]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
f9a8f910 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
879ac954
AC
26with Aspects; use Aspects;
27with Atree; use Atree;
28with Checks; use Checks;
29with Contracts; use Contracts;
30with Debug; use Debug;
31with Einfo; use Einfo;
32with Elists; use Elists;
33with Errout; use Errout;
34with Expander; use Expander;
35with Exp_Ch6; use Exp_Ch6;
36with Exp_Ch7; use Exp_Ch7;
37with Exp_Ch9; use Exp_Ch9;
38with Exp_Dbug; use Exp_Dbug;
39with Exp_Disp; use Exp_Disp;
40with Exp_Tss; use Exp_Tss;
41with Exp_Util; use Exp_Util;
42with Fname; use Fname;
43with Freeze; use Freeze;
44with Ghost; use Ghost;
45with Inline; use Inline;
46with Itypes; use Itypes;
47with Lib.Xref; use Lib.Xref;
48with Layout; use Layout;
49with Namet; use Namet;
50with Lib; use Lib;
51with Nlists; use Nlists;
52with Nmake; use Nmake;
53with Opt; use Opt;
54with Output; use Output;
55with Restrict; use Restrict;
56with Rident; use Rident;
57with Rtsfind; use Rtsfind;
58with Sem; use Sem;
59with Sem_Aux; use Sem_Aux;
60with Sem_Cat; use Sem_Cat;
61with Sem_Ch3; use Sem_Ch3;
62with Sem_Ch4; use Sem_Ch4;
63with Sem_Ch5; use Sem_Ch5;
64with Sem_Ch8; use Sem_Ch8;
5e127570 65with Sem_Ch9; use Sem_Ch9;
879ac954
AC
66with Sem_Ch10; use Sem_Ch10;
67with Sem_Ch12; use Sem_Ch12;
68with Sem_Ch13; use Sem_Ch13;
69with Sem_Dim; use Sem_Dim;
70with Sem_Disp; use Sem_Disp;
71with Sem_Dist; use Sem_Dist;
72with Sem_Elim; use Sem_Elim;
73with Sem_Eval; use Sem_Eval;
74with Sem_Mech; use Sem_Mech;
75with Sem_Prag; use Sem_Prag;
76with Sem_Res; use Sem_Res;
77with Sem_Util; use Sem_Util;
78with Sem_Type; use Sem_Type;
79with Sem_Warn; use Sem_Warn;
80with Sinput; use Sinput;
81with Stand; use Stand;
82with Sinfo; use Sinfo;
83with Sinfo.CN; use Sinfo.CN;
84with Snames; use Snames;
85with Stringt; use Stringt;
996ae0b0 86with Style;
879ac954
AC
87with Stylesw; use Stylesw;
88with Tbuild; use Tbuild;
89with Uintp; use Uintp;
90with Urealp; use Urealp;
91with Validsw; use Validsw;
996ae0b0
RK
92
93package body Sem_Ch6 is
94
c8ef728f 95 May_Hide_Profile : Boolean := False;
ec4867fa
ES
96 -- This flag is used to indicate that two formals in two subprograms being
97 -- checked for conformance differ only in that one is an access parameter
98 -- while the other is of a general access type with the same designated
99 -- type. In this case, if the rest of the signatures match, a call to
100 -- either subprogram may be ambiguous, which is worth a warning. The flag
101 -- is set in Compatible_Types, and the warning emitted in
102 -- New_Overloaded_Entity.
c8ef728f 103
996ae0b0
RK
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
107
c9d70ab1
AC
108 procedure Analyze_Function_Return (N : Node_Id);
109 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
110 -- applies to a [generic] function.
111
112 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
113 -- Analyze a generic subprogram body. N is the body to be analyzed, and
114 -- Gen_Id is the defining entity Id for the corresponding spec.
115
4d8f3296
ES
116 procedure Analyze_Null_Procedure
117 (N : Node_Id;
118 Is_Completion : out Boolean);
9d2a2071 119 -- A null procedure can be a declaration or (Ada 2012) a completion
4d8f3296 120
5d37ba92 121 procedure Analyze_Return_Statement (N : Node_Id);
5b9c3fc4 122 -- Common processing for simple and extended return statements
ec4867fa 123
82c80734
RD
124 procedure Analyze_Return_Type (N : Node_Id);
125 -- Subsidiary to Process_Formals: analyze subtype mark in function
5b9c3fc4 126 -- specification in a context where the formals are visible and hide
82c80734
RD
127 -- outer homographs.
128
b1b543d2 129 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
13d923cc
RD
130 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
131 -- that we can use RETURN but not skip the debug output at the end.
b1b543d2 132
806f6d37
AC
133 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
134 -- Returns true if Subp can override a predefined operator.
135
996ae0b0 136 procedure Check_Conformance
41251c60
JM
137 (New_Id : Entity_Id;
138 Old_Id : Entity_Id;
139 Ctype : Conformance_Type;
140 Errmsg : Boolean;
141 Conforms : out Boolean;
142 Err_Loc : Node_Id := Empty;
143 Get_Inst : Boolean := False;
144 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
145 -- Given two entities, this procedure checks that the profiles associated
146 -- with these entities meet the conformance criterion given by the third
147 -- parameter. If they conform, Conforms is set True and control returns
148 -- to the caller. If they do not conform, Conforms is set to False, and
149 -- in addition, if Errmsg is True on the call, proper messages are output
150 -- to complain about the conformance failure. If Err_Loc is non_Empty
151 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
152 -- error messages are placed on the appropriate part of the construct
153 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
154 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 -- be called.
156
b420ba79
AC
157 procedure Check_Limited_Return
158 (N : Node_Id;
159 Expr : Node_Id;
160 R_Type : Entity_Id);
161 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
162 -- types. Used only for simple return statements. Expr is the expression
163 -- returned.
164
996ae0b0
RK
165 procedure Check_Subprogram_Order (N : Node_Id);
166 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
167 -- the alpha ordering rule for N if this ordering requirement applicable.
168
996ae0b0
RK
169 procedure Check_Returns
170 (HSS : Node_Id;
171 Mode : Character;
c8ef728f
ES
172 Err : out Boolean;
173 Proc : Entity_Id := Empty);
174 -- Called to check for missing return statements in a function body, or for
0a36105d 175 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
176 -- handled statement sequence for the subprogram body. This procedure
177 -- checks all flow paths to make sure they either have return (Mode = 'F',
178 -- used for functions) or do not have a return (Mode = 'P', used for
179 -- No_Return procedures). The flag Err is set if there are any control
180 -- paths not explicitly terminated by a return in the function case, and is
181 -- True otherwise. Proc is the entity for the procedure case and is used
182 -- in posting the warning message.
996ae0b0 183
e5a58fac
AC
184 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
185 -- In Ada 2012, a primitive equality operator on an untagged record type
186 -- must appear before the type is frozen, and have the same visibility as
187 -- that of the type. This procedure checks that this rule is met, and
188 -- otherwise emits an error on the subprogram declaration and a warning
b2834fbd
AC
189 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
190 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
191 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
192 -- is set, otherwise the call has no effect.
e5a58fac 193
996ae0b0 194 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
195 -- This procedure makes S, a new overloaded entity, into the first visible
196 -- entity with that name.
996ae0b0 197
a5b62485
AC
198 function Is_Non_Overriding_Operation
199 (Prev_E : Entity_Id;
200 New_E : Entity_Id) return Boolean;
201 -- Enforce the rule given in 12.3(18): a private operation in an instance
202 -- overrides an inherited operation only if the corresponding operation
260359e3
AC
203 -- was overriding in the generic. This needs to be checked for primitive
204 -- operations of types derived (in the generic unit) from formal private
205 -- or formal derived types.
a5b62485 206
996ae0b0
RK
207 procedure Make_Inequality_Operator (S : Entity_Id);
208 -- Create the declaration for an inequality operator that is implicitly
209 -- created by a user-defined equality operator that yields a boolean.
210
996ae0b0
RK
211 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
212 -- Formal_Id is an formal parameter entity. This procedure deals with
e358346d
AC
213 -- setting the proper validity status for this entity, which depends on
214 -- the kind of parameter and the validity checking mode.
996ae0b0
RK
215
216 ---------------------------------------------
217 -- Analyze_Abstract_Subprogram_Declaration --
218 ---------------------------------------------
219
220 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
1af4455a
HK
221 Scop : constant Entity_Id := Current_Scope;
222 Subp_Id : constant Entity_Id :=
241ebe89 223 Analyze_Subprogram_Specification (Specification (N));
996ae0b0
RK
224
225 begin
ce5ba43a 226 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
38171f43 227
241ebe89 228 Generate_Definition (Subp_Id);
c9d70ab1 229
241ebe89
HK
230 Set_Is_Abstract_Subprogram (Subp_Id);
231 New_Overloaded_Entity (Subp_Id);
232 Check_Delayed_Subprogram (Subp_Id);
996ae0b0 233
241ebe89 234 Set_Categorization_From_Scope (Subp_Id, Scop);
996ae0b0 235
241ebe89
HK
236 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
237 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
238
239 -- Issue a warning if the abstract subprogram is neither a dispatching
240 -- operation nor an operation that overrides an inherited subprogram or
241 -- predefined operator, since this most likely indicates a mistake.
242
243 elsif Warn_On_Redundant_Constructs
241ebe89
HK
244 and then not Is_Dispatching_Operation (Subp_Id)
245 and then not Present (Overridden_Operation (Subp_Id))
246 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
247 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
5d37ba92
ES
248 then
249 Error_Msg_N
dbfeb4fa 250 ("abstract subprogram is not dispatching or overriding?r?", N);
996ae0b0 251 end if;
fbf5a39b 252
241ebe89
HK
253 Generate_Reference_To_Formals (Subp_Id);
254 Check_Eliminated (Subp_Id);
eaba57fb
RD
255
256 if Has_Aspects (N) then
241ebe89 257 Analyze_Aspect_Specifications (N, Subp_Id);
eaba57fb 258 end if;
996ae0b0
RK
259 end Analyze_Abstract_Subprogram_Declaration;
260
b0186f71
AC
261 ---------------------------------
262 -- Analyze_Expression_Function --
263 ---------------------------------
264
265 procedure Analyze_Expression_Function (N : Node_Id) is
8d1fe980
AC
266 Expr : constant Node_Id := Expression (N);
267 Loc : constant Source_Ptr := Sloc (N);
268 LocX : constant Source_Ptr := Sloc (Expr);
269 Spec : constant Node_Id := Specification (N);
d2d4b355 270
ec225529
AC
271 Asp : Node_Id;
272 Def_Id : Entity_Id;
273 New_Body : Node_Id;
274 New_Spec : Node_Id;
275 Orig_N : Node_Id;
276 Ret : Node_Id;
354ae449 277 Ret_Type : Entity_Id;
b0186f71 278
d29f68cf 279 Prev : Entity_Id;
b0186f71 280 -- If the expression is a completion, Prev is the entity whose
d2d4b355
AC
281 -- declaration is completed. Def_Id is needed to analyze the spec.
282
b0186f71
AC
283 begin
284 -- This is one of the occasions on which we transform the tree during
afc8324d 285 -- semantic analysis. If this is a completion, transform the expression
d2b10647
ES
286 -- function into an equivalent subprogram body, and analyze it.
287
288 -- Expression functions are inlined unconditionally. The back-end will
289 -- determine whether this is possible.
290
291 Inline_Processing_Required := True;
b727a82b 292
8d1fe980
AC
293 -- Create a specification for the generated body. This must be done
294 -- prior to the analysis of the initial declaration.
b727a82b 295
8d1fe980
AC
296 New_Spec := Copy_Subprogram_Spec (Spec);
297 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
d2d4b355
AC
298
299 -- If there are previous overloadable entities with the same name,
300 -- check whether any of them is completed by the expression function.
b04d926e 301 -- In a generic context a formal subprogram has no completion.
d2d4b355 302
4b6f99f5
RD
303 if Present (Prev)
304 and then Is_Overloadable (Prev)
b04d926e
AC
305 and then not Is_Formal_Subprogram (Prev)
306 then
51597c23
AC
307 Def_Id := Analyze_Subprogram_Specification (Spec);
308 Prev := Find_Corresponding_Spec (N);
35e7063a
AC
309
310 -- The previous entity may be an expression function as well, in
311 -- which case the redeclaration is illegal.
312
313 if Present (Prev)
5073ad7a
AC
314 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
315 N_Expression_Function
35e7063a 316 then
bc5e261c
ES
317 Error_Msg_Sloc := Sloc (Prev);
318 Error_Msg_N ("& conflicts with declaration#", Def_Id);
35e7063a
AC
319 return;
320 end if;
d2d4b355 321 end if;
b0186f71 322
b913199e
AC
323 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
324
b0186f71
AC
325 New_Body :=
326 Make_Subprogram_Body (Loc,
d2d4b355 327 Specification => New_Spec,
b0186f71
AC
328 Declarations => Empty_List,
329 Handled_Statement_Sequence =>
330 Make_Handled_Sequence_Of_Statements (LocX,
b913199e 331 Statements => New_List (Ret)));
549cc9c2 332 Set_Was_Expression_Function (New_Body);
b0186f71 333
e7f23f06
AC
334 -- If the expression completes a generic subprogram, we must create a
335 -- separate node for the body, because at instantiation the original
336 -- node of the generic copy must be a generic subprogram body, and
337 -- cannot be a expression function. Otherwise we just rewrite the
338 -- expression with the non-generic body.
339
6d7e5c54 340 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
e7f23f06 341 Insert_After (N, New_Body);
6d7e5c54 342
e7f23f06
AC
343 -- Propagate any aspects or pragmas that apply to the expression
344 -- function to the proper body when the expression function acts
345 -- as a completion.
346
347 if Has_Aspects (N) then
348 Move_Aspects (N, To => New_Body);
349 end if;
350
351 Relocate_Pragmas_To_Body (New_Body);
b0186f71 352
b0186f71 353 Rewrite (N, Make_Null_Statement (Loc));
d2d4b355 354 Set_Has_Completion (Prev, False);
b0186f71
AC
355 Analyze (N);
356 Analyze (New_Body);
d2b10647 357 Set_Is_Inlined (Prev);
b0186f71 358
e5c4e2bc 359 -- If the expression function is a completion, the previous declaration
88fa9a24 360 -- must come from source. We know already that it appears in the current
e5c4e2bc
AC
361 -- scope. The entity itself may be internally created if within a body
362 -- to be inlined.
363
4b6f99f5
RD
364 elsif Present (Prev)
365 and then Comes_From_Source (Parent (Prev))
b04d926e
AC
366 and then not Is_Formal_Subprogram (Prev)
367 then
d2d4b355 368 Set_Has_Completion (Prev, False);
88fa9a24 369 Set_Is_Inlined (Prev);
354ae449 370 Ret_Type := Etype (Prev);
76264f60 371
54740d7d
AC
372 -- An expression function which acts as a completion freezes the
373 -- expression. This means freezing the return type, and if it is
374 -- an access type, freezing its designated type as well.
1b31321b 375
c6d2191a 376 -- Note that we cannot defer this freezing to the analysis of the
1b31321b
AC
377 -- expression itself, because a freeze node might appear in a nested
378 -- scope, leading to an elaboration order issue in gigi.
c6d2191a 379
54740d7d 380 Freeze_Before (N, Ret_Type);
354ae449 381
54740d7d
AC
382 -- An entity can only be frozen if it is complete, so if the type
383 -- is still unfrozen it must still be incomplete in some way, e.g.
4b7fd131 384 -- a private type without a full view, or a type derived from such
bf604a5e
AC
385 -- in an enclosing scope. Except in a generic context (where the
386 -- type may be a generic formal or derived from such), such use of
4b7fd131
AC
387 -- an incomplete type is an error. On the other hand, if this is a
388 -- limited view of a type, the type is declared in another unit and
389 -- frozen there. We must be in a context seeing the nonlimited view
390 -- of the type, which will be installed when the body is compiled.
54740d7d
AC
391
392 if not Is_Frozen (Ret_Type)
bf604a5e 393 and then not Is_Generic_Type (Root_Type (Ret_Type))
54740d7d 394 and then not Inside_A_Generic
354ae449 395 then
4b7fd131
AC
396 if From_Limited_With (Ret_Type)
397 and then Present (Non_Limited_View (Ret_Type))
398 then
399 null;
400 else
401 Error_Msg_NE
402 ("premature use of private type&",
403 Result_Definition (Specification (N)), Ret_Type);
404 end if;
354ae449 405 end if;
1b31321b 406
76264f60
AC
407 -- For navigation purposes, indicate that the function is a body
408
409 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
b0186f71 410 Rewrite (N, New_Body);
e7f23f06 411
ec225529 412 -- Remove any existing aspects from the original node because the act
60aa5228 413 -- of rewriting causes the list to be shared between the two nodes.
c0cdbd39 414
ec225529
AC
415 Orig_N := Original_Node (N);
416 Remove_Aspects (Orig_N);
c0cdbd39 417
aaa0a838 418 -- Propagate any pragmas that apply to expression function to the
e7f23f06
AC
419 -- proper body when the expression function acts as a completion.
420 -- Aspects are automatically transfered because of node rewriting.
421
422 Relocate_Pragmas_To_Body (N);
d2b10647
ES
423 Analyze (N);
424
60aa5228
AC
425 -- Once the aspects of the generated body have been analyzed, create
426 -- a copy for ASIS purposes and associate it with the original node.
ec225529
AC
427
428 if Has_Aspects (N) then
429 Set_Aspect_Specifications (Orig_N,
430 New_Copy_List_Tree (Aspect_Specifications (N)));
431 end if;
432
6d7e5c54
AC
433 -- Prev is the previous entity with the same name, but it is can
434 -- be an unrelated spec that is not completed by the expression
435 -- function. In that case the relevant entity is the one in the body.
436 -- Not clear that the backend can inline it in this case ???
437
438 if Has_Completion (Prev) then
31af8899
AC
439
440 -- The formals of the expression function are body formals,
441 -- and do not appear in the ali file, which will only contain
442 -- references to the formals of the original subprogram spec.
443
444 declare
445 F1 : Entity_Id;
446 F2 : Entity_Id;
447
448 begin
449 F1 := First_Formal (Def_Id);
450 F2 := First_Formal (Prev);
451
452 while Present (F1) loop
453 Set_Spec_Entity (F1, F2);
454 Next_Formal (F1);
455 Next_Formal (F2);
456 end loop;
457 end;
458
6d7e5c54
AC
459 else
460 Set_Is_Inlined (Defining_Entity (New_Body));
461 end if;
462
0b5b2bbc 463 -- If this is not a completion, create both a declaration and a body, so
6d7e5c54 464 -- that the expression can be inlined whenever possible.
d2b10647
ES
465
466 else
a52e6d7e
AC
467 -- An expression function that is not a completion is not a
468 -- subprogram declaration, and thus cannot appear in a protected
469 -- definition.
470
471 if Nkind (Parent (N)) = N_Protected_Definition then
472 Error_Msg_N
473 ("an expression function is not a legal protected operation", N);
474 end if;
475
b8e6830b 476 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
c0cdbd39 477
ec225529 478 -- Remove any existing aspects from the original node because the act
60aa5228 479 -- of rewriting causes the list to be shared between the two nodes.
c0cdbd39 480
ec225529
AC
481 Orig_N := Original_Node (N);
482 Remove_Aspects (Orig_N);
c0cdbd39 483
b0186f71 484 Analyze (N);
ec225529 485
60aa5228
AC
486 -- Once the aspects of the generated spec have been analyzed, create
487 -- a copy for ASIS purposes and associate it with the original node.
ec225529
AC
488
489 if Has_Aspects (N) then
490 Set_Aspect_Specifications (Orig_N,
491 New_Copy_List_Tree (Aspect_Specifications (N)));
492 end if;
b04d926e 493
d29f68cf
AC
494 -- If aspect SPARK_Mode was specified on the body, it needs to be
495 -- repeated both on the generated spec and the body.
496
497 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
498
499 if Present (Asp) then
500 Asp := New_Copy_Tree (Asp);
501 Set_Analyzed (Asp, False);
502 Set_Aspect_Specifications (New_Body, New_List (Asp));
503 end if;
504
ec225529
AC
505 Def_Id := Defining_Entity (N);
506
e699b76e
AC
507 -- Within a generic pre-analyze the original expression for name
508 -- capture. The body is also generated but plays no role in
509 -- this because it is not part of the original source.
b04d926e
AC
510
511 if Inside_A_Generic then
b420ba79
AC
512 Set_Has_Completion (Def_Id);
513 Push_Scope (Def_Id);
514 Install_Formals (Def_Id);
515 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
516 End_Scope;
b04d926e
AC
517 end if;
518
b8e6830b
AC
519 Set_Is_Inlined (Defining_Entity (N));
520
521 -- Establish the linkages between the spec and the body. These are
522 -- used when the expression function acts as the prefix of attribute
523 -- 'Access in order to freeze the original expression which has been
524 -- moved to the generated body.
525
526 Set_Corresponding_Body (N, Defining_Entity (New_Body));
527 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
d2b10647 528
6d7e5c54
AC
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
b913199e 531 -- However, resolve usage names now, to prevent spurious visibility
ad4e3362
ES
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
6d7e5c54
AC
537
538 declare
e876c43a 539 Decls : List_Id := List_Containing (N);
b420ba79 540 Expr : constant Node_Id := Expression (Ret);
e876c43a 541 Par : constant Node_Id := Parent (Decls);
b420ba79 542 Typ : constant Entity_Id := Etype (Def_Id);
6d7e5c54
AC
543
544 begin
fce54763
AC
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
6d7e5c54 551 then
fce54763
AC
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
6d7e5c54 562
fce54763 563 Insert_After (Last (Decls), New_Body);
3a8e3f63 564
fce54763
AC
565 -- Preanalyze the expression for name capture, except in an
566 -- instance, where this has been done during generic analysis,
567 -- and will be redone when analyzing the body.
845f06e2 568
b420ba79
AC
569 Set_Parent (Expr, Ret);
570 Push_Scope (Def_Id);
571 Install_Formals (Def_Id);
4058ddcc 572
b420ba79
AC
573 if not In_Instance then
574 Preanalyze_Spec_Expression (Expr, Typ);
575 Check_Limited_Return (Original_Node (N), Expr, Typ);
576 end if;
3a8e3f63 577
fce54763
AC
578 End_Scope;
579 end if;
6d7e5c54 580 end;
b0186f71 581 end if;
0b5b2bbc
AC
582
583 -- If the return expression is a static constant, we suppress warning
584 -- messages on unused formals, which in most cases will be noise.
585
b420ba79
AC
586 Set_Is_Trivial_Subprogram
587 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
b0186f71
AC
588 end Analyze_Expression_Function;
589
ec4867fa
ES
590 ----------------------------------------
591 -- Analyze_Extended_Return_Statement --
592 ----------------------------------------
593
594 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
595 begin
c86cf714 596 Check_Compiler_Unit ("extended return statement", N);
5d37ba92 597 Analyze_Return_Statement (N);
ec4867fa
ES
598 end Analyze_Extended_Return_Statement;
599
996ae0b0
RK
600 ----------------------------
601 -- Analyze_Function_Call --
602 ----------------------------
603
604 procedure Analyze_Function_Call (N : Node_Id) is
a7e68e7f
HK
605 Actuals : constant List_Id := Parameter_Associations (N);
606 Func_Nam : constant Node_Id := Name (N);
607 Actual : Node_Id;
608
996ae0b0 609 begin
a7e68e7f 610 Analyze (Func_Nam);
996ae0b0 611
3e7302c3
AC
612 -- A call of the form A.B (X) may be an Ada 2005 call, which is
613 -- rewritten as B (A, X). If the rewriting is successful, the call
614 -- has been analyzed and we just return.
82c80734 615
a7e68e7f
HK
616 if Nkind (Func_Nam) = N_Selected_Component
617 and then Name (N) /= Func_Nam
82c80734
RD
618 and then Is_Rewrite_Substitution (N)
619 and then Present (Etype (N))
620 then
621 return;
622 end if;
623
996ae0b0
RK
624 -- If error analyzing name, then set Any_Type as result type and return
625
a7e68e7f 626 if Etype (Func_Nam) = Any_Type then
996ae0b0
RK
627 Set_Etype (N, Any_Type);
628 return;
629 end if;
630
631 -- Otherwise analyze the parameters
632
e24329cd
YM
633 if Present (Actuals) then
634 Actual := First (Actuals);
996ae0b0
RK
635 while Present (Actual) loop
636 Analyze (Actual);
637 Check_Parameterless_Call (Actual);
638 Next (Actual);
639 end loop;
640 end if;
641
642 Analyze_Call (N);
996ae0b0
RK
643 end Analyze_Function_Call;
644
ec4867fa
ES
645 -----------------------------
646 -- Analyze_Function_Return --
647 -----------------------------
648
649 procedure Analyze_Function_Return (N : Node_Id) is
a7e68e7f
HK
650 Loc : constant Source_Ptr := Sloc (N);
651 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
652 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
ec4867fa 653
5d37ba92 654 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
655 -- Function result subtype
656
ed11bbfe 657 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
448a1eb3 658 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
43184ab7 659 -- aggregate in a return statement.
ed11bbfe 660
ec4867fa
ES
661 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
662 -- Check that the return_subtype_indication properly matches the result
663 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
664
ed11bbfe
AC
665 -----------------------------------
666 -- Check_Aggregate_Accessibility --
667 -----------------------------------
668
669 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
996ce809
JS
670 Typ : constant Entity_Id := Etype (Aggr);
671 Assoc : Node_Id;
672 Discr : Entity_Id;
673 Expr : Node_Id;
674 Obj : Node_Id;
ed11bbfe
AC
675
676 begin
43184ab7 677 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
ed11bbfe
AC
678 Discr := First_Discriminant (Typ);
679 Assoc := First (Component_Associations (Aggr));
680 while Present (Discr) loop
681 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
682 Expr := Expression (Assoc);
996ce809 683
ed11bbfe
AC
684 if Nkind (Expr) = N_Attribute_Reference
685 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
686 then
687 Obj := Prefix (Expr);
43184ab7
HK
688 while Nkind_In (Obj, N_Indexed_Component,
689 N_Selected_Component)
ed11bbfe
AC
690 loop
691 Obj := Prefix (Obj);
692 end loop;
693
996ce809
JS
694 -- Do not check aliased formals or function calls. A
695 -- run-time check may still be needed ???
ed962eda 696
ed11bbfe 697 if Is_Entity_Name (Obj)
996ce809 698 and then Comes_From_Source (Obj)
ed11bbfe 699 then
996ce809
JS
700 if Is_Formal (Entity (Obj))
701 and then Is_Aliased (Entity (Obj))
702 then
703 null;
704
705 elsif Object_Access_Level (Obj) >
706 Scope_Depth (Scope (Scope_Id))
707 then
708 Error_Msg_N
709 ("access discriminant in return aggregate would "
710 & "be a dangling reference", Obj);
711 end if;
ed11bbfe
AC
712 end if;
713 end if;
714 end if;
715
716 Next_Discriminant (Discr);
717 end loop;
718 end if;
719 end Check_Aggregate_Accessibility;
720
ec4867fa
ES
721 -------------------------------------
722 -- Check_Return_Subtype_Indication --
723 -------------------------------------
724
725 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
7665e4bd
AC
726 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
727
728 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
729 -- Subtype given in the extended return statement (must match R_Type)
ec4867fa
ES
730
731 Subtype_Ind : constant Node_Id :=
732 Object_Definition (Original_Node (Obj_Decl));
733
7f568bfa
AC
734 procedure Error_No_Match (N : Node_Id);
735 -- Output error messages for case where types do not statically
736 -- match. N is the location for the messages.
737
738 --------------------
739 -- Error_No_Match --
740 --------------------
741
742 procedure Error_No_Match (N : Node_Id) is
743 begin
744 Error_Msg_N
745 ("subtype must statically match function result subtype", N);
746
747 if not Predicates_Match (R_Stm_Type, R_Type) then
748 Error_Msg_Node_2 := R_Type;
749 Error_Msg_NE
3ccedacc 750 ("\predicate of& does not match predicate of&",
7f568bfa
AC
751 N, R_Stm_Type);
752 end if;
753 end Error_No_Match;
754
755 -- Start of processing for Check_Return_Subtype_Indication
756
ec4867fa 757 begin
7665e4bd 758 -- First, avoid cascaded errors
ec4867fa
ES
759
760 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
761 return;
762 end if;
763
764 -- "return access T" case; check that the return statement also has
765 -- "access T", and that the subtypes statically match:
53cf4600 766 -- if this is an access to subprogram the signatures must match.
ec4867fa 767
d1eb8a82
AC
768 if Is_Anonymous_Access_Type (R_Type) then
769 if Is_Anonymous_Access_Type (R_Stm_Type) then
770 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
0a36105d 771 then
53cf4600
ES
772 if Base_Type (Designated_Type (R_Stm_Type)) /=
773 Base_Type (Designated_Type (R_Type))
774 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
775 then
7f568bfa 776 Error_No_Match (Subtype_Mark (Subtype_Ind));
53cf4600
ES
777 end if;
778
779 else
d1eb8a82
AC
780 -- For two anonymous access to subprogram types, the types
781 -- themselves must be type conformant.
53cf4600
ES
782
783 if not Conforming_Types
d1eb8a82 784 (R_Stm_Type, R_Type, Fully_Conformant)
53cf4600 785 then
7f568bfa 786 Error_No_Match (Subtype_Ind);
53cf4600 787 end if;
ec4867fa 788 end if;
0a36105d 789
ec4867fa
ES
790 else
791 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
792 end if;
793
6cce2156
GD
794 -- If the return object is of an anonymous access type, then report
795 -- an error if the function's result type is not also anonymous.
796
d1eb8a82
AC
797 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
798 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
799 Error_Msg_N
800 ("anonymous access not allowed for function with named access "
801 & "result", Subtype_Ind);
6cce2156 802
81d93365
AC
803 -- Subtype indication case: check that the return object's type is
804 -- covered by the result type, and that the subtypes statically match
805 -- when the result subtype is constrained. Also handle record types
806 -- with unknown discriminants for which we have built the underlying
807 -- record view. Coverage is needed to allow specific-type return
808 -- objects when the result type is class-wide (see AI05-32).
809
810 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
9013065b 811 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
212863c0
AC
812 and then
813 Covers
814 (Base_Type (R_Type),
815 Underlying_Record_View (Base_Type (R_Stm_Type))))
9013065b
AC
816 then
817 -- A null exclusion may be present on the return type, on the
818 -- function specification, on the object declaration or on the
819 -- subtype itself.
ec4867fa 820
21d27997
RD
821 if Is_Access_Type (R_Type)
822 and then
d1eb8a82
AC
823 (Can_Never_Be_Null (R_Type)
824 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
825 Can_Never_Be_Null (R_Stm_Type)
21d27997 826 then
7f568bfa 827 Error_No_Match (Subtype_Ind);
21d27997
RD
828 end if;
829
105b5e65 830 -- AI05-103: for elementary types, subtypes must statically match
8779dffa 831
d1eb8a82 832 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
ec4867fa 833 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
7f568bfa 834 Error_No_Match (Subtype_Ind);
ec4867fa
ES
835 end if;
836 end if;
837
a8b346d2
RD
838 -- All remaining cases are illegal
839
840 -- Note: previous versions of this subprogram allowed the return
841 -- value to be the ancestor of the return type if the return type
842 -- was a null extension. This was plainly incorrect.
ff7139c3 843
ec4867fa
ES
844 else
845 Error_Msg_N
846 ("wrong type for return_subtype_indication", Subtype_Ind);
847 end if;
848 end Check_Return_Subtype_Indication;
849
850 ---------------------
851 -- Local Variables --
852 ---------------------
853
445e5888
AC
854 Expr : Node_Id;
855 Obj_Decl : Node_Id;
ec4867fa
ES
856
857 -- Start of processing for Analyze_Function_Return
858
859 begin
860 Set_Return_Present (Scope_Id);
861
5d37ba92 862 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa 863 Expr := Expression (N);
4ee646da 864
e917aec2
RD
865 -- Guard against a malformed expression. The parser may have tried to
866 -- recover but the node is not analyzable.
4ee646da
AC
867
868 if Nkind (Expr) = N_Error then
869 Set_Etype (Expr, Any_Type);
870 Expander_Mode_Save_And_Set (False);
871 return;
872
873 else
0180fd26
AC
874 -- The resolution of a controlled [extension] aggregate associated
875 -- with a return statement creates a temporary which needs to be
876 -- finalized on function exit. Wrap the return statement inside a
877 -- block so that the finalization machinery can detect this case.
878 -- This early expansion is done only when the return statement is
879 -- not part of a handled sequence of statements.
880
881 if Nkind_In (Expr, N_Aggregate,
882 N_Extension_Aggregate)
883 and then Needs_Finalization (R_Type)
884 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
885 then
886 Rewrite (N,
887 Make_Block_Statement (Loc,
888 Handled_Statement_Sequence =>
889 Make_Handled_Sequence_Of_Statements (Loc,
890 Statements => New_List (Relocate_Node (N)))));
891
892 Analyze (N);
893 return;
894 end if;
895
4b963531
AC
896 Analyze (Expr);
897
898 -- Ada 2005 (AI-251): If the type of the returned object is
899 -- an access to an interface type then we add an implicit type
900 -- conversion to force the displacement of the "this" pointer to
901 -- reference the secondary dispatch table. We cannot delay the
902 -- generation of this implicit conversion until the expansion
903 -- because in this case the type resolution changes the decoration
904 -- of the expression node to match R_Type; by contrast, if the
905 -- returned object is a class-wide interface type then it is too
906 -- early to generate here the implicit conversion since the return
907 -- statement may be rewritten by the expander into an extended
908 -- return statement whose expansion takes care of adding the
909 -- implicit type conversion to displace the pointer to the object.
910
911 if Expander_Active
912 and then Serious_Errors_Detected = 0
913 and then Is_Access_Type (R_Type)
914 and then Nkind (Expr) /= N_Null
915 and then Is_Interface (Designated_Type (R_Type))
916 and then Is_Progenitor (Designated_Type (R_Type),
917 Designated_Type (Etype (Expr)))
918 then
73e5aa55 919 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
4b963531
AC
920 Analyze (Expr);
921 end if;
922
923 Resolve (Expr, R_Type);
b420ba79 924 Check_Limited_Return (N, Expr, R_Type);
ed11bbfe
AC
925
926 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
927 Check_Aggregate_Accessibility (Expr);
928 end if;
4ee646da 929 end if;
ec4867fa 930
ad05f2e9 931 -- RETURN only allowed in SPARK as the last statement in function
607d0635 932
fe5d3068 933 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
607d0635
AC
934 and then
935 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
8d606a78 936 or else Present (Next (N)))
607d0635 937 then
ce5ba43a 938 Check_SPARK_05_Restriction
fe5d3068 939 ("RETURN should be the last statement in function", N);
607d0635
AC
940 end if;
941
ec4867fa 942 else
ce5ba43a 943 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
445e5888 944 Obj_Decl := Last (Return_Object_Declarations (N));
607d0635 945
ec4867fa
ES
946 -- Analyze parts specific to extended_return_statement:
947
948 declare
de6cad7c 949 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
b9daa96e 950 HSS : constant Node_Id := Handled_Statement_Sequence (N);
ec4867fa
ES
951
952 begin
953 Expr := Expression (Obj_Decl);
954
955 -- Note: The check for OK_For_Limited_Init will happen in
956 -- Analyze_Object_Declaration; we treat it as a normal
957 -- object declaration.
958
cd1c668b 959 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
ec4867fa
ES
960 Analyze (Obj_Decl);
961
ec4867fa
ES
962 Check_Return_Subtype_Indication (Obj_Decl);
963
964 if Present (HSS) then
965 Analyze (HSS);
966
967 if Present (Exception_Handlers (HSS)) then
968
969 -- ???Has_Nested_Block_With_Handler needs to be set.
970 -- Probably by creating an actual N_Block_Statement.
971 -- Probably in Expand.
972
973 null;
974 end if;
975 end if;
976
9337aa0a
AC
977 -- Mark the return object as referenced, since the return is an
978 -- implicit reference of the object.
979
980 Set_Referenced (Defining_Identifier (Obj_Decl));
981
ec4867fa 982 Check_References (Stm_Entity);
de6cad7c
AC
983
984 -- Check RM 6.5 (5.9/3)
985
986 if Has_Aliased then
987 if Ada_Version < Ada_2012 then
dbfeb4fa
RD
988
989 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
990 -- Can it really happen (extended return???)
991
992 Error_Msg_N
b785e0b8
AC
993 ("aliased only allowed for limited return objects "
994 & "in Ada 2012??", N);
de6cad7c 995
51245e2d 996 elsif not Is_Limited_View (R_Type) then
3ccedacc
AC
997 Error_Msg_N
998 ("aliased only allowed for limited return objects", N);
de6cad7c
AC
999 end if;
1000 end if;
ec4867fa
ES
1001 end;
1002 end if;
1003
21d27997 1004 -- Case of Expr present
5d37ba92 1005
ec4867fa 1006 if Present (Expr)
21d27997 1007
8fde064e 1008 -- Defend against previous errors
21d27997
RD
1009
1010 and then Nkind (Expr) /= N_Empty
5d37ba92 1011 and then Present (Etype (Expr))
ec4867fa 1012 then
5d37ba92
ES
1013 -- Apply constraint check. Note that this is done before the implicit
1014 -- conversion of the expression done for anonymous access types to
f3d57416 1015 -- ensure correct generation of the null-excluding check associated
5d37ba92
ES
1016 -- with null-excluding expressions found in return statements.
1017
1018 Apply_Constraint_Check (Expr, R_Type);
1019
1020 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1021 -- type, apply an implicit conversion of the expression to that type
1022 -- to force appropriate static and run-time accessibility checks.
ec4867fa 1023
0791fbe9 1024 if Ada_Version >= Ada_2005
ec4867fa
ES
1025 and then Ekind (R_Type) = E_Anonymous_Access_Type
1026 then
1027 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1028 Analyze_And_Resolve (Expr, R_Type);
b6b5cca8
AC
1029
1030 -- If this is a local anonymous access to subprogram, the
1031 -- accessibility check can be applied statically. The return is
1032 -- illegal if the access type of the return expression is declared
1033 -- inside of the subprogram (except if it is the subtype indication
1034 -- of an extended return statement).
1035
9fe696a3 1036 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
b6b5cca8
AC
1037 if not Comes_From_Source (Current_Scope)
1038 or else Ekind (Current_Scope) = E_Return_Statement
1039 then
1040 null;
1041
1042 elsif
1043 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1044 then
1045 Error_Msg_N ("cannot return local access to subprogram", N);
1046 end if;
1ebc2612
AC
1047
1048 -- The expression cannot be of a formal incomplete type
1049
1050 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1051 and then Is_Generic_Type (Etype (Expr))
1052 then
1053 Error_Msg_N
1054 ("cannot return expression of a formal incomplete type", N);
ec4867fa
ES
1055 end if;
1056
21d27997
RD
1057 -- If the result type is class-wide, then check that the return
1058 -- expression's type is not declared at a deeper level than the
1059 -- function (RM05-6.5(5.6/2)).
1060
0791fbe9 1061 if Ada_Version >= Ada_2005
21d27997
RD
1062 and then Is_Class_Wide_Type (R_Type)
1063 then
1064 if Type_Access_Level (Etype (Expr)) >
1065 Subprogram_Access_Level (Scope_Id)
1066 then
1067 Error_Msg_N
3ccedacc
AC
1068 ("level of return expression type is deeper than "
1069 & "class-wide function!", Expr);
21d27997
RD
1070 end if;
1071 end if;
1072
4755cce9
JM
1073 -- Check incorrect use of dynamically tagged expression
1074
1075 if Is_Tagged_Type (R_Type) then
1076 Check_Dynamically_Tagged_Expression
1077 (Expr => Expr,
1078 Typ => R_Type,
1079 Related_Nod => N);
ec4867fa
ES
1080 end if;
1081
ec4867fa
ES
1082 -- ??? A real run-time accessibility check is needed in cases
1083 -- involving dereferences of access parameters. For now we just
1084 -- check the static cases.
1085
0791fbe9 1086 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
51245e2d 1087 and then Is_Limited_View (Etype (Scope_Id))
ec4867fa
ES
1088 and then Object_Access_Level (Expr) >
1089 Subprogram_Access_Level (Scope_Id)
1090 then
9694c039
AC
1091 -- Suppress the message in a generic, where the rewriting
1092 -- is irrelevant.
1093
1094 if Inside_A_Generic then
1095 null;
1096
1097 else
1098 Rewrite (N,
1099 Make_Raise_Program_Error (Loc,
1100 Reason => PE_Accessibility_Check_Failed));
1101 Analyze (N);
1102
43417b90 1103 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1104 Error_Msg_N ("cannot return a local value by reference<<", N);
1105 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
9694c039 1106 end if;
ec4867fa 1107 end if;
5d37ba92
ES
1108
1109 if Known_Null (Expr)
1110 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1111 and then Null_Exclusion_Present (Parent (Scope_Id))
1112 then
1113 Apply_Compile_Time_Constraint_Error
1114 (N => Expr,
1115 Msg => "(Ada 2005) null not allowed for "
dbfeb4fa 1116 & "null-excluding return??",
5d37ba92
ES
1117 Reason => CE_Null_Not_Allowed);
1118 end if;
445e5888
AC
1119
1120 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1121 -- has no initializing expression.
1122
1123 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1124 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1125 Subprogram_Access_Level (Scope_Id)
1126 then
1127 Error_Msg_N
1128 ("level of return expression type is deeper than "
1129 & "class-wide function!", Obj_Decl);
1130 end if;
ec4867fa
ES
1131 end if;
1132 end Analyze_Function_Return;
1133
996ae0b0
RK
1134 -------------------------------------
1135 -- Analyze_Generic_Subprogram_Body --
1136 -------------------------------------
1137
1138 procedure Analyze_Generic_Subprogram_Body
1139 (N : Node_Id;
1140 Gen_Id : Entity_Id)
1141 is
fbf5a39b 1142 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 1143 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 1144 Body_Id : Entity_Id;
996ae0b0 1145 New_N : Node_Id;
fbf5a39b 1146 Spec : Node_Id;
996ae0b0
RK
1147
1148 begin
82c80734
RD
1149 -- Copy body and disable expansion while analyzing the generic For a
1150 -- stub, do not copy the stub (which would load the proper body), this
1151 -- will be done when the proper body is analyzed.
996ae0b0
RK
1152
1153 if Nkind (N) /= N_Subprogram_Body_Stub then
1154 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1155 Rewrite (N, New_N);
caf07df9
AC
1156
1157 -- Once the contents of the generic copy and the template are
1158 -- swapped, do the same for their respective aspect specifications.
1159
1160 Exchange_Aspects (N, New_N);
1161
1162 -- Collect all contract-related source pragmas found within the
1163 -- template and attach them to the contract of the subprogram body.
1164 -- This contract is used in the capture of global references within
1165 -- annotations.
1166
1167 Create_Generic_Contract (N);
1168
996ae0b0
RK
1169 Start_Generic;
1170 end if;
1171
1172 Spec := Specification (N);
1173
1174 -- Within the body of the generic, the subprogram is callable, and
1175 -- behaves like the corresponding non-generic unit.
1176
fbf5a39b 1177 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
1178
1179 if Kind = E_Generic_Procedure
1180 and then Nkind (Spec) /= N_Procedure_Specification
1181 then
fbf5a39b 1182 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
1183 return;
1184
1185 elsif Kind = E_Generic_Function
1186 and then Nkind (Spec) /= N_Function_Specification
1187 then
fbf5a39b 1188 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
1189 return;
1190 end if;
1191
fbf5a39b 1192 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
1193
1194 if Has_Completion (Gen_Id)
1195 and then Nkind (Parent (N)) /= N_Subunit
1196 then
1197 Error_Msg_N ("duplicate generic body", N);
1198 return;
1199 else
1200 Set_Has_Completion (Gen_Id);
1201 end if;
1202
1203 if Nkind (N) = N_Subprogram_Body_Stub then
1204 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1205 else
1206 Set_Corresponding_Spec (N, Gen_Id);
1207 end if;
1208
1209 if Nkind (Parent (N)) = N_Compilation_Unit then
1210 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1211 end if;
1212
1213 -- Make generic parameters immediately visible in the body. They are
1214 -- needed to process the formals declarations. Then make the formals
1215 -- visible in a separate step.
1216
0a36105d 1217 Push_Scope (Gen_Id);
996ae0b0
RK
1218
1219 declare
1220 E : Entity_Id;
1221 First_Ent : Entity_Id;
1222
1223 begin
1224 First_Ent := First_Entity (Gen_Id);
1225
1226 E := First_Ent;
1227 while Present (E) and then not Is_Formal (E) loop
1228 Install_Entity (E);
1229 Next_Entity (E);
1230 end loop;
1231
1232 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1233
1234 -- Now generic formals are visible, and the specification can be
1235 -- analyzed, for subsequent conformance check.
1236
fbf5a39b 1237 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 1238
fbf5a39b 1239 -- Make formal parameters visible
996ae0b0
RK
1240
1241 if Present (E) then
1242
fbf5a39b
AC
1243 -- E is the first formal parameter, we loop through the formals
1244 -- installing them so that they will be visible.
996ae0b0
RK
1245
1246 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
1247 while Present (E) loop
1248 Install_Entity (E);
1249 Next_Formal (E);
1250 end loop;
1251 end if;
1252
e895b435 1253 -- Visible generic entity is callable within its own body
996ae0b0 1254
ec4867fa
ES
1255 Set_Ekind (Gen_Id, Ekind (Body_Id));
1256 Set_Ekind (Body_Id, E_Subprogram_Body);
1257 Set_Convention (Body_Id, Convention (Gen_Id));
1258 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1259 Set_Scope (Body_Id, Scope (Gen_Id));
c5cec2fe 1260
fbf5a39b
AC
1261 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1262
1263 if Nkind (N) = N_Subprogram_Body_Stub then
1264
e895b435 1265 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
1266
1267 Set_Ekind (Gen_Id, Kind);
1268 Set_Ekind (Body_Id, Kind);
1269
1270 if Present (First_Ent) then
1271 Set_First_Entity (Gen_Id, First_Ent);
1272 end if;
1273
1274 End_Scope;
1275 return;
1276 end if;
996ae0b0 1277
82c80734
RD
1278 -- If this is a compilation unit, it must be made visible explicitly,
1279 -- because the compilation of the declaration, unlike other library
1280 -- unit declarations, does not. If it is not a unit, the following
1281 -- is redundant but harmless.
996ae0b0
RK
1282
1283 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 1284 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 1285
ec4867fa
ES
1286 if Is_Child_Unit (Gen_Id) then
1287 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1288 end if;
1289
996ae0b0 1290 Set_Actual_Subtypes (N, Current_Scope);
483361a6 1291
579847c2 1292 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
f145ece7 1293 Set_SPARK_Pragma_Inherited (Body_Id);
579847c2 1294
caf07df9
AC
1295 -- Analyze any aspect specifications that appear on the generic
1296 -- subprogram body.
1297
1298 if Has_Aspects (N) then
1299 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1300 end if;
1301
996ae0b0
RK
1302 Analyze_Declarations (Declarations (N));
1303 Check_Completion;
996ae0b0 1304
879ac954
AC
1305 -- Process the contract of the subprogram body after all declarations
1306 -- have been analyzed. This ensures that any contract-related pragmas
1307 -- are available through the N_Contract node of the body.
caf07df9 1308
f99ff327 1309 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
caf07df9
AC
1310
1311 Analyze (Handled_Statement_Sequence (N));
996ae0b0
RK
1312 Save_Global_References (Original_Node (N));
1313
82c80734
RD
1314 -- Prior to exiting the scope, include generic formals again (if any
1315 -- are present) in the set of local entities.
996ae0b0
RK
1316
1317 if Present (First_Ent) then
1318 Set_First_Entity (Gen_Id, First_Ent);
1319 end if;
1320
fbf5a39b 1321 Check_References (Gen_Id);
996ae0b0
RK
1322 end;
1323
e6f69614 1324 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
1325 End_Scope;
1326 Check_Subprogram_Order (N);
1327
e895b435 1328 -- Outside of its body, unit is generic again
996ae0b0
RK
1329
1330 Set_Ekind (Gen_Id, Kind);
fbf5a39b 1331 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
1332
1333 if Style_Check then
1334 Style.Check_Identifier (Body_Id, Gen_Id);
1335 end if;
13d923cc 1336
996ae0b0 1337 End_Generic;
996ae0b0
RK
1338 end Analyze_Generic_Subprogram_Body;
1339
4d8f3296
ES
1340 ----------------------------
1341 -- Analyze_Null_Procedure --
1342 ----------------------------
1343
1344 procedure Analyze_Null_Procedure
1345 (N : Node_Id;
1346 Is_Completion : out Boolean)
1347 is
1348 Loc : constant Source_Ptr := Sloc (N);
1349 Spec : constant Node_Id := Specification (N);
1350 Designator : Entity_Id;
1351 Form : Node_Id;
1352 Null_Body : Node_Id := Empty;
b912db16 1353 Null_Stmt : Node_Id := Null_Statement (Spec);
4d8f3296
ES
1354 Prev : Entity_Id;
1355
1356 begin
1357 -- Capture the profile of the null procedure before analysis, for
1358 -- expansion at the freeze point and at each point of call. The body is
1359 -- used if the procedure has preconditions, or if it is a completion. In
1360 -- the first case the body is analyzed at the freeze point, in the other
1361 -- it replaces the null procedure declaration.
1362
b912db16
AC
1363 -- For a null procedure that comes from source, a NULL statement is
1364 -- provided by the parser, which carries the source location of the
1365 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1366 -- from expansion, create one now.
1367
1368 if No (Null_Stmt) then
1369 Null_Stmt := Make_Null_Statement (Loc);
1370 end if;
1371
4d8f3296
ES
1372 Null_Body :=
1373 Make_Subprogram_Body (Loc,
611d5e3c
AC
1374 Specification => New_Copy_Tree (Spec),
1375 Declarations => New_List,
4d8f3296
ES
1376 Handled_Statement_Sequence =>
1377 Make_Handled_Sequence_Of_Statements (Loc,
b912db16 1378 Statements => New_List (Null_Stmt)));
4d8f3296
ES
1379
1380 -- Create new entities for body and formals
1381
1382 Set_Defining_Unit_Name (Specification (Null_Body),
9d2a2071
AC
1383 Make_Defining_Identifier
1384 (Sloc (Defining_Entity (N)),
1385 Chars (Defining_Entity (N))));
4d8f3296
ES
1386
1387 Form := First (Parameter_Specifications (Specification (Null_Body)));
1388 while Present (Form) loop
1389 Set_Defining_Identifier (Form,
9d2a2071
AC
1390 Make_Defining_Identifier
1391 (Sloc (Defining_Identifier (Form)),
1392 Chars (Defining_Identifier (Form))));
4d8f3296
ES
1393 Next (Form);
1394 end loop;
1395
1396 -- Determine whether the null procedure may be a completion of a generic
1397 -- suprogram, in which case we use the new null body as the completion
1398 -- and set minimal semantic information on the original declaration,
1399 -- which is rewritten as a null statement.
1400
1401 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1402
1403 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1404 Insert_Before (N, Null_Body);
1405 Set_Ekind (Defining_Entity (N), Ekind (Prev));
4d8f3296
ES
1406
1407 Rewrite (N, Make_Null_Statement (Loc));
1408 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1409 Is_Completion := True;
1410 return;
1411
1412 else
611d5e3c
AC
1413 -- Resolve the types of the formals now, because the freeze point may
1414 -- appear in a different context, e.g. an instantiation.
4d8f3296
ES
1415
1416 Form := First (Parameter_Specifications (Specification (Null_Body)));
1417 while Present (Form) loop
1418 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1419 Find_Type (Parameter_Type (Form));
1420
611d5e3c
AC
1421 elsif No (Access_To_Subprogram_Definition
1422 (Parameter_Type (Form)))
4d8f3296
ES
1423 then
1424 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1425
611d5e3c
AC
1426 -- The case of a null procedure with a formal that is an
1427 -- access-to-subprogram type, and that is used as an actual
1428 -- in an instantiation is left to the enthusiastic reader.
4d8f3296 1429
611d5e3c 1430 else
4d8f3296
ES
1431 null;
1432 end if;
1433
1434 Next (Form);
1435 end loop;
1436 end if;
1437
611d5e3c
AC
1438 -- If there are previous overloadable entities with the same name, check
1439 -- whether any of them is completed by the null procedure.
4d8f3296
ES
1440
1441 if Present (Prev) and then Is_Overloadable (Prev) then
1442 Designator := Analyze_Subprogram_Specification (Spec);
1443 Prev := Find_Corresponding_Spec (N);
1444 end if;
1445
1446 if No (Prev) or else not Comes_From_Source (Prev) then
1447 Designator := Analyze_Subprogram_Specification (Spec);
1448 Set_Has_Completion (Designator);
1449
1450 -- Signal to caller that this is a procedure declaration
1451
1452 Is_Completion := False;
1453
1454 -- Null procedures are always inlined, but generic formal subprograms
1455 -- which appear as such in the internal instance of formal packages,
1456 -- need no completion and are not marked Inline.
1457
1458 if Expander_Active
1459 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1460 then
1461 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1462 Set_Body_To_Inline (N, Null_Body);
1463 Set_Is_Inlined (Designator);
1464 end if;
1465
1466 else
2fe258bf
AC
1467 -- The null procedure is a completion. We unconditionally rewrite
1468 -- this as a null body (even if expansion is not active), because
1469 -- there are various error checks that are applied on this body
1470 -- when it is analyzed (e.g. correct aspect placement).
4d8f3296 1471
a98480dd
AC
1472 if Has_Completion (Prev) then
1473 Error_Msg_Sloc := Sloc (Prev);
1474 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1475 end if;
1476
4d8f3296 1477 Is_Completion := True;
2fe258bf
AC
1478 Rewrite (N, Null_Body);
1479 Analyze (N);
4d8f3296
ES
1480 end if;
1481 end Analyze_Null_Procedure;
1482
996ae0b0
RK
1483 -----------------------------
1484 -- Analyze_Operator_Symbol --
1485 -----------------------------
1486
82c80734
RD
1487 -- An operator symbol such as "+" or "and" may appear in context where the
1488 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1489 -- is just a string, as in (conjunction = "or"). In these cases the parser
1490 -- generates this node, and the semantics does the disambiguation. Other
1491 -- such case are actuals in an instantiation, the generic unit in an
1492 -- instantiation, and pragma arguments.
