]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
Minor reformatting.
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
634a926b 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
ca0eb951 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Eval_Fat; use Eval_Fat;
8cbb664e 34with Exp_Util; use Exp_Util;
d7567964 35with Freeze; use Freeze;
0356699b 36with Lib; use Lib;
13f34a3f 37with Namet; use Namet;
996ae0b0
RK
38with Nmake; use Nmake;
39with Nlists; use Nlists;
40with Opt; use Opt;
e03f7ccf 41with Par_SCO; use Par_SCO;
65f7ed64 42with Rtsfind; use Rtsfind;
996ae0b0 43with Sem; use Sem;
a4100e55 44with Sem_Aux; use Sem_Aux;
996ae0b0 45with Sem_Cat; use Sem_Cat;
b5bd964f 46with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
47with Sem_Ch8; use Sem_Ch8;
48with Sem_Res; use Sem_Res;
49with Sem_Util; use Sem_Util;
50with Sem_Type; use Sem_Type;
51with Sem_Warn; use Sem_Warn;
52with Sinfo; use Sinfo;
53with Snames; use Snames;
54with Stand; use Stand;
55with Stringt; use Stringt;
07fc65c4 56with Tbuild; use Tbuild;
996ae0b0
RK
57
58package body Sem_Eval is
59
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
63
64 -- The compile time evaluation of expressions is distributed over several
f3d57416 65 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
68
69 -- Is_Static_Expression is determined by following the detailed rules
70 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
71 -- flag of the operands in many cases.
72
73 -- Raises_Constraint_Error is set if any of the operands have the flag
74 -- set or if an attempt to compute the value of the current expression
75 -- results in detection of a runtime constraint error.
76
77 -- As described in the spec, the requirement is that Is_Static_Expression
78 -- be accurately set, and in addition for nodes for which this flag is set,
79 -- Raises_Constraint_Error must also be set. Furthermore a node which has
80 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
81 -- requirement is that the expression value must be precomputed, and the
82 -- node is either a literal, or the name of a constant entity whose value
83 -- is a static expression.
84
85 -- The general approach is as follows. First compute Is_Static_Expression.
86 -- If the node is not static, then the flag is left off in the node and
87 -- we are all done. Otherwise for a static node, we test if any of the
88 -- operands will raise constraint error, and if so, propagate the flag
89 -- Raises_Constraint_Error to the result node and we are done (since the
90 -- error was already posted at a lower level).
91
92 -- For the case of a static node whose operands do not raise constraint
93 -- error, we attempt to evaluate the node. If this evaluation succeeds,
94 -- then the node is replaced by the result of this computation. If the
95 -- evaluation raises constraint error, then we rewrite the node with
96 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
97 -- to post appropriate error messages.
98
99 ----------------
100 -- Local Data --
101 ----------------
102
103 type Bits is array (Nat range <>) of Boolean;
104 -- Used to convert unsigned (modular) values for folding logical ops
105
80298c3b 106 -- The following declarations are used to maintain a cache of nodes that
07fc65c4
GB
107 -- have compile time known values. The cache is maintained only for
108 -- discrete types (the most common case), and is populated by calls to
109 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
110 -- since it is possible for the status to change (in particular it is
111 -- possible for a node to get replaced by a constraint error node).
112
113 CV_Bits : constant := 5;
114 -- Number of low order bits of Node_Id value used to reference entries
115 -- in the cache table.
116
117 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
118 -- Size of cache for compile time values
119
120 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
121
122 type CV_Entry is record
123 N : Node_Id;
124 V : Uint;
125 end record;
126
edab6088
RD
127 type Match_Result is (Match, No_Match, Non_Static);
128 -- Result returned from functions that test for a matching result. If the
129 -- operands are not OK_Static then Non_Static will be returned. Otherwise
130 -- Match/No_Match is returned depending on whether the match succeeds.
131
07fc65c4
GB
132 type CV_Cache_Array is array (CV_Range) of CV_Entry;
133
134 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
135 -- This is the actual cache, with entries consisting of node/value pairs,
136 -- and the impossible value Node_High_Bound used for unset entries.
137
305caf42
AC
138 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
139 -- Range membership may either be statically known to be in range or out
140 -- of range, or not statically known. Used for Test_In_Range below.
141
996ae0b0
RK
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
145
edab6088
RD
146 function Choice_Matches
147 (Expr : Node_Id;
148 Choice : Node_Id) return Match_Result;
149 -- Determines whether given value Expr matches the given Choice. The Expr
150 -- can be of discrete, real, or string type and must be a compile time
151 -- known value (it is an error to make the call if these conditions are
152 -- not met). The choice can be a range, subtype name, subtype indication,
153 -- or expression. The returned result is Non_Static if Choice is not
154 -- OK_Static, otherwise either Match or No_Match is returned depending
155 -- on whether Choice matches Expr. This is used for case expression
156 -- alternatives, and also for membership tests. In each case, more
157 -- possibilities are tested than the syntax allows (e.g. membership allows
158 -- subtype indications and non-discrete types, and case allows an OTHERS
159 -- choice), but it does not matter, since we have already done a full
160 -- semantic and syntax check of the construct, so the extra possibilities
161 -- just will not arise for correct expressions.
162 --
163 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
164 -- a reference to a type, one of whose bounds raises Constraint_Error, then
165 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
166
167 function Choices_Match
168 (Expr : Node_Id;
169 Choices : List_Id) return Match_Result;
170 -- This function applies Choice_Matches to each element of Choices. If the
171 -- result is No_Match, then it continues and checks the next element. If
172 -- the result is Match or Non_Static, this result is immediately given
173 -- as the result without checking the rest of the list. Expr can be of
174 -- discrete, real, or string type and must be a compile time known value
175 -- (it is an error to make the call if these conditions are not met).
176
87feba05
AC
177 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
178 -- Check whether an arithmetic operation with universal operands which is a
179 -- rewritten function call with an explicit scope indication is ambiguous:
180 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
181 -- type declared in P and the context does not impose a type on the result
182 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
183 -- error and return Empty, else return the result type of the operator.
184
996ae0b0 185 function From_Bits (B : Bits; T : Entity_Id) return Uint;
80298c3b
AC
186 -- Converts a bit string of length B'Length to a Uint value to be used for
187 -- a target of type T, which is a modular type. This procedure includes the
a95f708e 188 -- necessary reduction by the modulus in the case of a nonbinary modulus
80298c3b
AC
189 -- (for a binary modulus, the bit string is the right length any way so all
190 -- is well).
996ae0b0 191
87feba05
AC
192 function Get_String_Val (N : Node_Id) return Node_Id;
193 -- Given a tree node for a folded string or character value, returns the
194 -- corresponding string literal or character literal (one of the two must
195 -- be available, or the operand would not have been marked as foldable in
196 -- the earlier analysis of the operation).
edab6088
RD
197
198 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static and does not raise a Constraint_Error.
201
202 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
203 -- Given a choice list (from a case expression or membership test), return
204 -- True if all choices are static in the sense of Is_OK_Static_Choice.
205
87feba05
AC
206 function Is_Static_Choice (Choice : Node_Id) return Boolean;
207 -- Given a choice (from a case expression or membership test), returns
208 -- True if the choice is static. No test is made for raising of constraint
209 -- error, so this function is used only for legality tests.
210
211 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
212 -- Given a choice list (from a case expression or membership test), return
213 -- True if all choices are static in the sense of Is_Static_Choice.
214
edab6088
RD
215 function Is_Static_Range (N : Node_Id) return Boolean;
216 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
217 -- argument is an N_Range node (but note that the semantic analysis of
218 -- equivalent range attribute references already turned them into the
219 -- equivalent range). This differs from Is_OK_Static_Range (which is what
220 -- must be used by clients) in that it does not care whether the bounds
221 -- raise Constraint_Error or not. Used for checking whether expressions are
222 -- static in the 4.9 sense (without worrying about exceptions).
223
07fc65c4
GB
224 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
225 -- Bits represents the number of bits in an integer value to be computed
226 -- (but the value has not been computed yet). If this value in Bits is
80298c3b
AC
227 -- reasonable, a result of True is returned, with the implication that the
228 -- caller should go ahead and complete the calculation. If the value in
229 -- Bits is unreasonably large, then an error is posted on node N, and
07fc65c4
GB
230 -- False is returned (and the caller skips the proposed calculation).
231
996ae0b0 232 procedure Out_Of_Range (N : Node_Id);
80298c3b
AC
233 -- This procedure is called if it is determined that node N, which appears
234 -- in a non-static context, is a compile time known value which is outside
235 -- its range, i.e. the range of Etype. This is used in contexts where
236 -- this is an illegality if N is static, and should generate a warning
237 -- otherwise.
996ae0b0 238
fc3a3f3b
RD
239 function Real_Or_String_Static_Predicate_Matches
240 (Val : Node_Id;
241 Typ : Entity_Id) return Boolean;
242 -- This is the function used to evaluate real or string static predicates.
243 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
244 -- represents the value to be tested against the predicate. Typ is the
245 -- type with the predicate, from which the predicate expression can be
246 -- extracted. The result returned is True if the given value satisfies
247 -- the predicate.
248
996ae0b0 249 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
80298c3b
AC
250 -- N and Exp are nodes representing an expression, Exp is known to raise
251 -- CE. N is rewritten in term of Exp in the optimal way.
996ae0b0
RK
252
253 function String_Type_Len (Stype : Entity_Id) return Uint;
80298c3b
AC
254 -- Given a string type, determines the length of the index type, or, if
255 -- this index type is non-static, the length of the base type of this index
256 -- type. Note that if the string type is itself static, then the index type
257 -- is static, so the second case applies only if the string type passed is
258 -- non-static.
996ae0b0
RK
259
260 function Test (Cond : Boolean) return Uint;
261 pragma Inline (Test);
262 -- This function simply returns the appropriate Boolean'Pos value
263 -- corresponding to the value of Cond as a universal integer. It is
264 -- used for producing the result of the static evaluation of the
265 -- logical operators
266
267 procedure Test_Expression_Is_Foldable
268 (N : Node_Id;
269 Op1 : Node_Id;
270 Stat : out Boolean;
271 Fold : out Boolean);
272 -- Tests to see if expression N whose single operand is Op1 is foldable,
273 -- i.e. the operand value is known at compile time. If the operation is
80298c3b
AC
274 -- foldable, then Fold is True on return, and Stat indicates whether the
275 -- result is static (i.e. the operand was static). Note that it is quite
276 -- possible for Fold to be True, and Stat to be False, since there are
277 -- cases in which we know the value of an operand even though it is not
278 -- technically static (e.g. the static lower bound of a range whose upper
279 -- bound is non-static).
996ae0b0 280 --
80298c3b
AC
281 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
282 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
283 -- return, then all processing is complete, and the caller should return,
284 -- since there is nothing else to do.
93c3fca7
AC
285 --
286 -- If Stat is set True on return, then Is_Static_Expression is also set
287 -- true in node N. There are some cases where this is over-enthusiastic,
80298c3b
AC
288 -- e.g. in the two operand case below, for string comparison, the result is
289 -- not static even though the two operands are static. In such cases, the
290 -- caller must reset the Is_Static_Expression flag in N.
5df1266a
AC
291 --
292 -- If Fold and Stat are both set to False then this routine performs also
293 -- the following extra actions:
294 --
80298c3b
AC
295 -- If either operand is Any_Type then propagate it to result to prevent
296 -- cascaded errors.
5df1266a 297 --
70805b88
AC
298 -- If some operand raises constraint error, then replace the node N
299 -- with the raise constraint error node. This replacement inherits the
300 -- Is_Static_Expression flag from the operands.
996ae0b0
RK
301
302 procedure Test_Expression_Is_Foldable
6c3c671e
AC
303 (N : Node_Id;
304 Op1 : Node_Id;
305 Op2 : Node_Id;
306 Stat : out Boolean;
307 Fold : out Boolean;
308 CRT_Safe : Boolean := False);
996ae0b0 309 -- Same processing, except applies to an expression N with two operands
6c3c671e
AC
310 -- Op1 and Op2. The result is static only if both operands are static. If
311 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
312 -- for the tests that the two operands are known at compile time. See
313 -- spec of this routine for further details.
996ae0b0 314
305caf42
AC
315 function Test_In_Range
316 (N : Node_Id;
317 Typ : Entity_Id;
318 Assume_Valid : Boolean;
319 Fixed_Int : Boolean;
320 Int_Real : Boolean) return Range_Membership;
9479ded4
AC
321 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
322 -- or Out_Of_Range if it can be guaranteed at compile time that expression
323 -- N is known to be in or out of range of the subtype Typ. If not compile
324 -- time known, Unknown is returned. See documentation of Is_In_Range for
325 -- complete description of parameters.
305caf42 326
996ae0b0
RK
327 procedure To_Bits (U : Uint; B : out Bits);
328 -- Converts a Uint value to a bit string of length B'Length
329
edab6088
RD
330 -----------------------------------------------
331 -- Check_Expression_Against_Static_Predicate --
332 -----------------------------------------------
333
334 procedure Check_Expression_Against_Static_Predicate
335 (Expr : Node_Id;
336 Typ : Entity_Id)
337 is
338 begin
339 -- Nothing to do if expression is not known at compile time, or the
340 -- type has no static predicate set (will be the case for all non-scalar
341 -- types, so no need to make a special test for that).
342
343 if not (Has_Static_Predicate (Typ)
60f908dd 344 and then Compile_Time_Known_Value (Expr))
edab6088
RD
345 then
346 return;
347 end if;
348
349 -- Here we have a static predicate (note that it could have arisen from
350 -- an explicitly specified Dynamic_Predicate whose expression met the
d9c59db4
AC
351 -- rules for being predicate-static). If the expression is known at
352 -- compile time and obeys the predicate, then it is static and must be
353 -- labeled as such, which matters e.g. for case statements. The original
354 -- expression may be a type conversion of a variable with a known value,
355 -- which might otherwise not be marked static.
edab6088 356
fc3a3f3b 357 -- Case of real static predicate
edab6088 358
fc3a3f3b
RD
359 if Is_Real_Type (Typ) then
360 if Real_Or_String_Static_Predicate_Matches
361 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
362 Typ => Typ)
363 then
d9c59db4 364 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
365 return;
366 end if;
edab6088 367
fc3a3f3b 368 -- Case of string static predicate
edab6088 369
fc3a3f3b
RD
370 elsif Is_String_Type (Typ) then
371 if Real_Or_String_Static_Predicate_Matches
f9e333ab 372 (Val => Expr_Value_S (Expr), Typ => Typ)
fc3a3f3b 373 then
d9c59db4 374 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
375 return;
376 end if;
edab6088 377
fc3a3f3b 378 -- Case of discrete static predicate
edab6088 379
fc3a3f3b
RD
380 else
381 pragma Assert (Is_Discrete_Type (Typ));
382
383 -- If static predicate matches, nothing to do
384
385 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
d9c59db4 386 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
387 return;
388 end if;
edab6088
RD
389 end if;
390
391 -- Here we know that the predicate will fail
392
393 -- Special case of static expression failing a predicate (other than one
394 -- that was explicitly specified with a Dynamic_Predicate aspect). This
395 -- is the case where the expression is no longer considered static.
396
397 if Is_Static_Expression (Expr)
398 and then not Has_Dynamic_Predicate_Aspect (Typ)
399 then
400 Error_Msg_NE
401 ("??static expression fails static predicate check on &",
402 Expr, Typ);
403 Error_Msg_N
404 ("\??expression is no longer considered static", Expr);
405 Set_Is_Static_Expression (Expr, False);
406
407 -- In all other cases, this is just a warning that a test will fail.
408 -- It does not matter if the expression is static or not, or if the
409 -- predicate comes from a dynamic predicate aspect or not.
410
411 else
412 Error_Msg_NE
413 ("??expression fails predicate check on &", Expr, Typ);
414 end if;
415 end Check_Expression_Against_Static_Predicate;
60f908dd 416
996ae0b0
RK
417 ------------------------------
418 -- Check_Non_Static_Context --
419 ------------------------------
420
421 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
422 T : constant Entity_Id := Etype (N);
423 Checks_On : constant Boolean :=
996ae0b0
RK
424 not Index_Checks_Suppressed (T)
425 and not Range_Checks_Suppressed (T);
426
427 begin
86f0e17a
AC
428 -- Ignore cases of non-scalar types, error types, or universal real
429 -- types that have no usable bounds.
996ae0b0 430
86f0e17a
AC
431 if T = Any_Type
432 or else not Is_Scalar_Type (T)
433 or else T = Universal_Fixed
434 or else T = Universal_Real
435 then
996ae0b0 436 return;
fbf5a39b 437 end if;
996ae0b0 438
86f0e17a 439 -- At this stage we have a scalar type. If we have an expression that
80298c3b
AC
440 -- raises CE, then we already issued a warning or error msg so there is
441 -- nothing more to be done in this routine.
fbf5a39b
AC
442
443 if Raises_Constraint_Error (N) then
444 return;
445 end if;
446
86f0e17a
AC
447 -- Now we have a scalar type which is not marked as raising a constraint
448 -- error exception. The main purpose of this routine is to deal with
449 -- static expressions appearing in a non-static context. That means
450 -- that if we do not have a static expression then there is not much
451 -- to do. The one case that we deal with here is that if we have a
452 -- floating-point value that is out of range, then we post a warning
453 -- that an infinity will result.
fbf5a39b
AC
454
455 if not Is_Static_Expression (N) then
d030f3a4
AC
456 if Is_Floating_Point_Type (T) then
457 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
458 Error_Msg_N
459 ("??float value out of range, infinity will be generated", N);
460
461 -- The literal may be the result of constant-folding of a non-
462 -- static subexpression of a larger expression (e.g. a conversion
463 -- of a non-static variable whose value happens to be known). At
464 -- this point we must reduce the value of the subexpression to a
465 -- machine number (RM 4.9 (38/2)).
466
467 elsif Nkind (N) = N_Real_Literal
468 and then Nkind (Parent (N)) in N_Subexpr
469 then
470 Rewrite (N, New_Copy (N));
471 Set_Realval
472 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
473 end if;
fbf5a39b 474 end if;
996ae0b0 475
996ae0b0
RK
476 return;
477 end if;
478
86f0e17a
AC
479 -- Here we have the case of outer level static expression of scalar
480 -- type, where the processing of this procedure is needed.
996ae0b0
RK
481
482 -- For real types, this is where we convert the value to a machine
86f0e17a
AC
483 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
484 -- need to do this if the parent is a constant declaration, since in
485 -- other cases, gigi should do the necessary conversion correctly, but
486 -- experimentation shows that this is not the case on all machines, in
487 -- particular if we do not convert all literals to machine values in
488 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
489 -- and SGI/Irix.
996ae0b0 490
9d4f9832
AC
491 -- This conversion is always done by GNATprove on real literals in
492 -- non-static expressions, by calling Check_Non_Static_Context from
493 -- gnat2why, as GNATprove cannot do the conversion later contrary
494 -- to gigi. The frontend computes the information about which
495 -- expressions are static, which is used by gnat2why to call
496 -- Check_Non_Static_Context on exactly those real literals that are
2da8c8e2 497 -- not subexpressions of static expressions.
9d4f9832 498
996ae0b0
RK
499 if Nkind (N) = N_Real_Literal
500 and then not Is_Machine_Number (N)
501 and then not Is_Generic_Type (Etype (N))
502 and then Etype (N) /= Universal_Real
996ae0b0
RK
503 then
504 -- Check that value is in bounds before converting to machine
505 -- number, so as not to lose case where value overflows in the
506 -- least significant bit or less. See B490001.
507
c800f862 508 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
509 Out_Of_Range (N);
510 return;
511 end if;
512
513 -- Note: we have to copy the node, to avoid problems with conformance
514 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
515
516 Rewrite (N, New_Copy (N));
517
518 if not Is_Floating_Point_Type (T) then
519 Set_Realval
520 (N, Corresponding_Integer_Value (N) * Small_Value (T));
521
522 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 523
86f0e17a
AC
524 -- Note: even though RM 4.9(38) specifies biased rounding, this
525 -- has been modified by AI-100 in order to prevent confusing
526 -- differences in rounding between static and non-static
527 -- expressions. AI-100 specifies that the effect of such rounding
528 -- is implementation dependent, and in GNAT we round to nearest
ad075b50
AC
529 -- even to match the run-time behavior. Note that this applies
530 -- to floating point literals, not fixed points ones, even though
531 -- their compiler representation is also as a universal real.
996ae0b0 532
fbf5a39b
AC
533 Set_Realval
534 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
ad075b50 535 Set_Is_Machine_Number (N);
996ae0b0
RK
536 end if;
537
996ae0b0
RK
538 end if;
539
540 -- Check for out of range universal integer. This is a non-static
541 -- context, so the integer value must be in range of the runtime
542 -- representation of universal integers.
543
544 -- We do this only within an expression, because that is the only
545 -- case in which non-static universal integer values can occur, and
546 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
547 -- called in contexts like the expression of a number declaration where
548 -- we certainly want to allow out of range values.
549
550 if Etype (N) = Universal_Integer
551 and then Nkind (N) = N_Integer_Literal
552 and then Nkind (Parent (N)) in N_Subexpr
553 and then
554 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
80298c3b 555 or else
996ae0b0
RK
556 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
557 then
558 Apply_Compile_Time_Constraint_Error
4a28b181 559 (N, "non-static universal integer value out of range<<",
07fc65c4 560 CE_Range_Check_Failed);
996ae0b0
RK
561
562 -- Check out of range of base type
563
c800f862 564 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
565 Out_Of_Range (N);
566
c800f862
RD
567 -- Give warning if outside subtype (where one or both of the bounds of
568 -- the subtype is static). This warning is omitted if the expression
569 -- appears in a range that could be null (warnings are handled elsewhere
570 -- for this case).
996ae0b0 571
80298c3b 572 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
c800f862 573 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
574 null;
575
c800f862 576 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 577 Apply_Compile_Time_Constraint_Error
4a28b181 578 (N, "value not in range of}<<", CE_Range_Check_Failed);
996ae0b0
RK
579
580 elsif Checks_On then
581 Enable_Range_Check (N);
582
583 else
584 Set_Do_Range_Check (N, False);
585 end if;
586 end if;
587 end Check_Non_Static_Context;
588
589 ---------------------------------
590 -- Check_String_Literal_Length --
591 ---------------------------------
592
593 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
594 begin
324ac540 595 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
80298c3b 596 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
996ae0b0
RK
597 then
598 Apply_Compile_Time_Constraint_Error
324ac540 599 (N, "string length wrong for}??",
07fc65c4 600 CE_Length_Check_Failed,
996ae0b0
RK
601 Ent => Ttype,
602 Typ => Ttype);
603 end if;
604 end if;
605 end Check_String_Literal_Length;
606
edab6088
RD
607 --------------------
608 -- Choice_Matches --
609 --------------------
610
611 function Choice_Matches
612 (Expr : Node_Id;
613 Choice : Node_Id) return Match_Result
614 is
615 Etyp : constant Entity_Id := Etype (Expr);
616 Val : Uint;
617 ValR : Ureal;
618 ValS : Node_Id;
619
620 begin
621 pragma Assert (Compile_Time_Known_Value (Expr));
622 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
623
624 if not Is_OK_Static_Choice (Choice) then
625 Set_Raises_Constraint_Error (Choice);
626 return Non_Static;
627
87feba05 628 -- When the choice denotes a subtype with a static predictate, check the
bb9e2aa2
AC
629 -- expression against the predicate values. Different procedures apply
630 -- to discrete and non-discrete types.
87feba05
AC
631
632 elsif (Nkind (Choice) = N_Subtype_Indication
b63d61f7
AC
633 or else (Is_Entity_Name (Choice)
634 and then Is_Type (Entity (Choice))))
87feba05
AC
635 and then Has_Predicates (Etype (Choice))
636 and then Has_Static_Predicate (Etype (Choice))
637 then
bb9e2aa2 638 if Is_Discrete_Type (Etype (Choice)) then
b63d61f7
AC
639 return
640 Choices_Match
641 (Expr, Static_Discrete_Predicate (Etype (Choice)));
87feba05 642
b63d61f7 643 elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
bb9e2aa2
AC
644 then
645 return Match;
646
647 else
648 return No_Match;
649 end if;
650
651 -- Discrete type case only
edab6088 652
87feba05 653 elsif Is_Discrete_Type (Etyp) then
edab6088
RD
654 Val := Expr_Value (Expr);
655
656 if Nkind (Choice) = N_Range then
657 if Val >= Expr_Value (Low_Bound (Choice))
658 and then
659 Val <= Expr_Value (High_Bound (Choice))
660 then
661 return Match;
662 else
663 return No_Match;
664 end if;
665
666 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 667 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
668 then
669 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
670 and then
671 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
672 then
673 return Match;
674 else
675 return No_Match;
676 end if;
677
678 elsif Nkind (Choice) = N_Others_Choice then
679 return Match;
680
681 else
682 if Val = Expr_Value (Choice) then
683 return Match;
684 else
685 return No_Match;
686 end if;
687 end if;
688
87feba05 689 -- Real type case
edab6088 690
87feba05 691 elsif Is_Real_Type (Etyp) then
edab6088
RD
692 ValR := Expr_Value_R (Expr);
693
694 if Nkind (Choice) = N_Range then
695 if ValR >= Expr_Value_R (Low_Bound (Choice))
696 and then
697 ValR <= Expr_Value_R (High_Bound (Choice))
698 then
699 return Match;
700 else
701 return No_Match;
702 end if;
703
704 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 705 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
706 then
707 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
708 and then
709 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
710 then
711 return Match;
712 else
713 return No_Match;
714 end if;
715
716 else
717 if ValR = Expr_Value_R (Choice) then
718 return Match;
719 else
720 return No_Match;
721 end if;
722 end if;
723
87feba05 724 -- String type cases
edab6088
RD
725
726 else
87feba05 727 pragma Assert (Is_String_Type (Etyp));
edab6088
RD
728 ValS := Expr_Value_S (Expr);
729
730 if Nkind (Choice) = N_Subtype_Indication
87feba05 731 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
732 then
733 if not Is_Constrained (Etype (Choice)) then
734 return Match;
735
736 else
737 declare
738 Typlen : constant Uint :=
739 String_Type_Len (Etype (Choice));
740 Strlen : constant Uint :=
741 UI_From_Int (String_Length (Strval (ValS)));
742 begin
743 if Typlen = Strlen then
744 return Match;
745 else
746 return No_Match;
747 end if;
748 end;
749 end if;
750
751 else
752 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
753 then
754 return Match;
755 else
756 return No_Match;
757 end if;
758 end if;
759 end if;
760 end Choice_Matches;
761
762 -------------------
763 -- Choices_Match --
764 -------------------
765
766 function Choices_Match
767 (Expr : Node_Id;
768 Choices : List_Id) return Match_Result
769 is
770 Choice : Node_Id;
771 Result : Match_Result;
772
773 begin
774 Choice := First (Choices);
775 while Present (Choice) loop
776 Result := Choice_Matches (Expr, Choice);
777
778 if Result /= No_Match then
779 return Result;
780 end if;
781
782 Next (Choice);
783 end loop;
784
785 return No_Match;
786 end Choices_Match;
787
996ae0b0
RK
788 --------------------------
789 -- Compile_Time_Compare --
790 --------------------------
791
fbf5a39b 792 function Compile_Time_Compare
1c7717c3 793 (L, R : Node_Id;
af02a866
RD
794 Assume_Valid : Boolean) return Compare_Result
795 is
796 Discard : aliased Uint;
797 begin
798 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
799 end Compile_Time_Compare;
800
801 function Compile_Time_Compare
802 (L, R : Node_Id;
803 Diff : access Uint;
1c7717c3
AC
804 Assume_Valid : Boolean;
805 Rec : Boolean := False) return Compare_Result
fbf5a39b 806 is
08f52d9f
AC
807 Ltyp : Entity_Id := Etype (L);
808 Rtyp : Entity_Id := Etype (R);
996ae0b0 809
af02a866
RD
810 Discard : aliased Uint;
811
996ae0b0
RK
812 procedure Compare_Decompose
813 (N : Node_Id;
814 R : out Node_Id;
815 V : out Uint);
b49365b2
RD
816 -- This procedure decomposes the node N into an expression node and a
817 -- signed offset, so that the value of N is equal to the value of R plus
818 -- the value V (which may be negative). If no such decomposition is
819 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
820
821 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
822 -- This function deals with replacing 'Last and 'First references with
823 -- their corresponding type bounds, which we then can compare. The
824 -- argument is the original node, the result is the identity, unless we
825 -- have a 'Last/'First reference in which case the value returned is the
826 -- appropriate type bound.
996ae0b0 827
57036dcc
ES
828 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
829 -- Even if the context does not assume that values are valid, some
830 -- simple cases can be recognized.
