]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
77a40ec1 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
80e59506 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Expander; use Expander;
ec4867fa 34with Exp_Ch6; use Exp_Ch6;
996ae0b0 35with Exp_Ch7; use Exp_Ch7;
21d27997 36with Exp_Ch9; use Exp_Ch9;
616547fa 37with Exp_Dbug; use Exp_Dbug;
ce2b6ba5 38with Exp_Disp; use Exp_Disp;
e660dbf7 39with Exp_Tss; use Exp_Tss;
ec4867fa 40with Exp_Util; use Exp_Util;
fbf5a39b 41with Fname; use Fname;
996ae0b0 42with Freeze; use Freeze;
540d8610 43with Inline; use Inline;
41251c60 44with Itypes; use Itypes;
996ae0b0 45with Lib.Xref; use Lib.Xref;
ec4867fa 46with Layout; use Layout;
996ae0b0
RK
47with Namet; use Namet;
48with Lib; use Lib;
49with Nlists; use Nlists;
50with Nmake; use Nmake;
51with Opt; use Opt;
52with Output; use Output;
b20de9b9
AC
53with Restrict; use Restrict;
54with Rident; use Rident;
996ae0b0
RK
55with Rtsfind; use Rtsfind;
56with Sem; use Sem;
a4100e55 57with Sem_Aux; use Sem_Aux;
996ae0b0
RK
58with Sem_Cat; use Sem_Cat;
59with Sem_Ch3; use Sem_Ch3;
60with Sem_Ch4; use Sem_Ch4;
61with Sem_Ch5; use Sem_Ch5;
62with Sem_Ch8; use Sem_Ch8;
9bc856dd 63with Sem_Ch10; use Sem_Ch10;
996ae0b0 64with Sem_Ch12; use Sem_Ch12;
0f1a6a0b 65with Sem_Ch13; use Sem_Ch13;
dec6faf1 66with Sem_Dim; use Sem_Dim;
996ae0b0
RK
67with Sem_Disp; use Sem_Disp;
68with Sem_Dist; use Sem_Dist;
69with Sem_Elim; use Sem_Elim;
70with Sem_Eval; use Sem_Eval;
71with Sem_Mech; use Sem_Mech;
72with Sem_Prag; use Sem_Prag;
73with Sem_Res; use Sem_Res;
74with Sem_Util; use Sem_Util;
75with Sem_Type; use Sem_Type;
76with Sem_Warn; use Sem_Warn;
77with Sinput; use Sinput;
78with Stand; use Stand;
79with Sinfo; use Sinfo;
80with Sinfo.CN; use Sinfo.CN;
81with Snames; use Snames;
82with Stringt; use Stringt;
83with Style;
84with Stylesw; use Stylesw;
8417f4b2 85with Targparm; use Targparm;
996ae0b0
RK
86with Tbuild; use Tbuild;
87with Uintp; use Uintp;
88with Urealp; use Urealp;
89with Validsw; use Validsw;
90
91package body Sem_Ch6 is
92
c8ef728f 93 May_Hide_Profile : Boolean := False;
ec4867fa
ES
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
c8ef728f 101
996ae0b0
RK
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
4d8f3296
ES
106 procedure Analyze_Null_Procedure
107 (N : Node_Id;
108 Is_Completion : out Boolean);
9d2a2071 109 -- A null procedure can be a declaration or (Ada 2012) a completion
4d8f3296 110
5d37ba92 111 procedure Analyze_Return_Statement (N : Node_Id);
5b9c3fc4 112 -- Common processing for simple and extended return statements
ec4867fa
ES
113
114 procedure Analyze_Function_Return (N : Node_Id);
81db9d77
ES
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
ec4867fa 117
82c80734
RD
118 procedure Analyze_Return_Type (N : Node_Id);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
5b9c3fc4 120 -- specification in a context where the formals are visible and hide
82c80734
RD
121 -- outer homographs.
122
b1b543d2 123 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
13d923cc
RD
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
b1b543d2 126
996ae0b0 127 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
82c80734
RD
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
996ae0b0 130
806f6d37
AC
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
996ae0b0 134 procedure Check_Conformance
41251c60
JM
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
158
996ae0b0
RK
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
c8ef728f
ES
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
0a36105d 165 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
996ae0b0 173
e5a58fac
AC
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
b2834fbd
AC
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
e5a58fac 183
996ae0b0 184 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
996ae0b0 187
a5b62485
AC
188 function Is_Non_Overriding_Operation
189 (Prev_E : Entity_Id;
190 New_E : Entity_Id) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
260359e3
AC
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
a5b62485 196
996ae0b0
RK
197 procedure Make_Inequality_Operator (S : Entity_Id);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
200
996ae0b0
RK
201 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
e358346d
AC
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
996ae0b0
RK
205
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
209
210 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
211 Designator : constant Entity_Id :=
212 Analyze_Subprogram_Specification (Specification (N));
996ae0b0
RK
213 Scop : constant Entity_Id := Current_Scope;
214
215 begin
ce5ba43a 216 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
38171f43 217
996ae0b0 218 Generate_Definition (Designator);
dac3bede 219 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
f937473f 220 Set_Is_Abstract_Subprogram (Designator);
996ae0b0
RK
221 New_Overloaded_Entity (Designator);
222 Check_Delayed_Subprogram (Designator);
223
fbf5a39b 224 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0 225
c5cec2fe
AC
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
228
229 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
230 Set_Is_Ghost_Entity (Designator);
231 end if;
232
996ae0b0
RK
233 if Ekind (Scope (Designator)) = E_Protected_Type then
234 Error_Msg_N
235 ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
236
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
240
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation (Designator)
038140ed 243 and then not Present (Overridden_Operation (Designator))
5d37ba92
ES
244 and then (not Is_Operator_Symbol_Name (Chars (Designator))
245 or else Scop /= Scope (Etype (First_Formal (Designator))))
246 then
247 Error_Msg_N
dbfeb4fa 248 ("abstract subprogram is not dispatching or overriding?r?", N);
996ae0b0 249 end if;
fbf5a39b
AC
250
251 Generate_Reference_To_Formals (Designator);
361effb1 252 Check_Eliminated (Designator);
eaba57fb
RD
253
254 if Has_Aspects (N) then
255 Analyze_Aspect_Specifications (N, Designator);
256 end if;
996ae0b0
RK
257 end Analyze_Abstract_Subprogram_Declaration;
258
b0186f71
AC
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
262
263 procedure Analyze_Expression_Function (N : Node_Id) is
264 Loc : constant Source_Ptr := Sloc (N);
265 LocX : constant Source_Ptr := Sloc (Expression (N));
0b5b2bbc 266 Expr : constant Node_Id := Expression (N);
d2d4b355
AC
267 Spec : constant Node_Id := Specification (N);
268
8a06151a 269 Def_Id : Entity_Id;
b0186f71 270
8a06151a 271 Prev : Entity_Id;
b0186f71 272 -- If the expression is a completion, Prev is the entity whose
d2d4b355
AC
273 -- declaration is completed. Def_Id is needed to analyze the spec.
274
275 New_Body : Node_Id;
d2d4b355 276 New_Spec : Node_Id;
b913199e 277 Ret : Node_Id;
b0186f71
AC
278
279 begin
280 -- This is one of the occasions on which we transform the tree during
afc8324d 281 -- semantic analysis. If this is a completion, transform the expression
d2b10647
ES
282 -- function into an equivalent subprogram body, and analyze it.
283
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
286
287 Inline_Processing_Required := True;
b727a82b
AC
288
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
292
293 New_Spec := New_Copy_Tree (Spec);
294 Set_Defining_Unit_Name (New_Spec,
295 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
296 Chars (Defining_Unit_Name (Spec))));
297
298 if Present (Parameter_Specifications (New_Spec)) then
299 declare
300 Formal_Spec : Node_Id;
a6abfd78
AC
301 Def : Entity_Id;
302
b727a82b
AC
303 begin
304 Formal_Spec := First (Parameter_Specifications (New_Spec));
b2afe274
AC
305
306 -- Create a new formal parameter at the same source position
307
b727a82b 308 while Present (Formal_Spec) loop
a6abfd78
AC
309 Def := Defining_Identifier (Formal_Spec);
310 Set_Defining_Identifier (Formal_Spec,
311 Make_Defining_Identifier (Sloc (Def),
312 Chars => Chars (Def)));
b727a82b
AC
313 Next (Formal_Spec);
314 end loop;
315 end;
316 end if;
317
51597c23 318 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
d2d4b355
AC
319
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
b04d926e 322 -- In a generic context a formal subprogram has no completion.
d2d4b355 323
b04d926e
AC
324 if Present (Prev) and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
51597c23
AC
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
d2d4b355 329 end if;
b0186f71 330
b913199e
AC
331 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
332
b0186f71
AC
333 New_Body :=
334 Make_Subprogram_Body (Loc,
d2d4b355 335 Specification => New_Spec,
b0186f71
AC
336 Declarations => Empty_List,
337 Handled_Statement_Sequence =>
338 Make_Handled_Sequence_Of_Statements (LocX,
b913199e 339 Statements => New_List (Ret)));
b0186f71 340
e7f23f06
AC
341 -- If the expression completes a generic subprogram, we must create a
342 -- separate node for the body, because at instantiation the original
343 -- node of the generic copy must be a generic subprogram body, and
344 -- cannot be a expression function. Otherwise we just rewrite the
345 -- expression with the non-generic body.
346
6d7e5c54 347 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
e7f23f06 348 Insert_After (N, New_Body);
6d7e5c54 349
e7f23f06
AC
350 -- Propagate any aspects or pragmas that apply to the expression
351 -- function to the proper body when the expression function acts
352 -- as a completion.
353
354 if Has_Aspects (N) then
355 Move_Aspects (N, To => New_Body);
356 end if;
357
358 Relocate_Pragmas_To_Body (New_Body);
b0186f71 359
b0186f71 360 Rewrite (N, Make_Null_Statement (Loc));
d2d4b355 361 Set_Has_Completion (Prev, False);
b0186f71
AC
362 Analyze (N);
363 Analyze (New_Body);
d2b10647 364 Set_Is_Inlined (Prev);
b0186f71 365
e5c4e2bc
AC
366 -- If the expression function is a completion, the previous declaration
367 -- must come from source. We know already that appears in the current
368 -- scope. The entity itself may be internally created if within a body
369 -- to be inlined.
370
b04d926e
AC
371 elsif Present (Prev) and then Comes_From_Source (Parent (Prev))
372 and then not Is_Formal_Subprogram (Prev)
373 then
d2d4b355 374 Set_Has_Completion (Prev, False);
76264f60 375
c6d2191a
AC
376 -- An expression function that is a completion freezes the
377 -- expression. This means freezing the return type, and if it is
378 -- an access type, freezing its designated type as well.
1b31321b 379
c6d2191a 380 -- Note that we cannot defer this freezing to the analysis of the
1b31321b
AC
381 -- expression itself, because a freeze node might appear in a nested
382 -- scope, leading to an elaboration order issue in gigi.
c6d2191a
AC
383
384 Freeze_Before (N, Etype (Prev));
1b31321b 385
c6d2191a
AC
386 if Is_Access_Type (Etype (Prev)) then
387 Freeze_Before (N, Designated_Type (Etype (Prev)));
388 end if;
389
76264f60
AC
390 -- For navigation purposes, indicate that the function is a body
391
392 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
b0186f71 393 Rewrite (N, New_Body);
e7f23f06 394
c0cdbd39
AC
395 -- Correct the parent pointer of the aspect specification list to
396 -- reference the rewritten node.
397
398 if Has_Aspects (N) then
399 Set_Parent (Aspect_Specifications (N), N);
400 end if;
401
e7f23f06
AC
402 -- Propagate any pragmas that apply to the expression function to the
403 -- proper body when the expression function acts as a completion.
404 -- Aspects are automatically transfered because of node rewriting.
405
406 Relocate_Pragmas_To_Body (N);
d2b10647
ES
407 Analyze (N);
408
6d7e5c54
AC
409 -- Prev is the previous entity with the same name, but it is can
410 -- be an unrelated spec that is not completed by the expression
411 -- function. In that case the relevant entity is the one in the body.
412 -- Not clear that the backend can inline it in this case ???
413
414 if Has_Completion (Prev) then
415 Set_Is_Inlined (Prev);
31af8899
AC
416
417 -- The formals of the expression function are body formals,
418 -- and do not appear in the ali file, which will only contain
419 -- references to the formals of the original subprogram spec.
420
421 declare
422 F1 : Entity_Id;
423 F2 : Entity_Id;
424
425 begin
426 F1 := First_Formal (Def_Id);
427 F2 := First_Formal (Prev);
428
429 while Present (F1) loop
430 Set_Spec_Entity (F1, F2);
431 Next_Formal (F1);
432 Next_Formal (F2);
433 end loop;
434 end;
435
6d7e5c54
AC
436 else
437 Set_Is_Inlined (Defining_Entity (New_Body));
438 end if;
439
0b5b2bbc 440 -- If this is not a completion, create both a declaration and a body, so
6d7e5c54 441 -- that the expression can be inlined whenever possible.
d2b10647
ES
442
443 else
a52e6d7e
AC
444 -- An expression function that is not a completion is not a
445 -- subprogram declaration, and thus cannot appear in a protected
446 -- definition.
447
448 if Nkind (Parent (N)) = N_Protected_Definition then
449 Error_Msg_N
450 ("an expression function is not a legal protected operation", N);
451 end if;
452
b8e6830b 453 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
c0cdbd39
AC
454
455 -- Correct the parent pointer of the aspect specification list to
456 -- reference the rewritten node.
457
458 if Has_Aspects (N) then
459 Set_Parent (Aspect_Specifications (N), N);
460 end if;
461
b0186f71 462 Analyze (N);
b04d926e 463
e699b76e
AC
464 -- Within a generic pre-analyze the original expression for name
465 -- capture. The body is also generated but plays no role in
466 -- this because it is not part of the original source.
b04d926e
AC
467
468 if Inside_A_Generic then
469 declare
470 Id : constant Entity_Id := Defining_Entity (N);
b04d926e
AC
471
472 begin
473 Set_Has_Completion (Id);
b04d926e
AC
474 Push_Scope (Id);
475 Install_Formals (Id);
e699b76e 476 Preanalyze_Spec_Expression (Expr, Etype (Id));
b04d926e 477 End_Scope;
b04d926e
AC
478 end;
479 end if;
480
b8e6830b
AC
481 Set_Is_Inlined (Defining_Entity (N));
482
483 -- Establish the linkages between the spec and the body. These are
484 -- used when the expression function acts as the prefix of attribute
485 -- 'Access in order to freeze the original expression which has been
486 -- moved to the generated body.
487
488 Set_Corresponding_Body (N, Defining_Entity (New_Body));
489 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
d2b10647 490
6d7e5c54
AC
491 -- To prevent premature freeze action, insert the new body at the end
492 -- of the current declarations, or at the end of the package spec.
b913199e 493 -- However, resolve usage names now, to prevent spurious visibility
ad4e3362
ES
494 -- on later entities. Note that the function can now be called in
495 -- the current declarative part, which will appear to be prior to
496 -- the presence of the body in the code. There are nevertheless no
497 -- order of elaboration issues because all name resolution has taken
498 -- place at the point of declaration.
6d7e5c54
AC
499
500 declare
e876c43a
AC
501 Decls : List_Id := List_Containing (N);
502 Par : constant Node_Id := Parent (Decls);
b8e6830b 503 Id : constant Entity_Id := Defining_Entity (N);
6d7e5c54
AC
504
505 begin
fce54763
AC
506 -- If this is a wrapper created for in an instance for a formal
507 -- subprogram, insert body after declaration, to be analyzed when
508 -- the enclosing instance is analyzed.
509
510 if GNATprove_Mode
511 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
6d7e5c54 512 then
fce54763
AC
513 Insert_After (N, New_Body);
514
515 else
516 if Nkind (Par) = N_Package_Specification
517 and then Decls = Visible_Declarations (Par)
518 and then Present (Private_Declarations (Par))
519 and then not Is_Empty_List (Private_Declarations (Par))
520 then
521 Decls := Private_Declarations (Par);
522 end if;
6d7e5c54 523
fce54763
AC
524 Insert_After (Last (Decls), New_Body);
525 Push_Scope (Id);
526 Install_Formals (Id);
3a8e3f63 527
fce54763
AC
528 -- Preanalyze the expression for name capture, except in an
529 -- instance, where this has been done during generic analysis,
530 -- and will be redone when analyzing the body.
845f06e2 531
fce54763
AC
532 declare
533 Expr : constant Node_Id := Expression (Ret);
4058ddcc 534
fce54763
AC
535 begin
536 Set_Parent (Expr, Ret);
4058ddcc 537
fce54763
AC
538 if not In_Instance then
539 Preanalyze_Spec_Expression (Expr, Etype (Id));
540 end if;
541 end;
3a8e3f63 542
fce54763
AC
543 End_Scope;
544 end if;
6d7e5c54 545 end;
b0186f71 546 end if;
0b5b2bbc
AC
547
548 -- If the return expression is a static constant, we suppress warning
549 -- messages on unused formals, which in most cases will be noise.
550
551 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
552 Is_OK_Static_Expression (Expr));
b0186f71
AC
553 end Analyze_Expression_Function;
554
ec4867fa
ES
555 ----------------------------------------
556 -- Analyze_Extended_Return_Statement --
557 ----------------------------------------
558
559 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
560 begin
c86cf714 561 Check_Compiler_Unit ("extended return statement", N);
5d37ba92 562 Analyze_Return_Statement (N);
ec4867fa
ES
563 end Analyze_Extended_Return_Statement;
564
996ae0b0
RK
565 ----------------------------
566 -- Analyze_Function_Call --
567 ----------------------------
568
569 procedure Analyze_Function_Call (N : Node_Id) is
a7e68e7f
HK
570 Actuals : constant List_Id := Parameter_Associations (N);
571 Func_Nam : constant Node_Id := Name (N);
572 Actual : Node_Id;
573
996ae0b0 574 begin
a7e68e7f 575 Analyze (Func_Nam);
996ae0b0 576
3e7302c3
AC
577 -- A call of the form A.B (X) may be an Ada 2005 call, which is
578 -- rewritten as B (A, X). If the rewriting is successful, the call
579 -- has been analyzed and we just return.
82c80734 580
a7e68e7f
HK
581 if Nkind (Func_Nam) = N_Selected_Component
582 and then Name (N) /= Func_Nam
82c80734
RD
583 and then Is_Rewrite_Substitution (N)
584 and then Present (Etype (N))
585 then
586 return;
587 end if;
588
996ae0b0
RK
589 -- If error analyzing name, then set Any_Type as result type and return
590
a7e68e7f 591 if Etype (Func_Nam) = Any_Type then
996ae0b0
RK
592 Set_Etype (N, Any_Type);
593 return;
594 end if;
595
596 -- Otherwise analyze the parameters
597
e24329cd
YM
598 if Present (Actuals) then
599 Actual := First (Actuals);
996ae0b0
RK
600 while Present (Actual) loop
601 Analyze (Actual);
602 Check_Parameterless_Call (Actual);
603 Next (Actual);
604 end loop;
605 end if;
606
607 Analyze_Call (N);
996ae0b0
RK
608 end Analyze_Function_Call;
609
ec4867fa
ES
610 -----------------------------
611 -- Analyze_Function_Return --
612 -----------------------------
613
614 procedure Analyze_Function_Return (N : Node_Id) is
a7e68e7f
HK
615 Loc : constant Source_Ptr := Sloc (N);
616 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
617 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
ec4867fa 618
5d37ba92 619 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
620 -- Function result subtype
621
622 procedure Check_Limited_Return (Expr : Node_Id);
623 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
624 -- limited types. Used only for simple return statements.
625 -- Expr is the expression returned.
626
627 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
628 -- Check that the return_subtype_indication properly matches the result
629 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
630
631 --------------------------
632 -- Check_Limited_Return --
633 --------------------------
634
635 procedure Check_Limited_Return (Expr : Node_Id) is
636 begin
637 -- Ada 2005 (AI-318-02): Return-by-reference types have been
638 -- removed and replaced by anonymous access results. This is an
639 -- incompatibility with Ada 95. Not clear whether this should be
640 -- enforced yet or perhaps controllable with special switch. ???
641
ce72a9a3
AC
642 -- A limited interface that is not immutably limited is OK.
643
644 if Is_Limited_Interface (R_Type)
645 and then
646 not (Is_Task_Interface (R_Type)
647 or else Is_Protected_Interface (R_Type)
648 or else Is_Synchronized_Interface (R_Type))
649 then
650 null;
651
652 elsif Is_Limited_Type (R_Type)
653 and then not Is_Interface (R_Type)
ec4867fa
ES
654 and then Comes_From_Source (N)
655 and then not In_Instance_Body
2a31c32b 656 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
ec4867fa
ES
657 then
658 -- Error in Ada 2005
659
0791fbe9 660 if Ada_Version >= Ada_2005
ec4867fa
ES
661 and then not Debug_Flag_Dot_L
662 and then not GNAT_Mode
663 then
664 Error_Msg_N
3ccedacc
AC
665 ("(Ada 2005) cannot copy object of a limited type "
666 & "(RM-2005 6.5(5.5/2))", Expr);
e0ae93e2 667
51245e2d 668 if Is_Limited_View (R_Type) then
ec4867fa
ES
669 Error_Msg_N
670 ("\return by reference not permitted in Ada 2005", Expr);
671 end if;
672
673 -- Warn in Ada 95 mode, to give folks a heads up about this
674 -- incompatibility.
675
676 -- In GNAT mode, this is just a warning, to allow it to be
677 -- evilly turned off. Otherwise it is a real error.
678
9694c039
AC
679 -- In a generic context, simplify the warning because it makes
680 -- no sense to discuss pass-by-reference or copy.
681
ec4867fa 682 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
9694c039
AC
683 if Inside_A_Generic then
684 Error_Msg_N
885c4871 685 ("return of limited object not permitted in Ada 2005 "
dbfeb4fa 686 & "(RM-2005 6.5(5.5/2))?y?", Expr);
9694c039 687
51245e2d 688 elsif Is_Limited_View (R_Type) then
ec4867fa 689 Error_Msg_N
20261dc1 690 ("return by reference not permitted in Ada 2005 "
dbfeb4fa 691 & "(RM-2005 6.5(5.5/2))?y?", Expr);
ec4867fa
ES
692 else
693 Error_Msg_N
20261dc1 694 ("cannot copy object of a limited type in Ada 2005 "
dbfeb4fa 695 & "(RM-2005 6.5(5.5/2))?y?", Expr);
ec4867fa
ES
696 end if;
697
698 -- Ada 95 mode, compatibility warnings disabled
699
700 else
701 return; -- skip continuation messages below
702 end if;
703
9694c039
AC
704 if not Inside_A_Generic then
705 Error_Msg_N
706 ("\consider switching to return of access type", Expr);
707 Explain_Limited_Type (R_Type, Expr);
708 end if;
ec4867fa
ES
709 end if;
710 end Check_Limited_Return;
711
712 -------------------------------------
713 -- Check_Return_Subtype_Indication --
714 -------------------------------------
715
716 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
7665e4bd
AC
717 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
718
719 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
720 -- Subtype given in the extended return statement (must match R_Type)
ec4867fa
ES
721
722 Subtype_Ind : constant Node_Id :=
723 Object_Definition (Original_Node (Obj_Decl));
724
7f568bfa
AC
725 R_Type_Is_Anon_Access : constant Boolean :=
726 Ekind_In (R_Type,
727 E_Anonymous_Access_Subprogram_Type,
728 E_Anonymous_Access_Protected_Subprogram_Type,
729 E_Anonymous_Access_Type);
ec4867fa
ES
730 -- True if return type of the function is an anonymous access type
731 -- Can't we make Is_Anonymous_Access_Type in einfo ???
732
7f568bfa
AC
733 R_Stm_Type_Is_Anon_Access : constant Boolean :=
734 Ekind_In (R_Stm_Type,
735 E_Anonymous_Access_Subprogram_Type,
736 E_Anonymous_Access_Protected_Subprogram_Type,
737 E_Anonymous_Access_Type);
ec4867fa
ES
738 -- True if type of the return object is an anonymous access type
739
7f568bfa
AC
740 procedure Error_No_Match (N : Node_Id);
741 -- Output error messages for case where types do not statically
742 -- match. N is the location for the messages.
743
744 --------------------
745 -- Error_No_Match --
746 --------------------
747
748 procedure Error_No_Match (N : Node_Id) is
749 begin
750 Error_Msg_N
751 ("subtype must statically match function result subtype", N);
752
753 if not Predicates_Match (R_Stm_Type, R_Type) then
754 Error_Msg_Node_2 := R_Type;
755 Error_Msg_NE
3ccedacc 756 ("\predicate of& does not match predicate of&",
7f568bfa
AC
757 N, R_Stm_Type);
758 end if;
759 end Error_No_Match;
760
761 -- Start of processing for Check_Return_Subtype_Indication
762
ec4867fa 763 begin
7665e4bd 764 -- First, avoid cascaded errors
ec4867fa
ES
765
766 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
767 return;
768 end if;
769
770 -- "return access T" case; check that the return statement also has
771 -- "access T", and that the subtypes statically match:
53cf4600 772 -- if this is an access to subprogram the signatures must match.
ec4867fa
ES
773
774 if R_Type_Is_Anon_Access then
775 if R_Stm_Type_Is_Anon_Access then
53cf4600
ES
776 if
777 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
0a36105d 778 then
53cf4600
ES
779 if Base_Type (Designated_Type (R_Stm_Type)) /=
780 Base_Type (Designated_Type (R_Type))
781 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
782 then
7f568bfa 783 Error_No_Match (Subtype_Mark (Subtype_Ind));
53cf4600
ES
784 end if;
785
786 else
787 -- For two anonymous access to subprogram types, the
788 -- types themselves must be type conformant.
789
790 if not Conforming_Types
791 (R_Stm_Type, R_Type, Fully_Conformant)
792 then
7f568bfa 793 Error_No_Match (Subtype_Ind);
53cf4600 794 end if;
ec4867fa 795 end if;
0a36105d 796
ec4867fa
ES
797 else
798 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
799 end if;
800
6cce2156
GD
801 -- If the return object is of an anonymous access type, then report
802 -- an error if the function's result type is not also anonymous.
803
804 elsif R_Stm_Type_Is_Anon_Access
805 and then not R_Type_Is_Anon_Access
806 then
3ccedacc
AC
807 Error_Msg_N ("anonymous access not allowed for function with "
808 & "named access result", Subtype_Ind);
6cce2156 809
81d93365
AC
810 -- Subtype indication case: check that the return object's type is
811 -- covered by the result type, and that the subtypes statically match
812 -- when the result subtype is constrained. Also handle record types
813 -- with unknown discriminants for which we have built the underlying
814 -- record view. Coverage is needed to allow specific-type return
815 -- objects when the result type is class-wide (see AI05-32).
816
817 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
9013065b 818 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
212863c0
AC
819 and then
820 Covers
821 (Base_Type (R_Type),
822 Underlying_Record_View (Base_Type (R_Stm_Type))))
9013065b
AC
823 then
824 -- A null exclusion may be present on the return type, on the
825 -- function specification, on the object declaration or on the
826 -- subtype itself.
ec4867fa 827
21d27997
RD
828 if Is_Access_Type (R_Type)
829 and then
830 (Can_Never_Be_Null (R_Type)
831 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
832 Can_Never_Be_Null (R_Stm_Type)
833 then
7f568bfa 834 Error_No_Match (Subtype_Ind);
21d27997
RD
835 end if;
836
105b5e65 837 -- AI05-103: for elementary types, subtypes must statically match
8779dffa
AC
838
839 if Is_Constrained (R_Type)
840 or else Is_Access_Type (R_Type)
841 then
ec4867fa 842 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
7f568bfa 843 Error_No_Match (Subtype_Ind);
ec4867fa
ES
844 end if;
845 end if;
846
a8b346d2
RD
847 -- All remaining cases are illegal
848
849 -- Note: previous versions of this subprogram allowed the return
850 -- value to be the ancestor of the return type if the return type
851 -- was a null extension. This was plainly incorrect.
ff7139c3 852
ec4867fa
ES
853 else
854 Error_Msg_N
855 ("wrong type for return_subtype_indication", Subtype_Ind);
856 end if;
857 end Check_Return_Subtype_Indication;
858
859 ---------------------
860 -- Local Variables --
861 ---------------------
862
863 Expr : Node_Id;
864
865 -- Start of processing for Analyze_Function_Return
866
867 begin
868 Set_Return_Present (Scope_Id);
869
5d37ba92 870 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa 871 Expr := Expression (N);
4ee646da 872
e917aec2
RD
873 -- Guard against a malformed expression. The parser may have tried to
874 -- recover but the node is not analyzable.
4ee646da
AC
875
876 if Nkind (Expr) = N_Error then
877 Set_Etype (Expr, Any_Type);
878 Expander_Mode_Save_And_Set (False);
879 return;
880
881 else
0180fd26
AC
882 -- The resolution of a controlled [extension] aggregate associated
883 -- with a return statement creates a temporary which needs to be
884 -- finalized on function exit. Wrap the return statement inside a
885 -- block so that the finalization machinery can detect this case.
886 -- This early expansion is done only when the return statement is
887 -- not part of a handled sequence of statements.
888
889 if Nkind_In (Expr, N_Aggregate,
890 N_Extension_Aggregate)
891 and then Needs_Finalization (R_Type)
892 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
893 then
894 Rewrite (N,
895 Make_Block_Statement (Loc,
896 Handled_Statement_Sequence =>
897 Make_Handled_Sequence_Of_Statements (Loc,
898 Statements => New_List (Relocate_Node (N)))));
899
900 Analyze (N);
901 return;
902 end if;
903
4ee646da
AC
904 Analyze_And_Resolve (Expr, R_Type);
905 Check_Limited_Return (Expr);
906 end if;
ec4867fa 907
ad05f2e9 908 -- RETURN only allowed in SPARK as the last statement in function
607d0635 909
fe5d3068 910 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
607d0635
AC
911 and then
912 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
8d606a78 913 or else Present (Next (N)))
607d0635 914 then
ce5ba43a 915 Check_SPARK_05_Restriction
fe5d3068 916 ("RETURN should be the last statement in function", N);
607d0635
AC
917 end if;
918
ec4867fa 919 else
ce5ba43a 920 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
607d0635 921
ec4867fa
ES
922 -- Analyze parts specific to extended_return_statement:
923
924 declare
de6cad7c 925 Obj_Decl : constant Node_Id :=
b9daa96e 926 Last (Return_Object_Declarations (N));
de6cad7c 927 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
b9daa96e 928 HSS : constant Node_Id := Handled_Statement_Sequence (N);
ec4867fa
ES
929
930 begin
931 Expr := Expression (Obj_Decl);
932
933 -- Note: The check for OK_For_Limited_Init will happen in
934 -- Analyze_Object_Declaration; we treat it as a normal
935 -- object declaration.
936
cd1c668b 937 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
ec4867fa
ES
938 Analyze (Obj_Decl);
939
ec4867fa
ES
940 Check_Return_Subtype_Indication (Obj_Decl);
941
942 if Present (HSS) then
943 Analyze (HSS);
944
945 if Present (Exception_Handlers (HSS)) then
946
947 -- ???Has_Nested_Block_With_Handler needs to be set.
948 -- Probably by creating an actual N_Block_Statement.
949 -- Probably in Expand.
950
951 null;
952 end if;
953 end if;
954
9337aa0a
AC
955 -- Mark the return object as referenced, since the return is an
956 -- implicit reference of the object.
957
958 Set_Referenced (Defining_Identifier (Obj_Decl));
959
ec4867fa 960 Check_References (Stm_Entity);
de6cad7c
AC
961
962 -- Check RM 6.5 (5.9/3)
963
964 if Has_Aliased then
965 if Ada_Version < Ada_2012 then
dbfeb4fa
RD
966
967 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
968 -- Can it really happen (extended return???)
969
970 Error_Msg_N
b785e0b8
AC
971 ("aliased only allowed for limited return objects "
972 & "in Ada 2012??", N);
de6cad7c 973
51245e2d 974 elsif not Is_Limited_View (R_Type) then
3ccedacc
AC
975 Error_Msg_N
976 ("aliased only allowed for limited return objects", N);
de6cad7c
AC
977 end if;
978 end if;
ec4867fa
ES
979 end;
980 end if;
981
21d27997 982 -- Case of Expr present
5d37ba92 983
ec4867fa 984 if Present (Expr)
21d27997 985
8fde064e 986 -- Defend against previous errors
21d27997
RD
987
988 and then Nkind (Expr) /= N_Empty
5d37ba92 989 and then Present (Etype (Expr))
ec4867fa 990 then
5d37ba92
ES
991 -- Apply constraint check. Note that this is done before the implicit
992 -- conversion of the expression done for anonymous access types to
f3d57416 993 -- ensure correct generation of the null-excluding check associated
5d37ba92
ES
994 -- with null-excluding expressions found in return statements.
995
996 Apply_Constraint_Check (Expr, R_Type);
997
998 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
999 -- type, apply an implicit conversion of the expression to that type
1000 -- to force appropriate static and run-time accessibility checks.
ec4867fa 1001
0791fbe9 1002 if Ada_Version >= Ada_2005
ec4867fa
ES
1003 and then Ekind (R_Type) = E_Anonymous_Access_Type
1004 then
1005 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1006 Analyze_And_Resolve (Expr, R_Type);
b6b5cca8
AC
1007
1008 -- If this is a local anonymous access to subprogram, the
1009 -- accessibility check can be applied statically. The return is
1010 -- illegal if the access type of the return expression is declared
1011 -- inside of the subprogram (except if it is the subtype indication
1012 -- of an extended return statement).
1013
1014 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1015 if not Comes_From_Source (Current_Scope)
1016 or else Ekind (Current_Scope) = E_Return_Statement
1017 then
1018 null;
1019
1020 elsif
1021 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1022 then
1023 Error_Msg_N ("cannot return local access to subprogram", N);
1024 end if;
1ebc2612
AC
1025
1026 -- The expression cannot be of a formal incomplete type
1027
1028 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1029 and then Is_Generic_Type (Etype (Expr))
1030 then
1031 Error_Msg_N
1032 ("cannot return expression of a formal incomplete type", N);
ec4867fa
ES
1033 end if;
1034
21d27997
RD
1035 -- If the result type is class-wide, then check that the return
1036 -- expression's type is not declared at a deeper level than the
1037 -- function (RM05-6.5(5.6/2)).
1038
0791fbe9 1039 if Ada_Version >= Ada_2005
21d27997
RD
1040 and then Is_Class_Wide_Type (R_Type)
1041 then
1042 if Type_Access_Level (Etype (Expr)) >
1043 Subprogram_Access_Level (Scope_Id)
1044 then
1045 Error_Msg_N
3ccedacc
AC
1046 ("level of return expression type is deeper than "
1047 & "class-wide function!", Expr);
21d27997
RD
1048 end if;
1049 end if;
1050
4755cce9
JM
1051 -- Check incorrect use of dynamically tagged expression
1052
1053 if Is_Tagged_Type (R_Type) then
1054 Check_Dynamically_Tagged_Expression
1055 (Expr => Expr,
1056 Typ => R_Type,
1057 Related_Nod => N);
ec4867fa
ES
1058 end if;
1059
ec4867fa
ES
1060 -- ??? A real run-time accessibility check is needed in cases
1061 -- involving dereferences of access parameters. For now we just
1062 -- check the static cases.
1063
0791fbe9 1064 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
51245e2d 1065 and then Is_Limited_View (Etype (Scope_Id))
ec4867fa
ES
1066 and then Object_Access_Level (Expr) >
1067 Subprogram_Access_Level (Scope_Id)
1068 then
9694c039
AC
1069 -- Suppress the message in a generic, where the rewriting
1070 -- is irrelevant.
1071
1072 if Inside_A_Generic then
1073 null;
1074
1075 else
1076 Rewrite (N,
1077 Make_Raise_Program_Error (Loc,
1078 Reason => PE_Accessibility_Check_Failed));
1079 Analyze (N);
1080
43417b90 1081 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1082 Error_Msg_N ("cannot return a local value by reference<<", N);
1083 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
9694c039 1084 end if;
ec4867fa 1085 end if;
5d37ba92
ES
1086
1087 if Known_Null (Expr)
1088 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1089 and then Null_Exclusion_Present (Parent (Scope_Id))
1090 then
1091 Apply_Compile_Time_Constraint_Error
1092 (N => Expr,
1093 Msg => "(Ada 2005) null not allowed for "
dbfeb4fa 1094 & "null-excluding return??",
5d37ba92
ES
1095 Reason => CE_Null_Not_Allowed);
1096 end if;
ec4867fa
ES
1097 end if;
1098 end Analyze_Function_Return;
1099
996ae0b0
RK
1100 -------------------------------------
1101 -- Analyze_Generic_Subprogram_Body --
1102 -------------------------------------
1103
1104 procedure Analyze_Generic_Subprogram_Body
1105 (N : Node_Id;
1106 Gen_Id : Entity_Id)
1107 is
fbf5a39b 1108 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 1109 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 1110 Body_Id : Entity_Id;
996ae0b0 1111 New_N : Node_Id;
fbf5a39b 1112 Spec : Node_Id;
996ae0b0
RK
1113
1114 begin
82c80734
RD
1115 -- Copy body and disable expansion while analyzing the generic For a
1116 -- stub, do not copy the stub (which would load the proper body), this
1117 -- will be done when the proper body is analyzed.
996ae0b0
RK
1118
1119 if Nkind (N) /= N_Subprogram_Body_Stub then
1120 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1121 Rewrite (N, New_N);
1122 Start_Generic;
1123 end if;
1124
1125 Spec := Specification (N);
1126
1127 -- Within the body of the generic, the subprogram is callable, and
1128 -- behaves like the corresponding non-generic unit.
1129
fbf5a39b 1130 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
1131
1132 if Kind = E_Generic_Procedure
1133 and then Nkind (Spec) /= N_Procedure_Specification
1134 then
fbf5a39b 1135 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
1136 return;
1137
1138 elsif Kind = E_Generic_Function
1139 and then Nkind (Spec) /= N_Function_Specification
1140 then
fbf5a39b 1141 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
1142 return;
1143 end if;
1144
fbf5a39b 1145 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
1146
1147 if Has_Completion (Gen_Id)
1148 and then Nkind (Parent (N)) /= N_Subunit
1149 then
1150 Error_Msg_N ("duplicate generic body", N);
1151 return;
1152 else
1153 Set_Has_Completion (Gen_Id);
1154 end if;
1155
1156 if Nkind (N) = N_Subprogram_Body_Stub then
1157 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1158 else
1159 Set_Corresponding_Spec (N, Gen_Id);
1160 end if;
1161
1162 if Nkind (Parent (N)) = N_Compilation_Unit then
1163 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1164 end if;
1165
1166 -- Make generic parameters immediately visible in the body. They are
1167 -- needed to process the formals declarations. Then make the formals
1168 -- visible in a separate step.
1169
0a36105d 1170 Push_Scope (Gen_Id);
996ae0b0
RK
1171
1172 declare
1173 E : Entity_Id;
1174 First_Ent : Entity_Id;
1175
1176 begin
1177 First_Ent := First_Entity (Gen_Id);
1178
1179 E := First_Ent;
1180 while Present (E) and then not Is_Formal (E) loop
1181 Install_Entity (E);
1182 Next_Entity (E);
1183 end loop;
1184
1185 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1186
1187 -- Now generic formals are visible, and the specification can be
1188 -- analyzed, for subsequent conformance check.
1189
fbf5a39b 1190 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 1191
fbf5a39b 1192 -- Make formal parameters visible
996ae0b0
RK
1193
1194 if Present (E) then
1195
fbf5a39b
AC
1196 -- E is the first formal parameter, we loop through the formals
1197 -- installing them so that they will be visible.
996ae0b0
RK
1198
1199 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
1200 while Present (E) loop
1201 Install_Entity (E);
1202 Next_Formal (E);
1203 end loop;
1204 end if;
1205
e895b435 1206 -- Visible generic entity is callable within its own body
996ae0b0 1207
ec4867fa 1208 Set_Ekind (Gen_Id, Ekind (Body_Id));
ea3c0651 1209 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
ec4867fa
ES
1210 Set_Ekind (Body_Id, E_Subprogram_Body);
1211 Set_Convention (Body_Id, Convention (Gen_Id));
1212 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1213 Set_Scope (Body_Id, Scope (Gen_Id));
c5cec2fe
AC
1214
1215 -- Inherit the "ghostness" of the generic spec. Note that this
1216 -- property is not directly inherited as the body may be subject
1217 -- to a different Ghost assertion policy.
1218
1219 if Is_Ghost_Entity (Gen_Id) or else Within_Ghost_Scope then
1220 Set_Is_Ghost_Entity (Body_Id);
1221
1222 -- The Ghost policy in effect at the point of declaration and at
1223 -- the point of completion must match (SPARK RM 6.9(14)).
1224
1225 Check_Ghost_Completion (Gen_Id, Body_Id);
1226 end if;
1227
fbf5a39b
AC
1228 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1229
1230 if Nkind (N) = N_Subprogram_Body_Stub then
1231
e895b435 1232 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
1233
1234 Set_Ekind (Gen_Id, Kind);
1235 Set_Ekind (Body_Id, Kind);
1236
1237 if Present (First_Ent) then
1238 Set_First_Entity (Gen_Id, First_Ent);
1239 end if;
1240
1241 End_Scope;
1242 return;
1243 end if;
996ae0b0 1244
82c80734
RD
1245 -- If this is a compilation unit, it must be made visible explicitly,
1246 -- because the compilation of the declaration, unlike other library
1247 -- unit declarations, does not. If it is not a unit, the following
1248 -- is redundant but harmless.
996ae0b0
RK
1249
1250 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 1251 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 1252
ec4867fa
ES
1253 if Is_Child_Unit (Gen_Id) then
1254 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1255 end if;
1256
996ae0b0 1257 Set_Actual_Subtypes (N, Current_Scope);
483361a6 1258
ea3c0651
AC
1259 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1260 -- invariants and predicates associated with the body and its spec.
1261 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1262 -- prepares the contract assertions for generic subprograms or for
1263 -- ASIS. Do not generate contract checks in SPARK mode.
483361a6 1264
f5da7a97 1265 if not GNATprove_Mode then
ea3c0651 1266 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
483361a6 1267 end if;
0dabde3a
ES
1268
1269 -- If the generic unit carries pre- or post-conditions, copy them
1270 -- to the original generic tree, so that they are properly added
1271 -- to any instantiation.
1272
1273 declare
1274 Orig : constant Node_Id := Original_Node (N);
1275 Cond : Node_Id;
1276
1277 begin
1278 Cond := First (Declarations (N));
1279 while Present (Cond) loop
1280 if Nkind (Cond) = N_Pragma
1281 and then Pragma_Name (Cond) = Name_Check
1282 then
1283 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1284
1285 elsif Nkind (Cond) = N_Pragma
1286 and then Pragma_Name (Cond) = Name_Postcondition
1287 then
1288 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1289 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1290 else
1291 exit;
1292 end if;
1293
1294 Next (Cond);
1295 end loop;
1296 end;
1297
579847c2
AC
1298 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1299 Set_SPARK_Pragma_Inherited (Body_Id, True);
1300
996ae0b0
RK
1301 Analyze_Declarations (Declarations (N));
1302 Check_Completion;
1303 Analyze (Handled_Statement_Sequence (N));
1304
1305 Save_Global_References (Original_Node (N));
1306
82c80734
RD
1307 -- Prior to exiting the scope, include generic formals again (if any
1308 -- are present) in the set of local entities.
996ae0b0
RK
1309
1310 if Present (First_Ent) then
1311 Set_First_Entity (Gen_Id, First_Ent);
1312 end if;
1313
fbf5a39b 1314 Check_References (Gen_Id);
996ae0b0
RK
1315 end;
1316
e6f69614 1317 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
1318 End_Scope;
1319 Check_Subprogram_Order (N);
1320
e895b435 1321 -- Outside of its body, unit is generic again
996ae0b0
RK
1322
1323 Set_Ekind (Gen_Id, Kind);
fbf5a39b 1324 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
1325
1326 if Style_Check then
1327 Style.Check_Identifier (Body_Id, Gen_Id);
1328 end if;
13d923cc 1329
996ae0b0 1330 End_Generic;
996ae0b0
RK
1331 end Analyze_Generic_Subprogram_Body;
1332
4d8f3296
ES
1333 ----------------------------
1334 -- Analyze_Null_Procedure --
1335 ----------------------------
1336
1337 procedure Analyze_Null_Procedure
1338 (N : Node_Id;
1339 Is_Completion : out Boolean)
1340 is
1341 Loc : constant Source_Ptr := Sloc (N);
1342 Spec : constant Node_Id := Specification (N);
1343 Designator : Entity_Id;
1344 Form : Node_Id;
1345 Null_Body : Node_Id := Empty;
1346 Prev : Entity_Id;
1347
1348 begin
1349 -- Capture the profile of the null procedure before analysis, for
1350 -- expansion at the freeze point and at each point of call. The body is
1351 -- used if the procedure has preconditions, or if it is a completion. In
1352 -- the first case the body is analyzed at the freeze point, in the other
1353 -- it replaces the null procedure declaration.
1354
1355 Null_Body :=
1356 Make_Subprogram_Body (Loc,
1357 Specification => New_Copy_Tree (Spec),
8c35b40a 1358 Declarations => New_List,
4d8f3296
ES
1359 Handled_Statement_Sequence =>
1360 Make_Handled_Sequence_Of_Statements (Loc,
1361 Statements => New_List (Make_Null_Statement (Loc))));
1362
1363 -- Create new entities for body and formals
1364
1365 Set_Defining_Unit_Name (Specification (Null_Body),
9d2a2071
AC
1366 Make_Defining_Identifier
1367 (Sloc (Defining_Entity (N)),
1368 Chars (Defining_Entity (N))));
4d8f3296
ES
1369
1370 Form := First (Parameter_Specifications (Specification (Null_Body)));
1371 while Present (Form) loop
1372 Set_Defining_Identifier (Form,
9d2a2071
AC
1373 Make_Defining_Identifier
1374 (Sloc (Defining_Identifier (Form)),
1375 Chars (Defining_Identifier (Form))));
4d8f3296
ES
1376 Next (Form);
1377 end loop;
1378
1379 -- Determine whether the null procedure may be a completion of a generic
1380 -- suprogram, in which case we use the new null body as the completion
1381 -- and set minimal semantic information on the original declaration,
1382 -- which is rewritten as a null statement.
1383
1384 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1385
1386 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1387 Insert_Before (N, Null_Body);
1388 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1389 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1390
1391 Rewrite (N, Make_Null_Statement (Loc));
1392 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1393 Is_Completion := True;
1394 return;
1395
1396 else
4d8f3296
ES
1397 -- Resolve the types of the formals now, because the freeze point
1398 -- may appear in a different context, e.g. an instantiation.
1399
1400 Form := First (Parameter_Specifications (Specification (Null_Body)));
1401 while Present (Form) loop
1402 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1403 Find_Type (Parameter_Type (Form));
1404
1405 elsif
1406 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1407 then
1408 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1409
1410 else
1411 -- The case of a null procedure with a formal that is an
1412 -- access_to_subprogram type, and that is used as an actual
1413 -- in an instantiation is left to the enthusiastic reader.
1414
1415 null;
1416 end if;
1417
1418 Next (Form);
1419 end loop;
1420 end if;
1421
1422 -- If there are previous overloadable entities with the same name,
1423 -- check whether any of them is completed by the null procedure.
1424
1425 if Present (Prev) and then Is_Overloadable (Prev) then
1426 Designator := Analyze_Subprogram_Specification (Spec);
1427 Prev := Find_Corresponding_Spec (N);
1428 end if;
1429
1430 if No (Prev) or else not Comes_From_Source (Prev) then
1431 Designator := Analyze_Subprogram_Specification (Spec);
1432 Set_Has_Completion (Designator);
1433
1434 -- Signal to caller that this is a procedure declaration
1435
1436 Is_Completion := False;
1437
1438 -- Null procedures are always inlined, but generic formal subprograms
1439 -- which appear as such in the internal instance of formal packages,
1440 -- need no completion and are not marked Inline.
1441
1442 if Expander_Active
1443 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1444 then
1445 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1446 Set_Body_To_Inline (N, Null_Body);
1447 Set_Is_Inlined (Designator);
1448 end if;
1449
1450 else
2fe258bf
AC
1451 -- The null procedure is a completion. We unconditionally rewrite
1452 -- this as a null body (even if expansion is not active), because
1453 -- there are various error checks that are applied on this body
1454 -- when it is analyzed (e.g. correct aspect placement).
