]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
scos.ads (In_Decision): Add missing entry for 'a'.
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
011f9d5d 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
d7567964 34with Freeze; use Freeze;
0356699b 35with Lib; use Lib;
13f34a3f 36with Namet; use Namet;
996ae0b0
RK
37with Nmake; use Nmake;
38with Nlists; use Nlists;
39with Opt; use Opt;
65f7ed64 40with Rtsfind; use Rtsfind;
996ae0b0 41with Sem; use Sem;
a4100e55 42with Sem_Aux; use Sem_Aux;
996ae0b0 43with Sem_Cat; use Sem_Cat;
b5bd964f 44with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
45with Sem_Ch8; use Sem_Ch8;
46with Sem_Res; use Sem_Res;
47with Sem_Util; use Sem_Util;
48with Sem_Type; use Sem_Type;
49with Sem_Warn; use Sem_Warn;
50with Sinfo; use Sinfo;
51with Snames; use Snames;
52with Stand; use Stand;
53with Stringt; use Stringt;
07fc65c4 54with Tbuild; use Tbuild;
996ae0b0
RK
55
56package body Sem_Eval is
57
58 -----------------------------------------
59 -- Handling of Compile Time Evaluation --
60 -----------------------------------------
61
62 -- The compile time evaluation of expressions is distributed over several
f3d57416 63 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
64 -- a subexpression is resolved and is therefore accomplished in a bottom
65 -- up fashion. The flags are synthesized using the following approach.
66
67 -- Is_Static_Expression is determined by following the detailed rules
68 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
69 -- flag of the operands in many cases.
70
71 -- Raises_Constraint_Error is set if any of the operands have the flag
72 -- set or if an attempt to compute the value of the current expression
73 -- results in detection of a runtime constraint error.
74
75 -- As described in the spec, the requirement is that Is_Static_Expression
76 -- be accurately set, and in addition for nodes for which this flag is set,
77 -- Raises_Constraint_Error must also be set. Furthermore a node which has
78 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
79 -- requirement is that the expression value must be precomputed, and the
80 -- node is either a literal, or the name of a constant entity whose value
81 -- is a static expression.
82
83 -- The general approach is as follows. First compute Is_Static_Expression.
84 -- If the node is not static, then the flag is left off in the node and
85 -- we are all done. Otherwise for a static node, we test if any of the
86 -- operands will raise constraint error, and if so, propagate the flag
87 -- Raises_Constraint_Error to the result node and we are done (since the
88 -- error was already posted at a lower level).
89
90 -- For the case of a static node whose operands do not raise constraint
91 -- error, we attempt to evaluate the node. If this evaluation succeeds,
92 -- then the node is replaced by the result of this computation. If the
93 -- evaluation raises constraint error, then we rewrite the node with
94 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
95 -- to post appropriate error messages.
96
97 ----------------
98 -- Local Data --
99 ----------------
100
101 type Bits is array (Nat range <>) of Boolean;
102 -- Used to convert unsigned (modular) values for folding logical ops
103
07fc65c4
GB
104 -- The following definitions are used to maintain a cache of nodes that
105 -- have compile time known values. The cache is maintained only for
106 -- discrete types (the most common case), and is populated by calls to
107 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
108 -- since it is possible for the status to change (in particular it is
109 -- possible for a node to get replaced by a constraint error node).
110
111 CV_Bits : constant := 5;
112 -- Number of low order bits of Node_Id value used to reference entries
113 -- in the cache table.
114
115 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
116 -- Size of cache for compile time values
117
118 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
119
120 type CV_Entry is record
121 N : Node_Id;
122 V : Uint;
123 end record;
124
125 type CV_Cache_Array is array (CV_Range) of CV_Entry;
126
127 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
128 -- This is the actual cache, with entries consisting of node/value pairs,
129 -- and the impossible value Node_High_Bound used for unset entries.
130
305caf42
AC
131 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
132 -- Range membership may either be statically known to be in range or out
133 -- of range, or not statically known. Used for Test_In_Range below.
134
996ae0b0
RK
135 -----------------------
136 -- Local Subprograms --
137 -----------------------
138
996ae0b0
RK
139 function From_Bits (B : Bits; T : Entity_Id) return Uint;
140 -- Converts a bit string of length B'Length to a Uint value to be used
141 -- for a target of type T, which is a modular type. This procedure
142 -- includes the necessary reduction by the modulus in the case of a
143 -- non-binary modulus (for a binary modulus, the bit string is the
144 -- right length any way so all is well).
145
146 function Get_String_Val (N : Node_Id) return Node_Id;
147 -- Given a tree node for a folded string or character value, returns
148 -- the corresponding string literal or character literal (one of the
149 -- two must be available, or the operand would not have been marked
150 -- as foldable in the earlier analysis of the operation).
151
07fc65c4
GB
152 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
153 -- Bits represents the number of bits in an integer value to be computed
154 -- (but the value has not been computed yet). If this value in Bits is
155 -- reasonable, a result of True is returned, with the implication that
156 -- the caller should go ahead and complete the calculation. If the value
157 -- in Bits is unreasonably large, then an error is posted on node N, and
158 -- False is returned (and the caller skips the proposed calculation).
159
996ae0b0
RK
160 procedure Out_Of_Range (N : Node_Id);
161 -- This procedure is called if it is determined that node N, which
162 -- appears in a non-static context, is a compile time known value
163 -- which is outside its range, i.e. the range of Etype. This is used
164 -- in contexts where this is an illegality if N is static, and should
165 -- generate a warning otherwise.
166
167 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
168 -- N and Exp are nodes representing an expression, Exp is known
169 -- to raise CE. N is rewritten in term of Exp in the optimal way.
170
171 function String_Type_Len (Stype : Entity_Id) return Uint;
172 -- Given a string type, determines the length of the index type, or,
173 -- if this index type is non-static, the length of the base type of
174 -- this index type. Note that if the string type is itself static,
175 -- then the index type is static, so the second case applies only
176 -- if the string type passed is non-static.
177
178 function Test (Cond : Boolean) return Uint;
179 pragma Inline (Test);
180 -- This function simply returns the appropriate Boolean'Pos value
181 -- corresponding to the value of Cond as a universal integer. It is
182 -- used for producing the result of the static evaluation of the
183 -- logical operators
184
d7567964 185 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
602a7ec0
AC
186 -- Check whether an arithmetic operation with universal operands which
187 -- is a rewritten function call with an explicit scope indication is
ae77c68b 188 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
602a7ec0
AC
189 -- visible numeric type declared in P and the context does not impose a
190 -- type on the result (e.g. in the expression of a type conversion).
d7567964
TQ
191 -- If ambiguous, emit an error and return Empty, else return the result
192 -- type of the operator.
602a7ec0 193
996ae0b0
RK
194 procedure Test_Expression_Is_Foldable
195 (N : Node_Id;
196 Op1 : Node_Id;
197 Stat : out Boolean;
198 Fold : out Boolean);
199 -- Tests to see if expression N whose single operand is Op1 is foldable,
200 -- i.e. the operand value is known at compile time. If the operation is
201 -- foldable, then Fold is True on return, and Stat indicates whether
9479ded4 202 -- the result is static (i.e. the operand was static). Note that it
996ae0b0
RK
203 -- is quite possible for Fold to be True, and Stat to be False, since
204 -- there are cases in which we know the value of an operand even though
205 -- it is not technically static (e.g. the static lower bound of a range
206 -- whose upper bound is non-static).
207 --
3d5952be 208 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
996ae0b0
RK
209 -- call to Check_Non_Static_Context on the operand. If Fold is False on
210 -- return, then all processing is complete, and the caller should
211 -- return, since there is nothing else to do.
93c3fca7
AC
212 --
213 -- If Stat is set True on return, then Is_Static_Expression is also set
214 -- true in node N. There are some cases where this is over-enthusiastic,
308e6f3a 215 -- e.g. in the two operand case below, for string comparison, the result
93c3fca7
AC
216 -- is not static even though the two operands are static. In such cases,
217 -- the caller must reset the Is_Static_Expression flag in N.
5df1266a
AC
218 --
219 -- If Fold and Stat are both set to False then this routine performs also
220 -- the following extra actions:
221 --
70805b88
AC
222 -- If either operand is Any_Type then propagate it to result to
223 -- prevent cascaded errors.
5df1266a 224 --
70805b88
AC
225 -- If some operand raises constraint error, then replace the node N
226 -- with the raise constraint error node. This replacement inherits the
227 -- Is_Static_Expression flag from the operands.
996ae0b0
RK
228
229 procedure Test_Expression_Is_Foldable
230 (N : Node_Id;
231 Op1 : Node_Id;
232 Op2 : Node_Id;
233 Stat : out Boolean;
234 Fold : out Boolean);
235 -- Same processing, except applies to an expression N with two operands
9479ded4 236 -- Op1 and Op2. The result is static only if both operands are static.
996ae0b0 237
305caf42
AC
238 function Test_In_Range
239 (N : Node_Id;
240 Typ : Entity_Id;
241 Assume_Valid : Boolean;
242 Fixed_Int : Boolean;
243 Int_Real : Boolean) return Range_Membership;
9479ded4
AC
244 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
245 -- or Out_Of_Range if it can be guaranteed at compile time that expression
246 -- N is known to be in or out of range of the subtype Typ. If not compile
247 -- time known, Unknown is returned. See documentation of Is_In_Range for
248 -- complete description of parameters.
305caf42 249
996ae0b0
RK
250 procedure To_Bits (U : Uint; B : out Bits);
251 -- Converts a Uint value to a bit string of length B'Length
252
253 ------------------------------
254 -- Check_Non_Static_Context --
255 ------------------------------
256
257 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
258 T : constant Entity_Id := Etype (N);
259 Checks_On : constant Boolean :=
996ae0b0
RK
260 not Index_Checks_Suppressed (T)
261 and not Range_Checks_Suppressed (T);
262
263 begin
86f0e17a
AC
264 -- Ignore cases of non-scalar types, error types, or universal real
265 -- types that have no usable bounds.
996ae0b0 266
86f0e17a
AC
267 if T = Any_Type
268 or else not Is_Scalar_Type (T)
269 or else T = Universal_Fixed
270 or else T = Universal_Real
271 then
996ae0b0 272 return;
fbf5a39b 273 end if;
996ae0b0 274
86f0e17a
AC
275 -- At this stage we have a scalar type. If we have an expression that
276 -- raises CE, then we already issued a warning or error msg so there
277 -- is nothing more to be done in this routine.
fbf5a39b
AC
278
279 if Raises_Constraint_Error (N) then
280 return;
281 end if;
282
86f0e17a
AC
283 -- Now we have a scalar type which is not marked as raising a constraint
284 -- error exception. The main purpose of this routine is to deal with
285 -- static expressions appearing in a non-static context. That means
286 -- that if we do not have a static expression then there is not much
287 -- to do. The one case that we deal with here is that if we have a
288 -- floating-point value that is out of range, then we post a warning
289 -- that an infinity will result.
fbf5a39b
AC
290
291 if not Is_Static_Expression (N) then
292 if Is_Floating_Point_Type (T)
c800f862 293 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
fbf5a39b
AC
294 then
295 Error_Msg_N
296 ("?float value out of range, infinity will be generated", N);
297 end if;
996ae0b0 298
996ae0b0
RK
299 return;
300 end if;
301
86f0e17a
AC
302 -- Here we have the case of outer level static expression of scalar
303 -- type, where the processing of this procedure is needed.
996ae0b0
RK
304
305 -- For real types, this is where we convert the value to a machine
86f0e17a
AC
306 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
307 -- need to do this if the parent is a constant declaration, since in
308 -- other cases, gigi should do the necessary conversion correctly, but
309 -- experimentation shows that this is not the case on all machines, in
310 -- particular if we do not convert all literals to machine values in
311 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
312 -- and SGI/Irix.
996ae0b0
RK
313
314 if Nkind (N) = N_Real_Literal
315 and then not Is_Machine_Number (N)
316 and then not Is_Generic_Type (Etype (N))
317 and then Etype (N) /= Universal_Real
996ae0b0
RK
318 then
319 -- Check that value is in bounds before converting to machine
320 -- number, so as not to lose case where value overflows in the
321 -- least significant bit or less. See B490001.
322
c800f862 323 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
324 Out_Of_Range (N);
325 return;
326 end if;
327
328 -- Note: we have to copy the node, to avoid problems with conformance
329 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
330
331 Rewrite (N, New_Copy (N));
332
333 if not Is_Floating_Point_Type (T) then
334 Set_Realval
335 (N, Corresponding_Integer_Value (N) * Small_Value (T));
336
337 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 338
86f0e17a
AC
339 -- Note: even though RM 4.9(38) specifies biased rounding, this
340 -- has been modified by AI-100 in order to prevent confusing
341 -- differences in rounding between static and non-static
342 -- expressions. AI-100 specifies that the effect of such rounding
343 -- is implementation dependent, and in GNAT we round to nearest
344 -- even to match the run-time behavior.
996ae0b0 345
fbf5a39b
AC
346 Set_Realval
347 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
348 end if;
349
350 Set_Is_Machine_Number (N);
351 end if;
352
353 -- Check for out of range universal integer. This is a non-static
354 -- context, so the integer value must be in range of the runtime
355 -- representation of universal integers.
356
357 -- We do this only within an expression, because that is the only
358 -- case in which non-static universal integer values can occur, and
359 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
360 -- called in contexts like the expression of a number declaration where
361 -- we certainly want to allow out of range values.
362
363 if Etype (N) = Universal_Integer
364 and then Nkind (N) = N_Integer_Literal
365 and then Nkind (Parent (N)) in N_Subexpr
366 and then
367 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
368 or else
369 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
370 then
371 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
372 (N, "non-static universal integer value out of range?",
373 CE_Range_Check_Failed);
996ae0b0
RK
374
375 -- Check out of range of base type
376
c800f862 377 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
378 Out_Of_Range (N);
379
c800f862
RD
380 -- Give warning if outside subtype (where one or both of the bounds of
381 -- the subtype is static). This warning is omitted if the expression
382 -- appears in a range that could be null (warnings are handled elsewhere
383 -- for this case).
996ae0b0
RK
384
385 elsif T /= Base_Type (T)
386 and then Nkind (Parent (N)) /= N_Range
387 then
c800f862 388 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
389 null;
390
c800f862 391 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 392 Apply_Compile_Time_Constraint_Error
07fc65c4 393 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
394
395 elsif Checks_On then
396 Enable_Range_Check (N);
397
398 else
399 Set_Do_Range_Check (N, False);
400 end if;
401 end if;
402 end Check_Non_Static_Context;
403
404 ---------------------------------
405 -- Check_String_Literal_Length --
406 ---------------------------------
407
408 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
409 begin
410 if not Raises_Constraint_Error (N)
411 and then Is_Constrained (Ttype)
412 then
413 if
414 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
415 then
416 Apply_Compile_Time_Constraint_Error
417 (N, "string length wrong for}?",
07fc65c4 418 CE_Length_Check_Failed,
996ae0b0
RK
419 Ent => Ttype,
420 Typ => Ttype);
421 end if;
422 end if;
423 end Check_String_Literal_Length;
424
425 --------------------------
426 -- Compile_Time_Compare --
427 --------------------------
428
fbf5a39b 429 function Compile_Time_Compare
1c7717c3 430 (L, R : Node_Id;
af02a866
RD
431 Assume_Valid : Boolean) return Compare_Result
432 is
433 Discard : aliased Uint;
434 begin
435 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
436 end Compile_Time_Compare;
437
438 function Compile_Time_Compare
439 (L, R : Node_Id;
440 Diff : access Uint;
1c7717c3
AC
441 Assume_Valid : Boolean;
442 Rec : Boolean := False) return Compare_Result
fbf5a39b 443 is
93c3fca7
AC
444 Ltyp : Entity_Id := Underlying_Type (Etype (L));
445 Rtyp : Entity_Id := Underlying_Type (Etype (R));
1c7717c3
AC
446 -- These get reset to the base type for the case of entities where
447 -- Is_Known_Valid is not set. This takes care of handling possible
448 -- invalid representations using the value of the base type, in
449 -- accordance with RM 13.9.1(10).
996ae0b0 450
af02a866
RD
451 Discard : aliased Uint;
452
996ae0b0
RK
453 procedure Compare_Decompose
454 (N : Node_Id;
455 R : out Node_Id;
456 V : out Uint);
b49365b2
RD
457 -- This procedure decomposes the node N into an expression node and a
458 -- signed offset, so that the value of N is equal to the value of R plus
459 -- the value V (which may be negative). If no such decomposition is
460 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
461
462 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
463 -- This function deals with replacing 'Last and 'First references with
464 -- their corresponding type bounds, which we then can compare. The
465 -- argument is the original node, the result is the identity, unless we
466 -- have a 'Last/'First reference in which case the value returned is the
467 -- appropriate type bound.
996ae0b0 468
57036dcc
ES
469 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
470 -- Even if the context does not assume that values are valid, some
471 -- simple cases can be recognized.
472
996ae0b0 473 function Is_Same_Value (L, R : Node_Id) return Boolean;
86f0e17a
AC
474 -- Returns True iff L and R represent expressions that definitely have
475 -- identical (but not necessarily compile time known) values Indeed the
476 -- caller is expected to have already dealt with the cases of compile
477 -- time known values, so these are not tested here.
996ae0b0
RK
478
479 -----------------------
480 -- Compare_Decompose --
481 -----------------------
482
483 procedure Compare_Decompose
484 (N : Node_Id;
485 R : out Node_Id;
486 V : out Uint)
487 is
488 begin
489 if Nkind (N) = N_Op_Add
490 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
491 then
492 R := Left_Opnd (N);
493 V := Intval (Right_Opnd (N));
494 return;
495
496 elsif Nkind (N) = N_Op_Subtract
497 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
498 then
499 R := Left_Opnd (N);
500 V := UI_Negate (Intval (Right_Opnd (N)));
501 return;
502
503 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
504 if Attribute_Name (N) = Name_Succ then
505 R := First (Expressions (N));
506 V := Uint_1;
507 return;
508
509 elsif Attribute_Name (N) = Name_Pred then
510 R := First (Expressions (N));
511 V := Uint_Minus_1;
512 return;
513 end if;
514 end if;
515
516 R := N;
517 V := Uint_0;
518 end Compare_Decompose;
519
520 -------------------
521 -- Compare_Fixup --
522 -------------------
523
524 function Compare_Fixup (N : Node_Id) return Node_Id is
525 Indx : Node_Id;
526 Xtyp : Entity_Id;
527 Subs : Nat;
528
529 begin
7a6de2e2
AC
530 -- Fixup only required for First/Last attribute reference
531
996ae0b0
RK
532 if Nkind (N) = N_Attribute_Reference
533 and then (Attribute_Name (N) = Name_First
534 or else
535 Attribute_Name (N) = Name_Last)
536 then
537 Xtyp := Etype (Prefix (N));
538
539 -- If we have no type, then just abandon the attempt to do
540 -- a fixup, this is probably the result of some other error.
541
542 if No (Xtyp) then
543 return N;
544 end if;
545
546 -- Dereference an access type
547
548 if Is_Access_Type (Xtyp) then
549 Xtyp := Designated_Type (Xtyp);
550 end if;
551
552 -- If we don't have an array type at this stage, something
553 -- is peculiar, e.g. another error, and we abandon the attempt
554 -- at a fixup.
555
556 if not Is_Array_Type (Xtyp) then
557 return N;
558 end if;
559
560 -- Ignore unconstrained array, since bounds are not meaningful
561
562 if not Is_Constrained (Xtyp) then
563 return N;
564 end if;
565
c3de5c4c
ES
566 if Ekind (Xtyp) = E_String_Literal_Subtype then
567 if Attribute_Name (N) = Name_First then
568 return String_Literal_Low_Bound (Xtyp);
569
5f44f0d4 570 else
c3de5c4c
ES
571 return Make_Integer_Literal (Sloc (N),
572 Intval => Intval (String_Literal_Low_Bound (Xtyp))
57036dcc 573 + String_Literal_Length (Xtyp));
c3de5c4c
ES
574 end if;
575 end if;
576
996ae0b0
RK
577 -- Find correct index type
578
579 Indx := First_Index (Xtyp);
580
581 if Present (Expressions (N)) then
582 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
583
584 for J in 2 .. Subs loop
585 Indx := Next_Index (Indx);
586 end loop;
587 end if;
588
589 Xtyp := Etype (Indx);
590
591 if Attribute_Name (N) = Name_First then
592 return Type_Low_Bound (Xtyp);
7a6de2e2 593 else
996ae0b0
RK
594 return Type_High_Bound (Xtyp);
595 end if;
596 end if;
597
598 return N;
599 end Compare_Fixup;
600
57036dcc
ES
601 ----------------------------
602 -- Is_Known_Valid_Operand --
603 ----------------------------
604
605 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
606 begin
607 return (Is_Entity_Name (Opnd)
608 and then
609 (Is_Known_Valid (Entity (Opnd))
610 or else Ekind (Entity (Opnd)) = E_In_Parameter
611 or else
612 (Ekind (Entity (Opnd)) in Object_Kind
613 and then Present (Current_Value (Entity (Opnd))))))
614 or else Is_OK_Static_Expression (Opnd);
615 end Is_Known_Valid_Operand;
616
996ae0b0
RK
617 -------------------
618 -- Is_Same_Value --
619 -------------------
620
621 function Is_Same_Value (L, R : Node_Id) return Boolean is
622 Lf : constant Node_Id := Compare_Fixup (L);
623 Rf : constant Node_Id := Compare_Fixup (R);
624
fbf5a39b 625 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
626 -- L, R are the Expressions values from two attribute nodes for First
627 -- or Last attributes. Either may be set to No_List if no expressions
628 -- are present (indicating subscript 1). The result is True if both
629 -- expressions represent the same subscript (note one case is where
630 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
631
632 -----------------------
633 -- Is_Same_Subscript --
634 -----------------------
635
636 function Is_Same_Subscript (L, R : List_Id) return Boolean is
637 begin
638 if L = No_List then
639 if R = No_List then
640 return True;
641 else
642 return Expr_Value (First (R)) = Uint_1;
643 end if;
644
645 else
646 if R = No_List then
647 return Expr_Value (First (L)) = Uint_1;
648 else
649 return Expr_Value (First (L)) = Expr_Value (First (R));
650 end if;
651 end if;
652 end Is_Same_Subscript;
653
654 -- Start of processing for Is_Same_Value
655
996ae0b0 656 begin
b49365b2 657 -- Values are the same if they refer to the same entity and the
c800f862
RD
658 -- entity is non-volatile. This does not however apply to Float
659 -- types, since we may have two NaN values and they should never
660 -- compare equal.
