]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
sem_ch3.adb, [...]: Code clean ups.
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
2735b82d 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
d7567964 34with Freeze; use Freeze;
0356699b 35with Lib; use Lib;
13f34a3f 36with Namet; use Namet;
996ae0b0
RK
37with Nmake; use Nmake;
38with Nlists; use Nlists;
39with Opt; use Opt;
e03f7ccf 40with Par_SCO; use Par_SCO;
65f7ed64 41with Rtsfind; use Rtsfind;
996ae0b0 42with Sem; use Sem;
a4100e55 43with Sem_Aux; use Sem_Aux;
996ae0b0 44with Sem_Cat; use Sem_Cat;
b5bd964f 45with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
46with Sem_Ch8; use Sem_Ch8;
47with Sem_Res; use Sem_Res;
48with Sem_Util; use Sem_Util;
49with Sem_Type; use Sem_Type;
50with Sem_Warn; use Sem_Warn;
51with Sinfo; use Sinfo;
52with Snames; use Snames;
53with Stand; use Stand;
54with Stringt; use Stringt;
07fc65c4 55with Tbuild; use Tbuild;
996ae0b0
RK
56
57package body Sem_Eval is
58
59 -----------------------------------------
60 -- Handling of Compile Time Evaluation --
61 -----------------------------------------
62
63 -- The compile time evaluation of expressions is distributed over several
f3d57416 64 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
65 -- a subexpression is resolved and is therefore accomplished in a bottom
66 -- up fashion. The flags are synthesized using the following approach.
67
68 -- Is_Static_Expression is determined by following the detailed rules
69 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
70 -- flag of the operands in many cases.
71
72 -- Raises_Constraint_Error is set if any of the operands have the flag
73 -- set or if an attempt to compute the value of the current expression
74 -- results in detection of a runtime constraint error.
75
76 -- As described in the spec, the requirement is that Is_Static_Expression
77 -- be accurately set, and in addition for nodes for which this flag is set,
78 -- Raises_Constraint_Error must also be set. Furthermore a node which has
79 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
80 -- requirement is that the expression value must be precomputed, and the
81 -- node is either a literal, or the name of a constant entity whose value
82 -- is a static expression.
83
84 -- The general approach is as follows. First compute Is_Static_Expression.
85 -- If the node is not static, then the flag is left off in the node and
86 -- we are all done. Otherwise for a static node, we test if any of the
87 -- operands will raise constraint error, and if so, propagate the flag
88 -- Raises_Constraint_Error to the result node and we are done (since the
89 -- error was already posted at a lower level).
90
91 -- For the case of a static node whose operands do not raise constraint
92 -- error, we attempt to evaluate the node. If this evaluation succeeds,
93 -- then the node is replaced by the result of this computation. If the
94 -- evaluation raises constraint error, then we rewrite the node with
95 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
96 -- to post appropriate error messages.
97
98 ----------------
99 -- Local Data --
100 ----------------
101
102 type Bits is array (Nat range <>) of Boolean;
103 -- Used to convert unsigned (modular) values for folding logical ops
104
80298c3b 105 -- The following declarations are used to maintain a cache of nodes that
07fc65c4
GB
106 -- have compile time known values. The cache is maintained only for
107 -- discrete types (the most common case), and is populated by calls to
108 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
109 -- since it is possible for the status to change (in particular it is
110 -- possible for a node to get replaced by a constraint error node).
111
112 CV_Bits : constant := 5;
113 -- Number of low order bits of Node_Id value used to reference entries
114 -- in the cache table.
115
116 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
117 -- Size of cache for compile time values
118
119 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
120
121 type CV_Entry is record
122 N : Node_Id;
123 V : Uint;
124 end record;
125
edab6088
RD
126 type Match_Result is (Match, No_Match, Non_Static);
127 -- Result returned from functions that test for a matching result. If the
128 -- operands are not OK_Static then Non_Static will be returned. Otherwise
129 -- Match/No_Match is returned depending on whether the match succeeds.
130
07fc65c4
GB
131 type CV_Cache_Array is array (CV_Range) of CV_Entry;
132
133 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
134 -- This is the actual cache, with entries consisting of node/value pairs,
135 -- and the impossible value Node_High_Bound used for unset entries.
136
305caf42
AC
137 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
138 -- Range membership may either be statically known to be in range or out
139 -- of range, or not statically known. Used for Test_In_Range below.
140
996ae0b0
RK
141 -----------------------
142 -- Local Subprograms --
143 -----------------------
144
edab6088
RD
145 function Choice_Matches
146 (Expr : Node_Id;
147 Choice : Node_Id) return Match_Result;
148 -- Determines whether given value Expr matches the given Choice. The Expr
149 -- can be of discrete, real, or string type and must be a compile time
150 -- known value (it is an error to make the call if these conditions are
151 -- not met). The choice can be a range, subtype name, subtype indication,
152 -- or expression. The returned result is Non_Static if Choice is not
153 -- OK_Static, otherwise either Match or No_Match is returned depending
154 -- on whether Choice matches Expr. This is used for case expression
155 -- alternatives, and also for membership tests. In each case, more
156 -- possibilities are tested than the syntax allows (e.g. membership allows
157 -- subtype indications and non-discrete types, and case allows an OTHERS
158 -- choice), but it does not matter, since we have already done a full
159 -- semantic and syntax check of the construct, so the extra possibilities
160 -- just will not arise for correct expressions.
161 --
162 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
163 -- a reference to a type, one of whose bounds raises Constraint_Error, then
164 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
165
166 function Choices_Match
167 (Expr : Node_Id;
168 Choices : List_Id) return Match_Result;
169 -- This function applies Choice_Matches to each element of Choices. If the
170 -- result is No_Match, then it continues and checks the next element. If
171 -- the result is Match or Non_Static, this result is immediately given
172 -- as the result without checking the rest of the list. Expr can be of
173 -- discrete, real, or string type and must be a compile time known value
174 -- (it is an error to make the call if these conditions are not met).
175
996ae0b0 176 function From_Bits (B : Bits; T : Entity_Id) return Uint;
80298c3b
AC
177 -- Converts a bit string of length B'Length to a Uint value to be used for
178 -- a target of type T, which is a modular type. This procedure includes the
179 -- necessary reduction by the modulus in the case of a non-binary modulus
180 -- (for a binary modulus, the bit string is the right length any way so all
181 -- is well).
996ae0b0 182
edab6088
RD
183 function Is_Static_Choice (Choice : Node_Id) return Boolean;
184 -- Given a choice (from a case expression or membership test), returns
185 -- True if the choice is static. No test is made for raising of constraint
186 -- error, so this function is used only for legality tests.
187
188 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
189 -- Given a choice list (from a case expression or membership test), return
190 -- True if all choices are static in the sense of Is_Static_Choice.
191
192 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
193 -- Given a choice (from a case expression or membership test), returns
194 -- True if the choice is static and does not raise a Constraint_Error.
195
196 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
197 -- Given a choice list (from a case expression or membership test), return
198 -- True if all choices are static in the sense of Is_OK_Static_Choice.
199
200 function Is_Static_Range (N : Node_Id) return Boolean;
201 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
202 -- argument is an N_Range node (but note that the semantic analysis of
203 -- equivalent range attribute references already turned them into the
204 -- equivalent range). This differs from Is_OK_Static_Range (which is what
205 -- must be used by clients) in that it does not care whether the bounds
206 -- raise Constraint_Error or not. Used for checking whether expressions are
207 -- static in the 4.9 sense (without worrying about exceptions).
208
996ae0b0 209 function Get_String_Val (N : Node_Id) return Node_Id;
80298c3b
AC
210 -- Given a tree node for a folded string or character value, returns the
211 -- corresponding string literal or character literal (one of the two must
212 -- be available, or the operand would not have been marked as foldable in
213 -- the earlier analysis of the operation).
996ae0b0 214
07fc65c4
GB
215 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
216 -- Bits represents the number of bits in an integer value to be computed
217 -- (but the value has not been computed yet). If this value in Bits is
80298c3b
AC
218 -- reasonable, a result of True is returned, with the implication that the
219 -- caller should go ahead and complete the calculation. If the value in
220 -- Bits is unreasonably large, then an error is posted on node N, and
07fc65c4
GB
221 -- False is returned (and the caller skips the proposed calculation).
222
996ae0b0 223 procedure Out_Of_Range (N : Node_Id);
80298c3b
AC
224 -- This procedure is called if it is determined that node N, which appears
225 -- in a non-static context, is a compile time known value which is outside
226 -- its range, i.e. the range of Etype. This is used in contexts where
227 -- this is an illegality if N is static, and should generate a warning
228 -- otherwise.
996ae0b0 229
fc3a3f3b
RD
230 function Real_Or_String_Static_Predicate_Matches
231 (Val : Node_Id;
232 Typ : Entity_Id) return Boolean;
233 -- This is the function used to evaluate real or string static predicates.
234 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
235 -- represents the value to be tested against the predicate. Typ is the
236 -- type with the predicate, from which the predicate expression can be
237 -- extracted. The result returned is True if the given value satisfies
238 -- the predicate.
239
996ae0b0 240 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
80298c3b
AC
241 -- N and Exp are nodes representing an expression, Exp is known to raise
242 -- CE. N is rewritten in term of Exp in the optimal way.
996ae0b0
RK
243
244 function String_Type_Len (Stype : Entity_Id) return Uint;
80298c3b
AC
245 -- Given a string type, determines the length of the index type, or, if
246 -- this index type is non-static, the length of the base type of this index
247 -- type. Note that if the string type is itself static, then the index type
248 -- is static, so the second case applies only if the string type passed is
249 -- non-static.
996ae0b0
RK
250
251 function Test (Cond : Boolean) return Uint;
252 pragma Inline (Test);
253 -- This function simply returns the appropriate Boolean'Pos value
254 -- corresponding to the value of Cond as a universal integer. It is
255 -- used for producing the result of the static evaluation of the
256 -- logical operators
257
d7567964 258 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
80298c3b
AC
259 -- Check whether an arithmetic operation with universal operands which is a
260 -- rewritten function call with an explicit scope indication is ambiguous:
261 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
262 -- type declared in P and the context does not impose a type on the result
263 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
264 -- error and return Empty, else return the result type of the operator.
602a7ec0 265
996ae0b0
RK
266 procedure Test_Expression_Is_Foldable
267 (N : Node_Id;
268 Op1 : Node_Id;
269 Stat : out Boolean;
270 Fold : out Boolean);
271 -- Tests to see if expression N whose single operand is Op1 is foldable,
272 -- i.e. the operand value is known at compile time. If the operation is
80298c3b
AC
273 -- foldable, then Fold is True on return, and Stat indicates whether the
274 -- result is static (i.e. the operand was static). Note that it is quite
275 -- possible for Fold to be True, and Stat to be False, since there are
276 -- cases in which we know the value of an operand even though it is not
277 -- technically static (e.g. the static lower bound of a range whose upper
278 -- bound is non-static).
996ae0b0 279 --
80298c3b
AC
280 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
281 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
282 -- return, then all processing is complete, and the caller should return,
283 -- since there is nothing else to do.
93c3fca7
AC
284 --
285 -- If Stat is set True on return, then Is_Static_Expression is also set
286 -- true in node N. There are some cases where this is over-enthusiastic,
80298c3b
AC
287 -- e.g. in the two operand case below, for string comparison, the result is
288 -- not static even though the two operands are static. In such cases, the
289 -- caller must reset the Is_Static_Expression flag in N.
5df1266a
AC
290 --
291 -- If Fold and Stat are both set to False then this routine performs also
292 -- the following extra actions:
293 --
80298c3b
AC
294 -- If either operand is Any_Type then propagate it to result to prevent
295 -- cascaded errors.
5df1266a 296 --
70805b88
AC
297 -- If some operand raises constraint error, then replace the node N
298 -- with the raise constraint error node. This replacement inherits the
299 -- Is_Static_Expression flag from the operands.
996ae0b0
RK
300
301 procedure Test_Expression_Is_Foldable
6c3c671e
AC
302 (N : Node_Id;
303 Op1 : Node_Id;
304 Op2 : Node_Id;
305 Stat : out Boolean;
306 Fold : out Boolean;
307 CRT_Safe : Boolean := False);
996ae0b0 308 -- Same processing, except applies to an expression N with two operands
6c3c671e
AC
309 -- Op1 and Op2. The result is static only if both operands are static. If
310 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
311 -- for the tests that the two operands are known at compile time. See
312 -- spec of this routine for further details.
996ae0b0 313
305caf42
AC
314 function Test_In_Range
315 (N : Node_Id;
316 Typ : Entity_Id;
317 Assume_Valid : Boolean;
318 Fixed_Int : Boolean;
319 Int_Real : Boolean) return Range_Membership;
9479ded4
AC
320 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
321 -- or Out_Of_Range if it can be guaranteed at compile time that expression
322 -- N is known to be in or out of range of the subtype Typ. If not compile
323 -- time known, Unknown is returned. See documentation of Is_In_Range for
324 -- complete description of parameters.
305caf42 325
996ae0b0
RK
326 procedure To_Bits (U : Uint; B : out Bits);
327 -- Converts a Uint value to a bit string of length B'Length
328
edab6088
RD
329 -----------------------------------------------
330 -- Check_Expression_Against_Static_Predicate --
331 -----------------------------------------------
332
333 procedure Check_Expression_Against_Static_Predicate
334 (Expr : Node_Id;
335 Typ : Entity_Id)
336 is
337 begin
338 -- Nothing to do if expression is not known at compile time, or the
339 -- type has no static predicate set (will be the case for all non-scalar
340 -- types, so no need to make a special test for that).
341
342 if not (Has_Static_Predicate (Typ)
60f908dd 343 and then Compile_Time_Known_Value (Expr))
edab6088
RD
344 then
345 return;
346 end if;
347
348 -- Here we have a static predicate (note that it could have arisen from
349 -- an explicitly specified Dynamic_Predicate whose expression met the
350 -- rules for being predicate-static).
351
fc3a3f3b 352 -- Case of real static predicate
edab6088 353
fc3a3f3b
RD
354 if Is_Real_Type (Typ) then
355 if Real_Or_String_Static_Predicate_Matches
356 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
357 Typ => Typ)
358 then
359 return;
360 end if;
edab6088 361
fc3a3f3b 362 -- Case of string static predicate
edab6088 363
fc3a3f3b
RD
364 elsif Is_String_Type (Typ) then
365 if Real_Or_String_Static_Predicate_Matches
f9e333ab 366 (Val => Expr_Value_S (Expr), Typ => Typ)
fc3a3f3b
RD
367 then
368 return;
369 end if;
edab6088 370
fc3a3f3b 371 -- Case of discrete static predicate
edab6088 372
fc3a3f3b
RD
373 else
374 pragma Assert (Is_Discrete_Type (Typ));
375
376 -- If static predicate matches, nothing to do
377
378 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
379 return;
380 end if;
edab6088
RD
381 end if;
382
383 -- Here we know that the predicate will fail
384
385 -- Special case of static expression failing a predicate (other than one
386 -- that was explicitly specified with a Dynamic_Predicate aspect). This
387 -- is the case where the expression is no longer considered static.
388
389 if Is_Static_Expression (Expr)
390 and then not Has_Dynamic_Predicate_Aspect (Typ)
391 then
392 Error_Msg_NE
393 ("??static expression fails static predicate check on &",
394 Expr, Typ);
395 Error_Msg_N
396 ("\??expression is no longer considered static", Expr);
397 Set_Is_Static_Expression (Expr, False);
398
399 -- In all other cases, this is just a warning that a test will fail.
400 -- It does not matter if the expression is static or not, or if the
401 -- predicate comes from a dynamic predicate aspect or not.
402
403 else
404 Error_Msg_NE
405 ("??expression fails predicate check on &", Expr, Typ);
406 end if;
407 end Check_Expression_Against_Static_Predicate;
60f908dd 408
996ae0b0
RK
409 ------------------------------
410 -- Check_Non_Static_Context --
411 ------------------------------
412
413 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
414 T : constant Entity_Id := Etype (N);
415 Checks_On : constant Boolean :=
996ae0b0
RK
416 not Index_Checks_Suppressed (T)
417 and not Range_Checks_Suppressed (T);
418
419 begin
86f0e17a
AC
420 -- Ignore cases of non-scalar types, error types, or universal real
421 -- types that have no usable bounds.
996ae0b0 422
86f0e17a
AC
423 if T = Any_Type
424 or else not Is_Scalar_Type (T)
425 or else T = Universal_Fixed
426 or else T = Universal_Real
427 then
996ae0b0 428 return;
fbf5a39b 429 end if;
996ae0b0 430
86f0e17a 431 -- At this stage we have a scalar type. If we have an expression that
80298c3b
AC
432 -- raises CE, then we already issued a warning or error msg so there is
433 -- nothing more to be done in this routine.
fbf5a39b
AC
434
435 if Raises_Constraint_Error (N) then
436 return;
437 end if;
438
86f0e17a
AC
439 -- Now we have a scalar type which is not marked as raising a constraint
440 -- error exception. The main purpose of this routine is to deal with
441 -- static expressions appearing in a non-static context. That means
442 -- that if we do not have a static expression then there is not much
443 -- to do. The one case that we deal with here is that if we have a
444 -- floating-point value that is out of range, then we post a warning
445 -- that an infinity will result.
fbf5a39b
AC
446
447 if not Is_Static_Expression (N) then
448 if Is_Floating_Point_Type (T)
c800f862 449 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
fbf5a39b
AC
450 then
451 Error_Msg_N
324ac540 452 ("??float value out of range, infinity will be generated", N);
fbf5a39b 453 end if;
996ae0b0 454
996ae0b0
RK
455 return;
456 end if;
457
86f0e17a
AC
458 -- Here we have the case of outer level static expression of scalar
459 -- type, where the processing of this procedure is needed.
996ae0b0
RK
460
461 -- For real types, this is where we convert the value to a machine
86f0e17a
AC
462 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
463 -- need to do this if the parent is a constant declaration, since in
464 -- other cases, gigi should do the necessary conversion correctly, but
465 -- experimentation shows that this is not the case on all machines, in
466 -- particular if we do not convert all literals to machine values in
467 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
468 -- and SGI/Irix.
996ae0b0
RK
469
470 if Nkind (N) = N_Real_Literal
471 and then not Is_Machine_Number (N)
472 and then not Is_Generic_Type (Etype (N))
473 and then Etype (N) /= Universal_Real
996ae0b0
RK
474 then
475 -- Check that value is in bounds before converting to machine
476 -- number, so as not to lose case where value overflows in the
477 -- least significant bit or less. See B490001.
478
c800f862 479 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
480 Out_Of_Range (N);
481 return;
482 end if;
483
484 -- Note: we have to copy the node, to avoid problems with conformance
485 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
486
487 Rewrite (N, New_Copy (N));
488
489 if not Is_Floating_Point_Type (T) then
490 Set_Realval
491 (N, Corresponding_Integer_Value (N) * Small_Value (T));
492
493 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 494
86f0e17a
AC
495 -- Note: even though RM 4.9(38) specifies biased rounding, this
496 -- has been modified by AI-100 in order to prevent confusing
497 -- differences in rounding between static and non-static
498 -- expressions. AI-100 specifies that the effect of such rounding
499 -- is implementation dependent, and in GNAT we round to nearest
500 -- even to match the run-time behavior.
996ae0b0 501
fbf5a39b
AC
502 Set_Realval
503 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
504 end if;
505
506 Set_Is_Machine_Number (N);
507 end if;
508
509 -- Check for out of range universal integer. This is a non-static
510 -- context, so the integer value must be in range of the runtime
511 -- representation of universal integers.
512
513 -- We do this only within an expression, because that is the only
514 -- case in which non-static universal integer values can occur, and
515 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
516 -- called in contexts like the expression of a number declaration where
517 -- we certainly want to allow out of range values.
518
519 if Etype (N) = Universal_Integer
520 and then Nkind (N) = N_Integer_Literal
521 and then Nkind (Parent (N)) in N_Subexpr
522 and then
523 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
80298c3b 524 or else
996ae0b0
RK
525 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
526 then
527 Apply_Compile_Time_Constraint_Error
4a28b181 528 (N, "non-static universal integer value out of range<<",
07fc65c4 529 CE_Range_Check_Failed);
996ae0b0
RK
530
531 -- Check out of range of base type
532
c800f862 533 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
534 Out_Of_Range (N);
535
c800f862
RD
536 -- Give warning if outside subtype (where one or both of the bounds of
537 -- the subtype is static). This warning is omitted if the expression
538 -- appears in a range that could be null (warnings are handled elsewhere
539 -- for this case).
996ae0b0 540
80298c3b 541 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
c800f862 542 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
543 null;
544
c800f862 545 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 546 Apply_Compile_Time_Constraint_Error
4a28b181 547 (N, "value not in range of}<<", CE_Range_Check_Failed);
996ae0b0
RK
548
549 elsif Checks_On then
550 Enable_Range_Check (N);
551
552 else
553 Set_Do_Range_Check (N, False);
554 end if;
555 end if;
556 end Check_Non_Static_Context;
557
558 ---------------------------------
559 -- Check_String_Literal_Length --
560 ---------------------------------
561
562 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
563 begin
324ac540 564 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
80298c3b 565 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
996ae0b0
RK
566 then
567 Apply_Compile_Time_Constraint_Error
324ac540 568 (N, "string length wrong for}??",
07fc65c4 569 CE_Length_Check_Failed,
996ae0b0
RK
570 Ent => Ttype,
571 Typ => Ttype);
572 end if;
573 end if;
574 end Check_String_Literal_Length;
575
edab6088
RD
576 --------------------
577 -- Choice_Matches --
578 --------------------
579
580 function Choice_Matches
581 (Expr : Node_Id;
582 Choice : Node_Id) return Match_Result
583 is
584 Etyp : constant Entity_Id := Etype (Expr);
585 Val : Uint;
586 ValR : Ureal;
587 ValS : Node_Id;
588
589 begin
590 pragma Assert (Compile_Time_Known_Value (Expr));
591 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
592
593 if not Is_OK_Static_Choice (Choice) then
594 Set_Raises_Constraint_Error (Choice);
595 return Non_Static;
596
597 -- Discrete type case
598
599 elsif Is_Discrete_Type (Etype (Expr)) then
600 Val := Expr_Value (Expr);
601
602 if Nkind (Choice) = N_Range then
603 if Val >= Expr_Value (Low_Bound (Choice))
604 and then
605 Val <= Expr_Value (High_Bound (Choice))
606 then
607 return Match;
608 else
609 return No_Match;
610 end if;
611
612 elsif Nkind (Choice) = N_Subtype_Indication
613 or else
614 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
615 then
616 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
617 and then
618 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
619 then
620 return Match;
621 else
622 return No_Match;
623 end if;
624
625 elsif Nkind (Choice) = N_Others_Choice then
626 return Match;
627
628 else
629 if Val = Expr_Value (Choice) then
630 return Match;
631 else
632 return No_Match;
633 end if;
634 end if;
635
636 -- Real type case
637
638 elsif Is_Real_Type (Etype (Expr)) then
639 ValR := Expr_Value_R (Expr);
640
641 if Nkind (Choice) = N_Range then
642 if ValR >= Expr_Value_R (Low_Bound (Choice))
643 and then
644 ValR <= Expr_Value_R (High_Bound (Choice))
645 then
646 return Match;
647 else
648 return No_Match;
649 end if;
650
651 elsif Nkind (Choice) = N_Subtype_Indication
652 or else
653 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
654 then
655 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
656 and then
657 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
658 then
659 return Match;
660 else
661 return No_Match;
662 end if;
663
664 else
665 if ValR = Expr_Value_R (Choice) then
666 return Match;
667 else
668 return No_Match;
669 end if;
670 end if;
671
672 -- String type cases
673
674 else
675 pragma Assert (Is_String_Type (Etype (Expr)));
676 ValS := Expr_Value_S (Expr);
677
678 if Nkind (Choice) = N_Subtype_Indication
679 or else
680 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
681 then
682 if not Is_Constrained (Etype (Choice)) then
683 return Match;
684
685 else
686 declare
687 Typlen : constant Uint :=
688 String_Type_Len (Etype (Choice));
689 Strlen : constant Uint :=
690 UI_From_Int (String_Length (Strval (ValS)));
691 begin
692 if Typlen = Strlen then
693 return Match;
694 else
695 return No_Match;
696 end if;
697 end;
698 end if;
699
700 else
701 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
702 then
703 return Match;
704 else
705 return No_Match;
706 end if;
707 end if;
708 end if;
709 end Choice_Matches;
710
711 -------------------
712 -- Choices_Match --
713 -------------------
714
715 function Choices_Match
716 (Expr : Node_Id;
717 Choices : List_Id) return Match_Result
718 is
719 Choice : Node_Id;
720 Result : Match_Result;
721
722 begin
723 Choice := First (Choices);
724 while Present (Choice) loop
725 Result := Choice_Matches (Expr, Choice);
726
727 if Result /= No_Match then
728 return Result;
729 end if;
730
731 Next (Choice);
732 end loop;
733
734 return No_Match;
735 end Choices_Match;
736
996ae0b0
RK
737 --------------------------
738 -- Compile_Time_Compare --
739 --------------------------
740
fbf5a39b 741 function Compile_Time_Compare
1c7717c3 742 (L, R : Node_Id;
af02a866
RD
743 Assume_Valid : Boolean) return Compare_Result
744 is
745 Discard : aliased Uint;
746 begin
747 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
748 end Compile_Time_Compare;
749
750 function Compile_Time_Compare
751 (L, R : Node_Id;
752 Diff : access Uint;
1c7717c3
AC
753 Assume_Valid : Boolean;
754 Rec : Boolean := False) return Compare_Result
fbf5a39b 755 is
93c3fca7
AC
756 Ltyp : Entity_Id := Underlying_Type (Etype (L));
757 Rtyp : Entity_Id := Underlying_Type (Etype (R));
1c7717c3
AC
758 -- These get reset to the base type for the case of entities where
759 -- Is_Known_Valid is not set. This takes care of handling possible
760 -- invalid representations using the value of the base type, in
761 -- accordance with RM 13.9.1(10).
996ae0b0 762
af02a866
RD
763 Discard : aliased Uint;
764
996ae0b0
RK
765 procedure Compare_Decompose
766 (N : Node_Id;
767 R : out Node_Id;
768 V : out Uint);
b49365b2
RD
769 -- This procedure decomposes the node N into an expression node and a
770 -- signed offset, so that the value of N is equal to the value of R plus
771 -- the value V (which may be negative). If no such decomposition is
772 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
773
774 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
775 -- This function deals with replacing 'Last and 'First references with
776 -- their corresponding type bounds, which we then can compare. The
777 -- argument is the original node, the result is the identity, unless we
778 -- have a 'Last/'First reference in which case the value returned is the
779 -- appropriate type bound.
996ae0b0 780
57036dcc
ES
781 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
782 -- Even if the context does not assume that values are valid, some
783 -- simple cases can be recognized.
784
996ae0b0 785 function Is_Same_Value (L, R : Node_Id) return Boolean;
86f0e17a
AC
786 -- Returns True iff L and R represent expressions that definitely have
787 -- identical (but not necessarily compile time known) values Indeed the
788 -- caller is expected to have already dealt with the cases of compile
789 -- time known values, so these are not tested here.
