]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
re PR tree-optimization/50730 (SLP vectorization confused by unrelated DRs)
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
f9ad6b62 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
d7567964 34with Freeze; use Freeze;
0356699b 35with Lib; use Lib;
13f34a3f 36with Namet; use Namet;
996ae0b0
RK
37with Nmake; use Nmake;
38with Nlists; use Nlists;
39with Opt; use Opt;
40with Sem; use Sem;
a4100e55 41with Sem_Aux; use Sem_Aux;
996ae0b0 42with Sem_Cat; use Sem_Cat;
b5bd964f 43with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
44with Sem_Ch8; use Sem_Ch8;
45with Sem_Res; use Sem_Res;
46with Sem_Util; use Sem_Util;
47with Sem_Type; use Sem_Type;
48with Sem_Warn; use Sem_Warn;
49with Sinfo; use Sinfo;
50with Snames; use Snames;
51with Stand; use Stand;
52with Stringt; use Stringt;
07fc65c4 53with Tbuild; use Tbuild;
996ae0b0
RK
54
55package body Sem_Eval is
56
57 -----------------------------------------
58 -- Handling of Compile Time Evaluation --
59 -----------------------------------------
60
61 -- The compile time evaluation of expressions is distributed over several
f3d57416 62 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
63 -- a subexpression is resolved and is therefore accomplished in a bottom
64 -- up fashion. The flags are synthesized using the following approach.
65
66 -- Is_Static_Expression is determined by following the detailed rules
67 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
68 -- flag of the operands in many cases.
69
70 -- Raises_Constraint_Error is set if any of the operands have the flag
71 -- set or if an attempt to compute the value of the current expression
72 -- results in detection of a runtime constraint error.
73
74 -- As described in the spec, the requirement is that Is_Static_Expression
75 -- be accurately set, and in addition for nodes for which this flag is set,
76 -- Raises_Constraint_Error must also be set. Furthermore a node which has
77 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
78 -- requirement is that the expression value must be precomputed, and the
79 -- node is either a literal, or the name of a constant entity whose value
80 -- is a static expression.
81
82 -- The general approach is as follows. First compute Is_Static_Expression.
83 -- If the node is not static, then the flag is left off in the node and
84 -- we are all done. Otherwise for a static node, we test if any of the
85 -- operands will raise constraint error, and if so, propagate the flag
86 -- Raises_Constraint_Error to the result node and we are done (since the
87 -- error was already posted at a lower level).
88
89 -- For the case of a static node whose operands do not raise constraint
90 -- error, we attempt to evaluate the node. If this evaluation succeeds,
91 -- then the node is replaced by the result of this computation. If the
92 -- evaluation raises constraint error, then we rewrite the node with
93 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
94 -- to post appropriate error messages.
95
96 ----------------
97 -- Local Data --
98 ----------------
99
100 type Bits is array (Nat range <>) of Boolean;
101 -- Used to convert unsigned (modular) values for folding logical ops
102
07fc65c4
GB
103 -- The following definitions are used to maintain a cache of nodes that
104 -- have compile time known values. The cache is maintained only for
105 -- discrete types (the most common case), and is populated by calls to
106 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
107 -- since it is possible for the status to change (in particular it is
108 -- possible for a node to get replaced by a constraint error node).
109
110 CV_Bits : constant := 5;
111 -- Number of low order bits of Node_Id value used to reference entries
112 -- in the cache table.
113
114 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
115 -- Size of cache for compile time values
116
117 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
118
119 type CV_Entry is record
120 N : Node_Id;
121 V : Uint;
122 end record;
123
124 type CV_Cache_Array is array (CV_Range) of CV_Entry;
125
126 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
127 -- This is the actual cache, with entries consisting of node/value pairs,
128 -- and the impossible value Node_High_Bound used for unset entries.
129
305caf42
AC
130 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
131 -- Range membership may either be statically known to be in range or out
132 -- of range, or not statically known. Used for Test_In_Range below.
133
996ae0b0
RK
134 -----------------------
135 -- Local Subprograms --
136 -----------------------
137
996ae0b0
RK
138 function From_Bits (B : Bits; T : Entity_Id) return Uint;
139 -- Converts a bit string of length B'Length to a Uint value to be used
140 -- for a target of type T, which is a modular type. This procedure
141 -- includes the necessary reduction by the modulus in the case of a
142 -- non-binary modulus (for a binary modulus, the bit string is the
143 -- right length any way so all is well).
144
145 function Get_String_Val (N : Node_Id) return Node_Id;
146 -- Given a tree node for a folded string or character value, returns
147 -- the corresponding string literal or character literal (one of the
148 -- two must be available, or the operand would not have been marked
149 -- as foldable in the earlier analysis of the operation).
150
07fc65c4
GB
151 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
152 -- Bits represents the number of bits in an integer value to be computed
153 -- (but the value has not been computed yet). If this value in Bits is
154 -- reasonable, a result of True is returned, with the implication that
155 -- the caller should go ahead and complete the calculation. If the value
156 -- in Bits is unreasonably large, then an error is posted on node N, and
157 -- False is returned (and the caller skips the proposed calculation).
158
996ae0b0
RK
159 procedure Out_Of_Range (N : Node_Id);
160 -- This procedure is called if it is determined that node N, which
161 -- appears in a non-static context, is a compile time known value
162 -- which is outside its range, i.e. the range of Etype. This is used
163 -- in contexts where this is an illegality if N is static, and should
164 -- generate a warning otherwise.
165
166 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
167 -- N and Exp are nodes representing an expression, Exp is known
168 -- to raise CE. N is rewritten in term of Exp in the optimal way.
169
170 function String_Type_Len (Stype : Entity_Id) return Uint;
171 -- Given a string type, determines the length of the index type, or,
172 -- if this index type is non-static, the length of the base type of
173 -- this index type. Note that if the string type is itself static,
174 -- then the index type is static, so the second case applies only
175 -- if the string type passed is non-static.
176
177 function Test (Cond : Boolean) return Uint;
178 pragma Inline (Test);
179 -- This function simply returns the appropriate Boolean'Pos value
180 -- corresponding to the value of Cond as a universal integer. It is
181 -- used for producing the result of the static evaluation of the
182 -- logical operators
183
d7567964 184 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
602a7ec0
AC
185 -- Check whether an arithmetic operation with universal operands which
186 -- is a rewritten function call with an explicit scope indication is
ae77c68b 187 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
602a7ec0
AC
188 -- visible numeric type declared in P and the context does not impose a
189 -- type on the result (e.g. in the expression of a type conversion).
d7567964
TQ
190 -- If ambiguous, emit an error and return Empty, else return the result
191 -- type of the operator.
602a7ec0 192
996ae0b0
RK
193 procedure Test_Expression_Is_Foldable
194 (N : Node_Id;
195 Op1 : Node_Id;
196 Stat : out Boolean;
197 Fold : out Boolean);
198 -- Tests to see if expression N whose single operand is Op1 is foldable,
199 -- i.e. the operand value is known at compile time. If the operation is
200 -- foldable, then Fold is True on return, and Stat indicates whether
201 -- the result is static (i.e. both operands were static). Note that it
202 -- is quite possible for Fold to be True, and Stat to be False, since
203 -- there are cases in which we know the value of an operand even though
204 -- it is not technically static (e.g. the static lower bound of a range
205 -- whose upper bound is non-static).
206 --
3d5952be 207 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
996ae0b0
RK
208 -- call to Check_Non_Static_Context on the operand. If Fold is False on
209 -- return, then all processing is complete, and the caller should
210 -- return, since there is nothing else to do.
93c3fca7
AC
211 --
212 -- If Stat is set True on return, then Is_Static_Expression is also set
213 -- true in node N. There are some cases where this is over-enthusiastic,
308e6f3a 214 -- e.g. in the two operand case below, for string comparison, the result
93c3fca7
AC
215 -- is not static even though the two operands are static. In such cases,
216 -- the caller must reset the Is_Static_Expression flag in N.
996ae0b0
RK
217
218 procedure Test_Expression_Is_Foldable
219 (N : Node_Id;
220 Op1 : Node_Id;
221 Op2 : Node_Id;
222 Stat : out Boolean;
223 Fold : out Boolean);
224 -- Same processing, except applies to an expression N with two operands
225 -- Op1 and Op2.
226
305caf42
AC
227 function Test_In_Range
228 (N : Node_Id;
229 Typ : Entity_Id;
230 Assume_Valid : Boolean;
231 Fixed_Int : Boolean;
232 Int_Real : Boolean) return Range_Membership;
233 -- Common processing for Is_In_Range and Is_Out_Of_Range:
234 -- Returns In_Range or Out_Of_Range if it can be guaranteed at compile time
235 -- that expression N is known to be in or out of range of the subtype Typ.
236 -- If not compile time known, Unknown is returned.
237 -- See documentation of Is_In_Range for complete description of parameters.
238
996ae0b0
RK
239 procedure To_Bits (U : Uint; B : out Bits);
240 -- Converts a Uint value to a bit string of length B'Length
241
242 ------------------------------
243 -- Check_Non_Static_Context --
244 ------------------------------
245
246 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
247 T : constant Entity_Id := Etype (N);
248 Checks_On : constant Boolean :=
996ae0b0
RK
249 not Index_Checks_Suppressed (T)
250 and not Range_Checks_Suppressed (T);
251
252 begin
fbf5a39b 253 -- Ignore cases of non-scalar types or error types
996ae0b0 254
fbf5a39b 255 if T = Any_Type or else not Is_Scalar_Type (T) then
996ae0b0 256 return;
fbf5a39b 257 end if;
996ae0b0 258
fbf5a39b
AC
259 -- At this stage we have a scalar type. If we have an expression
260 -- that raises CE, then we already issued a warning or error msg
261 -- so there is nothing more to be done in this routine.
262
263 if Raises_Constraint_Error (N) then
264 return;
265 end if;
266
267 -- Now we have a scalar type which is not marked as raising a
268 -- constraint error exception. The main purpose of this routine
269 -- is to deal with static expressions appearing in a non-static
270 -- context. That means that if we do not have a static expression
271 -- then there is not much to do. The one case that we deal with
272 -- here is that if we have a floating-point value that is out of
273 -- range, then we post a warning that an infinity will result.
274
275 if not Is_Static_Expression (N) then
276 if Is_Floating_Point_Type (T)
c800f862 277 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
fbf5a39b
AC
278 then
279 Error_Msg_N
280 ("?float value out of range, infinity will be generated", N);
281 end if;
996ae0b0 282
996ae0b0
RK
283 return;
284 end if;
285
286 -- Here we have the case of outer level static expression of
287 -- scalar type, where the processing of this procedure is needed.
288
289 -- For real types, this is where we convert the value to a machine
290 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
291 -- only need to do this if the parent is a constant declaration,
292 -- since in other cases, gigi should do the necessary conversion
293 -- correctly, but experimentation shows that this is not the case
294 -- on all machines, in particular if we do not convert all literals
295 -- to machine values in non-static contexts, then ACVC test C490001
296 -- fails on Sparc/Solaris and SGI/Irix.
297
298 if Nkind (N) = N_Real_Literal
299 and then not Is_Machine_Number (N)
300 and then not Is_Generic_Type (Etype (N))
301 and then Etype (N) /= Universal_Real
996ae0b0
RK
302 then
303 -- Check that value is in bounds before converting to machine
304 -- number, so as not to lose case where value overflows in the
305 -- least significant bit or less. See B490001.
306
c800f862 307 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
308 Out_Of_Range (N);
309 return;
310 end if;
311
312 -- Note: we have to copy the node, to avoid problems with conformance
313 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
314
315 Rewrite (N, New_Copy (N));
316
317 if not Is_Floating_Point_Type (T) then
318 Set_Realval
319 (N, Corresponding_Integer_Value (N) * Small_Value (T));
320
321 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 322
fbf5a39b
AC
323 -- Note: even though RM 4.9(38) specifies biased rounding,
324 -- this has been modified by AI-100 in order to prevent
325 -- confusing differences in rounding between static and
326 -- non-static expressions. AI-100 specifies that the effect
327 -- of such rounding is implementation dependent, and in GNAT
328 -- we round to nearest even to match the run-time behavior.
996ae0b0 329
fbf5a39b
AC
330 Set_Realval
331 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
332 end if;
333
334 Set_Is_Machine_Number (N);
335 end if;
336
337 -- Check for out of range universal integer. This is a non-static
338 -- context, so the integer value must be in range of the runtime
339 -- representation of universal integers.
340
341 -- We do this only within an expression, because that is the only
342 -- case in which non-static universal integer values can occur, and
343 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
344 -- called in contexts like the expression of a number declaration where
345 -- we certainly want to allow out of range values.
346
347 if Etype (N) = Universal_Integer
348 and then Nkind (N) = N_Integer_Literal
349 and then Nkind (Parent (N)) in N_Subexpr
350 and then
351 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
352 or else
353 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
354 then
355 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
356 (N, "non-static universal integer value out of range?",
357 CE_Range_Check_Failed);
996ae0b0
RK
358
359 -- Check out of range of base type
360
c800f862 361 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
362 Out_Of_Range (N);
363
c800f862
RD
364 -- Give warning if outside subtype (where one or both of the bounds of
365 -- the subtype is static). This warning is omitted if the expression
366 -- appears in a range that could be null (warnings are handled elsewhere
367 -- for this case).
996ae0b0
RK
368
369 elsif T /= Base_Type (T)
370 and then Nkind (Parent (N)) /= N_Range
371 then
c800f862 372 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
373 null;
374
c800f862 375 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 376 Apply_Compile_Time_Constraint_Error
07fc65c4 377 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
378
379 elsif Checks_On then
380 Enable_Range_Check (N);
381
382 else
383 Set_Do_Range_Check (N, False);
384 end if;
385 end if;
386 end Check_Non_Static_Context;
387
388 ---------------------------------
389 -- Check_String_Literal_Length --
390 ---------------------------------
391
392 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
393 begin
394 if not Raises_Constraint_Error (N)
395 and then Is_Constrained (Ttype)
396 then
397 if
398 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
399 then
400 Apply_Compile_Time_Constraint_Error
401 (N, "string length wrong for}?",
07fc65c4 402 CE_Length_Check_Failed,
996ae0b0
RK
403 Ent => Ttype,
404 Typ => Ttype);
405 end if;
406 end if;
407 end Check_String_Literal_Length;
408
409 --------------------------
410 -- Compile_Time_Compare --
411 --------------------------
412
fbf5a39b 413 function Compile_Time_Compare
1c7717c3 414 (L, R : Node_Id;
af02a866
RD
415 Assume_Valid : Boolean) return Compare_Result
416 is
417 Discard : aliased Uint;
418 begin
419 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
420 end Compile_Time_Compare;
421
422 function Compile_Time_Compare
423 (L, R : Node_Id;
424 Diff : access Uint;
1c7717c3
AC
425 Assume_Valid : Boolean;
426 Rec : Boolean := False) return Compare_Result
fbf5a39b 427 is
93c3fca7
AC
428 Ltyp : Entity_Id := Underlying_Type (Etype (L));
429 Rtyp : Entity_Id := Underlying_Type (Etype (R));
1c7717c3
AC
430 -- These get reset to the base type for the case of entities where
431 -- Is_Known_Valid is not set. This takes care of handling possible
432 -- invalid representations using the value of the base type, in
433 -- accordance with RM 13.9.1(10).
996ae0b0 434
af02a866
RD
435 Discard : aliased Uint;
436
996ae0b0
RK
437 procedure Compare_Decompose
438 (N : Node_Id;
439 R : out Node_Id;
440 V : out Uint);
b49365b2
RD
441 -- This procedure decomposes the node N into an expression node and a
442 -- signed offset, so that the value of N is equal to the value of R plus
443 -- the value V (which may be negative). If no such decomposition is
444 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
445
446 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
447 -- This function deals with replacing 'Last and 'First references with
448 -- their corresponding type bounds, which we then can compare. The
449 -- argument is the original node, the result is the identity, unless we
450 -- have a 'Last/'First reference in which case the value returned is the
451 -- appropriate type bound.
996ae0b0 452
57036dcc
ES
453 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
454 -- Even if the context does not assume that values are valid, some
455 -- simple cases can be recognized.
456
996ae0b0
RK
457 function Is_Same_Value (L, R : Node_Id) return Boolean;
458 -- Returns True iff L and R represent expressions that definitely
459 -- have identical (but not necessarily compile time known) values
460 -- Indeed the caller is expected to have already dealt with the
461 -- cases of compile time known values, so these are not tested here.
462
463 -----------------------
464 -- Compare_Decompose --
465 -----------------------
466
467 procedure Compare_Decompose
468 (N : Node_Id;
469 R : out Node_Id;
470 V : out Uint)
471 is
472 begin
473 if Nkind (N) = N_Op_Add
474 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
475 then
476 R := Left_Opnd (N);
477 V := Intval (Right_Opnd (N));
478 return;
479
480 elsif Nkind (N) = N_Op_Subtract
481 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
482 then
483 R := Left_Opnd (N);
484 V := UI_Negate (Intval (Right_Opnd (N)));
485 return;
486
487 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
488 if Attribute_Name (N) = Name_Succ then
489 R := First (Expressions (N));
490 V := Uint_1;
491 return;
492
493 elsif Attribute_Name (N) = Name_Pred then
494 R := First (Expressions (N));
495 V := Uint_Minus_1;
496 return;
497 end if;
498 end if;
499
500 R := N;
501 V := Uint_0;
502 end Compare_Decompose;
503
504 -------------------
505 -- Compare_Fixup --
506 -------------------
507
508 function Compare_Fixup (N : Node_Id) return Node_Id is
509 Indx : Node_Id;
510 Xtyp : Entity_Id;
511 Subs : Nat;
512
513 begin
514 if Nkind (N) = N_Attribute_Reference
515 and then (Attribute_Name (N) = Name_First
516 or else
517 Attribute_Name (N) = Name_Last)
518 then
519 Xtyp := Etype (Prefix (N));
520
521 -- If we have no type, then just abandon the attempt to do
522 -- a fixup, this is probably the result of some other error.
523
524 if No (Xtyp) then
525 return N;
526 end if;
527
528 -- Dereference an access type
529
530 if Is_Access_Type (Xtyp) then
531 Xtyp := Designated_Type (Xtyp);
532 end if;
533
534 -- If we don't have an array type at this stage, something
535 -- is peculiar, e.g. another error, and we abandon the attempt
536 -- at a fixup.
537
538 if not Is_Array_Type (Xtyp) then
539 return N;
540 end if;
541
542 -- Ignore unconstrained array, since bounds are not meaningful
543
544 if not Is_Constrained (Xtyp) then
545 return N;
546 end if;
547
c3de5c4c
ES
548 if Ekind (Xtyp) = E_String_Literal_Subtype then
549 if Attribute_Name (N) = Name_First then
550 return String_Literal_Low_Bound (Xtyp);
551
552 else -- Attribute_Name (N) = Name_Last
553 return Make_Integer_Literal (Sloc (N),
554 Intval => Intval (String_Literal_Low_Bound (Xtyp))
57036dcc 555 + String_Literal_Length (Xtyp));
c3de5c4c
ES
556 end if;
557 end if;
558
996ae0b0
RK
559 -- Find correct index type
560
561 Indx := First_Index (Xtyp);
562
563 if Present (Expressions (N)) then
564 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
565
566 for J in 2 .. Subs loop
567 Indx := Next_Index (Indx);
568 end loop;
569 end if;
570
571 Xtyp := Etype (Indx);
572
573 if Attribute_Name (N) = Name_First then
574 return Type_Low_Bound (Xtyp);
575
576 else -- Attribute_Name (N) = Name_Last
577 return Type_High_Bound (Xtyp);
578 end if;
579 end if;
580
581 return N;
582 end Compare_Fixup;
583
57036dcc
ES
584 ----------------------------
585 -- Is_Known_Valid_Operand --
586 ----------------------------
587
588 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
589 begin
590 return (Is_Entity_Name (Opnd)
591 and then
592 (Is_Known_Valid (Entity (Opnd))
593 or else Ekind (Entity (Opnd)) = E_In_Parameter
594 or else
595 (Ekind (Entity (Opnd)) in Object_Kind
596 and then Present (Current_Value (Entity (Opnd))))))
597 or else Is_OK_Static_Expression (Opnd);
598 end Is_Known_Valid_Operand;
599
996ae0b0
RK
600 -------------------
601 -- Is_Same_Value --
602 -------------------
603
604 function Is_Same_Value (L, R : Node_Id) return Boolean is
605 Lf : constant Node_Id := Compare_Fixup (L);
606 Rf : constant Node_Id := Compare_Fixup (R);
607
fbf5a39b 608 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
609 -- L, R are the Expressions values from two attribute nodes for First
610 -- or Last attributes. Either may be set to No_List if no expressions
611 -- are present (indicating subscript 1). The result is True if both
612 -- expressions represent the same subscript (note one case is where
613 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
614
615 -----------------------
616 -- Is_Same_Subscript --
617 -----------------------
618
619 function Is_Same_Subscript (L, R : List_Id) return Boolean is
620 begin
621 if L = No_List then
622 if R = No_List then
623 return True;
624 else
625 return Expr_Value (First (R)) = Uint_1;
626 end if;
627
628 else
629 if R = No_List then
630 return Expr_Value (First (L)) = Uint_1;
631 else
632 return Expr_Value (First (L)) = Expr_Value (First (R));
633 end if;
634 end if;
635 end Is_Same_Subscript;
636
637 -- Start of processing for Is_Same_Value
638
996ae0b0 639 begin
b49365b2 640 -- Values are the same if they refer to the same entity and the
c800f862
RD
641 -- entity is non-volatile. This does not however apply to Float
642 -- types, since we may have two NaN values and they should never
643 -- compare equal.
