]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
pr64317.c: Use 'dg-require-effective-target ia32' and 'dg-require-effective-target...
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
2c6336be 9-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
80e59506 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Expander; use Expander;
ec4867fa 34with Exp_Ch6; use Exp_Ch6;
996ae0b0 35with Exp_Ch7; use Exp_Ch7;
21d27997 36with Exp_Ch9; use Exp_Ch9;
616547fa 37with Exp_Dbug; use Exp_Dbug;
ce2b6ba5 38with Exp_Disp; use Exp_Disp;
e660dbf7 39with Exp_Tss; use Exp_Tss;
ec4867fa 40with Exp_Util; use Exp_Util;
fbf5a39b 41with Fname; use Fname;
996ae0b0 42with Freeze; use Freeze;
8636f52f 43with Ghost; use Ghost;
540d8610 44with Inline; use Inline;
41251c60 45with Itypes; use Itypes;
996ae0b0 46with Lib.Xref; use Lib.Xref;
ec4867fa 47with Layout; use Layout;
996ae0b0
RK
48with Namet; use Namet;
49with Lib; use Lib;
50with Nlists; use Nlists;
51with Nmake; use Nmake;
52with Opt; use Opt;
53with Output; use Output;
b20de9b9
AC
54with Restrict; use Restrict;
55with Rident; use Rident;
996ae0b0
RK
56with Rtsfind; use Rtsfind;
57with Sem; use Sem;
a4100e55 58with Sem_Aux; use Sem_Aux;
996ae0b0
RK
59with Sem_Cat; use Sem_Cat;
60with Sem_Ch3; use Sem_Ch3;
61with Sem_Ch4; use Sem_Ch4;
62with Sem_Ch5; use Sem_Ch5;
63with Sem_Ch8; use Sem_Ch8;
9bc856dd 64with Sem_Ch10; use Sem_Ch10;
996ae0b0 65with Sem_Ch12; use Sem_Ch12;
0f1a6a0b 66with Sem_Ch13; use Sem_Ch13;
dec6faf1 67with Sem_Dim; use Sem_Dim;
996ae0b0
RK
68with Sem_Disp; use Sem_Disp;
69with Sem_Dist; use Sem_Dist;
70with Sem_Elim; use Sem_Elim;
71with Sem_Eval; use Sem_Eval;
72with Sem_Mech; use Sem_Mech;
73with Sem_Prag; use Sem_Prag;
74with Sem_Res; use Sem_Res;
75with Sem_Util; use Sem_Util;
76with Sem_Type; use Sem_Type;
77with Sem_Warn; use Sem_Warn;
78with Sinput; use Sinput;
79with Stand; use Stand;
80with Sinfo; use Sinfo;
81with Sinfo.CN; use Sinfo.CN;
82with Snames; use Snames;
83with Stringt; use Stringt;
84with Style;
85with Stylesw; use Stylesw;
8417f4b2 86with Targparm; use Targparm;
996ae0b0
RK
87with Tbuild; use Tbuild;
88with Uintp; use Uintp;
89with Urealp; use Urealp;
90with Validsw; use Validsw;
91
92package body Sem_Ch6 is
93
c8ef728f 94 May_Hide_Profile : Boolean := False;
ec4867fa
ES
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
c8ef728f 102
996ae0b0
RK
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
106
c9d70ab1
AC
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
110
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
114
4d8f3296
ES
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
9d2a2071 118 -- A null procedure can be a declaration or (Ada 2012) a completion
4d8f3296 119
5d37ba92 120 procedure Analyze_Return_Statement (N : Node_Id);
5b9c3fc4 121 -- Common processing for simple and extended return statements
ec4867fa 122
82c80734
RD
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
5b9c3fc4 125 -- specification in a context where the formals are visible and hide
82c80734
RD
126 -- outer homographs.
127
b1b543d2 128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
13d923cc
RD
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
b1b543d2 131
806f6d37
AC
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
134
996ae0b0 135 procedure Check_Conformance
41251c60
JM
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
155
156 procedure Check_Subprogram_Order (N : Node_Id);
157 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
158 -- the alpha ordering rule for N if this ordering requirement applicable.
159
996ae0b0
RK
160 procedure Check_Returns
161 (HSS : Node_Id;
162 Mode : Character;
c8ef728f
ES
163 Err : out Boolean;
164 Proc : Entity_Id := Empty);
165 -- Called to check for missing return statements in a function body, or for
0a36105d 166 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
167 -- handled statement sequence for the subprogram body. This procedure
168 -- checks all flow paths to make sure they either have return (Mode = 'F',
169 -- used for functions) or do not have a return (Mode = 'P', used for
170 -- No_Return procedures). The flag Err is set if there are any control
171 -- paths not explicitly terminated by a return in the function case, and is
172 -- True otherwise. Proc is the entity for the procedure case and is used
173 -- in posting the warning message.
996ae0b0 174
e5a58fac
AC
175 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
176 -- In Ada 2012, a primitive equality operator on an untagged record type
177 -- must appear before the type is frozen, and have the same visibility as
178 -- that of the type. This procedure checks that this rule is met, and
179 -- otherwise emits an error on the subprogram declaration and a warning
b2834fbd
AC
180 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
181 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
182 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
183 -- is set, otherwise the call has no effect.
e5a58fac 184
996ae0b0 185 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
186 -- This procedure makes S, a new overloaded entity, into the first visible
187 -- entity with that name.
996ae0b0 188
a5b62485
AC
189 function Is_Non_Overriding_Operation
190 (Prev_E : Entity_Id;
191 New_E : Entity_Id) return Boolean;
192 -- Enforce the rule given in 12.3(18): a private operation in an instance
193 -- overrides an inherited operation only if the corresponding operation
260359e3
AC
194 -- was overriding in the generic. This needs to be checked for primitive
195 -- operations of types derived (in the generic unit) from formal private
196 -- or formal derived types.
a5b62485 197
996ae0b0
RK
198 procedure Make_Inequality_Operator (S : Entity_Id);
199 -- Create the declaration for an inequality operator that is implicitly
200 -- created by a user-defined equality operator that yields a boolean.
201
996ae0b0
RK
202 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
e358346d
AC
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
996ae0b0
RK
206
207 ---------------------------------------------
208 -- Analyze_Abstract_Subprogram_Declaration --
209 ---------------------------------------------
210
211 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
212 Designator : constant Entity_Id :=
213 Analyze_Subprogram_Specification (Specification (N));
996ae0b0
RK
214 Scop : constant Entity_Id := Current_Scope;
215
216 begin
8636f52f
HK
217 -- The abstract subprogram declaration may be subject to pragma Ghost
218 -- with policy Ignore. Set the mode now to ensure that any nodes
219 -- generated during analysis and expansion are properly flagged as
220 -- ignored Ghost.
221
222 Set_Ghost_Mode (N);
ce5ba43a 223 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
38171f43 224
996ae0b0 225 Generate_Definition (Designator);
c9d70ab1 226
f937473f 227 Set_Is_Abstract_Subprogram (Designator);
996ae0b0
RK
228 New_Overloaded_Entity (Designator);
229 Check_Delayed_Subprogram (Designator);
230
fbf5a39b 231 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0 232
8636f52f 233 -- An abstract subprogram declared within a Ghost region is rendered
c5cec2fe
AC
234 -- Ghost (SPARK RM 6.9(2)).
235
8636f52f 236 if Comes_From_Source (Designator) and then Ghost_Mode > None then
c5cec2fe
AC
237 Set_Is_Ghost_Entity (Designator);
238 end if;
239
996ae0b0
RK
240 if Ekind (Scope (Designator)) = E_Protected_Type then
241 Error_Msg_N
242 ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
243
244 -- Issue a warning if the abstract subprogram is neither a dispatching
245 -- operation nor an operation that overrides an inherited subprogram or
246 -- predefined operator, since this most likely indicates a mistake.
247
248 elsif Warn_On_Redundant_Constructs
249 and then not Is_Dispatching_Operation (Designator)
038140ed 250 and then not Present (Overridden_Operation (Designator))
5d37ba92
ES
251 and then (not Is_Operator_Symbol_Name (Chars (Designator))
252 or else Scop /= Scope (Etype (First_Formal (Designator))))
253 then
254 Error_Msg_N
dbfeb4fa 255 ("abstract subprogram is not dispatching or overriding?r?", N);
996ae0b0 256 end if;
fbf5a39b
AC
257
258 Generate_Reference_To_Formals (Designator);
361effb1 259 Check_Eliminated (Designator);
eaba57fb
RD
260
261 if Has_Aspects (N) then
262 Analyze_Aspect_Specifications (N, Designator);
263 end if;
996ae0b0
RK
264 end Analyze_Abstract_Subprogram_Declaration;
265
b0186f71
AC
266 ---------------------------------
267 -- Analyze_Expression_Function --
268 ---------------------------------
269
270 procedure Analyze_Expression_Function (N : Node_Id) is
8d1fe980
AC
271 Expr : constant Node_Id := Expression (N);
272 Loc : constant Source_Ptr := Sloc (N);
273 LocX : constant Source_Ptr := Sloc (Expr);
274 Spec : constant Node_Id := Specification (N);
d2d4b355 275
8a06151a 276 Def_Id : Entity_Id;
b0186f71 277
8a06151a 278 Prev : Entity_Id;
b0186f71 279 -- If the expression is a completion, Prev is the entity whose
d2d4b355
AC
280 -- declaration is completed. Def_Id is needed to analyze the spec.
281
282 New_Body : Node_Id;
d2d4b355 283 New_Spec : Node_Id;
b913199e 284 Ret : Node_Id;
b0186f71
AC
285
286 begin
287 -- This is one of the occasions on which we transform the tree during
afc8324d 288 -- semantic analysis. If this is a completion, transform the expression
d2b10647
ES
289 -- function into an equivalent subprogram body, and analyze it.
290
291 -- Expression functions are inlined unconditionally. The back-end will
292 -- determine whether this is possible.
293
294 Inline_Processing_Required := True;
b727a82b 295
8d1fe980
AC
296 -- Create a specification for the generated body. This must be done
297 -- prior to the analysis of the initial declaration.
b727a82b 298
8d1fe980
AC
299 New_Spec := Copy_Subprogram_Spec (Spec);
300 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
d2d4b355
AC
301
302 -- If there are previous overloadable entities with the same name,
303 -- check whether any of them is completed by the expression function.
b04d926e 304 -- In a generic context a formal subprogram has no completion.
d2d4b355 305
4b6f99f5
RD
306 if Present (Prev)
307 and then Is_Overloadable (Prev)
b04d926e
AC
308 and then not Is_Formal_Subprogram (Prev)
309 then
51597c23
AC
310 Def_Id := Analyze_Subprogram_Specification (Spec);
311 Prev := Find_Corresponding_Spec (N);
35e7063a
AC
312
313 -- The previous entity may be an expression function as well, in
314 -- which case the redeclaration is illegal.
315
316 if Present (Prev)
5073ad7a
AC
317 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
318 N_Expression_Function
35e7063a 319 then
bc5e261c
ES
320 Error_Msg_Sloc := Sloc (Prev);
321 Error_Msg_N ("& conflicts with declaration#", Def_Id);
35e7063a
AC
322 return;
323 end if;
d2d4b355 324 end if;
b0186f71 325
b913199e
AC
326 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
327
b0186f71
AC
328 New_Body :=
329 Make_Subprogram_Body (Loc,
d2d4b355 330 Specification => New_Spec,
b0186f71
AC
331 Declarations => Empty_List,
332 Handled_Statement_Sequence =>
333 Make_Handled_Sequence_Of_Statements (LocX,
b913199e 334 Statements => New_List (Ret)));
b0186f71 335
e7f23f06
AC
336 -- If the expression completes a generic subprogram, we must create a
337 -- separate node for the body, because at instantiation the original
338 -- node of the generic copy must be a generic subprogram body, and
339 -- cannot be a expression function. Otherwise we just rewrite the
340 -- expression with the non-generic body.
341
6d7e5c54 342 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
e7f23f06 343 Insert_After (N, New_Body);
6d7e5c54 344
e7f23f06
AC
345 -- Propagate any aspects or pragmas that apply to the expression
346 -- function to the proper body when the expression function acts
347 -- as a completion.
348
349 if Has_Aspects (N) then
350 Move_Aspects (N, To => New_Body);
351 end if;
352
353 Relocate_Pragmas_To_Body (New_Body);
b0186f71 354
b0186f71 355 Rewrite (N, Make_Null_Statement (Loc));
d2d4b355 356 Set_Has_Completion (Prev, False);
b0186f71
AC
357 Analyze (N);
358 Analyze (New_Body);
d2b10647 359 Set_Is_Inlined (Prev);
b0186f71 360
e5c4e2bc
AC
361 -- If the expression function is a completion, the previous declaration
362 -- must come from source. We know already that appears in the current
363 -- scope. The entity itself may be internally created if within a body
364 -- to be inlined.
365
4b6f99f5
RD
366 elsif Present (Prev)
367 and then Comes_From_Source (Parent (Prev))
b04d926e
AC
368 and then not Is_Formal_Subprogram (Prev)
369 then
d2d4b355 370 Set_Has_Completion (Prev, False);
76264f60 371
c6d2191a
AC
372 -- An expression function that is a completion freezes the
373 -- expression. This means freezing the return type, and if it is
374 -- an access type, freezing its designated type as well.
1b31321b 375
c6d2191a 376 -- Note that we cannot defer this freezing to the analysis of the
1b31321b
AC
377 -- expression itself, because a freeze node might appear in a nested
378 -- scope, leading to an elaboration order issue in gigi.
c6d2191a
AC
379
380 Freeze_Before (N, Etype (Prev));
1b31321b 381
c6d2191a
AC
382 if Is_Access_Type (Etype (Prev)) then
383 Freeze_Before (N, Designated_Type (Etype (Prev)));
384 end if;
385
76264f60
AC
386 -- For navigation purposes, indicate that the function is a body
387
388 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
b0186f71 389 Rewrite (N, New_Body);
e7f23f06 390
c0cdbd39
AC
391 -- Correct the parent pointer of the aspect specification list to
392 -- reference the rewritten node.
393
394 if Has_Aspects (N) then
395 Set_Parent (Aspect_Specifications (N), N);
396 end if;
397
e7f23f06
AC
398 -- Propagate any pragmas that apply to the expression function to the
399 -- proper body when the expression function acts as a completion.
400 -- Aspects are automatically transfered because of node rewriting.
401
402 Relocate_Pragmas_To_Body (N);
d2b10647
ES
403 Analyze (N);
404
6d7e5c54
AC
405 -- Prev is the previous entity with the same name, but it is can
406 -- be an unrelated spec that is not completed by the expression
407 -- function. In that case the relevant entity is the one in the body.
408 -- Not clear that the backend can inline it in this case ???
409
410 if Has_Completion (Prev) then
411 Set_Is_Inlined (Prev);
31af8899
AC
412
413 -- The formals of the expression function are body formals,
414 -- and do not appear in the ali file, which will only contain
415 -- references to the formals of the original subprogram spec.
416
417 declare
418 F1 : Entity_Id;
419 F2 : Entity_Id;
420
421 begin
422 F1 := First_Formal (Def_Id);
423 F2 := First_Formal (Prev);
424
425 while Present (F1) loop
426 Set_Spec_Entity (F1, F2);
427 Next_Formal (F1);
428 Next_Formal (F2);
429 end loop;
430 end;
431
6d7e5c54
AC
432 else
433 Set_Is_Inlined (Defining_Entity (New_Body));
434 end if;
435
0b5b2bbc 436 -- If this is not a completion, create both a declaration and a body, so
6d7e5c54 437 -- that the expression can be inlined whenever possible.
d2b10647
ES
438
439 else
a52e6d7e
AC
440 -- An expression function that is not a completion is not a
441 -- subprogram declaration, and thus cannot appear in a protected
442 -- definition.
443
444 if Nkind (Parent (N)) = N_Protected_Definition then
445 Error_Msg_N
446 ("an expression function is not a legal protected operation", N);
447 end if;
448
b8e6830b 449 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
c0cdbd39
AC
450
451 -- Correct the parent pointer of the aspect specification list to
452 -- reference the rewritten node.
453
454 if Has_Aspects (N) then
455 Set_Parent (Aspect_Specifications (N), N);
456 end if;
457
b0186f71 458 Analyze (N);
b04d926e 459
e699b76e
AC
460 -- Within a generic pre-analyze the original expression for name
461 -- capture. The body is also generated but plays no role in
462 -- this because it is not part of the original source.
b04d926e
AC
463
464 if Inside_A_Generic then
465 declare
466 Id : constant Entity_Id := Defining_Entity (N);
b04d926e
AC
467
468 begin
469 Set_Has_Completion (Id);
b04d926e
AC
470 Push_Scope (Id);
471 Install_Formals (Id);
e699b76e 472 Preanalyze_Spec_Expression (Expr, Etype (Id));
b04d926e 473 End_Scope;
b04d926e
AC
474 end;
475 end if;
476
b8e6830b
AC
477 Set_Is_Inlined (Defining_Entity (N));
478
479 -- Establish the linkages between the spec and the body. These are
480 -- used when the expression function acts as the prefix of attribute
481 -- 'Access in order to freeze the original expression which has been
482 -- moved to the generated body.
483
484 Set_Corresponding_Body (N, Defining_Entity (New_Body));
485 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
d2b10647 486
6d7e5c54
AC
487 -- To prevent premature freeze action, insert the new body at the end
488 -- of the current declarations, or at the end of the package spec.
b913199e 489 -- However, resolve usage names now, to prevent spurious visibility
ad4e3362
ES
490 -- on later entities. Note that the function can now be called in
491 -- the current declarative part, which will appear to be prior to
492 -- the presence of the body in the code. There are nevertheless no
493 -- order of elaboration issues because all name resolution has taken
494 -- place at the point of declaration.
6d7e5c54
AC
495
496 declare
e876c43a
AC
497 Decls : List_Id := List_Containing (N);
498 Par : constant Node_Id := Parent (Decls);
b8e6830b 499 Id : constant Entity_Id := Defining_Entity (N);
6d7e5c54
AC
500
501 begin
fce54763
AC
502 -- If this is a wrapper created for in an instance for a formal
503 -- subprogram, insert body after declaration, to be analyzed when
504 -- the enclosing instance is analyzed.
505
506 if GNATprove_Mode
507 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
6d7e5c54 508 then
fce54763
AC
509 Insert_After (N, New_Body);
510
511 else
512 if Nkind (Par) = N_Package_Specification
513 and then Decls = Visible_Declarations (Par)
514 and then Present (Private_Declarations (Par))
515 and then not Is_Empty_List (Private_Declarations (Par))
516 then
517 Decls := Private_Declarations (Par);
518 end if;
6d7e5c54 519
fce54763
AC
520 Insert_After (Last (Decls), New_Body);
521 Push_Scope (Id);
522 Install_Formals (Id);
3a8e3f63 523
fce54763
AC
524 -- Preanalyze the expression for name capture, except in an
525 -- instance, where this has been done during generic analysis,
526 -- and will be redone when analyzing the body.
845f06e2 527
fce54763
AC
528 declare
529 Expr : constant Node_Id := Expression (Ret);
4058ddcc 530
fce54763
AC
531 begin
532 Set_Parent (Expr, Ret);
4058ddcc 533
fce54763
AC
534 if not In_Instance then
535 Preanalyze_Spec_Expression (Expr, Etype (Id));
536 end if;
537 end;
3a8e3f63 538
fce54763
AC
539 End_Scope;
540 end if;
6d7e5c54 541 end;
b0186f71 542 end if;
0b5b2bbc
AC
543
544 -- If the return expression is a static constant, we suppress warning
545 -- messages on unused formals, which in most cases will be noise.
546
547 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
548 Is_OK_Static_Expression (Expr));
b0186f71
AC
549 end Analyze_Expression_Function;
550
ec4867fa
ES
551 ----------------------------------------
552 -- Analyze_Extended_Return_Statement --
553 ----------------------------------------
554
555 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
556 begin
c86cf714 557 Check_Compiler_Unit ("extended return statement", N);
5d37ba92 558 Analyze_Return_Statement (N);
ec4867fa
ES
559 end Analyze_Extended_Return_Statement;
560
996ae0b0
RK
561 ----------------------------
562 -- Analyze_Function_Call --
563 ----------------------------
564
565 procedure Analyze_Function_Call (N : Node_Id) is
a7e68e7f
HK
566 Actuals : constant List_Id := Parameter_Associations (N);
567 Func_Nam : constant Node_Id := Name (N);
568 Actual : Node_Id;
569
996ae0b0 570 begin
a7e68e7f 571 Analyze (Func_Nam);
996ae0b0 572
3e7302c3
AC
573 -- A call of the form A.B (X) may be an Ada 2005 call, which is
574 -- rewritten as B (A, X). If the rewriting is successful, the call
575 -- has been analyzed and we just return.
82c80734 576
a7e68e7f
HK
577 if Nkind (Func_Nam) = N_Selected_Component
578 and then Name (N) /= Func_Nam
82c80734
RD
579 and then Is_Rewrite_Substitution (N)
580 and then Present (Etype (N))
581 then
582 return;
583 end if;
584
996ae0b0
RK
585 -- If error analyzing name, then set Any_Type as result type and return
586
a7e68e7f 587 if Etype (Func_Nam) = Any_Type then
996ae0b0
RK
588 Set_Etype (N, Any_Type);
589 return;
590 end if;
591
592 -- Otherwise analyze the parameters
593
e24329cd
YM
594 if Present (Actuals) then
595 Actual := First (Actuals);
996ae0b0
RK
596 while Present (Actual) loop
597 Analyze (Actual);
598 Check_Parameterless_Call (Actual);
599 Next (Actual);
600 end loop;
601 end if;
602
603 Analyze_Call (N);
996ae0b0
RK
604 end Analyze_Function_Call;
605
ec4867fa
ES
606 -----------------------------
607 -- Analyze_Function_Return --
608 -----------------------------
609
610 procedure Analyze_Function_Return (N : Node_Id) is
a7e68e7f
HK
611 Loc : constant Source_Ptr := Sloc (N);
612 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
613 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
ec4867fa 614
5d37ba92 615 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
616 -- Function result subtype
617
618 procedure Check_Limited_Return (Expr : Node_Id);
619 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
620 -- limited types. Used only for simple return statements.
621 -- Expr is the expression returned.
622
623 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
624 -- Check that the return_subtype_indication properly matches the result
625 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
626
627 --------------------------
628 -- Check_Limited_Return --
629 --------------------------
630
631 procedure Check_Limited_Return (Expr : Node_Id) is
632 begin
633 -- Ada 2005 (AI-318-02): Return-by-reference types have been
634 -- removed and replaced by anonymous access results. This is an
635 -- incompatibility with Ada 95. Not clear whether this should be
636 -- enforced yet or perhaps controllable with special switch. ???
637
ce72a9a3
AC
638 -- A limited interface that is not immutably limited is OK.
639
640 if Is_Limited_Interface (R_Type)
641 and then
642 not (Is_Task_Interface (R_Type)
643 or else Is_Protected_Interface (R_Type)
644 or else Is_Synchronized_Interface (R_Type))
645 then
646 null;
647
648 elsif Is_Limited_Type (R_Type)
649 and then not Is_Interface (R_Type)
ec4867fa
ES
650 and then Comes_From_Source (N)
651 and then not In_Instance_Body
2a31c32b 652 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
ec4867fa
ES
653 then
654 -- Error in Ada 2005
655
0791fbe9 656 if Ada_Version >= Ada_2005
ec4867fa
ES
657 and then not Debug_Flag_Dot_L
658 and then not GNAT_Mode
659 then
660 Error_Msg_N
3ccedacc
AC
661 ("(Ada 2005) cannot copy object of a limited type "
662 & "(RM-2005 6.5(5.5/2))", Expr);
e0ae93e2 663
51245e2d 664 if Is_Limited_View (R_Type) then
ec4867fa
ES
665 Error_Msg_N
666 ("\return by reference not permitted in Ada 2005", Expr);
667 end if;
668
669 -- Warn in Ada 95 mode, to give folks a heads up about this
670 -- incompatibility.
671
672 -- In GNAT mode, this is just a warning, to allow it to be
673 -- evilly turned off. Otherwise it is a real error.
674
9694c039
AC
675 -- In a generic context, simplify the warning because it makes
676 -- no sense to discuss pass-by-reference or copy.
677
ec4867fa 678 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
9694c039
AC
679 if Inside_A_Generic then
680 Error_Msg_N
885c4871 681 ("return of limited object not permitted in Ada 2005 "
dbfeb4fa 682 & "(RM-2005 6.5(5.5/2))?y?", Expr);
9694c039 683
51245e2d 684 elsif Is_Limited_View (R_Type) then
ec4867fa 685 Error_Msg_N
20261dc1 686 ("return by reference not permitted in Ada 2005 "
dbfeb4fa 687 & "(RM-2005 6.5(5.5/2))?y?", Expr);
ec4867fa
ES
688 else
689 Error_Msg_N
20261dc1 690 ("cannot copy object of a limited type in Ada 2005 "
dbfeb4fa 691 & "(RM-2005 6.5(5.5/2))?y?", Expr);
ec4867fa
ES
692 end if;
693
694 -- Ada 95 mode, compatibility warnings disabled
695
696 else
697 return; -- skip continuation messages below
698 end if;
699
9694c039
AC
700 if not Inside_A_Generic then
701 Error_Msg_N
702 ("\consider switching to return of access type", Expr);
703 Explain_Limited_Type (R_Type, Expr);
704 end if;
ec4867fa
ES
705 end if;
706 end Check_Limited_Return;
707
708 -------------------------------------
709 -- Check_Return_Subtype_Indication --
710 -------------------------------------
711
712 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
7665e4bd
AC
713 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
714
715 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
716 -- Subtype given in the extended return statement (must match R_Type)
ec4867fa
ES
717
718 Subtype_Ind : constant Node_Id :=
719 Object_Definition (Original_Node (Obj_Decl));
720
7f568bfa
AC
721 R_Type_Is_Anon_Access : constant Boolean :=
722 Ekind_In (R_Type,
723 E_Anonymous_Access_Subprogram_Type,
724 E_Anonymous_Access_Protected_Subprogram_Type,
725 E_Anonymous_Access_Type);
ec4867fa
ES
726 -- True if return type of the function is an anonymous access type
727 -- Can't we make Is_Anonymous_Access_Type in einfo ???
728
7f568bfa
AC
729 R_Stm_Type_Is_Anon_Access : constant Boolean :=
730 Ekind_In (R_Stm_Type,
731 E_Anonymous_Access_Subprogram_Type,
732 E_Anonymous_Access_Protected_Subprogram_Type,
733 E_Anonymous_Access_Type);
ec4867fa
ES
734 -- True if type of the return object is an anonymous access type
735
7f568bfa
AC
736 procedure Error_No_Match (N : Node_Id);
737 -- Output error messages for case where types do not statically
738 -- match. N is the location for the messages.
739
740 --------------------
741 -- Error_No_Match --
742 --------------------
743
744 procedure Error_No_Match (N : Node_Id) is
745 begin
746 Error_Msg_N
747 ("subtype must statically match function result subtype", N);
748
749 if not Predicates_Match (R_Stm_Type, R_Type) then
750 Error_Msg_Node_2 := R_Type;
751 Error_Msg_NE
3ccedacc 752 ("\predicate of& does not match predicate of&",
7f568bfa
AC
753 N, R_Stm_Type);
754 end if;
755 end Error_No_Match;
756
757 -- Start of processing for Check_Return_Subtype_Indication
758
ec4867fa 759 begin
7665e4bd 760 -- First, avoid cascaded errors
ec4867fa
ES
761
762 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
763 return;
764 end if;
765
766 -- "return access T" case; check that the return statement also has
767 -- "access T", and that the subtypes statically match:
53cf4600 768 -- if this is an access to subprogram the signatures must match.
ec4867fa
ES
769
770 if R_Type_Is_Anon_Access then
771 if R_Stm_Type_Is_Anon_Access then
53cf4600
ES
772 if
773 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
0a36105d 774 then
53cf4600
ES
775 if Base_Type (Designated_Type (R_Stm_Type)) /=
776 Base_Type (Designated_Type (R_Type))
777 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
778 then
7f568bfa 779 Error_No_Match (Subtype_Mark (Subtype_Ind));
53cf4600
ES
780 end if;
781
782 else
783 -- For two anonymous access to subprogram types, the
784 -- types themselves must be type conformant.
785
786 if not Conforming_Types
787 (R_Stm_Type, R_Type, Fully_Conformant)
788 then
7f568bfa 789 Error_No_Match (Subtype_Ind);
53cf4600 790 end if;
ec4867fa 791 end if;
0a36105d 792
ec4867fa
ES
793 else
794 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
795 end if;
796
6cce2156
GD
797 -- If the return object is of an anonymous access type, then report
798 -- an error if the function's result type is not also anonymous.
799
800 elsif R_Stm_Type_Is_Anon_Access
801 and then not R_Type_Is_Anon_Access
802 then
3ccedacc
AC
803 Error_Msg_N ("anonymous access not allowed for function with "
804 & "named access result", Subtype_Ind);
6cce2156 805
81d93365
AC
806 -- Subtype indication case: check that the return object's type is
807 -- covered by the result type, and that the subtypes statically match
808 -- when the result subtype is constrained. Also handle record types
809 -- with unknown discriminants for which we have built the underlying
810 -- record view. Coverage is needed to allow specific-type return
811 -- objects when the result type is class-wide (see AI05-32).
812
813 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
9013065b 814 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
212863c0
AC
815 and then
816 Covers
817 (Base_Type (R_Type),
818 Underlying_Record_View (Base_Type (R_Stm_Type))))
9013065b
AC
819 then
820 -- A null exclusion may be present on the return type, on the
821 -- function specification, on the object declaration or on the
822 -- subtype itself.
ec4867fa 823
21d27997
RD
824 if Is_Access_Type (R_Type)
825 and then
826 (Can_Never_Be_Null (R_Type)
827 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
828 Can_Never_Be_Null (R_Stm_Type)
829 then
7f568bfa 830 Error_No_Match (Subtype_Ind);
21d27997
RD
831 end if;
832
105b5e65 833 -- AI05-103: for elementary types, subtypes must statically match
8779dffa
AC
834
835 if Is_Constrained (R_Type)
836 or else Is_Access_Type (R_Type)
837 then
ec4867fa 838 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
7f568bfa 839 Error_No_Match (Subtype_Ind);
ec4867fa
ES
840 end if;
841 end if;
842
a8b346d2
RD
843 -- All remaining cases are illegal
844
845 -- Note: previous versions of this subprogram allowed the return
846 -- value to be the ancestor of the return type if the return type
847 -- was a null extension. This was plainly incorrect.
ff7139c3 848
ec4867fa
ES
849 else
850 Error_Msg_N
851 ("wrong type for return_subtype_indication", Subtype_Ind);
852 end if;
853 end Check_Return_Subtype_Indication;
854
855 ---------------------
856 -- Local Variables --
857 ---------------------
858
445e5888
AC
859 Expr : Node_Id;
860 Obj_Decl : Node_Id;
ec4867fa
ES
861
862 -- Start of processing for Analyze_Function_Return
863
864 begin
865 Set_Return_Present (Scope_Id);
866
5d37ba92 867 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa 868 Expr := Expression (N);
4ee646da 869
e917aec2
RD
870 -- Guard against a malformed expression. The parser may have tried to
871 -- recover but the node is not analyzable.
4ee646da
AC
872
873 if Nkind (Expr) = N_Error then
874 Set_Etype (Expr, Any_Type);
875 Expander_Mode_Save_And_Set (False);
876 return;
877
878 else
0180fd26
AC
879 -- The resolution of a controlled [extension] aggregate associated
880 -- with a return statement creates a temporary which needs to be
881 -- finalized on function exit. Wrap the return statement inside a
882 -- block so that the finalization machinery can detect this case.
883 -- This early expansion is done only when the return statement is
884 -- not part of a handled sequence of statements.
885
886 if Nkind_In (Expr, N_Aggregate,
887 N_Extension_Aggregate)
888 and then Needs_Finalization (R_Type)
889 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
890 then
891 Rewrite (N,
892 Make_Block_Statement (Loc,
893 Handled_Statement_Sequence =>
894 Make_Handled_Sequence_Of_Statements (Loc,
895 Statements => New_List (Relocate_Node (N)))));
896
897 Analyze (N);
898 return;
899 end if;
900
4b963531
AC
901 Analyze (Expr);
902
903 -- Ada 2005 (AI-251): If the type of the returned object is
904 -- an access to an interface type then we add an implicit type
905 -- conversion to force the displacement of the "this" pointer to
906 -- reference the secondary dispatch table. We cannot delay the
907 -- generation of this implicit conversion until the expansion
908 -- because in this case the type resolution changes the decoration
909 -- of the expression node to match R_Type; by contrast, if the
910 -- returned object is a class-wide interface type then it is too
911 -- early to generate here the implicit conversion since the return
912 -- statement may be rewritten by the expander into an extended
913 -- return statement whose expansion takes care of adding the
914 -- implicit type conversion to displace the pointer to the object.
915
916 if Expander_Active
917 and then Serious_Errors_Detected = 0
918 and then Is_Access_Type (R_Type)
919 and then Nkind (Expr) /= N_Null
920 and then Is_Interface (Designated_Type (R_Type))
921 and then Is_Progenitor (Designated_Type (R_Type),
922 Designated_Type (Etype (Expr)))
923 then
73e5aa55 924 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
4b963531
AC
925 Analyze (Expr);
926 end if;
927
928 Resolve (Expr, R_Type);
4ee646da
AC
929 Check_Limited_Return (Expr);
930 end if;
ec4867fa 931
ad05f2e9 932 -- RETURN only allowed in SPARK as the last statement in function
607d0635 933
fe5d3068 934 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
607d0635
AC
935 and then
936 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
8d606a78 937 or else Present (Next (N)))
607d0635 938 then
ce5ba43a 939 Check_SPARK_05_Restriction
fe5d3068 940 ("RETURN should be the last statement in function", N);
607d0635
AC
941 end if;
942
ec4867fa 943 else
ce5ba43a 944 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
445e5888 945 Obj_Decl := Last (Return_Object_Declarations (N));
607d0635 946
ec4867fa
ES
947 -- Analyze parts specific to extended_return_statement:
948
949 declare
de6cad7c 950 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
b9daa96e 951 HSS : constant Node_Id := Handled_Statement_Sequence (N);
ec4867fa
ES
952
953 begin
954 Expr := Expression (Obj_Decl);
955
956 -- Note: The check for OK_For_Limited_Init will happen in
957 -- Analyze_Object_Declaration; we treat it as a normal
958 -- object declaration.
959
cd1c668b 960 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
ec4867fa
ES
961 Analyze (Obj_Decl);
962
ec4867fa
ES
963 Check_Return_Subtype_Indication (Obj_Decl);
964
965 if Present (HSS) then
966 Analyze (HSS);
967
968 if Present (Exception_Handlers (HSS)) then
969
970 -- ???Has_Nested_Block_With_Handler needs to be set.
971 -- Probably by creating an actual N_Block_Statement.
972 -- Probably in Expand.
973
974 null;
975 end if;
976 end if;
977
9337aa0a
AC
978 -- Mark the return object as referenced, since the return is an
979 -- implicit reference of the object.
980
981 Set_Referenced (Defining_Identifier (Obj_Decl));
982
ec4867fa 983 Check_References (Stm_Entity);
de6cad7c
AC
984
985 -- Check RM 6.5 (5.9/3)
986
987 if Has_Aliased then
988 if Ada_Version < Ada_2012 then
dbfeb4fa
RD
989
990 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
991 -- Can it really happen (extended return???)
992
993 Error_Msg_N
b785e0b8
AC
994 ("aliased only allowed for limited return objects "
995 & "in Ada 2012??", N);
de6cad7c 996
51245e2d 997 elsif not Is_Limited_View (R_Type) then
3ccedacc
AC
998 Error_Msg_N
999 ("aliased only allowed for limited return objects", N);
de6cad7c
AC
1000 end if;
1001 end if;
ec4867fa
ES
1002 end;
1003 end if;
1004
21d27997 1005 -- Case of Expr present
5d37ba92 1006
ec4867fa 1007 if Present (Expr)
21d27997 1008
8fde064e 1009 -- Defend against previous errors
21d27997
RD
1010
1011 and then Nkind (Expr) /= N_Empty
5d37ba92 1012 and then Present (Etype (Expr))
ec4867fa 1013 then
5d37ba92
ES
1014 -- Apply constraint check. Note that this is done before the implicit
1015 -- conversion of the expression done for anonymous access types to
f3d57416 1016 -- ensure correct generation of the null-excluding check associated
5d37ba92
ES
1017 -- with null-excluding expressions found in return statements.
1018
1019 Apply_Constraint_Check (Expr, R_Type);
1020
1021 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1022 -- type, apply an implicit conversion of the expression to that type
1023 -- to force appropriate static and run-time accessibility checks.
ec4867fa 1024
0791fbe9 1025 if Ada_Version >= Ada_2005
ec4867fa
ES
1026 and then Ekind (R_Type) = E_Anonymous_Access_Type
1027 then
1028 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1029 Analyze_And_Resolve (Expr, R_Type);
b6b5cca8
AC
1030
1031 -- If this is a local anonymous access to subprogram, the
1032 -- accessibility check can be applied statically. The return is
1033 -- illegal if the access type of the return expression is declared
1034 -- inside of the subprogram (except if it is the subtype indication
1035 -- of an extended return statement).
1036
1037 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1038 if not Comes_From_Source (Current_Scope)
1039 or else Ekind (Current_Scope) = E_Return_Statement
1040 then
1041 null;
1042
1043 elsif
1044 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1045 then
1046 Error_Msg_N ("cannot return local access to subprogram", N);
1047 end if;
1ebc2612
AC
1048
1049 -- The expression cannot be of a formal incomplete type
1050
1051 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1052 and then Is_Generic_Type (Etype (Expr))
1053 then
1054 Error_Msg_N
1055 ("cannot return expression of a formal incomplete type", N);
ec4867fa
ES
1056 end if;
1057
21d27997
RD
1058 -- If the result type is class-wide, then check that the return
1059 -- expression's type is not declared at a deeper level than the
1060 -- function (RM05-6.5(5.6/2)).
1061
0791fbe9 1062 if Ada_Version >= Ada_2005
21d27997
RD
1063 and then Is_Class_Wide_Type (R_Type)
1064 then
1065 if Type_Access_Level (Etype (Expr)) >
1066 Subprogram_Access_Level (Scope_Id)
1067 then
1068 Error_Msg_N
3ccedacc
AC
1069 ("level of return expression type is deeper than "
1070 & "class-wide function!", Expr);
21d27997
RD
1071 end if;
1072 end if;
1073
4755cce9
JM
1074 -- Check incorrect use of dynamically tagged expression
1075
1076 if Is_Tagged_Type (R_Type) then
1077 Check_Dynamically_Tagged_Expression
1078 (Expr => Expr,
1079 Typ => R_Type,
1080 Related_Nod => N);
ec4867fa
ES
1081 end if;
1082
ec4867fa
ES
1083 -- ??? A real run-time accessibility check is needed in cases
1084 -- involving dereferences of access parameters. For now we just
1085 -- check the static cases.
1086
0791fbe9 1087 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
51245e2d 1088 and then Is_Limited_View (Etype (Scope_Id))
ec4867fa
ES
1089 and then Object_Access_Level (Expr) >
1090 Subprogram_Access_Level (Scope_Id)
1091 then
9694c039
AC
1092 -- Suppress the message in a generic, where the rewriting
1093 -- is irrelevant.
1094
1095 if Inside_A_Generic then
1096 null;
1097
1098 else
1099 Rewrite (N,
1100 Make_Raise_Program_Error (Loc,
1101 Reason => PE_Accessibility_Check_Failed));
1102 Analyze (N);
1103
43417b90 1104 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1105 Error_Msg_N ("cannot return a local value by reference<<", N);
1106 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
9694c039 1107 end if;
ec4867fa 1108 end if;
5d37ba92
ES
1109
1110 if Known_Null (Expr)
1111 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1112 and then Null_Exclusion_Present (Parent (Scope_Id))
1113 then
1114 Apply_Compile_Time_Constraint_Error
1115 (N => Expr,
1116 Msg => "(Ada 2005) null not allowed for "
dbfeb4fa 1117 & "null-excluding return??",
5d37ba92
ES
1118 Reason => CE_Null_Not_Allowed);
1119 end if;
445e5888
AC
1120
1121 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1122 -- has no initializing expression.
1123
1124 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1125 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1126 Subprogram_Access_Level (Scope_Id)
1127 then
1128 Error_Msg_N
1129 ("level of return expression type is deeper than "
1130 & "class-wide function!", Obj_Decl);
1131 end if;
ec4867fa
ES
1132 end if;
1133 end Analyze_Function_Return;
1134
996ae0b0
RK
1135 -------------------------------------
1136 -- Analyze_Generic_Subprogram_Body --
1137 -------------------------------------
1138
1139 procedure Analyze_Generic_Subprogram_Body
1140 (N : Node_Id;
1141 Gen_Id : Entity_Id)
1142 is
fbf5a39b 1143 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 1144 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 1145 Body_Id : Entity_Id;
996ae0b0 1146 New_N : Node_Id;
fbf5a39b 1147 Spec : Node_Id;
996ae0b0
RK
1148
1149 begin
82c80734
RD
1150 -- Copy body and disable expansion while analyzing the generic For a
1151 -- stub, do not copy the stub (which would load the proper body), this
1152 -- will be done when the proper body is analyzed.
996ae0b0
RK
1153
1154 if Nkind (N) /= N_Subprogram_Body_Stub then
1155 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1156 Rewrite (N, New_N);
caf07df9
AC
1157
1158 -- Once the contents of the generic copy and the template are
1159 -- swapped, do the same for their respective aspect specifications.
1160
1161 Exchange_Aspects (N, New_N);
1162
1163 -- Collect all contract-related source pragmas found within the
1164 -- template and attach them to the contract of the subprogram body.
1165 -- This contract is used in the capture of global references within
1166 -- annotations.
1167
1168 Create_Generic_Contract (N);
1169
996ae0b0
RK
1170 Start_Generic;
1171 end if;
1172
1173 Spec := Specification (N);
1174
1175 -- Within the body of the generic, the subprogram is callable, and
1176 -- behaves like the corresponding non-generic unit.
1177
fbf5a39b 1178 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
1179
1180 if Kind = E_Generic_Procedure
1181 and then Nkind (Spec) /= N_Procedure_Specification
1182 then
fbf5a39b 1183 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
1184 return;
1185
1186 elsif Kind = E_Generic_Function
1187 and then Nkind (Spec) /= N_Function_Specification
1188 then
fbf5a39b 1189 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
1190 return;
1191 end if;
1192
fbf5a39b 1193 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
1194
1195 if Has_Completion (Gen_Id)
1196 and then Nkind (Parent (N)) /= N_Subunit
1197 then
1198 Error_Msg_N ("duplicate generic body", N);
1199 return;
1200 else
1201 Set_Has_Completion (Gen_Id);
1202 end if;
1203
1204 if Nkind (N) = N_Subprogram_Body_Stub then
1205 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1206 else
1207 Set_Corresponding_Spec (N, Gen_Id);
1208 end if;
1209
1210 if Nkind (Parent (N)) = N_Compilation_Unit then
1211 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1212 end if;
1213
1214 -- Make generic parameters immediately visible in the body. They are
1215 -- needed to process the formals declarations. Then make the formals
1216 -- visible in a separate step.
1217
0a36105d 1218 Push_Scope (Gen_Id);
996ae0b0
RK
1219
1220 declare
1221 E : Entity_Id;
1222 First_Ent : Entity_Id;
1223
1224 begin
1225 First_Ent := First_Entity (Gen_Id);
1226
1227 E := First_Ent;
1228 while Present (E) and then not Is_Formal (E) loop
1229 Install_Entity (E);
1230 Next_Entity (E);
1231 end loop;
1232
1233 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1234
1235 -- Now generic formals are visible, and the specification can be
1236 -- analyzed, for subsequent conformance check.
1237
fbf5a39b 1238 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 1239
fbf5a39b 1240 -- Make formal parameters visible
996ae0b0
RK
1241
1242 if Present (E) then
1243
fbf5a39b
AC
1244 -- E is the first formal parameter, we loop through the formals
1245 -- installing them so that they will be visible.
996ae0b0
RK
1246
1247 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
1248 while Present (E) loop
1249 Install_Entity (E);
1250 Next_Formal (E);
1251 end loop;
1252 end if;
1253
e895b435 1254 -- Visible generic entity is callable within its own body
996ae0b0 1255
ec4867fa
ES
1256 Set_Ekind (Gen_Id, Ekind (Body_Id));
1257 Set_Ekind (Body_Id, E_Subprogram_Body);
1258 Set_Convention (Body_Id, Convention (Gen_Id));
1259 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1260 Set_Scope (Body_Id, Scope (Gen_Id));
c5cec2fe
AC
1261
1262 -- Inherit the "ghostness" of the generic spec. Note that this
1263 -- property is not directly inherited as the body may be subject
1264 -- to a different Ghost assertion policy.
1265
8636f52f 1266 if Is_Ghost_Entity (Gen_Id) or else Ghost_Mode > None then
c5cec2fe
AC
1267 Set_Is_Ghost_Entity (Body_Id);
1268
1269 -- The Ghost policy in effect at the point of declaration and at
c2cfccb1 1270 -- the point of completion must match (SPARK RM 6.9(14)).
c5cec2fe
AC
1271
1272 Check_Ghost_Completion (Gen_Id, Body_Id);
1273 end if;
1274
fbf5a39b
AC
1275 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1276
1277 if Nkind (N) = N_Subprogram_Body_Stub then
1278
e895b435 1279 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
1280
1281 Set_Ekind (Gen_Id, Kind);
1282 Set_Ekind (Body_Id, Kind);
1283
1284 if Present (First_Ent) then
1285 Set_First_Entity (Gen_Id, First_Ent);
1286 end if;
1287
1288 End_Scope;
1289 return;
1290 end if;
996ae0b0 1291
82c80734
RD
1292 -- If this is a compilation unit, it must be made visible explicitly,
1293 -- because the compilation of the declaration, unlike other library
1294 -- unit declarations, does not. If it is not a unit, the following
1295 -- is redundant but harmless.
996ae0b0
RK
1296
1297 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 1298 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 1299
ec4867fa
ES
1300 if Is_Child_Unit (Gen_Id) then
1301 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1302 end if;
1303
996ae0b0 1304 Set_Actual_Subtypes (N, Current_Scope);
483361a6 1305
579847c2
AC
1306 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1307 Set_SPARK_Pragma_Inherited (Body_Id, True);
1308
caf07df9
AC
1309 -- Analyze any aspect specifications that appear on the generic
1310 -- subprogram body.
1311
1312 if Has_Aspects (N) then
1313 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1314 end if;
1315
996ae0b0
RK
1316 Analyze_Declarations (Declarations (N));
1317 Check_Completion;
996ae0b0 1318
caf07df9
AC
1319 -- When a generic subprogram body appears inside a package, its
1320 -- contract is analyzed at the end of the package body declarations.
1321 -- This is due to the delay with respect of the package contract upon
1322 -- which the body contract may depend. When the generic subprogram
1323 -- body is a compilation unit, this delay is not necessary.
1324
1325 if Nkind (Parent (N)) = N_Compilation_Unit then
1326 Analyze_Subprogram_Body_Contract (Body_Id);
1327
1328 -- Capture all global references in a generic subprogram body
1329 -- that acts as a compilation unit now that the contract has
1330 -- been analyzed.
1331
1332 Save_Global_References_In_Contract
1333 (Templ => Original_Node (N),
1334 Gen_Id => Gen_Id);
1335 end if;
1336
1337 Analyze (Handled_Statement_Sequence (N));
996ae0b0
RK
1338 Save_Global_References (Original_Node (N));
1339
82c80734
RD
1340 -- Prior to exiting the scope, include generic formals again (if any
1341 -- are present) in the set of local entities.
996ae0b0
RK
1342
1343 if Present (First_Ent) then
1344 Set_First_Entity (Gen_Id, First_Ent);
1345 end if;
1346
fbf5a39b 1347 Check_References (Gen_Id);
996ae0b0
RK
1348 end;
1349
e6f69614 1350 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
1351 End_Scope;
1352 Check_Subprogram_Order (N);
1353
e895b435 1354 -- Outside of its body, unit is generic again
996ae0b0
RK
1355
1356 Set_Ekind (Gen_Id, Kind);
fbf5a39b 1357 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
1358
1359 if Style_Check then
1360 Style.Check_Identifier (Body_Id, Gen_Id);
1361 end if;
13d923cc 1362
996ae0b0 1363 End_Generic;
996ae0b0
RK
1364 end Analyze_Generic_Subprogram_Body;
1365
4d8f3296
ES
1366 ----------------------------
1367 -- Analyze_Null_Procedure --
1368 ----------------------------
1369
1370 procedure Analyze_Null_Procedure
1371 (N : Node_Id;
1372 Is_Completion : out Boolean)
1373 is
1374 Loc : constant Source_Ptr := Sloc (N);
1375 Spec : constant Node_Id := Specification (N);
1376 Designator : Entity_Id;
1377 Form : Node_Id;
1378 Null_Body : Node_Id := Empty;
1379 Prev : Entity_Id;
1380
1381 begin
1382 -- Capture the profile of the null procedure before analysis, for
1383 -- expansion at the freeze point and at each point of call. The body is
1384 -- used if the procedure has preconditions, or if it is a completion. In
1385 -- the first case the body is analyzed at the freeze point, in the other
1386 -- it replaces the null procedure declaration.