996ae0b0
RK
790
791 -----------------------
792 -- Compare_Decompose --
793 -----------------------
794
795 procedure Compare_Decompose
796 (N : Node_Id;
797 R : out Node_Id;
798 V : out Uint)
799 is
800 begin
801 if Nkind (N) = N_Op_Add
802 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
803 then
804 R := Left_Opnd (N);
805 V := Intval (Right_Opnd (N));
806 return;
807
808 elsif Nkind (N) = N_Op_Subtract
809 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
810 then
811 R := Left_Opnd (N);
812 V := UI_Negate (Intval (Right_Opnd (N)));
813 return;
814
815 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
816 if Attribute_Name (N) = Name_Succ then
817 R := First (Expressions (N));
818 V := Uint_1;
819 return;
820
821 elsif Attribute_Name (N) = Name_Pred then
822 R := First (Expressions (N));
823 V := Uint_Minus_1;
824 return;
825 end if;
826 end if;
827
828 R := N;
829 V := Uint_0;
830 end Compare_Decompose;
831
832 -------------------
833 -- Compare_Fixup --
834 -------------------
835
836 function Compare_Fixup (N : Node_Id) return Node_Id is
837 Indx : Node_Id;
838 Xtyp : Entity_Id;
839 Subs : Nat;
840
841 begin
7a6de2e2
AC
842 -- Fixup only required for First/Last attribute reference
843
996ae0b0 844 if Nkind (N) = N_Attribute_Reference
b69cd36a 845 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
996ae0b0
RK
846 then
847 Xtyp := Etype (Prefix (N));
848
849 -- If we have no type, then just abandon the attempt to do
850 -- a fixup, this is probably the result of some other error.
851
852 if No (Xtyp) then
853 return N;
854 end if;
855
856 -- Dereference an access type
857
858 if Is_Access_Type (Xtyp) then
859 Xtyp := Designated_Type (Xtyp);
860 end if;
861
80298c3b
AC
862 -- If we don't have an array type at this stage, something is
863 -- peculiar, e.g. another error, and we abandon the attempt at
864 -- a fixup.
996ae0b0
RK
865
866 if not Is_Array_Type (Xtyp) then
867 return N;
868 end if;
869
870 -- Ignore unconstrained array, since bounds are not meaningful
871
872 if not Is_Constrained (Xtyp) then
873 return N;
874 end if;
875
c3de5c4c
ES
876 if Ekind (Xtyp) = E_String_Literal_Subtype then
877 if Attribute_Name (N) = Name_First then
878 return String_Literal_Low_Bound (Xtyp);
5f44f0d4 879 else
80298c3b
AC
880 return
881 Make_Integer_Literal (Sloc (N),
882 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
883 String_Literal_Length (Xtyp));
c3de5c4c
ES
884 end if;
885 end if;
886
996ae0b0
RK
887 -- Find correct index type
888
889 Indx := First_Index (Xtyp);
890
891 if Present (Expressions (N)) then
892 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
893
894 for J in 2 .. Subs loop
895 Indx := Next_Index (Indx);
896 end loop;
897 end if;
898
899 Xtyp := Etype (Indx);
900
901 if Attribute_Name (N) = Name_First then
902 return Type_Low_Bound (Xtyp);
7a6de2e2 903 else
996ae0b0
RK
904 return Type_High_Bound (Xtyp);
905 end if;
906 end if;
907
908 return N;
909 end Compare_Fixup;
910
57036dcc
ES
911 ----------------------------
912 -- Is_Known_Valid_Operand --
913 ----------------------------
914
915 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
916 begin
917 return (Is_Entity_Name (Opnd)
918 and then
919 (Is_Known_Valid (Entity (Opnd))
920 or else Ekind (Entity (Opnd)) = E_In_Parameter
921 or else
922 (Ekind (Entity (Opnd)) in Object_Kind
80298c3b 923 and then Present (Current_Value (Entity (Opnd))))))
57036dcc
ES
924 or else Is_OK_Static_Expression (Opnd);
925 end Is_Known_Valid_Operand;
926
996ae0b0
RK
927 -------------------
928 -- Is_Same_Value --
929 -------------------
930
931 function Is_Same_Value (L, R : Node_Id) return Boolean is
932 Lf : constant Node_Id := Compare_Fixup (L);
933 Rf : constant Node_Id := Compare_Fixup (R);
934
fbf5a39b 935 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
936 -- L, R are the Expressions values from two attribute nodes for First
937 -- or Last attributes. Either may be set to No_List if no expressions
938 -- are present (indicating subscript 1). The result is True if both
939 -- expressions represent the same subscript (note one case is where
940 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
941
942 -----------------------
943 -- Is_Same_Subscript --
944 -----------------------
945
946 function Is_Same_Subscript (L, R : List_Id) return Boolean is
947 begin
948 if L = No_List then
949 if R = No_List then
950 return True;
951 else
952 return Expr_Value (First (R)) = Uint_1;
953 end if;
954
955 else
956 if R = No_List then
957 return Expr_Value (First (L)) = Uint_1;
958 else
959 return Expr_Value (First (L)) = Expr_Value (First (R));
960 end if;
961 end if;
962 end Is_Same_Subscript;
963
964 -- Start of processing for Is_Same_Value
965
996ae0b0 966 begin
b49365b2 967 -- Values are the same if they refer to the same entity and the
c800f862
RD
968 -- entity is non-volatile. This does not however apply to Float
969 -- types, since we may have two NaN values and they should never
970 -- compare equal.
996ae0b0 971
f08b2371
RD
972 -- If the entity is a discriminant, the two expressions may be bounds
973 -- of components of objects of the same discriminated type. The
974 -- values of the discriminants are not static, and therefore the
975 -- result is unknown.
976
977 -- It would be better to comment individual branches of this test ???
4fb0b3f0 978
b49365b2
RD
979 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
980 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 981 and then Entity (Lf) = Entity (Rf)
4fb0b3f0 982 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 983 and then Present (Entity (Lf))
fbf5a39b 984 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
985 and then not Is_Volatile_Reference (L)
986 and then not Is_Volatile_Reference (R)
996ae0b0
RK
987 then
988 return True;
989
990 -- Or if they are compile time known and identical
991
992 elsif Compile_Time_Known_Value (Lf)
993 and then
994 Compile_Time_Known_Value (Rf)
995 and then Expr_Value (Lf) = Expr_Value (Rf)
996 then
997 return True;
998
b49365b2
RD
999 -- False if Nkind of the two nodes is different for remaining cases
1000
1001 elsif Nkind (Lf) /= Nkind (Rf) then
1002 return False;
1003
1004 -- True if both 'First or 'Last values applying to the same entity
1005 -- (first and last don't change even if value does). Note that we
1006 -- need this even with the calls to Compare_Fixup, to handle the
1007 -- case of unconstrained array attributes where Compare_Fixup
1008 -- cannot find useful bounds.
996ae0b0
RK
1009
1010 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0 1011 and then Attribute_Name (Lf) = Attribute_Name (Rf)
b69cd36a 1012 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
b49365b2
RD
1013 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1014 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 1015 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 1016 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
1017 then
1018 return True;
1019
b49365b2
RD
1020 -- True if the same selected component from the same record
1021
1022 elsif Nkind (Lf) = N_Selected_Component
1023 and then Selector_Name (Lf) = Selector_Name (Rf)
1024 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1025 then
1026 return True;
1027
1028 -- True if the same unary operator applied to the same operand
1029
1030 elsif Nkind (Lf) in N_Unary_Op
1031 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1032 then
1033 return True;
1034
8682d22c 1035 -- True if the same binary operator applied to the same operands
b49365b2
RD
1036
1037 elsif Nkind (Lf) in N_Binary_Op
1038 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1039 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1040 then
1041 return True;
1042
8682d22c 1043 -- All other cases, we can't tell, so return False
996ae0b0
RK
1044
1045 else
1046 return False;
1047 end if;
1048 end Is_Same_Value;
1049
1050 -- Start of processing for Compile_Time_Compare
1051
1052 begin
af02a866
RD
1053 Diff.all := No_Uint;
1054
37c1f923
AC
1055 -- In preanalysis mode, always return Unknown unless the expression
1056 -- is static. It is too early to be thinking we know the result of a
1057 -- comparison, save that judgment for the full analysis. This is
1058 -- particularly important in the case of pre and postconditions, which
1059 -- otherwise can be prematurely collapsed into having True or False
1060 -- conditions when this is inappropriate.
1061
1062 if not (Full_Analysis
edab6088 1063 or else (Is_OK_Static_Expression (L)
db318f46 1064 and then
edab6088 1065 Is_OK_Static_Expression (R)))
37c1f923 1066 then
05b34c18
AC
1067 return Unknown;
1068 end if;
1069
07fc65c4 1070 -- If either operand could raise constraint error, then we cannot
a90bd866 1071 -- know the result at compile time (since CE may be raised).
07fc65c4
GB
1072
1073 if not (Cannot_Raise_Constraint_Error (L)
1074 and then
1075 Cannot_Raise_Constraint_Error (R))
1076 then
1077 return Unknown;
1078 end if;
1079
1080 -- Identical operands are most certainly equal
1081
996ae0b0
RK
1082 if L = R then
1083 return EQ;
1084
93c3fca7
AC
1085 -- If expressions have no types, then do not attempt to determine if
1086 -- they are the same, since something funny is going on. One case in
1087 -- which this happens is during generic template analysis, when bounds
1088 -- are not fully analyzed.
996ae0b0
RK
1089
1090 elsif No (Ltyp) or else No (Rtyp) then
1091 return Unknown;
1092
93c3fca7
AC
1093 -- We do not attempt comparisons for packed arrays arrays represented as
1094 -- modular types, where the semantics of comparison is quite different.
996ae0b0 1095
8ca597af 1096 elsif Is_Packed_Array_Impl_Type (Ltyp)
93c3fca7 1097 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
1098 then
1099 return Unknown;
1100
93c3fca7 1101 -- For access types, the only time we know the result at compile time
f61580d4 1102 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
1103 -- know one operand is null and the other is not, or both operands are
1104 -- known null.
1105
1106 elsif Is_Access_Type (Ltyp) then
1107 if Known_Null (L) then
1108 if Known_Null (R) then
1109 return EQ;
1110 elsif Known_Non_Null (R) then
1111 return NE;
1112 else
1113 return Unknown;
1114 end if;
1115
f61580d4 1116 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
1117 return NE;
1118
1119 else
1120 return Unknown;
1121 end if;
1122
996ae0b0
RK
1123 -- Case where comparison involves two compile time known values
1124
1125 elsif Compile_Time_Known_Value (L)
80298c3b
AC
1126 and then
1127 Compile_Time_Known_Value (R)
996ae0b0
RK
1128 then
1129 -- For the floating-point case, we have to be a little careful, since
1130 -- at compile time we are dealing with universal exact values, but at
1131 -- runtime, these will be in non-exact target form. That's why the
1132 -- returned results are LE and GE below instead of LT and GT.
1133
1134 if Is_Floating_Point_Type (Ltyp)
1135 or else
1136 Is_Floating_Point_Type (Rtyp)
1137 then
1138 declare
1139 Lo : constant Ureal := Expr_Value_R (L);
1140 Hi : constant Ureal := Expr_Value_R (R);
996ae0b0
RK
1141 begin
1142 if Lo < Hi then
1143 return LE;
1144 elsif Lo = Hi then
1145 return EQ;
1146 else
1147 return GE;
1148 end if;
1149 end;
1150
93c3fca7
AC
1151 -- For string types, we have two string literals and we proceed to
1152 -- compare them using the Ada style dictionary string comparison.
1153
1154 elsif not Is_Scalar_Type (Ltyp) then
1155 declare
1156 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1157 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1158 Llen : constant Nat := String_Length (Lstring);
1159 Rlen : constant Nat := String_Length (Rstring);
1160
1161 begin
1162 for J in 1 .. Nat'Min (Llen, Rlen) loop
1163 declare
1164 LC : constant Char_Code := Get_String_Char (Lstring, J);
1165 RC : constant Char_Code := Get_String_Char (Rstring, J);
1166 begin
1167 if LC < RC then
1168 return LT;
1169 elsif LC > RC then
1170 return GT;
1171 end if;
1172 end;
1173 end loop;
1174
1175 if Llen < Rlen then
1176 return LT;
1177 elsif Llen > Rlen then
1178 return GT;
1179 else
1180 return EQ;
1181 end if;
1182 end;
1183
1184 -- For remaining scalar cases we know exactly (note that this does
1185 -- include the fixed-point case, where we know the run time integer
f61580d4 1186 -- values now).
996ae0b0
RK
1187
1188 else
1189 declare
1190 Lo : constant Uint := Expr_Value (L);
1191 Hi : constant Uint := Expr_Value (R);
996ae0b0
RK
1192 begin
1193 if Lo < Hi then
af02a866 1194 Diff.all := Hi - Lo;
996ae0b0
RK
1195 return LT;
1196 elsif Lo = Hi then
1197 return EQ;
1198 else
af02a866 1199 Diff.all := Lo - Hi;
996ae0b0
RK
1200 return GT;
1201 end if;
1202 end;
1203 end if;
1204
1205 -- Cases where at least one operand is not known at compile time
1206
1207 else
93c3fca7 1208 -- Remaining checks apply only for discrete types
29797f34
RD
1209
1210 if not Is_Discrete_Type (Ltyp)
80298c3b
AC
1211 or else
1212 not Is_Discrete_Type (Rtyp)
93c3fca7
AC
1213 then
1214 return Unknown;
1215 end if;
1216
1217 -- Defend against generic types, or actually any expressions that
1218 -- contain a reference to a generic type from within a generic
1219 -- template. We don't want to do any range analysis of such
1220 -- expressions for two reasons. First, the bounds of a generic type
1221 -- itself are junk and cannot be used for any kind of analysis.
1222 -- Second, we may have a case where the range at run time is indeed
1223 -- known, but we don't want to do compile time analysis in the
1224 -- template based on that range since in an instance the value may be
1225 -- static, and able to be elaborated without reference to the bounds
1226 -- of types involved. As an example, consider:
1227
1228 -- (F'Pos (F'Last) + 1) > Integer'Last
1229
1230 -- The expression on the left side of > is Universal_Integer and thus
1231 -- acquires the type Integer for evaluation at run time, and at run
1232 -- time it is true that this condition is always False, but within
1233 -- an instance F may be a type with a static range greater than the
1234 -- range of Integer, and the expression statically evaluates to True.
1235
1236 if References_Generic_Formal_Type (L)
1237 or else
1238 References_Generic_Formal_Type (R)
29797f34
RD
1239 then
1240 return Unknown;
1241 end if;
1242
41a58113 1243 -- Replace types by base types for the case of values which are not
80298c3b
AC
1244 -- known to have valid representations. This takes care of properly
1245 -- dealing with invalid representations.
1c7717c3 1246
41a58113
RD
1247 if not Assume_Valid then
1248 if not (Is_Entity_Name (L)
1249 and then (Is_Known_Valid (Entity (L))
1250 or else Assume_No_Invalid_Values))
1251 then
93c3fca7 1252 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
1253 end if;
1254
41a58113
RD
1255 if not (Is_Entity_Name (R)
1256 and then (Is_Known_Valid (Entity (R))
1257 or else Assume_No_Invalid_Values))
1258 then
93c3fca7 1259 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
1260 end if;
1261 end if;
1262
a40ada7e
RD
1263 -- First attempt is to decompose the expressions to extract a
1264 -- constant offset resulting from the use of any of the forms:
1265
1266 -- expr + literal
1267 -- expr - literal
1268 -- typ'Succ (expr)
1269 -- typ'Pred (expr)
1270
1271 -- Then we see if the two expressions are the same value, and if so
1272 -- the result is obtained by comparing the offsets.
1273
1274 -- Note: the reason we do this test first is that it returns only
1275 -- decisive results (with diff set), where other tests, like the
1276 -- range test, may not be as so decisive. Consider for example
1277 -- J .. J + 1. This code can conclude LT with a difference of 1,
1278 -- even if the range of J is not known.
1279
1280 declare
1281 Lnode : Node_Id;
1282 Loffs : Uint;
1283 Rnode : Node_Id;
1284 Roffs : Uint;
1285
1286 begin
1287 Compare_Decompose (L, Lnode, Loffs);
1288 Compare_Decompose (R, Rnode, Roffs);
1289
1290 if Is_Same_Value (Lnode, Rnode) then
1291 if Loffs = Roffs then
1292 return EQ;
a40ada7e
RD
1293 elsif Loffs < Roffs then
1294 Diff.all := Roffs - Loffs;
1295 return LT;
a40ada7e
RD
1296 else
1297 Diff.all := Loffs - Roffs;
1298 return GT;
1299 end if;
1300 end if;
1301 end;
1302
1303 -- Next, try range analysis and see if operand ranges are disjoint
c800f862
RD
1304
1305 declare
1306 LOK, ROK : Boolean;
1307 LLo, LHi : Uint;
1308 RLo, RHi : Uint;
1309
b6b5cca8
AC
1310 Single : Boolean;
1311 -- True if each range is a single point
1312
c800f862
RD
1313 begin
1314 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1315 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1316
1317 if LOK and ROK then
b6b5cca8
AC
1318 Single := (LLo = LHi) and then (RLo = RHi);
1319
c800f862 1320 if LHi < RLo then
b6b5cca8
AC
1321 if Single and Assume_Valid then
1322 Diff.all := RLo - LLo;
1323 end if;
1324
c800f862
RD
1325 return LT;
1326
1327 elsif RHi < LLo then
b6b5cca8
AC
1328 if Single and Assume_Valid then
1329 Diff.all := LLo - RLo;
1330 end if;
1331
c800f862
RD
1332 return GT;
1333
b6b5cca8 1334 elsif Single and then LLo = RLo then
e27b834b 1335
75ba322d
AC
1336 -- If the range includes a single literal and we can assume
1337 -- validity then the result is known even if an operand is
1338 -- not static.
e27b834b
AC
1339
1340 if Assume_Valid then
1341 return EQ;
e27b834b
AC
1342 else
1343 return Unknown;
1344 end if;
c800f862
RD
1345
1346 elsif LHi = RLo then
1347 return LE;
1348
1349 elsif RHi = LLo then
1350 return GE;
57036dcc
ES
1351
1352 elsif not Is_Known_Valid_Operand (L)
1353 and then not Assume_Valid
1354 then
1355 if Is_Same_Value (L, R) then
1356 return EQ;
1357 else
1358 return Unknown;
1359 end if;
c800f862 1360 end if;
f9ad6b62 1361
2c1b72d7
AC
1362 -- If the range of either operand cannot be determined, nothing
1363 -- further can be inferred.
f9ad6b62 1364
2c1b72d7 1365 else
f9ad6b62 1366 return Unknown;
c800f862
RD
1367 end if;
1368 end;
1369
996ae0b0
RK
1370 -- Here is where we check for comparisons against maximum bounds of
1371 -- types, where we know that no value can be outside the bounds of
1372 -- the subtype. Note that this routine is allowed to assume that all
1373 -- expressions are within their subtype bounds. Callers wishing to
1374 -- deal with possibly invalid values must in any case take special
1375 -- steps (e.g. conversions to larger types) to avoid this kind of
1376 -- optimization, which is always considered to be valid. We do not
1377 -- attempt this optimization with generic types, since the type
1378 -- bounds may not be meaningful in this case.
1379
93c3fca7 1380 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
1381 -- useful to go more than one level deep, so the parameter Rec is
1382 -- used to protect ourselves against this infinite recursion.
1383
29797f34
RD
1384 if not Rec then
1385
80298c3b
AC
1386 -- See if we can get a decisive check against one operand and a
1387 -- bound of the other operand (four possible tests here). Note
1388 -- that we avoid testing junk bounds of a generic type.
93c3fca7
AC
1389
1390 if not Is_Generic_Type (Rtyp) then
1391 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1392 Discard'Access,
1393 Assume_Valid, Rec => True)
1394 is
1395 when LT => return LT;
1396 when LE => return LE;
1397 when EQ => return LE;
1398 when others => null;
1399 end case;
fbf5a39b 1400
93c3fca7
AC
1401 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1402 Discard'Access,
1403 Assume_Valid, Rec => True)
1404 is
1405 when GT => return GT;
1406 when GE => return GE;
1407 when EQ => return GE;
1408 when others => null;
1409 end case;
1410 end if;
996ae0b0 1411
93c3fca7
AC
1412 if not Is_Generic_Type (Ltyp) then
1413 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1414 Discard'Access,
1415 Assume_Valid, Rec => True)
1416 is
1417 when GT => return GT;
1418 when GE => return GE;
1419 when EQ => return GE;
1420 when others => null;
1421 end case;
996ae0b0 1422
93c3fca7
AC
1423 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1424 Discard'Access,
1425 Assume_Valid, Rec => True)
1426 is
1427 when LT => return LT;
1428 when LE => return LE;
1429 when EQ => return LE;
1430 when others => null;
1431 end case;
1432 end if;
996ae0b0
RK
1433 end if;
1434
29797f34
RD
1435 -- Next attempt is to see if we have an entity compared with a
1436 -- compile time known value, where there is a current value
1437 -- conditional for the entity which can tell us the result.
1438
1439 declare
1440 Var : Node_Id;
1441 -- Entity variable (left operand)
1442
1443 Val : Uint;
1444 -- Value (right operand)
1445
1446 Inv : Boolean;
1447 -- If False, we have reversed the operands
1448
1449 Op : Node_Kind;
1450 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1451
29797f34
RD
1452 Opn : Node_Id;
1453 -- Value from Get_Current_Value_Condition call
1454
1455 Opv : Uint;
1456 -- Value of Opn
1457
1458 Result : Compare_Result;
1459 -- Known result before inversion
1460
1461 begin
1462 if Is_Entity_Name (L)
1463 and then Compile_Time_Known_Value (R)
1464 then
1465 Var := L;
1466 Val := Expr_Value (R);
1467 Inv := False;
1468
1469 elsif Is_Entity_Name (R)
1470 and then Compile_Time_Known_Value (L)
1471 then
1472 Var := R;
1473 Val := Expr_Value (L);
1474 Inv := True;
1475
1476 -- That was the last chance at finding a compile time result
996ae0b0
RK
1477
1478 else
1479 return Unknown;
1480 end if;
29797f34
RD
1481
1482 Get_Current_Value_Condition (Var, Op, Opn);
1483
1484 -- That was the last chance, so if we got nothing return
1485
1486 if No (Opn) then
1487 return Unknown;
1488 end if;
1489
1490 Opv := Expr_Value (Opn);
1491
1492 -- We got a comparison, so we might have something interesting
1493
1494 -- Convert LE to LT and GE to GT, just so we have fewer cases
1495
1496 if Op = N_Op_Le then
1497 Op := N_Op_Lt;
1498 Opv := Opv + 1;
af02a866 1499
29797f34
RD
1500 elsif Op = N_Op_Ge then
1501 Op := N_Op_Gt;
1502 Opv := Opv - 1;
1503 end if;
1504
1505 -- Deal with equality case
1506
1507 if Op = N_Op_Eq then
1508 if Val = Opv then
1509 Result := EQ;
1510 elsif Opv < Val then
1511 Result := LT;
1512 else
1513 Result := GT;
1514 end if;
1515
1516 -- Deal with inequality case
1517
1518 elsif Op = N_Op_Ne then
1519 if Val = Opv then
1520 Result := NE;
1521 else
1522 return Unknown;
1523 end if;
1524
1525 -- Deal with greater than case
1526
1527 elsif Op = N_Op_Gt then
1528 if Opv >= Val then
1529 Result := GT;
1530 elsif Opv = Val - 1 then
1531 Result := GE;
1532 else
1533 return Unknown;
1534 end if;
1535
1536 -- Deal with less than case
1537
1538 else pragma Assert (Op = N_Op_Lt);
1539 if Opv <= Val then
1540 Result := LT;
1541 elsif Opv = Val + 1 then
1542 Result := LE;
1543 else
1544 return Unknown;
1545 end if;
1546 end if;
1547
1548 -- Deal with inverting result
1549
1550 if Inv then
1551 case Result is
1552 when GT => return LT;
1553 when GE => return LE;
1554 when LT => return GT;
1555 when LE => return GE;
1556 when others => return Result;
1557 end case;
1558 end if;
1559
1560 return Result;
996ae0b0
RK
1561 end;
1562 end if;
1563 end Compile_Time_Compare;
1564
f44fe430
RD
1565 -------------------------------
1566 -- Compile_Time_Known_Bounds --
1567 -------------------------------
1568
1569 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1570 Indx : Node_Id;
1571 Typ : Entity_Id;
1572
1573 begin
f5f6d8d7 1574 if T = Any_Composite or else not Is_Array_Type (T) then
f44fe430
RD
1575 return False;
1576 end if;
1577
1578 Indx := First_Index (T);
1579 while Present (Indx) loop
1580 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1581
1582 -- Never look at junk bounds of a generic type
1583
1584 if Is_Generic_Type (Typ) then
1585 return False;
1586 end if;
1587
1588 -- Otherwise check bounds for compile time known
1589
f44fe430
RD
1590 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1591 return False;
1592 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1593 return False;
1594 else
1595 Next_Index (Indx);
1596 end if;
1597 end loop;
1598
1599 return True;
1600 end Compile_Time_Known_Bounds;
1601
996ae0b0
RK
1602 ------------------------------
1603 -- Compile_Time_Known_Value --
1604 ------------------------------
1605
6c3c671e 1606 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1607 K : constant Node_Kind := Nkind (Op);
1608 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1609
1610 begin
1611 -- Never known at compile time if bad type or raises constraint error
ee2ba856 1612 -- or empty (latter case occurs only as a result of a previous error).
996ae0b0 1613
ee2ba856
AC
1614 if No (Op) then
1615 Check_Error_Detected;
1616 return False;
1617
1618 elsif Op = Error
996ae0b0
RK
1619 or else Etype (Op) = Any_Type
1620 or else Raises_Constraint_Error (Op)
1621 then
1622 return False;
1623 end if;
1624
1625 -- If we have an entity name, then see if it is the name of a constant
1626 -- and if so, test the corresponding constant value, or the name of
1627 -- an enumeration literal, which is always a constant.
1628
1629 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1630 declare
1631 E : constant Entity_Id := Entity (Op);
1632 V : Node_Id;
1633
1634 begin
1635 -- Never known at compile time if it is a packed array value.
1636 -- We might want to try to evaluate these at compile time one
1637 -- day, but we do not make that attempt now.