996ae0b0 644
f08b2371
RD
645 -- If the entity is a discriminant, the two expressions may be bounds
646 -- of components of objects of the same discriminated type. The
647 -- values of the discriminants are not static, and therefore the
648 -- result is unknown.
649
650 -- It would be better to comment individual branches of this test ???
4fb0b3f0 651
b49365b2
RD
652 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
653 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 654 and then Entity (Lf) = Entity (Rf)
4fb0b3f0 655 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 656 and then Present (Entity (Lf))
fbf5a39b 657 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
658 and then not Is_Volatile_Reference (L)
659 and then not Is_Volatile_Reference (R)
996ae0b0
RK
660 then
661 return True;
662
663 -- Or if they are compile time known and identical
664
665 elsif Compile_Time_Known_Value (Lf)
666 and then
667 Compile_Time_Known_Value (Rf)
668 and then Expr_Value (Lf) = Expr_Value (Rf)
669 then
670 return True;
671
b49365b2
RD
672 -- False if Nkind of the two nodes is different for remaining cases
673
674 elsif Nkind (Lf) /= Nkind (Rf) then
675 return False;
676
677 -- True if both 'First or 'Last values applying to the same entity
678 -- (first and last don't change even if value does). Note that we
679 -- need this even with the calls to Compare_Fixup, to handle the
680 -- case of unconstrained array attributes where Compare_Fixup
681 -- cannot find useful bounds.
996ae0b0
RK
682
683 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0
RK
684 and then Attribute_Name (Lf) = Attribute_Name (Rf)
685 and then (Attribute_Name (Lf) = Name_First
686 or else
687 Attribute_Name (Lf) = Name_Last)
b49365b2
RD
688 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
689 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 690 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 691 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
692 then
693 return True;
694
b49365b2
RD
695 -- True if the same selected component from the same record
696
697 elsif Nkind (Lf) = N_Selected_Component
698 and then Selector_Name (Lf) = Selector_Name (Rf)
699 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
700 then
701 return True;
702
703 -- True if the same unary operator applied to the same operand
704
705 elsif Nkind (Lf) in N_Unary_Op
706 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
707 then
708 return True;
709
8682d22c 710 -- True if the same binary operator applied to the same operands
b49365b2
RD
711
712 elsif Nkind (Lf) in N_Binary_Op
713 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
714 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
715 then
716 return True;
717
8682d22c 718 -- All other cases, we can't tell, so return False
996ae0b0
RK
719
720 else
721 return False;
722 end if;
723 end Is_Same_Value;
724
725 -- Start of processing for Compile_Time_Compare
726
727 begin
af02a866
RD
728 Diff.all := No_Uint;
729
07fc65c4
GB
730 -- If either operand could raise constraint error, then we cannot
731 -- know the result at compile time (since CE may be raised!)
732
733 if not (Cannot_Raise_Constraint_Error (L)
734 and then
735 Cannot_Raise_Constraint_Error (R))
736 then
737 return Unknown;
738 end if;
739
740 -- Identical operands are most certainly equal
741
996ae0b0
RK
742 if L = R then
743 return EQ;
744
93c3fca7
AC
745 -- If expressions have no types, then do not attempt to determine if
746 -- they are the same, since something funny is going on. One case in
747 -- which this happens is during generic template analysis, when bounds
748 -- are not fully analyzed.
996ae0b0
RK
749
750 elsif No (Ltyp) or else No (Rtyp) then
751 return Unknown;
752
93c3fca7
AC
753 -- We do not attempt comparisons for packed arrays arrays represented as
754 -- modular types, where the semantics of comparison is quite different.
996ae0b0 755
93c3fca7
AC
756 elsif Is_Packed_Array_Type (Ltyp)
757 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
758 then
759 return Unknown;
760
93c3fca7 761 -- For access types, the only time we know the result at compile time
f61580d4 762 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
763 -- know one operand is null and the other is not, or both operands are
764 -- known null.
765
766 elsif Is_Access_Type (Ltyp) then
767 if Known_Null (L) then
768 if Known_Null (R) then
769 return EQ;
770 elsif Known_Non_Null (R) then
771 return NE;
772 else
773 return Unknown;
774 end if;
775
f61580d4 776 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
777 return NE;
778
779 else
780 return Unknown;
781 end if;
782
996ae0b0
RK
783 -- Case where comparison involves two compile time known values
784
785 elsif Compile_Time_Known_Value (L)
786 and then Compile_Time_Known_Value (R)
787 then
788 -- For the floating-point case, we have to be a little careful, since
789 -- at compile time we are dealing with universal exact values, but at
790 -- runtime, these will be in non-exact target form. That's why the
791 -- returned results are LE and GE below instead of LT and GT.
792
793 if Is_Floating_Point_Type (Ltyp)
794 or else
795 Is_Floating_Point_Type (Rtyp)
796 then
797 declare
798 Lo : constant Ureal := Expr_Value_R (L);
799 Hi : constant Ureal := Expr_Value_R (R);
800
801 begin
802 if Lo < Hi then
803 return LE;
804 elsif Lo = Hi then
805 return EQ;
806 else
807 return GE;
808 end if;
809 end;
810
93c3fca7
AC
811 -- For string types, we have two string literals and we proceed to
812 -- compare them using the Ada style dictionary string comparison.
813
814 elsif not Is_Scalar_Type (Ltyp) then
815 declare
816 Lstring : constant String_Id := Strval (Expr_Value_S (L));
817 Rstring : constant String_Id := Strval (Expr_Value_S (R));
818 Llen : constant Nat := String_Length (Lstring);
819 Rlen : constant Nat := String_Length (Rstring);
820
821 begin
822 for J in 1 .. Nat'Min (Llen, Rlen) loop
823 declare
824 LC : constant Char_Code := Get_String_Char (Lstring, J);
825 RC : constant Char_Code := Get_String_Char (Rstring, J);
826 begin
827 if LC < RC then
828 return LT;
829 elsif LC > RC then
830 return GT;
831 end if;
832 end;
833 end loop;
834
835 if Llen < Rlen then
836 return LT;
837 elsif Llen > Rlen then
838 return GT;
839 else
840 return EQ;
841 end if;
842 end;
843
844 -- For remaining scalar cases we know exactly (note that this does
845 -- include the fixed-point case, where we know the run time integer
f61580d4 846 -- values now).
996ae0b0
RK
847
848 else
849 declare
850 Lo : constant Uint := Expr_Value (L);
851 Hi : constant Uint := Expr_Value (R);
852
853 begin
854 if Lo < Hi then
af02a866 855 Diff.all := Hi - Lo;
996ae0b0 856 return LT;
af02a866 857
996ae0b0
RK
858 elsif Lo = Hi then
859 return EQ;
af02a866 860
996ae0b0 861 else
af02a866 862 Diff.all := Lo - Hi;
996ae0b0
RK
863 return GT;
864 end if;
865 end;
866 end if;
867
868 -- Cases where at least one operand is not known at compile time
869
870 else
93c3fca7 871 -- Remaining checks apply only for discrete types
29797f34
RD
872
873 if not Is_Discrete_Type (Ltyp)
874 or else not Is_Discrete_Type (Rtyp)
93c3fca7
AC
875 then
876 return Unknown;
877 end if;
878
879 -- Defend against generic types, or actually any expressions that
880 -- contain a reference to a generic type from within a generic
881 -- template. We don't want to do any range analysis of such
882 -- expressions for two reasons. First, the bounds of a generic type
883 -- itself are junk and cannot be used for any kind of analysis.
884 -- Second, we may have a case where the range at run time is indeed
885 -- known, but we don't want to do compile time analysis in the
886 -- template based on that range since in an instance the value may be
887 -- static, and able to be elaborated without reference to the bounds
888 -- of types involved. As an example, consider:
889
890 -- (F'Pos (F'Last) + 1) > Integer'Last
891
892 -- The expression on the left side of > is Universal_Integer and thus
893 -- acquires the type Integer for evaluation at run time, and at run
894 -- time it is true that this condition is always False, but within
895 -- an instance F may be a type with a static range greater than the
896 -- range of Integer, and the expression statically evaluates to True.
897
898 if References_Generic_Formal_Type (L)
899 or else
900 References_Generic_Formal_Type (R)
29797f34
RD
901 then
902 return Unknown;
903 end if;
904
1c7717c3
AC
905 -- Replace types by base types for the case of entities which are
906 -- not known to have valid representations. This takes care of
907 -- properly dealing with invalid representations.
908
c800f862 909 if not Assume_Valid and then not Assume_No_Invalid_Values then
1c7717c3 910 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
93c3fca7 911 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
912 end if;
913
914 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
93c3fca7 915 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
916 end if;
917 end if;
918
c800f862
RD
919 -- Try range analysis on variables and see if ranges are disjoint
920
921 declare
922 LOK, ROK : Boolean;
923 LLo, LHi : Uint;
924 RLo, RHi : Uint;
925
926 begin
927 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
928 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
929
930 if LOK and ROK then
931 if LHi < RLo then
932 return LT;
933
934 elsif RHi < LLo then
935 return GT;
936
937 elsif LLo = LHi
938 and then RLo = RHi
939 and then LLo = RLo
940 then
e27b834b 941
75ba322d
AC
942 -- If the range includes a single literal and we can assume
943 -- validity then the result is known even if an operand is
944 -- not static.
e27b834b
AC
945
946 if Assume_Valid then
947 return EQ;
e27b834b
AC
948 else
949 return Unknown;
950 end if;
c800f862
RD
951
952 elsif LHi = RLo then
953 return LE;
954
955 elsif RHi = LLo then
956 return GE;
57036dcc
ES
957
958 elsif not Is_Known_Valid_Operand (L)
959 and then not Assume_Valid
960 then
961 if Is_Same_Value (L, R) then
962 return EQ;
963 else
964 return Unknown;
965 end if;
c800f862 966 end if;
f9ad6b62 967
2c1b72d7
AC
968 -- If the range of either operand cannot be determined, nothing
969 -- further can be inferred.
f9ad6b62 970
2c1b72d7 971 else
f9ad6b62 972 return Unknown;
c800f862
RD
973 end if;
974 end;
975
996ae0b0
RK
976 -- Here is where we check for comparisons against maximum bounds of
977 -- types, where we know that no value can be outside the bounds of
978 -- the subtype. Note that this routine is allowed to assume that all
979 -- expressions are within their subtype bounds. Callers wishing to
980 -- deal with possibly invalid values must in any case take special
981 -- steps (e.g. conversions to larger types) to avoid this kind of
982 -- optimization, which is always considered to be valid. We do not
983 -- attempt this optimization with generic types, since the type
984 -- bounds may not be meaningful in this case.
985
93c3fca7 986 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
987 -- useful to go more than one level deep, so the parameter Rec is
988 -- used to protect ourselves against this infinite recursion.
989
29797f34
RD
990 if not Rec then
991
fbf5a39b
AC
992 -- See if we can get a decisive check against one operand and
993 -- a bound of the other operand (four possible tests here).
93c3fca7
AC
994 -- Note that we avoid testing junk bounds of a generic type.
995
996 if not Is_Generic_Type (Rtyp) then
997 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
998 Discard'Access,
999 Assume_Valid, Rec => True)
1000 is
1001 when LT => return LT;
1002 when LE => return LE;
1003 when EQ => return LE;
1004 when others => null;
1005 end case;
fbf5a39b 1006
93c3fca7
AC
1007 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1008 Discard'Access,
1009 Assume_Valid, Rec => True)
1010 is
1011 when GT => return GT;
1012 when GE => return GE;
1013 when EQ => return GE;
1014 when others => null;
1015 end case;
1016 end if;
996ae0b0 1017
93c3fca7
AC
1018 if not Is_Generic_Type (Ltyp) then
1019 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1020 Discard'Access,
1021 Assume_Valid, Rec => True)
1022 is
1023 when GT => return GT;
1024 when GE => return GE;
1025 when EQ => return GE;
1026 when others => null;
1027 end case;
996ae0b0 1028
93c3fca7
AC
1029 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1030 Discard'Access,
1031 Assume_Valid, Rec => True)
1032 is
1033 when LT => return LT;
1034 when LE => return LE;
1035 when EQ => return LE;
1036 when others => null;
1037 end case;
1038 end if;
996ae0b0
RK
1039 end if;
1040
1041 -- Next attempt is to decompose the expressions to extract
1042 -- a constant offset resulting from the use of any of the forms:
1043
1044 -- expr + literal
1045 -- expr - literal
1046 -- typ'Succ (expr)
1047 -- typ'Pred (expr)
1048
1049 -- Then we see if the two expressions are the same value, and if so
1050 -- the result is obtained by comparing the offsets.
1051
1052 declare
1053 Lnode : Node_Id;
1054 Loffs : Uint;
1055 Rnode : Node_Id;
1056 Roffs : Uint;
1057
1058 begin
1059 Compare_Decompose (L, Lnode, Loffs);
1060 Compare_Decompose (R, Rnode, Roffs);
1061
1062 if Is_Same_Value (Lnode, Rnode) then
1063 if Loffs = Roffs then
1064 return EQ;
1065
1066 elsif Loffs < Roffs then
af02a866 1067 Diff.all := Roffs - Loffs;
996ae0b0
RK
1068 return LT;
1069
1070 else
af02a866 1071 Diff.all := Loffs - Roffs;
996ae0b0
RK
1072 return GT;
1073 end if;
29797f34
RD
1074 end if;
1075 end;
1076
1077 -- Next attempt is to see if we have an entity compared with a
1078 -- compile time known value, where there is a current value
1079 -- conditional for the entity which can tell us the result.
1080
1081 declare
1082 Var : Node_Id;
1083 -- Entity variable (left operand)
1084
1085 Val : Uint;
1086 -- Value (right operand)
1087
1088 Inv : Boolean;
1089 -- If False, we have reversed the operands
1090
1091 Op : Node_Kind;
1092 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1093
29797f34
RD
1094 Opn : Node_Id;
1095 -- Value from Get_Current_Value_Condition call
1096
1097 Opv : Uint;
1098 -- Value of Opn
1099
1100 Result : Compare_Result;
1101 -- Known result before inversion
1102
1103 begin
1104 if Is_Entity_Name (L)
1105 and then Compile_Time_Known_Value (R)
1106 then
1107 Var := L;
1108 Val := Expr_Value (R);
1109 Inv := False;
1110
1111 elsif Is_Entity_Name (R)
1112 and then Compile_Time_Known_Value (L)
1113 then
1114 Var := R;
1115 Val := Expr_Value (L);
1116 Inv := True;
1117
1118 -- That was the last chance at finding a compile time result
996ae0b0
RK
1119
1120 else
1121 return Unknown;
1122 end if;
29797f34
RD
1123
1124 Get_Current_Value_Condition (Var, Op, Opn);
1125
1126 -- That was the last chance, so if we got nothing return
1127
1128 if No (Opn) then
1129 return Unknown;
1130 end if;
1131
1132 Opv := Expr_Value (Opn);
1133
1134 -- We got a comparison, so we might have something interesting
1135
1136 -- Convert LE to LT and GE to GT, just so we have fewer cases
1137
1138 if Op = N_Op_Le then
1139 Op := N_Op_Lt;
1140 Opv := Opv + 1;
af02a866 1141
29797f34
RD
1142 elsif Op = N_Op_Ge then
1143 Op := N_Op_Gt;
1144 Opv := Opv - 1;
1145 end if;
1146
1147 -- Deal with equality case
1148
1149 if Op = N_Op_Eq then
1150 if Val = Opv then
1151 Result := EQ;
1152 elsif Opv < Val then
1153 Result := LT;
1154 else
1155 Result := GT;
1156 end if;
1157
1158 -- Deal with inequality case
1159
1160 elsif Op = N_Op_Ne then
1161 if Val = Opv then
1162 Result := NE;
1163 else
1164 return Unknown;
1165 end if;
1166
1167 -- Deal with greater than case
1168
1169 elsif Op = N_Op_Gt then
1170 if Opv >= Val then
1171 Result := GT;
1172 elsif Opv = Val - 1 then
1173 Result := GE;
1174 else
1175 return Unknown;
1176 end if;
1177
1178 -- Deal with less than case
1179
1180 else pragma Assert (Op = N_Op_Lt);
1181 if Opv <= Val then
1182 Result := LT;
1183 elsif Opv = Val + 1 then
1184 Result := LE;
1185 else
1186 return Unknown;
1187 end if;
1188 end if;
1189
1190 -- Deal with inverting result
1191
1192 if Inv then
1193 case Result is
1194 when GT => return LT;
1195 when GE => return LE;
1196 when LT => return GT;
1197 when LE => return GE;
1198 when others => return Result;
1199 end case;
1200 end if;
1201
1202 return Result;
996ae0b0
RK
1203 end;
1204 end if;
1205 end Compile_Time_Compare;
1206
f44fe430
RD
1207 -------------------------------
1208 -- Compile_Time_Known_Bounds --
1209 -------------------------------
1210
1211 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1212 Indx : Node_Id;
1213 Typ : Entity_Id;
1214
1215 begin
1216 if not Is_Array_Type (T) then
1217 return False;
1218 end if;
1219
1220 Indx := First_Index (T);
1221 while Present (Indx) loop
1222 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1223
1224 -- Never look at junk bounds of a generic type
1225
1226 if Is_Generic_Type (Typ) then
1227 return False;
1228 end if;
1229
1230 -- Otherwise check bounds for compile time known
1231
f44fe430
RD
1232 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1233 return False;
1234 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1235 return False;
1236 else
1237 Next_Index (Indx);
1238 end if;
1239 end loop;
1240
1241 return True;
1242 end Compile_Time_Known_Bounds;
1243
996ae0b0
RK
1244 ------------------------------
1245 -- Compile_Time_Known_Value --
1246 ------------------------------
1247
1248 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1249 K : constant Node_Kind := Nkind (Op);
1250 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1251
1252 begin
1253 -- Never known at compile time if bad type or raises constraint error
1254 -- or empty (latter case occurs only as a result of a previous error)
1255
1256 if No (Op)
1257 or else Op = Error
1258 or else Etype (Op) = Any_Type
1259 or else Raises_Constraint_Error (Op)
1260 then
1261 return False;
1262 end if;
1263
597d7158
GD
1264 -- If this is not a static expression or a null literal, and we are in
1265 -- configurable run-time mode, then we consider it not known at compile
1266 -- time. This avoids anomalies where whether something is allowed with a
1267 -- given configurable run-time library depends on how good the compiler
1268 -- is at optimizing and knowing that things are constant when they are
1269 -- nonstatic.
1270
1271 if Configurable_Run_Time_Mode
1272 and then K /= N_Null
1273 and then not Is_Static_Expression (Op)
1274 then
fbf5a39b
AC
1275 return False;
1276 end if;
1277
996ae0b0
RK
1278 -- If we have an entity name, then see if it is the name of a constant
1279 -- and if so, test the corresponding constant value, or the name of
1280 -- an enumeration literal, which is always a constant.
1281
1282 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1283 declare
1284 E : constant Entity_Id := Entity (Op);
1285 V : Node_Id;
1286
1287 begin
1288 -- Never known at compile time if it is a packed array value.
1289 -- We might want to try to evaluate these at compile time one
1290 -- day, but we do not make that attempt now.
1291
1292 if Is_Packed_Array_Type (Etype (Op)) then
1293 return False;
1294 end if;
1295
1296 if Ekind (E) = E_Enumeration_Literal then
1297 return True;
1298
07fc65c4 1299 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1300 V := Constant_Value (E);
1301 return Present (V) and then Compile_Time_Known_Value (V);
1302 end if;
1303 end;
1304
1305 -- We have a value, see if it is compile time known
1306
1307 else
07fc65c4 1308 -- Integer literals are worth storing in the cache
996ae0b0 1309
07fc65c4
GB
1310 if K = N_Integer_Literal then
1311 CV_Ent.N := Op;
1312 CV_Ent.V := Intval (Op);
1313 return True;
1314
1315 -- Other literals and NULL are known at compile time
1316
1317 elsif
996ae0b0
RK
1318 K = N_Character_Literal
1319 or else
1320 K = N_Real_Literal
1321 or else
1322 K = N_String_Literal
1323 or else
1324 K = N_Null
1325 then
1326 return True;
1327
1328 -- Any reference to Null_Parameter is known at compile time. No
1329 -- other attribute references (that have not already been folded)
1330 -- are known at compile time.
1331
1332 elsif K = N_Attribute_Reference then
1333 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1334 end if;
996ae0b0 1335 end if;
07fc65c4
GB
1336
1337 -- If we fall through, not known at compile time
1338
1339 return False;
1340
1341 -- If we get an exception while trying to do this test, then some error
1342 -- has occurred, and we simply say that the value is not known after all
1343
1344 exception
1345 when others =>
1346 return False;
996ae0b0
RK
1347 end Compile_Time_Known_Value;
1348
1349 --------------------------------------
1350 -- Compile_Time_Known_Value_Or_Aggr --
1351 --------------------------------------
1352
1353 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1354 begin
1355 -- If we have an entity name, then see if it is the name of a constant
1356 -- and if so, test the corresponding constant value, or the name of
1357 -- an enumeration literal, which is always a constant.