996ae0b0
RK
1493
1494 procedure Analyze_Operator_Symbol (N : Node_Id) is
1495 Par : constant Node_Id := Parent (N);
1496
1497 begin
1f0b1e48 1498 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
996ae0b0 1499 or else Nkind (Par) = N_Function_Instantiation
1f0b1e48 1500 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
996ae0b0 1501 or else (Nkind (Par) = N_Pragma_Argument_Association
1f0b1e48 1502 and then not Is_Pragma_String_Literal (Par))
996ae0b0 1503 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
1504 or else (Nkind (Par) = N_Attribute_Reference
1505 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
1506 then
1507 Find_Direct_Name (N);
1508
1509 else
1510 Change_Operator_Symbol_To_String_Literal (N);
1511 Analyze (N);
1512 end if;
1513 end Analyze_Operator_Symbol;
1514
1515 -----------------------------------
1516 -- Analyze_Parameter_Association --
1517 -----------------------------------
1518
1519 procedure Analyze_Parameter_Association (N : Node_Id) is
1520 begin
1521 Analyze (Explicit_Actual_Parameter (N));
1522 end Analyze_Parameter_Association;
1523
1524 ----------------------------
1525 -- Analyze_Procedure_Call --
1526 ----------------------------
1527
b0bf18ad
AC
1528 -- WARNING: This routine manages Ghost regions. Return statements must be
1529 -- replaced by gotos which jump to the end of the routine and restore the
1530 -- Ghost mode.
1531
996ae0b0 1532 procedure Analyze_Procedure_Call (N : Node_Id) is
996ae0b0 1533 procedure Analyze_Call_And_Resolve;
b0bf18ad
AC
1534 -- Do Analyze and Resolve calls for procedure call. At the end, check
1535 -- for illegal order dependence.
1536 -- ??? where is the check for illegal order dependencies?
996ae0b0 1537
fbf5a39b
AC
1538 ------------------------------
1539 -- Analyze_Call_And_Resolve --
1540 ------------------------------
1541
996ae0b0
RK
1542 procedure Analyze_Call_And_Resolve is
1543 begin
1544 if Nkind (N) = N_Procedure_Call_Statement then
1545 Analyze_Call (N);
1546 Resolve (N, Standard_Void_Type);
1547 else
1548 Analyze (N);
1549 end if;
1550 end Analyze_Call_And_Resolve;
1551
241ebe89
HK
1552 -- Local variables
1553
1554 Actuals : constant List_Id := Parameter_Associations (N);
1555 Loc : constant Source_Ptr := Sloc (N);
1556 P : constant Node_Id := Name (N);
f9a8f910
HK
1557
1558 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1559 -- Save the Ghost mode to restore on exit
1560
1561 Actual : Node_Id;
1562 New_N : Node_Id;
241ebe89 1563
996ae0b0
RK
1564 -- Start of processing for Analyze_Procedure_Call
1565
1566 begin
1567 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1568 -- a procedure call or an entry call. The prefix may denote an access
1569 -- to subprogram type, in which case an implicit dereference applies.
f3d57416 1570 -- If the prefix is an indexed component (without implicit dereference)
996ae0b0
RK
1571 -- then the construct denotes a call to a member of an entire family.
1572 -- If the prefix is a simple name, it may still denote a call to a
1573 -- parameterless member of an entry family. Resolution of these various
1574 -- interpretations is delicate.
1575
0fe797c5
SB
1576 -- Do not analyze machine code statements to avoid rejecting them in
1577 -- CodePeer mode.
996ae0b0 1578
0fe797c5
SB
1579 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1580 Set_Etype (P, Standard_Void_Type);
1581 else
1582 Analyze (P);
1583 end if;
1584
1585 -- If this is a call of the form Obj.Op, the call may have been analyzed
1586 -- and possibly rewritten into a block, in which case we are done.
758c442c
GD
1587
1588 if Analyzed (N) then
1589 return;
1590 end if;
1591
7415029d
AC
1592 -- If there is an error analyzing the name (which may have been
1593 -- rewritten if the original call was in prefix notation) then error
1594 -- has been emitted already, mark node and return.
996ae0b0 1595
21791d97 1596 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
996ae0b0
RK
1597 Set_Etype (N, Any_Type);
1598 return;
1599 end if;
1600
1af4455a
HK
1601 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1602 -- Set the mode now to ensure that any nodes generated during analysis
1603 -- and expansion are properly marked as Ghost.
8636f52f 1604
f9a8f910 1605 Mark_And_Set_Ghost_Procedure_Call (N);
8636f52f 1606
996ae0b0
RK
1607 -- Otherwise analyze the parameters
1608
1609 if Present (Actuals) then
1610 Actual := First (Actuals);
1611
1612 while Present (Actual) loop
1613 Analyze (Actual);
1614 Check_Parameterless_Call (Actual);
1615 Next (Actual);
1616 end loop;
1617 end if;
1618
0bfc9a64 1619 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
996ae0b0
RK
1620
1621 if Nkind (P) = N_Attribute_Reference
b69cd36a
AC
1622 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1623 Name_Elab_Body,
1624 Name_Elab_Subp_Body)
996ae0b0
RK
1625 then
1626 if Present (Actuals) then
1627 Error_Msg_N
1628 ("no parameters allowed for this call", First (Actuals));
d65a80fd 1629 goto Leave;
996ae0b0
RK
1630 end if;
1631
1632 Set_Etype (N, Standard_Void_Type);
1633 Set_Analyzed (N);
1634
1635 elsif Is_Entity_Name (P)
1636 and then Is_Record_Type (Etype (Entity (P)))
1637 and then Remote_AST_I_Dereference (P)
1638 then
d65a80fd 1639 goto Leave;
996ae0b0
RK
1640
1641 elsif Is_Entity_Name (P)
1642 and then Ekind (Entity (P)) /= E_Entry_Family
1643 then
1644 if Is_Access_Type (Etype (P))
1645 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1646 and then No (Actuals)
1647 and then Comes_From_Source (N)
1648 then
ed2233dc 1649 Error_Msg_N ("missing explicit dereference in call", N);
996ae0b0
RK
1650 end if;
1651
1652 Analyze_Call_And_Resolve;
1653
0fe797c5
SB
1654 -- If the prefix is the simple name of an entry family, this is a
1655 -- parameterless call from within the task body itself.
996ae0b0
RK
1656
1657 elsif Is_Entity_Name (P)
1658 and then Nkind (P) = N_Identifier
1659 and then Ekind (Entity (P)) = E_Entry_Family
1660 and then Present (Actuals)
1661 and then No (Next (First (Actuals)))
1662 then
82c80734
RD
1663 -- Can be call to parameterless entry family. What appears to be the
1664 -- sole argument is in fact the entry index. Rewrite prefix of node
1665 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1666 -- transformation.
1667
1668 New_N :=
1669 Make_Indexed_Component (Loc,
1670 Prefix =>
1671 Make_Selected_Component (Loc,
1672 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1673 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1674 Expressions => Actuals);
1675 Set_Name (N, New_N);
1676 Set_Etype (New_N, Standard_Void_Type);
1677 Set_Parameter_Associations (N, No_List);
1678 Analyze_Call_And_Resolve;
1679
1680 elsif Nkind (P) = N_Explicit_Dereference then
1681 if Ekind (Etype (P)) = E_Subprogram_Type then
1682 Analyze_Call_And_Resolve;
1683 else
1684 Error_Msg_N ("expect access to procedure in call", P);
1685 end if;
1686
82c80734
RD
1687 -- The name can be a selected component or an indexed component that
1688 -- yields an access to subprogram. Such a prefix is legal if the call
1689 -- has parameter associations.
996ae0b0
RK
1690
1691 elsif Is_Access_Type (Etype (P))
1692 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1693 then
1694 if Present (Actuals) then
1695 Analyze_Call_And_Resolve;
1696 else
ed2233dc 1697 Error_Msg_N ("missing explicit dereference in call ", N);
996ae0b0
RK
1698 end if;
1699
82c80734
RD
1700 -- If not an access to subprogram, then the prefix must resolve to the
1701 -- name of an entry, entry family, or protected operation.
996ae0b0 1702
82c80734
RD
1703 -- For the case of a simple entry call, P is a selected component where
1704 -- the prefix is the task and the selector name is the entry. A call to
1705 -- a protected procedure will have the same syntax. If the protected
1706 -- object contains overloaded operations, the entity may appear as a
1707 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1708
1709 elsif Nkind (P) = N_Selected_Component
8fde064e 1710 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
d8f43ee6
HK
1711 E_Function,
1712 E_Procedure)
996ae0b0 1713 then
0929d66b
AC
1714 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1715 -- in prefix notation may still be missing its controlling argument,
1716 -- so perform the transformation now.
1717
1718 if SPARK_Mode = On and then In_Inlined_Body then
1719 declare
1720 Subp : constant Entity_Id := Entity (Selector_Name (P));
1721 Typ : constant Entity_Id := Etype (Prefix (P));
1722
1723 begin
1724 if Is_Tagged_Type (Typ)
1725 and then Present (First_Formal (Subp))
1726 and then Etype (First_Formal (Subp)) = Typ
1727 and then Try_Object_Operation (P)
1728 then
1729 return;
1730
1731 else
1732 Analyze_Call_And_Resolve;
1733 end if;
1734 end;
1735
1736 else
1737 Analyze_Call_And_Resolve;
1738 end if;
996ae0b0
RK
1739
1740 elsif Nkind (P) = N_Selected_Component
1741 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1742 and then Present (Actuals)
1743 and then No (Next (First (Actuals)))
1744 then
82c80734
RD
1745 -- Can be call to parameterless entry family. What appears to be the
1746 -- sole argument is in fact the entry index. Rewrite prefix of node
1747 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1748 -- transformation.
1749
1750 New_N :=
1751 Make_Indexed_Component (Loc,
d8f43ee6 1752 Prefix => New_Copy (P),
996ae0b0
RK
1753 Expressions => Actuals);
1754 Set_Name (N, New_N);
1755 Set_Etype (New_N, Standard_Void_Type);
1756 Set_Parameter_Associations (N, No_List);
1757 Analyze_Call_And_Resolve;
1758
1759 -- For the case of a reference to an element of an entry family, P is
1760 -- an indexed component whose prefix is a selected component (task and
1761 -- entry family), and whose index is the entry family index.
1762
1763 elsif Nkind (P) = N_Indexed_Component
1764 and then Nkind (Prefix (P)) = N_Selected_Component
1765 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1766 then
1767 Analyze_Call_And_Resolve;
1768
1769 -- If the prefix is the name of an entry family, it is a call from
1770 -- within the task body itself.
1771
1772 elsif Nkind (P) = N_Indexed_Component
1773 and then Nkind (Prefix (P)) = N_Identifier
1774 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1775 then
1776 New_N :=
1777 Make_Selected_Component (Loc,
1778 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1779 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1780 Rewrite (Prefix (P), New_N);
1781 Analyze (P);
1782 Analyze_Call_And_Resolve;
1783
9f8d1e5c
AC
1784 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1785 -- procedure name, so the construct can only be a qualified expression.
1786
1787 elsif Nkind (P) = N_Qualified_Expression
1788 and then Ada_Version >= Ada_2012
1789 then
1790 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1791 Analyze (N);
1792
e895b435 1793 -- Anything else is an error
996ae0b0
RK
1794
1795 else
758c442c 1796 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0 1797 end if;
241ebe89 1798
d65a80fd 1799 <<Leave>>
f9a8f910 1800 Restore_Ghost_Mode (Saved_GM);
996ae0b0
RK
1801 end Analyze_Procedure_Call;
1802
b0186f71
AC
1803 ------------------------------
1804 -- Analyze_Return_Statement --
1805 ------------------------------
1806
1807 procedure Analyze_Return_Statement (N : Node_Id) is
d65a80fd
HK
1808 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1809 N_Simple_Return_Statement));
b0186f71
AC
1810
1811 Returns_Object : constant Boolean :=
1812 Nkind (N) = N_Extended_Return_Statement
1813 or else
8fde064e
AC
1814 (Nkind (N) = N_Simple_Return_Statement
1815 and then Present (Expression (N)));
b0186f71
AC
1816 -- True if we're returning something; that is, "return <expression>;"
1817 -- or "return Result : T [:= ...]". False for "return;". Used for error
1818 -- checking: If Returns_Object is True, N should apply to a function
1819 -- body; otherwise N should apply to a procedure body, entry body,
1820 -- accept statement, or extended return statement.
1821
1822 function Find_What_It_Applies_To return Entity_Id;
1823 -- Find the entity representing the innermost enclosing body, accept
1824 -- statement, or extended return statement. If the result is a callable
1825 -- construct or extended return statement, then this will be the value
1826 -- of the Return_Applies_To attribute. Otherwise, the program is
1827 -- illegal. See RM-6.5(4/2).
1828
1829 -----------------------------
1830 -- Find_What_It_Applies_To --
1831 -----------------------------
1832
1833 function Find_What_It_Applies_To return Entity_Id is
1834 Result : Entity_Id := Empty;
1835
1836 begin
36b8f95f
AC
1837 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1838 -- and postconditions.
b0186f71
AC
1839
1840 for J in reverse 0 .. Scope_Stack.Last loop
1841 Result := Scope_Stack.Table (J).Entity;
11bc76df
AC
1842 exit when not Ekind_In (Result, E_Block, E_Loop)
1843 and then Chars (Result) /= Name_uPostconditions;
b0186f71
AC
1844 end loop;
1845
1846 pragma Assert (Present (Result));
1847 return Result;
1848 end Find_What_It_Applies_To;
1849
1850 -- Local declarations
1851
1852 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1853 Kind : constant Entity_Kind := Ekind (Scope_Id);
1854 Loc : constant Source_Ptr := Sloc (N);
1855 Stm_Entity : constant Entity_Id :=
1856 New_Internal_Entity
1857 (E_Return_Statement, Current_Scope, Loc, 'R');
1858
1859 -- Start of processing for Analyze_Return_Statement
1860
1861 begin
1862 Set_Return_Statement_Entity (N, Stm_Entity);
1863
1864 Set_Etype (Stm_Entity, Standard_Void_Type);
1865 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1866
1867 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1868 -- (4/2): an inner return statement will apply to this extended return.
1869
1870 if Nkind (N) = N_Extended_Return_Statement then
1871 Push_Scope (Stm_Entity);
1872 end if;
1873
1874 -- Check that pragma No_Return is obeyed. Don't complain about the
1875 -- implicitly-generated return that is placed at the end.
1876
1877 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1878 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1879 end if;
1880
1881 -- Warn on any unassigned OUT parameters if in procedure
1882
1883 if Ekind (Scope_Id) = E_Procedure then
1884 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1885 end if;
1886
1887 -- Check that functions return objects, and other things do not
1888
1889 if Kind = E_Function or else Kind = E_Generic_Function then
1890 if not Returns_Object then
1891 Error_Msg_N ("missing expression in return from function", N);
1892 end if;
1893
1894 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1895 if Returns_Object then
1896 Error_Msg_N ("procedure cannot return value (use function)", N);
1897 end if;
1898
1899 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1900 if Returns_Object then
1901 if Is_Protected_Type (Scope (Scope_Id)) then
1902 Error_Msg_N ("entry body cannot return value", N);
1903 else
1904 Error_Msg_N ("accept statement cannot return value", N);
1905 end if;
1906 end if;
1907
1908 elsif Kind = E_Return_Statement then
1909
1910 -- We are nested within another return statement, which must be an
1911 -- extended_return_statement.
1912
1913 if Returns_Object then
d0dcb2b1
AC
1914 if Nkind (N) = N_Extended_Return_Statement then
1915 Error_Msg_N
cc96a1b8 1916 ("extended return statement cannot be nested (use `RETURN;`)",
d0dcb2b1
AC
1917 N);
1918
1919 -- Case of a simple return statement with a value inside extended
1920 -- return statement.
1921
1922 else
1923 Error_Msg_N
3ccedacc
AC
1924 ("return nested in extended return statement cannot return "
1925 & "value (use `RETURN;`)", N);
d0dcb2b1 1926 end if;
b0186f71
AC
1927 end if;
1928
1929 else
1930 Error_Msg_N ("illegal context for return statement", N);
1931 end if;
1932
1933 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1934 Analyze_Function_Return (N);
1935
1936 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1937 Set_Return_Present (Scope_Id);
1938 end if;
1939
1940 if Nkind (N) = N_Extended_Return_Statement then
1941 End_Scope;
1942 end if;
1943
1944 Kill_Current_Values (Last_Assignment_Only => True);
1945 Check_Unreachable_Code (N);
dec6faf1
AC
1946
1947 Analyze_Dimension (N);
b0186f71
AC
1948 end Analyze_Return_Statement;
1949
5d37ba92
ES
1950 -------------------------------------
1951 -- Analyze_Simple_Return_Statement --
1952 -------------------------------------
ec4867fa 1953
5d37ba92 1954 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1955 begin
5d37ba92
ES
1956 if Present (Expression (N)) then
1957 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1958 end if;
1959
5d37ba92
ES
1960 Analyze_Return_Statement (N);
1961 end Analyze_Simple_Return_Statement;
996ae0b0 1962
82c80734
RD
1963 -------------------------
1964 -- Analyze_Return_Type --
1965 -------------------------
1966
1967 procedure Analyze_Return_Type (N : Node_Id) is
1968 Designator : constant Entity_Id := Defining_Entity (N);
1969 Typ : Entity_Id := Empty;
1970
1971 begin
ec4867fa
ES
1972 -- Normal case where result definition does not indicate an error
1973
41251c60
JM
1974 if Result_Definition (N) /= Error then
1975 if Nkind (Result_Definition (N)) = N_Access_Definition then
ce5ba43a 1976 Check_SPARK_05_Restriction
fe5d3068 1977 ("access result is not allowed", Result_Definition (N));
daec8eeb 1978
b1c11e0e
JM
1979 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1980
1981 declare
1982 AD : constant Node_Id :=
1983 Access_To_Subprogram_Definition (Result_Definition (N));
1984 begin
1985 if Present (AD) and then Protected_Present (AD) then
1986 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1987 else
1988 Typ := Access_Definition (N, Result_Definition (N));
1989 end if;
1990 end;
1991
41251c60
JM
1992 Set_Parent (Typ, Result_Definition (N));
1993 Set_Is_Local_Anonymous_Access (Typ);
1994 Set_Etype (Designator, Typ);
1995
b66c3ff4
AC
1996 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1997
1998 Null_Exclusion_Static_Checks (N);
1999
41251c60
JM
2000 -- Subtype_Mark case
2001
2002 else
2003 Find_Type (Result_Definition (N));
2004 Typ := Entity (Result_Definition (N));
2005 Set_Etype (Designator, Typ);
2006
2ba431e5 2007 -- Unconstrained array as result is not allowed in SPARK
daec8eeb 2008
8fde064e 2009 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
ce5ba43a 2010 Check_SPARK_05_Restriction
fe5d3068 2011 ("returning an unconstrained array is not allowed",
7394c8cc 2012 Result_Definition (N));
daec8eeb
YM
2013 end if;
2014
b66c3ff4
AC
2015 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2016
2017 Null_Exclusion_Static_Checks (N);
2018
2019 -- If a null exclusion is imposed on the result type, then create
2020 -- a null-excluding itype (an access subtype) and use it as the
2021 -- function's Etype. Note that the null exclusion checks are done
2022 -- right before this, because they don't get applied to types that
2023 -- do not come from source.
2024
8fde064e 2025 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
b66c3ff4
AC
2026 Set_Etype (Designator,
2027 Create_Null_Excluding_Itype
ff7139c3
AC
2028 (T => Typ,
2029 Related_Nod => N,
2030 Scope_Id => Scope (Current_Scope)));
2031
2032 -- The new subtype must be elaborated before use because
2033 -- it is visible outside of the function. However its base
2034 -- type may not be frozen yet, so the reference that will
2035 -- force elaboration must be attached to the freezing of
2036 -- the base type.
2037
212863c0
AC
2038 -- If the return specification appears on a proper body,
2039 -- the subtype will have been created already on the spec.
2040
ff7139c3 2041 if Is_Frozen (Typ) then
212863c0
AC
2042 if Nkind (Parent (N)) = N_Subprogram_Body
2043 and then Nkind (Parent (Parent (N))) = N_Subunit
2044 then
2045 null;
2046 else
2047 Build_Itype_Reference (Etype (Designator), Parent (N));
2048 end if;
2049
ff7139c3
AC
2050 else
2051 Ensure_Freeze_Node (Typ);
2052
2053 declare
212863c0 2054 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
ff7139c3
AC
2055 begin
2056 Set_Itype (IR, Etype (Designator));
2057 Append_Freeze_Actions (Typ, New_List (IR));
2058 end;
2059 end if;
2060
b66c3ff4
AC
2061 else
2062 Set_Etype (Designator, Typ);
2063 end if;
2064
41251c60
JM
2065 if Ekind (Typ) = E_Incomplete_Type
2066 or else (Is_Class_Wide_Type (Typ)
4b6f99f5 2067 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
41251c60 2068 then
dd386db0
AC
2069 -- AI05-0151: Tagged incomplete types are allowed in all formal
2070 -- parts. Untagged incomplete types are not allowed in bodies.
b973629e
AC
2071 -- As a consequence, limited views cannot appear in a basic
2072 -- declaration that is itself within a body, because there is
2073 -- no point at which the non-limited view will become visible.
dd386db0
AC
2074
2075 if Ada_Version >= Ada_2012 then
b973629e
AC
2076 if From_Limited_With (Typ) and then In_Package_Body then
2077 Error_Msg_NE
2078 ("invalid use of incomplete type&",
3f80a182 2079 Result_Definition (N), Typ);
b973629e 2080
1ebc2612
AC
2081 -- The return type of a subprogram body cannot be of a
2082 -- formal incomplete type.
2083
2084 elsif Is_Generic_Type (Typ)
2085 and then Nkind (Parent (N)) = N_Subprogram_Body
2086 then
2087 Error_Msg_N
2088 ("return type cannot be a formal incomplete type",
2089 Result_Definition (N));
2090
2091 elsif Is_Class_Wide_Type (Typ)
2092 and then Is_Generic_Type (Root_Type (Typ))
2093 and then Nkind (Parent (N)) = N_Subprogram_Body
2094 then
2095 Error_Msg_N
2096 ("return type cannot be a formal incomplete type",
2097 Result_Definition (N));
2098
b973629e 2099 elsif Is_Tagged_Type (Typ) then
dd386db0
AC
2100 null;
2101
ed09416f
AC
2102 -- Use is legal in a thunk generated for an operation
2103 -- inherited from a progenitor.
2104
2105 elsif Is_Thunk (Designator)
2106 and then Present (Non_Limited_View (Typ))
2107 then
2108 null;
2109
5b6f12c7 2110 elsif Nkind (Parent (N)) = N_Subprogram_Body
31d922e3
AC
2111 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2112 N_Entry_Body)
dd386db0
AC
2113 then
2114 Error_Msg_NE
2115 ("invalid use of untagged incomplete type&",
2116 Designator, Typ);
2117 end if;
2118
63be2a5a 2119 -- The type must be completed in the current package. This
31d922e3 2120 -- is checked at the end of the package declaration when
7b7a0c2b
AC
2121 -- Taft-amendment types are identified. If the return type
2122 -- is class-wide, there is no required check, the type can
2123 -- be a bona fide TAT.
63be2a5a
AC
2124
2125 if Ekind (Scope (Current_Scope)) = E_Package
c199ccf7 2126 and then In_Private_Part (Scope (Current_Scope))
7b7a0c2b 2127 and then not Is_Class_Wide_Type (Typ)
63be2a5a
AC
2128 then
2129 Append_Elmt (Designator, Private_Dependents (Typ));
2130 end if;
2131
dd386db0
AC
2132 else
2133 Error_Msg_NE
2134 ("invalid use of incomplete type&", Designator, Typ);
2135 end if;
41251c60 2136 end if;
82c80734
RD
2137 end if;
2138
ec4867fa
ES
2139 -- Case where result definition does indicate an error
2140
82c80734
RD
2141 else
2142 Set_Etype (Designator, Any_Type);
2143 end if;
2144 end Analyze_Return_Type;
2145
996ae0b0
RK
2146 -----------------------------
2147 -- Analyze_Subprogram_Body --
2148 -----------------------------
2149
b1b543d2
BD
2150 procedure Analyze_Subprogram_Body (N : Node_Id) is
2151 Loc : constant Source_Ptr := Sloc (N);
2152 Body_Spec : constant Node_Id := Specification (N);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154
2155 begin
2156 if Debug_Flag_C then
2157 Write_Str ("==> subprogram body ");
2158 Write_Name (Chars (Body_Id));
2159 Write_Str (" from ");
2160 Write_Location (Loc);
2161 Write_Eol;
2162 Indent;
2163 end if;
2164
2165 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2166
2167 -- The real work is split out into the helper, so it can do "return;"
2168 -- without skipping the debug output:
2169
2170 Analyze_Subprogram_Body_Helper (N);
2171
2172 if Debug_Flag_C then
2173 Outdent;
2174 Write_Str ("<== subprogram body ");
2175 Write_Name (Chars (Body_Id));
2176 Write_Str (" from ");
2177 Write_Location (Loc);
2178 Write_Eol;
2179 end if;
2180 end Analyze_Subprogram_Body;
2181
2182 ------------------------------------
2183 -- Analyze_Subprogram_Body_Helper --
2184 ------------------------------------
2185
996ae0b0
RK
2186 -- This procedure is called for regular subprogram bodies, generic bodies,
2187 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2188 -- specification matters, and is used to create a proper declaration for
2189 -- the subprogram, or to perform conformance checks.
2190
b0bf18ad
AC
2191 -- WARNING: This routine manages Ghost regions. Return statements must be
2192 -- replaced by gotos which jump to the end of the routine and restore the
2193 -- Ghost mode.
2194
b1b543d2 2195 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
d030f3a4
AC
2196 Body_Spec : Node_Id := Specification (N);
2197 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2198 Loc : constant Source_Ptr := Sloc (N);
2199 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2200
2201 Conformant : Boolean;
2202 Desig_View : Entity_Id := Empty;
2203 Exch_Views : Elist_Id := No_Elist;
2204 HSS : Node_Id;
2205 Prot_Typ : Entity_Id := Empty;
2206 Spec_Decl : Node_Id := Empty;
2207 Spec_Id : Entity_Id;
21d27997
RD
2208
2209 Last_Real_Spec_Entity : Entity_Id := Empty;
2210 -- When we analyze a separate spec, the entity chain ends up containing
2211 -- the formals, as well as any itypes generated during analysis of the
2212 -- default expressions for parameters, or the arguments of associated
2213 -- precondition/postcondition pragmas (which are analyzed in the context
2214 -- of the spec since they have visibility on formals).
2215 --
2216 -- These entities belong with the spec and not the body. However we do
2217 -- the analysis of the body in the context of the spec (again to obtain
2218 -- visibility to the formals), and all the entities generated during
2219 -- this analysis end up also chained to the entity chain of the spec.
2220 -- But they really belong to the body, and there is circuitry to move
2221 -- them from the spec to the body.
2222 --
2223 -- However, when we do this move, we don't want to move the real spec
2224 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2225 -- variable points to the last real spec entity, so we only move those
2226 -- chained beyond that point. It is initialized to Empty to deal with
2227 -- the case where there is no separate spec.
996ae0b0 2228
ac072cb2
AC
2229 function Body_Has_Contract return Boolean;
2230 -- Check whether unanalyzed body has an aspect or pragma that may
1399d355 2231 -- generate a SPARK contract.
ac072cb2 2232
fd22e260
AC
2233 function Body_Has_SPARK_Mode_On return Boolean;
2234 -- Check whether SPARK_Mode On applies to the subprogram body, either
2235 -- because it is specified directly on the body, or because it is
2236 -- inherited from the enclosing subprogram or package.
2237
8d1fe980
AC
2238 procedure Build_Subprogram_Declaration;
2239 -- Create a matching subprogram declaration for subprogram body N
2240
ec4867fa 2241 procedure Check_Anonymous_Return;
e50e1c5e 2242 -- Ada 2005: if a function returns an access type that denotes a task,
ec4867fa
ES
2243 -- or a type that contains tasks, we must create a master entity for
2244 -- the anonymous type, which typically will be used in an allocator
2245 -- in the body of the function.
2246
e660dbf7
JM
2247 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2248 -- Look ahead to recognize a pragma that may appear after the body.
2249 -- If there is a previous spec, check that it appears in the same
2250 -- declarative part. If the pragma is Inline_Always, perform inlining
2251 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2252 -- If the body acts as a spec, and inlining is required, we create a
2253 -- subprogram declaration for it, in order to attach the body to inline.
21d27997
RD
2254 -- If pragma does not appear after the body, check whether there is
2255 -- an inline pragma before any local declarations.
c37bb106 2256
7665e4bd
AC
2257 procedure Check_Missing_Return;
2258 -- Checks for a function with a no return statements, and also performs
8d606a78
RD
2259 -- the warning checks implemented by Check_Returns. In formal mode, also
2260 -- verify that a function ends with a RETURN and that a procedure does
2261 -- not contain any RETURN.
7665e4bd 2262
d44202ba
HK
2263 function Disambiguate_Spec return Entity_Id;
2264 -- When a primitive is declared between the private view and the full
2265 -- view of a concurrent type which implements an interface, a special
2266 -- mechanism is used to find the corresponding spec of the primitive
2267 -- body.
2268
1e55d29a 2269 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
5dcab3ca 2270 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
1e55d29a
EB
2271 -- incomplete types coming from a limited context and replace their
2272 -- limited views with the non-limited ones. Return the list of changes
2273 -- to be used to undo the transformation.
5dcab3ca 2274
448a1eb3 2275 procedure Freeze_Expr_Types (Spec_Id : Entity_Id);
804ec349
GD
2276 -- AI12-0103: N is the body associated with an expression function that
2277 -- is a completion, and Spec_Id is its defining entity. Freeze before N
2278 -- all the types referenced by the expression of the function.
448a1eb3 2279
d44202ba
HK
2280 function Is_Private_Concurrent_Primitive
2281 (Subp_Id : Entity_Id) return Boolean;
2282 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2283 -- type that implements an interface and has a private view.
2284
1e55d29a
EB
2285 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2286 -- Undo the transformation done by Exchange_Limited_Views.
2287
76a69663
ES
2288 procedure Set_Trivial_Subprogram (N : Node_Id);
2289 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2290 -- subprogram whose body is being analyzed. N is the statement node
2291 -- causing the flag to be set, if the following statement is a return
2292 -- of an entity, we mark the entity as set in source to suppress any
2293 -- warning on the stylized use of function stubs with a dummy return.
2294
758c442c
GD
2295 procedure Verify_Overriding_Indicator;
2296 -- If there was a previous spec, the entity has been entered in the
2297 -- current scope previously. If the body itself carries an overriding
2298 -- indicator, check that it is consistent with the known status of the
2299 -- entity.
2300
ac072cb2
AC
2301 -----------------------
2302 -- Body_Has_Contract --
2303 -----------------------
2304
2305 function Body_Has_Contract return Boolean is
8d1fe980
AC
2306 Decls : constant List_Id := Declarations (N);
2307 Item : Node_Id;
ac072cb2
AC
2308
2309 begin
33398e3c 2310 -- Check for aspects that may generate a contract
ac072cb2
AC
2311
2312 if Present (Aspect_Specifications (N)) then
8d1fe980
AC
2313 Item := First (Aspect_Specifications (N));
2314 while Present (Item) loop
33398e3c 2315 if Is_Subprogram_Contract_Annotation (Item) then
ac072cb2
AC
2316 return True;
2317 end if;
2318
8d1fe980 2319 Next (Item);
ac072cb2
AC
2320 end loop;
2321 end if;
2322
1399d355 2323 -- Check for pragmas that may generate a contract
ac072cb2
AC
2324
2325 if Present (Decls) then
8d1fe980
AC
2326 Item := First (Decls);
2327 while Present (Item) loop
2328 if Nkind (Item) = N_Pragma
33398e3c 2329 and then Is_Subprogram_Contract_Annotation (Item)
8d1fe980
AC
2330 then
2331 return True;
ac072cb2
AC
2332 end if;
2333
8d1fe980 2334 Next (Item);
ac072cb2
AC
2335 end loop;
2336 end if;
2337
2338 return False;
2339 end Body_Has_Contract;
2340
fd22e260
AC
2341 ----------------------------
2342 -- Body_Has_SPARK_Mode_On --
2343 ----------------------------
2344
2345 function Body_Has_SPARK_Mode_On return Boolean is
2346 Decls : constant List_Id := Declarations (N);
2347 Item : Node_Id;
2348
2349 begin
2350 -- Check for SPARK_Mode aspect
2351
2352 if Present (Aspect_Specifications (N)) then
2353 Item := First (Aspect_Specifications (N));
2354 while Present (Item) loop
2355 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
933aa0ac 2356 return Get_SPARK_Mode_From_Annotation (Item) = On;
fd22e260
AC
2357 end if;
2358
2359 Next (Item);
2360 end loop;
2361 end if;
2362
2363 -- Check for SPARK_Mode pragma
2364
2365 if Present (Decls) then
2366 Item := First (Decls);
2367 while Present (Item) loop
933aa0ac
AC
2368
2369 -- Pragmas that apply to a subprogram body are usually grouped
2370 -- together. Look for a potential pragma SPARK_Mode among them.
2371
2372 if Nkind (Item) = N_Pragma then
2373 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2374 return Get_SPARK_Mode_From_Annotation (Item) = On;
2375 end if;
2376
2377 -- Otherwise the first non-pragma declarative item terminates
2378 -- the region where pragma SPARK_Mode may appear.
2379
2380 else
2381 exit;
fd22e260
AC
2382 end if;
2383
2384 Next (Item);
2385 end loop;
2386 end if;
2387
933aa0ac
AC
2388 -- Otherwise, the applicable SPARK_Mode is inherited from the
2389 -- enclosing subprogram or package.
fd22e260
AC
2390
2391 return SPARK_Mode = On;
2392 end Body_Has_SPARK_Mode_On;
2393
8d1fe980
AC
2394 ----------------------------------
2395 -- Build_Subprogram_Declaration --
2396 ----------------------------------
2397
2398 procedure Build_Subprogram_Declaration is
3f8c04e7
AC
2399 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2400 -- Relocate certain categorization pragmas from the declarative list
2401 -- of subprogram body From and insert them after node To. The pragmas
2402 -- in question are:
2403 -- Ghost
3f8c04e7 2404 -- Volatile_Function
0a3ec628
AC
2405 -- Also copy pragma SPARK_Mode if present in the declarative list
2406 -- of subprogram body From and insert it after node To. This pragma
2407 -- should not be moved, as it applies to the body too.
3f8c04e7
AC
2408
2409 ------------------
2410 -- Move_Pragmas --
2411 ------------------
2412
2413 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2414 Decl : Node_Id;
2415 Next_Decl : Node_Id;
2416
2417 begin
2418 pragma Assert (Nkind (From) = N_Subprogram_Body);
2419
7f54dc83 2420 -- The destination node must be part of a list, as the pragmas are
3f8c04e7
AC
2421 -- inserted after it.
2422
2423 pragma Assert (Is_List_Member (To));
2424
2425 -- Inspect the declarations of the subprogram body looking for
2426 -- specific pragmas.
2427
2428 Decl := First (Declarations (N));
2429 while Present (Decl) loop
2430 Next_Decl := Next (Decl);
2431
0a3ec628
AC
2432 if Nkind (Decl) = N_Pragma then
2433 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2434 Insert_After (To, New_Copy_Tree (Decl));
2435
2436 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2437 Name_Ghost,
2438 Name_Volatile_Function)
2439 then
2440 Remove (Decl);
2441 Insert_After (To, Decl);
2442 end if;
3f8c04e7
AC
2443 end if;
2444
2445 Decl := Next_Decl;
2446 end loop;
2447 end Move_Pragmas;
2448
2449 -- Local variables
2450
8d1fe980
AC
2451 Decl : Node_Id;
2452 Subp_Decl : Node_Id;
2453
3f8c04e7
AC
2454 -- Start of processing for Build_Subprogram_Declaration
2455
8d1fe980
AC
2456 begin
2457 -- Create a matching subprogram spec using the profile of the body.
2458 -- The structure of the tree is identical, but has new entities for
2459 -- the defining unit name and formal parameters.
2460
2461 Subp_Decl :=
2462 Make_Subprogram_Declaration (Loc,
2463 Specification => Copy_Subprogram_Spec (Body_Spec));
877a5a12 2464 Set_Comes_From_Source (Subp_Decl, True);
8d1fe980 2465
3f8c04e7
AC
2466 -- Relocate the aspects and relevant pragmas from the subprogram body
2467 -- to the generated spec because it acts as the initial declaration.
8d1fe980 2468
3f8c04e7 2469 Insert_Before (N, Subp_Decl);
8d1fe980 2470 Move_Aspects (N, To => Subp_Decl);
3f8c04e7 2471 Move_Pragmas (N, To => Subp_Decl);
8d1fe980 2472
0a3ec628
AC
2473 -- Ensure that the generated corresponding spec and original body
2474 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2475 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2476 -- correctly set for local subprograms.
2477
2478 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2479
3f8c04e7
AC
2480 Analyze (Subp_Decl);
2481
888be6b1
AC
2482 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2483 -- the body since the expander may generate calls using that entity.
2484 -- Required to ensure that Expand_Call rewrites calls to this
2485 -- function by calls to the built procedure.
2486
2487 if Modify_Tree_For_C
2488 and then Nkind (Body_Spec) = N_Function_Specification
2489 and then
2490 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2491 then
2492 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2493 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2494 Corresponding_Procedure
2495 (Defining_Entity (Specification (Subp_Decl))));
aeb98f1d
JM
2496 end if;
2497
3f8c04e7
AC
2498 -- Analyze any relocated source pragmas or pragmas created for aspect
2499 -- specifications.
8d1fe980
AC
2500
2501 Decl := Next (Subp_Decl);
2502 while Present (Decl) loop
2503
2504 -- Stop the search for pragmas once the body has been reached as
2505 -- this terminates the region where pragmas may appear.
2506
2507 if Decl = N then
2508 exit;
2509
2510 elsif Nkind (Decl) = N_Pragma then
2511 Analyze (Decl);
2512 end if;
2513
2514 Next (Decl);
2515 end loop;
2516
2517 Spec_Id := Defining_Entity (Subp_Decl);
2518 Set_Corresponding_Spec (N, Spec_Id);
2519
2520 -- Mark the generated spec as a source construct to ensure that all
2521 -- calls to it are properly registered in ALI files for GNATprove.
2522
2523 Set_Comes_From_Source (Spec_Id, True);
2524
8d1fe980
AC
2525 -- Ensure that the specs of the subprogram declaration and its body
2526 -- are identical, otherwise they will appear non-conformant due to
2527 -- rewritings in the default values of formal parameters.
2528
2529 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2530 Set_Specification (N, Body_Spec);
2531 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2532 end Build_Subprogram_Declaration;
2533
ec4867fa
ES
2534 ----------------------------
2535 -- Check_Anonymous_Return --
2536 ----------------------------
2537
2538 procedure Check_Anonymous_Return is
2539 Decl : Node_Id;
a523b302 2540 Par : Node_Id;
ec4867fa
ES
2541 Scop : Entity_Id;
2542
2543 begin
2544 if Present (Spec_Id) then
2545 Scop := Spec_Id;
2546 else
2547 Scop := Body_Id;
2548 end if;
2549
2550 if Ekind (Scop) = E_Function
2551 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
a523b302 2552 and then not Is_Thunk (Scop)
4b963531
AC
2553
2554 -- Skip internally built functions which handle the case of
2555 -- a null access (see Expand_Interface_Conversion)
2556
2557 and then not (Is_Interface (Designated_Type (Etype (Scop)))
4b6f99f5 2558 and then not Comes_From_Source (Parent (Scop)))
4b963531 2559
a523b302
JM
2560 and then (Has_Task (Designated_Type (Etype (Scop)))
2561 or else
4b6f99f5
RD
2562 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2563 and then
2564 Is_Limited_Record (Designated_Type (Etype (Scop)))))
ec4867fa 2565 and then Expander_Active
b20de9b9 2566
8fde064e 2567 -- Avoid cases with no tasking support
b20de9b9
AC
2568
2569 and then RTE_Available (RE_Current_Master)
2570 and then not Restriction_Active (No_Task_Hierarchy)
ec4867fa
ES
2571 then
2572 Decl :=
2573 Make_Object_Declaration (Loc,
2574 Defining_Identifier =>
2575 Make_Defining_Identifier (Loc, Name_uMaster),
2576 Constant_Present => True,
2577 Object_Definition =>
e4494292 2578 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
ec4867fa
ES
2579 Expression =>
2580 Make_Explicit_Dereference (Loc,
e4494292 2581 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
ec4867fa
ES
2582
2583 if Present (Declarations (N)) then
2584 Prepend (Decl, Declarations (N));
2585 else
2586 Set_Declarations (N, New_List (Decl));
2587 end if;
2588
2589 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2590 Set_Has_Master_Entity (Scop);
a523b302
JM
2591
2592 -- Now mark the containing scope as a task master
2593
2594 Par := N;
2595 while Nkind (Par) /= N_Compilation_Unit loop
2596 Par := Parent (Par);
2597 pragma Assert (Present (Par));
2598
2599 -- If we fall off the top, we are at the outer level, and
2600 -- the environment task is our effective master, so nothing
2601 -- to mark.
2602
2603 if Nkind_In
2604 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2605 then
2606 Set_Is_Task_Master (Par, True);
2607 exit;
2608 end if;
2609 end loop;
ec4867fa
ES
2610 end if;
2611 end Check_Anonymous_Return;
2612
e660dbf7
JM
2613 -------------------------
2614 -- Check_Inline_Pragma --
2615 -------------------------
758c442c 2616
e660dbf7
JM
2617 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2618 Prag : Node_Id;
2619 Plist : List_Id;
0fb2ea01 2620
21d27997 2621 function Is_Inline_Pragma (N : Node_Id) return Boolean;
30783513 2622 -- True when N is a pragma Inline or Inline_Always that applies
33931112 2623 -- to this subprogram.
21d27997
RD
2624
2625 -----------------------
2626 -- Is_Inline_Pragma --
2627 -----------------------
2628
2629 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2630 begin
b269f477 2631 if Nkind (N) = N_Pragma
21d27997 2632 and then
6e759c2a
BD
2633 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2634 or else (Pragma_Name_Unmapped (N) = Name_Inline
87feba05
AC
2635 and then
2636 (Front_End_Inlining or else Optimization_Level > 0)))
274c2cda 2637 and then Present (Pragma_Argument_Associations (N))
b269f477
BD
2638 then
2639 declare
2640 Pragma_Arg : Node_Id :=
2641 Expression (First (Pragma_Argument_Associations (N)));
2642 begin
2643 if Nkind (Pragma_Arg) = N_Selected_Component then
2644 Pragma_Arg := Selector_Name (Pragma_Arg);
2645 end if;
2646
2647 return Chars (Pragma_Arg) = Chars (Body_Id);
2648 end;
2649
2650 else
2651 return False;
2652 end if;
21d27997
RD
2653 end Is_Inline_Pragma;
2654
2655 -- Start of processing for Check_Inline_Pragma
2656
c37bb106 2657 begin
e660dbf7
JM
2658 if not Expander_Active then
2659 return;
2660 end if;
2661
2662 if Is_List_Member (N)
2663 and then Present (Next (N))
21d27997 2664 and then Is_Inline_Pragma (Next (N))
c37bb106
AC
2665 then
2666 Prag := Next (N);
2667
21d27997
RD
2668 elsif Nkind (N) /= N_Subprogram_Body_Stub
2669 and then Present (Declarations (N))
2670 and then Is_Inline_Pragma (First (Declarations (N)))
2671 then
2672 Prag := First (Declarations (N));
2673
e660dbf7
JM
2674 else
2675 Prag := Empty;
c37bb106 2676 end if;
e660dbf7
JM
2677
2678 if Present (Prag) then
2679 if Present (Spec_Id) then
b269f477
BD
2680 if Is_List_Member (N)
2681 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2682 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2683 then
e660dbf7
JM
2684 Analyze (Prag);
2685 end if;
2686
2687 else
274c2cda
AC
2688 -- Create a subprogram declaration, to make treatment uniform.
2689 -- Make the sloc of the subprogram name that of the entity in
2690 -- the body, so that style checks find identical strings.
e660dbf7
JM
2691
2692 declare
2693 Subp : constant Entity_Id :=
274c2cda
AC
2694 Make_Defining_Identifier
2695 (Sloc (Body_Id), Chars (Body_Id));
e660dbf7 2696 Decl : constant Node_Id :=
30196a76
RD
2697 Make_Subprogram_Declaration (Loc,
2698 Specification =>
2699 New_Copy_Tree (Specification (N)));
2700
e660dbf7
JM
2701 begin
2702 Set_Defining_Unit_Name (Specification (Decl), Subp);
2703
4afcf3a5
AC
2704 -- To ensure proper coverage when body is inlined, indicate
2705 -- whether the subprogram comes from source.
2706
2707 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2708
e660dbf7 2709 if Present (First_Formal (Body_Id)) then
21d27997 2710 Plist := Copy_Parameter_List (Body_Id);
e660dbf7
JM
2711 Set_Parameter_Specifications
2712 (Specification (Decl), Plist);
2713 end if;
2714
a5fa1522
JM
2715 -- Move aspects to the new spec
2716
2717 if Has_Aspects (N) then
2718 Move_Aspects (N, To => Decl);
2719 end if;
2720
e660dbf7
JM
2721 Insert_Before (N, Decl);
2722 Analyze (Decl);
2723 Analyze (Prag);
2724 Set_Has_Pragma_Inline (Subp);
2725
6e759c2a 2726 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7 2727 Set_Is_Inlined (Subp);
21d27997 2728 Set_Has_Pragma_Inline_Always (Subp);
e660dbf7
JM
2729 end if;
2730
158d55fa
AC
2731 -- Prior to copying the subprogram body to create a template
2732 -- for it for subsequent inlining, remove the pragma from
2733 -- the current body so that the copy that will produce the
2734 -- new body will start from a completely unanalyzed tree.
2735
2736 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2737 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2738 end if;
2739
e660dbf7
JM
2740 Spec := Subp;
2741 end;
2742 end if;
2743 end if;
2744 end Check_Inline_Pragma;
2745
7665e4bd
AC
2746 --------------------------
2747 -- Check_Missing_Return --
2748 --------------------------
2749
2750 procedure Check_Missing_Return is
2751 Id : Entity_Id;
2752 Missing_Ret : Boolean;
2753
2754 begin
2755 if Nkind (Body_Spec) = N_Function_Specification then
2756 if Present (Spec_Id) then
2757 Id := Spec_Id;
2758 else
2759 Id := Body_Id;
2760 end if;
2761
fe5d3068 2762 if Return_Present (Id) then
7665e4bd
AC
2763 Check_Returns (HSS, 'F', Missing_Ret);
2764
2765 if Missing_Ret then
2766 Set_Has_Missing_Return (Id);
2767 end if;
2768
241fac51
ES
2769 -- Within a premature instantiation of a package with no body, we
2770 -- build completions of the functions therein, with a Raise
2771 -- statement. No point in complaining about a missing return in
2772 -- this case.
2773
2774 elsif Ekind (Id) = E_Function
2775 and then In_Instance
2776 and then Present (Statements (HSS))
2777 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2778 then
2779 null;
2780
2aca76d6
AC
2781 elsif Is_Generic_Subprogram (Id)
2782 or else not Is_Machine_Code_Subprogram (Id)
7665e4bd
AC
2783 then
2784 Error_Msg_N ("missing RETURN statement in function body", N);
2785 end if;
2786
fe5d3068 2787 -- If procedure with No_Return, check returns
607d0635 2788
fe5d3068
YM
2789 elsif Nkind (Body_Spec) = N_Procedure_Specification
2790 and then Present (Spec_Id)
2791 and then No_Return (Spec_Id)
607d0635 2792 then
fe5d3068
YM
2793 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2794 end if;
2795
ad05f2e9 2796 -- Special checks in SPARK mode
fe5d3068
YM
2797
2798 if Nkind (Body_Spec) = N_Function_Specification then
7394c8cc 2799
ad05f2e9 2800 -- In SPARK mode, last statement of a function should be a return
fe5d3068
YM
2801
2802 declare
2803 Stat : constant Node_Id := Last_Source_Statement (HSS);
2804 begin
2805 if Present (Stat)
7394c8cc
AC
2806 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2807 N_Extended_Return_Statement)
fe5d3068 2808 then
ce5ba43a 2809 Check_SPARK_05_Restriction
fe5d3068
YM
2810 ("last statement in function should be RETURN", Stat);
2811 end if;
2812 end;
2813
ad05f2e9 2814 -- In SPARK mode, verify that a procedure has no return
fe5d3068
YM
2815
2816 elsif Nkind (Body_Spec) = N_Procedure_Specification then
607d0635
AC
2817 if Present (Spec_Id) then
2818 Id := Spec_Id;
2819 else
2820 Id := Body_Id;
2821 end if;
2822
8d606a78
RD
2823 -- Would be nice to point to return statement here, can we
2824 -- borrow the Check_Returns procedure here ???
2825
607d0635 2826 if Return_Present (Id) then
ce5ba43a 2827 Check_SPARK_05_Restriction
fe5d3068 2828 ("procedure should not have RETURN", N);
607d0635 2829 end if;
7665e4bd
AC
2830 end if;
2831 end Check_Missing_Return;
2832
d44202ba
HK
2833 -----------------------
2834 -- Disambiguate_Spec --
2835 -----------------------
2836
2837 function Disambiguate_Spec return Entity_Id is
2838 Priv_Spec : Entity_Id;
2839 Spec_N : Entity_Id;
2840
2841 procedure Replace_Types (To_Corresponding : Boolean);
2842 -- Depending on the flag, replace the type of formal parameters of
2843 -- Body_Id if it is a concurrent type implementing interfaces with
2844 -- the corresponding record type or the other way around.
2845
2846 procedure Replace_Types (To_Corresponding : Boolean) is
2847 Formal : Entity_Id;
2848 Formal_Typ : Entity_Id;
2849
2850 begin
2851 Formal := First_Formal (Body_Id);
2852 while Present (Formal) loop
2853 Formal_Typ := Etype (Formal);
2854
df3e68b1
HK
2855 if Is_Class_Wide_Type (Formal_Typ) then
2856 Formal_Typ := Root_Type (Formal_Typ);
2857 end if;
2858
d44202ba
HK
2859 -- From concurrent type to corresponding record
2860
2861 if To_Corresponding then
2862 if Is_Concurrent_Type (Formal_Typ)
2863 and then Present (Corresponding_Record_Type (Formal_Typ))
4b6f99f5
RD
2864 and then
2865 Present (Interfaces
2866 (Corresponding_Record_Type (Formal_Typ)))
d44202ba
HK
2867 then
2868 Set_Etype (Formal,
2869 Corresponding_Record_Type (Formal_Typ));
2870 end if;
2871
2872 -- From corresponding record to concurrent type
2873
2874 else
2875 if Is_Concurrent_Record_Type (Formal_Typ)
2876 and then Present (Interfaces (Formal_Typ))
2877 then
2878 Set_Etype (Formal,
2879 Corresponding_Concurrent_Type (Formal_Typ));
2880 end if;
2881 end if;
2882
2883 Next_Formal (Formal);
2884 end loop;
2885 end Replace_Types;
2886
2887 -- Start of processing for Disambiguate_Spec
2888
2889 begin
2890 -- Try to retrieve the specification of the body as is. All error
2891 -- messages are suppressed because the body may not have a spec in
2892 -- its current state.
2893
2894 Spec_N := Find_Corresponding_Spec (N, False);
2895
2896 -- It is possible that this is the body of a primitive declared
2897 -- between a private and a full view of a concurrent type. The
2898 -- controlling parameter of the spec carries the concurrent type,
2899 -- not the corresponding record type as transformed by Analyze_
2900 -- Subprogram_Specification. In such cases, we undo the change
2901 -- made by the analysis of the specification and try to find the
2902 -- spec again.
766d7add 2903
8198b93d
HK
2904 -- Note that wrappers already have their corresponding specs and
2905 -- bodies set during their creation, so if the candidate spec is
16b05213 2906 -- a wrapper, then we definitely need to swap all types to their
8198b93d 2907 -- original concurrent status.
d44202ba 2908
8198b93d
HK
2909 if No (Spec_N)
2910 or else Is_Primitive_Wrapper (Spec_N)
2911 then
d44202ba
HK
2912 -- Restore all references of corresponding record types to the
2913 -- original concurrent types.
2914
2915 Replace_Types (To_Corresponding => False);
2916 Priv_Spec := Find_Corresponding_Spec (N, False);
2917
2918 -- The current body truly belongs to a primitive declared between
2919 -- a private and a full view. We leave the modified body as is,
2920 -- and return the true spec.
2921
2922 if Present (Priv_Spec)
2923 and then Is_Private_Primitive (Priv_Spec)
2924 then
2925 return Priv_Spec;
2926 end if;
2927
2928 -- In case that this is some sort of error, restore the original
2929 -- state of the body.
2930
2931 Replace_Types (To_Corresponding => True);
2932 end if;
2933
2934 return Spec_N;
2935 end Disambiguate_Spec;
2936
5dcab3ca
AC
2937 ----------------------------
2938 -- Exchange_Limited_Views --
2939 ----------------------------
2940
1e55d29a
EB
2941 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
2942 Result : Elist_Id := No_Elist;
2943
5dcab3ca
AC
2944 procedure Detect_And_Exchange (Id : Entity_Id);
2945 -- Determine whether Id's type denotes an incomplete type associated
2946 -- with a limited with clause and exchange the limited view with the
72d5c70b
AC
2947 -- non-limited one when available. Note that the non-limited view
2948 -- may exist because of a with_clause in another unit in the context,
2949 -- but cannot be used because the current view of the enclosing unit
2950 -- is still a limited view.
5dcab3ca
AC
2951
2952 -------------------------
2953 -- Detect_And_Exchange --
2954 -------------------------
2955
2956 procedure Detect_And_Exchange (Id : Entity_Id) is
2957 Typ : constant Entity_Id := Etype (Id);
5dcab3ca 2958 begin
72d5c70b
AC
2959 if From_Limited_With (Typ)
2960 and then Has_Non_Limited_View (Typ)
2961 and then not From_Limited_With (Scope (Typ))
2962 then
1e55d29a
EB
2963 if No (Result) then
2964 Result := New_Elmt_List;
2965 end if;
2966
2967 Prepend_Elmt (Typ, Result);
2968 Prepend_Elmt (Id, Result);
5dcab3ca
AC
2969 Set_Etype (Id, Non_Limited_View (Typ));
2970 end if;
2971 end Detect_And_Exchange;
2972
2973 -- Local variables
2974
2975 Formal : Entity_Id;
2976
2977 -- Start of processing for Exchange_Limited_Views
2978
2979 begin
5dcab3ca
AC
2980 -- Do not process subprogram bodies as they already use the non-
2981 -- limited view of types.