1638
8ca597af 1639 if Is_Packed_Array_Impl_Type (Etype (Op)) then
996ae0b0
RK
1640 return False;
1641 end if;
1642
1643 if Ekind (E) = E_Enumeration_Literal then
1644 return True;
1645
5114f3ff 1646 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1647 V := Constant_Value (E);
1648 return Present (V) and then Compile_Time_Known_Value (V);
1649 end if;
1650 end;
1651
1652 -- We have a value, see if it is compile time known
1653
1654 else
07fc65c4 1655 -- Integer literals are worth storing in the cache
996ae0b0 1656
07fc65c4
GB
1657 if K = N_Integer_Literal then
1658 CV_Ent.N := Op;
1659 CV_Ent.V := Intval (Op);
1660 return True;
1661
1662 -- Other literals and NULL are known at compile time
1663
1664 elsif
80298c3b
AC
1665 Nkind_In (K, N_Character_Literal,
1666 N_Real_Literal,
1667 N_String_Literal,
1668 N_Null)
996ae0b0
RK
1669 then
1670 return True;
07fc65c4 1671 end if;
996ae0b0 1672 end if;
07fc65c4
GB
1673
1674 -- If we fall through, not known at compile time
1675
1676 return False;
1677
1678 -- If we get an exception while trying to do this test, then some error
1679 -- has occurred, and we simply say that the value is not known after all
1680
1681 exception
1682 when others =>
1683 return False;
996ae0b0
RK
1684 end Compile_Time_Known_Value;
1685
1686 --------------------------------------
1687 -- Compile_Time_Known_Value_Or_Aggr --
1688 --------------------------------------
1689
1690 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1691 begin
1692 -- If we have an entity name, then see if it is the name of a constant
1693 -- and if so, test the corresponding constant value, or the name of
1694 -- an enumeration literal, which is always a constant.
1695
1696 if Is_Entity_Name (Op) then
1697 declare
1698 E : constant Entity_Id := Entity (Op);
1699 V : Node_Id;
1700
1701 begin
1702 if Ekind (E) = E_Enumeration_Literal then
1703 return True;
1704
1705 elsif Ekind (E) /= E_Constant then
1706 return False;
1707
1708 else
1709 V := Constant_Value (E);
1710 return Present (V)
1711 and then Compile_Time_Known_Value_Or_Aggr (V);
1712 end if;
1713 end;
1714
1715 -- We have a value, see if it is compile time known
1716
1717 else
1718 if Compile_Time_Known_Value (Op) then
1719 return True;
1720
1721 elsif Nkind (Op) = N_Aggregate then
1722
1723 if Present (Expressions (Op)) then
1724 declare
1725 Expr : Node_Id;
996ae0b0
RK
1726 begin
1727 Expr := First (Expressions (Op));
1728 while Present (Expr) loop
1729 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1730 return False;
80298c3b
AC
1731 else
1732 Next (Expr);
996ae0b0 1733 end if;
996ae0b0
RK
1734 end loop;
1735 end;
1736 end if;
1737
1738 if Present (Component_Associations (Op)) then
1739 declare
1740 Cass : Node_Id;
1741
1742 begin
1743 Cass := First (Component_Associations (Op));
1744 while Present (Cass) loop
1745 if not
1746 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1747 then
1748 return False;
1749 end if;
1750
1751 Next (Cass);
1752 end loop;
1753 end;
1754 end if;
1755
1756 return True;
1757
1758 -- All other types of values are not known at compile time
1759
1760 else
1761 return False;
1762 end if;
1763
1764 end if;
1765 end Compile_Time_Known_Value_Or_Aggr;
1766
6c3c671e
AC
1767 ---------------------------------------
1768 -- CRT_Safe_Compile_Time_Known_Value --
1769 ---------------------------------------
1770
1771 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1772 begin
1773 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1774 and then not Is_OK_Static_Expression (Op)
1775 then
1776 return False;
1777 else
1778 return Compile_Time_Known_Value (Op);
1779 end if;
1780 end CRT_Safe_Compile_Time_Known_Value;
1781
996ae0b0
RK
1782 -----------------
1783 -- Eval_Actual --
1784 -----------------
1785
1786 -- This is only called for actuals of functions that are not predefined
1787 -- operators (which have already been rewritten as operators at this
1788 -- stage), so the call can never be folded, and all that needs doing for
1789 -- the actual is to do the check for a non-static context.
1790
1791 procedure Eval_Actual (N : Node_Id) is
1792 begin
1793 Check_Non_Static_Context (N);
1794 end Eval_Actual;
1795
1796 --------------------
1797 -- Eval_Allocator --
1798 --------------------
1799
1800 -- Allocators are never static, so all we have to do is to do the
1801 -- check for a non-static context if an expression is present.
1802
1803 procedure Eval_Allocator (N : Node_Id) is
1804 Expr : constant Node_Id := Expression (N);
996ae0b0
RK
1805 begin
1806 if Nkind (Expr) = N_Qualified_Expression then
1807 Check_Non_Static_Context (Expression (Expr));
1808 end if;
1809 end Eval_Allocator;
1810
1811 ------------------------
1812 -- Eval_Arithmetic_Op --
1813 ------------------------
1814
1815 -- Arithmetic operations are static functions, so the result is static
1816 -- if both operands are static (RM 4.9(7), 4.9(20)).
1817
1818 procedure Eval_Arithmetic_Op (N : Node_Id) is
1819 Left : constant Node_Id := Left_Opnd (N);
1820 Right : constant Node_Id := Right_Opnd (N);
1821 Ltype : constant Entity_Id := Etype (Left);
1822 Rtype : constant Entity_Id := Etype (Right);
d7567964 1823 Otype : Entity_Id := Empty;
996ae0b0
RK
1824 Stat : Boolean;
1825 Fold : Boolean;
1826
1827 begin
1828 -- If not foldable we are done
1829
1830 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1831
1832 if not Fold then
1833 return;
1834 end if;
1835
6c3c671e
AC
1836 -- Otherwise attempt to fold
1837
d7567964
TQ
1838 if Is_Universal_Numeric_Type (Etype (Left))
1839 and then
1840 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 1841 then
d7567964 1842 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
1843 end if;
1844
996ae0b0
RK
1845 -- Fold for cases where both operands are of integer type
1846
1847 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1848 declare
1849 Left_Int : constant Uint := Expr_Value (Left);
1850 Right_Int : constant Uint := Expr_Value (Right);
1851 Result : Uint;
1852
1853 begin
1854 case Nkind (N) is
996ae0b0
RK
1855 when N_Op_Add =>
1856 Result := Left_Int + Right_Int;
1857
1858 when N_Op_Subtract =>
1859 Result := Left_Int - Right_Int;
1860
1861 when N_Op_Multiply =>
1862 if OK_Bits
1863 (N, UI_From_Int
1864 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1865 then
1866 Result := Left_Int * Right_Int;
1867 else
1868 Result := Left_Int;
1869 end if;
1870
1871 when N_Op_Divide =>
1872
1873 -- The exception Constraint_Error is raised by integer
1874 -- division, rem and mod if the right operand is zero.
1875
1876 if Right_Int = 0 then
1877 Apply_Compile_Time_Constraint_Error
80298c3b 1878 (N, "division by zero", CE_Divide_By_Zero,
fbf5a39b 1879 Warn => not Stat);
edab6088 1880 Set_Raises_Constraint_Error (N);
996ae0b0 1881 return;
fbf5a39b 1882
edab6088
RD
1883 -- Otherwise we can do the division
1884
996ae0b0
RK
1885 else
1886 Result := Left_Int / Right_Int;
1887 end if;
1888
1889 when N_Op_Mod =>
1890
1891 -- The exception Constraint_Error is raised by integer
1892 -- division, rem and mod if the right operand is zero.
1893
1894 if Right_Int = 0 then
1895 Apply_Compile_Time_Constraint_Error
80298c3b 1896 (N, "mod with zero divisor", CE_Divide_By_Zero,
fbf5a39b 1897 Warn => not Stat);
996ae0b0
RK
1898 return;
1899 else
1900 Result := Left_Int mod Right_Int;
1901 end if;
1902
1903 when N_Op_Rem =>
1904
1905 -- The exception Constraint_Error is raised by integer
1906 -- division, rem and mod if the right operand is zero.
1907
1908 if Right_Int = 0 then
1909 Apply_Compile_Time_Constraint_Error
80298c3b 1910 (N, "rem with zero divisor", CE_Divide_By_Zero,
fbf5a39b 1911 Warn => not Stat);
996ae0b0 1912 return;
fbf5a39b 1913
996ae0b0
RK
1914 else
1915 Result := Left_Int rem Right_Int;
1916 end if;
1917
1918 when others =>
1919 raise Program_Error;
1920 end case;
1921
1922 -- Adjust the result by the modulus if the type is a modular type
1923
1924 if Is_Modular_Integer_Type (Ltype) then
1925 Result := Result mod Modulus (Ltype);
82c80734
RD
1926
1927 -- For a signed integer type, check non-static overflow
1928
1929 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1930 declare
1931 BT : constant Entity_Id := Base_Type (Ltype);
1932 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1933 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1934 begin
1935 if Result < Lo or else Result > Hi then
1936 Apply_Compile_Time_Constraint_Error
324ac540 1937 (N, "value not in range of }??",
82c80734
RD
1938 CE_Overflow_Check_Failed,
1939 Ent => BT);
1940 return;
1941 end if;
1942 end;
996ae0b0
RK
1943 end if;
1944
82c80734
RD
1945 -- If we get here we can fold the result
1946
fbf5a39b 1947 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1948 end;
1949
d7567964
TQ
1950 -- Cases where at least one operand is a real. We handle the cases of
1951 -- both reals, or mixed/real integer cases (the latter happen only for
1952 -- divide and multiply, and the result is always real).
996ae0b0
RK
1953
1954 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1955 declare
1956 Left_Real : Ureal;
1957 Right_Real : Ureal;
1958 Result : Ureal;
1959
1960 begin
1961 if Is_Real_Type (Ltype) then
1962 Left_Real := Expr_Value_R (Left);
1963 else
1964 Left_Real := UR_From_Uint (Expr_Value (Left));
1965 end if;
1966
1967 if Is_Real_Type (Rtype) then
1968 Right_Real := Expr_Value_R (Right);
1969 else
1970 Right_Real := UR_From_Uint (Expr_Value (Right));
1971 end if;
1972
1973 if Nkind (N) = N_Op_Add then
1974 Result := Left_Real + Right_Real;
1975
1976 elsif Nkind (N) = N_Op_Subtract then
1977 Result := Left_Real - Right_Real;
1978
1979 elsif Nkind (N) = N_Op_Multiply then
1980 Result := Left_Real * Right_Real;
1981
1982 else pragma Assert (Nkind (N) = N_Op_Divide);
1983 if UR_Is_Zero (Right_Real) then
1984 Apply_Compile_Time_Constraint_Error
07fc65c4 1985 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1986 return;
1987 end if;
1988
1989 Result := Left_Real / Right_Real;
1990 end if;
1991
fbf5a39b 1992 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1993 end;
1994 end if;
d7567964
TQ
1995
1996 -- If the operator was resolved to a specific type, make sure that type
1997 -- is frozen even if the expression is folded into a literal (which has
1998 -- a universal type).
1999
2000 if Present (Otype) then
2001 Freeze_Before (N, Otype);
2002 end if;
996ae0b0
RK
2003 end Eval_Arithmetic_Op;
2004
2005 ----------------------------
2006 -- Eval_Character_Literal --
2007 ----------------------------
2008
a90bd866 2009 -- Nothing to be done
996ae0b0
RK
2010
2011 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 2012 pragma Warnings (Off, N);
996ae0b0
RK
2013 begin
2014 null;
2015 end Eval_Character_Literal;
2016
c01a9391
AC
2017 ---------------
2018 -- Eval_Call --
2019 ---------------
2020
2021 -- Static function calls are either calls to predefined operators
2022 -- with static arguments, or calls to functions that rename a literal.
2023 -- Only the latter case is handled here, predefined operators are
2024 -- constant-folded elsewhere.
29797f34 2025
c01a9391
AC
2026 -- If the function is itself inherited (see 7423-001) the literal of
2027 -- the parent type must be explicitly converted to the return type
2028 -- of the function.
2029
2030 procedure Eval_Call (N : Node_Id) is
2031 Loc : constant Source_Ptr := Sloc (N);
2032 Typ : constant Entity_Id := Etype (N);
2033 Lit : Entity_Id;
2034
2035 begin
2036 if Nkind (N) = N_Function_Call
2037 and then No (Parameter_Associations (N))
2038 and then Is_Entity_Name (Name (N))
2039 and then Present (Alias (Entity (Name (N))))
2040 and then Is_Enumeration_Type (Base_Type (Typ))
2041 then
b81a5940 2042 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
2043
2044 if Ekind (Lit) = E_Enumeration_Literal then
2045 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2046 Rewrite
2047 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2048 else
2049 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2050 end if;
2051
2052 Resolve (N, Typ);
2053 end if;
2054 end if;
2055 end Eval_Call;
2056
19d846a0
RD
2057 --------------------------
2058 -- Eval_Case_Expression --
2059 --------------------------
2060
ed7b9d6e 2061 -- A conditional expression is static if all its conditions and dependent
edab6088
RD
2062 -- expressions are static. Note that we do not care if the dependent
2063 -- expressions raise CE, except for the one that will be selected.
19d846a0
RD
2064
2065 procedure Eval_Case_Expression (N : Node_Id) is
edab6088
RD
2066 Alt : Node_Id;
2067 Choice : Node_Id;
19d846a0
RD
2068
2069 begin
edab6088 2070 Set_Is_Static_Expression (N, False);
ed7b9d6e 2071
edab6088 2072 if not Is_Static_Expression (Expression (N)) then
ed7b9d6e 2073 Check_Non_Static_Context (Expression (N));
edab6088 2074 return;
ed7b9d6e 2075 end if;
19d846a0 2076
edab6088
RD
2077 -- First loop, make sure all the alternatives are static expressions
2078 -- none of which raise Constraint_Error. We make the constraint error
2079 -- check because part of the legality condition for a correct static
2080 -- case expression is that the cases are covered, like any other case
2081 -- expression. And we can't do that if any of the conditions raise an
2082 -- exception, so we don't even try to evaluate if that is the case.
2083
19d846a0 2084 Alt := First (Alternatives (N));
edab6088 2085 while Present (Alt) loop
ed7b9d6e 2086
edab6088
RD
2087 -- The expression must be static, but we don't care at this stage
2088 -- if it raises Constraint_Error (the alternative might not match,
2089 -- in which case the expression is statically unevaluated anyway).
ed7b9d6e 2090
edab6088
RD
2091 if not Is_Static_Expression (Expression (Alt)) then
2092 Check_Non_Static_Context (Expression (Alt));
2093 return;
2094 end if;
ed7b9d6e 2095
edab6088
RD
2096 -- The choices of a case always have to be static, and cannot raise
2097 -- an exception. If this condition is not met, then the expression
2098 -- is plain illegal, so just abandon evaluation attempts. No need
2099 -- to check non-static context when we have something illegal anyway.
ed7b9d6e 2100
edab6088
RD
2101 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2102 return;
ed7b9d6e
AC
2103 end if;
2104
19d846a0 2105 Next (Alt);
edab6088 2106 end loop;
ed7b9d6e 2107
edab6088
RD
2108 -- OK, if the above loop gets through it means that all choices are OK
2109 -- static (don't raise exceptions), so the whole case is static, and we
2110 -- can find the matching alternative.
2111
2112 Set_Is_Static_Expression (N);
2113
2114 -- Now to deal with propagating a possible constraint error
2115
2116 -- If the selecting expression raises CE, propagate and we are done
2117
2118 if Raises_Constraint_Error (Expression (N)) then
2119 Set_Raises_Constraint_Error (N);
2120
2121 -- Otherwise we need to check the alternatives to find the matching
2122 -- one. CE's in other than the matching one are not relevant. But we
2123 -- do need to check the matching one. Unlike the first loop, we do not
2124 -- have to go all the way through, when we find the matching one, quit.
ed7b9d6e
AC
2125
2126 else
edab6088
RD
2127 Alt := First (Alternatives (N));
2128 Search : loop
2129
4bd4bb7f 2130 -- We must find a match among the alternatives. If not, this must
edab6088
RD
2131 -- be due to other errors, so just ignore, leaving as non-static.
2132
2133 if No (Alt) then
2134 Set_Is_Static_Expression (N, False);
2135 return;
2136 end if;
2137
2138 -- Otherwise loop through choices of this alternative
2139
2140 Choice := First (Discrete_Choices (Alt));
2141 while Present (Choice) loop
2142
2143 -- If we find a matching choice, then the Expression of this
2144 -- alternative replaces N (Raises_Constraint_Error flag is
2145 -- included, so we don't have to special case that).
2146
2147 if Choice_Matches (Expression (N), Choice) = Match then
2148 Rewrite (N, Relocate_Node (Expression (Alt)));
2149 return;
2150 end if;
2151
2152 Next (Choice);
2153 end loop;
2154
2155 Next (Alt);
2156 end loop Search;
ed7b9d6e 2157 end if;
19d846a0
RD
2158 end Eval_Case_Expression;
2159
996ae0b0
RK
2160 ------------------------
2161 -- Eval_Concatenation --
2162 ------------------------
2163
3996951a
TQ
2164 -- Concatenation is a static function, so the result is static if both
2165 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
2166
2167 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
2168 Left : constant Node_Id := Left_Opnd (N);
2169 Right : constant Node_Id := Right_Opnd (N);
2170 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
2171 Stat : Boolean;
2172 Fold : Boolean;
996ae0b0
RK
2173
2174 begin
3996951a
TQ
2175 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2176 -- non-static context.
996ae0b0 2177
0ab80019 2178 if Ada_Version = Ada_83
996ae0b0
RK
2179 and then Comes_From_Source (N)
2180 then
2181 Check_Non_Static_Context (Left);
2182 Check_Non_Static_Context (Right);
2183 return;
2184 end if;
2185
2186 -- If not foldable we are done. In principle concatenation that yields
2187 -- any string type is static (i.e. an array type of character types).
2188 -- However, character types can include enumeration literals, and
2189 -- concatenation in that case cannot be described by a literal, so we
2190 -- only consider the operation static if the result is an array of
2191 -- (a descendant of) a predefined character type.
2192
2193 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2194
3996951a 2195 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
2196 Set_Is_Static_Expression (N, False);
2197 return;
2198 end if;
2199
82c80734 2200 -- Compile time string concatenation
996ae0b0 2201
3996951a
TQ
2202 -- ??? Note that operands that are aggregates can be marked as static,
2203 -- so we should attempt at a later stage to fold concatenations with
2204 -- such aggregates.
996ae0b0
RK
2205
2206 declare
b54ddf5a
BD
2207 Left_Str : constant Node_Id := Get_String_Val (Left);
2208 Left_Len : Nat;
2209 Right_Str : constant Node_Id := Get_String_Val (Right);
2210 Folded_Val : String_Id;
996ae0b0
RK
2211
2212 begin
2213 -- Establish new string literal, and store left operand. We make
2214 -- sure to use the special Start_String that takes an operand if
2215 -- the left operand is a string literal. Since this is optimized
2216 -- in the case where that is the most recently created string
2217 -- literal, we ensure efficient time/space behavior for the
2218 -- case of a concatenation of a series of string literals.
2219
2220 if Nkind (Left_Str) = N_String_Literal then
f91b40db 2221 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
2222
2223 -- If the left operand is the empty string, and the right operand
2224 -- is a string literal (the case of "" & "..."), the result is the
2225 -- value of the right operand. This optimization is important when
2226 -- Is_Folded_In_Parser, to avoid copying an enormous right
2227 -- operand.
2228
2229 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2230 Folded_Val := Strval (Right_Str);
2231 else
2232 Start_String (Strval (Left_Str));
2233 end if;
2234
996ae0b0
RK
2235 else
2236 Start_String;
82c80734 2237 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 2238 Left_Len := 1;
996ae0b0
RK
2239 end if;
2240
b54ddf5a
BD
2241 -- Now append the characters of the right operand, unless we
2242 -- optimized the "" & "..." case above.
996ae0b0
RK
2243
2244 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
2245 if Left_Len /= 0 then
2246 Store_String_Chars (Strval (Right_Str));
2247 Folded_Val := End_String;
2248 end if;
996ae0b0 2249 else
82c80734 2250 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 2251 Folded_Val := End_String;
996ae0b0
RK
2252 end if;
2253
2254 Set_Is_Static_Expression (N, Stat);
2255
354c3840
AC
2256 -- If left operand is the empty string, the result is the
2257 -- right operand, including its bounds if anomalous.
f91b40db 2258
354c3840
AC
2259 if Left_Len = 0
2260 and then Is_Array_Type (Etype (Right))
2261 and then Etype (Right) /= Any_String
2262 then
2263 Set_Etype (N, Etype (Right));
996ae0b0 2264 end if;
354c3840
AC
2265
2266 Fold_Str (N, Folded_Val, Static => Stat);
996ae0b0
RK
2267 end;
2268 end Eval_Concatenation;
2269
9b16cb57
RD
2270 ----------------------
2271 -- Eval_Entity_Name --
2272 ----------------------
2273
2274 -- This procedure is used for identifiers and expanded names other than
2275 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2276 -- static if they denote a static constant (RM 4.9(6)) or if the name
2277 -- denotes an enumeration literal (RM 4.9(22)).
2278
2279 procedure Eval_Entity_Name (N : Node_Id) is
2280 Def_Id : constant Entity_Id := Entity (N);
2281 Val : Node_Id;
2282
2283 begin
2284 -- Enumeration literals are always considered to be constants
2285 -- and cannot raise constraint error (RM 4.9(22)).
2286
2287 if Ekind (Def_Id) = E_Enumeration_Literal then
2288 Set_Is_Static_Expression (N);
2289 return;
2290
2291 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2292 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2293 -- it does not violate 10.2.1(8) here, since this is not a variable.
2294
2295 elsif Ekind (Def_Id) = E_Constant then
2296
e03f7ccf
AC
2297 -- Deferred constants must always be treated as nonstatic outside the
2298 -- scope of their full view.
9b16cb57
RD
2299
2300 if Present (Full_View (Def_Id))
2301 and then not In_Open_Scopes (Scope (Def_Id))
2302 then
2303 Val := Empty;
2304 else
2305 Val := Constant_Value (Def_Id);
2306 end if;
2307
2308 if Present (Val) then
2309 Set_Is_Static_Expression
2310 (N, Is_Static_Expression (Val)
2311 and then Is_Static_Subtype (Etype (Def_Id)));
2312 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2313
2314 if not Is_Static_Expression (N)
2315 and then not Is_Generic_Type (Etype (N))
2316 then
2317 Validate_Static_Object_Name (N);
2318 end if;
2319
e03f7ccf
AC
2320 -- Mark constant condition in SCOs
2321
2322 if Generate_SCO
2323 and then Comes_From_Source (N)
2324 and then Is_Boolean_Type (Etype (Def_Id))
2325 and then Compile_Time_Known_Value (N)
2326 then
2327 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2328 end if;
2329
9b16cb57
RD
2330 return;
2331 end if;
2332 end if;
2333
2334 -- Fall through if the name is not static
2335
2336 Validate_Static_Object_Name (N);
2337 end Eval_Entity_Name;
2338
2339 ------------------------
2340 -- Eval_If_Expression --
2341 ------------------------
996ae0b0 2342
9b16cb57 2343 -- We can fold to a static expression if the condition and both dependent
1cf3727f 2344 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 2345 -- the check for non-static context for the then and else expressions.
996ae0b0 2346
9b16cb57 2347 procedure Eval_If_Expression (N : Node_Id) is
4d777a71
AC
2348 Condition : constant Node_Id := First (Expressions (N));
2349 Then_Expr : constant Node_Id := Next (Condition);
2350 Else_Expr : constant Node_Id := Next (Then_Expr);
2351 Result : Node_Id;
2352 Non_Result : Node_Id;
2353
2354 Rstat : constant Boolean :=
2355 Is_Static_Expression (Condition)
2356 and then
2357 Is_Static_Expression (Then_Expr)
2358 and then
2359 Is_Static_Expression (Else_Expr);
edab6088 2360 -- True if result is static
4d777a71 2361
996ae0b0 2362 begin
edab6088
RD
2363 -- If result not static, nothing to do, otherwise set static result
2364
2365 if not Rstat then
2366 return;
2367 else
2368 Set_Is_Static_Expression (N);
2369 end if;
2370
4d777a71
AC
2371 -- If any operand is Any_Type, just propagate to result and do not try
2372 -- to fold, this prevents cascaded errors.
2373
2374 if Etype (Condition) = Any_Type or else
2375 Etype (Then_Expr) = Any_Type or else
2376 Etype (Else_Expr) = Any_Type
2377 then
2378 Set_Etype (N, Any_Type);
2379 Set_Is_Static_Expression (N, False);
2380 return;
edab6088
RD
2381 end if;
2382
4bd4bb7f 2383 -- If condition raises constraint error then we have already signaled
edab6088
RD
2384 -- an error, and we just propagate to the result and do not fold.
2385
2386 if Raises_Constraint_Error (Condition) then
2387 Set_Raises_Constraint_Error (N);
2388 return;
2389 end if;
4d777a71
AC
2390
2391 -- Static case where we can fold. Note that we don't try to fold cases
2392 -- where the condition is known at compile time, but the result is
2393 -- non-static. This avoids possible cases of infinite recursion where
2394 -- the expander puts in a redundant test and we remove it. Instead we
2395 -- deal with these cases in the expander.
2396
edab6088 2397 -- Select result operand
4d777a71 2398
edab6088
RD
2399 if Is_True (Expr_Value (Condition)) then
2400 Result := Then_Expr;
2401 Non_Result := Else_Expr;
2402 else
2403 Result := Else_Expr;
2404 Non_Result := Then_Expr;
2405 end if;
4d777a71 2406
edab6088
RD
2407 -- Note that it does not matter if the non-result operand raises a
2408 -- Constraint_Error, but if the result raises constraint error then we
2409 -- replace the node with a raise constraint error. This will properly
2410 -- propagate Raises_Constraint_Error since this flag is set in Result.
4d777a71 2411
edab6088
RD
2412 if Raises_Constraint_Error (Result) then
2413 Rewrite_In_Raise_CE (N, Result);
2414 Check_Non_Static_Context (Non_Result);
4d777a71 2415
edab6088 2416 -- Otherwise the result operand replaces the original node
4d777a71
AC
2417
2418 else
edab6088
RD
2419 Rewrite (N, Relocate_Node (Result));
2420 Set_Is_Static_Expression (N);
4d777a71 2421 end if;
9b16cb57 2422 end Eval_If_Expression;
996ae0b0
RK
2423
2424 ----------------------------
2425 -- Eval_Indexed_Component --
2426 ----------------------------
2427
8cbb664e
MG
2428 -- Indexed components are never static, so we need to perform the check
2429 -- for non-static context on the index values. Then, we check if the
2430 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
2431
2432 procedure Eval_Indexed_Component (N : Node_Id) is
2433 Expr : Node_Id;
2434
2435 begin
fbf5a39b
AC
2436 -- Check for non-static context on index values
2437
996ae0b0
RK
2438 Expr := First (Expressions (N));
2439 while Present (Expr) loop
2440 Check_Non_Static_Context (Expr);
2441 Next (Expr);
2442 end loop;
2443
fbf5a39b
AC
2444 -- If the indexed component appears in an object renaming declaration
2445 -- then we do not want to try to evaluate it, since in this case we
2446 -- need the identity of the array element.
2447
2448 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2449 return;
2450
2451 -- Similarly if the indexed component appears as the prefix of an
2452 -- attribute we don't want to evaluate it, because at least for
2453 -- some cases of attributes we need the identify (e.g. Access, Size)
2454
2455 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2456 return;
2457 end if;
2458
2459 -- Note: there are other cases, such as the left side of an assignment,
2460 -- or an OUT parameter for a call, where the replacement results in the
2461 -- illegal use of a constant, But these cases are illegal in the first
2462 -- place, so the replacement, though silly, is harmless.