1387
1388 Null_Body :=
1389 Make_Subprogram_Body (Loc,
1390 Specification => New_Copy_Tree (Spec),
8c35b40a 1391 Declarations => New_List,
4d8f3296
ES
1392 Handled_Statement_Sequence =>
1393 Make_Handled_Sequence_Of_Statements (Loc,
1394 Statements => New_List (Make_Null_Statement (Loc))));
1395
1396 -- Create new entities for body and formals
1397
1398 Set_Defining_Unit_Name (Specification (Null_Body),
9d2a2071
AC
1399 Make_Defining_Identifier
1400 (Sloc (Defining_Entity (N)),
1401 Chars (Defining_Entity (N))));
4d8f3296
ES
1402
1403 Form := First (Parameter_Specifications (Specification (Null_Body)));
1404 while Present (Form) loop
1405 Set_Defining_Identifier (Form,
9d2a2071
AC
1406 Make_Defining_Identifier
1407 (Sloc (Defining_Identifier (Form)),
1408 Chars (Defining_Identifier (Form))));
4d8f3296
ES
1409 Next (Form);
1410 end loop;
1411
1412 -- Determine whether the null procedure may be a completion of a generic
1413 -- suprogram, in which case we use the new null body as the completion
1414 -- and set minimal semantic information on the original declaration,
1415 -- which is rewritten as a null statement.
1416
1417 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1418
1419 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1420 Insert_Before (N, Null_Body);
1421 Set_Ekind (Defining_Entity (N), Ekind (Prev));
4d8f3296
ES
1422
1423 Rewrite (N, Make_Null_Statement (Loc));
1424 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1425 Is_Completion := True;
1426 return;
1427
1428 else
4d8f3296
ES
1429 -- Resolve the types of the formals now, because the freeze point
1430 -- may appear in a different context, e.g. an instantiation.
1431
1432 Form := First (Parameter_Specifications (Specification (Null_Body)));
1433 while Present (Form) loop
1434 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1435 Find_Type (Parameter_Type (Form));
1436
1437 elsif
1438 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1439 then
1440 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1441
1442 else
1443 -- The case of a null procedure with a formal that is an
1444 -- access_to_subprogram type, and that is used as an actual
1445 -- in an instantiation is left to the enthusiastic reader.
1446
1447 null;
1448 end if;
1449
1450 Next (Form);
1451 end loop;
1452 end if;
1453
1454 -- If there are previous overloadable entities with the same name,
1455 -- check whether any of them is completed by the null procedure.
1456
1457 if Present (Prev) and then Is_Overloadable (Prev) then
1458 Designator := Analyze_Subprogram_Specification (Spec);
1459 Prev := Find_Corresponding_Spec (N);
1460 end if;
1461
1462 if No (Prev) or else not Comes_From_Source (Prev) then
1463 Designator := Analyze_Subprogram_Specification (Spec);
1464 Set_Has_Completion (Designator);
1465
1466 -- Signal to caller that this is a procedure declaration
1467
1468 Is_Completion := False;
1469
1470 -- Null procedures are always inlined, but generic formal subprograms
1471 -- which appear as such in the internal instance of formal packages,
1472 -- need no completion and are not marked Inline.
1473
1474 if Expander_Active
1475 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1476 then
1477 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1478 Set_Body_To_Inline (N, Null_Body);
1479 Set_Is_Inlined (Designator);
1480 end if;
1481
1482 else
2fe258bf
AC
1483 -- The null procedure is a completion. We unconditionally rewrite
1484 -- this as a null body (even if expansion is not active), because
1485 -- there are various error checks that are applied on this body
1486 -- when it is analyzed (e.g. correct aspect placement).
4d8f3296 1487
a98480dd
AC
1488 if Has_Completion (Prev) then
1489 Error_Msg_Sloc := Sloc (Prev);
1490 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1491 end if;
1492
4d8f3296 1493 Is_Completion := True;
2fe258bf
AC
1494 Rewrite (N, Null_Body);
1495 Analyze (N);
4d8f3296
ES
1496 end if;
1497 end Analyze_Null_Procedure;
1498
996ae0b0
RK
1499 -----------------------------
1500 -- Analyze_Operator_Symbol --
1501 -----------------------------
1502
82c80734
RD
1503 -- An operator symbol such as "+" or "and" may appear in context where the
1504 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1505 -- is just a string, as in (conjunction = "or"). In these cases the parser
1506 -- generates this node, and the semantics does the disambiguation. Other
1507 -- such case are actuals in an instantiation, the generic unit in an
1508 -- instantiation, and pragma arguments.
996ae0b0
RK
1509
1510 procedure Analyze_Operator_Symbol (N : Node_Id) is
1511 Par : constant Node_Id := Parent (N);
1512
1513 begin
1f0b1e48 1514 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
996ae0b0 1515 or else Nkind (Par) = N_Function_Instantiation
1f0b1e48 1516 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
996ae0b0 1517 or else (Nkind (Par) = N_Pragma_Argument_Association
1f0b1e48 1518 and then not Is_Pragma_String_Literal (Par))
996ae0b0 1519 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
1520 or else (Nkind (Par) = N_Attribute_Reference
1521 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
1522 then
1523 Find_Direct_Name (N);
1524
1525 else
1526 Change_Operator_Symbol_To_String_Literal (N);
1527 Analyze (N);
1528 end if;
1529 end Analyze_Operator_Symbol;
1530
1531 -----------------------------------
1532 -- Analyze_Parameter_Association --
1533 -----------------------------------
1534
1535 procedure Analyze_Parameter_Association (N : Node_Id) is
1536 begin
1537 Analyze (Explicit_Actual_Parameter (N));
1538 end Analyze_Parameter_Association;
1539
1540 ----------------------------
1541 -- Analyze_Procedure_Call --
1542 ----------------------------
1543
1544 procedure Analyze_Procedure_Call (N : Node_Id) is
1545 Loc : constant Source_Ptr := Sloc (N);
1546 P : constant Node_Id := Name (N);
1547 Actuals : constant List_Id := Parameter_Associations (N);
1548 Actual : Node_Id;
1549 New_N : Node_Id;
1550
1551 procedure Analyze_Call_And_Resolve;
1552 -- Do Analyze and Resolve calls for procedure call
cd5a9750 1553 -- At end, check illegal order dependence.
996ae0b0 1554
fbf5a39b
AC
1555 ------------------------------
1556 -- Analyze_Call_And_Resolve --
1557 ------------------------------
1558
996ae0b0
RK
1559 procedure Analyze_Call_And_Resolve is
1560 begin
1561 if Nkind (N) = N_Procedure_Call_Statement then
1562 Analyze_Call (N);
1563 Resolve (N, Standard_Void_Type);
1564 else
1565 Analyze (N);
1566 end if;
1567 end Analyze_Call_And_Resolve;
1568
1569 -- Start of processing for Analyze_Procedure_Call
1570
1571 begin
1572 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1573 -- a procedure call or an entry call. The prefix may denote an access
1574 -- to subprogram type, in which case an implicit dereference applies.
f3d57416 1575 -- If the prefix is an indexed component (without implicit dereference)
996ae0b0
RK
1576 -- then the construct denotes a call to a member of an entire family.
1577 -- If the prefix is a simple name, it may still denote a call to a
1578 -- parameterless member of an entry family. Resolution of these various
1579 -- interpretations is delicate.
1580
1581 Analyze (P);
1582
758c442c
GD
1583 -- If this is a call of the form Obj.Op, the call may have been
1584 -- analyzed and possibly rewritten into a block, in which case
1585 -- we are done.
1586
1587 if Analyzed (N) then
1588 return;
1589 end if;
1590
7415029d
AC
1591 -- If there is an error analyzing the name (which may have been
1592 -- rewritten if the original call was in prefix notation) then error
1593 -- has been emitted already, mark node and return.
996ae0b0 1594
21791d97 1595 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
996ae0b0
RK
1596 Set_Etype (N, Any_Type);
1597 return;
1598 end if;
1599
8636f52f
HK
1600 -- The name of the procedure call may reference an entity subject to
1601 -- pragma Ghost with policy Ignore. Set the mode now to ensure that any
1602 -- nodes generated during analysis and expansion are properly flagged as
1603 -- ignored Ghost.
1604
1605 Set_Ghost_Mode (N);
1606
996ae0b0
RK
1607 -- Otherwise analyze the parameters
1608
1609 if Present (Actuals) then
1610 Actual := First (Actuals);
1611
1612 while Present (Actual) loop
1613 Analyze (Actual);
1614 Check_Parameterless_Call (Actual);
1615 Next (Actual);
1616 end loop;
1617 end if;
1618
0bfc9a64 1619 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
996ae0b0
RK
1620
1621 if Nkind (P) = N_Attribute_Reference
b69cd36a
AC
1622 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1623 Name_Elab_Body,
1624 Name_Elab_Subp_Body)
996ae0b0
RK
1625 then
1626 if Present (Actuals) then
1627 Error_Msg_N
1628 ("no parameters allowed for this call", First (Actuals));
1629 return;
1630 end if;
1631
1632 Set_Etype (N, Standard_Void_Type);
1633 Set_Analyzed (N);
1634
1635 elsif Is_Entity_Name (P)
1636 and then Is_Record_Type (Etype (Entity (P)))
1637 and then Remote_AST_I_Dereference (P)
1638 then
1639 return;
1640
1641 elsif Is_Entity_Name (P)
1642 and then Ekind (Entity (P)) /= E_Entry_Family
1643 then
1644 if Is_Access_Type (Etype (P))
1645 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1646 and then No (Actuals)
1647 and then Comes_From_Source (N)
1648 then
ed2233dc 1649 Error_Msg_N ("missing explicit dereference in call", N);
996ae0b0
RK
1650 end if;
1651
1652 Analyze_Call_And_Resolve;
1653
1654 -- If the prefix is the simple name of an entry family, this is
1655 -- a parameterless call from within the task body itself.
1656
1657 elsif Is_Entity_Name (P)
1658 and then Nkind (P) = N_Identifier
1659 and then Ekind (Entity (P)) = E_Entry_Family
1660 and then Present (Actuals)
1661 and then No (Next (First (Actuals)))
1662 then
82c80734
RD
1663 -- Can be call to parameterless entry family. What appears to be the
1664 -- sole argument is in fact the entry index. Rewrite prefix of node
1665 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1666 -- transformation.
1667
1668 New_N :=
1669 Make_Indexed_Component (Loc,
1670 Prefix =>
1671 Make_Selected_Component (Loc,
1672 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1673 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1674 Expressions => Actuals);
1675 Set_Name (N, New_N);
1676 Set_Etype (New_N, Standard_Void_Type);
1677 Set_Parameter_Associations (N, No_List);
1678 Analyze_Call_And_Resolve;
1679
1680 elsif Nkind (P) = N_Explicit_Dereference then
1681 if Ekind (Etype (P)) = E_Subprogram_Type then
1682 Analyze_Call_And_Resolve;
1683 else
1684 Error_Msg_N ("expect access to procedure in call", P);
1685 end if;
1686
82c80734
RD
1687 -- The name can be a selected component or an indexed component that
1688 -- yields an access to subprogram. Such a prefix is legal if the call
1689 -- has parameter associations.
996ae0b0
RK
1690
1691 elsif Is_Access_Type (Etype (P))
1692 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1693 then
1694 if Present (Actuals) then
1695 Analyze_Call_And_Resolve;
1696 else
ed2233dc 1697 Error_Msg_N ("missing explicit dereference in call ", N);
996ae0b0
RK
1698 end if;
1699
82c80734
RD
1700 -- If not an access to subprogram, then the prefix must resolve to the
1701 -- name of an entry, entry family, or protected operation.
996ae0b0 1702
82c80734
RD
1703 -- For the case of a simple entry call, P is a selected component where
1704 -- the prefix is the task and the selector name is the entry. A call to
1705 -- a protected procedure will have the same syntax. If the protected
1706 -- object contains overloaded operations, the entity may appear as a
1707 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1708
1709 elsif Nkind (P) = N_Selected_Component
8fde064e
AC
1710 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1711 E_Procedure,
1712 E_Function)
996ae0b0
RK
1713 then
1714 Analyze_Call_And_Resolve;
1715
1716 elsif Nkind (P) = N_Selected_Component
1717 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1718 and then Present (Actuals)
1719 and then No (Next (First (Actuals)))
1720 then
82c80734
RD
1721 -- Can be call to parameterless entry family. What appears to be the
1722 -- sole argument is in fact the entry index. Rewrite prefix of node
1723 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1724 -- transformation.
1725
1726 New_N :=
1727 Make_Indexed_Component (Loc,
1728 Prefix => New_Copy (P),
1729 Expressions => Actuals);
1730 Set_Name (N, New_N);
1731 Set_Etype (New_N, Standard_Void_Type);
1732 Set_Parameter_Associations (N, No_List);
1733 Analyze_Call_And_Resolve;
1734
1735 -- For the case of a reference to an element of an entry family, P is
1736 -- an indexed component whose prefix is a selected component (task and
1737 -- entry family), and whose index is the entry family index.
1738
1739 elsif Nkind (P) = N_Indexed_Component
1740 and then Nkind (Prefix (P)) = N_Selected_Component
1741 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1742 then
1743 Analyze_Call_And_Resolve;
1744
1745 -- If the prefix is the name of an entry family, it is a call from
1746 -- within the task body itself.
1747
1748 elsif Nkind (P) = N_Indexed_Component
1749 and then Nkind (Prefix (P)) = N_Identifier
1750 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1751 then
1752 New_N :=
1753 Make_Selected_Component (Loc,
1754 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1755 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1756 Rewrite (Prefix (P), New_N);
1757 Analyze (P);
1758 Analyze_Call_And_Resolve;
1759
9f8d1e5c
AC
1760 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1761 -- procedure name, so the construct can only be a qualified expression.
1762
1763 elsif Nkind (P) = N_Qualified_Expression
1764 and then Ada_Version >= Ada_2012
1765 then
1766 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1767 Analyze (N);
1768
e895b435 1769 -- Anything else is an error
996ae0b0
RK
1770
1771 else
758c442c 1772 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0
RK
1773 end if;
1774 end Analyze_Procedure_Call;
1775
b0186f71
AC
1776 ------------------------------
1777 -- Analyze_Return_Statement --
1778 ------------------------------
1779
1780 procedure Analyze_Return_Statement (N : Node_Id) is
1781
1782 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1783 N_Extended_Return_Statement));
1784
1785 Returns_Object : constant Boolean :=
1786 Nkind (N) = N_Extended_Return_Statement
1787 or else
8fde064e
AC
1788 (Nkind (N) = N_Simple_Return_Statement
1789 and then Present (Expression (N)));
b0186f71
AC
1790 -- True if we're returning something; that is, "return <expression>;"
1791 -- or "return Result : T [:= ...]". False for "return;". Used for error
1792 -- checking: If Returns_Object is True, N should apply to a function
1793 -- body; otherwise N should apply to a procedure body, entry body,
1794 -- accept statement, or extended return statement.
1795
1796 function Find_What_It_Applies_To return Entity_Id;
1797 -- Find the entity representing the innermost enclosing body, accept
1798 -- statement, or extended return statement. If the result is a callable
1799 -- construct or extended return statement, then this will be the value
1800 -- of the Return_Applies_To attribute. Otherwise, the program is
1801 -- illegal. See RM-6.5(4/2).
1802
1803 -----------------------------
1804 -- Find_What_It_Applies_To --
1805 -----------------------------
1806
1807 function Find_What_It_Applies_To return Entity_Id is
1808 Result : Entity_Id := Empty;
1809
1810 begin
36b8f95f
AC
1811 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1812 -- and postconditions.
b0186f71
AC
1813
1814 for J in reverse 0 .. Scope_Stack.Last loop
1815 Result := Scope_Stack.Table (J).Entity;
11bc76df
AC
1816 exit when not Ekind_In (Result, E_Block, E_Loop)
1817 and then Chars (Result) /= Name_uPostconditions;
b0186f71
AC
1818 end loop;
1819
1820 pragma Assert (Present (Result));
1821 return Result;
1822 end Find_What_It_Applies_To;
1823
1824 -- Local declarations
1825
1826 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1827 Kind : constant Entity_Kind := Ekind (Scope_Id);
1828 Loc : constant Source_Ptr := Sloc (N);
1829 Stm_Entity : constant Entity_Id :=
1830 New_Internal_Entity
1831 (E_Return_Statement, Current_Scope, Loc, 'R');
1832
1833 -- Start of processing for Analyze_Return_Statement
1834
1835 begin
1836 Set_Return_Statement_Entity (N, Stm_Entity);
1837
1838 Set_Etype (Stm_Entity, Standard_Void_Type);
1839 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1840
1841 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1842 -- (4/2): an inner return statement will apply to this extended return.
1843
1844 if Nkind (N) = N_Extended_Return_Statement then
1845 Push_Scope (Stm_Entity);
1846 end if;
1847
1848 -- Check that pragma No_Return is obeyed. Don't complain about the
1849 -- implicitly-generated return that is placed at the end.
1850
1851 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1852 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1853 end if;
1854
1855 -- Warn on any unassigned OUT parameters if in procedure
1856
1857 if Ekind (Scope_Id) = E_Procedure then
1858 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1859 end if;
1860
1861 -- Check that functions return objects, and other things do not
1862
1863 if Kind = E_Function or else Kind = E_Generic_Function then
1864 if not Returns_Object then
1865 Error_Msg_N ("missing expression in return from function", N);
1866 end if;
1867
1868 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1869 if Returns_Object then
1870 Error_Msg_N ("procedure cannot return value (use function)", N);
1871 end if;
1872
1873 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1874 if Returns_Object then
1875 if Is_Protected_Type (Scope (Scope_Id)) then
1876 Error_Msg_N ("entry body cannot return value", N);
1877 else
1878 Error_Msg_N ("accept statement cannot return value", N);
1879 end if;
1880 end if;
1881
1882 elsif Kind = E_Return_Statement then
1883
1884 -- We are nested within another return statement, which must be an
1885 -- extended_return_statement.
1886
1887 if Returns_Object then
d0dcb2b1
AC
1888 if Nkind (N) = N_Extended_Return_Statement then
1889 Error_Msg_N
cc96a1b8 1890 ("extended return statement cannot be nested (use `RETURN;`)",
d0dcb2b1
AC
1891 N);
1892
1893 -- Case of a simple return statement with a value inside extended
1894 -- return statement.
1895
1896 else
1897 Error_Msg_N
3ccedacc
AC
1898 ("return nested in extended return statement cannot return "
1899 & "value (use `RETURN;`)", N);
d0dcb2b1 1900 end if;
b0186f71
AC
1901 end if;
1902
1903 else
1904 Error_Msg_N ("illegal context for return statement", N);
1905 end if;
1906
1907 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1908 Analyze_Function_Return (N);
1909
1910 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1911 Set_Return_Present (Scope_Id);
1912 end if;
1913
1914 if Nkind (N) = N_Extended_Return_Statement then
1915 End_Scope;
1916 end if;
1917
1918 Kill_Current_Values (Last_Assignment_Only => True);
1919 Check_Unreachable_Code (N);
dec6faf1
AC
1920
1921 Analyze_Dimension (N);
b0186f71
AC
1922 end Analyze_Return_Statement;
1923
5d37ba92
ES
1924 -------------------------------------
1925 -- Analyze_Simple_Return_Statement --
1926 -------------------------------------
ec4867fa 1927
5d37ba92 1928 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1929 begin
5d37ba92
ES
1930 if Present (Expression (N)) then
1931 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1932 end if;
1933
5d37ba92
ES
1934 Analyze_Return_Statement (N);
1935 end Analyze_Simple_Return_Statement;
996ae0b0 1936
82c80734
RD
1937 -------------------------
1938 -- Analyze_Return_Type --
1939 -------------------------
1940
1941 procedure Analyze_Return_Type (N : Node_Id) is
1942 Designator : constant Entity_Id := Defining_Entity (N);
1943 Typ : Entity_Id := Empty;
1944
1945 begin
ec4867fa
ES
1946 -- Normal case where result definition does not indicate an error
1947
41251c60
JM
1948 if Result_Definition (N) /= Error then
1949 if Nkind (Result_Definition (N)) = N_Access_Definition then
ce5ba43a 1950 Check_SPARK_05_Restriction
fe5d3068 1951 ("access result is not allowed", Result_Definition (N));
daec8eeb 1952
b1c11e0e
JM
1953 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1954
1955 declare
1956 AD : constant Node_Id :=
1957 Access_To_Subprogram_Definition (Result_Definition (N));
1958 begin
1959 if Present (AD) and then Protected_Present (AD) then
1960 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1961 else
1962 Typ := Access_Definition (N, Result_Definition (N));
1963 end if;
1964 end;
1965
41251c60
JM
1966 Set_Parent (Typ, Result_Definition (N));
1967 Set_Is_Local_Anonymous_Access (Typ);
1968 Set_Etype (Designator, Typ);
1969
b66c3ff4
AC
1970 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1971
1972 Null_Exclusion_Static_Checks (N);
1973
41251c60
JM
1974 -- Subtype_Mark case
1975
1976 else
1977 Find_Type (Result_Definition (N));
1978 Typ := Entity (Result_Definition (N));
1979 Set_Etype (Designator, Typ);
1980
2ba431e5 1981 -- Unconstrained array as result is not allowed in SPARK
daec8eeb 1982
8fde064e 1983 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
ce5ba43a 1984 Check_SPARK_05_Restriction
fe5d3068 1985 ("returning an unconstrained array is not allowed",
7394c8cc 1986 Result_Definition (N));
daec8eeb
YM
1987 end if;
1988
b66c3ff4
AC
1989 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1990
1991 Null_Exclusion_Static_Checks (N);
1992
1993 -- If a null exclusion is imposed on the result type, then create
1994 -- a null-excluding itype (an access subtype) and use it as the
1995 -- function's Etype. Note that the null exclusion checks are done
1996 -- right before this, because they don't get applied to types that
1997 -- do not come from source.
1998
8fde064e 1999 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
b66c3ff4
AC
2000 Set_Etype (Designator,
2001 Create_Null_Excluding_Itype
ff7139c3
AC
2002 (T => Typ,
2003 Related_Nod => N,
2004 Scope_Id => Scope (Current_Scope)));
2005
2006 -- The new subtype must be elaborated before use because
2007 -- it is visible outside of the function. However its base
2008 -- type may not be frozen yet, so the reference that will
2009 -- force elaboration must be attached to the freezing of
2010 -- the base type.
2011
212863c0
AC
2012 -- If the return specification appears on a proper body,
2013 -- the subtype will have been created already on the spec.
2014
ff7139c3 2015 if Is_Frozen (Typ) then
212863c0
AC
2016 if Nkind (Parent (N)) = N_Subprogram_Body
2017 and then Nkind (Parent (Parent (N))) = N_Subunit
2018 then
2019 null;
2020 else
2021 Build_Itype_Reference (Etype (Designator), Parent (N));
2022 end if;
2023
ff7139c3
AC
2024 else
2025 Ensure_Freeze_Node (Typ);
2026
2027 declare
212863c0 2028 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
ff7139c3
AC
2029 begin
2030 Set_Itype (IR, Etype (Designator));
2031 Append_Freeze_Actions (Typ, New_List (IR));
2032 end;
2033 end if;
2034
b66c3ff4
AC
2035 else
2036 Set_Etype (Designator, Typ);
2037 end if;
2038
41251c60 2039 if Ekind (Typ) = E_Incomplete_Type
0a36105d
JM
2040 and then Is_Value_Type (Typ)
2041 then
2042 null;
2043
2044 elsif Ekind (Typ) = E_Incomplete_Type
41251c60 2045 or else (Is_Class_Wide_Type (Typ)
4b6f99f5 2046 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
41251c60 2047 then
dd386db0
AC
2048 -- AI05-0151: Tagged incomplete types are allowed in all formal
2049 -- parts. Untagged incomplete types are not allowed in bodies.
b973629e
AC
2050 -- As a consequence, limited views cannot appear in a basic
2051 -- declaration that is itself within a body, because there is
2052 -- no point at which the non-limited view will become visible.
dd386db0
AC
2053
2054 if Ada_Version >= Ada_2012 then
b973629e
AC
2055 if From_Limited_With (Typ) and then In_Package_Body then
2056 Error_Msg_NE
2057 ("invalid use of incomplete type&",
3f80a182 2058 Result_Definition (N), Typ);
b973629e 2059
1ebc2612
AC
2060 -- The return type of a subprogram body cannot be of a
2061 -- formal incomplete type.
2062
2063 elsif Is_Generic_Type (Typ)
2064 and then Nkind (Parent (N)) = N_Subprogram_Body
2065 then
2066 Error_Msg_N
2067 ("return type cannot be a formal incomplete type",
2068 Result_Definition (N));
2069
2070 elsif Is_Class_Wide_Type (Typ)
2071 and then Is_Generic_Type (Root_Type (Typ))
2072 and then Nkind (Parent (N)) = N_Subprogram_Body
2073 then
2074 Error_Msg_N
2075 ("return type cannot be a formal incomplete type",
2076 Result_Definition (N));
2077
b973629e 2078 elsif Is_Tagged_Type (Typ) then
dd386db0
AC
2079 null;
2080
ed09416f
AC
2081 -- Use is legal in a thunk generated for an operation
2082 -- inherited from a progenitor.
2083
2084 elsif Is_Thunk (Designator)
2085 and then Present (Non_Limited_View (Typ))
2086 then
2087 null;
2088
5b6f12c7 2089 elsif Nkind (Parent (N)) = N_Subprogram_Body
31d922e3
AC
2090 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2091 N_Entry_Body)
dd386db0
AC
2092 then
2093 Error_Msg_NE
2094 ("invalid use of untagged incomplete type&",
2095 Designator, Typ);
2096 end if;
2097
63be2a5a 2098 -- The type must be completed in the current package. This
31d922e3 2099 -- is checked at the end of the package declaration when
7b7a0c2b
AC
2100 -- Taft-amendment types are identified. If the return type
2101 -- is class-wide, there is no required check, the type can
2102 -- be a bona fide TAT.
63be2a5a
AC
2103
2104 if Ekind (Scope (Current_Scope)) = E_Package
c199ccf7 2105 and then In_Private_Part (Scope (Current_Scope))
7b7a0c2b 2106 and then not Is_Class_Wide_Type (Typ)
63be2a5a
AC
2107 then
2108 Append_Elmt (Designator, Private_Dependents (Typ));
2109 end if;
2110
dd386db0
AC
2111 else
2112 Error_Msg_NE
2113 ("invalid use of incomplete type&", Designator, Typ);
2114 end if;
41251c60 2115 end if;
82c80734
RD
2116 end if;
2117
ec4867fa
ES
2118 -- Case where result definition does indicate an error
2119
82c80734
RD
2120 else
2121 Set_Etype (Designator, Any_Type);
2122 end if;
2123 end Analyze_Return_Type;
2124
996ae0b0
RK
2125 -----------------------------
2126 -- Analyze_Subprogram_Body --
2127 -----------------------------
2128
b1b543d2
BD
2129 procedure Analyze_Subprogram_Body (N : Node_Id) is
2130 Loc : constant Source_Ptr := Sloc (N);
2131 Body_Spec : constant Node_Id := Specification (N);
2132 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2133
2134 begin
2135 if Debug_Flag_C then
2136 Write_Str ("==> subprogram body ");
2137 Write_Name (Chars (Body_Id));
2138 Write_Str (" from ");
2139 Write_Location (Loc);
2140 Write_Eol;
2141 Indent;
2142 end if;
2143
2144 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2145
2146 -- The real work is split out into the helper, so it can do "return;"
2147 -- without skipping the debug output:
2148
2149 Analyze_Subprogram_Body_Helper (N);
2150
2151 if Debug_Flag_C then
2152 Outdent;
2153 Write_Str ("<== subprogram body ");
2154 Write_Name (Chars (Body_Id));
2155 Write_Str (" from ");
2156 Write_Location (Loc);
2157 Write_Eol;
2158 end if;
2159 end Analyze_Subprogram_Body;
2160
ea3c0651
AC
2161 --------------------------------------
2162 -- Analyze_Subprogram_Body_Contract --
2163 --------------------------------------
2164
ab8843fa 2165 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
caf07df9
AC
2166 Items : constant Node_Id := Contract (Body_Id);
2167 Mode : SPARK_Mode_Type;
2168 Prag : Node_Id;
2169 Prag_Nam : Name_Id;
2170 Ref_Depends : Node_Id := Empty;
2171 Ref_Global : Node_Id := Empty;
ea3c0651 2172
caf07df9
AC
2173 begin
2174 -- When a subprogram body declaration is illegal, its defining entity is
2175 -- left unanalyzed. There is nothing left to do in this case because the
2176 -- body lacks a contract, or even a proper Ekind.
fc999c5d 2177
caf07df9
AC
2178 if Ekind (Body_Id) = E_Void then
2179 return;
2180 end if;
c61ef416 2181
caf07df9
AC
2182 -- Due to the timing of contract analysis, delayed pragmas may be
2183 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2184 -- context. To remedy this, restore the original SPARK_Mode of the
2185 -- related subprogram body.
ab8843fa 2186
caf07df9 2187 Save_SPARK_Mode_And_Set (Body_Id, Mode);
ab8843fa 2188
caf07df9
AC
2189 -- All subprograms carry a contract, but for some it is not significant
2190 -- and should not be processed.
c9d70ab1 2191
caf07df9
AC
2192 if not Has_Significant_Contract (Body_Id) then
2193 null;
c9d70ab1 2194
caf07df9
AC
2195 -- The subprogram body is a completion, analyze all delayed pragmas that
2196 -- apply. Note that when the body is stand alone, the pragmas are always
2197 -- analyzed on the spot.
2c8d828a 2198
caf07df9 2199 elsif Present (Items) then
54e28df2 2200
caf07df9
AC
2201 -- Locate and store pragmas Refined_Depends and Refined_Global since
2202 -- their order of analysis matters.
c9d70ab1 2203
caf07df9
AC
2204 Prag := Classifications (Items);
2205 while Present (Prag) loop
2206 Prag_Nam := Pragma_Name (Prag);
c9d70ab1 2207
caf07df9
AC
2208 if Prag_Nam = Name_Refined_Depends then
2209 Ref_Depends := Prag;
2210
2211 elsif Prag_Nam = Name_Refined_Global then
2212 Ref_Global := Prag;
2213 end if;
2214
2215 Prag := Next_Pragma (Prag);
2216 end loop;
ab8843fa 2217
c9d70ab1
AC
2218 -- Analyze Refined_Global first as Refined_Depends may mention items
2219 -- classified in the global refinement.
ab8843fa 2220
c9d70ab1
AC
2221 if Present (Ref_Global) then
2222 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
c9d70ab1 2223 end if;
ab8843fa 2224
c9d70ab1
AC
2225 -- Refined_Depends must be analyzed after Refined_Global in order to
2226 -- see the modes of all global refinements.
2227
2228 if Present (Ref_Depends) then
2229 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
ab8843fa 2230 end if;
54e28df2 2231 end if;
c61ef416 2232
c9d70ab1
AC
2233 -- Ensure that the contract cases or postconditions mention 'Result or
2234 -- define a post-state.
2235
2236 Check_Result_And_Post_State (Body_Id);
2237
fc999c5d
RD
2238 -- Restore the SPARK_Mode of the enclosing context after all delayed
2239 -- pragmas have been analyzed.
2240
c61ef416 2241 Restore_SPARK_Mode (Mode);
ea3c0651
AC
2242 end Analyze_Subprogram_Body_Contract;
2243
b1b543d2
BD
2244 ------------------------------------
2245 -- Analyze_Subprogram_Body_Helper --
2246 ------------------------------------
2247
996ae0b0
RK
2248 -- This procedure is called for regular subprogram bodies, generic bodies,
2249 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2250 -- specification matters, and is used to create a proper declaration for
2251 -- the subprogram, or to perform conformance checks.
2252
b1b543d2 2253 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
fbf5a39b 2254 Loc : constant Source_Ptr := Sloc (N);
8d1fe980 2255 Body_Spec : Node_Id := Specification (N);
fbf5a39b
AC
2256 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2257 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
0868e09c 2258 Conformant : Boolean;
21d27997 2259 HSS : Node_Id;
21d27997
RD
2260 Prot_Typ : Entity_Id := Empty;
2261 Spec_Id : Entity_Id;
2262 Spec_Decl : Node_Id := Empty;
2263
2264 Last_Real_Spec_Entity : Entity_Id := Empty;
2265 -- When we analyze a separate spec, the entity chain ends up containing
2266 -- the formals, as well as any itypes generated during analysis of the
2267 -- default expressions for parameters, or the arguments of associated
2268 -- precondition/postcondition pragmas (which are analyzed in the context
2269 -- of the spec since they have visibility on formals).
2270 --
2271 -- These entities belong with the spec and not the body. However we do
2272 -- the analysis of the body in the context of the spec (again to obtain
2273 -- visibility to the formals), and all the entities generated during
2274 -- this analysis end up also chained to the entity chain of the spec.
2275 -- But they really belong to the body, and there is circuitry to move
2276 -- them from the spec to the body.
2277 --
2278 -- However, when we do this move, we don't want to move the real spec
2279 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2280 -- variable points to the last real spec entity, so we only move those
2281 -- chained beyond that point. It is initialized to Empty to deal with
2282 -- the case where there is no separate spec.
996ae0b0 2283
ac072cb2
AC
2284 function Body_Has_Contract return Boolean;
2285 -- Check whether unanalyzed body has an aspect or pragma that may
1399d355 2286 -- generate a SPARK contract.
ac072cb2 2287
8d1fe980
AC
2288 procedure Build_Subprogram_Declaration;
2289 -- Create a matching subprogram declaration for subprogram body N
2290
ec4867fa 2291 procedure Check_Anonymous_Return;
e50e1c5e 2292 -- Ada 2005: if a function returns an access type that denotes a task,
ec4867fa
ES
2293 -- or a type that contains tasks, we must create a master entity for
2294 -- the anonymous type, which typically will be used in an allocator
2295 -- in the body of the function.
2296
e660dbf7
JM
2297 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2298 -- Look ahead to recognize a pragma that may appear after the body.
2299 -- If there is a previous spec, check that it appears in the same
2300 -- declarative part. If the pragma is Inline_Always, perform inlining
2301 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2302 -- If the body acts as a spec, and inlining is required, we create a
2303 -- subprogram declaration for it, in order to attach the body to inline.
21d27997
RD
2304 -- If pragma does not appear after the body, check whether there is
2305 -- an inline pragma before any local declarations.
c37bb106 2306
7665e4bd
AC
2307 procedure Check_Missing_Return;
2308 -- Checks for a function with a no return statements, and also performs
8d606a78
RD
2309 -- the warning checks implemented by Check_Returns. In formal mode, also
2310 -- verify that a function ends with a RETURN and that a procedure does
2311 -- not contain any RETURN.
7665e4bd 2312
d44202ba
HK
2313 function Disambiguate_Spec return Entity_Id;
2314 -- When a primitive is declared between the private view and the full
2315 -- view of a concurrent type which implements an interface, a special
2316 -- mechanism is used to find the corresponding spec of the primitive
2317 -- body.
2318
5dcab3ca
AC
2319 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2320 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2321 -- incomplete types coming from a limited context and swap their limited
2322 -- views with the non-limited ones.
2323
d44202ba
HK
2324 function Is_Private_Concurrent_Primitive
2325 (Subp_Id : Entity_Id) return Boolean;
2326 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2327 -- type that implements an interface and has a private view.
2328
76a69663
ES
2329 procedure Set_Trivial_Subprogram (N : Node_Id);
2330 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2331 -- subprogram whose body is being analyzed. N is the statement node
2332 -- causing the flag to be set, if the following statement is a return
2333 -- of an entity, we mark the entity as set in source to suppress any
2334 -- warning on the stylized use of function stubs with a dummy return.
2335
758c442c
GD
2336 procedure Verify_Overriding_Indicator;
2337 -- If there was a previous spec, the entity has been entered in the
2338 -- current scope previously. If the body itself carries an overriding
2339 -- indicator, check that it is consistent with the known status of the
2340 -- entity.
2341
ac072cb2
AC
2342 -----------------------
2343 -- Body_Has_Contract --
2344 -----------------------
2345
2346 function Body_Has_Contract return Boolean is
8d1fe980
AC
2347 Decls : constant List_Id := Declarations (N);
2348 Item : Node_Id;
ac072cb2
AC
2349
2350 begin
8d1fe980
AC
2351 -- Check for unanalyzed aspects in the body that will generate a
2352 -- contract.
ac072cb2
AC
2353
2354 if Present (Aspect_Specifications (N)) then
8d1fe980
AC
2355 Item := First (Aspect_Specifications (N));
2356 while Present (Item) loop
2357 if Is_Contract_Annotation (Item) then
ac072cb2
AC
2358 return True;
2359 end if;
2360
8d1fe980 2361 Next (Item);
ac072cb2
AC
2362 end loop;
2363 end if;
2364
1399d355 2365 -- Check for pragmas that may generate a contract
ac072cb2
AC
2366
2367 if Present (Decls) then
8d1fe980
AC
2368 Item := First (Decls);
2369 while Present (Item) loop
2370 if Nkind (Item) = N_Pragma
2371 and then Is_Contract_Annotation (Item)
2372 then
2373 return True;
ac072cb2
AC
2374 end if;
2375
8d1fe980 2376 Next (Item);
ac072cb2
AC
2377 end loop;
2378 end if;
2379
2380 return False;
2381 end Body_Has_Contract;
2382
8d1fe980
AC
2383 ----------------------------------
2384 -- Build_Subprogram_Declaration --
2385 ----------------------------------
2386
2387 procedure Build_Subprogram_Declaration is
2388 Asp : Node_Id;
2389 Decl : Node_Id;
2390 Subp_Decl : Node_Id;
2391
2392 begin
2393 -- Create a matching subprogram spec using the profile of the body.
2394 -- The structure of the tree is identical, but has new entities for
2395 -- the defining unit name and formal parameters.
2396
2397 Subp_Decl :=
2398 Make_Subprogram_Declaration (Loc,
2399 Specification => Copy_Subprogram_Spec (Body_Spec));
2400
2401 -- Relocate the aspects of the subprogram body to the new subprogram
2402 -- spec because it acts as the initial declaration.
2403 -- ??? what about pragmas
2404
2405 Move_Aspects (N, To => Subp_Decl);
2406 Insert_Before_And_Analyze (N, Subp_Decl);
2407
2408 -- The analysis of the subprogram spec aspects may introduce pragmas
2409 -- that need to be analyzed.
2410
2411 Decl := Next (Subp_Decl);
2412 while Present (Decl) loop
2413
2414 -- Stop the search for pragmas once the body has been reached as
2415 -- this terminates the region where pragmas may appear.
2416
2417 if Decl = N then
2418 exit;
2419
2420 elsif Nkind (Decl) = N_Pragma then
2421 Analyze (Decl);
2422 end if;
2423
2424 Next (Decl);
2425 end loop;
2426
2427 Spec_Id := Defining_Entity (Subp_Decl);
2428 Set_Corresponding_Spec (N, Spec_Id);
2429
2430 -- Mark the generated spec as a source construct to ensure that all
2431 -- calls to it are properly registered in ALI files for GNATprove.
2432
2433 Set_Comes_From_Source (Spec_Id, True);
2434
2435 -- If aspect SPARK_Mode was specified on the body, it needs to be
2436 -- repeated both on the generated spec and the body.
2437
2438 Asp := Find_Aspect (Spec_Id, Aspect_SPARK_Mode);
2439
2440 if Present (Asp) then
2441 Asp := New_Copy_Tree (Asp);
2442 Set_Analyzed (Asp, False);
2443 Set_Aspect_Specifications (N, New_List (Asp));
2444 end if;
2445
2446 -- Ensure that the specs of the subprogram declaration and its body
2447 -- are identical, otherwise they will appear non-conformant due to
2448 -- rewritings in the default values of formal parameters.
2449
2450 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2451 Set_Specification (N, Body_Spec);
2452 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2453 end Build_Subprogram_Declaration;
2454
ec4867fa
ES
2455 ----------------------------
2456 -- Check_Anonymous_Return --
2457 ----------------------------
2458
2459 procedure Check_Anonymous_Return is
2460 Decl : Node_Id;
a523b302 2461 Par : Node_Id;
ec4867fa
ES
2462 Scop : Entity_Id;
2463
2464 begin
2465 if Present (Spec_Id) then
2466 Scop := Spec_Id;
2467 else
2468 Scop := Body_Id;
2469 end if;
2470
2471 if Ekind (Scop) = E_Function
2472 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
a523b302 2473 and then not Is_Thunk (Scop)
4b963531
AC
2474
2475 -- Skip internally built functions which handle the case of
2476 -- a null access (see Expand_Interface_Conversion)
2477
2478 and then not (Is_Interface (Designated_Type (Etype (Scop)))
4b6f99f5 2479 and then not Comes_From_Source (Parent (Scop)))
4b963531 2480
a523b302
JM
2481 and then (Has_Task (Designated_Type (Etype (Scop)))
2482 or else
4b6f99f5
RD
2483 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2484 and then
2485 Is_Limited_Record (Designated_Type (Etype (Scop)))))
ec4867fa 2486 and then Expander_Active
b20de9b9 2487
8fde064e 2488 -- Avoid cases with no tasking support
b20de9b9
AC
2489
2490 and then RTE_Available (RE_Current_Master)
2491 and then not Restriction_Active (No_Task_Hierarchy)
ec4867fa
ES
2492 then
2493 Decl :=
2494 Make_Object_Declaration (Loc,
2495 Defining_Identifier =>
2496 Make_Defining_Identifier (Loc, Name_uMaster),
2497 Constant_Present => True,
2498 Object_Definition =>
e4494292 2499 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
ec4867fa
ES
2500 Expression =>
2501 Make_Explicit_Dereference (Loc,
e4494292 2502 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
ec4867fa
ES
2503
2504 if Present (Declarations (N)) then
2505 Prepend (Decl, Declarations (N));
2506 else
2507 Set_Declarations (N, New_List (Decl));
2508 end if;
2509
2510 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2511 Set_Has_Master_Entity (Scop);
a523b302
JM
2512
2513 -- Now mark the containing scope as a task master
2514
2515 Par := N;
2516 while Nkind (Par) /= N_Compilation_Unit loop
2517 Par := Parent (Par);
2518 pragma Assert (Present (Par));
2519
2520 -- If we fall off the top, we are at the outer level, and
2521 -- the environment task is our effective master, so nothing
2522 -- to mark.
2523
2524 if Nkind_In
2525 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2526 then
2527 Set_Is_Task_Master (Par, True);
2528 exit;
2529 end if;
2530 end loop;
ec4867fa
ES
2531 end if;
2532 end Check_Anonymous_Return;
2533
e660dbf7
JM
2534 -------------------------
2535 -- Check_Inline_Pragma --
2536 -------------------------
758c442c 2537
e660dbf7
JM
2538 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2539 Prag : Node_Id;
2540 Plist : List_Id;
0fb2ea01 2541
21d27997 2542 function Is_Inline_Pragma (N : Node_Id) return Boolean;
30783513 2543 -- True when N is a pragma Inline or Inline_Always that applies
33931112 2544 -- to this subprogram.
21d27997
RD
2545
2546 -----------------------
2547 -- Is_Inline_Pragma --
2548 -----------------------
2549
2550 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2551 begin
2552 return
2553 Nkind (N) = N_Pragma
2554 and then
8fde064e 2555 (Pragma_Name (N) = Name_Inline_Always
4b6f99f5
RD
2556 or else (Front_End_Inlining
2557 and then Pragma_Name (N) = Name_Inline))
21d27997 2558 and then
8fde064e
AC
2559 Chars
2560 (Expression (First (Pragma_Argument_Associations (N)))) =
2561 Chars (Body_Id);
21d27997
RD
2562 end Is_Inline_Pragma;
2563
2564 -- Start of processing for Check_Inline_Pragma
2565
c37bb106 2566 begin
e660dbf7
JM
2567 if not Expander_Active then
2568 return;
2569 end if;
2570
2571 if Is_List_Member (N)
2572 and then Present (Next (N))
21d27997 2573 and then Is_Inline_Pragma (Next (N))
c37bb106
AC
2574 then
2575 Prag := Next (N);
2576
21d27997
RD
2577 elsif Nkind (N) /= N_Subprogram_Body_Stub
2578 and then Present (Declarations (N))
2579 and then Is_Inline_Pragma (First (Declarations (N)))
2580 then
2581 Prag := First (Declarations (N));
2582
e660dbf7
JM
2583 else
2584 Prag := Empty;
c37bb106 2585 end if;
e660dbf7
JM
2586
2587 if Present (Prag) then
2588 if Present (Spec_Id) then
30196a76 2589 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
e660dbf7
JM
2590 Analyze (Prag);
2591 end if;
2592
2593 else
d39d6bb8 2594 -- Create a subprogram declaration, to make treatment uniform
e660dbf7
JM
2595
2596 declare
2597 Subp : constant Entity_Id :=
30196a76 2598 Make_Defining_Identifier (Loc, Chars (Body_Id));
e660dbf7 2599 Decl : constant Node_Id :=
30196a76
RD
2600 Make_Subprogram_Declaration (Loc,
2601 Specification =>
2602 New_Copy_Tree (Specification (N)));
2603
e660dbf7
JM
2604 begin
2605 Set_Defining_Unit_Name (Specification (Decl), Subp);
2606
2607 if Present (First_Formal (Body_Id)) then
21d27997 2608 Plist := Copy_Parameter_List (Body_Id);
e660dbf7
JM
2609 Set_Parameter_Specifications
2610 (Specification (Decl), Plist);
2611 end if;
2612
2613 Insert_Before (N, Decl);
2614 Analyze (Decl);
2615 Analyze (Prag);
2616 Set_Has_Pragma_Inline (Subp);
2617
76a69663 2618 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7 2619 Set_Is_Inlined (Subp);
21d27997 2620 Set_Has_Pragma_Inline_Always (Subp);
e660dbf7
JM
2621 end if;
2622
158d55fa
AC
2623 -- Prior to copying the subprogram body to create a template
2624 -- for it for subsequent inlining, remove the pragma from
2625 -- the current body so that the copy that will produce the
2626 -- new body will start from a completely unanalyzed tree.
2627
2628 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2629 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2630 end if;
2631
e660dbf7
JM
2632 Spec := Subp;
2633 end;
2634 end if;
2635 end if;
2636 end Check_Inline_Pragma;
2637
7665e4bd
AC
2638 --------------------------
2639 -- Check_Missing_Return --
2640 --------------------------
2641
2642 procedure Check_Missing_Return is
2643 Id : Entity_Id;
2644 Missing_Ret : Boolean;
2645
2646 begin
2647 if Nkind (Body_Spec) = N_Function_Specification then
2648 if Present (Spec_Id) then
2649 Id := Spec_Id;
2650 else
2651 Id := Body_Id;
2652 end if;
2653
fe5d3068 2654 if Return_Present (Id) then
7665e4bd
AC
2655 Check_Returns (HSS, 'F', Missing_Ret);
2656
2657 if Missing_Ret then
2658 Set_Has_Missing_Return (Id);
2659 end if;
2660
2aca76d6
AC
2661 elsif Is_Generic_Subprogram (Id)
2662 or else not Is_Machine_Code_Subprogram (Id)
7665e4bd
AC
2663 then
2664 Error_Msg_N ("missing RETURN statement in function body", N);
2665 end if;
2666
fe5d3068 2667 -- If procedure with No_Return, check returns
607d0635 2668
fe5d3068
YM
2669 elsif Nkind (Body_Spec) = N_Procedure_Specification
2670 and then Present (Spec_Id)
2671 and then No_Return (Spec_Id)
607d0635 2672 then
fe5d3068
YM
2673 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2674 end if;
2675
ad05f2e9 2676 -- Special checks in SPARK mode
fe5d3068
YM
2677
2678 if Nkind (Body_Spec) = N_Function_Specification then
7394c8cc 2679
ad05f2e9 2680 -- In SPARK mode, last statement of a function should be a return
fe5d3068
YM
2681
2682 declare
2683 Stat : constant Node_Id := Last_Source_Statement (HSS);
2684 begin
2685 if Present (Stat)
7394c8cc
AC
2686 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2687 N_Extended_Return_Statement)
fe5d3068 2688 then
ce5ba43a 2689 Check_SPARK_05_Restriction
fe5d3068
YM
2690 ("last statement in function should be RETURN", Stat);
2691 end if;
2692 end;
2693
ad05f2e9 2694 -- In SPARK mode, verify that a procedure has no return
fe5d3068
YM
2695
2696 elsif Nkind (Body_Spec) = N_Procedure_Specification then
607d0635
AC
2697 if Present (Spec_Id) then
2698 Id := Spec_Id;
2699 else
2700 Id := Body_Id;
2701 end if;
2702
8d606a78
RD
2703 -- Would be nice to point to return statement here, can we
2704 -- borrow the Check_Returns procedure here ???