831
996ae0b0 832 function Is_Same_Value (L, R : Node_Id) return Boolean;
86f0e17a
AC
833 -- Returns True iff L and R represent expressions that definitely have
834 -- identical (but not necessarily compile time known) values Indeed the
835 -- caller is expected to have already dealt with the cases of compile
836 -- time known values, so these are not tested here.
996ae0b0
RK
837
838 -----------------------
839 -- Compare_Decompose --
840 -----------------------
841
842 procedure Compare_Decompose
843 (N : Node_Id;
844 R : out Node_Id;
845 V : out Uint)
846 is
847 begin
848 if Nkind (N) = N_Op_Add
849 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
850 then
851 R := Left_Opnd (N);
852 V := Intval (Right_Opnd (N));
853 return;
854
855 elsif Nkind (N) = N_Op_Subtract
856 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
857 then
858 R := Left_Opnd (N);
859 V := UI_Negate (Intval (Right_Opnd (N)));
860 return;
861
21d7ef70 862 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
863 if Attribute_Name (N) = Name_Succ then
864 R := First (Expressions (N));
865 V := Uint_1;
866 return;
867
868 elsif Attribute_Name (N) = Name_Pred then
869 R := First (Expressions (N));
870 V := Uint_Minus_1;
871 return;
872 end if;
873 end if;
874
875 R := N;
876 V := Uint_0;
877 end Compare_Decompose;
878
879 -------------------
880 -- Compare_Fixup --
881 -------------------
882
883 function Compare_Fixup (N : Node_Id) return Node_Id is
884 Indx : Node_Id;
885 Xtyp : Entity_Id;
886 Subs : Nat;
887
888 begin
7a6de2e2
AC
889 -- Fixup only required for First/Last attribute reference
890
996ae0b0 891 if Nkind (N) = N_Attribute_Reference
b69cd36a 892 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
996ae0b0
RK
893 then
894 Xtyp := Etype (Prefix (N));
895
896 -- If we have no type, then just abandon the attempt to do
897 -- a fixup, this is probably the result of some other error.
898
899 if No (Xtyp) then
900 return N;
901 end if;
902
903 -- Dereference an access type
904
905 if Is_Access_Type (Xtyp) then
906 Xtyp := Designated_Type (Xtyp);
907 end if;
908
80298c3b
AC
909 -- If we don't have an array type at this stage, something is
910 -- peculiar, e.g. another error, and we abandon the attempt at
911 -- a fixup.
996ae0b0
RK
912
913 if not Is_Array_Type (Xtyp) then
914 return N;
915 end if;
916
917 -- Ignore unconstrained array, since bounds are not meaningful
918
919 if not Is_Constrained (Xtyp) then
920 return N;
921 end if;
922
c3de5c4c
ES
923 if Ekind (Xtyp) = E_String_Literal_Subtype then
924 if Attribute_Name (N) = Name_First then
925 return String_Literal_Low_Bound (Xtyp);
5f44f0d4 926 else
80298c3b
AC
927 return
928 Make_Integer_Literal (Sloc (N),
929 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
930 String_Literal_Length (Xtyp));
c3de5c4c
ES
931 end if;
932 end if;
933
996ae0b0
RK
934 -- Find correct index type
935
936 Indx := First_Index (Xtyp);
937
938 if Present (Expressions (N)) then
939 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
940
941 for J in 2 .. Subs loop
942 Indx := Next_Index (Indx);
943 end loop;
944 end if;
945
946 Xtyp := Etype (Indx);
947
948 if Attribute_Name (N) = Name_First then
949 return Type_Low_Bound (Xtyp);
7a6de2e2 950 else
996ae0b0
RK
951 return Type_High_Bound (Xtyp);
952 end if;
953 end if;
954
955 return N;
956 end Compare_Fixup;
957
57036dcc
ES
958 ----------------------------
959 -- Is_Known_Valid_Operand --
960 ----------------------------
961
962 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
963 begin
964 return (Is_Entity_Name (Opnd)
965 and then
966 (Is_Known_Valid (Entity (Opnd))
967 or else Ekind (Entity (Opnd)) = E_In_Parameter
968 or else
969 (Ekind (Entity (Opnd)) in Object_Kind
80298c3b 970 and then Present (Current_Value (Entity (Opnd))))))
57036dcc
ES
971 or else Is_OK_Static_Expression (Opnd);
972 end Is_Known_Valid_Operand;
973
996ae0b0
RK
974 -------------------
975 -- Is_Same_Value --
976 -------------------
977
978 function Is_Same_Value (L, R : Node_Id) return Boolean is
979 Lf : constant Node_Id := Compare_Fixup (L);
980 Rf : constant Node_Id := Compare_Fixup (R);
981
fbf5a39b 982 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
983 -- L, R are the Expressions values from two attribute nodes for First
984 -- or Last attributes. Either may be set to No_List if no expressions
985 -- are present (indicating subscript 1). The result is True if both
986 -- expressions represent the same subscript (note one case is where
987 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
988
989 -----------------------
990 -- Is_Same_Subscript --
991 -----------------------
992
993 function Is_Same_Subscript (L, R : List_Id) return Boolean is
994 begin
995 if L = No_List then
996 if R = No_List then
997 return True;
998 else
999 return Expr_Value (First (R)) = Uint_1;
1000 end if;
1001
1002 else
1003 if R = No_List then
1004 return Expr_Value (First (L)) = Uint_1;
1005 else
1006 return Expr_Value (First (L)) = Expr_Value (First (R));
1007 end if;
1008 end if;
1009 end Is_Same_Subscript;
1010
1011 -- Start of processing for Is_Same_Value
1012
996ae0b0 1013 begin
b49365b2 1014 -- Values are the same if they refer to the same entity and the
c800f862
RD
1015 -- entity is non-volatile. This does not however apply to Float
1016 -- types, since we may have two NaN values and they should never
1017 -- compare equal.
996ae0b0 1018
f08b2371
RD
1019 -- If the entity is a discriminant, the two expressions may be bounds
1020 -- of components of objects of the same discriminated type. The
1021 -- values of the discriminants are not static, and therefore the
1022 -- result is unknown.
1023
1024 -- It would be better to comment individual branches of this test ???
4fb0b3f0 1025
b49365b2
RD
1026 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
1027 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 1028 and then Entity (Lf) = Entity (Rf)
4fb0b3f0 1029 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 1030 and then Present (Entity (Lf))
fbf5a39b 1031 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
1032 and then not Is_Volatile_Reference (L)
1033 and then not Is_Volatile_Reference (R)
996ae0b0
RK
1034 then
1035 return True;
1036
1037 -- Or if they are compile time known and identical
1038
1039 elsif Compile_Time_Known_Value (Lf)
1040 and then
1041 Compile_Time_Known_Value (Rf)
1042 and then Expr_Value (Lf) = Expr_Value (Rf)
1043 then
1044 return True;
1045
b49365b2
RD
1046 -- False if Nkind of the two nodes is different for remaining cases
1047
1048 elsif Nkind (Lf) /= Nkind (Rf) then
1049 return False;
1050
1051 -- True if both 'First or 'Last values applying to the same entity
1052 -- (first and last don't change even if value does). Note that we
1053 -- need this even with the calls to Compare_Fixup, to handle the
1054 -- case of unconstrained array attributes where Compare_Fixup
1055 -- cannot find useful bounds.
996ae0b0
RK
1056
1057 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0 1058 and then Attribute_Name (Lf) = Attribute_Name (Rf)
b69cd36a 1059 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
b49365b2
RD
1060 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1061 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 1062 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 1063 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
1064 then
1065 return True;
1066
b49365b2
RD
1067 -- True if the same selected component from the same record
1068
1069 elsif Nkind (Lf) = N_Selected_Component
1070 and then Selector_Name (Lf) = Selector_Name (Rf)
1071 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1072 then
1073 return True;
1074
1075 -- True if the same unary operator applied to the same operand
1076
1077 elsif Nkind (Lf) in N_Unary_Op
1078 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1079 then
1080 return True;
1081
8682d22c 1082 -- True if the same binary operator applied to the same operands
b49365b2
RD
1083
1084 elsif Nkind (Lf) in N_Binary_Op
1085 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1086 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1087 then
1088 return True;
1089
8682d22c 1090 -- All other cases, we can't tell, so return False
996ae0b0
RK
1091
1092 else
1093 return False;
1094 end if;
1095 end Is_Same_Value;
1096
1097 -- Start of processing for Compile_Time_Compare
1098
1099 begin
af02a866
RD
1100 Diff.all := No_Uint;
1101
37c1f923
AC
1102 -- In preanalysis mode, always return Unknown unless the expression
1103 -- is static. It is too early to be thinking we know the result of a
1104 -- comparison, save that judgment for the full analysis. This is
1105 -- particularly important in the case of pre and postconditions, which
1106 -- otherwise can be prematurely collapsed into having True or False
1107 -- conditions when this is inappropriate.
1108
1109 if not (Full_Analysis
edab6088 1110 or else (Is_OK_Static_Expression (L)
db318f46 1111 and then
edab6088 1112 Is_OK_Static_Expression (R)))
37c1f923 1113 then
05b34c18
AC
1114 return Unknown;
1115 end if;
1116
07fc65c4 1117 -- If either operand could raise constraint error, then we cannot
a90bd866 1118 -- know the result at compile time (since CE may be raised).
07fc65c4
GB
1119
1120 if not (Cannot_Raise_Constraint_Error (L)
1121 and then
1122 Cannot_Raise_Constraint_Error (R))
1123 then
1124 return Unknown;
1125 end if;
1126
1127 -- Identical operands are most certainly equal
1128
996ae0b0
RK
1129 if L = R then
1130 return EQ;
08f52d9f 1131 end if;
996ae0b0 1132
93c3fca7
AC
1133 -- If expressions have no types, then do not attempt to determine if
1134 -- they are the same, since something funny is going on. One case in
1135 -- which this happens is during generic template analysis, when bounds
1136 -- are not fully analyzed.
996ae0b0 1137
08f52d9f
AC
1138 if No (Ltyp) or else No (Rtyp) then
1139 return Unknown;
1140 end if;
1141
1142 -- These get reset to the base type for the case of entities where
1143 -- Is_Known_Valid is not set. This takes care of handling possible
1144 -- invalid representations using the value of the base type, in
1145 -- accordance with RM 13.9.1(10).
1146
1147 Ltyp := Underlying_Type (Ltyp);
1148 Rtyp := Underlying_Type (Rtyp);
1149
1150 -- Same rationale as above, but for Underlying_Type instead of Etype
1151
1152 if No (Ltyp) or else No (Rtyp) then
996ae0b0 1153 return Unknown;
08f52d9f 1154 end if;
996ae0b0 1155
0a3ec628 1156 -- We do not attempt comparisons for packed arrays represented as
93c3fca7 1157 -- modular types, where the semantics of comparison is quite different.
996ae0b0 1158
08f52d9f 1159 if Is_Packed_Array_Impl_Type (Ltyp)
93c3fca7 1160 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
1161 then
1162 return Unknown;
1163
93c3fca7 1164 -- For access types, the only time we know the result at compile time
f61580d4 1165 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
1166 -- know one operand is null and the other is not, or both operands are
1167 -- known null.
1168
1169 elsif Is_Access_Type (Ltyp) then
1170 if Known_Null (L) then
1171 if Known_Null (R) then
1172 return EQ;
1173 elsif Known_Non_Null (R) then
1174 return NE;
1175 else
1176 return Unknown;
1177 end if;
1178
f61580d4 1179 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
1180 return NE;
1181
1182 else
1183 return Unknown;
1184 end if;
1185
996ae0b0
RK
1186 -- Case where comparison involves two compile time known values
1187
1188 elsif Compile_Time_Known_Value (L)
80298c3b
AC
1189 and then
1190 Compile_Time_Known_Value (R)
996ae0b0
RK
1191 then
1192 -- For the floating-point case, we have to be a little careful, since
1193 -- at compile time we are dealing with universal exact values, but at
1194 -- runtime, these will be in non-exact target form. That's why the
1195 -- returned results are LE and GE below instead of LT and GT.
1196
1197 if Is_Floating_Point_Type (Ltyp)
1198 or else
1199 Is_Floating_Point_Type (Rtyp)
1200 then
1201 declare
1202 Lo : constant Ureal := Expr_Value_R (L);
1203 Hi : constant Ureal := Expr_Value_R (R);
996ae0b0
RK
1204 begin
1205 if Lo < Hi then
1206 return LE;
1207 elsif Lo = Hi then
1208 return EQ;
1209 else
1210 return GE;
1211 end if;
1212 end;
1213
93c3fca7
AC
1214 -- For string types, we have two string literals and we proceed to
1215 -- compare them using the Ada style dictionary string comparison.
1216
1217 elsif not Is_Scalar_Type (Ltyp) then
1218 declare
1219 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1220 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1221 Llen : constant Nat := String_Length (Lstring);
1222 Rlen : constant Nat := String_Length (Rstring);
1223
1224 begin
1225 for J in 1 .. Nat'Min (Llen, Rlen) loop
1226 declare
1227 LC : constant Char_Code := Get_String_Char (Lstring, J);
1228 RC : constant Char_Code := Get_String_Char (Rstring, J);
1229 begin
1230 if LC < RC then
1231 return LT;
1232 elsif LC > RC then
1233 return GT;
1234 end if;
1235 end;
1236 end loop;
1237
1238 if Llen < Rlen then
1239 return LT;
1240 elsif Llen > Rlen then
1241 return GT;
1242 else
1243 return EQ;
1244 end if;
1245 end;
1246
1247 -- For remaining scalar cases we know exactly (note that this does
1248 -- include the fixed-point case, where we know the run time integer
f61580d4 1249 -- values now).
996ae0b0
RK
1250
1251 else
1252 declare
1253 Lo : constant Uint := Expr_Value (L);
1254 Hi : constant Uint := Expr_Value (R);
996ae0b0
RK
1255 begin
1256 if Lo < Hi then
af02a866 1257 Diff.all := Hi - Lo;
996ae0b0
RK
1258 return LT;
1259 elsif Lo = Hi then
1260 return EQ;
1261 else
af02a866 1262 Diff.all := Lo - Hi;
996ae0b0
RK
1263 return GT;
1264 end if;
1265 end;
1266 end if;
1267
1268 -- Cases where at least one operand is not known at compile time
1269
1270 else
93c3fca7 1271 -- Remaining checks apply only for discrete types
29797f34
RD
1272
1273 if not Is_Discrete_Type (Ltyp)
80298c3b
AC
1274 or else
1275 not Is_Discrete_Type (Rtyp)
93c3fca7
AC
1276 then
1277 return Unknown;
1278 end if;
1279
1280 -- Defend against generic types, or actually any expressions that
1281 -- contain a reference to a generic type from within a generic
1282 -- template. We don't want to do any range analysis of such
1283 -- expressions for two reasons. First, the bounds of a generic type
1284 -- itself are junk and cannot be used for any kind of analysis.
1285 -- Second, we may have a case where the range at run time is indeed
1286 -- known, but we don't want to do compile time analysis in the
1287 -- template based on that range since in an instance the value may be
1288 -- static, and able to be elaborated without reference to the bounds
1289 -- of types involved. As an example, consider:
1290
1291 -- (F'Pos (F'Last) + 1) > Integer'Last
1292
1293 -- The expression on the left side of > is Universal_Integer and thus
1294 -- acquires the type Integer for evaluation at run time, and at run
1295 -- time it is true that this condition is always False, but within
1296 -- an instance F may be a type with a static range greater than the
1297 -- range of Integer, and the expression statically evaluates to True.
1298
1299 if References_Generic_Formal_Type (L)
1300 or else
1301 References_Generic_Formal_Type (R)
29797f34
RD
1302 then
1303 return Unknown;
1304 end if;
1305
41a58113 1306 -- Replace types by base types for the case of values which are not
80298c3b
AC
1307 -- known to have valid representations. This takes care of properly
1308 -- dealing with invalid representations.
1c7717c3 1309
41a58113
RD
1310 if not Assume_Valid then
1311 if not (Is_Entity_Name (L)
1312 and then (Is_Known_Valid (Entity (L))
1313 or else Assume_No_Invalid_Values))
1314 then
93c3fca7 1315 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
1316 end if;
1317
41a58113
RD
1318 if not (Is_Entity_Name (R)
1319 and then (Is_Known_Valid (Entity (R))
1320 or else Assume_No_Invalid_Values))
1321 then
93c3fca7 1322 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
1323 end if;
1324 end if;
1325
a40ada7e
RD
1326 -- First attempt is to decompose the expressions to extract a
1327 -- constant offset resulting from the use of any of the forms:
1328
1329 -- expr + literal
1330 -- expr - literal
1331 -- typ'Succ (expr)
1332 -- typ'Pred (expr)
1333
1334 -- Then we see if the two expressions are the same value, and if so
1335 -- the result is obtained by comparing the offsets.
1336
1337 -- Note: the reason we do this test first is that it returns only
1338 -- decisive results (with diff set), where other tests, like the
1339 -- range test, may not be as so decisive. Consider for example
1340 -- J .. J + 1. This code can conclude LT with a difference of 1,
1341 -- even if the range of J is not known.
1342
22564ca9
EB
1343 declare
1344 Lnode : Node_Id;
1345 Loffs : Uint;
1346 Rnode : Node_Id;
1347 Roffs : Uint;
a40ada7e 1348
22564ca9
EB
1349 begin
1350 Compare_Decompose (L, Lnode, Loffs);
1351 Compare_Decompose (R, Rnode, Roffs);
a40ada7e 1352
22564ca9
EB
1353 if Is_Same_Value (Lnode, Rnode) then
1354 if Loffs = Roffs then
1355 return EQ;
1356 end if;
1357
1358 -- When the offsets are not equal, we can go farther only if
1359 -- the types are not modular (e.g. X < X + 1 is False if X is
1360 -- the largest number).
0a3ec628 1361
22564ca9
EB
1362 if not Is_Modular_Integer_Type (Ltyp)
1363 and then not Is_Modular_Integer_Type (Rtyp)
1364 then
1365 if Loffs < Roffs then
0a3ec628
AC
1366 Diff.all := Roffs - Loffs;
1367 return LT;
1368 else
1369 Diff.all := Loffs - Roffs;
1370 return GT;
1371 end if;
a40ada7e 1372 end if;
22564ca9
EB
1373 end if;
1374 end;
a40ada7e
RD
1375
1376 -- Next, try range analysis and see if operand ranges are disjoint
c800f862
RD
1377
1378 declare
1379 LOK, ROK : Boolean;
1380 LLo, LHi : Uint;
1381 RLo, RHi : Uint;
1382
b6b5cca8
AC
1383 Single : Boolean;
1384 -- True if each range is a single point
1385
c800f862
RD
1386 begin
1387 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1388 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1389
1390 if LOK and ROK then
b6b5cca8
AC
1391 Single := (LLo = LHi) and then (RLo = RHi);
1392
c800f862 1393 if LHi < RLo then
b6b5cca8
AC
1394 if Single and Assume_Valid then
1395 Diff.all := RLo - LLo;
1396 end if;
1397
c800f862
RD
1398 return LT;
1399
1400 elsif RHi < LLo then
b6b5cca8
AC
1401 if Single and Assume_Valid then
1402 Diff.all := LLo - RLo;
1403 end if;
1404
c800f862
RD
1405 return GT;
1406
b6b5cca8 1407 elsif Single and then LLo = RLo then
e27b834b 1408
75ba322d
AC
1409 -- If the range includes a single literal and we can assume
1410 -- validity then the result is known even if an operand is
1411 -- not static.
e27b834b
AC
1412
1413 if Assume_Valid then
1414 return EQ;
e27b834b
AC
1415 else
1416 return Unknown;
1417 end if;
c800f862
RD
1418
1419 elsif LHi = RLo then
1420 return LE;
1421
1422 elsif RHi = LLo then
1423 return GE;
57036dcc
ES
1424
1425 elsif not Is_Known_Valid_Operand (L)
1426 and then not Assume_Valid
1427 then
1428 if Is_Same_Value (L, R) then
1429 return EQ;
1430 else
1431 return Unknown;
1432 end if;
c800f862 1433 end if;
f9ad6b62 1434
2c1b72d7
AC
1435 -- If the range of either operand cannot be determined, nothing
1436 -- further can be inferred.
f9ad6b62 1437
2c1b72d7 1438 else
f9ad6b62 1439 return Unknown;
c800f862
RD
1440 end if;
1441 end;
1442
996ae0b0
RK
1443 -- Here is where we check for comparisons against maximum bounds of
1444 -- types, where we know that no value can be outside the bounds of
1445 -- the subtype. Note that this routine is allowed to assume that all
1446 -- expressions are within their subtype bounds. Callers wishing to
1447 -- deal with possibly invalid values must in any case take special
1448 -- steps (e.g. conversions to larger types) to avoid this kind of
1449 -- optimization, which is always considered to be valid. We do not
1450 -- attempt this optimization with generic types, since the type
1451 -- bounds may not be meaningful in this case.
1452
93c3fca7 1453 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
1454 -- useful to go more than one level deep, so the parameter Rec is
1455 -- used to protect ourselves against this infinite recursion.
1456
29797f34
RD
1457 if not Rec then
1458
80298c3b
AC
1459 -- See if we can get a decisive check against one operand and a
1460 -- bound of the other operand (four possible tests here). Note
1461 -- that we avoid testing junk bounds of a generic type.
93c3fca7
AC
1462
1463 if not Is_Generic_Type (Rtyp) then
1464 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1465 Discard'Access,
1466 Assume_Valid, Rec => True)
1467 is
1468 when LT => return LT;
1469 when LE => return LE;
1470 when EQ => return LE;
1471 when others => null;
1472 end case;
fbf5a39b 1473
93c3fca7
AC
1474 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1475 Discard'Access,
1476 Assume_Valid, Rec => True)
1477 is
1478 when GT => return GT;
1479 when GE => return GE;
1480 when EQ => return GE;
1481 when others => null;
1482 end case;
1483 end if;
996ae0b0 1484
93c3fca7
AC
1485 if not Is_Generic_Type (Ltyp) then
1486 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1487 Discard'Access,
1488 Assume_Valid, Rec => True)
1489 is
1490 when GT => return GT;
1491 when GE => return GE;
1492 when EQ => return GE;
1493 when others => null;
1494 end case;
996ae0b0 1495
93c3fca7
AC
1496 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1497 Discard'Access,
1498 Assume_Valid, Rec => True)
1499 is
1500 when LT => return LT;
1501 when LE => return LE;
1502 when EQ => return LE;
1503 when others => null;
1504 end case;
1505 end if;
996ae0b0
RK
1506 end if;
1507
29797f34
RD
1508 -- Next attempt is to see if we have an entity compared with a
1509 -- compile time known value, where there is a current value
1510 -- conditional for the entity which can tell us the result.
1511
1512 declare
1513 Var : Node_Id;
1514 -- Entity variable (left operand)
1515
1516 Val : Uint;
1517 -- Value (right operand)
1518
1519 Inv : Boolean;
1520 -- If False, we have reversed the operands
1521
1522 Op : Node_Kind;
1523 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1524
29797f34
RD
1525 Opn : Node_Id;
1526 -- Value from Get_Current_Value_Condition call
1527
1528 Opv : Uint;
1529 -- Value of Opn
1530
1531 Result : Compare_Result;
1532 -- Known result before inversion
1533
1534 begin
1535 if Is_Entity_Name (L)
1536 and then Compile_Time_Known_Value (R)
1537 then
1538 Var := L;
1539 Val := Expr_Value (R);
1540 Inv := False;
1541
1542 elsif Is_Entity_Name (R)
1543 and then Compile_Time_Known_Value (L)
1544 then
1545 Var := R;
1546 Val := Expr_Value (L);
1547 Inv := True;
1548
1549 -- That was the last chance at finding a compile time result
996ae0b0
RK
1550
1551 else
1552 return Unknown;
1553 end if;
29797f34
RD
1554
1555 Get_Current_Value_Condition (Var, Op, Opn);
1556
1557 -- That was the last chance, so if we got nothing return
1558
1559 if No (Opn) then
1560 return Unknown;
1561 end if;
1562
1563 Opv := Expr_Value (Opn);
1564
1565 -- We got a comparison, so we might have something interesting
1566
1567 -- Convert LE to LT and GE to GT, just so we have fewer cases
1568
1569 if Op = N_Op_Le then
1570 Op := N_Op_Lt;
1571 Opv := Opv + 1;
af02a866 1572
29797f34
RD
1573 elsif Op = N_Op_Ge then
1574 Op := N_Op_Gt;
1575 Opv := Opv - 1;
1576 end if;
1577
1578 -- Deal with equality case
1579
1580 if Op = N_Op_Eq then
1581 if Val = Opv then
1582 Result := EQ;
1583 elsif Opv < Val then
1584 Result := LT;
1585 else
1586 Result := GT;
1587 end if;
1588
1589 -- Deal with inequality case
1590
1591 elsif Op = N_Op_Ne then
1592 if Val = Opv then
1593 Result := NE;
1594 else
1595 return Unknown;
1596 end if;
1597
1598 -- Deal with greater than case
1599
1600 elsif Op = N_Op_Gt then
1601 if Opv >= Val then
1602 Result := GT;
1603 elsif Opv = Val - 1 then
1604 Result := GE;
1605 else
1606 return Unknown;
1607 end if;
1608
1609 -- Deal with less than case
1610
1611 else pragma Assert (Op = N_Op_Lt);
1612 if Opv <= Val then
1613 Result := LT;
1614 elsif Opv = Val + 1 then
1615 Result := LE;
1616 else
1617 return Unknown;
1618 end if;
1619 end if;
1620
1621 -- Deal with inverting result
1622
1623 if Inv then
1624 case Result is
1625 when GT => return LT;
1626 when GE => return LE;
1627 when LT => return GT;
1628 when LE => return GE;
1629 when others => return Result;
1630 end case;
1631 end if;
1632
1633 return Result;
996ae0b0
RK
1634 end;
1635 end if;
1636 end Compile_Time_Compare;
1637
f44fe430
RD
1638 -------------------------------
1639 -- Compile_Time_Known_Bounds --
1640 -------------------------------
1641
1642 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1643 Indx : Node_Id;
1644 Typ : Entity_Id;
1645
1646 begin
f5f6d8d7 1647 if T = Any_Composite or else not Is_Array_Type (T) then
f44fe430
RD
1648 return False;
1649 end if;
1650
1651 Indx := First_Index (T);
1652 while Present (Indx) loop
1653 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1654
1655 -- Never look at junk bounds of a generic type
1656
1657 if Is_Generic_Type (Typ) then
1658 return False;
1659 end if;
1660
1661 -- Otherwise check bounds for compile time known
1662
f44fe430
RD
1663 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1664 return False;
1665 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1666 return False;
1667 else
1668 Next_Index (Indx);
1669 end if;
1670 end loop;
1671
1672 return True;
1673 end Compile_Time_Known_Bounds;
1674
996ae0b0
RK
1675 ------------------------------
1676 -- Compile_Time_Known_Value --
1677 ------------------------------
1678
6c3c671e 1679 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1680 K : constant Node_Kind := Nkind (Op);
1681 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1682
1683 begin
1684 -- Never known at compile time if bad type or raises constraint error
ee2ba856 1685 -- or empty (latter case occurs only as a result of a previous error).
996ae0b0 1686
ee2ba856
AC
1687 if No (Op) then
1688 Check_Error_Detected;
1689 return False;
1690
1691 elsif Op = Error
996ae0b0
RK
1692 or else Etype (Op) = Any_Type
1693 or else Raises_Constraint_Error (Op)
1694 then
1695 return False;
1696 end if;
1697
1698 -- If we have an entity name, then see if it is the name of a constant
1699 -- and if so, test the corresponding constant value, or the name of
1700 -- an enumeration literal, which is always a constant.
1701
1702 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1703 declare
1704 E : constant Entity_Id := Entity (Op);
1705 V : Node_Id;
1706
1707 begin
1708 -- Never known at compile time if it is a packed array value.
1709 -- We might want to try to evaluate these at compile time one
1710 -- day, but we do not make that attempt now.
