]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
adaint.c: Fix possible race condition on win32_wait().
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
45fc7ddb 9-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
0356699b 34with Lib; use Lib;
13f34a3f 35with Namet; use Namet;
996ae0b0
RK
36with Nmake; use Nmake;
37with Nlists; use Nlists;
38with Opt; use Opt;
39with Sem; use Sem;
40with Sem_Cat; use Sem_Cat;
b5bd964f 41with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
42with Sem_Ch8; use Sem_Ch8;
43with Sem_Res; use Sem_Res;
44with Sem_Util; use Sem_Util;
45with Sem_Type; use Sem_Type;
46with Sem_Warn; use Sem_Warn;
47with Sinfo; use Sinfo;
48with Snames; use Snames;
49with Stand; use Stand;
50with Stringt; use Stringt;
07fc65c4 51with Tbuild; use Tbuild;
996ae0b0
RK
52
53package body Sem_Eval is
54
55 -----------------------------------------
56 -- Handling of Compile Time Evaluation --
57 -----------------------------------------
58
59 -- The compile time evaluation of expressions is distributed over several
f3d57416 60 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
61 -- a subexpression is resolved and is therefore accomplished in a bottom
62 -- up fashion. The flags are synthesized using the following approach.
63
64 -- Is_Static_Expression is determined by following the detailed rules
65 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
66 -- flag of the operands in many cases.
67
68 -- Raises_Constraint_Error is set if any of the operands have the flag
69 -- set or if an attempt to compute the value of the current expression
70 -- results in detection of a runtime constraint error.
71
72 -- As described in the spec, the requirement is that Is_Static_Expression
73 -- be accurately set, and in addition for nodes for which this flag is set,
74 -- Raises_Constraint_Error must also be set. Furthermore a node which has
75 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
76 -- requirement is that the expression value must be precomputed, and the
77 -- node is either a literal, or the name of a constant entity whose value
78 -- is a static expression.
79
80 -- The general approach is as follows. First compute Is_Static_Expression.
81 -- If the node is not static, then the flag is left off in the node and
82 -- we are all done. Otherwise for a static node, we test if any of the
83 -- operands will raise constraint error, and if so, propagate the flag
84 -- Raises_Constraint_Error to the result node and we are done (since the
85 -- error was already posted at a lower level).
86
87 -- For the case of a static node whose operands do not raise constraint
88 -- error, we attempt to evaluate the node. If this evaluation succeeds,
89 -- then the node is replaced by the result of this computation. If the
90 -- evaluation raises constraint error, then we rewrite the node with
91 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
92 -- to post appropriate error messages.
93
94 ----------------
95 -- Local Data --
96 ----------------
97
98 type Bits is array (Nat range <>) of Boolean;
99 -- Used to convert unsigned (modular) values for folding logical ops
100
07fc65c4
GB
101 -- The following definitions are used to maintain a cache of nodes that
102 -- have compile time known values. The cache is maintained only for
103 -- discrete types (the most common case), and is populated by calls to
104 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
105 -- since it is possible for the status to change (in particular it is
106 -- possible for a node to get replaced by a constraint error node).
107
108 CV_Bits : constant := 5;
109 -- Number of low order bits of Node_Id value used to reference entries
110 -- in the cache table.
111
112 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
113 -- Size of cache for compile time values
114
115 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
116
117 type CV_Entry is record
118 N : Node_Id;
119 V : Uint;
120 end record;
121
122 type CV_Cache_Array is array (CV_Range) of CV_Entry;
123
124 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
125 -- This is the actual cache, with entries consisting of node/value pairs,
126 -- and the impossible value Node_High_Bound used for unset entries.
127
996ae0b0
RK
128 -----------------------
129 -- Local Subprograms --
130 -----------------------
131
996ae0b0
RK
132 function From_Bits (B : Bits; T : Entity_Id) return Uint;
133 -- Converts a bit string of length B'Length to a Uint value to be used
134 -- for a target of type T, which is a modular type. This procedure
135 -- includes the necessary reduction by the modulus in the case of a
136 -- non-binary modulus (for a binary modulus, the bit string is the
137 -- right length any way so all is well).
138
139 function Get_String_Val (N : Node_Id) return Node_Id;
140 -- Given a tree node for a folded string or character value, returns
141 -- the corresponding string literal or character literal (one of the
142 -- two must be available, or the operand would not have been marked
143 -- as foldable in the earlier analysis of the operation).
144
07fc65c4
GB
145 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
146 -- Bits represents the number of bits in an integer value to be computed
147 -- (but the value has not been computed yet). If this value in Bits is
148 -- reasonable, a result of True is returned, with the implication that
149 -- the caller should go ahead and complete the calculation. If the value
150 -- in Bits is unreasonably large, then an error is posted on node N, and
151 -- False is returned (and the caller skips the proposed calculation).
152
996ae0b0
RK
153 procedure Out_Of_Range (N : Node_Id);
154 -- This procedure is called if it is determined that node N, which
155 -- appears in a non-static context, is a compile time known value
156 -- which is outside its range, i.e. the range of Etype. This is used
157 -- in contexts where this is an illegality if N is static, and should
158 -- generate a warning otherwise.
159
160 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
161 -- N and Exp are nodes representing an expression, Exp is known
162 -- to raise CE. N is rewritten in term of Exp in the optimal way.
163
164 function String_Type_Len (Stype : Entity_Id) return Uint;
165 -- Given a string type, determines the length of the index type, or,
166 -- if this index type is non-static, the length of the base type of
167 -- this index type. Note that if the string type is itself static,
168 -- then the index type is static, so the second case applies only
169 -- if the string type passed is non-static.
170
171 function Test (Cond : Boolean) return Uint;
172 pragma Inline (Test);
173 -- This function simply returns the appropriate Boolean'Pos value
174 -- corresponding to the value of Cond as a universal integer. It is
175 -- used for producing the result of the static evaluation of the
176 -- logical operators
177
178 procedure Test_Expression_Is_Foldable
179 (N : Node_Id;
180 Op1 : Node_Id;
181 Stat : out Boolean;
182 Fold : out Boolean);
183 -- Tests to see if expression N whose single operand is Op1 is foldable,
184 -- i.e. the operand value is known at compile time. If the operation is
185 -- foldable, then Fold is True on return, and Stat indicates whether
186 -- the result is static (i.e. both operands were static). Note that it
187 -- is quite possible for Fold to be True, and Stat to be False, since
188 -- there are cases in which we know the value of an operand even though
189 -- it is not technically static (e.g. the static lower bound of a range
190 -- whose upper bound is non-static).
191 --
192 -- If Stat is set False on return, then Expression_Is_Foldable makes a
193 -- call to Check_Non_Static_Context on the operand. If Fold is False on
194 -- return, then all processing is complete, and the caller should
195 -- return, since there is nothing else to do.
196
197 procedure Test_Expression_Is_Foldable
198 (N : Node_Id;
199 Op1 : Node_Id;
200 Op2 : Node_Id;
201 Stat : out Boolean;
202 Fold : out Boolean);
203 -- Same processing, except applies to an expression N with two operands
204 -- Op1 and Op2.
205
206 procedure To_Bits (U : Uint; B : out Bits);
207 -- Converts a Uint value to a bit string of length B'Length
208
209 ------------------------------
210 -- Check_Non_Static_Context --
211 ------------------------------
212
213 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
214 T : constant Entity_Id := Etype (N);
215 Checks_On : constant Boolean :=
996ae0b0
RK
216 not Index_Checks_Suppressed (T)
217 and not Range_Checks_Suppressed (T);
218
219 begin
fbf5a39b 220 -- Ignore cases of non-scalar types or error types
996ae0b0 221
fbf5a39b 222 if T = Any_Type or else not Is_Scalar_Type (T) then
996ae0b0 223 return;
fbf5a39b 224 end if;
996ae0b0 225
fbf5a39b
AC
226 -- At this stage we have a scalar type. If we have an expression
227 -- that raises CE, then we already issued a warning or error msg
228 -- so there is nothing more to be done in this routine.
229
230 if Raises_Constraint_Error (N) then
231 return;
232 end if;
233
234 -- Now we have a scalar type which is not marked as raising a
235 -- constraint error exception. The main purpose of this routine
236 -- is to deal with static expressions appearing in a non-static
237 -- context. That means that if we do not have a static expression
238 -- then there is not much to do. The one case that we deal with
239 -- here is that if we have a floating-point value that is out of
240 -- range, then we post a warning that an infinity will result.
241
242 if not Is_Static_Expression (N) then
243 if Is_Floating_Point_Type (T)
244 and then Is_Out_Of_Range (N, Base_Type (T))
245 then
246 Error_Msg_N
247 ("?float value out of range, infinity will be generated", N);
248 end if;
996ae0b0 249
996ae0b0
RK
250 return;
251 end if;
252
253 -- Here we have the case of outer level static expression of
254 -- scalar type, where the processing of this procedure is needed.
255
256 -- For real types, this is where we convert the value to a machine
257 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
258 -- only need to do this if the parent is a constant declaration,
259 -- since in other cases, gigi should do the necessary conversion
260 -- correctly, but experimentation shows that this is not the case
261 -- on all machines, in particular if we do not convert all literals
262 -- to machine values in non-static contexts, then ACVC test C490001
263 -- fails on Sparc/Solaris and SGI/Irix.
264
265 if Nkind (N) = N_Real_Literal
266 and then not Is_Machine_Number (N)
267 and then not Is_Generic_Type (Etype (N))
268 and then Etype (N) /= Universal_Real
996ae0b0
RK
269 then
270 -- Check that value is in bounds before converting to machine
271 -- number, so as not to lose case where value overflows in the
272 -- least significant bit or less. See B490001.
273
274 if Is_Out_Of_Range (N, Base_Type (T)) then
275 Out_Of_Range (N);
276 return;
277 end if;
278
279 -- Note: we have to copy the node, to avoid problems with conformance
280 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
281
282 Rewrite (N, New_Copy (N));
283
284 if not Is_Floating_Point_Type (T) then
285 Set_Realval
286 (N, Corresponding_Integer_Value (N) * Small_Value (T));
287
288 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 289
fbf5a39b
AC
290 -- Note: even though RM 4.9(38) specifies biased rounding,
291 -- this has been modified by AI-100 in order to prevent
292 -- confusing differences in rounding between static and
293 -- non-static expressions. AI-100 specifies that the effect
294 -- of such rounding is implementation dependent, and in GNAT
295 -- we round to nearest even to match the run-time behavior.
996ae0b0 296
fbf5a39b
AC
297 Set_Realval
298 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
299 end if;
300
301 Set_Is_Machine_Number (N);
302 end if;
303
304 -- Check for out of range universal integer. This is a non-static
305 -- context, so the integer value must be in range of the runtime
306 -- representation of universal integers.
307
308 -- We do this only within an expression, because that is the only
309 -- case in which non-static universal integer values can occur, and
310 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
311 -- called in contexts like the expression of a number declaration where
312 -- we certainly want to allow out of range values.
313
314 if Etype (N) = Universal_Integer
315 and then Nkind (N) = N_Integer_Literal
316 and then Nkind (Parent (N)) in N_Subexpr
317 and then
318 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
319 or else
320 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
321 then
322 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
323 (N, "non-static universal integer value out of range?",
324 CE_Range_Check_Failed);
996ae0b0
RK
325
326 -- Check out of range of base type
327
328 elsif Is_Out_Of_Range (N, Base_Type (T)) then
329 Out_Of_Range (N);
330
331 -- Give warning if outside subtype (where one or both of the
332 -- bounds of the subtype is static). This warning is omitted
333 -- if the expression appears in a range that could be null
334 -- (warnings are handled elsewhere for this case).
335
336 elsif T /= Base_Type (T)
337 and then Nkind (Parent (N)) /= N_Range
338 then
339 if Is_In_Range (N, T) then
340 null;
341
342 elsif Is_Out_Of_Range (N, T) then
343 Apply_Compile_Time_Constraint_Error
07fc65c4 344 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
345
346 elsif Checks_On then
347 Enable_Range_Check (N);
348
349 else
350 Set_Do_Range_Check (N, False);
351 end if;
352 end if;
353 end Check_Non_Static_Context;
354
355 ---------------------------------
356 -- Check_String_Literal_Length --
357 ---------------------------------
358
359 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
360 begin
361 if not Raises_Constraint_Error (N)
362 and then Is_Constrained (Ttype)
363 then
364 if
365 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
366 then
367 Apply_Compile_Time_Constraint_Error
368 (N, "string length wrong for}?",
07fc65c4 369 CE_Length_Check_Failed,
996ae0b0
RK
370 Ent => Ttype,
371 Typ => Ttype);
372 end if;
373 end if;
374 end Check_String_Literal_Length;
375
376 --------------------------
377 -- Compile_Time_Compare --
378 --------------------------
379
fbf5a39b
AC
380 function Compile_Time_Compare
381 (L, R : Node_Id;
f44fe430 382 Rec : Boolean := False) return Compare_Result
fbf5a39b 383 is
996ae0b0
RK
384 Ltyp : constant Entity_Id := Etype (L);
385 Rtyp : constant Entity_Id := Etype (R);
386
387 procedure Compare_Decompose
388 (N : Node_Id;
389 R : out Node_Id;
390 V : out Uint);
b49365b2
RD
391 -- This procedure decomposes the node N into an expression node and a
392 -- signed offset, so that the value of N is equal to the value of R plus
393 -- the value V (which may be negative). If no such decomposition is
394 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
395
396 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
397 -- This function deals with replacing 'Last and 'First references with
398 -- their corresponding type bounds, which we then can compare. The
399 -- argument is the original node, the result is the identity, unless we
400 -- have a 'Last/'First reference in which case the value returned is the
401 -- appropriate type bound.
996ae0b0
RK
402
403 function Is_Same_Value (L, R : Node_Id) return Boolean;
404 -- Returns True iff L and R represent expressions that definitely
405 -- have identical (but not necessarily compile time known) values
406 -- Indeed the caller is expected to have already dealt with the
407 -- cases of compile time known values, so these are not tested here.
408
409 -----------------------
410 -- Compare_Decompose --
411 -----------------------
412
413 procedure Compare_Decompose
414 (N : Node_Id;
415 R : out Node_Id;
416 V : out Uint)
417 is
418 begin
419 if Nkind (N) = N_Op_Add
420 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
421 then
422 R := Left_Opnd (N);
423 V := Intval (Right_Opnd (N));
424 return;
425
426 elsif Nkind (N) = N_Op_Subtract
427 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
428 then
429 R := Left_Opnd (N);
430 V := UI_Negate (Intval (Right_Opnd (N)));
431 return;
432
433 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
434 if Attribute_Name (N) = Name_Succ then
435 R := First (Expressions (N));
436 V := Uint_1;
437 return;
438
439 elsif Attribute_Name (N) = Name_Pred then
440 R := First (Expressions (N));
441 V := Uint_Minus_1;
442 return;
443 end if;
444 end if;
445
446 R := N;
447 V := Uint_0;
448 end Compare_Decompose;
449
450 -------------------
451 -- Compare_Fixup --
452 -------------------
453
454 function Compare_Fixup (N : Node_Id) return Node_Id is
455 Indx : Node_Id;
456 Xtyp : Entity_Id;
457 Subs : Nat;
458
459 begin
460 if Nkind (N) = N_Attribute_Reference
461 and then (Attribute_Name (N) = Name_First
462 or else
463 Attribute_Name (N) = Name_Last)
464 then
465 Xtyp := Etype (Prefix (N));
466
467 -- If we have no type, then just abandon the attempt to do
468 -- a fixup, this is probably the result of some other error.
469
470 if No (Xtyp) then
471 return N;
472 end if;
473
474 -- Dereference an access type
475
476 if Is_Access_Type (Xtyp) then
477 Xtyp := Designated_Type (Xtyp);
478 end if;
479
480 -- If we don't have an array type at this stage, something
481 -- is peculiar, e.g. another error, and we abandon the attempt
482 -- at a fixup.
483
484 if not Is_Array_Type (Xtyp) then
485 return N;
486 end if;
487
488 -- Ignore unconstrained array, since bounds are not meaningful
489
490 if not Is_Constrained (Xtyp) then
491 return N;
492 end if;
493
c3de5c4c
ES
494 if Ekind (Xtyp) = E_String_Literal_Subtype then
495 if Attribute_Name (N) = Name_First then
496 return String_Literal_Low_Bound (Xtyp);
497
498 else -- Attribute_Name (N) = Name_Last
499 return Make_Integer_Literal (Sloc (N),
500 Intval => Intval (String_Literal_Low_Bound (Xtyp))
501 + String_Literal_Length (Xtyp));
502 end if;
503 end if;
504
996ae0b0
RK
505 -- Find correct index type
506
507 Indx := First_Index (Xtyp);
508
509 if Present (Expressions (N)) then
510 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
511
512 for J in 2 .. Subs loop
513 Indx := Next_Index (Indx);
514 end loop;
515 end if;
516
517 Xtyp := Etype (Indx);
518
519 if Attribute_Name (N) = Name_First then
520 return Type_Low_Bound (Xtyp);
521
522 else -- Attribute_Name (N) = Name_Last
523 return Type_High_Bound (Xtyp);
524 end if;
525 end if;
526
527 return N;
528 end Compare_Fixup;
529
530 -------------------
531 -- Is_Same_Value --
532 -------------------
533
534 function Is_Same_Value (L, R : Node_Id) return Boolean is
535 Lf : constant Node_Id := Compare_Fixup (L);
536 Rf : constant Node_Id := Compare_Fixup (R);
537
fbf5a39b
AC
538 function Is_Same_Subscript (L, R : List_Id) return Boolean;
539 -- L, R are the Expressions values from two attribute nodes
540 -- for First or Last attributes. Either may be set to No_List
541 -- if no expressions are present (indicating subscript 1).
542 -- The result is True if both expressions represent the same
543 -- subscript (note that one case is where one subscript is
544 -- missing and the other is explicitly set to 1).
545
546 -----------------------
547 -- Is_Same_Subscript --
548 -----------------------
549
550 function Is_Same_Subscript (L, R : List_Id) return Boolean is
551 begin
552 if L = No_List then
553 if R = No_List then
554 return True;
555 else
556 return Expr_Value (First (R)) = Uint_1;
557 end if;
558
559 else
560 if R = No_List then
561 return Expr_Value (First (L)) = Uint_1;
562 else
563 return Expr_Value (First (L)) = Expr_Value (First (R));
564 end if;
565 end if;
566 end Is_Same_Subscript;
567
568 -- Start of processing for Is_Same_Value
569
996ae0b0 570 begin
b49365b2
RD
571 -- Values are the same if they refer to the same entity and the
572 -- entity is a constant object (E_Constant). This does not however
573 -- apply to Float types, since we may have two NaN values and they
574 -- should never compare equal.
