]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch6.adb
re PR debug/51564 (ICE in force_type_die, at dwarf2out.c:19288)
[thirdparty/gcc.git] / gcc / ada / sem_ch6.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 6 --
6-- --
7-- B o d y --
996ae0b0 8-- --
c7b9d548 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Expander; use Expander;
ec4867fa 33with Exp_Ch6; use Exp_Ch6;
996ae0b0 34with Exp_Ch7; use Exp_Ch7;
21d27997 35with Exp_Ch9; use Exp_Ch9;
ce2b6ba5 36with Exp_Disp; use Exp_Disp;
e660dbf7 37with Exp_Tss; use Exp_Tss;
ec4867fa 38with Exp_Util; use Exp_Util;
fbf5a39b 39with Fname; use Fname;
996ae0b0 40with Freeze; use Freeze;
41251c60 41with Itypes; use Itypes;
996ae0b0 42with Lib.Xref; use Lib.Xref;
ec4867fa 43with Layout; use Layout;
996ae0b0
RK
44with Namet; use Namet;
45with Lib; use Lib;
46with Nlists; use Nlists;
47with Nmake; use Nmake;
48with Opt; use Opt;
49with Output; use Output;
b20de9b9
AC
50with Restrict; use Restrict;
51with Rident; use Rident;
996ae0b0
RK
52with Rtsfind; use Rtsfind;
53with Sem; use Sem;
a4100e55 54with Sem_Aux; use Sem_Aux;
996ae0b0
RK
55with Sem_Cat; use Sem_Cat;
56with Sem_Ch3; use Sem_Ch3;
57with Sem_Ch4; use Sem_Ch4;
58with Sem_Ch5; use Sem_Ch5;
59with Sem_Ch8; use Sem_Ch8;
9bc856dd 60with Sem_Ch10; use Sem_Ch10;
996ae0b0 61with Sem_Ch12; use Sem_Ch12;
0f1a6a0b 62with Sem_Ch13; use Sem_Ch13;
996ae0b0
RK
63with Sem_Disp; use Sem_Disp;
64with Sem_Dist; use Sem_Dist;
65with Sem_Elim; use Sem_Elim;
66with Sem_Eval; use Sem_Eval;
67with Sem_Mech; use Sem_Mech;
68with Sem_Prag; use Sem_Prag;
69with Sem_Res; use Sem_Res;
70with Sem_Util; use Sem_Util;
71with Sem_Type; use Sem_Type;
72with Sem_Warn; use Sem_Warn;
73with Sinput; use Sinput;
74with Stand; use Stand;
75with Sinfo; use Sinfo;
76with Sinfo.CN; use Sinfo.CN;
77with Snames; use Snames;
78with Stringt; use Stringt;
79with Style;
80with Stylesw; use Stylesw;
8417f4b2 81with Targparm; use Targparm;
996ae0b0
RK
82with Tbuild; use Tbuild;
83with Uintp; use Uintp;
84with Urealp; use Urealp;
85with Validsw; use Validsw;
86
87package body Sem_Ch6 is
88
c8ef728f 89 May_Hide_Profile : Boolean := False;
ec4867fa
ES
90 -- This flag is used to indicate that two formals in two subprograms being
91 -- checked for conformance differ only in that one is an access parameter
92 -- while the other is of a general access type with the same designated
93 -- type. In this case, if the rest of the signatures match, a call to
94 -- either subprogram may be ambiguous, which is worth a warning. The flag
95 -- is set in Compatible_Types, and the warning emitted in
96 -- New_Overloaded_Entity.
c8ef728f 97
996ae0b0
RK
98 -----------------------
99 -- Local Subprograms --
100 -----------------------
101
5d37ba92 102 procedure Analyze_Return_Statement (N : Node_Id);
5b9c3fc4 103 -- Common processing for simple and extended return statements
ec4867fa
ES
104
105 procedure Analyze_Function_Return (N : Node_Id);
81db9d77
ES
106 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
107 -- applies to a [generic] function.
ec4867fa 108
82c80734
RD
109 procedure Analyze_Return_Type (N : Node_Id);
110 -- Subsidiary to Process_Formals: analyze subtype mark in function
5b9c3fc4 111 -- specification in a context where the formals are visible and hide
82c80734
RD
112 -- outer homographs.
113
b1b543d2 114 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
13d923cc
RD
115 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
116 -- that we can use RETURN but not skip the debug output at the end.
b1b543d2 117
996ae0b0 118 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
82c80734
RD
119 -- Analyze a generic subprogram body. N is the body to be analyzed, and
120 -- Gen_Id is the defining entity Id for the corresponding spec.
996ae0b0 121
d05ef0ab 122 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
996ae0b0
RK
123 -- If a subprogram has pragma Inline and inlining is active, use generic
124 -- machinery to build an unexpanded body for the subprogram. This body is
f3d57416 125 -- subsequently used for inline expansions at call sites. If subprogram can
996ae0b0
RK
126 -- be inlined (depending on size and nature of local declarations) this
127 -- function returns true. Otherwise subprogram body is treated normally.
aa720a54
AC
128 -- If proper warnings are enabled and the subprogram contains a construct
129 -- that cannot be inlined, the offending construct is flagged accordingly.
996ae0b0 130
806f6d37
AC
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
996ae0b0 134 procedure Check_Conformance
41251c60
JM
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
996ae0b0
RK
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
158
996ae0b0
RK
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
c8ef728f
ES
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
0a36105d 165 -- returns present in a procedure body which has No_Return set. HSS is the
c8ef728f
ES
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
996ae0b0 173
e5a58fac
AC
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate.
180
996ae0b0 181 procedure Enter_Overloaded_Entity (S : Entity_Id);
82c80734
RD
182 -- This procedure makes S, a new overloaded entity, into the first visible
183 -- entity with that name.
996ae0b0 184
a5b62485
AC
185 function Is_Non_Overriding_Operation
186 (Prev_E : Entity_Id;
187 New_E : Entity_Id) return Boolean;
188 -- Enforce the rule given in 12.3(18): a private operation in an instance
189 -- overrides an inherited operation only if the corresponding operation
190 -- was overriding in the generic. This can happen for primitive operations
191 -- of types derived (in the generic unit) from formal private or formal
192 -- derived types.
193
996ae0b0
RK
194 procedure Make_Inequality_Operator (S : Entity_Id);
195 -- Create the declaration for an inequality operator that is implicitly
196 -- created by a user-defined equality operator that yields a boolean.
197
198 procedure May_Need_Actuals (Fun : Entity_Id);
199 -- Flag functions that can be called without parameters, i.e. those that
200 -- have no parameters, or those for which defaults exist for all parameters
201
21d27997
RD
202 procedure Process_PPCs
203 (N : Node_Id;
204 Spec_Id : Entity_Id;
205 Body_Id : Entity_Id);
3764bb00
BD
206 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
207 -- conditions for the body and assembling and inserting the _postconditions
208 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
209 -- the entities for the body and separate spec (if there is no separate
b4ca2d2c
AC
210 -- spec, Spec_Id is Empty). Note that invariants and predicates may also
211 -- provide postconditions, and are also handled in this procedure.
21d27997 212
996ae0b0
RK
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
e358346d
AC
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
996ae0b0
RK
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
223 Designator : constant Entity_Id :=
224 Analyze_Subprogram_Specification (Specification (N));
996ae0b0
RK
225 Scop : constant Entity_Id := Current_Scope;
226
227 begin
2ba431e5 228 Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
38171f43 229
996ae0b0 230 Generate_Definition (Designator);
dac3bede 231 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
f937473f 232 Set_Is_Abstract_Subprogram (Designator);
996ae0b0
RK
233 New_Overloaded_Entity (Designator);
234 Check_Delayed_Subprogram (Designator);
235
fbf5a39b 236 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0
RK
237
238 if Ekind (Scope (Designator)) = E_Protected_Type then
239 Error_Msg_N
240 ("abstract subprogram not allowed in protected type", N);
5d37ba92
ES
241
242 -- Issue a warning if the abstract subprogram is neither a dispatching
243 -- operation nor an operation that overrides an inherited subprogram or
244 -- predefined operator, since this most likely indicates a mistake.
245
246 elsif Warn_On_Redundant_Constructs
247 and then not Is_Dispatching_Operation (Designator)
038140ed 248 and then not Present (Overridden_Operation (Designator))
5d37ba92
ES
249 and then (not Is_Operator_Symbol_Name (Chars (Designator))
250 or else Scop /= Scope (Etype (First_Formal (Designator))))
251 then
252 Error_Msg_N
253 ("?abstract subprogram is not dispatching or overriding", N);
996ae0b0 254 end if;
fbf5a39b
AC
255
256 Generate_Reference_To_Formals (Designator);
361effb1 257 Check_Eliminated (Designator);
eaba57fb
RD
258
259 if Has_Aspects (N) then
260 Analyze_Aspect_Specifications (N, Designator);
261 end if;
996ae0b0
RK
262 end Analyze_Abstract_Subprogram_Declaration;
263
b0186f71
AC
264 ---------------------------------
265 -- Analyze_Expression_Function --
266 ---------------------------------
267
268 procedure Analyze_Expression_Function (N : Node_Id) is
269 Loc : constant Source_Ptr := Sloc (N);
270 LocX : constant Source_Ptr := Sloc (Expression (N));
0b5b2bbc 271 Expr : constant Node_Id := Expression (N);
d2d4b355
AC
272 Spec : constant Node_Id := Specification (N);
273
8a06151a 274 Def_Id : Entity_Id;
d2d4b355 275 pragma Unreferenced (Def_Id);
b0186f71 276
8a06151a 277 Prev : Entity_Id;
b0186f71 278 -- If the expression is a completion, Prev is the entity whose
d2d4b355
AC
279 -- declaration is completed. Def_Id is needed to analyze the spec.
280
281 New_Body : Node_Id;
282 New_Decl : Node_Id;
283 New_Spec : Node_Id;
b913199e 284 Ret : Node_Id;
b0186f71
AC
285
286 begin
287 -- This is one of the occasions on which we transform the tree during
afc8324d 288 -- semantic analysis. If this is a completion, transform the expression
d2b10647
ES
289 -- function into an equivalent subprogram body, and analyze it.
290
291 -- Expression functions are inlined unconditionally. The back-end will
292 -- determine whether this is possible.
293
294 Inline_Processing_Required := True;
d2d4b355
AC
295 New_Spec := Copy_Separate_Tree (Spec);
296 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
297
298 -- If there are previous overloadable entities with the same name,
299 -- check whether any of them is completed by the expression function.
300
8a06151a 301 if Present (Prev) and then Is_Overloadable (Prev) then
d2d4b355
AC
302 Def_Id := Analyze_Subprogram_Specification (Spec);
303 Prev := Find_Corresponding_Spec (N);
304 end if;
b0186f71 305
b913199e
AC
306 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
307
b0186f71
AC
308 New_Body :=
309 Make_Subprogram_Body (Loc,
d2d4b355 310 Specification => New_Spec,
b0186f71
AC
311 Declarations => Empty_List,
312 Handled_Statement_Sequence =>
313 Make_Handled_Sequence_Of_Statements (LocX,
b913199e 314 Statements => New_List (Ret)));
b0186f71 315
6d7e5c54
AC
316 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
317
b0186f71
AC
318 -- If the expression completes a generic subprogram, we must create a
319 -- separate node for the body, because at instantiation the original
320 -- node of the generic copy must be a generic subprogram body, and
321 -- cannot be a expression function. Otherwise we just rewrite the
322 -- expression with the non-generic body.
323
324 Insert_After (N, New_Body);
325 Rewrite (N, Make_Null_Statement (Loc));
d2d4b355 326 Set_Has_Completion (Prev, False);
b0186f71
AC
327 Analyze (N);
328 Analyze (New_Body);
d2b10647 329 Set_Is_Inlined (Prev);
b0186f71 330
6d7e5c54
AC
331 elsif Present (Prev)
332 and then Comes_From_Source (Prev)
333 then
d2d4b355 334 Set_Has_Completion (Prev, False);
76264f60
AC
335
336 -- For navigation purposes, indicate that the function is a body
337
338 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
b0186f71 339 Rewrite (N, New_Body);
d2b10647
ES
340 Analyze (N);
341
6d7e5c54
AC
342 -- Prev is the previous entity with the same name, but it is can
343 -- be an unrelated spec that is not completed by the expression
344 -- function. In that case the relevant entity is the one in the body.
345 -- Not clear that the backend can inline it in this case ???
346
347 if Has_Completion (Prev) then
348 Set_Is_Inlined (Prev);
349 else
350 Set_Is_Inlined (Defining_Entity (New_Body));
351 end if;
352
0b5b2bbc 353 -- If this is not a completion, create both a declaration and a body, so
6d7e5c54 354 -- that the expression can be inlined whenever possible.
d2b10647
ES
355
356 else
357 New_Decl :=
d2d4b355 358 Make_Subprogram_Declaration (Loc, Specification => Spec);
804ff4c3 359
d2b10647 360 Rewrite (N, New_Decl);
b0186f71 361 Analyze (N);
d2b10647
ES
362 Set_Is_Inlined (Defining_Entity (New_Decl));
363
6d7e5c54
AC
364 -- To prevent premature freeze action, insert the new body at the end
365 -- of the current declarations, or at the end of the package spec.
b913199e
AC
366 -- However, resolve usage names now, to prevent spurious visibility
367 -- on later entities.
6d7e5c54
AC
368
369 declare
e876c43a
AC
370 Decls : List_Id := List_Containing (N);
371 Par : constant Node_Id := Parent (Decls);
b913199e 372 Id : constant Entity_Id := Defining_Entity (New_Decl);
6d7e5c54
AC
373
374 begin
375 if Nkind (Par) = N_Package_Specification
376 and then Decls = Visible_Declarations (Par)
377 and then Present (Private_Declarations (Par))
378 and then not Is_Empty_List (Private_Declarations (Par))
379 then
380 Decls := Private_Declarations (Par);
381 end if;
382
383 Insert_After (Last (Decls), New_Body);
b913199e
AC
384 Push_Scope (Id);
385 Install_Formals (Id);
386 Preanalyze_Spec_Expression (Expression (Ret), Etype (Id));
387 End_Scope;
6d7e5c54 388 end;
b0186f71 389 end if;
0b5b2bbc
AC
390
391 -- If the return expression is a static constant, we suppress warning
392 -- messages on unused formals, which in most cases will be noise.
393
394 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
395 Is_OK_Static_Expression (Expr));
b0186f71
AC
396 end Analyze_Expression_Function;
397
ec4867fa
ES
398 ----------------------------------------
399 -- Analyze_Extended_Return_Statement --
400 ----------------------------------------
401
402 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
403 begin
5d37ba92 404 Analyze_Return_Statement (N);
ec4867fa
ES
405 end Analyze_Extended_Return_Statement;
406
996ae0b0
RK
407 ----------------------------
408 -- Analyze_Function_Call --
409 ----------------------------
410
411 procedure Analyze_Function_Call (N : Node_Id) is
e24329cd
YM
412 P : constant Node_Id := Name (N);
413 Actuals : constant List_Id := Parameter_Associations (N);
414 Actual : Node_Id;
996ae0b0
RK
415
416 begin
417 Analyze (P);
418
3e7302c3
AC
419 -- A call of the form A.B (X) may be an Ada 2005 call, which is
420 -- rewritten as B (A, X). If the rewriting is successful, the call
421 -- has been analyzed and we just return.
82c80734
RD
422
423 if Nkind (P) = N_Selected_Component
424 and then Name (N) /= P
425 and then Is_Rewrite_Substitution (N)
426 and then Present (Etype (N))
427 then
428 return;
429 end if;
430
996ae0b0
RK
431 -- If error analyzing name, then set Any_Type as result type and return
432
433 if Etype (P) = Any_Type then
434 Set_Etype (N, Any_Type);
435 return;
436 end if;
437
438 -- Otherwise analyze the parameters
439
e24329cd
YM
440 if Present (Actuals) then
441 Actual := First (Actuals);
996ae0b0
RK
442 while Present (Actual) loop
443 Analyze (Actual);
444 Check_Parameterless_Call (Actual);
445 Next (Actual);
446 end loop;
447 end if;
448
449 Analyze_Call (N);
996ae0b0
RK
450 end Analyze_Function_Call;
451
ec4867fa
ES
452 -----------------------------
453 -- Analyze_Function_Return --
454 -----------------------------
455
456 procedure Analyze_Function_Return (N : Node_Id) is
457 Loc : constant Source_Ptr := Sloc (N);
458 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
459 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
460
5d37ba92 461 R_Type : constant Entity_Id := Etype (Scope_Id);
ec4867fa
ES
462 -- Function result subtype
463
464 procedure Check_Limited_Return (Expr : Node_Id);
465 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
466 -- limited types. Used only for simple return statements.
467 -- Expr is the expression returned.
468
469 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
470 -- Check that the return_subtype_indication properly matches the result
471 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
472
473 --------------------------
474 -- Check_Limited_Return --
475 --------------------------
476
477 procedure Check_Limited_Return (Expr : Node_Id) is
478 begin
479 -- Ada 2005 (AI-318-02): Return-by-reference types have been
480 -- removed and replaced by anonymous access results. This is an
481 -- incompatibility with Ada 95. Not clear whether this should be
482 -- enforced yet or perhaps controllable with special switch. ???
483
ce72a9a3
AC
484 -- A limited interface that is not immutably limited is OK.
485
486 if Is_Limited_Interface (R_Type)
487 and then
488 not (Is_Task_Interface (R_Type)
489 or else Is_Protected_Interface (R_Type)
490 or else Is_Synchronized_Interface (R_Type))
491 then
492 null;
493
494 elsif Is_Limited_Type (R_Type)
495 and then not Is_Interface (R_Type)
ec4867fa
ES
496 and then Comes_From_Source (N)
497 and then not In_Instance_Body
2a31c32b 498 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
ec4867fa
ES
499 then
500 -- Error in Ada 2005
501
0791fbe9 502 if Ada_Version >= Ada_2005
ec4867fa
ES
503 and then not Debug_Flag_Dot_L
504 and then not GNAT_Mode
505 then
506 Error_Msg_N
507 ("(Ada 2005) cannot copy object of a limited type " &
5d37ba92 508 "(RM-2005 6.5(5.5/2))", Expr);
e0ae93e2 509
40f07b4b 510 if Is_Immutably_Limited_Type (R_Type) then
ec4867fa
ES
511 Error_Msg_N
512 ("\return by reference not permitted in Ada 2005", Expr);
513 end if;
514
515 -- Warn in Ada 95 mode, to give folks a heads up about this
516 -- incompatibility.
517
518 -- In GNAT mode, this is just a warning, to allow it to be
519 -- evilly turned off. Otherwise it is a real error.
520
9694c039
AC
521 -- In a generic context, simplify the warning because it makes
522 -- no sense to discuss pass-by-reference or copy.
523
ec4867fa 524 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
9694c039
AC
525 if Inside_A_Generic then
526 Error_Msg_N
885c4871 527 ("return of limited object not permitted in Ada 2005 "
20261dc1 528 & "(RM-2005 6.5(5.5/2))?", Expr);
9694c039
AC
529
530 elsif Is_Immutably_Limited_Type (R_Type) then
ec4867fa 531 Error_Msg_N
20261dc1
AC
532 ("return by reference not permitted in Ada 2005 "
533 & "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
534 else
535 Error_Msg_N
20261dc1
AC
536 ("cannot copy object of a limited type in Ada 2005 "
537 & "(RM-2005 6.5(5.5/2))?", Expr);
ec4867fa
ES
538 end if;
539
540 -- Ada 95 mode, compatibility warnings disabled
541
542 else
543 return; -- skip continuation messages below
544 end if;
545
9694c039
AC
546 if not Inside_A_Generic then
547 Error_Msg_N
548 ("\consider switching to return of access type", Expr);
549 Explain_Limited_Type (R_Type, Expr);
550 end if;
ec4867fa
ES
551 end if;
552 end Check_Limited_Return;
553
554 -------------------------------------
555 -- Check_Return_Subtype_Indication --
556 -------------------------------------
557
558 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
7665e4bd
AC
559 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
560
561 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
562 -- Subtype given in the extended return statement (must match R_Type)
ec4867fa
ES
563
564 Subtype_Ind : constant Node_Id :=
565 Object_Definition (Original_Node (Obj_Decl));
566
567 R_Type_Is_Anon_Access :
568 constant Boolean :=
569 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
570 or else
571 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
572 or else
573 Ekind (R_Type) = E_Anonymous_Access_Type;
574 -- True if return type of the function is an anonymous access type
575 -- Can't we make Is_Anonymous_Access_Type in einfo ???
576
577 R_Stm_Type_Is_Anon_Access :
578 constant Boolean :=
0a36105d 579 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
ec4867fa 580 or else
0a36105d 581 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
ec4867fa 582 or else
0a36105d 583 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
ec4867fa
ES
584 -- True if type of the return object is an anonymous access type
585
586 begin
7665e4bd 587 -- First, avoid cascaded errors
ec4867fa
ES
588
589 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
590 return;
591 end if;
592
593 -- "return access T" case; check that the return statement also has
594 -- "access T", and that the subtypes statically match:
53cf4600 595 -- if this is an access to subprogram the signatures must match.
ec4867fa
ES
596
597 if R_Type_Is_Anon_Access then
598 if R_Stm_Type_Is_Anon_Access then
53cf4600
ES
599 if
600 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
0a36105d 601 then
53cf4600
ES
602 if Base_Type (Designated_Type (R_Stm_Type)) /=
603 Base_Type (Designated_Type (R_Type))
604 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
605 then
606 Error_Msg_N
607 ("subtype must statically match function result subtype",
608 Subtype_Mark (Subtype_Ind));
609 end if;
610
611 else
612 -- For two anonymous access to subprogram types, the
613 -- types themselves must be type conformant.
614
615 if not Conforming_Types
616 (R_Stm_Type, R_Type, Fully_Conformant)
617 then
618 Error_Msg_N
619 ("subtype must statically match function result subtype",
620 Subtype_Ind);
621 end if;
ec4867fa 622 end if;
0a36105d 623
ec4867fa
ES
624 else
625 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
626 end if;
627
6cce2156
GD
628 -- If the return object is of an anonymous access type, then report
629 -- an error if the function's result type is not also anonymous.
630
631 elsif R_Stm_Type_Is_Anon_Access
632 and then not R_Type_Is_Anon_Access
633 then
634 Error_Msg_N ("anonymous access not allowed for function with " &
635 "named access result", Subtype_Ind);
636
81d93365
AC
637 -- Subtype indication case: check that the return object's type is
638 -- covered by the result type, and that the subtypes statically match
639 -- when the result subtype is constrained. Also handle record types
640 -- with unknown discriminants for which we have built the underlying
641 -- record view. Coverage is needed to allow specific-type return
642 -- objects when the result type is class-wide (see AI05-32).
643
644 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
9013065b 645 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
212863c0
AC
646 and then
647 Covers
648 (Base_Type (R_Type),
649 Underlying_Record_View (Base_Type (R_Stm_Type))))
9013065b
AC
650 then
651 -- A null exclusion may be present on the return type, on the
652 -- function specification, on the object declaration or on the
653 -- subtype itself.
ec4867fa 654
21d27997
RD
655 if Is_Access_Type (R_Type)
656 and then
657 (Can_Never_Be_Null (R_Type)
658 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
659 Can_Never_Be_Null (R_Stm_Type)
660 then
661 Error_Msg_N
662 ("subtype must statically match function result subtype",
663 Subtype_Ind);
664 end if;
665
105b5e65 666 -- AI05-103: for elementary types, subtypes must statically match
8779dffa
AC
667
668 if Is_Constrained (R_Type)
669 or else Is_Access_Type (R_Type)
670 then
ec4867fa
ES
671 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
672 Error_Msg_N
0a36105d
JM
673 ("subtype must statically match function result subtype",
674 Subtype_Ind);
ec4867fa
ES
675 end if;
676 end if;
677
ff7139c3
AC
678 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
679 and then Is_Null_Extension (Base_Type (R_Type))
680 then
681 null;
682
ec4867fa
ES
683 else
684 Error_Msg_N
685 ("wrong type for return_subtype_indication", Subtype_Ind);
686 end if;
687 end Check_Return_Subtype_Indication;
688
689 ---------------------
690 -- Local Variables --
691 ---------------------
692
693 Expr : Node_Id;
694
695 -- Start of processing for Analyze_Function_Return
696
697 begin
698 Set_Return_Present (Scope_Id);
699
5d37ba92 700 if Nkind (N) = N_Simple_Return_Statement then
ec4867fa 701 Expr := Expression (N);
4ee646da 702
e917aec2
RD
703 -- Guard against a malformed expression. The parser may have tried to
704 -- recover but the node is not analyzable.
4ee646da
AC
705
706 if Nkind (Expr) = N_Error then
707 Set_Etype (Expr, Any_Type);
708 Expander_Mode_Save_And_Set (False);
709 return;
710
711 else
0180fd26
AC
712 -- The resolution of a controlled [extension] aggregate associated
713 -- with a return statement creates a temporary which needs to be
714 -- finalized on function exit. Wrap the return statement inside a
715 -- block so that the finalization machinery can detect this case.
716 -- This early expansion is done only when the return statement is
717 -- not part of a handled sequence of statements.
718
719 if Nkind_In (Expr, N_Aggregate,
720 N_Extension_Aggregate)
721 and then Needs_Finalization (R_Type)
722 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
723 then
724 Rewrite (N,
725 Make_Block_Statement (Loc,
726 Handled_Statement_Sequence =>
727 Make_Handled_Sequence_Of_Statements (Loc,
728 Statements => New_List (Relocate_Node (N)))));
729
730 Analyze (N);
731 return;
732 end if;
733
4ee646da
AC
734 Analyze_And_Resolve (Expr, R_Type);
735 Check_Limited_Return (Expr);
736 end if;
ec4867fa 737
ad05f2e9 738 -- RETURN only allowed in SPARK as the last statement in function
607d0635 739
fe5d3068 740 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
607d0635
AC
741 and then
742 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
8d606a78 743 or else Present (Next (N)))
607d0635 744 then
2ba431e5 745 Check_SPARK_Restriction
fe5d3068 746 ("RETURN should be the last statement in function", N);
607d0635
AC
747 end if;
748
ec4867fa 749 else
2ba431e5 750 Check_SPARK_Restriction ("extended RETURN is not allowed", N);
607d0635 751
ec4867fa
ES
752 -- Analyze parts specific to extended_return_statement:
753
754 declare
755 Obj_Decl : constant Node_Id :=
756 Last (Return_Object_Declarations (N));
757
758 HSS : constant Node_Id := Handled_Statement_Sequence (N);
759
760 begin
761 Expr := Expression (Obj_Decl);
762
763 -- Note: The check for OK_For_Limited_Init will happen in
764 -- Analyze_Object_Declaration; we treat it as a normal
765 -- object declaration.
766
cd1c668b 767 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
ec4867fa
ES
768 Analyze (Obj_Decl);
769
ec4867fa
ES
770 Check_Return_Subtype_Indication (Obj_Decl);
771
772 if Present (HSS) then
773 Analyze (HSS);
774
775 if Present (Exception_Handlers (HSS)) then
776
777 -- ???Has_Nested_Block_With_Handler needs to be set.
778 -- Probably by creating an actual N_Block_Statement.
779 -- Probably in Expand.
780
781 null;
782 end if;
783 end if;
784
9337aa0a
AC
785 -- Mark the return object as referenced, since the return is an
786 -- implicit reference of the object.
787
788 Set_Referenced (Defining_Identifier (Obj_Decl));
789
ec4867fa
ES
790 Check_References (Stm_Entity);
791 end;
792 end if;
793
21d27997 794 -- Case of Expr present
5d37ba92 795
ec4867fa 796 if Present (Expr)
21d27997
RD
797
798 -- Defend against previous errors
799
800 and then Nkind (Expr) /= N_Empty
5d37ba92 801 and then Present (Etype (Expr))
ec4867fa 802 then
5d37ba92
ES
803 -- Apply constraint check. Note that this is done before the implicit
804 -- conversion of the expression done for anonymous access types to
f3d57416 805 -- ensure correct generation of the null-excluding check associated
5d37ba92
ES
806 -- with null-excluding expressions found in return statements.
807
808 Apply_Constraint_Check (Expr, R_Type);
809
810 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
811 -- type, apply an implicit conversion of the expression to that type
812 -- to force appropriate static and run-time accessibility checks.
ec4867fa 813
0791fbe9 814 if Ada_Version >= Ada_2005
ec4867fa
ES
815 and then Ekind (R_Type) = E_Anonymous_Access_Type
816 then
817 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
818 Analyze_And_Resolve (Expr, R_Type);
819 end if;
820
21d27997
RD
821 -- If the result type is class-wide, then check that the return
822 -- expression's type is not declared at a deeper level than the
823 -- function (RM05-6.5(5.6/2)).
824
0791fbe9 825 if Ada_Version >= Ada_2005
21d27997
RD
826 and then Is_Class_Wide_Type (R_Type)
827 then
828 if Type_Access_Level (Etype (Expr)) >
829 Subprogram_Access_Level (Scope_Id)
830 then
831 Error_Msg_N
832 ("level of return expression type is deeper than " &
833 "class-wide function!", Expr);
834 end if;
835 end if;
836
4755cce9
JM
837 -- Check incorrect use of dynamically tagged expression
838
839 if Is_Tagged_Type (R_Type) then
840 Check_Dynamically_Tagged_Expression
841 (Expr => Expr,
842 Typ => R_Type,
843 Related_Nod => N);
ec4867fa
ES
844 end if;
845
ec4867fa
ES
846 -- ??? A real run-time accessibility check is needed in cases
847 -- involving dereferences of access parameters. For now we just
848 -- check the static cases.
849
0791fbe9 850 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
40f07b4b 851 and then Is_Immutably_Limited_Type (Etype (Scope_Id))
ec4867fa
ES
852 and then Object_Access_Level (Expr) >
853 Subprogram_Access_Level (Scope_Id)
854 then
ec4867fa 855
9694c039
AC
856 -- Suppress the message in a generic, where the rewriting
857 -- is irrelevant.
858
859 if Inside_A_Generic then
860 null;
861
862 else
863 Rewrite (N,
864 Make_Raise_Program_Error (Loc,
865 Reason => PE_Accessibility_Check_Failed));
866 Analyze (N);
867
868 Error_Msg_N
869 ("cannot return a local value by reference?", N);
870 Error_Msg_NE
871 ("\& will be raised at run time?",
872 N, Standard_Program_Error);
873 end if;
ec4867fa 874 end if;
5d37ba92
ES
875
876 if Known_Null (Expr)
877 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
878 and then Null_Exclusion_Present (Parent (Scope_Id))
879 then
880 Apply_Compile_Time_Constraint_Error
881 (N => Expr,
882 Msg => "(Ada 2005) null not allowed for "
883 & "null-excluding return?",
884 Reason => CE_Null_Not_Allowed);
885 end if;
cd5a9750
AC
886
887 -- Apply checks suggested by AI05-0144 (dangerous order dependence)
cd5a9750 888
1e194575 889 Check_Order_Dependence;
ec4867fa
ES
890 end if;
891 end Analyze_Function_Return;
892
996ae0b0
RK
893 -------------------------------------
894 -- Analyze_Generic_Subprogram_Body --
895 -------------------------------------
896
897 procedure Analyze_Generic_Subprogram_Body
898 (N : Node_Id;
899 Gen_Id : Entity_Id)
900 is
fbf5a39b 901 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
996ae0b0 902 Kind : constant Entity_Kind := Ekind (Gen_Id);
fbf5a39b 903 Body_Id : Entity_Id;
996ae0b0 904 New_N : Node_Id;
fbf5a39b 905 Spec : Node_Id;
996ae0b0
RK
906
907 begin
82c80734
RD
908 -- Copy body and disable expansion while analyzing the generic For a
909 -- stub, do not copy the stub (which would load the proper body), this
910 -- will be done when the proper body is analyzed.
996ae0b0
RK
911
912 if Nkind (N) /= N_Subprogram_Body_Stub then
913 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
914 Rewrite (N, New_N);
915 Start_Generic;
916 end if;
917
918 Spec := Specification (N);
919
920 -- Within the body of the generic, the subprogram is callable, and
921 -- behaves like the corresponding non-generic unit.
922
fbf5a39b 923 Body_Id := Defining_Entity (Spec);
996ae0b0
RK
924
925 if Kind = E_Generic_Procedure
926 and then Nkind (Spec) /= N_Procedure_Specification
927 then
fbf5a39b 928 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
996ae0b0
RK
929 return;
930
931 elsif Kind = E_Generic_Function
932 and then Nkind (Spec) /= N_Function_Specification
933 then
fbf5a39b 934 Error_Msg_N ("invalid body for generic function ", Body_Id);
996ae0b0
RK
935 return;
936 end if;
937
fbf5a39b 938 Set_Corresponding_Body (Gen_Decl, Body_Id);
996ae0b0
RK
939
940 if Has_Completion (Gen_Id)
941 and then Nkind (Parent (N)) /= N_Subunit
942 then
943 Error_Msg_N ("duplicate generic body", N);
944 return;
945 else
946 Set_Has_Completion (Gen_Id);
947 end if;
948
949 if Nkind (N) = N_Subprogram_Body_Stub then
950 Set_Ekind (Defining_Entity (Specification (N)), Kind);
951 else
952 Set_Corresponding_Spec (N, Gen_Id);
953 end if;
954
955 if Nkind (Parent (N)) = N_Compilation_Unit then
956 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
957 end if;
958
959 -- Make generic parameters immediately visible in the body. They are
960 -- needed to process the formals declarations. Then make the formals
961 -- visible in a separate step.
962
0a36105d 963 Push_Scope (Gen_Id);
996ae0b0
RK
964
965 declare
966 E : Entity_Id;
967 First_Ent : Entity_Id;
968
969 begin
970 First_Ent := First_Entity (Gen_Id);
971
972 E := First_Ent;
973 while Present (E) and then not Is_Formal (E) loop
974 Install_Entity (E);
975 Next_Entity (E);
976 end loop;
977
978 Set_Use (Generic_Formal_Declarations (Gen_Decl));
979
980 -- Now generic formals are visible, and the specification can be
981 -- analyzed, for subsequent conformance check.
982
fbf5a39b 983 Body_Id := Analyze_Subprogram_Specification (Spec);
996ae0b0 984
fbf5a39b 985 -- Make formal parameters visible
996ae0b0
RK
986
987 if Present (E) then
988
fbf5a39b
AC
989 -- E is the first formal parameter, we loop through the formals
990 -- installing them so that they will be visible.
996ae0b0
RK
991
992 Set_First_Entity (Gen_Id, E);
996ae0b0
RK
993 while Present (E) loop
994 Install_Entity (E);
995 Next_Formal (E);
996 end loop;
997 end if;
998
e895b435 999 -- Visible generic entity is callable within its own body
996ae0b0 1000
ec4867fa
ES
1001 Set_Ekind (Gen_Id, Ekind (Body_Id));
1002 Set_Ekind (Body_Id, E_Subprogram_Body);
1003 Set_Convention (Body_Id, Convention (Gen_Id));
1004 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1005 Set_Scope (Body_Id, Scope (Gen_Id));
fbf5a39b
AC
1006 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1007
1008 if Nkind (N) = N_Subprogram_Body_Stub then
1009
e895b435 1010 -- No body to analyze, so restore state of generic unit
fbf5a39b
AC
1011
1012 Set_Ekind (Gen_Id, Kind);
1013 Set_Ekind (Body_Id, Kind);
1014
1015 if Present (First_Ent) then
1016 Set_First_Entity (Gen_Id, First_Ent);
1017 end if;
1018
1019 End_Scope;
1020 return;
1021 end if;
996ae0b0 1022
82c80734
RD
1023 -- If this is a compilation unit, it must be made visible explicitly,
1024 -- because the compilation of the declaration, unlike other library
1025 -- unit declarations, does not. If it is not a unit, the following
1026 -- is redundant but harmless.
996ae0b0
RK
1027
1028 Set_Is_Immediately_Visible (Gen_Id);
fbf5a39b 1029 Reference_Body_Formals (Gen_Id, Body_Id);
996ae0b0 1030
ec4867fa
ES
1031 if Is_Child_Unit (Gen_Id) then
1032 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1033 end if;
1034
996ae0b0 1035 Set_Actual_Subtypes (N, Current_Scope);
483361a6
AC
1036
1037 -- Deal with preconditions and postconditions. In formal verification
1038 -- mode, we keep pre- and postconditions attached to entities rather
1039 -- than inserted in the code, in order to facilitate a distinct
1040 -- treatment for them.
1041
56812278 1042 if not Alfa_Mode then
483361a6
AC
1043 Process_PPCs (N, Gen_Id, Body_Id);
1044 end if;
0dabde3a
ES
1045
1046 -- If the generic unit carries pre- or post-conditions, copy them
1047 -- to the original generic tree, so that they are properly added
1048 -- to any instantiation.
1049
1050 declare
1051 Orig : constant Node_Id := Original_Node (N);
1052 Cond : Node_Id;
1053
1054 begin
1055 Cond := First (Declarations (N));
1056 while Present (Cond) loop
1057 if Nkind (Cond) = N_Pragma
1058 and then Pragma_Name (Cond) = Name_Check
1059 then
1060 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1061
1062 elsif Nkind (Cond) = N_Pragma
1063 and then Pragma_Name (Cond) = Name_Postcondition
1064 then
1065 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1066 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1067 else
1068 exit;
1069 end if;
1070
1071 Next (Cond);
1072 end loop;
1073 end;
1074
996ae0b0
RK
1075 Analyze_Declarations (Declarations (N));
1076 Check_Completion;
1077 Analyze (Handled_Statement_Sequence (N));
1078
1079 Save_Global_References (Original_Node (N));
1080
82c80734
RD
1081 -- Prior to exiting the scope, include generic formals again (if any
1082 -- are present) in the set of local entities.
996ae0b0
RK
1083
1084 if Present (First_Ent) then
1085 Set_First_Entity (Gen_Id, First_Ent);
1086 end if;
1087
fbf5a39b 1088 Check_References (Gen_Id);
996ae0b0
RK
1089 end;
1090
e6f69614 1091 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
996ae0b0
RK
1092 End_Scope;
1093 Check_Subprogram_Order (N);
1094
e895b435 1095 -- Outside of its body, unit is generic again
996ae0b0
RK
1096
1097 Set_Ekind (Gen_Id, Kind);
fbf5a39b 1098 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
5d37ba92
ES
1099
1100 if Style_Check then
1101 Style.Check_Identifier (Body_Id, Gen_Id);
1102 end if;
13d923cc 1103
996ae0b0 1104 End_Generic;
996ae0b0
RK
1105 end Analyze_Generic_Subprogram_Body;
1106
1107 -----------------------------
1108 -- Analyze_Operator_Symbol --
1109 -----------------------------
1110
82c80734
RD
1111 -- An operator symbol such as "+" or "and" may appear in context where the
1112 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1113 -- is just a string, as in (conjunction = "or"). In these cases the parser
1114 -- generates this node, and the semantics does the disambiguation. Other
1115 -- such case are actuals in an instantiation, the generic unit in an
1116 -- instantiation, and pragma arguments.
996ae0b0
RK
1117
1118 procedure Analyze_Operator_Symbol (N : Node_Id) is
1119 Par : constant Node_Id := Parent (N);
1120
1121 begin
800621e0
RD
1122 if (Nkind (Par) = N_Function_Call
1123 and then N = Name (Par))
996ae0b0 1124 or else Nkind (Par) = N_Function_Instantiation
800621e0
RD
1125 or else (Nkind (Par) = N_Indexed_Component
1126 and then N = Prefix (Par))
996ae0b0
RK
1127 or else (Nkind (Par) = N_Pragma_Argument_Association
1128 and then not Is_Pragma_String_Literal (Par))
1129 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
800621e0
RD
1130 or else (Nkind (Par) = N_Attribute_Reference
1131 and then Attribute_Name (Par) /= Name_Value)
996ae0b0
RK
1132 then
1133 Find_Direct_Name (N);
1134
1135 else
1136 Change_Operator_Symbol_To_String_Literal (N);
1137 Analyze (N);
1138 end if;
1139 end Analyze_Operator_Symbol;
1140
1141 -----------------------------------
1142 -- Analyze_Parameter_Association --
1143 -----------------------------------
1144
1145 procedure Analyze_Parameter_Association (N : Node_Id) is
1146 begin
1147 Analyze (Explicit_Actual_Parameter (N));
1148 end Analyze_Parameter_Association;
1149
1150 ----------------------------
1151 -- Analyze_Procedure_Call --
1152 ----------------------------
1153
1154 procedure Analyze_Procedure_Call (N : Node_Id) is
1155 Loc : constant Source_Ptr := Sloc (N);
1156 P : constant Node_Id := Name (N);
1157 Actuals : constant List_Id := Parameter_Associations (N);
1158 Actual : Node_Id;
1159 New_N : Node_Id;
1160
1161 procedure Analyze_Call_And_Resolve;
1162 -- Do Analyze and Resolve calls for procedure call
cd5a9750 1163 -- At end, check illegal order dependence.
996ae0b0 1164
fbf5a39b
AC
1165 ------------------------------
1166 -- Analyze_Call_And_Resolve --
1167 ------------------------------
1168
996ae0b0
RK
1169 procedure Analyze_Call_And_Resolve is
1170 begin
1171 if Nkind (N) = N_Procedure_Call_Statement then
1172 Analyze_Call (N);
1173 Resolve (N, Standard_Void_Type);
cd5a9750 1174
1e194575 1175 -- Apply checks suggested by AI05-0144
cd5a9750 1176
1e194575 1177 Check_Order_Dependence;
cd5a9750 1178
996ae0b0
RK
1179 else
1180 Analyze (N);
1181 end if;
1182 end Analyze_Call_And_Resolve;
1183
1184 -- Start of processing for Analyze_Procedure_Call
1185
1186 begin
1187 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1188 -- a procedure call or an entry call. The prefix may denote an access
1189 -- to subprogram type, in which case an implicit dereference applies.
f3d57416 1190 -- If the prefix is an indexed component (without implicit dereference)
996ae0b0
RK
1191 -- then the construct denotes a call to a member of an entire family.
1192 -- If the prefix is a simple name, it may still denote a call to a
1193 -- parameterless member of an entry family. Resolution of these various
1194 -- interpretations is delicate.
1195
1196 Analyze (P);
1197
758c442c
GD
1198 -- If this is a call of the form Obj.Op, the call may have been
1199 -- analyzed and possibly rewritten into a block, in which case
1200 -- we are done.
1201
1202 if Analyzed (N) then
1203 return;
1204 end if;
1205
7415029d
AC
1206 -- If there is an error analyzing the name (which may have been
1207 -- rewritten if the original call was in prefix notation) then error
1208 -- has been emitted already, mark node and return.
996ae0b0 1209
7415029d
AC
1210 if Error_Posted (N)
1211 or else Etype (Name (N)) = Any_Type
1212 then
996ae0b0
RK
1213 Set_Etype (N, Any_Type);
1214 return;
1215 end if;
1216
1217 -- Otherwise analyze the parameters
1218
1219 if Present (Actuals) then
1220 Actual := First (Actuals);
1221
1222 while Present (Actual) loop
1223 Analyze (Actual);
1224 Check_Parameterless_Call (Actual);
1225 Next (Actual);
1226 end loop;
1227 end if;
1228
0bfc9a64 1229 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
996ae0b0
RK
1230
1231 if Nkind (P) = N_Attribute_Reference
1232 and then (Attribute_Name (P) = Name_Elab_Spec
0bfc9a64
AC
1233 or else Attribute_Name (P) = Name_Elab_Body
1234 or else Attribute_Name (P) = Name_Elab_Subp_Body)
996ae0b0
RK
1235 then
1236 if Present (Actuals) then
1237 Error_Msg_N
1238 ("no parameters allowed for this call", First (Actuals));
1239 return;
1240 end if;
1241
1242 Set_Etype (N, Standard_Void_Type);
1243 Set_Analyzed (N);
1244
1245 elsif Is_Entity_Name (P)
1246 and then Is_Record_Type (Etype (Entity (P)))
1247 and then Remote_AST_I_Dereference (P)
1248 then
1249 return;
1250
1251 elsif Is_Entity_Name (P)
1252 and then Ekind (Entity (P)) /= E_Entry_Family
1253 then
1254 if Is_Access_Type (Etype (P))
1255 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1256 and then No (Actuals)
1257 and then Comes_From_Source (N)
1258 then
ed2233dc 1259 Error_Msg_N ("missing explicit dereference in call", N);
996ae0b0
RK
1260 end if;
1261
1262 Analyze_Call_And_Resolve;
1263
1264 -- If the prefix is the simple name of an entry family, this is
1265 -- a parameterless call from within the task body itself.
1266
1267 elsif Is_Entity_Name (P)
1268 and then Nkind (P) = N_Identifier
1269 and then Ekind (Entity (P)) = E_Entry_Family
1270 and then Present (Actuals)
1271 and then No (Next (First (Actuals)))
1272 then
82c80734
RD
1273 -- Can be call to parameterless entry family. What appears to be the
1274 -- sole argument is in fact the entry index. Rewrite prefix of node
1275 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1276 -- transformation.
1277
1278 New_N :=
1279 Make_Indexed_Component (Loc,
1280 Prefix =>
1281 Make_Selected_Component (Loc,
1282 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1283 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1284 Expressions => Actuals);
1285 Set_Name (N, New_N);
1286 Set_Etype (New_N, Standard_Void_Type);
1287 Set_Parameter_Associations (N, No_List);
1288 Analyze_Call_And_Resolve;
1289
1290 elsif Nkind (P) = N_Explicit_Dereference then
1291 if Ekind (Etype (P)) = E_Subprogram_Type then
1292 Analyze_Call_And_Resolve;
1293 else
1294 Error_Msg_N ("expect access to procedure in call", P);
1295 end if;
1296
82c80734
RD
1297 -- The name can be a selected component or an indexed component that
1298 -- yields an access to subprogram. Such a prefix is legal if the call
1299 -- has parameter associations.
996ae0b0
RK
1300
1301 elsif Is_Access_Type (Etype (P))
1302 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1303 then
1304 if Present (Actuals) then
1305 Analyze_Call_And_Resolve;
1306 else
ed2233dc 1307 Error_Msg_N ("missing explicit dereference in call ", N);
996ae0b0
RK
1308 end if;
1309
82c80734
RD
1310 -- If not an access to subprogram, then the prefix must resolve to the
1311 -- name of an entry, entry family, or protected operation.
996ae0b0 1312
82c80734
RD
1313 -- For the case of a simple entry call, P is a selected component where
1314 -- the prefix is the task and the selector name is the entry. A call to
1315 -- a protected procedure will have the same syntax. If the protected
1316 -- object contains overloaded operations, the entity may appear as a
1317 -- function, the context will select the operation whose type is Void.
996ae0b0
RK
1318
1319 elsif Nkind (P) = N_Selected_Component
1320 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1321 or else
1322 Ekind (Entity (Selector_Name (P))) = E_Procedure
1323 or else
1324 Ekind (Entity (Selector_Name (P))) = E_Function)
1325 then
1326 Analyze_Call_And_Resolve;
1327
1328 elsif Nkind (P) = N_Selected_Component
1329 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1330 and then Present (Actuals)
1331 and then No (Next (First (Actuals)))
1332 then
82c80734
RD
1333 -- Can be call to parameterless entry family. What appears to be the
1334 -- sole argument is in fact the entry index. Rewrite prefix of node
1335 -- accordingly. Source representation is unchanged by this
996ae0b0
RK
1336 -- transformation.
1337
1338 New_N :=
1339 Make_Indexed_Component (Loc,
1340 Prefix => New_Copy (P),
1341 Expressions => Actuals);
1342 Set_Name (N, New_N);
1343 Set_Etype (New_N, Standard_Void_Type);
1344 Set_Parameter_Associations (N, No_List);
1345 Analyze_Call_And_Resolve;
1346
1347 -- For the case of a reference to an element of an entry family, P is
1348 -- an indexed component whose prefix is a selected component (task and
1349 -- entry family), and whose index is the entry family index.
1350
1351 elsif Nkind (P) = N_Indexed_Component
1352 and then Nkind (Prefix (P)) = N_Selected_Component
1353 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1354 then
1355 Analyze_Call_And_Resolve;
1356
1357 -- If the prefix is the name of an entry family, it is a call from
1358 -- within the task body itself.
