]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_eval.adb
configure.ac: Test for executability of GFORTRAN.
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
93c3fca7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
0356699b 34with Lib; use Lib;
13f34a3f 35with Namet; use Namet;
996ae0b0
RK
36with Nmake; use Nmake;
37with Nlists; use Nlists;
38with Opt; use Opt;
39with Sem; use Sem;
a4100e55 40with Sem_Aux; use Sem_Aux;
996ae0b0 41with Sem_Cat; use Sem_Cat;
b5bd964f 42with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
43with Sem_Ch8; use Sem_Ch8;
44with Sem_Res; use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sem_Type; use Sem_Type;
47with Sem_Warn; use Sem_Warn;
48with Sinfo; use Sinfo;
49with Snames; use Snames;
50with Stand; use Stand;
51with Stringt; use Stringt;
07fc65c4 52with Tbuild; use Tbuild;
996ae0b0
RK
53
54package body Sem_Eval is
55
56 -----------------------------------------
57 -- Handling of Compile Time Evaluation --
58 -----------------------------------------
59
60 -- The compile time evaluation of expressions is distributed over several
f3d57416 61 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
62 -- a subexpression is resolved and is therefore accomplished in a bottom
63 -- up fashion. The flags are synthesized using the following approach.
64
65 -- Is_Static_Expression is determined by following the detailed rules
66 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
67 -- flag of the operands in many cases.
68
69 -- Raises_Constraint_Error is set if any of the operands have the flag
70 -- set or if an attempt to compute the value of the current expression
71 -- results in detection of a runtime constraint error.
72
73 -- As described in the spec, the requirement is that Is_Static_Expression
74 -- be accurately set, and in addition for nodes for which this flag is set,
75 -- Raises_Constraint_Error must also be set. Furthermore a node which has
76 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
77 -- requirement is that the expression value must be precomputed, and the
78 -- node is either a literal, or the name of a constant entity whose value
79 -- is a static expression.
80
81 -- The general approach is as follows. First compute Is_Static_Expression.
82 -- If the node is not static, then the flag is left off in the node and
83 -- we are all done. Otherwise for a static node, we test if any of the
84 -- operands will raise constraint error, and if so, propagate the flag
85 -- Raises_Constraint_Error to the result node and we are done (since the
86 -- error was already posted at a lower level).
87
88 -- For the case of a static node whose operands do not raise constraint
89 -- error, we attempt to evaluate the node. If this evaluation succeeds,
90 -- then the node is replaced by the result of this computation. If the
91 -- evaluation raises constraint error, then we rewrite the node with
92 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
93 -- to post appropriate error messages.
94
95 ----------------
96 -- Local Data --
97 ----------------
98
99 type Bits is array (Nat range <>) of Boolean;
100 -- Used to convert unsigned (modular) values for folding logical ops
101
07fc65c4
GB
102 -- The following definitions are used to maintain a cache of nodes that
103 -- have compile time known values. The cache is maintained only for
104 -- discrete types (the most common case), and is populated by calls to
105 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
106 -- since it is possible for the status to change (in particular it is
107 -- possible for a node to get replaced by a constraint error node).
108
109 CV_Bits : constant := 5;
110 -- Number of low order bits of Node_Id value used to reference entries
111 -- in the cache table.
112
113 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
114 -- Size of cache for compile time values
115
116 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
117
118 type CV_Entry is record
119 N : Node_Id;
120 V : Uint;
121 end record;
122
123 type CV_Cache_Array is array (CV_Range) of CV_Entry;
124
125 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
126 -- This is the actual cache, with entries consisting of node/value pairs,
127 -- and the impossible value Node_High_Bound used for unset entries.
128
996ae0b0
RK
129 -----------------------
130 -- Local Subprograms --
131 -----------------------
132
996ae0b0
RK
133 function From_Bits (B : Bits; T : Entity_Id) return Uint;
134 -- Converts a bit string of length B'Length to a Uint value to be used
135 -- for a target of type T, which is a modular type. This procedure
136 -- includes the necessary reduction by the modulus in the case of a
137 -- non-binary modulus (for a binary modulus, the bit string is the
138 -- right length any way so all is well).
139
140 function Get_String_Val (N : Node_Id) return Node_Id;
141 -- Given a tree node for a folded string or character value, returns
142 -- the corresponding string literal or character literal (one of the
143 -- two must be available, or the operand would not have been marked
144 -- as foldable in the earlier analysis of the operation).
145
07fc65c4
GB
146 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
147 -- Bits represents the number of bits in an integer value to be computed
148 -- (but the value has not been computed yet). If this value in Bits is
149 -- reasonable, a result of True is returned, with the implication that
150 -- the caller should go ahead and complete the calculation. If the value
151 -- in Bits is unreasonably large, then an error is posted on node N, and
152 -- False is returned (and the caller skips the proposed calculation).
153
996ae0b0
RK
154 procedure Out_Of_Range (N : Node_Id);
155 -- This procedure is called if it is determined that node N, which
156 -- appears in a non-static context, is a compile time known value
157 -- which is outside its range, i.e. the range of Etype. This is used
158 -- in contexts where this is an illegality if N is static, and should
159 -- generate a warning otherwise.
160
161 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
162 -- N and Exp are nodes representing an expression, Exp is known
163 -- to raise CE. N is rewritten in term of Exp in the optimal way.
164
165 function String_Type_Len (Stype : Entity_Id) return Uint;
166 -- Given a string type, determines the length of the index type, or,
167 -- if this index type is non-static, the length of the base type of
168 -- this index type. Note that if the string type is itself static,
169 -- then the index type is static, so the second case applies only
170 -- if the string type passed is non-static.
171
172 function Test (Cond : Boolean) return Uint;
173 pragma Inline (Test);
174 -- This function simply returns the appropriate Boolean'Pos value
175 -- corresponding to the value of Cond as a universal integer. It is
176 -- used for producing the result of the static evaluation of the
177 -- logical operators
178
179 procedure Test_Expression_Is_Foldable
180 (N : Node_Id;
181 Op1 : Node_Id;
182 Stat : out Boolean;
183 Fold : out Boolean);
184 -- Tests to see if expression N whose single operand is Op1 is foldable,
185 -- i.e. the operand value is known at compile time. If the operation is
186 -- foldable, then Fold is True on return, and Stat indicates whether
187 -- the result is static (i.e. both operands were static). Note that it
188 -- is quite possible for Fold to be True, and Stat to be False, since
189 -- there are cases in which we know the value of an operand even though
190 -- it is not technically static (e.g. the static lower bound of a range
191 -- whose upper bound is non-static).
192 --
3d5952be 193 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
996ae0b0
RK
194 -- call to Check_Non_Static_Context on the operand. If Fold is False on
195 -- return, then all processing is complete, and the caller should
196 -- return, since there is nothing else to do.
93c3fca7
AC
197 --
198 -- If Stat is set True on return, then Is_Static_Expression is also set
199 -- true in node N. There are some cases where this is over-enthusiastic,
200 -- e.g. in the two operand case below, for string comaprison, the result
201 -- is not static even though the two operands are static. In such cases,
202 -- the caller must reset the Is_Static_Expression flag in N.
996ae0b0
RK
203
204 procedure Test_Expression_Is_Foldable
205 (N : Node_Id;
206 Op1 : Node_Id;
207 Op2 : Node_Id;
208 Stat : out Boolean;
209 Fold : out Boolean);
210 -- Same processing, except applies to an expression N with two operands
211 -- Op1 and Op2.
212
213 procedure To_Bits (U : Uint; B : out Bits);
214 -- Converts a Uint value to a bit string of length B'Length
215
216 ------------------------------
217 -- Check_Non_Static_Context --
218 ------------------------------
219
220 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
221 T : constant Entity_Id := Etype (N);
222 Checks_On : constant Boolean :=
996ae0b0
RK
223 not Index_Checks_Suppressed (T)
224 and not Range_Checks_Suppressed (T);
225
226 begin
fbf5a39b 227 -- Ignore cases of non-scalar types or error types
996ae0b0 228
fbf5a39b 229 if T = Any_Type or else not Is_Scalar_Type (T) then
996ae0b0 230 return;
fbf5a39b 231 end if;
996ae0b0 232
fbf5a39b
AC
233 -- At this stage we have a scalar type. If we have an expression
234 -- that raises CE, then we already issued a warning or error msg
235 -- so there is nothing more to be done in this routine.
236
237 if Raises_Constraint_Error (N) then
238 return;
239 end if;
240
241 -- Now we have a scalar type which is not marked as raising a
242 -- constraint error exception. The main purpose of this routine
243 -- is to deal with static expressions appearing in a non-static
244 -- context. That means that if we do not have a static expression
245 -- then there is not much to do. The one case that we deal with
246 -- here is that if we have a floating-point value that is out of
247 -- range, then we post a warning that an infinity will result.
