- message on the delay alternative itself.
4179
4180 -- Note: if both ECA and DCA are missing the return, then we
4181 -- post only one message, should be enough to fix the bugs.
4182 -- If not we will get a message next time on the DCA when the
4183 -- ECA is fixed!
4184
4185 elsif No (Statements (DCA)) then
4186 Last_Stm := DCA;
4187
4188 -- Else check both statement sequences
4189
4190 else
4191 Check_Statement_Sequence (Statements (ECA));
4192 Check_Statement_Sequence (Statements (DCA));
4193 return;
4194 end if;
4195 end;
4196
4197 -- Conditional entry call, check entry call and else part
4198
4199 -- Note: in expanded code, the conditional entry call has been
4200 -- converted to a set of expanded statements on which the check
4201 -- will work correctly in any case.
4202
4203 elsif Kind = N_Conditional_Entry_Call then
4204 declare
4205 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4206
4207 begin
4208 -- If statement sequence of entry call alternative is missing,
4209 -- then we can definitely fall through, and we post the error
4210 -- message on the entry call alternative itself.
4211
4212 if No (Statements (ECA)) then
4213 Last_Stm := ECA;
4214
4215 -- Else check statement sequence and else part
4216
4217 else
4218 Check_Statement_Sequence (Statements (ECA));
4219 Check_Statement_Sequence (Else_Statements (Last_Stm));
4220 return;
4221 end if;
4222 end;
4223 end if;
4224
4225 -- If we fall through, issue appropriate message
4226
4227 if Mode = 'F' then
996ae0b0
RK
4228 if not Raise_Exception_Call then
4229 Error_Msg_N
5d37ba92 4230 ("?RETURN statement missing following this statement!",
996ae0b0
RK
4231 Last_Stm);
4232 Error_Msg_N
5d37ba92 4233 ("\?Program_Error may be raised at run time!",
996ae0b0
RK
4234 Last_Stm);
4235 end if;
4236
4237 -- Note: we set Err even though we have not issued a warning
4238 -- because we still have a case of a missing return. This is
4239 -- an extremely marginal case, probably will never be noticed
4240 -- but we might as well get it right.
4241
4242 Err := True;
4243
c8ef728f
ES
4244 -- Otherwise we have the case of a procedure marked No_Return
4245
996ae0b0 4246 else
800621e0
RD
4247 if not Raise_Exception_Call then
4248 Error_Msg_N
4249 ("?implied return after this statement " &
4250 "will raise Program_Error",
4251 Last_Stm);
4252 Error_Msg_NE
4253 ("\?procedure & is marked as No_Return!",
4254 Last_Stm, Proc);
4255 end if;
c8ef728f
ES
4256
4257 declare
4258 RE : constant Node_Id :=
4259 Make_Raise_Program_Error (Sloc (Last_Stm),
4260 Reason => PE_Implicit_Return);
4261 begin
4262 Insert_After (Last_Stm, RE);
4263 Analyze (RE);
4264 end;
996ae0b0
RK
4265 end if;
4266 end Check_Statement_Sequence;
4267
4268 -- Start of processing for Check_Returns
4269
4270 begin
4271 Err := False;
4272 Check_Statement_Sequence (Statements (HSS));
4273
4274 if Present (Exception_Handlers (HSS)) then
4275 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4276 while Present (Handler) loop
4277 Check_Statement_Sequence (Statements (Handler));
4278 Next_Non_Pragma (Handler);
4279 end loop;
4280 end if;
4281 end Check_Returns;
4282
4283 ----------------------------
4284 -- Check_Subprogram_Order --
4285 ----------------------------
4286
4287 procedure Check_Subprogram_Order (N : Node_Id) is
4288
4289 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4290 -- This is used to check if S1 > S2 in the sense required by this
4291 -- test, for example nameab < namec, but name2 < name10.
4292
82c80734
RD
4293 -----------------------------
4294 -- Subprogram_Name_Greater --
4295 -----------------------------
4296
996ae0b0
RK
4297 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4298 L1, L2 : Positive;
4299 N1, N2 : Natural;
4300
4301 begin
4302 -- Remove trailing numeric parts
4303
4304 L1 := S1'Last;
4305 while S1 (L1) in '0' .. '9' loop
4306 L1 := L1 - 1;
4307 end loop;
4308
4309 L2 := S2'Last;
4310 while S2 (L2) in '0' .. '9' loop
4311 L2 := L2 - 1;
4312 end loop;
4313
4314 -- If non-numeric parts non-equal, that's decisive
4315
4316 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4317 return False;
4318
4319 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4320 return True;
4321
4322 -- If non-numeric parts equal, compare suffixed numeric parts. Note
4323 -- that a missing suffix is treated as numeric zero in this test.
4324
4325 else
4326 N1 := 0;
4327 while L1 < S1'Last loop
4328 L1 := L1 + 1;
4329 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
4330 end loop;
4331
4332 N2 := 0;
4333 while L2 < S2'Last loop
4334 L2 := L2 + 1;
4335 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
4336 end loop;
4337
4338 return N1 > N2;
4339 end if;
4340 end Subprogram_Name_Greater;
4341
4342 -- Start of processing for Check_Subprogram_Order
4343
4344 begin
4345 -- Check body in alpha order if this is option
4346
fbf5a39b 4347 if Style_Check
bc202b70 4348 and then Style_Check_Order_Subprograms
996ae0b0
RK
4349 and then Nkind (N) = N_Subprogram_Body
4350 and then Comes_From_Source (N)
4351 and then In_Extended_Main_Source_Unit (N)
4352 then
4353 declare
4354 LSN : String_Ptr
4355 renames Scope_Stack.Table
4356 (Scope_Stack.Last).Last_Subprogram_Name;
4357
4358 Body_Id : constant Entity_Id :=
4359 Defining_Entity (Specification (N));
4360
4361 begin
4362 Get_Decoded_Name_String (Chars (Body_Id));
4363
4364 if LSN /= null then
4365 if Subprogram_Name_Greater
4366 (LSN.all, Name_Buffer (1 .. Name_Len))
4367 then
4368 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
4369 end if;
4370
4371 Free (LSN);
4372 end if;
4373
4374 LSN := new String'(Name_Buffer (1 .. Name_Len));
4375 end;
4376 end if;
4377 end Check_Subprogram_Order;
4378
4379 ------------------------------
4380 -- Check_Subtype_Conformant --
4381 ------------------------------
4382
4383 procedure Check_Subtype_Conformant
4384 (New_Id : Entity_Id;
4385 Old_Id : Entity_Id;
4386 Err_Loc : Node_Id := Empty)
4387 is
4388 Result : Boolean;
81db9d77 4389 pragma Warnings (Off, Result);
996ae0b0
RK
4390 begin
4391 Check_Conformance
4392 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
4393 end Check_Subtype_Conformant;
4394
4395 ---------------------------
4396 -- Check_Type_Conformant --
4397 ---------------------------
4398
4399 procedure Check_Type_Conformant
4400 (New_Id : Entity_Id;
4401 Old_Id : Entity_Id;
4402 Err_Loc : Node_Id := Empty)
4403 is
4404 Result : Boolean;
81db9d77 4405 pragma Warnings (Off, Result);
996ae0b0
RK
4406 begin
4407 Check_Conformance
4408 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
4409 end Check_Type_Conformant;
4410
4411 ----------------------
4412 -- Conforming_Types --
4413 ----------------------
4414
4415 function Conforming_Types
4416 (T1 : Entity_Id;
4417 T2 : Entity_Id;
4418 Ctype : Conformance_Type;
d05ef0ab 4419 Get_Inst : Boolean := False) return Boolean
996ae0b0
RK
4420 is
4421 Type_1 : Entity_Id := T1;
4422 Type_2 : Entity_Id := T2;
af4b9434 4423 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
996ae0b0
RK
4424
4425 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
0a36105d
JM
4426 -- If neither T1 nor T2 are generic actual types, or if they are in
4427 -- different scopes (e.g. parent and child instances), then verify that
4428 -- the base types are equal. Otherwise T1 and T2 must be on the same
4429 -- subtype chain. The whole purpose of this procedure is to prevent
4430 -- spurious ambiguities in an instantiation that may arise if two
4431 -- distinct generic types are instantiated with the same actual.
4432
5d37ba92
ES
4433 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
4434 -- An access parameter can designate an incomplete type. If the
4435 -- incomplete type is the limited view of a type from a limited_
4436 -- with_clause, check whether the non-limited view is available. If
4437 -- it is a (non-limited) incomplete type, get the full view.
4438
0a36105d
JM
4439 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
4440 -- Returns True if and only if either T1 denotes a limited view of T2
4441 -- or T2 denotes a limited view of T1. This can arise when the limited
4442 -- with view of a type is used in a subprogram declaration and the
4443 -- subprogram body is in the scope of a regular with clause for the
4444 -- same unit. In such a case, the two type entities can be considered
4445 -- identical for purposes of conformance checking.
996ae0b0
RK
4446
4447 ----------------------
4448 -- Base_Types_Match --
4449 ----------------------
4450
4451 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
4452 begin
4453 if T1 = T2 then
4454 return True;
4455
4456 elsif Base_Type (T1) = Base_Type (T2) then
4457
0a36105d 4458 -- The following is too permissive. A more precise test should
996ae0b0
RK
4459 -- check that the generic actual is an ancestor subtype of the
4460 -- other ???.
4461
4462 return not Is_Generic_Actual_Type (T1)
07fc65c4
GB
4463 or else not Is_Generic_Actual_Type (T2)
4464 or else Scope (T1) /= Scope (T2);
996ae0b0 4465
0a36105d
JM
4466 else
4467 return False;
4468 end if;
4469 end Base_Types_Match;
aa720a54 4470
5d37ba92
ES
4471 --------------------------
4472 -- Find_Designated_Type --
4473 --------------------------
4474
4475 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
4476 Desig : Entity_Id;
4477
4478 begin
4479 Desig := Directly_Designated_Type (T);
4480
4481 if Ekind (Desig) = E_Incomplete_Type then
4482
4483 -- If regular incomplete type, get full view if available
4484
4485 if Present (Full_View (Desig)) then
4486 Desig := Full_View (Desig);
4487
4488 -- If limited view of a type, get non-limited view if available,
4489 -- and check again for a regular incomplete type.
4490
4491 elsif Present (Non_Limited_View (Desig)) then
4492 Desig := Get_Full_View (Non_Limited_View (Desig));
4493 end if;
4494 end if;
4495
4496 return Desig;
4497 end Find_Designated_Type;
4498
0a36105d
JM
4499 -------------------------------
4500 -- Matches_Limited_With_View --
4501 -------------------------------
4502
4503 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
4504 begin
4505 -- In some cases a type imported through a limited_with clause, and
4506 -- its nonlimited view are both visible, for example in an anonymous
4507 -- access-to-class-wide type in a formal. Both entities designate the
4508 -- same type.
4509
4510 if From_With_Type (T1)
4511 and then T2 = Available_View (T1)
aa720a54
AC
4512 then
4513 return True;
4514
41251c60 4515 elsif From_With_Type (T2)
0a36105d 4516 and then T1 = Available_View (T2)
41251c60
JM
4517 then
4518 return True;
4519
996ae0b0
RK
4520 else
4521 return False;
4522 end if;
0a36105d 4523 end Matches_Limited_With_View;
996ae0b0 4524
ec4867fa 4525 -- Start of processing for Conforming_Types
758c442c 4526
996ae0b0
RK
4527 begin
4528 -- The context is an instance association for a formal
82c80734
RD
4529 -- access-to-subprogram type; the formal parameter types require
4530 -- mapping because they may denote other formal parameters of the
4531 -- generic unit.
996ae0b0
RK
4532
4533 if Get_Inst then
4534 Type_1 := Get_Instance_Of (T1);
4535 Type_2 := Get_Instance_Of (T2);
4536 end if;
4537
0a36105d
JM
4538 -- If one of the types is a view of the other introduced by a limited
4539 -- with clause, treat these as conforming for all purposes.
996ae0b0 4540
0a36105d
JM
4541 if Matches_Limited_With_View (T1, T2) then
4542 return True;
4543
4544 elsif Base_Types_Match (Type_1, Type_2) then
996ae0b0
RK
4545 return Ctype <= Mode_Conformant
4546 or else Subtypes_Statically_Match (Type_1, Type_2);
4547
4548 elsif Is_Incomplete_Or_Private_Type (Type_1)
4549 and then Present (Full_View (Type_1))
4550 and then Base_Types_Match (Full_View (Type_1), Type_2)
4551 then
4552 return Ctype <= Mode_Conformant
4553 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
4554
4555 elsif Ekind (Type_2) = E_Incomplete_Type
4556 and then Present (Full_View (Type_2))
4557 and then Base_Types_Match (Type_1, Full_View (Type_2))
4558 then
4559 return Ctype <= Mode_Conformant
4560 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
4561
4562 elsif Is_Private_Type (Type_2)
4563 and then In_Instance
4564 and then Present (Full_View (Type_2))
4565 and then Base_Types_Match (Type_1, Full_View (Type_2))
4566 then
4567 return Ctype <= Mode_Conformant
4568 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
996ae0b0
RK
4569 end if;
4570
0a36105d 4571 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
758c442c 4572 -- treated recursively because they carry a signature.
af4b9434
AC
4573
4574 Are_Anonymous_Access_To_Subprogram_Types :=
f937473f
RD
4575 Ekind (Type_1) = Ekind (Type_2)
4576 and then
800621e0 4577 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
f937473f
RD
4578 or else
4579 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 4580
996ae0b0 4581 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
4582 -- matching is required for mode conformance (RM 6.3.1(15)). We check
4583 -- the base types because we may have built internal subtype entities
4584 -- to handle null-excluding types (see Process_Formals).
996ae0b0 4585
5d37ba92
ES
4586 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
4587 and then
4588 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
0ab80019 4589 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
996ae0b0
RK
4590 then
4591 declare
4592 Desig_1 : Entity_Id;
4593 Desig_2 : Entity_Id;
4594
4595 begin
5d37ba92
ES
4596 -- In Ada2005, access constant indicators must match for
4597 -- subtype conformance.