996ae0b0 575
b49365b2
RD
576 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
577 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 578 and then Entity (Lf) = Entity (Rf)
b49365b2 579 and then Present (Entity (Lf))
fbf5a39b 580 and then not Is_Floating_Point_Type (Etype (L))
45fc7ddb 581 and then Is_Constant_Object (Entity (Lf))
996ae0b0
RK
582 then
583 return True;
584
585 -- Or if they are compile time known and identical
586
587 elsif Compile_Time_Known_Value (Lf)
588 and then
589 Compile_Time_Known_Value (Rf)
590 and then Expr_Value (Lf) = Expr_Value (Rf)
591 then
592 return True;
593
b49365b2
RD
594 -- False if Nkind of the two nodes is different for remaining cases
595
596 elsif Nkind (Lf) /= Nkind (Rf) then
597 return False;
598
599 -- True if both 'First or 'Last values applying to the same entity
600 -- (first and last don't change even if value does). Note that we
601 -- need this even with the calls to Compare_Fixup, to handle the
602 -- case of unconstrained array attributes where Compare_Fixup
603 -- cannot find useful bounds.
996ae0b0
RK
604
605 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0
RK
606 and then Attribute_Name (Lf) = Attribute_Name (Rf)
607 and then (Attribute_Name (Lf) = Name_First
608 or else
609 Attribute_Name (Lf) = Name_Last)
b49365b2
RD
610 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
611 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 612 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 613 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
614 then
615 return True;
616
b49365b2
RD
617 -- True if the same selected component from the same record
618
619 elsif Nkind (Lf) = N_Selected_Component
620 and then Selector_Name (Lf) = Selector_Name (Rf)
621 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
622 then
623 return True;
624
625 -- True if the same unary operator applied to the same operand
626
627 elsif Nkind (Lf) in N_Unary_Op
628 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
629 then
630 return True;
631
8682d22c 632 -- True if the same binary operator applied to the same operands
b49365b2
RD
633
634 elsif Nkind (Lf) in N_Binary_Op
635 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
636 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
637 then
638 return True;
639
8682d22c 640 -- All other cases, we can't tell, so return False
996ae0b0
RK
641
642 else
643 return False;
644 end if;
645 end Is_Same_Value;
646
647 -- Start of processing for Compile_Time_Compare
648
649 begin
07fc65c4
GB
650 -- If either operand could raise constraint error, then we cannot
651 -- know the result at compile time (since CE may be raised!)
652
653 if not (Cannot_Raise_Constraint_Error (L)
654 and then
655 Cannot_Raise_Constraint_Error (R))
656 then
657 return Unknown;
658 end if;
659
660 -- Identical operands are most certainly equal
661
996ae0b0
RK
662 if L = R then
663 return EQ;
664
665 -- If expressions have no types, then do not attempt to determine
666 -- if they are the same, since something funny is going on. One
667 -- case in which this happens is during generic template analysis,
668 -- when bounds are not fully analyzed.
669
670 elsif No (Ltyp) or else No (Rtyp) then
671 return Unknown;
672
fbf5a39b
AC
673 -- We only attempt compile time analysis for scalar values, and
674 -- not for packed arrays represented as modular types, where the
675 -- semantics of comparison is quite different.
996ae0b0
RK
676
677 elsif not Is_Scalar_Type (Ltyp)
678 or else Is_Packed_Array_Type (Ltyp)
679 then
680 return Unknown;
681
682 -- Case where comparison involves two compile time known values
683
684 elsif Compile_Time_Known_Value (L)
685 and then Compile_Time_Known_Value (R)
686 then
687 -- For the floating-point case, we have to be a little careful, since
688 -- at compile time we are dealing with universal exact values, but at
689 -- runtime, these will be in non-exact target form. That's why the
690 -- returned results are LE and GE below instead of LT and GT.
691
692 if Is_Floating_Point_Type (Ltyp)
693 or else
694 Is_Floating_Point_Type (Rtyp)
695 then
696 declare
697 Lo : constant Ureal := Expr_Value_R (L);
698 Hi : constant Ureal := Expr_Value_R (R);
699
700 begin
701 if Lo < Hi then
702 return LE;
703 elsif Lo = Hi then
704 return EQ;
705 else
706 return GE;
707 end if;
708 end;
709
710 -- For the integer case we know exactly (note that this includes the
711 -- fixed-point case, where we know the run time integer values now)
712
713 else
714 declare
715 Lo : constant Uint := Expr_Value (L);
716 Hi : constant Uint := Expr_Value (R);
717
718 begin
719 if Lo < Hi then
720 return LT;
721 elsif Lo = Hi then
722 return EQ;
723 else
724 return GT;
725 end if;
726 end;
727 end if;
728
729 -- Cases where at least one operand is not known at compile time
730
731 else
29797f34
RD
732 -- Remaining checks apply only for non-generic discrete types
733
734 if not Is_Discrete_Type (Ltyp)
735 or else not Is_Discrete_Type (Rtyp)
736 or else Is_Generic_Type (Ltyp)
737 or else Is_Generic_Type (Rtyp)
738 then
739 return Unknown;
740 end if;
741
996ae0b0
RK
742 -- Here is where we check for comparisons against maximum bounds of
743 -- types, where we know that no value can be outside the bounds of
744 -- the subtype. Note that this routine is allowed to assume that all
745 -- expressions are within their subtype bounds. Callers wishing to
746 -- deal with possibly invalid values must in any case take special
747 -- steps (e.g. conversions to larger types) to avoid this kind of
748 -- optimization, which is always considered to be valid. We do not
749 -- attempt this optimization with generic types, since the type
750 -- bounds may not be meaningful in this case.
751
29797f34 752 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
753 -- useful to go more than one level deep, so the parameter Rec is
754 -- used to protect ourselves against this infinite recursion.
755
29797f34
RD
756 if not Rec then
757
fbf5a39b
AC
758 -- See if we can get a decisive check against one operand and
759 -- a bound of the other operand (four possible tests here).
760
761 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp), True) is
762 when LT => return LT;
763 when LE => return LE;
764 when EQ => return LE;
765 when others => null;
766 end case;
996ae0b0 767
fbf5a39b
AC
768 case Compile_Time_Compare (L, Type_High_Bound (Rtyp), True) is
769 when GT => return GT;
770 when GE => return GE;
771 when EQ => return GE;
772 when others => null;
773 end case;
996ae0b0 774
fbf5a39b
AC
775 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R, True) is
776 when GT => return GT;
777 when GE => return GE;
778 when EQ => return GE;
779 when others => null;
780 end case;
996ae0b0 781
fbf5a39b
AC
782 case Compile_Time_Compare (Type_High_Bound (Ltyp), R, True) is
783 when LT => return LT;
784 when LE => return LE;
785 when EQ => return LE;
786 when others => null;
787 end case;
996ae0b0
RK
788 end if;
789
790 -- Next attempt is to decompose the expressions to extract
791 -- a constant offset resulting from the use of any of the forms:
792
793 -- expr + literal
794 -- expr - literal
795 -- typ'Succ (expr)
796 -- typ'Pred (expr)
797
798 -- Then we see if the two expressions are the same value, and if so
799 -- the result is obtained by comparing the offsets.
800
801 declare
802 Lnode : Node_Id;
803 Loffs : Uint;
804 Rnode : Node_Id;
805 Roffs : Uint;
806
807 begin
808 Compare_Decompose (L, Lnode, Loffs);
809 Compare_Decompose (R, Rnode, Roffs);
810
811 if Is_Same_Value (Lnode, Rnode) then
812 if Loffs = Roffs then
813 return EQ;
814
815 elsif Loffs < Roffs then
816 return LT;
817
818 else
819 return GT;
820 end if;
29797f34
RD
821 end if;
822 end;
823
824 -- Next attempt is to see if we have an entity compared with a
825 -- compile time known value, where there is a current value
826 -- conditional for the entity which can tell us the result.
827
828 declare
829 Var : Node_Id;
830 -- Entity variable (left operand)
831
832 Val : Uint;
833 -- Value (right operand)
834
835 Inv : Boolean;
836 -- If False, we have reversed the operands
837
838 Op : Node_Kind;
839 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 840
29797f34
RD
841 Opn : Node_Id;
842 -- Value from Get_Current_Value_Condition call
843
844 Opv : Uint;
845 -- Value of Opn
846
847 Result : Compare_Result;
848 -- Known result before inversion
849
850 begin
851 if Is_Entity_Name (L)
852 and then Compile_Time_Known_Value (R)
853 then
854 Var := L;
855 Val := Expr_Value (R);
856 Inv := False;
857
858 elsif Is_Entity_Name (R)
859 and then Compile_Time_Known_Value (L)
860 then
861 Var := R;
862 Val := Expr_Value (L);
863 Inv := True;
864
865 -- That was the last chance at finding a compile time result
996ae0b0
RK
866
867 else
868 return Unknown;
869 end if;
29797f34
RD
870
871 Get_Current_Value_Condition (Var, Op, Opn);
872
873 -- That was the last chance, so if we got nothing return
874
875 if No (Opn) then
876 return Unknown;
877 end if;
878
879 Opv := Expr_Value (Opn);
880
881 -- We got a comparison, so we might have something interesting
882
883 -- Convert LE to LT and GE to GT, just so we have fewer cases
884
885 if Op = N_Op_Le then
886 Op := N_Op_Lt;
887 Opv := Opv + 1;
888 elsif Op = N_Op_Ge then
889 Op := N_Op_Gt;
890 Opv := Opv - 1;
891 end if;
892
893 -- Deal with equality case
894
895 if Op = N_Op_Eq then
896 if Val = Opv then
897 Result := EQ;
898 elsif Opv < Val then
899 Result := LT;
900 else
901 Result := GT;
902 end if;
903
904 -- Deal with inequality case
905
906 elsif Op = N_Op_Ne then
907 if Val = Opv then
908 Result := NE;
909 else
910 return Unknown;
911 end if;
912
913 -- Deal with greater than case
914
915 elsif Op = N_Op_Gt then
916 if Opv >= Val then
917 Result := GT;
918 elsif Opv = Val - 1 then
919 Result := GE;
920 else
921 return Unknown;
922 end if;
923
924 -- Deal with less than case
925
926 else pragma Assert (Op = N_Op_Lt);
927 if Opv <= Val then
928 Result := LT;
929 elsif Opv = Val + 1 then
930 Result := LE;
931 else
932 return Unknown;
933 end if;
934 end if;
935
936 -- Deal with inverting result
937
938 if Inv then
939 case Result is
940 when GT => return LT;
941 when GE => return LE;
942 when LT => return GT;
943 when LE => return GE;
944 when others => return Result;
945 end case;
946 end if;
947
948 return Result;
996ae0b0
RK
949 end;
950 end if;
951 end Compile_Time_Compare;
952
f44fe430
RD
953 -------------------------------
954 -- Compile_Time_Known_Bounds --
955 -------------------------------
956
957 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
958 Indx : Node_Id;
959 Typ : Entity_Id;
960
961 begin
962 if not Is_Array_Type (T) then
963 return False;
964 end if;
965
966 Indx := First_Index (T);
967 while Present (Indx) loop
968 Typ := Underlying_Type (Etype (Indx));
969 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
970 return False;
971 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
972 return False;
973 else
974 Next_Index (Indx);
975 end if;
976 end loop;
977
978 return True;
979 end Compile_Time_Known_Bounds;
980
996ae0b0
RK
981 ------------------------------
982 -- Compile_Time_Known_Value --
983 ------------------------------
984
985 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
986 K : constant Node_Kind := Nkind (Op);
987 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
988
989 begin
990 -- Never known at compile time if bad type or raises constraint error
991 -- or empty (latter case occurs only as a result of a previous error)
992
993 if No (Op)
994 or else Op = Error
995 or else Etype (Op) = Any_Type
996 or else Raises_Constraint_Error (Op)
997 then
998 return False;
999 end if;
1000
597d7158
GD
1001 -- If this is not a static expression or a null literal, and we are in
1002 -- configurable run-time mode, then we consider it not known at compile
1003 -- time. This avoids anomalies where whether something is allowed with a
1004 -- given configurable run-time library depends on how good the compiler
1005 -- is at optimizing and knowing that things are constant when they are
1006 -- nonstatic.
1007
1008 if Configurable_Run_Time_Mode
1009 and then K /= N_Null
1010 and then not Is_Static_Expression (Op)
1011 then
fbf5a39b
AC
1012 return False;
1013 end if;
1014
996ae0b0
RK
1015 -- If we have an entity name, then see if it is the name of a constant
1016 -- and if so, test the corresponding constant value, or the name of
1017 -- an enumeration literal, which is always a constant.
1018
1019 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1020 declare
1021 E : constant Entity_Id := Entity (Op);
1022 V : Node_Id;
1023
1024 begin
1025 -- Never known at compile time if it is a packed array value.
1026 -- We might want to try to evaluate these at compile time one
1027 -- day, but we do not make that attempt now.
1028
1029 if Is_Packed_Array_Type (Etype (Op)) then
1030 return False;
1031 end if;
1032
1033 if Ekind (E) = E_Enumeration_Literal then
1034 return True;
1035
07fc65c4 1036 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1037 V := Constant_Value (E);
1038 return Present (V) and then Compile_Time_Known_Value (V);
1039 end if;
1040 end;
1041
1042 -- We have a value, see if it is compile time known
1043
1044 else
07fc65c4 1045 -- Integer literals are worth storing in the cache
996ae0b0 1046
07fc65c4
GB
1047 if K = N_Integer_Literal then
1048 CV_Ent.N := Op;
1049 CV_Ent.V := Intval (Op);
1050 return True;
1051
1052 -- Other literals and NULL are known at compile time
1053
1054 elsif
996ae0b0
RK
1055 K = N_Character_Literal
1056 or else
1057 K = N_Real_Literal
1058 or else
1059 K = N_String_Literal
1060 or else
1061 K = N_Null
1062 then
1063 return True;
1064
1065 -- Any reference to Null_Parameter is known at compile time. No
1066 -- other attribute references (that have not already been folded)
1067 -- are known at compile time.
1068
1069 elsif K = N_Attribute_Reference then
1070 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1071 end if;
996ae0b0 1072 end if;
07fc65c4
GB
1073
1074 -- If we fall through, not known at compile time
1075
1076 return False;
1077
1078 -- If we get an exception while trying to do this test, then some error
1079 -- has occurred, and we simply say that the value is not known after all
1080
1081 exception
1082 when others =>
1083 return False;
996ae0b0
RK
1084 end Compile_Time_Known_Value;
1085
1086 --------------------------------------
1087 -- Compile_Time_Known_Value_Or_Aggr --
1088 --------------------------------------
1089
1090 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1091 begin
1092 -- If we have an entity name, then see if it is the name of a constant
1093 -- and if so, test the corresponding constant value, or the name of
1094 -- an enumeration literal, which is always a constant.
1095
1096 if Is_Entity_Name (Op) then
1097 declare
1098 E : constant Entity_Id := Entity (Op);
1099 V : Node_Id;
1100
1101 begin
1102 if Ekind (E) = E_Enumeration_Literal then
1103 return True;
1104
1105 elsif Ekind (E) /= E_Constant then
1106 return False;
1107
1108 else
1109 V := Constant_Value (E);
1110 return Present (V)
1111 and then Compile_Time_Known_Value_Or_Aggr (V);
1112 end if;
1113 end;
1114
1115 -- We have a value, see if it is compile time known
1116
1117 else
1118 if Compile_Time_Known_Value (Op) then
1119 return True;
1120
1121 elsif Nkind (Op) = N_Aggregate then
1122
1123 if Present (Expressions (Op)) then
1124 declare
1125 Expr : Node_Id;
1126
1127 begin
1128 Expr := First (Expressions (Op));
1129 while Present (Expr) loop
1130 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1131 return False;
1132 end if;
1133
1134 Next (Expr);
1135 end loop;
1136 end;
1137 end if;
1138
1139 if Present (Component_Associations (Op)) then
1140 declare
1141 Cass : Node_Id;
1142
1143 begin
1144 Cass := First (Component_Associations (Op));
1145 while Present (Cass) loop
1146 if not
1147 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1148 then
1149 return False;
1150 end if;
1151
1152 Next (Cass);
1153 end loop;
1154 end;
1155 end if;
1156
1157 return True;
1158
1159 -- All other types of values are not known at compile time
1160
1161 else
1162 return False;
1163 end if;
1164
1165 end if;
1166 end Compile_Time_Known_Value_Or_Aggr;
1167
1168 -----------------
1169 -- Eval_Actual --
1170 -----------------
1171
1172 -- This is only called for actuals of functions that are not predefined
1173 -- operators (which have already been rewritten as operators at this
1174 -- stage), so the call can never be folded, and all that needs doing for
1175 -- the actual is to do the check for a non-static context.
1176
1177 procedure Eval_Actual (N : Node_Id) is
1178 begin
1179 Check_Non_Static_Context (N);
1180 end Eval_Actual;
1181
1182 --------------------
1183 -- Eval_Allocator --
1184 --------------------
1185
1186 -- Allocators are never static, so all we have to do is to do the
1187 -- check for a non-static context if an expression is present.
1188
1189 procedure Eval_Allocator (N : Node_Id) is
1190 Expr : constant Node_Id := Expression (N);
1191
1192 begin
1193 if Nkind (Expr) = N_Qualified_Expression then
1194 Check_Non_Static_Context (Expression (Expr));
1195 end if;
1196 end Eval_Allocator;
1197
1198 ------------------------
1199 -- Eval_Arithmetic_Op --
1200 ------------------------
1201
1202 -- Arithmetic operations are static functions, so the result is static
1203 -- if both operands are static (RM 4.9(7), 4.9(20)).
1204
1205 procedure Eval_Arithmetic_Op (N : Node_Id) is
1206 Left : constant Node_Id := Left_Opnd (N);
1207 Right : constant Node_Id := Right_Opnd (N);
1208 Ltype : constant Entity_Id := Etype (Left);
1209 Rtype : constant Entity_Id := Etype (Right);
1210 Stat : Boolean;
1211 Fold : Boolean;
1212
1213 begin
1214 -- If not foldable we are done
1215
1216 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1217
1218 if not Fold then
1219 return;
1220 end if;
1221
1222 -- Fold for cases where both operands are of integer type
1223
1224 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1225 declare
1226 Left_Int : constant Uint := Expr_Value (Left);
1227 Right_Int : constant Uint := Expr_Value (Right);
1228 Result : Uint;
1229
1230 begin
1231 case Nkind (N) is
1232
1233 when N_Op_Add =>
1234 Result := Left_Int + Right_Int;
1235
1236 when N_Op_Subtract =>
1237 Result := Left_Int - Right_Int;
1238
1239 when N_Op_Multiply =>
1240 if OK_Bits
1241 (N, UI_From_Int
1242 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1243 then
1244 Result := Left_Int * Right_Int;
1245 else
1246 Result := Left_Int;
1247 end if;
1248
1249 when N_Op_Divide =>
1250
1251 -- The exception Constraint_Error is raised by integer
1252 -- division, rem and mod if the right operand is zero.