1358
1359 if Is_Entity_Name (Op) then
1360 declare
1361 E : constant Entity_Id := Entity (Op);
1362 V : Node_Id;
1363
1364 begin
1365 if Ekind (E) = E_Enumeration_Literal then
1366 return True;
1367
1368 elsif Ekind (E) /= E_Constant then
1369 return False;
1370
1371 else
1372 V := Constant_Value (E);
1373 return Present (V)
1374 and then Compile_Time_Known_Value_Or_Aggr (V);
1375 end if;
1376 end;
1377
1378 -- We have a value, see if it is compile time known
1379
1380 else
1381 if Compile_Time_Known_Value (Op) then
1382 return True;
1383
1384 elsif Nkind (Op) = N_Aggregate then
1385
1386 if Present (Expressions (Op)) then
1387 declare
1388 Expr : Node_Id;
1389
1390 begin
1391 Expr := First (Expressions (Op));
1392 while Present (Expr) loop
1393 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1394 return False;
1395 end if;
1396
1397 Next (Expr);
1398 end loop;
1399 end;
1400 end if;
1401
1402 if Present (Component_Associations (Op)) then
1403 declare
1404 Cass : Node_Id;
1405
1406 begin
1407 Cass := First (Component_Associations (Op));
1408 while Present (Cass) loop
1409 if not
1410 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1411 then
1412 return False;
1413 end if;
1414
1415 Next (Cass);
1416 end loop;
1417 end;
1418 end if;
1419
1420 return True;
1421
1422 -- All other types of values are not known at compile time
1423
1424 else
1425 return False;
1426 end if;
1427
1428 end if;
1429 end Compile_Time_Known_Value_Or_Aggr;
1430
1431 -----------------
1432 -- Eval_Actual --
1433 -----------------
1434
1435 -- This is only called for actuals of functions that are not predefined
1436 -- operators (which have already been rewritten as operators at this
1437 -- stage), so the call can never be folded, and all that needs doing for
1438 -- the actual is to do the check for a non-static context.
1439
1440 procedure Eval_Actual (N : Node_Id) is
1441 begin
1442 Check_Non_Static_Context (N);
1443 end Eval_Actual;
1444
1445 --------------------
1446 -- Eval_Allocator --
1447 --------------------
1448
1449 -- Allocators are never static, so all we have to do is to do the
1450 -- check for a non-static context if an expression is present.
1451
1452 procedure Eval_Allocator (N : Node_Id) is
1453 Expr : constant Node_Id := Expression (N);
1454
1455 begin
1456 if Nkind (Expr) = N_Qualified_Expression then
1457 Check_Non_Static_Context (Expression (Expr));
1458 end if;
1459 end Eval_Allocator;
1460
1461 ------------------------
1462 -- Eval_Arithmetic_Op --
1463 ------------------------
1464
1465 -- Arithmetic operations are static functions, so the result is static
1466 -- if both operands are static (RM 4.9(7), 4.9(20)).
1467
1468 procedure Eval_Arithmetic_Op (N : Node_Id) is
1469 Left : constant Node_Id := Left_Opnd (N);
1470 Right : constant Node_Id := Right_Opnd (N);
1471 Ltype : constant Entity_Id := Etype (Left);
1472 Rtype : constant Entity_Id := Etype (Right);
d7567964 1473 Otype : Entity_Id := Empty;
996ae0b0
RK
1474 Stat : Boolean;
1475 Fold : Boolean;
1476
1477 begin
1478 -- If not foldable we are done
1479
1480 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1481
1482 if not Fold then
1483 return;
1484 end if;
1485
d7567964
TQ
1486 if Is_Universal_Numeric_Type (Etype (Left))
1487 and then
1488 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 1489 then
d7567964 1490 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
1491 end if;
1492
996ae0b0
RK
1493 -- Fold for cases where both operands are of integer type
1494
1495 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1496 declare
1497 Left_Int : constant Uint := Expr_Value (Left);
1498 Right_Int : constant Uint := Expr_Value (Right);
1499 Result : Uint;
1500
1501 begin
1502 case Nkind (N) is
1503
1504 when N_Op_Add =>
1505 Result := Left_Int + Right_Int;
1506
1507 when N_Op_Subtract =>
1508 Result := Left_Int - Right_Int;
1509
1510 when N_Op_Multiply =>
1511 if OK_Bits
1512 (N, UI_From_Int
1513 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1514 then
1515 Result := Left_Int * Right_Int;
1516 else
1517 Result := Left_Int;
1518 end if;
1519
1520 when N_Op_Divide =>
1521
1522 -- The exception Constraint_Error is raised by integer
1523 -- division, rem and mod if the right operand is zero.
1524
1525 if Right_Int = 0 then
1526 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1527 (N, "division by zero",
1528 CE_Divide_By_Zero,
1529 Warn => not Stat);
996ae0b0 1530 return;
fbf5a39b 1531
996ae0b0
RK
1532 else
1533 Result := Left_Int / Right_Int;
1534 end if;
1535
1536 when N_Op_Mod =>
1537
1538 -- The exception Constraint_Error is raised by integer
1539 -- division, rem and mod if the right operand is zero.
1540
1541 if Right_Int = 0 then
1542 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1543 (N, "mod with zero divisor",
1544 CE_Divide_By_Zero,
1545 Warn => not Stat);
996ae0b0
RK
1546 return;
1547 else
1548 Result := Left_Int mod Right_Int;
1549 end if;
1550
1551 when N_Op_Rem =>
1552
1553 -- The exception Constraint_Error is raised by integer
1554 -- division, rem and mod if the right operand is zero.
1555
1556 if Right_Int = 0 then
1557 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1558 (N, "rem with zero divisor",
1559 CE_Divide_By_Zero,
1560 Warn => not Stat);
996ae0b0 1561 return;
fbf5a39b 1562
996ae0b0
RK
1563 else
1564 Result := Left_Int rem Right_Int;
1565 end if;
1566
1567 when others =>
1568 raise Program_Error;
1569 end case;
1570
1571 -- Adjust the result by the modulus if the type is a modular type
1572
1573 if Is_Modular_Integer_Type (Ltype) then
1574 Result := Result mod Modulus (Ltype);
82c80734
RD
1575
1576 -- For a signed integer type, check non-static overflow
1577
1578 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1579 declare
1580 BT : constant Entity_Id := Base_Type (Ltype);
1581 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1582 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1583 begin
1584 if Result < Lo or else Result > Hi then
1585 Apply_Compile_Time_Constraint_Error
1586 (N, "value not in range of }?",
1587 CE_Overflow_Check_Failed,
1588 Ent => BT);
1589 return;
1590 end if;
1591 end;
996ae0b0
RK
1592 end if;
1593
82c80734
RD
1594 -- If we get here we can fold the result
1595
fbf5a39b 1596 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1597 end;
1598
d7567964
TQ
1599 -- Cases where at least one operand is a real. We handle the cases of
1600 -- both reals, or mixed/real integer cases (the latter happen only for
1601 -- divide and multiply, and the result is always real).
996ae0b0
RK
1602
1603 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1604 declare
1605 Left_Real : Ureal;
1606 Right_Real : Ureal;
1607 Result : Ureal;
1608
1609 begin
1610 if Is_Real_Type (Ltype) then
1611 Left_Real := Expr_Value_R (Left);
1612 else
1613 Left_Real := UR_From_Uint (Expr_Value (Left));
1614 end if;
1615
1616 if Is_Real_Type (Rtype) then
1617 Right_Real := Expr_Value_R (Right);
1618 else
1619 Right_Real := UR_From_Uint (Expr_Value (Right));
1620 end if;
1621
1622 if Nkind (N) = N_Op_Add then
1623 Result := Left_Real + Right_Real;
1624
1625 elsif Nkind (N) = N_Op_Subtract then
1626 Result := Left_Real - Right_Real;
1627
1628 elsif Nkind (N) = N_Op_Multiply then
1629 Result := Left_Real * Right_Real;
1630
1631 else pragma Assert (Nkind (N) = N_Op_Divide);
1632 if UR_Is_Zero (Right_Real) then
1633 Apply_Compile_Time_Constraint_Error
07fc65c4 1634 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1635 return;
1636 end if;
1637
1638 Result := Left_Real / Right_Real;
1639 end if;
1640
fbf5a39b 1641 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1642 end;
1643 end if;
d7567964
TQ
1644
1645 -- If the operator was resolved to a specific type, make sure that type
1646 -- is frozen even if the expression is folded into a literal (which has
1647 -- a universal type).
1648
1649 if Present (Otype) then
1650 Freeze_Before (N, Otype);
1651 end if;
996ae0b0
RK
1652 end Eval_Arithmetic_Op;
1653
1654 ----------------------------
1655 -- Eval_Character_Literal --
1656 ----------------------------
1657
1658 -- Nothing to be done!
1659
1660 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1661 pragma Warnings (Off, N);
996ae0b0
RK
1662 begin
1663 null;
1664 end Eval_Character_Literal;
1665
c01a9391
AC
1666 ---------------
1667 -- Eval_Call --
1668 ---------------
1669
1670 -- Static function calls are either calls to predefined operators
1671 -- with static arguments, or calls to functions that rename a literal.
1672 -- Only the latter case is handled here, predefined operators are
1673 -- constant-folded elsewhere.
29797f34 1674
c01a9391
AC
1675 -- If the function is itself inherited (see 7423-001) the literal of
1676 -- the parent type must be explicitly converted to the return type
1677 -- of the function.
1678
1679 procedure Eval_Call (N : Node_Id) is
1680 Loc : constant Source_Ptr := Sloc (N);
1681 Typ : constant Entity_Id := Etype (N);
1682 Lit : Entity_Id;
1683
1684 begin
1685 if Nkind (N) = N_Function_Call
1686 and then No (Parameter_Associations (N))
1687 and then Is_Entity_Name (Name (N))
1688 and then Present (Alias (Entity (Name (N))))
1689 and then Is_Enumeration_Type (Base_Type (Typ))
1690 then
b81a5940 1691 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
1692
1693 if Ekind (Lit) = E_Enumeration_Literal then
1694 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1695 Rewrite
1696 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1697 else
1698 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1699 end if;
1700
1701 Resolve (N, Typ);
1702 end if;
1703 end if;
1704 end Eval_Call;
1705
19d846a0
RD
1706 --------------------------
1707 -- Eval_Case_Expression --
1708 --------------------------
1709
1710 -- Right now we do not attempt folding of any case expressions, and the
1711 -- language does not require it, so the only required processing is to
1712 -- do the check for all expressions appearing in the case expression.
1713
1714 procedure Eval_Case_Expression (N : Node_Id) is
1715 Alt : Node_Id;
1716
1717 begin
1718 Check_Non_Static_Context (Expression (N));
1719
1720 Alt := First (Alternatives (N));
1721 while Present (Alt) loop
1722 Check_Non_Static_Context (Expression (Alt));
1723 Next (Alt);
1724 end loop;
1725 end Eval_Case_Expression;
1726
996ae0b0
RK
1727 ------------------------
1728 -- Eval_Concatenation --
1729 ------------------------
1730
3996951a
TQ
1731 -- Concatenation is a static function, so the result is static if both
1732 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
1733
1734 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1735 Left : constant Node_Id := Left_Opnd (N);
1736 Right : constant Node_Id := Right_Opnd (N);
1737 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1738 Stat : Boolean;
1739 Fold : Boolean;
996ae0b0
RK
1740
1741 begin
3996951a
TQ
1742 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1743 -- non-static context.
996ae0b0 1744
0ab80019 1745 if Ada_Version = Ada_83
996ae0b0
RK
1746 and then Comes_From_Source (N)
1747 then
1748 Check_Non_Static_Context (Left);
1749 Check_Non_Static_Context (Right);
1750 return;
1751 end if;
1752
1753 -- If not foldable we are done. In principle concatenation that yields
1754 -- any string type is static (i.e. an array type of character types).
1755 -- However, character types can include enumeration literals, and
1756 -- concatenation in that case cannot be described by a literal, so we
1757 -- only consider the operation static if the result is an array of
1758 -- (a descendant of) a predefined character type.
1759
1760 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1761
3996951a 1762 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
1763 Set_Is_Static_Expression (N, False);
1764 return;
1765 end if;
1766
82c80734 1767 -- Compile time string concatenation
996ae0b0 1768
3996951a
TQ
1769 -- ??? Note that operands that are aggregates can be marked as static,
1770 -- so we should attempt at a later stage to fold concatenations with
1771 -- such aggregates.
996ae0b0
RK
1772
1773 declare
b54ddf5a
BD
1774 Left_Str : constant Node_Id := Get_String_Val (Left);
1775 Left_Len : Nat;
1776 Right_Str : constant Node_Id := Get_String_Val (Right);
1777 Folded_Val : String_Id;
996ae0b0
RK
1778
1779 begin
1780 -- Establish new string literal, and store left operand. We make
1781 -- sure to use the special Start_String that takes an operand if
1782 -- the left operand is a string literal. Since this is optimized
1783 -- in the case where that is the most recently created string
1784 -- literal, we ensure efficient time/space behavior for the
1785 -- case of a concatenation of a series of string literals.
1786
1787 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1788 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
1789
1790 -- If the left operand is the empty string, and the right operand
1791 -- is a string literal (the case of "" & "..."), the result is the
1792 -- value of the right operand. This optimization is important when
1793 -- Is_Folded_In_Parser, to avoid copying an enormous right
1794 -- operand.
1795
1796 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1797 Folded_Val := Strval (Right_Str);
1798 else
1799 Start_String (Strval (Left_Str));
1800 end if;
1801
996ae0b0
RK
1802 else
1803 Start_String;
82c80734 1804 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1805 Left_Len := 1;
996ae0b0
RK
1806 end if;
1807
b54ddf5a
BD
1808 -- Now append the characters of the right operand, unless we
1809 -- optimized the "" & "..." case above.
996ae0b0
RK
1810
1811 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
1812 if Left_Len /= 0 then
1813 Store_String_Chars (Strval (Right_Str));
1814 Folded_Val := End_String;
1815 end if;
996ae0b0 1816 else
82c80734 1817 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 1818 Folded_Val := End_String;
996ae0b0
RK
1819 end if;
1820
1821 Set_Is_Static_Expression (N, Stat);
1822
1823 if Stat then
f91b40db
GB
1824
1825 -- If left operand is the empty string, the result is the
1826 -- right operand, including its bounds if anomalous.
1827
1828 if Left_Len = 0
1829 and then Is_Array_Type (Etype (Right))
1830 and then Etype (Right) /= Any_String
1831 then
1832 Set_Etype (N, Etype (Right));
1833 end if;
1834
b54ddf5a 1835 Fold_Str (N, Folded_Val, Static => True);
996ae0b0
RK
1836 end if;
1837 end;
1838 end Eval_Concatenation;
1839
1840 ---------------------------------
1841 -- Eval_Conditional_Expression --
1842 ---------------------------------
1843
4d777a71 1844 -- We can fold to a static expression if the condition and both constituent
1cf3727f 1845 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 1846 -- the check for non-static context for the then and else expressions.
996ae0b0
RK
1847
1848 procedure Eval_Conditional_Expression (N : Node_Id) is
4d777a71
AC
1849 Condition : constant Node_Id := First (Expressions (N));
1850 Then_Expr : constant Node_Id := Next (Condition);
1851 Else_Expr : constant Node_Id := Next (Then_Expr);
1852 Result : Node_Id;
1853 Non_Result : Node_Id;
1854
1855 Rstat : constant Boolean :=
1856 Is_Static_Expression (Condition)
1857 and then
1858 Is_Static_Expression (Then_Expr)
1859 and then
1860 Is_Static_Expression (Else_Expr);
1861
996ae0b0 1862 begin
4d777a71
AC
1863 -- If any operand is Any_Type, just propagate to result and do not try
1864 -- to fold, this prevents cascaded errors.
1865
1866 if Etype (Condition) = Any_Type or else
1867 Etype (Then_Expr) = Any_Type or else
1868 Etype (Else_Expr) = Any_Type
1869 then
1870 Set_Etype (N, Any_Type);
1871 Set_Is_Static_Expression (N, False);
1872 return;
1873
1874 -- Static case where we can fold. Note that we don't try to fold cases
1875 -- where the condition is known at compile time, but the result is
1876 -- non-static. This avoids possible cases of infinite recursion where
1877 -- the expander puts in a redundant test and we remove it. Instead we
1878 -- deal with these cases in the expander.
1879
1880 elsif Rstat then
1881
1882 -- Select result operand
1883
1884 if Is_True (Expr_Value (Condition)) then
1885 Result := Then_Expr;
1886 Non_Result := Else_Expr;
1887 else
1888 Result := Else_Expr;
1889 Non_Result := Then_Expr;
1890 end if;
1891
1892 -- Note that it does not matter if the non-result operand raises a
1893 -- Constraint_Error, but if the result raises constraint error then
1894 -- we replace the node with a raise constraint error. This will
1895 -- properly propagate Raises_Constraint_Error since this flag is
1896 -- set in Result.
1897
1898 if Raises_Constraint_Error (Result) then
1899 Rewrite_In_Raise_CE (N, Result);
1900 Check_Non_Static_Context (Non_Result);
1901
1902 -- Otherwise the result operand replaces the original node
1903
1904 else
1905 Rewrite (N, Relocate_Node (Result));
1906 end if;
1907
1908 -- Case of condition not known at compile time
1909
1910 else
1911 Check_Non_Static_Context (Condition);
1912 Check_Non_Static_Context (Then_Expr);
1913 Check_Non_Static_Context (Else_Expr);
1914 end if;
1915
1916 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
1917 end Eval_Conditional_Expression;
1918
1919 ----------------------
1920 -- Eval_Entity_Name --
1921 ----------------------
1922
1923 -- This procedure is used for identifiers and expanded names other than
1924 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1925 -- static if they denote a static constant (RM 4.9(6)) or if the name
1926 -- denotes an enumeration literal (RM 4.9(22)).
1927
1928 procedure Eval_Entity_Name (N : Node_Id) is
1929 Def_Id : constant Entity_Id := Entity (N);
1930 Val : Node_Id;
1931
1932 begin
1933 -- Enumeration literals are always considered to be constants
1934 -- and cannot raise constraint error (RM 4.9(22)).
1935
1936 if Ekind (Def_Id) = E_Enumeration_Literal then
1937 Set_Is_Static_Expression (N);
1938 return;
1939
1940 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1941 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1942 -- it does not violate 10.2.1(8) here, since this is not a variable.
1943
1944 elsif Ekind (Def_Id) = E_Constant then
1945
1946 -- Deferred constants must always be treated as nonstatic
1947 -- outside the scope of their full view.
1948
1949 if Present (Full_View (Def_Id))
1950 and then not In_Open_Scopes (Scope (Def_Id))
1951 then
1952 Val := Empty;
1953 else
1954 Val := Constant_Value (Def_Id);
1955 end if;
1956
1957 if Present (Val) then
1958 Set_Is_Static_Expression
1959 (N, Is_Static_Expression (Val)
1960 and then Is_Static_Subtype (Etype (Def_Id)));
1961 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1962
1963 if not Is_Static_Expression (N)
1964 and then not Is_Generic_Type (Etype (N))
1965 then
1966 Validate_Static_Object_Name (N);
1967 end if;
1968
1969 return;
1970 end if;
1971 end if;
1972
82c80734 1973 -- Fall through if the name is not static
996ae0b0
RK
1974
1975 Validate_Static_Object_Name (N);
1976 end Eval_Entity_Name;
1977
1978 ----------------------------
1979 -- Eval_Indexed_Component --
1980 ----------------------------
1981
8cbb664e
MG
1982 -- Indexed components are never static, so we need to perform the check
1983 -- for non-static context on the index values. Then, we check if the
1984 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
1985
1986 procedure Eval_Indexed_Component (N : Node_Id) is
1987 Expr : Node_Id;
1988
1989 begin
fbf5a39b
AC
1990 -- Check for non-static context on index values
1991
996ae0b0
RK
1992 Expr := First (Expressions (N));
1993 while Present (Expr) loop
1994 Check_Non_Static_Context (Expr);
1995 Next (Expr);
1996 end loop;
1997
fbf5a39b
AC
1998 -- If the indexed component appears in an object renaming declaration
1999 -- then we do not want to try to evaluate it, since in this case we
2000 -- need the identity of the array element.
2001
2002 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2003 return;
2004
2005 -- Similarly if the indexed component appears as the prefix of an
2006 -- attribute we don't want to evaluate it, because at least for
2007 -- some cases of attributes we need the identify (e.g. Access, Size)
2008
2009 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2010 return;
2011 end if;
2012
2013 -- Note: there are other cases, such as the left side of an assignment,
2014 -- or an OUT parameter for a call, where the replacement results in the
2015 -- illegal use of a constant, But these cases are illegal in the first
2016 -- place, so the replacement, though silly, is harmless.
2017
2018 -- Now see if this is a constant array reference
8cbb664e
MG
2019
2020 if List_Length (Expressions (N)) = 1
2021 and then Is_Entity_Name (Prefix (N))
2022 and then Ekind (Entity (Prefix (N))) = E_Constant
2023 and then Present (Constant_Value (Entity (Prefix (N))))
2024 then
2025 declare
2026 Loc : constant Source_Ptr := Sloc (N);
2027 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2028 Sub : constant Node_Id := First (Expressions (N));
2029
2030 Atyp : Entity_Id;
2031 -- Type of array
2032
2033 Lin : Nat;
2034 -- Linear one's origin subscript value for array reference
2035
2036 Lbd : Node_Id;
2037 -- Lower bound of the first array index
2038
2039 Elm : Node_Id;
2040 -- Value from constant array
2041
2042 begin
2043 Atyp := Etype (Arr);
2044
2045 if Is_Access_Type (Atyp) then
2046 Atyp := Designated_Type (Atyp);
2047 end if;
2048
9dbf1c3e
RD
2049 -- If we have an array type (we should have but perhaps there are
2050 -- error cases where this is not the case), then see if we can do
2051 -- a constant evaluation of the array reference.