996ae0b0 661
f08b2371
RD
662 -- If the entity is a discriminant, the two expressions may be bounds
663 -- of components of objects of the same discriminated type. The
664 -- values of the discriminants are not static, and therefore the
665 -- result is unknown.
666
667 -- It would be better to comment individual branches of this test ???
4fb0b3f0 668
b49365b2
RD
669 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
670 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 671 and then Entity (Lf) = Entity (Rf)
4fb0b3f0 672 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 673 and then Present (Entity (Lf))
fbf5a39b 674 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
675 and then not Is_Volatile_Reference (L)
676 and then not Is_Volatile_Reference (R)
996ae0b0
RK
677 then
678 return True;
679
680 -- Or if they are compile time known and identical
681
682 elsif Compile_Time_Known_Value (Lf)
683 and then
684 Compile_Time_Known_Value (Rf)
685 and then Expr_Value (Lf) = Expr_Value (Rf)
686 then
687 return True;
688
b49365b2
RD
689 -- False if Nkind of the two nodes is different for remaining cases
690
691 elsif Nkind (Lf) /= Nkind (Rf) then
692 return False;
693
694 -- True if both 'First or 'Last values applying to the same entity
695 -- (first and last don't change even if value does). Note that we
696 -- need this even with the calls to Compare_Fixup, to handle the
697 -- case of unconstrained array attributes where Compare_Fixup
698 -- cannot find useful bounds.
996ae0b0
RK
699
700 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0
RK
701 and then Attribute_Name (Lf) = Attribute_Name (Rf)
702 and then (Attribute_Name (Lf) = Name_First
703 or else
704 Attribute_Name (Lf) = Name_Last)
b49365b2
RD
705 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
706 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 707 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 708 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
709 then
710 return True;
711
b49365b2
RD
712 -- True if the same selected component from the same record
713
714 elsif Nkind (Lf) = N_Selected_Component
715 and then Selector_Name (Lf) = Selector_Name (Rf)
716 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
717 then
718 return True;
719
720 -- True if the same unary operator applied to the same operand
721
722 elsif Nkind (Lf) in N_Unary_Op
723 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
724 then
725 return True;
726
8682d22c 727 -- True if the same binary operator applied to the same operands
b49365b2
RD
728
729 elsif Nkind (Lf) in N_Binary_Op
730 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
731 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
732 then
733 return True;
734
8682d22c 735 -- All other cases, we can't tell, so return False
996ae0b0
RK
736
737 else
738 return False;
739 end if;
740 end Is_Same_Value;
741
742 -- Start of processing for Compile_Time_Compare
743
744 begin
af02a866
RD
745 Diff.all := No_Uint;
746
05b34c18
AC
747 -- In preanalysis mode, always return Unknown, it is too early to be
748 -- thinking we know the result of a comparison, save that judgment for
749 -- the full analysis. This is particularly important in the case of
750 -- pre and postconditions, which otherwise can be prematurely collapsed
751 -- into having True or False conditions when this is inappropriate.
752
753 if not Full_Analysis then
754 return Unknown;
755 end if;
756
07fc65c4
GB
757 -- If either operand could raise constraint error, then we cannot
758 -- know the result at compile time (since CE may be raised!)
759
760 if not (Cannot_Raise_Constraint_Error (L)
761 and then
762 Cannot_Raise_Constraint_Error (R))
763 then
764 return Unknown;
765 end if;
766
767 -- Identical operands are most certainly equal
768
996ae0b0
RK
769 if L = R then
770 return EQ;
771
93c3fca7
AC
772 -- If expressions have no types, then do not attempt to determine if
773 -- they are the same, since something funny is going on. One case in
774 -- which this happens is during generic template analysis, when bounds
775 -- are not fully analyzed.
996ae0b0
RK
776
777 elsif No (Ltyp) or else No (Rtyp) then
778 return Unknown;
779
93c3fca7
AC
780 -- We do not attempt comparisons for packed arrays arrays represented as
781 -- modular types, where the semantics of comparison is quite different.
996ae0b0 782
93c3fca7
AC
783 elsif Is_Packed_Array_Type (Ltyp)
784 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
785 then
786 return Unknown;
787
93c3fca7 788 -- For access types, the only time we know the result at compile time
f61580d4 789 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
790 -- know one operand is null and the other is not, or both operands are
791 -- known null.
792
793 elsif Is_Access_Type (Ltyp) then
794 if Known_Null (L) then
795 if Known_Null (R) then
796 return EQ;
797 elsif Known_Non_Null (R) then
798 return NE;
799 else
800 return Unknown;
801 end if;
802
f61580d4 803 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
804 return NE;
805
806 else
807 return Unknown;
808 end if;
809
996ae0b0
RK
810 -- Case where comparison involves two compile time known values
811
812 elsif Compile_Time_Known_Value (L)
813 and then Compile_Time_Known_Value (R)
814 then
815 -- For the floating-point case, we have to be a little careful, since
816 -- at compile time we are dealing with universal exact values, but at
817 -- runtime, these will be in non-exact target form. That's why the
818 -- returned results are LE and GE below instead of LT and GT.
819
820 if Is_Floating_Point_Type (Ltyp)
821 or else
822 Is_Floating_Point_Type (Rtyp)
823 then
824 declare
825 Lo : constant Ureal := Expr_Value_R (L);
826 Hi : constant Ureal := Expr_Value_R (R);
827
828 begin
829 if Lo < Hi then
830 return LE;
831 elsif Lo = Hi then
832 return EQ;
833 else
834 return GE;
835 end if;
836 end;
837
93c3fca7
AC
838 -- For string types, we have two string literals and we proceed to
839 -- compare them using the Ada style dictionary string comparison.
840
841 elsif not Is_Scalar_Type (Ltyp) then
842 declare
843 Lstring : constant String_Id := Strval (Expr_Value_S (L));
844 Rstring : constant String_Id := Strval (Expr_Value_S (R));
845 Llen : constant Nat := String_Length (Lstring);
846 Rlen : constant Nat := String_Length (Rstring);
847
848 begin
849 for J in 1 .. Nat'Min (Llen, Rlen) loop
850 declare
851 LC : constant Char_Code := Get_String_Char (Lstring, J);
852 RC : constant Char_Code := Get_String_Char (Rstring, J);
853 begin
854 if LC < RC then
855 return LT;
856 elsif LC > RC then
857 return GT;
858 end if;
859 end;
860 end loop;
861
862 if Llen < Rlen then
863 return LT;
864 elsif Llen > Rlen then
865 return GT;
866 else
867 return EQ;
868 end if;
869 end;
870
871 -- For remaining scalar cases we know exactly (note that this does
872 -- include the fixed-point case, where we know the run time integer
f61580d4 873 -- values now).
996ae0b0
RK
874
875 else
876 declare
877 Lo : constant Uint := Expr_Value (L);
878 Hi : constant Uint := Expr_Value (R);
879
880 begin
881 if Lo < Hi then
af02a866 882 Diff.all := Hi - Lo;
996ae0b0 883 return LT;
af02a866 884
996ae0b0
RK
885 elsif Lo = Hi then
886 return EQ;
af02a866 887
996ae0b0 888 else
af02a866 889 Diff.all := Lo - Hi;
996ae0b0
RK
890 return GT;
891 end if;
892 end;
893 end if;
894
895 -- Cases where at least one operand is not known at compile time
896
897 else
93c3fca7 898 -- Remaining checks apply only for discrete types
29797f34
RD
899
900 if not Is_Discrete_Type (Ltyp)
901 or else not Is_Discrete_Type (Rtyp)
93c3fca7
AC
902 then
903 return Unknown;
904 end if;
905
906 -- Defend against generic types, or actually any expressions that
907 -- contain a reference to a generic type from within a generic
908 -- template. We don't want to do any range analysis of such
909 -- expressions for two reasons. First, the bounds of a generic type
910 -- itself are junk and cannot be used for any kind of analysis.
911 -- Second, we may have a case where the range at run time is indeed
912 -- known, but we don't want to do compile time analysis in the
913 -- template based on that range since in an instance the value may be
914 -- static, and able to be elaborated without reference to the bounds
915 -- of types involved. As an example, consider:
916
917 -- (F'Pos (F'Last) + 1) > Integer'Last
918
919 -- The expression on the left side of > is Universal_Integer and thus
920 -- acquires the type Integer for evaluation at run time, and at run
921 -- time it is true that this condition is always False, but within
922 -- an instance F may be a type with a static range greater than the
923 -- range of Integer, and the expression statically evaluates to True.
924
925 if References_Generic_Formal_Type (L)
926 or else
927 References_Generic_Formal_Type (R)
29797f34
RD
928 then
929 return Unknown;
930 end if;
931
1c7717c3
AC
932 -- Replace types by base types for the case of entities which are
933 -- not known to have valid representations. This takes care of
934 -- properly dealing with invalid representations.
935
c800f862 936 if not Assume_Valid and then not Assume_No_Invalid_Values then
1c7717c3 937 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
93c3fca7 938 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
939 end if;
940
941 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
93c3fca7 942 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
943 end if;
944 end if;
945
a40ada7e
RD
946 -- First attempt is to decompose the expressions to extract a
947 -- constant offset resulting from the use of any of the forms:
948
949 -- expr + literal
950 -- expr - literal
951 -- typ'Succ (expr)
952 -- typ'Pred (expr)
953
954 -- Then we see if the two expressions are the same value, and if so
955 -- the result is obtained by comparing the offsets.
956
957 -- Note: the reason we do this test first is that it returns only
958 -- decisive results (with diff set), where other tests, like the
959 -- range test, may not be as so decisive. Consider for example
960 -- J .. J + 1. This code can conclude LT with a difference of 1,
961 -- even if the range of J is not known.
962
963 declare
964 Lnode : Node_Id;
965 Loffs : Uint;
966 Rnode : Node_Id;
967 Roffs : Uint;
968
969 begin
970 Compare_Decompose (L, Lnode, Loffs);
971 Compare_Decompose (R, Rnode, Roffs);
972
973 if Is_Same_Value (Lnode, Rnode) then
974 if Loffs = Roffs then
975 return EQ;
976
977 elsif Loffs < Roffs then
978 Diff.all := Roffs - Loffs;
979 return LT;
980
981 else
982 Diff.all := Loffs - Roffs;
983 return GT;
984 end if;
985 end if;
986 end;
987
988 -- Next, try range analysis and see if operand ranges are disjoint
c800f862
RD
989
990 declare
991 LOK, ROK : Boolean;
992 LLo, LHi : Uint;
993 RLo, RHi : Uint;
994
b6b5cca8
AC
995 Single : Boolean;
996 -- True if each range is a single point
997
c800f862
RD
998 begin
999 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1000 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1001
1002 if LOK and ROK then
b6b5cca8
AC
1003 Single := (LLo = LHi) and then (RLo = RHi);
1004
c800f862 1005 if LHi < RLo then
b6b5cca8
AC
1006 if Single and Assume_Valid then
1007 Diff.all := RLo - LLo;
1008 end if;
1009
c800f862
RD
1010 return LT;
1011
1012 elsif RHi < LLo then
b6b5cca8
AC
1013 if Single and Assume_Valid then
1014 Diff.all := LLo - RLo;
1015 end if;
1016
c800f862
RD
1017 return GT;
1018
b6b5cca8 1019 elsif Single and then LLo = RLo then
e27b834b 1020
75ba322d
AC
1021 -- If the range includes a single literal and we can assume
1022 -- validity then the result is known even if an operand is
1023 -- not static.
e27b834b
AC
1024
1025 if Assume_Valid then
1026 return EQ;
e27b834b
AC
1027 else
1028 return Unknown;
1029 end if;
c800f862
RD
1030
1031 elsif LHi = RLo then
1032 return LE;
1033
1034 elsif RHi = LLo then
1035 return GE;
57036dcc
ES
1036
1037 elsif not Is_Known_Valid_Operand (L)
1038 and then not Assume_Valid
1039 then
1040 if Is_Same_Value (L, R) then
1041 return EQ;
1042 else
1043 return Unknown;
1044 end if;
c800f862 1045 end if;
f9ad6b62 1046
2c1b72d7
AC
1047 -- If the range of either operand cannot be determined, nothing
1048 -- further can be inferred.
f9ad6b62 1049
2c1b72d7 1050 else
f9ad6b62 1051 return Unknown;
c800f862
RD
1052 end if;
1053 end;
1054
996ae0b0
RK
1055 -- Here is where we check for comparisons against maximum bounds of
1056 -- types, where we know that no value can be outside the bounds of
1057 -- the subtype. Note that this routine is allowed to assume that all
1058 -- expressions are within their subtype bounds. Callers wishing to
1059 -- deal with possibly invalid values must in any case take special
1060 -- steps (e.g. conversions to larger types) to avoid this kind of
1061 -- optimization, which is always considered to be valid. We do not
1062 -- attempt this optimization with generic types, since the type
1063 -- bounds may not be meaningful in this case.
1064
93c3fca7 1065 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
1066 -- useful to go more than one level deep, so the parameter Rec is
1067 -- used to protect ourselves against this infinite recursion.
1068
29797f34
RD
1069 if not Rec then
1070
fbf5a39b
AC
1071 -- See if we can get a decisive check against one operand and
1072 -- a bound of the other operand (four possible tests here).
93c3fca7
AC
1073 -- Note that we avoid testing junk bounds of a generic type.
1074
1075 if not Is_Generic_Type (Rtyp) then
1076 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1077 Discard'Access,
1078 Assume_Valid, Rec => True)
1079 is
1080 when LT => return LT;
1081 when LE => return LE;
1082 when EQ => return LE;
1083 when others => null;
1084 end case;
fbf5a39b 1085
93c3fca7
AC
1086 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1087 Discard'Access,
1088 Assume_Valid, Rec => True)
1089 is
1090 when GT => return GT;
1091 when GE => return GE;
1092 when EQ => return GE;
1093 when others => null;
1094 end case;
1095 end if;
996ae0b0 1096
93c3fca7
AC
1097 if not Is_Generic_Type (Ltyp) then
1098 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1099 Discard'Access,
1100 Assume_Valid, Rec => True)
1101 is
1102 when GT => return GT;
1103 when GE => return GE;
1104 when EQ => return GE;
1105 when others => null;
1106 end case;
996ae0b0 1107
93c3fca7
AC
1108 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1109 Discard'Access,
1110 Assume_Valid, Rec => True)
1111 is
1112 when LT => return LT;
1113 when LE => return LE;
1114 when EQ => return LE;
1115 when others => null;
1116 end case;
1117 end if;
996ae0b0
RK
1118 end if;
1119
29797f34
RD
1120 -- Next attempt is to see if we have an entity compared with a
1121 -- compile time known value, where there is a current value
1122 -- conditional for the entity which can tell us the result.
1123
1124 declare
1125 Var : Node_Id;
1126 -- Entity variable (left operand)
1127
1128 Val : Uint;
1129 -- Value (right operand)
1130
1131 Inv : Boolean;
1132 -- If False, we have reversed the operands
1133
1134 Op : Node_Kind;
1135 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1136
29797f34
RD
1137 Opn : Node_Id;
1138 -- Value from Get_Current_Value_Condition call
1139
1140 Opv : Uint;
1141 -- Value of Opn
1142
1143 Result : Compare_Result;
1144 -- Known result before inversion
1145
1146 begin
1147 if Is_Entity_Name (L)
1148 and then Compile_Time_Known_Value (R)
1149 then
1150 Var := L;
1151 Val := Expr_Value (R);
1152 Inv := False;
1153
1154 elsif Is_Entity_Name (R)
1155 and then Compile_Time_Known_Value (L)
1156 then
1157 Var := R;
1158 Val := Expr_Value (L);
1159 Inv := True;
1160
1161 -- That was the last chance at finding a compile time result
996ae0b0
RK
1162
1163 else
1164 return Unknown;
1165 end if;
29797f34
RD
1166
1167 Get_Current_Value_Condition (Var, Op, Opn);
1168
1169 -- That was the last chance, so if we got nothing return
1170
1171 if No (Opn) then
1172 return Unknown;
1173 end if;
1174
1175 Opv := Expr_Value (Opn);
1176
1177 -- We got a comparison, so we might have something interesting
1178
1179 -- Convert LE to LT and GE to GT, just so we have fewer cases
1180
1181 if Op = N_Op_Le then
1182 Op := N_Op_Lt;
1183 Opv := Opv + 1;
af02a866 1184
29797f34
RD
1185 elsif Op = N_Op_Ge then
1186 Op := N_Op_Gt;
1187 Opv := Opv - 1;
1188 end if;
1189
1190 -- Deal with equality case
1191
1192 if Op = N_Op_Eq then
1193 if Val = Opv then
1194 Result := EQ;
1195 elsif Opv < Val then
1196 Result := LT;
1197 else
1198 Result := GT;
1199 end if;
1200
1201 -- Deal with inequality case
1202
1203 elsif Op = N_Op_Ne then
1204 if Val = Opv then
1205 Result := NE;
1206 else
1207 return Unknown;
1208 end if;
1209
1210 -- Deal with greater than case
1211
1212 elsif Op = N_Op_Gt then
1213 if Opv >= Val then
1214 Result := GT;
1215 elsif Opv = Val - 1 then
1216 Result := GE;
1217 else
1218 return Unknown;
1219 end if;
1220
1221 -- Deal with less than case
1222
1223 else pragma Assert (Op = N_Op_Lt);
1224 if Opv <= Val then
1225 Result := LT;
1226 elsif Opv = Val + 1 then
1227 Result := LE;
1228 else
1229 return Unknown;
1230 end if;
1231 end if;
1232
1233 -- Deal with inverting result
1234
1235 if Inv then
1236 case Result is
1237 when GT => return LT;
1238 when GE => return LE;
1239 when LT => return GT;
1240 when LE => return GE;
1241 when others => return Result;
1242 end case;
1243 end if;
1244
1245 return Result;
996ae0b0
RK
1246 end;
1247 end if;
1248 end Compile_Time_Compare;
1249
f44fe430
RD
1250 -------------------------------
1251 -- Compile_Time_Known_Bounds --
1252 -------------------------------
1253
1254 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1255 Indx : Node_Id;
1256 Typ : Entity_Id;
1257
1258 begin
1259 if not Is_Array_Type (T) then
1260 return False;
1261 end if;
1262
1263 Indx := First_Index (T);
1264 while Present (Indx) loop
1265 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1266
1267 -- Never look at junk bounds of a generic type
1268
1269 if Is_Generic_Type (Typ) then
1270 return False;
1271 end if;
1272
1273 -- Otherwise check bounds for compile time known
1274
f44fe430
RD
1275 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1276 return False;
1277 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1278 return False;
1279 else
1280 Next_Index (Indx);
1281 end if;
1282 end loop;
1283
1284 return True;
1285 end Compile_Time_Known_Bounds;
1286
996ae0b0
RK
1287 ------------------------------
1288 -- Compile_Time_Known_Value --
1289 ------------------------------
1290
1291 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1292 K : constant Node_Kind := Nkind (Op);
1293 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1294
1295 begin
1296 -- Never known at compile time if bad type or raises constraint error
ee2ba856 1297 -- or empty (latter case occurs only as a result of a previous error).
996ae0b0 1298
ee2ba856
AC
1299 if No (Op) then
1300 Check_Error_Detected;
1301 return False;
1302
1303 elsif Op = Error
996ae0b0
RK
1304 or else Etype (Op) = Any_Type
1305 or else Raises_Constraint_Error (Op)
1306 then
1307 return False;
1308 end if;
1309
597d7158
GD
1310 -- If this is not a static expression or a null literal, and we are in
1311 -- configurable run-time mode, then we consider it not known at compile
1312 -- time. This avoids anomalies where whether something is allowed with a
1313 -- given configurable run-time library depends on how good the compiler
1314 -- is at optimizing and knowing that things are constant when they are
1315 -- nonstatic.
1316
1317 if Configurable_Run_Time_Mode
1318 and then K /= N_Null
1319 and then not Is_Static_Expression (Op)
1320 then
b9daa96e
AC
1321 -- We make an exception for expressions that evaluate to True/False,
1322 -- to suppress spurious checks in ZFP mode. So far we have not seen
1323 -- any negative consequences of this exception.
1324
570104df
AC
1325 if Is_Entity_Name (Op)
1326 and then Ekind (Entity (Op)) = E_Enumeration_Literal
1327 and then Etype (Entity (Op)) = Standard_Boolean
1328 then
1329 null;
1330
1331 else
1332 return False;
1333 end if;
fbf5a39b
AC
1334 end if;
1335
996ae0b0
RK
1336 -- If we have an entity name, then see if it is the name of a constant
1337 -- and if so, test the corresponding constant value, or the name of
1338 -- an enumeration literal, which is always a constant.
1339
1340 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1341 declare
1342 E : constant Entity_Id := Entity (Op);
1343 V : Node_Id;
1344
1345 begin
1346 -- Never known at compile time if it is a packed array value.
1347 -- We might want to try to evaluate these at compile time one
1348 -- day, but we do not make that attempt now.
1349
1350 if Is_Packed_Array_Type (Etype (Op)) then
1351 return False;
1352 end if;
1353
1354 if Ekind (E) = E_Enumeration_Literal then
1355 return True;
1356
db664118
AC
1357 -- In Alfa mode, the value of deferred constants should be ignored
1358 -- outside the scope of their full view. This allows parameterized
1359 -- formal verification, in which a deferred constant value if not
1360 -- known from client units.
1361
1362 elsif Ekind (E) = E_Constant
1363 and then not (Alfa_Mode
1364 and then Present (Full_View (E))
1365 and then not In_Open_Scopes (Scope (E)))
1366 then
996ae0b0
RK
1367 V := Constant_Value (E);
1368 return Present (V) and then Compile_Time_Known_Value (V);
1369 end if;
1370 end;
1371
1372 -- We have a value, see if it is compile time known
1373
1374 else
07fc65c4 1375 -- Integer literals are worth storing in the cache
996ae0b0 1376
07fc65c4
GB
1377 if K = N_Integer_Literal then
1378 CV_Ent.N := Op;
1379 CV_Ent.V := Intval (Op);
1380 return True;
1381
1382 -- Other literals and NULL are known at compile time
1383
1384 elsif
996ae0b0
RK
1385 K = N_Character_Literal
1386 or else
1387 K = N_Real_Literal
1388 or else
1389 K = N_String_Literal
1390 or else
1391 K = N_Null
1392 then
1393 return True;
1394
1395 -- Any reference to Null_Parameter is known at compile time. No
1396 -- other attribute references (that have not already been folded)
1397 -- are known at compile time.