9dcb52e1 4598
5d37ba92
ES
4599 if Ada_Version >= Ada_05
4600 and then Ctype >= Subtype_Conformant
4601 and then
4602 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
4603 then
4604 return False;
996ae0b0
RK
4605 end if;
4606
5d37ba92 4607 Desig_1 := Find_Designated_Type (Type_1);
996ae0b0 4608
5d37ba92 4609 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 4610
5d37ba92 4611 -- If the context is an instance association for a formal
82c80734
RD
4612 -- access-to-subprogram type; formal access parameter designated
4613 -- types require mapping because they may denote other formal
4614 -- parameters of the generic unit.
996ae0b0
RK
4615
4616 if Get_Inst then
4617 Desig_1 := Get_Instance_Of (Desig_1);
4618 Desig_2 := Get_Instance_Of (Desig_2);
4619 end if;
4620
82c80734
RD
4621 -- It is possible for a Class_Wide_Type to be introduced for an
4622 -- incomplete type, in which case there is a separate class_ wide
4623 -- type for the full view. The types conform if their Etypes
4624 -- conform, i.e. one may be the full view of the other. This can
4625 -- only happen in the context of an access parameter, other uses
4626 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 4627
fbf5a39b
AC
4628 if Is_Class_Wide_Type (Desig_1)
4629 and then Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
4630 then
4631 return
fbf5a39b
AC
4632 Conforming_Types
4633 (Etype (Base_Type (Desig_1)),
4634 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
4635
4636 elsif Are_Anonymous_Access_To_Subprogram_Types then
758c442c
GD
4637 if Ada_Version < Ada_05 then
4638 return Ctype = Type_Conformant
4639 or else
af4b9434
AC
4640 Subtypes_Statically_Match (Desig_1, Desig_2);
4641
758c442c
GD
4642 -- We must check the conformance of the signatures themselves
4643
4644 else
4645 declare
4646 Conformant : Boolean;
4647 begin
4648 Check_Conformance
4649 (Desig_1, Desig_2, Ctype, False, Conformant);
4650 return Conformant;
4651 end;
4652 end if;
4653
996ae0b0
RK
4654 else
4655 return Base_Type (Desig_1) = Base_Type (Desig_2)
4656 and then (Ctype = Type_Conformant
af4b9434
AC
4657 or else
4658 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
4659 end if;
4660 end;
4661
4662 -- Otherwise definitely no match
4663
4664 else
c8ef728f
ES
4665 if ((Ekind (Type_1) = E_Anonymous_Access_Type
4666 and then Is_Access_Type (Type_2))
4667 or else (Ekind (Type_2) = E_Anonymous_Access_Type
4668 and then Is_Access_Type (Type_1)))
4669 and then
4670 Conforming_Types
4671 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
4672 then
4673 May_Hide_Profile := True;
4674 end if;
4675
996ae0b0
RK
4676 return False;
4677 end if;
996ae0b0
RK
4678 end Conforming_Types;
4679
4680 --------------------------
4681 -- Create_Extra_Formals --
4682 --------------------------
4683
4684 procedure Create_Extra_Formals (E : Entity_Id) is
4685 Formal : Entity_Id;
ec4867fa 4686 First_Extra : Entity_Id := Empty;
996ae0b0
RK
4687 Last_Extra : Entity_Id;
4688 Formal_Type : Entity_Id;
4689 P_Formal : Entity_Id := Empty;
4690
ec4867fa
ES
4691 function Add_Extra_Formal
4692 (Assoc_Entity : Entity_Id;
4693 Typ : Entity_Id;
4694 Scope : Entity_Id;
4695 Suffix : String) return Entity_Id;
4696 -- Add an extra formal to the current list of formals and extra formals.
4697 -- The extra formal is added to the end of the list of extra formals,
4698 -- and also returned as the result. These formals are always of mode IN.
4699 -- The new formal has the type Typ, is declared in Scope, and its name
4700 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
996ae0b0 4701
fbf5a39b
AC
4702 ----------------------
4703 -- Add_Extra_Formal --
4704 ----------------------
4705
ec4867fa
ES
4706 function Add_Extra_Formal
4707 (Assoc_Entity : Entity_Id;
4708 Typ : Entity_Id;
4709 Scope : Entity_Id;
4710 Suffix : String) return Entity_Id
4711 is
996ae0b0 4712 EF : constant Entity_Id :=
ec4867fa
ES
4713 Make_Defining_Identifier (Sloc (Assoc_Entity),
4714 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 4715 Suffix => Suffix));
996ae0b0
RK
4716
4717 begin
82c80734
RD
4718 -- A little optimization. Never generate an extra formal for the
4719 -- _init operand of an initialization procedure, since it could
4720 -- never be used.
996ae0b0
RK
4721
4722 if Chars (Formal) = Name_uInit then
4723 return Empty;
4724 end if;
4725
4726 Set_Ekind (EF, E_In_Parameter);
4727 Set_Actual_Subtype (EF, Typ);
4728 Set_Etype (EF, Typ);
ec4867fa 4729 Set_Scope (EF, Scope);
996ae0b0
RK
4730 Set_Mechanism (EF, Default_Mechanism);
4731 Set_Formal_Validity (EF);
4732
ec4867fa
ES
4733 if No (First_Extra) then
4734 First_Extra := EF;
4735 Set_Extra_Formals (Scope, First_Extra);
4736 end if;
4737
4738 if Present (Last_Extra) then
4739 Set_Extra_Formal (Last_Extra, EF);
4740 end if;
4741
996ae0b0 4742 Last_Extra := EF;
ec4867fa 4743
996ae0b0
RK
4744 return EF;
4745 end Add_Extra_Formal;
4746
4747 -- Start of processing for Create_Extra_Formals
4748
4749 begin
f937473f
RD
4750 -- We never generate extra formals if expansion is not active
4751 -- because we don't need them unless we are generating code.
4752
4753 if not Expander_Active then
4754 return;
4755 end if;
4756
82c80734
RD
4757 -- If this is a derived subprogram then the subtypes of the parent
4758 -- subprogram's formal parameters will be used to to determine the need
4759 -- for extra formals.
996ae0b0
RK
4760
4761 if Is_Overloadable (E) and then Present (Alias (E)) then
4762 P_Formal := First_Formal (Alias (E));
4763 end if;
4764
4765 Last_Extra := Empty;
4766 Formal := First_Formal (E);
4767 while Present (Formal) loop
4768 Last_Extra := Formal;
4769 Next_Formal (Formal);
4770 end loop;
4771
f937473f 4772 -- If Extra_formals were already created, don't do it again. This
82c80734
RD
4773 -- situation may arise for subprogram types created as part of
4774 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0
RK
4775
4776 if Present (Last_Extra) and then
4777 Present (Extra_Formal (Last_Extra))
4778 then
4779 return;
4780 end if;
4781
19590d70
GD
4782 -- If the subprogram is a predefined dispatching subprogram then don't
4783 -- generate any extra constrained or accessibility level formals. In
4784 -- general we suppress these for internal subprograms (by not calling
4785 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
4786 -- generated stream attributes do get passed through because extra
4787 -- build-in-place formals are needed in some cases (limited 'Input).
4788
4789 if Is_Predefined_Dispatching_Operation (E) then
4790 goto Test_For_BIP_Extras;
4791 end if;
4792
996ae0b0 4793 Formal := First_Formal (E);
996ae0b0
RK
4794 while Present (Formal) loop
4795
4796 -- Create extra formal for supporting the attribute 'Constrained.
4797 -- The case of a private type view without discriminants also
4798 -- requires the extra formal if the underlying type has defaulted
4799 -- discriminants.
4800
4801 if Ekind (Formal) /= E_In_Parameter then
4802 if Present (P_Formal) then
4803 Formal_Type := Etype (P_Formal);
4804 else
4805 Formal_Type := Etype (Formal);
4806 end if;
4807
5d09245e
AC
4808 -- Do not produce extra formals for Unchecked_Union parameters.
4809 -- Jump directly to the end of the loop.
4810
4811 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
4812 goto Skip_Extra_Formal_Generation;
4813 end if;
4814
996ae0b0
RK
4815 if not Has_Discriminants (Formal_Type)
4816 and then Ekind (Formal_Type) in Private_Kind
4817 and then Present (Underlying_Type (Formal_Type))
4818 then
4819 Formal_Type := Underlying_Type (Formal_Type);
4820 end if;
4821
4822 if Has_Discriminants (Formal_Type)
f937473f
RD
4823 and then not Is_Constrained (Formal_Type)
4824 and then not Is_Indefinite_Subtype (Formal_Type)
996ae0b0
RK
4825 then
4826 Set_Extra_Constrained
5d37ba92 4827 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
996ae0b0
RK
4828 end if;
4829 end if;
4830
0a36105d
JM
4831 -- Create extra formal for supporting accessibility checking. This
4832 -- is done for both anonymous access formals and formals of named
4833 -- access types that are marked as controlling formals. The latter
4834 -- case can occur when Expand_Dispatching_Call creates a subprogram
4835 -- type and substitutes the types of access-to-class-wide actuals
4836 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
4837 -- Base_Type is applied because in cases where there is a null
4838 -- exclusion the formal may have an access subtype.
996ae0b0
RK
4839
4840 -- This is suppressed if we specifically suppress accessibility
f937473f 4841 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
4842 -- package in which it resides. However, we do not suppress it
4843 -- simply if the scope has accessibility checks suppressed, since
4844 -- this could cause trouble when clients are compiled with a
4845 -- different suppression setting. The explicit checks at the
4846 -- package level are safe from this point of view.
996ae0b0 4847
5d37ba92 4848 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 4849 or else (Is_Controlling_Formal (Formal)
5d37ba92 4850 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 4851 and then not
fbf5a39b 4852 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 4853 or else
fbf5a39b 4854 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 4855 and then
c8ef728f 4856 (No (P_Formal)
996ae0b0
RK
4857 or else Present (Extra_Accessibility (P_Formal)))
4858 then
82c80734
RD
4859 -- Temporary kludge: for now we avoid creating the extra formal
4860 -- for access parameters of protected operations because of
4861 -- problem with the case of internal protected calls. ???
996ae0b0
RK
4862
4863 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
4864 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
4865 then
4866 Set_Extra_Accessibility
5d37ba92 4867 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
996ae0b0
RK
4868 end if;
4869 end if;
4870
5d09245e
AC
4871 -- This label is required when skipping extra formal generation for
4872 -- Unchecked_Union parameters.
4873
4874 <<Skip_Extra_Formal_Generation>>
4875
f937473f
RD
4876 if Present (P_Formal) then
4877 Next_Formal (P_Formal);
4878 end if;
4879
996ae0b0
RK
4880 Next_Formal (Formal);
4881 end loop;
ec4867fa 4882
19590d70
GD
4883 <<Test_For_BIP_Extras>>
4884
ec4867fa 4885 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
4886 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
4887
4888 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
ec4867fa 4889 declare
f937473f
RD
4890 Result_Subt : constant Entity_Id := Etype (E);
4891
4892 Discard : Entity_Id;
4893 pragma Warnings (Off, Discard);
ec4867fa
ES
4894
4895 begin
f937473f
RD
4896 -- In the case of functions with unconstrained result subtypes,
4897 -- add a 3-state formal indicating whether the return object is
4898 -- allocated by the caller (0), or should be allocated by the
4899 -- callee on the secondary stack (1) or in the global heap (2).
4900 -- For the moment we just use Natural for the type of this formal.
0a36105d
JM
4901 -- Note that this formal isn't usually needed in the case where
4902 -- the result subtype is constrained, but it is needed when the
4903 -- function has a tagged result, because generally such functions
4904 -- can be called in a dispatching context and such calls must be
4905 -- handled like calls to a class-wide function.
4906
4907 if not Is_Constrained (Result_Subt)
4908 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4909 then
f937473f
RD
4910 Discard :=
4911 Add_Extra_Formal
4912 (E, Standard_Natural,
4913 E, BIP_Formal_Suffix (BIP_Alloc_Form));
4914 end if;
ec4867fa 4915
f937473f
RD
4916 -- In the case of functions whose result type has controlled
4917 -- parts, we have an extra formal of type
4918 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
4919 -- is, we are passing a pointer to a finalization list (which is
4920 -- itself a pointer). This extra formal is then passed along to
4921 -- Move_Final_List in case of successful completion of a return
4922 -- statement. We cannot pass an 'in out' parameter, because we
4923 -- need to update the finalization list during an abort-deferred
4924 -- region, rather than using copy-back after the function
4925 -- returns. This is true even if we are able to get away with
4926 -- having 'in out' parameters, which are normally illegal for
0a36105d
JM
4927 -- functions. This formal is also needed when the function has
4928 -- a tagged result, because generally such functions can be called
4929 -- in a dispatching context and such calls must be handled like
4930 -- calls to class-wide functions.
f937473f 4931
0a36105d
JM
4932 if Controlled_Type (Result_Subt)
4933 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
f937473f
RD
4934 then
4935 Discard :=
4936 Add_Extra_Formal
4937 (E, RTE (RE_Finalizable_Ptr_Ptr),
4938 E, BIP_Formal_Suffix (BIP_Final_List));
4939 end if;
4940
4941 -- If the result type contains tasks, we have two extra formals:
4942 -- the master of the tasks to be created, and the caller's
4943 -- activation chain.
4944
4945 if Has_Task (Result_Subt) then
4946 Discard :=
4947 Add_Extra_Formal
4948 (E, RTE (RE_Master_Id),
4949 E, BIP_Formal_Suffix (BIP_Master));
4950 Discard :=
4951 Add_Extra_Formal
4952 (E, RTE (RE_Activation_Chain_Access),
4953 E, BIP_Formal_Suffix (BIP_Activation_Chain));
4954 end if;
ec4867fa 4955
f937473f
RD
4956 -- All build-in-place functions get an extra formal that will be
4957 -- passed the address of the return object within the caller.
ec4867fa 4958
f937473f
RD
4959 declare
4960 Formal_Type : constant Entity_Id :=
4961 Create_Itype
4962 (E_Anonymous_Access_Type, E,
4963 Scope_Id => Scope (E));
4964 begin
4965 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
4966 Set_Etype (Formal_Type, Formal_Type);
4967 Init_Size_Align (Formal_Type);
4968 Set_Depends_On_Private
4969 (Formal_Type, Has_Private_Component (Formal_Type));
4970 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
4971 Set_Is_Access_Constant (Formal_Type, False);
ec4867fa 4972
f937473f
RD
4973 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
4974 -- the designated type comes from the limited view (for
4975 -- back-end purposes).
ec4867fa 4976
f937473f 4977 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
ec4867fa 4978
f937473f
RD
4979 Layout_Type (Formal_Type);
4980
4981 Discard :=
4982 Add_Extra_Formal
4983 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
4984 end;
ec4867fa
ES
4985 end;
4986 end if;
996ae0b0
RK
4987 end Create_Extra_Formals;
4988
4989 -----------------------------
4990 -- Enter_Overloaded_Entity --
4991 -----------------------------
4992
4993 procedure Enter_Overloaded_Entity (S : Entity_Id) is
4994 E : Entity_Id := Current_Entity_In_Scope (S);
4995 C_E : Entity_Id := Current_Entity (S);
4996
4997 begin
4998 if Present (E) then
4999 Set_Has_Homonym (E);
5000 Set_Has_Homonym (S);
5001 end if;
5002
5003 Set_Is_Immediately_Visible (S);
5004 Set_Scope (S, Current_Scope);
5005
5006 -- Chain new entity if front of homonym in current scope, so that
5007 -- homonyms are contiguous.