2705
607d0635 2706 if Return_Present (Id) then
ce5ba43a 2707 Check_SPARK_05_Restriction
fe5d3068 2708 ("procedure should not have RETURN", N);
607d0635 2709 end if;
7665e4bd
AC
2710 end if;
2711 end Check_Missing_Return;
2712
d44202ba
HK
2713 -----------------------
2714 -- Disambiguate_Spec --
2715 -----------------------
2716
2717 function Disambiguate_Spec return Entity_Id is
2718 Priv_Spec : Entity_Id;
2719 Spec_N : Entity_Id;
2720
2721 procedure Replace_Types (To_Corresponding : Boolean);
2722 -- Depending on the flag, replace the type of formal parameters of
2723 -- Body_Id if it is a concurrent type implementing interfaces with
2724 -- the corresponding record type or the other way around.
2725
2726 procedure Replace_Types (To_Corresponding : Boolean) is
2727 Formal : Entity_Id;
2728 Formal_Typ : Entity_Id;
2729
2730 begin
2731 Formal := First_Formal (Body_Id);
2732 while Present (Formal) loop
2733 Formal_Typ := Etype (Formal);
2734
df3e68b1
HK
2735 if Is_Class_Wide_Type (Formal_Typ) then
2736 Formal_Typ := Root_Type (Formal_Typ);
2737 end if;
2738
d44202ba
HK
2739 -- From concurrent type to corresponding record
2740
2741 if To_Corresponding then
2742 if Is_Concurrent_Type (Formal_Typ)
2743 and then Present (Corresponding_Record_Type (Formal_Typ))
4b6f99f5
RD
2744 and then
2745 Present (Interfaces
2746 (Corresponding_Record_Type (Formal_Typ)))
d44202ba
HK
2747 then
2748 Set_Etype (Formal,
2749 Corresponding_Record_Type (Formal_Typ));
2750 end if;
2751
2752 -- From corresponding record to concurrent type
2753
2754 else
2755 if Is_Concurrent_Record_Type (Formal_Typ)
2756 and then Present (Interfaces (Formal_Typ))
2757 then
2758 Set_Etype (Formal,
2759 Corresponding_Concurrent_Type (Formal_Typ));
2760 end if;
2761 end if;
2762
2763 Next_Formal (Formal);
2764 end loop;
2765 end Replace_Types;
2766
2767 -- Start of processing for Disambiguate_Spec
2768
2769 begin
2770 -- Try to retrieve the specification of the body as is. All error
2771 -- messages are suppressed because the body may not have a spec in
2772 -- its current state.
2773
2774 Spec_N := Find_Corresponding_Spec (N, False);
2775
2776 -- It is possible that this is the body of a primitive declared
2777 -- between a private and a full view of a concurrent type. The
2778 -- controlling parameter of the spec carries the concurrent type,
2779 -- not the corresponding record type as transformed by Analyze_
2780 -- Subprogram_Specification. In such cases, we undo the change
2781 -- made by the analysis of the specification and try to find the
2782 -- spec again.
766d7add 2783
8198b93d
HK
2784 -- Note that wrappers already have their corresponding specs and
2785 -- bodies set during their creation, so if the candidate spec is
16b05213 2786 -- a wrapper, then we definitely need to swap all types to their
8198b93d 2787 -- original concurrent status.
d44202ba 2788
8198b93d
HK
2789 if No (Spec_N)
2790 or else Is_Primitive_Wrapper (Spec_N)
2791 then
d44202ba
HK
2792 -- Restore all references of corresponding record types to the
2793 -- original concurrent types.
2794
2795 Replace_Types (To_Corresponding => False);
2796 Priv_Spec := Find_Corresponding_Spec (N, False);
2797
2798 -- The current body truly belongs to a primitive declared between
2799 -- a private and a full view. We leave the modified body as is,
2800 -- and return the true spec.
2801
2802 if Present (Priv_Spec)
2803 and then Is_Private_Primitive (Priv_Spec)
2804 then
2805 return Priv_Spec;
2806 end if;
2807
2808 -- In case that this is some sort of error, restore the original
2809 -- state of the body.
2810
2811 Replace_Types (To_Corresponding => True);
2812 end if;
2813
2814 return Spec_N;
2815 end Disambiguate_Spec;
2816
5dcab3ca
AC
2817 ----------------------------
2818 -- Exchange_Limited_Views --
2819 ----------------------------
2820
2821 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2822 procedure Detect_And_Exchange (Id : Entity_Id);
2823 -- Determine whether Id's type denotes an incomplete type associated
2824 -- with a limited with clause and exchange the limited view with the
167b47d9 2825 -- non-limited one when available.
5dcab3ca
AC
2826
2827 -------------------------
2828 -- Detect_And_Exchange --
2829 -------------------------
2830
2831 procedure Detect_And_Exchange (Id : Entity_Id) is
2832 Typ : constant Entity_Id := Etype (Id);
5dcab3ca 2833 begin
ccd6f414 2834 if From_Limited_With (Typ) and then Has_Non_Limited_View (Typ) then
5dcab3ca
AC
2835 Set_Etype (Id, Non_Limited_View (Typ));
2836 end if;
2837 end Detect_And_Exchange;
2838
2839 -- Local variables
2840
2841 Formal : Entity_Id;
2842
2843 -- Start of processing for Exchange_Limited_Views
2844
2845 begin
2846 if No (Subp_Id) then
2847 return;
2848
2849 -- Do not process subprogram bodies as they already use the non-
2850 -- limited view of types.
2851
2852 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2853 return;
2854 end if;
2855
2856 -- Examine all formals and swap views when applicable
2857
2858 Formal := First_Formal (Subp_Id);
2859 while Present (Formal) loop
2860 Detect_And_Exchange (Formal);
2861
2862 Next_Formal (Formal);
2863 end loop;
2864
2865 -- Process the return type of a function
2866
2867 if Ekind (Subp_Id) = E_Function then
2868 Detect_And_Exchange (Subp_Id);
2869 end if;
2870 end Exchange_Limited_Views;
2871
d44202ba
HK
2872 -------------------------------------
2873 -- Is_Private_Concurrent_Primitive --
2874 -------------------------------------
2875
2876 function Is_Private_Concurrent_Primitive
2877 (Subp_Id : Entity_Id) return Boolean
2878 is
2879 Formal_Typ : Entity_Id;
2880
2881 begin
2882 if Present (First_Formal (Subp_Id)) then
2883 Formal_Typ := Etype (First_Formal (Subp_Id));
2884
2885 if Is_Concurrent_Record_Type (Formal_Typ) then
df3e68b1
HK
2886 if Is_Class_Wide_Type (Formal_Typ) then
2887 Formal_Typ := Root_Type (Formal_Typ);
2888 end if;
2889
d44202ba
HK
2890 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2891 end if;
2892
2893 -- The type of the first formal is a concurrent tagged type with
2894 -- a private view.
2895
2896 return
2897 Is_Concurrent_Type (Formal_Typ)
2898 and then Is_Tagged_Type (Formal_Typ)
2899 and then Has_Private_Declaration (Formal_Typ);
2900 end if;
2901
2902 return False;
2903 end Is_Private_Concurrent_Primitive;
2904
76a69663
ES
2905 ----------------------------
2906 -- Set_Trivial_Subprogram --
2907 ----------------------------
2908
2909 procedure Set_Trivial_Subprogram (N : Node_Id) is
2910 Nxt : constant Node_Id := Next (N);
2911
2912 begin
2913 Set_Is_Trivial_Subprogram (Body_Id);
2914
2915 if Present (Spec_Id) then
2916 Set_Is_Trivial_Subprogram (Spec_Id);
2917 end if;
2918
2919 if Present (Nxt)
2920 and then Nkind (Nxt) = N_Simple_Return_Statement
2921 and then No (Next (Nxt))
2922 and then Present (Expression (Nxt))
2923 and then Is_Entity_Name (Expression (Nxt))
2924 then
2925 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2926 end if;
2927 end Set_Trivial_Subprogram;
2928
758c442c
GD
2929 ---------------------------------
2930 -- Verify_Overriding_Indicator --
2931 ---------------------------------
2932
2933 procedure Verify_Overriding_Indicator is
2934 begin
21d27997
RD
2935 if Must_Override (Body_Spec) then
2936 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
4b6f99f5 2937 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
21d27997
RD
2938 then
2939 null;
2940
038140ed 2941 elsif not Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2942 Error_Msg_NE
21d27997 2943 ("subprogram& is not overriding", Body_Spec, Spec_Id);
23e28b42
AC
2944
2945 -- Overriding indicators aren't allowed for protected subprogram
2946 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2947 -- this to a warning if -gnatd.E is enabled.
2948
2949 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2950 Error_Msg_Warn := Error_To_Warning;
2951 Error_Msg_N
b785e0b8 2952 ("<<overriding indicator not allowed for protected "
23e28b42 2953 & "subprogram body", Body_Spec);
21d27997 2954 end if;
758c442c 2955
5d37ba92 2956 elsif Must_Not_Override (Body_Spec) then
038140ed 2957 if Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2958 Error_Msg_NE
5d37ba92 2959 ("subprogram& overrides inherited operation",
76a69663 2960 Body_Spec, Spec_Id);
5d37ba92 2961
21d27997 2962 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
4b6f99f5 2963 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
21d27997 2964 then
ed2233dc 2965 Error_Msg_NE
3ccedacc 2966 ("subprogram& overrides predefined operator ",
21d27997
RD
2967 Body_Spec, Spec_Id);
2968
23e28b42
AC
2969 -- Overriding indicators aren't allowed for protected subprogram
2970 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2971 -- this to a warning if -gnatd.E is enabled.
2972
2973 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2974 Error_Msg_Warn := Error_To_Warning;
5d37ba92 2975
23e28b42 2976 Error_Msg_N
3ccedacc
AC
2977 ("<<overriding indicator not allowed "
2978 & "for protected subprogram body", Body_Spec);
23e28b42
AC
2979
2980 -- If this is not a primitive operation, then the overriding
2981 -- indicator is altogether illegal.
2982
2983 elsif not Is_Primitive (Spec_Id) then
ed2233dc 2984 Error_Msg_N
3ccedacc
AC
2985 ("overriding indicator only allowed "
2986 & "if subprogram is primitive", Body_Spec);
5d37ba92 2987 end if;
235f4375 2988
23e28b42
AC
2989 -- If checking the style rule and the operation overrides, then
2990 -- issue a warning about a missing overriding_indicator. Protected
2991 -- subprogram bodies are excluded from this style checking, since
2992 -- they aren't primitives (even though their declarations can
2993 -- override) and aren't allowed to have an overriding_indicator.
2994
806f6d37 2995 elsif Style_Check
038140ed 2996 and then Present (Overridden_Operation (Spec_Id))
23e28b42 2997 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
235f4375
AC
2998 then
2999 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3000 Style.Missing_Overriding (N, Body_Id);
806f6d37
AC
3001
3002 elsif Style_Check
3003 and then Can_Override_Operator (Spec_Id)
3004 and then not Is_Predefined_File_Name
3005 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3006 then
3007 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3008 Style.Missing_Overriding (N, Body_Id);
758c442c
GD
3009 end if;
3010 end Verify_Overriding_Indicator;
3011
b1b543d2 3012 -- Start of processing for Analyze_Subprogram_Body_Helper
0fb2ea01 3013
996ae0b0 3014 begin
82c80734
RD
3015 -- Generic subprograms are handled separately. They always have a
3016 -- generic specification. Determine whether current scope has a
3017 -- previous declaration.
996ae0b0 3018
82c80734
RD
3019 -- If the subprogram body is defined within an instance of the same
3020 -- name, the instance appears as a package renaming, and will be hidden
3021 -- within the subprogram.
996ae0b0
RK
3022
3023 if Present (Prev_Id)
3024 and then not Is_Overloadable (Prev_Id)
3025 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3026 or else Comes_From_Source (Prev_Id))
3027 then
fbf5a39b 3028 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0 3029 Spec_Id := Prev_Id;
8636f52f
HK
3030
3031 -- The corresponding spec may be subject to pragma Ghost with
3032 -- policy Ignore. Set the mode now to ensure that any nodes
3033 -- generated during analysis and expansion are properly flagged
3034 -- as ignored Ghost.
3035
3036 Set_Ghost_Mode (N, Spec_Id);
996ae0b0
RK
3037 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3038 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3039
3040 Analyze_Generic_Subprogram_Body (N, Spec_Id);
7665e4bd
AC
3041
3042 if Nkind (N) = N_Subprogram_Body then
3043 HSS := Handled_Statement_Sequence (N);
3044 Check_Missing_Return;
3045 end if;
3046
996ae0b0
RK
3047 return;
3048
3049 else
82c80734
RD
3050 -- Previous entity conflicts with subprogram name. Attempting to
3051 -- enter name will post error.
996ae0b0
RK
3052
3053 Enter_Name (Body_Id);
3054 return;
3055 end if;
3056
82c80734
RD
3057 -- Non-generic case, find the subprogram declaration, if one was seen,
3058 -- or enter new overloaded entity in the current scope. If the
3059 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3060 -- part of the context of one of its subunits. No need to redo the
3061 -- analysis.
996ae0b0 3062
8fde064e 3063 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
996ae0b0
RK
3064 return;
3065
3066 else
fbf5a39b 3067 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
3068
3069 if Nkind (N) = N_Subprogram_Body_Stub
3070 or else No (Corresponding_Spec (N))
3071 then
d44202ba
HK
3072 if Is_Private_Concurrent_Primitive (Body_Id) then
3073 Spec_Id := Disambiguate_Spec;
8636f52f
HK
3074
3075 -- The corresponding spec may be subject to pragma Ghost with
3076 -- policy Ignore. Set the mode now to ensure that any nodes
3077 -- generated during analysis and expansion are properly flagged
3078 -- as ignored Ghost.
3079
3080 Set_Ghost_Mode (N, Spec_Id);
3081
d44202ba
HK
3082 else
3083 Spec_Id := Find_Corresponding_Spec (N);
b6c8e5be 3084
8636f52f
HK
3085 -- The corresponding spec may be subject to pragma Ghost with
3086 -- policy Ignore. Set the mode now to ensure that any nodes
3087 -- generated during analysis and expansion are properly flagged
3088 -- as ignored Ghost.
3089
3090 Set_Ghost_Mode (N, Spec_Id);
3091
b6c8e5be
AC
3092 -- In GNATprove mode, if the body has no previous spec, create
3093 -- one so that the inlining machinery can operate properly.
3094 -- Transfer aspects, if any, to the new spec, so that they
3095 -- are legal and can be processed ahead of the body.
3096 -- We make two copies of the given spec, one for the new
3097 -- declaration, and one for the body.
3098
5a271a7f 3099 if No (Spec_Id) and then GNATprove_Mode
480156b2 3100
480156b2
AC
3101 -- Inlining does not apply during pre-analysis of code
3102
b6c8e5be 3103 and then Full_Analysis
480156b2
AC
3104
3105 -- Inlining only applies to full bodies, not stubs
3106
7b2888e6 3107 and then Nkind (N) /= N_Subprogram_Body_Stub
480156b2
AC
3108
3109 -- Inlining only applies to bodies in the source code, not to
3110 -- those generated by the compiler. In particular, expression
3111 -- functions, whose body is generated by the compiler, are
3112 -- treated specially by GNATprove.
3113
b6c8e5be 3114 and then Comes_From_Source (Body_Id)
480156b2
AC
3115
3116 -- This cannot be done for a compilation unit, which is not
3117 -- in a context where we can insert a new spec.
3118
b6c8e5be 3119 and then Is_List_Member (N)
480156b2
AC
3120
3121 -- Inlining only applies to subprograms without contracts,
3122 -- as a contract is a sign that GNATprove should perform a
3123 -- modular analysis of the subprogram instead of a contextual
3124 -- analysis at each call site. The same test is performed in
3125 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3126 -- here in another form (because the contract has not
3127 -- been attached to the body) to avoid frontend errors in
3128 -- case pragmas are used instead of aspects, because the
3129 -- corresponding pragmas in the body would not be transferred
3130 -- to the spec, leading to legality errors.
3131
ac072cb2 3132 and then not Body_Has_Contract
8d1fe980 3133 and then not Inside_A_Generic
b6c8e5be 3134 then
8d1fe980 3135 Build_Subprogram_Declaration;
b6c8e5be 3136 end if;
d44202ba 3137 end if;
996ae0b0
RK
3138
3139 -- If this is a duplicate body, no point in analyzing it
3140
3141 if Error_Posted (N) then
3142 return;
3143 end if;
3144
82c80734
RD
3145 -- A subprogram body should cause freezing of its own declaration,
3146 -- but if there was no previous explicit declaration, then the
3147 -- subprogram will get frozen too late (there may be code within
3148 -- the body that depends on the subprogram having been frozen,
3149 -- such as uses of extra formals), so we force it to be frozen
76a69663 3150 -- here. Same holds if the body and spec are compilation units.
cd1c668b
ES
3151 -- Finally, if the return type is an anonymous access to protected
3152 -- subprogram, it must be frozen before the body because its
3153 -- expansion has generated an equivalent type that is used when
3154 -- elaborating the body.
996ae0b0 3155
885c4871 3156 -- An exception in the case of Ada 2012, AI05-177: The bodies
ebb6faaa
AC
3157 -- created for expression functions do not freeze.
3158
3159 if No (Spec_Id)
3160 and then Nkind (Original_Node (N)) /= N_Expression_Function
3161 then
996ae0b0
RK
3162 Freeze_Before (N, Body_Id);
3163
3164 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3165 Freeze_Before (N, Spec_Id);
cd1c668b
ES
3166
3167 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3168 Freeze_Before (N, Etype (Body_Id));
996ae0b0 3169 end if;
a38ff9b1 3170
996ae0b0
RK
3171 else
3172 Spec_Id := Corresponding_Spec (N);
8636f52f
HK
3173
3174 -- The corresponding spec may be subject to pragma Ghost with
3175 -- policy Ignore. Set the mode now to ensure that any nodes
3176 -- generated during analysis and expansion are properly flagged
3177 -- as ignored Ghost.
3178
3179 Set_Ghost_Mode (N, Spec_Id);
996ae0b0
RK
3180 end if;
3181 end if;
3182
799d0e05
AC
3183 -- Previously we scanned the body to look for nested subprograms, and
3184 -- rejected an inline directive if nested subprograms were present,
3185 -- because the back-end would generate conflicting symbols for the
c8957aae 3186 -- nested bodies. This is now unnecessary.
07fc65c4 3187
c8957aae 3188 -- Look ahead to recognize a pragma Inline that appears after the body
84f4072a 3189
e660dbf7
JM
3190 Check_Inline_Pragma (Spec_Id);
3191
701b7fbb
RD
3192 -- Deal with special case of a fully private operation in the body of
3193 -- the protected type. We must create a declaration for the subprogram,
3194 -- in order to attach the protected subprogram that will be used in
3195 -- internal calls. We exclude compiler generated bodies from the
3196 -- expander since the issue does not arise for those cases.
07fc65c4 3197
996ae0b0
RK
3198 if No (Spec_Id)
3199 and then Comes_From_Source (N)
3200 and then Is_Protected_Type (Current_Scope)
3201 then
47bfea3a 3202 Spec_Id := Build_Private_Protected_Declaration (N);
701b7fbb 3203 end if;
996ae0b0 3204
5334d18f 3205 -- If a separate spec is present, then deal with freezing issues
7ca78bba 3206
701b7fbb 3207 if Present (Spec_Id) then
996ae0b0 3208 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 3209 Verify_Overriding_Indicator;
5d37ba92
ES
3210
3211 -- In general, the spec will be frozen when we start analyzing the
3212 -- body. However, for internally generated operations, such as
3213 -- wrapper functions for inherited operations with controlling
164e06c6
AC
3214 -- results, the spec may not have been frozen by the time we expand
3215 -- the freeze actions that include the bodies. In particular, extra
3216 -- formals for accessibility or for return-in-place may need to be
3217 -- generated. Freeze nodes, if any, are inserted before the current
3218 -- body. These freeze actions are also needed in ASIS mode to enable
3219 -- the proper back-annotations.
5d37ba92
ES
3220
3221 if not Is_Frozen (Spec_Id)
7134062a 3222 and then (Expander_Active or ASIS_Mode)
5d37ba92
ES
3223 then
3224 -- Force the generation of its freezing node to ensure proper
3225 -- management of access types in the backend.
3226
3227 -- This is definitely needed for some cases, but it is not clear
3228 -- why, to be investigated further???
3229
3230 Set_Has_Delayed_Freeze (Spec_Id);
6b958cec 3231 Freeze_Before (N, Spec_Id);
5d37ba92 3232 end if;
996ae0b0
RK
3233 end if;
3234
3235 -- Place subprogram on scope stack, and make formals visible. If there
3236 -- is a spec, the visible entity remains that of the spec.
3237
3238 if Present (Spec_Id) then
07fc65c4 3239 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
3240
3241 if Is_Child_Unit (Spec_Id) then
3242 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3243 end if;
3244
fbf5a39b
AC
3245 if Style_Check then
3246 Style.Check_Identifier (Body_Id, Spec_Id);
3247 end if;
996ae0b0
RK
3248
3249 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3250 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3251
f937473f 3252 if Is_Abstract_Subprogram (Spec_Id) then
ed2233dc 3253 Error_Msg_N ("an abstract subprogram cannot have a body", N);
996ae0b0 3254 return;
21d27997 3255
996ae0b0
RK
3256 else
3257 Set_Convention (Body_Id, Convention (Spec_Id));
3258 Set_Has_Completion (Spec_Id);
3259
c5cec2fe
AC
3260 -- Inherit the "ghostness" of the subprogram spec. Note that this
3261 -- property is not directly inherited as the body may be subject
3262 -- to a different Ghost assertion policy.
3263
8636f52f 3264 if Is_Ghost_Entity (Spec_Id) or else Ghost_Mode > None then
c5cec2fe
AC
3265 Set_Is_Ghost_Entity (Body_Id);
3266
3267 -- The Ghost policy in effect at the point of declaration and
c2cfccb1 3268 -- at the point of completion must match (SPARK RM 6.9(14)).
c5cec2fe
AC
3269
3270 Check_Ghost_Completion (Spec_Id, Body_Id);
3271 end if;
3272
996ae0b0 3273 if Is_Protected_Type (Scope (Spec_Id)) then
21d27997 3274 Prot_Typ := Scope (Spec_Id);
996ae0b0
RK
3275 end if;
3276
3277 -- If this is a body generated for a renaming, do not check for
3278 -- full conformance. The check is redundant, because the spec of
3279 -- the body is a copy of the spec in the renaming declaration,
3280 -- and the test can lead to spurious errors on nested defaults.
3281
3282 if Present (Spec_Decl)
996ae0b0 3283 and then not Comes_From_Source (N)
93a81b02
GB
3284 and then
3285 (Nkind (Original_Node (Spec_Decl)) =
4b6f99f5 3286 N_Subprogram_Renaming_Declaration
466c2127
AC
3287 or else (Present (Corresponding_Body (Spec_Decl))
3288 and then
3289 Nkind (Unit_Declaration_Node
3290 (Corresponding_Body (Spec_Decl))) =
3291 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
3292 then
3293 Conformant := True;
cabe9abc
AC
3294
3295 -- Conversely, the spec may have been generated for specless body
3296 -- with an inline pragma.
3297
3298 elsif Comes_From_Source (N)
3299 and then not Comes_From_Source (Spec_Id)
3300 and then Has_Pragma_Inline (Spec_Id)
3301 then
3302 Conformant := True;
76a69663 3303
996ae0b0
RK
3304 else
3305 Check_Conformance
3306 (Body_Id, Spec_Id,
76a69663 3307 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
3308 end if;
3309
3310 -- If the body is not fully conformant, we have to decide if we
3311 -- should analyze it or not. If it has a really messed up profile
3312 -- then we probably should not analyze it, since we will get too
3313 -- many bogus messages.
3314
3315 -- Our decision is to go ahead in the non-fully conformant case
3316 -- only if it is at least mode conformant with the spec. Note
3317 -- that the call to Check_Fully_Conformant has issued the proper
3318 -- error messages to complain about the lack of conformance.
3319
3320 if not Conformant
3321 and then not Mode_Conformant (Body_Id, Spec_Id)
3322 then
3323 return;
3324 end if;
3325 end if;
3326
996ae0b0 3327 if Spec_Id /= Body_Id then
fbf5a39b 3328 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
3329 end if;
3330
579847c2
AC
3331 Set_Ekind (Body_Id, E_Subprogram_Body);
3332
e28072cd
AC
3333 if Nkind (N) = N_Subprogram_Body_Stub then
3334 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3335
3336 -- Regular body
3337
3338 else
996ae0b0 3339 Set_Corresponding_Spec (N, Spec_Id);
758c442c 3340
5d37ba92
ES
3341 -- Ada 2005 (AI-345): If the operation is a primitive operation
3342 -- of a concurrent type, the type of the first parameter has been
3343 -- replaced with the corresponding record, which is the proper
3344 -- run-time structure to use. However, within the body there may
3345 -- be uses of the formals that depend on primitive operations
3346 -- of the type (in particular calls in prefixed form) for which
3347 -- we need the original concurrent type. The operation may have
3348 -- several controlling formals, so the replacement must be done
3349 -- for all of them.
758c442c
GD
3350
3351 if Comes_From_Source (Spec_Id)
3352 and then Present (First_Entity (Spec_Id))
3353 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3354 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
15918371
AC
3355 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3356 and then Present (Corresponding_Concurrent_Type
3357 (Etype (First_Entity (Spec_Id))))
758c442c 3358 then
5d37ba92
ES
3359 declare
3360 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3361 Form : Entity_Id;
3362
3363 begin
3364 Form := First_Formal (Spec_Id);
3365 while Present (Form) loop
3366 if Etype (Form) = Typ then
3367 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3368 end if;
3369
3370 Next_Formal (Form);
3371 end loop;
3372 end;
758c442c
GD
3373 end if;
3374
21d27997
RD
3375 -- Make the formals visible, and place subprogram on scope stack.
3376 -- This is also the point at which we set Last_Real_Spec_Entity
3377 -- to mark the entities which will not be moved to the body.
758c442c 3378
996ae0b0 3379 Install_Formals (Spec_Id);
21d27997 3380 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
616547fa
AC
3381
3382 -- Within an instance, add local renaming declarations so that
a5a809b2
AC
3383 -- gdb can retrieve the values of actuals more easily. This is
3384 -- only relevant if generating code (and indeed we definitely
3385 -- do not want these definitions -gnatc mode, because that would
3386 -- confuse ASIS).
616547fa
AC
3387
3388 if Is_Generic_Instance (Spec_Id)
3389 and then Is_Wrapper_Package (Current_Scope)
a5a809b2 3390 and then Expander_Active
616547fa
AC
3391 then
3392 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3393 end if;
3394
0a36105d 3395 Push_Scope (Spec_Id);
996ae0b0
RK
3396
3397 -- Make sure that the subprogram is immediately visible. For
3398 -- child units that have no separate spec this is indispensable.
3399 -- Otherwise it is safe albeit redundant.
3400
3401 Set_Is_Immediately_Visible (Spec_Id);
3402 end if;
3403
3404 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
ec4867fa 3405 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
c9d70ab1 3406 Set_Scope (Body_Id, Scope (Spec_Id));
996ae0b0
RK
3407
3408 -- Case of subprogram body with no previous spec
3409
3410 else
3e5daac4
AC
3411 -- Check for style warning required
3412
996ae0b0 3413 if Style_Check
3e5daac4
AC
3414
3415 -- Only apply check for source level subprograms for which checks
3416 -- have not been suppressed.
3417
996ae0b0
RK
3418 and then Comes_From_Source (Body_Id)
3419 and then not Suppress_Style_Checks (Body_Id)
3e5daac4
AC
3420
3421 -- No warnings within an instance
3422
996ae0b0 3423 and then not In_Instance
3e5daac4 3424
b0186f71 3425 -- No warnings for expression functions
3e5daac4 3426
b0186f71 3427 and then Nkind (Original_Node (N)) /= N_Expression_Function
996ae0b0
RK
3428 then
3429 Style.Body_With_No_Spec (N);
3430 end if;
3431
3432 New_Overloaded_Entity (Body_Id);
3433
3434 if Nkind (N) /= N_Subprogram_Body_Stub then
3435 Set_Acts_As_Spec (N);
3436 Generate_Definition (Body_Id);
fbf5a39b
AC
3437 Generate_Reference
3438 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
996ae0b0 3439 Install_Formals (Body_Id);
e949ee22 3440
4a854847 3441 Push_Scope (Body_Id);
996ae0b0 3442 end if;
dbe36d67
AC
3443
3444 -- For stubs and bodies with no previous spec, generate references to
3445 -- formals.
3446
3447 Generate_Reference_To_Formals (Body_Id);
996ae0b0
RK
3448 end if;
3449
5216b599
AC
3450 -- Set SPARK_Mode from context
3451
3452 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3453 Set_SPARK_Pragma_Inherited (Body_Id, True);
3454
76a69663
ES
3455 -- If the return type is an anonymous access type whose designated type
3456 -- is the limited view of a class-wide type and the non-limited view is
3457 -- available, update the return type accordingly.
ec4867fa 3458
8fde064e 3459 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
ec4867fa 3460 declare
ec4867fa 3461 Etyp : Entity_Id;
0a36105d 3462 Rtyp : Entity_Id;
ec4867fa
ES
3463
3464 begin
0a36105d
JM
3465 Rtyp := Etype (Current_Scope);
3466
3467 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3468 Etyp := Directly_Designated_Type (Rtyp);
3469
7b56a91b
AC
3470 if Is_Class_Wide_Type (Etyp)
3471 and then From_Limited_With (Etyp)
3472 then
0a36105d
JM
3473 Set_Directly_Designated_Type
3474 (Etype (Current_Scope), Available_View (Etyp));
3475 end if;
3476 end if;
ec4867fa
ES
3477 end;
3478 end if;
3479
996ae0b0
RK
3480 -- If this is the proper body of a stub, we must verify that the stub
3481 -- conforms to the body, and to the previous spec if one was present.
dbe36d67 3482 -- We know already that the body conforms to that spec. This test is
996ae0b0
RK
3483 -- only required for subprograms that come from source.
3484
3485 if Nkind (Parent (N)) = N_Subunit
3486 and then Comes_From_Source (N)
3487 and then not Error_Posted (Body_Id)
e895b435
ES
3488 and then Nkind (Corresponding_Stub (Parent (N))) =
3489 N_Subprogram_Body_Stub
996ae0b0
RK
3490 then
3491 declare
fbf5a39b
AC
3492 Old_Id : constant Entity_Id :=
3493 Defining_Entity
3494 (Specification (Corresponding_Stub (Parent (N))));
3495
996ae0b0 3496 Conformant : Boolean := False;
996ae0b0
RK
3497
3498 begin
3499 if No (Spec_Id) then
3500 Check_Fully_Conformant (Body_Id, Old_Id);
3501
3502 else
3503 Check_Conformance
3504 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3505
3506 if not Conformant then
3507
dbe36d67
AC
3508 -- The stub was taken to be a new declaration. Indicate that
3509 -- it lacks a body.
996ae0b0
RK
3510
3511 Set_Has_Completion (Old_Id, False);
3512 end if;
3513 end if;
3514 end;
3515 end if;
3516
3517 Set_Has_Completion (Body_Id);
3518 Check_Eliminated (Body_Id);
3519
caf07df9
AC
3520 -- Analyze any aspect specifications that appear on the subprogram body
3521 -- stub. Stop the analysis now as the stub does not have a declarative
3522 -- or a statement part, and it cannot be inlined.
c8a3028c 3523
caf07df9 3524 if Nkind (N) = N_Subprogram_Body_Stub then
c8a3028c 3525 if Has_Aspects (N) then
caf07df9 3526 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
c8a3028c
AC
3527 end if;
3528
996ae0b0 3529 return;
84f4072a 3530 end if;
996ae0b0 3531
b94b6c56 3532 -- Handle frontend inlining
84f4072a 3533
b94b6c56
RD
3534 -- Note: Normally we don't do any inlining if expansion is off, since
3535 -- we won't generate code in any case. An exception arises in GNATprove
2d180af1
YM
3536 -- mode where we want to expand some calls in place, even with expansion
3537 -- disabled, since the inlining eases formal verification.
ecad37f3 3538
6c26bac2
AC
3539 if not GNATprove_Mode
3540 and then Expander_Active
3541 and then Serious_Errors_Detected = 0
3542 and then Present (Spec_Id)
3543 and then Has_Pragma_Inline (Spec_Id)
3544 then
3545 -- Legacy implementation (relying on frontend inlining)
84f4072a 3546
6c26bac2 3547 if not Back_End_Inlining then
17ce1f52
AC
3548 if (Has_Pragma_Inline_Always (Spec_Id)
3549 and then not Opt.Disable_FE_Inline_Always)
3550 or else
3551 (Has_Pragma_Inline (Spec_Id) and then Front_End_Inlining
3552 and then not Opt.Disable_FE_Inline)
6c26bac2
AC
3553 then
3554 Build_Body_To_Inline (N, Spec_Id);
3555 end if;
f087ea44 3556
88f7d2d1 3557 -- New implementation (relying on backend inlining)
f087ea44 3558
6c26bac2
AC
3559 else
3560 if Has_Pragma_Inline_Always (Spec_Id)
3561 or else Optimization_Level > 0
3562 then
3563 -- Handle function returning an unconstrained type
f087ea44 3564
6c26bac2
AC
3565 if Comes_From_Source (Body_Id)
3566 and then Ekind (Spec_Id) = E_Function
3567 and then Returns_Unconstrained_Type (Spec_Id)
5c5e108f
AC
3568
3569 -- If function builds in place, i.e. returns a limited type,
3570 -- inlining cannot be done.
3571
3572 and then not Is_Limited_Type (Etype (Spec_Id))
6c26bac2 3573 then
16b10ccc 3574 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
84f4072a 3575
6c26bac2
AC
3576 else
3577 declare
b80a2b4b
AC
3578 Subp_Body : constant Node_Id :=
3579 Unit_Declaration_Node (Body_Id);
6c26bac2 3580 Subp_Decl : constant List_Id := Declarations (Subp_Body);
84f4072a 3581
6c26bac2
AC
3582 begin
3583 -- Do not pass inlining to the backend if the subprogram
3584 -- has declarations or statements which cannot be inlined
3585 -- by the backend. This check is done here to emit an
3586 -- error instead of the generic warning message reported
3587 -- by the GCC backend (ie. "function might not be
3588 -- inlinable").
3589
3590 if Present (Subp_Decl)
3591 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3592 then
3593 null;
3594
3595 elsif Has_Excluded_Statement
3596 (Spec_Id,
3597 Statements
3598 (Handled_Statement_Sequence (Subp_Body)))
3599 then
3600 null;
3601
3602 -- If the backend inlining is available then at this
3603 -- stage we only have to mark the subprogram as inlined.
3604 -- The expander will take care of registering it in the
3605 -- table of subprograms inlined by the backend a part of
3606 -- processing calls to it (cf. Expand_Call)
3607
3608 else
3609 Set_Is_Inlined (Spec_Id);
3610 end if;
3611 end;
3612 end if;
3613 end if;
3614 end if;
2d180af1
YM
3615
3616 -- In GNATprove mode, inline only when there is a separate subprogram
3617 -- declaration for now, as inlining of subprogram bodies acting as
3618 -- declarations, or subprogram stubs, are not supported by frontend
3619 -- inlining. This inlining should occur after analysis of the body, so
3620 -- that it is known whether the value of SPARK_Mode applicable to the
3621 -- body, which can be defined by a pragma inside the body.
3622
3623 elsif GNATprove_Mode
2d180af1
YM
3624 and then Full_Analysis
3625 and then not Inside_A_Generic
3626 and then Present (Spec_Id)
7c4d86c9
AC
3627 and then
3628 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
2d180af1 3629 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
ac072cb2 3630 and then not Body_Has_Contract
2d180af1 3631 then
6c26bac2 3632 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
3633 end if;
3634
0ab80019 3635 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
dbe36d67 3636 -- of the specification we have to install the private withed units.
21d27997 3637 -- This holds for child units as well.
9bc856dd
AC
3638
3639 if Is_Compilation_Unit (Body_Id)
21d27997 3640 or else Nkind (Parent (N)) = N_Compilation_Unit
9bc856dd
AC
3641 then
3642 Install_Private_With_Clauses (Body_Id);
3643 end if;
3644
ec4867fa
ES
3645 Check_Anonymous_Return;
3646
fdce4bb7
JM
3647 -- Set the Protected_Formal field of each extra formal of the protected
3648 -- subprogram to reference the corresponding extra formal of the
3649 -- subprogram that implements it. For regular formals this occurs when
3650 -- the protected subprogram's declaration is expanded, but the extra
3651 -- formals don't get created until the subprogram is frozen. We need to
3652 -- do this before analyzing the protected subprogram's body so that any
3653 -- references to the original subprogram's extra formals will be changed
3654 -- refer to the implementing subprogram's formals (see Expand_Formal).
3655
3656 if Present (Spec_Id)
3657 and then Is_Protected_Type (Scope (Spec_Id))
3658 and then Present (Protected_Body_Subprogram (Spec_Id))
3659 then
3660 declare
3661 Impl_Subp : constant Entity_Id :=
3662 Protected_Body_Subprogram (Spec_Id);
3663 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3664 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
fdce4bb7
JM
3665 begin
3666 while Present (Prot_Ext_Formal) loop
3667 pragma Assert (Present (Impl_Ext_Formal));
fdce4bb7 3668 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
fdce4bb7
JM
3669 Next_Formal_With_Extras (Prot_Ext_Formal);
3670 Next_Formal_With_Extras (Impl_Ext_Formal);
3671 end loop;
3672 end;
3673 end if;
3674
0868e09c 3675 -- Now we can go on to analyze the body
996ae0b0
RK
3676
3677 HSS := Handled_Statement_Sequence (N);
3678 Set_Actual_Subtypes (N, Current_Scope);
21d27997 3679
f3d0f304 3680 -- Add a declaration for the Protection object, renaming declarations
21d27997
RD
3681 -- for discriminals and privals and finally a declaration for the entry
3682 -- family index (if applicable). This form of early expansion is done
3683 -- when the Expander is active because Install_Private_Data_Declarations
81bf2382 3684 -- references entities which were created during regular expansion. The
3b8056a5
AC
3685 -- subprogram entity must come from source, and not be an internally
3686 -- generated subprogram.
21d27997 3687
4460a9bc 3688 if Expander_Active
21d27997
RD
3689 and then Present (Prot_Typ)
3690 and then Present (Spec_Id)
3b8056a5 3691 and then Comes_From_Source (Spec_Id)
21d27997
RD
3692 and then not Is_Eliminated (Spec_Id)
3693 then
3694 Install_Private_Data_Declarations
3695 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3696 end if;
3697
5dcab3ca
AC
3698 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3699 -- may now appear in parameter and result profiles. Since the analysis
3700 -- of a subprogram body may use the parameter and result profile of the
3701 -- spec, swap any limited views with their non-limited counterpart.
3702
3703 if Ada_Version >= Ada_2012 then
3704 Exchange_Limited_Views (Spec_Id);
3705 end if;
3706
c8a3028c
AC
3707 -- Analyze any aspect specifications that appear on the subprogram body
3708
3709 if Has_Aspects (N) then
caf07df9 3710 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
c8a3028c
AC
3711 end if;
3712
996ae0b0 3713 Analyze_Declarations (Declarations (N));
21d27997 3714
f3124d8f 3715 -- Verify that the SPARK_Mode of the body agrees with that of its spec
f90d14ac 3716
f1c7be38 3717 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
f90d14ac
AC
3718 if Present (SPARK_Pragma (Spec_Id)) then
3719 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3720 and then
3721 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3722 then
3723 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3724 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3725 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3726 Error_Msg_NE
f3124d8f 3727 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
3728 end if;
3729
3730 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3731 null;
3732
3733 else
3734 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3ccedacc 3735 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
f90d14ac 3736 Error_Msg_Sloc := Sloc (Spec_Id);
f3124d8f
HK
3737 Error_Msg_NE
3738 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
3739 end if;
3740 end if;
3741
c9d70ab1
AC
3742 -- When a subprogram body appears inside a package, its contract is
3743 -- analyzed at the end of the package body declarations. This is due
3744 -- to the delay with respect of the package contract upon which the
3745 -- body contract may depend. When the subprogram body is stand alone
3746 -- and acts as a compilation unit, this delay is not necessary.
3747
3748 if Nkind (Parent (N)) = N_Compilation_Unit then
3749 Analyze_Subprogram_Body_Contract (Body_Id);
3750 end if;
3751
3752 -- Deal with preconditions, [refined] postconditions, Contract_Cases,
3753 -- invariants and predicates associated with body and its spec. Since
3754 -- there is no routine Expand_Declarations which would otherwise deal
3755 -- with the contract expansion, generate all necessary mechanisms to
3756 -- verify the contract assertions now.
3757
3758 Expand_Subprogram_Contract (N);
3759
ac43e11e
AC
3760 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3761 -- subprogram in GNATprove mode, as its body should not be analyzed.
3762
3763 if SPARK_Mode /= On
3764 and then GNATprove_Mode
ac43e11e
AC
3765 and then Present (Spec_Id)
3766 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3767 then
3768 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
4bd4bb7f 3769 Set_Is_Inlined_Always (Spec_Id, False);
ac43e11e
AC
3770 end if;
3771
21d27997
RD
3772 -- Check completion, and analyze the statements
3773
996ae0b0 3774 Check_Completion;
33931112 3775 Inspect_Deferred_Constant_Completion (Declarations (N));
996ae0b0 3776 Analyze (HSS);
21d27997
RD
3777
3778 -- Deal with end of scope processing for the body
3779
07fc65c4 3780 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0
RK
3781 End_Scope;
3782 Check_Subprogram_Order (N);
c37bb106 3783 Set_Analyzed (Body_Id);
996ae0b0
RK
3784
3785 -- If we have a separate spec, then the analysis of the declarations
3786 -- caused the entities in the body to be chained to the spec id, but
3787 -- we want them chained to the body id. Only the formal parameters
3788 -- end up chained to the spec id in this case.
3789
3790 if Present (Spec_Id) then
3791
d39d6bb8 3792 -- We must conform to the categorization of our spec
996ae0b0 3793
d39d6bb8 3794 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 3795
d39d6bb8
RD
3796 -- And if this is a child unit, the parent units must conform
3797
3798 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
3799 Validate_Categorization_Dependency
3800 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3801 end if;
3802
21d27997
RD
3803 -- Here is where we move entities from the spec to the body
3804
3805 -- Case where there are entities that stay with the spec
3806
3807 if Present (Last_Real_Spec_Entity) then
3808
dbe36d67
AC
3809 -- No body entities (happens when the only real spec entities come
3810 -- from precondition and postcondition pragmas).
21d27997
RD
3811
3812 if No (Last_Entity (Body_Id)) then
7c4d86c9 3813 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
21d27997
RD
3814
3815 -- Body entities present (formals), so chain stuff past them
3816
3817 else
3818 Set_Next_Entity
3819 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3820 end if;
3821
3822 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
996ae0b0 3823 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
21d27997
RD
3824 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3825
dbe36d67
AC
3826 -- Case where there are no spec entities, in this case there can be
3827 -- no body entities either, so just move everything.
996ae0b0 3828
a921e83c
AC
3829 -- If the body is generated for an expression function, it may have
3830 -- been preanalyzed already, if 'access was applied to it.
3831
996ae0b0 3832 else
a921e83c
AC
3833 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3834 N_Expression_Function
3835 then
3836 pragma Assert (No (Last_Entity (Body_Id)));
3837 null;
3838 end if;
3839
996ae0b0
RK
3840 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3841 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3842 Set_First_Entity (Spec_Id, Empty);
3843 Set_Last_Entity (Spec_Id, Empty);
3844 end if;
3845 end if;
3846
7665e4bd 3847 Check_Missing_Return;
996ae0b0 3848
82c80734 3849 -- Now we are going to check for variables that are never modified in
76a69663
ES
3850 -- the body of the procedure. But first we deal with a special case
3851 -- where we want to modify this check. If the body of the subprogram
3852 -- starts with a raise statement or its equivalent, or if the body
cf3e6845
AC
3853 -- consists entirely of a null statement, then it is pretty obvious that
3854 -- it is OK to not reference the parameters. For example, this might be
3855 -- the following common idiom for a stubbed function: statement of the
3856 -- procedure raises an exception. In particular this deals with the
3857 -- common idiom of a stubbed function, which appears something like:
fbf5a39b
AC
3858
3859 -- function F (A : Integer) return Some_Type;
3860 -- X : Some_Type;
3861 -- begin
3862 -- raise Program_Error;
3863 -- return X;
3864 -- end F;
3865
76a69663
ES
3866 -- Here the purpose of X is simply to satisfy the annoying requirement
3867 -- in Ada that there be at least one return, and we certainly do not
a90bd866 3868 -- want to go posting warnings on X that it is not initialized. On
76a69663
ES
3869 -- the other hand, if X is entirely unreferenced that should still
3870 -- get a warning.
3871
3872 -- What we do is to detect these cases, and if we find them, flag the
3873 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3874 -- suppress unwanted warnings. For the case of the function stub above
3875 -- we have a special test to set X as apparently assigned to suppress
3876 -- the warning.
996ae0b0
RK
3877
3878 declare
800621e0 3879 Stm : Node_Id;
996ae0b0
RK
3880
3881 begin
0a36105d
JM
3882 -- Skip initial labels (for one thing this occurs when we are in
3883 -- front end ZCX mode, but in any case it is irrelevant), and also
3884 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 3885
800621e0 3886 Stm := First (Statements (HSS));
0a36105d
JM
3887 while Nkind (Stm) = N_Label
3888 or else Nkind (Stm) in N_Push_xxx_Label
3889 loop
996ae0b0 3890 Next (Stm);
0a36105d 3891 end loop;
996ae0b0 3892
fbf5a39b
AC
3893 -- Do the test on the original statement before expansion
3894
3895 declare
3896 Ostm : constant Node_Id := Original_Node (Stm);
3897
3898 begin
76a69663 3899 -- If explicit raise statement, turn on flag
fbf5a39b
AC
3900
3901 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
3902 Set_Trivial_Subprogram (Stm);
3903
f3d57416 3904 -- If null statement, and no following statements, turn on flag
76a69663
ES
3905
3906 elsif Nkind (Stm) = N_Null_Statement
3907 and then Comes_From_Source (Stm)
3908 and then No (Next (Stm))
3909 then
3910 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3911
3912 -- Check for explicit call cases which likely raise an exception
3913
3914 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3915 if Is_Entity_Name (Name (Ostm)) then
3916 declare
3917 Ent : constant Entity_Id := Entity (Name (Ostm));
3918
3919 begin
3920 -- If the procedure is marked No_Return, then likely it
3921 -- raises an exception, but in any case it is not coming
76a69663 3922 -- back here, so turn on the flag.
fbf5a39b 3923
f46faa08
AC
3924 if Present (Ent)
3925 and then Ekind (Ent) = E_Procedure
fbf5a39b
AC
3926 and then No_Return (Ent)
3927 then
76a69663 3928 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3929 end if;
3930 end;
3931 end if;
3932 end if;
3933 end;
996ae0b0
RK
3934 end;
3935
3936 -- Check for variables that are never modified
3937
3938 declare
3939 E1, E2 : Entity_Id;
3940
3941 begin
fbf5a39b 3942 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
3943 -- flags from out parameters to the corresponding entities in the
3944 -- body. The reason we do that is we want to post error flags on
3945 -- the body entities, not the spec entities.
3946
3947 if Present (Spec_Id) then
3948 E1 := First_Entity (Spec_Id);
996ae0b0
RK
3949 while Present (E1) loop
3950 if Ekind (E1) = E_Out_Parameter then
3951 E2 := First_Entity (Body_Id);
fbf5a39b 3952 while Present (E2) loop
996ae0b0
RK
3953 exit when Chars (E1) = Chars (E2);
3954 Next_Entity (E2);
3955 end loop;
3956
fbf5a39b
AC
3957 if Present (E2) then
3958 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3959 end if;
996ae0b0
RK
3960 end if;
3961
3962 Next_Entity (E1);
3963 end loop;
3964 end if;
3965
2aca76d6 3966 -- Check references in body
0868e09c 3967
2aca76d6 3968 Check_References (Body_Id);
996ae0b0 3969 end;
5a271a7f
RD
3970
3971 -- Check for nested subprogram, and mark outer level subprogram if so
3972
3973 declare
3974 Ent : Entity_Id;
3975
3976 begin
3977 if Present (Spec_Id) then
3978 Ent := Spec_Id;
3979 else
3980 Ent := Body_Id;
3981 end if;
3982
3983 loop
3984 Ent := Enclosing_Subprogram (Ent);
3985 exit when No (Ent) or else Is_Subprogram (Ent);
3986 end loop;
3987
3988 if Present (Ent) then
3989 Set_Has_Nested_Subprogram (Ent);
3990 end if;
3991 end;
b1b543d2 3992 end Analyze_Subprogram_Body_Helper;
996ae0b0 3993
5afe5d2d
HK
3994 ---------------------------------
3995 -- Analyze_Subprogram_Contract --
3996 ---------------------------------
3997
c9d70ab1 3998 procedure Analyze_Subprogram_Contract (Subp_Id : Entity_Id) is
caf07df9
AC
3999 Items : constant Node_Id := Contract (Subp_Id);
4000 Depends : Node_Id := Empty;
4001 Global : Node_Id := Empty;
4002 Mode : SPARK_Mode_Type;
4003 Prag : Node_Id;
4004 Prag_Nam : Name_Id;
5afe5d2d
HK
4005
4006 begin
fc999c5d
RD
4007 -- Due to the timing of contract analysis, delayed pragmas may be
4008 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4009 -- context. To remedy this, restore the original SPARK_Mode of the
4010 -- related subprogram body.