1398
1399 elsif K = N_Attribute_Reference then
1400 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1401 end if;
996ae0b0 1402 end if;
07fc65c4
GB
1403
1404 -- If we fall through, not known at compile time
1405
1406 return False;
1407
1408 -- If we get an exception while trying to do this test, then some error
1409 -- has occurred, and we simply say that the value is not known after all
1410
1411 exception
1412 when others =>
1413 return False;
996ae0b0
RK
1414 end Compile_Time_Known_Value;
1415
1416 --------------------------------------
1417 -- Compile_Time_Known_Value_Or_Aggr --
1418 --------------------------------------
1419
1420 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1421 begin
1422 -- If we have an entity name, then see if it is the name of a constant
1423 -- and if so, test the corresponding constant value, or the name of
1424 -- an enumeration literal, which is always a constant.
1425
1426 if Is_Entity_Name (Op) then
1427 declare
1428 E : constant Entity_Id := Entity (Op);
1429 V : Node_Id;
1430
1431 begin
1432 if Ekind (E) = E_Enumeration_Literal then
1433 return True;
1434
1435 elsif Ekind (E) /= E_Constant then
1436 return False;
1437
1438 else
1439 V := Constant_Value (E);
1440 return Present (V)
1441 and then Compile_Time_Known_Value_Or_Aggr (V);
1442 end if;
1443 end;
1444
1445 -- We have a value, see if it is compile time known
1446
1447 else
1448 if Compile_Time_Known_Value (Op) then
1449 return True;
1450
1451 elsif Nkind (Op) = N_Aggregate then
1452
1453 if Present (Expressions (Op)) then
1454 declare
1455 Expr : Node_Id;
1456
1457 begin
1458 Expr := First (Expressions (Op));
1459 while Present (Expr) loop
1460 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1461 return False;
1462 end if;
1463
1464 Next (Expr);
1465 end loop;
1466 end;
1467 end if;
1468
1469 if Present (Component_Associations (Op)) then
1470 declare
1471 Cass : Node_Id;
1472
1473 begin
1474 Cass := First (Component_Associations (Op));
1475 while Present (Cass) loop
1476 if not
1477 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1478 then
1479 return False;
1480 end if;
1481
1482 Next (Cass);
1483 end loop;
1484 end;
1485 end if;
1486
1487 return True;
1488
1489 -- All other types of values are not known at compile time
1490
1491 else
1492 return False;
1493 end if;
1494
1495 end if;
1496 end Compile_Time_Known_Value_Or_Aggr;
1497
1498 -----------------
1499 -- Eval_Actual --
1500 -----------------
1501
1502 -- This is only called for actuals of functions that are not predefined
1503 -- operators (which have already been rewritten as operators at this
1504 -- stage), so the call can never be folded, and all that needs doing for
1505 -- the actual is to do the check for a non-static context.
1506
1507 procedure Eval_Actual (N : Node_Id) is
1508 begin
1509 Check_Non_Static_Context (N);
1510 end Eval_Actual;
1511
1512 --------------------
1513 -- Eval_Allocator --
1514 --------------------
1515
1516 -- Allocators are never static, so all we have to do is to do the
1517 -- check for a non-static context if an expression is present.
1518
1519 procedure Eval_Allocator (N : Node_Id) is
1520 Expr : constant Node_Id := Expression (N);
1521
1522 begin
1523 if Nkind (Expr) = N_Qualified_Expression then
1524 Check_Non_Static_Context (Expression (Expr));
1525 end if;
1526 end Eval_Allocator;
1527
1528 ------------------------
1529 -- Eval_Arithmetic_Op --
1530 ------------------------
1531
1532 -- Arithmetic operations are static functions, so the result is static
1533 -- if both operands are static (RM 4.9(7), 4.9(20)).
1534
1535 procedure Eval_Arithmetic_Op (N : Node_Id) is
1536 Left : constant Node_Id := Left_Opnd (N);
1537 Right : constant Node_Id := Right_Opnd (N);
1538 Ltype : constant Entity_Id := Etype (Left);
1539 Rtype : constant Entity_Id := Etype (Right);
d7567964 1540 Otype : Entity_Id := Empty;
996ae0b0
RK
1541 Stat : Boolean;
1542 Fold : Boolean;
1543
1544 begin
1545 -- If not foldable we are done
1546
1547 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1548
1549 if not Fold then
1550 return;
1551 end if;
1552
d7567964
TQ
1553 if Is_Universal_Numeric_Type (Etype (Left))
1554 and then
1555 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 1556 then
d7567964 1557 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
1558 end if;
1559
996ae0b0
RK
1560 -- Fold for cases where both operands are of integer type
1561
1562 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1563 declare
1564 Left_Int : constant Uint := Expr_Value (Left);
1565 Right_Int : constant Uint := Expr_Value (Right);
1566 Result : Uint;
1567
1568 begin
1569 case Nkind (N) is
1570
1571 when N_Op_Add =>
1572 Result := Left_Int + Right_Int;
1573
1574 when N_Op_Subtract =>
1575 Result := Left_Int - Right_Int;
1576
1577 when N_Op_Multiply =>
1578 if OK_Bits
1579 (N, UI_From_Int
1580 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1581 then
1582 Result := Left_Int * Right_Int;
1583 else
1584 Result := Left_Int;
1585 end if;
1586
1587 when N_Op_Divide =>
1588
1589 -- The exception Constraint_Error is raised by integer
1590 -- division, rem and mod if the right operand is zero.
1591
1592 if Right_Int = 0 then
1593 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1594 (N, "division by zero",
1595 CE_Divide_By_Zero,
1596 Warn => not Stat);
996ae0b0 1597 return;
fbf5a39b 1598
996ae0b0
RK
1599 else
1600 Result := Left_Int / Right_Int;
1601 end if;
1602
1603 when N_Op_Mod =>
1604
1605 -- The exception Constraint_Error is raised by integer
1606 -- division, rem and mod if the right operand is zero.
1607
1608 if Right_Int = 0 then
1609 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1610 (N, "mod with zero divisor",
1611 CE_Divide_By_Zero,
1612 Warn => not Stat);
996ae0b0
RK
1613 return;
1614 else
1615 Result := Left_Int mod Right_Int;
1616 end if;
1617
1618 when N_Op_Rem =>
1619
1620 -- The exception Constraint_Error is raised by integer
1621 -- division, rem and mod if the right operand is zero.
1622
1623 if Right_Int = 0 then
1624 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1625 (N, "rem with zero divisor",
1626 CE_Divide_By_Zero,
1627 Warn => not Stat);
996ae0b0 1628 return;
fbf5a39b 1629
996ae0b0
RK
1630 else
1631 Result := Left_Int rem Right_Int;
1632 end if;
1633
1634 when others =>
1635 raise Program_Error;
1636 end case;
1637
1638 -- Adjust the result by the modulus if the type is a modular type
1639
1640 if Is_Modular_Integer_Type (Ltype) then
1641 Result := Result mod Modulus (Ltype);
82c80734
RD
1642
1643 -- For a signed integer type, check non-static overflow
1644
1645 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1646 declare
1647 BT : constant Entity_Id := Base_Type (Ltype);
1648 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1649 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1650 begin
1651 if Result < Lo or else Result > Hi then
1652 Apply_Compile_Time_Constraint_Error
1653 (N, "value not in range of }?",
1654 CE_Overflow_Check_Failed,
1655 Ent => BT);
1656 return;
1657 end if;
1658 end;
996ae0b0
RK
1659 end if;
1660
82c80734
RD
1661 -- If we get here we can fold the result
1662
fbf5a39b 1663 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1664 end;
1665
d7567964
TQ
1666 -- Cases where at least one operand is a real. We handle the cases of
1667 -- both reals, or mixed/real integer cases (the latter happen only for
1668 -- divide and multiply, and the result is always real).
996ae0b0
RK
1669
1670 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1671 declare
1672 Left_Real : Ureal;
1673 Right_Real : Ureal;
1674 Result : Ureal;
1675
1676 begin
1677 if Is_Real_Type (Ltype) then
1678 Left_Real := Expr_Value_R (Left);
1679 else
1680 Left_Real := UR_From_Uint (Expr_Value (Left));
1681 end if;
1682
1683 if Is_Real_Type (Rtype) then
1684 Right_Real := Expr_Value_R (Right);
1685 else
1686 Right_Real := UR_From_Uint (Expr_Value (Right));
1687 end if;
1688
1689 if Nkind (N) = N_Op_Add then
1690 Result := Left_Real + Right_Real;
1691
1692 elsif Nkind (N) = N_Op_Subtract then
1693 Result := Left_Real - Right_Real;
1694
1695 elsif Nkind (N) = N_Op_Multiply then
1696 Result := Left_Real * Right_Real;
1697
1698 else pragma Assert (Nkind (N) = N_Op_Divide);
1699 if UR_Is_Zero (Right_Real) then
1700 Apply_Compile_Time_Constraint_Error
07fc65c4 1701 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1702 return;
1703 end if;
1704
1705 Result := Left_Real / Right_Real;
1706 end if;
1707
fbf5a39b 1708 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1709 end;
1710 end if;
d7567964
TQ
1711
1712 -- If the operator was resolved to a specific type, make sure that type
1713 -- is frozen even if the expression is folded into a literal (which has
1714 -- a universal type).
1715
1716 if Present (Otype) then
1717 Freeze_Before (N, Otype);
1718 end if;
996ae0b0
RK
1719 end Eval_Arithmetic_Op;
1720
1721 ----------------------------
1722 -- Eval_Character_Literal --
1723 ----------------------------
1724
1725 -- Nothing to be done!
1726
1727 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1728 pragma Warnings (Off, N);
996ae0b0
RK
1729 begin
1730 null;
1731 end Eval_Character_Literal;
1732
c01a9391
AC
1733 ---------------
1734 -- Eval_Call --
1735 ---------------
1736
1737 -- Static function calls are either calls to predefined operators
1738 -- with static arguments, or calls to functions that rename a literal.
1739 -- Only the latter case is handled here, predefined operators are
1740 -- constant-folded elsewhere.
29797f34 1741
c01a9391
AC
1742 -- If the function is itself inherited (see 7423-001) the literal of
1743 -- the parent type must be explicitly converted to the return type
1744 -- of the function.
1745
1746 procedure Eval_Call (N : Node_Id) is
1747 Loc : constant Source_Ptr := Sloc (N);
1748 Typ : constant Entity_Id := Etype (N);
1749 Lit : Entity_Id;
1750
1751 begin
1752 if Nkind (N) = N_Function_Call
1753 and then No (Parameter_Associations (N))
1754 and then Is_Entity_Name (Name (N))
1755 and then Present (Alias (Entity (Name (N))))
1756 and then Is_Enumeration_Type (Base_Type (Typ))
1757 then
b81a5940 1758 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
1759
1760 if Ekind (Lit) = E_Enumeration_Literal then
1761 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1762 Rewrite
1763 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1764 else
1765 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1766 end if;
1767
1768 Resolve (N, Typ);
1769 end if;
1770 end if;
1771 end Eval_Call;
1772
19d846a0
RD
1773 --------------------------
1774 -- Eval_Case_Expression --
1775 --------------------------
1776
ed7b9d6e
AC
1777 -- A conditional expression is static if all its conditions and dependent
1778 -- expressions are static.
19d846a0
RD
1779
1780 procedure Eval_Case_Expression (N : Node_Id) is
ed7b9d6e
AC
1781 Alt : Node_Id;
1782 Choice : Node_Id;
1783 Is_Static : Boolean;
1784 Result : Node_Id;
1785 Val : Uint;
19d846a0
RD
1786
1787 begin
ed7b9d6e
AC
1788 Result := Empty;
1789 Is_Static := True;
1790
1791 if Is_Static_Expression (Expression (N)) then
1792 Val := Expr_Value (Expression (N));
1793
1794 else
1795 Check_Non_Static_Context (Expression (N));
1796 Is_Static := False;
1797 end if;
19d846a0
RD
1798
1799 Alt := First (Alternatives (N));
ed7b9d6e
AC
1800
1801 Search : while Present (Alt) loop
1802 if not Is_Static
1803 or else not Is_Static_Expression (Expression (Alt))
1804 then
1805 Check_Non_Static_Context (Expression (Alt));
1806 Is_Static := False;
1807
1808 else
1809 Choice := First (Discrete_Choices (Alt));
1810 while Present (Choice) loop
1811 if Nkind (Choice) = N_Others_Choice then
1812 Result := Expression (Alt);
1813 exit Search;
1814
1815 elsif Expr_Value (Choice) = Val then
1816 Result := Expression (Alt);
1817 exit Search;
1818
1819 else
1820 Next (Choice);
1821 end if;
1822 end loop;
1823 end if;
1824
19d846a0 1825 Next (Alt);
ed7b9d6e
AC
1826 end loop Search;
1827
1828 if Is_Static then
1829 Rewrite (N, Relocate_Node (Result));
1830
1831 else
1832 Set_Is_Static_Expression (N, False);
1833 end if;
19d846a0
RD
1834 end Eval_Case_Expression;
1835
996ae0b0
RK
1836 ------------------------
1837 -- Eval_Concatenation --
1838 ------------------------
1839
3996951a
TQ
1840 -- Concatenation is a static function, so the result is static if both
1841 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
1842
1843 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1844 Left : constant Node_Id := Left_Opnd (N);
1845 Right : constant Node_Id := Right_Opnd (N);
1846 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1847 Stat : Boolean;
1848 Fold : Boolean;
996ae0b0
RK
1849
1850 begin
3996951a
TQ
1851 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1852 -- non-static context.
996ae0b0 1853
0ab80019 1854 if Ada_Version = Ada_83
996ae0b0
RK
1855 and then Comes_From_Source (N)
1856 then
1857 Check_Non_Static_Context (Left);
1858 Check_Non_Static_Context (Right);
1859 return;
1860 end if;
1861
1862 -- If not foldable we are done. In principle concatenation that yields
1863 -- any string type is static (i.e. an array type of character types).
1864 -- However, character types can include enumeration literals, and
1865 -- concatenation in that case cannot be described by a literal, so we
1866 -- only consider the operation static if the result is an array of
1867 -- (a descendant of) a predefined character type.
1868
1869 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1870
3996951a 1871 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
1872 Set_Is_Static_Expression (N, False);
1873 return;
1874 end if;
1875
82c80734 1876 -- Compile time string concatenation
996ae0b0 1877
3996951a
TQ
1878 -- ??? Note that operands that are aggregates can be marked as static,
1879 -- so we should attempt at a later stage to fold concatenations with
1880 -- such aggregates.
996ae0b0
RK
1881
1882 declare
b54ddf5a
BD
1883 Left_Str : constant Node_Id := Get_String_Val (Left);
1884 Left_Len : Nat;
1885 Right_Str : constant Node_Id := Get_String_Val (Right);
1886 Folded_Val : String_Id;
996ae0b0
RK
1887
1888 begin
1889 -- Establish new string literal, and store left operand. We make
1890 -- sure to use the special Start_String that takes an operand if
1891 -- the left operand is a string literal. Since this is optimized
1892 -- in the case where that is the most recently created string
1893 -- literal, we ensure efficient time/space behavior for the
1894 -- case of a concatenation of a series of string literals.
1895
1896 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1897 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
1898
1899 -- If the left operand is the empty string, and the right operand
1900 -- is a string literal (the case of "" & "..."), the result is the
1901 -- value of the right operand. This optimization is important when
1902 -- Is_Folded_In_Parser, to avoid copying an enormous right
1903 -- operand.
1904
1905 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1906 Folded_Val := Strval (Right_Str);
1907 else
1908 Start_String (Strval (Left_Str));
1909 end if;
1910
996ae0b0
RK
1911 else
1912 Start_String;
82c80734 1913 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1914 Left_Len := 1;
996ae0b0
RK
1915 end if;
1916
b54ddf5a
BD
1917 -- Now append the characters of the right operand, unless we
1918 -- optimized the "" & "..." case above.
996ae0b0
RK
1919
1920 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
1921 if Left_Len /= 0 then
1922 Store_String_Chars (Strval (Right_Str));
1923 Folded_Val := End_String;
1924 end if;
996ae0b0 1925 else
82c80734 1926 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 1927 Folded_Val := End_String;
996ae0b0
RK
1928 end if;
1929
1930 Set_Is_Static_Expression (N, Stat);
1931
1932 if Stat then
f91b40db
GB
1933
1934 -- If left operand is the empty string, the result is the
1935 -- right operand, including its bounds if anomalous.
1936
1937 if Left_Len = 0
1938 and then Is_Array_Type (Etype (Right))
1939 and then Etype (Right) /= Any_String
1940 then
1941 Set_Etype (N, Etype (Right));
1942 end if;
1943
b54ddf5a 1944 Fold_Str (N, Folded_Val, Static => True);
996ae0b0
RK
1945 end if;
1946 end;
1947 end Eval_Concatenation;
1948
9b16cb57
RD
1949 ----------------------
1950 -- Eval_Entity_Name --
1951 ----------------------
1952
1953 -- This procedure is used for identifiers and expanded names other than
1954 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1955 -- static if they denote a static constant (RM 4.9(6)) or if the name
1956 -- denotes an enumeration literal (RM 4.9(22)).
1957
1958 procedure Eval_Entity_Name (N : Node_Id) is
1959 Def_Id : constant Entity_Id := Entity (N);
1960 Val : Node_Id;
1961
1962 begin
1963 -- Enumeration literals are always considered to be constants
1964 -- and cannot raise constraint error (RM 4.9(22)).
1965
1966 if Ekind (Def_Id) = E_Enumeration_Literal then
1967 Set_Is_Static_Expression (N);
1968 return;
1969
1970 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1971 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1972 -- it does not violate 10.2.1(8) here, since this is not a variable.
1973
1974 elsif Ekind (Def_Id) = E_Constant then
1975
1976 -- Deferred constants must always be treated as nonstatic
1977 -- outside the scope of their full view.
1978
1979 if Present (Full_View (Def_Id))
1980 and then not In_Open_Scopes (Scope (Def_Id))
1981 then
1982 Val := Empty;
1983 else
1984 Val := Constant_Value (Def_Id);
1985 end if;
1986
1987 if Present (Val) then
1988 Set_Is_Static_Expression
1989 (N, Is_Static_Expression (Val)
1990 and then Is_Static_Subtype (Etype (Def_Id)));
1991 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1992
1993 if not Is_Static_Expression (N)
1994 and then not Is_Generic_Type (Etype (N))
1995 then
1996 Validate_Static_Object_Name (N);
1997 end if;
1998
1999 return;
2000 end if;
2001 end if;
2002
2003 -- Fall through if the name is not static
2004
2005 Validate_Static_Object_Name (N);
2006 end Eval_Entity_Name;
2007
2008 ------------------------
2009 -- Eval_If_Expression --
2010 ------------------------
996ae0b0 2011
9b16cb57 2012 -- We can fold to a static expression if the condition and both dependent
1cf3727f 2013 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 2014 -- the check for non-static context for the then and else expressions.
996ae0b0 2015
9b16cb57 2016 procedure Eval_If_Expression (N : Node_Id) is
4d777a71
AC
2017 Condition : constant Node_Id := First (Expressions (N));
2018 Then_Expr : constant Node_Id := Next (Condition);
2019 Else_Expr : constant Node_Id := Next (Then_Expr);
2020 Result : Node_Id;
2021 Non_Result : Node_Id;
2022
2023 Rstat : constant Boolean :=
2024 Is_Static_Expression (Condition)
2025 and then
2026 Is_Static_Expression (Then_Expr)
2027 and then
2028 Is_Static_Expression (Else_Expr);
2029
996ae0b0 2030 begin
4d777a71
AC
2031 -- If any operand is Any_Type, just propagate to result and do not try
2032 -- to fold, this prevents cascaded errors.
2033
2034 if Etype (Condition) = Any_Type or else
2035 Etype (Then_Expr) = Any_Type or else
2036 Etype (Else_Expr) = Any_Type
2037 then
2038 Set_Etype (N, Any_Type);
2039 Set_Is_Static_Expression (N, False);
2040 return;
2041
2042 -- Static case where we can fold. Note that we don't try to fold cases
2043 -- where the condition is known at compile time, but the result is
2044 -- non-static. This avoids possible cases of infinite recursion where
2045 -- the expander puts in a redundant test and we remove it. Instead we
2046 -- deal with these cases in the expander.
2047
2048 elsif Rstat then
2049
2050 -- Select result operand
2051
2052 if Is_True (Expr_Value (Condition)) then
2053 Result := Then_Expr;
2054 Non_Result := Else_Expr;
2055 else
2056 Result := Else_Expr;
2057 Non_Result := Then_Expr;
2058 end if;
2059
2060 -- Note that it does not matter if the non-result operand raises a
2061 -- Constraint_Error, but if the result raises constraint error then
2062 -- we replace the node with a raise constraint error. This will
2063 -- properly propagate Raises_Constraint_Error since this flag is
2064 -- set in Result.
2065
2066 if Raises_Constraint_Error (Result) then
2067 Rewrite_In_Raise_CE (N, Result);
2068 Check_Non_Static_Context (Non_Result);
2069
2070 -- Otherwise the result operand replaces the original node
2071
2072 else
2073 Rewrite (N, Relocate_Node (Result));
2074 end if;
2075
2076 -- Case of condition not known at compile time
2077
2078 else
2079 Check_Non_Static_Context (Condition);
2080 Check_Non_Static_Context (Then_Expr);
2081 Check_Non_Static_Context (Else_Expr);
2082 end if;
2083
2084 Set_Is_Static_Expression (N, Rstat);
9b16cb57 2085 end Eval_If_Expression;
996ae0b0
RK
2086
2087 ----------------------------
2088 -- Eval_Indexed_Component --
2089 ----------------------------
2090
8cbb664e
MG
2091 -- Indexed components are never static, so we need to perform the check
2092 -- for non-static context on the index values. Then, we check if the
2093 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
2094
2095 procedure Eval_Indexed_Component (N : Node_Id) is
2096 Expr : Node_Id;
2097
2098 begin
fbf5a39b
AC
2099 -- Check for non-static context on index values
2100
996ae0b0
RK
2101 Expr := First (Expressions (N));
2102 while Present (Expr) loop
2103 Check_Non_Static_Context (Expr);
2104 Next (Expr);
2105 end loop;
2106
fbf5a39b
AC
2107 -- If the indexed component appears in an object renaming declaration
2108 -- then we do not want to try to evaluate it, since in this case we
2109 -- need the identity of the array element.