4d8f3296 1455
a98480dd
AC
1456 if Has_Completion (Prev) then
1457 Error_Msg_Sloc := Sloc (Prev);
1458 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1459 end if;
1460
4d8f3296 1461 Is_Completion := True;
2fe258bf
AC
1462 Rewrite (N, Null_Body);
1463 Analyze (N);
4d8f3296
ES
1464 end if;
1465 end Analyze_Null_Procedure;
1466
996ae0b0
RK
1467 -----------------------------
1468 -- Analyze_Operator_Symbol --
1469 -----------------------------
1470
82c80734
RD
1471 -- An operator symbol such as "+" or "and" may appear in context where the
1472 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1473 -- is just a string, as in (conjunction = "or"). In these cases the parser
1474 -- generates this node, and the semantics does the disambiguation. Other
1475 -- such case are actuals in an instantiation, the generic unit in an
1476 -- instantiation, and pragma arguments.
996ae0b0
RK
1477
1478 procedure Analyze_Operator_Symbol (N : Node_Id) is
1479 Par : constant Node_Id := Parent (N);
1480
1481 begin
1f0b1e48 1482 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
996ae0b0 1483 or else Nkind (Par) = N_Function_Instantiation
1f0b1e48 1484 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
996ae0b0 1485 or else (Nkind (Par) = N_Pragma_Argument_Association
1f0b1e48 1486 and then not Is_Pragma_String_Literal (Par))
996ae0b0 1487 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
1488 or else (Nkind (Par) = N_Attribute_Reference
1489 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
1490 then
1491 Find_Direct_Name (N);
1492
1493 else
1494 Change_Operator_Symbol_To_String_Literal (N);
1495 Analyze (N);
1496 end if;
1497 end Analyze_Operator_Symbol;
1498
1499 -----------------------------------
1500 -- Analyze_Parameter_Association --
1501 -----------------------------------
1502
1503 procedure Analyze_Parameter_Association (N : Node_Id) is
1504 begin
1505 Analyze (Explicit_Actual_Parameter (N));
1506 end Analyze_Parameter_Association;
1507
1508 ----------------------------
1509 -- Analyze_Procedure_Call --
1510 ----------------------------
1511
1512 procedure Analyze_Procedure_Call (N : Node_Id) is
1513 Loc : constant Source_Ptr := Sloc (N);
1514 P : constant Node_Id := Name (N);
1515 Actuals : constant List_Id := Parameter_Associations (N);
1516 Actual : Node_Id;
1517 New_N : Node_Id;
1518
1519 procedure Analyze_Call_And_Resolve;
1520 -- Do Analyze and Resolve calls for procedure call
cd5a9750 1521 -- At end, check illegal order dependence.
996ae0b0 1522
fbf5a39b
AC
1523 ------------------------------
1524 -- Analyze_Call_And_Resolve --
1525 ------------------------------
1526
996ae0b0
RK
1527 procedure Analyze_Call_And_Resolve is
1528 begin
1529 if Nkind (N) = N_Procedure_Call_Statement then
1530 Analyze_Call (N);
1531 Resolve (N, Standard_Void_Type);
1532 else
1533 Analyze (N);
1534 end if;
1535 end Analyze_Call_And_Resolve;
1536
1537 -- Start of processing for Analyze_Procedure_Call
1538
1539 begin
1540 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1541 -- a procedure call or an entry call. The prefix may denote an access
1542 -- to subprogram type, in which case an implicit dereference applies.
f3d57416 1543 -- If the prefix is an indexed component (without implicit dereference)
996ae0b0
RK
1544 -- then the construct denotes a call to a member of an entire family.
1545 -- If the prefix is a simple name, it may still denote a call to a
1546 -- parameterless member of an entry family. Resolution of these various
1547 -- interpretations is delicate.
1548
1549 Analyze (P);
1550
758c442c
GD
1551 -- If this is a call of the form Obj.Op, the call may have been
1552 -- analyzed and possibly rewritten into a block, in which case
1553 -- we are done.
1554
1555 if Analyzed (N) then
1556 return;
1557 end if;
1558
7415029d
AC
1559 -- If there is an error analyzing the name (which may have been
1560 -- rewritten if the original call was in prefix notation) then error
1561 -- has been emitted already, mark node and return.
996ae0b0 1562
21791d97 1563 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
996ae0b0
RK
1564 Set_Etype (N, Any_Type);
1565 return;
1566 end if;
1567
1568 -- Otherwise analyze the parameters
1569
1570 if Present (Actuals) then
1571 Actual := First (Actuals);
1572
1573 while Present (Actual) loop
1574 Analyze (Actual);
1575 Check_Parameterless_Call (Actual);
1576 Next (Actual);
1577 end loop;
1578 end if;
1579
0bfc9a64 1580 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
996ae0b0
RK
1581
1582 if Nkind (P) = N_Attribute_Reference
b69cd36a
AC
1583 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1584 Name_Elab_Body,
1585 Name_Elab_Subp_Body)
996ae0b0
RK
1586 then
1587 if Present (Actuals) then
1588 Error_Msg_N
1589 ("no parameters allowed for this call", First (Actuals));
1590 return;
1591 end if;
1592
1593 Set_Etype (N, Standard_Void_Type);
1594 Set_Analyzed (N);
1595
1596 elsif Is_Entity_Name (P)
1597 and then Is_Record_Type (Etype (Entity (P)))
1598 and then Remote_AST_I_Dereference (P)
1599 then
1600 return;
1601
1602 elsif Is_Entity_Name (P)
1603 and then Ekind (Entity (P)) /= E_Entry_Family
1604 then
1605 if Is_Access_Type (Etype (P))
1606 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1607 and then No (Actuals)
1608 and then Comes_From_Source (N)
1609 then
ed2233dc 1610 Error_Msg_N ("missing explicit dereference in call", N);
996ae0b0
RK
1611 end if;
1612
1613 Analyze_Call_And_Resolve;
1614
1615 -- If the prefix is the simple name of an entry family, this is
1616 -- a parameterless call from within the task body itself.
1617
1618 elsif Is_Entity_Name (P)
1619 and then Nkind (P) = N_Identifier
1620 and then Ekind (Entity (P)) = E_Entry_Family
1621 and then Present (Actuals)
1622 and then No (Next (First (Actuals)))
1623 then
82c80734
RD
1624 -- Can be call to parameterless entry family. What appears to be the
1625 -- sole argument is in fact the entry index. Rewrite prefix of node
1626 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1627 -- transformation.
1628
1629 New_N :=
1630 Make_Indexed_Component (Loc,
1631 Prefix =>
1632 Make_Selected_Component (Loc,
1633 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1634 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1635 Expressions => Actuals);
1636 Set_Name (N, New_N);
1637 Set_Etype (New_N, Standard_Void_Type);
1638 Set_Parameter_Associations (N, No_List);
1639 Analyze_Call_And_Resolve;
1640
1641 elsif Nkind (P) = N_Explicit_Dereference then
1642 if Ekind (Etype (P)) = E_Subprogram_Type then
1643 Analyze_Call_And_Resolve;
1644 else
1645 Error_Msg_N ("expect access to procedure in call", P);
1646 end if;
1647
82c80734
RD
1648 -- The name can be a selected component or an indexed component that
1649 -- yields an access to subprogram. Such a prefix is legal if the call
1650 -- has parameter associations.
996ae0b0
RK
1651
1652 elsif Is_Access_Type (Etype (P))
1653 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1654 then
1655 if Present (Actuals) then
1656 Analyze_Call_And_Resolve;
1657 else
ed2233dc 1658 Error_Msg_N ("missing explicit dereference in call ", N);
996ae0b0
RK
1659 end if;
1660
82c80734
RD
1661 -- If not an access to subprogram, then the prefix must resolve to the
1662 -- name of an entry, entry family, or protected operation.
996ae0b0 1663
82c80734
RD
1664 -- For the case of a simple entry call, P is a selected component where
1665 -- the prefix is the task and the selector name is the entry. A call to
1666 -- a protected procedure will have the same syntax. If the protected
1667 -- object contains overloaded operations, the entity may appear as a
1668 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1669
1670 elsif Nkind (P) = N_Selected_Component
8fde064e
AC
1671 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1672 E_Procedure,
1673 E_Function)
996ae0b0
RK
1674 then
1675 Analyze_Call_And_Resolve;
1676
1677 elsif Nkind (P) = N_Selected_Component
1678 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1679 and then Present (Actuals)
1680 and then No (Next (First (Actuals)))
1681 then
82c80734
RD
1682 -- Can be call to parameterless entry family. What appears to be the
1683 -- sole argument is in fact the entry index. Rewrite prefix of node
1684 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1685 -- transformation.
1686
1687 New_N :=
1688 Make_Indexed_Component (Loc,
1689 Prefix => New_Copy (P),
1690 Expressions => Actuals);
1691 Set_Name (N, New_N);
1692 Set_Etype (New_N, Standard_Void_Type);
1693 Set_Parameter_Associations (N, No_List);
1694 Analyze_Call_And_Resolve;
1695
1696 -- For the case of a reference to an element of an entry family, P is
1697 -- an indexed component whose prefix is a selected component (task and
1698 -- entry family), and whose index is the entry family index.
1699
1700 elsif Nkind (P) = N_Indexed_Component
1701 and then Nkind (Prefix (P)) = N_Selected_Component
1702 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1703 then
1704 Analyze_Call_And_Resolve;
1705
1706 -- If the prefix is the name of an entry family, it is a call from
1707 -- within the task body itself.
1708
1709 elsif Nkind (P) = N_Indexed_Component
1710 and then Nkind (Prefix (P)) = N_Identifier
1711 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1712 then
1713 New_N :=
1714 Make_Selected_Component (Loc,
1715 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1716 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1717 Rewrite (Prefix (P), New_N);
1718 Analyze (P);
1719 Analyze_Call_And_Resolve;
1720
9f8d1e5c
AC
1721 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1722 -- procedure name, so the construct can only be a qualified expression.
1723
1724 elsif Nkind (P) = N_Qualified_Expression
1725 and then Ada_Version >= Ada_2012
1726 then
1727 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1728 Analyze (N);
1729
e895b435 1730 -- Anything else is an error
996ae0b0
RK
1731
1732 else
758c442c 1733 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0
RK
1734 end if;
1735 end Analyze_Procedure_Call;
1736
b0186f71
AC
1737 ------------------------------
1738 -- Analyze_Return_Statement --
1739 ------------------------------
1740
1741 procedure Analyze_Return_Statement (N : Node_Id) is
1742
1743 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1744 N_Extended_Return_Statement));
1745
1746 Returns_Object : constant Boolean :=
1747 Nkind (N) = N_Extended_Return_Statement
1748 or else
8fde064e
AC
1749 (Nkind (N) = N_Simple_Return_Statement
1750 and then Present (Expression (N)));
b0186f71
AC
1751 -- True if we're returning something; that is, "return <expression>;"
1752 -- or "return Result : T [:= ...]". False for "return;". Used for error
1753 -- checking: If Returns_Object is True, N should apply to a function
1754 -- body; otherwise N should apply to a procedure body, entry body,
1755 -- accept statement, or extended return statement.
1756
1757 function Find_What_It_Applies_To return Entity_Id;
1758 -- Find the entity representing the innermost enclosing body, accept
1759 -- statement, or extended return statement. If the result is a callable
1760 -- construct or extended return statement, then this will be the value
1761 -- of the Return_Applies_To attribute. Otherwise, the program is
1762 -- illegal. See RM-6.5(4/2).
1763
1764 -----------------------------
1765 -- Find_What_It_Applies_To --
1766 -----------------------------
1767
1768 function Find_What_It_Applies_To return Entity_Id is
1769 Result : Entity_Id := Empty;
1770
1771 begin
36b8f95f
AC
1772 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1773 -- and postconditions.
b0186f71
AC
1774
1775 for J in reverse 0 .. Scope_Stack.Last loop
1776 Result := Scope_Stack.Table (J).Entity;
11bc76df
AC
1777 exit when not Ekind_In (Result, E_Block, E_Loop)
1778 and then Chars (Result) /= Name_uPostconditions;
b0186f71
AC
1779 end loop;
1780
1781 pragma Assert (Present (Result));
1782 return Result;
1783 end Find_What_It_Applies_To;
1784
1785 -- Local declarations
1786
1787 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1788 Kind : constant Entity_Kind := Ekind (Scope_Id);
1789 Loc : constant Source_Ptr := Sloc (N);
1790 Stm_Entity : constant Entity_Id :=
1791 New_Internal_Entity
1792 (E_Return_Statement, Current_Scope, Loc, 'R');
1793
1794 -- Start of processing for Analyze_Return_Statement
1795
1796 begin
1797 Set_Return_Statement_Entity (N, Stm_Entity);
1798
1799 Set_Etype (Stm_Entity, Standard_Void_Type);
1800 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1801
1802 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1803 -- (4/2): an inner return statement will apply to this extended return.
1804
1805 if Nkind (N) = N_Extended_Return_Statement then
1806 Push_Scope (Stm_Entity);
1807 end if;
1808
1809 -- Check that pragma No_Return is obeyed. Don't complain about the
1810 -- implicitly-generated return that is placed at the end.
1811
1812 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1813 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1814 end if;
1815
1816 -- Warn on any unassigned OUT parameters if in procedure
1817
1818 if Ekind (Scope_Id) = E_Procedure then
1819 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1820 end if;
1821
1822 -- Check that functions return objects, and other things do not
1823
1824 if Kind = E_Function or else Kind = E_Generic_Function then
1825 if not Returns_Object then
1826 Error_Msg_N ("missing expression in return from function", N);
1827 end if;
1828
1829 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1830 if Returns_Object then
1831 Error_Msg_N ("procedure cannot return value (use function)", N);
1832 end if;
1833
1834 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1835 if Returns_Object then
1836 if Is_Protected_Type (Scope (Scope_Id)) then
1837 Error_Msg_N ("entry body cannot return value", N);
1838 else
1839 Error_Msg_N ("accept statement cannot return value", N);
1840 end if;
1841 end if;
1842
1843 elsif Kind = E_Return_Statement then
1844
1845 -- We are nested within another return statement, which must be an
1846 -- extended_return_statement.
1847
1848 if Returns_Object then
d0dcb2b1
AC
1849 if Nkind (N) = N_Extended_Return_Statement then
1850 Error_Msg_N
cc96a1b8 1851 ("extended return statement cannot be nested (use `RETURN;`)",
d0dcb2b1
AC
1852 N);
1853
1854 -- Case of a simple return statement with a value inside extended
1855 -- return statement.
1856
1857 else
1858 Error_Msg_N
3ccedacc
AC
1859 ("return nested in extended return statement cannot return "
1860 & "value (use `RETURN;`)", N);
d0dcb2b1 1861 end if;
b0186f71
AC
1862 end if;
1863
1864 else
1865 Error_Msg_N ("illegal context for return statement", N);
1866 end if;
1867
1868 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1869 Analyze_Function_Return (N);
1870
1871 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1872 Set_Return_Present (Scope_Id);
1873 end if;
1874
1875 if Nkind (N) = N_Extended_Return_Statement then
1876 End_Scope;
1877 end if;
1878
1879 Kill_Current_Values (Last_Assignment_Only => True);
1880 Check_Unreachable_Code (N);
dec6faf1
AC
1881
1882 Analyze_Dimension (N);
b0186f71
AC
1883 end Analyze_Return_Statement;
1884
5d37ba92
ES
1885 -------------------------------------
1886 -- Analyze_Simple_Return_Statement --
1887 -------------------------------------
ec4867fa 1888
5d37ba92 1889 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1890 begin
5d37ba92
ES
1891 if Present (Expression (N)) then
1892 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1893 end if;
1894
5d37ba92
ES
1895 Analyze_Return_Statement (N);
1896 end Analyze_Simple_Return_Statement;
996ae0b0 1897
82c80734
RD
1898 -------------------------
1899 -- Analyze_Return_Type --
1900 -------------------------
1901
1902 procedure Analyze_Return_Type (N : Node_Id) is
1903 Designator : constant Entity_Id := Defining_Entity (N);
1904 Typ : Entity_Id := Empty;
1905
1906 begin
ec4867fa
ES
1907 -- Normal case where result definition does not indicate an error
1908
41251c60
JM
1909 if Result_Definition (N) /= Error then
1910 if Nkind (Result_Definition (N)) = N_Access_Definition then
ce5ba43a 1911 Check_SPARK_05_Restriction
fe5d3068 1912 ("access result is not allowed", Result_Definition (N));
daec8eeb 1913
b1c11e0e
JM
1914 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1915
1916 declare
1917 AD : constant Node_Id :=
1918 Access_To_Subprogram_Definition (Result_Definition (N));
1919 begin
1920 if Present (AD) and then Protected_Present (AD) then
1921 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1922 else
1923 Typ := Access_Definition (N, Result_Definition (N));
1924 end if;
1925 end;
1926
41251c60
JM
1927 Set_Parent (Typ, Result_Definition (N));
1928 Set_Is_Local_Anonymous_Access (Typ);
1929 Set_Etype (Designator, Typ);
1930
b66c3ff4
AC
1931 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1932
1933 Null_Exclusion_Static_Checks (N);
1934
41251c60
JM
1935 -- Subtype_Mark case
1936
1937 else
1938 Find_Type (Result_Definition (N));
1939 Typ := Entity (Result_Definition (N));
1940 Set_Etype (Designator, Typ);
1941
2ba431e5 1942 -- Unconstrained array as result is not allowed in SPARK
daec8eeb 1943
8fde064e 1944 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
ce5ba43a 1945 Check_SPARK_05_Restriction
fe5d3068 1946 ("returning an unconstrained array is not allowed",
7394c8cc 1947 Result_Definition (N));
daec8eeb
YM
1948 end if;
1949
b66c3ff4
AC
1950 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1951
1952 Null_Exclusion_Static_Checks (N);
1953
1954 -- If a null exclusion is imposed on the result type, then create
1955 -- a null-excluding itype (an access subtype) and use it as the
1956 -- function's Etype. Note that the null exclusion checks are done
1957 -- right before this, because they don't get applied to types that
1958 -- do not come from source.
1959
8fde064e 1960 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
b66c3ff4
AC
1961 Set_Etype (Designator,
1962 Create_Null_Excluding_Itype
ff7139c3
AC
1963 (T => Typ,
1964 Related_Nod => N,
1965 Scope_Id => Scope (Current_Scope)));
1966
1967 -- The new subtype must be elaborated before use because
1968 -- it is visible outside of the function. However its base
1969 -- type may not be frozen yet, so the reference that will
1970 -- force elaboration must be attached to the freezing of
1971 -- the base type.
1972
212863c0
AC
1973 -- If the return specification appears on a proper body,
1974 -- the subtype will have been created already on the spec.
1975
ff7139c3 1976 if Is_Frozen (Typ) then
212863c0
AC
1977 if Nkind (Parent (N)) = N_Subprogram_Body
1978 and then Nkind (Parent (Parent (N))) = N_Subunit
1979 then
1980 null;
1981 else
1982 Build_Itype_Reference (Etype (Designator), Parent (N));
1983 end if;
1984
ff7139c3
AC
1985 else
1986 Ensure_Freeze_Node (Typ);
1987
1988 declare
212863c0 1989 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
ff7139c3
AC
1990 begin
1991 Set_Itype (IR, Etype (Designator));
1992 Append_Freeze_Actions (Typ, New_List (IR));
1993 end;
1994 end if;
1995
b66c3ff4
AC
1996 else
1997 Set_Etype (Designator, Typ);
1998 end if;
1999
41251c60 2000 if Ekind (Typ) = E_Incomplete_Type
0a36105d
JM
2001 and then Is_Value_Type (Typ)
2002 then
2003 null;
2004
2005 elsif Ekind (Typ) = E_Incomplete_Type
41251c60 2006 or else (Is_Class_Wide_Type (Typ)
8fde064e 2007 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
41251c60 2008 then
dd386db0
AC
2009 -- AI05-0151: Tagged incomplete types are allowed in all formal
2010 -- parts. Untagged incomplete types are not allowed in bodies.
b973629e
AC
2011 -- As a consequence, limited views cannot appear in a basic
2012 -- declaration that is itself within a body, because there is
2013 -- no point at which the non-limited view will become visible.
dd386db0
AC
2014
2015 if Ada_Version >= Ada_2012 then
b973629e
AC
2016 if From_Limited_With (Typ) and then In_Package_Body then
2017 Error_Msg_NE
2018 ("invalid use of incomplete type&",
3f80a182 2019 Result_Definition (N), Typ);
b973629e 2020
1ebc2612
AC
2021 -- The return type of a subprogram body cannot be of a
2022 -- formal incomplete type.
2023
2024 elsif Is_Generic_Type (Typ)
2025 and then Nkind (Parent (N)) = N_Subprogram_Body
2026 then
2027 Error_Msg_N
2028 ("return type cannot be a formal incomplete type",
2029 Result_Definition (N));
2030
2031 elsif Is_Class_Wide_Type (Typ)
2032 and then Is_Generic_Type (Root_Type (Typ))
2033 and then Nkind (Parent (N)) = N_Subprogram_Body
2034 then
2035 Error_Msg_N
2036 ("return type cannot be a formal incomplete type",
2037 Result_Definition (N));
2038
b973629e 2039 elsif Is_Tagged_Type (Typ) then
dd386db0
AC
2040 null;
2041
5b6f12c7 2042 elsif Nkind (Parent (N)) = N_Subprogram_Body
31d922e3
AC
2043 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2044 N_Entry_Body)
dd386db0
AC
2045 then
2046 Error_Msg_NE
2047 ("invalid use of untagged incomplete type&",
2048 Designator, Typ);
2049 end if;
2050
63be2a5a 2051 -- The type must be completed in the current package. This
31d922e3 2052 -- is checked at the end of the package declaration when
7b7a0c2b
AC
2053 -- Taft-amendment types are identified. If the return type
2054 -- is class-wide, there is no required check, the type can
2055 -- be a bona fide TAT.
63be2a5a
AC
2056
2057 if Ekind (Scope (Current_Scope)) = E_Package
c199ccf7 2058 and then In_Private_Part (Scope (Current_Scope))
7b7a0c2b 2059 and then not Is_Class_Wide_Type (Typ)
63be2a5a
AC
2060 then
2061 Append_Elmt (Designator, Private_Dependents (Typ));
2062 end if;
2063
dd386db0
AC
2064 else
2065 Error_Msg_NE
2066 ("invalid use of incomplete type&", Designator, Typ);
2067 end if;
41251c60 2068 end if;
82c80734
RD
2069 end if;
2070
ec4867fa
ES
2071 -- Case where result definition does indicate an error
2072
82c80734
RD
2073 else
2074 Set_Etype (Designator, Any_Type);
2075 end if;
2076 end Analyze_Return_Type;
2077
996ae0b0
RK
2078 -----------------------------
2079 -- Analyze_Subprogram_Body --
2080 -----------------------------
2081
b1b543d2
BD
2082 procedure Analyze_Subprogram_Body (N : Node_Id) is
2083 Loc : constant Source_Ptr := Sloc (N);
2084 Body_Spec : constant Node_Id := Specification (N);
2085 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2086
2087 begin
2088 if Debug_Flag_C then
2089 Write_Str ("==> subprogram body ");
2090 Write_Name (Chars (Body_Id));
2091 Write_Str (" from ");
2092 Write_Location (Loc);
2093 Write_Eol;
2094 Indent;
2095 end if;
2096
2097 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2098
2099 -- The real work is split out into the helper, so it can do "return;"
2100 -- without skipping the debug output:
2101
2102 Analyze_Subprogram_Body_Helper (N);
2103
2104 if Debug_Flag_C then
2105 Outdent;
2106 Write_Str ("<== subprogram body ");
2107 Write_Name (Chars (Body_Id));
2108 Write_Str (" from ");
2109 Write_Location (Loc);
2110 Write_Eol;
2111 end if;
2112 end Analyze_Subprogram_Body;
2113
ea3c0651
AC
2114 --------------------------------------
2115 -- Analyze_Subprogram_Body_Contract --
2116 --------------------------------------
2117
ab8843fa 2118 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2c8d828a 2119 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
c61ef416 2120 Mode : SPARK_Mode_Type;
54e28df2
HK
2121 Prag : Node_Id;
2122 Ref_Depends : Node_Id := Empty;
2123 Ref_Global : Node_Id := Empty;
2c8d828a 2124 Spec_Id : Entity_Id;
ea3c0651 2125
ea3c0651 2126 begin
fc999c5d
RD
2127 -- Due to the timing of contract analysis, delayed pragmas may be
2128 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2129 -- context. To remedy this, restore the original SPARK_Mode of the
2130 -- related subprogram body.
2131
c61ef416
AC
2132 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2133
77a40ec1
AC
2134 -- When a subprogram body declaration is illegal, its defining entity is
2135 -- left unanalyzed. There is nothing left to do in this case because the
dda38714 2136 -- body lacks a contract, or even a proper Ekind.
ab8843fa 2137
dda38714 2138 if Ekind (Body_Id) = E_Void then
ab8843fa
HK
2139 return;
2140 end if;
2141
2c8d828a
AC
2142 if Nkind (Body_Decl) = N_Subprogram_Body_Stub then
2143 Spec_Id := Corresponding_Spec_Of_Stub (Body_Decl);
2144 else
2145 Spec_Id := Corresponding_Spec (Body_Decl);
2146 end if;
2147
54e28df2
HK
2148 -- Locate and store pragmas Refined_Depends and Refined_Global since
2149 -- their order of analysis matters.
2150
ab8843fa
HK
2151 Prag := Classifications (Contract (Body_Id));
2152 while Present (Prag) loop
2153 if Pragma_Name (Prag) = Name_Refined_Depends then
54e28df2 2154 Ref_Depends := Prag;
ab8843fa 2155 elsif Pragma_Name (Prag) = Name_Refined_Global then
54e28df2 2156 Ref_Global := Prag;
ab8843fa
HK
2157 end if;
2158
2159 Prag := Next_Pragma (Prag);
2160 end loop;
2161
54e28df2
HK
2162 -- Analyze Refined_Global first as Refined_Depends may mention items
2163 -- classified in the global refinement.
2164
2165 if Present (Ref_Global) then
2166 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2167
ab8843fa 2168 -- When the corresponding Global aspect/pragma references a state with
2dade097
HK
2169 -- visible refinement, the body requires Refined_Global. Refinement is
2170 -- not required when SPARK checks are suppressed.
ab8843fa 2171
54e28df2 2172 elsif Present (Spec_Id) then
ab8843fa
HK
2173 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2174
2dade097
HK
2175 if SPARK_Mode /= Off
2176 and then Present (Prag)
2177 and then Contains_Refined_State (Prag)
2178 then
ab8843fa 2179 Error_Msg_NE
3ccedacc 2180 ("body of subprogram& requires global refinement",
ab8843fa
HK
2181 Body_Decl, Spec_Id);
2182 end if;
2183 end if;
54e28df2
HK
2184
2185 -- Refined_Depends must be analyzed after Refined_Global in order to see
2186 -- the modes of all global refinements.
2187
2188 if Present (Ref_Depends) then
2189 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
39d3009f
AC
2190
2191 -- When the corresponding Depends aspect/pragma references a state with
2dade097
HK
2192 -- visible refinement, the body requires Refined_Depends. Refinement is
2193 -- not required when SPARK checks are suppressed.
39d3009f
AC
2194
2195 elsif Present (Spec_Id) then
2196 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2197
2dade097
HK
2198 if SPARK_Mode /= Off
2199 and then Present (Prag)
2200 and then Contains_Refined_State (Prag)
2201 then
39d3009f 2202 Error_Msg_NE
3ccedacc 2203 ("body of subprogram& requires dependance refinement",
39d3009f
AC
2204 Body_Decl, Spec_Id);
2205 end if;
54e28df2 2206 end if;
c61ef416 2207
fc999c5d
RD
2208 -- Restore the SPARK_Mode of the enclosing context after all delayed
2209 -- pragmas have been analyzed.
2210
c61ef416 2211 Restore_SPARK_Mode (Mode);
ea3c0651
AC
2212 end Analyze_Subprogram_Body_Contract;
2213
b1b543d2
BD
2214 ------------------------------------
2215 -- Analyze_Subprogram_Body_Helper --
2216 ------------------------------------
2217
996ae0b0
RK
2218 -- This procedure is called for regular subprogram bodies, generic bodies,
2219 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2220 -- specification matters, and is used to create a proper declaration for
2221 -- the subprogram, or to perform conformance checks.
2222
b1b543d2 2223 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
fbf5a39b
AC
2224 Loc : constant Source_Ptr := Sloc (N);
2225 Body_Spec : constant Node_Id := Specification (N);
2226 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2227 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
0868e09c 2228 Conformant : Boolean;
21d27997 2229 HSS : Node_Id;
21d27997
RD
2230 Prot_Typ : Entity_Id := Empty;
2231 Spec_Id : Entity_Id;
2232 Spec_Decl : Node_Id := Empty;
2233
2234 Last_Real_Spec_Entity : Entity_Id := Empty;
2235 -- When we analyze a separate spec, the entity chain ends up containing
2236 -- the formals, as well as any itypes generated during analysis of the
2237 -- default expressions for parameters, or the arguments of associated
2238 -- precondition/postcondition pragmas (which are analyzed in the context
2239 -- of the spec since they have visibility on formals).
2240 --
2241 -- These entities belong with the spec and not the body. However we do
2242 -- the analysis of the body in the context of the spec (again to obtain
2243 -- visibility to the formals), and all the entities generated during
2244 -- this analysis end up also chained to the entity chain of the spec.
2245 -- But they really belong to the body, and there is circuitry to move
2246 -- them from the spec to the body.
2247 --
2248 -- However, when we do this move, we don't want to move the real spec
2249 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2250 -- variable points to the last real spec entity, so we only move those
2251 -- chained beyond that point. It is initialized to Empty to deal with
2252 -- the case where there is no separate spec.
996ae0b0 2253
c8a3028c
AC
2254 procedure Analyze_Aspects_On_Body_Or_Stub;
2255 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2256 -- assumed that N has aspects.
2257
ac072cb2
AC
2258 function Body_Has_Contract return Boolean;
2259 -- Check whether unanalyzed body has an aspect or pragma that may
1399d355 2260 -- generate a SPARK contract.
ac072cb2 2261
ec4867fa 2262 procedure Check_Anonymous_Return;
e50e1c5e 2263 -- Ada 2005: if a function returns an access type that denotes a task,
ec4867fa
ES
2264 -- or a type that contains tasks, we must create a master entity for
2265 -- the anonymous type, which typically will be used in an allocator
2266 -- in the body of the function.
2267
e660dbf7
JM
2268 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2269 -- Look ahead to recognize a pragma that may appear after the body.
2270 -- If there is a previous spec, check that it appears in the same
2271 -- declarative part. If the pragma is Inline_Always, perform inlining
2272 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2273 -- If the body acts as a spec, and inlining is required, we create a
2274 -- subprogram declaration for it, in order to attach the body to inline.
21d27997
RD
2275 -- If pragma does not appear after the body, check whether there is
2276 -- an inline pragma before any local declarations.
c37bb106 2277
7665e4bd
AC
2278 procedure Check_Missing_Return;
2279 -- Checks for a function with a no return statements, and also performs
8d606a78
RD
2280 -- the warning checks implemented by Check_Returns. In formal mode, also
2281 -- verify that a function ends with a RETURN and that a procedure does
2282 -- not contain any RETURN.
7665e4bd 2283
d44202ba
HK
2284 function Disambiguate_Spec return Entity_Id;
2285 -- When a primitive is declared between the private view and the full
2286 -- view of a concurrent type which implements an interface, a special
2287 -- mechanism is used to find the corresponding spec of the primitive
2288 -- body.
2289
5dcab3ca
AC
2290 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2291 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2292 -- incomplete types coming from a limited context and swap their limited
2293 -- views with the non-limited ones.
2294
d44202ba
HK
2295 function Is_Private_Concurrent_Primitive
2296 (Subp_Id : Entity_Id) return Boolean;
2297 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2298 -- type that implements an interface and has a private view.
2299
76a69663
ES
2300 procedure Set_Trivial_Subprogram (N : Node_Id);
2301 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2302 -- subprogram whose body is being analyzed. N is the statement node
2303 -- causing the flag to be set, if the following statement is a return
2304 -- of an entity, we mark the entity as set in source to suppress any
2305 -- warning on the stylized use of function stubs with a dummy return.
2306
758c442c
GD
2307 procedure Verify_Overriding_Indicator;
2308 -- If there was a previous spec, the entity has been entered in the
2309 -- current scope previously. If the body itself carries an overriding
2310 -- indicator, check that it is consistent with the known status of the
2311 -- entity.
2312
c8a3028c
AC
2313 -------------------------------------
2314 -- Analyze_Aspects_On_Body_Or_Stub --
2315 -------------------------------------
2316
2317 procedure Analyze_Aspects_On_Body_Or_Stub is
2318 procedure Diagnose_Misplaced_Aspects;
2319 -- Subprogram body [stub] N has aspects, but they are not properly
2320 -- placed. Provide precise diagnostics depending on the aspects
2321 -- involved.
2322
2323 --------------------------------
2324 -- Diagnose_Misplaced_Aspects --
2325 --------------------------------
2326
2327 procedure Diagnose_Misplaced_Aspects is
2328 Asp : Node_Id;
2329 Asp_Nam : Name_Id;
2330 Asp_Id : Aspect_Id;
2331 -- The current aspect along with its name and id
2332
2333 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2334 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2335 -- the name of the refined version of the aspect.
2336
2337 ------------------------
2338 -- SPARK_Aspect_Error --
2339 ------------------------
2340
2341 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2342 begin
2343 -- The corresponding spec already contains the aspect in
2344 -- question and the one appearing on the body must be the
2345 -- refined form:
2346
2347 -- procedure P with Global ...;
2348 -- procedure P with Global ... is ... end P;
2349 -- ^
2350 -- Refined_Global
2351
2352 if Has_Aspect (Spec_Id, Asp_Id) then
2353 Error_Msg_Name_1 := Asp_Nam;
2354
2355 -- Subunits cannot carry aspects that apply to a subprogram
2356 -- declaration.
2357
2358 if Nkind (Parent (N)) = N_Subunit then
2359 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2360
2361 else
2362 Error_Msg_Name_2 := Ref_Nam;
2363 Error_Msg_N ("aspect % should be %", Asp);
2364 end if;
2365
2366 -- Otherwise the aspect must appear in the spec, not in the
2367 -- body:
2368
2369 -- procedure P;
2370 -- procedure P with Global ... is ... end P;
2371
2372 else
2373 Error_Msg_N
2374 ("aspect specification must appear in subprogram "
2375 & "declaration", Asp);
2376 end if;
2377 end SPARK_Aspect_Error;
2378
2379 -- Start of processing for Diagnose_Misplaced_Aspects
2380
2381 begin
2382 -- Iterate over the aspect specifications and emit specific errors
2383 -- where applicable.
2384
2385 Asp := First (Aspect_Specifications (N));
2386 while Present (Asp) loop
2387 Asp_Nam := Chars (Identifier (Asp));
2388 Asp_Id := Get_Aspect_Id (Asp_Nam);
2389
2390 -- Do not emit errors on aspects that can appear on a
2391 -- subprogram body. This scenario occurs when the aspect
2392 -- specification list contains both misplaced and properly
2393 -- placed aspects.
2394
2395 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2396 null;
2397
2398 -- Special diagnostics for SPARK aspects
2399
2400 elsif Asp_Nam = Name_Depends then
2401 SPARK_Aspect_Error (Name_Refined_Depends);
2402
2403 elsif Asp_Nam = Name_Global then
2404 SPARK_Aspect_Error (Name_Refined_Global);
2405
2406 elsif Asp_Nam = Name_Post then
2407 SPARK_Aspect_Error (Name_Refined_Post);
2408
2409 else
2410 Error_Msg_N
2411 ("aspect specification must appear in subprogram "
2412 & "declaration", Asp);
2413 end if;
2414
2415 Next (Asp);
2416 end loop;
2417 end Diagnose_Misplaced_Aspects;
2418
2419 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2420
2421 begin
2422 -- Language-defined aspects cannot be associated with a subprogram
2423 -- body [stub] if the subprogram has a spec. Certain implementation
2424 -- defined aspects are allowed to break this rule (for list, see
2425 -- table Aspect_On_Body_Or_Stub_OK).
2426
2427 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
2428 Diagnose_Misplaced_Aspects;
2429 else
2430 Analyze_Aspect_Specifications (N, Body_Id);
2431 end if;
2432 end Analyze_Aspects_On_Body_Or_Stub;
2433
ac072cb2
AC
2434 -----------------------
2435 -- Body_Has_Contract --
2436 -----------------------
2437
2438 function Body_Has_Contract return Boolean is
2439 Decls : constant List_Id := Declarations (N);
2440 A_Spec : Node_Id;
2441 A : Aspect_Id;
2442 Decl : Node_Id;
2443 P_Id : Pragma_Id;
2444
2445 begin
2446 -- Check for unanalyzed aspects in the body that will
2447 -- generate a contract.
2448
2449 if Present (Aspect_Specifications (N)) then
2450 A_Spec := First (Aspect_Specifications (N));
2451 while Present (A_Spec) loop
2452 A := Get_Aspect_Id (Chars (Identifier (A_Spec)));
2453
1399d355
AC
2454 if A = Aspect_Contract_Cases or else
2455 A = Aspect_Depends or else
2456 A = Aspect_Global or else
2457 A = Aspect_Pre or else
2458 A = Aspect_Precondition or else
2459 A = Aspect_Post or else
2460 A = Aspect_Postcondition
ac072cb2
AC
2461 then
2462 return True;
2463 end if;
2464
2465 Next (A_Spec);
2466 end loop;
2467 end if;
2468
1399d355 2469 -- Check for pragmas that may generate a contract
ac072cb2
AC
2470
2471 if Present (Decls) then
2472 Decl := First (Decls);
2473 while Present (Decl) loop
2474 if Nkind (Decl) = N_Pragma then
2475 P_Id := Get_Pragma_Id (Pragma_Name (Decl));
2476
1399d355
AC
2477 if P_Id = Pragma_Contract_Cases or else
2478 P_Id = Pragma_Depends or else
2479 P_Id = Pragma_Global or else
2480 P_Id = Pragma_Pre or else
2481 P_Id = Pragma_Precondition or else
2482 P_Id = Pragma_Post or else
2483 P_Id = Pragma_Postcondition
ac072cb2
AC
2484 then
2485 return True;
2486 end if;
2487 end if;
2488
2489 Next (Decl);
2490 end loop;
2491 end if;
2492
2493 return False;
2494 end Body_Has_Contract;
2495
ec4867fa
ES
2496 ----------------------------
2497 -- Check_Anonymous_Return --
2498 ----------------------------
2499
2500 procedure Check_Anonymous_Return is
2501 Decl : Node_Id;
a523b302 2502 Par : Node_Id;
ec4867fa
ES
2503 Scop : Entity_Id;
2504
2505 begin
2506 if Present (Spec_Id) then
2507 Scop := Spec_Id;
2508 else
2509 Scop := Body_Id;
2510 end if;
2511
2512 if Ekind (Scop) = E_Function
2513 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
a523b302
JM
2514 and then not Is_Thunk (Scop)
2515 and then (Has_Task (Designated_Type (Etype (Scop)))
2516 or else
2517 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2518 and then
2519 Is_Limited_Record (Designated_Type (Etype (Scop)))))
ec4867fa 2520 and then Expander_Active
b20de9b9 2521
8fde064e 2522 -- Avoid cases with no tasking support
b20de9b9
AC
2523
2524 and then RTE_Available (RE_Current_Master)
2525 and then not Restriction_Active (No_Task_Hierarchy)
ec4867fa
ES
2526 then
2527 Decl :=
2528 Make_Object_Declaration (Loc,
2529 Defining_Identifier =>
2530 Make_Defining_Identifier (Loc, Name_uMaster),
2531 Constant_Present => True,
2532 Object_Definition =>
e4494292 2533 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
ec4867fa
ES
2534 Expression =>
2535 Make_Explicit_Dereference (Loc,
e4494292 2536 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
ec4867fa
ES
2537
2538 if Present (Declarations (N)) then
2539 Prepend (Decl, Declarations (N));
2540 else
2541 Set_Declarations (N, New_List (Decl));
2542 end if;
2543
2544 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2545 Set_Has_Master_Entity (Scop);
a523b302
JM
2546
2547 -- Now mark the containing scope as a task master
2548
2549 Par := N;
2550 while Nkind (Par) /= N_Compilation_Unit loop
2551 Par := Parent (Par);
2552 pragma Assert (Present (Par));
2553
2554 -- If we fall off the top, we are at the outer level, and
2555 -- the environment task is our effective master, so nothing
2556 -- to mark.
2557
2558 if Nkind_In
2559 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2560 then
2561 Set_Is_Task_Master (Par, True);
2562 exit;
2563 end if;
2564 end loop;
ec4867fa
ES
2565 end if;
2566 end Check_Anonymous_Return;
2567
e660dbf7
JM
2568 -------------------------
2569 -- Check_Inline_Pragma --
2570 -------------------------
758c442c 2571
e660dbf7
JM
2572 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2573 Prag : Node_Id;
2574 Plist : List_Id;
0fb2ea01 2575
21d27997 2576 function Is_Inline_Pragma (N : Node_Id) return Boolean;
30783513 2577 -- True when N is a pragma Inline or Inline_Always that applies
33931112 2578 -- to this subprogram.
21d27997
RD
2579
2580 -----------------------
2581 -- Is_Inline_Pragma --
2582 -----------------------
2583
2584 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2585 begin
2586 return
2587 Nkind (N) = N_Pragma
2588 and then
8fde064e
AC
2589 (Pragma_Name (N) = Name_Inline_Always
2590 or else
21d27997
RD
2591 (Front_End_Inlining
2592 and then Pragma_Name (N) = Name_Inline))
2593 and then
8fde064e
AC
2594 Chars
2595 (Expression (First (Pragma_Argument_Associations (N)))) =
2596 Chars (Body_Id);
21d27997
RD
2597 end Is_Inline_Pragma;
2598
2599 -- Start of processing for Check_Inline_Pragma
2600
c37bb106 2601 begin
e660dbf7
JM
2602 if not Expander_Active then
2603 return;
2604 end if;
2605
2606 if Is_List_Member (N)
2607 and then Present (Next (N))
21d27997 2608 and then Is_Inline_Pragma (Next (N))
c37bb106
AC
2609 then
2610 Prag := Next (N);
2611
21d27997
RD
2612 elsif Nkind (N) /= N_Subprogram_Body_Stub
2613 and then Present (Declarations (N))
2614 and then Is_Inline_Pragma (First (Declarations (N)))
2615 then
2616 Prag := First (Declarations (N));
2617
e660dbf7
JM
2618 else
2619 Prag := Empty;
c37bb106 2620 end if;
e660dbf7
JM
2621
2622 if Present (Prag) then
2623 if Present (Spec_Id) then
30196a76 2624 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
e660dbf7
JM
2625 Analyze (Prag);
2626 end if;
2627
2628 else
d39d6bb8 2629 -- Create a subprogram declaration, to make treatment uniform
e660dbf7
JM
2630
2631 declare
2632 Subp : constant Entity_Id :=
30196a76 2633 Make_Defining_Identifier (Loc, Chars (Body_Id));
e660dbf7 2634 Decl : constant Node_Id :=
30196a76
RD
2635 Make_Subprogram_Declaration (Loc,
2636 Specification =>
2637 New_Copy_Tree (Specification (N)));
2638
e660dbf7
JM
2639 begin
2640 Set_Defining_Unit_Name (Specification (Decl), Subp);
2641
2642 if Present (First_Formal (Body_Id)) then
21d27997 2643 Plist := Copy_Parameter_List (Body_Id);
e660dbf7
JM
2644 Set_Parameter_Specifications
2645 (Specification (Decl), Plist);
2646 end if;
2647
2648 Insert_Before (N, Decl);
2649 Analyze (Decl);
2650 Analyze (Prag);
2651 Set_Has_Pragma_Inline (Subp);
2652
76a69663 2653 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7 2654 Set_Is_Inlined (Subp);
21d27997 2655 Set_Has_Pragma_Inline_Always (Subp);
e660dbf7
JM
2656 end if;
2657
158d55fa
AC
2658 -- Prior to copying the subprogram body to create a template
2659 -- for it for subsequent inlining, remove the pragma from
2660 -- the current body so that the copy that will produce the
2661 -- new body will start from a completely unanalyzed tree.
2662
2663 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2664 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2665 end if;
2666
e660dbf7
JM
2667 Spec := Subp;
2668 end;
2669 end if;
2670 end if;
2671 end Check_Inline_Pragma;
2672
7665e4bd
AC
2673 --------------------------
2674 -- Check_Missing_Return --
2675 --------------------------
2676
2677 procedure Check_Missing_Return is
2678 Id : Entity_Id;
2679 Missing_Ret : Boolean;
2680
2681 begin
2682 if Nkind (Body_Spec) = N_Function_Specification then
2683 if Present (Spec_Id) then
2684 Id := Spec_Id;
2685 else
2686 Id := Body_Id;
2687 end if;
2688
fe5d3068 2689 if Return_Present (Id) then
7665e4bd
AC
2690 Check_Returns (HSS, 'F', Missing_Ret);
2691
2692 if Missing_Ret then
2693 Set_Has_Missing_Return (Id);
2694 end if;
2695
2aca76d6
AC
2696 elsif Is_Generic_Subprogram (Id)
2697 or else not Is_Machine_Code_Subprogram (Id)
7665e4bd
AC
2698 then
2699 Error_Msg_N ("missing RETURN statement in function body", N);
2700 end if;
2701
fe5d3068 2702 -- If procedure with No_Return, check returns
607d0635 2703
fe5d3068
YM
2704 elsif Nkind (Body_Spec) = N_Procedure_Specification
2705 and then Present (Spec_Id)
2706 and then No_Return (Spec_Id)
607d0635 2707 then
fe5d3068
YM
2708 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2709 end if;
2710
ad05f2e9 2711 -- Special checks in SPARK mode
fe5d3068
YM
2712
2713 if Nkind (Body_Spec) = N_Function_Specification then
7394c8cc 2714
ad05f2e9 2715 -- In SPARK mode, last statement of a function should be a return
fe5d3068
YM
2716
2717 declare
2718 Stat : constant Node_Id := Last_Source_Statement (HSS);
2719 begin
2720 if Present (Stat)
7394c8cc
AC
2721 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2722 N_Extended_Return_Statement)
fe5d3068 2723 then
ce5ba43a 2724 Check_SPARK_05_Restriction
fe5d3068
YM
2725 ("last statement in function should be RETURN", Stat);
2726 end if;
2727 end;
2728
ad05f2e9 2729 -- In SPARK mode, verify that a procedure has no return
fe5d3068
YM
2730
2731 elsif Nkind (Body_Spec) = N_Procedure_Specification then
607d0635
AC
2732 if Present (Spec_Id) then
2733 Id := Spec_Id;
2734 else
2735 Id := Body_Id;
2736 end if;
2737
8d606a78
RD
2738 -- Would be nice to point to return statement here, can we
2739 -- borrow the Check_Returns procedure here ???
2740
607d0635 2741 if Return_Present (Id) then
ce5ba43a 2742 Check_SPARK_05_Restriction
fe5d3068 2743 ("procedure should not have RETURN", N);
607d0635 2744 end if;
7665e4bd
AC
2745 end if;
2746 end Check_Missing_Return;
2747
d44202ba
HK
2748 -----------------------
2749 -- Disambiguate_Spec --
2750 -----------------------
2751
2752 function Disambiguate_Spec return Entity_Id is
2753 Priv_Spec : Entity_Id;
2754 Spec_N : Entity_Id;
2755
2756 procedure Replace_Types (To_Corresponding : Boolean);
2757 -- Depending on the flag, replace the type of formal parameters of
2758 -- Body_Id if it is a concurrent type implementing interfaces with
2759 -- the corresponding record type or the other way around.