4011
c9d70ab1
AC
4012 Save_SPARK_Mode_And_Set (Subp_Id, Mode);
4013
caf07df9
AC
4014 -- All subprograms carry a contract, but for some it is not significant
4015 -- and should not be processed.
c9d70ab1 4016
caf07df9
AC
4017 if not Has_Significant_Contract (Subp_Id) then
4018 null;
c61ef416 4019
caf07df9 4020 elsif Present (Items) then
5afe5d2d
HK
4021
4022 -- Analyze pre- and postconditions
4023
4024 Prag := Pre_Post_Conditions (Items);
4025 while Present (Prag) loop
c9d70ab1 4026 Analyze_Pre_Post_Condition_In_Decl_Part (Prag);
5afe5d2d
HK
4027 Prag := Next_Pragma (Prag);
4028 end loop;
4029
4030 -- Analyze contract-cases and test-cases
4031
4032 Prag := Contract_Test_Cases (Items);
4033 while Present (Prag) loop
c9d70ab1 4034 Prag_Nam := Pragma_Name (Prag);
ea3c0651 4035
c9d70ab1 4036 if Prag_Nam = Name_Contract_Cases then
5afe5d2d 4037 Analyze_Contract_Cases_In_Decl_Part (Prag);
5afe5d2d 4038 else
c9d70ab1
AC
4039 pragma Assert (Prag_Nam = Name_Test_Case);
4040 Analyze_Test_Case_In_Decl_Part (Prag);
5afe5d2d
HK
4041 end if;
4042
4043 Prag := Next_Pragma (Prag);
4044 end loop;
4045
4046 -- Analyze classification pragmas
4047
6c3c671e 4048 Prag := Classifications (Items);
5afe5d2d 4049 while Present (Prag) loop
c9d70ab1 4050 Prag_Nam := Pragma_Name (Prag);
ea3c0651 4051
c9d70ab1 4052 if Prag_Nam = Name_Depends then
54e28df2 4053 Depends := Prag;
039538bc 4054
c9d70ab1 4055 elsif Prag_Nam = Name_Global then
54e28df2 4056 Global := Prag;
039538bc
AC
4057
4058 -- Note that pragma Extensions_Visible has already been analyzed
4059
5afe5d2d
HK
4060 end if;
4061
4062 Prag := Next_Pragma (Prag);
4063 end loop;
54e28df2
HK
4064
4065 -- Analyze Global first as Depends may mention items classified in
4066 -- the global categorization.
4067
4068 if Present (Global) then
4069 Analyze_Global_In_Decl_Part (Global);
4070 end if;
4071
4072 -- Depends must be analyzed after Global in order to see the modes of
4073 -- all global items.
4074
4075 if Present (Depends) then
4076 Analyze_Depends_In_Decl_Part (Depends);
4077 end if;
5afe5d2d 4078
c9d70ab1
AC
4079 -- Ensure that the contract cases or postconditions mention 'Result
4080 -- or define a post-state.
5afe5d2d 4081
c9d70ab1
AC
4082 Check_Result_And_Post_State (Subp_Id);
4083 end if;
5afe5d2d 4084
fc999c5d
RD
4085 -- Restore the SPARK_Mode of the enclosing context after all delayed
4086 -- pragmas have been analyzed.
4087
c61ef416 4088 Restore_SPARK_Mode (Mode);
5afe5d2d
HK
4089 end Analyze_Subprogram_Contract;
4090
996ae0b0
RK
4091 ------------------------------------
4092 -- Analyze_Subprogram_Declaration --
4093 ------------------------------------
4094
4095 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
579847c2 4096 Scop : constant Entity_Id := Current_Scope;
5d5832bc 4097 Designator : Entity_Id;
579847c2 4098
4d8f3296
ES
4099 Is_Completion : Boolean;
4100 -- Indicates whether a null procedure declaration is a completion
996ae0b0
RK
4101
4102 begin
8636f52f
HK
4103 -- The subprogram declaration may be subject to pragma Ghost with policy
4104 -- Ignore. Set the mode now to ensure that any nodes generated during
4105 -- analysis and expansion are properly flagged as ignored Ghost.
4106
4107 Set_Ghost_Mode (N);
4108
2ba431e5 4109 -- Null procedures are not allowed in SPARK
daec8eeb 4110
fe5d3068 4111 if Nkind (Specification (N)) = N_Procedure_Specification
daec8eeb
YM
4112 and then Null_Present (Specification (N))
4113 then
ce5ba43a 4114 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
718deaf1 4115
73cc8f62
RD
4116 -- Null procedures are allowed in protected types, following the
4117 -- recent AI12-0147.
b741083a
ES
4118
4119 if Is_Protected_Type (Current_Scope)
4120 and then Ada_Version < Ada_2012
4121 then
4d8f3296
ES
4122 Error_Msg_N ("protected operation cannot be a null procedure", N);
4123 end if;
718deaf1 4124
4d8f3296 4125 Analyze_Null_Procedure (N, Is_Completion);
718deaf1 4126
4d8f3296 4127 if Is_Completion then
718deaf1 4128
73cc8f62 4129 -- The null procedure acts as a body, nothing further is needed
5d5832bc 4130
4d8f3296 4131 return;
5d5832bc
AC
4132 end if;
4133 end if;
4134
beacce02 4135 Designator := Analyze_Subprogram_Specification (Specification (N));
31af8899
AC
4136
4137 -- A reference may already have been generated for the unit name, in
4138 -- which case the following call is redundant. However it is needed for
4139 -- declarations that are the rewriting of an expression function.
4140
5d5832bc
AC
4141 Generate_Definition (Designator);
4142
f90d14ac
AC
4143 -- Set SPARK mode from current context (may be overwritten later with
4144 -- explicit pragma).
4a854847 4145
f90d14ac 4146 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
8636f52f 4147 Set_SPARK_Pragma_Inherited (Designator);
579847c2 4148
8636f52f 4149 -- A subprogram declared within a Ghost region is automatically Ghost
c5cec2fe
AC
4150 -- (SPARK RM 6.9(2)).
4151
8636f52f 4152 if Comes_From_Source (Designator) and then Ghost_Mode > None then
c5cec2fe
AC
4153 Set_Is_Ghost_Entity (Designator);
4154 end if;
4155
b1b543d2
BD
4156 if Debug_Flag_C then
4157 Write_Str ("==> subprogram spec ");
4158 Write_Name (Chars (Designator));
4159 Write_Str (" from ");
4160 Write_Location (Sloc (N));
4161 Write_Eol;
4162 Indent;
4163 end if;
4164
996ae0b0 4165 Validate_RCI_Subprogram_Declaration (N);
996ae0b0
RK
4166 New_Overloaded_Entity (Designator);
4167 Check_Delayed_Subprogram (Designator);
fbf5a39b 4168
cf3e6845
AC
4169 -- If the type of the first formal of the current subprogram is a non-
4170 -- generic tagged private type, mark the subprogram as being a private
4171 -- primitive. Ditto if this is a function with controlling result, and
4172 -- the return type is currently private. In both cases, the type of the
4173 -- controlling argument or result must be in the current scope for the
4174 -- operation to be primitive.
6ca063eb
AC
4175
4176 if Has_Controlling_Result (Designator)
4177 and then Is_Private_Type (Etype (Designator))
b7d5e87b 4178 and then Scope (Etype (Designator)) = Current_Scope
6ca063eb
AC
4179 and then not Is_Generic_Actual_Type (Etype (Designator))
4180 then
4181 Set_Is_Private_Primitive (Designator);
d44202ba 4182
6ca063eb 4183 elsif Present (First_Formal (Designator)) then
d44202ba
HK
4184 declare
4185 Formal_Typ : constant Entity_Id :=
4186 Etype (First_Formal (Designator));
4187 begin
4188 Set_Is_Private_Primitive (Designator,
4189 Is_Tagged_Type (Formal_Typ)
b7d5e87b 4190 and then Scope (Formal_Typ) = Current_Scope
d44202ba
HK
4191 and then Is_Private_Type (Formal_Typ)
4192 and then not Is_Generic_Actual_Type (Formal_Typ));
4193 end;
4194 end if;
4195
ec4867fa
ES
4196 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4197 -- or null.
4198
0791fbe9 4199 if Ada_Version >= Ada_2005
ec4867fa
ES
4200 and then Comes_From_Source (N)
4201 and then Is_Dispatching_Operation (Designator)
4202 then
4203 declare
4204 E : Entity_Id;
4205 Etyp : Entity_Id;
4206
4207 begin
4208 if Has_Controlling_Result (Designator) then
4209 Etyp := Etype (Designator);
4210
4211 else
4212 E := First_Entity (Designator);
4213 while Present (E)
4214 and then Is_Formal (E)
4215 and then not Is_Controlling_Formal (E)
4216 loop
4217 Next_Entity (E);
4218 end loop;
4219
4220 Etyp := Etype (E);
4221 end if;
4222
4223 if Is_Access_Type (Etyp) then
4224 Etyp := Directly_Designated_Type (Etyp);
4225 end if;
4226
4227 if Is_Interface (Etyp)
f937473f 4228 and then not Is_Abstract_Subprogram (Designator)
ec4867fa 4229 and then not (Ekind (Designator) = E_Procedure
8fde064e 4230 and then Null_Present (Specification (N)))
ec4867fa
ES
4231 then
4232 Error_Msg_Name_1 := Chars (Defining_Entity (N));
033eaf85
AC
4233
4234 -- Specialize error message based on procedures vs. functions,
4235 -- since functions can't be null subprograms.
4236
4237 if Ekind (Designator) = E_Procedure then
4238 Error_Msg_N
4239 ("interface procedure % must be abstract or null", N);
4240 else
3f80a182
AC
4241 Error_Msg_N
4242 ("interface function % must be abstract", N);
033eaf85 4243 end if;
ec4867fa
ES
4244 end if;
4245 end;
4246 end if;
4247
fbf5a39b
AC
4248 -- What is the following code for, it used to be
4249
4250 -- ??? Set_Suppress_Elaboration_Checks
4251 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4252
4253 -- The following seems equivalent, but a bit dubious
4254
4255 if Elaboration_Checks_Suppressed (Designator) then
4256 Set_Kill_Elaboration_Checks (Designator);
4257 end if;
996ae0b0 4258
8fde064e 4259 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
fbf5a39b 4260 Set_Categorization_From_Scope (Designator, Scop);
8fde064e 4261
996ae0b0 4262 else
e895b435 4263 -- For a compilation unit, check for library-unit pragmas
996ae0b0 4264
0a36105d 4265 Push_Scope (Designator);
996ae0b0
RK
4266 Set_Categorization_From_Pragmas (N);
4267 Validate_Categorization_Dependency (N, Designator);
4268 Pop_Scope;
4269 end if;
4270
4271 -- For a compilation unit, set body required. This flag will only be
4272 -- reset if a valid Import or Interface pragma is processed later on.
4273
4274 if Nkind (Parent (N)) = N_Compilation_Unit then
4275 Set_Body_Required (Parent (N), True);
758c442c 4276
0791fbe9 4277 if Ada_Version >= Ada_2005
758c442c
GD
4278 and then Nkind (Specification (N)) = N_Procedure_Specification
4279 and then Null_Present (Specification (N))
4280 then
4281 Error_Msg_N
4282 ("null procedure cannot be declared at library level", N);
4283 end if;
996ae0b0
RK
4284 end if;
4285
fbf5a39b 4286 Generate_Reference_To_Formals (Designator);
996ae0b0 4287 Check_Eliminated (Designator);
fbf5a39b 4288
b1b543d2
BD
4289 if Debug_Flag_C then
4290 Outdent;
4291 Write_Str ("<== subprogram spec ");
4292 Write_Name (Chars (Designator));
4293 Write_Str (" from ");
4294 Write_Location (Sloc (N));
4295 Write_Eol;
4296 end if;
0f1a6a0b 4297
1a265e78
AC
4298 if Is_Protected_Type (Current_Scope) then
4299
4300 -- Indicate that this is a protected operation, because it may be
4301 -- used in subsequent declarations within the protected type.
4302
4303 Set_Convention (Designator, Convention_Protected);
4304 end if;
4305
beacce02 4306 List_Inherited_Pre_Post_Aspects (Designator);
eaba57fb
RD
4307
4308 if Has_Aspects (N) then
4309 Analyze_Aspect_Specifications (N, Designator);
4310 end if;
996ae0b0
RK
4311 end Analyze_Subprogram_Declaration;
4312
fbf5a39b
AC
4313 --------------------------------------
4314 -- Analyze_Subprogram_Specification --
4315 --------------------------------------
4316
4317 -- Reminder: N here really is a subprogram specification (not a subprogram
4318 -- declaration). This procedure is called to analyze the specification in
4319 -- both subprogram bodies and subprogram declarations (specs).
4320
4321 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4322 Designator : constant Entity_Id := Defining_Entity (N);
21d27997 4323 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 4324
758c442c
GD
4325 -- Start of processing for Analyze_Subprogram_Specification
4326
fbf5a39b 4327 begin
2ba431e5 4328 -- User-defined operator is not allowed in SPARK, except as a renaming
38171f43 4329
db72f10a
AC
4330 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4331 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4332 then
ce5ba43a
AC
4333 Check_SPARK_05_Restriction
4334 ("user-defined operator is not allowed", N);
38171f43
AC
4335 end if;
4336
31af8899
AC
4337 -- Proceed with analysis. Do not emit a cross-reference entry if the
4338 -- specification comes from an expression function, because it may be
4339 -- the completion of a previous declaration. It is is not, the cross-
4340 -- reference entry will be emitted for the new subprogram declaration.
4341
4342 if Nkind (Parent (N)) /= N_Expression_Function then
4343 Generate_Definition (Designator);
4344 end if;
38171f43 4345
fbf5a39b
AC
4346 if Nkind (N) = N_Function_Specification then
4347 Set_Ekind (Designator, E_Function);
4348 Set_Mechanism (Designator, Default_Mechanism);
fbf5a39b
AC
4349 else
4350 Set_Ekind (Designator, E_Procedure);
4351 Set_Etype (Designator, Standard_Void_Type);
4352 end if;
4353
4bd4bb7f
AC
4354 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4355 -- those subprograms which could be inlined in GNATprove mode (because
4356 -- Body_To_Inline is non-Empty) but cannot be inlined.
4357
4358 if GNATprove_Mode then
4359 Set_Is_Inlined_Always (Designator);
4360 end if;
4361
800621e0 4362 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
4363
4364 Set_Scope (Designator, Current_Scope);
4365
fbf5a39b 4366 if Present (Formals) then
0a36105d 4367 Push_Scope (Designator);
fbf5a39b 4368 Process_Formals (Formals, N);
758c442c 4369
0929eaeb
AC
4370 -- Check dimensions in N for formals with default expression
4371
4372 Analyze_Dimension_Formals (N, Formals);
4373
a38ff9b1
ES
4374 -- Ada 2005 (AI-345): If this is an overriding operation of an
4375 -- inherited interface operation, and the controlling type is
4376 -- a synchronized type, replace the type with its corresponding
4377 -- record, to match the proper signature of an overriding operation.
69cb258c
AC
4378 -- Same processing for an access parameter whose designated type is
4379 -- derived from a synchronized interface.
758c442c 4380
0791fbe9 4381 if Ada_Version >= Ada_2005 then
d44202ba
HK
4382 declare
4383 Formal : Entity_Id;
4384 Formal_Typ : Entity_Id;
4385 Rec_Typ : Entity_Id;
69cb258c 4386 Desig_Typ : Entity_Id;
0a36105d 4387
d44202ba
HK
4388 begin
4389 Formal := First_Formal (Designator);
4390 while Present (Formal) loop
4391 Formal_Typ := Etype (Formal);
0a36105d 4392
d44202ba
HK
4393 if Is_Concurrent_Type (Formal_Typ)
4394 and then Present (Corresponding_Record_Type (Formal_Typ))
4395 then
4396 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4397
4398 if Present (Interfaces (Rec_Typ)) then
4399 Set_Etype (Formal, Rec_Typ);
4400 end if;
69cb258c
AC
4401
4402 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4403 Desig_Typ := Designated_Type (Formal_Typ);
4404
4405 if Is_Concurrent_Type (Desig_Typ)
4406 and then Present (Corresponding_Record_Type (Desig_Typ))
4407 then
4408 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4409
4410 if Present (Interfaces (Rec_Typ)) then
4411 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4412 end if;
4413 end if;
d44202ba
HK
4414 end if;
4415
4416 Next_Formal (Formal);
4417 end loop;
4418 end;
758c442c
GD
4419 end if;
4420
fbf5a39b 4421 End_Scope;
82c80734 4422
b66c3ff4
AC
4423 -- The subprogram scope is pushed and popped around the processing of
4424 -- the return type for consistency with call above to Process_Formals
4425 -- (which itself can call Analyze_Return_Type), and to ensure that any
4426 -- itype created for the return type will be associated with the proper
4427 -- scope.
4428
82c80734 4429 elsif Nkind (N) = N_Function_Specification then
b66c3ff4 4430 Push_Scope (Designator);
82c80734 4431 Analyze_Return_Type (N);
b66c3ff4 4432 End_Scope;
fbf5a39b
AC
4433 end if;
4434
e606088a
AC
4435 -- Function case
4436
fbf5a39b 4437 if Nkind (N) = N_Function_Specification then
e606088a
AC
4438
4439 -- Deal with operator symbol case
4440
fbf5a39b
AC
4441 if Nkind (Designator) = N_Defining_Operator_Symbol then
4442 Valid_Operator_Definition (Designator);
4443 end if;
4444
4445 May_Need_Actuals (Designator);
4446
fe63b1b1
ES
4447 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4448 -- the subprogram is abstract also. This does not apply to renaming
1adaea16
AC
4449 -- declarations, where abstractness is inherited, and to subprogram
4450 -- bodies generated for stream operations, which become renamings as
4451 -- bodies.
2bfb1b72 4452
fe63b1b1
ES
4453 -- In case of primitives associated with abstract interface types
4454 -- the check is applied later (see Analyze_Subprogram_Declaration).
ec4867fa 4455
1adaea16 4456 if not Nkind_In (Original_Node (Parent (N)),
3f80a182
AC
4457 N_Subprogram_Renaming_Declaration,
4458 N_Abstract_Subprogram_Declaration,
4459 N_Formal_Abstract_Subprogram_Declaration)
fbf5a39b 4460 then
2e79de51
AC
4461 if Is_Abstract_Type (Etype (Designator))
4462 and then not Is_Interface (Etype (Designator))
4463 then
4464 Error_Msg_N
4465 ("function that returns abstract type must be abstract", N);
4466
e606088a 4467 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
2e79de51
AC
4468 -- access result whose designated type is abstract.
4469
4470 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4471 and then
4472 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4473 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
dbe945f1 4474 and then Ada_Version >= Ada_2012
2e79de51
AC
4475 then
4476 Error_Msg_N ("function whose access result designates "
3f80a182 4477 & "abstract type must be abstract", N);
2e79de51 4478 end if;
fbf5a39b
AC
4479 end if;
4480 end if;
4481
4482 return Designator;
4483 end Analyze_Subprogram_Specification;
4484
996ae0b0
RK
4485 -----------------------
4486 -- Check_Conformance --
4487 -----------------------
4488
4489 procedure Check_Conformance
41251c60
JM
4490 (New_Id : Entity_Id;
4491 Old_Id : Entity_Id;
4492 Ctype : Conformance_Type;
4493 Errmsg : Boolean;
4494 Conforms : out Boolean;
4495 Err_Loc : Node_Id := Empty;
4496 Get_Inst : Boolean := False;
4497 Skip_Controlling_Formals : Boolean := False)
996ae0b0 4498 is
996ae0b0 4499 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
c27f2f15
RD
4500 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4501 -- If Errmsg is True, then processing continues to post an error message
4502 -- for conformance error on given node. Two messages are output. The
4503 -- first message points to the previous declaration with a general "no
4504 -- conformance" message. The second is the detailed reason, supplied as
4505 -- Msg. The parameter N provide information for a possible & insertion
4506 -- in the message, and also provides the location for posting the
4507 -- message in the absence of a specified Err_Loc location.
996ae0b0
RK
4508
4509 -----------------------
4510 -- Conformance_Error --
4511 -----------------------
4512
4513 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4514 Enode : Node_Id;
4515
4516 begin
4517 Conforms := False;
4518
4519 if Errmsg then
4520 if No (Err_Loc) then
4521 Enode := N;
4522 else
4523 Enode := Err_Loc;
4524 end if;
4525
4526 Error_Msg_Sloc := Sloc (Old_Id);
4527
4528 case Ctype is
4529 when Type_Conformant =>
483c78cb 4530 Error_Msg_N -- CODEFIX
996ae0b0
RK
4531 ("not type conformant with declaration#!", Enode);
4532
4533 when Mode_Conformant =>
19590d70 4534 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4535 Error_Msg_N
19590d70
GD
4536 ("not mode conformant with operation inherited#!",
4537 Enode);
4538 else
ed2233dc 4539 Error_Msg_N
19590d70
GD
4540 ("not mode conformant with declaration#!", Enode);
4541 end if;
996ae0b0
RK
4542
4543 when Subtype_Conformant =>
19590d70 4544 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4545 Error_Msg_N
19590d70
GD
4546 ("not subtype conformant with operation inherited#!",
4547 Enode);
4548 else
ed2233dc 4549 Error_Msg_N
19590d70
GD
4550 ("not subtype conformant with declaration#!", Enode);
4551 end if;
996ae0b0
RK
4552
4553 when Fully_Conformant =>
19590d70 4554 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
483c78cb 4555 Error_Msg_N -- CODEFIX
19590d70
GD
4556 ("not fully conformant with operation inherited#!",
4557 Enode);
4558 else
483c78cb 4559 Error_Msg_N -- CODEFIX
19590d70
GD
4560 ("not fully conformant with declaration#!", Enode);
4561 end if;
996ae0b0
RK
4562 end case;
4563
4564 Error_Msg_NE (Msg, Enode, N);
4565 end if;
4566 end Conformance_Error;
4567
ec4867fa
ES
4568 -- Local Variables
4569
4570 Old_Type : constant Entity_Id := Etype (Old_Id);
4571 New_Type : constant Entity_Id := Etype (New_Id);
4572 Old_Formal : Entity_Id;
4573 New_Formal : Entity_Id;
4574 Access_Types_Match : Boolean;
4575 Old_Formal_Base : Entity_Id;
4576 New_Formal_Base : Entity_Id;
4577
996ae0b0
RK
4578 -- Start of processing for Check_Conformance
4579
4580 begin
4581 Conforms := True;
4582
82c80734
RD
4583 -- We need a special case for operators, since they don't appear
4584 -- explicitly.
996ae0b0
RK
4585
4586 if Ctype = Type_Conformant then
4587 if Ekind (New_Id) = E_Operator
4588 and then Operator_Matches_Spec (New_Id, Old_Id)
4589 then
4590 return;
4591 end if;
4592 end if;
4593
4594 -- If both are functions/operators, check return types conform
4595
4596 if Old_Type /= Standard_Void_Type
3cb9a885
AC
4597 and then
4598 New_Type /= Standard_Void_Type
996ae0b0 4599 then
fceeaab6
ES
4600 -- If we are checking interface conformance we omit controlling
4601 -- arguments and result, because we are only checking the conformance
4602 -- of the remaining parameters.
4603
4604 if Has_Controlling_Result (Old_Id)
4605 and then Has_Controlling_Result (New_Id)
4606 and then Skip_Controlling_Formals
4607 then
4608 null;
4609
4610 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
7f568bfa
AC
4611 if Ctype >= Subtype_Conformant
4612 and then not Predicates_Match (Old_Type, New_Type)
4613 then
4614 Conformance_Error
4615 ("\predicate of return type does not match!", New_Id);
4616 else
4617 Conformance_Error
4618 ("\return type does not match!", New_Id);
4619 end if;
4620
996ae0b0
RK
4621 return;
4622 end if;
4623
41251c60 4624 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 4625 -- null-exclusion and access-to-constant attributes match.
41251c60 4626
0791fbe9 4627 if Ada_Version >= Ada_2005
41251c60
JM
4628 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4629 and then
8fde064e
AC
4630 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4631 or else Is_Access_Constant (Etype (Old_Type)) /=
4632 Is_Access_Constant (Etype (New_Type)))
41251c60 4633 then
5d37ba92 4634 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
4635 return;
4636 end if;
4637
996ae0b0
RK
4638 -- If either is a function/operator and the other isn't, error
4639
4640 elsif Old_Type /= Standard_Void_Type
4641 or else New_Type /= Standard_Void_Type
4642 then
5d37ba92 4643 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
4644 return;
4645 end if;
4646
0a36105d 4647 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
4648 -- If this is a renaming as body, refine error message to indicate that
4649 -- the conflict is with the original declaration. If the entity is not
4650 -- frozen, the conventions don't have to match, the one of the renamed
4651 -- entity is inherited.
4652
4653 if Ctype >= Subtype_Conformant then
996ae0b0 4654 if Convention (Old_Id) /= Convention (New_Id) then
996ae0b0
RK
4655 if not Is_Frozen (New_Id) then
4656 null;
4657
4658 elsif Present (Err_Loc)
4659 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4660 and then Present (Corresponding_Spec (Err_Loc))
4661 then
4662 Error_Msg_Name_1 := Chars (New_Id);
4663 Error_Msg_Name_2 :=
4664 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5d37ba92 4665 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
4666
4667 else
5d37ba92 4668 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
4669 end if;
4670
4671 return;
4672
4673 elsif Is_Formal_Subprogram (Old_Id)
4674 or else Is_Formal_Subprogram (New_Id)
4675 then
5d37ba92 4676 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0 4677 return;
c5cec2fe
AC
4678
4679 -- Pragma Ghost behaves as a convention in the context of subtype
10274386
AC
4680 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4681 -- subprograms as their spec may reside in a Ghost region and their
4682 -- body not, or vice versa.
c5cec2fe 4683
10274386
AC
4684 elsif Comes_From_Source (Old_Id)
4685 and then Comes_From_Source (New_Id)
4686 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4687 then
c5cec2fe
AC
4688 Conformance_Error ("\ghost modes do not match!");
4689 return;
996ae0b0
RK
4690 end if;
4691 end if;
4692
4693 -- Deal with parameters
4694
4695 -- Note: we use the entity information, rather than going directly
4696 -- to the specification in the tree. This is not only simpler, but
4697 -- absolutely necessary for some cases of conformance tests between
a90bd866 4698 -- operators, where the declaration tree simply does not exist.
996ae0b0
RK
4699
4700 Old_Formal := First_Formal (Old_Id);
4701 New_Formal := First_Formal (New_Id);
996ae0b0 4702 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
4703 if Is_Controlling_Formal (Old_Formal)
4704 and then Is_Controlling_Formal (New_Formal)
4705 and then Skip_Controlling_Formals
4706 then
a2dc5812
AC
4707 -- The controlling formals will have different types when
4708 -- comparing an interface operation with its match, but both
4709 -- or neither must be access parameters.
4710
4711 if Is_Access_Type (Etype (Old_Formal))
4712 =
4713 Is_Access_Type (Etype (New_Formal))
4714 then
4715 goto Skip_Controlling_Formal;
4716 else
4717 Conformance_Error
4718 ("\access parameter does not match!", New_Formal);
4719 end if;
41251c60
JM
4720 end if;
4721
21791d97 4722 -- Ada 2012: Mode conformance also requires that formal parameters
2a290fec
AC
4723 -- be both aliased, or neither.
4724
21791d97 4725 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
2a290fec
AC
4726 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4727 Conformance_Error
4728 ("\aliased parameter mismatch!", New_Formal);
4729 end if;
4730 end if;
4731
fbf5a39b
AC
4732 if Ctype = Fully_Conformant then
4733
4734 -- Names must match. Error message is more accurate if we do
4735 -- this before checking that the types of the formals match.
4736
4737 if Chars (Old_Formal) /= Chars (New_Formal) then
3ccedacc 4738 Conformance_Error ("\name& does not match!", New_Formal);
fbf5a39b
AC
4739
4740 -- Set error posted flag on new formal as well to stop
4741 -- junk cascaded messages in some cases.
4742
4743 Set_Error_Posted (New_Formal);
4744 return;
4745 end if;
40b93859
RD
4746
4747 -- Null exclusion must match
4748
4749 if Null_Exclusion_Present (Parent (Old_Formal))
4750 /=
4751 Null_Exclusion_Present (Parent (New_Formal))
4752 then
4753 -- Only give error if both come from source. This should be
4754 -- investigated some time, since it should not be needed ???
4755
4756 if Comes_From_Source (Old_Formal)
4757 and then
4758 Comes_From_Source (New_Formal)
4759 then
4760 Conformance_Error
3ccedacc 4761 ("\null exclusion for& does not match", New_Formal);
40b93859
RD
4762
4763 -- Mark error posted on the new formal to avoid duplicated
4764 -- complaint about types not matching.
4765
4766 Set_Error_Posted (New_Formal);
4767 end if;
4768 end if;
fbf5a39b 4769 end if;
996ae0b0 4770
ec4867fa
ES
4771 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4772 -- case occurs whenever a subprogram is being renamed and one of its
4773 -- parameters imposes a null exclusion. For example:
4774
4775 -- type T is null record;
4776 -- type Acc_T is access T;
4777 -- subtype Acc_T_Sub is Acc_T;
4778
4779 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4780 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4781 -- renames P;
4782
4783 Old_Formal_Base := Etype (Old_Formal);
4784 New_Formal_Base := Etype (New_Formal);
4785
4786 if Get_Inst then
4787 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4788 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4789 end if;
4790
0791fbe9 4791 Access_Types_Match := Ada_Version >= Ada_2005
ec4867fa 4792
8fde064e
AC
4793 -- Ensure that this rule is only applied when New_Id is a
4794 -- renaming of Old_Id.
ec4867fa 4795
5d37ba92
ES
4796 and then Nkind (Parent (Parent (New_Id))) =
4797 N_Subprogram_Renaming_Declaration
ec4867fa
ES
4798 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4799 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4800 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4801
8fde064e 4802 -- Now handle the allowed access-type case
ec4867fa
ES
4803
4804 and then Is_Access_Type (Old_Formal_Base)
4805 and then Is_Access_Type (New_Formal_Base)
5d37ba92 4806
8fde064e
AC
4807 -- The type kinds must match. The only exception occurs with
4808 -- multiple generics of the form:
5d37ba92 4809
8fde064e
AC
4810 -- generic generic
4811 -- type F is private; type A is private;
4812 -- type F_Ptr is access F; type A_Ptr is access A;
4813 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4814 -- package F_Pack is ... package A_Pack is
4815 -- package F_Inst is
4816 -- new F_Pack (A, A_Ptr, A_P);
5d37ba92 4817
8fde064e
AC
4818 -- When checking for conformance between the parameters of A_P
4819 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4820 -- because the compiler has transformed A_Ptr into a subtype of
4821 -- F_Ptr. We catch this case in the code below.
5d37ba92
ES
4822
4823 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4b6f99f5
RD
4824 or else
4825 (Is_Generic_Type (Old_Formal_Base)
4826 and then Is_Generic_Type (New_Formal_Base)
4827 and then Is_Internal (New_Formal_Base)
4828 and then Etype (Etype (New_Formal_Base)) =
4829 Old_Formal_Base))
4830 and then Directly_Designated_Type (Old_Formal_Base) =
4831 Directly_Designated_Type (New_Formal_Base)
ec4867fa
ES
4832 and then ((Is_Itype (Old_Formal_Base)
4833 and then Can_Never_Be_Null (Old_Formal_Base))
4b6f99f5
RD
4834 or else
4835 (Is_Itype (New_Formal_Base)
4836 and then Can_Never_Be_Null (New_Formal_Base)));
ec4867fa 4837
996ae0b0
RK
4838 -- Types must always match. In the visible part of an instance,
4839 -- usual overloading rules for dispatching operations apply, and
4840 -- we check base types (not the actual subtypes).
4841
4842 if In_Instance_Visible_Part
4843 and then Is_Dispatching_Operation (New_Id)
4844 then
4845 if not Conforming_Types
ec4867fa
ES
4846 (T1 => Base_Type (Etype (Old_Formal)),
4847 T2 => Base_Type (Etype (New_Formal)),
4848 Ctype => Ctype,
4849 Get_Inst => Get_Inst)
4850 and then not Access_Types_Match
996ae0b0 4851 then
5d37ba92 4852 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
4853 return;
4854 end if;
4855
4856 elsif not Conforming_Types
5d37ba92
ES
4857 (T1 => Old_Formal_Base,
4858 T2 => New_Formal_Base,
ec4867fa
ES
4859 Ctype => Ctype,
4860 Get_Inst => Get_Inst)
4861 and then not Access_Types_Match
996ae0b0 4862 then
c27f2f15
RD
4863 -- Don't give error message if old type is Any_Type. This test
4864 -- avoids some cascaded errors, e.g. in case of a bad spec.
4865
4866 if Errmsg and then Old_Formal_Base = Any_Type then
4867 Conforms := False;
4868 else
7f568bfa
AC
4869 if Ctype >= Subtype_Conformant
4870 and then
4871 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4872 then
4873 Conformance_Error
4874 ("\predicate of & does not match!", New_Formal);
4875 else
4876 Conformance_Error
4877 ("\type of & does not match!", New_Formal);
4878 end if;
c27f2f15
RD
4879 end if;
4880
996ae0b0
RK
4881 return;
4882 end if;
4883
4884 -- For mode conformance, mode must match
4885
5d37ba92
ES
4886 if Ctype >= Mode_Conformant then
4887 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
dd54644b
JM
4888 if not Ekind_In (New_Id, E_Function, E_Procedure)
4889 or else not Is_Primitive_Wrapper (New_Id)
4890 then
4891 Conformance_Error ("\mode of & does not match!", New_Formal);
c199ccf7 4892
dd54644b
JM
4893 else
4894 declare
c199ccf7 4895 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
dd54644b 4896 begin
3ccedacc 4897 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
dd54644b 4898 then
2c6336be 4899 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
dd54644b
JM
4900 else
4901 Conformance_Error
4902 ("\mode of & does not match!", New_Formal);
4903 end if;
4904 end;
4905 end if;
4906
5d37ba92
ES
4907 return;
4908
4909 -- Part of mode conformance for access types is having the same
4910 -- constant modifier.
4911
4912 elsif Access_Types_Match
4913 and then Is_Access_Constant (Old_Formal_Base) /=
4914 Is_Access_Constant (New_Formal_Base)
4915 then
4916 Conformance_Error
4917 ("\constant modifier does not match!", New_Formal);
4918 return;
4919 end if;
996ae0b0
RK
4920 end if;
4921
0a36105d 4922 if Ctype >= Subtype_Conformant then
996ae0b0 4923
0a36105d
JM
4924 -- Ada 2005 (AI-231): In case of anonymous access types check
4925 -- the null-exclusion and access-to-constant attributes must
c7b9d548
AC
4926 -- match. For null exclusion, we test the types rather than the
4927 -- formals themselves, since the attribute is only set reliably
4928 -- on the formals in the Ada 95 case, and we exclude the case
4929 -- where Old_Formal is marked as controlling, to avoid errors
4930 -- when matching completing bodies with dispatching declarations
4931 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
996ae0b0 4932
0791fbe9 4933 if Ada_Version >= Ada_2005
0a36105d
JM
4934 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4935 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4936 and then
c7b9d548
AC
4937 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4938 Can_Never_Be_Null (Etype (New_Formal))
4939 and then
4940 not Is_Controlling_Formal (Old_Formal))
0a36105d
JM
4941 or else
4942 Is_Access_Constant (Etype (Old_Formal)) /=
4943 Is_Access_Constant (Etype (New_Formal)))
40b93859
RD
4944
4945 -- Do not complain if error already posted on New_Formal. This
4946 -- avoids some redundant error messages.
4947
4948 and then not Error_Posted (New_Formal)
0a36105d
JM
4949 then
4950 -- It is allowed to omit the null-exclusion in case of stream
4951 -- attribute subprograms. We recognize stream subprograms
4952 -- through their TSS-generated suffix.
996ae0b0 4953
0a36105d
JM
4954 declare
4955 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3ada950b 4956
0a36105d
JM
4957 begin
4958 if TSS_Name /= TSS_Stream_Read
4959 and then TSS_Name /= TSS_Stream_Write
4960 and then TSS_Name /= TSS_Stream_Input
4961 and then TSS_Name /= TSS_Stream_Output
4962 then
3ada950b 4963 -- Here we have a definite conformance error. It is worth
71fb4dc8 4964 -- special casing the error message for the case of a
3ada950b
AC
4965 -- controlling formal (which excludes null).
4966
4967 if Is_Controlling_Formal (New_Formal) then
4968 Error_Msg_Node_2 := Scope (New_Formal);
4969 Conformance_Error
3ccedacc
AC
4970 ("\controlling formal & of & excludes null, "
4971 & "declaration must exclude null as well",
4972 New_Formal);
3ada950b
AC
4973
4974 -- Normal case (couldn't we give more detail here???)
4975
4976 else
4977 Conformance_Error
4978 ("\type of & does not match!", New_Formal);
4979 end if;
4980
0a36105d
JM
4981 return;
4982 end if;
4983 end;
4984 end if;
4985 end if;
41251c60 4986
0a36105d 4987 -- Full conformance checks
41251c60 4988
0a36105d 4989 if Ctype = Fully_Conformant then
e660dbf7 4990
0a36105d 4991 -- We have checked already that names match
e660dbf7 4992
0a36105d 4993 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
4994
4995 -- Check default expressions for in parameters
4996
996ae0b0
RK
4997 declare
4998 NewD : constant Boolean :=
4999 Present (Default_Value (New_Formal));
5000 OldD : constant Boolean :=
5001 Present (Default_Value (Old_Formal));
5002 begin
5003 if NewD or OldD then
5004
82c80734
RD
5005 -- The old default value has been analyzed because the
5006 -- current full declaration will have frozen everything
0a36105d
JM
5007 -- before. The new default value has not been analyzed,
5008 -- so analyze it now before we check for conformance.
996ae0b0
RK
5009
5010 if NewD then
0a36105d 5011 Push_Scope (New_Id);
21d27997 5012 Preanalyze_Spec_Expression
fbf5a39b 5013 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
5014 End_Scope;
5015 end if;
5016
5017 if not (NewD and OldD)
5018 or else not Fully_Conformant_Expressions
5019 (Default_Value (Old_Formal),
5020 Default_Value (New_Formal))
5021 then
5022 Conformance_Error
5d37ba92 5023 ("\default expression for & does not match!",
996ae0b0
RK
5024 New_Formal);
5025 return;
5026 end if;
5027 end if;
5028 end;
5029 end if;
5030 end if;
5031
5032 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 5033 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
5034 -- or if either old or new instance is not from the source program.
5035
0ab80019 5036 if Ada_Version = Ada_83
996ae0b0
RK
5037 and then Sloc (Old_Id) > Standard_Location
5038 and then Sloc (New_Id) > Standard_Location
5039 and then Comes_From_Source (Old_Id)
5040 and then Comes_From_Source (New_Id)
5041 then
5042 declare
5043 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5044 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5045
5046 begin
5047 -- Explicit IN must be present or absent in both cases. This
5048 -- test is required only in the full conformance case.
5049
5050 if In_Present (Old_Param) /= In_Present (New_Param)
5051 and then Ctype = Fully_Conformant
5052 then
5053 Conformance_Error
5d37ba92 5054 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
5055 New_Formal);
5056 return;
5057 end if;
5058
5059 -- Grouping (use of comma in param lists) must be the same
5060 -- This is where we catch a misconformance like:
5061
0a36105d 5062 -- A, B : Integer
996ae0b0
RK
5063 -- A : Integer; B : Integer
5064
5065 -- which are represented identically in the tree except
5066 -- for the setting of the flags More_Ids and Prev_Ids.
5067
5068 if More_Ids (Old_Param) /= More_Ids (New_Param)
5069 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5070 then
5071 Conformance_Error
5d37ba92 5072 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
5073 return;
5074 end if;
5075 end;
5076 end if;
5077
41251c60
JM
5078 -- This label is required when skipping controlling formals
5079
5080 <<Skip_Controlling_Formal>>
5081
996ae0b0
RK
5082 Next_Formal (Old_Formal);
5083 Next_Formal (New_Formal);
5084 end loop;
5085
5086 if Present (Old_Formal) then
5d37ba92 5087 Conformance_Error ("\too few parameters!");
996ae0b0
RK
5088 return;
5089
5090 elsif Present (New_Formal) then
5d37ba92 5091 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
5092 return;
5093 end if;
996ae0b0
RK
5094 end Check_Conformance;
5095
ec4867fa
ES
5096 -----------------------
5097 -- Check_Conventions --
5098 -----------------------
5099
5100 procedure Check_Conventions (Typ : Entity_Id) is
ce2b6ba5 5101 Ifaces_List : Elist_Id;
0a36105d 5102
ce2b6ba5 5103 procedure Check_Convention (Op : Entity_Id);
0a36105d
JM
5104 -- Verify that the convention of inherited dispatching operation Op is
5105 -- consistent among all subprograms it overrides. In order to minimize
5106 -- the search, Search_From is utilized to designate a specific point in
5107 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
5108
5109 ----------------------
5110 -- Check_Convention --
5111 ----------------------
5112
ce2b6ba5 5113 procedure Check_Convention (Op : Entity_Id) is
c5cec2fe 5114 Op_Conv : constant Convention_Id := Convention (Op);
9f6aaa5c 5115 Iface_Conv : Convention_Id;
ce2b6ba5
JM
5116 Iface_Elmt : Elmt_Id;
5117 Iface_Prim_Elmt : Elmt_Id;
5118 Iface_Prim : Entity_Id;
ec4867fa 5119
ce2b6ba5
JM
5120 begin
5121 Iface_Elmt := First_Elmt (Ifaces_List);
5122 while Present (Iface_Elmt) loop
5123 Iface_Prim_Elmt :=
9f6aaa5c 5124 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
ce2b6ba5
JM
5125 while Present (Iface_Prim_Elmt) loop
5126 Iface_Prim := Node (Iface_Prim_Elmt);
c5cec2fe 5127 Iface_Conv := Convention (Iface_Prim);
ce2b6ba5
JM
5128
5129 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
9f6aaa5c 5130 and then Iface_Conv /= Op_Conv
ce2b6ba5 5131 then
ed2233dc 5132 Error_Msg_N
ce2b6ba5 5133 ("inconsistent conventions in primitive operations", Typ);
ec4867fa 5134
ce2b6ba5 5135 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c 5136 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
ce2b6ba5 5137 Error_Msg_Sloc := Sloc (Op);
ec4867fa 5138
7a963087 5139 if Comes_From_Source (Op) or else No (Alias (Op)) then
038140ed 5140 if not Present (Overridden_Operation (Op)) then
ed2233dc 5141 Error_Msg_N ("\\primitive % defined #", Typ);
ce2b6ba5 5142 else
ed2233dc 5143 Error_Msg_N
3ccedacc
AC
5144 ("\\overriding operation % with "
5145 & "convention % defined #", Typ);
ce2b6ba5 5146 end if;
ec4867fa 5147
ce2b6ba5
JM
5148 else pragma Assert (Present (Alias (Op)));
5149 Error_Msg_Sloc := Sloc (Alias (Op));
3ccedacc
AC
5150 Error_Msg_N ("\\inherited operation % with "
5151 & "convention % defined #", Typ);
ce2b6ba5 5152 end if;
ec4867fa 5153
ce2b6ba5 5154 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c
AC
5155 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5156 Error_Msg_Sloc := Sloc (Iface_Prim);
3ccedacc
AC
5157 Error_Msg_N ("\\overridden operation % with "
5158 & "convention % defined #", Typ);
ec4867fa 5159
ce2b6ba5 5160 -- Avoid cascading errors
ec4867fa 5161
ce2b6ba5
JM
5162 return;
5163 end if;
ec4867fa 5164
ce2b6ba5
JM
5165 Next_Elmt (Iface_Prim_Elmt);
5166 end loop;
ec4867fa 5167
ce2b6ba5 5168 Next_Elmt (Iface_Elmt);
ec4867fa
ES
5169 end loop;
5170 end Check_Convention;
5171
5172 -- Local variables
5173
5174 Prim_Op : Entity_Id;
5175 Prim_Op_Elmt : Elmt_Id;
5176
5177 -- Start of processing for Check_Conventions
5178
5179 begin
ce2b6ba5
JM
5180 if not Has_Interfaces (Typ) then
5181 return;
5182 end if;
5183
5184 Collect_Interfaces (Typ, Ifaces_List);
5185
0a36105d
JM
5186 -- The algorithm checks every overriding dispatching operation against
5187 -- all the corresponding overridden dispatching operations, detecting
f3d57416 5188 -- differences in conventions.
ec4867fa
ES
5189
5190 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5191 while Present (Prim_Op_Elmt) loop
5192 Prim_Op := Node (Prim_Op_Elmt);
5193
0a36105d 5194 -- A small optimization: skip the predefined dispatching operations
ce2b6ba5 5195 -- since they always have the same convention.
ec4867fa 5196
ce2b6ba5
JM
5197 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5198 Check_Convention (Prim_Op);
ec4867fa
ES
5199 end if;
5200
5201 Next_Elmt (Prim_Op_Elmt);
5202 end loop;
5203 end Check_Conventions;
5204
996ae0b0
RK
5205 ------------------------------
5206 -- Check_Delayed_Subprogram --
5207 ------------------------------
5208
5209 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5210 F : Entity_Id;
5211
5212 procedure Possible_Freeze (T : Entity_Id);
5213 -- T is the type of either a formal parameter or of the return type.
5214 -- If T is not yet frozen and needs a delayed freeze, then the
4a13695c
AC
5215 -- subprogram itself must be delayed. If T is the limited view of an
5216 -- incomplete type the subprogram must be frozen as well, because
5217 -- T may depend on local types that have not been frozen yet.
996ae0b0 5218
82c80734
RD
5219 ---------------------
5220 -- Possible_Freeze --
5221 ---------------------
5222
996ae0b0
RK
5223 procedure Possible_Freeze (T : Entity_Id) is
5224 begin
4a13695c 5225 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
996ae0b0
RK
5226 Set_Has_Delayed_Freeze (Designator);
5227
5228 elsif Is_Access_Type (T)
5229 and then Has_Delayed_Freeze (Designated_Type (T))
5230 and then not Is_Frozen (Designated_Type (T))
5231 then
5232 Set_Has_Delayed_Freeze (Designator);
e358346d 5233
7b56a91b
AC
5234 elsif Ekind (T) = E_Incomplete_Type
5235 and then From_Limited_With (T)
5236 then
e358346d 5237 Set_Has_Delayed_Freeze (Designator);
406935b6 5238
9aff36e9
RD
5239 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5240 -- of a subprogram or entry declaration.
406935b6
AC
5241
5242 elsif Ekind (T) = E_Incomplete_Type
5243 and then Ada_Version >= Ada_2012
5244 then
5245 Set_Has_Delayed_Freeze (Designator);
996ae0b0 5246 end if;
4a13695c 5247
996ae0b0
RK
5248 end Possible_Freeze;
5249
5250 -- Start of processing for Check_Delayed_Subprogram
5251
5252 begin
76e3504f
AC
5253 -- All subprograms, including abstract subprograms, may need a freeze
5254 -- node if some formal type or the return type needs one.
996ae0b0 5255
76e3504f
AC
5256 Possible_Freeze (Etype (Designator));
5257 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
996ae0b0 5258
76e3504f
AC
5259 -- Need delayed freeze if any of the formal types themselves need
5260 -- a delayed freeze and are not yet frozen.
996ae0b0 5261
76e3504f
AC
5262 F := First_Formal (Designator);
5263 while Present (F) loop
5264 Possible_Freeze (Etype (F));
5265 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5266 Next_Formal (F);
5267 end loop;
996ae0b0
RK
5268
5269 -- Mark functions that return by reference. Note that it cannot be
5270 -- done for delayed_freeze subprograms because the underlying
5271 -- returned type may not be known yet (for private types)
5272
8fde064e 5273 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
996ae0b0
RK
5274 declare
5275 Typ : constant Entity_Id := Etype (Designator);
5276 Utyp : constant Entity_Id := Underlying_Type (Typ);
996ae0b0 5277 begin
51245e2d 5278 if Is_Limited_View (Typ) then
996ae0b0 5279 Set_Returns_By_Ref (Designator);
048e5cef 5280 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
996ae0b0
RK
5281 Set_Returns_By_Ref (Designator);
5282 end if;
5283 end;
5284 end if;
5285 end Check_Delayed_Subprogram;
5286
5287 ------------------------------------
5288 -- Check_Discriminant_Conformance --
5289 ------------------------------------
5290
5291 procedure Check_Discriminant_Conformance
5292 (N : Node_Id;
5293 Prev : Entity_Id;
5294 Prev_Loc : Node_Id)
5295 is
5296 Old_Discr : Entity_Id := First_Discriminant (Prev);
5297 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5298 New_Discr_Id : Entity_Id;
5299 New_Discr_Type : Entity_Id;
5300
5301 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
5302 -- Post error message for conformance error on given node. Two messages
5303 -- are output. The first points to the previous declaration with a
5304 -- general "no conformance" message. The second is the detailed reason,
5305 -- supplied as Msg. The parameter N provide information for a possible
5306 -- & insertion in the message.