2463
2464 -- Now see if this is a constant array reference
8cbb664e
MG
2465
2466 if List_Length (Expressions (N)) = 1
2467 and then Is_Entity_Name (Prefix (N))
2468 and then Ekind (Entity (Prefix (N))) = E_Constant
2469 and then Present (Constant_Value (Entity (Prefix (N))))
2470 then
2471 declare
2472 Loc : constant Source_Ptr := Sloc (N);
2473 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2474 Sub : constant Node_Id := First (Expressions (N));
2475
2476 Atyp : Entity_Id;
2477 -- Type of array
2478
2479 Lin : Nat;
2480 -- Linear one's origin subscript value for array reference
2481
2482 Lbd : Node_Id;
2483 -- Lower bound of the first array index
2484
2485 Elm : Node_Id;
2486 -- Value from constant array
2487
2488 begin
2489 Atyp := Etype (Arr);
2490
2491 if Is_Access_Type (Atyp) then
2492 Atyp := Designated_Type (Atyp);
2493 end if;
2494
9dbf1c3e
RD
2495 -- If we have an array type (we should have but perhaps there are
2496 -- error cases where this is not the case), then see if we can do
2497 -- a constant evaluation of the array reference.
8cbb664e 2498
ebd34478 2499 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2500 if Ekind (Atyp) = E_String_Literal_Subtype then
2501 Lbd := String_Literal_Low_Bound (Atyp);
2502 else
2503 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2504 end if;
2505
2506 if Compile_Time_Known_Value (Sub)
2507 and then Nkind (Arr) = N_Aggregate
2508 and then Compile_Time_Known_Value (Lbd)
2509 and then Is_Discrete_Type (Component_Type (Atyp))
2510 then
2511 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2512
2513 if List_Length (Expressions (Arr)) >= Lin then
2514 Elm := Pick (Expressions (Arr), Lin);
2515
2516 -- If the resulting expression is compile time known,
2517 -- then we can rewrite the indexed component with this
2518 -- value, being sure to mark the result as non-static.
2519 -- We also reset the Sloc, in case this generates an
2520 -- error later on (e.g. 136'Access).
2521
2522 if Compile_Time_Known_Value (Elm) then
2523 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2524 Set_Is_Static_Expression (N, False);
2525 Set_Sloc (N, Loc);
2526 end if;
2527 end if;
9fbb3ae6
AC
2528
2529 -- We can also constant-fold if the prefix is a string literal.
2530 -- This will be useful in an instantiation or an inlining.
2531
2532 elsif Compile_Time_Known_Value (Sub)
2533 and then Nkind (Arr) = N_String_Literal
2534 and then Compile_Time_Known_Value (Lbd)
2535 and then Expr_Value (Lbd) = 1
2536 and then Expr_Value (Sub) <=
2537 String_Literal_Length (Etype (Arr))
2538 then
2539 declare
2540 C : constant Char_Code :=
2541 Get_String_Char (Strval (Arr),
2542 UI_To_Int (Expr_Value (Sub)));
2543 begin
2544 Set_Character_Literal_Name (C);
2545
2546 Elm :=
2547 Make_Character_Literal (Loc,
2548 Chars => Name_Find,
2549 Char_Literal_Value => UI_From_CC (C));
2550 Set_Etype (Elm, Component_Type (Atyp));
2551 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2552 Set_Is_Static_Expression (N, False);
2553 end;
8cbb664e
MG
2554 end if;
2555 end if;
2556 end;
2557 end if;
996ae0b0
RK
2558 end Eval_Indexed_Component;
2559
2560 --------------------------
2561 -- Eval_Integer_Literal --
2562 --------------------------
2563
2564 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2565 -- as static by the analyzer. The reason we did it that early is to allow
2566 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2567 -- analysis, but before resolution, when integer literals are generated in
2568 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2569
2570 procedure Eval_Integer_Literal (N : Node_Id) is
2571 T : constant Entity_Id := Etype (N);
2572
5d09245e 2573 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
2574 -- If the literal is resolved with a specific type in a context where
2575 -- the expected type is Any_Integer, there are no range checks on the
2576 -- literal. By the time the literal is evaluated, it carries the type
2577 -- imposed by the enclosing expression, and we must recover the context
2578 -- to determine that Any_Integer is meant.
5d09245e
AC
2579
2580 ----------------------------
09494c32 2581 -- In_Any_Integer_Context --
5d09245e
AC
2582 ----------------------------
2583
2584 function In_Any_Integer_Context return Boolean is
2585 Par : constant Node_Id := Parent (N);
2586 K : constant Node_Kind := Nkind (Par);
2587
2588 begin
2589 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2590 -- but those have bounds smaller that those of any integer base type,
2591 -- so we can safely ignore these cases.
5d09245e 2592
80298c3b
AC
2593 return Nkind_In (K, N_Number_Declaration,
2594 N_Attribute_Reference,
2595 N_Attribute_Definition_Clause,
2596 N_Modular_Type_Definition,
2597 N_Signed_Integer_Type_Definition);
5d09245e
AC
2598 end In_Any_Integer_Context;
2599
2600 -- Start of processing for Eval_Integer_Literal
2601
996ae0b0 2602 begin
5d09245e 2603
996ae0b0 2604 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2605 -- certainly appearing in a non-static context, so check it. This is
2606 -- actually a redundant check, since Check_Non_Static_Context would
2607 -- check it, but it seems worth while avoiding the call.
996ae0b0 2608
5d09245e
AC
2609 if Nkind (Parent (N)) not in N_Subexpr
2610 and then not In_Any_Integer_Context
2611 then
996ae0b0
RK
2612 Check_Non_Static_Context (N);
2613 end if;
2614
2615 -- Modular integer literals must be in their base range
2616
2617 if Is_Modular_Integer_Type (T)
c800f862 2618 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2619 then
2620 Out_Of_Range (N);
2621 end if;
2622 end Eval_Integer_Literal;
2623
2624 ---------------------
2625 -- Eval_Logical_Op --
2626 ---------------------
2627
2628 -- Logical operations are static functions, so the result is potentially
2629 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2630
2631 procedure Eval_Logical_Op (N : Node_Id) is
2632 Left : constant Node_Id := Left_Opnd (N);
2633 Right : constant Node_Id := Right_Opnd (N);
2634 Stat : Boolean;
2635 Fold : Boolean;
2636
2637 begin
2638 -- If not foldable we are done
2639
2640 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2641
2642 if not Fold then
2643 return;
2644 end if;
2645
2646 -- Compile time evaluation of logical operation
2647
2648 declare
2649 Left_Int : constant Uint := Expr_Value (Left);
2650 Right_Int : constant Uint := Expr_Value (Right);
2651
2652 begin
7a5b62b0 2653 if Is_Modular_Integer_Type (Etype (N)) then
996ae0b0
RK
2654 declare
2655 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2656 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2657
2658 begin
2659 To_Bits (Left_Int, Left_Bits);
2660 To_Bits (Right_Int, Right_Bits);
2661
2662 -- Note: should really be able to use array ops instead of
2663 -- these loops, but they weren't working at the time ???
2664
2665 if Nkind (N) = N_Op_And then
2666 for J in Left_Bits'Range loop
2667 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2668 end loop;
2669
2670 elsif Nkind (N) = N_Op_Or then
2671 for J in Left_Bits'Range loop
2672 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2673 end loop;
2674
2675 else
2676 pragma Assert (Nkind (N) = N_Op_Xor);
2677
2678 for J in Left_Bits'Range loop
2679 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2680 end loop;
2681 end if;
2682
fbf5a39b 2683 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2684 end;
2685
2686 else
2687 pragma Assert (Is_Boolean_Type (Etype (N)));
2688
2689 if Nkind (N) = N_Op_And then
2690 Fold_Uint (N,
fbf5a39b 2691 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2692
2693 elsif Nkind (N) = N_Op_Or then
2694 Fold_Uint (N,
fbf5a39b 2695 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2696
2697 else
2698 pragma Assert (Nkind (N) = N_Op_Xor);
2699 Fold_Uint (N,
fbf5a39b 2700 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2701 end if;
2702 end if;
996ae0b0
RK
2703 end;
2704 end Eval_Logical_Op;
2705
2706 ------------------------
2707 -- Eval_Membership_Op --
2708 ------------------------
2709
1d1bd8ad
AC
2710 -- A membership test is potentially static if the expression is static, and
2711 -- the range is a potentially static range, or is a subtype mark denoting a
2712 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2713
2714 procedure Eval_Membership_Op (N : Node_Id) is
2715 Left : constant Node_Id := Left_Opnd (N);
2716 Right : constant Node_Id := Right_Opnd (N);
edab6088
RD
2717 Alts : constant List_Id := Alternatives (N);
2718 Result : Match_Result;
996ae0b0
RK
2719
2720 begin
1d1bd8ad
AC
2721 -- Ignore if error in either operand, except to make sure that Any_Type
2722 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 2723
edab6088
RD
2724 if Etype (Left) = Any_Type
2725 or else (Present (Right) and then Etype (Right) = Any_Type)
2726 then
996ae0b0
RK
2727 Set_Etype (N, Any_Type);
2728 return;
2729 end if;
2730
4818e7b9 2731 -- Ignore if types involved have predicates
edab6088
RD
2732 -- Is this right for static predicates ???
2733 -- And what about the alternatives ???
4818e7b9
RD
2734
2735 if Present (Predicate_Function (Etype (Left)))
edab6088
RD
2736 or else (Present (Right)
2737 and then Present (Predicate_Function (Etype (Right))))
4818e7b9
RD
2738 then
2739 return;
2740 end if;
2741
edab6088 2742 -- If left operand non-static, then nothing to do
996ae0b0 2743
edab6088
RD
2744 if not Is_Static_Expression (Left) then
2745 return;
2746 end if;
996ae0b0 2747
edab6088 2748 -- If choice is non-static, left operand is in non-static context
996ae0b0 2749
edab6088
RD
2750 if (Present (Right) and then not Is_Static_Choice (Right))
2751 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2752 then
2753 Check_Non_Static_Context (Left);
2754 return;
2755 end if;
996ae0b0 2756
edab6088 2757 -- Otherwise we definitely have a static expression
996ae0b0 2758
edab6088 2759 Set_Is_Static_Expression (N);
996ae0b0 2760
edab6088 2761 -- If left operand raises constraint error, propagate and we are done
996ae0b0 2762
edab6088
RD
2763 if Raises_Constraint_Error (Left) then
2764 Set_Raises_Constraint_Error (N, True);
996ae0b0 2765
edab6088 2766 -- See if we match
996ae0b0 2767
edab6088
RD
2768 else
2769 if Present (Right) then
2770 Result := Choice_Matches (Left, Right);
996ae0b0 2771 else
edab6088 2772 Result := Choices_Match (Left, Alts);
996ae0b0
RK
2773 end if;
2774
edab6088
RD
2775 -- If result is Non_Static, it means that we raise Constraint_Error,
2776 -- since we already tested that the operands were themselves static.
996ae0b0 2777
edab6088
RD
2778 if Result = Non_Static then
2779 Set_Raises_Constraint_Error (N);
996ae0b0 2780
edab6088 2781 -- Otherwise we have our result (flipped if NOT IN case)
996ae0b0
RK
2782
2783 else
edab6088
RD
2784 Fold_Uint
2785 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2786 Warn_On_Known_Condition (N);
996ae0b0 2787 end if;
996ae0b0 2788 end if;
996ae0b0
RK
2789 end Eval_Membership_Op;
2790
2791 ------------------------
2792 -- Eval_Named_Integer --
2793 ------------------------
2794
2795 procedure Eval_Named_Integer (N : Node_Id) is
2796 begin
2797 Fold_Uint (N,
fbf5a39b 2798 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2799 end Eval_Named_Integer;
2800
2801 ---------------------
2802 -- Eval_Named_Real --
2803 ---------------------
2804
2805 procedure Eval_Named_Real (N : Node_Id) is
2806 begin
2807 Fold_Ureal (N,
fbf5a39b 2808 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2809 end Eval_Named_Real;
2810
2811 -------------------
2812 -- Eval_Op_Expon --
2813 -------------------
2814
2815 -- Exponentiation is a static functions, so the result is potentially
2816 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2817
2818 procedure Eval_Op_Expon (N : Node_Id) is
2819 Left : constant Node_Id := Left_Opnd (N);
2820 Right : constant Node_Id := Right_Opnd (N);
2821 Stat : Boolean;
2822 Fold : Boolean;
2823
2824 begin
2825 -- If not foldable we are done
2826
6c3c671e
AC
2827 Test_Expression_Is_Foldable
2828 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2829
2830 -- Return if not foldable
996ae0b0
RK
2831
2832 if not Fold then
2833 return;
2834 end if;
2835
6c3c671e
AC
2836 if Configurable_Run_Time_Mode and not Stat then
2837 return;
2838 end if;
2839
996ae0b0
RK
2840 -- Fold exponentiation operation
2841
2842 declare
2843 Right_Int : constant Uint := Expr_Value (Right);
2844
2845 begin
2846 -- Integer case
2847
2848 if Is_Integer_Type (Etype (Left)) then
2849 declare
2850 Left_Int : constant Uint := Expr_Value (Left);
2851 Result : Uint;
2852
2853 begin
22cb89b5
AC
2854 -- Exponentiation of an integer raises Constraint_Error for a
2855 -- negative exponent (RM 4.5.6).
996ae0b0
RK
2856
2857 if Right_Int < 0 then
2858 Apply_Compile_Time_Constraint_Error
80298c3b 2859 (N, "integer exponent negative", CE_Range_Check_Failed,
fbf5a39b 2860 Warn => not Stat);
996ae0b0
RK
2861 return;
2862
2863 else
2864 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2865 Result := Left_Int ** Right_Int;
2866 else
2867 Result := Left_Int;
2868 end if;
2869
2870 if Is_Modular_Integer_Type (Etype (N)) then
2871 Result := Result mod Modulus (Etype (N));
2872 end if;
2873
fbf5a39b 2874 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2875 end if;
2876 end;
2877
2878 -- Real case
2879
2880 else
2881 declare
2882 Left_Real : constant Ureal := Expr_Value_R (Left);
2883
2884 begin
2885 -- Cannot have a zero base with a negative exponent
2886
2887 if UR_Is_Zero (Left_Real) then
2888
2889 if Right_Int < 0 then
2890 Apply_Compile_Time_Constraint_Error
80298c3b 2891 (N, "zero ** negative integer", CE_Range_Check_Failed,
fbf5a39b 2892 Warn => not Stat);
996ae0b0
RK
2893 return;
2894 else
fbf5a39b 2895 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2896 end if;
2897
2898 else
fbf5a39b 2899 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2900 end if;
2901 end;
2902 end if;
996ae0b0
RK
2903 end;
2904 end Eval_Op_Expon;
2905
2906 -----------------
2907 -- Eval_Op_Not --
2908 -----------------
2909
2910 -- The not operation is a static functions, so the result is potentially
2911 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2912
2913 procedure Eval_Op_Not (N : Node_Id) is
2914 Right : constant Node_Id := Right_Opnd (N);
2915 Stat : Boolean;
2916 Fold : Boolean;
2917
2918 begin
2919 -- If not foldable we are done
2920
2921 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2922
2923 if not Fold then
2924 return;
2925 end if;
2926
2927 -- Fold not operation
2928
2929 declare
2930 Rint : constant Uint := Expr_Value (Right);
2931 Typ : constant Entity_Id := Etype (N);
2932
2933 begin
1d1bd8ad
AC
2934 -- Negation is equivalent to subtracting from the modulus minus one.
2935 -- For a binary modulus this is equivalent to the ones-complement of
2936 -- the original value. For non-binary modulus this is an arbitrary
2937 -- but consistent definition.
996ae0b0
RK
2938
2939 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2940 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
80298c3b 2941 else pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2942 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2943 end if;
2944
2945 Set_Is_Static_Expression (N, Stat);
2946 end;
2947 end Eval_Op_Not;
2948
2949 -------------------------------
2950 -- Eval_Qualified_Expression --
2951 -------------------------------
2952
2953 -- A qualified expression is potentially static if its subtype mark denotes
2954 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2955
2956 procedure Eval_Qualified_Expression (N : Node_Id) is
2957 Operand : constant Node_Id := Expression (N);
2958 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2959
07fc65c4
GB
2960 Stat : Boolean;
2961 Fold : Boolean;
2962 Hex : Boolean;
996ae0b0
RK
2963
2964 begin
1d1bd8ad 2965 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
2966 -- Also, do not fold if our parent is an allocator (this is because the
2967 -- qualified expression is really part of the syntactic structure of an
2968 -- allocator, and we do not want to end up with something that
996ae0b0
RK
2969 -- corresponds to "new 1" where the 1 is the result of folding a
2970 -- qualified expression).
2971
2972 if not Is_Static_Subtype (Target_Type)
2973 or else Nkind (Parent (N)) = N_Allocator
2974 then
2975 Check_Non_Static_Context (Operand);
af152989 2976
1d1bd8ad
AC
2977 -- If operand is known to raise constraint_error, set the flag on the
2978 -- expression so it does not get optimized away.
af152989
AC
2979
2980 if Nkind (Operand) = N_Raise_Constraint_Error then
2981 Set_Raises_Constraint_Error (N);
2982 end if;
7324bf49 2983
996ae0b0
RK
2984 return;
2985 end if;
2986
2987 -- If not foldable we are done
2988
2989 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2990
2991 if not Fold then
2992 return;
2993
2994 -- Don't try fold if target type has constraint error bounds
2995
2996 elsif not Is_OK_Static_Subtype (Target_Type) then
2997 Set_Raises_Constraint_Error (N);
2998 return;
2999 end if;
3000
07fc65c4
GB
3001 -- Here we will fold, save Print_In_Hex indication
3002
3003 Hex := Nkind (Operand) = N_Integer_Literal
3004 and then Print_In_Hex (Operand);
3005
996ae0b0
RK
3006 -- Fold the result of qualification
3007
3008 if Is_Discrete_Type (Target_Type) then
fbf5a39b 3009 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 3010
07fc65c4
GB
3011 -- Preserve Print_In_Hex indication
3012
3013 if Hex and then Nkind (N) = N_Integer_Literal then
3014 Set_Print_In_Hex (N);
3015 end if;
3016
996ae0b0 3017 elsif Is_Real_Type (Target_Type) then
fbf5a39b 3018 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
3019
3020 else
fbf5a39b 3021 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
3022
3023 if not Stat then
3024 Set_Is_Static_Expression (N, False);
3025 else
3026 Check_String_Literal_Length (N, Target_Type);
3027 end if;
3028
3029 return;
3030 end if;
3031
fbf5a39b
AC
3032 -- The expression may be foldable but not static
3033
3034 Set_Is_Static_Expression (N, Stat);
3035
c800f862 3036 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3037 Out_Of_Range (N);
3038 end if;
996ae0b0
RK
3039 end Eval_Qualified_Expression;
3040
3041 -----------------------
3042 -- Eval_Real_Literal --
3043 -----------------------
3044
3045 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3046 -- as static by the analyzer. The reason we did it that early is to allow
3047 -- the possibility of turning off the Is_Static_Expression flag after
3048 -- analysis, but before resolution, when integer literals are generated
3049 -- in the expander that do not correspond to static expressions.
3050
3051 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
3052 PK : constant Node_Kind := Nkind (Parent (N));
3053
996ae0b0 3054 begin
1d1bd8ad
AC
3055 -- If the literal appears in a non-expression context and not as part of
3056 -- a number declaration, then it is appearing in a non-static context,
3057 -- so check it.
996ae0b0 3058
a1980be8 3059 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
3060 Check_Non_Static_Context (N);
3061 end if;
996ae0b0
RK
3062 end Eval_Real_Literal;
3063
3064 ------------------------
3065 -- Eval_Relational_Op --
3066 ------------------------
3067
8a95f4e8
RD
3068 -- Relational operations are static functions, so the result is static if
3069 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3070 -- the result is never static, even if the operands are.
996ae0b0 3071
fc3a3f3b
RD
3072 -- However, for internally generated nodes, we allow string equality and
3073 -- inequality to be static. This is because we rewrite A in "ABC" as an
3074 -- equality test A = "ABC", and the former is definitely static.
3075
996ae0b0
RK
3076 procedure Eval_Relational_Op (N : Node_Id) is
3077 Left : constant Node_Id := Left_Opnd (N);
3078 Right : constant Node_Id := Right_Opnd (N);
3079 Typ : constant Entity_Id := Etype (Left);
d7567964 3080 Otype : Entity_Id := Empty;
996ae0b0 3081 Result : Boolean;
996ae0b0
RK
3082
3083 begin
45fc7ddb
HK
3084 -- One special case to deal with first. If we can tell that the result
3085 -- will be false because the lengths of one or more index subtypes are
3086 -- compile time known and different, then we can replace the entire
3087 -- result by False. We only do this for one dimensional arrays, because
a90bd866 3088 -- the case of multi-dimensional arrays is rare and too much trouble. If
45fc7ddb
HK
3089 -- one of the operands is an illegal aggregate, its type might still be
3090 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
3091
3092 if Is_Array_Type (Typ)
13f34a3f 3093 and then Typ /= Any_Composite
996ae0b0 3094 and then Number_Dimensions (Typ) = 1
13f34a3f 3095 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
3096 then
3097 if Raises_Constraint_Error (Left)
80298c3b
AC
3098 or else
3099 Raises_Constraint_Error (Right)
996ae0b0
RK
3100 then
3101 return;
3102 end if;
3103
45fc7ddb
HK
3104 -- OK, we have the case where we may be able to do this fold
3105
3106 Length_Mismatch : declare
996ae0b0 3107 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
1d1bd8ad
AC
3108 -- If Op is an expression for a constrained array with a known at
3109 -- compile time length, then Len is set to this (non-negative
13f34a3f 3110 -- length). Otherwise Len is set to minus 1.
996ae0b0 3111
fbf5a39b
AC
3112 -----------------------
3113 -- Get_Static_Length --
3114 -----------------------
3115
996ae0b0
RK
3116 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
3117 T : Entity_Id;
3118
3119 begin
45fc7ddb
HK
3120 -- First easy case string literal
3121
996ae0b0
RK
3122 if Nkind (Op) = N_String_Literal then
3123 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
3124 return;
3125 end if;
3126
3127 -- Second easy case, not constrained subtype, so no length
996ae0b0 3128
45fc7ddb 3129 if not Is_Constrained (Etype (Op)) then
996ae0b0 3130 Len := Uint_Minus_1;
45fc7ddb
HK
3131 return;
3132 end if;
996ae0b0 3133
45fc7ddb
HK
3134 -- General case
3135
5f44f0d4 3136 T := Etype (First_Index (Etype (Op)));
45fc7ddb
HK
3137
3138 -- The simple case, both bounds are known at compile time
3139
3140 if Is_Discrete_Type (T)
80298c3b
AC
3141 and then Compile_Time_Known_Value (Type_Low_Bound (T))
3142 and then Compile_Time_Known_Value (Type_High_Bound (T))
45fc7ddb
HK
3143 then
3144 Len := UI_Max (Uint_0,
3145 Expr_Value (Type_High_Bound (T)) -
3146 Expr_Value (Type_Low_Bound (T)) + 1);
3147 return;
3148 end if;
3149
3150 -- A more complex case, where the bounds are of the form
3151 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
3152 -- either A'First or A'Last (with A an entity name), or X is an
3153 -- entity name, and the two X's are the same and K1 and K2 are
3154 -- known at compile time, in this case, the length can also be
3155 -- computed at compile time, even though the bounds are not
22cb89b5 3156 -- known. A common case of this is e.g. (X'First .. X'First+5).
45fc7ddb
HK
3157
3158 Extract_Length : declare
3159 procedure Decompose_Expr
3160 (Expr : Node_Id;
3161 Ent : out Entity_Id;
3162 Kind : out Character;
3163 Cons : out Uint);
80298c3b
AC
3164 -- Given an expression see if it is of the form given above,
3165 -- X [+/- K]. If so Ent is set to the entity in X, Kind is
3166 -- 'F','L','E' for 'First/'Last/simple entity, and Cons is
3167 -- the value of K. If the expression is not of the required
3168 -- form, Ent is set to Empty.
45fc7ddb
HK
3169
3170 --------------------
3171 -- Decompose_Expr --
3172 --------------------
3173
3174 procedure Decompose_Expr
3175 (Expr : Node_Id;
3176 Ent : out Entity_Id;
3177 Kind : out Character;
3178 Cons : out Uint)
3179 is
3180 Exp : Node_Id;
3181
3182 begin
3183 if Nkind (Expr) = N_Op_Add
3184 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3185 then
8a95f4e8 3186 Exp := Left_Opnd (Expr);
45fc7ddb
HK
3187 Cons := Expr_Value (Right_Opnd (Expr));
3188
3189 elsif Nkind (Expr) = N_Op_Subtract
3190 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3191 then
8a95f4e8 3192 Exp := Left_Opnd (Expr);
45fc7ddb 3193 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 3194
8a95f4e8
RD
3195 -- If the bound is a constant created to remove side
3196 -- effects, recover original expression to see if it has
3197 -- one of the recognizable forms.
3198
3199 elsif Nkind (Expr) = N_Identifier
3200 and then not Comes_From_Source (Entity (Expr))
3201 and then Ekind (Entity (Expr)) = E_Constant
3202 and then
3203 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3204 then
3205 Exp := Expression (Parent (Entity (Expr)));
3206 Decompose_Expr (Exp, Ent, Kind, Cons);
3207
3208 -- If original expression includes an entity, create a
3209 -- reference to it for use below.
3210
3211 if Present (Ent) then
3212 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3213 end if;
3214
45fc7ddb 3215 else
8a95f4e8 3216 Exp := Expr;
45fc7ddb
HK
3217 Cons := Uint_0;
3218 end if;
3219
3220 -- At this stage Exp is set to the potential X
3221
3222 if Nkind (Exp) = N_Attribute_Reference then
3223 if Attribute_Name (Exp) = Name_First then
3224 Kind := 'F';
3225 elsif Attribute_Name (Exp) = Name_Last then
3226 Kind := 'L';
3227 else
3228 Ent := Empty;
3229 return;
3230 end if;
3231
3232 Exp := Prefix (Exp);
3233
3234 else
3235 Kind := 'E';
3236 end if;
3237
80298c3b 3238 if Is_Entity_Name (Exp) and then Present (Entity (Exp))
45fc7ddb
HK
3239 then
3240 Ent := Entity (Exp);
3241 else
3242 Ent := Empty;
3243 end if;
3244 end Decompose_Expr;
3245
3246 -- Local Variables
3247
3248 Ent1, Ent2 : Entity_Id;
3249 Kind1, Kind2 : Character;
3250 Cons1, Cons2 : Uint;
3251
3252 -- Start of processing for Extract_Length
3253
3254 begin
bafc9e1d
AC
3255 Decompose_Expr
3256 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
3257 Decompose_Expr
3258 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
45fc7ddb
HK
3259
3260 if Present (Ent1)
3261 and then Kind1 = Kind2
3262 and then Ent1 = Ent2
996ae0b0 3263 then
45fc7ddb 3264 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
3265 else
3266 Len := Uint_Minus_1;
3267 end if;
45fc7ddb 3268 end Extract_Length;
996ae0b0
RK
3269 end Get_Static_Length;
3270
45fc7ddb
HK
3271 -- Local Variables
3272
996ae0b0
RK
3273 Len_L : Uint;
3274 Len_R : Uint;
3275
45fc7ddb
HK
3276 -- Start of processing for Length_Mismatch
3277
996ae0b0
RK
3278 begin
3279 Get_Static_Length (Left, Len_L);
3280 Get_Static_Length (Right, Len_R);
3281
3282 if Len_L /= Uint_Minus_1
3283 and then Len_R /= Uint_Minus_1
3284 and then Len_L /= Len_R
3285 then
fbf5a39b 3286 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
3287 Warn_On_Known_Condition (N);
3288 return;
3289 end if;
45fc7ddb
HK
3290 end Length_Mismatch;
3291 end if;
6eaf4095 3292
5df1266a
AC
3293 declare
3294 Is_Static_Expression : Boolean;
80298c3b
AC
3295
3296 Is_Foldable : Boolean;
5df1266a 3297 pragma Unreferenced (Is_Foldable);
996ae0b0 3298
5df1266a
AC
3299 begin
3300 -- Initialize the value of Is_Static_Expression. The value of
3301 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3302 -- since, even when some operand is a variable, we can still perform
3303 -- the static evaluation of the expression in some cases (for
3304 -- example, for a variable of a subtype of Integer we statically
3305 -- know that any value stored in such variable is smaller than
3306 -- Integer'Last).