1253
1254 if Right_Int = 0 then
1255 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1256 (N, "division by zero",
1257 CE_Divide_By_Zero,
1258 Warn => not Stat);
996ae0b0 1259 return;
fbf5a39b 1260
996ae0b0
RK
1261 else
1262 Result := Left_Int / Right_Int;
1263 end if;
1264
1265 when N_Op_Mod =>
1266
1267 -- The exception Constraint_Error is raised by integer
1268 -- division, rem and mod if the right operand is zero.
1269
1270 if Right_Int = 0 then
1271 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1272 (N, "mod with zero divisor",
1273 CE_Divide_By_Zero,
1274 Warn => not Stat);
996ae0b0
RK
1275 return;
1276 else
1277 Result := Left_Int mod Right_Int;
1278 end if;
1279
1280 when N_Op_Rem =>
1281
1282 -- The exception Constraint_Error is raised by integer
1283 -- division, rem and mod if the right operand is zero.
1284
1285 if Right_Int = 0 then
1286 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1287 (N, "rem with zero divisor",
1288 CE_Divide_By_Zero,
1289 Warn => not Stat);
996ae0b0 1290 return;
fbf5a39b 1291
996ae0b0
RK
1292 else
1293 Result := Left_Int rem Right_Int;
1294 end if;
1295
1296 when others =>
1297 raise Program_Error;
1298 end case;
1299
1300 -- Adjust the result by the modulus if the type is a modular type
1301
1302 if Is_Modular_Integer_Type (Ltype) then
1303 Result := Result mod Modulus (Ltype);
82c80734
RD
1304
1305 -- For a signed integer type, check non-static overflow
1306
1307 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1308 declare
1309 BT : constant Entity_Id := Base_Type (Ltype);
1310 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1311 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1312 begin
1313 if Result < Lo or else Result > Hi then
1314 Apply_Compile_Time_Constraint_Error
1315 (N, "value not in range of }?",
1316 CE_Overflow_Check_Failed,
1317 Ent => BT);
1318 return;
1319 end if;
1320 end;
996ae0b0
RK
1321 end if;
1322
82c80734
RD
1323 -- If we get here we can fold the result
1324
fbf5a39b 1325 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1326 end;
1327
1328 -- Cases where at least one operand is a real. We handle the cases
1329 -- of both reals, or mixed/real integer cases (the latter happen
1330 -- only for divide and multiply, and the result is always real).
1331
1332 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1333 declare
1334 Left_Real : Ureal;
1335 Right_Real : Ureal;
1336 Result : Ureal;
1337
1338 begin
1339 if Is_Real_Type (Ltype) then
1340 Left_Real := Expr_Value_R (Left);
1341 else
1342 Left_Real := UR_From_Uint (Expr_Value (Left));
1343 end if;
1344
1345 if Is_Real_Type (Rtype) then
1346 Right_Real := Expr_Value_R (Right);
1347 else
1348 Right_Real := UR_From_Uint (Expr_Value (Right));
1349 end if;
1350
1351 if Nkind (N) = N_Op_Add then
1352 Result := Left_Real + Right_Real;
1353
1354 elsif Nkind (N) = N_Op_Subtract then
1355 Result := Left_Real - Right_Real;
1356
1357 elsif Nkind (N) = N_Op_Multiply then
1358 Result := Left_Real * Right_Real;
1359
1360 else pragma Assert (Nkind (N) = N_Op_Divide);
1361 if UR_Is_Zero (Right_Real) then
1362 Apply_Compile_Time_Constraint_Error
07fc65c4 1363 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1364 return;
1365 end if;
1366
1367 Result := Left_Real / Right_Real;
1368 end if;
1369
fbf5a39b 1370 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1371 end;
1372 end if;
996ae0b0
RK
1373 end Eval_Arithmetic_Op;
1374
1375 ----------------------------
1376 -- Eval_Character_Literal --
1377 ----------------------------
1378
1379 -- Nothing to be done!
1380
1381 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1382 pragma Warnings (Off, N);
996ae0b0
RK
1383 begin
1384 null;
1385 end Eval_Character_Literal;
1386
c01a9391
AC
1387 ---------------
1388 -- Eval_Call --
1389 ---------------
1390
1391 -- Static function calls are either calls to predefined operators
1392 -- with static arguments, or calls to functions that rename a literal.
1393 -- Only the latter case is handled here, predefined operators are
1394 -- constant-folded elsewhere.
29797f34 1395
c01a9391
AC
1396 -- If the function is itself inherited (see 7423-001) the literal of
1397 -- the parent type must be explicitly converted to the return type
1398 -- of the function.
1399
1400 procedure Eval_Call (N : Node_Id) is
1401 Loc : constant Source_Ptr := Sloc (N);
1402 Typ : constant Entity_Id := Etype (N);
1403 Lit : Entity_Id;
1404
1405 begin
1406 if Nkind (N) = N_Function_Call
1407 and then No (Parameter_Associations (N))
1408 and then Is_Entity_Name (Name (N))
1409 and then Present (Alias (Entity (Name (N))))
1410 and then Is_Enumeration_Type (Base_Type (Typ))
1411 then
1412 Lit := Alias (Entity (Name (N)));
c01a9391
AC
1413 while Present (Alias (Lit)) loop
1414 Lit := Alias (Lit);
1415 end loop;
1416
1417 if Ekind (Lit) = E_Enumeration_Literal then
1418 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1419 Rewrite
1420 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1421 else
1422 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1423 end if;
1424
1425 Resolve (N, Typ);
1426 end if;
1427 end if;
1428 end Eval_Call;
1429
996ae0b0
RK
1430 ------------------------
1431 -- Eval_Concatenation --
1432 ------------------------
1433
1434 -- Concatenation is a static function, so the result is static if
1435 -- both operands are static (RM 4.9(7), 4.9(21)).
1436
1437 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1438 Left : constant Node_Id := Left_Opnd (N);
1439 Right : constant Node_Id := Right_Opnd (N);
1440 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1441 Stat : Boolean;
1442 Fold : Boolean;
996ae0b0
RK
1443
1444 begin
1445 -- Concatenation is never static in Ada 83, so if Ada 83
1446 -- check operand non-static context
1447
0ab80019 1448 if Ada_Version = Ada_83
996ae0b0
RK
1449 and then Comes_From_Source (N)
1450 then
1451 Check_Non_Static_Context (Left);
1452 Check_Non_Static_Context (Right);
1453 return;
1454 end if;
1455
1456 -- If not foldable we are done. In principle concatenation that yields
1457 -- any string type is static (i.e. an array type of character types).
1458 -- However, character types can include enumeration literals, and
1459 -- concatenation in that case cannot be described by a literal, so we
1460 -- only consider the operation static if the result is an array of
1461 -- (a descendant of) a predefined character type.
1462
1463 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1464
45fc7ddb 1465 if Is_Standard_Character_Type (C_Typ)
996ae0b0
RK
1466 and then Fold
1467 then
1468 null;
1469 else
1470 Set_Is_Static_Expression (N, False);
1471 return;
1472 end if;
1473
82c80734 1474 -- Compile time string concatenation
996ae0b0
RK
1475
1476 -- ??? Note that operands that are aggregates can be marked as
1477 -- static, so we should attempt at a later stage to fold
1478 -- concatenations with such aggregates.
1479
1480 declare
b54ddf5a
BD
1481 Left_Str : constant Node_Id := Get_String_Val (Left);
1482 Left_Len : Nat;
1483 Right_Str : constant Node_Id := Get_String_Val (Right);
1484 Folded_Val : String_Id;
996ae0b0
RK
1485
1486 begin
1487 -- Establish new string literal, and store left operand. We make
1488 -- sure to use the special Start_String that takes an operand if
1489 -- the left operand is a string literal. Since this is optimized
1490 -- in the case where that is the most recently created string
1491 -- literal, we ensure efficient time/space behavior for the
1492 -- case of a concatenation of a series of string literals.
1493
1494 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1495 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
1496
1497 -- If the left operand is the empty string, and the right operand
1498 -- is a string literal (the case of "" & "..."), the result is the
1499 -- value of the right operand. This optimization is important when
1500 -- Is_Folded_In_Parser, to avoid copying an enormous right
1501 -- operand.
1502
1503 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1504 Folded_Val := Strval (Right_Str);
1505 else
1506 Start_String (Strval (Left_Str));
1507 end if;
1508
996ae0b0
RK
1509 else
1510 Start_String;
82c80734 1511 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1512 Left_Len := 1;
996ae0b0
RK
1513 end if;
1514
b54ddf5a
BD
1515 -- Now append the characters of the right operand, unless we
1516 -- optimized the "" & "..." case above.
996ae0b0
RK
1517
1518 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
1519 if Left_Len /= 0 then
1520 Store_String_Chars (Strval (Right_Str));
1521 Folded_Val := End_String;
1522 end if;
996ae0b0 1523 else
82c80734 1524 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 1525 Folded_Val := End_String;
996ae0b0
RK
1526 end if;
1527
1528 Set_Is_Static_Expression (N, Stat);
1529
1530 if Stat then
f91b40db
GB
1531
1532 -- If left operand is the empty string, the result is the
1533 -- right operand, including its bounds if anomalous.
1534
1535 if Left_Len = 0
1536 and then Is_Array_Type (Etype (Right))
1537 and then Etype (Right) /= Any_String
1538 then
1539 Set_Etype (N, Etype (Right));
1540 end if;
1541
b54ddf5a 1542 Fold_Str (N, Folded_Val, Static => True);
996ae0b0
RK
1543 end if;
1544 end;
1545 end Eval_Concatenation;
1546
1547 ---------------------------------
1548 -- Eval_Conditional_Expression --
1549 ---------------------------------
1550
1551 -- This GNAT internal construct can never be statically folded, so the
1552 -- only required processing is to do the check for non-static context
1553 -- for the two expression operands.
1554
1555 procedure Eval_Conditional_Expression (N : Node_Id) is
1556 Condition : constant Node_Id := First (Expressions (N));
1557 Then_Expr : constant Node_Id := Next (Condition);
1558 Else_Expr : constant Node_Id := Next (Then_Expr);
1559
1560 begin
1561 Check_Non_Static_Context (Then_Expr);
1562 Check_Non_Static_Context (Else_Expr);
1563 end Eval_Conditional_Expression;
1564
1565 ----------------------
1566 -- Eval_Entity_Name --
1567 ----------------------
1568
1569 -- This procedure is used for identifiers and expanded names other than
1570 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1571 -- static if they denote a static constant (RM 4.9(6)) or if the name
1572 -- denotes an enumeration literal (RM 4.9(22)).
1573
1574 procedure Eval_Entity_Name (N : Node_Id) is
1575 Def_Id : constant Entity_Id := Entity (N);
1576 Val : Node_Id;
1577
1578 begin
1579 -- Enumeration literals are always considered to be constants
1580 -- and cannot raise constraint error (RM 4.9(22)).
1581
1582 if Ekind (Def_Id) = E_Enumeration_Literal then
1583 Set_Is_Static_Expression (N);
1584 return;
1585
1586 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1587 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1588 -- it does not violate 10.2.1(8) here, since this is not a variable.
1589
1590 elsif Ekind (Def_Id) = E_Constant then
1591
1592 -- Deferred constants must always be treated as nonstatic
1593 -- outside the scope of their full view.
1594
1595 if Present (Full_View (Def_Id))
1596 and then not In_Open_Scopes (Scope (Def_Id))
1597 then
1598 Val := Empty;
1599 else
1600 Val := Constant_Value (Def_Id);
1601 end if;
1602
1603 if Present (Val) then
1604 Set_Is_Static_Expression
1605 (N, Is_Static_Expression (Val)
1606 and then Is_Static_Subtype (Etype (Def_Id)));
1607 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1608
1609 if not Is_Static_Expression (N)
1610 and then not Is_Generic_Type (Etype (N))
1611 then
1612 Validate_Static_Object_Name (N);
1613 end if;
1614
1615 return;
1616 end if;
1617 end if;
1618
82c80734 1619 -- Fall through if the name is not static
996ae0b0
RK
1620
1621 Validate_Static_Object_Name (N);
1622 end Eval_Entity_Name;
1623
1624 ----------------------------
1625 -- Eval_Indexed_Component --
1626 ----------------------------
1627
8cbb664e
MG
1628 -- Indexed components are never static, so we need to perform the check
1629 -- for non-static context on the index values. Then, we check if the
1630 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
1631
1632 procedure Eval_Indexed_Component (N : Node_Id) is
1633 Expr : Node_Id;
1634
1635 begin
fbf5a39b
AC
1636 -- Check for non-static context on index values
1637
996ae0b0
RK
1638 Expr := First (Expressions (N));
1639 while Present (Expr) loop
1640 Check_Non_Static_Context (Expr);
1641 Next (Expr);
1642 end loop;
1643
fbf5a39b
AC
1644 -- If the indexed component appears in an object renaming declaration
1645 -- then we do not want to try to evaluate it, since in this case we
1646 -- need the identity of the array element.
1647
1648 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1649 return;
1650
1651 -- Similarly if the indexed component appears as the prefix of an
1652 -- attribute we don't want to evaluate it, because at least for
1653 -- some cases of attributes we need the identify (e.g. Access, Size)
1654
1655 elsif Nkind (Parent (N)) = N_Attribute_Reference then
1656 return;
1657 end if;
1658
1659 -- Note: there are other cases, such as the left side of an assignment,
1660 -- or an OUT parameter for a call, where the replacement results in the
1661 -- illegal use of a constant, But these cases are illegal in the first
1662 -- place, so the replacement, though silly, is harmless.
1663
1664 -- Now see if this is a constant array reference
8cbb664e
MG
1665
1666 if List_Length (Expressions (N)) = 1
1667 and then Is_Entity_Name (Prefix (N))
1668 and then Ekind (Entity (Prefix (N))) = E_Constant
1669 and then Present (Constant_Value (Entity (Prefix (N))))
1670 then
1671 declare
1672 Loc : constant Source_Ptr := Sloc (N);
1673 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
1674 Sub : constant Node_Id := First (Expressions (N));
1675
1676 Atyp : Entity_Id;
1677 -- Type of array
1678
1679 Lin : Nat;
1680 -- Linear one's origin subscript value for array reference
1681
1682 Lbd : Node_Id;
1683 -- Lower bound of the first array index
1684
1685 Elm : Node_Id;
1686 -- Value from constant array
1687
1688 begin
1689 Atyp := Etype (Arr);
1690
1691 if Is_Access_Type (Atyp) then
1692 Atyp := Designated_Type (Atyp);
1693 end if;
1694
1695 -- If we have an array type (we should have but perhaps there
1696 -- are error cases where this is not the case), then see if we
1697 -- can do a constant evaluation of the array reference.
1698
1699 if Is_Array_Type (Atyp) then
1700 if Ekind (Atyp) = E_String_Literal_Subtype then
1701 Lbd := String_Literal_Low_Bound (Atyp);
1702 else
1703 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
1704 end if;
1705
1706 if Compile_Time_Known_Value (Sub)
1707 and then Nkind (Arr) = N_Aggregate
1708 and then Compile_Time_Known_Value (Lbd)
1709 and then Is_Discrete_Type (Component_Type (Atyp))
1710 then
1711 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
1712
1713 if List_Length (Expressions (Arr)) >= Lin then
1714 Elm := Pick (Expressions (Arr), Lin);
1715
1716 -- If the resulting expression is compile time known,
1717 -- then we can rewrite the indexed component with this
1718 -- value, being sure to mark the result as non-static.
1719 -- We also reset the Sloc, in case this generates an
1720 -- error later on (e.g. 136'Access).
1721
1722 if Compile_Time_Known_Value (Elm) then
1723 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1724 Set_Is_Static_Expression (N, False);
1725 Set_Sloc (N, Loc);
1726 end if;
1727 end if;
1728 end if;
1729 end if;
1730 end;
1731 end if;
996ae0b0
RK
1732 end Eval_Indexed_Component;
1733
1734 --------------------------
1735 -- Eval_Integer_Literal --
1736 --------------------------
1737
1738 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1739 -- as static by the analyzer. The reason we did it that early is to allow
1740 -- the possibility of turning off the Is_Static_Expression flag after
1741 -- analysis, but before resolution, when integer literals are generated
1742 -- in the expander that do not correspond to static expressions.
1743
1744 procedure Eval_Integer_Literal (N : Node_Id) is
1745 T : constant Entity_Id := Etype (N);
1746
5d09245e
AC
1747 function In_Any_Integer_Context return Boolean;
1748 -- If the literal is resolved with a specific type in a context
1749 -- where the expected type is Any_Integer, there are no range checks
1750 -- on the literal. By the time the literal is evaluated, it carries
1751 -- the type imposed by the enclosing expression, and we must recover
1752 -- the context to determine that Any_Integer is meant.
1753
1754 ----------------------------
1755 -- To_Any_Integer_Context --
1756 ----------------------------
1757
1758 function In_Any_Integer_Context return Boolean is
1759 Par : constant Node_Id := Parent (N);
1760 K : constant Node_Kind := Nkind (Par);
1761
1762 begin
1763 -- Any_Integer also appears in digits specifications for real types,
1764 -- but those have bounds smaller that those of any integer base
1765 -- type, so we can safely ignore these cases.
1766
1767 return K = N_Number_Declaration
1768 or else K = N_Attribute_Reference
1769 or else K = N_Attribute_Definition_Clause
1770 or else K = N_Modular_Type_Definition
1771 or else K = N_Signed_Integer_Type_Definition;
1772 end In_Any_Integer_Context;
1773
1774 -- Start of processing for Eval_Integer_Literal
1775
996ae0b0 1776 begin
5d09245e 1777
996ae0b0
RK
1778 -- If the literal appears in a non-expression context, then it is
1779 -- certainly appearing in a non-static context, so check it. This
1780 -- is actually a redundant check, since Check_Non_Static_Context
1781 -- would check it, but it seems worth while avoiding the call.