996ae0b0
RK
5307
5308 -----------------------
5309 -- Conformance_Error --
5310 -----------------------
5311
5312 procedure Conformance_Error (Msg : String; N : Node_Id) is
5313 begin
5314 Error_Msg_Sloc := Sloc (Prev_Loc);
483c78cb
RD
5315 Error_Msg_N -- CODEFIX
5316 ("not fully conformant with declaration#!", N);
996ae0b0
RK
5317 Error_Msg_NE (Msg, N, N);
5318 end Conformance_Error;
5319
5320 -- Start of processing for Check_Discriminant_Conformance
5321
5322 begin
5323 while Present (Old_Discr) and then Present (New_Discr) loop
996ae0b0
RK
5324 New_Discr_Id := Defining_Identifier (New_Discr);
5325
82c80734
RD
5326 -- The subtype mark of the discriminant on the full type has not
5327 -- been analyzed so we do it here. For an access discriminant a new
5328 -- type is created.
996ae0b0
RK
5329
5330 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5331 New_Discr_Type :=
5332 Access_Definition (N, Discriminant_Type (New_Discr));
5333
5334 else
5335 Analyze (Discriminant_Type (New_Discr));
5336 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
e50e1c5e
AC
5337
5338 -- Ada 2005: if the discriminant definition carries a null
5339 -- exclusion, create an itype to check properly for consistency
5340 -- with partial declaration.
5341
5342 if Is_Access_Type (New_Discr_Type)
8fde064e 5343 and then Null_Exclusion_Present (New_Discr)
e50e1c5e
AC
5344 then
5345 New_Discr_Type :=
5346 Create_Null_Excluding_Itype
5347 (T => New_Discr_Type,
5348 Related_Nod => New_Discr,
5349 Scope_Id => Current_Scope);
5350 end if;
996ae0b0
RK
5351 end if;
5352
5353 if not Conforming_Types
5354 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5355 then
5356 Conformance_Error ("type of & does not match!", New_Discr_Id);
5357 return;
fbf5a39b 5358 else
82c80734
RD
5359 -- Treat the new discriminant as an occurrence of the old one,
5360 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
5361 -- information, for completeness.
5362
5363 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5364 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5365 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
5366 end if;
5367
5368 -- Names must match
5369
5370 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5371 Conformance_Error ("name & does not match!", New_Discr_Id);
5372 return;
5373 end if;
5374
5375 -- Default expressions must match
5376
5377 declare
5378 NewD : constant Boolean :=
5379 Present (Expression (New_Discr));
5380 OldD : constant Boolean :=
5381 Present (Expression (Parent (Old_Discr)));
5382
5383 begin
5384 if NewD or OldD then
5385
5386 -- The old default value has been analyzed and expanded,
5387 -- because the current full declaration will have frozen
82c80734
RD
5388 -- everything before. The new default values have not been
5389 -- expanded, so expand now to check conformance.
996ae0b0
RK
5390
5391 if NewD then
21d27997 5392 Preanalyze_Spec_Expression
996ae0b0
RK
5393 (Expression (New_Discr), New_Discr_Type);
5394 end if;
5395
5396 if not (NewD and OldD)
5397 or else not Fully_Conformant_Expressions
5398 (Expression (Parent (Old_Discr)),
5399 Expression (New_Discr))
5400
5401 then
5402 Conformance_Error
5403 ("default expression for & does not match!",
5404 New_Discr_Id);
5405 return;
5406 end if;
5407 end if;
5408 end;
5409
5410 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5411
0ab80019 5412 if Ada_Version = Ada_83 then
996ae0b0
RK
5413 declare
5414 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5415
5416 begin
5417 -- Grouping (use of comma in param lists) must be the same
5418 -- This is where we catch a misconformance like:
5419
60370fb1 5420 -- A, B : Integer
996ae0b0
RK
5421 -- A : Integer; B : Integer
5422
5423 -- which are represented identically in the tree except
5424 -- for the setting of the flags More_Ids and Prev_Ids.
5425
5426 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5427 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5428 then
5429 Conformance_Error
5430 ("grouping of & does not match!", New_Discr_Id);
5431 return;
5432 end if;
5433 end;
5434 end if;
5435
5436 Next_Discriminant (Old_Discr);
5437 Next (New_Discr);
5438 end loop;
5439
5440 if Present (Old_Discr) then
5441 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5442 return;
5443
5444 elsif Present (New_Discr) then
5445 Conformance_Error
5446 ("too many discriminants!", Defining_Identifier (New_Discr));
5447 return;
5448 end if;
5449 end Check_Discriminant_Conformance;
5450
5451 ----------------------------
5452 -- Check_Fully_Conformant --
5453 ----------------------------
5454
5455 procedure Check_Fully_Conformant
5456 (New_Id : Entity_Id;
5457 Old_Id : Entity_Id;
5458 Err_Loc : Node_Id := Empty)
5459 is
5460 Result : Boolean;
81db9d77 5461 pragma Warnings (Off, Result);
996ae0b0
RK
5462 begin
5463 Check_Conformance
5464 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5465 end Check_Fully_Conformant;
5466
5467 ---------------------------
5468 -- Check_Mode_Conformant --
5469 ---------------------------
5470
5471 procedure Check_Mode_Conformant
5472 (New_Id : Entity_Id;
5473 Old_Id : Entity_Id;
5474 Err_Loc : Node_Id := Empty;
5475 Get_Inst : Boolean := False)
5476 is
5477 Result : Boolean;
81db9d77 5478 pragma Warnings (Off, Result);
996ae0b0
RK
5479 begin
5480 Check_Conformance
5481 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5482 end Check_Mode_Conformant;
5483
fbf5a39b 5484 --------------------------------
758c442c 5485 -- Check_Overriding_Indicator --
fbf5a39b
AC
5486 --------------------------------
5487
758c442c 5488 procedure Check_Overriding_Indicator
ec4867fa 5489 (Subp : Entity_Id;
5d37ba92
ES
5490 Overridden_Subp : Entity_Id;
5491 Is_Primitive : Boolean)
fbf5a39b 5492 is
758c442c
GD
5493 Decl : Node_Id;
5494 Spec : Node_Id;
fbf5a39b
AC
5495
5496 begin
ec4867fa 5497 -- No overriding indicator for literals
fbf5a39b 5498
ec4867fa 5499 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 5500 return;
fbf5a39b 5501
ec4867fa
ES
5502 elsif Ekind (Subp) = E_Entry then
5503 Decl := Parent (Subp);
5504
53b10ce9
AC
5505 -- No point in analyzing a malformed operator
5506
5507 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5508 and then Error_Posted (Subp)
5509 then
5510 return;
5511
758c442c
GD
5512 else
5513 Decl := Unit_Declaration_Node (Subp);
5514 end if;
fbf5a39b 5515
800621e0
RD
5516 if Nkind_In (Decl, N_Subprogram_Body,
5517 N_Subprogram_Body_Stub,
5518 N_Subprogram_Declaration,
5519 N_Abstract_Subprogram_Declaration,
5520 N_Subprogram_Renaming_Declaration)
758c442c
GD
5521 then
5522 Spec := Specification (Decl);
ec4867fa
ES
5523
5524 elsif Nkind (Decl) = N_Entry_Declaration then
5525 Spec := Decl;
5526
758c442c
GD
5527 else
5528 return;
5529 end if;
fbf5a39b 5530
e7d72fb9
AC
5531 -- The overriding operation is type conformant with the overridden one,
5532 -- but the names of the formals are not required to match. If the names
6823270c 5533 -- appear permuted in the overriding operation, this is a possible
e7d72fb9
AC
5534 -- source of confusion that is worth diagnosing. Controlling formals
5535 -- often carry names that reflect the type, and it is not worthwhile
5536 -- requiring that their names match.
5537
c9e7bd8e 5538 if Present (Overridden_Subp)
e7d72fb9
AC
5539 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5540 then
5541 declare
5542 Form1 : Entity_Id;
5543 Form2 : Entity_Id;
5544
5545 begin
5546 Form1 := First_Formal (Subp);
5547 Form2 := First_Formal (Overridden_Subp);
5548
c9e7bd8e
AC
5549 -- If the overriding operation is a synchronized operation, skip
5550 -- the first parameter of the overridden operation, which is
6823270c
AC
5551 -- implicit in the new one. If the operation is declared in the
5552 -- body it is not primitive and all formals must match.
c9e7bd8e 5553
6823270c
AC
5554 if Is_Concurrent_Type (Scope (Subp))
5555 and then Is_Tagged_Type (Scope (Subp))
5556 and then not Has_Completion (Scope (Subp))
5557 then
c9e7bd8e
AC
5558 Form2 := Next_Formal (Form2);
5559 end if;
5560
e7d72fb9
AC
5561 if Present (Form1) then
5562 Form1 := Next_Formal (Form1);
5563 Form2 := Next_Formal (Form2);
5564 end if;
5565
5566 while Present (Form1) loop
5567 if not Is_Controlling_Formal (Form1)
5568 and then Present (Next_Formal (Form2))
5569 and then Chars (Form1) = Chars (Next_Formal (Form2))
5570 then
5571 Error_Msg_Node_2 := Alias (Overridden_Subp);
5572 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
ed2233dc 5573 Error_Msg_NE
19d846a0 5574 ("& does not match corresponding formal of&#",
e7d72fb9
AC
5575 Form1, Form1);
5576 exit;
5577 end if;
5578
5579 Next_Formal (Form1);
5580 Next_Formal (Form2);
5581 end loop;
5582 end;
5583 end if;
5584
676e8420
AC
5585 -- If there is an overridden subprogram, then check that there is no
5586 -- "not overriding" indicator, and mark the subprogram as overriding.
51bf9bdf
AC
5587 -- This is not done if the overridden subprogram is marked as hidden,
5588 -- which can occur for the case of inherited controlled operations
5589 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5590 -- subprogram is not itself hidden. (Note: This condition could probably
5591 -- be simplified, leaving out the testing for the specific controlled
5592 -- cases, but it seems safer and clearer this way, and echoes similar
5593 -- special-case tests of this kind in other places.)
5594
fd0d899b 5595 if Present (Overridden_Subp)
51bf9bdf
AC
5596 and then (not Is_Hidden (Overridden_Subp)
5597 or else
b69cd36a
AC
5598 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5599 Name_Adjust,
5600 Name_Finalize)
f0709ca6
AC
5601 and then Present (Alias (Overridden_Subp))
5602 and then not Is_Hidden (Alias (Overridden_Subp))))
fd0d899b 5603 then
ec4867fa
ES
5604 if Must_Not_Override (Spec) then
5605 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 5606
ec4867fa 5607 if Ekind (Subp) = E_Entry then
ed2233dc 5608 Error_Msg_NE
5d37ba92 5609 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 5610 else
ed2233dc 5611 Error_Msg_NE
5d37ba92 5612 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa 5613 end if;
21d27997 5614
bd603506 5615 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
24a120ac
AC
5616 -- as an extension of Root_Controlled, and thus has a useless Adjust
5617 -- operation. This operation should not be inherited by other limited
5618 -- controlled types. An explicit Adjust for them is not overriding.
5619
5620 elsif Must_Override (Spec)
5621 and then Chars (Overridden_Subp) = Name_Adjust
5622 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5623 and then Present (Alias (Overridden_Subp))
bd603506
RD
5624 and then
5625 Is_Predefined_File_Name
5626 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
24a120ac
AC
5627 then
5628 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5629
21d27997 5630 elsif Is_Subprogram (Subp) then
2fe829ae
ES
5631 if Is_Init_Proc (Subp) then
5632 null;
5633
5634 elsif No (Overridden_Operation (Subp)) then
1c1289e7
AC
5635
5636 -- For entities generated by Derive_Subprograms the overridden
5637 -- operation is the inherited primitive (which is available
5638 -- through the attribute alias)
5639
5640 if (Is_Dispatching_Operation (Subp)
f9673bb0 5641 or else Is_Dispatching_Operation (Overridden_Subp))
1c1289e7 5642 and then not Comes_From_Source (Overridden_Subp)
f9673bb0
AC
5643 and then Find_Dispatching_Type (Overridden_Subp) =
5644 Find_Dispatching_Type (Subp)
1c1289e7
AC
5645 and then Present (Alias (Overridden_Subp))
5646 and then Comes_From_Source (Alias (Overridden_Subp))
5647 then
039538bc
AC
5648 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5649 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
2fe829ae 5650
1c1289e7 5651 else
039538bc
AC
5652 Set_Overridden_Operation (Subp, Overridden_Subp);
5653 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
1c1289e7
AC
5654 end if;
5655 end if;
ec4867fa 5656 end if;
f937473f 5657
618fb570
AC
5658 -- If primitive flag is set or this is a protected operation, then
5659 -- the operation is overriding at the point of its declaration, so
5660 -- warn if necessary. Otherwise it may have been declared before the
5661 -- operation it overrides and no check is required.
3c25856a
AC
5662
5663 if Style_Check
618fb570
AC
5664 and then not Must_Override (Spec)
5665 and then (Is_Primitive
5666 or else Ekind (Scope (Subp)) = E_Protected_Type)
3c25856a 5667 then
235f4375
AC
5668 Style.Missing_Overriding (Decl, Subp);
5669 end if;
5670
53b10ce9
AC
5671 -- If Subp is an operator, it may override a predefined operation, if
5672 -- it is defined in the same scope as the type to which it applies.
676e8420 5673 -- In that case Overridden_Subp is empty because of our implicit
5d37ba92
ES
5674 -- representation for predefined operators. We have to check whether the
5675 -- signature of Subp matches that of a predefined operator. Note that
5676 -- first argument provides the name of the operator, and the second
5677 -- argument the signature that may match that of a standard operation.
21d27997
RD
5678 -- If the indicator is overriding, then the operator must match a
5679 -- predefined signature, because we know already that there is no
5680 -- explicit overridden operation.
f937473f 5681
21d27997 5682 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
806f6d37 5683 if Must_Not_Override (Spec) then
f937473f 5684
806f6d37
AC
5685 -- If this is not a primitive or a protected subprogram, then
5686 -- "not overriding" is illegal.
618fb570 5687
806f6d37
AC
5688 if not Is_Primitive
5689 and then Ekind (Scope (Subp)) /= E_Protected_Type
5690 then
3ccedacc
AC
5691 Error_Msg_N ("overriding indicator only allowed "
5692 & "if subprogram is primitive", Subp);
618fb570 5693
806f6d37
AC
5694 elsif Can_Override_Operator (Subp) then
5695 Error_Msg_NE
5696 ("subprogram& overrides predefined operator ", Spec, Subp);
5697 end if;
f937473f 5698
806f6d37
AC
5699 elsif Must_Override (Spec) then
5700 if No (Overridden_Operation (Subp))
5701 and then not Can_Override_Operator (Subp)
5702 then
5703 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5704 end if;
5d37ba92 5705
806f6d37
AC
5706 elsif not Error_Posted (Subp)
5707 and then Style_Check
5708 and then Can_Override_Operator (Subp)
5709 and then
5710 not Is_Predefined_File_Name
5711 (Unit_File_Name (Get_Source_Unit (Subp)))
5712 then
5713 -- If style checks are enabled, indicate that the indicator is
5714 -- missing. However, at the point of declaration, the type of
5715 -- which this is a primitive operation may be private, in which
5716 -- case the indicator would be premature.
235f4375 5717
806f6d37
AC
5718 if Has_Private_Declaration (Etype (Subp))
5719 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
53b10ce9 5720 then
806f6d37
AC
5721 null;
5722 else
5723 Style.Missing_Overriding (Decl, Subp);
5d5832bc 5724 end if;
806f6d37 5725 end if;
21d27997
RD
5726
5727 elsif Must_Override (Spec) then
5728 if Ekind (Subp) = E_Entry then
ed2233dc 5729 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5d37ba92 5730 else
ed2233dc 5731 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 5732 end if;
5d37ba92
ES
5733
5734 -- If the operation is marked "not overriding" and it's not primitive
5735 -- then an error is issued, unless this is an operation of a task or
5736 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5737 -- has been specified have already been checked above.
5738
5739 elsif Must_Not_Override (Spec)
5740 and then not Is_Primitive
5741 and then Ekind (Subp) /= E_Entry
5742 and then Ekind (Scope (Subp)) /= E_Protected_Type
5743 then
ed2233dc 5744 Error_Msg_N
5d37ba92
ES
5745 ("overriding indicator only allowed if subprogram is primitive",
5746 Subp);
5d37ba92 5747 return;
fbf5a39b 5748 end if;
758c442c 5749 end Check_Overriding_Indicator;
fbf5a39b 5750
996ae0b0
RK
5751 -------------------
5752 -- Check_Returns --
5753 -------------------
5754
0a36105d
JM
5755 -- Note: this procedure needs to know far too much about how the expander
5756 -- messes with exceptions. The use of the flag Exception_Junk and the
5757 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5758 -- works, but is not very clean. It would be better if the expansion
5759 -- routines would leave Original_Node working nicely, and we could use
5760 -- Original_Node here to ignore all the peculiar expander messing ???
5761
996ae0b0
RK
5762 procedure Check_Returns
5763 (HSS : Node_Id;
5764 Mode : Character;
c8ef728f
ES
5765 Err : out Boolean;
5766 Proc : Entity_Id := Empty)
996ae0b0
RK
5767 is
5768 Handler : Node_Id;
5769
5770 procedure Check_Statement_Sequence (L : List_Id);
5771 -- Internal recursive procedure to check a list of statements for proper
5772 -- termination by a return statement (or a transfer of control or a
5773 -- compound statement that is itself internally properly terminated).
5774
5775 ------------------------------
5776 -- Check_Statement_Sequence --
5777 ------------------------------
5778
5779 procedure Check_Statement_Sequence (L : List_Id) is
5780 Last_Stm : Node_Id;
0a36105d 5781 Stm : Node_Id;
996ae0b0
RK
5782 Kind : Node_Kind;
5783
7b27e183
AC
5784 function Assert_False return Boolean;
5785 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5786 -- rewritten as a null statement when assertions are off. The assert
5787 -- is not active, but it is still enough to kill the warning.
5788
5789 ------------------
5790 -- Assert_False --
5791 ------------------
5792
5793 function Assert_False return Boolean is
5794 Orig : constant Node_Id := Original_Node (Last_Stm);
5795
5796 begin
5797 if Nkind (Orig) = N_Pragma
5798 and then Pragma_Name (Orig) = Name_Assert
5799 and then not Error_Posted (Orig)
5800 then
5801 declare
5802 Arg : constant Node_Id :=
5803 First (Pragma_Argument_Associations (Orig));
5804 Exp : constant Node_Id := Expression (Arg);
5805 begin
5806 return Nkind (Exp) = N_Identifier
5807 and then Chars (Exp) = Name_False;
5808 end;
5809
5810 else
5811 return False;
5812 end if;
5813 end Assert_False;
5814
5815 -- Local variables
5816
996ae0b0
RK
5817 Raise_Exception_Call : Boolean;
5818 -- Set True if statement sequence terminated by Raise_Exception call
5819 -- or a Reraise_Occurrence call.
5820
7b27e183
AC
5821 -- Start of processing for Check_Statement_Sequence
5822
996ae0b0
RK
5823 begin
5824 Raise_Exception_Call := False;
5825
5826 -- Get last real statement
5827
5828 Last_Stm := Last (L);
5829
0a36105d
JM
5830 -- Deal with digging out exception handler statement sequences that
5831 -- have been transformed by the local raise to goto optimization.
5832 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5833 -- optimization has occurred, we are looking at something like:
5834
5835 -- begin
5836 -- original stmts in block
5837
5838 -- exception \
5839 -- when excep1 => |
5840 -- goto L1; | omitted if No_Exception_Propagation
5841 -- when excep2 => |
5842 -- goto L2; /
5843 -- end;
5844
5845 -- goto L3; -- skip handler when exception not raised
5846
5847 -- <<L1>> -- target label for local exception
5848 -- begin
5849 -- estmts1
5850 -- end;
5851
5852 -- goto L3;
5853
5854 -- <<L2>>
5855 -- begin
5856 -- estmts2
5857 -- end;
5858
5859 -- <<L3>>
5860
5861 -- and what we have to do is to dig out the estmts1 and estmts2
5862 -- sequences (which were the original sequences of statements in
5863 -- the exception handlers) and check them.
5864
8fde064e 5865 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
0a36105d
JM
5866 Stm := Last_Stm;
5867 loop
5868 Prev (Stm);
5869 exit when No (Stm);
5870 exit when Nkind (Stm) /= N_Block_Statement;
5871 exit when not Exception_Junk (Stm);
5872 Prev (Stm);
5873 exit when No (Stm);
5874 exit when Nkind (Stm) /= N_Label;
5875 exit when not Exception_Junk (Stm);
5876 Check_Statement_Sequence
5877 (Statements (Handled_Statement_Sequence (Next (Stm))));
5878
5879 Prev (Stm);
5880 Last_Stm := Stm;
5881 exit when No (Stm);
5882 exit when Nkind (Stm) /= N_Goto_Statement;
5883 exit when not Exception_Junk (Stm);
5884 end loop;
5885 end if;
5886
996ae0b0
RK
5887 -- Don't count pragmas
5888
5889 while Nkind (Last_Stm) = N_Pragma
5890
5891 -- Don't count call to SS_Release (can happen after Raise_Exception)
5892
5893 or else
5894 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5895 and then
5896 Nkind (Name (Last_Stm)) = N_Identifier
5897 and then
5898 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5899
5900 -- Don't count exception junk
5901
5902 or else
800621e0
RD
5903 (Nkind_In (Last_Stm, N_Goto_Statement,
5904 N_Label,
5905 N_Object_Declaration)
8fde064e 5906 and then Exception_Junk (Last_Stm))
0a36105d
JM
5907 or else Nkind (Last_Stm) in N_Push_xxx_Label
5908 or else Nkind (Last_Stm) in N_Pop_xxx_Label
e3b3266c
AC
5909
5910 -- Inserted code, such as finalization calls, is irrelevant: we only
5911 -- need to check original source.
5912
5913 or else Is_Rewrite_Insertion (Last_Stm)
996ae0b0
RK
5914 loop
5915 Prev (Last_Stm);
5916 end loop;
5917
5918 -- Here we have the "real" last statement
5919
5920 Kind := Nkind (Last_Stm);
5921
5922 -- Transfer of control, OK. Note that in the No_Return procedure
5923 -- case, we already diagnosed any explicit return statements, so
5924 -- we can treat them as OK in this context.
5925
5926 if Is_Transfer (Last_Stm) then
5927 return;
5928
5929 -- Check cases of explicit non-indirect procedure calls
5930
5931 elsif Kind = N_Procedure_Call_Statement
5932 and then Is_Entity_Name (Name (Last_Stm))
5933 then
5934 -- Check call to Raise_Exception procedure which is treated
5935 -- specially, as is a call to Reraise_Occurrence.
5936
5937 -- We suppress the warning in these cases since it is likely that
5938 -- the programmer really does not expect to deal with the case
5939 -- of Null_Occurrence, and thus would find a warning about a
5940 -- missing return curious, and raising Program_Error does not
5941 -- seem such a bad behavior if this does occur.
5942
c8ef728f
ES
5943 -- Note that in the Ada 2005 case for Raise_Exception, the actual
5944 -- behavior will be to raise Constraint_Error (see AI-329).
5945
996ae0b0
RK
5946 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
5947 or else
5948 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
5949 then
5950 Raise_Exception_Call := True;
5951
5952 -- For Raise_Exception call, test first argument, if it is
5953 -- an attribute reference for a 'Identity call, then we know
5954 -- that the call cannot possibly return.
5955
5956 declare
5957 Arg : constant Node_Id :=
5958 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
5959 begin
5960 if Nkind (Arg) = N_Attribute_Reference
5961 and then Attribute_Name (Arg) = Name_Identity
5962 then
5963 return;
5964 end if;
5965 end;
5966 end if;
5967
5968 -- If statement, need to look inside if there is an else and check
5969 -- each constituent statement sequence for proper termination.
5970
5971 elsif Kind = N_If_Statement
5972 and then Present (Else_Statements (Last_Stm))
5973 then
5974 Check_Statement_Sequence (Then_Statements (Last_Stm));
5975 Check_Statement_Sequence (Else_Statements (Last_Stm));
5976
5977 if Present (Elsif_Parts (Last_Stm)) then
5978 declare
5979 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
5980
5981 begin
5982 while Present (Elsif_Part) loop
5983 Check_Statement_Sequence (Then_Statements (Elsif_Part));
5984 Next (Elsif_Part);
5985 end loop;
5986 end;
5987 end if;
5988
5989 return;
5990
5991 -- Case statement, check each case for proper termination
5992
5993 elsif Kind = N_Case_Statement then
5994 declare
5995 Case_Alt : Node_Id;
996ae0b0
RK
5996 begin
5997 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5998 while Present (Case_Alt) loop
5999 Check_Statement_Sequence (Statements (Case_Alt));
6000 Next_Non_Pragma (Case_Alt);
6001 end loop;
6002 end;
6003
6004 return;
6005
6006 -- Block statement, check its handled sequence of statements
6007
6008 elsif Kind = N_Block_Statement then
6009 declare
6010 Err1 : Boolean;
6011
6012 begin
6013 Check_Returns
6014 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6015
6016 if Err1 then
6017 Err := True;
6018 end if;
6019
6020 return;
6021 end;
6022
6023 -- Loop statement. If there is an iteration scheme, we can definitely
6024 -- fall out of the loop. Similarly if there is an exit statement, we
6025 -- can fall out. In either case we need a following return.
6026
6027 elsif Kind = N_Loop_Statement then
6028 if Present (Iteration_Scheme (Last_Stm))
6029 or else Has_Exit (Entity (Identifier (Last_Stm)))
6030 then
6031 null;
6032
f3d57416
RW
6033 -- A loop with no exit statement or iteration scheme is either
6034 -- an infinite loop, or it has some other exit (raise/return).
996ae0b0
RK
6035 -- In either case, no warning is required.
6036
6037 else
6038 return;
6039 end if;
6040
6041 -- Timed entry call, check entry call and delay alternatives
6042
6043 -- Note: in expanded code, the timed entry call has been converted
6044 -- to a set of expanded statements on which the check will work
6045 -- correctly in any case.
6046
6047 elsif Kind = N_Timed_Entry_Call then
6048 declare
6049 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6050 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6051
6052 begin
6053 -- If statement sequence of entry call alternative is missing,
6054 -- then we can definitely fall through, and we post the error
6055 -- message on the entry call alternative itself.
6056
6057 if No (Statements (ECA)) then
6058 Last_Stm := ECA;
6059
6060 -- If statement sequence of delay alternative is missing, then
6061 -- we can definitely fall through, and we post the error
6062 -- message on the delay alternative itself.
6063
6064 -- Note: if both ECA and DCA are missing the return, then we
6065 -- post only one message, should be enough to fix the bugs.
6066 -- If not we will get a message next time on the DCA when the
a90bd866 6067 -- ECA is fixed.
996ae0b0
RK
6068
6069 elsif No (Statements (DCA)) then
6070 Last_Stm := DCA;
6071
6072 -- Else check both statement sequences
6073
6074 else
6075 Check_Statement_Sequence (Statements (ECA));
6076 Check_Statement_Sequence (Statements (DCA));
6077 return;
6078 end if;
6079 end;
6080
6081 -- Conditional entry call, check entry call and else part
6082
6083 -- Note: in expanded code, the conditional entry call has been
6084 -- converted to a set of expanded statements on which the check
6085 -- will work correctly in any case.
6086
6087 elsif Kind = N_Conditional_Entry_Call then
6088 declare
6089 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6090
6091 begin
6092 -- If statement sequence of entry call alternative is missing,
6093 -- then we can definitely fall through, and we post the error
6094 -- message on the entry call alternative itself.
6095
6096 if No (Statements (ECA)) then
6097 Last_Stm := ECA;
6098
6099 -- Else check statement sequence and else part
6100
6101 else
6102 Check_Statement_Sequence (Statements (ECA));
6103 Check_Statement_Sequence (Else_Statements (Last_Stm));
6104 return;
6105 end if;
6106 end;
6107 end if;
6108
6109 -- If we fall through, issue appropriate message
6110
6111 if Mode = 'F' then
7b27e183
AC
6112
6113 -- Kill warning if last statement is a raise exception call,
6114 -- or a pragma Assert (False). Note that with assertions enabled,
6115 -- such a pragma has been converted into a raise exception call
6116 -- already, so the Assert_False is for the assertions off case.
6117
6118 if not Raise_Exception_Call and then not Assert_False then
b465ef6f
AC
6119
6120 -- In GNATprove mode, it is an error to have a missing return
6121
43417b90 6122 Error_Msg_Warn := SPARK_Mode /= On;
7b27e183
AC
6123
6124 -- Issue error message or warning
6125
4a28b181
AC
6126 Error_Msg_N
6127 ("RETURN statement missing following this statement<<!",
6128 Last_Stm);
6129 Error_Msg_N
6130 ("\Program_Error ]<<!", Last_Stm);
996ae0b0
RK
6131 end if;
6132
6133 -- Note: we set Err even though we have not issued a warning
6134 -- because we still have a case of a missing return. This is
6135 -- an extremely marginal case, probably will never be noticed
6136 -- but we might as well get it right.
6137
6138 Err := True;
6139
c8ef728f
ES
6140 -- Otherwise we have the case of a procedure marked No_Return
6141
996ae0b0 6142 else
800621e0 6143 if not Raise_Exception_Call then
4a28b181
AC
6144 if GNATprove_Mode then
6145 Error_Msg_N
6146 ("implied return after this statement "
6147 & "would have raised Program_Error", Last_Stm);
6148 else
6149 Error_Msg_N
6150 ("implied return after this statement "
6151 & "will raise Program_Error??", Last_Stm);
6152 end if;
6153
43417b90 6154 Error_Msg_Warn := SPARK_Mode /= On;
800621e0 6155 Error_Msg_NE
4a28b181 6156 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
800621e0 6157 end if;
c8ef728f
ES
6158
6159 declare
6160 RE : constant Node_Id :=
6161 Make_Raise_Program_Error (Sloc (Last_Stm),
6162 Reason => PE_Implicit_Return);
6163 begin
6164 Insert_After (Last_Stm, RE);
6165 Analyze (RE);
6166 end;
996ae0b0
RK
6167 end if;
6168 end Check_Statement_Sequence;
6169
6170 -- Start of processing for Check_Returns
6171
6172 begin
6173 Err := False;
6174 Check_Statement_Sequence (Statements (HSS));
6175
6176 if Present (Exception_Handlers (HSS)) then
6177 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6178 while Present (Handler) loop
6179 Check_Statement_Sequence (Statements (Handler));
6180 Next_Non_Pragma (Handler);
6181 end loop;
6182 end if;
6183 end Check_Returns;
6184
6185 ----------------------------
6186 -- Check_Subprogram_Order --
6187 ----------------------------
6188
6189 procedure Check_Subprogram_Order (N : Node_Id) is
6190
6191 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
dc36a7e3
RD
6192 -- This is used to check if S1 > S2 in the sense required by this test,
6193 -- for example nameab < namec, but name2 < name10.
996ae0b0 6194
82c80734
RD
6195 -----------------------------
6196 -- Subprogram_Name_Greater --
6197 -----------------------------
6198
996ae0b0
RK
6199 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6200 L1, L2 : Positive;
6201 N1, N2 : Natural;
6202
6203 begin
67336960
AC
6204 -- Deal with special case where names are identical except for a
6205 -- numerical suffix. These are handled specially, taking the numeric
6206 -- ordering from the suffix into account.
996ae0b0
RK
6207
6208 L1 := S1'Last;
6209 while S1 (L1) in '0' .. '9' loop
6210 L1 := L1 - 1;
6211 end loop;
6212
6213 L2 := S2'Last;
6214 while S2 (L2) in '0' .. '9' loop
6215 L2 := L2 - 1;
6216 end loop;
6217
67336960 6218 -- If non-numeric parts non-equal, do straight compare
996ae0b0 6219
67336960
AC
6220 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6221 return S1 > S2;
996ae0b0
RK
6222
6223 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6224 -- that a missing suffix is treated as numeric zero in this test.
6225
6226 else
6227 N1 := 0;
6228 while L1 < S1'Last loop
6229 L1 := L1 + 1;
6230 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6231 end loop;
6232
6233 N2 := 0;
6234 while L2 < S2'Last loop
6235 L2 := L2 + 1;
6236 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6237 end loop;
6238
6239 return N1 > N2;
6240 end if;
6241 end Subprogram_Name_Greater;
6242
6243 -- Start of processing for Check_Subprogram_Order
6244
6245 begin
6246 -- Check body in alpha order if this is option
6247
fbf5a39b 6248 if Style_Check
bc202b70 6249 and then Style_Check_Order_Subprograms
996ae0b0
RK
6250 and then Nkind (N) = N_Subprogram_Body
6251 and then Comes_From_Source (N)
6252 and then In_Extended_Main_Source_Unit (N)
6253 then
6254 declare
6255 LSN : String_Ptr
6256 renames Scope_Stack.Table
6257 (Scope_Stack.Last).Last_Subprogram_Name;
6258
6259 Body_Id : constant Entity_Id :=
6260 Defining_Entity (Specification (N));
6261
6262 begin
6263 Get_Decoded_Name_String (Chars (Body_Id));
6264
6265 if LSN /= null then
6266 if Subprogram_Name_Greater
6267 (LSN.all, Name_Buffer (1 .. Name_Len))
6268 then
6269 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6270 end if;
6271
6272 Free (LSN);
6273 end if;
6274
6275 LSN := new String'(Name_Buffer (1 .. Name_Len));
6276 end;
6277 end if;
6278 end Check_Subprogram_Order;
6279
6280 ------------------------------
6281 -- Check_Subtype_Conformant --
6282 ------------------------------
6283
6284 procedure Check_Subtype_Conformant
ce2b6ba5
JM
6285 (New_Id : Entity_Id;
6286 Old_Id : Entity_Id;
6287 Err_Loc : Node_Id := Empty;
f307415a
AC
6288 Skip_Controlling_Formals : Boolean := False;
6289 Get_Inst : Boolean := False)
996ae0b0
RK
6290 is
6291 Result : Boolean;
81db9d77 6292 pragma Warnings (Off, Result);
996ae0b0
RK
6293 begin
6294 Check_Conformance
ce2b6ba5 6295 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
f307415a
AC
6296 Skip_Controlling_Formals => Skip_Controlling_Formals,
6297 Get_Inst => Get_Inst);
996ae0b0
RK
6298 end Check_Subtype_Conformant;
6299
6300 ---------------------------
6301 -- Check_Type_Conformant --
6302 ---------------------------
6303
6304 procedure Check_Type_Conformant
6305 (New_Id : Entity_Id;
6306 Old_Id : Entity_Id;
6307 Err_Loc : Node_Id := Empty)
6308 is
6309 Result : Boolean;
81db9d77 6310 pragma Warnings (Off, Result);
996ae0b0
RK
6311 begin
6312 Check_Conformance
6313 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6314 end Check_Type_Conformant;
6315
806f6d37
AC
6316 ---------------------------
6317 -- Can_Override_Operator --
6318 ---------------------------
6319
6320 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6321 Typ : Entity_Id;
f146302c 6322
806f6d37
AC
6323 begin
6324 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6325 return False;
6326
6327 else
6328 Typ := Base_Type (Etype (First_Formal (Subp)));
6329
f146302c
AC
6330 -- Check explicitly that the operation is a primitive of the type
6331
806f6d37 6332 return Operator_Matches_Spec (Subp, Subp)
f146302c 6333 and then not Is_Generic_Type (Typ)
806f6d37
AC
6334 and then Scope (Subp) = Scope (Typ)
6335 and then not Is_Class_Wide_Type (Typ);
6336 end if;
6337 end Can_Override_Operator;
6338
996ae0b0
RK
6339 ----------------------
6340 -- Conforming_Types --
6341 ----------------------
6342
6343 function Conforming_Types
6344 (T1 : Entity_Id;
6345 T2 : Entity_Id;
6346 Ctype : Conformance_Type;
d05ef0ab 6347 Get_Inst : Boolean := False) return Boolean
996ae0b0
RK
6348 is
6349 Type_1 : Entity_Id := T1;
6350 Type_2 : Entity_Id := T2;
af4b9434 6351 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
996ae0b0
RK
6352
6353 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
0a36105d
JM
6354 -- If neither T1 nor T2 are generic actual types, or if they are in
6355 -- different scopes (e.g. parent and child instances), then verify that
6356 -- the base types are equal. Otherwise T1 and T2 must be on the same
6357 -- subtype chain. The whole purpose of this procedure is to prevent
6358 -- spurious ambiguities in an instantiation that may arise if two
6359 -- distinct generic types are instantiated with the same actual.
6360
5d37ba92
ES
6361 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6362 -- An access parameter can designate an incomplete type. If the
6363 -- incomplete type is the limited view of a type from a limited_
6364 -- with_clause, check whether the non-limited view is available. If
6365 -- it is a (non-limited) incomplete type, get the full view.
6366
0a36105d
JM
6367 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6368 -- Returns True if and only if either T1 denotes a limited view of T2
6369 -- or T2 denotes a limited view of T1. This can arise when the limited
6370 -- with view of a type is used in a subprogram declaration and the
6371 -- subprogram body is in the scope of a regular with clause for the
6372 -- same unit. In such a case, the two type entities can be considered
6373 -- identical for purposes of conformance checking.
996ae0b0
RK
6374
6375 ----------------------
6376 -- Base_Types_Match --
6377 ----------------------
6378
6379 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
8fde064e
AC
6380 BT1 : constant Entity_Id := Base_Type (T1);
6381 BT2 : constant Entity_Id := Base_Type (T2);
6382
996ae0b0
RK
6383 begin
6384 if T1 = T2 then
6385 return True;
6386
8fde064e 6387 elsif BT1 = BT2 then
996ae0b0 6388
0a36105d 6389 -- The following is too permissive. A more precise test should
996ae0b0
RK
6390 -- check that the generic actual is an ancestor subtype of the
6391 -- other ???.
586ecbf3 6392
70f4ad20
AC
6393 -- See code in Find_Corresponding_Spec that applies an additional
6394 -- filter to handle accidental amiguities in instances.
996ae0b0
RK
6395
6396 return not Is_Generic_Actual_Type (T1)
07fc65c4
GB
6397 or else not Is_Generic_Actual_Type (T2)
6398 or else Scope (T1) /= Scope (T2);
996ae0b0 6399
8fde064e 6400 -- If T2 is a generic actual type it is declared as the subtype of
2995860f
AC
6401 -- the actual. If that actual is itself a subtype we need to use its
6402 -- own base type to check for compatibility.
8fde064e
AC
6403
6404 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6405 return True;
6406
6407 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6408 return True;
6409
0a36105d
JM
6410 else
6411 return False;
6412 end if;
6413 end Base_Types_Match;
aa720a54 6414
5d37ba92
ES
6415 --------------------------
6416 -- Find_Designated_Type --
6417 --------------------------
6418
6419 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6420 Desig : Entity_Id;
6421
6422 begin
6423 Desig := Directly_Designated_Type (T);
6424
6425 if Ekind (Desig) = E_Incomplete_Type then
6426
6427 -- If regular incomplete type, get full view if available
6428
6429 if Present (Full_View (Desig)) then
6430 Desig := Full_View (Desig);
6431
6432 -- If limited view of a type, get non-limited view if available,
6433 -- and check again for a regular incomplete type.
6434
6435 elsif Present (Non_Limited_View (Desig)) then
6436 Desig := Get_Full_View (Non_Limited_View (Desig));
6437 end if;
6438 end if;
6439
6440 return Desig;
6441 end Find_Designated_Type;
6442
0a36105d
JM
6443 -------------------------------
6444 -- Matches_Limited_With_View --
6445 -------------------------------
6446
6447 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6448 begin
6449 -- In some cases a type imported through a limited_with clause, and
6450 -- its nonlimited view are both visible, for example in an anonymous
28fa5430
AC
6451 -- access-to-class-wide type in a formal, or when building the body
6452 -- for a subprogram renaming after the subprogram has been frozen.
6453 -- In these cases Both entities designate the same type. In addition,
6454 -- if one of them is an actual in an instance, it may be a subtype of
6455 -- the non-limited view of the other.
6456
6457 if From_Limited_With (T1)
6458 and then (T2 = Available_View (T1)
6459 or else Is_Subtype_Of (T2, Available_View (T1)))
6460 then
aa720a54
AC
6461 return True;
6462
28fa5430
AC
6463 elsif From_Limited_With (T2)
6464 and then (T1 = Available_View (T2)
6465 or else Is_Subtype_Of (T1, Available_View (T2)))
6466 then
41251c60 6467 return True;
3e24afaa 6468
7b56a91b
AC
6469 elsif From_Limited_With (T1)
6470 and then From_Limited_With (T2)
3e24afaa
AC
6471 and then Available_View (T1) = Available_View (T2)
6472 then
6473 return True;
41251c60 6474
996ae0b0
RK
6475 else
6476 return False;
6477 end if;
0a36105d 6478 end Matches_Limited_With_View;
996ae0b0 6479
ec4867fa 6480 -- Start of processing for Conforming_Types
758c442c 6481
996ae0b0 6482 begin
8fde064e
AC
6483 -- The context is an instance association for a formal access-to-
6484 -- subprogram type; the formal parameter types require mapping because
6485 -- they may denote other formal parameters of the generic unit.
996ae0b0
RK
6486
6487 if Get_Inst then
6488 Type_1 := Get_Instance_Of (T1);
6489 Type_2 := Get_Instance_Of (T2);
6490 end if;
6491
0a36105d
JM
6492 -- If one of the types is a view of the other introduced by a limited
6493 -- with clause, treat these as conforming for all purposes.
996ae0b0 6494
0a36105d
JM
6495 if Matches_Limited_With_View (T1, T2) then
6496 return True;
6497
6498 elsif Base_Types_Match (Type_1, Type_2) then
996ae0b0
RK
6499 return Ctype <= Mode_Conformant
6500 or else Subtypes_Statically_Match (Type_1, Type_2);
6501
6502 elsif Is_Incomplete_Or_Private_Type (Type_1)
6503 and then Present (Full_View (Type_1))
6504 and then Base_Types_Match (Full_View (Type_1), Type_2)
6505 then
6506 return Ctype <= Mode_Conformant
6507 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6508
6509 elsif Ekind (Type_2) = E_Incomplete_Type
6510 and then Present (Full_View (Type_2))
6511 and then Base_Types_Match (Type_1, Full_View (Type_2))
6512 then
6513 return Ctype <= Mode_Conformant
6514 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
6515
6516 elsif Is_Private_Type (Type_2)
6517 and then In_Instance
6518 and then Present (Full_View (Type_2))
6519 and then Base_Types_Match (Type_1, Full_View (Type_2))
6520 then
6521 return Ctype <= Mode_Conformant
6522 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
167b47d9 6523
088c7e1b 6524 -- In Ada 2012, incomplete types (including limited views) can appear
167b47d9
AC
6525 -- as actuals in instantiations.
6526
6527 elsif Is_Incomplete_Type (Type_1)
6528 and then Is_Incomplete_Type (Type_2)
6529 and then (Used_As_Generic_Actual (Type_1)
6530 or else Used_As_Generic_Actual (Type_2))
6531 then
6532 return True;
996ae0b0
RK
6533 end if;
6534
0a36105d 6535 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
466c2127
AC
6536 -- treated recursively because they carry a signature. As far as
6537 -- conformance is concerned, convention plays no role, and either
6538 -- or both could be access to protected subprograms.
af4b9434
AC
6539
6540 Are_Anonymous_Access_To_Subprogram_Types :=
466c2127
AC
6541 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6542 E_Anonymous_Access_Protected_Subprogram_Type)
f937473f 6543 and then
466c2127
AC
6544 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6545 E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 6546
996ae0b0 6547 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
6548 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6549 -- the base types because we may have built internal subtype entities
6550 -- to handle null-excluding types (see Process_Formals).
996ae0b0 6551
5d37ba92
ES
6552 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6553 and then
6554 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8fde064e
AC
6555
6556 -- Ada 2005 (AI-254)
6557
6558 or else Are_Anonymous_Access_To_Subprogram_Types
996ae0b0
RK
6559 then
6560 declare
6561 Desig_1 : Entity_Id;
6562 Desig_2 : Entity_Id;
6563
6564 begin
885c4871 6565 -- In Ada 2005, access constant indicators must match for
5d37ba92 6566 -- subtype conformance.
9dcb52e1 6567
0791fbe9 6568 if Ada_Version >= Ada_2005
5d37ba92
ES
6569 and then Ctype >= Subtype_Conformant
6570 and then
6571 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6572 then
6573 return False;
996ae0b0
RK
6574 end if;
6575
5d37ba92 6576 Desig_1 := Find_Designated_Type (Type_1);
5d37ba92 6577 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 6578
5d37ba92 6579 -- If the context is an instance association for a formal
82c80734
RD
6580 -- access-to-subprogram type; formal access parameter designated
6581 -- types require mapping because they may denote other formal
6582 -- parameters of the generic unit.
996ae0b0
RK
6583
6584 if Get_Inst then
6585 Desig_1 := Get_Instance_Of (Desig_1);
6586 Desig_2 := Get_Instance_Of (Desig_2);
6587 end if;
6588
82c80734
RD
6589 -- It is possible for a Class_Wide_Type to be introduced for an
6590 -- incomplete type, in which case there is a separate class_ wide
6591 -- type for the full view. The types conform if their Etypes
6592 -- conform, i.e. one may be the full view of the other. This can
6593 -- only happen in the context of an access parameter, other uses
6594 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 6595
fbf5a39b 6596 if Is_Class_Wide_Type (Desig_1)
4adf3c50
AC
6597 and then
6598 Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
6599 then
6600 return
fbf5a39b
AC
6601 Conforming_Types
6602 (Etype (Base_Type (Desig_1)),
6603 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
6604
6605 elsif Are_Anonymous_Access_To_Subprogram_Types then
0791fbe9 6606 if Ada_Version < Ada_2005 then
758c442c
GD
6607 return Ctype = Type_Conformant
6608 or else
af4b9434
AC
6609 Subtypes_Statically_Match (Desig_1, Desig_2);
6610
758c442c
GD
6611 -- We must check the conformance of the signatures themselves
6612
6613 else
6614 declare
6615 Conformant : Boolean;
6616 begin
6617 Check_Conformance
6618 (Desig_1, Desig_2, Ctype, False, Conformant);
6619 return Conformant;
6620 end;
6621 end if;
6622
167b47d9
AC
6623 -- A limited view of an actual matches the corresponding
6624 -- incomplete formal.
6625
6626 elsif Ekind (Desig_2) = E_Incomplete_Subtype
6627 and then From_Limited_With (Desig_2)
6628 and then Used_As_Generic_Actual (Etype (Desig_2))
6629 then
6630 return True;
6631
996ae0b0
RK
6632 else
6633 return Base_Type (Desig_1) = Base_Type (Desig_2)
6634 and then (Ctype = Type_Conformant
8fde064e
AC
6635 or else
6636 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
6637 end if;
6638 end;
6639
6640 -- Otherwise definitely no match
6641
6642 else
c8ef728f
ES
6643 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6644 and then Is_Access_Type (Type_2))
6645 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8fde064e 6646 and then Is_Access_Type (Type_1)))
c8ef728f
ES
6647 and then
6648 Conforming_Types
6649 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6650 then
6651 May_Hide_Profile := True;
6652 end if;
6653
996ae0b0
RK
6654 return False;
6655 end if;
996ae0b0
RK
6656 end Conforming_Types;
6657
6658 --------------------------
6659 -- Create_Extra_Formals --
6660 --------------------------
6661
6662 procedure Create_Extra_Formals (E : Entity_Id) is
6663 Formal : Entity_Id;
ec4867fa 6664 First_Extra : Entity_Id := Empty;
996ae0b0
RK
6665 Last_Extra : Entity_Id;
6666 Formal_Type : Entity_Id;
6667 P_Formal : Entity_Id := Empty;
6668
ec4867fa
ES
6669 function Add_Extra_Formal
6670 (Assoc_Entity : Entity_Id;
6671 Typ : Entity_Id;
6672 Scope : Entity_Id;
6673 Suffix : String) return Entity_Id;
6674 -- Add an extra formal to the current list of formals and extra formals.
6675 -- The extra formal is added to the end of the list of extra formals,
6676 -- and also returned as the result. These formals are always of mode IN.
6677 -- The new formal has the type Typ, is declared in Scope, and its name
6678 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
cd5a9750
AC
6679 -- The following suffixes are currently used. They should not be changed
6680 -- without coordinating with CodePeer, which makes use of these to
6681 -- provide better messages.
6682
d92eccc3
AC
6683 -- O denotes the Constrained bit.
6684 -- L denotes the accessibility level.
cd5a9750
AC
6685 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6686 -- the full list in exp_ch6.BIP_Formal_Kind.