1359
1360 elsif Nkind (P) = N_Indexed_Component
1361 and then Nkind (Prefix (P)) = N_Identifier
1362 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1363 then
1364 New_N :=
1365 Make_Selected_Component (Loc,
1366 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1367 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1368 Rewrite (Prefix (P), New_N);
1369 Analyze (P);
1370 Analyze_Call_And_Resolve;
1371
9f8d1e5c
AC
1372 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1373 -- procedure name, so the construct can only be a qualified expression.
1374
1375 elsif Nkind (P) = N_Qualified_Expression
1376 and then Ada_Version >= Ada_2012
1377 then
1378 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1379 Analyze (N);
1380
e895b435 1381 -- Anything else is an error
996ae0b0
RK
1382
1383 else
758c442c 1384 Error_Msg_N ("invalid procedure or entry call", N);
996ae0b0
RK
1385 end if;
1386 end Analyze_Procedure_Call;
1387
b0186f71
AC
1388 ------------------------------
1389 -- Analyze_Return_Statement --
1390 ------------------------------
1391
1392 procedure Analyze_Return_Statement (N : Node_Id) is
1393
1394 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1395 N_Extended_Return_Statement));
1396
1397 Returns_Object : constant Boolean :=
1398 Nkind (N) = N_Extended_Return_Statement
1399 or else
1400 (Nkind (N) = N_Simple_Return_Statement
1401 and then Present (Expression (N)));
1402 -- True if we're returning something; that is, "return <expression>;"
1403 -- or "return Result : T [:= ...]". False for "return;". Used for error
1404 -- checking: If Returns_Object is True, N should apply to a function
1405 -- body; otherwise N should apply to a procedure body, entry body,
1406 -- accept statement, or extended return statement.
1407
1408 function Find_What_It_Applies_To return Entity_Id;
1409 -- Find the entity representing the innermost enclosing body, accept
1410 -- statement, or extended return statement. If the result is a callable
1411 -- construct or extended return statement, then this will be the value
1412 -- of the Return_Applies_To attribute. Otherwise, the program is
1413 -- illegal. See RM-6.5(4/2).
1414
1415 -----------------------------
1416 -- Find_What_It_Applies_To --
1417 -----------------------------
1418
1419 function Find_What_It_Applies_To return Entity_Id is
1420 Result : Entity_Id := Empty;
1421
1422 begin
36b8f95f
AC
1423 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1424 -- and postconditions.
b0186f71
AC
1425
1426 for J in reverse 0 .. Scope_Stack.Last loop
1427 Result := Scope_Stack.Table (J).Entity;
11bc76df
AC
1428 exit when not Ekind_In (Result, E_Block, E_Loop)
1429 and then Chars (Result) /= Name_uPostconditions;
b0186f71
AC
1430 end loop;
1431
1432 pragma Assert (Present (Result));
1433 return Result;
1434 end Find_What_It_Applies_To;
1435
1436 -- Local declarations
1437
1438 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1439 Kind : constant Entity_Kind := Ekind (Scope_Id);
1440 Loc : constant Source_Ptr := Sloc (N);
1441 Stm_Entity : constant Entity_Id :=
1442 New_Internal_Entity
1443 (E_Return_Statement, Current_Scope, Loc, 'R');
1444
1445 -- Start of processing for Analyze_Return_Statement
1446
1447 begin
1448 Set_Return_Statement_Entity (N, Stm_Entity);
1449
1450 Set_Etype (Stm_Entity, Standard_Void_Type);
1451 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1452
1453 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1454 -- (4/2): an inner return statement will apply to this extended return.
1455
1456 if Nkind (N) = N_Extended_Return_Statement then
1457 Push_Scope (Stm_Entity);
1458 end if;
1459
1460 -- Check that pragma No_Return is obeyed. Don't complain about the
1461 -- implicitly-generated return that is placed at the end.
1462
1463 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1464 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1465 end if;
1466
1467 -- Warn on any unassigned OUT parameters if in procedure
1468
1469 if Ekind (Scope_Id) = E_Procedure then
1470 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1471 end if;
1472
1473 -- Check that functions return objects, and other things do not
1474
1475 if Kind = E_Function or else Kind = E_Generic_Function then
1476 if not Returns_Object then
1477 Error_Msg_N ("missing expression in return from function", N);
1478 end if;
1479
1480 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1481 if Returns_Object then
1482 Error_Msg_N ("procedure cannot return value (use function)", N);
1483 end if;
1484
1485 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1486 if Returns_Object then
1487 if Is_Protected_Type (Scope (Scope_Id)) then
1488 Error_Msg_N ("entry body cannot return value", N);
1489 else
1490 Error_Msg_N ("accept statement cannot return value", N);
1491 end if;
1492 end if;
1493
1494 elsif Kind = E_Return_Statement then
1495
1496 -- We are nested within another return statement, which must be an
1497 -- extended_return_statement.
1498
1499 if Returns_Object then
d0dcb2b1
AC
1500 if Nkind (N) = N_Extended_Return_Statement then
1501 Error_Msg_N
cc96a1b8 1502 ("extended return statement cannot be nested (use `RETURN;`)",
d0dcb2b1
AC
1503 N);
1504
1505 -- Case of a simple return statement with a value inside extended
1506 -- return statement.
1507
1508 else
1509 Error_Msg_N
1510 ("return nested in extended return statement cannot return " &
cc96a1b8 1511 "value (use `RETURN;`)", N);
d0dcb2b1 1512 end if;
b0186f71
AC
1513 end if;
1514
1515 else
1516 Error_Msg_N ("illegal context for return statement", N);
1517 end if;
1518
1519 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1520 Analyze_Function_Return (N);
1521
1522 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1523 Set_Return_Present (Scope_Id);
1524 end if;
1525
1526 if Nkind (N) = N_Extended_Return_Statement then
1527 End_Scope;
1528 end if;
1529
1530 Kill_Current_Values (Last_Assignment_Only => True);
1531 Check_Unreachable_Code (N);
1532 end Analyze_Return_Statement;
1533
5d37ba92
ES
1534 -------------------------------------
1535 -- Analyze_Simple_Return_Statement --
1536 -------------------------------------
ec4867fa 1537
5d37ba92 1538 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
996ae0b0 1539 begin
5d37ba92
ES
1540 if Present (Expression (N)) then
1541 Mark_Coextensions (N, Expression (N));
996ae0b0
RK
1542 end if;
1543
5d37ba92
ES
1544 Analyze_Return_Statement (N);
1545 end Analyze_Simple_Return_Statement;
996ae0b0 1546
82c80734
RD
1547 -------------------------
1548 -- Analyze_Return_Type --
1549 -------------------------
1550
1551 procedure Analyze_Return_Type (N : Node_Id) is
1552 Designator : constant Entity_Id := Defining_Entity (N);
1553 Typ : Entity_Id := Empty;
1554
1555 begin
ec4867fa
ES
1556 -- Normal case where result definition does not indicate an error
1557
41251c60
JM
1558 if Result_Definition (N) /= Error then
1559 if Nkind (Result_Definition (N)) = N_Access_Definition then
2ba431e5 1560 Check_SPARK_Restriction
fe5d3068 1561 ("access result is not allowed", Result_Definition (N));
daec8eeb 1562
b1c11e0e
JM
1563 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1564
1565 declare
1566 AD : constant Node_Id :=
1567 Access_To_Subprogram_Definition (Result_Definition (N));
1568 begin
1569 if Present (AD) and then Protected_Present (AD) then
1570 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1571 else
1572 Typ := Access_Definition (N, Result_Definition (N));
1573 end if;
1574 end;
1575
41251c60
JM
1576 Set_Parent (Typ, Result_Definition (N));
1577 Set_Is_Local_Anonymous_Access (Typ);
1578 Set_Etype (Designator, Typ);
1579
b66c3ff4
AC
1580 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1581
1582 Null_Exclusion_Static_Checks (N);
1583
41251c60
JM
1584 -- Subtype_Mark case
1585
1586 else
1587 Find_Type (Result_Definition (N));
1588 Typ := Entity (Result_Definition (N));
1589 Set_Etype (Designator, Typ);
1590
2ba431e5 1591 -- Unconstrained array as result is not allowed in SPARK
daec8eeb 1592
fe5d3068 1593 if Is_Array_Type (Typ)
daec8eeb
YM
1594 and then not Is_Constrained (Typ)
1595 then
2ba431e5 1596 Check_SPARK_Restriction
fe5d3068 1597 ("returning an unconstrained array is not allowed",
7394c8cc 1598 Result_Definition (N));
daec8eeb
YM
1599 end if;
1600
b66c3ff4
AC
1601 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1602
1603 Null_Exclusion_Static_Checks (N);
1604
1605 -- If a null exclusion is imposed on the result type, then create
1606 -- a null-excluding itype (an access subtype) and use it as the
1607 -- function's Etype. Note that the null exclusion checks are done
1608 -- right before this, because they don't get applied to types that
1609 -- do not come from source.
1610
1611 if Is_Access_Type (Typ)
1612 and then Null_Exclusion_Present (N)
1613 then
1614 Set_Etype (Designator,
1615 Create_Null_Excluding_Itype
ff7139c3
AC
1616 (T => Typ,
1617 Related_Nod => N,
1618 Scope_Id => Scope (Current_Scope)));
1619
1620 -- The new subtype must be elaborated before use because
1621 -- it is visible outside of the function. However its base
1622 -- type may not be frozen yet, so the reference that will
1623 -- force elaboration must be attached to the freezing of
1624 -- the base type.
1625
212863c0
AC
1626 -- If the return specification appears on a proper body,
1627 -- the subtype will have been created already on the spec.
1628
ff7139c3 1629 if Is_Frozen (Typ) then
212863c0
AC
1630 if Nkind (Parent (N)) = N_Subprogram_Body
1631 and then Nkind (Parent (Parent (N))) = N_Subunit
1632 then
1633 null;
1634 else
1635 Build_Itype_Reference (Etype (Designator), Parent (N));
1636 end if;
1637
ff7139c3
AC
1638 else
1639 Ensure_Freeze_Node (Typ);
1640
1641 declare
212863c0 1642 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
ff7139c3
AC
1643 begin
1644 Set_Itype (IR, Etype (Designator));
1645 Append_Freeze_Actions (Typ, New_List (IR));
1646 end;
1647 end if;
1648
b66c3ff4
AC
1649 else
1650 Set_Etype (Designator, Typ);
1651 end if;
1652
41251c60 1653 if Ekind (Typ) = E_Incomplete_Type
0a36105d
JM
1654 and then Is_Value_Type (Typ)
1655 then
1656 null;
1657
1658 elsif Ekind (Typ) = E_Incomplete_Type
41251c60
JM
1659 or else (Is_Class_Wide_Type (Typ)
1660 and then
1661 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1662 then
dd386db0
AC
1663 -- AI05-0151: Tagged incomplete types are allowed in all formal
1664 -- parts. Untagged incomplete types are not allowed in bodies.
1665
1666 if Ada_Version >= Ada_2012 then
1667 if Is_Tagged_Type (Typ) then
1668 null;
1669
1670 elsif Nkind_In (Parent (Parent (N)),
1671 N_Accept_Statement,
1672 N_Entry_Body,
1673 N_Subprogram_Body)
1674 then
1675 Error_Msg_NE
1676 ("invalid use of untagged incomplete type&",
1677 Designator, Typ);
1678 end if;
1679
63be2a5a
AC
1680 -- The type must be completed in the current package. This
1681 -- is checked at the end of the package declaraton, when
7b7a0c2b
AC
1682 -- Taft-amendment types are identified. If the return type
1683 -- is class-wide, there is no required check, the type can
1684 -- be a bona fide TAT.
63be2a5a
AC
1685
1686 if Ekind (Scope (Current_Scope)) = E_Package
c199ccf7 1687 and then In_Private_Part (Scope (Current_Scope))
7b7a0c2b 1688 and then not Is_Class_Wide_Type (Typ)
63be2a5a
AC
1689 then
1690 Append_Elmt (Designator, Private_Dependents (Typ));
1691 end if;
1692
dd386db0
AC
1693 else
1694 Error_Msg_NE
1695 ("invalid use of incomplete type&", Designator, Typ);
1696 end if;
41251c60 1697 end if;
82c80734
RD
1698 end if;
1699
ec4867fa
ES
1700 -- Case where result definition does indicate an error
1701
82c80734
RD
1702 else
1703 Set_Etype (Designator, Any_Type);
1704 end if;
1705 end Analyze_Return_Type;
1706
996ae0b0
RK
1707 -----------------------------
1708 -- Analyze_Subprogram_Body --
1709 -----------------------------
1710
b1b543d2
BD
1711 procedure Analyze_Subprogram_Body (N : Node_Id) is
1712 Loc : constant Source_Ptr := Sloc (N);
1713 Body_Spec : constant Node_Id := Specification (N);
1714 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1715
1716 begin
1717 if Debug_Flag_C then
1718 Write_Str ("==> subprogram body ");
1719 Write_Name (Chars (Body_Id));
1720 Write_Str (" from ");
1721 Write_Location (Loc);
1722 Write_Eol;
1723 Indent;
1724 end if;
1725
1726 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1727
1728 -- The real work is split out into the helper, so it can do "return;"
1729 -- without skipping the debug output:
1730
1731 Analyze_Subprogram_Body_Helper (N);
1732
1733 if Debug_Flag_C then
1734 Outdent;
1735 Write_Str ("<== subprogram body ");
1736 Write_Name (Chars (Body_Id));
1737 Write_Str (" from ");
1738 Write_Location (Loc);
1739 Write_Eol;
1740 end if;
1741 end Analyze_Subprogram_Body;
1742
1743 ------------------------------------
1744 -- Analyze_Subprogram_Body_Helper --
1745 ------------------------------------
1746
996ae0b0
RK
1747 -- This procedure is called for regular subprogram bodies, generic bodies,
1748 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1749 -- specification matters, and is used to create a proper declaration for
1750 -- the subprogram, or to perform conformance checks.
1751
b1b543d2 1752 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
fbf5a39b 1753 Loc : constant Source_Ptr := Sloc (N);
33931112 1754 Body_Deleted : constant Boolean := False;
fbf5a39b
AC
1755 Body_Spec : constant Node_Id := Specification (N);
1756 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1757 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
0868e09c 1758 Conformant : Boolean;
21d27997 1759 HSS : Node_Id;
07fc65c4 1760 P_Ent : Entity_Id;
21d27997
RD
1761 Prot_Typ : Entity_Id := Empty;
1762 Spec_Id : Entity_Id;
1763 Spec_Decl : Node_Id := Empty;
1764
1765 Last_Real_Spec_Entity : Entity_Id := Empty;
1766 -- When we analyze a separate spec, the entity chain ends up containing
1767 -- the formals, as well as any itypes generated during analysis of the
1768 -- default expressions for parameters, or the arguments of associated
1769 -- precondition/postcondition pragmas (which are analyzed in the context
1770 -- of the spec since they have visibility on formals).
1771 --
1772 -- These entities belong with the spec and not the body. However we do
1773 -- the analysis of the body in the context of the spec (again to obtain
1774 -- visibility to the formals), and all the entities generated during
1775 -- this analysis end up also chained to the entity chain of the spec.
1776 -- But they really belong to the body, and there is circuitry to move
1777 -- them from the spec to the body.
1778 --
1779 -- However, when we do this move, we don't want to move the real spec
1780 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1781 -- variable points to the last real spec entity, so we only move those
1782 -- chained beyond that point. It is initialized to Empty to deal with
1783 -- the case where there is no separate spec.
996ae0b0 1784
ec4867fa 1785 procedure Check_Anonymous_Return;
e50e1c5e 1786 -- Ada 2005: if a function returns an access type that denotes a task,
ec4867fa
ES
1787 -- or a type that contains tasks, we must create a master entity for
1788 -- the anonymous type, which typically will be used in an allocator
1789 -- in the body of the function.
1790
e660dbf7
JM
1791 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1792 -- Look ahead to recognize a pragma that may appear after the body.
1793 -- If there is a previous spec, check that it appears in the same
1794 -- declarative part. If the pragma is Inline_Always, perform inlining
1795 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1796 -- If the body acts as a spec, and inlining is required, we create a
1797 -- subprogram declaration for it, in order to attach the body to inline.
21d27997
RD
1798 -- If pragma does not appear after the body, check whether there is
1799 -- an inline pragma before any local declarations.
c37bb106 1800
7665e4bd
AC
1801 procedure Check_Missing_Return;
1802 -- Checks for a function with a no return statements, and also performs
8d606a78
RD
1803 -- the warning checks implemented by Check_Returns. In formal mode, also
1804 -- verify that a function ends with a RETURN and that a procedure does
1805 -- not contain any RETURN.
7665e4bd 1806
d44202ba
HK
1807 function Disambiguate_Spec return Entity_Id;
1808 -- When a primitive is declared between the private view and the full
1809 -- view of a concurrent type which implements an interface, a special
1810 -- mechanism is used to find the corresponding spec of the primitive
1811 -- body.
1812
5dcab3ca
AC
1813 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
1814 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
1815 -- incomplete types coming from a limited context and swap their limited
1816 -- views with the non-limited ones.
1817
d44202ba
HK
1818 function Is_Private_Concurrent_Primitive
1819 (Subp_Id : Entity_Id) return Boolean;
1820 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1821 -- type that implements an interface and has a private view.
1822
76a69663
ES
1823 procedure Set_Trivial_Subprogram (N : Node_Id);
1824 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1825 -- subprogram whose body is being analyzed. N is the statement node
1826 -- causing the flag to be set, if the following statement is a return
1827 -- of an entity, we mark the entity as set in source to suppress any
1828 -- warning on the stylized use of function stubs with a dummy return.
1829
758c442c
GD
1830 procedure Verify_Overriding_Indicator;
1831 -- If there was a previous spec, the entity has been entered in the
1832 -- current scope previously. If the body itself carries an overriding
1833 -- indicator, check that it is consistent with the known status of the
1834 -- entity.
1835
ec4867fa
ES
1836 ----------------------------
1837 -- Check_Anonymous_Return --
1838 ----------------------------
1839
1840 procedure Check_Anonymous_Return is
1841 Decl : Node_Id;
a523b302 1842 Par : Node_Id;
ec4867fa
ES
1843 Scop : Entity_Id;
1844
1845 begin
1846 if Present (Spec_Id) then
1847 Scop := Spec_Id;
1848 else
1849 Scop := Body_Id;
1850 end if;
1851
1852 if Ekind (Scop) = E_Function
1853 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
a523b302
JM
1854 and then not Is_Thunk (Scop)
1855 and then (Has_Task (Designated_Type (Etype (Scop)))
1856 or else
1857 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1858 and then
1859 Is_Limited_Record (Designated_Type (Etype (Scop)))))
ec4867fa 1860 and then Expander_Active
b20de9b9
AC
1861
1862 -- Avoid cases with no tasking support
1863
1864 and then RTE_Available (RE_Current_Master)
1865 and then not Restriction_Active (No_Task_Hierarchy)
ec4867fa
ES
1866 then
1867 Decl :=
1868 Make_Object_Declaration (Loc,
1869 Defining_Identifier =>
1870 Make_Defining_Identifier (Loc, Name_uMaster),
1871 Constant_Present => True,
1872 Object_Definition =>
1873 New_Reference_To (RTE (RE_Master_Id), Loc),
1874 Expression =>
1875 Make_Explicit_Dereference (Loc,
1876 New_Reference_To (RTE (RE_Current_Master), Loc)));
1877
1878 if Present (Declarations (N)) then
1879 Prepend (Decl, Declarations (N));
1880 else
1881 Set_Declarations (N, New_List (Decl));
1882 end if;
1883
1884 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1885 Set_Has_Master_Entity (Scop);
a523b302
JM
1886
1887 -- Now mark the containing scope as a task master
1888
1889 Par := N;
1890 while Nkind (Par) /= N_Compilation_Unit loop
1891 Par := Parent (Par);
1892 pragma Assert (Present (Par));
1893
1894 -- If we fall off the top, we are at the outer level, and
1895 -- the environment task is our effective master, so nothing
1896 -- to mark.
1897
1898 if Nkind_In
1899 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1900 then
1901 Set_Is_Task_Master (Par, True);
1902 exit;
1903 end if;
1904 end loop;
ec4867fa
ES
1905 end if;
1906 end Check_Anonymous_Return;
1907
e660dbf7
JM
1908 -------------------------
1909 -- Check_Inline_Pragma --
1910 -------------------------
758c442c 1911
e660dbf7
JM
1912 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1913 Prag : Node_Id;
1914 Plist : List_Id;
0fb2ea01 1915
21d27997 1916 function Is_Inline_Pragma (N : Node_Id) return Boolean;
30783513 1917 -- True when N is a pragma Inline or Inline_Always that applies
33931112 1918 -- to this subprogram.
21d27997
RD
1919
1920 -----------------------
1921 -- Is_Inline_Pragma --
1922 -----------------------
1923
1924 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1925 begin
1926 return
1927 Nkind (N) = N_Pragma
1928 and then
1929 (Pragma_Name (N) = Name_Inline_Always
1930 or else
1931 (Front_End_Inlining
1932 and then Pragma_Name (N) = Name_Inline))
1933 and then
1934 Chars
1935 (Expression (First (Pragma_Argument_Associations (N))))
1936 = Chars (Body_Id);
1937 end Is_Inline_Pragma;
1938
1939 -- Start of processing for Check_Inline_Pragma
1940
c37bb106 1941 begin
e660dbf7
JM
1942 if not Expander_Active then
1943 return;
1944 end if;
1945
1946 if Is_List_Member (N)
1947 and then Present (Next (N))
21d27997 1948 and then Is_Inline_Pragma (Next (N))
c37bb106
AC
1949 then
1950 Prag := Next (N);
1951
21d27997
RD
1952 elsif Nkind (N) /= N_Subprogram_Body_Stub
1953 and then Present (Declarations (N))
1954 and then Is_Inline_Pragma (First (Declarations (N)))
1955 then
1956 Prag := First (Declarations (N));
1957
e660dbf7
JM
1958 else
1959 Prag := Empty;
c37bb106 1960 end if;
e660dbf7
JM
1961
1962 if Present (Prag) then
1963 if Present (Spec_Id) then
30196a76 1964 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
e660dbf7
JM
1965 Analyze (Prag);
1966 end if;
1967
1968 else
d39d6bb8 1969 -- Create a subprogram declaration, to make treatment uniform
e660dbf7
JM
1970
1971 declare
1972 Subp : constant Entity_Id :=
30196a76 1973 Make_Defining_Identifier (Loc, Chars (Body_Id));
e660dbf7 1974 Decl : constant Node_Id :=
30196a76
RD
1975 Make_Subprogram_Declaration (Loc,
1976 Specification =>
1977 New_Copy_Tree (Specification (N)));
1978
e660dbf7
JM
1979 begin
1980 Set_Defining_Unit_Name (Specification (Decl), Subp);
1981
1982 if Present (First_Formal (Body_Id)) then
21d27997 1983 Plist := Copy_Parameter_List (Body_Id);
e660dbf7
JM
1984 Set_Parameter_Specifications
1985 (Specification (Decl), Plist);
1986 end if;
1987
1988 Insert_Before (N, Decl);
1989 Analyze (Decl);
1990 Analyze (Prag);
1991 Set_Has_Pragma_Inline (Subp);
1992
76a69663 1993 if Pragma_Name (Prag) = Name_Inline_Always then
e660dbf7 1994 Set_Is_Inlined (Subp);
21d27997 1995 Set_Has_Pragma_Inline_Always (Subp);
e660dbf7
JM
1996 end if;
1997
1998 Spec := Subp;
1999 end;
2000 end if;
2001 end if;
2002 end Check_Inline_Pragma;
2003
7665e4bd
AC
2004 --------------------------
2005 -- Check_Missing_Return --
2006 --------------------------
2007
2008 procedure Check_Missing_Return is
2009 Id : Entity_Id;
2010 Missing_Ret : Boolean;
2011
2012 begin
2013 if Nkind (Body_Spec) = N_Function_Specification then
2014 if Present (Spec_Id) then
2015 Id := Spec_Id;
2016 else
2017 Id := Body_Id;
2018 end if;
2019
fe5d3068 2020 if Return_Present (Id) then
7665e4bd
AC
2021 Check_Returns (HSS, 'F', Missing_Ret);
2022
2023 if Missing_Ret then
2024 Set_Has_Missing_Return (Id);
2025 end if;
2026
2027 elsif (Is_Generic_Subprogram (Id)
2028 or else not Is_Machine_Code_Subprogram (Id))
2029 and then not Body_Deleted
2030 then
2031 Error_Msg_N ("missing RETURN statement in function body", N);
2032 end if;
2033
fe5d3068 2034 -- If procedure with No_Return, check returns
607d0635 2035
fe5d3068
YM
2036 elsif Nkind (Body_Spec) = N_Procedure_Specification
2037 and then Present (Spec_Id)
2038 and then No_Return (Spec_Id)
607d0635 2039 then
fe5d3068
YM
2040 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2041 end if;
2042
ad05f2e9 2043 -- Special checks in SPARK mode
fe5d3068
YM
2044
2045 if Nkind (Body_Spec) = N_Function_Specification then
7394c8cc 2046
ad05f2e9 2047 -- In SPARK mode, last statement of a function should be a return
fe5d3068
YM
2048
2049 declare
2050 Stat : constant Node_Id := Last_Source_Statement (HSS);
2051 begin
2052 if Present (Stat)
7394c8cc
AC
2053 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2054 N_Extended_Return_Statement)
fe5d3068 2055 then
2ba431e5 2056 Check_SPARK_Restriction
fe5d3068
YM
2057 ("last statement in function should be RETURN", Stat);
2058 end if;
2059 end;
2060
ad05f2e9 2061 -- In SPARK mode, verify that a procedure has no return
fe5d3068
YM
2062
2063 elsif Nkind (Body_Spec) = N_Procedure_Specification then
607d0635
AC
2064 if Present (Spec_Id) then
2065 Id := Spec_Id;
2066 else
2067 Id := Body_Id;
2068 end if;
2069
8d606a78
RD
2070 -- Would be nice to point to return statement here, can we
2071 -- borrow the Check_Returns procedure here ???
2072
607d0635 2073 if Return_Present (Id) then
2ba431e5 2074 Check_SPARK_Restriction
fe5d3068 2075 ("procedure should not have RETURN", N);
607d0635 2076 end if;
7665e4bd
AC
2077 end if;
2078 end Check_Missing_Return;
2079
d44202ba
HK
2080 -----------------------
2081 -- Disambiguate_Spec --
2082 -----------------------
2083
2084 function Disambiguate_Spec return Entity_Id is
2085 Priv_Spec : Entity_Id;
2086 Spec_N : Entity_Id;
2087
2088 procedure Replace_Types (To_Corresponding : Boolean);
2089 -- Depending on the flag, replace the type of formal parameters of
2090 -- Body_Id if it is a concurrent type implementing interfaces with
2091 -- the corresponding record type or the other way around.
2092
2093 procedure Replace_Types (To_Corresponding : Boolean) is
2094 Formal : Entity_Id;
2095 Formal_Typ : Entity_Id;
2096
2097 begin
2098 Formal := First_Formal (Body_Id);
2099 while Present (Formal) loop
2100 Formal_Typ := Etype (Formal);
2101
df3e68b1
HK
2102 if Is_Class_Wide_Type (Formal_Typ) then
2103 Formal_Typ := Root_Type (Formal_Typ);
2104 end if;
2105
d44202ba
HK
2106 -- From concurrent type to corresponding record
2107
2108 if To_Corresponding then
2109 if Is_Concurrent_Type (Formal_Typ)
2110 and then Present (Corresponding_Record_Type (Formal_Typ))
2111 and then Present (Interfaces (
2112 Corresponding_Record_Type (Formal_Typ)))
2113 then
2114 Set_Etype (Formal,
2115 Corresponding_Record_Type (Formal_Typ));
2116 end if;
2117
2118 -- From corresponding record to concurrent type
2119
2120 else
2121 if Is_Concurrent_Record_Type (Formal_Typ)
2122 and then Present (Interfaces (Formal_Typ))
2123 then
2124 Set_Etype (Formal,
2125 Corresponding_Concurrent_Type (Formal_Typ));
2126 end if;
2127 end if;
2128
2129 Next_Formal (Formal);
2130 end loop;
2131 end Replace_Types;
2132
2133 -- Start of processing for Disambiguate_Spec
2134
2135 begin
2136 -- Try to retrieve the specification of the body as is. All error
2137 -- messages are suppressed because the body may not have a spec in
2138 -- its current state.
2139
2140 Spec_N := Find_Corresponding_Spec (N, False);
2141
2142 -- It is possible that this is the body of a primitive declared
2143 -- between a private and a full view of a concurrent type. The
2144 -- controlling parameter of the spec carries the concurrent type,
2145 -- not the corresponding record type as transformed by Analyze_
2146 -- Subprogram_Specification. In such cases, we undo the change
2147 -- made by the analysis of the specification and try to find the
2148 -- spec again.
766d7add 2149
8198b93d
HK
2150 -- Note that wrappers already have their corresponding specs and
2151 -- bodies set during their creation, so if the candidate spec is
16b05213 2152 -- a wrapper, then we definitely need to swap all types to their
8198b93d 2153 -- original concurrent status.
d44202ba 2154
8198b93d
HK
2155 if No (Spec_N)
2156 or else Is_Primitive_Wrapper (Spec_N)
2157 then
d44202ba
HK
2158 -- Restore all references of corresponding record types to the
2159 -- original concurrent types.
2160
2161 Replace_Types (To_Corresponding => False);
2162 Priv_Spec := Find_Corresponding_Spec (N, False);
2163
2164 -- The current body truly belongs to a primitive declared between
2165 -- a private and a full view. We leave the modified body as is,
2166 -- and return the true spec.
2167
2168 if Present (Priv_Spec)
2169 and then Is_Private_Primitive (Priv_Spec)
2170 then
2171 return Priv_Spec;
2172 end if;
2173
2174 -- In case that this is some sort of error, restore the original
2175 -- state of the body.
2176
2177 Replace_Types (To_Corresponding => True);
2178 end if;
2179
2180 return Spec_N;
2181 end Disambiguate_Spec;
2182
5dcab3ca
AC
2183 ----------------------------
2184 -- Exchange_Limited_Views --
2185 ----------------------------
2186
2187 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2188 procedure Detect_And_Exchange (Id : Entity_Id);
2189 -- Determine whether Id's type denotes an incomplete type associated
2190 -- with a limited with clause and exchange the limited view with the
2191 -- non-limited one.
2192
2193 -------------------------
2194 -- Detect_And_Exchange --
2195 -------------------------
2196
2197 procedure Detect_And_Exchange (Id : Entity_Id) is
2198 Typ : constant Entity_Id := Etype (Id);
2199
2200 begin
2201 if Ekind (Typ) = E_Incomplete_Type
2202 and then From_With_Type (Typ)
2203 and then Present (Non_Limited_View (Typ))
2204 then
2205 Set_Etype (Id, Non_Limited_View (Typ));
2206 end if;
2207 end Detect_And_Exchange;
2208
2209 -- Local variables
2210
2211 Formal : Entity_Id;
2212
2213 -- Start of processing for Exchange_Limited_Views
2214
2215 begin
2216 if No (Subp_Id) then
2217 return;
2218
2219 -- Do not process subprogram bodies as they already use the non-
2220 -- limited view of types.
2221
2222 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2223 return;
2224 end if;
2225
2226 -- Examine all formals and swap views when applicable
2227
2228 Formal := First_Formal (Subp_Id);
2229 while Present (Formal) loop
2230 Detect_And_Exchange (Formal);
2231
2232 Next_Formal (Formal);
2233 end loop;
2234
2235 -- Process the return type of a function
2236
2237 if Ekind (Subp_Id) = E_Function then
2238 Detect_And_Exchange (Subp_Id);
2239 end if;
2240 end Exchange_Limited_Views;
2241
d44202ba
HK
2242 -------------------------------------
2243 -- Is_Private_Concurrent_Primitive --
2244 -------------------------------------
2245
2246 function Is_Private_Concurrent_Primitive
2247 (Subp_Id : Entity_Id) return Boolean
2248 is
2249 Formal_Typ : Entity_Id;
2250
2251 begin
2252 if Present (First_Formal (Subp_Id)) then
2253 Formal_Typ := Etype (First_Formal (Subp_Id));
2254
2255 if Is_Concurrent_Record_Type (Formal_Typ) then
df3e68b1
HK
2256 if Is_Class_Wide_Type (Formal_Typ) then
2257 Formal_Typ := Root_Type (Formal_Typ);
2258 end if;
2259
d44202ba
HK
2260 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2261 end if;
2262
2263 -- The type of the first formal is a concurrent tagged type with
2264 -- a private view.
2265
2266 return
2267 Is_Concurrent_Type (Formal_Typ)
2268 and then Is_Tagged_Type (Formal_Typ)
2269 and then Has_Private_Declaration (Formal_Typ);
2270 end if;
2271
2272 return False;
2273 end Is_Private_Concurrent_Primitive;
2274
76a69663
ES
2275 ----------------------------
2276 -- Set_Trivial_Subprogram --
2277 ----------------------------
2278
2279 procedure Set_Trivial_Subprogram (N : Node_Id) is
2280 Nxt : constant Node_Id := Next (N);
2281
2282 begin
2283 Set_Is_Trivial_Subprogram (Body_Id);
2284
2285 if Present (Spec_Id) then
2286 Set_Is_Trivial_Subprogram (Spec_Id);
2287 end if;
2288
2289 if Present (Nxt)
2290 and then Nkind (Nxt) = N_Simple_Return_Statement
2291 and then No (Next (Nxt))
2292 and then Present (Expression (Nxt))
2293 and then Is_Entity_Name (Expression (Nxt))
2294 then
2295 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2296 end if;
2297 end Set_Trivial_Subprogram;
2298
758c442c
GD
2299 ---------------------------------
2300 -- Verify_Overriding_Indicator --
2301 ---------------------------------
2302
2303 procedure Verify_Overriding_Indicator is
2304 begin
21d27997
RD
2305 if Must_Override (Body_Spec) then
2306 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2307 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2308 then
2309 null;
2310
038140ed 2311 elsif not Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2312 Error_Msg_NE
21d27997
RD
2313 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2314 end if;
758c442c 2315
5d37ba92 2316 elsif Must_Not_Override (Body_Spec) then
038140ed 2317 if Present (Overridden_Operation (Spec_Id)) then
ed2233dc 2318 Error_Msg_NE
5d37ba92 2319 ("subprogram& overrides inherited operation",
76a69663 2320 Body_Spec, Spec_Id);
5d37ba92 2321
21d27997
RD
2322 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2323 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2324 then
ed2233dc 2325 Error_Msg_NE
21d27997
RD
2326 ("subprogram & overrides predefined operator ",
2327 Body_Spec, Spec_Id);
2328
618fb570
AC
2329 -- If this is not a primitive operation or protected subprogram,
2330 -- then the overriding indicator is altogether illegal.
5d37ba92 2331
618fb570
AC
2332 elsif not Is_Primitive (Spec_Id)
2333 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2334 then
ed2233dc 2335 Error_Msg_N
19d846a0
RD
2336 ("overriding indicator only allowed " &
2337 "if subprogram is primitive",
2338 Body_Spec);
5d37ba92 2339 end if;
235f4375 2340
806f6d37 2341 elsif Style_Check
038140ed 2342 and then Present (Overridden_Operation (Spec_Id))
235f4375
AC
2343 then
2344 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2345 Style.Missing_Overriding (N, Body_Id);
806f6d37
AC
2346
2347 elsif Style_Check
2348 and then Can_Override_Operator (Spec_Id)
2349 and then not Is_Predefined_File_Name
2350 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2351 then
2352 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2353 Style.Missing_Overriding (N, Body_Id);
758c442c
GD
2354 end if;
2355 end Verify_Overriding_Indicator;
2356
b1b543d2 2357 -- Start of processing for Analyze_Subprogram_Body_Helper
0fb2ea01 2358
996ae0b0 2359 begin
82c80734
RD
2360 -- Generic subprograms are handled separately. They always have a
2361 -- generic specification. Determine whether current scope has a
2362 -- previous declaration.
996ae0b0 2363
82c80734
RD
2364 -- If the subprogram body is defined within an instance of the same
2365 -- name, the instance appears as a package renaming, and will be hidden
2366 -- within the subprogram.
996ae0b0
RK
2367
2368 if Present (Prev_Id)
2369 and then not Is_Overloadable (Prev_Id)
2370 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2371 or else Comes_From_Source (Prev_Id))
2372 then
fbf5a39b 2373 if Is_Generic_Subprogram (Prev_Id) then
996ae0b0
RK
2374 Spec_Id := Prev_Id;
2375 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2376 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2377
2378 Analyze_Generic_Subprogram_Body (N, Spec_Id);
7665e4bd
AC
2379
2380 if Nkind (N) = N_Subprogram_Body then
2381 HSS := Handled_Statement_Sequence (N);
2382 Check_Missing_Return;
2383 end if;
2384
996ae0b0
RK
2385 return;
2386
2387 else
82c80734
RD
2388 -- Previous entity conflicts with subprogram name. Attempting to
2389 -- enter name will post error.
996ae0b0
RK
2390
2391 Enter_Name (Body_Id);
2392 return;
2393 end if;
2394
82c80734
RD
2395 -- Non-generic case, find the subprogram declaration, if one was seen,
2396 -- or enter new overloaded entity in the current scope. If the
2397 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2398 -- part of the context of one of its subunits. No need to redo the
2399 -- analysis.
996ae0b0
RK
2400
2401 elsif Prev_Id = Body_Id
2402 and then Has_Completion (Body_Id)
2403 then
2404 return;
2405
2406 else
fbf5a39b 2407 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
996ae0b0
RK
2408
2409 if Nkind (N) = N_Subprogram_Body_Stub
2410 or else No (Corresponding_Spec (N))
2411 then
d44202ba
HK
2412 if Is_Private_Concurrent_Primitive (Body_Id) then
2413 Spec_Id := Disambiguate_Spec;
2414 else
2415 Spec_Id := Find_Corresponding_Spec (N);
2416 end if;
996ae0b0
RK
2417
2418 -- If this is a duplicate body, no point in analyzing it
2419
2420 if Error_Posted (N) then
2421 return;
2422 end if;
2423
82c80734
RD
2424 -- A subprogram body should cause freezing of its own declaration,
2425 -- but if there was no previous explicit declaration, then the
2426 -- subprogram will get frozen too late (there may be code within
2427 -- the body that depends on the subprogram having been frozen,
2428 -- such as uses of extra formals), so we force it to be frozen
76a69663 2429 -- here. Same holds if the body and spec are compilation units.
cd1c668b
ES
2430 -- Finally, if the return type is an anonymous access to protected
2431 -- subprogram, it must be frozen before the body because its
2432 -- expansion has generated an equivalent type that is used when
2433 -- elaborating the body.
996ae0b0 2434
885c4871 2435 -- An exception in the case of Ada 2012, AI05-177: The bodies
ebb6faaa
AC
2436 -- created for expression functions do not freeze.
2437
2438 if No (Spec_Id)
2439 and then Nkind (Original_Node (N)) /= N_Expression_Function
2440 then
996ae0b0
RK
2441 Freeze_Before (N, Body_Id);
2442
2443 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2444 Freeze_Before (N, Spec_Id);
cd1c668b
ES
2445
2446 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2447 Freeze_Before (N, Etype (Body_Id));
996ae0b0 2448 end if;
a38ff9b1 2449
996ae0b0
RK
2450 else
2451 Spec_Id := Corresponding_Spec (N);
2452 end if;
2453 end if;
2454
82c80734
RD
2455 -- Do not inline any subprogram that contains nested subprograms, since
2456 -- the backend inlining circuit seems to generate uninitialized
07fc65c4 2457 -- references in this case. We know this happens in the case of front
82c80734
RD
2458 -- end ZCX support, but it also appears it can happen in other cases as
2459 -- well. The backend often rejects attempts to inline in the case of
2460 -- nested procedures anyway, so little if anything is lost by this.
2461 -- Note that this is test is for the benefit of the back-end. There is
2462 -- a separate test for front-end inlining that also rejects nested
2463 -- subprograms.
07fc65c4
GB
2464
2465 -- Do not do this test if errors have been detected, because in some
2466 -- error cases, this code blows up, and we don't need it anyway if
2467 -- there have been errors, since we won't get to the linker anyway.
2468
82c80734
RD
2469 if Comes_From_Source (Body_Id)
2470 and then Serious_Errors_Detected = 0
2471 then
07fc65c4
GB
2472 P_Ent := Body_Id;
2473 loop
2474 P_Ent := Scope (P_Ent);
2475 exit when No (P_Ent) or else P_Ent = Standard_Standard;
2476
fbf5a39b 2477 if Is_Subprogram (P_Ent) then
07fc65c4
GB
2478 Set_Is_Inlined (P_Ent, False);
2479
2480 if Comes_From_Source (P_Ent)
07fc65c4
GB
2481 and then Has_Pragma_Inline (P_Ent)
2482 then
fbf5a39b
AC
2483 Cannot_Inline
2484 ("cannot inline& (nested subprogram)?",
2485 N, P_Ent);
07fc65c4
GB
2486 end if;
2487 end if;
2488 end loop;
2489 end if;
2490
e660dbf7
JM
2491 Check_Inline_Pragma (Spec_Id);
2492
701b7fbb
RD
2493 -- Deal with special case of a fully private operation in the body of
2494 -- the protected type. We must create a declaration for the subprogram,
2495 -- in order to attach the protected subprogram that will be used in
2496 -- internal calls. We exclude compiler generated bodies from the
2497 -- expander since the issue does not arise for those cases.
07fc65c4 2498
996ae0b0
RK
2499 if No (Spec_Id)
2500 and then Comes_From_Source (N)
2501 and then Is_Protected_Type (Current_Scope)
2502 then
47bfea3a 2503 Spec_Id := Build_Private_Protected_Declaration (N);
701b7fbb 2504 end if;
996ae0b0 2505
5334d18f 2506 -- If a separate spec is present, then deal with freezing issues
7ca78bba 2507
701b7fbb 2508 if Present (Spec_Id) then
996ae0b0 2509 Spec_Decl := Unit_Declaration_Node (Spec_Id);
758c442c 2510 Verify_Overriding_Indicator;
5d37ba92
ES
2511
2512 -- In general, the spec will be frozen when we start analyzing the
2513 -- body. However, for internally generated operations, such as
2514 -- wrapper functions for inherited operations with controlling
164e06c6
AC
2515 -- results, the spec may not have been frozen by the time we expand
2516 -- the freeze actions that include the bodies. In particular, extra
2517 -- formals for accessibility or for return-in-place may need to be
2518 -- generated. Freeze nodes, if any, are inserted before the current
2519 -- body. These freeze actions are also needed in ASIS mode to enable
2520 -- the proper back-annotations.
5d37ba92
ES
2521
2522 if not Is_Frozen (Spec_Id)
7134062a 2523 and then (Expander_Active or ASIS_Mode)
5d37ba92
ES
2524 then
2525 -- Force the generation of its freezing node to ensure proper
2526 -- management of access types in the backend.
2527
2528 -- This is definitely needed for some cases, but it is not clear
2529 -- why, to be investigated further???
2530
2531 Set_Has_Delayed_Freeze (Spec_Id);
6b958cec 2532 Freeze_Before (N, Spec_Id);
5d37ba92 2533 end if;
996ae0b0
RK
2534 end if;
2535
a5d83d61
AC
2536 -- Mark presence of postcondition procedure in current scope and mark
2537 -- the procedure itself as needing debug info. The latter is important
2538 -- when analyzing decision coverage (for example, for MC/DC coverage).
7ca78bba 2539
0dabde3a
ES
2540 if Chars (Body_Id) = Name_uPostconditions then
2541 Set_Has_Postconditions (Current_Scope);
a5d83d61 2542 Set_Debug_Info_Needed (Body_Id);
0dabde3a
ES
2543 end if;
2544
996ae0b0
RK
2545 -- Place subprogram on scope stack, and make formals visible. If there
2546 -- is a spec, the visible entity remains that of the spec.
2547
2548 if Present (Spec_Id) then
07fc65c4 2549 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
758c442c
GD
2550
2551 if Is_Child_Unit (Spec_Id) then
2552 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2553 end if;
2554
fbf5a39b
AC
2555 if Style_Check then
2556 Style.Check_Identifier (Body_Id, Spec_Id);
2557 end if;
996ae0b0
RK
2558
2559 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2560 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2561
f937473f 2562 if Is_Abstract_Subprogram (Spec_Id) then
ed2233dc 2563 Error_Msg_N ("an abstract subprogram cannot have a body", N);
996ae0b0 2564 return;
21d27997 2565
996ae0b0
RK
2566 else
2567 Set_Convention (Body_Id, Convention (Spec_Id));
2568 Set_Has_Completion (Spec_Id);
2569
2570 if Is_Protected_Type (Scope (Spec_Id)) then
21d27997 2571 Prot_Typ := Scope (Spec_Id);
996ae0b0
RK
2572 end if;
2573
2574 -- If this is a body generated for a renaming, do not check for
2575 -- full conformance. The check is redundant, because the spec of
2576 -- the body is a copy of the spec in the renaming declaration,
2577 -- and the test can lead to spurious errors on nested defaults.
2578
2579 if Present (Spec_Decl)
996ae0b0 2580 and then not Comes_From_Source (N)
93a81b02
GB
2581 and then
2582 (Nkind (Original_Node (Spec_Decl)) =
d2f97d3e
GB
2583 N_Subprogram_Renaming_Declaration
2584 or else (Present (Corresponding_Body (Spec_Decl))
2585 and then
2586 Nkind (Unit_Declaration_Node
2587 (Corresponding_Body (Spec_Decl))) =
2588 N_Subprogram_Renaming_Declaration))
996ae0b0
RK
2589 then
2590 Conformant := True;
cabe9abc
AC
2591
2592 -- Conversely, the spec may have been generated for specless body
2593 -- with an inline pragma.
2594
2595 elsif Comes_From_Source (N)
2596 and then not Comes_From_Source (Spec_Id)
2597 and then Has_Pragma_Inline (Spec_Id)
2598 then
2599 Conformant := True;
76a69663 2600
996ae0b0
RK
2601 else
2602 Check_Conformance
2603 (Body_Id, Spec_Id,
76a69663 2604 Fully_Conformant, True, Conformant, Body_Id);
996ae0b0
RK
2605 end if;
2606
2607 -- If the body is not fully conformant, we have to decide if we
2608 -- should analyze it or not. If it has a really messed up profile
2609 -- then we probably should not analyze it, since we will get too
2610 -- many bogus messages.
2611
2612 -- Our decision is to go ahead in the non-fully conformant case
2613 -- only if it is at least mode conformant with the spec. Note
2614 -- that the call to Check_Fully_Conformant has issued the proper
2615 -- error messages to complain about the lack of conformance.
2616
2617 if not Conformant
2618 and then not Mode_Conformant (Body_Id, Spec_Id)
2619 then
2620 return;
2621 end if;
2622 end if;
2623
996ae0b0 2624 if Spec_Id /= Body_Id then
fbf5a39b 2625 Reference_Body_Formals (Spec_Id, Body_Id);
996ae0b0
RK
2626 end if;
2627
2628 if Nkind (N) /= N_Subprogram_Body_Stub then
2629 Set_Corresponding_Spec (N, Spec_Id);
758c442c 2630
5d37ba92
ES
2631 -- Ada 2005 (AI-345): If the operation is a primitive operation
2632 -- of a concurrent type, the type of the first parameter has been
2633 -- replaced with the corresponding record, which is the proper
2634 -- run-time structure to use. However, within the body there may
2635 -- be uses of the formals that depend on primitive operations
2636 -- of the type (in particular calls in prefixed form) for which
2637 -- we need the original concurrent type. The operation may have
2638 -- several controlling formals, so the replacement must be done
2639 -- for all of them.
758c442c
GD
2640
2641 if Comes_From_Source (Spec_Id)
2642 and then Present (First_Entity (Spec_Id))
2643 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2644 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
5d37ba92 2645 and then
ce2b6ba5 2646 Present (Interfaces (Etype (First_Entity (Spec_Id))))
5d37ba92
ES
2647 and then
2648 Present
21d27997
RD
2649 (Corresponding_Concurrent_Type
2650 (Etype (First_Entity (Spec_Id))))
758c442c 2651 then
5d37ba92
ES
2652 declare
2653 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2654 Form : Entity_Id;
2655
2656 begin
2657 Form := First_Formal (Spec_Id);
2658 while Present (Form) loop
2659 if Etype (Form) = Typ then
2660 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2661 end if;
2662
2663 Next_Formal (Form);
2664 end loop;
2665 end;
758c442c
GD
2666 end if;
2667
21d27997
RD
2668 -- Make the formals visible, and place subprogram on scope stack.