248
249 if not Is_Static_Expression (N) then
250 if Is_Floating_Point_Type (T)
c800f862 251 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
fbf5a39b
AC
252 then
253 Error_Msg_N
254 ("?float value out of range, infinity will be generated", N);
255 end if;
996ae0b0 256
996ae0b0
RK
257 return;
258 end if;
259
260 -- Here we have the case of outer level static expression of
261 -- scalar type, where the processing of this procedure is needed.
262
263 -- For real types, this is where we convert the value to a machine
264 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
265 -- only need to do this if the parent is a constant declaration,
266 -- since in other cases, gigi should do the necessary conversion
267 -- correctly, but experimentation shows that this is not the case
268 -- on all machines, in particular if we do not convert all literals
269 -- to machine values in non-static contexts, then ACVC test C490001
270 -- fails on Sparc/Solaris and SGI/Irix.
271
272 if Nkind (N) = N_Real_Literal
273 and then not Is_Machine_Number (N)
274 and then not Is_Generic_Type (Etype (N))
275 and then Etype (N) /= Universal_Real
996ae0b0
RK
276 then
277 -- Check that value is in bounds before converting to machine
278 -- number, so as not to lose case where value overflows in the
279 -- least significant bit or less. See B490001.
280
c800f862 281 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
282 Out_Of_Range (N);
283 return;
284 end if;
285
286 -- Note: we have to copy the node, to avoid problems with conformance
287 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
288
289 Rewrite (N, New_Copy (N));
290
291 if not Is_Floating_Point_Type (T) then
292 Set_Realval
293 (N, Corresponding_Integer_Value (N) * Small_Value (T));
294
295 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 296
fbf5a39b
AC
297 -- Note: even though RM 4.9(38) specifies biased rounding,
298 -- this has been modified by AI-100 in order to prevent
299 -- confusing differences in rounding between static and
300 -- non-static expressions. AI-100 specifies that the effect
301 -- of such rounding is implementation dependent, and in GNAT
302 -- we round to nearest even to match the run-time behavior.
996ae0b0 303
fbf5a39b
AC
304 Set_Realval
305 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
306 end if;
307
308 Set_Is_Machine_Number (N);
309 end if;
310
311 -- Check for out of range universal integer. This is a non-static
312 -- context, so the integer value must be in range of the runtime
313 -- representation of universal integers.
314
315 -- We do this only within an expression, because that is the only
316 -- case in which non-static universal integer values can occur, and
317 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
318 -- called in contexts like the expression of a number declaration where
319 -- we certainly want to allow out of range values.
320
321 if Etype (N) = Universal_Integer
322 and then Nkind (N) = N_Integer_Literal
323 and then Nkind (Parent (N)) in N_Subexpr
324 and then
325 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
326 or else
327 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
328 then
329 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
330 (N, "non-static universal integer value out of range?",
331 CE_Range_Check_Failed);
996ae0b0
RK
332
333 -- Check out of range of base type
334
c800f862 335 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
336 Out_Of_Range (N);
337
c800f862
RD
338 -- Give warning if outside subtype (where one or both of the bounds of
339 -- the subtype is static). This warning is omitted if the expression
340 -- appears in a range that could be null (warnings are handled elsewhere
341 -- for this case).
996ae0b0
RK
342
343 elsif T /= Base_Type (T)
344 and then Nkind (Parent (N)) /= N_Range
345 then
c800f862 346 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
347 null;
348
c800f862 349 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 350 Apply_Compile_Time_Constraint_Error
07fc65c4 351 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
352
353 elsif Checks_On then
354 Enable_Range_Check (N);
355
356 else
357 Set_Do_Range_Check (N, False);
358 end if;
359 end if;
360 end Check_Non_Static_Context;
361
362 ---------------------------------
363 -- Check_String_Literal_Length --
364 ---------------------------------
365
366 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
367 begin
368 if not Raises_Constraint_Error (N)
369 and then Is_Constrained (Ttype)
370 then
371 if
372 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
373 then
374 Apply_Compile_Time_Constraint_Error
375 (N, "string length wrong for}?",
07fc65c4 376 CE_Length_Check_Failed,
996ae0b0
RK
377 Ent => Ttype,
378 Typ => Ttype);
379 end if;
380 end if;
381 end Check_String_Literal_Length;
382
383 --------------------------
384 -- Compile_Time_Compare --
385 --------------------------
386
fbf5a39b 387 function Compile_Time_Compare
1c7717c3 388 (L, R : Node_Id;
af02a866
RD
389 Assume_Valid : Boolean) return Compare_Result
390 is
391 Discard : aliased Uint;
392 begin
393 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
394 end Compile_Time_Compare;
395
396 function Compile_Time_Compare
397 (L, R : Node_Id;
398 Diff : access Uint;
1c7717c3
AC
399 Assume_Valid : Boolean;
400 Rec : Boolean := False) return Compare_Result
fbf5a39b 401 is
93c3fca7
AC
402 Ltyp : Entity_Id := Underlying_Type (Etype (L));
403 Rtyp : Entity_Id := Underlying_Type (Etype (R));
1c7717c3
AC
404 -- These get reset to the base type for the case of entities where
405 -- Is_Known_Valid is not set. This takes care of handling possible
406 -- invalid representations using the value of the base type, in
407 -- accordance with RM 13.9.1(10).
996ae0b0 408
af02a866
RD
409 Discard : aliased Uint;
410
996ae0b0
RK
411 procedure Compare_Decompose
412 (N : Node_Id;
413 R : out Node_Id;
414 V : out Uint);
b49365b2
RD
415 -- This procedure decomposes the node N into an expression node and a
416 -- signed offset, so that the value of N is equal to the value of R plus
417 -- the value V (which may be negative). If no such decomposition is
418 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
419
420 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
421 -- This function deals with replacing 'Last and 'First references with
422 -- their corresponding type bounds, which we then can compare. The
423 -- argument is the original node, the result is the identity, unless we
424 -- have a 'Last/'First reference in which case the value returned is the
425 -- appropriate type bound.
996ae0b0 426
57036dcc
ES
427 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
428 -- Even if the context does not assume that values are valid, some
429 -- simple cases can be recognized.
430
996ae0b0
RK
431 function Is_Same_Value (L, R : Node_Id) return Boolean;
432 -- Returns True iff L and R represent expressions that definitely
433 -- have identical (but not necessarily compile time known) values
434 -- Indeed the caller is expected to have already dealt with the
435 -- cases of compile time known values, so these are not tested here.
436
437 -----------------------
438 -- Compare_Decompose --
439 -----------------------
440
441 procedure Compare_Decompose
442 (N : Node_Id;
443 R : out Node_Id;
444 V : out Uint)
445 is
446 begin
447 if Nkind (N) = N_Op_Add
448 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
449 then
450 R := Left_Opnd (N);
451 V := Intval (Right_Opnd (N));
452 return;
453
454 elsif Nkind (N) = N_Op_Subtract
455 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
456 then
457 R := Left_Opnd (N);
458 V := UI_Negate (Intval (Right_Opnd (N)));
459 return;
460
461 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
462 if Attribute_Name (N) = Name_Succ then
463 R := First (Expressions (N));
464 V := Uint_1;
465 return;
466
467 elsif Attribute_Name (N) = Name_Pred then
468 R := First (Expressions (N));
469 V := Uint_Minus_1;
470 return;
471 end if;
472 end if;
473
474 R := N;
475 V := Uint_0;
476 end Compare_Decompose;
477
478 -------------------
479 -- Compare_Fixup --
480 -------------------
481
482 function Compare_Fixup (N : Node_Id) return Node_Id is
483 Indx : Node_Id;
484 Xtyp : Entity_Id;
485 Subs : Nat;
486
487 begin
488 if Nkind (N) = N_Attribute_Reference
489 and then (Attribute_Name (N) = Name_First
490 or else
491 Attribute_Name (N) = Name_Last)
492 then
493 Xtyp := Etype (Prefix (N));
494
495 -- If we have no type, then just abandon the attempt to do
496 -- a fixup, this is probably the result of some other error.
497
498 if No (Xtyp) then
499 return N;
500 end if;
501
502 -- Dereference an access type
503
504 if Is_Access_Type (Xtyp) then
505 Xtyp := Designated_Type (Xtyp);
506 end if;
507
508 -- If we don't have an array type at this stage, something
509 -- is peculiar, e.g. another error, and we abandon the attempt
510 -- at a fixup.