1782
5d09245e
AC
1783 if Nkind (Parent (N)) not in N_Subexpr
1784 and then not In_Any_Integer_Context
1785 then
996ae0b0
RK
1786 Check_Non_Static_Context (N);
1787 end if;
1788
1789 -- Modular integer literals must be in their base range
1790
1791 if Is_Modular_Integer_Type (T)
1792 and then Is_Out_Of_Range (N, Base_Type (T))
1793 then
1794 Out_Of_Range (N);
1795 end if;
1796 end Eval_Integer_Literal;
1797
1798 ---------------------
1799 -- Eval_Logical_Op --
1800 ---------------------
1801
1802 -- Logical operations are static functions, so the result is potentially
1803 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1804
1805 procedure Eval_Logical_Op (N : Node_Id) is
1806 Left : constant Node_Id := Left_Opnd (N);
1807 Right : constant Node_Id := Right_Opnd (N);
1808 Stat : Boolean;
1809 Fold : Boolean;
1810
1811 begin
1812 -- If not foldable we are done
1813
1814 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1815
1816 if not Fold then
1817 return;
1818 end if;
1819
1820 -- Compile time evaluation of logical operation
1821
1822 declare
1823 Left_Int : constant Uint := Expr_Value (Left);
1824 Right_Int : constant Uint := Expr_Value (Right);
1825
1826 begin
1827 if Is_Modular_Integer_Type (Etype (N)) then
1828 declare
1829 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1830 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1831
1832 begin
1833 To_Bits (Left_Int, Left_Bits);
1834 To_Bits (Right_Int, Right_Bits);
1835
1836 -- Note: should really be able to use array ops instead of
1837 -- these loops, but they weren't working at the time ???
1838
1839 if Nkind (N) = N_Op_And then
1840 for J in Left_Bits'Range loop
1841 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
1842 end loop;
1843
1844 elsif Nkind (N) = N_Op_Or then
1845 for J in Left_Bits'Range loop
1846 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
1847 end loop;
1848
1849 else
1850 pragma Assert (Nkind (N) = N_Op_Xor);
1851
1852 for J in Left_Bits'Range loop
1853 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
1854 end loop;
1855 end if;
1856
fbf5a39b 1857 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
1858 end;
1859
1860 else
1861 pragma Assert (Is_Boolean_Type (Etype (N)));
1862
1863 if Nkind (N) = N_Op_And then
1864 Fold_Uint (N,
fbf5a39b 1865 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
1866
1867 elsif Nkind (N) = N_Op_Or then
1868 Fold_Uint (N,
fbf5a39b 1869 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
1870
1871 else
1872 pragma Assert (Nkind (N) = N_Op_Xor);
1873 Fold_Uint (N,
fbf5a39b 1874 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
1875 end if;
1876 end if;
996ae0b0
RK
1877 end;
1878 end Eval_Logical_Op;
1879
1880 ------------------------
1881 -- Eval_Membership_Op --
1882 ------------------------
1883
1884 -- A membership test is potentially static if the expression is static,
1885 -- and the range is a potentially static range, or is a subtype mark
1886 -- denoting a static subtype (RM 4.9(12)).
1887
1888 procedure Eval_Membership_Op (N : Node_Id) is
1889 Left : constant Node_Id := Left_Opnd (N);
1890 Right : constant Node_Id := Right_Opnd (N);
1891 Def_Id : Entity_Id;
1892 Lo : Node_Id;
1893 Hi : Node_Id;
1894 Result : Boolean;
1895 Stat : Boolean;
1896 Fold : Boolean;
1897
1898 begin
1899 -- Ignore if error in either operand, except to make sure that
1900 -- Any_Type is properly propagated to avoid junk cascaded errors.
1901
1902 if Etype (Left) = Any_Type
1903 or else Etype (Right) = Any_Type
1904 then
1905 Set_Etype (N, Any_Type);
1906 return;
1907 end if;
1908
1909 -- Case of right operand is a subtype name
1910
1911 if Is_Entity_Name (Right) then
1912 Def_Id := Entity (Right);
1913
1914 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
1915 and then Is_OK_Static_Subtype (Def_Id)
1916 then
1917 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1918
1919 if not Fold or else not Stat then
1920 return;
1921 end if;
1922 else
1923 Check_Non_Static_Context (Left);
1924 return;
1925 end if;
1926
1927 -- For string membership tests we will check the length
1928 -- further below.
1929
1930 if not Is_String_Type (Def_Id) then
1931 Lo := Type_Low_Bound (Def_Id);
1932 Hi := Type_High_Bound (Def_Id);
1933
1934 else
1935 Lo := Empty;
1936 Hi := Empty;
1937 end if;
1938
1939 -- Case of right operand is a range
1940
1941 else
1942 if Is_Static_Range (Right) then
1943 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1944
1945 if not Fold or else not Stat then
1946 return;
1947
1948 -- If one bound of range raises CE, then don't try to fold
1949
1950 elsif not Is_OK_Static_Range (Right) then
1951 Check_Non_Static_Context (Left);
1952 return;
1953 end if;
1954
1955 else
1956 Check_Non_Static_Context (Left);
1957 return;
1958 end if;
1959
1960 -- Here we know range is an OK static range
1961
1962 Lo := Low_Bound (Right);
1963 Hi := High_Bound (Right);
1964 end if;
1965
1966 -- For strings we check that the length of the string expression is
1967 -- compatible with the string subtype if the subtype is constrained,
1968 -- or if unconstrained then the test is always true.
1969
1970 if Is_String_Type (Etype (Right)) then
1971 if not Is_Constrained (Etype (Right)) then
1972 Result := True;
1973
1974 else
1975 declare
1976 Typlen : constant Uint := String_Type_Len (Etype (Right));
1977 Strlen : constant Uint :=
1978 UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
1979 begin
1980 Result := (Typlen = Strlen);
1981 end;
1982 end if;
1983
1984 -- Fold the membership test. We know we have a static range and Lo
1985 -- and Hi are set to the expressions for the end points of this range.
1986
1987 elsif Is_Real_Type (Etype (Right)) then
1988 declare
1989 Leftval : constant Ureal := Expr_Value_R (Left);
1990
1991 begin
1992 Result := Expr_Value_R (Lo) <= Leftval
1993 and then Leftval <= Expr_Value_R (Hi);
1994 end;
1995
1996 else
1997 declare
1998 Leftval : constant Uint := Expr_Value (Left);
1999
2000 begin
2001 Result := Expr_Value (Lo) <= Leftval
2002 and then Leftval <= Expr_Value (Hi);
2003 end;
2004 end if;
2005
2006 if Nkind (N) = N_Not_In then
2007 Result := not Result;
2008 end if;
2009
fbf5a39b 2010 Fold_Uint (N, Test (Result), True);
996ae0b0 2011 Warn_On_Known_Condition (N);
996ae0b0
RK
2012 end Eval_Membership_Op;
2013
2014 ------------------------
2015 -- Eval_Named_Integer --
2016 ------------------------
2017
2018 procedure Eval_Named_Integer (N : Node_Id) is
2019 begin
2020 Fold_Uint (N,
fbf5a39b 2021 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2022 end Eval_Named_Integer;
2023
2024 ---------------------
2025 -- Eval_Named_Real --
2026 ---------------------
2027
2028 procedure Eval_Named_Real (N : Node_Id) is
2029 begin
2030 Fold_Ureal (N,
fbf5a39b 2031 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2032 end Eval_Named_Real;
2033
2034 -------------------
2035 -- Eval_Op_Expon --
2036 -------------------
2037
2038 -- Exponentiation is a static functions, so the result is potentially
2039 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2040
2041 procedure Eval_Op_Expon (N : Node_Id) is
2042 Left : constant Node_Id := Left_Opnd (N);
2043 Right : constant Node_Id := Right_Opnd (N);
2044 Stat : Boolean;
2045 Fold : Boolean;
2046
2047 begin
2048 -- If not foldable we are done
2049
2050 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2051
2052 if not Fold then
2053 return;
2054 end if;
2055
2056 -- Fold exponentiation operation
2057
2058 declare
2059 Right_Int : constant Uint := Expr_Value (Right);
2060
2061 begin
2062 -- Integer case
2063
2064 if Is_Integer_Type (Etype (Left)) then
2065 declare
2066 Left_Int : constant Uint := Expr_Value (Left);
2067 Result : Uint;
2068
2069 begin
2070 -- Exponentiation of an integer raises the exception
2071 -- Constraint_Error for a negative exponent (RM 4.5.6)
2072
2073 if Right_Int < 0 then
2074 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2075 (N, "integer exponent negative",
2076 CE_Range_Check_Failed,
2077 Warn => not Stat);
996ae0b0
RK
2078 return;
2079
2080 else
2081 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2082 Result := Left_Int ** Right_Int;
2083 else
2084 Result := Left_Int;
2085 end if;
2086
2087 if Is_Modular_Integer_Type (Etype (N)) then
2088 Result := Result mod Modulus (Etype (N));
2089 end if;
2090
fbf5a39b 2091 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2092 end if;
2093 end;
2094
2095 -- Real case
2096
2097 else
2098 declare
2099 Left_Real : constant Ureal := Expr_Value_R (Left);
2100
2101 begin
2102 -- Cannot have a zero base with a negative exponent
2103
2104 if UR_Is_Zero (Left_Real) then
2105
2106 if Right_Int < 0 then
2107 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2108 (N, "zero ** negative integer",
2109 CE_Range_Check_Failed,
2110 Warn => not Stat);
996ae0b0
RK
2111 return;
2112 else
fbf5a39b 2113 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2114 end if;
2115
2116 else
fbf5a39b 2117 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2118 end if;
2119 end;
2120 end if;
996ae0b0
RK
2121 end;
2122 end Eval_Op_Expon;
2123
2124 -----------------
2125 -- Eval_Op_Not --
2126 -----------------
2127
2128 -- The not operation is a static functions, so the result is potentially
2129 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2130
2131 procedure Eval_Op_Not (N : Node_Id) is
2132 Right : constant Node_Id := Right_Opnd (N);
2133 Stat : Boolean;
2134 Fold : Boolean;
2135
2136 begin
2137 -- If not foldable we are done
2138
2139 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2140
2141 if not Fold then
2142 return;
2143 end if;
2144
2145 -- Fold not operation
2146
2147 declare
2148 Rint : constant Uint := Expr_Value (Right);
2149 Typ : constant Entity_Id := Etype (N);
2150
2151 begin
2152 -- Negation is equivalent to subtracting from the modulus minus
2153 -- one. For a binary modulus this is equivalent to the ones-
2154 -- component of the original value. For non-binary modulus this
2155 -- is an arbitrary but consistent definition.
2156
2157 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2158 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2159
2160 else
2161 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2162 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2163 end if;
2164
2165 Set_Is_Static_Expression (N, Stat);
2166 end;
2167 end Eval_Op_Not;
2168
2169 -------------------------------
2170 -- Eval_Qualified_Expression --
2171 -------------------------------
2172
2173 -- A qualified expression is potentially static if its subtype mark denotes
2174 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2175
2176 procedure Eval_Qualified_Expression (N : Node_Id) is
2177 Operand : constant Node_Id := Expression (N);
2178 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2179
07fc65c4
GB
2180 Stat : Boolean;
2181 Fold : Boolean;
2182 Hex : Boolean;
996ae0b0
RK
2183
2184 begin
2185 -- Can only fold if target is string or scalar and subtype is static
2186 -- Also, do not fold if our parent is an allocator (this is because
2187 -- the qualified expression is really part of the syntactic structure
2188 -- of an allocator, and we do not want to end up with something that
2189 -- corresponds to "new 1" where the 1 is the result of folding a
2190 -- qualified expression).
2191
2192 if not Is_Static_Subtype (Target_Type)
2193 or else Nkind (Parent (N)) = N_Allocator
2194 then
2195 Check_Non_Static_Context (Operand);
af152989
AC
2196
2197 -- If operand is known to raise constraint_error, set the
2198 -- flag on the expression so it does not get optimized away.
2199
2200 if Nkind (Operand) = N_Raise_Constraint_Error then
2201 Set_Raises_Constraint_Error (N);
2202 end if;
7324bf49 2203
996ae0b0
RK
2204 return;
2205 end if;
2206
2207 -- If not foldable we are done
2208
2209 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2210
2211 if not Fold then
2212 return;
2213
2214 -- Don't try fold if target type has constraint error bounds
2215
2216 elsif not Is_OK_Static_Subtype (Target_Type) then
2217 Set_Raises_Constraint_Error (N);
2218 return;
2219 end if;
2220
07fc65c4
GB
2221 -- Here we will fold, save Print_In_Hex indication
2222
2223 Hex := Nkind (Operand) = N_Integer_Literal
2224 and then Print_In_Hex (Operand);
2225
996ae0b0
RK
2226 -- Fold the result of qualification
2227
2228 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2229 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2230
07fc65c4
GB
2231 -- Preserve Print_In_Hex indication
2232
2233 if Hex and then Nkind (N) = N_Integer_Literal then
2234 Set_Print_In_Hex (N);
2235 end if;
2236
996ae0b0 2237 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2238 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2239
2240 else
fbf5a39b 2241 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2242
2243 if not Stat then
2244 Set_Is_Static_Expression (N, False);
2245 else
2246 Check_String_Literal_Length (N, Target_Type);
2247 end if;
2248
2249 return;
2250 end if;
2251
fbf5a39b
AC
2252 -- The expression may be foldable but not static
2253
2254 Set_Is_Static_Expression (N, Stat);
2255
996ae0b0
RK
2256 if Is_Out_Of_Range (N, Etype (N)) then
2257 Out_Of_Range (N);
2258 end if;
996ae0b0
RK
2259 end Eval_Qualified_Expression;
2260
2261 -----------------------
2262 -- Eval_Real_Literal --
2263 -----------------------
2264
2265 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2266 -- as static by the analyzer. The reason we did it that early is to allow
2267 -- the possibility of turning off the Is_Static_Expression flag after
2268 -- analysis, but before resolution, when integer literals are generated
2269 -- in the expander that do not correspond to static expressions.
2270
2271 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
2272 PK : constant Node_Kind := Nkind (Parent (N));
2273
996ae0b0 2274 begin
a1980be8
GB
2275 -- If the literal appears in a non-expression context
2276 -- and not as part of a number declaration, then it is
2277 -- appearing in a non-static context, so check it.
996ae0b0 2278
a1980be8 2279 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
2280 Check_Non_Static_Context (N);
2281 end if;
996ae0b0
RK
2282 end Eval_Real_Literal;
2283
2284 ------------------------
2285 -- Eval_Relational_Op --
2286 ------------------------
2287
2288 -- Relational operations are static functions, so the result is static
2289 -- if both operands are static (RM 4.9(7), 4.9(20)).
2290
2291 procedure Eval_Relational_Op (N : Node_Id) is
2292 Left : constant Node_Id := Left_Opnd (N);
2293 Right : constant Node_Id := Right_Opnd (N);
2294 Typ : constant Entity_Id := Etype (Left);
2295 Result : Boolean;
2296 Stat : Boolean;
2297 Fold : Boolean;
2298
2299 begin
45fc7ddb
HK
2300 -- One special case to deal with first. If we can tell that the result
2301 -- will be false because the lengths of one or more index subtypes are
2302 -- compile time known and different, then we can replace the entire
2303 -- result by False. We only do this for one dimensional arrays, because
2304 -- the case of multi-dimensional arrays is rare and too much trouble! If
2305 -- one of the operands is an illegal aggregate, its type might still be
2306 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
2307
2308 if Is_Array_Type (Typ)
13f34a3f 2309 and then Typ /= Any_Composite
996ae0b0 2310 and then Number_Dimensions (Typ) = 1
13f34a3f 2311 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2312 then
2313 if Raises_Constraint_Error (Left)
2314 or else Raises_Constraint_Error (Right)
2315 then
2316 return;
2317 end if;
2318
45fc7ddb
HK
2319 -- OK, we have the case where we may be able to do this fold
2320
2321 Length_Mismatch : declare
996ae0b0 2322 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
13f34a3f
RD
2323 -- If Op is an expression for a constrained array with a known
2324 -- at compile time length, then Len is set to this (non-negative
2325 -- length). Otherwise Len is set to minus 1.
996ae0b0 2326
fbf5a39b
AC
2327 -----------------------
2328 -- Get_Static_Length --
2329 -----------------------
2330
996ae0b0
RK
2331 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2332 T : Entity_Id;
2333
2334 begin
45fc7ddb
HK
2335 -- First easy case string literal
2336
996ae0b0
RK
2337 if Nkind (Op) = N_String_Literal then
2338 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
2339 return;
2340 end if;
2341
2342 -- Second easy case, not constrained subtype, so no length
996ae0b0 2343
45fc7ddb 2344 if not Is_Constrained (Etype (Op)) then
996ae0b0 2345 Len := Uint_Minus_1;
45fc7ddb
HK
2346 return;
2347 end if;
996ae0b0 2348
45fc7ddb
HK
2349 -- General case
2350
2351 T := Etype (First_Index (Etype (Op)));
2352
2353 -- The simple case, both bounds are known at compile time
2354
2355 if Is_Discrete_Type (T)
2356 and then
2357 Compile_Time_Known_Value (Type_Low_Bound (T))
2358 and then
2359 Compile_Time_Known_Value (Type_High_Bound (T))
2360 then
2361 Len := UI_Max (Uint_0,
2362 Expr_Value (Type_High_Bound (T)) -
2363 Expr_Value (Type_Low_Bound (T)) + 1);
2364 return;
2365 end if;
2366
2367 -- A more complex case, where the bounds are of the form
2368 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2369 -- either A'First or A'Last (with A an entity name), or X is an
2370 -- entity name, and the two X's are the same and K1 and K2 are
2371 -- known at compile time, in this case, the length can also be
2372 -- computed at compile time, even though the bounds are not
2373 -- known. A common case of this is e.g. (X'First..X'First+5).
2374
2375 Extract_Length : declare
2376 procedure Decompose_Expr
2377 (Expr : Node_Id;
2378 Ent : out Entity_Id;
2379 Kind : out Character;
2380 Cons : out Uint);
2381 -- Given an expression, see if is of the form above,
2382 -- X [+/- K]. If so Ent is set to the entity in X,
2383 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2384 -- and Cons is the value of K. If the expression is
2385 -- not of the required form, Ent is set to Empty.