2669 -- This is also the point at which we set Last_Real_Spec_Entity
2670 -- to mark the entities which will not be moved to the body.
758c442c 2671
996ae0b0 2672 Install_Formals (Spec_Id);
21d27997 2673 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
0a36105d 2674 Push_Scope (Spec_Id);
996ae0b0
RK
2675
2676 -- Make sure that the subprogram is immediately visible. For
2677 -- child units that have no separate spec this is indispensable.
2678 -- Otherwise it is safe albeit redundant.
2679
2680 Set_Is_Immediately_Visible (Spec_Id);
2681 end if;
2682
2683 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2684 Set_Ekind (Body_Id, E_Subprogram_Body);
2685 Set_Scope (Body_Id, Scope (Spec_Id));
ec4867fa 2686 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
996ae0b0
RK
2687
2688 -- Case of subprogram body with no previous spec
2689
2690 else
3e5daac4
AC
2691 -- Check for style warning required
2692
996ae0b0 2693 if Style_Check
3e5daac4
AC
2694
2695 -- Only apply check for source level subprograms for which checks
2696 -- have not been suppressed.
2697
996ae0b0
RK
2698 and then Comes_From_Source (Body_Id)
2699 and then not Suppress_Style_Checks (Body_Id)
3e5daac4
AC
2700
2701 -- No warnings within an instance
2702
996ae0b0 2703 and then not In_Instance
3e5daac4 2704
b0186f71 2705 -- No warnings for expression functions
3e5daac4 2706
b0186f71 2707 and then Nkind (Original_Node (N)) /= N_Expression_Function
996ae0b0
RK
2708 then
2709 Style.Body_With_No_Spec (N);
2710 end if;
2711
2712 New_Overloaded_Entity (Body_Id);
2713
2714 if Nkind (N) /= N_Subprogram_Body_Stub then
2715 Set_Acts_As_Spec (N);
2716 Generate_Definition (Body_Id);
dac3bede 2717 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
fbf5a39b
AC
2718 Generate_Reference
2719 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
996ae0b0 2720 Install_Formals (Body_Id);
0a36105d 2721 Push_Scope (Body_Id);
996ae0b0 2722 end if;
dbe36d67
AC
2723
2724 -- For stubs and bodies with no previous spec, generate references to
2725 -- formals.
2726
2727 Generate_Reference_To_Formals (Body_Id);
996ae0b0
RK
2728 end if;
2729
76a69663
ES
2730 -- If the return type is an anonymous access type whose designated type
2731 -- is the limited view of a class-wide type and the non-limited view is
2732 -- available, update the return type accordingly.
ec4867fa 2733
0791fbe9 2734 if Ada_Version >= Ada_2005
ec4867fa
ES
2735 and then Comes_From_Source (N)
2736 then
2737 declare
ec4867fa 2738 Etyp : Entity_Id;
0a36105d 2739 Rtyp : Entity_Id;
ec4867fa
ES
2740
2741 begin
0a36105d
JM
2742 Rtyp := Etype (Current_Scope);
2743
2744 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2745 Etyp := Directly_Designated_Type (Rtyp);
2746
2747 if Is_Class_Wide_Type (Etyp)
2748 and then From_With_Type (Etyp)
2749 then
2750 Set_Directly_Designated_Type
2751 (Etype (Current_Scope), Available_View (Etyp));
2752 end if;
2753 end if;
ec4867fa
ES
2754 end;
2755 end if;
2756
996ae0b0
RK
2757 -- If this is the proper body of a stub, we must verify that the stub
2758 -- conforms to the body, and to the previous spec if one was present.
dbe36d67 2759 -- We know already that the body conforms to that spec. This test is
996ae0b0
RK
2760 -- only required for subprograms that come from source.
2761
2762 if Nkind (Parent (N)) = N_Subunit
2763 and then Comes_From_Source (N)
2764 and then not Error_Posted (Body_Id)
e895b435
ES
2765 and then Nkind (Corresponding_Stub (Parent (N))) =
2766 N_Subprogram_Body_Stub
996ae0b0
RK
2767 then
2768 declare
fbf5a39b
AC
2769 Old_Id : constant Entity_Id :=
2770 Defining_Entity
2771 (Specification (Corresponding_Stub (Parent (N))));
2772
996ae0b0 2773 Conformant : Boolean := False;
996ae0b0
RK
2774
2775 begin
2776 if No (Spec_Id) then
2777 Check_Fully_Conformant (Body_Id, Old_Id);
2778
2779 else
2780 Check_Conformance
2781 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2782
2783 if not Conformant then
2784
dbe36d67
AC
2785 -- The stub was taken to be a new declaration. Indicate that
2786 -- it lacks a body.
996ae0b0
RK
2787
2788 Set_Has_Completion (Old_Id, False);
2789 end if;
2790 end if;
2791 end;
2792 end if;
2793
2794 Set_Has_Completion (Body_Id);
2795 Check_Eliminated (Body_Id);
2796
2797 if Nkind (N) = N_Subprogram_Body_Stub then
2798 return;
2799
ec4867fa 2800 elsif Present (Spec_Id)
996ae0b0 2801 and then Expander_Active
e660dbf7 2802 and then
800621e0 2803 (Has_Pragma_Inline_Always (Spec_Id)
e660dbf7 2804 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
996ae0b0 2805 then
e660dbf7 2806 Build_Body_To_Inline (N, Spec_Id);
996ae0b0
RK
2807 end if;
2808
0ab80019 2809 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
dbe36d67 2810 -- of the specification we have to install the private withed units.
21d27997 2811 -- This holds for child units as well.
9bc856dd
AC
2812
2813 if Is_Compilation_Unit (Body_Id)
21d27997 2814 or else Nkind (Parent (N)) = N_Compilation_Unit
9bc856dd
AC
2815 then
2816 Install_Private_With_Clauses (Body_Id);
2817 end if;
2818
ec4867fa
ES
2819 Check_Anonymous_Return;
2820
fdce4bb7
JM
2821 -- Set the Protected_Formal field of each extra formal of the protected
2822 -- subprogram to reference the corresponding extra formal of the
2823 -- subprogram that implements it. For regular formals this occurs when
2824 -- the protected subprogram's declaration is expanded, but the extra
2825 -- formals don't get created until the subprogram is frozen. We need to
2826 -- do this before analyzing the protected subprogram's body so that any
2827 -- references to the original subprogram's extra formals will be changed
2828 -- refer to the implementing subprogram's formals (see Expand_Formal).
2829
2830 if Present (Spec_Id)
2831 and then Is_Protected_Type (Scope (Spec_Id))
2832 and then Present (Protected_Body_Subprogram (Spec_Id))
2833 then
2834 declare
2835 Impl_Subp : constant Entity_Id :=
2836 Protected_Body_Subprogram (Spec_Id);
2837 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2838 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
fdce4bb7
JM
2839 begin
2840 while Present (Prot_Ext_Formal) loop
2841 pragma Assert (Present (Impl_Ext_Formal));
fdce4bb7 2842 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
fdce4bb7
JM
2843 Next_Formal_With_Extras (Prot_Ext_Formal);
2844 Next_Formal_With_Extras (Impl_Ext_Formal);
2845 end loop;
2846 end;
2847 end if;
2848
0868e09c 2849 -- Now we can go on to analyze the body
996ae0b0
RK
2850
2851 HSS := Handled_Statement_Sequence (N);
2852 Set_Actual_Subtypes (N, Current_Scope);
21d27997 2853
483361a6
AC
2854 -- Deal with preconditions and postconditions. In formal verification
2855 -- mode, we keep pre- and postconditions attached to entities rather
2856 -- than inserted in the code, in order to facilitate a distinct
2857 -- treatment for them.
21d27997 2858
56812278 2859 if not Alfa_Mode then
483361a6
AC
2860 Process_PPCs (N, Spec_Id, Body_Id);
2861 end if;
21d27997 2862
f3d0f304 2863 -- Add a declaration for the Protection object, renaming declarations
21d27997
RD
2864 -- for discriminals and privals and finally a declaration for the entry
2865 -- family index (if applicable). This form of early expansion is done
2866 -- when the Expander is active because Install_Private_Data_Declarations
81bf2382
AC
2867 -- references entities which were created during regular expansion. The
2868 -- body may be the rewritting of an expression function, and we need to
2869 -- verify that the original node is in the source.
21d27997 2870
da94696d 2871 if Full_Expander_Active
13a0b1e8 2872 and then Comes_From_Source (Original_Node (N))
21d27997
RD
2873 and then Present (Prot_Typ)
2874 and then Present (Spec_Id)
2875 and then not Is_Eliminated (Spec_Id)
2876 then
2877 Install_Private_Data_Declarations
2878 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2879 end if;
2880
5dcab3ca
AC
2881 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
2882 -- may now appear in parameter and result profiles. Since the analysis
2883 -- of a subprogram body may use the parameter and result profile of the
2884 -- spec, swap any limited views with their non-limited counterpart.
2885
2886 if Ada_Version >= Ada_2012 then
2887 Exchange_Limited_Views (Spec_Id);
2888 end if;
2889
21d27997
RD
2890 -- Analyze the declarations (this call will analyze the precondition
2891 -- Check pragmas we prepended to the list, as well as the declaration
2892 -- of the _Postconditions procedure).
2893
996ae0b0 2894 Analyze_Declarations (Declarations (N));
21d27997
RD
2895
2896 -- Check completion, and analyze the statements
2897
996ae0b0 2898 Check_Completion;
33931112 2899 Inspect_Deferred_Constant_Completion (Declarations (N));
996ae0b0 2900 Analyze (HSS);
21d27997
RD
2901
2902 -- Deal with end of scope processing for the body
2903
07fc65c4 2904 Process_End_Label (HSS, 't', Current_Scope);
996ae0b0
RK
2905 End_Scope;
2906 Check_Subprogram_Order (N);
c37bb106 2907 Set_Analyzed (Body_Id);
996ae0b0
RK
2908
2909 -- If we have a separate spec, then the analysis of the declarations
2910 -- caused the entities in the body to be chained to the spec id, but
2911 -- we want them chained to the body id. Only the formal parameters
2912 -- end up chained to the spec id in this case.
2913
2914 if Present (Spec_Id) then
2915
d39d6bb8 2916 -- We must conform to the categorization of our spec
996ae0b0 2917
d39d6bb8 2918 Validate_Categorization_Dependency (N, Spec_Id);
996ae0b0 2919
d39d6bb8
RD
2920 -- And if this is a child unit, the parent units must conform
2921
2922 if Is_Child_Unit (Spec_Id) then
996ae0b0
RK
2923 Validate_Categorization_Dependency
2924 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2925 end if;
2926
21d27997
RD
2927 -- Here is where we move entities from the spec to the body
2928
2929 -- Case where there are entities that stay with the spec
2930
2931 if Present (Last_Real_Spec_Entity) then
2932
dbe36d67
AC
2933 -- No body entities (happens when the only real spec entities come
2934 -- from precondition and postcondition pragmas).
21d27997
RD
2935
2936 if No (Last_Entity (Body_Id)) then
2937 Set_First_Entity
2938 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2939
2940 -- Body entities present (formals), so chain stuff past them
2941
2942 else
2943 Set_Next_Entity
2944 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2945 end if;
2946
2947 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
996ae0b0 2948 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
21d27997
RD
2949 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2950
dbe36d67
AC
2951 -- Case where there are no spec entities, in this case there can be
2952 -- no body entities either, so just move everything.
996ae0b0
RK
2953
2954 else
21d27997 2955 pragma Assert (No (Last_Entity (Body_Id)));
996ae0b0
RK
2956 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2957 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2958 Set_First_Entity (Spec_Id, Empty);
2959 Set_Last_Entity (Spec_Id, Empty);
2960 end if;
2961 end if;
2962
7665e4bd 2963 Check_Missing_Return;
996ae0b0 2964
82c80734 2965 -- Now we are going to check for variables that are never modified in
76a69663
ES
2966 -- the body of the procedure. But first we deal with a special case
2967 -- where we want to modify this check. If the body of the subprogram
2968 -- starts with a raise statement or its equivalent, or if the body
2969 -- consists entirely of a null statement, then it is pretty obvious
2970 -- that it is OK to not reference the parameters. For example, this
2971 -- might be the following common idiom for a stubbed function:
82c80734
RD
2972 -- statement of the procedure raises an exception. In particular this
2973 -- deals with the common idiom of a stubbed function, which might
dbe36d67 2974 -- appear as something like:
fbf5a39b
AC
2975
2976 -- function F (A : Integer) return Some_Type;
2977 -- X : Some_Type;
2978 -- begin
2979 -- raise Program_Error;
2980 -- return X;
2981 -- end F;
2982
76a69663
ES
2983 -- Here the purpose of X is simply to satisfy the annoying requirement
2984 -- in Ada that there be at least one return, and we certainly do not
2985 -- want to go posting warnings on X that it is not initialized! On
2986 -- the other hand, if X is entirely unreferenced that should still
2987 -- get a warning.
2988
2989 -- What we do is to detect these cases, and if we find them, flag the
2990 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2991 -- suppress unwanted warnings. For the case of the function stub above
2992 -- we have a special test to set X as apparently assigned to suppress
2993 -- the warning.
996ae0b0
RK
2994
2995 declare
800621e0 2996 Stm : Node_Id;
996ae0b0
RK
2997
2998 begin
0a36105d
JM
2999 -- Skip initial labels (for one thing this occurs when we are in
3000 -- front end ZCX mode, but in any case it is irrelevant), and also
3001 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
fbf5a39b 3002
800621e0 3003 Stm := First (Statements (HSS));
0a36105d
JM
3004 while Nkind (Stm) = N_Label
3005 or else Nkind (Stm) in N_Push_xxx_Label
3006 loop
996ae0b0 3007 Next (Stm);
0a36105d 3008 end loop;
996ae0b0 3009
fbf5a39b
AC
3010 -- Do the test on the original statement before expansion
3011
3012 declare
3013 Ostm : constant Node_Id := Original_Node (Stm);
3014
3015 begin
76a69663 3016 -- If explicit raise statement, turn on flag
fbf5a39b
AC
3017
3018 if Nkind (Ostm) = N_Raise_Statement then
76a69663
ES
3019 Set_Trivial_Subprogram (Stm);
3020
f3d57416 3021 -- If null statement, and no following statements, turn on flag
76a69663
ES
3022
3023 elsif Nkind (Stm) = N_Null_Statement
3024 and then Comes_From_Source (Stm)
3025 and then No (Next (Stm))
3026 then
3027 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3028
3029 -- Check for explicit call cases which likely raise an exception
3030
3031 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3032 if Is_Entity_Name (Name (Ostm)) then
3033 declare
3034 Ent : constant Entity_Id := Entity (Name (Ostm));
3035
3036 begin
3037 -- If the procedure is marked No_Return, then likely it
3038 -- raises an exception, but in any case it is not coming
76a69663 3039 -- back here, so turn on the flag.
fbf5a39b 3040
f46faa08
AC
3041 if Present (Ent)
3042 and then Ekind (Ent) = E_Procedure
fbf5a39b
AC
3043 and then No_Return (Ent)
3044 then
76a69663 3045 Set_Trivial_Subprogram (Stm);
fbf5a39b
AC
3046 end if;
3047 end;
3048 end if;
3049 end if;
3050 end;
996ae0b0
RK
3051 end;
3052
3053 -- Check for variables that are never modified
3054
3055 declare
3056 E1, E2 : Entity_Id;
3057
3058 begin
fbf5a39b 3059 -- If there is a separate spec, then transfer Never_Set_In_Source
996ae0b0
RK
3060 -- flags from out parameters to the corresponding entities in the
3061 -- body. The reason we do that is we want to post error flags on
3062 -- the body entities, not the spec entities.
3063
3064 if Present (Spec_Id) then
3065 E1 := First_Entity (Spec_Id);
996ae0b0
RK
3066 while Present (E1) loop
3067 if Ekind (E1) = E_Out_Parameter then
3068 E2 := First_Entity (Body_Id);
fbf5a39b 3069 while Present (E2) loop
996ae0b0
RK
3070 exit when Chars (E1) = Chars (E2);
3071 Next_Entity (E2);
3072 end loop;
3073
fbf5a39b
AC
3074 if Present (E2) then
3075 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3076 end if;
996ae0b0
RK
3077 end if;
3078
3079 Next_Entity (E1);
3080 end loop;
3081 end if;
3082
0868e09c
RD
3083 -- Check references in body unless it was deleted. Note that the
3084 -- check of Body_Deleted here is not just for efficiency, it is
3085 -- necessary to avoid junk warnings on formal parameters.
3086
3087 if not Body_Deleted then
3088 Check_References (Body_Id);
3089 end if;
996ae0b0 3090 end;
b1b543d2 3091 end Analyze_Subprogram_Body_Helper;
996ae0b0
RK
3092
3093 ------------------------------------
3094 -- Analyze_Subprogram_Declaration --
3095 ------------------------------------
3096
3097 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
5d5832bc 3098 Loc : constant Source_Ptr := Sloc (N);
0f1a6a0b 3099 Scop : constant Entity_Id := Current_Scope;
5d5832bc
AC
3100 Designator : Entity_Id;
3101 Form : Node_Id;
5d5832bc 3102 Null_Body : Node_Id := Empty;
996ae0b0
RK
3103
3104 -- Start of processing for Analyze_Subprogram_Declaration
3105
3106 begin
2ba431e5 3107 -- Null procedures are not allowed in SPARK
daec8eeb 3108
fe5d3068 3109 if Nkind (Specification (N)) = N_Procedure_Specification
daec8eeb
YM
3110 and then Null_Present (Specification (N))
3111 then
2ba431e5 3112 Check_SPARK_Restriction ("null procedure is not allowed", N);
daec8eeb
YM
3113 end if;
3114
349ff68f 3115 -- For a null procedure, capture the profile before analysis, for
c159409f
AC
3116 -- expansion at the freeze point and at each point of call. The body
3117 -- will only be used if the procedure has preconditions. In that case
3118 -- the body is analyzed at the freeze point.
5d5832bc
AC
3119
3120 if Nkind (Specification (N)) = N_Procedure_Specification
3121 and then Null_Present (Specification (N))
3122 and then Expander_Active
3123 then
3124 Null_Body :=
3125 Make_Subprogram_Body (Loc,
3126 Specification =>
3127 New_Copy_Tree (Specification (N)),
349ff68f
AC
3128 Declarations =>
3129 New_List,
5d5832bc
AC
3130 Handled_Statement_Sequence =>
3131 Make_Handled_Sequence_Of_Statements (Loc,
3132 Statements => New_List (Make_Null_Statement (Loc))));
3133
01957849 3134 -- Create new entities for body and formals
5d5832bc
AC
3135
3136 Set_Defining_Unit_Name (Specification (Null_Body),
3137 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
3138 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
3139
3140 Form := First (Parameter_Specifications (Specification (Null_Body)));
3141 while Present (Form) loop
3142 Set_Defining_Identifier (Form,
3143 Make_Defining_Identifier (Loc,
3144 Chars (Defining_Identifier (Form))));
718deaf1
AC
3145
3146 -- Resolve the types of the formals now, because the freeze point
3147 -- may appear in a different context, e.g. an instantiation.
3148
3149 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
3150 Find_Type (Parameter_Type (Form));
3151
3152 elsif
3153 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
3154 then
3155 Find_Type (Subtype_Mark (Parameter_Type (Form)));
3156
3157 else
3158
3159 -- the case of a null procedure with a formal that is an
3160 -- access_to_subprogram type, and that is used as an actual
3161 -- in an instantiation is left to the enthusiastic reader.
3162
3163 null;
3164 end if;
3165
5d5832bc
AC
3166 Next (Form);
3167 end loop;
3168
3169 if Is_Protected_Type (Current_Scope) then
ed2233dc 3170 Error_Msg_N ("protected operation cannot be a null procedure", N);
5d5832bc
AC
3171 end if;
3172 end if;
3173
beacce02 3174 Designator := Analyze_Subprogram_Specification (Specification (N));
5d5832bc 3175 Generate_Definition (Designator);
dac3bede 3176 -- ??? why this call, already in Analyze_Subprogram_Specification
5d5832bc 3177
b1b543d2
BD
3178 if Debug_Flag_C then
3179 Write_Str ("==> subprogram spec ");
3180 Write_Name (Chars (Designator));
3181 Write_Str (" from ");
3182 Write_Location (Sloc (N));
3183 Write_Eol;
3184 Indent;
3185 end if;
3186
5d5832bc
AC
3187 if Nkind (Specification (N)) = N_Procedure_Specification
3188 and then Null_Present (Specification (N))
3189 then
3190 Set_Has_Completion (Designator);
996ae0b0 3191
5d5832bc
AC
3192 if Present (Null_Body) then
3193 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
3194 Set_Body_To_Inline (N, Null_Body);
3195 Set_Is_Inlined (Designator);
3196 end if;
3197 end if;
996ae0b0
RK
3198
3199 Validate_RCI_Subprogram_Declaration (N);
996ae0b0
RK
3200 New_Overloaded_Entity (Designator);
3201 Check_Delayed_Subprogram (Designator);
fbf5a39b 3202
6ca063eb
AC
3203 -- If the type of the first formal of the current subprogram is a
3204 -- nongeneric tagged private type, mark the subprogram as being a
3205 -- private primitive. Ditto if this is a function with controlling
b7d5e87b
AC
3206 -- result, and the return type is currently private. In both cases,
3207 -- the type of the controlling argument or result must be in the
3208 -- current scope for the operation to be primitive.
6ca063eb
AC
3209
3210 if Has_Controlling_Result (Designator)
3211 and then Is_Private_Type (Etype (Designator))
b7d5e87b 3212 and then Scope (Etype (Designator)) = Current_Scope
6ca063eb
AC
3213 and then not Is_Generic_Actual_Type (Etype (Designator))
3214 then
3215 Set_Is_Private_Primitive (Designator);
d44202ba 3216
6ca063eb 3217 elsif Present (First_Formal (Designator)) then
d44202ba
HK
3218 declare
3219 Formal_Typ : constant Entity_Id :=
3220 Etype (First_Formal (Designator));
3221 begin
3222 Set_Is_Private_Primitive (Designator,
3223 Is_Tagged_Type (Formal_Typ)
b7d5e87b 3224 and then Scope (Formal_Typ) = Current_Scope
d44202ba
HK
3225 and then Is_Private_Type (Formal_Typ)
3226 and then not Is_Generic_Actual_Type (Formal_Typ));
3227 end;
3228 end if;
3229
ec4867fa
ES
3230 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3231 -- or null.
3232
0791fbe9 3233 if Ada_Version >= Ada_2005
ec4867fa
ES
3234 and then Comes_From_Source (N)
3235 and then Is_Dispatching_Operation (Designator)
3236 then
3237 declare
3238 E : Entity_Id;
3239 Etyp : Entity_Id;
3240
3241 begin
3242 if Has_Controlling_Result (Designator) then
3243 Etyp := Etype (Designator);
3244
3245 else
3246 E := First_Entity (Designator);
3247 while Present (E)
3248 and then Is_Formal (E)
3249 and then not Is_Controlling_Formal (E)
3250 loop
3251 Next_Entity (E);
3252 end loop;
3253
3254 Etyp := Etype (E);
3255 end if;
3256
3257 if Is_Access_Type (Etyp) then
3258 Etyp := Directly_Designated_Type (Etyp);
3259 end if;
3260
3261 if Is_Interface (Etyp)
f937473f 3262 and then not Is_Abstract_Subprogram (Designator)
ec4867fa
ES
3263 and then not (Ekind (Designator) = E_Procedure
3264 and then Null_Present (Specification (N)))
3265 then
3266 Error_Msg_Name_1 := Chars (Defining_Entity (N));
033eaf85
AC
3267
3268 -- Specialize error message based on procedures vs. functions,
3269 -- since functions can't be null subprograms.
3270
3271 if Ekind (Designator) = E_Procedure then
3272 Error_Msg_N
3273 ("interface procedure % must be abstract or null", N);
3274 else
3275 Error_Msg_N ("interface function % must be abstract", N);
3276 end if;
ec4867fa
ES
3277 end if;
3278 end;
3279 end if;
3280
fbf5a39b
AC
3281 -- What is the following code for, it used to be
3282
3283 -- ??? Set_Suppress_Elaboration_Checks
3284 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3285
3286 -- The following seems equivalent, but a bit dubious
3287
3288 if Elaboration_Checks_Suppressed (Designator) then
3289 Set_Kill_Elaboration_Checks (Designator);
3290 end if;
996ae0b0
RK
3291
3292 if Scop /= Standard_Standard
3293 and then not Is_Child_Unit (Designator)
3294 then
fbf5a39b 3295 Set_Categorization_From_Scope (Designator, Scop);
996ae0b0 3296 else
e895b435 3297 -- For a compilation unit, check for library-unit pragmas
996ae0b0 3298
0a36105d 3299 Push_Scope (Designator);
996ae0b0
RK
3300 Set_Categorization_From_Pragmas (N);
3301 Validate_Categorization_Dependency (N, Designator);
3302 Pop_Scope;
3303 end if;
3304
3305 -- For a compilation unit, set body required. This flag will only be
3306 -- reset if a valid Import or Interface pragma is processed later on.
3307
3308 if Nkind (Parent (N)) = N_Compilation_Unit then
3309 Set_Body_Required (Parent (N), True);
758c442c 3310
0791fbe9 3311 if Ada_Version >= Ada_2005
758c442c
GD
3312 and then Nkind (Specification (N)) = N_Procedure_Specification
3313 and then Null_Present (Specification (N))
3314 then
3315 Error_Msg_N
3316 ("null procedure cannot be declared at library level", N);
3317 end if;
996ae0b0
RK
3318 end if;
3319
fbf5a39b 3320 Generate_Reference_To_Formals (Designator);
996ae0b0 3321 Check_Eliminated (Designator);
fbf5a39b 3322
b1b543d2
BD
3323 if Debug_Flag_C then
3324 Outdent;
3325 Write_Str ("<== subprogram spec ");
3326 Write_Name (Chars (Designator));
3327 Write_Str (" from ");
3328 Write_Location (Sloc (N));
3329 Write_Eol;
3330 end if;
0f1a6a0b 3331
1a265e78
AC
3332 if Is_Protected_Type (Current_Scope) then
3333
3334 -- Indicate that this is a protected operation, because it may be
3335 -- used in subsequent declarations within the protected type.
3336
3337 Set_Convention (Designator, Convention_Protected);
3338 end if;
3339
beacce02 3340 List_Inherited_Pre_Post_Aspects (Designator);
eaba57fb
RD
3341
3342 if Has_Aspects (N) then
3343 Analyze_Aspect_Specifications (N, Designator);
3344 end if;
996ae0b0
RK
3345 end Analyze_Subprogram_Declaration;
3346
fbf5a39b
AC
3347 --------------------------------------
3348 -- Analyze_Subprogram_Specification --
3349 --------------------------------------
3350
3351 -- Reminder: N here really is a subprogram specification (not a subprogram
3352 -- declaration). This procedure is called to analyze the specification in
3353 -- both subprogram bodies and subprogram declarations (specs).
3354
3355 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3356 Designator : constant Entity_Id := Defining_Entity (N);
21d27997 3357 Formals : constant List_Id := Parameter_Specifications (N);
fbf5a39b 3358
758c442c
GD
3359 -- Start of processing for Analyze_Subprogram_Specification
3360
fbf5a39b 3361 begin
2ba431e5 3362 -- User-defined operator is not allowed in SPARK, except as a renaming
38171f43 3363
db72f10a
AC
3364 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3365 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3366 then
2ba431e5 3367 Check_SPARK_Restriction ("user-defined operator is not allowed", N);
38171f43
AC
3368 end if;
3369
3370 -- Proceed with analysis
3371
fbf5a39b 3372 Generate_Definition (Designator);
dac3bede 3373 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
fbf5a39b
AC
3374
3375 if Nkind (N) = N_Function_Specification then
3376 Set_Ekind (Designator, E_Function);
3377 Set_Mechanism (Designator, Default_Mechanism);
fbf5a39b
AC
3378 else
3379 Set_Ekind (Designator, E_Procedure);
3380 Set_Etype (Designator, Standard_Void_Type);
3381 end if;
3382
800621e0 3383 -- Introduce new scope for analysis of the formals and the return type
82c80734
RD
3384
3385 Set_Scope (Designator, Current_Scope);
3386
fbf5a39b 3387 if Present (Formals) then
0a36105d 3388 Push_Scope (Designator);
fbf5a39b 3389 Process_Formals (Formals, N);
758c442c 3390
a38ff9b1
ES
3391 -- Ada 2005 (AI-345): If this is an overriding operation of an
3392 -- inherited interface operation, and the controlling type is
3393 -- a synchronized type, replace the type with its corresponding
3394 -- record, to match the proper signature of an overriding operation.
69cb258c
AC
3395 -- Same processing for an access parameter whose designated type is
3396 -- derived from a synchronized interface.
758c442c 3397
0791fbe9 3398 if Ada_Version >= Ada_2005 then
d44202ba
HK
3399 declare
3400 Formal : Entity_Id;
3401 Formal_Typ : Entity_Id;
3402 Rec_Typ : Entity_Id;
69cb258c 3403 Desig_Typ : Entity_Id;
0a36105d 3404
d44202ba
HK
3405 begin
3406 Formal := First_Formal (Designator);
3407 while Present (Formal) loop
3408 Formal_Typ := Etype (Formal);
0a36105d 3409
d44202ba
HK
3410 if Is_Concurrent_Type (Formal_Typ)
3411 and then Present (Corresponding_Record_Type (Formal_Typ))
3412 then
3413 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
3414
3415 if Present (Interfaces (Rec_Typ)) then
3416 Set_Etype (Formal, Rec_Typ);
3417 end if;
69cb258c
AC
3418
3419 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
3420 Desig_Typ := Designated_Type (Formal_Typ);
3421
3422 if Is_Concurrent_Type (Desig_Typ)
3423 and then Present (Corresponding_Record_Type (Desig_Typ))
3424 then
3425 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3426
3427 if Present (Interfaces (Rec_Typ)) then
3428 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
3429 end if;
3430 end if;
d44202ba
HK
3431 end if;
3432
3433 Next_Formal (Formal);
3434 end loop;
3435 end;
758c442c
GD
3436 end if;
3437
fbf5a39b 3438 End_Scope;
82c80734 3439
b66c3ff4
AC
3440 -- The subprogram scope is pushed and popped around the processing of
3441 -- the return type for consistency with call above to Process_Formals
3442 -- (which itself can call Analyze_Return_Type), and to ensure that any
3443 -- itype created for the return type will be associated with the proper
3444 -- scope.
3445
82c80734 3446 elsif Nkind (N) = N_Function_Specification then
b66c3ff4 3447 Push_Scope (Designator);
82c80734 3448 Analyze_Return_Type (N);
b66c3ff4 3449 End_Scope;
fbf5a39b
AC
3450 end if;
3451
e606088a
AC
3452 -- Function case
3453
fbf5a39b 3454 if Nkind (N) = N_Function_Specification then
e606088a
AC
3455
3456 -- Deal with operator symbol case
3457
fbf5a39b
AC
3458 if Nkind (Designator) = N_Defining_Operator_Symbol then
3459 Valid_Operator_Definition (Designator);
3460 end if;
3461
3462 May_Need_Actuals (Designator);
3463
fe63b1b1
ES
3464 -- Ada 2005 (AI-251): If the return type is abstract, verify that
3465 -- the subprogram is abstract also. This does not apply to renaming
1adaea16
AC
3466 -- declarations, where abstractness is inherited, and to subprogram
3467 -- bodies generated for stream operations, which become renamings as
3468 -- bodies.
2bfb1b72 3469
fe63b1b1
ES
3470 -- In case of primitives associated with abstract interface types
3471 -- the check is applied later (see Analyze_Subprogram_Declaration).
ec4867fa 3472
1adaea16
AC
3473 if not Nkind_In (Original_Node (Parent (N)),
3474 N_Subprogram_Renaming_Declaration,
3475 N_Abstract_Subprogram_Declaration,
3476 N_Formal_Abstract_Subprogram_Declaration)
fbf5a39b 3477 then
2e79de51
AC
3478 if Is_Abstract_Type (Etype (Designator))
3479 and then not Is_Interface (Etype (Designator))
3480 then
3481 Error_Msg_N
3482 ("function that returns abstract type must be abstract", N);
3483
e606088a 3484 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
2e79de51
AC
3485 -- access result whose designated type is abstract.
3486
3487 elsif Nkind (Result_Definition (N)) = N_Access_Definition
3488 and then
3489 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3490 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
dbe945f1 3491 and then Ada_Version >= Ada_2012
2e79de51
AC
3492 then
3493 Error_Msg_N ("function whose access result designates "
3494 & "abstract type must be abstract", N);
3495 end if;
fbf5a39b
AC
3496 end if;
3497 end if;
3498
3499 return Designator;
3500 end Analyze_Subprogram_Specification;
3501
996ae0b0
RK
3502 --------------------------
3503 -- Build_Body_To_Inline --
3504 --------------------------
3505
d05ef0ab 3506 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
f937473f 3507 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
996ae0b0
RK
3508 Original_Body : Node_Id;
3509 Body_To_Analyze : Node_Id;
3510 Max_Size : constant := 10;
3511 Stat_Count : Integer := 0;
3512
3513 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
e895b435 3514 -- Check for declarations that make inlining not worthwhile
996ae0b0
RK
3515
3516 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
82c80734
RD
3517 -- Check for statements that make inlining not worthwhile: any tasking
3518 -- statement, nested at any level. Keep track of total number of
3519 -- elementary statements, as a measure of acceptable size.
996ae0b0
RK
3520
3521 function Has_Pending_Instantiation return Boolean;
f937473f
RD
3522 -- If some enclosing body contains instantiations that appear before the
3523 -- corresponding generic body, the enclosing body has a freeze node so
3524 -- that it can be elaborated after the generic itself. This might
996ae0b0
RK
3525 -- conflict with subsequent inlinings, so that it is unsafe to try to
3526 -- inline in such a case.
3527
c8ef728f 3528 function Has_Single_Return return Boolean;
f937473f
RD
3529 -- In general we cannot inline functions that return unconstrained type.
3530 -- However, we can handle such functions if all return statements return
3531 -- a local variable that is the only declaration in the body of the
3532 -- function. In that case the call can be replaced by that local
3533 -- variable as is done for other inlined calls.
c8ef728f 3534
fbf5a39b 3535 procedure Remove_Pragmas;
76a69663
ES
3536 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
3537 -- parameter has no meaning when the body is inlined and the formals
3538 -- are rewritten. Remove it from body to inline. The analysis of the
3539 -- non-inlined body will handle the pragma properly.
996ae0b0 3540
e895b435
ES
3541 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
3542 -- If the body of the subprogram includes a call that returns an
3543 -- unconstrained type, the secondary stack is involved, and it
3544 -- is not worth inlining.
3545
996ae0b0
RK
3546 ------------------------------
3547 -- Has_Excluded_Declaration --
3548 ------------------------------
3549
3550 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3551 D : Node_Id;
3552
fbf5a39b 3553 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
82c80734
RD
3554 -- Nested subprograms make a given body ineligible for inlining, but
3555 -- we make an exception for instantiations of unchecked conversion.
3556 -- The body has not been analyzed yet, so check the name, and verify
3557 -- that the visible entity with that name is the predefined unit.
3558
3559 -----------------------------
3560 -- Is_Unchecked_Conversion --
3561 -----------------------------
fbf5a39b
AC
3562
3563 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
82c80734 3564 Id : constant Node_Id := Name (D);
fbf5a39b
AC
3565 Conv : Entity_Id;
3566
3567 begin
3568 if Nkind (Id) = N_Identifier
3569 and then Chars (Id) = Name_Unchecked_Conversion
3570 then
3571 Conv := Current_Entity (Id);
3572
800621e0 3573 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
fbf5a39b
AC
3574 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3575 then
3576 Conv := Current_Entity (Selector_Name (Id));
fbf5a39b
AC
3577 else
3578 return False;
3579 end if;
3580
758c442c
GD
3581 return Present (Conv)
3582 and then Is_Predefined_File_Name
3583 (Unit_File_Name (Get_Source_Unit (Conv)))
fbf5a39b
AC
3584 and then Is_Intrinsic_Subprogram (Conv);
3585 end Is_Unchecked_Conversion;
3586
3587 -- Start of processing for Has_Excluded_Declaration
3588
996ae0b0
RK
3589 begin
3590 D := First (Decls);
996ae0b0 3591 while Present (D) loop
800621e0
RD
3592 if (Nkind (D) = N_Function_Instantiation
3593 and then not Is_Unchecked_Conversion (D))
3594 or else Nkind_In (D, N_Protected_Type_Declaration,
3595 N_Package_Declaration,
3596 N_Package_Instantiation,
3597 N_Subprogram_Body,
3598 N_Procedure_Instantiation,
3599 N_Task_Type_Declaration)
996ae0b0
RK
3600 then
3601 Cannot_Inline
fbf5a39b 3602 ("cannot inline & (non-allowed declaration)?", D, Subp);
996ae0b0
RK
3603 return True;
3604 end if;
3605
3606 Next (D);
3607 end loop;
3608
3609 return False;
996ae0b0
RK
3610 end Has_Excluded_Declaration;
3611
3612 ----------------------------
3613 -- Has_Excluded_Statement --
3614 ----------------------------
3615
3616 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3617 S : Node_Id;
3618 E : Node_Id;
3619
3620 begin
3621 S := First (Stats);
996ae0b0
RK
3622 while Present (S) loop
3623 Stat_Count := Stat_Count + 1;
3624
800621e0
RD
3625 if Nkind_In (S, N_Abort_Statement,
3626 N_Asynchronous_Select,
3627 N_Conditional_Entry_Call,
3628 N_Delay_Relative_Statement,
3629 N_Delay_Until_Statement,
3630 N_Selective_Accept,
3631 N_Timed_Entry_Call)
996ae0b0
RK
3632 then
3633 Cannot_Inline
fbf5a39b 3634 ("cannot inline & (non-allowed statement)?", S, Subp);
996ae0b0
RK
3635 return True;
3636
3637 elsif Nkind (S) = N_Block_Statement then
3638 if Present (Declarations (S))
3639 and then Has_Excluded_Declaration (Declarations (S))
3640 then
3641 return True;
3642
3643 elsif Present (Handled_Statement_Sequence (S))
3644 and then
3645 (Present
3646 (Exception_Handlers (Handled_Statement_Sequence (S)))
3647 or else
3648 Has_Excluded_Statement
3649 (Statements (Handled_Statement_Sequence (S))))
3650 then
3651 return True;
3652 end if;
3653
3654 elsif Nkind (S) = N_Case_Statement then
3655 E := First (Alternatives (S));
996ae0b0
RK
3656 while Present (E) loop
3657 if Has_Excluded_Statement (Statements (E)) then
3658 return True;
3659 end if;
3660
3661 Next (E);
3662 end loop;
3663
3664 elsif Nkind (S) = N_If_Statement then
3665 if Has_Excluded_Statement (Then_Statements (S)) then
3666 return True;
3667 end if;
3668
3669 if Present (Elsif_Parts (S)) then
3670 E := First (Elsif_Parts (S));
996ae0b0
RK
3671 while Present (E) loop
3672 if Has_Excluded_Statement (Then_Statements (E)) then
3673 return True;
3674 end if;
3675 Next (E);
3676 end loop;
3677 end if;
3678
3679 if Present (Else_Statements (S))
3680 and then Has_Excluded_Statement (Else_Statements (S))
3681 then
3682 return True;
3683 end if;
3684
3685 elsif Nkind (S) = N_Loop_Statement
3686 and then Has_Excluded_Statement (Statements (S))
3687 then
3688 return True;
3e2399ba
AC
3689
3690 elsif Nkind (S) = N_Extended_Return_Statement then
3691 if Has_Excluded_Statement
3692 (Statements (Handled_Statement_Sequence (S)))
3693 or else Present
3694 (Exception_Handlers (Handled_Statement_Sequence (S)))
3695 then
3696 return True;
3697 end if;
996ae0b0
RK
3698 end if;
3699
3700 Next (S);
3701 end loop;
3702
3703 return False;
3704 end Has_Excluded_Statement;
3705
3706 -------------------------------
3707 -- Has_Pending_Instantiation --
3708 -------------------------------
3709
3710 function Has_Pending_Instantiation return Boolean is
ec4867fa 3711 S : Entity_Id;
996ae0b0
RK
3712
3713 begin
ec4867fa 3714 S := Current_Scope;
996ae0b0
RK
3715 while Present (S) loop
3716 if Is_Compilation_Unit (S)
3717 or else Is_Child_Unit (S)
3718 then
3719 return False;
bce79204 3720
996ae0b0
RK
3721 elsif Ekind (S) = E_Package
3722 and then Has_Forward_Instantiation (S)
3723 then
3724 return True;
3725 end if;
3726
3727 S := Scope (S);
3728 end loop;
3729
3730 return False;
3731 end Has_Pending_Instantiation;
3732
c8ef728f
ES
3733 ------------------------
3734 -- Has_Single_Return --
3735 ------------------------
3736
3737 function Has_Single_Return return Boolean is
3738 Return_Statement : Node_Id := Empty;
3739
3740 function Check_Return (N : Node_Id) return Traverse_Result;
3741
3742 ------------------
3743 -- Check_Return --
3744 ------------------
3745
3746 function Check_Return (N : Node_Id) return Traverse_Result is
3747 begin
5d37ba92 3748 if Nkind (N) = N_Simple_Return_Statement then
c8ef728f
ES
3749 if Present (Expression (N))
3750 and then Is_Entity_Name (Expression (N))
3751 then
3752 if No (Return_Statement) then
3753 Return_Statement := N;
3754 return OK;
3755
3756 elsif Chars (Expression (N)) =
3757 Chars (Expression (Return_Statement))
3758 then
3759 return OK;
3760
3761 else
3762 return Abandon;
3763 end if;
3764
3e2399ba
AC
3765 -- A return statement within an extended return is a noop
3766 -- after inlining.
3767
3768 elsif No (Expression (N))
3769 and then Nkind (Parent (Parent (N))) =
3770 N_Extended_Return_Statement
3771 then
3772 return OK;
3773
c8ef728f
ES
3774 else
3775 -- Expression has wrong form
3776
3777 return Abandon;
3778 end if;
3779
3e2399ba
AC
3780 -- We can only inline a build-in-place function if
3781 -- it has a single extended return.
3782
3783 elsif Nkind (N) = N_Extended_Return_Statement then
3784 if No (Return_Statement) then
3785 Return_Statement := N;
3786 return OK;
3787
3788 else
3789 return Abandon;
3790 end if;
3791
c8ef728f
ES
3792 else
3793 return OK;
3794 end if;
3795 end Check_Return;
3796
3797 function Check_All_Returns is new Traverse_Func (Check_Return);
3798
3799 -- Start of processing for Has_Single_Return
3800
3801 begin
3e2399ba
AC
3802 if Check_All_Returns (N) /= OK then
3803 return False;
3804
3805 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3806 return True;
3807
3808 else
3809 return Present (Declarations (N))
3810 and then Present (First (Declarations (N)))
3811 and then Chars (Expression (Return_Statement)) =
3812 Chars (Defining_Identifier (First (Declarations (N))));
3813 end if;
c8ef728f
ES
3814 end Has_Single_Return;
3815
fbf5a39b
AC
3816 --------------------
3817 -- Remove_Pragmas --
3818 --------------------
3819
3820 procedure Remove_Pragmas is
3821 Decl : Node_Id;
3822 Nxt : Node_Id;
3823
3824 begin
3825 Decl := First (Declarations (Body_To_Analyze));
3826 while Present (Decl) loop
3827 Nxt := Next (Decl);
3828
3829 if Nkind (Decl) = N_Pragma
76a69663
ES
3830 and then (Pragma_Name (Decl) = Name_Unreferenced
3831 or else
3832 Pragma_Name (Decl) = Name_Unmodified)
fbf5a39b
AC
3833 then
3834 Remove (Decl);
3835 end if;
3836
3837 Decl := Nxt;
3838 end loop;
3839 end Remove_Pragmas;
3840
e895b435
ES
3841 --------------------------
3842 -- Uses_Secondary_Stack --
3843 --------------------------
3844
3845 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3846 function Check_Call (N : Node_Id) return Traverse_Result;
3847 -- Look for function calls that return an unconstrained type
3848
3849 ----------------
3850 -- Check_Call --
3851 ----------------
3852
3853 function Check_Call (N : Node_Id) return Traverse_Result is
3854 begin
3855 if Nkind (N) = N_Function_Call
3856 and then Is_Entity_Name (Name (N))
3857 and then Is_Composite_Type (Etype (Entity (Name (N))))
3858 and then not Is_Constrained (Etype (Entity (Name (N))))
3859 then
3860 Cannot_Inline
3861 ("cannot inline & (call returns unconstrained type)?",
3862 N, Subp);
3863 return Abandon;
3864 else
3865 return OK;
3866 end if;
3867 end Check_Call;
3868
3869 function Check_Calls is new Traverse_Func (Check_Call);
3870
3871 begin
3872 return Check_Calls (Bod) = Abandon;
3873 end Uses_Secondary_Stack;
3874
996ae0b0
RK
3875 -- Start of processing for Build_Body_To_Inline
3876
3877 begin
8dbd1460
AC
3878 -- Return immediately if done already
3879
996ae0b0
RK
3880 if Nkind (Decl) = N_Subprogram_Declaration
3881 and then Present (Body_To_Inline (Decl))
3882 then
8dbd1460 3883 return;
996ae0b0 3884
08402a6d
ES
3885 -- Functions that return unconstrained composite types require
3886 -- secondary stack handling, and cannot currently be inlined, unless
3887 -- all return statements return a local variable that is the first
3888 -- local declaration in the body.
996ae0b0
RK
3889
3890 elsif Ekind (Subp) = E_Function
3891 and then not Is_Scalar_Type (Etype (Subp))
3892 and then not Is_Access_Type (Etype (Subp))
3893 and then not Is_Constrained (Etype (Subp))
3894 then
08402a6d
ES
3895 if not Has_Single_Return then
3896 Cannot_Inline
3897 ("cannot inline & (unconstrained return type)?", N, Subp);
3898 return;
3899 end if;
3900
3901 -- Ditto for functions that return controlled types, where controlled
3902 -- actions interfere in complex ways with inlining.
2820d220
AC
3903
3904 elsif Ekind (Subp) = E_Function
048e5cef 3905 and then Needs_Finalization (Etype (Subp))
2820d220
AC
3906 then
3907 Cannot_Inline
3908 ("cannot inline & (controlled return type)?", N, Subp);
3909 return;
996ae0b0
RK
3910 end if;
3911
d05ef0ab
AC
3912 if Present (Declarations (N))
3913 and then Has_Excluded_Declaration (Declarations (N))
996ae0b0 3914 then
d05ef0ab 3915 return;
996ae0b0
RK
3916 end if;
3917
3918 if Present (Handled_Statement_Sequence (N)) then
fbf5a39b
AC
3919 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3920 Cannot_Inline
3921 ("cannot inline& (exception handler)?",
3922 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3923 Subp);
d05ef0ab 3924 return;
996ae0b0
RK
3925 elsif
3926 Has_Excluded_Statement
3927 (Statements (Handled_Statement_Sequence (N)))
3928 then
d05ef0ab 3929 return;
996ae0b0
RK
3930 end if;
3931 end if;
3932
3933 -- We do not inline a subprogram that is too large, unless it is
3934 -- marked Inline_Always. This pragma does not suppress the other
3935 -- checks on inlining (forbidden declarations, handlers, etc).
3936
3937 if Stat_Count > Max_Size
800621e0 3938 and then not Has_Pragma_Inline_Always (Subp)
996ae0b0 3939 then
fbf5a39b 3940 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
d05ef0ab 3941 return;
996ae0b0
RK
3942 end if;
3943
3944 if Has_Pending_Instantiation then
3945 Cannot_Inline
fbf5a39b
AC
3946 ("cannot inline& (forward instance within enclosing body)?",
3947 N, Subp);
d05ef0ab
AC
3948 return;
3949 end if;
3950
3951 -- Within an instance, the body to inline must be treated as a nested
3952 -- generic, so that the proper global references are preserved.
3953
ce4e59c4
ST
3954 -- Note that we do not do this at the library level, because it is not
3955 -- needed, and furthermore this causes trouble if front end inlining
3956 -- is activated (-gnatN).
3957
3958 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
d05ef0ab
AC
3959 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3960 Original_Body := Copy_Generic_Node (N, Empty, True);
3961 else
3962 Original_Body := Copy_Separate_Tree (N);
996ae0b0
RK
3963 end if;
3964
d05ef0ab
AC
3965 -- We need to capture references to the formals in order to substitute
3966 -- the actuals at the point of inlining, i.e. instantiation. To treat
3967 -- the formals as globals to the body to inline, we nest it within
3968 -- a dummy parameterless subprogram, declared within the real one.