1711
8ca597af 1712 if Is_Packed_Array_Impl_Type (Etype (Op)) then
996ae0b0
RK
1713 return False;
1714 end if;
1715
1716 if Ekind (E) = E_Enumeration_Literal then
1717 return True;
1718
5114f3ff 1719 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1720 V := Constant_Value (E);
1721 return Present (V) and then Compile_Time_Known_Value (V);
1722 end if;
1723 end;
1724
1725 -- We have a value, see if it is compile time known
1726
1727 else
07fc65c4 1728 -- Integer literals are worth storing in the cache
996ae0b0 1729
07fc65c4
GB
1730 if K = N_Integer_Literal then
1731 CV_Ent.N := Op;
1732 CV_Ent.V := Intval (Op);
1733 return True;
1734
1735 -- Other literals and NULL are known at compile time
1736
1737 elsif
80298c3b
AC
1738 Nkind_In (K, N_Character_Literal,
1739 N_Real_Literal,
1740 N_String_Literal,
1741 N_Null)
996ae0b0
RK
1742 then
1743 return True;
07fc65c4 1744 end if;
996ae0b0 1745 end if;
07fc65c4
GB
1746
1747 -- If we fall through, not known at compile time
1748
1749 return False;
1750
1751 -- If we get an exception while trying to do this test, then some error
1752 -- has occurred, and we simply say that the value is not known after all
1753
1754 exception
1755 when others =>
1756 return False;
996ae0b0
RK
1757 end Compile_Time_Known_Value;
1758
1759 --------------------------------------
1760 -- Compile_Time_Known_Value_Or_Aggr --
1761 --------------------------------------
1762
1763 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1764 begin
1765 -- If we have an entity name, then see if it is the name of a constant
1766 -- and if so, test the corresponding constant value, or the name of
1767 -- an enumeration literal, which is always a constant.
1768
1769 if Is_Entity_Name (Op) then
1770 declare
1771 E : constant Entity_Id := Entity (Op);
1772 V : Node_Id;
1773
1774 begin
1775 if Ekind (E) = E_Enumeration_Literal then
1776 return True;
1777
1778 elsif Ekind (E) /= E_Constant then
1779 return False;
1780
1781 else
1782 V := Constant_Value (E);
1783 return Present (V)
1784 and then Compile_Time_Known_Value_Or_Aggr (V);
1785 end if;
1786 end;
1787
1788 -- We have a value, see if it is compile time known
1789
1790 else
1791 if Compile_Time_Known_Value (Op) then
1792 return True;
1793
1794 elsif Nkind (Op) = N_Aggregate then
1795
1796 if Present (Expressions (Op)) then
1797 declare
1798 Expr : Node_Id;
996ae0b0
RK
1799 begin
1800 Expr := First (Expressions (Op));
1801 while Present (Expr) loop
1802 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1803 return False;
80298c3b
AC
1804 else
1805 Next (Expr);
996ae0b0 1806 end if;
996ae0b0
RK
1807 end loop;
1808 end;
1809 end if;
1810
1811 if Present (Component_Associations (Op)) then
1812 declare
1813 Cass : Node_Id;
1814
1815 begin
1816 Cass := First (Component_Associations (Op));
1817 while Present (Cass) loop
1818 if not
1819 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1820 then
1821 return False;
1822 end if;
1823
1824 Next (Cass);
1825 end loop;
1826 end;
1827 end if;
1828
1829 return True;
1830
1831 -- All other types of values are not known at compile time
1832
1833 else
1834 return False;
1835 end if;
1836
1837 end if;
1838 end Compile_Time_Known_Value_Or_Aggr;
1839
6c3c671e
AC
1840 ---------------------------------------
1841 -- CRT_Safe_Compile_Time_Known_Value --
1842 ---------------------------------------
1843
1844 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1845 begin
1846 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1847 and then not Is_OK_Static_Expression (Op)
1848 then
1849 return False;
1850 else
1851 return Compile_Time_Known_Value (Op);
1852 end if;
1853 end CRT_Safe_Compile_Time_Known_Value;
1854
996ae0b0
RK
1855 -----------------
1856 -- Eval_Actual --
1857 -----------------
1858
1859 -- This is only called for actuals of functions that are not predefined
1860 -- operators (which have already been rewritten as operators at this
1861 -- stage), so the call can never be folded, and all that needs doing for
1862 -- the actual is to do the check for a non-static context.
1863
1864 procedure Eval_Actual (N : Node_Id) is
1865 begin
1866 Check_Non_Static_Context (N);
1867 end Eval_Actual;
1868
1869 --------------------
1870 -- Eval_Allocator --
1871 --------------------
1872
1873 -- Allocators are never static, so all we have to do is to do the
1874 -- check for a non-static context if an expression is present.
1875
1876 procedure Eval_Allocator (N : Node_Id) is
1877 Expr : constant Node_Id := Expression (N);
996ae0b0
RK
1878 begin
1879 if Nkind (Expr) = N_Qualified_Expression then
1880 Check_Non_Static_Context (Expression (Expr));
1881 end if;
1882 end Eval_Allocator;
1883
1884 ------------------------
1885 -- Eval_Arithmetic_Op --
1886 ------------------------
1887
1888 -- Arithmetic operations are static functions, so the result is static
1889 -- if both operands are static (RM 4.9(7), 4.9(20)).
1890
1891 procedure Eval_Arithmetic_Op (N : Node_Id) is
1892 Left : constant Node_Id := Left_Opnd (N);
1893 Right : constant Node_Id := Right_Opnd (N);
1894 Ltype : constant Entity_Id := Etype (Left);
1895 Rtype : constant Entity_Id := Etype (Right);
d7567964 1896 Otype : Entity_Id := Empty;
996ae0b0
RK
1897 Stat : Boolean;
1898 Fold : Boolean;
1899
1900 begin
1901 -- If not foldable we are done
1902
1903 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1904
1905 if not Fold then
1906 return;
1907 end if;
1908
6c3c671e
AC
1909 -- Otherwise attempt to fold
1910
d7567964
TQ
1911 if Is_Universal_Numeric_Type (Etype (Left))
1912 and then
1913 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 1914 then
d7567964 1915 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
1916 end if;
1917
996ae0b0
RK
1918 -- Fold for cases where both operands are of integer type
1919
1920 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1921 declare
1922 Left_Int : constant Uint := Expr_Value (Left);
1923 Right_Int : constant Uint := Expr_Value (Right);
1924 Result : Uint;
1925
1926 begin
1927 case Nkind (N) is
996ae0b0
RK
1928 when N_Op_Add =>
1929 Result := Left_Int + Right_Int;
1930
1931 when N_Op_Subtract =>
1932 Result := Left_Int - Right_Int;
1933
1934 when N_Op_Multiply =>
1935 if OK_Bits
1936 (N, UI_From_Int
1937 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1938 then
1939 Result := Left_Int * Right_Int;
1940 else
1941 Result := Left_Int;
1942 end if;
1943
1944 when N_Op_Divide =>
1945
1946 -- The exception Constraint_Error is raised by integer
1947 -- division, rem and mod if the right operand is zero.
1948
1949 if Right_Int = 0 then
520c0201
AC
1950
1951 -- When SPARK_Mode is On, force a warning instead of
1952 -- an error in that case, as this likely corresponds
1953 -- to deactivated code.
1954
996ae0b0 1955 Apply_Compile_Time_Constraint_Error
80298c3b 1956 (N, "division by zero", CE_Divide_By_Zero,
520c0201 1957 Warn => not Stat or SPARK_Mode = On);
edab6088 1958 Set_Raises_Constraint_Error (N);
996ae0b0 1959 return;
fbf5a39b 1960
edab6088
RD
1961 -- Otherwise we can do the division
1962
996ae0b0
RK
1963 else
1964 Result := Left_Int / Right_Int;
1965 end if;
1966
1967 when N_Op_Mod =>
1968
1969 -- The exception Constraint_Error is raised by integer
1970 -- division, rem and mod if the right operand is zero.
1971
1972 if Right_Int = 0 then
520c0201
AC
1973
1974 -- When SPARK_Mode is On, force a warning instead of
1975 -- an error in that case, as this likely corresponds
1976 -- to deactivated code.
1977
996ae0b0 1978 Apply_Compile_Time_Constraint_Error
80298c3b 1979 (N, "mod with zero divisor", CE_Divide_By_Zero,
520c0201 1980 Warn => not Stat or SPARK_Mode = On);
996ae0b0 1981 return;
520c0201 1982
996ae0b0
RK
1983 else
1984 Result := Left_Int mod Right_Int;
1985 end if;
1986
1987 when N_Op_Rem =>
1988
1989 -- The exception Constraint_Error is raised by integer
1990 -- division, rem and mod if the right operand is zero.
1991
1992 if Right_Int = 0 then
520c0201
AC
1993
1994 -- When SPARK_Mode is On, force a warning instead of
1995 -- an error in that case, as this likely corresponds
1996 -- to deactivated code.
1997
996ae0b0 1998 Apply_Compile_Time_Constraint_Error
80298c3b 1999 (N, "rem with zero divisor", CE_Divide_By_Zero,
520c0201 2000 Warn => not Stat or SPARK_Mode = On);
996ae0b0 2001 return;
fbf5a39b 2002
996ae0b0
RK
2003 else
2004 Result := Left_Int rem Right_Int;
2005 end if;
2006
2007 when others =>
2008 raise Program_Error;
2009 end case;
2010
2011 -- Adjust the result by the modulus if the type is a modular type
2012
2013 if Is_Modular_Integer_Type (Ltype) then
2014 Result := Result mod Modulus (Ltype);
82c80734
RD
2015
2016 -- For a signed integer type, check non-static overflow
2017
2018 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2019 declare
2020 BT : constant Entity_Id := Base_Type (Ltype);
2021 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2022 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2023 begin
2024 if Result < Lo or else Result > Hi then
2025 Apply_Compile_Time_Constraint_Error
324ac540 2026 (N, "value not in range of }??",
82c80734
RD
2027 CE_Overflow_Check_Failed,
2028 Ent => BT);
2029 return;
2030 end if;
2031 end;
996ae0b0
RK
2032 end if;
2033
82c80734
RD
2034 -- If we get here we can fold the result
2035
fbf5a39b 2036 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2037 end;
2038
d7567964
TQ
2039 -- Cases where at least one operand is a real. We handle the cases of
2040 -- both reals, or mixed/real integer cases (the latter happen only for
2041 -- divide and multiply, and the result is always real).
996ae0b0
RK
2042
2043 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2044 declare
2045 Left_Real : Ureal;
2046 Right_Real : Ureal;
2047 Result : Ureal;
2048
2049 begin
2050 if Is_Real_Type (Ltype) then
2051 Left_Real := Expr_Value_R (Left);
2052 else
2053 Left_Real := UR_From_Uint (Expr_Value (Left));
2054 end if;
2055
2056 if Is_Real_Type (Rtype) then
2057 Right_Real := Expr_Value_R (Right);
2058 else
2059 Right_Real := UR_From_Uint (Expr_Value (Right));
2060 end if;
2061
2062 if Nkind (N) = N_Op_Add then
2063 Result := Left_Real + Right_Real;
2064
2065 elsif Nkind (N) = N_Op_Subtract then
2066 Result := Left_Real - Right_Real;
2067
2068 elsif Nkind (N) = N_Op_Multiply then
2069 Result := Left_Real * Right_Real;
2070
2071 else pragma Assert (Nkind (N) = N_Op_Divide);
2072 if UR_Is_Zero (Right_Real) then
2073 Apply_Compile_Time_Constraint_Error
07fc65c4 2074 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
2075 return;
2076 end if;
2077
2078 Result := Left_Real / Right_Real;
2079 end if;
2080
fbf5a39b 2081 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
2082 end;
2083 end if;
d7567964
TQ
2084
2085 -- If the operator was resolved to a specific type, make sure that type
2086 -- is frozen even if the expression is folded into a literal (which has
2087 -- a universal type).
2088
2089 if Present (Otype) then
2090 Freeze_Before (N, Otype);
2091 end if;
996ae0b0
RK
2092 end Eval_Arithmetic_Op;
2093
2094 ----------------------------
2095 -- Eval_Character_Literal --
2096 ----------------------------
2097
a90bd866 2098 -- Nothing to be done
996ae0b0
RK
2099
2100 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 2101 pragma Warnings (Off, N);
996ae0b0
RK
2102 begin
2103 null;
2104 end Eval_Character_Literal;
2105
c01a9391
AC
2106 ---------------
2107 -- Eval_Call --
2108 ---------------
2109
2110 -- Static function calls are either calls to predefined operators
2111 -- with static arguments, or calls to functions that rename a literal.
2112 -- Only the latter case is handled here, predefined operators are
2113 -- constant-folded elsewhere.
29797f34 2114
c01a9391
AC
2115 -- If the function is itself inherited (see 7423-001) the literal of
2116 -- the parent type must be explicitly converted to the return type
2117 -- of the function.
2118
2119 procedure Eval_Call (N : Node_Id) is
2120 Loc : constant Source_Ptr := Sloc (N);
2121 Typ : constant Entity_Id := Etype (N);
2122 Lit : Entity_Id;
2123
2124 begin
2125 if Nkind (N) = N_Function_Call
2126 and then No (Parameter_Associations (N))
2127 and then Is_Entity_Name (Name (N))
2128 and then Present (Alias (Entity (Name (N))))
2129 and then Is_Enumeration_Type (Base_Type (Typ))
2130 then
b81a5940 2131 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
2132
2133 if Ekind (Lit) = E_Enumeration_Literal then
2134 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2135 Rewrite
2136 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2137 else
2138 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2139 end if;
2140
2141 Resolve (N, Typ);
2142 end if;
2143 end if;
2144 end Eval_Call;
2145
19d846a0
RD
2146 --------------------------
2147 -- Eval_Case_Expression --
2148 --------------------------
2149
ed7b9d6e 2150 -- A conditional expression is static if all its conditions and dependent
edab6088
RD
2151 -- expressions are static. Note that we do not care if the dependent
2152 -- expressions raise CE, except for the one that will be selected.
19d846a0
RD
2153
2154 procedure Eval_Case_Expression (N : Node_Id) is
edab6088
RD
2155 Alt : Node_Id;
2156 Choice : Node_Id;
19d846a0
RD
2157
2158 begin
edab6088 2159 Set_Is_Static_Expression (N, False);
ed7b9d6e 2160
edab6088 2161 if not Is_Static_Expression (Expression (N)) then
ed7b9d6e 2162 Check_Non_Static_Context (Expression (N));
edab6088 2163 return;
ed7b9d6e 2164 end if;
19d846a0 2165
edab6088
RD
2166 -- First loop, make sure all the alternatives are static expressions
2167 -- none of which raise Constraint_Error. We make the constraint error
2168 -- check because part of the legality condition for a correct static
2169 -- case expression is that the cases are covered, like any other case
2170 -- expression. And we can't do that if any of the conditions raise an
2171 -- exception, so we don't even try to evaluate if that is the case.
2172
19d846a0 2173 Alt := First (Alternatives (N));
edab6088 2174 while Present (Alt) loop
ed7b9d6e 2175
edab6088
RD
2176 -- The expression must be static, but we don't care at this stage
2177 -- if it raises Constraint_Error (the alternative might not match,
2178 -- in which case the expression is statically unevaluated anyway).
ed7b9d6e 2179
edab6088
RD
2180 if not Is_Static_Expression (Expression (Alt)) then
2181 Check_Non_Static_Context (Expression (Alt));
2182 return;
2183 end if;
ed7b9d6e 2184
edab6088
RD
2185 -- The choices of a case always have to be static, and cannot raise
2186 -- an exception. If this condition is not met, then the expression
2187 -- is plain illegal, so just abandon evaluation attempts. No need
2188 -- to check non-static context when we have something illegal anyway.
ed7b9d6e 2189
edab6088
RD
2190 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2191 return;
ed7b9d6e
AC
2192 end if;
2193
19d846a0 2194 Next (Alt);
edab6088 2195 end loop;
ed7b9d6e 2196
edab6088
RD
2197 -- OK, if the above loop gets through it means that all choices are OK
2198 -- static (don't raise exceptions), so the whole case is static, and we
2199 -- can find the matching alternative.
2200
2201 Set_Is_Static_Expression (N);
2202
2203 -- Now to deal with propagating a possible constraint error
2204
2205 -- If the selecting expression raises CE, propagate and we are done
2206
2207 if Raises_Constraint_Error (Expression (N)) then
2208 Set_Raises_Constraint_Error (N);
2209
2210 -- Otherwise we need to check the alternatives to find the matching
2211 -- one. CE's in other than the matching one are not relevant. But we
2212 -- do need to check the matching one. Unlike the first loop, we do not
2213 -- have to go all the way through, when we find the matching one, quit.
ed7b9d6e
AC
2214
2215 else
edab6088
RD
2216 Alt := First (Alternatives (N));
2217 Search : loop
2218
4bd4bb7f 2219 -- We must find a match among the alternatives. If not, this must
edab6088
RD
2220 -- be due to other errors, so just ignore, leaving as non-static.
2221
2222 if No (Alt) then
2223 Set_Is_Static_Expression (N, False);
2224 return;
2225 end if;
2226
2227 -- Otherwise loop through choices of this alternative
2228
2229 Choice := First (Discrete_Choices (Alt));
2230 while Present (Choice) loop
2231
2232 -- If we find a matching choice, then the Expression of this
2233 -- alternative replaces N (Raises_Constraint_Error flag is
2234 -- included, so we don't have to special case that).
2235
2236 if Choice_Matches (Expression (N), Choice) = Match then
2237 Rewrite (N, Relocate_Node (Expression (Alt)));
2238 return;
2239 end if;
2240
2241 Next (Choice);
2242 end loop;
2243
2244 Next (Alt);
2245 end loop Search;
ed7b9d6e 2246 end if;
19d846a0
RD
2247 end Eval_Case_Expression;
2248
996ae0b0
RK
2249 ------------------------
2250 -- Eval_Concatenation --
2251 ------------------------
2252
3996951a
TQ
2253 -- Concatenation is a static function, so the result is static if both
2254 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
2255
2256 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
2257 Left : constant Node_Id := Left_Opnd (N);
2258 Right : constant Node_Id := Right_Opnd (N);
2259 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
2260 Stat : Boolean;
2261 Fold : Boolean;
996ae0b0
RK
2262
2263 begin
3996951a
TQ
2264 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2265 -- non-static context.
996ae0b0 2266
0ab80019 2267 if Ada_Version = Ada_83
996ae0b0
RK
2268 and then Comes_From_Source (N)
2269 then
2270 Check_Non_Static_Context (Left);
2271 Check_Non_Static_Context (Right);
2272 return;
2273 end if;
2274
2275 -- If not foldable we are done. In principle concatenation that yields
2276 -- any string type is static (i.e. an array type of character types).
2277 -- However, character types can include enumeration literals, and
2278 -- concatenation in that case cannot be described by a literal, so we
2279 -- only consider the operation static if the result is an array of
2280 -- (a descendant of) a predefined character type.
2281
2282 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2283
3996951a 2284 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
2285 Set_Is_Static_Expression (N, False);
2286 return;
2287 end if;
2288
82c80734 2289 -- Compile time string concatenation
996ae0b0 2290
3996951a
TQ
2291 -- ??? Note that operands that are aggregates can be marked as static,
2292 -- so we should attempt at a later stage to fold concatenations with
2293 -- such aggregates.
996ae0b0
RK
2294
2295 declare
b54ddf5a
BD
2296 Left_Str : constant Node_Id := Get_String_Val (Left);
2297 Left_Len : Nat;
2298 Right_Str : constant Node_Id := Get_String_Val (Right);
2299 Folded_Val : String_Id;
996ae0b0
RK
2300
2301 begin
2302 -- Establish new string literal, and store left operand. We make
2303 -- sure to use the special Start_String that takes an operand if
2304 -- the left operand is a string literal. Since this is optimized
2305 -- in the case where that is the most recently created string
2306 -- literal, we ensure efficient time/space behavior for the
2307 -- case of a concatenation of a series of string literals.
2308
2309 if Nkind (Left_Str) = N_String_Literal then
c8307596 2310 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
2311
2312 -- If the left operand is the empty string, and the right operand
2313 -- is a string literal (the case of "" & "..."), the result is the
2314 -- value of the right operand. This optimization is important when
2315 -- Is_Folded_In_Parser, to avoid copying an enormous right
2316 -- operand.
2317
2318 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2319 Folded_Val := Strval (Right_Str);
2320 else
2321 Start_String (Strval (Left_Str));
2322 end if;
2323
996ae0b0
RK
2324 else
2325 Start_String;
82c80734 2326 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 2327 Left_Len := 1;
996ae0b0
RK
2328 end if;
2329
b54ddf5a
BD
2330 -- Now append the characters of the right operand, unless we
2331 -- optimized the "" & "..." case above.
996ae0b0
RK
2332
2333 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
2334 if Left_Len /= 0 then
2335 Store_String_Chars (Strval (Right_Str));
2336 Folded_Val := End_String;
2337 end if;
996ae0b0 2338 else
82c80734 2339 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 2340 Folded_Val := End_String;
996ae0b0
RK
2341 end if;
2342
2343 Set_Is_Static_Expression (N, Stat);
2344
354c3840
AC
2345 -- If left operand is the empty string, the result is the
2346 -- right operand, including its bounds if anomalous.
f91b40db 2347
354c3840
AC
2348 if Left_Len = 0
2349 and then Is_Array_Type (Etype (Right))
2350 and then Etype (Right) /= Any_String
2351 then
2352 Set_Etype (N, Etype (Right));
996ae0b0 2353 end if;
354c3840
AC
2354
2355 Fold_Str (N, Folded_Val, Static => Stat);
996ae0b0
RK
2356 end;
2357 end Eval_Concatenation;
2358
9b16cb57
RD
2359 ----------------------
2360 -- Eval_Entity_Name --
2361 ----------------------
2362
2363 -- This procedure is used for identifiers and expanded names other than
2364 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2365 -- static if they denote a static constant (RM 4.9(6)) or if the name
2366 -- denotes an enumeration literal (RM 4.9(22)).
2367
2368 procedure Eval_Entity_Name (N : Node_Id) is
2369 Def_Id : constant Entity_Id := Entity (N);
2370 Val : Node_Id;
2371
2372 begin
2373 -- Enumeration literals are always considered to be constants
2374 -- and cannot raise constraint error (RM 4.9(22)).
2375
2376 if Ekind (Def_Id) = E_Enumeration_Literal then
2377 Set_Is_Static_Expression (N);
2378 return;
2379
2380 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2381 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2382 -- it does not violate 10.2.1(8) here, since this is not a variable.
2383
2384 elsif Ekind (Def_Id) = E_Constant then
2385
e03f7ccf
AC
2386 -- Deferred constants must always be treated as nonstatic outside the
2387 -- scope of their full view.
9b16cb57
RD
2388
2389 if Present (Full_View (Def_Id))
2390 and then not In_Open_Scopes (Scope (Def_Id))
2391 then
2392 Val := Empty;
2393 else
2394 Val := Constant_Value (Def_Id);
2395 end if;
2396
2397 if Present (Val) then
2398 Set_Is_Static_Expression
2399 (N, Is_Static_Expression (Val)
2400 and then Is_Static_Subtype (Etype (Def_Id)));
2401 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2402
2403 if not Is_Static_Expression (N)
2404 and then not Is_Generic_Type (Etype (N))
2405 then
2406 Validate_Static_Object_Name (N);
2407 end if;
2408
e03f7ccf
AC
2409 -- Mark constant condition in SCOs
2410
2411 if Generate_SCO
2412 and then Comes_From_Source (N)
2413 and then Is_Boolean_Type (Etype (Def_Id))
2414 and then Compile_Time_Known_Value (N)
2415 then
2416 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2417 end if;
2418
9b16cb57
RD
2419 return;
2420 end if;
2421 end if;
2422
2423 -- Fall through if the name is not static
2424
2425 Validate_Static_Object_Name (N);
2426 end Eval_Entity_Name;
2427
2428 ------------------------
2429 -- Eval_If_Expression --
2430 ------------------------
996ae0b0 2431
9b16cb57 2432 -- We can fold to a static expression if the condition and both dependent
1cf3727f 2433 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 2434 -- the check for non-static context for the then and else expressions.
996ae0b0 2435
9b16cb57 2436 procedure Eval_If_Expression (N : Node_Id) is
4d777a71
AC
2437 Condition : constant Node_Id := First (Expressions (N));
2438 Then_Expr : constant Node_Id := Next (Condition);
2439 Else_Expr : constant Node_Id := Next (Then_Expr);
2440 Result : Node_Id;
2441 Non_Result : Node_Id;
2442
2443 Rstat : constant Boolean :=
2444 Is_Static_Expression (Condition)
2445 and then
2446 Is_Static_Expression (Then_Expr)
2447 and then
2448 Is_Static_Expression (Else_Expr);
edab6088 2449 -- True if result is static
4d777a71 2450
996ae0b0 2451 begin
edab6088
RD
2452 -- If result not static, nothing to do, otherwise set static result
2453
2454 if not Rstat then
2455 return;
2456 else
2457 Set_Is_Static_Expression (N);
2458 end if;
2459
4d777a71
AC
2460 -- If any operand is Any_Type, just propagate to result and do not try
2461 -- to fold, this prevents cascaded errors.
2462
2463 if Etype (Condition) = Any_Type or else
2464 Etype (Then_Expr) = Any_Type or else
2465 Etype (Else_Expr) = Any_Type
2466 then
2467 Set_Etype (N, Any_Type);
2468 Set_Is_Static_Expression (N, False);
2469 return;
edab6088
RD
2470 end if;
2471
4bd4bb7f 2472 -- If condition raises constraint error then we have already signaled
edab6088
RD
2473 -- an error, and we just propagate to the result and do not fold.
2474
2475 if Raises_Constraint_Error (Condition) then
2476 Set_Raises_Constraint_Error (N);
2477 return;
2478 end if;
4d777a71
AC
2479
2480 -- Static case where we can fold. Note that we don't try to fold cases
2481 -- where the condition is known at compile time, but the result is
2482 -- non-static. This avoids possible cases of infinite recursion where
2483 -- the expander puts in a redundant test and we remove it. Instead we
2484 -- deal with these cases in the expander.
2485
edab6088 2486 -- Select result operand
4d777a71 2487
edab6088
RD
2488 if Is_True (Expr_Value (Condition)) then
2489 Result := Then_Expr;
2490 Non_Result := Else_Expr;
2491 else
2492 Result := Else_Expr;
2493 Non_Result := Then_Expr;
2494 end if;
4d777a71 2495
edab6088
RD
2496 -- Note that it does not matter if the non-result operand raises a
2497 -- Constraint_Error, but if the result raises constraint error then we
2498 -- replace the node with a raise constraint error. This will properly
2499 -- propagate Raises_Constraint_Error since this flag is set in Result.
4d777a71 2500
edab6088
RD
2501 if Raises_Constraint_Error (Result) then
2502 Rewrite_In_Raise_CE (N, Result);
2503 Check_Non_Static_Context (Non_Result);
4d777a71 2504
edab6088 2505 -- Otherwise the result operand replaces the original node
4d777a71
AC
2506
2507 else
edab6088
RD
2508 Rewrite (N, Relocate_Node (Result));
2509 Set_Is_Static_Expression (N);
4d777a71 2510 end if;
9b16cb57 2511 end Eval_If_Expression;
996ae0b0
RK
2512
2513 ----------------------------
2514 -- Eval_Indexed_Component --
2515 ----------------------------
2516
8cbb664e
MG
2517 -- Indexed components are never static, so we need to perform the check
2518 -- for non-static context on the index values. Then, we check if the
2519 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
2520
2521 procedure Eval_Indexed_Component (N : Node_Id) is
2522 Expr : Node_Id;
2523
2524 begin
fbf5a39b
AC
2525 -- Check for non-static context on index values
2526
996ae0b0
RK
2527 Expr := First (Expressions (N));
2528 while Present (Expr) loop
2529 Check_Non_Static_Context (Expr);
2530 Next (Expr);
2531 end loop;
2532
fbf5a39b
AC
2533 -- If the indexed component appears in an object renaming declaration
2534 -- then we do not want to try to evaluate it, since in this case we
2535 -- need the identity of the array element.
2536
2537 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2538 return;
2539
2540 -- Similarly if the indexed component appears as the prefix of an
2541 -- attribute we don't want to evaluate it, because at least for
2542 -- some cases of attributes we need the identify (e.g. Access, Size)
2543
2544 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2545 return;
2546 end if;
2547
2548 -- Note: there are other cases, such as the left side of an assignment,
2549 -- or an OUT parameter for a call, where the replacement results in the
2550 -- illegal use of a constant, But these cases are illegal in the first
2551 -- place, so the replacement, though silly, is harmless.
2552
2553 -- Now see if this is a constant array reference
8cbb664e
MG
2554
2555 if List_Length (Expressions (N)) = 1
2556 and then Is_Entity_Name (Prefix (N))
2557 and then Ekind (Entity (Prefix (N))) = E_Constant
2558 and then Present (Constant_Value (Entity (Prefix (N))))
2559 then
2560 declare
2561 Loc : constant Source_Ptr := Sloc (N);
2562 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2563 Sub : constant Node_Id := First (Expressions (N));
2564
2565 Atyp : Entity_Id;
2566 -- Type of array
2567
2568 Lin : Nat;
2569 -- Linear one's origin subscript value for array reference
2570
2571 Lbd : Node_Id;
2572 -- Lower bound of the first array index
2573
2574 Elm : Node_Id;
2575 -- Value from constant array
2576
2577 begin
2578 Atyp := Etype (Arr);
2579
2580 if Is_Access_Type (Atyp) then
2581 Atyp := Designated_Type (Atyp);
2582 end if;
2583
9dbf1c3e
RD
2584 -- If we have an array type (we should have but perhaps there are
2585 -- error cases where this is not the case), then see if we can do
2586 -- a constant evaluation of the array reference.