511
512 if not Is_Array_Type (Xtyp) then
513 return N;
514 end if;
515
516 -- Ignore unconstrained array, since bounds are not meaningful
517
518 if not Is_Constrained (Xtyp) then
519 return N;
520 end if;
521
c3de5c4c
ES
522 if Ekind (Xtyp) = E_String_Literal_Subtype then
523 if Attribute_Name (N) = Name_First then
524 return String_Literal_Low_Bound (Xtyp);
525
526 else -- Attribute_Name (N) = Name_Last
527 return Make_Integer_Literal (Sloc (N),
528 Intval => Intval (String_Literal_Low_Bound (Xtyp))
57036dcc 529 + String_Literal_Length (Xtyp));
c3de5c4c
ES
530 end if;
531 end if;
532
996ae0b0
RK
533 -- Find correct index type
534
535 Indx := First_Index (Xtyp);
536
537 if Present (Expressions (N)) then
538 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
539
540 for J in 2 .. Subs loop
541 Indx := Next_Index (Indx);
542 end loop;
543 end if;
544
545 Xtyp := Etype (Indx);
546
547 if Attribute_Name (N) = Name_First then
548 return Type_Low_Bound (Xtyp);
549
550 else -- Attribute_Name (N) = Name_Last
551 return Type_High_Bound (Xtyp);
552 end if;
553 end if;
554
555 return N;
556 end Compare_Fixup;
557
57036dcc
ES
558 ----------------------------
559 -- Is_Known_Valid_Operand --
560 ----------------------------
561
562 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
563 begin
564 return (Is_Entity_Name (Opnd)
565 and then
566 (Is_Known_Valid (Entity (Opnd))
567 or else Ekind (Entity (Opnd)) = E_In_Parameter
568 or else
569 (Ekind (Entity (Opnd)) in Object_Kind
570 and then Present (Current_Value (Entity (Opnd))))))
571 or else Is_OK_Static_Expression (Opnd);
572 end Is_Known_Valid_Operand;
573
996ae0b0
RK
574 -------------------
575 -- Is_Same_Value --
576 -------------------
577
578 function Is_Same_Value (L, R : Node_Id) return Boolean is
579 Lf : constant Node_Id := Compare_Fixup (L);
580 Rf : constant Node_Id := Compare_Fixup (R);
581
fbf5a39b 582 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
583 -- L, R are the Expressions values from two attribute nodes for First
584 -- or Last attributes. Either may be set to No_List if no expressions
585 -- are present (indicating subscript 1). The result is True if both
586 -- expressions represent the same subscript (note one case is where
587 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
588
589 -----------------------
590 -- Is_Same_Subscript --
591 -----------------------
592
593 function Is_Same_Subscript (L, R : List_Id) return Boolean is
594 begin
595 if L = No_List then
596 if R = No_List then
597 return True;
598 else
599 return Expr_Value (First (R)) = Uint_1;
600 end if;
601
602 else
603 if R = No_List then
604 return Expr_Value (First (L)) = Uint_1;
605 else
606 return Expr_Value (First (L)) = Expr_Value (First (R));
607 end if;
608 end if;
609 end Is_Same_Subscript;
610
611 -- Start of processing for Is_Same_Value
612
996ae0b0 613 begin
b49365b2 614 -- Values are the same if they refer to the same entity and the
c800f862
RD
615 -- entity is non-volatile. This does not however apply to Float
616 -- types, since we may have two NaN values and they should never
617 -- compare equal.
996ae0b0 618
b49365b2
RD
619 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
620 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 621 and then Entity (Lf) = Entity (Rf)
b49365b2 622 and then Present (Entity (Lf))
fbf5a39b 623 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
624 and then not Is_Volatile_Reference (L)
625 and then not Is_Volatile_Reference (R)
996ae0b0
RK
626 then
627 return True;
628
629 -- Or if they are compile time known and identical
630
631 elsif Compile_Time_Known_Value (Lf)
632 and then
633 Compile_Time_Known_Value (Rf)
634 and then Expr_Value (Lf) = Expr_Value (Rf)
635 then
636 return True;
637
b49365b2
RD
638 -- False if Nkind of the two nodes is different for remaining cases
639
640 elsif Nkind (Lf) /= Nkind (Rf) then
641 return False;
642
643 -- True if both 'First or 'Last values applying to the same entity
644 -- (first and last don't change even if value does). Note that we
645 -- need this even with the calls to Compare_Fixup, to handle the
646 -- case of unconstrained array attributes where Compare_Fixup
647 -- cannot find useful bounds.
996ae0b0
RK
648
649 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0
RK
650 and then Attribute_Name (Lf) = Attribute_Name (Rf)
651 and then (Attribute_Name (Lf) = Name_First
652 or else
653 Attribute_Name (Lf) = Name_Last)
b49365b2
RD
654 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
655 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 656 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 657 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
658 then
659 return True;
660
b49365b2
RD
661 -- True if the same selected component from the same record
662
663 elsif Nkind (Lf) = N_Selected_Component
664 and then Selector_Name (Lf) = Selector_Name (Rf)
665 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
666 then
667 return True;
668
669 -- True if the same unary operator applied to the same operand
670
671 elsif Nkind (Lf) in N_Unary_Op
672 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
673 then
674 return True;
675
8682d22c 676 -- True if the same binary operator applied to the same operands
b49365b2
RD
677
678 elsif Nkind (Lf) in N_Binary_Op
679 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
680 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
681 then
682 return True;
683
8682d22c 684 -- All other cases, we can't tell, so return False
996ae0b0
RK
685
686 else
687 return False;
688 end if;
689 end Is_Same_Value;
690
691 -- Start of processing for Compile_Time_Compare
692
693 begin
af02a866
RD
694 Diff.all := No_Uint;
695
07fc65c4
GB
696 -- If either operand could raise constraint error, then we cannot
697 -- know the result at compile time (since CE may be raised!)
698
699 if not (Cannot_Raise_Constraint_Error (L)
700 and then
701 Cannot_Raise_Constraint_Error (R))
702 then
703 return Unknown;
704 end if;
705
706 -- Identical operands are most certainly equal
707
996ae0b0
RK
708 if L = R then
709 return EQ;
710
93c3fca7
AC
711 -- If expressions have no types, then do not attempt to determine if
712 -- they are the same, since something funny is going on. One case in
713 -- which this happens is during generic template analysis, when bounds
714 -- are not fully analyzed.
996ae0b0
RK
715
716 elsif No (Ltyp) or else No (Rtyp) then
717 return Unknown;
718
93c3fca7
AC
719 -- We do not attempt comparisons for packed arrays arrays represented as
720 -- modular types, where the semantics of comparison is quite different.
996ae0b0 721
93c3fca7
AC
722 elsif Is_Packed_Array_Type (Ltyp)
723 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
724 then
725 return Unknown;
726
93c3fca7 727 -- For access types, the only time we know the result at compile time
f61580d4 728 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
729 -- know one operand is null and the other is not, or both operands are
730 -- known null.
731
732 elsif Is_Access_Type (Ltyp) then
733 if Known_Null (L) then
734 if Known_Null (R) then
735 return EQ;
736 elsif Known_Non_Null (R) then
737 return NE;
738 else
739 return Unknown;
740 end if;
741
f61580d4 742 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
743 return NE;
744
745 else
746 return Unknown;
747 end if;
748
996ae0b0
RK
749 -- Case where comparison involves two compile time known values
750
751 elsif Compile_Time_Known_Value (L)
752 and then Compile_Time_Known_Value (R)
753 then
754 -- For the floating-point case, we have to be a little careful, since
755 -- at compile time we are dealing with universal exact values, but at
756 -- runtime, these will be in non-exact target form. That's why the
757 -- returned results are LE and GE below instead of LT and GT.
758
759 if Is_Floating_Point_Type (Ltyp)
760 or else
761 Is_Floating_Point_Type (Rtyp)
762 then
763 declare
764 Lo : constant Ureal := Expr_Value_R (L);
765 Hi : constant Ureal := Expr_Value_R (R);
766
767 begin
768 if Lo < Hi then
769 return LE;
770 elsif Lo = Hi then
771 return EQ;
772 else
773 return GE;
774 end if;
775 end;
776
93c3fca7
AC
777 -- For string types, we have two string literals and we proceed to
778 -- compare them using the Ada style dictionary string comparison.
779
780 elsif not Is_Scalar_Type (Ltyp) then
781 declare
782 Lstring : constant String_Id := Strval (Expr_Value_S (L));
783 Rstring : constant String_Id := Strval (Expr_Value_S (R));
784 Llen : constant Nat := String_Length (Lstring);
785 Rlen : constant Nat := String_Length (Rstring);
786
787 begin
788 for J in 1 .. Nat'Min (Llen, Rlen) loop
789 declare
790 LC : constant Char_Code := Get_String_Char (Lstring, J);
791 RC : constant Char_Code := Get_String_Char (Rstring, J);
792 begin
793 if LC < RC then
794 return LT;
795 elsif LC > RC then
796 return GT;
797 end if;
798 end;
799 end loop;
800
801 if Llen < Rlen then
802 return LT;
803 elsif Llen > Rlen then
804 return GT;
805 else
806 return EQ;
807 end if;
808 end;
809
810 -- For remaining scalar cases we know exactly (note that this does
811 -- include the fixed-point case, where we know the run time integer
f61580d4 812 -- values now).