5008
5009 if Present (E)
5010 and then E /= C_E
5011 then
5012 while Homonym (C_E) /= E loop
5013 C_E := Homonym (C_E);
5014 end loop;
5015
5016 Set_Homonym (C_E, S);
5017
5018 else
5019 E := C_E;
5020 Set_Current_Entity (S);
5021 end if;
5022
5023 Set_Homonym (S, E);
5024
5025 Append_Entity (S, Current_Scope);
5026 Set_Public_Status (S);
5027
5028 if Debug_Flag_E then
5029 Write_Str ("New overloaded entity chain: ");
5030 Write_Name (Chars (S));
996ae0b0 5031
82c80734 5032 E := S;
996ae0b0
RK
5033 while Present (E) loop
5034 Write_Str (" "); Write_Int (Int (E));
5035 E := Homonym (E);
5036 end loop;
5037
5038 Write_Eol;
5039 end if;
5040
5041 -- Generate warning for hiding
5042
5043 if Warn_On_Hiding
5044 and then Comes_From_Source (S)
5045 and then In_Extended_Main_Source_Unit (S)
5046 then
5047 E := S;
5048 loop
5049 E := Homonym (E);
5050 exit when No (E);
5051
5052 -- Warn unless genuine overloading
5053
f937473f
RD
5054 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5055 and then (Is_Immediately_Visible (E)
5056 or else
5057 Is_Potentially_Use_Visible (S))
996ae0b0
RK
5058 then
5059 Error_Msg_Sloc := Sloc (E);
5060 Error_Msg_N ("declaration of & hides one#?", S);
5061 end if;
5062 end loop;
5063 end if;
5064 end Enter_Overloaded_Entity;
5065
5066 -----------------------------
5067 -- Find_Corresponding_Spec --
5068 -----------------------------
5069
5070 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
5071 Spec : constant Node_Id := Specification (N);
5072 Designator : constant Entity_Id := Defining_Entity (Spec);
5073
5074 E : Entity_Id;
5075
5076 begin
5077 E := Current_Entity (Designator);
996ae0b0
RK
5078 while Present (E) loop
5079
5080 -- We are looking for a matching spec. It must have the same scope,
5081 -- and the same name, and either be type conformant, or be the case
5082 -- of a library procedure spec and its body (which belong to one
5083 -- another regardless of whether they are type conformant or not).
5084
5085 if Scope (E) = Current_Scope then
fbf5a39b
AC
5086 if Current_Scope = Standard_Standard
5087 or else (Ekind (E) = Ekind (Designator)
5088 and then Type_Conformant (E, Designator))
996ae0b0
RK
5089 then
5090 -- Within an instantiation, we know that spec and body are
5091 -- subtype conformant, because they were subtype conformant
5092 -- in the generic. We choose the subtype-conformant entity
5093 -- here as well, to resolve spurious ambiguities in the
5094 -- instance that were not present in the generic (i.e. when
5095 -- two different types are given the same actual). If we are
5096 -- looking for a spec to match a body, full conformance is
5097 -- expected.
5098
5099 if In_Instance then
5100 Set_Convention (Designator, Convention (E));
5101
5102 if Nkind (N) = N_Subprogram_Body
5103 and then Present (Homonym (E))
5104 and then not Fully_Conformant (E, Designator)
5105 then
5106 goto Next_Entity;
5107
5108 elsif not Subtype_Conformant (E, Designator) then
5109 goto Next_Entity;
5110 end if;
5111 end if;
5112
5113 if not Has_Completion (E) then
5114
5115 if Nkind (N) /= N_Subprogram_Body_Stub then
5116 Set_Corresponding_Spec (N, E);
5117 end if;
5118
5119 Set_Has_Completion (E);
5120 return E;
5121
5122 elsif Nkind (Parent (N)) = N_Subunit then
5123
5124 -- If this is the proper body of a subunit, the completion
5125 -- flag is set when analyzing the stub.
5126
5127 return E;
5128
81db9d77
ES
5129 -- If E is an internal function with a controlling result
5130 -- that was created for an operation inherited by a null
5131 -- extension, it may be overridden by a body without a previous
5132 -- spec (one more reason why these should be shunned). In that
5133 -- case remove the generated body, because the current one is
5134 -- the explicit overriding.
5135
5136 elsif Ekind (E) = E_Function
5137 and then Ada_Version >= Ada_05
5138 and then not Comes_From_Source (E)
5139 and then Has_Controlling_Result (E)
5140 and then Is_Null_Extension (Etype (E))
5141 and then Comes_From_Source (Spec)
5142 then
5143 Set_Has_Completion (E, False);
5144
5145 if Expander_Active then
5146 Remove
5147 (Unit_Declaration_Node
5148 (Corresponding_Body (Unit_Declaration_Node (E))));
5149 return E;
5150
5151 -- If expansion is disabled, the wrapper function has not
5152 -- been generated, and this is the standard case of a late
5153 -- body overriding an inherited operation.
5154
5155 else
5156 return Empty;
5157 end if;
5158
996ae0b0
RK
5159 -- If body already exists, this is an error unless the
5160 -- previous declaration is the implicit declaration of
5161 -- a derived subprogram, or this is a spurious overloading
5162 -- in an instance.
5163
5164 elsif No (Alias (E))
5165 and then not Is_Intrinsic_Subprogram (E)
5166 and then not In_Instance
5167 then
5168 Error_Msg_Sloc := Sloc (E);
07fc65c4
GB
5169 if Is_Imported (E) then
5170 Error_Msg_NE
5171 ("body not allowed for imported subprogram & declared#",
5172 N, E);
5173 else
5174 Error_Msg_NE ("duplicate body for & declared#", N, E);
5175 end if;
996ae0b0
RK
5176 end if;
5177
5178 elsif Is_Child_Unit (E)
5179 and then
5180 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5181 and then
5d37ba92
ES
5182 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5183 N_Compilation_Unit
996ae0b0 5184 then
996ae0b0
RK
5185 -- Child units cannot be overloaded, so a conformance mismatch
5186 -- between body and a previous spec is an error.
5187
5188 Error_Msg_N
5189 ("body of child unit does not match previous declaration", N);
5190 end if;
5191 end if;
5192
5193 <<Next_Entity>>
5194 E := Homonym (E);
5195 end loop;
5196
5197 -- On exit, we know that no previous declaration of subprogram exists
5198
5199 return Empty;
5200 end Find_Corresponding_Spec;
5201
5202 ----------------------
5203 -- Fully_Conformant --
5204 ----------------------
5205
5206 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5207 Result : Boolean;
996ae0b0
RK
5208 begin
5209 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5210 return Result;
5211 end Fully_Conformant;
5212
5213 ----------------------------------
5214 -- Fully_Conformant_Expressions --
5215 ----------------------------------
5216
5217 function Fully_Conformant_Expressions
5218 (Given_E1 : Node_Id;
d05ef0ab 5219 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
5220 is
5221 E1 : constant Node_Id := Original_Node (Given_E1);
5222 E2 : constant Node_Id := Original_Node (Given_E2);
5223 -- We always test conformance on original nodes, since it is possible
5224 -- for analysis and/or expansion to make things look as though they
5225 -- conform when they do not, e.g. by converting 1+2 into 3.
5226
5227 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5228 renames Fully_Conformant_Expressions;
5229
5230 function FCL (L1, L2 : List_Id) return Boolean;
5231 -- Compare elements of two lists for conformance. Elements have to
5232 -- be conformant, and actuals inserted as default parameters do not
5233 -- match explicit actuals with the same value.
5234
5235 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 5236 -- Compare an operator node with a function call
996ae0b0
RK
5237
5238 ---------
5239 -- FCL --
5240 ---------
5241
5242 function FCL (L1, L2 : List_Id) return Boolean is
5243 N1, N2 : Node_Id;
5244
5245 begin
5246 if L1 = No_List then
5247 N1 := Empty;
5248 else
5249 N1 := First (L1);
5250 end if;
5251
5252 if L2 = No_List then
5253 N2 := Empty;
5254 else
5255 N2 := First (L2);
5256 end if;
5257
5258 -- Compare two lists, skipping rewrite insertions (we want to
5259 -- compare the original trees, not the expanded versions!)
5260
5261 loop
5262 if Is_Rewrite_Insertion (N1) then
5263 Next (N1);
5264 elsif Is_Rewrite_Insertion (N2) then
5265 Next (N2);
5266 elsif No (N1) then
5267 return No (N2);
5268 elsif No (N2) then
5269 return False;
5270 elsif not FCE (N1, N2) then
5271 return False;
5272 else
5273 Next (N1);
5274 Next (N2);
5275 end if;
5276 end loop;
5277 end FCL;
5278
5279 ---------
5280 -- FCO --
5281 ---------
5282
5283 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5284 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5285 Act : Node_Id;
5286
5287 begin
5288 if No (Actuals)
5289 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5290 then
5291 return False;
5292
5293 else
5294 Act := First (Actuals);
5295
5296 if Nkind (Op_Node) in N_Binary_Op then
5297
5298 if not FCE (Left_Opnd (Op_Node), Act) then
5299 return False;
5300 end if;
5301
5302 Next (Act);
5303 end if;
5304
5305 return Present (Act)
5306 and then FCE (Right_Opnd (Op_Node), Act)
5307 and then No (Next (Act));
5308 end if;
5309 end FCO;
5310
5311 -- Start of processing for Fully_Conformant_Expressions
5312
5313 begin
5314 -- Non-conformant if paren count does not match. Note: if some idiot
5315 -- complains that we don't do this right for more than 3 levels of
0a36105d 5316 -- parentheses, they will be treated with the respect they deserve!
996ae0b0
RK
5317
5318 if Paren_Count (E1) /= Paren_Count (E2) then
5319 return False;
5320
82c80734
RD
5321 -- If same entities are referenced, then they are conformant even if
5322 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
5323
5324 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5325 if Present (Entity (E1)) then
5326 return Entity (E1) = Entity (E2)
5327 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5328 and then Ekind (Entity (E1)) = E_Discriminant
5329 and then Ekind (Entity (E2)) = E_In_Parameter);
5330
5331 elsif Nkind (E1) = N_Expanded_Name
5332 and then Nkind (E2) = N_Expanded_Name
5333 and then Nkind (Selector_Name (E1)) = N_Character_Literal
5334 and then Nkind (Selector_Name (E2)) = N_Character_Literal
5335 then
5336 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
5337
5338 else
5339 -- Identifiers in component associations don't always have
5340 -- entities, but their names must conform.