8cbb664e 2587
ebd34478 2588 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2589 if Ekind (Atyp) = E_String_Literal_Subtype then
2590 Lbd := String_Literal_Low_Bound (Atyp);
2591 else
2592 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2593 end if;
2594
2595 if Compile_Time_Known_Value (Sub)
2596 and then Nkind (Arr) = N_Aggregate
2597 and then Compile_Time_Known_Value (Lbd)
2598 and then Is_Discrete_Type (Component_Type (Atyp))
2599 then
2600 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2601
2602 if List_Length (Expressions (Arr)) >= Lin then
2603 Elm := Pick (Expressions (Arr), Lin);
2604
2605 -- If the resulting expression is compile time known,
2606 -- then we can rewrite the indexed component with this
2607 -- value, being sure to mark the result as non-static.
2608 -- We also reset the Sloc, in case this generates an
2609 -- error later on (e.g. 136'Access).
2610
2611 if Compile_Time_Known_Value (Elm) then
2612 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2613 Set_Is_Static_Expression (N, False);
2614 Set_Sloc (N, Loc);
2615 end if;
2616 end if;
9fbb3ae6
AC
2617
2618 -- We can also constant-fold if the prefix is a string literal.
2619 -- This will be useful in an instantiation or an inlining.
2620
2621 elsif Compile_Time_Known_Value (Sub)
2622 and then Nkind (Arr) = N_String_Literal
2623 and then Compile_Time_Known_Value (Lbd)
2624 and then Expr_Value (Lbd) = 1
2625 and then Expr_Value (Sub) <=
2626 String_Literal_Length (Etype (Arr))
2627 then
2628 declare
2629 C : constant Char_Code :=
2630 Get_String_Char (Strval (Arr),
2631 UI_To_Int (Expr_Value (Sub)));
2632 begin
2633 Set_Character_Literal_Name (C);
2634
2635 Elm :=
2636 Make_Character_Literal (Loc,
2637 Chars => Name_Find,
2638 Char_Literal_Value => UI_From_CC (C));
2639 Set_Etype (Elm, Component_Type (Atyp));
2640 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2641 Set_Is_Static_Expression (N, False);
2642 end;
8cbb664e
MG
2643 end if;
2644 end if;
2645 end;
2646 end if;
996ae0b0
RK
2647 end Eval_Indexed_Component;
2648
2649 --------------------------
2650 -- Eval_Integer_Literal --
2651 --------------------------
2652
2653 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2654 -- as static by the analyzer. The reason we did it that early is to allow
2655 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2656 -- analysis, but before resolution, when integer literals are generated in
2657 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2658
2659 procedure Eval_Integer_Literal (N : Node_Id) is
2660 T : constant Entity_Id := Etype (N);
2661
5d09245e 2662 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
2663 -- If the literal is resolved with a specific type in a context where
2664 -- the expected type is Any_Integer, there are no range checks on the
2665 -- literal. By the time the literal is evaluated, it carries the type
2666 -- imposed by the enclosing expression, and we must recover the context
2667 -- to determine that Any_Integer is meant.
5d09245e
AC
2668
2669 ----------------------------
09494c32 2670 -- In_Any_Integer_Context --
5d09245e
AC
2671 ----------------------------
2672
2673 function In_Any_Integer_Context return Boolean is
2674 Par : constant Node_Id := Parent (N);
2675 K : constant Node_Kind := Nkind (Par);
2676
2677 begin
2678 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2679 -- but those have bounds smaller that those of any integer base type,
2680 -- so we can safely ignore these cases.
5d09245e 2681
80298c3b
AC
2682 return Nkind_In (K, N_Number_Declaration,
2683 N_Attribute_Reference,
2684 N_Attribute_Definition_Clause,
2685 N_Modular_Type_Definition,
2686 N_Signed_Integer_Type_Definition);
5d09245e
AC
2687 end In_Any_Integer_Context;
2688
2689 -- Start of processing for Eval_Integer_Literal
2690
996ae0b0 2691 begin
5d09245e 2692
996ae0b0 2693 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2694 -- certainly appearing in a non-static context, so check it. This is
2695 -- actually a redundant check, since Check_Non_Static_Context would
42f9f0fc 2696 -- check it, but it seems worthwhile to optimize out the call.
996ae0b0 2697
a51368fa
AC
2698 -- An exception is made for a literal in an if or case expression
2699
2700 if (Nkind_In (Parent (N), N_If_Expression, N_Case_Expression_Alternative)
2701 or else Nkind (Parent (N)) not in N_Subexpr)
5d09245e
AC
2702 and then not In_Any_Integer_Context
2703 then
996ae0b0
RK
2704 Check_Non_Static_Context (N);
2705 end if;
2706
2707 -- Modular integer literals must be in their base range
2708
2709 if Is_Modular_Integer_Type (T)
c800f862 2710 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2711 then
2712 Out_Of_Range (N);
2713 end if;
2714 end Eval_Integer_Literal;
2715
2716 ---------------------
2717 -- Eval_Logical_Op --
2718 ---------------------
2719
2720 -- Logical operations are static functions, so the result is potentially
2721 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2722
2723 procedure Eval_Logical_Op (N : Node_Id) is
2724 Left : constant Node_Id := Left_Opnd (N);
2725 Right : constant Node_Id := Right_Opnd (N);
2726 Stat : Boolean;
2727 Fold : Boolean;
2728
2729 begin
2730 -- If not foldable we are done
2731
2732 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2733
2734 if not Fold then
2735 return;
2736 end if;
2737
2738 -- Compile time evaluation of logical operation
2739
2740 declare
2741 Left_Int : constant Uint := Expr_Value (Left);
2742 Right_Int : constant Uint := Expr_Value (Right);
2743
2744 begin
7a5b62b0 2745 if Is_Modular_Integer_Type (Etype (N)) then
996ae0b0
RK
2746 declare
2747 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2748 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2749
2750 begin
2751 To_Bits (Left_Int, Left_Bits);
2752 To_Bits (Right_Int, Right_Bits);
2753
2754 -- Note: should really be able to use array ops instead of
2755 -- these loops, but they weren't working at the time ???
2756
2757 if Nkind (N) = N_Op_And then
2758 for J in Left_Bits'Range loop
2759 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2760 end loop;
2761
2762 elsif Nkind (N) = N_Op_Or then
2763 for J in Left_Bits'Range loop
2764 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2765 end loop;
2766
2767 else
2768 pragma Assert (Nkind (N) = N_Op_Xor);
2769
2770 for J in Left_Bits'Range loop
2771 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2772 end loop;
2773 end if;
2774
fbf5a39b 2775 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2776 end;
2777
2778 else
2779 pragma Assert (Is_Boolean_Type (Etype (N)));
2780
2781 if Nkind (N) = N_Op_And then
2782 Fold_Uint (N,
fbf5a39b 2783 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2784
2785 elsif Nkind (N) = N_Op_Or then
2786 Fold_Uint (N,
fbf5a39b 2787 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2788
2789 else
2790 pragma Assert (Nkind (N) = N_Op_Xor);
2791 Fold_Uint (N,
fbf5a39b 2792 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2793 end if;
2794 end if;
996ae0b0
RK
2795 end;
2796 end Eval_Logical_Op;
2797
2798 ------------------------
2799 -- Eval_Membership_Op --
2800 ------------------------
2801
1d1bd8ad
AC
2802 -- A membership test is potentially static if the expression is static, and
2803 -- the range is a potentially static range, or is a subtype mark denoting a
2804 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2805
2806 procedure Eval_Membership_Op (N : Node_Id) is
edab6088 2807 Alts : constant List_Id := Alternatives (N);
87feba05
AC
2808 Choice : constant Node_Id := Right_Opnd (N);
2809 Expr : constant Node_Id := Left_Opnd (N);
edab6088 2810 Result : Match_Result;
996ae0b0
RK
2811
2812 begin
1d1bd8ad
AC
2813 -- Ignore if error in either operand, except to make sure that Any_Type
2814 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 2815
87feba05
AC
2816 if Etype (Expr) = Any_Type
2817 or else (Present (Choice) and then Etype (Choice) = Any_Type)
edab6088 2818 then
996ae0b0
RK
2819 Set_Etype (N, Any_Type);
2820 return;
2821 end if;
2822
edab6088 2823 -- If left operand non-static, then nothing to do
996ae0b0 2824
87feba05 2825 if not Is_Static_Expression (Expr) then
edab6088
RD
2826 return;
2827 end if;
996ae0b0 2828
edab6088 2829 -- If choice is non-static, left operand is in non-static context
996ae0b0 2830
87feba05 2831 if (Present (Choice) and then not Is_Static_Choice (Choice))
edab6088
RD
2832 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2833 then
87feba05 2834 Check_Non_Static_Context (Expr);
edab6088
RD
2835 return;
2836 end if;
996ae0b0 2837
edab6088 2838 -- Otherwise we definitely have a static expression
996ae0b0 2839
edab6088 2840 Set_Is_Static_Expression (N);
996ae0b0 2841
edab6088 2842 -- If left operand raises constraint error, propagate and we are done
996ae0b0 2843
87feba05 2844 if Raises_Constraint_Error (Expr) then
edab6088 2845 Set_Raises_Constraint_Error (N, True);
996ae0b0 2846
edab6088 2847 -- See if we match
996ae0b0 2848
edab6088 2849 else
87feba05
AC
2850 if Present (Choice) then
2851 Result := Choice_Matches (Expr, Choice);
996ae0b0 2852 else
87feba05 2853 Result := Choices_Match (Expr, Alts);
996ae0b0
RK
2854 end if;
2855
edab6088
RD
2856 -- If result is Non_Static, it means that we raise Constraint_Error,
2857 -- since we already tested that the operands were themselves static.
996ae0b0 2858
edab6088
RD
2859 if Result = Non_Static then
2860 Set_Raises_Constraint_Error (N);
996ae0b0 2861
edab6088 2862 -- Otherwise we have our result (flipped if NOT IN case)
996ae0b0
RK
2863
2864 else
edab6088
RD
2865 Fold_Uint
2866 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2867 Warn_On_Known_Condition (N);
996ae0b0 2868 end if;
996ae0b0 2869 end if;
996ae0b0
RK
2870 end Eval_Membership_Op;
2871
2872 ------------------------
2873 -- Eval_Named_Integer --
2874 ------------------------
2875
2876 procedure Eval_Named_Integer (N : Node_Id) is
2877 begin
2878 Fold_Uint (N,
fbf5a39b 2879 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2880 end Eval_Named_Integer;
2881
2882 ---------------------
2883 -- Eval_Named_Real --
2884 ---------------------
2885
2886 procedure Eval_Named_Real (N : Node_Id) is
2887 begin
2888 Fold_Ureal (N,
fbf5a39b 2889 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2890 end Eval_Named_Real;
2891
2892 -------------------
2893 -- Eval_Op_Expon --
2894 -------------------
2895
2896 -- Exponentiation is a static functions, so the result is potentially
2897 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2898
2899 procedure Eval_Op_Expon (N : Node_Id) is
2900 Left : constant Node_Id := Left_Opnd (N);
2901 Right : constant Node_Id := Right_Opnd (N);
2902 Stat : Boolean;
2903 Fold : Boolean;
2904
2905 begin
2906 -- If not foldable we are done
2907
6c3c671e
AC
2908 Test_Expression_Is_Foldable
2909 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2910
2911 -- Return if not foldable
996ae0b0
RK
2912
2913 if not Fold then
2914 return;
2915 end if;
2916
6c3c671e
AC
2917 if Configurable_Run_Time_Mode and not Stat then
2918 return;
2919 end if;
2920
996ae0b0
RK
2921 -- Fold exponentiation operation
2922
2923 declare
2924 Right_Int : constant Uint := Expr_Value (Right);
2925
2926 begin
2927 -- Integer case
2928
2929 if Is_Integer_Type (Etype (Left)) then
2930 declare
2931 Left_Int : constant Uint := Expr_Value (Left);
2932 Result : Uint;
2933
2934 begin
22cb89b5
AC
2935 -- Exponentiation of an integer raises Constraint_Error for a
2936 -- negative exponent (RM 4.5.6).
996ae0b0
RK
2937
2938 if Right_Int < 0 then
2939 Apply_Compile_Time_Constraint_Error
80298c3b 2940 (N, "integer exponent negative", CE_Range_Check_Failed,
fbf5a39b 2941 Warn => not Stat);
996ae0b0
RK
2942 return;
2943
2944 else
2945 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2946 Result := Left_Int ** Right_Int;
2947 else
2948 Result := Left_Int;
2949 end if;
2950
2951 if Is_Modular_Integer_Type (Etype (N)) then
2952 Result := Result mod Modulus (Etype (N));
2953 end if;
2954
fbf5a39b 2955 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2956 end if;
2957 end;
2958
2959 -- Real case
2960
2961 else
2962 declare
2963 Left_Real : constant Ureal := Expr_Value_R (Left);
2964
2965 begin
2966 -- Cannot have a zero base with a negative exponent
2967
2968 if UR_Is_Zero (Left_Real) then
2969
2970 if Right_Int < 0 then
2971 Apply_Compile_Time_Constraint_Error
80298c3b 2972 (N, "zero ** negative integer", CE_Range_Check_Failed,
fbf5a39b 2973 Warn => not Stat);
996ae0b0
RK
2974 return;
2975 else
fbf5a39b 2976 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2977 end if;
2978
2979 else
fbf5a39b 2980 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2981 end if;
2982 end;
2983 end if;
996ae0b0
RK
2984 end;
2985 end Eval_Op_Expon;
2986
2987 -----------------
2988 -- Eval_Op_Not --
2989 -----------------
2990
21d7ef70 2991 -- The not operation is a static functions, so the result is potentially
996ae0b0
RK
2992 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2993
2994 procedure Eval_Op_Not (N : Node_Id) is
2995 Right : constant Node_Id := Right_Opnd (N);
2996 Stat : Boolean;
2997 Fold : Boolean;
2998
2999 begin
3000 -- If not foldable we are done
3001
3002 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3003
3004 if not Fold then
3005 return;
3006 end if;
3007
3008 -- Fold not operation
3009
3010 declare
3011 Rint : constant Uint := Expr_Value (Right);
3012 Typ : constant Entity_Id := Etype (N);
3013
3014 begin
1d1bd8ad
AC
3015 -- Negation is equivalent to subtracting from the modulus minus one.
3016 -- For a binary modulus this is equivalent to the ones-complement of
a95f708e 3017 -- the original value. For a nonbinary modulus this is an arbitrary
1d1bd8ad 3018 -- but consistent definition.
996ae0b0
RK
3019
3020 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 3021 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
80298c3b 3022 else pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 3023 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
3024 end if;
3025
3026 Set_Is_Static_Expression (N, Stat);
3027 end;
3028 end Eval_Op_Not;
3029
3030 -------------------------------
3031 -- Eval_Qualified_Expression --
3032 -------------------------------
3033
3034 -- A qualified expression is potentially static if its subtype mark denotes
3035 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3036
3037 procedure Eval_Qualified_Expression (N : Node_Id) is
3038 Operand : constant Node_Id := Expression (N);
3039 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3040
07fc65c4
GB
3041 Stat : Boolean;
3042 Fold : Boolean;
3043 Hex : Boolean;
996ae0b0
RK
3044
3045 begin
1d1bd8ad 3046 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
3047 -- Also, do not fold if our parent is an allocator (this is because the
3048 -- qualified expression is really part of the syntactic structure of an
3049 -- allocator, and we do not want to end up with something that
996ae0b0
RK
3050 -- corresponds to "new 1" where the 1 is the result of folding a
3051 -- qualified expression).
3052
3053 if not Is_Static_Subtype (Target_Type)
3054 or else Nkind (Parent (N)) = N_Allocator
3055 then
3056 Check_Non_Static_Context (Operand);
af152989 3057
1d1bd8ad
AC
3058 -- If operand is known to raise constraint_error, set the flag on the
3059 -- expression so it does not get optimized away.
af152989
AC
3060
3061 if Nkind (Operand) = N_Raise_Constraint_Error then
3062 Set_Raises_Constraint_Error (N);
3063 end if;
7324bf49 3064
996ae0b0
RK
3065 return;
3066 end if;
3067
3068 -- If not foldable we are done
3069
3070 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3071
3072 if not Fold then
3073 return;
3074
3075 -- Don't try fold if target type has constraint error bounds
3076
3077 elsif not Is_OK_Static_Subtype (Target_Type) then
3078 Set_Raises_Constraint_Error (N);
3079 return;
3080 end if;
3081
07fc65c4
GB
3082 -- Here we will fold, save Print_In_Hex indication
3083
3084 Hex := Nkind (Operand) = N_Integer_Literal
3085 and then Print_In_Hex (Operand);
3086
996ae0b0
RK
3087 -- Fold the result of qualification
3088
3089 if Is_Discrete_Type (Target_Type) then
fbf5a39b 3090 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 3091
07fc65c4
GB
3092 -- Preserve Print_In_Hex indication
3093
3094 if Hex and then Nkind (N) = N_Integer_Literal then
3095 Set_Print_In_Hex (N);
3096 end if;
3097
996ae0b0 3098 elsif Is_Real_Type (Target_Type) then
fbf5a39b 3099 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
3100
3101 else
fbf5a39b 3102 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
3103
3104 if not Stat then
3105 Set_Is_Static_Expression (N, False);
3106 else
3107 Check_String_Literal_Length (N, Target_Type);
3108 end if;
3109
3110 return;
3111 end if;
3112
fbf5a39b
AC
3113 -- The expression may be foldable but not static
3114
3115 Set_Is_Static_Expression (N, Stat);
3116
c800f862 3117 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3118 Out_Of_Range (N);
3119 end if;
996ae0b0
RK
3120 end Eval_Qualified_Expression;
3121
3122 -----------------------
3123 -- Eval_Real_Literal --
3124 -----------------------
3125
3126 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3127 -- as static by the analyzer. The reason we did it that early is to allow
3128 -- the possibility of turning off the Is_Static_Expression flag after
3129 -- analysis, but before resolution, when integer literals are generated
3130 -- in the expander that do not correspond to static expressions.
3131
3132 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
3133 PK : constant Node_Kind := Nkind (Parent (N));
3134
996ae0b0 3135 begin
1d1bd8ad
AC
3136 -- If the literal appears in a non-expression context and not as part of
3137 -- a number declaration, then it is appearing in a non-static context,
3138 -- so check it.
996ae0b0 3139
a1980be8 3140 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
3141 Check_Non_Static_Context (N);
3142 end if;
996ae0b0
RK
3143 end Eval_Real_Literal;
3144
3145 ------------------------
3146 -- Eval_Relational_Op --
3147 ------------------------
3148
8a95f4e8
RD
3149 -- Relational operations are static functions, so the result is static if
3150 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3151 -- the result is never static, even if the operands are.
996ae0b0 3152
fc3a3f3b
RD
3153 -- However, for internally generated nodes, we allow string equality and
3154 -- inequality to be static. This is because we rewrite A in "ABC" as an
3155 -- equality test A = "ABC", and the former is definitely static.
3156
996ae0b0 3157 procedure Eval_Relational_Op (N : Node_Id) is
634a926b
AC
3158 Left : constant Node_Id := Left_Opnd (N);
3159 Right : constant Node_Id := Right_Opnd (N);
996ae0b0 3160
634a926b
AC
3161 procedure Decompose_Expr
3162 (Expr : Node_Id;
3163 Ent : out Entity_Id;
3164 Kind : out Character;
3165 Cons : out Uint;
3166 Orig : Boolean := True);
3167 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3168 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3169 -- simple entity, and Cons is the value of K. If the expression is not
3170 -- of the required form, Ent is set to Empty.
3171 --
3172 -- Orig indicates whether Expr is the original expression to consider,
2da8c8e2 3173 -- or if we are handling a subexpression (e.g. recursive call to
634a926b
AC
3174 -- Decompose_Expr).
3175
3176 procedure Fold_General_Op (Is_Static : Boolean);
3177 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3178 -- be set when the operator denotes a static expression.
3179
3180 procedure Fold_Static_Real_Op;
3181 -- Attempt to fold static real type relational operator N
3182
3183 function Static_Length (Expr : Node_Id) return Uint;
3184 -- If Expr is an expression for a constrained array whose length is
3185 -- known at compile time, return the non-negative length, otherwise
3186 -- return -1.
3187
3188 --------------------
3189 -- Decompose_Expr --
3190 --------------------
3191
3192 procedure Decompose_Expr
3193 (Expr : Node_Id;
3194 Ent : out Entity_Id;
3195 Kind : out Character;
3196 Cons : out Uint;
3197 Orig : Boolean := True)
3198 is
3199 Exp : Node_Id;
996ae0b0 3200
634a926b
AC
3201 begin
3202 -- Assume that the expression does not meet the expected form
3203
3204 Cons := No_Uint;
3205 Ent := Empty;
3206 Kind := '?';
3207
3208 if Nkind (Expr) = N_Op_Add
3209 and then Compile_Time_Known_Value (Right_Opnd (Expr))
996ae0b0 3210 then
634a926b
AC
3211 Exp := Left_Opnd (Expr);
3212 Cons := Expr_Value (Right_Opnd (Expr));
3213
3214 elsif Nkind (Expr) = N_Op_Subtract
3215 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3216 then
3217 Exp := Left_Opnd (Expr);
3218 Cons := -Expr_Value (Right_Opnd (Expr));
3219
3220 -- If the bound is a constant created to remove side effects, recover
3221 -- the original expression to see if it has one of the recognizable
3222 -- forms.
3223
3224 elsif Nkind (Expr) = N_Identifier
3225 and then not Comes_From_Source (Entity (Expr))
3226 and then Ekind (Entity (Expr)) = E_Constant
3227 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3228 then
3229 Exp := Expression (Parent (Entity (Expr)));
3230 Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3231
3232 -- If original expression includes an entity, create a reference
3233 -- to it for use below.
3234
3235 if Present (Ent) then
3236 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3237 else
3238 return;
3239 end if;
3240
3241 else
3242 -- Only consider the case of X + 0 for a full expression, and
3243 -- not when recursing, otherwise we may end up with evaluating
3244 -- expressions not known at compile time to 0.
3245
3246 if Orig then
3247 Exp := Expr;
3248 Cons := Uint_0;
3249 else
3250 return;
3251 end if;
996ae0b0
RK
3252 end if;
3253
634a926b 3254 -- At this stage Exp is set to the potential X
45fc7ddb 3255
634a926b
AC
3256 if Nkind (Exp) = N_Attribute_Reference then
3257 if Attribute_Name (Exp) = Name_First then
3258 Kind := 'F';
3259 elsif Attribute_Name (Exp) = Name_Last then
3260 Kind := 'L';
3261 else
3262 return;
3263 end if;
996ae0b0 3264
634a926b 3265 Exp := Prefix (Exp);
fbf5a39b 3266
634a926b
AC
3267 else
3268 Kind := 'E';
3269 end if;
996ae0b0 3270
634a926b
AC
3271 if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3272 Ent := Entity (Exp);
3273 end if;
3274 end Decompose_Expr;
3275
3276 ---------------------
3277 -- Fold_General_Op --
3278 ---------------------
3279
3280 procedure Fold_General_Op (Is_Static : Boolean) is
3281 CR : constant Compare_Result :=
3282 Compile_Time_Compare (Left, Right, Assume_Valid => False);
45fc7ddb 3283
634a926b
AC
3284 Result : Boolean;
3285
3286 begin
3287 if CR = Unknown then
3288 return;
3289 end if;
3290
3291 case Nkind (N) is
3292 when N_Op_Eq =>
3293 if CR = EQ then
3294 Result := True;
3295 elsif CR = NE or else CR = GT or else CR = LT then
3296 Result := False;
3297 else
45fc7ddb
HK
3298 return;
3299 end if;
3300
634a926b
AC
3301 when N_Op_Ge =>
3302 if CR = GT or else CR = EQ or else CR = GE then
3303 Result := True;
3304 elsif CR = LT then
3305 Result := False;
3306 else
45fc7ddb
HK
3307 return;
3308 end if;
996ae0b0 3309
634a926b
AC
3310 when N_Op_Gt =>
3311 if CR = GT then
3312 Result := True;
3313 elsif CR = EQ or else CR = LT or else CR = LE then
3314 Result := False;
3315 else
3316 return;
3317 end if;
45fc7ddb 3318
634a926b
AC
3319 when N_Op_Le =>
3320 if CR = LT or else CR = EQ or else CR = LE then
3321 Result := True;
3322 elsif CR = GT then
3323 Result := False;
3324 else
3325 return;
3326 end if;
45fc7ddb 3327
634a926b
AC
3328 when N_Op_Lt =>
3329 if CR = LT then
3330 Result := True;
3331 elsif CR = EQ or else CR = GT or else CR = GE then
3332 Result := False;
3333 else
3334 return;
3335 end if;
45fc7ddb 3336
634a926b
AC
3337 when N_Op_Ne =>
3338 if CR = NE or else CR = GT or else CR = LT then
3339 Result := True;
3340 elsif CR = EQ then
3341 Result := False;
3342 else
45fc7ddb
HK
3343 return;
3344 end if;
3345
634a926b
AC
3346 when others =>
3347 raise Program_Error;
3348 end case;
45fc7ddb 3349
634a926b
AC
3350 -- Determine the potential outcome of the relation assuming the
3351 -- operands are valid and emit a warning when the relation yields
3352 -- True or False only in the presence of invalid values.
3fbbbd1e 3353
634a926b 3354 Warn_On_Constant_Valid_Condition (N);
e49de265 3355
634a926b
AC
3356 Fold_Uint (N, Test (Result), Is_Static);
3357 end Fold_General_Op;
e49de265 3358
634a926b
AC
3359 -------------------------
3360 -- Fold_Static_Real_Op --
3361 -------------------------
45fc7ddb 3362
634a926b
AC
3363 procedure Fold_Static_Real_Op is
3364 Left_Real : constant Ureal := Expr_Value_R (Left);
3365 Right_Real : constant Ureal := Expr_Value_R (Right);
3366 Result : Boolean;
996ae0b0 3367
634a926b
AC
3368 begin
3369 case Nkind (N) is
3370 when N_Op_Eq => Result := (Left_Real = Right_Real);
3371 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3372 when N_Op_Gt => Result := (Left_Real > Right_Real);
3373 when N_Op_Le => Result := (Left_Real <= Right_Real);
3374 when N_Op_Lt => Result := (Left_Real < Right_Real);
3375 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3376 when others => raise Program_Error;
3377 end case;
3378
3379 Fold_Uint (N, Test (Result), True);
3380 end Fold_Static_Real_Op;
8a95f4e8 3381
634a926b
AC
3382 -------------------
3383 -- Static_Length --
3384 -------------------
8a95f4e8 3385
634a926b
AC
3386 function Static_Length (Expr : Node_Id) return Uint is
3387 Cons1 : Uint;
3388 Cons2 : Uint;
3389 Ent1 : Entity_Id;
3390 Ent2 : Entity_Id;
3391 Kind1 : Character;
3392 Kind2 : Character;
3393 Typ : Entity_Id;
8a95f4e8 3394
634a926b
AC
3395 begin
3396 -- First easy case string literal
8a95f4e8 3397
634a926b
AC
3398 if Nkind (Expr) = N_String_Literal then
3399 return UI_From_Int (String_Length (Strval (Expr)));
45fc7ddb 3400
634a926b 3401 -- Second easy case, not constrained subtype, so no length
45fc7ddb 3402
634a926b
AC
3403 elsif not Is_Constrained (Etype (Expr)) then
3404 return Uint_Minus_1;
3405 end if;
45fc7ddb 3406
634a926b 3407 -- General case
45fc7ddb 3408
634a926b 3409 Typ := Etype (First_Index (Etype (Expr)));
45fc7ddb 3410
634a926b 3411 -- The simple case, both bounds are known at compile time
45fc7ddb 3412
634a926b
AC
3413 if Is_Discrete_Type (Typ)
3414 and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3415 and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3416 then
3417 return
3418 UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3419 Expr_Value (Type_Low_Bound (Typ)) + 1);
3420 end if;
45fc7ddb 3421
634a926b
AC
3422 -- A more complex case, where the bounds are of the form X [+/- K1]
3423 -- .. X [+/- K2]), where X is an expression that is either A'First or
3424 -- A'Last (with A an entity name), or X is an entity name, and the
3425 -- two X's are the same and K1 and K2 are known at compile time, in
3426 -- this case, the length can also be computed at compile time, even
3427 -- though the bounds are not known. A common case of this is e.g.