996ae0b0
RK
813
814 else
815 declare
816 Lo : constant Uint := Expr_Value (L);
817 Hi : constant Uint := Expr_Value (R);
818
819 begin
820 if Lo < Hi then
af02a866 821 Diff.all := Hi - Lo;
996ae0b0 822 return LT;
af02a866 823
996ae0b0
RK
824 elsif Lo = Hi then
825 return EQ;
af02a866 826
996ae0b0 827 else
af02a866 828 Diff.all := Lo - Hi;
996ae0b0
RK
829 return GT;
830 end if;
831 end;
832 end if;
833
834 -- Cases where at least one operand is not known at compile time
835
836 else
93c3fca7 837 -- Remaining checks apply only for discrete types
29797f34
RD
838
839 if not Is_Discrete_Type (Ltyp)
840 or else not Is_Discrete_Type (Rtyp)
93c3fca7
AC
841 then
842 return Unknown;
843 end if;
844
845 -- Defend against generic types, or actually any expressions that
846 -- contain a reference to a generic type from within a generic
847 -- template. We don't want to do any range analysis of such
848 -- expressions for two reasons. First, the bounds of a generic type
849 -- itself are junk and cannot be used for any kind of analysis.
850 -- Second, we may have a case where the range at run time is indeed
851 -- known, but we don't want to do compile time analysis in the
852 -- template based on that range since in an instance the value may be
853 -- static, and able to be elaborated without reference to the bounds
854 -- of types involved. As an example, consider:
855
856 -- (F'Pos (F'Last) + 1) > Integer'Last
857
858 -- The expression on the left side of > is Universal_Integer and thus
859 -- acquires the type Integer for evaluation at run time, and at run
860 -- time it is true that this condition is always False, but within
861 -- an instance F may be a type with a static range greater than the
862 -- range of Integer, and the expression statically evaluates to True.
863
864 if References_Generic_Formal_Type (L)
865 or else
866 References_Generic_Formal_Type (R)
29797f34
RD
867 then
868 return Unknown;
869 end if;
870
1c7717c3
AC
871 -- Replace types by base types for the case of entities which are
872 -- not known to have valid representations. This takes care of
873 -- properly dealing with invalid representations.
874
c800f862 875 if not Assume_Valid and then not Assume_No_Invalid_Values then
1c7717c3 876 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
93c3fca7 877 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
878 end if;
879
880 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
93c3fca7 881 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
882 end if;
883 end if;
884
c800f862
RD
885 -- Try range analysis on variables and see if ranges are disjoint
886
887 declare
888 LOK, ROK : Boolean;
889 LLo, LHi : Uint;
890 RLo, RHi : Uint;
891
892 begin
893 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
894 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
895
896 if LOK and ROK then
897 if LHi < RLo then
898 return LT;
899
900 elsif RHi < LLo then
901 return GT;
902
903 elsif LLo = LHi
904 and then RLo = RHi
905 and then LLo = RLo
906 then
e27b834b 907
75ba322d
AC
908 -- If the range includes a single literal and we can assume
909 -- validity then the result is known even if an operand is
910 -- not static.
e27b834b
AC
911
912 if Assume_Valid then
913 return EQ;
e27b834b
AC
914 else
915 return Unknown;
916 end if;
c800f862
RD
917
918 elsif LHi = RLo then
919 return LE;
920
921 elsif RHi = LLo then
922 return GE;
57036dcc
ES
923
924 elsif not Is_Known_Valid_Operand (L)
925 and then not Assume_Valid
926 then
927 if Is_Same_Value (L, R) then
928 return EQ;
929 else
930 return Unknown;
931 end if;
c800f862
RD
932 end if;
933 end if;
934 end;
935
996ae0b0
RK
936 -- Here is where we check for comparisons against maximum bounds of
937 -- types, where we know that no value can be outside the bounds of
938 -- the subtype. Note that this routine is allowed to assume that all
939 -- expressions are within their subtype bounds. Callers wishing to
940 -- deal with possibly invalid values must in any case take special
941 -- steps (e.g. conversions to larger types) to avoid this kind of
942 -- optimization, which is always considered to be valid. We do not
943 -- attempt this optimization with generic types, since the type
944 -- bounds may not be meaningful in this case.
945
93c3fca7 946 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
947 -- useful to go more than one level deep, so the parameter Rec is
948 -- used to protect ourselves against this infinite recursion.
949
29797f34
RD
950 if not Rec then
951
fbf5a39b
AC
952 -- See if we can get a decisive check against one operand and
953 -- a bound of the other operand (four possible tests here).
93c3fca7
AC
954 -- Note that we avoid testing junk bounds of a generic type.
955
956 if not Is_Generic_Type (Rtyp) then
957 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
958 Discard'Access,
959 Assume_Valid, Rec => True)
960 is
961 when LT => return LT;
962 when LE => return LE;
963 when EQ => return LE;
964 when others => null;
965 end case;
fbf5a39b 966
93c3fca7
AC
967 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
968 Discard'Access,
969 Assume_Valid, Rec => True)
970 is
971 when GT => return GT;
972 when GE => return GE;
973 when EQ => return GE;
974 when others => null;
975 end case;
976 end if;
996ae0b0 977
93c3fca7
AC
978 if not Is_Generic_Type (Ltyp) then
979 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
980 Discard'Access,
981 Assume_Valid, Rec => True)
982 is
983 when GT => return GT;
984 when GE => return GE;
985 when EQ => return GE;
986 when others => null;
987 end case;
996ae0b0 988
93c3fca7
AC
989 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
990 Discard'Access,
991 Assume_Valid, Rec => True)
992 is
993 when LT => return LT;
994 when LE => return LE;
995 when EQ => return LE;
996 when others => null;
997 end case;
998 end if;
996ae0b0
RK
999 end if;
1000
1001 -- Next attempt is to decompose the expressions to extract
1002 -- a constant offset resulting from the use of any of the forms:
1003
1004 -- expr + literal
1005 -- expr - literal
1006 -- typ'Succ (expr)
1007 -- typ'Pred (expr)
1008
1009 -- Then we see if the two expressions are the same value, and if so
1010 -- the result is obtained by comparing the offsets.
1011
1012 declare
1013 Lnode : Node_Id;
1014 Loffs : Uint;
1015 Rnode : Node_Id;
1016 Roffs : Uint;
1017
1018 begin
1019 Compare_Decompose (L, Lnode, Loffs);
1020 Compare_Decompose (R, Rnode, Roffs);
1021
1022 if Is_Same_Value (Lnode, Rnode) then
1023 if Loffs = Roffs then
1024 return EQ;
1025
1026 elsif Loffs < Roffs then
af02a866 1027 Diff.all := Roffs - Loffs;
996ae0b0
RK
1028 return LT;
1029
1030 else
af02a866 1031 Diff.all := Loffs - Roffs;
996ae0b0
RK
1032 return GT;
1033 end if;
29797f34
RD
1034 end if;
1035 end;
1036
1037 -- Next attempt is to see if we have an entity compared with a
1038 -- compile time known value, where there is a current value
1039 -- conditional for the entity which can tell us the result.