2760
2761 procedure Replace_Types (To_Corresponding : Boolean) is
2762 Formal : Entity_Id;
2763 Formal_Typ : Entity_Id;
2764
2765 begin
2766 Formal := First_Formal (Body_Id);
2767 while Present (Formal) loop
2768 Formal_Typ := Etype (Formal);
2769
df3e68b1
HK
2770 if Is_Class_Wide_Type (Formal_Typ) then
2771 Formal_Typ := Root_Type (Formal_Typ);
2772 end if;
2773
d44202ba
HK
2774 -- From concurrent type to corresponding record
2775
2776 if To_Corresponding then
2777 if Is_Concurrent_Type (Formal_Typ)
2778 and then Present (Corresponding_Record_Type (Formal_Typ))
2779 and then Present (Interfaces (
2780 Corresponding_Record_Type (Formal_Typ)))
2781 then
2782 Set_Etype (Formal,
2783 Corresponding_Record_Type (Formal_Typ));
2784 end if;
2785
2786 -- From corresponding record to concurrent type
2787
2788 else
2789 if Is_Concurrent_Record_Type (Formal_Typ)
2790 and then Present (Interfaces (Formal_Typ))
2791 then
2792 Set_Etype (Formal,
2793 Corresponding_Concurrent_Type (Formal_Typ));
2794 end if;
2795 end if;
2796
2797 Next_Formal (Formal);
2798 end loop;
2799 end Replace_Types;
2800
2801 -- Start of processing for Disambiguate_Spec
2802
2803 begin
2804 -- Try to retrieve the specification of the body as is. All error
2805 -- messages are suppressed because the body may not have a spec in
2806 -- its current state.
2807
2808 Spec_N := Find_Corresponding_Spec (N, False);
2809
2810 -- It is possible that this is the body of a primitive declared
2811 -- between a private and a full view of a concurrent type. The
2812 -- controlling parameter of the spec carries the concurrent type,
2813 -- not the corresponding record type as transformed by Analyze_
2814 -- Subprogram_Specification. In such cases, we undo the change
2815 -- made by the analysis of the specification and try to find the
2816 -- spec again.
766d7add 2817
8198b93d
HK
2818 -- Note that wrappers already have their corresponding specs and
2819 -- bodies set during their creation, so if the candidate spec is
16b05213 2820 -- a wrapper, then we definitely need to swap all types to their
8198b93d 2821 -- original concurrent status.
d44202ba 2822
8198b93d
HK
2823 if No (Spec_N)
2824 or else Is_Primitive_Wrapper (Spec_N)
2825 then
d44202ba
HK
2826 -- Restore all references of corresponding record types to the
2827 -- original concurrent types.
2828
2829 Replace_Types (To_Corresponding => False);
2830 Priv_Spec := Find_Corresponding_Spec (N, False);
2831
2832 -- The current body truly belongs to a primitive declared between
2833 -- a private and a full view. We leave the modified body as is,
2834 -- and return the true spec.
2835
2836 if Present (Priv_Spec)
2837 and then Is_Private_Primitive (Priv_Spec)
2838 then
2839 return Priv_Spec;
2840 end if;
2841
2842 -- In case that this is some sort of error, restore the original
2843 -- state of the body.
2844
2845 Replace_Types (To_Corresponding => True);
2846 end if;
2847
2848 return Spec_N;
2849 end Disambiguate_Spec;
2850
5dcab3ca
AC
2851 ----------------------------
2852 -- Exchange_Limited_Views --
2853 ----------------------------
2854
2855 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2856 procedure Detect_And_Exchange (Id : Entity_Id);
2857 -- Determine whether Id's type denotes an incomplete type associated
2858 -- with a limited with clause and exchange the limited view with the
2859 -- non-limited one.
2860
2861 -------------------------
2862 -- Detect_And_Exchange --
2863 -------------------------
2864
2865 procedure Detect_And_Exchange (Id : Entity_Id) is
2866 Typ : constant Entity_Id := Etype (Id);
2867
2868 begin
2869 if Ekind (Typ) = E_Incomplete_Type
7b56a91b 2870 and then From_Limited_With (Typ)
5dcab3ca
AC
2871 and then Present (Non_Limited_View (Typ))
2872 then
2873 Set_Etype (Id, Non_Limited_View (Typ));
2874 end if;
2875 end Detect_And_Exchange;
2876
2877 -- Local variables
2878
2879 Formal : Entity_Id;
2880
2881 -- Start of processing for Exchange_Limited_Views
2882
2883 begin
2884 if No (Subp_Id) then
2885 return;
2886
2887 -- Do not process subprogram bodies as they already use the non-
2888 -- limited view of types.
2889
2890 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2891 return;
2892 end if;
2893
2894 -- Examine all formals and swap views when applicable
2895
2896 Formal := First_Formal (Subp_Id);
2897 while Present (Formal) loop
2898 Detect_And_Exchange (Formal);
2899
2900 Next_Formal (Formal);
2901 end loop;
2902
2903 -- Process the return type of a function
2904
2905 if Ekind (Subp_Id) = E_Function then
2906 Detect_And_Exchange (Subp_Id);
2907 end if;
2908 end Exchange_Limited_Views;
2909
d44202ba
HK
2910 -------------------------------------
2911 -- Is_Private_Concurrent_Primitive --
2912 -------------------------------------
2913
2914 function Is_Private_Concurrent_Primitive
2915 (Subp_Id : Entity_Id) return Boolean
2916 is
2917 Formal_Typ : Entity_Id;
2918
2919 begin
2920 if Present (First_Formal (Subp_Id)) then
2921 Formal_Typ := Etype (First_Formal (Subp_Id));
2922
2923 if Is_Concurrent_Record_Type (Formal_Typ) then
df3e68b1
HK
2924 if Is_Class_Wide_Type (Formal_Typ) then
2925 Formal_Typ := Root_Type (Formal_Typ);
2926 end if;
2927
d44202ba
HK
2928 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2929 end if;
2930
2931 -- The type of the first formal is a concurrent tagged type with
2932 -- a private view.
2933
2934 return
2935 Is_Concurrent_Type (Formal_Typ)
2936 and then Is_Tagged_Type (Formal_Typ)
2937 and then Has_Private_Declaration (Formal_Typ);
2938 end if;
2939
2940 return False;
2941 end Is_Private_Concurrent_Primitive;
2942
76a69663
ES
2943 ----------------------------
2944 -- Set_Trivial_Subprogram --
2945 ----------------------------
2946
2947 procedure Set_Trivial_Subprogram (N : Node_Id) is
2948 Nxt : constant Node_Id := Next (N);
2949
2950 begin
2951 Set_Is_Trivial_Subprogram (Body_Id);
2952
2953 if Present (Spec_Id) then
2954 Set_Is_Trivial_Subprogram (Spec_Id);
2955 end if;
2956
2957 if Present (Nxt)
2958 and then Nkind (Nxt) = N_Simple_Return_Statement
2959 and then No (Next (Nxt))
2960 and then Present (Expression (Nxt))
2961 and then Is_Entity_Name (Expression (Nxt))
2962 then
2963 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2964 end if;
2965 end Set_Trivial_Subprogram;
2966
758c442c
GD
2967 ---------------------------------
2968 -- Verify_Overriding_Indicator --
2969 ---------------------------------
2970
2971 procedure Verify_Overriding_Indicator is
2972 begin
21d27997
RD
2973 if Must_Override (Body_Spec) then
2974 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2975 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2976 then
2977 null;
2978
038140ed 2979 elsif not Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2980 Error_Msg_NE
21d27997 2981 ("subprogram& is not overriding", Body_Spec, Spec_Id);
23e28b42
AC
2982
2983 -- Overriding indicators aren't allowed for protected subprogram
2984 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2985 -- this to a warning if -gnatd.E is enabled.
2986
2987 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2988 Error_Msg_Warn := Error_To_Warning;
2989 Error_Msg_N
b785e0b8 2990 ("<<overriding indicator not allowed for protected "
23e28b42 2991 & "subprogram body", Body_Spec);
21d27997 2992 end if;
758c442c 2993
5d37ba92 2994 elsif Must_Not_Override (Body_Spec) then
038140ed 2995 if Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2996 Error_Msg_NE
5d37ba92 2997 ("subprogram& overrides inherited operation",
76a69663 2998 Body_Spec, Spec_Id);
5d37ba92 2999
21d27997
RD
3000 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3001 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3002 then
ed2233dc 3003 Error_Msg_NE
3ccedacc 3004 ("subprogram& overrides predefined operator ",
21d27997
RD
3005 Body_Spec, Spec_Id);
3006
23e28b42
AC
3007 -- Overriding indicators aren't allowed for protected subprogram
3008 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3009 -- this to a warning if -gnatd.E is enabled.
3010
3011 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3012 Error_Msg_Warn := Error_To_Warning;
5d37ba92 3013
23e28b42 3014 Error_Msg_N
3ccedacc
AC
3015 ("<<overriding indicator not allowed "
3016 & "for protected subprogram body", Body_Spec);
23e28b42
AC
3017
3018 -- If this is not a primitive operation, then the overriding
3019 -- indicator is altogether illegal.
3020
3021 elsif not Is_Primitive (Spec_Id) then
ed2233dc 3022 Error_Msg_N
3ccedacc
AC
3023 ("overriding indicator only allowed "
3024 & "if subprogram is primitive", Body_Spec);
5d37ba92 3025 end if;
235f4375 3026
23e28b42
AC
3027 -- If checking the style rule and the operation overrides, then
3028 -- issue a warning about a missing overriding_indicator. Protected
3029 -- subprogram bodies are excluded from this style checking, since
3030 -- they aren't primitives (even though their declarations can
3031 -- override) and aren't allowed to have an overriding_indicator.
3032
806f6d37 3033 elsif Style_Check
038140ed 3034 and then Present (Overridden_Operation (Spec_Id))
23e28b42 3035 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
235f4375
AC
3036 then
3037 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3038 Style.Missing_Overriding (N, Body_Id);
806f6d37
AC
3039
3040 elsif Style_Check
3041 and then Can_Override_Operator (Spec_Id)
3042 and then not Is_Predefined_File_Name
3043 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3044 then
3045 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3046 Style.Missing_Overriding (N, Body_Id);
758c442c
GD
3047 end if;
3048 end Verify_Overriding_Indicator;
3049
b1b543d2 3050 -- Start of processing for Analyze_Subprogram_Body_Helper
0fb2ea01 3051
996ae0b0 3052 begin
82c80734
RD
3053 -- Generic subprograms are handled separately. They always have a
3054 -- generic specification. Determine whether current scope has a
3055 -- previous declaration.
996ae0b0 3056
82c80734
RD
3057 -- If the subprogram body is defined within an instance of the same
3058 -- name, the instance appears as a package renaming, and will be hidden
3059 -- within the subprogram.
996ae0b0
RK
3060
3061 if Present (Prev_Id)
3062 and then not Is_Overloadable (Prev_Id)
3063 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3064 or else Comes_From_Source (Prev_Id))
3065 then
fbf5a39b 3066 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0
RK
3067 Spec_Id := Prev_Id;
3068 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3069 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3070
3071 Analyze_Generic_Subprogram_Body (N, Spec_Id);
7665e4bd
AC
3072
3073 if Nkind (N) = N_Subprogram_Body then
3074 HSS := Handled_Statement_Sequence (N);
3075 Check_Missing_Return;
3076 end if;
3077
996ae0b0
RK
3078 return;
3079
3080 else
82c80734
RD
3081 -- Previous entity conflicts with subprogram name. Attempting to
3082 -- enter name will post error.
996ae0b0
RK
3083
3084 Enter_Name (Body_Id);
3085 return;
3086 end if;
3087
82c80734
RD
3088 -- Non-generic case, find the subprogram declaration, if one was seen,
3089 -- or enter new overloaded entity in the current scope. If the
3090 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3091 -- part of the context of one of its subunits. No need to redo the
3092 -- analysis.
996ae0b0 3093
8fde064e 3094 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
996ae0b0
RK
3095 return;
3096
3097 else
fbf5a39b 3098 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
3099
3100 if Nkind (N) = N_Subprogram_Body_Stub
3101 or else No (Corresponding_Spec (N))
3102 then
d44202ba
HK
3103 if Is_Private_Concurrent_Primitive (Body_Id) then
3104 Spec_Id := Disambiguate_Spec;
3105 else
3106 Spec_Id := Find_Corresponding_Spec (N);
b6c8e5be
AC
3107
3108 -- In GNATprove mode, if the body has no previous spec, create
3109 -- one so that the inlining machinery can operate properly.
3110 -- Transfer aspects, if any, to the new spec, so that they
3111 -- are legal and can be processed ahead of the body.
3112 -- We make two copies of the given spec, one for the new
3113 -- declaration, and one for the body.
3114
b6c8e5be
AC
3115 if No (Spec_Id)
3116 and then GNATprove_Mode
480156b2 3117
480156b2
AC
3118 -- Inlining does not apply during pre-analysis of code
3119
b6c8e5be 3120 and then Full_Analysis
480156b2
AC
3121
3122 -- Inlining only applies to full bodies, not stubs
3123
7b2888e6 3124 and then Nkind (N) /= N_Subprogram_Body_Stub
480156b2
AC
3125
3126 -- Inlining only applies to bodies in the source code, not to
3127 -- those generated by the compiler. In particular, expression
3128 -- functions, whose body is generated by the compiler, are
3129 -- treated specially by GNATprove.
3130
b6c8e5be 3131 and then Comes_From_Source (Body_Id)
480156b2
AC
3132
3133 -- This cannot be done for a compilation unit, which is not
3134 -- in a context where we can insert a new spec.
3135
b6c8e5be 3136 and then Is_List_Member (N)
480156b2
AC
3137
3138 -- Inlining only applies to subprograms without contracts,
3139 -- as a contract is a sign that GNATprove should perform a
3140 -- modular analysis of the subprogram instead of a contextual
3141 -- analysis at each call site. The same test is performed in
3142 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3143 -- here in another form (because the contract has not
3144 -- been attached to the body) to avoid frontend errors in
3145 -- case pragmas are used instead of aspects, because the
3146 -- corresponding pragmas in the body would not be transferred
3147 -- to the spec, leading to legality errors.
3148
ac072cb2 3149 and then not Body_Has_Contract
b6c8e5be
AC
3150 then
3151 declare
3152 Body_Spec : constant Node_Id :=
662c2ad4 3153 Copy_Separate_Tree (Specification (N));
eb1ee757
AC
3154 New_Decl : constant Node_Id :=
3155 Make_Subprogram_Declaration (Loc,
3156 Copy_Separate_Tree (Specification (N)));
3157
2178830b 3158 SPARK_Mode_Aspect : Node_Id;
eb1ee757
AC
3159 Aspects : List_Id;
3160 Prag, Aspect : Node_Id;
b6c8e5be
AC
3161
3162 begin
3163 Insert_Before (N, New_Decl);
3164 Move_Aspects (From => N, To => New_Decl);
2178830b
AC
3165
3166 -- Mark the newly moved aspects as not analyzed, so that
3167 -- their effect on New_Decl is properly analyzed.
3168
3169 Aspect := First (Aspect_Specifications (New_Decl));
3170 while Present (Aspect) loop
3171 Set_Analyzed (Aspect, False);
3172 Next (Aspect);
3173 end loop;
3174
b6c8e5be 3175 Analyze (New_Decl);
2178830b
AC
3176
3177 -- The analysis of the generated subprogram declaration
eb1ee757 3178 -- may have introduced pragmas that need to be analyzed.
2178830b
AC
3179
3180 Prag := Next (New_Decl);
3181 while Prag /= N loop
3182 Analyze (Prag);
3183 Next (Prag);
3184 end loop;
3185
b6c8e5be
AC
3186 Spec_Id := Defining_Entity (New_Decl);
3187
793c5f05
AC
3188 -- As Body_Id originally comes from source, mark the new
3189 -- Spec_Id as such, which is required so that calls to
3190 -- this subprogram are registered in the local effects
3191 -- stored in ALI files for GNATprove.
3192
3193 Set_Comes_From_Source (Spec_Id, True);
3194
2178830b
AC
3195 -- If aspect SPARK_Mode was specified on the body, it
3196 -- needs to be repeated on the generated decl and the
3197 -- body. Since the original aspect was moved to the
3198 -- generated decl, copy it for the body.
3199
3200 if Has_Aspect (Spec_Id, Aspect_SPARK_Mode) then
3201 SPARK_Mode_Aspect :=
3202 New_Copy (Find_Aspect (Spec_Id, Aspect_SPARK_Mode));
3203 Set_Analyzed (SPARK_Mode_Aspect, False);
eb1ee757 3204 Aspects := New_List (SPARK_Mode_Aspect);
2178830b
AC
3205 Set_Aspect_Specifications (N, Aspects);
3206 end if;
3207
b6c8e5be
AC
3208 Set_Specification (N, Body_Spec);
3209 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3210 Set_Corresponding_Spec (N, Spec_Id);
3211 end;
3212 end if;
d44202ba 3213 end if;
996ae0b0
RK
3214
3215 -- If this is a duplicate body, no point in analyzing it
3216
3217 if Error_Posted (N) then
3218 return;
3219 end if;
3220
82c80734
RD
3221 -- A subprogram body should cause freezing of its own declaration,
3222 -- but if there was no previous explicit declaration, then the
3223 -- subprogram will get frozen too late (there may be code within
3224 -- the body that depends on the subprogram having been frozen,
3225 -- such as uses of extra formals), so we force it to be frozen
76a69663 3226 -- here. Same holds if the body and spec are compilation units.
cd1c668b
ES
3227 -- Finally, if the return type is an anonymous access to protected
3228 -- subprogram, it must be frozen before the body because its
3229 -- expansion has generated an equivalent type that is used when
3230 -- elaborating the body.
996ae0b0 3231
885c4871 3232 -- An exception in the case of Ada 2012, AI05-177: The bodies
ebb6faaa
AC
3233 -- created for expression functions do not freeze.
3234
3235 if No (Spec_Id)
3236 and then Nkind (Original_Node (N)) /= N_Expression_Function
3237 then
996ae0b0
RK
3238 Freeze_Before (N, Body_Id);
3239
3240 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3241 Freeze_Before (N, Spec_Id);
cd1c668b
ES
3242
3243 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3244 Freeze_Before (N, Etype (Body_Id));
996ae0b0 3245 end if;
a38ff9b1 3246
996ae0b0
RK
3247 else
3248 Spec_Id := Corresponding_Spec (N);
3249 end if;
3250 end if;
3251
799d0e05
AC
3252 -- Previously we scanned the body to look for nested subprograms, and
3253 -- rejected an inline directive if nested subprograms were present,
3254 -- because the back-end would generate conflicting symbols for the
c8957aae 3255 -- nested bodies. This is now unnecessary.
07fc65c4 3256
c8957aae 3257 -- Look ahead to recognize a pragma Inline that appears after the body
84f4072a 3258
e660dbf7
JM
3259 Check_Inline_Pragma (Spec_Id);
3260
701b7fbb
RD
3261 -- Deal with special case of a fully private operation in the body of
3262 -- the protected type. We must create a declaration for the subprogram,
3263 -- in order to attach the protected subprogram that will be used in
3264 -- internal calls. We exclude compiler generated bodies from the
3265 -- expander since the issue does not arise for those cases.
07fc65c4 3266
996ae0b0
RK
3267 if No (Spec_Id)
3268 and then Comes_From_Source (N)
3269 and then Is_Protected_Type (Current_Scope)
3270 then
47bfea3a 3271 Spec_Id := Build_Private_Protected_Declaration (N);
701b7fbb 3272 end if;
996ae0b0 3273
5334d18f 3274 -- If a separate spec is present, then deal with freezing issues
7ca78bba 3275
701b7fbb 3276 if Present (Spec_Id) then
996ae0b0 3277 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 3278 Verify_Overriding_Indicator;
5d37ba92
ES
3279
3280 -- In general, the spec will be frozen when we start analyzing the
3281 -- body. However, for internally generated operations, such as
3282 -- wrapper functions for inherited operations with controlling
164e06c6
AC
3283 -- results, the spec may not have been frozen by the time we expand
3284 -- the freeze actions that include the bodies. In particular, extra
3285 -- formals for accessibility or for return-in-place may need to be
3286 -- generated. Freeze nodes, if any, are inserted before the current
3287 -- body. These freeze actions are also needed in ASIS mode to enable
3288 -- the proper back-annotations.
5d37ba92
ES
3289
3290 if not Is_Frozen (Spec_Id)
7134062a 3291 and then (Expander_Active or ASIS_Mode)
5d37ba92
ES
3292 then
3293 -- Force the generation of its freezing node to ensure proper
3294 -- management of access types in the backend.
3295
3296 -- This is definitely needed for some cases, but it is not clear
3297 -- why, to be investigated further???
3298
3299 Set_Has_Delayed_Freeze (Spec_Id);
6b958cec 3300 Freeze_Before (N, Spec_Id);
5d37ba92 3301 end if;
996ae0b0
RK
3302 end if;
3303
a5d83d61
AC
3304 -- Mark presence of postcondition procedure in current scope and mark
3305 -- the procedure itself as needing debug info. The latter is important
3306 -- when analyzing decision coverage (for example, for MC/DC coverage).
7ca78bba 3307
0dabde3a
ES
3308 if Chars (Body_Id) = Name_uPostconditions then
3309 Set_Has_Postconditions (Current_Scope);
a5d83d61 3310 Set_Debug_Info_Needed (Body_Id);
0dabde3a
ES
3311 end if;
3312
996ae0b0
RK
3313 -- Place subprogram on scope stack, and make formals visible. If there
3314 -- is a spec, the visible entity remains that of the spec.
3315
3316 if Present (Spec_Id) then
07fc65c4 3317 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
3318
3319 if Is_Child_Unit (Spec_Id) then
3320 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3321 end if;
3322
fbf5a39b
AC
3323 if Style_Check then
3324 Style.Check_Identifier (Body_Id, Spec_Id);
3325 end if;
996ae0b0
RK
3326
3327 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3328 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3329
f937473f 3330 if Is_Abstract_Subprogram (Spec_Id) then
ed2233dc 3331 Error_Msg_N ("an abstract subprogram cannot have a body", N);
996ae0b0 3332 return;
21d27997 3333
996ae0b0
RK
3334 else
3335 Set_Convention (Body_Id, Convention (Spec_Id));
3336 Set_Has_Completion (Spec_Id);
3337
c5cec2fe
AC
3338 -- Inherit the "ghostness" of the subprogram spec. Note that this
3339 -- property is not directly inherited as the body may be subject
3340 -- to a different Ghost assertion policy.
3341
3342 if Is_Ghost_Entity (Spec_Id) or else Within_Ghost_Scope then
3343 Set_Is_Ghost_Entity (Body_Id);
3344
3345 -- The Ghost policy in effect at the point of declaration and
3346 -- at the point of completion must match (SPARK RM 6.9(14)).
3347
3348 Check_Ghost_Completion (Spec_Id, Body_Id);
3349 end if;
3350
996ae0b0 3351 if Is_Protected_Type (Scope (Spec_Id)) then
21d27997 3352 Prot_Typ := Scope (Spec_Id);
996ae0b0
RK
3353 end if;
3354
3355 -- If this is a body generated for a renaming, do not check for
3356 -- full conformance. The check is redundant, because the spec of
3357 -- the body is a copy of the spec in the renaming declaration,
3358 -- and the test can lead to spurious errors on nested defaults.
3359
3360 if Present (Spec_Decl)
996ae0b0 3361 and then not Comes_From_Source (N)
93a81b02
GB
3362 and then
3363 (Nkind (Original_Node (Spec_Decl)) =
d2f97d3e 3364 N_Subprogram_Renaming_Declaration
466c2127
AC
3365 or else (Present (Corresponding_Body (Spec_Decl))
3366 and then
3367 Nkind (Unit_Declaration_Node
3368 (Corresponding_Body (Spec_Decl))) =
3369 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
3370 then
3371 Conformant := True;
cabe9abc
AC
3372
3373 -- Conversely, the spec may have been generated for specless body
3374 -- with an inline pragma.
3375
3376 elsif Comes_From_Source (N)
3377 and then not Comes_From_Source (Spec_Id)
3378 and then Has_Pragma_Inline (Spec_Id)
3379 then
3380 Conformant := True;
76a69663 3381
996ae0b0
RK
3382 else
3383 Check_Conformance
3384 (Body_Id, Spec_Id,
76a69663 3385 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
3386 end if;
3387
3388 -- If the body is not fully conformant, we have to decide if we
3389 -- should analyze it or not. If it has a really messed up profile
3390 -- then we probably should not analyze it, since we will get too
3391 -- many bogus messages.
3392
3393 -- Our decision is to go ahead in the non-fully conformant case
3394 -- only if it is at least mode conformant with the spec. Note
3395 -- that the call to Check_Fully_Conformant has issued the proper
3396 -- error messages to complain about the lack of conformance.
3397
3398 if not Conformant
3399 and then not Mode_Conformant (Body_Id, Spec_Id)
3400 then
3401 return;
3402 end if;
3403 end if;
3404
996ae0b0 3405 if Spec_Id /= Body_Id then
fbf5a39b 3406 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
3407 end if;
3408
579847c2
AC
3409 Set_Ekind (Body_Id, E_Subprogram_Body);
3410
e28072cd
AC
3411 if Nkind (N) = N_Subprogram_Body_Stub then
3412 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3413
3414 -- Regular body
3415
3416 else
996ae0b0 3417 Set_Corresponding_Spec (N, Spec_Id);
758c442c 3418
5d37ba92
ES
3419 -- Ada 2005 (AI-345): If the operation is a primitive operation
3420 -- of a concurrent type, the type of the first parameter has been
3421 -- replaced with the corresponding record, which is the proper
3422 -- run-time structure to use. However, within the body there may
3423 -- be uses of the formals that depend on primitive operations
3424 -- of the type (in particular calls in prefixed form) for which
3425 -- we need the original concurrent type. The operation may have
3426 -- several controlling formals, so the replacement must be done
3427 -- for all of them.
758c442c
GD
3428
3429 if Comes_From_Source (Spec_Id)
3430 and then Present (First_Entity (Spec_Id))
3431 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3432 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
15918371
AC
3433 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3434 and then Present (Corresponding_Concurrent_Type
3435 (Etype (First_Entity (Spec_Id))))
758c442c 3436 then
5d37ba92
ES
3437 declare
3438 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3439 Form : Entity_Id;
3440
3441 begin
3442 Form := First_Formal (Spec_Id);
3443 while Present (Form) loop
3444 if Etype (Form) = Typ then
3445 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3446 end if;
3447
3448 Next_Formal (Form);
3449 end loop;
3450 end;
758c442c
GD
3451 end if;
3452
21d27997
RD
3453 -- Make the formals visible, and place subprogram on scope stack.
3454 -- This is also the point at which we set Last_Real_Spec_Entity
3455 -- to mark the entities which will not be moved to the body.
758c442c 3456
996ae0b0 3457 Install_Formals (Spec_Id);
21d27997 3458 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
616547fa
AC
3459
3460 -- Within an instance, add local renaming declarations so that
a5a809b2
AC
3461 -- gdb can retrieve the values of actuals more easily. This is
3462 -- only relevant if generating code (and indeed we definitely
3463 -- do not want these definitions -gnatc mode, because that would
3464 -- confuse ASIS).
616547fa
AC
3465
3466 if Is_Generic_Instance (Spec_Id)
3467 and then Is_Wrapper_Package (Current_Scope)
a5a809b2 3468 and then Expander_Active
616547fa
AC
3469 then
3470 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3471 end if;
3472
0a36105d 3473 Push_Scope (Spec_Id);
996ae0b0
RK
3474
3475 -- Make sure that the subprogram is immediately visible. For
3476 -- child units that have no separate spec this is indispensable.
3477 -- Otherwise it is safe albeit redundant.
3478
3479 Set_Is_Immediately_Visible (Spec_Id);
3480 end if;
3481
3482 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
ea3c0651 3483 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
996ae0b0 3484 Set_Scope (Body_Id, Scope (Spec_Id));
ec4867fa 3485 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
996ae0b0
RK
3486
3487 -- Case of subprogram body with no previous spec
3488
3489 else
3e5daac4
AC
3490 -- Check for style warning required
3491
996ae0b0 3492 if Style_Check
3e5daac4
AC
3493
3494 -- Only apply check for source level subprograms for which checks
3495 -- have not been suppressed.
3496
996ae0b0
RK
3497 and then Comes_From_Source (Body_Id)
3498 and then not Suppress_Style_Checks (Body_Id)
3e5daac4
AC
3499
3500 -- No warnings within an instance
3501
996ae0b0 3502 and then not In_Instance
3e5daac4 3503
b0186f71 3504 -- No warnings for expression functions
3e5daac4 3505
b0186f71 3506 and then Nkind (Original_Node (N)) /= N_Expression_Function
996ae0b0
RK
3507 then
3508 Style.Body_With_No_Spec (N);
3509 end if;
3510
3511 New_Overloaded_Entity (Body_Id);
3512
3513 if Nkind (N) /= N_Subprogram_Body_Stub then
3514 Set_Acts_As_Spec (N);
3515 Generate_Definition (Body_Id);
dac3bede 3516 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
fbf5a39b
AC
3517 Generate_Reference
3518 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
996ae0b0 3519 Install_Formals (Body_Id);
e949ee22 3520
4a854847 3521 Push_Scope (Body_Id);
996ae0b0 3522 end if;
dbe36d67
AC
3523
3524 -- For stubs and bodies with no previous spec, generate references to
3525 -- formals.
3526
3527 Generate_Reference_To_Formals (Body_Id);
996ae0b0
RK
3528 end if;
3529
5216b599
AC
3530 -- Set SPARK_Mode from context
3531
3532 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3533 Set_SPARK_Pragma_Inherited (Body_Id, True);
3534
76a69663
ES
3535 -- If the return type is an anonymous access type whose designated type
3536 -- is the limited view of a class-wide type and the non-limited view is
3537 -- available, update the return type accordingly.
ec4867fa 3538
8fde064e 3539 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
ec4867fa 3540 declare
ec4867fa 3541 Etyp : Entity_Id;
0a36105d 3542 Rtyp : Entity_Id;
ec4867fa
ES
3543
3544 begin
0a36105d
JM
3545 Rtyp := Etype (Current_Scope);
3546
3547 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3548 Etyp := Directly_Designated_Type (Rtyp);
3549
7b56a91b
AC
3550 if Is_Class_Wide_Type (Etyp)
3551 and then From_Limited_With (Etyp)
3552 then
0a36105d
JM
3553 Set_Directly_Designated_Type
3554 (Etype (Current_Scope), Available_View (Etyp));
3555 end if;
3556 end if;
ec4867fa
ES
3557 end;
3558 end if;
3559
996ae0b0
RK
3560 -- If this is the proper body of a stub, we must verify that the stub
3561 -- conforms to the body, and to the previous spec if one was present.
dbe36d67 3562 -- We know already that the body conforms to that spec. This test is
996ae0b0
RK
3563 -- only required for subprograms that come from source.
3564
3565 if Nkind (Parent (N)) = N_Subunit
3566 and then Comes_From_Source (N)
3567 and then not Error_Posted (Body_Id)
e895b435
ES
3568 and then Nkind (Corresponding_Stub (Parent (N))) =
3569 N_Subprogram_Body_Stub
996ae0b0
RK
3570 then
3571 declare
fbf5a39b
AC
3572 Old_Id : constant Entity_Id :=
3573 Defining_Entity
3574 (Specification (Corresponding_Stub (Parent (N))));
3575
996ae0b0 3576 Conformant : Boolean := False;
996ae0b0
RK
3577
3578 begin
3579 if No (Spec_Id) then
3580 Check_Fully_Conformant (Body_Id, Old_Id);
3581
3582 else
3583 Check_Conformance
3584 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3585
3586 if not Conformant then
3587
dbe36d67
AC
3588 -- The stub was taken to be a new declaration. Indicate that
3589 -- it lacks a body.
996ae0b0
RK
3590
3591 Set_Has_Completion (Old_Id, False);
3592 end if;
3593 end if;
3594 end;
3595 end if;
3596
3597 Set_Has_Completion (Body_Id);
3598 Check_Eliminated (Body_Id);
3599
3600 if Nkind (N) = N_Subprogram_Body_Stub then
c8a3028c
AC
3601
3602 -- Analyze any aspect specifications that appear on the subprogram
3603 -- body stub.
3604
3605 if Has_Aspects (N) then
3606 Analyze_Aspects_On_Body_Or_Stub;
3607 end if;
3608
3609 -- Stop the analysis now as the stub cannot be inlined, plus it does
3610 -- not have declarative or statement lists.
3611
996ae0b0 3612 return;
84f4072a 3613 end if;
996ae0b0 3614
b94b6c56 3615 -- Handle frontend inlining
84f4072a 3616
b94b6c56
RD
3617 -- Note: Normally we don't do any inlining if expansion is off, since
3618 -- we won't generate code in any case. An exception arises in GNATprove
2d180af1
YM
3619 -- mode where we want to expand some calls in place, even with expansion
3620 -- disabled, since the inlining eases formal verification.
ecad37f3 3621
6c26bac2
AC
3622 if not GNATprove_Mode
3623 and then Expander_Active
3624 and then Serious_Errors_Detected = 0
3625 and then Present (Spec_Id)
3626 and then Has_Pragma_Inline (Spec_Id)
3627 then
3628 -- Legacy implementation (relying on frontend inlining)
84f4072a 3629
6c26bac2
AC
3630 if not Back_End_Inlining then
3631 if Has_Pragma_Inline_Always (Spec_Id)
ea0c8cfb 3632 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining)
6c26bac2
AC
3633 then
3634 Build_Body_To_Inline (N, Spec_Id);
3635 end if;
f087ea44 3636
88f7d2d1 3637 -- New implementation (relying on backend inlining)
f087ea44 3638
6c26bac2
AC
3639 else
3640 if Has_Pragma_Inline_Always (Spec_Id)
3641 or else Optimization_Level > 0
3642 then
3643 -- Handle function returning an unconstrained type
f087ea44 3644
6c26bac2
AC
3645 if Comes_From_Source (Body_Id)
3646 and then Ekind (Spec_Id) = E_Function
3647 and then Returns_Unconstrained_Type (Spec_Id)
3648 then
16b10ccc 3649 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
84f4072a 3650
6c26bac2
AC
3651 else
3652 declare
b80a2b4b
AC
3653 Subp_Body : constant Node_Id :=
3654 Unit_Declaration_Node (Body_Id);
6c26bac2 3655 Subp_Decl : constant List_Id := Declarations (Subp_Body);
84f4072a 3656
6c26bac2
AC
3657 begin
3658 -- Do not pass inlining to the backend if the subprogram
3659 -- has declarations or statements which cannot be inlined
3660 -- by the backend. This check is done here to emit an
3661 -- error instead of the generic warning message reported
3662 -- by the GCC backend (ie. "function might not be
3663 -- inlinable").
3664
3665 if Present (Subp_Decl)
3666 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3667 then
3668 null;
3669
3670 elsif Has_Excluded_Statement
3671 (Spec_Id,
3672 Statements
3673 (Handled_Statement_Sequence (Subp_Body)))
3674 then
3675 null;
3676
3677 -- If the backend inlining is available then at this
3678 -- stage we only have to mark the subprogram as inlined.
3679 -- The expander will take care of registering it in the
3680 -- table of subprograms inlined by the backend a part of
3681 -- processing calls to it (cf. Expand_Call)
3682
3683 else
3684 Set_Is_Inlined (Spec_Id);
3685 end if;
3686 end;
3687 end if;
3688 end if;
3689 end if;
2d180af1
YM
3690
3691 -- In GNATprove mode, inline only when there is a separate subprogram
3692 -- declaration for now, as inlining of subprogram bodies acting as
3693 -- declarations, or subprogram stubs, are not supported by frontend
3694 -- inlining. This inlining should occur after analysis of the body, so
3695 -- that it is known whether the value of SPARK_Mode applicable to the
3696 -- body, which can be defined by a pragma inside the body.
3697
3698 elsif GNATprove_Mode
2d180af1
YM
3699 and then Full_Analysis
3700 and then not Inside_A_Generic
3701 and then Present (Spec_Id)
3702 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3703 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
ac072cb2 3704 and then not Body_Has_Contract
2d180af1 3705 then
6c26bac2 3706 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
3707 end if;
3708
0ab80019 3709 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
dbe36d67 3710 -- of the specification we have to install the private withed units.
21d27997 3711 -- This holds for child units as well.
9bc856dd
AC
3712
3713 if Is_Compilation_Unit (Body_Id)
21d27997 3714 or else Nkind (Parent (N)) = N_Compilation_Unit
9bc856dd
AC
3715 then
3716 Install_Private_With_Clauses (Body_Id);
3717 end if;
3718
ec4867fa
ES
3719 Check_Anonymous_Return;
3720
fdce4bb7
JM
3721 -- Set the Protected_Formal field of each extra formal of the protected
3722 -- subprogram to reference the corresponding extra formal of the
3723 -- subprogram that implements it. For regular formals this occurs when
3724 -- the protected subprogram's declaration is expanded, but the extra
3725 -- formals don't get created until the subprogram is frozen. We need to
3726 -- do this before analyzing the protected subprogram's body so that any
3727 -- references to the original subprogram's extra formals will be changed
3728 -- refer to the implementing subprogram's formals (see Expand_Formal).
3729
3730 if Present (Spec_Id)
3731 and then Is_Protected_Type (Scope (Spec_Id))
3732 and then Present (Protected_Body_Subprogram (Spec_Id))
3733 then
3734 declare
3735 Impl_Subp : constant Entity_Id :=
3736 Protected_Body_Subprogram (Spec_Id);
3737 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3738 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
fdce4bb7
JM
3739 begin
3740 while Present (Prot_Ext_Formal) loop
3741 pragma Assert (Present (Impl_Ext_Formal));
fdce4bb7 3742 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
fdce4bb7
JM
3743 Next_Formal_With_Extras (Prot_Ext_Formal);
3744 Next_Formal_With_Extras (Impl_Ext_Formal);
3745 end loop;
3746 end;
3747 end if;
3748
0868e09c 3749 -- Now we can go on to analyze the body
996ae0b0
RK
3750
3751 HSS := Handled_Statement_Sequence (N);
3752 Set_Actual_Subtypes (N, Current_Scope);
21d27997 3753
f3d0f304 3754 -- Add a declaration for the Protection object, renaming declarations
21d27997
RD
3755 -- for discriminals and privals and finally a declaration for the entry
3756 -- family index (if applicable). This form of early expansion is done
3757 -- when the Expander is active because Install_Private_Data_Declarations
81bf2382 3758 -- references entities which were created during regular expansion. The
3b8056a5
AC
3759 -- subprogram entity must come from source, and not be an internally
3760 -- generated subprogram.
21d27997 3761
4460a9bc 3762 if Expander_Active
21d27997
RD
3763 and then Present (Prot_Typ)
3764 and then Present (Spec_Id)
3b8056a5 3765 and then Comes_From_Source (Spec_Id)
21d27997
RD
3766 and then not Is_Eliminated (Spec_Id)
3767 then
3768 Install_Private_Data_Declarations
3769 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3770 end if;
3771
5dcab3ca
AC
3772 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3773 -- may now appear in parameter and result profiles. Since the analysis
3774 -- of a subprogram body may use the parameter and result profile of the
3775 -- spec, swap any limited views with their non-limited counterpart.
3776
3777 if Ada_Version >= Ada_2012 then
3778 Exchange_Limited_Views (Spec_Id);
3779 end if;
3780
c8a3028c
AC
3781 -- Analyze any aspect specifications that appear on the subprogram body
3782
3783 if Has_Aspects (N) then
3784 Analyze_Aspects_On_Body_Or_Stub;
3785 end if;
3786
3787 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3788 -- invariants and predicates associated with the body and its spec.
3789 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3790 -- prepares the contract assertions for generic subprograms or for ASIS.
3791 -- Do not generate contract checks in SPARK mode.
3792
3793 if not GNATprove_Mode then
3794 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3795 end if;
3796
21d27997
RD
3797 -- Analyze the declarations (this call will analyze the precondition
3798 -- Check pragmas we prepended to the list, as well as the declaration
3799 -- of the _Postconditions procedure).
3800
996ae0b0 3801 Analyze_Declarations (Declarations (N));
21d27997 3802
f3124d8f 3803 -- Verify that the SPARK_Mode of the body agrees with that of its spec
f90d14ac 3804
f1c7be38 3805 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
f90d14ac
AC
3806 if Present (SPARK_Pragma (Spec_Id)) then
3807 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3808 and then
3809 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3810 then
3811 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3812 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3813 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3814 Error_Msg_NE
f3124d8f 3815 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
3816 end if;
3817
3818 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3819 null;
3820
3821 else
3822 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3ccedacc 3823 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
f90d14ac 3824 Error_Msg_Sloc := Sloc (Spec_Id);
f3124d8f
HK
3825 Error_Msg_NE
3826 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
3827 end if;
3828 end if;
3829
ac43e11e
AC
3830 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3831 -- subprogram in GNATprove mode, as its body should not be analyzed.
3832
3833 if SPARK_Mode /= On
3834 and then GNATprove_Mode
ac43e11e
AC
3835 and then Present (Spec_Id)
3836 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3837 then
3838 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
4bd4bb7f 3839 Set_Is_Inlined_Always (Spec_Id, False);
ac43e11e
AC
3840 end if;
3841
21d27997
RD
3842 -- Check completion, and analyze the statements
3843
996ae0b0 3844 Check_Completion;
33931112 3845 Inspect_Deferred_Constant_Completion (Declarations (N));
996ae0b0 3846 Analyze (HSS);
21d27997
RD
3847
3848 -- Deal with end of scope processing for the body
3849
07fc65c4 3850 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0
RK
3851 End_Scope;
3852 Check_Subprogram_Order (N);
c37bb106 3853 Set_Analyzed (Body_Id);
996ae0b0
RK
3854
3855 -- If we have a separate spec, then the analysis of the declarations
3856 -- caused the entities in the body to be chained to the spec id, but
3857 -- we want them chained to the body id. Only the formal parameters
3858 -- end up chained to the spec id in this case.
3859
3860 if Present (Spec_Id) then
3861
d39d6bb8 3862 -- We must conform to the categorization of our spec
996ae0b0 3863
d39d6bb8 3864 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 3865
d39d6bb8
RD
3866 -- And if this is a child unit, the parent units must conform
3867
3868 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
3869 Validate_Categorization_Dependency
3870 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3871 end if;
3872
21d27997
RD
3873 -- Here is where we move entities from the spec to the body
3874
3875 -- Case where there are entities that stay with the spec
3876
3877 if Present (Last_Real_Spec_Entity) then
3878
dbe36d67
AC
3879 -- No body entities (happens when the only real spec entities come
3880 -- from precondition and postcondition pragmas).
21d27997
RD
3881
3882 if No (Last_Entity (Body_Id)) then
3883 Set_First_Entity
3884 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3885
3886 -- Body entities present (formals), so chain stuff past them
3887
3888 else
3889 Set_Next_Entity
3890 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3891 end if;
3892
3893 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
996ae0b0 3894 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
21d27997
RD
3895 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3896
dbe36d67
AC
3897 -- Case where there are no spec entities, in this case there can be
3898 -- no body entities either, so just move everything.
996ae0b0
RK
3899
3900 else
21d27997 3901 pragma Assert (No (Last_Entity (Body_Id)));
996ae0b0
RK
3902 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3903 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3904 Set_First_Entity (Spec_Id, Empty);
3905 Set_Last_Entity (Spec_Id, Empty);
3906 end if;
3907 end if;
3908
7665e4bd 3909 Check_Missing_Return;
996ae0b0 3910
82c80734 3911 -- Now we are going to check for variables that are never modified in
76a69663
ES
3912 -- the body of the procedure. But first we deal with a special case
3913 -- where we want to modify this check. If the body of the subprogram
3914 -- starts with a raise statement or its equivalent, or if the body
cf3e6845
AC
3915 -- consists entirely of a null statement, then it is pretty obvious that
3916 -- it is OK to not reference the parameters. For example, this might be
3917 -- the following common idiom for a stubbed function: statement of the
3918 -- procedure raises an exception. In particular this deals with the
3919 -- common idiom of a stubbed function, which appears something like:
fbf5a39b
AC
3920
3921 -- function F (A : Integer) return Some_Type;
3922 -- X : Some_Type;
3923 -- begin
3924 -- raise Program_Error;
3925 -- return X;
3926 -- end F;
3927
76a69663
ES
3928 -- Here the purpose of X is simply to satisfy the annoying requirement
3929 -- in Ada that there be at least one return, and we certainly do not
a90bd866 3930 -- want to go posting warnings on X that it is not initialized. On
76a69663
ES
3931 -- the other hand, if X is entirely unreferenced that should still
3932 -- get a warning.
3933
3934 -- What we do is to detect these cases, and if we find them, flag the
3935 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3936 -- suppress unwanted warnings. For the case of the function stub above
3937 -- we have a special test to set X as apparently assigned to suppress
3938 -- the warning.
996ae0b0
RK
3939
3940 declare
800621e0 3941 Stm : Node_Id;
996ae0b0
RK
3942
3943 begin
0a36105d
JM
3944 -- Skip initial labels (for one thing this occurs when we are in
3945 -- front end ZCX mode, but in any case it is irrelevant), and also
3946 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 3947
800621e0 3948 Stm := First (Statements (HSS));
0a36105d
JM
3949 while Nkind (Stm) = N_Label
3950 or else Nkind (Stm) in N_Push_xxx_Label
3951 loop
996ae0b0 3952 Next (Stm);
0a36105d 3953 end loop;
996ae0b0 3954
fbf5a39b
AC
3955 -- Do the test on the original statement before expansion
3956
3957 declare
3958 Ostm : constant Node_Id := Original_Node (Stm);
3959
3960 begin
76a69663 3961 -- If explicit raise statement, turn on flag
fbf5a39b
AC
3962
3963 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
3964 Set_Trivial_Subprogram (Stm);
3965
f3d57416 3966 -- If null statement, and no following statements, turn on flag
76a69663
ES
3967
3968 elsif Nkind (Stm) = N_Null_Statement
3969 and then Comes_From_Source (Stm)
3970 and then No (Next (Stm))
3971 then
3972 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3973
3974 -- Check for explicit call cases which likely raise an exception
3975
3976 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3977 if Is_Entity_Name (Name (Ostm)) then
3978 declare
3979 Ent : constant Entity_Id := Entity (Name (Ostm));
3980
3981 begin
3982 -- If the procedure is marked No_Return, then likely it
3983 -- raises an exception, but in any case it is not coming
76a69663 3984 -- back here, so turn on the flag.
fbf5a39b 3985
f46faa08
AC
3986 if Present (Ent)
3987 and then Ekind (Ent) = E_Procedure
fbf5a39b
AC
3988 and then No_Return (Ent)
3989 then
76a69663 3990 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3991 end if;
3992 end;
3993 end if;
3994 end if;
3995 end;
996ae0b0
RK
3996 end;
3997
3998 -- Check for variables that are never modified
3999
4000 declare
4001 E1, E2 : Entity_Id;
4002
4003 begin
fbf5a39b 4004 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
4005 -- flags from out parameters to the corresponding entities in the
4006 -- body. The reason we do that is we want to post error flags on
4007 -- the body entities, not the spec entities.
4008
4009 if Present (Spec_Id) then
4010 E1 := First_Entity (Spec_Id);
996ae0b0
RK
4011 while Present (E1) loop
4012 if Ekind (E1) = E_Out_Parameter then
4013 E2 := First_Entity (Body_Id);
fbf5a39b 4014 while Present (E2) loop
996ae0b0
RK
4015 exit when Chars (E1) = Chars (E2);
4016 Next_Entity (E2);
4017 end loop;
4018
fbf5a39b
AC
4019 if Present (E2) then
4020 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4021 end if;
996ae0b0
RK
4022 end if;
4023
4024 Next_Entity (E1);
4025 end loop;
4026 end if;
4027
2aca76d6 4028 -- Check references in body
0868e09c 4029
2aca76d6 4030 Check_References (Body_Id);
996ae0b0 4031 end;
b1b543d2 4032 end Analyze_Subprogram_Body_Helper;
996ae0b0 4033
5afe5d2d
HK
4034 ---------------------------------
4035 -- Analyze_Subprogram_Contract --
4036 ---------------------------------
4037
4038 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
36eef04a
AC
4039 Items : constant Node_Id := Contract (Subp);
4040 Case_Prag : Node_Id := Empty;
4041 Depends : Node_Id := Empty;
4042 Global : Node_Id := Empty;
c61ef416 4043 Mode : SPARK_Mode_Type;
36eef04a
AC
4044 Nam : Name_Id;
4045 Post_Prag : Node_Id := Empty;
4046 Prag : Node_Id;
4047 Seen_In_Case : Boolean := False;
4048 Seen_In_Post : Boolean := False;
5afe5d2d
HK
4049
4050 begin
fc999c5d
RD
4051 -- Due to the timing of contract analysis, delayed pragmas may be
4052 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4053 -- context. To remedy this, restore the original SPARK_Mode of the
4054 -- related subprogram body.