2982
128a98ea 2983 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
1e55d29a 2984 return No_Elist;
5dcab3ca
AC
2985 end if;
2986
2987 -- Examine all formals and swap views when applicable
2988
2989 Formal := First_Formal (Subp_Id);
2990 while Present (Formal) loop
2991 Detect_And_Exchange (Formal);
2992
2993 Next_Formal (Formal);
2994 end loop;
2995
2996 -- Process the return type of a function
2997
2998 if Ekind (Subp_Id) = E_Function then
2999 Detect_And_Exchange (Subp_Id);
3000 end if;
1e55d29a
EB
3001
3002 return Result;
5dcab3ca
AC
3003 end Exchange_Limited_Views;
3004
448a1eb3
AC
3005 -----------------------
3006 -- Freeze_Expr_Types --
3007 -----------------------
3008
3009 procedure Freeze_Expr_Types (Spec_Id : Entity_Id) is
f8981f19
AC
3010 function Cloned_Expression return Node_Id;
3011 -- Build a duplicate of the expression of the return statement that
3012 -- has no defining entities shared with the original expression.
3013
448a1eb3
AC
3014 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
3015 -- Freeze all types referenced in the subtree rooted at Node
3016
f8981f19
AC
3017 -----------------------
3018 -- Cloned_Expression --
3019 -----------------------
3020
3021 function Cloned_Expression return Node_Id is
3022 function Clone_Id (Node : Node_Id) return Traverse_Result;
3023 -- Tree traversal routine that clones the defining identifier of
3024 -- iterator and loop parameter specification nodes.
3025
3026 ----------------
3027 -- Check_Node --
3028 ----------------
3029
3030 function Clone_Id (Node : Node_Id) return Traverse_Result is
3031 begin
3032 if Nkind_In (Node, N_Iterator_Specification,
3033 N_Loop_Parameter_Specification)
3034 then
3035 Set_Defining_Identifier (Node,
3036 New_Copy (Defining_Identifier (Node)));
3037 end if;
3038
3039 return OK;
3040 end Clone_Id;
3041
3042 -------------------
3043 -- Clone_Def_Ids --
3044 -------------------
3045
3046 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
3047
3048 -- Local variables
3049
3050 Return_Stmt : constant Node_Id :=
3051 First
3052 (Statements (Handled_Statement_Sequence (N)));
3053 Dup_Expr : Node_Id;
3054
3055 -- Start of processing for Cloned_Expression
3056
3057 begin
3058 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3059
3060 -- We must duplicate the expression with semantic information to
3061 -- inherit the decoration of global entities in generic instances.
3062
3063 Dup_Expr := New_Copy_Tree (Expression (Return_Stmt));
3064
3065 -- Replace the defining identifier of iterators and loop param
3066 -- specifications by a clone to ensure that the cloned expression
3067 -- and the original expression don't have shared identifiers;
3068 -- otherwise, as part of the preanalysis of the expression, these
3069 -- shared identifiers may be left decorated with itypes which
3070 -- will not be available in the tree passed to the backend.
3071
3072 Clone_Def_Ids (Dup_Expr);
3073
3074 return Dup_Expr;
3075 end Cloned_Expression;
3076
448a1eb3
AC
3077 ----------------------
3078 -- Freeze_Type_Refs --
3079 ----------------------
3080
3081 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
3082 begin
3083 if Nkind (Node) = N_Identifier
3084 and then Present (Entity (Node))
3085 then
3086 if Is_Type (Entity (Node)) then
3087 Freeze_Before (N, Entity (Node));
3088
3089 elsif Ekind_In (Entity (Node), E_Component,
3090 E_Discriminant)
3091 then
241f328c
ES
3092 declare
3093 Rec : constant Entity_Id := Scope (Entity (Node));
3094 begin
3095
3096 -- Check that the enclosing record type can be frozen.
3097 -- This provides a better error message than generating
a267d8cc
AC
3098 -- primitives whose compilation fails much later. Refine
3099 -- the error message if possible.
241f328c
ES
3100
3101 Check_Fully_Declared (Rec, Node);
3102
3103 if Error_Posted (Node) then
3104 if Has_Private_Component (Rec) then
a267d8cc
AC
3105 Error_Msg_NE
3106 ("\type& has private component", Node, Rec);
241f328c
ES
3107 end if;
3108
3109 else
3110 Freeze_Before (N, Rec);
3111 end if;
3112 end;
448a1eb3
AC
3113 end if;
3114 end if;
3115
3116 return OK;
3117 end Freeze_Type_Refs;
3118
3119 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
3120
3121 -- Local variables
3122
448a1eb3
AC
3123 Saved_First_Entity : constant Entity_Id := First_Entity (Spec_Id);
3124 Saved_Last_Entity : constant Entity_Id := Last_Entity (Spec_Id);
f8981f19 3125 Dup_Expr : constant Node_Id := Cloned_Expression;
448a1eb3
AC
3126
3127 -- Start of processing for Freeze_Expr_Types
3128
3129 begin
448a1eb3
AC
3130 -- Preanalyze a duplicate of the expression to have available the
3131 -- minimum decoration needed to locate referenced unfrozen types
3132 -- without adding any decoration to the function expression. This
3133 -- preanalysis is performed with errors disabled to avoid reporting
3134 -- spurious errors on Ghost entities (since the expression is not
3135 -- fully analyzed).
3136
3137 Push_Scope (Spec_Id);
3138 Install_Formals (Spec_Id);
3139 Ignore_Errors_Enable := Ignore_Errors_Enable + 1;
3140
3141 Preanalyze_Spec_Expression (Dup_Expr, Etype (Spec_Id));
3142
3143 Ignore_Errors_Enable := Ignore_Errors_Enable - 1;
3144 End_Scope;
3145
3146 -- Restore certain attributes of Spec_Id since the preanalysis may
3147 -- have introduced itypes to this scope, thus modifying attributes
3148 -- First_Entity and Last_Entity.
3149
3150 Set_First_Entity (Spec_Id, Saved_First_Entity);
3151 Set_Last_Entity (Spec_Id, Saved_Last_Entity);
3152
f8981f19
AC
3153 if Present (Last_Entity (Spec_Id)) then
3154 Set_Next_Entity (Last_Entity (Spec_Id), Empty);
3155 end if;
3156
448a1eb3
AC
3157 -- Freeze all types referenced in the expression
3158
3159 Freeze_References (Dup_Expr);
3160 end Freeze_Expr_Types;
3161
d44202ba
HK
3162 -------------------------------------
3163 -- Is_Private_Concurrent_Primitive --
3164 -------------------------------------
3165
3166 function Is_Private_Concurrent_Primitive
3167 (Subp_Id : Entity_Id) return Boolean
3168 is
3169 Formal_Typ : Entity_Id;
3170
3171 begin
3172 if Present (First_Formal (Subp_Id)) then
3173 Formal_Typ := Etype (First_Formal (Subp_Id));
3174
3175 if Is_Concurrent_Record_Type (Formal_Typ) then
df3e68b1
HK
3176 if Is_Class_Wide_Type (Formal_Typ) then
3177 Formal_Typ := Root_Type (Formal_Typ);
3178 end if;
3179
d44202ba
HK
3180 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3181 end if;
3182
3183 -- The type of the first formal is a concurrent tagged type with
3184 -- a private view.
3185
3186 return
3187 Is_Concurrent_Type (Formal_Typ)
3188 and then Is_Tagged_Type (Formal_Typ)
3189 and then Has_Private_Declaration (Formal_Typ);
3190 end if;
3191
3192 return False;
3193 end Is_Private_Concurrent_Primitive;
3194
1e55d29a
EB
3195 ---------------------------
3196 -- Restore_Limited_Views --
3197 ---------------------------
3198
3199 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3200 Elmt : Elmt_Id := First_Elmt (Restore_List);
3201 Id : Entity_Id;
3202
3203 begin
3204 while Present (Elmt) loop
3205 Id := Node (Elmt);
3206 Next_Elmt (Elmt);
3207 Set_Etype (Id, Node (Elmt));
3208 Next_Elmt (Elmt);
3209 end loop;
3210 end Restore_Limited_Views;
3211
76a69663
ES
3212 ----------------------------
3213 -- Set_Trivial_Subprogram --
3214 ----------------------------
3215
3216 procedure Set_Trivial_Subprogram (N : Node_Id) is
3217 Nxt : constant Node_Id := Next (N);
3218
3219 begin
3220 Set_Is_Trivial_Subprogram (Body_Id);
3221
3222 if Present (Spec_Id) then
3223 Set_Is_Trivial_Subprogram (Spec_Id);
3224 end if;
3225
3226 if Present (Nxt)
3227 and then Nkind (Nxt) = N_Simple_Return_Statement
3228 and then No (Next (Nxt))
3229 and then Present (Expression (Nxt))
3230 and then Is_Entity_Name (Expression (Nxt))
3231 then
3232 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3233 end if;
3234 end Set_Trivial_Subprogram;
3235
758c442c
GD
3236 ---------------------------------
3237 -- Verify_Overriding_Indicator --
3238 ---------------------------------
3239
3240 procedure Verify_Overriding_Indicator is
3241 begin
21d27997
RD
3242 if Must_Override (Body_Spec) then
3243 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
4b6f99f5 3244 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
21d27997
RD
3245 then
3246 null;
3247
038140ed 3248 elsif not Present (Overridden_Operation (Spec_Id)) then
ed2233dc 3249 Error_Msg_NE
21d27997 3250 ("subprogram& is not overriding", Body_Spec, Spec_Id);
23e28b42
AC
3251
3252 -- Overriding indicators aren't allowed for protected subprogram
3253 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3254 -- this to a warning if -gnatd.E is enabled.
3255
3256 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3257 Error_Msg_Warn := Error_To_Warning;
3258 Error_Msg_N
b785e0b8 3259 ("<<overriding indicator not allowed for protected "
23e28b42 3260 & "subprogram body", Body_Spec);
21d27997 3261 end if;
758c442c 3262
5d37ba92 3263 elsif Must_Not_Override (Body_Spec) then
038140ed 3264 if Present (Overridden_Operation (Spec_Id)) then
ed2233dc 3265 Error_Msg_NE
5d37ba92 3266 ("subprogram& overrides inherited operation",
76a69663 3267 Body_Spec, Spec_Id);
5d37ba92 3268
21d27997 3269 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
4b6f99f5 3270 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
21d27997 3271 then
ed2233dc 3272 Error_Msg_NE
3ccedacc 3273 ("subprogram& overrides predefined operator ",
21d27997
RD
3274 Body_Spec, Spec_Id);
3275
23e28b42
AC
3276 -- Overriding indicators aren't allowed for protected subprogram
3277 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3278 -- this to a warning if -gnatd.E is enabled.
3279
3280 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3281 Error_Msg_Warn := Error_To_Warning;
5d37ba92 3282
23e28b42 3283 Error_Msg_N
3ccedacc
AC
3284 ("<<overriding indicator not allowed "
3285 & "for protected subprogram body", Body_Spec);
23e28b42
AC
3286
3287 -- If this is not a primitive operation, then the overriding
3288 -- indicator is altogether illegal.
3289
3290 elsif not Is_Primitive (Spec_Id) then
ed2233dc 3291 Error_Msg_N
3ccedacc
AC
3292 ("overriding indicator only allowed "
3293 & "if subprogram is primitive", Body_Spec);
5d37ba92 3294 end if;
235f4375 3295
23e28b42
AC
3296 -- If checking the style rule and the operation overrides, then
3297 -- issue a warning about a missing overriding_indicator. Protected
3298 -- subprogram bodies are excluded from this style checking, since
3299 -- they aren't primitives (even though their declarations can
3300 -- override) and aren't allowed to have an overriding_indicator.
3301
806f6d37 3302 elsif Style_Check
038140ed 3303 and then Present (Overridden_Operation (Spec_Id))
23e28b42 3304 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
235f4375
AC
3305 then
3306 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3307 Style.Missing_Overriding (N, Body_Id);
806f6d37
AC
3308
3309 elsif Style_Check
3310 and then Can_Override_Operator (Spec_Id)
3311 and then not Is_Predefined_File_Name
3312 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3313 then
3314 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3315 Style.Missing_Overriding (N, Body_Id);
758c442c
GD
3316 end if;
3317 end Verify_Overriding_Indicator;
3318
1af4455a
HK
3319 -- Local variables
3320
f9a8f910
HK
3321 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3322 Saved_ISMP : constant Boolean :=
3323 Ignore_SPARK_Mode_Pragmas_In_Instance;
3324 -- Save the Ghost and SPARK mode-related data to restore on exit
1af4455a 3325
b1b543d2 3326 -- Start of processing for Analyze_Subprogram_Body_Helper
0fb2ea01 3327
996ae0b0 3328 begin
879ac954 3329 -- A [generic] subprogram body "freezes" the contract of the nearest
e645cb39 3330 -- enclosing package body and all other contracts encountered in the
4404c282 3331 -- same declarative part up to and excluding the subprogram body:
879ac954
AC
3332
3333 -- package body Nearest_Enclosing_Package
3334 -- with Refined_State => (State => Constit)
3335 -- is
3336 -- Constit : ...;
3337
3338 -- procedure Freezes_Enclosing_Package_Body
3339 -- with Refined_Depends => (Input => Constit) ...
3340
3341 -- This ensures that any annotations referenced by the contract of the
3342 -- [generic] subprogram body are available. This form of "freezing" is
3343 -- decoupled from the usual Freeze_xxx mechanism because it must also
3344 -- work in the context of generics where normal freezing is disabled.
3345
77237288
AC
3346 -- Only bodies coming from source should cause this type of "freezing".
3347 -- Expression functions that act as bodies and complete an initial
3348 -- declaration must be included in this category, hence the use of
3349 -- Original_Node.
3350
3351 if Comes_From_Source (Original_Node (N)) then
e645cb39 3352 Analyze_Previous_Contracts (N);
77237288 3353 end if;
879ac954 3354
82c80734
RD
3355 -- Generic subprograms are handled separately. They always have a
3356 -- generic specification. Determine whether current scope has a
3357 -- previous declaration.
996ae0b0 3358
82c80734
RD
3359 -- If the subprogram body is defined within an instance of the same
3360 -- name, the instance appears as a package renaming, and will be hidden
3361 -- within the subprogram.
996ae0b0
RK
3362
3363 if Present (Prev_Id)
3364 and then not Is_Overloadable (Prev_Id)
3365 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3366 or else Comes_From_Source (Prev_Id))
3367 then
fbf5a39b 3368 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0 3369 Spec_Id := Prev_Id;
8636f52f 3370
1af4455a
HK
3371 -- A subprogram body is Ghost when it is stand alone and subject
3372 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3373 -- the mode now to ensure that any nodes generated during analysis
3374 -- and expansion are properly marked as Ghost.
8636f52f 3375
f9a8f910 3376 Mark_And_Set_Ghost_Body (N, Spec_Id);
d65a80fd 3377
996ae0b0
RK
3378 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3379 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3380
3381 Analyze_Generic_Subprogram_Body (N, Spec_Id);
7665e4bd
AC
3382
3383 if Nkind (N) = N_Subprogram_Body then
3384 HSS := Handled_Statement_Sequence (N);
3385 Check_Missing_Return;
3386 end if;
3387
d65a80fd 3388 goto Leave;
996ae0b0 3389
d65a80fd
HK
3390 -- Otherwise a previous entity conflicts with the subprogram name.
3391 -- Attempting to enter name will post error.
996ae0b0 3392
d65a80fd 3393 else
996ae0b0 3394 Enter_Name (Body_Id);
cf9a473e 3395 goto Leave;
996ae0b0
RK
3396 end if;
3397
82c80734
RD
3398 -- Non-generic case, find the subprogram declaration, if one was seen,
3399 -- or enter new overloaded entity in the current scope. If the
3400 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3401 -- part of the context of one of its subunits. No need to redo the
3402 -- analysis.
996ae0b0 3403
8fde064e 3404 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
cf9a473e 3405 goto Leave;
996ae0b0
RK
3406
3407 else
fbf5a39b 3408 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
3409
3410 if Nkind (N) = N_Subprogram_Body_Stub
3411 or else No (Corresponding_Spec (N))
3412 then
d44202ba
HK
3413 if Is_Private_Concurrent_Primitive (Body_Id) then
3414 Spec_Id := Disambiguate_Spec;
8636f52f 3415
1af4455a
HK
3416 -- A subprogram body is Ghost when it is stand alone and
3417 -- subject to pragma Ghost or when the corresponding spec is
3418 -- Ghost. Set the mode now to ensure that any nodes generated
3419 -- during analysis and expansion are properly marked as Ghost.
8636f52f 3420
f9a8f910 3421 Mark_And_Set_Ghost_Body (N, Spec_Id);
8636f52f 3422
d44202ba
HK
3423 else
3424 Spec_Id := Find_Corresponding_Spec (N);
b6c8e5be 3425
1af4455a
HK
3426 -- A subprogram body is Ghost when it is stand alone and
3427 -- subject to pragma Ghost or when the corresponding spec is
3428 -- Ghost. Set the mode now to ensure that any nodes generated
3429 -- during analysis and expansion are properly marked as Ghost.
8636f52f 3430
f9a8f910 3431 Mark_And_Set_Ghost_Body (N, Spec_Id);
8636f52f 3432
b6c8e5be
AC
3433 -- In GNATprove mode, if the body has no previous spec, create
3434 -- one so that the inlining machinery can operate properly.
3435 -- Transfer aspects, if any, to the new spec, so that they
3436 -- are legal and can be processed ahead of the body.
3437 -- We make two copies of the given spec, one for the new
3438 -- declaration, and one for the body.
3439
5a271a7f 3440 if No (Spec_Id) and then GNATprove_Mode
480156b2 3441
480156b2
AC
3442 -- Inlining does not apply during pre-analysis of code
3443
b6c8e5be 3444 and then Full_Analysis
480156b2
AC
3445
3446 -- Inlining only applies to full bodies, not stubs
3447
7b2888e6 3448 and then Nkind (N) /= N_Subprogram_Body_Stub
480156b2
AC
3449
3450 -- Inlining only applies to bodies in the source code, not to
3451 -- those generated by the compiler. In particular, expression
3452 -- functions, whose body is generated by the compiler, are
3453 -- treated specially by GNATprove.
3454
b6c8e5be 3455 and then Comes_From_Source (Body_Id)
480156b2
AC
3456
3457 -- This cannot be done for a compilation unit, which is not
3458 -- in a context where we can insert a new spec.
3459
b6c8e5be 3460 and then Is_List_Member (N)
480156b2
AC
3461
3462 -- Inlining only applies to subprograms without contracts,
3463 -- as a contract is a sign that GNATprove should perform a
3464 -- modular analysis of the subprogram instead of a contextual
3465 -- analysis at each call site. The same test is performed in
3466 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
ca90b962
GD
3467 -- here in another form (because the contract has not been
3468 -- attached to the body) to avoid front-end errors in case
3469 -- pragmas are used instead of aspects, because the
480156b2
AC
3470 -- corresponding pragmas in the body would not be transferred
3471 -- to the spec, leading to legality errors.
3472
ac072cb2 3473 and then not Body_Has_Contract
8d1fe980 3474 and then not Inside_A_Generic
b6c8e5be 3475 then
8d1fe980 3476 Build_Subprogram_Declaration;
2ba4f1fb
AC
3477
3478 -- If this is a function that returns a constrained array, and
3479 -- we are generating SPARK_For_C, create subprogram declaration
3480 -- to simplify subsequent C generation.
3481
3482 elsif No (Spec_Id)
3483 and then Modify_Tree_For_C
3484 and then Nkind (Body_Spec) = N_Function_Specification
3485 and then Is_Array_Type (Etype (Body_Id))
3486 and then Is_Constrained (Etype (Body_Id))
3487 then
3488 Build_Subprogram_Declaration;
b6c8e5be 3489 end if;
d44202ba 3490 end if;
996ae0b0
RK
3491
3492 -- If this is a duplicate body, no point in analyzing it
3493
3494 if Error_Posted (N) then
d65a80fd 3495 goto Leave;
996ae0b0
RK
3496 end if;
3497
82c80734
RD
3498 -- A subprogram body should cause freezing of its own declaration,
3499 -- but if there was no previous explicit declaration, then the
3500 -- subprogram will get frozen too late (there may be code within
3501 -- the body that depends on the subprogram having been frozen,
3502 -- such as uses of extra formals), so we force it to be frozen
76a69663 3503 -- here. Same holds if the body and spec are compilation units.
cd1c668b
ES
3504 -- Finally, if the return type is an anonymous access to protected
3505 -- subprogram, it must be frozen before the body because its
3506 -- expansion has generated an equivalent type that is used when
3507 -- elaborating the body.
996ae0b0 3508
885c4871 3509 -- An exception in the case of Ada 2012, AI05-177: The bodies
ebb6faaa
AC
3510 -- created for expression functions do not freeze.
3511
3512 if No (Spec_Id)
3513 and then Nkind (Original_Node (N)) /= N_Expression_Function
3514 then
996ae0b0
RK
3515 Freeze_Before (N, Body_Id);
3516
3517 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3518 Freeze_Before (N, Spec_Id);
cd1c668b
ES
3519
3520 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3521 Freeze_Before (N, Etype (Body_Id));
996ae0b0 3522 end if;
a38ff9b1 3523
996ae0b0
RK
3524 else
3525 Spec_Id := Corresponding_Spec (N);
8636f52f 3526
1af4455a
HK
3527 -- A subprogram body is Ghost when it is stand alone and subject
3528 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3529 -- the mode now to ensure that any nodes generated during analysis
3530 -- and expansion are properly marked as Ghost.
8636f52f 3531
f9a8f910 3532 Mark_And_Set_Ghost_Body (N, Spec_Id);
996ae0b0
RK
3533 end if;
3534 end if;
3535
799d0e05
AC
3536 -- Previously we scanned the body to look for nested subprograms, and
3537 -- rejected an inline directive if nested subprograms were present,
3538 -- because the back-end would generate conflicting symbols for the
c8957aae 3539 -- nested bodies. This is now unnecessary.
07fc65c4 3540
c8957aae 3541 -- Look ahead to recognize a pragma Inline that appears after the body
84f4072a 3542
e660dbf7
JM
3543 Check_Inline_Pragma (Spec_Id);
3544
701b7fbb
RD
3545 -- Deal with special case of a fully private operation in the body of
3546 -- the protected type. We must create a declaration for the subprogram,
3547 -- in order to attach the protected subprogram that will be used in
3548 -- internal calls. We exclude compiler generated bodies from the
3549 -- expander since the issue does not arise for those cases.
07fc65c4 3550
996ae0b0
RK
3551 if No (Spec_Id)
3552 and then Comes_From_Source (N)
3553 and then Is_Protected_Type (Current_Scope)
3554 then
47bfea3a 3555 Spec_Id := Build_Private_Protected_Declaration (N);
701b7fbb 3556 end if;
996ae0b0 3557
c42aba6b
AC
3558 -- If we are generating C and this is a function returning a constrained
3559 -- array type for which we must create a procedure with an extra out
c4dc2125 3560 -- parameter, build and analyze the body now. The procedure declaration
c42aba6b
AC
3561 -- has already been created. We reuse the source body of the function,
3562 -- because in an instance it may contain global references that cannot
3563 -- be reanalyzed. The source function itself is not used any further,
2a253c5b
AC
3564 -- so we mark it as having a completion. If the subprogram is a stub the
3565 -- transformation is done later, when the proper body is analyzed.
c42aba6b
AC
3566
3567 if Expander_Active
3568 and then Modify_Tree_For_C
3569 and then Present (Spec_Id)
3570 and then Ekind (Spec_Id) = E_Function
2a253c5b 3571 and then Nkind (N) /= N_Subprogram_Body_Stub
c42aba6b
AC
3572 and then Rewritten_For_C (Spec_Id)
3573 then
3574 Set_Has_Completion (Spec_Id);
3575
3576 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3577 Analyze (N);
3578
c4dc2125
HK
3579 -- The entity for the created procedure must remain invisible, so it
3580 -- does not participate in resolution of subsequent references to the
3581 -- function.
c42aba6b
AC
3582
3583 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
d65a80fd 3584 goto Leave;
c42aba6b
AC
3585 end if;
3586
5334d18f 3587 -- If a separate spec is present, then deal with freezing issues
7ca78bba 3588
701b7fbb 3589 if Present (Spec_Id) then
996ae0b0 3590 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 3591 Verify_Overriding_Indicator;
5d37ba92
ES
3592
3593 -- In general, the spec will be frozen when we start analyzing the
3594 -- body. However, for internally generated operations, such as
3595 -- wrapper functions for inherited operations with controlling
164e06c6
AC
3596 -- results, the spec may not have been frozen by the time we expand
3597 -- the freeze actions that include the bodies. In particular, extra
3598 -- formals for accessibility or for return-in-place may need to be
3599 -- generated. Freeze nodes, if any, are inserted before the current
36f2e3d3
AC
3600 -- body. These freeze actions are also needed in ASIS mode and in
3601 -- Compile_Only mode to enable the proper back-end type annotations.
3602 -- They are necessary in any case to insure order of elaboration
3603 -- in gigi.
5d37ba92
ES
3604
3605 if not Is_Frozen (Spec_Id)
36f2e3d3
AC
3606 and then (Expander_Active
3607 or else ASIS_Mode
3608 or else (Operating_Mode = Check_Semantics
3609 and then Serious_Errors_Detected = 0))
5d37ba92 3610 then
5d37ba92 3611 Set_Has_Delayed_Freeze (Spec_Id);
6b958cec 3612 Freeze_Before (N, Spec_Id);
448a1eb3 3613
804ec349
GD
3614 -- AI12-0103: At the occurrence of an expression function
3615 -- declaration that is a completion, its expression causes
3616 -- freezing.
448a1eb3
AC
3617
3618 if Has_Completion (Spec_Id)
36be0082 3619 and then Nkind (N) = N_Subprogram_Body
448a1eb3
AC
3620 and then Was_Expression_Function (N)
3621 then
3622 Freeze_Expr_Types (Spec_Id);
3623 end if;
5d37ba92 3624 end if;
996ae0b0
RK
3625 end if;
3626
aaa0a838
ES
3627 -- If the subprogram has a class-wide clone, build its body as a copy
3628 -- of the original body, and rewrite body of original subprogram as a
3629 -- wrapper that calls the clone.
3630
3631 if Present (Spec_Id)
3632 and then Present (Class_Wide_Clone (Spec_Id))
3633 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3634 then
3635 Build_Class_Wide_Clone_Body (Spec_Id, N);
3636
3637 -- This is the new body for the existing primitive operation
3638
3639 Rewrite (N, Build_Class_Wide_Clone_Call
3640 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3641 Set_Has_Completion (Spec_Id, False);
3642 Analyze (N);
3643 return;
3644 end if;
3645
996ae0b0
RK
3646 -- Place subprogram on scope stack, and make formals visible. If there
3647 -- is a spec, the visible entity remains that of the spec.
3648
3649 if Present (Spec_Id) then
07fc65c4 3650 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
3651
3652 if Is_Child_Unit (Spec_Id) then
3653 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3654 end if;
3655
fbf5a39b
AC
3656 if Style_Check then
3657 Style.Check_Identifier (Body_Id, Spec_Id);
3658 end if;
996ae0b0
RK
3659
3660 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3661 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3662
f937473f 3663 if Is_Abstract_Subprogram (Spec_Id) then
ed2233dc 3664 Error_Msg_N ("an abstract subprogram cannot have a body", N);
d65a80fd 3665 goto Leave;
21d27997 3666
996ae0b0
RK
3667 else
3668 Set_Convention (Body_Id, Convention (Spec_Id));
3669 Set_Has_Completion (Spec_Id);
3670
3671 if Is_Protected_Type (Scope (Spec_Id)) then
21d27997 3672 Prot_Typ := Scope (Spec_Id);
996ae0b0
RK
3673 end if;
3674
3675 -- If this is a body generated for a renaming, do not check for
3676 -- full conformance. The check is redundant, because the spec of
3677 -- the body is a copy of the spec in the renaming declaration,
3678 -- and the test can lead to spurious errors on nested defaults.
3679
3680 if Present (Spec_Decl)
996ae0b0 3681 and then not Comes_From_Source (N)
93a81b02
GB
3682 and then
3683 (Nkind (Original_Node (Spec_Decl)) =
4b6f99f5 3684 N_Subprogram_Renaming_Declaration
466c2127
AC
3685 or else (Present (Corresponding_Body (Spec_Decl))
3686 and then
3687 Nkind (Unit_Declaration_Node
3688 (Corresponding_Body (Spec_Decl))) =
3689 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
3690 then
3691 Conformant := True;
cabe9abc
AC
3692
3693 -- Conversely, the spec may have been generated for specless body
a6363ed3
AC
3694 -- with an inline pragma. The entity comes from source, which is
3695 -- both semantically correct and necessary for proper inlining.
3696 -- The subprogram declaration itself is not in the source.
cabe9abc
AC
3697
3698 elsif Comes_From_Source (N)
a6363ed3
AC
3699 and then Present (Spec_Decl)
3700 and then not Comes_From_Source (Spec_Decl)
cabe9abc
AC
3701 and then Has_Pragma_Inline (Spec_Id)
3702 then
3703 Conformant := True;
76a69663 3704
996ae0b0
RK
3705 else
3706 Check_Conformance
3707 (Body_Id, Spec_Id,
76a69663 3708 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
3709 end if;
3710
3711 -- If the body is not fully conformant, we have to decide if we
3712 -- should analyze it or not. If it has a really messed up profile
3713 -- then we probably should not analyze it, since we will get too
3714 -- many bogus messages.
3715
3716 -- Our decision is to go ahead in the non-fully conformant case
3717 -- only if it is at least mode conformant with the spec. Note
3718 -- that the call to Check_Fully_Conformant has issued the proper
3719 -- error messages to complain about the lack of conformance.
3720
3721 if not Conformant
3722 and then not Mode_Conformant (Body_Id, Spec_Id)
3723 then
d65a80fd 3724 goto Leave;
996ae0b0
RK
3725 end if;
3726 end if;
3727
996ae0b0 3728 if Spec_Id /= Body_Id then
fbf5a39b 3729 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
3730 end if;
3731
579847c2
AC
3732 Set_Ekind (Body_Id, E_Subprogram_Body);
3733
e28072cd
AC
3734 if Nkind (N) = N_Subprogram_Body_Stub then
3735 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3736
3737 -- Regular body
3738
3739 else
996ae0b0 3740 Set_Corresponding_Spec (N, Spec_Id);
758c442c 3741
5d37ba92
ES
3742 -- Ada 2005 (AI-345): If the operation is a primitive operation
3743 -- of a concurrent type, the type of the first parameter has been
3744 -- replaced with the corresponding record, which is the proper
3745 -- run-time structure to use. However, within the body there may
3746 -- be uses of the formals that depend on primitive operations
3747 -- of the type (in particular calls in prefixed form) for which
3748 -- we need the original concurrent type. The operation may have
3749 -- several controlling formals, so the replacement must be done
3750 -- for all of them.
758c442c
GD
3751
3752 if Comes_From_Source (Spec_Id)
3753 and then Present (First_Entity (Spec_Id))
3754 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3755 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
15918371
AC
3756 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3757 and then Present (Corresponding_Concurrent_Type
3758 (Etype (First_Entity (Spec_Id))))
758c442c 3759 then
5d37ba92
ES
3760 declare
3761 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3762 Form : Entity_Id;
3763
3764 begin
3765 Form := First_Formal (Spec_Id);
3766 while Present (Form) loop
3767 if Etype (Form) = Typ then
3768 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3769 end if;
3770
3771 Next_Formal (Form);
3772 end loop;
3773 end;
758c442c
GD
3774 end if;
3775
21d27997
RD
3776 -- Make the formals visible, and place subprogram on scope stack.
3777 -- This is also the point at which we set Last_Real_Spec_Entity
3778 -- to mark the entities which will not be moved to the body.
758c442c 3779
996ae0b0 3780 Install_Formals (Spec_Id);
21d27997 3781 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
616547fa
AC
3782
3783 -- Within an instance, add local renaming declarations so that
a5a809b2
AC
3784 -- gdb can retrieve the values of actuals more easily. This is
3785 -- only relevant if generating code (and indeed we definitely
3786 -- do not want these definitions -gnatc mode, because that would
3787 -- confuse ASIS).
616547fa
AC
3788
3789 if Is_Generic_Instance (Spec_Id)
3790 and then Is_Wrapper_Package (Current_Scope)
a5a809b2 3791 and then Expander_Active
616547fa
AC
3792 then
3793 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3794 end if;
3795
0a36105d 3796 Push_Scope (Spec_Id);
996ae0b0
RK
3797
3798 -- Make sure that the subprogram is immediately visible. For
3799 -- child units that have no separate spec this is indispensable.
3800 -- Otherwise it is safe albeit redundant.
3801
3802 Set_Is_Immediately_Visible (Spec_Id);
3803 end if;
3804
3805 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
ec4867fa 3806 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
c9d70ab1 3807 Set_Scope (Body_Id, Scope (Spec_Id));
996ae0b0
RK
3808
3809 -- Case of subprogram body with no previous spec
3810
3811 else
3e5daac4
AC
3812 -- Check for style warning required
3813
996ae0b0 3814 if Style_Check
3e5daac4
AC
3815
3816 -- Only apply check for source level subprograms for which checks
3817 -- have not been suppressed.
3818
996ae0b0
RK
3819 and then Comes_From_Source (Body_Id)
3820 and then not Suppress_Style_Checks (Body_Id)
3e5daac4
AC
3821
3822 -- No warnings within an instance
3823
996ae0b0 3824 and then not In_Instance
3e5daac4 3825
b0186f71 3826 -- No warnings for expression functions
3e5daac4 3827
b0186f71 3828 and then Nkind (Original_Node (N)) /= N_Expression_Function
996ae0b0
RK
3829 then
3830 Style.Body_With_No_Spec (N);
3831 end if;
3832
3833 New_Overloaded_Entity (Body_Id);
3834
3835 if Nkind (N) /= N_Subprogram_Body_Stub then
3836 Set_Acts_As_Spec (N);
3837 Generate_Definition (Body_Id);
fbf5a39b
AC
3838 Generate_Reference
3839 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
5e127570
AC
3840
3841 -- If the body is an entry wrapper created for an entry with
ffa168bc 3842 -- preconditions, it must be compiled in the context of the
5e127570
AC
3843 -- enclosing synchronized object, because it may mention other
3844 -- operations of the type.
3845
3846 if Is_Entry_Wrapper (Body_Id) then
3847 declare
3848 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3849 begin
3850 Push_Scope (Prot);
3851 Install_Declarations (Prot);
3852 end;
3853 end if;
3854
996ae0b0 3855 Install_Formals (Body_Id);
e949ee22 3856
4a854847 3857 Push_Scope (Body_Id);
996ae0b0 3858 end if;
dbe36d67
AC
3859
3860 -- For stubs and bodies with no previous spec, generate references to
3861 -- formals.
3862
3863 Generate_Reference_To_Formals (Body_Id);
996ae0b0
RK
3864 end if;
3865
2bfad6eb
HK
3866 -- Entry barrier functions are generated outside the protected type and
3867 -- should not carry the SPARK_Mode of the enclosing context.
5216b599 3868
877a5a12
AC
3869 if Nkind (N) = N_Subprogram_Body
3870 and then Is_Entry_Barrier_Function (N)
3871 then
3872 null;
2bfad6eb
HK
3873
3874 -- The body is generated as part of expression function expansion. When
3875 -- the expression function appears in the visible declarations of a
3876 -- package, the body is added to the private declarations. Since both
3877 -- declarative lists may be subject to a different SPARK_Mode, inherit
3878 -- the mode of the spec.
3879
3880 -- package P with SPARK_Mode is
3881 -- function Expr_Func ... is (...); -- original
3882 -- [function Expr_Func ...;] -- generated spec
3883 -- -- mode is ON
3884 -- private
3885 -- pragma SPARK_Mode (Off);
3886 -- [function Expr_Func ... is return ...;] -- generated body
3887 -- end P; -- mode is ON
3888
3889 elsif not Comes_From_Source (N)
6e9e35e1
AC
3890 and then Present (Spec_Id)
3891 and then Is_Expression_Function (Spec_Id)
2bfad6eb 3892 then
6e9e35e1 3893 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
2bfad6eb 3894 Set_SPARK_Pragma_Inherited
6e9e35e1 3895 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
2bfad6eb
HK
3896
3897 -- Set the SPARK_Mode from the current context (may be overwritten later
3f8c04e7 3898 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
7f54dc83 3899 -- initially on a stand-alone subprogram body, but is then relocated to
3f8c04e7
AC
3900 -- a generated corresponding spec. In this scenario the mode is shared
3901 -- between the spec and body.
2bfad6eb 3902
3f8c04e7 3903 elsif No (SPARK_Pragma (Body_Id)) then
877a5a12
AC
3904 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3905 Set_SPARK_Pragma_Inherited (Body_Id);
3906 end if;
5216b599 3907
cf9a473e
AC
3908 -- A subprogram body may be instantiated or inlined at a later pass.
3909 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
3910 -- applied to the initial declaration of the body.
3911
3912 if Present (Spec_Id) then
3913 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
3914 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
3915 end if;
3916
3917 else
3918 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
3919 -- case the body is instantiated or inlined later and out of context.
3920 -- The body uses this attribute to restore the value of the global
3921 -- flag.
3922
3923 if Ignore_SPARK_Mode_Pragmas_In_Instance then
3924 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
3925
3926 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
3927 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
3928 end if;
3929 end if;
3930
996ae0b0
RK
3931 -- If this is the proper body of a stub, we must verify that the stub
3932 -- conforms to the body, and to the previous spec if one was present.
dbe36d67 3933 -- We know already that the body conforms to that spec. This test is
996ae0b0
RK
3934 -- only required for subprograms that come from source.
3935
3936 if Nkind (Parent (N)) = N_Subunit
3937 and then Comes_From_Source (N)
3938 and then not Error_Posted (Body_Id)
e895b435
ES
3939 and then Nkind (Corresponding_Stub (Parent (N))) =
3940 N_Subprogram_Body_Stub
996ae0b0
RK
3941 then
3942 declare
fbf5a39b
AC
3943 Old_Id : constant Entity_Id :=
3944 Defining_Entity
3945 (Specification (Corresponding_Stub (Parent (N))));
3946
996ae0b0 3947 Conformant : Boolean := False;
996ae0b0
RK
3948
3949 begin
3950 if No (Spec_Id) then
3951 Check_Fully_Conformant (Body_Id, Old_Id);
3952
3953 else
3954 Check_Conformance
3955 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3956
3957 if not Conformant then
3958
dbe36d67
AC
3959 -- The stub was taken to be a new declaration. Indicate that
3960 -- it lacks a body.
996ae0b0
RK
3961
3962 Set_Has_Completion (Old_Id, False);
3963 end if;
3964 end if;
3965 end;
3966 end if;
3967
3968 Set_Has_Completion (Body_Id);
3969 Check_Eliminated (Body_Id);
3970
caf07df9
AC
3971 -- Analyze any aspect specifications that appear on the subprogram body
3972 -- stub. Stop the analysis now as the stub does not have a declarative
3973 -- or a statement part, and it cannot be inlined.
c8a3028c 3974
caf07df9 3975 if Nkind (N) = N_Subprogram_Body_Stub then
c8a3028c 3976 if Has_Aspects (N) then
caf07df9 3977 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
c8a3028c
AC
3978 end if;
3979
d65a80fd 3980 goto Leave;
84f4072a 3981 end if;
996ae0b0 3982
9cc6b3f8 3983 -- Handle inlining
84f4072a 3984
b94b6c56
RD
3985 -- Note: Normally we don't do any inlining if expansion is off, since
3986 -- we won't generate code in any case. An exception arises in GNATprove
2d180af1
YM
3987 -- mode where we want to expand some calls in place, even with expansion
3988 -- disabled, since the inlining eases formal verification.
ecad37f3 3989
6c26bac2
AC
3990 if not GNATprove_Mode
3991 and then Expander_Active
3992 and then Serious_Errors_Detected = 0
3993 and then Present (Spec_Id)
3994 and then Has_Pragma_Inline (Spec_Id)
3995 then
ca90b962 3996 -- Legacy implementation (relying on front-end inlining)
84f4072a 3997
6c26bac2 3998 if not Back_End_Inlining then
17ce1f52 3999 if (Has_Pragma_Inline_Always (Spec_Id)
9cc6b3f8
EB
4000 and then not Opt.Disable_FE_Inline_Always)
4001 or else (Front_End_Inlining
4002 and then not Opt.Disable_FE_Inline)
6c26bac2
AC
4003 then
4004 Build_Body_To_Inline (N, Spec_Id);
4005 end if;
f087ea44 4006
9cc6b3f8 4007 -- New implementation (relying on back-end inlining)
f087ea44 4008
6c26bac2
AC
4009 else
4010 if Has_Pragma_Inline_Always (Spec_Id)
4011 or else Optimization_Level > 0
4012 then
4013 -- Handle function returning an unconstrained type
f087ea44 4014
6c26bac2
AC
4015 if Comes_From_Source (Body_Id)
4016 and then Ekind (Spec_Id) = E_Function
4017 and then Returns_Unconstrained_Type (Spec_Id)
5c5e108f
AC
4018
4019 -- If function builds in place, i.e. returns a limited type,
4020 -- inlining cannot be done.
4021
4022 and then not Is_Limited_Type (Etype (Spec_Id))
6c26bac2 4023 then
16b10ccc 4024 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
84f4072a 4025
6c26bac2
AC
4026 else
4027 declare
b80a2b4b
AC
4028 Subp_Body : constant Node_Id :=
4029 Unit_Declaration_Node (Body_Id);
6c26bac2 4030 Subp_Decl : constant List_Id := Declarations (Subp_Body);
84f4072a 4031
6c26bac2
AC
4032 begin
4033 -- Do not pass inlining to the backend if the subprogram
4034 -- has declarations or statements which cannot be inlined
4035 -- by the backend. This check is done here to emit an
4036 -- error instead of the generic warning message reported
4037 -- by the GCC backend (ie. "function might not be
4038 -- inlinable").
4039
4040 if Present (Subp_Decl)
4041 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4042 then
4043 null;
4044
4045 elsif Has_Excluded_Statement
4046 (Spec_Id,
4047 Statements
4048 (Handled_Statement_Sequence (Subp_Body)))
4049 then
4050 null;
4051
4052 -- If the backend inlining is available then at this
4053 -- stage we only have to mark the subprogram as inlined.
4054 -- The expander will take care of registering it in the
4055 -- table of subprograms inlined by the backend a part of
4056 -- processing calls to it (cf. Expand_Call)
4057
4058 else
4059 Set_Is_Inlined (Spec_Id);
4060 end if;
4061 end;
4062 end if;
4063 end if;
4064 end if;
2d180af1
YM
4065
4066 -- In GNATprove mode, inline only when there is a separate subprogram
4067 -- declaration for now, as inlining of subprogram bodies acting as
ca90b962 4068 -- declarations, or subprogram stubs, are not supported by front-end
2d180af1 4069 -- inlining. This inlining should occur after analysis of the body, so
d29f68cf
AC
4070 -- that it is known whether the value of SPARK_Mode, which can be
4071 -- defined by a pragma inside the body, is applicable to the body.
c1025b4e 4072 -- Inlining can be disabled with switch -gnatdm
2d180af1
YM
4073
4074 elsif GNATprove_Mode
2d180af1
YM
4075 and then Full_Analysis
4076 and then not Inside_A_Generic
4077 and then Present (Spec_Id)
7c4d86c9
AC
4078 and then
4079 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
fd22e260 4080 and then Body_Has_SPARK_Mode_On
2d180af1 4081 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
ac072cb2 4082 and then not Body_Has_Contract
c1025b4e 4083 and then not Debug_Flag_M
2d180af1 4084 then
6c26bac2 4085 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
4086 end if;
4087
0d6014fa 4088 -- When generating code, inherited pre/postconditions are handled when
0f6251c7 4089 -- expanding the corresponding contract.
539ca5ec 4090
0ab80019 4091 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
dbe36d67 4092 -- of the specification we have to install the private withed units.
21d27997 4093 -- This holds for child units as well.
9bc856dd
AC
4094
4095 if Is_Compilation_Unit (Body_Id)
21d27997 4096 or else Nkind (Parent (N)) = N_Compilation_Unit
9bc856dd
AC
4097 then
4098 Install_Private_With_Clauses (Body_Id);
4099 end if;
4100
ec4867fa
ES
4101 Check_Anonymous_Return;
4102
fdce4bb7
JM
4103 -- Set the Protected_Formal field of each extra formal of the protected
4104 -- subprogram to reference the corresponding extra formal of the
4105 -- subprogram that implements it. For regular formals this occurs when
4106 -- the protected subprogram's declaration is expanded, but the extra
4107 -- formals don't get created until the subprogram is frozen. We need to
4108 -- do this before analyzing the protected subprogram's body so that any
4109 -- references to the original subprogram's extra formals will be changed
4110 -- refer to the implementing subprogram's formals (see Expand_Formal).
4111
4112 if Present (Spec_Id)
4113 and then Is_Protected_Type (Scope (Spec_Id))
4114 and then Present (Protected_Body_Subprogram (Spec_Id))
4115 then
4116 declare
4117 Impl_Subp : constant Entity_Id :=
4118 Protected_Body_Subprogram (Spec_Id);
4119 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4120 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
cf9a473e 4121
fdce4bb7
JM
4122 begin
4123 while Present (Prot_Ext_Formal) loop
4124 pragma Assert (Present (Impl_Ext_Formal));
fdce4bb7 4125 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
fdce4bb7
JM
4126 Next_Formal_With_Extras (Prot_Ext_Formal);
4127 Next_Formal_With_Extras (Impl_Ext_Formal);
4128 end loop;
4129 end;
4130 end if;
4131
0868e09c 4132 -- Now we can go on to analyze the body
996ae0b0
RK
4133
4134 HSS := Handled_Statement_Sequence (N);
4135 Set_Actual_Subtypes (N, Current_Scope);
21d27997 4136
f3d0f304 4137 -- Add a declaration for the Protection object, renaming declarations
21d27997
RD
4138 -- for discriminals and privals and finally a declaration for the entry
4139 -- family index (if applicable). This form of early expansion is done
4140 -- when the Expander is active because Install_Private_Data_Declarations
81bf2382 4141 -- references entities which were created during regular expansion. The
3b8056a5
AC
4142 -- subprogram entity must come from source, and not be an internally
4143 -- generated subprogram.
21d27997 4144
4460a9bc 4145 if Expander_Active
21d27997
RD
4146 and then Present (Prot_Typ)
4147 and then Present (Spec_Id)
3b8056a5 4148 and then Comes_From_Source (Spec_Id)
21d27997
RD
4149 and then not Is_Eliminated (Spec_Id)
4150 then
4151 Install_Private_Data_Declarations
4152 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4153 end if;
4154
5dcab3ca
AC
4155 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4156 -- may now appear in parameter and result profiles. Since the analysis
4157 -- of a subprogram body may use the parameter and result profile of the
4158 -- spec, swap any limited views with their non-limited counterpart.
4159
128a98ea 4160 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
1e55d29a 4161 Exch_Views := Exchange_Limited_Views (Spec_Id);
5dcab3ca
AC
4162 end if;
4163
128a98ea
EB
4164 -- If the return type is an anonymous access type whose designated type
4165 -- is the limited view of a class-wide type and the non-limited view is
4166 -- available, update the return type accordingly.
4167
4168 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4169 declare
4170 Etyp : Entity_Id;
4171 Rtyp : Entity_Id;
4172
4173 begin
4174 Rtyp := Etype (Spec_Id);
4175
4176 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4177 Etyp := Directly_Designated_Type (Rtyp);
4178
4179 if Is_Class_Wide_Type (Etyp)
4180 and then From_Limited_With (Etyp)
4181 then
4182 Desig_View := Etyp;
4183 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4184 end if;
4185 end if;
4186 end;
4187 end if;
4188
c8a3028c
AC
4189 -- Analyze any aspect specifications that appear on the subprogram body
4190
4191 if Has_Aspects (N) then
caf07df9 4192 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
c8a3028c 4193 end if;
378dc6ca 4194
996ae0b0 4195 Analyze_Declarations (Declarations (N));
21d27997 4196
f3124d8f 4197 -- Verify that the SPARK_Mode of the body agrees with that of its spec
f90d14ac 4198
f1c7be38 4199 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
f90d14ac 4200 if Present (SPARK_Pragma (Spec_Id)) then
933aa0ac 4201 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
f90d14ac 4202 and then
933aa0ac 4203 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
f90d14ac
AC
4204 then
4205 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4206 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4207 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4208 Error_Msg_NE
f3124d8f 4209 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
4210 end if;
4211
4212 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4213 null;
4214
4215 else
4216 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3ccedacc 4217 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
f90d14ac 4218 Error_Msg_Sloc := Sloc (Spec_Id);
f3124d8f
HK
4219 Error_Msg_NE
4220 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
f90d14ac
AC
4221 end if;
4222 end if;
4223
879ac954
AC
4224 -- A subprogram body "freezes" its own contract. Analyze the contract
4225 -- after the declarations of the body have been processed as pragmas
4226 -- are now chained on the contract of the subprogram body.
c9d70ab1 4227
f99ff327 4228 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
c9d70ab1 4229
21d27997
RD
4230 -- Check completion, and analyze the statements
4231
996ae0b0 4232 Check_Completion;
33931112 4233 Inspect_Deferred_Constant_Completion (Declarations (N));
996ae0b0 4234 Analyze (HSS);
21d27997
RD
4235
4236 -- Deal with end of scope processing for the body
4237
07fc65c4 4238 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0 4239 End_Scope;
5e127570
AC
4240
4241 -- If we are compiling an entry wrapper, remove the enclosing
ffa168bc 4242 -- synchronized object from the stack.
5e127570
AC
4243
4244 if Is_Entry_Wrapper (Body_Id) then
4245 End_Scope;
4246 end if;
4247
996ae0b0 4248 Check_Subprogram_Order (N);
c37bb106 4249 Set_Analyzed (Body_Id);
996ae0b0
RK
4250
4251 -- If we have a separate spec, then the analysis of the declarations
4252 -- caused the entities in the body to be chained to the spec id, but
4253 -- we want them chained to the body id. Only the formal parameters
4254 -- end up chained to the spec id in this case.
4255
4256 if Present (Spec_Id) then
4257
d39d6bb8 4258 -- We must conform to the categorization of our spec
996ae0b0 4259
d39d6bb8 4260 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 4261
d39d6bb8
RD
4262 -- And if this is a child unit, the parent units must conform
4263
4264 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
4265 Validate_Categorization_Dependency
4266 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4267 end if;
4268
21d27997
RD
4269 -- Here is where we move entities from the spec to the body
4270
4271 -- Case where there are entities that stay with the spec
4272
4273 if Present (Last_Real_Spec_Entity) then
4274
dbe36d67
AC
4275 -- No body entities (happens when the only real spec entities come
4276 -- from precondition and postcondition pragmas).
21d27997
RD
4277
4278 if No (Last_Entity (Body_Id)) then
7c4d86c9 4279 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
21d27997
RD
4280
4281 -- Body entities present (formals), so chain stuff past them
4282
4283 else
4284 Set_Next_Entity
4285 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4286 end if;
4287
4288 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
996ae0b0 4289 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
21d27997
RD
4290 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4291
dbe36d67
AC
4292 -- Case where there are no spec entities, in this case there can be
4293 -- no body entities either, so just move everything.
996ae0b0 4294
a921e83c
AC
4295 -- If the body is generated for an expression function, it may have
4296 -- been preanalyzed already, if 'access was applied to it.
4297
996ae0b0 4298 else
a921e83c
AC
4299 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4300 N_Expression_Function
4301 then
4302 pragma Assert (No (Last_Entity (Body_Id)));
4303 null;
4304 end if;
4305
996ae0b0
RK
4306 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4307 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4308 Set_First_Entity (Spec_Id, Empty);
4309 Set_Last_Entity (Spec_Id, Empty);
4310 end if;
4311 end if;
4312
7665e4bd 4313 Check_Missing_Return;
996ae0b0 4314
82c80734 4315 -- Now we are going to check for variables that are never modified in
76a69663
ES
4316 -- the body of the procedure. But first we deal with a special case
4317 -- where we want to modify this check. If the body of the subprogram
4318 -- starts with a raise statement or its equivalent, or if the body
cf3e6845
AC
4319 -- consists entirely of a null statement, then it is pretty obvious that
4320 -- it is OK to not reference the parameters. For example, this might be
4321 -- the following common idiom for a stubbed function: statement of the
4322 -- procedure raises an exception. In particular this deals with the
4323 -- common idiom of a stubbed function, which appears something like:
fbf5a39b
AC
4324
4325 -- function F (A : Integer) return Some_Type;
4326 -- X : Some_Type;
4327 -- begin
4328 -- raise Program_Error;
4329 -- return X;
4330 -- end F;
4331
76a69663
ES
4332 -- Here the purpose of X is simply to satisfy the annoying requirement
4333 -- in Ada that there be at least one return, and we certainly do not
a90bd866 4334 -- want to go posting warnings on X that it is not initialized. On
76a69663
ES
4335 -- the other hand, if X is entirely unreferenced that should still
4336 -- get a warning.
4337
4338 -- What we do is to detect these cases, and if we find them, flag the
4339 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4340 -- suppress unwanted warnings. For the case of the function stub above
4341 -- we have a special test to set X as apparently assigned to suppress
4342 -- the warning.
996ae0b0
RK
4343
4344 declare
800621e0 4345 Stm : Node_Id;
996ae0b0
RK
4346
4347 begin
0a36105d 4348 -- Skip initial labels (for one thing this occurs when we are in
ca90b962 4349 -- front-end ZCX mode, but in any case it is irrelevant), and also
0a36105d 4350 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 4351
800621e0 4352 Stm := First (Statements (HSS));
0a36105d
JM
4353 while Nkind (Stm) = N_Label
4354 or else Nkind (Stm) in N_Push_xxx_Label
4355 loop
996ae0b0 4356 Next (Stm);
0a36105d 4357 end loop;
996ae0b0 4358
fbf5a39b
AC
4359 -- Do the test on the original statement before expansion
4360
4361 declare
4362 Ostm : constant Node_Id := Original_Node (Stm);
4363
4364 begin
76a69663 4365 -- If explicit raise statement, turn on flag
fbf5a39b
AC
4366
4367 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
4368 Set_Trivial_Subprogram (Stm);
4369
f3d57416 4370 -- If null statement, and no following statements, turn on flag
76a69663
ES
4371
4372 elsif Nkind (Stm) = N_Null_Statement
4373 and then Comes_From_Source (Stm)
4374 and then No (Next (Stm))
4375 then
4376 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
4377
4378 -- Check for explicit call cases which likely raise an exception
4379
4380 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4381 if Is_Entity_Name (Name (Ostm)) then
4382 declare
4383 Ent : constant Entity_Id := Entity (Name (Ostm));
4384
4385 begin
4386 -- If the procedure is marked No_Return, then likely it
4387 -- raises an exception, but in any case it is not coming
76a69663 4388 -- back here, so turn on the flag.
fbf5a39b 4389
f46faa08
AC
4390 if Present (Ent)
4391 and then Ekind (Ent) = E_Procedure
fbf5a39b
AC
4392 and then No_Return (Ent)
4393 then
76a69663 4394 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
4395 end if;
4396 end;
4397 end if;
4398 end if;
4399 end;
996ae0b0
RK
4400 end;
4401
4402 -- Check for variables that are never modified
4403
4404 declare
d65a80fd
HK
4405 E1 : Entity_Id;
4406 E2 : Entity_Id;
996ae0b0
RK
4407
4408 begin
fbf5a39b 4409 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
4410 -- flags from out parameters to the corresponding entities in the
4411 -- body. The reason we do that is we want to post error flags on
4412 -- the body entities, not the spec entities.