24105bab
AC
3969 -- To avoid generating an internal name (which is never public, and
3970 -- which affects serial numbers of other generated names), we use
3971 -- an internal symbol that cannot conflict with user declarations.
d05ef0ab
AC
3972
3973 Set_Parameter_Specifications (Specification (Original_Body), No_List);
24105bab
AC
3974 Set_Defining_Unit_Name
3975 (Specification (Original_Body),
3976 Make_Defining_Identifier (Sloc (N), Name_uParent));
d05ef0ab
AC
3977 Set_Corresponding_Spec (Original_Body, Empty);
3978
996ae0b0
RK
3979 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3980
3981 -- Set return type of function, which is also global and does not need
3982 -- to be resolved.
3983
3984 if Ekind (Subp) = E_Function then
41251c60 3985 Set_Result_Definition (Specification (Body_To_Analyze),
996ae0b0
RK
3986 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3987 end if;
3988
3989 if No (Declarations (N)) then
3990 Set_Declarations (N, New_List (Body_To_Analyze));
3991 else
3992 Append (Body_To_Analyze, Declarations (N));
3993 end if;
3994
3995 Expander_Mode_Save_And_Set (False);
fbf5a39b 3996 Remove_Pragmas;
996ae0b0
RK
3997
3998 Analyze (Body_To_Analyze);
0a36105d 3999 Push_Scope (Defining_Entity (Body_To_Analyze));
996ae0b0
RK
4000 Save_Global_References (Original_Body);
4001 End_Scope;
4002 Remove (Body_To_Analyze);
4003
4004 Expander_Mode_Restore;
d05ef0ab 4005
ce4e59c4
ST
4006 -- Restore environment if previously saved
4007
4008 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
d05ef0ab
AC
4009 Restore_Env;
4010 end if;
e895b435
ES
4011
4012 -- If secondary stk used there is no point in inlining. We have
4013 -- already issued the warning in this case, so nothing to do.
4014
4015 if Uses_Secondary_Stack (Body_To_Analyze) then
4016 return;
4017 end if;
4018
4019 Set_Body_To_Inline (Decl, Original_Body);
4020 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
4021 Set_Is_Inlined (Subp);
996ae0b0
RK
4022 end Build_Body_To_Inline;
4023
fbf5a39b
AC
4024 -------------------
4025 -- Cannot_Inline --
4026 -------------------
4027
4028 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
4029 begin
676e8420
AC
4030 -- Do not emit warning if this is a predefined unit which is not the
4031 -- main unit. With validity checks enabled, some predefined subprograms
4032 -- may contain nested subprograms and become ineligible for inlining.
fbf5a39b
AC
4033
4034 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4035 and then not In_Extended_Main_Source_Unit (Subp)
4036 then
4037 null;
4038
800621e0 4039 elsif Has_Pragma_Inline_Always (Subp) then
e895b435
ES
4040
4041 -- Remove last character (question mark) to make this into an error,
4042 -- because the Inline_Always pragma cannot be obeyed.
4043
ec4867fa 4044 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
fbf5a39b
AC
4045
4046 elsif Ineffective_Inline_Warnings then
4047 Error_Msg_NE (Msg, N, Subp);
4048 end if;
4049 end Cannot_Inline;
4050
996ae0b0
RK
4051 -----------------------
4052 -- Check_Conformance --
4053 -----------------------
4054
4055 procedure Check_Conformance
41251c60
JM
4056 (New_Id : Entity_Id;
4057 Old_Id : Entity_Id;
4058 Ctype : Conformance_Type;
4059 Errmsg : Boolean;
4060 Conforms : out Boolean;
4061 Err_Loc : Node_Id := Empty;
4062 Get_Inst : Boolean := False;
4063 Skip_Controlling_Formals : Boolean := False)
996ae0b0 4064 is
996ae0b0 4065 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
c27f2f15
RD
4066 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4067 -- If Errmsg is True, then processing continues to post an error message
4068 -- for conformance error on given node. Two messages are output. The
4069 -- first message points to the previous declaration with a general "no
4070 -- conformance" message. The second is the detailed reason, supplied as
4071 -- Msg. The parameter N provide information for a possible & insertion
4072 -- in the message, and also provides the location for posting the
4073 -- message in the absence of a specified Err_Loc location.
996ae0b0
RK
4074
4075 -----------------------
4076 -- Conformance_Error --
4077 -----------------------
4078
4079 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4080 Enode : Node_Id;
4081
4082 begin
4083 Conforms := False;
4084
4085 if Errmsg then
4086 if No (Err_Loc) then
4087 Enode := N;
4088 else
4089 Enode := Err_Loc;
4090 end if;
4091
4092 Error_Msg_Sloc := Sloc (Old_Id);
4093
4094 case Ctype is
4095 when Type_Conformant =>
483c78cb 4096 Error_Msg_N -- CODEFIX
996ae0b0
RK
4097 ("not type conformant with declaration#!", Enode);
4098
4099 when Mode_Conformant =>
19590d70 4100 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4101 Error_Msg_N
19590d70
GD
4102 ("not mode conformant with operation inherited#!",
4103 Enode);
4104 else
ed2233dc 4105 Error_Msg_N
19590d70
GD
4106 ("not mode conformant with declaration#!", Enode);
4107 end if;
996ae0b0
RK
4108
4109 when Subtype_Conformant =>
19590d70 4110 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
ed2233dc 4111 Error_Msg_N
19590d70
GD
4112 ("not subtype conformant with operation inherited#!",
4113 Enode);
4114 else
ed2233dc 4115 Error_Msg_N
19590d70
GD
4116 ("not subtype conformant with declaration#!", Enode);
4117 end if;
996ae0b0
RK
4118
4119 when Fully_Conformant =>
19590d70 4120 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
483c78cb 4121 Error_Msg_N -- CODEFIX
19590d70
GD
4122 ("not fully conformant with operation inherited#!",
4123 Enode);
4124 else
483c78cb 4125 Error_Msg_N -- CODEFIX
19590d70
GD
4126 ("not fully conformant with declaration#!", Enode);
4127 end if;
996ae0b0
RK
4128 end case;
4129
4130 Error_Msg_NE (Msg, Enode, N);
4131 end if;
4132 end Conformance_Error;
4133
ec4867fa
ES
4134 -- Local Variables
4135
4136 Old_Type : constant Entity_Id := Etype (Old_Id);
4137 New_Type : constant Entity_Id := Etype (New_Id);
4138 Old_Formal : Entity_Id;
4139 New_Formal : Entity_Id;
4140 Access_Types_Match : Boolean;
4141 Old_Formal_Base : Entity_Id;
4142 New_Formal_Base : Entity_Id;
4143
996ae0b0
RK
4144 -- Start of processing for Check_Conformance
4145
4146 begin
4147 Conforms := True;
4148
82c80734
RD
4149 -- We need a special case for operators, since they don't appear
4150 -- explicitly.
996ae0b0
RK
4151
4152 if Ctype = Type_Conformant then
4153 if Ekind (New_Id) = E_Operator
4154 and then Operator_Matches_Spec (New_Id, Old_Id)
4155 then
4156 return;
4157 end if;
4158 end if;
4159
4160 -- If both are functions/operators, check return types conform
4161
4162 if Old_Type /= Standard_Void_Type
4163 and then New_Type /= Standard_Void_Type
4164 then
fceeaab6
ES
4165
4166 -- If we are checking interface conformance we omit controlling
4167 -- arguments and result, because we are only checking the conformance
4168 -- of the remaining parameters.
4169
4170 if Has_Controlling_Result (Old_Id)
4171 and then Has_Controlling_Result (New_Id)
4172 and then Skip_Controlling_Formals
4173 then
4174 null;
4175
4176 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5d37ba92 4177 Conformance_Error ("\return type does not match!", New_Id);
996ae0b0
RK
4178 return;
4179 end if;
4180
41251c60 4181 -- Ada 2005 (AI-231): In case of anonymous access types check the
0a36105d 4182 -- null-exclusion and access-to-constant attributes match.
41251c60 4183
0791fbe9 4184 if Ada_Version >= Ada_2005
41251c60
JM
4185 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4186 and then
4187 (Can_Never_Be_Null (Old_Type)
4188 /= Can_Never_Be_Null (New_Type)
4189 or else Is_Access_Constant (Etype (Old_Type))
4190 /= Is_Access_Constant (Etype (New_Type)))
4191 then
5d37ba92 4192 Conformance_Error ("\return type does not match!", New_Id);
41251c60
JM
4193 return;
4194 end if;
4195
996ae0b0
RK
4196 -- If either is a function/operator and the other isn't, error
4197
4198 elsif Old_Type /= Standard_Void_Type
4199 or else New_Type /= Standard_Void_Type
4200 then
5d37ba92 4201 Conformance_Error ("\functions can only match functions!", New_Id);
996ae0b0
RK
4202 return;
4203 end if;
4204
0a36105d 4205 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
996ae0b0
RK
4206 -- If this is a renaming as body, refine error message to indicate that
4207 -- the conflict is with the original declaration. If the entity is not
4208 -- frozen, the conventions don't have to match, the one of the renamed
4209 -- entity is inherited.
4210
4211 if Ctype >= Subtype_Conformant then
996ae0b0
RK
4212 if Convention (Old_Id) /= Convention (New_Id) then
4213
4214 if not Is_Frozen (New_Id) then
4215 null;
4216
4217 elsif Present (Err_Loc)
4218 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4219 and then Present (Corresponding_Spec (Err_Loc))
4220 then
4221 Error_Msg_Name_1 := Chars (New_Id);
4222 Error_Msg_Name_2 :=
4223 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5d37ba92 4224 Conformance_Error ("\prior declaration for% has convention %!");
996ae0b0
RK
4225
4226 else
5d37ba92 4227 Conformance_Error ("\calling conventions do not match!");
996ae0b0
RK
4228 end if;
4229
4230 return;
4231
4232 elsif Is_Formal_Subprogram (Old_Id)
4233 or else Is_Formal_Subprogram (New_Id)
4234 then
5d37ba92 4235 Conformance_Error ("\formal subprograms not allowed!");
996ae0b0
RK
4236 return;
4237 end if;
4238 end if;
4239
4240 -- Deal with parameters
4241
4242 -- Note: we use the entity information, rather than going directly
4243 -- to the specification in the tree. This is not only simpler, but
4244 -- absolutely necessary for some cases of conformance tests between
4245 -- operators, where the declaration tree simply does not exist!
4246
4247 Old_Formal := First_Formal (Old_Id);
4248 New_Formal := First_Formal (New_Id);
996ae0b0 4249 while Present (Old_Formal) and then Present (New_Formal) loop
41251c60
JM
4250 if Is_Controlling_Formal (Old_Formal)
4251 and then Is_Controlling_Formal (New_Formal)
4252 and then Skip_Controlling_Formals
4253 then
a2dc5812
AC
4254 -- The controlling formals will have different types when
4255 -- comparing an interface operation with its match, but both
4256 -- or neither must be access parameters.
4257
4258 if Is_Access_Type (Etype (Old_Formal))
4259 =
4260 Is_Access_Type (Etype (New_Formal))
4261 then
4262 goto Skip_Controlling_Formal;
4263 else
4264 Conformance_Error
4265 ("\access parameter does not match!", New_Formal);
4266 end if;
41251c60
JM
4267 end if;
4268
fbf5a39b
AC
4269 if Ctype = Fully_Conformant then
4270
4271 -- Names must match. Error message is more accurate if we do
4272 -- this before checking that the types of the formals match.
4273
4274 if Chars (Old_Formal) /= Chars (New_Formal) then
5d37ba92 4275 Conformance_Error ("\name & does not match!", New_Formal);
fbf5a39b
AC
4276
4277 -- Set error posted flag on new formal as well to stop
4278 -- junk cascaded messages in some cases.
4279
4280 Set_Error_Posted (New_Formal);
4281 return;
4282 end if;
40b93859
RD
4283
4284 -- Null exclusion must match
4285
4286 if Null_Exclusion_Present (Parent (Old_Formal))
4287 /=
4288 Null_Exclusion_Present (Parent (New_Formal))
4289 then
4290 -- Only give error if both come from source. This should be
4291 -- investigated some time, since it should not be needed ???
4292
4293 if Comes_From_Source (Old_Formal)
4294 and then
4295 Comes_From_Source (New_Formal)
4296 then
4297 Conformance_Error
4298 ("\null exclusion for & does not match", New_Formal);
4299
4300 -- Mark error posted on the new formal to avoid duplicated
4301 -- complaint about types not matching.
4302
4303 Set_Error_Posted (New_Formal);
4304 end if;
4305 end if;
fbf5a39b 4306 end if;
996ae0b0 4307
ec4867fa
ES
4308 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4309 -- case occurs whenever a subprogram is being renamed and one of its
4310 -- parameters imposes a null exclusion. For example:
4311
4312 -- type T is null record;
4313 -- type Acc_T is access T;
4314 -- subtype Acc_T_Sub is Acc_T;
4315
4316 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4317 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4318 -- renames P;
4319
4320 Old_Formal_Base := Etype (Old_Formal);
4321 New_Formal_Base := Etype (New_Formal);
4322
4323 if Get_Inst then
4324 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4325 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4326 end if;
4327
0791fbe9 4328 Access_Types_Match := Ada_Version >= Ada_2005
ec4867fa
ES
4329
4330 -- Ensure that this rule is only applied when New_Id is a
5d37ba92 4331 -- renaming of Old_Id.
ec4867fa 4332
5d37ba92
ES
4333 and then Nkind (Parent (Parent (New_Id))) =
4334 N_Subprogram_Renaming_Declaration
ec4867fa
ES
4335 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4336 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4337 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4338
4339 -- Now handle the allowed access-type case
4340
4341 and then Is_Access_Type (Old_Formal_Base)
4342 and then Is_Access_Type (New_Formal_Base)
5d37ba92
ES
4343
4344 -- The type kinds must match. The only exception occurs with
4345 -- multiple generics of the form:
4346
4347 -- generic generic
4348 -- type F is private; type A is private;
4349 -- type F_Ptr is access F; type A_Ptr is access A;
4350 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4351 -- package F_Pack is ... package A_Pack is
4352 -- package F_Inst is
4353 -- new F_Pack (A, A_Ptr, A_P);
4354
4355 -- When checking for conformance between the parameters of A_P
4356 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4357 -- because the compiler has transformed A_Ptr into a subtype of
4358 -- F_Ptr. We catch this case in the code below.
4359
4360 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4361 or else
4362 (Is_Generic_Type (Old_Formal_Base)
4363 and then Is_Generic_Type (New_Formal_Base)
4364 and then Is_Internal (New_Formal_Base)
4365 and then Etype (Etype (New_Formal_Base)) =
4366 Old_Formal_Base))
ec4867fa
ES
4367 and then Directly_Designated_Type (Old_Formal_Base) =
4368 Directly_Designated_Type (New_Formal_Base)
4369 and then ((Is_Itype (Old_Formal_Base)
4370 and then Can_Never_Be_Null (Old_Formal_Base))
4371 or else
4372 (Is_Itype (New_Formal_Base)
4373 and then Can_Never_Be_Null (New_Formal_Base)));
4374
996ae0b0
RK
4375 -- Types must always match. In the visible part of an instance,
4376 -- usual overloading rules for dispatching operations apply, and
4377 -- we check base types (not the actual subtypes).
4378
4379 if In_Instance_Visible_Part
4380 and then Is_Dispatching_Operation (New_Id)
4381 then
4382 if not Conforming_Types
ec4867fa
ES
4383 (T1 => Base_Type (Etype (Old_Formal)),
4384 T2 => Base_Type (Etype (New_Formal)),
4385 Ctype => Ctype,
4386 Get_Inst => Get_Inst)
4387 and then not Access_Types_Match
996ae0b0 4388 then
5d37ba92 4389 Conformance_Error ("\type of & does not match!", New_Formal);
996ae0b0
RK
4390 return;
4391 end if;
4392
4393 elsif not Conforming_Types
5d37ba92
ES
4394 (T1 => Old_Formal_Base,
4395 T2 => New_Formal_Base,
ec4867fa
ES
4396 Ctype => Ctype,
4397 Get_Inst => Get_Inst)
4398 and then not Access_Types_Match
996ae0b0 4399 then
c27f2f15
RD
4400 -- Don't give error message if old type is Any_Type. This test
4401 -- avoids some cascaded errors, e.g. in case of a bad spec.
4402
4403 if Errmsg and then Old_Formal_Base = Any_Type then
4404 Conforms := False;
4405 else
4406 Conformance_Error ("\type of & does not match!", New_Formal);
4407 end if;
4408
996ae0b0
RK
4409 return;
4410 end if;
4411
4412 -- For mode conformance, mode must match
4413
5d37ba92
ES
4414 if Ctype >= Mode_Conformant then
4415 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
dd54644b
JM
4416 if not Ekind_In (New_Id, E_Function, E_Procedure)
4417 or else not Is_Primitive_Wrapper (New_Id)
4418 then
4419 Conformance_Error ("\mode of & does not match!", New_Formal);
c199ccf7 4420
dd54644b
JM
4421 else
4422 declare
c199ccf7 4423 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
dd54644b
JM
4424 begin
4425 if Is_Protected_Type
4426 (Corresponding_Concurrent_Type (T))
4427 then
4428 Error_Msg_PT (T, New_Id);
4429 else
4430 Conformance_Error
4431 ("\mode of & does not match!", New_Formal);
4432 end if;
4433 end;
4434 end if;
4435
5d37ba92
ES
4436 return;
4437
4438 -- Part of mode conformance for access types is having the same
4439 -- constant modifier.
4440
4441 elsif Access_Types_Match
4442 and then Is_Access_Constant (Old_Formal_Base) /=
4443 Is_Access_Constant (New_Formal_Base)
4444 then
4445 Conformance_Error
4446 ("\constant modifier does not match!", New_Formal);
4447 return;
4448 end if;
996ae0b0
RK
4449 end if;
4450
0a36105d 4451 if Ctype >= Subtype_Conformant then
996ae0b0 4452
0a36105d
JM
4453 -- Ada 2005 (AI-231): In case of anonymous access types check
4454 -- the null-exclusion and access-to-constant attributes must
c7b9d548
AC
4455 -- match. For null exclusion, we test the types rather than the
4456 -- formals themselves, since the attribute is only set reliably
4457 -- on the formals in the Ada 95 case, and we exclude the case
4458 -- where Old_Formal is marked as controlling, to avoid errors
4459 -- when matching completing bodies with dispatching declarations
4460 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
996ae0b0 4461
0791fbe9 4462 if Ada_Version >= Ada_2005
0a36105d
JM
4463 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4464 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4465 and then
c7b9d548
AC
4466 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4467 Can_Never_Be_Null (Etype (New_Formal))
4468 and then
4469 not Is_Controlling_Formal (Old_Formal))
0a36105d
JM
4470 or else
4471 Is_Access_Constant (Etype (Old_Formal)) /=
4472 Is_Access_Constant (Etype (New_Formal)))
40b93859
RD
4473
4474 -- Do not complain if error already posted on New_Formal. This
4475 -- avoids some redundant error messages.
4476
4477 and then not Error_Posted (New_Formal)
0a36105d
JM
4478 then
4479 -- It is allowed to omit the null-exclusion in case of stream
4480 -- attribute subprograms. We recognize stream subprograms
4481 -- through their TSS-generated suffix.
996ae0b0 4482
0a36105d
JM
4483 declare
4484 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4485 begin
4486 if TSS_Name /= TSS_Stream_Read
4487 and then TSS_Name /= TSS_Stream_Write
4488 and then TSS_Name /= TSS_Stream_Input
4489 and then TSS_Name /= TSS_Stream_Output
4490 then
4491 Conformance_Error
5d37ba92 4492 ("\type of & does not match!", New_Formal);
0a36105d
JM
4493 return;
4494 end if;
4495 end;
4496 end if;
4497 end if;
41251c60 4498
0a36105d 4499 -- Full conformance checks
41251c60 4500
0a36105d 4501 if Ctype = Fully_Conformant then
e660dbf7 4502
0a36105d 4503 -- We have checked already that names match
e660dbf7 4504
0a36105d 4505 if Parameter_Mode (Old_Formal) = E_In_Parameter then
41251c60
JM
4506
4507 -- Check default expressions for in parameters
4508
996ae0b0
RK
4509 declare
4510 NewD : constant Boolean :=
4511 Present (Default_Value (New_Formal));
4512 OldD : constant Boolean :=
4513 Present (Default_Value (Old_Formal));
4514 begin
4515 if NewD or OldD then
4516
82c80734
RD
4517 -- The old default value has been analyzed because the
4518 -- current full declaration will have frozen everything
0a36105d
JM
4519 -- before. The new default value has not been analyzed,
4520 -- so analyze it now before we check for conformance.
996ae0b0
RK
4521
4522 if NewD then
0a36105d 4523 Push_Scope (New_Id);
21d27997 4524 Preanalyze_Spec_Expression
fbf5a39b 4525 (Default_Value (New_Formal), Etype (New_Formal));
996ae0b0
RK
4526 End_Scope;
4527 end if;
4528
4529 if not (NewD and OldD)
4530 or else not Fully_Conformant_Expressions
4531 (Default_Value (Old_Formal),
4532 Default_Value (New_Formal))
4533 then
4534 Conformance_Error
5d37ba92 4535 ("\default expression for & does not match!",
996ae0b0
RK
4536 New_Formal);
4537 return;
4538 end if;
4539 end if;
4540 end;
4541 end if;
4542 end if;
4543
4544 -- A couple of special checks for Ada 83 mode. These checks are
0a36105d 4545 -- skipped if either entity is an operator in package Standard,
996ae0b0
RK
4546 -- or if either old or new instance is not from the source program.
4547
0ab80019 4548 if Ada_Version = Ada_83
996ae0b0
RK
4549 and then Sloc (Old_Id) > Standard_Location
4550 and then Sloc (New_Id) > Standard_Location
4551 and then Comes_From_Source (Old_Id)
4552 and then Comes_From_Source (New_Id)
4553 then
4554 declare
4555 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
4556 New_Param : constant Node_Id := Declaration_Node (New_Formal);
4557
4558 begin
4559 -- Explicit IN must be present or absent in both cases. This
4560 -- test is required only in the full conformance case.
4561
4562 if In_Present (Old_Param) /= In_Present (New_Param)
4563 and then Ctype = Fully_Conformant
4564 then
4565 Conformance_Error
5d37ba92 4566 ("\(Ada 83) IN must appear in both declarations",
996ae0b0
RK
4567 New_Formal);
4568 return;
4569 end if;
4570
4571 -- Grouping (use of comma in param lists) must be the same
4572 -- This is where we catch a misconformance like:
4573
0a36105d 4574 -- A, B : Integer
996ae0b0
RK
4575 -- A : Integer; B : Integer
4576
4577 -- which are represented identically in the tree except
4578 -- for the setting of the flags More_Ids and Prev_Ids.
4579
4580 if More_Ids (Old_Param) /= More_Ids (New_Param)
4581 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
4582 then
4583 Conformance_Error
5d37ba92 4584 ("\grouping of & does not match!", New_Formal);
996ae0b0
RK
4585 return;
4586 end if;
4587 end;
4588 end if;
4589
41251c60
JM
4590 -- This label is required when skipping controlling formals
4591
4592 <<Skip_Controlling_Formal>>
4593
996ae0b0
RK
4594 Next_Formal (Old_Formal);
4595 Next_Formal (New_Formal);
4596 end loop;
4597
4598 if Present (Old_Formal) then
5d37ba92 4599 Conformance_Error ("\too few parameters!");
996ae0b0
RK
4600 return;
4601
4602 elsif Present (New_Formal) then
5d37ba92 4603 Conformance_Error ("\too many parameters!", New_Formal);
996ae0b0
RK
4604 return;
4605 end if;
996ae0b0
RK
4606 end Check_Conformance;
4607
ec4867fa
ES
4608 -----------------------
4609 -- Check_Conventions --
4610 -----------------------
4611
4612 procedure Check_Conventions (Typ : Entity_Id) is
ce2b6ba5 4613 Ifaces_List : Elist_Id;
0a36105d 4614
ce2b6ba5 4615 procedure Check_Convention (Op : Entity_Id);
0a36105d
JM
4616 -- Verify that the convention of inherited dispatching operation Op is
4617 -- consistent among all subprograms it overrides. In order to minimize
4618 -- the search, Search_From is utilized to designate a specific point in
4619 -- the list rather than iterating over the whole list once more.
ec4867fa
ES
4620
4621 ----------------------
4622 -- Check_Convention --
4623 ----------------------
4624
ce2b6ba5
JM
4625 procedure Check_Convention (Op : Entity_Id) is
4626 Iface_Elmt : Elmt_Id;
4627 Iface_Prim_Elmt : Elmt_Id;
4628 Iface_Prim : Entity_Id;
ec4867fa 4629
ce2b6ba5
JM
4630 begin
4631 Iface_Elmt := First_Elmt (Ifaces_List);
4632 while Present (Iface_Elmt) loop
4633 Iface_Prim_Elmt :=
4634 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
4635 while Present (Iface_Prim_Elmt) loop
4636 Iface_Prim := Node (Iface_Prim_Elmt);
4637
4638 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4639 and then Convention (Iface_Prim) /= Convention (Op)
4640 then
ed2233dc 4641 Error_Msg_N
ce2b6ba5 4642 ("inconsistent conventions in primitive operations", Typ);
ec4867fa 4643
ce2b6ba5
JM
4644 Error_Msg_Name_1 := Chars (Op);
4645 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4646 Error_Msg_Sloc := Sloc (Op);
ec4867fa 4647
7a963087 4648 if Comes_From_Source (Op) or else No (Alias (Op)) then
038140ed 4649 if not Present (Overridden_Operation (Op)) then
ed2233dc 4650 Error_Msg_N ("\\primitive % defined #", Typ);
ce2b6ba5 4651 else
ed2233dc 4652 Error_Msg_N
19d846a0
RD
4653 ("\\overriding operation % with " &
4654 "convention % defined #", Typ);
ce2b6ba5 4655 end if;
ec4867fa 4656
ce2b6ba5
JM
4657 else pragma Assert (Present (Alias (Op)));
4658 Error_Msg_Sloc := Sloc (Alias (Op));
ed2233dc 4659 Error_Msg_N
19d846a0
RD
4660 ("\\inherited operation % with " &
4661 "convention % defined #", Typ);
ce2b6ba5 4662 end if;
ec4867fa 4663
ce2b6ba5
JM
4664 Error_Msg_Name_1 := Chars (Op);
4665 Error_Msg_Name_2 :=
4666 Get_Convention_Name (Convention (Iface_Prim));
4667 Error_Msg_Sloc := Sloc (Iface_Prim);
ed2233dc 4668 Error_Msg_N
19d846a0
RD
4669 ("\\overridden operation % with " &
4670 "convention % defined #", Typ);
ec4867fa 4671
ce2b6ba5 4672 -- Avoid cascading errors
ec4867fa 4673
ce2b6ba5
JM
4674 return;
4675 end if;
ec4867fa 4676
ce2b6ba5
JM
4677 Next_Elmt (Iface_Prim_Elmt);
4678 end loop;
ec4867fa 4679
ce2b6ba5 4680 Next_Elmt (Iface_Elmt);
ec4867fa
ES
4681 end loop;
4682 end Check_Convention;
4683
4684 -- Local variables
4685
4686 Prim_Op : Entity_Id;
4687 Prim_Op_Elmt : Elmt_Id;
4688
4689 -- Start of processing for Check_Conventions
4690
4691 begin
ce2b6ba5
JM
4692 if not Has_Interfaces (Typ) then
4693 return;
4694 end if;
4695
4696 Collect_Interfaces (Typ, Ifaces_List);
4697
0a36105d
JM
4698 -- The algorithm checks every overriding dispatching operation against
4699 -- all the corresponding overridden dispatching operations, detecting
f3d57416 4700 -- differences in conventions.
ec4867fa
ES
4701
4702 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4703 while Present (Prim_Op_Elmt) loop
4704 Prim_Op := Node (Prim_Op_Elmt);
4705
0a36105d 4706 -- A small optimization: skip the predefined dispatching operations
ce2b6ba5 4707 -- since they always have the same convention.
ec4867fa 4708
ce2b6ba5
JM
4709 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4710 Check_Convention (Prim_Op);
ec4867fa
ES
4711 end if;
4712
4713 Next_Elmt (Prim_Op_Elmt);
4714 end loop;
4715 end Check_Conventions;
4716
996ae0b0
RK
4717 ------------------------------
4718 -- Check_Delayed_Subprogram --
4719 ------------------------------
4720
4721 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4722 F : Entity_Id;
4723
4724 procedure Possible_Freeze (T : Entity_Id);
4725 -- T is the type of either a formal parameter or of the return type.
4726 -- If T is not yet frozen and needs a delayed freeze, then the
4a13695c
AC
4727 -- subprogram itself must be delayed. If T is the limited view of an
4728 -- incomplete type the subprogram must be frozen as well, because
4729 -- T may depend on local types that have not been frozen yet.
996ae0b0 4730
82c80734
RD
4731 ---------------------
4732 -- Possible_Freeze --
4733 ---------------------
4734
996ae0b0
RK
4735 procedure Possible_Freeze (T : Entity_Id) is
4736 begin
4a13695c 4737 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
996ae0b0
RK
4738 Set_Has_Delayed_Freeze (Designator);
4739
4740 elsif Is_Access_Type (T)
4741 and then Has_Delayed_Freeze (Designated_Type (T))
4742 and then not Is_Frozen (Designated_Type (T))
4743 then
4744 Set_Has_Delayed_Freeze (Designator);
e358346d 4745
4a13695c 4746 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
e358346d 4747 Set_Has_Delayed_Freeze (Designator);
406935b6 4748
9aff36e9
RD
4749 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
4750 -- of a subprogram or entry declaration.
406935b6
AC
4751
4752 elsif Ekind (T) = E_Incomplete_Type
4753 and then Ada_Version >= Ada_2012
4754 then
4755 Set_Has_Delayed_Freeze (Designator);
996ae0b0 4756 end if;
4a13695c 4757
996ae0b0
RK
4758 end Possible_Freeze;
4759
4760 -- Start of processing for Check_Delayed_Subprogram
4761
4762 begin
76e3504f
AC
4763 -- All subprograms, including abstract subprograms, may need a freeze
4764 -- node if some formal type or the return type needs one.
996ae0b0 4765
76e3504f
AC
4766 Possible_Freeze (Etype (Designator));
4767 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
996ae0b0 4768
76e3504f
AC
4769 -- Need delayed freeze if any of the formal types themselves need
4770 -- a delayed freeze and are not yet frozen.
996ae0b0 4771
76e3504f
AC
4772 F := First_Formal (Designator);
4773 while Present (F) loop
4774 Possible_Freeze (Etype (F));
4775 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4776 Next_Formal (F);
4777 end loop;
996ae0b0
RK
4778
4779 -- Mark functions that return by reference. Note that it cannot be
4780 -- done for delayed_freeze subprograms because the underlying
4781 -- returned type may not be known yet (for private types)
4782
4783 if not Has_Delayed_Freeze (Designator)
4784 and then Expander_Active
4785 then
4786 declare
4787 Typ : constant Entity_Id := Etype (Designator);
4788 Utyp : constant Entity_Id := Underlying_Type (Typ);
9694c039 4789
996ae0b0 4790 begin
40f07b4b 4791 if Is_Immutably_Limited_Type (Typ) then
996ae0b0 4792 Set_Returns_By_Ref (Designator);
9694c039 4793
048e5cef 4794 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
996ae0b0
RK
4795 Set_Returns_By_Ref (Designator);
4796 end if;
4797 end;
4798 end if;
4799 end Check_Delayed_Subprogram;
4800
4801 ------------------------------------
4802 -- Check_Discriminant_Conformance --
4803 ------------------------------------
4804
4805 procedure Check_Discriminant_Conformance
4806 (N : Node_Id;
4807 Prev : Entity_Id;
4808 Prev_Loc : Node_Id)
4809 is
4810 Old_Discr : Entity_Id := First_Discriminant (Prev);
4811 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4812 New_Discr_Id : Entity_Id;
4813 New_Discr_Type : Entity_Id;
4814
4815 procedure Conformance_Error (Msg : String; N : Node_Id);
82c80734
RD
4816 -- Post error message for conformance error on given node. Two messages
4817 -- are output. The first points to the previous declaration with a
4818 -- general "no conformance" message. The second is the detailed reason,
4819 -- supplied as Msg. The parameter N provide information for a possible
4820 -- & insertion in the message.
996ae0b0
RK
4821
4822 -----------------------
4823 -- Conformance_Error --
4824 -----------------------
4825
4826 procedure Conformance_Error (Msg : String; N : Node_Id) is
4827 begin
4828 Error_Msg_Sloc := Sloc (Prev_Loc);
483c78cb
RD
4829 Error_Msg_N -- CODEFIX
4830 ("not fully conformant with declaration#!", N);
996ae0b0
RK
4831 Error_Msg_NE (Msg, N, N);
4832 end Conformance_Error;
4833
4834 -- Start of processing for Check_Discriminant_Conformance
4835
4836 begin
4837 while Present (Old_Discr) and then Present (New_Discr) loop
4838
4839 New_Discr_Id := Defining_Identifier (New_Discr);
4840
82c80734
RD
4841 -- The subtype mark of the discriminant on the full type has not
4842 -- been analyzed so we do it here. For an access discriminant a new
4843 -- type is created.
996ae0b0
RK
4844
4845 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4846 New_Discr_Type :=
4847 Access_Definition (N, Discriminant_Type (New_Discr));
4848
4849 else
4850 Analyze (Discriminant_Type (New_Discr));
4851 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
e50e1c5e
AC
4852
4853 -- Ada 2005: if the discriminant definition carries a null
4854 -- exclusion, create an itype to check properly for consistency
4855 -- with partial declaration.
4856
4857 if Is_Access_Type (New_Discr_Type)
4858 and then Null_Exclusion_Present (New_Discr)
4859 then
4860 New_Discr_Type :=
4861 Create_Null_Excluding_Itype
4862 (T => New_Discr_Type,
4863 Related_Nod => New_Discr,
4864 Scope_Id => Current_Scope);
4865 end if;
996ae0b0
RK
4866 end if;
4867
4868 if not Conforming_Types
4869 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4870 then
4871 Conformance_Error ("type of & does not match!", New_Discr_Id);
4872 return;
fbf5a39b 4873 else
82c80734
RD
4874 -- Treat the new discriminant as an occurrence of the old one,
4875 -- for navigation purposes, and fill in some semantic
fbf5a39b
AC
4876 -- information, for completeness.
4877
4878 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4879 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4880 Set_Scope (New_Discr_Id, Scope (Old_Discr));
996ae0b0
RK
4881 end if;
4882
4883 -- Names must match
4884
4885 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4886 Conformance_Error ("name & does not match!", New_Discr_Id);
4887 return;
4888 end if;
4889
4890 -- Default expressions must match
4891
4892 declare
4893 NewD : constant Boolean :=
4894 Present (Expression (New_Discr));
4895 OldD : constant Boolean :=
4896 Present (Expression (Parent (Old_Discr)));
4897
4898 begin
4899 if NewD or OldD then
4900
4901 -- The old default value has been analyzed and expanded,
4902 -- because the current full declaration will have frozen
82c80734
RD
4903 -- everything before. The new default values have not been
4904 -- expanded, so expand now to check conformance.
996ae0b0
RK
4905
4906 if NewD then
21d27997 4907 Preanalyze_Spec_Expression
996ae0b0
RK
4908 (Expression (New_Discr), New_Discr_Type);
4909 end if;
4910
4911 if not (NewD and OldD)
4912 or else not Fully_Conformant_Expressions
4913 (Expression (Parent (Old_Discr)),
4914 Expression (New_Discr))
4915
4916 then
4917 Conformance_Error
4918 ("default expression for & does not match!",
4919 New_Discr_Id);
4920 return;
4921 end if;
4922 end if;
4923 end;
4924
4925 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4926
0ab80019 4927 if Ada_Version = Ada_83 then
996ae0b0
RK
4928 declare
4929 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4930
4931 begin
4932 -- Grouping (use of comma in param lists) must be the same
4933 -- This is where we catch a misconformance like:
4934
60370fb1 4935 -- A, B : Integer
996ae0b0
RK
4936 -- A : Integer; B : Integer
4937
4938 -- which are represented identically in the tree except
4939 -- for the setting of the flags More_Ids and Prev_Ids.
4940
4941 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4942 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4943 then
4944 Conformance_Error
4945 ("grouping of & does not match!", New_Discr_Id);
4946 return;
4947 end if;
4948 end;
4949 end if;
4950
4951 Next_Discriminant (Old_Discr);
4952 Next (New_Discr);
4953 end loop;
4954
4955 if Present (Old_Discr) then
4956 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4957 return;
4958
4959 elsif Present (New_Discr) then
4960 Conformance_Error
4961 ("too many discriminants!", Defining_Identifier (New_Discr));
4962 return;
4963 end if;
4964 end Check_Discriminant_Conformance;
4965
4966 ----------------------------
4967 -- Check_Fully_Conformant --
4968 ----------------------------
4969
4970 procedure Check_Fully_Conformant
4971 (New_Id : Entity_Id;
4972 Old_Id : Entity_Id;
4973 Err_Loc : Node_Id := Empty)
4974 is
4975 Result : Boolean;
81db9d77 4976 pragma Warnings (Off, Result);
996ae0b0
RK
4977 begin
4978 Check_Conformance
4979 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4980 end Check_Fully_Conformant;
4981
4982 ---------------------------
4983 -- Check_Mode_Conformant --
4984 ---------------------------
4985
4986 procedure Check_Mode_Conformant
4987 (New_Id : Entity_Id;
4988 Old_Id : Entity_Id;
4989 Err_Loc : Node_Id := Empty;
4990 Get_Inst : Boolean := False)
4991 is
4992 Result : Boolean;
81db9d77 4993 pragma Warnings (Off, Result);
996ae0b0
RK
4994 begin
4995 Check_Conformance
4996 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4997 end Check_Mode_Conformant;
4998
fbf5a39b 4999 --------------------------------
758c442c 5000 -- Check_Overriding_Indicator --
fbf5a39b
AC
5001 --------------------------------
5002
758c442c 5003 procedure Check_Overriding_Indicator
ec4867fa 5004 (Subp : Entity_Id;
5d37ba92
ES
5005 Overridden_Subp : Entity_Id;
5006 Is_Primitive : Boolean)
fbf5a39b 5007 is
758c442c
GD
5008 Decl : Node_Id;
5009 Spec : Node_Id;
fbf5a39b
AC
5010
5011 begin
ec4867fa 5012 -- No overriding indicator for literals
fbf5a39b 5013
ec4867fa 5014 if Ekind (Subp) = E_Enumeration_Literal then
758c442c 5015 return;
fbf5a39b 5016
ec4867fa
ES
5017 elsif Ekind (Subp) = E_Entry then
5018 Decl := Parent (Subp);
5019
53b10ce9
AC
5020 -- No point in analyzing a malformed operator
5021
5022 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5023 and then Error_Posted (Subp)
5024 then
5025 return;
5026
758c442c
GD
5027 else
5028 Decl := Unit_Declaration_Node (Subp);
5029 end if;
fbf5a39b 5030
800621e0
RD
5031 if Nkind_In (Decl, N_Subprogram_Body,
5032 N_Subprogram_Body_Stub,
5033 N_Subprogram_Declaration,
5034 N_Abstract_Subprogram_Declaration,
5035 N_Subprogram_Renaming_Declaration)
758c442c
GD
5036 then
5037 Spec := Specification (Decl);
ec4867fa
ES
5038
5039 elsif Nkind (Decl) = N_Entry_Declaration then
5040 Spec := Decl;
5041
758c442c
GD
5042 else
5043 return;
5044 end if;
fbf5a39b 5045
e7d72fb9
AC
5046 -- The overriding operation is type conformant with the overridden one,
5047 -- but the names of the formals are not required to match. If the names
6823270c 5048 -- appear permuted in the overriding operation, this is a possible
e7d72fb9
AC
5049 -- source of confusion that is worth diagnosing. Controlling formals
5050 -- often carry names that reflect the type, and it is not worthwhile
5051 -- requiring that their names match.
5052
c9e7bd8e 5053 if Present (Overridden_Subp)
e7d72fb9
AC
5054 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5055 then
5056 declare
5057 Form1 : Entity_Id;
5058 Form2 : Entity_Id;
5059
5060 begin
5061 Form1 := First_Formal (Subp);
5062 Form2 := First_Formal (Overridden_Subp);
5063
c9e7bd8e
AC
5064 -- If the overriding operation is a synchronized operation, skip
5065 -- the first parameter of the overridden operation, which is
6823270c
AC
5066 -- implicit in the new one. If the operation is declared in the
5067 -- body it is not primitive and all formals must match.
c9e7bd8e 5068
6823270c
AC
5069 if Is_Concurrent_Type (Scope (Subp))
5070 and then Is_Tagged_Type (Scope (Subp))
5071 and then not Has_Completion (Scope (Subp))
5072 then
c9e7bd8e
AC
5073 Form2 := Next_Formal (Form2);
5074 end if;
5075
e7d72fb9
AC
5076 if Present (Form1) then
5077 Form1 := Next_Formal (Form1);
5078 Form2 := Next_Formal (Form2);
5079 end if;
5080
5081 while Present (Form1) loop
5082 if not Is_Controlling_Formal (Form1)
5083 and then Present (Next_Formal (Form2))
5084 and then Chars (Form1) = Chars (Next_Formal (Form2))
5085 then
5086 Error_Msg_Node_2 := Alias (Overridden_Subp);
5087 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
ed2233dc 5088 Error_Msg_NE
19d846a0 5089 ("& does not match corresponding formal of&#",
e7d72fb9
AC
5090 Form1, Form1);
5091 exit;
5092 end if;
5093
5094 Next_Formal (Form1);
5095 Next_Formal (Form2);
5096 end loop;
5097 end;
5098 end if;
5099
676e8420
AC
5100 -- If there is an overridden subprogram, then check that there is no
5101 -- "not overriding" indicator, and mark the subprogram as overriding.
51bf9bdf
AC
5102 -- This is not done if the overridden subprogram is marked as hidden,
5103 -- which can occur for the case of inherited controlled operations
5104 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5105 -- subprogram is not itself hidden. (Note: This condition could probably
5106 -- be simplified, leaving out the testing for the specific controlled
5107 -- cases, but it seems safer and clearer this way, and echoes similar
5108 -- special-case tests of this kind in other places.)
5109
fd0d899b 5110 if Present (Overridden_Subp)
51bf9bdf
AC
5111 and then (not Is_Hidden (Overridden_Subp)
5112 or else
5113 ((Chars (Overridden_Subp) = Name_Initialize
f0709ca6
AC
5114 or else
5115 Chars (Overridden_Subp) = Name_Adjust
5116 or else
5117 Chars (Overridden_Subp) = Name_Finalize)
5118 and then Present (Alias (Overridden_Subp))
5119 and then not Is_Hidden (Alias (Overridden_Subp))))
fd0d899b 5120 then
ec4867fa
ES
5121 if Must_Not_Override (Spec) then
5122 Error_Msg_Sloc := Sloc (Overridden_Subp);
fbf5a39b 5123
ec4867fa 5124 if Ekind (Subp) = E_Entry then
ed2233dc 5125 Error_Msg_NE
5d37ba92 5126 ("entry & overrides inherited operation #", Spec, Subp);
ec4867fa 5127 else
ed2233dc 5128 Error_Msg_NE
5d37ba92 5129 ("subprogram & overrides inherited operation #", Spec, Subp);
ec4867fa 5130 end if;
21d27997 5131
bd603506 5132 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
24a120ac
AC
5133 -- as an extension of Root_Controlled, and thus has a useless Adjust
5134 -- operation. This operation should not be inherited by other limited
5135 -- controlled types. An explicit Adjust for them is not overriding.
5136
5137 elsif Must_Override (Spec)
5138 and then Chars (Overridden_Subp) = Name_Adjust
5139 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5140 and then Present (Alias (Overridden_Subp))
bd603506
RD
5141 and then
5142 Is_Predefined_File_Name
5143 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
24a120ac
AC
5144 then
5145 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5146
21d27997 5147 elsif Is_Subprogram (Subp) then
2fe829ae
ES
5148 if Is_Init_Proc (Subp) then
5149 null;
5150
5151 elsif No (Overridden_Operation (Subp)) then
1c1289e7
AC
5152
5153 -- For entities generated by Derive_Subprograms the overridden
5154 -- operation is the inherited primitive (which is available
5155 -- through the attribute alias)
5156
5157 if (Is_Dispatching_Operation (Subp)
f9673bb0 5158 or else Is_Dispatching_Operation (Overridden_Subp))
1c1289e7 5159 and then not Comes_From_Source (Overridden_Subp)
f9673bb0
AC
5160 and then Find_Dispatching_Type (Overridden_Subp) =
5161 Find_Dispatching_Type (Subp)
1c1289e7
AC
5162 and then Present (Alias (Overridden_Subp))
5163 and then Comes_From_Source (Alias (Overridden_Subp))
5164 then
5165 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
2fe829ae 5166
1c1289e7
AC
5167 else
5168 Set_Overridden_Operation (Subp, Overridden_Subp);
5169 end if;
5170 end if;
ec4867fa 5171 end if;
f937473f 5172
618fb570
AC
5173 -- If primitive flag is set or this is a protected operation, then
5174 -- the operation is overriding at the point of its declaration, so
5175 -- warn if necessary. Otherwise it may have been declared before the
5176 -- operation it overrides and no check is required.
3c25856a
AC
5177
5178 if Style_Check
618fb570
AC
5179 and then not Must_Override (Spec)
5180 and then (Is_Primitive
5181 or else Ekind (Scope (Subp)) = E_Protected_Type)
3c25856a 5182 then
235f4375
AC
5183 Style.Missing_Overriding (Decl, Subp);
5184 end if;
5185
53b10ce9
AC
5186 -- If Subp is an operator, it may override a predefined operation, if
5187 -- it is defined in the same scope as the type to which it applies.
676e8420 5188 -- In that case Overridden_Subp is empty because of our implicit
5d37ba92
ES
5189 -- representation for predefined operators. We have to check whether the
5190 -- signature of Subp matches that of a predefined operator. Note that
5191 -- first argument provides the name of the operator, and the second
5192 -- argument the signature that may match that of a standard operation.
21d27997
RD
5193 -- If the indicator is overriding, then the operator must match a
5194 -- predefined signature, because we know already that there is no
5195 -- explicit overridden operation.
f937473f 5196
21d27997 5197 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
806f6d37 5198 if Must_Not_Override (Spec) then
f937473f 5199
806f6d37
AC
5200 -- If this is not a primitive or a protected subprogram, then
5201 -- "not overriding" is illegal.
618fb570 5202
806f6d37
AC
5203 if not Is_Primitive
5204 and then Ekind (Scope (Subp)) /= E_Protected_Type
5205 then
5206 Error_Msg_N
5207 ("overriding indicator only allowed "
5208 & "if subprogram is primitive", Subp);
618fb570 5209
806f6d37
AC
5210 elsif Can_Override_Operator (Subp) then
5211 Error_Msg_NE
5212 ("subprogram& overrides predefined operator ", Spec, Subp);
5213 end if;
f937473f 5214
806f6d37
AC
5215 elsif Must_Override (Spec) then
5216 if No (Overridden_Operation (Subp))
5217 and then not Can_Override_Operator (Subp)
5218 then
5219 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5220 end if;
5d37ba92 5221
806f6d37
AC
5222 elsif not Error_Posted (Subp)
5223 and then Style_Check
5224 and then Can_Override_Operator (Subp)
5225 and then
5226 not Is_Predefined_File_Name
5227 (Unit_File_Name (Get_Source_Unit (Subp)))
5228 then
5229 -- If style checks are enabled, indicate that the indicator is
5230 -- missing. However, at the point of declaration, the type of
5231 -- which this is a primitive operation may be private, in which
5232 -- case the indicator would be premature.
235f4375 5233
806f6d37
AC
5234 if Has_Private_Declaration (Etype (Subp))
5235 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
53b10ce9 5236 then
806f6d37
AC
5237 null;
5238 else
5239 Style.Missing_Overriding (Decl, Subp);
5d5832bc 5240 end if;
806f6d37 5241 end if;
21d27997
RD
5242
5243 elsif Must_Override (Spec) then
5244 if Ekind (Subp) = E_Entry then
ed2233dc 5245 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5d37ba92 5246 else
ed2233dc 5247 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
758c442c 5248 end if;
5d37ba92
ES
5249
5250 -- If the operation is marked "not overriding" and it's not primitive
5251 -- then an error is issued, unless this is an operation of a task or
5252 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5253 -- has been specified have already been checked above.