2110
2111 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2112 return;
2113
2114 -- Similarly if the indexed component appears as the prefix of an
2115 -- attribute we don't want to evaluate it, because at least for
2116 -- some cases of attributes we need the identify (e.g. Access, Size)
2117
2118 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2119 return;
2120 end if;
2121
2122 -- Note: there are other cases, such as the left side of an assignment,
2123 -- or an OUT parameter for a call, where the replacement results in the
2124 -- illegal use of a constant, But these cases are illegal in the first
2125 -- place, so the replacement, though silly, is harmless.
2126
2127 -- Now see if this is a constant array reference
8cbb664e
MG
2128
2129 if List_Length (Expressions (N)) = 1
2130 and then Is_Entity_Name (Prefix (N))
2131 and then Ekind (Entity (Prefix (N))) = E_Constant
2132 and then Present (Constant_Value (Entity (Prefix (N))))
2133 then
2134 declare
2135 Loc : constant Source_Ptr := Sloc (N);
2136 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2137 Sub : constant Node_Id := First (Expressions (N));
2138
2139 Atyp : Entity_Id;
2140 -- Type of array
2141
2142 Lin : Nat;
2143 -- Linear one's origin subscript value for array reference
2144
2145 Lbd : Node_Id;
2146 -- Lower bound of the first array index
2147
2148 Elm : Node_Id;
2149 -- Value from constant array
2150
2151 begin
2152 Atyp := Etype (Arr);
2153
2154 if Is_Access_Type (Atyp) then
2155 Atyp := Designated_Type (Atyp);
2156 end if;
2157
9dbf1c3e
RD
2158 -- If we have an array type (we should have but perhaps there are
2159 -- error cases where this is not the case), then see if we can do
2160 -- a constant evaluation of the array reference.
8cbb664e 2161
ebd34478 2162 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2163 if Ekind (Atyp) = E_String_Literal_Subtype then
2164 Lbd := String_Literal_Low_Bound (Atyp);
2165 else
2166 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2167 end if;
2168
2169 if Compile_Time_Known_Value (Sub)
2170 and then Nkind (Arr) = N_Aggregate
2171 and then Compile_Time_Known_Value (Lbd)
2172 and then Is_Discrete_Type (Component_Type (Atyp))
2173 then
2174 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2175
2176 if List_Length (Expressions (Arr)) >= Lin then
2177 Elm := Pick (Expressions (Arr), Lin);
2178
2179 -- If the resulting expression is compile time known,
2180 -- then we can rewrite the indexed component with this
2181 -- value, being sure to mark the result as non-static.
2182 -- We also reset the Sloc, in case this generates an
2183 -- error later on (e.g. 136'Access).
2184
2185 if Compile_Time_Known_Value (Elm) then
2186 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2187 Set_Is_Static_Expression (N, False);
2188 Set_Sloc (N, Loc);
2189 end if;
2190 end if;
9fbb3ae6
AC
2191
2192 -- We can also constant-fold if the prefix is a string literal.
2193 -- This will be useful in an instantiation or an inlining.
2194
2195 elsif Compile_Time_Known_Value (Sub)
2196 and then Nkind (Arr) = N_String_Literal
2197 and then Compile_Time_Known_Value (Lbd)
2198 and then Expr_Value (Lbd) = 1
2199 and then Expr_Value (Sub) <=
2200 String_Literal_Length (Etype (Arr))
2201 then
2202 declare
2203 C : constant Char_Code :=
2204 Get_String_Char (Strval (Arr),
2205 UI_To_Int (Expr_Value (Sub)));
2206 begin
2207 Set_Character_Literal_Name (C);
2208
2209 Elm :=
2210 Make_Character_Literal (Loc,
2211 Chars => Name_Find,
2212 Char_Literal_Value => UI_From_CC (C));
2213 Set_Etype (Elm, Component_Type (Atyp));
2214 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2215 Set_Is_Static_Expression (N, False);
2216 end;
8cbb664e
MG
2217 end if;
2218 end if;
2219 end;
2220 end if;
996ae0b0
RK
2221 end Eval_Indexed_Component;
2222
2223 --------------------------
2224 -- Eval_Integer_Literal --
2225 --------------------------
2226
2227 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2228 -- as static by the analyzer. The reason we did it that early is to allow
2229 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2230 -- analysis, but before resolution, when integer literals are generated in
2231 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2232
2233 procedure Eval_Integer_Literal (N : Node_Id) is
2234 T : constant Entity_Id := Etype (N);
2235
5d09245e 2236 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
2237 -- If the literal is resolved with a specific type in a context where
2238 -- the expected type is Any_Integer, there are no range checks on the
2239 -- literal. By the time the literal is evaluated, it carries the type
2240 -- imposed by the enclosing expression, and we must recover the context
2241 -- to determine that Any_Integer is meant.
5d09245e
AC
2242
2243 ----------------------------
09494c32 2244 -- In_Any_Integer_Context --
5d09245e
AC
2245 ----------------------------
2246
2247 function In_Any_Integer_Context return Boolean is
2248 Par : constant Node_Id := Parent (N);
2249 K : constant Node_Kind := Nkind (Par);
2250
2251 begin
2252 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2253 -- but those have bounds smaller that those of any integer base type,
2254 -- so we can safely ignore these cases.
5d09245e
AC
2255
2256 return K = N_Number_Declaration
2257 or else K = N_Attribute_Reference
2258 or else K = N_Attribute_Definition_Clause
2259 or else K = N_Modular_Type_Definition
2260 or else K = N_Signed_Integer_Type_Definition;
2261 end In_Any_Integer_Context;
2262
2263 -- Start of processing for Eval_Integer_Literal
2264
996ae0b0 2265 begin
5d09245e 2266
996ae0b0 2267 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2268 -- certainly appearing in a non-static context, so check it. This is
2269 -- actually a redundant check, since Check_Non_Static_Context would
2270 -- check it, but it seems worth while avoiding the call.
996ae0b0 2271
5d09245e
AC
2272 if Nkind (Parent (N)) not in N_Subexpr
2273 and then not In_Any_Integer_Context
2274 then
996ae0b0
RK
2275 Check_Non_Static_Context (N);
2276 end if;
2277
2278 -- Modular integer literals must be in their base range
2279
2280 if Is_Modular_Integer_Type (T)
c800f862 2281 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2282 then
2283 Out_Of_Range (N);
2284 end if;
2285 end Eval_Integer_Literal;
2286
2287 ---------------------
2288 -- Eval_Logical_Op --
2289 ---------------------
2290
2291 -- Logical operations are static functions, so the result is potentially
2292 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2293
2294 procedure Eval_Logical_Op (N : Node_Id) is
2295 Left : constant Node_Id := Left_Opnd (N);
2296 Right : constant Node_Id := Right_Opnd (N);
2297 Stat : Boolean;
2298 Fold : Boolean;
2299
2300 begin
2301 -- If not foldable we are done
2302
2303 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2304
2305 if not Fold then
2306 return;
2307 end if;
2308
2309 -- Compile time evaluation of logical operation
2310
2311 declare
2312 Left_Int : constant Uint := Expr_Value (Left);
2313 Right_Int : constant Uint := Expr_Value (Right);
2314
2315 begin
22cb89b5 2316 -- VMS includes bitwise operations on signed types
001c7783
AC
2317
2318 if Is_Modular_Integer_Type (Etype (N))
2319 or else Is_VMS_Operator (Entity (N))
2320 then
996ae0b0
RK
2321 declare
2322 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2323 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2324
2325 begin
2326 To_Bits (Left_Int, Left_Bits);
2327 To_Bits (Right_Int, Right_Bits);
2328
2329 -- Note: should really be able to use array ops instead of
2330 -- these loops, but they weren't working at the time ???
2331
2332 if Nkind (N) = N_Op_And then
2333 for J in Left_Bits'Range loop
2334 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2335 end loop;
2336
2337 elsif Nkind (N) = N_Op_Or then
2338 for J in Left_Bits'Range loop
2339 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2340 end loop;
2341
2342 else
2343 pragma Assert (Nkind (N) = N_Op_Xor);
2344
2345 for J in Left_Bits'Range loop
2346 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2347 end loop;
2348 end if;
2349
fbf5a39b 2350 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2351 end;
2352
2353 else
2354 pragma Assert (Is_Boolean_Type (Etype (N)));
2355
2356 if Nkind (N) = N_Op_And then
2357 Fold_Uint (N,
fbf5a39b 2358 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2359
2360 elsif Nkind (N) = N_Op_Or then
2361 Fold_Uint (N,
fbf5a39b 2362 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2363
2364 else
2365 pragma Assert (Nkind (N) = N_Op_Xor);
2366 Fold_Uint (N,
fbf5a39b 2367 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2368 end if;
2369 end if;
996ae0b0
RK
2370 end;
2371 end Eval_Logical_Op;
2372
2373 ------------------------
2374 -- Eval_Membership_Op --
2375 ------------------------
2376
1d1bd8ad
AC
2377 -- A membership test is potentially static if the expression is static, and
2378 -- the range is a potentially static range, or is a subtype mark denoting a
2379 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2380
2381 procedure Eval_Membership_Op (N : Node_Id) is
2382 Left : constant Node_Id := Left_Opnd (N);
2383 Right : constant Node_Id := Right_Opnd (N);
2384 Def_Id : Entity_Id;
2385 Lo : Node_Id;
2386 Hi : Node_Id;
2387 Result : Boolean;
2388 Stat : Boolean;
2389 Fold : Boolean;
2390
2391 begin
1d1bd8ad
AC
2392 -- Ignore if error in either operand, except to make sure that Any_Type
2393 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 2394
22cb89b5 2395 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
996ae0b0
RK
2396 Set_Etype (N, Any_Type);
2397 return;
2398 end if;
2399
4818e7b9
RD
2400 -- Ignore if types involved have predicates
2401
2402 if Present (Predicate_Function (Etype (Left)))
2403 or else
2404 Present (Predicate_Function (Etype (Right)))
2405 then
2406 return;
2407 end if;
2408
996ae0b0
RK
2409 -- Case of right operand is a subtype name
2410
2411 if Is_Entity_Name (Right) then
2412 Def_Id := Entity (Right);
2413
2414 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2415 and then Is_OK_Static_Subtype (Def_Id)
2416 then
2417 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2418
2419 if not Fold or else not Stat then
2420 return;
2421 end if;
2422 else
2423 Check_Non_Static_Context (Left);
2424 return;
2425 end if;
2426
1d1bd8ad 2427 -- For string membership tests we will check the length further on
996ae0b0
RK
2428
2429 if not Is_String_Type (Def_Id) then
2430 Lo := Type_Low_Bound (Def_Id);
2431 Hi := Type_High_Bound (Def_Id);
2432
2433 else
2434 Lo := Empty;
2435 Hi := Empty;
2436 end if;
2437
2438 -- Case of right operand is a range
2439
2440 else
2441 if Is_Static_Range (Right) then
2442 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2443
2444 if not Fold or else not Stat then
2445 return;
2446
2447 -- If one bound of range raises CE, then don't try to fold
2448
2449 elsif not Is_OK_Static_Range (Right) then
2450 Check_Non_Static_Context (Left);
2451 return;
2452 end if;
2453
2454 else
2455 Check_Non_Static_Context (Left);
2456 return;
2457 end if;
2458
2459 -- Here we know range is an OK static range
2460
2461 Lo := Low_Bound (Right);
2462 Hi := High_Bound (Right);
2463 end if;
2464
2465 -- For strings we check that the length of the string expression is
2466 -- compatible with the string subtype if the subtype is constrained,
2467 -- or if unconstrained then the test is always true.
2468
2469 if Is_String_Type (Etype (Right)) then
2470 if not Is_Constrained (Etype (Right)) then
2471 Result := True;
2472
2473 else
2474 declare
2475 Typlen : constant Uint := String_Type_Len (Etype (Right));
2476 Strlen : constant Uint :=
22cb89b5
AC
2477 UI_From_Int
2478 (String_Length (Strval (Get_String_Val (Left))));
996ae0b0
RK
2479 begin
2480 Result := (Typlen = Strlen);
2481 end;
2482 end if;
2483
1d1bd8ad
AC
2484 -- Fold the membership test. We know we have a static range and Lo and
2485 -- Hi are set to the expressions for the end points of this range.
996ae0b0
RK
2486
2487 elsif Is_Real_Type (Etype (Right)) then
2488 declare
2489 Leftval : constant Ureal := Expr_Value_R (Left);
2490
2491 begin
2492 Result := Expr_Value_R (Lo) <= Leftval
2493 and then Leftval <= Expr_Value_R (Hi);
2494 end;
2495
2496 else
2497 declare
2498 Leftval : constant Uint := Expr_Value (Left);
2499
2500 begin
2501 Result := Expr_Value (Lo) <= Leftval
2502 and then Leftval <= Expr_Value (Hi);
2503 end;
2504 end if;
2505
2506 if Nkind (N) = N_Not_In then
2507 Result := not Result;
2508 end if;
2509
fbf5a39b 2510 Fold_Uint (N, Test (Result), True);
d7567964 2511
996ae0b0 2512 Warn_On_Known_Condition (N);
996ae0b0
RK
2513 end Eval_Membership_Op;
2514
2515 ------------------------
2516 -- Eval_Named_Integer --
2517 ------------------------
2518
2519 procedure Eval_Named_Integer (N : Node_Id) is
2520 begin
2521 Fold_Uint (N,
fbf5a39b 2522 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2523 end Eval_Named_Integer;
2524
2525 ---------------------
2526 -- Eval_Named_Real --
2527 ---------------------
2528
2529 procedure Eval_Named_Real (N : Node_Id) is
2530 begin
2531 Fold_Ureal (N,
fbf5a39b 2532 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2533 end Eval_Named_Real;
2534
2535 -------------------
2536 -- Eval_Op_Expon --
2537 -------------------
2538
2539 -- Exponentiation is a static functions, so the result is potentially
2540 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2541
2542 procedure Eval_Op_Expon (N : Node_Id) is
2543 Left : constant Node_Id := Left_Opnd (N);
2544 Right : constant Node_Id := Right_Opnd (N);
2545 Stat : Boolean;
2546 Fold : Boolean;
2547
2548 begin
2549 -- If not foldable we are done
2550
2551 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2552
2553 if not Fold then
2554 return;
2555 end if;
2556
2557 -- Fold exponentiation operation
2558
2559 declare
2560 Right_Int : constant Uint := Expr_Value (Right);
2561
2562 begin
2563 -- Integer case
2564
2565 if Is_Integer_Type (Etype (Left)) then
2566 declare
2567 Left_Int : constant Uint := Expr_Value (Left);
2568 Result : Uint;
2569
2570 begin
22cb89b5
AC
2571 -- Exponentiation of an integer raises Constraint_Error for a
2572 -- negative exponent (RM 4.5.6).
996ae0b0
RK
2573
2574 if Right_Int < 0 then
2575 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2576 (N, "integer exponent negative",
2577 CE_Range_Check_Failed,
2578 Warn => not Stat);
996ae0b0
RK
2579 return;
2580
2581 else
2582 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2583 Result := Left_Int ** Right_Int;
2584 else
2585 Result := Left_Int;
2586 end if;
2587
2588 if Is_Modular_Integer_Type (Etype (N)) then
2589 Result := Result mod Modulus (Etype (N));
2590 end if;
2591
fbf5a39b 2592 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2593 end if;
2594 end;
2595
2596 -- Real case
2597
2598 else
2599 declare
2600 Left_Real : constant Ureal := Expr_Value_R (Left);
2601
2602 begin
2603 -- Cannot have a zero base with a negative exponent
2604
2605 if UR_Is_Zero (Left_Real) then
2606
2607 if Right_Int < 0 then
2608 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2609 (N, "zero ** negative integer",
2610 CE_Range_Check_Failed,
2611 Warn => not Stat);
996ae0b0
RK
2612 return;
2613 else
fbf5a39b 2614 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2615 end if;
2616
2617 else
fbf5a39b 2618 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2619 end if;
2620 end;
2621 end if;
996ae0b0
RK
2622 end;
2623 end Eval_Op_Expon;
2624
2625 -----------------
2626 -- Eval_Op_Not --
2627 -----------------
2628
2629 -- The not operation is a static functions, so the result is potentially
2630 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2631
2632 procedure Eval_Op_Not (N : Node_Id) is
2633 Right : constant Node_Id := Right_Opnd (N);
2634 Stat : Boolean;
2635 Fold : Boolean;
2636
2637 begin
2638 -- If not foldable we are done
2639
2640 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2641
2642 if not Fold then
2643 return;
2644 end if;
2645
2646 -- Fold not operation
2647
2648 declare
2649 Rint : constant Uint := Expr_Value (Right);
2650 Typ : constant Entity_Id := Etype (N);
2651
2652 begin
1d1bd8ad
AC
2653 -- Negation is equivalent to subtracting from the modulus minus one.
2654 -- For a binary modulus this is equivalent to the ones-complement of
2655 -- the original value. For non-binary modulus this is an arbitrary
2656 -- but consistent definition.
996ae0b0
RK
2657
2658 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2659 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2660
2661 else
2662 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2663 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2664 end if;
2665
2666 Set_Is_Static_Expression (N, Stat);
2667 end;
2668 end Eval_Op_Not;
2669
2670 -------------------------------
2671 -- Eval_Qualified_Expression --
2672 -------------------------------
2673
2674 -- A qualified expression is potentially static if its subtype mark denotes
2675 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2676
2677 procedure Eval_Qualified_Expression (N : Node_Id) is
2678 Operand : constant Node_Id := Expression (N);
2679 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2680
07fc65c4
GB
2681 Stat : Boolean;
2682 Fold : Boolean;
2683 Hex : Boolean;
996ae0b0
RK
2684
2685 begin
1d1bd8ad 2686 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
2687 -- Also, do not fold if our parent is an allocator (this is because the
2688 -- qualified expression is really part of the syntactic structure of an
2689 -- allocator, and we do not want to end up with something that
996ae0b0
RK
2690 -- corresponds to "new 1" where the 1 is the result of folding a
2691 -- qualified expression).
2692
2693 if not Is_Static_Subtype (Target_Type)
2694 or else Nkind (Parent (N)) = N_Allocator
2695 then
2696 Check_Non_Static_Context (Operand);
af152989 2697
1d1bd8ad
AC
2698 -- If operand is known to raise constraint_error, set the flag on the
2699 -- expression so it does not get optimized away.
af152989
AC
2700
2701 if Nkind (Operand) = N_Raise_Constraint_Error then
2702 Set_Raises_Constraint_Error (N);
2703 end if;
7324bf49 2704
996ae0b0
RK
2705 return;
2706 end if;
2707
2708 -- If not foldable we are done
2709
2710 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2711
2712 if not Fold then
2713 return;
2714
2715 -- Don't try fold if target type has constraint error bounds
2716
2717 elsif not Is_OK_Static_Subtype (Target_Type) then
2718 Set_Raises_Constraint_Error (N);
2719 return;
2720 end if;
2721
07fc65c4
GB
2722 -- Here we will fold, save Print_In_Hex indication
2723
2724 Hex := Nkind (Operand) = N_Integer_Literal
2725 and then Print_In_Hex (Operand);
2726
996ae0b0
RK
2727 -- Fold the result of qualification
2728
2729 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2730 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2731
07fc65c4
GB
2732 -- Preserve Print_In_Hex indication
2733
2734 if Hex and then Nkind (N) = N_Integer_Literal then
2735 Set_Print_In_Hex (N);
2736 end if;
2737
996ae0b0 2738 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2739 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2740
2741 else
fbf5a39b 2742 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2743
2744 if not Stat then
2745 Set_Is_Static_Expression (N, False);
2746 else
2747 Check_String_Literal_Length (N, Target_Type);
2748 end if;
2749
2750 return;
2751 end if;
2752
fbf5a39b
AC
2753 -- The expression may be foldable but not static
2754
2755 Set_Is_Static_Expression (N, Stat);
2756
c800f862 2757 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
2758 Out_Of_Range (N);
2759 end if;
996ae0b0
RK
2760 end Eval_Qualified_Expression;
2761
2762 -----------------------
2763 -- Eval_Real_Literal --
2764 -----------------------
2765
2766 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2767 -- as static by the analyzer. The reason we did it that early is to allow
2768 -- the possibility of turning off the Is_Static_Expression flag after
2769 -- analysis, but before resolution, when integer literals are generated
2770 -- in the expander that do not correspond to static expressions.
2771
2772 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
2773 PK : constant Node_Kind := Nkind (Parent (N));
2774
996ae0b0 2775 begin
1d1bd8ad
AC
2776 -- If the literal appears in a non-expression context and not as part of
2777 -- a number declaration, then it is appearing in a non-static context,
2778 -- so check it.
996ae0b0 2779
a1980be8 2780 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
2781 Check_Non_Static_Context (N);
2782 end if;
996ae0b0
RK
2783 end Eval_Real_Literal;
2784
2785 ------------------------
2786 -- Eval_Relational_Op --
2787 ------------------------
2788
8a95f4e8
RD
2789 -- Relational operations are static functions, so the result is static if
2790 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2791 -- the result is never static, even if the operands are.
996ae0b0
RK
2792
2793 procedure Eval_Relational_Op (N : Node_Id) is
2794 Left : constant Node_Id := Left_Opnd (N);
2795 Right : constant Node_Id := Right_Opnd (N);
2796 Typ : constant Entity_Id := Etype (Left);
d7567964 2797 Otype : Entity_Id := Empty;
996ae0b0 2798 Result : Boolean;
996ae0b0
RK
2799
2800 begin
45fc7ddb
HK
2801 -- One special case to deal with first. If we can tell that the result
2802 -- will be false because the lengths of one or more index subtypes are
2803 -- compile time known and different, then we can replace the entire
2804 -- result by False. We only do this for one dimensional arrays, because
2805 -- the case of multi-dimensional arrays is rare and too much trouble! If
2806 -- one of the operands is an illegal aggregate, its type might still be
2807 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
2808
2809 if Is_Array_Type (Typ)
13f34a3f 2810 and then Typ /= Any_Composite
996ae0b0 2811 and then Number_Dimensions (Typ) = 1
13f34a3f 2812 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2813 then
2814 if Raises_Constraint_Error (Left)
2815 or else Raises_Constraint_Error (Right)
2816 then
2817 return;
2818 end if;
2819
45fc7ddb
HK
2820 -- OK, we have the case where we may be able to do this fold
2821
2822 Length_Mismatch : declare
996ae0b0 2823 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
1d1bd8ad
AC
2824 -- If Op is an expression for a constrained array with a known at
2825 -- compile time length, then Len is set to this (non-negative
13f34a3f 2826 -- length). Otherwise Len is set to minus 1.