4413
4414 if Present (Spec_Id) then
4415 E1 := First_Entity (Spec_Id);
996ae0b0
RK
4416 while Present (E1) loop
4417 if Ekind (E1) = E_Out_Parameter then
4418 E2 := First_Entity (Body_Id);
fbf5a39b 4419 while Present (E2) loop
996ae0b0
RK
4420 exit when Chars (E1) = Chars (E2);
4421 Next_Entity (E2);
4422 end loop;
4423
fbf5a39b
AC
4424 if Present (E2) then
4425 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4426 end if;
996ae0b0
RK
4427 end if;
4428
4429 Next_Entity (E1);
4430 end loop;
4431 end if;
4432
2aca76d6 4433 -- Check references in body
0868e09c 4434
2aca76d6 4435 Check_References (Body_Id);
996ae0b0 4436 end;
5a271a7f
RD
4437
4438 -- Check for nested subprogram, and mark outer level subprogram if so
4439
4440 declare
4441 Ent : Entity_Id;
4442
4443 begin
4444 if Present (Spec_Id) then
4445 Ent := Spec_Id;
4446 else
4447 Ent := Body_Id;
4448 end if;
4449
4450 loop
4451 Ent := Enclosing_Subprogram (Ent);
4452 exit when No (Ent) or else Is_Subprogram (Ent);
4453 end loop;
4454
4455 if Present (Ent) then
4456 Set_Has_Nested_Subprogram (Ent);
4457 end if;
4458 end;
241ebe89 4459
1e55d29a
EB
4460 -- Restore the limited views in the spec, if any, to let the back end
4461 -- process it without running into circularities.
4462
4463 if Exch_Views /= No_Elist then
4464 Restore_Limited_Views (Exch_Views);
4465 end if;
4466
128a98ea
EB
4467 if Present (Desig_View) then
4468 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4469 end if;
4470
d65a80fd 4471 <<Leave>>
f9a8f910
HK
4472 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4473 Restore_Ghost_Mode (Saved_GM);
b1b543d2 4474 end Analyze_Subprogram_Body_Helper;
996ae0b0
RK
4475
4476 ------------------------------------
4477 -- Analyze_Subprogram_Declaration --
4478 ------------------------------------
4479
4480 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
579847c2 4481 Scop : constant Entity_Id := Current_Scope;
5d5832bc 4482 Designator : Entity_Id;
579847c2 4483
4d8f3296
ES
4484 Is_Completion : Boolean;
4485 -- Indicates whether a null procedure declaration is a completion
996ae0b0
RK
4486
4487 begin
2ba431e5 4488 -- Null procedures are not allowed in SPARK
daec8eeb 4489
fe5d3068 4490 if Nkind (Specification (N)) = N_Procedure_Specification
daec8eeb
YM
4491 and then Null_Present (Specification (N))
4492 then
ce5ba43a 4493 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
718deaf1 4494
73cc8f62
RD
4495 -- Null procedures are allowed in protected types, following the
4496 -- recent AI12-0147.
b741083a
ES
4497
4498 if Is_Protected_Type (Current_Scope)
4499 and then Ada_Version < Ada_2012
4500 then
4d8f3296
ES
4501 Error_Msg_N ("protected operation cannot be a null procedure", N);
4502 end if;
718deaf1 4503
4d8f3296 4504 Analyze_Null_Procedure (N, Is_Completion);
718deaf1 4505
241ebe89 4506 -- The null procedure acts as a body, nothing further is needed
5d5832bc 4507
241ebe89 4508 if Is_Completion then
4d8f3296 4509 return;
5d5832bc
AC
4510 end if;
4511 end if;
4512
beacce02 4513 Designator := Analyze_Subprogram_Specification (Specification (N));
31af8899
AC
4514
4515 -- A reference may already have been generated for the unit name, in
4516 -- which case the following call is redundant. However it is needed for
4517 -- declarations that are the rewriting of an expression function.
4518
5d5832bc
AC
4519 Generate_Definition (Designator);
4520
877a5a12
AC
4521 -- Set the SPARK mode from the current context (may be overwritten later
4522 -- with explicit pragma). This is not done for entry barrier functions
4523 -- because they are generated outside the protected type and should not
4524 -- carry the mode of the enclosing context.
4a854847 4525
877a5a12
AC
4526 if Nkind (N) = N_Subprogram_Declaration
4527 and then Is_Entry_Barrier_Function (N)
4528 then
4529 null;
4530 else
4531 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4532 Set_SPARK_Pragma_Inherited (Designator);
4533 end if;
579847c2 4534
cf9a473e
AC
4535 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4536 -- the body of this subprogram is instantiated or inlined later and out
4537 -- of context. The body uses this attribute to restore the value of the
4538 -- global flag.
4539
4540 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4541 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4542 end if;
4543
b1b543d2
BD
4544 if Debug_Flag_C then
4545 Write_Str ("==> subprogram spec ");
4546 Write_Name (Chars (Designator));
4547 Write_Str (" from ");
4548 Write_Location (Sloc (N));
4549 Write_Eol;
4550 Indent;
4551 end if;
4552
996ae0b0 4553 Validate_RCI_Subprogram_Declaration (N);
996ae0b0
RK
4554 New_Overloaded_Entity (Designator);
4555 Check_Delayed_Subprogram (Designator);
fbf5a39b 4556
cf3e6845
AC
4557 -- If the type of the first formal of the current subprogram is a non-
4558 -- generic tagged private type, mark the subprogram as being a private
4559 -- primitive. Ditto if this is a function with controlling result, and
4560 -- the return type is currently private. In both cases, the type of the
4561 -- controlling argument or result must be in the current scope for the
4562 -- operation to be primitive.
6ca063eb
AC
4563
4564 if Has_Controlling_Result (Designator)
4565 and then Is_Private_Type (Etype (Designator))
b7d5e87b 4566 and then Scope (Etype (Designator)) = Current_Scope
6ca063eb
AC
4567 and then not Is_Generic_Actual_Type (Etype (Designator))
4568 then
4569 Set_Is_Private_Primitive (Designator);
d44202ba 4570
6ca063eb 4571 elsif Present (First_Formal (Designator)) then
d44202ba
HK
4572 declare
4573 Formal_Typ : constant Entity_Id :=
4574 Etype (First_Formal (Designator));
4575 begin
4576 Set_Is_Private_Primitive (Designator,
4577 Is_Tagged_Type (Formal_Typ)
b7d5e87b 4578 and then Scope (Formal_Typ) = Current_Scope
d44202ba
HK
4579 and then Is_Private_Type (Formal_Typ)
4580 and then not Is_Generic_Actual_Type (Formal_Typ));
4581 end;
4582 end if;
4583
ec4867fa
ES
4584 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4585 -- or null.
4586
0791fbe9 4587 if Ada_Version >= Ada_2005
ec4867fa
ES
4588 and then Comes_From_Source (N)
4589 and then Is_Dispatching_Operation (Designator)
4590 then
4591 declare
4592 E : Entity_Id;
4593 Etyp : Entity_Id;
4594
4595 begin
4596 if Has_Controlling_Result (Designator) then
4597 Etyp := Etype (Designator);
4598
4599 else
4600 E := First_Entity (Designator);
4601 while Present (E)
4602 and then Is_Formal (E)
4603 and then not Is_Controlling_Formal (E)
4604 loop
4605 Next_Entity (E);
4606 end loop;
4607
4608 Etyp := Etype (E);
4609 end if;
4610
4611 if Is_Access_Type (Etyp) then
4612 Etyp := Directly_Designated_Type (Etyp);
4613 end if;
4614
4615 if Is_Interface (Etyp)
f937473f 4616 and then not Is_Abstract_Subprogram (Designator)
ec4867fa 4617 and then not (Ekind (Designator) = E_Procedure
8fde064e 4618 and then Null_Present (Specification (N)))
ec4867fa
ES
4619 then
4620 Error_Msg_Name_1 := Chars (Defining_Entity (N));
033eaf85
AC
4621
4622 -- Specialize error message based on procedures vs. functions,
4623 -- since functions can't be null subprograms.
4624
4625 if Ekind (Designator) = E_Procedure then
4626 Error_Msg_N
4627 ("interface procedure % must be abstract or null", N);
4628 else
3f80a182
AC
4629 Error_Msg_N
4630 ("interface function % must be abstract", N);
033eaf85 4631 end if;
ec4867fa
ES
4632 end if;
4633 end;
4634 end if;
4635
fbf5a39b
AC
4636 -- What is the following code for, it used to be
4637
4638 -- ??? Set_Suppress_Elaboration_Checks
4639 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4640
4641 -- The following seems equivalent, but a bit dubious
4642
4643 if Elaboration_Checks_Suppressed (Designator) then
4644 Set_Kill_Elaboration_Checks (Designator);
4645 end if;
996ae0b0 4646
8fde064e 4647 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
fbf5a39b 4648 Set_Categorization_From_Scope (Designator, Scop);
8fde064e 4649
996ae0b0 4650 else
e895b435 4651 -- For a compilation unit, check for library-unit pragmas
996ae0b0 4652
0a36105d 4653 Push_Scope (Designator);
996ae0b0
RK
4654 Set_Categorization_From_Pragmas (N);
4655 Validate_Categorization_Dependency (N, Designator);
4656 Pop_Scope;
4657 end if;
4658
4659 -- For a compilation unit, set body required. This flag will only be
4660 -- reset if a valid Import or Interface pragma is processed later on.
4661
4662 if Nkind (Parent (N)) = N_Compilation_Unit then
4663 Set_Body_Required (Parent (N), True);
758c442c 4664
0791fbe9 4665 if Ada_Version >= Ada_2005
758c442c
GD
4666 and then Nkind (Specification (N)) = N_Procedure_Specification
4667 and then Null_Present (Specification (N))
4668 then
4669 Error_Msg_N
4670 ("null procedure cannot be declared at library level", N);
4671 end if;
996ae0b0
RK
4672 end if;
4673
fbf5a39b 4674 Generate_Reference_To_Formals (Designator);
996ae0b0 4675 Check_Eliminated (Designator);
fbf5a39b 4676
b1b543d2
BD
4677 if Debug_Flag_C then
4678 Outdent;
4679 Write_Str ("<== subprogram spec ");
4680 Write_Name (Chars (Designator));
4681 Write_Str (" from ");
4682 Write_Location (Sloc (N));
4683 Write_Eol;
4684 end if;
0f1a6a0b 4685
1a265e78
AC
4686 if Is_Protected_Type (Current_Scope) then
4687
4688 -- Indicate that this is a protected operation, because it may be
4689 -- used in subsequent declarations within the protected type.
4690
4691 Set_Convention (Designator, Convention_Protected);
4692 end if;
4693
beacce02 4694 List_Inherited_Pre_Post_Aspects (Designator);
eaba57fb
RD
4695
4696 if Has_Aspects (N) then
4697 Analyze_Aspect_Specifications (N, Designator);
4698 end if;
996ae0b0
RK
4699 end Analyze_Subprogram_Declaration;
4700
fbf5a39b
AC
4701 --------------------------------------
4702 -- Analyze_Subprogram_Specification --
4703 --------------------------------------
4704
4705 -- Reminder: N here really is a subprogram specification (not a subprogram
4706 -- declaration). This procedure is called to analyze the specification in
4707 -- both subprogram bodies and subprogram declarations (specs).
4708
4709 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3ddfabe3
AC
4710 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4711 -- Determine whether entity E denotes the spec or body of an invariant
4712 -- procedure.
4713
4714 ------------------------------------
4715 -- Is_Invariant_Procedure_Or_Body --
4716 ------------------------------------
4717
4718 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4719 Decl : constant Node_Id := Unit_Declaration_Node (E);
4720 Spec : Entity_Id;
4721
4722 begin
4723 if Nkind (Decl) = N_Subprogram_Body then
4724 Spec := Corresponding_Spec (Decl);
4725 else
4726 Spec := E;
4727 end if;
4728
4729 return
4730 Present (Spec)
4731 and then Ekind (Spec) = E_Procedure
4732 and then (Is_Partial_Invariant_Procedure (Spec)
4733 or else Is_Invariant_Procedure (Spec));
4734 end Is_Invariant_Procedure_Or_Body;
4735
4736 -- Local variables
4737
fbf5a39b 4738 Designator : constant Entity_Id := Defining_Entity (N);
21d27997 4739 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 4740
758c442c
GD
4741 -- Start of processing for Analyze_Subprogram_Specification
4742
fbf5a39b 4743 begin
2ba431e5 4744 -- User-defined operator is not allowed in SPARK, except as a renaming
38171f43 4745
db72f10a
AC
4746 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4747 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4748 then
ce5ba43a
AC
4749 Check_SPARK_05_Restriction
4750 ("user-defined operator is not allowed", N);
38171f43
AC
4751 end if;
4752
31af8899
AC
4753 -- Proceed with analysis. Do not emit a cross-reference entry if the
4754 -- specification comes from an expression function, because it may be
026c3cfd 4755 -- the completion of a previous declaration. It is not, the cross-
31af8899
AC
4756 -- reference entry will be emitted for the new subprogram declaration.
4757
4758 if Nkind (Parent (N)) /= N_Expression_Function then
4759 Generate_Definition (Designator);
4760 end if;
38171f43 4761
fbf5a39b
AC
4762 if Nkind (N) = N_Function_Specification then
4763 Set_Ekind (Designator, E_Function);
4764 Set_Mechanism (Designator, Default_Mechanism);
fbf5a39b
AC
4765 else
4766 Set_Ekind (Designator, E_Procedure);
4767 Set_Etype (Designator, Standard_Void_Type);
4768 end if;
4769
4bd4bb7f
AC
4770 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4771 -- those subprograms which could be inlined in GNATprove mode (because
319c6161 4772 -- Body_To_Inline is non-Empty) but should not be inlined.
4bd4bb7f
AC
4773
4774 if GNATprove_Mode then
4775 Set_Is_Inlined_Always (Designator);
4776 end if;
4777
800621e0 4778 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
4779
4780 Set_Scope (Designator, Current_Scope);
4781
fbf5a39b 4782 if Present (Formals) then
0a36105d 4783 Push_Scope (Designator);
fbf5a39b 4784 Process_Formals (Formals, N);
758c442c 4785
0929eaeb
AC
4786 -- Check dimensions in N for formals with default expression
4787
4788 Analyze_Dimension_Formals (N, Formals);
4789
a38ff9b1
ES
4790 -- Ada 2005 (AI-345): If this is an overriding operation of an
4791 -- inherited interface operation, and the controlling type is
4792 -- a synchronized type, replace the type with its corresponding
4793 -- record, to match the proper signature of an overriding operation.
69cb258c
AC
4794 -- Same processing for an access parameter whose designated type is
4795 -- derived from a synchronized interface.
758c442c 4796
3ddfabe3
AC
4797 -- This modification is not done for invariant procedures because
4798 -- the corresponding record may not necessarely be visible when the
4799 -- concurrent type acts as the full view of a private type.
4800
4801 -- package Pack is
4802 -- type Prot is private with Type_Invariant => ...;
4803 -- procedure ConcInvariant (Obj : Prot);
4804 -- private
4805 -- protected type Prot is ...;
4806 -- type Concurrent_Record_Prot is record ...;
4807 -- procedure ConcInvariant (Obj : Prot) is
4808 -- ...
4809 -- end ConcInvariant;
4810 -- end Pack;
4811
4812 -- In the example above, both the spec and body of the invariant
4813 -- procedure must utilize the private type as the controlling type.
4814
4815 if Ada_Version >= Ada_2005
4816 and then not Is_Invariant_Procedure_Or_Body (Designator)
4817 then
d44202ba
HK
4818 declare
4819 Formal : Entity_Id;
4820 Formal_Typ : Entity_Id;
4821 Rec_Typ : Entity_Id;
69cb258c 4822 Desig_Typ : Entity_Id;
0a36105d 4823
d44202ba
HK
4824 begin
4825 Formal := First_Formal (Designator);
4826 while Present (Formal) loop
4827 Formal_Typ := Etype (Formal);
0a36105d 4828
d44202ba
HK
4829 if Is_Concurrent_Type (Formal_Typ)
4830 and then Present (Corresponding_Record_Type (Formal_Typ))
4831 then
4832 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4833
4834 if Present (Interfaces (Rec_Typ)) then
4835 Set_Etype (Formal, Rec_Typ);
4836 end if;
69cb258c
AC
4837
4838 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4839 Desig_Typ := Designated_Type (Formal_Typ);
4840
4841 if Is_Concurrent_Type (Desig_Typ)
4842 and then Present (Corresponding_Record_Type (Desig_Typ))
4843 then
4844 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4845
4846 if Present (Interfaces (Rec_Typ)) then
4847 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4848 end if;
4849 end if;
d44202ba
HK
4850 end if;
4851
4852 Next_Formal (Formal);
4853 end loop;
4854 end;
758c442c
GD
4855 end if;
4856
fbf5a39b 4857 End_Scope;
82c80734 4858
b66c3ff4
AC
4859 -- The subprogram scope is pushed and popped around the processing of
4860 -- the return type for consistency with call above to Process_Formals
4861 -- (which itself can call Analyze_Return_Type), and to ensure that any
4862 -- itype created for the return type will be associated with the proper
4863 -- scope.
4864
82c80734 4865 elsif Nkind (N) = N_Function_Specification then
b66c3ff4 4866 Push_Scope (Designator);
82c80734 4867 Analyze_Return_Type (N);
b66c3ff4 4868 End_Scope;
fbf5a39b
AC
4869 end if;
4870
e606088a
AC
4871 -- Function case
4872
fbf5a39b 4873 if Nkind (N) = N_Function_Specification then
e606088a
AC
4874
4875 -- Deal with operator symbol case
4876
fbf5a39b
AC
4877 if Nkind (Designator) = N_Defining_Operator_Symbol then
4878 Valid_Operator_Definition (Designator);
4879 end if;
4880
4881 May_Need_Actuals (Designator);
4882
fe63b1b1
ES
4883 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4884 -- the subprogram is abstract also. This does not apply to renaming
1adaea16
AC
4885 -- declarations, where abstractness is inherited, and to subprogram
4886 -- bodies generated for stream operations, which become renamings as
4887 -- bodies.
2bfb1b72 4888
fe63b1b1
ES
4889 -- In case of primitives associated with abstract interface types
4890 -- the check is applied later (see Analyze_Subprogram_Declaration).
ec4867fa 4891
1adaea16 4892 if not Nkind_In (Original_Node (Parent (N)),
3f80a182 4893 N_Abstract_Subprogram_Declaration,
847d950d
HK
4894 N_Formal_Abstract_Subprogram_Declaration,
4895 N_Subprogram_Renaming_Declaration)
fbf5a39b 4896 then
2e79de51
AC
4897 if Is_Abstract_Type (Etype (Designator))
4898 and then not Is_Interface (Etype (Designator))
4899 then
4900 Error_Msg_N
4901 ("function that returns abstract type must be abstract", N);
4902
e606088a 4903 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
2e79de51
AC
4904 -- access result whose designated type is abstract.
4905
847d950d
HK
4906 elsif Ada_Version >= Ada_2012
4907 and then Nkind (Result_Definition (N)) = N_Access_Definition
2e79de51
AC
4908 and then
4909 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4910 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
2e79de51 4911 then
847d950d
HK
4912 Error_Msg_N
4913 ("function whose access result designates abstract type "
4914 & "must be abstract", N);
2e79de51 4915 end if;
fbf5a39b
AC
4916 end if;
4917 end if;
4918
4919 return Designator;
4920 end Analyze_Subprogram_Specification;
4921
996ae0b0
RK
4922 -----------------------
4923 -- Check_Conformance --
4924 -----------------------
4925
4926 procedure Check_Conformance
41251c60
JM
4927 (New_Id : Entity_Id;
4928 Old_Id : Entity_Id;
4929 Ctype : Conformance_Type;
4930 Errmsg : Boolean;
4931 Conforms : out Boolean;
4932 Err_Loc : Node_Id := Empty;
4933 Get_Inst : Boolean := False;
4934 Skip_Controlling_Formals : Boolean := False)
996ae0b0 4935 is
996ae0b0 4936 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
c27f2f15
RD
4937 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4938 -- If Errmsg is True, then processing continues to post an error message
4939 -- for conformance error on given node. Two messages are output. The
4940 -- first message points to the previous declaration with a general "no
4941 -- conformance" message. The second is the detailed reason, supplied as
4942 -- Msg. The parameter N provide information for a possible & insertion
4943 -- in the message, and also provides the location for posting the
4944 -- message in the absence of a specified Err_Loc location.
996ae0b0 4945
f991bd8e
HK
4946 function Conventions_Match
4947 (Id1 : Entity_Id;
4948 Id2 : Entity_Id) return Boolean;
4949 -- Determine whether the conventions of arbitrary entities Id1 and Id2
4950 -- match.
4951
996ae0b0
RK
4952 -----------------------
4953 -- Conformance_Error --
4954 -----------------------
4955
4956 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4957 Enode : Node_Id;
4958
4959 begin
4960 Conforms := False;
4961
4962 if Errmsg then
4963 if No (Err_Loc) then
4964 Enode := N;
4965 else
4966 Enode := Err_Loc;
4967 end if;
4968
4969 Error_Msg_Sloc := Sloc (Old_Id);
4970
4971 case Ctype is
4972 when Type_Conformant =>
483c78cb 4973 Error_Msg_N -- CODEFIX
996ae0b0
RK
4974 ("not type conformant with declaration#!", Enode);
4975
4976 when Mode_Conformant =>
19590d70 4977 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4978 Error_Msg_N
19590d70
GD
4979 ("not mode conformant with operation inherited#!",
4980 Enode);
4981 else
ed2233dc 4982 Error_Msg_N
19590d70
GD
4983 ("not mode conformant with declaration#!", Enode);
4984 end if;
996ae0b0
RK
4985
4986 when Subtype_Conformant =>
19590d70 4987 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4988 Error_Msg_N
19590d70
GD
4989 ("not subtype conformant with operation inherited#!",
4990 Enode);
4991 else
ed2233dc 4992 Error_Msg_N
19590d70
GD
4993 ("not subtype conformant with declaration#!", Enode);
4994 end if;
996ae0b0
RK
4995
4996 when Fully_Conformant =>
19590d70 4997 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
483c78cb 4998 Error_Msg_N -- CODEFIX
19590d70
GD
4999 ("not fully conformant with operation inherited#!",
5000 Enode);
5001 else
483c78cb 5002 Error_Msg_N -- CODEFIX
19590d70
GD
5003 ("not fully conformant with declaration#!", Enode);
5004 end if;
996ae0b0
RK
5005 end case;
5006
5007 Error_Msg_NE (Msg, Enode, N);
5008 end if;
5009 end Conformance_Error;
5010
f991bd8e
HK
5011 -----------------------
5012 -- Conventions_Match --
5013 -----------------------
5014
5015 function Conventions_Match
5016 (Id1 : Entity_Id;
5017 Id2 : Entity_Id) return Boolean
5018 is
5019 begin
5020 -- Ignore the conventions of anonymous access-to-subprogram types
5021 -- and subprogram types because these are internally generated and
5022 -- the only way these may receive a convention is if they inherit
5023 -- the convention of a related subprogram.
5024
5025 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5026 E_Subprogram_Type)
5027 or else
5028 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5029 E_Subprogram_Type)
5030 then
5031 return True;
5032
5033 -- Otherwise compare the conventions directly
5034
5035 else
5036 return Convention (Id1) = Convention (Id2);
5037 end if;
5038 end Conventions_Match;
5039
ec4867fa
ES
5040 -- Local Variables
5041
5042 Old_Type : constant Entity_Id := Etype (Old_Id);
5043 New_Type : constant Entity_Id := Etype (New_Id);
5044 Old_Formal : Entity_Id;
5045 New_Formal : Entity_Id;
5046 Access_Types_Match : Boolean;
5047 Old_Formal_Base : Entity_Id;
5048 New_Formal_Base : Entity_Id;
5049
996ae0b0
RK
5050 -- Start of processing for Check_Conformance
5051
5052 begin
5053 Conforms := True;
5054
82c80734
RD
5055 -- We need a special case for operators, since they don't appear
5056 -- explicitly.
996ae0b0
RK
5057
5058 if Ctype = Type_Conformant then
5059 if Ekind (New_Id) = E_Operator
5060 and then Operator_Matches_Spec (New_Id, Old_Id)
5061 then
5062 return;
5063 end if;
5064 end if;
5065
5066 -- If both are functions/operators, check return types conform
5067
5068 if Old_Type /= Standard_Void_Type
3cb9a885
AC
5069 and then
5070 New_Type /= Standard_Void_Type
996ae0b0 5071 then
fceeaab6
ES
5072 -- If we are checking interface conformance we omit controlling
5073 -- arguments and result, because we are only checking the conformance
5074 -- of the remaining parameters.
5075
5076 if Has_Controlling_Result (Old_Id)
5077 and then Has_Controlling_Result (New_Id)
5078 and then Skip_Controlling_Formals
5079 then
5080 null;
5081
5082 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
7f568bfa
AC
5083 if Ctype >= Subtype_Conformant
5084 and then not Predicates_Match (Old_Type, New_Type)
5085 then
5086 Conformance_Error
5087 ("\predicate of return type does not match!", New_Id);
5088 else
5089 Conformance_Error
5090 ("\return type does not match!", New_Id);
5091 end if;
5092
996ae0b0
RK
5093 return;
5094 end if;
5095
41251c60 5096 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 5097 -- null-exclusion and access-to-constant attributes match.
41251c60 5098
0791fbe9 5099 if Ada_Version >= Ada_2005
41251c60
JM
5100 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5101 and then
8fde064e
AC
5102 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5103 or else Is_Access_Constant (Etype (Old_Type)) /=
5104 Is_Access_Constant (Etype (New_Type)))
41251c60 5105 then
5d37ba92 5106 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
5107 return;
5108 end if;
5109
996ae0b0
RK
5110 -- If either is a function/operator and the other isn't, error
5111
5112 elsif Old_Type /= Standard_Void_Type
5113 or else New_Type /= Standard_Void_Type
5114 then
5d37ba92 5115 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
5116 return;
5117 end if;
5118
0a36105d 5119 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
5120 -- If this is a renaming as body, refine error message to indicate that
5121 -- the conflict is with the original declaration. If the entity is not
5122 -- frozen, the conventions don't have to match, the one of the renamed
5123 -- entity is inherited.
5124
5125 if Ctype >= Subtype_Conformant then
f991bd8e 5126 if not Conventions_Match (Old_Id, New_Id) then
996ae0b0
RK
5127 if not Is_Frozen (New_Id) then
5128 null;
5129
5130 elsif Present (Err_Loc)
5131 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5132 and then Present (Corresponding_Spec (Err_Loc))
5133 then
5134 Error_Msg_Name_1 := Chars (New_Id);
5135 Error_Msg_Name_2 :=
5136 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5d37ba92 5137 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
5138
5139 else
5d37ba92 5140 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
5141 end if;
5142
5143 return;
5144
5145 elsif Is_Formal_Subprogram (Old_Id)
5146 or else Is_Formal_Subprogram (New_Id)
5147 then
5d37ba92 5148 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0
RK
5149 return;
5150 end if;
5151 end if;
5152
5153 -- Deal with parameters
5154
5155 -- Note: we use the entity information, rather than going directly
5156 -- to the specification in the tree. This is not only simpler, but
5157 -- absolutely necessary for some cases of conformance tests between
a90bd866 5158 -- operators, where the declaration tree simply does not exist.
996ae0b0
RK
5159
5160 Old_Formal := First_Formal (Old_Id);
5161 New_Formal := First_Formal (New_Id);
996ae0b0 5162 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
5163 if Is_Controlling_Formal (Old_Formal)
5164 and then Is_Controlling_Formal (New_Formal)
5165 and then Skip_Controlling_Formals
5166 then
a2dc5812
AC
5167 -- The controlling formals will have different types when
5168 -- comparing an interface operation with its match, but both
5169 -- or neither must be access parameters.
5170
5171 if Is_Access_Type (Etype (Old_Formal))
5172 =
5173 Is_Access_Type (Etype (New_Formal))
5174 then
5175 goto Skip_Controlling_Formal;
5176 else
5177 Conformance_Error
5178 ("\access parameter does not match!", New_Formal);
5179 end if;
41251c60
JM
5180 end if;
5181
21791d97 5182 -- Ada 2012: Mode conformance also requires that formal parameters
2a290fec
AC
5183 -- be both aliased, or neither.
5184
21791d97 5185 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
2a290fec
AC
5186 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5187 Conformance_Error
5188 ("\aliased parameter mismatch!", New_Formal);
5189 end if;
5190 end if;
5191
fbf5a39b
AC
5192 if Ctype = Fully_Conformant then
5193
5194 -- Names must match. Error message is more accurate if we do
5195 -- this before checking that the types of the formals match.
5196
5197 if Chars (Old_Formal) /= Chars (New_Formal) then
3ccedacc 5198 Conformance_Error ("\name& does not match!", New_Formal);
fbf5a39b
AC
5199
5200 -- Set error posted flag on new formal as well to stop
5201 -- junk cascaded messages in some cases.
5202
5203 Set_Error_Posted (New_Formal);
5204 return;
5205 end if;
40b93859
RD
5206
5207 -- Null exclusion must match
5208
5209 if Null_Exclusion_Present (Parent (Old_Formal))
5210 /=
5211 Null_Exclusion_Present (Parent (New_Formal))
5212 then
5213 -- Only give error if both come from source. This should be
5214 -- investigated some time, since it should not be needed ???
5215
5216 if Comes_From_Source (Old_Formal)
5217 and then
5218 Comes_From_Source (New_Formal)
5219 then
5220 Conformance_Error
3ccedacc 5221 ("\null exclusion for& does not match", New_Formal);
40b93859
RD
5222
5223 -- Mark error posted on the new formal to avoid duplicated
5224 -- complaint about types not matching.
5225
5226 Set_Error_Posted (New_Formal);
5227 end if;
5228 end if;
fbf5a39b 5229 end if;
996ae0b0 5230
ec4867fa
ES
5231 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5232 -- case occurs whenever a subprogram is being renamed and one of its
5233 -- parameters imposes a null exclusion. For example:
5234
5235 -- type T is null record;
5236 -- type Acc_T is access T;
5237 -- subtype Acc_T_Sub is Acc_T;
5238
5239 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5240 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5241 -- renames P;
5242
5243 Old_Formal_Base := Etype (Old_Formal);
5244 New_Formal_Base := Etype (New_Formal);
5245
5246 if Get_Inst then
5247 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5248 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5249 end if;
5250
0791fbe9 5251 Access_Types_Match := Ada_Version >= Ada_2005
ec4867fa 5252
8fde064e
AC
5253 -- Ensure that this rule is only applied when New_Id is a
5254 -- renaming of Old_Id.
ec4867fa 5255
5d37ba92
ES
5256 and then Nkind (Parent (Parent (New_Id))) =
5257 N_Subprogram_Renaming_Declaration
ec4867fa
ES
5258 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5259 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5260 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5261
8fde064e 5262 -- Now handle the allowed access-type case
ec4867fa
ES
5263
5264 and then Is_Access_Type (Old_Formal_Base)
5265 and then Is_Access_Type (New_Formal_Base)
5d37ba92 5266
8fde064e
AC
5267 -- The type kinds must match. The only exception occurs with
5268 -- multiple generics of the form:
5d37ba92 5269
8fde064e
AC
5270 -- generic generic
5271 -- type F is private; type A is private;
5272 -- type F_Ptr is access F; type A_Ptr is access A;
5273 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5274 -- package F_Pack is ... package A_Pack is
5275 -- package F_Inst is
5276 -- new F_Pack (A, A_Ptr, A_P);
5d37ba92 5277
8fde064e
AC
5278 -- When checking for conformance between the parameters of A_P
5279 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5280 -- because the compiler has transformed A_Ptr into a subtype of
5281 -- F_Ptr. We catch this case in the code below.
5d37ba92
ES
5282
5283 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4b6f99f5
RD
5284 or else
5285 (Is_Generic_Type (Old_Formal_Base)
5286 and then Is_Generic_Type (New_Formal_Base)
5287 and then Is_Internal (New_Formal_Base)
5288 and then Etype (Etype (New_Formal_Base)) =
5289 Old_Formal_Base))
5290 and then Directly_Designated_Type (Old_Formal_Base) =
5291 Directly_Designated_Type (New_Formal_Base)
ec4867fa
ES
5292 and then ((Is_Itype (Old_Formal_Base)
5293 and then Can_Never_Be_Null (Old_Formal_Base))
4b6f99f5
RD
5294 or else
5295 (Is_Itype (New_Formal_Base)
5296 and then Can_Never_Be_Null (New_Formal_Base)));
ec4867fa 5297
996ae0b0
RK
5298 -- Types must always match. In the visible part of an instance,
5299 -- usual overloading rules for dispatching operations apply, and
5300 -- we check base types (not the actual subtypes).
5301
5302 if In_Instance_Visible_Part
5303 and then Is_Dispatching_Operation (New_Id)
5304 then
5305 if not Conforming_Types
ec4867fa
ES
5306 (T1 => Base_Type (Etype (Old_Formal)),
5307 T2 => Base_Type (Etype (New_Formal)),
5308 Ctype => Ctype,
5309 Get_Inst => Get_Inst)
5310 and then not Access_Types_Match
996ae0b0 5311 then
5d37ba92 5312 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
5313 return;
5314 end if;
5315
5316 elsif not Conforming_Types
5d37ba92
ES
5317 (T1 => Old_Formal_Base,
5318 T2 => New_Formal_Base,
ec4867fa
ES
5319 Ctype => Ctype,
5320 Get_Inst => Get_Inst)
5321 and then not Access_Types_Match
996ae0b0 5322 then
c27f2f15
RD
5323 -- Don't give error message if old type is Any_Type. This test
5324 -- avoids some cascaded errors, e.g. in case of a bad spec.
5325
5326 if Errmsg and then Old_Formal_Base = Any_Type then
5327 Conforms := False;
5328 else
7f568bfa
AC
5329 if Ctype >= Subtype_Conformant
5330 and then
5331 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5332 then
5333 Conformance_Error
5334 ("\predicate of & does not match!", New_Formal);
5335 else
5336 Conformance_Error
5337 ("\type of & does not match!", New_Formal);
7738270b
AC
5338
5339 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5340 then
5341 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5342 end if;
7f568bfa 5343 end if;
c27f2f15
RD
5344 end if;
5345
996ae0b0
RK
5346 return;
5347 end if;
5348
5349 -- For mode conformance, mode must match
5350
5d37ba92
ES
5351 if Ctype >= Mode_Conformant then
5352 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
dd54644b
JM
5353 if not Ekind_In (New_Id, E_Function, E_Procedure)
5354 or else not Is_Primitive_Wrapper (New_Id)
5355 then
5356 Conformance_Error ("\mode of & does not match!", New_Formal);
c199ccf7 5357
dd54644b
JM
5358 else
5359 declare
a2667f14 5360 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
dd54644b 5361 begin
3ccedacc 5362 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
dd54644b 5363 then
2c6336be 5364 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
dd54644b
JM
5365 else
5366 Conformance_Error
5367 ("\mode of & does not match!", New_Formal);
5368 end if;
5369 end;
5370 end if;
5371
5d37ba92
ES
5372 return;
5373
5374 -- Part of mode conformance for access types is having the same
5375 -- constant modifier.
5376
5377 elsif Access_Types_Match
5378 and then Is_Access_Constant (Old_Formal_Base) /=
5379 Is_Access_Constant (New_Formal_Base)
5380 then
5381 Conformance_Error
5382 ("\constant modifier does not match!", New_Formal);
5383 return;
5384 end if;
996ae0b0
RK
5385 end if;
5386
0a36105d 5387 if Ctype >= Subtype_Conformant then
996ae0b0 5388
0a36105d
JM
5389 -- Ada 2005 (AI-231): In case of anonymous access types check
5390 -- the null-exclusion and access-to-constant attributes must
c7b9d548
AC
5391 -- match. For null exclusion, we test the types rather than the
5392 -- formals themselves, since the attribute is only set reliably
5393 -- on the formals in the Ada 95 case, and we exclude the case
5394 -- where Old_Formal is marked as controlling, to avoid errors
5395 -- when matching completing bodies with dispatching declarations
5396 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
996ae0b0 5397
0791fbe9 5398 if Ada_Version >= Ada_2005
0a36105d
JM
5399 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5400 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5401 and then
c7b9d548
AC
5402 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5403 Can_Never_Be_Null (Etype (New_Formal))
5404 and then
5405 not Is_Controlling_Formal (Old_Formal))
0a36105d
JM
5406 or else
5407 Is_Access_Constant (Etype (Old_Formal)) /=
5408 Is_Access_Constant (Etype (New_Formal)))
40b93859
RD
5409
5410 -- Do not complain if error already posted on New_Formal. This
5411 -- avoids some redundant error messages.
5412
5413 and then not Error_Posted (New_Formal)
0a36105d
JM
5414 then
5415 -- It is allowed to omit the null-exclusion in case of stream
5416 -- attribute subprograms. We recognize stream subprograms
5417 -- through their TSS-generated suffix.
996ae0b0 5418
0a36105d
JM
5419 declare
5420 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3ada950b 5421
0a36105d
JM
5422 begin
5423 if TSS_Name /= TSS_Stream_Read
5424 and then TSS_Name /= TSS_Stream_Write
5425 and then TSS_Name /= TSS_Stream_Input
5426 and then TSS_Name /= TSS_Stream_Output
5427 then
3ada950b 5428 -- Here we have a definite conformance error. It is worth
71fb4dc8 5429 -- special casing the error message for the case of a
3ada950b
AC
5430 -- controlling formal (which excludes null).
5431
5432 if Is_Controlling_Formal (New_Formal) then
5433 Error_Msg_Node_2 := Scope (New_Formal);
5434 Conformance_Error
3ccedacc
AC
5435 ("\controlling formal & of & excludes null, "
5436 & "declaration must exclude null as well",
5437 New_Formal);
3ada950b
AC
5438
5439 -- Normal case (couldn't we give more detail here???)
5440
5441 else
5442 Conformance_Error
5443 ("\type of & does not match!", New_Formal);
5444 end if;
5445
0a36105d
JM
5446 return;
5447 end if;
5448 end;
5449 end if;
5450 end if;
41251c60 5451
0a36105d 5452 -- Full conformance checks
41251c60 5453
0a36105d 5454 if Ctype = Fully_Conformant then
e660dbf7 5455
0a36105d 5456 -- We have checked already that names match
e660dbf7 5457
0a36105d 5458 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
5459
5460 -- Check default expressions for in parameters
5461
996ae0b0
RK
5462 declare
5463 NewD : constant Boolean :=
5464 Present (Default_Value (New_Formal));
5465 OldD : constant Boolean :=
5466 Present (Default_Value (Old_Formal));
5467 begin
5468 if NewD or OldD then
5469
82c80734
RD
5470 -- The old default value has been analyzed because the
5471 -- current full declaration will have frozen everything
0a36105d
JM
5472 -- before. The new default value has not been analyzed,
5473 -- so analyze it now before we check for conformance.
996ae0b0
RK
5474
5475 if NewD then
0a36105d 5476 Push_Scope (New_Id);
21d27997 5477 Preanalyze_Spec_Expression
fbf5a39b 5478 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
5479 End_Scope;
5480 end if;
5481
5482 if not (NewD and OldD)
5483 or else not Fully_Conformant_Expressions
5484 (Default_Value (Old_Formal),
5485 Default_Value (New_Formal))
5486 then
5487 Conformance_Error
5d37ba92 5488 ("\default expression for & does not match!",
996ae0b0
RK
5489 New_Formal);
5490 return;
5491 end if;
5492 end if;
5493 end;
5494 end if;
5495 end if;
5496
5497 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 5498 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
5499 -- or if either old or new instance is not from the source program.
5500
0ab80019 5501 if Ada_Version = Ada_83
996ae0b0
RK
5502 and then Sloc (Old_Id) > Standard_Location
5503 and then Sloc (New_Id) > Standard_Location
5504 and then Comes_From_Source (Old_Id)
5505 and then Comes_From_Source (New_Id)
5506 then
5507 declare
5508 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5509 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5510
5511 begin
5512 -- Explicit IN must be present or absent in both cases. This
5513 -- test is required only in the full conformance case.
5514
5515 if In_Present (Old_Param) /= In_Present (New_Param)
5516 and then Ctype = Fully_Conformant
5517 then
5518 Conformance_Error
5d37ba92 5519 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
5520 New_Formal);
5521 return;
5522 end if;
5523
5524 -- Grouping (use of comma in param lists) must be the same
5525 -- This is where we catch a misconformance like:
5526
0a36105d 5527 -- A, B : Integer
996ae0b0
RK
5528 -- A : Integer; B : Integer
5529
5530 -- which are represented identically in the tree except
5531 -- for the setting of the flags More_Ids and Prev_Ids.
5532
5533 if More_Ids (Old_Param) /= More_Ids (New_Param)
5534 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5535 then
5536 Conformance_Error
5d37ba92 5537 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
5538 return;
5539 end if;
5540 end;
5541 end if;
5542
41251c60
JM
5543 -- This label is required when skipping controlling formals
5544
5545 <<Skip_Controlling_Formal>>
5546
996ae0b0
RK
5547 Next_Formal (Old_Formal);
5548 Next_Formal (New_Formal);
5549 end loop;
5550
5551 if Present (Old_Formal) then
5d37ba92 5552 Conformance_Error ("\too few parameters!");
996ae0b0
RK
5553 return;
5554
5555 elsif Present (New_Formal) then
5d37ba92 5556 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
5557 return;
5558 end if;
996ae0b0
RK
5559 end Check_Conformance;
5560
ec4867fa
ES
5561 -----------------------
5562 -- Check_Conventions --
5563 -----------------------
5564
5565 procedure Check_Conventions (Typ : Entity_Id) is
ce2b6ba5 5566 Ifaces_List : Elist_Id;
0a36105d 5567
ce2b6ba5 5568 procedure Check_Convention (Op : Entity_Id);
0a36105d
JM
5569 -- Verify that the convention of inherited dispatching operation Op is
5570 -- consistent among all subprograms it overrides. In order to minimize
5571 -- the search, Search_From is utilized to designate a specific point in
5572 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
5573
5574 ----------------------
5575 -- Check_Convention --
5576 ----------------------
5577
ce2b6ba5 5578 procedure Check_Convention (Op : Entity_Id) is
c5cec2fe 5579 Op_Conv : constant Convention_Id := Convention (Op);
9f6aaa5c 5580 Iface_Conv : Convention_Id;
ce2b6ba5
JM
5581 Iface_Elmt : Elmt_Id;
5582 Iface_Prim_Elmt : Elmt_Id;
5583 Iface_Prim : Entity_Id;
ec4867fa 5584
ce2b6ba5
JM
5585 begin
5586 Iface_Elmt := First_Elmt (Ifaces_List);
5587 while Present (Iface_Elmt) loop
5588 Iface_Prim_Elmt :=
9f6aaa5c 5589 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
ce2b6ba5
JM
5590 while Present (Iface_Prim_Elmt) loop
5591 Iface_Prim := Node (Iface_Prim_Elmt);
c5cec2fe 5592 Iface_Conv := Convention (Iface_Prim);
ce2b6ba5
JM
5593
5594 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
9f6aaa5c 5595 and then Iface_Conv /= Op_Conv
ce2b6ba5 5596 then
ed2233dc 5597 Error_Msg_N
ce2b6ba5 5598 ("inconsistent conventions in primitive operations", Typ);
ec4867fa 5599
ce2b6ba5 5600 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c 5601 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
ce2b6ba5 5602 Error_Msg_Sloc := Sloc (Op);
ec4867fa 5603
7a963087 5604 if Comes_From_Source (Op) or else No (Alias (Op)) then
038140ed 5605 if not Present (Overridden_Operation (Op)) then
ed2233dc 5606 Error_Msg_N ("\\primitive % defined #", Typ);
ce2b6ba5 5607 else
ed2233dc 5608 Error_Msg_N
3ccedacc
AC
5609 ("\\overriding operation % with "
5610 & "convention % defined #", Typ);
ce2b6ba5 5611 end if;
ec4867fa 5612
ce2b6ba5
JM
5613 else pragma Assert (Present (Alias (Op)));
5614 Error_Msg_Sloc := Sloc (Alias (Op));
3ccedacc
AC
5615 Error_Msg_N ("\\inherited operation % with "
5616 & "convention % defined #", Typ);
ce2b6ba5 5617 end if;
ec4867fa 5618
ce2b6ba5 5619 Error_Msg_Name_1 := Chars (Op);
9f6aaa5c
AC
5620 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5621 Error_Msg_Sloc := Sloc (Iface_Prim);
3ccedacc
AC
5622 Error_Msg_N ("\\overridden operation % with "
5623 & "convention % defined #", Typ);
ec4867fa 5624
ce2b6ba5 5625 -- Avoid cascading errors
ec4867fa 5626
ce2b6ba5
JM
5627 return;
5628 end if;
ec4867fa 5629
ce2b6ba5
JM
5630 Next_Elmt (Iface_Prim_Elmt);
5631 end loop;
ec4867fa 5632
ce2b6ba5 5633 Next_Elmt (Iface_Elmt);
ec4867fa
ES
5634 end loop;
5635 end Check_Convention;
5636
5637 -- Local variables
5638
5639 Prim_Op : Entity_Id;
5640 Prim_Op_Elmt : Elmt_Id;
5641
5642 -- Start of processing for Check_Conventions
5643
5644 begin
ce2b6ba5
JM
5645 if not Has_Interfaces (Typ) then
5646 return;
5647 end if;
5648
5649 Collect_Interfaces (Typ, Ifaces_List);
5650
0a36105d
JM
5651 -- The algorithm checks every overriding dispatching operation against
5652 -- all the corresponding overridden dispatching operations, detecting
f3d57416 5653 -- differences in conventions.
ec4867fa
ES
5654
5655 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5656 while Present (Prim_Op_Elmt) loop
5657 Prim_Op := Node (Prim_Op_Elmt);
5658
0a36105d 5659 -- A small optimization: skip the predefined dispatching operations
ce2b6ba5 5660 -- since they always have the same convention.
ec4867fa 5661
ce2b6ba5
JM
5662 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5663 Check_Convention (Prim_Op);
ec4867fa
ES
5664 end if;
5665
5666 Next_Elmt (Prim_Op_Elmt);
5667 end loop;
5668 end Check_Conventions;
5669
996ae0b0
RK
5670 ------------------------------
5671 -- Check_Delayed_Subprogram --
5672 ------------------------------
5673
5674 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5675 F : Entity_Id;
5676
5677 procedure Possible_Freeze (T : Entity_Id);
5678 -- T is the type of either a formal parameter or of the return type.
5679 -- If T is not yet frozen and needs a delayed freeze, then the
1e55d29a 5680 -- subprogram itself must be delayed.
996ae0b0 5681
82c80734
RD
5682 ---------------------
5683 -- Possible_Freeze --
5684 ---------------------
5685
996ae0b0
RK
5686 procedure Possible_Freeze (T : Entity_Id) is
5687 begin
4a13695c 5688 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
996ae0b0
RK
5689 Set_Has_Delayed_Freeze (Designator);
5690
5691 elsif Is_Access_Type (T)
5692 and then Has_Delayed_Freeze (Designated_Type (T))
5693 and then not Is_Frozen (Designated_Type (T))
5694 then
5695 Set_Has_Delayed_Freeze (Designator);
5696 end if;
4a13695c 5697
996ae0b0
RK
5698 end Possible_Freeze;
5699
5700 -- Start of processing for Check_Delayed_Subprogram
5701
5702 begin
76e3504f
AC
5703 -- All subprograms, including abstract subprograms, may need a freeze
5704 -- node if some formal type or the return type needs one.
996ae0b0 5705
76e3504f
AC
5706 Possible_Freeze (Etype (Designator));
5707 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
996ae0b0 5708
76e3504f
AC
5709 -- Need delayed freeze if any of the formal types themselves need
5710 -- a delayed freeze and are not yet frozen.
996ae0b0 5711
76e3504f
AC
5712 F := First_Formal (Designator);
5713 while Present (F) loop
5714 Possible_Freeze (Etype (F));
5715 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5716 Next_Formal (F);
5717 end loop;
996ae0b0
RK
5718
5719 -- Mark functions that return by reference. Note that it cannot be
5720 -- done for delayed_freeze subprograms because the underlying
5721 -- returned type may not be known yet (for private types)
5722
8fde064e 5723 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
996ae0b0
RK
5724 declare
5725 Typ : constant Entity_Id := Etype (Designator);
5726 Utyp : constant Entity_Id := Underlying_Type (Typ);
996ae0b0 5727 begin
51245e2d 5728 if Is_Limited_View (Typ) then
996ae0b0 5729 Set_Returns_By_Ref (Designator);
048e5cef 5730 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
996ae0b0
RK
5731 Set_Returns_By_Ref (Designator);
5732 end if;
5733 end;
5734 end if;
5735 end Check_Delayed_Subprogram;
5736
5737 ------------------------------------
5738 -- Check_Discriminant_Conformance --
5739 ------------------------------------
5740
5741 procedure Check_Discriminant_Conformance
5742 (N : Node_Id;
5743 Prev : Entity_Id;
5744 Prev_Loc : Node_Id)
5745 is
5746 Old_Discr : Entity_Id := First_Discriminant (Prev);
5747 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5748 New_Discr_Id : Entity_Id;
5749 New_Discr_Type : Entity_Id;
5750
5751 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
5752 -- Post error message for conformance error on given node. Two messages
5753 -- are output. The first points to the previous declaration with a
5754 -- general "no conformance" message. The second is the detailed reason,
5755 -- supplied as Msg. The parameter N provide information for a possible
5756 -- & insertion in the message.
996ae0b0
RK
5757
5758 -----------------------
5759 -- Conformance_Error --
5760 -----------------------
5761
5762 procedure Conformance_Error (Msg : String; N : Node_Id) is
5763 begin
5764 Error_Msg_Sloc := Sloc (Prev_Loc);
483c78cb
RD
5765 Error_Msg_N -- CODEFIX
5766 ("not fully conformant with declaration#!", N);
996ae0b0
RK
5767 Error_Msg_NE (Msg, N, N);
5768 end Conformance_Error;
5769
5770 -- Start of processing for Check_Discriminant_Conformance
5771
5772 begin
5773 while Present (Old_Discr) and then Present (New_Discr) loop
996ae0b0
RK
5774 New_Discr_Id := Defining_Identifier (New_Discr);
5775
82c80734
RD
5776 -- The subtype mark of the discriminant on the full type has not
5777 -- been analyzed so we do it here. For an access discriminant a new
5778 -- type is created.
996ae0b0
RK
5779
5780 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5781 New_Discr_Type :=
5782 Access_Definition (N, Discriminant_Type (New_Discr));
5783
5784 else
5785 Analyze (Discriminant_Type (New_Discr));
5786 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
e50e1c5e
AC
5787
5788 -- Ada 2005: if the discriminant definition carries a null
5789 -- exclusion, create an itype to check properly for consistency
5790 -- with partial declaration.
5791
5792 if Is_Access_Type (New_Discr_Type)
8fde064e 5793 and then Null_Exclusion_Present (New_Discr)
e50e1c5e
AC
5794 then
5795 New_Discr_Type :=
5796 Create_Null_Excluding_Itype
5797 (T => New_Discr_Type,
5798 Related_Nod => New_Discr,
5799 Scope_Id => Current_Scope);
5800 end if;
996ae0b0
RK
5801 end if;
5802
5803 if not Conforming_Types
5804 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5805 then
5806 Conformance_Error ("type of & does not match!", New_Discr_Id);
5807 return;
fbf5a39b 5808 else
82c80734
RD
5809 -- Treat the new discriminant as an occurrence of the old one,
5810 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
5811 -- information, for completeness.
5812
5813 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5814 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5815 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
5816 end if;
5817
5818 -- Names must match
5819
5820 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5821 Conformance_Error ("name & does not match!", New_Discr_Id);
5822 return;
5823 end if;
5824
5825 -- Default expressions must match
5826
5827 declare
5828 NewD : constant Boolean :=
5829 Present (Expression (New_Discr));
5830 OldD : constant Boolean :=
5831 Present (Expression (Parent (Old_Discr)));
5832
5833 begin
5834 if NewD or OldD then
5835
5836 -- The old default value has been analyzed and expanded,
5837 -- because the current full declaration will have frozen
82c80734
RD
5838 -- everything before. The new default values have not been
5839 -- expanded, so expand now to check conformance.
996ae0b0
RK
5840
5841 if NewD then
21d27997 5842 Preanalyze_Spec_Expression
996ae0b0
RK
5843 (Expression (New_Discr), New_Discr_Type);
5844 end if;
5845
5846 if not (NewD and OldD)
5847 or else not Fully_Conformant_Expressions
5848 (Expression (Parent (Old_Discr)),
5849 Expression (New_Discr))
5850
5851 then
5852 Conformance_Error
5853 ("default expression for & does not match!",
5854 New_Discr_Id);
5855 return;
5856 end if;
5857 end if;
5858 end;
5859
5860 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5861
0ab80019 5862 if Ada_Version = Ada_83 then
996ae0b0
RK
5863 declare
5864 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5865
5866 begin
5867 -- Grouping (use of comma in param lists) must be the same
5868 -- This is where we catch a misconformance like:
5869
60370fb1 5870 -- A, B : Integer
996ae0b0
RK
5871 -- A : Integer; B : Integer
5872
5873 -- which are represented identically in the tree except
5874 -- for the setting of the flags More_Ids and Prev_Ids.