5254
5255 elsif Must_Not_Override (Spec)
5256 and then not Is_Primitive
5257 and then Ekind (Subp) /= E_Entry
5258 and then Ekind (Scope (Subp)) /= E_Protected_Type
5259 then
ed2233dc 5260 Error_Msg_N
5d37ba92
ES
5261 ("overriding indicator only allowed if subprogram is primitive",
5262 Subp);
5d37ba92 5263 return;
fbf5a39b 5264 end if;
758c442c 5265 end Check_Overriding_Indicator;
fbf5a39b 5266
996ae0b0
RK
5267 -------------------
5268 -- Check_Returns --
5269 -------------------
5270
0a36105d
JM
5271 -- Note: this procedure needs to know far too much about how the expander
5272 -- messes with exceptions. The use of the flag Exception_Junk and the
5273 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5274 -- works, but is not very clean. It would be better if the expansion
5275 -- routines would leave Original_Node working nicely, and we could use
5276 -- Original_Node here to ignore all the peculiar expander messing ???
5277
996ae0b0
RK
5278 procedure Check_Returns
5279 (HSS : Node_Id;
5280 Mode : Character;
c8ef728f
ES
5281 Err : out Boolean;
5282 Proc : Entity_Id := Empty)
996ae0b0
RK
5283 is
5284 Handler : Node_Id;
5285
5286 procedure Check_Statement_Sequence (L : List_Id);
5287 -- Internal recursive procedure to check a list of statements for proper
5288 -- termination by a return statement (or a transfer of control or a
5289 -- compound statement that is itself internally properly terminated).
5290
5291 ------------------------------
5292 -- Check_Statement_Sequence --
5293 ------------------------------
5294
5295 procedure Check_Statement_Sequence (L : List_Id) is
5296 Last_Stm : Node_Id;
0a36105d 5297 Stm : Node_Id;
996ae0b0
RK
5298 Kind : Node_Kind;
5299
5300 Raise_Exception_Call : Boolean;
5301 -- Set True if statement sequence terminated by Raise_Exception call
5302 -- or a Reraise_Occurrence call.
5303
5304 begin
5305 Raise_Exception_Call := False;
5306
5307 -- Get last real statement
5308
5309 Last_Stm := Last (L);
5310
0a36105d
JM
5311 -- Deal with digging out exception handler statement sequences that
5312 -- have been transformed by the local raise to goto optimization.
5313 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5314 -- optimization has occurred, we are looking at something like:
5315
5316 -- begin
5317 -- original stmts in block
5318
5319 -- exception \
5320 -- when excep1 => |
5321 -- goto L1; | omitted if No_Exception_Propagation
5322 -- when excep2 => |
5323 -- goto L2; /
5324 -- end;
5325
5326 -- goto L3; -- skip handler when exception not raised
5327
5328 -- <<L1>> -- target label for local exception
5329 -- begin
5330 -- estmts1
5331 -- end;
5332
5333 -- goto L3;
5334
5335 -- <<L2>>
5336 -- begin
5337 -- estmts2
5338 -- end;
5339
5340 -- <<L3>>
5341
5342 -- and what we have to do is to dig out the estmts1 and estmts2
5343 -- sequences (which were the original sequences of statements in
5344 -- the exception handlers) and check them.
5345
5346 if Nkind (Last_Stm) = N_Label
5347 and then Exception_Junk (Last_Stm)
5348 then
5349 Stm := Last_Stm;
5350 loop
5351 Prev (Stm);
5352 exit when No (Stm);
5353 exit when Nkind (Stm) /= N_Block_Statement;
5354 exit when not Exception_Junk (Stm);
5355 Prev (Stm);
5356 exit when No (Stm);
5357 exit when Nkind (Stm) /= N_Label;
5358 exit when not Exception_Junk (Stm);
5359 Check_Statement_Sequence
5360 (Statements (Handled_Statement_Sequence (Next (Stm))));
5361
5362 Prev (Stm);
5363 Last_Stm := Stm;
5364 exit when No (Stm);
5365 exit when Nkind (Stm) /= N_Goto_Statement;
5366 exit when not Exception_Junk (Stm);
5367 end loop;
5368 end if;
5369
996ae0b0
RK
5370 -- Don't count pragmas
5371
5372 while Nkind (Last_Stm) = N_Pragma
5373
5374 -- Don't count call to SS_Release (can happen after Raise_Exception)
5375
5376 or else
5377 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5378 and then
5379 Nkind (Name (Last_Stm)) = N_Identifier
5380 and then
5381 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5382
5383 -- Don't count exception junk
5384
5385 or else
800621e0
RD
5386 (Nkind_In (Last_Stm, N_Goto_Statement,
5387 N_Label,
5388 N_Object_Declaration)
0a36105d
JM
5389 and then Exception_Junk (Last_Stm))
5390 or else Nkind (Last_Stm) in N_Push_xxx_Label
5391 or else Nkind (Last_Stm) in N_Pop_xxx_Label
996ae0b0
RK
5392 loop
5393 Prev (Last_Stm);
5394 end loop;
5395
5396 -- Here we have the "real" last statement
5397
5398 Kind := Nkind (Last_Stm);
5399
5400 -- Transfer of control, OK. Note that in the No_Return procedure
5401 -- case, we already diagnosed any explicit return statements, so
5402 -- we can treat them as OK in this context.
5403
5404 if Is_Transfer (Last_Stm) then
5405 return;
5406
5407 -- Check cases of explicit non-indirect procedure calls
5408
5409 elsif Kind = N_Procedure_Call_Statement
5410 and then Is_Entity_Name (Name (Last_Stm))
5411 then
5412 -- Check call to Raise_Exception procedure which is treated
5413 -- specially, as is a call to Reraise_Occurrence.
5414
5415 -- We suppress the warning in these cases since it is likely that
5416 -- the programmer really does not expect to deal with the case
5417 -- of Null_Occurrence, and thus would find a warning about a
5418 -- missing return curious, and raising Program_Error does not
5419 -- seem such a bad behavior if this does occur.
5420
c8ef728f
ES
5421 -- Note that in the Ada 2005 case for Raise_Exception, the actual
5422 -- behavior will be to raise Constraint_Error (see AI-329).
5423
996ae0b0
RK
5424 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
5425 or else
5426 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
5427 then
5428 Raise_Exception_Call := True;
5429
5430 -- For Raise_Exception call, test first argument, if it is
5431 -- an attribute reference for a 'Identity call, then we know
5432 -- that the call cannot possibly return.
5433
5434 declare
5435 Arg : constant Node_Id :=
5436 Original_Node (First_Actual (Last_Stm));
996ae0b0
RK
5437 begin
5438 if Nkind (Arg) = N_Attribute_Reference
5439 and then Attribute_Name (Arg) = Name_Identity
5440 then
5441 return;
5442 end if;
5443 end;
5444 end if;
5445
5446 -- If statement, need to look inside if there is an else and check
5447 -- each constituent statement sequence for proper termination.
5448
5449 elsif Kind = N_If_Statement
5450 and then Present (Else_Statements (Last_Stm))
5451 then
5452 Check_Statement_Sequence (Then_Statements (Last_Stm));
5453 Check_Statement_Sequence (Else_Statements (Last_Stm));
5454
5455 if Present (Elsif_Parts (Last_Stm)) then
5456 declare
5457 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
5458
5459 begin
5460 while Present (Elsif_Part) loop
5461 Check_Statement_Sequence (Then_Statements (Elsif_Part));
5462 Next (Elsif_Part);
5463 end loop;
5464 end;
5465 end if;
5466
5467 return;
5468
5469 -- Case statement, check each case for proper termination
5470
5471 elsif Kind = N_Case_Statement then
5472 declare
5473 Case_Alt : Node_Id;
996ae0b0
RK
5474 begin
5475 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5476 while Present (Case_Alt) loop
5477 Check_Statement_Sequence (Statements (Case_Alt));
5478 Next_Non_Pragma (Case_Alt);
5479 end loop;
5480 end;
5481
5482 return;
5483
5484 -- Block statement, check its handled sequence of statements
5485
5486 elsif Kind = N_Block_Statement then
5487 declare
5488 Err1 : Boolean;
5489
5490 begin
5491 Check_Returns
5492 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
5493
5494 if Err1 then
5495 Err := True;
5496 end if;
5497
5498 return;
5499 end;
5500
5501 -- Loop statement. If there is an iteration scheme, we can definitely
5502 -- fall out of the loop. Similarly if there is an exit statement, we
5503 -- can fall out. In either case we need a following return.
5504
5505 elsif Kind = N_Loop_Statement then
5506 if Present (Iteration_Scheme (Last_Stm))
5507 or else Has_Exit (Entity (Identifier (Last_Stm)))
5508 then
5509 null;
5510
f3d57416
RW
5511 -- A loop with no exit statement or iteration scheme is either
5512 -- an infinite loop, or it has some other exit (raise/return).
996ae0b0
RK
5513 -- In either case, no warning is required.
5514
5515 else
5516 return;
5517 end if;
5518
5519 -- Timed entry call, check entry call and delay alternatives
5520
5521 -- Note: in expanded code, the timed entry call has been converted
5522 -- to a set of expanded statements on which the check will work
5523 -- correctly in any case.
5524
5525 elsif Kind = N_Timed_Entry_Call then
5526 declare
5527 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5528 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
5529
5530 begin
5531 -- If statement sequence of entry call alternative is missing,
5532 -- then we can definitely fall through, and we post the error
5533 -- message on the entry call alternative itself.
5534
5535 if No (Statements (ECA)) then
5536 Last_Stm := ECA;
5537
5538 -- If statement sequence of delay alternative is missing, then
5539 -- we can definitely fall through, and we post the error
5540 -- message on the delay alternative itself.
5541
5542 -- Note: if both ECA and DCA are missing the return, then we
5543 -- post only one message, should be enough to fix the bugs.
5544 -- If not we will get a message next time on the DCA when the
5545 -- ECA is fixed!
5546
5547 elsif No (Statements (DCA)) then
5548 Last_Stm := DCA;
5549
5550 -- Else check both statement sequences
5551
5552 else
5553 Check_Statement_Sequence (Statements (ECA));
5554 Check_Statement_Sequence (Statements (DCA));
5555 return;
5556 end if;
5557 end;
5558
5559 -- Conditional entry call, check entry call and else part
5560
5561 -- Note: in expanded code, the conditional entry call has been
5562 -- converted to a set of expanded statements on which the check
5563 -- will work correctly in any case.
5564
5565 elsif Kind = N_Conditional_Entry_Call then
5566 declare
5567 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5568
5569 begin
5570 -- If statement sequence of entry call alternative is missing,
5571 -- then we can definitely fall through, and we post the error
5572 -- message on the entry call alternative itself.
5573
5574 if No (Statements (ECA)) then
5575 Last_Stm := ECA;
5576
5577 -- Else check statement sequence and else part
5578
5579 else
5580 Check_Statement_Sequence (Statements (ECA));
5581 Check_Statement_Sequence (Else_Statements (Last_Stm));
5582 return;
5583 end if;
5584 end;
5585 end if;
5586
5587 -- If we fall through, issue appropriate message
5588
5589 if Mode = 'F' then
996ae0b0
RK
5590 if not Raise_Exception_Call then
5591 Error_Msg_N
5d37ba92 5592 ("?RETURN statement missing following this statement!",
996ae0b0
RK
5593 Last_Stm);
5594 Error_Msg_N
5d37ba92 5595 ("\?Program_Error may be raised at run time!",
996ae0b0
RK
5596 Last_Stm);
5597 end if;
5598
5599 -- Note: we set Err even though we have not issued a warning
5600 -- because we still have a case of a missing return. This is
5601 -- an extremely marginal case, probably will never be noticed
5602 -- but we might as well get it right.
5603
5604 Err := True;
5605
c8ef728f
ES
5606 -- Otherwise we have the case of a procedure marked No_Return
5607
996ae0b0 5608 else
800621e0
RD
5609 if not Raise_Exception_Call then
5610 Error_Msg_N
5611 ("?implied return after this statement " &
5612 "will raise Program_Error",
5613 Last_Stm);
5614 Error_Msg_NE
5615 ("\?procedure & is marked as No_Return!",
5616 Last_Stm, Proc);
5617 end if;
c8ef728f
ES
5618
5619 declare
5620 RE : constant Node_Id :=
5621 Make_Raise_Program_Error (Sloc (Last_Stm),
5622 Reason => PE_Implicit_Return);
5623 begin
5624 Insert_After (Last_Stm, RE);
5625 Analyze (RE);
5626 end;
996ae0b0
RK
5627 end if;
5628 end Check_Statement_Sequence;
5629
5630 -- Start of processing for Check_Returns
5631
5632 begin
5633 Err := False;
5634 Check_Statement_Sequence (Statements (HSS));
5635
5636 if Present (Exception_Handlers (HSS)) then
5637 Handler := First_Non_Pragma (Exception_Handlers (HSS));
5638 while Present (Handler) loop
5639 Check_Statement_Sequence (Statements (Handler));
5640 Next_Non_Pragma (Handler);
5641 end loop;
5642 end if;
5643 end Check_Returns;
5644
67c86178
AC
5645 -------------------------------
5646 -- Check_Subprogram_Contract --
5647 -------------------------------
5648
5649 procedure Check_Subprogram_Contract (Spec_Id : Entity_Id) is
5650
029b67ba
YM
5651 -- Code is currently commented out as, in some cases, it causes crashes
5652 -- because Direct_Primitive_Operations is not available for a private
5653 -- type. This may cause more warnings to be issued than necessary. See
5654 -- below for the intended use of this variable. ???
5655
67c86178
AC
5656-- Inherited : constant Subprogram_List :=
5657-- Inherited_Subprograms (Spec_Id);
dc36a7e3 5658-- -- List of subprograms inherited by this subprogram
67c86178 5659
dc36a7e3 5660 Last_Postcondition : Node_Id := Empty;
67c86178
AC
5661 -- Last postcondition on the subprogram, or else Empty if either no
5662 -- postcondition or only inherited postconditions.
5663
5664 Attribute_Result_Mentioned : Boolean := False;
5665 -- Whether attribute 'Result is mentioned in a postcondition
5666
dc36a7e3 5667 Post_State_Mentioned : Boolean := False;
67c86178
AC
5668 -- Whether some expression mentioned in a postcondition can have a
5669 -- different value in the post-state than in the pre-state.
5670
5671 function Check_Attr_Result (N : Node_Id) return Traverse_Result;
dc36a7e3
RD
5672 -- Check if N is a reference to the attribute 'Result, and if so set
5673 -- Attribute_Result_Mentioned and return Abandon. Otherwise return OK.
67c86178
AC
5674
5675 function Check_Post_State (N : Node_Id) return Traverse_Result;
5676 -- Check whether the value of evaluating N can be different in the
5677 -- post-state, compared to the same evaluation in the pre-state, and
5678 -- if so set Post_State_Mentioned and return Abandon. Return Skip on
5679 -- reference to attribute 'Old, in order to ignore its prefix, which
5680 -- is precisely evaluated in the pre-state. Otherwise return OK.
5681
dc36a7e3 5682 procedure Process_Post_Conditions (Spec : Node_Id; Class : Boolean);
67c86178
AC
5683 -- This processes the Spec_PPC_List from Spec, processing any
5684 -- postconditions from the list. If Class is True, then only
5685 -- postconditions marked with Class_Present are considered. The
5686 -- caller has checked that Spec_PPC_List is non-Empty.
5687
5688 function Find_Attribute_Result is new Traverse_Func (Check_Attr_Result);
5689
5690 function Find_Post_State is new Traverse_Func (Check_Post_State);
5691
5692 -----------------------
5693 -- Check_Attr_Result --
5694 -----------------------
5695
5696 function Check_Attr_Result (N : Node_Id) return Traverse_Result is
5697 begin
5698 if Nkind (N) = N_Attribute_Reference
dc36a7e3 5699 and then Get_Attribute_Id (Attribute_Name (N)) = Attribute_Result
67c86178
AC
5700 then
5701 Attribute_Result_Mentioned := True;
5702 return Abandon;
5703 else
5704 return OK;
5705 end if;
5706 end Check_Attr_Result;
5707
5708 ----------------------
5709 -- Check_Post_State --
5710 ----------------------
5711
5712 function Check_Post_State (N : Node_Id) return Traverse_Result is
5713 Found : Boolean := False;
5714
5715 begin
5716 case Nkind (N) is
5717 when N_Function_Call |
5718 N_Explicit_Dereference =>
5719 Found := True;
5720
5721 when N_Identifier |
5722 N_Expanded_Name =>
dc36a7e3 5723
67c86178
AC
5724 declare
5725 E : constant Entity_Id := Entity (N);
bd38b431 5726
67c86178 5727 begin
bd38b431
AC
5728 -- ???Quantified expressions get analyzed later, so E can
5729 -- be empty at this point. In this case, we suppress the
5b5588dd
AC
5730 -- warning, just in case E is assignable. It seems better to
5731 -- have false negatives than false positives. At some point,
5732 -- we should make the warning more accurate, either by
bd38b431
AC
5733 -- analyzing quantified expressions earlier, or moving
5734 -- this processing later.
5b5588dd 5735
bd38b431
AC
5736 if No (E)
5737 or else
5738 (Is_Entity_Name (N)
5739 and then Ekind (E) in Assignable_Kind)
67c86178
AC
5740 then
5741 Found := True;
5742 end if;
5743 end;
5744
5745 when N_Attribute_Reference =>
5746 case Get_Attribute_Id (Attribute_Name (N)) is
5747 when Attribute_Old =>
5748 return Skip;
5749 when Attribute_Result =>
5750 Found := True;
5751 when others =>
5752 null;
5753 end case;
5754
5755 when others =>
5756 null;
5757 end case;
5758
5759 if Found then
5760 Post_State_Mentioned := True;
5761 return Abandon;
5762 else
5763 return OK;
5764 end if;
5765 end Check_Post_State;
5766
5767 -----------------------------
5768 -- Process_Post_Conditions --
5769 -----------------------------
5770
5771 procedure Process_Post_Conditions
5772 (Spec : Node_Id;
5773 Class : Boolean)
5774 is
5775 Prag : Node_Id;
5776 Arg : Node_Id;
5777 Ignored : Traverse_Final_Result;
5778 pragma Unreferenced (Ignored);
5779
5780 begin
5781 Prag := Spec_PPC_List (Contract (Spec));
5782
5783 loop
5784 Arg := First (Pragma_Argument_Associations (Prag));
5785
dc36a7e3 5786 -- Since pre- and post-conditions are listed in reverse order, the
67c86178
AC
5787 -- first postcondition in the list is the last in the source.
5788
5789 if Pragma_Name (Prag) = Name_Postcondition
5790 and then not Class
5791 and then No (Last_Postcondition)
5792 then
5793 Last_Postcondition := Prag;
5794 end if;
5795
5796 -- For functions, look for presence of 'Result in postcondition
5797
5798 if Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
5799 Ignored := Find_Attribute_Result (Arg);
5800 end if;
5801
5802 -- For each individual non-inherited postcondition, look for
5803 -- presence of an expression that could be evaluated differently
5804 -- in post-state.
5805
5806 if Pragma_Name (Prag) = Name_Postcondition
5807 and then not Class
5808 then
5809 Post_State_Mentioned := False;
dc36a7e3 5810 Ignored := Find_Post_State (Arg);
67c86178
AC
5811
5812 if not Post_State_Mentioned then
5b5588dd 5813 Error_Msg_N ("?postcondition refers only to pre-state",
67c86178
AC
5814 Prag);
5815 end if;
5816 end if;
5817
5818 Prag := Next_Pragma (Prag);
5819 exit when No (Prag);
5820 end loop;
5821 end Process_Post_Conditions;
5822
5823 -- Start of processing for Check_Subprogram_Contract
5824
5825 begin
5826 if not Warn_On_Suspicious_Contract then
5827 return;
5828 end if;
5829
5830 if Present (Spec_PPC_List (Contract (Spec_Id))) then
5831 Process_Post_Conditions (Spec_Id, Class => False);
5832 end if;
5833
5834 -- Process inherited postconditions
5835
5836 -- Code is currently commented out as, in some cases, it causes crashes
5837 -- because Direct_Primitive_Operations is not available for a private
dc36a7e3 5838 -- type. This may cause more warnings to be issued than necessary. ???
67c86178
AC
5839
5840-- for J in Inherited'Range loop
5841-- if Present (Spec_PPC_List (Contract (Inherited (J)))) then
5842-- Process_Post_Conditions (Inherited (J), Class => True);
5843-- end if;
5844-- end loop;
5845
5846 -- Issue warning for functions whose postcondition does not mention
5847 -- 'Result after all postconditions have been processed.
5848
5849 if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
5850 and then Present (Last_Postcondition)
5851 and then not Attribute_Result_Mentioned
5852 then
5853 Error_Msg_N ("?function postcondition does not mention result",
5854 Last_Postcondition);
5855 end if;
5856 end Check_Subprogram_Contract;
5857
996ae0b0
RK
5858 ----------------------------
5859 -- Check_Subprogram_Order --
5860 ----------------------------
5861
5862 procedure Check_Subprogram_Order (N : Node_Id) is
5863
5864 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
dc36a7e3
RD
5865 -- This is used to check if S1 > S2 in the sense required by this test,
5866 -- for example nameab < namec, but name2 < name10.
996ae0b0 5867
82c80734
RD
5868 -----------------------------
5869 -- Subprogram_Name_Greater --
5870 -----------------------------
5871
996ae0b0
RK
5872 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
5873 L1, L2 : Positive;
5874 N1, N2 : Natural;
5875
5876 begin
5877 -- Remove trailing numeric parts
5878
5879 L1 := S1'Last;
5880 while S1 (L1) in '0' .. '9' loop
5881 L1 := L1 - 1;
5882 end loop;
5883
5884 L2 := S2'Last;
5885 while S2 (L2) in '0' .. '9' loop
5886 L2 := L2 - 1;
5887 end loop;
5888
5889 -- If non-numeric parts non-equal, that's decisive
5890
5891 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
5892 return False;
5893
5894 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
5895 return True;
5896
5897 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5898 -- that a missing suffix is treated as numeric zero in this test.
5899
5900 else
5901 N1 := 0;
5902 while L1 < S1'Last loop
5903 L1 := L1 + 1;
5904 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5905 end loop;
5906
5907 N2 := 0;
5908 while L2 < S2'Last loop
5909 L2 := L2 + 1;
5910 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5911 end loop;
5912
5913 return N1 > N2;
5914 end if;
5915 end Subprogram_Name_Greater;
5916
5917 -- Start of processing for Check_Subprogram_Order
5918
5919 begin
5920 -- Check body in alpha order if this is option
5921
fbf5a39b 5922 if Style_Check
bc202b70 5923 and then Style_Check_Order_Subprograms
996ae0b0
RK
5924 and then Nkind (N) = N_Subprogram_Body
5925 and then Comes_From_Source (N)
5926 and then In_Extended_Main_Source_Unit (N)
5927 then
5928 declare
5929 LSN : String_Ptr
5930 renames Scope_Stack.Table
5931 (Scope_Stack.Last).Last_Subprogram_Name;
5932
5933 Body_Id : constant Entity_Id :=
5934 Defining_Entity (Specification (N));
5935
5936 begin
5937 Get_Decoded_Name_String (Chars (Body_Id));
5938
5939 if LSN /= null then
5940 if Subprogram_Name_Greater
5941 (LSN.all, Name_Buffer (1 .. Name_Len))
5942 then
5943 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5944 end if;
5945
5946 Free (LSN);
5947 end if;
5948
5949 LSN := new String'(Name_Buffer (1 .. Name_Len));
5950 end;
5951 end if;
5952 end Check_Subprogram_Order;
5953
5954 ------------------------------
5955 -- Check_Subtype_Conformant --
5956 ------------------------------
5957
5958 procedure Check_Subtype_Conformant
ce2b6ba5
JM
5959 (New_Id : Entity_Id;
5960 Old_Id : Entity_Id;
5961 Err_Loc : Node_Id := Empty;
5962 Skip_Controlling_Formals : Boolean := False)
996ae0b0
RK
5963 is
5964 Result : Boolean;
81db9d77 5965 pragma Warnings (Off, Result);
996ae0b0
RK
5966 begin
5967 Check_Conformance
ce2b6ba5
JM
5968 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5969 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
5970 end Check_Subtype_Conformant;
5971
5972 ---------------------------
5973 -- Check_Type_Conformant --
5974 ---------------------------
5975
5976 procedure Check_Type_Conformant
5977 (New_Id : Entity_Id;
5978 Old_Id : Entity_Id;
5979 Err_Loc : Node_Id := Empty)
5980 is
5981 Result : Boolean;
81db9d77 5982 pragma Warnings (Off, Result);
996ae0b0
RK
5983 begin
5984 Check_Conformance
5985 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5986 end Check_Type_Conformant;
5987
806f6d37
AC
5988 ---------------------------
5989 -- Can_Override_Operator --
5990 ---------------------------
5991
5992 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
5993 Typ : Entity_Id;
5994 begin
5995 if Nkind (Subp) /= N_Defining_Operator_Symbol then
5996 return False;
5997
5998 else
5999 Typ := Base_Type (Etype (First_Formal (Subp)));
6000
6001 return Operator_Matches_Spec (Subp, Subp)
6002 and then Scope (Subp) = Scope (Typ)
6003 and then not Is_Class_Wide_Type (Typ);
6004 end if;
6005 end Can_Override_Operator;
6006
996ae0b0
RK
6007 ----------------------
6008 -- Conforming_Types --
6009 ----------------------
6010
6011 function Conforming_Types
6012 (T1 : Entity_Id;
6013 T2 : Entity_Id;
6014 Ctype : Conformance_Type;
d05ef0ab 6015 Get_Inst : Boolean := False) return Boolean
996ae0b0
RK
6016 is
6017 Type_1 : Entity_Id := T1;
6018 Type_2 : Entity_Id := T2;
af4b9434 6019 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
996ae0b0
RK
6020
6021 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
0a36105d
JM
6022 -- If neither T1 nor T2 are generic actual types, or if they are in
6023 -- different scopes (e.g. parent and child instances), then verify that
6024 -- the base types are equal. Otherwise T1 and T2 must be on the same
6025 -- subtype chain. The whole purpose of this procedure is to prevent
6026 -- spurious ambiguities in an instantiation that may arise if two
6027 -- distinct generic types are instantiated with the same actual.
6028
5d37ba92
ES
6029 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6030 -- An access parameter can designate an incomplete type. If the
6031 -- incomplete type is the limited view of a type from a limited_
6032 -- with_clause, check whether the non-limited view is available. If
6033 -- it is a (non-limited) incomplete type, get the full view.
6034
0a36105d
JM
6035 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6036 -- Returns True if and only if either T1 denotes a limited view of T2
6037 -- or T2 denotes a limited view of T1. This can arise when the limited
6038 -- with view of a type is used in a subprogram declaration and the
6039 -- subprogram body is in the scope of a regular with clause for the
6040 -- same unit. In such a case, the two type entities can be considered
6041 -- identical for purposes of conformance checking.
996ae0b0
RK
6042
6043 ----------------------
6044 -- Base_Types_Match --
6045 ----------------------
6046
6047 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6048 begin
6049 if T1 = T2 then
6050 return True;
6051
6052 elsif Base_Type (T1) = Base_Type (T2) then
6053
0a36105d 6054 -- The following is too permissive. A more precise test should
996ae0b0
RK
6055 -- check that the generic actual is an ancestor subtype of the
6056 -- other ???.
6057
6058 return not Is_Generic_Actual_Type (T1)
07fc65c4
GB
6059 or else not Is_Generic_Actual_Type (T2)
6060 or else Scope (T1) /= Scope (T2);
996ae0b0 6061
0a36105d
JM
6062 else
6063 return False;
6064 end if;
6065 end Base_Types_Match;
aa720a54 6066
5d37ba92
ES
6067 --------------------------
6068 -- Find_Designated_Type --
6069 --------------------------
6070
6071 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6072 Desig : Entity_Id;
6073
6074 begin
6075 Desig := Directly_Designated_Type (T);
6076
6077 if Ekind (Desig) = E_Incomplete_Type then
6078
6079 -- If regular incomplete type, get full view if available
6080
6081 if Present (Full_View (Desig)) then
6082 Desig := Full_View (Desig);
6083
6084 -- If limited view of a type, get non-limited view if available,
6085 -- and check again for a regular incomplete type.
6086
6087 elsif Present (Non_Limited_View (Desig)) then
6088 Desig := Get_Full_View (Non_Limited_View (Desig));
6089 end if;
6090 end if;
6091
6092 return Desig;
6093 end Find_Designated_Type;
6094
0a36105d
JM
6095 -------------------------------
6096 -- Matches_Limited_With_View --
6097 -------------------------------
6098
6099 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6100 begin
6101 -- In some cases a type imported through a limited_with clause, and
6102 -- its nonlimited view are both visible, for example in an anonymous
6103 -- access-to-class-wide type in a formal. Both entities designate the
6104 -- same type.
6105
6106 if From_With_Type (T1)
6107 and then T2 = Available_View (T1)
aa720a54
AC
6108 then
6109 return True;
6110
41251c60 6111 elsif From_With_Type (T2)
0a36105d 6112 and then T1 = Available_View (T2)
41251c60
JM
6113 then
6114 return True;
3e24afaa
AC
6115
6116 elsif From_With_Type (T1)
6117 and then From_With_Type (T2)
6118 and then Available_View (T1) = Available_View (T2)
6119 then
6120 return True;
41251c60 6121
996ae0b0
RK
6122 else
6123 return False;
6124 end if;
0a36105d 6125 end Matches_Limited_With_View;
996ae0b0 6126
ec4867fa 6127 -- Start of processing for Conforming_Types
758c442c 6128
996ae0b0
RK
6129 begin
6130 -- The context is an instance association for a formal
82c80734
RD
6131 -- access-to-subprogram type; the formal parameter types require
6132 -- mapping because they may denote other formal parameters of the
6133 -- generic unit.
996ae0b0
RK
6134
6135 if Get_Inst then
6136 Type_1 := Get_Instance_Of (T1);
6137 Type_2 := Get_Instance_Of (T2);
6138 end if;
6139
0a36105d
JM
6140 -- If one of the types is a view of the other introduced by a limited
6141 -- with clause, treat these as conforming for all purposes.
996ae0b0 6142
0a36105d
JM
6143 if Matches_Limited_With_View (T1, T2) then
6144 return True;
6145
6146 elsif Base_Types_Match (Type_1, Type_2) then
996ae0b0
RK
6147 return Ctype <= Mode_Conformant
6148 or else Subtypes_Statically_Match (Type_1, Type_2);
6149
6150 elsif Is_Incomplete_Or_Private_Type (Type_1)
6151 and then Present (Full_View (Type_1))
6152 and then Base_Types_Match (Full_View (Type_1), Type_2)
6153 then
6154 return Ctype <= Mode_Conformant
6155 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6156
6157 elsif Ekind (Type_2) = E_Incomplete_Type
6158 and then Present (Full_View (Type_2))
6159 and then Base_Types_Match (Type_1, Full_View (Type_2))
6160 then
6161 return Ctype <= Mode_Conformant
6162 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
fbf5a39b
AC
6163
6164 elsif Is_Private_Type (Type_2)
6165 and then In_Instance
6166 and then Present (Full_View (Type_2))
6167 and then Base_Types_Match (Type_1, Full_View (Type_2))
6168 then
6169 return Ctype <= Mode_Conformant
6170 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
996ae0b0
RK
6171 end if;
6172
0a36105d 6173 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
758c442c 6174 -- treated recursively because they carry a signature.
af4b9434
AC
6175
6176 Are_Anonymous_Access_To_Subprogram_Types :=
f937473f
RD
6177 Ekind (Type_1) = Ekind (Type_2)
6178 and then
800621e0 6179 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
f937473f
RD
6180 or else
6181 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
af4b9434 6182
996ae0b0 6183 -- Test anonymous access type case. For this case, static subtype
5d37ba92
ES
6184 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6185 -- the base types because we may have built internal subtype entities
6186 -- to handle null-excluding types (see Process_Formals).
996ae0b0 6187
5d37ba92
ES
6188 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6189 and then
6190 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
0ab80019 6191 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
996ae0b0
RK
6192 then
6193 declare
6194 Desig_1 : Entity_Id;
6195 Desig_2 : Entity_Id;
6196
6197 begin
885c4871 6198 -- In Ada 2005, access constant indicators must match for
5d37ba92 6199 -- subtype conformance.
9dcb52e1 6200
0791fbe9 6201 if Ada_Version >= Ada_2005
5d37ba92
ES
6202 and then Ctype >= Subtype_Conformant
6203 and then
6204 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6205 then
6206 return False;
996ae0b0
RK
6207 end if;
6208
5d37ba92 6209 Desig_1 := Find_Designated_Type (Type_1);
5d37ba92 6210 Desig_2 := Find_Designated_Type (Type_2);
996ae0b0 6211
5d37ba92 6212 -- If the context is an instance association for a formal
82c80734
RD
6213 -- access-to-subprogram type; formal access parameter designated
6214 -- types require mapping because they may denote other formal
6215 -- parameters of the generic unit.
996ae0b0
RK
6216
6217 if Get_Inst then
6218 Desig_1 := Get_Instance_Of (Desig_1);
6219 Desig_2 := Get_Instance_Of (Desig_2);
6220 end if;
6221
82c80734
RD
6222 -- It is possible for a Class_Wide_Type to be introduced for an
6223 -- incomplete type, in which case there is a separate class_ wide
6224 -- type for the full view. The types conform if their Etypes
6225 -- conform, i.e. one may be the full view of the other. This can
6226 -- only happen in the context of an access parameter, other uses
6227 -- of an incomplete Class_Wide_Type are illegal.
996ae0b0 6228
fbf5a39b 6229 if Is_Class_Wide_Type (Desig_1)
4adf3c50
AC
6230 and then
6231 Is_Class_Wide_Type (Desig_2)
996ae0b0
RK
6232 then
6233 return
fbf5a39b
AC
6234 Conforming_Types
6235 (Etype (Base_Type (Desig_1)),
6236 Etype (Base_Type (Desig_2)), Ctype);
af4b9434
AC
6237
6238 elsif Are_Anonymous_Access_To_Subprogram_Types then
0791fbe9 6239 if Ada_Version < Ada_2005 then
758c442c
GD
6240 return Ctype = Type_Conformant
6241 or else
af4b9434
AC
6242 Subtypes_Statically_Match (Desig_1, Desig_2);
6243
758c442c
GD
6244 -- We must check the conformance of the signatures themselves
6245
6246 else
6247 declare
6248 Conformant : Boolean;
6249 begin
6250 Check_Conformance
6251 (Desig_1, Desig_2, Ctype, False, Conformant);
6252 return Conformant;
6253 end;
6254 end if;
6255
996ae0b0
RK
6256 else
6257 return Base_Type (Desig_1) = Base_Type (Desig_2)
6258 and then (Ctype = Type_Conformant
af4b9434
AC
6259 or else
6260 Subtypes_Statically_Match (Desig_1, Desig_2));
996ae0b0
RK
6261 end if;
6262 end;
6263
6264 -- Otherwise definitely no match
6265
6266 else
c8ef728f
ES
6267 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6268 and then Is_Access_Type (Type_2))
6269 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6270 and then Is_Access_Type (Type_1)))
6271 and then
6272 Conforming_Types
6273 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6274 then
6275 May_Hide_Profile := True;
6276 end if;
6277
996ae0b0
RK
6278 return False;
6279 end if;
996ae0b0
RK
6280 end Conforming_Types;
6281
6282 --------------------------
6283 -- Create_Extra_Formals --
6284 --------------------------
6285
6286 procedure Create_Extra_Formals (E : Entity_Id) is
6287 Formal : Entity_Id;
ec4867fa 6288 First_Extra : Entity_Id := Empty;
996ae0b0
RK
6289 Last_Extra : Entity_Id;
6290 Formal_Type : Entity_Id;
6291 P_Formal : Entity_Id := Empty;
6292
ec4867fa
ES
6293 function Add_Extra_Formal
6294 (Assoc_Entity : Entity_Id;
6295 Typ : Entity_Id;
6296 Scope : Entity_Id;
6297 Suffix : String) return Entity_Id;
6298 -- Add an extra formal to the current list of formals and extra formals.
6299 -- The extra formal is added to the end of the list of extra formals,
6300 -- and also returned as the result. These formals are always of mode IN.
6301 -- The new formal has the type Typ, is declared in Scope, and its name
6302 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
cd5a9750
AC
6303 -- The following suffixes are currently used. They should not be changed
6304 -- without coordinating with CodePeer, which makes use of these to
6305 -- provide better messages.
6306
d92eccc3
AC
6307 -- O denotes the Constrained bit.
6308 -- L denotes the accessibility level.
cd5a9750
AC
6309 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6310 -- the full list in exp_ch6.BIP_Formal_Kind.
996ae0b0 6311
fbf5a39b
AC
6312 ----------------------
6313 -- Add_Extra_Formal --
6314 ----------------------
6315
ec4867fa
ES
6316 function Add_Extra_Formal
6317 (Assoc_Entity : Entity_Id;
6318 Typ : Entity_Id;
6319 Scope : Entity_Id;
6320 Suffix : String) return Entity_Id
6321 is
996ae0b0 6322 EF : constant Entity_Id :=
ec4867fa
ES
6323 Make_Defining_Identifier (Sloc (Assoc_Entity),
6324 Chars => New_External_Name (Chars (Assoc_Entity),
f937473f 6325 Suffix => Suffix));
996ae0b0
RK
6326
6327 begin
82c80734
RD
6328 -- A little optimization. Never generate an extra formal for the
6329 -- _init operand of an initialization procedure, since it could
6330 -- never be used.
996ae0b0
RK
6331
6332 if Chars (Formal) = Name_uInit then
6333 return Empty;
6334 end if;
6335
6336 Set_Ekind (EF, E_In_Parameter);
6337 Set_Actual_Subtype (EF, Typ);
6338 Set_Etype (EF, Typ);
ec4867fa 6339 Set_Scope (EF, Scope);
996ae0b0
RK
6340 Set_Mechanism (EF, Default_Mechanism);
6341 Set_Formal_Validity (EF);
6342
ec4867fa
ES
6343 if No (First_Extra) then
6344 First_Extra := EF;
6345 Set_Extra_Formals (Scope, First_Extra);
6346 end if;
6347
6348 if Present (Last_Extra) then
6349 Set_Extra_Formal (Last_Extra, EF);
6350 end if;
6351
996ae0b0 6352 Last_Extra := EF;
ec4867fa 6353
996ae0b0
RK
6354 return EF;
6355 end Add_Extra_Formal;
6356
6357 -- Start of processing for Create_Extra_Formals
6358
6359 begin
f937473f
RD
6360 -- We never generate extra formals if expansion is not active
6361 -- because we don't need them unless we are generating code.
6362
6363 if not Expander_Active then
6364 return;
6365 end if;
6366
82c80734 6367 -- If this is a derived subprogram then the subtypes of the parent
16b05213 6368 -- subprogram's formal parameters will be used to determine the need
82c80734 6369 -- for extra formals.
996ae0b0
RK
6370
6371 if Is_Overloadable (E) and then Present (Alias (E)) then
6372 P_Formal := First_Formal (Alias (E));
6373 end if;
6374
6375 Last_Extra := Empty;
6376 Formal := First_Formal (E);
6377 while Present (Formal) loop
6378 Last_Extra := Formal;
6379 Next_Formal (Formal);
6380 end loop;
6381
f937473f 6382 -- If Extra_formals were already created, don't do it again. This
82c80734
RD
6383 -- situation may arise for subprogram types created as part of
6384 -- dispatching calls (see Expand_Dispatching_Call)
996ae0b0
RK
6385
6386 if Present (Last_Extra) and then
6387 Present (Extra_Formal (Last_Extra))
6388 then
6389 return;
6390 end if;
6391
19590d70
GD
6392 -- If the subprogram is a predefined dispatching subprogram then don't
6393 -- generate any extra constrained or accessibility level formals. In
6394 -- general we suppress these for internal subprograms (by not calling
6395 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6396 -- generated stream attributes do get passed through because extra
6397 -- build-in-place formals are needed in some cases (limited 'Input).
6398
bac7206d 6399 if Is_Predefined_Internal_Operation (E) then
63585f75 6400 goto Test_For_Func_Result_Extras;
19590d70
GD
6401 end if;
6402
996ae0b0 6403 Formal := First_Formal (E);
996ae0b0
RK
6404 while Present (Formal) loop
6405
6406 -- Create extra formal for supporting the attribute 'Constrained.
6407 -- The case of a private type view without discriminants also
6408 -- requires the extra formal if the underlying type has defaulted
6409 -- discriminants.
6410
6411 if Ekind (Formal) /= E_In_Parameter then
6412 if Present (P_Formal) then
6413 Formal_Type := Etype (P_Formal);
6414 else
6415 Formal_Type := Etype (Formal);
6416 end if;
6417
5d09245e
AC
6418 -- Do not produce extra formals for Unchecked_Union parameters.
6419 -- Jump directly to the end of the loop.
6420
6421 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6422 goto Skip_Extra_Formal_Generation;
6423 end if;
6424
996ae0b0
RK
6425 if not Has_Discriminants (Formal_Type)
6426 and then Ekind (Formal_Type) in Private_Kind
6427 and then Present (Underlying_Type (Formal_Type))
6428 then
6429 Formal_Type := Underlying_Type (Formal_Type);
6430 end if;
6431
5e5db3b4
GD
6432 -- Suppress the extra formal if formal's subtype is constrained or
6433 -- indefinite, or we're compiling for Ada 2012 and the underlying
6434 -- type is tagged and limited. In Ada 2012, a limited tagged type
6435 -- can have defaulted discriminants, but 'Constrained is required
6436 -- to return True, so the formal is never needed (see AI05-0214).
6437 -- Note that this ensures consistency of calling sequences for
6438 -- dispatching operations when some types in a class have defaults
6439 -- on discriminants and others do not (and requiring the extra
6440 -- formal would introduce distributed overhead).
6441
996ae0b0 6442 if Has_Discriminants (Formal_Type)
f937473f
RD
6443 and then not Is_Constrained (Formal_Type)
6444 and then not Is_Indefinite_Subtype (Formal_Type)
5e5db3b4
GD
6445 and then (Ada_Version < Ada_2012
6446 or else
6447 not (Is_Tagged_Type (Underlying_Type (Formal_Type))
6448 and then Is_Limited_Type (Formal_Type)))
996ae0b0
RK
6449 then
6450 Set_Extra_Constrained
d92eccc3 6451 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
996ae0b0
RK
6452 end if;
6453 end if;
6454
0a36105d
JM
6455 -- Create extra formal for supporting accessibility checking. This
6456 -- is done for both anonymous access formals and formals of named
6457 -- access types that are marked as controlling formals. The latter
6458 -- case can occur when Expand_Dispatching_Call creates a subprogram
6459 -- type and substitutes the types of access-to-class-wide actuals
6460 -- for the anonymous access-to-specific-type of controlling formals.
5d37ba92
ES
6461 -- Base_Type is applied because in cases where there is a null
6462 -- exclusion the formal may have an access subtype.
996ae0b0
RK
6463
6464 -- This is suppressed if we specifically suppress accessibility
f937473f 6465 -- checks at the package level for either the subprogram, or the
fbf5a39b
AC
6466 -- package in which it resides. However, we do not suppress it
6467 -- simply if the scope has accessibility checks suppressed, since
6468 -- this could cause trouble when clients are compiled with a
6469 -- different suppression setting. The explicit checks at the
6470 -- package level are safe from this point of view.
996ae0b0 6471
5d37ba92 6472 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
0a36105d 6473 or else (Is_Controlling_Formal (Formal)
5d37ba92 6474 and then Is_Access_Type (Base_Type (Etype (Formal)))))
996ae0b0 6475 and then not
fbf5a39b 6476 (Explicit_Suppress (E, Accessibility_Check)
996ae0b0 6477 or else
fbf5a39b 6478 Explicit_Suppress (Scope (E), Accessibility_Check))
996ae0b0 6479 and then
c8ef728f 6480 (No (P_Formal)
996ae0b0
RK
6481 or else Present (Extra_Accessibility (P_Formal)))
6482 then
811c6a85 6483 Set_Extra_Accessibility
d92eccc3 6484 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
996ae0b0
RK
6485 end if;
6486
5d09245e
AC
6487 -- This label is required when skipping extra formal generation for
6488 -- Unchecked_Union parameters.
6489
6490 <<Skip_Extra_Formal_Generation>>
6491
f937473f
RD
6492 if Present (P_Formal) then
6493 Next_Formal (P_Formal);
6494 end if;
6495
996ae0b0
RK
6496 Next_Formal (Formal);
6497 end loop;
ec4867fa 6498
63585f75
SB
6499 <<Test_For_Func_Result_Extras>>
6500
6501 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6502 -- function call is ... determined by the point of call ...".
6503
6504 if Needs_Result_Accessibility_Level (E) then
6505 Set_Extra_Accessibility_Of_Result
6506 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6507 end if;
19590d70 6508
ec4867fa 6509 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
f937473f
RD
6510 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6511
0791fbe9 6512 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
ec4867fa 6513 declare
f937473f 6514 Result_Subt : constant Entity_Id := Etype (E);
1a36a0cd 6515 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
2fcc44fa 6516 Formal_Typ : Entity_Id;
f937473f 6517
2fcc44fa 6518 Discard : Entity_Id;
f937473f 6519 pragma Warnings (Off, Discard);
ec4867fa
ES
6520
6521 begin
f937473f 6522 -- In the case of functions with unconstrained result subtypes,
9a1bc6d5
AC
6523 -- add a 4-state formal indicating whether the return object is
6524 -- allocated by the caller (1), or should be allocated by the
6525 -- callee on the secondary stack (2), in the global heap (3), or
6526 -- in a user-defined storage pool (4). For the moment we just use
6527 -- Natural for the type of this formal. Note that this formal
6528 -- isn't usually needed in the case where the result subtype is
6529 -- constrained, but it is needed when the function has a tagged
6530 -- result, because generally such functions can be called in a
6531 -- dispatching context and such calls must be handled like calls
6532 -- to a class-wide function.
0a36105d 6533
1bb6e262 6534 if Needs_BIP_Alloc_Form (E) then
f937473f
RD
6535 Discard :=
6536 Add_Extra_Formal
6537 (E, Standard_Natural,
6538 E, BIP_Formal_Suffix (BIP_Alloc_Form));
200b7162 6539
8417f4b2 6540 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
3e452820
AC
6541 -- use a user-defined pool. This formal is not added on
6542 -- .NET/JVM/ZFP as those targets do not support pools.
200b7162 6543
ea10ca9c
AC
6544 if VM_Target = No_VM
6545 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 6546 then
8417f4b2
AC
6547 Discard :=
6548 Add_Extra_Formal
6549 (E, RTE (RE_Root_Storage_Pool_Ptr),
6550 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6551 end if;
f937473f 6552 end if;
ec4867fa 6553
df3e68b1 6554 -- In the case of functions whose result type needs finalization,
ca5af305 6555 -- add an extra formal which represents the finalization master.
df3e68b1 6556
ca5af305 6557 if Needs_BIP_Finalization_Master (E) then
f937473f
RD
6558 Discard :=
6559 Add_Extra_Formal
ca5af305
AC
6560 (E, RTE (RE_Finalization_Master_Ptr),
6561 E, BIP_Formal_Suffix (BIP_Finalization_Master));
f937473f
RD
6562 end if;
6563
94bbf008
AC
6564 -- When the result type contains tasks, add two extra formals: the
6565 -- master of the tasks to be created, and the caller's activation
6566 -- chain.
f937473f 6567
1a36a0cd 6568 if Has_Task (Full_Subt) then
f937473f
RD
6569 Discard :=
6570 Add_Extra_Formal
6571 (E, RTE (RE_Master_Id),
af89615f 6572 E, BIP_Formal_Suffix (BIP_Task_Master));
f937473f
RD
6573 Discard :=
6574 Add_Extra_Formal
6575 (E, RTE (RE_Activation_Chain_Access),
6576 E, BIP_Formal_Suffix (BIP_Activation_Chain));
6577 end if;
ec4867fa 6578
f937473f
RD
6579 -- All build-in-place functions get an extra formal that will be
6580 -- passed the address of the return object within the caller.
ec4867fa 6581
1a36a0cd
AC
6582 Formal_Typ :=
6583 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
ec4867fa 6584
1a36a0cd
AC
6585 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
6586 Set_Etype (Formal_Typ, Formal_Typ);
6587 Set_Depends_On_Private
6588 (Formal_Typ, Has_Private_Component (Formal_Typ));
6589 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
6590 Set_Is_Access_Constant (Formal_Typ, False);
ec4867fa 6591
1a36a0cd
AC
6592 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
6593 -- the designated type comes from the limited view (for back-end
6594 -- purposes).
ec4867fa 6595
1a36a0cd 6596 Set_From_With_Type (Formal_Typ, From_With_Type (Result_Subt));
f937473f 6597
1a36a0cd
AC
6598 Layout_Type (Formal_Typ);
6599
6600 Discard :=
6601 Add_Extra_Formal
6602 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
ec4867fa
ES
6603 end;
6604 end if;
996ae0b0
RK
6605 end Create_Extra_Formals;
6606
6607 -----------------------------
6608 -- Enter_Overloaded_Entity --
6609 -----------------------------
6610
6611 procedure Enter_Overloaded_Entity (S : Entity_Id) is
6612 E : Entity_Id := Current_Entity_In_Scope (S);
6613 C_E : Entity_Id := Current_Entity (S);
6614
6615 begin
6616 if Present (E) then
6617 Set_Has_Homonym (E);
6618 Set_Has_Homonym (S);
6619 end if;
6620
6621 Set_Is_Immediately_Visible (S);
6622 Set_Scope (S, Current_Scope);
6623
6624 -- Chain new entity if front of homonym in current scope, so that
6625 -- homonyms are contiguous.