8cbb664e 2052
ebd34478 2053 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2054 if Ekind (Atyp) = E_String_Literal_Subtype then
2055 Lbd := String_Literal_Low_Bound (Atyp);
2056 else
2057 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2058 end if;
2059
2060 if Compile_Time_Known_Value (Sub)
2061 and then Nkind (Arr) = N_Aggregate
2062 and then Compile_Time_Known_Value (Lbd)
2063 and then Is_Discrete_Type (Component_Type (Atyp))
2064 then
2065 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2066
2067 if List_Length (Expressions (Arr)) >= Lin then
2068 Elm := Pick (Expressions (Arr), Lin);
2069
2070 -- If the resulting expression is compile time known,
2071 -- then we can rewrite the indexed component with this
2072 -- value, being sure to mark the result as non-static.
2073 -- We also reset the Sloc, in case this generates an
2074 -- error later on (e.g. 136'Access).
2075
2076 if Compile_Time_Known_Value (Elm) then
2077 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2078 Set_Is_Static_Expression (N, False);
2079 Set_Sloc (N, Loc);
2080 end if;
2081 end if;
9fbb3ae6
AC
2082
2083 -- We can also constant-fold if the prefix is a string literal.
2084 -- This will be useful in an instantiation or an inlining.
2085
2086 elsif Compile_Time_Known_Value (Sub)
2087 and then Nkind (Arr) = N_String_Literal
2088 and then Compile_Time_Known_Value (Lbd)
2089 and then Expr_Value (Lbd) = 1
2090 and then Expr_Value (Sub) <=
2091 String_Literal_Length (Etype (Arr))
2092 then
2093 declare
2094 C : constant Char_Code :=
2095 Get_String_Char (Strval (Arr),
2096 UI_To_Int (Expr_Value (Sub)));
2097 begin
2098 Set_Character_Literal_Name (C);
2099
2100 Elm :=
2101 Make_Character_Literal (Loc,
2102 Chars => Name_Find,
2103 Char_Literal_Value => UI_From_CC (C));
2104 Set_Etype (Elm, Component_Type (Atyp));
2105 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2106 Set_Is_Static_Expression (N, False);
2107 end;
8cbb664e
MG
2108 end if;
2109 end if;
2110 end;
2111 end if;
996ae0b0
RK
2112 end Eval_Indexed_Component;
2113
2114 --------------------------
2115 -- Eval_Integer_Literal --
2116 --------------------------
2117
2118 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2119 -- as static by the analyzer. The reason we did it that early is to allow
2120 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2121 -- analysis, but before resolution, when integer literals are generated in
2122 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2123
2124 procedure Eval_Integer_Literal (N : Node_Id) is
2125 T : constant Entity_Id := Etype (N);
2126
5d09245e 2127 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
2128 -- If the literal is resolved with a specific type in a context where
2129 -- the expected type is Any_Integer, there are no range checks on the
2130 -- literal. By the time the literal is evaluated, it carries the type
2131 -- imposed by the enclosing expression, and we must recover the context
2132 -- to determine that Any_Integer is meant.
5d09245e
AC
2133
2134 ----------------------------
09494c32 2135 -- In_Any_Integer_Context --
5d09245e
AC
2136 ----------------------------
2137
2138 function In_Any_Integer_Context return Boolean is
2139 Par : constant Node_Id := Parent (N);
2140 K : constant Node_Kind := Nkind (Par);
2141
2142 begin
2143 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2144 -- but those have bounds smaller that those of any integer base type,
2145 -- so we can safely ignore these cases.
5d09245e
AC
2146
2147 return K = N_Number_Declaration
2148 or else K = N_Attribute_Reference
2149 or else K = N_Attribute_Definition_Clause
2150 or else K = N_Modular_Type_Definition
2151 or else K = N_Signed_Integer_Type_Definition;
2152 end In_Any_Integer_Context;
2153
2154 -- Start of processing for Eval_Integer_Literal
2155
996ae0b0 2156 begin
5d09245e 2157
996ae0b0 2158 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2159 -- certainly appearing in a non-static context, so check it. This is
2160 -- actually a redundant check, since Check_Non_Static_Context would
2161 -- check it, but it seems worth while avoiding the call.
996ae0b0 2162
5d09245e
AC
2163 if Nkind (Parent (N)) not in N_Subexpr
2164 and then not In_Any_Integer_Context
2165 then
996ae0b0
RK
2166 Check_Non_Static_Context (N);
2167 end if;
2168
2169 -- Modular integer literals must be in their base range
2170
2171 if Is_Modular_Integer_Type (T)
c800f862 2172 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2173 then
2174 Out_Of_Range (N);
2175 end if;
2176 end Eval_Integer_Literal;
2177
2178 ---------------------
2179 -- Eval_Logical_Op --
2180 ---------------------
2181
2182 -- Logical operations are static functions, so the result is potentially
2183 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2184
2185 procedure Eval_Logical_Op (N : Node_Id) is
2186 Left : constant Node_Id := Left_Opnd (N);
2187 Right : constant Node_Id := Right_Opnd (N);
2188 Stat : Boolean;
2189 Fold : Boolean;
2190
2191 begin
2192 -- If not foldable we are done
2193
2194 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2195
2196 if not Fold then
2197 return;
2198 end if;
2199
2200 -- Compile time evaluation of logical operation
2201
2202 declare
2203 Left_Int : constant Uint := Expr_Value (Left);
2204 Right_Int : constant Uint := Expr_Value (Right);
2205
2206 begin
22cb89b5 2207 -- VMS includes bitwise operations on signed types
001c7783
AC
2208
2209 if Is_Modular_Integer_Type (Etype (N))
2210 or else Is_VMS_Operator (Entity (N))
2211 then
996ae0b0
RK
2212 declare
2213 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2214 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2215
2216 begin
2217 To_Bits (Left_Int, Left_Bits);
2218 To_Bits (Right_Int, Right_Bits);
2219
2220 -- Note: should really be able to use array ops instead of
2221 -- these loops, but they weren't working at the time ???
2222
2223 if Nkind (N) = N_Op_And then
2224 for J in Left_Bits'Range loop
2225 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2226 end loop;
2227
2228 elsif Nkind (N) = N_Op_Or then
2229 for J in Left_Bits'Range loop
2230 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2231 end loop;
2232
2233 else
2234 pragma Assert (Nkind (N) = N_Op_Xor);
2235
2236 for J in Left_Bits'Range loop
2237 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2238 end loop;
2239 end if;
2240
fbf5a39b 2241 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2242 end;
2243
2244 else
2245 pragma Assert (Is_Boolean_Type (Etype (N)));
2246
2247 if Nkind (N) = N_Op_And then
2248 Fold_Uint (N,
fbf5a39b 2249 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2250
2251 elsif Nkind (N) = N_Op_Or then
2252 Fold_Uint (N,
fbf5a39b 2253 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2254
2255 else
2256 pragma Assert (Nkind (N) = N_Op_Xor);
2257 Fold_Uint (N,
fbf5a39b 2258 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2259 end if;
2260 end if;
996ae0b0
RK
2261 end;
2262 end Eval_Logical_Op;
2263
2264 ------------------------
2265 -- Eval_Membership_Op --
2266 ------------------------
2267
1d1bd8ad
AC
2268 -- A membership test is potentially static if the expression is static, and
2269 -- the range is a potentially static range, or is a subtype mark denoting a
2270 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2271
2272 procedure Eval_Membership_Op (N : Node_Id) is
2273 Left : constant Node_Id := Left_Opnd (N);
2274 Right : constant Node_Id := Right_Opnd (N);
2275 Def_Id : Entity_Id;
2276 Lo : Node_Id;
2277 Hi : Node_Id;
2278 Result : Boolean;
2279 Stat : Boolean;
2280 Fold : Boolean;
2281
2282 begin
1d1bd8ad
AC
2283 -- Ignore if error in either operand, except to make sure that Any_Type
2284 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 2285
22cb89b5 2286 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
996ae0b0
RK
2287 Set_Etype (N, Any_Type);
2288 return;
2289 end if;
2290
4818e7b9
RD
2291 -- Ignore if types involved have predicates
2292
2293 if Present (Predicate_Function (Etype (Left)))
2294 or else
2295 Present (Predicate_Function (Etype (Right)))
2296 then
2297 return;
2298 end if;
2299
996ae0b0
RK
2300 -- Case of right operand is a subtype name
2301
2302 if Is_Entity_Name (Right) then
2303 Def_Id := Entity (Right);
2304
2305 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2306 and then Is_OK_Static_Subtype (Def_Id)
2307 then
2308 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2309
2310 if not Fold or else not Stat then
2311 return;
2312 end if;
2313 else
2314 Check_Non_Static_Context (Left);
2315 return;
2316 end if;
2317
1d1bd8ad 2318 -- For string membership tests we will check the length further on
996ae0b0
RK
2319
2320 if not Is_String_Type (Def_Id) then
2321 Lo := Type_Low_Bound (Def_Id);
2322 Hi := Type_High_Bound (Def_Id);
2323
2324 else
2325 Lo := Empty;
2326 Hi := Empty;
2327 end if;
2328
2329 -- Case of right operand is a range
2330
2331 else
2332 if Is_Static_Range (Right) then
2333 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2334
2335 if not Fold or else not Stat then
2336 return;
2337
2338 -- If one bound of range raises CE, then don't try to fold
2339
2340 elsif not Is_OK_Static_Range (Right) then
2341 Check_Non_Static_Context (Left);
2342 return;
2343 end if;
2344
2345 else
2346 Check_Non_Static_Context (Left);
2347 return;
2348 end if;
2349
2350 -- Here we know range is an OK static range
2351
2352 Lo := Low_Bound (Right);
2353 Hi := High_Bound (Right);
2354 end if;
2355
2356 -- For strings we check that the length of the string expression is
2357 -- compatible with the string subtype if the subtype is constrained,
2358 -- or if unconstrained then the test is always true.
2359
2360 if Is_String_Type (Etype (Right)) then
2361 if not Is_Constrained (Etype (Right)) then
2362 Result := True;
2363
2364 else
2365 declare
2366 Typlen : constant Uint := String_Type_Len (Etype (Right));
2367 Strlen : constant Uint :=
22cb89b5
AC
2368 UI_From_Int
2369 (String_Length (Strval (Get_String_Val (Left))));
996ae0b0
RK
2370 begin
2371 Result := (Typlen = Strlen);
2372 end;
2373 end if;
2374
1d1bd8ad
AC
2375 -- Fold the membership test. We know we have a static range and Lo and
2376 -- Hi are set to the expressions for the end points of this range.
996ae0b0
RK
2377
2378 elsif Is_Real_Type (Etype (Right)) then
2379 declare
2380 Leftval : constant Ureal := Expr_Value_R (Left);
2381
2382 begin
2383 Result := Expr_Value_R (Lo) <= Leftval
2384 and then Leftval <= Expr_Value_R (Hi);
2385 end;
2386
2387 else
2388 declare
2389 Leftval : constant Uint := Expr_Value (Left);
2390
2391 begin
2392 Result := Expr_Value (Lo) <= Leftval
2393 and then Leftval <= Expr_Value (Hi);
2394 end;
2395 end if;
2396
2397 if Nkind (N) = N_Not_In then
2398 Result := not Result;
2399 end if;
2400
fbf5a39b 2401 Fold_Uint (N, Test (Result), True);
d7567964 2402
996ae0b0 2403 Warn_On_Known_Condition (N);
996ae0b0
RK
2404 end Eval_Membership_Op;
2405
2406 ------------------------
2407 -- Eval_Named_Integer --
2408 ------------------------
2409
2410 procedure Eval_Named_Integer (N : Node_Id) is
2411 begin
2412 Fold_Uint (N,
fbf5a39b 2413 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2414 end Eval_Named_Integer;
2415
2416 ---------------------
2417 -- Eval_Named_Real --
2418 ---------------------
2419
2420 procedure Eval_Named_Real (N : Node_Id) is
2421 begin
2422 Fold_Ureal (N,
fbf5a39b 2423 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2424 end Eval_Named_Real;
2425
2426 -------------------
2427 -- Eval_Op_Expon --
2428 -------------------
2429
2430 -- Exponentiation is a static functions, so the result is potentially
2431 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2432
2433 procedure Eval_Op_Expon (N : Node_Id) is
2434 Left : constant Node_Id := Left_Opnd (N);
2435 Right : constant Node_Id := Right_Opnd (N);
2436 Stat : Boolean;
2437 Fold : Boolean;
2438
2439 begin
2440 -- If not foldable we are done
2441
2442 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2443
2444 if not Fold then
2445 return;
2446 end if;
2447
2448 -- Fold exponentiation operation
2449
2450 declare
2451 Right_Int : constant Uint := Expr_Value (Right);
2452
2453 begin
2454 -- Integer case
2455
2456 if Is_Integer_Type (Etype (Left)) then
2457 declare
2458 Left_Int : constant Uint := Expr_Value (Left);
2459 Result : Uint;
2460
2461 begin
22cb89b5
AC
2462 -- Exponentiation of an integer raises Constraint_Error for a
2463 -- negative exponent (RM 4.5.6).
996ae0b0
RK
2464
2465 if Right_Int < 0 then
2466 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2467 (N, "integer exponent negative",
2468 CE_Range_Check_Failed,
2469 Warn => not Stat);
996ae0b0
RK
2470 return;
2471
2472 else
2473 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2474 Result := Left_Int ** Right_Int;
2475 else
2476 Result := Left_Int;
2477 end if;
2478
2479 if Is_Modular_Integer_Type (Etype (N)) then
2480 Result := Result mod Modulus (Etype (N));
2481 end if;
2482
fbf5a39b 2483 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2484 end if;
2485 end;
2486
2487 -- Real case
2488
2489 else
2490 declare
2491 Left_Real : constant Ureal := Expr_Value_R (Left);
2492
2493 begin
2494 -- Cannot have a zero base with a negative exponent
2495
2496 if UR_Is_Zero (Left_Real) then
2497
2498 if Right_Int < 0 then
2499 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2500 (N, "zero ** negative integer",
2501 CE_Range_Check_Failed,
2502 Warn => not Stat);
996ae0b0
RK
2503 return;
2504 else
fbf5a39b 2505 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2506 end if;
2507
2508 else
fbf5a39b 2509 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2510 end if;
2511 end;
2512 end if;
996ae0b0
RK
2513 end;
2514 end Eval_Op_Expon;
2515
2516 -----------------
2517 -- Eval_Op_Not --
2518 -----------------
2519
2520 -- The not operation is a static functions, so the result is potentially
2521 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2522
2523 procedure Eval_Op_Not (N : Node_Id) is
2524 Right : constant Node_Id := Right_Opnd (N);
2525 Stat : Boolean;
2526 Fold : Boolean;
2527
2528 begin
2529 -- If not foldable we are done
2530
2531 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2532
2533 if not Fold then
2534 return;
2535 end if;
2536
2537 -- Fold not operation
2538
2539 declare
2540 Rint : constant Uint := Expr_Value (Right);
2541 Typ : constant Entity_Id := Etype (N);
2542
2543 begin
1d1bd8ad
AC
2544 -- Negation is equivalent to subtracting from the modulus minus one.
2545 -- For a binary modulus this is equivalent to the ones-complement of
2546 -- the original value. For non-binary modulus this is an arbitrary
2547 -- but consistent definition.
996ae0b0
RK
2548
2549 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2550 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2551
2552 else
2553 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2554 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2555 end if;
2556
2557 Set_Is_Static_Expression (N, Stat);
2558 end;
2559 end Eval_Op_Not;
2560
2561 -------------------------------
2562 -- Eval_Qualified_Expression --
2563 -------------------------------
2564
2565 -- A qualified expression is potentially static if its subtype mark denotes
2566 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2567
2568 procedure Eval_Qualified_Expression (N : Node_Id) is
2569 Operand : constant Node_Id := Expression (N);
2570 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2571
07fc65c4
GB
2572 Stat : Boolean;
2573 Fold : Boolean;
2574 Hex : Boolean;
996ae0b0
RK
2575
2576 begin
1d1bd8ad 2577 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
2578 -- Also, do not fold if our parent is an allocator (this is because the
2579 -- qualified expression is really part of the syntactic structure of an
2580 -- allocator, and we do not want to end up with something that
996ae0b0
RK
2581 -- corresponds to "new 1" where the 1 is the result of folding a
2582 -- qualified expression).
2583
2584 if not Is_Static_Subtype (Target_Type)
2585 or else Nkind (Parent (N)) = N_Allocator
2586 then
2587 Check_Non_Static_Context (Operand);
af152989 2588
1d1bd8ad
AC
2589 -- If operand is known to raise constraint_error, set the flag on the
2590 -- expression so it does not get optimized away.
af152989
AC
2591
2592 if Nkind (Operand) = N_Raise_Constraint_Error then
2593 Set_Raises_Constraint_Error (N);
2594 end if;
7324bf49 2595
996ae0b0
RK
2596 return;
2597 end if;
2598
2599 -- If not foldable we are done
2600
2601 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2602
2603 if not Fold then
2604 return;
2605
2606 -- Don't try fold if target type has constraint error bounds
2607
2608 elsif not Is_OK_Static_Subtype (Target_Type) then
2609 Set_Raises_Constraint_Error (N);
2610 return;
2611 end if;
2612
07fc65c4
GB
2613 -- Here we will fold, save Print_In_Hex indication
2614
2615 Hex := Nkind (Operand) = N_Integer_Literal
2616 and then Print_In_Hex (Operand);
2617
996ae0b0
RK
2618 -- Fold the result of qualification
2619
2620 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2621 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2622
07fc65c4
GB
2623 -- Preserve Print_In_Hex indication
2624
2625 if Hex and then Nkind (N) = N_Integer_Literal then
2626 Set_Print_In_Hex (N);
2627 end if;
2628
996ae0b0 2629 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2630 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2631
2632 else
fbf5a39b 2633 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2634
2635 if not Stat then
2636 Set_Is_Static_Expression (N, False);
2637 else
2638 Check_String_Literal_Length (N, Target_Type);
2639 end if;
2640
2641 return;
2642 end if;
2643
fbf5a39b
AC
2644 -- The expression may be foldable but not static
2645
2646 Set_Is_Static_Expression (N, Stat);
2647
c800f862 2648 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
2649 Out_Of_Range (N);
2650 end if;
996ae0b0
RK
2651 end Eval_Qualified_Expression;
2652
2653 -----------------------
2654 -- Eval_Real_Literal --
2655 -----------------------
2656
2657 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2658 -- as static by the analyzer. The reason we did it that early is to allow
2659 -- the possibility of turning off the Is_Static_Expression flag after
2660 -- analysis, but before resolution, when integer literals are generated
2661 -- in the expander that do not correspond to static expressions.
2662
2663 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
2664 PK : constant Node_Kind := Nkind (Parent (N));
2665
996ae0b0 2666 begin
1d1bd8ad
AC
2667 -- If the literal appears in a non-expression context and not as part of
2668 -- a number declaration, then it is appearing in a non-static context,
2669 -- so check it.
996ae0b0 2670
a1980be8 2671 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
2672 Check_Non_Static_Context (N);
2673 end if;
996ae0b0
RK
2674 end Eval_Real_Literal;
2675
2676 ------------------------
2677 -- Eval_Relational_Op --
2678 ------------------------
2679
8a95f4e8
RD
2680 -- Relational operations are static functions, so the result is static if
2681 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2682 -- the result is never static, even if the operands are.
996ae0b0
RK
2683
2684 procedure Eval_Relational_Op (N : Node_Id) is
2685 Left : constant Node_Id := Left_Opnd (N);
2686 Right : constant Node_Id := Right_Opnd (N);
2687 Typ : constant Entity_Id := Etype (Left);
d7567964 2688 Otype : Entity_Id := Empty;
996ae0b0
RK
2689 Result : Boolean;
2690 Stat : Boolean;
2691 Fold : Boolean;
2692
2693 begin
45fc7ddb
HK
2694 -- One special case to deal with first. If we can tell that the result
2695 -- will be false because the lengths of one or more index subtypes are
2696 -- compile time known and different, then we can replace the entire
2697 -- result by False. We only do this for one dimensional arrays, because
2698 -- the case of multi-dimensional arrays is rare and too much trouble! If
2699 -- one of the operands is an illegal aggregate, its type might still be
2700 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
2701
2702 if Is_Array_Type (Typ)
13f34a3f 2703 and then Typ /= Any_Composite
996ae0b0 2704 and then Number_Dimensions (Typ) = 1
13f34a3f 2705 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2706 then
2707 if Raises_Constraint_Error (Left)
2708 or else Raises_Constraint_Error (Right)
2709 then
2710 return;
2711 end if;
2712
45fc7ddb
HK
2713 -- OK, we have the case where we may be able to do this fold
2714
2715 Length_Mismatch : declare
996ae0b0 2716 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
1d1bd8ad
AC
2717 -- If Op is an expression for a constrained array with a known at
2718 -- compile time length, then Len is set to this (non-negative
13f34a3f 2719 -- length). Otherwise Len is set to minus 1.