5341
5342 return Nkind (E1) = N_Identifier
5343 and then Nkind (E2) = N_Identifier
5344 and then Chars (E1) = Chars (E2);
5345 end if;
5346
5347 elsif Nkind (E1) = N_Character_Literal
5348 and then Nkind (E2) = N_Expanded_Name
5349 then
5350 return Nkind (Selector_Name (E2)) = N_Character_Literal
5351 and then Chars (E1) = Chars (Selector_Name (E2));
5352
5353 elsif Nkind (E2) = N_Character_Literal
5354 and then Nkind (E1) = N_Expanded_Name
5355 then
5356 return Nkind (Selector_Name (E1)) = N_Character_Literal
5357 and then Chars (E2) = Chars (Selector_Name (E1));
5358
5359 elsif Nkind (E1) in N_Op
5360 and then Nkind (E2) = N_Function_Call
5361 then
5362 return FCO (E1, E2);
5363
5364 elsif Nkind (E2) in N_Op
5365 and then Nkind (E1) = N_Function_Call
5366 then
5367 return FCO (E2, E1);
5368
5369 -- Otherwise we must have the same syntactic entity
5370
5371 elsif Nkind (E1) /= Nkind (E2) then
5372 return False;
5373
5374 -- At this point, we specialize by node type
5375
5376 else
5377 case Nkind (E1) is
5378
5379 when N_Aggregate =>
5380 return
5381 FCL (Expressions (E1), Expressions (E2))
5382 and then FCL (Component_Associations (E1),
5383 Component_Associations (E2));
5384
5385 when N_Allocator =>
5386 if Nkind (Expression (E1)) = N_Qualified_Expression
5387 or else
5388 Nkind (Expression (E2)) = N_Qualified_Expression
5389 then
5390 return FCE (Expression (E1), Expression (E2));
5391
5392 -- Check that the subtype marks and any constraints
5393 -- are conformant
5394
5395 else
5396 declare
5397 Indic1 : constant Node_Id := Expression (E1);
5398 Indic2 : constant Node_Id := Expression (E2);
5399 Elt1 : Node_Id;
5400 Elt2 : Node_Id;
5401
5402 begin
5403 if Nkind (Indic1) /= N_Subtype_Indication then
5404 return
5405 Nkind (Indic2) /= N_Subtype_Indication
5406 and then Entity (Indic1) = Entity (Indic2);
5407
5408 elsif Nkind (Indic2) /= N_Subtype_Indication then
5409 return
5410 Nkind (Indic1) /= N_Subtype_Indication
5411 and then Entity (Indic1) = Entity (Indic2);
5412
5413 else
5414 if Entity (Subtype_Mark (Indic1)) /=
5415 Entity (Subtype_Mark (Indic2))
5416 then
5417 return False;
5418 end if;
5419
5420 Elt1 := First (Constraints (Constraint (Indic1)));
5421 Elt2 := First (Constraints (Constraint (Indic2)));
5422
5423 while Present (Elt1) and then Present (Elt2) loop
5424 if not FCE (Elt1, Elt2) then
5425 return False;
5426 end if;
5427
5428 Next (Elt1);
5429 Next (Elt2);
5430 end loop;
5431
5432 return True;
5433 end if;
5434 end;
5435 end if;
5436
5437 when N_Attribute_Reference =>
5438 return
5439 Attribute_Name (E1) = Attribute_Name (E2)
5440 and then FCL (Expressions (E1), Expressions (E2));
5441
5442 when N_Binary_Op =>
5443 return
5444 Entity (E1) = Entity (E2)
5445 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
5446 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5447
ec4867fa 5448 when N_And_Then | N_Or_Else | N_Membership_Test =>
996ae0b0
RK
5449 return
5450 FCE (Left_Opnd (E1), Left_Opnd (E2))
5451 and then
5452 FCE (Right_Opnd (E1), Right_Opnd (E2));
5453
5454 when N_Character_Literal =>
5455 return
5456 Char_Literal_Value (E1) = Char_Literal_Value (E2);
5457
5458 when N_Component_Association =>
5459 return
5460 FCL (Choices (E1), Choices (E2))
5461 and then FCE (Expression (E1), Expression (E2));
5462
5463 when N_Conditional_Expression =>
5464 return
5465 FCL (Expressions (E1), Expressions (E2));
5466
5467 when N_Explicit_Dereference =>
5468 return
5469 FCE (Prefix (E1), Prefix (E2));
5470
5471 when N_Extension_Aggregate =>
5472 return
5473 FCL (Expressions (E1), Expressions (E2))
5474 and then Null_Record_Present (E1) =
5475 Null_Record_Present (E2)
5476 and then FCL (Component_Associations (E1),
5477 Component_Associations (E2));
5478
5479 when N_Function_Call =>
5480 return
5481 FCE (Name (E1), Name (E2))
5482 and then FCL (Parameter_Associations (E1),
5483 Parameter_Associations (E2));
5484
5485 when N_Indexed_Component =>
5486 return
5487 FCE (Prefix (E1), Prefix (E2))
5488 and then FCL (Expressions (E1), Expressions (E2));
5489
5490 when N_Integer_Literal =>
5491 return (Intval (E1) = Intval (E2));
5492
5493 when N_Null =>
5494 return True;
5495
5496 when N_Operator_Symbol =>
5497 return
5498 Chars (E1) = Chars (E2);
5499
5500 when N_Others_Choice =>
5501 return True;
5502
5503 when N_Parameter_Association =>
5504 return
996ae0b0
RK
5505 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
5506 and then FCE (Explicit_Actual_Parameter (E1),
5507 Explicit_Actual_Parameter (E2));
5508
5509 when N_Qualified_Expression =>
5510 return
5511 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5512 and then FCE (Expression (E1), Expression (E2));
5513
5514 when N_Range =>
5515 return
5516 FCE (Low_Bound (E1), Low_Bound (E2))
5517 and then FCE (High_Bound (E1), High_Bound (E2));
5518
5519 when N_Real_Literal =>
5520 return (Realval (E1) = Realval (E2));
5521
5522 when N_Selected_Component =>
5523 return
5524 FCE (Prefix (E1), Prefix (E2))
5525 and then FCE (Selector_Name (E1), Selector_Name (E2));
5526
5527 when N_Slice =>
5528 return
5529 FCE (Prefix (E1), Prefix (E2))
5530 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
5531
5532 when N_String_Literal =>
5533 declare
5534 S1 : constant String_Id := Strval (E1);
5535 S2 : constant String_Id := Strval (E2);
5536 L1 : constant Nat := String_Length (S1);
5537 L2 : constant Nat := String_Length (S2);
5538
5539 begin
5540 if L1 /= L2 then
5541 return False;
5542
5543 else
5544 for J in 1 .. L1 loop
5545 if Get_String_Char (S1, J) /=
5546 Get_String_Char (S2, J)
5547 then
5548 return False;
5549 end if;
5550 end loop;
5551
5552 return True;
5553 end if;
5554 end;
5555
5556 when N_Type_Conversion =>
5557 return
5558 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5559 and then FCE (Expression (E1), Expression (E2));
5560
5561 when N_Unary_Op =>
5562 return
5563 Entity (E1) = Entity (E2)
5564 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5565
5566 when N_Unchecked_Type_Conversion =>
5567 return
5568 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5569 and then FCE (Expression (E1), Expression (E2));
5570
5571 -- All other node types cannot appear in this context. Strictly
5572 -- we should raise a fatal internal error. Instead we just ignore
5573 -- the nodes. This means that if anyone makes a mistake in the
5574 -- expander and mucks an expression tree irretrievably, the
5575 -- result will be a failure to detect a (probably very obscure)
5576 -- case of non-conformance, which is better than bombing on some
5577 -- case where two expressions do in fact conform.
5578
5579 when others =>
5580 return True;
5581
5582 end case;
5583 end if;
5584 end Fully_Conformant_Expressions;
5585
fbf5a39b
AC
5586 ----------------------------------------
5587 -- Fully_Conformant_Discrete_Subtypes --
5588 ----------------------------------------
5589
5590 function Fully_Conformant_Discrete_Subtypes
5591 (Given_S1 : Node_Id;
d05ef0ab 5592 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
5593 is
5594 S1 : constant Node_Id := Original_Node (Given_S1);
5595 S2 : constant Node_Id := Original_Node (Given_S2);
5596
5597 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
5598 -- Special-case for a bound given by a discriminant, which in the body
5599 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
5600
5601 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 5602 -- Check both bounds
fbf5a39b 5603
5d37ba92
ES
5604 -----------------------
5605 -- Conforming_Bounds --
5606 -----------------------
5607
fbf5a39b
AC
5608 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
5609 begin
5610 if Is_Entity_Name (B1)
5611 and then Is_Entity_Name (B2)
5612 and then Ekind (Entity (B1)) = E_Discriminant
5613 then
5614 return Chars (B1) = Chars (B2);
5615
5616 else
5617 return Fully_Conformant_Expressions (B1, B2);
5618 end if;
5619 end Conforming_Bounds;
5620
5d37ba92
ES
5621 -----------------------
5622 -- Conforming_Ranges --
5623 -----------------------
5624
fbf5a39b
AC
5625 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
5626 begin
5627 return
5628 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
5629 and then
5630 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
5631 end Conforming_Ranges;
5632
5633 -- Start of processing for Fully_Conformant_Discrete_Subtypes
5634
5635 begin
5636 if Nkind (S1) /= Nkind (S2) then
5637 return False;
5638
5639 elsif Is_Entity_Name (S1) then
5640 return Entity (S1) = Entity (S2);
5641
5642 elsif Nkind (S1) = N_Range then
5643 return Conforming_Ranges (S1, S2);
5644
5645 elsif Nkind (S1) = N_Subtype_Indication then
5646 return
5647 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
5648 and then
5649 Conforming_Ranges
5650 (Range_Expression (Constraint (S1)),
5651 Range_Expression (Constraint (S2)));
5652 else
5653 return True;
5654 end if;
5655 end Fully_Conformant_Discrete_Subtypes;
5656
996ae0b0
RK
5657 --------------------
5658 -- Install_Entity --
5659 --------------------
5660
5661 procedure Install_Entity (E : Entity_Id) is
5662 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
5663 begin
5664 Set_Is_Immediately_Visible (E);
5665 Set_Current_Entity (E);
5666 Set_Homonym (E, Prev);
5667 end Install_Entity;
5668
5669 ---------------------
5670 -- Install_Formals --
5671 ---------------------
5672
5673 procedure Install_Formals (Id : Entity_Id) is
5674 F : Entity_Id;
996ae0b0
RK
5675 begin
5676 F := First_Formal (Id);
996ae0b0
RK
5677 while Present (F) loop
5678 Install_Entity (F);
5679 Next_Formal (F);
5680 end loop;
5681 end Install_Formals;
5682
5683 ---------------------------------
5684 -- Is_Non_Overriding_Operation --
5685 ---------------------------------
5686
5687 function Is_Non_Overriding_Operation
5688 (Prev_E : Entity_Id;
d05ef0ab 5689 New_E : Entity_Id) return Boolean
996ae0b0
RK
5690 is
5691 Formal : Entity_Id;
5692 F_Typ : Entity_Id;
5693 G_Typ : Entity_Id := Empty;
5694
5695 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
5696 -- If F_Type is a derived type associated with a generic actual subtype,
5697 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
5698
5699 function Types_Correspond
5700 (P_Type : Entity_Id;
d05ef0ab 5701 N_Type : Entity_Id) return Boolean;
82c80734
RD
5702 -- Returns true if and only if the types (or designated types in the
5703 -- case of anonymous access types) are the same or N_Type is derived
5704 -- directly or indirectly from P_Type.
996ae0b0
RK
5705
5706 -----------------------------
5707 -- Get_Generic_Parent_Type --
5708 -----------------------------
5709
5710 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
5711 G_Typ : Entity_Id;
5712 Indic : Node_Id;
5713
5714 begin
5715 if Is_Derived_Type (F_Typ)
5716 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
5717 then
82c80734
RD
5718 -- The tree must be traversed to determine the parent subtype in
5719 -- the generic unit, which unfortunately isn't always available
5720 -- via semantic attributes. ??? (Note: The use of Original_Node
5721 -- is needed for cases where a full derived type has been
5722 -- rewritten.)
996ae0b0
RK
5723
5724 Indic := Subtype_Indication
5725 (Type_Definition (Original_Node (Parent (F_Typ))));
5726
5727 if Nkind (Indic) = N_Subtype_Indication then
5728 G_Typ := Entity (Subtype_Mark (Indic));
5729 else
5730 G_Typ := Entity (Indic);
5731 end if;
5732
5733 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
5734 and then Present (Generic_Parent_Type (Parent (G_Typ)))
5735 then
5736 return Generic_Parent_Type (Parent (G_Typ));
5737 end if;
5738 end if;
5739
5740 return Empty;
5741 end Get_Generic_Parent_Type;
5742
5743 ----------------------
5744 -- Types_Correspond --
5745 ----------------------
5746
5747 function Types_Correspond
5748 (P_Type : Entity_Id;
d05ef0ab 5749 N_Type : Entity_Id) return Boolean
996ae0b0
RK
5750 is
5751 Prev_Type : Entity_Id := Base_Type (P_Type);
5752 New_Type : Entity_Id := Base_Type (N_Type);
5753
5754 begin
5755 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
5756 Prev_Type := Designated_Type (Prev_Type);
5757 end if;
5758
5759 if Ekind (New_Type) = E_Anonymous_Access_Type then
5760 New_Type := Designated_Type (New_Type);
5761 end if;
5762
5763 if Prev_Type = New_Type then
5764 return True;
5765
5766 elsif not Is_Class_Wide_Type (New_Type) then
5767 while Etype (New_Type) /= New_Type loop
5768 New_Type := Etype (New_Type);
5769 if New_Type = Prev_Type then
5770 return True;
5771 end if;
5772 end loop;
5773 end if;
5774 return False;
5775 end Types_Correspond;
5776
5777 -- Start of processing for Is_Non_Overriding_Operation
5778
5779 begin
82c80734
RD
5780 -- In the case where both operations are implicit derived subprograms
5781 -- then neither overrides the other. This can only occur in certain
5782 -- obscure cases (e.g., derivation from homographs created in a generic
5783 -- instantiation).
996ae0b0
RK
5784
5785 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
5786 return True;
5787
5788 elsif Ekind (Current_Scope) = E_Package
5789 and then Is_Generic_Instance (Current_Scope)
5790 and then In_Private_Part (Current_Scope)
5791 and then Comes_From_Source (New_E)
5792 then
5793 -- We examine the formals and result subtype of the inherited
82c80734
RD
5794 -- operation, to determine whether their type is derived from (the
5795 -- instance of) a generic type.
996ae0b0
RK
5796
5797 Formal := First_Formal (Prev_E);
5798
5799 while Present (Formal) loop
5800 F_Typ := Base_Type (Etype (Formal));
5801
5802 if Ekind (F_Typ) = E_Anonymous_Access_Type then
5803 F_Typ := Designated_Type (F_Typ);
5804 end if;
5805
5806 G_Typ := Get_Generic_Parent_Type (F_Typ);
5807
5808 Next_Formal (Formal);
5809 end loop;
5810
c8ef728f 5811 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
5812 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
5813 end if;
5814
5815 if No (G_Typ) then
5816 return False;
5817 end if;
5818
5819 -- If the generic type is a private type, then the original
5820 -- operation was not overriding in the generic, because there was
5821 -- no primitive operation to override.
5822
5823 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
5824 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
5825 N_Formal_Private_Type_Definition
5826 then
5827 return True;
5828
5829 -- The generic parent type is the ancestor of a formal derived
5830 -- type declaration. We need to check whether it has a primitive
5831 -- operation that should be overridden by New_E in the generic.
5832
5833 else
5834 declare
5835 P_Formal : Entity_Id;
5836 N_Formal : Entity_Id;
5837 P_Typ : Entity_Id;
5838 N_Typ : Entity_Id;
5839 P_Prim : Entity_Id;
5840 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
5841
5842 begin
5843 while Present (Prim_Elt) loop
5844 P_Prim := Node (Prim_Elt);
fbf5a39b 5845
996ae0b0
RK
5846 if Chars (P_Prim) = Chars (New_E)
5847 and then Ekind (P_Prim) = Ekind (New_E)
5848 then
5849 P_Formal := First_Formal (P_Prim);
5850 N_Formal := First_Formal (New_E);
5851 while Present (P_Formal) and then Present (N_Formal) loop
5852 P_Typ := Etype (P_Formal);
5853 N_Typ := Etype (N_Formal);
5854
5855 if not Types_Correspond (P_Typ, N_Typ) then
5856 exit;
5857 end if;
5858
5859 Next_Entity (P_Formal);
5860 Next_Entity (N_Formal);
5861 end loop;
5862
82c80734
RD
5863 -- Found a matching primitive operation belonging to the
5864 -- formal ancestor type, so the new subprogram is
5865 -- overriding.
996ae0b0 5866
c8ef728f
ES
5867 if No (P_Formal)
5868 and then No (N_Formal)
996ae0b0
RK
5869 and then (Ekind (New_E) /= E_Function
5870 or else
5871 Types_Correspond
5872 (Etype (P_Prim), Etype (New_E)))
5873 then
5874 return False;
5875 end if;
5876 end if;
5877
5878 Next_Elmt (Prim_Elt);
5879 end loop;
5880
82c80734
RD
5881 -- If no match found, then the new subprogram does not
5882 -- override in the generic (nor in the instance).