5875
5876 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5877 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5878 then
5879 Conformance_Error
5880 ("grouping of & does not match!", New_Discr_Id);
5881 return;
5882 end if;
5883 end;
5884 end if;
5885
5886 Next_Discriminant (Old_Discr);
5887 Next (New_Discr);
5888 end loop;
5889
5890 if Present (Old_Discr) then
5891 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5892 return;
5893
5894 elsif Present (New_Discr) then
5895 Conformance_Error
5896 ("too many discriminants!", Defining_Identifier (New_Discr));
5897 return;
5898 end if;
5899 end Check_Discriminant_Conformance;
5900
5901 ----------------------------
5902 -- Check_Fully_Conformant --
5903 ----------------------------
5904
5905 procedure Check_Fully_Conformant
5906 (New_Id : Entity_Id;
5907 Old_Id : Entity_Id;
5908 Err_Loc : Node_Id := Empty)
5909 is
5910 Result : Boolean;
81db9d77 5911 pragma Warnings (Off, Result);
996ae0b0
RK
5912 begin
5913 Check_Conformance
5914 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5915 end Check_Fully_Conformant;
5916
b420ba79
AC
5917 --------------------------
5918 -- Check_Limited_Return --
5919 --------------------------
5920
5921 procedure Check_Limited_Return
5922 (N : Node_Id;
5923 Expr : Node_Id;
5924 R_Type : Entity_Id)
5925 is
5926 begin
5927 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5928 -- replaced by anonymous access results. This is an incompatibility with
5929 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5930 -- controllable with special switch. ???
5931
5932 -- A limited interface that is not immutably limited is OK
5933
5934 if Is_Limited_Interface (R_Type)
5935 and then
5936 not (Is_Task_Interface (R_Type)
5937 or else Is_Protected_Interface (R_Type)
5938 or else Is_Synchronized_Interface (R_Type))
5939 then
5940 null;
5941
5942 elsif Is_Limited_Type (R_Type)
5943 and then not Is_Interface (R_Type)
5944 and then Comes_From_Source (N)
5945 and then not In_Instance_Body
5946 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5947 then
5948 -- Error in Ada 2005
5949
5950 if Ada_Version >= Ada_2005
5951 and then not Debug_Flag_Dot_L
5952 and then not GNAT_Mode
5953 then
5954 Error_Msg_N
5955 ("(Ada 2005) cannot copy object of a limited type "
5956 & "(RM-2005 6.5(5.5/2))", Expr);
5957
5958 if Is_Limited_View (R_Type) then
5959 Error_Msg_N
5960 ("\return by reference not permitted in Ada 2005", Expr);
5961 end if;
5962
5963 -- Warn in Ada 95 mode, to give folks a heads up about this
5964 -- incompatibility.
5965
5966 -- In GNAT mode, this is just a warning, to allow it to be evilly
5967 -- turned off. Otherwise it is a real error.
5968
5969 -- In a generic context, simplify the warning because it makes no
5970 -- sense to discuss pass-by-reference or copy.
5971
5972 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5973 if Inside_A_Generic then
5974 Error_Msg_N
5975 ("return of limited object not permitted in Ada 2005 "
5976 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5977
5978 elsif Is_Limited_View (R_Type) then
5979 Error_Msg_N
5980 ("return by reference not permitted in Ada 2005 "
5981 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5982 else
5983 Error_Msg_N
5984 ("cannot copy object of a limited type in Ada 2005 "
5985 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5986 end if;
5987
5988 -- Ada 95 mode, compatibility warnings disabled
5989
5990 else
5991 return; -- skip continuation messages below
5992 end if;
5993
5994 if not Inside_A_Generic then
5995 Error_Msg_N
5996 ("\consider switching to return of access type", Expr);
5997 Explain_Limited_Type (R_Type, Expr);
5998 end if;
5999 end if;
6000 end Check_Limited_Return;
6001
996ae0b0
RK
6002 ---------------------------
6003 -- Check_Mode_Conformant --
6004 ---------------------------
6005
6006 procedure Check_Mode_Conformant
6007 (New_Id : Entity_Id;
6008 Old_Id : Entity_Id;
6009 Err_Loc : Node_Id := Empty;
6010 Get_Inst : Boolean := False)
6011 is
6012 Result : Boolean;
81db9d77 6013 pragma Warnings (Off, Result);
996ae0b0
RK
6014 begin
6015 Check_Conformance
6016 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6017 end Check_Mode_Conformant;
6018
fbf5a39b 6019 --------------------------------
758c442c 6020 -- Check_Overriding_Indicator --
fbf5a39b
AC
6021 --------------------------------
6022
758c442c 6023 procedure Check_Overriding_Indicator
ec4867fa 6024 (Subp : Entity_Id;
5d37ba92
ES
6025 Overridden_Subp : Entity_Id;
6026 Is_Primitive : Boolean)
fbf5a39b 6027 is
758c442c
GD
6028 Decl : Node_Id;
6029 Spec : Node_Id;
fbf5a39b
AC
6030
6031 begin
ec4867fa 6032 -- No overriding indicator for literals
fbf5a39b 6033
ec4867fa 6034 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 6035 return;
fbf5a39b 6036
ec4867fa
ES
6037 elsif Ekind (Subp) = E_Entry then
6038 Decl := Parent (Subp);
6039
53b10ce9
AC
6040 -- No point in analyzing a malformed operator
6041
6042 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6043 and then Error_Posted (Subp)
6044 then
6045 return;
6046
758c442c
GD
6047 else
6048 Decl := Unit_Declaration_Node (Subp);
6049 end if;
fbf5a39b 6050
800621e0
RD
6051 if Nkind_In (Decl, N_Subprogram_Body,
6052 N_Subprogram_Body_Stub,
6053 N_Subprogram_Declaration,
6054 N_Abstract_Subprogram_Declaration,
6055 N_Subprogram_Renaming_Declaration)
758c442c
GD
6056 then
6057 Spec := Specification (Decl);
ec4867fa
ES
6058
6059 elsif Nkind (Decl) = N_Entry_Declaration then
6060 Spec := Decl;
6061
758c442c
GD
6062 else
6063 return;
6064 end if;
fbf5a39b 6065
e7d72fb9
AC
6066 -- The overriding operation is type conformant with the overridden one,
6067 -- but the names of the formals are not required to match. If the names
6823270c 6068 -- appear permuted in the overriding operation, this is a possible
e7d72fb9
AC
6069 -- source of confusion that is worth diagnosing. Controlling formals
6070 -- often carry names that reflect the type, and it is not worthwhile
6071 -- requiring that their names match.
6072
c9e7bd8e 6073 if Present (Overridden_Subp)
e7d72fb9
AC
6074 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6075 then
6076 declare
6077 Form1 : Entity_Id;
6078 Form2 : Entity_Id;
6079
6080 begin
6081 Form1 := First_Formal (Subp);
6082 Form2 := First_Formal (Overridden_Subp);
6083
c9e7bd8e
AC
6084 -- If the overriding operation is a synchronized operation, skip
6085 -- the first parameter of the overridden operation, which is
6823270c
AC
6086 -- implicit in the new one. If the operation is declared in the
6087 -- body it is not primitive and all formals must match.
c9e7bd8e 6088
6823270c
AC
6089 if Is_Concurrent_Type (Scope (Subp))
6090 and then Is_Tagged_Type (Scope (Subp))
6091 and then not Has_Completion (Scope (Subp))
6092 then
c9e7bd8e
AC
6093 Form2 := Next_Formal (Form2);
6094 end if;
6095
e7d72fb9
AC
6096 if Present (Form1) then
6097 Form1 := Next_Formal (Form1);
6098 Form2 := Next_Formal (Form2);
6099 end if;
6100
6101 while Present (Form1) loop
6102 if not Is_Controlling_Formal (Form1)
6103 and then Present (Next_Formal (Form2))
6104 and then Chars (Form1) = Chars (Next_Formal (Form2))
6105 then
6106 Error_Msg_Node_2 := Alias (Overridden_Subp);
6107 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
ed2233dc 6108 Error_Msg_NE
19d846a0 6109 ("& does not match corresponding formal of&#",
e7d72fb9
AC
6110 Form1, Form1);
6111 exit;
6112 end if;
6113
6114 Next_Formal (Form1);
6115 Next_Formal (Form2);
6116 end loop;
6117 end;
6118 end if;
6119
676e8420
AC
6120 -- If there is an overridden subprogram, then check that there is no
6121 -- "not overriding" indicator, and mark the subprogram as overriding.
51bf9bdf
AC
6122 -- This is not done if the overridden subprogram is marked as hidden,
6123 -- which can occur for the case of inherited controlled operations
6124 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6125 -- subprogram is not itself hidden. (Note: This condition could probably
6126 -- be simplified, leaving out the testing for the specific controlled
6127 -- cases, but it seems safer and clearer this way, and echoes similar
6128 -- special-case tests of this kind in other places.)
6129
fd0d899b 6130 if Present (Overridden_Subp)
51bf9bdf
AC
6131 and then (not Is_Hidden (Overridden_Subp)
6132 or else
b69cd36a
AC
6133 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6134 Name_Adjust,
6135 Name_Finalize)
f0709ca6
AC
6136 and then Present (Alias (Overridden_Subp))
6137 and then not Is_Hidden (Alias (Overridden_Subp))))
fd0d899b 6138 then
ec4867fa
ES
6139 if Must_Not_Override (Spec) then
6140 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 6141
ec4867fa 6142 if Ekind (Subp) = E_Entry then
ed2233dc 6143 Error_Msg_NE
5d37ba92 6144 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 6145 else
ed2233dc 6146 Error_Msg_NE
5d37ba92 6147 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa 6148 end if;
21d27997 6149
bd603506 6150 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
24a120ac
AC
6151 -- as an extension of Root_Controlled, and thus has a useless Adjust
6152 -- operation. This operation should not be inherited by other limited
6153 -- controlled types. An explicit Adjust for them is not overriding.
6154
6155 elsif Must_Override (Spec)
6156 and then Chars (Overridden_Subp) = Name_Adjust
6157 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6158 and then Present (Alias (Overridden_Subp))
bd603506
RD
6159 and then
6160 Is_Predefined_File_Name
6161 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
24a120ac 6162 then
b043ae01
AC
6163 Get_Name_String
6164 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
24a120ac
AC
6165 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6166
21d27997 6167 elsif Is_Subprogram (Subp) then
2fe829ae
ES
6168 if Is_Init_Proc (Subp) then
6169 null;
6170
6171 elsif No (Overridden_Operation (Subp)) then
1c1289e7
AC
6172
6173 -- For entities generated by Derive_Subprograms the overridden
6174 -- operation is the inherited primitive (which is available
6175 -- through the attribute alias)
6176
6177 if (Is_Dispatching_Operation (Subp)
f9673bb0 6178 or else Is_Dispatching_Operation (Overridden_Subp))
1c1289e7 6179 and then not Comes_From_Source (Overridden_Subp)
f9673bb0
AC
6180 and then Find_Dispatching_Type (Overridden_Subp) =
6181 Find_Dispatching_Type (Subp)
1c1289e7
AC
6182 and then Present (Alias (Overridden_Subp))
6183 and then Comes_From_Source (Alias (Overridden_Subp))
6184 then
039538bc
AC
6185 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6186 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
2fe829ae 6187
1c1289e7 6188 else
039538bc
AC
6189 Set_Overridden_Operation (Subp, Overridden_Subp);
6190 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
1c1289e7
AC
6191 end if;
6192 end if;
ec4867fa 6193 end if;
f937473f 6194
618fb570
AC
6195 -- If primitive flag is set or this is a protected operation, then
6196 -- the operation is overriding at the point of its declaration, so
6197 -- warn if necessary. Otherwise it may have been declared before the
6198 -- operation it overrides and no check is required.
3c25856a
AC
6199
6200 if Style_Check
618fb570
AC
6201 and then not Must_Override (Spec)
6202 and then (Is_Primitive
6203 or else Ekind (Scope (Subp)) = E_Protected_Type)
3c25856a 6204 then
235f4375
AC
6205 Style.Missing_Overriding (Decl, Subp);
6206 end if;
6207
53b10ce9
AC
6208 -- If Subp is an operator, it may override a predefined operation, if
6209 -- it is defined in the same scope as the type to which it applies.
676e8420 6210 -- In that case Overridden_Subp is empty because of our implicit
5d37ba92
ES
6211 -- representation for predefined operators. We have to check whether the
6212 -- signature of Subp matches that of a predefined operator. Note that
6213 -- first argument provides the name of the operator, and the second
6214 -- argument the signature that may match that of a standard operation.
21d27997
RD
6215 -- If the indicator is overriding, then the operator must match a
6216 -- predefined signature, because we know already that there is no
6217 -- explicit overridden operation.
f937473f 6218
21d27997 6219 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
806f6d37 6220 if Must_Not_Override (Spec) then
f937473f 6221
806f6d37
AC
6222 -- If this is not a primitive or a protected subprogram, then
6223 -- "not overriding" is illegal.
618fb570 6224
806f6d37
AC
6225 if not Is_Primitive
6226 and then Ekind (Scope (Subp)) /= E_Protected_Type
6227 then
3ccedacc
AC
6228 Error_Msg_N ("overriding indicator only allowed "
6229 & "if subprogram is primitive", Subp);
618fb570 6230
806f6d37
AC
6231 elsif Can_Override_Operator (Subp) then
6232 Error_Msg_NE
6233 ("subprogram& overrides predefined operator ", Spec, Subp);
6234 end if;
f937473f 6235
806f6d37
AC
6236 elsif Must_Override (Spec) then
6237 if No (Overridden_Operation (Subp))
6238 and then not Can_Override_Operator (Subp)
6239 then
6240 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6241 end if;
5d37ba92 6242
806f6d37
AC
6243 elsif not Error_Posted (Subp)
6244 and then Style_Check
6245 and then Can_Override_Operator (Subp)
6246 and then
6247 not Is_Predefined_File_Name
6248 (Unit_File_Name (Get_Source_Unit (Subp)))
6249 then
6250 -- If style checks are enabled, indicate that the indicator is
6251 -- missing. However, at the point of declaration, the type of
6252 -- which this is a primitive operation may be private, in which
6253 -- case the indicator would be premature.
235f4375 6254
806f6d37
AC
6255 if Has_Private_Declaration (Etype (Subp))
6256 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
53b10ce9 6257 then
806f6d37
AC
6258 null;
6259 else
6260 Style.Missing_Overriding (Decl, Subp);
5d5832bc 6261 end if;
806f6d37 6262 end if;
21d27997
RD
6263
6264 elsif Must_Override (Spec) then
6265 if Ekind (Subp) = E_Entry then
ed2233dc 6266 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5d37ba92 6267 else
ed2233dc 6268 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 6269 end if;
5d37ba92
ES
6270
6271 -- If the operation is marked "not overriding" and it's not primitive
6272 -- then an error is issued, unless this is an operation of a task or
6273 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6274 -- has been specified have already been checked above.
6275
6276 elsif Must_Not_Override (Spec)
6277 and then not Is_Primitive
6278 and then Ekind (Subp) /= E_Entry
6279 and then Ekind (Scope (Subp)) /= E_Protected_Type
6280 then
ed2233dc 6281 Error_Msg_N
5d37ba92
ES
6282 ("overriding indicator only allowed if subprogram is primitive",
6283 Subp);
5d37ba92 6284 return;
fbf5a39b 6285 end if;
758c442c 6286 end Check_Overriding_Indicator;
fbf5a39b 6287
996ae0b0
RK
6288 -------------------
6289 -- Check_Returns --
6290 -------------------
6291
0a36105d
JM
6292 -- Note: this procedure needs to know far too much about how the expander
6293 -- messes with exceptions. The use of the flag Exception_Junk and the
6294 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6295 -- works, but is not very clean. It would be better if the expansion
6296 -- routines would leave Original_Node working nicely, and we could use
6297 -- Original_Node here to ignore all the peculiar expander messing ???
6298
996ae0b0
RK
6299 procedure Check_Returns
6300 (HSS : Node_Id;
6301 Mode : Character;
c8ef728f
ES
6302 Err : out Boolean;
6303 Proc : Entity_Id := Empty)
996ae0b0
RK
6304 is
6305 Handler : Node_Id;
6306
6307 procedure Check_Statement_Sequence (L : List_Id);
6308 -- Internal recursive procedure to check a list of statements for proper
6309 -- termination by a return statement (or a transfer of control or a
6310 -- compound statement that is itself internally properly terminated).
6311
6312 ------------------------------
6313 -- Check_Statement_Sequence --
6314 ------------------------------
6315
6316 procedure Check_Statement_Sequence (L : List_Id) is
6317 Last_Stm : Node_Id;
0a36105d 6318 Stm : Node_Id;
996ae0b0
RK
6319 Kind : Node_Kind;
6320
7b27e183
AC
6321 function Assert_False return Boolean;
6322 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6323 -- rewritten as a null statement when assertions are off. The assert
6324 -- is not active, but it is still enough to kill the warning.
6325
6326 ------------------
6327 -- Assert_False --
6328 ------------------
6329
6330 function Assert_False return Boolean is
6331 Orig : constant Node_Id := Original_Node (Last_Stm);
6332
6333 begin
6334 if Nkind (Orig) = N_Pragma
6e759c2a 6335 and then Pragma_Name (Orig) = Name_Assert
7b27e183
AC
6336 and then not Error_Posted (Orig)
6337 then
6338 declare
6339 Arg : constant Node_Id :=
6340 First (Pragma_Argument_Associations (Orig));
6341 Exp : constant Node_Id := Expression (Arg);
6342 begin
6343 return Nkind (Exp) = N_Identifier
6344 and then Chars (Exp) = Name_False;
6345 end;
6346
6347 else
6348 return False;
6349 end if;
6350 end Assert_False;
6351
6352 -- Local variables
6353
996ae0b0
RK
6354 Raise_Exception_Call : Boolean;
6355 -- Set True if statement sequence terminated by Raise_Exception call
6356 -- or a Reraise_Occurrence call.
6357
7b27e183
AC
6358 -- Start of processing for Check_Statement_Sequence
6359
996ae0b0
RK
6360 begin
6361 Raise_Exception_Call := False;
6362
6363 -- Get last real statement
6364
6365 Last_Stm := Last (L);
6366
0a36105d
JM
6367 -- Deal with digging out exception handler statement sequences that
6368 -- have been transformed by the local raise to goto optimization.
6369 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6370 -- optimization has occurred, we are looking at something like:
6371
6372 -- begin
6373 -- original stmts in block
6374
6375 -- exception \
6376 -- when excep1 => |
6377 -- goto L1; | omitted if No_Exception_Propagation
6378 -- when excep2 => |
6379 -- goto L2; /
6380 -- end;
6381
6382 -- goto L3; -- skip handler when exception not raised
6383
6384 -- <<L1>> -- target label for local exception
6385 -- begin
6386 -- estmts1
6387 -- end;
6388
6389 -- goto L3;
6390
6391 -- <<L2>>
6392 -- begin
6393 -- estmts2
6394 -- end;
6395
6396 -- <<L3>>
6397
6398 -- and what we have to do is to dig out the estmts1 and estmts2
6399 -- sequences (which were the original sequences of statements in
6400 -- the exception handlers) and check them.
6401
8fde064e 6402 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
0a36105d
JM
6403 Stm := Last_Stm;
6404 loop
6405 Prev (Stm);
6406 exit when No (Stm);
6407 exit when Nkind (Stm) /= N_Block_Statement;
6408 exit when not Exception_Junk (Stm);
6409 Prev (Stm);
6410 exit when No (Stm);
6411 exit when Nkind (Stm) /= N_Label;
6412 exit when not Exception_Junk (Stm);
6413 Check_Statement_Sequence
6414 (Statements (Handled_Statement_Sequence (Next (Stm))));
6415
6416 Prev (Stm);
6417 Last_Stm := Stm;
6418 exit when No (Stm);
6419 exit when Nkind (Stm) /= N_Goto_Statement;
6420 exit when not Exception_Junk (Stm);
6421 end loop;
6422 end if;
6423
996ae0b0
RK
6424 -- Don't count pragmas
6425
6426 while Nkind (Last_Stm) = N_Pragma
6427
6428 -- Don't count call to SS_Release (can happen after Raise_Exception)
6429
6430 or else
6431 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6432 and then
6433 Nkind (Name (Last_Stm)) = N_Identifier
6434 and then
6435 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6436
6437 -- Don't count exception junk
6438
6439 or else
800621e0
RD
6440 (Nkind_In (Last_Stm, N_Goto_Statement,
6441 N_Label,
6442 N_Object_Declaration)
8fde064e 6443 and then Exception_Junk (Last_Stm))
0a36105d
JM
6444 or else Nkind (Last_Stm) in N_Push_xxx_Label
6445 or else Nkind (Last_Stm) in N_Pop_xxx_Label
e3b3266c
AC
6446
6447 -- Inserted code, such as finalization calls, is irrelevant: we only
6448 -- need to check original source.
6449
6450 or else Is_Rewrite_Insertion (Last_Stm)
996ae0b0
RK
6451 loop
6452 Prev (Last_Stm);
6453 end loop;
6454
6455 -- Here we have the "real" last statement
6456
6457 Kind := Nkind (Last_Stm);
6458
6459 -- Transfer of control, OK. Note that in the No_Return procedure
6460 -- case, we already diagnosed any explicit return statements, so
6461 -- we can treat them as OK in this context.
6462
6463 if Is_Transfer (Last_Stm) then
6464 return;
6465
6466 -- Check cases of explicit non-indirect procedure calls
6467
6468 elsif Kind = N_Procedure_Call_Statement
6469 and then Is_Entity_Name (Name (Last_Stm))
6470 then
6471 -- Check call to Raise_Exception procedure which is treated
6472 -- specially, as is a call to Reraise_Occurrence.
6473
6474 -- We suppress the warning in these cases since it is likely that
6475 -- the programmer really does not expect to deal with the case
6476 -- of Null_Occurrence, and thus would find a warning about a
6477 -- missing return curious, and raising Program_Error does not
6478 -- seem such a bad behavior if this does occur.
6479
c8ef728f
ES
6480 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6481 -- behavior will be to raise Constraint_Error (see AI-329).
6482
996ae0b0
RK
6483 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6484 or else
6485 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6486 then
6487 Raise_Exception_Call := True;
6488
6489 -- For Raise_Exception call, test first argument, if it is
6490 -- an attribute reference for a 'Identity call, then we know
6491 -- that the call cannot possibly return.
6492
6493 declare
6494 Arg : constant Node_Id :=
6495 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
6496 begin
6497 if Nkind (Arg) = N_Attribute_Reference
6498 and then Attribute_Name (Arg) = Name_Identity
6499 then
6500 return;
6501 end if;
6502 end;
6503 end if;
6504
6505 -- If statement, need to look inside if there is an else and check
6506 -- each constituent statement sequence for proper termination.
6507
6508 elsif Kind = N_If_Statement
6509 and then Present (Else_Statements (Last_Stm))
6510 then
6511 Check_Statement_Sequence (Then_Statements (Last_Stm));
6512 Check_Statement_Sequence (Else_Statements (Last_Stm));
6513
6514 if Present (Elsif_Parts (Last_Stm)) then
6515 declare
6516 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6517
6518 begin
6519 while Present (Elsif_Part) loop
6520 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6521 Next (Elsif_Part);
6522 end loop;
6523 end;
6524 end if;
6525
6526 return;
6527
6528 -- Case statement, check each case for proper termination
6529
6530 elsif Kind = N_Case_Statement then
6531 declare
6532 Case_Alt : Node_Id;
996ae0b0
RK
6533 begin
6534 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6535 while Present (Case_Alt) loop
6536 Check_Statement_Sequence (Statements (Case_Alt));
6537 Next_Non_Pragma (Case_Alt);
6538 end loop;
6539 end;
6540
6541 return;
6542
6543 -- Block statement, check its handled sequence of statements
6544
6545 elsif Kind = N_Block_Statement then
6546 declare
6547 Err1 : Boolean;
6548
6549 begin
6550 Check_Returns
6551 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6552
6553 if Err1 then
6554 Err := True;
6555 end if;
6556
6557 return;
6558 end;
6559
6560 -- Loop statement. If there is an iteration scheme, we can definitely
6561 -- fall out of the loop. Similarly if there is an exit statement, we
6562 -- can fall out. In either case we need a following return.
6563
6564 elsif Kind = N_Loop_Statement then
6565 if Present (Iteration_Scheme (Last_Stm))
6566 or else Has_Exit (Entity (Identifier (Last_Stm)))
6567 then
6568 null;
6569
f3d57416
RW
6570 -- A loop with no exit statement or iteration scheme is either
6571 -- an infinite loop, or it has some other exit (raise/return).
996ae0b0
RK
6572 -- In either case, no warning is required.
6573
6574 else
6575 return;
6576 end if;
6577
6578 -- Timed entry call, check entry call and delay alternatives
6579
6580 -- Note: in expanded code, the timed entry call has been converted
6581 -- to a set of expanded statements on which the check will work
6582 -- correctly in any case.
6583
6584 elsif Kind = N_Timed_Entry_Call then
6585 declare
6586 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6587 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6588
6589 begin
6590 -- If statement sequence of entry call alternative is missing,
6591 -- then we can definitely fall through, and we post the error
6592 -- message on the entry call alternative itself.
6593
6594 if No (Statements (ECA)) then
6595 Last_Stm := ECA;
6596
6597 -- If statement sequence of delay alternative is missing, then
6598 -- we can definitely fall through, and we post the error
6599 -- message on the delay alternative itself.
6600
6601 -- Note: if both ECA and DCA are missing the return, then we
6602 -- post only one message, should be enough to fix the bugs.
6603 -- If not we will get a message next time on the DCA when the
a90bd866 6604 -- ECA is fixed.
996ae0b0
RK
6605
6606 elsif No (Statements (DCA)) then
6607 Last_Stm := DCA;
6608
6609 -- Else check both statement sequences
6610
6611 else
6612 Check_Statement_Sequence (Statements (ECA));
6613 Check_Statement_Sequence (Statements (DCA));
6614 return;
6615 end if;
6616 end;
6617
6618 -- Conditional entry call, check entry call and else part
6619
6620 -- Note: in expanded code, the conditional entry call has been
6621 -- converted to a set of expanded statements on which the check
6622 -- will work correctly in any case.
6623
6624 elsif Kind = N_Conditional_Entry_Call then
6625 declare
6626 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6627
6628 begin
6629 -- If statement sequence of entry call alternative is missing,
6630 -- then we can definitely fall through, and we post the error
6631 -- message on the entry call alternative itself.
6632
6633 if No (Statements (ECA)) then
6634 Last_Stm := ECA;
6635
6636 -- Else check statement sequence and else part
6637
6638 else
6639 Check_Statement_Sequence (Statements (ECA));
6640 Check_Statement_Sequence (Else_Statements (Last_Stm));
6641 return;
6642 end if;
6643 end;
6644 end if;
6645
6646 -- If we fall through, issue appropriate message
6647
6648 if Mode = 'F' then
7b27e183
AC
6649
6650 -- Kill warning if last statement is a raise exception call,
6651 -- or a pragma Assert (False). Note that with assertions enabled,
6652 -- such a pragma has been converted into a raise exception call
6653 -- already, so the Assert_False is for the assertions off case.
6654
6655 if not Raise_Exception_Call and then not Assert_False then
b465ef6f
AC
6656
6657 -- In GNATprove mode, it is an error to have a missing return
6658
43417b90 6659 Error_Msg_Warn := SPARK_Mode /= On;
7b27e183
AC
6660
6661 -- Issue error message or warning
6662
4a28b181
AC
6663 Error_Msg_N
6664 ("RETURN statement missing following this statement<<!",
6665 Last_Stm);
6666 Error_Msg_N
6667 ("\Program_Error ]<<!", Last_Stm);
996ae0b0
RK
6668 end if;
6669
6670 -- Note: we set Err even though we have not issued a warning
6671 -- because we still have a case of a missing return. This is
6672 -- an extremely marginal case, probably will never be noticed
6673 -- but we might as well get it right.
6674
6675 Err := True;
6676
c8ef728f
ES
6677 -- Otherwise we have the case of a procedure marked No_Return
6678
996ae0b0 6679 else
800621e0 6680 if not Raise_Exception_Call then
4a28b181
AC
6681 if GNATprove_Mode then
6682 Error_Msg_N
6683 ("implied return after this statement "
6684 & "would have raised Program_Error", Last_Stm);
6685 else
6686 Error_Msg_N
6687 ("implied return after this statement "
6688 & "will raise Program_Error??", Last_Stm);
6689 end if;
6690
43417b90 6691 Error_Msg_Warn := SPARK_Mode /= On;
800621e0 6692 Error_Msg_NE
4a28b181 6693 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
800621e0 6694 end if;
c8ef728f
ES
6695
6696 declare
6697 RE : constant Node_Id :=
6698 Make_Raise_Program_Error (Sloc (Last_Stm),
6699 Reason => PE_Implicit_Return);
6700 begin
6701 Insert_After (Last_Stm, RE);
6702 Analyze (RE);
6703 end;
996ae0b0
RK
6704 end if;
6705 end Check_Statement_Sequence;
6706
6707 -- Start of processing for Check_Returns
6708
6709 begin
6710 Err := False;
6711 Check_Statement_Sequence (Statements (HSS));
6712
6713 if Present (Exception_Handlers (HSS)) then
6714 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6715 while Present (Handler) loop
6716 Check_Statement_Sequence (Statements (Handler));
6717 Next_Non_Pragma (Handler);
6718 end loop;
6719 end if;
6720 end Check_Returns;
6721
6722 ----------------------------
6723 -- Check_Subprogram_Order --
6724 ----------------------------
6725
6726 procedure Check_Subprogram_Order (N : Node_Id) is
6727
6728 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
dc36a7e3
RD
6729 -- This is used to check if S1 > S2 in the sense required by this test,
6730 -- for example nameab < namec, but name2 < name10.
996ae0b0 6731
82c80734
RD
6732 -----------------------------
6733 -- Subprogram_Name_Greater --
6734 -----------------------------
6735
996ae0b0
RK
6736 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6737 L1, L2 : Positive;
6738 N1, N2 : Natural;
6739
6740 begin
67336960
AC
6741 -- Deal with special case where names are identical except for a
6742 -- numerical suffix. These are handled specially, taking the numeric
6743 -- ordering from the suffix into account.
996ae0b0
RK
6744
6745 L1 := S1'Last;
6746 while S1 (L1) in '0' .. '9' loop
6747 L1 := L1 - 1;
6748 end loop;
6749
6750 L2 := S2'Last;
6751 while S2 (L2) in '0' .. '9' loop
6752 L2 := L2 - 1;
6753 end loop;
6754
67336960 6755 -- If non-numeric parts non-equal, do straight compare
996ae0b0 6756
67336960
AC
6757 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6758 return S1 > S2;
996ae0b0
RK
6759
6760 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6761 -- that a missing suffix is treated as numeric zero in this test.
6762
6763 else
6764 N1 := 0;
6765 while L1 < S1'Last loop
6766 L1 := L1 + 1;
6767 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6768 end loop;
6769
6770 N2 := 0;
6771 while L2 < S2'Last loop
6772 L2 := L2 + 1;
6773 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6774 end loop;
6775
6776 return N1 > N2;
6777 end if;
6778 end Subprogram_Name_Greater;
6779
6780 -- Start of processing for Check_Subprogram_Order
6781
6782 begin
6783 -- Check body in alpha order if this is option
6784
fbf5a39b 6785 if Style_Check
bc202b70 6786 and then Style_Check_Order_Subprograms
996ae0b0
RK
6787 and then Nkind (N) = N_Subprogram_Body
6788 and then Comes_From_Source (N)
6789 and then In_Extended_Main_Source_Unit (N)
6790 then
6791 declare
6792 LSN : String_Ptr
6793 renames Scope_Stack.Table
6794 (Scope_Stack.Last).Last_Subprogram_Name;
6795
6796 Body_Id : constant Entity_Id :=
6797 Defining_Entity (Specification (N));
6798
6799 begin
6800 Get_Decoded_Name_String (Chars (Body_Id));
6801
6802 if LSN /= null then
6803 if Subprogram_Name_Greater
6804 (LSN.all, Name_Buffer (1 .. Name_Len))
6805 then
6806 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6807 end if;
6808
6809 Free (LSN);
6810 end if;
6811
6812 LSN := new String'(Name_Buffer (1 .. Name_Len));
6813 end;
6814 end if;
6815 end Check_Subprogram_Order;
6816
6817 ------------------------------
6818 -- Check_Subtype_Conformant --
6819 ------------------------------
6820
6821 procedure Check_Subtype_Conformant
ce2b6ba5
JM
6822 (New_Id : Entity_Id;
6823 Old_Id : Entity_Id;
6824 Err_Loc : Node_Id := Empty;
f307415a
AC
6825 Skip_Controlling_Formals : Boolean := False;
6826 Get_Inst : Boolean := False)
996ae0b0
RK
6827 is
6828 Result : Boolean;
81db9d77 6829 pragma Warnings (Off, Result);
996ae0b0
RK
6830 begin
6831 Check_Conformance
ce2b6ba5 6832 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
f307415a
AC
6833 Skip_Controlling_Formals => Skip_Controlling_Formals,
6834 Get_Inst => Get_Inst);
996ae0b0
RK
6835 end Check_Subtype_Conformant;
6836
42f11e4c
AC
6837 -----------------------------------
6838 -- Check_Synchronized_Overriding --
6839 -----------------------------------
6840
6841 procedure Check_Synchronized_Overriding
6842 (Def_Id : Entity_Id;
6843 Overridden_Subp : out Entity_Id)
6844 is
6845 Ifaces_List : Elist_Id;
6846 In_Scope : Boolean;
6847 Typ : Entity_Id;
6848
6849 function Matches_Prefixed_View_Profile
6850 (Prim_Params : List_Id;
6851 Iface_Params : List_Id) return Boolean;
6852 -- Determine whether a subprogram's parameter profile Prim_Params
6853 -- matches that of a potentially overridden interface subprogram
6854 -- Iface_Params. Also determine if the type of first parameter of
6855 -- Iface_Params is an implemented interface.
6856
6857 -----------------------------------
6858 -- Matches_Prefixed_View_Profile --
6859 -----------------------------------
6860
6861 function Matches_Prefixed_View_Profile
6862 (Prim_Params : List_Id;
6863 Iface_Params : List_Id) return Boolean
6864 is
42f11e4c
AC
6865 function Is_Implemented
6866 (Ifaces_List : Elist_Id;
6867 Iface : Entity_Id) return Boolean;
6868 -- Determine if Iface is implemented by the current task or
6869 -- protected type.
6870
6871 --------------------
6872 -- Is_Implemented --
6873 --------------------
6874
6875 function Is_Implemented
6876 (Ifaces_List : Elist_Id;
6877 Iface : Entity_Id) return Boolean
6878 is
6879 Iface_Elmt : Elmt_Id;
6880
6881 begin
6882 Iface_Elmt := First_Elmt (Ifaces_List);
6883 while Present (Iface_Elmt) loop
6884 if Node (Iface_Elmt) = Iface then
6885 return True;
6886 end if;
6887
6888 Next_Elmt (Iface_Elmt);
6889 end loop;
6890
6891 return False;
6892 end Is_Implemented;
6893
bac5ba15
AC
6894 -- Local variables
6895
6896 Iface_Id : Entity_Id;
6897 Iface_Param : Node_Id;
6898 Iface_Typ : Entity_Id;
6899 Prim_Id : Entity_Id;
6900 Prim_Param : Node_Id;
6901 Prim_Typ : Entity_Id;
6902
42f11e4c
AC
6903 -- Start of processing for Matches_Prefixed_View_Profile
6904
6905 begin
6906 Iface_Param := First (Iface_Params);
6907 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
6908
6909 if Is_Access_Type (Iface_Typ) then
6910 Iface_Typ := Designated_Type (Iface_Typ);
6911 end if;
6912
6913 Prim_Param := First (Prim_Params);
6914
bac5ba15
AC
6915 -- The first parameter of the potentially overridden subprogram must
6916 -- be an interface implemented by Prim.
42f11e4c
AC
6917
6918 if not Is_Interface (Iface_Typ)
6919 or else not Is_Implemented (Ifaces_List, Iface_Typ)
6920 then
6921 return False;
6922 end if;
6923
ca90b962
GD
6924 -- The checks on the object parameters are done, so move on to the
6925 -- rest of the parameters.
42f11e4c
AC
6926
6927 if not In_Scope then
6928 Prim_Param := Next (Prim_Param);
6929 end if;
6930
6931 Iface_Param := Next (Iface_Param);
6932 while Present (Iface_Param) and then Present (Prim_Param) loop
6933 Iface_Id := Defining_Identifier (Iface_Param);
6934 Iface_Typ := Find_Parameter_Type (Iface_Param);
6935
6936 Prim_Id := Defining_Identifier (Prim_Param);
6937 Prim_Typ := Find_Parameter_Type (Prim_Param);
6938
6939 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
6940 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
6941 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
6942 then
6943 Iface_Typ := Designated_Type (Iface_Typ);
bac5ba15 6944 Prim_Typ := Designated_Type (Prim_Typ);
42f11e4c
AC
6945 end if;
6946
6947 -- Case of multiple interface types inside a parameter profile
6948
6949 -- (Obj_Param : in out Iface; ...; Param : Iface)
6950
bac5ba15
AC
6951 -- If the interface type is implemented, then the matching type in
6952 -- the primitive should be the implementing record type.
42f11e4c
AC
6953
6954 if Ekind (Iface_Typ) = E_Record_Type
6955 and then Is_Interface (Iface_Typ)
6956 and then Is_Implemented (Ifaces_List, Iface_Typ)
6957 then
6958 if Prim_Typ /= Typ then
6959 return False;
6960 end if;
6961
6962 -- The two parameters must be both mode and subtype conformant
6963
6964 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
6965 or else not
6966 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
6967 then
6968 return False;
6969 end if;
6970
6971 Next (Iface_Param);
6972 Next (Prim_Param);
6973 end loop;
6974
6975 -- One of the two lists contains more parameters than the other
6976
6977 if Present (Iface_Param) or else Present (Prim_Param) then
6978 return False;
6979 end if;
6980
6981 return True;
6982 end Matches_Prefixed_View_Profile;
6983
6984 -- Start of processing for Check_Synchronized_Overriding
6985
6986 begin
6987 Overridden_Subp := Empty;
6988
6989 -- Def_Id must be an entry or a subprogram. We should skip predefined
ca90b962 6990 -- primitives internally generated by the front end; however at this
42f11e4c
AC
6991 -- stage predefined primitives are still not fully decorated. As a
6992 -- minor optimization we skip here internally generated subprograms.
6993
6994 if (Ekind (Def_Id) /= E_Entry
6995 and then Ekind (Def_Id) /= E_Function
6996 and then Ekind (Def_Id) /= E_Procedure)
6997 or else not Comes_From_Source (Def_Id)
6998 then
6999 return;
7000 end if;
7001
bac5ba15
AC
7002 -- Search for the concurrent declaration since it contains the list of
7003 -- all implemented interfaces. In this case, the subprogram is declared
7004 -- within the scope of a protected or a task type.
42f11e4c
AC
7005
7006 if Present (Scope (Def_Id))
7007 and then Is_Concurrent_Type (Scope (Def_Id))
7008 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7009 then
7010 Typ := Scope (Def_Id);
7011 In_Scope := True;
7012
7013 -- The enclosing scope is not a synchronized type and the subprogram
7014 -- has no formals.
7015
7016 elsif No (First_Formal (Def_Id)) then
7017 return;
7018
7019 -- The subprogram has formals and hence it may be a primitive of a
7020 -- concurrent type.
7021
7022 else
7023 Typ := Etype (First_Formal (Def_Id));
7024
7025 if Is_Access_Type (Typ) then
7026 Typ := Directly_Designated_Type (Typ);
7027 end if;
7028
7029 if Is_Concurrent_Type (Typ)
7030 and then not Is_Generic_Actual_Type (Typ)
7031 then
7032 In_Scope := False;
7033
bac5ba15
AC
7034 -- This case occurs when the concurrent type is declared within a
7035 -- generic unit. As a result the corresponding record has been built
7036 -- and used as the type of the first formal, we just have to retrieve
7037 -- the corresponding concurrent type.
42f11e4c
AC
7038
7039 elsif Is_Concurrent_Record_Type (Typ)
7040 and then not Is_Class_Wide_Type (Typ)
7041 and then Present (Corresponding_Concurrent_Type (Typ))
7042 then
7043 Typ := Corresponding_Concurrent_Type (Typ);
7044 In_Scope := False;
7045
7046 else
7047 return;
7048 end if;
7049 end if;
7050
ca90b962
GD
7051 -- There is no overriding to check if this is an inherited operation in
7052 -- a type derivation for a generic actual.
42f11e4c
AC
7053
7054 Collect_Interfaces (Typ, Ifaces_List);
7055
7056 if Is_Empty_Elmt_List (Ifaces_List) then
7057 return;
7058 end if;
7059
7060 -- Determine whether entry or subprogram Def_Id overrides a primitive
7061 -- operation that belongs to one of the interfaces in Ifaces_List.
7062
7063 declare
7064 Candidate : Entity_Id := Empty;
7065 Hom : Entity_Id := Empty;
7066 Subp : Entity_Id := Empty;
7067
7068 begin
bac5ba15
AC
7069 -- Traverse the homonym chain, looking for a potentially overridden
7070 -- subprogram that belongs to an implemented interface.
42f11e4c
AC
7071
7072 Hom := Current_Entity_In_Scope (Def_Id);
7073 while Present (Hom) loop
7074 Subp := Hom;
7075
7076 if Subp = Def_Id
7077 or else not Is_Overloadable (Subp)
7078 or else not Is_Primitive (Subp)
7079 or else not Is_Dispatching_Operation (Subp)
7080 or else not Present (Find_Dispatching_Type (Subp))
7081 or else not Is_Interface (Find_Dispatching_Type (Subp))
7082 then
7083 null;
7084
bac5ba15
AC
7085 -- Entries and procedures can override abstract or null interface
7086 -- procedures.
42f11e4c 7087
bac5ba15 7088 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
42f11e4c
AC
7089 and then Ekind (Subp) = E_Procedure
7090 and then Matches_Prefixed_View_Profile
7091 (Parameter_Specifications (Parent (Def_Id)),
7092 Parameter_Specifications (Parent (Subp)))
7093 then
7094 Candidate := Subp;
7095
7096 -- For an overridden subprogram Subp, check whether the mode
bac5ba15
AC
7097 -- of its first parameter is correct depending on the kind of
7098 -- synchronized type.
42f11e4c
AC
7099
7100 declare
7101 Formal : constant Node_Id := First_Formal (Candidate);
7102
7103 begin
7104 -- In order for an entry or a protected procedure to
bac5ba15 7105 -- override, the first parameter of the overridden routine
ca90b962 7106 -- must be of mode "out", "in out", or access-to-variable.
42f11e4c
AC
7107
7108 if Ekind_In (Candidate, E_Entry, E_Procedure)
7109 and then Is_Protected_Type (Typ)
7110 and then Ekind (Formal) /= E_In_Out_Parameter
7111 and then Ekind (Formal) /= E_Out_Parameter
7112 and then Nkind (Parameter_Type (Parent (Formal))) /=
7113 N_Access_Definition
7114 then
7115 null;
7116
bac5ba15
AC
7117 -- All other cases are OK since a task entry or routine does
7118 -- not have a restriction on the mode of the first parameter
7119 -- of the overridden interface routine.
42f11e4c
AC
7120
7121 else
7122 Overridden_Subp := Candidate;
7123 return;
7124 end if;
7125 end;
7126
7127 -- Functions can override abstract interface functions
7128
7129 elsif Ekind (Def_Id) = E_Function
7130 and then Ekind (Subp) = E_Function
7131 and then Matches_Prefixed_View_Profile
7132 (Parameter_Specifications (Parent (Def_Id)),
7133 Parameter_Specifications (Parent (Subp)))
ca90b962 7134 and then Etype (Def_Id) = Etype (Subp)
42f11e4c
AC
7135 then
7136 Candidate := Subp;
7137
7138 -- If an inherited subprogram is implemented by a protected
7139 -- function, then the first parameter of the inherited
bac5ba15 7140 -- subprogram shall be of mode in, but not an access-to-
ca90b962 7141 -- variable parameter (RM 9.4(11/9)).
42f11e4c
AC
7142
7143 if Present (First_Formal (Subp))
7144 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7145 and then
7146 (not Is_Access_Type (Etype (First_Formal (Subp)))
7147 or else
7148 Is_Access_Constant (Etype (First_Formal (Subp))))
7149 then
7150 Overridden_Subp := Subp;
7151 return;
7152 end if;
7153 end if;
7154
7155 Hom := Homonym (Hom);
7156 end loop;
7157
7158 -- After examining all candidates for overriding, we are left with
ca90b962 7159 -- the best match, which is a mode-incompatible interface routine.
42f11e4c
AC
7160
7161 if In_Scope and then Present (Candidate) then
7162 Error_Msg_PT (Def_Id, Candidate);
7163 end if;
7164
7165 Overridden_Subp := Candidate;
7166 return;
7167 end;
7168 end Check_Synchronized_Overriding;
7169
996ae0b0
RK
7170 ---------------------------
7171 -- Check_Type_Conformant --
7172 ---------------------------
7173
7174 procedure Check_Type_Conformant
7175 (New_Id : Entity_Id;
7176 Old_Id : Entity_Id;
7177 Err_Loc : Node_Id := Empty)
7178 is
7179 Result : Boolean;
81db9d77 7180 pragma Warnings (Off, Result);
996ae0b0
RK
7181 begin
7182 Check_Conformance
7183 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7184 end Check_Type_Conformant;
7185
806f6d37
AC
7186 ---------------------------
7187 -- Can_Override_Operator --
7188 ---------------------------
7189
7190 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7191 Typ : Entity_Id;
f146302c 7192
806f6d37
AC
7193 begin
7194 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7195 return False;
7196
7197 else
7198 Typ := Base_Type (Etype (First_Formal (Subp)));
7199
f146302c
AC
7200 -- Check explicitly that the operation is a primitive of the type
7201
806f6d37 7202 return Operator_Matches_Spec (Subp, Subp)
f146302c 7203 and then not Is_Generic_Type (Typ)
806f6d37
AC
7204 and then Scope (Subp) = Scope (Typ)
7205 and then not Is_Class_Wide_Type (Typ);
7206 end if;
7207 end Can_Override_Operator;
7208
996ae0b0
RK
7209 ----------------------
7210 -- Conforming_Types --
7211 ----------------------
7212
7213 function Conforming_Types
7214 (T1 : Entity_Id;
7215 T2 : Entity_Id;
7216 Ctype : Conformance_Type;
d05ef0ab 7217 Get_Inst : Boolean := False) return Boolean
996ae0b0 7218 is
0310af44
AC
7219 function Base_Types_Match
7220 (Typ_1 : Entity_Id;
7221 Typ_2 : Entity_Id) return Boolean;
7222 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7223 -- in different scopes (e.g. parent and child instances), then verify
7224 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7225 -- the same subtype chain. The whole purpose of this procedure is to
7226 -- prevent spurious ambiguities in an instantiation that may arise if
7227 -- two distinct generic types are instantiated with the same actual.
7228
7229 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
7230 -- An access parameter can designate an incomplete type. If the
7231 -- incomplete type is the limited view of a type from a limited_
0310af44
AC
7232 -- with_clause, check whether the non-limited view is available.
7233 -- If it is a (non-limited) incomplete type, get the full view.
7234
7235 function Matches_Limited_With_View
7236 (Typ_1 : Entity_Id;
7237 Typ_2 : Entity_Id) return Boolean;
7238 -- Returns True if and only if either Typ_1 denotes a limited view of
7239 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7240 -- the limited with view of a type is used in a subprogram declaration
7241 -- and the subprogram body is in the scope of a regular with clause for
7242 -- the same unit. In such a case, the two type entities are considered
0a36105d 7243 -- identical for purposes of conformance checking.
996ae0b0
RK
7244
7245 ----------------------
7246 -- Base_Types_Match --
7247 ----------------------
7248
0310af44
AC
7249 function Base_Types_Match
7250 (Typ_1 : Entity_Id;
7251 Typ_2 : Entity_Id) return Boolean
7252 is
7253 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7254 Base_2 : constant Entity_Id := Base_Type (Typ_2);
8fde064e 7255
996ae0b0 7256 begin
0310af44 7257 if Typ_1 = Typ_2 then
996ae0b0
RK
7258 return True;
7259
0310af44 7260 elsif Base_1 = Base_2 then
996ae0b0 7261
0a36105d 7262 -- The following is too permissive. A more precise test should
996ae0b0
RK
7263 -- check that the generic actual is an ancestor subtype of the
7264 -- other ???.
586ecbf3 7265
70f4ad20
AC
7266 -- See code in Find_Corresponding_Spec that applies an additional
7267 -- filter to handle accidental amiguities in instances.
996ae0b0 7268
0310af44
AC
7269 return
7270 not Is_Generic_Actual_Type (Typ_1)
7271 or else not Is_Generic_Actual_Type (Typ_2)
7272 or else Scope (Typ_1) /= Scope (Typ_2);
996ae0b0 7273
0310af44 7274 -- If Typ_2 is a generic actual type it is declared as the subtype of
2995860f
AC
7275 -- the actual. If that actual is itself a subtype we need to use its
7276 -- own base type to check for compatibility.
8fde064e 7277
0310af44
AC
7278 elsif Ekind (Base_2) = Ekind (Typ_2)
7279 and then Base_1 = Base_Type (Base_2)
7280 then
8fde064e
AC
7281 return True;
7282
0310af44
AC
7283 elsif Ekind (Base_1) = Ekind (Typ_1)
7284 and then Base_2 = Base_Type (Base_1)
7285 then
8fde064e
AC
7286 return True;
7287
0a36105d
JM
7288 else
7289 return False;
7290 end if;
7291 end Base_Types_Match;
aa720a54 7292
5d37ba92
ES
7293 --------------------------
7294 -- Find_Designated_Type --
7295 --------------------------
7296
0310af44 7297 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
5d37ba92
ES
7298 Desig : Entity_Id;
7299
7300 begin
0310af44 7301 Desig := Directly_Designated_Type (Typ);
5d37ba92
ES
7302
7303 if Ekind (Desig) = E_Incomplete_Type then
7304
7305 -- If regular incomplete type, get full view if available
7306
7307 if Present (Full_View (Desig)) then
7308 Desig := Full_View (Desig);
7309
7310 -- If limited view of a type, get non-limited view if available,
7311 -- and check again for a regular incomplete type.
7312
7313 elsif Present (Non_Limited_View (Desig)) then
7314 Desig := Get_Full_View (Non_Limited_View (Desig));
7315 end if;
7316 end if;
7317
7318 return Desig;
7319 end Find_Designated_Type;
7320
0a36105d
JM
7321 -------------------------------
7322 -- Matches_Limited_With_View --
7323 -------------------------------
7324
0310af44
AC
7325 function Matches_Limited_With_View
7326 (Typ_1 : Entity_Id;
7327 Typ_2 : Entity_Id) return Boolean
7328 is
7329 function Is_Matching_Limited_View
7330 (Typ : Entity_Id;
7331 View : Entity_Id) return Boolean;
7332 -- Determine whether non-limited view View denotes type Typ in some
7333 -- conformant fashion.
7334
7335 ------------------------------
7336 -- Is_Matching_Limited_View --
7337 ------------------------------
7338
7339 function Is_Matching_Limited_View
7340 (Typ : Entity_Id;
7341 View : Entity_Id) return Boolean
7342 is
7343 Root_Typ : Entity_Id;
7344 Root_View : Entity_Id;
7345
7346 begin
7347 -- The non-limited view directly denotes the type
7348
7349 if Typ = View then
7350 return True;
7351
7352 -- The type is a subtype of the non-limited view
7353
7354 elsif Is_Subtype_Of (Typ, View) then
7355 return True;
7356
7357 -- Both the non-limited view and the type denote class-wide types
7358
7359 elsif Is_Class_Wide_Type (Typ)
7360 and then Is_Class_Wide_Type (View)
7361 then
7362 Root_Typ := Root_Type (Typ);
7363 Root_View := Root_Type (View);
7364
7365 if Root_Typ = Root_View then
7366 return True;
7367
7368 -- An incomplete tagged type and its full view may receive two
7369 -- distinct class-wide types when the related package has not
7370 -- been analyzed yet.
7371
7372 -- package Pack is
7373 -- type T is tagged; -- CW_1
7374 -- type T is tagged null record; -- CW_2
7375 -- end Pack;
7376
7377 -- This is because the package lacks any semantic information
7378 -- that may eventually link both views of T. As a consequence,
7379 -- a client of the limited view of Pack will see CW_2 while a
7380 -- client of the non-limited view of Pack will see CW_1.
7381
7382 elsif Is_Incomplete_Type (Root_Typ)
7383 and then Present (Full_View (Root_Typ))
7384 and then Full_View (Root_Typ) = Root_View
7385 then
7386 return True;
7387
7388 elsif Is_Incomplete_Type (Root_View)
7389 and then Present (Full_View (Root_View))
7390 and then Full_View (Root_View) = Root_Typ
7391 then
7392 return True;
7393 end if;
7394 end if;
7395
7396 return False;
7397 end Is_Matching_Limited_View;
7398
7399 -- Start of processing for Matches_Limited_With_View
7400
0a36105d
JM
7401 begin
7402 -- In some cases a type imported through a limited_with clause, and
0310af44 7403 -- its non-limited view are both visible, for example in an anonymous
28fa5430
AC
7404 -- access-to-class-wide type in a formal, or when building the body
7405 -- for a subprogram renaming after the subprogram has been frozen.
0310af44 7406 -- In these cases both entities designate the same type. In addition,
28fa5430
AC
7407 -- if one of them is an actual in an instance, it may be a subtype of
7408 -- the non-limited view of the other.
7409
0310af44
AC
7410 if From_Limited_With (Typ_1)
7411 and then From_Limited_With (Typ_2)
7412 and then Available_View (Typ_1) = Available_View (Typ_2)
28fa5430 7413 then
aa720a54
AC
7414 return True;
7415
0310af44
AC
7416 elsif From_Limited_With (Typ_1) then
7417 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
3e24afaa 7418
0310af44
AC
7419 elsif From_Limited_With (Typ_2) then
7420 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
41251c60 7421
996ae0b0
RK
7422 else
7423 return False;
7424 end if;
0a36105d 7425 end Matches_Limited_With_View;
996ae0b0 7426
0310af44
AC
7427 -- Local variables
7428
7429 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7430
7431 Type_1 : Entity_Id := T1;
7432 Type_2 : Entity_Id := T2;
7433
ec4867fa 7434 -- Start of processing for Conforming_Types
758c442c 7435
996ae0b0 7436 begin
8fde064e
AC
7437 -- The context is an instance association for a formal access-to-
7438 -- subprogram type; the formal parameter types require mapping because
7439 -- they may denote other formal parameters of the generic unit.
996ae0b0
RK
7440
7441 if Get_Inst then
7442 Type_1 := Get_Instance_Of (T1);
7443 Type_2 := Get_Instance_Of (T2);
7444 end if;
7445
0a36105d
JM
7446 -- If one of the types is a view of the other introduced by a limited
7447 -- with clause, treat these as conforming for all purposes.