3307
3308 Test_Expression_Is_Foldable
3309 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3310
3311 -- Only comparisons of scalars can give static results. In
3312 -- particular, comparisons of strings never yield a static
fc3a3f3b
RD
3313 -- result, even if both operands are static strings, except that
3314 -- as noted above, we allow equality/inequality for strings.
3315
3316 if Is_String_Type (Typ)
3317 and then not Comes_From_Source (N)
3318 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3319 then
3320 null;
5df1266a 3321
fc3a3f3b 3322 elsif not Is_Scalar_Type (Typ) then
5df1266a
AC
3323 Is_Static_Expression := False;
3324 Set_Is_Static_Expression (N, False);
3325 end if;
d7567964 3326
5df1266a
AC
3327 -- For operators on universal numeric types called as functions with
3328 -- an explicit scope, determine appropriate specific numeric type,
3329 -- and diagnose possible ambiguity.
d7567964 3330
5df1266a
AC
3331 if Is_Universal_Numeric_Type (Etype (Left))
3332 and then
3333 Is_Universal_Numeric_Type (Etype (Right))
3334 then
3335 Otype := Find_Universal_Operator_Type (N);
3336 end if;
996ae0b0 3337
fc3a3f3b
RD
3338 -- For static real type expressions, do not use Compile_Time_Compare
3339 -- since it worries about run-time results which are not exact.
996ae0b0 3340
5df1266a
AC
3341 if Is_Static_Expression and then Is_Real_Type (Typ) then
3342 declare
3343 Left_Real : constant Ureal := Expr_Value_R (Left);
3344 Right_Real : constant Ureal := Expr_Value_R (Right);
996ae0b0 3345
5df1266a
AC
3346 begin
3347 case Nkind (N) is
3348 when N_Op_Eq => Result := (Left_Real = Right_Real);
3349 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3350 when N_Op_Lt => Result := (Left_Real < Right_Real);
3351 when N_Op_Le => Result := (Left_Real <= Right_Real);
3352 when N_Op_Gt => Result := (Left_Real > Right_Real);
3353 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3354
3355 when others =>
3356 raise Program_Error;
3357 end case;
996ae0b0 3358
5df1266a
AC
3359 Fold_Uint (N, Test (Result), True);
3360 end;
996ae0b0 3361
5df1266a 3362 -- For all other cases, we use Compile_Time_Compare to do the compare
996ae0b0 3363
5df1266a
AC
3364 else
3365 declare
3366 CR : constant Compare_Result :=
3367 Compile_Time_Compare
3368 (Left, Right, Assume_Valid => False);
996ae0b0 3369
5df1266a
AC
3370 begin
3371 if CR = Unknown then
3372 return;
3373 end if;
93c3fca7 3374
5df1266a
AC
3375 case Nkind (N) is
3376 when N_Op_Eq =>
3377 if CR = EQ then
3378 Result := True;
3379 elsif CR = NE or else CR = GT or else CR = LT then
3380 Result := False;
3381 else
3382 return;
3383 end if;
93c3fca7 3384
5df1266a
AC
3385 when N_Op_Ne =>
3386 if CR = NE or else CR = GT or else CR = LT then
3387 Result := True;
3388 elsif CR = EQ then
3389 Result := False;
3390 else
3391 return;
3392 end if;
93c3fca7 3393
5df1266a
AC
3394 when N_Op_Lt =>
3395 if CR = LT then
3396 Result := True;
3397 elsif CR = EQ or else CR = GT or else CR = GE then
3398 Result := False;
3399 else
3400 return;
3401 end if;
93c3fca7 3402
5df1266a
AC
3403 when N_Op_Le =>
3404 if CR = LT or else CR = EQ or else CR = LE then
3405 Result := True;
3406 elsif CR = GT then
3407 Result := False;
3408 else
3409 return;
3410 end if;
93c3fca7 3411
5df1266a
AC
3412 when N_Op_Gt =>
3413 if CR = GT then
3414 Result := True;
3415 elsif CR = EQ or else CR = LT or else CR = LE then
3416 Result := False;
3417 else
3418 return;
3419 end if;
93c3fca7 3420
5df1266a
AC
3421 when N_Op_Ge =>
3422 if CR = GT or else CR = EQ or else CR = GE then
3423 Result := True;
3424 elsif CR = LT then
3425 Result := False;
3426 else
3427 return;
3428 end if;
996ae0b0 3429
5df1266a
AC
3430 when others =>
3431 raise Program_Error;
3432 end case;
3433 end;
93c3fca7 3434
5df1266a
AC
3435 Fold_Uint (N, Test (Result), Is_Static_Expression);
3436 end if;
3437 end;
996ae0b0 3438
d7567964
TQ
3439 -- For the case of a folded relational operator on a specific numeric
3440 -- type, freeze operand type now.
3441
3442 if Present (Otype) then
3443 Freeze_Before (N, Otype);
3444 end if;
3445
996ae0b0
RK
3446 Warn_On_Known_Condition (N);
3447 end Eval_Relational_Op;
3448
3449 ----------------
3450 -- Eval_Shift --
3451 ----------------
3452
22cb89b5
AC
3453 -- Shift operations are intrinsic operations that can never be static, so
3454 -- the only processing required is to perform the required check for a non
3455 -- static context for the two operands.
996ae0b0
RK
3456
3457 -- Actually we could do some compile time evaluation here some time ???
3458
3459 procedure Eval_Shift (N : Node_Id) is
3460 begin
3461 Check_Non_Static_Context (Left_Opnd (N));
3462 Check_Non_Static_Context (Right_Opnd (N));
3463 end Eval_Shift;
3464
3465 ------------------------
3466 -- Eval_Short_Circuit --
3467 ------------------------
3468
22cb89b5
AC
3469 -- A short circuit operation is potentially static if both operands are
3470 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3471
3472 procedure Eval_Short_Circuit (N : Node_Id) is
3473 Kind : constant Node_Kind := Nkind (N);
3474 Left : constant Node_Id := Left_Opnd (N);
3475 Right : constant Node_Id := Right_Opnd (N);
3476 Left_Int : Uint;
4d777a71
AC
3477
3478 Rstat : constant Boolean :=
3479 Is_Static_Expression (Left)
3480 and then
3481 Is_Static_Expression (Right);
996ae0b0
RK
3482
3483 begin
3484 -- Short circuit operations are never static in Ada 83
3485
22cb89b5 3486 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3487 Check_Non_Static_Context (Left);
3488 Check_Non_Static_Context (Right);
3489 return;
3490 end if;
3491
3492 -- Now look at the operands, we can't quite use the normal call to
3493 -- Test_Expression_Is_Foldable here because short circuit operations
3494 -- are a special case, they can still be foldable, even if the right
3495 -- operand raises constraint error.
3496
22cb89b5
AC
3497 -- If either operand is Any_Type, just propagate to result and do not
3498 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3499
3500 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3501 Set_Etype (N, Any_Type);
3502 return;
3503
3504 -- If left operand raises constraint error, then replace node N with
3505 -- the raise constraint error node, and we are obviously not foldable.
3506 -- Is_Static_Expression is set from the two operands in the normal way,
3507 -- and we check the right operand if it is in a non-static context.
3508
3509 elsif Raises_Constraint_Error (Left) then
3510 if not Rstat then
3511 Check_Non_Static_Context (Right);
3512 end if;
3513
3514 Rewrite_In_Raise_CE (N, Left);
3515 Set_Is_Static_Expression (N, Rstat);
3516 return;
3517
3518 -- If the result is not static, then we won't in any case fold
3519
3520 elsif not Rstat then
3521 Check_Non_Static_Context (Left);
3522 Check_Non_Static_Context (Right);
3523 return;
3524 end if;
3525
3526 -- Here the result is static, note that, unlike the normal processing
3527 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3528 -- the right operand raises constraint error, that's because it is not
3529 -- significant if the left operand is decisive.
3530
3531 Set_Is_Static_Expression (N);
3532
3533 -- It does not matter if the right operand raises constraint error if
3534 -- it will not be evaluated. So deal specially with the cases where
3535 -- the right operand is not evaluated. Note that we will fold these
3536 -- cases even if the right operand is non-static, which is fine, but
3537 -- of course in these cases the result is not potentially static.
3538
3539 Left_Int := Expr_Value (Left);
3540
3541 if (Kind = N_And_Then and then Is_False (Left_Int))
db318f46 3542 or else
4d777a71 3543 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3544 then
fbf5a39b 3545 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3546 return;
3547 end if;
3548
3549 -- If first operand not decisive, then it does matter if the right
3550 -- operand raises constraint error, since it will be evaluated, so
3551 -- we simply replace the node with the right operand. Note that this
3552 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3553 -- (both are set to True in Right).
3554
3555 if Raises_Constraint_Error (Right) then
3556 Rewrite_In_Raise_CE (N, Right);
3557 Check_Non_Static_Context (Left);
3558 return;
3559 end if;
3560
3561 -- Otherwise the result depends on the right operand
3562
fbf5a39b 3563 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3564 return;
996ae0b0
RK
3565 end Eval_Short_Circuit;
3566
3567 ----------------
3568 -- Eval_Slice --
3569 ----------------
3570
22cb89b5
AC
3571 -- Slices can never be static, so the only processing required is to check
3572 -- for non-static context if an explicit range is given.
996ae0b0
RK
3573
3574 procedure Eval_Slice (N : Node_Id) is
3575 Drange : constant Node_Id := Discrete_Range (N);
80298c3b 3576
996ae0b0
RK
3577 begin
3578 if Nkind (Drange) = N_Range then
3579 Check_Non_Static_Context (Low_Bound (Drange));
3580 Check_Non_Static_Context (High_Bound (Drange));
3581 end if;
cd2fb920 3582
22cb89b5 3583 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3584 -- the type of A, is redundant, the slice can be replaced with A, and
3585 -- this is worth a warning.
3586
3587 if Is_Entity_Name (Prefix (N)) then
3588 declare
3589 E : constant Entity_Id := Entity (Prefix (N));
3590 T : constant Entity_Id := Etype (E);
80298c3b 3591
cd2fb920
ES
3592 begin
3593 if Ekind (E) = E_Constant
3594 and then Is_Array_Type (T)
3595 and then Is_Entity_Name (Drange)
3596 then
3597 if Is_Entity_Name (Original_Node (First_Index (T)))
3598 and then Entity (Original_Node (First_Index (T)))
3599 = Entity (Drange)
3600 then
3601 if Warn_On_Redundant_Constructs then
324ac540 3602 Error_Msg_N ("redundant slice denotes whole array?r?", N);
cd2fb920
ES
3603 end if;
3604
324ac540 3605 -- The following might be a useful optimization???
cd2fb920
ES
3606
3607 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3608 end if;
3609 end if;
3610 end;
3611 end if;
996ae0b0
RK
3612 end Eval_Slice;
3613
3614 -------------------------
3615 -- Eval_String_Literal --
3616 -------------------------
3617
3618 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3619 Typ : constant Entity_Id := Etype (N);
3620 Bas : constant Entity_Id := Base_Type (Typ);
3621 Xtp : Entity_Id;
3622 Len : Nat;
3623 Lo : Node_Id;
996ae0b0
RK
3624
3625 begin
3626 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3627 -- or generics where we have not yet fully resolved the type).
996ae0b0 3628
91b1417d 3629 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3630 return;
91b1417d 3631 end if;
996ae0b0
RK
3632
3633 -- String literals are static if the subtype is static (RM 4.9(2)), so
3634 -- reset the static expression flag (it was set unconditionally in
3635 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3636 -- the subtype is static by looking at the lower bound.
3637
91b1417d
AC
3638 if Ekind (Typ) = E_String_Literal_Subtype then
3639 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3640 Set_Is_Static_Expression (N, False);
3641 return;
3642 end if;
3643
3644 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 3645 -- but may be possible in future).
91b1417d
AC
3646
3647 elsif not Is_OK_Static_Expression
80298c3b 3648 (Type_Low_Bound (Etype (First_Index (Typ))))
91b1417d 3649 then
996ae0b0 3650 Set_Is_Static_Expression (N, False);
91b1417d
AC
3651 return;
3652 end if;
996ae0b0 3653
91b1417d
AC
3654 -- If original node was a type conversion, then result if non-static
3655
3656 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3657 Set_Is_Static_Expression (N, False);
91b1417d
AC
3658 return;
3659 end if;
996ae0b0 3660
22cb89b5
AC
3661 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3662 -- if its bounds are outside the index base type and this index type is
3663 -- static. This can happen in only two ways. Either the string literal
3664 -- is too long, or it is null, and the lower bound is type'First. In
3665 -- either case it is the upper bound that is out of range of the index
3666 -- type.
0ab80019 3667 if Ada_Version >= Ada_95 then
91b1417d
AC
3668 if Root_Type (Bas) = Standard_String
3669 or else
3670 Root_Type (Bas) = Standard_Wide_String
354c3840
AC
3671 or else
3672 Root_Type (Bas) = Standard_Wide_Wide_String
996ae0b0 3673 then
91b1417d 3674 Xtp := Standard_Positive;
996ae0b0 3675 else
91b1417d 3676 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3677 end if;
3678
91b1417d
AC
3679 if Ekind (Typ) = E_String_Literal_Subtype then
3680 Lo := String_Literal_Low_Bound (Typ);
3681 else
3682 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3683 end if;
3684
354c3840
AC
3685 -- Check for string too long
3686
91b1417d
AC
3687 Len := String_Length (Strval (N));
3688
3689 if UI_From_Int (Len) > String_Type_Len (Bas) then
354c3840
AC
3690
3691 -- Issue message. Note that this message is a warning if the
3692 -- string literal is not marked as static (happens in some cases
3693 -- of folding strings known at compile time, but not static).
3694 -- Furthermore in such cases, we reword the message, since there
a90bd866 3695 -- is no string literal in the source program.
354c3840
AC
3696
3697 if Is_Static_Expression (N) then
3698 Apply_Compile_Time_Constraint_Error
3699 (N, "string literal too long for}", CE_Length_Check_Failed,
3700 Ent => Bas,
3701 Typ => First_Subtype (Bas));
3702 else
3703 Apply_Compile_Time_Constraint_Error
3704 (N, "string value too long for}", CE_Length_Check_Failed,
3705 Ent => Bas,
3706 Typ => First_Subtype (Bas),
3707 Warn => True);
3708 end if;
3709
3710 -- Test for null string not allowed
996ae0b0 3711
91b1417d
AC
3712 elsif Len = 0
3713 and then not Is_Generic_Type (Xtp)
3714 and then
3715 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0 3716 then
354c3840
AC
3717 -- Same specialization of message
3718
3719 if Is_Static_Expression (N) then
3720 Apply_Compile_Time_Constraint_Error
3721 (N, "null string literal not allowed for}",
3722 CE_Length_Check_Failed,
3723 Ent => Bas,
3724 Typ => First_Subtype (Bas));
3725 else
3726 Apply_Compile_Time_Constraint_Error
3727 (N, "null string value not allowed for}",
3728 CE_Length_Check_Failed,
3729 Ent => Bas,
3730 Typ => First_Subtype (Bas),
3731 Warn => True);
3732 end if;
996ae0b0
RK
3733 end if;
3734 end if;
996ae0b0
RK
3735 end Eval_String_Literal;
3736
3737 --------------------------
3738 -- Eval_Type_Conversion --
3739 --------------------------
3740
3741 -- A type conversion is potentially static if its subtype mark is for a
3742 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 3743 -- (RM 4.9(10)).
996ae0b0
RK
3744
3745 procedure Eval_Type_Conversion (N : Node_Id) is
3746 Operand : constant Node_Id := Expression (N);
3747 Source_Type : constant Entity_Id := Etype (Operand);
3748 Target_Type : constant Entity_Id := Etype (N);
3749
3750 Stat : Boolean;
3751 Fold : Boolean;
3752
3753 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
3754 -- Returns true if type T is an integer type, or if it is a fixed-point
3755 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3756 -- on the conversion node).
996ae0b0
RK
3757
3758 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3759 -- Returns true if type T is a floating-point type, or if it is a
3760 -- fixed-point type that is not to be treated as an integer (i.e. the
3761 -- flag Conversion_OK is not set on the conversion node).
3762
fbf5a39b
AC
3763 ------------------------------
3764 -- To_Be_Treated_As_Integer --
3765 ------------------------------
3766
996ae0b0
RK
3767 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3768 begin
3769 return
3770 Is_Integer_Type (T)
3771 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3772 end To_Be_Treated_As_Integer;
3773
fbf5a39b
AC
3774 ---------------------------
3775 -- To_Be_Treated_As_Real --
3776 ---------------------------
3777
996ae0b0
RK
3778 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3779 begin
3780 return
3781 Is_Floating_Point_Type (T)
3782 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3783 end To_Be_Treated_As_Real;
3784
3785 -- Start of processing for Eval_Type_Conversion
3786
3787 begin
82c80734 3788 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3789
3790 if not Is_Static_Subtype (Target_Type) then
3791 Check_Non_Static_Context (Operand);
3792 return;
996ae0b0
RK
3793 elsif Error_Posted (N) then
3794 return;
3795 end if;
3796
3797 -- If not foldable we are done
3798
3799 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3800
3801 if not Fold then
3802 return;
3803
3804 -- Don't try fold if target type has constraint error bounds
3805
3806 elsif not Is_OK_Static_Subtype (Target_Type) then
3807 Set_Raises_Constraint_Error (N);
3808 return;
3809 end if;
3810
3811 -- Remaining processing depends on operand types. Note that in the
3812 -- following type test, fixed-point counts as real unless the flag
3813 -- Conversion_OK is set, in which case it counts as integer.
3814
82c80734 3815 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3816
3817 if Is_String_Type (Target_Type) then
b11e8d6f 3818 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3819 return;
3820
3821 -- Fold conversion, case of integer target type
3822
3823 elsif To_Be_Treated_As_Integer (Target_Type) then
3824 declare
3825 Result : Uint;
3826
3827 begin
3828 -- Integer to integer conversion
3829
3830 if To_Be_Treated_As_Integer (Source_Type) then
3831 Result := Expr_Value (Operand);
3832
3833 -- Real to integer conversion
3834
3835 else
3836 Result := UR_To_Uint (Expr_Value_R (Operand));
3837 end if;
3838
3839 -- If fixed-point type (Conversion_OK must be set), then the
3840 -- result is logically an integer, but we must replace the
3841 -- conversion with the corresponding real literal, since the
3842 -- type from a semantic point of view is still fixed-point.
3843
3844 if Is_Fixed_Point_Type (Target_Type) then
3845 Fold_Ureal
fbf5a39b 3846 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3847
3848 -- Otherwise result is integer literal
3849
3850 else
fbf5a39b 3851 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3852 end if;
3853 end;
3854
3855 -- Fold conversion, case of real target type
3856
3857 elsif To_Be_Treated_As_Real (Target_Type) then
3858 declare
3859 Result : Ureal;
3860
3861 begin
3862 if To_Be_Treated_As_Real (Source_Type) then
3863 Result := Expr_Value_R (Operand);
3864 else
3865 Result := UR_From_Uint (Expr_Value (Operand));
3866 end if;
3867
fbf5a39b 3868 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3869 end;
3870
3871 -- Enumeration types
3872
3873 else
fbf5a39b 3874 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3875 end if;
3876
c800f862 3877 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3878 Out_Of_Range (N);
3879 end if;
3880
3881 end Eval_Type_Conversion;
3882
3883 -------------------
3884 -- Eval_Unary_Op --
3885 -------------------
3886
3887 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 3888 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
3889
3890 procedure Eval_Unary_Op (N : Node_Id) is
3891 Right : constant Node_Id := Right_Opnd (N);
d7567964 3892 Otype : Entity_Id := Empty;
996ae0b0
RK
3893 Stat : Boolean;
3894 Fold : Boolean;
3895
3896 begin
3897 -- If not foldable we are done
3898
3899 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3900
3901 if not Fold then
3902 return;
3903 end if;
3904
602a7ec0 3905 if Etype (Right) = Universal_Integer
ae77c68b
AC
3906 or else
3907 Etype (Right) = Universal_Real
602a7ec0 3908 then
d7567964 3909 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
3910 end if;
3911
996ae0b0
RK
3912 -- Fold for integer case
3913
3914 if Is_Integer_Type (Etype (N)) then
3915 declare
3916 Rint : constant Uint := Expr_Value (Right);
3917 Result : Uint;
3918
3919 begin
3920 -- In the case of modular unary plus and abs there is no need
3921 -- to adjust the result of the operation since if the original
3922 -- operand was in bounds the result will be in the bounds of the
3923 -- modular type. However, in the case of modular unary minus the
3924 -- result may go out of the bounds of the modular type and needs
3925 -- adjustment.
3926
3927 if Nkind (N) = N_Op_Plus then
3928 Result := Rint;
3929
3930 elsif Nkind (N) = N_Op_Minus then
3931 if Is_Modular_Integer_Type (Etype (N)) then
3932 Result := (-Rint) mod Modulus (Etype (N));
3933 else
3934 Result := (-Rint);
3935 end if;
3936
3937 else
3938 pragma Assert (Nkind (N) = N_Op_Abs);
3939 Result := abs Rint;
3940 end if;
3941
fbf5a39b 3942 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3943 end;
3944
3945 -- Fold for real case
3946
3947 elsif Is_Real_Type (Etype (N)) then
3948 declare
3949 Rreal : constant Ureal := Expr_Value_R (Right);
3950 Result : Ureal;
3951
3952 begin
3953 if Nkind (N) = N_Op_Plus then
3954 Result := Rreal;
996ae0b0
RK
3955 elsif Nkind (N) = N_Op_Minus then
3956 Result := UR_Negate (Rreal);
996ae0b0
RK
3957 else
3958 pragma Assert (Nkind (N) = N_Op_Abs);
3959 Result := abs Rreal;
3960 end if;
3961
fbf5a39b 3962 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3963 end;
3964 end if;
d7567964
TQ
3965
3966 -- If the operator was resolved to a specific type, make sure that type
3967 -- is frozen even if the expression is folded into a literal (which has
3968 -- a universal type).
3969
3970 if Present (Otype) then
3971 Freeze_Before (N, Otype);
3972 end if;
996ae0b0
RK
3973 end Eval_Unary_Op;
3974
3975 -------------------------------
3976 -- Eval_Unchecked_Conversion --
3977 -------------------------------
3978
3979 -- Unchecked conversions can never be static, so the only required
3980 -- processing is to check for a non-static context for the operand.
3981
3982 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3983 begin
3984 Check_Non_Static_Context (Expression (N));
3985 end Eval_Unchecked_Conversion;
3986
3987 --------------------
3988 -- Expr_Rep_Value --
3989 --------------------
3990
3991 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3992 Kind : constant Node_Kind := Nkind (N);
3993 Ent : Entity_Id;
996ae0b0
RK
3994
3995 begin
3996 if Is_Entity_Name (N) then
3997 Ent := Entity (N);
3998
22cb89b5
AC
3999 -- An enumeration literal that was either in the source or created
4000 -- as a result of static evaluation.
996ae0b0
RK
4001
4002 if Ekind (Ent) = E_Enumeration_Literal then
4003 return Enumeration_Rep (Ent);
4004
4005 -- A user defined static constant
4006
4007 else
4008 pragma Assert (Ekind (Ent) = E_Constant);
4009 return Expr_Rep_Value (Constant_Value (Ent));
4010 end if;
4011
22cb89b5
AC
4012 -- An integer literal that was either in the source or created as a
4013 -- result of static evaluation.
996ae0b0
RK
4014
4015 elsif Kind = N_Integer_Literal then
4016 return Intval (N);
4017
4018 -- A real literal for a fixed-point type. This must be the fixed-point
4019 -- case, either the literal is of a fixed-point type, or it is a bound
4020 -- of a fixed-point type, with type universal real. In either case we
4021 -- obtain the desired value from Corresponding_Integer_Value.
4022
4023 elsif Kind = N_Real_Literal then
996ae0b0
RK
4024 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4025 return Corresponding_Integer_Value (N);
4026
07fc65c4 4027 -- Otherwise must be character literal
8cbb664e 4028
996ae0b0
RK
4029 else
4030 pragma Assert (Kind = N_Character_Literal);
4031 Ent := Entity (N);
4032
22cb89b5
AC
4033 -- Since Character literals of type Standard.Character don't have any
4034 -- defining character literals built for them, they do not have their
4035 -- Entity set, so just use their Char code. Otherwise for user-
4036 -- defined character literals use their Pos value as usual which is
4037 -- the same as the Rep value.
996ae0b0
RK
4038
4039 if No (Ent) then
82c80734 4040 return Char_Literal_Value (N);
996ae0b0
RK
4041 else
4042 return Enumeration_Rep (Ent);
4043 end if;
4044 end if;
4045 end Expr_Rep_Value;
4046
4047 ----------------
4048 -- Expr_Value --
4049 ----------------
4050
4051 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
4052 Kind : constant Node_Kind := Nkind (N);
4053 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4054 Ent : Entity_Id;
4055 Val : Uint;
996ae0b0
RK
4056
4057 begin
13f34a3f
RD
4058 -- If already in cache, then we know it's compile time known and we can
4059 -- return the value that was previously stored in the cache since
4060 -- compile time known values cannot change.
07fc65c4
GB
4061
4062 if CV_Ent.N = N then
4063 return CV_Ent.V;
4064 end if;
4065
4066 -- Otherwise proceed to test value
4067
996ae0b0
RK
4068 if Is_Entity_Name (N) then
4069 Ent := Entity (N);
4070
22cb89b5
AC
4071 -- An enumeration literal that was either in the source or created as
4072 -- a result of static evaluation.
996ae0b0
RK
4073
4074 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 4075 Val := Enumeration_Pos (Ent);
996ae0b0
RK
4076
4077 -- A user defined static constant
4078
4079 else
4080 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 4081 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
4082 end if;
4083
22cb89b5
AC
4084 -- An integer literal that was either in the source or created as a
4085 -- result of static evaluation.