996ae0b0 2720
fbf5a39b
AC
2721 -----------------------
2722 -- Get_Static_Length --
2723 -----------------------
2724
996ae0b0
RK
2725 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2726 T : Entity_Id;
2727
2728 begin
45fc7ddb
HK
2729 -- First easy case string literal
2730
996ae0b0
RK
2731 if Nkind (Op) = N_String_Literal then
2732 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
2733 return;
2734 end if;
2735
2736 -- Second easy case, not constrained subtype, so no length
996ae0b0 2737
45fc7ddb 2738 if not Is_Constrained (Etype (Op)) then
996ae0b0 2739 Len := Uint_Minus_1;
45fc7ddb
HK
2740 return;
2741 end if;
996ae0b0 2742
45fc7ddb
HK
2743 -- General case
2744
2745 T := Etype (First_Index (Etype (Op)));
2746
2747 -- The simple case, both bounds are known at compile time
2748
2749 if Is_Discrete_Type (T)
2750 and then
2751 Compile_Time_Known_Value (Type_Low_Bound (T))
2752 and then
2753 Compile_Time_Known_Value (Type_High_Bound (T))
2754 then
2755 Len := UI_Max (Uint_0,
2756 Expr_Value (Type_High_Bound (T)) -
2757 Expr_Value (Type_Low_Bound (T)) + 1);
2758 return;
2759 end if;
2760
2761 -- A more complex case, where the bounds are of the form
2762 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2763 -- either A'First or A'Last (with A an entity name), or X is an
2764 -- entity name, and the two X's are the same and K1 and K2 are
2765 -- known at compile time, in this case, the length can also be
2766 -- computed at compile time, even though the bounds are not
22cb89b5 2767 -- known. A common case of this is e.g. (X'First .. X'First+5).
45fc7ddb
HK
2768
2769 Extract_Length : declare
2770 procedure Decompose_Expr
2771 (Expr : Node_Id;
2772 Ent : out Entity_Id;
2773 Kind : out Character;
2774 Cons : out Uint);
2775 -- Given an expression, see if is of the form above,
2776 -- X [+/- K]. If so Ent is set to the entity in X,
2777 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2778 -- and Cons is the value of K. If the expression is
2779 -- not of the required form, Ent is set to Empty.
2780
2781 --------------------
2782 -- Decompose_Expr --
2783 --------------------
2784
2785 procedure Decompose_Expr
2786 (Expr : Node_Id;
2787 Ent : out Entity_Id;
2788 Kind : out Character;
2789 Cons : out Uint)
2790 is
2791 Exp : Node_Id;
2792
2793 begin
2794 if Nkind (Expr) = N_Op_Add
2795 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2796 then
8a95f4e8 2797 Exp := Left_Opnd (Expr);
45fc7ddb
HK
2798 Cons := Expr_Value (Right_Opnd (Expr));
2799
2800 elsif Nkind (Expr) = N_Op_Subtract
2801 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2802 then
8a95f4e8 2803 Exp := Left_Opnd (Expr);
45fc7ddb 2804 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 2805
8a95f4e8
RD
2806 -- If the bound is a constant created to remove side
2807 -- effects, recover original expression to see if it has
2808 -- one of the recognizable forms.
2809
2810 elsif Nkind (Expr) = N_Identifier
2811 and then not Comes_From_Source (Entity (Expr))
2812 and then Ekind (Entity (Expr)) = E_Constant
2813 and then
2814 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2815 then
2816 Exp := Expression (Parent (Entity (Expr)));
2817 Decompose_Expr (Exp, Ent, Kind, Cons);
2818
2819 -- If original expression includes an entity, create a
2820 -- reference to it for use below.
2821
2822 if Present (Ent) then
2823 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2824 end if;
2825
45fc7ddb 2826 else
8a95f4e8 2827 Exp := Expr;
45fc7ddb
HK
2828 Cons := Uint_0;
2829 end if;
2830
2831 -- At this stage Exp is set to the potential X
2832
2833 if Nkind (Exp) = N_Attribute_Reference then
2834 if Attribute_Name (Exp) = Name_First then
2835 Kind := 'F';
8a95f4e8 2836
45fc7ddb
HK
2837 elsif Attribute_Name (Exp) = Name_Last then
2838 Kind := 'L';
8a95f4e8 2839
45fc7ddb
HK
2840 else
2841 Ent := Empty;
2842 return;
2843 end if;
2844
2845 Exp := Prefix (Exp);
2846
2847 else
2848 Kind := 'E';
2849 end if;
2850
2851 if Is_Entity_Name (Exp)
2852 and then Present (Entity (Exp))
2853 then
2854 Ent := Entity (Exp);
2855 else
2856 Ent := Empty;
2857 end if;
2858 end Decompose_Expr;
2859
2860 -- Local Variables
2861
2862 Ent1, Ent2 : Entity_Id;
2863 Kind1, Kind2 : Character;
2864 Cons1, Cons2 : Uint;
2865
2866 -- Start of processing for Extract_Length
2867
2868 begin
bafc9e1d
AC
2869 Decompose_Expr
2870 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2871 Decompose_Expr
2872 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
45fc7ddb
HK
2873
2874 if Present (Ent1)
2875 and then Kind1 = Kind2
2876 and then Ent1 = Ent2
996ae0b0 2877 then
45fc7ddb 2878 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
2879 else
2880 Len := Uint_Minus_1;
2881 end if;
45fc7ddb 2882 end Extract_Length;
996ae0b0
RK
2883 end Get_Static_Length;
2884
45fc7ddb
HK
2885 -- Local Variables
2886
996ae0b0
RK
2887 Len_L : Uint;
2888 Len_R : Uint;
2889
45fc7ddb
HK
2890 -- Start of processing for Length_Mismatch
2891
996ae0b0
RK
2892 begin
2893 Get_Static_Length (Left, Len_L);
2894 Get_Static_Length (Right, Len_R);
2895
2896 if Len_L /= Uint_Minus_1
2897 and then Len_R /= Uint_Minus_1
2898 and then Len_L /= Len_R
2899 then
fbf5a39b 2900 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
2901 Warn_On_Known_Condition (N);
2902 return;
2903 end if;
45fc7ddb
HK
2904 end Length_Mismatch;
2905 end if;
6eaf4095 2906
93c3fca7 2907 -- Test for expression being foldable
7a3f77d2 2908
93c3fca7 2909 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
996ae0b0 2910
93c3fca7
AC
2911 -- Only comparisons of scalars can give static results. In particular,
2912 -- comparisons of strings never yield a static result, even if both
2913 -- operands are static strings.
996ae0b0
RK
2914
2915 if not Is_Scalar_Type (Typ) then
93c3fca7
AC
2916 Stat := False;
2917 Set_Is_Static_Expression (N, False);
996ae0b0
RK
2918 end if;
2919
d7567964
TQ
2920 -- For operators on universal numeric types called as functions with
2921 -- an explicit scope, determine appropriate specific numeric type, and
2922 -- diagnose possible ambiguity.
2923
2924 if Is_Universal_Numeric_Type (Etype (Left))
2925 and then
2926 Is_Universal_Numeric_Type (Etype (Right))
2927 then
2928 Otype := Find_Universal_Operator_Type (N);
2929 end if;
2930
93c3fca7
AC
2931 -- For static real type expressions, we cannot use Compile_Time_Compare
2932 -- since it worries about run-time results which are not exact.
996ae0b0 2933
93c3fca7 2934 if Stat and then Is_Real_Type (Typ) then
996ae0b0 2935 declare
93c3fca7
AC
2936 Left_Real : constant Ureal := Expr_Value_R (Left);
2937 Right_Real : constant Ureal := Expr_Value_R (Right);
996ae0b0
RK
2938
2939 begin
2940 case Nkind (N) is
93c3fca7
AC
2941 when N_Op_Eq => Result := (Left_Real = Right_Real);
2942 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2943 when N_Op_Lt => Result := (Left_Real < Right_Real);
2944 when N_Op_Le => Result := (Left_Real <= Right_Real);
2945 when N_Op_Gt => Result := (Left_Real > Right_Real);
2946 when N_Op_Ge => Result := (Left_Real >= Right_Real);
996ae0b0
RK
2947
2948 when others =>
2949 raise Program_Error;
2950 end case;
2951
93c3fca7 2952 Fold_Uint (N, Test (Result), True);
996ae0b0
RK
2953 end;
2954
93c3fca7 2955 -- For all other cases, we use Compile_Time_Compare to do the compare
996ae0b0
RK
2956
2957 else
996ae0b0 2958 declare
93c3fca7
AC
2959 CR : constant Compare_Result :=
2960 Compile_Time_Compare (Left, Right, Assume_Valid => False);
996ae0b0
RK
2961
2962 begin
93c3fca7
AC
2963 if CR = Unknown then
2964 return;
2965 end if;
2966
996ae0b0 2967 case Nkind (N) is
93c3fca7
AC
2968 when N_Op_Eq =>
2969 if CR = EQ then
2970 Result := True;
2971 elsif CR = NE or else CR = GT or else CR = LT then
2972 Result := False;
2973 else
2974 return;
2975 end if;
2976
2977 when N_Op_Ne =>
2978 if CR = NE or else CR = GT or else CR = LT then
2979 Result := True;
2980 elsif CR = EQ then
2981 Result := False;
2982 else
2983 return;
2984 end if;
2985
2986 when N_Op_Lt =>
2987 if CR = LT then
2988 Result := True;
2989 elsif CR = EQ or else CR = GT or else CR = GE then
2990 Result := False;
2991 else
2992 return;
2993 end if;
2994
2995 when N_Op_Le =>
2996 if CR = LT or else CR = EQ or else CR = LE then
2997 Result := True;
2998 elsif CR = GT then
2999 Result := False;
3000 else
3001 return;
3002 end if;
3003
3004 when N_Op_Gt =>
3005 if CR = GT then
3006 Result := True;
3007 elsif CR = EQ or else CR = LT or else CR = LE then
3008 Result := False;
3009 else
3010 return;
3011 end if;
3012
3013 when N_Op_Ge =>
3014 if CR = GT or else CR = EQ or else CR = GE then
3015 Result := True;
3016 elsif CR = LT then
3017 Result := False;
3018 else
3019 return;
3020 end if;
996ae0b0
RK
3021
3022 when others =>
3023 raise Program_Error;
3024 end case;
996ae0b0 3025 end;
93c3fca7
AC
3026
3027 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
3028 end if;
3029
d7567964
TQ
3030 -- For the case of a folded relational operator on a specific numeric
3031 -- type, freeze operand type now.
3032
3033 if Present (Otype) then
3034 Freeze_Before (N, Otype);
3035 end if;
3036
996ae0b0
RK
3037 Warn_On_Known_Condition (N);
3038 end Eval_Relational_Op;
3039
3040 ----------------
3041 -- Eval_Shift --
3042 ----------------
3043
22cb89b5
AC
3044 -- Shift operations are intrinsic operations that can never be static, so
3045 -- the only processing required is to perform the required check for a non
3046 -- static context for the two operands.
996ae0b0
RK
3047
3048 -- Actually we could do some compile time evaluation here some time ???
3049
3050 procedure Eval_Shift (N : Node_Id) is
3051 begin
3052 Check_Non_Static_Context (Left_Opnd (N));
3053 Check_Non_Static_Context (Right_Opnd (N));
3054 end Eval_Shift;
3055
3056 ------------------------
3057 -- Eval_Short_Circuit --
3058 ------------------------
3059
22cb89b5
AC
3060 -- A short circuit operation is potentially static if both operands are
3061 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3062
3063 procedure Eval_Short_Circuit (N : Node_Id) is
3064 Kind : constant Node_Kind := Nkind (N);
3065 Left : constant Node_Id := Left_Opnd (N);
3066 Right : constant Node_Id := Right_Opnd (N);
3067 Left_Int : Uint;
4d777a71
AC
3068
3069 Rstat : constant Boolean :=
3070 Is_Static_Expression (Left)
3071 and then
3072 Is_Static_Expression (Right);
996ae0b0
RK
3073
3074 begin
3075 -- Short circuit operations are never static in Ada 83
3076
22cb89b5 3077 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3078 Check_Non_Static_Context (Left);
3079 Check_Non_Static_Context (Right);
3080 return;
3081 end if;
3082
3083 -- Now look at the operands, we can't quite use the normal call to
3084 -- Test_Expression_Is_Foldable here because short circuit operations
3085 -- are a special case, they can still be foldable, even if the right
3086 -- operand raises constraint error.
3087
22cb89b5
AC
3088 -- If either operand is Any_Type, just propagate to result and do not
3089 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3090
3091 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3092 Set_Etype (N, Any_Type);
3093 return;
3094
3095 -- If left operand raises constraint error, then replace node N with
3096 -- the raise constraint error node, and we are obviously not foldable.
3097 -- Is_Static_Expression is set from the two operands in the normal way,
3098 -- and we check the right operand if it is in a non-static context.
3099
3100 elsif Raises_Constraint_Error (Left) then
3101 if not Rstat then
3102 Check_Non_Static_Context (Right);
3103 end if;
3104
3105 Rewrite_In_Raise_CE (N, Left);
3106 Set_Is_Static_Expression (N, Rstat);
3107 return;
3108
3109 -- If the result is not static, then we won't in any case fold
3110
3111 elsif not Rstat then
3112 Check_Non_Static_Context (Left);
3113 Check_Non_Static_Context (Right);
3114 return;
3115 end if;
3116
3117 -- Here the result is static, note that, unlike the normal processing
3118 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3119 -- the right operand raises constraint error, that's because it is not
3120 -- significant if the left operand is decisive.
3121
3122 Set_Is_Static_Expression (N);
3123
3124 -- It does not matter if the right operand raises constraint error if
3125 -- it will not be evaluated. So deal specially with the cases where
3126 -- the right operand is not evaluated. Note that we will fold these
3127 -- cases even if the right operand is non-static, which is fine, but
3128 -- of course in these cases the result is not potentially static.
3129
3130 Left_Int := Expr_Value (Left);
3131
3132 if (Kind = N_And_Then and then Is_False (Left_Int))
514d0fc5 3133 or else
4d777a71 3134 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3135 then
fbf5a39b 3136 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3137 return;
3138 end if;
3139
3140 -- If first operand not decisive, then it does matter if the right
3141 -- operand raises constraint error, since it will be evaluated, so
3142 -- we simply replace the node with the right operand. Note that this
3143 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3144 -- (both are set to True in Right).
3145
3146 if Raises_Constraint_Error (Right) then
3147 Rewrite_In_Raise_CE (N, Right);
3148 Check_Non_Static_Context (Left);
3149 return;
3150 end if;
3151
3152 -- Otherwise the result depends on the right operand
3153
fbf5a39b 3154 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3155 return;
996ae0b0
RK
3156 end Eval_Short_Circuit;
3157
3158 ----------------
3159 -- Eval_Slice --
3160 ----------------
3161
22cb89b5
AC
3162 -- Slices can never be static, so the only processing required is to check
3163 -- for non-static context if an explicit range is given.
996ae0b0
RK
3164
3165 procedure Eval_Slice (N : Node_Id) is
3166 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
3167 begin
3168 if Nkind (Drange) = N_Range then
3169 Check_Non_Static_Context (Low_Bound (Drange));
3170 Check_Non_Static_Context (High_Bound (Drange));
3171 end if;
cd2fb920 3172
22cb89b5 3173 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3174 -- the type of A, is redundant, the slice can be replaced with A, and
3175 -- this is worth a warning.
3176
3177 if Is_Entity_Name (Prefix (N)) then
3178 declare
3179 E : constant Entity_Id := Entity (Prefix (N));
3180 T : constant Entity_Id := Etype (E);
3181 begin
3182 if Ekind (E) = E_Constant
3183 and then Is_Array_Type (T)
3184 and then Is_Entity_Name (Drange)
3185 then
3186 if Is_Entity_Name (Original_Node (First_Index (T)))
3187 and then Entity (Original_Node (First_Index (T)))
3188 = Entity (Drange)
3189 then
3190 if Warn_On_Redundant_Constructs then
ed2233dc 3191 Error_Msg_N ("redundant slice denotes whole array?", N);
cd2fb920
ES
3192 end if;
3193
22cb89b5 3194 -- The following might be a useful optimization????
cd2fb920
ES
3195
3196 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3197 end if;
3198 end if;
3199 end;
3200 end if;
996ae0b0
RK
3201 end Eval_Slice;
3202
3203 -------------------------
3204 -- Eval_String_Literal --
3205 -------------------------
3206
3207 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3208 Typ : constant Entity_Id := Etype (N);
3209 Bas : constant Entity_Id := Base_Type (Typ);
3210 Xtp : Entity_Id;
3211 Len : Nat;
3212 Lo : Node_Id;
996ae0b0
RK
3213
3214 begin
3215 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3216 -- or generics where we have not yet fully resolved the type).
996ae0b0 3217
91b1417d 3218 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3219 return;
91b1417d 3220 end if;
996ae0b0
RK
3221
3222 -- String literals are static if the subtype is static (RM 4.9(2)), so
3223 -- reset the static expression flag (it was set unconditionally in
3224 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3225 -- the subtype is static by looking at the lower bound.
3226
91b1417d
AC
3227 if Ekind (Typ) = E_String_Literal_Subtype then
3228 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3229 Set_Is_Static_Expression (N, False);
3230 return;
3231 end if;
3232
3233 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 3234 -- but may be possible in future).
91b1417d
AC
3235
3236 elsif not Is_OK_Static_Expression
3237 (Type_Low_Bound (Etype (First_Index (Typ))))
3238 then
996ae0b0 3239 Set_Is_Static_Expression (N, False);
91b1417d
AC
3240 return;
3241 end if;
996ae0b0 3242
91b1417d
AC
3243 -- If original node was a type conversion, then result if non-static
3244
3245 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3246 Set_Is_Static_Expression (N, False);
91b1417d
AC
3247 return;
3248 end if;
996ae0b0 3249
22cb89b5
AC
3250 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3251 -- if its bounds are outside the index base type and this index type is
3252 -- static. This can happen in only two ways. Either the string literal
3253 -- is too long, or it is null, and the lower bound is type'First. In
3254 -- either case it is the upper bound that is out of range of the index
3255 -- type.
996ae0b0 3256
0ab80019 3257 if Ada_Version >= Ada_95 then
91b1417d
AC
3258 if Root_Type (Bas) = Standard_String
3259 or else
3260 Root_Type (Bas) = Standard_Wide_String
996ae0b0 3261 then
91b1417d 3262 Xtp := Standard_Positive;
996ae0b0 3263 else
91b1417d 3264 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3265 end if;
3266
91b1417d
AC
3267 if Ekind (Typ) = E_String_Literal_Subtype then
3268 Lo := String_Literal_Low_Bound (Typ);
3269 else
3270 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3271 end if;
3272
3273 Len := String_Length (Strval (N));
3274
3275 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 3276 Apply_Compile_Time_Constraint_Error
07fc65c4 3277 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
3278 Ent => Bas,
3279 Typ => First_Subtype (Bas));
996ae0b0 3280
91b1417d
AC
3281 elsif Len = 0
3282 and then not Is_Generic_Type (Xtp)
3283 and then
3284 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
3285 then
3286 Apply_Compile_Time_Constraint_Error
3287 (N, "null string literal not allowed for}",
07fc65c4 3288 CE_Length_Check_Failed,
91b1417d
AC
3289 Ent => Bas,
3290 Typ => First_Subtype (Bas));
996ae0b0
RK
3291 end if;
3292 end if;
996ae0b0
RK
3293 end Eval_String_Literal;
3294
3295 --------------------------
3296 -- Eval_Type_Conversion --
3297 --------------------------
3298
3299 -- A type conversion is potentially static if its subtype mark is for a
3300 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 3301 -- (RM 4.9(10)).
996ae0b0
RK
3302
3303 procedure Eval_Type_Conversion (N : Node_Id) is
3304 Operand : constant Node_Id := Expression (N);
3305 Source_Type : constant Entity_Id := Etype (Operand);
3306 Target_Type : constant Entity_Id := Etype (N);
3307
3308 Stat : Boolean;
3309 Fold : Boolean;
3310
3311 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
3312 -- Returns true if type T is an integer type, or if it is a fixed-point
3313 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3314 -- on the conversion node).
996ae0b0
RK
3315
3316 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3317 -- Returns true if type T is a floating-point type, or if it is a
3318 -- fixed-point type that is not to be treated as an integer (i.e. the
3319 -- flag Conversion_OK is not set on the conversion node).
3320
fbf5a39b
AC
3321 ------------------------------
3322 -- To_Be_Treated_As_Integer --
3323 ------------------------------
3324
996ae0b0
RK
3325 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3326 begin
3327 return
3328 Is_Integer_Type (T)
3329 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3330 end To_Be_Treated_As_Integer;
3331
fbf5a39b
AC
3332 ---------------------------
3333 -- To_Be_Treated_As_Real --
3334 ---------------------------
3335
996ae0b0
RK
3336 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3337 begin
3338 return
3339 Is_Floating_Point_Type (T)
3340 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3341 end To_Be_Treated_As_Real;
3342
3343 -- Start of processing for Eval_Type_Conversion
3344
3345 begin
82c80734 3346 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3347
3348 if not Is_Static_Subtype (Target_Type) then
3349 Check_Non_Static_Context (Operand);
3350 return;
3351
3352 elsif Error_Posted (N) then
3353 return;
3354 end if;
3355
3356 -- If not foldable we are done
3357
3358 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3359
3360 if not Fold then
3361 return;
3362
3363 -- Don't try fold if target type has constraint error bounds
3364
3365 elsif not Is_OK_Static_Subtype (Target_Type) then
3366 Set_Raises_Constraint_Error (N);
3367 return;
3368 end if;
3369
3370 -- Remaining processing depends on operand types. Note that in the
3371 -- following type test, fixed-point counts as real unless the flag
3372 -- Conversion_OK is set, in which case it counts as integer.