3428 -- (X'First .. X'First+5).
3429
3430 Decompose_Expr
3431 (Original_Node (Type_Low_Bound (Typ)), Ent1, Kind1, Cons1);
3432 Decompose_Expr
3433 (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3434
3435 if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3436 return Cons2 - Cons1 + 1;
3437 else
3438 return Uint_Minus_1;
3439 end if;
3440 end Static_Length;
45fc7ddb 3441
634a926b 3442 -- Local variables
45fc7ddb 3443
634a926b
AC
3444 Left_Typ : constant Entity_Id := Etype (Left);
3445 Right_Typ : constant Entity_Id := Etype (Right);
3446 Fold : Boolean;
3447 Left_Len : Uint;
3448 Op_Typ : Entity_Id := Empty;
3449 Right_Len : Uint;
996ae0b0 3450
634a926b 3451 Is_Static_Expression : Boolean;
45fc7ddb 3452
634a926b 3453 -- Start of processing for Eval_Relational_Op
996ae0b0 3454
634a926b
AC
3455 begin
3456 -- One special case to deal with first. If we can tell that the result
3457 -- will be false because the lengths of one or more index subtypes are
2da8c8e2
GD
3458 -- compile-time known and different, then we can replace the entire
3459 -- result by False. We only do this for one-dimensional arrays, because
3460 -- the case of multidimensional arrays is rare and too much trouble. If
634a926b
AC
3461 -- one of the operands is an illegal aggregate, its type might still be
3462 -- an arbitrary composite type, so nothing to do.
45fc7ddb 3463
634a926b
AC
3464 if Is_Array_Type (Left_Typ)
3465 and then Left_Typ /= Any_Composite
3466 and then Number_Dimensions (Left_Typ) = 1
3467 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3468 then
3469 if Raises_Constraint_Error (Left)
3470 or else
3471 Raises_Constraint_Error (Right)
3472 then
3473 return;
996ae0b0 3474
634a926b
AC
3475 -- OK, we have the case where we may be able to do this fold
3476
3477 else
3478 Left_Len := Static_Length (Left);
3479 Right_Len := Static_Length (Right);
3480
3481 if Left_Len /= Uint_Minus_1
3482 and then Right_Len /= Uint_Minus_1
3483 and then Left_Len /= Right_Len
996ae0b0 3484 then
fbf5a39b 3485 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
3486 Warn_On_Known_Condition (N);
3487 return;
3488 end if;
634a926b 3489 end if;
80298c3b 3490
634a926b 3491 -- General case
996ae0b0 3492
634a926b
AC
3493 else
3494 -- Initialize the value of Is_Static_Expression. The value of Fold
3495 -- returned by Test_Expression_Is_Foldable is not needed since, even
3496 -- when some operand is a variable, we can still perform the static
3497 -- evaluation of the expression in some cases (for example, for a
3498 -- variable of a subtype of Integer we statically know that any value
3499 -- stored in such variable is smaller than Integer'Last).
5df1266a
AC
3500
3501 Test_Expression_Is_Foldable
634a926b 3502 (N, Left, Right, Is_Static_Expression, Fold);
5df1266a 3503
634a926b
AC
3504 -- Only comparisons of scalars can give static results. A comparison
3505 -- of strings never yields a static result, even if both operands are
3506 -- static strings, except that as noted above, we allow equality and
3507 -- inequality for strings.
fc3a3f3b 3508
634a926b 3509 if Is_String_Type (Left_Typ)
fc3a3f3b
RD
3510 and then not Comes_From_Source (N)
3511 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3512 then
3513 null;
5df1266a 3514
634a926b 3515 elsif not Is_Scalar_Type (Left_Typ) then
5df1266a
AC
3516 Is_Static_Expression := False;
3517 Set_Is_Static_Expression (N, False);
3518 end if;
d7567964 3519
5df1266a
AC
3520 -- For operators on universal numeric types called as functions with
3521 -- an explicit scope, determine appropriate specific numeric type,
3522 -- and diagnose possible ambiguity.
d7567964 3523
634a926b 3524 if Is_Universal_Numeric_Type (Left_Typ)
5df1266a 3525 and then
634a926b 3526 Is_Universal_Numeric_Type (Right_Typ)
5df1266a 3527 then
634a926b 3528 Op_Typ := Find_Universal_Operator_Type (N);
5df1266a 3529 end if;
996ae0b0 3530
634a926b 3531 -- Attempt to fold the relational operator
996ae0b0 3532
634a926b
AC
3533 if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3534 Fold_Static_Real_Op;
5df1266a 3535 else
634a926b 3536 Fold_General_Op (Is_Static_Expression);
5df1266a 3537 end if;
634a926b 3538 end if;
996ae0b0 3539
d7567964 3540 -- For the case of a folded relational operator on a specific numeric
634a926b 3541 -- type, freeze the operand type now.
d7567964 3542
634a926b
AC
3543 if Present (Op_Typ) then
3544 Freeze_Before (N, Op_Typ);
d7567964
TQ
3545 end if;
3546
996ae0b0
RK
3547 Warn_On_Known_Condition (N);
3548 end Eval_Relational_Op;
3549
3550 ----------------
3551 -- Eval_Shift --
3552 ----------------
3553
22cb89b5
AC
3554 -- Shift operations are intrinsic operations that can never be static, so
3555 -- the only processing required is to perform the required check for a non
3556 -- static context for the two operands.
996ae0b0
RK
3557
3558 -- Actually we could do some compile time evaluation here some time ???
3559
3560 procedure Eval_Shift (N : Node_Id) is
3561 begin
3562 Check_Non_Static_Context (Left_Opnd (N));
3563 Check_Non_Static_Context (Right_Opnd (N));
3564 end Eval_Shift;
3565
3566 ------------------------
3567 -- Eval_Short_Circuit --
3568 ------------------------
3569
22cb89b5
AC
3570 -- A short circuit operation is potentially static if both operands are
3571 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3572
3573 procedure Eval_Short_Circuit (N : Node_Id) is
3574 Kind : constant Node_Kind := Nkind (N);
3575 Left : constant Node_Id := Left_Opnd (N);
3576 Right : constant Node_Id := Right_Opnd (N);
3577 Left_Int : Uint;
4d777a71
AC
3578
3579 Rstat : constant Boolean :=
3580 Is_Static_Expression (Left)
3581 and then
3582 Is_Static_Expression (Right);
996ae0b0
RK
3583
3584 begin
3585 -- Short circuit operations are never static in Ada 83
3586
22cb89b5 3587 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3588 Check_Non_Static_Context (Left);
3589 Check_Non_Static_Context (Right);
3590 return;
3591 end if;
3592
3593 -- Now look at the operands, we can't quite use the normal call to
3594 -- Test_Expression_Is_Foldable here because short circuit operations
3595 -- are a special case, they can still be foldable, even if the right
3596 -- operand raises constraint error.
3597
22cb89b5
AC
3598 -- If either operand is Any_Type, just propagate to result and do not
3599 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3600
3601 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3602 Set_Etype (N, Any_Type);
3603 return;
3604
3605 -- If left operand raises constraint error, then replace node N with
3606 -- the raise constraint error node, and we are obviously not foldable.
3607 -- Is_Static_Expression is set from the two operands in the normal way,
3608 -- and we check the right operand if it is in a non-static context.
3609
3610 elsif Raises_Constraint_Error (Left) then
3611 if not Rstat then
3612 Check_Non_Static_Context (Right);
3613 end if;
3614
3615 Rewrite_In_Raise_CE (N, Left);
3616 Set_Is_Static_Expression (N, Rstat);
3617 return;
3618
3619 -- If the result is not static, then we won't in any case fold
3620
3621 elsif not Rstat then
3622 Check_Non_Static_Context (Left);
3623 Check_Non_Static_Context (Right);
3624 return;
3625 end if;
3626
3627 -- Here the result is static, note that, unlike the normal processing
3628 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3629 -- the right operand raises constraint error, that's because it is not
3630 -- significant if the left operand is decisive.
3631
3632 Set_Is_Static_Expression (N);
3633
3634 -- It does not matter if the right operand raises constraint error if
3635 -- it will not be evaluated. So deal specially with the cases where
3636 -- the right operand is not evaluated. Note that we will fold these
3637 -- cases even if the right operand is non-static, which is fine, but
3638 -- of course in these cases the result is not potentially static.
3639
3640 Left_Int := Expr_Value (Left);
3641
3642 if (Kind = N_And_Then and then Is_False (Left_Int))
db318f46 3643 or else
4d777a71 3644 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3645 then
fbf5a39b 3646 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3647 return;
3648 end if;
3649
3650 -- If first operand not decisive, then it does matter if the right
3651 -- operand raises constraint error, since it will be evaluated, so
3652 -- we simply replace the node with the right operand. Note that this
3653 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3654 -- (both are set to True in Right).
3655
3656 if Raises_Constraint_Error (Right) then
3657 Rewrite_In_Raise_CE (N, Right);
3658 Check_Non_Static_Context (Left);
3659 return;
3660 end if;
3661
3662 -- Otherwise the result depends on the right operand
3663
fbf5a39b 3664 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3665 return;
996ae0b0
RK
3666 end Eval_Short_Circuit;
3667
3668 ----------------
3669 -- Eval_Slice --
3670 ----------------
3671
22cb89b5
AC
3672 -- Slices can never be static, so the only processing required is to check
3673 -- for non-static context if an explicit range is given.
996ae0b0
RK
3674
3675 procedure Eval_Slice (N : Node_Id) is
3676 Drange : constant Node_Id := Discrete_Range (N);
80298c3b 3677
996ae0b0
RK
3678 begin
3679 if Nkind (Drange) = N_Range then
3680 Check_Non_Static_Context (Low_Bound (Drange));
3681 Check_Non_Static_Context (High_Bound (Drange));
3682 end if;
cd2fb920 3683
22cb89b5 3684 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3685 -- the type of A, is redundant, the slice can be replaced with A, and
3686 -- this is worth a warning.
3687
3688 if Is_Entity_Name (Prefix (N)) then
3689 declare
3690 E : constant Entity_Id := Entity (Prefix (N));
3691 T : constant Entity_Id := Etype (E);
80298c3b 3692
cd2fb920
ES
3693 begin
3694 if Ekind (E) = E_Constant
3695 and then Is_Array_Type (T)
3696 and then Is_Entity_Name (Drange)
3697 then
3698 if Is_Entity_Name (Original_Node (First_Index (T)))
3699 and then Entity (Original_Node (First_Index (T)))
3700 = Entity (Drange)
3701 then
3702 if Warn_On_Redundant_Constructs then
324ac540 3703 Error_Msg_N ("redundant slice denotes whole array?r?", N);
cd2fb920
ES
3704 end if;
3705
324ac540 3706 -- The following might be a useful optimization???
cd2fb920
ES
3707
3708 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3709 end if;
3710 end if;
3711 end;
3712 end if;
996ae0b0
RK
3713 end Eval_Slice;
3714
3715 -------------------------
3716 -- Eval_String_Literal --
3717 -------------------------
3718
3719 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3720 Typ : constant Entity_Id := Etype (N);
3721 Bas : constant Entity_Id := Base_Type (Typ);
3722 Xtp : Entity_Id;
3723 Len : Nat;
3724 Lo : Node_Id;
996ae0b0
RK
3725
3726 begin
3727 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3728 -- or generics where we have not yet fully resolved the type).
996ae0b0 3729
91b1417d 3730 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3731 return;
91b1417d 3732 end if;
996ae0b0
RK
3733
3734 -- String literals are static if the subtype is static (RM 4.9(2)), so
3735 -- reset the static expression flag (it was set unconditionally in
3736 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3737 -- the subtype is static by looking at the lower bound.
3738
91b1417d
AC
3739 if Ekind (Typ) = E_String_Literal_Subtype then
3740 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3741 Set_Is_Static_Expression (N, False);
3742 return;
3743 end if;
3744
3745 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 3746 -- but may be possible in future).
91b1417d
AC
3747
3748 elsif not Is_OK_Static_Expression
80298c3b 3749 (Type_Low_Bound (Etype (First_Index (Typ))))
91b1417d 3750 then
996ae0b0 3751 Set_Is_Static_Expression (N, False);
91b1417d
AC
3752 return;
3753 end if;
996ae0b0 3754
91b1417d
AC
3755 -- If original node was a type conversion, then result if non-static
3756
3757 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3758 Set_Is_Static_Expression (N, False);
91b1417d
AC
3759 return;
3760 end if;
996ae0b0 3761
22cb89b5
AC
3762 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3763 -- if its bounds are outside the index base type and this index type is
3764 -- static. This can happen in only two ways. Either the string literal
bc3c2eca
AC
3765 -- is too long, or it is null, and the lower bound is type'First. Either
3766 -- way it is the upper bound that is out of range of the index type.
3767
0ab80019 3768 if Ada_Version >= Ada_95 then
bc3c2eca 3769 if Is_Standard_String_Type (Bas) then
91b1417d 3770 Xtp := Standard_Positive;
996ae0b0 3771 else
91b1417d 3772 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3773 end if;
3774
91b1417d
AC
3775 if Ekind (Typ) = E_String_Literal_Subtype then
3776 Lo := String_Literal_Low_Bound (Typ);
3777 else
3778 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3779 end if;
3780
354c3840
AC
3781 -- Check for string too long
3782
91b1417d
AC
3783 Len := String_Length (Strval (N));
3784
3785 if UI_From_Int (Len) > String_Type_Len (Bas) then
354c3840
AC
3786
3787 -- Issue message. Note that this message is a warning if the
3788 -- string literal is not marked as static (happens in some cases
3789 -- of folding strings known at compile time, but not static).
3790 -- Furthermore in such cases, we reword the message, since there
a90bd866 3791 -- is no string literal in the source program.
354c3840
AC
3792
3793 if Is_Static_Expression (N) then
3794 Apply_Compile_Time_Constraint_Error
3795 (N, "string literal too long for}", CE_Length_Check_Failed,
3796 Ent => Bas,
3797 Typ => First_Subtype (Bas));
3798 else
3799 Apply_Compile_Time_Constraint_Error
3800 (N, "string value too long for}", CE_Length_Check_Failed,
3801 Ent => Bas,
3802 Typ => First_Subtype (Bas),
3803 Warn => True);
3804 end if;
3805
3806 -- Test for null string not allowed
996ae0b0 3807
91b1417d
AC
3808 elsif Len = 0
3809 and then not Is_Generic_Type (Xtp)
3810 and then
3811 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0 3812 then
354c3840
AC
3813 -- Same specialization of message
3814
3815 if Is_Static_Expression (N) then
3816 Apply_Compile_Time_Constraint_Error
3817 (N, "null string literal not allowed for}",
3818 CE_Length_Check_Failed,
3819 Ent => Bas,
3820 Typ => First_Subtype (Bas));
3821 else
3822 Apply_Compile_Time_Constraint_Error
3823 (N, "null string value not allowed for}",
3824 CE_Length_Check_Failed,
3825 Ent => Bas,
3826 Typ => First_Subtype (Bas),
3827 Warn => True);
3828 end if;
996ae0b0
RK
3829 end if;
3830 end if;
996ae0b0
RK
3831 end Eval_String_Literal;
3832
3833 --------------------------
3834 -- Eval_Type_Conversion --
3835 --------------------------
3836
3837 -- A type conversion is potentially static if its subtype mark is for a
3838 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 3839 -- (RM 4.9(10)).
996ae0b0
RK
3840
3841 procedure Eval_Type_Conversion (N : Node_Id) is
3842 Operand : constant Node_Id := Expression (N);
3843 Source_Type : constant Entity_Id := Etype (Operand);
3844 Target_Type : constant Entity_Id := Etype (N);
3845
996ae0b0 3846 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
3847 -- Returns true if type T is an integer type, or if it is a fixed-point
3848 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3849 -- on the conversion node).
996ae0b0
RK
3850
3851 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3852 -- Returns true if type T is a floating-point type, or if it is a
3853 -- fixed-point type that is not to be treated as an integer (i.e. the
3854 -- flag Conversion_OK is not set on the conversion node).
3855
fbf5a39b
AC
3856 ------------------------------
3857 -- To_Be_Treated_As_Integer --
3858 ------------------------------
3859
996ae0b0
RK
3860 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3861 begin
3862 return
3863 Is_Integer_Type (T)
3864 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3865 end To_Be_Treated_As_Integer;
3866
fbf5a39b
AC
3867 ---------------------------
3868 -- To_Be_Treated_As_Real --
3869 ---------------------------
3870
996ae0b0
RK
3871 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3872 begin
3873 return
3874 Is_Floating_Point_Type (T)
3875 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3876 end To_Be_Treated_As_Real;
3877
48bb06a7
AC
3878 -- Local variables
3879
3880 Fold : Boolean;
3881 Stat : Boolean;
3882
996ae0b0
RK
3883 -- Start of processing for Eval_Type_Conversion
3884
3885 begin
82c80734 3886 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3887
3888 if not Is_Static_Subtype (Target_Type) then
3889 Check_Non_Static_Context (Operand);
3890 return;
996ae0b0
RK
3891 elsif Error_Posted (N) then
3892 return;
3893 end if;
3894
3895 -- If not foldable we are done
3896
3897 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3898
3899 if not Fold then
3900 return;
3901
3902 -- Don't try fold if target type has constraint error bounds
3903
3904 elsif not Is_OK_Static_Subtype (Target_Type) then
3905 Set_Raises_Constraint_Error (N);
3906 return;
3907 end if;
3908
3909 -- Remaining processing depends on operand types. Note that in the
3910 -- following type test, fixed-point counts as real unless the flag
3911 -- Conversion_OK is set, in which case it counts as integer.
3912
82c80734 3913 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3914
3915 if Is_String_Type (Target_Type) then
b11e8d6f 3916 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3917 return;
3918
3919 -- Fold conversion, case of integer target type
3920
3921 elsif To_Be_Treated_As_Integer (Target_Type) then
3922 declare
3923 Result : Uint;
3924
3925 begin
3926 -- Integer to integer conversion
3927
3928 if To_Be_Treated_As_Integer (Source_Type) then
3929 Result := Expr_Value (Operand);
3930
3931 -- Real to integer conversion
3932
3933 else
3934 Result := UR_To_Uint (Expr_Value_R (Operand));
3935 end if;
3936
3937 -- If fixed-point type (Conversion_OK must be set), then the
3938 -- result is logically an integer, but we must replace the
3939 -- conversion with the corresponding real literal, since the
3940 -- type from a semantic point of view is still fixed-point.
3941
3942 if Is_Fixed_Point_Type (Target_Type) then
3943 Fold_Ureal
fbf5a39b 3944 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3945
3946 -- Otherwise result is integer literal
3947
3948 else
fbf5a39b 3949 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3950 end if;
3951 end;
3952
3953 -- Fold conversion, case of real target type
3954
3955 elsif To_Be_Treated_As_Real (Target_Type) then
3956 declare
3957 Result : Ureal;
3958
3959 begin
3960 if To_Be_Treated_As_Real (Source_Type) then
3961 Result := Expr_Value_R (Operand);
3962 else
3963 Result := UR_From_Uint (Expr_Value (Operand));
3964 end if;
3965
fbf5a39b 3966 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3967 end;
3968
3969 -- Enumeration types
3970
3971 else
fbf5a39b 3972 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3973 end if;
3974
c800f862 3975 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3976 Out_Of_Range (N);
3977 end if;
3978
3979 end Eval_Type_Conversion;
3980
3981 -------------------
3982 -- Eval_Unary_Op --
3983 -------------------
3984
3985 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 3986 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
3987
3988 procedure Eval_Unary_Op (N : Node_Id) is
3989 Right : constant Node_Id := Right_Opnd (N);
d7567964 3990 Otype : Entity_Id := Empty;
996ae0b0
RK
3991 Stat : Boolean;
3992 Fold : Boolean;
3993
3994 begin
3995 -- If not foldable we are done
3996
3997 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3998
3999 if not Fold then
4000 return;
4001 end if;
4002
602a7ec0 4003 if Etype (Right) = Universal_Integer
ae77c68b
AC
4004 or else
4005 Etype (Right) = Universal_Real
602a7ec0 4006 then
d7567964 4007 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
4008 end if;
4009
996ae0b0
RK
4010 -- Fold for integer case
4011
4012 if Is_Integer_Type (Etype (N)) then
4013 declare
4014 Rint : constant Uint := Expr_Value (Right);
4015 Result : Uint;
4016
4017 begin
4018 -- In the case of modular unary plus and abs there is no need
4019 -- to adjust the result of the operation since if the original
4020 -- operand was in bounds the result will be in the bounds of the
4021 -- modular type. However, in the case of modular unary minus the
4022 -- result may go out of the bounds of the modular type and needs
4023 -- adjustment.
4024
4025 if Nkind (N) = N_Op_Plus then
4026 Result := Rint;
4027
4028 elsif Nkind (N) = N_Op_Minus then
4029 if Is_Modular_Integer_Type (Etype (N)) then
4030 Result := (-Rint) mod Modulus (Etype (N));
4031 else
4032 Result := (-Rint);
4033 end if;
4034
4035 else
4036 pragma Assert (Nkind (N) = N_Op_Abs);
4037 Result := abs Rint;
4038 end if;
4039
fbf5a39b 4040 Fold_Uint (N, Result, Stat);
996ae0b0
RK
4041 end;
4042
4043 -- Fold for real case
4044
4045 elsif Is_Real_Type (Etype (N)) then
4046 declare
4047 Rreal : constant Ureal := Expr_Value_R (Right);
4048 Result : Ureal;
4049
4050 begin
4051 if Nkind (N) = N_Op_Plus then
4052 Result := Rreal;
996ae0b0
RK
4053 elsif Nkind (N) = N_Op_Minus then
4054 Result := UR_Negate (Rreal);
996ae0b0
RK
4055 else
4056 pragma Assert (Nkind (N) = N_Op_Abs);
4057 Result := abs Rreal;
4058 end if;
4059
fbf5a39b 4060 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
4061 end;
4062 end if;
d7567964
TQ
4063
4064 -- If the operator was resolved to a specific type, make sure that type
4065 -- is frozen even if the expression is folded into a literal (which has
4066 -- a universal type).
4067
4068 if Present (Otype) then
4069 Freeze_Before (N, Otype);
4070 end if;
996ae0b0
RK
4071 end Eval_Unary_Op;
4072
4073 -------------------------------
4074 -- Eval_Unchecked_Conversion --
4075 -------------------------------
4076
4077 -- Unchecked conversions can never be static, so the only required
4078 -- processing is to check for a non-static context for the operand.
4079
4080 procedure Eval_Unchecked_Conversion (N : Node_Id) is
4081 begin
4082 Check_Non_Static_Context (Expression (N));
4083 end Eval_Unchecked_Conversion;
4084
4085 --------------------
4086 -- Expr_Rep_Value --
4087 --------------------
4088
4089 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
4090 Kind : constant Node_Kind := Nkind (N);
4091 Ent : Entity_Id;
996ae0b0
RK
4092
4093 begin
4094 if Is_Entity_Name (N) then
4095 Ent := Entity (N);
4096
22cb89b5
AC
4097 -- An enumeration literal that was either in the source or created
4098 -- as a result of static evaluation.
996ae0b0
RK
4099
4100 if Ekind (Ent) = E_Enumeration_Literal then
4101 return Enumeration_Rep (Ent);
4102
4103 -- A user defined static constant
4104
4105 else
4106 pragma Assert (Ekind (Ent) = E_Constant);
4107 return Expr_Rep_Value (Constant_Value (Ent));
4108 end if;
4109
22cb89b5
AC
4110 -- An integer literal that was either in the source or created as a
4111 -- result of static evaluation.
996ae0b0
RK
4112
4113 elsif Kind = N_Integer_Literal then
4114 return Intval (N);
4115
4116 -- A real literal for a fixed-point type. This must be the fixed-point
4117 -- case, either the literal is of a fixed-point type, or it is a bound
4118 -- of a fixed-point type, with type universal real. In either case we
4119 -- obtain the desired value from Corresponding_Integer_Value.
4120
4121 elsif Kind = N_Real_Literal then
996ae0b0
RK
4122 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4123 return Corresponding_Integer_Value (N);
4124
07fc65c4 4125 -- Otherwise must be character literal
8cbb664e 4126
996ae0b0
RK
4127 else
4128 pragma Assert (Kind = N_Character_Literal);
4129 Ent := Entity (N);
4130
22cb89b5
AC
4131 -- Since Character literals of type Standard.Character don't have any
4132 -- defining character literals built for them, they do not have their
4133 -- Entity set, so just use their Char code. Otherwise for user-
4134 -- defined character literals use their Pos value as usual which is
4135 -- the same as the Rep value.
996ae0b0
RK
4136
4137 if No (Ent) then
82c80734 4138 return Char_Literal_Value (N);
996ae0b0
RK
4139 else
4140 return Enumeration_Rep (Ent);
4141 end if;
4142 end if;
4143 end Expr_Rep_Value;
4144
4145 ----------------
4146 -- Expr_Value --
4147 ----------------
4148
4149 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
4150 Kind : constant Node_Kind := Nkind (N);
4151 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4152 Ent : Entity_Id;
4153 Val : Uint;
996ae0b0
RK
4154
4155 begin
13f34a3f
RD
4156 -- If already in cache, then we know it's compile time known and we can
4157 -- return the value that was previously stored in the cache since
4158 -- compile time known values cannot change.
07fc65c4
GB
4159
4160 if CV_Ent.N = N then
4161 return CV_Ent.V;
4162 end if;
4163
4164 -- Otherwise proceed to test value
4165
996ae0b0
RK
4166 if Is_Entity_Name (N) then
4167 Ent := Entity (N);
4168
22cb89b5
AC
4169 -- An enumeration literal that was either in the source or created as
4170 -- a result of static evaluation.
996ae0b0
RK
4171
4172 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 4173 Val := Enumeration_Pos (Ent);
996ae0b0
RK
4174
4175 -- A user defined static constant
4176
4177 else
4178 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 4179 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
4180 end if;
4181
22cb89b5
AC
4182 -- An integer literal that was either in the source or created as a
4183 -- result of static evaluation.
996ae0b0
RK
4184
4185 elsif Kind = N_Integer_Literal then
07fc65c4 4186 Val := Intval (N);
996ae0b0
RK
4187
4188 -- A real literal for a fixed-point type. This must be the fixed-point
4189 -- case, either the literal is of a fixed-point type, or it is a bound
4190 -- of a fixed-point type, with type universal real. In either case we
4191 -- obtain the desired value from Corresponding_Integer_Value.
4192
4193 elsif Kind = N_Real_Literal then
996ae0b0 4194 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 4195 Val := Corresponding_Integer_Value (N);
996ae0b0 4196
996ae0b0
RK
4197 -- Otherwise must be character literal
4198
4199 else
4200 pragma Assert (Kind = N_Character_Literal);
4201 Ent := Entity (N);
4202
4203 -- Since Character literals of type Standard.Character don't
4204 -- have any defining character literals built for them, they
4205 -- do not have their Entity set, so just use their Char
4206 -- code. Otherwise for user-defined character literals use
4207 -- their Pos value as usual.
4208
4209 if No (Ent) then
82c80734 4210 Val := Char_Literal_Value (N);
996ae0b0 4211 else
07fc65c4 4212 Val := Enumeration_Pos (Ent);
996ae0b0
RK
4213 end if;
4214 end if;
4215
07fc65c4
GB
4216 -- Come here with Val set to value to be returned, set cache
4217
4218 CV_Ent.N := N;
4219 CV_Ent.V := Val;
4220 return Val;
996ae0b0
RK
4221 end Expr_Value;
4222
4223 ------------------
4224 -- Expr_Value_E --
4225 ------------------
4226
4227 function Expr_Value_E (N : Node_Id) return Entity_Id is
4228 Ent : constant Entity_Id := Entity (N);
996ae0b0
RK
4229 begin
4230 if Ekind (Ent) = E_Enumeration_Literal then
4231 return Ent;
4232 else
4233 pragma Assert (Ekind (Ent) = E_Constant);
4234 return Expr_Value_E (Constant_Value (Ent));
4235 end if;
4236 end Expr_Value_E;
4237
4238 ------------------
4239 -- Expr_Value_R --
4240 ------------------
4241
4242 function Expr_Value_R (N : Node_Id) return Ureal is
4243 Kind : constant Node_Kind := Nkind (N);
4244 Ent : Entity_Id;
996ae0b0
RK
4245
4246 begin
4247 if Kind = N_Real_Literal then
4248 return Realval (N);
4249
4250 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4251 Ent := Entity (N);
4252 pragma Assert (Ekind (Ent) = E_Constant);
4253 return Expr_Value_R (Constant_Value (Ent));
4254
4255 elsif Kind = N_Integer_Literal then
4256 return UR_From_Uint (Expr_Value (N));
4257
7a5b62b0
AC
4258 -- Here, we have a node that cannot be interpreted as a compile time
4259 -- constant. That is definitely an error.