996ae0b0 6687
fbf5a39b
AC
6688 ----------------------
6689 -- Add_Extra_Formal --
6690 ----------------------
6691
ec4867fa
ES
6692 function Add_Extra_Formal
6693 (Assoc_Entity : Entity_Id;
6694 Typ : Entity_Id;
6695 Scope : Entity_Id;
6696 Suffix : String) return Entity_Id
6697 is
996ae0b0 6698 EF : constant Entity_Id :=
ec4867fa
ES
6699 Make_Defining_Identifier (Sloc (Assoc_Entity),
6700 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 6701 Suffix => Suffix));
996ae0b0
RK
6702
6703 begin
82c80734
RD
6704 -- A little optimization. Never generate an extra formal for the
6705 -- _init operand of an initialization procedure, since it could
6706 -- never be used.
996ae0b0
RK
6707
6708 if Chars (Formal) = Name_uInit then
6709 return Empty;
6710 end if;
6711
6712 Set_Ekind (EF, E_In_Parameter);
6713 Set_Actual_Subtype (EF, Typ);
6714 Set_Etype (EF, Typ);
ec4867fa 6715 Set_Scope (EF, Scope);
996ae0b0
RK
6716 Set_Mechanism (EF, Default_Mechanism);
6717 Set_Formal_Validity (EF);
6718
ec4867fa
ES
6719 if No (First_Extra) then
6720 First_Extra := EF;
6721 Set_Extra_Formals (Scope, First_Extra);
6722 end if;
6723
6724 if Present (Last_Extra) then
6725 Set_Extra_Formal (Last_Extra, EF);
6726 end if;
6727
996ae0b0 6728 Last_Extra := EF;
ec4867fa 6729
996ae0b0
RK
6730 return EF;
6731 end Add_Extra_Formal;
6732
6733 -- Start of processing for Create_Extra_Formals
6734
6735 begin
8fde064e
AC
6736 -- We never generate extra formals if expansion is not active because we
6737 -- don't need them unless we are generating code.
f937473f
RD
6738
6739 if not Expander_Active then
6740 return;
6741 end if;
6742
e2441021
AC
6743 -- No need to generate extra formals in interface thunks whose target
6744 -- primitive has no extra formals.
6745
6746 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6747 return;
6748 end if;
6749
82c80734 6750 -- If this is a derived subprogram then the subtypes of the parent
16b05213 6751 -- subprogram's formal parameters will be used to determine the need
82c80734 6752 -- for extra formals.
996ae0b0
RK
6753
6754 if Is_Overloadable (E) and then Present (Alias (E)) then
6755 P_Formal := First_Formal (Alias (E));
6756 end if;
6757
6758 Last_Extra := Empty;
6759 Formal := First_Formal (E);
6760 while Present (Formal) loop
6761 Last_Extra := Formal;
6762 Next_Formal (Formal);
6763 end loop;
6764
f937473f 6765 -- If Extra_formals were already created, don't do it again. This
82c80734
RD
6766 -- situation may arise for subprogram types created as part of
6767 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0 6768
8fde064e 6769 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
996ae0b0
RK
6770 return;
6771 end if;
6772
19590d70
GD
6773 -- If the subprogram is a predefined dispatching subprogram then don't
6774 -- generate any extra constrained or accessibility level formals. In
6775 -- general we suppress these for internal subprograms (by not calling
6776 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6777 -- generated stream attributes do get passed through because extra
6778 -- build-in-place formals are needed in some cases (limited 'Input).
6779
bac7206d 6780 if Is_Predefined_Internal_Operation (E) then
63585f75 6781 goto Test_For_Func_Result_Extras;
19590d70
GD
6782 end if;
6783
996ae0b0 6784 Formal := First_Formal (E);
996ae0b0
RK
6785 while Present (Formal) loop
6786
6787 -- Create extra formal for supporting the attribute 'Constrained.
6788 -- The case of a private type view without discriminants also
6789 -- requires the extra formal if the underlying type has defaulted
6790 -- discriminants.
6791
6792 if Ekind (Formal) /= E_In_Parameter then
6793 if Present (P_Formal) then
6794 Formal_Type := Etype (P_Formal);
6795 else
6796 Formal_Type := Etype (Formal);
6797 end if;
6798
5d09245e
AC
6799 -- Do not produce extra formals for Unchecked_Union parameters.
6800 -- Jump directly to the end of the loop.
6801
6802 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6803 goto Skip_Extra_Formal_Generation;
6804 end if;
6805
996ae0b0
RK
6806 if not Has_Discriminants (Formal_Type)
6807 and then Ekind (Formal_Type) in Private_Kind
6808 and then Present (Underlying_Type (Formal_Type))
6809 then
6810 Formal_Type := Underlying_Type (Formal_Type);
6811 end if;
6812
5e5db3b4
GD
6813 -- Suppress the extra formal if formal's subtype is constrained or
6814 -- indefinite, or we're compiling for Ada 2012 and the underlying
6815 -- type is tagged and limited. In Ada 2012, a limited tagged type
6816 -- can have defaulted discriminants, but 'Constrained is required
6817 -- to return True, so the formal is never needed (see AI05-0214).
6818 -- Note that this ensures consistency of calling sequences for
6819 -- dispatching operations when some types in a class have defaults
6820 -- on discriminants and others do not (and requiring the extra
6821 -- formal would introduce distributed overhead).
6822
b5bdffcc
AC
6823 -- If the type does not have a completion yet, treat as prior to
6824 -- Ada 2012 for consistency.
6825
996ae0b0 6826 if Has_Discriminants (Formal_Type)
f937473f
RD
6827 and then not Is_Constrained (Formal_Type)
6828 and then not Is_Indefinite_Subtype (Formal_Type)
5e5db3b4 6829 and then (Ada_Version < Ada_2012
b5bdffcc
AC
6830 or else No (Underlying_Type (Formal_Type))
6831 or else not
6832 (Is_Limited_Type (Formal_Type)
6833 and then
6834 (Is_Tagged_Type
6835 (Underlying_Type (Formal_Type)))))
996ae0b0
RK
6836 then
6837 Set_Extra_Constrained
d92eccc3 6838 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
996ae0b0
RK
6839 end if;
6840 end if;
6841
0a36105d
JM
6842 -- Create extra formal for supporting accessibility checking. This
6843 -- is done for both anonymous access formals and formals of named
6844 -- access types that are marked as controlling formals. The latter
6845 -- case can occur when Expand_Dispatching_Call creates a subprogram
6846 -- type and substitutes the types of access-to-class-wide actuals
6847 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
6848 -- Base_Type is applied because in cases where there is a null
6849 -- exclusion the formal may have an access subtype.
996ae0b0
RK
6850
6851 -- This is suppressed if we specifically suppress accessibility
f937473f 6852 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
6853 -- package in which it resides. However, we do not suppress it
6854 -- simply if the scope has accessibility checks suppressed, since
6855 -- this could cause trouble when clients are compiled with a
6856 -- different suppression setting. The explicit checks at the
6857 -- package level are safe from this point of view.
996ae0b0 6858
5d37ba92 6859 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 6860 or else (Is_Controlling_Formal (Formal)
5d37ba92 6861 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 6862 and then not
fbf5a39b 6863 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 6864 or else
fbf5a39b 6865 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 6866 and then
c8ef728f 6867 (No (P_Formal)
996ae0b0
RK
6868 or else Present (Extra_Accessibility (P_Formal)))
6869 then
811c6a85 6870 Set_Extra_Accessibility
d92eccc3 6871 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
996ae0b0
RK
6872 end if;
6873
5d09245e
AC
6874 -- This label is required when skipping extra formal generation for
6875 -- Unchecked_Union parameters.
6876
6877 <<Skip_Extra_Formal_Generation>>
6878
f937473f
RD
6879 if Present (P_Formal) then
6880 Next_Formal (P_Formal);
6881 end if;
6882
996ae0b0
RK
6883 Next_Formal (Formal);
6884 end loop;
ec4867fa 6885
63585f75
SB
6886 <<Test_For_Func_Result_Extras>>
6887
6888 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6889 -- function call is ... determined by the point of call ...".
6890
6891 if Needs_Result_Accessibility_Level (E) then
6892 Set_Extra_Accessibility_Of_Result
6893 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6894 end if;
19590d70 6895
ec4867fa 6896 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
6897 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6898
0791fbe9 6899 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
ec4867fa 6900 declare
f937473f 6901 Result_Subt : constant Entity_Id := Etype (E);
1a36a0cd 6902 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
2fcc44fa 6903 Formal_Typ : Entity_Id;
f937473f 6904
2fcc44fa 6905 Discard : Entity_Id;
f937473f 6906 pragma Warnings (Off, Discard);
ec4867fa
ES
6907
6908 begin
f937473f 6909 -- In the case of functions with unconstrained result subtypes,
9a1bc6d5
AC
6910 -- add a 4-state formal indicating whether the return object is
6911 -- allocated by the caller (1), or should be allocated by the
6912 -- callee on the secondary stack (2), in the global heap (3), or
6913 -- in a user-defined storage pool (4). For the moment we just use
6914 -- Natural for the type of this formal. Note that this formal
6915 -- isn't usually needed in the case where the result subtype is
6916 -- constrained, but it is needed when the function has a tagged
6917 -- result, because generally such functions can be called in a
6918 -- dispatching context and such calls must be handled like calls
6919 -- to a class-wide function.
0a36105d 6920
1bb6e262 6921 if Needs_BIP_Alloc_Form (E) then
f937473f
RD
6922 Discard :=
6923 Add_Extra_Formal
6924 (E, Standard_Natural,
6925 E, BIP_Formal_Suffix (BIP_Alloc_Form));
200b7162 6926
8417f4b2 6927 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
3e452820
AC
6928 -- use a user-defined pool. This formal is not added on
6929 -- .NET/JVM/ZFP as those targets do not support pools.
200b7162 6930
ea10ca9c
AC
6931 if VM_Target = No_VM
6932 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 6933 then
8417f4b2
AC
6934 Discard :=
6935 Add_Extra_Formal
6936 (E, RTE (RE_Root_Storage_Pool_Ptr),
6937 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6938 end if;
f937473f 6939 end if;
ec4867fa 6940
df3e68b1 6941 -- In the case of functions whose result type needs finalization,
ca5af305 6942 -- add an extra formal which represents the finalization master.
df3e68b1 6943
ca5af305 6944 if Needs_BIP_Finalization_Master (E) then
f937473f
RD
6945 Discard :=
6946 Add_Extra_Formal
ca5af305
AC
6947 (E, RTE (RE_Finalization_Master_Ptr),
6948 E, BIP_Formal_Suffix (BIP_Finalization_Master));
f937473f
RD
6949 end if;
6950
94bbf008
AC
6951 -- When the result type contains tasks, add two extra formals: the
6952 -- master of the tasks to be created, and the caller's activation
6953 -- chain.
f937473f 6954
1a36a0cd 6955 if Has_Task (Full_Subt) then
f937473f
RD
6956 Discard :=
6957 Add_Extra_Formal
6958 (E, RTE (RE_Master_Id),
af89615f 6959 E, BIP_Formal_Suffix (BIP_Task_Master));
f937473f
RD
6960 Discard :=
6961 Add_Extra_Formal
6962 (E, RTE (RE_Activation_Chain_Access),
6963 E, BIP_Formal_Suffix (BIP_Activation_Chain));
6964 end if;
ec4867fa 6965
f937473f
RD
6966 -- All build-in-place functions get an extra formal that will be
6967 -- passed the address of the return object within the caller.
ec4867fa 6968
1a36a0cd
AC
6969 Formal_Typ :=
6970 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
ec4867fa 6971
1a36a0cd
AC
6972 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
6973 Set_Etype (Formal_Typ, Formal_Typ);
6974 Set_Depends_On_Private
6975 (Formal_Typ, Has_Private_Component (Formal_Typ));
6976 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
6977 Set_Is_Access_Constant (Formal_Typ, False);
ec4867fa 6978
1a36a0cd
AC
6979 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
6980 -- the designated type comes from the limited view (for back-end
6981 -- purposes).
ec4867fa 6982
7b56a91b
AC
6983 Set_From_Limited_With
6984 (Formal_Typ, From_Limited_With (Result_Subt));
f937473f 6985
1a36a0cd
AC
6986 Layout_Type (Formal_Typ);
6987
6988 Discard :=
6989 Add_Extra_Formal
6990 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
ec4867fa
ES
6991 end;
6992 end if;
996ae0b0
RK
6993 end Create_Extra_Formals;
6994
6995 -----------------------------
6996 -- Enter_Overloaded_Entity --
6997 -----------------------------
6998
6999 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7000 E : Entity_Id := Current_Entity_In_Scope (S);
7001 C_E : Entity_Id := Current_Entity (S);
7002
7003 begin
7004 if Present (E) then
7005 Set_Has_Homonym (E);
7006 Set_Has_Homonym (S);
7007 end if;
7008
7009 Set_Is_Immediately_Visible (S);
7010 Set_Scope (S, Current_Scope);
7011
7012 -- Chain new entity if front of homonym in current scope, so that
7013 -- homonyms are contiguous.
7014
8fde064e 7015 if Present (E) and then E /= C_E then
996ae0b0
RK
7016 while Homonym (C_E) /= E loop
7017 C_E := Homonym (C_E);
7018 end loop;
7019
7020 Set_Homonym (C_E, S);
7021
7022 else
7023 E := C_E;
7024 Set_Current_Entity (S);
7025 end if;
7026
7027 Set_Homonym (S, E);
7028
2352eadb
AC
7029 if Is_Inherited_Operation (S) then
7030 Append_Inherited_Subprogram (S);
7031 else
7032 Append_Entity (S, Current_Scope);
7033 end if;
7034
996ae0b0
RK
7035 Set_Public_Status (S);
7036
7037 if Debug_Flag_E then
7038 Write_Str ("New overloaded entity chain: ");
7039 Write_Name (Chars (S));
996ae0b0 7040
82c80734 7041 E := S;
996ae0b0
RK
7042 while Present (E) loop
7043 Write_Str (" "); Write_Int (Int (E));
7044 E := Homonym (E);
7045 end loop;
7046
7047 Write_Eol;
7048 end if;
7049
7050 -- Generate warning for hiding
7051
7052 if Warn_On_Hiding
7053 and then Comes_From_Source (S)
7054 and then In_Extended_Main_Source_Unit (S)
7055 then
7056 E := S;
7057 loop
7058 E := Homonym (E);
7059 exit when No (E);
7060
7fc53871
AC
7061 -- Warn unless genuine overloading. Do not emit warning on
7062 -- hiding predefined operators in Standard (these are either an
7063 -- (artifact of our implicit declarations, or simple noise) but
7064 -- keep warning on a operator defined on a local subtype, because
7065 -- of the real danger that different operators may be applied in
7066 -- various parts of the program.
996ae0b0 7067
1f250383
AC
7068 -- Note that if E and S have the same scope, there is never any
7069 -- hiding. Either the two conflict, and the program is illegal,
7070 -- or S is overriding an implicit inherited subprogram.
7071
7072 if Scope (E) /= Scope (S)
7073 and then (not Is_Overloadable (E)
8d606a78 7074 or else Subtype_Conformant (E, S))
f937473f
RD
7075 and then (Is_Immediately_Visible (E)
7076 or else
7077 Is_Potentially_Use_Visible (S))
996ae0b0 7078 then
7fc53871
AC
7079 if Scope (E) /= Standard_Standard then
7080 Error_Msg_Sloc := Sloc (E);
3ccedacc 7081 Error_Msg_N ("declaration of & hides one #?h?", S);
7fc53871
AC
7082
7083 elsif Nkind (S) = N_Defining_Operator_Symbol
7084 and then
1f250383 7085 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7fc53871
AC
7086 then
7087 Error_Msg_N
dbfeb4fa 7088 ("declaration of & hides predefined operator?h?", S);
7fc53871 7089 end if;
996ae0b0
RK
7090 end if;
7091 end loop;
7092 end if;
7093 end Enter_Overloaded_Entity;
7094
e5a58fac
AC
7095 -----------------------------
7096 -- Check_Untagged_Equality --
7097 -----------------------------
7098
7099 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7100 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7101 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7102 Obj_Decl : Node_Id;
7103
7104 begin
7c0c194b
AC
7105 -- This check applies only if we have a subprogram declaration with an
7106 -- untagged record type.
b2834fbd
AC
7107
7108 if Nkind (Decl) /= N_Subprogram_Declaration
7109 or else not Is_Record_Type (Typ)
7110 or else Is_Tagged_Type (Typ)
e5a58fac 7111 then
b2834fbd
AC
7112 return;
7113 end if;
e5a58fac 7114
b2834fbd
AC
7115 -- In Ada 2012 case, we will output errors or warnings depending on
7116 -- the setting of debug flag -gnatd.E.
7117
7118 if Ada_Version >= Ada_2012 then
7119 Error_Msg_Warn := Debug_Flag_Dot_EE;
7120
7121 -- In earlier versions of Ada, nothing to do unless we are warning on
7122 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7123
7124 else
7125 if not Warn_On_Ada_2012_Compatibility then
7126 return;
7127 end if;
7128 end if;
7129
7130 -- Cases where the type has already been frozen
e5a58fac 7131
b2834fbd
AC
7132 if Is_Frozen (Typ) then
7133
7134 -- If the type is not declared in a package, or if we are in the body
7135 -- of the package or in some other scope, the new operation is not
7136 -- primitive, and therefore legal, though suspicious. Should we
7137 -- generate a warning in this case ???
7138
7139 if Ekind (Scope (Typ)) /= E_Package
7140 or else Scope (Typ) /= Current_Scope
7141 then
7142 return;
7143
7144 -- If the type is a generic actual (sub)type, the operation is not
7145 -- primitive either because the base type is declared elsewhere.
7146
7147 elsif Is_Generic_Actual_Type (Typ) then
7148 return;
7149
7150 -- Here we have a definite error of declaration after freezing
7151
7152 else
7153 if Ada_Version >= Ada_2012 then
ae6ede77 7154 Error_Msg_NE
3ccedacc 7155 ("equality operator must be declared before type & is "
b2834fbd
AC
7156 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7157
7158 -- In Ada 2012 mode with error turned to warning, output one
7159 -- more warning to warn that the equality operation may not
7160 -- compose. This is the consequence of ignoring the error.
7161
7162 if Error_Msg_Warn then
7163 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7164 end if;
21a5b575
AC
7165
7166 else
7167 Error_Msg_NE
b2834fbd
AC
7168 ("equality operator must be declared before type& is "
7169 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7170 end if;
7171
7172 -- If we are in the package body, we could just move the
7173 -- declaration to the package spec, so add a message saying that.
7174
7175 if In_Package_Body (Scope (Typ)) then
7176 if Ada_Version >= Ada_2012 then
7177 Error_Msg_N
7178 ("\move declaration to package spec<<", Eq_Op);
7179 else
7180 Error_Msg_N
7181 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7182 end if;
21a5b575 7183
b2834fbd
AC
7184 -- Otherwise try to find the freezing point
7185
7186 else
21a5b575 7187 Obj_Decl := Next (Parent (Typ));
dbfeb4fa 7188 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
21a5b575
AC
7189 if Nkind (Obj_Decl) = N_Object_Declaration
7190 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7191 then
b2834fbd
AC
7192 -- Freezing point, output warnings
7193
7194 if Ada_Version >= Ada_2012 then
7195 Error_Msg_NE
7196 ("type& is frozen by declaration??", Obj_Decl, Typ);
7197 Error_Msg_N
7198 ("\an equality operator cannot be declared after "
7199 & "this point??",
7200 Obj_Decl);
7201 else
7202 Error_Msg_NE
7203 ("type& is frozen by declaration (Ada 2012)?y?",
7204 Obj_Decl, Typ);
7205 Error_Msg_N
7206 ("\an equality operator cannot be declared after "
7207 & "this point (Ada 2012)?y?",
7208 Obj_Decl);
7209 end if;
7210
21a5b575
AC
7211 exit;
7212 end if;
7213
7214 Next (Obj_Decl);
7215 end loop;
7216 end if;
b2834fbd 7217 end if;
e5a58fac 7218
b2834fbd
AC
7219 -- Here if type is not frozen yet. It is illegal to have a primitive
7220 -- equality declared in the private part if the type is visible.
21a5b575 7221
b2834fbd
AC
7222 elsif not In_Same_List (Parent (Typ), Decl)
7223 and then not Is_Limited_Type (Typ)
7224 then
7225 -- Shouldn't we give an RM reference here???
21a5b575 7226
b2834fbd
AC
7227 if Ada_Version >= Ada_2012 then
7228 Error_Msg_N
7229 ("equality operator appears too late<<", Eq_Op);
7230 else
7231 Error_Msg_N
7232 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
e5a58fac 7233 end if;
b2834fbd
AC
7234
7235 -- No error detected
7236
7237 else
7238 return;
e5a58fac
AC
7239 end if;
7240 end Check_Untagged_Equality;
7241
996ae0b0
RK
7242 -----------------------------
7243 -- Find_Corresponding_Spec --
7244 -----------------------------
7245
d44202ba
HK
7246 function Find_Corresponding_Spec
7247 (N : Node_Id;
7248 Post_Error : Boolean := True) return Entity_Id
7249 is
996ae0b0
RK
7250 Spec : constant Node_Id := Specification (N);
7251 Designator : constant Entity_Id := Defining_Entity (Spec);
7252
7253 E : Entity_Id;
7254
70f4ad20
AC
7255 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7256 -- Even if fully conformant, a body may depend on a generic actual when
7257 -- the spec does not, or vice versa, in which case they were distinct
7258 -- entities in the generic.
7259
7260 -------------------------------
7261 -- Different_Generic_Profile --
7262 -------------------------------
7263
7264 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7265 F1, F2 : Entity_Id;
7266
2995860f
AC
7267 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7268 -- Check that the types of corresponding formals have the same
7269 -- generic actual if any. We have to account for subtypes of a
7270 -- generic formal, declared between a spec and a body, which may
73999267
AC
7271 -- appear distinct in an instance but matched in the generic, and
7272 -- the subtype may be used either in the spec or the body of the
7273 -- subprogram being checked.
2995860f
AC
7274
7275 -------------------------
7276 -- Same_Generic_Actual --
7277 -------------------------
7278
7279 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
73999267
AC
7280
7281 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7282 -- Predicate to check whether S1 is a subtype of S2 in the source
7283 -- of the instance.
7284
7285 -------------------------
7286 -- Is_Declared_Subtype --
7287 -------------------------
7288
7289 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7290 begin
7291 return Comes_From_Source (Parent (S1))
7292 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7293 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7294 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7295 end Is_Declared_Subtype;
7296
7297 -- Start of processing for Same_Generic_Actual
7298
2995860f
AC
7299 begin
7300 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
73999267
AC
7301 or else Is_Declared_Subtype (T1, T2)
7302 or else Is_Declared_Subtype (T2, T1);
2995860f
AC
7303 end Same_Generic_Actual;
7304
7305 -- Start of processing for Different_Generic_Profile
7306
70f4ad20 7307 begin
2995860f
AC
7308 if not In_Instance then
7309 return False;
7310
7311 elsif Ekind (E) = E_Function
7312 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
70f4ad20
AC
7313 then
7314 return True;
7315 end if;
7316
7317 F1 := First_Formal (Designator);
7318 F2 := First_Formal (E);
70f4ad20 7319 while Present (F1) loop
2995860f 7320 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
70f4ad20
AC
7321 return True;
7322 end if;
7323
7324 Next_Formal (F1);
7325 Next_Formal (F2);
7326 end loop;
7327
7328 return False;
7329 end Different_Generic_Profile;
7330
7331 -- Start of processing for Find_Corresponding_Spec
7332
996ae0b0
RK
7333 begin
7334 E := Current_Entity (Designator);
996ae0b0
RK
7335 while Present (E) loop
7336
7337 -- We are looking for a matching spec. It must have the same scope,
7338 -- and the same name, and either be type conformant, or be the case
7339 -- of a library procedure spec and its body (which belong to one
7340 -- another regardless of whether they are type conformant or not).
7341
7342 if Scope (E) = Current_Scope then
fbf5a39b
AC
7343 if Current_Scope = Standard_Standard
7344 or else (Ekind (E) = Ekind (Designator)
586ecbf3 7345 and then Type_Conformant (E, Designator))
996ae0b0
RK
7346 then
7347 -- Within an instantiation, we know that spec and body are
70f4ad20
AC
7348 -- subtype conformant, because they were subtype conformant in
7349 -- the generic. We choose the subtype-conformant entity here as
7350 -- well, to resolve spurious ambiguities in the instance that
7351 -- were not present in the generic (i.e. when two different
7352 -- types are given the same actual). If we are looking for a
7353 -- spec to match a body, full conformance is expected.
996ae0b0
RK
7354
7355 if In_Instance then
c05ba1f1
AC
7356
7357 -- Inherit the convention and "ghostness" of the matching
7358 -- spec to ensure proper full and subtype conformance.
7359
996ae0b0
RK
7360 Set_Convention (Designator, Convention (E));
7361
c05ba1f1
AC
7362 if Is_Ghost_Entity (E) then
7363 Set_Is_Ghost_Entity (Designator);
7364 end if;
7365
0187b60e
AC
7366 -- Skip past subprogram bodies and subprogram renamings that
7367 -- may appear to have a matching spec, but that aren't fully
7368 -- conformant with it. That can occur in cases where an
7369 -- actual type causes unrelated homographs in the instance.
7370
7371 if Nkind_In (N, N_Subprogram_Body,
7372 N_Subprogram_Renaming_Declaration)
996ae0b0 7373 and then Present (Homonym (E))
c7b9d548 7374 and then not Fully_Conformant (Designator, E)
996ae0b0
RK
7375 then
7376 goto Next_Entity;
7377
c7b9d548 7378 elsif not Subtype_Conformant (Designator, E) then
996ae0b0 7379 goto Next_Entity;
70f4ad20
AC
7380
7381 elsif Different_Generic_Profile (E) then
7382 goto Next_Entity;
996ae0b0
RK
7383 end if;
7384 end if;
7385
25ebc085
AC
7386 -- Ada 2012 (AI05-0165): For internally generated bodies of
7387 -- null procedures locate the internally generated spec. We
7388 -- enforce mode conformance since a tagged type may inherit
7389 -- from interfaces several null primitives which differ only
7390 -- in the mode of the formals.
7391
7392 if not (Comes_From_Source (E))
7393 and then Is_Null_Procedure (E)
7394 and then not Mode_Conformant (Designator, E)
7395 then
7396 null;
7397
4d8f3296
ES
7398 -- For null procedures coming from source that are completions,
7399 -- analysis of the generated body will establish the link.
7400
7401 elsif Comes_From_Source (E)
7402 and then Nkind (Spec) = N_Procedure_Specification
7403 and then Null_Present (Spec)
7404 then
7405 return E;
7406
25ebc085 7407 elsif not Has_Completion (E) then
996ae0b0
RK
7408 if Nkind (N) /= N_Subprogram_Body_Stub then
7409 Set_Corresponding_Spec (N, E);
7410 end if;
7411
7412 Set_Has_Completion (E);
7413 return E;
7414
7415 elsif Nkind (Parent (N)) = N_Subunit then
7416
7417 -- If this is the proper body of a subunit, the completion
7418 -- flag is set when analyzing the stub.
7419
7420 return E;
7421
70f4ad20
AC
7422 -- If E is an internal function with a controlling result that
7423 -- was created for an operation inherited by a null extension,
7424 -- it may be overridden by a body without a previous spec (one
2995860f 7425 -- more reason why these should be shunned). In that case we
70f4ad20
AC
7426 -- remove the generated body if present, because the current
7427 -- one is the explicit overriding.
81db9d77
ES
7428
7429 elsif Ekind (E) = E_Function
0791fbe9 7430 and then Ada_Version >= Ada_2005
81db9d77
ES
7431 and then not Comes_From_Source (E)
7432 and then Has_Controlling_Result (E)
7433 and then Is_Null_Extension (Etype (E))
7434 and then Comes_From_Source (Spec)
7435 then
7436 Set_Has_Completion (E, False);
7437
1366997b
AC
7438 if Expander_Active
7439 and then Nkind (Parent (E)) = N_Function_Specification
7440 then
81db9d77
ES
7441 Remove
7442 (Unit_Declaration_Node
1366997b
AC
7443 (Corresponding_Body (Unit_Declaration_Node (E))));
7444
81db9d77
ES
7445 return E;
7446
1366997b
AC
7447 -- If expansion is disabled, or if the wrapper function has
7448 -- not been generated yet, this a late body overriding an
7449 -- inherited operation, or it is an overriding by some other
7450 -- declaration before the controlling result is frozen. In
7451 -- either case this is a declaration of a new entity.
81db9d77
ES
7452
7453 else
7454 return Empty;
7455 end if;
7456
d44202ba
HK
7457 -- If the body already exists, then this is an error unless
7458 -- the previous declaration is the implicit declaration of a
756ef2a0
AC
7459 -- derived subprogram. It is also legal for an instance to
7460 -- contain type conformant overloadable declarations (but the
7461 -- generic declaration may not), per 8.3(26/2).
996ae0b0
RK
7462
7463 elsif No (Alias (E))
7464 and then not Is_Intrinsic_Subprogram (E)
7465 and then not In_Instance
d44202ba 7466 and then Post_Error
996ae0b0
RK
7467 then
7468 Error_Msg_Sloc := Sloc (E);
8dbd1460 7469
07fc65c4
GB
7470 if Is_Imported (E) then
7471 Error_Msg_NE
7472 ("body not allowed for imported subprogram & declared#",
7473 N, E);
7474 else
7475 Error_Msg_NE ("duplicate body for & declared#", N, E);
7476 end if;
996ae0b0
RK
7477 end if;
7478
d44202ba
HK
7479 -- Child units cannot be overloaded, so a conformance mismatch
7480 -- between body and a previous spec is an error.
7481
996ae0b0
RK
7482 elsif Is_Child_Unit (E)
7483 and then
7484 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7485 and then
5d37ba92 7486 Nkind (Parent (Unit_Declaration_Node (Designator))) =
d44202ba
HK
7487 N_Compilation_Unit
7488 and then Post_Error
996ae0b0 7489 then
996ae0b0
RK
7490 Error_Msg_N
7491 ("body of child unit does not match previous declaration", N);
7492 end if;
7493 end if;
7494
7495 <<Next_Entity>>
7496 E := Homonym (E);
7497 end loop;
7498
7499 -- On exit, we know that no previous declaration of subprogram exists
7500
7501 return Empty;
7502 end Find_Corresponding_Spec;
7503
7504 ----------------------
7505 -- Fully_Conformant --
7506 ----------------------
7507
7508 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7509 Result : Boolean;
996ae0b0
RK
7510 begin
7511 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7512 return Result;
7513 end Fully_Conformant;
7514
7515 ----------------------------------
7516 -- Fully_Conformant_Expressions --
7517 ----------------------------------
7518
7519 function Fully_Conformant_Expressions
7520 (Given_E1 : Node_Id;
d05ef0ab 7521 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
7522 is
7523 E1 : constant Node_Id := Original_Node (Given_E1);
7524 E2 : constant Node_Id := Original_Node (Given_E2);
7525 -- We always test conformance on original nodes, since it is possible
7526 -- for analysis and/or expansion to make things look as though they
7527 -- conform when they do not, e.g. by converting 1+2 into 3.
7528
7529 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7530 renames Fully_Conformant_Expressions;
7531
7532 function FCL (L1, L2 : List_Id) return Boolean;
70f4ad20
AC
7533 -- Compare elements of two lists for conformance. Elements have to be
7534 -- conformant, and actuals inserted as default parameters do not match
7535 -- explicit actuals with the same value.
996ae0b0
RK
7536
7537 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 7538 -- Compare an operator node with a function call
996ae0b0
RK
7539
7540 ---------
7541 -- FCL --
7542 ---------
7543
7544 function FCL (L1, L2 : List_Id) return Boolean is
7545 N1, N2 : Node_Id;
7546
7547 begin
7548 if L1 = No_List then
7549 N1 := Empty;
7550 else
7551 N1 := First (L1);
7552 end if;
7553
7554 if L2 = No_List then
7555 N2 := Empty;
7556 else
7557 N2 := First (L2);
7558 end if;
7559
70f4ad20 7560 -- Compare two lists, skipping rewrite insertions (we want to compare
a90bd866 7561 -- the original trees, not the expanded versions).
996ae0b0
RK
7562
7563 loop
7564 if Is_Rewrite_Insertion (N1) then
7565 Next (N1);
7566 elsif Is_Rewrite_Insertion (N2) then
7567 Next (N2);
7568 elsif No (N1) then
7569 return No (N2);
7570 elsif No (N2) then
7571 return False;
7572 elsif not FCE (N1, N2) then
7573 return False;
7574 else
7575 Next (N1);
7576 Next (N2);
7577 end if;
7578 end loop;
7579 end FCL;
7580
7581 ---------
7582 -- FCO --
7583 ---------
7584
7585 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7586 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7587 Act : Node_Id;
7588
7589 begin
7590 if No (Actuals)
7591 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7592 then
7593 return False;
7594
7595 else
7596 Act := First (Actuals);
7597
7598 if Nkind (Op_Node) in N_Binary_Op then
996ae0b0
RK
7599 if not FCE (Left_Opnd (Op_Node), Act) then
7600 return False;
7601 end if;
7602
7603 Next (Act);
7604 end if;
7605
7606 return Present (Act)
7607 and then FCE (Right_Opnd (Op_Node), Act)
7608 and then No (Next (Act));
7609 end if;
7610 end FCO;
7611
7612 -- Start of processing for Fully_Conformant_Expressions
7613
7614 begin
7615 -- Non-conformant if paren count does not match. Note: if some idiot
7616 -- complains that we don't do this right for more than 3 levels of
a90bd866 7617 -- parentheses, they will be treated with the respect they deserve.
996ae0b0
RK
7618
7619 if Paren_Count (E1) /= Paren_Count (E2) then
7620 return False;
7621
82c80734
RD
7622 -- If same entities are referenced, then they are conformant even if
7623 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
7624
7625 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7626 if Present (Entity (E1)) then
7627 return Entity (E1) = Entity (E2)
7628 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7629 and then Ekind (Entity (E1)) = E_Discriminant
7630 and then Ekind (Entity (E2)) = E_In_Parameter);
7631
7632 elsif Nkind (E1) = N_Expanded_Name
7633 and then Nkind (E2) = N_Expanded_Name
7634 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7635 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7636 then
7637 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7638
7639 else
7640 -- Identifiers in component associations don't always have
7641 -- entities, but their names must conform.
7642
7643 return Nkind (E1) = N_Identifier
7644 and then Nkind (E2) = N_Identifier
7645 and then Chars (E1) = Chars (E2);
7646 end if;
7647
7648 elsif Nkind (E1) = N_Character_Literal
7649 and then Nkind (E2) = N_Expanded_Name
7650 then
7651 return Nkind (Selector_Name (E2)) = N_Character_Literal
7652 and then Chars (E1) = Chars (Selector_Name (E2));
7653
7654 elsif Nkind (E2) = N_Character_Literal
7655 and then Nkind (E1) = N_Expanded_Name
7656 then
7657 return Nkind (Selector_Name (E1)) = N_Character_Literal
7658 and then Chars (E2) = Chars (Selector_Name (E1));
7659
8fde064e 7660 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
996ae0b0
RK
7661 return FCO (E1, E2);
7662
8fde064e 7663 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
996ae0b0
RK
7664 return FCO (E2, E1);
7665
7666 -- Otherwise we must have the same syntactic entity
7667
7668 elsif Nkind (E1) /= Nkind (E2) then
7669 return False;
7670
7671 -- At this point, we specialize by node type
7672
7673 else
7674 case Nkind (E1) is
7675
7676 when N_Aggregate =>
7677 return
7678 FCL (Expressions (E1), Expressions (E2))
19d846a0
RD
7679 and then
7680 FCL (Component_Associations (E1),
7681 Component_Associations (E2));
996ae0b0
RK
7682
7683 when N_Allocator =>
7684 if Nkind (Expression (E1)) = N_Qualified_Expression
7685 or else
7686 Nkind (Expression (E2)) = N_Qualified_Expression
7687 then
7688 return FCE (Expression (E1), Expression (E2));
7689
7690 -- Check that the subtype marks and any constraints
7691 -- are conformant
7692
7693 else
7694 declare
7695 Indic1 : constant Node_Id := Expression (E1);
7696 Indic2 : constant Node_Id := Expression (E2);
7697 Elt1 : Node_Id;
7698 Elt2 : Node_Id;
7699
7700 begin
7701 if Nkind (Indic1) /= N_Subtype_Indication then
7702 return
7703 Nkind (Indic2) /= N_Subtype_Indication
7704 and then Entity (Indic1) = Entity (Indic2);
7705
7706 elsif Nkind (Indic2) /= N_Subtype_Indication then
7707 return
7708 Nkind (Indic1) /= N_Subtype_Indication
7709 and then Entity (Indic1) = Entity (Indic2);
7710
7711 else
7712 if Entity (Subtype_Mark (Indic1)) /=
7713 Entity (Subtype_Mark (Indic2))
7714 then
7715 return False;
7716 end if;
7717
7718 Elt1 := First (Constraints (Constraint (Indic1)));
7719 Elt2 := First (Constraints (Constraint (Indic2)));
996ae0b0
RK
7720 while Present (Elt1) and then Present (Elt2) loop
7721 if not FCE (Elt1, Elt2) then
7722 return False;
7723 end if;
7724
7725 Next (Elt1);
7726 Next (Elt2);
7727 end loop;
7728
7729 return True;
7730 end if;
7731 end;
7732 end if;
7733
7734 when N_Attribute_Reference =>
7735 return
7736 Attribute_Name (E1) = Attribute_Name (E2)
7737 and then FCL (Expressions (E1), Expressions (E2));
7738
7739 when N_Binary_Op =>
7740 return
7741 Entity (E1) = Entity (E2)
7742 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7743 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7744
514d0fc5 7745 when N_Short_Circuit | N_Membership_Test =>
996ae0b0
RK
7746 return
7747 FCE (Left_Opnd (E1), Left_Opnd (E2))
7748 and then
7749 FCE (Right_Opnd (E1), Right_Opnd (E2));
7750
19d846a0
RD
7751 when N_Case_Expression =>
7752 declare
7753 Alt1 : Node_Id;
7754 Alt2 : Node_Id;
7755
7756 begin
7757 if not FCE (Expression (E1), Expression (E2)) then
7758 return False;
7759
7760 else
7761 Alt1 := First (Alternatives (E1));
7762 Alt2 := First (Alternatives (E2));
7763 loop
7764 if Present (Alt1) /= Present (Alt2) then
7765 return False;
7766 elsif No (Alt1) then
7767 return True;
7768 end if;
7769
7770 if not FCE (Expression (Alt1), Expression (Alt2))
7771 or else not FCL (Discrete_Choices (Alt1),
7772 Discrete_Choices (Alt2))
7773 then
7774 return False;
7775 end if;
7776
7777 Next (Alt1);
7778 Next (Alt2);
7779 end loop;
7780 end if;
7781 end;
7782
996ae0b0
RK
7783 when N_Character_Literal =>
7784 return
7785 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7786
7787 when N_Component_Association =>
7788 return
7789 FCL (Choices (E1), Choices (E2))
19d846a0
RD
7790 and then
7791 FCE (Expression (E1), Expression (E2));
996ae0b0 7792
996ae0b0
RK
7793 when N_Explicit_Dereference =>
7794 return
7795 FCE (Prefix (E1), Prefix (E2));
7796
7797 when N_Extension_Aggregate =>
7798 return
7799 FCL (Expressions (E1), Expressions (E2))
7800 and then Null_Record_Present (E1) =
7801 Null_Record_Present (E2)
7802 and then FCL (Component_Associations (E1),
7803 Component_Associations (E2));
7804
7805 when N_Function_Call =>
7806 return
7807 FCE (Name (E1), Name (E2))
19d846a0
RD
7808 and then
7809 FCL (Parameter_Associations (E1),
7810 Parameter_Associations (E2));
996ae0b0 7811
9b16cb57
RD
7812 when N_If_Expression =>
7813 return
7814 FCL (Expressions (E1), Expressions (E2));
7815
996ae0b0
RK
7816 when N_Indexed_Component =>
7817 return
7818 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7819 and then
7820 FCL (Expressions (E1), Expressions (E2));
996ae0b0
RK
7821
7822 when N_Integer_Literal =>
7823 return (Intval (E1) = Intval (E2));
7824
7825 when N_Null =>
7826 return True;
7827
7828 when N_Operator_Symbol =>
7829 return
7830 Chars (E1) = Chars (E2);
7831
7832 when N_Others_Choice =>
7833 return True;
7834
7835 when N_Parameter_Association =>
7836 return
996ae0b0
RK
7837 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7838 and then FCE (Explicit_Actual_Parameter (E1),
7839 Explicit_Actual_Parameter (E2));
7840
7841 when N_Qualified_Expression =>
7842 return
7843 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7844 and then
7845 FCE (Expression (E1), Expression (E2));
996ae0b0 7846
2010d078
AC
7847 when N_Quantified_Expression =>
7848 if not FCE (Condition (E1), Condition (E2)) then
7849 return False;
7850 end if;
7851
7852 if Present (Loop_Parameter_Specification (E1))
7853 and then Present (Loop_Parameter_Specification (E2))
7854 then
7855 declare
7856 L1 : constant Node_Id :=
7857 Loop_Parameter_Specification (E1);
7858 L2 : constant Node_Id :=
7859 Loop_Parameter_Specification (E2);
7860
7861 begin
7862 return
7863 Reverse_Present (L1) = Reverse_Present (L2)
7864 and then
7865 FCE (Defining_Identifier (L1),
7866 Defining_Identifier (L2))
7867 and then
7868 FCE (Discrete_Subtype_Definition (L1),
7869 Discrete_Subtype_Definition (L2));
7870 end;
7871
804670f1
AC
7872 elsif Present (Iterator_Specification (E1))
7873 and then Present (Iterator_Specification (E2))
7874 then
2010d078
AC
7875 declare
7876 I1 : constant Node_Id := Iterator_Specification (E1);
7877 I2 : constant Node_Id := Iterator_Specification (E2);
7878
7879 begin
7880 return
7881 FCE (Defining_Identifier (I1),
7882 Defining_Identifier (I2))
7883 and then
7884 Of_Present (I1) = Of_Present (I2)
7885 and then
7886 Reverse_Present (I1) = Reverse_Present (I2)
7887 and then FCE (Name (I1), Name (I2))
7888 and then FCE (Subtype_Indication (I1),
7889 Subtype_Indication (I2));
7890 end;
804670f1
AC
7891
7892 -- The quantified expressions used different specifications to
7893 -- walk their respective ranges.
7894
7895 else
7896 return False;
2010d078
AC
7897 end if;
7898
996ae0b0
RK
7899 when N_Range =>
7900 return
7901 FCE (Low_Bound (E1), Low_Bound (E2))
19d846a0
RD
7902 and then
7903 FCE (High_Bound (E1), High_Bound (E2));
996ae0b0
RK
7904
7905 when N_Real_Literal =>
7906 return (Realval (E1) = Realval (E2));
7907
7908 when N_Selected_Component =>
7909 return
7910 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7911 and then
7912 FCE (Selector_Name (E1), Selector_Name (E2));
996ae0b0
RK
7913
7914 when N_Slice =>
7915 return
7916 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7917 and then
7918 FCE (Discrete_Range (E1), Discrete_Range (E2));
996ae0b0
RK
7919
7920 when N_String_Literal =>
7921 declare
7922 S1 : constant String_Id := Strval (E1);
7923 S2 : constant String_Id := Strval (E2);
7924 L1 : constant Nat := String_Length (S1);
7925 L2 : constant Nat := String_Length (S2);
7926
7927 begin
7928 if L1 /= L2 then
7929 return False;
7930
7931 else
7932 for J in 1 .. L1 loop
7933 if Get_String_Char (S1, J) /=
7934 Get_String_Char (S2, J)
7935 then
7936 return False;
7937 end if;
7938 end loop;
7939
7940 return True;
7941 end if;
7942 end;
7943
7944 when N_Type_Conversion =>
7945 return
7946 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7947 and then
7948 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7949
7950 when N_Unary_Op =>
7951 return
7952 Entity (E1) = Entity (E2)
19d846a0
RD
7953 and then
7954 FCE (Right_Opnd (E1), Right_Opnd (E2));
996ae0b0
RK
7955
7956 when N_Unchecked_Type_Conversion =>
7957 return
7958 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7959 and then
7960 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7961
7962 -- All other node types cannot appear in this context. Strictly
7963 -- we should raise a fatal internal error. Instead we just ignore
7964 -- the nodes. This means that if anyone makes a mistake in the
2995860f
AC
7965 -- expander and mucks an expression tree irretrievably, the result
7966 -- will be a failure to detect a (probably very obscure) case
7967 -- of non-conformance, which is better than bombing on some
996ae0b0
RK
7968 -- case where two expressions do in fact conform.
7969
7970 when others =>
7971 return True;
7972
7973 end case;
7974 end if;
7975 end Fully_Conformant_Expressions;
7976
fbf5a39b
AC
7977 ----------------------------------------
7978 -- Fully_Conformant_Discrete_Subtypes --
7979 ----------------------------------------
7980
7981 function Fully_Conformant_Discrete_Subtypes
7982 (Given_S1 : Node_Id;
d05ef0ab 7983 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
7984 is
7985 S1 : constant Node_Id := Original_Node (Given_S1);
7986 S2 : constant Node_Id := Original_Node (Given_S2);
7987
7988 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
7989 -- Special-case for a bound given by a discriminant, which in the body
7990 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
7991
7992 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 7993 -- Check both bounds
fbf5a39b 7994
5d37ba92
ES
7995 -----------------------
7996 -- Conforming_Bounds --
7997 -----------------------
7998
fbf5a39b
AC
7999 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8000 begin
8001 if Is_Entity_Name (B1)
8002 and then Is_Entity_Name (B2)
8003 and then Ekind (Entity (B1)) = E_Discriminant
8004 then
8005 return Chars (B1) = Chars (B2);
8006
8007 else
8008 return Fully_Conformant_Expressions (B1, B2);
8009 end if;
8010 end Conforming_Bounds;
8011
5d37ba92
ES
8012 -----------------------
8013 -- Conforming_Ranges --
8014 -----------------------
8015
fbf5a39b
AC
8016 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8017 begin
8018 return
8019 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8020 and then
8021 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8022 end Conforming_Ranges;
8023
8024 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8025
8026 begin
8027 if Nkind (S1) /= Nkind (S2) then
8028 return False;
8029
8030 elsif Is_Entity_Name (S1) then
8031 return Entity (S1) = Entity (S2);
8032
8033 elsif Nkind (S1) = N_Range then
8034 return Conforming_Ranges (S1, S2);
8035
8036 elsif Nkind (S1) = N_Subtype_Indication then
8037 return
8038 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8039 and then
8040 Conforming_Ranges
8041 (Range_Expression (Constraint (S1)),
8042 Range_Expression (Constraint (S2)));
8043 else
8044 return True;
8045 end if;
8046 end Fully_Conformant_Discrete_Subtypes;
8047
996ae0b0
RK
8048 --------------------
8049 -- Install_Entity --
8050 --------------------
8051
8052 procedure Install_Entity (E : Entity_Id) is
8053 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
8054 begin
8055 Set_Is_Immediately_Visible (E);
8056 Set_Current_Entity (E);
8057 Set_Homonym (E, Prev);
8058 end Install_Entity;
8059
8060 ---------------------
8061 -- Install_Formals --
8062 ---------------------
8063
8064 procedure Install_Formals (Id : Entity_Id) is
8065 F : Entity_Id;
996ae0b0
RK
8066 begin
8067 F := First_Formal (Id);
996ae0b0
RK
8068 while Present (F) loop
8069 Install_Entity (F);
8070 Next_Formal (F);
8071 end loop;
8072 end Install_Formals;
8073
ce2b6ba5
JM
8074 -----------------------------
8075 -- Is_Interface_Conformant --
8076 -----------------------------
8077
8078 function Is_Interface_Conformant
8079 (Tagged_Type : Entity_Id;
8080 Iface_Prim : Entity_Id;
8081 Prim : Entity_Id) return Boolean
8082 is
9e92ad49
AC
8083 -- The operation may in fact be an inherited (implicit) operation
8084 -- rather than the original interface primitive, so retrieve the
8085 -- ultimate ancestor.