4055
c61ef416
AC
4056 Save_SPARK_Mode_And_Set (Subp, Mode);
4057
5afe5d2d
HK
4058 if Present (Items) then
4059
4060 -- Analyze pre- and postconditions
4061
4062 Prag := Pre_Post_Conditions (Items);
4063 while Present (Prag) loop
ea3c0651 4064 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
5afe5d2d
HK
4065
4066 -- Verify whether a postcondition mentions attribute 'Result and
4067 -- its expression introduces a post-state.
4068
4069 if Warn_On_Suspicious_Contract
4070 and then Pragma_Name (Prag) = Name_Postcondition
4071 then
36eef04a
AC
4072 Post_Prag := Prag;
4073 Check_Result_And_Post_State (Prag, Seen_In_Post);
5afe5d2d
HK
4074 end if;
4075
4076 Prag := Next_Pragma (Prag);
4077 end loop;
4078
4079 -- Analyze contract-cases and test-cases
4080
4081 Prag := Contract_Test_Cases (Items);
4082 while Present (Prag) loop
ea3c0651
AC
4083 Nam := Pragma_Name (Prag);
4084
4085 if Nam = Name_Contract_Cases then
5afe5d2d
HK
4086 Analyze_Contract_Cases_In_Decl_Part (Prag);
4087
4088 -- Verify whether contract-cases mention attribute 'Result and
4089 -- its expression introduces a post-state. Perform the check
4090 -- only when the pragma is legal.
4091
4092 if Warn_On_Suspicious_Contract
4093 and then not Error_Posted (Prag)
4094 then
36eef04a
AC
4095 Case_Prag := Prag;
4096 Check_Result_And_Post_State (Prag, Seen_In_Case);
5afe5d2d
HK
4097 end if;
4098
4099 else
ea3c0651 4100 pragma Assert (Nam = Name_Test_Case);
5afe5d2d
HK
4101 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
4102 end if;
4103
4104 Prag := Next_Pragma (Prag);
4105 end loop;
4106
4107 -- Analyze classification pragmas
4108
6c3c671e 4109 Prag := Classifications (Items);
5afe5d2d 4110 while Present (Prag) loop
ea3c0651
AC
4111 Nam := Pragma_Name (Prag);
4112
4113 if Nam = Name_Depends then
54e28df2 4114 Depends := Prag;
039538bc
AC
4115
4116 elsif Nam = Name_Global then
54e28df2 4117 Global := Prag;
039538bc
AC
4118
4119 -- Note that pragma Extensions_Visible has already been analyzed
4120
5afe5d2d
HK
4121 end if;
4122
4123 Prag := Next_Pragma (Prag);
4124 end loop;
54e28df2
HK
4125
4126 -- Analyze Global first as Depends may mention items classified in
4127 -- the global categorization.
4128
4129 if Present (Global) then
4130 Analyze_Global_In_Decl_Part (Global);
4131 end if;
4132
4133 -- Depends must be analyzed after Global in order to see the modes of
4134 -- all global items.
4135
4136 if Present (Depends) then
4137 Analyze_Depends_In_Decl_Part (Depends);
4138 end if;
5afe5d2d
HK
4139 end if;
4140
36eef04a 4141 -- Emit an error when neither the postconditions nor the contract-cases
5afe5d2d
HK
4142 -- mention attribute 'Result in the context of a function.
4143
4144 if Warn_On_Suspicious_Contract
4145 and then Ekind_In (Subp, E_Function, E_Generic_Function)
5afe5d2d 4146 then
36eef04a
AC
4147 if Present (Case_Prag)
4148 and then not Seen_In_Case
4149 and then Present (Post_Prag)
4150 and then not Seen_In_Post
4151 then
5afe5d2d
HK
4152 Error_Msg_N
4153 ("neither function postcondition nor contract cases mention "
36eef04a 4154 & "result?T?", Post_Prag);
5afe5d2d 4155
36eef04a 4156 elsif Present (Case_Prag) and then not Seen_In_Case then
5afe5d2d 4157 Error_Msg_N
36eef04a 4158 ("contract cases do not mention result?T?", Case_Prag);
5afe5d2d 4159
f660fba6
AC
4160 -- OK if we have at least one IN OUT parameter
4161
36eef04a 4162 elsif Present (Post_Prag) and then not Seen_In_Post then
f660fba6
AC
4163 declare
4164 F : Entity_Id;
4165 begin
4166 F := First_Formal (Subp);
4167 while Present (F) loop
4168 if Ekind (F) = E_In_Out_Parameter then
4169 return;
4170 else
4171 Next_Formal (F);
4172 end if;
4173 end loop;
4174 end;
4175
4176 -- If no in-out parameters and no mention of Result, the contract
4177 -- is certainly suspicious.
4178
5afe5d2d 4179 Error_Msg_N
36eef04a 4180 ("function postcondition does not mention result?T?", Post_Prag);
5afe5d2d
HK
4181 end if;
4182 end if;
c61ef416 4183
fc999c5d
RD
4184 -- Restore the SPARK_Mode of the enclosing context after all delayed
4185 -- pragmas have been analyzed.
4186
c61ef416 4187 Restore_SPARK_Mode (Mode);
5afe5d2d
HK
4188 end Analyze_Subprogram_Contract;
4189
996ae0b0
RK
4190 ------------------------------------
4191 -- Analyze_Subprogram_Declaration --
4192 ------------------------------------
4193
4194 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
579847c2 4195 Scop : constant Entity_Id := Current_Scope;
5d5832bc 4196 Designator : Entity_Id;
579847c2 4197
4d8f3296
ES
4198 Is_Completion : Boolean;
4199 -- Indicates whether a null procedure declaration is a completion
996ae0b0
RK
4200
4201 begin
2ba431e5 4202 -- Null procedures are not allowed in SPARK
daec8eeb 4203
fe5d3068 4204 if Nkind (Specification (N)) = N_Procedure_Specification
daec8eeb
YM
4205 and then Null_Present (Specification (N))
4206 then
ce5ba43a 4207 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
718deaf1 4208
4d8f3296
ES
4209 if Is_Protected_Type (Current_Scope) then
4210 Error_Msg_N ("protected operation cannot be a null procedure", N);
4211 end if;
718deaf1 4212
4d8f3296 4213 Analyze_Null_Procedure (N, Is_Completion);
718deaf1 4214
4d8f3296 4215 if Is_Completion then
718deaf1 4216
4d8f3296 4217 -- The null procedure acts as a body, nothing further is needed.
5d5832bc 4218
4d8f3296 4219 return;
5d5832bc
AC
4220 end if;
4221 end if;
4222
beacce02 4223 Designator := Analyze_Subprogram_Specification (Specification (N));
31af8899
AC
4224
4225 -- A reference may already have been generated for the unit name, in
4226 -- which case the following call is redundant. However it is needed for
4227 -- declarations that are the rewriting of an expression function.
4228
5d5832bc
AC
4229 Generate_Definition (Designator);
4230
f90d14ac
AC
4231 -- Set SPARK mode from current context (may be overwritten later with
4232 -- explicit pragma).
4a854847 4233
f90d14ac
AC
4234 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4235 Set_SPARK_Pragma_Inherited (Designator, True);
579847c2 4236
c5cec2fe
AC
4237 -- A subprogram declared within a Ghost scope is automatically Ghost
4238 -- (SPARK RM 6.9(2)).
4239
4240 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
4241 Set_Is_Ghost_Entity (Designator);
4242 end if;
4243
b1b543d2
BD
4244 if Debug_Flag_C then
4245 Write_Str ("==> subprogram spec ");
4246 Write_Name (Chars (Designator));
4247 Write_Str (" from ");
4248 Write_Location (Sloc (N));
4249 Write_Eol;
4250 Indent;
4251 end if;
4252
996ae0b0 4253 Validate_RCI_Subprogram_Declaration (N);
996ae0b0
RK
4254 New_Overloaded_Entity (Designator);
4255 Check_Delayed_Subprogram (Designator);
fbf5a39b 4256
cf3e6845
AC
4257 -- If the type of the first formal of the current subprogram is a non-
4258 -- generic tagged private type, mark the subprogram as being a private
4259 -- primitive. Ditto if this is a function with controlling result, and
4260 -- the return type is currently private. In both cases, the type of the
4261 -- controlling argument or result must be in the current scope for the
4262 -- operation to be primitive.
6ca063eb
AC
4263
4264 if Has_Controlling_Result (Designator)
4265 and then Is_Private_Type (Etype (Designator))
b7d5e87b 4266 and then Scope (Etype (Designator)) = Current_Scope
6ca063eb
AC
4267 and then not Is_Generic_Actual_Type (Etype (Designator))
4268 then
4269 Set_Is_Private_Primitive (Designator);
d44202ba 4270
6ca063eb 4271 elsif Present (First_Formal (Designator)) then
d44202ba
HK
4272 declare
4273 Formal_Typ : constant Entity_Id :=
4274 Etype (First_Formal (Designator));
4275 begin
4276 Set_Is_Private_Primitive (Designator,
4277 Is_Tagged_Type (Formal_Typ)
b7d5e87b 4278 and then Scope (Formal_Typ) = Current_Scope
d44202ba
HK
4279 and then Is_Private_Type (Formal_Typ)
4280 and then not Is_Generic_Actual_Type (Formal_Typ));
4281 end;
4282 end if;
4283
ec4867fa
ES
4284 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4285 -- or null.
4286
0791fbe9 4287 if Ada_Version >= Ada_2005
ec4867fa
ES
4288 and then Comes_From_Source (N)
4289 and then Is_Dispatching_Operation (Designator)
4290 then
4291 declare
4292 E : Entity_Id;
4293 Etyp : Entity_Id;
4294
4295 begin
4296 if Has_Controlling_Result (Designator) then
4297 Etyp := Etype (Designator);
4298
4299 else
4300 E := First_Entity (Designator);
4301 while Present (E)
4302 and then Is_Formal (E)
4303 and then not Is_Controlling_Formal (E)
4304 loop
4305 Next_Entity (E);
4306 end loop;
4307
4308 Etyp := Etype (E);
4309 end if;
4310
4311 if Is_Access_Type (Etyp) then
4312 Etyp := Directly_Designated_Type (Etyp);
4313 end if;
4314
4315 if Is_Interface (Etyp)
f937473f 4316 and then not Is_Abstract_Subprogram (Designator)
ec4867fa 4317 and then not (Ekind (Designator) = E_Procedure
8fde064e 4318 and then Null_Present (Specification (N)))
ec4867fa
ES
4319 then
4320 Error_Msg_Name_1 := Chars (Defining_Entity (N));
033eaf85
AC
4321
4322 -- Specialize error message based on procedures vs. functions,
4323 -- since functions can't be null subprograms.
4324
4325 if Ekind (Designator) = E_Procedure then
4326 Error_Msg_N
4327 ("interface procedure % must be abstract or null", N);
4328 else
3f80a182
AC
4329 Error_Msg_N
4330 ("interface function % must be abstract", N);
033eaf85 4331 end if;
ec4867fa
ES
4332 end if;
4333 end;
4334 end if;
4335
fbf5a39b
AC
4336 -- What is the following code for, it used to be
4337
4338 -- ??? Set_Suppress_Elaboration_Checks
4339 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4340
4341 -- The following seems equivalent, but a bit dubious
4342
4343 if Elaboration_Checks_Suppressed (Designator) then
4344 Set_Kill_Elaboration_Checks (Designator);
4345 end if;
996ae0b0 4346
8fde064e 4347 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
fbf5a39b 4348 Set_Categorization_From_Scope (Designator, Scop);
8fde064e 4349
996ae0b0 4350 else
e895b435 4351 -- For a compilation unit, check for library-unit pragmas
996ae0b0 4352
0a36105d 4353 Push_Scope (Designator);
996ae0b0
RK
4354 Set_Categorization_From_Pragmas (N);
4355 Validate_Categorization_Dependency (N, Designator);
4356 Pop_Scope;
4357 end if;
4358
4359 -- For a compilation unit, set body required. This flag will only be
4360 -- reset if a valid Import or Interface pragma is processed later on.
4361
4362 if Nkind (Parent (N)) = N_Compilation_Unit then
4363 Set_Body_Required (Parent (N), True);
758c442c 4364
0791fbe9 4365 if Ada_Version >= Ada_2005
758c442c
GD
4366 and then Nkind (Specification (N)) = N_Procedure_Specification
4367 and then Null_Present (Specification (N))
4368 then
4369 Error_Msg_N
4370 ("null procedure cannot be declared at library level", N);
4371 end if;
996ae0b0
RK
4372 end if;
4373
fbf5a39b 4374 Generate_Reference_To_Formals (Designator);
996ae0b0 4375 Check_Eliminated (Designator);
fbf5a39b 4376
b1b543d2
BD
4377 if Debug_Flag_C then
4378 Outdent;
4379 Write_Str ("<== subprogram spec ");
4380 Write_Name (Chars (Designator));
4381 Write_Str (" from ");
4382 Write_Location (Sloc (N));
4383 Write_Eol;
4384 end if;
0f1a6a0b 4385
1a265e78
AC
4386 if Is_Protected_Type (Current_Scope) then
4387
4388 -- Indicate that this is a protected operation, because it may be
4389 -- used in subsequent declarations within the protected type.
4390
4391 Set_Convention (Designator, Convention_Protected);
4392 end if;
4393
beacce02 4394 List_Inherited_Pre_Post_Aspects (Designator);
eaba57fb
RD
4395
4396 if Has_Aspects (N) then
4397 Analyze_Aspect_Specifications (N, Designator);
4398 end if;
996ae0b0
RK
4399 end Analyze_Subprogram_Declaration;
4400
fbf5a39b
AC
4401 --------------------------------------
4402 -- Analyze_Subprogram_Specification --
4403 --------------------------------------
4404
4405 -- Reminder: N here really is a subprogram specification (not a subprogram
4406 -- declaration). This procedure is called to analyze the specification in
4407 -- both subprogram bodies and subprogram declarations (specs).
4408
4409 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4410 Designator : constant Entity_Id := Defining_Entity (N);
21d27997 4411 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 4412
758c442c
GD
4413 -- Start of processing for Analyze_Subprogram_Specification
4414
fbf5a39b 4415 begin
2ba431e5 4416 -- User-defined operator is not allowed in SPARK, except as a renaming
38171f43 4417
db72f10a
AC
4418 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4419 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4420 then
ce5ba43a
AC
4421 Check_SPARK_05_Restriction
4422 ("user-defined operator is not allowed", N);
38171f43
AC
4423 end if;
4424
31af8899
AC
4425 -- Proceed with analysis. Do not emit a cross-reference entry if the
4426 -- specification comes from an expression function, because it may be
4427 -- the completion of a previous declaration. It is is not, the cross-
4428 -- reference entry will be emitted for the new subprogram declaration.
4429
4430 if Nkind (Parent (N)) /= N_Expression_Function then
4431 Generate_Definition (Designator);
4432 end if;
38171f43 4433
dac3bede 4434 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
fbf5a39b
AC
4435
4436 if Nkind (N) = N_Function_Specification then
4437 Set_Ekind (Designator, E_Function);
4438 Set_Mechanism (Designator, Default_Mechanism);
fbf5a39b
AC
4439 else
4440 Set_Ekind (Designator, E_Procedure);
4441 Set_Etype (Designator, Standard_Void_Type);
4442 end if;
4443
4bd4bb7f
AC
4444 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4445 -- those subprograms which could be inlined in GNATprove mode (because
4446 -- Body_To_Inline is non-Empty) but cannot be inlined.
4447
4448 if GNATprove_Mode then
4449 Set_Is_Inlined_Always (Designator);
4450 end if;
4451
800621e0 4452 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
4453
4454 Set_Scope (Designator, Current_Scope);
4455
fbf5a39b 4456 if Present (Formals) then
0a36105d 4457 Push_Scope (Designator);
fbf5a39b 4458 Process_Formals (Formals, N);
758c442c 4459
0929eaeb
AC
4460 -- Check dimensions in N for formals with default expression
4461
4462 Analyze_Dimension_Formals (N, Formals);
4463
a38ff9b1
ES
4464 -- Ada 2005 (AI-345): If this is an overriding operation of an
4465 -- inherited interface operation, and the controlling type is
4466 -- a synchronized type, replace the type with its corresponding
4467 -- record, to match the proper signature of an overriding operation.
69cb258c
AC
4468 -- Same processing for an access parameter whose designated type is
4469 -- derived from a synchronized interface.
758c442c 4470
0791fbe9 4471 if Ada_Version >= Ada_2005 then
d44202ba
HK
4472 declare
4473 Formal : Entity_Id;
4474 Formal_Typ : Entity_Id;
4475 Rec_Typ : Entity_Id;
69cb258c 4476 Desig_Typ : Entity_Id;
0a36105d 4477
d44202ba
HK
4478 begin
4479 Formal := First_Formal (Designator);
4480 while Present (Formal) loop
4481 Formal_Typ := Etype (Formal);
0a36105d 4482
d44202ba
HK
4483 if Is_Concurrent_Type (Formal_Typ)
4484 and then Present (Corresponding_Record_Type (Formal_Typ))
4485 then
4486 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4487
4488 if Present (Interfaces (Rec_Typ)) then
4489 Set_Etype (Formal, Rec_Typ);
4490 end if;
69cb258c
AC
4491
4492 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4493 Desig_Typ := Designated_Type (Formal_Typ);
4494
4495 if Is_Concurrent_Type (Desig_Typ)
4496 and then Present (Corresponding_Record_Type (Desig_Typ))
4497 then
4498 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4499
4500 if Present (Interfaces (Rec_Typ)) then
4501 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4502 end if;
4503 end if;
d44202ba
HK
4504 end if;
4505
4506 Next_Formal (Formal);
4507 end loop;
4508 end;
758c442c
GD
4509 end if;
4510
fbf5a39b 4511 End_Scope;
82c80734 4512
b66c3ff4
AC
4513 -- The subprogram scope is pushed and popped around the processing of
4514 -- the return type for consistency with call above to Process_Formals
4515 -- (which itself can call Analyze_Return_Type), and to ensure that any
4516 -- itype created for the return type will be associated with the proper
4517 -- scope.
4518
82c80734 4519 elsif Nkind (N) = N_Function_Specification then
b66c3ff4 4520 Push_Scope (Designator);
82c80734 4521 Analyze_Return_Type (N);
b66c3ff4 4522 End_Scope;
fbf5a39b
AC
4523 end if;
4524
e606088a
AC
4525 -- Function case
4526
fbf5a39b 4527 if Nkind (N) = N_Function_Specification then
e606088a
AC
4528
4529 -- Deal with operator symbol case
4530
fbf5a39b
AC
4531 if Nkind (Designator) = N_Defining_Operator_Symbol then
4532 Valid_Operator_Definition (Designator);
4533 end if;
4534
4535 May_Need_Actuals (Designator);
4536
fe63b1b1
ES
4537 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4538 -- the subprogram is abstract also. This does not apply to renaming
1adaea16
AC
4539 -- declarations, where abstractness is inherited, and to subprogram
4540 -- bodies generated for stream operations, which become renamings as
4541 -- bodies.
2bfb1b72 4542
fe63b1b1
ES
4543 -- In case of primitives associated with abstract interface types
4544 -- the check is applied later (see Analyze_Subprogram_Declaration).
ec4867fa 4545
1adaea16 4546 if not Nkind_In (Original_Node (Parent (N)),
3f80a182
AC
4547 N_Subprogram_Renaming_Declaration,
4548 N_Abstract_Subprogram_Declaration,
4549 N_Formal_Abstract_Subprogram_Declaration)
fbf5a39b 4550 then
2e79de51
AC
4551 if Is_Abstract_Type (Etype (Designator))
4552 and then not Is_Interface (Etype (Designator))
4553 then
4554 Error_Msg_N
4555 ("function that returns abstract type must be abstract", N);
4556
e606088a 4557 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
2e79de51
AC
4558 -- access result whose designated type is abstract.
4559
4560 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4561 and then
4562 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4563 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
dbe945f1 4564 and then Ada_Version >= Ada_2012
2e79de51
AC
4565 then
4566 Error_Msg_N ("function whose access result designates "
3f80a182 4567 & "abstract type must be abstract", N);
2e79de51 4568 end if;
fbf5a39b
AC
4569 end if;
4570 end if;
4571
4572 return Designator;
4573 end Analyze_Subprogram_Specification;
4574
996ae0b0
RK
4575 -----------------------
4576 -- Check_Conformance --
4577 -----------------------
4578
4579 procedure Check_Conformance
41251c60
JM
4580 (New_Id : Entity_Id;
4581 Old_Id : Entity_Id;
4582 Ctype : Conformance_Type;
4583 Errmsg : Boolean;
4584 Conforms : out Boolean;
4585 Err_Loc : Node_Id := Empty;
4586 Get_Inst : Boolean := False;
4587 Skip_Controlling_Formals : Boolean := False)
996ae0b0 4588 is
996ae0b0 4589 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
c27f2f15
RD
4590 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4591 -- If Errmsg is True, then processing continues to post an error message
4592 -- for conformance error on given node. Two messages are output. The
4593 -- first message points to the previous declaration with a general "no
4594 -- conformance" message. The second is the detailed reason, supplied as
4595 -- Msg. The parameter N provide information for a possible & insertion
4596 -- in the message, and also provides the location for posting the
4597 -- message in the absence of a specified Err_Loc location.
996ae0b0
RK
4598
4599 -----------------------
4600 -- Conformance_Error --
4601 -----------------------
4602
4603 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4604 Enode : Node_Id;
4605
4606 begin
4607 Conforms := False;
4608
4609 if Errmsg then
4610 if No (Err_Loc) then
4611 Enode := N;
4612 else
4613 Enode := Err_Loc;
4614 end if;
4615
4616 Error_Msg_Sloc := Sloc (Old_Id);
4617
4618 case Ctype is
4619 when Type_Conformant =>
483c78cb 4620 Error_Msg_N -- CODEFIX
996ae0b0
RK
4621 ("not type conformant with declaration#!", Enode);
4622
4623 when Mode_Conformant =>
19590d70 4624 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4625 Error_Msg_N
19590d70
GD
4626 ("not mode conformant with operation inherited#!",
4627 Enode);
4628 else
ed2233dc 4629 Error_Msg_N
19590d70
GD
4630 ("not mode conformant with declaration#!", Enode);
4631 end if;
996ae0b0
RK
4632
4633 when Subtype_Conformant =>
19590d70 4634 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4635 Error_Msg_N
19590d70
GD
4636 ("not subtype conformant with operation inherited#!",
4637 Enode);
4638 else
ed2233dc 4639 Error_Msg_N
19590d70
GD
4640 ("not subtype conformant with declaration#!", Enode);
4641 end if;
996ae0b0
RK
4642
4643 when Fully_Conformant =>
19590d70 4644 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
483c78cb 4645 Error_Msg_N -- CODEFIX
19590d70
GD
4646 ("not fully conformant with operation inherited#!",
4647 Enode);
4648 else
483c78cb 4649 Error_Msg_N -- CODEFIX
19590d70
GD
4650 ("not fully conformant with declaration#!", Enode);
4651 end if;
996ae0b0
RK
4652 end case;
4653
4654 Error_Msg_NE (Msg, Enode, N);
4655 end if;
4656 end Conformance_Error;
4657
ec4867fa
ES
4658 -- Local Variables
4659
4660 Old_Type : constant Entity_Id := Etype (Old_Id);
4661 New_Type : constant Entity_Id := Etype (New_Id);
4662 Old_Formal : Entity_Id;
4663 New_Formal : Entity_Id;
4664 Access_Types_Match : Boolean;
4665 Old_Formal_Base : Entity_Id;
4666 New_Formal_Base : Entity_Id;
4667
996ae0b0
RK
4668 -- Start of processing for Check_Conformance
4669
4670 begin
4671 Conforms := True;
4672
82c80734
RD
4673 -- We need a special case for operators, since they don't appear
4674 -- explicitly.
996ae0b0
RK
4675
4676 if Ctype = Type_Conformant then
4677 if Ekind (New_Id) = E_Operator
4678 and then Operator_Matches_Spec (New_Id, Old_Id)
4679 then
4680 return;
4681 end if;
4682 end if;
4683
4684 -- If both are functions/operators, check return types conform
4685
4686 if Old_Type /= Standard_Void_Type
4687 and then New_Type /= Standard_Void_Type
4688 then
fceeaab6
ES
4689 -- If we are checking interface conformance we omit controlling
4690 -- arguments and result, because we are only checking the conformance
4691 -- of the remaining parameters.
4692
4693 if Has_Controlling_Result (Old_Id)
4694 and then Has_Controlling_Result (New_Id)
4695 and then Skip_Controlling_Formals
4696 then
4697 null;
4698
4699 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
7f568bfa
AC
4700 if Ctype >= Subtype_Conformant
4701 and then not Predicates_Match (Old_Type, New_Type)
4702 then
4703 Conformance_Error
4704 ("\predicate of return type does not match!", New_Id);
4705 else
4706 Conformance_Error
4707 ("\return type does not match!", New_Id);
4708 end if;
4709
996ae0b0
RK
4710 return;
4711 end if;
4712
41251c60 4713 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 4714 -- null-exclusion and access-to-constant attributes match.
41251c60 4715
0791fbe9 4716 if Ada_Version >= Ada_2005
41251c60
JM
4717 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4718 and then
8fde064e
AC
4719 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4720 or else Is_Access_Constant (Etype (Old_Type)) /=
4721 Is_Access_Constant (Etype (New_Type)))
41251c60 4722 then
5d37ba92 4723 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
4724 return;
4725 end if;
4726
996ae0b0
RK
4727 -- If either is a function/operator and the other isn't, error
4728
4729 elsif Old_Type /= Standard_Void_Type
4730 or else New_Type /= Standard_Void_Type
4731 then
5d37ba92 4732 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
4733 return;
4734 end if;
4735
0a36105d 4736 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
4737 -- If this is a renaming as body, refine error message to indicate that
4738 -- the conflict is with the original declaration. If the entity is not
4739 -- frozen, the conventions don't have to match, the one of the renamed
4740 -- entity is inherited.
4741
4742 if Ctype >= Subtype_Conformant then
996ae0b0 4743 if Convention (Old_Id) /= Convention (New_Id) then
996ae0b0
RK
4744 if not Is_Frozen (New_Id) then
4745 null;
4746
4747 elsif Present (Err_Loc)
4748 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4749 and then Present (Corresponding_Spec (Err_Loc))
4750 then
4751 Error_Msg_Name_1 := Chars (New_Id);
4752 Error_Msg_Name_2 :=
4753 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5d37ba92 4754 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
4755
4756 else
5d37ba92 4757 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
4758 end if;
4759
4760 return;
4761
4762 elsif Is_Formal_Subprogram (Old_Id)
4763 or else Is_Formal_Subprogram (New_Id)
4764 then
5d37ba92 4765 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0 4766 return;
c5cec2fe
AC
4767
4768 -- Pragma Ghost behaves as a convention in the context of subtype
4769 -- conformance (SPARK RM 6.9(5)).
4770
4771 elsif Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id) then
4772 Conformance_Error ("\ghost modes do not match!");
4773 return;
996ae0b0
RK
4774 end if;
4775 end if;
4776
4777 -- Deal with parameters
4778
4779 -- Note: we use the entity information, rather than going directly
4780 -- to the specification in the tree. This is not only simpler, but
4781 -- absolutely necessary for some cases of conformance tests between
a90bd866 4782 -- operators, where the declaration tree simply does not exist.
996ae0b0
RK
4783
4784 Old_Formal := First_Formal (Old_Id);
4785 New_Formal := First_Formal (New_Id);
996ae0b0 4786 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
4787 if Is_Controlling_Formal (Old_Formal)
4788 and then Is_Controlling_Formal (New_Formal)
4789 and then Skip_Controlling_Formals
4790 then
a2dc5812
AC
4791 -- The controlling formals will have different types when
4792 -- comparing an interface operation with its match, but both
4793 -- or neither must be access parameters.
4794
4795 if Is_Access_Type (Etype (Old_Formal))
4796 =
4797 Is_Access_Type (Etype (New_Formal))
4798 then
4799 goto Skip_Controlling_Formal;
4800 else
4801 Conformance_Error
4802 ("\access parameter does not match!", New_Formal);
4803 end if;
41251c60
JM
4804 end if;
4805
21791d97 4806 -- Ada 2012: Mode conformance also requires that formal parameters
2a290fec
AC
4807 -- be both aliased, or neither.
4808
21791d97 4809 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
2a290fec
AC
4810 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4811 Conformance_Error
4812 ("\aliased parameter mismatch!", New_Formal);
4813 end if;
4814 end if;
4815
fbf5a39b
AC
4816 if Ctype = Fully_Conformant then
4817
4818 -- Names must match. Error message is more accurate if we do
4819 -- this before checking that the types of the formals match.
4820
4821 if Chars (Old_Formal) /= Chars (New_Formal) then
3ccedacc 4822 Conformance_Error ("\name& does not match!", New_Formal);
fbf5a39b
AC
4823
4824 -- Set error posted flag on new formal as well to stop
4825 -- junk cascaded messages in some cases.
4826
4827 Set_Error_Posted (New_Formal);
4828 return;
4829 end if;
40b93859
RD
4830
4831 -- Null exclusion must match
4832
4833 if Null_Exclusion_Present (Parent (Old_Formal))
4834 /=
4835 Null_Exclusion_Present (Parent (New_Formal))
4836 then
4837 -- Only give error if both come from source. This should be
4838 -- investigated some time, since it should not be needed ???
4839
4840 if Comes_From_Source (Old_Formal)
4841 and then
4842 Comes_From_Source (New_Formal)
4843 then
4844 Conformance_Error
3ccedacc 4845 ("\null exclusion for& does not match", New_Formal);
40b93859
RD
4846
4847 -- Mark error posted on the new formal to avoid duplicated
4848 -- complaint about types not matching.
4849
4850 Set_Error_Posted (New_Formal);
4851 end if;
4852 end if;
fbf5a39b 4853 end if;
996ae0b0 4854
ec4867fa
ES
4855 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4856 -- case occurs whenever a subprogram is being renamed and one of its
4857 -- parameters imposes a null exclusion. For example:
4858
4859 -- type T is null record;
4860 -- type Acc_T is access T;
4861 -- subtype Acc_T_Sub is Acc_T;
4862
4863 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4864 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4865 -- renames P;
4866
4867 Old_Formal_Base := Etype (Old_Formal);
4868 New_Formal_Base := Etype (New_Formal);
4869
4870 if Get_Inst then
4871 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4872 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4873 end if;
4874
0791fbe9 4875 Access_Types_Match := Ada_Version >= Ada_2005
ec4867fa 4876
8fde064e
AC
4877 -- Ensure that this rule is only applied when New_Id is a
4878 -- renaming of Old_Id.
ec4867fa 4879
5d37ba92
ES
4880 and then Nkind (Parent (Parent (New_Id))) =
4881 N_Subprogram_Renaming_Declaration
ec4867fa
ES
4882 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4883 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4884 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4885
8fde064e 4886 -- Now handle the allowed access-type case
ec4867fa
ES
4887
4888 and then Is_Access_Type (Old_Formal_Base)
4889 and then Is_Access_Type (New_Formal_Base)
5d37ba92 4890
8fde064e
AC
4891 -- The type kinds must match. The only exception occurs with
4892 -- multiple generics of the form:
5d37ba92 4893
8fde064e
AC
4894 -- generic generic
4895 -- type F is private; type A is private;
4896 -- type F_Ptr is access F; type A_Ptr is access A;
4897 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4898 -- package F_Pack is ... package A_Pack is
4899 -- package F_Inst is
4900 -- new F_Pack (A, A_Ptr, A_P);
5d37ba92 4901
8fde064e
AC
4902 -- When checking for conformance between the parameters of A_P
4903 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4904 -- because the compiler has transformed A_Ptr into a subtype of
4905 -- F_Ptr. We catch this case in the code below.
5d37ba92
ES
4906
4907 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4908 or else
4909 (Is_Generic_Type (Old_Formal_Base)
4910 and then Is_Generic_Type (New_Formal_Base)
4911 and then Is_Internal (New_Formal_Base)
4912 and then Etype (Etype (New_Formal_Base)) =
4913 Old_Formal_Base))
ec4867fa 4914 and then Directly_Designated_Type (Old_Formal_Base) =
8fde064e 4915 Directly_Designated_Type (New_Formal_Base)
ec4867fa
ES
4916 and then ((Is_Itype (Old_Formal_Base)
4917 and then Can_Never_Be_Null (Old_Formal_Base))
4918 or else
4919 (Is_Itype (New_Formal_Base)
4920 and then Can_Never_Be_Null (New_Formal_Base)));
4921
996ae0b0
RK
4922 -- Types must always match. In the visible part of an instance,
4923 -- usual overloading rules for dispatching operations apply, and
4924 -- we check base types (not the actual subtypes).
4925
4926 if In_Instance_Visible_Part
4927 and then Is_Dispatching_Operation (New_Id)
4928 then
4929 if not Conforming_Types
ec4867fa
ES
4930 (T1 => Base_Type (Etype (Old_Formal)),
4931 T2 => Base_Type (Etype (New_Formal)),
4932 Ctype => Ctype,
4933 Get_Inst => Get_Inst)
4934 and then not Access_Types_Match
996ae0b0 4935 then
5d37ba92 4936 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
4937 return;
4938 end if;
4939
4940 elsif not Conforming_Types
5d37ba92
ES
4941 (T1 => Old_Formal_Base,
4942 T2 => New_Formal_Base,
ec4867fa
ES
4943 Ctype => Ctype,
4944 Get_Inst => Get_Inst)
4945 and then not Access_Types_Match
996ae0b0 4946 then
c27f2f15
RD
4947 -- Don't give error message if old type is Any_Type. This test
4948 -- avoids some cascaded errors, e.g. in case of a bad spec.
4949
4950 if Errmsg and then Old_Formal_Base = Any_Type then
4951 Conforms := False;
4952 else
7f568bfa
AC
4953 if Ctype >= Subtype_Conformant
4954 and then
4955 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4956 then
4957 Conformance_Error
4958 ("\predicate of & does not match!", New_Formal);
4959 else
4960 Conformance_Error
4961 ("\type of & does not match!", New_Formal);
4962 end if;
c27f2f15
RD
4963 end if;
4964
996ae0b0
RK
4965 return;
4966 end if;
4967
4968 -- For mode conformance, mode must match
4969
5d37ba92
ES
4970 if Ctype >= Mode_Conformant then
4971 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
dd54644b
JM
4972 if not Ekind_In (New_Id, E_Function, E_Procedure)
4973 or else not Is_Primitive_Wrapper (New_Id)
4974 then
4975 Conformance_Error ("\mode of & does not match!", New_Formal);
c199ccf7 4976
dd54644b
JM
4977 else
4978 declare
c199ccf7 4979 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
dd54644b 4980 begin
3ccedacc 4981 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
dd54644b
JM
4982 then
4983 Error_Msg_PT (T, New_Id);
4984 else
4985 Conformance_Error
4986 ("\mode of & does not match!", New_Formal);
4987 end if;
4988 end;
4989 end if;
4990
5d37ba92
ES
4991 return;
4992
4993 -- Part of mode conformance for access types is having the same
4994 -- constant modifier.
4995
4996 elsif Access_Types_Match
4997 and then Is_Access_Constant (Old_Formal_Base) /=
4998 Is_Access_Constant (New_Formal_Base)
4999 then
5000 Conformance_Error
5001 ("\constant modifier does not match!", New_Formal);
5002 return;
5003 end if;
996ae0b0
RK
5004 end if;
5005
0a36105d 5006 if Ctype >= Subtype_Conformant then
996ae0b0 5007
0a36105d
JM
5008 -- Ada 2005 (AI-231): In case of anonymous access types check
5009 -- the null-exclusion and access-to-constant attributes must
c7b9d548
AC
5010 -- match. For null exclusion, we test the types rather than the
5011 -- formals themselves, since the attribute is only set reliably
5012 -- on the formals in the Ada 95 case, and we exclude the case
5013 -- where Old_Formal is marked as controlling, to avoid errors
5014 -- when matching completing bodies with dispatching declarations
5015 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
996ae0b0 5016
0791fbe9 5017 if Ada_Version >= Ada_2005
0a36105d
JM
5018 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5019 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5020 and then
c7b9d548
AC
5021 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5022 Can_Never_Be_Null (Etype (New_Formal))
5023 and then
5024 not Is_Controlling_Formal (Old_Formal))
0a36105d
JM
5025 or else
5026 Is_Access_Constant (Etype (Old_Formal)) /=
5027 Is_Access_Constant (Etype (New_Formal)))
40b93859
RD
5028
5029 -- Do not complain if error already posted on New_Formal. This
5030 -- avoids some redundant error messages.
5031
5032 and then not Error_Posted (New_Formal)
0a36105d
JM
5033 then
5034 -- It is allowed to omit the null-exclusion in case of stream
5035 -- attribute subprograms. We recognize stream subprograms
5036 -- through their TSS-generated suffix.
996ae0b0 5037
0a36105d
JM
5038 declare
5039 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3ada950b 5040
0a36105d
JM
5041 begin
5042 if TSS_Name /= TSS_Stream_Read
5043 and then TSS_Name /= TSS_Stream_Write
5044 and then TSS_Name /= TSS_Stream_Input
5045 and then TSS_Name /= TSS_Stream_Output
5046 then
3ada950b 5047 -- Here we have a definite conformance error. It is worth
71fb4dc8 5048 -- special casing the error message for the case of a
3ada950b
AC
5049 -- controlling formal (which excludes null).
5050
5051 if Is_Controlling_Formal (New_Formal) then
5052 Error_Msg_Node_2 := Scope (New_Formal);
5053 Conformance_Error
3ccedacc
AC
5054 ("\controlling formal & of & excludes null, "
5055 & "declaration must exclude null as well",
5056 New_Formal);
3ada950b
AC
5057
5058 -- Normal case (couldn't we give more detail here???)
5059
5060 else
5061 Conformance_Error
5062 ("\type of & does not match!", New_Formal);
5063 end if;
5064
0a36105d
JM
5065 return;
5066 end if;
5067 end;
5068 end if;
5069 end if;
41251c60 5070
0a36105d 5071 -- Full conformance checks
41251c60 5072
0a36105d 5073 if Ctype = Fully_Conformant then
e660dbf7 5074
0a36105d 5075 -- We have checked already that names match
e660dbf7 5076
0a36105d 5077 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
5078
5079 -- Check default expressions for in parameters
5080
996ae0b0
RK
5081 declare
5082 NewD : constant Boolean :=
5083 Present (Default_Value (New_Formal));
5084 OldD : constant Boolean :=
5085 Present (Default_Value (Old_Formal));
5086 begin
5087 if NewD or OldD then
5088
82c80734
RD
5089 -- The old default value has been analyzed because the
5090 -- current full declaration will have frozen everything
0a36105d
JM
5091 -- before. The new default value has not been analyzed,
5092 -- so analyze it now before we check for conformance.
996ae0b0
RK
5093
5094 if NewD then
0a36105d 5095 Push_Scope (New_Id);
21d27997 5096 Preanalyze_Spec_Expression
fbf5a39b 5097 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
5098 End_Scope;
5099 end if;
5100
5101 if not (NewD and OldD)
5102 or else not Fully_Conformant_Expressions
5103 (Default_Value (Old_Formal),
5104 Default_Value (New_Formal))
5105 then
5106 Conformance_Error
5d37ba92 5107 ("\default expression for & does not match!",
996ae0b0
RK
5108 New_Formal);
5109 return;
5110 end if;
5111 end if;
5112 end;
5113 end if;
5114 end if;
5115
5116 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 5117 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
5118 -- or if either old or new instance is not from the source program.
5119
0ab80019 5120 if Ada_Version = Ada_83
996ae0b0
RK
5121 and then Sloc (Old_Id) > Standard_Location
5122 and then Sloc (New_Id) > Standard_Location
5123 and then Comes_From_Source (Old_Id)
5124 and then Comes_From_Source (New_Id)
5125 then
5126 declare
5127 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5128 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5129
5130 begin
5131 -- Explicit IN must be present or absent in both cases. This
5132 -- test is required only in the full conformance case.
5133
5134 if In_Present (Old_Param) /= In_Present (New_Param)
5135 and then Ctype = Fully_Conformant
5136 then
5137 Conformance_Error
5d37ba92 5138 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
5139 New_Formal);
5140 return;
5141 end if;
5142
5143 -- Grouping (use of comma in param lists) must be the same
5144 -- This is where we catch a misconformance like:
5145
0a36105d 5146 -- A, B : Integer
996ae0b0
RK
5147 -- A : Integer; B : Integer
5148
5149 -- which are represented identically in the tree except
5150 -- for the setting of the flags More_Ids and Prev_Ids.
5151
5152 if More_Ids (Old_Param) /= More_Ids (New_Param)
5153 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5154 then
5155 Conformance_Error
5d37ba92 5156 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
5157 return;
5158 end if;
5159 end;
5160 end if;
5161
41251c60
JM
5162 -- This label is required when skipping controlling formals
5163
5164 <<Skip_Controlling_Formal>>
5165
996ae0b0
RK
5166 Next_Formal (Old_Formal);
5167 Next_Formal (New_Formal);
5168 end loop;
5169
5170 if Present (Old_Formal) then
5d37ba92 5171 Conformance_Error ("\too few parameters!");
996ae0b0
RK
5172 return;
5173
5174 elsif Present (New_Formal) then
5d37ba92 5175 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
5176 return;
5177 end if;
996ae0b0
RK
5178 end Check_Conformance;
5179
ec4867fa
ES
5180 -----------------------
5181 -- Check_Conventions --
5182 -----------------------
5183
5184 procedure Check_Conventions (Typ : Entity_Id) is
ce2b6ba5 5185 Ifaces_List : Elist_Id;
0a36105d 5186
ce2b6ba5 5187 procedure Check_Convention (Op : Entity_Id);
0a36105d
JM
5188 -- Verify that the convention of inherited dispatching operation Op is
5189 -- consistent among all subprograms it overrides. In order to minimize
5190 -- the search, Search_From is utilized to designate a specific point in
5191 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
5192
5193 ----------------------
5194 -- Check_Convention --
5195 ----------------------
5196
ce2b6ba5 5197 procedure Check_Convention (Op : Entity_Id) is
c5cec2fe 5198 Op_Conv : constant Convention_Id := Convention (Op);
9f6aaa5c 5199 Iface_Conv : Convention_Id;
ce2b6ba5
JM
5200 Iface_Elmt : Elmt_Id;
5201 Iface_Prim_Elmt : Elmt_Id;
5202 Iface_Prim : Entity_Id;
ec4867fa 5203
ce2b6ba5
JM
5204 begin
5205 Iface_Elmt := First_Elmt (Ifaces_List);
5206 while Present (Iface_Elmt) loop
5207 Iface_Prim_Elmt :=
9f6aaa5c 5208 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
ce2b6ba5
JM
5209 while Present (Iface_Prim_Elmt) loop
5210 Iface_Prim := Node (Iface_Prim_Elmt);
c5cec2fe 5211 Iface_Conv := Convention (Iface_Prim);
ce2b6ba5
JM
5212
5213 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
9f6aaa5c 5214 and then Iface_Conv /= Op_Conv
ce2b6ba5 5215 then
ed2233dc 5216 Error_Msg_N
ce2b6ba5 5217 ("inconsistent conventions in primitive operations", Typ);
ec4867fa 5218
ce2b6ba5 5219 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c 5220 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
ce2b6ba5 5221 Error_Msg_Sloc := Sloc (Op);
ec4867fa 5222
7a963087 5223 if Comes_From_Source (Op) or else No (Alias (Op)) then
038140ed 5224 if not Present (Overridden_Operation (Op)) then
ed2233dc 5225 Error_Msg_N ("\\primitive % defined #", Typ);
ce2b6ba5 5226 else
ed2233dc 5227 Error_Msg_N
3ccedacc
AC
5228 ("\\overriding operation % with "
5229 & "convention % defined #", Typ);
ce2b6ba5 5230 end if;
ec4867fa 5231
ce2b6ba5
JM
5232 else pragma Assert (Present (Alias (Op)));
5233 Error_Msg_Sloc := Sloc (Alias (Op));
3ccedacc
AC
5234 Error_Msg_N ("\\inherited operation % with "
5235 & "convention % defined #", Typ);
ce2b6ba5 5236 end if;
ec4867fa 5237
ce2b6ba5 5238 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c
AC
5239 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5240 Error_Msg_Sloc := Sloc (Iface_Prim);
3ccedacc
AC
5241 Error_Msg_N ("\\overridden operation % with "
5242 & "convention % defined #", Typ);
ec4867fa 5243
ce2b6ba5 5244 -- Avoid cascading errors
ec4867fa 5245
ce2b6ba5
JM
5246 return;
5247 end if;
ec4867fa 5248
ce2b6ba5
JM
5249 Next_Elmt (Iface_Prim_Elmt);
5250 end loop;
ec4867fa 5251
ce2b6ba5 5252 Next_Elmt (Iface_Elmt);
ec4867fa
ES
5253 end loop;
5254 end Check_Convention;
5255
5256 -- Local variables
5257
5258 Prim_Op : Entity_Id;
5259 Prim_Op_Elmt : Elmt_Id;
5260
5261 -- Start of processing for Check_Conventions
5262
5263 begin
ce2b6ba5
JM
5264 if not Has_Interfaces (Typ) then
5265 return;
5266 end if;
5267
5268 Collect_Interfaces (Typ, Ifaces_List);
5269
0a36105d
JM
5270 -- The algorithm checks every overriding dispatching operation against
5271 -- all the corresponding overridden dispatching operations, detecting
f3d57416 5272 -- differences in conventions.
ec4867fa
ES
5273
5274 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5275 while Present (Prim_Op_Elmt) loop
5276 Prim_Op := Node (Prim_Op_Elmt);
5277
0a36105d 5278 -- A small optimization: skip the predefined dispatching operations
ce2b6ba5 5279 -- since they always have the same convention.
ec4867fa 5280
ce2b6ba5
JM
5281 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5282 Check_Convention (Prim_Op);
ec4867fa
ES
5283 end if;
5284
5285 Next_Elmt (Prim_Op_Elmt);
5286 end loop;
5287 end Check_Conventions;
5288
996ae0b0
RK
5289 ------------------------------
5290 -- Check_Delayed_Subprogram --
5291 ------------------------------
5292
5293 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5294 F : Entity_Id;
5295
5296 procedure Possible_Freeze (T : Entity_Id);
5297 -- T is the type of either a formal parameter or of the return type.
5298 -- If T is not yet frozen and needs a delayed freeze, then the
4a13695c
AC
5299 -- subprogram itself must be delayed. If T is the limited view of an
5300 -- incomplete type the subprogram must be frozen as well, because
5301 -- T may depend on local types that have not been frozen yet.
996ae0b0 5302
82c80734
RD
5303 ---------------------
5304 -- Possible_Freeze --
5305 ---------------------
5306
996ae0b0
RK
5307 procedure Possible_Freeze (T : Entity_Id) is
5308 begin
4a13695c 5309 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
996ae0b0
RK
5310 Set_Has_Delayed_Freeze (Designator);
5311
5312 elsif Is_Access_Type (T)
5313 and then Has_Delayed_Freeze (Designated_Type (T))
5314 and then not Is_Frozen (Designated_Type (T))
5315 then
5316 Set_Has_Delayed_Freeze (Designator);
e358346d 5317
7b56a91b
AC
5318 elsif Ekind (T) = E_Incomplete_Type
5319 and then From_Limited_With (T)
5320 then
e358346d 5321 Set_Has_Delayed_Freeze (Designator);
406935b6 5322
9aff36e9
RD
5323 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5324 -- of a subprogram or entry declaration.
406935b6
AC
5325
5326 elsif Ekind (T) = E_Incomplete_Type
5327 and then Ada_Version >= Ada_2012
5328 then
5329 Set_Has_Delayed_Freeze (Designator);
996ae0b0 5330 end if;
4a13695c 5331
996ae0b0
RK
5332 end Possible_Freeze;
5333
5334 -- Start of processing for Check_Delayed_Subprogram
5335
5336 begin
76e3504f
AC
5337 -- All subprograms, including abstract subprograms, may need a freeze
5338 -- node if some formal type or the return type needs one.
996ae0b0 5339
76e3504f
AC
5340 Possible_Freeze (Etype (Designator));
5341 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
996ae0b0 5342
76e3504f
AC
5343 -- Need delayed freeze if any of the formal types themselves need
5344 -- a delayed freeze and are not yet frozen.