2386
2387 --------------------
2388 -- Decompose_Expr --
2389 --------------------
2390
2391 procedure Decompose_Expr
2392 (Expr : Node_Id;
2393 Ent : out Entity_Id;
2394 Kind : out Character;
2395 Cons : out Uint)
2396 is
2397 Exp : Node_Id;
2398
2399 begin
2400 if Nkind (Expr) = N_Op_Add
2401 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2402 then
2403 Exp := Left_Opnd (Expr);
2404 Cons := Expr_Value (Right_Opnd (Expr));
2405
2406 elsif Nkind (Expr) = N_Op_Subtract
2407 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2408 then
2409 Exp := Left_Opnd (Expr);
2410 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 2411
45fc7ddb
HK
2412 else
2413 Exp := Expr;
2414 Cons := Uint_0;
2415 end if;
2416
2417 -- At this stage Exp is set to the potential X
2418
2419 if Nkind (Exp) = N_Attribute_Reference then
2420 if Attribute_Name (Exp) = Name_First then
2421 Kind := 'F';
2422 elsif Attribute_Name (Exp) = Name_Last then
2423 Kind := 'L';
2424 else
2425 Ent := Empty;
2426 return;
2427 end if;
2428
2429 Exp := Prefix (Exp);
2430
2431 else
2432 Kind := 'E';
2433 end if;
2434
2435 if Is_Entity_Name (Exp)
2436 and then Present (Entity (Exp))
2437 then
2438 Ent := Entity (Exp);
2439 else
2440 Ent := Empty;
2441 end if;
2442 end Decompose_Expr;
2443
2444 -- Local Variables
2445
2446 Ent1, Ent2 : Entity_Id;
2447 Kind1, Kind2 : Character;
2448 Cons1, Cons2 : Uint;
2449
2450 -- Start of processing for Extract_Length
2451
2452 begin
2453 Decompose_Expr (Type_Low_Bound (T), Ent1, Kind1, Cons1);
2454 Decompose_Expr (Type_High_Bound (T), Ent2, Kind2, Cons2);
2455
2456 if Present (Ent1)
2457 and then Kind1 = Kind2
2458 and then Ent1 = Ent2
996ae0b0 2459 then
45fc7ddb 2460 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
2461 else
2462 Len := Uint_Minus_1;
2463 end if;
45fc7ddb 2464 end Extract_Length;
996ae0b0
RK
2465 end Get_Static_Length;
2466
45fc7ddb
HK
2467 -- Local Variables
2468
996ae0b0
RK
2469 Len_L : Uint;
2470 Len_R : Uint;
2471
45fc7ddb
HK
2472 -- Start of processing for Length_Mismatch
2473
996ae0b0
RK
2474 begin
2475 Get_Static_Length (Left, Len_L);
2476 Get_Static_Length (Right, Len_R);
2477
2478 if Len_L /= Uint_Minus_1
2479 and then Len_R /= Uint_Minus_1
2480 and then Len_L /= Len_R
2481 then
fbf5a39b 2482 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
2483 Warn_On_Known_Condition (N);
2484 return;
2485 end if;
45fc7ddb
HK
2486 end Length_Mismatch;
2487 end if;
6eaf4095 2488
7a3f77d2
AC
2489 -- Another special case: comparisons of access types, where one or both
2490 -- operands are known to be null, so the result can be determined.
6eaf4095 2491
45fc7ddb 2492 if Is_Access_Type (Typ) then
7a3f77d2
AC
2493 if Known_Null (Left) then
2494 if Known_Null (Right) then
2495 Fold_Uint (N, Test (Nkind (N) = N_Op_Eq), False);
2496 Warn_On_Known_Condition (N);
2497 return;
2498
2499 elsif Known_Non_Null (Right) then
2500 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2501 Warn_On_Known_Condition (N);
2502 return;
2503 end if;
2504
2505 elsif Known_Non_Null (Left) then
2506 if Known_Null (Right) then
2507 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2508 Warn_On_Known_Condition (N);
2509 return;
2510 end if;
2511 end if;
996ae0b0
RK
2512 end if;
2513
2514 -- Can only fold if type is scalar (don't fold string ops)
2515
2516 if not Is_Scalar_Type (Typ) then
2517 Check_Non_Static_Context (Left);
2518 Check_Non_Static_Context (Right);
2519 return;
2520 end if;
2521
2522 -- If not foldable we are done
2523
2524 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2525
2526 if not Fold then
2527 return;
2528 end if;
2529
2530 -- Integer and Enumeration (discrete) type cases
2531
2532 if Is_Discrete_Type (Typ) then
2533 declare
2534 Left_Int : constant Uint := Expr_Value (Left);
2535 Right_Int : constant Uint := Expr_Value (Right);
2536
2537 begin
2538 case Nkind (N) is
2539 when N_Op_Eq => Result := Left_Int = Right_Int;
2540 when N_Op_Ne => Result := Left_Int /= Right_Int;
2541 when N_Op_Lt => Result := Left_Int < Right_Int;
2542 when N_Op_Le => Result := Left_Int <= Right_Int;
2543 when N_Op_Gt => Result := Left_Int > Right_Int;
2544 when N_Op_Ge => Result := Left_Int >= Right_Int;
2545
2546 when others =>
2547 raise Program_Error;
2548 end case;
2549
fbf5a39b 2550 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
2551 end;
2552
2553 -- Real type case
2554
2555 else
2556 pragma Assert (Is_Real_Type (Typ));
2557
2558 declare
2559 Left_Real : constant Ureal := Expr_Value_R (Left);
2560 Right_Real : constant Ureal := Expr_Value_R (Right);
2561
2562 begin
2563 case Nkind (N) is
2564 when N_Op_Eq => Result := (Left_Real = Right_Real);
2565 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2566 when N_Op_Lt => Result := (Left_Real < Right_Real);
2567 when N_Op_Le => Result := (Left_Real <= Right_Real);
2568 when N_Op_Gt => Result := (Left_Real > Right_Real);
2569 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2570
2571 when others =>
2572 raise Program_Error;
2573 end case;
2574
fbf5a39b 2575 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
2576 end;
2577 end if;
2578
996ae0b0
RK
2579 Warn_On_Known_Condition (N);
2580 end Eval_Relational_Op;
2581
2582 ----------------
2583 -- Eval_Shift --
2584 ----------------
2585
2586 -- Shift operations are intrinsic operations that can never be static,
2587 -- so the only processing required is to perform the required check for
2588 -- a non static context for the two operands.
2589
2590 -- Actually we could do some compile time evaluation here some time ???
2591
2592 procedure Eval_Shift (N : Node_Id) is
2593 begin
2594 Check_Non_Static_Context (Left_Opnd (N));
2595 Check_Non_Static_Context (Right_Opnd (N));
2596 end Eval_Shift;
2597
2598 ------------------------
2599 -- Eval_Short_Circuit --
2600 ------------------------
2601
2602 -- A short circuit operation is potentially static if both operands
2603 -- are potentially static (RM 4.9 (13))
2604
2605 procedure Eval_Short_Circuit (N : Node_Id) is
2606 Kind : constant Node_Kind := Nkind (N);
2607 Left : constant Node_Id := Left_Opnd (N);
2608 Right : constant Node_Id := Right_Opnd (N);
2609 Left_Int : Uint;
2610 Rstat : constant Boolean :=
2611 Is_Static_Expression (Left)
2612 and then Is_Static_Expression (Right);
2613
2614 begin
2615 -- Short circuit operations are never static in Ada 83
2616
0ab80019 2617 if Ada_Version = Ada_83
996ae0b0
RK
2618 and then Comes_From_Source (N)
2619 then
2620 Check_Non_Static_Context (Left);
2621 Check_Non_Static_Context (Right);
2622 return;
2623 end if;
2624
2625 -- Now look at the operands, we can't quite use the normal call to
2626 -- Test_Expression_Is_Foldable here because short circuit operations
2627 -- are a special case, they can still be foldable, even if the right
2628 -- operand raises constraint error.
2629
2630 -- If either operand is Any_Type, just propagate to result and
2631 -- do not try to fold, this prevents cascaded errors.
2632
2633 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2634 Set_Etype (N, Any_Type);
2635 return;
2636
2637 -- If left operand raises constraint error, then replace node N with
2638 -- the raise constraint error node, and we are obviously not foldable.
2639 -- Is_Static_Expression is set from the two operands in the normal way,
2640 -- and we check the right operand if it is in a non-static context.
2641
2642 elsif Raises_Constraint_Error (Left) then
2643 if not Rstat then
2644 Check_Non_Static_Context (Right);
2645 end if;
2646
2647 Rewrite_In_Raise_CE (N, Left);
2648 Set_Is_Static_Expression (N, Rstat);
2649 return;
2650
2651 -- If the result is not static, then we won't in any case fold
2652
2653 elsif not Rstat then
2654 Check_Non_Static_Context (Left);
2655 Check_Non_Static_Context (Right);
2656 return;
2657 end if;
2658
2659 -- Here the result is static, note that, unlike the normal processing
2660 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2661 -- the right operand raises constraint error, that's because it is not
2662 -- significant if the left operand is decisive.
2663
2664 Set_Is_Static_Expression (N);
2665
2666 -- It does not matter if the right operand raises constraint error if
2667 -- it will not be evaluated. So deal specially with the cases where
2668 -- the right operand is not evaluated. Note that we will fold these
2669 -- cases even if the right operand is non-static, which is fine, but
2670 -- of course in these cases the result is not potentially static.
2671
2672 Left_Int := Expr_Value (Left);
2673
2674 if (Kind = N_And_Then and then Is_False (Left_Int))
2675 or else (Kind = N_Or_Else and Is_True (Left_Int))
2676 then
fbf5a39b 2677 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
2678 return;
2679 end if;
2680
2681 -- If first operand not decisive, then it does matter if the right
2682 -- operand raises constraint error, since it will be evaluated, so
2683 -- we simply replace the node with the right operand. Note that this
2684 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2685 -- (both are set to True in Right).
2686
2687 if Raises_Constraint_Error (Right) then
2688 Rewrite_In_Raise_CE (N, Right);
2689 Check_Non_Static_Context (Left);
2690 return;
2691 end if;
2692
2693 -- Otherwise the result depends on the right operand
2694
fbf5a39b 2695 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 2696 return;
996ae0b0
RK
2697 end Eval_Short_Circuit;
2698
2699 ----------------
2700 -- Eval_Slice --
2701 ----------------
2702
2703 -- Slices can never be static, so the only processing required is to
2704 -- check for non-static context if an explicit range is given.
2705
2706 procedure Eval_Slice (N : Node_Id) is
2707 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
2708 begin
2709 if Nkind (Drange) = N_Range then
2710 Check_Non_Static_Context (Low_Bound (Drange));
2711 Check_Non_Static_Context (High_Bound (Drange));
2712 end if;
cd2fb920
ES
2713
2714 -- A slice of the form A (subtype), when the subtype is the index of
2715 -- the type of A, is redundant, the slice can be replaced with A, and
2716 -- this is worth a warning.
2717
2718 if Is_Entity_Name (Prefix (N)) then
2719 declare
2720 E : constant Entity_Id := Entity (Prefix (N));
2721 T : constant Entity_Id := Etype (E);
2722 begin
2723 if Ekind (E) = E_Constant
2724 and then Is_Array_Type (T)
2725 and then Is_Entity_Name (Drange)
2726 then
2727 if Is_Entity_Name (Original_Node (First_Index (T)))
2728 and then Entity (Original_Node (First_Index (T)))
2729 = Entity (Drange)
2730 then
2731 if Warn_On_Redundant_Constructs then
2732 Error_Msg_N ("redundant slice denotes whole array?", N);
2733 end if;
2734
2735 -- The following might be a useful optimization ????
2736
2737 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
2738 end if;
2739 end if;
2740 end;
2741 end if;
996ae0b0
RK
2742 end Eval_Slice;
2743
2744 -------------------------
2745 -- Eval_String_Literal --
2746 -------------------------
2747
2748 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
2749 Typ : constant Entity_Id := Etype (N);
2750 Bas : constant Entity_Id := Base_Type (Typ);
2751 Xtp : Entity_Id;
2752 Len : Nat;
2753 Lo : Node_Id;
996ae0b0
RK
2754
2755 begin
2756 -- Nothing to do if error type (handles cases like default expressions
2757 -- or generics where we have not yet fully resolved the type)
2758
91b1417d 2759 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 2760 return;
91b1417d 2761 end if;
996ae0b0
RK
2762
2763 -- String literals are static if the subtype is static (RM 4.9(2)), so
2764 -- reset the static expression flag (it was set unconditionally in
2765 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2766 -- the subtype is static by looking at the lower bound.
2767
91b1417d
AC
2768 if Ekind (Typ) = E_String_Literal_Subtype then
2769 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
2770 Set_Is_Static_Expression (N, False);
2771 return;
2772 end if;
2773
2774 -- Here if Etype of string literal is normal Etype (not yet possible,
2775 -- but may be possible in future!)
2776
2777 elsif not Is_OK_Static_Expression
2778 (Type_Low_Bound (Etype (First_Index (Typ))))
2779 then
996ae0b0 2780 Set_Is_Static_Expression (N, False);
91b1417d
AC
2781 return;
2782 end if;
996ae0b0 2783
91b1417d
AC
2784 -- If original node was a type conversion, then result if non-static
2785
2786 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 2787 Set_Is_Static_Expression (N, False);
91b1417d
AC
2788 return;
2789 end if;
996ae0b0
RK
2790
2791 -- Test for illegal Ada 95 cases. A string literal is illegal in
2792 -- Ada 95 if its bounds are outside the index base type and this
91b1417d 2793 -- index type is static. This can happen in only two ways. Either
996ae0b0
RK
2794 -- the string literal is too long, or it is null, and the lower
2795 -- bound is type'First. In either case it is the upper bound that
2796 -- is out of range of the index type.
2797
0ab80019 2798 if Ada_Version >= Ada_95 then
91b1417d
AC
2799 if Root_Type (Bas) = Standard_String
2800 or else
2801 Root_Type (Bas) = Standard_Wide_String
996ae0b0 2802 then
91b1417d 2803 Xtp := Standard_Positive;
996ae0b0 2804 else
91b1417d 2805 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
2806 end if;
2807
91b1417d
AC
2808 if Ekind (Typ) = E_String_Literal_Subtype then
2809 Lo := String_Literal_Low_Bound (Typ);
2810 else
2811 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
2812 end if;
2813
2814 Len := String_Length (Strval (N));
2815
2816 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 2817 Apply_Compile_Time_Constraint_Error
07fc65c4 2818 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
2819 Ent => Bas,
2820 Typ => First_Subtype (Bas));
996ae0b0 2821
91b1417d
AC
2822 elsif Len = 0
2823 and then not Is_Generic_Type (Xtp)
2824 and then
2825 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
2826 then
2827 Apply_Compile_Time_Constraint_Error
2828 (N, "null string literal not allowed for}",
07fc65c4 2829 CE_Length_Check_Failed,
91b1417d
AC
2830 Ent => Bas,
2831 Typ => First_Subtype (Bas));
996ae0b0
RK
2832 end if;
2833 end if;
996ae0b0
RK
2834 end Eval_String_Literal;
2835
2836 --------------------------
2837 -- Eval_Type_Conversion --
2838 --------------------------
2839
2840 -- A type conversion is potentially static if its subtype mark is for a
2841 -- static scalar subtype, and its operand expression is potentially static
2842 -- (RM 4.9 (10))
2843
2844 procedure Eval_Type_Conversion (N : Node_Id) is
2845 Operand : constant Node_Id := Expression (N);
2846 Source_Type : constant Entity_Id := Etype (Operand);
2847 Target_Type : constant Entity_Id := Etype (N);
2848
2849 Stat : Boolean;
2850 Fold : Boolean;
2851
2852 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
2853 -- Returns true if type T is an integer type, or if it is a
2854 -- fixed-point type to be treated as an integer (i.e. the flag
2855 -- Conversion_OK is set on the conversion node).
2856
2857 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
2858 -- Returns true if type T is a floating-point type, or if it is a
2859 -- fixed-point type that is not to be treated as an integer (i.e. the
2860 -- flag Conversion_OK is not set on the conversion node).
2861
fbf5a39b
AC
2862 ------------------------------
2863 -- To_Be_Treated_As_Integer --
2864 ------------------------------
2865
996ae0b0
RK
2866 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
2867 begin
2868 return
2869 Is_Integer_Type (T)
2870 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
2871 end To_Be_Treated_As_Integer;
2872
fbf5a39b
AC
2873 ---------------------------
2874 -- To_Be_Treated_As_Real --
2875 ---------------------------
2876
996ae0b0
RK
2877 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
2878 begin
2879 return
2880 Is_Floating_Point_Type (T)
2881 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
2882 end To_Be_Treated_As_Real;
2883
2884 -- Start of processing for Eval_Type_Conversion
2885
2886 begin
82c80734 2887 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
2888
2889 if not Is_Static_Subtype (Target_Type) then
2890 Check_Non_Static_Context (Operand);
2891 return;
2892
2893 elsif Error_Posted (N) then
2894 return;
2895 end if;
2896
2897 -- If not foldable we are done
2898
2899 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2900
2901 if not Fold then
2902 return;
2903
2904 -- Don't try fold if target type has constraint error bounds
2905
2906 elsif not Is_OK_Static_Subtype (Target_Type) then
2907 Set_Raises_Constraint_Error (N);
2908 return;
2909 end if;
2910
2911 -- Remaining processing depends on operand types. Note that in the
2912 -- following type test, fixed-point counts as real unless the flag
2913 -- Conversion_OK is set, in which case it counts as integer.
2914
82c80734 2915 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
2916
2917 if Is_String_Type (Target_Type) then
b11e8d6f 2918 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
2919
2920 return;
2921
2922 -- Fold conversion, case of integer target type
2923
2924 elsif To_Be_Treated_As_Integer (Target_Type) then
2925 declare
2926 Result : Uint;
2927
2928 begin
2929 -- Integer to integer conversion
2930
2931 if To_Be_Treated_As_Integer (Source_Type) then
2932 Result := Expr_Value (Operand);
2933
2934 -- Real to integer conversion
2935
2936 else
2937 Result := UR_To_Uint (Expr_Value_R (Operand));
2938 end if;
2939
2940 -- If fixed-point type (Conversion_OK must be set), then the
2941 -- result is logically an integer, but we must replace the
2942 -- conversion with the corresponding real literal, since the
2943 -- type from a semantic point of view is still fixed-point.
2944
2945 if Is_Fixed_Point_Type (Target_Type) then
2946 Fold_Ureal
fbf5a39b 2947 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
2948
2949 -- Otherwise result is integer literal
2950
2951 else
fbf5a39b 2952 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2953 end if;
2954 end;
2955
2956 -- Fold conversion, case of real target type
2957
2958 elsif To_Be_Treated_As_Real (Target_Type) then
2959 declare
2960 Result : Ureal;
2961
2962 begin
2963 if To_Be_Treated_As_Real (Source_Type) then
2964 Result := Expr_Value_R (Operand);
2965 else
2966 Result := UR_From_Uint (Expr_Value (Operand));
2967 end if;
2968
fbf5a39b 2969 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
2970 end;
2971
2972 -- Enumeration types
2973
2974 else
fbf5a39b 2975 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
2976 end if;
2977
996ae0b0
RK
2978 if Is_Out_Of_Range (N, Etype (N)) then
2979 Out_Of_Range (N);
2980 end if;
2981
2982 end Eval_Type_Conversion;
2983
2984 -------------------
2985 -- Eval_Unary_Op --
2986 -------------------
2987
2988 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2989 -- are potentially static if the operand is potentially static (RM 4.9(7))
2990
2991 procedure Eval_Unary_Op (N : Node_Id) is
2992 Right : constant Node_Id := Right_Opnd (N);
2993 Stat : Boolean;
2994 Fold : Boolean;
2995
2996 begin
2997 -- If not foldable we are done
2998
2999 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3000
3001 if not Fold then
3002 return;
3003 end if;
3004
3005 -- Fold for integer case
3006
3007 if Is_Integer_Type (Etype (N)) then
3008 declare
3009 Rint : constant Uint := Expr_Value (Right);
3010 Result : Uint;
3011
3012 begin
3013 -- In the case of modular unary plus and abs there is no need
3014 -- to adjust the result of the operation since if the original
3015 -- operand was in bounds the result will be in the bounds of the
3016 -- modular type. However, in the case of modular unary minus the
3017 -- result may go out of the bounds of the modular type and needs
3018 -- adjustment.