1040
1041 declare
1042 Var : Node_Id;
1043 -- Entity variable (left operand)
1044
1045 Val : Uint;
1046 -- Value (right operand)
1047
1048 Inv : Boolean;
1049 -- If False, we have reversed the operands
1050
1051 Op : Node_Kind;
1052 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1053
29797f34
RD
1054 Opn : Node_Id;
1055 -- Value from Get_Current_Value_Condition call
1056
1057 Opv : Uint;
1058 -- Value of Opn
1059
1060 Result : Compare_Result;
1061 -- Known result before inversion
1062
1063 begin
1064 if Is_Entity_Name (L)
1065 and then Compile_Time_Known_Value (R)
1066 then
1067 Var := L;
1068 Val := Expr_Value (R);
1069 Inv := False;
1070
1071 elsif Is_Entity_Name (R)
1072 and then Compile_Time_Known_Value (L)
1073 then
1074 Var := R;
1075 Val := Expr_Value (L);
1076 Inv := True;
1077
1078 -- That was the last chance at finding a compile time result
996ae0b0
RK
1079
1080 else
1081 return Unknown;
1082 end if;
29797f34
RD
1083
1084 Get_Current_Value_Condition (Var, Op, Opn);
1085
1086 -- That was the last chance, so if we got nothing return
1087
1088 if No (Opn) then
1089 return Unknown;
1090 end if;
1091
1092 Opv := Expr_Value (Opn);
1093
1094 -- We got a comparison, so we might have something interesting
1095
1096 -- Convert LE to LT and GE to GT, just so we have fewer cases
1097
1098 if Op = N_Op_Le then
1099 Op := N_Op_Lt;
1100 Opv := Opv + 1;
af02a866 1101
29797f34
RD
1102 elsif Op = N_Op_Ge then
1103 Op := N_Op_Gt;
1104 Opv := Opv - 1;
1105 end if;
1106
1107 -- Deal with equality case
1108
1109 if Op = N_Op_Eq then
1110 if Val = Opv then
1111 Result := EQ;
1112 elsif Opv < Val then
1113 Result := LT;
1114 else
1115 Result := GT;
1116 end if;
1117
1118 -- Deal with inequality case
1119
1120 elsif Op = N_Op_Ne then
1121 if Val = Opv then
1122 Result := NE;
1123 else
1124 return Unknown;
1125 end if;
1126
1127 -- Deal with greater than case
1128
1129 elsif Op = N_Op_Gt then
1130 if Opv >= Val then
1131 Result := GT;
1132 elsif Opv = Val - 1 then
1133 Result := GE;
1134 else
1135 return Unknown;
1136 end if;
1137
1138 -- Deal with less than case
1139
1140 else pragma Assert (Op = N_Op_Lt);
1141 if Opv <= Val then
1142 Result := LT;
1143 elsif Opv = Val + 1 then
1144 Result := LE;
1145 else
1146 return Unknown;
1147 end if;
1148 end if;
1149
1150 -- Deal with inverting result
1151
1152 if Inv then
1153 case Result is
1154 when GT => return LT;
1155 when GE => return LE;
1156 when LT => return GT;
1157 when LE => return GE;
1158 when others => return Result;
1159 end case;
1160 end if;
1161
1162 return Result;
996ae0b0
RK
1163 end;
1164 end if;
1165 end Compile_Time_Compare;
1166
f44fe430
RD
1167 -------------------------------
1168 -- Compile_Time_Known_Bounds --
1169 -------------------------------
1170
1171 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1172 Indx : Node_Id;
1173 Typ : Entity_Id;
1174
1175 begin
1176 if not Is_Array_Type (T) then
1177 return False;
1178 end if;
1179
1180 Indx := First_Index (T);
1181 while Present (Indx) loop
1182 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1183
1184 -- Never look at junk bounds of a generic type
1185
1186 if Is_Generic_Type (Typ) then
1187 return False;
1188 end if;
1189
1190 -- Otherwise check bounds for compile time known
1191
f44fe430
RD
1192 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1193 return False;
1194 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1195 return False;
1196 else
1197 Next_Index (Indx);
1198 end if;
1199 end loop;
1200
1201 return True;
1202 end Compile_Time_Known_Bounds;
1203
996ae0b0
RK
1204 ------------------------------
1205 -- Compile_Time_Known_Value --
1206 ------------------------------
1207
1208 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1209 K : constant Node_Kind := Nkind (Op);
1210 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1211
1212 begin
1213 -- Never known at compile time if bad type or raises constraint error
1214 -- or empty (latter case occurs only as a result of a previous error)
1215
1216 if No (Op)
1217 or else Op = Error
1218 or else Etype (Op) = Any_Type
1219 or else Raises_Constraint_Error (Op)
1220 then
1221 return False;
1222 end if;
1223
597d7158
GD
1224 -- If this is not a static expression or a null literal, and we are in
1225 -- configurable run-time mode, then we consider it not known at compile
1226 -- time. This avoids anomalies where whether something is allowed with a
1227 -- given configurable run-time library depends on how good the compiler
1228 -- is at optimizing and knowing that things are constant when they are
1229 -- nonstatic.
1230
1231 if Configurable_Run_Time_Mode
1232 and then K /= N_Null
1233 and then not Is_Static_Expression (Op)
1234 then
fbf5a39b
AC
1235 return False;
1236 end if;
1237
996ae0b0
RK
1238 -- If we have an entity name, then see if it is the name of a constant
1239 -- and if so, test the corresponding constant value, or the name of
1240 -- an enumeration literal, which is always a constant.
1241
1242 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1243 declare
1244 E : constant Entity_Id := Entity (Op);
1245 V : Node_Id;
1246
1247 begin
1248 -- Never known at compile time if it is a packed array value.
1249 -- We might want to try to evaluate these at compile time one
1250 -- day, but we do not make that attempt now.
1251
1252 if Is_Packed_Array_Type (Etype (Op)) then
1253 return False;
1254 end if;
1255
1256 if Ekind (E) = E_Enumeration_Literal then
1257 return True;
1258
07fc65c4 1259 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1260 V := Constant_Value (E);
1261 return Present (V) and then Compile_Time_Known_Value (V);
1262 end if;
1263 end;
1264
1265 -- We have a value, see if it is compile time known
1266
1267 else
07fc65c4 1268 -- Integer literals are worth storing in the cache
996ae0b0 1269
07fc65c4
GB
1270 if K = N_Integer_Literal then
1271 CV_Ent.N := Op;
1272 CV_Ent.V := Intval (Op);
1273 return True;
1274
1275 -- Other literals and NULL are known at compile time
1276
1277 elsif
996ae0b0
RK
1278 K = N_Character_Literal
1279 or else
1280 K = N_Real_Literal
1281 or else
1282 K = N_String_Literal
1283 or else
1284 K = N_Null
1285 then
1286 return True;
1287
1288 -- Any reference to Null_Parameter is known at compile time. No
1289 -- other attribute references (that have not already been folded)
1290 -- are known at compile time.
1291
1292 elsif K = N_Attribute_Reference then
1293 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1294 end if;
996ae0b0 1295 end if;
07fc65c4
GB
1296
1297 -- If we fall through, not known at compile time
1298
1299 return False;
1300
1301 -- If we get an exception while trying to do this test, then some error
1302 -- has occurred, and we simply say that the value is not known after all
1303
1304 exception
1305 when others =>
1306 return False;
996ae0b0
RK
1307 end Compile_Time_Known_Value;
1308
1309 --------------------------------------
1310 -- Compile_Time_Known_Value_Or_Aggr --
1311 --------------------------------------
1312
1313 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1314 begin
1315 -- If we have an entity name, then see if it is the name of a constant
1316 -- and if so, test the corresponding constant value, or the name of
1317 -- an enumeration literal, which is always a constant.
1318
1319 if Is_Entity_Name (Op) then
1320 declare
1321 E : constant Entity_Id := Entity (Op);
1322 V : Node_Id;
1323
1324 begin
1325 if Ekind (E) = E_Enumeration_Literal then
1326 return True;
1327
1328 elsif Ekind (E) /= E_Constant then
1329 return False;
1330
1331 else
1332 V := Constant_Value (E);
1333 return Present (V)
1334 and then Compile_Time_Known_Value_Or_Aggr (V);
1335 end if;
1336 end;
1337
1338 -- We have a value, see if it is compile time known
1339
1340 else
1341 if Compile_Time_Known_Value (Op) then
1342 return True;
1343
1344 elsif Nkind (Op) = N_Aggregate then
1345
1346 if Present (Expressions (Op)) then
1347 declare
1348 Expr : Node_Id;
1349
1350 begin
1351 Expr := First (Expressions (Op));
1352 while Present (Expr) loop
1353 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1354 return False;
1355 end if;
1356
1357 Next (Expr);
1358 end loop;
1359 end;
1360 end if;
1361
1362 if Present (Component_Associations (Op)) then
1363 declare
1364 Cass : Node_Id;
1365
1366 begin
1367 Cass := First (Component_Associations (Op));
1368 while Present (Cass) loop
1369 if not
1370 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1371 then
1372 return False;
1373 end if;
1374
1375 Next (Cass);
1376 end loop;
1377 end;
1378 end if;
1379
1380 return True;
1381
1382 -- All other types of values are not known at compile time
1383
1384 else
1385 return False;
1386 end if;
1387
1388 end if;
1389 end Compile_Time_Known_Value_Or_Aggr;
1390
1391 -----------------
1392 -- Eval_Actual --
1393 -----------------
1394
1395 -- This is only called for actuals of functions that are not predefined
1396 -- operators (which have already been rewritten as operators at this
1397 -- stage), so the call can never be folded, and all that needs doing for
1398 -- the actual is to do the check for a non-static context.