3373
82c80734 3374 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3375
3376 if Is_String_Type (Target_Type) then
b11e8d6f 3377 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3378
3379 return;
3380
3381 -- Fold conversion, case of integer target type
3382
3383 elsif To_Be_Treated_As_Integer (Target_Type) then
3384 declare
3385 Result : Uint;
3386
3387 begin
3388 -- Integer to integer conversion
3389
3390 if To_Be_Treated_As_Integer (Source_Type) then
3391 Result := Expr_Value (Operand);
3392
3393 -- Real to integer conversion
3394
3395 else
3396 Result := UR_To_Uint (Expr_Value_R (Operand));
3397 end if;
3398
3399 -- If fixed-point type (Conversion_OK must be set), then the
3400 -- result is logically an integer, but we must replace the
3401 -- conversion with the corresponding real literal, since the
3402 -- type from a semantic point of view is still fixed-point.
3403
3404 if Is_Fixed_Point_Type (Target_Type) then
3405 Fold_Ureal
fbf5a39b 3406 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3407
3408 -- Otherwise result is integer literal
3409
3410 else
fbf5a39b 3411 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3412 end if;
3413 end;
3414
3415 -- Fold conversion, case of real target type
3416
3417 elsif To_Be_Treated_As_Real (Target_Type) then
3418 declare
3419 Result : Ureal;
3420
3421 begin
3422 if To_Be_Treated_As_Real (Source_Type) then
3423 Result := Expr_Value_R (Operand);
3424 else
3425 Result := UR_From_Uint (Expr_Value (Operand));
3426 end if;
3427
fbf5a39b 3428 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3429 end;
3430
3431 -- Enumeration types
3432
3433 else
fbf5a39b 3434 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3435 end if;
3436
c800f862 3437 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3438 Out_Of_Range (N);
3439 end if;
3440
3441 end Eval_Type_Conversion;
3442
3443 -------------------
3444 -- Eval_Unary_Op --
3445 -------------------
3446
3447 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 3448 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
3449
3450 procedure Eval_Unary_Op (N : Node_Id) is
3451 Right : constant Node_Id := Right_Opnd (N);
d7567964 3452 Otype : Entity_Id := Empty;
996ae0b0
RK
3453 Stat : Boolean;
3454 Fold : Boolean;
3455
3456 begin
3457 -- If not foldable we are done
3458
3459 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3460
3461 if not Fold then
3462 return;
3463 end if;
3464
602a7ec0 3465 if Etype (Right) = Universal_Integer
ae77c68b
AC
3466 or else
3467 Etype (Right) = Universal_Real
602a7ec0 3468 then
d7567964 3469 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
3470 end if;
3471
996ae0b0
RK
3472 -- Fold for integer case
3473
3474 if Is_Integer_Type (Etype (N)) then
3475 declare
3476 Rint : constant Uint := Expr_Value (Right);
3477 Result : Uint;
3478
3479 begin
3480 -- In the case of modular unary plus and abs there is no need
3481 -- to adjust the result of the operation since if the original
3482 -- operand was in bounds the result will be in the bounds of the
3483 -- modular type. However, in the case of modular unary minus the
3484 -- result may go out of the bounds of the modular type and needs
3485 -- adjustment.
3486
3487 if Nkind (N) = N_Op_Plus then
3488 Result := Rint;
3489
3490 elsif Nkind (N) = N_Op_Minus then
3491 if Is_Modular_Integer_Type (Etype (N)) then
3492 Result := (-Rint) mod Modulus (Etype (N));
3493 else
3494 Result := (-Rint);
3495 end if;
3496
3497 else
3498 pragma Assert (Nkind (N) = N_Op_Abs);
3499 Result := abs Rint;
3500 end if;
3501
fbf5a39b 3502 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3503 end;
3504
3505 -- Fold for real case
3506
3507 elsif Is_Real_Type (Etype (N)) then
3508 declare
3509 Rreal : constant Ureal := Expr_Value_R (Right);
3510 Result : Ureal;
3511
3512 begin
3513 if Nkind (N) = N_Op_Plus then
3514 Result := Rreal;
3515
3516 elsif Nkind (N) = N_Op_Minus then
3517 Result := UR_Negate (Rreal);
3518
3519 else
3520 pragma Assert (Nkind (N) = N_Op_Abs);
3521 Result := abs Rreal;
3522 end if;
3523
fbf5a39b 3524 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3525 end;
3526 end if;
d7567964
TQ
3527
3528 -- If the operator was resolved to a specific type, make sure that type
3529 -- is frozen even if the expression is folded into a literal (which has
3530 -- a universal type).
3531
3532 if Present (Otype) then
3533 Freeze_Before (N, Otype);
3534 end if;
996ae0b0
RK
3535 end Eval_Unary_Op;
3536
3537 -------------------------------
3538 -- Eval_Unchecked_Conversion --
3539 -------------------------------
3540
3541 -- Unchecked conversions can never be static, so the only required
3542 -- processing is to check for a non-static context for the operand.
3543
3544 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3545 begin
3546 Check_Non_Static_Context (Expression (N));
3547 end Eval_Unchecked_Conversion;
3548
3549 --------------------
3550 -- Expr_Rep_Value --
3551 --------------------
3552
3553 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3554 Kind : constant Node_Kind := Nkind (N);
3555 Ent : Entity_Id;
996ae0b0
RK
3556
3557 begin
3558 if Is_Entity_Name (N) then
3559 Ent := Entity (N);
3560
22cb89b5
AC
3561 -- An enumeration literal that was either in the source or created
3562 -- as a result of static evaluation.
996ae0b0
RK
3563
3564 if Ekind (Ent) = E_Enumeration_Literal then
3565 return Enumeration_Rep (Ent);
3566
3567 -- A user defined static constant
3568
3569 else
3570 pragma Assert (Ekind (Ent) = E_Constant);
3571 return Expr_Rep_Value (Constant_Value (Ent));
3572 end if;
3573
22cb89b5
AC
3574 -- An integer literal that was either in the source or created as a
3575 -- result of static evaluation.
996ae0b0
RK
3576
3577 elsif Kind = N_Integer_Literal then
3578 return Intval (N);
3579
3580 -- A real literal for a fixed-point type. This must be the fixed-point
3581 -- case, either the literal is of a fixed-point type, or it is a bound
3582 -- of a fixed-point type, with type universal real. In either case we
3583 -- obtain the desired value from Corresponding_Integer_Value.
3584
3585 elsif Kind = N_Real_Literal then
996ae0b0
RK
3586 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3587 return Corresponding_Integer_Value (N);
3588
07fc65c4
GB
3589 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3590
3591 elsif Kind = N_Attribute_Reference
3592 and then Attribute_Name (N) = Name_Null_Parameter
3593 then
3594 return Uint_0;
3595
07fc65c4 3596 -- Otherwise must be character literal
8cbb664e 3597
996ae0b0
RK
3598 else
3599 pragma Assert (Kind = N_Character_Literal);
3600 Ent := Entity (N);
3601
22cb89b5
AC
3602 -- Since Character literals of type Standard.Character don't have any
3603 -- defining character literals built for them, they do not have their
3604 -- Entity set, so just use their Char code. Otherwise for user-
3605 -- defined character literals use their Pos value as usual which is
3606 -- the same as the Rep value.
996ae0b0
RK
3607
3608 if No (Ent) then
82c80734 3609 return Char_Literal_Value (N);
996ae0b0
RK
3610 else
3611 return Enumeration_Rep (Ent);
3612 end if;
3613 end if;
3614 end Expr_Rep_Value;
3615
3616 ----------------
3617 -- Expr_Value --
3618 ----------------
3619
3620 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
3621 Kind : constant Node_Kind := Nkind (N);
3622 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3623 Ent : Entity_Id;
3624 Val : Uint;
996ae0b0
RK
3625
3626 begin
13f34a3f
RD
3627 -- If already in cache, then we know it's compile time known and we can
3628 -- return the value that was previously stored in the cache since
3629 -- compile time known values cannot change.
07fc65c4
GB
3630
3631 if CV_Ent.N = N then
3632 return CV_Ent.V;
3633 end if;
3634
3635 -- Otherwise proceed to test value
3636
996ae0b0
RK
3637 if Is_Entity_Name (N) then
3638 Ent := Entity (N);
3639
22cb89b5
AC
3640 -- An enumeration literal that was either in the source or created as
3641 -- a result of static evaluation.
996ae0b0
RK
3642
3643 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 3644 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3645
3646 -- A user defined static constant
3647
3648 else
3649 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 3650 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
3651 end if;
3652
22cb89b5
AC
3653 -- An integer literal that was either in the source or created as a
3654 -- result of static evaluation.
996ae0b0
RK
3655
3656 elsif Kind = N_Integer_Literal then
07fc65c4 3657 Val := Intval (N);
996ae0b0
RK
3658
3659 -- A real literal for a fixed-point type. This must be the fixed-point
3660 -- case, either the literal is of a fixed-point type, or it is a bound
3661 -- of a fixed-point type, with type universal real. In either case we
3662 -- obtain the desired value from Corresponding_Integer_Value.
3663
3664 elsif Kind = N_Real_Literal then
3665
996ae0b0 3666 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3667 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3668
3669 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3670
3671 elsif Kind = N_Attribute_Reference
3672 and then Attribute_Name (N) = Name_Null_Parameter
3673 then
07fc65c4
GB
3674 Val := Uint_0;
3675
996ae0b0
RK
3676 -- Otherwise must be character literal
3677
3678 else
3679 pragma Assert (Kind = N_Character_Literal);
3680 Ent := Entity (N);
3681
3682 -- Since Character literals of type Standard.Character don't
3683 -- have any defining character literals built for them, they
3684 -- do not have their Entity set, so just use their Char
3685 -- code. Otherwise for user-defined character literals use
3686 -- their Pos value as usual.
3687
3688 if No (Ent) then
82c80734 3689 Val := Char_Literal_Value (N);
996ae0b0 3690 else
07fc65c4 3691 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3692 end if;
3693 end if;
3694
07fc65c4
GB
3695 -- Come here with Val set to value to be returned, set cache
3696
3697 CV_Ent.N := N;
3698 CV_Ent.V := Val;
3699 return Val;
996ae0b0
RK
3700 end Expr_Value;
3701
3702 ------------------
3703 -- Expr_Value_E --
3704 ------------------
3705
3706 function Expr_Value_E (N : Node_Id) return Entity_Id is
3707 Ent : constant Entity_Id := Entity (N);
3708
3709 begin
3710 if Ekind (Ent) = E_Enumeration_Literal then
3711 return Ent;
3712 else
3713 pragma Assert (Ekind (Ent) = E_Constant);
3714 return Expr_Value_E (Constant_Value (Ent));
3715 end if;
3716 end Expr_Value_E;
3717
3718 ------------------
3719 -- Expr_Value_R --
3720 ------------------
3721
3722 function Expr_Value_R (N : Node_Id) return Ureal is
3723 Kind : constant Node_Kind := Nkind (N);
3724 Ent : Entity_Id;
3725 Expr : Node_Id;
3726
3727 begin
3728 if Kind = N_Real_Literal then
3729 return Realval (N);
3730
3731 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3732 Ent := Entity (N);
3733 pragma Assert (Ekind (Ent) = E_Constant);
3734 return Expr_Value_R (Constant_Value (Ent));
3735
3736 elsif Kind = N_Integer_Literal then
3737 return UR_From_Uint (Expr_Value (N));
3738
3739 -- Strange case of VAX literals, which are at this stage transformed
3740 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3741 -- Exp_Vfpt for further details.
3742
3743 elsif Vax_Float (Etype (N))
3744 and then Nkind (N) = N_Unchecked_Type_Conversion
3745 then
3746 Expr := Expression (N);
3747
3748 if Nkind (Expr) = N_Function_Call
3749 and then Present (Parameter_Associations (Expr))
3750 then
3751 Expr := First (Parameter_Associations (Expr));
3752
3753 if Nkind (Expr) = N_Real_Literal then
3754 return Realval (Expr);
3755 end if;
3756 end if;
3757
3758 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3759
3760 elsif Kind = N_Attribute_Reference
3761 and then Attribute_Name (N) = Name_Null_Parameter
3762 then
3763 return Ureal_0;
3764 end if;
3765
22cb89b5
AC
3766 -- If we fall through, we have a node that cannot be interpreted as a
3767 -- compile time constant. That is definitely an error.
996ae0b0
RK
3768
3769 raise Program_Error;
3770 end Expr_Value_R;
3771
3772 ------------------
3773 -- Expr_Value_S --
3774 ------------------
3775
3776 function Expr_Value_S (N : Node_Id) return Node_Id is
3777 begin
3778 if Nkind (N) = N_String_Literal then
3779 return N;
3780 else
3781 pragma Assert (Ekind (Entity (N)) = E_Constant);
3782 return Expr_Value_S (Constant_Value (Entity (N)));
3783 end if;
3784 end Expr_Value_S;
3785
74e7891f
RD
3786 ----------------------------------
3787 -- Find_Universal_Operator_Type --
3788 ----------------------------------
3789
3790 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3791 PN : constant Node_Id := Parent (N);
3792 Call : constant Node_Id := Original_Node (N);
3793 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3794
3795 Is_Fix : constant Boolean :=
3796 Nkind (N) in N_Binary_Op
3797 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3798 -- A mixed-mode operation in this context indicates the presence of
3799 -- fixed-point type in the designated package.
3800
3801 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3802 -- Case where N is a relational (or membership) operator (else it is an
3803 -- arithmetic one).
3804
3805 In_Membership : constant Boolean :=
3806 Nkind (PN) in N_Membership_Test
3807 and then
3808 Nkind (Right_Opnd (PN)) = N_Range
3809 and then
3810 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3811 and then
3812 Is_Universal_Numeric_Type
3813 (Etype (Low_Bound (Right_Opnd (PN))))
3814 and then
3815 Is_Universal_Numeric_Type
3816 (Etype (High_Bound (Right_Opnd (PN))));
3817 -- Case where N is part of a membership test with a universal range
3818
3819 E : Entity_Id;
3820 Pack : Entity_Id;
3821 Typ1 : Entity_Id := Empty;
3822 Priv_E : Entity_Id;
3823
3824 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
3825 -- Check whether one operand is a mixed-mode operation that requires the
3826 -- presence of a fixed-point type. Given that all operands are universal
3827 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
3828
3829 ---------------------------
3830 -- Is_Mixed_Mode_Operand --
3831 ---------------------------
3832
3833 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 3834 Onod : constant Node_Id := Original_Node (Op);
74e7891f 3835 begin
7ec8363d
RD
3836 return Nkind (Onod) = N_Function_Call
3837 and then Present (Next_Actual (First_Actual (Onod)))
3838 and then Etype (First_Actual (Onod)) /=
3839 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
3840 end Is_Mixed_Mode_Operand;
3841
7ec8363d
RD
3842 -- Start of processing for Find_Universal_Operator_Type
3843
74e7891f
RD
3844 begin
3845 if Nkind (Call) /= N_Function_Call
3846 or else Nkind (Name (Call)) /= N_Expanded_Name
3847 then
3848 return Empty;
3849
946db1e2
AC
3850 -- There are several cases where the context does not imply the type of
3851 -- the operands:
3852 -- - the universal expression appears in a type conversion;
3853 -- - the expression is a relational operator applied to universal
3854 -- operands;
3855 -- - the expression is a membership test with a universal operand
3856 -- and a range with universal bounds.
74e7891f
RD
3857
3858 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
3859 or else Is_Relational
3860 or else In_Membership
74e7891f
RD
3861 then
3862 Pack := Entity (Prefix (Name (Call)));
3863
7ec8363d
RD
3864 -- If the prefix is a package declared elsewhere, iterate over its
3865 -- visible entities, otherwise iterate over all declarations in the
3866 -- designated scope.
74e7891f
RD
3867
3868 if Ekind (Pack) = E_Package
3869 and then not In_Open_Scopes (Pack)
3870 then
3871 Priv_E := First_Private_Entity (Pack);
3872 else
3873 Priv_E := Empty;
3874 end if;
3875
3876 Typ1 := Empty;
3877 E := First_Entity (Pack);
3878 while Present (E) and then E /= Priv_E loop
3879 if Is_Numeric_Type (E)
3880 and then Nkind (Parent (E)) /= N_Subtype_Declaration
3881 and then Comes_From_Source (E)
3882 and then Is_Integer_Type (E) = Is_Int
3883 and then
3884 (Nkind (N) in N_Unary_Op
3885 or else Is_Relational
3886 or else Is_Fixed_Point_Type (E) = Is_Fix)
3887 then
3888 if No (Typ1) then
3889 Typ1 := E;
3890
676e8420
AC
3891 -- Before emitting an error, check for the presence of a
3892 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
3893
3894 elsif Is_Relational
3895 and then
3896 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 3897 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
3898 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
3899
3900 then
3901 if Is_Fixed_Point_Type (E) then
3902 Typ1 := E;
3903 end if;
3904
3905 else
3906 -- More than one type of the proper class declared in P
3907
3908 Error_Msg_N ("ambiguous operation", N);
3909 Error_Msg_Sloc := Sloc (Typ1);
3910 Error_Msg_N ("\possible interpretation (inherited)#", N);
3911 Error_Msg_Sloc := Sloc (E);
3912 Error_Msg_N ("\possible interpretation (inherited)#", N);
3913 return Empty;
3914 end if;
3915 end if;
3916
3917 Next_Entity (E);
3918 end loop;
3919 end if;
3920
3921 return Typ1;
3922 end Find_Universal_Operator_Type;
3923
fbf5a39b
AC
3924 --------------------------
3925 -- Flag_Non_Static_Expr --
3926 --------------------------
3927
3928 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3929 begin
3930 if Error_Posted (Expr) and then not All_Errors_Mode then
3931 return;
3932 else
3933 Error_Msg_F (Msg, Expr);
3934 Why_Not_Static (Expr);
3935 end if;
3936 end Flag_Non_Static_Expr;
3937
996ae0b0
RK
3938 --------------
3939 -- Fold_Str --
3940 --------------
3941
fbf5a39b 3942 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
3943 Loc : constant Source_Ptr := Sloc (N);
3944 Typ : constant Entity_Id := Etype (N);
3945
3946 begin
3947 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
3948
3949 -- We now have the literal with the right value, both the actual type
3950 -- and the expected type of this literal are taken from the expression
3951 -- that was evaluated.
3952
3953 Analyze (N);
3954 Set_Is_Static_Expression (N, Static);
3955 Set_Etype (N, Typ);
3956 Resolve (N);
996ae0b0
RK
3957 end Fold_Str;
3958
3959 ---------------
3960 -- Fold_Uint --
3961 ---------------
3962
fbf5a39b 3963 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 3964 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
3965 Typ : Entity_Id := Etype (N);
3966 Ent : Entity_Id;
996ae0b0
RK
3967
3968 begin
22cb89b5
AC
3969 -- If we are folding a named number, retain the entity in the literal,
3970 -- for ASIS use.
fbf5a39b
AC
3971
3972 if Is_Entity_Name (N)
3973 and then Ekind (Entity (N)) = E_Named_Integer
3974 then
3975 Ent := Entity (N);
3976 else
3977 Ent := Empty;
3978 end if;
3979
3980 if Is_Private_Type (Typ) then
3981 Typ := Full_View (Typ);
3982 end if;
3983
f3d57416 3984 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 3985 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
3986 -- For ASIS use, set a link to the original named number when not in
3987 -- a generic context.
996ae0b0 3988
fbf5a39b 3989 if Is_Integer_Type (Typ) then
996ae0b0 3990 Rewrite (N, Make_Integer_Literal (Loc, Val));
cd2fb920 3991
fbf5a39b 3992 Set_Original_Entity (N, Ent);
996ae0b0
RK
3993
3994 -- Otherwise we have an enumeration type, and we substitute either
3995 -- an N_Identifier or N_Character_Literal to represent the enumeration
3996 -- literal corresponding to the given value, which must always be in
3997 -- range, because appropriate tests have already been made for this.
3998
fbf5a39b 3999 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4000 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4001 end if;
4002
4003 -- We now have the literal with the right value, both the actual type
4004 -- and the expected type of this literal are taken from the expression
4005 -- that was evaluated.