996ae0b0
RK
4086
4087 elsif Kind = N_Integer_Literal then
07fc65c4 4088 Val := Intval (N);
996ae0b0
RK
4089
4090 -- A real literal for a fixed-point type. This must be the fixed-point
4091 -- case, either the literal is of a fixed-point type, or it is a bound
4092 -- of a fixed-point type, with type universal real. In either case we
4093 -- obtain the desired value from Corresponding_Integer_Value.
4094
4095 elsif Kind = N_Real_Literal then
996ae0b0 4096 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 4097 Val := Corresponding_Integer_Value (N);
996ae0b0 4098
996ae0b0
RK
4099 -- Otherwise must be character literal
4100
4101 else
4102 pragma Assert (Kind = N_Character_Literal);
4103 Ent := Entity (N);
4104
4105 -- Since Character literals of type Standard.Character don't
4106 -- have any defining character literals built for them, they
4107 -- do not have their Entity set, so just use their Char
4108 -- code. Otherwise for user-defined character literals use
4109 -- their Pos value as usual.
4110
4111 if No (Ent) then
82c80734 4112 Val := Char_Literal_Value (N);
996ae0b0 4113 else
07fc65c4 4114 Val := Enumeration_Pos (Ent);
996ae0b0
RK
4115 end if;
4116 end if;
4117
07fc65c4
GB
4118 -- Come here with Val set to value to be returned, set cache
4119
4120 CV_Ent.N := N;
4121 CV_Ent.V := Val;
4122 return Val;
996ae0b0
RK
4123 end Expr_Value;
4124
4125 ------------------
4126 -- Expr_Value_E --
4127 ------------------
4128
4129 function Expr_Value_E (N : Node_Id) return Entity_Id is
4130 Ent : constant Entity_Id := Entity (N);
996ae0b0
RK
4131 begin
4132 if Ekind (Ent) = E_Enumeration_Literal then
4133 return Ent;
4134 else
4135 pragma Assert (Ekind (Ent) = E_Constant);
4136 return Expr_Value_E (Constant_Value (Ent));
4137 end if;
4138 end Expr_Value_E;
4139
4140 ------------------
4141 -- Expr_Value_R --
4142 ------------------
4143
4144 function Expr_Value_R (N : Node_Id) return Ureal is
4145 Kind : constant Node_Kind := Nkind (N);
4146 Ent : Entity_Id;
996ae0b0
RK
4147
4148 begin
4149 if Kind = N_Real_Literal then
4150 return Realval (N);
4151
4152 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4153 Ent := Entity (N);
4154 pragma Assert (Ekind (Ent) = E_Constant);
4155 return Expr_Value_R (Constant_Value (Ent));
4156
4157 elsif Kind = N_Integer_Literal then
4158 return UR_From_Uint (Expr_Value (N));
4159
7a5b62b0
AC
4160 -- Here, we have a node that cannot be interpreted as a compile time
4161 -- constant. That is definitely an error.
996ae0b0 4162
7a5b62b0
AC
4163 else
4164 raise Program_Error;
996ae0b0 4165 end if;
996ae0b0
RK
4166 end Expr_Value_R;
4167
4168 ------------------
4169 -- Expr_Value_S --
4170 ------------------
4171
4172 function Expr_Value_S (N : Node_Id) return Node_Id is
4173 begin
4174 if Nkind (N) = N_String_Literal then
4175 return N;
4176 else
4177 pragma Assert (Ekind (Entity (N)) = E_Constant);
4178 return Expr_Value_S (Constant_Value (Entity (N)));
4179 end if;
4180 end Expr_Value_S;
4181
74e7891f
RD
4182 ----------------------------------
4183 -- Find_Universal_Operator_Type --
4184 ----------------------------------
4185
4186 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4187 PN : constant Node_Id := Parent (N);
4188 Call : constant Node_Id := Original_Node (N);
4189 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4190
4191 Is_Fix : constant Boolean :=
4192 Nkind (N) in N_Binary_Op
4193 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4194 -- A mixed-mode operation in this context indicates the presence of
4195 -- fixed-point type in the designated package.
4196
4197 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4198 -- Case where N is a relational (or membership) operator (else it is an
4199 -- arithmetic one).
4200
4201 In_Membership : constant Boolean :=
4202 Nkind (PN) in N_Membership_Test
4203 and then
4204 Nkind (Right_Opnd (PN)) = N_Range
4205 and then
4206 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4207 and then
4208 Is_Universal_Numeric_Type
4209 (Etype (Low_Bound (Right_Opnd (PN))))
4210 and then
4211 Is_Universal_Numeric_Type
4212 (Etype (High_Bound (Right_Opnd (PN))));
4213 -- Case where N is part of a membership test with a universal range
4214
4215 E : Entity_Id;
4216 Pack : Entity_Id;
4217 Typ1 : Entity_Id := Empty;
4218 Priv_E : Entity_Id;
4219
4220 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
4221 -- Check whether one operand is a mixed-mode operation that requires the
4222 -- presence of a fixed-point type. Given that all operands are universal
4223 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
4224
4225 ---------------------------
4226 -- Is_Mixed_Mode_Operand --
4227 ---------------------------
4228
4229 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 4230 Onod : constant Node_Id := Original_Node (Op);
74e7891f 4231 begin
7ec8363d
RD
4232 return Nkind (Onod) = N_Function_Call
4233 and then Present (Next_Actual (First_Actual (Onod)))
4234 and then Etype (First_Actual (Onod)) /=
4235 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
4236 end Is_Mixed_Mode_Operand;
4237
7ec8363d
RD
4238 -- Start of processing for Find_Universal_Operator_Type
4239
74e7891f
RD
4240 begin
4241 if Nkind (Call) /= N_Function_Call
4242 or else Nkind (Name (Call)) /= N_Expanded_Name
4243 then
4244 return Empty;
4245
946db1e2
AC
4246 -- There are several cases where the context does not imply the type of
4247 -- the operands:
4248 -- - the universal expression appears in a type conversion;
4249 -- - the expression is a relational operator applied to universal
4250 -- operands;
4251 -- - the expression is a membership test with a universal operand
4252 -- and a range with universal bounds.
74e7891f
RD
4253
4254 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
4255 or else Is_Relational
4256 or else In_Membership
74e7891f
RD
4257 then
4258 Pack := Entity (Prefix (Name (Call)));
4259
7ec8363d
RD
4260 -- If the prefix is a package declared elsewhere, iterate over its
4261 -- visible entities, otherwise iterate over all declarations in the
4262 -- designated scope.
74e7891f
RD
4263
4264 if Ekind (Pack) = E_Package
4265 and then not In_Open_Scopes (Pack)
4266 then
4267 Priv_E := First_Private_Entity (Pack);
4268 else
4269 Priv_E := Empty;
4270 end if;
4271
4272 Typ1 := Empty;
4273 E := First_Entity (Pack);
4274 while Present (E) and then E /= Priv_E loop
4275 if Is_Numeric_Type (E)
4276 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4277 and then Comes_From_Source (E)
4278 and then Is_Integer_Type (E) = Is_Int
80298c3b
AC
4279 and then (Nkind (N) in N_Unary_Op
4280 or else Is_Relational
4281 or else Is_Fixed_Point_Type (E) = Is_Fix)
74e7891f
RD
4282 then
4283 if No (Typ1) then
4284 Typ1 := E;
4285
676e8420
AC
4286 -- Before emitting an error, check for the presence of a
4287 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
4288
4289 elsif Is_Relational
4290 and then
4291 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 4292 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
4293 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4294
4295 then
4296 if Is_Fixed_Point_Type (E) then
4297 Typ1 := E;
4298 end if;
4299
4300 else
4301 -- More than one type of the proper class declared in P
4302
4303 Error_Msg_N ("ambiguous operation", N);
4304 Error_Msg_Sloc := Sloc (Typ1);
4305 Error_Msg_N ("\possible interpretation (inherited)#", N);
4306 Error_Msg_Sloc := Sloc (E);
4307 Error_Msg_N ("\possible interpretation (inherited)#", N);
4308 return Empty;
4309 end if;
4310 end if;
4311
4312 Next_Entity (E);
4313 end loop;
4314 end if;
4315
4316 return Typ1;
4317 end Find_Universal_Operator_Type;
4318
fbf5a39b
AC
4319 --------------------------
4320 -- Flag_Non_Static_Expr --
4321 --------------------------
4322
4323 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4324 begin
4325 if Error_Posted (Expr) and then not All_Errors_Mode then
4326 return;
4327 else
4328 Error_Msg_F (Msg, Expr);
4329 Why_Not_Static (Expr);
4330 end if;
4331 end Flag_Non_Static_Expr;
4332
996ae0b0
RK
4333 --------------
4334 -- Fold_Str --
4335 --------------
4336
fbf5a39b 4337 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
4338 Loc : constant Source_Ptr := Sloc (N);
4339 Typ : constant Entity_Id := Etype (N);
4340
4341 begin
edab6088
RD
4342 if Raises_Constraint_Error (N) then
4343 Set_Is_Static_Expression (N, Static);
4344 return;
4345 end if;
4346
996ae0b0 4347 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
4348
4349 -- We now have the literal with the right value, both the actual type
4350 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4351 -- that was evaluated. So now we do the Analyze and Resolve.
4352
4353 -- Note that we have to reset Is_Static_Expression both after the
4354 -- analyze step (because Resolve will evaluate the literal, which
4355 -- will cause semantic errors if it is marked as static), and after
354c3840 4356 -- the Resolve step (since Resolve in some cases resets this flag).
fbf5a39b
AC
4357
4358 Analyze (N);
4359 Set_Is_Static_Expression (N, Static);
4360 Set_Etype (N, Typ);
4361 Resolve (N);
9479ded4 4362 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4363 end Fold_Str;
4364
4365 ---------------
4366 -- Fold_Uint --
4367 ---------------
4368
fbf5a39b 4369 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 4370 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
4371 Typ : Entity_Id := Etype (N);
4372 Ent : Entity_Id;
996ae0b0
RK
4373
4374 begin
edab6088
RD
4375 if Raises_Constraint_Error (N) then
4376 Set_Is_Static_Expression (N, Static);
4377 return;
4378 end if;
4379
22cb89b5
AC
4380 -- If we are folding a named number, retain the entity in the literal,
4381 -- for ASIS use.
fbf5a39b 4382
80298c3b 4383 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
fbf5a39b
AC
4384 Ent := Entity (N);
4385 else
4386 Ent := Empty;
4387 end if;
4388
4389 if Is_Private_Type (Typ) then
4390 Typ := Full_View (Typ);
4391 end if;
4392
f3d57416 4393 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 4394 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
4395 -- For ASIS use, set a link to the original named number when not in
4396 -- a generic context.
996ae0b0 4397
fbf5a39b 4398 if Is_Integer_Type (Typ) then
996ae0b0 4399 Rewrite (N, Make_Integer_Literal (Loc, Val));
fbf5a39b 4400 Set_Original_Entity (N, Ent);
996ae0b0
RK
4401
4402 -- Otherwise we have an enumeration type, and we substitute either
4403 -- an N_Identifier or N_Character_Literal to represent the enumeration
4404 -- literal corresponding to the given value, which must always be in
4405 -- range, because appropriate tests have already been made for this.
4406
fbf5a39b 4407 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4408 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4409 end if;
4410
4411 -- We now have the literal with the right value, both the actual type
4412 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4413 -- that was evaluated. So now we do the Analyze and Resolve.
4414
4415 -- Note that we have to reset Is_Static_Expression both after the
4416 -- analyze step (because Resolve will evaluate the literal, which
4417 -- will cause semantic errors if it is marked as static), and after
4418 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0
RK
4419
4420 Analyze (N);
fbf5a39b 4421 Set_Is_Static_Expression (N, Static);
996ae0b0 4422 Set_Etype (N, Typ);
fbf5a39b 4423 Resolve (N);
9479ded4 4424 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4425 end Fold_Uint;
4426
4427 ----------------
4428 -- Fold_Ureal --
4429 ----------------
4430
fbf5a39b 4431 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4432 Loc : constant Source_Ptr := Sloc (N);
4433 Typ : constant Entity_Id := Etype (N);
fbf5a39b 4434 Ent : Entity_Id;
996ae0b0
RK
4435
4436 begin
edab6088
RD
4437 if Raises_Constraint_Error (N) then
4438 Set_Is_Static_Expression (N, Static);
4439 return;
4440 end if;
4441
22cb89b5
AC
4442 -- If we are folding a named number, retain the entity in the literal,
4443 -- for ASIS use.
fbf5a39b 4444
80298c3b 4445 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
fbf5a39b
AC
4446 Ent := Entity (N);
4447 else
4448 Ent := Empty;
4449 end if;
4450
996ae0b0 4451 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 4452
5a30024a 4453 -- Set link to original named number, for ASIS use
cd2fb920 4454
fbf5a39b 4455 Set_Original_Entity (N, Ent);
996ae0b0 4456
9479ded4
AC
4457 -- We now have the literal with the right value, both the actual type
4458 -- and the expected type of this literal are taken from the expression
4459 -- that was evaluated. So now we do the Analyze and Resolve.
4460
4461 -- Note that we have to reset Is_Static_Expression both after the
4462 -- analyze step (because Resolve will evaluate the literal, which
4463 -- will cause semantic errors if it is marked as static), and after
4464 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0 4465
fbf5a39b
AC
4466 Analyze (N);
4467 Set_Is_Static_Expression (N, Static);
996ae0b0 4468 Set_Etype (N, Typ);
fbf5a39b 4469 Resolve (N);
9479ded4 4470 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4471 end Fold_Ureal;
4472
4473 ---------------
4474 -- From_Bits --
4475 ---------------
4476
4477 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4478 V : Uint := Uint_0;
4479
4480 begin
4481 for J in 0 .. B'Last loop
4482 if B (J) then
4483 V := V + 2 ** J;
4484 end if;
4485 end loop;
4486
4487 if Non_Binary_Modulus (T) then
4488 V := V mod Modulus (T);
4489 end if;
4490
4491 return V;
4492 end From_Bits;
4493
4494 --------------------
4495 -- Get_String_Val --
4496 --------------------
4497
4498 function Get_String_Val (N : Node_Id) return Node_Id is
4499 begin
80298c3b 4500 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
996ae0b0 4501 return N;
996ae0b0
RK
4502 else
4503 pragma Assert (Is_Entity_Name (N));
4504 return Get_String_Val (Constant_Value (Entity (N)));
4505 end if;
4506 end Get_String_Val;
4507
fbf5a39b
AC
4508 ----------------
4509 -- Initialize --
4510 ----------------
4511
4512 procedure Initialize is
4513 begin
4514 CV_Cache := (others => (Node_High_Bound, Uint_0));
4515 end Initialize;
4516
996ae0b0
RK
4517 --------------------
4518 -- In_Subrange_Of --
4519 --------------------
4520
4521 function In_Subrange_Of
c27f2f15
RD
4522 (T1 : Entity_Id;
4523 T2 : Entity_Id;
4524 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
4525 is
4526 L1 : Node_Id;
4527 H1 : Node_Id;
4528
4529 L2 : Node_Id;
4530 H2 : Node_Id;
4531
4532 begin
4533 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4534 return True;
4535
4536 -- Never in range if both types are not scalar. Don't know if this can
4537 -- actually happen, but just in case.
4538
9d08a38d 4539 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
996ae0b0
RK
4540 return False;
4541
d79e621a
GD
4542 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4543 -- definitely not compatible with T2.
4544
4545 elsif Is_Floating_Point_Type (T1)
4546 and then Has_Infinities (T1)
4547 and then Is_Floating_Point_Type (T2)
4548 and then not Has_Infinities (T2)
4549 then
4550 return False;
4551
996ae0b0
RK
4552 else
4553 L1 := Type_Low_Bound (T1);
4554 H1 := Type_High_Bound (T1);
4555
4556 L2 := Type_Low_Bound (T2);
4557 H2 := Type_High_Bound (T2);
4558
4559 -- Check bounds to see if comparison possible at compile time
4560
c27f2f15 4561 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 4562 and then
c27f2f15 4563 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
4564 then
4565 return True;
4566 end if;
4567
4568 -- If bounds not comparable at compile time, then the bounds of T2
4569 -- must be compile time known or we cannot answer the query.
4570
4571 if not Compile_Time_Known_Value (L2)
4572 or else not Compile_Time_Known_Value (H2)
4573 then
4574 return False;
4575 end if;
4576
4577 -- If the bounds of T1 are know at compile time then use these
4578 -- ones, otherwise use the bounds of the base type (which are of
4579 -- course always static).
4580
4581 if not Compile_Time_Known_Value (L1) then
4582 L1 := Type_Low_Bound (Base_Type (T1));
4583 end if;
4584
4585 if not Compile_Time_Known_Value (H1) then
4586 H1 := Type_High_Bound (Base_Type (T1));
4587 end if;
4588
4589 -- Fixed point types should be considered as such only if
4590 -- flag Fixed_Int is set to False.
4591
4592 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4593 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4594 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4595 then
4596 return
4597 Expr_Value_R (L2) <= Expr_Value_R (L1)
4598 and then
4599 Expr_Value_R (H2) >= Expr_Value_R (H1);
4600
4601 else
4602 return
4603 Expr_Value (L2) <= Expr_Value (L1)
4604 and then
4605 Expr_Value (H2) >= Expr_Value (H1);
4606
4607 end if;
4608 end if;
4609
4610 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 4611 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
4612 -- occurrence. However, this is only an optimization attempt, so there is
4613 -- really no point in crashing the compiler. Instead we just decide, too
4614 -- bad, we can't figure out the answer in this case after all.
4615
4616 exception
4617 when others =>
4618
4619 -- Debug flag K disables this behavior (useful for debugging)
4620
4621 if Debug_Flag_K then
4622 raise;
4623 else
4624 return False;
4625 end if;
4626 end In_Subrange_Of;
4627
4628 -----------------
4629 -- Is_In_Range --
4630 -----------------
4631
4632 function Is_In_Range
c800f862
RD
4633 (N : Node_Id;
4634 Typ : Entity_Id;
4635 Assume_Valid : Boolean := False;
4636 Fixed_Int : Boolean := False;
4637 Int_Real : Boolean := False) return Boolean
996ae0b0 4638 is
996ae0b0 4639 begin
80298c3b
AC
4640 return
4641 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
996ae0b0
RK
4642 end Is_In_Range;
4643
4644 -------------------
4645 -- Is_Null_Range --
4646 -------------------
4647
4648 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4649 Typ : constant Entity_Id := Etype (Lo);
4650
4651 begin
4652 if not Compile_Time_Known_Value (Lo)
4653 or else not Compile_Time_Known_Value (Hi)
4654 then
4655 return False;
4656 end if;
4657
4658 if Is_Discrete_Type (Typ) then
4659 return Expr_Value (Lo) > Expr_Value (Hi);
80298c3b 4660 else pragma Assert (Is_Real_Type (Typ));
996ae0b0
RK
4661 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4662 end if;
4663 end Is_Null_Range;
4664
edab6088
RD
4665 -------------------------
4666 -- Is_OK_Static_Choice --
4667 -------------------------
4668
4669 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4670 begin
4671 -- Check various possibilities for choice
4672
4673 -- Note: for membership tests, we test more cases than are possible
4674 -- (in particular subtype indication), but it doesn't matter because
4675 -- it just won't occur (we have already done a syntax check).
4676
4677 if Nkind (Choice) = N_Others_Choice then
4678 return True;
4679
4680 elsif Nkind (Choice) = N_Range then
4681 return Is_OK_Static_Range (Choice);
4682
4683 elsif Nkind (Choice) = N_Subtype_Indication
4684 or else
4685 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4686 then
4687 return Is_OK_Static_Subtype (Etype (Choice));
4688
4689 else
4690 return Is_OK_Static_Expression (Choice);
4691 end if;
4692 end Is_OK_Static_Choice;
4693
4694 ------------------------------
4695 -- Is_OK_Static_Choice_List --
4696 ------------------------------
4697
4698 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4699 Choice : Node_Id;
4700
4701 begin
4702 if not Is_Static_Choice_List (Choices) then
4703 return False;
4704 end if;
4705
4706 Choice := First (Choices);
4707 while Present (Choice) loop
4708 if not Is_OK_Static_Choice (Choice) then
4709 Set_Raises_Constraint_Error (Choice);
4710 return False;
4711 end if;
4712
4713 Next (Choice);
4714 end loop;
4715
4716 return True;
4717 end Is_OK_Static_Choice_List;
4718
996ae0b0
RK
4719 -----------------------------
4720 -- Is_OK_Static_Expression --
4721 -----------------------------
4722
4723 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4724 begin
80298c3b 4725 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
996ae0b0
RK
4726 end Is_OK_Static_Expression;
4727
4728 ------------------------
4729 -- Is_OK_Static_Range --
4730 ------------------------
4731
4732 -- A static range is a range whose bounds are static expressions, or a
4733 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4734 -- We have already converted range attribute references, so we get the
4735 -- "or" part of this rule without needing a special test.
4736
4737 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4738 begin
4739 return Is_OK_Static_Expression (Low_Bound (N))
4740 and then Is_OK_Static_Expression (High_Bound (N));
4741 end Is_OK_Static_Range;
4742
4743 --------------------------
4744 -- Is_OK_Static_Subtype --
4745 --------------------------
4746
22cb89b5
AC
4747 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4748 -- neither bound raises constraint error when evaluated.
996ae0b0
RK
4749
4750 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4751 Base_T : constant Entity_Id := Base_Type (Typ);
4752 Anc_Subt : Entity_Id;
4753
4754 begin
4755 -- First a quick check on the non static subtype flag. As described
4756 -- in further detail in Einfo, this flag is not decisive in all cases,
4757 -- but if it is set, then the subtype is definitely non-static.
4758
4759 if Is_Non_Static_Subtype (Typ) then
4760 return False;
4761 end if;
4762
4763 Anc_Subt := Ancestor_Subtype (Typ);
4764
4765 if Anc_Subt = Empty then
4766 Anc_Subt := Base_T;
4767 end if;
4768
4769 if Is_Generic_Type (Root_Type (Base_T))
4770 or else Is_Generic_Actual_Type (Base_T)
4771 then
4772 return False;
4773
4774 -- String types
4775
4776 elsif Is_String_Type (Typ) then
4777 return
4778 Ekind (Typ) = E_String_Literal_Subtype
4779 or else
011f9d5d
AC
4780 (Is_OK_Static_Subtype (Component_Type (Typ))
4781 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4782
4783 -- Scalar types
4784
4785 elsif Is_Scalar_Type (Typ) then
4786 if Base_T = Typ then
4787 return True;
4788
4789 else
22cb89b5
AC
4790 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4791 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
4792
4793 return Is_OK_Static_Subtype (Anc_Subt)
4794 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4795 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4796 end if;
4797
4798 -- Types other than string and scalar types are never static
4799
4800 else
4801 return False;
4802 end if;
4803 end Is_OK_Static_Subtype;
4804
4805 ---------------------
4806 -- Is_Out_Of_Range --
4807 ---------------------
4808
4809 function Is_Out_Of_Range
1c7717c3
AC
4810 (N : Node_Id;
4811 Typ : Entity_Id;
c800f862 4812 Assume_Valid : Boolean := False;
1c7717c3
AC
4813 Fixed_Int : Boolean := False;
4814 Int_Real : Boolean := False) return Boolean
996ae0b0 4815 is
996ae0b0 4816 begin
80298c3b
AC
4817 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4818 Out_Of_Range;
996ae0b0
RK
4819 end Is_Out_Of_Range;
4820
edab6088
RD
4821 ----------------------
4822 -- Is_Static_Choice --
4823 ----------------------
4824
4825 function Is_Static_Choice (Choice : Node_Id) return Boolean is
4826 begin
4827 -- Check various possibilities for choice
4828
4829 -- Note: for membership tests, we test more cases than are possible
4830 -- (in particular subtype indication), but it doesn't matter because
4831 -- it just won't occur (we have already done a syntax check).
4832
4833 if Nkind (Choice) = N_Others_Choice then
4834 return True;
4835
4836 elsif Nkind (Choice) = N_Range then
4837 return Is_Static_Range (Choice);
4838
4839 elsif Nkind (Choice) = N_Subtype_Indication
4840 or else
4841 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4842 then
4843 return Is_Static_Subtype (Etype (Choice));
4844
4845 else
4846 return Is_Static_Expression (Choice);
4847 end if;
4848 end Is_Static_Choice;
4849
4850 ---------------------------
4851 -- Is_Static_Choice_List --
4852 ---------------------------
4853
4854 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
4855 Choice : Node_Id;
4856
4857 begin
4858 Choice := First (Choices);
4859 while Present (Choice) loop
4860 if not Is_Static_Choice (Choice) then
4861 return False;
4862 end if;
4863
4864 Next (Choice);
4865 end loop;
4866
4867 return True;
4868 end Is_Static_Choice_List;
4869
4870---------------------
996ae0b0
RK
4871 -- Is_Static_Range --
4872 ---------------------
4873
4874 -- A static range is a range whose bounds are static expressions, or a
4875 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4876 -- We have already converted range attribute references, so we get the
4877 -- "or" part of this rule without needing a special test.
4878
4879 function Is_Static_Range (N : Node_Id) return Boolean is
4880 begin
edab6088 4881 return Is_Static_Expression (Low_Bound (N))
80298c3b
AC
4882 and then
4883 Is_Static_Expression (High_Bound (N));
996ae0b0
RK
4884 end Is_Static_Range;
4885
4886 -----------------------
4887 -- Is_Static_Subtype --
4888 -----------------------
4889
82c80734 4890 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4891
4892 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4893 Base_T : constant Entity_Id := Base_Type (Typ);
4894 Anc_Subt : Entity_Id;
4895
4896 begin
4897 -- First a quick check on the non static subtype flag. As described
4898 -- in further detail in Einfo, this flag is not decisive in all cases,
4899 -- but if it is set, then the subtype is definitely non-static.
4900
4901 if Is_Non_Static_Subtype (Typ) then
4902 return False;
4903 end if;
4904
4905 Anc_Subt := Ancestor_Subtype (Typ);
4906
4907 if Anc_Subt = Empty then
4908 Anc_Subt := Base_T;
4909 end if;
4910
4911 if Is_Generic_Type (Root_Type (Base_T))
4912 or else Is_Generic_Actual_Type (Base_T)
4913 then
4914 return False;
4915
4916 -- String types
4917
4918 elsif Is_String_Type (Typ) then
4919 return
4920 Ekind (Typ) = E_String_Literal_Subtype
011f9d5d
AC
4921 or else (Is_Static_Subtype (Component_Type (Typ))
4922 and then Is_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4923
4924 -- Scalar types
4925
4926 elsif Is_Scalar_Type (Typ) then
4927 if Base_T = Typ then
4928 return True;
4929
4930 else
4931 return Is_Static_Subtype (Anc_Subt)
4932 and then Is_Static_Expression (Type_Low_Bound (Typ))
4933 and then Is_Static_Expression (Type_High_Bound (Typ));
4934 end if;
4935
4936 -- Types other than string and scalar types are never static
4937
4938 else
4939 return False;
4940 end if;
4941 end Is_Static_Subtype;
4942
edab6088
RD
4943 -------------------------------
4944 -- Is_Statically_Unevaluated --
4945 -------------------------------
4946
4947 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
4948 function Check_Case_Expr_Alternative
4949 (CEA : Node_Id) return Match_Result;
4950 -- We have a message emanating from the Expression of a case expression
4951 -- alternative. We examine this alternative, as follows:
4952 --
4953 -- If the selecting expression of the parent case is non-static, or
4954 -- if any of the discrete choices of the given case alternative are
4955 -- non-static or raise Constraint_Error, return Non_Static.