3019
3020 if Nkind (N) = N_Op_Plus then
3021 Result := Rint;
3022
3023 elsif Nkind (N) = N_Op_Minus then
3024 if Is_Modular_Integer_Type (Etype (N)) then
3025 Result := (-Rint) mod Modulus (Etype (N));
3026 else
3027 Result := (-Rint);
3028 end if;
3029
3030 else
3031 pragma Assert (Nkind (N) = N_Op_Abs);
3032 Result := abs Rint;
3033 end if;
3034
fbf5a39b 3035 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3036 end;
3037
3038 -- Fold for real case
3039
3040 elsif Is_Real_Type (Etype (N)) then
3041 declare
3042 Rreal : constant Ureal := Expr_Value_R (Right);
3043 Result : Ureal;
3044
3045 begin
3046 if Nkind (N) = N_Op_Plus then
3047 Result := Rreal;
3048
3049 elsif Nkind (N) = N_Op_Minus then
3050 Result := UR_Negate (Rreal);
3051
3052 else
3053 pragma Assert (Nkind (N) = N_Op_Abs);
3054 Result := abs Rreal;
3055 end if;
3056
fbf5a39b 3057 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3058 end;
3059 end if;
996ae0b0
RK
3060 end Eval_Unary_Op;
3061
3062 -------------------------------
3063 -- Eval_Unchecked_Conversion --
3064 -------------------------------
3065
3066 -- Unchecked conversions can never be static, so the only required
3067 -- processing is to check for a non-static context for the operand.
3068
3069 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3070 begin
3071 Check_Non_Static_Context (Expression (N));
3072 end Eval_Unchecked_Conversion;
3073
3074 --------------------
3075 -- Expr_Rep_Value --
3076 --------------------
3077
3078 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3079 Kind : constant Node_Kind := Nkind (N);
3080 Ent : Entity_Id;
996ae0b0
RK
3081
3082 begin
3083 if Is_Entity_Name (N) then
3084 Ent := Entity (N);
3085
3086 -- An enumeration literal that was either in the source or
3087 -- created as a result of static evaluation.
3088
3089 if Ekind (Ent) = E_Enumeration_Literal then
3090 return Enumeration_Rep (Ent);
3091
3092 -- A user defined static constant
3093
3094 else
3095 pragma Assert (Ekind (Ent) = E_Constant);
3096 return Expr_Rep_Value (Constant_Value (Ent));
3097 end if;
3098
3099 -- An integer literal that was either in the source or created
3100 -- as a result of static evaluation.
3101
3102 elsif Kind = N_Integer_Literal then
3103 return Intval (N);
3104
3105 -- A real literal for a fixed-point type. This must be the fixed-point
3106 -- case, either the literal is of a fixed-point type, or it is a bound
3107 -- of a fixed-point type, with type universal real. In either case we
3108 -- obtain the desired value from Corresponding_Integer_Value.
3109
3110 elsif Kind = N_Real_Literal then
996ae0b0
RK
3111 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3112 return Corresponding_Integer_Value (N);
3113
07fc65c4
GB
3114 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3115
3116 elsif Kind = N_Attribute_Reference
3117 and then Attribute_Name (N) = Name_Null_Parameter
3118 then
3119 return Uint_0;
3120
07fc65c4 3121 -- Otherwise must be character literal
8cbb664e 3122
996ae0b0
RK
3123 else
3124 pragma Assert (Kind = N_Character_Literal);
3125 Ent := Entity (N);
3126
3127 -- Since Character literals of type Standard.Character don't
3128 -- have any defining character literals built for them, they
3129 -- do not have their Entity set, so just use their Char
3130 -- code. Otherwise for user-defined character literals use
3131 -- their Pos value as usual which is the same as the Rep value.
3132
3133 if No (Ent) then
82c80734 3134 return Char_Literal_Value (N);
996ae0b0
RK
3135 else
3136 return Enumeration_Rep (Ent);
3137 end if;
3138 end if;
3139 end Expr_Rep_Value;
3140
3141 ----------------
3142 -- Expr_Value --
3143 ----------------
3144
3145 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
3146 Kind : constant Node_Kind := Nkind (N);
3147 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3148 Ent : Entity_Id;
3149 Val : Uint;
996ae0b0
RK
3150
3151 begin
13f34a3f
RD
3152 -- If already in cache, then we know it's compile time known and we can
3153 -- return the value that was previously stored in the cache since
3154 -- compile time known values cannot change.
07fc65c4
GB
3155
3156 if CV_Ent.N = N then
3157 return CV_Ent.V;
3158 end if;
3159
3160 -- Otherwise proceed to test value
3161
996ae0b0
RK
3162 if Is_Entity_Name (N) then
3163 Ent := Entity (N);
3164
3165 -- An enumeration literal that was either in the source or
3166 -- created as a result of static evaluation.
3167
3168 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 3169 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3170
3171 -- A user defined static constant
3172
3173 else
3174 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 3175 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
3176 end if;
3177
3178 -- An integer literal that was either in the source or created
3179 -- as a result of static evaluation.
3180
3181 elsif Kind = N_Integer_Literal then
07fc65c4 3182 Val := Intval (N);
996ae0b0
RK
3183
3184 -- A real literal for a fixed-point type. This must be the fixed-point
3185 -- case, either the literal is of a fixed-point type, or it is a bound
3186 -- of a fixed-point type, with type universal real. In either case we
3187 -- obtain the desired value from Corresponding_Integer_Value.
3188
3189 elsif Kind = N_Real_Literal then
3190
996ae0b0 3191 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3192 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3193
3194 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3195
3196 elsif Kind = N_Attribute_Reference
3197 and then Attribute_Name (N) = Name_Null_Parameter
3198 then
07fc65c4
GB
3199 Val := Uint_0;
3200
996ae0b0
RK
3201 -- Otherwise must be character literal
3202
3203 else
3204 pragma Assert (Kind = N_Character_Literal);
3205 Ent := Entity (N);
3206
3207 -- Since Character literals of type Standard.Character don't
3208 -- have any defining character literals built for them, they
3209 -- do not have their Entity set, so just use their Char
3210 -- code. Otherwise for user-defined character literals use
3211 -- their Pos value as usual.
3212
3213 if No (Ent) then
82c80734 3214 Val := Char_Literal_Value (N);
996ae0b0 3215 else
07fc65c4 3216 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3217 end if;
3218 end if;
3219
07fc65c4
GB
3220 -- Come here with Val set to value to be returned, set cache
3221
3222 CV_Ent.N := N;
3223 CV_Ent.V := Val;
3224 return Val;
996ae0b0
RK
3225 end Expr_Value;
3226
3227 ------------------
3228 -- Expr_Value_E --
3229 ------------------
3230
3231 function Expr_Value_E (N : Node_Id) return Entity_Id is
3232 Ent : constant Entity_Id := Entity (N);
3233
3234 begin
3235 if Ekind (Ent) = E_Enumeration_Literal then
3236 return Ent;
3237 else
3238 pragma Assert (Ekind (Ent) = E_Constant);
3239 return Expr_Value_E (Constant_Value (Ent));
3240 end if;
3241 end Expr_Value_E;
3242
3243 ------------------
3244 -- Expr_Value_R --
3245 ------------------
3246
3247 function Expr_Value_R (N : Node_Id) return Ureal is
3248 Kind : constant Node_Kind := Nkind (N);
3249 Ent : Entity_Id;
3250 Expr : Node_Id;
3251
3252 begin
3253 if Kind = N_Real_Literal then
3254 return Realval (N);
3255
3256 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3257 Ent := Entity (N);
3258 pragma Assert (Ekind (Ent) = E_Constant);
3259 return Expr_Value_R (Constant_Value (Ent));
3260
3261 elsif Kind = N_Integer_Literal then
3262 return UR_From_Uint (Expr_Value (N));
3263
3264 -- Strange case of VAX literals, which are at this stage transformed
3265 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3266 -- Exp_Vfpt for further details.
3267
3268 elsif Vax_Float (Etype (N))
3269 and then Nkind (N) = N_Unchecked_Type_Conversion
3270 then
3271 Expr := Expression (N);
3272
3273 if Nkind (Expr) = N_Function_Call
3274 and then Present (Parameter_Associations (Expr))
3275 then
3276 Expr := First (Parameter_Associations (Expr));
3277
3278 if Nkind (Expr) = N_Real_Literal then
3279 return Realval (Expr);
3280 end if;
3281 end if;
3282
3283 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3284
3285 elsif Kind = N_Attribute_Reference
3286 and then Attribute_Name (N) = Name_Null_Parameter
3287 then
3288 return Ureal_0;
3289 end if;
3290
f3d57416 3291 -- If we fall through, we have a node that cannot be interpreted
996ae0b0
RK
3292 -- as a compile time constant. That is definitely an error.
3293
3294 raise Program_Error;
3295 end Expr_Value_R;
3296
3297 ------------------
3298 -- Expr_Value_S --
3299 ------------------
3300
3301 function Expr_Value_S (N : Node_Id) return Node_Id is
3302 begin
3303 if Nkind (N) = N_String_Literal then
3304 return N;
3305 else
3306 pragma Assert (Ekind (Entity (N)) = E_Constant);
3307 return Expr_Value_S (Constant_Value (Entity (N)));
3308 end if;
3309 end Expr_Value_S;
3310
fbf5a39b
AC
3311 --------------------------
3312 -- Flag_Non_Static_Expr --
3313 --------------------------
3314
3315 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3316 begin
3317 if Error_Posted (Expr) and then not All_Errors_Mode then
3318 return;
3319 else
3320 Error_Msg_F (Msg, Expr);
3321 Why_Not_Static (Expr);
3322 end if;
3323 end Flag_Non_Static_Expr;
3324
996ae0b0
RK
3325 --------------
3326 -- Fold_Str --
3327 --------------
3328
fbf5a39b 3329 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
3330 Loc : constant Source_Ptr := Sloc (N);
3331 Typ : constant Entity_Id := Etype (N);
3332
3333 begin
3334 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
3335
3336 -- We now have the literal with the right value, both the actual type
3337 -- and the expected type of this literal are taken from the expression
3338 -- that was evaluated.
3339
3340 Analyze (N);
3341 Set_Is_Static_Expression (N, Static);
3342 Set_Etype (N, Typ);
3343 Resolve (N);
996ae0b0
RK
3344 end Fold_Str;
3345
3346 ---------------
3347 -- Fold_Uint --
3348 ---------------
3349
fbf5a39b 3350 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 3351 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
3352 Typ : Entity_Id := Etype (N);
3353 Ent : Entity_Id;
996ae0b0
RK
3354
3355 begin
fbf5a39b
AC
3356 -- If we are folding a named number, retain the entity in the
3357 -- literal, for ASIS use.
3358
3359 if Is_Entity_Name (N)
3360 and then Ekind (Entity (N)) = E_Named_Integer
3361 then
3362 Ent := Entity (N);
3363 else
3364 Ent := Empty;
3365 end if;
3366
3367 if Is_Private_Type (Typ) then
3368 Typ := Full_View (Typ);
3369 end if;
3370
f3d57416 3371 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 3372 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
3373 -- For ASIS use, set a link to the original named number when not in
3374 -- a generic context.
996ae0b0 3375
fbf5a39b 3376 if Is_Integer_Type (Typ) then
996ae0b0 3377 Rewrite (N, Make_Integer_Literal (Loc, Val));
cd2fb920 3378
fbf5a39b 3379 Set_Original_Entity (N, Ent);
996ae0b0
RK
3380
3381 -- Otherwise we have an enumeration type, and we substitute either
3382 -- an N_Identifier or N_Character_Literal to represent the enumeration
3383 -- literal corresponding to the given value, which must always be in
3384 -- range, because appropriate tests have already been made for this.
3385
fbf5a39b 3386 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
3387 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3388 end if;
3389
3390 -- We now have the literal with the right value, both the actual type
3391 -- and the expected type of this literal are taken from the expression
3392 -- that was evaluated.
3393
3394 Analyze (N);
fbf5a39b 3395 Set_Is_Static_Expression (N, Static);
996ae0b0 3396 Set_Etype (N, Typ);
fbf5a39b 3397 Resolve (N);
996ae0b0
RK
3398 end Fold_Uint;
3399
3400 ----------------
3401 -- Fold_Ureal --
3402 ----------------
3403
fbf5a39b 3404 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
3405 Loc : constant Source_Ptr := Sloc (N);
3406 Typ : constant Entity_Id := Etype (N);
fbf5a39b 3407 Ent : Entity_Id;
996ae0b0
RK
3408
3409 begin
fbf5a39b
AC
3410 -- If we are folding a named number, retain the entity in the
3411 -- literal, for ASIS use.
3412
3413 if Is_Entity_Name (N)
3414 and then Ekind (Entity (N)) = E_Named_Real
3415 then
3416 Ent := Entity (N);
3417 else
3418 Ent := Empty;
3419 end if;
3420
996ae0b0 3421 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 3422
5a30024a 3423 -- Set link to original named number, for ASIS use
cd2fb920 3424
fbf5a39b 3425 Set_Original_Entity (N, Ent);
996ae0b0
RK
3426
3427 -- Both the actual and expected type comes from the original expression
3428
fbf5a39b
AC
3429 Analyze (N);
3430 Set_Is_Static_Expression (N, Static);
996ae0b0 3431 Set_Etype (N, Typ);
fbf5a39b 3432 Resolve (N);
996ae0b0
RK
3433 end Fold_Ureal;
3434
3435 ---------------
3436 -- From_Bits --
3437 ---------------
3438
3439 function From_Bits (B : Bits; T : Entity_Id) return Uint is
3440 V : Uint := Uint_0;
3441
3442 begin
3443 for J in 0 .. B'Last loop
3444 if B (J) then
3445 V := V + 2 ** J;
3446 end if;
3447 end loop;
3448
3449 if Non_Binary_Modulus (T) then
3450 V := V mod Modulus (T);
3451 end if;
3452
3453 return V;
3454 end From_Bits;
3455
3456 --------------------
3457 -- Get_String_Val --
3458 --------------------
3459
3460 function Get_String_Val (N : Node_Id) return Node_Id is
3461 begin
3462 if Nkind (N) = N_String_Literal then
3463 return N;
3464
3465 elsif Nkind (N) = N_Character_Literal then
3466 return N;
3467
3468 else
3469 pragma Assert (Is_Entity_Name (N));
3470 return Get_String_Val (Constant_Value (Entity (N)));
3471 end if;
3472 end Get_String_Val;
3473
fbf5a39b
AC
3474 ----------------
3475 -- Initialize --
3476 ----------------
3477
3478 procedure Initialize is
3479 begin
3480 CV_Cache := (others => (Node_High_Bound, Uint_0));
3481 end Initialize;
3482
996ae0b0
RK
3483 --------------------
3484 -- In_Subrange_Of --
3485 --------------------
3486
3487 function In_Subrange_Of
3488 (T1 : Entity_Id;
3489 T2 : Entity_Id;
f44fe430 3490 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
3491 is
3492 L1 : Node_Id;
3493 H1 : Node_Id;
3494
3495 L2 : Node_Id;
3496 H2 : Node_Id;
3497
3498 begin
3499 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
3500 return True;
3501
3502 -- Never in range if both types are not scalar. Don't know if this can
3503 -- actually happen, but just in case.
3504
3505 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
3506 return False;
3507
3508 else
3509 L1 := Type_Low_Bound (T1);
3510 H1 := Type_High_Bound (T1);
3511
3512 L2 := Type_Low_Bound (T2);
3513 H2 := Type_High_Bound (T2);
3514
3515 -- Check bounds to see if comparison possible at compile time
3516
3517 if Compile_Time_Compare (L1, L2) in Compare_GE
3518 and then
3519 Compile_Time_Compare (H1, H2) in Compare_LE
3520 then
3521 return True;
3522 end if;
3523
3524 -- If bounds not comparable at compile time, then the bounds of T2
3525 -- must be compile time known or we cannot answer the query.
3526
3527 if not Compile_Time_Known_Value (L2)
3528 or else not Compile_Time_Known_Value (H2)
3529 then
3530 return False;
3531 end if;
3532
3533 -- If the bounds of T1 are know at compile time then use these
3534 -- ones, otherwise use the bounds of the base type (which are of
3535 -- course always static).
3536
3537 if not Compile_Time_Known_Value (L1) then
3538 L1 := Type_Low_Bound (Base_Type (T1));
3539 end if;
3540
3541 if not Compile_Time_Known_Value (H1) then
3542 H1 := Type_High_Bound (Base_Type (T1));
3543 end if;
3544
3545 -- Fixed point types should be considered as such only if
3546 -- flag Fixed_Int is set to False.
3547
3548 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
3549 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
3550 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
3551 then
3552 return
3553 Expr_Value_R (L2) <= Expr_Value_R (L1)
3554 and then
3555 Expr_Value_R (H2) >= Expr_Value_R (H1);
3556
3557 else
3558 return
3559 Expr_Value (L2) <= Expr_Value (L1)
3560 and then
3561 Expr_Value (H2) >= Expr_Value (H1);
3562
3563 end if;
3564 end if;
3565
3566 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 3567 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
3568 -- occurrence. However, this is only an optimization attempt, so there is
3569 -- really no point in crashing the compiler. Instead we just decide, too
3570 -- bad, we can't figure out the answer in this case after all.
3571
3572 exception
3573 when others =>
3574
3575 -- Debug flag K disables this behavior (useful for debugging)
3576
3577 if Debug_Flag_K then
3578 raise;
3579 else
3580 return False;
3581 end if;
3582 end In_Subrange_Of;
3583
3584 -----------------
3585 -- Is_In_Range --
3586 -----------------
3587
3588 function Is_In_Range
3589 (N : Node_Id;
3590 Typ : Entity_Id;
3591 Fixed_Int : Boolean := False;
f44fe430 3592 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
3593 is
3594 Val : Uint;
3595 Valr : Ureal;
3596
3597 begin
82c80734 3598 -- Universal types have no range limits, so always in range
996ae0b0
RK
3599
3600 if Typ = Universal_Integer or else Typ = Universal_Real then
3601 return True;
3602
3603 -- Never in range if not scalar type. Don't know if this can
3604 -- actually happen, but our spec allows it, so we must check!