996ae0b0
RK
5883
5884 return True;
5885 end;
5886 end if;
5887 else
5888 return False;
5889 end if;
5890 end Is_Non_Overriding_Operation;
5891
5892 ------------------------------
5893 -- Make_Inequality_Operator --
5894 ------------------------------
5895
5896 -- S is the defining identifier of an equality operator. We build a
5897 -- subprogram declaration with the right signature. This operation is
5898 -- intrinsic, because it is always expanded as the negation of the
5899 -- call to the equality function.
5900
5901 procedure Make_Inequality_Operator (S : Entity_Id) is
5902 Loc : constant Source_Ptr := Sloc (S);
5903 Decl : Node_Id;
5904 Formals : List_Id;
5905 Op_Name : Entity_Id;
5906
c8ef728f
ES
5907 FF : constant Entity_Id := First_Formal (S);
5908 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
5909
5910 begin
c8ef728f 5911 -- Check that equality was properly defined, ignore call if not
996ae0b0 5912
c8ef728f 5913 if No (NF) then
996ae0b0
RK
5914 return;
5915 end if;
5916
c8ef728f
ES
5917 declare
5918 A : constant Entity_Id :=
5919 Make_Defining_Identifier (Sloc (FF),
5920 Chars => Chars (FF));
5921
5d37ba92
ES
5922 B : constant Entity_Id :=
5923 Make_Defining_Identifier (Sloc (NF),
5924 Chars => Chars (NF));
c8ef728f
ES
5925
5926 begin
5927 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
5928
5929 Formals := New_List (
5930 Make_Parameter_Specification (Loc,
5931 Defining_Identifier => A,
5932 Parameter_Type =>
5933 New_Reference_To (Etype (First_Formal (S)),
5934 Sloc (Etype (First_Formal (S))))),
5935
5936 Make_Parameter_Specification (Loc,
5937 Defining_Identifier => B,
5938 Parameter_Type =>
5939 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
5940 Sloc (Etype (Next_Formal (First_Formal (S)))))));
5941
5942 Decl :=
5943 Make_Subprogram_Declaration (Loc,
5944 Specification =>
5945 Make_Function_Specification (Loc,
5946 Defining_Unit_Name => Op_Name,
5947 Parameter_Specifications => Formals,
5948 Result_Definition =>
5949 New_Reference_To (Standard_Boolean, Loc)));
5950
5951 -- Insert inequality right after equality if it is explicit or after
5952 -- the derived type when implicit. These entities are created only
5953 -- for visibility purposes, and eventually replaced in the course of
5954 -- expansion, so they do not need to be attached to the tree and seen
5955 -- by the back-end. Keeping them internal also avoids spurious
5956 -- freezing problems. The declaration is inserted in the tree for
5957 -- analysis, and removed afterwards. If the equality operator comes
5958 -- from an explicit declaration, attach the inequality immediately
5959 -- after. Else the equality is inherited from a derived type
5960 -- declaration, so insert inequality after that declaration.
5961
5962 if No (Alias (S)) then
5963 Insert_After (Unit_Declaration_Node (S), Decl);
5964 elsif Is_List_Member (Parent (S)) then
5965 Insert_After (Parent (S), Decl);
5966 else
5967 Insert_After (Parent (Etype (First_Formal (S))), Decl);
5968 end if;
996ae0b0 5969
c8ef728f
ES
5970 Mark_Rewrite_Insertion (Decl);
5971 Set_Is_Intrinsic_Subprogram (Op_Name);
5972 Analyze (Decl);
5973 Remove (Decl);
5974 Set_Has_Completion (Op_Name);
5975 Set_Corresponding_Equality (Op_Name, S);
f937473f 5976 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 5977 end;
996ae0b0
RK
5978 end Make_Inequality_Operator;
5979
5980 ----------------------
5981 -- May_Need_Actuals --
5982 ----------------------
5983
5984 procedure May_Need_Actuals (Fun : Entity_Id) is
5985 F : Entity_Id;
5986 B : Boolean;
5987
5988 begin
5989 F := First_Formal (Fun);
5990 B := True;
996ae0b0
RK
5991 while Present (F) loop
5992 if No (Default_Value (F)) then
5993 B := False;
5994 exit;
5995 end if;
5996
5997 Next_Formal (F);
5998 end loop;
5999
6000 Set_Needs_No_Actuals (Fun, B);
6001 end May_Need_Actuals;
6002
6003 ---------------------
6004 -- Mode_Conformant --
6005 ---------------------
6006
6007 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6008 Result : Boolean;
996ae0b0
RK
6009 begin
6010 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6011 return Result;
6012 end Mode_Conformant;
6013
6014 ---------------------------
6015 -- New_Overloaded_Entity --
6016 ---------------------------
6017
6018 procedure New_Overloaded_Entity
6019 (S : Entity_Id;
6020 Derived_Type : Entity_Id := Empty)
6021 is
ec4867fa 6022 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
6023 -- Set if the current scope has an operation that is type-conformant
6024 -- with S, and becomes hidden by S.
6025
5d37ba92
ES
6026 Is_Primitive_Subp : Boolean;
6027 -- Set to True if the new subprogram is primitive
6028
fbf5a39b
AC
6029 E : Entity_Id;
6030 -- Entity that S overrides
6031
996ae0b0 6032 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
6033 -- Predecessor of E in Homonym chain
6034
5d37ba92
ES
6035 procedure Check_For_Primitive_Subprogram
6036 (Is_Primitive : out Boolean;
6037 Is_Overriding : Boolean := False);
6038 -- If the subprogram being analyzed is a primitive operation of the type
6039 -- of a formal or result, set the Has_Primitive_Operations flag on the
6040 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6041 -- corresponding flag on the entity itself for later use.
6042
ec4867fa
ES
6043 procedure Check_Synchronized_Overriding
6044 (Def_Id : Entity_Id;
6045 First_Hom : Entity_Id;
6046 Overridden_Subp : out Entity_Id);
6047 -- First determine if Def_Id is an entry or a subprogram either defined
6048 -- in the scope of a task or protected type, or is a primitive of such
6049 -- a type. Check whether Def_Id overrides a subprogram of an interface
6050 -- implemented by the synchronized type, return the overridden entity
6051 -- or Empty.
758c442c 6052
996ae0b0
RK
6053 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6054 -- Check that E is declared in the private part of the current package,
6055 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 6056 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
6057 -- set when freezing entities, so we must examine the place of the
6058 -- declaration in the tree, and recognize wrapper packages as well.
6059
5d37ba92
ES
6060 ------------------------------------
6061 -- Check_For_Primitive_Subprogram --
6062 ------------------------------------
996ae0b0 6063
5d37ba92
ES
6064 procedure Check_For_Primitive_Subprogram
6065 (Is_Primitive : out Boolean;
6066 Is_Overriding : Boolean := False)
ec4867fa 6067 is
996ae0b0
RK
6068 Formal : Entity_Id;
6069 F_Typ : Entity_Id;
07fc65c4 6070 B_Typ : Entity_Id;
996ae0b0
RK
6071
6072 function Visible_Part_Type (T : Entity_Id) return Boolean;
6073 -- Returns true if T is declared in the visible part of
6074 -- the current package scope; otherwise returns false.
6075 -- Assumes that T is declared in a package.
6076
6077 procedure Check_Private_Overriding (T : Entity_Id);
6078 -- Checks that if a primitive abstract subprogram of a visible
6079 -- abstract type is declared in a private part, then it must
6080 -- override an abstract subprogram declared in the visible part.
6081 -- Also checks that if a primitive function with a controlling
6082 -- result is declared in a private part, then it must override
6083 -- a function declared in the visible part.
6084
6085 ------------------------------
6086 -- Check_Private_Overriding --
6087 ------------------------------
6088
6089 procedure Check_Private_Overriding (T : Entity_Id) is
6090 begin
6091 if Ekind (Current_Scope) = E_Package
6092 and then In_Private_Part (Current_Scope)
6093 and then Visible_Part_Type (T)
6094 and then not In_Instance
6095 then
f937473f
RD
6096 if Is_Abstract_Type (T)
6097 and then Is_Abstract_Subprogram (S)
6098 and then (not Is_Overriding
6099 or else not Is_Abstract_Subprogram (E))
996ae0b0 6100 then
f937473f 6101 Error_Msg_N ("abstract subprograms must be visible "
5d37ba92 6102 & "(RM 3.9.3(10))!", S);
758c442c 6103
996ae0b0
RK
6104 elsif Ekind (S) = E_Function
6105 and then Is_Tagged_Type (T)
6106 and then T = Base_Type (Etype (S))
82c80734 6107 and then not Is_Overriding
996ae0b0
RK
6108 then
6109 Error_Msg_N
6110 ("private function with tagged result must"
6111 & " override visible-part function", S);
6112 Error_Msg_N
6113 ("\move subprogram to the visible part"
5d37ba92 6114 & " (RM 3.9.3(10))", S);
996ae0b0
RK
6115 end if;
6116 end if;
6117 end Check_Private_Overriding;
6118
6119 -----------------------
6120 -- Visible_Part_Type --
6121 -----------------------
6122
6123 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
6124 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6125 N : Node_Id;
996ae0b0
RK
6126
6127 begin
6128 -- If the entity is a private type, then it must be
6129 -- declared in a visible part.
6130
6131 if Ekind (T) in Private_Kind then
6132 return True;
6133 end if;
6134
6135 -- Otherwise, we traverse the visible part looking for its
6136 -- corresponding declaration. We cannot use the declaration
6137 -- node directly because in the private part the entity of a
6138 -- private type is the one in the full view, which does not
6139 -- indicate that it is the completion of something visible.
6140
07fc65c4 6141 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
6142 while Present (N) loop
6143 if Nkind (N) = N_Full_Type_Declaration
6144 and then Present (Defining_Identifier (N))
6145 and then T = Defining_Identifier (N)
6146 then
6147 return True;
6148
800621e0
RD
6149 elsif Nkind_In (N, N_Private_Type_Declaration,
6150 N_Private_Extension_Declaration)
996ae0b0
RK
6151 and then Present (Defining_Identifier (N))
6152 and then T = Full_View (Defining_Identifier (N))
6153 then
6154 return True;
6155 end if;
6156
6157 Next (N);
6158 end loop;
6159
6160 return False;
6161 end Visible_Part_Type;
6162
5d37ba92 6163 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
6164
6165 begin
5d37ba92
ES
6166 Is_Primitive := False;
6167
996ae0b0
RK
6168 if not Comes_From_Source (S) then
6169 null;
6170
5d37ba92 6171 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
6172
6173 elsif Current_Scope = Standard_Standard then
6174 null;
6175
5d37ba92
ES
6176 elsif ((Ekind (Current_Scope) = E_Package
6177 or else Ekind (Current_Scope) = E_Generic_Package)
996ae0b0 6178 and then not In_Package_Body (Current_Scope))
82c80734 6179 or else Is_Overriding
996ae0b0 6180 then
07fc65c4 6181 -- For function, check return type
996ae0b0 6182
07fc65c4 6183 if Ekind (S) = E_Function then
5d37ba92
ES
6184 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6185 F_Typ := Designated_Type (Etype (S));
6186 else
6187 F_Typ := Etype (S);
6188 end if;
6189
6190 B_Typ := Base_Type (F_Typ);
07fc65c4 6191
5d37ba92
ES
6192 if Scope (B_Typ) = Current_Scope
6193 and then not Is_Class_Wide_Type (B_Typ)
6194 and then not Is_Generic_Type (B_Typ)
6195 then
6196 Is_Primitive := True;
07fc65c4 6197 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 6198 Set_Is_Primitive (S);
07fc65c4
GB
6199 Check_Private_Overriding (B_Typ);
6200 end if;
996ae0b0
RK
6201 end if;
6202
07fc65c4 6203 -- For all subprograms, check formals
996ae0b0 6204
07fc65c4 6205 Formal := First_Formal (S);
996ae0b0
RK
6206 while Present (Formal) loop
6207 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6208 F_Typ := Designated_Type (Etype (Formal));
6209 else
6210 F_Typ := Etype (Formal);
6211 end if;
6212
07fc65c4
GB
6213 B_Typ := Base_Type (F_Typ);
6214
ec4867fa
ES
6215 if Ekind (B_Typ) = E_Access_Subtype then
6216 B_Typ := Base_Type (B_Typ);
6217 end if;
6218
5d37ba92
ES
6219 if Scope (B_Typ) = Current_Scope
6220 and then not Is_Class_Wide_Type (B_Typ)
6221 and then not Is_Generic_Type (B_Typ)
6222 then
6223 Is_Primitive := True;
6224 Set_Is_Primitive (S);
07fc65c4
GB
6225 Set_Has_Primitive_Operations (B_Typ);
6226 Check_Private_Overriding (B_Typ);
996ae0b0
RK
6227 end if;
6228
6229 Next_Formal (Formal);
6230 end loop;
996ae0b0 6231 end if;
5d37ba92
ES
6232 end Check_For_Primitive_Subprogram;
6233
6234 -----------------------------------
6235 -- Check_Synchronized_Overriding --
6236 -----------------------------------
6237
6238 procedure Check_Synchronized_Overriding
6239 (Def_Id : Entity_Id;
6240 First_Hom : Entity_Id;
6241 Overridden_Subp : out Entity_Id)
6242 is
6243 Formal_Typ : Entity_Id;
6244 Ifaces_List : Elist_Id;
6245 In_Scope : Boolean;
6246 Typ : Entity_Id;
6247
6248 begin
6249 Overridden_Subp := Empty;
6250
6251 -- Def_Id must be an entry or a subprogram
6252
6253 if Ekind (Def_Id) /= E_Entry
6254 and then Ekind (Def_Id) /= E_Function
6255 and then Ekind (Def_Id) /= E_Procedure
6256 then
6257 return;
6258 end if;
6259
6260 -- Search for the concurrent declaration since it contains the list
6261 -- of all implemented interfaces. In this case, the subprogram is
6262 -- declared within the scope of a protected or a task type.