996ae0b0 7448
0a36105d
JM
7449 if Matches_Limited_With_View (T1, T2) then
7450 return True;
7451
7452 elsif Base_Types_Match (Type_1, Type_2) then
7738270b
AC
7453 if Ctype <= Mode_Conformant then
7454 return True;
7455
7456 else
7457 return
7458 Subtypes_Statically_Match (Type_1, Type_2)
7459 and then Dimensions_Match (Type_1, Type_2);
7460 end if;
996ae0b0
RK
7461
7462 elsif Is_Incomplete_Or_Private_Type (Type_1)
7463 and then Present (Full_View (Type_1))
7464 and then Base_Types_Match (Full_View (Type_1), Type_2)
7465 then
7738270b
AC
7466 return
7467 Ctype <= Mode_Conformant
7468 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
996ae0b0
RK
7469
7470 elsif Ekind (Type_2) = E_Incomplete_Type
7471 and then Present (Full_View (Type_2))
7472 and then Base_Types_Match (Type_1, Full_View (Type_2))
7473 then
7738270b
AC
7474 return
7475 Ctype <= Mode_Conformant
7476 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
7477
7478 elsif Is_Private_Type (Type_2)
7479 and then In_Instance
7480 and then Present (Full_View (Type_2))
7481 and then Base_Types_Match (Type_1, Full_View (Type_2))
7482 then
7738270b
AC
7483 return
7484 Ctype <= Mode_Conformant
7485 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
167b47d9 7486
7727a9c1
AC
7487 -- Another confusion between views in a nested instance with an
7488 -- actual private type whose full view is not in scope.
7489
7490 elsif Ekind (Type_2) = E_Private_Subtype
7491 and then In_Instance
7492 and then Etype (Type_2) = Type_1
7493 then
7494 return True;
7495
088c7e1b 7496 -- In Ada 2012, incomplete types (including limited views) can appear
167b47d9
AC
7497 -- as actuals in instantiations.
7498
7499 elsif Is_Incomplete_Type (Type_1)
7500 and then Is_Incomplete_Type (Type_2)
7501 and then (Used_As_Generic_Actual (Type_1)
7502 or else Used_As_Generic_Actual (Type_2))
7503 then
7504 return True;
996ae0b0
RK
7505 end if;
7506
0a36105d 7507 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
466c2127
AC
7508 -- treated recursively because they carry a signature. As far as
7509 -- conformance is concerned, convention plays no role, and either
7510 -- or both could be access to protected subprograms.
af4b9434
AC
7511
7512 Are_Anonymous_Access_To_Subprogram_Types :=
466c2127
AC
7513 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7514 E_Anonymous_Access_Protected_Subprogram_Type)
f937473f 7515 and then
466c2127
AC
7516 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7517 E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 7518
996ae0b0 7519 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
7520 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7521 -- the base types because we may have built internal subtype entities
7522 -- to handle null-excluding types (see Process_Formals).
996ae0b0 7523
5d37ba92
ES
7524 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7525 and then
7526 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8fde064e
AC
7527
7528 -- Ada 2005 (AI-254)
7529
7530 or else Are_Anonymous_Access_To_Subprogram_Types
996ae0b0
RK
7531 then
7532 declare
7533 Desig_1 : Entity_Id;
7534 Desig_2 : Entity_Id;
7535
7536 begin
885c4871 7537 -- In Ada 2005, access constant indicators must match for
5d37ba92 7538 -- subtype conformance.
9dcb52e1 7539
0791fbe9 7540 if Ada_Version >= Ada_2005
5d37ba92
ES
7541 and then Ctype >= Subtype_Conformant
7542 and then
7543 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7544 then
7545 return False;
996ae0b0
RK
7546 end if;
7547
5d37ba92 7548 Desig_1 := Find_Designated_Type (Type_1);
5d37ba92 7549 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 7550
5d37ba92 7551 -- If the context is an instance association for a formal
82c80734
RD
7552 -- access-to-subprogram type; formal access parameter designated
7553 -- types require mapping because they may denote other formal
7554 -- parameters of the generic unit.
996ae0b0
RK
7555
7556 if Get_Inst then
7557 Desig_1 := Get_Instance_Of (Desig_1);
7558 Desig_2 := Get_Instance_Of (Desig_2);
7559 end if;
7560
82c80734
RD
7561 -- It is possible for a Class_Wide_Type to be introduced for an
7562 -- incomplete type, in which case there is a separate class_ wide
7563 -- type for the full view. The types conform if their Etypes
7564 -- conform, i.e. one may be the full view of the other. This can
7565 -- only happen in the context of an access parameter, other uses
7566 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 7567
fbf5a39b 7568 if Is_Class_Wide_Type (Desig_1)
4adf3c50
AC
7569 and then
7570 Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
7571 then
7572 return
fbf5a39b
AC
7573 Conforming_Types
7574 (Etype (Base_Type (Desig_1)),
7575 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
7576
7577 elsif Are_Anonymous_Access_To_Subprogram_Types then
0791fbe9 7578 if Ada_Version < Ada_2005 then
7738270b
AC
7579 return
7580 Ctype = Type_Conformant
7581 or else Subtypes_Statically_Match (Desig_1, Desig_2);
af4b9434 7582
758c442c
GD
7583 -- We must check the conformance of the signatures themselves
7584
7585 else
7586 declare
7587 Conformant : Boolean;
7588 begin
7589 Check_Conformance
7590 (Desig_1, Desig_2, Ctype, False, Conformant);
7591 return Conformant;
7592 end;
7593 end if;
7594
167b47d9
AC
7595 -- A limited view of an actual matches the corresponding
7596 -- incomplete formal.
7597
7598 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7599 and then From_Limited_With (Desig_2)
7600 and then Used_As_Generic_Actual (Etype (Desig_2))
7601 then
7602 return True;
7603
996ae0b0
RK
7604 else
7605 return Base_Type (Desig_1) = Base_Type (Desig_2)
7606 and then (Ctype = Type_Conformant
8fde064e
AC
7607 or else
7608 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
7609 end if;
7610 end;
7611
7612 -- Otherwise definitely no match
7613
7614 else
c8ef728f
ES
7615 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7616 and then Is_Access_Type (Type_2))
7617 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8fde064e 7618 and then Is_Access_Type (Type_1)))
c8ef728f
ES
7619 and then
7620 Conforming_Types
7621 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7622 then
7623 May_Hide_Profile := True;
7624 end if;
7625
996ae0b0
RK
7626 return False;
7627 end if;
996ae0b0
RK
7628 end Conforming_Types;
7629
7630 --------------------------
7631 -- Create_Extra_Formals --
7632 --------------------------
7633
7634 procedure Create_Extra_Formals (E : Entity_Id) is
ec4867fa 7635 First_Extra : Entity_Id := Empty;
8eb8461d
AC
7636 Formal : Entity_Id;
7637 Last_Extra : Entity_Id := Empty;
996ae0b0 7638
ec4867fa
ES
7639 function Add_Extra_Formal
7640 (Assoc_Entity : Entity_Id;
7641 Typ : Entity_Id;
7642 Scope : Entity_Id;
7643 Suffix : String) return Entity_Id;
7644 -- Add an extra formal to the current list of formals and extra formals.
7645 -- The extra formal is added to the end of the list of extra formals,
7646 -- and also returned as the result. These formals are always of mode IN.
7647 -- The new formal has the type Typ, is declared in Scope, and its name
7648 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
cd5a9750
AC
7649 -- The following suffixes are currently used. They should not be changed
7650 -- without coordinating with CodePeer, which makes use of these to
7651 -- provide better messages.
7652
d92eccc3
AC
7653 -- O denotes the Constrained bit.
7654 -- L denotes the accessibility level.
cd5a9750
AC
7655 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7656 -- the full list in exp_ch6.BIP_Formal_Kind.
996ae0b0 7657
fbf5a39b
AC
7658 ----------------------
7659 -- Add_Extra_Formal --
7660 ----------------------
7661
ec4867fa
ES
7662 function Add_Extra_Formal
7663 (Assoc_Entity : Entity_Id;
7664 Typ : Entity_Id;
7665 Scope : Entity_Id;
7666 Suffix : String) return Entity_Id
7667 is
996ae0b0 7668 EF : constant Entity_Id :=
ec4867fa
ES
7669 Make_Defining_Identifier (Sloc (Assoc_Entity),
7670 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 7671 Suffix => Suffix));
996ae0b0
RK
7672
7673 begin
82c80734
RD
7674 -- A little optimization. Never generate an extra formal for the
7675 -- _init operand of an initialization procedure, since it could
7676 -- never be used.
996ae0b0
RK
7677
7678 if Chars (Formal) = Name_uInit then
7679 return Empty;
7680 end if;
7681
7682 Set_Ekind (EF, E_In_Parameter);
7683 Set_Actual_Subtype (EF, Typ);
7684 Set_Etype (EF, Typ);
ec4867fa 7685 Set_Scope (EF, Scope);
996ae0b0
RK
7686 Set_Mechanism (EF, Default_Mechanism);
7687 Set_Formal_Validity (EF);
7688
ec4867fa
ES
7689 if No (First_Extra) then
7690 First_Extra := EF;
7691 Set_Extra_Formals (Scope, First_Extra);
7692 end if;
7693
7694 if Present (Last_Extra) then
7695 Set_Extra_Formal (Last_Extra, EF);
7696 end if;
7697
996ae0b0 7698 Last_Extra := EF;
ec4867fa 7699
996ae0b0
RK
7700 return EF;
7701 end Add_Extra_Formal;
7702
8eb8461d
AC
7703 -- Local variables
7704
7705 Formal_Type : Entity_Id;
7706 P_Formal : Entity_Id := Empty;
7707
996ae0b0
RK
7708 -- Start of processing for Create_Extra_Formals
7709
7710 begin
8fde064e
AC
7711 -- We never generate extra formals if expansion is not active because we
7712 -- don't need them unless we are generating code.
f937473f
RD
7713
7714 if not Expander_Active then
7715 return;
7716 end if;
7717
e2441021
AC
7718 -- No need to generate extra formals in interface thunks whose target
7719 -- primitive has no extra formals.
7720
7721 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7722 return;
7723 end if;
7724
82c80734 7725 -- If this is a derived subprogram then the subtypes of the parent
16b05213 7726 -- subprogram's formal parameters will be used to determine the need
82c80734 7727 -- for extra formals.
996ae0b0
RK
7728
7729 if Is_Overloadable (E) and then Present (Alias (E)) then
7730 P_Formal := First_Formal (Alias (E));
7731 end if;
7732
996ae0b0
RK
7733 Formal := First_Formal (E);
7734 while Present (Formal) loop
7735 Last_Extra := Formal;
7736 Next_Formal (Formal);
7737 end loop;
7738
03a72cd3 7739 -- If Extra_Formals were already created, don't do it again. This
82c80734
RD
7740 -- situation may arise for subprogram types created as part of
7741 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0 7742
8fde064e 7743 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
996ae0b0
RK
7744 return;
7745 end if;
7746
19590d70
GD
7747 -- If the subprogram is a predefined dispatching subprogram then don't
7748 -- generate any extra constrained or accessibility level formals. In
7749 -- general we suppress these for internal subprograms (by not calling
7750 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7751 -- generated stream attributes do get passed through because extra
7752 -- build-in-place formals are needed in some cases (limited 'Input).
7753
bac7206d 7754 if Is_Predefined_Internal_Operation (E) then
63585f75 7755 goto Test_For_Func_Result_Extras;
19590d70
GD
7756 end if;
7757
996ae0b0 7758 Formal := First_Formal (E);
996ae0b0
RK
7759 while Present (Formal) loop
7760
7761 -- Create extra formal for supporting the attribute 'Constrained.
7762 -- The case of a private type view without discriminants also
7763 -- requires the extra formal if the underlying type has defaulted
7764 -- discriminants.
7765
7766 if Ekind (Formal) /= E_In_Parameter then
7767 if Present (P_Formal) then
7768 Formal_Type := Etype (P_Formal);
7769 else
7770 Formal_Type := Etype (Formal);
7771 end if;
7772
5d09245e
AC
7773 -- Do not produce extra formals for Unchecked_Union parameters.
7774 -- Jump directly to the end of the loop.
7775
7776 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7777 goto Skip_Extra_Formal_Generation;
7778 end if;
7779
996ae0b0
RK
7780 if not Has_Discriminants (Formal_Type)
7781 and then Ekind (Formal_Type) in Private_Kind
7782 and then Present (Underlying_Type (Formal_Type))
7783 then
7784 Formal_Type := Underlying_Type (Formal_Type);
7785 end if;
7786
5e5db3b4
GD
7787 -- Suppress the extra formal if formal's subtype is constrained or
7788 -- indefinite, or we're compiling for Ada 2012 and the underlying
7789 -- type is tagged and limited. In Ada 2012, a limited tagged type
7790 -- can have defaulted discriminants, but 'Constrained is required
7791 -- to return True, so the formal is never needed (see AI05-0214).
7792 -- Note that this ensures consistency of calling sequences for
7793 -- dispatching operations when some types in a class have defaults
7794 -- on discriminants and others do not (and requiring the extra
7795 -- formal would introduce distributed overhead).
7796
b5bdffcc
AC
7797 -- If the type does not have a completion yet, treat as prior to
7798 -- Ada 2012 for consistency.
7799
996ae0b0 7800 if Has_Discriminants (Formal_Type)
f937473f 7801 and then not Is_Constrained (Formal_Type)
83496138 7802 and then Is_Definite_Subtype (Formal_Type)
5e5db3b4 7803 and then (Ada_Version < Ada_2012
b5bdffcc
AC
7804 or else No (Underlying_Type (Formal_Type))
7805 or else not
7806 (Is_Limited_Type (Formal_Type)
7807 and then
7808 (Is_Tagged_Type
7809 (Underlying_Type (Formal_Type)))))
996ae0b0
RK
7810 then
7811 Set_Extra_Constrained
d92eccc3 7812 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
996ae0b0
RK
7813 end if;
7814 end if;
7815
0a36105d
JM
7816 -- Create extra formal for supporting accessibility checking. This
7817 -- is done for both anonymous access formals and formals of named
7818 -- access types that are marked as controlling formals. The latter
7819 -- case can occur when Expand_Dispatching_Call creates a subprogram
7820 -- type and substitutes the types of access-to-class-wide actuals
7821 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
7822 -- Base_Type is applied because in cases where there is a null
7823 -- exclusion the formal may have an access subtype.
996ae0b0
RK
7824
7825 -- This is suppressed if we specifically suppress accessibility
f937473f 7826 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
7827 -- package in which it resides. However, we do not suppress it
7828 -- simply if the scope has accessibility checks suppressed, since
7829 -- this could cause trouble when clients are compiled with a
7830 -- different suppression setting. The explicit checks at the
7831 -- package level are safe from this point of view.
996ae0b0 7832
5d37ba92 7833 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 7834 or else (Is_Controlling_Formal (Formal)
5d37ba92 7835 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 7836 and then not
fbf5a39b 7837 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 7838 or else
fbf5a39b 7839 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 7840 and then
c8ef728f 7841 (No (P_Formal)
996ae0b0
RK
7842 or else Present (Extra_Accessibility (P_Formal)))
7843 then
811c6a85 7844 Set_Extra_Accessibility
d92eccc3 7845 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
996ae0b0
RK
7846 end if;
7847
5d09245e
AC
7848 -- This label is required when skipping extra formal generation for
7849 -- Unchecked_Union parameters.
7850
7851 <<Skip_Extra_Formal_Generation>>
7852
f937473f
RD
7853 if Present (P_Formal) then
7854 Next_Formal (P_Formal);
7855 end if;
7856
996ae0b0
RK
7857 Next_Formal (Formal);
7858 end loop;
ec4867fa 7859
63585f75
SB
7860 <<Test_For_Func_Result_Extras>>
7861
7862 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7863 -- function call is ... determined by the point of call ...".
7864
7865 if Needs_Result_Accessibility_Level (E) then
7866 Set_Extra_Accessibility_Of_Result
7867 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7868 end if;
19590d70 7869
ec4867fa 7870 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
7871 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7872
0791fbe9 7873 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
ec4867fa 7874 declare
f937473f 7875 Result_Subt : constant Entity_Id := Etype (E);
1a36a0cd 7876 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
2fcc44fa 7877 Formal_Typ : Entity_Id;
8eb8461d 7878 Subp_Decl : Node_Id;
f937473f 7879
2fcc44fa 7880 Discard : Entity_Id;
f937473f 7881 pragma Warnings (Off, Discard);
ec4867fa
ES
7882
7883 begin
f937473f 7884 -- In the case of functions with unconstrained result subtypes,
9a1bc6d5
AC
7885 -- add a 4-state formal indicating whether the return object is
7886 -- allocated by the caller (1), or should be allocated by the
7887 -- callee on the secondary stack (2), in the global heap (3), or
7888 -- in a user-defined storage pool (4). For the moment we just use
7889 -- Natural for the type of this formal. Note that this formal
7890 -- isn't usually needed in the case where the result subtype is
7891 -- constrained, but it is needed when the function has a tagged
7892 -- result, because generally such functions can be called in a
7893 -- dispatching context and such calls must be handled like calls
7894 -- to a class-wide function.
0a36105d 7895
1bb6e262 7896 if Needs_BIP_Alloc_Form (E) then
f937473f
RD
7897 Discard :=
7898 Add_Extra_Formal
7899 (E, Standard_Natural,
7900 E, BIP_Formal_Suffix (BIP_Alloc_Form));
200b7162 7901
8417f4b2 7902 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
3e452820 7903 -- use a user-defined pool. This formal is not added on
535a8637 7904 -- ZFP as those targets do not support pools.
200b7162 7905
535a8637 7906 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8417f4b2
AC
7907 Discard :=
7908 Add_Extra_Formal
7909 (E, RTE (RE_Root_Storage_Pool_Ptr),
7910 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7911 end if;
f937473f 7912 end if;
ec4867fa 7913
df3e68b1 7914 -- In the case of functions whose result type needs finalization,
ca5af305 7915 -- add an extra formal which represents the finalization master.
df3e68b1 7916
ca5af305 7917 if Needs_BIP_Finalization_Master (E) then
f937473f
RD
7918 Discard :=
7919 Add_Extra_Formal
ca5af305
AC
7920 (E, RTE (RE_Finalization_Master_Ptr),
7921 E, BIP_Formal_Suffix (BIP_Finalization_Master));
f937473f
RD
7922 end if;
7923
94bbf008
AC
7924 -- When the result type contains tasks, add two extra formals: the
7925 -- master of the tasks to be created, and the caller's activation
7926 -- chain.
f937473f 7927
1a36a0cd 7928 if Has_Task (Full_Subt) then
f937473f
RD
7929 Discard :=
7930 Add_Extra_Formal
7931 (E, RTE (RE_Master_Id),
af89615f 7932 E, BIP_Formal_Suffix (BIP_Task_Master));
f937473f
RD
7933 Discard :=
7934 Add_Extra_Formal
7935 (E, RTE (RE_Activation_Chain_Access),
7936 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7937 end if;
ec4867fa 7938
f937473f
RD
7939 -- All build-in-place functions get an extra formal that will be
7940 -- passed the address of the return object within the caller.
ec4867fa 7941
1a36a0cd
AC
7942 Formal_Typ :=
7943 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
ec4867fa 7944
1a36a0cd
AC
7945 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7946 Set_Etype (Formal_Typ, Formal_Typ);
7947 Set_Depends_On_Private
7948 (Formal_Typ, Has_Private_Component (Formal_Typ));
7949 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7950 Set_Is_Access_Constant (Formal_Typ, False);
ec4867fa 7951
1a36a0cd
AC
7952 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7953 -- the designated type comes from the limited view (for back-end
7954 -- purposes).
ec4867fa 7955
7b56a91b
AC
7956 Set_From_Limited_With
7957 (Formal_Typ, From_Limited_With (Result_Subt));
f937473f 7958
1a36a0cd
AC
7959 Layout_Type (Formal_Typ);
7960
8eb8461d
AC
7961 -- Force the definition of the Itype in case of internal function
7962 -- calls within the same or nested scope.
7963
7964 if Is_Subprogram_Or_Generic_Subprogram (E) then
7965 Subp_Decl := Parent (E);
7966
7967 -- The insertion point for an Itype reference should be after
7968 -- the unit declaration node of the subprogram. An exception
7969 -- to this are inherited operations from a parent type in which
7970 -- case the derived type acts as their parent.
7971
7972 if Nkind_In (Subp_Decl, N_Function_Specification,
7973 N_Procedure_Specification)
7974 then
7975 Subp_Decl := Parent (Subp_Decl);
7976 end if;
7977
7978 Build_Itype_Reference (Formal_Typ, Subp_Decl);
7979 end if;
7980
1a36a0cd
AC
7981 Discard :=
7982 Add_Extra_Formal
7983 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
ec4867fa
ES
7984 end;
7985 end if;
996ae0b0
RK
7986 end Create_Extra_Formals;
7987
7988 -----------------------------
7989 -- Enter_Overloaded_Entity --
7990 -----------------------------
7991
7992 procedure Enter_Overloaded_Entity (S : Entity_Id) is
51b42ffa
AC
7993 function Matches_Predefined_Op return Boolean;
7994 -- This returns an approximation of whether S matches a predefined
7995 -- operator, based on the operator symbol, and the parameter and result
7996 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
7997
7998 ---------------------------
7999 -- Matches_Predefined_Op --
8000 ---------------------------
8001
8002 function Matches_Predefined_Op return Boolean is
8003 Formal_1 : constant Entity_Id := First_Formal (S);
8004 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8005 Op : constant Name_Id := Chars (S);
8006 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8007 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8008
8009 begin
8010 -- Binary operator
8011
8012 if Present (Formal_2) then
8013 declare
8014 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8015
8016 begin
8017 -- All but "&" and "**" have same-types parameters
8018
8019 case Op is
d8f43ee6
HK
8020 when Name_Op_Concat
8021 | Name_Op_Expon
8022 =>
51b42ffa
AC
8023 null;
8024
8025 when others =>
8026 if Type_1 /= Type_2 then
8027 return False;
8028 end if;
8029 end case;
8030
8031 -- Check parameter and result types
8032
8033 case Op is
d8f43ee6
HK
8034 when Name_Op_And
8035 | Name_Op_Or
8036 | Name_Op_Xor
8037 =>
51b42ffa
AC
8038 return
8039 Is_Boolean_Type (Result_Type)
8040 and then Result_Type = Type_1;
8041
d8f43ee6
HK
8042 when Name_Op_Mod
8043 | Name_Op_Rem
8044 =>
51b42ffa
AC
8045 return
8046 Is_Integer_Type (Result_Type)
8047 and then Result_Type = Type_1;
8048
d8f43ee6
HK
8049 when Name_Op_Add
8050 | Name_Op_Divide
8051 | Name_Op_Multiply
8052 | Name_Op_Subtract
8053 =>
51b42ffa
AC
8054 return
8055 Is_Numeric_Type (Result_Type)
8056 and then Result_Type = Type_1;
8057
d8f43ee6
HK
8058 when Name_Op_Eq
8059 | Name_Op_Ne
8060 =>
51b42ffa
AC
8061 return
8062 Is_Boolean_Type (Result_Type)
8063 and then not Is_Limited_Type (Type_1);
8064
d8f43ee6
HK
8065 when Name_Op_Ge
8066 | Name_Op_Gt
8067 | Name_Op_Le
8068 | Name_Op_Lt
8069 =>
51b42ffa
AC
8070 return
8071 Is_Boolean_Type (Result_Type)
8072 and then (Is_Array_Type (Type_1)
8073 or else Is_Scalar_Type (Type_1));
8074
8075 when Name_Op_Concat =>
8076 return Is_Array_Type (Result_Type);
8077
8078 when Name_Op_Expon =>
8079 return
8080 (Is_Integer_Type (Result_Type)
8081 or else Is_Floating_Point_Type (Result_Type))
8082 and then Result_Type = Type_1
8083 and then Type_2 = Standard_Integer;
8084
8085 when others =>
8086 raise Program_Error;
8087 end case;
8088 end;
8089
8090 -- Unary operator
8091
8092 else
8093 case Op is
d8f43ee6
HK
8094 when Name_Op_Abs
8095 | Name_Op_Add
8096 | Name_Op_Subtract
8097 =>
51b42ffa
AC
8098 return
8099 Is_Numeric_Type (Result_Type)
8100 and then Result_Type = Type_1;
8101
8102 when Name_Op_Not =>
8103 return
8104 Is_Boolean_Type (Result_Type)
8105 and then Result_Type = Type_1;
8106
8107 when others =>
8108 raise Program_Error;
8109 end case;
8110 end if;
8111 end Matches_Predefined_Op;
8112
8113 -- Local variables
8114
996ae0b0
RK
8115 E : Entity_Id := Current_Entity_In_Scope (S);
8116 C_E : Entity_Id := Current_Entity (S);
8117
51b42ffa
AC
8118 -- Start of processing for Enter_Overloaded_Entity
8119
996ae0b0
RK
8120 begin
8121 if Present (E) then
8122 Set_Has_Homonym (E);
8123 Set_Has_Homonym (S);
8124 end if;
8125
8126 Set_Is_Immediately_Visible (S);
8127 Set_Scope (S, Current_Scope);
8128
8129 -- Chain new entity if front of homonym in current scope, so that
8130 -- homonyms are contiguous.
8131
8fde064e 8132 if Present (E) and then E /= C_E then
996ae0b0
RK
8133 while Homonym (C_E) /= E loop
8134 C_E := Homonym (C_E);
8135 end loop;
8136
8137 Set_Homonym (C_E, S);
8138
8139 else
8140 E := C_E;
8141 Set_Current_Entity (S);
8142 end if;
8143
8144 Set_Homonym (S, E);
8145
2352eadb
AC
8146 if Is_Inherited_Operation (S) then
8147 Append_Inherited_Subprogram (S);
8148 else
8149 Append_Entity (S, Current_Scope);
8150 end if;
8151
996ae0b0
RK
8152 Set_Public_Status (S);
8153
8154 if Debug_Flag_E then
8155 Write_Str ("New overloaded entity chain: ");
8156 Write_Name (Chars (S));
996ae0b0 8157
82c80734 8158 E := S;
996ae0b0
RK
8159 while Present (E) loop
8160 Write_Str (" "); Write_Int (Int (E));
8161 E := Homonym (E);
8162 end loop;
8163
8164 Write_Eol;
8165 end if;
8166
8167 -- Generate warning for hiding
8168
8169 if Warn_On_Hiding
8170 and then Comes_From_Source (S)
8171 and then In_Extended_Main_Source_Unit (S)
8172 then
8173 E := S;
8174 loop
8175 E := Homonym (E);
8176 exit when No (E);
8177
7fc53871
AC
8178 -- Warn unless genuine overloading. Do not emit warning on
8179 -- hiding predefined operators in Standard (these are either an
8180 -- (artifact of our implicit declarations, or simple noise) but
8181 -- keep warning on a operator defined on a local subtype, because
8182 -- of the real danger that different operators may be applied in
8183 -- various parts of the program.
996ae0b0 8184
1f250383
AC
8185 -- Note that if E and S have the same scope, there is never any
8186 -- hiding. Either the two conflict, and the program is illegal,
8187 -- or S is overriding an implicit inherited subprogram.
8188
8189 if Scope (E) /= Scope (S)
51b42ffa
AC
8190 and then (not Is_Overloadable (E)
8191 or else Subtype_Conformant (E, S))
8192 and then (Is_Immediately_Visible (E)
8193 or else Is_Potentially_Use_Visible (S))
996ae0b0 8194 then
51b42ffa
AC
8195 if Scope (E) = Standard_Standard then
8196 if Nkind (S) = N_Defining_Operator_Symbol
8197 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8198 Scope (S)
8199 and then Matches_Predefined_Op
8200 then
8201 Error_Msg_N
8202 ("declaration of & hides predefined operator?h?", S);
8203 end if;
8204
8205 -- E not immediately within Standard
8206
8207 else
7fc53871 8208 Error_Msg_Sloc := Sloc (E);
3ccedacc 8209 Error_Msg_N ("declaration of & hides one #?h?", S);
7fc53871 8210 end if;
996ae0b0
RK
8211 end if;
8212 end loop;
8213 end if;
8214 end Enter_Overloaded_Entity;
8215
e5a58fac
AC
8216 -----------------------------
8217 -- Check_Untagged_Equality --
8218 -----------------------------
8219
8220 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8221 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8222 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8223 Obj_Decl : Node_Id;
8224
8225 begin
7c0c194b
AC
8226 -- This check applies only if we have a subprogram declaration with an
8227 -- untagged record type.
b2834fbd
AC
8228
8229 if Nkind (Decl) /= N_Subprogram_Declaration
8230 or else not Is_Record_Type (Typ)
8231 or else Is_Tagged_Type (Typ)
e5a58fac 8232 then
b2834fbd
AC
8233 return;
8234 end if;
e5a58fac 8235
b2834fbd
AC
8236 -- In Ada 2012 case, we will output errors or warnings depending on
8237 -- the setting of debug flag -gnatd.E.
8238
8239 if Ada_Version >= Ada_2012 then
8240 Error_Msg_Warn := Debug_Flag_Dot_EE;
8241
8242 -- In earlier versions of Ada, nothing to do unless we are warning on
8243 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8244
8245 else
8246 if not Warn_On_Ada_2012_Compatibility then
8247 return;
8248 end if;
8249 end if;
8250
8251 -- Cases where the type has already been frozen
e5a58fac 8252
b2834fbd
AC
8253 if Is_Frozen (Typ) then
8254
8255 -- If the type is not declared in a package, or if we are in the body
8256 -- of the package or in some other scope, the new operation is not
8257 -- primitive, and therefore legal, though suspicious. Should we
8258 -- generate a warning in this case ???
8259
8260 if Ekind (Scope (Typ)) /= E_Package
8261 or else Scope (Typ) /= Current_Scope
8262 then
8263 return;
8264
8265 -- If the type is a generic actual (sub)type, the operation is not
8266 -- primitive either because the base type is declared elsewhere.
8267
8268 elsif Is_Generic_Actual_Type (Typ) then
8269 return;
8270
8271 -- Here we have a definite error of declaration after freezing
8272
8273 else
8274 if Ada_Version >= Ada_2012 then
ae6ede77 8275 Error_Msg_NE
3ccedacc 8276 ("equality operator must be declared before type & is "
b2834fbd
AC
8277 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8278
8279 -- In Ada 2012 mode with error turned to warning, output one
8280 -- more warning to warn that the equality operation may not
8281 -- compose. This is the consequence of ignoring the error.
8282
8283 if Error_Msg_Warn then
8284 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8285 end if;
21a5b575
AC
8286
8287 else
8288 Error_Msg_NE
b2834fbd
AC
8289 ("equality operator must be declared before type& is "
8290 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8291 end if;
8292
8293 -- If we are in the package body, we could just move the
8294 -- declaration to the package spec, so add a message saying that.
8295
8296 if In_Package_Body (Scope (Typ)) then
8297 if Ada_Version >= Ada_2012 then
8298 Error_Msg_N
8299 ("\move declaration to package spec<<", Eq_Op);
8300 else
8301 Error_Msg_N
8302 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8303 end if;
21a5b575 8304
b2834fbd
AC
8305 -- Otherwise try to find the freezing point
8306
8307 else
21a5b575 8308 Obj_Decl := Next (Parent (Typ));
dbfeb4fa 8309 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
21a5b575
AC
8310 if Nkind (Obj_Decl) = N_Object_Declaration
8311 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8312 then
b2834fbd
AC
8313 -- Freezing point, output warnings
8314
8315 if Ada_Version >= Ada_2012 then
8316 Error_Msg_NE
8317 ("type& is frozen by declaration??", Obj_Decl, Typ);
8318 Error_Msg_N
8319 ("\an equality operator cannot be declared after "
8320 & "this point??",
8321 Obj_Decl);
8322 else
8323 Error_Msg_NE
8324 ("type& is frozen by declaration (Ada 2012)?y?",
8325 Obj_Decl, Typ);
8326 Error_Msg_N
8327 ("\an equality operator cannot be declared after "
8328 & "this point (Ada 2012)?y?",
8329 Obj_Decl);
8330 end if;
8331
21a5b575
AC
8332 exit;
8333 end if;
8334
8335 Next (Obj_Decl);
8336 end loop;
8337 end if;
b2834fbd 8338 end if;
e5a58fac 8339
b2834fbd
AC
8340 -- Here if type is not frozen yet. It is illegal to have a primitive
8341 -- equality declared in the private part if the type is visible.
21a5b575 8342
b2834fbd
AC
8343 elsif not In_Same_List (Parent (Typ), Decl)
8344 and then not Is_Limited_Type (Typ)
8345 then
8346 -- Shouldn't we give an RM reference here???
21a5b575 8347
b2834fbd
AC
8348 if Ada_Version >= Ada_2012 then
8349 Error_Msg_N
8350 ("equality operator appears too late<<", Eq_Op);
8351 else
8352 Error_Msg_N
8353 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
e5a58fac 8354 end if;
b2834fbd
AC
8355
8356 -- No error detected
8357
8358 else
8359 return;
e5a58fac
AC
8360 end if;
8361 end Check_Untagged_Equality;
8362
996ae0b0
RK
8363 -----------------------------
8364 -- Find_Corresponding_Spec --
8365 -----------------------------
8366
d44202ba
HK
8367 function Find_Corresponding_Spec
8368 (N : Node_Id;
8369 Post_Error : Boolean := True) return Entity_Id
8370 is
996ae0b0
RK
8371 Spec : constant Node_Id := Specification (N);
8372 Designator : constant Entity_Id := Defining_Entity (Spec);
8373
8374 E : Entity_Id;
8375
70f4ad20
AC
8376 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8377 -- Even if fully conformant, a body may depend on a generic actual when
8378 -- the spec does not, or vice versa, in which case they were distinct
8379 -- entities in the generic.
8380
8381 -------------------------------
8382 -- Different_Generic_Profile --
8383 -------------------------------
8384
8385 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8386 F1, F2 : Entity_Id;
8387
2995860f
AC
8388 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8389 -- Check that the types of corresponding formals have the same
8390 -- generic actual if any. We have to account for subtypes of a
8391 -- generic formal, declared between a spec and a body, which may
73999267
AC
8392 -- appear distinct in an instance but matched in the generic, and
8393 -- the subtype may be used either in the spec or the body of the
8394 -- subprogram being checked.
2995860f
AC
8395
8396 -------------------------
8397 -- Same_Generic_Actual --
8398 -------------------------
8399
8400 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
73999267
AC
8401
8402 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8403 -- Predicate to check whether S1 is a subtype of S2 in the source
8404 -- of the instance.
8405
8406 -------------------------
8407 -- Is_Declared_Subtype --
8408 -------------------------
8409
8410 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8411 begin
8412 return Comes_From_Source (Parent (S1))
8413 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8414 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8415 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8416 end Is_Declared_Subtype;
8417
8418 -- Start of processing for Same_Generic_Actual
8419
2995860f
AC
8420 begin
8421 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
73999267
AC
8422 or else Is_Declared_Subtype (T1, T2)
8423 or else Is_Declared_Subtype (T2, T1);
2995860f
AC
8424 end Same_Generic_Actual;
8425
8426 -- Start of processing for Different_Generic_Profile
8427
70f4ad20 8428 begin
2995860f
AC
8429 if not In_Instance then
8430 return False;
8431
8432 elsif Ekind (E) = E_Function
8433 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
70f4ad20
AC
8434 then
8435 return True;
8436 end if;
8437
8438 F1 := First_Formal (Designator);
8439 F2 := First_Formal (E);
70f4ad20 8440 while Present (F1) loop
2995860f 8441 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
70f4ad20
AC
8442 return True;
8443 end if;
8444
8445 Next_Formal (F1);
8446 Next_Formal (F2);
8447 end loop;
8448
8449 return False;
8450 end Different_Generic_Profile;
8451
8452 -- Start of processing for Find_Corresponding_Spec
8453
996ae0b0
RK
8454 begin
8455 E := Current_Entity (Designator);
996ae0b0
RK
8456 while Present (E) loop
8457
8458 -- We are looking for a matching spec. It must have the same scope,
8459 -- and the same name, and either be type conformant, or be the case
8460 -- of a library procedure spec and its body (which belong to one
8461 -- another regardless of whether they are type conformant or not).
8462
8463 if Scope (E) = Current_Scope then
fbf5a39b
AC
8464 if Current_Scope = Standard_Standard
8465 or else (Ekind (E) = Ekind (Designator)
586ecbf3 8466 and then Type_Conformant (E, Designator))
996ae0b0
RK
8467 then
8468 -- Within an instantiation, we know that spec and body are
70f4ad20
AC
8469 -- subtype conformant, because they were subtype conformant in
8470 -- the generic. We choose the subtype-conformant entity here as
8471 -- well, to resolve spurious ambiguities in the instance that
8472 -- were not present in the generic (i.e. when two different
8473 -- types are given the same actual). If we are looking for a
8474 -- spec to match a body, full conformance is expected.
996ae0b0
RK
8475
8476 if In_Instance then
c05ba1f1
AC
8477
8478 -- Inherit the convention and "ghostness" of the matching
8479 -- spec to ensure proper full and subtype conformance.
8480
996ae0b0
RK
8481 Set_Convention (Designator, Convention (E));
8482
0187b60e
AC
8483 -- Skip past subprogram bodies and subprogram renamings that
8484 -- may appear to have a matching spec, but that aren't fully
8485 -- conformant with it. That can occur in cases where an
8486 -- actual type causes unrelated homographs in the instance.
8487
8488 if Nkind_In (N, N_Subprogram_Body,
8489 N_Subprogram_Renaming_Declaration)
996ae0b0 8490 and then Present (Homonym (E))
c7b9d548 8491 and then not Fully_Conformant (Designator, E)
996ae0b0
RK
8492 then
8493 goto Next_Entity;
8494
c7b9d548 8495 elsif not Subtype_Conformant (Designator, E) then
996ae0b0 8496 goto Next_Entity;
70f4ad20
AC
8497
8498 elsif Different_Generic_Profile (E) then
8499 goto Next_Entity;
996ae0b0
RK
8500 end if;
8501 end if;
8502
25ebc085
AC
8503 -- Ada 2012 (AI05-0165): For internally generated bodies of
8504 -- null procedures locate the internally generated spec. We
8505 -- enforce mode conformance since a tagged type may inherit
8506 -- from interfaces several null primitives which differ only
8507 -- in the mode of the formals.
8508
8509 if not (Comes_From_Source (E))
8510 and then Is_Null_Procedure (E)
8511 and then not Mode_Conformant (Designator, E)
8512 then
8513 null;
8514
4d8f3296
ES
8515 -- For null procedures coming from source that are completions,
8516 -- analysis of the generated body will establish the link.
8517
8518 elsif Comes_From_Source (E)
8519 and then Nkind (Spec) = N_Procedure_Specification
8520 and then Null_Present (Spec)
8521 then
8522 return E;
8523
e4bda610
AC
8524 -- Expression functions can be completions, but cannot be
8525 -- completed by an explicit body.
8526
8527 elsif Comes_From_Source (E)
8528 and then Comes_From_Source (N)
8529 and then Nkind (N) = N_Subprogram_Body
8530 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8531 N_Expression_Function
8532 then
8533 Error_Msg_Sloc := Sloc (E);
8534 Error_Msg_N ("body conflicts with expression function#", N);
8535 return Empty;
8536
25ebc085 8537 elsif not Has_Completion (E) then
996ae0b0
RK
8538 if Nkind (N) /= N_Subprogram_Body_Stub then
8539 Set_Corresponding_Spec (N, E);
8540 end if;
8541
8542 Set_Has_Completion (E);
8543 return E;
8544
8545 elsif Nkind (Parent (N)) = N_Subunit then
8546
8547 -- If this is the proper body of a subunit, the completion
8548 -- flag is set when analyzing the stub.
8549
8550 return E;
8551
70f4ad20
AC
8552 -- If E is an internal function with a controlling result that
8553 -- was created for an operation inherited by a null extension,
8554 -- it may be overridden by a body without a previous spec (one
2995860f 8555 -- more reason why these should be shunned). In that case we
70f4ad20
AC
8556 -- remove the generated body if present, because the current
8557 -- one is the explicit overriding.
81db9d77
ES
8558
8559 elsif Ekind (E) = E_Function
0791fbe9 8560 and then Ada_Version >= Ada_2005
81db9d77
ES
8561 and then not Comes_From_Source (E)
8562 and then Has_Controlling_Result (E)
8563 and then Is_Null_Extension (Etype (E))
8564 and then Comes_From_Source (Spec)
8565 then
8566 Set_Has_Completion (E, False);
8567
1366997b
AC
8568 if Expander_Active
8569 and then Nkind (Parent (E)) = N_Function_Specification
8570 then
81db9d77
ES
8571 Remove
8572 (Unit_Declaration_Node
1366997b
AC
8573 (Corresponding_Body (Unit_Declaration_Node (E))));
8574
81db9d77
ES
8575 return E;
8576
1366997b
AC
8577 -- If expansion is disabled, or if the wrapper function has
8578 -- not been generated yet, this a late body overriding an
8579 -- inherited operation, or it is an overriding by some other
8580 -- declaration before the controlling result is frozen. In
8581 -- either case this is a declaration of a new entity.
81db9d77
ES
8582
8583 else
8584 return Empty;
8585 end if;
8586
d44202ba
HK
8587 -- If the body already exists, then this is an error unless
8588 -- the previous declaration is the implicit declaration of a
756ef2a0
AC
8589 -- derived subprogram. It is also legal for an instance to
8590 -- contain type conformant overloadable declarations (but the
8591 -- generic declaration may not), per 8.3(26/2).
996ae0b0
RK
8592
8593 elsif No (Alias (E))
8594 and then not Is_Intrinsic_Subprogram (E)
8595 and then not In_Instance
d44202ba 8596 and then Post_Error
996ae0b0
RK
8597 then
8598 Error_Msg_Sloc := Sloc (E);
8dbd1460 8599
07fc65c4
GB
8600 if Is_Imported (E) then
8601 Error_Msg_NE
8602 ("body not allowed for imported subprogram & declared#",
8603 N, E);
8604 else
8605 Error_Msg_NE ("duplicate body for & declared#", N, E);
8606 end if;
996ae0b0
RK
8607 end if;
8608
d44202ba
HK
8609 -- Child units cannot be overloaded, so a conformance mismatch
8610 -- between body and a previous spec is an error.
8611
996ae0b0
RK
8612 elsif Is_Child_Unit (E)
8613 and then
8614 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8615 and then
5d37ba92 8616 Nkind (Parent (Unit_Declaration_Node (Designator))) =
d44202ba
HK
8617 N_Compilation_Unit
8618 and then Post_Error
996ae0b0 8619 then
996ae0b0
RK
8620 Error_Msg_N
8621 ("body of child unit does not match previous declaration", N);
8622 end if;
8623 end if;
8624
8625 <<Next_Entity>>
8626 E := Homonym (E);
8627 end loop;
8628
8629 -- On exit, we know that no previous declaration of subprogram exists
8630
8631 return Empty;
8632 end Find_Corresponding_Spec;
8633
8634 ----------------------
8635 -- Fully_Conformant --
8636 ----------------------
8637
8638 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8639 Result : Boolean;
996ae0b0
RK
8640 begin
8641 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8642 return Result;
8643 end Fully_Conformant;
8644
8645 ----------------------------------
8646 -- Fully_Conformant_Expressions --
8647 ----------------------------------
8648
8649 function Fully_Conformant_Expressions
8650 (Given_E1 : Node_Id;
d05ef0ab 8651 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
8652 is
8653 E1 : constant Node_Id := Original_Node (Given_E1);
8654 E2 : constant Node_Id := Original_Node (Given_E2);
8655 -- We always test conformance on original nodes, since it is possible
8656 -- for analysis and/or expansion to make things look as though they
8657 -- conform when they do not, e.g. by converting 1+2 into 3.
8658
8659 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8660 renames Fully_Conformant_Expressions;
8661
8662 function FCL (L1, L2 : List_Id) return Boolean;
70f4ad20
AC
8663 -- Compare elements of two lists for conformance. Elements have to be
8664 -- conformant, and actuals inserted as default parameters do not match
8665 -- explicit actuals with the same value.
996ae0b0
RK
8666
8667 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 8668 -- Compare an operator node with a function call
996ae0b0
RK
8669
8670 ---------
8671 -- FCL --
8672 ---------
8673
8674 function FCL (L1, L2 : List_Id) return Boolean is
8675 N1, N2 : Node_Id;
8676
8677 begin
8678 if L1 = No_List then
8679 N1 := Empty;
8680 else
8681 N1 := First (L1);
8682 end if;
8683
8684 if L2 = No_List then
8685 N2 := Empty;
8686 else
8687 N2 := First (L2);
8688 end if;
8689
70f4ad20 8690 -- Compare two lists, skipping rewrite insertions (we want to compare
a90bd866 8691 -- the original trees, not the expanded versions).
996ae0b0
RK
8692
8693 loop
8694 if Is_Rewrite_Insertion (N1) then
8695 Next (N1);
8696 elsif Is_Rewrite_Insertion (N2) then
8697 Next (N2);
8698 elsif No (N1) then
8699 return No (N2);
8700 elsif No (N2) then
8701 return False;
8702 elsif not FCE (N1, N2) then
8703 return False;
8704 else
8705 Next (N1);
8706 Next (N2);
8707 end if;
8708 end loop;
8709 end FCL;
8710
8711 ---------
8712 -- FCO --
8713 ---------
8714
8715 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8716 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8717 Act : Node_Id;
8718
8719 begin
8720 if No (Actuals)
8721 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8722 then
8723 return False;
8724
8725 else
8726 Act := First (Actuals);
8727
8728 if Nkind (Op_Node) in N_Binary_Op then
996ae0b0
RK
8729 if not FCE (Left_Opnd (Op_Node), Act) then
8730 return False;
8731 end if;
8732
8733 Next (Act);
8734 end if;
8735
8736 return Present (Act)
8737 and then FCE (Right_Opnd (Op_Node), Act)
8738 and then No (Next (Act));
8739 end if;
8740 end FCO;
8741
8742 -- Start of processing for Fully_Conformant_Expressions
8743
8744 begin
27bb7941 8745 -- Nonconformant if paren count does not match. Note: if some idiot
996ae0b0 8746 -- complains that we don't do this right for more than 3 levels of
a90bd866 8747 -- parentheses, they will be treated with the respect they deserve.
996ae0b0
RK
8748
8749 if Paren_Count (E1) /= Paren_Count (E2) then
8750 return False;
8751
82c80734
RD
8752 -- If same entities are referenced, then they are conformant even if
8753 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
8754
8755 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8756 if Present (Entity (E1)) then
8757 return Entity (E1) = Entity (E2)
ca0eb951
AC
8758
8759 -- One may be a discriminant that has been replaced by
27bb7941 8760 -- the corresponding discriminal.
ca0eb951 8761
996ae0b0
RK
8762 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8763 and then Ekind (Entity (E1)) = E_Discriminant
ca0eb951
AC
8764 and then Ekind (Entity (E2)) = E_In_Parameter)
8765
804ec349 8766 -- AI12-050: The loop variables of quantified expressions
27bb7941 8767 -- match if they have the same identifier, even though they
ca0eb951
AC
8768 -- are different entities.
8769
8770 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8771 and then Ekind (Entity (E1)) = E_Loop_Parameter
8772 and then Ekind (Entity (E2)) = E_Loop_Parameter);
996ae0b0
RK
8773
8774 elsif Nkind (E1) = N_Expanded_Name
8775 and then Nkind (E2) = N_Expanded_Name
8776 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8777 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8778 then
8779 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8780
8781 else
8782 -- Identifiers in component associations don't always have
8783 -- entities, but their names must conform.
8784
8785 return Nkind (E1) = N_Identifier
8786 and then Nkind (E2) = N_Identifier
8787 and then Chars (E1) = Chars (E2);
8788 end if;
8789
8790 elsif Nkind (E1) = N_Character_Literal
8791 and then Nkind (E2) = N_Expanded_Name
8792 then
8793 return Nkind (Selector_Name (E2)) = N_Character_Literal
8794 and then Chars (E1) = Chars (Selector_Name (E2));
8795
8796 elsif Nkind (E2) = N_Character_Literal
8797 and then Nkind (E1) = N_Expanded_Name
8798 then
8799 return Nkind (Selector_Name (E1)) = N_Character_Literal
8800 and then Chars (E2) = Chars (Selector_Name (E1));
8801
8fde064e 8802 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
996ae0b0
RK
8803 return FCO (E1, E2);
8804
8fde064e 8805 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
996ae0b0
RK
8806 return FCO (E2, E1);
8807
8808 -- Otherwise we must have the same syntactic entity
8809
8810 elsif Nkind (E1) /= Nkind (E2) then
8811 return False;
8812
8813 -- At this point, we specialize by node type
8814
8815 else
8816 case Nkind (E1) is
996ae0b0
RK
8817 when N_Aggregate =>
8818 return
8819 FCL (Expressions (E1), Expressions (E2))
19d846a0
RD
8820 and then
8821 FCL (Component_Associations (E1),
8822 Component_Associations (E2));
996ae0b0
RK
8823
8824 when N_Allocator =>
8825 if Nkind (Expression (E1)) = N_Qualified_Expression
8826 or else
8827 Nkind (Expression (E2)) = N_Qualified_Expression
8828 then
8829 return FCE (Expression (E1), Expression (E2));
8830
8831 -- Check that the subtype marks and any constraints
8832 -- are conformant
8833
8834 else
8835 declare
8836 Indic1 : constant Node_Id := Expression (E1);
8837 Indic2 : constant Node_Id := Expression (E2);
8838 Elt1 : Node_Id;
8839 Elt2 : Node_Id;
8840
8841 begin
8842 if Nkind (Indic1) /= N_Subtype_Indication then
8843 return
8844 Nkind (Indic2) /= N_Subtype_Indication
8845 and then Entity (Indic1) = Entity (Indic2);
8846
8847 elsif Nkind (Indic2) /= N_Subtype_Indication then
8848 return
8849 Nkind (Indic1) /= N_Subtype_Indication
8850 and then Entity (Indic1) = Entity (Indic2);
8851
8852 else
8853 if Entity (Subtype_Mark (Indic1)) /=
8854 Entity (Subtype_Mark (Indic2))
8855 then
8856 return False;
8857 end if;
8858
8859 Elt1 := First (Constraints (Constraint (Indic1)));
8860 Elt2 := First (Constraints (Constraint (Indic2)));
996ae0b0
RK
8861 while Present (Elt1) and then Present (Elt2) loop
8862 if not FCE (Elt1, Elt2) then
8863 return False;
8864 end if;
8865
8866 Next (Elt1);
8867 Next (Elt2);
8868 end loop;
8869
8870 return True;
8871 end if;
8872 end;
8873 end if;
8874
8875 when N_Attribute_Reference =>
8876 return
8877 Attribute_Name (E1) = Attribute_Name (E2)
8878 and then FCL (Expressions (E1), Expressions (E2));
8879
8880 when N_Binary_Op =>
8881 return
8882 Entity (E1) = Entity (E2)
8883 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8884 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8885
d8f43ee6
HK
8886 when N_Membership_Test
8887 | N_Short_Circuit
8888 =>
996ae0b0
RK
8889 return
8890 FCE (Left_Opnd (E1), Left_Opnd (E2))
8891 and then
8892 FCE (Right_Opnd (E1), Right_Opnd (E2));
8893
19d846a0
RD
8894 when N_Case_Expression =>
8895 declare
8896 Alt1 : Node_Id;
8897 Alt2 : Node_Id;
8898
8899 begin
8900 if not FCE (Expression (E1), Expression (E2)) then
8901 return False;
8902
8903 else
8904 Alt1 := First (Alternatives (E1));
8905 Alt2 := First (Alternatives (E2));
8906 loop
8907 if Present (Alt1) /= Present (Alt2) then
8908 return False;
8909 elsif No (Alt1) then
8910 return True;
8911 end if;
8912
8913 if not FCE (Expression (Alt1), Expression (Alt2))
8914 or else not FCL (Discrete_Choices (Alt1),
8915 Discrete_Choices (Alt2))
8916 then
8917 return False;
8918 end if;
8919
8920 Next (Alt1);
8921 Next (Alt2);
8922 end loop;
8923 end if;
8924 end;
8925
996ae0b0
RK
8926 when N_Character_Literal =>
8927 return
8928 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8929
8930 when N_Component_Association =>
8931 return
8932 FCL (Choices (E1), Choices (E2))
19d846a0
RD
8933 and then
8934 FCE (Expression (E1), Expression (E2));
996ae0b0 8935
996ae0b0
RK
8936 when N_Explicit_Dereference =>
8937 return
8938 FCE (Prefix (E1), Prefix (E2));
8939
8940 when N_Extension_Aggregate =>
8941 return
8942 FCL (Expressions (E1), Expressions (E2))
8943 and then Null_Record_Present (E1) =
8944 Null_Record_Present (E2)
8945 and then FCL (Component_Associations (E1),
8946 Component_Associations (E2));
8947
8948 when N_Function_Call =>
8949 return
8950 FCE (Name (E1), Name (E2))
19d846a0
RD
8951 and then
8952 FCL (Parameter_Associations (E1),
8953 Parameter_Associations (E2));
996ae0b0 8954
9b16cb57
RD
8955 when N_If_Expression =>
8956 return
8957 FCL (Expressions (E1), Expressions (E2));
8958
996ae0b0
RK
8959 when N_Indexed_Component =>
8960 return
8961 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
8962 and then
8963 FCL (Expressions (E1), Expressions (E2));
996ae0b0
RK
8964
8965 when N_Integer_Literal =>
8966 return (Intval (E1) = Intval (E2));
8967
8968 when N_Null =>
8969 return True;
8970
8971 when N_Operator_Symbol =>
8972 return
8973 Chars (E1) = Chars (E2);
8974
8975 when N_Others_Choice =>
8976 return True;
8977
8978 when N_Parameter_Association =>
8979 return
7dae9ca0 8980 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
996ae0b0
RK
8981 and then FCE (Explicit_Actual_Parameter (E1),
8982 Explicit_Actual_Parameter (E2));
8983
8984 when N_Qualified_Expression =>
8985 return
8986 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
8987 and then
8988 FCE (Expression (E1), Expression (E2));
996ae0b0 8989
2010d078
AC
8990 when N_Quantified_Expression =>
8991 if not FCE (Condition (E1), Condition (E2)) then
8992 return False;
8993 end if;
8994
8995 if Present (Loop_Parameter_Specification (E1))
8996 and then Present (Loop_Parameter_Specification (E2))
8997 then
8998 declare
8999 L1 : constant Node_Id :=
9000 Loop_Parameter_Specification (E1);
9001 L2 : constant Node_Id :=
9002 Loop_Parameter_Specification (E2);
9003
9004 begin
9005 return
9006 Reverse_Present (L1) = Reverse_Present (L2)
9007 and then
9008 FCE (Defining_Identifier (L1),
9009 Defining_Identifier (L2))
9010 and then
9011 FCE (Discrete_Subtype_Definition (L1),
9012 Discrete_Subtype_Definition (L2));
9013 end;
9014
804670f1
AC
9015 elsif Present (Iterator_Specification (E1))
9016 and then Present (Iterator_Specification (E2))
9017 then
2010d078
AC
9018 declare
9019 I1 : constant Node_Id := Iterator_Specification (E1);
9020 I2 : constant Node_Id := Iterator_Specification (E2);
9021
9022 begin
9023 return
9024 FCE (Defining_Identifier (I1),
9025 Defining_Identifier (I2))
9026 and then
9027 Of_Present (I1) = Of_Present (I2)
9028 and then
9029 Reverse_Present (I1) = Reverse_Present (I2)
9030 and then FCE (Name (I1), Name (I2))
9031 and then FCE (Subtype_Indication (I1),
9032 Subtype_Indication (I2));
9033 end;
804670f1
AC
9034
9035 -- The quantified expressions used different specifications to
9036 -- walk their respective ranges.