996ae0b0 4260
7a5b62b0
AC
4261 else
4262 raise Program_Error;
996ae0b0 4263 end if;
996ae0b0
RK
4264 end Expr_Value_R;
4265
4266 ------------------
4267 -- Expr_Value_S --
4268 ------------------
4269
4270 function Expr_Value_S (N : Node_Id) return Node_Id is
4271 begin
4272 if Nkind (N) = N_String_Literal then
4273 return N;
4274 else
4275 pragma Assert (Ekind (Entity (N)) = E_Constant);
4276 return Expr_Value_S (Constant_Value (Entity (N)));
4277 end if;
4278 end Expr_Value_S;
4279
74e7891f
RD
4280 ----------------------------------
4281 -- Find_Universal_Operator_Type --
4282 ----------------------------------
4283
4284 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4285 PN : constant Node_Id := Parent (N);
4286 Call : constant Node_Id := Original_Node (N);
4287 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4288
4289 Is_Fix : constant Boolean :=
4290 Nkind (N) in N_Binary_Op
4291 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4292 -- A mixed-mode operation in this context indicates the presence of
4293 -- fixed-point type in the designated package.
4294
4295 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4296 -- Case where N is a relational (or membership) operator (else it is an
4297 -- arithmetic one).
4298
4299 In_Membership : constant Boolean :=
4300 Nkind (PN) in N_Membership_Test
4301 and then
4302 Nkind (Right_Opnd (PN)) = N_Range
4303 and then
4304 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4305 and then
4306 Is_Universal_Numeric_Type
4307 (Etype (Low_Bound (Right_Opnd (PN))))
4308 and then
4309 Is_Universal_Numeric_Type
4310 (Etype (High_Bound (Right_Opnd (PN))));
4311 -- Case where N is part of a membership test with a universal range
4312
4313 E : Entity_Id;
4314 Pack : Entity_Id;
4315 Typ1 : Entity_Id := Empty;
4316 Priv_E : Entity_Id;
4317
4318 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
4319 -- Check whether one operand is a mixed-mode operation that requires the
4320 -- presence of a fixed-point type. Given that all operands are universal
4321 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
4322
4323 ---------------------------
4324 -- Is_Mixed_Mode_Operand --
4325 ---------------------------
4326
4327 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 4328 Onod : constant Node_Id := Original_Node (Op);
74e7891f 4329 begin
7ec8363d
RD
4330 return Nkind (Onod) = N_Function_Call
4331 and then Present (Next_Actual (First_Actual (Onod)))
4332 and then Etype (First_Actual (Onod)) /=
4333 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
4334 end Is_Mixed_Mode_Operand;
4335
7ec8363d
RD
4336 -- Start of processing for Find_Universal_Operator_Type
4337
74e7891f
RD
4338 begin
4339 if Nkind (Call) /= N_Function_Call
4340 or else Nkind (Name (Call)) /= N_Expanded_Name
4341 then
4342 return Empty;
4343
946db1e2
AC
4344 -- There are several cases where the context does not imply the type of
4345 -- the operands:
4346 -- - the universal expression appears in a type conversion;
4347 -- - the expression is a relational operator applied to universal
4348 -- operands;
4349 -- - the expression is a membership test with a universal operand
4350 -- and a range with universal bounds.
74e7891f
RD
4351
4352 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
4353 or else Is_Relational
4354 or else In_Membership
74e7891f
RD
4355 then
4356 Pack := Entity (Prefix (Name (Call)));
4357
7ec8363d
RD
4358 -- If the prefix is a package declared elsewhere, iterate over its
4359 -- visible entities, otherwise iterate over all declarations in the
4360 -- designated scope.
74e7891f
RD
4361
4362 if Ekind (Pack) = E_Package
4363 and then not In_Open_Scopes (Pack)
4364 then
4365 Priv_E := First_Private_Entity (Pack);
4366 else
4367 Priv_E := Empty;
4368 end if;
4369
4370 Typ1 := Empty;
4371 E := First_Entity (Pack);
4372 while Present (E) and then E /= Priv_E loop
4373 if Is_Numeric_Type (E)
4374 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4375 and then Comes_From_Source (E)
4376 and then Is_Integer_Type (E) = Is_Int
80298c3b
AC
4377 and then (Nkind (N) in N_Unary_Op
4378 or else Is_Relational
4379 or else Is_Fixed_Point_Type (E) = Is_Fix)
74e7891f
RD
4380 then
4381 if No (Typ1) then
4382 Typ1 := E;
4383
676e8420
AC
4384 -- Before emitting an error, check for the presence of a
4385 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
4386
4387 elsif Is_Relational
4388 and then
4389 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 4390 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
4391 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4392
4393 then
4394 if Is_Fixed_Point_Type (E) then
4395 Typ1 := E;
4396 end if;
4397
4398 else
4399 -- More than one type of the proper class declared in P
4400
4401 Error_Msg_N ("ambiguous operation", N);
4402 Error_Msg_Sloc := Sloc (Typ1);
4403 Error_Msg_N ("\possible interpretation (inherited)#", N);
4404 Error_Msg_Sloc := Sloc (E);
4405 Error_Msg_N ("\possible interpretation (inherited)#", N);
4406 return Empty;
4407 end if;
4408 end if;
4409
4410 Next_Entity (E);
4411 end loop;
4412 end if;
4413
4414 return Typ1;
4415 end Find_Universal_Operator_Type;
4416
fbf5a39b
AC
4417 --------------------------
4418 -- Flag_Non_Static_Expr --
4419 --------------------------
4420
4421 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4422 begin
4423 if Error_Posted (Expr) and then not All_Errors_Mode then
4424 return;
4425 else
4426 Error_Msg_F (Msg, Expr);
4427 Why_Not_Static (Expr);
4428 end if;
4429 end Flag_Non_Static_Expr;
4430
996ae0b0
RK
4431 --------------
4432 -- Fold_Str --
4433 --------------
4434
fbf5a39b 4435 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
4436 Loc : constant Source_Ptr := Sloc (N);
4437 Typ : constant Entity_Id := Etype (N);
4438
4439 begin
edab6088
RD
4440 if Raises_Constraint_Error (N) then
4441 Set_Is_Static_Expression (N, Static);
4442 return;
4443 end if;
4444
996ae0b0 4445 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
4446
4447 -- We now have the literal with the right value, both the actual type
4448 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4449 -- that was evaluated. So now we do the Analyze and Resolve.
4450
4451 -- Note that we have to reset Is_Static_Expression both after the
4452 -- analyze step (because Resolve will evaluate the literal, which
4453 -- will cause semantic errors if it is marked as static), and after
354c3840 4454 -- the Resolve step (since Resolve in some cases resets this flag).
fbf5a39b
AC
4455
4456 Analyze (N);
4457 Set_Is_Static_Expression (N, Static);
4458 Set_Etype (N, Typ);
4459 Resolve (N);
9479ded4 4460 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4461 end Fold_Str;
4462
4463 ---------------
4464 -- Fold_Uint --
4465 ---------------
4466
fbf5a39b 4467 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 4468 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
4469 Typ : Entity_Id := Etype (N);
4470 Ent : Entity_Id;
996ae0b0
RK
4471
4472 begin
edab6088
RD
4473 if Raises_Constraint_Error (N) then
4474 Set_Is_Static_Expression (N, Static);
4475 return;
4476 end if;
4477
22cb89b5
AC
4478 -- If we are folding a named number, retain the entity in the literal,
4479 -- for ASIS use.
fbf5a39b 4480
80298c3b 4481 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
fbf5a39b
AC
4482 Ent := Entity (N);
4483 else
4484 Ent := Empty;
4485 end if;
4486
4487 if Is_Private_Type (Typ) then
4488 Typ := Full_View (Typ);
4489 end if;
4490
f3d57416 4491 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 4492 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
4493 -- For ASIS use, set a link to the original named number when not in
4494 -- a generic context.
996ae0b0 4495
fbf5a39b 4496 if Is_Integer_Type (Typ) then
996ae0b0 4497 Rewrite (N, Make_Integer_Literal (Loc, Val));
fbf5a39b 4498 Set_Original_Entity (N, Ent);
996ae0b0
RK
4499
4500 -- Otherwise we have an enumeration type, and we substitute either
4501 -- an N_Identifier or N_Character_Literal to represent the enumeration
4502 -- literal corresponding to the given value, which must always be in
4503 -- range, because appropriate tests have already been made for this.
4504
fbf5a39b 4505 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4506 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4507 end if;
4508
4509 -- We now have the literal with the right value, both the actual type
4510 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4511 -- that was evaluated. So now we do the Analyze and Resolve.
4512
4513 -- Note that we have to reset Is_Static_Expression both after the
4514 -- analyze step (because Resolve will evaluate the literal, which
4515 -- will cause semantic errors if it is marked as static), and after
4516 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0
RK
4517
4518 Analyze (N);
fbf5a39b 4519 Set_Is_Static_Expression (N, Static);
996ae0b0 4520 Set_Etype (N, Typ);
fbf5a39b 4521 Resolve (N);
9479ded4 4522 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4523 end Fold_Uint;
4524
4525 ----------------
4526 -- Fold_Ureal --
4527 ----------------
4528
fbf5a39b 4529 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4530 Loc : constant Source_Ptr := Sloc (N);
4531 Typ : constant Entity_Id := Etype (N);
fbf5a39b 4532 Ent : Entity_Id;
996ae0b0
RK
4533
4534 begin
edab6088
RD
4535 if Raises_Constraint_Error (N) then
4536 Set_Is_Static_Expression (N, Static);
4537 return;
4538 end if;
4539
22cb89b5
AC
4540 -- If we are folding a named number, retain the entity in the literal,
4541 -- for ASIS use.
fbf5a39b 4542
80298c3b 4543 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
fbf5a39b
AC
4544 Ent := Entity (N);
4545 else
4546 Ent := Empty;
4547 end if;
4548
996ae0b0 4549 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 4550
5a30024a 4551 -- Set link to original named number, for ASIS use
cd2fb920 4552
fbf5a39b 4553 Set_Original_Entity (N, Ent);
996ae0b0 4554
9479ded4
AC
4555 -- We now have the literal with the right value, both the actual type
4556 -- and the expected type of this literal are taken from the expression
4557 -- that was evaluated. So now we do the Analyze and Resolve.
4558
4559 -- Note that we have to reset Is_Static_Expression both after the
4560 -- analyze step (because Resolve will evaluate the literal, which
4561 -- will cause semantic errors if it is marked as static), and after
4562 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0 4563
fbf5a39b
AC
4564 Analyze (N);
4565 Set_Is_Static_Expression (N, Static);
996ae0b0 4566 Set_Etype (N, Typ);
fbf5a39b 4567 Resolve (N);
9479ded4 4568 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4569 end Fold_Ureal;
4570
4571 ---------------
4572 -- From_Bits --
4573 ---------------
4574
4575 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4576 V : Uint := Uint_0;
4577
4578 begin
4579 for J in 0 .. B'Last loop
4580 if B (J) then
4581 V := V + 2 ** J;
4582 end if;
4583 end loop;
4584
4585 if Non_Binary_Modulus (T) then
4586 V := V mod Modulus (T);
4587 end if;
4588
4589 return V;
4590 end From_Bits;
4591
4592 --------------------
4593 -- Get_String_Val --
4594 --------------------
4595
4596 function Get_String_Val (N : Node_Id) return Node_Id is
4597 begin
80298c3b 4598 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
996ae0b0 4599 return N;
996ae0b0
RK
4600 else
4601 pragma Assert (Is_Entity_Name (N));
4602 return Get_String_Val (Constant_Value (Entity (N)));
4603 end if;
4604 end Get_String_Val;
4605
fbf5a39b
AC
4606 ----------------
4607 -- Initialize --
4608 ----------------
4609
4610 procedure Initialize is
4611 begin
4612 CV_Cache := (others => (Node_High_Bound, Uint_0));
4613 end Initialize;
4614
996ae0b0
RK
4615 --------------------
4616 -- In_Subrange_Of --
4617 --------------------
4618
4619 function In_Subrange_Of
c27f2f15
RD
4620 (T1 : Entity_Id;
4621 T2 : Entity_Id;
4622 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
4623 is
4624 L1 : Node_Id;
4625 H1 : Node_Id;
4626
4627 L2 : Node_Id;
4628 H2 : Node_Id;
4629
4630 begin
4631 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4632 return True;
4633
4634 -- Never in range if both types are not scalar. Don't know if this can
4635 -- actually happen, but just in case.
4636
9d08a38d 4637 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
996ae0b0
RK
4638 return False;
4639
d79e621a
GD
4640 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4641 -- definitely not compatible with T2.
4642
4643 elsif Is_Floating_Point_Type (T1)
4644 and then Has_Infinities (T1)
4645 and then Is_Floating_Point_Type (T2)
4646 and then not Has_Infinities (T2)
4647 then
4648 return False;
4649
996ae0b0
RK
4650 else
4651 L1 := Type_Low_Bound (T1);
4652 H1 := Type_High_Bound (T1);
4653
4654 L2 := Type_Low_Bound (T2);
4655 H2 := Type_High_Bound (T2);
4656
4657 -- Check bounds to see if comparison possible at compile time
4658
c27f2f15 4659 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 4660 and then
c27f2f15 4661 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
4662 then
4663 return True;
4664 end if;
4665
4666 -- If bounds not comparable at compile time, then the bounds of T2
4667 -- must be compile time known or we cannot answer the query.
4668
4669 if not Compile_Time_Known_Value (L2)
4670 or else not Compile_Time_Known_Value (H2)
4671 then
4672 return False;
4673 end if;
4674
4675 -- If the bounds of T1 are know at compile time then use these
4676 -- ones, otherwise use the bounds of the base type (which are of
4677 -- course always static).
4678
4679 if not Compile_Time_Known_Value (L1) then
4680 L1 := Type_Low_Bound (Base_Type (T1));
4681 end if;
4682
4683 if not Compile_Time_Known_Value (H1) then
4684 H1 := Type_High_Bound (Base_Type (T1));
4685 end if;
4686
4687 -- Fixed point types should be considered as such only if
4688 -- flag Fixed_Int is set to False.
4689
4690 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4691 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4692 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4693 then
4694 return
4695 Expr_Value_R (L2) <= Expr_Value_R (L1)
4696 and then
4697 Expr_Value_R (H2) >= Expr_Value_R (H1);
4698
4699 else
4700 return
4701 Expr_Value (L2) <= Expr_Value (L1)
4702 and then
4703 Expr_Value (H2) >= Expr_Value (H1);
4704
4705 end if;
4706 end if;
4707
4708 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 4709 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
4710 -- occurrence. However, this is only an optimization attempt, so there is
4711 -- really no point in crashing the compiler. Instead we just decide, too
4712 -- bad, we can't figure out the answer in this case after all.
4713
4714 exception
4715 when others =>
4716
4717 -- Debug flag K disables this behavior (useful for debugging)
4718
4719 if Debug_Flag_K then
4720 raise;
4721 else
4722 return False;
4723 end if;
4724 end In_Subrange_Of;
4725
4726 -----------------
4727 -- Is_In_Range --
4728 -----------------
4729
4730 function Is_In_Range
c800f862
RD
4731 (N : Node_Id;
4732 Typ : Entity_Id;
4733 Assume_Valid : Boolean := False;
4734 Fixed_Int : Boolean := False;
4735 Int_Real : Boolean := False) return Boolean
996ae0b0 4736 is
996ae0b0 4737 begin
80298c3b
AC
4738 return
4739 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
996ae0b0
RK
4740 end Is_In_Range;
4741
4742 -------------------
4743 -- Is_Null_Range --
4744 -------------------
4745
4746 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4747 Typ : constant Entity_Id := Etype (Lo);
4748
4749 begin
4750 if not Compile_Time_Known_Value (Lo)
4751 or else not Compile_Time_Known_Value (Hi)
4752 then
4753 return False;
4754 end if;
4755
4756 if Is_Discrete_Type (Typ) then
4757 return Expr_Value (Lo) > Expr_Value (Hi);
80298c3b 4758 else pragma Assert (Is_Real_Type (Typ));
996ae0b0
RK
4759 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4760 end if;
4761 end Is_Null_Range;
4762
edab6088
RD
4763 -------------------------
4764 -- Is_OK_Static_Choice --
4765 -------------------------
4766
4767 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4768 begin
4769 -- Check various possibilities for choice
4770
4771 -- Note: for membership tests, we test more cases than are possible
4772 -- (in particular subtype indication), but it doesn't matter because
4773 -- it just won't occur (we have already done a syntax check).
4774
4775 if Nkind (Choice) = N_Others_Choice then
4776 return True;
4777
4778 elsif Nkind (Choice) = N_Range then
4779 return Is_OK_Static_Range (Choice);
4780
4781 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 4782 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
4783 then
4784 return Is_OK_Static_Subtype (Etype (Choice));
4785
4786 else
4787 return Is_OK_Static_Expression (Choice);
4788 end if;
4789 end Is_OK_Static_Choice;
4790
4791 ------------------------------
4792 -- Is_OK_Static_Choice_List --
4793 ------------------------------
4794
4795 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4796 Choice : Node_Id;
4797
4798 begin
4799 if not Is_Static_Choice_List (Choices) then
4800 return False;
4801 end if;
4802
4803 Choice := First (Choices);
4804 while Present (Choice) loop
4805 if not Is_OK_Static_Choice (Choice) then
4806 Set_Raises_Constraint_Error (Choice);
4807 return False;
4808 end if;
4809
4810 Next (Choice);
4811 end loop;
4812
4813 return True;
4814 end Is_OK_Static_Choice_List;
4815
996ae0b0
RK
4816 -----------------------------
4817 -- Is_OK_Static_Expression --
4818 -----------------------------
4819
4820 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4821 begin
80298c3b 4822 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
996ae0b0
RK
4823 end Is_OK_Static_Expression;
4824
4825 ------------------------
4826 -- Is_OK_Static_Range --
4827 ------------------------
4828
4829 -- A static range is a range whose bounds are static expressions, or a
4830 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4831 -- We have already converted range attribute references, so we get the
4832 -- "or" part of this rule without needing a special test.
4833
4834 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4835 begin
4836 return Is_OK_Static_Expression (Low_Bound (N))
4837 and then Is_OK_Static_Expression (High_Bound (N));
4838 end Is_OK_Static_Range;
4839
4840 --------------------------
4841 -- Is_OK_Static_Subtype --
4842 --------------------------
4843
22cb89b5
AC
4844 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4845 -- neither bound raises constraint error when evaluated.
996ae0b0
RK
4846
4847 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4848 Base_T : constant Entity_Id := Base_Type (Typ);
4849 Anc_Subt : Entity_Id;
4850
4851 begin
4852 -- First a quick check on the non static subtype flag. As described
4853 -- in further detail in Einfo, this flag is not decisive in all cases,
4854 -- but if it is set, then the subtype is definitely non-static.
4855
4856 if Is_Non_Static_Subtype (Typ) then
4857 return False;
4858 end if;
4859
4860 Anc_Subt := Ancestor_Subtype (Typ);
4861
4862 if Anc_Subt = Empty then
4863 Anc_Subt := Base_T;
4864 end if;
4865
4866 if Is_Generic_Type (Root_Type (Base_T))
4867 or else Is_Generic_Actual_Type (Base_T)
4868 then
4869 return False;
4870
87feba05
AC
4871 elsif Has_Dynamic_Predicate_Aspect (Typ) then
4872 return False;
4873
996ae0b0
RK
4874 -- String types
4875
4876 elsif Is_String_Type (Typ) then
4877 return
4878 Ekind (Typ) = E_String_Literal_Subtype
4879 or else
011f9d5d
AC
4880 (Is_OK_Static_Subtype (Component_Type (Typ))
4881 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4882
4883 -- Scalar types
4884
4885 elsif Is_Scalar_Type (Typ) then
4886 if Base_T = Typ then
4887 return True;
4888
4889 else
22cb89b5
AC
4890 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4891 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
4892
4893 return Is_OK_Static_Subtype (Anc_Subt)
4894 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4895 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4896 end if;
4897
4898 -- Types other than string and scalar types are never static
4899
4900 else
4901 return False;
4902 end if;
4903 end Is_OK_Static_Subtype;
4904
4905 ---------------------
4906 -- Is_Out_Of_Range --
4907 ---------------------
4908
4909 function Is_Out_Of_Range
1c7717c3
AC
4910 (N : Node_Id;
4911 Typ : Entity_Id;
c800f862 4912 Assume_Valid : Boolean := False;
1c7717c3
AC
4913 Fixed_Int : Boolean := False;
4914 Int_Real : Boolean := False) return Boolean
996ae0b0 4915 is
996ae0b0 4916 begin
80298c3b
AC
4917 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4918 Out_Of_Range;
996ae0b0
RK
4919 end Is_Out_Of_Range;
4920
edab6088
RD
4921 ----------------------
4922 -- Is_Static_Choice --
4923 ----------------------
4924
4925 function Is_Static_Choice (Choice : Node_Id) return Boolean is
4926 begin
4927 -- Check various possibilities for choice
4928
4929 -- Note: for membership tests, we test more cases than are possible
4930 -- (in particular subtype indication), but it doesn't matter because
4931 -- it just won't occur (we have already done a syntax check).
4932
4933 if Nkind (Choice) = N_Others_Choice then
4934 return True;
4935
4936 elsif Nkind (Choice) = N_Range then
4937 return Is_Static_Range (Choice);
4938
4939 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 4940 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
4941 then
4942 return Is_Static_Subtype (Etype (Choice));
4943
4944 else
4945 return Is_Static_Expression (Choice);
4946 end if;
4947 end Is_Static_Choice;
4948
4949 ---------------------------
4950 -- Is_Static_Choice_List --
4951 ---------------------------
4952
4953 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
4954 Choice : Node_Id;
4955
4956 begin
4957 Choice := First (Choices);
4958 while Present (Choice) loop
4959 if not Is_Static_Choice (Choice) then
4960 return False;
4961 end if;
4962
4963 Next (Choice);
4964 end loop;
4965
4966 return True;
4967 end Is_Static_Choice_List;
4968
87feba05 4969 ---------------------
996ae0b0
RK
4970 -- Is_Static_Range --
4971 ---------------------
4972
4973 -- A static range is a range whose bounds are static expressions, or a
4974 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4975 -- We have already converted range attribute references, so we get the
4976 -- "or" part of this rule without needing a special test.
4977
4978 function Is_Static_Range (N : Node_Id) return Boolean is
4979 begin
edab6088 4980 return Is_Static_Expression (Low_Bound (N))
80298c3b
AC
4981 and then
4982 Is_Static_Expression (High_Bound (N));
996ae0b0
RK
4983 end Is_Static_Range;
4984
4985 -----------------------
4986 -- Is_Static_Subtype --
4987 -----------------------
4988
82c80734 4989 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4990
4991 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4992 Base_T : constant Entity_Id := Base_Type (Typ);
4993 Anc_Subt : Entity_Id;
4994
4995 begin
4996 -- First a quick check on the non static subtype flag. As described
4997 -- in further detail in Einfo, this flag is not decisive in all cases,
4998 -- but if it is set, then the subtype is definitely non-static.
4999
5000 if Is_Non_Static_Subtype (Typ) then
5001 return False;
5002 end if;
5003
5004 Anc_Subt := Ancestor_Subtype (Typ);
5005
5006 if Anc_Subt = Empty then
5007 Anc_Subt := Base_T;
5008 end if;
5009
5010 if Is_Generic_Type (Root_Type (Base_T))
5011 or else Is_Generic_Actual_Type (Base_T)
5012 then
5013 return False;
5014
ca0eb951
AC
5015 -- If there is a dynamic predicate for the type (declared or inherited)
5016 -- the expression is not static.
5017
5018 elsif Has_Dynamic_Predicate_Aspect (Typ)
5019 or else (Is_Derived_Type (Typ)
5020 and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5021 then
87feba05
AC
5022 return False;
5023
996ae0b0
RK
5024 -- String types
5025
5026 elsif Is_String_Type (Typ) then
5027 return
5028 Ekind (Typ) = E_String_Literal_Subtype
011f9d5d
AC
5029 or else (Is_Static_Subtype (Component_Type (Typ))
5030 and then Is_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
5031
5032 -- Scalar types
5033
5034 elsif Is_Scalar_Type (Typ) then
5035 if Base_T = Typ then
5036 return True;
5037
5038 else
5039 return Is_Static_Subtype (Anc_Subt)
5040 and then Is_Static_Expression (Type_Low_Bound (Typ))
5041 and then Is_Static_Expression (Type_High_Bound (Typ));
5042 end if;
5043
5044 -- Types other than string and scalar types are never static
5045
5046 else
5047 return False;
5048 end if;
5049 end Is_Static_Subtype;
5050
edab6088
RD
5051 -------------------------------
5052 -- Is_Statically_Unevaluated --
5053 -------------------------------
5054
5055 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5056 function Check_Case_Expr_Alternative
5057 (CEA : Node_Id) return Match_Result;
5058 -- We have a message emanating from the Expression of a case expression
5059 -- alternative. We examine this alternative, as follows:
5060 --
5061 -- If the selecting expression of the parent case is non-static, or
5062 -- if any of the discrete choices of the given case alternative are
5063 -- non-static or raise Constraint_Error, return Non_Static.
5064 --
5065 -- Otherwise check if the selecting expression matches any of the given
4bd4bb7f
AC
5066 -- discrete choices. If so, the alternative is executed and we return
5067 -- Match, otherwise, the alternative can never be executed, and so we
5068 -- return No_Match.
edab6088
RD
5069
5070 ---------------------------------
5071 -- Check_Case_Expr_Alternative --
5072 ---------------------------------
5073
5074 function Check_Case_Expr_Alternative
5075 (CEA : Node_Id) return Match_Result
5076 is
5077 Case_Exp : constant Node_Id := Parent (CEA);
5078 Choice : Node_Id;
5079 Prev_CEA : Node_Id;
5080
5081 begin
5082 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5083
4bd4bb7f 5084 -- Check that selecting expression is static
edab6088
RD
5085
5086 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5087 return Non_Static;
5088 end if;
5089
5090 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5091 return Non_Static;
5092 end if;
5093
5094 -- All choices are now known to be static. Now see if alternative
5095 -- matches one of the choices.
5096
5097 Choice := First (Discrete_Choices (CEA));
5098 while Present (Choice) loop
5099
4bd4bb7f 5100 -- Check various possibilities for choice, returning Match if we
edab6088
RD
5101 -- find the selecting value matches any of the choices. Note that
5102 -- we know we are the last choice, so we don't have to keep going.
5103
5104 if Nkind (Choice) = N_Others_Choice then
5105
5106 -- Others choice is a bit annoying, it matches if none of the
5107 -- previous alternatives matches (note that we know we are the
5108 -- last alternative in this case, so we can just go backwards
5109 -- from us to see if any previous one matches).
5110
5111 Prev_CEA := Prev (CEA);
5112 while Present (Prev_CEA) loop
5113 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5114 return No_Match;
5115 end if;
5116
5117 Prev (Prev_CEA);
5118 end loop;
5119
5120 return Match;
5121
5122 -- Else we have a normal static choice
5123
5124 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5125 return Match;
5126 end if;
5127
5128 -- If we fall through, it means that the discrete choice did not
5129 -- match the selecting expression, so continue.
5130
5131 Next (Choice);
5132 end loop;
5133
4bd4bb7f
AC
5134 -- If we get through that loop then all choices were static, and none
5135 -- of them matched the selecting expression. So return No_Match.
edab6088
RD
5136
5137 return No_Match;
5138 end Check_Case_Expr_Alternative;
5139
5140 -- Local variables
5141
5142 P : Node_Id;
5143 OldP : Node_Id;
5144 Choice : Node_Id;
5145
5146 -- Start of processing for Is_Statically_Unevaluated
5147
5148 begin
5149 -- The (32.x) references here are from RM section 4.9
5150
5151 -- (32.1) An expression is statically unevaluated if it is part of ...
5152
5153 -- This means we have to climb the tree looking for one of the cases
5154
5155 P := Expr;
5156 loop
5157 OldP := P;
5158 P := Parent (P);
5159
5160 -- (32.2) The right operand of a static short-circuit control form
5161 -- whose value is determined by its left operand.