6263
6264 if Present (Scope (Def_Id))
6265 and then Is_Concurrent_Type (Scope (Def_Id))
6266 and then not Is_Generic_Actual_Type (Scope (Def_Id))
6267 then
6268 Typ := Scope (Def_Id);
6269 In_Scope := True;
6270
6271 -- The subprogram may be a primitive of a concurrent type
6272
6273 elsif Present (First_Formal (Def_Id)) then
6274 Formal_Typ := Etype (First_Formal (Def_Id));
6275
6276 if Is_Concurrent_Type (Formal_Typ)
6277 and then not Is_Generic_Actual_Type (Formal_Typ)
6278 then
6279 Typ := Formal_Typ;
6280 In_Scope := False;
6281
6282 -- This case occurs when the concurrent type is declared within
6283 -- a generic unit. As a result the corresponding record has been
6284 -- built and used as the type of the first formal, we just have
6285 -- to retrieve the corresponding concurrent type.
6286
6287 elsif Is_Concurrent_Record_Type (Formal_Typ)
6288 and then Present (Corresponding_Concurrent_Type (Formal_Typ))
6289 then
6290 Typ := Corresponding_Concurrent_Type (Formal_Typ);
6291 In_Scope := False;
6292
6293 else
6294 return;
6295 end if;
6296 else
6297 return;
6298 end if;
6299
6300 -- Gather all limited, protected and task interfaces that Typ
6301 -- implements. There is no overriding to check if is an inherited
6302 -- operation in a type derivation on for a generic actual.
6303
6304 if Nkind (Parent (Typ)) /= N_Full_Type_Declaration
800621e0
RD
6305 and then
6306 not Nkind_In (Parent (Def_Id), N_Subtype_Declaration,
6307 N_Task_Type_Declaration,
6308 N_Protected_Type_Declaration)
5d37ba92
ES
6309 then
6310 Collect_Abstract_Interfaces (Typ, Ifaces_List);
6311
6312 if not Is_Empty_Elmt_List (Ifaces_List) then
6313 Overridden_Subp :=
6314 Find_Overridden_Synchronized_Primitive
6315 (Def_Id, First_Hom, Ifaces_List, In_Scope);
6316 end if;
6317 end if;
6318 end Check_Synchronized_Overriding;
6319
6320 ----------------------------
6321 -- Is_Private_Declaration --
6322 ----------------------------
6323
6324 function Is_Private_Declaration (E : Entity_Id) return Boolean is
6325 Priv_Decls : List_Id;
6326 Decl : constant Node_Id := Unit_Declaration_Node (E);
6327
6328 begin
6329 if Is_Package_Or_Generic_Package (Current_Scope)
6330 and then In_Private_Part (Current_Scope)
6331 then
6332 Priv_Decls :=
6333 Private_Declarations (
6334 Specification (Unit_Declaration_Node (Current_Scope)));
6335
6336 return In_Package_Body (Current_Scope)
6337 or else
6338 (Is_List_Member (Decl)
6339 and then List_Containing (Decl) = Priv_Decls)
6340 or else (Nkind (Parent (Decl)) = N_Package_Specification
6341 and then not Is_Compilation_Unit (
6342 Defining_Entity (Parent (Decl)))
6343 and then List_Containing (Parent (Parent (Decl)))
6344 = Priv_Decls);
6345 else
6346 return False;
6347 end if;
6348 end Is_Private_Declaration;
996ae0b0
RK
6349
6350 -- Start of processing for New_Overloaded_Entity
6351
6352 begin
fbf5a39b
AC
6353 -- We need to look for an entity that S may override. This must be a
6354 -- homonym in the current scope, so we look for the first homonym of
6355 -- S in the current scope as the starting point for the search.
6356
6357 E := Current_Entity_In_Scope (S);
6358
6359 -- If there is no homonym then this is definitely not overriding
6360
996ae0b0
RK
6361 if No (E) then
6362 Enter_Overloaded_Entity (S);
6363 Check_Dispatching_Operation (S, Empty);
5d37ba92 6364 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 6365
ec4867fa
ES
6366 -- If subprogram has an explicit declaration, check whether it
6367 -- has an overriding indicator.
758c442c 6368
ec4867fa
ES
6369 if Comes_From_Source (S) then
6370 Check_Synchronized_Overriding (S, Homonym (S), Overridden_Subp);
5d37ba92
ES
6371 Check_Overriding_Indicator
6372 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
758c442c
GD
6373 end if;
6374
fbf5a39b
AC
6375 -- If there is a homonym that is not overloadable, then we have an
6376 -- error, except for the special cases checked explicitly below.
6377
996ae0b0
RK
6378 elsif not Is_Overloadable (E) then
6379
6380 -- Check for spurious conflict produced by a subprogram that has the
6381 -- same name as that of the enclosing generic package. The conflict
6382 -- occurs within an instance, between the subprogram and the renaming
6383 -- declaration for the package. After the subprogram, the package
6384 -- renaming declaration becomes hidden.
6385
6386 if Ekind (E) = E_Package
6387 and then Present (Renamed_Object (E))
6388 and then Renamed_Object (E) = Current_Scope
6389 and then Nkind (Parent (Renamed_Object (E))) =
6390 N_Package_Specification
6391 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
6392 then
6393 Set_Is_Hidden (E);
6394 Set_Is_Immediately_Visible (E, False);
6395 Enter_Overloaded_Entity (S);
6396 Set_Homonym (S, Homonym (E));
6397 Check_Dispatching_Operation (S, Empty);
5d37ba92 6398 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
6399
6400 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
6401 -- declaration. However if it is dispatching, it must appear in the
6402 -- dispatch table anyway, because it can be dispatched to even if it
6403 -- cannot be called directly.
996ae0b0
RK
6404
6405 elsif Present (Alias (S))
6406 and then not Comes_From_Source (S)
6407 then
6408 Set_Scope (S, Current_Scope);
6409
6410 if Is_Dispatching_Operation (Alias (S)) then
6411 Check_Dispatching_Operation (S, Empty);
6412 end if;
6413
6414 return;
6415
6416 else
6417 Error_Msg_Sloc := Sloc (E);
996ae0b0 6418
5d37ba92 6419 -- Generate message,with useful additionalwarning if in generic
996ae0b0
RK
6420
6421 if Is_Generic_Unit (E) then
5d37ba92
ES
6422 Error_Msg_N ("previous generic unit cannot be overloaded", S);
6423 Error_Msg_N ("\& conflicts with declaration#", S);
6424 else
6425 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
6426 end if;
6427
6428 return;
6429 end if;
6430
fbf5a39b
AC
6431 -- E exists and is overloadable
6432
996ae0b0 6433 else
ec4867fa
ES
6434 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
6435 -- need no check against the homonym chain. They are directly added
6436 -- to the list of primitive operations of Derived_Type.
6437
6438 if Ada_Version >= Ada_05
6439 and then Present (Derived_Type)
6440 and then Is_Dispatching_Operation (Alias (S))
6441 and then Present (Find_Dispatching_Type (Alias (S)))
6442 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
6443 and then not Is_Predefined_Dispatching_Operation (Alias (S))
6444 then
6445 goto Add_New_Entity;
6446 end if;
6447
6448 Check_Synchronized_Overriding (S, E, Overridden_Subp);
758c442c 6449
82c80734
RD
6450 -- Loop through E and its homonyms to determine if any of them is
6451 -- the candidate for overriding by S.
996ae0b0
RK
6452
6453 while Present (E) loop
fbf5a39b
AC
6454
6455 -- Definitely not interesting if not in the current scope
6456
996ae0b0
RK
6457 if Scope (E) /= Current_Scope then
6458 null;
6459
fbf5a39b
AC
6460 -- Check if we have type conformance
6461
ec4867fa 6462 elsif Type_Conformant (E, S) then
c8ef728f 6463
82c80734
RD
6464 -- If the old and new entities have the same profile and one
6465 -- is not the body of the other, then this is an error, unless
6466 -- one of them is implicitly declared.
996ae0b0
RK
6467
6468 -- There are some cases when both can be implicit, for example
6469 -- when both a literal and a function that overrides it are
6470 -- inherited in a derivation, or when an inhertited operation
ec4867fa 6471 -- of a tagged full type overrides the inherited operation of
82c80734
RD
6472 -- a private extension. Ada 83 had a special rule for the the
6473 -- literal case. In Ada95, the later implicit operation hides
6474 -- the former, and the literal is always the former. In the
6475 -- odd case where both are derived operations declared at the
6476 -- same point, both operations should be declared, and in that
6477 -- case we bypass the following test and proceed to the next
6478 -- part (this can only occur for certain obscure cases
6479 -- involving homographs in instances and can't occur for
996ae0b0 6480 -- dispatching operations ???). Note that the following
82c80734
RD
6481 -- condition is less than clear. For example, it's not at all
6482 -- clear why there's a test for E_Entry here. ???
996ae0b0
RK
6483
6484 if Present (Alias (S))
6485 and then (No (Alias (E))
6486 or else Comes_From_Source (E)
6487 or else Is_Dispatching_Operation (E))
6488 and then
6489 (Ekind (E) = E_Entry
6490 or else Ekind (E) /= E_Enumeration_Literal)
6491 then
82c80734
RD
6492 -- When an derived operation is overloaded it may be due to
6493 -- the fact that the full view of a private extension
996ae0b0
RK
6494 -- re-inherits. It has to be dealt with.
6495
e660dbf7 6496 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
6497 and then In_Private_Part (Current_Scope)
6498 then
6499 Check_Operation_From_Private_View (S, E);
6500 end if;
6501
6502 -- In any case the implicit operation remains hidden by
5950a3ac 6503 -- the existing declaration, which is overriding.
996ae0b0 6504
5950a3ac 6505 Set_Is_Overriding_Operation (E);
758c442c
GD
6506
6507 if Comes_From_Source (E) then
5d37ba92 6508 Check_Overriding_Indicator (E, S, Is_Primitive => False);
41251c60
JM
6509
6510 -- Indicate that E overrides the operation from which
6511 -- S is inherited.
6512
0a36105d 6513 if Present (Alias (S)) then
41251c60
JM
6514 Set_Overridden_Operation (E, Alias (S));
6515 else
6516 Set_Overridden_Operation (E, S);
6517 end if;
758c442c
GD
6518 end if;
6519
996ae0b0
RK
6520 return;
6521
6522 -- Within an instance, the renaming declarations for
6523 -- actual subprograms may become ambiguous, but they do
6524 -- not hide each other.
6525
6526 elsif Ekind (E) /= E_Entry
6527 and then not Comes_From_Source (E)
6528 and then not Is_Generic_Instance (E)
6529 and then (Present (Alias (E))
6530 or else Is_Intrinsic_Subprogram (E))
6531 and then (not In_Instance
6532 or else No (Parent (E))
6533 or else Nkind (Unit_Declaration_Node (E)) /=
6534 N_Subprogram_Renaming_Declaration)
6535 then
6536 -- A subprogram child unit is not allowed to override
6537 -- an inherited subprogram (10.1.1(20)).
6538
6539 if Is_Child_Unit (S) then
6540 Error_Msg_N
6541 ("child unit overrides inherited subprogram in parent",
6542 S);
6543 return;
6544 end if;
6545
6546 if Is_Non_Overriding_Operation (E, S) then
6547 Enter_Overloaded_Entity (S);
c8ef728f 6548 if No (Derived_Type)
996ae0b0
RK
6549 or else Is_Tagged_Type (Derived_Type)
6550 then
6551 Check_Dispatching_Operation (S, Empty);
6552 end if;
6553
6554 return;
6555 end if;
6556
6557 -- E is a derived operation or an internal operator which
6558 -- is being overridden. Remove E from further visibility.
6559 -- Furthermore, if E is a dispatching operation, it must be
6560 -- replaced in the list of primitive operations of its type
6561 -- (see Override_Dispatching_Operation).
6562
ec4867fa 6563 Overridden_Subp := E;
758c442c 6564
996ae0b0
RK
6565 declare
6566 Prev : Entity_Id;
6567
6568 begin
6569 Prev := First_Entity (Current_Scope);
6570
6571 while Present (Prev)
6572 and then Next_Entity (Prev) /= E
6573 loop
6574 Next_Entity (Prev);
6575 end loop;
6576
6577 -- It is possible for E to be in the current scope and
6578 -- yet not in the entity chain. This can only occur in a
6579 -- generic context where E is an implicit concatenation
6580 -- in the formal part, because in a generic body the
6581 -- entity chain starts with the formals.
6582
6583 pragma Assert
6584 (Present (Prev) or else Chars (E) = Name_Op_Concat);
6585
6586 -- E must be removed both from the entity_list of the
6587 -- current scope, and from the visibility chain
6588
6589 if Debug_Flag_E then
6590 Write_Str ("Override implicit operation ");
6591 Write_Int (Int (E));
6592 Write_Eol;
6593 end if;
6594
6595 -- If E is a predefined concatenation, it stands for four
6596 -- different operations. As a result, a single explicit
6597 -- declaration does not hide it. In a possible ambiguous
6598 -- situation, Disambiguate chooses the user-defined op,
6599 -- so it is correct to retain the previous internal one.
6600
6601 if Chars (E) /= Name_Op_Concat
6602 or else Ekind (E) /= E_Operator
6603 then
6604 -- For nondispatching derived operations that are
6605 -- overridden by a subprogram declared in the private
82c80734
RD
6606 -- part of a package, we retain the derived
6607 -- subprogram but mark it as not immediately visible.
6608 -- If the derived operation was declared in the
6609 -- visible part then this ensures that it will still
6610 -- be visible outside the package with the proper
6611 -- signature (calls from outside must also be
6612 -- directed to this version rather than the
6613 -- overriding one, unlike the dispatching case).
6614 -- Calls from inside the package will still resolve
6615 -- to the overriding subprogram since the derived one
6616 -- is marked as not visible within the package.
996ae0b0
RK
6617
6618 -- If the private operation is dispatching, we achieve
6619 -- the overriding by keeping the implicit operation
9865d858 6620 -- but setting its alias to be the overriding one. In
996ae0b0
RK
6621 -- this fashion the proper body is executed in all
6622 -- cases, but the original signature is used outside
6623 -- of the package.
6624
6625 -- If the overriding is not in the private part, we
6626 -- remove the implicit operation altogether.
6627
6628 if Is_Private_Declaration (S) then
6629
6630 if not Is_Dispatching_Operation (E) then
6631 Set_Is_Immediately_Visible (E, False);
6632 else
e895b435
ES
6633 -- Work done in Override_Dispatching_Operation,
6634 -- so nothing else need to be done here.