8086
8087 Iface : constant Entity_Id :=
8088 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
fceeaab6
ES
8089 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8090
25ebc085
AC
8091 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8092 -- Return the controlling formal of Prim
8093
59e6b23c
AC
8094 ------------------------
8095 -- Controlling_Formal --
8096 ------------------------
8097
25ebc085 8098 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
15918371 8099 E : Entity_Id;
59e6b23c 8100
25ebc085 8101 begin
15918371 8102 E := First_Entity (Prim);
25ebc085
AC
8103 while Present (E) loop
8104 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8105 return E;
8106 end if;
8107
8108 Next_Entity (E);
8109 end loop;
8110
8111 return Empty;
8112 end Controlling_Formal;
8113
8114 -- Local variables
8115
8116 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8117 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8118
8119 -- Start of processing for Is_Interface_Conformant
8120
ce2b6ba5
JM
8121 begin
8122 pragma Assert (Is_Subprogram (Iface_Prim)
8123 and then Is_Subprogram (Prim)
8124 and then Is_Dispatching_Operation (Iface_Prim)
8125 and then Is_Dispatching_Operation (Prim));
8126
fceeaab6 8127 pragma Assert (Is_Interface (Iface)
ce2b6ba5
JM
8128 or else (Present (Alias (Iface_Prim))
8129 and then
8130 Is_Interface
8131 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8132
8133 if Prim = Iface_Prim
8134 or else not Is_Subprogram (Prim)
8135 or else Ekind (Prim) /= Ekind (Iface_Prim)
8136 or else not Is_Dispatching_Operation (Prim)
8137 or else Scope (Prim) /= Scope (Tagged_Type)
fceeaab6 8138 or else No (Typ)
8a49a499 8139 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
ce2b6ba5
JM
8140 or else not Primitive_Names_Match (Iface_Prim, Prim)
8141 then
8142 return False;
8143
25ebc085
AC
8144 -- The mode of the controlling formals must match
8145
8146 elsif Present (Iface_Ctrl_F)
15918371
AC
8147 and then Present (Prim_Ctrl_F)
8148 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
25ebc085
AC
8149 then
8150 return False;
8151
8152 -- Case of a procedure, or a function whose result type matches the
8153 -- result type of the interface primitive, or a function that has no
8154 -- controlling result (I or access I).
ce2b6ba5
JM
8155
8156 elsif Ekind (Iface_Prim) = E_Procedure
8157 or else Etype (Prim) = Etype (Iface_Prim)
fceeaab6 8158 or else not Has_Controlling_Result (Prim)
ce2b6ba5 8159 then
b4d7b435
AC
8160 return Type_Conformant
8161 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
ce2b6ba5 8162
2995860f
AC
8163 -- Case of a function returning an interface, or an access to one. Check
8164 -- that the return types correspond.
ce2b6ba5 8165
fceeaab6
ES
8166 elsif Implements_Interface (Typ, Iface) then
8167 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9a3c9940
RD
8168 /=
8169 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
fceeaab6
ES
8170 then
8171 return False;
fceeaab6
ES
8172 else
8173 return
9e92ad49 8174 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
ce2b6ba5 8175 Skip_Controlling_Formals => True);
fceeaab6 8176 end if;
ce2b6ba5 8177
fceeaab6
ES
8178 else
8179 return False;
ce2b6ba5 8180 end if;
ce2b6ba5
JM
8181 end Is_Interface_Conformant;
8182
996ae0b0
RK
8183 ---------------------------------
8184 -- Is_Non_Overriding_Operation --
8185 ---------------------------------
8186
8187 function Is_Non_Overriding_Operation
8188 (Prev_E : Entity_Id;
d05ef0ab 8189 New_E : Entity_Id) return Boolean
996ae0b0
RK
8190 is
8191 Formal : Entity_Id;
8192 F_Typ : Entity_Id;
8193 G_Typ : Entity_Id := Empty;
8194
8195 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
8196 -- If F_Type is a derived type associated with a generic actual subtype,
8197 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
8198
8199 function Types_Correspond
8200 (P_Type : Entity_Id;
d05ef0ab 8201 N_Type : Entity_Id) return Boolean;
82c80734
RD
8202 -- Returns true if and only if the types (or designated types in the
8203 -- case of anonymous access types) are the same or N_Type is derived
8204 -- directly or indirectly from P_Type.
996ae0b0
RK
8205
8206 -----------------------------
8207 -- Get_Generic_Parent_Type --
8208 -----------------------------
8209
8210 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8211 G_Typ : Entity_Id;
702d2020 8212 Defn : Node_Id;
996ae0b0
RK
8213 Indic : Node_Id;
8214
8215 begin
8216 if Is_Derived_Type (F_Typ)
8217 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8218 then
82c80734
RD
8219 -- The tree must be traversed to determine the parent subtype in
8220 -- the generic unit, which unfortunately isn't always available
8221 -- via semantic attributes. ??? (Note: The use of Original_Node
8222 -- is needed for cases where a full derived type has been
8223 -- rewritten.)
996ae0b0 8224
702d2020
AC
8225 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8226 if Nkind (Defn) = N_Derived_Type_Definition then
8227 Indic := Subtype_Indication (Defn);
996ae0b0 8228
702d2020
AC
8229 if Nkind (Indic) = N_Subtype_Indication then
8230 G_Typ := Entity (Subtype_Mark (Indic));
8231 else
8232 G_Typ := Entity (Indic);
8233 end if;
996ae0b0 8234
702d2020
AC
8235 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8236 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8237 then
8238 return Generic_Parent_Type (Parent (G_Typ));
8239 end if;
996ae0b0
RK
8240 end if;
8241 end if;
8242
8243 return Empty;
8244 end Get_Generic_Parent_Type;
8245
8246 ----------------------
8247 -- Types_Correspond --
8248 ----------------------
8249
8250 function Types_Correspond
8251 (P_Type : Entity_Id;
d05ef0ab 8252 N_Type : Entity_Id) return Boolean
996ae0b0
RK
8253 is
8254 Prev_Type : Entity_Id := Base_Type (P_Type);
8255 New_Type : Entity_Id := Base_Type (N_Type);
8256
8257 begin
8258 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8259 Prev_Type := Designated_Type (Prev_Type);
8260 end if;
8261
8262 if Ekind (New_Type) = E_Anonymous_Access_Type then
8263 New_Type := Designated_Type (New_Type);
8264 end if;
8265
8266 if Prev_Type = New_Type then
8267 return True;
8268
8269 elsif not Is_Class_Wide_Type (New_Type) then
8270 while Etype (New_Type) /= New_Type loop
8271 New_Type := Etype (New_Type);
8272 if New_Type = Prev_Type then
8273 return True;
8274 end if;
8275 end loop;
8276 end if;
8277 return False;
8278 end Types_Correspond;
8279
8280 -- Start of processing for Is_Non_Overriding_Operation
8281
8282 begin
82c80734
RD
8283 -- In the case where both operations are implicit derived subprograms
8284 -- then neither overrides the other. This can only occur in certain
8285 -- obscure cases (e.g., derivation from homographs created in a generic
8286 -- instantiation).
996ae0b0
RK
8287
8288 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8289 return True;
8290
8291 elsif Ekind (Current_Scope) = E_Package
8292 and then Is_Generic_Instance (Current_Scope)
8293 and then In_Private_Part (Current_Scope)
8294 and then Comes_From_Source (New_E)
8295 then
702d2020
AC
8296 -- We examine the formals and result type of the inherited operation,
8297 -- to determine whether their type is derived from (the instance of)
8298 -- a generic type. The first such formal or result type is the one
8299 -- tested.
996ae0b0
RK
8300
8301 Formal := First_Formal (Prev_E);
996ae0b0
RK
8302 while Present (Formal) loop
8303 F_Typ := Base_Type (Etype (Formal));
8304
8305 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8306 F_Typ := Designated_Type (F_Typ);
8307 end if;
8308
8309 G_Typ := Get_Generic_Parent_Type (F_Typ);
702d2020 8310 exit when Present (G_Typ);
996ae0b0
RK
8311
8312 Next_Formal (Formal);
8313 end loop;
8314
c8ef728f 8315 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
8316 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8317 end if;
8318
8319 if No (G_Typ) then
8320 return False;
8321 end if;
8322
8dbd1460
AC
8323 -- If the generic type is a private type, then the original operation
8324 -- was not overriding in the generic, because there was no primitive
8325 -- operation to override.
996ae0b0
RK
8326
8327 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8328 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8dbd1460 8329 N_Formal_Private_Type_Definition
996ae0b0
RK
8330 then
8331 return True;
8332
8333 -- The generic parent type is the ancestor of a formal derived
8334 -- type declaration. We need to check whether it has a primitive
8335 -- operation that should be overridden by New_E in the generic.
8336
8337 else
8338 declare
8339 P_Formal : Entity_Id;
8340 N_Formal : Entity_Id;
8341 P_Typ : Entity_Id;
8342 N_Typ : Entity_Id;
8343 P_Prim : Entity_Id;
8344 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8345
8346 begin
8347 while Present (Prim_Elt) loop
8348 P_Prim := Node (Prim_Elt);
fbf5a39b 8349
996ae0b0
RK
8350 if Chars (P_Prim) = Chars (New_E)
8351 and then Ekind (P_Prim) = Ekind (New_E)
8352 then
8353 P_Formal := First_Formal (P_Prim);
8354 N_Formal := First_Formal (New_E);
8355 while Present (P_Formal) and then Present (N_Formal) loop
8356 P_Typ := Etype (P_Formal);
8357 N_Typ := Etype (N_Formal);
8358
8359 if not Types_Correspond (P_Typ, N_Typ) then
8360 exit;
8361 end if;
8362
8363 Next_Entity (P_Formal);
8364 Next_Entity (N_Formal);
8365 end loop;
8366
82c80734
RD
8367 -- Found a matching primitive operation belonging to the
8368 -- formal ancestor type, so the new subprogram is
8369 -- overriding.
996ae0b0 8370
c8ef728f
ES
8371 if No (P_Formal)
8372 and then No (N_Formal)
996ae0b0
RK
8373 and then (Ekind (New_E) /= E_Function
8374 or else
8fde064e
AC
8375 Types_Correspond
8376 (Etype (P_Prim), Etype (New_E)))
996ae0b0
RK
8377 then
8378 return False;
8379 end if;
8380 end if;
8381
8382 Next_Elmt (Prim_Elt);
8383 end loop;
8384
2995860f
AC
8385 -- If no match found, then the new subprogram does not override
8386 -- in the generic (nor in the instance).
996ae0b0 8387
260359e3
AC
8388 -- If the type in question is not abstract, and the subprogram
8389 -- is, this will be an error if the new operation is in the
8390 -- private part of the instance. Emit a warning now, which will
8391 -- make the subsequent error message easier to understand.
8392
8393 if not Is_Abstract_Type (F_Typ)
8394 and then Is_Abstract_Subprogram (Prev_E)
8395 and then In_Private_Part (Current_Scope)
8396 then
8397 Error_Msg_Node_2 := F_Typ;
8398 Error_Msg_NE
3ccedacc
AC
8399 ("private operation& in generic unit does not override "
8400 & "any primitive operation of& (RM 12.3 (18))??",
260359e3
AC
8401 New_E, New_E);
8402 end if;
8403
996ae0b0
RK
8404 return True;
8405 end;
8406 end if;
8407 else
8408 return False;
8409 end if;
8410 end Is_Non_Overriding_Operation;
8411
beacce02
AC
8412 -------------------------------------
8413 -- List_Inherited_Pre_Post_Aspects --
8414 -------------------------------------
8415
8416 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8417 begin
e606088a 8418 if Opt.List_Inherited_Aspects
b9696ffb 8419 and then Is_Subprogram_Or_Generic_Subprogram (E)
beacce02
AC
8420 then
8421 declare
c9d70ab1
AC
8422 Subps : constant Subprogram_List := Inherited_Subprograms (E);
8423 Items : Node_Id;
8424 Prag : Node_Id;
beacce02
AC
8425
8426 begin
c9d70ab1
AC
8427 for Index in Subps'Range loop
8428 Items := Contract (Subps (Index));
8429
8430 if Present (Items) then
8431 Prag := Pre_Post_Conditions (Items);
8432 while Present (Prag) loop
8433 Error_Msg_Sloc := Sloc (Prag);
8434
8435 if Class_Present (Prag)
8436 and then not Split_PPC (Prag)
8437 then
8438 if Pragma_Name (Prag) = Name_Precondition then
8439 Error_Msg_N
8440 ("info: & inherits `Pre''Class` aspect from "
8441 & "#?L?", E);
8442 else
8443 Error_Msg_N
8444 ("info: & inherits `Post''Class` aspect from "
8445 & "#?L?", E);
8446 end if;
beacce02 8447 end if;
beacce02 8448
c9d70ab1
AC
8449 Prag := Next_Pragma (Prag);
8450 end loop;
8451 end if;
beacce02
AC
8452 end loop;
8453 end;
8454 end if;
8455 end List_Inherited_Pre_Post_Aspects;
8456
996ae0b0
RK
8457 ------------------------------
8458 -- Make_Inequality_Operator --
8459 ------------------------------
8460
8461 -- S is the defining identifier of an equality operator. We build a
8462 -- subprogram declaration with the right signature. This operation is
8463 -- intrinsic, because it is always expanded as the negation of the
8464 -- call to the equality function.
8465
8466 procedure Make_Inequality_Operator (S : Entity_Id) is
8467 Loc : constant Source_Ptr := Sloc (S);
8468 Decl : Node_Id;
8469 Formals : List_Id;
8470 Op_Name : Entity_Id;
8471
c8ef728f
ES
8472 FF : constant Entity_Id := First_Formal (S);
8473 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
8474
8475 begin
c8ef728f 8476 -- Check that equality was properly defined, ignore call if not
996ae0b0 8477
c8ef728f 8478 if No (NF) then
996ae0b0
RK
8479 return;
8480 end if;
8481
c8ef728f
ES
8482 declare
8483 A : constant Entity_Id :=
8484 Make_Defining_Identifier (Sloc (FF),
8485 Chars => Chars (FF));
8486
5d37ba92
ES
8487 B : constant Entity_Id :=
8488 Make_Defining_Identifier (Sloc (NF),
8489 Chars => Chars (NF));
c8ef728f
ES
8490
8491 begin
8492 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8493
8494 Formals := New_List (
8495 Make_Parameter_Specification (Loc,
8496 Defining_Identifier => A,
8497 Parameter_Type =>
e4494292 8498 New_Occurrence_Of (Etype (First_Formal (S)),
c8ef728f
ES
8499 Sloc (Etype (First_Formal (S))))),
8500
8501 Make_Parameter_Specification (Loc,
8502 Defining_Identifier => B,
8503 Parameter_Type =>
e4494292 8504 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
c8ef728f
ES
8505 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8506
8507 Decl :=
8508 Make_Subprogram_Declaration (Loc,
8509 Specification =>
8510 Make_Function_Specification (Loc,
8511 Defining_Unit_Name => Op_Name,
8512 Parameter_Specifications => Formals,
8513 Result_Definition =>
e4494292 8514 New_Occurrence_Of (Standard_Boolean, Loc)));
c8ef728f
ES
8515
8516 -- Insert inequality right after equality if it is explicit or after
8517 -- the derived type when implicit. These entities are created only
2995860f
AC
8518 -- for visibility purposes, and eventually replaced in the course
8519 -- of expansion, so they do not need to be attached to the tree and
8520 -- seen by the back-end. Keeping them internal also avoids spurious
c8ef728f
ES
8521 -- freezing problems. The declaration is inserted in the tree for
8522 -- analysis, and removed afterwards. If the equality operator comes
8523 -- from an explicit declaration, attach the inequality immediately
8524 -- after. Else the equality is inherited from a derived type
8525 -- declaration, so insert inequality after that declaration.
8526
8527 if No (Alias (S)) then
8528 Insert_After (Unit_Declaration_Node (S), Decl);
8529 elsif Is_List_Member (Parent (S)) then
8530 Insert_After (Parent (S), Decl);
8531 else
8532 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8533 end if;
996ae0b0 8534
c8ef728f
ES
8535 Mark_Rewrite_Insertion (Decl);
8536 Set_Is_Intrinsic_Subprogram (Op_Name);
8537 Analyze (Decl);
8538 Remove (Decl);
8539 Set_Has_Completion (Op_Name);
8540 Set_Corresponding_Equality (Op_Name, S);
f937473f 8541 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 8542 end;
996ae0b0
RK
8543 end Make_Inequality_Operator;
8544
8545 ----------------------
8546 -- May_Need_Actuals --
8547 ----------------------
8548
8549 procedure May_Need_Actuals (Fun : Entity_Id) is
8550 F : Entity_Id;
8551 B : Boolean;
8552
8553 begin
8554 F := First_Formal (Fun);
8555 B := True;
996ae0b0
RK
8556 while Present (F) loop
8557 if No (Default_Value (F)) then
8558 B := False;
8559 exit;
8560 end if;
8561
8562 Next_Formal (F);
8563 end loop;
8564
8565 Set_Needs_No_Actuals (Fun, B);
8566 end May_Need_Actuals;
8567
8568 ---------------------
8569 -- Mode_Conformant --
8570 ---------------------
8571
8572 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8573 Result : Boolean;
996ae0b0
RK
8574 begin
8575 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8576 return Result;
8577 end Mode_Conformant;
8578
8579 ---------------------------
8580 -- New_Overloaded_Entity --
8581 ---------------------------
8582
8583 procedure New_Overloaded_Entity
8584 (S : Entity_Id;
8585 Derived_Type : Entity_Id := Empty)
8586 is
ec4867fa 8587 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
8588 -- Set if the current scope has an operation that is type-conformant
8589 -- with S, and becomes hidden by S.
8590
5d37ba92
ES
8591 Is_Primitive_Subp : Boolean;
8592 -- Set to True if the new subprogram is primitive
8593
fbf5a39b
AC
8594 E : Entity_Id;
8595 -- Entity that S overrides
8596
996ae0b0 8597 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
8598 -- Predecessor of E in Homonym chain
8599
5d37ba92
ES
8600 procedure Check_For_Primitive_Subprogram
8601 (Is_Primitive : out Boolean;
8602 Is_Overriding : Boolean := False);
8603 -- If the subprogram being analyzed is a primitive operation of the type
8604 -- of a formal or result, set the Has_Primitive_Operations flag on the
8605 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8606 -- corresponding flag on the entity itself for later use.
8607
ec4867fa
ES
8608 procedure Check_Synchronized_Overriding
8609 (Def_Id : Entity_Id;
ec4867fa
ES
8610 Overridden_Subp : out Entity_Id);
8611 -- First determine if Def_Id is an entry or a subprogram either defined
8612 -- in the scope of a task or protected type, or is a primitive of such
8613 -- a type. Check whether Def_Id overrides a subprogram of an interface
8614 -- implemented by the synchronized type, return the overridden entity
8615 -- or Empty.
758c442c 8616
996ae0b0
RK
8617 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8618 -- Check that E is declared in the private part of the current package,
8619 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 8620 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
8621 -- set when freezing entities, so we must examine the place of the
8622 -- declaration in the tree, and recognize wrapper packages as well.
8623
2ddc2000
AC
8624 function Is_Overriding_Alias
8625 (Old_E : Entity_Id;
8626 New_E : Entity_Id) return Boolean;
8627 -- Check whether new subprogram and old subprogram are both inherited
8628 -- from subprograms that have distinct dispatch table entries. This can
2995860f
AC
8629 -- occur with derivations from instances with accidental homonyms. The
8630 -- function is conservative given that the converse is only true within
8631 -- instances that contain accidental overloadings.
2ddc2000 8632
5d37ba92
ES
8633 ------------------------------------
8634 -- Check_For_Primitive_Subprogram --
8635 ------------------------------------
996ae0b0 8636
5d37ba92
ES
8637 procedure Check_For_Primitive_Subprogram
8638 (Is_Primitive : out Boolean;
8639 Is_Overriding : Boolean := False)
ec4867fa 8640 is
996ae0b0
RK
8641 Formal : Entity_Id;
8642 F_Typ : Entity_Id;
07fc65c4 8643 B_Typ : Entity_Id;
996ae0b0
RK
8644
8645 function Visible_Part_Type (T : Entity_Id) return Boolean;
8dbd1460
AC
8646 -- Returns true if T is declared in the visible part of the current
8647 -- package scope; otherwise returns false. Assumes that T is declared
8648 -- in a package.
996ae0b0
RK
8649
8650 procedure Check_Private_Overriding (T : Entity_Id);
8651 -- Checks that if a primitive abstract subprogram of a visible
8dbd1460
AC
8652 -- abstract type is declared in a private part, then it must override
8653 -- an abstract subprogram declared in the visible part. Also checks
8654 -- that if a primitive function with a controlling result is declared
8655 -- in a private part, then it must override a function declared in
8656 -- the visible part.
996ae0b0
RK
8657
8658 ------------------------------
8659 -- Check_Private_Overriding --
8660 ------------------------------
8661
8662 procedure Check_Private_Overriding (T : Entity_Id) is
acf624f2 8663
aaeb3b3a
AC
8664 function Overrides_Visible_Function
8665 (Partial_View : Entity_Id) return Boolean;
acf624f2
BD
8666 -- True if S overrides a function in the visible part. The
8667 -- overridden function could be explicitly or implicitly declared.
8668
aaeb3b3a
AC
8669 function Overrides_Visible_Function
8670 (Partial_View : Entity_Id) return Boolean
8671 is
acf624f2
BD
8672 begin
8673 if not Is_Overriding or else not Has_Homonym (S) then
8674 return False;
8675 end if;
8676
aaeb3b3a 8677 if not Present (Partial_View) then
acf624f2
BD
8678 return True;
8679 end if;
8680
8681 -- Search through all the homonyms H of S in the current
8682 -- package spec, and return True if we find one that matches.
8683 -- Note that Parent (H) will be the declaration of the
aaeb3b3a 8684 -- partial view of T for a match.
acf624f2
BD
8685
8686 declare
8687 H : Entity_Id := S;
8688 begin
8689 loop
8690 H := Homonym (H);
8691 exit when not Present (H) or else Scope (H) /= Scope (S);
8692
8693 if Nkind_In
8694 (Parent (H),
8695 N_Private_Extension_Declaration,
8696 N_Private_Type_Declaration)
aaeb3b3a 8697 and then Defining_Identifier (Parent (H)) = Partial_View
acf624f2
BD
8698 then
8699 return True;
8700 end if;
8701 end loop;
8702 end;
8703
8704 return False;
8705 end Overrides_Visible_Function;
8706
8707 -- Start of processing for Check_Private_Overriding
8708
996ae0b0 8709 begin
51c16e29 8710 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
8711 and then In_Private_Part (Current_Scope)
8712 and then Visible_Part_Type (T)
8713 and then not In_Instance
8714 then
f937473f
RD
8715 if Is_Abstract_Type (T)
8716 and then Is_Abstract_Subprogram (S)
8717 and then (not Is_Overriding
8dbd1460 8718 or else not Is_Abstract_Subprogram (E))
996ae0b0 8719 then
3ccedacc
AC
8720 Error_Msg_N ("abstract subprograms must be visible "
8721 & "(RM 3.9.3(10))!", S);
758c442c 8722
aaeb3b3a
AC
8723 elsif Ekind (S) = E_Function then
8724 declare
8725 Partial_View : constant Entity_Id :=
8726 Incomplete_Or_Partial_View (T);
2e79de51 8727
aaeb3b3a
AC
8728 begin
8729 if not Overrides_Visible_Function (Partial_View) then
8730
8731 -- Here, S is "function ... return T;" declared in
8732 -- the private part, not overriding some visible
8733 -- operation. That's illegal in the tagged case
8734 -- (but not if the private type is untagged).
8735
8736 if ((Present (Partial_View)
8737 and then Is_Tagged_Type (Partial_View))
8738 or else (not Present (Partial_View)
8739 and then Is_Tagged_Type (T)))
8740 and then T = Base_Type (Etype (S))
8741 then
8742 Error_Msg_N
8743 ("private function with tagged result must"
8744 & " override visible-part function", S);
8745 Error_Msg_N
8746 ("\move subprogram to the visible part"
8747 & " (RM 3.9.3(10))", S);
8748
8749 -- AI05-0073: extend this test to the case of a
8750 -- function with a controlling access result.
8751
8752 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8753 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8754 and then
8755 not Is_Class_Wide_Type
8756 (Designated_Type (Etype (S)))
8757 and then Ada_Version >= Ada_2012
8758 then
8759 Error_Msg_N
8760 ("private function with controlling access "
8761 & "result must override visible-part function",
8762 S);
8763 Error_Msg_N
8764 ("\move subprogram to the visible part"
8765 & " (RM 3.9.3(10))", S);
8766 end if;
8767 end if;
8768 end;
996ae0b0
RK
8769 end if;
8770 end if;
8771 end Check_Private_Overriding;
8772
8773 -----------------------
8774 -- Visible_Part_Type --
8775 -----------------------
8776
8777 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
8778 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8779 N : Node_Id;
996ae0b0
RK
8780
8781 begin
8dbd1460
AC
8782 -- If the entity is a private type, then it must be declared in a
8783 -- visible part.
996ae0b0
RK
8784
8785 if Ekind (T) in Private_Kind then
8786 return True;
8787 end if;
8788
8789 -- Otherwise, we traverse the visible part looking for its
8790 -- corresponding declaration. We cannot use the declaration
8791 -- node directly because in the private part the entity of a
8792 -- private type is the one in the full view, which does not
8793 -- indicate that it is the completion of something visible.
8794
07fc65c4 8795 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
8796 while Present (N) loop
8797 if Nkind (N) = N_Full_Type_Declaration
8798 and then Present (Defining_Identifier (N))
8799 and then T = Defining_Identifier (N)
8800 then
8801 return True;
8802
800621e0
RD
8803 elsif Nkind_In (N, N_Private_Type_Declaration,
8804 N_Private_Extension_Declaration)
996ae0b0
RK
8805 and then Present (Defining_Identifier (N))
8806 and then T = Full_View (Defining_Identifier (N))
8807 then
8808 return True;
8809 end if;
8810
8811 Next (N);
8812 end loop;
8813
8814 return False;
8815 end Visible_Part_Type;
8816
5d37ba92 8817 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
8818
8819 begin
5d37ba92
ES
8820 Is_Primitive := False;
8821
996ae0b0
RK
8822 if not Comes_From_Source (S) then
8823 null;
8824
5d37ba92 8825 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
8826
8827 elsif Current_Scope = Standard_Standard then
8828 null;
8829
b9b2405f 8830 elsif (Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0 8831 and then not In_Package_Body (Current_Scope))
82c80734 8832 or else Is_Overriding
996ae0b0 8833 then
07fc65c4 8834 -- For function, check return type
996ae0b0 8835
07fc65c4 8836 if Ekind (S) = E_Function then
5d37ba92
ES
8837 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8838 F_Typ := Designated_Type (Etype (S));
8839 else
8840 F_Typ := Etype (S);
8841 end if;
8842
8843 B_Typ := Base_Type (F_Typ);
07fc65c4 8844
5d37ba92
ES
8845 if Scope (B_Typ) = Current_Scope
8846 and then not Is_Class_Wide_Type (B_Typ)
8847 and then not Is_Generic_Type (B_Typ)
8848 then
8849 Is_Primitive := True;
07fc65c4 8850 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 8851 Set_Is_Primitive (S);
07fc65c4
GB
8852 Check_Private_Overriding (B_Typ);
8853 end if;
996ae0b0
RK
8854 end if;
8855
07fc65c4 8856 -- For all subprograms, check formals
996ae0b0 8857
07fc65c4 8858 Formal := First_Formal (S);
996ae0b0
RK
8859 while Present (Formal) loop
8860 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8861 F_Typ := Designated_Type (Etype (Formal));
8862 else
8863 F_Typ := Etype (Formal);
8864 end if;
8865
07fc65c4
GB
8866 B_Typ := Base_Type (F_Typ);
8867
ec4867fa
ES
8868 if Ekind (B_Typ) = E_Access_Subtype then
8869 B_Typ := Base_Type (B_Typ);
8870 end if;
8871
5d37ba92
ES
8872 if Scope (B_Typ) = Current_Scope
8873 and then not Is_Class_Wide_Type (B_Typ)
8874 and then not Is_Generic_Type (B_Typ)
8875 then
8876 Is_Primitive := True;
8877 Set_Is_Primitive (S);
07fc65c4
GB
8878 Set_Has_Primitive_Operations (B_Typ);
8879 Check_Private_Overriding (B_Typ);
996ae0b0
RK
8880 end if;
8881
8882 Next_Formal (Formal);
8883 end loop;
1aee1fb3
AC
8884
8885 -- Special case: An equality function can be redefined for a type
8886 -- occurring in a declarative part, and won't otherwise be treated as
8887 -- a primitive because it doesn't occur in a package spec and doesn't
8888 -- override an inherited subprogram. It's important that we mark it
8889 -- primitive so it can be returned by Collect_Primitive_Operations
8890 -- and be used in composing the equality operation of later types
8891 -- that have a component of the type.
8892
8893 elsif Chars (S) = Name_Op_Eq
8894 and then Etype (S) = Standard_Boolean
8895 then
8896 B_Typ := Base_Type (Etype (First_Formal (S)));
8897
8898 if Scope (B_Typ) = Current_Scope
8899 and then
8900 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8901 and then not Is_Limited_Type (B_Typ)
8902 then
8903 Is_Primitive := True;
8904 Set_Is_Primitive (S);
8905 Set_Has_Primitive_Operations (B_Typ);
8906 Check_Private_Overriding (B_Typ);
8907 end if;
996ae0b0 8908 end if;
5d37ba92
ES
8909 end Check_For_Primitive_Subprogram;
8910
8911 -----------------------------------
8912 -- Check_Synchronized_Overriding --
8913 -----------------------------------
8914
8915 procedure Check_Synchronized_Overriding
8916 (Def_Id : Entity_Id;
5d37ba92
ES
8917 Overridden_Subp : out Entity_Id)
8918 is
5d37ba92
ES
8919 Ifaces_List : Elist_Id;
8920 In_Scope : Boolean;
8921 Typ : Entity_Id;
8922
8aa15e3b
JM
8923 function Matches_Prefixed_View_Profile
8924 (Prim_Params : List_Id;
8925 Iface_Params : List_Id) return Boolean;
8926 -- Determine whether a subprogram's parameter profile Prim_Params
8927 -- matches that of a potentially overridden interface subprogram
8928 -- Iface_Params. Also determine if the type of first parameter of
8929 -- Iface_Params is an implemented interface.
8930
8aa15e3b
JM
8931 -----------------------------------
8932 -- Matches_Prefixed_View_Profile --
8933 -----------------------------------
8934
8935 function Matches_Prefixed_View_Profile
8936 (Prim_Params : List_Id;
8937 Iface_Params : List_Id) return Boolean
8938 is
8939 Iface_Id : Entity_Id;
8940 Iface_Param : Node_Id;
8941 Iface_Typ : Entity_Id;
8942 Prim_Id : Entity_Id;
8943 Prim_Param : Node_Id;
8944 Prim_Typ : Entity_Id;
8945
8946 function Is_Implemented
8947 (Ifaces_List : Elist_Id;
8948 Iface : Entity_Id) return Boolean;
8949 -- Determine if Iface is implemented by the current task or
8950 -- protected type.
8951
8952 --------------------
8953 -- Is_Implemented --
8954 --------------------
8955
8956 function Is_Implemented
8957 (Ifaces_List : Elist_Id;
8958 Iface : Entity_Id) return Boolean
8959 is
8960 Iface_Elmt : Elmt_Id;
8961
8962 begin
8963 Iface_Elmt := First_Elmt (Ifaces_List);
8964 while Present (Iface_Elmt) loop
8965 if Node (Iface_Elmt) = Iface then
8966 return True;
8967 end if;
8968
8969 Next_Elmt (Iface_Elmt);
8970 end loop;
8971
8972 return False;
8973 end Is_Implemented;
8974
8975 -- Start of processing for Matches_Prefixed_View_Profile
8976
8977 begin
8978 Iface_Param := First (Iface_Params);
8979 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8980
8981 if Is_Access_Type (Iface_Typ) then
8982 Iface_Typ := Designated_Type (Iface_Typ);
8983 end if;
8984
8985 Prim_Param := First (Prim_Params);
8986
8987 -- The first parameter of the potentially overridden subprogram
8988 -- must be an interface implemented by Prim.
8989
8990 if not Is_Interface (Iface_Typ)
8991 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8992 then
8993 return False;
8994 end if;
8995
8996 -- The checks on the object parameters are done, move onto the
8997 -- rest of the parameters.
8998
8999 if not In_Scope then
9000 Prim_Param := Next (Prim_Param);
9001 end if;
9002
9003 Iface_Param := Next (Iface_Param);
9004 while Present (Iface_Param) and then Present (Prim_Param) loop
9005 Iface_Id := Defining_Identifier (Iface_Param);
9006 Iface_Typ := Find_Parameter_Type (Iface_Param);
9007
8aa15e3b
JM
9008 Prim_Id := Defining_Identifier (Prim_Param);
9009 Prim_Typ := Find_Parameter_Type (Prim_Param);
9010
15e4986c
JM
9011 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9012 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9013 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9014 then
9015 Iface_Typ := Designated_Type (Iface_Typ);
9016 Prim_Typ := Designated_Type (Prim_Typ);
8aa15e3b
JM
9017 end if;
9018
9019 -- Case of multiple interface types inside a parameter profile
9020
9021 -- (Obj_Param : in out Iface; ...; Param : Iface)
9022
9023 -- If the interface type is implemented, then the matching type
9024 -- in the primitive should be the implementing record type.
9025
9026 if Ekind (Iface_Typ) = E_Record_Type
9027 and then Is_Interface (Iface_Typ)
9028 and then Is_Implemented (Ifaces_List, Iface_Typ)
9029 then
9030 if Prim_Typ /= Typ then
9031 return False;
9032 end if;
9033
9034 -- The two parameters must be both mode and subtype conformant
9035
9036 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9037 or else not
9038 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9039 then
9040 return False;
9041 end if;
9042
9043 Next (Iface_Param);
9044 Next (Prim_Param);
9045 end loop;
9046
9047 -- One of the two lists contains more parameters than the other
9048
9049 if Present (Iface_Param) or else Present (Prim_Param) then
9050 return False;
9051 end if;
9052
9053 return True;
9054 end Matches_Prefixed_View_Profile;
9055
9056 -- Start of processing for Check_Synchronized_Overriding
9057
5d37ba92
ES
9058 begin
9059 Overridden_Subp := Empty;
9060
8aa15e3b
JM
9061 -- Def_Id must be an entry or a subprogram. We should skip predefined
9062 -- primitives internally generated by the frontend; however at this
9063 -- stage predefined primitives are still not fully decorated. As a
9064 -- minor optimization we skip here internally generated subprograms.
5d37ba92 9065
8aa15e3b
JM
9066 if (Ekind (Def_Id) /= E_Entry
9067 and then Ekind (Def_Id) /= E_Function
9068 and then Ekind (Def_Id) /= E_Procedure)
9069 or else not Comes_From_Source (Def_Id)
5d37ba92
ES
9070 then
9071 return;
9072 end if;
9073
9074 -- Search for the concurrent declaration since it contains the list
9075 -- of all implemented interfaces. In this case, the subprogram is
9076 -- declared within the scope of a protected or a task type.
9077
9078 if Present (Scope (Def_Id))
9079 and then Is_Concurrent_Type (Scope (Def_Id))
9080 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9081 then
9082 Typ := Scope (Def_Id);
9083 In_Scope := True;
9084
8aa15e3b 9085 -- The enclosing scope is not a synchronized type and the subprogram
4adf3c50 9086 -- has no formals.
8aa15e3b
JM
9087
9088 elsif No (First_Formal (Def_Id)) then
9089 return;
5d37ba92 9090
8aa15e3b 9091 -- The subprogram has formals and hence it may be a primitive of a
4adf3c50 9092 -- concurrent type.
5d37ba92 9093
8aa15e3b
JM
9094 else
9095 Typ := Etype (First_Formal (Def_Id));
9096
9097 if Is_Access_Type (Typ) then
9098 Typ := Directly_Designated_Type (Typ);
8c3dd7a8
JM
9099 end if;
9100
8aa15e3b
JM
9101 if Is_Concurrent_Type (Typ)
9102 and then not Is_Generic_Actual_Type (Typ)
5d37ba92 9103 then
5d37ba92
ES
9104 In_Scope := False;
9105
9106 -- This case occurs when the concurrent type is declared within
9107 -- a generic unit. As a result the corresponding record has been
9108 -- built and used as the type of the first formal, we just have
9109 -- to retrieve the corresponding concurrent type.
9110
8aa15e3b 9111 elsif Is_Concurrent_Record_Type (Typ)
dd54644b 9112 and then not Is_Class_Wide_Type (Typ)
8aa15e3b 9113 and then Present (Corresponding_Concurrent_Type (Typ))
5d37ba92 9114 then
8aa15e3b 9115 Typ := Corresponding_Concurrent_Type (Typ);
5d37ba92
ES
9116 In_Scope := False;
9117
9118 else
9119 return;
9120 end if;
8aa15e3b
JM
9121 end if;
9122
9123 -- There is no overriding to check if is an inherited operation in a
9124 -- type derivation on for a generic actual.
9125
9126 Collect_Interfaces (Typ, Ifaces_List);
9127
9128 if Is_Empty_Elmt_List (Ifaces_List) then
5d37ba92
ES
9129 return;
9130 end if;
9131
8aa15e3b
JM
9132 -- Determine whether entry or subprogram Def_Id overrides a primitive
9133 -- operation that belongs to one of the interfaces in Ifaces_List.
5d37ba92 9134
8aa15e3b
JM
9135 declare
9136 Candidate : Entity_Id := Empty;
9137 Hom : Entity_Id := Empty;
8aa15e3b
JM
9138 Subp : Entity_Id := Empty;
9139
9140 begin
4adf3c50 9141 -- Traverse the homonym chain, looking for a potentially
8aa15e3b
JM
9142 -- overridden subprogram that belongs to an implemented
9143 -- interface.
9144
9145 Hom := Current_Entity_In_Scope (Def_Id);
9146 while Present (Hom) loop
9147 Subp := Hom;
9148
15e4986c
JM
9149 if Subp = Def_Id
9150 or else not Is_Overloadable (Subp)
9151 or else not Is_Primitive (Subp)
9152 or else not Is_Dispatching_Operation (Subp)
79afa047 9153 or else not Present (Find_Dispatching_Type (Subp))
15e4986c 9154 or else not Is_Interface (Find_Dispatching_Type (Subp))
8aa15e3b 9155 then
15e4986c 9156 null;
8aa15e3b 9157
15e4986c 9158 -- Entries and procedures can override abstract or null
4adf3c50 9159 -- interface procedures.
8aa15e3b 9160
15e4986c 9161 elsif (Ekind (Def_Id) = E_Procedure
8fde064e 9162 or else Ekind (Def_Id) = E_Entry)
8aa15e3b 9163 and then Ekind (Subp) = E_Procedure
8aa15e3b
JM
9164 and then Matches_Prefixed_View_Profile
9165 (Parameter_Specifications (Parent (Def_Id)),
9166 Parameter_Specifications (Parent (Subp)))
9167 then
9168 Candidate := Subp;
9169
15e4986c
JM
9170 -- For an overridden subprogram Subp, check whether the mode
9171 -- of its first parameter is correct depending on the kind
9172 -- of synchronized type.
8aa15e3b 9173
15e4986c
JM
9174 declare
9175 Formal : constant Node_Id := First_Formal (Candidate);
9176
9177 begin
9178 -- In order for an entry or a protected procedure to
9179 -- override, the first parameter of the overridden
9180 -- routine must be of mode "out", "in out" or
9181 -- access-to-variable.
9182
8fde064e 9183 if Ekind_In (Candidate, E_Entry, E_Procedure)
15e4986c
JM
9184 and then Is_Protected_Type (Typ)
9185 and then Ekind (Formal) /= E_In_Out_Parameter
9186 and then Ekind (Formal) /= E_Out_Parameter
8fde064e
AC
9187 and then Nkind (Parameter_Type (Parent (Formal))) /=
9188 N_Access_Definition
15e4986c
JM
9189 then
9190 null;
9191
9192 -- All other cases are OK since a task entry or routine
9193 -- does not have a restriction on the mode of the first
9194 -- parameter of the overridden interface routine.
9195
9196 else
9197 Overridden_Subp := Candidate;
9198 return;
9199 end if;
9200 end;
8aa15e3b
JM
9201
9202 -- Functions can override abstract interface functions
9203
9204 elsif Ekind (Def_Id) = E_Function
9205 and then Ekind (Subp) = E_Function
8aa15e3b
JM
9206 and then Matches_Prefixed_View_Profile
9207 (Parameter_Specifications (Parent (Def_Id)),
9208 Parameter_Specifications (Parent (Subp)))
9209 and then Etype (Result_Definition (Parent (Def_Id))) =
9210 Etype (Result_Definition (Parent (Subp)))
9211 then
273123a4
AC
9212 Candidate := Subp;
9213
9214 -- If an inherited subprogram is implemented by a protected
9215 -- function, then the first parameter of the inherited
9216 -- subprogram shall be of mode in, but not an
9217 -- access-to-variable parameter (RM 9.4(11/9)
9218
9219 if Present (First_Formal (Subp))
9220 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9221 and then
9222 (not Is_Access_Type (Etype (First_Formal (Subp)))
9223 or else
9224 Is_Access_Constant (Etype (First_Formal (Subp))))
9225 then
9226 Overridden_Subp := Subp;
9227 return;
9228 end if;
8aa15e3b
JM
9229 end if;
9230
9231 Hom := Homonym (Hom);
9232 end loop;
9233
4adf3c50
AC
9234 -- After examining all candidates for overriding, we are left with
9235 -- the best match which is a mode incompatible interface routine.
8aa15e3b 9236
273123a4
AC
9237 if In_Scope and then Present (Candidate) then
9238 Error_Msg_PT (Def_Id, Candidate);
5d37ba92 9239 end if;
8aa15e3b
JM
9240
9241 Overridden_Subp := Candidate;
9242 return;
9243 end;
5d37ba92
ES
9244 end Check_Synchronized_Overriding;
9245
9246 ----------------------------
9247 -- Is_Private_Declaration --
9248 ----------------------------
9249
9250 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9251 Priv_Decls : List_Id;
9252 Decl : constant Node_Id := Unit_Declaration_Node (E);
9253
9254 begin
9255 if Is_Package_Or_Generic_Package (Current_Scope)
9256 and then In_Private_Part (Current_Scope)
9257 then
9258 Priv_Decls :=
d12b19fa 9259 Private_Declarations (Package_Specification (Current_Scope));
5d37ba92
ES
9260
9261 return In_Package_Body (Current_Scope)
9262 or else
9263 (Is_List_Member (Decl)
a4901c08 9264 and then List_Containing (Decl) = Priv_Decls)
5d37ba92 9265 or else (Nkind (Parent (Decl)) = N_Package_Specification
a4901c08
AC
9266 and then not
9267 Is_Compilation_Unit
9268 (Defining_Entity (Parent (Decl)))
9269 and then List_Containing (Parent (Parent (Decl))) =
9270 Priv_Decls);
5d37ba92
ES
9271 else
9272 return False;
9273 end if;
9274 end Is_Private_Declaration;
996ae0b0 9275
2ddc2000
AC
9276 --------------------------
9277 -- Is_Overriding_Alias --
9278 --------------------------
9279
9280 function Is_Overriding_Alias
9281 (Old_E : Entity_Id;
9282 New_E : Entity_Id) return Boolean
9283 is
9284 AO : constant Entity_Id := Alias (Old_E);
9285 AN : constant Entity_Id := Alias (New_E);
2ddc2000
AC
9286 begin
9287 return Scope (AO) /= Scope (AN)
9288 or else No (DTC_Entity (AO))
9289 or else No (DTC_Entity (AN))
9290 or else DT_Position (AO) = DT_Position (AN);
9291 end Is_Overriding_Alias;
9292
996ae0b0
RK
9293 -- Start of processing for New_Overloaded_Entity
9294
9295 begin
fbf5a39b
AC
9296 -- We need to look for an entity that S may override. This must be a
9297 -- homonym in the current scope, so we look for the first homonym of
9298 -- S in the current scope as the starting point for the search.
9299
9300 E := Current_Entity_In_Scope (S);
9301
947430d5
AC
9302 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9303 -- They are directly added to the list of primitive operations of
9304 -- Derived_Type, unless this is a rederivation in the private part
9305 -- of an operation that was already derived in the visible part of
9306 -- the current package.
9307
0791fbe9 9308 if Ada_Version >= Ada_2005
947430d5
AC
9309 and then Present (Derived_Type)
9310 and then Present (Alias (S))
9311 and then Is_Dispatching_Operation (Alias (S))
9312 and then Present (Find_Dispatching_Type (Alias (S)))
9313 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9314 then
9315 -- For private types, when the full-view is processed we propagate to
9316 -- the full view the non-overridden entities whose attribute "alias"
9317 -- references an interface primitive. These entities were added by
9318 -- Derive_Subprograms to ensure that interface primitives are
9319 -- covered.
9320
9321 -- Inside_Freeze_Actions is non zero when S corresponds with an
9322 -- internal entity that links an interface primitive with its
9323 -- covering primitive through attribute Interface_Alias (see
4adf3c50 9324 -- Add_Internal_Interface_Entities).
947430d5
AC
9325
9326 if Inside_Freezing_Actions = 0
9327 and then Is_Package_Or_Generic_Package (Current_Scope)
9328 and then In_Private_Part (Current_Scope)
9329 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9330 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9331 and then Full_View (Defining_Identifier (Parent (E)))
9332 = Defining_Identifier (Parent (S))
9333 and then Alias (E) = Alias (S)
9334 then
9335 Check_Operation_From_Private_View (S, E);
9336 Set_Is_Dispatching_Operation (S);
9337
9338 -- Common case
9339
9340 else
9341 Enter_Overloaded_Entity (S);
9342 Check_Dispatching_Operation (S, Empty);
9343 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9344 end if;
9345
9346 return;
9347 end if;
9348
fbf5a39b
AC
9349 -- If there is no homonym then this is definitely not overriding
9350
996ae0b0
RK
9351 if No (E) then
9352 Enter_Overloaded_Entity (S);
9353 Check_Dispatching_Operation (S, Empty);
5d37ba92 9354 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 9355
2995860f
AC
9356 -- If subprogram has an explicit declaration, check whether it has an
9357 -- overriding indicator.
758c442c 9358
ec4867fa 9359 if Comes_From_Source (S) then
8aa15e3b 9360 Check_Synchronized_Overriding (S, Overridden_Subp);
ea034236
AC
9361
9362 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9363 -- it may have overridden some hidden inherited primitive. Update
308e6f3a 9364 -- Overridden_Subp to avoid spurious errors when checking the
ea034236
AC
9365 -- overriding indicator.
9366
9367 if Ada_Version >= Ada_2012
9368 and then No (Overridden_Subp)
9369 and then Is_Dispatching_Operation (S)
038140ed 9370 and then Present (Overridden_Operation (S))
ea034236
AC
9371 then
9372 Overridden_Subp := Overridden_Operation (S);
9373 end if;
9374
5d37ba92
ES
9375 Check_Overriding_Indicator
9376 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
758c442c
GD
9377 end if;
9378
fbf5a39b
AC
9379 -- If there is a homonym that is not overloadable, then we have an
9380 -- error, except for the special cases checked explicitly below.
9381
996ae0b0
RK
9382 elsif not Is_Overloadable (E) then
9383
9384 -- Check for spurious conflict produced by a subprogram that has the
9385 -- same name as that of the enclosing generic package. The conflict
9386 -- occurs within an instance, between the subprogram and the renaming
9387 -- declaration for the package. After the subprogram, the package
9388 -- renaming declaration becomes hidden.
9389
9390 if Ekind (E) = E_Package
9391 and then Present (Renamed_Object (E))
9392 and then Renamed_Object (E) = Current_Scope
9393 and then Nkind (Parent (Renamed_Object (E))) =
9394 N_Package_Specification
9395 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9396 then
9397 Set_Is_Hidden (E);
9398 Set_Is_Immediately_Visible (E, False);
9399 Enter_Overloaded_Entity (S);
9400 Set_Homonym (S, Homonym (E));
9401 Check_Dispatching_Operation (S, Empty);
5d37ba92 9402 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
9403
9404 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
9405 -- declaration. However if it is dispatching, it must appear in the
9406 -- dispatch table anyway, because it can be dispatched to even if it
9407 -- cannot be called directly.
996ae0b0 9408
4adf3c50 9409 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
996ae0b0
RK
9410 Set_Scope (S, Current_Scope);
9411
9412 if Is_Dispatching_Operation (Alias (S)) then
9413 Check_Dispatching_Operation (S, Empty);
9414 end if;
9415
9416 return;
9417
9418 else
9419 Error_Msg_Sloc := Sloc (E);
996ae0b0 9420
f3d57416 9421 -- Generate message, with useful additional warning if in generic
996ae0b0
RK
9422
9423 if Is_Generic_Unit (E) then
5d37ba92
ES
9424 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9425 Error_Msg_N ("\& conflicts with declaration#", S);
9426 else
9427 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
9428 end if;
9429
9430 return;
9431 end if;
9432
fbf5a39b
AC
9433 -- E exists and is overloadable
9434
996ae0b0 9435 else
8aa15e3b 9436 Check_Synchronized_Overriding (S, Overridden_Subp);
758c442c 9437
82c80734
RD
9438 -- Loop through E and its homonyms to determine if any of them is
9439 -- the candidate for overriding by S.
996ae0b0
RK
9440
9441 while Present (E) loop
fbf5a39b
AC
9442
9443 -- Definitely not interesting if not in the current scope
9444
996ae0b0
RK
9445 if Scope (E) /= Current_Scope then
9446 null;
9447
aca90db9
AC
9448 -- A function can overload the name of an abstract state. The
9449 -- state can be viewed as a function with a profile that cannot
9450 -- be matched by anything.
9451
9452 elsif Ekind (S) = E_Function
9453 and then Ekind (E) = E_Abstract_State
9454 then
9455 Enter_Overloaded_Entity (S);
9456 return;
9457
2995860f
AC
9458 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9459 -- procedures locate the internally generated spec. We enforce
9460 -- mode conformance since a tagged type may inherit from
9461 -- interfaces several null primitives which differ only in
9462 -- the mode of the formals.