4956 --
4957 -- Otherwise check if the selecting expression matches any of the given
4bd4bb7f
AC
4958 -- discrete choices. If so, the alternative is executed and we return
4959 -- Match, otherwise, the alternative can never be executed, and so we
4960 -- return No_Match.
edab6088
RD
4961
4962 ---------------------------------
4963 -- Check_Case_Expr_Alternative --
4964 ---------------------------------
4965
4966 function Check_Case_Expr_Alternative
4967 (CEA : Node_Id) return Match_Result
4968 is
4969 Case_Exp : constant Node_Id := Parent (CEA);
4970 Choice : Node_Id;
4971 Prev_CEA : Node_Id;
4972
4973 begin
4974 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
4975
4bd4bb7f 4976 -- Check that selecting expression is static
edab6088
RD
4977
4978 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
4979 return Non_Static;
4980 end if;
4981
4982 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
4983 return Non_Static;
4984 end if;
4985
4986 -- All choices are now known to be static. Now see if alternative
4987 -- matches one of the choices.
4988
4989 Choice := First (Discrete_Choices (CEA));
4990 while Present (Choice) loop
4991
4bd4bb7f 4992 -- Check various possibilities for choice, returning Match if we
edab6088
RD
4993 -- find the selecting value matches any of the choices. Note that
4994 -- we know we are the last choice, so we don't have to keep going.
4995
4996 if Nkind (Choice) = N_Others_Choice then
4997
4998 -- Others choice is a bit annoying, it matches if none of the
4999 -- previous alternatives matches (note that we know we are the
5000 -- last alternative in this case, so we can just go backwards
5001 -- from us to see if any previous one matches).
5002
5003 Prev_CEA := Prev (CEA);
5004 while Present (Prev_CEA) loop
5005 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5006 return No_Match;
5007 end if;
5008
5009 Prev (Prev_CEA);
5010 end loop;
5011
5012 return Match;
5013
5014 -- Else we have a normal static choice
5015
5016 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5017 return Match;
5018 end if;
5019
5020 -- If we fall through, it means that the discrete choice did not
5021 -- match the selecting expression, so continue.
5022
5023 Next (Choice);
5024 end loop;
5025
4bd4bb7f
AC
5026 -- If we get through that loop then all choices were static, and none
5027 -- of them matched the selecting expression. So return No_Match.
edab6088
RD
5028
5029 return No_Match;
5030 end Check_Case_Expr_Alternative;
5031
5032 -- Local variables
5033
5034 P : Node_Id;
5035 OldP : Node_Id;
5036 Choice : Node_Id;
5037
5038 -- Start of processing for Is_Statically_Unevaluated
5039
5040 begin
5041 -- The (32.x) references here are from RM section 4.9
5042
5043 -- (32.1) An expression is statically unevaluated if it is part of ...
5044
5045 -- This means we have to climb the tree looking for one of the cases
5046
5047 P := Expr;
5048 loop
5049 OldP := P;
5050 P := Parent (P);
5051
5052 -- (32.2) The right operand of a static short-circuit control form
5053 -- whose value is determined by its left operand.
5054
5055 -- AND THEN with False as left operand
5056
5057 if Nkind (P) = N_And_Then
5058 and then Compile_Time_Known_Value (Left_Opnd (P))
5059 and then Is_False (Expr_Value (Left_Opnd (P)))
5060 then
5061 return True;
5062
5063 -- OR ELSE with True as left operand
5064
5065 elsif Nkind (P) = N_Or_Else
5066 and then Compile_Time_Known_Value (Left_Opnd (P))
5067 and then Is_True (Expr_Value (Left_Opnd (P)))
5068 then
5069 return True;
5070
5071 -- (32.3) A dependent_expression of an if_expression whose associated
5072 -- condition is static and equals False.
5073
5074 elsif Nkind (P) = N_If_Expression then
5075 declare
5076 Cond : constant Node_Id := First (Expressions (P));
5077 Texp : constant Node_Id := Next (Cond);
5078 Fexp : constant Node_Id := Next (Texp);
5079
5080 begin
5081 if Compile_Time_Known_Value (Cond) then
5082
5083 -- Condition is True and we are in the right operand
5084
5085 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5086 return True;
5087
5088 -- Condition is False and we are in the left operand
5089
5090 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5091 return True;
5092 end if;
5093 end if;
5094 end;
5095
5096 -- (32.4) A condition or dependent_expression of an if_expression
5097 -- where the condition corresponding to at least one preceding
5098 -- dependent_expression of the if_expression is static and equals
5099 -- True.
5100
5101 -- This refers to cases like
5102
4bd4bb7f 5103 -- (if True then 1 elsif 1/0=2 then 2 else 3)
edab6088
RD
5104
5105 -- But we expand elsif's out anyway, so the above looks like:
5106
4bd4bb7f 5107 -- (if True then 1 else (if 1/0=2 then 2 else 3))
edab6088
RD
5108
5109 -- So for us this is caught by the above check for the 32.3 case.
5110
5111 -- (32.5) A dependent_expression of a case_expression whose
5112 -- selecting_expression is static and whose value is not covered
5113 -- by the corresponding discrete_choice_list.
5114
5115 elsif Nkind (P) = N_Case_Expression_Alternative then
5116
5117 -- First, we have to be in the expression to suppress messages.
5118 -- If we are within one of the choices, we want the message.
5119
5120 if OldP = Expression (P) then
5121
5122 -- Statically unevaluated if alternative does not match
5123
5124 if Check_Case_Expr_Alternative (P) = No_Match then
5125 return True;
5126 end if;
5127 end if;
5128
5129 -- (32.6) A choice_expression (or a simple_expression of a range
5130 -- that occurs as a membership_choice of a membership_choice_list)
5131 -- of a static membership test that is preceded in the enclosing
5132 -- membership_choice_list by another item whose individual
5133 -- membership test (see (RM 4.5.2)) statically yields True.
5134
5135 elsif Nkind (P) in N_Membership_Test then
5136
5137 -- Only possibly unevaluated if simple expression is static
5138
5139 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5140 null;
5141
5142 -- All members of the choice list must be static
5143
5144 elsif (Present (Right_Opnd (P))
5145 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5146 or else (Present (Alternatives (P))
5147 and then
5148 not Is_OK_Static_Choice_List (Alternatives (P)))
5149 then
5150 null;
5151
5152 -- If expression is the one and only alternative, then it is
5153 -- definitely not statically unevaluated, so we only have to
5154 -- test the case where there are alternatives present.
5155
5156 elsif Present (Alternatives (P)) then
5157
5158 -- Look for previous matching Choice
5159
5160 Choice := First (Alternatives (P));
5161 while Present (Choice) loop
5162
5163 -- If we reached us and no previous choices matched, this
5164 -- is not the case where we are statically unevaluated.
5165
5166 exit when OldP = Choice;
5167
5168 -- If a previous choice matches, then that is the case where
5169 -- we know our choice is statically unevaluated.
5170
5171 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5172 return True;
5173 end if;
5174
5175 Next (Choice);
5176 end loop;
5177
5178 -- If we fall through the loop, we were not one of the choices,
5179 -- we must have been the expression, so that is not covered by
5180 -- this rule, and we keep going.
5181
5182 null;
5183 end if;
5184 end if;
5185
5186 -- OK, not statically unevaluated at this level, see if we should
5187 -- keep climbing to look for a higher level reason.
5188
5189 -- Special case for component association in aggregates, where
5190 -- we want to keep climbing up to the parent aggregate.
5191
5192 if Nkind (P) = N_Component_Association
5193 and then Nkind (Parent (P)) = N_Aggregate
5194 then
5195 null;
5196
5197 -- All done if not still within subexpression
5198
5199 else
5200 exit when Nkind (P) not in N_Subexpr;
5201 end if;
5202 end loop;
5203
5204 -- If we fall through the loop, not one of the cases covered!
5205
5206 return False;
5207 end Is_Statically_Unevaluated;
5208
996ae0b0
RK
5209 --------------------
5210 -- Not_Null_Range --
5211 --------------------
5212
5213 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5214 Typ : constant Entity_Id := Etype (Lo);
5215
5216 begin
5217 if not Compile_Time_Known_Value (Lo)
5218 or else not Compile_Time_Known_Value (Hi)
5219 then
5220 return False;
5221 end if;
5222
5223 if Is_Discrete_Type (Typ) then
5224 return Expr_Value (Lo) <= Expr_Value (Hi);
80298c3b 5225 else pragma Assert (Is_Real_Type (Typ));
996ae0b0
RK
5226 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5227 end if;
5228 end Not_Null_Range;
5229
5230 -------------
5231 -- OK_Bits --
5232 -------------
5233
5234 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5235 begin
5236 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5237
5238 if Bits < 500_000 then
5239 return True;
5240
80298c3b
AC
5241 -- Error if this maximum is exceeded
5242
996ae0b0
RK
5243 else
5244 Error_Msg_N ("static value too large, capacity exceeded", N);
5245 return False;
5246 end if;
5247 end OK_Bits;
5248
5249 ------------------
5250 -- Out_Of_Range --
5251 ------------------
5252
5253 procedure Out_Of_Range (N : Node_Id) is
5254 begin
5255 -- If we have the static expression case, then this is an illegality
5256 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5 5257 -- error (if the error is legitimate, it was already diagnosed in the
ac072cb2 5258 -- template).
996ae0b0
RK
5259
5260 if Is_Static_Expression (N)
5261 and then not In_Instance
fbf5a39b 5262 and then not In_Inlined_Body
0ab80019 5263 and then Ada_Version >= Ada_95
996ae0b0 5264 then
4bd4bb7f 5265 -- No message if we are statically unevaluated
ac072cb2
AC
5266
5267 if Is_Statically_Unevaluated (N) then
5268 null;
5269
5270 -- The expression to compute the length of a packed array is attached
5271 -- to the array type itself, and deserves a separate message.
5272
5273 elsif Nkind (Parent (N)) = N_Defining_Identifier
996ae0b0 5274 and then Is_Array_Type (Parent (N))
8ca597af 5275 and then Present (Packed_Array_Impl_Type (Parent (N)))
996ae0b0
RK
5276 and then Present (First_Rep_Item (Parent (N)))
5277 then
5278 Error_Msg_N
5279 ("length of packed array must not exceed Integer''Last",
5280 First_Rep_Item (Parent (N)));
5281 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5282
ac072cb2
AC
5283 -- All cases except the special array case
5284
996ae0b0
RK
5285 else
5286 Apply_Compile_Time_Constraint_Error
07fc65c4 5287 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
5288 end if;
5289
22cb89b5
AC
5290 -- Here we generate a warning for the Ada 83 case, or when we are in an
5291 -- instance, or when we have a non-static expression case.
996ae0b0
RK
5292
5293 else
996ae0b0 5294 Apply_Compile_Time_Constraint_Error
324ac540 5295 (N, "value not in range of}??", CE_Range_Check_Failed);
996ae0b0
RK
5296 end if;
5297 end Out_Of_Range;
5298
7f568bfa
AC
5299 ----------------------
5300 -- Predicates_Match --
5301 ----------------------
5302
5303 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5304 Pred1 : Node_Id;
5305 Pred2 : Node_Id;
5306
5307 begin
5308 if Ada_Version < Ada_2012 then
5309 return True;
5310
5311 -- Both types must have predicates or lack them
5312
5313 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5314 return False;
5315
5316 -- Check matching predicates
5317
5318 else
5319 Pred1 :=
5320 Get_Rep_Item
5321 (T1, Name_Static_Predicate, Check_Parents => False);
5322 Pred2 :=
5323 Get_Rep_Item
5324 (T2, Name_Static_Predicate, Check_Parents => False);
5325
5326 -- Subtypes statically match if the predicate comes from the
5327 -- same declaration, which can only happen if one is a subtype
5328 -- of the other and has no explicit predicate.
5329
5330 -- Suppress warnings on order of actuals, which is otherwise
5331 -- triggered by one of the two calls below.
5332
5333 pragma Warnings (Off);
5334 return Pred1 = Pred2
5335 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5336 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5337 pragma Warnings (On);
5338 end if;
5339 end Predicates_Match;
5340
fc3a3f3b
RD
5341 ---------------------------------------------
5342 -- Real_Or_String_Static_Predicate_Matches --
5343 ---------------------------------------------
5344
5345 function Real_Or_String_Static_Predicate_Matches
5346 (Val : Node_Id;
5347 Typ : Entity_Id) return Boolean
5348 is
5349 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5350 -- The predicate expression from the type
5351
5352 Pfun : constant Entity_Id := Predicate_Function (Typ);
5353 -- The entity for the predicate function
5354
5355 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5356 -- The name of the formal of the predicate function. Occurrences of the
5357 -- type name in Expr have been rewritten as references to this formal,
5358 -- and it has a unique name, so we can identify references by this name.
5359
5360 Copy : Node_Id;
5361 -- Copy of the predicate function tree
5362
5363 function Process (N : Node_Id) return Traverse_Result;
5364 -- Function used to process nodes during the traversal in which we will
5365 -- find occurrences of the entity name, and replace such occurrences
5366 -- by a real literal with the value to be tested.
5367
5368 procedure Traverse is new Traverse_Proc (Process);
5369 -- The actual traversal procedure
5370
5371 -------------
5372 -- Process --
5373 -------------
5374
5375 function Process (N : Node_Id) return Traverse_Result is
5376 begin
5377 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5378 declare
5379 Nod : constant Node_Id := New_Copy (Val);
5380 begin
5381 Set_Sloc (Nod, Sloc (N));
5382 Rewrite (N, Nod);
5383 return Skip;
5384 end;
5385
5386 else
5387 return OK;
5388 end if;
5389 end Process;
5390
5391 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5392
5393 begin
5394 -- First deal with special case of inherited predicate, where the
5395 -- predicate expression looks like:
5396
5397 -- Expr and then xxPredicate (typ (Ent))
5398
5399 -- where Expr is the predicate expression for this level, and the
5400 -- right operand is the call to evaluate the inherited predicate.
5401
5402 if Nkind (Expr) = N_And_Then
5403 and then Nkind (Right_Opnd (Expr)) = N_Function_Call
5404 then
5405 -- OK we have the inherited case, so make a call to evaluate the
5406 -- inherited predicate. If that fails, so do we!
5407
5408 if not
5409 Real_Or_String_Static_Predicate_Matches
5410 (Val => Val,
5411 Typ => Etype (First_Formal (Entity (Name (Right_Opnd (Expr))))))
5412 then
5413 return False;
5414 end if;
5415
5416 -- Use the left operand for the continued processing
5417
5418 Copy := Copy_Separate_Tree (Left_Opnd (Expr));
5419
5420 -- Case where call to predicate function appears on its own
5421
5422 elsif Nkind (Expr) = N_Function_Call then
5423
5424 -- Here the result is just the result of calling the inner predicate
5425
5426 return
5427 Real_Or_String_Static_Predicate_Matches
5428 (Val => Val,
5429 Typ => Etype (First_Formal (Entity (Name (Expr)))));
5430
5431 -- If no inherited predicate, copy whole expression
5432
5433 else
5434 Copy := Copy_Separate_Tree (Expr);
5435 end if;
5436
5437 -- Now we replace occurrences of the entity by the value
5438
5439 Traverse (Copy);
5440
5441 -- And analyze the resulting static expression to see if it is True
5442
5443 Analyze_And_Resolve (Copy, Standard_Boolean);
5444 return Is_True (Expr_Value (Copy));
5445 end Real_Or_String_Static_Predicate_Matches;
5446
996ae0b0
RK
5447 -------------------------
5448 -- Rewrite_In_Raise_CE --
5449 -------------------------
5450
5451 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
edab6088
RD
5452 Typ : constant Entity_Id := Etype (N);
5453 Stat : constant Boolean := Is_Static_Expression (N);
996ae0b0
RK
5454
5455 begin
edab6088
RD
5456 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5457 -- can just clear the condition if the reason is appropriate. We do
5458 -- not do this operation if the parent has a reason other than range
5459 -- check failed, because otherwise we would change the reason.
996ae0b0
RK
5460
5461 if Present (Parent (N))
5462 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
edab6088
RD
5463 and then Reason (Parent (N)) =
5464 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
996ae0b0
RK
5465 then
5466 Set_Condition (Parent (N), Empty);
5467
edab6088 5468 -- Else build an explicit N_Raise_CE
996ae0b0
RK
5469
5470 else
07fc65c4
GB
5471 Rewrite (N,
5472 Make_Raise_Constraint_Error (Sloc (Exp),
5473 Reason => CE_Range_Check_Failed));
996ae0b0
RK
5474 Set_Raises_Constraint_Error (N);
5475 Set_Etype (N, Typ);
5476 end if;
edab6088
RD
5477
5478 -- Set proper flags in result
5479
5480 Set_Raises_Constraint_Error (N, True);
5481 Set_Is_Static_Expression (N, Stat);
996ae0b0
RK
5482 end Rewrite_In_Raise_CE;
5483
5484 ---------------------
5485 -- String_Type_Len --
5486 ---------------------
5487
5488 function String_Type_Len (Stype : Entity_Id) return Uint is
5489 NT : constant Entity_Id := Etype (First_Index (Stype));
5490 T : Entity_Id;
5491
5492 begin
5493 if Is_OK_Static_Subtype (NT) then
5494 T := NT;
5495 else
5496 T := Base_Type (NT);
5497 end if;
5498
5499 return Expr_Value (Type_High_Bound (T)) -
5500 Expr_Value (Type_Low_Bound (T)) + 1;
5501 end String_Type_Len;
5502
5503 ------------------------------------
5504 -- Subtypes_Statically_Compatible --
5505 ------------------------------------
5506
5507 function Subtypes_Statically_Compatible
c97d7285
AC
5508 (T1 : Entity_Id;
5509 T2 : Entity_Id;
5510 Formal_Derived_Matching : Boolean := False) return Boolean
996ae0b0
RK
5511 is
5512 begin
437f8c1e
AC
5513 -- Scalar types
5514
996ae0b0
RK
5515 if Is_Scalar_Type (T1) then
5516
5517 -- Definitely compatible if we match
5518
5519 if Subtypes_Statically_Match (T1, T2) then
5520 return True;
5521
5522 -- If either subtype is nonstatic then they're not compatible
5523
edab6088 5524 elsif not Is_OK_Static_Subtype (T1)
ebb6b0bd 5525 or else
edab6088 5526 not Is_OK_Static_Subtype (T2)
996ae0b0
RK
5527 then
5528 return False;
5529
5530 -- If either type has constraint error bounds, then consider that
5531 -- they match to avoid junk cascaded errors here.
5532
5533 elsif not Is_OK_Static_Subtype (T1)
5534 or else not Is_OK_Static_Subtype (T2)
5535 then
5536 return True;
5537
26df19ce
AC
5538 -- Base types must match, but we don't check that (should we???) but
5539 -- we do at least check that both types are real, or both types are
5540 -- not real.
996ae0b0 5541
fbf5a39b 5542 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
5543 return False;
5544
5545 -- Here we check the bounds
5546
5547 else
5548 declare
5549 LB1 : constant Node_Id := Type_Low_Bound (T1);
5550 HB1 : constant Node_Id := Type_High_Bound (T1);
5551 LB2 : constant Node_Id := Type_Low_Bound (T2);
5552 HB2 : constant Node_Id := Type_High_Bound (T2);
5553
5554 begin
5555 if Is_Real_Type (T1) then
5556 return
5557 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
5558 or else
5559 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5560 and then
5561 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5562
5563 else
5564 return
5565 (Expr_Value (LB1) > Expr_Value (HB1))
5566 or else
5567 (Expr_Value (LB2) <= Expr_Value (LB1)
5568 and then
5569 Expr_Value (HB1) <= Expr_Value (HB2));
5570 end if;
5571 end;
5572 end if;
5573
437f8c1e
AC
5574 -- Access types
5575
996ae0b0 5576 elsif Is_Access_Type (T1) then
26df19ce
AC
5577 return (not Is_Constrained (T2)
5578 or else (Subtypes_Statically_Match
5579 (Designated_Type (T1), Designated_Type (T2))))
5580 and then not (Can_Never_Be_Null (T2)
5581 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
5582
5583 -- All other cases
996ae0b0
RK
5584
5585 else
5586 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
c97d7285 5587 or else Subtypes_Statically_Match (T1, T2, Formal_Derived_Matching);
996ae0b0
RK
5588 end if;
5589 end Subtypes_Statically_Compatible;
5590
5591 -------------------------------
5592 -- Subtypes_Statically_Match --
5593 -------------------------------
5594
5595 -- Subtypes statically match if they have statically matching constraints
5596 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5597 -- they are the same identical constraint, or if they are static and the
5598 -- values match (RM 4.9.1(1)).
5599
a0367005 5600 -- In addition, in GNAT, the object size (Esize) values of the types must
c97d7285
AC
5601 -- match if they are set (unless checking an actual for a formal derived
5602 -- type). The use of 'Object_Size can cause this to be false even if the
5603 -- types would otherwise match in the RM sense.
5604
5605 function Subtypes_Statically_Match
5606 (T1 : Entity_Id;
5607 T2 : Entity_Id;
5608 Formal_Derived_Matching : Boolean := False) return Boolean
5609 is
996ae0b0
RK
5610 begin
5611 -- A type always statically matches itself
5612
5613 if T1 = T2 then
5614 return True;
5615
c97d7285
AC
5616 -- No match if sizes different (from use of 'Object_Size). This test
5617 -- is excluded if Formal_Derived_Matching is True, as the base types
5618 -- can be different in that case and typically have different sizes
5619 -- (and Esizes can be set when Frontend_Layout_On_Target is True).
a0367005 5620
c97d7285 5621 elsif not Formal_Derived_Matching
ebb6b0bd
AC
5622 and then Known_Static_Esize (T1)
5623 and then Known_Static_Esize (T2)
a0367005
RD
5624 and then Esize (T1) /= Esize (T2)
5625 then
5626 return False;
5627
308aab0b
AC
5628 -- No match if predicates do not match
5629
7f568bfa 5630 elsif not Predicates_Match (T1, T2) then
308aab0b
AC
5631 return False;
5632
996ae0b0
RK
5633 -- Scalar types
5634
5635 elsif Is_Scalar_Type (T1) then
5636
5637 -- Base types must be the same
5638
5639 if Base_Type (T1) /= Base_Type (T2) then
5640 return False;
5641 end if;
5642
5643 -- A constrained numeric subtype never matches an unconstrained
5644 -- subtype, i.e. both types must be constrained or unconstrained.
5645
305caf42
AC
5646 -- To understand the requirement for this test, see RM 4.9.1(1).
5647 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5648 -- a constrained subtype with constraint bounds matching the bounds
5649 -- of its corresponding unconstrained base type. In this situation,
5650 -- Integer and Integer'Base do not statically match, even though
5651 -- they have the same bounds.
996ae0b0 5652
22cb89b5
AC
5653 -- We only apply this test to types in Standard and types that appear
5654 -- in user programs. That way, we do not have to be too careful about
5655 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
5656
5657 if Is_Numeric_Type (T1)
5658 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5659 and then (Scope (T1) = Standard_Standard
5660 or else Comes_From_Source (T1))
5661 and then (Scope (T2) = Standard_Standard
5662 or else Comes_From_Source (T2))
5663 then
5664 return False;
82c80734 5665
22cb89b5
AC
5666 -- A generic scalar type does not statically match its base type
5667 -- (AI-311). In this case we make sure that the formals, which are
5668 -- first subtypes of their bases, are constrained.
82c80734
RD
5669
5670 elsif Is_Generic_Type (T1)
5671 and then Is_Generic_Type (T2)
5672 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5673 then
5674 return False;
996ae0b0
RK
5675 end if;
5676
22cb89b5
AC
5677 -- If there was an error in either range, then just assume the types
5678 -- statically match to avoid further junk errors.
996ae0b0 5679
199c6a10
AC
5680 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5681 or else Error_Posted (Scalar_Range (T1))
5682 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
5683 then
5684 return True;
5685 end if;
5686
308aab0b 5687 -- Otherwise both types have bounds that can be compared
996ae0b0
RK
5688
5689 declare
5690 LB1 : constant Node_Id := Type_Low_Bound (T1);
5691 HB1 : constant Node_Id := Type_High_Bound (T1);
5692 LB2 : constant Node_Id := Type_Low_Bound (T2);
5693 HB2 : constant Node_Id := Type_High_Bound (T2);
5694
5695 begin
308aab0b 5696 -- If the bounds are the same tree node, then match (common case)
996ae0b0
RK
5697
5698 if LB1 = LB2 and then HB1 = HB2 then
308aab0b 5699 return True;
996ae0b0
RK
5700
5701 -- Otherwise bounds must be static and identical value
5702
5703 else
edab6088
RD
5704 if not Is_OK_Static_Subtype (T1)
5705 or else not Is_OK_Static_Subtype (T2)
996ae0b0
RK
5706 then
5707 return False;
5708
22cb89b5
AC
5709 -- If either type has constraint error bounds, then say that
5710 -- they match to avoid junk cascaded errors here.
996ae0b0
RK
5711
5712 elsif not Is_OK_Static_Subtype (T1)
5713 or else not Is_OK_Static_Subtype (T2)
5714 then
5715 return True;
5716
5717 elsif Is_Real_Type (T1) then
5718 return
5719 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
5720 and then
5721 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
5722
5723 else
5724 return
5725 Expr_Value (LB1) = Expr_Value (LB2)
5726 and then
5727 Expr_Value (HB1) = Expr_Value (HB2);
5728 end if;
5729 end if;
5730 end;
5731
5732 -- Type with discriminants
5733
5734 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 5735
c2bf339e
GD
5736 -- Because of view exchanges in multiple instantiations, conformance
5737 -- checking might try to match a partial view of a type with no
5738 -- discriminants with a full view that has defaulted discriminants.
5739 -- In such a case, use the discriminant constraint of the full view,
5740 -- which must exist because we know that the two subtypes have the
5741 -- same base type.
6eaf4095 5742
996ae0b0 5743 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
5744 if In_Instance then
5745 if Is_Private_Type (T2)
5746 and then Present (Full_View (T2))
5747 and then Has_Discriminants (Full_View (T2))
5748 then
5749 return Subtypes_Statically_Match (T1, Full_View (T2));
5750
5751 elsif Is_Private_Type (T1)
5752 and then Present (Full_View (T1))
5753 and then Has_Discriminants (Full_View (T1))
5754 then
5755 return Subtypes_Statically_Match (Full_View (T1), T2);
5756
5757 else
5758 return False;
5759 end if;
6eaf4095
ES
5760 else
5761 return False;
5762 end if;
996ae0b0
RK
5763 end if;
5764
5765 declare
5766 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5767 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5768
13f34a3f
RD
5769 DA1 : Elmt_Id;
5770 DA2 : Elmt_Id;
996ae0b0
RK
5771
5772 begin
5773 if DL1 = DL2 then
5774 return True;
996ae0b0
RK
5775 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5776 return False;
5777 end if;
5778
13f34a3f 5779 -- Now loop through the discriminant constraints
996ae0b0 5780
13f34a3f
RD
5781 -- Note: the guard here seems necessary, since it is possible at
5782 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 5783
13f34a3f
RD
5784 if Present (DL1) and then Present (DL2) then
5785 DA1 := First_Elmt (DL1);
5786 DA2 := First_Elmt (DL2);
5787 while Present (DA1) loop
5788 declare
5789 Expr1 : constant Node_Id := Node (DA1);
5790 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 5791
13f34a3f 5792 begin
edab6088
RD
5793 if not Is_OK_Static_Expression (Expr1)
5794 or else not Is_OK_Static_Expression (Expr2)
13f34a3f
RD
5795 then
5796 return False;
996ae0b0 5797
13f34a3f
RD
5798 -- If either expression raised a constraint error,
5799 -- consider the expressions as matching, since this
5800 -- helps to prevent cascading errors.