6626
6627 if Present (E)
6628 and then E /= C_E
6629 then
6630 while Homonym (C_E) /= E loop
6631 C_E := Homonym (C_E);
6632 end loop;
6633
6634 Set_Homonym (C_E, S);
6635
6636 else
6637 E := C_E;
6638 Set_Current_Entity (S);
6639 end if;
6640
6641 Set_Homonym (S, E);
6642
6643 Append_Entity (S, Current_Scope);
6644 Set_Public_Status (S);
6645
6646 if Debug_Flag_E then
6647 Write_Str ("New overloaded entity chain: ");
6648 Write_Name (Chars (S));
996ae0b0 6649
82c80734 6650 E := S;
996ae0b0
RK
6651 while Present (E) loop
6652 Write_Str (" "); Write_Int (Int (E));
6653 E := Homonym (E);
6654 end loop;
6655
6656 Write_Eol;
6657 end if;
6658
6659 -- Generate warning for hiding
6660
6661 if Warn_On_Hiding
6662 and then Comes_From_Source (S)
6663 and then In_Extended_Main_Source_Unit (S)
6664 then
6665 E := S;
6666 loop
6667 E := Homonym (E);
6668 exit when No (E);
6669
7fc53871
AC
6670 -- Warn unless genuine overloading. Do not emit warning on
6671 -- hiding predefined operators in Standard (these are either an
6672 -- (artifact of our implicit declarations, or simple noise) but
6673 -- keep warning on a operator defined on a local subtype, because
6674 -- of the real danger that different operators may be applied in
6675 -- various parts of the program.
996ae0b0 6676
1f250383
AC
6677 -- Note that if E and S have the same scope, there is never any
6678 -- hiding. Either the two conflict, and the program is illegal,
6679 -- or S is overriding an implicit inherited subprogram.
6680
6681 if Scope (E) /= Scope (S)
6682 and then (not Is_Overloadable (E)
8d606a78 6683 or else Subtype_Conformant (E, S))
f937473f
RD
6684 and then (Is_Immediately_Visible (E)
6685 or else
6686 Is_Potentially_Use_Visible (S))
996ae0b0 6687 then
7fc53871
AC
6688 if Scope (E) /= Standard_Standard then
6689 Error_Msg_Sloc := Sloc (E);
6690 Error_Msg_N ("declaration of & hides one#?", S);
6691
6692 elsif Nkind (S) = N_Defining_Operator_Symbol
6693 and then
1f250383 6694 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7fc53871
AC
6695 then
6696 Error_Msg_N
6697 ("declaration of & hides predefined operator?", S);
6698 end if;
996ae0b0
RK
6699 end if;
6700 end loop;
6701 end if;
6702 end Enter_Overloaded_Entity;
6703
e5a58fac
AC
6704 -----------------------------
6705 -- Check_Untagged_Equality --
6706 -----------------------------
6707
6708 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
6709 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
6710 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
6711 Obj_Decl : Node_Id;
6712
6713 begin
6714 if Nkind (Decl) = N_Subprogram_Declaration
6715 and then Is_Record_Type (Typ)
6716 and then not Is_Tagged_Type (Typ)
6717 then
21a5b575
AC
6718 -- If the type is not declared in a package, or if we are in the
6719 -- body of the package or in some other scope, the new operation is
6720 -- not primitive, and therefore legal, though suspicious. If the
6721 -- type is a generic actual (sub)type, the operation is not primitive
6722 -- either because the base type is declared elsewhere.
6723
e5a58fac 6724 if Is_Frozen (Typ) then
21a5b575
AC
6725 if Ekind (Scope (Typ)) /= E_Package
6726 or else Scope (Typ) /= Current_Scope
6727 then
6728 null;
e5a58fac 6729
21a5b575
AC
6730 elsif Is_Generic_Actual_Type (Typ) then
6731 null;
e5a58fac 6732
21a5b575 6733 elsif In_Package_Body (Scope (Typ)) then
ae6ede77
AC
6734 Error_Msg_NE
6735 ("equality operator must be declared "
6736 & "before type& is frozen", Eq_Op, Typ);
6737 Error_Msg_N
6738 ("\move declaration to package spec", Eq_Op);
21a5b575
AC
6739
6740 else
6741 Error_Msg_NE
6742 ("equality operator must be declared "
6743 & "before type& is frozen", Eq_Op, Typ);
6744
6745 Obj_Decl := Next (Parent (Typ));
6746 while Present (Obj_Decl)
6747 and then Obj_Decl /= Decl
6748 loop
6749 if Nkind (Obj_Decl) = N_Object_Declaration
6750 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
6751 then
6752 Error_Msg_NE ("type& is frozen by declaration?",
6753 Obj_Decl, Typ);
6754 Error_Msg_N
6755 ("\an equality operator cannot be declared after this "
a4640a39 6756 & "point (RM 4.5.2 (9.8)) (Ada 2012))?", Obj_Decl);
21a5b575
AC
6757 exit;
6758 end if;
6759
6760 Next (Obj_Decl);
6761 end loop;
6762 end if;
e5a58fac
AC
6763
6764 elsif not In_Same_List (Parent (Typ), Decl)
6765 and then not Is_Limited_Type (Typ)
6766 then
21a5b575
AC
6767
6768 -- This makes it illegal to have a primitive equality declared in
6769 -- the private part if the type is visible.
6770
e5a58fac
AC
6771 Error_Msg_N ("equality operator appears too late", Eq_Op);
6772 end if;
6773 end if;
6774 end Check_Untagged_Equality;
6775
996ae0b0
RK
6776 -----------------------------
6777 -- Find_Corresponding_Spec --
6778 -----------------------------
6779
d44202ba
HK
6780 function Find_Corresponding_Spec
6781 (N : Node_Id;
6782 Post_Error : Boolean := True) return Entity_Id
6783 is
996ae0b0
RK
6784 Spec : constant Node_Id := Specification (N);
6785 Designator : constant Entity_Id := Defining_Entity (Spec);
6786
6787 E : Entity_Id;
6788
6789 begin
6790 E := Current_Entity (Designator);
996ae0b0
RK
6791 while Present (E) loop
6792
6793 -- We are looking for a matching spec. It must have the same scope,
6794 -- and the same name, and either be type conformant, or be the case
6795 -- of a library procedure spec and its body (which belong to one
6796 -- another regardless of whether they are type conformant or not).
6797
6798 if Scope (E) = Current_Scope then
fbf5a39b
AC
6799 if Current_Scope = Standard_Standard
6800 or else (Ekind (E) = Ekind (Designator)
6801 and then Type_Conformant (E, Designator))
996ae0b0
RK
6802 then
6803 -- Within an instantiation, we know that spec and body are
6804 -- subtype conformant, because they were subtype conformant
6805 -- in the generic. We choose the subtype-conformant entity
6806 -- here as well, to resolve spurious ambiguities in the
6807 -- instance that were not present in the generic (i.e. when
6808 -- two different types are given the same actual). If we are
6809 -- looking for a spec to match a body, full conformance is
6810 -- expected.
6811
6812 if In_Instance then
6813 Set_Convention (Designator, Convention (E));
6814
0187b60e
AC
6815 -- Skip past subprogram bodies and subprogram renamings that
6816 -- may appear to have a matching spec, but that aren't fully
6817 -- conformant with it. That can occur in cases where an
6818 -- actual type causes unrelated homographs in the instance.
6819
6820 if Nkind_In (N, N_Subprogram_Body,
6821 N_Subprogram_Renaming_Declaration)
996ae0b0 6822 and then Present (Homonym (E))
c7b9d548 6823 and then not Fully_Conformant (Designator, E)
996ae0b0
RK
6824 then
6825 goto Next_Entity;
6826
c7b9d548 6827 elsif not Subtype_Conformant (Designator, E) then
996ae0b0
RK
6828 goto Next_Entity;
6829 end if;
6830 end if;
6831
25ebc085
AC
6832 -- Ada 2012 (AI05-0165): For internally generated bodies of
6833 -- null procedures locate the internally generated spec. We
6834 -- enforce mode conformance since a tagged type may inherit
6835 -- from interfaces several null primitives which differ only
6836 -- in the mode of the formals.
6837
6838 if not (Comes_From_Source (E))
6839 and then Is_Null_Procedure (E)
6840 and then not Mode_Conformant (Designator, E)
6841 then
6842 null;
6843
6844 elsif not Has_Completion (E) then
996ae0b0
RK
6845 if Nkind (N) /= N_Subprogram_Body_Stub then
6846 Set_Corresponding_Spec (N, E);
6847 end if;
6848
6849 Set_Has_Completion (E);
6850 return E;
6851
6852 elsif Nkind (Parent (N)) = N_Subunit then
6853
6854 -- If this is the proper body of a subunit, the completion
6855 -- flag is set when analyzing the stub.
6856
6857 return E;
6858
81db9d77
ES
6859 -- If E is an internal function with a controlling result
6860 -- that was created for an operation inherited by a null
6861 -- extension, it may be overridden by a body without a previous
6862 -- spec (one more reason why these should be shunned). In that
1366997b
AC
6863 -- case remove the generated body if present, because the
6864 -- current one is the explicit overriding.
81db9d77
ES
6865
6866 elsif Ekind (E) = E_Function
0791fbe9 6867 and then Ada_Version >= Ada_2005
81db9d77
ES
6868 and then not Comes_From_Source (E)
6869 and then Has_Controlling_Result (E)
6870 and then Is_Null_Extension (Etype (E))
6871 and then Comes_From_Source (Spec)
6872 then
6873 Set_Has_Completion (E, False);
6874
1366997b
AC
6875 if Expander_Active
6876 and then Nkind (Parent (E)) = N_Function_Specification
6877 then
81db9d77
ES
6878 Remove
6879 (Unit_Declaration_Node
1366997b
AC
6880 (Corresponding_Body (Unit_Declaration_Node (E))));
6881
81db9d77
ES
6882 return E;
6883
1366997b
AC
6884 -- If expansion is disabled, or if the wrapper function has
6885 -- not been generated yet, this a late body overriding an
6886 -- inherited operation, or it is an overriding by some other
6887 -- declaration before the controlling result is frozen. In
6888 -- either case this is a declaration of a new entity.
81db9d77
ES
6889
6890 else
6891 return Empty;
6892 end if;
6893
d44202ba
HK
6894 -- If the body already exists, then this is an error unless
6895 -- the previous declaration is the implicit declaration of a
756ef2a0
AC
6896 -- derived subprogram. It is also legal for an instance to
6897 -- contain type conformant overloadable declarations (but the
6898 -- generic declaration may not), per 8.3(26/2).
996ae0b0
RK
6899
6900 elsif No (Alias (E))
6901 and then not Is_Intrinsic_Subprogram (E)
6902 and then not In_Instance
d44202ba 6903 and then Post_Error
996ae0b0
RK
6904 then
6905 Error_Msg_Sloc := Sloc (E);
8dbd1460 6906
07fc65c4
GB
6907 if Is_Imported (E) then
6908 Error_Msg_NE
6909 ("body not allowed for imported subprogram & declared#",
6910 N, E);
6911 else
6912 Error_Msg_NE ("duplicate body for & declared#", N, E);
6913 end if;
996ae0b0
RK
6914 end if;
6915
d44202ba
HK
6916 -- Child units cannot be overloaded, so a conformance mismatch
6917 -- between body and a previous spec is an error.
6918
996ae0b0
RK
6919 elsif Is_Child_Unit (E)
6920 and then
6921 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
6922 and then
5d37ba92 6923 Nkind (Parent (Unit_Declaration_Node (Designator))) =
d44202ba
HK
6924 N_Compilation_Unit
6925 and then Post_Error
996ae0b0 6926 then
996ae0b0
RK
6927 Error_Msg_N
6928 ("body of child unit does not match previous declaration", N);
6929 end if;
6930 end if;
6931
6932 <<Next_Entity>>
6933 E := Homonym (E);
6934 end loop;
6935
6936 -- On exit, we know that no previous declaration of subprogram exists
6937
6938 return Empty;
6939 end Find_Corresponding_Spec;
6940
6941 ----------------------
6942 -- Fully_Conformant --
6943 ----------------------
6944
6945 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6946 Result : Boolean;
996ae0b0
RK
6947 begin
6948 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
6949 return Result;
6950 end Fully_Conformant;
6951
6952 ----------------------------------
6953 -- Fully_Conformant_Expressions --
6954 ----------------------------------
6955
6956 function Fully_Conformant_Expressions
6957 (Given_E1 : Node_Id;
d05ef0ab 6958 Given_E2 : Node_Id) return Boolean
996ae0b0
RK
6959 is
6960 E1 : constant Node_Id := Original_Node (Given_E1);
6961 E2 : constant Node_Id := Original_Node (Given_E2);
6962 -- We always test conformance on original nodes, since it is possible
6963 -- for analysis and/or expansion to make things look as though they
6964 -- conform when they do not, e.g. by converting 1+2 into 3.
6965
6966 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
6967 renames Fully_Conformant_Expressions;
6968
6969 function FCL (L1, L2 : List_Id) return Boolean;
6970 -- Compare elements of two lists for conformance. Elements have to
6971 -- be conformant, and actuals inserted as default parameters do not
6972 -- match explicit actuals with the same value.
6973
6974 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
e895b435 6975 -- Compare an operator node with a function call
996ae0b0
RK
6976
6977 ---------
6978 -- FCL --
6979 ---------
6980
6981 function FCL (L1, L2 : List_Id) return Boolean is
6982 N1, N2 : Node_Id;
6983
6984 begin
6985 if L1 = No_List then
6986 N1 := Empty;
6987 else
6988 N1 := First (L1);
6989 end if;
6990
6991 if L2 = No_List then
6992 N2 := Empty;
6993 else
6994 N2 := First (L2);
6995 end if;
6996
6997 -- Compare two lists, skipping rewrite insertions (we want to
6998 -- compare the original trees, not the expanded versions!)
6999
7000 loop
7001 if Is_Rewrite_Insertion (N1) then
7002 Next (N1);
7003 elsif Is_Rewrite_Insertion (N2) then
7004 Next (N2);
7005 elsif No (N1) then
7006 return No (N2);
7007 elsif No (N2) then
7008 return False;
7009 elsif not FCE (N1, N2) then
7010 return False;
7011 else
7012 Next (N1);
7013 Next (N2);
7014 end if;
7015 end loop;
7016 end FCL;
7017
7018 ---------
7019 -- FCO --
7020 ---------
7021
7022 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7023 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7024 Act : Node_Id;
7025
7026 begin
7027 if No (Actuals)
7028 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7029 then
7030 return False;
7031
7032 else
7033 Act := First (Actuals);
7034
7035 if Nkind (Op_Node) in N_Binary_Op then
996ae0b0
RK
7036 if not FCE (Left_Opnd (Op_Node), Act) then
7037 return False;
7038 end if;
7039
7040 Next (Act);
7041 end if;
7042
7043 return Present (Act)
7044 and then FCE (Right_Opnd (Op_Node), Act)
7045 and then No (Next (Act));
7046 end if;
7047 end FCO;
7048
7049 -- Start of processing for Fully_Conformant_Expressions
7050
7051 begin
7052 -- Non-conformant if paren count does not match. Note: if some idiot
7053 -- complains that we don't do this right for more than 3 levels of
0a36105d 7054 -- parentheses, they will be treated with the respect they deserve!
996ae0b0
RK
7055
7056 if Paren_Count (E1) /= Paren_Count (E2) then
7057 return False;
7058
82c80734
RD
7059 -- If same entities are referenced, then they are conformant even if
7060 -- they have different forms (RM 8.3.1(19-20)).
996ae0b0
RK
7061
7062 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7063 if Present (Entity (E1)) then
7064 return Entity (E1) = Entity (E2)
7065 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7066 and then Ekind (Entity (E1)) = E_Discriminant
7067 and then Ekind (Entity (E2)) = E_In_Parameter);
7068
7069 elsif Nkind (E1) = N_Expanded_Name
7070 and then Nkind (E2) = N_Expanded_Name
7071 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7072 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7073 then
7074 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7075
7076 else
7077 -- Identifiers in component associations don't always have
7078 -- entities, but their names must conform.
7079
7080 return Nkind (E1) = N_Identifier
7081 and then Nkind (E2) = N_Identifier
7082 and then Chars (E1) = Chars (E2);
7083 end if;
7084
7085 elsif Nkind (E1) = N_Character_Literal
7086 and then Nkind (E2) = N_Expanded_Name
7087 then
7088 return Nkind (Selector_Name (E2)) = N_Character_Literal
7089 and then Chars (E1) = Chars (Selector_Name (E2));
7090
7091 elsif Nkind (E2) = N_Character_Literal
7092 and then Nkind (E1) = N_Expanded_Name
7093 then
7094 return Nkind (Selector_Name (E1)) = N_Character_Literal
7095 and then Chars (E2) = Chars (Selector_Name (E1));
7096
7097 elsif Nkind (E1) in N_Op
7098 and then Nkind (E2) = N_Function_Call
7099 then
7100 return FCO (E1, E2);
7101
7102 elsif Nkind (E2) in N_Op
7103 and then Nkind (E1) = N_Function_Call
7104 then
7105 return FCO (E2, E1);
7106
7107 -- Otherwise we must have the same syntactic entity
7108
7109 elsif Nkind (E1) /= Nkind (E2) then
7110 return False;
7111
7112 -- At this point, we specialize by node type
7113
7114 else
7115 case Nkind (E1) is
7116
7117 when N_Aggregate =>
7118 return
7119 FCL (Expressions (E1), Expressions (E2))
19d846a0
RD
7120 and then
7121 FCL (Component_Associations (E1),
7122 Component_Associations (E2));
996ae0b0
RK
7123
7124 when N_Allocator =>
7125 if Nkind (Expression (E1)) = N_Qualified_Expression
7126 or else
7127 Nkind (Expression (E2)) = N_Qualified_Expression
7128 then
7129 return FCE (Expression (E1), Expression (E2));
7130
7131 -- Check that the subtype marks and any constraints
7132 -- are conformant
7133
7134 else
7135 declare
7136 Indic1 : constant Node_Id := Expression (E1);
7137 Indic2 : constant Node_Id := Expression (E2);
7138 Elt1 : Node_Id;
7139 Elt2 : Node_Id;
7140
7141 begin
7142 if Nkind (Indic1) /= N_Subtype_Indication then
7143 return
7144 Nkind (Indic2) /= N_Subtype_Indication
7145 and then Entity (Indic1) = Entity (Indic2);
7146
7147 elsif Nkind (Indic2) /= N_Subtype_Indication then
7148 return
7149 Nkind (Indic1) /= N_Subtype_Indication
7150 and then Entity (Indic1) = Entity (Indic2);
7151
7152 else
7153 if Entity (Subtype_Mark (Indic1)) /=
7154 Entity (Subtype_Mark (Indic2))
7155 then
7156 return False;
7157 end if;
7158
7159 Elt1 := First (Constraints (Constraint (Indic1)));
7160 Elt2 := First (Constraints (Constraint (Indic2)));
996ae0b0
RK
7161 while Present (Elt1) and then Present (Elt2) loop
7162 if not FCE (Elt1, Elt2) then
7163 return False;
7164 end if;
7165
7166 Next (Elt1);
7167 Next (Elt2);
7168 end loop;
7169
7170 return True;
7171 end if;
7172 end;
7173 end if;
7174
7175 when N_Attribute_Reference =>
7176 return
7177 Attribute_Name (E1) = Attribute_Name (E2)
7178 and then FCL (Expressions (E1), Expressions (E2));
7179
7180 when N_Binary_Op =>
7181 return
7182 Entity (E1) = Entity (E2)
7183 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7184 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7185
514d0fc5 7186 when N_Short_Circuit | N_Membership_Test =>
996ae0b0
RK
7187 return
7188 FCE (Left_Opnd (E1), Left_Opnd (E2))
7189 and then
7190 FCE (Right_Opnd (E1), Right_Opnd (E2));
7191
19d846a0
RD
7192 when N_Case_Expression =>
7193 declare
7194 Alt1 : Node_Id;
7195 Alt2 : Node_Id;
7196
7197 begin
7198 if not FCE (Expression (E1), Expression (E2)) then
7199 return False;
7200
7201 else
7202 Alt1 := First (Alternatives (E1));
7203 Alt2 := First (Alternatives (E2));
7204 loop
7205 if Present (Alt1) /= Present (Alt2) then
7206 return False;
7207 elsif No (Alt1) then
7208 return True;
7209 end if;
7210
7211 if not FCE (Expression (Alt1), Expression (Alt2))
7212 or else not FCL (Discrete_Choices (Alt1),
7213 Discrete_Choices (Alt2))
7214 then
7215 return False;
7216 end if;
7217
7218 Next (Alt1);
7219 Next (Alt2);
7220 end loop;
7221 end if;
7222 end;
7223
996ae0b0
RK
7224 when N_Character_Literal =>
7225 return
7226 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7227
7228 when N_Component_Association =>
7229 return
7230 FCL (Choices (E1), Choices (E2))
19d846a0
RD
7231 and then
7232 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7233
7234 when N_Conditional_Expression =>
7235 return
7236 FCL (Expressions (E1), Expressions (E2));
7237
7238 when N_Explicit_Dereference =>
7239 return
7240 FCE (Prefix (E1), Prefix (E2));
7241
7242 when N_Extension_Aggregate =>
7243 return
7244 FCL (Expressions (E1), Expressions (E2))
7245 and then Null_Record_Present (E1) =
7246 Null_Record_Present (E2)
7247 and then FCL (Component_Associations (E1),
7248 Component_Associations (E2));
7249
7250 when N_Function_Call =>
7251 return
7252 FCE (Name (E1), Name (E2))
19d846a0
RD
7253 and then
7254 FCL (Parameter_Associations (E1),
7255 Parameter_Associations (E2));
996ae0b0
RK
7256
7257 when N_Indexed_Component =>
7258 return
7259 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7260 and then
7261 FCL (Expressions (E1), Expressions (E2));
996ae0b0
RK
7262
7263 when N_Integer_Literal =>
7264 return (Intval (E1) = Intval (E2));
7265
7266 when N_Null =>
7267 return True;
7268
7269 when N_Operator_Symbol =>
7270 return
7271 Chars (E1) = Chars (E2);
7272
7273 when N_Others_Choice =>
7274 return True;
7275
7276 when N_Parameter_Association =>
7277 return
996ae0b0
RK
7278 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7279 and then FCE (Explicit_Actual_Parameter (E1),
7280 Explicit_Actual_Parameter (E2));
7281
7282 when N_Qualified_Expression =>
7283 return
7284 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7285 and then
7286 FCE (Expression (E1), Expression (E2));
996ae0b0 7287
2010d078
AC
7288 when N_Quantified_Expression =>
7289 if not FCE (Condition (E1), Condition (E2)) then
7290 return False;
7291 end if;
7292
7293 if Present (Loop_Parameter_Specification (E1))
7294 and then Present (Loop_Parameter_Specification (E2))
7295 then
7296 declare
7297 L1 : constant Node_Id :=
7298 Loop_Parameter_Specification (E1);
7299 L2 : constant Node_Id :=
7300 Loop_Parameter_Specification (E2);
7301
7302 begin
7303 return
7304 Reverse_Present (L1) = Reverse_Present (L2)
7305 and then
7306 FCE (Defining_Identifier (L1),
7307 Defining_Identifier (L2))
7308 and then
7309 FCE (Discrete_Subtype_Definition (L1),
7310 Discrete_Subtype_Definition (L2));
7311 end;
7312
7313 else -- quantified expression with an iterator
7314 declare
7315 I1 : constant Node_Id := Iterator_Specification (E1);
7316 I2 : constant Node_Id := Iterator_Specification (E2);
7317
7318 begin
7319 return
7320 FCE (Defining_Identifier (I1),
7321 Defining_Identifier (I2))
7322 and then
7323 Of_Present (I1) = Of_Present (I2)
7324 and then
7325 Reverse_Present (I1) = Reverse_Present (I2)
7326 and then FCE (Name (I1), Name (I2))
7327 and then FCE (Subtype_Indication (I1),
7328 Subtype_Indication (I2));
7329 end;
7330 end if;
7331
996ae0b0
RK
7332 when N_Range =>
7333 return
7334 FCE (Low_Bound (E1), Low_Bound (E2))
19d846a0
RD
7335 and then
7336 FCE (High_Bound (E1), High_Bound (E2));
996ae0b0
RK
7337
7338 when N_Real_Literal =>
7339 return (Realval (E1) = Realval (E2));
7340
7341 when N_Selected_Component =>
7342 return
7343 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7344 and then
7345 FCE (Selector_Name (E1), Selector_Name (E2));
996ae0b0
RK
7346
7347 when N_Slice =>
7348 return
7349 FCE (Prefix (E1), Prefix (E2))
19d846a0
RD
7350 and then
7351 FCE (Discrete_Range (E1), Discrete_Range (E2));
996ae0b0
RK
7352
7353 when N_String_Literal =>
7354 declare
7355 S1 : constant String_Id := Strval (E1);
7356 S2 : constant String_Id := Strval (E2);
7357 L1 : constant Nat := String_Length (S1);
7358 L2 : constant Nat := String_Length (S2);
7359
7360 begin
7361 if L1 /= L2 then
7362 return False;
7363
7364 else
7365 for J in 1 .. L1 loop
7366 if Get_String_Char (S1, J) /=
7367 Get_String_Char (S2, J)
7368 then
7369 return False;
7370 end if;
7371 end loop;
7372
7373 return True;
7374 end if;
7375 end;
7376
7377 when N_Type_Conversion =>
7378 return
7379 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7380 and then
7381 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7382
7383 when N_Unary_Op =>
7384 return
7385 Entity (E1) = Entity (E2)
19d846a0
RD
7386 and then
7387 FCE (Right_Opnd (E1), Right_Opnd (E2));
996ae0b0
RK
7388
7389 when N_Unchecked_Type_Conversion =>
7390 return
7391 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
19d846a0
RD
7392 and then
7393 FCE (Expression (E1), Expression (E2));
996ae0b0
RK
7394
7395 -- All other node types cannot appear in this context. Strictly
7396 -- we should raise a fatal internal error. Instead we just ignore
7397 -- the nodes. This means that if anyone makes a mistake in the
7398 -- expander and mucks an expression tree irretrievably, the
7399 -- result will be a failure to detect a (probably very obscure)
7400 -- case of non-conformance, which is better than bombing on some
7401 -- case where two expressions do in fact conform.
7402
7403 when others =>
7404 return True;
7405
7406 end case;
7407 end if;
7408 end Fully_Conformant_Expressions;
7409
fbf5a39b
AC
7410 ----------------------------------------
7411 -- Fully_Conformant_Discrete_Subtypes --
7412 ----------------------------------------
7413
7414 function Fully_Conformant_Discrete_Subtypes
7415 (Given_S1 : Node_Id;
d05ef0ab 7416 Given_S2 : Node_Id) return Boolean
fbf5a39b
AC
7417 is
7418 S1 : constant Node_Id := Original_Node (Given_S1);
7419 S2 : constant Node_Id := Original_Node (Given_S2);
7420
7421 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
82c80734
RD
7422 -- Special-case for a bound given by a discriminant, which in the body
7423 -- is replaced with the discriminal of the enclosing type.
fbf5a39b
AC
7424
7425 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
e895b435 7426 -- Check both bounds
fbf5a39b 7427
5d37ba92
ES
7428 -----------------------
7429 -- Conforming_Bounds --
7430 -----------------------
7431
fbf5a39b
AC
7432 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
7433 begin
7434 if Is_Entity_Name (B1)
7435 and then Is_Entity_Name (B2)
7436 and then Ekind (Entity (B1)) = E_Discriminant
7437 then
7438 return Chars (B1) = Chars (B2);
7439
7440 else
7441 return Fully_Conformant_Expressions (B1, B2);
7442 end if;
7443 end Conforming_Bounds;
7444
5d37ba92
ES
7445 -----------------------
7446 -- Conforming_Ranges --
7447 -----------------------
7448
fbf5a39b
AC
7449 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
7450 begin
7451 return
7452 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
7453 and then
7454 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
7455 end Conforming_Ranges;
7456
7457 -- Start of processing for Fully_Conformant_Discrete_Subtypes
7458
7459 begin
7460 if Nkind (S1) /= Nkind (S2) then
7461 return False;
7462
7463 elsif Is_Entity_Name (S1) then
7464 return Entity (S1) = Entity (S2);
7465
7466 elsif Nkind (S1) = N_Range then
7467 return Conforming_Ranges (S1, S2);
7468
7469 elsif Nkind (S1) = N_Subtype_Indication then
7470 return
7471 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
7472 and then
7473 Conforming_Ranges
7474 (Range_Expression (Constraint (S1)),
7475 Range_Expression (Constraint (S2)));
7476 else
7477 return True;
7478 end if;
7479 end Fully_Conformant_Discrete_Subtypes;
7480
996ae0b0
RK
7481 --------------------
7482 -- Install_Entity --
7483 --------------------
7484
7485 procedure Install_Entity (E : Entity_Id) is
7486 Prev : constant Entity_Id := Current_Entity (E);
996ae0b0
RK
7487 begin
7488 Set_Is_Immediately_Visible (E);
7489 Set_Current_Entity (E);
7490 Set_Homonym (E, Prev);
7491 end Install_Entity;
7492
7493 ---------------------
7494 -- Install_Formals --
7495 ---------------------
7496
7497 procedure Install_Formals (Id : Entity_Id) is
7498 F : Entity_Id;
996ae0b0
RK
7499 begin
7500 F := First_Formal (Id);
996ae0b0
RK
7501 while Present (F) loop
7502 Install_Entity (F);
7503 Next_Formal (F);
7504 end loop;
7505 end Install_Formals;
7506
ce2b6ba5
JM
7507 -----------------------------
7508 -- Is_Interface_Conformant --
7509 -----------------------------
7510
7511 function Is_Interface_Conformant
7512 (Tagged_Type : Entity_Id;
7513 Iface_Prim : Entity_Id;
7514 Prim : Entity_Id) return Boolean
7515 is
fceeaab6
ES
7516 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
7517 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
7518
25ebc085
AC
7519 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
7520 -- Return the controlling formal of Prim
7521
59e6b23c
AC
7522 ------------------------
7523 -- Controlling_Formal --
7524 ------------------------
7525
25ebc085
AC
7526 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
7527 E : Entity_Id := First_Entity (Prim);
59e6b23c 7528
25ebc085
AC
7529 begin
7530 while Present (E) loop
7531 if Is_Formal (E) and then Is_Controlling_Formal (E) then
7532 return E;
7533 end if;
7534
7535 Next_Entity (E);
7536 end loop;
7537
7538 return Empty;
7539 end Controlling_Formal;
7540
7541 -- Local variables
7542
7543 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
7544 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
7545
7546 -- Start of processing for Is_Interface_Conformant
7547
ce2b6ba5
JM
7548 begin
7549 pragma Assert (Is_Subprogram (Iface_Prim)
7550 and then Is_Subprogram (Prim)
7551 and then Is_Dispatching_Operation (Iface_Prim)
7552 and then Is_Dispatching_Operation (Prim));
7553
fceeaab6 7554 pragma Assert (Is_Interface (Iface)
ce2b6ba5
JM
7555 or else (Present (Alias (Iface_Prim))
7556 and then
7557 Is_Interface
7558 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
7559
7560 if Prim = Iface_Prim
7561 or else not Is_Subprogram (Prim)
7562 or else Ekind (Prim) /= Ekind (Iface_Prim)
7563 or else not Is_Dispatching_Operation (Prim)
7564 or else Scope (Prim) /= Scope (Tagged_Type)
fceeaab6
ES
7565 or else No (Typ)
7566 or else Base_Type (Typ) /= Tagged_Type
ce2b6ba5
JM
7567 or else not Primitive_Names_Match (Iface_Prim, Prim)
7568 then
7569 return False;
7570
25ebc085
AC
7571 -- The mode of the controlling formals must match
7572
7573 elsif Present (Iface_Ctrl_F)
7574 and then Present (Prim_Ctrl_F)
7575 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
7576 then
7577 return False;
7578
7579 -- Case of a procedure, or a function whose result type matches the
7580 -- result type of the interface primitive, or a function that has no
7581 -- controlling result (I or access I).
ce2b6ba5
JM
7582
7583 elsif Ekind (Iface_Prim) = E_Procedure
7584 or else Etype (Prim) = Etype (Iface_Prim)
fceeaab6 7585 or else not Has_Controlling_Result (Prim)
ce2b6ba5 7586 then
b4d7b435
AC
7587 return Type_Conformant
7588 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
ce2b6ba5 7589
fceeaab6
ES
7590 -- Case of a function returning an interface, or an access to one.
7591 -- Check that the return types correspond.
ce2b6ba5 7592
fceeaab6
ES
7593 elsif Implements_Interface (Typ, Iface) then
7594 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9a3c9940
RD
7595 /=
7596 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
fceeaab6
ES
7597 then
7598 return False;
fceeaab6
ES
7599 else
7600 return
ce2b6ba5
JM
7601 Type_Conformant (Prim, Iface_Prim,
7602 Skip_Controlling_Formals => True);
fceeaab6 7603 end if;
ce2b6ba5 7604
fceeaab6
ES
7605 else
7606 return False;
ce2b6ba5 7607 end if;
ce2b6ba5
JM
7608 end Is_Interface_Conformant;
7609
996ae0b0
RK
7610 ---------------------------------
7611 -- Is_Non_Overriding_Operation --
7612 ---------------------------------
7613
7614 function Is_Non_Overriding_Operation
7615 (Prev_E : Entity_Id;
d05ef0ab 7616 New_E : Entity_Id) return Boolean
996ae0b0
RK
7617 is
7618 Formal : Entity_Id;
7619 F_Typ : Entity_Id;
7620 G_Typ : Entity_Id := Empty;
7621
7622 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
5d37ba92
ES
7623 -- If F_Type is a derived type associated with a generic actual subtype,
7624 -- then return its Generic_Parent_Type attribute, else return Empty.
996ae0b0
RK
7625
7626 function Types_Correspond
7627 (P_Type : Entity_Id;
d05ef0ab 7628 N_Type : Entity_Id) return Boolean;
82c80734
RD
7629 -- Returns true if and only if the types (or designated types in the
7630 -- case of anonymous access types) are the same or N_Type is derived
7631 -- directly or indirectly from P_Type.
996ae0b0
RK
7632
7633 -----------------------------
7634 -- Get_Generic_Parent_Type --
7635 -----------------------------
7636
7637 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
7638 G_Typ : Entity_Id;
702d2020 7639 Defn : Node_Id;
996ae0b0
RK
7640 Indic : Node_Id;
7641
7642 begin
7643 if Is_Derived_Type (F_Typ)
7644 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
7645 then
82c80734
RD
7646 -- The tree must be traversed to determine the parent subtype in
7647 -- the generic unit, which unfortunately isn't always available
7648 -- via semantic attributes. ??? (Note: The use of Original_Node
7649 -- is needed for cases where a full derived type has been
7650 -- rewritten.)
996ae0b0 7651
702d2020
AC
7652 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
7653 if Nkind (Defn) = N_Derived_Type_Definition then
7654 Indic := Subtype_Indication (Defn);
996ae0b0 7655
702d2020
AC
7656 if Nkind (Indic) = N_Subtype_Indication then
7657 G_Typ := Entity (Subtype_Mark (Indic));
7658 else
7659 G_Typ := Entity (Indic);
7660 end if;
996ae0b0 7661
702d2020
AC
7662 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
7663 and then Present (Generic_Parent_Type (Parent (G_Typ)))
7664 then
7665 return Generic_Parent_Type (Parent (G_Typ));
7666 end if;
996ae0b0
RK
7667 end if;
7668 end if;
7669
7670 return Empty;
7671 end Get_Generic_Parent_Type;
7672
7673 ----------------------
7674 -- Types_Correspond --
7675 ----------------------
7676
7677 function Types_Correspond
7678 (P_Type : Entity_Id;
d05ef0ab 7679 N_Type : Entity_Id) return Boolean
996ae0b0
RK
7680 is
7681 Prev_Type : Entity_Id := Base_Type (P_Type);
7682 New_Type : Entity_Id := Base_Type (N_Type);
7683
7684 begin
7685 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
7686 Prev_Type := Designated_Type (Prev_Type);
7687 end if;
7688
7689 if Ekind (New_Type) = E_Anonymous_Access_Type then
7690 New_Type := Designated_Type (New_Type);
7691 end if;
7692
7693 if Prev_Type = New_Type then
7694 return True;
7695
7696 elsif not Is_Class_Wide_Type (New_Type) then
7697 while Etype (New_Type) /= New_Type loop
7698 New_Type := Etype (New_Type);
7699 if New_Type = Prev_Type then
7700 return True;
7701 end if;
7702 end loop;
7703 end if;
7704 return False;
7705 end Types_Correspond;
7706
7707 -- Start of processing for Is_Non_Overriding_Operation
7708
7709 begin
82c80734
RD
7710 -- In the case where both operations are implicit derived subprograms
7711 -- then neither overrides the other. This can only occur in certain
7712 -- obscure cases (e.g., derivation from homographs created in a generic
7713 -- instantiation).
996ae0b0
RK
7714
7715 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
7716 return True;
7717
7718 elsif Ekind (Current_Scope) = E_Package
7719 and then Is_Generic_Instance (Current_Scope)
7720 and then In_Private_Part (Current_Scope)
7721 and then Comes_From_Source (New_E)
7722 then
702d2020
AC
7723 -- We examine the formals and result type of the inherited operation,
7724 -- to determine whether their type is derived from (the instance of)
7725 -- a generic type. The first such formal or result type is the one
7726 -- tested.
996ae0b0
RK
7727
7728 Formal := First_Formal (Prev_E);
996ae0b0
RK
7729 while Present (Formal) loop
7730 F_Typ := Base_Type (Etype (Formal));
7731
7732 if Ekind (F_Typ) = E_Anonymous_Access_Type then
7733 F_Typ := Designated_Type (F_Typ);
7734 end if;
7735
7736 G_Typ := Get_Generic_Parent_Type (F_Typ);
702d2020 7737 exit when Present (G_Typ);
996ae0b0
RK
7738
7739 Next_Formal (Formal);
7740 end loop;
7741
c8ef728f 7742 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
996ae0b0
RK
7743 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
7744 end if;
7745
7746 if No (G_Typ) then
7747 return False;
7748 end if;
7749
8dbd1460
AC
7750 -- If the generic type is a private type, then the original operation
7751 -- was not overriding in the generic, because there was no primitive
7752 -- operation to override.
996ae0b0
RK
7753
7754 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
7755 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8dbd1460 7756 N_Formal_Private_Type_Definition
996ae0b0
RK
7757 then
7758 return True;
7759
7760 -- The generic parent type is the ancestor of a formal derived
7761 -- type declaration. We need to check whether it has a primitive
7762 -- operation that should be overridden by New_E in the generic.
7763
7764 else
7765 declare
7766 P_Formal : Entity_Id;
7767 N_Formal : Entity_Id;
7768 P_Typ : Entity_Id;
7769 N_Typ : Entity_Id;
7770 P_Prim : Entity_Id;
7771 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
7772
7773 begin
7774 while Present (Prim_Elt) loop
7775 P_Prim := Node (Prim_Elt);
fbf5a39b 7776
996ae0b0
RK
7777 if Chars (P_Prim) = Chars (New_E)
7778 and then Ekind (P_Prim) = Ekind (New_E)
7779 then
7780 P_Formal := First_Formal (P_Prim);
7781 N_Formal := First_Formal (New_E);
7782 while Present (P_Formal) and then Present (N_Formal) loop
7783 P_Typ := Etype (P_Formal);
7784 N_Typ := Etype (N_Formal);
7785
7786 if not Types_Correspond (P_Typ, N_Typ) then
7787 exit;
7788 end if;
7789
7790 Next_Entity (P_Formal);
7791 Next_Entity (N_Formal);
7792 end loop;
7793
82c80734
RD
7794 -- Found a matching primitive operation belonging to the
7795 -- formal ancestor type, so the new subprogram is
7796 -- overriding.
996ae0b0 7797
c8ef728f
ES
7798 if No (P_Formal)
7799 and then No (N_Formal)
996ae0b0
RK
7800 and then (Ekind (New_E) /= E_Function
7801 or else
7802 Types_Correspond
7803 (Etype (P_Prim), Etype (New_E)))
7804 then
7805 return False;
7806 end if;
7807 end if;
7808
7809 Next_Elmt (Prim_Elt);
7810 end loop;
7811
82c80734
RD
7812 -- If no match found, then the new subprogram does not
7813 -- override in the generic (nor in the instance).
996ae0b0
RK
7814
7815 return True;
7816 end;
7817 end if;
7818 else
7819 return False;
7820 end if;
7821 end Is_Non_Overriding_Operation;
7822
beacce02
AC
7823 -------------------------------------
7824 -- List_Inherited_Pre_Post_Aspects --
7825 -------------------------------------
7826
7827 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
7828 begin
e606088a 7829 if Opt.List_Inherited_Aspects
beacce02
AC
7830 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
7831 then
7832 declare
7833 Inherited : constant Subprogram_List :=
7834 Inherited_Subprograms (E);
7835 P : Node_Id;
7836
7837 begin
7838 for J in Inherited'Range loop
dac3bede
YM
7839 P := Spec_PPC_List (Contract (Inherited (J)));
7840
beacce02
AC
7841 while Present (P) loop
7842 Error_Msg_Sloc := Sloc (P);
7843
7844 if Class_Present (P) and then not Split_PPC (P) then
7845 if Pragma_Name (P) = Name_Precondition then
7846 Error_Msg_N
7847 ("?info: & inherits `Pre''Class` aspect from #", E);
7848 else
7849 Error_Msg_N
7850 ("?info: & inherits `Post''Class` aspect from #", E);
7851 end if;
7852 end if;
7853
7854 P := Next_Pragma (P);
7855 end loop;
7856 end loop;
7857 end;
7858 end if;
7859 end List_Inherited_Pre_Post_Aspects;
7860
996ae0b0
RK
7861 ------------------------------
7862 -- Make_Inequality_Operator --
7863 ------------------------------
7864
7865 -- S is the defining identifier of an equality operator. We build a
7866 -- subprogram declaration with the right signature. This operation is
7867 -- intrinsic, because it is always expanded as the negation of the
7868 -- call to the equality function.
7869
7870 procedure Make_Inequality_Operator (S : Entity_Id) is
7871 Loc : constant Source_Ptr := Sloc (S);
7872 Decl : Node_Id;
7873 Formals : List_Id;
7874 Op_Name : Entity_Id;
7875
c8ef728f
ES
7876 FF : constant Entity_Id := First_Formal (S);
7877 NF : constant Entity_Id := Next_Formal (FF);
996ae0b0
RK
7878
7879 begin
c8ef728f 7880 -- Check that equality was properly defined, ignore call if not
996ae0b0 7881
c8ef728f 7882 if No (NF) then
996ae0b0
RK
7883 return;
7884 end if;
7885
c8ef728f
ES
7886 declare
7887 A : constant Entity_Id :=
7888 Make_Defining_Identifier (Sloc (FF),
7889 Chars => Chars (FF));
7890
5d37ba92
ES
7891 B : constant Entity_Id :=
7892 Make_Defining_Identifier (Sloc (NF),
7893 Chars => Chars (NF));
c8ef728f
ES
7894
7895 begin
7896 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
7897
7898 Formals := New_List (
7899 Make_Parameter_Specification (Loc,
7900 Defining_Identifier => A,
7901 Parameter_Type =>
7902 New_Reference_To (Etype (First_Formal (S)),
7903 Sloc (Etype (First_Formal (S))))),
7904
7905 Make_Parameter_Specification (Loc,
7906 Defining_Identifier => B,
7907 Parameter_Type =>
7908 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
7909 Sloc (Etype (Next_Formal (First_Formal (S)))))));
7910
7911 Decl :=
7912 Make_Subprogram_Declaration (Loc,
7913 Specification =>
7914 Make_Function_Specification (Loc,
7915 Defining_Unit_Name => Op_Name,
7916 Parameter_Specifications => Formals,
7917 Result_Definition =>
7918 New_Reference_To (Standard_Boolean, Loc)));
7919
7920 -- Insert inequality right after equality if it is explicit or after
7921 -- the derived type when implicit. These entities are created only
7922 -- for visibility purposes, and eventually replaced in the course of
7923 -- expansion, so they do not need to be attached to the tree and seen
7924 -- by the back-end. Keeping them internal also avoids spurious
7925 -- freezing problems. The declaration is inserted in the tree for
7926 -- analysis, and removed afterwards. If the equality operator comes
7927 -- from an explicit declaration, attach the inequality immediately
7928 -- after. Else the equality is inherited from a derived type
7929 -- declaration, so insert inequality after that declaration.
7930
7931 if No (Alias (S)) then
7932 Insert_After (Unit_Declaration_Node (S), Decl);
7933 elsif Is_List_Member (Parent (S)) then
7934 Insert_After (Parent (S), Decl);
7935 else
7936 Insert_After (Parent (Etype (First_Formal (S))), Decl);
7937 end if;
996ae0b0 7938
c8ef728f
ES
7939 Mark_Rewrite_Insertion (Decl);
7940 Set_Is_Intrinsic_Subprogram (Op_Name);
7941 Analyze (Decl);
7942 Remove (Decl);
7943 Set_Has_Completion (Op_Name);
7944 Set_Corresponding_Equality (Op_Name, S);
f937473f 7945 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
c8ef728f 7946 end;
996ae0b0
RK
7947 end Make_Inequality_Operator;
7948
7949 ----------------------
7950 -- May_Need_Actuals --
7951 ----------------------
7952
7953 procedure May_Need_Actuals (Fun : Entity_Id) is
7954 F : Entity_Id;
7955 B : Boolean;
7956
7957 begin
7958 F := First_Formal (Fun);
7959 B := True;
996ae0b0
RK
7960 while Present (F) loop
7961 if No (Default_Value (F)) then
7962 B := False;
7963 exit;
7964 end if;
7965
7966 Next_Formal (F);
7967 end loop;
7968
7969 Set_Needs_No_Actuals (Fun, B);
7970 end May_Need_Actuals;
7971
7972 ---------------------
7973 -- Mode_Conformant --
7974 ---------------------
7975
7976 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7977 Result : Boolean;
996ae0b0
RK
7978 begin
7979 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
7980 return Result;
7981 end Mode_Conformant;
7982
7983 ---------------------------
7984 -- New_Overloaded_Entity --
7985 ---------------------------
7986
7987 procedure New_Overloaded_Entity
7988 (S : Entity_Id;
7989 Derived_Type : Entity_Id := Empty)
7990 is
ec4867fa 7991 Overridden_Subp : Entity_Id := Empty;
758c442c
GD
7992 -- Set if the current scope has an operation that is type-conformant
7993 -- with S, and becomes hidden by S.