5162
5163 -- AND THEN with False as left operand
5164
5165 if Nkind (P) = N_And_Then
5166 and then Compile_Time_Known_Value (Left_Opnd (P))
5167 and then Is_False (Expr_Value (Left_Opnd (P)))
5168 then
5169 return True;
5170
5171 -- OR ELSE with True as left operand
5172
5173 elsif Nkind (P) = N_Or_Else
5174 and then Compile_Time_Known_Value (Left_Opnd (P))
5175 and then Is_True (Expr_Value (Left_Opnd (P)))
5176 then
5177 return True;
5178
5179 -- (32.3) A dependent_expression of an if_expression whose associated
5180 -- condition is static and equals False.
5181
5182 elsif Nkind (P) = N_If_Expression then
5183 declare
5184 Cond : constant Node_Id := First (Expressions (P));
5185 Texp : constant Node_Id := Next (Cond);
5186 Fexp : constant Node_Id := Next (Texp);
5187
5188 begin
5189 if Compile_Time_Known_Value (Cond) then
5190
5191 -- Condition is True and we are in the right operand
5192
5193 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5194 return True;
5195
5196 -- Condition is False and we are in the left operand
5197
5198 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5199 return True;
5200 end if;
5201 end if;
5202 end;
5203
5204 -- (32.4) A condition or dependent_expression of an if_expression
5205 -- where the condition corresponding to at least one preceding
5206 -- dependent_expression of the if_expression is static and equals
5207 -- True.
5208
5209 -- This refers to cases like
5210
4bd4bb7f 5211 -- (if True then 1 elsif 1/0=2 then 2 else 3)
edab6088
RD
5212
5213 -- But we expand elsif's out anyway, so the above looks like:
5214
4bd4bb7f 5215 -- (if True then 1 else (if 1/0=2 then 2 else 3))
edab6088
RD
5216
5217 -- So for us this is caught by the above check for the 32.3 case.
5218
5219 -- (32.5) A dependent_expression of a case_expression whose
5220 -- selecting_expression is static and whose value is not covered
5221 -- by the corresponding discrete_choice_list.
5222
5223 elsif Nkind (P) = N_Case_Expression_Alternative then
5224
5225 -- First, we have to be in the expression to suppress messages.
5226 -- If we are within one of the choices, we want the message.
5227
5228 if OldP = Expression (P) then
5229
5230 -- Statically unevaluated if alternative does not match
5231
5232 if Check_Case_Expr_Alternative (P) = No_Match then
5233 return True;
5234 end if;
5235 end if;
5236
5237 -- (32.6) A choice_expression (or a simple_expression of a range
5238 -- that occurs as a membership_choice of a membership_choice_list)
5239 -- of a static membership test that is preceded in the enclosing
5240 -- membership_choice_list by another item whose individual
5241 -- membership test (see (RM 4.5.2)) statically yields True.
5242
5243 elsif Nkind (P) in N_Membership_Test then
5244
5245 -- Only possibly unevaluated if simple expression is static
5246
5247 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5248 null;
5249
5250 -- All members of the choice list must be static
5251
5252 elsif (Present (Right_Opnd (P))
5253 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5254 or else (Present (Alternatives (P))
5255 and then
5256 not Is_OK_Static_Choice_List (Alternatives (P)))
5257 then
5258 null;
5259
5260 -- If expression is the one and only alternative, then it is
5261 -- definitely not statically unevaluated, so we only have to
5262 -- test the case where there are alternatives present.
5263
5264 elsif Present (Alternatives (P)) then
5265
5266 -- Look for previous matching Choice
5267
5268 Choice := First (Alternatives (P));
5269 while Present (Choice) loop
5270
5271 -- If we reached us and no previous choices matched, this
5272 -- is not the case where we are statically unevaluated.
5273
5274 exit when OldP = Choice;
5275
5276 -- If a previous choice matches, then that is the case where
5277 -- we know our choice is statically unevaluated.
5278
5279 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5280 return True;
5281 end if;
5282
5283 Next (Choice);
5284 end loop;
5285
5286 -- If we fall through the loop, we were not one of the choices,
5287 -- we must have been the expression, so that is not covered by
5288 -- this rule, and we keep going.
5289
5290 null;
5291 end if;
5292 end if;
5293
5294 -- OK, not statically unevaluated at this level, see if we should
5295 -- keep climbing to look for a higher level reason.
5296
5297 -- Special case for component association in aggregates, where
5298 -- we want to keep climbing up to the parent aggregate.
5299
5300 if Nkind (P) = N_Component_Association
5301 and then Nkind (Parent (P)) = N_Aggregate
5302 then
5303 null;
5304
5305 -- All done if not still within subexpression
5306
5307 else
5308 exit when Nkind (P) not in N_Subexpr;
5309 end if;
5310 end loop;
5311
5312 -- If we fall through the loop, not one of the cases covered!
5313
5314 return False;
5315 end Is_Statically_Unevaluated;
5316
996ae0b0
RK
5317 --------------------
5318 -- Not_Null_Range --
5319 --------------------
5320
5321 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5322 Typ : constant Entity_Id := Etype (Lo);
5323
5324 begin
5325 if not Compile_Time_Known_Value (Lo)
5326 or else not Compile_Time_Known_Value (Hi)
5327 then
5328 return False;
5329 end if;
5330
5331 if Is_Discrete_Type (Typ) then
5332 return Expr_Value (Lo) <= Expr_Value (Hi);
80298c3b 5333 else pragma Assert (Is_Real_Type (Typ));
996ae0b0
RK
5334 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5335 end if;
5336 end Not_Null_Range;
5337
5338 -------------
5339 -- OK_Bits --
5340 -------------
5341
5342 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5343 begin
5344 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5345
5346 if Bits < 500_000 then
5347 return True;
5348
80298c3b
AC
5349 -- Error if this maximum is exceeded
5350
996ae0b0
RK
5351 else
5352 Error_Msg_N ("static value too large, capacity exceeded", N);
5353 return False;
5354 end if;
5355 end OK_Bits;
5356
5357 ------------------
5358 -- Out_Of_Range --
5359 ------------------
5360
5361 procedure Out_Of_Range (N : Node_Id) is
5362 begin
5363 -- If we have the static expression case, then this is an illegality
5364 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5 5365 -- error (if the error is legitimate, it was already diagnosed in the
ac072cb2 5366 -- template).
996ae0b0
RK
5367
5368 if Is_Static_Expression (N)
5369 and then not In_Instance
fbf5a39b 5370 and then not In_Inlined_Body
0ab80019 5371 and then Ada_Version >= Ada_95
996ae0b0 5372 then
4bd4bb7f 5373 -- No message if we are statically unevaluated
ac072cb2
AC
5374
5375 if Is_Statically_Unevaluated (N) then
5376 null;
5377
5378 -- The expression to compute the length of a packed array is attached
5379 -- to the array type itself, and deserves a separate message.
5380
5381 elsif Nkind (Parent (N)) = N_Defining_Identifier
996ae0b0 5382 and then Is_Array_Type (Parent (N))
8ca597af 5383 and then Present (Packed_Array_Impl_Type (Parent (N)))
996ae0b0
RK
5384 and then Present (First_Rep_Item (Parent (N)))
5385 then
5386 Error_Msg_N
5387 ("length of packed array must not exceed Integer''Last",
5388 First_Rep_Item (Parent (N)));
5389 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5390
ac072cb2
AC
5391 -- All cases except the special array case
5392
996ae0b0
RK
5393 else
5394 Apply_Compile_Time_Constraint_Error
07fc65c4 5395 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
5396 end if;
5397
22cb89b5
AC
5398 -- Here we generate a warning for the Ada 83 case, or when we are in an
5399 -- instance, or when we have a non-static expression case.
996ae0b0
RK
5400
5401 else
996ae0b0 5402 Apply_Compile_Time_Constraint_Error
324ac540 5403 (N, "value not in range of}??", CE_Range_Check_Failed);
996ae0b0
RK
5404 end if;
5405 end Out_Of_Range;
5406
7f568bfa
AC
5407 ----------------------
5408 -- Predicates_Match --
5409 ----------------------
5410
5411 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5412 Pred1 : Node_Id;
5413 Pred2 : Node_Id;
5414
5415 begin
5416 if Ada_Version < Ada_2012 then
5417 return True;
5418
5419 -- Both types must have predicates or lack them
5420
5421 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5422 return False;
5423
5424 -- Check matching predicates
5425
5426 else
5427 Pred1 :=
5428 Get_Rep_Item
5429 (T1, Name_Static_Predicate, Check_Parents => False);
5430 Pred2 :=
5431 Get_Rep_Item
5432 (T2, Name_Static_Predicate, Check_Parents => False);
5433
5434 -- Subtypes statically match if the predicate comes from the
5435 -- same declaration, which can only happen if one is a subtype
5436 -- of the other and has no explicit predicate.
5437
5438 -- Suppress warnings on order of actuals, which is otherwise
5439 -- triggered by one of the two calls below.
5440
5441 pragma Warnings (Off);
5442 return Pred1 = Pred2
5443 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5444 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5445 pragma Warnings (On);
5446 end if;
5447 end Predicates_Match;
5448
fc3a3f3b
RD
5449 ---------------------------------------------
5450 -- Real_Or_String_Static_Predicate_Matches --
5451 ---------------------------------------------
5452
5453 function Real_Or_String_Static_Predicate_Matches
5454 (Val : Node_Id;
5455 Typ : Entity_Id) return Boolean
5456 is
5457 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5458 -- The predicate expression from the type
5459
5460 Pfun : constant Entity_Id := Predicate_Function (Typ);
5461 -- The entity for the predicate function
5462
5463 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5464 -- The name of the formal of the predicate function. Occurrences of the
5465 -- type name in Expr have been rewritten as references to this formal,
5466 -- and it has a unique name, so we can identify references by this name.
5467
5468 Copy : Node_Id;
5469 -- Copy of the predicate function tree
5470
5471 function Process (N : Node_Id) return Traverse_Result;
5472 -- Function used to process nodes during the traversal in which we will
5473 -- find occurrences of the entity name, and replace such occurrences
5474 -- by a real literal with the value to be tested.
5475
5476 procedure Traverse is new Traverse_Proc (Process);
5477 -- The actual traversal procedure
5478
5479 -------------
5480 -- Process --
5481 -------------
5482
5483 function Process (N : Node_Id) return Traverse_Result is
5484 begin
5485 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5486 declare
5487 Nod : constant Node_Id := New_Copy (Val);
5488 begin
5489 Set_Sloc (Nod, Sloc (N));
5490 Rewrite (N, Nod);
5491 return Skip;
5492 end;
5493
e4d04166
AC
5494 -- The predicate function may contain string-comparison operations
5495 -- that have been converted into calls to run-time array-comparison
5496 -- routines. To evaluate the predicate statically, we recover the
5497 -- original comparison operation and replace the occurrence of the
5498 -- formal by the static string value. The actuals of the generated
5499 -- call are of the form X'Address.
5500
5501 elsif Nkind (N) in N_Op_Compare
5502 and then Nkind (Left_Opnd (N)) = N_Function_Call
5503 then
5504 declare
5505 C : constant Node_Id := Left_Opnd (N);
5506 F : constant Node_Id := First (Parameter_Associations (C));
5507 L : constant Node_Id := Prefix (F);
5508 R : constant Node_Id := Prefix (Next (F));
5509
5510 begin
5511 -- If an operand is an entity name, it is the formal of the
5512 -- predicate function, so replace it with the string value.
5513 -- It may be either operand in the call. The other operand
5514 -- is a static string from the original predicate.
5515
5516 if Is_Entity_Name (L) then
5517 Rewrite (Left_Opnd (N), New_Copy (Val));
5518 Rewrite (Right_Opnd (N), New_Copy (R));
5519
5520 else
5521 Rewrite (Left_Opnd (N), New_Copy (L));
5522 Rewrite (Right_Opnd (N), New_Copy (Val));
5523 end if;
5524
5525 return Skip;
5526 end;
5527
fc3a3f3b
RD
5528 else
5529 return OK;
5530 end if;
5531 end Process;
5532
5533 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5534
5535 begin
5536 -- First deal with special case of inherited predicate, where the
5537 -- predicate expression looks like:
5538
9bdc432a 5539 -- xxPredicate (typ (Ent)) and then Expr
fc3a3f3b
RD
5540
5541 -- where Expr is the predicate expression for this level, and the
9bdc432a 5542 -- left operand is the call to evaluate the inherited predicate.
fc3a3f3b
RD
5543
5544 if Nkind (Expr) = N_And_Then
9bdc432a
AC
5545 and then Nkind (Left_Opnd (Expr)) = N_Function_Call
5546 and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
fc3a3f3b
RD
5547 then
5548 -- OK we have the inherited case, so make a call to evaluate the
5549 -- inherited predicate. If that fails, so do we!
5550
5551 if not
5552 Real_Or_String_Static_Predicate_Matches
5553 (Val => Val,
9bdc432a 5554 Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
fc3a3f3b
RD
5555 then
5556 return False;
5557 end if;
5558
9bdc432a 5559 -- Use the right operand for the continued processing
fc3a3f3b 5560
9bdc432a 5561 Copy := Copy_Separate_Tree (Right_Opnd (Expr));
fc3a3f3b 5562
622599c6
RD
5563 -- Case where call to predicate function appears on its own (this means
5564 -- that the predicate at this level is just inherited from the parent).
fc3a3f3b 5565
1b1d88b1 5566 elsif Nkind (Expr) = N_Function_Call then
622599c6
RD
5567 declare
5568 Typ : constant Entity_Id :=
5569 Etype (First_Formal (Entity (Name (Expr))));
fc3a3f3b 5570
622599c6
RD
5571 begin
5572 -- If the inherited predicate is dynamic, just ignore it. We can't
5573 -- go trying to evaluate a dynamic predicate as a static one!
fc3a3f3b 5574
622599c6
RD
5575 if Has_Dynamic_Predicate_Aspect (Typ) then
5576 return True;
5577
5578 -- Otherwise inherited predicate is static, check for match
5579
5580 else
5581 return Real_Or_String_Static_Predicate_Matches (Val, Typ);
5582 end if;
5583 end;
fc3a3f3b 5584
622599c6 5585 -- If not just an inherited predicate, copy whole expression
fc3a3f3b
RD
5586
5587 else
5588 Copy := Copy_Separate_Tree (Expr);
5589 end if;
5590
5591 -- Now we replace occurrences of the entity by the value
5592
5593 Traverse (Copy);
5594
5595 -- And analyze the resulting static expression to see if it is True
5596
5597 Analyze_And_Resolve (Copy, Standard_Boolean);
5598 return Is_True (Expr_Value (Copy));
5599 end Real_Or_String_Static_Predicate_Matches;
5600
996ae0b0
RK
5601 -------------------------
5602 -- Rewrite_In_Raise_CE --
5603 -------------------------
5604
5605 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
edab6088
RD
5606 Typ : constant Entity_Id := Etype (N);
5607 Stat : constant Boolean := Is_Static_Expression (N);
996ae0b0
RK
5608
5609 begin
edab6088
RD
5610 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5611 -- can just clear the condition if the reason is appropriate. We do
5612 -- not do this operation if the parent has a reason other than range
5613 -- check failed, because otherwise we would change the reason.
996ae0b0
RK
5614
5615 if Present (Parent (N))
5616 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
edab6088
RD
5617 and then Reason (Parent (N)) =
5618 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
996ae0b0
RK
5619 then
5620 Set_Condition (Parent (N), Empty);
5621
edab6088 5622 -- Else build an explicit N_Raise_CE
996ae0b0
RK
5623
5624 else
07fc65c4
GB
5625 Rewrite (N,
5626 Make_Raise_Constraint_Error (Sloc (Exp),
5627 Reason => CE_Range_Check_Failed));
996ae0b0
RK
5628 Set_Raises_Constraint_Error (N);
5629 Set_Etype (N, Typ);
5630 end if;
edab6088
RD
5631
5632 -- Set proper flags in result
5633
5634 Set_Raises_Constraint_Error (N, True);
5635 Set_Is_Static_Expression (N, Stat);
996ae0b0
RK
5636 end Rewrite_In_Raise_CE;
5637
5638 ---------------------
5639 -- String_Type_Len --
5640 ---------------------
5641
5642 function String_Type_Len (Stype : Entity_Id) return Uint is
5643 NT : constant Entity_Id := Etype (First_Index (Stype));
5644 T : Entity_Id;
5645
5646 begin
5647 if Is_OK_Static_Subtype (NT) then
5648 T := NT;
5649 else
5650 T := Base_Type (NT);
5651 end if;
5652
5653 return Expr_Value (Type_High_Bound (T)) -
5654 Expr_Value (Type_Low_Bound (T)) + 1;
5655 end String_Type_Len;
5656
5657 ------------------------------------
5658 -- Subtypes_Statically_Compatible --
5659 ------------------------------------
5660
5661 function Subtypes_Statically_Compatible
c97d7285
AC
5662 (T1 : Entity_Id;
5663 T2 : Entity_Id;
5664 Formal_Derived_Matching : Boolean := False) return Boolean
996ae0b0
RK
5665 is
5666 begin
437f8c1e
AC
5667 -- Scalar types
5668
996ae0b0
RK
5669 if Is_Scalar_Type (T1) then
5670
5671 -- Definitely compatible if we match
5672
5673 if Subtypes_Statically_Match (T1, T2) then
5674 return True;
5675
5676 -- If either subtype is nonstatic then they're not compatible
5677
edab6088 5678 elsif not Is_OK_Static_Subtype (T1)
ebb6b0bd 5679 or else
edab6088 5680 not Is_OK_Static_Subtype (T2)
996ae0b0
RK
5681 then
5682 return False;
5683
26df19ce
AC
5684 -- Base types must match, but we don't check that (should we???) but
5685 -- we do at least check that both types are real, or both types are
5686 -- not real.
996ae0b0 5687
fbf5a39b 5688 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
5689 return False;
5690
5691 -- Here we check the bounds
5692
5693 else
5694 declare
5695 LB1 : constant Node_Id := Type_Low_Bound (T1);
5696 HB1 : constant Node_Id := Type_High_Bound (T1);
5697 LB2 : constant Node_Id := Type_Low_Bound (T2);
5698 HB2 : constant Node_Id := Type_High_Bound (T2);
5699
5700 begin
5701 if Is_Real_Type (T1) then
5702 return
304757d2 5703 Expr_Value_R (LB1) > Expr_Value_R (HB1)
996ae0b0 5704 or else
304757d2
AC
5705 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5706 and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
996ae0b0
RK
5707
5708 else
5709 return
304757d2 5710 Expr_Value (LB1) > Expr_Value (HB1)
996ae0b0 5711 or else
304757d2
AC
5712 (Expr_Value (LB2) <= Expr_Value (LB1)
5713 and then Expr_Value (HB1) <= Expr_Value (HB2));
996ae0b0
RK
5714 end if;
5715 end;
5716 end if;
5717
437f8c1e
AC
5718 -- Access types
5719
996ae0b0 5720 elsif Is_Access_Type (T1) then
304757d2
AC
5721 return
5722 (not Is_Constrained (T2)
5723 or else Subtypes_Statically_Match
5724 (Designated_Type (T1), Designated_Type (T2)))
26df19ce
AC
5725 and then not (Can_Never_Be_Null (T2)
5726 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
5727
5728 -- All other cases
996ae0b0
RK
5729
5730 else
304757d2
AC
5731 return
5732 (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5733 or else Subtypes_Statically_Match
5734 (T1, T2, Formal_Derived_Matching);
996ae0b0
RK
5735 end if;
5736 end Subtypes_Statically_Compatible;
5737
5738 -------------------------------
5739 -- Subtypes_Statically_Match --
5740 -------------------------------
5741
5742 -- Subtypes statically match if they have statically matching constraints
5743 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5744 -- they are the same identical constraint, or if they are static and the
5745 -- values match (RM 4.9.1(1)).
5746
a0367005 5747 -- In addition, in GNAT, the object size (Esize) values of the types must
c97d7285
AC
5748 -- match if they are set (unless checking an actual for a formal derived
5749 -- type). The use of 'Object_Size can cause this to be false even if the
5750 -- types would otherwise match in the RM sense.
5751
5752 function Subtypes_Statically_Match
5753 (T1 : Entity_Id;
5754 T2 : Entity_Id;
5755 Formal_Derived_Matching : Boolean := False) return Boolean
5756 is
996ae0b0
RK
5757 begin
5758 -- A type always statically matches itself
5759
5760 if T1 = T2 then
5761 return True;
5762
c97d7285
AC
5763 -- No match if sizes different (from use of 'Object_Size). This test
5764 -- is excluded if Formal_Derived_Matching is True, as the base types
5765 -- can be different in that case and typically have different sizes
5766 -- (and Esizes can be set when Frontend_Layout_On_Target is True).
a0367005 5767
c97d7285 5768 elsif not Formal_Derived_Matching
ebb6b0bd
AC
5769 and then Known_Static_Esize (T1)
5770 and then Known_Static_Esize (T2)
a0367005
RD
5771 and then Esize (T1) /= Esize (T2)
5772 then
5773 return False;
5774
308aab0b
AC
5775 -- No match if predicates do not match
5776
7f568bfa 5777 elsif not Predicates_Match (T1, T2) then
308aab0b
AC
5778 return False;
5779
996ae0b0
RK
5780 -- Scalar types
5781
5782 elsif Is_Scalar_Type (T1) then
5783
5784 -- Base types must be the same
5785
5786 if Base_Type (T1) /= Base_Type (T2) then
5787 return False;
5788 end if;
5789
5790 -- A constrained numeric subtype never matches an unconstrained
5791 -- subtype, i.e. both types must be constrained or unconstrained.
5792
305caf42
AC
5793 -- To understand the requirement for this test, see RM 4.9.1(1).
5794 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5795 -- a constrained subtype with constraint bounds matching the bounds
5796 -- of its corresponding unconstrained base type. In this situation,
5797 -- Integer and Integer'Base do not statically match, even though
5798 -- they have the same bounds.
996ae0b0 5799
22cb89b5
AC
5800 -- We only apply this test to types in Standard and types that appear
5801 -- in user programs. That way, we do not have to be too careful about
5802 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
5803
5804 if Is_Numeric_Type (T1)
5805 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5806 and then (Scope (T1) = Standard_Standard
5807 or else Comes_From_Source (T1))
5808 and then (Scope (T2) = Standard_Standard
5809 or else Comes_From_Source (T2))
5810 then
5811 return False;
82c80734 5812
22cb89b5
AC
5813 -- A generic scalar type does not statically match its base type
5814 -- (AI-311). In this case we make sure that the formals, which are
5815 -- first subtypes of their bases, are constrained.
82c80734
RD
5816
5817 elsif Is_Generic_Type (T1)
5818 and then Is_Generic_Type (T2)
5819 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5820 then
5821 return False;
996ae0b0
RK
5822 end if;
5823
22cb89b5
AC
5824 -- If there was an error in either range, then just assume the types
5825 -- statically match to avoid further junk errors.
996ae0b0 5826
199c6a10
AC
5827 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5828 or else Error_Posted (Scalar_Range (T1))
5829 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
5830 then
5831 return True;
5832 end if;
5833
308aab0b 5834 -- Otherwise both types have bounds that can be compared
996ae0b0
RK
5835
5836 declare
5837 LB1 : constant Node_Id := Type_Low_Bound (T1);
5838 HB1 : constant Node_Id := Type_High_Bound (T1);
5839 LB2 : constant Node_Id := Type_Low_Bound (T2);
5840 HB2 : constant Node_Id := Type_High_Bound (T2);
5841
5842 begin
308aab0b 5843 -- If the bounds are the same tree node, then match (common case)
996ae0b0
RK
5844
5845 if LB1 = LB2 and then HB1 = HB2 then
308aab0b 5846 return True;
996ae0b0
RK
5847
5848 -- Otherwise bounds must be static and identical value
5849
5850 else
edab6088 5851 if not Is_OK_Static_Subtype (T1)
304757d2
AC
5852 or else
5853 not Is_OK_Static_Subtype (T2)
996ae0b0
RK
5854 then
5855 return False;
5856
996ae0b0
RK
5857 elsif Is_Real_Type (T1) then
5858 return
304757d2 5859 Expr_Value_R (LB1) = Expr_Value_R (LB2)
996ae0b0 5860 and then
304757d2 5861 Expr_Value_R (HB1) = Expr_Value_R (HB2);
996ae0b0
RK
5862
5863 else
5864 return
5865 Expr_Value (LB1) = Expr_Value (LB2)
5866 and then
5867 Expr_Value (HB1) = Expr_Value (HB2);
5868 end if;
5869 end if;
5870 end;
5871
5872 -- Type with discriminants
5873
5874 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 5875
c2bf339e
GD
5876 -- Because of view exchanges in multiple instantiations, conformance
5877 -- checking might try to match a partial view of a type with no
5878 -- discriminants with a full view that has defaulted discriminants.
5879 -- In such a case, use the discriminant constraint of the full view,
5880 -- which must exist because we know that the two subtypes have the
5881 -- same base type.
6eaf4095 5882
996ae0b0 5883 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
e699b76e
AC
5884 -- A generic actual type is declared through a subtype declaration
5885 -- and may have an inconsistent indication of the presence of
5886 -- discriminants, so check the type it renames.
5887
5888 if Is_Generic_Actual_Type (T1)
5889 and then not Has_Discriminants (Etype (T1))
5890 and then not Has_Discriminants (T2)
5891 then
5892 return True;
5893
5894 elsif In_Instance then
c2bf339e
GD
5895 if Is_Private_Type (T2)
5896 and then Present (Full_View (T2))
5897 and then Has_Discriminants (Full_View (T2))
5898 then
5899 return Subtypes_Statically_Match (T1, Full_View (T2));
5900
5901 elsif Is_Private_Type (T1)
5902 and then Present (Full_View (T1))
5903 and then Has_Discriminants (Full_View (T1))
5904 then
5905 return Subtypes_Statically_Match (Full_View (T1), T2);
5906
5907 else
5908 return False;
5909 end if;
6eaf4095
ES
5910 else
5911 return False;
5912 end if;
996ae0b0
RK
5913 end if;
5914
5915 declare
5916 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5917 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5918
13f34a3f
RD
5919 DA1 : Elmt_Id;
5920 DA2 : Elmt_Id;
996ae0b0
RK
5921
5922 begin
5923 if DL1 = DL2 then
5924 return True;
996ae0b0
RK
5925 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5926 return False;
5927 end if;
5928
13f34a3f 5929 -- Now loop through the discriminant constraints
996ae0b0 5930
13f34a3f
RD
5931 -- Note: the guard here seems necessary, since it is possible at
5932 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 5933
13f34a3f
RD
5934 if Present (DL1) and then Present (DL2) then
5935 DA1 := First_Elmt (DL1);
5936 DA2 := First_Elmt (DL2);
5937 while Present (DA1) loop
5938 declare
5939 Expr1 : constant Node_Id := Node (DA1);
5940 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 5941
13f34a3f 5942 begin
edab6088
RD
5943 if not Is_OK_Static_Expression (Expr1)
5944 or else not Is_OK_Static_Expression (Expr2)
13f34a3f
RD
5945 then
5946 return False;
996ae0b0 5947
13f34a3f
RD
5948 -- If either expression raised a constraint error,
5949 -- consider the expressions as matching, since this
5950 -- helps to prevent cascading errors.
5951
5952 elsif Raises_Constraint_Error (Expr1)
5953 or else Raises_Constraint_Error (Expr2)
5954 then
5955 null;
5956
5957 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5958 return False;
5959 end if;
5960 end;
996ae0b0 5961
13f34a3f
RD
5962 Next_Elmt (DA1);
5963 Next_Elmt (DA2);
5964 end loop;
5965 end if;
996ae0b0
RK
5966 end;
5967
5968 return True;
5969
22cb89b5 5970 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
5971 -- However, a generic type with unknown discriminants may be
5972 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
5973 -- checking on an inherited operation may compare the actual with the
5974 -- subtype that renames it in the instance.
996ae0b0 5975
80298c3b 5976 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
996ae0b0 5977 then
7a3f77d2
AC
5978 return
5979 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
5980
5981 -- Array type
5982
5983 elsif Is_Array_Type (T1) then
5984
22cb89b5 5985 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 5986 -- are unconstrained then no further checking is needed.
996ae0b0
RK
5987
5988 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5989 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5990 end if;
5991
22cb89b5
AC
5992 -- Both subtypes are constrained, so check that the index subtypes
5993 -- statically match.