996ae0b0 2827
fbf5a39b
AC
2828 -----------------------
2829 -- Get_Static_Length --
2830 -----------------------
2831
996ae0b0
RK
2832 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2833 T : Entity_Id;
2834
2835 begin
45fc7ddb
HK
2836 -- First easy case string literal
2837
996ae0b0
RK
2838 if Nkind (Op) = N_String_Literal then
2839 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
2840 return;
2841 end if;
2842
2843 -- Second easy case, not constrained subtype, so no length
996ae0b0 2844
45fc7ddb 2845 if not Is_Constrained (Etype (Op)) then
996ae0b0 2846 Len := Uint_Minus_1;
45fc7ddb
HK
2847 return;
2848 end if;
996ae0b0 2849
45fc7ddb
HK
2850 -- General case
2851
5f44f0d4 2852 T := Etype (First_Index (Etype (Op)));
45fc7ddb
HK
2853
2854 -- The simple case, both bounds are known at compile time
2855
2856 if Is_Discrete_Type (T)
2857 and then
2858 Compile_Time_Known_Value (Type_Low_Bound (T))
2859 and then
2860 Compile_Time_Known_Value (Type_High_Bound (T))
2861 then
2862 Len := UI_Max (Uint_0,
2863 Expr_Value (Type_High_Bound (T)) -
2864 Expr_Value (Type_Low_Bound (T)) + 1);
2865 return;
2866 end if;
2867
2868 -- A more complex case, where the bounds are of the form
2869 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2870 -- either A'First or A'Last (with A an entity name), or X is an
2871 -- entity name, and the two X's are the same and K1 and K2 are
2872 -- known at compile time, in this case, the length can also be
2873 -- computed at compile time, even though the bounds are not
22cb89b5 2874 -- known. A common case of this is e.g. (X'First .. X'First+5).
45fc7ddb
HK
2875
2876 Extract_Length : declare
2877 procedure Decompose_Expr
2878 (Expr : Node_Id;
2879 Ent : out Entity_Id;
2880 Kind : out Character;
2881 Cons : out Uint);
2882 -- Given an expression, see if is of the form above,
2883 -- X [+/- K]. If so Ent is set to the entity in X,
2884 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2885 -- and Cons is the value of K. If the expression is
2886 -- not of the required form, Ent is set to Empty.
2887
2888 --------------------
2889 -- Decompose_Expr --
2890 --------------------
2891
2892 procedure Decompose_Expr
2893 (Expr : Node_Id;
2894 Ent : out Entity_Id;
2895 Kind : out Character;
2896 Cons : out Uint)
2897 is
2898 Exp : Node_Id;
2899
2900 begin
2901 if Nkind (Expr) = N_Op_Add
2902 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2903 then
8a95f4e8 2904 Exp := Left_Opnd (Expr);
45fc7ddb
HK
2905 Cons := Expr_Value (Right_Opnd (Expr));
2906
2907 elsif Nkind (Expr) = N_Op_Subtract
2908 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2909 then
8a95f4e8 2910 Exp := Left_Opnd (Expr);
45fc7ddb 2911 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 2912
8a95f4e8
RD
2913 -- If the bound is a constant created to remove side
2914 -- effects, recover original expression to see if it has
2915 -- one of the recognizable forms.
2916
2917 elsif Nkind (Expr) = N_Identifier
2918 and then not Comes_From_Source (Entity (Expr))
2919 and then Ekind (Entity (Expr)) = E_Constant
2920 and then
2921 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2922 then
2923 Exp := Expression (Parent (Entity (Expr)));
2924 Decompose_Expr (Exp, Ent, Kind, Cons);
2925
2926 -- If original expression includes an entity, create a
2927 -- reference to it for use below.
2928
2929 if Present (Ent) then
2930 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2931 end if;
2932
45fc7ddb 2933 else
8a95f4e8 2934 Exp := Expr;
45fc7ddb
HK
2935 Cons := Uint_0;
2936 end if;
2937
2938 -- At this stage Exp is set to the potential X
2939
2940 if Nkind (Exp) = N_Attribute_Reference then
2941 if Attribute_Name (Exp) = Name_First then
2942 Kind := 'F';
8a95f4e8 2943
45fc7ddb
HK
2944 elsif Attribute_Name (Exp) = Name_Last then
2945 Kind := 'L';
8a95f4e8 2946
45fc7ddb
HK
2947 else
2948 Ent := Empty;
2949 return;
2950 end if;
2951
2952 Exp := Prefix (Exp);
2953
2954 else
2955 Kind := 'E';
2956 end if;
2957
2958 if Is_Entity_Name (Exp)
2959 and then Present (Entity (Exp))
2960 then
2961 Ent := Entity (Exp);
2962 else
2963 Ent := Empty;
2964 end if;
2965 end Decompose_Expr;
2966
2967 -- Local Variables
2968
2969 Ent1, Ent2 : Entity_Id;
2970 Kind1, Kind2 : Character;
2971 Cons1, Cons2 : Uint;
2972
2973 -- Start of processing for Extract_Length
2974
2975 begin
bafc9e1d
AC
2976 Decompose_Expr
2977 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2978 Decompose_Expr
2979 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
45fc7ddb
HK
2980
2981 if Present (Ent1)
2982 and then Kind1 = Kind2
2983 and then Ent1 = Ent2
996ae0b0 2984 then
45fc7ddb 2985 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
2986 else
2987 Len := Uint_Minus_1;
2988 end if;
45fc7ddb 2989 end Extract_Length;
996ae0b0
RK
2990 end Get_Static_Length;
2991
45fc7ddb
HK
2992 -- Local Variables
2993
996ae0b0
RK
2994 Len_L : Uint;
2995 Len_R : Uint;
2996
45fc7ddb
HK
2997 -- Start of processing for Length_Mismatch
2998
996ae0b0
RK
2999 begin
3000 Get_Static_Length (Left, Len_L);
3001 Get_Static_Length (Right, Len_R);
3002
3003 if Len_L /= Uint_Minus_1
3004 and then Len_R /= Uint_Minus_1
3005 and then Len_L /= Len_R
3006 then
fbf5a39b 3007 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
3008 Warn_On_Known_Condition (N);
3009 return;
3010 end if;
45fc7ddb
HK
3011 end Length_Mismatch;
3012 end if;
6eaf4095 3013
5df1266a
AC
3014 declare
3015 Is_Static_Expression : Boolean;
3016 Is_Foldable : Boolean;
3017 pragma Unreferenced (Is_Foldable);
996ae0b0 3018
5df1266a
AC
3019 begin
3020 -- Initialize the value of Is_Static_Expression. The value of
3021 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3022 -- since, even when some operand is a variable, we can still perform
3023 -- the static evaluation of the expression in some cases (for
3024 -- example, for a variable of a subtype of Integer we statically
3025 -- know that any value stored in such variable is smaller than
3026 -- Integer'Last).
3027
3028 Test_Expression_Is_Foldable
3029 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3030
3031 -- Only comparisons of scalars can give static results. In
3032 -- particular, comparisons of strings never yield a static
3033 -- result, even if both operands are static strings.
3034
3035 if not Is_Scalar_Type (Typ) then
3036 Is_Static_Expression := False;
3037 Set_Is_Static_Expression (N, False);
3038 end if;
d7567964 3039
5df1266a
AC
3040 -- For operators on universal numeric types called as functions with
3041 -- an explicit scope, determine appropriate specific numeric type,
3042 -- and diagnose possible ambiguity.
d7567964 3043
5df1266a
AC
3044 if Is_Universal_Numeric_Type (Etype (Left))
3045 and then
3046 Is_Universal_Numeric_Type (Etype (Right))
3047 then
3048 Otype := Find_Universal_Operator_Type (N);
3049 end if;
996ae0b0 3050
5df1266a
AC
3051 -- For static real type expressions, we cannot use
3052 -- Compile_Time_Compare since it worries about run-time
3053 -- results which are not exact.
996ae0b0 3054
5df1266a
AC
3055 if Is_Static_Expression and then Is_Real_Type (Typ) then
3056 declare
3057 Left_Real : constant Ureal := Expr_Value_R (Left);
3058 Right_Real : constant Ureal := Expr_Value_R (Right);
996ae0b0 3059
5df1266a
AC
3060 begin
3061 case Nkind (N) is
3062 when N_Op_Eq => Result := (Left_Real = Right_Real);
3063 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3064 when N_Op_Lt => Result := (Left_Real < Right_Real);
3065 when N_Op_Le => Result := (Left_Real <= Right_Real);
3066 when N_Op_Gt => Result := (Left_Real > Right_Real);
3067 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3068
3069 when others =>
3070 raise Program_Error;
3071 end case;
996ae0b0 3072
5df1266a
AC
3073 Fold_Uint (N, Test (Result), True);
3074 end;
996ae0b0 3075
5df1266a 3076 -- For all other cases, we use Compile_Time_Compare to do the compare
996ae0b0 3077
5df1266a
AC
3078 else
3079 declare
3080 CR : constant Compare_Result :=
3081 Compile_Time_Compare
3082 (Left, Right, Assume_Valid => False);
996ae0b0 3083
5df1266a
AC
3084 begin
3085 if CR = Unknown then
3086 return;
3087 end if;
93c3fca7 3088
5df1266a
AC
3089 case Nkind (N) is
3090 when N_Op_Eq =>
3091 if CR = EQ then
3092 Result := True;
3093 elsif CR = NE or else CR = GT or else CR = LT then
3094 Result := False;
3095 else
3096 return;
3097 end if;
93c3fca7 3098
5df1266a
AC
3099 when N_Op_Ne =>
3100 if CR = NE or else CR = GT or else CR = LT then
3101 Result := True;
3102 elsif CR = EQ then
3103 Result := False;
3104 else
3105 return;
3106 end if;
93c3fca7 3107
5df1266a
AC
3108 when N_Op_Lt =>
3109 if CR = LT then
3110 Result := True;
3111 elsif CR = EQ or else CR = GT or else CR = GE then
3112 Result := False;
3113 else
3114 return;
3115 end if;
93c3fca7 3116
5df1266a
AC
3117 when N_Op_Le =>
3118 if CR = LT or else CR = EQ or else CR = LE then
3119 Result := True;
3120 elsif CR = GT then
3121 Result := False;
3122 else
3123 return;
3124 end if;
93c3fca7 3125
5df1266a
AC
3126 when N_Op_Gt =>
3127 if CR = GT then
3128 Result := True;
3129 elsif CR = EQ or else CR = LT or else CR = LE then
3130 Result := False;
3131 else
3132 return;
3133 end if;
93c3fca7 3134
5df1266a
AC
3135 when N_Op_Ge =>
3136 if CR = GT or else CR = EQ or else CR = GE then
3137 Result := True;
3138 elsif CR = LT then
3139 Result := False;
3140 else
3141 return;
3142 end if;
996ae0b0 3143
5df1266a
AC
3144 when others =>
3145 raise Program_Error;
3146 end case;
3147 end;
93c3fca7 3148
5df1266a
AC
3149 Fold_Uint (N, Test (Result), Is_Static_Expression);
3150 end if;
3151 end;
996ae0b0 3152
d7567964
TQ
3153 -- For the case of a folded relational operator on a specific numeric
3154 -- type, freeze operand type now.
3155
3156 if Present (Otype) then
3157 Freeze_Before (N, Otype);
3158 end if;
3159
996ae0b0
RK
3160 Warn_On_Known_Condition (N);
3161 end Eval_Relational_Op;
3162
3163 ----------------
3164 -- Eval_Shift --
3165 ----------------
3166
22cb89b5
AC
3167 -- Shift operations are intrinsic operations that can never be static, so
3168 -- the only processing required is to perform the required check for a non
3169 -- static context for the two operands.
996ae0b0
RK
3170
3171 -- Actually we could do some compile time evaluation here some time ???
3172
3173 procedure Eval_Shift (N : Node_Id) is
3174 begin
3175 Check_Non_Static_Context (Left_Opnd (N));
3176 Check_Non_Static_Context (Right_Opnd (N));
3177 end Eval_Shift;
3178
3179 ------------------------
3180 -- Eval_Short_Circuit --
3181 ------------------------
3182
22cb89b5
AC
3183 -- A short circuit operation is potentially static if both operands are
3184 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3185
3186 procedure Eval_Short_Circuit (N : Node_Id) is
3187 Kind : constant Node_Kind := Nkind (N);
3188 Left : constant Node_Id := Left_Opnd (N);
3189 Right : constant Node_Id := Right_Opnd (N);
3190 Left_Int : Uint;
4d777a71
AC
3191
3192 Rstat : constant Boolean :=
3193 Is_Static_Expression (Left)
3194 and then
3195 Is_Static_Expression (Right);
996ae0b0
RK
3196
3197 begin
3198 -- Short circuit operations are never static in Ada 83
3199
22cb89b5 3200 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3201 Check_Non_Static_Context (Left);
3202 Check_Non_Static_Context (Right);
3203 return;
3204 end if;
3205
3206 -- Now look at the operands, we can't quite use the normal call to
3207 -- Test_Expression_Is_Foldable here because short circuit operations
3208 -- are a special case, they can still be foldable, even if the right
3209 -- operand raises constraint error.
3210
22cb89b5
AC
3211 -- If either operand is Any_Type, just propagate to result and do not
3212 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3213
3214 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3215 Set_Etype (N, Any_Type);
3216 return;
3217
3218 -- If left operand raises constraint error, then replace node N with
3219 -- the raise constraint error node, and we are obviously not foldable.
3220 -- Is_Static_Expression is set from the two operands in the normal way,
3221 -- and we check the right operand if it is in a non-static context.
3222
3223 elsif Raises_Constraint_Error (Left) then
3224 if not Rstat then
3225 Check_Non_Static_Context (Right);
3226 end if;
3227
3228 Rewrite_In_Raise_CE (N, Left);
3229 Set_Is_Static_Expression (N, Rstat);
3230 return;
3231
3232 -- If the result is not static, then we won't in any case fold
3233
3234 elsif not Rstat then
3235 Check_Non_Static_Context (Left);
3236 Check_Non_Static_Context (Right);
3237 return;
3238 end if;
3239
3240 -- Here the result is static, note that, unlike the normal processing
3241 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3242 -- the right operand raises constraint error, that's because it is not
3243 -- significant if the left operand is decisive.
3244
3245 Set_Is_Static_Expression (N);
3246
3247 -- It does not matter if the right operand raises constraint error if
3248 -- it will not be evaluated. So deal specially with the cases where
3249 -- the right operand is not evaluated. Note that we will fold these
3250 -- cases even if the right operand is non-static, which is fine, but
3251 -- of course in these cases the result is not potentially static.
3252
3253 Left_Int := Expr_Value (Left);
3254
3255 if (Kind = N_And_Then and then Is_False (Left_Int))
514d0fc5 3256 or else
4d777a71 3257 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3258 then
fbf5a39b 3259 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3260 return;
3261 end if;
3262
3263 -- If first operand not decisive, then it does matter if the right
3264 -- operand raises constraint error, since it will be evaluated, so
3265 -- we simply replace the node with the right operand. Note that this
3266 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3267 -- (both are set to True in Right).
3268
3269 if Raises_Constraint_Error (Right) then
3270 Rewrite_In_Raise_CE (N, Right);
3271 Check_Non_Static_Context (Left);
3272 return;
3273 end if;
3274
3275 -- Otherwise the result depends on the right operand
3276
fbf5a39b 3277 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3278 return;
996ae0b0
RK
3279 end Eval_Short_Circuit;
3280
3281 ----------------
3282 -- Eval_Slice --
3283 ----------------
3284
22cb89b5
AC
3285 -- Slices can never be static, so the only processing required is to check
3286 -- for non-static context if an explicit range is given.
996ae0b0
RK
3287
3288 procedure Eval_Slice (N : Node_Id) is
3289 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
3290 begin
3291 if Nkind (Drange) = N_Range then
3292 Check_Non_Static_Context (Low_Bound (Drange));
3293 Check_Non_Static_Context (High_Bound (Drange));
3294 end if;
cd2fb920 3295
22cb89b5 3296 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3297 -- the type of A, is redundant, the slice can be replaced with A, and
3298 -- this is worth a warning.
3299
3300 if Is_Entity_Name (Prefix (N)) then
3301 declare
3302 E : constant Entity_Id := Entity (Prefix (N));
3303 T : constant Entity_Id := Etype (E);
3304 begin
3305 if Ekind (E) = E_Constant
3306 and then Is_Array_Type (T)
3307 and then Is_Entity_Name (Drange)
3308 then
3309 if Is_Entity_Name (Original_Node (First_Index (T)))
3310 and then Entity (Original_Node (First_Index (T)))
3311 = Entity (Drange)
3312 then
3313 if Warn_On_Redundant_Constructs then
ed2233dc 3314 Error_Msg_N ("redundant slice denotes whole array?", N);
cd2fb920
ES
3315 end if;
3316
22cb89b5 3317 -- The following might be a useful optimization????
cd2fb920
ES
3318
3319 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3320 end if;
3321 end if;
3322 end;
3323 end if;
996ae0b0
RK
3324 end Eval_Slice;
3325
804fc056
AC
3326 ---------------------------------
3327 -- Eval_Static_Predicate_Check --
3328 ---------------------------------
3329
3330 function Eval_Static_Predicate_Check
3331 (N : Node_Id;
3332 Typ : Entity_Id) return Boolean
3333 is
3334 Loc : constant Source_Ptr := Sloc (N);
3335 Pred : constant List_Id := Static_Predicate (Typ);
3336 Test : Node_Id;
c7e152b5 3337
804fc056
AC
3338 begin
3339 if No (Pred) then
3340 return True;
3341 end if;
3342
3343 -- The static predicate is a list of alternatives in the proper format
3344 -- for an Ada 2012 membership test. If the argument is a literal, the
3345 -- membership test can be evaluated statically. The caller transforms
3346 -- a result of False into a static contraint error.
3347
3348 Test := Make_In (Loc,
3349 Left_Opnd => New_Copy_Tree (N),
3350 Right_Opnd => Empty,
3351 Alternatives => Pred);
3352 Analyze_And_Resolve (Test, Standard_Boolean);
3353
3354 return Nkind (Test) = N_Identifier
3355 and then Entity (Test) = Standard_True;
3356 end Eval_Static_Predicate_Check;
3357
996ae0b0
RK
3358 -------------------------
3359 -- Eval_String_Literal --
3360 -------------------------
3361
3362 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3363 Typ : constant Entity_Id := Etype (N);
3364 Bas : constant Entity_Id := Base_Type (Typ);
3365 Xtp : Entity_Id;
3366 Len : Nat;
3367 Lo : Node_Id;
996ae0b0
RK
3368
3369 begin
3370 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3371 -- or generics where we have not yet fully resolved the type).
996ae0b0 3372
91b1417d 3373 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3374 return;
91b1417d 3375 end if;
996ae0b0
RK
3376
3377 -- String literals are static if the subtype is static (RM 4.9(2)), so
3378 -- reset the static expression flag (it was set unconditionally in
3379 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3380 -- the subtype is static by looking at the lower bound.
3381
91b1417d
AC
3382 if Ekind (Typ) = E_String_Literal_Subtype then
3383 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3384 Set_Is_Static_Expression (N, False);
3385 return;
3386 end if;
3387
3388 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 3389 -- but may be possible in future).
91b1417d
AC
3390
3391 elsif not Is_OK_Static_Expression
3392 (Type_Low_Bound (Etype (First_Index (Typ))))
3393 then
996ae0b0 3394 Set_Is_Static_Expression (N, False);
91b1417d
AC
3395 return;
3396 end if;
996ae0b0 3397
91b1417d
AC
3398 -- If original node was a type conversion, then result if non-static
3399
3400 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3401 Set_Is_Static_Expression (N, False);
91b1417d
AC
3402 return;
3403 end if;
996ae0b0 3404
22cb89b5
AC
3405 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3406 -- if its bounds are outside the index base type and this index type is
3407 -- static. This can happen in only two ways. Either the string literal
3408 -- is too long, or it is null, and the lower bound is type'First. In
3409 -- either case it is the upper bound that is out of range of the index
3410 -- type.
996ae0b0 3411
0ab80019 3412 if Ada_Version >= Ada_95 then
91b1417d
AC
3413 if Root_Type (Bas) = Standard_String
3414 or else
3415 Root_Type (Bas) = Standard_Wide_String
996ae0b0 3416 then
91b1417d 3417 Xtp := Standard_Positive;
996ae0b0 3418 else
91b1417d 3419 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3420 end if;
3421
91b1417d
AC
3422 if Ekind (Typ) = E_String_Literal_Subtype then
3423 Lo := String_Literal_Low_Bound (Typ);
3424 else
3425 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3426 end if;
3427
3428 Len := String_Length (Strval (N));
3429
3430 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 3431 Apply_Compile_Time_Constraint_Error
07fc65c4 3432 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
3433 Ent => Bas,
3434 Typ => First_Subtype (Bas));
996ae0b0 3435
91b1417d
AC
3436 elsif Len = 0
3437 and then not Is_Generic_Type (Xtp)
3438 and then
3439 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
3440 then
3441 Apply_Compile_Time_Constraint_Error
3442 (N, "null string literal not allowed for}",
07fc65c4 3443 CE_Length_Check_Failed,
91b1417d
AC
3444 Ent => Bas,
3445 Typ => First_Subtype (Bas));
996ae0b0
RK
3446 end if;
3447 end if;
996ae0b0
RK
3448 end Eval_String_Literal;
3449
3450 --------------------------
3451 -- Eval_Type_Conversion --
3452 --------------------------
3453
3454 -- A type conversion is potentially static if its subtype mark is for a
3455 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 3456 -- (RM 4.9(10)).
996ae0b0
RK
3457
3458 procedure Eval_Type_Conversion (N : Node_Id) is
3459 Operand : constant Node_Id := Expression (N);
3460 Source_Type : constant Entity_Id := Etype (Operand);
3461 Target_Type : constant Entity_Id := Etype (N);
3462
3463 Stat : Boolean;
3464 Fold : Boolean;
3465
3466 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
3467 -- Returns true if type T is an integer type, or if it is a fixed-point
3468 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3469 -- on the conversion node).
996ae0b0
RK
3470
3471 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3472 -- Returns true if type T is a floating-point type, or if it is a
3473 -- fixed-point type that is not to be treated as an integer (i.e. the
3474 -- flag Conversion_OK is not set on the conversion node).