7994
5d37ba92
ES
7995 Is_Primitive_Subp : Boolean;
7996 -- Set to True if the new subprogram is primitive
7997
fbf5a39b
AC
7998 E : Entity_Id;
7999 -- Entity that S overrides
8000
996ae0b0 8001 Prev_Vis : Entity_Id := Empty;
ec4867fa
ES
8002 -- Predecessor of E in Homonym chain
8003
5d37ba92
ES
8004 procedure Check_For_Primitive_Subprogram
8005 (Is_Primitive : out Boolean;
8006 Is_Overriding : Boolean := False);
8007 -- If the subprogram being analyzed is a primitive operation of the type
8008 -- of a formal or result, set the Has_Primitive_Operations flag on the
8009 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8010 -- corresponding flag on the entity itself for later use.
8011
ec4867fa
ES
8012 procedure Check_Synchronized_Overriding
8013 (Def_Id : Entity_Id;
ec4867fa
ES
8014 Overridden_Subp : out Entity_Id);
8015 -- First determine if Def_Id is an entry or a subprogram either defined
8016 -- in the scope of a task or protected type, or is a primitive of such
8017 -- a type. Check whether Def_Id overrides a subprogram of an interface
8018 -- implemented by the synchronized type, return the overridden entity
8019 -- or Empty.
758c442c 8020
996ae0b0
RK
8021 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8022 -- Check that E is declared in the private part of the current package,
8023 -- or in the package body, where it may hide a previous declaration.
fbf5a39b 8024 -- We can't use In_Private_Part by itself because this flag is also
996ae0b0
RK
8025 -- set when freezing entities, so we must examine the place of the
8026 -- declaration in the tree, and recognize wrapper packages as well.
8027
2ddc2000
AC
8028 function Is_Overriding_Alias
8029 (Old_E : Entity_Id;
8030 New_E : Entity_Id) return Boolean;
8031 -- Check whether new subprogram and old subprogram are both inherited
8032 -- from subprograms that have distinct dispatch table entries. This can
8033 -- occur with derivations from instances with accidental homonyms.
8034 -- The function is conservative given that the converse is only true
8035 -- within instances that contain accidental overloadings.
8036
5d37ba92
ES
8037 ------------------------------------
8038 -- Check_For_Primitive_Subprogram --
8039 ------------------------------------
996ae0b0 8040
5d37ba92
ES
8041 procedure Check_For_Primitive_Subprogram
8042 (Is_Primitive : out Boolean;
8043 Is_Overriding : Boolean := False)
ec4867fa 8044 is
996ae0b0
RK
8045 Formal : Entity_Id;
8046 F_Typ : Entity_Id;
07fc65c4 8047 B_Typ : Entity_Id;
996ae0b0
RK
8048
8049 function Visible_Part_Type (T : Entity_Id) return Boolean;
8dbd1460
AC
8050 -- Returns true if T is declared in the visible part of the current
8051 -- package scope; otherwise returns false. Assumes that T is declared
8052 -- in a package.
996ae0b0
RK
8053
8054 procedure Check_Private_Overriding (T : Entity_Id);
8055 -- Checks that if a primitive abstract subprogram of a visible
8dbd1460
AC
8056 -- abstract type is declared in a private part, then it must override
8057 -- an abstract subprogram declared in the visible part. Also checks
8058 -- that if a primitive function with a controlling result is declared
8059 -- in a private part, then it must override a function declared in
8060 -- the visible part.
996ae0b0
RK
8061
8062 ------------------------------
8063 -- Check_Private_Overriding --
8064 ------------------------------
8065
8066 procedure Check_Private_Overriding (T : Entity_Id) is
8067 begin
51c16e29 8068 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
8069 and then In_Private_Part (Current_Scope)
8070 and then Visible_Part_Type (T)
8071 and then not In_Instance
8072 then
f937473f
RD
8073 if Is_Abstract_Type (T)
8074 and then Is_Abstract_Subprogram (S)
8075 and then (not Is_Overriding
8dbd1460 8076 or else not Is_Abstract_Subprogram (E))
996ae0b0 8077 then
ed2233dc 8078 Error_Msg_N
19d846a0
RD
8079 ("abstract subprograms must be visible "
8080 & "(RM 3.9.3(10))!", S);
758c442c 8081
996ae0b0 8082 elsif Ekind (S) = E_Function
82c80734 8083 and then not Is_Overriding
996ae0b0 8084 then
2e79de51
AC
8085 if Is_Tagged_Type (T)
8086 and then T = Base_Type (Etype (S))
8087 then
8088 Error_Msg_N
8089 ("private function with tagged result must"
8090 & " override visible-part function", S);
8091 Error_Msg_N
8092 ("\move subprogram to the visible part"
8093 & " (RM 3.9.3(10))", S);
8094
8095 -- AI05-0073: extend this test to the case of a function
8096 -- with a controlling access result.
8097
8098 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8099 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8100 and then
8101 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
dbe945f1 8102 and then Ada_Version >= Ada_2012
2e79de51
AC
8103 then
8104 Error_Msg_N
8105 ("private function with controlling access result "
8106 & "must override visible-part function", S);
8107 Error_Msg_N
8108 ("\move subprogram to the visible part"
8109 & " (RM 3.9.3(10))", S);
8110 end if;
996ae0b0
RK
8111 end if;
8112 end if;
8113 end Check_Private_Overriding;
8114
8115 -----------------------
8116 -- Visible_Part_Type --
8117 -----------------------
8118
8119 function Visible_Part_Type (T : Entity_Id) return Boolean is
07fc65c4
GB
8120 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8121 N : Node_Id;
996ae0b0
RK
8122
8123 begin
8dbd1460
AC
8124 -- If the entity is a private type, then it must be declared in a
8125 -- visible part.
996ae0b0
RK
8126
8127 if Ekind (T) in Private_Kind then
8128 return True;
8129 end if;
8130
8131 -- Otherwise, we traverse the visible part looking for its
8132 -- corresponding declaration. We cannot use the declaration
8133 -- node directly because in the private part the entity of a
8134 -- private type is the one in the full view, which does not
8135 -- indicate that it is the completion of something visible.
8136
07fc65c4 8137 N := First (Visible_Declarations (Specification (P)));
996ae0b0
RK
8138 while Present (N) loop
8139 if Nkind (N) = N_Full_Type_Declaration
8140 and then Present (Defining_Identifier (N))
8141 and then T = Defining_Identifier (N)
8142 then
8143 return True;
8144
800621e0
RD
8145 elsif Nkind_In (N, N_Private_Type_Declaration,
8146 N_Private_Extension_Declaration)
996ae0b0
RK
8147 and then Present (Defining_Identifier (N))
8148 and then T = Full_View (Defining_Identifier (N))
8149 then
8150 return True;
8151 end if;
8152
8153 Next (N);
8154 end loop;
8155
8156 return False;
8157 end Visible_Part_Type;
8158
5d37ba92 8159 -- Start of processing for Check_For_Primitive_Subprogram
996ae0b0
RK
8160
8161 begin
5d37ba92
ES
8162 Is_Primitive := False;
8163
996ae0b0
RK
8164 if not Comes_From_Source (S) then
8165 null;
8166
5d37ba92 8167 -- If subprogram is at library level, it is not primitive operation
15ce9ca2
AC
8168
8169 elsif Current_Scope = Standard_Standard then
8170 null;
8171
b9b2405f 8172 elsif (Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0 8173 and then not In_Package_Body (Current_Scope))
82c80734 8174 or else Is_Overriding
996ae0b0 8175 then
07fc65c4 8176 -- For function, check return type
996ae0b0 8177
07fc65c4 8178 if Ekind (S) = E_Function then
5d37ba92
ES
8179 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8180 F_Typ := Designated_Type (Etype (S));
8181 else
8182 F_Typ := Etype (S);
8183 end if;
8184
8185 B_Typ := Base_Type (F_Typ);
07fc65c4 8186
5d37ba92
ES
8187 if Scope (B_Typ) = Current_Scope
8188 and then not Is_Class_Wide_Type (B_Typ)
8189 and then not Is_Generic_Type (B_Typ)
8190 then
8191 Is_Primitive := True;
07fc65c4 8192 Set_Has_Primitive_Operations (B_Typ);
5d37ba92 8193 Set_Is_Primitive (S);
07fc65c4
GB
8194 Check_Private_Overriding (B_Typ);
8195 end if;
996ae0b0
RK
8196 end if;
8197
07fc65c4 8198 -- For all subprograms, check formals
996ae0b0 8199
07fc65c4 8200 Formal := First_Formal (S);
996ae0b0
RK
8201 while Present (Formal) loop
8202 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8203 F_Typ := Designated_Type (Etype (Formal));
8204 else
8205 F_Typ := Etype (Formal);
8206 end if;
8207
07fc65c4
GB
8208 B_Typ := Base_Type (F_Typ);
8209
ec4867fa
ES
8210 if Ekind (B_Typ) = E_Access_Subtype then
8211 B_Typ := Base_Type (B_Typ);
8212 end if;
8213
5d37ba92
ES
8214 if Scope (B_Typ) = Current_Scope
8215 and then not Is_Class_Wide_Type (B_Typ)
8216 and then not Is_Generic_Type (B_Typ)
8217 then
8218 Is_Primitive := True;
8219 Set_Is_Primitive (S);
07fc65c4
GB
8220 Set_Has_Primitive_Operations (B_Typ);
8221 Check_Private_Overriding (B_Typ);
996ae0b0
RK
8222 end if;
8223
8224 Next_Formal (Formal);
8225 end loop;
996ae0b0 8226 end if;
5d37ba92
ES
8227 end Check_For_Primitive_Subprogram;
8228
8229 -----------------------------------
8230 -- Check_Synchronized_Overriding --
8231 -----------------------------------
8232
8233 procedure Check_Synchronized_Overriding
8234 (Def_Id : Entity_Id;
5d37ba92
ES
8235 Overridden_Subp : out Entity_Id)
8236 is
5d37ba92
ES
8237 Ifaces_List : Elist_Id;
8238 In_Scope : Boolean;
8239 Typ : Entity_Id;
8240
8aa15e3b
JM
8241 function Matches_Prefixed_View_Profile
8242 (Prim_Params : List_Id;
8243 Iface_Params : List_Id) return Boolean;
8244 -- Determine whether a subprogram's parameter profile Prim_Params
8245 -- matches that of a potentially overridden interface subprogram
8246 -- Iface_Params. Also determine if the type of first parameter of
8247 -- Iface_Params is an implemented interface.
8248
8aa15e3b
JM
8249 -----------------------------------
8250 -- Matches_Prefixed_View_Profile --
8251 -----------------------------------
8252
8253 function Matches_Prefixed_View_Profile
8254 (Prim_Params : List_Id;
8255 Iface_Params : List_Id) return Boolean
8256 is
8257 Iface_Id : Entity_Id;
8258 Iface_Param : Node_Id;
8259 Iface_Typ : Entity_Id;
8260 Prim_Id : Entity_Id;
8261 Prim_Param : Node_Id;
8262 Prim_Typ : Entity_Id;
8263
8264 function Is_Implemented
8265 (Ifaces_List : Elist_Id;
8266 Iface : Entity_Id) return Boolean;
8267 -- Determine if Iface is implemented by the current task or
8268 -- protected type.
8269
8270 --------------------
8271 -- Is_Implemented --
8272 --------------------
8273
8274 function Is_Implemented
8275 (Ifaces_List : Elist_Id;
8276 Iface : Entity_Id) return Boolean
8277 is
8278 Iface_Elmt : Elmt_Id;
8279
8280 begin
8281 Iface_Elmt := First_Elmt (Ifaces_List);
8282 while Present (Iface_Elmt) loop
8283 if Node (Iface_Elmt) = Iface then
8284 return True;
8285 end if;
8286
8287 Next_Elmt (Iface_Elmt);
8288 end loop;
8289
8290 return False;
8291 end Is_Implemented;
8292
8293 -- Start of processing for Matches_Prefixed_View_Profile
8294
8295 begin
8296 Iface_Param := First (Iface_Params);
8297 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8298
8299 if Is_Access_Type (Iface_Typ) then
8300 Iface_Typ := Designated_Type (Iface_Typ);
8301 end if;
8302
8303 Prim_Param := First (Prim_Params);
8304
8305 -- The first parameter of the potentially overridden subprogram
8306 -- must be an interface implemented by Prim.
8307
8308 if not Is_Interface (Iface_Typ)
8309 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8310 then
8311 return False;
8312 end if;
8313
8314 -- The checks on the object parameters are done, move onto the
8315 -- rest of the parameters.
8316
8317 if not In_Scope then
8318 Prim_Param := Next (Prim_Param);
8319 end if;
8320
8321 Iface_Param := Next (Iface_Param);
8322 while Present (Iface_Param) and then Present (Prim_Param) loop
8323 Iface_Id := Defining_Identifier (Iface_Param);
8324 Iface_Typ := Find_Parameter_Type (Iface_Param);
8325
8aa15e3b
JM
8326 Prim_Id := Defining_Identifier (Prim_Param);
8327 Prim_Typ := Find_Parameter_Type (Prim_Param);
8328
15e4986c
JM
8329 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8330 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8331 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8332 then
8333 Iface_Typ := Designated_Type (Iface_Typ);
8334 Prim_Typ := Designated_Type (Prim_Typ);
8aa15e3b
JM
8335 end if;
8336
8337 -- Case of multiple interface types inside a parameter profile
8338
8339 -- (Obj_Param : in out Iface; ...; Param : Iface)
8340
8341 -- If the interface type is implemented, then the matching type
8342 -- in the primitive should be the implementing record type.
8343
8344 if Ekind (Iface_Typ) = E_Record_Type
8345 and then Is_Interface (Iface_Typ)
8346 and then Is_Implemented (Ifaces_List, Iface_Typ)
8347 then
8348 if Prim_Typ /= Typ then
8349 return False;
8350 end if;
8351
8352 -- The two parameters must be both mode and subtype conformant
8353
8354 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
8355 or else not
8356 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
8357 then
8358 return False;
8359 end if;
8360
8361 Next (Iface_Param);
8362 Next (Prim_Param);
8363 end loop;
8364
8365 -- One of the two lists contains more parameters than the other
8366
8367 if Present (Iface_Param) or else Present (Prim_Param) then
8368 return False;
8369 end if;
8370
8371 return True;
8372 end Matches_Prefixed_View_Profile;
8373
8374 -- Start of processing for Check_Synchronized_Overriding
8375
5d37ba92
ES
8376 begin
8377 Overridden_Subp := Empty;
8378
8aa15e3b
JM
8379 -- Def_Id must be an entry or a subprogram. We should skip predefined
8380 -- primitives internally generated by the frontend; however at this
8381 -- stage predefined primitives are still not fully decorated. As a
8382 -- minor optimization we skip here internally generated subprograms.
5d37ba92 8383
8aa15e3b
JM
8384 if (Ekind (Def_Id) /= E_Entry
8385 and then Ekind (Def_Id) /= E_Function
8386 and then Ekind (Def_Id) /= E_Procedure)
8387 or else not Comes_From_Source (Def_Id)
5d37ba92
ES
8388 then
8389 return;
8390 end if;
8391
8392 -- Search for the concurrent declaration since it contains the list
8393 -- of all implemented interfaces. In this case, the subprogram is
8394 -- declared within the scope of a protected or a task type.
8395
8396 if Present (Scope (Def_Id))
8397 and then Is_Concurrent_Type (Scope (Def_Id))
8398 and then not Is_Generic_Actual_Type (Scope (Def_Id))
8399 then
8400 Typ := Scope (Def_Id);
8401 In_Scope := True;
8402
8aa15e3b 8403 -- The enclosing scope is not a synchronized type and the subprogram
4adf3c50 8404 -- has no formals.
8aa15e3b
JM
8405
8406 elsif No (First_Formal (Def_Id)) then
8407 return;
5d37ba92 8408
8aa15e3b 8409 -- The subprogram has formals and hence it may be a primitive of a
4adf3c50 8410 -- concurrent type.
5d37ba92 8411
8aa15e3b
JM
8412 else
8413 Typ := Etype (First_Formal (Def_Id));
8414
8415 if Is_Access_Type (Typ) then
8416 Typ := Directly_Designated_Type (Typ);
8c3dd7a8
JM
8417 end if;
8418
8aa15e3b
JM
8419 if Is_Concurrent_Type (Typ)
8420 and then not Is_Generic_Actual_Type (Typ)
5d37ba92 8421 then
5d37ba92
ES
8422 In_Scope := False;
8423
8424 -- This case occurs when the concurrent type is declared within
8425 -- a generic unit. As a result the corresponding record has been
8426 -- built and used as the type of the first formal, we just have
8427 -- to retrieve the corresponding concurrent type.
8428
8aa15e3b 8429 elsif Is_Concurrent_Record_Type (Typ)
dd54644b 8430 and then not Is_Class_Wide_Type (Typ)
8aa15e3b 8431 and then Present (Corresponding_Concurrent_Type (Typ))
5d37ba92 8432 then
8aa15e3b 8433 Typ := Corresponding_Concurrent_Type (Typ);
5d37ba92
ES
8434 In_Scope := False;
8435
8436 else
8437 return;
8438 end if;
8aa15e3b
JM
8439 end if;
8440
8441 -- There is no overriding to check if is an inherited operation in a
8442 -- type derivation on for a generic actual.
8443
8444 Collect_Interfaces (Typ, Ifaces_List);
8445
8446 if Is_Empty_Elmt_List (Ifaces_List) then
5d37ba92
ES
8447 return;
8448 end if;
8449
8aa15e3b
JM
8450 -- Determine whether entry or subprogram Def_Id overrides a primitive
8451 -- operation that belongs to one of the interfaces in Ifaces_List.
5d37ba92 8452
8aa15e3b
JM
8453 declare
8454 Candidate : Entity_Id := Empty;
8455 Hom : Entity_Id := Empty;
8456 Iface_Typ : Entity_Id;
8457 Subp : Entity_Id := Empty;
8458
8459 begin
4adf3c50 8460 -- Traverse the homonym chain, looking for a potentially
8aa15e3b
JM
8461 -- overridden subprogram that belongs to an implemented
8462 -- interface.
8463
8464 Hom := Current_Entity_In_Scope (Def_Id);
8465 while Present (Hom) loop
8466 Subp := Hom;
8467
15e4986c
JM
8468 if Subp = Def_Id
8469 or else not Is_Overloadable (Subp)
8470 or else not Is_Primitive (Subp)
8471 or else not Is_Dispatching_Operation (Subp)
79afa047 8472 or else not Present (Find_Dispatching_Type (Subp))
15e4986c 8473 or else not Is_Interface (Find_Dispatching_Type (Subp))
8aa15e3b 8474 then
15e4986c 8475 null;
8aa15e3b 8476
15e4986c 8477 -- Entries and procedures can override abstract or null
4adf3c50 8478 -- interface procedures.
8aa15e3b 8479
15e4986c
JM
8480 elsif (Ekind (Def_Id) = E_Procedure
8481 or else Ekind (Def_Id) = E_Entry)
8aa15e3b 8482 and then Ekind (Subp) = E_Procedure
8aa15e3b
JM
8483 and then Matches_Prefixed_View_Profile
8484 (Parameter_Specifications (Parent (Def_Id)),
8485 Parameter_Specifications (Parent (Subp)))
8486 then
8487 Candidate := Subp;
8488
15e4986c
JM
8489 -- For an overridden subprogram Subp, check whether the mode
8490 -- of its first parameter is correct depending on the kind
8491 -- of synchronized type.
8aa15e3b 8492
15e4986c
JM
8493 declare
8494 Formal : constant Node_Id := First_Formal (Candidate);
8495
8496 begin
8497 -- In order for an entry or a protected procedure to
8498 -- override, the first parameter of the overridden
8499 -- routine must be of mode "out", "in out" or
8500 -- access-to-variable.
8501
8502 if (Ekind (Candidate) = E_Entry
8503 or else Ekind (Candidate) = E_Procedure)
8504 and then Is_Protected_Type (Typ)
8505 and then Ekind (Formal) /= E_In_Out_Parameter
8506 and then Ekind (Formal) /= E_Out_Parameter
8507 and then Nkind (Parameter_Type (Parent (Formal)))
8508 /= N_Access_Definition
8509 then
8510 null;
8511
8512 -- All other cases are OK since a task entry or routine
8513 -- does not have a restriction on the mode of the first
8514 -- parameter of the overridden interface routine.
8515
8516 else
8517 Overridden_Subp := Candidate;
8518 return;
8519 end if;
8520 end;
8aa15e3b
JM
8521
8522 -- Functions can override abstract interface functions
8523
8524 elsif Ekind (Def_Id) = E_Function
8525 and then Ekind (Subp) = E_Function
8aa15e3b
JM
8526 and then Matches_Prefixed_View_Profile
8527 (Parameter_Specifications (Parent (Def_Id)),
8528 Parameter_Specifications (Parent (Subp)))
8529 and then Etype (Result_Definition (Parent (Def_Id))) =
8530 Etype (Result_Definition (Parent (Subp)))
8531 then
8532 Overridden_Subp := Subp;
8533 return;
8534 end if;
8535
8536 Hom := Homonym (Hom);
8537 end loop;
8538
4adf3c50
AC
8539 -- After examining all candidates for overriding, we are left with
8540 -- the best match which is a mode incompatible interface routine.
8541 -- Do not emit an error if the Expander is active since this error
8542 -- will be detected later on after all concurrent types are
8543 -- expanded and all wrappers are built. This check is meant for
8544 -- spec-only compilations.
8aa15e3b 8545
4adf3c50 8546 if Present (Candidate) and then not Expander_Active then
8aa15e3b
JM
8547 Iface_Typ :=
8548 Find_Parameter_Type (Parent (First_Formal (Candidate)));
8549
4adf3c50
AC
8550 -- Def_Id is primitive of a protected type, declared inside the
8551 -- type, and the candidate is primitive of a limited or
8552 -- synchronized interface.
8aa15e3b
JM
8553
8554 if In_Scope
8555 and then Is_Protected_Type (Typ)
8556 and then
8557 (Is_Limited_Interface (Iface_Typ)
c199ccf7
AC
8558 or else Is_Protected_Interface (Iface_Typ)
8559 or else Is_Synchronized_Interface (Iface_Typ)
8560 or else Is_Task_Interface (Iface_Typ))
8aa15e3b 8561 then
dd54644b 8562 Error_Msg_PT (Parent (Typ), Candidate);
8aa15e3b 8563 end if;
5d37ba92 8564 end if;
8aa15e3b
JM
8565
8566 Overridden_Subp := Candidate;
8567 return;
8568 end;
5d37ba92
ES
8569 end Check_Synchronized_Overriding;
8570
8571 ----------------------------
8572 -- Is_Private_Declaration --
8573 ----------------------------
8574
8575 function Is_Private_Declaration (E : Entity_Id) return Boolean is
8576 Priv_Decls : List_Id;
8577 Decl : constant Node_Id := Unit_Declaration_Node (E);
8578
8579 begin
8580 if Is_Package_Or_Generic_Package (Current_Scope)
8581 and then In_Private_Part (Current_Scope)
8582 then
8583 Priv_Decls :=
a4901c08
AC
8584 Private_Declarations
8585 (Specification (Unit_Declaration_Node (Current_Scope)));
5d37ba92
ES
8586
8587 return In_Package_Body (Current_Scope)
8588 or else
8589 (Is_List_Member (Decl)
a4901c08 8590 and then List_Containing (Decl) = Priv_Decls)
5d37ba92 8591 or else (Nkind (Parent (Decl)) = N_Package_Specification
a4901c08
AC
8592 and then not
8593 Is_Compilation_Unit
8594 (Defining_Entity (Parent (Decl)))
8595 and then List_Containing (Parent (Parent (Decl))) =
8596 Priv_Decls);
5d37ba92
ES
8597 else
8598 return False;
8599 end if;
8600 end Is_Private_Declaration;
996ae0b0 8601
2ddc2000
AC
8602 --------------------------
8603 -- Is_Overriding_Alias --
8604 --------------------------
8605
8606 function Is_Overriding_Alias
8607 (Old_E : Entity_Id;
8608 New_E : Entity_Id) return Boolean
8609 is
8610 AO : constant Entity_Id := Alias (Old_E);
8611 AN : constant Entity_Id := Alias (New_E);
8612
8613 begin
8614 return Scope (AO) /= Scope (AN)
8615 or else No (DTC_Entity (AO))
8616 or else No (DTC_Entity (AN))
8617 or else DT_Position (AO) = DT_Position (AN);
8618 end Is_Overriding_Alias;
8619
996ae0b0
RK
8620 -- Start of processing for New_Overloaded_Entity
8621
8622 begin
fbf5a39b
AC
8623 -- We need to look for an entity that S may override. This must be a
8624 -- homonym in the current scope, so we look for the first homonym of
8625 -- S in the current scope as the starting point for the search.
8626
8627 E := Current_Entity_In_Scope (S);
8628
947430d5
AC
8629 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
8630 -- They are directly added to the list of primitive operations of
8631 -- Derived_Type, unless this is a rederivation in the private part
8632 -- of an operation that was already derived in the visible part of
8633 -- the current package.
8634
0791fbe9 8635 if Ada_Version >= Ada_2005
947430d5
AC
8636 and then Present (Derived_Type)
8637 and then Present (Alias (S))
8638 and then Is_Dispatching_Operation (Alias (S))
8639 and then Present (Find_Dispatching_Type (Alias (S)))
8640 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
8641 then
8642 -- For private types, when the full-view is processed we propagate to
8643 -- the full view the non-overridden entities whose attribute "alias"
8644 -- references an interface primitive. These entities were added by
8645 -- Derive_Subprograms to ensure that interface primitives are
8646 -- covered.
8647
8648 -- Inside_Freeze_Actions is non zero when S corresponds with an
8649 -- internal entity that links an interface primitive with its
8650 -- covering primitive through attribute Interface_Alias (see
4adf3c50 8651 -- Add_Internal_Interface_Entities).
947430d5
AC
8652
8653 if Inside_Freezing_Actions = 0
8654 and then Is_Package_Or_Generic_Package (Current_Scope)
8655 and then In_Private_Part (Current_Scope)
8656 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
8657 and then Nkind (Parent (S)) = N_Full_Type_Declaration
8658 and then Full_View (Defining_Identifier (Parent (E)))
8659 = Defining_Identifier (Parent (S))
8660 and then Alias (E) = Alias (S)
8661 then
8662 Check_Operation_From_Private_View (S, E);
8663 Set_Is_Dispatching_Operation (S);
8664
8665 -- Common case
8666
8667 else
8668 Enter_Overloaded_Entity (S);
8669 Check_Dispatching_Operation (S, Empty);
8670 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8671 end if;
8672
8673 return;
8674 end if;
8675
fbf5a39b
AC
8676 -- If there is no homonym then this is definitely not overriding
8677
996ae0b0
RK
8678 if No (E) then
8679 Enter_Overloaded_Entity (S);
8680 Check_Dispatching_Operation (S, Empty);
5d37ba92 8681 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
996ae0b0 8682
ec4867fa
ES
8683 -- If subprogram has an explicit declaration, check whether it
8684 -- has an overriding indicator.
758c442c 8685
ec4867fa 8686 if Comes_From_Source (S) then
8aa15e3b 8687 Check_Synchronized_Overriding (S, Overridden_Subp);
ea034236
AC
8688
8689 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
8690 -- it may have overridden some hidden inherited primitive. Update
308e6f3a 8691 -- Overridden_Subp to avoid spurious errors when checking the
ea034236
AC
8692 -- overriding indicator.
8693
8694 if Ada_Version >= Ada_2012
8695 and then No (Overridden_Subp)
8696 and then Is_Dispatching_Operation (S)
038140ed 8697 and then Present (Overridden_Operation (S))
ea034236
AC
8698 then
8699 Overridden_Subp := Overridden_Operation (S);
8700 end if;
8701
5d37ba92
ES
8702 Check_Overriding_Indicator
8703 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
758c442c
GD
8704 end if;
8705
fbf5a39b
AC
8706 -- If there is a homonym that is not overloadable, then we have an
8707 -- error, except for the special cases checked explicitly below.
8708
996ae0b0
RK
8709 elsif not Is_Overloadable (E) then
8710
8711 -- Check for spurious conflict produced by a subprogram that has the
8712 -- same name as that of the enclosing generic package. The conflict
8713 -- occurs within an instance, between the subprogram and the renaming
8714 -- declaration for the package. After the subprogram, the package
8715 -- renaming declaration becomes hidden.
8716
8717 if Ekind (E) = E_Package
8718 and then Present (Renamed_Object (E))
8719 and then Renamed_Object (E) = Current_Scope
8720 and then Nkind (Parent (Renamed_Object (E))) =
8721 N_Package_Specification
8722 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
8723 then
8724 Set_Is_Hidden (E);
8725 Set_Is_Immediately_Visible (E, False);
8726 Enter_Overloaded_Entity (S);
8727 Set_Homonym (S, Homonym (E));
8728 Check_Dispatching_Operation (S, Empty);
5d37ba92 8729 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
996ae0b0
RK
8730
8731 -- If the subprogram is implicit it is hidden by the previous
82c80734
RD
8732 -- declaration. However if it is dispatching, it must appear in the
8733 -- dispatch table anyway, because it can be dispatched to even if it
8734 -- cannot be called directly.
996ae0b0 8735
4adf3c50 8736 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
996ae0b0
RK
8737 Set_Scope (S, Current_Scope);
8738
8739 if Is_Dispatching_Operation (Alias (S)) then
8740 Check_Dispatching_Operation (S, Empty);
8741 end if;
8742
8743 return;
8744
8745 else
8746 Error_Msg_Sloc := Sloc (E);
996ae0b0 8747
f3d57416 8748 -- Generate message, with useful additional warning if in generic
996ae0b0
RK
8749
8750 if Is_Generic_Unit (E) then
5d37ba92
ES
8751 Error_Msg_N ("previous generic unit cannot be overloaded", S);
8752 Error_Msg_N ("\& conflicts with declaration#", S);
8753 else
8754 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
8755 end if;
8756
8757 return;
8758 end if;
8759
fbf5a39b
AC
8760 -- E exists and is overloadable
8761
996ae0b0 8762 else
8aa15e3b 8763 Check_Synchronized_Overriding (S, Overridden_Subp);
758c442c 8764
82c80734
RD
8765 -- Loop through E and its homonyms to determine if any of them is
8766 -- the candidate for overriding by S.
996ae0b0
RK
8767
8768 while Present (E) loop
fbf5a39b
AC
8769
8770 -- Definitely not interesting if not in the current scope
8771
996ae0b0
RK
8772 if Scope (E) /= Current_Scope then
8773 null;
8774
25ebc085
AC
8775 -- Ada 2012 (AI05-0165): For internally generated bodies of
8776 -- null procedures locate the internally generated spec. We
8777 -- enforce mode conformance since a tagged type may inherit
8778 -- from interfaces several null primitives which differ only
8779 -- in the mode of the formals.
8780
8781 elsif not Comes_From_Source (S)
8782 and then Is_Null_Procedure (S)
8783 and then not Mode_Conformant (E, S)
8784 then
8785 null;
8786
fbf5a39b
AC
8787 -- Check if we have type conformance
8788
ec4867fa 8789 elsif Type_Conformant (E, S) then
c8ef728f 8790
82c80734
RD
8791 -- If the old and new entities have the same profile and one
8792 -- is not the body of the other, then this is an error, unless
8793 -- one of them is implicitly declared.
996ae0b0
RK
8794
8795 -- There are some cases when both can be implicit, for example
8796 -- when both a literal and a function that overrides it are
f3d57416 8797 -- inherited in a derivation, or when an inherited operation
ec4867fa 8798 -- of a tagged full type overrides the inherited operation of
f3d57416 8799 -- a private extension. Ada 83 had a special rule for the
885c4871 8800 -- literal case. In Ada 95, the later implicit operation hides
82c80734
RD
8801 -- the former, and the literal is always the former. In the
8802 -- odd case where both are derived operations declared at the
8803 -- same point, both operations should be declared, and in that
8804 -- case we bypass the following test and proceed to the next
df46b832
AC
8805 -- part. This can only occur for certain obscure cases in
8806 -- instances, when an operation on a type derived from a formal
8807 -- private type does not override a homograph inherited from
8808 -- the actual. In subsequent derivations of such a type, the
8809 -- DT positions of these operations remain distinct, if they
8810 -- have been set.
996ae0b0
RK
8811
8812 if Present (Alias (S))
8813 and then (No (Alias (E))
8814 or else Comes_From_Source (E)
2ddc2000 8815 or else Is_Abstract_Subprogram (S)
df46b832
AC
8816 or else
8817 (Is_Dispatching_Operation (E)
2ddc2000 8818 and then Is_Overriding_Alias (E, S)))
df46b832 8819 and then Ekind (E) /= E_Enumeration_Literal
996ae0b0 8820 then
82c80734
RD
8821 -- When an derived operation is overloaded it may be due to
8822 -- the fact that the full view of a private extension
996ae0b0
RK
8823 -- re-inherits. It has to be dealt with.
8824
e660dbf7 8825 if Is_Package_Or_Generic_Package (Current_Scope)
996ae0b0
RK
8826 and then In_Private_Part (Current_Scope)
8827 then
8828 Check_Operation_From_Private_View (S, E);
8829 end if;
8830
038140ed
AC
8831 -- In any case the implicit operation remains hidden by the
8832 -- existing declaration, which is overriding. Indicate that
8833 -- E overrides the operation from which S is inherited.
996ae0b0 8834
038140ed
AC
8835 if Present (Alias (S)) then
8836 Set_Overridden_Operation (E, Alias (S));
8837 else
8838 Set_Overridden_Operation (E, S);
8839 end if;
758c442c
GD
8840
8841 if Comes_From_Source (E) then
5d37ba92 8842 Check_Overriding_Indicator (E, S, Is_Primitive => False);
758c442c
GD
8843 end if;
8844
996ae0b0
RK
8845 return;
8846
26a43556
AC
8847 -- Within an instance, the renaming declarations for actual
8848 -- subprograms may become ambiguous, but they do not hide each
8849 -- other.
996ae0b0
RK
8850
8851 elsif Ekind (E) /= E_Entry
8852 and then not Comes_From_Source (E)
8853 and then not Is_Generic_Instance (E)
8854 and then (Present (Alias (E))
8855 or else Is_Intrinsic_Subprogram (E))
8856 and then (not In_Instance
8857 or else No (Parent (E))
8858 or else Nkind (Unit_Declaration_Node (E)) /=
8dbd1460 8859 N_Subprogram_Renaming_Declaration)
996ae0b0 8860 then
26a43556
AC
8861 -- A subprogram child unit is not allowed to override an
8862 -- inherited subprogram (10.1.1(20)).
996ae0b0
RK
8863
8864 if Is_Child_Unit (S) then
8865 Error_Msg_N
8866 ("child unit overrides inherited subprogram in parent",
8867 S);
8868 return;
8869 end if;
8870
8871 if Is_Non_Overriding_Operation (E, S) then
8872 Enter_Overloaded_Entity (S);
8dbd1460 8873
c8ef728f 8874 if No (Derived_Type)
996ae0b0
RK
8875 or else Is_Tagged_Type (Derived_Type)
8876 then
8877 Check_Dispatching_Operation (S, Empty);
8878 end if;
8879
8880 return;
8881 end if;
8882
8883 -- E is a derived operation or an internal operator which
8884 -- is being overridden. Remove E from further visibility.
8885 -- Furthermore, if E is a dispatching operation, it must be
8886 -- replaced in the list of primitive operations of its type
8887 -- (see Override_Dispatching_Operation).
8888
ec4867fa 8889 Overridden_Subp := E;
758c442c 8890
996ae0b0
RK
8891 declare
8892 Prev : Entity_Id;
8893
8894 begin
8895 Prev := First_Entity (Current_Scope);
996ae0b0
RK
8896 while Present (Prev)
8897 and then Next_Entity (Prev) /= E
8898 loop
8899 Next_Entity (Prev);
8900 end loop;
8901
8902 -- It is possible for E to be in the current scope and
8903 -- yet not in the entity chain. This can only occur in a
8904 -- generic context where E is an implicit concatenation
8905 -- in the formal part, because in a generic body the
8906 -- entity chain starts with the formals.
8907
8908 pragma Assert
8909 (Present (Prev) or else Chars (E) = Name_Op_Concat);
8910
8911 -- E must be removed both from the entity_list of the
8912 -- current scope, and from the visibility chain
8913
8914 if Debug_Flag_E then
8915 Write_Str ("Override implicit operation ");
8916 Write_Int (Int (E));
8917 Write_Eol;
8918 end if;
8919
8920 -- If E is a predefined concatenation, it stands for four
8921 -- different operations. As a result, a single explicit
8922 -- declaration does not hide it. In a possible ambiguous
8923 -- situation, Disambiguate chooses the user-defined op,
8924 -- so it is correct to retain the previous internal one.
8925
8926 if Chars (E) /= Name_Op_Concat
8927 or else Ekind (E) /= E_Operator
8928 then
8929 -- For nondispatching derived operations that are
8930 -- overridden by a subprogram declared in the private
8dbd1460
AC
8931 -- part of a package, we retain the derived subprogram
8932 -- but mark it as not immediately visible. If the
8933 -- derived operation was declared in the visible part
8934 -- then this ensures that it will still be visible
8935 -- outside the package with the proper signature
8936 -- (calls from outside must also be directed to this
8937 -- version rather than the overriding one, unlike the
8938 -- dispatching case). Calls from inside the package
8939 -- will still resolve to the overriding subprogram
8940 -- since the derived one is marked as not visible
8941 -- within the package.
996ae0b0
RK
8942
8943 -- If the private operation is dispatching, we achieve
8944 -- the overriding by keeping the implicit operation
9865d858 8945 -- but setting its alias to be the overriding one. In
996ae0b0
RK
8946 -- this fashion the proper body is executed in all
8947 -- cases, but the original signature is used outside
8948 -- of the package.
8949
8950 -- If the overriding is not in the private part, we
8951 -- remove the implicit operation altogether.
8952
8953 if Is_Private_Declaration (S) then
996ae0b0
RK
8954 if not Is_Dispatching_Operation (E) then
8955 Set_Is_Immediately_Visible (E, False);
8956 else
e895b435 8957 -- Work done in Override_Dispatching_Operation,
a46cde68 8958 -- so nothing else needs to be done here.
996ae0b0
RK
8959
8960 null;
8961 end if;
996ae0b0 8962
fbf5a39b
AC
8963 else
8964 -- Find predecessor of E in Homonym chain
996ae0b0
RK
8965
8966 if E = Current_Entity (E) then
8967 Prev_Vis := Empty;
8968 else
8969 Prev_Vis := Current_Entity (E);
8970 while Homonym (Prev_Vis) /= E loop
8971 Prev_Vis := Homonym (Prev_Vis);
8972 end loop;
8973 end if;
8974
8975 if Prev_Vis /= Empty then
8976
8977 -- Skip E in the visibility chain
8978
8979 Set_Homonym (Prev_Vis, Homonym (E));
8980
8981 else
8982 Set_Name_Entity_Id (Chars (E), Homonym (E));
8983 end if;
8984
8985 Set_Next_Entity (Prev, Next_Entity (E));
8986
8987 if No (Next_Entity (Prev)) then
8988 Set_Last_Entity (Current_Scope, Prev);
8989 end if;
996ae0b0
RK
8990 end if;
8991 end if;
8992
8993 Enter_Overloaded_Entity (S);
1c1289e7
AC
8994
8995 -- For entities generated by Derive_Subprograms the
8996 -- overridden operation is the inherited primitive
8997 -- (which is available through the attribute alias).
8998
8999 if not (Comes_From_Source (E))
9000 and then Is_Dispatching_Operation (E)
f9673bb0
AC
9001 and then Find_Dispatching_Type (E) =
9002 Find_Dispatching_Type (S)
1c1289e7
AC
9003 and then Present (Alias (E))
9004 and then Comes_From_Source (Alias (E))
9005 then
9006 Set_Overridden_Operation (S, Alias (E));
2fe829ae 9007
6320f5e1
AC
9008 -- Normal case of setting entity as overridden
9009
9010 -- Note: Static_Initialization and Overridden_Operation
9011 -- attributes use the same field in subprogram entities.
9012 -- Static_Initialization is only defined for internal
9013 -- initialization procedures, where Overridden_Operation
9014 -- is irrelevant. Therefore the setting of this attribute
9015 -- must check whether the target is an init_proc.
9016
2fe829ae 9017 elsif not Is_Init_Proc (S) then
1c1289e7
AC
9018 Set_Overridden_Operation (S, E);
9019 end if;
9020
5d37ba92 9021 Check_Overriding_Indicator (S, E, Is_Primitive => True);
996ae0b0 9022
fc53fe76 9023 -- If S is a user-defined subprogram or a null procedure
38ef8ebe
AC
9024 -- expanded to override an inherited null procedure, or a
9025 -- predefined dispatching primitive then indicate that E
038140ed 9026 -- overrides the operation from which S is inherited.
fc53fe76
AC
9027
9028 if Comes_From_Source (S)
9029 or else
9030 (Present (Parent (S))
9031 and then
9032 Nkind (Parent (S)) = N_Procedure_Specification
9033 and then
9034 Null_Present (Parent (S)))
38ef8ebe
AC
9035 or else
9036 (Present (Alias (E))
f16e8df9
RD
9037 and then
9038 Is_Predefined_Dispatching_Operation (Alias (E)))
fc53fe76 9039 then
c8ef728f 9040 if Present (Alias (E)) then
41251c60 9041 Set_Overridden_Operation (S, Alias (E));
41251c60
JM
9042 end if;
9043 end if;
9044
996ae0b0 9045 if Is_Dispatching_Operation (E) then
fbf5a39b 9046
82c80734 9047 -- An overriding dispatching subprogram inherits the
f9673bb0 9048 -- convention of the overridden subprogram (AI-117).
996ae0b0
RK
9049
9050 Set_Convention (S, Convention (E));
41251c60
JM
9051 Check_Dispatching_Operation (S, E);
9052
996ae0b0
RK
9053 else
9054 Check_Dispatching_Operation (S, Empty);
9055 end if;
9056
5d37ba92
ES
9057 Check_For_Primitive_Subprogram
9058 (Is_Primitive_Subp, Is_Overriding => True);
996ae0b0
RK
9059 goto Check_Inequality;
9060 end;
9061
9062 -- Apparent redeclarations in instances can occur when two
9063 -- formal types get the same actual type. The subprograms in
9064 -- in the instance are legal, even if not callable from the
9065 -- outside. Calls from within are disambiguated elsewhere.
9066 -- For dispatching operations in the visible part, the usual
9067 -- rules apply, and operations with the same profile are not
9068 -- legal (B830001).
9069
9070 elsif (In_Instance_Visible_Part
9071 and then not Is_Dispatching_Operation (E))
9072 or else In_Instance_Not_Visible
9073 then
9074 null;
9075
9076 -- Here we have a real error (identical profile)
9077
9078 else
9079 Error_Msg_Sloc := Sloc (E);
9080
9081 -- Avoid cascaded errors if the entity appears in
9082 -- subsequent calls.
9083
9084 Set_Scope (S, Current_Scope);
9085
5d37ba92
ES
9086 -- Generate error, with extra useful warning for the case
9087 -- of a generic instance with no completion.
996ae0b0
RK
9088
9089 if Is_Generic_Instance (S)
9090 and then not Has_Completion (E)
9091 then
9092 Error_Msg_N
5d37ba92
ES
9093 ("instantiation cannot provide body for&", S);
9094 Error_Msg_N ("\& conflicts with declaration#", S);
9095 else
9096 Error_Msg_N ("& conflicts with declaration#", S);
996ae0b0
RK
9097 end if;
9098
9099 return;
9100 end if;
9101
9102 else
c8ef728f
ES
9103 -- If one subprogram has an access parameter and the other
9104 -- a parameter of an access type, calls to either might be
9105 -- ambiguous. Verify that parameters match except for the
9106 -- access parameter.
9107
9108 if May_Hide_Profile then
9109 declare
ec4867fa
ES
9110 F1 : Entity_Id;
9111 F2 : Entity_Id;
8dbd1460 9112
c8ef728f
ES
9113 begin
9114 F1 := First_Formal (S);
9115 F2 := First_Formal (E);
9116 while Present (F1) and then Present (F2) loop
9117 if Is_Access_Type (Etype (F1)) then
9118 if not Is_Access_Type (Etype (F2))
9119 or else not Conforming_Types
9120 (Designated_Type (Etype (F1)),
9121 Designated_Type (Etype (F2)),
9122 Type_Conformant)
9123 then
9124 May_Hide_Profile := False;
9125 end if;
9126
9127 elsif
9128 not Conforming_Types
9129 (Etype (F1), Etype (F2), Type_Conformant)
9130 then
9131 May_Hide_Profile := False;
9132 end if;
9133
9134 Next_Formal (F1);
9135 Next_Formal (F2);
9136 end loop;
9137
9138 if May_Hide_Profile
9139 and then No (F1)
9140 and then No (F2)
9141 then
9142 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
9143 end if;
9144 end;
9145 end if;
996ae0b0
RK
9146 end if;
9147
996ae0b0
RK
9148 E := Homonym (E);
9149 end loop;
9150
9151 -- On exit, we know that S is a new entity
9152
9153 Enter_Overloaded_Entity (S);
5d37ba92
ES
9154 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9155 Check_Overriding_Indicator
9156 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
996ae0b0 9157
c4d67e2d 9158 -- Overloading is not allowed in SPARK, except for operators
8ed68165 9159
c4d67e2d
AC
9160 if Nkind (S) /= N_Defining_Operator_Symbol then
9161 Error_Msg_Sloc := Sloc (Homonym (S));
9162 Check_SPARK_Restriction
9163 ("overloading not allowed with entity#", S);
9164 end if;
8ed68165 9165
82c80734
RD
9166 -- If S is a derived operation for an untagged type then by
9167 -- definition it's not a dispatching operation (even if the parent
e917aec2
RD
9168 -- operation was dispatching), so Check_Dispatching_Operation is not
9169 -- called in that case.
996ae0b0 9170
c8ef728f 9171 if No (Derived_Type)
996ae0b0
RK
9172 or else Is_Tagged_Type (Derived_Type)
9173 then
9174 Check_Dispatching_Operation (S, Empty);
9175 end if;
9176 end if;
9177
82c80734
RD
9178 -- If this is a user-defined equality operator that is not a derived
9179 -- subprogram, create the corresponding inequality. If the operation is
9180 -- dispatching, the expansion is done elsewhere, and we do not create
9181 -- an explicit inequality operation.
996ae0b0
RK
9182
9183 <<Check_Inequality>>
9184 if Chars (S) = Name_Op_Eq
9185 and then Etype (S) = Standard_Boolean
9186 and then Present (Parent (S))
9187 and then not Is_Dispatching_Operation (S)
9188 then
9189 Make_Inequality_Operator (S);
d151d6a3 9190
dbe945f1 9191 if Ada_Version >= Ada_2012 then
e5a58fac
AC
9192 Check_Untagged_Equality (S);
9193 end if;
996ae0b0 9194 end if;
996ae0b0
RK
9195 end New_Overloaded_Entity;
9196
9197 ---------------------
9198 -- Process_Formals --
9199 ---------------------
9200
9201 procedure Process_Formals
07fc65c4 9202 (T : List_Id;
996ae0b0
RK
9203 Related_Nod : Node_Id)
9204 is
9205 Param_Spec : Node_Id;
9206 Formal : Entity_Id;
9207 Formal_Type : Entity_Id;
9208 Default : Node_Id;
9209 Ptype : Entity_Id;
9210
800621e0
RD
9211 Num_Out_Params : Nat := 0;
9212 First_Out_Param : Entity_Id := Empty;
21d27997 9213 -- Used for setting Is_Only_Out_Parameter
800621e0 9214
950d217a
AC
9215 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
9216 -- Determine whether an access type designates a type coming from a
9217 -- limited view.
9218
07fc65c4 9219 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
82c80734
RD
9220 -- Check whether the default has a class-wide type. After analysis the
9221 -- default has the type of the formal, so we must also check explicitly
9222 -- for an access attribute.
07fc65c4 9223
950d217a
AC
9224 -------------------------------
9225 -- Designates_From_With_Type --
9226 -------------------------------
9227
9228 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
9229 Desig : Entity_Id := Typ;
9230
9231 begin
9232 if Is_Access_Type (Desig) then
9233 Desig := Directly_Designated_Type (Desig);
9234 end if;
9235
9236 if Is_Class_Wide_Type (Desig) then
9237 Desig := Root_Type (Desig);
9238 end if;
9239
9240 return
9241 Ekind (Desig) = E_Incomplete_Type
9242 and then From_With_Type (Desig);
9243 end Designates_From_With_Type;
9244
07fc65c4
GB
9245 ---------------------------
9246 -- Is_Class_Wide_Default --
9247 ---------------------------
9248
9249 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9250 begin
9251 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9252 or else (Nkind (D) = N_Attribute_Reference
0f853035
YM
9253 and then Attribute_Name (D) = Name_Access
9254 and then Is_Class_Wide_Type (Etype (Prefix (D))));
07fc65c4
GB
9255 end Is_Class_Wide_Default;
9256
9257 -- Start of processing for Process_Formals
9258
996ae0b0
RK
9259 begin
9260 -- In order to prevent premature use of the formals in the same formal
9261 -- part, the Ekind is left undefined until all default expressions are
9262 -- analyzed. The Ekind is established in a separate loop at the end.