1399
1400 procedure Eval_Actual (N : Node_Id) is
1401 begin
1402 Check_Non_Static_Context (N);
1403 end Eval_Actual;
1404
1405 --------------------
1406 -- Eval_Allocator --
1407 --------------------
1408
1409 -- Allocators are never static, so all we have to do is to do the
1410 -- check for a non-static context if an expression is present.
1411
1412 procedure Eval_Allocator (N : Node_Id) is
1413 Expr : constant Node_Id := Expression (N);
1414
1415 begin
1416 if Nkind (Expr) = N_Qualified_Expression then
1417 Check_Non_Static_Context (Expression (Expr));
1418 end if;
1419 end Eval_Allocator;
1420
1421 ------------------------
1422 -- Eval_Arithmetic_Op --
1423 ------------------------
1424
1425 -- Arithmetic operations are static functions, so the result is static
1426 -- if both operands are static (RM 4.9(7), 4.9(20)).
1427
1428 procedure Eval_Arithmetic_Op (N : Node_Id) is
1429 Left : constant Node_Id := Left_Opnd (N);
1430 Right : constant Node_Id := Right_Opnd (N);
1431 Ltype : constant Entity_Id := Etype (Left);
1432 Rtype : constant Entity_Id := Etype (Right);
1433 Stat : Boolean;
1434 Fold : Boolean;
1435
1436 begin
1437 -- If not foldable we are done
1438
1439 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1440
1441 if not Fold then
1442 return;
1443 end if;
1444
1445 -- Fold for cases where both operands are of integer type
1446
1447 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1448 declare
1449 Left_Int : constant Uint := Expr_Value (Left);
1450 Right_Int : constant Uint := Expr_Value (Right);
1451 Result : Uint;
1452
1453 begin
1454 case Nkind (N) is
1455
1456 when N_Op_Add =>
1457 Result := Left_Int + Right_Int;
1458
1459 when N_Op_Subtract =>
1460 Result := Left_Int - Right_Int;
1461
1462 when N_Op_Multiply =>
1463 if OK_Bits
1464 (N, UI_From_Int
1465 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1466 then
1467 Result := Left_Int * Right_Int;
1468 else
1469 Result := Left_Int;
1470 end if;
1471
1472 when N_Op_Divide =>
1473
1474 -- The exception Constraint_Error is raised by integer
1475 -- division, rem and mod if the right operand is zero.
1476
1477 if Right_Int = 0 then
1478 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1479 (N, "division by zero",
1480 CE_Divide_By_Zero,
1481 Warn => not Stat);
996ae0b0 1482 return;
fbf5a39b 1483
996ae0b0
RK
1484 else
1485 Result := Left_Int / Right_Int;
1486 end if;
1487
1488 when N_Op_Mod =>
1489
1490 -- The exception Constraint_Error is raised by integer
1491 -- division, rem and mod if the right operand is zero.
1492
1493 if Right_Int = 0 then
1494 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1495 (N, "mod with zero divisor",
1496 CE_Divide_By_Zero,
1497 Warn => not Stat);
996ae0b0
RK
1498 return;
1499 else
1500 Result := Left_Int mod Right_Int;
1501 end if;
1502
1503 when N_Op_Rem =>
1504
1505 -- The exception Constraint_Error is raised by integer
1506 -- division, rem and mod if the right operand is zero.
1507
1508 if Right_Int = 0 then
1509 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1510 (N, "rem with zero divisor",
1511 CE_Divide_By_Zero,
1512 Warn => not Stat);
996ae0b0 1513 return;
fbf5a39b 1514
996ae0b0
RK
1515 else
1516 Result := Left_Int rem Right_Int;
1517 end if;
1518
1519 when others =>
1520 raise Program_Error;
1521 end case;
1522
1523 -- Adjust the result by the modulus if the type is a modular type
1524
1525 if Is_Modular_Integer_Type (Ltype) then
1526 Result := Result mod Modulus (Ltype);
82c80734
RD
1527
1528 -- For a signed integer type, check non-static overflow
1529
1530 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1531 declare
1532 BT : constant Entity_Id := Base_Type (Ltype);
1533 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1534 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1535 begin
1536 if Result < Lo or else Result > Hi then
1537 Apply_Compile_Time_Constraint_Error
1538 (N, "value not in range of }?",
1539 CE_Overflow_Check_Failed,
1540 Ent => BT);
1541 return;
1542 end if;
1543 end;
996ae0b0
RK
1544 end if;
1545
82c80734
RD
1546 -- If we get here we can fold the result
1547
fbf5a39b 1548 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1549 end;
1550
1551 -- Cases where at least one operand is a real. We handle the cases
1552 -- of both reals, or mixed/real integer cases (the latter happen
1553 -- only for divide and multiply, and the result is always real).
1554
1555 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1556 declare
1557 Left_Real : Ureal;
1558 Right_Real : Ureal;
1559 Result : Ureal;
1560
1561 begin
1562 if Is_Real_Type (Ltype) then
1563 Left_Real := Expr_Value_R (Left);
1564 else
1565 Left_Real := UR_From_Uint (Expr_Value (Left));
1566 end if;
1567
1568 if Is_Real_Type (Rtype) then
1569 Right_Real := Expr_Value_R (Right);
1570 else
1571 Right_Real := UR_From_Uint (Expr_Value (Right));
1572 end if;
1573
1574 if Nkind (N) = N_Op_Add then
1575 Result := Left_Real + Right_Real;
1576
1577 elsif Nkind (N) = N_Op_Subtract then
1578 Result := Left_Real - Right_Real;
1579
1580 elsif Nkind (N) = N_Op_Multiply then
1581 Result := Left_Real * Right_Real;
1582
1583 else pragma Assert (Nkind (N) = N_Op_Divide);
1584 if UR_Is_Zero (Right_Real) then
1585 Apply_Compile_Time_Constraint_Error
07fc65c4 1586 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1587 return;
1588 end if;
1589
1590 Result := Left_Real / Right_Real;
1591 end if;
1592
fbf5a39b 1593 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1594 end;
1595 end if;
996ae0b0
RK
1596 end Eval_Arithmetic_Op;
1597
1598 ----------------------------
1599 -- Eval_Character_Literal --
1600 ----------------------------
1601
1602 -- Nothing to be done!
1603
1604 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1605 pragma Warnings (Off, N);
996ae0b0
RK
1606 begin
1607 null;
1608 end Eval_Character_Literal;
1609
c01a9391
AC
1610 ---------------
1611 -- Eval_Call --
1612 ---------------
1613
1614 -- Static function calls are either calls to predefined operators
1615 -- with static arguments, or calls to functions that rename a literal.
1616 -- Only the latter case is handled here, predefined operators are
1617 -- constant-folded elsewhere.
29797f34 1618
c01a9391
AC
1619 -- If the function is itself inherited (see 7423-001) the literal of
1620 -- the parent type must be explicitly converted to the return type
1621 -- of the function.
1622
1623 procedure Eval_Call (N : Node_Id) is
1624 Loc : constant Source_Ptr := Sloc (N);
1625 Typ : constant Entity_Id := Etype (N);
1626 Lit : Entity_Id;
1627
1628 begin
1629 if Nkind (N) = N_Function_Call
1630 and then No (Parameter_Associations (N))
1631 and then Is_Entity_Name (Name (N))
1632 and then Present (Alias (Entity (Name (N))))
1633 and then Is_Enumeration_Type (Base_Type (Typ))
1634 then
1635 Lit := Alias (Entity (Name (N)));
c01a9391
AC
1636 while Present (Alias (Lit)) loop
1637 Lit := Alias (Lit);
1638 end loop;
1639
1640 if Ekind (Lit) = E_Enumeration_Literal then
1641 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1642 Rewrite
1643 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1644 else
1645 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1646 end if;
1647
1648 Resolve (N, Typ);
1649 end if;
1650 end if;
1651 end Eval_Call;
1652
996ae0b0
RK
1653 ------------------------
1654 -- Eval_Concatenation --
1655 ------------------------
1656
3996951a
TQ
1657 -- Concatenation is a static function, so the result is static if both
1658 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
1659
1660 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1661 Left : constant Node_Id := Left_Opnd (N);
1662 Right : constant Node_Id := Right_Opnd (N);
1663 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1664 Stat : Boolean;
1665 Fold : Boolean;
996ae0b0
RK
1666
1667 begin
3996951a
TQ
1668 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1669 -- non-static context.
996ae0b0 1670
0ab80019 1671 if Ada_Version = Ada_83
996ae0b0
RK
1672 and then Comes_From_Source (N)
1673 then
1674 Check_Non_Static_Context (Left);
1675 Check_Non_Static_Context (Right);
1676 return;
1677 end if;
1678
1679 -- If not foldable we are done. In principle concatenation that yields
1680 -- any string type is static (i.e. an array type of character types).