996ae0b0
RK
6635
6636 null;
6637 end if;
996ae0b0 6638
fbf5a39b
AC
6639 else
6640 -- Find predecessor of E in Homonym chain
996ae0b0
RK
6641
6642 if E = Current_Entity (E) then
6643 Prev_Vis := Empty;
6644 else
6645 Prev_Vis := Current_Entity (E);
6646 while Homonym (Prev_Vis) /= E loop
6647 Prev_Vis := Homonym (Prev_Vis);
6648 end loop;
6649 end if;
6650
6651 if Prev_Vis /= Empty then
6652
6653 -- Skip E in the visibility chain
6654
6655 Set_Homonym (Prev_Vis, Homonym (E));
6656
6657 else
6658 Set_Name_Entity_Id (Chars (E), Homonym (E));
6659 end if;
6660
6661 Set_Next_Entity (Prev, Next_Entity (E));
6662
6663 if No (Next_Entity (Prev)) then
6664 Set_Last_Entity (Current_Scope, Prev);
6665 end if;
6666
6667 end if;
6668 end if;
6669
6670 Enter_Overloaded_Entity (S);
fbf5a39b 6671 Set_Is_Overriding_Operation (S);
5d37ba92 6672 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 6673
41251c60
JM
6674 -- Indicate that S overrides the operation from which
6675 -- E is inherited.
6676
6677 if Comes_From_Source (S) then
c8ef728f 6678 if Present (Alias (E)) then
41251c60
JM
6679 Set_Overridden_Operation (S, Alias (E));
6680 else
6681 Set_Overridden_Operation (S, E);
6682 end if;
6683 end if;
6684
996ae0b0 6685 if Is_Dispatching_Operation (E) then
fbf5a39b 6686
82c80734
RD
6687 -- An overriding dispatching subprogram inherits the
6688 -- convention of the overridden subprogram (by
6689 -- AI-117).
996ae0b0
RK
6690
6691 Set_Convention (S, Convention (E));
41251c60
JM
6692 Check_Dispatching_Operation (S, E);
6693
996ae0b0
RK
6694 else
6695 Check_Dispatching_Operation (S, Empty);
6696 end if;
6697
5d37ba92
ES
6698 Check_For_Primitive_Subprogram
6699 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
6700 goto Check_Inequality;
6701 end;
6702
6703 -- Apparent redeclarations in instances can occur when two
6704 -- formal types get the same actual type. The subprograms in
6705 -- in the instance are legal, even if not callable from the
6706 -- outside. Calls from within are disambiguated elsewhere.
6707 -- For dispatching operations in the visible part, the usual
6708 -- rules apply, and operations with the same profile are not
6709 -- legal (B830001).
6710
6711 elsif (In_Instance_Visible_Part
6712 and then not Is_Dispatching_Operation (E))
6713 or else In_Instance_Not_Visible
6714 then
6715 null;
6716
6717 -- Here we have a real error (identical profile)
6718
6719 else
6720 Error_Msg_Sloc := Sloc (E);
6721
6722 -- Avoid cascaded errors if the entity appears in
6723 -- subsequent calls.
6724
6725 Set_Scope (S, Current_Scope);
6726
5d37ba92
ES
6727 -- Generate error, with extra useful warning for the case
6728 -- of a generic instance with no completion.
996ae0b0
RK
6729
6730 if Is_Generic_Instance (S)
6731 and then not Has_Completion (E)
6732 then
6733 Error_Msg_N
5d37ba92
ES
6734 ("instantiation cannot provide body for&", S);
6735 Error_Msg_N ("\& conflicts with declaration#", S);
6736 else
6737 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
6738 end if;
6739
6740 return;
6741 end if;
6742
6743 else
c8ef728f
ES
6744 -- If one subprogram has an access parameter and the other
6745 -- a parameter of an access type, calls to either might be
6746 -- ambiguous. Verify that parameters match except for the
6747 -- access parameter.
6748
6749 if May_Hide_Profile then
6750 declare
ec4867fa
ES
6751 F1 : Entity_Id;
6752 F2 : Entity_Id;
c8ef728f
ES
6753 begin
6754 F1 := First_Formal (S);
6755 F2 := First_Formal (E);
6756 while Present (F1) and then Present (F2) loop
6757 if Is_Access_Type (Etype (F1)) then
6758 if not Is_Access_Type (Etype (F2))
6759 or else not Conforming_Types
6760 (Designated_Type (Etype (F1)),
6761 Designated_Type (Etype (F2)),
6762 Type_Conformant)
6763 then
6764 May_Hide_Profile := False;
6765 end if;
6766
6767 elsif
6768 not Conforming_Types
6769 (Etype (F1), Etype (F2), Type_Conformant)
6770 then
6771 May_Hide_Profile := False;
6772 end if;
6773
6774 Next_Formal (F1);
6775 Next_Formal (F2);
6776 end loop;
6777
6778 if May_Hide_Profile
6779 and then No (F1)
6780 and then No (F2)
6781 then
6782 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
6783 end if;
6784 end;
6785 end if;
996ae0b0
RK
6786 end if;
6787
996ae0b0
RK
6788 E := Homonym (E);
6789 end loop;
6790
ec4867fa
ES
6791 <<Add_New_Entity>>
6792
996ae0b0
RK
6793 -- On exit, we know that S is a new entity
6794
6795 Enter_Overloaded_Entity (S);
5d37ba92
ES
6796 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
6797 Check_Overriding_Indicator
6798 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 6799
82c80734
RD
6800 -- If S is a derived operation for an untagged type then by
6801 -- definition it's not a dispatching operation (even if the parent
6802 -- operation was dispatching), so we don't call
6803 -- Check_Dispatching_Operation in that case.
996ae0b0 6804
c8ef728f 6805 if No (Derived_Type)
996ae0b0
RK
6806 or else Is_Tagged_Type (Derived_Type)
6807 then
6808 Check_Dispatching_Operation (S, Empty);
6809 end if;
6810 end if;
6811
82c80734
RD
6812 -- If this is a user-defined equality operator that is not a derived
6813 -- subprogram, create the corresponding inequality. If the operation is
6814 -- dispatching, the expansion is done elsewhere, and we do not create
6815 -- an explicit inequality operation.
996ae0b0
RK
6816
6817 <<Check_Inequality>>
6818 if Chars (S) = Name_Op_Eq
6819 and then Etype (S) = Standard_Boolean
6820 and then Present (Parent (S))
6821 and then not Is_Dispatching_Operation (S)
6822 then
6823 Make_Inequality_Operator (S);
6824 end if;
996ae0b0
RK
6825 end New_Overloaded_Entity;
6826
6827 ---------------------
6828 -- Process_Formals --
6829 ---------------------
6830
6831 procedure Process_Formals
07fc65c4 6832 (T : List_Id;
996ae0b0
RK
6833 Related_Nod : Node_Id)
6834 is
6835 Param_Spec : Node_Id;
6836 Formal : Entity_Id;
6837 Formal_Type : Entity_Id;
6838 Default : Node_Id;
6839 Ptype : Entity_Id;
6840
800621e0
RD
6841 -- The following are used for setting Is_Only_Out_
6842 Num_Out_Params : Nat := 0;
6843 First_Out_Param : Entity_Id := Empty;
6844
07fc65c4 6845 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
6846 -- Check whether the default has a class-wide type. After analysis the
6847 -- default has the type of the formal, so we must also check explicitly
6848 -- for an access attribute.
07fc65c4
GB
6849
6850 ---------------------------
6851 -- Is_Class_Wide_Default --
6852 ---------------------------
6853
6854 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
6855 begin
6856 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
6857 or else (Nkind (D) = N_Attribute_Reference
6858 and then Attribute_Name (D) = Name_Access
6859 and then Is_Class_Wide_Type (Etype (Prefix (D))));
6860 end Is_Class_Wide_Default;
6861
6862 -- Start of processing for Process_Formals
6863
996ae0b0
RK
6864 begin
6865 -- In order to prevent premature use of the formals in the same formal
6866 -- part, the Ekind is left undefined until all default expressions are
6867 -- analyzed. The Ekind is established in a separate loop at the end.
6868
6869 Param_Spec := First (T);
996ae0b0 6870 while Present (Param_Spec) loop
996ae0b0 6871 Formal := Defining_Identifier (Param_Spec);
5d37ba92 6872 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
6873 Enter_Name (Formal);
6874
6875 -- Case of ordinary parameters
6876
6877 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
6878 Find_Type (Parameter_Type (Param_Spec));
6879 Ptype := Parameter_Type (Param_Spec);
6880
6881 if Ptype = Error then
6882 goto Continue;
6883 end if;
6884
6885 Formal_Type := Entity (Ptype);
6886
ec4867fa
ES
6887 if Is_Incomplete_Type (Formal_Type)
6888 or else
6889 (Is_Class_Wide_Type (Formal_Type)
6890 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 6891 then
d8db0bca 6892 -- Ada 2005 (AI-326): Tagged incomplete types allowed
fbf5a39b 6893
d8db0bca 6894 if Is_Tagged_Type (Formal_Type) then
fbf5a39b
AC
6895 null;
6896
0a36105d
JM
6897 -- Special handling of Value_Type for CIL case
6898
6899 elsif Is_Value_Type (Formal_Type) then
6900 null;
6901
800621e0
RD
6902 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
6903 N_Access_Procedure_Definition)
996ae0b0
RK
6904 then
6905 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
0a36105d
JM
6906
6907 -- An incomplete type that is not tagged is allowed in an
6908 -- access-to-subprogram type only if it is a local declaration
6909 -- with a forthcoming completion (3.10.1 (9.2/2)).
6910
6911 elsif Scope (Formal_Type) /= Scope (Current_Scope) then
6912 Error_Msg_N
6913 ("invalid use of limited view of type", Param_Spec);
996ae0b0
RK
6914 end if;
6915
6916 elsif Ekind (Formal_Type) = E_Void then
6917 Error_Msg_NE ("premature use of&",
6918 Parameter_Type (Param_Spec), Formal_Type);
6919 end if;
6920
0ab80019 6921 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 6922 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
6923 -- formal in the enclosing scope. Finally, replace the parameter
6924 -- type of the formal with the internal subtype.
7324bf49 6925
41251c60 6926 if Ada_Version >= Ada_05
41251c60 6927 and then Null_Exclusion_Present (Param_Spec)
7324bf49 6928 then
ec4867fa 6929 if not Is_Access_Type (Formal_Type) then
0a36105d
JM
6930 Error_Msg_N
6931 ("`NOT NULL` allowed only for an access type", Param_Spec);
6932
ec4867fa
ES
6933 else
6934 if Can_Never_Be_Null (Formal_Type)
6935 and then Comes_From_Source (Related_Nod)
6936 then
0a36105d
JM
6937 Error_Msg_NE
6938 ("`NOT NULL` not allowed (& already excludes null)",
6939 Param_Spec,
6940 Formal_Type);
ec4867fa 6941 end if;
41251c60 6942
ec4867fa
ES
6943 Formal_Type :=
6944 Create_Null_Excluding_Itype
6945 (T => Formal_Type,
6946 Related_Nod => Related_Nod,
6947 Scope_Id => Scope (Current_Scope));
0a36105d
JM
6948
6949 -- If the designated type of the itype is an itype we
6950 -- decorate it with the Has_Delayed_Freeze attribute to
6951 -- avoid problems with the backend.
6952
6953 -- Example:
6954 -- type T is access procedure;
6955 -- procedure Op (O : not null T);
6956
6957 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
6958 Set_Has_Delayed_Freeze (Formal_Type);
6959 end if;
ec4867fa 6960 end if;
7324bf49
AC
6961 end if;
6962
996ae0b0
RK
6963 -- An access formal type
6964
6965 else
6966 Formal_Type :=
6967 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 6968
f937473f
RD
6969 -- No need to continue if we already notified errors
6970
6971 if not Present (Formal_Type) then
6972 return;
6973 end if;
6974
0ab80019 6975 -- Ada 2005 (AI-254)
7324bf49 6976
af4b9434
AC
6977 declare
6978 AD : constant Node_Id :=
6979 Access_To_Subprogram_Definition
6980 (Parameter_Type (Param_Spec));
6981 begin
6982 if Present (AD) and then Protected_Present (AD) then
6983 Formal_Type :=
6984 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 6985 (Param_Spec);
af4b9434
AC
6986 end if;
6987 end;
996ae0b0
RK
6988 end if;
6989
6990 Set_Etype (Formal, Formal_Type);
fbf5a39b 6991 Default := Expression (Param_Spec);
996ae0b0
RK
6992
6993 if Present (Default) then
6994 if Out_Present (Param_Spec) then
6995 Error_Msg_N
6996 ("default initialization only allowed for IN parameters",
6997 Param_Spec);
6998 end if;
6999
7000 -- Do the special preanalysis of the expression (see section on
7001 -- "Handling of Default Expressions" in the spec of package Sem).
7002
fbf5a39b 7003 Analyze_Per_Use_Expression (Default, Formal_Type);
996ae0b0 7004
f29b857f
ES
7005 -- An access to constant cannot be the default for
7006 -- an access parameter that is an access to variable.
2eb160f2
ST
7007
7008 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7009 and then not Is_Access_Constant (Formal_Type)
7010 and then Is_Access_Type (Etype (Default))
7011 and then Is_Access_Constant (Etype (Default))
7012 then
f29b857f
ES
7013 Error_Msg_N
7014 ("formal that is access to variable cannot be initialized " &
7015 "with an access-to-constant expression", Default);
2eb160f2
ST
7016 end if;
7017
d8db0bca
JM
7018 -- Check that the designated type of an access parameter's default
7019 -- is not a class-wide type unless the parameter's designated type
7020 -- is also class-wide.
996ae0b0
RK
7021
7022 if Ekind (Formal_Type) = E_Anonymous_Access_Type
d8db0bca 7023 and then not From_With_Type (Formal_Type)
07fc65c4 7024 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
7025 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
7026 then
07fc65c4
GB
7027 Error_Msg_N
7028 ("access to class-wide expression not allowed here", Default);
996ae0b0
RK
7029 end if;
7030 end if;
7031
41251c60
JM
7032 -- Ada 2005 (AI-231): Static checks
7033
7034 if Ada_Version >= Ada_05
7035 and then Is_Access_Type (Etype (Formal))
7036 and then Can_Never_Be_Null (Etype (Formal))
7037 then
7038 Null_Exclusion_Static_Checks (Param_Spec);
7039 end if;
7040
996ae0b0
RK
7041 <<Continue>>
7042 Next (Param_Spec);
7043 end loop;
7044
82c80734
RD
7045 -- If this is the formal part of a function specification, analyze the
7046 -- subtype mark in the context where the formals are visible but not
7047 -- yet usable, and may hide outer homographs.