996ae0b0 5345
76e3504f
AC
5346 F := First_Formal (Designator);
5347 while Present (F) loop
5348 Possible_Freeze (Etype (F));
5349 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5350 Next_Formal (F);
5351 end loop;
996ae0b0
RK
5352
5353 -- Mark functions that return by reference. Note that it cannot be
5354 -- done for delayed_freeze subprograms because the underlying
5355 -- returned type may not be known yet (for private types)
5356
8fde064e 5357 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
996ae0b0
RK
5358 declare
5359 Typ : constant Entity_Id := Etype (Designator);
5360 Utyp : constant Entity_Id := Underlying_Type (Typ);
996ae0b0 5361 begin
51245e2d 5362 if Is_Limited_View (Typ) then
996ae0b0 5363 Set_Returns_By_Ref (Designator);
048e5cef 5364 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
996ae0b0
RK
5365 Set_Returns_By_Ref (Designator);
5366 end if;
5367 end;
5368 end if;
5369 end Check_Delayed_Subprogram;
5370
5371 ------------------------------------
5372 -- Check_Discriminant_Conformance --
5373 ------------------------------------
5374
5375 procedure Check_Discriminant_Conformance
5376 (N : Node_Id;
5377 Prev : Entity_Id;
5378 Prev_Loc : Node_Id)
5379 is
5380 Old_Discr : Entity_Id := First_Discriminant (Prev);
5381 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5382 New_Discr_Id : Entity_Id;
5383 New_Discr_Type : Entity_Id;
5384
5385 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
5386 -- Post error message for conformance error on given node. Two messages
5387 -- are output. The first points to the previous declaration with a
5388 -- general "no conformance" message. The second is the detailed reason,
5389 -- supplied as Msg. The parameter N provide information for a possible
5390 -- & insertion in the message.
996ae0b0
RK
5391
5392 -----------------------
5393 -- Conformance_Error --
5394 -----------------------
5395
5396 procedure Conformance_Error (Msg : String; N : Node_Id) is
5397 begin
5398 Error_Msg_Sloc := Sloc (Prev_Loc);
483c78cb
RD
5399 Error_Msg_N -- CODEFIX
5400 ("not fully conformant with declaration#!", N);
996ae0b0
RK
5401 Error_Msg_NE (Msg, N, N);
5402 end Conformance_Error;
5403
5404 -- Start of processing for Check_Discriminant_Conformance
5405
5406 begin
5407 while Present (Old_Discr) and then Present (New_Discr) loop
996ae0b0
RK
5408 New_Discr_Id := Defining_Identifier (New_Discr);
5409
82c80734
RD
5410 -- The subtype mark of the discriminant on the full type has not
5411 -- been analyzed so we do it here. For an access discriminant a new
5412 -- type is created.
996ae0b0
RK
5413
5414 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5415 New_Discr_Type :=
5416 Access_Definition (N, Discriminant_Type (New_Discr));
5417
5418 else
5419 Analyze (Discriminant_Type (New_Discr));
5420 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
e50e1c5e
AC
5421
5422 -- Ada 2005: if the discriminant definition carries a null
5423 -- exclusion, create an itype to check properly for consistency
5424 -- with partial declaration.
5425
5426 if Is_Access_Type (New_Discr_Type)
8fde064e 5427 and then Null_Exclusion_Present (New_Discr)
e50e1c5e
AC
5428 then
5429 New_Discr_Type :=
5430 Create_Null_Excluding_Itype
5431 (T => New_Discr_Type,
5432 Related_Nod => New_Discr,
5433 Scope_Id => Current_Scope);
5434 end if;
996ae0b0
RK
5435 end if;
5436
5437 if not Conforming_Types
5438 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5439 then
5440 Conformance_Error ("type of & does not match!", New_Discr_Id);
5441 return;
fbf5a39b 5442 else
82c80734
RD
5443 -- Treat the new discriminant as an occurrence of the old one,
5444 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
5445 -- information, for completeness.
5446
5447 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5448 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5449 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
5450 end if;
5451
5452 -- Names must match
5453
5454 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5455 Conformance_Error ("name & does not match!", New_Discr_Id);
5456 return;
5457 end if;
5458
5459 -- Default expressions must match
5460
5461 declare
5462 NewD : constant Boolean :=
5463 Present (Expression (New_Discr));
5464 OldD : constant Boolean :=
5465 Present (Expression (Parent (Old_Discr)));
5466
5467 begin
5468 if NewD or OldD then
5469
5470 -- The old default value has been analyzed and expanded,
5471 -- because the current full declaration will have frozen
82c80734
RD
5472 -- everything before. The new default values have not been
5473 -- expanded, so expand now to check conformance.
996ae0b0
RK
5474
5475 if NewD then
21d27997 5476 Preanalyze_Spec_Expression
996ae0b0
RK
5477 (Expression (New_Discr), New_Discr_Type);
5478 end if;
5479
5480 if not (NewD and OldD)
5481 or else not Fully_Conformant_Expressions
5482 (Expression (Parent (Old_Discr)),
5483 Expression (New_Discr))
5484
5485 then
5486 Conformance_Error
5487 ("default expression for & does not match!",
5488 New_Discr_Id);
5489 return;
5490 end if;
5491 end if;
5492 end;
5493
5494 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5495
0ab80019 5496 if Ada_Version = Ada_83 then
996ae0b0
RK
5497 declare
5498 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5499
5500 begin
5501 -- Grouping (use of comma in param lists) must be the same
5502 -- This is where we catch a misconformance like:
5503
60370fb1 5504 -- A, B : Integer
996ae0b0
RK
5505 -- A : Integer; B : Integer
5506
5507 -- which are represented identically in the tree except
5508 -- for the setting of the flags More_Ids and Prev_Ids.
5509
5510 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5511 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5512 then
5513 Conformance_Error
5514 ("grouping of & does not match!", New_Discr_Id);
5515 return;
5516 end if;
5517 end;
5518 end if;
5519
5520 Next_Discriminant (Old_Discr);
5521 Next (New_Discr);
5522 end loop;
5523
5524 if Present (Old_Discr) then
5525 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5526 return;
5527
5528 elsif Present (New_Discr) then
5529 Conformance_Error
5530 ("too many discriminants!", Defining_Identifier (New_Discr));
5531 return;
5532 end if;
5533 end Check_Discriminant_Conformance;
5534
5535 ----------------------------
5536 -- Check_Fully_Conformant --
5537 ----------------------------
5538
5539 procedure Check_Fully_Conformant
5540 (New_Id : Entity_Id;
5541 Old_Id : Entity_Id;
5542 Err_Loc : Node_Id := Empty)
5543 is
5544 Result : Boolean;
81db9d77 5545 pragma Warnings (Off, Result);
996ae0b0
RK
5546 begin
5547 Check_Conformance
5548 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5549 end Check_Fully_Conformant;
5550
5551 ---------------------------
5552 -- Check_Mode_Conformant --
5553 ---------------------------
5554
5555 procedure Check_Mode_Conformant
5556 (New_Id : Entity_Id;
5557 Old_Id : Entity_Id;
5558 Err_Loc : Node_Id := Empty;
5559 Get_Inst : Boolean := False)
5560 is
5561 Result : Boolean;
81db9d77 5562 pragma Warnings (Off, Result);
996ae0b0
RK
5563 begin
5564 Check_Conformance
5565 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5566 end Check_Mode_Conformant;
5567
fbf5a39b 5568 --------------------------------
758c442c 5569 -- Check_Overriding_Indicator --
fbf5a39b
AC
5570 --------------------------------
5571
758c442c 5572 procedure Check_Overriding_Indicator
ec4867fa 5573 (Subp : Entity_Id;
5d37ba92
ES
5574 Overridden_Subp : Entity_Id;
5575 Is_Primitive : Boolean)
fbf5a39b 5576 is
758c442c
GD
5577 Decl : Node_Id;
5578 Spec : Node_Id;
fbf5a39b
AC
5579
5580 begin
ec4867fa 5581 -- No overriding indicator for literals
fbf5a39b 5582
ec4867fa 5583 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 5584 return;
fbf5a39b 5585
ec4867fa
ES
5586 elsif Ekind (Subp) = E_Entry then
5587 Decl := Parent (Subp);
5588
53b10ce9
AC
5589 -- No point in analyzing a malformed operator
5590
5591 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5592 and then Error_Posted (Subp)
5593 then
5594 return;
5595
758c442c
GD
5596 else
5597 Decl := Unit_Declaration_Node (Subp);
5598 end if;
fbf5a39b 5599
800621e0
RD
5600 if Nkind_In (Decl, N_Subprogram_Body,
5601 N_Subprogram_Body_Stub,
5602 N_Subprogram_Declaration,
5603 N_Abstract_Subprogram_Declaration,
5604 N_Subprogram_Renaming_Declaration)
758c442c
GD
5605 then
5606 Spec := Specification (Decl);
ec4867fa
ES
5607
5608 elsif Nkind (Decl) = N_Entry_Declaration then
5609 Spec := Decl;
5610
758c442c
GD
5611 else
5612 return;
5613 end if;
fbf5a39b 5614
e7d72fb9
AC
5615 -- The overriding operation is type conformant with the overridden one,
5616 -- but the names of the formals are not required to match. If the names
6823270c 5617 -- appear permuted in the overriding operation, this is a possible
e7d72fb9
AC
5618 -- source of confusion that is worth diagnosing. Controlling formals
5619 -- often carry names that reflect the type, and it is not worthwhile
5620 -- requiring that their names match.
5621
c9e7bd8e 5622 if Present (Overridden_Subp)
e7d72fb9
AC
5623 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5624 then
5625 declare
5626 Form1 : Entity_Id;
5627 Form2 : Entity_Id;
5628
5629 begin
5630 Form1 := First_Formal (Subp);
5631 Form2 := First_Formal (Overridden_Subp);
5632
c9e7bd8e
AC
5633 -- If the overriding operation is a synchronized operation, skip
5634 -- the first parameter of the overridden operation, which is
6823270c
AC
5635 -- implicit in the new one. If the operation is declared in the
5636 -- body it is not primitive and all formals must match.
c9e7bd8e 5637
6823270c
AC
5638 if Is_Concurrent_Type (Scope (Subp))
5639 and then Is_Tagged_Type (Scope (Subp))
5640 and then not Has_Completion (Scope (Subp))
5641 then
c9e7bd8e
AC
5642 Form2 := Next_Formal (Form2);
5643 end if;
5644
e7d72fb9
AC
5645 if Present (Form1) then
5646 Form1 := Next_Formal (Form1);
5647 Form2 := Next_Formal (Form2);
5648 end if;
5649
5650 while Present (Form1) loop
5651 if not Is_Controlling_Formal (Form1)
5652 and then Present (Next_Formal (Form2))
5653 and then Chars (Form1) = Chars (Next_Formal (Form2))
5654 then
5655 Error_Msg_Node_2 := Alias (Overridden_Subp);
5656 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
ed2233dc 5657 Error_Msg_NE
19d846a0 5658 ("& does not match corresponding formal of&#",
e7d72fb9
AC
5659 Form1, Form1);
5660 exit;
5661 end if;
5662
5663 Next_Formal (Form1);
5664 Next_Formal (Form2);
5665 end loop;
5666 end;
5667 end if;
5668
676e8420
AC
5669 -- If there is an overridden subprogram, then check that there is no
5670 -- "not overriding" indicator, and mark the subprogram as overriding.
51bf9bdf
AC
5671 -- This is not done if the overridden subprogram is marked as hidden,
5672 -- which can occur for the case of inherited controlled operations
5673 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5674 -- subprogram is not itself hidden. (Note: This condition could probably
5675 -- be simplified, leaving out the testing for the specific controlled
5676 -- cases, but it seems safer and clearer this way, and echoes similar
5677 -- special-case tests of this kind in other places.)
5678
fd0d899b 5679 if Present (Overridden_Subp)
51bf9bdf
AC
5680 and then (not Is_Hidden (Overridden_Subp)
5681 or else
b69cd36a
AC
5682 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5683 Name_Adjust,
5684 Name_Finalize)
f0709ca6
AC
5685 and then Present (Alias (Overridden_Subp))
5686 and then not Is_Hidden (Alias (Overridden_Subp))))
fd0d899b 5687 then
ec4867fa
ES
5688 if Must_Not_Override (Spec) then
5689 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 5690
ec4867fa 5691 if Ekind (Subp) = E_Entry then
ed2233dc 5692 Error_Msg_NE
5d37ba92 5693 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 5694 else
ed2233dc 5695 Error_Msg_NE
5d37ba92 5696 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa 5697 end if;
21d27997 5698
bd603506 5699 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
24a120ac
AC
5700 -- as an extension of Root_Controlled, and thus has a useless Adjust
5701 -- operation. This operation should not be inherited by other limited
5702 -- controlled types. An explicit Adjust for them is not overriding.
5703
5704 elsif Must_Override (Spec)
5705 and then Chars (Overridden_Subp) = Name_Adjust
5706 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5707 and then Present (Alias (Overridden_Subp))
bd603506
RD
5708 and then
5709 Is_Predefined_File_Name
5710 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
24a120ac
AC
5711 then
5712 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5713
21d27997 5714 elsif Is_Subprogram (Subp) then
2fe829ae
ES
5715 if Is_Init_Proc (Subp) then
5716 null;
5717
5718 elsif No (Overridden_Operation (Subp)) then
1c1289e7
AC
5719
5720 -- For entities generated by Derive_Subprograms the overridden
5721 -- operation is the inherited primitive (which is available
5722 -- through the attribute alias)
5723
5724 if (Is_Dispatching_Operation (Subp)
f9673bb0 5725 or else Is_Dispatching_Operation (Overridden_Subp))
1c1289e7 5726 and then not Comes_From_Source (Overridden_Subp)
f9673bb0
AC
5727 and then Find_Dispatching_Type (Overridden_Subp) =
5728 Find_Dispatching_Type (Subp)
1c1289e7
AC
5729 and then Present (Alias (Overridden_Subp))
5730 and then Comes_From_Source (Alias (Overridden_Subp))
5731 then
039538bc
AC
5732 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5733 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
2fe829ae 5734
1c1289e7 5735 else
039538bc
AC
5736 Set_Overridden_Operation (Subp, Overridden_Subp);
5737 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
1c1289e7
AC
5738 end if;
5739 end if;
ec4867fa 5740 end if;
f937473f 5741
618fb570
AC
5742 -- If primitive flag is set or this is a protected operation, then
5743 -- the operation is overriding at the point of its declaration, so
5744 -- warn if necessary. Otherwise it may have been declared before the
5745 -- operation it overrides and no check is required.
3c25856a
AC
5746
5747 if Style_Check
618fb570
AC
5748 and then not Must_Override (Spec)
5749 and then (Is_Primitive
5750 or else Ekind (Scope (Subp)) = E_Protected_Type)
3c25856a 5751 then
235f4375
AC
5752 Style.Missing_Overriding (Decl, Subp);
5753 end if;
5754
53b10ce9
AC
5755 -- If Subp is an operator, it may override a predefined operation, if
5756 -- it is defined in the same scope as the type to which it applies.
676e8420 5757 -- In that case Overridden_Subp is empty because of our implicit
5d37ba92
ES
5758 -- representation for predefined operators. We have to check whether the
5759 -- signature of Subp matches that of a predefined operator. Note that
5760 -- first argument provides the name of the operator, and the second
5761 -- argument the signature that may match that of a standard operation.
21d27997
RD
5762 -- If the indicator is overriding, then the operator must match a
5763 -- predefined signature, because we know already that there is no
5764 -- explicit overridden operation.
f937473f 5765
21d27997 5766 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
806f6d37 5767 if Must_Not_Override (Spec) then
f937473f 5768
806f6d37
AC
5769 -- If this is not a primitive or a protected subprogram, then
5770 -- "not overriding" is illegal.
618fb570 5771
806f6d37
AC
5772 if not Is_Primitive
5773 and then Ekind (Scope (Subp)) /= E_Protected_Type
5774 then
3ccedacc
AC
5775 Error_Msg_N ("overriding indicator only allowed "
5776 & "if subprogram is primitive", Subp);
618fb570 5777
806f6d37
AC
5778 elsif Can_Override_Operator (Subp) then
5779 Error_Msg_NE
5780 ("subprogram& overrides predefined operator ", Spec, Subp);
5781 end if;
f937473f 5782
806f6d37
AC
5783 elsif Must_Override (Spec) then
5784 if No (Overridden_Operation (Subp))
5785 and then not Can_Override_Operator (Subp)
5786 then
5787 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5788 end if;
5d37ba92 5789
806f6d37
AC
5790 elsif not Error_Posted (Subp)
5791 and then Style_Check
5792 and then Can_Override_Operator (Subp)
5793 and then
5794 not Is_Predefined_File_Name
5795 (Unit_File_Name (Get_Source_Unit (Subp)))
5796 then
5797 -- If style checks are enabled, indicate that the indicator is
5798 -- missing. However, at the point of declaration, the type of
5799 -- which this is a primitive operation may be private, in which
5800 -- case the indicator would be premature.
235f4375 5801
806f6d37
AC
5802 if Has_Private_Declaration (Etype (Subp))
5803 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
53b10ce9 5804 then
806f6d37
AC
5805 null;
5806 else
5807 Style.Missing_Overriding (Decl, Subp);
5d5832bc 5808 end if;
806f6d37 5809 end if;
21d27997
RD
5810
5811 elsif Must_Override (Spec) then
5812 if Ekind (Subp) = E_Entry then
ed2233dc 5813 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5d37ba92 5814 else
ed2233dc 5815 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 5816 end if;
5d37ba92
ES
5817
5818 -- If the operation is marked "not overriding" and it's not primitive
5819 -- then an error is issued, unless this is an operation of a task or
5820 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5821 -- has been specified have already been checked above.
5822
5823 elsif Must_Not_Override (Spec)
5824 and then not Is_Primitive
5825 and then Ekind (Subp) /= E_Entry
5826 and then Ekind (Scope (Subp)) /= E_Protected_Type
5827 then
ed2233dc 5828 Error_Msg_N
5d37ba92
ES
5829 ("overriding indicator only allowed if subprogram is primitive",
5830 Subp);
5d37ba92 5831 return;
fbf5a39b 5832 end if;
758c442c 5833 end Check_Overriding_Indicator;
fbf5a39b 5834
996ae0b0
RK
5835 -------------------
5836 -- Check_Returns --
5837 -------------------
5838
0a36105d
JM
5839 -- Note: this procedure needs to know far too much about how the expander
5840 -- messes with exceptions. The use of the flag Exception_Junk and the
5841 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5842 -- works, but is not very clean. It would be better if the expansion
5843 -- routines would leave Original_Node working nicely, and we could use
5844 -- Original_Node here to ignore all the peculiar expander messing ???
5845
996ae0b0
RK
5846 procedure Check_Returns
5847 (HSS : Node_Id;
5848 Mode : Character;
c8ef728f
ES
5849 Err : out Boolean;
5850 Proc : Entity_Id := Empty)
996ae0b0
RK
5851 is
5852 Handler : Node_Id;
5853
5854 procedure Check_Statement_Sequence (L : List_Id);
5855 -- Internal recursive procedure to check a list of statements for proper
5856 -- termination by a return statement (or a transfer of control or a
5857 -- compound statement that is itself internally properly terminated).
5858
5859 ------------------------------
5860 -- Check_Statement_Sequence --
5861 ------------------------------
5862
5863 procedure Check_Statement_Sequence (L : List_Id) is
5864 Last_Stm : Node_Id;
0a36105d 5865 Stm : Node_Id;
996ae0b0
RK
5866 Kind : Node_Kind;
5867
7b27e183
AC
5868 function Assert_False return Boolean;
5869 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5870 -- rewritten as a null statement when assertions are off. The assert
5871 -- is not active, but it is still enough to kill the warning.
5872
5873 ------------------
5874 -- Assert_False --
5875 ------------------
5876
5877 function Assert_False return Boolean is
5878 Orig : constant Node_Id := Original_Node (Last_Stm);
5879
5880 begin
5881 if Nkind (Orig) = N_Pragma
5882 and then Pragma_Name (Orig) = Name_Assert
5883 and then not Error_Posted (Orig)
5884 then
5885 declare
5886 Arg : constant Node_Id :=
5887 First (Pragma_Argument_Associations (Orig));
5888 Exp : constant Node_Id := Expression (Arg);
5889 begin
5890 return Nkind (Exp) = N_Identifier
5891 and then Chars (Exp) = Name_False;
5892 end;
5893
5894 else
5895 return False;
5896 end if;
5897 end Assert_False;
5898
5899 -- Local variables
5900
996ae0b0
RK
5901 Raise_Exception_Call : Boolean;
5902 -- Set True if statement sequence terminated by Raise_Exception call
5903 -- or a Reraise_Occurrence call.
5904
7b27e183
AC
5905 -- Start of processing for Check_Statement_Sequence
5906
996ae0b0
RK
5907 begin
5908 Raise_Exception_Call := False;
5909
5910 -- Get last real statement
5911
5912 Last_Stm := Last (L);
5913
0a36105d
JM
5914 -- Deal with digging out exception handler statement sequences that
5915 -- have been transformed by the local raise to goto optimization.
5916 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5917 -- optimization has occurred, we are looking at something like:
5918
5919 -- begin
5920 -- original stmts in block
5921
5922 -- exception \
5923 -- when excep1 => |
5924 -- goto L1; | omitted if No_Exception_Propagation
5925 -- when excep2 => |
5926 -- goto L2; /
5927 -- end;
5928
5929 -- goto L3; -- skip handler when exception not raised
5930
5931 -- <<L1>> -- target label for local exception
5932 -- begin
5933 -- estmts1
5934 -- end;
5935
5936 -- goto L3;
5937
5938 -- <<L2>>
5939 -- begin
5940 -- estmts2
5941 -- end;
5942
5943 -- <<L3>>
5944
5945 -- and what we have to do is to dig out the estmts1 and estmts2
5946 -- sequences (which were the original sequences of statements in
5947 -- the exception handlers) and check them.
5948
8fde064e 5949 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
0a36105d
JM
5950 Stm := Last_Stm;
5951 loop
5952 Prev (Stm);
5953 exit when No (Stm);
5954 exit when Nkind (Stm) /= N_Block_Statement;
5955 exit when not Exception_Junk (Stm);
5956 Prev (Stm);
5957 exit when No (Stm);
5958 exit when Nkind (Stm) /= N_Label;
5959 exit when not Exception_Junk (Stm);
5960 Check_Statement_Sequence
5961 (Statements (Handled_Statement_Sequence (Next (Stm))));
5962
5963 Prev (Stm);
5964 Last_Stm := Stm;
5965 exit when No (Stm);
5966 exit when Nkind (Stm) /= N_Goto_Statement;
5967 exit when not Exception_Junk (Stm);
5968 end loop;
5969 end if;
5970
996ae0b0
RK
5971 -- Don't count pragmas
5972
5973 while Nkind (Last_Stm) = N_Pragma
5974
5975 -- Don't count call to SS_Release (can happen after Raise_Exception)
5976
5977 or else
5978 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5979 and then
5980 Nkind (Name (Last_Stm)) = N_Identifier
5981 and then
5982 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5983
5984 -- Don't count exception junk
5985
5986 or else
800621e0
RD
5987 (Nkind_In (Last_Stm, N_Goto_Statement,
5988 N_Label,
5989 N_Object_Declaration)
8fde064e 5990 and then Exception_Junk (Last_Stm))
0a36105d
JM
5991 or else Nkind (Last_Stm) in N_Push_xxx_Label
5992 or else Nkind (Last_Stm) in N_Pop_xxx_Label
e3b3266c
AC
5993
5994 -- Inserted code, such as finalization calls, is irrelevant: we only
5995 -- need to check original source.
5996
5997 or else Is_Rewrite_Insertion (Last_Stm)
996ae0b0
RK
5998 loop
5999 Prev (Last_Stm);
6000 end loop;
6001
6002 -- Here we have the "real" last statement
6003
6004 Kind := Nkind (Last_Stm);
6005
6006 -- Transfer of control, OK. Note that in the No_Return procedure
6007 -- case, we already diagnosed any explicit return statements, so
6008 -- we can treat them as OK in this context.
6009
6010 if Is_Transfer (Last_Stm) then
6011 return;
6012
6013 -- Check cases of explicit non-indirect procedure calls
6014
6015 elsif Kind = N_Procedure_Call_Statement
6016 and then Is_Entity_Name (Name (Last_Stm))
6017 then
6018 -- Check call to Raise_Exception procedure which is treated
6019 -- specially, as is a call to Reraise_Occurrence.
6020
6021 -- We suppress the warning in these cases since it is likely that
6022 -- the programmer really does not expect to deal with the case
6023 -- of Null_Occurrence, and thus would find a warning about a
6024 -- missing return curious, and raising Program_Error does not
6025 -- seem such a bad behavior if this does occur.
6026
c8ef728f
ES
6027 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6028 -- behavior will be to raise Constraint_Error (see AI-329).
6029
996ae0b0
RK
6030 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6031 or else
6032 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6033 then
6034 Raise_Exception_Call := True;
6035
6036 -- For Raise_Exception call, test first argument, if it is
6037 -- an attribute reference for a 'Identity call, then we know
6038 -- that the call cannot possibly return.
6039
6040 declare
6041 Arg : constant Node_Id :=
6042 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
6043 begin
6044 if Nkind (Arg) = N_Attribute_Reference
6045 and then Attribute_Name (Arg) = Name_Identity
6046 then
6047 return;
6048 end if;
6049 end;
6050 end if;
6051
6052 -- If statement, need to look inside if there is an else and check
6053 -- each constituent statement sequence for proper termination.
6054
6055 elsif Kind = N_If_Statement
6056 and then Present (Else_Statements (Last_Stm))
6057 then
6058 Check_Statement_Sequence (Then_Statements (Last_Stm));
6059 Check_Statement_Sequence (Else_Statements (Last_Stm));
6060
6061 if Present (Elsif_Parts (Last_Stm)) then
6062 declare
6063 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6064
6065 begin
6066 while Present (Elsif_Part) loop
6067 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6068 Next (Elsif_Part);
6069 end loop;
6070 end;
6071 end if;
6072
6073 return;
6074
6075 -- Case statement, check each case for proper termination
6076
6077 elsif Kind = N_Case_Statement then
6078 declare
6079 Case_Alt : Node_Id;
996ae0b0
RK
6080 begin
6081 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6082 while Present (Case_Alt) loop
6083 Check_Statement_Sequence (Statements (Case_Alt));
6084 Next_Non_Pragma (Case_Alt);
6085 end loop;
6086 end;
6087
6088 return;
6089
6090 -- Block statement, check its handled sequence of statements
6091
6092 elsif Kind = N_Block_Statement then
6093 declare
6094 Err1 : Boolean;
6095
6096 begin
6097 Check_Returns
6098 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6099
6100 if Err1 then
6101 Err := True;
6102 end if;
6103
6104 return;
6105 end;
6106
6107 -- Loop statement. If there is an iteration scheme, we can definitely
6108 -- fall out of the loop. Similarly if there is an exit statement, we
6109 -- can fall out. In either case we need a following return.
6110
6111 elsif Kind = N_Loop_Statement then
6112 if Present (Iteration_Scheme (Last_Stm))
6113 or else Has_Exit (Entity (Identifier (Last_Stm)))
6114 then
6115 null;
6116
f3d57416
RW
6117 -- A loop with no exit statement or iteration scheme is either
6118 -- an infinite loop, or it has some other exit (raise/return).
996ae0b0
RK
6119 -- In either case, no warning is required.
6120
6121 else
6122 return;
6123 end if;
6124
6125 -- Timed entry call, check entry call and delay alternatives
6126
6127 -- Note: in expanded code, the timed entry call has been converted
6128 -- to a set of expanded statements on which the check will work
6129 -- correctly in any case.
6130
6131 elsif Kind = N_Timed_Entry_Call then
6132 declare
6133 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6134 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6135
6136 begin
6137 -- If statement sequence of entry call alternative is missing,
6138 -- then we can definitely fall through, and we post the error
6139 -- message on the entry call alternative itself.
6140
6141 if No (Statements (ECA)) then
6142 Last_Stm := ECA;
6143
6144 -- If statement sequence of delay alternative is missing, then
6145 -- we can definitely fall through, and we post the error
6146 -- message on the delay alternative itself.
6147
6148 -- Note: if both ECA and DCA are missing the return, then we
6149 -- post only one message, should be enough to fix the bugs.
6150 -- If not we will get a message next time on the DCA when the
a90bd866 6151 -- ECA is fixed.
996ae0b0
RK
6152
6153 elsif No (Statements (DCA)) then
6154 Last_Stm := DCA;
6155
6156 -- Else check both statement sequences
6157
6158 else
6159 Check_Statement_Sequence (Statements (ECA));
6160 Check_Statement_Sequence (Statements (DCA));
6161 return;
6162 end if;
6163 end;
6164
6165 -- Conditional entry call, check entry call and else part
6166
6167 -- Note: in expanded code, the conditional entry call has been
6168 -- converted to a set of expanded statements on which the check
6169 -- will work correctly in any case.
6170
6171 elsif Kind = N_Conditional_Entry_Call then
6172 declare
6173 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6174
6175 begin
6176 -- If statement sequence of entry call alternative is missing,
6177 -- then we can definitely fall through, and we post the error
6178 -- message on the entry call alternative itself.
6179
6180 if No (Statements (ECA)) then
6181 Last_Stm := ECA;
6182
6183 -- Else check statement sequence and else part
6184
6185 else
6186 Check_Statement_Sequence (Statements (ECA));
6187 Check_Statement_Sequence (Else_Statements (Last_Stm));
6188 return;
6189 end if;
6190 end;
6191 end if;
6192
6193 -- If we fall through, issue appropriate message
6194
6195 if Mode = 'F' then
7b27e183
AC
6196
6197 -- Kill warning if last statement is a raise exception call,
6198 -- or a pragma Assert (False). Note that with assertions enabled,
6199 -- such a pragma has been converted into a raise exception call
6200 -- already, so the Assert_False is for the assertions off case.
6201
6202 if not Raise_Exception_Call and then not Assert_False then
b465ef6f
AC
6203
6204 -- In GNATprove mode, it is an error to have a missing return
6205
43417b90 6206 Error_Msg_Warn := SPARK_Mode /= On;
7b27e183
AC
6207
6208 -- Issue error message or warning
6209
4a28b181
AC
6210 Error_Msg_N
6211 ("RETURN statement missing following this statement<<!",
6212 Last_Stm);
6213 Error_Msg_N
6214 ("\Program_Error ]<<!", Last_Stm);
996ae0b0
RK
6215 end if;
6216
6217 -- Note: we set Err even though we have not issued a warning
6218 -- because we still have a case of a missing return. This is
6219 -- an extremely marginal case, probably will never be noticed
6220 -- but we might as well get it right.
6221
6222 Err := True;
6223
c8ef728f
ES
6224 -- Otherwise we have the case of a procedure marked No_Return
6225
996ae0b0 6226 else
800621e0 6227 if not Raise_Exception_Call then
4a28b181
AC
6228 if GNATprove_Mode then
6229 Error_Msg_N
6230 ("implied return after this statement "
6231 & "would have raised Program_Error", Last_Stm);
6232 else
6233 Error_Msg_N
6234 ("implied return after this statement "
6235 & "will raise Program_Error??", Last_Stm);
6236 end if;
6237
43417b90 6238 Error_Msg_Warn := SPARK_Mode /= On;
800621e0 6239 Error_Msg_NE
4a28b181 6240 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
800621e0 6241 end if;
c8ef728f
ES
6242
6243 declare
6244 RE : constant Node_Id :=
6245 Make_Raise_Program_Error (Sloc (Last_Stm),
6246 Reason => PE_Implicit_Return);
6247 begin
6248 Insert_After (Last_Stm, RE);
6249 Analyze (RE);
6250 end;
996ae0b0
RK
6251 end if;
6252 end Check_Statement_Sequence;
6253
6254 -- Start of processing for Check_Returns
6255
6256 begin
6257 Err := False;
6258 Check_Statement_Sequence (Statements (HSS));
6259
6260 if Present (Exception_Handlers (HSS)) then
6261 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6262 while Present (Handler) loop
6263 Check_Statement_Sequence (Statements (Handler));
6264 Next_Non_Pragma (Handler);
6265 end loop;
6266 end if;
6267 end Check_Returns;
6268
6269 ----------------------------
6270 -- Check_Subprogram_Order --
6271 ----------------------------
6272
6273 procedure Check_Subprogram_Order (N : Node_Id) is
6274
6275 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
dc36a7e3
RD
6276 -- This is used to check if S1 > S2 in the sense required by this test,
6277 -- for example nameab < namec, but name2 < name10.
996ae0b0 6278
82c80734
RD
6279 -----------------------------
6280 -- Subprogram_Name_Greater --
6281 -----------------------------
6282
996ae0b0
RK
6283 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6284 L1, L2 : Positive;
6285 N1, N2 : Natural;
6286
6287 begin
67336960
AC
6288 -- Deal with special case where names are identical except for a
6289 -- numerical suffix. These are handled specially, taking the numeric
6290 -- ordering from the suffix into account.
996ae0b0
RK
6291
6292 L1 := S1'Last;
6293 while S1 (L1) in '0' .. '9' loop
6294 L1 := L1 - 1;
6295 end loop;
6296
6297 L2 := S2'Last;
6298 while S2 (L2) in '0' .. '9' loop
6299 L2 := L2 - 1;
6300 end loop;
6301
67336960 6302 -- If non-numeric parts non-equal, do straight compare
996ae0b0 6303
67336960
AC
6304 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6305 return S1 > S2;
996ae0b0
RK
6306
6307 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6308 -- that a missing suffix is treated as numeric zero in this test.
6309
6310 else
6311 N1 := 0;
6312 while L1 < S1'Last loop
6313 L1 := L1 + 1;
6314 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6315 end loop;
6316
6317 N2 := 0;
6318 while L2 < S2'Last loop
6319 L2 := L2 + 1;
6320 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6321 end loop;
6322
6323 return N1 > N2;
6324 end if;
6325 end Subprogram_Name_Greater;
6326
6327 -- Start of processing for Check_Subprogram_Order
6328
6329 begin
6330 -- Check body in alpha order if this is option
6331
fbf5a39b 6332 if Style_Check
bc202b70 6333 and then Style_Check_Order_Subprograms
996ae0b0
RK
6334 and then Nkind (N) = N_Subprogram_Body
6335 and then Comes_From_Source (N)
6336 and then In_Extended_Main_Source_Unit (N)
6337 then
6338 declare
6339 LSN : String_Ptr
6340 renames Scope_Stack.Table
6341 (Scope_Stack.Last).Last_Subprogram_Name;
6342
6343 Body_Id : constant Entity_Id :=
6344 Defining_Entity (Specification (N));
6345
6346 begin
6347 Get_Decoded_Name_String (Chars (Body_Id));
6348
6349 if LSN /= null then
6350 if Subprogram_Name_Greater
6351 (LSN.all, Name_Buffer (1 .. Name_Len))
6352 then
6353 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6354 end if;
6355
6356 Free (LSN);
6357 end if;
6358
6359 LSN := new String'(Name_Buffer (1 .. Name_Len));
6360 end;
6361 end if;
6362 end Check_Subprogram_Order;
6363
6364 ------------------------------
6365 -- Check_Subtype_Conformant --
6366 ------------------------------
6367
6368 procedure Check_Subtype_Conformant
ce2b6ba5
JM
6369 (New_Id : Entity_Id;
6370 Old_Id : Entity_Id;
6371 Err_Loc : Node_Id := Empty;
f307415a
AC
6372 Skip_Controlling_Formals : Boolean := False;
6373 Get_Inst : Boolean := False)
996ae0b0
RK
6374 is
6375 Result : Boolean;
81db9d77 6376 pragma Warnings (Off, Result);
996ae0b0
RK
6377 begin
6378 Check_Conformance
ce2b6ba5 6379 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
f307415a
AC
6380 Skip_Controlling_Formals => Skip_Controlling_Formals,
6381 Get_Inst => Get_Inst);
996ae0b0
RK
6382 end Check_Subtype_Conformant;
6383
6384 ---------------------------
6385 -- Check_Type_Conformant --
6386 ---------------------------
6387
6388 procedure Check_Type_Conformant
6389 (New_Id : Entity_Id;
6390 Old_Id : Entity_Id;
6391 Err_Loc : Node_Id := Empty)
6392 is
6393 Result : Boolean;
81db9d77 6394 pragma Warnings (Off, Result);
996ae0b0
RK
6395 begin
6396 Check_Conformance
6397 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6398 end Check_Type_Conformant;
6399
806f6d37
AC
6400 ---------------------------
6401 -- Can_Override_Operator --
6402 ---------------------------
6403
6404 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6405 Typ : Entity_Id;
f146302c 6406
806f6d37
AC
6407 begin
6408 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6409 return False;
6410
6411 else
6412 Typ := Base_Type (Etype (First_Formal (Subp)));
6413
f146302c
AC
6414 -- Check explicitly that the operation is a primitive of the type
6415
806f6d37 6416 return Operator_Matches_Spec (Subp, Subp)
f146302c 6417 and then not Is_Generic_Type (Typ)
806f6d37
AC
6418 and then Scope (Subp) = Scope (Typ)
6419 and then not Is_Class_Wide_Type (Typ);
6420 end if;
6421 end Can_Override_Operator;
6422
996ae0b0
RK
6423 ----------------------
6424 -- Conforming_Types --
6425 ----------------------
6426
6427 function Conforming_Types
6428 (T1 : Entity_Id;
6429 T2 : Entity_Id;
6430 Ctype : Conformance_Type;
d05ef0ab 6431 Get_Inst : Boolean := False) return Boolean
996ae0b0
RK
6432 is
6433 Type_1 : Entity_Id := T1;
6434 Type_2 : Entity_Id := T2;
af4b9434 6435 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
996ae0b0
RK
6436
6437 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
0a36105d
JM
6438 -- If neither T1 nor T2 are generic actual types, or if they are in
6439 -- different scopes (e.g. parent and child instances), then verify that
6440 -- the base types are equal. Otherwise T1 and T2 must be on the same
6441 -- subtype chain. The whole purpose of this procedure is to prevent
6442 -- spurious ambiguities in an instantiation that may arise if two
6443 -- distinct generic types are instantiated with the same actual.
6444
5d37ba92
ES
6445 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6446 -- An access parameter can designate an incomplete type. If the
6447 -- incomplete type is the limited view of a type from a limited_
6448 -- with_clause, check whether the non-limited view is available. If
6449 -- it is a (non-limited) incomplete type, get the full view.
6450
0a36105d
JM
6451 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6452 -- Returns True if and only if either T1 denotes a limited view of T2
6453 -- or T2 denotes a limited view of T1. This can arise when the limited
6454 -- with view of a type is used in a subprogram declaration and the
6455 -- subprogram body is in the scope of a regular with clause for the
6456 -- same unit. In such a case, the two type entities can be considered
6457 -- identical for purposes of conformance checking.
996ae0b0
RK
6458
6459 ----------------------
6460 -- Base_Types_Match --
6461 ----------------------
6462
6463 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
8fde064e
AC
6464 BT1 : constant Entity_Id := Base_Type (T1);
6465 BT2 : constant Entity_Id := Base_Type (T2);
6466
996ae0b0
RK
6467 begin
6468 if T1 = T2 then
6469 return True;
6470
8fde064e 6471 elsif BT1 = BT2 then
996ae0b0 6472
0a36105d 6473 -- The following is too permissive. A more precise test should
996ae0b0
RK
6474 -- check that the generic actual is an ancestor subtype of the
6475 -- other ???.
586ecbf3 6476
70f4ad20
AC
6477 -- See code in Find_Corresponding_Spec that applies an additional
6478 -- filter to handle accidental amiguities in instances.
996ae0b0
RK
6479
6480 return not Is_Generic_Actual_Type (T1)
07fc65c4
GB
6481 or else not Is_Generic_Actual_Type (T2)
6482 or else Scope (T1) /= Scope (T2);
996ae0b0 6483
8fde064e 6484 -- If T2 is a generic actual type it is declared as the subtype of
2995860f
AC
6485 -- the actual. If that actual is itself a subtype we need to use its
6486 -- own base type to check for compatibility.
8fde064e
AC
6487
6488 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6489 return True;
6490
6491 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6492 return True;
6493
0a36105d
JM
6494 else
6495 return False;
6496 end if;
6497 end Base_Types_Match;
aa720a54 6498
5d37ba92
ES
6499 --------------------------
6500 -- Find_Designated_Type --
6501 --------------------------
6502
6503 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6504 Desig : Entity_Id;
6505
6506 begin
6507 Desig := Directly_Designated_Type (T);
6508
6509 if Ekind (Desig) = E_Incomplete_Type then
6510
6511 -- If regular incomplete type, get full view if available
6512
6513 if Present (Full_View (Desig)) then
6514 Desig := Full_View (Desig);
6515
6516 -- If limited view of a type, get non-limited view if available,
6517 -- and check again for a regular incomplete type.
6518
6519 elsif Present (Non_Limited_View (Desig)) then
6520 Desig := Get_Full_View (Non_Limited_View (Desig));
6521 end if;
6522 end if;
6523
6524 return Desig;
6525 end Find_Designated_Type;
6526
0a36105d
JM
6527 -------------------------------
6528 -- Matches_Limited_With_View --
6529 -------------------------------
6530
6531 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6532 begin
6533 -- In some cases a type imported through a limited_with clause, and
6534 -- its nonlimited view are both visible, for example in an anonymous
6535 -- access-to-class-wide type in a formal. Both entities designate the
6536 -- same type.
6537
7b56a91b 6538 if From_Limited_With (T1) and then T2 = Available_View (T1) then
aa720a54
AC
6539 return True;
6540
7b56a91b 6541 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
41251c60 6542 return True;
3e24afaa 6543
7b56a91b
AC
6544 elsif From_Limited_With (T1)
6545 and then From_Limited_With (T2)
3e24afaa
AC
6546 and then Available_View (T1) = Available_View (T2)
6547 then
6548 return True;
41251c60 6549
996ae0b0
RK
6550 else
6551 return False;
6552 end if;
0a36105d 6553 end Matches_Limited_With_View;
996ae0b0 6554
ec4867fa 6555 -- Start of processing for Conforming_Types
758c442c 6556
996ae0b0 6557 begin
8fde064e
AC
6558 -- The context is an instance association for a formal access-to-
6559 -- subprogram type; the formal parameter types require mapping because
6560 -- they may denote other formal parameters of the generic unit.
996ae0b0
RK
6561
6562 if Get_Inst then
6563 Type_1 := Get_Instance_Of (T1);
6564 Type_2 := Get_Instance_Of (T2);
6565 end if;
6566
0a36105d
JM
6567 -- If one of the types is a view of the other introduced by a limited
6568 -- with clause, treat these as conforming for all purposes.
996ae0b0 6569
0a36105d
JM
6570 if Matches_Limited_With_View (T1, T2) then
6571 return True;
6572
6573 elsif Base_Types_Match (Type_1, Type_2) then
996ae0b0
RK
6574 return Ctype <= Mode_Conformant
6575 or else Subtypes_Statically_Match (Type_1, Type_2);
6576
6577 elsif Is_Incomplete_Or_Private_Type (Type_1)
6578 and then Present (Full_View (Type_1))
6579 and then Base_Types_Match (Full_View (Type_1), Type_2)
6580 then
6581 return Ctype <= Mode_Conformant
6582 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6583
6584 elsif Ekind (Type_2) = E_Incomplete_Type
6585 and then Present (Full_View (Type_2))
6586 and then Base_Types_Match (Type_1, Full_View (Type_2))
6587 then
6588 return Ctype <= Mode_Conformant
6589 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
6590
6591 elsif Is_Private_Type (Type_2)
6592 and then In_Instance
6593 and then Present (Full_View (Type_2))
6594 and then Base_Types_Match (Type_1, Full_View (Type_2))
6595 then
6596 return Ctype <= Mode_Conformant
6597 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
996ae0b0
RK
6598 end if;
6599
0a36105d 6600 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
466c2127
AC
6601 -- treated recursively because they carry a signature. As far as
6602 -- conformance is concerned, convention plays no role, and either
6603 -- or both could be access to protected subprograms.
af4b9434
AC
6604
6605 Are_Anonymous_Access_To_Subprogram_Types :=
466c2127
AC
6606 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6607 E_Anonymous_Access_Protected_Subprogram_Type)
f937473f 6608 and then
466c2127
AC
6609 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6610 E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 6611
996ae0b0 6612 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
6613 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6614 -- the base types because we may have built internal subtype entities
6615 -- to handle null-excluding types (see Process_Formals).
996ae0b0 6616
5d37ba92
ES
6617 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6618 and then
6619 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8fde064e
AC
6620
6621 -- Ada 2005 (AI-254)
6622
6623 or else Are_Anonymous_Access_To_Subprogram_Types
996ae0b0
RK
6624 then
6625 declare
6626 Desig_1 : Entity_Id;
6627 Desig_2 : Entity_Id;
6628
6629 begin
885c4871 6630 -- In Ada 2005, access constant indicators must match for
5d37ba92 6631 -- subtype conformance.
9dcb52e1 6632
0791fbe9 6633 if Ada_Version >= Ada_2005
5d37ba92
ES
6634 and then Ctype >= Subtype_Conformant
6635 and then
6636 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6637 then
6638 return False;
996ae0b0
RK
6639 end if;
6640
5d37ba92 6641 Desig_1 := Find_Designated_Type (Type_1);
5d37ba92 6642 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 6643
5d37ba92 6644 -- If the context is an instance association for a formal
82c80734
RD
6645 -- access-to-subprogram type; formal access parameter designated
6646 -- types require mapping because they may denote other formal
6647 -- parameters of the generic unit.
996ae0b0
RK
6648
6649 if Get_Inst then
6650 Desig_1 := Get_Instance_Of (Desig_1);
6651 Desig_2 := Get_Instance_Of (Desig_2);
6652 end if;
6653
82c80734
RD
6654 -- It is possible for a Class_Wide_Type to be introduced for an
6655 -- incomplete type, in which case there is a separate class_ wide
6656 -- type for the full view. The types conform if their Etypes
6657 -- conform, i.e. one may be the full view of the other. This can
6658 -- only happen in the context of an access parameter, other uses
6659 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 6660
fbf5a39b 6661 if Is_Class_Wide_Type (Desig_1)
4adf3c50
AC
6662 and then
6663 Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
6664 then
6665 return
fbf5a39b
AC
6666 Conforming_Types
6667 (Etype (Base_Type (Desig_1)),
6668 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
6669
6670 elsif Are_Anonymous_Access_To_Subprogram_Types then
0791fbe9 6671 if Ada_Version < Ada_2005 then
758c442c
GD
6672 return Ctype = Type_Conformant
6673 or else
af4b9434
AC
6674 Subtypes_Statically_Match (Desig_1, Desig_2);
6675
758c442c
GD
6676 -- We must check the conformance of the signatures themselves
6677
6678 else
6679 declare
6680 Conformant : Boolean;
6681 begin
6682 Check_Conformance
6683 (Desig_1, Desig_2, Ctype, False, Conformant);
6684 return Conformant;
6685 end;
6686 end if;
6687
996ae0b0
RK
6688 else
6689 return Base_Type (Desig_1) = Base_Type (Desig_2)
6690 and then (Ctype = Type_Conformant
8fde064e
AC
6691 or else
6692 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
6693 end if;
6694 end;
6695
6696 -- Otherwise definitely no match
6697
6698 else
c8ef728f
ES
6699 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6700 and then Is_Access_Type (Type_2))
6701 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8fde064e 6702 and then Is_Access_Type (Type_1)))
c8ef728f
ES
6703 and then
6704 Conforming_Types
6705 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6706 then
6707 May_Hide_Profile := True;
6708 end if;
6709
996ae0b0
RK
6710 return False;
6711 end if;
996ae0b0
RK
6712 end Conforming_Types;
6713
6714 --------------------------
6715 -- Create_Extra_Formals --
6716 --------------------------
6717
6718 procedure Create_Extra_Formals (E : Entity_Id) is
6719 Formal : Entity_Id;
ec4867fa 6720 First_Extra : Entity_Id := Empty;
996ae0b0
RK
6721 Last_Extra : Entity_Id;
6722 Formal_Type : Entity_Id;
6723 P_Formal : Entity_Id := Empty;
6724
ec4867fa
ES
6725 function Add_Extra_Formal
6726 (Assoc_Entity : Entity_Id;
6727 Typ : Entity_Id;
6728 Scope : Entity_Id;
6729 Suffix : String) return Entity_Id;
6730 -- Add an extra formal to the current list of formals and extra formals.