1681 -- However, character types can include enumeration literals, and
1682 -- concatenation in that case cannot be described by a literal, so we
1683 -- only consider the operation static if the result is an array of
1684 -- (a descendant of) a predefined character type.
1685
1686 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1687
3996951a 1688 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
1689 Set_Is_Static_Expression (N, False);
1690 return;
1691 end if;
1692
82c80734 1693 -- Compile time string concatenation
996ae0b0 1694
3996951a
TQ
1695 -- ??? Note that operands that are aggregates can be marked as static,
1696 -- so we should attempt at a later stage to fold concatenations with
1697 -- such aggregates.
996ae0b0
RK
1698
1699 declare
b54ddf5a
BD
1700 Left_Str : constant Node_Id := Get_String_Val (Left);
1701 Left_Len : Nat;
1702 Right_Str : constant Node_Id := Get_String_Val (Right);
1703 Folded_Val : String_Id;
996ae0b0
RK
1704
1705 begin
1706 -- Establish new string literal, and store left operand. We make
1707 -- sure to use the special Start_String that takes an operand if
1708 -- the left operand is a string literal. Since this is optimized
1709 -- in the case where that is the most recently created string
1710 -- literal, we ensure efficient time/space behavior for the
1711 -- case of a concatenation of a series of string literals.
1712
1713 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1714 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
1715
1716 -- If the left operand is the empty string, and the right operand
1717 -- is a string literal (the case of "" & "..."), the result is the
1718 -- value of the right operand. This optimization is important when
1719 -- Is_Folded_In_Parser, to avoid copying an enormous right
1720 -- operand.
1721
1722 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1723 Folded_Val := Strval (Right_Str);
1724 else
1725 Start_String (Strval (Left_Str));
1726 end if;
1727
996ae0b0
RK
1728 else
1729 Start_String;
82c80734 1730 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1731 Left_Len := 1;
996ae0b0
RK
1732 end if;
1733
b54ddf5a
BD
1734 -- Now append the characters of the right operand, unless we
1735 -- optimized the "" & "..." case above.
996ae0b0
RK
1736
1737 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
1738 if Left_Len /= 0 then
1739 Store_String_Chars (Strval (Right_Str));
1740 Folded_Val := End_String;
1741 end if;
996ae0b0 1742 else
82c80734 1743 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 1744 Folded_Val := End_String;
996ae0b0
RK
1745 end if;
1746
1747 Set_Is_Static_Expression (N, Stat);
1748
1749 if Stat then
f91b40db
GB
1750
1751 -- If left operand is the empty string, the result is the
1752 -- right operand, including its bounds if anomalous.
1753
1754 if Left_Len = 0
1755 and then Is_Array_Type (Etype (Right))
1756 and then Etype (Right) /= Any_String
1757 then
1758 Set_Etype (N, Etype (Right));
1759 end if;
1760
b54ddf5a 1761 Fold_Str (N, Folded_Val, Static => True);
996ae0b0
RK
1762 end if;
1763 end;
1764 end Eval_Concatenation;
1765
1766 ---------------------------------
1767 -- Eval_Conditional_Expression --
1768 ---------------------------------
1769
1770 -- This GNAT internal construct can never be statically folded, so the
1771 -- only required processing is to do the check for non-static context
1772 -- for the two expression operands.
1773
1774 procedure Eval_Conditional_Expression (N : Node_Id) is
1775 Condition : constant Node_Id := First (Expressions (N));
1776 Then_Expr : constant Node_Id := Next (Condition);
1777 Else_Expr : constant Node_Id := Next (Then_Expr);
1778
1779 begin
1780 Check_Non_Static_Context (Then_Expr);
1781 Check_Non_Static_Context (Else_Expr);
1782 end Eval_Conditional_Expression;
1783
1784 ----------------------
1785 -- Eval_Entity_Name --
1786 ----------------------
1787
1788 -- This procedure is used for identifiers and expanded names other than
1789 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1790 -- static if they denote a static constant (RM 4.9(6)) or if the name
1791 -- denotes an enumeration literal (RM 4.9(22)).
1792
1793 procedure Eval_Entity_Name (N : Node_Id) is
1794 Def_Id : constant Entity_Id := Entity (N);
1795 Val : Node_Id;
1796
1797 begin
1798 -- Enumeration literals are always considered to be constants
1799 -- and cannot raise constraint error (RM 4.9(22)).
1800
1801 if Ekind (Def_Id) = E_Enumeration_Literal then
1802 Set_Is_Static_Expression (N);
1803 return;
1804
1805 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1806 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1807 -- it does not violate 10.2.1(8) here, since this is not a variable.
1808
1809 elsif Ekind (Def_Id) = E_Constant then
1810
1811 -- Deferred constants must always be treated as nonstatic
1812 -- outside the scope of their full view.
1813
1814 if Present (Full_View (Def_Id))
1815 and then not In_Open_Scopes (Scope (Def_Id))
1816 then
1817 Val := Empty;
1818 else
1819 Val := Constant_Value (Def_Id);
1820 end if;
1821
1822 if Present (Val) then
1823 Set_Is_Static_Expression
1824 (N, Is_Static_Expression (Val)
1825 and then Is_Static_Subtype (Etype (Def_Id)));
1826 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1827
1828 if not Is_Static_Expression (N)
1829 and then not Is_Generic_Type (Etype (N))
1830 then
1831 Validate_Static_Object_Name (N);
1832 end if;
1833
1834 return;
1835 end if;
1836 end if;
1837
82c80734 1838 -- Fall through if the name is not static
996ae0b0
RK
1839
1840 Validate_Static_Object_Name (N);
1841 end Eval_Entity_Name;
1842
1843 ----------------------------
1844 -- Eval_Indexed_Component --
1845 ----------------------------
1846
8cbb664e
MG
1847 -- Indexed components are never static, so we need to perform the check
1848 -- for non-static context on the index values. Then, we check if the
1849 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
1850
1851 procedure Eval_Indexed_Component (N : Node_Id) is
1852 Expr : Node_Id;
1853
1854 begin
fbf5a39b
AC
1855 -- Check for non-static context on index values
1856
996ae0b0
RK
1857 Expr := First (Expressions (N));
1858 while Present (Expr) loop
1859 Check_Non_Static_Context (Expr);
1860 Next (Expr);
1861 end loop;
1862
fbf5a39b
AC
1863 -- If the indexed component appears in an object renaming declaration
1864 -- then we do not want to try to evaluate it, since in this case we
1865 -- need the identity of the array element.
1866
1867 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1868 return;
1869
1870 -- Similarly if the indexed component appears as the prefix of an
1871 -- attribute we don't want to evaluate it, because at least for
1872 -- some cases of attributes we need the identify (e.g. Access, Size)
1873
1874 elsif Nkind (Parent (N)) = N_Attribute_Reference then
1875 return;
1876 end if;
1877
1878 -- Note: there are other cases, such as the left side of an assignment,
1879 -- or an OUT parameter for a call, where the replacement results in the
1880 -- illegal use of a constant, But these cases are illegal in the first
1881 -- place, so the replacement, though silly, is harmless.
1882
1883 -- Now see if this is a constant array reference
8cbb664e
MG
1884
1885 if List_Length (Expressions (N)) = 1
1886 and then Is_Entity_Name (Prefix (N))
1887 and then Ekind (Entity (Prefix (N))) = E_Constant
1888 and then Present (Constant_Value (Entity (Prefix (N))))
1889 then
1890 declare
1891 Loc : constant Source_Ptr := Sloc (N);
1892 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
1893 Sub : constant Node_Id := First (Expressions (N));
1894
1895 Atyp : Entity_Id;
1896 -- Type of array
1897
1898 Lin : Nat;
1899 -- Linear one's origin subscript value for array reference
1900
1901 Lbd : Node_Id;
1902 -- Lower bound of the first array index
1903
1904 Elm : Node_Id;
1905 -- Value from constant array
1906
1907 begin
1908 Atyp := Etype (Arr);
1909
1910 if Is_Access_Type (Atyp) then
1911 Atyp := Designated_Type (Atyp);
1912 end if;
1913
1914 -- If we have an array type (we should have but perhaps there
1915 -- are error cases where this is not the case), then see if we
1916 -- can do a constant evaluation of the array reference.
1917
d610088d
AC
1918 if Is_Array_Type (Atyp)
1919 and then Atyp /= Any_Composite
1920 then
8cbb664e
MG
1921 if Ekind (Atyp) = E_String_Literal_Subtype then
1922 Lbd := String_Literal_Low_Bound (Atyp);
1923 else
1924 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
1925 end if;
1926
1927 if Compile_Time_Known_Value (Sub)
1928 and then Nkind (Arr) = N_Aggregate
1929 and then Compile_Time_Known_Value (Lbd)
1930 and then Is_Discrete_Type (Component_Type (Atyp))
1931 then
1932 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
1933
1934 if List_Length (Expressions (Arr)) >= Lin then
1935 Elm := Pick (Expressions (Arr), Lin);
1936
1937 -- If the resulting expression is compile time known,
1938 -- then we can rewrite the indexed component with this
1939 -- value, being sure to mark the result as non-static.