3605
3606 elsif not Is_Scalar_Type (Typ) then
3607 return False;
3608
82c80734 3609 -- Never in range unless we have a compile time known value
996ae0b0
RK
3610
3611 elsif not Compile_Time_Known_Value (N) then
3612 return False;
3613
3614 else
3615 declare
3616 Lo : constant Node_Id := Type_Low_Bound (Typ);
3617 Hi : constant Node_Id := Type_High_Bound (Typ);
3618 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3619 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3620
3621 begin
3622 -- Fixed point types should be considered as such only in
3623 -- flag Fixed_Int is set to False.
3624
3625 if Is_Floating_Point_Type (Typ)
3626 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3627 or else Int_Real
3628 then
3629 Valr := Expr_Value_R (N);
3630
3631 if LB_Known and then Valr >= Expr_Value_R (Lo)
3632 and then UB_Known and then Valr <= Expr_Value_R (Hi)
3633 then
3634 return True;
3635 else
3636 return False;
3637 end if;
3638
3639 else
3640 Val := Expr_Value (N);
3641
3642 if LB_Known and then Val >= Expr_Value (Lo)
3643 and then UB_Known and then Val <= Expr_Value (Hi)
3644 then
3645 return True;
3646 else
3647 return False;
3648 end if;
3649 end if;
3650 end;
3651 end if;
3652 end Is_In_Range;
3653
3654 -------------------
3655 -- Is_Null_Range --
3656 -------------------
3657
3658 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3659 Typ : constant Entity_Id := Etype (Lo);
3660
3661 begin
3662 if not Compile_Time_Known_Value (Lo)
3663 or else not Compile_Time_Known_Value (Hi)
3664 then
3665 return False;
3666 end if;
3667
3668 if Is_Discrete_Type (Typ) then
3669 return Expr_Value (Lo) > Expr_Value (Hi);
3670
3671 else
3672 pragma Assert (Is_Real_Type (Typ));
3673 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
3674 end if;
3675 end Is_Null_Range;
3676
3677 -----------------------------
3678 -- Is_OK_Static_Expression --
3679 -----------------------------
3680
3681 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
3682 begin
3683 return Is_Static_Expression (N)
3684 and then not Raises_Constraint_Error (N);
3685 end Is_OK_Static_Expression;
3686
3687 ------------------------
3688 -- Is_OK_Static_Range --
3689 ------------------------
3690
3691 -- A static range is a range whose bounds are static expressions, or a
3692 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3693 -- We have already converted range attribute references, so we get the
3694 -- "or" part of this rule without needing a special test.
3695
3696 function Is_OK_Static_Range (N : Node_Id) return Boolean is
3697 begin
3698 return Is_OK_Static_Expression (Low_Bound (N))
3699 and then Is_OK_Static_Expression (High_Bound (N));
3700 end Is_OK_Static_Range;
3701
3702 --------------------------
3703 -- Is_OK_Static_Subtype --
3704 --------------------------
3705
3706 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3707 -- where neither bound raises constraint error when evaluated.
3708
3709 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
3710 Base_T : constant Entity_Id := Base_Type (Typ);
3711 Anc_Subt : Entity_Id;
3712
3713 begin
3714 -- First a quick check on the non static subtype flag. As described
3715 -- in further detail in Einfo, this flag is not decisive in all cases,
3716 -- but if it is set, then the subtype is definitely non-static.
3717
3718 if Is_Non_Static_Subtype (Typ) then
3719 return False;
3720 end if;
3721
3722 Anc_Subt := Ancestor_Subtype (Typ);
3723
3724 if Anc_Subt = Empty then
3725 Anc_Subt := Base_T;
3726 end if;
3727
3728 if Is_Generic_Type (Root_Type (Base_T))
3729 or else Is_Generic_Actual_Type (Base_T)
3730 then
3731 return False;
3732
3733 -- String types
3734
3735 elsif Is_String_Type (Typ) then
3736 return
3737 Ekind (Typ) = E_String_Literal_Subtype
3738 or else
3739 (Is_OK_Static_Subtype (Component_Type (Typ))
3740 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
3741
3742 -- Scalar types
3743
3744 elsif Is_Scalar_Type (Typ) then
3745 if Base_T = Typ then
3746 return True;
3747
3748 else
3749 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3750 -- use Get_Type_Low,High_Bound.
3751
3752 return Is_OK_Static_Subtype (Anc_Subt)
3753 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
3754 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
3755 end if;
3756
3757 -- Types other than string and scalar types are never static
3758
3759 else
3760 return False;
3761 end if;
3762 end Is_OK_Static_Subtype;
3763
3764 ---------------------
3765 -- Is_Out_Of_Range --
3766 ---------------------
3767
3768 function Is_Out_Of_Range
3769 (N : Node_Id;
3770 Typ : Entity_Id;
3771 Fixed_Int : Boolean := False;
f44fe430 3772 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
3773 is
3774 Val : Uint;
3775 Valr : Ureal;
3776
3777 begin
82c80734 3778 -- Universal types have no range limits, so always in range
996ae0b0
RK
3779
3780 if Typ = Universal_Integer or else Typ = Universal_Real then
3781 return False;
3782
3783 -- Never out of range if not scalar type. Don't know if this can
3784 -- actually happen, but our spec allows it, so we must check!
3785
3786 elsif not Is_Scalar_Type (Typ) then
3787 return False;
3788
3789 -- Never out of range if this is a generic type, since the bounds
3790 -- of generic types are junk. Note that if we only checked for
3791 -- static expressions (instead of compile time known values) below,
3792 -- we would not need this check, because values of a generic type
3793 -- can never be static, but they can be known at compile time.
3794
3795 elsif Is_Generic_Type (Typ) then
3796 return False;
3797
fbf5a39b 3798 -- Never out of range unless we have a compile time known value
996ae0b0
RK
3799
3800 elsif not Compile_Time_Known_Value (N) then
3801 return False;
3802
3803 else
3804 declare
3805 Lo : constant Node_Id := Type_Low_Bound (Typ);
3806 Hi : constant Node_Id := Type_High_Bound (Typ);
3807 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3808 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3809
3810 begin
3811 -- Real types (note that fixed-point types are not treated
3812 -- as being of a real type if the flag Fixed_Int is set,
3813 -- since in that case they are regarded as integer types).
3814
3815 if Is_Floating_Point_Type (Typ)
3816 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3817 or else Int_Real
3818 then
3819 Valr := Expr_Value_R (N);
3820
3821 if LB_Known and then Valr < Expr_Value_R (Lo) then
3822 return True;
3823
3824 elsif UB_Known and then Expr_Value_R (Hi) < Valr then
3825 return True;
3826
3827 else
3828 return False;
3829 end if;
3830
3831 else
3832 Val := Expr_Value (N);
3833
3834 if LB_Known and then Val < Expr_Value (Lo) then
3835 return True;
3836
3837 elsif UB_Known and then Expr_Value (Hi) < Val then
3838 return True;
3839
3840 else
3841 return False;
3842 end if;
3843 end if;
3844 end;
3845 end if;
3846 end Is_Out_Of_Range;
3847
3848 ---------------------
3849 -- Is_Static_Range --
3850 ---------------------
3851
3852 -- A static range is a range whose bounds are static expressions, or a
3853 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3854 -- We have already converted range attribute references, so we get the
3855 -- "or" part of this rule without needing a special test.
3856
3857 function Is_Static_Range (N : Node_Id) return Boolean is
3858 begin
3859 return Is_Static_Expression (Low_Bound (N))
3860 and then Is_Static_Expression (High_Bound (N));
3861 end Is_Static_Range;
3862
3863 -----------------------
3864 -- Is_Static_Subtype --
3865 -----------------------
3866
82c80734 3867 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
3868
3869 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
3870 Base_T : constant Entity_Id := Base_Type (Typ);
3871 Anc_Subt : Entity_Id;
3872
3873 begin
3874 -- First a quick check on the non static subtype flag. As described
3875 -- in further detail in Einfo, this flag is not decisive in all cases,
3876 -- but if it is set, then the subtype is definitely non-static.
3877
3878 if Is_Non_Static_Subtype (Typ) then
3879 return False;
3880 end if;
3881
3882 Anc_Subt := Ancestor_Subtype (Typ);
3883
3884 if Anc_Subt = Empty then
3885 Anc_Subt := Base_T;
3886 end if;
3887
3888 if Is_Generic_Type (Root_Type (Base_T))
3889 or else Is_Generic_Actual_Type (Base_T)
3890 then
3891 return False;
3892
3893 -- String types
3894
3895 elsif Is_String_Type (Typ) then
3896 return
3897 Ekind (Typ) = E_String_Literal_Subtype
3898 or else
3899 (Is_Static_Subtype (Component_Type (Typ))
3900 and then Is_Static_Subtype (Etype (First_Index (Typ))));
3901
3902 -- Scalar types
3903
3904 elsif Is_Scalar_Type (Typ) then
3905 if Base_T = Typ then
3906 return True;
3907
3908 else
3909 return Is_Static_Subtype (Anc_Subt)
3910 and then Is_Static_Expression (Type_Low_Bound (Typ))
3911 and then Is_Static_Expression (Type_High_Bound (Typ));
3912 end if;
3913
3914 -- Types other than string and scalar types are never static
3915
3916 else
3917 return False;
3918 end if;
3919 end Is_Static_Subtype;
3920
3921 --------------------
3922 -- Not_Null_Range --
3923 --------------------
3924
3925 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3926 Typ : constant Entity_Id := Etype (Lo);
3927
3928 begin
3929 if not Compile_Time_Known_Value (Lo)
3930 or else not Compile_Time_Known_Value (Hi)
3931 then
3932 return False;
3933 end if;
3934
3935 if Is_Discrete_Type (Typ) then
3936 return Expr_Value (Lo) <= Expr_Value (Hi);
3937
3938 else
3939 pragma Assert (Is_Real_Type (Typ));
3940
3941 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
3942 end if;
3943 end Not_Null_Range;
3944
3945 -------------
3946 -- OK_Bits --
3947 -------------
3948
3949 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
3950 begin
3951 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3952
3953 if Bits < 500_000 then
3954 return True;
3955
3956 else
3957 Error_Msg_N ("static value too large, capacity exceeded", N);
3958 return False;
3959 end if;
3960 end OK_Bits;
3961
3962 ------------------
3963 -- Out_Of_Range --
3964 ------------------
3965
3966 procedure Out_Of_Range (N : Node_Id) is
3967 begin
3968 -- If we have the static expression case, then this is an illegality
3969 -- in Ada 95 mode, except that in an instance, we never generate an
3970 -- error (if the error is legitimate, it was already diagnosed in
3971 -- the template). The expression to compute the length of a packed
3972 -- array is attached to the array type itself, and deserves a separate
3973 -- message.
3974
3975 if Is_Static_Expression (N)
3976 and then not In_Instance
fbf5a39b 3977 and then not In_Inlined_Body
0ab80019 3978 and then Ada_Version >= Ada_95
996ae0b0 3979 then
996ae0b0
RK
3980 if Nkind (Parent (N)) = N_Defining_Identifier
3981 and then Is_Array_Type (Parent (N))
3982 and then Present (Packed_Array_Type (Parent (N)))
3983 and then Present (First_Rep_Item (Parent (N)))
3984 then
3985 Error_Msg_N
3986 ("length of packed array must not exceed Integer''Last",
3987 First_Rep_Item (Parent (N)));
3988 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
3989
3990 else
3991 Apply_Compile_Time_Constraint_Error
07fc65c4 3992 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
3993 end if;
3994
3995 -- Here we generate a warning for the Ada 83 case, or when we are
3996 -- in an instance, or when we have a non-static expression case.
3997
3998 else
996ae0b0 3999 Apply_Compile_Time_Constraint_Error
07fc65c4 4000 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
4001 end if;
4002 end Out_Of_Range;
4003
4004 -------------------------
4005 -- Rewrite_In_Raise_CE --
4006 -------------------------
4007
4008 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4009 Typ : constant Entity_Id := Etype (N);
4010
4011 begin
4012 -- If we want to raise CE in the condition of a raise_CE node
4013 -- we may as well get rid of the condition
4014
4015 if Present (Parent (N))
4016 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4017 then
4018 Set_Condition (Parent (N), Empty);
4019
4020 -- If the expression raising CE is a N_Raise_CE node, we can use
4021 -- that one. We just preserve the type of the context
4022
4023 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4024 Rewrite (N, Exp);
4025 Set_Etype (N, Typ);
4026
4027 -- We have to build an explicit raise_ce node
4028
4029 else
07fc65c4
GB
4030 Rewrite (N,
4031 Make_Raise_Constraint_Error (Sloc (Exp),
4032 Reason => CE_Range_Check_Failed));
996ae0b0
RK
4033 Set_Raises_Constraint_Error (N);
4034 Set_Etype (N, Typ);
4035 end if;
4036 end Rewrite_In_Raise_CE;
4037
4038 ---------------------
4039 -- String_Type_Len --
4040 ---------------------
4041
4042 function String_Type_Len (Stype : Entity_Id) return Uint is
4043 NT : constant Entity_Id := Etype (First_Index (Stype));
4044 T : Entity_Id;
4045
4046 begin
4047 if Is_OK_Static_Subtype (NT) then
4048 T := NT;
4049 else
4050 T := Base_Type (NT);
4051 end if;
4052
4053 return Expr_Value (Type_High_Bound (T)) -
4054 Expr_Value (Type_Low_Bound (T)) + 1;
4055 end String_Type_Len;
4056
4057 ------------------------------------
4058 -- Subtypes_Statically_Compatible --
4059 ------------------------------------
4060
4061 function Subtypes_Statically_Compatible
f44fe430
RD
4062 (T1 : Entity_Id;
4063 T2 : Entity_Id) return Boolean
996ae0b0
RK
4064 is
4065 begin
4066 if Is_Scalar_Type (T1) then
4067
4068 -- Definitely compatible if we match
4069
4070 if Subtypes_Statically_Match (T1, T2) then
4071 return True;
4072
4073 -- If either subtype is nonstatic then they're not compatible
4074
4075 elsif not Is_Static_Subtype (T1)
4076 or else not Is_Static_Subtype (T2)
4077 then
4078 return False;
4079
4080 -- If either type has constraint error bounds, then consider that
4081 -- they match to avoid junk cascaded errors here.
4082
4083 elsif not Is_OK_Static_Subtype (T1)
4084 or else not Is_OK_Static_Subtype (T2)
4085 then
4086 return True;
4087
4088 -- Base types must match, but we don't check that (should
4089 -- we???) but we do at least check that both types are
4090 -- real, or both types are not real.
4091
fbf5a39b 4092 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
4093 return False;
4094
4095 -- Here we check the bounds
4096
4097 else
4098 declare
4099 LB1 : constant Node_Id := Type_Low_Bound (T1);
4100 HB1 : constant Node_Id := Type_High_Bound (T1);
4101 LB2 : constant Node_Id := Type_Low_Bound (T2);
4102 HB2 : constant Node_Id := Type_High_Bound (T2);
4103
4104 begin
4105 if Is_Real_Type (T1) then
4106 return
4107 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4108 or else
4109 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4110 and then
4111 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4112
4113 else
4114 return
4115 (Expr_Value (LB1) > Expr_Value (HB1))
4116 or else
4117 (Expr_Value (LB2) <= Expr_Value (LB1)
4118 and then
4119 Expr_Value (HB1) <= Expr_Value (HB2));
4120 end if;
4121 end;
4122 end if;
4123
4124 elsif Is_Access_Type (T1) then
4125 return not Is_Constrained (T2)
4126 or else Subtypes_Statically_Match
4127 (Designated_Type (T1), Designated_Type (T2));
4128
4129 else
4130 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4131 or else Subtypes_Statically_Match (T1, T2);
4132 end if;
4133 end Subtypes_Statically_Compatible;
4134
4135 -------------------------------
4136 -- Subtypes_Statically_Match --
4137 -------------------------------
4138
4139 -- Subtypes statically match if they have statically matching constraints
4140 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4141 -- they are the same identical constraint, or if they are static and the
4142 -- values match (RM 4.9.1(1)).
4143
4144 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4145 begin
4146 -- A type always statically matches itself
4147
4148 if T1 = T2 then
4149 return True;
4150
4151 -- Scalar types
4152
4153 elsif Is_Scalar_Type (T1) then
4154
4155 -- Base types must be the same
4156
4157 if Base_Type (T1) /= Base_Type (T2) then
4158 return False;
4159 end if;
4160
4161 -- A constrained numeric subtype never matches an unconstrained
4162 -- subtype, i.e. both types must be constrained or unconstrained.
4163
4164 -- To understand the requirement for this test, see RM 4.9.1(1).
4165 -- As is made clear in RM 3.5.4(11), type Integer, for example
4166 -- is a constrained subtype with constraint bounds matching the
f3d57416 4167 -- bounds of its corresponding unconstrained base type. In this
996ae0b0
RK
4168 -- situation, Integer and Integer'Base do not statically match,
4169 -- even though they have the same bounds.
4170
4171 -- We only apply this test to types in Standard and types that
4172 -- appear in user programs. That way, we do not have to be
4173 -- too careful about setting Is_Constrained right for itypes.
4174
4175 if Is_Numeric_Type (T1)
4176 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4177 and then (Scope (T1) = Standard_Standard
4178 or else Comes_From_Source (T1))
4179 and then (Scope (T2) = Standard_Standard
4180 or else Comes_From_Source (T2))
4181 then
4182 return False;
82c80734
RD
4183
4184 -- A generic scalar type does not statically match its base
4185 -- type (AI-311). In this case we make sure that the formals,
4186 -- which are first subtypes of their bases, are constrained.
4187
4188 elsif Is_Generic_Type (T1)
4189 and then Is_Generic_Type (T2)
4190 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4191 then
4192 return False;
996ae0b0
RK
4193 end if;
4194
4195 -- If there was an error in either range, then just assume
4196 -- the types statically match to avoid further junk errors
4197
4198 if Error_Posted (Scalar_Range (T1))
4199 or else
4200 Error_Posted (Scalar_Range (T2))
4201 then
4202 return True;
4203 end if;
4204
4205 -- Otherwise both types have bound that can be compared
4206
4207 declare
4208 LB1 : constant Node_Id := Type_Low_Bound (T1);
4209 HB1 : constant Node_Id := Type_High_Bound (T1);
4210 LB2 : constant Node_Id := Type_Low_Bound (T2);
4211 HB2 : constant Node_Id := Type_High_Bound (T2);
4212
4213 begin
4214 -- If the bounds are the same tree node, then match
4215
4216 if LB1 = LB2 and then HB1 = HB2 then
4217 return True;
4218
4219 -- Otherwise bounds must be static and identical value
4220
4221 else
4222 if not Is_Static_Subtype (T1)
4223 or else not Is_Static_Subtype (T2)
4224 then
4225 return False;
4226
4227 -- If either type has constraint error bounds, then say
4228 -- that they match to avoid junk cascaded errors here.