6731 -- The extra formal is added to the end of the list of extra formals,
6732 -- and also returned as the result. These formals are always of mode IN.
6733 -- The new formal has the type Typ, is declared in Scope, and its name
6734 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
cd5a9750
AC
6735 -- The following suffixes are currently used. They should not be changed
6736 -- without coordinating with CodePeer, which makes use of these to
6737 -- provide better messages.
6738
d92eccc3
AC
6739 -- O denotes the Constrained bit.
6740 -- L denotes the accessibility level.
cd5a9750
AC
6741 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6742 -- the full list in exp_ch6.BIP_Formal_Kind.
996ae0b0 6743
fbf5a39b
AC
6744 ----------------------
6745 -- Add_Extra_Formal --
6746 ----------------------
6747
ec4867fa
ES
6748 function Add_Extra_Formal
6749 (Assoc_Entity : Entity_Id;
6750 Typ : Entity_Id;
6751 Scope : Entity_Id;
6752 Suffix : String) return Entity_Id
6753 is
996ae0b0 6754 EF : constant Entity_Id :=
ec4867fa
ES
6755 Make_Defining_Identifier (Sloc (Assoc_Entity),
6756 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 6757 Suffix => Suffix));
996ae0b0
RK
6758
6759 begin
82c80734
RD
6760 -- A little optimization. Never generate an extra formal for the
6761 -- _init operand of an initialization procedure, since it could
6762 -- never be used.
996ae0b0
RK
6763
6764 if Chars (Formal) = Name_uInit then
6765 return Empty;
6766 end if;
6767
6768 Set_Ekind (EF, E_In_Parameter);
6769 Set_Actual_Subtype (EF, Typ);
6770 Set_Etype (EF, Typ);
ec4867fa 6771 Set_Scope (EF, Scope);
996ae0b0
RK
6772 Set_Mechanism (EF, Default_Mechanism);
6773 Set_Formal_Validity (EF);
6774
ec4867fa
ES
6775 if No (First_Extra) then
6776 First_Extra := EF;
6777 Set_Extra_Formals (Scope, First_Extra);
6778 end if;
6779
6780 if Present (Last_Extra) then
6781 Set_Extra_Formal (Last_Extra, EF);
6782 end if;
6783
996ae0b0 6784 Last_Extra := EF;
ec4867fa 6785
996ae0b0
RK
6786 return EF;
6787 end Add_Extra_Formal;
6788
6789 -- Start of processing for Create_Extra_Formals
6790
6791 begin
8fde064e
AC
6792 -- We never generate extra formals if expansion is not active because we
6793 -- don't need them unless we are generating code.
f937473f
RD
6794
6795 if not Expander_Active then
6796 return;
6797 end if;
6798
e2441021
AC
6799 -- No need to generate extra formals in interface thunks whose target
6800 -- primitive has no extra formals.
6801
6802 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6803 return;
6804 end if;
6805
82c80734 6806 -- If this is a derived subprogram then the subtypes of the parent
16b05213 6807 -- subprogram's formal parameters will be used to determine the need
82c80734 6808 -- for extra formals.
996ae0b0
RK
6809
6810 if Is_Overloadable (E) and then Present (Alias (E)) then
6811 P_Formal := First_Formal (Alias (E));
6812 end if;
6813
6814 Last_Extra := Empty;
6815 Formal := First_Formal (E);
6816 while Present (Formal) loop
6817 Last_Extra := Formal;
6818 Next_Formal (Formal);
6819 end loop;
6820
f937473f 6821 -- If Extra_formals were already created, don't do it again. This
82c80734
RD
6822 -- situation may arise for subprogram types created as part of
6823 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0 6824
8fde064e 6825 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
996ae0b0
RK
6826 return;
6827 end if;
6828
19590d70
GD
6829 -- If the subprogram is a predefined dispatching subprogram then don't
6830 -- generate any extra constrained or accessibility level formals. In
6831 -- general we suppress these for internal subprograms (by not calling
6832 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6833 -- generated stream attributes do get passed through because extra
6834 -- build-in-place formals are needed in some cases (limited 'Input).
6835
bac7206d 6836 if Is_Predefined_Internal_Operation (E) then
63585f75 6837 goto Test_For_Func_Result_Extras;
19590d70
GD
6838 end if;
6839
996ae0b0 6840 Formal := First_Formal (E);
996ae0b0
RK
6841 while Present (Formal) loop
6842
6843 -- Create extra formal for supporting the attribute 'Constrained.
6844 -- The case of a private type view without discriminants also
6845 -- requires the extra formal if the underlying type has defaulted
6846 -- discriminants.
6847
6848 if Ekind (Formal) /= E_In_Parameter then
6849 if Present (P_Formal) then
6850 Formal_Type := Etype (P_Formal);
6851 else
6852 Formal_Type := Etype (Formal);
6853 end if;
6854
5d09245e
AC
6855 -- Do not produce extra formals for Unchecked_Union parameters.
6856 -- Jump directly to the end of the loop.
6857
6858 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6859 goto Skip_Extra_Formal_Generation;
6860 end if;
6861
996ae0b0
RK
6862 if not Has_Discriminants (Formal_Type)
6863 and then Ekind (Formal_Type) in Private_Kind
6864 and then Present (Underlying_Type (Formal_Type))
6865 then
6866 Formal_Type := Underlying_Type (Formal_Type);
6867 end if;
6868
5e5db3b4
GD
6869 -- Suppress the extra formal if formal's subtype is constrained or
6870 -- indefinite, or we're compiling for Ada 2012 and the underlying
6871 -- type is tagged and limited. In Ada 2012, a limited tagged type
6872 -- can have defaulted discriminants, but 'Constrained is required
6873 -- to return True, so the formal is never needed (see AI05-0214).
6874 -- Note that this ensures consistency of calling sequences for
6875 -- dispatching operations when some types in a class have defaults
6876 -- on discriminants and others do not (and requiring the extra
6877 -- formal would introduce distributed overhead).
6878
b5bdffcc
AC
6879 -- If the type does not have a completion yet, treat as prior to
6880 -- Ada 2012 for consistency.
6881
996ae0b0 6882 if Has_Discriminants (Formal_Type)
f937473f
RD
6883 and then not Is_Constrained (Formal_Type)
6884 and then not Is_Indefinite_Subtype (Formal_Type)
5e5db3b4 6885 and then (Ada_Version < Ada_2012
b5bdffcc
AC
6886 or else No (Underlying_Type (Formal_Type))
6887 or else not
6888 (Is_Limited_Type (Formal_Type)
6889 and then
6890 (Is_Tagged_Type
6891 (Underlying_Type (Formal_Type)))))
996ae0b0
RK
6892 then
6893 Set_Extra_Constrained
d92eccc3 6894 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
996ae0b0
RK
6895 end if;
6896 end if;
6897
0a36105d
JM
6898 -- Create extra formal for supporting accessibility checking. This
6899 -- is done for both anonymous access formals and formals of named
6900 -- access types that are marked as controlling formals. The latter
6901 -- case can occur when Expand_Dispatching_Call creates a subprogram
6902 -- type and substitutes the types of access-to-class-wide actuals
6903 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
6904 -- Base_Type is applied because in cases where there is a null
6905 -- exclusion the formal may have an access subtype.
996ae0b0
RK
6906
6907 -- This is suppressed if we specifically suppress accessibility
f937473f 6908 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
6909 -- package in which it resides. However, we do not suppress it
6910 -- simply if the scope has accessibility checks suppressed, since
6911 -- this could cause trouble when clients are compiled with a
6912 -- different suppression setting. The explicit checks at the
6913 -- package level are safe from this point of view.
996ae0b0 6914
5d37ba92 6915 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 6916 or else (Is_Controlling_Formal (Formal)
5d37ba92 6917 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 6918 and then not
fbf5a39b 6919 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 6920 or else
fbf5a39b 6921 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 6922 and then
c8ef728f 6923 (No (P_Formal)
996ae0b0
RK
6924 or else Present (Extra_Accessibility (P_Formal)))
6925 then
811c6a85 6926 Set_Extra_Accessibility
d92eccc3 6927 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
996ae0b0
RK
6928 end if;
6929
5d09245e
AC
6930 -- This label is required when skipping extra formal generation for
6931 -- Unchecked_Union parameters.
6932
6933 <<Skip_Extra_Formal_Generation>>
6934
f937473f
RD
6935 if Present (P_Formal) then
6936 Next_Formal (P_Formal);
6937 end if;
6938
996ae0b0
RK
6939 Next_Formal (Formal);
6940 end loop;
ec4867fa 6941
63585f75
SB
6942 <<Test_For_Func_Result_Extras>>
6943
6944 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6945 -- function call is ... determined by the point of call ...".
6946
6947 if Needs_Result_Accessibility_Level (E) then
6948 Set_Extra_Accessibility_Of_Result
6949 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6950 end if;
19590d70 6951
ec4867fa 6952 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
6953 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6954
0791fbe9 6955 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
ec4867fa 6956 declare
f937473f 6957 Result_Subt : constant Entity_Id := Etype (E);
1a36a0cd 6958 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
2fcc44fa 6959 Formal_Typ : Entity_Id;
f937473f 6960
2fcc44fa 6961 Discard : Entity_Id;
f937473f 6962 pragma Warnings (Off, Discard);
ec4867fa
ES
6963
6964 begin
f937473f 6965 -- In the case of functions with unconstrained result subtypes,
9a1bc6d5
AC
6966 -- add a 4-state formal indicating whether the return object is
6967 -- allocated by the caller (1), or should be allocated by the
6968 -- callee on the secondary stack (2), in the global heap (3), or
6969 -- in a user-defined storage pool (4). For the moment we just use
6970 -- Natural for the type of this formal. Note that this formal
6971 -- isn't usually needed in the case where the result subtype is
6972 -- constrained, but it is needed when the function has a tagged
6973 -- result, because generally such functions can be called in a
6974 -- dispatching context and such calls must be handled like calls
6975 -- to a class-wide function.
0a36105d 6976
1bb6e262 6977 if Needs_BIP_Alloc_Form (E) then
f937473f
RD
6978 Discard :=
6979 Add_Extra_Formal
6980 (E, Standard_Natural,
6981 E, BIP_Formal_Suffix (BIP_Alloc_Form));
200b7162 6982
8417f4b2 6983 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
3e452820
AC
6984 -- use a user-defined pool. This formal is not added on
6985 -- .NET/JVM/ZFP as those targets do not support pools.
200b7162 6986
ea10ca9c
AC
6987 if VM_Target = No_VM
6988 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 6989 then
8417f4b2
AC
6990 Discard :=
6991 Add_Extra_Formal
6992 (E, RTE (RE_Root_Storage_Pool_Ptr),
6993 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6994 end if;
f937473f 6995 end if;
ec4867fa 6996
df3e68b1 6997 -- In the case of functions whose result type needs finalization,
ca5af305 6998 -- add an extra formal which represents the finalization master.
df3e68b1 6999
ca5af305 7000 if Needs_BIP_Finalization_Master (E) then
f937473f
RD
7001 Discard :=
7002 Add_Extra_Formal
ca5af305
AC
7003 (E, RTE (RE_Finalization_Master_Ptr),
7004 E, BIP_Formal_Suffix (BIP_Finalization_Master));
f937473f
RD
7005 end if;
7006
94bbf008
AC
7007 -- When the result type contains tasks, add two extra formals: the
7008 -- master of the tasks to be created, and the caller's activation
7009 -- chain.
f937473f 7010
1a36a0cd 7011 if Has_Task (Full_Subt) then
f937473f
RD
7012 Discard :=
7013 Add_Extra_Formal
7014 (E, RTE (RE_Master_Id),
af89615f 7015 E, BIP_Formal_Suffix (BIP_Task_Master));
f937473f
RD
7016 Discard :=
7017 Add_Extra_Formal
7018 (E, RTE (RE_Activation_Chain_Access),
7019 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7020 end if;
ec4867fa 7021
f937473f
RD
7022 -- All build-in-place functions get an extra formal that will be
7023 -- passed the address of the return object within the caller.
ec4867fa 7024
1a36a0cd
AC
7025 Formal_Typ :=
7026 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
ec4867fa 7027
1a36a0cd
AC
7028 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7029 Set_Etype (Formal_Typ, Formal_Typ);
7030 Set_Depends_On_Private
7031 (Formal_Typ, Has_Private_Component (Formal_Typ));
7032 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7033 Set_Is_Access_Constant (Formal_Typ, False);
ec4867fa 7034
1a36a0cd
AC
7035 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7036 -- the designated type comes from the limited view (for back-end
7037 -- purposes).
ec4867fa 7038
7b56a91b
AC
7039 Set_From_Limited_With
7040 (Formal_Typ, From_Limited_With (Result_Subt));
f937473f 7041
1a36a0cd
AC
7042 Layout_Type (Formal_Typ);
7043
7044 Discard :=
7045 Add_Extra_Formal
7046 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
ec4867fa
ES
7047 end;
7048 end if;
996ae0b0
RK
7049 end Create_Extra_Formals;
7050
7051 -----------------------------
7052 -- Enter_Overloaded_Entity --
7053 -----------------------------
7054
7055 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7056 E : Entity_Id := Current_Entity_In_Scope (S);
7057 C_E : Entity_Id := Current_Entity (S);
7058
7059 begin
7060 if Present (E) then
7061 Set_Has_Homonym (E);
7062 Set_Has_Homonym (S);
7063 end if;
7064
7065 Set_Is_Immediately_Visible (S);
7066 Set_Scope (S, Current_Scope);
7067
7068 -- Chain new entity if front of homonym in current scope, so that
7069 -- homonyms are contiguous.
7070
8fde064e 7071 if Present (E) and then E /= C_E then
996ae0b0
RK
7072 while Homonym (C_E) /= E loop
7073 C_E := Homonym (C_E);
7074 end loop;
7075
7076 Set_Homonym (C_E, S);
7077
7078 else
7079 E := C_E;
7080 Set_Current_Entity (S);
7081 end if;
7082
7083 Set_Homonym (S, E);
7084
2352eadb
AC
7085 if Is_Inherited_Operation (S) then
7086 Append_Inherited_Subprogram (S);
7087 else
7088 Append_Entity (S, Current_Scope);
7089 end if;
7090
996ae0b0
RK
7091 Set_Public_Status (S);
7092
7093 if Debug_Flag_E then
7094 Write_Str ("New overloaded entity chain: ");
7095 Write_Name (Chars (S));
996ae0b0 7096
82c80734 7097 E := S;
996ae0b0
RK
7098 while Present (E) loop
7099 Write_Str (" "); Write_Int (Int (E));
7100 E := Homonym (E);
7101 end loop;
7102
7103 Write_Eol;
7104 end if;
7105
7106 -- Generate warning for hiding
7107
7108 if Warn_On_Hiding
7109 and then Comes_From_Source (S)
7110 and then In_Extended_Main_Source_Unit (S)
7111 then
7112 E := S;
7113 loop
7114 E := Homonym (E);
7115 exit when No (E);
7116
7fc53871
AC
7117 -- Warn unless genuine overloading. Do not emit warning on
7118 -- hiding predefined operators in Standard (these are either an
7119 -- (artifact of our implicit declarations, or simple noise) but
7120 -- keep warning on a operator defined on a local subtype, because
7121 -- of the real danger that different operators may be applied in
7122 -- various parts of the program.
996ae0b0 7123
1f250383
AC
7124 -- Note that if E and S have the same scope, there is never any
7125 -- hiding. Either the two conflict, and the program is illegal,
7126 -- or S is overriding an implicit inherited subprogram.
7127
7128 if Scope (E) /= Scope (S)
7129 and then (not Is_Overloadable (E)
8d606a78 7130 or else Subtype_Conformant (E, S))
f937473f
RD
7131 and then (Is_Immediately_Visible (E)
7132 or else
7133 Is_Potentially_Use_Visible (S))
996ae0b0 7134 then
7fc53871
AC
7135 if Scope (E) /= Standard_Standard then
7136 Error_Msg_Sloc := Sloc (E);
3ccedacc 7137 Error_Msg_N ("declaration of & hides one #?h?", S);
7fc53871
AC
7138
7139 elsif Nkind (S) = N_Defining_Operator_Symbol
7140 and then
1f250383 7141 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7fc53871
AC
7142 then
7143 Error_Msg_N
dbfeb4fa 7144 ("declaration of & hides predefined operator?h?", S);
7fc53871 7145 end if;
996ae0b0
RK
7146 end if;
7147 end loop;
7148 end if;
7149 end Enter_Overloaded_Entity;
7150
e5a58fac
AC
7151 -----------------------------
7152 -- Check_Untagged_Equality --
7153 -----------------------------
7154
7155 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7156 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7157 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7158 Obj_Decl : Node_Id;
7159
7160 begin
7c0c194b
AC
7161 -- This check applies only if we have a subprogram declaration with an
7162 -- untagged record type.
b2834fbd
AC
7163
7164 if Nkind (Decl) /= N_Subprogram_Declaration
7165 or else not Is_Record_Type (Typ)
7166 or else Is_Tagged_Type (Typ)
e5a58fac 7167 then
b2834fbd
AC
7168 return;
7169 end if;
e5a58fac 7170
b2834fbd
AC
7171 -- In Ada 2012 case, we will output errors or warnings depending on
7172 -- the setting of debug flag -gnatd.E.
7173
7174 if Ada_Version >= Ada_2012 then
7175 Error_Msg_Warn := Debug_Flag_Dot_EE;
7176
7177 -- In earlier versions of Ada, nothing to do unless we are warning on
7178 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7179
7180 else
7181 if not Warn_On_Ada_2012_Compatibility then
7182 return;
7183 end if;
7184 end if;
7185
7186 -- Cases where the type has already been frozen
e5a58fac 7187
b2834fbd
AC
7188 if Is_Frozen (Typ) then
7189
7190 -- If the type is not declared in a package, or if we are in the body
7191 -- of the package or in some other scope, the new operation is not
7192 -- primitive, and therefore legal, though suspicious. Should we
7193 -- generate a warning in this case ???
7194
7195 if Ekind (Scope (Typ)) /= E_Package
7196 or else Scope (Typ) /= Current_Scope
7197 then
7198 return;
7199
7200 -- If the type is a generic actual (sub)type, the operation is not
7201 -- primitive either because the base type is declared elsewhere.
7202
7203 elsif Is_Generic_Actual_Type (Typ) then
7204 return;
7205
7206 -- Here we have a definite error of declaration after freezing
7207
7208 else
7209 if Ada_Version >= Ada_2012 then
ae6ede77 7210 Error_Msg_NE
3ccedacc 7211 ("equality operator must be declared before type & is "
b2834fbd
AC
7212 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7213
7214 -- In Ada 2012 mode with error turned to warning, output one
7215 -- more warning to warn that the equality operation may not
7216 -- compose. This is the consequence of ignoring the error.
7217
7218 if Error_Msg_Warn then
7219 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7220 end if;
21a5b575
AC
7221
7222 else
7223 Error_Msg_NE
b2834fbd
AC
7224 ("equality operator must be declared before type& is "
7225 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7226 end if;
7227
7228 -- If we are in the package body, we could just move the
7229 -- declaration to the package spec, so add a message saying that.
7230
7231 if In_Package_Body (Scope (Typ)) then
7232 if Ada_Version >= Ada_2012 then
7233 Error_Msg_N
7234 ("\move declaration to package spec<<", Eq_Op);
7235 else
7236 Error_Msg_N
7237 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7238 end if;
21a5b575 7239
b2834fbd
AC
7240 -- Otherwise try to find the freezing point
7241
7242 else
21a5b575 7243 Obj_Decl := Next (Parent (Typ));
dbfeb4fa 7244 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
21a5b575
AC
7245 if Nkind (Obj_Decl) = N_Object_Declaration
7246 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7247 then
b2834fbd
AC
7248 -- Freezing point, output warnings
7249
7250 if Ada_Version >= Ada_2012 then
7251 Error_Msg_NE
7252 ("type& is frozen by declaration??", Obj_Decl, Typ);
7253 Error_Msg_N
7254 ("\an equality operator cannot be declared after "
7255 & "this point??",
7256 Obj_Decl);
7257 else
7258 Error_Msg_NE
7259 ("type& is frozen by declaration (Ada 2012)?y?",
7260 Obj_Decl, Typ);
7261 Error_Msg_N
7262 ("\an equality operator cannot be declared after "
7263 & "this point (Ada 2012)?y?",
7264 Obj_Decl);
7265 end if;
7266
21a5b575
AC
7267 exit;
7268 end if;
7269
7270 Next (Obj_Decl);
7271 end loop;
7272 end if;
b2834fbd 7273 end if;
e5a58fac 7274
b2834fbd
AC
7275 -- Here if type is not frozen yet. It is illegal to have a primitive
7276 -- equality declared in the private part if the type is visible.
21a5b575 7277
b2834fbd
AC
7278 elsif not In_Same_List (Parent (Typ), Decl)
7279 and then not Is_Limited_Type (Typ)
7280 then
7281 -- Shouldn't we give an RM reference here???
21a5b575 7282
b2834fbd
AC
7283 if Ada_Version >= Ada_2012 then
7284 Error_Msg_N
7285 ("equality operator appears too late<<", Eq_Op);
7286 else
7287 Error_Msg_N
7288 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
e5a58fac 7289 end if;
b2834fbd
AC
7290
7291 -- No error detected
7292
7293 else
7294 return;
e5a58fac
AC
7295 end if;
7296 end Check_Untagged_Equality;
7297
996ae0b0
RK
7298 -----------------------------
7299 -- Find_Corresponding_Spec --
7300 -----------------------------
7301
d44202ba
HK
7302 function Find_Corresponding_Spec
7303 (N : Node_Id;
7304 Post_Error : Boolean := True) return Entity_Id
7305 is
996ae0b0
RK
7306 Spec : constant Node_Id := Specification (N);
7307 Designator : constant Entity_Id := Defining_Entity (Spec);
7308
7309 E : Entity_Id;
7310
70f4ad20
AC
7311 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7312 -- Even if fully conformant, a body may depend on a generic actual when
7313 -- the spec does not, or vice versa, in which case they were distinct
7314 -- entities in the generic.
7315
7316 -------------------------------
7317 -- Different_Generic_Profile --
7318 -------------------------------
7319
7320 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7321 F1, F2 : Entity_Id;
7322
2995860f
AC
7323 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7324 -- Check that the types of corresponding formals have the same
7325 -- generic actual if any. We have to account for subtypes of a
7326 -- generic formal, declared between a spec and a body, which may
73999267
AC
7327 -- appear distinct in an instance but matched in the generic, and
7328 -- the subtype may be used either in the spec or the body of the
7329 -- subprogram being checked.
2995860f
AC
7330
7331 -------------------------
7332 -- Same_Generic_Actual --
7333 -------------------------
7334
7335 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
73999267
AC
7336
7337 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7338 -- Predicate to check whether S1 is a subtype of S2 in the source
7339 -- of the instance.
7340
7341 -------------------------
7342 -- Is_Declared_Subtype --
7343 -------------------------
7344
7345 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7346 begin
7347 return Comes_From_Source (Parent (S1))
7348 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7349 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7350 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7351 end Is_Declared_Subtype;
7352
7353 -- Start of processing for Same_Generic_Actual
7354
2995860f
AC
7355 begin
7356 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
73999267
AC
7357 or else Is_Declared_Subtype (T1, T2)
7358 or else Is_Declared_Subtype (T2, T1);
2995860f
AC
7359 end Same_Generic_Actual;
7360
7361 -- Start of processing for Different_Generic_Profile
7362
70f4ad20 7363 begin
2995860f
AC
7364 if not In_Instance then
7365 return False;
7366
7367 elsif Ekind (E) = E_Function
7368 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
70f4ad20
AC
7369 then
7370 return True;
7371 end if;
7372
7373 F1 := First_Formal (Designator);
7374 F2 := First_Formal (E);
70f4ad20 7375 while Present (F1) loop
2995860f 7376 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
70f4ad20
AC
7377 return True;
7378 end if;
7379
7380 Next_Formal (F1);
7381 Next_Formal (F2);
7382 end loop;
7383
7384 return False;
7385 end Different_Generic_Profile;
7386
7387 -- Start of processing for Find_Corresponding_Spec
7388
996ae0b0
RK
7389 begin
7390 E := Current_Entity (Designator);
996ae0b0
RK
7391 while Present (E) loop
7392
7393 -- We are looking for a matching spec. It must have the same scope,
7394 -- and the same name, and either be type conformant, or be the case
7395 -- of a library procedure spec and its body (which belong to one
7396 -- another regardless of whether they are type conformant or not).
7397
7398 if Scope (E) = Current_Scope then
fbf5a39b
AC
7399 if Current_Scope = Standard_Standard
7400 or else (Ekind (E) = Ekind (Designator)
586ecbf3 7401 and then Type_Conformant (E, Designator))
996ae0b0
RK
7402 then
7403 -- Within an instantiation, we know that spec and body are
70f4ad20
AC
7404 -- subtype conformant, because they were subtype conformant in
7405 -- the generic. We choose the subtype-conformant entity here as
7406 -- well, to resolve spurious ambiguities in the instance that
7407 -- were not present in the generic (i.e. when two different
7408 -- types are given the same actual). If we are looking for a
7409 -- spec to match a body, full conformance is expected.
996ae0b0
RK
7410
7411 if In_Instance then
7412 Set_Convention (Designator, Convention (E));
7413
0187b60e
AC
7414 -- Skip past subprogram bodies and subprogram renamings that
7415 -- may appear to have a matching spec, but that aren't fully
7416 -- conformant with it. That can occur in cases where an
7417 -- actual type causes unrelated homographs in the instance.
7418
7419 if Nkind_In (N, N_Subprogram_Body,
7420 N_Subprogram_Renaming_Declaration)
996ae0b0 7421 and then Present (Homonym (E))
c7b9d548 7422 and then not Fully_Conformant (Designator, E)
996ae0b0
RK
7423 then
7424 goto Next_Entity;
7425
c7b9d548 7426 elsif not Subtype_Conformant (Designator, E) then
996ae0b0 7427 goto Next_Entity;
70f4ad20
AC
7428
7429 elsif Different_Generic_Profile (E) then
7430 goto Next_Entity;
996ae0b0
RK
7431 end if;
7432 end if;
7433
25ebc085
AC
7434 -- Ada 2012 (AI05-0165): For internally generated bodies of
7435 -- null procedures locate the internally generated spec. We
7436 -- enforce mode conformance since a tagged type may inherit
7437 -- from interfaces several null primitives which differ only
7438 -- in the mode of the formals.
7439
7440 if not (Comes_From_Source (E))
7441 and then Is_Null_Procedure (E)
7442 and then not Mode_Conformant (Designator, E)
7443 then
7444 null;
7445
4d8f3296
ES
7446 -- For null procedures coming from source that are completions,
7447 -- analysis of the generated body will establish the link.
7448
7449 elsif Comes_From_Source (E)
7450 and then Nkind (Spec) = N_Procedure_Specification
7451 and then Null_Present (Spec)
7452 then
7453 return E;
7454
25ebc085 7455 elsif not Has_Completion (E) then
996ae0b0
RK
7456 if Nkind (N) /= N_Subprogram_Body_Stub then
7457 Set_Corresponding_Spec (N, E);
7458 end if;
7459
7460 Set_Has_Completion (E);
7461 return E;
7462
7463 elsif Nkind (Parent (N)) = N_Subunit then
7464
7465 -- If this is the proper body of a subunit, the completion
7466 -- flag is set when analyzing the stub.
7467
7468 return E;
7469
70f4ad20
AC
7470 -- If E is an internal function with a controlling result that
7471 -- was created for an operation inherited by a null extension,
7472 -- it may be overridden by a body without a previous spec (one
2995860f 7473 -- more reason why these should be shunned). In that case we
70f4ad20
AC
7474 -- remove the generated body if present, because the current
7475 -- one is the explicit overriding.
81db9d77
ES
7476
7477 elsif Ekind (E) = E_Function
0791fbe9 7478 and then Ada_Version >= Ada_2005
81db9d77
ES
7479 and then not Comes_From_Source (E)
7480 and then Has_Controlling_Result (E)
7481 and then Is_Null_Extension (Etype (E))
7482 and then Comes_From_Source (Spec)
7483 then
7484 Set_Has_Completion (E, False);
7485
1366997b
AC
7486 if Expander_Active
7487 and then Nkind (Parent (E)) = N_Function_Specification
7488 then
81db9d77
ES
7489 Remove
7490 (Unit_Declaration_Node
1366997b
AC
7491 (Corresponding_Body (Unit_Declaration_Node (E))));
7492
81db9d77
ES
7493 return E;
7494
1366997b
AC
7495 -- If expansion is disabled, or if the wrapper function has
7496 -- not been generated yet, this a late body overriding an
7497 -- inherited operation, or it is an overriding by some other
7498 -- declaration before the controlling result is frozen. In
7499 -- either case this is a declaration of a new entity.
81db9d77
ES
7500
7501 else
7502 return Empty;
7503 end if;
7504
d44202ba
HK
7505 -- If the body already exists, then this is an error unless
7506 -- the previous declaration is the implicit declaration of a
756ef2a0
AC
7507 -- derived subprogram. It is also legal for an instance to
7508 -- contain type conformant overloadable declarations (but the
7509 -- generic declaration may not), per 8.3(26/2).
996ae0b0
RK
7510
7511 elsif No (Alias (E))
7512 and then not Is_Intrinsic_Subprogram (E)
7513 and then not In_Instance
d44202ba 7514 and then Post_Error
996ae0b0
RK
7515 then
7516 Error_Msg_Sloc := Sloc (E);
8dbd1460 7517
07fc65c4
GB
7518 if Is_Imported (E) then
7519 Error_Msg_NE
7520 ("body not allowed for imported subprogram & declared#",
7521 N, E);
7522 else
7523 Error_Msg_NE ("duplicate body for & declared#", N, E);
7524 end if;
996ae0b0
RK
7525 end if;
7526
d44202ba
HK
7527 -- Child units cannot be overloaded, so a conformance mismatch
7528 -- between body and a previous spec is an error.
7529
996ae0b0
RK
7530 elsif Is_Child_Unit (E)
7531 and then
7532 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7533 and then
5d37ba92 7534 Nkind (Parent (Unit_Declaration_Node (Designator))) =
d44202ba
HK
7535 N_Compilation_Unit
7536 and then Post_Error
996ae0b0 7537 then
996ae0b0
RK
7538 Error_Msg_N
7539 ("body of child unit does not match previous declaration", N);
7540 end if;
7541 end if;
7542
7543 <<Next_Entity>>
7544 E := Homonym (E);
7545 end loop;
7546
7547 -- On exit, we know that no previous declaration of subprogram exists
7548
7549 return Empty;
7550 end Find_Corresponding_Spec;
7551
7552 ----------------------
7553 -- Fully_Conformant --
7554 ----------------------
7555
7556 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7557 Result : Boolean;
996ae0b0
RK
7558 begin
7559 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7560 return Result;
7561 end Fully_Conformant;
7562
7563 ----------------------------------
7564 -- Fully_Conformant_Expressions --
7565 ----------------------------------
7566
7567 function Fully_Conformant_Expressions
7568 (Given_E1 : Node_Id;
d05ef0ab 7569 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
7570 is
7571 E1 : constant Node_Id := Original_Node (Given_E1);
7572 E2 : constant Node_Id := Original_Node (Given_E2);
7573 -- We always test conformance on original nodes, since it is possible
7574 -- for analysis and/or expansion to make things look as though they
7575 -- conform when they do not, e.g. by converting 1+2 into 3.
7576
7577 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7578 renames Fully_Conformant_Expressions;
7579
7580 function FCL (L1, L2 : List_Id) return Boolean;
70f4ad20
AC
7581 -- Compare elements of two lists for conformance. Elements have to be
7582 -- conformant, and actuals inserted as default parameters do not match
7583 -- explicit actuals with the same value.
996ae0b0
RK
7584
7585 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 7586 -- Compare an operator node with a function call
996ae0b0
RK
7587
7588 ---------
7589 -- FCL --
7590 ---------
7591
7592 function FCL (L1, L2 : List_Id) return Boolean is
7593 N1, N2 : Node_Id;
7594
7595 begin
7596 if L1 = No_List then
7597 N1 := Empty;
7598 else
7599 N1 := First (L1);
7600 end if;
7601
7602 if L2 = No_List then
7603 N2 := Empty;
7604 else
7605 N2 := First (L2);
7606 end if;
7607
70f4ad20 7608 -- Compare two lists, skipping rewrite insertions (we want to compare
a90bd866 7609 -- the original trees, not the expanded versions).
996ae0b0
RK
7610
7611 loop
7612 if Is_Rewrite_Insertion (N1) then
7613 Next (N1);
7614 elsif Is_Rewrite_Insertion (N2) then
7615 Next (N2);
7616 elsif No (N1) then
7617 return No (N2);
7618 elsif No (N2) then
7619 return False;
7620 elsif not FCE (N1, N2) then
7621 return False;
7622 else
7623 Next (N1);
7624 Next (N2);
7625 end if;
7626 end loop;
7627 end FCL;
7628
7629 ---------
7630 -- FCO --
7631 ---------
7632
7633 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7634 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7635 Act : Node_Id;
7636
7637 begin
7638 if No (Actuals)
7639 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7640 then
7641 return False;
7642
7643 else
7644 Act := First (Actuals);
7645
7646 if Nkind (Op_Node) in N_Binary_Op then
996ae0b0
RK
7647 if not FCE (Left_Opnd (Op_Node), Act) then
7648 return False;
7649 end if;
7650
7651 Next (Act);
7652 end if;
7653
7654 return Present (Act)
7655 and then FCE (Right_Opnd (Op_Node), Act)
7656 and then No (Next (Act));
7657 end if;
7658 end FCO;
7659
7660 -- Start of processing for Fully_Conformant_Expressions
7661
7662 begin
7663 -- Non-conformant if paren count does not match. Note: if some idiot
7664 -- complains that we don't do this right for more than 3 levels of
a90bd866 7665 -- parentheses, they will be treated with the respect they deserve.
996ae0b0
RK
7666
7667 if Paren_Count (E1) /= Paren_Count (E2) then
7668 return False;
7669
82c80734
RD
7670 -- If same entities are referenced, then they are conformant even if
7671 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
7672
7673 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7674 if Present (Entity (E1)) then
7675 return Entity (E1) = Entity (E2)
7676 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7677 and then Ekind (Entity (E1)) = E_Discriminant
7678 and then Ekind (Entity (E2)) = E_In_Parameter);
7679
7680 elsif Nkind (E1) = N_Expanded_Name
7681 and then Nkind (E2) = N_Expanded_Name
7682 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7683 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7684 then
7685 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7686
7687 else
7688 -- Identifiers in component associations don't always have
7689 -- entities, but their names must conform.
7690
7691 return Nkind (E1) = N_Identifier
7692 and then Nkind (E2) = N_Identifier
7693 and then Chars (E1) = Chars (E2);
7694 end if;
7695
7696 elsif Nkind (E1) = N_Character_Literal
7697 and then Nkind (E2) = N_Expanded_Name
7698 then
7699 return Nkind (Selector_Name (E2)) = N_Character_Literal
7700 and then Chars (E1) = Chars (Selector_Name (E2));
7701
7702 elsif Nkind (E2) = N_Character_Literal
7703 and then Nkind (E1) = N_Expanded_Name
7704 then
7705 return Nkind (Selector_Name (E1)) = N_Character_Literal
7706 and then Chars (E2) = Chars (Selector_Name (E1));
7707
8fde064e 7708 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
996ae0b0
RK
7709 return FCO (E1, E2);
7710
8fde064e 7711 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
996ae0b0
RK
7712 return FCO (E2, E1);
7713
7714 -- Otherwise we must have the same syntactic entity
7715
7716 elsif Nkind (E1) /= Nkind (E2) then
7717 return False;
7718
7719 -- At this point, we specialize by node type
7720
7721 else
7722 case Nkind (E1) is
7723
7724 when N_Aggregate =>
7725 return
7726 FCL (Expressions (E1), Expressions (E2))
19d846a0
RD
7727 and then
7728 FCL (Component_Associations (E1),
7729 Component_Associations (E2));
996ae0b0
RK
7730
7731 when N_Allocator =>
7732 if Nkind (Expression (E1)) = N_Qualified_Expression
7733 or else
7734 Nkind (Expression (E2)) = N_Qualified_Expression
7735 then
7736 return FCE (Expression (E1), Expression (E2));
7737
7738 -- Check that the subtype marks and any constraints
7739 -- are conformant
7740
7741 else
7742 declare
7743 Indic1 : constant Node_Id := Expression (E1);
7744 Indic2 : constant Node_Id := Expression (E2);
7745 Elt1 : Node_Id;
7746 Elt2 : Node_Id;
7747
7748 begin
7749 if Nkind (Indic1) /= N_Subtype_Indication then
7750 return
7751 Nkind (Indic2) /= N_Subtype_Indication
7752 and then Entity (Indic1) = Entity (Indic2);
7753
7754 elsif Nkind (Indic2) /= N_Subtype_Indication then
7755 return
7756 Nkind (Indic1) /= N_Subtype_Indication
7757 and then Entity (Indic1) = Entity (Indic2);
7758
7759 else
7760 if Entity (Subtype_Mark (Indic1)) /=
7761 Entity (Subtype_Mark (Indic2))
7762 then
7763 return False;
7764 end if;
7765
7766 Elt1 := First (Constraints (Constraint (Indic1)));
7767 Elt2 := First (Constraints (Constraint (Indic2)));
996ae0b0
RK
7768 while Present (Elt1) and then Present (Elt2) loop
7769 if not FCE (Elt1, Elt2) then
7770 return False;
7771 end if;
7772
7773 Next (Elt1);
7774 Next (Elt2);
7775 end loop;
7776
7777 return True;
7778 end if;
7779 end;
7780 end if;
7781
7782 when N_Attribute_Reference =>
7783 return
7784 Attribute_Name (E1) = Attribute_Name (E2)
7785 and then FCL (Expressions (E1), Expressions (E2));
7786
7787 when N_Binary_Op =>
7788 return
7789 Entity (E1) = Entity (E2)
7790 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7791 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7792
514d0fc5 7793 when N_Short_Circuit | N_Membership_Test =>
996ae0b0
RK
7794 return
7795 FCE (Left_Opnd (E1), Left_Opnd (E2))
7796 and then
7797 FCE (Right_Opnd (E1), Right_Opnd (E2));
7798
19d846a0
RD
7799 when N_Case_Expression =>
7800 declare
7801 Alt1 : Node_Id;
7802 Alt2 : Node_Id;
7803
7804 begin
7805 if not FCE (Expression (E1), Expression (E2)) then
7806 return False;
7807
7808 else
7809 Alt1 := First (Alternatives (E1));
7810 Alt2 := First (Alternatives (E2));
7811 loop
7812 if Present (Alt1) /= Present (Alt2) then
7813 return False;
7814 elsif No (Alt1) then
7815 return True;
7816 end if;
7817
7818 if not FCE (Expression (Alt1), Expression (Alt2))
7819 or else not FCL (Discrete_Choices (Alt1),
7820 Discrete_Choices (Alt2))
7821 then
7822 return False;
7823 end if;
7824
7825 Next (Alt1);
7826 Next (Alt2);
7827 end loop;
7828 end if;
7829 end;
7830
996ae0b0
RK
7831 when N_Character_Literal =>
7832 return
7833 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7834
7835 when N_Component_Association =>
7836 return
7837 FCL (Choices (E1), Choices (E2))
19d846a0
RD
7838 and then
7839 FCE (Expression (E1), Expression (E2));
996ae0b0 7840
996ae0b0
RK
7841 when N_Explicit_Dereference =>
7842 return
7843 FCE (Prefix (E1), Prefix (E2));
7844
7845 when N_Extension_Aggregate =>
7846 return
7847 FCL (Expressions (E1), Expressions (E2))
7848 and then Null_Record_Present (E1) =
7849 Null_Record_Present (E2)
7850 and then FCL (Component_Associations (E1),
7851 Component_Associations (E2));
7852
7853 when N_Function_Call =>
7854 return
7855 FCE (Name (E1), Name (E2))
19d846a0
RD
7856 and then
7857 FCL (Parameter_Associations (E1),
7858 Parameter_Associations (E2));
996ae0b0 7859
9b16cb57
RD
7860 when N_If_Expression =>
7861 return
7862 FCL (Expressions (E1), Expressions (E2));
7863
996ae0b0
RK
7864 when N_Indexed_Component =>
7865 return
7866 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7867 and then
7868 FCL (Expressions (E1), Expressions (E2));
996ae0b0
RK
7869
7870 when N_Integer_Literal =>
7871 return (Intval (E1) = Intval (E2));
7872
7873 when N_Null =>
7874 return True;
7875
7876 when N_Operator_Symbol =>
7877 return
7878 Chars (E1) = Chars (E2);
7879
7880 when N_Others_Choice =>
7881 return True;
7882
7883 when N_Parameter_Association =>
7884 return
996ae0b0
RK
7885 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7886 and then FCE (Explicit_Actual_Parameter (E1),
7887 Explicit_Actual_Parameter (E2));
7888
7889 when N_Qualified_Expression =>
7890 return
7891 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7892 and then
7893 FCE (Expression (E1), Expression (E2));
996ae0b0 7894
2010d078
AC
7895 when N_Quantified_Expression =>
7896 if not FCE (Condition (E1), Condition (E2)) then
7897 return False;
7898 end if;
7899
7900 if Present (Loop_Parameter_Specification (E1))
7901 and then Present (Loop_Parameter_Specification (E2))
7902 then
7903 declare
7904 L1 : constant Node_Id :=
7905 Loop_Parameter_Specification (E1);
7906 L2 : constant Node_Id :=
7907 Loop_Parameter_Specification (E2);
7908
7909 begin
7910 return
7911 Reverse_Present (L1) = Reverse_Present (L2)
7912 and then
7913 FCE (Defining_Identifier (L1),
7914 Defining_Identifier (L2))
7915 and then
7916 FCE (Discrete_Subtype_Definition (L1),
7917 Discrete_Subtype_Definition (L2));
7918 end;
7919
804670f1
AC
7920 elsif Present (Iterator_Specification (E1))
7921 and then Present (Iterator_Specification (E2))
7922 then
2010d078
AC
7923 declare
7924 I1 : constant Node_Id := Iterator_Specification (E1);
7925 I2 : constant Node_Id := Iterator_Specification (E2);
7926
7927 begin
7928 return
7929 FCE (Defining_Identifier (I1),
7930 Defining_Identifier (I2))
7931 and then
7932 Of_Present (I1) = Of_Present (I2)
7933 and then
7934 Reverse_Present (I1) = Reverse_Present (I2)
7935 and then FCE (Name (I1), Name (I2))
7936 and then FCE (Subtype_Indication (I1),
7937 Subtype_Indication (I2));
7938 end;
804670f1
AC
7939
7940 -- The quantified expressions used different specifications to
7941 -- walk their respective ranges.
7942
7943 else
7944 return False;
2010d078
AC
7945 end if;
7946
996ae0b0
RK
7947 when N_Range =>
7948 return
7949 FCE (Low_Bound (E1), Low_Bound (E2))
19d846a0
RD
7950 and then
7951 FCE (High_Bound (E1), High_Bound (E2));
996ae0b0
RK
7952
7953 when N_Real_Literal =>
7954 return (Realval (E1) = Realval (E2));
7955
7956 when N_Selected_Component =>
7957 return
7958 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7959 and then
7960 FCE (Selector_Name (E1), Selector_Name (E2));
996ae0b0
RK
7961
7962 when N_Slice =>
7963 return
7964 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7965 and then
7966 FCE (Discrete_Range (E1), Discrete_Range (E2));
996ae0b0
RK
7967
7968 when N_String_Literal =>
7969 declare
7970 S1 : constant String_Id := Strval (E1);
7971 S2 : constant String_Id := Strval (E2);
7972 L1 : constant Nat := String_Length (S1);
7973 L2 : constant Nat := String_Length (S2);
7974
7975 begin
7976 if L1 /= L2 then
7977 return False;
7978
7979 else
7980 for J in 1 .. L1 loop
7981 if Get_String_Char (S1, J) /=
7982 Get_String_Char (S2, J)
7983 then
7984 return False;
7985 end if;
7986 end loop;
7987
7988 return True;
7989 end if;
7990 end;
7991
7992 when N_Type_Conversion =>
7993 return
7994 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7995 and then
7996 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7997
7998 when N_Unary_Op =>
7999 return
8000 Entity (E1) = Entity (E2)
19d846a0
RD
8001 and then
8002 FCE (Right_Opnd (E1), Right_Opnd (E2));
996ae0b0
RK
8003
8004 when N_Unchecked_Type_Conversion =>
8005 return
8006 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
8007 and then
8008 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
8009
8010 -- All other node types cannot appear in this context. Strictly
8011 -- we should raise a fatal internal error. Instead we just ignore
8012 -- the nodes. This means that if anyone makes a mistake in the
2995860f
AC
8013 -- expander and mucks an expression tree irretrievably, the result
8014 -- will be a failure to detect a (probably very obscure) case
8015 -- of non-conformance, which is better than bombing on some
996ae0b0
RK
8016 -- case where two expressions do in fact conform.
8017
8018 when others =>
8019 return True;
8020
8021 end case;
8022 end if;
8023 end Fully_Conformant_Expressions;
8024
fbf5a39b
AC
8025 ----------------------------------------
8026 -- Fully_Conformant_Discrete_Subtypes --
8027 ----------------------------------------
8028
8029 function Fully_Conformant_Discrete_Subtypes
8030 (Given_S1 : Node_Id;
d05ef0ab 8031 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
8032 is
8033 S1 : constant Node_Id := Original_Node (Given_S1);
8034 S2 : constant Node_Id := Original_Node (Given_S2);
8035
8036 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
8037 -- Special-case for a bound given by a discriminant, which in the body
8038 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
8039
8040 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 8041 -- Check both bounds
fbf5a39b 8042
5d37ba92
ES
8043 -----------------------
8044 -- Conforming_Bounds --
8045 -----------------------
8046
fbf5a39b
AC
8047 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8048 begin
8049 if Is_Entity_Name (B1)
8050 and then Is_Entity_Name (B2)
8051 and then Ekind (Entity (B1)) = E_Discriminant
8052 then
8053 return Chars (B1) = Chars (B2);
8054
8055 else
8056 return Fully_Conformant_Expressions (B1, B2);
8057 end if;
8058 end Conforming_Bounds;
8059
5d37ba92
ES
8060 -----------------------
8061 -- Conforming_Ranges --
8062 -----------------------
8063
fbf5a39b
AC
8064 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8065 begin
8066 return
8067 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8068 and then
8069 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8070 end Conforming_Ranges;
8071
8072 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8073
8074 begin
8075 if Nkind (S1) /= Nkind (S2) then
8076 return False;
8077
8078 elsif Is_Entity_Name (S1) then
8079 return Entity (S1) = Entity (S2);
8080
8081 elsif Nkind (S1) = N_Range then
8082 return Conforming_Ranges (S1, S2);
8083
8084 elsif Nkind (S1) = N_Subtype_Indication then
8085 return
8086 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8087 and then
8088 Conforming_Ranges
8089 (Range_Expression (Constraint (S1)),
8090 Range_Expression (Constraint (S2)));
8091 else
8092 return True;
8093 end if;
8094 end Fully_Conformant_Discrete_Subtypes;
8095
996ae0b0
RK
8096 --------------------
8097 -- Install_Entity --
8098 --------------------
8099
8100 procedure Install_Entity (E : Entity_Id) is
8101 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
8102 begin
8103 Set_Is_Immediately_Visible (E);
8104 Set_Current_Entity (E);
8105 Set_Homonym (E, Prev);
8106 end Install_Entity;
8107
8108 ---------------------
8109 -- Install_Formals --
8110 ---------------------
8111
8112 procedure Install_Formals (Id : Entity_Id) is
8113 F : Entity_Id;
996ae0b0
RK
8114 begin
8115 F := First_Formal (Id);
996ae0b0
RK
8116 while Present (F) loop
8117 Install_Entity (F);
8118 Next_Formal (F);
8119 end loop;
8120 end Install_Formals;
8121
ce2b6ba5
JM
8122 -----------------------------
8123 -- Is_Interface_Conformant --
8124 -----------------------------
8125
8126 function Is_Interface_Conformant
8127 (Tagged_Type : Entity_Id;
8128 Iface_Prim : Entity_Id;
8129 Prim : Entity_Id) return Boolean
8130 is
9e92ad49
AC
8131 -- The operation may in fact be an inherited (implicit) operation
8132 -- rather than the original interface primitive, so retrieve the
8133 -- ultimate ancestor.