9263
9264 Param_Spec := First (T);
996ae0b0 9265 while Present (Param_Spec) loop
996ae0b0 9266 Formal := Defining_Identifier (Param_Spec);
5d37ba92 9267 Set_Never_Set_In_Source (Formal, True);
996ae0b0
RK
9268 Enter_Name (Formal);
9269
9270 -- Case of ordinary parameters
9271
9272 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9273 Find_Type (Parameter_Type (Param_Spec));
9274 Ptype := Parameter_Type (Param_Spec);
9275
9276 if Ptype = Error then
9277 goto Continue;
9278 end if;
9279
9280 Formal_Type := Entity (Ptype);
9281
ec4867fa
ES
9282 if Is_Incomplete_Type (Formal_Type)
9283 or else
9284 (Is_Class_Wide_Type (Formal_Type)
9285 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
996ae0b0 9286 then
93bcda23
AC
9287 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9288 -- primitive operations, as long as their completion is
9289 -- in the same declarative part. If in the private part
9290 -- this means that the type cannot be a Taft-amendment type.
cec29135
ES
9291 -- Check is done on package exit. For access to subprograms,
9292 -- the use is legal for Taft-amendment types.
fbf5a39b 9293
d8db0bca 9294 if Is_Tagged_Type (Formal_Type) then
93bcda23 9295 if Ekind (Scope (Current_Scope)) = E_Package
93bcda23
AC
9296 and then not From_With_Type (Formal_Type)
9297 and then not Is_Class_Wide_Type (Formal_Type)
9298 then
cec29135
ES
9299 if not Nkind_In
9300 (Parent (T), N_Access_Function_Definition,
9301 N_Access_Procedure_Definition)
9302 then
9303 Append_Elmt
9304 (Current_Scope,
9305 Private_Dependents (Base_Type (Formal_Type)));
4637729f
AC
9306
9307 -- Freezing is delayed to ensure that Register_Prim
9308 -- will get called for this operation, which is needed
9309 -- in cases where static dispatch tables aren't built.
9310 -- (Note that the same is done for controlling access
9311 -- parameter cases in function Access_Definition.)
9312
9313 Set_Has_Delayed_Freeze (Current_Scope);
cec29135 9314 end if;
93bcda23 9315 end if;
fbf5a39b 9316
0a36105d
JM
9317 -- Special handling of Value_Type for CIL case
9318
9319 elsif Is_Value_Type (Formal_Type) then
9320 null;
9321
800621e0
RD
9322 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
9323 N_Access_Procedure_Definition)
996ae0b0 9324 then
dd386db0
AC
9325 -- AI05-0151: Tagged incomplete types are allowed in all
9326 -- formal parts. Untagged incomplete types are not allowed
9327 -- in bodies.
9328
9329 if Ada_Version >= Ada_2012 then
9330 if Is_Tagged_Type (Formal_Type) then
9331 null;
9332
0f1a6a0b
AC
9333 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
9334 N_Entry_Body,
9335 N_Subprogram_Body)
dd386db0
AC
9336 then
9337 Error_Msg_NE
9338 ("invalid use of untagged incomplete type&",
0f1a6a0b 9339 Ptype, Formal_Type);
dd386db0
AC
9340 end if;
9341
9342 else
9343 Error_Msg_NE
9344 ("invalid use of incomplete type&",
0f1a6a0b 9345 Param_Spec, Formal_Type);
dd386db0
AC
9346
9347 -- Further checks on the legality of incomplete types
9348 -- in formal parts are delayed until the freeze point
9349 -- of the enclosing subprogram or access to subprogram.
9350 end if;
996ae0b0
RK
9351 end if;
9352
9353 elsif Ekind (Formal_Type) = E_Void then
0f1a6a0b
AC
9354 Error_Msg_NE
9355 ("premature use of&",
9356 Parameter_Type (Param_Spec), Formal_Type);
996ae0b0
RK
9357 end if;
9358
fecbd779
AC
9359 -- Ada 2012 (AI-142): Handle aliased parameters
9360
9361 if Ada_Version >= Ada_2012
9362 and then Aliased_Present (Param_Spec)
9363 then
9364 Set_Is_Aliased (Formal);
9365 end if;
9366
0ab80019 9367 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7324bf49 9368 -- declaration corresponding to the null-excluding type of the
d8db0bca
JM
9369 -- formal in the enclosing scope. Finally, replace the parameter
9370 -- type of the formal with the internal subtype.
7324bf49 9371
0791fbe9 9372 if Ada_Version >= Ada_2005
41251c60 9373 and then Null_Exclusion_Present (Param_Spec)
7324bf49 9374 then
ec4867fa 9375 if not Is_Access_Type (Formal_Type) then
ed2233dc 9376 Error_Msg_N
0a36105d
JM
9377 ("`NOT NULL` allowed only for an access type", Param_Spec);
9378
ec4867fa
ES
9379 else
9380 if Can_Never_Be_Null (Formal_Type)
9381 and then Comes_From_Source (Related_Nod)
9382 then
ed2233dc 9383 Error_Msg_NE
0a36105d 9384 ("`NOT NULL` not allowed (& already excludes null)",
0f1a6a0b 9385 Param_Spec, Formal_Type);
ec4867fa 9386 end if;
41251c60 9387
ec4867fa
ES
9388 Formal_Type :=
9389 Create_Null_Excluding_Itype
9390 (T => Formal_Type,
9391 Related_Nod => Related_Nod,
9392 Scope_Id => Scope (Current_Scope));
0a36105d
JM
9393
9394 -- If the designated type of the itype is an itype we
9395 -- decorate it with the Has_Delayed_Freeze attribute to
9396 -- avoid problems with the backend.
9397
9398 -- Example:
9399 -- type T is access procedure;
9400 -- procedure Op (O : not null T);
9401
9402 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
9403 Set_Has_Delayed_Freeze (Formal_Type);
9404 end if;
ec4867fa 9405 end if;
7324bf49
AC
9406 end if;
9407
996ae0b0
RK
9408 -- An access formal type
9409
9410 else
9411 Formal_Type :=
9412 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7324bf49 9413
f937473f
RD
9414 -- No need to continue if we already notified errors
9415
9416 if not Present (Formal_Type) then
9417 return;
9418 end if;
9419
0ab80019 9420 -- Ada 2005 (AI-254)
7324bf49 9421
af4b9434
AC
9422 declare
9423 AD : constant Node_Id :=
9424 Access_To_Subprogram_Definition
9425 (Parameter_Type (Param_Spec));
9426 begin
9427 if Present (AD) and then Protected_Present (AD) then
9428 Formal_Type :=
9429 Replace_Anonymous_Access_To_Protected_Subprogram
f937473f 9430 (Param_Spec);
af4b9434
AC
9431 end if;
9432 end;
996ae0b0
RK
9433 end if;
9434
9435 Set_Etype (Formal, Formal_Type);
0f853035 9436
fecbd779
AC
9437 -- Deal with default expression if present
9438
fbf5a39b 9439 Default := Expression (Param_Spec);
996ae0b0
RK
9440
9441 if Present (Default) then
2ba431e5 9442 Check_SPARK_Restriction
fe5d3068 9443 ("default expression is not allowed", Default);
38171f43 9444
996ae0b0 9445 if Out_Present (Param_Spec) then
ed2233dc 9446 Error_Msg_N
996ae0b0
RK
9447 ("default initialization only allowed for IN parameters",
9448 Param_Spec);
9449 end if;
9450
9451 -- Do the special preanalysis of the expression (see section on
9452 -- "Handling of Default Expressions" in the spec of package Sem).
9453
21d27997 9454 Preanalyze_Spec_Expression (Default, Formal_Type);
996ae0b0 9455
f29b857f
ES
9456 -- An access to constant cannot be the default for
9457 -- an access parameter that is an access to variable.
2eb160f2
ST
9458
9459 if Ekind (Formal_Type) = E_Anonymous_Access_Type
9460 and then not Is_Access_Constant (Formal_Type)
9461 and then Is_Access_Type (Etype (Default))
9462 and then Is_Access_Constant (Etype (Default))
9463 then
f29b857f
ES
9464 Error_Msg_N
9465 ("formal that is access to variable cannot be initialized " &
9466 "with an access-to-constant expression", Default);
2eb160f2
ST
9467 end if;
9468
d8db0bca
JM
9469 -- Check that the designated type of an access parameter's default
9470 -- is not a class-wide type unless the parameter's designated type
9471 -- is also class-wide.
996ae0b0
RK
9472
9473 if Ekind (Formal_Type) = E_Anonymous_Access_Type
950d217a 9474 and then not Designates_From_With_Type (Formal_Type)
07fc65c4 9475 and then Is_Class_Wide_Default (Default)
996ae0b0
RK
9476 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
9477 then
07fc65c4
GB
9478 Error_Msg_N
9479 ("access to class-wide expression not allowed here", Default);
996ae0b0 9480 end if;
4755cce9
JM
9481
9482 -- Check incorrect use of dynamically tagged expressions
9483
9484 if Is_Tagged_Type (Formal_Type) then
9485 Check_Dynamically_Tagged_Expression
9486 (Expr => Default,
9487 Typ => Formal_Type,
9488 Related_Nod => Default);
9489 end if;
996ae0b0
RK
9490 end if;
9491
41251c60
JM
9492 -- Ada 2005 (AI-231): Static checks
9493
0791fbe9 9494 if Ada_Version >= Ada_2005
41251c60
JM
9495 and then Is_Access_Type (Etype (Formal))
9496 and then Can_Never_Be_Null (Etype (Formal))
9497 then
9498 Null_Exclusion_Static_Checks (Param_Spec);
9499 end if;
9500
996ae0b0
RK
9501 <<Continue>>
9502 Next (Param_Spec);
9503 end loop;
9504
82c80734
RD
9505 -- If this is the formal part of a function specification, analyze the
9506 -- subtype mark in the context where the formals are visible but not
9507 -- yet usable, and may hide outer homographs.
9508
9509 if Nkind (Related_Nod) = N_Function_Specification then
9510 Analyze_Return_Type (Related_Nod);
9511 end if;
9512
996ae0b0
RK
9513 -- Now set the kind (mode) of each formal
9514
9515 Param_Spec := First (T);
996ae0b0
RK
9516 while Present (Param_Spec) loop
9517 Formal := Defining_Identifier (Param_Spec);
9518 Set_Formal_Mode (Formal);
9519
9520 if Ekind (Formal) = E_In_Parameter then
9521 Set_Default_Value (Formal, Expression (Param_Spec));
9522
9523 if Present (Expression (Param_Spec)) then
9524 Default := Expression (Param_Spec);
9525
9526 if Is_Scalar_Type (Etype (Default)) then
9527 if Nkind
9528 (Parameter_Type (Param_Spec)) /= N_Access_Definition
9529 then
9530 Formal_Type := Entity (Parameter_Type (Param_Spec));
9531
9532 else
9533 Formal_Type := Access_Definition
9534 (Related_Nod, Parameter_Type (Param_Spec));
9535 end if;
9536
9537 Apply_Scalar_Range_Check (Default, Formal_Type);
9538 end if;
2820d220 9539 end if;
800621e0
RD
9540
9541 elsif Ekind (Formal) = E_Out_Parameter then
9542 Num_Out_Params := Num_Out_Params + 1;
9543
9544 if Num_Out_Params = 1 then
9545 First_Out_Param := Formal;
9546 end if;
9547
9548 elsif Ekind (Formal) = E_In_Out_Parameter then
9549 Num_Out_Params := Num_Out_Params + 1;
996ae0b0
RK
9550 end if;
9551
fecbd779
AC
9552 -- Force call by reference if aliased
9553
9554 if Is_Aliased (Formal) then
9555 Set_Mechanism (Formal, By_Reference);
9556 end if;
9557
996ae0b0
RK
9558 Next (Param_Spec);
9559 end loop;
800621e0
RD
9560
9561 if Present (First_Out_Param) and then Num_Out_Params = 1 then
9562 Set_Is_Only_Out_Parameter (First_Out_Param);
9563 end if;
996ae0b0
RK
9564 end Process_Formals;
9565
21d27997
RD
9566 ------------------
9567 -- Process_PPCs --
9568 ------------------
9569
9570 procedure Process_PPCs
9571 (N : Node_Id;
9572 Spec_Id : Entity_Id;
9573 Body_Id : Entity_Id)
9574 is
9575 Loc : constant Source_Ptr := Sloc (N);
9576 Prag : Node_Id;
21d27997
RD
9577 Parms : List_Id;
9578
e606088a
AC
9579 Designator : Entity_Id;
9580 -- Subprogram designator, set from Spec_Id if present, else Body_Id
9581
beacce02
AC
9582 Precond : Node_Id := Empty;
9583 -- Set non-Empty if we prepend precondition to the declarations. This
9584 -- is used to hook up inherited preconditions (adding the condition
9585 -- expression with OR ELSE, and adding the message).
9586
9587 Inherited_Precond : Node_Id;
9588 -- Precondition inherited from parent subprogram
9589
9590 Inherited : constant Subprogram_List :=
e606088a
AC
9591 Inherited_Subprograms (Spec_Id);
9592 -- List of subprograms inherited by this subprogram
beacce02
AC
9593
9594 Plist : List_Id := No_List;
9595 -- List of generated postconditions
9596
f0709ca6
AC
9597 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
9598 -- Prag contains an analyzed precondition or postcondition pragma. This
9599 -- function copies the pragma, changes it to the corresponding Check
9600 -- pragma and returns the Check pragma as the result. If Pspec is non-
9601 -- empty, this is the case of inheriting a PPC, where we must change
9602 -- references to parameters of the inherited subprogram to point to the
9603 -- corresponding parameters of the current subprogram.
21d27997 9604
b4ca2d2c
AC
9605 function Invariants_Or_Predicates_Present return Boolean;
9606 -- Determines if any invariants or predicates are present for any OUT
9607 -- or IN OUT parameters of the subprogram, or (for a function) if the
9608 -- return value has an invariant.
e606088a 9609
a4901c08
AC
9610 function Is_Public_Subprogram_For (T : Entity_Id) return Boolean;
9611 -- T is the entity for a private type for which invariants are defined.
9612 -- This function returns True if the procedure corresponding to the
9613 -- value of Designator is a public procedure from the point of view of
9614 -- this type (i.e. its spec is in the visible part of the package that
9615 -- contains the declaration of the private type). A True value means
9616 -- that an invariant check is required (for an IN OUT parameter, or
9617 -- the returned value of a function.
9618
21d27997
RD
9619 --------------
9620 -- Grab_PPC --
9621 --------------
9622
f0709ca6
AC
9623 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
9624 Nam : constant Name_Id := Pragma_Name (Prag);
9625 Map : Elist_Id;
9626 CP : Node_Id;
21d27997
RD
9627
9628 begin
f0709ca6
AC
9629 -- Prepare map if this is the case where we have to map entities of
9630 -- arguments in the overridden subprogram to corresponding entities
9631 -- of the current subprogram.
9632
9633 if No (Pspec) then
9634 Map := No_Elist;
9635
9636 else
9637 declare
9638 PF : Entity_Id;
9639 CF : Entity_Id;
9640
9641 begin
9642 Map := New_Elmt_List;
9643 PF := First_Formal (Pspec);
e606088a 9644 CF := First_Formal (Designator);
f0709ca6
AC
9645 while Present (PF) loop
9646 Append_Elmt (PF, Map);
9647 Append_Elmt (CF, Map);
9648 Next_Formal (PF);
9649 Next_Formal (CF);
9650 end loop;
9651 end;
9652 end if;
9653
308e6f3a 9654 -- Now we can copy the tree, doing any required substitutions
f0709ca6
AC
9655
9656 CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
9657
21d27997
RD
9658 -- Set Analyzed to false, since we want to reanalyze the check
9659 -- procedure. Note that it is only at the outer level that we
9660 -- do this fiddling, for the spec cases, the already preanalyzed
9661 -- parameters are not affected.
766d7add 9662
1fb00064
AC
9663 Set_Analyzed (CP, False);
9664
9665 -- We also make sure Comes_From_Source is False for the copy
9666
9667 Set_Comes_From_Source (CP, False);
9668
0dabde3a
ES
9669 -- For a postcondition pragma within a generic, preserve the pragma
9670 -- for later expansion.
21d27997 9671
0dabde3a
ES
9672 if Nam = Name_Postcondition
9673 and then not Expander_Active
9674 then
9675 return CP;
9676 end if;
9677
1fb00064 9678 -- Change copy of pragma into corresponding pragma Check
21d27997
RD
9679
9680 Prepend_To (Pragma_Argument_Associations (CP),
9681 Make_Pragma_Argument_Association (Sloc (Prag),
7675ad4f
AC
9682 Expression => Make_Identifier (Loc, Nam)));
9683 Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
21d27997 9684
beacce02
AC
9685 -- If this is inherited case and the current message starts with
9686 -- "failed p", we change it to "failed inherited p...".
f0709ca6
AC
9687
9688 if Present (Pspec) then
beacce02
AC
9689 declare
9690 Msg : constant Node_Id :=
9691 Last (Pragma_Argument_Associations (CP));
9692
9693 begin
9694 if Chars (Msg) = Name_Message then
9695 String_To_Name_Buffer (Strval (Expression (Msg)));
9696
9697 if Name_Buffer (1 .. 8) = "failed p" then
9698 Insert_Str_In_Name_Buffer ("inherited ", 8);
9699 Set_Strval
9700 (Expression (Last (Pragma_Argument_Associations (CP))),
9701 String_From_Name_Buffer);
9702 end if;
9703 end if;
9704 end;
f0709ca6
AC
9705 end if;
9706
9707 -- Return the check pragma
9708
21d27997
RD
9709 return CP;
9710 end Grab_PPC;
9711
b4ca2d2c
AC
9712 --------------------------------------
9713 -- Invariants_Or_Predicates_Present --
9714 --------------------------------------
e606088a 9715
b4ca2d2c
AC
9716 function Invariants_Or_Predicates_Present return Boolean is
9717 Formal : Entity_Id;
e606088a
AC
9718
9719 begin
9720 -- Check function return result
9721
9722 if Ekind (Designator) /= E_Procedure
9723 and then Has_Invariants (Etype (Designator))
9724 then
9725 return True;
9726 end if;
9727
9728 -- Check parameters
9729
9730 Formal := First_Formal (Designator);
9731 while Present (Formal) loop
9732 if Ekind (Formal) /= E_In_Parameter
b4ca2d2c
AC
9733 and then
9734 (Has_Invariants (Etype (Formal))
9735 or else Present (Predicate_Function (Etype (Formal))))
e606088a
AC
9736 then
9737 return True;
9738 end if;
9739
9740 Next_Formal (Formal);
9741 end loop;
9742
9743 return False;
b4ca2d2c 9744 end Invariants_Or_Predicates_Present;
e606088a 9745
a4901c08
AC
9746 ------------------------------
9747 -- Is_Public_Subprogram_For --
9748 ------------------------------
9749
9750 -- The type T is a private type, its declaration is therefore in
9751 -- the list of public declarations of some package. The test for a
9752 -- public subprogram is that its declaration is in this same list
9753 -- of declarations for the same package (note that all the public
9754 -- declarations are in one list, and all the private declarations
9755 -- in another, so this deals with the public/private distinction).
9756
9757 function Is_Public_Subprogram_For (T : Entity_Id) return Boolean is
9758 DD : constant Node_Id := Unit_Declaration_Node (Designator);
9759 -- The subprogram declaration for the subprogram in question
9760
9761 TL : constant List_Id :=
9762 Visible_Declarations
9763 (Specification (Unit_Declaration_Node (Scope (T))));
9764 -- The list of declarations containing the private declaration of
9765 -- the type. We know it is a private type, so we know its scope is
9766 -- the package in question, and we know it must be in the visible
9767 -- declarations of this package.
9768
9769 begin
9770 -- If the subprogram declaration is not a list member, it must be
9771 -- an Init_Proc, in which case we want to consider it to be a
9772 -- public subprogram, since we do get initializations to deal with.
9773
9774 if not Is_List_Member (DD) then
9775 return True;
9776
9777 -- Otherwise we test whether the subprogram is declared in the
9778 -- visible declarations of the package containing the type.
9779
9780 else
9781 return TL = List_Containing (DD);
9782 end if;
9783 end Is_Public_Subprogram_For;
9784
21d27997
RD
9785 -- Start of processing for Process_PPCs
9786
9787 begin
e606088a
AC
9788 -- Capture designator from spec if present, else from body
9789
9790 if Present (Spec_Id) then
9791 Designator := Spec_Id;
9792 else
9793 Designator := Body_Id;
9794 end if;
9795
21d27997
RD
9796 -- Grab preconditions from spec
9797
9798 if Present (Spec_Id) then
9799
9800 -- Loop through PPC pragmas from spec. Note that preconditions from
9801 -- the body will be analyzed and converted when we scan the body
9802 -- declarations below.
9803
dac3bede 9804 Prag := Spec_PPC_List (Contract (Spec_Id));
21d27997 9805 while Present (Prag) loop
1fb00064
AC
9806 if Pragma_Name (Prag) = Name_Precondition then
9807
beacce02
AC
9808 -- For Pre (or Precondition pragma), we simply prepend the
9809 -- pragma to the list of declarations right away so that it
9810 -- will be executed at the start of the procedure. Note that
9811 -- this processing reverses the order of the list, which is
9812 -- what we want since new entries were chained to the head of
2d395256
AC
9813 -- the list. There can be more than one precondition when we
9814 -- use pragma Precondition.
beacce02
AC
9815
9816 if not Class_Present (Prag) then
9817 Prepend (Grab_PPC, Declarations (N));
9818
9819 -- For Pre'Class there can only be one pragma, and we save
9820 -- it in Precond for now. We will add inherited Pre'Class
9821 -- stuff before inserting this pragma in the declarations.
9822 else
9823 Precond := Grab_PPC;
9824 end if;
21d27997
RD
9825 end if;
9826
9827 Prag := Next_Pragma (Prag);
9828 end loop;
beacce02
AC
9829
9830 -- Now deal with inherited preconditions
9831
9832 for J in Inherited'Range loop
dac3bede 9833 Prag := Spec_PPC_List (Contract (Inherited (J)));
beacce02
AC
9834
9835 while Present (Prag) loop
9836 if Pragma_Name (Prag) = Name_Precondition
9837 and then Class_Present (Prag)
9838 then
3c971dcc 9839 Inherited_Precond := Grab_PPC (Inherited (J));
beacce02
AC
9840
9841 -- No precondition so far, so establish this as the first
9842
9843 if No (Precond) then
9844 Precond := Inherited_Precond;
9845
9846 -- Here we already have a precondition, add inherited one
9847
9848 else
9849 -- Add new precondition to old one using OR ELSE
9850
9851 declare
9852 New_Expr : constant Node_Id :=
9853 Get_Pragma_Arg
9854 (Next
9855 (First
9856 (Pragma_Argument_Associations
9857 (Inherited_Precond))));
9858 Old_Expr : constant Node_Id :=
9859 Get_Pragma_Arg
9860 (Next
9861 (First
9862 (Pragma_Argument_Associations
9863 (Precond))));
9864
9865 begin
9866 if Paren_Count (Old_Expr) = 0 then
9867 Set_Paren_Count (Old_Expr, 1);
9868 end if;
9869
9870 if Paren_Count (New_Expr) = 0 then
9871 Set_Paren_Count (New_Expr, 1);
9872 end if;
9873
9874 Rewrite (Old_Expr,
9875 Make_Or_Else (Sloc (Old_Expr),
9876 Left_Opnd => Relocate_Node (Old_Expr),
9877 Right_Opnd => New_Expr));
9878 end;
9879
9880 -- Add new message in the form:
9881
9882 -- failed precondition from bla
9883 -- also failed inherited precondition from bla
9884 -- ...
9885
3c971dcc
AC
9886 -- Skip this if exception locations are suppressed
9887
9888 if not Exception_Locations_Suppressed then
9889 declare
9890 New_Msg : constant Node_Id :=
9891 Get_Pragma_Arg
9892 (Last
9893 (Pragma_Argument_Associations
9894 (Inherited_Precond)));
9895 Old_Msg : constant Node_Id :=
9896 Get_Pragma_Arg
9897 (Last
9898 (Pragma_Argument_Associations
9899 (Precond)));
9900 begin
9901 Start_String (Strval (Old_Msg));
9902 Store_String_Chars (ASCII.LF & " also ");
9903 Store_String_Chars (Strval (New_Msg));
9904 Set_Strval (Old_Msg, End_String);
9905 end;
9906 end if;
beacce02
AC
9907 end if;
9908 end if;
9909
9910 Prag := Next_Pragma (Prag);
9911 end loop;
9912 end loop;
9913
9914 -- If we have built a precondition for Pre'Class (including any
9915 -- Pre'Class aspects inherited from parent subprograms), then we
9916 -- insert this composite precondition at this stage.
9917
9918 if Present (Precond) then
9919 Prepend (Precond, Declarations (N));
9920 end if;
21d27997
RD
9921 end if;
9922
9923 -- Build postconditions procedure if needed and prepend the following
9924 -- declaration to the start of the declarations for the subprogram.
9925
9926 -- procedure _postconditions [(_Result : resulttype)] is
9927 -- begin
9928 -- pragma Check (Postcondition, condition [,message]);
9929 -- pragma Check (Postcondition, condition [,message]);
9930 -- ...
e606088a
AC
9931 -- Invariant_Procedure (_Result) ...
9932 -- Invariant_Procedure (Arg1)
9933 -- ...
21d27997
RD
9934 -- end;
9935
9936 -- First we deal with the postconditions in the body
9937
9938 if Is_Non_Empty_List (Declarations (N)) then
9939
9940 -- Loop through declarations
9941
9942 Prag := First (Declarations (N));
9943 while Present (Prag) loop
9944 if Nkind (Prag) = N_Pragma then
9945
9946 -- If pragma, capture if enabled postcondition, else ignore
9947
9948 if Pragma_Name (Prag) = Name_Postcondition
9949 and then Check_Enabled (Name_Postcondition)
9950 then
9951 if Plist = No_List then
9952 Plist := Empty_List;
9953 end if;
9954
9955 Analyze (Prag);
0dabde3a 9956
f0709ca6
AC
9957 -- If expansion is disabled, as in a generic unit, save
9958 -- pragma for later expansion.
0dabde3a
ES
9959
9960 if not Expander_Active then
f0709ca6 9961 Prepend (Grab_PPC, Declarations (N));
0dabde3a 9962 else
f0709ca6 9963 Append (Grab_PPC, Plist);
0dabde3a 9964 end if;
21d27997
RD
9965 end if;
9966
9967 Next (Prag);
9968
043ce308 9969 -- Not a pragma, if comes from source, then end scan
21d27997
RD
9970
9971 elsif Comes_From_Source (Prag) then
9972 exit;
9973
043ce308 9974 -- Skip stuff not coming from source
21d27997
RD
9975
9976 else
9977 Next (Prag);
9978 end if;
9979 end loop;
9980 end if;
9981
9982 -- Now deal with any postconditions from the spec
9983
9984 if Present (Spec_Id) then
e606088a 9985 Spec_Postconditions : declare
f0709ca6
AC
9986 procedure Process_Post_Conditions
9987 (Spec : Node_Id;
9988 Class : Boolean);
9989 -- This processes the Spec_PPC_List from Spec, processing any
9990 -- postconditions from the list. If Class is True, then only
9991 -- postconditions marked with Class_Present are considered.
9992 -- The caller has checked that Spec_PPC_List is non-Empty.
9993
9994 -----------------------------
9995 -- Process_Post_Conditions --
9996 -----------------------------
9997
9998 procedure Process_Post_Conditions
9999 (Spec : Node_Id;
10000 Class : Boolean)
10001 is
10002 Pspec : Node_Id;
21d27997 10003
f0709ca6
AC
10004 begin
10005 if Class then
10006 Pspec := Spec;
0dabde3a 10007 else
f0709ca6 10008 Pspec := Empty;
0dabde3a 10009 end if;
f0709ca6
AC
10010
10011 -- Loop through PPC pragmas from spec
10012
dac3bede 10013 Prag := Spec_PPC_List (Contract (Spec));
f0709ca6
AC
10014 loop
10015 if Pragma_Name (Prag) = Name_Postcondition
f0709ca6
AC
10016 and then (not Class or else Class_Present (Prag))
10017 then
10018 if Plist = No_List then
10019 Plist := Empty_List;
10020 end if;
10021
10022 if not Expander_Active then
10023 Prepend
10024 (Grab_PPC (Pspec), Declarations (N));
10025 else
10026 Append (Grab_PPC (Pspec), Plist);
10027 end if;
10028 end if;
10029
10030 Prag := Next_Pragma (Prag);
10031 exit when No (Prag);
10032 end loop;
10033 end Process_Post_Conditions;
10034
e606088a
AC
10035 -- Start of processing for Spec_Postconditions
10036
f0709ca6 10037 begin
dac3bede 10038 if Present (Spec_PPC_List (Contract (Spec_Id))) then
f0709ca6 10039 Process_Post_Conditions (Spec_Id, Class => False);
21d27997
RD
10040 end if;
10041
beacce02 10042 -- Process inherited postconditions
f0709ca6 10043
beacce02 10044 for J in Inherited'Range loop
dac3bede 10045 if Present (Spec_PPC_List (Contract (Inherited (J)))) then
beacce02 10046 Process_Post_Conditions (Inherited (J), Class => True);
f0709ca6
AC
10047 end if;
10048 end loop;
e606088a 10049 end Spec_Postconditions;
21d27997
RD
10050 end if;
10051
e606088a
AC
10052 -- If we had any postconditions and expansion is enabled, or if the
10053 -- procedure has invariants, then build the _Postconditions procedure.
21d27997 10054
b4ca2d2c 10055 if (Present (Plist) or else Invariants_Or_Predicates_Present)
0dabde3a
ES
10056 and then Expander_Active
10057 then
e606088a
AC
10058 if No (Plist) then
10059 Plist := Empty_List;
10060 end if;
10061
10062 -- Special processing for function case
10063
10064 if Ekind (Designator) /= E_Procedure then
10065 declare
10066 Rent : constant Entity_Id :=
fecbd779 10067 Make_Defining_Identifier (Loc, Name_uResult);
e606088a
AC
10068 Ftyp : constant Entity_Id := Etype (Designator);
10069
10070 begin
10071 Set_Etype (Rent, Ftyp);
10072
10073 -- Add argument for return
10074
10075 Parms :=
10076 New_List (
10077 Make_Parameter_Specification (Loc,
10078 Parameter_Type => New_Occurrence_Of (Ftyp, Loc),
10079 Defining_Identifier => Rent));
10080
a4901c08
AC
10081 -- Add invariant call if returning type with invariants and
10082 -- this is a public function, i.e. a function declared in the
10083 -- visible part of the package defining the private type.
e606088a 10084
fd0ff1cf
RD
10085 if Has_Invariants (Etype (Rent))
10086 and then Present (Invariant_Procedure (Etype (Rent)))
a4901c08 10087 and then Is_Public_Subprogram_For (Etype (Rent))
fd0ff1cf 10088 then
e606088a
AC
10089 Append_To (Plist,
10090 Make_Invariant_Call (New_Occurrence_Of (Rent, Loc)));
10091 end if;
10092 end;
10093
10094 -- Procedure rather than a function
21d27997 10095
21d27997
RD
10096 else
10097 Parms := No_List;
10098 end if;
10099
b4ca2d2c
AC
10100 -- Add invariant calls and predicate calls for parameters. Note that
10101 -- this is done for functions as well, since in Ada 2012 they can
10102 -- have IN OUT args.
e606088a
AC
10103
10104 declare
10105 Formal : Entity_Id;
b4ca2d2c 10106 Ftype : Entity_Id;
e606088a
AC
10107
10108 begin
10109 Formal := First_Formal (Designator);
10110 while Present (Formal) loop
b4ca2d2c
AC
10111 if Ekind (Formal) /= E_In_Parameter then
10112 Ftype := Etype (Formal);
10113
10114 if Has_Invariants (Ftype)
10115 and then Present (Invariant_Procedure (Ftype))
a4901c08 10116 and then Is_Public_Subprogram_For (Ftype)
b4ca2d2c
AC
10117 then
10118 Append_To (Plist,
10119 Make_Invariant_Call
10120 (New_Occurrence_Of (Formal, Loc)));
10121 end if;
10122
10123 if Present (Predicate_Function (Ftype)) then
10124 Append_To (Plist,
10125 Make_Predicate_Check
10126 (Ftype, New_Occurrence_Of (Formal, Loc)));
10127 end if;
e606088a
AC
10128 end if;
10129
10130 Next_Formal (Formal);
10131 end loop;
10132 end;
10133
10134 -- Build and insert postcondition procedure
10135
043ce308
AC
10136 declare
10137 Post_Proc : constant Entity_Id :=
e606088a
AC
10138 Make_Defining_Identifier (Loc,
10139 Chars => Name_uPostconditions);
043ce308 10140 -- The entity for the _Postconditions procedure
f0709ca6 10141
043ce308 10142 begin
043ce308
AC
10143 Prepend_To (Declarations (N),
10144 Make_Subprogram_Body (Loc,
10145 Specification =>
10146 Make_Procedure_Specification (Loc,
10147 Defining_Unit_Name => Post_Proc,
10148 Parameter_Specifications => Parms),
10149
10150 Declarations => Empty_List,
10151
10152 Handled_Statement_Sequence =>
10153 Make_Handled_Sequence_Of_Statements (Loc,
10154 Statements => Plist)));
21d27997 10155
5ffe0bab 10156 Set_Ekind (Post_Proc, E_Procedure);
5ffe0bab 10157
3bb3f6d6
AC
10158 -- If this is a procedure, set the Postcondition_Proc attribute on
10159 -- the proper defining entity for the subprogram.
21d27997 10160
e606088a
AC
10161 if Ekind (Designator) = E_Procedure then
10162 Set_Postcondition_Proc (Designator, Post_Proc);
043ce308
AC
10163 end if;
10164 end;
21d27997 10165
e606088a 10166 Set_Has_Postconditions (Designator);
21d27997
RD
10167 end if;
10168 end Process_PPCs;
10169
fbf5a39b
AC
10170 ----------------------------
10171 -- Reference_Body_Formals --
10172 ----------------------------
10173
10174 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10175 Fs : Entity_Id;
10176 Fb : Entity_Id;
10177
10178 begin
10179 if Error_Posted (Spec) then
10180 return;
10181 end if;
10182
0a36105d
JM
10183 -- Iterate over both lists. They may be of different lengths if the two
10184 -- specs are not conformant.
10185
fbf5a39b
AC
10186 Fs := First_Formal (Spec);
10187 Fb := First_Formal (Bod);
0a36105d 10188 while Present (Fs) and then Present (Fb) loop
fbf5a39b
AC
10189 Generate_Reference (Fs, Fb, 'b');
10190
10191 if Style_Check then
10192 Style.Check_Identifier (Fb, Fs);
10193 end if;
10194
10195 Set_Spec_Entity (Fb, Fs);
10196 Set_Referenced (Fs, False);
10197 Next_Formal (Fs);
10198 Next_Formal (Fb);
10199 end loop;
10200 end Reference_Body_Formals;
10201
996ae0b0
RK
10202 -------------------------
10203 -- Set_Actual_Subtypes --
10204 -------------------------
10205
10206 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
2820d220
AC
10207 Decl : Node_Id;
10208 Formal : Entity_Id;
10209 T : Entity_Id;
10210 First_Stmt : Node_Id := Empty;
10211 AS_Needed : Boolean;
996ae0b0
RK
10212
10213 begin
f3d57416 10214 -- If this is an empty initialization procedure, no need to create
fbf5a39b
AC
10215 -- actual subtypes (small optimization).
10216
10217 if Ekind (Subp) = E_Procedure
10218 and then Is_Null_Init_Proc (Subp)
10219 then
10220 return;
10221 end if;
10222
996ae0b0
RK
10223 Formal := First_Formal (Subp);
10224 while Present (Formal) loop
10225 T := Etype (Formal);
10226
e895b435 10227 -- We never need an actual subtype for a constrained formal
996ae0b0
RK
10228
10229 if Is_Constrained (T) then
10230 AS_Needed := False;
10231
82c80734
RD
10232 -- If we have unknown discriminants, then we do not need an actual
10233 -- subtype, or more accurately we cannot figure it out! Note that
10234 -- all class-wide types have unknown discriminants.
996ae0b0
RK
10235
10236 elsif Has_Unknown_Discriminants (T) then
10237 AS_Needed := False;
10238
82c80734
RD
10239 -- At this stage we have an unconstrained type that may need an
10240 -- actual subtype. For sure the actual subtype is needed if we have
10241 -- an unconstrained array type.
996ae0b0
RK
10242
10243 elsif Is_Array_Type (T) then
10244 AS_Needed := True;
10245
d8db0bca
JM
10246 -- The only other case needing an actual subtype is an unconstrained
10247 -- record type which is an IN parameter (we cannot generate actual
10248 -- subtypes for the OUT or IN OUT case, since an assignment can
10249 -- change the discriminant values. However we exclude the case of
10250 -- initialization procedures, since discriminants are handled very
10251 -- specially in this context, see the section entitled "Handling of
10252 -- Discriminants" in Einfo.
10253
10254 -- We also exclude the case of Discrim_SO_Functions (functions used
10255 -- in front end layout mode for size/offset values), since in such
10256 -- functions only discriminants are referenced, and not only are such
10257 -- subtypes not needed, but they cannot always be generated, because
10258 -- of order of elaboration issues.
996ae0b0
RK
10259
10260 elsif Is_Record_Type (T)
10261 and then Ekind (Formal) = E_In_Parameter
10262 and then Chars (Formal) /= Name_uInit
5d09245e 10263 and then not Is_Unchecked_Union (T)
996ae0b0
RK
10264 and then not Is_Discrim_SO_Function (Subp)
10265 then
10266 AS_Needed := True;
10267
10268 -- All other cases do not need an actual subtype
10269
10270 else
10271 AS_Needed := False;
10272 end if;
10273
10274 -- Generate actual subtypes for unconstrained arrays and
10275 -- unconstrained discriminated records.
10276
10277 if AS_Needed then
7324bf49 10278 if Nkind (N) = N_Accept_Statement then
fbf5a39b 10279
57a8057a 10280 -- If expansion is active, the formal is replaced by a local
fbf5a39b
AC
10281 -- variable that renames the corresponding entry of the
10282 -- parameter block, and it is this local variable that may
da94696d 10283 -- require an actual subtype.
fbf5a39b 10284
da94696d 10285 if Full_Expander_Active then
fbf5a39b
AC
10286 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10287 else
10288 Decl := Build_Actual_Subtype (T, Formal);
10289 end if;
10290
996ae0b0
RK
10291 if Present (Handled_Statement_Sequence (N)) then
10292 First_Stmt :=
10293 First (Statements (Handled_Statement_Sequence (N)));
10294 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10295 Mark_Rewrite_Insertion (Decl);
10296 else
82c80734
RD
10297 -- If the accept statement has no body, there will be no
10298 -- reference to the actuals, so no need to compute actual
10299 -- subtypes.
996ae0b0
RK
10300
10301 return;
10302 end if;
10303
10304 else
fbf5a39b 10305 Decl := Build_Actual_Subtype (T, Formal);
996ae0b0
RK
10306 Prepend (Decl, Declarations (N));
10307 Mark_Rewrite_Insertion (Decl);
10308 end if;
10309
82c80734
RD
10310 -- The declaration uses the bounds of an existing object, and
10311 -- therefore needs no constraint checks.
2820d220 10312
7324bf49 10313 Analyze (Decl, Suppress => All_Checks);
2820d220 10314
996ae0b0
RK
10315 -- We need to freeze manually the generated type when it is
10316 -- inserted anywhere else than in a declarative part.
10317
10318 if Present (First_Stmt) then
10319 Insert_List_Before_And_Analyze (First_Stmt,
c159409f 10320 Freeze_Entity (Defining_Identifier (Decl), N));
996ae0b0
RK
10321 end if;
10322
fbf5a39b 10323 if Nkind (N) = N_Accept_Statement
da94696d 10324 and then Full_Expander_Active
fbf5a39b
AC
10325 then
10326 Set_Actual_Subtype (Renamed_Object (Formal),
10327 Defining_Identifier (Decl));
10328 else
10329 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10330 end if;
996ae0b0
RK
10331 end if;
10332
10333 Next_Formal (Formal);
10334 end loop;
10335 end Set_Actual_Subtypes;
10336
10337 ---------------------
10338 -- Set_Formal_Mode --
10339 ---------------------
10340
10341 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10342 Spec : constant Node_Id := Parent (Formal_Id);
10343
10344 begin
10345 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10346 -- since we ensure that corresponding actuals are always valid at the
10347 -- point of the call.
10348
10349 if Out_Present (Spec) then
996ae0b0
RK
10350 if Ekind (Scope (Formal_Id)) = E_Function
10351 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
10352 then
b4ca2d2c 10353 -- [IN] OUT parameters allowed for functions in Ada 2012
c56a9ba4
AC
10354
10355 if Ada_Version >= Ada_2012 then
10356 if In_Present (Spec) then
10357 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10358 else
10359 Set_Ekind (Formal_Id, E_Out_Parameter);
10360 end if;
10361
b4ca2d2c
AC
10362 -- But not in earlier versions of Ada
10363
c56a9ba4
AC
10364 else
10365 Error_Msg_N ("functions can only have IN parameters", Spec);
10366 Set_Ekind (Formal_Id, E_In_Parameter);
10367 end if;
996ae0b0
RK
10368
10369 elsif In_Present (Spec) then
10370 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10371
10372 else
fbf5a39b
AC
10373 Set_Ekind (Formal_Id, E_Out_Parameter);
10374 Set_Never_Set_In_Source (Formal_Id, True);
10375 Set_Is_True_Constant (Formal_Id, False);
10376 Set_Current_Value (Formal_Id, Empty);
996ae0b0
RK
10377 end if;
10378
10379 else
10380 Set_Ekind (Formal_Id, E_In_Parameter);
10381 end if;
10382
fbf5a39b 10383 -- Set Is_Known_Non_Null for access parameters since the language
82c80734
RD
10384 -- guarantees that access parameters are always non-null. We also set
10385 -- Can_Never_Be_Null, since there is no way to change the value.
fbf5a39b
AC
10386
10387 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
2820d220 10388
885c4871 10389 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
2813bb6b 10390 -- null; In Ada 2005, only if then null_exclusion is explicit.
2820d220 10391
0791fbe9 10392 if Ada_Version < Ada_2005
2813bb6b 10393 or else Can_Never_Be_Null (Etype (Formal_Id))
2820d220
AC
10394 then
10395 Set_Is_Known_Non_Null (Formal_Id);
10396 Set_Can_Never_Be_Null (Formal_Id);
10397 end if;
2813bb6b 10398
41251c60
JM
10399 -- Ada 2005 (AI-231): Null-exclusion access subtype
10400
2813bb6b
ES
10401 elsif Is_Access_Type (Etype (Formal_Id))
10402 and then Can_Never_Be_Null (Etype (Formal_Id))
10403 then
2813bb6b 10404 Set_Is_Known_Non_Null (Formal_Id);
a1d72281
EB
10405
10406 -- We can also set Can_Never_Be_Null (thus preventing some junk
10407 -- access checks) for the case of an IN parameter, which cannot
10408 -- be changed, or for an IN OUT parameter, which can be changed but
10409 -- not to a null value. But for an OUT parameter, the initial value
10410 -- passed in can be null, so we can't set this flag in that case.
10411
10412 if Ekind (Formal_Id) /= E_Out_Parameter then
10413 Set_Can_Never_Be_Null (Formal_Id);
10414 end if;
fbf5a39b
AC
10415 end if;
10416
996ae0b0
RK
10417 Set_Mechanism (Formal_Id, Default_Mechanism);
10418 Set_Formal_Validity (Formal_Id);
10419 end Set_Formal_Mode;
10420
10421 -------------------------
10422 -- Set_Formal_Validity --
10423 -------------------------
10424
10425 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10426 begin
82c80734
RD
10427 -- If no validity checking, then we cannot assume anything about the
10428 -- validity of parameters, since we do not know there is any checking
10429 -- of the validity on the call side.
996ae0b0
RK
10430
10431 if not Validity_Checks_On then
10432 return;
10433
fbf5a39b
AC
10434 -- If validity checking for parameters is enabled, this means we are
10435 -- not supposed to make any assumptions about argument values.
10436
10437 elsif Validity_Check_Parameters then
10438 return;
10439
10440 -- If we are checking in parameters, we will assume that the caller is
10441 -- also checking parameters, so we can assume the parameter is valid.
10442
996ae0b0
RK
10443 elsif Ekind (Formal_Id) = E_In_Parameter
10444 and then Validity_Check_In_Params
10445 then
10446 Set_Is_Known_Valid (Formal_Id, True);
10447
fbf5a39b
AC
10448 -- Similar treatment for IN OUT parameters
10449
996ae0b0
RK
10450 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10451 and then Validity_Check_In_Out_Params
10452 then
10453 Set_Is_Known_Valid (Formal_Id, True);
10454 end if;
10455 end Set_Formal_Validity;
10456
10457 ------------------------
10458 -- Subtype_Conformant --
10459 ------------------------
10460
ce2b6ba5
JM
10461 function Subtype_Conformant
10462 (New_Id : Entity_Id;
10463 Old_Id : Entity_Id;
10464 Skip_Controlling_Formals : Boolean := False) return Boolean
10465 is
996ae0b0 10466 Result : Boolean;
996ae0b0 10467 begin
ce2b6ba5
JM
10468 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10469 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10470 return Result;
10471 end Subtype_Conformant;
10472
10473 ---------------------
10474 -- Type_Conformant --
10475 ---------------------
10476
41251c60
JM
10477 function Type_Conformant
10478 (New_Id : Entity_Id;
10479 Old_Id : Entity_Id;
10480 Skip_Controlling_Formals : Boolean := False) return Boolean
10481 is
996ae0b0 10482 Result : Boolean;
996ae0b0 10483 begin
c8ef728f
ES
10484 May_Hide_Profile := False;
10485
41251c60
JM
10486 Check_Conformance
10487 (New_Id, Old_Id, Type_Conformant, False, Result,
10488 Skip_Controlling_Formals => Skip_Controlling_Formals);
996ae0b0
RK
10489 return Result;
10490 end Type_Conformant;
10491
10492 -------------------------------
10493 -- Valid_Operator_Definition --
10494 -------------------------------
10495
10496 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10497 N : Integer := 0;
10498 F : Entity_Id;
10499 Id : constant Name_Id := Chars (Designator);
10500 N_OK : Boolean;
10501
10502 begin
10503 F := First_Formal (Designator);
996ae0b0
RK
10504 while Present (F) loop
10505 N := N + 1;
10506
10507 if Present (Default_Value (F)) then
ed2233dc 10508 Error_Msg_N
996ae0b0
RK
10509 ("default values not allowed for operator parameters",
10510 Parent (F));
10511 end if;
10512
10513 Next_Formal (F);
10514 end loop;
10515
10516 -- Verify that user-defined operators have proper number of arguments
10517 -- First case of operators which can only be unary
10518
10519 if Id = Name_Op_Not
10520 or else Id = Name_Op_Abs
10521 then
10522 N_OK := (N = 1);
10523
10524 -- Case of operators which can be unary or binary
10525
10526 elsif Id = Name_Op_Add
10527 or Id = Name_Op_Subtract
10528 then
10529 N_OK := (N in 1 .. 2);
10530
10531 -- All other operators can only be binary
10532
10533 else
10534 N_OK := (N = 2);
10535 end if;
10536
10537 if not N_OK then
10538 Error_Msg_N
10539 ("incorrect number of arguments for operator", Designator);
10540 end if;
10541
10542 if Id = Name_Op_Ne
10543 and then Base_Type (Etype (Designator)) = Standard_Boolean
10544 and then not Is_Intrinsic_Subprogram (Designator)
10545 then
10546 Error_Msg_N
10547 ("explicit definition of inequality not allowed", Designator);
10548 end if;
10549 end Valid_Operator_Definition;
10550
10551end Sem_Ch6;