3475
fbf5a39b
AC
3476 ------------------------------
3477 -- To_Be_Treated_As_Integer --
3478 ------------------------------
3479
996ae0b0
RK
3480 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3481 begin
3482 return
3483 Is_Integer_Type (T)
3484 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3485 end To_Be_Treated_As_Integer;
3486
fbf5a39b
AC
3487 ---------------------------
3488 -- To_Be_Treated_As_Real --
3489 ---------------------------
3490
996ae0b0
RK
3491 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3492 begin
3493 return
3494 Is_Floating_Point_Type (T)
3495 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3496 end To_Be_Treated_As_Real;
3497
3498 -- Start of processing for Eval_Type_Conversion
3499
3500 begin
82c80734 3501 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3502
3503 if not Is_Static_Subtype (Target_Type) then
3504 Check_Non_Static_Context (Operand);
3505 return;
3506
3507 elsif Error_Posted (N) then
3508 return;
3509 end if;
3510
3511 -- If not foldable we are done
3512
3513 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3514
3515 if not Fold then
3516 return;
3517
3518 -- Don't try fold if target type has constraint error bounds
3519
3520 elsif not Is_OK_Static_Subtype (Target_Type) then
3521 Set_Raises_Constraint_Error (N);
3522 return;
3523 end if;
3524
3525 -- Remaining processing depends on operand types. Note that in the
3526 -- following type test, fixed-point counts as real unless the flag
3527 -- Conversion_OK is set, in which case it counts as integer.
3528
82c80734 3529 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3530
3531 if Is_String_Type (Target_Type) then
b11e8d6f 3532 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3533
3534 return;
3535
3536 -- Fold conversion, case of integer target type
3537
3538 elsif To_Be_Treated_As_Integer (Target_Type) then
3539 declare
3540 Result : Uint;
3541
3542 begin
3543 -- Integer to integer conversion
3544
3545 if To_Be_Treated_As_Integer (Source_Type) then
3546 Result := Expr_Value (Operand);
3547
3548 -- Real to integer conversion
3549
3550 else
3551 Result := UR_To_Uint (Expr_Value_R (Operand));
3552 end if;
3553
3554 -- If fixed-point type (Conversion_OK must be set), then the
3555 -- result is logically an integer, but we must replace the
3556 -- conversion with the corresponding real literal, since the
3557 -- type from a semantic point of view is still fixed-point.
3558
3559 if Is_Fixed_Point_Type (Target_Type) then
3560 Fold_Ureal
fbf5a39b 3561 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3562
3563 -- Otherwise result is integer literal
3564
3565 else
fbf5a39b 3566 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3567 end if;
3568 end;
3569
3570 -- Fold conversion, case of real target type
3571
3572 elsif To_Be_Treated_As_Real (Target_Type) then
3573 declare
3574 Result : Ureal;
3575
3576 begin
3577 if To_Be_Treated_As_Real (Source_Type) then
3578 Result := Expr_Value_R (Operand);
3579 else
3580 Result := UR_From_Uint (Expr_Value (Operand));
3581 end if;
3582
fbf5a39b 3583 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3584 end;
3585
3586 -- Enumeration types
3587
3588 else
fbf5a39b 3589 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3590 end if;
3591
c800f862 3592 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3593 Out_Of_Range (N);
3594 end if;
3595
3596 end Eval_Type_Conversion;
3597
3598 -------------------
3599 -- Eval_Unary_Op --
3600 -------------------
3601
3602 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 3603 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
3604
3605 procedure Eval_Unary_Op (N : Node_Id) is
3606 Right : constant Node_Id := Right_Opnd (N);
d7567964 3607 Otype : Entity_Id := Empty;
996ae0b0
RK
3608 Stat : Boolean;
3609 Fold : Boolean;
3610
3611 begin
3612 -- If not foldable we are done
3613
3614 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3615
3616 if not Fold then
3617 return;
3618 end if;
3619
602a7ec0 3620 if Etype (Right) = Universal_Integer
ae77c68b
AC
3621 or else
3622 Etype (Right) = Universal_Real
602a7ec0 3623 then
d7567964 3624 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
3625 end if;
3626
996ae0b0
RK
3627 -- Fold for integer case
3628
3629 if Is_Integer_Type (Etype (N)) then
3630 declare
3631 Rint : constant Uint := Expr_Value (Right);
3632 Result : Uint;
3633
3634 begin
3635 -- In the case of modular unary plus and abs there is no need
3636 -- to adjust the result of the operation since if the original
3637 -- operand was in bounds the result will be in the bounds of the
3638 -- modular type. However, in the case of modular unary minus the
3639 -- result may go out of the bounds of the modular type and needs
3640 -- adjustment.
3641
3642 if Nkind (N) = N_Op_Plus then
3643 Result := Rint;
3644
3645 elsif Nkind (N) = N_Op_Minus then
3646 if Is_Modular_Integer_Type (Etype (N)) then
3647 Result := (-Rint) mod Modulus (Etype (N));
3648 else
3649 Result := (-Rint);
3650 end if;
3651
3652 else
3653 pragma Assert (Nkind (N) = N_Op_Abs);
3654 Result := abs Rint;
3655 end if;
3656
fbf5a39b 3657 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3658 end;
3659
3660 -- Fold for real case
3661
3662 elsif Is_Real_Type (Etype (N)) then
3663 declare
3664 Rreal : constant Ureal := Expr_Value_R (Right);
3665 Result : Ureal;
3666
3667 begin
3668 if Nkind (N) = N_Op_Plus then
3669 Result := Rreal;
3670
3671 elsif Nkind (N) = N_Op_Minus then
3672 Result := UR_Negate (Rreal);
3673
3674 else
3675 pragma Assert (Nkind (N) = N_Op_Abs);
3676 Result := abs Rreal;
3677 end if;
3678
fbf5a39b 3679 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3680 end;
3681 end if;
d7567964
TQ
3682
3683 -- If the operator was resolved to a specific type, make sure that type
3684 -- is frozen even if the expression is folded into a literal (which has
3685 -- a universal type).
3686
3687 if Present (Otype) then
3688 Freeze_Before (N, Otype);
3689 end if;
996ae0b0
RK
3690 end Eval_Unary_Op;
3691
3692 -------------------------------
3693 -- Eval_Unchecked_Conversion --
3694 -------------------------------
3695
3696 -- Unchecked conversions can never be static, so the only required
3697 -- processing is to check for a non-static context for the operand.
3698
3699 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3700 begin
3701 Check_Non_Static_Context (Expression (N));
3702 end Eval_Unchecked_Conversion;
3703
3704 --------------------
3705 -- Expr_Rep_Value --
3706 --------------------
3707
3708 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3709 Kind : constant Node_Kind := Nkind (N);
3710 Ent : Entity_Id;
996ae0b0
RK
3711
3712 begin
3713 if Is_Entity_Name (N) then
3714 Ent := Entity (N);
3715
22cb89b5
AC
3716 -- An enumeration literal that was either in the source or created
3717 -- as a result of static evaluation.
996ae0b0
RK
3718
3719 if Ekind (Ent) = E_Enumeration_Literal then
3720 return Enumeration_Rep (Ent);
3721
3722 -- A user defined static constant
3723
3724 else
3725 pragma Assert (Ekind (Ent) = E_Constant);
3726 return Expr_Rep_Value (Constant_Value (Ent));
3727 end if;
3728
22cb89b5
AC
3729 -- An integer literal that was either in the source or created as a
3730 -- result of static evaluation.
996ae0b0
RK
3731
3732 elsif Kind = N_Integer_Literal then
3733 return Intval (N);
3734
3735 -- A real literal for a fixed-point type. This must be the fixed-point
3736 -- case, either the literal is of a fixed-point type, or it is a bound
3737 -- of a fixed-point type, with type universal real. In either case we
3738 -- obtain the desired value from Corresponding_Integer_Value.
3739
3740 elsif Kind = N_Real_Literal then
996ae0b0
RK
3741 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3742 return Corresponding_Integer_Value (N);
3743
07fc65c4
GB
3744 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3745
3746 elsif Kind = N_Attribute_Reference
3747 and then Attribute_Name (N) = Name_Null_Parameter
3748 then
3749 return Uint_0;
3750
07fc65c4 3751 -- Otherwise must be character literal
8cbb664e 3752
996ae0b0
RK
3753 else
3754 pragma Assert (Kind = N_Character_Literal);
3755 Ent := Entity (N);
3756
22cb89b5
AC
3757 -- Since Character literals of type Standard.Character don't have any
3758 -- defining character literals built for them, they do not have their
3759 -- Entity set, so just use their Char code. Otherwise for user-
3760 -- defined character literals use their Pos value as usual which is
3761 -- the same as the Rep value.
996ae0b0
RK
3762
3763 if No (Ent) then
82c80734 3764 return Char_Literal_Value (N);
996ae0b0
RK
3765 else
3766 return Enumeration_Rep (Ent);
3767 end if;
3768 end if;
3769 end Expr_Rep_Value;
3770
3771 ----------------
3772 -- Expr_Value --
3773 ----------------
3774
3775 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
3776 Kind : constant Node_Kind := Nkind (N);
3777 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3778 Ent : Entity_Id;
3779 Val : Uint;
996ae0b0
RK
3780
3781 begin
13f34a3f
RD
3782 -- If already in cache, then we know it's compile time known and we can
3783 -- return the value that was previously stored in the cache since
3784 -- compile time known values cannot change.
07fc65c4
GB
3785
3786 if CV_Ent.N = N then
3787 return CV_Ent.V;
3788 end if;
3789
3790 -- Otherwise proceed to test value
3791
996ae0b0
RK
3792 if Is_Entity_Name (N) then
3793 Ent := Entity (N);
3794
22cb89b5
AC
3795 -- An enumeration literal that was either in the source or created as
3796 -- a result of static evaluation.
996ae0b0
RK
3797
3798 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 3799 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3800
3801 -- A user defined static constant
3802
3803 else
3804 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 3805 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
3806 end if;
3807
22cb89b5
AC
3808 -- An integer literal that was either in the source or created as a
3809 -- result of static evaluation.
996ae0b0
RK
3810
3811 elsif Kind = N_Integer_Literal then
07fc65c4 3812 Val := Intval (N);
996ae0b0
RK
3813
3814 -- A real literal for a fixed-point type. This must be the fixed-point
3815 -- case, either the literal is of a fixed-point type, or it is a bound
3816 -- of a fixed-point type, with type universal real. In either case we
3817 -- obtain the desired value from Corresponding_Integer_Value.
3818
3819 elsif Kind = N_Real_Literal then
3820
996ae0b0 3821 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3822 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3823
3824 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3825
3826 elsif Kind = N_Attribute_Reference
3827 and then Attribute_Name (N) = Name_Null_Parameter
3828 then
07fc65c4
GB
3829 Val := Uint_0;
3830
996ae0b0
RK
3831 -- Otherwise must be character literal
3832
3833 else
3834 pragma Assert (Kind = N_Character_Literal);
3835 Ent := Entity (N);
3836
3837 -- Since Character literals of type Standard.Character don't
3838 -- have any defining character literals built for them, they
3839 -- do not have their Entity set, so just use their Char
3840 -- code. Otherwise for user-defined character literals use
3841 -- their Pos value as usual.
3842
3843 if No (Ent) then
82c80734 3844 Val := Char_Literal_Value (N);
996ae0b0 3845 else
07fc65c4 3846 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3847 end if;
3848 end if;
3849
07fc65c4
GB
3850 -- Come here with Val set to value to be returned, set cache
3851
3852 CV_Ent.N := N;
3853 CV_Ent.V := Val;
3854 return Val;
996ae0b0
RK
3855 end Expr_Value;
3856
3857 ------------------
3858 -- Expr_Value_E --
3859 ------------------
3860
3861 function Expr_Value_E (N : Node_Id) return Entity_Id is
3862 Ent : constant Entity_Id := Entity (N);
3863
3864 begin
3865 if Ekind (Ent) = E_Enumeration_Literal then
3866 return Ent;
3867 else
3868 pragma Assert (Ekind (Ent) = E_Constant);
3869 return Expr_Value_E (Constant_Value (Ent));
3870 end if;
3871 end Expr_Value_E;
3872
3873 ------------------
3874 -- Expr_Value_R --
3875 ------------------
3876
3877 function Expr_Value_R (N : Node_Id) return Ureal is
3878 Kind : constant Node_Kind := Nkind (N);
3879 Ent : Entity_Id;
996ae0b0
RK
3880
3881 begin
3882 if Kind = N_Real_Literal then
3883 return Realval (N);
3884
3885 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3886 Ent := Entity (N);
3887 pragma Assert (Ekind (Ent) = E_Constant);
3888 return Expr_Value_R (Constant_Value (Ent));
3889
3890 elsif Kind = N_Integer_Literal then
3891 return UR_From_Uint (Expr_Value (N));
3892
996ae0b0
RK
3893 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3894
3895 elsif Kind = N_Attribute_Reference
3896 and then Attribute_Name (N) = Name_Null_Parameter
3897 then
3898 return Ureal_0;
3899 end if;
3900
22cb89b5
AC
3901 -- If we fall through, we have a node that cannot be interpreted as a
3902 -- compile time constant. That is definitely an error.
996ae0b0
RK
3903
3904 raise Program_Error;
3905 end Expr_Value_R;
3906
3907 ------------------
3908 -- Expr_Value_S --
3909 ------------------
3910
3911 function Expr_Value_S (N : Node_Id) return Node_Id is
3912 begin
3913 if Nkind (N) = N_String_Literal then
3914 return N;
3915 else
3916 pragma Assert (Ekind (Entity (N)) = E_Constant);
3917 return Expr_Value_S (Constant_Value (Entity (N)));
3918 end if;
3919 end Expr_Value_S;
3920
74e7891f
RD
3921 ----------------------------------
3922 -- Find_Universal_Operator_Type --
3923 ----------------------------------
3924
3925 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3926 PN : constant Node_Id := Parent (N);
3927 Call : constant Node_Id := Original_Node (N);
3928 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3929
3930 Is_Fix : constant Boolean :=
3931 Nkind (N) in N_Binary_Op
3932 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3933 -- A mixed-mode operation in this context indicates the presence of
3934 -- fixed-point type in the designated package.
3935
3936 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3937 -- Case where N is a relational (or membership) operator (else it is an
3938 -- arithmetic one).
3939
3940 In_Membership : constant Boolean :=
3941 Nkind (PN) in N_Membership_Test
3942 and then
3943 Nkind (Right_Opnd (PN)) = N_Range
3944 and then
3945 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3946 and then
3947 Is_Universal_Numeric_Type
3948 (Etype (Low_Bound (Right_Opnd (PN))))
3949 and then
3950 Is_Universal_Numeric_Type
3951 (Etype (High_Bound (Right_Opnd (PN))));
3952 -- Case where N is part of a membership test with a universal range
3953
3954 E : Entity_Id;
3955 Pack : Entity_Id;
3956 Typ1 : Entity_Id := Empty;
3957 Priv_E : Entity_Id;
3958
3959 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
3960 -- Check whether one operand is a mixed-mode operation that requires the
3961 -- presence of a fixed-point type. Given that all operands are universal
3962 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
3963
3964 ---------------------------
3965 -- Is_Mixed_Mode_Operand --
3966 ---------------------------
3967
3968 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 3969 Onod : constant Node_Id := Original_Node (Op);
74e7891f 3970 begin
7ec8363d
RD
3971 return Nkind (Onod) = N_Function_Call
3972 and then Present (Next_Actual (First_Actual (Onod)))
3973 and then Etype (First_Actual (Onod)) /=
3974 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
3975 end Is_Mixed_Mode_Operand;
3976
7ec8363d
RD
3977 -- Start of processing for Find_Universal_Operator_Type
3978
74e7891f
RD
3979 begin
3980 if Nkind (Call) /= N_Function_Call
3981 or else Nkind (Name (Call)) /= N_Expanded_Name
3982 then
3983 return Empty;
3984
946db1e2
AC
3985 -- There are several cases where the context does not imply the type of
3986 -- the operands:
3987 -- - the universal expression appears in a type conversion;
3988 -- - the expression is a relational operator applied to universal
3989 -- operands;
3990 -- - the expression is a membership test with a universal operand
3991 -- and a range with universal bounds.
74e7891f
RD
3992
3993 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
3994 or else Is_Relational
3995 or else In_Membership
74e7891f
RD
3996 then
3997 Pack := Entity (Prefix (Name (Call)));
3998
7ec8363d
RD
3999 -- If the prefix is a package declared elsewhere, iterate over its
4000 -- visible entities, otherwise iterate over all declarations in the
4001 -- designated scope.
74e7891f
RD
4002
4003 if Ekind (Pack) = E_Package
4004 and then not In_Open_Scopes (Pack)
4005 then
4006 Priv_E := First_Private_Entity (Pack);
4007 else
4008 Priv_E := Empty;
4009 end if;
4010
4011 Typ1 := Empty;
4012 E := First_Entity (Pack);
4013 while Present (E) and then E /= Priv_E loop
4014 if Is_Numeric_Type (E)
4015 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4016 and then Comes_From_Source (E)
4017 and then Is_Integer_Type (E) = Is_Int
4018 and then
4019 (Nkind (N) in N_Unary_Op
4020 or else Is_Relational
4021 or else Is_Fixed_Point_Type (E) = Is_Fix)
4022 then
4023 if No (Typ1) then
4024 Typ1 := E;
4025
676e8420
AC
4026 -- Before emitting an error, check for the presence of a
4027 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
4028
4029 elsif Is_Relational
4030 and then
4031 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 4032 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
4033 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4034
4035 then
4036 if Is_Fixed_Point_Type (E) then
4037 Typ1 := E;
4038 end if;
4039
4040 else
4041 -- More than one type of the proper class declared in P
4042
4043 Error_Msg_N ("ambiguous operation", N);
4044 Error_Msg_Sloc := Sloc (Typ1);
4045 Error_Msg_N ("\possible interpretation (inherited)#", N);
4046 Error_Msg_Sloc := Sloc (E);
4047 Error_Msg_N ("\possible interpretation (inherited)#", N);
4048 return Empty;
4049 end if;
4050 end if;
4051
4052 Next_Entity (E);
4053 end loop;
4054 end if;
4055
4056 return Typ1;
4057 end Find_Universal_Operator_Type;
4058
fbf5a39b
AC
4059 --------------------------
4060 -- Flag_Non_Static_Expr --
4061 --------------------------
4062
4063 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4064 begin
4065 if Error_Posted (Expr) and then not All_Errors_Mode then
4066 return;
4067 else
4068 Error_Msg_F (Msg, Expr);
4069 Why_Not_Static (Expr);
4070 end if;
4071 end Flag_Non_Static_Expr;
4072
996ae0b0
RK
4073 --------------
4074 -- Fold_Str --
4075 --------------
4076
fbf5a39b 4077 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
4078 Loc : constant Source_Ptr := Sloc (N);
4079 Typ : constant Entity_Id := Etype (N);
4080
4081 begin
4082 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
4083
4084 -- We now have the literal with the right value, both the actual type
4085 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4086 -- that was evaluated. So now we do the Analyze and Resolve.
4087
4088 -- Note that we have to reset Is_Static_Expression both after the
4089 -- analyze step (because Resolve will evaluate the literal, which
4090 -- will cause semantic errors if it is marked as static), and after
4091 -- the Resolve step (since Resolve in some cases sets this flag).
fbf5a39b
AC
4092
4093 Analyze (N);
4094 Set_Is_Static_Expression (N, Static);
4095 Set_Etype (N, Typ);
4096 Resolve (N);
9479ded4 4097 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4098 end Fold_Str;
4099
4100 ---------------
4101 -- Fold_Uint --
4102 ---------------
4103
fbf5a39b 4104 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 4105 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
4106 Typ : Entity_Id := Etype (N);
4107 Ent : Entity_Id;
996ae0b0
RK
4108
4109 begin
22cb89b5
AC
4110 -- If we are folding a named number, retain the entity in the literal,
4111 -- for ASIS use.
fbf5a39b
AC
4112
4113 if Is_Entity_Name (N)
4114 and then Ekind (Entity (N)) = E_Named_Integer
4115 then
4116 Ent := Entity (N);
4117 else
4118 Ent := Empty;
4119 end if;
4120
4121 if Is_Private_Type (Typ) then
4122 Typ := Full_View (Typ);
4123 end if;
4124
f3d57416 4125 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 4126 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
4127 -- For ASIS use, set a link to the original named number when not in
4128 -- a generic context.
996ae0b0 4129
fbf5a39b 4130 if Is_Integer_Type (Typ) then
996ae0b0 4131 Rewrite (N, Make_Integer_Literal (Loc, Val));
cd2fb920 4132
fbf5a39b 4133 Set_Original_Entity (N, Ent);
996ae0b0
RK
4134
4135 -- Otherwise we have an enumeration type, and we substitute either
4136 -- an N_Identifier or N_Character_Literal to represent the enumeration
4137 -- literal corresponding to the given value, which must always be in
4138 -- range, because appropriate tests have already been made for this.
4139
fbf5a39b 4140 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4141 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4142 end if;
4143
4144 -- We now have the literal with the right value, both the actual type
4145 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4146 -- that was evaluated. So now we do the Analyze and Resolve.
4147
4148 -- Note that we have to reset Is_Static_Expression both after the
4149 -- analyze step (because Resolve will evaluate the literal, which
4150 -- will cause semantic errors if it is marked as static), and after
4151 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0
RK
4152
4153 Analyze (N);
fbf5a39b 4154 Set_Is_Static_Expression (N, Static);
996ae0b0 4155 Set_Etype (N, Typ);
fbf5a39b 4156 Resolve (N);
9479ded4 4157 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4158 end Fold_Uint;
4159
4160 ----------------
4161 -- Fold_Ureal --
4162 ----------------
4163
fbf5a39b 4164 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4165 Loc : constant Source_Ptr := Sloc (N);
4166 Typ : constant Entity_Id := Etype (N);
fbf5a39b 4167 Ent : Entity_Id;
996ae0b0
RK
4168
4169 begin
22cb89b5
AC
4170 -- If we are folding a named number, retain the entity in the literal,
4171 -- for ASIS use.
fbf5a39b
AC
4172
4173 if Is_Entity_Name (N)
4174 and then Ekind (Entity (N)) = E_Named_Real
4175 then
4176 Ent := Entity (N);
4177 else
4178 Ent := Empty;
4179 end if;
4180
996ae0b0 4181 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 4182
5a30024a 4183 -- Set link to original named number, for ASIS use
cd2fb920 4184
fbf5a39b 4185 Set_Original_Entity (N, Ent);
996ae0b0 4186
9479ded4
AC
4187 -- We now have the literal with the right value, both the actual type
4188 -- and the expected type of this literal are taken from the expression
4189 -- that was evaluated. So now we do the Analyze and Resolve.