4006
4007 Analyze (N);
fbf5a39b 4008 Set_Is_Static_Expression (N, Static);
996ae0b0 4009 Set_Etype (N, Typ);
fbf5a39b 4010 Resolve (N);
996ae0b0
RK
4011 end Fold_Uint;
4012
4013 ----------------
4014 -- Fold_Ureal --
4015 ----------------
4016
fbf5a39b 4017 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4018 Loc : constant Source_Ptr := Sloc (N);
4019 Typ : constant Entity_Id := Etype (N);
fbf5a39b 4020 Ent : Entity_Id;
996ae0b0
RK
4021
4022 begin
22cb89b5
AC
4023 -- If we are folding a named number, retain the entity in the literal,
4024 -- for ASIS use.
fbf5a39b
AC
4025
4026 if Is_Entity_Name (N)
4027 and then Ekind (Entity (N)) = E_Named_Real
4028 then
4029 Ent := Entity (N);
4030 else
4031 Ent := Empty;
4032 end if;
4033
996ae0b0 4034 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 4035
5a30024a 4036 -- Set link to original named number, for ASIS use
cd2fb920 4037
fbf5a39b 4038 Set_Original_Entity (N, Ent);
996ae0b0
RK
4039
4040 -- Both the actual and expected type comes from the original expression
4041
fbf5a39b
AC
4042 Analyze (N);
4043 Set_Is_Static_Expression (N, Static);
996ae0b0 4044 Set_Etype (N, Typ);
fbf5a39b 4045 Resolve (N);
996ae0b0
RK
4046 end Fold_Ureal;
4047
4048 ---------------
4049 -- From_Bits --
4050 ---------------
4051
4052 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4053 V : Uint := Uint_0;
4054
4055 begin
4056 for J in 0 .. B'Last loop
4057 if B (J) then
4058 V := V + 2 ** J;
4059 end if;
4060 end loop;
4061
4062 if Non_Binary_Modulus (T) then
4063 V := V mod Modulus (T);
4064 end if;
4065
4066 return V;
4067 end From_Bits;
4068
4069 --------------------
4070 -- Get_String_Val --
4071 --------------------
4072
4073 function Get_String_Val (N : Node_Id) return Node_Id is
4074 begin
4075 if Nkind (N) = N_String_Literal then
4076 return N;
4077
4078 elsif Nkind (N) = N_Character_Literal then
4079 return N;
4080
4081 else
4082 pragma Assert (Is_Entity_Name (N));
4083 return Get_String_Val (Constant_Value (Entity (N)));
4084 end if;
4085 end Get_String_Val;
4086
fbf5a39b
AC
4087 ----------------
4088 -- Initialize --
4089 ----------------
4090
4091 procedure Initialize is
4092 begin
4093 CV_Cache := (others => (Node_High_Bound, Uint_0));
4094 end Initialize;
4095
996ae0b0
RK
4096 --------------------
4097 -- In_Subrange_Of --
4098 --------------------
4099
4100 function In_Subrange_Of
c27f2f15
RD
4101 (T1 : Entity_Id;
4102 T2 : Entity_Id;
4103 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
4104 is
4105 L1 : Node_Id;
4106 H1 : Node_Id;
4107
4108 L2 : Node_Id;
4109 H2 : Node_Id;
4110
4111 begin
4112 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4113 return True;
4114
4115 -- Never in range if both types are not scalar. Don't know if this can
4116 -- actually happen, but just in case.
4117
4118 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
4119 return False;
4120
d79e621a
GD
4121 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4122 -- definitely not compatible with T2.
4123
4124 elsif Is_Floating_Point_Type (T1)
4125 and then Has_Infinities (T1)
4126 and then Is_Floating_Point_Type (T2)
4127 and then not Has_Infinities (T2)
4128 then
4129 return False;
4130
996ae0b0
RK
4131 else
4132 L1 := Type_Low_Bound (T1);
4133 H1 := Type_High_Bound (T1);
4134
4135 L2 := Type_Low_Bound (T2);
4136 H2 := Type_High_Bound (T2);
4137
4138 -- Check bounds to see if comparison possible at compile time
4139
c27f2f15 4140 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 4141 and then
c27f2f15 4142 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
4143 then
4144 return True;
4145 end if;
4146
4147 -- If bounds not comparable at compile time, then the bounds of T2
4148 -- must be compile time known or we cannot answer the query.
4149
4150 if not Compile_Time_Known_Value (L2)
4151 or else not Compile_Time_Known_Value (H2)
4152 then
4153 return False;
4154 end if;
4155
4156 -- If the bounds of T1 are know at compile time then use these
4157 -- ones, otherwise use the bounds of the base type (which are of
4158 -- course always static).
4159
4160 if not Compile_Time_Known_Value (L1) then
4161 L1 := Type_Low_Bound (Base_Type (T1));
4162 end if;
4163
4164 if not Compile_Time_Known_Value (H1) then
4165 H1 := Type_High_Bound (Base_Type (T1));
4166 end if;
4167
4168 -- Fixed point types should be considered as such only if
4169 -- flag Fixed_Int is set to False.
4170
4171 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4172 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4173 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4174 then
4175 return
4176 Expr_Value_R (L2) <= Expr_Value_R (L1)
4177 and then
4178 Expr_Value_R (H2) >= Expr_Value_R (H1);
4179
4180 else
4181 return
4182 Expr_Value (L2) <= Expr_Value (L1)
4183 and then
4184 Expr_Value (H2) >= Expr_Value (H1);
4185
4186 end if;
4187 end if;
4188
4189 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 4190 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
4191 -- occurrence. However, this is only an optimization attempt, so there is
4192 -- really no point in crashing the compiler. Instead we just decide, too
4193 -- bad, we can't figure out the answer in this case after all.
4194
4195 exception
4196 when others =>
4197
4198 -- Debug flag K disables this behavior (useful for debugging)
4199
4200 if Debug_Flag_K then
4201 raise;
4202 else
4203 return False;
4204 end if;
4205 end In_Subrange_Of;
4206
4207 -----------------
4208 -- Is_In_Range --
4209 -----------------
4210
4211 function Is_In_Range
c800f862
RD
4212 (N : Node_Id;
4213 Typ : Entity_Id;
4214 Assume_Valid : Boolean := False;
4215 Fixed_Int : Boolean := False;
4216 Int_Real : Boolean := False) return Boolean
996ae0b0 4217 is
996ae0b0 4218 begin
305caf42
AC
4219 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4220 = In_Range;
996ae0b0
RK
4221 end Is_In_Range;
4222
4223 -------------------
4224 -- Is_Null_Range --
4225 -------------------
4226
4227 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4228 Typ : constant Entity_Id := Etype (Lo);
4229
4230 begin
4231 if not Compile_Time_Known_Value (Lo)
4232 or else not Compile_Time_Known_Value (Hi)
4233 then
4234 return False;
4235 end if;
4236
4237 if Is_Discrete_Type (Typ) then
4238 return Expr_Value (Lo) > Expr_Value (Hi);
4239
4240 else
4241 pragma Assert (Is_Real_Type (Typ));
4242 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4243 end if;
4244 end Is_Null_Range;
4245
4246 -----------------------------
4247 -- Is_OK_Static_Expression --
4248 -----------------------------
4249
4250 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4251 begin
4252 return Is_Static_Expression (N)
4253 and then not Raises_Constraint_Error (N);
4254 end Is_OK_Static_Expression;
4255
4256 ------------------------
4257 -- Is_OK_Static_Range --
4258 ------------------------
4259
4260 -- A static range is a range whose bounds are static expressions, or a
4261 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4262 -- We have already converted range attribute references, so we get the
4263 -- "or" part of this rule without needing a special test.
4264
4265 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4266 begin
4267 return Is_OK_Static_Expression (Low_Bound (N))
4268 and then Is_OK_Static_Expression (High_Bound (N));
4269 end Is_OK_Static_Range;
4270
4271 --------------------------
4272 -- Is_OK_Static_Subtype --
4273 --------------------------
4274
22cb89b5
AC
4275 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4276 -- neither bound raises constraint error when evaluated.
996ae0b0
RK
4277
4278 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4279 Base_T : constant Entity_Id := Base_Type (Typ);
4280 Anc_Subt : Entity_Id;
4281
4282 begin
4283 -- First a quick check on the non static subtype flag. As described
4284 -- in further detail in Einfo, this flag is not decisive in all cases,
4285 -- but if it is set, then the subtype is definitely non-static.
4286
4287 if Is_Non_Static_Subtype (Typ) then
4288 return False;
4289 end if;
4290
4291 Anc_Subt := Ancestor_Subtype (Typ);
4292
4293 if Anc_Subt = Empty then
4294 Anc_Subt := Base_T;
4295 end if;
4296
4297 if Is_Generic_Type (Root_Type (Base_T))
4298 or else Is_Generic_Actual_Type (Base_T)
4299 then
4300 return False;
4301
4302 -- String types
4303
4304 elsif Is_String_Type (Typ) then
4305 return
4306 Ekind (Typ) = E_String_Literal_Subtype
4307 or else
4308 (Is_OK_Static_Subtype (Component_Type (Typ))
4309 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4310
4311 -- Scalar types
4312
4313 elsif Is_Scalar_Type (Typ) then
4314 if Base_T = Typ then
4315 return True;
4316
4317 else
22cb89b5
AC
4318 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4319 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
4320
4321 return Is_OK_Static_Subtype (Anc_Subt)
4322 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4323 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4324 end if;
4325
4326 -- Types other than string and scalar types are never static
4327
4328 else
4329 return False;
4330 end if;
4331 end Is_OK_Static_Subtype;
4332
4333 ---------------------
4334 -- Is_Out_Of_Range --
4335 ---------------------
4336
4337 function Is_Out_Of_Range
1c7717c3
AC
4338 (N : Node_Id;
4339 Typ : Entity_Id;
c800f862 4340 Assume_Valid : Boolean := False;
1c7717c3
AC
4341 Fixed_Int : Boolean := False;
4342 Int_Real : Boolean := False) return Boolean
996ae0b0 4343 is
996ae0b0 4344 begin
305caf42
AC
4345 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4346 = Out_Of_Range;
996ae0b0
RK
4347 end Is_Out_Of_Range;
4348
4349 ---------------------
4350 -- Is_Static_Range --
4351 ---------------------
4352
4353 -- A static range is a range whose bounds are static expressions, or a
4354 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4355 -- We have already converted range attribute references, so we get the
4356 -- "or" part of this rule without needing a special test.
4357
4358 function Is_Static_Range (N : Node_Id) return Boolean is
4359 begin
4360 return Is_Static_Expression (Low_Bound (N))
4361 and then Is_Static_Expression (High_Bound (N));
4362 end Is_Static_Range;
4363
4364 -----------------------
4365 -- Is_Static_Subtype --
4366 -----------------------
4367
82c80734 4368 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4369
4370 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4371 Base_T : constant Entity_Id := Base_Type (Typ);
4372 Anc_Subt : Entity_Id;
4373
4374 begin
4375 -- First a quick check on the non static subtype flag. As described
4376 -- in further detail in Einfo, this flag is not decisive in all cases,
4377 -- but if it is set, then the subtype is definitely non-static.
4378
4379 if Is_Non_Static_Subtype (Typ) then
4380 return False;
4381 end if;
4382
4383 Anc_Subt := Ancestor_Subtype (Typ);
4384
4385 if Anc_Subt = Empty then
4386 Anc_Subt := Base_T;
4387 end if;
4388
4389 if Is_Generic_Type (Root_Type (Base_T))
4390 or else Is_Generic_Actual_Type (Base_T)
4391 then
4392 return False;
4393
4394 -- String types
4395
4396 elsif Is_String_Type (Typ) then
4397 return
4398 Ekind (Typ) = E_String_Literal_Subtype
4399 or else
4400 (Is_Static_Subtype (Component_Type (Typ))
4401 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4402
4403 -- Scalar types
4404
4405 elsif Is_Scalar_Type (Typ) then
4406 if Base_T = Typ then
4407 return True;
4408
4409 else
4410 return Is_Static_Subtype (Anc_Subt)
4411 and then Is_Static_Expression (Type_Low_Bound (Typ))
4412 and then Is_Static_Expression (Type_High_Bound (Typ));
4413 end if;
4414
4415 -- Types other than string and scalar types are never static
4416
4417 else
4418 return False;
4419 end if;
4420 end Is_Static_Subtype;
4421
4422 --------------------
4423 -- Not_Null_Range --
4424 --------------------
4425
4426 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4427 Typ : constant Entity_Id := Etype (Lo);
4428
4429 begin
4430 if not Compile_Time_Known_Value (Lo)
4431 or else not Compile_Time_Known_Value (Hi)
4432 then
4433 return False;
4434 end if;
4435
4436 if Is_Discrete_Type (Typ) then
4437 return Expr_Value (Lo) <= Expr_Value (Hi);
4438
4439 else
4440 pragma Assert (Is_Real_Type (Typ));
4441
4442 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4443 end if;
4444 end Not_Null_Range;
4445
4446 -------------
4447 -- OK_Bits --
4448 -------------
4449
4450 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4451 begin
4452 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4453
4454 if Bits < 500_000 then
4455 return True;
4456
4457 else
4458 Error_Msg_N ("static value too large, capacity exceeded", N);
4459 return False;
4460 end if;
4461 end OK_Bits;
4462
4463 ------------------
4464 -- Out_Of_Range --
4465 ------------------
4466
4467 procedure Out_Of_Range (N : Node_Id) is
4468 begin
4469 -- If we have the static expression case, then this is an illegality
4470 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5
AC
4471 -- error (if the error is legitimate, it was already diagnosed in the
4472 -- template). The expression to compute the length of a packed array is
4473 -- attached to the array type itself, and deserves a separate message.
996ae0b0
RK
4474
4475 if Is_Static_Expression (N)
4476 and then not In_Instance
fbf5a39b 4477 and then not In_Inlined_Body
0ab80019 4478 and then Ada_Version >= Ada_95
996ae0b0 4479 then
996ae0b0
RK
4480 if Nkind (Parent (N)) = N_Defining_Identifier
4481 and then Is_Array_Type (Parent (N))
4482 and then Present (Packed_Array_Type (Parent (N)))
4483 and then Present (First_Rep_Item (Parent (N)))
4484 then
4485 Error_Msg_N
4486 ("length of packed array must not exceed Integer''Last",
4487 First_Rep_Item (Parent (N)));
4488 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4489
4490 else
4491 Apply_Compile_Time_Constraint_Error
07fc65c4 4492 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
4493 end if;
4494
22cb89b5
AC
4495 -- Here we generate a warning for the Ada 83 case, or when we are in an
4496 -- instance, or when we have a non-static expression case.
996ae0b0
RK
4497
4498 else
996ae0b0 4499 Apply_Compile_Time_Constraint_Error
07fc65c4 4500 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
4501 end if;
4502 end Out_Of_Range;
4503
4504 -------------------------
4505 -- Rewrite_In_Raise_CE --
4506 -------------------------
4507
4508 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4509 Typ : constant Entity_Id := Etype (N);
4510
4511 begin
22cb89b5
AC
4512 -- If we want to raise CE in the condition of a N_Raise_CE node
4513 -- we may as well get rid of the condition.
996ae0b0
RK
4514
4515 if Present (Parent (N))
4516 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4517 then
4518 Set_Condition (Parent (N), Empty);
4519
22cb89b5
AC
4520 -- If the expression raising CE is a N_Raise_CE node, we can use that
4521 -- one. We just preserve the type of the context.
996ae0b0
RK
4522
4523 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4524 Rewrite (N, Exp);
4525 Set_Etype (N, Typ);
4526
22cb89b5 4527 -- Else build an explcit N_Raise_CE
996ae0b0
RK
4528
4529 else
07fc65c4
GB
4530 Rewrite (N,
4531 Make_Raise_Constraint_Error (Sloc (Exp),
4532 Reason => CE_Range_Check_Failed));
996ae0b0
RK
4533 Set_Raises_Constraint_Error (N);
4534 Set_Etype (N, Typ);
4535 end if;
4536 end Rewrite_In_Raise_CE;
4537
4538 ---------------------
4539 -- String_Type_Len --
4540 ---------------------
4541
4542 function String_Type_Len (Stype : Entity_Id) return Uint is
4543 NT : constant Entity_Id := Etype (First_Index (Stype));
4544 T : Entity_Id;
4545
4546 begin
4547 if Is_OK_Static_Subtype (NT) then
4548 T := NT;
4549 else
4550 T := Base_Type (NT);
4551 end if;
4552
4553 return Expr_Value (Type_High_Bound (T)) -
4554 Expr_Value (Type_Low_Bound (T)) + 1;
4555 end String_Type_Len;
4556
4557 ------------------------------------
4558 -- Subtypes_Statically_Compatible --
4559 ------------------------------------
4560
4561 function Subtypes_Statically_Compatible
f44fe430
RD
4562 (T1 : Entity_Id;
4563 T2 : Entity_Id) return Boolean
996ae0b0
RK
4564 is
4565 begin
437f8c1e
AC
4566 -- Scalar types
4567
996ae0b0
RK
4568 if Is_Scalar_Type (T1) then
4569
4570 -- Definitely compatible if we match
4571
4572 if Subtypes_Statically_Match (T1, T2) then
4573 return True;
4574
4575 -- If either subtype is nonstatic then they're not compatible
4576
4577 elsif not Is_Static_Subtype (T1)
4578 or else not Is_Static_Subtype (T2)
4579 then
4580 return False;
4581
4582 -- If either type has constraint error bounds, then consider that
4583 -- they match to avoid junk cascaded errors here.
4584
4585 elsif not Is_OK_Static_Subtype (T1)
4586 or else not Is_OK_Static_Subtype (T2)
4587 then
4588 return True;
4589
26df19ce
AC
4590 -- Base types must match, but we don't check that (should we???) but
4591 -- we do at least check that both types are real, or both types are
4592 -- not real.
996ae0b0 4593
fbf5a39b 4594 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
4595 return False;
4596
4597 -- Here we check the bounds
4598
4599 else
4600 declare
4601 LB1 : constant Node_Id := Type_Low_Bound (T1);
4602 HB1 : constant Node_Id := Type_High_Bound (T1);
4603 LB2 : constant Node_Id := Type_Low_Bound (T2);
4604 HB2 : constant Node_Id := Type_High_Bound (T2);
4605
4606 begin
4607 if Is_Real_Type (T1) then
4608 return
4609 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4610 or else
4611 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4612 and then
4613 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4614
4615 else
4616 return
4617 (Expr_Value (LB1) > Expr_Value (HB1))
4618 or else
4619 (Expr_Value (LB2) <= Expr_Value (LB1)
4620 and then
4621 Expr_Value (HB1) <= Expr_Value (HB2));
4622 end if;
4623 end;
4624 end if;
4625
437f8c1e
AC
4626 -- Access types
4627
996ae0b0 4628 elsif Is_Access_Type (T1) then
26df19ce
AC
4629 return (not Is_Constrained (T2)
4630 or else (Subtypes_Statically_Match
4631 (Designated_Type (T1), Designated_Type (T2))))
4632 and then not (Can_Never_Be_Null (T2)
4633 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
4634
4635 -- All other cases
996ae0b0
RK
4636
4637 else
4638 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4639 or else Subtypes_Statically_Match (T1, T2);
4640 end if;
4641 end Subtypes_Statically_Compatible;
4642
4643 -------------------------------
4644 -- Subtypes_Statically_Match --
4645 -------------------------------
4646
4647 -- Subtypes statically match if they have statically matching constraints
4648 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4649 -- they are the same identical constraint, or if they are static and the
4650 -- values match (RM 4.9.1(1)).
4651
4652 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4653 begin
4654 -- A type always statically matches itself
4655
4656 if T1 = T2 then
4657 return True;
4658
4659 -- Scalar types
4660
4661 elsif Is_Scalar_Type (T1) then
4662
4663 -- Base types must be the same
4664
4665 if Base_Type (T1) /= Base_Type (T2) then
4666 return False;
4667 end if;
4668
4669 -- A constrained numeric subtype never matches an unconstrained
4670 -- subtype, i.e. both types must be constrained or unconstrained.
4671
305caf42
AC
4672 -- To understand the requirement for this test, see RM 4.9.1(1).
4673 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4674 -- a constrained subtype with constraint bounds matching the bounds
4675 -- of its corresponding unconstrained base type. In this situation,
4676 -- Integer and Integer'Base do not statically match, even though
4677 -- they have the same bounds.
996ae0b0 4678
22cb89b5
AC
4679 -- We only apply this test to types in Standard and types that appear
4680 -- in user programs. That way, we do not have to be too careful about
4681 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
4682
4683 if Is_Numeric_Type (T1)
4684 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4685 and then (Scope (T1) = Standard_Standard
4686 or else Comes_From_Source (T1))
4687 and then (Scope (T2) = Standard_Standard
4688 or else Comes_From_Source (T2))
4689 then
4690 return False;
82c80734 4691
22cb89b5
AC
4692 -- A generic scalar type does not statically match its base type
4693 -- (AI-311). In this case we make sure that the formals, which are
4694 -- first subtypes of their bases, are constrained.
82c80734
RD
4695
4696 elsif Is_Generic_Type (T1)
4697 and then Is_Generic_Type (T2)
4698 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4699 then
4700 return False;
996ae0b0
RK
4701 end if;
4702
22cb89b5
AC
4703 -- If there was an error in either range, then just assume the types
4704 -- statically match to avoid further junk errors.
996ae0b0 4705
199c6a10
AC
4706 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4707 or else Error_Posted (Scalar_Range (T1))
4708 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
4709 then
4710 return True;
4711 end if;
4712
4713 -- Otherwise both types have bound that can be compared
4714
4715 declare
4716 LB1 : constant Node_Id := Type_Low_Bound (T1);
4717 HB1 : constant Node_Id := Type_High_Bound (T1);
4718 LB2 : constant Node_Id := Type_Low_Bound (T2);
4719 HB2 : constant Node_Id := Type_High_Bound (T2);
4720
4721 begin
4722 -- If the bounds are the same tree node, then match
4723
4724 if LB1 = LB2 and then HB1 = HB2 then
4725 return True;
4726
4727 -- Otherwise bounds must be static and identical value
4728
4729 else
4730 if not Is_Static_Subtype (T1)
4731 or else not Is_Static_Subtype (T2)
4732 then
4733 return False;
4734
22cb89b5
AC
4735 -- If either type has constraint error bounds, then say that
4736 -- they match to avoid junk cascaded errors here.