5801
5802 elsif Raises_Constraint_Error (Expr1)
5803 or else Raises_Constraint_Error (Expr2)
5804 then
5805 null;
5806
5807 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5808 return False;
5809 end if;
5810 end;
996ae0b0 5811
13f34a3f
RD
5812 Next_Elmt (DA1);
5813 Next_Elmt (DA2);
5814 end loop;
5815 end if;
996ae0b0
RK
5816 end;
5817
5818 return True;
5819
22cb89b5 5820 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
5821 -- However, a generic type with unknown discriminants may be
5822 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
5823 -- checking on an inherited operation may compare the actual with the
5824 -- subtype that renames it in the instance.
996ae0b0 5825
80298c3b 5826 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
996ae0b0 5827 then
7a3f77d2
AC
5828 return
5829 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
5830
5831 -- Array type
5832
5833 elsif Is_Array_Type (T1) then
5834
22cb89b5 5835 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 5836 -- are unconstrained then no further checking is needed.
996ae0b0
RK
5837
5838 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5839 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5840 end if;
5841
22cb89b5
AC
5842 -- Both subtypes are constrained, so check that the index subtypes
5843 -- statically match.
996ae0b0
RK
5844
5845 declare
5846 Index1 : Node_Id := First_Index (T1);
5847 Index2 : Node_Id := First_Index (T2);
5848
5849 begin
5850 while Present (Index1) loop
5851 if not
5852 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5853 then
5854 return False;
5855 end if;
5856
5857 Next_Index (Index1);
5858 Next_Index (Index2);
5859 end loop;
5860
5861 return True;
5862 end;
5863
5864 elsif Is_Access_Type (T1) then
b5bd964f
ES
5865 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5866 return False;
5867
e1b871e9
AC
5868 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5869 E_Anonymous_Access_Subprogram_Type)
7a3f77d2 5870 then
b5bd964f
ES
5871 return
5872 Subtype_Conformant
5873 (Designated_Type (T1),
bb98fe75 5874 Designated_Type (T2));
b5bd964f
ES
5875 else
5876 return
5877 Subtypes_Statically_Match
5878 (Designated_Type (T1),
5879 Designated_Type (T2))
5880 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5881 end if;
996ae0b0
RK
5882
5883 -- All other types definitely match
5884
5885 else
5886 return True;
5887 end if;
5888 end Subtypes_Statically_Match;
5889
5890 ----------
5891 -- Test --
5892 ----------
5893
5894 function Test (Cond : Boolean) return Uint is
5895 begin
5896 if Cond then
5897 return Uint_1;
5898 else
5899 return Uint_0;
5900 end if;
5901 end Test;
5902
5903 ---------------------------------
5904 -- Test_Expression_Is_Foldable --
5905 ---------------------------------
5906
5907 -- One operand case
5908
5909 procedure Test_Expression_Is_Foldable
5910 (N : Node_Id;
5911 Op1 : Node_Id;
5912 Stat : out Boolean;
5913 Fold : out Boolean)
5914 is
5915 begin
5916 Stat := False;
0356699b
RD
5917 Fold := False;
5918
5919 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5920 return;
5921 end if;
996ae0b0
RK
5922
5923 -- If operand is Any_Type, just propagate to result and do not
5924 -- try to fold, this prevents cascaded errors.
5925
5926 if Etype (Op1) = Any_Type then
5927 Set_Etype (N, Any_Type);
996ae0b0
RK
5928 return;
5929
5930 -- If operand raises constraint error, then replace node N with the
5931 -- raise constraint error node, and we are obviously not foldable.
5932 -- Note that this replacement inherits the Is_Static_Expression flag
5933 -- from the operand.
5934
5935 elsif Raises_Constraint_Error (Op1) then
5936 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
5937 return;
5938
5939 -- If the operand is not static, then the result is not static, and
5940 -- all we have to do is to check the operand since it is now known
5941 -- to appear in a non-static context.
5942
5943 elsif not Is_Static_Expression (Op1) then
5944 Check_Non_Static_Context (Op1);
5945 Fold := Compile_Time_Known_Value (Op1);
5946 return;
5947
5948 -- An expression of a formal modular type is not foldable because
5949 -- the modulus is unknown.
5950
5951 elsif Is_Modular_Integer_Type (Etype (Op1))
5952 and then Is_Generic_Type (Etype (Op1))
5953 then
5954 Check_Non_Static_Context (Op1);
996ae0b0
RK
5955 return;
5956
5957 -- Here we have the case of an operand whose type is OK, which is
5958 -- static, and which does not raise constraint error, we can fold.
5959
5960 else
5961 Set_Is_Static_Expression (N);
5962 Fold := True;
5963 Stat := True;
5964 end if;
5965 end Test_Expression_Is_Foldable;
5966
5967 -- Two operand case
5968
5969 procedure Test_Expression_Is_Foldable
6c3c671e
AC
5970 (N : Node_Id;
5971 Op1 : Node_Id;
5972 Op2 : Node_Id;
5973 Stat : out Boolean;
5974 Fold : out Boolean;
5975 CRT_Safe : Boolean := False)
996ae0b0
RK
5976 is
5977 Rstat : constant Boolean := Is_Static_Expression (Op1)
80298c3b
AC
5978 and then
5979 Is_Static_Expression (Op2);
996ae0b0
RK
5980
5981 begin
5982 Stat := False;
0356699b
RD
5983 Fold := False;
5984
4a28b181
AC
5985 -- Inhibit folding if -gnatd.f flag set
5986
0356699b
RD
5987 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5988 return;
5989 end if;
996ae0b0
RK
5990
5991 -- If either operand is Any_Type, just propagate to result and
5992 -- do not try to fold, this prevents cascaded errors.
5993
5994 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5995 Set_Etype (N, Any_Type);
996ae0b0
RK
5996 return;
5997
22cb89b5
AC
5998 -- If left operand raises constraint error, then replace node N with the
5999 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
6000 -- Is_Static_Expression is set from the two operands in the normal way,
6001 -- and we check the right operand if it is in a non-static context.
6002
6003 elsif Raises_Constraint_Error (Op1) then
6004 if not Rstat then
6005 Check_Non_Static_Context (Op2);
6006 end if;
6007
6008 Rewrite_In_Raise_CE (N, Op1);
6009 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6010 return;
6011
22cb89b5
AC
6012 -- Similar processing for the case of the right operand. Note that we
6013 -- don't use this routine for the short-circuit case, so we do not have
6014 -- to worry about that special case here.
996ae0b0
RK
6015
6016 elsif Raises_Constraint_Error (Op2) then
6017 if not Rstat then
6018 Check_Non_Static_Context (Op1);
6019 end if;
6020
6021 Rewrite_In_Raise_CE (N, Op2);
6022 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6023 return;
6024
82c80734 6025 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
6026
6027 elsif Is_Modular_Integer_Type (Etype (Op1))
6028 and then Is_Generic_Type (Etype (Op1))
6029 then
6030 Check_Non_Static_Context (Op1);
996ae0b0
RK
6031 return;
6032
6033 -- If result is not static, then check non-static contexts on operands
22cb89b5 6034 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
6035
6036 elsif not Rstat then
6037 Check_Non_Static_Context (Op1);
6038 Check_Non_Static_Context (Op2);
6c3c671e
AC
6039
6040 if CRT_Safe then
6041 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6042 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6043 else
6044 Fold := Compile_Time_Known_Value (Op1)
6045 and then Compile_Time_Known_Value (Op2);
6046 end if;
6047
996ae0b0
RK
6048 return;
6049
22cb89b5
AC
6050 -- Else result is static and foldable. Both operands are static, and
6051 -- neither raises constraint error, so we can definitely fold.
996ae0b0
RK
6052
6053 else
6054 Set_Is_Static_Expression (N);
6055 Fold := True;
6056 Stat := True;
6057 return;
6058 end if;
6059 end Test_Expression_Is_Foldable;
6060
305caf42
AC
6061 -------------------
6062 -- Test_In_Range --
6063 -------------------
6064
6065 function Test_In_Range
6066 (N : Node_Id;
6067 Typ : Entity_Id;
6068 Assume_Valid : Boolean;
6069 Fixed_Int : Boolean;
6070 Int_Real : Boolean) return Range_Membership
6071 is
6072 Val : Uint;
6073 Valr : Ureal;
6074
6075 pragma Warnings (Off, Assume_Valid);
6076 -- For now Assume_Valid is unreferenced since the current implementation
6077 -- always returns Unknown if N is not a compile time known value, but we
6078 -- keep the parameter to allow for future enhancements in which we try
6079 -- to get the information in the variable case as well.
6080
6081 begin
7b536495
AC
6082 -- Expression that raises constraint error is an odd case. We certainly
6083 -- do not want to consider it to be in range. It might make sense to
6084 -- consider it always out of range, but this causes incorrect error
6085 -- messages about static expressions out of range. So we just return
6086 -- Unknown, which is always safe.
6087
6088 if Raises_Constraint_Error (N) then
6089 return Unknown;
6090
305caf42
AC
6091 -- Universal types have no range limits, so always in range
6092
7b536495 6093 elsif Typ = Universal_Integer or else Typ = Universal_Real then
305caf42
AC
6094 return In_Range;
6095
6096 -- Never known if not scalar type. Don't know if this can actually
a90bd866 6097 -- happen, but our spec allows it, so we must check.
305caf42
AC
6098
6099 elsif not Is_Scalar_Type (Typ) then
6100 return Unknown;
6101
6102 -- Never known if this is a generic type, since the bounds of generic
6103 -- types are junk. Note that if we only checked for static expressions
6104 -- (instead of compile time known values) below, we would not need this
6105 -- check, because values of a generic type can never be static, but they
6106 -- can be known at compile time.
6107
6108 elsif Is_Generic_Type (Typ) then
6109 return Unknown;
6110
7b536495
AC
6111 -- Case of a known compile time value, where we can check if it is in
6112 -- the bounds of the given type.
305caf42 6113
7b536495 6114 elsif Compile_Time_Known_Value (N) then
305caf42
AC
6115 declare
6116 Lo : Node_Id;
6117 Hi : Node_Id;
6118
6119 LB_Known : Boolean;
6120 HB_Known : Boolean;
6121
6122 begin
6123 Lo := Type_Low_Bound (Typ);
6124 Hi := Type_High_Bound (Typ);
6125
6126 LB_Known := Compile_Time_Known_Value (Lo);
6127 HB_Known := Compile_Time_Known_Value (Hi);
6128
6129 -- Fixed point types should be considered as such only if flag
6130 -- Fixed_Int is set to False.
6131
6132 if Is_Floating_Point_Type (Typ)
6133 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6134 or else Int_Real
6135 then
6136 Valr := Expr_Value_R (N);
6137
6138 if LB_Known and HB_Known then
6139 if Valr >= Expr_Value_R (Lo)
6140 and then
6141 Valr <= Expr_Value_R (Hi)
6142 then
6143 return In_Range;
6144 else
6145 return Out_Of_Range;
6146 end if;
6147
6148 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6149 or else
6150 (HB_Known and then Valr > Expr_Value_R (Hi))
6151 then
6152 return Out_Of_Range;
6153
6154 else
6155 return Unknown;
6156 end if;
6157
6158 else
6159 Val := Expr_Value (N);
6160
6161 if LB_Known and HB_Known then
80298c3b 6162 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
305caf42
AC
6163 then
6164 return In_Range;
6165 else
6166 return Out_Of_Range;
6167 end if;
6168
6169 elsif (LB_Known and then Val < Expr_Value (Lo))
6170 or else
6171 (HB_Known and then Val > Expr_Value (Hi))
6172 then
6173 return Out_Of_Range;
6174
6175 else
6176 return Unknown;
6177 end if;
6178 end if;
6179 end;
7b536495
AC
6180
6181 -- Here for value not known at compile time. Case of expression subtype
6182 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6183 -- In this case we know it is in range without knowing its value.
6184
6185 elsif Assume_Valid
6186 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6187 then
6188 return In_Range;
6189
6190 -- For all other cases, result is unknown
6191
6192 else
6193 return Unknown;
305caf42
AC
6194 end if;
6195 end Test_In_Range;
6196
996ae0b0
RK
6197 --------------
6198 -- To_Bits --
6199 --------------
6200
6201 procedure To_Bits (U : Uint; B : out Bits) is
6202 begin
6203 for J in 0 .. B'Last loop
6204 B (J) := (U / (2 ** J)) mod 2 /= 0;
6205 end loop;
6206 end To_Bits;
6207
fbf5a39b
AC
6208 --------------------
6209 -- Why_Not_Static --
6210 --------------------
6211
6212 procedure Why_Not_Static (Expr : Node_Id) is
6213 N : constant Node_Id := Original_Node (Expr);
6214 Typ : Entity_Id;
6215 E : Entity_Id;
edab6088
RD
6216 Alt : Node_Id;
6217 Exp : Node_Id;
fbf5a39b
AC
6218
6219 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
6220 -- A version that can be called on a list of expressions. Finds all
6221 -- non-static violations in any element of the list.
fbf5a39b
AC
6222
6223 -------------------------
6224 -- Why_Not_Static_List --
6225 -------------------------
6226
6227 procedure Why_Not_Static_List (L : List_Id) is
6228 N : Node_Id;
fbf5a39b
AC
6229 begin
6230 if Is_Non_Empty_List (L) then
6231 N := First (L);
6232 while Present (N) loop
6233 Why_Not_Static (N);
6234 Next (N);
6235 end loop;
6236 end if;
6237 end Why_Not_Static_List;
6238
6239 -- Start of processing for Why_Not_Static
6240
6241 begin
fbf5a39b
AC
6242 -- Ignore call on error or empty node
6243
6244 if No (Expr) or else Nkind (Expr) = N_Error then
6245 return;
6246 end if;
6247
6248 -- Preprocessing for sub expressions
6249
6250 if Nkind (Expr) in N_Subexpr then
6251
6252 -- Nothing to do if expression is static
6253
6254 if Is_OK_Static_Expression (Expr) then
6255 return;
6256 end if;
6257
6258 -- Test for constraint error raised
6259
6260 if Raises_Constraint_Error (Expr) then
edab6088
RD
6261
6262 -- Special case membership to find out which piece to flag
6263
6264 if Nkind (N) in N_Membership_Test then
6265 if Raises_Constraint_Error (Left_Opnd (N)) then
6266 Why_Not_Static (Left_Opnd (N));
6267 return;
6268
6269 elsif Present (Right_Opnd (N))
6270 and then Raises_Constraint_Error (Right_Opnd (N))
6271 then
6272 Why_Not_Static (Right_Opnd (N));
6273 return;
6274
6275 else
6276 pragma Assert (Present (Alternatives (N)));
6277
6278 Alt := First (Alternatives (N));
6279 while Present (Alt) loop
6280 if Raises_Constraint_Error (Alt) then
6281 Why_Not_Static (Alt);
6282 return;
6283 else
6284 Next (Alt);
6285 end if;
6286 end loop;
6287 end if;
6288
6289 -- Special case a range to find out which bound to flag
6290
6291 elsif Nkind (N) = N_Range then
6292 if Raises_Constraint_Error (Low_Bound (N)) then
6293 Why_Not_Static (Low_Bound (N));
6294 return;
6295
6296 elsif Raises_Constraint_Error (High_Bound (N)) then
6297 Why_Not_Static (High_Bound (N));
6298 return;
6299 end if;
6300
6301 -- Special case attribute to see which part to flag
6302
6303 elsif Nkind (N) = N_Attribute_Reference then
6304 if Raises_Constraint_Error (Prefix (N)) then
6305 Why_Not_Static (Prefix (N));
6306 return;
6307 end if;
6308
6309 if Present (Expressions (N)) then
6310 Exp := First (Expressions (N));
6311 while Present (Exp) loop
6312 if Raises_Constraint_Error (Exp) then
6313 Why_Not_Static (Exp);
6314 return;
6315 end if;
6316
6317 Next (Exp);
6318 end loop;
6319 end if;
6320
6321 -- Special case a subtype name
6322
6323 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6324 Error_Msg_NE
6325 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6326 return;
6327 end if;
6328
6329 -- End of special cases
6330
fbf5a39b 6331 Error_Msg_N
80298c3b
AC
6332 ("!expression raises exception, cannot be static (RM 4.9(34))",
6333 N);
fbf5a39b
AC
6334 return;
6335 end if;
6336
6337 -- If no type, then something is pretty wrong, so ignore
6338
6339 Typ := Etype (Expr);
6340
6341 if No (Typ) then
6342 return;
6343 end if;
6344
65f7ed64
AC
6345 -- Type must be scalar or string type (but allow Bignum, since this
6346 -- is really a scalar type from our point of view in this diagnosis).
fbf5a39b
AC
6347
6348 if not Is_Scalar_Type (Typ)
6349 and then not Is_String_Type (Typ)
65f7ed64 6350 and then not Is_RTE (Typ, RE_Bignum)
fbf5a39b
AC
6351 then
6352 Error_Msg_N
c8a3028c 6353 ("!static expression must have scalar or string type " &
8fde064e 6354 "(RM 4.9(2))", N);
fbf5a39b
AC
6355 return;
6356 end if;
6357 end if;
6358
6359 -- If we got through those checks, test particular node kind
6360
6361 case Nkind (N) is
8fde064e
AC
6362
6363 -- Entity name
6364
fbf5a39b
AC
6365 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
6366 E := Entity (N);
6367
6368 if Is_Named_Number (E) then
6369 null;
6370
6371 elsif Ekind (E) = E_Constant then
8fde064e
AC
6372
6373 -- One case we can give a metter message is when we have a
6374 -- string literal created by concatenating an aggregate with
6375 -- an others expression.
6376
6377 Entity_Case : declare
6378 CV : constant Node_Id := Constant_Value (E);
6379 CO : constant Node_Id := Original_Node (CV);
6380
6381 function Is_Aggregate (N : Node_Id) return Boolean;
6382 -- See if node N came from an others aggregate, if so
6383 -- return True and set Error_Msg_Sloc to aggregate.
6384
6385 ------------------
6386 -- Is_Aggregate --
6387 ------------------
6388
6389 function Is_Aggregate (N : Node_Id) return Boolean is
6390 begin
6391 if Nkind (Original_Node (N)) = N_Aggregate then
6392 Error_Msg_Sloc := Sloc (Original_Node (N));
6393 return True;
80298c3b 6394
8fde064e
AC
6395 elsif Is_Entity_Name (N)
6396 and then Ekind (Entity (N)) = E_Constant
6397 and then
6398 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6399 N_Aggregate
6400 then
6401 Error_Msg_Sloc :=
6402 Sloc (Original_Node (Constant_Value (Entity (N))));
6403 return True;
80298c3b 6404
8fde064e
AC
6405 else
6406 return False;
6407 end if;
6408 end Is_Aggregate;
6409
6410 -- Start of processing for Entity_Case
6411
6412 begin
6413 if Is_Aggregate (CV)
6414 or else (Nkind (CO) = N_Op_Concat
6415 and then (Is_Aggregate (Left_Opnd (CO))
6416 or else
6417 Is_Aggregate (Right_Opnd (CO))))
6418 then
c8a3028c 6419 Error_Msg_N ("!aggregate (#) is never static", N);
8fde064e 6420
aa500b7a 6421 elsif No (CV) or else not Is_Static_Expression (CV) then
8fde064e 6422 Error_Msg_NE
c8a3028c 6423 ("!& is not a static constant (RM 4.9(5))", N, E);
8fde064e
AC
6424 end if;
6425 end Entity_Case;
fbf5a39b 6426
edab6088
RD
6427 elsif Is_Type (E) then
6428 Error_Msg_NE
6429 ("!& is not a static subtype (RM 4.9(26))", N, E);
6430
fbf5a39b
AC
6431 else
6432 Error_Msg_NE
c8a3028c 6433 ("!& is not static constant or named number "
8fde064e 6434 & "(RM 4.9(5))", N, E);
fbf5a39b
AC
6435 end if;
6436
8fde064e
AC
6437 -- Binary operator
6438
514d0fc5 6439 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
fbf5a39b
AC
6440 if Nkind (N) in N_Op_Shift then
6441 Error_Msg_N
c8a3028c 6442 ("!shift functions are never static (RM 4.9(6,18))", N);
fbf5a39b
AC
6443 else
6444 Why_Not_Static (Left_Opnd (N));
6445 Why_Not_Static (Right_Opnd (N));
6446 end if;
6447
8fde064e
AC
6448 -- Unary operator
6449
fbf5a39b
AC
6450 when N_Unary_Op =>
6451 Why_Not_Static (Right_Opnd (N));
6452
8fde064e
AC
6453 -- Attribute reference
6454
fbf5a39b
AC
6455 when N_Attribute_Reference =>
6456 Why_Not_Static_List (Expressions (N));
6457
6458 E := Etype (Prefix (N));
6459
6460 if E = Standard_Void_Type then
6461 return;
6462 end if;
6463
6464 -- Special case non-scalar'Size since this is a common error
6465
6466 if Attribute_Name (N) = Name_Size then
6467 Error_Msg_N
c8a3028c 6468 ("!size attribute is only static for static scalar type "
8fde064e 6469 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
6470
6471 -- Flag array cases
6472
6473 elsif Is_Array_Type (E) then
80298c3b
AC
6474 if not Nam_In (Attribute_Name (N), Name_First,
6475 Name_Last,
6476 Name_Length)
fbf5a39b
AC
6477 then
6478 Error_Msg_N
c8a3028c 6479 ("!static array attribute must be Length, First, or Last "
8fde064e 6480 & "(RM 4.9(8))", N);
fbf5a39b
AC
6481
6482 -- Since we know the expression is not-static (we already
6483 -- tested for this, must mean array is not static).
6484
6485 else
6486 Error_Msg_N
c8a3028c 6487 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
fbf5a39b
AC
6488 end if;
6489
6490 return;
6491
22cb89b5
AC
6492 -- Special case generic types, since again this is a common source
6493 -- of confusion.
fbf5a39b 6494
80298c3b 6495 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
fbf5a39b 6496 Error_Msg_N
c8a3028c 6497 ("!attribute of generic type is never static "
8fde064e 6498 & "(RM 4.9(7,8))", N);
fbf5a39b 6499
edab6088 6500 elsif Is_OK_Static_Subtype (E) then
fbf5a39b
AC
6501 null;
6502
6503 elsif Is_Scalar_Type (E) then
6504 Error_Msg_N
c8a3028c 6505 ("!prefix type for attribute is not static scalar subtype "
8fde064e 6506 & "(RM 4.9(7))", N);
fbf5a39b
AC
6507
6508 else
6509 Error_Msg_N
c8a3028c 6510 ("!static attribute must apply to array/scalar type "
8fde064e 6511 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
6512 end if;
6513
8fde064e
AC
6514 -- String literal
6515
fbf5a39b
AC
6516 when N_String_Literal =>
6517 Error_Msg_N
c8a3028c 6518 ("!subtype of string literal is non-static (RM 4.9(4))", N);
8fde064e
AC
6519
6520 -- Explicit dereference
fbf5a39b
AC
6521
6522 when N_Explicit_Dereference =>
6523 Error_Msg_N
c8a3028c 6524 ("!explicit dereference is never static (RM 4.9)", N);
8fde064e
AC
6525
6526 -- Function call
fbf5a39b
AC
6527
6528 when N_Function_Call =>
6529 Why_Not_Static_List (Parameter_Associations (N));
65f7ed64
AC
6530
6531 -- Complain about non-static function call unless we have Bignum
6532 -- which means that the underlying expression is really some
6533 -- scalar arithmetic operation.
6534
6535 if not Is_RTE (Typ, RE_Bignum) then
c8a3028c 6536 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
65f7ed64 6537 end if;
fbf5a39b 6538
8fde064e
AC
6539 -- Parameter assocation (test actual parameter)
6540
fbf5a39b
AC
6541 when N_Parameter_Association =>
6542 Why_Not_Static (Explicit_Actual_Parameter (N));
6543
8fde064e
AC
6544 -- Indexed component
6545
fbf5a39b 6546 when N_Indexed_Component =>
c8a3028c 6547 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
8fde064e
AC
6548
6549 -- Procedure call
fbf5a39b
AC
6550
6551 when N_Procedure_Call_Statement =>
c8a3028c 6552 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
8fde064e
AC
6553
6554 -- Qualified expression (test expression)
fbf5a39b
AC
6555
6556 when N_Qualified_Expression =>
6557 Why_Not_Static (Expression (N));
6558
8fde064e
AC
6559 -- Aggregate
6560
fbf5a39b 6561 when N_Aggregate | N_Extension_Aggregate =>
c8a3028c 6562 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
8fde064e
AC
6563
6564 -- Range
fbf5a39b
AC
6565
6566 when N_Range =>
6567 Why_Not_Static (Low_Bound (N));
6568 Why_Not_Static (High_Bound (N));
6569
8fde064e
AC
6570 -- Range constraint, test range expression
6571
fbf5a39b
AC
6572 when N_Range_Constraint =>
6573 Why_Not_Static (Range_Expression (N));
6574
8fde064e
AC
6575 -- Subtype indication, test constraint
6576
fbf5a39b
AC
6577 when N_Subtype_Indication =>
6578 Why_Not_Static (Constraint (N));
6579
8fde064e
AC
6580 -- Selected component
6581
fbf5a39b 6582 when N_Selected_Component =>
c8a3028c 6583 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
8fde064e
AC
6584
6585 -- Slice
fbf5a39b
AC
6586
6587 when N_Slice =>
c8a3028c 6588 Error_Msg_N ("!slice is never static (RM 4.9)", N);
fbf5a39b
AC
6589
6590 when N_Type_Conversion =>
6591 Why_Not_Static (Expression (N));
6592
23b86353 6593 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
edab6088 6594 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
6595 then
6596 Error_Msg_N
c8a3028c 6597 ("!static conversion requires static scalar subtype result "
8fde064e 6598 & "(RM 4.9(9))", N);
fbf5a39b
AC
6599 end if;
6600
8fde064e
AC
6601 -- Unchecked type conversion
6602
fbf5a39b
AC
6603 when N_Unchecked_Type_Conversion =>
6604 Error_Msg_N
c8a3028c 6605 ("!unchecked type conversion is never static (RM 4.9)", N);
8fde064e
AC
6606
6607 -- All other cases, no reason to give
fbf5a39b
AC
6608
6609 when others =>
6610 null;
6611
6612 end case;
6613 end Why_Not_Static;
6614
996ae0b0 6615end Sem_Eval;