996ae0b0
RK
5994
5995 declare
5996 Index1 : Node_Id := First_Index (T1);
5997 Index2 : Node_Id := First_Index (T2);
5998
5999 begin
6000 while Present (Index1) loop
6001 if not
6002 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6003 then
6004 return False;
6005 end if;
6006
6007 Next_Index (Index1);
6008 Next_Index (Index2);
6009 end loop;
6010
6011 return True;
6012 end;
6013
6014 elsif Is_Access_Type (T1) then
b5bd964f
ES
6015 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6016 return False;
6017
e1b871e9
AC
6018 elsif Ekind_In (T1, E_Access_Subprogram_Type,
6019 E_Anonymous_Access_Subprogram_Type)
7a3f77d2 6020 then
b5bd964f
ES
6021 return
6022 Subtype_Conformant
6023 (Designated_Type (T1),
bb98fe75 6024 Designated_Type (T2));
b5bd964f
ES
6025 else
6026 return
6027 Subtypes_Statically_Match
6028 (Designated_Type (T1),
6029 Designated_Type (T2))
6030 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6031 end if;
996ae0b0
RK
6032
6033 -- All other types definitely match
6034
6035 else
6036 return True;
6037 end if;
6038 end Subtypes_Statically_Match;
6039
6040 ----------
6041 -- Test --
6042 ----------
6043
6044 function Test (Cond : Boolean) return Uint is
6045 begin
6046 if Cond then
6047 return Uint_1;
6048 else
6049 return Uint_0;
6050 end if;
6051 end Test;
6052
634a926b
AC
6053 ---------------------
6054 -- Test_Comparison --
6055 ---------------------
6056
6057 procedure Test_Comparison
6058 (Op : Node_Id;
6059 Assume_Valid : Boolean;
6060 True_Result : out Boolean;
6061 False_Result : out Boolean)
6062 is
6063 Left : constant Node_Id := Left_Opnd (Op);
6064 Left_Typ : constant Entity_Id := Etype (Left);
6065 Orig_Op : constant Node_Id := Original_Node (Op);
6066
6067 procedure Replacement_Warning (Msg : String);
2da8c8e2 6068 -- Emit a warning on a comparison that can be replaced by '='
634a926b
AC
6069
6070 -------------------------
6071 -- Replacement_Warning --
6072 -------------------------
6073
6074 procedure Replacement_Warning (Msg : String) is
6075 begin
6076 if Constant_Condition_Warnings
6077 and then Comes_From_Source (Orig_Op)
6078 and then Is_Integer_Type (Left_Typ)
6079 and then not Error_Posted (Op)
6080 and then not Has_Warnings_Off (Left_Typ)
6081 and then not In_Instance
6082 then
6083 Error_Msg_N (Msg, Op);
6084 end if;
6085 end Replacement_Warning;
6086
6087 -- Local variables
6088
6089 Res : constant Compare_Result :=
6090 Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6091
6092 -- Start of processing for Test_Comparison
6093
6094 begin
6095 case N_Op_Compare (Nkind (Op)) is
6096 when N_Op_Eq =>
6097 True_Result := Res = EQ;
6098 False_Result := Res = LT or else Res = GT or else Res = NE;
6099
6100 when N_Op_Ge =>
6101 True_Result := Res in Compare_GE;
6102 False_Result := Res = LT;
6103
6104 if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6105 Replacement_Warning
6106 ("can never be greater than, could replace by ""'=""?c?");
6107 end if;
6108
6109 when N_Op_Gt =>
6110 True_Result := Res = GT;
6111 False_Result := Res in Compare_LE;
6112
6113 when N_Op_Le =>
6114 True_Result := Res in Compare_LE;
6115 False_Result := Res = GT;
6116
6117 if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6118 Replacement_Warning
6119 ("can never be less than, could replace by ""'=""?c?");
6120 end if;
6121
6122 when N_Op_Lt =>
6123 True_Result := Res = LT;
6124 False_Result := Res in Compare_GE;
6125
6126 when N_Op_Ne =>
6127 True_Result := Res = NE or else Res = GT or else Res = LT;
6128 False_Result := Res = EQ;
6129 end case;
6130 end Test_Comparison;
6131
996ae0b0
RK
6132 ---------------------------------
6133 -- Test_Expression_Is_Foldable --
6134 ---------------------------------
6135
6136 -- One operand case
6137
6138 procedure Test_Expression_Is_Foldable
6139 (N : Node_Id;
6140 Op1 : Node_Id;
6141 Stat : out Boolean;
6142 Fold : out Boolean)
6143 is
6144 begin
6145 Stat := False;
0356699b
RD
6146 Fold := False;
6147
6148 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6149 return;
6150 end if;
996ae0b0
RK
6151
6152 -- If operand is Any_Type, just propagate to result and do not
6153 -- try to fold, this prevents cascaded errors.
6154
6155 if Etype (Op1) = Any_Type then
6156 Set_Etype (N, Any_Type);
996ae0b0
RK
6157 return;
6158
6159 -- If operand raises constraint error, then replace node N with the
6160 -- raise constraint error node, and we are obviously not foldable.
6161 -- Note that this replacement inherits the Is_Static_Expression flag
6162 -- from the operand.
6163
6164 elsif Raises_Constraint_Error (Op1) then
6165 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
6166 return;
6167
6168 -- If the operand is not static, then the result is not static, and
6169 -- all we have to do is to check the operand since it is now known
6170 -- to appear in a non-static context.
6171
6172 elsif not Is_Static_Expression (Op1) then
6173 Check_Non_Static_Context (Op1);
6174 Fold := Compile_Time_Known_Value (Op1);
6175 return;
6176
6177 -- An expression of a formal modular type is not foldable because
6178 -- the modulus is unknown.
6179
6180 elsif Is_Modular_Integer_Type (Etype (Op1))
6181 and then Is_Generic_Type (Etype (Op1))
6182 then
6183 Check_Non_Static_Context (Op1);
996ae0b0
RK
6184 return;
6185
6186 -- Here we have the case of an operand whose type is OK, which is
6187 -- static, and which does not raise constraint error, we can fold.
6188
6189 else
6190 Set_Is_Static_Expression (N);
6191 Fold := True;
6192 Stat := True;
6193 end if;
6194 end Test_Expression_Is_Foldable;
6195
6196 -- Two operand case
6197
6198 procedure Test_Expression_Is_Foldable
6c3c671e
AC
6199 (N : Node_Id;
6200 Op1 : Node_Id;
6201 Op2 : Node_Id;
6202 Stat : out Boolean;
6203 Fold : out Boolean;
6204 CRT_Safe : Boolean := False)
996ae0b0
RK
6205 is
6206 Rstat : constant Boolean := Is_Static_Expression (Op1)
80298c3b
AC
6207 and then
6208 Is_Static_Expression (Op2);
996ae0b0
RK
6209
6210 begin
6211 Stat := False;
0356699b
RD
6212 Fold := False;
6213
4a28b181
AC
6214 -- Inhibit folding if -gnatd.f flag set
6215
0356699b
RD
6216 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6217 return;
6218 end if;
996ae0b0
RK
6219
6220 -- If either operand is Any_Type, just propagate to result and
6221 -- do not try to fold, this prevents cascaded errors.
6222
6223 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6224 Set_Etype (N, Any_Type);
996ae0b0
RK
6225 return;
6226
22cb89b5
AC
6227 -- If left operand raises constraint error, then replace node N with the
6228 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
6229 -- Is_Static_Expression is set from the two operands in the normal way,
6230 -- and we check the right operand if it is in a non-static context.
6231
6232 elsif Raises_Constraint_Error (Op1) then
6233 if not Rstat then
6234 Check_Non_Static_Context (Op2);
6235 end if;
6236
6237 Rewrite_In_Raise_CE (N, Op1);
6238 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6239 return;
6240
22cb89b5
AC
6241 -- Similar processing for the case of the right operand. Note that we
6242 -- don't use this routine for the short-circuit case, so we do not have
6243 -- to worry about that special case here.
996ae0b0
RK
6244
6245 elsif Raises_Constraint_Error (Op2) then
6246 if not Rstat then
6247 Check_Non_Static_Context (Op1);
6248 end if;
6249
6250 Rewrite_In_Raise_CE (N, Op2);
6251 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6252 return;
6253
82c80734 6254 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
6255
6256 elsif Is_Modular_Integer_Type (Etype (Op1))
6257 and then Is_Generic_Type (Etype (Op1))
6258 then
6259 Check_Non_Static_Context (Op1);
996ae0b0
RK
6260 return;
6261
6262 -- If result is not static, then check non-static contexts on operands
22cb89b5 6263 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
6264
6265 elsif not Rstat then
6266 Check_Non_Static_Context (Op1);
6267 Check_Non_Static_Context (Op2);
6c3c671e
AC
6268
6269 if CRT_Safe then
6270 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6271 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6272 else
6273 Fold := Compile_Time_Known_Value (Op1)
6274 and then Compile_Time_Known_Value (Op2);
6275 end if;
6276
996ae0b0
RK
6277 return;
6278
22cb89b5
AC
6279 -- Else result is static and foldable. Both operands are static, and
6280 -- neither raises constraint error, so we can definitely fold.
996ae0b0
RK
6281
6282 else
6283 Set_Is_Static_Expression (N);
6284 Fold := True;
6285 Stat := True;
6286 return;
6287 end if;
6288 end Test_Expression_Is_Foldable;
6289
305caf42
AC
6290 -------------------
6291 -- Test_In_Range --
6292 -------------------
6293
6294 function Test_In_Range
6295 (N : Node_Id;
6296 Typ : Entity_Id;
6297 Assume_Valid : Boolean;
6298 Fixed_Int : Boolean;
6299 Int_Real : Boolean) return Range_Membership
6300 is
6301 Val : Uint;
6302 Valr : Ureal;
6303
6304 pragma Warnings (Off, Assume_Valid);
6305 -- For now Assume_Valid is unreferenced since the current implementation
6306 -- always returns Unknown if N is not a compile time known value, but we
6307 -- keep the parameter to allow for future enhancements in which we try
6308 -- to get the information in the variable case as well.
6309
6310 begin
8bef7ba9
AC
6311 -- If an error was posted on expression, then return Unknown, we do not
6312 -- want cascaded errors based on some false analysis of a junk node.
6313
6314 if Error_Posted (N) then
6315 return Unknown;
6316
7b536495
AC
6317 -- Expression that raises constraint error is an odd case. We certainly
6318 -- do not want to consider it to be in range. It might make sense to
6319 -- consider it always out of range, but this causes incorrect error
6320 -- messages about static expressions out of range. So we just return
6321 -- Unknown, which is always safe.
6322
8bef7ba9 6323 elsif Raises_Constraint_Error (N) then
7b536495
AC
6324 return Unknown;
6325
305caf42
AC
6326 -- Universal types have no range limits, so always in range
6327
7b536495 6328 elsif Typ = Universal_Integer or else Typ = Universal_Real then
305caf42
AC
6329 return In_Range;
6330
6331 -- Never known if not scalar type. Don't know if this can actually
a90bd866 6332 -- happen, but our spec allows it, so we must check.
305caf42
AC
6333
6334 elsif not Is_Scalar_Type (Typ) then
6335 return Unknown;
6336
6337 -- Never known if this is a generic type, since the bounds of generic
6338 -- types are junk. Note that if we only checked for static expressions
6339 -- (instead of compile time known values) below, we would not need this
6340 -- check, because values of a generic type can never be static, but they
6341 -- can be known at compile time.
6342
6343 elsif Is_Generic_Type (Typ) then
6344 return Unknown;
6345
7b536495
AC
6346 -- Case of a known compile time value, where we can check if it is in
6347 -- the bounds of the given type.
305caf42 6348
7b536495 6349 elsif Compile_Time_Known_Value (N) then
305caf42
AC
6350 declare
6351 Lo : Node_Id;
6352 Hi : Node_Id;
6353
6354 LB_Known : Boolean;
6355 HB_Known : Boolean;
6356
6357 begin
6358 Lo := Type_Low_Bound (Typ);
6359 Hi := Type_High_Bound (Typ);
6360
6361 LB_Known := Compile_Time_Known_Value (Lo);
6362 HB_Known := Compile_Time_Known_Value (Hi);
6363
6364 -- Fixed point types should be considered as such only if flag
6365 -- Fixed_Int is set to False.
6366
6367 if Is_Floating_Point_Type (Typ)
6368 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6369 or else Int_Real
6370 then
6371 Valr := Expr_Value_R (N);
6372
6373 if LB_Known and HB_Known then
6374 if Valr >= Expr_Value_R (Lo)
6375 and then
6376 Valr <= Expr_Value_R (Hi)
6377 then
6378 return In_Range;
6379 else
6380 return Out_Of_Range;
6381 end if;
6382
6383 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6384 or else
6385 (HB_Known and then Valr > Expr_Value_R (Hi))
6386 then
6387 return Out_Of_Range;
6388
6389 else
6390 return Unknown;
6391 end if;
6392
6393 else
6394 Val := Expr_Value (N);
6395
6396 if LB_Known and HB_Known then
80298c3b 6397 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
305caf42
AC
6398 then
6399 return In_Range;
6400 else
6401 return Out_Of_Range;
6402 end if;
6403
6404 elsif (LB_Known and then Val < Expr_Value (Lo))
6405 or else
6406 (HB_Known and then Val > Expr_Value (Hi))
6407 then
6408 return Out_Of_Range;
6409
6410 else
6411 return Unknown;
6412 end if;
6413 end if;
6414 end;
7b536495
AC
6415
6416 -- Here for value not known at compile time. Case of expression subtype
6417 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6418 -- In this case we know it is in range without knowing its value.
6419
6420 elsif Assume_Valid
6421 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6422 then
6423 return In_Range;
6424
6c56d9b8
AC
6425 -- Another special case. For signed integer types, if the target type
6426 -- has Is_Known_Valid set, and the source type does not have a larger
6427 -- size, then the source value must be in range. We exclude biased
6428 -- types, because they bizarrely can generate out of range values.
6429
6430 elsif Is_Signed_Integer_Type (Etype (N))
6431 and then Is_Known_Valid (Typ)
6432 and then Esize (Etype (N)) <= Esize (Typ)
6433 and then not Has_Biased_Representation (Etype (N))
6434 then
6435 return In_Range;
6436
7b536495
AC
6437 -- For all other cases, result is unknown
6438
6439 else
6440 return Unknown;
305caf42
AC
6441 end if;
6442 end Test_In_Range;
6443
996ae0b0
RK
6444 --------------
6445 -- To_Bits --
6446 --------------
6447
6448 procedure To_Bits (U : Uint; B : out Bits) is
6449 begin
6450 for J in 0 .. B'Last loop
6451 B (J) := (U / (2 ** J)) mod 2 /= 0;
6452 end loop;
6453 end To_Bits;
6454
fbf5a39b
AC
6455 --------------------
6456 -- Why_Not_Static --
6457 --------------------
6458
6459 procedure Why_Not_Static (Expr : Node_Id) is
66c19cd4
AC
6460 N : constant Node_Id := Original_Node (Expr);
6461 Typ : Entity_Id := Empty;
fbf5a39b 6462 E : Entity_Id;
edab6088
RD
6463 Alt : Node_Id;
6464 Exp : Node_Id;
fbf5a39b
AC
6465
6466 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
6467 -- A version that can be called on a list of expressions. Finds all
6468 -- non-static violations in any element of the list.
fbf5a39b
AC
6469
6470 -------------------------
6471 -- Why_Not_Static_List --
6472 -------------------------
6473
6474 procedure Why_Not_Static_List (L : List_Id) is
6475 N : Node_Id;
fbf5a39b
AC
6476 begin
6477 if Is_Non_Empty_List (L) then
6478 N := First (L);
6479 while Present (N) loop
6480 Why_Not_Static (N);
6481 Next (N);
6482 end loop;
6483 end if;
6484 end Why_Not_Static_List;
6485
6486 -- Start of processing for Why_Not_Static
6487
6488 begin
fbf5a39b
AC
6489 -- Ignore call on error or empty node
6490
6491 if No (Expr) or else Nkind (Expr) = N_Error then
6492 return;
6493 end if;
6494
6495 -- Preprocessing for sub expressions
6496
6497 if Nkind (Expr) in N_Subexpr then
6498
6499 -- Nothing to do if expression is static
6500
6501 if Is_OK_Static_Expression (Expr) then
6502 return;
6503 end if;
6504
6505 -- Test for constraint error raised
6506
6507 if Raises_Constraint_Error (Expr) then
edab6088
RD
6508
6509 -- Special case membership to find out which piece to flag
6510
6511 if Nkind (N) in N_Membership_Test then
6512 if Raises_Constraint_Error (Left_Opnd (N)) then
6513 Why_Not_Static (Left_Opnd (N));
6514 return;
6515
6516 elsif Present (Right_Opnd (N))
6517 and then Raises_Constraint_Error (Right_Opnd (N))
6518 then
6519 Why_Not_Static (Right_Opnd (N));
6520 return;
6521
6522 else
6523 pragma Assert (Present (Alternatives (N)));
6524
6525 Alt := First (Alternatives (N));
6526 while Present (Alt) loop
6527 if Raises_Constraint_Error (Alt) then
6528 Why_Not_Static (Alt);
6529 return;
6530 else
6531 Next (Alt);
6532 end if;
6533 end loop;
6534 end if;
6535
6536 -- Special case a range to find out which bound to flag
6537
6538 elsif Nkind (N) = N_Range then
6539 if Raises_Constraint_Error (Low_Bound (N)) then
6540 Why_Not_Static (Low_Bound (N));
6541 return;
6542
6543 elsif Raises_Constraint_Error (High_Bound (N)) then
6544 Why_Not_Static (High_Bound (N));
6545 return;
6546 end if;
6547
6548 -- Special case attribute to see which part to flag
6549
6550 elsif Nkind (N) = N_Attribute_Reference then
6551 if Raises_Constraint_Error (Prefix (N)) then
6552 Why_Not_Static (Prefix (N));
6553 return;
6554 end if;
6555
6556 if Present (Expressions (N)) then
6557 Exp := First (Expressions (N));
6558 while Present (Exp) loop
6559 if Raises_Constraint_Error (Exp) then
6560 Why_Not_Static (Exp);
6561 return;
6562 end if;
6563
6564 Next (Exp);
6565 end loop;
6566 end if;
6567
6568 -- Special case a subtype name
6569
6570 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6571 Error_Msg_NE
6572 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6573 return;
6574 end if;
6575
6576 -- End of special cases
6577
fbf5a39b 6578 Error_Msg_N
80298c3b
AC
6579 ("!expression raises exception, cannot be static (RM 4.9(34))",
6580 N);
fbf5a39b
AC
6581 return;
6582 end if;
6583
6584 -- If no type, then something is pretty wrong, so ignore
6585
6586 Typ := Etype (Expr);
6587
6588 if No (Typ) then
6589 return;
6590 end if;
6591
65f7ed64
AC
6592 -- Type must be scalar or string type (but allow Bignum, since this
6593 -- is really a scalar type from our point of view in this diagnosis).
fbf5a39b
AC
6594
6595 if not Is_Scalar_Type (Typ)
6596 and then not Is_String_Type (Typ)
65f7ed64 6597 and then not Is_RTE (Typ, RE_Bignum)
fbf5a39b
AC
6598 then
6599 Error_Msg_N
c8a3028c 6600 ("!static expression must have scalar or string type " &
8fde064e 6601 "(RM 4.9(2))", N);
fbf5a39b
AC
6602 return;
6603 end if;
6604 end if;
6605
6606 -- If we got through those checks, test particular node kind
6607
6608 case Nkind (N) is
8fde064e
AC
6609
6610 -- Entity name
6611
d8f43ee6
HK
6612 when N_Expanded_Name
6613 | N_Identifier
6614 | N_Operator_Symbol
6615 =>
fbf5a39b
AC
6616 E := Entity (N);
6617
6618 if Is_Named_Number (E) then
6619 null;
6620
6621 elsif Ekind (E) = E_Constant then
8fde064e
AC
6622
6623 -- One case we can give a metter message is when we have a
6624 -- string literal created by concatenating an aggregate with
6625 -- an others expression.
6626
6627 Entity_Case : declare
6628 CV : constant Node_Id := Constant_Value (E);
6629 CO : constant Node_Id := Original_Node (CV);
6630
6631 function Is_Aggregate (N : Node_Id) return Boolean;
6632 -- See if node N came from an others aggregate, if so
6633 -- return True and set Error_Msg_Sloc to aggregate.
6634
6635 ------------------
6636 -- Is_Aggregate --
6637 ------------------
6638
6639 function Is_Aggregate (N : Node_Id) return Boolean is
6640 begin
6641 if Nkind (Original_Node (N)) = N_Aggregate then
6642 Error_Msg_Sloc := Sloc (Original_Node (N));
6643 return True;
80298c3b 6644
8fde064e
AC
6645 elsif Is_Entity_Name (N)
6646 and then Ekind (Entity (N)) = E_Constant
6647 and then
6648 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6649 N_Aggregate
6650 then
6651 Error_Msg_Sloc :=
6652 Sloc (Original_Node (Constant_Value (Entity (N))));
6653 return True;
80298c3b 6654
8fde064e
AC
6655 else
6656 return False;
6657 end if;
6658 end Is_Aggregate;
6659
6660 -- Start of processing for Entity_Case
6661
6662 begin
6663 if Is_Aggregate (CV)
6664 or else (Nkind (CO) = N_Op_Concat
6665 and then (Is_Aggregate (Left_Opnd (CO))
6666 or else
6667 Is_Aggregate (Right_Opnd (CO))))
6668 then
c8a3028c 6669 Error_Msg_N ("!aggregate (#) is never static", N);
8fde064e 6670
aa500b7a 6671 elsif No (CV) or else not Is_Static_Expression (CV) then
8fde064e 6672 Error_Msg_NE
c8a3028c 6673 ("!& is not a static constant (RM 4.9(5))", N, E);
8fde064e
AC
6674 end if;
6675 end Entity_Case;
fbf5a39b 6676
edab6088
RD
6677 elsif Is_Type (E) then
6678 Error_Msg_NE
6679 ("!& is not a static subtype (RM 4.9(26))", N, E);
6680
fbf5a39b
AC
6681 else
6682 Error_Msg_NE
c8a3028c 6683 ("!& is not static constant or named number "
8fde064e 6684 & "(RM 4.9(5))", N, E);
fbf5a39b
AC
6685 end if;
6686
8fde064e
AC
6687 -- Binary operator
6688
d8f43ee6
HK
6689 when N_Binary_Op
6690 | N_Membership_Test
6691 | N_Short_Circuit
6692 =>
fbf5a39b
AC
6693 if Nkind (N) in N_Op_Shift then
6694 Error_Msg_N
d8f43ee6 6695 ("!shift functions are never static (RM 4.9(6,18))", N);
fbf5a39b
AC
6696 else
6697 Why_Not_Static (Left_Opnd (N));
6698 Why_Not_Static (Right_Opnd (N));
6699 end if;
6700
8fde064e
AC
6701 -- Unary operator
6702
fbf5a39b
AC
6703 when N_Unary_Op =>
6704 Why_Not_Static (Right_Opnd (N));
6705
8fde064e
AC
6706 -- Attribute reference
6707
fbf5a39b
AC
6708 when N_Attribute_Reference =>
6709 Why_Not_Static_List (Expressions (N));
6710
6711 E := Etype (Prefix (N));
6712
6713 if E = Standard_Void_Type then
6714 return;
6715 end if;
6716
6717 -- Special case non-scalar'Size since this is a common error
6718
6719 if Attribute_Name (N) = Name_Size then
6720 Error_Msg_N
c8a3028c 6721 ("!size attribute is only static for static scalar type "
8fde064e 6722 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
6723
6724 -- Flag array cases
6725
6726 elsif Is_Array_Type (E) then
80298c3b
AC
6727 if not Nam_In (Attribute_Name (N), Name_First,
6728 Name_Last,
6729 Name_Length)
fbf5a39b
AC
6730 then
6731 Error_Msg_N
c8a3028c 6732 ("!static array attribute must be Length, First, or Last "
8fde064e 6733 & "(RM 4.9(8))", N);
fbf5a39b
AC
6734
6735 -- Since we know the expression is not-static (we already
6736 -- tested for this, must mean array is not static).
6737
6738 else
6739 Error_Msg_N
c8a3028c 6740 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
fbf5a39b
AC
6741 end if;
6742
6743 return;
6744
22cb89b5
AC
6745 -- Special case generic types, since again this is a common source
6746 -- of confusion.
fbf5a39b 6747
80298c3b 6748 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
fbf5a39b 6749 Error_Msg_N
c8a3028c 6750 ("!attribute of generic type is never static "
8fde064e 6751 & "(RM 4.9(7,8))", N);
fbf5a39b 6752
edab6088 6753 elsif Is_OK_Static_Subtype (E) then
fbf5a39b
AC
6754 null;
6755
6756 elsif Is_Scalar_Type (E) then
6757 Error_Msg_N
c8a3028c 6758 ("!prefix type for attribute is not static scalar subtype "
8fde064e 6759 & "(RM 4.9(7))", N);
fbf5a39b
AC
6760
6761 else
6762 Error_Msg_N
c8a3028c 6763 ("!static attribute must apply to array/scalar type "
8fde064e 6764 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
6765 end if;
6766
8fde064e
AC
6767 -- String literal
6768
fbf5a39b
AC
6769 when N_String_Literal =>
6770 Error_Msg_N
c8a3028c 6771 ("!subtype of string literal is non-static (RM 4.9(4))", N);
8fde064e
AC
6772
6773 -- Explicit dereference
fbf5a39b
AC
6774
6775 when N_Explicit_Dereference =>
6776 Error_Msg_N
c8a3028c 6777 ("!explicit dereference is never static (RM 4.9)", N);
8fde064e
AC
6778
6779 -- Function call
fbf5a39b
AC
6780
6781 when N_Function_Call =>
6782 Why_Not_Static_List (Parameter_Associations (N));
65f7ed64
AC
6783
6784 -- Complain about non-static function call unless we have Bignum
6785 -- which means that the underlying expression is really some
6786 -- scalar arithmetic operation.
6787
6788 if not Is_RTE (Typ, RE_Bignum) then
c8a3028c 6789 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
65f7ed64 6790 end if;
fbf5a39b 6791
8fde064e
AC
6792 -- Parameter assocation (test actual parameter)
6793
fbf5a39b
AC
6794 when N_Parameter_Association =>
6795 Why_Not_Static (Explicit_Actual_Parameter (N));
6796
8fde064e
AC
6797 -- Indexed component
6798
fbf5a39b 6799 when N_Indexed_Component =>
c8a3028c 6800 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
8fde064e
AC
6801
6802 -- Procedure call
fbf5a39b
AC
6803
6804 when N_Procedure_Call_Statement =>
c8a3028c 6805 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
8fde064e
AC
6806
6807 -- Qualified expression (test expression)
fbf5a39b
AC
6808
6809 when N_Qualified_Expression =>
6810 Why_Not_Static (Expression (N));
6811
8fde064e
AC
6812 -- Aggregate
6813
d8f43ee6
HK
6814 when N_Aggregate
6815 | N_Extension_Aggregate
6816 =>
c8a3028c 6817 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
8fde064e
AC
6818
6819 -- Range
fbf5a39b
AC
6820
6821 when N_Range =>
6822 Why_Not_Static (Low_Bound (N));
6823 Why_Not_Static (High_Bound (N));
6824
8fde064e
AC
6825 -- Range constraint, test range expression
6826
fbf5a39b
AC
6827 when N_Range_Constraint =>
6828 Why_Not_Static (Range_Expression (N));
6829
8fde064e
AC
6830 -- Subtype indication, test constraint
6831
fbf5a39b
AC
6832 when N_Subtype_Indication =>
6833 Why_Not_Static (Constraint (N));
6834
8fde064e
AC
6835 -- Selected component
6836
fbf5a39b 6837 when N_Selected_Component =>
c8a3028c 6838 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
8fde064e
AC
6839
6840 -- Slice
fbf5a39b
AC
6841
6842 when N_Slice =>
c8a3028c 6843 Error_Msg_N ("!slice is never static (RM 4.9)", N);
fbf5a39b
AC
6844
6845 when N_Type_Conversion =>
6846 Why_Not_Static (Expression (N));
6847
23b86353 6848 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
edab6088 6849 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
6850 then
6851 Error_Msg_N
c8a3028c 6852 ("!static conversion requires static scalar subtype result "
8fde064e 6853 & "(RM 4.9(9))", N);
fbf5a39b
AC
6854 end if;
6855
8fde064e
AC
6856 -- Unchecked type conversion
6857
fbf5a39b
AC
6858 when N_Unchecked_Type_Conversion =>
6859 Error_Msg_N
c8a3028c 6860 ("!unchecked type conversion is never static (RM 4.9)", N);
8fde064e
AC
6861
6862 -- All other cases, no reason to give
fbf5a39b
AC
6863
6864 when others =>
6865 null;
fbf5a39b
AC
6866 end case;
6867 end Why_Not_Static;
6868
996ae0b0 6869end Sem_Eval;