8134
8135 Iface : constant Entity_Id :=
8136 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
fceeaab6
ES
8137 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8138
25ebc085
AC
8139 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8140 -- Return the controlling formal of Prim
8141
59e6b23c
AC
8142 ------------------------
8143 -- Controlling_Formal --
8144 ------------------------
8145
25ebc085 8146 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
15918371 8147 E : Entity_Id;
59e6b23c 8148
25ebc085 8149 begin
15918371 8150 E := First_Entity (Prim);
25ebc085
AC
8151 while Present (E) loop
8152 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8153 return E;
8154 end if;
8155
8156 Next_Entity (E);
8157 end loop;
8158
8159 return Empty;
8160 end Controlling_Formal;
8161
8162 -- Local variables
8163
8164 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8165 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8166
8167 -- Start of processing for Is_Interface_Conformant
8168
ce2b6ba5
JM
8169 begin
8170 pragma Assert (Is_Subprogram (Iface_Prim)
8171 and then Is_Subprogram (Prim)
8172 and then Is_Dispatching_Operation (Iface_Prim)
8173 and then Is_Dispatching_Operation (Prim));
8174
fceeaab6 8175 pragma Assert (Is_Interface (Iface)
ce2b6ba5
JM
8176 or else (Present (Alias (Iface_Prim))
8177 and then
8178 Is_Interface
8179 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8180
8181 if Prim = Iface_Prim
8182 or else not Is_Subprogram (Prim)
8183 or else Ekind (Prim) /= Ekind (Iface_Prim)
8184 or else not Is_Dispatching_Operation (Prim)
8185 or else Scope (Prim) /= Scope (Tagged_Type)
fceeaab6 8186 or else No (Typ)
8a49a499 8187 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
ce2b6ba5
JM
8188 or else not Primitive_Names_Match (Iface_Prim, Prim)
8189 then
8190 return False;
8191
25ebc085
AC
8192 -- The mode of the controlling formals must match
8193
8194 elsif Present (Iface_Ctrl_F)
15918371
AC
8195 and then Present (Prim_Ctrl_F)
8196 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
25ebc085
AC
8197 then
8198 return False;
8199
8200 -- Case of a procedure, or a function whose result type matches the
8201 -- result type of the interface primitive, or a function that has no
8202 -- controlling result (I or access I).
ce2b6ba5
JM
8203
8204 elsif Ekind (Iface_Prim) = E_Procedure
8205 or else Etype (Prim) = Etype (Iface_Prim)
fceeaab6 8206 or else not Has_Controlling_Result (Prim)
ce2b6ba5 8207 then
b4d7b435
AC
8208 return Type_Conformant
8209 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
ce2b6ba5 8210
2995860f
AC
8211 -- Case of a function returning an interface, or an access to one. Check
8212 -- that the return types correspond.
ce2b6ba5 8213
fceeaab6
ES
8214 elsif Implements_Interface (Typ, Iface) then
8215 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9a3c9940
RD
8216 /=
8217 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
fceeaab6
ES
8218 then
8219 return False;
fceeaab6
ES
8220 else
8221 return
9e92ad49 8222 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
ce2b6ba5 8223 Skip_Controlling_Formals => True);
fceeaab6 8224 end if;
ce2b6ba5 8225
fceeaab6
ES
8226 else
8227 return False;
ce2b6ba5 8228 end if;
ce2b6ba5
JM
8229 end Is_Interface_Conformant;
8230
996ae0b0
RK
8231 ---------------------------------
8232 -- Is_Non_Overriding_Operation --
8233 ---------------------------------
8234
8235 function Is_Non_Overriding_Operation
8236 (Prev_E : Entity_Id;
d05ef0ab 8237 New_E : Entity_Id) return Boolean
996ae0b0
RK
8238 is
8239 Formal : Entity_Id;
8240 F_Typ : Entity_Id;
8241 G_Typ : Entity_Id := Empty;
8242
8243 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
8244 -- If F_Type is a derived type associated with a generic actual subtype,
8245 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
8246
8247 function Types_Correspond
8248 (P_Type : Entity_Id;
d05ef0ab 8249 N_Type : Entity_Id) return Boolean;
82c80734
RD
8250 -- Returns true if and only if the types (or designated types in the
8251 -- case of anonymous access types) are the same or N_Type is derived
8252 -- directly or indirectly from P_Type.
996ae0b0
RK
8253
8254 -----------------------------
8255 -- Get_Generic_Parent_Type --
8256 -----------------------------
8257
8258 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8259 G_Typ : Entity_Id;
702d2020 8260 Defn : Node_Id;
996ae0b0
RK
8261 Indic : Node_Id;
8262
8263 begin
8264 if Is_Derived_Type (F_Typ)
8265 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8266 then
82c80734
RD
8267 -- The tree must be traversed to determine the parent subtype in
8268 -- the generic unit, which unfortunately isn't always available
8269 -- via semantic attributes. ??? (Note: The use of Original_Node
8270 -- is needed for cases where a full derived type has been
8271 -- rewritten.)
996ae0b0 8272
702d2020
AC
8273 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8274 if Nkind (Defn) = N_Derived_Type_Definition then
8275 Indic := Subtype_Indication (Defn);
996ae0b0 8276
702d2020
AC
8277 if Nkind (Indic) = N_Subtype_Indication then
8278 G_Typ := Entity (Subtype_Mark (Indic));
8279 else
8280 G_Typ := Entity (Indic);
8281 end if;
996ae0b0 8282
702d2020
AC
8283 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8284 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8285 then
8286 return Generic_Parent_Type (Parent (G_Typ));
8287 end if;
996ae0b0
RK
8288 end if;
8289 end if;
8290
8291 return Empty;
8292 end Get_Generic_Parent_Type;
8293
8294 ----------------------
8295 -- Types_Correspond --
8296 ----------------------
8297
8298 function Types_Correspond
8299 (P_Type : Entity_Id;
d05ef0ab 8300 N_Type : Entity_Id) return Boolean
996ae0b0
RK
8301 is
8302 Prev_Type : Entity_Id := Base_Type (P_Type);
8303 New_Type : Entity_Id := Base_Type (N_Type);
8304
8305 begin
8306 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8307 Prev_Type := Designated_Type (Prev_Type);
8308 end if;
8309
8310 if Ekind (New_Type) = E_Anonymous_Access_Type then
8311 New_Type := Designated_Type (New_Type);
8312 end if;
8313
8314 if Prev_Type = New_Type then
8315 return True;
8316
8317 elsif not Is_Class_Wide_Type (New_Type) then
8318 while Etype (New_Type) /= New_Type loop
8319 New_Type := Etype (New_Type);
8320 if New_Type = Prev_Type then
8321 return True;
8322 end if;
8323 end loop;
8324 end if;
8325 return False;
8326 end Types_Correspond;
8327
8328 -- Start of processing for Is_Non_Overriding_Operation
8329
8330 begin
82c80734
RD
8331 -- In the case where both operations are implicit derived subprograms
8332 -- then neither overrides the other. This can only occur in certain
8333 -- obscure cases (e.g., derivation from homographs created in a generic
8334 -- instantiation).
996ae0b0
RK
8335
8336 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8337 return True;
8338
8339 elsif Ekind (Current_Scope) = E_Package
8340 and then Is_Generic_Instance (Current_Scope)
8341 and then In_Private_Part (Current_Scope)
8342 and then Comes_From_Source (New_E)
8343 then
702d2020
AC
8344 -- We examine the formals and result type of the inherited operation,
8345 -- to determine whether their type is derived from (the instance of)
8346 -- a generic type. The first such formal or result type is the one
8347 -- tested.
996ae0b0
RK
8348
8349 Formal := First_Formal (Prev_E);
996ae0b0
RK
8350 while Present (Formal) loop
8351 F_Typ := Base_Type (Etype (Formal));
8352
8353 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8354 F_Typ := Designated_Type (F_Typ);
8355 end if;
8356
8357 G_Typ := Get_Generic_Parent_Type (F_Typ);
702d2020 8358 exit when Present (G_Typ);
996ae0b0
RK
8359
8360 Next_Formal (Formal);
8361 end loop;
8362
c8ef728f 8363 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
8364 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8365 end if;
8366
8367 if No (G_Typ) then
8368 return False;
8369 end if;
8370
8dbd1460
AC
8371 -- If the generic type is a private type, then the original operation
8372 -- was not overriding in the generic, because there was no primitive
8373 -- operation to override.
996ae0b0
RK
8374
8375 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8376 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8dbd1460 8377 N_Formal_Private_Type_Definition
996ae0b0
RK
8378 then
8379 return True;
8380
8381 -- The generic parent type is the ancestor of a formal derived
8382 -- type declaration. We need to check whether it has a primitive
8383 -- operation that should be overridden by New_E in the generic.
8384
8385 else
8386 declare
8387 P_Formal : Entity_Id;
8388 N_Formal : Entity_Id;
8389 P_Typ : Entity_Id;
8390 N_Typ : Entity_Id;
8391 P_Prim : Entity_Id;
8392 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8393
8394 begin
8395 while Present (Prim_Elt) loop
8396 P_Prim := Node (Prim_Elt);
fbf5a39b 8397
996ae0b0
RK
8398 if Chars (P_Prim) = Chars (New_E)
8399 and then Ekind (P_Prim) = Ekind (New_E)
8400 then
8401 P_Formal := First_Formal (P_Prim);
8402 N_Formal := First_Formal (New_E);
8403 while Present (P_Formal) and then Present (N_Formal) loop
8404 P_Typ := Etype (P_Formal);
8405 N_Typ := Etype (N_Formal);
8406
8407 if not Types_Correspond (P_Typ, N_Typ) then
8408 exit;
8409 end if;
8410
8411 Next_Entity (P_Formal);
8412 Next_Entity (N_Formal);
8413 end loop;
8414
82c80734
RD
8415 -- Found a matching primitive operation belonging to the
8416 -- formal ancestor type, so the new subprogram is
8417 -- overriding.
996ae0b0 8418
c8ef728f
ES
8419 if No (P_Formal)
8420 and then No (N_Formal)
996ae0b0
RK
8421 and then (Ekind (New_E) /= E_Function
8422 or else
8fde064e
AC
8423 Types_Correspond
8424 (Etype (P_Prim), Etype (New_E)))
996ae0b0
RK
8425 then
8426 return False;
8427 end if;
8428 end if;
8429
8430 Next_Elmt (Prim_Elt);
8431 end loop;
8432
2995860f
AC
8433 -- If no match found, then the new subprogram does not override
8434 -- in the generic (nor in the instance).
996ae0b0 8435
260359e3
AC
8436 -- If the type in question is not abstract, and the subprogram
8437 -- is, this will be an error if the new operation is in the
8438 -- private part of the instance. Emit a warning now, which will
8439 -- make the subsequent error message easier to understand.
8440
8441 if not Is_Abstract_Type (F_Typ)
8442 and then Is_Abstract_Subprogram (Prev_E)
8443 and then In_Private_Part (Current_Scope)
8444 then
8445 Error_Msg_Node_2 := F_Typ;
8446 Error_Msg_NE
3ccedacc
AC
8447 ("private operation& in generic unit does not override "
8448 & "any primitive operation of& (RM 12.3 (18))??",
260359e3
AC
8449 New_E, New_E);
8450 end if;
8451
996ae0b0
RK
8452 return True;
8453 end;
8454 end if;
8455 else
8456 return False;
8457 end if;
8458 end Is_Non_Overriding_Operation;
8459
beacce02
AC
8460 -------------------------------------
8461 -- List_Inherited_Pre_Post_Aspects --
8462 -------------------------------------
8463
8464 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8465 begin
e606088a 8466 if Opt.List_Inherited_Aspects
b9696ffb 8467 and then Is_Subprogram_Or_Generic_Subprogram (E)
beacce02
AC
8468 then
8469 declare
dbfeb4fa 8470 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
beacce02
AC
8471 P : Node_Id;
8472
8473 begin
8474 for J in Inherited'Range loop
d6095153 8475 P := Pre_Post_Conditions (Contract (Inherited (J)));
beacce02
AC
8476 while Present (P) loop
8477 Error_Msg_Sloc := Sloc (P);
8478
8479 if Class_Present (P) and then not Split_PPC (P) then
8480 if Pragma_Name (P) = Name_Precondition then
3ccedacc
AC
8481 Error_Msg_N ("info: & inherits `Pre''Class` aspect "
8482 & "from #?L?", E);
beacce02 8483 else
3ccedacc
AC
8484 Error_Msg_N ("info: & inherits `Post''Class` aspect "
8485 & "from #?L?", E);
beacce02
AC
8486 end if;
8487 end if;
8488
8489 P := Next_Pragma (P);
8490 end loop;
8491 end loop;
8492 end;
8493 end if;
8494 end List_Inherited_Pre_Post_Aspects;
8495
996ae0b0
RK
8496 ------------------------------
8497 -- Make_Inequality_Operator --
8498 ------------------------------
8499
8500 -- S is the defining identifier of an equality operator. We build a
8501 -- subprogram declaration with the right signature. This operation is
8502 -- intrinsic, because it is always expanded as the negation of the
8503 -- call to the equality function.
8504
8505 procedure Make_Inequality_Operator (S : Entity_Id) is
8506 Loc : constant Source_Ptr := Sloc (S);
8507 Decl : Node_Id;
8508 Formals : List_Id;
8509 Op_Name : Entity_Id;
8510
c8ef728f
ES
8511 FF : constant Entity_Id := First_Formal (S);
8512 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
8513
8514 begin
c8ef728f 8515 -- Check that equality was properly defined, ignore call if not
996ae0b0 8516
c8ef728f 8517 if No (NF) then
996ae0b0
RK
8518 return;
8519 end if;
8520
c8ef728f
ES
8521 declare
8522 A : constant Entity_Id :=
8523 Make_Defining_Identifier (Sloc (FF),
8524 Chars => Chars (FF));
8525
5d37ba92
ES
8526 B : constant Entity_Id :=
8527 Make_Defining_Identifier (Sloc (NF),
8528 Chars => Chars (NF));
c8ef728f
ES
8529
8530 begin
8531 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8532
8533 Formals := New_List (
8534 Make_Parameter_Specification (Loc,
8535 Defining_Identifier => A,
8536 Parameter_Type =>
e4494292 8537 New_Occurrence_Of (Etype (First_Formal (S)),
c8ef728f
ES
8538 Sloc (Etype (First_Formal (S))))),
8539
8540 Make_Parameter_Specification (Loc,
8541 Defining_Identifier => B,
8542 Parameter_Type =>
e4494292 8543 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
c8ef728f
ES
8544 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8545
8546 Decl :=
8547 Make_Subprogram_Declaration (Loc,
8548 Specification =>
8549 Make_Function_Specification (Loc,
8550 Defining_Unit_Name => Op_Name,
8551 Parameter_Specifications => Formals,
8552 Result_Definition =>
e4494292 8553 New_Occurrence_Of (Standard_Boolean, Loc)));
c8ef728f
ES
8554
8555 -- Insert inequality right after equality if it is explicit or after
8556 -- the derived type when implicit. These entities are created only
2995860f
AC
8557 -- for visibility purposes, and eventually replaced in the course
8558 -- of expansion, so they do not need to be attached to the tree and
8559 -- seen by the back-end. Keeping them internal also avoids spurious
c8ef728f
ES
8560 -- freezing problems. The declaration is inserted in the tree for
8561 -- analysis, and removed afterwards. If the equality operator comes
8562 -- from an explicit declaration, attach the inequality immediately
8563 -- after. Else the equality is inherited from a derived type
8564 -- declaration, so insert inequality after that declaration.
8565
8566 if No (Alias (S)) then
8567 Insert_After (Unit_Declaration_Node (S), Decl);
8568 elsif Is_List_Member (Parent (S)) then
8569 Insert_After (Parent (S), Decl);
8570 else
8571 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8572 end if;
996ae0b0 8573
c8ef728f
ES
8574 Mark_Rewrite_Insertion (Decl);
8575 Set_Is_Intrinsic_Subprogram (Op_Name);
8576 Analyze (Decl);
8577 Remove (Decl);
8578 Set_Has_Completion (Op_Name);
8579 Set_Corresponding_Equality (Op_Name, S);
f937473f 8580 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 8581 end;
996ae0b0
RK
8582 end Make_Inequality_Operator;
8583
8584 ----------------------
8585 -- May_Need_Actuals --
8586 ----------------------
8587
8588 procedure May_Need_Actuals (Fun : Entity_Id) is
8589 F : Entity_Id;
8590 B : Boolean;
8591
8592 begin
8593 F := First_Formal (Fun);
8594 B := True;
996ae0b0
RK
8595 while Present (F) loop
8596 if No (Default_Value (F)) then
8597 B := False;
8598 exit;
8599 end if;
8600
8601 Next_Formal (F);
8602 end loop;
8603
8604 Set_Needs_No_Actuals (Fun, B);
8605 end May_Need_Actuals;
8606
8607 ---------------------
8608 -- Mode_Conformant --
8609 ---------------------
8610
8611 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8612 Result : Boolean;
996ae0b0
RK
8613 begin
8614 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8615 return Result;
8616 end Mode_Conformant;
8617
8618 ---------------------------
8619 -- New_Overloaded_Entity --
8620 ---------------------------
8621
8622 procedure New_Overloaded_Entity
8623 (S : Entity_Id;
8624 Derived_Type : Entity_Id := Empty)
8625 is
ec4867fa 8626 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
8627 -- Set if the current scope has an operation that is type-conformant
8628 -- with S, and becomes hidden by S.
8629
5d37ba92
ES
8630 Is_Primitive_Subp : Boolean;
8631 -- Set to True if the new subprogram is primitive
8632
fbf5a39b
AC
8633 E : Entity_Id;
8634 -- Entity that S overrides
8635
996ae0b0 8636 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
8637 -- Predecessor of E in Homonym chain
8638
5d37ba92
ES
8639 procedure Check_For_Primitive_Subprogram
8640 (Is_Primitive : out Boolean;
8641 Is_Overriding : Boolean := False);
8642 -- If the subprogram being analyzed is a primitive operation of the type
8643 -- of a formal or result, set the Has_Primitive_Operations flag on the
8644 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8645 -- corresponding flag on the entity itself for later use.
8646
ec4867fa
ES
8647 procedure Check_Synchronized_Overriding
8648 (Def_Id : Entity_Id;
ec4867fa
ES
8649 Overridden_Subp : out Entity_Id);
8650 -- First determine if Def_Id is an entry or a subprogram either defined
8651 -- in the scope of a task or protected type, or is a primitive of such
8652 -- a type. Check whether Def_Id overrides a subprogram of an interface
8653 -- implemented by the synchronized type, return the overridden entity
8654 -- or Empty.
758c442c 8655
996ae0b0
RK
8656 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8657 -- Check that E is declared in the private part of the current package,
8658 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 8659 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
8660 -- set when freezing entities, so we must examine the place of the
8661 -- declaration in the tree, and recognize wrapper packages as well.
8662
2ddc2000
AC
8663 function Is_Overriding_Alias
8664 (Old_E : Entity_Id;
8665 New_E : Entity_Id) return Boolean;
8666 -- Check whether new subprogram and old subprogram are both inherited
8667 -- from subprograms that have distinct dispatch table entries. This can
2995860f
AC
8668 -- occur with derivations from instances with accidental homonyms. The
8669 -- function is conservative given that the converse is only true within
8670 -- instances that contain accidental overloadings.
2ddc2000 8671
5d37ba92
ES
8672 ------------------------------------
8673 -- Check_For_Primitive_Subprogram --
8674 ------------------------------------
996ae0b0 8675
5d37ba92
ES
8676 procedure Check_For_Primitive_Subprogram
8677 (Is_Primitive : out Boolean;
8678 Is_Overriding : Boolean := False)
ec4867fa 8679 is
996ae0b0
RK
8680 Formal : Entity_Id;
8681 F_Typ : Entity_Id;
07fc65c4 8682 B_Typ : Entity_Id;
996ae0b0
RK
8683
8684 function Visible_Part_Type (T : Entity_Id) return Boolean;
8dbd1460
AC
8685 -- Returns true if T is declared in the visible part of the current
8686 -- package scope; otherwise returns false. Assumes that T is declared
8687 -- in a package.
996ae0b0
RK
8688
8689 procedure Check_Private_Overriding (T : Entity_Id);
8690 -- Checks that if a primitive abstract subprogram of a visible
8dbd1460
AC
8691 -- abstract type is declared in a private part, then it must override
8692 -- an abstract subprogram declared in the visible part. Also checks
8693 -- that if a primitive function with a controlling result is declared
8694 -- in a private part, then it must override a function declared in
8695 -- the visible part.
996ae0b0
RK
8696
8697 ------------------------------
8698 -- Check_Private_Overriding --
8699 ------------------------------
8700
8701 procedure Check_Private_Overriding (T : Entity_Id) is
8702 begin
51c16e29 8703 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
8704 and then In_Private_Part (Current_Scope)
8705 and then Visible_Part_Type (T)
8706 and then not In_Instance
8707 then
f937473f
RD
8708 if Is_Abstract_Type (T)
8709 and then Is_Abstract_Subprogram (S)
8710 and then (not Is_Overriding
8dbd1460 8711 or else not Is_Abstract_Subprogram (E))
996ae0b0 8712 then
3ccedacc
AC
8713 Error_Msg_N ("abstract subprograms must be visible "
8714 & "(RM 3.9.3(10))!", S);
758c442c 8715
8fde064e
AC
8716 elsif Ekind (S) = E_Function and then not Is_Overriding then
8717 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
3ccedacc
AC
8718 Error_Msg_N ("private function with tagged result must"
8719 & " override visible-part function", S);
8720 Error_Msg_N ("\move subprogram to the visible part"
8721 & " (RM 3.9.3(10))", S);
2e79de51
AC
8722
8723 -- AI05-0073: extend this test to the case of a function
8724 -- with a controlling access result.
8725
8726 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8727 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8728 and then
8729 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
dbe945f1 8730 and then Ada_Version >= Ada_2012
2e79de51
AC
8731 then
8732 Error_Msg_N
8733 ("private function with controlling access result "
3ccedacc 8734 & "must override visible-part function", S);
2e79de51
AC
8735 Error_Msg_N
8736 ("\move subprogram to the visible part"
3ccedacc 8737 & " (RM 3.9.3(10))", S);
2e79de51 8738 end if;
996ae0b0
RK
8739 end if;
8740 end if;
8741 end Check_Private_Overriding;
8742
8743 -----------------------
8744 -- Visible_Part_Type --
8745 -----------------------
8746
8747 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
8748 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8749 N : Node_Id;
996ae0b0
RK
8750
8751 begin
8dbd1460
AC
8752 -- If the entity is a private type, then it must be declared in a
8753 -- visible part.
996ae0b0
RK
8754
8755 if Ekind (T) in Private_Kind then
8756 return True;
8757 end if;
8758
8759 -- Otherwise, we traverse the visible part looking for its
8760 -- corresponding declaration. We cannot use the declaration
8761 -- node directly because in the private part the entity of a
8762 -- private type is the one in the full view, which does not
8763 -- indicate that it is the completion of something visible.
8764
07fc65c4 8765 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
8766 while Present (N) loop
8767 if Nkind (N) = N_Full_Type_Declaration
8768 and then Present (Defining_Identifier (N))
8769 and then T = Defining_Identifier (N)
8770 then
8771 return True;
8772
800621e0
RD
8773 elsif Nkind_In (N, N_Private_Type_Declaration,
8774 N_Private_Extension_Declaration)
996ae0b0
RK
8775 and then Present (Defining_Identifier (N))
8776 and then T = Full_View (Defining_Identifier (N))
8777 then
8778 return True;
8779 end if;
8780
8781 Next (N);
8782 end loop;
8783
8784 return False;
8785 end Visible_Part_Type;
8786
5d37ba92 8787 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
8788
8789 begin
5d37ba92
ES
8790 Is_Primitive := False;
8791
996ae0b0
RK
8792 if not Comes_From_Source (S) then
8793 null;
8794
5d37ba92 8795 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
8796
8797 elsif Current_Scope = Standard_Standard then
8798 null;
8799
b9b2405f 8800 elsif (Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0 8801 and then not In_Package_Body (Current_Scope))
82c80734 8802 or else Is_Overriding
996ae0b0 8803 then
07fc65c4 8804 -- For function, check return type
996ae0b0 8805
07fc65c4 8806 if Ekind (S) = E_Function then
5d37ba92
ES
8807 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8808 F_Typ := Designated_Type (Etype (S));
8809 else
8810 F_Typ := Etype (S);
8811 end if;
8812
8813 B_Typ := Base_Type (F_Typ);
07fc65c4 8814
5d37ba92
ES
8815 if Scope (B_Typ) = Current_Scope
8816 and then not Is_Class_Wide_Type (B_Typ)
8817 and then not Is_Generic_Type (B_Typ)
8818 then
8819 Is_Primitive := True;
07fc65c4 8820 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 8821 Set_Is_Primitive (S);
07fc65c4
GB
8822 Check_Private_Overriding (B_Typ);
8823 end if;
996ae0b0
RK
8824 end if;
8825
07fc65c4 8826 -- For all subprograms, check formals
996ae0b0 8827
07fc65c4 8828 Formal := First_Formal (S);
996ae0b0
RK
8829 while Present (Formal) loop
8830 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8831 F_Typ := Designated_Type (Etype (Formal));
8832 else
8833 F_Typ := Etype (Formal);
8834 end if;
8835
07fc65c4
GB
8836 B_Typ := Base_Type (F_Typ);
8837
ec4867fa
ES
8838 if Ekind (B_Typ) = E_Access_Subtype then
8839 B_Typ := Base_Type (B_Typ);
8840 end if;
8841
5d37ba92
ES
8842 if Scope (B_Typ) = Current_Scope
8843 and then not Is_Class_Wide_Type (B_Typ)
8844 and then not Is_Generic_Type (B_Typ)
8845 then
8846 Is_Primitive := True;
8847 Set_Is_Primitive (S);
07fc65c4
GB
8848 Set_Has_Primitive_Operations (B_Typ);
8849 Check_Private_Overriding (B_Typ);
996ae0b0
RK
8850 end if;
8851
8852 Next_Formal (Formal);
8853 end loop;
1aee1fb3
AC
8854
8855 -- Special case: An equality function can be redefined for a type
8856 -- occurring in a declarative part, and won't otherwise be treated as
8857 -- a primitive because it doesn't occur in a package spec and doesn't
8858 -- override an inherited subprogram. It's important that we mark it
8859 -- primitive so it can be returned by Collect_Primitive_Operations
8860 -- and be used in composing the equality operation of later types
8861 -- that have a component of the type.
8862
8863 elsif Chars (S) = Name_Op_Eq
8864 and then Etype (S) = Standard_Boolean
8865 then
8866 B_Typ := Base_Type (Etype (First_Formal (S)));
8867
8868 if Scope (B_Typ) = Current_Scope
8869 and then
8870 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8871 and then not Is_Limited_Type (B_Typ)
8872 then
8873 Is_Primitive := True;
8874 Set_Is_Primitive (S);
8875 Set_Has_Primitive_Operations (B_Typ);
8876 Check_Private_Overriding (B_Typ);
8877 end if;
996ae0b0 8878 end if;
5d37ba92
ES
8879 end Check_For_Primitive_Subprogram;
8880
8881 -----------------------------------
8882 -- Check_Synchronized_Overriding --
8883 -----------------------------------
8884
8885 procedure Check_Synchronized_Overriding
8886 (Def_Id : Entity_Id;
5d37ba92
ES
8887 Overridden_Subp : out Entity_Id)
8888 is
5d37ba92
ES
8889 Ifaces_List : Elist_Id;
8890 In_Scope : Boolean;
8891 Typ : Entity_Id;
8892
8aa15e3b
JM
8893 function Matches_Prefixed_View_Profile
8894 (Prim_Params : List_Id;
8895 Iface_Params : List_Id) return Boolean;
8896 -- Determine whether a subprogram's parameter profile Prim_Params
8897 -- matches that of a potentially overridden interface subprogram
8898 -- Iface_Params. Also determine if the type of first parameter of
8899 -- Iface_Params is an implemented interface.
8900
8aa15e3b
JM
8901 -----------------------------------
8902 -- Matches_Prefixed_View_Profile --
8903 -----------------------------------
8904
8905 function Matches_Prefixed_View_Profile
8906 (Prim_Params : List_Id;
8907 Iface_Params : List_Id) return Boolean
8908 is
8909 Iface_Id : Entity_Id;
8910 Iface_Param : Node_Id;
8911 Iface_Typ : Entity_Id;
8912 Prim_Id : Entity_Id;
8913 Prim_Param : Node_Id;
8914 Prim_Typ : Entity_Id;
8915
8916 function Is_Implemented
8917 (Ifaces_List : Elist_Id;
8918 Iface : Entity_Id) return Boolean;
8919 -- Determine if Iface is implemented by the current task or
8920 -- protected type.
8921
8922 --------------------
8923 -- Is_Implemented --
8924 --------------------
8925
8926 function Is_Implemented
8927 (Ifaces_List : Elist_Id;
8928 Iface : Entity_Id) return Boolean
8929 is
8930 Iface_Elmt : Elmt_Id;
8931
8932 begin
8933 Iface_Elmt := First_Elmt (Ifaces_List);
8934 while Present (Iface_Elmt) loop
8935 if Node (Iface_Elmt) = Iface then
8936 return True;
8937 end if;
8938
8939 Next_Elmt (Iface_Elmt);
8940 end loop;
8941
8942 return False;
8943 end Is_Implemented;
8944
8945 -- Start of processing for Matches_Prefixed_View_Profile
8946
8947 begin
8948 Iface_Param := First (Iface_Params);
8949 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8950
8951 if Is_Access_Type (Iface_Typ) then
8952 Iface_Typ := Designated_Type (Iface_Typ);
8953 end if;
8954
8955 Prim_Param := First (Prim_Params);
8956
8957 -- The first parameter of the potentially overridden subprogram
8958 -- must be an interface implemented by Prim.
8959
8960 if not Is_Interface (Iface_Typ)
8961 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8962 then
8963 return False;
8964 end if;
8965
8966 -- The checks on the object parameters are done, move onto the
8967 -- rest of the parameters.
8968
8969 if not In_Scope then
8970 Prim_Param := Next (Prim_Param);
8971 end if;
8972
8973 Iface_Param := Next (Iface_Param);
8974 while Present (Iface_Param) and then Present (Prim_Param) loop
8975 Iface_Id := Defining_Identifier (Iface_Param);
8976 Iface_Typ := Find_Parameter_Type (Iface_Param);
8977
8aa15e3b
JM
8978 Prim_Id := Defining_Identifier (Prim_Param);
8979 Prim_Typ := Find_Parameter_Type (Prim_Param);
8980
15e4986c
JM
8981 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8982 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8983 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8984 then
8985 Iface_Typ := Designated_Type (Iface_Typ);
8986 Prim_Typ := Designated_Type (Prim_Typ);
8aa15e3b
JM
8987 end if;
8988
8989 -- Case of multiple interface types inside a parameter profile
8990
8991 -- (Obj_Param : in out Iface; ...; Param : Iface)
8992
8993 -- If the interface type is implemented, then the matching type
8994 -- in the primitive should be the implementing record type.
8995
8996 if Ekind (Iface_Typ) = E_Record_Type
8997 and then Is_Interface (Iface_Typ)
8998 and then Is_Implemented (Ifaces_List, Iface_Typ)
8999 then
9000 if Prim_Typ /= Typ then
9001 return False;
9002 end if;
9003
9004 -- The two parameters must be both mode and subtype conformant
9005
9006 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9007 or else not
9008 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9009 then
9010 return False;
9011 end if;
9012
9013 Next (Iface_Param);
9014 Next (Prim_Param);
9015 end loop;
9016
9017 -- One of the two lists contains more parameters than the other
9018
9019 if Present (Iface_Param) or else Present (Prim_Param) then
9020 return False;
9021 end if;
9022
9023 return True;
9024 end Matches_Prefixed_View_Profile;
9025
9026 -- Start of processing for Check_Synchronized_Overriding
9027
5d37ba92
ES
9028 begin
9029 Overridden_Subp := Empty;
9030
8aa15e3b
JM
9031 -- Def_Id must be an entry or a subprogram. We should skip predefined
9032 -- primitives internally generated by the frontend; however at this
9033 -- stage predefined primitives are still not fully decorated. As a
9034 -- minor optimization we skip here internally generated subprograms.
5d37ba92 9035
8aa15e3b
JM
9036 if (Ekind (Def_Id) /= E_Entry
9037 and then Ekind (Def_Id) /= E_Function
9038 and then Ekind (Def_Id) /= E_Procedure)
9039 or else not Comes_From_Source (Def_Id)
5d37ba92
ES
9040 then
9041 return;
9042 end if;
9043
9044 -- Search for the concurrent declaration since it contains the list
9045 -- of all implemented interfaces. In this case, the subprogram is
9046 -- declared within the scope of a protected or a task type.
9047
9048 if Present (Scope (Def_Id))
9049 and then Is_Concurrent_Type (Scope (Def_Id))
9050 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9051 then
9052 Typ := Scope (Def_Id);
9053 In_Scope := True;
9054
8aa15e3b 9055 -- The enclosing scope is not a synchronized type and the subprogram
4adf3c50 9056 -- has no formals.
8aa15e3b
JM
9057
9058 elsif No (First_Formal (Def_Id)) then
9059 return;
5d37ba92 9060
8aa15e3b 9061 -- The subprogram has formals and hence it may be a primitive of a
4adf3c50 9062 -- concurrent type.
5d37ba92 9063
8aa15e3b
JM
9064 else
9065 Typ := Etype (First_Formal (Def_Id));
9066
9067 if Is_Access_Type (Typ) then
9068 Typ := Directly_Designated_Type (Typ);
8c3dd7a8
JM
9069 end if;
9070
8aa15e3b
JM
9071 if Is_Concurrent_Type (Typ)
9072 and then not Is_Generic_Actual_Type (Typ)
5d37ba92 9073 then
5d37ba92
ES
9074 In_Scope := False;
9075
9076 -- This case occurs when the concurrent type is declared within
9077 -- a generic unit. As a result the corresponding record has been
9078 -- built and used as the type of the first formal, we just have
9079 -- to retrieve the corresponding concurrent type.
9080
8aa15e3b 9081 elsif Is_Concurrent_Record_Type (Typ)
dd54644b 9082 and then not Is_Class_Wide_Type (Typ)
8aa15e3b 9083 and then Present (Corresponding_Concurrent_Type (Typ))
5d37ba92 9084 then
8aa15e3b 9085 Typ := Corresponding_Concurrent_Type (Typ);
5d37ba92
ES
9086 In_Scope := False;
9087
9088 else
9089 return;
9090 end if;
8aa15e3b
JM
9091 end if;
9092
9093 -- There is no overriding to check if is an inherited operation in a
9094 -- type derivation on for a generic actual.
9095
9096 Collect_Interfaces (Typ, Ifaces_List);
9097
9098 if Is_Empty_Elmt_List (Ifaces_List) then
5d37ba92
ES
9099 return;
9100 end if;
9101
8aa15e3b
JM
9102 -- Determine whether entry or subprogram Def_Id overrides a primitive
9103 -- operation that belongs to one of the interfaces in Ifaces_List.
5d37ba92 9104
8aa15e3b
JM
9105 declare
9106 Candidate : Entity_Id := Empty;
9107 Hom : Entity_Id := Empty;
9108 Iface_Typ : Entity_Id;
9109 Subp : Entity_Id := Empty;
9110
9111 begin
4adf3c50 9112 -- Traverse the homonym chain, looking for a potentially
8aa15e3b
JM
9113 -- overridden subprogram that belongs to an implemented
9114 -- interface.
9115
9116 Hom := Current_Entity_In_Scope (Def_Id);
9117 while Present (Hom) loop
9118 Subp := Hom;
9119
15e4986c
JM
9120 if Subp = Def_Id
9121 or else not Is_Overloadable (Subp)
9122 or else not Is_Primitive (Subp)
9123 or else not Is_Dispatching_Operation (Subp)
79afa047 9124 or else not Present (Find_Dispatching_Type (Subp))
15e4986c 9125 or else not Is_Interface (Find_Dispatching_Type (Subp))
8aa15e3b 9126 then
15e4986c 9127 null;
8aa15e3b 9128
15e4986c 9129 -- Entries and procedures can override abstract or null
4adf3c50 9130 -- interface procedures.
8aa15e3b 9131
15e4986c 9132 elsif (Ekind (Def_Id) = E_Procedure
8fde064e 9133 or else Ekind (Def_Id) = E_Entry)
8aa15e3b 9134 and then Ekind (Subp) = E_Procedure
8aa15e3b
JM
9135 and then Matches_Prefixed_View_Profile
9136 (Parameter_Specifications (Parent (Def_Id)),
9137 Parameter_Specifications (Parent (Subp)))
9138 then
9139 Candidate := Subp;
9140
15e4986c
JM
9141 -- For an overridden subprogram Subp, check whether the mode
9142 -- of its first parameter is correct depending on the kind
9143 -- of synchronized type.
8aa15e3b 9144
15e4986c
JM
9145 declare
9146 Formal : constant Node_Id := First_Formal (Candidate);
9147
9148 begin
9149 -- In order for an entry or a protected procedure to
9150 -- override, the first parameter of the overridden
9151 -- routine must be of mode "out", "in out" or
9152 -- access-to-variable.
9153
8fde064e 9154 if Ekind_In (Candidate, E_Entry, E_Procedure)
15e4986c
JM
9155 and then Is_Protected_Type (Typ)
9156 and then Ekind (Formal) /= E_In_Out_Parameter
9157 and then Ekind (Formal) /= E_Out_Parameter
8fde064e
AC
9158 and then Nkind (Parameter_Type (Parent (Formal))) /=
9159 N_Access_Definition
15e4986c
JM
9160 then
9161 null;
9162
9163 -- All other cases are OK since a task entry or routine
9164 -- does not have a restriction on the mode of the first
9165 -- parameter of the overridden interface routine.
9166
9167 else
9168 Overridden_Subp := Candidate;
9169 return;
9170 end if;
9171 end;
8aa15e3b
JM
9172
9173 -- Functions can override abstract interface functions
9174
9175 elsif Ekind (Def_Id) = E_Function
9176 and then Ekind (Subp) = E_Function
8aa15e3b
JM
9177 and then Matches_Prefixed_View_Profile
9178 (Parameter_Specifications (Parent (Def_Id)),
9179 Parameter_Specifications (Parent (Subp)))
9180 and then Etype (Result_Definition (Parent (Def_Id))) =
9181 Etype (Result_Definition (Parent (Subp)))
9182 then
9183 Overridden_Subp := Subp;
9184 return;
9185 end if;
9186
9187 Hom := Homonym (Hom);
9188 end loop;
9189
4adf3c50
AC
9190 -- After examining all candidates for overriding, we are left with
9191 -- the best match which is a mode incompatible interface routine.
9192 -- Do not emit an error if the Expander is active since this error
9193 -- will be detected later on after all concurrent types are
9194 -- expanded and all wrappers are built. This check is meant for
9195 -- spec-only compilations.
8aa15e3b 9196
4adf3c50 9197 if Present (Candidate) and then not Expander_Active then
8aa15e3b
JM
9198 Iface_Typ :=
9199 Find_Parameter_Type (Parent (First_Formal (Candidate)));
9200
4adf3c50
AC
9201 -- Def_Id is primitive of a protected type, declared inside the
9202 -- type, and the candidate is primitive of a limited or
9203 -- synchronized interface.
8aa15e3b
JM
9204
9205 if In_Scope
9206 and then Is_Protected_Type (Typ)
9207 and then
9208 (Is_Limited_Interface (Iface_Typ)
c199ccf7
AC
9209 or else Is_Protected_Interface (Iface_Typ)
9210 or else Is_Synchronized_Interface (Iface_Typ)
9211 or else Is_Task_Interface (Iface_Typ))
8aa15e3b 9212 then
dd54644b 9213 Error_Msg_PT (Parent (Typ), Candidate);
8aa15e3b 9214 end if;
5d37ba92 9215 end if;
8aa15e3b
JM
9216
9217 Overridden_Subp := Candidate;
9218 return;
9219 end;
5d37ba92
ES
9220 end Check_Synchronized_Overriding;
9221
9222 ----------------------------
9223 -- Is_Private_Declaration --
9224 ----------------------------
9225
9226 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9227 Priv_Decls : List_Id;
9228 Decl : constant Node_Id := Unit_Declaration_Node (E);
9229
9230 begin
9231 if Is_Package_Or_Generic_Package (Current_Scope)
9232 and then In_Private_Part (Current_Scope)
9233 then
9234 Priv_Decls :=
d12b19fa 9235 Private_Declarations (Package_Specification (Current_Scope));
5d37ba92
ES
9236
9237 return In_Package_Body (Current_Scope)
9238 or else
9239 (Is_List_Member (Decl)
a4901c08 9240 and then List_Containing (Decl) = Priv_Decls)
5d37ba92 9241 or else (Nkind (Parent (Decl)) = N_Package_Specification
a4901c08
AC
9242 and then not
9243 Is_Compilation_Unit
9244 (Defining_Entity (Parent (Decl)))
9245 and then List_Containing (Parent (Parent (Decl))) =
9246 Priv_Decls);
5d37ba92
ES
9247 else
9248 return False;
9249 end if;
9250 end Is_Private_Declaration;
996ae0b0 9251
2ddc2000
AC
9252 --------------------------
9253 -- Is_Overriding_Alias --
9254 --------------------------
9255
9256 function Is_Overriding_Alias
9257 (Old_E : Entity_Id;
9258 New_E : Entity_Id) return Boolean
9259 is
9260 AO : constant Entity_Id := Alias (Old_E);
9261 AN : constant Entity_Id := Alias (New_E);
2ddc2000
AC
9262 begin
9263 return Scope (AO) /= Scope (AN)
9264 or else No (DTC_Entity (AO))
9265 or else No (DTC_Entity (AN))
9266 or else DT_Position (AO) = DT_Position (AN);
9267 end Is_Overriding_Alias;
9268
996ae0b0
RK
9269 -- Start of processing for New_Overloaded_Entity
9270
9271 begin
fbf5a39b
AC
9272 -- We need to look for an entity that S may override. This must be a
9273 -- homonym in the current scope, so we look for the first homonym of
9274 -- S in the current scope as the starting point for the search.
9275
9276 E := Current_Entity_In_Scope (S);
9277
947430d5
AC
9278 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9279 -- They are directly added to the list of primitive operations of
9280 -- Derived_Type, unless this is a rederivation in the private part
9281 -- of an operation that was already derived in the visible part of
9282 -- the current package.
9283
0791fbe9 9284 if Ada_Version >= Ada_2005
947430d5
AC
9285 and then Present (Derived_Type)
9286 and then Present (Alias (S))
9287 and then Is_Dispatching_Operation (Alias (S))
9288 and then Present (Find_Dispatching_Type (Alias (S)))
9289 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9290 then
9291 -- For private types, when the full-view is processed we propagate to
9292 -- the full view the non-overridden entities whose attribute "alias"
9293 -- references an interface primitive. These entities were added by
9294 -- Derive_Subprograms to ensure that interface primitives are
9295 -- covered.
9296
9297 -- Inside_Freeze_Actions is non zero when S corresponds with an
9298 -- internal entity that links an interface primitive with its
9299 -- covering primitive through attribute Interface_Alias (see
4adf3c50 9300 -- Add_Internal_Interface_Entities).
947430d5
AC
9301
9302 if Inside_Freezing_Actions = 0
9303 and then Is_Package_Or_Generic_Package (Current_Scope)
9304 and then In_Private_Part (Current_Scope)
9305 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9306 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9307 and then Full_View (Defining_Identifier (Parent (E)))
9308 = Defining_Identifier (Parent (S))
9309 and then Alias (E) = Alias (S)
9310 then
9311 Check_Operation_From_Private_View (S, E);
9312 Set_Is_Dispatching_Operation (S);
9313
9314 -- Common case
9315
9316 else
9317 Enter_Overloaded_Entity (S);
9318 Check_Dispatching_Operation (S, Empty);
9319 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9320 end if;
9321
9322 return;
9323 end if;
9324
fbf5a39b
AC
9325 -- If there is no homonym then this is definitely not overriding
9326
996ae0b0
RK
9327 if No (E) then
9328 Enter_Overloaded_Entity (S);
9329 Check_Dispatching_Operation (S, Empty);
5d37ba92 9330 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 9331
2995860f
AC
9332 -- If subprogram has an explicit declaration, check whether it has an
9333 -- overriding indicator.
758c442c 9334
ec4867fa 9335 if Comes_From_Source (S) then
8aa15e3b 9336 Check_Synchronized_Overriding (S, Overridden_Subp);
ea034236
AC
9337
9338 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9339 -- it may have overridden some hidden inherited primitive. Update
308e6f3a 9340 -- Overridden_Subp to avoid spurious errors when checking the
ea034236
AC
9341 -- overriding indicator.
9342
9343 if Ada_Version >= Ada_2012
9344 and then No (Overridden_Subp)
9345 and then Is_Dispatching_Operation (S)
038140ed 9346 and then Present (Overridden_Operation (S))
ea034236
AC
9347 then
9348 Overridden_Subp := Overridden_Operation (S);
9349 end if;
9350
5d37ba92
ES
9351 Check_Overriding_Indicator
9352 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
758c442c
GD
9353 end if;
9354
fbf5a39b
AC
9355 -- If there is a homonym that is not overloadable, then we have an
9356 -- error, except for the special cases checked explicitly below.
9357
996ae0b0
RK
9358 elsif not Is_Overloadable (E) then
9359
9360 -- Check for spurious conflict produced by a subprogram that has the
9361 -- same name as that of the enclosing generic package. The conflict
9362 -- occurs within an instance, between the subprogram and the renaming
9363 -- declaration for the package. After the subprogram, the package
9364 -- renaming declaration becomes hidden.
9365
9366 if Ekind (E) = E_Package
9367 and then Present (Renamed_Object (E))
9368 and then Renamed_Object (E) = Current_Scope
9369 and then Nkind (Parent (Renamed_Object (E))) =
9370 N_Package_Specification
9371 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9372 then
9373 Set_Is_Hidden (E);
9374 Set_Is_Immediately_Visible (E, False);
9375 Enter_Overloaded_Entity (S);
9376 Set_Homonym (S, Homonym (E));
9377 Check_Dispatching_Operation (S, Empty);
5d37ba92 9378 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
9379
9380 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
9381 -- declaration. However if it is dispatching, it must appear in the
9382 -- dispatch table anyway, because it can be dispatched to even if it
9383 -- cannot be called directly.
996ae0b0 9384
4adf3c50 9385 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
996ae0b0
RK
9386 Set_Scope (S, Current_Scope);
9387
9388 if Is_Dispatching_Operation (Alias (S)) then
9389 Check_Dispatching_Operation (S, Empty);
9390 end if;
9391
9392 return;
9393
9394 else
9395 Error_Msg_Sloc := Sloc (E);
996ae0b0 9396
f3d57416 9397 -- Generate message, with useful additional warning if in generic
996ae0b0
RK
9398
9399 if Is_Generic_Unit (E) then
5d37ba92
ES
9400 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9401 Error_Msg_N ("\& conflicts with declaration#", S);
9402 else
9403 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
9404 end if;
9405
9406 return;
9407 end if;
9408
fbf5a39b
AC
9409 -- E exists and is overloadable
9410
996ae0b0 9411 else
8aa15e3b 9412 Check_Synchronized_Overriding (S, Overridden_Subp);
758c442c 9413
82c80734
RD
9414 -- Loop through E and its homonyms to determine if any of them is
9415 -- the candidate for overriding by S.
996ae0b0
RK
9416
9417 while Present (E) loop
fbf5a39b
AC
9418
9419 -- Definitely not interesting if not in the current scope
9420
996ae0b0
RK
9421 if Scope (E) /= Current_Scope then
9422 null;
9423
aca90db9
AC
9424 -- A function can overload the name of an abstract state. The
9425 -- state can be viewed as a function with a profile that cannot
9426 -- be matched by anything.
9427
9428 elsif Ekind (S) = E_Function
9429 and then Ekind (E) = E_Abstract_State
9430 then
9431 Enter_Overloaded_Entity (S);
9432 return;
9433
2995860f
AC
9434 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9435 -- procedures locate the internally generated spec. We enforce
9436 -- mode conformance since a tagged type may inherit from
9437 -- interfaces several null primitives which differ only in
9438 -- the mode of the formals.