9037
9038 else
9039 return False;
2010d078
AC
9040 end if;
9041
996ae0b0
RK
9042 when N_Range =>
9043 return
9044 FCE (Low_Bound (E1), Low_Bound (E2))
19d846a0
RD
9045 and then
9046 FCE (High_Bound (E1), High_Bound (E2));
996ae0b0
RK
9047
9048 when N_Real_Literal =>
9049 return (Realval (E1) = Realval (E2));
9050
9051 when N_Selected_Component =>
9052 return
9053 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
9054 and then
9055 FCE (Selector_Name (E1), Selector_Name (E2));
996ae0b0
RK
9056
9057 when N_Slice =>
9058 return
9059 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
9060 and then
9061 FCE (Discrete_Range (E1), Discrete_Range (E2));
996ae0b0
RK
9062
9063 when N_String_Literal =>
9064 declare
9065 S1 : constant String_Id := Strval (E1);
9066 S2 : constant String_Id := Strval (E2);
9067 L1 : constant Nat := String_Length (S1);
9068 L2 : constant Nat := String_Length (S2);
9069
9070 begin
9071 if L1 /= L2 then
9072 return False;
9073
9074 else
9075 for J in 1 .. L1 loop
9076 if Get_String_Char (S1, J) /=
9077 Get_String_Char (S2, J)
9078 then
9079 return False;
9080 end if;
9081 end loop;
9082
9083 return True;
9084 end if;
9085 end;
9086
9087 when N_Type_Conversion =>
9088 return
9089 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
9090 and then
9091 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
9092
9093 when N_Unary_Op =>
9094 return
9095 Entity (E1) = Entity (E2)
19d846a0
RD
9096 and then
9097 FCE (Right_Opnd (E1), Right_Opnd (E2));
996ae0b0
RK
9098
9099 when N_Unchecked_Type_Conversion =>
9100 return
9101 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
9102 and then
9103 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
9104
9105 -- All other node types cannot appear in this context. Strictly
9106 -- we should raise a fatal internal error. Instead we just ignore
9107 -- the nodes. This means that if anyone makes a mistake in the
2995860f
AC
9108 -- expander and mucks an expression tree irretrievably, the result
9109 -- will be a failure to detect a (probably very obscure) case
9110 -- of non-conformance, which is better than bombing on some
996ae0b0
RK
9111 -- case where two expressions do in fact conform.
9112
9113 when others =>
9114 return True;
996ae0b0
RK
9115 end case;
9116 end if;
9117 end Fully_Conformant_Expressions;
9118
fbf5a39b
AC
9119 ----------------------------------------
9120 -- Fully_Conformant_Discrete_Subtypes --
9121 ----------------------------------------
9122
9123 function Fully_Conformant_Discrete_Subtypes
9124 (Given_S1 : Node_Id;
d05ef0ab 9125 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
9126 is
9127 S1 : constant Node_Id := Original_Node (Given_S1);
9128 S2 : constant Node_Id := Original_Node (Given_S2);
9129
9130 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
9131 -- Special-case for a bound given by a discriminant, which in the body
9132 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
9133
9134 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 9135 -- Check both bounds
fbf5a39b 9136
5d37ba92
ES
9137 -----------------------
9138 -- Conforming_Bounds --
9139 -----------------------
9140
fbf5a39b
AC
9141 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9142 begin
9143 if Is_Entity_Name (B1)
9144 and then Is_Entity_Name (B2)
9145 and then Ekind (Entity (B1)) = E_Discriminant
9146 then
9147 return Chars (B1) = Chars (B2);
9148
9149 else
9150 return Fully_Conformant_Expressions (B1, B2);
9151 end if;
9152 end Conforming_Bounds;
9153
5d37ba92
ES
9154 -----------------------
9155 -- Conforming_Ranges --
9156 -----------------------
9157
fbf5a39b
AC
9158 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9159 begin
9160 return
9161 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9162 and then
9163 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9164 end Conforming_Ranges;
9165
9166 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9167
9168 begin
9169 if Nkind (S1) /= Nkind (S2) then
9170 return False;
9171
9172 elsif Is_Entity_Name (S1) then
9173 return Entity (S1) = Entity (S2);
9174
9175 elsif Nkind (S1) = N_Range then
9176 return Conforming_Ranges (S1, S2);
9177
9178 elsif Nkind (S1) = N_Subtype_Indication then
9179 return
9180 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9181 and then
9182 Conforming_Ranges
9183 (Range_Expression (Constraint (S1)),
9184 Range_Expression (Constraint (S2)));
9185 else
9186 return True;
9187 end if;
9188 end Fully_Conformant_Discrete_Subtypes;
9189
996ae0b0
RK
9190 --------------------
9191 -- Install_Entity --
9192 --------------------
9193
9194 procedure Install_Entity (E : Entity_Id) is
9195 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
9196 begin
9197 Set_Is_Immediately_Visible (E);
9198 Set_Current_Entity (E);
9199 Set_Homonym (E, Prev);
9200 end Install_Entity;
9201
9202 ---------------------
9203 -- Install_Formals --
9204 ---------------------
9205
9206 procedure Install_Formals (Id : Entity_Id) is
9207 F : Entity_Id;
996ae0b0
RK
9208 begin
9209 F := First_Formal (Id);
996ae0b0
RK
9210 while Present (F) loop
9211 Install_Entity (F);
9212 Next_Formal (F);
9213 end loop;
9214 end Install_Formals;
9215
ce2b6ba5
JM
9216 -----------------------------
9217 -- Is_Interface_Conformant --
9218 -----------------------------
9219
9220 function Is_Interface_Conformant
9221 (Tagged_Type : Entity_Id;
9222 Iface_Prim : Entity_Id;
9223 Prim : Entity_Id) return Boolean
9224 is
9e92ad49
AC
9225 -- The operation may in fact be an inherited (implicit) operation
9226 -- rather than the original interface primitive, so retrieve the
9227 -- ultimate ancestor.
9228
9229 Iface : constant Entity_Id :=
9230 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
fceeaab6
ES
9231 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9232
25ebc085
AC
9233 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9234 -- Return the controlling formal of Prim
9235
59e6b23c
AC
9236 ------------------------
9237 -- Controlling_Formal --
9238 ------------------------
9239
25ebc085 9240 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
15918371 9241 E : Entity_Id;
59e6b23c 9242
25ebc085 9243 begin
15918371 9244 E := First_Entity (Prim);
25ebc085
AC
9245 while Present (E) loop
9246 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9247 return E;
9248 end if;
9249
9250 Next_Entity (E);
9251 end loop;
9252
9253 return Empty;
9254 end Controlling_Formal;
9255
9256 -- Local variables
9257
9258 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9259 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9260
9261 -- Start of processing for Is_Interface_Conformant
9262
ce2b6ba5
JM
9263 begin
9264 pragma Assert (Is_Subprogram (Iface_Prim)
9265 and then Is_Subprogram (Prim)
9266 and then Is_Dispatching_Operation (Iface_Prim)
9267 and then Is_Dispatching_Operation (Prim));
9268
fceeaab6 9269 pragma Assert (Is_Interface (Iface)
ce2b6ba5
JM
9270 or else (Present (Alias (Iface_Prim))
9271 and then
9272 Is_Interface
9273 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9274
9275 if Prim = Iface_Prim
9276 or else not Is_Subprogram (Prim)
9277 or else Ekind (Prim) /= Ekind (Iface_Prim)
9278 or else not Is_Dispatching_Operation (Prim)
9279 or else Scope (Prim) /= Scope (Tagged_Type)
fceeaab6 9280 or else No (Typ)
8a49a499 9281 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
ce2b6ba5
JM
9282 or else not Primitive_Names_Match (Iface_Prim, Prim)
9283 then
9284 return False;
9285
25ebc085
AC
9286 -- The mode of the controlling formals must match
9287
9288 elsif Present (Iface_Ctrl_F)
15918371
AC
9289 and then Present (Prim_Ctrl_F)
9290 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
25ebc085
AC
9291 then
9292 return False;
9293
9294 -- Case of a procedure, or a function whose result type matches the
9295 -- result type of the interface primitive, or a function that has no
9296 -- controlling result (I or access I).
ce2b6ba5
JM
9297
9298 elsif Ekind (Iface_Prim) = E_Procedure
9299 or else Etype (Prim) = Etype (Iface_Prim)
fceeaab6 9300 or else not Has_Controlling_Result (Prim)
ce2b6ba5 9301 then
b4d7b435
AC
9302 return Type_Conformant
9303 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
ce2b6ba5 9304
2995860f
AC
9305 -- Case of a function returning an interface, or an access to one. Check
9306 -- that the return types correspond.
ce2b6ba5 9307
fceeaab6
ES
9308 elsif Implements_Interface (Typ, Iface) then
9309 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9a3c9940
RD
9310 /=
9311 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
fceeaab6
ES
9312 then
9313 return False;
fceeaab6
ES
9314 else
9315 return
9e92ad49 9316 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
ce2b6ba5 9317 Skip_Controlling_Formals => True);
fceeaab6 9318 end if;
ce2b6ba5 9319
fceeaab6
ES
9320 else
9321 return False;
ce2b6ba5 9322 end if;
ce2b6ba5
JM
9323 end Is_Interface_Conformant;
9324
996ae0b0
RK
9325 ---------------------------------
9326 -- Is_Non_Overriding_Operation --
9327 ---------------------------------
9328
9329 function Is_Non_Overriding_Operation
9330 (Prev_E : Entity_Id;
d05ef0ab 9331 New_E : Entity_Id) return Boolean
996ae0b0
RK
9332 is
9333 Formal : Entity_Id;
9334 F_Typ : Entity_Id;
9335 G_Typ : Entity_Id := Empty;
9336
9337 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
9338 -- If F_Type is a derived type associated with a generic actual subtype,
9339 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
9340
9341 function Types_Correspond
9342 (P_Type : Entity_Id;
d05ef0ab 9343 N_Type : Entity_Id) return Boolean;
82c80734
RD
9344 -- Returns true if and only if the types (or designated types in the
9345 -- case of anonymous access types) are the same or N_Type is derived
9346 -- directly or indirectly from P_Type.
996ae0b0
RK
9347
9348 -----------------------------
9349 -- Get_Generic_Parent_Type --
9350 -----------------------------
9351
9352 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9353 G_Typ : Entity_Id;
702d2020 9354 Defn : Node_Id;
996ae0b0
RK
9355 Indic : Node_Id;
9356
9357 begin
9358 if Is_Derived_Type (F_Typ)
9359 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9360 then
82c80734
RD
9361 -- The tree must be traversed to determine the parent subtype in
9362 -- the generic unit, which unfortunately isn't always available
9363 -- via semantic attributes. ??? (Note: The use of Original_Node
9364 -- is needed for cases where a full derived type has been
9365 -- rewritten.)
996ae0b0 9366
bff469f7
AC
9367 -- If the parent type is a scalar type, the derivation creates
9368 -- an anonymous base type for it, and the source type is its
9369 -- first subtype.
9370
9371 if Is_Scalar_Type (F_Typ)
9372 and then not Comes_From_Source (F_Typ)
9373 then
9374 Defn :=
9375 Type_Definition
0c6826a5 9376 (Original_Node (Parent (First_Subtype (F_Typ))));
bff469f7
AC
9377 else
9378 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9379 end if;
702d2020
AC
9380 if Nkind (Defn) = N_Derived_Type_Definition then
9381 Indic := Subtype_Indication (Defn);
996ae0b0 9382
702d2020
AC
9383 if Nkind (Indic) = N_Subtype_Indication then
9384 G_Typ := Entity (Subtype_Mark (Indic));
9385 else
9386 G_Typ := Entity (Indic);
9387 end if;
996ae0b0 9388
702d2020
AC
9389 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9390 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9391 then
9392 return Generic_Parent_Type (Parent (G_Typ));
9393 end if;
996ae0b0
RK
9394 end if;
9395 end if;
9396
9397 return Empty;
9398 end Get_Generic_Parent_Type;
9399
9400 ----------------------
9401 -- Types_Correspond --
9402 ----------------------
9403
9404 function Types_Correspond
9405 (P_Type : Entity_Id;
d05ef0ab 9406 N_Type : Entity_Id) return Boolean
996ae0b0
RK
9407 is
9408 Prev_Type : Entity_Id := Base_Type (P_Type);
9409 New_Type : Entity_Id := Base_Type (N_Type);
9410
9411 begin
9412 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9413 Prev_Type := Designated_Type (Prev_Type);
9414 end if;
9415
9416 if Ekind (New_Type) = E_Anonymous_Access_Type then
9417 New_Type := Designated_Type (New_Type);
9418 end if;
9419
9420 if Prev_Type = New_Type then
9421 return True;
9422
9423 elsif not Is_Class_Wide_Type (New_Type) then
9424 while Etype (New_Type) /= New_Type loop
9425 New_Type := Etype (New_Type);
0c6826a5 9426
996ae0b0
RK
9427 if New_Type = Prev_Type then
9428 return True;
9429 end if;
9430 end loop;
9431 end if;
9432 return False;
9433 end Types_Correspond;
9434
9435 -- Start of processing for Is_Non_Overriding_Operation
9436
9437 begin
82c80734
RD
9438 -- In the case where both operations are implicit derived subprograms
9439 -- then neither overrides the other. This can only occur in certain
9440 -- obscure cases (e.g., derivation from homographs created in a generic
9441 -- instantiation).
996ae0b0
RK
9442
9443 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9444 return True;
9445
9446 elsif Ekind (Current_Scope) = E_Package
9447 and then Is_Generic_Instance (Current_Scope)
9448 and then In_Private_Part (Current_Scope)
9449 and then Comes_From_Source (New_E)
9450 then
702d2020
AC
9451 -- We examine the formals and result type of the inherited operation,
9452 -- to determine whether their type is derived from (the instance of)
9453 -- a generic type. The first such formal or result type is the one
9454 -- tested.
996ae0b0
RK
9455
9456 Formal := First_Formal (Prev_E);
ae4c4d53 9457 F_Typ := Empty;
996ae0b0
RK
9458 while Present (Formal) loop
9459 F_Typ := Base_Type (Etype (Formal));
9460
9461 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9462 F_Typ := Designated_Type (F_Typ);
9463 end if;
9464
9465 G_Typ := Get_Generic_Parent_Type (F_Typ);
702d2020 9466 exit when Present (G_Typ);
996ae0b0
RK
9467
9468 Next_Formal (Formal);
9469 end loop;
9470
890975e3 9471 -- If the function dispatches on result check the result type
ae4c4d53 9472
c8ef728f 9473 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
9474 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9475 end if;
9476
9477 if No (G_Typ) then
9478 return False;
9479 end if;
9480
8dbd1460
AC
9481 -- If the generic type is a private type, then the original operation
9482 -- was not overriding in the generic, because there was no primitive
9483 -- operation to override.
996ae0b0
RK
9484
9485 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9486 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8dbd1460 9487 N_Formal_Private_Type_Definition
996ae0b0
RK
9488 then
9489 return True;
9490
9491 -- The generic parent type is the ancestor of a formal derived
9492 -- type declaration. We need to check whether it has a primitive
9493 -- operation that should be overridden by New_E in the generic.
9494
9495 else
9496 declare
9497 P_Formal : Entity_Id;
9498 N_Formal : Entity_Id;
9499 P_Typ : Entity_Id;
9500 N_Typ : Entity_Id;
9501 P_Prim : Entity_Id;
9502 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9503
9504 begin
9505 while Present (Prim_Elt) loop
9506 P_Prim := Node (Prim_Elt);
fbf5a39b 9507
996ae0b0
RK
9508 if Chars (P_Prim) = Chars (New_E)
9509 and then Ekind (P_Prim) = Ekind (New_E)
9510 then
9511 P_Formal := First_Formal (P_Prim);
9512 N_Formal := First_Formal (New_E);
9513 while Present (P_Formal) and then Present (N_Formal) loop
9514 P_Typ := Etype (P_Formal);
9515 N_Typ := Etype (N_Formal);
9516
9517 if not Types_Correspond (P_Typ, N_Typ) then
9518 exit;
9519 end if;
9520
9521 Next_Entity (P_Formal);
9522 Next_Entity (N_Formal);
9523 end loop;
9524
82c80734
RD
9525 -- Found a matching primitive operation belonging to the
9526 -- formal ancestor type, so the new subprogram is
9527 -- overriding.
996ae0b0 9528
c8ef728f
ES
9529 if No (P_Formal)
9530 and then No (N_Formal)
996ae0b0
RK
9531 and then (Ekind (New_E) /= E_Function
9532 or else
8fde064e
AC
9533 Types_Correspond
9534 (Etype (P_Prim), Etype (New_E)))
996ae0b0
RK
9535 then
9536 return False;
9537 end if;
9538 end if;
9539
9540 Next_Elmt (Prim_Elt);
9541 end loop;
9542
2995860f
AC
9543 -- If no match found, then the new subprogram does not override
9544 -- in the generic (nor in the instance).
996ae0b0 9545
260359e3
AC
9546 -- If the type in question is not abstract, and the subprogram
9547 -- is, this will be an error if the new operation is in the
9548 -- private part of the instance. Emit a warning now, which will
9549 -- make the subsequent error message easier to understand.
9550
ae4c4d53 9551 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
260359e3
AC
9552 and then Is_Abstract_Subprogram (Prev_E)
9553 and then In_Private_Part (Current_Scope)
9554 then
9555 Error_Msg_Node_2 := F_Typ;
9556 Error_Msg_NE
3ccedacc
AC
9557 ("private operation& in generic unit does not override "
9558 & "any primitive operation of& (RM 12.3 (18))??",
260359e3
AC
9559 New_E, New_E);
9560 end if;
9561
996ae0b0
RK
9562 return True;
9563 end;
9564 end if;
9565 else
9566 return False;
9567 end if;
9568 end Is_Non_Overriding_Operation;
9569
beacce02
AC
9570 -------------------------------------
9571 -- List_Inherited_Pre_Post_Aspects --
9572 -------------------------------------
9573
9574 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9575 begin
e606088a 9576 if Opt.List_Inherited_Aspects
b9696ffb 9577 and then Is_Subprogram_Or_Generic_Subprogram (E)
beacce02
AC
9578 then
9579 declare
c9d70ab1
AC
9580 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9581 Items : Node_Id;
9582 Prag : Node_Id;
beacce02
AC
9583
9584 begin
c9d70ab1
AC
9585 for Index in Subps'Range loop
9586 Items := Contract (Subps (Index));
9587
9588 if Present (Items) then
9589 Prag := Pre_Post_Conditions (Items);
9590 while Present (Prag) loop
9591 Error_Msg_Sloc := Sloc (Prag);
9592
9593 if Class_Present (Prag)
9594 and then not Split_PPC (Prag)
9595 then
6e759c2a 9596 if Pragma_Name (Prag) = Name_Precondition then
c9d70ab1
AC
9597 Error_Msg_N
9598 ("info: & inherits `Pre''Class` aspect from "
9599 & "#?L?", E);
9600 else
9601 Error_Msg_N
9602 ("info: & inherits `Post''Class` aspect from "
9603 & "#?L?", E);
9604 end if;
beacce02 9605 end if;
beacce02 9606
c9d70ab1
AC
9607 Prag := Next_Pragma (Prag);
9608 end loop;
9609 end if;
beacce02
AC
9610 end loop;
9611 end;
9612 end if;
9613 end List_Inherited_Pre_Post_Aspects;
9614
996ae0b0
RK
9615 ------------------------------
9616 -- Make_Inequality_Operator --
9617 ------------------------------
9618
9619 -- S is the defining identifier of an equality operator. We build a
9620 -- subprogram declaration with the right signature. This operation is
9621 -- intrinsic, because it is always expanded as the negation of the
9622 -- call to the equality function.
9623
9624 procedure Make_Inequality_Operator (S : Entity_Id) is
9625 Loc : constant Source_Ptr := Sloc (S);
9626 Decl : Node_Id;
9627 Formals : List_Id;
9628 Op_Name : Entity_Id;
9629
c8ef728f
ES
9630 FF : constant Entity_Id := First_Formal (S);
9631 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
9632
9633 begin
c8ef728f 9634 -- Check that equality was properly defined, ignore call if not
996ae0b0 9635
c8ef728f 9636 if No (NF) then
996ae0b0
RK
9637 return;
9638 end if;
9639
c8ef728f
ES
9640 declare
9641 A : constant Entity_Id :=
9642 Make_Defining_Identifier (Sloc (FF),
9643 Chars => Chars (FF));
9644
5d37ba92
ES
9645 B : constant Entity_Id :=
9646 Make_Defining_Identifier (Sloc (NF),
9647 Chars => Chars (NF));
c8ef728f
ES
9648
9649 begin
9650 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9651
9652 Formals := New_List (
9653 Make_Parameter_Specification (Loc,
9654 Defining_Identifier => A,
9655 Parameter_Type =>
e4494292 9656 New_Occurrence_Of (Etype (First_Formal (S)),
c8ef728f
ES
9657 Sloc (Etype (First_Formal (S))))),
9658
9659 Make_Parameter_Specification (Loc,
9660 Defining_Identifier => B,
9661 Parameter_Type =>
e4494292 9662 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
c8ef728f
ES
9663 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9664
9665 Decl :=
9666 Make_Subprogram_Declaration (Loc,
9667 Specification =>
9668 Make_Function_Specification (Loc,
9669 Defining_Unit_Name => Op_Name,
9670 Parameter_Specifications => Formals,
9671 Result_Definition =>
e4494292 9672 New_Occurrence_Of (Standard_Boolean, Loc)));
c8ef728f
ES
9673
9674 -- Insert inequality right after equality if it is explicit or after
9675 -- the derived type when implicit. These entities are created only
2995860f
AC
9676 -- for visibility purposes, and eventually replaced in the course
9677 -- of expansion, so they do not need to be attached to the tree and
9678 -- seen by the back-end. Keeping them internal also avoids spurious
c8ef728f
ES
9679 -- freezing problems. The declaration is inserted in the tree for
9680 -- analysis, and removed afterwards. If the equality operator comes
9681 -- from an explicit declaration, attach the inequality immediately
9682 -- after. Else the equality is inherited from a derived type
9683 -- declaration, so insert inequality after that declaration.
9684
9685 if No (Alias (S)) then
9686 Insert_After (Unit_Declaration_Node (S), Decl);
9687 elsif Is_List_Member (Parent (S)) then
9688 Insert_After (Parent (S), Decl);
9689 else
9690 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9691 end if;
996ae0b0 9692
c8ef728f
ES
9693 Mark_Rewrite_Insertion (Decl);
9694 Set_Is_Intrinsic_Subprogram (Op_Name);
9695 Analyze (Decl);
9696 Remove (Decl);
9697 Set_Has_Completion (Op_Name);
9698 Set_Corresponding_Equality (Op_Name, S);
f937473f 9699 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 9700 end;
996ae0b0
RK
9701 end Make_Inequality_Operator;
9702
9703 ----------------------
9704 -- May_Need_Actuals --
9705 ----------------------
9706
9707 procedure May_Need_Actuals (Fun : Entity_Id) is
9708 F : Entity_Id;
9709 B : Boolean;
9710
9711 begin
9712 F := First_Formal (Fun);
9713 B := True;
996ae0b0
RK
9714 while Present (F) loop
9715 if No (Default_Value (F)) then
9716 B := False;
9717 exit;
9718 end if;
9719
9720 Next_Formal (F);
9721 end loop;
9722
9723 Set_Needs_No_Actuals (Fun, B);
9724 end May_Need_Actuals;
9725
9726 ---------------------
9727 -- Mode_Conformant --
9728 ---------------------
9729
9730 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9731 Result : Boolean;
996ae0b0
RK
9732 begin
9733 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9734 return Result;
9735 end Mode_Conformant;
9736
9737 ---------------------------
9738 -- New_Overloaded_Entity --
9739 ---------------------------
9740
9741 procedure New_Overloaded_Entity
9742 (S : Entity_Id;
9743 Derived_Type : Entity_Id := Empty)
9744 is
ec4867fa 9745 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
9746 -- Set if the current scope has an operation that is type-conformant
9747 -- with S, and becomes hidden by S.
9748
5d37ba92
ES
9749 Is_Primitive_Subp : Boolean;
9750 -- Set to True if the new subprogram is primitive
9751
fbf5a39b
AC
9752 E : Entity_Id;
9753 -- Entity that S overrides
9754
996ae0b0 9755 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
9756 -- Predecessor of E in Homonym chain
9757
5d37ba92
ES
9758 procedure Check_For_Primitive_Subprogram
9759 (Is_Primitive : out Boolean;
9760 Is_Overriding : Boolean := False);
9761 -- If the subprogram being analyzed is a primitive operation of the type
9762 -- of a formal or result, set the Has_Primitive_Operations flag on the
9763 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9764 -- corresponding flag on the entity itself for later use.
9765
42f11e4c
AC
9766 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9767 -- True if a) E is a subprogram whose first formal is a concurrent type
9768 -- defined in the scope of E that has some entry or subprogram whose
9769 -- profile matches E, or b) E is an internally built dispatching
9770 -- subprogram of a protected type and there is a matching subprogram
9771 -- defined in the enclosing scope of the protected type, or c) E is
9772 -- an entry of a synchronized type and a matching procedure has been
9773 -- previously defined in the enclosing scope of the synchronized type.
758c442c 9774
996ae0b0
RK
9775 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9776 -- Check that E is declared in the private part of the current package,
9777 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 9778 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
9779 -- set when freezing entities, so we must examine the place of the
9780 -- declaration in the tree, and recognize wrapper packages as well.
9781
2ddc2000
AC
9782 function Is_Overriding_Alias
9783 (Old_E : Entity_Id;
9784 New_E : Entity_Id) return Boolean;
9785 -- Check whether new subprogram and old subprogram are both inherited
9786 -- from subprograms that have distinct dispatch table entries. This can
2995860f
AC
9787 -- occur with derivations from instances with accidental homonyms. The
9788 -- function is conservative given that the converse is only true within
9789 -- instances that contain accidental overloadings.
2ddc2000 9790
42f11e4c 9791 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
ca90b962 9792 -- Report conflict between entities S and E
42f11e4c 9793
5d37ba92
ES
9794 ------------------------------------
9795 -- Check_For_Primitive_Subprogram --
9796 ------------------------------------
996ae0b0 9797
5d37ba92
ES
9798 procedure Check_For_Primitive_Subprogram
9799 (Is_Primitive : out Boolean;
9800 Is_Overriding : Boolean := False)
ec4867fa 9801 is
996ae0b0
RK
9802 Formal : Entity_Id;
9803 F_Typ : Entity_Id;
07fc65c4 9804 B_Typ : Entity_Id;
996ae0b0
RK
9805
9806 function Visible_Part_Type (T : Entity_Id) return Boolean;
8dbd1460
AC
9807 -- Returns true if T is declared in the visible part of the current
9808 -- package scope; otherwise returns false. Assumes that T is declared
9809 -- in a package.
996ae0b0
RK
9810
9811 procedure Check_Private_Overriding (T : Entity_Id);
9812 -- Checks that if a primitive abstract subprogram of a visible
8dbd1460
AC
9813 -- abstract type is declared in a private part, then it must override
9814 -- an abstract subprogram declared in the visible part. Also checks
9815 -- that if a primitive function with a controlling result is declared
9816 -- in a private part, then it must override a function declared in
9817 -- the visible part.
996ae0b0
RK
9818
9819 ------------------------------
9820 -- Check_Private_Overriding --
9821 ------------------------------
9822
9823 procedure Check_Private_Overriding (T : Entity_Id) is
6672e402
AC
9824 function Overrides_Private_Part_Op return Boolean;
9825 -- This detects the special case where the overriding subprogram
9826 -- is overriding a subprogram that was declared in the same
9827 -- private part. That case is illegal by 3.9.3(10).
acf624f2 9828
aaeb3b3a
AC
9829 function Overrides_Visible_Function
9830 (Partial_View : Entity_Id) return Boolean;
acf624f2
BD
9831 -- True if S overrides a function in the visible part. The
9832 -- overridden function could be explicitly or implicitly declared.
9833
6672e402
AC
9834 -------------------------------
9835 -- Overrides_Private_Part_Op --
9836 -------------------------------
9837
9838 function Overrides_Private_Part_Op return Boolean is
9839 Over_Decl : constant Node_Id :=
9840 Unit_Declaration_Node (Overridden_Operation (S));
9841 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
9842
9843 begin
9844 pragma Assert (Is_Overriding);
9845 pragma Assert
9846 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
9847 pragma Assert
9848 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
9849
9850 return In_Same_List (Over_Decl, Subp_Decl);
9851 end Overrides_Private_Part_Op;
9852
9853 --------------------------------
9854 -- Overrides_Visible_Function --
9855 --------------------------------
bc38dbb4 9856
aaeb3b3a
AC
9857 function Overrides_Visible_Function
9858 (Partial_View : Entity_Id) return Boolean
9859 is
acf624f2
BD
9860 begin
9861 if not Is_Overriding or else not Has_Homonym (S) then
9862 return False;
9863 end if;
9864
aaeb3b3a 9865 if not Present (Partial_View) then
acf624f2
BD
9866 return True;
9867 end if;
9868
9869 -- Search through all the homonyms H of S in the current
9870 -- package spec, and return True if we find one that matches.
9871 -- Note that Parent (H) will be the declaration of the
aaeb3b3a 9872 -- partial view of T for a match.
acf624f2
BD
9873
9874 declare
9875 H : Entity_Id := S;
9876 begin
9877 loop
9878 H := Homonym (H);
9879 exit when not Present (H) or else Scope (H) /= Scope (S);
9880
9881 if Nkind_In
9882 (Parent (H),
9883 N_Private_Extension_Declaration,
9884 N_Private_Type_Declaration)
aaeb3b3a 9885 and then Defining_Identifier (Parent (H)) = Partial_View
acf624f2
BD
9886 then
9887 return True;
9888 end if;
9889 end loop;
9890 end;
9891
9892 return False;
9893 end Overrides_Visible_Function;
9894
9895 -- Start of processing for Check_Private_Overriding
9896
996ae0b0 9897 begin
51c16e29 9898 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
9899 and then In_Private_Part (Current_Scope)
9900 and then Visible_Part_Type (T)
9901 and then not In_Instance
9902 then
f937473f
RD
9903 if Is_Abstract_Type (T)
9904 and then Is_Abstract_Subprogram (S)
9905 and then (not Is_Overriding
bc38dbb4 9906 or else not Is_Abstract_Subprogram (E)
6672e402 9907 or else Overrides_Private_Part_Op)
996ae0b0 9908 then
6672e402
AC
9909 Error_Msg_N
9910 ("abstract subprograms must be visible (RM 3.9.3(10))!",
9911 S);
758c442c 9912
aaeb3b3a
AC
9913 elsif Ekind (S) = E_Function then
9914 declare
9915 Partial_View : constant Entity_Id :=
9916 Incomplete_Or_Partial_View (T);
2e79de51 9917
aaeb3b3a
AC
9918 begin
9919 if not Overrides_Visible_Function (Partial_View) then
9920
9921 -- Here, S is "function ... return T;" declared in
9922 -- the private part, not overriding some visible
9923 -- operation. That's illegal in the tagged case
9924 -- (but not if the private type is untagged).
9925
9926 if ((Present (Partial_View)
9927 and then Is_Tagged_Type (Partial_View))
9928 or else (not Present (Partial_View)
9929 and then Is_Tagged_Type (T)))
9930 and then T = Base_Type (Etype (S))
9931 then
9932 Error_Msg_N
9933 ("private function with tagged result must"
9934 & " override visible-part function", S);
9935 Error_Msg_N
9936 ("\move subprogram to the visible part"
9937 & " (RM 3.9.3(10))", S);
9938
9939 -- AI05-0073: extend this test to the case of a
9940 -- function with a controlling access result.
9941
9942 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9943 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9944 and then
9945 not Is_Class_Wide_Type
9946 (Designated_Type (Etype (S)))
9947 and then Ada_Version >= Ada_2012
9948 then
9949 Error_Msg_N
9950 ("private function with controlling access "
9951 & "result must override visible-part function",
9952 S);
9953 Error_Msg_N
9954 ("\move subprogram to the visible part"
9955 & " (RM 3.9.3(10))", S);
9956 end if;
9957 end if;
9958 end;
996ae0b0
RK
9959 end if;
9960 end if;
9961 end Check_Private_Overriding;
9962
9963 -----------------------
9964 -- Visible_Part_Type --
9965 -----------------------
9966
9967 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
9968 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9969 N : Node_Id;
996ae0b0
RK
9970
9971 begin
8dbd1460
AC
9972 -- If the entity is a private type, then it must be declared in a
9973 -- visible part.
996ae0b0
RK
9974
9975 if Ekind (T) in Private_Kind then
9976 return True;
9977 end if;
9978
9979 -- Otherwise, we traverse the visible part looking for its
9980 -- corresponding declaration. We cannot use the declaration
9981 -- node directly because in the private part the entity of a
9982 -- private type is the one in the full view, which does not
9983 -- indicate that it is the completion of something visible.
9984
07fc65c4 9985 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
9986 while Present (N) loop
9987 if Nkind (N) = N_Full_Type_Declaration
9988 and then Present (Defining_Identifier (N))
9989 and then T = Defining_Identifier (N)
9990 then
9991 return True;
9992
800621e0
RD
9993 elsif Nkind_In (N, N_Private_Type_Declaration,
9994 N_Private_Extension_Declaration)
996ae0b0
RK
9995 and then Present (Defining_Identifier (N))
9996 and then T = Full_View (Defining_Identifier (N))
9997 then
9998 return True;
9999 end if;
10000
10001 Next (N);
10002 end loop;
10003
10004 return False;
10005 end Visible_Part_Type;
10006
5d37ba92 10007 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
10008
10009 begin
5d37ba92
ES
10010 Is_Primitive := False;
10011
996ae0b0
RK
10012 if not Comes_From_Source (S) then
10013 null;
10014
5d37ba92 10015 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
10016
10017 elsif Current_Scope = Standard_Standard then
10018 null;
10019
b9b2405f 10020 elsif (Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0 10021 and then not In_Package_Body (Current_Scope))
82c80734 10022 or else Is_Overriding
996ae0b0 10023 then
07fc65c4 10024 -- For function, check return type
996ae0b0 10025
07fc65c4 10026 if Ekind (S) = E_Function then
5d37ba92
ES
10027 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10028 F_Typ := Designated_Type (Etype (S));
10029 else
10030 F_Typ := Etype (S);
10031 end if;
10032
10033 B_Typ := Base_Type (F_Typ);
07fc65c4 10034
5d37ba92
ES
10035 if Scope (B_Typ) = Current_Scope
10036 and then not Is_Class_Wide_Type (B_Typ)
10037 and then not Is_Generic_Type (B_Typ)
10038 then
10039 Is_Primitive := True;
07fc65c4 10040 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 10041 Set_Is_Primitive (S);
07fc65c4 10042 Check_Private_Overriding (B_Typ);
4179af27 10043
d65a80fd
HK
10044 -- The Ghost policy in effect at the point of declaration
10045 -- or a tagged type and a primitive operation must match
4179af27
HK
10046 -- (SPARK RM 6.9(16)).
10047
10048 Check_Ghost_Primitive (S, B_Typ);
07fc65c4 10049 end if;
996ae0b0
RK
10050 end if;
10051
07fc65c4 10052 -- For all subprograms, check formals
996ae0b0 10053
07fc65c4 10054 Formal := First_Formal (S);
996ae0b0
RK
10055 while Present (Formal) loop
10056 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10057 F_Typ := Designated_Type (Etype (Formal));
10058 else
10059 F_Typ := Etype (Formal);
10060 end if;
10061
07fc65c4
GB
10062 B_Typ := Base_Type (F_Typ);
10063
ec4867fa
ES
10064 if Ekind (B_Typ) = E_Access_Subtype then
10065 B_Typ := Base_Type (B_Typ);
10066 end if;
10067
5d37ba92
ES
10068 if Scope (B_Typ) = Current_Scope
10069 and then not Is_Class_Wide_Type (B_Typ)
10070 and then not Is_Generic_Type (B_Typ)
10071 then
10072 Is_Primitive := True;
10073 Set_Is_Primitive (S);
07fc65c4
GB
10074 Set_Has_Primitive_Operations (B_Typ);
10075 Check_Private_Overriding (B_Typ);
4179af27 10076
d65a80fd
HK
10077 -- The Ghost policy in effect at the point of declaration
10078 -- of a tagged type and a primitive operation must match
4179af27
HK
10079 -- (SPARK RM 6.9(16)).
10080
10081 Check_Ghost_Primitive (S, B_Typ);
996ae0b0
RK
10082 end if;
10083
10084 Next_Formal (Formal);
10085 end loop;
1aee1fb3
AC
10086
10087 -- Special case: An equality function can be redefined for a type
10088 -- occurring in a declarative part, and won't otherwise be treated as
10089 -- a primitive because it doesn't occur in a package spec and doesn't
10090 -- override an inherited subprogram. It's important that we mark it
10091 -- primitive so it can be returned by Collect_Primitive_Operations
10092 -- and be used in composing the equality operation of later types
10093 -- that have a component of the type.
10094
10095 elsif Chars (S) = Name_Op_Eq
10096 and then Etype (S) = Standard_Boolean
10097 then
10098 B_Typ := Base_Type (Etype (First_Formal (S)));
10099
10100 if Scope (B_Typ) = Current_Scope
10101 and then
10102 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10103 and then not Is_Limited_Type (B_Typ)
10104 then
10105 Is_Primitive := True;
10106 Set_Is_Primitive (S);
10107 Set_Has_Primitive_Operations (B_Typ);
10108 Check_Private_Overriding (B_Typ);
4179af27
HK
10109
10110 -- The Ghost policy in effect at the point of declaration of a
10111 -- tagged type and a primitive operation must match
10112 -- (SPARK RM 6.9(16)).
10113
10114 Check_Ghost_Primitive (S, B_Typ);
1aee1fb3 10115 end if;
996ae0b0 10116 end if;
5d37ba92
ES
10117 end Check_For_Primitive_Subprogram;
10118
42f11e4c
AC
10119 --------------------------------------
10120 -- Has_Matching_Entry_Or_Subprogram --
10121 --------------------------------------
5d37ba92 10122
bac5ba15
AC
10123 function Has_Matching_Entry_Or_Subprogram
10124 (E : Entity_Id) return Boolean
5d37ba92 10125 is
42f11e4c
AC
10126 function Check_Conforming_Parameters
10127 (E1_Param : Node_Id;
10128 E2_Param : Node_Id) return Boolean;
10129 -- Starting from the given parameters, check that all the parameters
ca90b962
GD
10130 -- of two entries or subprograms are subtype conformant. Used to skip
10131 -- the check on the controlling argument.
42f11e4c
AC
10132
10133 function Matching_Entry_Or_Subprogram
10134 (Conc_Typ : Entity_Id;
10135 Subp : Entity_Id) return Entity_Id;
10136 -- Return the first entry or subprogram of the given concurrent type
10137 -- whose name matches the name of Subp and has a profile conformant
10138 -- with Subp; return Empty if not found.
10139
10140 function Matching_Dispatching_Subprogram
10141 (Conc_Typ : Entity_Id;
10142 Ent : Entity_Id) return Entity_Id;
10143 -- Return the first dispatching primitive of Conc_Type defined in the
ca90b962 10144 -- enclosing scope of Conc_Type (i.e. before the full definition of
42f11e4c
AC
10145 -- this concurrent type) whose name matches the entry Ent and has a
10146 -- profile conformant with the profile of the corresponding (not yet
10147 -- built) dispatching primitive of Ent; return Empty if not found.
10148
10149 function Matching_Original_Protected_Subprogram
10150 (Prot_Typ : Entity_Id;
10151 Subp : Entity_Id) return Entity_Id;
10152 -- Return the first subprogram defined in the enclosing scope of
10153 -- Prot_Typ (before the full definition of this protected type)
10154 -- whose name matches the original name of Subp and has a profile
10155 -- conformant with the profile of Subp; return Empty if not found.
10156
10157 ---------------------------------
10158 -- Check_Confirming_Parameters --
10159 ---------------------------------
10160
10161 function Check_Conforming_Parameters
10162 (E1_Param : Node_Id;
10163 E2_Param : Node_Id) return Boolean
8aa15e3b 10164 is
42f11e4c
AC
10165 Param_E1 : Node_Id := E1_Param;
10166 Param_E2 : Node_Id := E2_Param;
8aa15e3b
JM
10167
10168 begin
42f11e4c 10169 while Present (Param_E1) and then Present (Param_E2) loop
bac5ba15
AC
10170 if Ekind (Defining_Identifier (Param_E1)) /=
10171 Ekind (Defining_Identifier (Param_E2))
42f11e4c 10172 or else not
bac5ba15
AC
10173 Conforming_Types
10174 (Find_Parameter_Type (Param_E1),
10175 Find_Parameter_Type (Param_E2),
10176 Subtype_Conformant)
15e4986c 10177 then
42f11e4c 10178 return False;
8aa15e3b
JM
10179 end if;
10180
42f11e4c
AC
10181 Next (Param_E1);
10182 Next (Param_E2);
10183 end loop;
8aa15e3b 10184
42f11e4c
AC
10185 -- The candidate is not valid if one of the two lists contains
10186 -- more parameters than the other
8aa15e3b 10187
42f11e4c
AC
10188 return No (Param_E1) and then No (Param_E2);
10189 end Check_Conforming_Parameters;
8aa15e3b 10190
42f11e4c
AC
10191 ----------------------------------
10192 -- Matching_Entry_Or_Subprogram --
10193 ----------------------------------
8aa15e3b 10194
42f11e4c
AC
10195 function Matching_Entry_Or_Subprogram
10196 (Conc_Typ : Entity_Id;
10197 Subp : Entity_Id) return Entity_Id
10198 is
10199 E : Entity_Id;
8aa15e3b 10200
42f11e4c
AC
10201 begin
10202 E := First_Entity (Conc_Typ);
10203 while Present (E) loop
10204 if Chars (Subp) = Chars (E)
10205 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10206 and then
10207 Check_Conforming_Parameters
10208 (First (Parameter_Specifications (Parent (E))),
10209 Next (First (Parameter_Specifications (Parent (Subp)))))
8aa15e3b 10210 then
42f11e4c 10211 return E;
8aa15e3b
JM
10212 end if;
10213
42f11e4c 10214 Next_Entity (E);
8aa15e3b
JM
10215 end loop;
10216
42f11e4c
AC
10217 return Empty;
10218 end Matching_Entry_Or_Subprogram;
8aa15e3b 10219
42f11e4c
AC
10220 -------------------------------------
10221 -- Matching_Dispatching_Subprogram --
10222 -------------------------------------
8aa15e3b 10223
42f11e4c
AC
10224 function Matching_Dispatching_Subprogram
10225 (Conc_Typ : Entity_Id;
10226 Ent : Entity_Id) return Entity_Id
10227 is
10228 E : Entity_Id;
8aa15e3b 10229
42f11e4c
AC
10230 begin
10231 -- Search for entities in the enclosing scope of this synchonized
bac5ba15 10232 -- type.
8aa15e3b 10233
42f11e4c
AC
10234 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10235 Push_Scope (Scope (Conc_Typ));
10236 E := Current_Entity_In_Scope (Ent);
10237 Pop_Scope;
5d37ba92 10238
42f11e4c
AC
10239 while Present (E) loop
10240 if Scope (E) = Scope (Conc_Typ)
10241 and then Comes_From_Source (E)
10242 and then Ekind (E) = E_Procedure
10243 and then Present (First_Entity (E))
10244 and then Is_Controlling_Formal (First_Entity (E))
10245 and then Etype (First_Entity (E)) = Conc_Typ
10246 and then
10247 Check_Conforming_Parameters
10248 (First (Parameter_Specifications (Parent (Ent))),
10249 Next (First (Parameter_Specifications (Parent (E)))))
10250 then
10251 return E;
10252 end if;
5d37ba92 10253
42f11e4c
AC
10254 E := Homonym (E);
10255 end loop;
5d37ba92 10256
42f11e4c
AC
10257 return Empty;
10258 end Matching_Dispatching_Subprogram;
5d37ba92 10259
42f11e4c
AC
10260 --------------------------------------------
10261 -- Matching_Original_Protected_Subprogram --
10262 --------------------------------------------
5d37ba92 10263
42f11e4c
AC
10264 function Matching_Original_Protected_Subprogram
10265 (Prot_Typ : Entity_Id;
10266 Subp : Entity_Id) return Entity_Id
10267 is
10268 ICF : constant Boolean :=
10269 Is_Controlling_Formal (First_Entity (Subp));
10270 E : Entity_Id;
8aa15e3b 10271
42f11e4c
AC
10272 begin
10273 -- Temporarily decorate the first parameter of Subp as controlling
bac5ba15 10274 -- formal, required to invoke Subtype_Conformant.
5d37ba92 10275
42f11e4c 10276 Set_Is_Controlling_Formal (First_Entity (Subp));
5d37ba92 10277
42f11e4c
AC
10278 E :=
10279 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
8aa15e3b 10280
42f11e4c
AC
10281 while Present (E) loop
10282 if Scope (E) = Scope (Prot_Typ)
10283 and then Comes_From_Source (E)
10284 and then Ekind (Subp) = Ekind (E)
10285 and then Present (First_Entity (E))
10286 and then Is_Controlling_Formal (First_Entity (E))
10287 and then Etype (First_Entity (E)) = Prot_Typ
10288 and then Subtype_Conformant (Subp, E,
10289 Skip_Controlling_Formals => True)
10290 then
10291 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10292 return E;
10293 end if;
8c3dd7a8 10294
42f11e4c
AC
10295 E := Homonym (E);
10296 end loop;
5d37ba92 10297
42f11e4c 10298 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
bac5ba15 10299
42f11e4c
AC
10300 return Empty;
10301 end Matching_Original_Protected_Subprogram;
5d37ba92 10302
42f11e4c 10303 -- Start of processing for Has_Matching_Entry_Or_Subprogram
5d37ba92 10304
42f11e4c
AC
10305 begin
10306 -- Case 1: E is a subprogram whose first formal is a concurrent type
10307 -- defined in the scope of E that has an entry or subprogram whose
10308 -- profile matches E.
10309
10310 if Comes_From_Source (E)
10311 and then Is_Subprogram (E)
10312 and then Present (First_Entity (E))
10313 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10314 then
10315 if Scope (E) =
bac5ba15
AC
10316 Scope (Corresponding_Concurrent_Type
10317 (Etype (First_Entity (E))))
42f11e4c
AC
10318 and then
10319 Present
10320 (Matching_Entry_Or_Subprogram
10321 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10322 Subp => E))
10323 then
10324 Report_Conflict (E,
10325 Matching_Entry_Or_Subprogram
10326 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10327 Subp => E));
10328 return True;
5d37ba92 10329 end if;
8aa15e3b 10330
42f11e4c
AC
10331 -- Case 2: E is an internally built dispatching subprogram of a
10332 -- protected type and there is a subprogram defined in the enclosing
10333 -- scope of the protected type that has the original name of E and
10334 -- its profile is conformant with the profile of E. We check the
10335 -- name of the original protected subprogram associated with E since
10336 -- the expander builds dispatching primitives of protected functions
ca90b962 10337 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
42f11e4c
AC
10338
10339 elsif not Comes_From_Source (E)
10340 and then Is_Subprogram (E)
10341 and then Present (First_Entity (E))
10342 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10343 and then Present (Original_Protected_Subprogram (E))
10344 and then
10345 Present
10346 (Matching_Original_Protected_Subprogram
bac5ba15
AC
10347 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10348 Subp => E))
42f11e4c
AC
10349 then
10350 Report_Conflict (E,
10351 Matching_Original_Protected_Subprogram
10352 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10353 Subp => E));
10354 return True;
8aa15e3b 10355
ca90b962 10356 -- Case 3: E is an entry of a synchronized type and a matching
42f11e4c 10357 -- procedure has been previously defined in the enclosing scope
ca90b962 10358 -- of the synchronized type.
8aa15e3b 10359
42f11e4c
AC
10360 elsif Comes_From_Source (E)
10361 and then Ekind (E) = E_Entry
10362 and then
10363 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10364 then
10365 Report_Conflict (E,
10366 Matching_Dispatching_Subprogram (Current_Scope, E));
10367 return True;
5d37ba92
ES
10368 end if;
10369
42f11e4c
AC
10370 return False;
10371 end Has_Matching_Entry_Or_Subprogram;
5d37ba92
ES
10372
10373 ----------------------------
10374 -- Is_Private_Declaration --
10375 ----------------------------
10376
10377 function Is_Private_Declaration (E : Entity_Id) return Boolean is
5d37ba92 10378 Decl : constant Node_Id := Unit_Declaration_Node (E);
bac5ba15 10379 Priv_Decls : List_Id;
5d37ba92
ES
10380
10381 begin
10382 if Is_Package_Or_Generic_Package (Current_Scope)
10383 and then In_Private_Part (Current_Scope)
10384 then
10385 Priv_Decls :=
d12b19fa 10386 Private_Declarations (Package_Specification (Current_Scope));
5d37ba92
ES
10387
10388 return In_Package_Body (Current_Scope)
10389 or else
10390 (Is_List_Member (Decl)
a4901c08 10391 and then List_Containing (Decl) = Priv_Decls)
5d37ba92 10392 or else (Nkind (Parent (Decl)) = N_Package_Specification
a4901c08
AC
10393 and then not
10394 Is_Compilation_Unit
10395 (Defining_Entity (Parent (Decl)))
10396 and then List_Containing (Parent (Parent (Decl))) =
10397 Priv_Decls);
5d37ba92
ES
10398 else
10399 return False;
10400 end if;
10401 end Is_Private_Declaration;
996ae0b0 10402
2ddc2000
AC
10403 --------------------------
10404 -- Is_Overriding_Alias --
10405 --------------------------
10406
10407 function Is_Overriding_Alias
10408 (Old_E : Entity_Id;
10409 New_E : Entity_Id) return Boolean
10410 is
10411 AO : constant Entity_Id := Alias (Old_E);
10412 AN : constant Entity_Id := Alias (New_E);
bac5ba15 10413
2ddc2000
AC
10414 begin
10415 return Scope (AO) /= Scope (AN)
10416 or else No (DTC_Entity (AO))
10417 or else No (DTC_Entity (AN))
10418 or else DT_Position (AO) = DT_Position (AN);
10419 end Is_Overriding_Alias;
10420
42f11e4c
AC
10421 ---------------------
10422 -- Report_Conflict --
10423 ---------------------
10424
10425 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10426 begin
10427 Error_Msg_Sloc := Sloc (E);
10428
10429 -- Generate message, with useful additional warning if in generic
10430
10431 if Is_Generic_Unit (E) then
10432 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10433 Error_Msg_N ("\& conflicts with declaration#", S);
10434 else
10435 Error_Msg_N ("& conflicts with declaration#", S);
10436 end if;
10437 end Report_Conflict;
10438
996ae0b0
RK
10439 -- Start of processing for New_Overloaded_Entity
10440
10441 begin
fbf5a39b
AC
10442 -- We need to look for an entity that S may override. This must be a
10443 -- homonym in the current scope, so we look for the first homonym of
10444 -- S in the current scope as the starting point for the search.
10445
10446 E := Current_Entity_In_Scope (S);
10447
947430d5
AC
10448 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10449 -- They are directly added to the list of primitive operations of
10450 -- Derived_Type, unless this is a rederivation in the private part
10451 -- of an operation that was already derived in the visible part of
10452 -- the current package.
10453
0791fbe9 10454 if Ada_Version >= Ada_2005
947430d5
AC
10455 and then Present (Derived_Type)
10456 and then Present (Alias (S))
10457 and then Is_Dispatching_Operation (Alias (S))
10458 and then Present (Find_Dispatching_Type (Alias (S)))
10459 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10460 then
10461 -- For private types, when the full-view is processed we propagate to
10462 -- the full view the non-overridden entities whose attribute "alias"
10463 -- references an interface primitive. These entities were added by
10464 -- Derive_Subprograms to ensure that interface primitives are
10465 -- covered.
10466
10467 -- Inside_Freeze_Actions is non zero when S corresponds with an
10468 -- internal entity that links an interface primitive with its
10469 -- covering primitive through attribute Interface_Alias (see
4adf3c50 10470 -- Add_Internal_Interface_Entities).
947430d5
AC
10471
10472 if Inside_Freezing_Actions = 0
10473 and then Is_Package_Or_Generic_Package (Current_Scope)
10474 and then In_Private_Part (Current_Scope)
10475 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10476 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10477 and then Full_View (Defining_Identifier (Parent (E)))
10478 = Defining_Identifier (Parent (S))
10479 and then Alias (E) = Alias (S)
10480 then
10481 Check_Operation_From_Private_View (S, E);
10482 Set_Is_Dispatching_Operation (S);
10483
10484 -- Common case
10485
10486 else
10487 Enter_Overloaded_Entity (S);
10488 Check_Dispatching_Operation (S, Empty);
10489 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10490 end if;
10491
10492 return;
10493 end if;
10494
ca90b962
GD
10495 -- For synchronized types check conflicts of this entity with previously
10496 -- defined entities.
42f11e4c
AC
10497
10498 if Ada_Version >= Ada_2005
10499 and then Has_Matching_Entry_Or_Subprogram (S)
10500 then
10501 return;
10502 end if;
10503
fbf5a39b
AC
10504 -- If there is no homonym then this is definitely not overriding
10505
996ae0b0
RK
10506 if No (E) then
10507 Enter_Overloaded_Entity (S);
10508 Check_Dispatching_Operation (S, Empty);
5d37ba92 10509 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 10510
2995860f
AC
10511 -- If subprogram has an explicit declaration, check whether it has an
10512 -- overriding indicator.
758c442c 10513
ec4867fa 10514 if Comes_From_Source (S) then
8aa15e3b 10515 Check_Synchronized_Overriding (S, Overridden_Subp);
ea034236
AC
10516
10517 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10518 -- it may have overridden some hidden inherited primitive. Update
308e6f3a 10519 -- Overridden_Subp to avoid spurious errors when checking the
ea034236
AC
10520 -- overriding indicator.