7048
7049 if Nkind (Related_Nod) = N_Function_Specification then
7050 Analyze_Return_Type (Related_Nod);
7051 end if;
7052
996ae0b0
RK
7053 -- Now set the kind (mode) of each formal
7054
7055 Param_Spec := First (T);
7056
7057 while Present (Param_Spec) loop
7058 Formal := Defining_Identifier (Param_Spec);
7059 Set_Formal_Mode (Formal);
7060
7061 if Ekind (Formal) = E_In_Parameter then
7062 Set_Default_Value (Formal, Expression (Param_Spec));
7063
7064 if Present (Expression (Param_Spec)) then
7065 Default := Expression (Param_Spec);
7066
7067 if Is_Scalar_Type (Etype (Default)) then
7068 if Nkind
7069 (Parameter_Type (Param_Spec)) /= N_Access_Definition
7070 then
7071 Formal_Type := Entity (Parameter_Type (Param_Spec));
7072
7073 else
7074 Formal_Type := Access_Definition
7075 (Related_Nod, Parameter_Type (Param_Spec));
7076 end if;
7077
7078 Apply_Scalar_Range_Check (Default, Formal_Type);
7079 end if;
2820d220 7080 end if;
800621e0
RD
7081
7082 elsif Ekind (Formal) = E_Out_Parameter then
7083 Num_Out_Params := Num_Out_Params + 1;
7084
7085 if Num_Out_Params = 1 then
7086 First_Out_Param := Formal;
7087 end if;
7088
7089 elsif Ekind (Formal) = E_In_Out_Parameter then
7090 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
7091 end if;
7092
7093 Next (Param_Spec);
7094 end loop;
800621e0
RD
7095
7096 if Present (First_Out_Param) and then Num_Out_Params = 1 then
7097 Set_Is_Only_Out_Parameter (First_Out_Param);
7098 end if;
996ae0b0
RK
7099 end Process_Formals;
7100
fbf5a39b
AC
7101 ----------------------------
7102 -- Reference_Body_Formals --
7103 ----------------------------
7104
7105 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
7106 Fs : Entity_Id;
7107 Fb : Entity_Id;
7108
7109 begin
7110 if Error_Posted (Spec) then
7111 return;
7112 end if;
7113
0a36105d
JM
7114 -- Iterate over both lists. They may be of different lengths if the two
7115 -- specs are not conformant.
7116
fbf5a39b
AC
7117 Fs := First_Formal (Spec);
7118 Fb := First_Formal (Bod);
0a36105d 7119 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
7120 Generate_Reference (Fs, Fb, 'b');
7121
7122 if Style_Check then
7123 Style.Check_Identifier (Fb, Fs);
7124 end if;
7125
7126 Set_Spec_Entity (Fb, Fs);
7127 Set_Referenced (Fs, False);
7128 Next_Formal (Fs);
7129 Next_Formal (Fb);
7130 end loop;
7131 end Reference_Body_Formals;
7132
996ae0b0
RK
7133 -------------------------
7134 -- Set_Actual_Subtypes --
7135 -------------------------
7136
7137 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
2820d220
AC
7138 Loc : constant Source_Ptr := Sloc (N);
7139 Decl : Node_Id;
7140 Formal : Entity_Id;
7141 T : Entity_Id;
7142 First_Stmt : Node_Id := Empty;
7143 AS_Needed : Boolean;
996ae0b0
RK
7144
7145 begin
fbf5a39b
AC
7146 -- If this is an emtpy initialization procedure, no need to create
7147 -- actual subtypes (small optimization).
7148
7149 if Ekind (Subp) = E_Procedure
7150 and then Is_Null_Init_Proc (Subp)
7151 then
7152 return;
7153 end if;
7154
996ae0b0
RK
7155 Formal := First_Formal (Subp);
7156 while Present (Formal) loop
7157 T := Etype (Formal);
7158
e895b435 7159 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
7160
7161 if Is_Constrained (T) then
7162 AS_Needed := False;
7163
82c80734
RD
7164 -- If we have unknown discriminants, then we do not need an actual
7165 -- subtype, or more accurately we cannot figure it out! Note that
7166 -- all class-wide types have unknown discriminants.
996ae0b0
RK
7167
7168 elsif Has_Unknown_Discriminants (T) then
7169 AS_Needed := False;
7170
82c80734
RD
7171 -- At this stage we have an unconstrained type that may need an
7172 -- actual subtype. For sure the actual subtype is needed if we have
7173 -- an unconstrained array type.
996ae0b0
RK
7174
7175 elsif Is_Array_Type (T) then
7176 AS_Needed := True;
7177
d8db0bca
JM
7178 -- The only other case needing an actual subtype is an unconstrained
7179 -- record type which is an IN parameter (we cannot generate actual
7180 -- subtypes for the OUT or IN OUT case, since an assignment can
7181 -- change the discriminant values. However we exclude the case of
7182 -- initialization procedures, since discriminants are handled very
7183 -- specially in this context, see the section entitled "Handling of
7184 -- Discriminants" in Einfo.
7185
7186 -- We also exclude the case of Discrim_SO_Functions (functions used
7187 -- in front end layout mode for size/offset values), since in such
7188 -- functions only discriminants are referenced, and not only are such
7189 -- subtypes not needed, but they cannot always be generated, because
7190 -- of order of elaboration issues.
996ae0b0
RK
7191
7192 elsif Is_Record_Type (T)
7193 and then Ekind (Formal) = E_In_Parameter
7194 and then Chars (Formal) /= Name_uInit
5d09245e 7195 and then not Is_Unchecked_Union (T)
996ae0b0
RK
7196 and then not Is_Discrim_SO_Function (Subp)
7197 then
7198 AS_Needed := True;
7199
7200 -- All other cases do not need an actual subtype
7201
7202 else
7203 AS_Needed := False;
7204 end if;
7205
7206 -- Generate actual subtypes for unconstrained arrays and
7207 -- unconstrained discriminated records.
7208
7209 if AS_Needed then
7324bf49 7210 if Nkind (N) = N_Accept_Statement then
fbf5a39b
AC
7211
7212 -- If expansion is active, The formal is replaced by a local
7213 -- variable that renames the corresponding entry of the
7214 -- parameter block, and it is this local variable that may
7215 -- require an actual subtype.
7216
7217 if Expander_Active then
7218 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
7219 else
7220 Decl := Build_Actual_Subtype (T, Formal);
7221 end if;
7222
996ae0b0
RK
7223 if Present (Handled_Statement_Sequence (N)) then
7224 First_Stmt :=
7225 First (Statements (Handled_Statement_Sequence (N)));
7226 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
7227 Mark_Rewrite_Insertion (Decl);
7228 else
82c80734
RD
7229 -- If the accept statement has no body, there will be no
7230 -- reference to the actuals, so no need to compute actual
7231 -- subtypes.
996ae0b0
RK
7232
7233 return;
7234 end if;
7235
7236 else
fbf5a39b 7237 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
7238 Prepend (Decl, Declarations (N));
7239 Mark_Rewrite_Insertion (Decl);
7240 end if;
7241
82c80734
RD
7242 -- The declaration uses the bounds of an existing object, and
7243 -- therefore needs no constraint checks.
2820d220 7244
7324bf49 7245 Analyze (Decl, Suppress => All_Checks);
2820d220 7246
996ae0b0
RK
7247 -- We need to freeze manually the generated type when it is
7248 -- inserted anywhere else than in a declarative part.
7249
7250 if Present (First_Stmt) then
7251 Insert_List_Before_And_Analyze (First_Stmt,
7252 Freeze_Entity (Defining_Identifier (Decl), Loc));
7253 end if;
7254
fbf5a39b
AC
7255 if Nkind (N) = N_Accept_Statement
7256 and then Expander_Active
7257 then
7258 Set_Actual_Subtype (Renamed_Object (Formal),
7259 Defining_Identifier (Decl));
7260 else
7261 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
7262 end if;
996ae0b0
RK
7263 end if;
7264
7265 Next_Formal (Formal);
7266 end loop;
7267 end Set_Actual_Subtypes;
7268
7269 ---------------------
7270 -- Set_Formal_Mode --
7271 ---------------------
7272
7273 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
7274 Spec : constant Node_Id := Parent (Formal_Id);
7275
7276 begin
7277 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
7278 -- since we ensure that corresponding actuals are always valid at the
7279 -- point of the call.
7280
7281 if Out_Present (Spec) then
996ae0b0
RK
7282 if Ekind (Scope (Formal_Id)) = E_Function
7283 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
7284 then
7285 Error_Msg_N ("functions can only have IN parameters", Spec);
7286 Set_Ekind (Formal_Id, E_In_Parameter);
7287
7288 elsif In_Present (Spec) then
7289 Set_Ekind (Formal_Id, E_In_Out_Parameter);
7290
7291 else
fbf5a39b
AC
7292 Set_Ekind (Formal_Id, E_Out_Parameter);
7293 Set_Never_Set_In_Source (Formal_Id, True);
7294 Set_Is_True_Constant (Formal_Id, False);
7295 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
7296 end if;
7297
7298 else
7299 Set_Ekind (Formal_Id, E_In_Parameter);
7300 end if;
7301
fbf5a39b 7302 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
7303 -- guarantees that access parameters are always non-null. We also set
7304 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
7305
7306 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 7307
2813bb6b
ES
7308 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
7309 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 7310
0ab80019 7311 if Ada_Version < Ada_05
2813bb6b 7312 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
7313 then
7314 Set_Is_Known_Non_Null (Formal_Id);
7315 Set_Can_Never_Be_Null (Formal_Id);
7316 end if;
2813bb6b 7317
41251c60
JM
7318 -- Ada 2005 (AI-231): Null-exclusion access subtype
7319
2813bb6b
ES
7320 elsif Is_Access_Type (Etype (Formal_Id))
7321 and then Can_Never_Be_Null (Etype (Formal_Id))
7322 then
2813bb6b 7323 Set_Is_Known_Non_Null (Formal_Id);
fbf5a39b
AC
7324 end if;
7325
996ae0b0
RK
7326 Set_Mechanism (Formal_Id, Default_Mechanism);
7327 Set_Formal_Validity (Formal_Id);
7328 end Set_Formal_Mode;
7329
7330 -------------------------
7331 -- Set_Formal_Validity --
7332 -------------------------
7333
7334 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
7335 begin
82c80734
RD
7336 -- If no validity checking, then we cannot assume anything about the
7337 -- validity of parameters, since we do not know there is any checking
7338 -- of the validity on the call side.
996ae0b0
RK
7339
7340 if not Validity_Checks_On then
7341 return;
7342
fbf5a39b
AC
7343 -- If validity checking for parameters is enabled, this means we are
7344 -- not supposed to make any assumptions about argument values.
7345
7346 elsif Validity_Check_Parameters then
7347 return;
7348
7349 -- If we are checking in parameters, we will assume that the caller is
7350 -- also checking parameters, so we can assume the parameter is valid.
7351
996ae0b0
RK
7352 elsif Ekind (Formal_Id) = E_In_Parameter
7353 and then Validity_Check_In_Params
7354 then
7355 Set_Is_Known_Valid (Formal_Id, True);
7356
fbf5a39b
AC
7357 -- Similar treatment for IN OUT parameters
7358
996ae0b0
RK
7359 elsif Ekind (Formal_Id) = E_In_Out_Parameter
7360 and then Validity_Check_In_Out_Params
7361 then
7362 Set_Is_Known_Valid (Formal_Id, True);
7363 end if;
7364 end Set_Formal_Validity;
7365
7366 ------------------------
7367 -- Subtype_Conformant --
7368 ------------------------
7369
7370 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7371 Result : Boolean;
996ae0b0
RK
7372 begin
7373 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
7374 return Result;
7375 end Subtype_Conformant;
7376
7377 ---------------------
7378 -- Type_Conformant --
7379 ---------------------
7380
41251c60
JM
7381 function Type_Conformant
7382 (New_Id : Entity_Id;
7383 Old_Id : Entity_Id;
7384 Skip_Controlling_Formals : Boolean := False) return Boolean
7385 is
996ae0b0 7386 Result : Boolean;
996ae0b0 7387 begin
c8ef728f
ES
7388 May_Hide_Profile := False;
7389
41251c60
JM
7390 Check_Conformance
7391 (New_Id, Old_Id, Type_Conformant, False, Result,
7392 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
7393 return Result;
7394 end Type_Conformant;
7395
7396 -------------------------------
7397 -- Valid_Operator_Definition --
7398 -------------------------------
7399
7400 procedure Valid_Operator_Definition (Designator : Entity_Id) is
7401 N : Integer := 0;
7402 F : Entity_Id;
7403 Id : constant Name_Id := Chars (Designator);
7404 N_OK : Boolean;
7405
7406 begin
7407 F := First_Formal (Designator);
996ae0b0
RK
7408 while Present (F) loop
7409 N := N + 1;
7410
7411 if Present (Default_Value (F)) then
7412 Error_Msg_N
7413 ("default values not allowed for operator parameters",
7414 Parent (F));
7415 end if;
7416
7417 Next_Formal (F);
7418 end loop;
7419
7420 -- Verify that user-defined operators have proper number of arguments
7421 -- First case of operators which can only be unary
7422
7423 if Id = Name_Op_Not
7424 or else Id = Name_Op_Abs
7425 then
7426 N_OK := (N = 1);
7427
7428 -- Case of operators which can be unary or binary
7429
7430 elsif Id = Name_Op_Add
7431 or Id = Name_Op_Subtract
7432 then
7433 N_OK := (N in 1 .. 2);
7434
7435 -- All other operators can only be binary
7436
7437 else
7438 N_OK := (N = 2);
7439 end if;
7440
7441 if not N_OK then
7442 Error_Msg_N
7443 ("incorrect number of arguments for operator", Designator);
7444 end if;
7445
7446 if Id = Name_Op_Ne
7447 and then Base_Type (Etype (Designator)) = Standard_Boolean
7448 and then not Is_Intrinsic_Subprogram (Designator)
7449 then
7450 Error_Msg_N
7451 ("explicit definition of inequality not allowed", Designator);
7452 end if;
7453 end Valid_Operator_Definition;
7454
7455end Sem_Ch6;