996ae0b0
RK
4737
4738 elsif not Is_OK_Static_Subtype (T1)
4739 or else not Is_OK_Static_Subtype (T2)
4740 then
4741 return True;
4742
4743 elsif Is_Real_Type (T1) then
4744 return
4745 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4746 and then
4747 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4748
4749 else
4750 return
4751 Expr_Value (LB1) = Expr_Value (LB2)
4752 and then
4753 Expr_Value (HB1) = Expr_Value (HB2);
4754 end if;
4755 end if;
4756 end;
4757
4758 -- Type with discriminants
4759
4760 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4761
c2bf339e
GD
4762 -- Because of view exchanges in multiple instantiations, conformance
4763 -- checking might try to match a partial view of a type with no
4764 -- discriminants with a full view that has defaulted discriminants.
4765 -- In such a case, use the discriminant constraint of the full view,
4766 -- which must exist because we know that the two subtypes have the
4767 -- same base type.
6eaf4095 4768
996ae0b0 4769 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4770 if In_Instance then
4771 if Is_Private_Type (T2)
4772 and then Present (Full_View (T2))
4773 and then Has_Discriminants (Full_View (T2))
4774 then
4775 return Subtypes_Statically_Match (T1, Full_View (T2));
4776
4777 elsif Is_Private_Type (T1)
4778 and then Present (Full_View (T1))
4779 and then Has_Discriminants (Full_View (T1))
4780 then
4781 return Subtypes_Statically_Match (Full_View (T1), T2);
4782
4783 else
4784 return False;
4785 end if;
6eaf4095
ES
4786 else
4787 return False;
4788 end if;
996ae0b0
RK
4789 end if;
4790
4791 declare
4792 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4793 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4794
13f34a3f
RD
4795 DA1 : Elmt_Id;
4796 DA2 : Elmt_Id;
996ae0b0
RK
4797
4798 begin
4799 if DL1 = DL2 then
4800 return True;
996ae0b0
RK
4801 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4802 return False;
4803 end if;
4804
13f34a3f 4805 -- Now loop through the discriminant constraints
996ae0b0 4806
13f34a3f
RD
4807 -- Note: the guard here seems necessary, since it is possible at
4808 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 4809
13f34a3f
RD
4810 if Present (DL1) and then Present (DL2) then
4811 DA1 := First_Elmt (DL1);
4812 DA2 := First_Elmt (DL2);
4813 while Present (DA1) loop
4814 declare
4815 Expr1 : constant Node_Id := Node (DA1);
4816 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 4817
13f34a3f
RD
4818 begin
4819 if not Is_Static_Expression (Expr1)
4820 or else not Is_Static_Expression (Expr2)
4821 then
4822 return False;
996ae0b0 4823
13f34a3f
RD
4824 -- If either expression raised a constraint error,
4825 -- consider the expressions as matching, since this
4826 -- helps to prevent cascading errors.
4827
4828 elsif Raises_Constraint_Error (Expr1)
4829 or else Raises_Constraint_Error (Expr2)
4830 then
4831 null;
4832
4833 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4834 return False;
4835 end if;
4836 end;
996ae0b0 4837
13f34a3f
RD
4838 Next_Elmt (DA1);
4839 Next_Elmt (DA2);
4840 end loop;
4841 end if;
996ae0b0
RK
4842 end;
4843
4844 return True;
4845
22cb89b5 4846 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
4847 -- However, a generic type with unknown discriminants may be
4848 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
4849 -- checking on an inherited operation may compare the actual with the
4850 -- subtype that renames it in the instance.
996ae0b0
RK
4851
4852 elsif
4853 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4854 then
7a3f77d2
AC
4855 return
4856 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
4857
4858 -- Array type
4859
4860 elsif Is_Array_Type (T1) then
4861
22cb89b5 4862 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 4863 -- are unconstrained then no further checking is needed.
996ae0b0
RK
4864
4865 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4866 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4867 end if;
4868
22cb89b5
AC
4869 -- Both subtypes are constrained, so check that the index subtypes
4870 -- statically match.
996ae0b0
RK
4871
4872 declare
4873 Index1 : Node_Id := First_Index (T1);
4874 Index2 : Node_Id := First_Index (T2);
4875
4876 begin
4877 while Present (Index1) loop
4878 if not
4879 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4880 then
4881 return False;
4882 end if;
4883
4884 Next_Index (Index1);
4885 Next_Index (Index2);
4886 end loop;
4887
4888 return True;
4889 end;
4890
4891 elsif Is_Access_Type (T1) then
b5bd964f
ES
4892 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4893 return False;
4894
e1b871e9
AC
4895 elsif Ekind_In (T1, E_Access_Subprogram_Type,
4896 E_Anonymous_Access_Subprogram_Type)
7a3f77d2 4897 then
b5bd964f
ES
4898 return
4899 Subtype_Conformant
4900 (Designated_Type (T1),
bb98fe75 4901 Designated_Type (T2));
b5bd964f
ES
4902 else
4903 return
4904 Subtypes_Statically_Match
4905 (Designated_Type (T1),
4906 Designated_Type (T2))
4907 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4908 end if;
996ae0b0
RK
4909
4910 -- All other types definitely match
4911
4912 else
4913 return True;
4914 end if;
4915 end Subtypes_Statically_Match;
4916
4917 ----------
4918 -- Test --
4919 ----------
4920
4921 function Test (Cond : Boolean) return Uint is
4922 begin
4923 if Cond then
4924 return Uint_1;
4925 else
4926 return Uint_0;
4927 end if;
4928 end Test;
4929
4930 ---------------------------------
4931 -- Test_Expression_Is_Foldable --
4932 ---------------------------------
4933
4934 -- One operand case
4935
4936 procedure Test_Expression_Is_Foldable
4937 (N : Node_Id;
4938 Op1 : Node_Id;
4939 Stat : out Boolean;
4940 Fold : out Boolean)
4941 is
4942 begin
4943 Stat := False;
0356699b
RD
4944 Fold := False;
4945
4946 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4947 return;
4948 end if;
996ae0b0
RK
4949
4950 -- If operand is Any_Type, just propagate to result and do not
4951 -- try to fold, this prevents cascaded errors.
4952
4953 if Etype (Op1) = Any_Type then
4954 Set_Etype (N, Any_Type);
996ae0b0
RK
4955 return;
4956
4957 -- If operand raises constraint error, then replace node N with the
4958 -- raise constraint error node, and we are obviously not foldable.
4959 -- Note that this replacement inherits the Is_Static_Expression flag
4960 -- from the operand.
4961
4962 elsif Raises_Constraint_Error (Op1) then
4963 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
4964 return;
4965
4966 -- If the operand is not static, then the result is not static, and
4967 -- all we have to do is to check the operand since it is now known
4968 -- to appear in a non-static context.
4969
4970 elsif not Is_Static_Expression (Op1) then
4971 Check_Non_Static_Context (Op1);
4972 Fold := Compile_Time_Known_Value (Op1);
4973 return;
4974
4975 -- An expression of a formal modular type is not foldable because
4976 -- the modulus is unknown.
4977
4978 elsif Is_Modular_Integer_Type (Etype (Op1))
4979 and then Is_Generic_Type (Etype (Op1))
4980 then
4981 Check_Non_Static_Context (Op1);
996ae0b0
RK
4982 return;
4983
4984 -- Here we have the case of an operand whose type is OK, which is
4985 -- static, and which does not raise constraint error, we can fold.
4986
4987 else
4988 Set_Is_Static_Expression (N);
4989 Fold := True;
4990 Stat := True;
4991 end if;
4992 end Test_Expression_Is_Foldable;
4993
4994 -- Two operand case
4995
4996 procedure Test_Expression_Is_Foldable
4997 (N : Node_Id;
4998 Op1 : Node_Id;
4999 Op2 : Node_Id;
5000 Stat : out Boolean;
5001 Fold : out Boolean)
5002 is
5003 Rstat : constant Boolean := Is_Static_Expression (Op1)
5004 and then Is_Static_Expression (Op2);
5005
5006 begin
5007 Stat := False;
0356699b
RD
5008 Fold := False;
5009
5010 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5011 return;
5012 end if;
996ae0b0
RK
5013
5014 -- If either operand is Any_Type, just propagate to result and
5015 -- do not try to fold, this prevents cascaded errors.
5016
5017 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5018 Set_Etype (N, Any_Type);
996ae0b0
RK
5019 return;
5020
22cb89b5
AC
5021 -- If left operand raises constraint error, then replace node N with the
5022 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
5023 -- Is_Static_Expression is set from the two operands in the normal way,
5024 -- and we check the right operand if it is in a non-static context.
5025
5026 elsif Raises_Constraint_Error (Op1) then
5027 if not Rstat then
5028 Check_Non_Static_Context (Op2);
5029 end if;
5030
5031 Rewrite_In_Raise_CE (N, Op1);
5032 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5033 return;
5034
22cb89b5
AC
5035 -- Similar processing for the case of the right operand. Note that we
5036 -- don't use this routine for the short-circuit case, so we do not have
5037 -- to worry about that special case here.
996ae0b0
RK
5038
5039 elsif Raises_Constraint_Error (Op2) then
5040 if not Rstat then
5041 Check_Non_Static_Context (Op1);
5042 end if;
5043
5044 Rewrite_In_Raise_CE (N, Op2);
5045 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5046 return;
5047
82c80734 5048 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
5049
5050 elsif Is_Modular_Integer_Type (Etype (Op1))
5051 and then Is_Generic_Type (Etype (Op1))
5052 then
5053 Check_Non_Static_Context (Op1);
996ae0b0
RK
5054 return;
5055
5056 -- If result is not static, then check non-static contexts on operands
22cb89b5 5057 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
5058
5059 elsif not Rstat then
5060 Check_Non_Static_Context (Op1);
5061 Check_Non_Static_Context (Op2);
5062 Fold := Compile_Time_Known_Value (Op1)
5063 and then Compile_Time_Known_Value (Op2);
5064 return;
5065
22cb89b5
AC
5066 -- Else result is static and foldable. Both operands are static, and
5067 -- neither raises constraint error, so we can definitely fold.
996ae0b0
RK
5068
5069 else
5070 Set_Is_Static_Expression (N);
5071 Fold := True;
5072 Stat := True;
5073 return;
5074 end if;
5075 end Test_Expression_Is_Foldable;
5076
305caf42
AC
5077 -------------------
5078 -- Test_In_Range --
5079 -------------------
5080
5081 function Test_In_Range
5082 (N : Node_Id;
5083 Typ : Entity_Id;
5084 Assume_Valid : Boolean;
5085 Fixed_Int : Boolean;
5086 Int_Real : Boolean) return Range_Membership
5087 is
5088 Val : Uint;
5089 Valr : Ureal;
5090
5091 pragma Warnings (Off, Assume_Valid);
5092 -- For now Assume_Valid is unreferenced since the current implementation
5093 -- always returns Unknown if N is not a compile time known value, but we
5094 -- keep the parameter to allow for future enhancements in which we try
5095 -- to get the information in the variable case as well.
5096
5097 begin
5098 -- Universal types have no range limits, so always in range
5099
5100 if Typ = Universal_Integer or else Typ = Universal_Real then
5101 return In_Range;
5102
5103 -- Never known if not scalar type. Don't know if this can actually
5104 -- happen, but our spec allows it, so we must check!
5105
5106 elsif not Is_Scalar_Type (Typ) then
5107 return Unknown;
5108
5109 -- Never known if this is a generic type, since the bounds of generic
5110 -- types are junk. Note that if we only checked for static expressions
5111 -- (instead of compile time known values) below, we would not need this
5112 -- check, because values of a generic type can never be static, but they
5113 -- can be known at compile time.
5114
5115 elsif Is_Generic_Type (Typ) then
5116 return Unknown;
5117
5118 -- Never known unless we have a compile time known value
5119
5120 elsif not Compile_Time_Known_Value (N) then
5121 return Unknown;
5122
5123 -- General processing with a known compile time value
5124
5125 else
5126 declare
5127 Lo : Node_Id;
5128 Hi : Node_Id;
5129
5130 LB_Known : Boolean;
5131 HB_Known : Boolean;
5132
5133 begin
5134 Lo := Type_Low_Bound (Typ);
5135 Hi := Type_High_Bound (Typ);
5136
5137 LB_Known := Compile_Time_Known_Value (Lo);
5138 HB_Known := Compile_Time_Known_Value (Hi);
5139
5140 -- Fixed point types should be considered as such only if flag
5141 -- Fixed_Int is set to False.
5142
5143 if Is_Floating_Point_Type (Typ)
5144 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5145 or else Int_Real
5146 then
5147 Valr := Expr_Value_R (N);
5148
5149 if LB_Known and HB_Known then
5150 if Valr >= Expr_Value_R (Lo)
5151 and then
5152 Valr <= Expr_Value_R (Hi)
5153 then
5154 return In_Range;
5155 else
5156 return Out_Of_Range;
5157 end if;
5158
5159 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5160 or else
5161 (HB_Known and then Valr > Expr_Value_R (Hi))
5162 then
5163 return Out_Of_Range;
5164
5165 else
5166 return Unknown;
5167 end if;
5168
5169 else
5170 Val := Expr_Value (N);
5171
5172 if LB_Known and HB_Known then
5173 if Val >= Expr_Value (Lo)
5174 and then
5175 Val <= Expr_Value (Hi)
5176 then
5177 return In_Range;
5178 else
5179 return Out_Of_Range;
5180 end if;
5181
5182 elsif (LB_Known and then Val < Expr_Value (Lo))
5183 or else
5184 (HB_Known and then Val > Expr_Value (Hi))
5185 then
5186 return Out_Of_Range;
5187
5188 else
5189 return Unknown;
5190 end if;
5191 end if;
5192 end;
5193 end if;
5194 end Test_In_Range;
5195
996ae0b0
RK
5196 --------------
5197 -- To_Bits --
5198 --------------
5199
5200 procedure To_Bits (U : Uint; B : out Bits) is
5201 begin
5202 for J in 0 .. B'Last loop
5203 B (J) := (U / (2 ** J)) mod 2 /= 0;
5204 end loop;
5205 end To_Bits;
5206
fbf5a39b
AC
5207 --------------------
5208 -- Why_Not_Static --
5209 --------------------
5210
5211 procedure Why_Not_Static (Expr : Node_Id) is
5212 N : constant Node_Id := Original_Node (Expr);
5213 Typ : Entity_Id;
5214 E : Entity_Id;
5215
5216 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
5217 -- A version that can be called on a list of expressions. Finds all
5218 -- non-static violations in any element of the list.
fbf5a39b
AC
5219
5220 -------------------------
5221 -- Why_Not_Static_List --
5222 -------------------------
5223
5224 procedure Why_Not_Static_List (L : List_Id) is
5225 N : Node_Id;
5226
5227 begin
5228 if Is_Non_Empty_List (L) then
5229 N := First (L);
5230 while Present (N) loop
5231 Why_Not_Static (N);
5232 Next (N);
5233 end loop;
5234 end if;
5235 end Why_Not_Static_List;
5236
5237 -- Start of processing for Why_Not_Static
5238
5239 begin
22cb89b5
AC
5240 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5241 -- this avoids massive updates to the ACATS base line.
fbf5a39b
AC
5242
5243 if Debug_Flag_2 then
5244 return;
5245 end if;
5246
5247 -- Ignore call on error or empty node
5248
5249 if No (Expr) or else Nkind (Expr) = N_Error then
5250 return;
5251 end if;
5252
5253 -- Preprocessing for sub expressions
5254
5255 if Nkind (Expr) in N_Subexpr then
5256
5257 -- Nothing to do if expression is static
5258
5259 if Is_OK_Static_Expression (Expr) then
5260 return;
5261 end if;
5262
5263 -- Test for constraint error raised
5264
5265 if Raises_Constraint_Error (Expr) then
5266 Error_Msg_N
5267 ("expression raises exception, cannot be static " &
b11e8d6f 5268 "(RM 4.9(34))!", N);
fbf5a39b
AC
5269 return;
5270 end if;
5271
5272 -- If no type, then something is pretty wrong, so ignore
5273
5274 Typ := Etype (Expr);
5275
5276 if No (Typ) then
5277 return;
5278 end if;
5279
5280 -- Type must be scalar or string type
5281
5282 if not Is_Scalar_Type (Typ)
5283 and then not Is_String_Type (Typ)
5284 then
5285 Error_Msg_N
5286 ("static expression must have scalar or string type " &
b11e8d6f 5287 "(RM 4.9(2))!", N);
fbf5a39b
AC
5288 return;
5289 end if;
5290 end if;
5291
5292 -- If we got through those checks, test particular node kind
5293
5294 case Nkind (N) is
5295 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5296 E := Entity (N);
5297
5298 if Is_Named_Number (E) then
5299 null;
5300
5301 elsif Ekind (E) = E_Constant then
5302 if not Is_Static_Expression (Constant_Value (E)) then
5303 Error_Msg_NE
b11e8d6f 5304 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
5305 end if;
5306
5307 else
5308 Error_Msg_NE
5309 ("& is not static constant or named number " &
b11e8d6f 5310 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
5311 end if;
5312
514d0fc5 5313 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
fbf5a39b
AC
5314 if Nkind (N) in N_Op_Shift then
5315 Error_Msg_N
b11e8d6f 5316 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
5317
5318 else
5319 Why_Not_Static (Left_Opnd (N));
5320 Why_Not_Static (Right_Opnd (N));
5321 end if;
5322
5323 when N_Unary_Op =>
5324 Why_Not_Static (Right_Opnd (N));
5325
5326 when N_Attribute_Reference =>
5327 Why_Not_Static_List (Expressions (N));
5328
5329 E := Etype (Prefix (N));
5330
5331 if E = Standard_Void_Type then
5332 return;
5333 end if;
5334
5335 -- Special case non-scalar'Size since this is a common error
5336
5337 if Attribute_Name (N) = Name_Size then
5338 Error_Msg_N
fdfea49e 5339 ("size attribute is only static for static scalar type " &
b11e8d6f 5340 "(RM 4.9(7,8))", N);
fbf5a39b
AC
5341
5342 -- Flag array cases
5343
5344 elsif Is_Array_Type (E) then
5345 if Attribute_Name (N) /= Name_First
5346 and then
5347 Attribute_Name (N) /= Name_Last
5348 and then
5349 Attribute_Name (N) /= Name_Length
5350 then
5351 Error_Msg_N
5352 ("static array attribute must be Length, First, or Last " &
b11e8d6f 5353 "(RM 4.9(8))!", N);
fbf5a39b
AC
5354
5355 -- Since we know the expression is not-static (we already
5356 -- tested for this, must mean array is not static).
5357
5358 else
5359 Error_Msg_N
b11e8d6f 5360 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
5361 end if;
5362
5363 return;
5364
22cb89b5
AC
5365 -- Special case generic types, since again this is a common source
5366 -- of confusion.
fbf5a39b
AC
5367
5368 elsif Is_Generic_Actual_Type (E)
5369 or else
5370 Is_Generic_Type (E)
5371 then
5372 Error_Msg_N
5373 ("attribute of generic type is never static " &
b11e8d6f 5374 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5375
5376 elsif Is_Static_Subtype (E) then
5377 null;
5378
5379 elsif Is_Scalar_Type (E) then
5380 Error_Msg_N
5381 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 5382 "(RM 4.9(7))!", N);
fbf5a39b
AC
5383
5384 else
5385 Error_Msg_N
5386 ("static attribute must apply to array/scalar type " &
b11e8d6f 5387 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5388 end if;
5389
5390 when N_String_Literal =>
5391 Error_Msg_N
b11e8d6f 5392 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
5393
5394 when N_Explicit_Dereference =>
5395 Error_Msg_N
b11e8d6f 5396 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
5397
5398 when N_Function_Call =>
5399 Why_Not_Static_List (Parameter_Associations (N));
b11e8d6f 5400 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
fbf5a39b
AC
5401
5402 when N_Parameter_Association =>
5403 Why_Not_Static (Explicit_Actual_Parameter (N));
5404
5405 when N_Indexed_Component =>
5406 Error_Msg_N
b11e8d6f 5407 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
5408
5409 when N_Procedure_Call_Statement =>
5410 Error_Msg_N
b11e8d6f 5411 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
5412
5413 when N_Qualified_Expression =>
5414 Why_Not_Static (Expression (N));
5415
5416 when N_Aggregate | N_Extension_Aggregate =>
5417 Error_Msg_N
b11e8d6f 5418 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
5419
5420 when N_Range =>
5421 Why_Not_Static (Low_Bound (N));
5422 Why_Not_Static (High_Bound (N));
5423
5424 when N_Range_Constraint =>
5425 Why_Not_Static (Range_Expression (N));
5426
5427 when N_Subtype_Indication =>
5428 Why_Not_Static (Constraint (N));
5429
5430 when N_Selected_Component =>
5431 Error_Msg_N
b11e8d6f 5432 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
5433
5434 when N_Slice =>
5435 Error_Msg_N
b11e8d6f 5436 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
5437
5438 when N_Type_Conversion =>
5439 Why_Not_Static (Expression (N));
5440
23b86353
AC
5441 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5442 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
5443 then
5444 Error_Msg_N
5445 ("static conversion requires static scalar subtype result " &
b11e8d6f 5446 "(RM 4.9(9))!", N);
fbf5a39b
AC
5447 end if;
5448
5449 when N_Unchecked_Type_Conversion =>
5450 Error_Msg_N
b11e8d6f 5451 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
5452
5453 when others =>
5454 null;
5455
5456 end case;
5457 end Why_Not_Static;
5458
996ae0b0 5459end Sem_Eval;