25ebc085
AC
9439
9440 elsif not Comes_From_Source (S)
9441 and then Is_Null_Procedure (S)
9442 and then not Mode_Conformant (E, S)
9443 then
9444 null;
9445
fbf5a39b
AC
9446 -- Check if we have type conformance
9447
ec4867fa 9448 elsif Type_Conformant (E, S) then
c8ef728f 9449
82c80734
RD
9450 -- If the old and new entities have the same profile and one
9451 -- is not the body of the other, then this is an error, unless
9452 -- one of them is implicitly declared.
996ae0b0
RK
9453
9454 -- There are some cases when both can be implicit, for example
9455 -- when both a literal and a function that overrides it are
f3d57416 9456 -- inherited in a derivation, or when an inherited operation
ec4867fa 9457 -- of a tagged full type overrides the inherited operation of
f3d57416 9458 -- a private extension. Ada 83 had a special rule for the
885c4871 9459 -- literal case. In Ada 95, the later implicit operation hides
82c80734
RD
9460 -- the former, and the literal is always the former. In the
9461 -- odd case where both are derived operations declared at the
9462 -- same point, both operations should be declared, and in that
9463 -- case we bypass the following test and proceed to the next
df46b832
AC
9464 -- part. This can only occur for certain obscure cases in
9465 -- instances, when an operation on a type derived from a formal
9466 -- private type does not override a homograph inherited from
9467 -- the actual. In subsequent derivations of such a type, the
9468 -- DT positions of these operations remain distinct, if they
9469 -- have been set.
996ae0b0
RK
9470
9471 if Present (Alias (S))
9472 and then (No (Alias (E))
9473 or else Comes_From_Source (E)
2ddc2000 9474 or else Is_Abstract_Subprogram (S)
df46b832
AC
9475 or else
9476 (Is_Dispatching_Operation (E)
84c0a895 9477 and then Is_Overriding_Alias (E, S)))
df46b832 9478 and then Ekind (E) /= E_Enumeration_Literal
996ae0b0 9479 then
82c80734
RD
9480 -- When an derived operation is overloaded it may be due to
9481 -- the fact that the full view of a private extension
996ae0b0
RK
9482 -- re-inherits. It has to be dealt with.
9483
e660dbf7 9484 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
9485 and then In_Private_Part (Current_Scope)
9486 then
9487 Check_Operation_From_Private_View (S, E);
9488 end if;
9489
038140ed
AC
9490 -- In any case the implicit operation remains hidden by the
9491 -- existing declaration, which is overriding. Indicate that
9492 -- E overrides the operation from which S is inherited.
996ae0b0 9493
038140ed 9494 if Present (Alias (S)) then
039538bc
AC
9495 Set_Overridden_Operation (E, Alias (S));
9496 Inherit_Subprogram_Contract (E, Alias (S));
9497
038140ed 9498 else
039538bc
AC
9499 Set_Overridden_Operation (E, S);
9500 Inherit_Subprogram_Contract (E, S);
038140ed 9501 end if;
758c442c
GD
9502
9503 if Comes_From_Source (E) then
5d37ba92 9504 Check_Overriding_Indicator (E, S, Is_Primitive => False);
758c442c
GD
9505 end if;
9506
996ae0b0
RK
9507 return;
9508
26a43556
AC
9509 -- Within an instance, the renaming declarations for actual
9510 -- subprograms may become ambiguous, but they do not hide each
9511 -- other.
996ae0b0
RK
9512
9513 elsif Ekind (E) /= E_Entry
9514 and then not Comes_From_Source (E)
9515 and then not Is_Generic_Instance (E)
9516 and then (Present (Alias (E))
9517 or else Is_Intrinsic_Subprogram (E))
9518 and then (not In_Instance
9519 or else No (Parent (E))
9520 or else Nkind (Unit_Declaration_Node (E)) /=
8dbd1460 9521 N_Subprogram_Renaming_Declaration)
996ae0b0 9522 then
26a43556
AC
9523 -- A subprogram child unit is not allowed to override an
9524 -- inherited subprogram (10.1.1(20)).
996ae0b0
RK
9525
9526 if Is_Child_Unit (S) then
9527 Error_Msg_N
9528 ("child unit overrides inherited subprogram in parent",
9529 S);
9530 return;
9531 end if;
9532
9533 if Is_Non_Overriding_Operation (E, S) then
9534 Enter_Overloaded_Entity (S);
8dbd1460 9535
c8ef728f 9536 if No (Derived_Type)
996ae0b0
RK
9537 or else Is_Tagged_Type (Derived_Type)
9538 then
9539 Check_Dispatching_Operation (S, Empty);
9540 end if;
9541
9542 return;
9543 end if;
9544
9545 -- E is a derived operation or an internal operator which
9546 -- is being overridden. Remove E from further visibility.
9547 -- Furthermore, if E is a dispatching operation, it must be
9548 -- replaced in the list of primitive operations of its type
9549 -- (see Override_Dispatching_Operation).
9550
ec4867fa 9551 Overridden_Subp := E;
758c442c 9552
996ae0b0
RK
9553 declare
9554 Prev : Entity_Id;
9555
9556 begin
9557 Prev := First_Entity (Current_Scope);
8fde064e 9558 while Present (Prev) and then Next_Entity (Prev) /= E loop
996ae0b0
RK
9559 Next_Entity (Prev);
9560 end loop;
9561
9562 -- It is possible for E to be in the current scope and
9563 -- yet not in the entity chain. This can only occur in a
9564 -- generic context where E is an implicit concatenation
9565 -- in the formal part, because in a generic body the
9566 -- entity chain starts with the formals.
9567
9568 pragma Assert
9569 (Present (Prev) or else Chars (E) = Name_Op_Concat);
9570
9571 -- E must be removed both from the entity_list of the
9572 -- current scope, and from the visibility chain
9573
9574 if Debug_Flag_E then
9575 Write_Str ("Override implicit operation ");
9576 Write_Int (Int (E));
9577 Write_Eol;
9578 end if;
9579
9580 -- If E is a predefined concatenation, it stands for four
9581 -- different operations. As a result, a single explicit
9582 -- declaration does not hide it. In a possible ambiguous
9583 -- situation, Disambiguate chooses the user-defined op,
9584 -- so it is correct to retain the previous internal one.
9585
9586 if Chars (E) /= Name_Op_Concat
9587 or else Ekind (E) /= E_Operator
9588 then
9589 -- For nondispatching derived operations that are
9590 -- overridden by a subprogram declared in the private
8dbd1460
AC
9591 -- part of a package, we retain the derived subprogram
9592 -- but mark it as not immediately visible. If the
9593 -- derived operation was declared in the visible part
9594 -- then this ensures that it will still be visible
9595 -- outside the package with the proper signature
9596 -- (calls from outside must also be directed to this
9597 -- version rather than the overriding one, unlike the
9598 -- dispatching case). Calls from inside the package
9599 -- will still resolve to the overriding subprogram
9600 -- since the derived one is marked as not visible
9601 -- within the package.
996ae0b0
RK
9602
9603 -- If the private operation is dispatching, we achieve
9604 -- the overriding by keeping the implicit operation
9865d858 9605 -- but setting its alias to be the overriding one. In
996ae0b0
RK
9606 -- this fashion the proper body is executed in all
9607 -- cases, but the original signature is used outside
9608 -- of the package.
9609
9610 -- If the overriding is not in the private part, we
9611 -- remove the implicit operation altogether.
9612
9613 if Is_Private_Declaration (S) then
996ae0b0
RK
9614 if not Is_Dispatching_Operation (E) then
9615 Set_Is_Immediately_Visible (E, False);
9616 else
e895b435 9617 -- Work done in Override_Dispatching_Operation,
a46cde68 9618 -- so nothing else needs to be done here.
996ae0b0
RK
9619
9620 null;
9621 end if;
996ae0b0 9622
fbf5a39b
AC
9623 else
9624 -- Find predecessor of E in Homonym chain
996ae0b0
RK
9625
9626 if E = Current_Entity (E) then
9627 Prev_Vis := Empty;
9628 else
9629 Prev_Vis := Current_Entity (E);
9630 while Homonym (Prev_Vis) /= E loop
9631 Prev_Vis := Homonym (Prev_Vis);
9632 end loop;
9633 end if;
9634
9635 if Prev_Vis /= Empty then
9636
9637 -- Skip E in the visibility chain
9638
9639 Set_Homonym (Prev_Vis, Homonym (E));
9640
9641 else
9642 Set_Name_Entity_Id (Chars (E), Homonym (E));
9643 end if;
9644
9645 Set_Next_Entity (Prev, Next_Entity (E));
9646
9647 if No (Next_Entity (Prev)) then
9648 Set_Last_Entity (Current_Scope, Prev);
9649 end if;
996ae0b0
RK
9650 end if;
9651 end if;
9652
9653 Enter_Overloaded_Entity (S);
1c1289e7
AC
9654
9655 -- For entities generated by Derive_Subprograms the
9656 -- overridden operation is the inherited primitive
9657 -- (which is available through the attribute alias).
9658
9659 if not (Comes_From_Source (E))
9660 and then Is_Dispatching_Operation (E)
f9673bb0
AC
9661 and then Find_Dispatching_Type (E) =
9662 Find_Dispatching_Type (S)
1c1289e7
AC
9663 and then Present (Alias (E))
9664 and then Comes_From_Source (Alias (E))
9665 then
039538bc
AC
9666 Set_Overridden_Operation (S, Alias (E));
9667 Inherit_Subprogram_Contract (S, Alias (E));
2fe829ae 9668
6320f5e1
AC
9669 -- Normal case of setting entity as overridden
9670
9671 -- Note: Static_Initialization and Overridden_Operation
9672 -- attributes use the same field in subprogram entities.
9673 -- Static_Initialization is only defined for internal
9674 -- initialization procedures, where Overridden_Operation
9675 -- is irrelevant. Therefore the setting of this attribute
9676 -- must check whether the target is an init_proc.
9677
2fe829ae 9678 elsif not Is_Init_Proc (S) then
039538bc
AC
9679 Set_Overridden_Operation (S, E);
9680 Inherit_Subprogram_Contract (S, E);
1c1289e7
AC
9681 end if;
9682
5d37ba92 9683 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 9684
fc53fe76 9685 -- If S is a user-defined subprogram or a null procedure
38ef8ebe
AC
9686 -- expanded to override an inherited null procedure, or a
9687 -- predefined dispatching primitive then indicate that E
038140ed 9688 -- overrides the operation from which S is inherited.
fc53fe76
AC
9689
9690 if Comes_From_Source (S)
9691 or else
9692 (Present (Parent (S))
9693 and then
9694 Nkind (Parent (S)) = N_Procedure_Specification
9695 and then
9696 Null_Present (Parent (S)))
38ef8ebe
AC
9697 or else
9698 (Present (Alias (E))
f16e8df9
RD
9699 and then
9700 Is_Predefined_Dispatching_Operation (Alias (E)))
fc53fe76 9701 then
c8ef728f 9702 if Present (Alias (E)) then
039538bc
AC
9703 Set_Overridden_Operation (S, Alias (E));
9704 Inherit_Subprogram_Contract (S, Alias (E));
41251c60
JM
9705 end if;
9706 end if;
9707
996ae0b0 9708 if Is_Dispatching_Operation (E) then
fbf5a39b 9709
82c80734 9710 -- An overriding dispatching subprogram inherits the
f9673bb0 9711 -- convention of the overridden subprogram (AI-117).
996ae0b0
RK
9712
9713 Set_Convention (S, Convention (E));
41251c60
JM
9714 Check_Dispatching_Operation (S, E);
9715
996ae0b0
RK
9716 else
9717 Check_Dispatching_Operation (S, Empty);
9718 end if;
9719
5d37ba92
ES
9720 Check_For_Primitive_Subprogram
9721 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
9722 goto Check_Inequality;
9723 end;
9724
9725 -- Apparent redeclarations in instances can occur when two
9726 -- formal types get the same actual type. The subprograms in
9727 -- in the instance are legal, even if not callable from the
9728 -- outside. Calls from within are disambiguated elsewhere.
9729 -- For dispatching operations in the visible part, the usual
9730 -- rules apply, and operations with the same profile are not
9731 -- legal (B830001).
9732
9733 elsif (In_Instance_Visible_Part
9734 and then not Is_Dispatching_Operation (E))
9735 or else In_Instance_Not_Visible
9736 then
9737 null;
9738
9739 -- Here we have a real error (identical profile)
9740
9741 else
9742 Error_Msg_Sloc := Sloc (E);
9743
9744 -- Avoid cascaded errors if the entity appears in
9745 -- subsequent calls.
9746
9747 Set_Scope (S, Current_Scope);
9748
5d37ba92
ES
9749 -- Generate error, with extra useful warning for the case
9750 -- of a generic instance with no completion.
996ae0b0
RK
9751
9752 if Is_Generic_Instance (S)
9753 and then not Has_Completion (E)
9754 then
9755 Error_Msg_N
5d37ba92
ES
9756 ("instantiation cannot provide body for&", S);
9757 Error_Msg_N ("\& conflicts with declaration#", S);
9758 else
9759 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
9760 end if;
9761
9762 return;
9763 end if;
9764
9765 else
c8ef728f
ES
9766 -- If one subprogram has an access parameter and the other
9767 -- a parameter of an access type, calls to either might be
9768 -- ambiguous. Verify that parameters match except for the
9769 -- access parameter.
9770
9771 if May_Hide_Profile then
9772 declare
ec4867fa
ES
9773 F1 : Entity_Id;
9774 F2 : Entity_Id;
8dbd1460 9775
c8ef728f
ES
9776 begin
9777 F1 := First_Formal (S);
9778 F2 := First_Formal (E);
9779 while Present (F1) and then Present (F2) loop
9780 if Is_Access_Type (Etype (F1)) then
9781 if not Is_Access_Type (Etype (F2))
9782 or else not Conforming_Types
9783 (Designated_Type (Etype (F1)),
9784 Designated_Type (Etype (F2)),
9785 Type_Conformant)
9786 then
9787 May_Hide_Profile := False;
9788 end if;
9789
9790 elsif
9791 not Conforming_Types
9792 (Etype (F1), Etype (F2), Type_Conformant)
9793 then
9794 May_Hide_Profile := False;
9795 end if;
9796
9797 Next_Formal (F1);
9798 Next_Formal (F2);
9799 end loop;
9800
9801 if May_Hide_Profile
9802 and then No (F1)
9803 and then No (F2)
9804 then
dbfeb4fa 9805 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
c8ef728f
ES
9806 end if;
9807 end;
9808 end if;
996ae0b0
RK
9809 end if;
9810
996ae0b0
RK
9811 E := Homonym (E);
9812 end loop;
9813
9814 -- On exit, we know that S is a new entity
9815
9816 Enter_Overloaded_Entity (S);
5d37ba92
ES
9817 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9818 Check_Overriding_Indicator
9819 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 9820
c4d67e2d 9821 -- Overloading is not allowed in SPARK, except for operators
8ed68165 9822
c4d67e2d
AC
9823 if Nkind (S) /= N_Defining_Operator_Symbol then
9824 Error_Msg_Sloc := Sloc (Homonym (S));
ce5ba43a 9825 Check_SPARK_05_Restriction
c4d67e2d
AC
9826 ("overloading not allowed with entity#", S);
9827 end if;
8ed68165 9828
82c80734
RD
9829 -- If S is a derived operation for an untagged type then by
9830 -- definition it's not a dispatching operation (even if the parent
e917aec2
RD
9831 -- operation was dispatching), so Check_Dispatching_Operation is not
9832 -- called in that case.
996ae0b0 9833
c8ef728f 9834 if No (Derived_Type)
996ae0b0
RK
9835 or else Is_Tagged_Type (Derived_Type)
9836 then
9837 Check_Dispatching_Operation (S, Empty);
9838 end if;
9839 end if;
9840
82c80734
RD
9841 -- If this is a user-defined equality operator that is not a derived
9842 -- subprogram, create the corresponding inequality. If the operation is
9843 -- dispatching, the expansion is done elsewhere, and we do not create
9844 -- an explicit inequality operation.
996ae0b0
RK
9845
9846 <<Check_Inequality>>
9847 if Chars (S) = Name_Op_Eq
9848 and then Etype (S) = Standard_Boolean
9849 and then Present (Parent (S))
9850 and then not Is_Dispatching_Operation (S)
9851 then
9852 Make_Inequality_Operator (S);
b2834fbd 9853 Check_Untagged_Equality (S);
996ae0b0 9854 end if;
996ae0b0
RK
9855 end New_Overloaded_Entity;
9856
9857 ---------------------
9858 -- Process_Formals --
9859 ---------------------
9860
9861 procedure Process_Formals
07fc65c4 9862 (T : List_Id;
996ae0b0
RK
9863 Related_Nod : Node_Id)
9864 is
9865 Param_Spec : Node_Id;
9866 Formal : Entity_Id;
9867 Formal_Type : Entity_Id;
9868 Default : Node_Id;
9869 Ptype : Entity_Id;
9870
800621e0
RD
9871 Num_Out_Params : Nat := 0;
9872 First_Out_Param : Entity_Id := Empty;
21d27997 9873 -- Used for setting Is_Only_Out_Parameter
800621e0 9874
7b56a91b 9875 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
950d217a
AC
9876 -- Determine whether an access type designates a type coming from a
9877 -- limited view.
9878
07fc65c4 9879 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
9880 -- Check whether the default has a class-wide type. After analysis the
9881 -- default has the type of the formal, so we must also check explicitly
9882 -- for an access attribute.
07fc65c4 9883
7b56a91b
AC
9884 ----------------------------------
9885 -- Designates_From_Limited_With --
9886 ----------------------------------
950d217a 9887
7b56a91b 9888 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
950d217a
AC
9889 Desig : Entity_Id := Typ;
9890
9891 begin
9892 if Is_Access_Type (Desig) then
9893 Desig := Directly_Designated_Type (Desig);
9894 end if;
9895
9896 if Is_Class_Wide_Type (Desig) then
9897 Desig := Root_Type (Desig);
9898 end if;
9899
9900 return
7b56a91b
AC
9901 Ekind (Desig) = E_Incomplete_Type
9902 and then From_Limited_With (Desig);
9903 end Designates_From_Limited_With;
950d217a 9904
07fc65c4
GB
9905 ---------------------------
9906 -- Is_Class_Wide_Default --
9907 ---------------------------
9908
9909 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9910 begin
9911 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9912 or else (Nkind (D) = N_Attribute_Reference
0f853035
YM
9913 and then Attribute_Name (D) = Name_Access
9914 and then Is_Class_Wide_Type (Etype (Prefix (D))));
07fc65c4
GB
9915 end Is_Class_Wide_Default;
9916
9917 -- Start of processing for Process_Formals
9918
996ae0b0
RK
9919 begin
9920 -- In order to prevent premature use of the formals in the same formal
9921 -- part, the Ekind is left undefined until all default expressions are
9922 -- analyzed. The Ekind is established in a separate loop at the end.
9923
9924 Param_Spec := First (T);
996ae0b0 9925 while Present (Param_Spec) loop
996ae0b0 9926 Formal := Defining_Identifier (Param_Spec);
5d37ba92 9927 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
9928 Enter_Name (Formal);
9929
9930 -- Case of ordinary parameters
9931
9932 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9933 Find_Type (Parameter_Type (Param_Spec));
9934 Ptype := Parameter_Type (Param_Spec);
9935
9936 if Ptype = Error then
9937 goto Continue;
9938 end if;
9939
9940 Formal_Type := Entity (Ptype);
9941
ec4867fa
ES
9942 if Is_Incomplete_Type (Formal_Type)
9943 or else
9944 (Is_Class_Wide_Type (Formal_Type)
8fde064e 9945 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 9946 then
93bcda23
AC
9947 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9948 -- primitive operations, as long as their completion is
9949 -- in the same declarative part. If in the private part
9950 -- this means that the type cannot be a Taft-amendment type.
cec29135
ES
9951 -- Check is done on package exit. For access to subprograms,
9952 -- the use is legal for Taft-amendment types.
fbf5a39b 9953
6eddd7b4
AC
9954 -- Ada 2012: tagged incomplete types are allowed as generic
9955 -- formal types. They do not introduce dependencies and the
9956 -- corresponding generic subprogram does not have a delayed
5b6f12c7
AC
9957 -- freeze, because it does not need a freeze node. However,
9958 -- it is still the case that untagged incomplete types cannot
9959 -- be Taft-amendment types and must be completed in private
9960 -- part, so the subprogram must appear in the list of private
9961 -- dependents of the type.
9962
9963 if Is_Tagged_Type (Formal_Type)
b973629e 9964 or else (Ada_Version >= Ada_2012
1ebc2612
AC
9965 and then not From_Limited_With (Formal_Type)
9966 and then not Is_Generic_Type (Formal_Type))
5b6f12c7 9967 then
93bcda23 9968 if Ekind (Scope (Current_Scope)) = E_Package
6eddd7b4 9969 and then not Is_Generic_Type (Formal_Type)
93bcda23
AC
9970 and then not Is_Class_Wide_Type (Formal_Type)
9971 then
cec29135
ES
9972 if not Nkind_In
9973 (Parent (T), N_Access_Function_Definition,
9974 N_Access_Procedure_Definition)
9975 then
9976 Append_Elmt
9977 (Current_Scope,
09c954dc 9978 To => Private_Dependents (Base_Type (Formal_Type)));
4637729f
AC
9979
9980 -- Freezing is delayed to ensure that Register_Prim
9981 -- will get called for this operation, which is needed
9982 -- in cases where static dispatch tables aren't built.
9983 -- (Note that the same is done for controlling access
9984 -- parameter cases in function Access_Definition.)
9985
13fa2acb
AC
9986 if not Is_Thunk (Current_Scope) then
9987 Set_Has_Delayed_Freeze (Current_Scope);
9988 end if;
cec29135 9989 end if;
93bcda23 9990 end if;
fbf5a39b 9991
0a36105d
JM
9992 -- Special handling of Value_Type for CIL case
9993
9994 elsif Is_Value_Type (Formal_Type) then
9995 null;
9996
800621e0
RD
9997 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
9998 N_Access_Procedure_Definition)
996ae0b0 9999 then
dd386db0
AC
10000 -- AI05-0151: Tagged incomplete types are allowed in all
10001 -- formal parts. Untagged incomplete types are not allowed
b973629e
AC
10002 -- in bodies. Limited views of either kind are not allowed
10003 -- if there is no place at which the non-limited view can
10004 -- become available.
a18e3d62 10005
1ebc2612
AC
10006 -- Incomplete formal untagged types are not allowed in
10007 -- subprogram bodies (but are legal in their declarations).
10008
10009 if Is_Generic_Type (Formal_Type)
10010 and then not Is_Tagged_Type (Formal_Type)
10011 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10012 then
10013 Error_Msg_N
10014 ("invalid use of formal incomplete type", Param_Spec);
dd386db0 10015
1ebc2612 10016 elsif Ada_Version >= Ada_2012 then
b973629e
AC
10017 if Is_Tagged_Type (Formal_Type)
10018 and then (not From_Limited_With (Formal_Type)
10019 or else not In_Package_Body)
10020 then
dd386db0
AC
10021 null;
10022
0f1a6a0b 10023 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
b973629e 10024 N_Accept_Alternative,
0f1a6a0b
AC
10025 N_Entry_Body,
10026 N_Subprogram_Body)
dd386db0
AC
10027 then
10028 Error_Msg_NE
10029 ("invalid use of untagged incomplete type&",
0f1a6a0b 10030 Ptype, Formal_Type);
dd386db0
AC
10031 end if;
10032
10033 else
10034 Error_Msg_NE
10035 ("invalid use of incomplete type&",
0f1a6a0b 10036 Param_Spec, Formal_Type);
dd386db0
AC
10037
10038 -- Further checks on the legality of incomplete types
10039 -- in formal parts are delayed until the freeze point
10040 -- of the enclosing subprogram or access to subprogram.
10041 end if;
996ae0b0
RK
10042 end if;
10043
10044 elsif Ekind (Formal_Type) = E_Void then
0f1a6a0b
AC
10045 Error_Msg_NE
10046 ("premature use of&",
10047 Parameter_Type (Param_Spec), Formal_Type);
996ae0b0
RK
10048 end if;
10049
fecbd779
AC
10050 -- Ada 2012 (AI-142): Handle aliased parameters
10051
10052 if Ada_Version >= Ada_2012
10053 and then Aliased_Present (Param_Spec)
10054 then
10055 Set_Is_Aliased (Formal);
10056 end if;
10057
0ab80019 10058 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 10059 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
10060 -- formal in the enclosing scope. Finally, replace the parameter
10061 -- type of the formal with the internal subtype.
7324bf49 10062
0791fbe9 10063 if Ada_Version >= Ada_2005
41251c60 10064 and then Null_Exclusion_Present (Param_Spec)
7324bf49 10065 then
ec4867fa 10066 if not Is_Access_Type (Formal_Type) then
ed2233dc 10067 Error_Msg_N
0a36105d
JM
10068 ("`NOT NULL` allowed only for an access type", Param_Spec);
10069
ec4867fa
ES
10070 else
10071 if Can_Never_Be_Null (Formal_Type)
10072 and then Comes_From_Source (Related_Nod)
10073 then
ed2233dc 10074 Error_Msg_NE
0a36105d 10075 ("`NOT NULL` not allowed (& already excludes null)",
0f1a6a0b 10076 Param_Spec, Formal_Type);
ec4867fa 10077 end if;
41251c60 10078
ec4867fa
ES
10079 Formal_Type :=
10080 Create_Null_Excluding_Itype
10081 (T => Formal_Type,
10082 Related_Nod => Related_Nod,
10083 Scope_Id => Scope (Current_Scope));
0a36105d 10084
fcf848c4
AC
10085 -- If the designated type of the itype is an itype that is
10086 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10087 -- on the access subtype, to prevent order-of-elaboration
10088 -- issues in the backend.
0a36105d
JM
10089
10090 -- Example:
10091 -- type T is access procedure;
10092 -- procedure Op (O : not null T);
10093
fcf848c4
AC
10094 if Is_Itype (Directly_Designated_Type (Formal_Type))
10095 and then
10096 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10097 then
0a36105d
JM
10098 Set_Has_Delayed_Freeze (Formal_Type);
10099 end if;
ec4867fa 10100 end if;
7324bf49
AC
10101 end if;
10102
996ae0b0
RK
10103 -- An access formal type
10104
10105 else
10106 Formal_Type :=
10107 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 10108
f937473f
RD
10109 -- No need to continue if we already notified errors
10110
10111 if not Present (Formal_Type) then
10112 return;
10113 end if;
10114
0ab80019 10115 -- Ada 2005 (AI-254)
7324bf49 10116
af4b9434
AC
10117 declare
10118 AD : constant Node_Id :=
10119 Access_To_Subprogram_Definition
10120 (Parameter_Type (Param_Spec));
10121 begin
10122 if Present (AD) and then Protected_Present (AD) then
10123 Formal_Type :=
10124 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 10125 (Param_Spec);
af4b9434
AC
10126 end if;
10127 end;
996ae0b0
RK
10128 end if;
10129
10130 Set_Etype (Formal, Formal_Type);
0f853035 10131
fecbd779
AC
10132 -- Deal with default expression if present
10133
fbf5a39b 10134 Default := Expression (Param_Spec);
996ae0b0
RK
10135
10136 if Present (Default) then
ce5ba43a 10137 Check_SPARK_05_Restriction
fe5d3068 10138 ("default expression is not allowed", Default);
38171f43 10139
996ae0b0 10140 if Out_Present (Param_Spec) then
ed2233dc 10141 Error_Msg_N
996ae0b0
RK
10142 ("default initialization only allowed for IN parameters",
10143 Param_Spec);
10144 end if;
10145
10146 -- Do the special preanalysis of the expression (see section on
10147 -- "Handling of Default Expressions" in the spec of package Sem).
10148
21d27997 10149 Preanalyze_Spec_Expression (Default, Formal_Type);
996ae0b0 10150
f29b857f
ES
10151 -- An access to constant cannot be the default for
10152 -- an access parameter that is an access to variable.
2eb160f2
ST
10153
10154 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10155 and then not Is_Access_Constant (Formal_Type)
10156 and then Is_Access_Type (Etype (Default))
10157 and then Is_Access_Constant (Etype (Default))
10158 then
f29b857f 10159 Error_Msg_N
84c0a895
AC
10160 ("formal that is access to variable cannot be initialized "
10161 & "with an access-to-constant expression", Default);
2eb160f2
ST
10162 end if;
10163
d8db0bca
JM
10164 -- Check that the designated type of an access parameter's default
10165 -- is not a class-wide type unless the parameter's designated type
10166 -- is also class-wide.
996ae0b0
RK
10167
10168 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7b56a91b 10169 and then not Designates_From_Limited_With (Formal_Type)
07fc65c4 10170 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
10171 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10172 then
07fc65c4
GB
10173 Error_Msg_N
10174 ("access to class-wide expression not allowed here", Default);
996ae0b0 10175 end if;
4755cce9
JM
10176
10177 -- Check incorrect use of dynamically tagged expressions
10178
10179 if Is_Tagged_Type (Formal_Type) then
10180 Check_Dynamically_Tagged_Expression
10181 (Expr => Default,
10182 Typ => Formal_Type,
10183 Related_Nod => Default);
10184 end if;
996ae0b0
RK
10185 end if;
10186
41251c60
JM
10187 -- Ada 2005 (AI-231): Static checks
10188
0791fbe9 10189 if Ada_Version >= Ada_2005
41251c60
JM
10190 and then Is_Access_Type (Etype (Formal))
10191 and then Can_Never_Be_Null (Etype (Formal))
10192 then
10193 Null_Exclusion_Static_Checks (Param_Spec);
10194 end if;
10195
f1bd0415
AC
10196 -- The following checks are relevant when SPARK_Mode is on as these
10197 -- are not standard Ada legality rules.
6c3c671e 10198
ea26c8e4
HK
10199 if SPARK_Mode = On then
10200 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
f1bd0415 10201
ea26c8e4
HK
10202 -- A function cannot have a parameter of mode IN OUT or OUT
10203 -- (SPARK RM 6.1).
f1bd0415 10204
ea26c8e4
HK
10205 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10206 Error_Msg_N
10207 ("function cannot have parameter of mode `OUT` or "
10208 & "`IN OUT`", Formal);
f1bd0415 10209
d780e54f
AC
10210 -- A function cannot have an effectively volatile formal
10211 -- parameter (SPARK RM 7.1.3(10)).
ea26c8e4 10212
d780e54f 10213 elsif Is_Effectively_Volatile (Formal) then
ea26c8e4
HK
10214 Error_Msg_N
10215 ("function cannot have a volatile formal parameter",
10216 Formal);
10217 end if;
10218
d780e54f
AC
10219 -- A procedure cannot have an effectively volatile formal
10220 -- parameter of mode IN because it behaves as a constant
10221 -- (SPARK RM 7.1.3(6)).
ea26c8e4
HK
10222
10223 elsif Ekind (Scope (Formal)) = E_Procedure
10224 and then Ekind (Formal) = E_In_Parameter
d780e54f 10225 and then Is_Effectively_Volatile (Formal)
ea26c8e4 10226 then
f1bd0415 10227 Error_Msg_N
ea26c8e4 10228 ("formal parameter of mode `IN` cannot be volatile", Formal);
f1bd0415 10229 end if;
6c3c671e
AC
10230 end if;
10231
996ae0b0
RK
10232 <<Continue>>
10233 Next (Param_Spec);
10234 end loop;
10235
82c80734
RD
10236 -- If this is the formal part of a function specification, analyze the
10237 -- subtype mark in the context where the formals are visible but not
10238 -- yet usable, and may hide outer homographs.
10239
10240 if Nkind (Related_Nod) = N_Function_Specification then
10241 Analyze_Return_Type (Related_Nod);
10242 end if;
10243
996ae0b0
RK
10244 -- Now set the kind (mode) of each formal
10245
10246 Param_Spec := First (T);
996ae0b0
RK
10247 while Present (Param_Spec) loop
10248 Formal := Defining_Identifier (Param_Spec);
10249 Set_Formal_Mode (Formal);
10250
10251 if Ekind (Formal) = E_In_Parameter then
10252 Set_Default_Value (Formal, Expression (Param_Spec));
10253
10254 if Present (Expression (Param_Spec)) then
10255 Default := Expression (Param_Spec);
10256
10257 if Is_Scalar_Type (Etype (Default)) then
5ebfaacf
AC
10258 if Nkind (Parameter_Type (Param_Spec)) /=
10259 N_Access_Definition
996ae0b0
RK
10260 then
10261 Formal_Type := Entity (Parameter_Type (Param_Spec));
996ae0b0 10262 else
5ebfaacf
AC
10263 Formal_Type :=
10264 Access_Definition
10265 (Related_Nod, Parameter_Type (Param_Spec));
996ae0b0
RK
10266 end if;
10267
10268 Apply_Scalar_Range_Check (Default, Formal_Type);
10269 end if;
2820d220 10270 end if;
800621e0
RD
10271
10272 elsif Ekind (Formal) = E_Out_Parameter then
10273 Num_Out_Params := Num_Out_Params + 1;
10274
10275 if Num_Out_Params = 1 then
10276 First_Out_Param := Formal;
10277 end if;
10278
10279 elsif Ekind (Formal) = E_In_Out_Parameter then
10280 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
10281 end if;
10282
4172a8e3
AC
10283 -- Skip remaining processing if formal type was in error
10284
10285 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10286 goto Next_Parameter;
10287 end if;
10288
fecbd779
AC
10289 -- Force call by reference if aliased
10290
10291 if Is_Aliased (Formal) then
10292 Set_Mechanism (Formal, By_Reference);
5ebfaacf
AC
10293
10294 -- Warn if user asked this to be passed by copy
10295
10296 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10297 Error_Msg_N
b785e0b8 10298 ("cannot pass aliased parameter & by copy??", Formal);
5ebfaacf
AC
10299 end if;
10300
10301 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10302
10303 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10304 Set_Mechanism (Formal, By_Copy);
10305
10306 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10307 Set_Mechanism (Formal, By_Reference);
fecbd779
AC
10308 end if;
10309
4172a8e3 10310 <<Next_Parameter>>
996ae0b0
RK
10311 Next (Param_Spec);
10312 end loop;
800621e0
RD
10313
10314 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10315 Set_Is_Only_Out_Parameter (First_Out_Param);
10316 end if;
996ae0b0
RK
10317 end Process_Formals;
10318
fbf5a39b
AC
10319 ----------------------------
10320 -- Reference_Body_Formals --
10321 ----------------------------
10322
10323 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10324 Fs : Entity_Id;
10325 Fb : Entity_Id;
10326
10327 begin
10328 if Error_Posted (Spec) then
10329 return;
10330 end if;
10331
0a36105d
JM
10332 -- Iterate over both lists. They may be of different lengths if the two
10333 -- specs are not conformant.
10334
fbf5a39b
AC
10335 Fs := First_Formal (Spec);
10336 Fb := First_Formal (Bod);
0a36105d 10337 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
10338 Generate_Reference (Fs, Fb, 'b');
10339
10340 if Style_Check then
10341 Style.Check_Identifier (Fb, Fs);
10342 end if;
10343
10344 Set_Spec_Entity (Fb, Fs);
10345 Set_Referenced (Fs, False);
10346 Next_Formal (Fs);
10347 Next_Formal (Fb);
10348 end loop;
10349 end Reference_Body_Formals;
10350
996ae0b0
RK
10351 -------------------------
10352 -- Set_Actual_Subtypes --
10353 -------------------------
10354
10355 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
84c0a895
AC
10356 Decl : Node_Id;
10357 Formal : Entity_Id;
10358 T : Entity_Id;
10359 First_Stmt : Node_Id := Empty;
10360 AS_Needed : Boolean;
996ae0b0
RK
10361
10362 begin
f3d57416 10363 -- If this is an empty initialization procedure, no need to create
fbf5a39b
AC
10364 -- actual subtypes (small optimization).
10365
8fde064e 10366 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
fbf5a39b
AC
10367 return;
10368 end if;
10369
996ae0b0
RK
10370 Formal := First_Formal (Subp);
10371 while Present (Formal) loop
10372 T := Etype (Formal);
10373
e895b435 10374 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
10375
10376 if Is_Constrained (T) then
10377 AS_Needed := False;
10378
82c80734 10379 -- If we have unknown discriminants, then we do not need an actual
a90bd866 10380 -- subtype, or more accurately we cannot figure it out. Note that
82c80734 10381 -- all class-wide types have unknown discriminants.
996ae0b0
RK
10382
10383 elsif Has_Unknown_Discriminants (T) then
10384 AS_Needed := False;
10385
82c80734
RD
10386 -- At this stage we have an unconstrained type that may need an
10387 -- actual subtype. For sure the actual subtype is needed if we have
10388 -- an unconstrained array type.
996ae0b0
RK
10389
10390 elsif Is_Array_Type (T) then
10391 AS_Needed := True;
10392
d8db0bca
JM
10393 -- The only other case needing an actual subtype is an unconstrained
10394 -- record type which is an IN parameter (we cannot generate actual
10395 -- subtypes for the OUT or IN OUT case, since an assignment can
10396 -- change the discriminant values. However we exclude the case of
10397 -- initialization procedures, since discriminants are handled very
10398 -- specially in this context, see the section entitled "Handling of
10399 -- Discriminants" in Einfo.
10400
10401 -- We also exclude the case of Discrim_SO_Functions (functions used
10402 -- in front end layout mode for size/offset values), since in such
10403 -- functions only discriminants are referenced, and not only are such
10404 -- subtypes not needed, but they cannot always be generated, because
10405 -- of order of elaboration issues.
996ae0b0
RK
10406
10407 elsif Is_Record_Type (T)
10408 and then Ekind (Formal) = E_In_Parameter
10409 and then Chars (Formal) /= Name_uInit
5d09245e 10410 and then not Is_Unchecked_Union (T)
996ae0b0
RK
10411 and then not Is_Discrim_SO_Function (Subp)
10412 then
10413 AS_Needed := True;
10414
10415 -- All other cases do not need an actual subtype
10416
10417 else
10418 AS_Needed := False;
10419 end if;
10420
10421 -- Generate actual subtypes for unconstrained arrays and
10422 -- unconstrained discriminated records.
10423
10424 if AS_Needed then
7324bf49 10425 if Nkind (N) = N_Accept_Statement then
fbf5a39b 10426
57a8057a 10427 -- If expansion is active, the formal is replaced by a local
fbf5a39b
AC
10428 -- variable that renames the corresponding entry of the
10429 -- parameter block, and it is this local variable that may
da94696d 10430 -- require an actual subtype.
fbf5a39b 10431
4460a9bc 10432 if Expander_Active then
fbf5a39b
AC
10433 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10434 else
10435 Decl := Build_Actual_Subtype (T, Formal);
10436 end if;
10437
996ae0b0
RK
10438 if Present (Handled_Statement_Sequence (N)) then
10439 First_Stmt :=
10440 First (Statements (Handled_Statement_Sequence (N)));
10441 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10442 Mark_Rewrite_Insertion (Decl);
10443 else
82c80734
RD
10444 -- If the accept statement has no body, there will be no
10445 -- reference to the actuals, so no need to compute actual
10446 -- subtypes.
996ae0b0
RK
10447
10448 return;
10449 end if;
10450
10451 else
fbf5a39b 10452 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
10453 Prepend (Decl, Declarations (N));
10454 Mark_Rewrite_Insertion (Decl);
10455 end if;
10456
82c80734
RD
10457 -- The declaration uses the bounds of an existing object, and
10458 -- therefore needs no constraint checks.
2820d220 10459
7324bf49 10460 Analyze (Decl, Suppress => All_Checks);
2820d220 10461
996ae0b0
RK
10462 -- We need to freeze manually the generated type when it is
10463 -- inserted anywhere else than in a declarative part.
10464
10465 if Present (First_Stmt) then
10466 Insert_List_Before_And_Analyze (First_Stmt,
c159409f 10467 Freeze_Entity (Defining_Identifier (Decl), N));
fcadacf7
ES
10468
10469 -- Ditto if the type has a dynamic predicate, because the
10470 -- generated function will mention the actual subtype.
10471
10472 elsif Has_Dynamic_Predicate_Aspect (T) then
10473 Insert_List_Before_And_Analyze (Decl,
10474 Freeze_Entity (Defining_Identifier (Decl), N));
996ae0b0
RK
10475 end if;
10476
fbf5a39b 10477 if Nkind (N) = N_Accept_Statement
4460a9bc 10478 and then Expander_Active
fbf5a39b
AC
10479 then
10480 Set_Actual_Subtype (Renamed_Object (Formal),
10481 Defining_Identifier (Decl));
10482 else
10483 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10484 end if;
996ae0b0
RK
10485 end if;
10486
10487 Next_Formal (Formal);
10488 end loop;
10489 end Set_Actual_Subtypes;
10490
10491 ---------------------
10492 -- Set_Formal_Mode --
10493 ---------------------
10494
10495 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10496 Spec : constant Node_Id := Parent (Formal_Id);
10497
10498 begin
10499 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10500 -- since we ensure that corresponding actuals are always valid at the
10501 -- point of the call.
10502
10503 if Out_Present (Spec) then
fc999c5d
RD
10504 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10505
b4ca2d2c 10506 -- [IN] OUT parameters allowed for functions in Ada 2012
c56a9ba4
AC
10507
10508 if Ada_Version >= Ada_2012 then
e6425869
AC
10509
10510 -- Even in Ada 2012 operators can only have IN parameters
10511
10512 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10513 Error_Msg_N ("operators can only have IN parameters", Spec);
10514 end if;
10515
c56a9ba4
AC
10516 if In_Present (Spec) then
10517 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10518 else
10519 Set_Ekind (Formal_Id, E_Out_Parameter);
10520 end if;
10521
fc999c5d
RD
10522 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10523
b4ca2d2c
AC
10524 -- But not in earlier versions of Ada
10525
c56a9ba4
AC
10526 else
10527 Error_Msg_N ("functions can only have IN parameters", Spec);
10528 Set_Ekind (Formal_Id, E_In_Parameter);
10529 end if;
996ae0b0
RK
10530
10531 elsif In_Present (Spec) then
10532 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10533
10534 else
fbf5a39b
AC
10535 Set_Ekind (Formal_Id, E_Out_Parameter);
10536 Set_Never_Set_In_Source (Formal_Id, True);
10537 Set_Is_True_Constant (Formal_Id, False);
10538 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
10539 end if;
10540
10541 else
10542 Set_Ekind (Formal_Id, E_In_Parameter);
10543 end if;
10544
fbf5a39b 10545 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
10546 -- guarantees that access parameters are always non-null. We also set
10547 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
10548
10549 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 10550
885c4871 10551 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
2813bb6b 10552 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 10553
0791fbe9 10554 if Ada_Version < Ada_2005
2813bb6b 10555 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
10556 then
10557 Set_Is_Known_Non_Null (Formal_Id);
10558 Set_Can_Never_Be_Null (Formal_Id);
10559 end if;
2813bb6b 10560
41251c60
JM
10561 -- Ada 2005 (AI-231): Null-exclusion access subtype
10562
2813bb6b
ES
10563 elsif Is_Access_Type (Etype (Formal_Id))
10564 and then Can_Never_Be_Null (Etype (Formal_Id))
10565 then
2813bb6b 10566 Set_Is_Known_Non_Null (Formal_Id);
a1d72281
EB
10567
10568 -- We can also set Can_Never_Be_Null (thus preventing some junk
10569 -- access checks) for the case of an IN parameter, which cannot
10570 -- be changed, or for an IN OUT parameter, which can be changed but
10571 -- not to a null value. But for an OUT parameter, the initial value
10572 -- passed in can be null, so we can't set this flag in that case.
10573
10574 if Ekind (Formal_Id) /= E_Out_Parameter then
10575 Set_Can_Never_Be_Null (Formal_Id);
10576 end if;
fbf5a39b
AC
10577 end if;
10578
996ae0b0
RK
10579 Set_Mechanism (Formal_Id, Default_Mechanism);
10580 Set_Formal_Validity (Formal_Id);
10581 end Set_Formal_Mode;
10582
10583 -------------------------
10584 -- Set_Formal_Validity --
10585 -------------------------
10586
10587 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10588 begin
82c80734
RD
10589 -- If no validity checking, then we cannot assume anything about the
10590 -- validity of parameters, since we do not know there is any checking
10591 -- of the validity on the call side.
996ae0b0
RK
10592
10593 if not Validity_Checks_On then
10594 return;
10595
fbf5a39b
AC
10596 -- If validity checking for parameters is enabled, this means we are
10597 -- not supposed to make any assumptions about argument values.
10598
10599 elsif Validity_Check_Parameters then
10600 return;
10601
10602 -- If we are checking in parameters, we will assume that the caller is
10603 -- also checking parameters, so we can assume the parameter is valid.
10604
996ae0b0
RK
10605 elsif Ekind (Formal_Id) = E_In_Parameter
10606 and then Validity_Check_In_Params
10607 then
10608 Set_Is_Known_Valid (Formal_Id, True);
10609
fbf5a39b
AC
10610 -- Similar treatment for IN OUT parameters
10611
996ae0b0
RK
10612 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10613 and then Validity_Check_In_Out_Params
10614 then
10615 Set_Is_Known_Valid (Formal_Id, True);
10616 end if;
10617 end Set_Formal_Validity;
10618
10619 ------------------------
10620 -- Subtype_Conformant --
10621 ------------------------
10622
ce2b6ba5
JM
10623 function Subtype_Conformant
10624 (New_Id : Entity_Id;
10625 Old_Id : Entity_Id;
10626 Skip_Controlling_Formals : Boolean := False) return Boolean
10627 is
996ae0b0 10628 Result : Boolean;
996ae0b0 10629 begin
ce2b6ba5
JM
10630 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10631 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10632 return Result;
10633 end Subtype_Conformant;
10634
10635 ---------------------
10636 -- Type_Conformant --
10637 ---------------------
10638
41251c60
JM
10639 function Type_Conformant
10640 (New_Id : Entity_Id;
10641 Old_Id : Entity_Id;
10642 Skip_Controlling_Formals : Boolean := False) return Boolean
10643 is
996ae0b0 10644 Result : Boolean;
996ae0b0 10645 begin
c8ef728f 10646 May_Hide_Profile := False;
41251c60
JM
10647 Check_Conformance
10648 (New_Id, Old_Id, Type_Conformant, False, Result,
10649 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10650 return Result;
10651 end Type_Conformant;
10652
10653 -------------------------------
10654 -- Valid_Operator_Definition --
10655 -------------------------------
10656
10657 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10658 N : Integer := 0;
10659 F : Entity_Id;
10660 Id : constant Name_Id := Chars (Designator);
10661 N_OK : Boolean;
10662
10663 begin
10664 F := First_Formal (Designator);
996ae0b0
RK
10665 while Present (F) loop
10666 N := N + 1;
10667
10668 if Present (Default_Value (F)) then
ed2233dc 10669 Error_Msg_N
996ae0b0
RK
10670 ("default values not allowed for operator parameters",
10671 Parent (F));
220d1fd9
AC
10672
10673 -- For function instantiations that are operators, we must check
10674 -- separately that the corresponding generic only has in-parameters.
84c0a895
AC
10675 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10676 -- an error could not arise in earlier versions of the language.
220d1fd9
AC
10677
10678 elsif Ekind (F) /= E_In_Parameter then
84c0a895 10679 Error_Msg_N ("operators can only have IN parameters", F);
996ae0b0
RK
10680 end if;
10681
10682 Next_Formal (F);
10683 end loop;
10684
10685 -- Verify that user-defined operators have proper number of arguments
10686 -- First case of operators which can only be unary
10687
b69cd36a 10688 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
996ae0b0
RK
10689 N_OK := (N = 1);
10690
10691 -- Case of operators which can be unary or binary
10692
b69cd36a 10693 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
10694 N_OK := (N in 1 .. 2);
10695
10696 -- All other operators can only be binary
10697
10698 else
10699 N_OK := (N = 2);
10700 end if;
10701
10702 if not N_OK then
10703 Error_Msg_N
10704 ("incorrect number of arguments for operator", Designator);
10705 end if;
10706
10707 if Id = Name_Op_Ne
10708 and then Base_Type (Etype (Designator)) = Standard_Boolean
10709 and then not Is_Intrinsic_Subprogram (Designator)
10710 then
10711 Error_Msg_N
84c0a895 10712 ("explicit definition of inequality not allowed", Designator);
996ae0b0
RK
10713 end if;
10714 end Valid_Operator_Definition;
10715
10716end Sem_Ch6;