10521
10522 if Ada_Version >= Ada_2012
10523 and then No (Overridden_Subp)
10524 and then Is_Dispatching_Operation (S)
038140ed 10525 and then Present (Overridden_Operation (S))
ea034236
AC
10526 then
10527 Overridden_Subp := Overridden_Operation (S);
10528 end if;
10529
5d37ba92
ES
10530 Check_Overriding_Indicator
10531 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
241ebe89
HK
10532
10533 -- The Ghost policy in effect at the point of declaration of a
10534 -- parent subprogram and an overriding subprogram must match
10535 -- (SPARK RM 6.9(17)).
10536
10537 Check_Ghost_Overriding (S, Overridden_Subp);
758c442c
GD
10538 end if;
10539
fbf5a39b
AC
10540 -- If there is a homonym that is not overloadable, then we have an
10541 -- error, except for the special cases checked explicitly below.
10542
996ae0b0
RK
10543 elsif not Is_Overloadable (E) then
10544
10545 -- Check for spurious conflict produced by a subprogram that has the
10546 -- same name as that of the enclosing generic package. The conflict
10547 -- occurs within an instance, between the subprogram and the renaming
10548 -- declaration for the package. After the subprogram, the package
10549 -- renaming declaration becomes hidden.
10550
10551 if Ekind (E) = E_Package
10552 and then Present (Renamed_Object (E))
10553 and then Renamed_Object (E) = Current_Scope
10554 and then Nkind (Parent (Renamed_Object (E))) =
10555 N_Package_Specification
10556 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10557 then
10558 Set_Is_Hidden (E);
10559 Set_Is_Immediately_Visible (E, False);
10560 Enter_Overloaded_Entity (S);
10561 Set_Homonym (S, Homonym (E));
10562 Check_Dispatching_Operation (S, Empty);
5d37ba92 10563 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
10564
10565 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
10566 -- declaration. However if it is dispatching, it must appear in the
10567 -- dispatch table anyway, because it can be dispatched to even if it
10568 -- cannot be called directly.
996ae0b0 10569
4adf3c50 10570 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
996ae0b0
RK
10571 Set_Scope (S, Current_Scope);
10572
10573 if Is_Dispatching_Operation (Alias (S)) then
10574 Check_Dispatching_Operation (S, Empty);
10575 end if;
10576
10577 return;
10578
10579 else
42f11e4c 10580 Report_Conflict (S, E);
996ae0b0
RK
10581 return;
10582 end if;
10583
fbf5a39b
AC
10584 -- E exists and is overloadable
10585
996ae0b0 10586 else
8aa15e3b 10587 Check_Synchronized_Overriding (S, Overridden_Subp);
758c442c 10588
82c80734
RD
10589 -- Loop through E and its homonyms to determine if any of them is
10590 -- the candidate for overriding by S.
996ae0b0
RK
10591
10592 while Present (E) loop
fbf5a39b
AC
10593
10594 -- Definitely not interesting if not in the current scope
10595
996ae0b0
RK
10596 if Scope (E) /= Current_Scope then
10597 null;
10598
aca90db9
AC
10599 -- A function can overload the name of an abstract state. The
10600 -- state can be viewed as a function with a profile that cannot
10601 -- be matched by anything.
10602
10603 elsif Ekind (S) = E_Function
10604 and then Ekind (E) = E_Abstract_State
10605 then
10606 Enter_Overloaded_Entity (S);
10607 return;
10608
2995860f
AC
10609 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10610 -- procedures locate the internally generated spec. We enforce
10611 -- mode conformance since a tagged type may inherit from
10612 -- interfaces several null primitives which differ only in
10613 -- the mode of the formals.
25ebc085
AC
10614
10615 elsif not Comes_From_Source (S)
10616 and then Is_Null_Procedure (S)
10617 and then not Mode_Conformant (E, S)
10618 then
10619 null;
10620
fbf5a39b
AC
10621 -- Check if we have type conformance
10622
ec4867fa 10623 elsif Type_Conformant (E, S) then
c8ef728f 10624
82c80734
RD
10625 -- If the old and new entities have the same profile and one
10626 -- is not the body of the other, then this is an error, unless
10627 -- one of them is implicitly declared.
996ae0b0
RK
10628
10629 -- There are some cases when both can be implicit, for example
10630 -- when both a literal and a function that overrides it are
f3d57416 10631 -- inherited in a derivation, or when an inherited operation
ec4867fa 10632 -- of a tagged full type overrides the inherited operation of
f3d57416 10633 -- a private extension. Ada 83 had a special rule for the
885c4871 10634 -- literal case. In Ada 95, the later implicit operation hides
82c80734
RD
10635 -- the former, and the literal is always the former. In the
10636 -- odd case where both are derived operations declared at the
10637 -- same point, both operations should be declared, and in that
10638 -- case we bypass the following test and proceed to the next
df46b832
AC
10639 -- part. This can only occur for certain obscure cases in
10640 -- instances, when an operation on a type derived from a formal
10641 -- private type does not override a homograph inherited from
10642 -- the actual. In subsequent derivations of such a type, the
10643 -- DT positions of these operations remain distinct, if they
10644 -- have been set.
996ae0b0
RK
10645
10646 if Present (Alias (S))
10647 and then (No (Alias (E))
10648 or else Comes_From_Source (E)
2ddc2000 10649 or else Is_Abstract_Subprogram (S)
df46b832
AC
10650 or else
10651 (Is_Dispatching_Operation (E)
84c0a895 10652 and then Is_Overriding_Alias (E, S)))
df46b832 10653 and then Ekind (E) /= E_Enumeration_Literal
996ae0b0 10654 then
82c80734
RD
10655 -- When an derived operation is overloaded it may be due to
10656 -- the fact that the full view of a private extension
996ae0b0
RK
10657 -- re-inherits. It has to be dealt with.
10658
e660dbf7 10659 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
10660 and then In_Private_Part (Current_Scope)
10661 then
10662 Check_Operation_From_Private_View (S, E);
10663 end if;
10664
038140ed
AC
10665 -- In any case the implicit operation remains hidden by the
10666 -- existing declaration, which is overriding. Indicate that
10667 -- E overrides the operation from which S is inherited.
996ae0b0 10668
038140ed 10669 if Present (Alias (S)) then
039538bc
AC
10670 Set_Overridden_Operation (E, Alias (S));
10671 Inherit_Subprogram_Contract (E, Alias (S));
10672
038140ed 10673 else
039538bc
AC
10674 Set_Overridden_Operation (E, S);
10675 Inherit_Subprogram_Contract (E, S);
038140ed 10676 end if;
758c442c
GD
10677
10678 if Comes_From_Source (E) then
5d37ba92 10679 Check_Overriding_Indicator (E, S, Is_Primitive => False);
241ebe89
HK
10680
10681 -- The Ghost policy in effect at the point of declaration
10682 -- of a parent subprogram and an overriding subprogram
10683 -- must match (SPARK RM 6.9(17)).
10684
10685 Check_Ghost_Overriding (E, S);
758c442c
GD
10686 end if;
10687
996ae0b0
RK
10688 return;
10689
26a43556
AC
10690 -- Within an instance, the renaming declarations for actual
10691 -- subprograms may become ambiguous, but they do not hide each
10692 -- other.
996ae0b0
RK
10693
10694 elsif Ekind (E) /= E_Entry
10695 and then not Comes_From_Source (E)
10696 and then not Is_Generic_Instance (E)
10697 and then (Present (Alias (E))
10698 or else Is_Intrinsic_Subprogram (E))
10699 and then (not In_Instance
10700 or else No (Parent (E))
10701 or else Nkind (Unit_Declaration_Node (E)) /=
8dbd1460 10702 N_Subprogram_Renaming_Declaration)
996ae0b0 10703 then
26a43556
AC
10704 -- A subprogram child unit is not allowed to override an
10705 -- inherited subprogram (10.1.1(20)).
996ae0b0
RK
10706
10707 if Is_Child_Unit (S) then
10708 Error_Msg_N
10709 ("child unit overrides inherited subprogram in parent",
10710 S);
10711 return;
10712 end if;
10713
10714 if Is_Non_Overriding_Operation (E, S) then
10715 Enter_Overloaded_Entity (S);
8dbd1460 10716
c8ef728f 10717 if No (Derived_Type)
996ae0b0
RK
10718 or else Is_Tagged_Type (Derived_Type)
10719 then
10720 Check_Dispatching_Operation (S, Empty);
10721 end if;
10722
10723 return;
10724 end if;
10725
10726 -- E is a derived operation or an internal operator which
10727 -- is being overridden. Remove E from further visibility.
10728 -- Furthermore, if E is a dispatching operation, it must be
10729 -- replaced in the list of primitive operations of its type
10730 -- (see Override_Dispatching_Operation).
10731
ec4867fa 10732 Overridden_Subp := E;
758c442c 10733
996ae0b0
RK
10734 declare
10735 Prev : Entity_Id;
10736
10737 begin
10738 Prev := First_Entity (Current_Scope);
8fde064e 10739 while Present (Prev) and then Next_Entity (Prev) /= E loop
996ae0b0
RK
10740 Next_Entity (Prev);
10741 end loop;
10742
10743 -- It is possible for E to be in the current scope and
10744 -- yet not in the entity chain. This can only occur in a
10745 -- generic context where E is an implicit concatenation
10746 -- in the formal part, because in a generic body the
10747 -- entity chain starts with the formals.
10748
948ed277
AC
10749 -- In GNATprove mode, a wrapper for an operation with
10750 -- axiomatization may be a homonym of another declaration
10751 -- for an actual subprogram (needs refinement ???).
10752
10753 if No (Prev) then
10754 if In_Instance
10755 and then GNATprove_Mode
10756 and then
10757 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10758 N_Subprogram_Renaming_Declaration
10759 then
10760 return;
10761 else
10762 pragma Assert (Chars (E) = Name_Op_Concat);
10763 null;
10764 end if;
10765 end if;
996ae0b0
RK
10766
10767 -- E must be removed both from the entity_list of the
948ed277 10768 -- current scope, and from the visibility chain.
996ae0b0
RK
10769
10770 if Debug_Flag_E then
10771 Write_Str ("Override implicit operation ");
10772 Write_Int (Int (E));
10773 Write_Eol;
10774 end if;
10775
10776 -- If E is a predefined concatenation, it stands for four
10777 -- different operations. As a result, a single explicit
10778 -- declaration does not hide it. In a possible ambiguous
10779 -- situation, Disambiguate chooses the user-defined op,
10780 -- so it is correct to retain the previous internal one.
10781
10782 if Chars (E) /= Name_Op_Concat
10783 or else Ekind (E) /= E_Operator
10784 then
10785 -- For nondispatching derived operations that are
10786 -- overridden by a subprogram declared in the private
8dbd1460
AC
10787 -- part of a package, we retain the derived subprogram
10788 -- but mark it as not immediately visible. If the
10789 -- derived operation was declared in the visible part
10790 -- then this ensures that it will still be visible
10791 -- outside the package with the proper signature
10792 -- (calls from outside must also be directed to this
10793 -- version rather than the overriding one, unlike the
10794 -- dispatching case). Calls from inside the package
10795 -- will still resolve to the overriding subprogram
10796 -- since the derived one is marked as not visible
10797 -- within the package.
996ae0b0
RK
10798
10799 -- If the private operation is dispatching, we achieve
10800 -- the overriding by keeping the implicit operation
9865d858 10801 -- but setting its alias to be the overriding one. In
996ae0b0
RK
10802 -- this fashion the proper body is executed in all
10803 -- cases, but the original signature is used outside
10804 -- of the package.
10805
10806 -- If the overriding is not in the private part, we
10807 -- remove the implicit operation altogether.
10808
10809 if Is_Private_Declaration (S) then
996ae0b0
RK
10810 if not Is_Dispatching_Operation (E) then
10811 Set_Is_Immediately_Visible (E, False);
10812 else
e895b435 10813 -- Work done in Override_Dispatching_Operation,
a46cde68 10814 -- so nothing else needs to be done here.
996ae0b0
RK
10815
10816 null;
10817 end if;
996ae0b0 10818
fbf5a39b
AC
10819 else
10820 -- Find predecessor of E in Homonym chain
996ae0b0
RK
10821
10822 if E = Current_Entity (E) then
10823 Prev_Vis := Empty;
10824 else
10825 Prev_Vis := Current_Entity (E);
10826 while Homonym (Prev_Vis) /= E loop
10827 Prev_Vis := Homonym (Prev_Vis);
10828 end loop;
10829 end if;
10830
10831 if Prev_Vis /= Empty then
10832
10833 -- Skip E in the visibility chain
10834
10835 Set_Homonym (Prev_Vis, Homonym (E));
10836
10837 else
10838 Set_Name_Entity_Id (Chars (E), Homonym (E));
10839 end if;
10840
10841 Set_Next_Entity (Prev, Next_Entity (E));
10842
10843 if No (Next_Entity (Prev)) then
10844 Set_Last_Entity (Current_Scope, Prev);
10845 end if;
996ae0b0
RK
10846 end if;
10847 end if;
10848
10849 Enter_Overloaded_Entity (S);
1c1289e7
AC
10850
10851 -- For entities generated by Derive_Subprograms the
10852 -- overridden operation is the inherited primitive
10853 -- (which is available through the attribute alias).
10854
10855 if not (Comes_From_Source (E))
10856 and then Is_Dispatching_Operation (E)
f9673bb0
AC
10857 and then Find_Dispatching_Type (E) =
10858 Find_Dispatching_Type (S)
1c1289e7
AC
10859 and then Present (Alias (E))
10860 and then Comes_From_Source (Alias (E))
10861 then
039538bc
AC
10862 Set_Overridden_Operation (S, Alias (E));
10863 Inherit_Subprogram_Contract (S, Alias (E));
2fe829ae 10864
6320f5e1
AC
10865 -- Normal case of setting entity as overridden
10866
10867 -- Note: Static_Initialization and Overridden_Operation
10868 -- attributes use the same field in subprogram entities.
10869 -- Static_Initialization is only defined for internal
10870 -- initialization procedures, where Overridden_Operation
10871 -- is irrelevant. Therefore the setting of this attribute
10872 -- must check whether the target is an init_proc.
10873
2fe829ae 10874 elsif not Is_Init_Proc (S) then
039538bc
AC
10875 Set_Overridden_Operation (S, E);
10876 Inherit_Subprogram_Contract (S, E);
1c1289e7
AC
10877 end if;
10878
5d37ba92 10879 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 10880
241ebe89
HK
10881 -- The Ghost policy in effect at the point of declaration
10882 -- of a parent subprogram and an overriding subprogram
10883 -- must match (SPARK RM 6.9(17)).
10884
10885 Check_Ghost_Overriding (S, E);
10886
fc53fe76 10887 -- If S is a user-defined subprogram or a null procedure
38ef8ebe
AC
10888 -- expanded to override an inherited null procedure, or a
10889 -- predefined dispatching primitive then indicate that E
038140ed 10890 -- overrides the operation from which S is inherited.
fc53fe76
AC
10891
10892 if Comes_From_Source (S)
10893 or else
10894 (Present (Parent (S))
10895 and then
10896 Nkind (Parent (S)) = N_Procedure_Specification
10897 and then
10898 Null_Present (Parent (S)))
38ef8ebe
AC
10899 or else
10900 (Present (Alias (E))
f16e8df9
RD
10901 and then
10902 Is_Predefined_Dispatching_Operation (Alias (E)))
fc53fe76 10903 then
c8ef728f 10904 if Present (Alias (E)) then
039538bc
AC
10905 Set_Overridden_Operation (S, Alias (E));
10906 Inherit_Subprogram_Contract (S, Alias (E));
41251c60
JM
10907 end if;
10908 end if;
10909
996ae0b0 10910 if Is_Dispatching_Operation (E) then
fbf5a39b 10911
82c80734 10912 -- An overriding dispatching subprogram inherits the
f9673bb0 10913 -- convention of the overridden subprogram (AI-117).
996ae0b0
RK
10914
10915 Set_Convention (S, Convention (E));
41251c60
JM
10916 Check_Dispatching_Operation (S, E);
10917
996ae0b0
RK
10918 else
10919 Check_Dispatching_Operation (S, Empty);
10920 end if;
10921
5d37ba92
ES
10922 Check_For_Primitive_Subprogram
10923 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
10924 goto Check_Inequality;
10925 end;
10926
10927 -- Apparent redeclarations in instances can occur when two
10928 -- formal types get the same actual type. The subprograms in
10929 -- in the instance are legal, even if not callable from the
10930 -- outside. Calls from within are disambiguated elsewhere.
10931 -- For dispatching operations in the visible part, the usual
10932 -- rules apply, and operations with the same profile are not
10933 -- legal (B830001).
10934
10935 elsif (In_Instance_Visible_Part
10936 and then not Is_Dispatching_Operation (E))
10937 or else In_Instance_Not_Visible
10938 then
10939 null;
10940
10941 -- Here we have a real error (identical profile)
10942
10943 else
10944 Error_Msg_Sloc := Sloc (E);
10945
10946 -- Avoid cascaded errors if the entity appears in
10947 -- subsequent calls.
10948
10949 Set_Scope (S, Current_Scope);
10950
5d37ba92
ES
10951 -- Generate error, with extra useful warning for the case
10952 -- of a generic instance with no completion.
996ae0b0
RK
10953
10954 if Is_Generic_Instance (S)
10955 and then not Has_Completion (E)
10956 then
10957 Error_Msg_N
5d37ba92
ES
10958 ("instantiation cannot provide body for&", S);
10959 Error_Msg_N ("\& conflicts with declaration#", S);
10960 else
10961 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
10962 end if;
10963
10964 return;
10965 end if;
10966
10967 else
c8ef728f
ES
10968 -- If one subprogram has an access parameter and the other
10969 -- a parameter of an access type, calls to either might be
10970 -- ambiguous. Verify that parameters match except for the
10971 -- access parameter.
10972
10973 if May_Hide_Profile then
10974 declare
ec4867fa
ES
10975 F1 : Entity_Id;
10976 F2 : Entity_Id;
8dbd1460 10977
c8ef728f
ES
10978 begin
10979 F1 := First_Formal (S);
10980 F2 := First_Formal (E);
10981 while Present (F1) and then Present (F2) loop
10982 if Is_Access_Type (Etype (F1)) then
10983 if not Is_Access_Type (Etype (F2))
10984 or else not Conforming_Types
10985 (Designated_Type (Etype (F1)),
10986 Designated_Type (Etype (F2)),
10987 Type_Conformant)
10988 then
10989 May_Hide_Profile := False;
10990 end if;
10991
10992 elsif
10993 not Conforming_Types
10994 (Etype (F1), Etype (F2), Type_Conformant)
10995 then
10996 May_Hide_Profile := False;
10997 end if;
10998
10999 Next_Formal (F1);
11000 Next_Formal (F2);
11001 end loop;
11002
11003 if May_Hide_Profile
11004 and then No (F1)
11005 and then No (F2)
11006 then
dbfeb4fa 11007 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
c8ef728f
ES
11008 end if;
11009 end;
11010 end if;
996ae0b0
RK
11011 end if;
11012
996ae0b0
RK
11013 E := Homonym (E);
11014 end loop;
11015
11016 -- On exit, we know that S is a new entity
11017
11018 Enter_Overloaded_Entity (S);
5d37ba92
ES
11019 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11020 Check_Overriding_Indicator
11021 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 11022
241ebe89
HK
11023 -- The Ghost policy in effect at the point of declaration of a parent
11024 -- subprogram and an overriding subprogram must match
11025 -- (SPARK RM 6.9(17)).
11026
11027 Check_Ghost_Overriding (S, Overridden_Subp);
11028
c4d67e2d 11029 -- Overloading is not allowed in SPARK, except for operators
8ed68165 11030
c4d67e2d
AC
11031 if Nkind (S) /= N_Defining_Operator_Symbol then
11032 Error_Msg_Sloc := Sloc (Homonym (S));
ce5ba43a 11033 Check_SPARK_05_Restriction
c4d67e2d
AC
11034 ("overloading not allowed with entity#", S);
11035 end if;
8ed68165 11036
82c80734
RD
11037 -- If S is a derived operation for an untagged type then by
11038 -- definition it's not a dispatching operation (even if the parent
e917aec2
RD
11039 -- operation was dispatching), so Check_Dispatching_Operation is not
11040 -- called in that case.
996ae0b0 11041
c8ef728f 11042 if No (Derived_Type)
996ae0b0
RK
11043 or else Is_Tagged_Type (Derived_Type)
11044 then
11045 Check_Dispatching_Operation (S, Empty);
11046 end if;
11047 end if;
11048
82c80734
RD
11049 -- If this is a user-defined equality operator that is not a derived
11050 -- subprogram, create the corresponding inequality. If the operation is
11051 -- dispatching, the expansion is done elsewhere, and we do not create
11052 -- an explicit inequality operation.
996ae0b0
RK
11053
11054 <<Check_Inequality>>
11055 if Chars (S) = Name_Op_Eq
11056 and then Etype (S) = Standard_Boolean
11057 and then Present (Parent (S))
11058 and then not Is_Dispatching_Operation (S)
11059 then
11060 Make_Inequality_Operator (S);
b2834fbd 11061 Check_Untagged_Equality (S);
996ae0b0 11062 end if;
996ae0b0
RK
11063 end New_Overloaded_Entity;
11064
11065 ---------------------
11066 -- Process_Formals --
11067 ---------------------
11068
11069 procedure Process_Formals
07fc65c4 11070 (T : List_Id;
996ae0b0
RK
11071 Related_Nod : Node_Id)
11072 is
7b56a91b 11073 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
950d217a
AC
11074 -- Determine whether an access type designates a type coming from a
11075 -- limited view.
11076
07fc65c4 11077 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
11078 -- Check whether the default has a class-wide type. After analysis the
11079 -- default has the type of the formal, so we must also check explicitly
11080 -- for an access attribute.
07fc65c4 11081
7b56a91b
AC
11082 ----------------------------------
11083 -- Designates_From_Limited_With --
11084 ----------------------------------
950d217a 11085
7b56a91b 11086 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
950d217a
AC
11087 Desig : Entity_Id := Typ;
11088
11089 begin
11090 if Is_Access_Type (Desig) then
11091 Desig := Directly_Designated_Type (Desig);
11092 end if;
11093
11094 if Is_Class_Wide_Type (Desig) then
11095 Desig := Root_Type (Desig);
11096 end if;
11097
11098 return
7b56a91b
AC
11099 Ekind (Desig) = E_Incomplete_Type
11100 and then From_Limited_With (Desig);
11101 end Designates_From_Limited_With;
950d217a 11102
07fc65c4
GB
11103 ---------------------------
11104 -- Is_Class_Wide_Default --
11105 ---------------------------
11106
11107 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11108 begin
11109 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
1b1d88b1 11110 or else (Nkind (D) = N_Attribute_Reference
0f853035
YM
11111 and then Attribute_Name (D) = Name_Access
11112 and then Is_Class_Wide_Type (Etype (Prefix (D))));
07fc65c4
GB
11113 end Is_Class_Wide_Default;
11114
847d950d
HK
11115 -- Local variables
11116
11117 Context : constant Node_Id := Parent (Parent (T));
11118 Default : Node_Id;
11119 Formal : Entity_Id;
11120 Formal_Type : Entity_Id;
11121 Param_Spec : Node_Id;
11122 Ptype : Entity_Id;
11123
11124 Num_Out_Params : Nat := 0;
11125 First_Out_Param : Entity_Id := Empty;
11126 -- Used for setting Is_Only_Out_Parameter
11127
07fc65c4
GB
11128 -- Start of processing for Process_Formals
11129
996ae0b0
RK
11130 begin
11131 -- In order to prevent premature use of the formals in the same formal
11132 -- part, the Ekind is left undefined until all default expressions are
11133 -- analyzed. The Ekind is established in a separate loop at the end.
11134
11135 Param_Spec := First (T);
996ae0b0 11136 while Present (Param_Spec) loop
996ae0b0 11137 Formal := Defining_Identifier (Param_Spec);
5d37ba92 11138 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
11139 Enter_Name (Formal);
11140
11141 -- Case of ordinary parameters
11142
11143 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11144 Find_Type (Parameter_Type (Param_Spec));
11145 Ptype := Parameter_Type (Param_Spec);
11146
11147 if Ptype = Error then
11148 goto Continue;
11149 end if;
11150
11151 Formal_Type := Entity (Ptype);
11152
ec4867fa
ES
11153 if Is_Incomplete_Type (Formal_Type)
11154 or else
11155 (Is_Class_Wide_Type (Formal_Type)
8fde064e 11156 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 11157 then
93bcda23
AC
11158 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11159 -- primitive operations, as long as their completion is
11160 -- in the same declarative part. If in the private part
11161 -- this means that the type cannot be a Taft-amendment type.
cec29135
ES
11162 -- Check is done on package exit. For access to subprograms,
11163 -- the use is legal for Taft-amendment types.
fbf5a39b 11164
6eddd7b4
AC
11165 -- Ada 2012: tagged incomplete types are allowed as generic
11166 -- formal types. They do not introduce dependencies and the
11167 -- corresponding generic subprogram does not have a delayed
5b6f12c7
AC
11168 -- freeze, because it does not need a freeze node. However,
11169 -- it is still the case that untagged incomplete types cannot
11170 -- be Taft-amendment types and must be completed in private
11171 -- part, so the subprogram must appear in the list of private
1e55d29a 11172 -- dependents of the type.
5b6f12c7
AC
11173
11174 if Is_Tagged_Type (Formal_Type)
b973629e 11175 or else (Ada_Version >= Ada_2012
1ebc2612
AC
11176 and then not From_Limited_With (Formal_Type)
11177 and then not Is_Generic_Type (Formal_Type))
5b6f12c7 11178 then
93bcda23 11179 if Ekind (Scope (Current_Scope)) = E_Package
6eddd7b4 11180 and then not Is_Generic_Type (Formal_Type)
1e55d29a 11181 and then not Is_Class_Wide_Type (Formal_Type)
93bcda23 11182 then
cec29135 11183 if not Nkind_In
f26a3587
AC
11184 (Parent (T), N_Access_Function_Definition,
11185 N_Access_Procedure_Definition)
cec29135 11186 then
1e55d29a
EB
11187 Append_Elmt (Current_Scope,
11188 Private_Dependents (Base_Type (Formal_Type)));
4637729f
AC
11189
11190 -- Freezing is delayed to ensure that Register_Prim
11191 -- will get called for this operation, which is needed
11192 -- in cases where static dispatch tables aren't built.
11193 -- (Note that the same is done for controlling access
11194 -- parameter cases in function Access_Definition.)
11195
13fa2acb
AC
11196 if not Is_Thunk (Current_Scope) then
11197 Set_Has_Delayed_Freeze (Current_Scope);
11198 end if;
cec29135 11199 end if;
93bcda23 11200 end if;
fbf5a39b 11201
800621e0
RD
11202 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11203 N_Access_Procedure_Definition)
996ae0b0 11204 then
dd386db0
AC
11205 -- AI05-0151: Tagged incomplete types are allowed in all
11206 -- formal parts. Untagged incomplete types are not allowed
b973629e
AC
11207 -- in bodies. Limited views of either kind are not allowed
11208 -- if there is no place at which the non-limited view can
11209 -- become available.
a18e3d62 11210
1ebc2612
AC
11211 -- Incomplete formal untagged types are not allowed in
11212 -- subprogram bodies (but are legal in their declarations).
c8d3b4ff
AC
11213 -- This excludes bodies created for null procedures, which
11214 -- are basic declarations.
1ebc2612
AC
11215
11216 if Is_Generic_Type (Formal_Type)
11217 and then not Is_Tagged_Type (Formal_Type)
11218 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11219 then
11220 Error_Msg_N
11221 ("invalid use of formal incomplete type", Param_Spec);
dd386db0 11222
1ebc2612 11223 elsif Ada_Version >= Ada_2012 then
b973629e
AC
11224 if Is_Tagged_Type (Formal_Type)
11225 and then (not From_Limited_With (Formal_Type)
11226 or else not In_Package_Body)
11227 then
dd386db0
AC
11228 null;
11229
c8d3b4ff
AC
11230 elsif Nkind_In (Context, N_Accept_Statement,
11231 N_Accept_Alternative,
11232 N_Entry_Body)
11233 or else (Nkind (Context) = N_Subprogram_Body
11234 and then Comes_From_Source (Context))
dd386db0
AC
11235 then
11236 Error_Msg_NE
c8d3b4ff 11237 ("invalid use of untagged incomplete type &",
0f1a6a0b 11238 Ptype, Formal_Type);
dd386db0
AC
11239 end if;
11240
11241 else
11242 Error_Msg_NE
11243 ("invalid use of incomplete type&",
0f1a6a0b 11244 Param_Spec, Formal_Type);
dd386db0
AC
11245
11246 -- Further checks on the legality of incomplete types
11247 -- in formal parts are delayed until the freeze point
11248 -- of the enclosing subprogram or access to subprogram.
11249 end if;
996ae0b0
RK
11250 end if;
11251
11252 elsif Ekind (Formal_Type) = E_Void then
0f1a6a0b
AC
11253 Error_Msg_NE
11254 ("premature use of&",
11255 Parameter_Type (Param_Spec), Formal_Type);
996ae0b0
RK
11256 end if;
11257
fecbd779
AC
11258 -- Ada 2012 (AI-142): Handle aliased parameters
11259
11260 if Ada_Version >= Ada_2012
11261 and then Aliased_Present (Param_Spec)
11262 then
11263 Set_Is_Aliased (Formal);
11264 end if;
11265
0ab80019 11266 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 11267 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
11268 -- formal in the enclosing scope. Finally, replace the parameter
11269 -- type of the formal with the internal subtype.
7324bf49 11270
0791fbe9 11271 if Ada_Version >= Ada_2005
41251c60 11272 and then Null_Exclusion_Present (Param_Spec)
7324bf49 11273 then
ec4867fa 11274 if not Is_Access_Type (Formal_Type) then
ed2233dc 11275 Error_Msg_N
0a36105d
JM
11276 ("`NOT NULL` allowed only for an access type", Param_Spec);
11277
ec4867fa
ES
11278 else
11279 if Can_Never_Be_Null (Formal_Type)
11280 and then Comes_From_Source (Related_Nod)
11281 then
ed2233dc 11282 Error_Msg_NE
0a36105d 11283 ("`NOT NULL` not allowed (& already excludes null)",
0f1a6a0b 11284 Param_Spec, Formal_Type);
ec4867fa 11285 end if;
41251c60 11286
ec4867fa
ES
11287 Formal_Type :=
11288 Create_Null_Excluding_Itype
11289 (T => Formal_Type,
11290 Related_Nod => Related_Nod,
11291 Scope_Id => Scope (Current_Scope));
0a36105d 11292
fcf848c4
AC
11293 -- If the designated type of the itype is an itype that is
11294 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11295 -- on the access subtype, to prevent order-of-elaboration
11296 -- issues in the backend.
0a36105d
JM
11297
11298 -- Example:
11299 -- type T is access procedure;
11300 -- procedure Op (O : not null T);
11301
fcf848c4
AC
11302 if Is_Itype (Directly_Designated_Type (Formal_Type))
11303 and then
11304 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11305 then
0a36105d
JM
11306 Set_Has_Delayed_Freeze (Formal_Type);
11307 end if;
ec4867fa 11308 end if;
7324bf49
AC
11309 end if;
11310
996ae0b0
RK
11311 -- An access formal type
11312
11313 else
11314 Formal_Type :=
11315 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 11316
f937473f
RD
11317 -- No need to continue if we already notified errors
11318
11319 if not Present (Formal_Type) then
11320 return;
11321 end if;
11322
0ab80019 11323 -- Ada 2005 (AI-254)
7324bf49 11324
af4b9434
AC
11325 declare
11326 AD : constant Node_Id :=
11327 Access_To_Subprogram_Definition
11328 (Parameter_Type (Param_Spec));
11329 begin
11330 if Present (AD) and then Protected_Present (AD) then
11331 Formal_Type :=
11332 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 11333 (Param_Spec);
af4b9434
AC
11334 end if;
11335 end;
996ae0b0
RK
11336 end if;
11337
11338 Set_Etype (Formal, Formal_Type);
0f853035 11339
fecbd779
AC
11340 -- Deal with default expression if present
11341
fbf5a39b 11342 Default := Expression (Param_Spec);
996ae0b0
RK
11343
11344 if Present (Default) then
ce5ba43a 11345 Check_SPARK_05_Restriction
fe5d3068 11346 ("default expression is not allowed", Default);
38171f43 11347
996ae0b0 11348 if Out_Present (Param_Spec) then
ed2233dc 11349 Error_Msg_N
996ae0b0
RK
11350 ("default initialization only allowed for IN parameters",
11351 Param_Spec);
11352 end if;
11353
11354 -- Do the special preanalysis of the expression (see section on
11355 -- "Handling of Default Expressions" in the spec of package Sem).
11356
21d27997 11357 Preanalyze_Spec_Expression (Default, Formal_Type);
996ae0b0 11358
f29b857f
ES
11359 -- An access to constant cannot be the default for
11360 -- an access parameter that is an access to variable.
2eb160f2
ST
11361
11362 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11363 and then not Is_Access_Constant (Formal_Type)
11364 and then Is_Access_Type (Etype (Default))
11365 and then Is_Access_Constant (Etype (Default))
11366 then
f29b857f 11367 Error_Msg_N
84c0a895
AC
11368 ("formal that is access to variable cannot be initialized "
11369 & "with an access-to-constant expression", Default);
2eb160f2
ST
11370 end if;
11371
d8db0bca
JM
11372 -- Check that the designated type of an access parameter's default
11373 -- is not a class-wide type unless the parameter's designated type
11374 -- is also class-wide.
996ae0b0
RK
11375
11376 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7b56a91b 11377 and then not Designates_From_Limited_With (Formal_Type)
07fc65c4 11378 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
11379 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11380 then
07fc65c4
GB
11381 Error_Msg_N
11382 ("access to class-wide expression not allowed here", Default);
996ae0b0 11383 end if;
4755cce9
JM
11384
11385 -- Check incorrect use of dynamically tagged expressions
11386
11387 if Is_Tagged_Type (Formal_Type) then
11388 Check_Dynamically_Tagged_Expression
11389 (Expr => Default,
11390 Typ => Formal_Type,
11391 Related_Nod => Default);
11392 end if;
996ae0b0
RK
11393 end if;
11394
41251c60
JM
11395 -- Ada 2005 (AI-231): Static checks
11396
0791fbe9 11397 if Ada_Version >= Ada_2005
41251c60
JM
11398 and then Is_Access_Type (Etype (Formal))
11399 and then Can_Never_Be_Null (Etype (Formal))
11400 then
11401 Null_Exclusion_Static_Checks (Param_Spec);
11402 end if;
11403
847d950d
HK
11404 -- The following checks are relevant only when SPARK_Mode is on as
11405 -- these are not standard Ada legality rules.
6c3c671e 11406
ea26c8e4
HK
11407 if SPARK_Mode = On then
11408 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
f1bd0415 11409
ea26c8e4
HK
11410 -- A function cannot have a parameter of mode IN OUT or OUT
11411 -- (SPARK RM 6.1).
f1bd0415 11412
ea26c8e4
HK
11413 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11414 Error_Msg_N
11415 ("function cannot have parameter of mode `OUT` or "
11416 & "`IN OUT`", Formal);
ea26c8e4
HK
11417 end if;
11418
d780e54f
AC
11419 -- A procedure cannot have an effectively volatile formal
11420 -- parameter of mode IN because it behaves as a constant
db7e3721 11421 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
ea26c8e4
HK
11422
11423 elsif Ekind (Scope (Formal)) = E_Procedure
11424 and then Ekind (Formal) = E_In_Parameter
d780e54f 11425 and then Is_Effectively_Volatile (Formal)
ea26c8e4 11426 then
f1bd0415 11427 Error_Msg_N
ea26c8e4 11428 ("formal parameter of mode `IN` cannot be volatile", Formal);
f1bd0415 11429 end if;
6c3c671e
AC
11430 end if;
11431
996ae0b0
RK
11432 <<Continue>>
11433 Next (Param_Spec);
11434 end loop;
11435
82c80734
RD
11436 -- If this is the formal part of a function specification, analyze the
11437 -- subtype mark in the context where the formals are visible but not
11438 -- yet usable, and may hide outer homographs.
11439
11440 if Nkind (Related_Nod) = N_Function_Specification then
11441 Analyze_Return_Type (Related_Nod);
11442 end if;
11443
996ae0b0
RK
11444 -- Now set the kind (mode) of each formal
11445
11446 Param_Spec := First (T);
996ae0b0
RK
11447 while Present (Param_Spec) loop
11448 Formal := Defining_Identifier (Param_Spec);
11449 Set_Formal_Mode (Formal);
11450
11451 if Ekind (Formal) = E_In_Parameter then
11452 Set_Default_Value (Formal, Expression (Param_Spec));
11453
11454 if Present (Expression (Param_Spec)) then
c8307596 11455 Default := Expression (Param_Spec);
996ae0b0
RK
11456
11457 if Is_Scalar_Type (Etype (Default)) then
5ebfaacf
AC
11458 if Nkind (Parameter_Type (Param_Spec)) /=
11459 N_Access_Definition
996ae0b0
RK
11460 then
11461 Formal_Type := Entity (Parameter_Type (Param_Spec));
996ae0b0 11462 else
5ebfaacf
AC
11463 Formal_Type :=
11464 Access_Definition
11465 (Related_Nod, Parameter_Type (Param_Spec));
996ae0b0
RK
11466 end if;
11467
11468 Apply_Scalar_Range_Check (Default, Formal_Type);
11469 end if;
2820d220 11470 end if;
800621e0
RD
11471
11472 elsif Ekind (Formal) = E_Out_Parameter then
11473 Num_Out_Params := Num_Out_Params + 1;
11474
11475 if Num_Out_Params = 1 then
11476 First_Out_Param := Formal;
11477 end if;
11478
11479 elsif Ekind (Formal) = E_In_Out_Parameter then
11480 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
11481 end if;
11482
4172a8e3
AC
11483 -- Skip remaining processing if formal type was in error
11484
11485 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11486 goto Next_Parameter;
11487 end if;
11488
fecbd779
AC
11489 -- Force call by reference if aliased
11490
1e60643a
AC
11491 declare
11492 Conv : constant Convention_Id := Convention (Etype (Formal));
11493 begin
11494 if Is_Aliased (Formal) then
11495 Set_Mechanism (Formal, By_Reference);
5ebfaacf 11496
1e60643a 11497 -- Warn if user asked this to be passed by copy
5ebfaacf 11498
1e60643a
AC
11499 if Conv = Convention_Ada_Pass_By_Copy then
11500 Error_Msg_N
11501 ("cannot pass aliased parameter & by copy??", Formal);
11502 end if;
5ebfaacf 11503
1e60643a 11504 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
5ebfaacf 11505
1e60643a
AC
11506 elsif Conv = Convention_Ada_Pass_By_Copy then
11507 Set_Mechanism (Formal, By_Copy);
5ebfaacf 11508
1e60643a
AC
11509 elsif Conv = Convention_Ada_Pass_By_Reference then
11510 Set_Mechanism (Formal, By_Reference);
11511 end if;
11512 end;
fecbd779 11513
4172a8e3 11514 <<Next_Parameter>>
996ae0b0
RK
11515 Next (Param_Spec);
11516 end loop;
800621e0
RD
11517
11518 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11519 Set_Is_Only_Out_Parameter (First_Out_Param);
11520 end if;
996ae0b0
RK
11521 end Process_Formals;
11522
fbf5a39b
AC
11523 ----------------------------
11524 -- Reference_Body_Formals --
11525 ----------------------------
11526
11527 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11528 Fs : Entity_Id;
11529 Fb : Entity_Id;
11530
11531 begin
11532 if Error_Posted (Spec) then
11533 return;
11534 end if;
11535
0a36105d
JM
11536 -- Iterate over both lists. They may be of different lengths if the two
11537 -- specs are not conformant.
11538
fbf5a39b
AC
11539 Fs := First_Formal (Spec);
11540 Fb := First_Formal (Bod);
0a36105d 11541 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
11542 Generate_Reference (Fs, Fb, 'b');
11543
11544 if Style_Check then
11545 Style.Check_Identifier (Fb, Fs);
11546 end if;
11547
11548 Set_Spec_Entity (Fb, Fs);
11549 Set_Referenced (Fs, False);
11550 Next_Formal (Fs);
11551 Next_Formal (Fb);
11552 end loop;
11553 end Reference_Body_Formals;
11554
996ae0b0
RK
11555 -------------------------
11556 -- Set_Actual_Subtypes --
11557 -------------------------
11558
11559 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
84c0a895
AC
11560 Decl : Node_Id;
11561 Formal : Entity_Id;
11562 T : Entity_Id;
11563 First_Stmt : Node_Id := Empty;
11564 AS_Needed : Boolean;
996ae0b0
RK
11565
11566 begin
f3d57416 11567 -- If this is an empty initialization procedure, no need to create
fbf5a39b
AC
11568 -- actual subtypes (small optimization).
11569
8fde064e 11570 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
fbf5a39b
AC
11571 return;
11572 end if;
11573
124bed29
AC
11574 -- The subtype declarations may freeze the formals. The body generated
11575 -- for an expression function is not a freeze point, so do not emit
11576 -- these declarations (small loss of efficiency in rare cases).
11577
11578 if Nkind (N) = N_Subprogram_Body
11579 and then Was_Expression_Function (N)
11580 then
11581 return;
11582 end if;
11583
996ae0b0
RK
11584 Formal := First_Formal (Subp);
11585 while Present (Formal) loop
11586 T := Etype (Formal);
11587
e895b435 11588 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
11589
11590 if Is_Constrained (T) then
11591 AS_Needed := False;
11592
82c80734 11593 -- If we have unknown discriminants, then we do not need an actual
a90bd866 11594 -- subtype, or more accurately we cannot figure it out. Note that
82c80734 11595 -- all class-wide types have unknown discriminants.
996ae0b0
RK
11596
11597 elsif Has_Unknown_Discriminants (T) then
11598 AS_Needed := False;
11599
82c80734
RD
11600 -- At this stage we have an unconstrained type that may need an
11601 -- actual subtype. For sure the actual subtype is needed if we have
405b907c
AC
11602 -- an unconstrained array type. However, in an instance, the type
11603 -- may appear as a subtype of the full view, while the actual is
11604 -- in fact private (in which case no actual subtype is needed) so
11605 -- check the kind of the base type.
996ae0b0 11606
405b907c 11607 elsif Is_Array_Type (Base_Type (T)) then
996ae0b0
RK
11608 AS_Needed := True;
11609
d8db0bca
JM
11610 -- The only other case needing an actual subtype is an unconstrained
11611 -- record type which is an IN parameter (we cannot generate actual
11612 -- subtypes for the OUT or IN OUT case, since an assignment can
11613 -- change the discriminant values. However we exclude the case of
11614 -- initialization procedures, since discriminants are handled very
11615 -- specially in this context, see the section entitled "Handling of
11616 -- Discriminants" in Einfo.
11617
11618 -- We also exclude the case of Discrim_SO_Functions (functions used
ca90b962 11619 -- in front-end layout mode for size/offset values), since in such
d8db0bca
JM
11620 -- functions only discriminants are referenced, and not only are such
11621 -- subtypes not needed, but they cannot always be generated, because
11622 -- of order of elaboration issues.
996ae0b0
RK
11623
11624 elsif Is_Record_Type (T)
11625 and then Ekind (Formal) = E_In_Parameter
11626 and then Chars (Formal) /= Name_uInit
5d09245e 11627 and then not Is_Unchecked_Union (T)
996ae0b0
RK
11628 and then not Is_Discrim_SO_Function (Subp)
11629 then
11630 AS_Needed := True;
11631
11632 -- All other cases do not need an actual subtype
11633
11634 else
11635 AS_Needed := False;
11636 end if;
11637
11638 -- Generate actual subtypes for unconstrained arrays and
11639 -- unconstrained discriminated records.
11640
11641 if AS_Needed then
7324bf49 11642 if Nkind (N) = N_Accept_Statement then
fbf5a39b 11643
57a8057a 11644 -- If expansion is active, the formal is replaced by a local
fbf5a39b
AC
11645 -- variable that renames the corresponding entry of the
11646 -- parameter block, and it is this local variable that may
da94696d 11647 -- require an actual subtype.
fbf5a39b 11648
4460a9bc 11649 if Expander_Active then
fbf5a39b
AC
11650 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11651 else
11652 Decl := Build_Actual_Subtype (T, Formal);
11653 end if;
11654
996ae0b0
RK
11655 if Present (Handled_Statement_Sequence (N)) then
11656 First_Stmt :=
11657 First (Statements (Handled_Statement_Sequence (N)));
11658 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11659 Mark_Rewrite_Insertion (Decl);
11660 else
82c80734
RD
11661 -- If the accept statement has no body, there will be no
11662 -- reference to the actuals, so no need to compute actual
11663 -- subtypes.
996ae0b0
RK
11664
11665 return;
11666 end if;
11667
11668 else
fbf5a39b 11669 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
11670 Prepend (Decl, Declarations (N));
11671 Mark_Rewrite_Insertion (Decl);
11672 end if;
11673
82c80734
RD
11674 -- The declaration uses the bounds of an existing object, and
11675 -- therefore needs no constraint checks.
2820d220 11676
7324bf49 11677 Analyze (Decl, Suppress => All_Checks);
405b907c 11678 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
2820d220 11679
996ae0b0
RK
11680 -- We need to freeze manually the generated type when it is
11681 -- inserted anywhere else than in a declarative part.
11682
11683 if Present (First_Stmt) then
11684 Insert_List_Before_And_Analyze (First_Stmt,
c159409f 11685 Freeze_Entity (Defining_Identifier (Decl), N));
fcadacf7
ES
11686
11687 -- Ditto if the type has a dynamic predicate, because the
22da8770
AC
11688 -- generated function will mention the actual subtype. The
11689 -- predicate may come from an explicit aspect of be inherited.
fcadacf7 11690
22da8770 11691 elsif Has_Predicates (T) then
fcadacf7
ES
11692 Insert_List_Before_And_Analyze (Decl,
11693 Freeze_Entity (Defining_Identifier (Decl), N));
996ae0b0
RK
11694 end if;
11695
fbf5a39b 11696 if Nkind (N) = N_Accept_Statement
4460a9bc 11697 and then Expander_Active
fbf5a39b
AC
11698 then
11699 Set_Actual_Subtype (Renamed_Object (Formal),
11700 Defining_Identifier (Decl));
11701 else
11702 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11703 end if;
996ae0b0
RK
11704 end if;
11705
11706 Next_Formal (Formal);
11707 end loop;
11708 end Set_Actual_Subtypes;
11709
11710 ---------------------
11711 -- Set_Formal_Mode --
11712 ---------------------
11713
11714 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
07aa5e6f 11715 Spec : constant Node_Id := Parent (Formal_Id);
288cbbbd 11716 Id : constant Entity_Id := Scope (Formal_Id);
996ae0b0
RK
11717
11718 begin
11719 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11720 -- since we ensure that corresponding actuals are always valid at the
11721 -- point of the call.
11722
11723 if Out_Present (Spec) then
288cbbbd
JM
11724 if Ekind_In (Id, E_Entry, E_Entry_Family)
11725 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11726 then
11727 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11728 end if;
11729
11730 if Ekind_In (Id, E_Function, E_Generic_Function) then
fc999c5d 11731
b4ca2d2c 11732 -- [IN] OUT parameters allowed for functions in Ada 2012
c56a9ba4
AC
11733
11734 if Ada_Version >= Ada_2012 then
e6425869
AC
11735
11736 -- Even in Ada 2012 operators can only have IN parameters
11737
11738 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11739 Error_Msg_N ("operators can only have IN parameters", Spec);
11740 end if;
11741
c56a9ba4
AC
11742 if In_Present (Spec) then
11743 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11744 else
11745 Set_Ekind (Formal_Id, E_Out_Parameter);
11746 end if;
11747
b4ca2d2c
AC
11748 -- But not in earlier versions of Ada
11749
c56a9ba4
AC
11750 else
11751 Error_Msg_N ("functions can only have IN parameters", Spec);
11752 Set_Ekind (Formal_Id, E_In_Parameter);
11753 end if;
996ae0b0
RK
11754
11755 elsif In_Present (Spec) then
11756 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11757
11758 else
fbf5a39b
AC
11759 Set_Ekind (Formal_Id, E_Out_Parameter);
11760 Set_Never_Set_In_Source (Formal_Id, True);
11761 Set_Is_True_Constant (Formal_Id, False);
11762 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
11763 end if;
11764
11765 else
11766 Set_Ekind (Formal_Id, E_In_Parameter);
11767 end if;
11768
fbf5a39b 11769 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
11770 -- guarantees that access parameters are always non-null. We also set
11771 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
11772
11773 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 11774
885c4871 11775 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
2813bb6b 11776 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 11777
0791fbe9 11778 if Ada_Version < Ada_2005
2813bb6b 11779 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
11780 then
11781 Set_Is_Known_Non_Null (Formal_Id);
11782 Set_Can_Never_Be_Null (Formal_Id);
11783 end if;
2813bb6b 11784
41251c60
JM
11785 -- Ada 2005 (AI-231): Null-exclusion access subtype
11786
2813bb6b
ES
11787 elsif Is_Access_Type (Etype (Formal_Id))
11788 and then Can_Never_Be_Null (Etype (Formal_Id))
11789 then
2813bb6b 11790 Set_Is_Known_Non_Null (Formal_Id);
a1d72281
EB
11791
11792 -- We can also set Can_Never_Be_Null (thus preventing some junk
11793 -- access checks) for the case of an IN parameter, which cannot
11794 -- be changed, or for an IN OUT parameter, which can be changed but
11795 -- not to a null value. But for an OUT parameter, the initial value
11796 -- passed in can be null, so we can't set this flag in that case.
11797
11798 if Ekind (Formal_Id) /= E_Out_Parameter then
11799 Set_Can_Never_Be_Null (Formal_Id);
11800 end if;
fbf5a39b
AC
11801 end if;
11802
996ae0b0
RK
11803 Set_Mechanism (Formal_Id, Default_Mechanism);
11804 Set_Formal_Validity (Formal_Id);
11805 end Set_Formal_Mode;
11806
11807 -------------------------
11808 -- Set_Formal_Validity --
11809 -------------------------
11810
11811 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11812 begin
82c80734
RD
11813 -- If no validity checking, then we cannot assume anything about the
11814 -- validity of parameters, since we do not know there is any checking
11815 -- of the validity on the call side.
996ae0b0
RK
11816
11817 if not Validity_Checks_On then
11818 return;
11819
fbf5a39b
AC
11820 -- If validity checking for parameters is enabled, this means we are
11821 -- not supposed to make any assumptions about argument values.
11822
11823 elsif Validity_Check_Parameters then
11824 return;
11825
11826 -- If we are checking in parameters, we will assume that the caller is
11827 -- also checking parameters, so we can assume the parameter is valid.
11828
996ae0b0
RK
11829 elsif Ekind (Formal_Id) = E_In_Parameter
11830 and then Validity_Check_In_Params
11831 then
11832 Set_Is_Known_Valid (Formal_Id, True);
11833
fbf5a39b
AC
11834 -- Similar treatment for IN OUT parameters
11835
996ae0b0
RK
11836 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11837 and then Validity_Check_In_Out_Params
11838 then
11839 Set_Is_Known_Valid (Formal_Id, True);
11840 end if;
11841 end Set_Formal_Validity;
11842
11843 ------------------------
11844 -- Subtype_Conformant --
11845 ------------------------
11846
ce2b6ba5
JM
11847 function Subtype_Conformant
11848 (New_Id : Entity_Id;
11849 Old_Id : Entity_Id;
11850 Skip_Controlling_Formals : Boolean := False) return Boolean
11851 is
996ae0b0 11852 Result : Boolean;
996ae0b0 11853 begin
ce2b6ba5
JM
11854 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11855 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
11856 return Result;
11857 end Subtype_Conformant;
11858
11859 ---------------------
11860 -- Type_Conformant --
11861 ---------------------
11862
41251c60
JM
11863 function Type_Conformant
11864 (New_Id : Entity_Id;
11865 Old_Id : Entity_Id;
11866 Skip_Controlling_Formals : Boolean := False) return Boolean
11867 is
996ae0b0 11868 Result : Boolean;
996ae0b0 11869 begin
c8ef728f 11870 May_Hide_Profile := False;
41251c60
JM
11871 Check_Conformance
11872 (New_Id, Old_Id, Type_Conformant, False, Result,
11873 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
11874 return Result;
11875 end Type_Conformant;
11876
11877 -------------------------------
11878 -- Valid_Operator_Definition --
11879 -------------------------------
11880
11881 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11882 N : Integer := 0;
11883 F : Entity_Id;
11884 Id : constant Name_Id := Chars (Designator);
11885 N_OK : Boolean;
11886
11887 begin
11888 F := First_Formal (Designator);
996ae0b0
RK
11889 while Present (F) loop
11890 N := N + 1;
11891
11892 if Present (Default_Value (F)) then
ed2233dc 11893 Error_Msg_N
996ae0b0
RK
11894 ("default values not allowed for operator parameters",
11895 Parent (F));
220d1fd9
AC
11896
11897 -- For function instantiations that are operators, we must check
11898 -- separately that the corresponding generic only has in-parameters.
84c0a895
AC
11899 -- For subprogram declarations this is done in Set_Formal_Mode. Such
11900 -- an error could not arise in earlier versions of the language.
220d1fd9
AC
11901
11902 elsif Ekind (F) /= E_In_Parameter then
84c0a895 11903 Error_Msg_N ("operators can only have IN parameters", F);
996ae0b0
RK
11904 end if;
11905
11906 Next_Formal (F);
11907 end loop;
11908
11909 -- Verify that user-defined operators have proper number of arguments
11910 -- First case of operators which can only be unary
11911
b69cd36a 11912 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
996ae0b0
RK
11913 N_OK := (N = 1);
11914
11915 -- Case of operators which can be unary or binary
11916
b69cd36a 11917 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
11918 N_OK := (N in 1 .. 2);
11919
11920 -- All other operators can only be binary
11921
11922 else
11923 N_OK := (N = 2);
11924 end if;
11925
11926 if not N_OK then
11927 Error_Msg_N
11928 ("incorrect number of arguments for operator", Designator);
11929 end if;
11930
11931 if Id = Name_Op_Ne
11932 and then Base_Type (Etype (Designator)) = Standard_Boolean
11933 and then not Is_Intrinsic_Subprogram (Designator)
11934 then
11935 Error_Msg_N
84c0a895 11936 ("explicit definition of inequality not allowed", Designator);
996ae0b0
RK
11937 end if;
11938 end Valid_Operator_Definition;
11939
11940end Sem_Ch6;