25ebc085
AC
9463
9464 elsif not Comes_From_Source (S)
9465 and then Is_Null_Procedure (S)
9466 and then not Mode_Conformant (E, S)
9467 then
9468 null;
9469
fbf5a39b
AC
9470 -- Check if we have type conformance
9471
ec4867fa 9472 elsif Type_Conformant (E, S) then
c8ef728f 9473
82c80734
RD
9474 -- If the old and new entities have the same profile and one
9475 -- is not the body of the other, then this is an error, unless
9476 -- one of them is implicitly declared.
996ae0b0
RK
9477
9478 -- There are some cases when both can be implicit, for example
9479 -- when both a literal and a function that overrides it are
f3d57416 9480 -- inherited in a derivation, or when an inherited operation
ec4867fa 9481 -- of a tagged full type overrides the inherited operation of
f3d57416 9482 -- a private extension. Ada 83 had a special rule for the
885c4871 9483 -- literal case. In Ada 95, the later implicit operation hides
82c80734
RD
9484 -- the former, and the literal is always the former. In the
9485 -- odd case where both are derived operations declared at the
9486 -- same point, both operations should be declared, and in that
9487 -- case we bypass the following test and proceed to the next
df46b832
AC
9488 -- part. This can only occur for certain obscure cases in
9489 -- instances, when an operation on a type derived from a formal
9490 -- private type does not override a homograph inherited from
9491 -- the actual. In subsequent derivations of such a type, the
9492 -- DT positions of these operations remain distinct, if they
9493 -- have been set.
996ae0b0
RK
9494
9495 if Present (Alias (S))
9496 and then (No (Alias (E))
9497 or else Comes_From_Source (E)
2ddc2000 9498 or else Is_Abstract_Subprogram (S)
df46b832
AC
9499 or else
9500 (Is_Dispatching_Operation (E)
84c0a895 9501 and then Is_Overriding_Alias (E, S)))
df46b832 9502 and then Ekind (E) /= E_Enumeration_Literal
996ae0b0 9503 then
82c80734
RD
9504 -- When an derived operation is overloaded it may be due to
9505 -- the fact that the full view of a private extension
996ae0b0
RK
9506 -- re-inherits. It has to be dealt with.
9507
e660dbf7 9508 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
9509 and then In_Private_Part (Current_Scope)
9510 then
9511 Check_Operation_From_Private_View (S, E);
9512 end if;
9513
038140ed
AC
9514 -- In any case the implicit operation remains hidden by the
9515 -- existing declaration, which is overriding. Indicate that
9516 -- E overrides the operation from which S is inherited.
996ae0b0 9517
038140ed 9518 if Present (Alias (S)) then
039538bc
AC
9519 Set_Overridden_Operation (E, Alias (S));
9520 Inherit_Subprogram_Contract (E, Alias (S));
9521
038140ed 9522 else
039538bc
AC
9523 Set_Overridden_Operation (E, S);
9524 Inherit_Subprogram_Contract (E, S);
038140ed 9525 end if;
758c442c
GD
9526
9527 if Comes_From_Source (E) then
5d37ba92 9528 Check_Overriding_Indicator (E, S, Is_Primitive => False);
758c442c
GD
9529 end if;
9530
996ae0b0
RK
9531 return;
9532
26a43556
AC
9533 -- Within an instance, the renaming declarations for actual
9534 -- subprograms may become ambiguous, but they do not hide each
9535 -- other.
996ae0b0
RK
9536
9537 elsif Ekind (E) /= E_Entry
9538 and then not Comes_From_Source (E)
9539 and then not Is_Generic_Instance (E)
9540 and then (Present (Alias (E))
9541 or else Is_Intrinsic_Subprogram (E))
9542 and then (not In_Instance
9543 or else No (Parent (E))
9544 or else Nkind (Unit_Declaration_Node (E)) /=
8dbd1460 9545 N_Subprogram_Renaming_Declaration)
996ae0b0 9546 then
26a43556
AC
9547 -- A subprogram child unit is not allowed to override an
9548 -- inherited subprogram (10.1.1(20)).
996ae0b0
RK
9549
9550 if Is_Child_Unit (S) then
9551 Error_Msg_N
9552 ("child unit overrides inherited subprogram in parent",
9553 S);
9554 return;
9555 end if;
9556
9557 if Is_Non_Overriding_Operation (E, S) then
9558 Enter_Overloaded_Entity (S);
8dbd1460 9559
c8ef728f 9560 if No (Derived_Type)
996ae0b0
RK
9561 or else Is_Tagged_Type (Derived_Type)
9562 then
9563 Check_Dispatching_Operation (S, Empty);
9564 end if;
9565
9566 return;
9567 end if;
9568
9569 -- E is a derived operation or an internal operator which
9570 -- is being overridden. Remove E from further visibility.
9571 -- Furthermore, if E is a dispatching operation, it must be
9572 -- replaced in the list of primitive operations of its type
9573 -- (see Override_Dispatching_Operation).
9574
ec4867fa 9575 Overridden_Subp := E;
758c442c 9576
996ae0b0
RK
9577 declare
9578 Prev : Entity_Id;
9579
9580 begin
9581 Prev := First_Entity (Current_Scope);
8fde064e 9582 while Present (Prev) and then Next_Entity (Prev) /= E loop
996ae0b0
RK
9583 Next_Entity (Prev);
9584 end loop;
9585
9586 -- It is possible for E to be in the current scope and
9587 -- yet not in the entity chain. This can only occur in a
9588 -- generic context where E is an implicit concatenation
9589 -- in the formal part, because in a generic body the
9590 -- entity chain starts with the formals.
9591
948ed277
AC
9592 -- In GNATprove mode, a wrapper for an operation with
9593 -- axiomatization may be a homonym of another declaration
9594 -- for an actual subprogram (needs refinement ???).
9595
9596 if No (Prev) then
9597 if In_Instance
9598 and then GNATprove_Mode
9599 and then
9600 Nkind (Original_Node (Unit_Declaration_Node (S))) =
9601 N_Subprogram_Renaming_Declaration
9602 then
9603 return;
9604 else
9605 pragma Assert (Chars (E) = Name_Op_Concat);
9606 null;
9607 end if;
9608 end if;
996ae0b0
RK
9609
9610 -- E must be removed both from the entity_list of the
948ed277 9611 -- current scope, and from the visibility chain.
996ae0b0
RK
9612
9613 if Debug_Flag_E then
9614 Write_Str ("Override implicit operation ");
9615 Write_Int (Int (E));
9616 Write_Eol;
9617 end if;
9618
9619 -- If E is a predefined concatenation, it stands for four
9620 -- different operations. As a result, a single explicit
9621 -- declaration does not hide it. In a possible ambiguous
9622 -- situation, Disambiguate chooses the user-defined op,
9623 -- so it is correct to retain the previous internal one.
9624
9625 if Chars (E) /= Name_Op_Concat
9626 or else Ekind (E) /= E_Operator
9627 then
9628 -- For nondispatching derived operations that are
9629 -- overridden by a subprogram declared in the private
8dbd1460
AC
9630 -- part of a package, we retain the derived subprogram
9631 -- but mark it as not immediately visible. If the
9632 -- derived operation was declared in the visible part
9633 -- then this ensures that it will still be visible
9634 -- outside the package with the proper signature
9635 -- (calls from outside must also be directed to this
9636 -- version rather than the overriding one, unlike the
9637 -- dispatching case). Calls from inside the package
9638 -- will still resolve to the overriding subprogram
9639 -- since the derived one is marked as not visible
9640 -- within the package.
996ae0b0
RK
9641
9642 -- If the private operation is dispatching, we achieve
9643 -- the overriding by keeping the implicit operation
9865d858 9644 -- but setting its alias to be the overriding one. In
996ae0b0
RK
9645 -- this fashion the proper body is executed in all
9646 -- cases, but the original signature is used outside
9647 -- of the package.
9648
9649 -- If the overriding is not in the private part, we
9650 -- remove the implicit operation altogether.
9651
9652 if Is_Private_Declaration (S) then
996ae0b0
RK
9653 if not Is_Dispatching_Operation (E) then
9654 Set_Is_Immediately_Visible (E, False);
9655 else
e895b435 9656 -- Work done in Override_Dispatching_Operation,
a46cde68 9657 -- so nothing else needs to be done here.
996ae0b0
RK
9658
9659 null;
9660 end if;
996ae0b0 9661
fbf5a39b
AC
9662 else
9663 -- Find predecessor of E in Homonym chain
996ae0b0
RK
9664
9665 if E = Current_Entity (E) then
9666 Prev_Vis := Empty;
9667 else
9668 Prev_Vis := Current_Entity (E);
9669 while Homonym (Prev_Vis) /= E loop
9670 Prev_Vis := Homonym (Prev_Vis);
9671 end loop;
9672 end if;
9673
9674 if Prev_Vis /= Empty then
9675
9676 -- Skip E in the visibility chain
9677
9678 Set_Homonym (Prev_Vis, Homonym (E));
9679
9680 else
9681 Set_Name_Entity_Id (Chars (E), Homonym (E));
9682 end if;
9683
9684 Set_Next_Entity (Prev, Next_Entity (E));
9685
9686 if No (Next_Entity (Prev)) then
9687 Set_Last_Entity (Current_Scope, Prev);
9688 end if;
996ae0b0
RK
9689 end if;
9690 end if;
9691
9692 Enter_Overloaded_Entity (S);
1c1289e7
AC
9693
9694 -- For entities generated by Derive_Subprograms the
9695 -- overridden operation is the inherited primitive
9696 -- (which is available through the attribute alias).
9697
9698 if not (Comes_From_Source (E))
9699 and then Is_Dispatching_Operation (E)
f9673bb0
AC
9700 and then Find_Dispatching_Type (E) =
9701 Find_Dispatching_Type (S)
1c1289e7
AC
9702 and then Present (Alias (E))
9703 and then Comes_From_Source (Alias (E))
9704 then
039538bc
AC
9705 Set_Overridden_Operation (S, Alias (E));
9706 Inherit_Subprogram_Contract (S, Alias (E));
2fe829ae 9707
6320f5e1
AC
9708 -- Normal case of setting entity as overridden
9709
9710 -- Note: Static_Initialization and Overridden_Operation
9711 -- attributes use the same field in subprogram entities.
9712 -- Static_Initialization is only defined for internal
9713 -- initialization procedures, where Overridden_Operation
9714 -- is irrelevant. Therefore the setting of this attribute
9715 -- must check whether the target is an init_proc.
9716
2fe829ae 9717 elsif not Is_Init_Proc (S) then
039538bc
AC
9718 Set_Overridden_Operation (S, E);
9719 Inherit_Subprogram_Contract (S, E);
1c1289e7
AC
9720 end if;
9721
5d37ba92 9722 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 9723
fc53fe76 9724 -- If S is a user-defined subprogram or a null procedure
38ef8ebe
AC
9725 -- expanded to override an inherited null procedure, or a
9726 -- predefined dispatching primitive then indicate that E
038140ed 9727 -- overrides the operation from which S is inherited.
fc53fe76
AC
9728
9729 if Comes_From_Source (S)
9730 or else
9731 (Present (Parent (S))
9732 and then
9733 Nkind (Parent (S)) = N_Procedure_Specification
9734 and then
9735 Null_Present (Parent (S)))
38ef8ebe
AC
9736 or else
9737 (Present (Alias (E))
f16e8df9
RD
9738 and then
9739 Is_Predefined_Dispatching_Operation (Alias (E)))
fc53fe76 9740 then
c8ef728f 9741 if Present (Alias (E)) then
039538bc
AC
9742 Set_Overridden_Operation (S, Alias (E));
9743 Inherit_Subprogram_Contract (S, Alias (E));
41251c60
JM
9744 end if;
9745 end if;
9746
996ae0b0 9747 if Is_Dispatching_Operation (E) then
fbf5a39b 9748
82c80734 9749 -- An overriding dispatching subprogram inherits the
f9673bb0 9750 -- convention of the overridden subprogram (AI-117).
996ae0b0
RK
9751
9752 Set_Convention (S, Convention (E));
41251c60
JM
9753 Check_Dispatching_Operation (S, E);
9754
996ae0b0
RK
9755 else
9756 Check_Dispatching_Operation (S, Empty);
9757 end if;
9758
5d37ba92
ES
9759 Check_For_Primitive_Subprogram
9760 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
9761 goto Check_Inequality;
9762 end;
9763
9764 -- Apparent redeclarations in instances can occur when two
9765 -- formal types get the same actual type. The subprograms in
9766 -- in the instance are legal, even if not callable from the
9767 -- outside. Calls from within are disambiguated elsewhere.
9768 -- For dispatching operations in the visible part, the usual
9769 -- rules apply, and operations with the same profile are not
9770 -- legal (B830001).
9771
9772 elsif (In_Instance_Visible_Part
9773 and then not Is_Dispatching_Operation (E))
9774 or else In_Instance_Not_Visible
9775 then
9776 null;
9777
9778 -- Here we have a real error (identical profile)
9779
9780 else
9781 Error_Msg_Sloc := Sloc (E);
9782
9783 -- Avoid cascaded errors if the entity appears in
9784 -- subsequent calls.
9785
9786 Set_Scope (S, Current_Scope);
9787
5d37ba92
ES
9788 -- Generate error, with extra useful warning for the case
9789 -- of a generic instance with no completion.
996ae0b0
RK
9790
9791 if Is_Generic_Instance (S)
9792 and then not Has_Completion (E)
9793 then
9794 Error_Msg_N
5d37ba92
ES
9795 ("instantiation cannot provide body for&", S);
9796 Error_Msg_N ("\& conflicts with declaration#", S);
9797 else
9798 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
9799 end if;
9800
9801 return;
9802 end if;
9803
9804 else
c8ef728f
ES
9805 -- If one subprogram has an access parameter and the other
9806 -- a parameter of an access type, calls to either might be
9807 -- ambiguous. Verify that parameters match except for the
9808 -- access parameter.
9809
9810 if May_Hide_Profile then
9811 declare
ec4867fa
ES
9812 F1 : Entity_Id;
9813 F2 : Entity_Id;
8dbd1460 9814
c8ef728f
ES
9815 begin
9816 F1 := First_Formal (S);
9817 F2 := First_Formal (E);
9818 while Present (F1) and then Present (F2) loop
9819 if Is_Access_Type (Etype (F1)) then
9820 if not Is_Access_Type (Etype (F2))
9821 or else not Conforming_Types
9822 (Designated_Type (Etype (F1)),
9823 Designated_Type (Etype (F2)),
9824 Type_Conformant)
9825 then
9826 May_Hide_Profile := False;
9827 end if;
9828
9829 elsif
9830 not Conforming_Types
9831 (Etype (F1), Etype (F2), Type_Conformant)
9832 then
9833 May_Hide_Profile := False;
9834 end if;
9835
9836 Next_Formal (F1);
9837 Next_Formal (F2);
9838 end loop;
9839
9840 if May_Hide_Profile
9841 and then No (F1)
9842 and then No (F2)
9843 then
dbfeb4fa 9844 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
c8ef728f
ES
9845 end if;
9846 end;
9847 end if;
996ae0b0
RK
9848 end if;
9849
996ae0b0
RK
9850 E := Homonym (E);
9851 end loop;
9852
9853 -- On exit, we know that S is a new entity
9854
9855 Enter_Overloaded_Entity (S);
5d37ba92
ES
9856 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9857 Check_Overriding_Indicator
9858 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 9859
c4d67e2d 9860 -- Overloading is not allowed in SPARK, except for operators
8ed68165 9861
c4d67e2d
AC
9862 if Nkind (S) /= N_Defining_Operator_Symbol then
9863 Error_Msg_Sloc := Sloc (Homonym (S));
ce5ba43a 9864 Check_SPARK_05_Restriction
c4d67e2d
AC
9865 ("overloading not allowed with entity#", S);
9866 end if;
8ed68165 9867
82c80734
RD
9868 -- If S is a derived operation for an untagged type then by
9869 -- definition it's not a dispatching operation (even if the parent
e917aec2
RD
9870 -- operation was dispatching), so Check_Dispatching_Operation is not
9871 -- called in that case.
996ae0b0 9872
c8ef728f 9873 if No (Derived_Type)
996ae0b0
RK
9874 or else Is_Tagged_Type (Derived_Type)
9875 then
9876 Check_Dispatching_Operation (S, Empty);
9877 end if;
9878 end if;
9879
82c80734
RD
9880 -- If this is a user-defined equality operator that is not a derived
9881 -- subprogram, create the corresponding inequality. If the operation is
9882 -- dispatching, the expansion is done elsewhere, and we do not create
9883 -- an explicit inequality operation.
996ae0b0
RK
9884
9885 <<Check_Inequality>>
9886 if Chars (S) = Name_Op_Eq
9887 and then Etype (S) = Standard_Boolean
9888 and then Present (Parent (S))
9889 and then not Is_Dispatching_Operation (S)
9890 then
9891 Make_Inequality_Operator (S);
b2834fbd 9892 Check_Untagged_Equality (S);
996ae0b0 9893 end if;
996ae0b0
RK
9894 end New_Overloaded_Entity;
9895
9896 ---------------------
9897 -- Process_Formals --
9898 ---------------------
9899
9900 procedure Process_Formals
07fc65c4 9901 (T : List_Id;
996ae0b0
RK
9902 Related_Nod : Node_Id)
9903 is
c8d3b4ff 9904 Context : constant Node_Id := Parent (Parent (T));
996ae0b0
RK
9905 Param_Spec : Node_Id;
9906 Formal : Entity_Id;
9907 Formal_Type : Entity_Id;
9908 Default : Node_Id;
9909 Ptype : Entity_Id;
9910
800621e0
RD
9911 Num_Out_Params : Nat := 0;
9912 First_Out_Param : Entity_Id := Empty;
21d27997 9913 -- Used for setting Is_Only_Out_Parameter
800621e0 9914
7b56a91b 9915 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
950d217a
AC
9916 -- Determine whether an access type designates a type coming from a
9917 -- limited view.
9918
07fc65c4 9919 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
9920 -- Check whether the default has a class-wide type. After analysis the
9921 -- default has the type of the formal, so we must also check explicitly
9922 -- for an access attribute.
07fc65c4 9923
7b56a91b
AC
9924 ----------------------------------
9925 -- Designates_From_Limited_With --
9926 ----------------------------------
950d217a 9927
7b56a91b 9928 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
950d217a
AC
9929 Desig : Entity_Id := Typ;
9930
9931 begin
9932 if Is_Access_Type (Desig) then
9933 Desig := Directly_Designated_Type (Desig);
9934 end if;
9935
9936 if Is_Class_Wide_Type (Desig) then
9937 Desig := Root_Type (Desig);
9938 end if;
9939
9940 return
7b56a91b
AC
9941 Ekind (Desig) = E_Incomplete_Type
9942 and then From_Limited_With (Desig);
9943 end Designates_From_Limited_With;
950d217a 9944
07fc65c4
GB
9945 ---------------------------
9946 -- Is_Class_Wide_Default --
9947 ---------------------------
9948
9949 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9950 begin
9951 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9952 or else (Nkind (D) = N_Attribute_Reference
0f853035
YM
9953 and then Attribute_Name (D) = Name_Access
9954 and then Is_Class_Wide_Type (Etype (Prefix (D))));
07fc65c4
GB
9955 end Is_Class_Wide_Default;
9956
9957 -- Start of processing for Process_Formals
9958
996ae0b0
RK
9959 begin
9960 -- In order to prevent premature use of the formals in the same formal
9961 -- part, the Ekind is left undefined until all default expressions are
9962 -- analyzed. The Ekind is established in a separate loop at the end.
9963
9964 Param_Spec := First (T);
996ae0b0 9965 while Present (Param_Spec) loop
996ae0b0 9966 Formal := Defining_Identifier (Param_Spec);
5d37ba92 9967 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
9968 Enter_Name (Formal);
9969
9970 -- Case of ordinary parameters
9971
9972 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9973 Find_Type (Parameter_Type (Param_Spec));
9974 Ptype := Parameter_Type (Param_Spec);
9975
9976 if Ptype = Error then
9977 goto Continue;
9978 end if;
9979
9980 Formal_Type := Entity (Ptype);
9981
ec4867fa
ES
9982 if Is_Incomplete_Type (Formal_Type)
9983 or else
9984 (Is_Class_Wide_Type (Formal_Type)
8fde064e 9985 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 9986 then
93bcda23
AC
9987 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9988 -- primitive operations, as long as their completion is
9989 -- in the same declarative part. If in the private part
9990 -- this means that the type cannot be a Taft-amendment type.
cec29135
ES
9991 -- Check is done on package exit. For access to subprograms,
9992 -- the use is legal for Taft-amendment types.
fbf5a39b 9993
6eddd7b4
AC
9994 -- Ada 2012: tagged incomplete types are allowed as generic
9995 -- formal types. They do not introduce dependencies and the
9996 -- corresponding generic subprogram does not have a delayed
5b6f12c7
AC
9997 -- freeze, because it does not need a freeze node. However,
9998 -- it is still the case that untagged incomplete types cannot
9999 -- be Taft-amendment types and must be completed in private
10000 -- part, so the subprogram must appear in the list of private
a0a10853
AC
10001 -- dependents of the type. If the type is class-wide, it is
10002 -- not a primitive, but the freezing of the subprogram must
10003 -- also be delayed to force the creation of a freeze node.
5b6f12c7
AC
10004
10005 if Is_Tagged_Type (Formal_Type)
b973629e 10006 or else (Ada_Version >= Ada_2012
1ebc2612
AC
10007 and then not From_Limited_With (Formal_Type)
10008 and then not Is_Generic_Type (Formal_Type))
5b6f12c7 10009 then
93bcda23 10010 if Ekind (Scope (Current_Scope)) = E_Package
6eddd7b4 10011 and then not Is_Generic_Type (Formal_Type)
93bcda23 10012 then
cec29135
ES
10013 if not Nkind_In
10014 (Parent (T), N_Access_Function_Definition,
10015 N_Access_Procedure_Definition)
10016 then
a0a10853
AC
10017 if not Is_Class_Wide_Type (Formal_Type) then
10018 Append_Elmt (Current_Scope,
10019 Private_Dependents (Base_Type (Formal_Type)));
10020 end if;
4637729f
AC
10021
10022 -- Freezing is delayed to ensure that Register_Prim
10023 -- will get called for this operation, which is needed
10024 -- in cases where static dispatch tables aren't built.
10025 -- (Note that the same is done for controlling access
10026 -- parameter cases in function Access_Definition.)
10027
13fa2acb
AC
10028 if not Is_Thunk (Current_Scope) then
10029 Set_Has_Delayed_Freeze (Current_Scope);
10030 end if;
cec29135 10031 end if;
93bcda23 10032 end if;
fbf5a39b 10033
0a36105d
JM
10034 -- Special handling of Value_Type for CIL case
10035
10036 elsif Is_Value_Type (Formal_Type) then
10037 null;
10038
800621e0
RD
10039 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10040 N_Access_Procedure_Definition)
996ae0b0 10041 then
dd386db0
AC
10042 -- AI05-0151: Tagged incomplete types are allowed in all
10043 -- formal parts. Untagged incomplete types are not allowed
b973629e
AC
10044 -- in bodies. Limited views of either kind are not allowed
10045 -- if there is no place at which the non-limited view can
10046 -- become available.
a18e3d62 10047
1ebc2612
AC
10048 -- Incomplete formal untagged types are not allowed in
10049 -- subprogram bodies (but are legal in their declarations).
c8d3b4ff
AC
10050 -- This excludes bodies created for null procedures, which
10051 -- are basic declarations.
1ebc2612
AC
10052
10053 if Is_Generic_Type (Formal_Type)
10054 and then not Is_Tagged_Type (Formal_Type)
10055 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10056 then
10057 Error_Msg_N
10058 ("invalid use of formal incomplete type", Param_Spec);
dd386db0 10059
1ebc2612 10060 elsif Ada_Version >= Ada_2012 then
b973629e
AC
10061 if Is_Tagged_Type (Formal_Type)
10062 and then (not From_Limited_With (Formal_Type)
10063 or else not In_Package_Body)
10064 then
dd386db0
AC
10065 null;
10066
c8d3b4ff
AC
10067 elsif Nkind_In (Context, N_Accept_Statement,
10068 N_Accept_Alternative,
10069 N_Entry_Body)
10070 or else (Nkind (Context) = N_Subprogram_Body
10071 and then Comes_From_Source (Context))
dd386db0
AC
10072 then
10073 Error_Msg_NE
c8d3b4ff 10074 ("invalid use of untagged incomplete type &",
0f1a6a0b 10075 Ptype, Formal_Type);
dd386db0
AC
10076 end if;
10077
10078 else
10079 Error_Msg_NE
10080 ("invalid use of incomplete type&",
0f1a6a0b 10081 Param_Spec, Formal_Type);
dd386db0
AC
10082
10083 -- Further checks on the legality of incomplete types
10084 -- in formal parts are delayed until the freeze point
10085 -- of the enclosing subprogram or access to subprogram.
10086 end if;
996ae0b0
RK
10087 end if;
10088
10089 elsif Ekind (Formal_Type) = E_Void then
0f1a6a0b
AC
10090 Error_Msg_NE
10091 ("premature use of&",
10092 Parameter_Type (Param_Spec), Formal_Type);
996ae0b0
RK
10093 end if;
10094
fecbd779
AC
10095 -- Ada 2012 (AI-142): Handle aliased parameters
10096
10097 if Ada_Version >= Ada_2012
10098 and then Aliased_Present (Param_Spec)
10099 then
10100 Set_Is_Aliased (Formal);
10101 end if;
10102
0ab80019 10103 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 10104 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
10105 -- formal in the enclosing scope. Finally, replace the parameter
10106 -- type of the formal with the internal subtype.
7324bf49 10107
0791fbe9 10108 if Ada_Version >= Ada_2005
41251c60 10109 and then Null_Exclusion_Present (Param_Spec)
7324bf49 10110 then
ec4867fa 10111 if not Is_Access_Type (Formal_Type) then
ed2233dc 10112 Error_Msg_N
0a36105d
JM
10113 ("`NOT NULL` allowed only for an access type", Param_Spec);
10114
ec4867fa
ES
10115 else
10116 if Can_Never_Be_Null (Formal_Type)
10117 and then Comes_From_Source (Related_Nod)
10118 then
ed2233dc 10119 Error_Msg_NE
0a36105d 10120 ("`NOT NULL` not allowed (& already excludes null)",
0f1a6a0b 10121 Param_Spec, Formal_Type);
ec4867fa 10122 end if;
41251c60 10123
ec4867fa
ES
10124 Formal_Type :=
10125 Create_Null_Excluding_Itype
10126 (T => Formal_Type,
10127 Related_Nod => Related_Nod,
10128 Scope_Id => Scope (Current_Scope));
0a36105d 10129
fcf848c4
AC
10130 -- If the designated type of the itype is an itype that is
10131 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10132 -- on the access subtype, to prevent order-of-elaboration
10133 -- issues in the backend.
0a36105d
JM
10134
10135 -- Example:
10136 -- type T is access procedure;
10137 -- procedure Op (O : not null T);
10138
fcf848c4
AC
10139 if Is_Itype (Directly_Designated_Type (Formal_Type))
10140 and then
10141 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10142 then
0a36105d
JM
10143 Set_Has_Delayed_Freeze (Formal_Type);
10144 end if;
ec4867fa 10145 end if;
7324bf49
AC
10146 end if;
10147
996ae0b0
RK
10148 -- An access formal type
10149
10150 else
10151 Formal_Type :=
10152 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 10153
f937473f
RD
10154 -- No need to continue if we already notified errors
10155
10156 if not Present (Formal_Type) then
10157 return;
10158 end if;
10159
0ab80019 10160 -- Ada 2005 (AI-254)
7324bf49 10161
af4b9434
AC
10162 declare
10163 AD : constant Node_Id :=
10164 Access_To_Subprogram_Definition
10165 (Parameter_Type (Param_Spec));
10166 begin
10167 if Present (AD) and then Protected_Present (AD) then
10168 Formal_Type :=
10169 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 10170 (Param_Spec);
af4b9434
AC
10171 end if;
10172 end;
996ae0b0
RK
10173 end if;
10174
10175 Set_Etype (Formal, Formal_Type);
0f853035 10176
fecbd779
AC
10177 -- Deal with default expression if present
10178
fbf5a39b 10179 Default := Expression (Param_Spec);
996ae0b0
RK
10180
10181 if Present (Default) then
ce5ba43a 10182 Check_SPARK_05_Restriction
fe5d3068 10183 ("default expression is not allowed", Default);
38171f43 10184
996ae0b0 10185 if Out_Present (Param_Spec) then
ed2233dc 10186 Error_Msg_N
996ae0b0
RK
10187 ("default initialization only allowed for IN parameters",
10188 Param_Spec);
10189 end if;
10190
10191 -- Do the special preanalysis of the expression (see section on
10192 -- "Handling of Default Expressions" in the spec of package Sem).
10193
21d27997 10194 Preanalyze_Spec_Expression (Default, Formal_Type);
996ae0b0 10195
f29b857f
ES
10196 -- An access to constant cannot be the default for
10197 -- an access parameter that is an access to variable.
2eb160f2
ST
10198
10199 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10200 and then not Is_Access_Constant (Formal_Type)
10201 and then Is_Access_Type (Etype (Default))
10202 and then Is_Access_Constant (Etype (Default))
10203 then
f29b857f 10204 Error_Msg_N
84c0a895
AC
10205 ("formal that is access to variable cannot be initialized "
10206 & "with an access-to-constant expression", Default);
2eb160f2
ST
10207 end if;
10208
d8db0bca
JM
10209 -- Check that the designated type of an access parameter's default
10210 -- is not a class-wide type unless the parameter's designated type
10211 -- is also class-wide.
996ae0b0
RK
10212
10213 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7b56a91b 10214 and then not Designates_From_Limited_With (Formal_Type)
07fc65c4 10215 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
10216 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10217 then
07fc65c4
GB
10218 Error_Msg_N
10219 ("access to class-wide expression not allowed here", Default);
996ae0b0 10220 end if;
4755cce9
JM
10221
10222 -- Check incorrect use of dynamically tagged expressions
10223
10224 if Is_Tagged_Type (Formal_Type) then
10225 Check_Dynamically_Tagged_Expression
10226 (Expr => Default,
10227 Typ => Formal_Type,
10228 Related_Nod => Default);
10229 end if;
996ae0b0
RK
10230 end if;
10231
41251c60
JM
10232 -- Ada 2005 (AI-231): Static checks
10233
0791fbe9 10234 if Ada_Version >= Ada_2005
41251c60
JM
10235 and then Is_Access_Type (Etype (Formal))
10236 and then Can_Never_Be_Null (Etype (Formal))
10237 then
10238 Null_Exclusion_Static_Checks (Param_Spec);
10239 end if;
10240
f1bd0415
AC
10241 -- The following checks are relevant when SPARK_Mode is on as these
10242 -- are not standard Ada legality rules.
6c3c671e 10243
ea26c8e4
HK
10244 if SPARK_Mode = On then
10245 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
f1bd0415 10246
ea26c8e4
HK
10247 -- A function cannot have a parameter of mode IN OUT or OUT
10248 -- (SPARK RM 6.1).
f1bd0415 10249
ea26c8e4
HK
10250 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10251 Error_Msg_N
10252 ("function cannot have parameter of mode `OUT` or "
10253 & "`IN OUT`", Formal);
f1bd0415 10254
d780e54f
AC
10255 -- A function cannot have an effectively volatile formal
10256 -- parameter (SPARK RM 7.1.3(10)).
ea26c8e4 10257
d780e54f 10258 elsif Is_Effectively_Volatile (Formal) then
ea26c8e4
HK
10259 Error_Msg_N
10260 ("function cannot have a volatile formal parameter",
10261 Formal);
10262 end if;
10263
d780e54f
AC
10264 -- A procedure cannot have an effectively volatile formal
10265 -- parameter of mode IN because it behaves as a constant
10266 -- (SPARK RM 7.1.3(6)).
ea26c8e4
HK
10267
10268 elsif Ekind (Scope (Formal)) = E_Procedure
10269 and then Ekind (Formal) = E_In_Parameter
d780e54f 10270 and then Is_Effectively_Volatile (Formal)
ea26c8e4 10271 then
f1bd0415 10272 Error_Msg_N
ea26c8e4 10273 ("formal parameter of mode `IN` cannot be volatile", Formal);
f1bd0415 10274 end if;
6c3c671e
AC
10275 end if;
10276
996ae0b0
RK
10277 <<Continue>>
10278 Next (Param_Spec);
10279 end loop;
10280
82c80734
RD
10281 -- If this is the formal part of a function specification, analyze the
10282 -- subtype mark in the context where the formals are visible but not
10283 -- yet usable, and may hide outer homographs.
10284
10285 if Nkind (Related_Nod) = N_Function_Specification then
10286 Analyze_Return_Type (Related_Nod);
10287 end if;
10288
996ae0b0
RK
10289 -- Now set the kind (mode) of each formal
10290
10291 Param_Spec := First (T);
996ae0b0
RK
10292 while Present (Param_Spec) loop
10293 Formal := Defining_Identifier (Param_Spec);
10294 Set_Formal_Mode (Formal);
10295
10296 if Ekind (Formal) = E_In_Parameter then
10297 Set_Default_Value (Formal, Expression (Param_Spec));
10298
10299 if Present (Expression (Param_Spec)) then
10300 Default := Expression (Param_Spec);
10301
10302 if Is_Scalar_Type (Etype (Default)) then
5ebfaacf
AC
10303 if Nkind (Parameter_Type (Param_Spec)) /=
10304 N_Access_Definition
996ae0b0
RK
10305 then
10306 Formal_Type := Entity (Parameter_Type (Param_Spec));
996ae0b0 10307 else
5ebfaacf
AC
10308 Formal_Type :=
10309 Access_Definition
10310 (Related_Nod, Parameter_Type (Param_Spec));
996ae0b0
RK
10311 end if;
10312
10313 Apply_Scalar_Range_Check (Default, Formal_Type);
10314 end if;
2820d220 10315 end if;
800621e0
RD
10316
10317 elsif Ekind (Formal) = E_Out_Parameter then
10318 Num_Out_Params := Num_Out_Params + 1;
10319
10320 if Num_Out_Params = 1 then
10321 First_Out_Param := Formal;
10322 end if;
10323
10324 elsif Ekind (Formal) = E_In_Out_Parameter then
10325 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
10326 end if;
10327
4172a8e3
AC
10328 -- Skip remaining processing if formal type was in error
10329
10330 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10331 goto Next_Parameter;
10332 end if;
10333
fecbd779
AC
10334 -- Force call by reference if aliased
10335
10336 if Is_Aliased (Formal) then
10337 Set_Mechanism (Formal, By_Reference);
5ebfaacf
AC
10338
10339 -- Warn if user asked this to be passed by copy
10340
10341 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10342 Error_Msg_N
b785e0b8 10343 ("cannot pass aliased parameter & by copy??", Formal);
5ebfaacf
AC
10344 end if;
10345
10346 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10347
10348 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10349 Set_Mechanism (Formal, By_Copy);
10350
10351 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10352 Set_Mechanism (Formal, By_Reference);
fecbd779
AC
10353 end if;
10354
4172a8e3 10355 <<Next_Parameter>>
996ae0b0
RK
10356 Next (Param_Spec);
10357 end loop;
800621e0
RD
10358
10359 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10360 Set_Is_Only_Out_Parameter (First_Out_Param);
10361 end if;
996ae0b0
RK
10362 end Process_Formals;
10363
fbf5a39b
AC
10364 ----------------------------
10365 -- Reference_Body_Formals --
10366 ----------------------------
10367
10368 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10369 Fs : Entity_Id;
10370 Fb : Entity_Id;
10371
10372 begin
10373 if Error_Posted (Spec) then
10374 return;
10375 end if;
10376
0a36105d
JM
10377 -- Iterate over both lists. They may be of different lengths if the two
10378 -- specs are not conformant.
10379
fbf5a39b
AC
10380 Fs := First_Formal (Spec);
10381 Fb := First_Formal (Bod);
0a36105d 10382 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
10383 Generate_Reference (Fs, Fb, 'b');
10384
10385 if Style_Check then
10386 Style.Check_Identifier (Fb, Fs);
10387 end if;
10388
10389 Set_Spec_Entity (Fb, Fs);
10390 Set_Referenced (Fs, False);
10391 Next_Formal (Fs);
10392 Next_Formal (Fb);
10393 end loop;
10394 end Reference_Body_Formals;
10395
996ae0b0
RK
10396 -------------------------
10397 -- Set_Actual_Subtypes --
10398 -------------------------
10399
10400 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
84c0a895
AC
10401 Decl : Node_Id;
10402 Formal : Entity_Id;
10403 T : Entity_Id;
10404 First_Stmt : Node_Id := Empty;
10405 AS_Needed : Boolean;
996ae0b0
RK
10406
10407 begin
f3d57416 10408 -- If this is an empty initialization procedure, no need to create
fbf5a39b
AC
10409 -- actual subtypes (small optimization).
10410
8fde064e 10411 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
fbf5a39b
AC
10412 return;
10413 end if;
10414
996ae0b0
RK
10415 Formal := First_Formal (Subp);
10416 while Present (Formal) loop
10417 T := Etype (Formal);
10418
e895b435 10419 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
10420
10421 if Is_Constrained (T) then
10422 AS_Needed := False;
10423
82c80734 10424 -- If we have unknown discriminants, then we do not need an actual
a90bd866 10425 -- subtype, or more accurately we cannot figure it out. Note that
82c80734 10426 -- all class-wide types have unknown discriminants.
996ae0b0
RK
10427
10428 elsif Has_Unknown_Discriminants (T) then
10429 AS_Needed := False;
10430
82c80734
RD
10431 -- At this stage we have an unconstrained type that may need an
10432 -- actual subtype. For sure the actual subtype is needed if we have
10433 -- an unconstrained array type.
996ae0b0
RK
10434
10435 elsif Is_Array_Type (T) then
10436 AS_Needed := True;
10437
d8db0bca
JM
10438 -- The only other case needing an actual subtype is an unconstrained
10439 -- record type which is an IN parameter (we cannot generate actual
10440 -- subtypes for the OUT or IN OUT case, since an assignment can
10441 -- change the discriminant values. However we exclude the case of
10442 -- initialization procedures, since discriminants are handled very
10443 -- specially in this context, see the section entitled "Handling of
10444 -- Discriminants" in Einfo.
10445
10446 -- We also exclude the case of Discrim_SO_Functions (functions used
10447 -- in front end layout mode for size/offset values), since in such
10448 -- functions only discriminants are referenced, and not only are such
10449 -- subtypes not needed, but they cannot always be generated, because
10450 -- of order of elaboration issues.
996ae0b0
RK
10451
10452 elsif Is_Record_Type (T)
10453 and then Ekind (Formal) = E_In_Parameter
10454 and then Chars (Formal) /= Name_uInit
5d09245e 10455 and then not Is_Unchecked_Union (T)
996ae0b0
RK
10456 and then not Is_Discrim_SO_Function (Subp)
10457 then
10458 AS_Needed := True;
10459
10460 -- All other cases do not need an actual subtype
10461
10462 else
10463 AS_Needed := False;
10464 end if;
10465
10466 -- Generate actual subtypes for unconstrained arrays and
10467 -- unconstrained discriminated records.
10468
10469 if AS_Needed then
7324bf49 10470 if Nkind (N) = N_Accept_Statement then
fbf5a39b 10471
57a8057a 10472 -- If expansion is active, the formal is replaced by a local
fbf5a39b
AC
10473 -- variable that renames the corresponding entry of the
10474 -- parameter block, and it is this local variable that may
da94696d 10475 -- require an actual subtype.
fbf5a39b 10476
4460a9bc 10477 if Expander_Active then
fbf5a39b
AC
10478 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10479 else
10480 Decl := Build_Actual_Subtype (T, Formal);
10481 end if;
10482
996ae0b0
RK
10483 if Present (Handled_Statement_Sequence (N)) then
10484 First_Stmt :=
10485 First (Statements (Handled_Statement_Sequence (N)));
10486 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10487 Mark_Rewrite_Insertion (Decl);
10488 else
82c80734
RD
10489 -- If the accept statement has no body, there will be no
10490 -- reference to the actuals, so no need to compute actual
10491 -- subtypes.
996ae0b0
RK
10492
10493 return;
10494 end if;
10495
10496 else
fbf5a39b 10497 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
10498 Prepend (Decl, Declarations (N));
10499 Mark_Rewrite_Insertion (Decl);
10500 end if;
10501
82c80734
RD
10502 -- The declaration uses the bounds of an existing object, and
10503 -- therefore needs no constraint checks.
2820d220 10504
7324bf49 10505 Analyze (Decl, Suppress => All_Checks);
2820d220 10506
996ae0b0
RK
10507 -- We need to freeze manually the generated type when it is
10508 -- inserted anywhere else than in a declarative part.
10509
10510 if Present (First_Stmt) then
10511 Insert_List_Before_And_Analyze (First_Stmt,
c159409f 10512 Freeze_Entity (Defining_Identifier (Decl), N));
fcadacf7
ES
10513
10514 -- Ditto if the type has a dynamic predicate, because the
10515 -- generated function will mention the actual subtype.
10516
10517 elsif Has_Dynamic_Predicate_Aspect (T) then
10518 Insert_List_Before_And_Analyze (Decl,
10519 Freeze_Entity (Defining_Identifier (Decl), N));
996ae0b0
RK
10520 end if;
10521
fbf5a39b 10522 if Nkind (N) = N_Accept_Statement
4460a9bc 10523 and then Expander_Active
fbf5a39b
AC
10524 then
10525 Set_Actual_Subtype (Renamed_Object (Formal),
10526 Defining_Identifier (Decl));
10527 else
10528 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10529 end if;
996ae0b0
RK
10530 end if;
10531
10532 Next_Formal (Formal);
10533 end loop;
10534 end Set_Actual_Subtypes;
10535
10536 ---------------------
10537 -- Set_Formal_Mode --
10538 ---------------------
10539
10540 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10541 Spec : constant Node_Id := Parent (Formal_Id);
10542
10543 begin
10544 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10545 -- since we ensure that corresponding actuals are always valid at the
10546 -- point of the call.
10547
10548 if Out_Present (Spec) then
fc999c5d
RD
10549 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10550
b4ca2d2c 10551 -- [IN] OUT parameters allowed for functions in Ada 2012
c56a9ba4
AC
10552
10553 if Ada_Version >= Ada_2012 then
e6425869
AC
10554
10555 -- Even in Ada 2012 operators can only have IN parameters
10556
10557 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10558 Error_Msg_N ("operators can only have IN parameters", Spec);
10559 end if;
10560
c56a9ba4
AC
10561 if In_Present (Spec) then
10562 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10563 else
10564 Set_Ekind (Formal_Id, E_Out_Parameter);
10565 end if;
10566
fc999c5d
RD
10567 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10568
b4ca2d2c
AC
10569 -- But not in earlier versions of Ada
10570
c56a9ba4
AC
10571 else
10572 Error_Msg_N ("functions can only have IN parameters", Spec);
10573 Set_Ekind (Formal_Id, E_In_Parameter);
10574 end if;
996ae0b0
RK
10575
10576 elsif In_Present (Spec) then
10577 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10578
10579 else
fbf5a39b
AC
10580 Set_Ekind (Formal_Id, E_Out_Parameter);
10581 Set_Never_Set_In_Source (Formal_Id, True);
10582 Set_Is_True_Constant (Formal_Id, False);
10583 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
10584 end if;
10585
10586 else
10587 Set_Ekind (Formal_Id, E_In_Parameter);
10588 end if;
10589
fbf5a39b 10590 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
10591 -- guarantees that access parameters are always non-null. We also set
10592 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
10593
10594 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 10595
885c4871 10596 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
2813bb6b 10597 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 10598
0791fbe9 10599 if Ada_Version < Ada_2005
2813bb6b 10600 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
10601 then
10602 Set_Is_Known_Non_Null (Formal_Id);
10603 Set_Can_Never_Be_Null (Formal_Id);
10604 end if;
2813bb6b 10605
41251c60
JM
10606 -- Ada 2005 (AI-231): Null-exclusion access subtype
10607
2813bb6b
ES
10608 elsif Is_Access_Type (Etype (Formal_Id))
10609 and then Can_Never_Be_Null (Etype (Formal_Id))
10610 then
2813bb6b 10611 Set_Is_Known_Non_Null (Formal_Id);
a1d72281
EB
10612
10613 -- We can also set Can_Never_Be_Null (thus preventing some junk
10614 -- access checks) for the case of an IN parameter, which cannot
10615 -- be changed, or for an IN OUT parameter, which can be changed but
10616 -- not to a null value. But for an OUT parameter, the initial value
10617 -- passed in can be null, so we can't set this flag in that case.
10618
10619 if Ekind (Formal_Id) /= E_Out_Parameter then
10620 Set_Can_Never_Be_Null (Formal_Id);
10621 end if;
fbf5a39b
AC
10622 end if;
10623
996ae0b0
RK
10624 Set_Mechanism (Formal_Id, Default_Mechanism);
10625 Set_Formal_Validity (Formal_Id);
10626 end Set_Formal_Mode;
10627
10628 -------------------------
10629 -- Set_Formal_Validity --
10630 -------------------------
10631
10632 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10633 begin
82c80734
RD
10634 -- If no validity checking, then we cannot assume anything about the
10635 -- validity of parameters, since we do not know there is any checking
10636 -- of the validity on the call side.
996ae0b0
RK
10637
10638 if not Validity_Checks_On then
10639 return;
10640
fbf5a39b
AC
10641 -- If validity checking for parameters is enabled, this means we are
10642 -- not supposed to make any assumptions about argument values.
10643
10644 elsif Validity_Check_Parameters then
10645 return;
10646
10647 -- If we are checking in parameters, we will assume that the caller is
10648 -- also checking parameters, so we can assume the parameter is valid.
10649
996ae0b0
RK
10650 elsif Ekind (Formal_Id) = E_In_Parameter
10651 and then Validity_Check_In_Params
10652 then
10653 Set_Is_Known_Valid (Formal_Id, True);
10654
fbf5a39b
AC
10655 -- Similar treatment for IN OUT parameters
10656
996ae0b0
RK
10657 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10658 and then Validity_Check_In_Out_Params
10659 then
10660 Set_Is_Known_Valid (Formal_Id, True);
10661 end if;
10662 end Set_Formal_Validity;
10663
10664 ------------------------
10665 -- Subtype_Conformant --
10666 ------------------------
10667
ce2b6ba5
JM
10668 function Subtype_Conformant
10669 (New_Id : Entity_Id;
10670 Old_Id : Entity_Id;
10671 Skip_Controlling_Formals : Boolean := False) return Boolean
10672 is
996ae0b0 10673 Result : Boolean;
996ae0b0 10674 begin
ce2b6ba5
JM
10675 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10676 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10677 return Result;
10678 end Subtype_Conformant;
10679
10680 ---------------------
10681 -- Type_Conformant --
10682 ---------------------
10683
41251c60
JM
10684 function Type_Conformant
10685 (New_Id : Entity_Id;
10686 Old_Id : Entity_Id;
10687 Skip_Controlling_Formals : Boolean := False) return Boolean
10688 is
996ae0b0 10689 Result : Boolean;
996ae0b0 10690 begin
c8ef728f 10691 May_Hide_Profile := False;
41251c60
JM
10692 Check_Conformance
10693 (New_Id, Old_Id, Type_Conformant, False, Result,
10694 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10695 return Result;
10696 end Type_Conformant;
10697
10698 -------------------------------
10699 -- Valid_Operator_Definition --
10700 -------------------------------
10701
10702 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10703 N : Integer := 0;
10704 F : Entity_Id;
10705 Id : constant Name_Id := Chars (Designator);
10706 N_OK : Boolean;
10707
10708 begin
10709 F := First_Formal (Designator);
996ae0b0
RK
10710 while Present (F) loop
10711 N := N + 1;
10712
10713 if Present (Default_Value (F)) then
ed2233dc 10714 Error_Msg_N
996ae0b0
RK
10715 ("default values not allowed for operator parameters",
10716 Parent (F));
220d1fd9
AC
10717
10718 -- For function instantiations that are operators, we must check
10719 -- separately that the corresponding generic only has in-parameters.
84c0a895
AC
10720 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10721 -- an error could not arise in earlier versions of the language.
220d1fd9
AC
10722
10723 elsif Ekind (F) /= E_In_Parameter then
84c0a895 10724 Error_Msg_N ("operators can only have IN parameters", F);
996ae0b0
RK
10725 end if;
10726
10727 Next_Formal (F);
10728 end loop;
10729
10730 -- Verify that user-defined operators have proper number of arguments
10731 -- First case of operators which can only be unary
10732
b69cd36a 10733 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
996ae0b0
RK
10734 N_OK := (N = 1);
10735
10736 -- Case of operators which can be unary or binary
10737
b69cd36a 10738 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
10739 N_OK := (N in 1 .. 2);
10740
10741 -- All other operators can only be binary
10742
10743 else
10744 N_OK := (N = 2);
10745 end if;
10746
10747 if not N_OK then
10748 Error_Msg_N
10749 ("incorrect number of arguments for operator", Designator);
10750 end if;
10751
10752 if Id = Name_Op_Ne
10753 and then Base_Type (Etype (Designator)) = Standard_Boolean
10754 and then not Is_Intrinsic_Subprogram (Designator)
10755 then
10756 Error_Msg_N
84c0a895 10757 ("explicit definition of inequality not allowed", Designator);
996ae0b0
RK
10758 end if;
10759 end Valid_Operator_Definition;
10760
10761end Sem_Ch6;