4229
4230 elsif not Is_OK_Static_Subtype (T1)
4231 or else not Is_OK_Static_Subtype (T2)
4232 then
4233 return True;
4234
4235 elsif Is_Real_Type (T1) then
4236 return
4237 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4238 and then
4239 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4240
4241 else
4242 return
4243 Expr_Value (LB1) = Expr_Value (LB2)
4244 and then
4245 Expr_Value (HB1) = Expr_Value (HB2);
4246 end if;
4247 end if;
4248 end;
4249
4250 -- Type with discriminants
4251
4252 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4253
c2bf339e
GD
4254 -- Because of view exchanges in multiple instantiations, conformance
4255 -- checking might try to match a partial view of a type with no
4256 -- discriminants with a full view that has defaulted discriminants.
4257 -- In such a case, use the discriminant constraint of the full view,
4258 -- which must exist because we know that the two subtypes have the
4259 -- same base type.
6eaf4095 4260
996ae0b0 4261 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4262 if In_Instance then
4263 if Is_Private_Type (T2)
4264 and then Present (Full_View (T2))
4265 and then Has_Discriminants (Full_View (T2))
4266 then
4267 return Subtypes_Statically_Match (T1, Full_View (T2));
4268
4269 elsif Is_Private_Type (T1)
4270 and then Present (Full_View (T1))
4271 and then Has_Discriminants (Full_View (T1))
4272 then
4273 return Subtypes_Statically_Match (Full_View (T1), T2);
4274
4275 else
4276 return False;
4277 end if;
6eaf4095
ES
4278 else
4279 return False;
4280 end if;
996ae0b0
RK
4281 end if;
4282
4283 declare
4284 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4285 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4286
13f34a3f
RD
4287 DA1 : Elmt_Id;
4288 DA2 : Elmt_Id;
996ae0b0
RK
4289
4290 begin
4291 if DL1 = DL2 then
4292 return True;
996ae0b0
RK
4293 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4294 return False;
4295 end if;
4296
13f34a3f 4297 -- Now loop through the discriminant constraints
996ae0b0 4298
13f34a3f
RD
4299 -- Note: the guard here seems necessary, since it is possible at
4300 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 4301
13f34a3f
RD
4302 if Present (DL1) and then Present (DL2) then
4303 DA1 := First_Elmt (DL1);
4304 DA2 := First_Elmt (DL2);
4305 while Present (DA1) loop
4306 declare
4307 Expr1 : constant Node_Id := Node (DA1);
4308 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 4309
13f34a3f
RD
4310 begin
4311 if not Is_Static_Expression (Expr1)
4312 or else not Is_Static_Expression (Expr2)
4313 then
4314 return False;
996ae0b0 4315
13f34a3f
RD
4316 -- If either expression raised a constraint error,
4317 -- consider the expressions as matching, since this
4318 -- helps to prevent cascading errors.
4319
4320 elsif Raises_Constraint_Error (Expr1)
4321 or else Raises_Constraint_Error (Expr2)
4322 then
4323 null;
4324
4325 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4326 return False;
4327 end if;
4328 end;
996ae0b0 4329
13f34a3f
RD
4330 Next_Elmt (DA1);
4331 Next_Elmt (DA2);
4332 end loop;
4333 end if;
996ae0b0
RK
4334 end;
4335
4336 return True;
4337
82c80734 4338 -- A definite type does not match an indefinite or classwide type
0356699b
RD
4339 -- However, a generic type with unknown discriminants may be
4340 -- instantiated with a type with no discriminants, and conformance
4341 -- checking on an inherited operation may compare the actual with
4342 -- the subtype that renames it in the instance.
996ae0b0
RK
4343
4344 elsif
4345 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4346 then
7a3f77d2
AC
4347 return
4348 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
4349
4350 -- Array type
4351
4352 elsif Is_Array_Type (T1) then
4353
4354 -- If either subtype is unconstrained then both must be,
4355 -- and if both are unconstrained then no further checking
4356 -- is needed.
4357
4358 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4359 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4360 end if;
4361
4362 -- Both subtypes are constrained, so check that the index
4363 -- subtypes statically match.
4364
4365 declare
4366 Index1 : Node_Id := First_Index (T1);
4367 Index2 : Node_Id := First_Index (T2);
4368
4369 begin
4370 while Present (Index1) loop
4371 if not
4372 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4373 then
4374 return False;
4375 end if;
4376
4377 Next_Index (Index1);
4378 Next_Index (Index2);
4379 end loop;
4380
4381 return True;
4382 end;
4383
4384 elsif Is_Access_Type (T1) then
b5bd964f
ES
4385 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4386 return False;
4387
7a3f77d2
AC
4388 elsif Ekind (T1) = E_Access_Subprogram_Type
4389 or else Ekind (T1) = E_Anonymous_Access_Subprogram_Type
4390 then
b5bd964f
ES
4391 return
4392 Subtype_Conformant
4393 (Designated_Type (T1),
bb98fe75 4394 Designated_Type (T2));
b5bd964f
ES
4395 else
4396 return
4397 Subtypes_Statically_Match
4398 (Designated_Type (T1),
4399 Designated_Type (T2))
4400 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4401 end if;
996ae0b0
RK
4402
4403 -- All other types definitely match
4404
4405 else
4406 return True;
4407 end if;
4408 end Subtypes_Statically_Match;
4409
4410 ----------
4411 -- Test --
4412 ----------
4413
4414 function Test (Cond : Boolean) return Uint is
4415 begin
4416 if Cond then
4417 return Uint_1;
4418 else
4419 return Uint_0;
4420 end if;
4421 end Test;
4422
4423 ---------------------------------
4424 -- Test_Expression_Is_Foldable --
4425 ---------------------------------
4426
4427 -- One operand case
4428
4429 procedure Test_Expression_Is_Foldable
4430 (N : Node_Id;
4431 Op1 : Node_Id;
4432 Stat : out Boolean;
4433 Fold : out Boolean)
4434 is
4435 begin
4436 Stat := False;
0356699b
RD
4437 Fold := False;
4438
4439 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4440 return;
4441 end if;
996ae0b0
RK
4442
4443 -- If operand is Any_Type, just propagate to result and do not
4444 -- try to fold, this prevents cascaded errors.
4445
4446 if Etype (Op1) = Any_Type then
4447 Set_Etype (N, Any_Type);
996ae0b0
RK
4448 return;
4449
4450 -- If operand raises constraint error, then replace node N with the
4451 -- raise constraint error node, and we are obviously not foldable.
4452 -- Note that this replacement inherits the Is_Static_Expression flag
4453 -- from the operand.
4454
4455 elsif Raises_Constraint_Error (Op1) then
4456 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
4457 return;
4458
4459 -- If the operand is not static, then the result is not static, and
4460 -- all we have to do is to check the operand since it is now known
4461 -- to appear in a non-static context.
4462
4463 elsif not Is_Static_Expression (Op1) then
4464 Check_Non_Static_Context (Op1);
4465 Fold := Compile_Time_Known_Value (Op1);
4466 return;
4467
4468 -- An expression of a formal modular type is not foldable because
4469 -- the modulus is unknown.
4470
4471 elsif Is_Modular_Integer_Type (Etype (Op1))
4472 and then Is_Generic_Type (Etype (Op1))
4473 then
4474 Check_Non_Static_Context (Op1);
996ae0b0
RK
4475 return;
4476
4477 -- Here we have the case of an operand whose type is OK, which is
4478 -- static, and which does not raise constraint error, we can fold.
4479
4480 else
4481 Set_Is_Static_Expression (N);
4482 Fold := True;
4483 Stat := True;
4484 end if;
4485 end Test_Expression_Is_Foldable;
4486
4487 -- Two operand case
4488
4489 procedure Test_Expression_Is_Foldable
4490 (N : Node_Id;
4491 Op1 : Node_Id;
4492 Op2 : Node_Id;
4493 Stat : out Boolean;
4494 Fold : out Boolean)
4495 is
4496 Rstat : constant Boolean := Is_Static_Expression (Op1)
4497 and then Is_Static_Expression (Op2);
4498
4499 begin
4500 Stat := False;
0356699b
RD
4501 Fold := False;
4502
4503 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4504 return;
4505 end if;
996ae0b0
RK
4506
4507 -- If either operand is Any_Type, just propagate to result and
4508 -- do not try to fold, this prevents cascaded errors.
4509
4510 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
4511 Set_Etype (N, Any_Type);
996ae0b0
RK
4512 return;
4513
4514 -- If left operand raises constraint error, then replace node N with
4515 -- the raise constraint error node, and we are obviously not foldable.
4516 -- Is_Static_Expression is set from the two operands in the normal way,
4517 -- and we check the right operand if it is in a non-static context.
4518
4519 elsif Raises_Constraint_Error (Op1) then
4520 if not Rstat then
4521 Check_Non_Static_Context (Op2);
4522 end if;
4523
4524 Rewrite_In_Raise_CE (N, Op1);
4525 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4526 return;
4527
4528 -- Similar processing for the case of the right operand. Note that
4529 -- we don't use this routine for the short-circuit case, so we do
4530 -- not have to worry about that special case here.
4531
4532 elsif Raises_Constraint_Error (Op2) then
4533 if not Rstat then
4534 Check_Non_Static_Context (Op1);
4535 end if;
4536
4537 Rewrite_In_Raise_CE (N, Op2);
4538 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4539 return;
4540
82c80734 4541 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
4542
4543 elsif Is_Modular_Integer_Type (Etype (Op1))
4544 and then Is_Generic_Type (Etype (Op1))
4545 then
4546 Check_Non_Static_Context (Op1);
996ae0b0
RK
4547 return;
4548
4549 -- If result is not static, then check non-static contexts on operands
4550 -- since one of them may be static and the other one may not be static
4551
4552 elsif not Rstat then
4553 Check_Non_Static_Context (Op1);
4554 Check_Non_Static_Context (Op2);
4555 Fold := Compile_Time_Known_Value (Op1)
4556 and then Compile_Time_Known_Value (Op2);
4557 return;
4558
4559 -- Else result is static and foldable. Both operands are static,
4560 -- and neither raises constraint error, so we can definitely fold.
4561
4562 else
4563 Set_Is_Static_Expression (N);
4564 Fold := True;
4565 Stat := True;
4566 return;
4567 end if;
4568 end Test_Expression_Is_Foldable;
4569
4570 --------------
4571 -- To_Bits --
4572 --------------
4573
4574 procedure To_Bits (U : Uint; B : out Bits) is
4575 begin
4576 for J in 0 .. B'Last loop
4577 B (J) := (U / (2 ** J)) mod 2 /= 0;
4578 end loop;
4579 end To_Bits;
4580
fbf5a39b
AC
4581 --------------------
4582 -- Why_Not_Static --
4583 --------------------
4584
4585 procedure Why_Not_Static (Expr : Node_Id) is
4586 N : constant Node_Id := Original_Node (Expr);
4587 Typ : Entity_Id;
4588 E : Entity_Id;
4589
4590 procedure Why_Not_Static_List (L : List_Id);
4591 -- A version that can be called on a list of expressions. Finds
4592 -- all non-static violations in any element of the list.
4593
4594 -------------------------
4595 -- Why_Not_Static_List --
4596 -------------------------
4597
4598 procedure Why_Not_Static_List (L : List_Id) is
4599 N : Node_Id;
4600
4601 begin
4602 if Is_Non_Empty_List (L) then
4603 N := First (L);
4604 while Present (N) loop
4605 Why_Not_Static (N);
4606 Next (N);
4607 end loop;
4608 end if;
4609 end Why_Not_Static_List;
4610
4611 -- Start of processing for Why_Not_Static
4612
4613 begin
4614 -- If in ACATS mode (debug flag 2), then suppress all these
4615 -- messages, this avoids massive updates to the ACATS base line.
4616
4617 if Debug_Flag_2 then
4618 return;
4619 end if;
4620
4621 -- Ignore call on error or empty node
4622
4623 if No (Expr) or else Nkind (Expr) = N_Error then
4624 return;
4625 end if;
4626
4627 -- Preprocessing for sub expressions
4628
4629 if Nkind (Expr) in N_Subexpr then
4630
4631 -- Nothing to do if expression is static
4632
4633 if Is_OK_Static_Expression (Expr) then
4634 return;
4635 end if;
4636
4637 -- Test for constraint error raised
4638
4639 if Raises_Constraint_Error (Expr) then
4640 Error_Msg_N
4641 ("expression raises exception, cannot be static " &
b11e8d6f 4642 "(RM 4.9(34))!", N);
fbf5a39b
AC
4643 return;
4644 end if;
4645
4646 -- If no type, then something is pretty wrong, so ignore
4647
4648 Typ := Etype (Expr);
4649
4650 if No (Typ) then
4651 return;
4652 end if;
4653
4654 -- Type must be scalar or string type
4655
4656 if not Is_Scalar_Type (Typ)
4657 and then not Is_String_Type (Typ)
4658 then
4659 Error_Msg_N
4660 ("static expression must have scalar or string type " &
b11e8d6f 4661 "(RM 4.9(2))!", N);
fbf5a39b
AC
4662 return;
4663 end if;
4664 end if;
4665
4666 -- If we got through those checks, test particular node kind
4667
4668 case Nkind (N) is
4669 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
4670 E := Entity (N);
4671
4672 if Is_Named_Number (E) then
4673 null;
4674
4675 elsif Ekind (E) = E_Constant then
4676 if not Is_Static_Expression (Constant_Value (E)) then
4677 Error_Msg_NE
b11e8d6f 4678 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
4679 end if;
4680
4681 else
4682 Error_Msg_NE
4683 ("& is not static constant or named number " &
b11e8d6f 4684 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
4685 end if;
4686
29797f34 4687 when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
fbf5a39b
AC
4688 if Nkind (N) in N_Op_Shift then
4689 Error_Msg_N
b11e8d6f 4690 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
4691
4692 else
4693 Why_Not_Static (Left_Opnd (N));
4694 Why_Not_Static (Right_Opnd (N));
4695 end if;
4696
4697 when N_Unary_Op =>
4698 Why_Not_Static (Right_Opnd (N));
4699
4700 when N_Attribute_Reference =>
4701 Why_Not_Static_List (Expressions (N));
4702
4703 E := Etype (Prefix (N));
4704
4705 if E = Standard_Void_Type then
4706 return;
4707 end if;
4708
4709 -- Special case non-scalar'Size since this is a common error
4710
4711 if Attribute_Name (N) = Name_Size then
4712 Error_Msg_N
4713 ("size attribute is only static for scalar type " &
b11e8d6f 4714 "(RM 4.9(7,8))", N);
fbf5a39b
AC
4715
4716 -- Flag array cases
4717
4718 elsif Is_Array_Type (E) then
4719 if Attribute_Name (N) /= Name_First
4720 and then
4721 Attribute_Name (N) /= Name_Last
4722 and then
4723 Attribute_Name (N) /= Name_Length
4724 then
4725 Error_Msg_N
4726 ("static array attribute must be Length, First, or Last " &
b11e8d6f 4727 "(RM 4.9(8))!", N);
fbf5a39b
AC
4728
4729 -- Since we know the expression is not-static (we already
4730 -- tested for this, must mean array is not static).
4731
4732 else
4733 Error_Msg_N
b11e8d6f 4734 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
4735 end if;
4736
4737 return;
4738
4739 -- Special case generic types, since again this is a common
4740 -- source of confusion.
4741
4742 elsif Is_Generic_Actual_Type (E)
4743 or else
4744 Is_Generic_Type (E)
4745 then
4746 Error_Msg_N
4747 ("attribute of generic type is never static " &
b11e8d6f 4748 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
4749
4750 elsif Is_Static_Subtype (E) then
4751 null;
4752
4753 elsif Is_Scalar_Type (E) then
4754 Error_Msg_N
4755 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 4756 "(RM 4.9(7))!", N);
fbf5a39b
AC
4757
4758 else
4759 Error_Msg_N
4760 ("static attribute must apply to array/scalar type " &
b11e8d6f 4761 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
4762 end if;
4763
4764 when N_String_Literal =>
4765 Error_Msg_N
b11e8d6f 4766 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
4767
4768 when N_Explicit_Dereference =>
4769 Error_Msg_N
b11e8d6f 4770 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
4771
4772 when N_Function_Call =>
4773 Why_Not_Static_List (Parameter_Associations (N));
b11e8d6f 4774 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
fbf5a39b
AC
4775
4776 when N_Parameter_Association =>
4777 Why_Not_Static (Explicit_Actual_Parameter (N));
4778
4779 when N_Indexed_Component =>
4780 Error_Msg_N
b11e8d6f 4781 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
4782
4783 when N_Procedure_Call_Statement =>
4784 Error_Msg_N
b11e8d6f 4785 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
4786
4787 when N_Qualified_Expression =>
4788 Why_Not_Static (Expression (N));
4789
4790 when N_Aggregate | N_Extension_Aggregate =>
4791 Error_Msg_N
b11e8d6f 4792 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
4793
4794 when N_Range =>
4795 Why_Not_Static (Low_Bound (N));
4796 Why_Not_Static (High_Bound (N));
4797
4798 when N_Range_Constraint =>
4799 Why_Not_Static (Range_Expression (N));
4800
4801 when N_Subtype_Indication =>
4802 Why_Not_Static (Constraint (N));
4803
4804 when N_Selected_Component =>
4805 Error_Msg_N
b11e8d6f 4806 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
4807
4808 when N_Slice =>
4809 Error_Msg_N
b11e8d6f 4810 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
4811
4812 when N_Type_Conversion =>
4813 Why_Not_Static (Expression (N));
4814
4815 if not Is_Scalar_Type (Etype (Prefix (N)))
4816 or else not Is_Static_Subtype (Etype (Prefix (N)))
4817 then
4818 Error_Msg_N
4819 ("static conversion requires static scalar subtype result " &
b11e8d6f 4820 "(RM 4.9(9))!", N);
fbf5a39b
AC
4821 end if;
4822
4823 when N_Unchecked_Type_Conversion =>
4824 Error_Msg_N
b11e8d6f 4825 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
4826
4827 when others =>
4828 null;
4829
4830 end case;
4831 end Why_Not_Static;
4832
996ae0b0 4833end Sem_Eval;