4190
4191 -- Note that we have to reset Is_Static_Expression both after the
4192 -- analyze step (because Resolve will evaluate the literal, which
4193 -- will cause semantic errors if it is marked as static), and after
4194 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0 4195
fbf5a39b
AC
4196 Analyze (N);
4197 Set_Is_Static_Expression (N, Static);
996ae0b0 4198 Set_Etype (N, Typ);
fbf5a39b 4199 Resolve (N);
9479ded4 4200 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4201 end Fold_Ureal;
4202
4203 ---------------
4204 -- From_Bits --
4205 ---------------
4206
4207 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4208 V : Uint := Uint_0;
4209
4210 begin
4211 for J in 0 .. B'Last loop
4212 if B (J) then
4213 V := V + 2 ** J;
4214 end if;
4215 end loop;
4216
4217 if Non_Binary_Modulus (T) then
4218 V := V mod Modulus (T);
4219 end if;
4220
4221 return V;
4222 end From_Bits;
4223
4224 --------------------
4225 -- Get_String_Val --
4226 --------------------
4227
4228 function Get_String_Val (N : Node_Id) return Node_Id is
4229 begin
4230 if Nkind (N) = N_String_Literal then
4231 return N;
4232
4233 elsif Nkind (N) = N_Character_Literal then
4234 return N;
4235
4236 else
4237 pragma Assert (Is_Entity_Name (N));
4238 return Get_String_Val (Constant_Value (Entity (N)));
4239 end if;
4240 end Get_String_Val;
4241
fbf5a39b
AC
4242 ----------------
4243 -- Initialize --
4244 ----------------
4245
4246 procedure Initialize is
4247 begin
4248 CV_Cache := (others => (Node_High_Bound, Uint_0));
4249 end Initialize;
4250
996ae0b0
RK
4251 --------------------
4252 -- In_Subrange_Of --
4253 --------------------
4254
4255 function In_Subrange_Of
c27f2f15
RD
4256 (T1 : Entity_Id;
4257 T2 : Entity_Id;
4258 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
4259 is
4260 L1 : Node_Id;
4261 H1 : Node_Id;
4262
4263 L2 : Node_Id;
4264 H2 : Node_Id;
4265
4266 begin
4267 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4268 return True;
4269
4270 -- Never in range if both types are not scalar. Don't know if this can
4271 -- actually happen, but just in case.
4272
9d08a38d 4273 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
996ae0b0
RK
4274 return False;
4275
d79e621a
GD
4276 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4277 -- definitely not compatible with T2.
4278
4279 elsif Is_Floating_Point_Type (T1)
4280 and then Has_Infinities (T1)
4281 and then Is_Floating_Point_Type (T2)
4282 and then not Has_Infinities (T2)
4283 then
4284 return False;
4285
996ae0b0
RK
4286 else
4287 L1 := Type_Low_Bound (T1);
4288 H1 := Type_High_Bound (T1);
4289
4290 L2 := Type_Low_Bound (T2);
4291 H2 := Type_High_Bound (T2);
4292
4293 -- Check bounds to see if comparison possible at compile time
4294
c27f2f15 4295 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 4296 and then
c27f2f15 4297 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
4298 then
4299 return True;
4300 end if;
4301
4302 -- If bounds not comparable at compile time, then the bounds of T2
4303 -- must be compile time known or we cannot answer the query.
4304
4305 if not Compile_Time_Known_Value (L2)
4306 or else not Compile_Time_Known_Value (H2)
4307 then
4308 return False;
4309 end if;
4310
4311 -- If the bounds of T1 are know at compile time then use these
4312 -- ones, otherwise use the bounds of the base type (which are of
4313 -- course always static).
4314
4315 if not Compile_Time_Known_Value (L1) then
4316 L1 := Type_Low_Bound (Base_Type (T1));
4317 end if;
4318
4319 if not Compile_Time_Known_Value (H1) then
4320 H1 := Type_High_Bound (Base_Type (T1));
4321 end if;
4322
4323 -- Fixed point types should be considered as such only if
4324 -- flag Fixed_Int is set to False.
4325
4326 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4327 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4328 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4329 then
4330 return
4331 Expr_Value_R (L2) <= Expr_Value_R (L1)
4332 and then
4333 Expr_Value_R (H2) >= Expr_Value_R (H1);
4334
4335 else
4336 return
4337 Expr_Value (L2) <= Expr_Value (L1)
4338 and then
4339 Expr_Value (H2) >= Expr_Value (H1);
4340
4341 end if;
4342 end if;
4343
4344 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 4345 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
4346 -- occurrence. However, this is only an optimization attempt, so there is
4347 -- really no point in crashing the compiler. Instead we just decide, too
4348 -- bad, we can't figure out the answer in this case after all.
4349
4350 exception
4351 when others =>
4352
4353 -- Debug flag K disables this behavior (useful for debugging)
4354
4355 if Debug_Flag_K then
4356 raise;
4357 else
4358 return False;
4359 end if;
4360 end In_Subrange_Of;
4361
4362 -----------------
4363 -- Is_In_Range --
4364 -----------------
4365
4366 function Is_In_Range
c800f862
RD
4367 (N : Node_Id;
4368 Typ : Entity_Id;
4369 Assume_Valid : Boolean := False;
4370 Fixed_Int : Boolean := False;
4371 Int_Real : Boolean := False) return Boolean
996ae0b0 4372 is
996ae0b0 4373 begin
305caf42
AC
4374 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4375 = In_Range;
996ae0b0
RK
4376 end Is_In_Range;
4377
4378 -------------------
4379 -- Is_Null_Range --
4380 -------------------
4381
4382 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4383 Typ : constant Entity_Id := Etype (Lo);
4384
4385 begin
4386 if not Compile_Time_Known_Value (Lo)
4387 or else not Compile_Time_Known_Value (Hi)
4388 then
4389 return False;
4390 end if;
4391
4392 if Is_Discrete_Type (Typ) then
4393 return Expr_Value (Lo) > Expr_Value (Hi);
4394
4395 else
4396 pragma Assert (Is_Real_Type (Typ));
4397 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4398 end if;
4399 end Is_Null_Range;
4400
4401 -----------------------------
4402 -- Is_OK_Static_Expression --
4403 -----------------------------
4404
4405 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4406 begin
4407 return Is_Static_Expression (N)
4408 and then not Raises_Constraint_Error (N);
4409 end Is_OK_Static_Expression;
4410
4411 ------------------------
4412 -- Is_OK_Static_Range --
4413 ------------------------
4414
4415 -- A static range is a range whose bounds are static expressions, or a
4416 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4417 -- We have already converted range attribute references, so we get the
4418 -- "or" part of this rule without needing a special test.
4419
4420 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4421 begin
4422 return Is_OK_Static_Expression (Low_Bound (N))
4423 and then Is_OK_Static_Expression (High_Bound (N));
4424 end Is_OK_Static_Range;
4425
4426 --------------------------
4427 -- Is_OK_Static_Subtype --
4428 --------------------------
4429
22cb89b5
AC
4430 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4431 -- neither bound raises constraint error when evaluated.
996ae0b0
RK
4432
4433 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4434 Base_T : constant Entity_Id := Base_Type (Typ);
4435 Anc_Subt : Entity_Id;
4436
4437 begin
4438 -- First a quick check on the non static subtype flag. As described
4439 -- in further detail in Einfo, this flag is not decisive in all cases,
4440 -- but if it is set, then the subtype is definitely non-static.
4441
4442 if Is_Non_Static_Subtype (Typ) then
4443 return False;
4444 end if;
4445
4446 Anc_Subt := Ancestor_Subtype (Typ);
4447
4448 if Anc_Subt = Empty then
4449 Anc_Subt := Base_T;
4450 end if;
4451
4452 if Is_Generic_Type (Root_Type (Base_T))
4453 or else Is_Generic_Actual_Type (Base_T)
4454 then
4455 return False;
4456
4457 -- String types
4458
4459 elsif Is_String_Type (Typ) then
4460 return
4461 Ekind (Typ) = E_String_Literal_Subtype
4462 or else
011f9d5d
AC
4463 (Is_OK_Static_Subtype (Component_Type (Typ))
4464 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4465
4466 -- Scalar types
4467
4468 elsif Is_Scalar_Type (Typ) then
4469 if Base_T = Typ then
4470 return True;
4471
4472 else
22cb89b5
AC
4473 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4474 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
4475
4476 return Is_OK_Static_Subtype (Anc_Subt)
4477 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4478 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4479 end if;
4480
4481 -- Types other than string and scalar types are never static
4482
4483 else
4484 return False;
4485 end if;
4486 end Is_OK_Static_Subtype;
4487
4488 ---------------------
4489 -- Is_Out_Of_Range --
4490 ---------------------
4491
4492 function Is_Out_Of_Range
1c7717c3
AC
4493 (N : Node_Id;
4494 Typ : Entity_Id;
c800f862 4495 Assume_Valid : Boolean := False;
1c7717c3
AC
4496 Fixed_Int : Boolean := False;
4497 Int_Real : Boolean := False) return Boolean
996ae0b0 4498 is
996ae0b0 4499 begin
305caf42
AC
4500 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4501 = Out_Of_Range;
996ae0b0
RK
4502 end Is_Out_Of_Range;
4503
4504 ---------------------
4505 -- Is_Static_Range --
4506 ---------------------
4507
4508 -- A static range is a range whose bounds are static expressions, or a
4509 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4510 -- We have already converted range attribute references, so we get the
4511 -- "or" part of this rule without needing a special test.
4512
4513 function Is_Static_Range (N : Node_Id) return Boolean is
4514 begin
4515 return Is_Static_Expression (Low_Bound (N))
4516 and then Is_Static_Expression (High_Bound (N));
4517 end Is_Static_Range;
4518
4519 -----------------------
4520 -- Is_Static_Subtype --
4521 -----------------------
4522
82c80734 4523 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4524
4525 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4526 Base_T : constant Entity_Id := Base_Type (Typ);
4527 Anc_Subt : Entity_Id;
4528
4529 begin
4530 -- First a quick check on the non static subtype flag. As described
4531 -- in further detail in Einfo, this flag is not decisive in all cases,
4532 -- but if it is set, then the subtype is definitely non-static.
4533
4534 if Is_Non_Static_Subtype (Typ) then
4535 return False;
4536 end if;
4537
4538 Anc_Subt := Ancestor_Subtype (Typ);
4539
4540 if Anc_Subt = Empty then
4541 Anc_Subt := Base_T;
4542 end if;
4543
4544 if Is_Generic_Type (Root_Type (Base_T))
4545 or else Is_Generic_Actual_Type (Base_T)
4546 then
4547 return False;
4548
4549 -- String types
4550
4551 elsif Is_String_Type (Typ) then
4552 return
4553 Ekind (Typ) = E_String_Literal_Subtype
011f9d5d
AC
4554 or else (Is_Static_Subtype (Component_Type (Typ))
4555 and then Is_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4556
4557 -- Scalar types
4558
4559 elsif Is_Scalar_Type (Typ) then
4560 if Base_T = Typ then
4561 return True;
4562
4563 else
4564 return Is_Static_Subtype (Anc_Subt)
4565 and then Is_Static_Expression (Type_Low_Bound (Typ))
4566 and then Is_Static_Expression (Type_High_Bound (Typ));
4567 end if;
4568
4569 -- Types other than string and scalar types are never static
4570
4571 else
4572 return False;
4573 end if;
4574 end Is_Static_Subtype;
4575
4576 --------------------
4577 -- Not_Null_Range --
4578 --------------------
4579
4580 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4581 Typ : constant Entity_Id := Etype (Lo);
4582
4583 begin
4584 if not Compile_Time_Known_Value (Lo)
4585 or else not Compile_Time_Known_Value (Hi)
4586 then
4587 return False;
4588 end if;
4589
4590 if Is_Discrete_Type (Typ) then
4591 return Expr_Value (Lo) <= Expr_Value (Hi);
4592
4593 else
4594 pragma Assert (Is_Real_Type (Typ));
4595
4596 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4597 end if;
4598 end Not_Null_Range;
4599
4600 -------------
4601 -- OK_Bits --
4602 -------------
4603
4604 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4605 begin
4606 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4607
4608 if Bits < 500_000 then
4609 return True;
4610
4611 else
4612 Error_Msg_N ("static value too large, capacity exceeded", N);
4613 return False;
4614 end if;
4615 end OK_Bits;
4616
4617 ------------------
4618 -- Out_Of_Range --
4619 ------------------
4620
4621 procedure Out_Of_Range (N : Node_Id) is
4622 begin
4623 -- If we have the static expression case, then this is an illegality
4624 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5
AC
4625 -- error (if the error is legitimate, it was already diagnosed in the
4626 -- template). The expression to compute the length of a packed array is
4627 -- attached to the array type itself, and deserves a separate message.
996ae0b0
RK
4628
4629 if Is_Static_Expression (N)
4630 and then not In_Instance
fbf5a39b 4631 and then not In_Inlined_Body
0ab80019 4632 and then Ada_Version >= Ada_95
996ae0b0 4633 then
996ae0b0
RK
4634 if Nkind (Parent (N)) = N_Defining_Identifier
4635 and then Is_Array_Type (Parent (N))
4636 and then Present (Packed_Array_Type (Parent (N)))
4637 and then Present (First_Rep_Item (Parent (N)))
4638 then
4639 Error_Msg_N
4640 ("length of packed array must not exceed Integer''Last",
4641 First_Rep_Item (Parent (N)));
4642 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4643
4644 else
4645 Apply_Compile_Time_Constraint_Error
07fc65c4 4646 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
4647 end if;
4648
22cb89b5
AC
4649 -- Here we generate a warning for the Ada 83 case, or when we are in an
4650 -- instance, or when we have a non-static expression case.
996ae0b0
RK
4651
4652 else
996ae0b0 4653 Apply_Compile_Time_Constraint_Error
07fc65c4 4654 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
4655 end if;
4656 end Out_Of_Range;
4657
4658 -------------------------
4659 -- Rewrite_In_Raise_CE --
4660 -------------------------
4661
4662 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4663 Typ : constant Entity_Id := Etype (N);
4664
4665 begin
22cb89b5
AC
4666 -- If we want to raise CE in the condition of a N_Raise_CE node
4667 -- we may as well get rid of the condition.
996ae0b0
RK
4668
4669 if Present (Parent (N))
4670 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4671 then
4672 Set_Condition (Parent (N), Empty);
4673
22cb89b5
AC
4674 -- If the expression raising CE is a N_Raise_CE node, we can use that
4675 -- one. We just preserve the type of the context.
996ae0b0
RK
4676
4677 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4678 Rewrite (N, Exp);
4679 Set_Etype (N, Typ);
4680
22cb89b5 4681 -- Else build an explcit N_Raise_CE
996ae0b0
RK
4682
4683 else
07fc65c4
GB
4684 Rewrite (N,
4685 Make_Raise_Constraint_Error (Sloc (Exp),
4686 Reason => CE_Range_Check_Failed));
996ae0b0
RK
4687 Set_Raises_Constraint_Error (N);
4688 Set_Etype (N, Typ);
4689 end if;
4690 end Rewrite_In_Raise_CE;
4691
4692 ---------------------
4693 -- String_Type_Len --
4694 ---------------------
4695
4696 function String_Type_Len (Stype : Entity_Id) return Uint is
4697 NT : constant Entity_Id := Etype (First_Index (Stype));
4698 T : Entity_Id;
4699
4700 begin
4701 if Is_OK_Static_Subtype (NT) then
4702 T := NT;
4703 else
4704 T := Base_Type (NT);
4705 end if;
4706
4707 return Expr_Value (Type_High_Bound (T)) -
4708 Expr_Value (Type_Low_Bound (T)) + 1;
4709 end String_Type_Len;
4710
4711 ------------------------------------
4712 -- Subtypes_Statically_Compatible --
4713 ------------------------------------
4714
4715 function Subtypes_Statically_Compatible
f44fe430
RD
4716 (T1 : Entity_Id;
4717 T2 : Entity_Id) return Boolean
996ae0b0
RK
4718 is
4719 begin
437f8c1e
AC
4720 -- Scalar types
4721
996ae0b0
RK
4722 if Is_Scalar_Type (T1) then
4723
4724 -- Definitely compatible if we match
4725
4726 if Subtypes_Statically_Match (T1, T2) then
4727 return True;
4728
4729 -- If either subtype is nonstatic then they're not compatible
4730
4731 elsif not Is_Static_Subtype (T1)
4732 or else not Is_Static_Subtype (T2)
4733 then
4734 return False;
4735
4736 -- If either type has constraint error bounds, then consider that
4737 -- they match to avoid junk cascaded errors here.
4738
4739 elsif not Is_OK_Static_Subtype (T1)
4740 or else not Is_OK_Static_Subtype (T2)
4741 then
4742 return True;
4743
26df19ce
AC
4744 -- Base types must match, but we don't check that (should we???) but
4745 -- we do at least check that both types are real, or both types are
4746 -- not real.
996ae0b0 4747
fbf5a39b 4748 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
4749 return False;
4750
4751 -- Here we check the bounds
4752
4753 else
4754 declare
4755 LB1 : constant Node_Id := Type_Low_Bound (T1);
4756 HB1 : constant Node_Id := Type_High_Bound (T1);
4757 LB2 : constant Node_Id := Type_Low_Bound (T2);
4758 HB2 : constant Node_Id := Type_High_Bound (T2);
4759
4760 begin
4761 if Is_Real_Type (T1) then
4762 return
4763 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4764 or else
4765 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4766 and then
4767 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4768
4769 else
4770 return
4771 (Expr_Value (LB1) > Expr_Value (HB1))
4772 or else
4773 (Expr_Value (LB2) <= Expr_Value (LB1)
4774 and then
4775 Expr_Value (HB1) <= Expr_Value (HB2));
4776 end if;
4777 end;
4778 end if;
4779
437f8c1e
AC
4780 -- Access types
4781
996ae0b0 4782 elsif Is_Access_Type (T1) then
26df19ce
AC
4783 return (not Is_Constrained (T2)
4784 or else (Subtypes_Statically_Match
4785 (Designated_Type (T1), Designated_Type (T2))))
4786 and then not (Can_Never_Be_Null (T2)
4787 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
4788
4789 -- All other cases
996ae0b0
RK
4790
4791 else
4792 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4793 or else Subtypes_Statically_Match (T1, T2);
4794 end if;
4795 end Subtypes_Statically_Compatible;
4796
4797 -------------------------------
4798 -- Subtypes_Statically_Match --
4799 -------------------------------
4800
4801 -- Subtypes statically match if they have statically matching constraints
4802 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4803 -- they are the same identical constraint, or if they are static and the
4804 -- values match (RM 4.9.1(1)).
4805
4806 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
bb9c600b
AC
4807
4808 function Predicates_Match return Boolean;
4809 -- In Ada 2012, subtypes statically match if their static predicates
4810 -- match as well.
4811
6eaa926a
RD
4812 ----------------------
4813 -- Predicates_Match --
4814 ----------------------
4815
bb9c600b
AC
4816 function Predicates_Match return Boolean is
4817 Pred1 : Node_Id;
4818 Pred2 : Node_Id;
4819
4820 begin
4821 if Ada_Version < Ada_2012 then
4822 return True;
4823
4824 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
4825 return False;
4826
4827 else
34f3a701
VP
4828 Pred1 :=
4829 Get_Rep_Item
4830 (T1, Name_Static_Predicate, Check_Parents => False);
4831 Pred2 :=
4832 Get_Rep_Item
4833 (T2, Name_Static_Predicate, Check_Parents => False);
bb9c600b
AC
4834
4835 -- Subtypes statically match if the predicate comes from the
4836 -- same declaration, which can only happen if one is a subtype
4837 -- of the other and has no explicit predicate.
4838
4839 -- Suppress warnings on order of actuals, which is otherwise
4840 -- triggered by one of the two calls below.
4841
4842 pragma Warnings (Off);
4843 return Pred1 = Pred2
4844 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
4845 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
4846 pragma Warnings (On);
4847 end if;
4848 end Predicates_Match;
4849
6eaa926a
RD
4850 -- Start of processing for Subtypes_Statically_Match
4851
996ae0b0
RK
4852 begin
4853 -- A type always statically matches itself
4854
4855 if T1 = T2 then
4856 return True;
4857
4858 -- Scalar types
4859
4860 elsif Is_Scalar_Type (T1) then
4861
4862 -- Base types must be the same
4863
4864 if Base_Type (T1) /= Base_Type (T2) then
4865 return False;
4866 end if;
4867
4868 -- A constrained numeric subtype never matches an unconstrained
4869 -- subtype, i.e. both types must be constrained or unconstrained.
4870
305caf42
AC
4871 -- To understand the requirement for this test, see RM 4.9.1(1).
4872 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4873 -- a constrained subtype with constraint bounds matching the bounds
4874 -- of its corresponding unconstrained base type. In this situation,
4875 -- Integer and Integer'Base do not statically match, even though
4876 -- they have the same bounds.
996ae0b0 4877
22cb89b5
AC
4878 -- We only apply this test to types in Standard and types that appear
4879 -- in user programs. That way, we do not have to be too careful about
4880 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
4881
4882 if Is_Numeric_Type (T1)
4883 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4884 and then (Scope (T1) = Standard_Standard
4885 or else Comes_From_Source (T1))
4886 and then (Scope (T2) = Standard_Standard
4887 or else Comes_From_Source (T2))
4888 then
4889 return False;
82c80734 4890
22cb89b5
AC
4891 -- A generic scalar type does not statically match its base type
4892 -- (AI-311). In this case we make sure that the formals, which are
4893 -- first subtypes of their bases, are constrained.
82c80734
RD
4894
4895 elsif Is_Generic_Type (T1)
4896 and then Is_Generic_Type (T2)
4897 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4898 then
4899 return False;
996ae0b0
RK
4900 end if;
4901
22cb89b5
AC
4902 -- If there was an error in either range, then just assume the types
4903 -- statically match to avoid further junk errors.
996ae0b0 4904
199c6a10
AC
4905 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4906 or else Error_Posted (Scalar_Range (T1))
4907 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
4908 then
4909 return True;
4910 end if;
4911
4912 -- Otherwise both types have bound that can be compared
4913
4914 declare
4915 LB1 : constant Node_Id := Type_Low_Bound (T1);
4916 HB1 : constant Node_Id := Type_High_Bound (T1);
4917 LB2 : constant Node_Id := Type_Low_Bound (T2);
4918 HB2 : constant Node_Id := Type_High_Bound (T2);
4919
4920 begin
6eaa926a
RD
4921 -- If the bounds are the same tree node, then match if and only
4922 -- if any predicates present also match.
996ae0b0
RK
4923
4924 if LB1 = LB2 and then HB1 = HB2 then
bb9c600b 4925 return Predicates_Match;
996ae0b0
RK
4926
4927 -- Otherwise bounds must be static and identical value
4928
4929 else
4930 if not Is_Static_Subtype (T1)
4931 or else not Is_Static_Subtype (T2)
4932 then
4933 return False;
4934
22cb89b5
AC
4935 -- If either type has constraint error bounds, then say that
4936 -- they match to avoid junk cascaded errors here.
996ae0b0
RK
4937
4938 elsif not Is_OK_Static_Subtype (T1)
4939 or else not Is_OK_Static_Subtype (T2)
4940 then
4941 return True;
4942
4943 elsif Is_Real_Type (T1) then
4944 return
4945 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4946 and then
4947 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4948
4949 else
4950 return
4951 Expr_Value (LB1) = Expr_Value (LB2)
4952 and then
4953 Expr_Value (HB1) = Expr_Value (HB2);
4954 end if;
4955 end if;
4956 end;
4957
4958 -- Type with discriminants
4959
4960 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4961
c2bf339e
GD
4962 -- Because of view exchanges in multiple instantiations, conformance
4963 -- checking might try to match a partial view of a type with no
4964 -- discriminants with a full view that has defaulted discriminants.
4965 -- In such a case, use the discriminant constraint of the full view,
4966 -- which must exist because we know that the two subtypes have the
4967 -- same base type.
6eaf4095 4968
996ae0b0 4969 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4970 if In_Instance then
4971 if Is_Private_Type (T2)
4972 and then Present (Full_View (T2))
4973 and then Has_Discriminants (Full_View (T2))
4974 then
4975 return Subtypes_Statically_Match (T1, Full_View (T2));
4976
4977 elsif Is_Private_Type (T1)
4978 and then Present (Full_View (T1))
4979 and then Has_Discriminants (Full_View (T1))
4980 then
4981 return Subtypes_Statically_Match (Full_View (T1), T2);
4982
4983 else
4984 return False;
4985 end if;
6eaf4095
ES
4986 else
4987 return False;
4988 end if;
996ae0b0
RK
4989 end if;
4990
4991 declare
4992 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4993 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4994
13f34a3f
RD
4995 DA1 : Elmt_Id;
4996 DA2 : Elmt_Id;
996ae0b0
RK
4997
4998 begin
4999 if DL1 = DL2 then
5000 return True;
996ae0b0
RK
5001 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5002 return False;
5003 end if;
5004
13f34a3f 5005 -- Now loop through the discriminant constraints
996ae0b0 5006
13f34a3f
RD
5007 -- Note: the guard here seems necessary, since it is possible at
5008 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 5009
13f34a3f
RD
5010 if Present (DL1) and then Present (DL2) then
5011 DA1 := First_Elmt (DL1);
5012 DA2 := First_Elmt (DL2);
5013 while Present (DA1) loop
5014 declare
5015 Expr1 : constant Node_Id := Node (DA1);
5016 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 5017
13f34a3f
RD
5018 begin
5019 if not Is_Static_Expression (Expr1)
5020 or else not Is_Static_Expression (Expr2)
5021 then
5022 return False;
996ae0b0 5023
13f34a3f
RD
5024 -- If either expression raised a constraint error,
5025 -- consider the expressions as matching, since this
5026 -- helps to prevent cascading errors.
5027
5028 elsif Raises_Constraint_Error (Expr1)
5029 or else Raises_Constraint_Error (Expr2)
5030 then
5031 null;
5032
5033 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5034 return False;
5035 end if;
5036 end;
996ae0b0 5037
13f34a3f
RD
5038 Next_Elmt (DA1);
5039 Next_Elmt (DA2);
5040 end loop;
5041 end if;
996ae0b0
RK
5042 end;
5043
5044 return True;
5045
22cb89b5 5046 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
5047 -- However, a generic type with unknown discriminants may be
5048 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
5049 -- checking on an inherited operation may compare the actual with the
5050 -- subtype that renames it in the instance.
996ae0b0
RK
5051
5052 elsif
5053 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5054 then
7a3f77d2
AC
5055 return
5056 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
5057
5058 -- Array type
5059
5060 elsif Is_Array_Type (T1) then
5061
22cb89b5 5062 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 5063 -- are unconstrained then no further checking is needed.
996ae0b0
RK
5064
5065 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5066 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5067 end if;
5068
22cb89b5
AC
5069 -- Both subtypes are constrained, so check that the index subtypes
5070 -- statically match.
996ae0b0
RK
5071
5072 declare
5073 Index1 : Node_Id := First_Index (T1);
5074 Index2 : Node_Id := First_Index (T2);
5075
5076 begin
5077 while Present (Index1) loop
5078 if not
5079 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5080 then
5081 return False;
5082 end if;
5083
5084 Next_Index (Index1);
5085 Next_Index (Index2);
5086 end loop;
5087
5088 return True;
5089 end;
5090
5091 elsif Is_Access_Type (T1) then
b5bd964f
ES
5092 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5093 return False;
5094
e1b871e9
AC
5095 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5096 E_Anonymous_Access_Subprogram_Type)
7a3f77d2 5097 then
b5bd964f
ES
5098 return
5099 Subtype_Conformant
5100 (Designated_Type (T1),
bb98fe75 5101 Designated_Type (T2));
b5bd964f
ES
5102 else
5103 return
5104 Subtypes_Statically_Match
5105 (Designated_Type (T1),
5106 Designated_Type (T2))
5107 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5108 end if;
996ae0b0
RK
5109
5110 -- All other types definitely match
5111
5112 else
5113 return True;
5114 end if;
5115 end Subtypes_Statically_Match;
5116
5117 ----------
5118 -- Test --
5119 ----------
5120
5121 function Test (Cond : Boolean) return Uint is
5122 begin
5123 if Cond then
5124 return Uint_1;
5125 else
5126 return Uint_0;
5127 end if;
5128 end Test;
5129
5130 ---------------------------------
5131 -- Test_Expression_Is_Foldable --
5132 ---------------------------------
5133
5134 -- One operand case
5135
5136 procedure Test_Expression_Is_Foldable
5137 (N : Node_Id;
5138 Op1 : Node_Id;
5139 Stat : out Boolean;
5140 Fold : out Boolean)
5141 is
5142 begin
5143 Stat := False;
0356699b
RD
5144 Fold := False;
5145
5146 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5147 return;
5148 end if;
996ae0b0
RK
5149
5150 -- If operand is Any_Type, just propagate to result and do not
5151 -- try to fold, this prevents cascaded errors.
5152
5153 if Etype (Op1) = Any_Type then
5154 Set_Etype (N, Any_Type);
996ae0b0
RK
5155 return;
5156
5157 -- If operand raises constraint error, then replace node N with the
5158 -- raise constraint error node, and we are obviously not foldable.
5159 -- Note that this replacement inherits the Is_Static_Expression flag
5160 -- from the operand.
5161
5162 elsif Raises_Constraint_Error (Op1) then
5163 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
5164 return;
5165
5166 -- If the operand is not static, then the result is not static, and
5167 -- all we have to do is to check the operand since it is now known
5168 -- to appear in a non-static context.
5169
5170 elsif not Is_Static_Expression (Op1) then
5171 Check_Non_Static_Context (Op1);
5172 Fold := Compile_Time_Known_Value (Op1);
5173 return;
5174
5175 -- An expression of a formal modular type is not foldable because
5176 -- the modulus is unknown.
5177
5178 elsif Is_Modular_Integer_Type (Etype (Op1))
5179 and then Is_Generic_Type (Etype (Op1))
5180 then
5181 Check_Non_Static_Context (Op1);
996ae0b0
RK
5182 return;
5183
5184 -- Here we have the case of an operand whose type is OK, which is
5185 -- static, and which does not raise constraint error, we can fold.
5186
5187 else
5188 Set_Is_Static_Expression (N);
5189 Fold := True;
5190 Stat := True;
5191 end if;
5192 end Test_Expression_Is_Foldable;
5193
5194 -- Two operand case
5195
5196 procedure Test_Expression_Is_Foldable
5197 (N : Node_Id;
5198 Op1 : Node_Id;
5199 Op2 : Node_Id;
5200 Stat : out Boolean;
5201 Fold : out Boolean)
5202 is
5203 Rstat : constant Boolean := Is_Static_Expression (Op1)
5204 and then Is_Static_Expression (Op2);
5205
5206 begin
5207 Stat := False;
0356699b
RD
5208 Fold := False;
5209
5210 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5211 return;
5212 end if;
996ae0b0
RK
5213
5214 -- If either operand is Any_Type, just propagate to result and
5215 -- do not try to fold, this prevents cascaded errors.
5216
5217 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5218 Set_Etype (N, Any_Type);
996ae0b0
RK
5219 return;
5220
22cb89b5
AC
5221 -- If left operand raises constraint error, then replace node N with the
5222 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
5223 -- Is_Static_Expression is set from the two operands in the normal way,
5224 -- and we check the right operand if it is in a non-static context.
5225
5226 elsif Raises_Constraint_Error (Op1) then
5227 if not Rstat then
5228 Check_Non_Static_Context (Op2);
5229 end if;
5230
5231 Rewrite_In_Raise_CE (N, Op1);
5232 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5233 return;
5234
22cb89b5
AC
5235 -- Similar processing for the case of the right operand. Note that we
5236 -- don't use this routine for the short-circuit case, so we do not have
5237 -- to worry about that special case here.
996ae0b0
RK
5238
5239 elsif Raises_Constraint_Error (Op2) then
5240 if not Rstat then
5241 Check_Non_Static_Context (Op1);
5242 end if;
5243
5244 Rewrite_In_Raise_CE (N, Op2);
5245 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5246 return;
5247
82c80734 5248 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
5249
5250 elsif Is_Modular_Integer_Type (Etype (Op1))
5251 and then Is_Generic_Type (Etype (Op1))
5252 then
5253 Check_Non_Static_Context (Op1);
996ae0b0
RK
5254 return;
5255
5256 -- If result is not static, then check non-static contexts on operands
22cb89b5 5257 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
5258
5259 elsif not Rstat then
5260 Check_Non_Static_Context (Op1);
5261 Check_Non_Static_Context (Op2);
5262 Fold := Compile_Time_Known_Value (Op1)
5263 and then Compile_Time_Known_Value (Op2);
5264 return;
5265
22cb89b5
AC
5266 -- Else result is static and foldable. Both operands are static, and
5267 -- neither raises constraint error, so we can definitely fold.
996ae0b0
RK
5268
5269 else
5270 Set_Is_Static_Expression (N);
5271 Fold := True;
5272 Stat := True;
5273 return;
5274 end if;
5275 end Test_Expression_Is_Foldable;
5276
305caf42
AC
5277 -------------------
5278 -- Test_In_Range --
5279 -------------------
5280
5281 function Test_In_Range
5282 (N : Node_Id;
5283 Typ : Entity_Id;
5284 Assume_Valid : Boolean;
5285 Fixed_Int : Boolean;
5286 Int_Real : Boolean) return Range_Membership
5287 is
5288 Val : Uint;
5289 Valr : Ureal;
5290
5291 pragma Warnings (Off, Assume_Valid);
5292 -- For now Assume_Valid is unreferenced since the current implementation
5293 -- always returns Unknown if N is not a compile time known value, but we
5294 -- keep the parameter to allow for future enhancements in which we try
5295 -- to get the information in the variable case as well.
5296
5297 begin
5298 -- Universal types have no range limits, so always in range
5299
5300 if Typ = Universal_Integer or else Typ = Universal_Real then
5301 return In_Range;
5302
5303 -- Never known if not scalar type. Don't know if this can actually
5304 -- happen, but our spec allows it, so we must check!
5305
5306 elsif not Is_Scalar_Type (Typ) then
5307 return Unknown;
5308
5309 -- Never known if this is a generic type, since the bounds of generic
5310 -- types are junk. Note that if we only checked for static expressions
5311 -- (instead of compile time known values) below, we would not need this
5312 -- check, because values of a generic type can never be static, but they
5313 -- can be known at compile time.
5314
5315 elsif Is_Generic_Type (Typ) then
5316 return Unknown;
5317
5318 -- Never known unless we have a compile time known value
5319
5320 elsif not Compile_Time_Known_Value (N) then
5321 return Unknown;
5322
5323 -- General processing with a known compile time value
5324
5325 else
5326 declare
5327 Lo : Node_Id;
5328 Hi : Node_Id;
5329
5330 LB_Known : Boolean;
5331 HB_Known : Boolean;
5332
5333 begin
5334 Lo := Type_Low_Bound (Typ);
5335 Hi := Type_High_Bound (Typ);
5336
5337 LB_Known := Compile_Time_Known_Value (Lo);
5338 HB_Known := Compile_Time_Known_Value (Hi);
5339
5340 -- Fixed point types should be considered as such only if flag
5341 -- Fixed_Int is set to False.
5342
5343 if Is_Floating_Point_Type (Typ)
5344 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5345 or else Int_Real
5346 then
5347 Valr := Expr_Value_R (N);
5348
5349 if LB_Known and HB_Known then
5350 if Valr >= Expr_Value_R (Lo)
5351 and then
5352 Valr <= Expr_Value_R (Hi)
5353 then
5354 return In_Range;
5355 else
5356 return Out_Of_Range;
5357 end if;
5358
5359 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5360 or else
5361 (HB_Known and then Valr > Expr_Value_R (Hi))
5362 then
5363 return Out_Of_Range;
5364
5365 else
5366 return Unknown;
5367 end if;
5368
5369 else
5370 Val := Expr_Value (N);
5371
5372 if LB_Known and HB_Known then
5373 if Val >= Expr_Value (Lo)
5374 and then
5375 Val <= Expr_Value (Hi)
5376 then
5377 return In_Range;
5378 else
5379 return Out_Of_Range;
5380 end if;
5381
5382 elsif (LB_Known and then Val < Expr_Value (Lo))
5383 or else
5384 (HB_Known and then Val > Expr_Value (Hi))
5385 then
5386 return Out_Of_Range;
5387
5388 else
5389 return Unknown;
5390 end if;
5391 end if;
5392 end;
5393 end if;
5394 end Test_In_Range;
5395
996ae0b0
RK
5396 --------------
5397 -- To_Bits --
5398 --------------
5399
5400 procedure To_Bits (U : Uint; B : out Bits) is
5401 begin
5402 for J in 0 .. B'Last loop
5403 B (J) := (U / (2 ** J)) mod 2 /= 0;
5404 end loop;
5405 end To_Bits;
5406
fbf5a39b
AC
5407 --------------------
5408 -- Why_Not_Static --
5409 --------------------
5410
5411 procedure Why_Not_Static (Expr : Node_Id) is
5412 N : constant Node_Id := Original_Node (Expr);
5413 Typ : Entity_Id;
5414 E : Entity_Id;
5415
5416 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
5417 -- A version that can be called on a list of expressions. Finds all
5418 -- non-static violations in any element of the list.
fbf5a39b
AC
5419
5420 -------------------------
5421 -- Why_Not_Static_List --
5422 -------------------------
5423
5424 procedure Why_Not_Static_List (L : List_Id) is
5425 N : Node_Id;
5426
5427 begin
5428 if Is_Non_Empty_List (L) then
5429 N := First (L);
5430 while Present (N) loop
5431 Why_Not_Static (N);
5432 Next (N);
5433 end loop;
5434 end if;
5435 end Why_Not_Static_List;
5436
5437 -- Start of processing for Why_Not_Static
5438
5439 begin
22cb89b5
AC
5440 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5441 -- this avoids massive updates to the ACATS base line.
fbf5a39b
AC
5442
5443 if Debug_Flag_2 then
5444 return;
5445 end if;
5446
5447 -- Ignore call on error or empty node
5448
5449 if No (Expr) or else Nkind (Expr) = N_Error then
5450 return;
5451 end if;
5452
5453 -- Preprocessing for sub expressions
5454
5455 if Nkind (Expr) in N_Subexpr then
5456
5457 -- Nothing to do if expression is static
5458
5459 if Is_OK_Static_Expression (Expr) then
5460 return;
5461 end if;
5462
5463 -- Test for constraint error raised
5464
5465 if Raises_Constraint_Error (Expr) then
5466 Error_Msg_N
5467 ("expression raises exception, cannot be static " &
b11e8d6f 5468 "(RM 4.9(34))!", N);
fbf5a39b
AC
5469 return;
5470 end if;
5471
5472 -- If no type, then something is pretty wrong, so ignore
5473
5474 Typ := Etype (Expr);
5475
5476 if No (Typ) then
5477 return;
5478 end if;
5479
65f7ed64
AC
5480 -- Type must be scalar or string type (but allow Bignum, since this
5481 -- is really a scalar type from our point of view in this diagnosis).
fbf5a39b
AC
5482
5483 if not Is_Scalar_Type (Typ)
5484 and then not Is_String_Type (Typ)
65f7ed64 5485 and then not Is_RTE (Typ, RE_Bignum)
fbf5a39b
AC
5486 then
5487 Error_Msg_N
5488 ("static expression must have scalar or string type " &
b11e8d6f 5489 "(RM 4.9(2))!", N);
fbf5a39b
AC
5490 return;
5491 end if;
5492 end if;
5493
5494 -- If we got through those checks, test particular node kind
5495
5496 case Nkind (N) is
5497 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5498 E := Entity (N);
5499
5500 if Is_Named_Number (E) then
5501 null;
5502
5503 elsif Ekind (E) = E_Constant then
5504 if not Is_Static_Expression (Constant_Value (E)) then
5505 Error_Msg_NE
b11e8d6f 5506 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
5507 end if;
5508
5509 else
5510 Error_Msg_NE
5511 ("& is not static constant or named number " &
b11e8d6f 5512 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
5513 end if;
5514
514d0fc5 5515 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
fbf5a39b
AC
5516 if Nkind (N) in N_Op_Shift then
5517 Error_Msg_N
b11e8d6f 5518 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
5519
5520 else
5521 Why_Not_Static (Left_Opnd (N));
5522 Why_Not_Static (Right_Opnd (N));
5523 end if;
5524
5525 when N_Unary_Op =>
5526 Why_Not_Static (Right_Opnd (N));
5527
5528 when N_Attribute_Reference =>
5529 Why_Not_Static_List (Expressions (N));
5530
5531 E := Etype (Prefix (N));
5532
5533 if E = Standard_Void_Type then
5534 return;
5535 end if;
5536
5537 -- Special case non-scalar'Size since this is a common error
5538
5539 if Attribute_Name (N) = Name_Size then
5540 Error_Msg_N
fdfea49e 5541 ("size attribute is only static for static scalar type " &
b11e8d6f 5542 "(RM 4.9(7,8))", N);
fbf5a39b
AC
5543
5544 -- Flag array cases
5545
5546 elsif Is_Array_Type (E) then
5547 if Attribute_Name (N) /= Name_First
5548 and then
5549 Attribute_Name (N) /= Name_Last
5550 and then
5551 Attribute_Name (N) /= Name_Length
5552 then
5553 Error_Msg_N
5554 ("static array attribute must be Length, First, or Last " &
b11e8d6f 5555 "(RM 4.9(8))!", N);
fbf5a39b
AC
5556
5557 -- Since we know the expression is not-static (we already
5558 -- tested for this, must mean array is not static).
5559
5560 else
5561 Error_Msg_N
b11e8d6f 5562 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
5563 end if;
5564
5565 return;
5566
22cb89b5
AC
5567 -- Special case generic types, since again this is a common source
5568 -- of confusion.
fbf5a39b
AC
5569
5570 elsif Is_Generic_Actual_Type (E)
5571 or else
5572 Is_Generic_Type (E)
5573 then
5574 Error_Msg_N
5575 ("attribute of generic type is never static " &
b11e8d6f 5576 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5577
5578 elsif Is_Static_Subtype (E) then
5579 null;
5580
5581 elsif Is_Scalar_Type (E) then
5582 Error_Msg_N
5583 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 5584 "(RM 4.9(7))!", N);
fbf5a39b
AC
5585
5586 else
5587 Error_Msg_N
5588 ("static attribute must apply to array/scalar type " &
b11e8d6f 5589 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5590 end if;
5591
5592 when N_String_Literal =>
5593 Error_Msg_N
b11e8d6f 5594 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
5595
5596 when N_Explicit_Dereference =>
5597 Error_Msg_N
b11e8d6f 5598 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
5599
5600 when N_Function_Call =>
5601 Why_Not_Static_List (Parameter_Associations (N));
65f7ed64
AC
5602
5603 -- Complain about non-static function call unless we have Bignum
5604 -- which means that the underlying expression is really some
5605 -- scalar arithmetic operation.
5606
5607 if not Is_RTE (Typ, RE_Bignum) then
5608 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
5609 end if;
fbf5a39b
AC
5610
5611 when N_Parameter_Association =>
5612 Why_Not_Static (Explicit_Actual_Parameter (N));
5613
5614 when N_Indexed_Component =>
5615 Error_Msg_N
b11e8d6f 5616 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
5617
5618 when N_Procedure_Call_Statement =>
5619 Error_Msg_N
b11e8d6f 5620 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
5621
5622 when N_Qualified_Expression =>
5623 Why_Not_Static (Expression (N));
5624
5625 when N_Aggregate | N_Extension_Aggregate =>
5626 Error_Msg_N
b11e8d6f 5627 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
5628
5629 when N_Range =>
5630 Why_Not_Static (Low_Bound (N));
5631 Why_Not_Static (High_Bound (N));
5632
5633 when N_Range_Constraint =>
5634 Why_Not_Static (Range_Expression (N));
5635
5636 when N_Subtype_Indication =>
5637 Why_Not_Static (Constraint (N));
5638
5639 when N_Selected_Component =>
5640 Error_Msg_N
b11e8d6f 5641 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
5642
5643 when N_Slice =>
5644 Error_Msg_N
b11e8d6f 5645 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
5646
5647 when N_Type_Conversion =>
5648 Why_Not_Static (Expression (N));
5649
23b86353
AC
5650 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5651 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
5652 then
5653 Error_Msg_N
5654 ("static conversion requires static scalar subtype result " &
b11e8d6f 5655 "(RM 4.9(9))!", N);
fbf5a39b
AC
5656 end if;
5657
5658 when N_Unchecked_Type_Conversion =>
5659 Error_Msg_N
b11e8d6f 5660 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
5661
5662 when others =>
5663 null;
5664
5665 end case;
5666 end Why_Not_Static;
5667
996ae0b0 5668end Sem_Eval;