1940 -- We also reset the Sloc, in case this generates an
1941 -- error later on (e.g. 136'Access).
1942
1943 if Compile_Time_Known_Value (Elm) then
1944 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1945 Set_Is_Static_Expression (N, False);
1946 Set_Sloc (N, Loc);
1947 end if;
1948 end if;
9fbb3ae6
AC
1949
1950 -- We can also constant-fold if the prefix is a string literal.
1951 -- This will be useful in an instantiation or an inlining.
1952
1953 elsif Compile_Time_Known_Value (Sub)
1954 and then Nkind (Arr) = N_String_Literal
1955 and then Compile_Time_Known_Value (Lbd)
1956 and then Expr_Value (Lbd) = 1
1957 and then Expr_Value (Sub) <=
1958 String_Literal_Length (Etype (Arr))
1959 then
1960 declare
1961 C : constant Char_Code :=
1962 Get_String_Char (Strval (Arr),
1963 UI_To_Int (Expr_Value (Sub)));
1964 begin
1965 Set_Character_Literal_Name (C);
1966
1967 Elm :=
1968 Make_Character_Literal (Loc,
1969 Chars => Name_Find,
1970 Char_Literal_Value => UI_From_CC (C));
1971 Set_Etype (Elm, Component_Type (Atyp));
1972 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1973 Set_Is_Static_Expression (N, False);
1974 end;
8cbb664e
MG
1975 end if;
1976 end if;
1977 end;
1978 end if;
996ae0b0
RK
1979 end Eval_Indexed_Component;
1980
1981 --------------------------
1982 -- Eval_Integer_Literal --
1983 --------------------------
1984
1985 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1986 -- as static by the analyzer. The reason we did it that early is to allow
1987 -- the possibility of turning off the Is_Static_Expression flag after
1988 -- analysis, but before resolution, when integer literals are generated
1989 -- in the expander that do not correspond to static expressions.
1990
1991 procedure Eval_Integer_Literal (N : Node_Id) is
1992 T : constant Entity_Id := Etype (N);
1993
5d09245e 1994 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
1995 -- If the literal is resolved with a specific type in a context where
1996 -- the expected type is Any_Integer, there are no range checks on the
1997 -- literal. By the time the literal is evaluated, it carries the type
1998 -- imposed by the enclosing expression, and we must recover the context
1999 -- to determine that Any_Integer is meant.
5d09245e
AC
2000
2001 ----------------------------
09494c32 2002 -- In_Any_Integer_Context --
5d09245e
AC
2003 ----------------------------
2004
2005 function In_Any_Integer_Context return Boolean is
2006 Par : constant Node_Id := Parent (N);
2007 K : constant Node_Kind := Nkind (Par);
2008
2009 begin
2010 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2011 -- but those have bounds smaller that those of any integer base type,
2012 -- so we can safely ignore these cases.
5d09245e
AC
2013
2014 return K = N_Number_Declaration
2015 or else K = N_Attribute_Reference
2016 or else K = N_Attribute_Definition_Clause
2017 or else K = N_Modular_Type_Definition
2018 or else K = N_Signed_Integer_Type_Definition;
2019 end In_Any_Integer_Context;
2020
2021 -- Start of processing for Eval_Integer_Literal
2022
996ae0b0 2023 begin
5d09245e 2024
996ae0b0 2025 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2026 -- certainly appearing in a non-static context, so check it. This is
2027 -- actually a redundant check, since Check_Non_Static_Context would
2028 -- check it, but it seems worth while avoiding the call.
996ae0b0 2029
5d09245e
AC
2030 if Nkind (Parent (N)) not in N_Subexpr
2031 and then not In_Any_Integer_Context
2032 then
996ae0b0
RK
2033 Check_Non_Static_Context (N);
2034 end if;
2035
2036 -- Modular integer literals must be in their base range
2037
2038 if Is_Modular_Integer_Type (T)
c800f862 2039 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2040 then
2041 Out_Of_Range (N);
2042 end if;
2043 end Eval_Integer_Literal;
2044
2045 ---------------------
2046 -- Eval_Logical_Op --
2047 ---------------------
2048
2049 -- Logical operations are static functions, so the result is potentially
2050 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2051
2052 procedure Eval_Logical_Op (N : Node_Id) is
2053 Left : constant Node_Id := Left_Opnd (N);
2054 Right : constant Node_Id := Right_Opnd (N);
2055 Stat : Boolean;
2056 Fold : Boolean;
2057
2058 begin
2059 -- If not foldable we are done
2060
2061 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2062
2063 if not Fold then
2064 return;
2065 end if;
2066
2067 -- Compile time evaluation of logical operation
2068
2069 declare
2070 Left_Int : constant Uint := Expr_Value (Left);
2071 Right_Int : constant Uint := Expr_Value (Right);
2072
2073 begin
2074 if Is_Modular_Integer_Type (Etype (N)) then
2075 declare
2076 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2077 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2078
2079 begin
2080 To_Bits (Left_Int, Left_Bits);
2081 To_Bits (Right_Int, Right_Bits);
2082
2083 -- Note: should really be able to use array ops instead of
2084 -- these loops, but they weren't working at the time ???
2085
2086 if Nkind (N) = N_Op_And then
2087 for J in Left_Bits'Range loop
2088 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2089 end loop;
2090
2091 elsif Nkind (N) = N_Op_Or then
2092 for J in Left_Bits'Range loop
2093 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2094 end loop;
2095
2096 else
2097 pragma Assert (Nkind (N) = N_Op_Xor);
2098
2099 for J in Left_Bits'Range loop
2100 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2101 end loop;
2102 end if;
2103
fbf5a39b 2104 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2105 end;
2106
2107 else
2108 pragma Assert (Is_Boolean_Type (Etype (N)));
2109
2110 if Nkind (N) = N_Op_And then
2111 Fold_Uint (N,
fbf5a39b 2112 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2113
2114 elsif Nkind (N) = N_Op_Or then
2115 Fold_Uint (N,
fbf5a39b 2116 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2117
2118 else
2119 pragma Assert (Nkind (N) = N_Op_Xor);
2120 Fold_Uint (N,
fbf5a39b 2121 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2122 end if;
2123 end if;
996ae0b0
RK
2124 end;
2125 end Eval_Logical_Op;
2126
2127 ------------------------
2128 -- Eval_Membership_Op --
2129 ------------------------
2130
1d1bd8ad
AC
2131 -- A membership test is potentially static if the expression is static, and
2132 -- the range is a potentially static range, or is a subtype mark denoting a
2133 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2134
2135 procedure Eval_Membership_Op (N : Node_Id) is
2136 Left : constant Node_Id := Left_Opnd (N);
2137 Right : constant Node_Id := Right_Opnd (N);
2138 Def_Id : Entity_Id;
2139 Lo : Node_Id;
2140 Hi : Node_Id;
2141 Result : Boolean;
2142 Stat : Boolean;
2143 Fold : Boolean;
2144
2145 begin
1d1bd8ad
AC
2146 -- Ignore if error in either operand, except to make sure that Any_Type
2147 -- is properly propagated to avoid junk cascaded errors.
996ae0b0
RK
2148
2149 if Etype (Left) = Any_Type
2150 or else Etype (Right) = Any_Type
2151 then
2152 Set_Etype (N, Any_Type);
2153 return;
2154 end if;
2155
2156 -- Case of right operand is a subtype name
2157
2158 if Is_Entity_Name (Right) then
2159 Def_Id := Entity (Right);
2160
2161 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2162 and then Is_OK_Static_Subtype (Def_Id)
2163 then
2164 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2165
2166 if not Fold or else not Stat then
2167 return;
2168 end if;
2169 else
2170 Check_Non_Static_Context (Left);
2171 return;
2172 end if;
2173
1d1bd8ad 2174 -- For string membership tests we will check the length further on
996ae0b0
RK
2175
2176 if not Is_String_Type (Def_Id) then
2177 Lo := Type_Low_Bound (Def_Id);
2178 Hi := Type_High_Bound (Def_Id);
2179
2180 else
2181 Lo := Empty;
2182 Hi := Empty;
2183 end if;
2184
2185 -- Case of right operand is a range
2186
2187 else
2188 if Is_Static_Range (Right) then
2189 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2190
2191 if not Fold or else not Stat then
2192 return;
2193
2194 -- If one bound of range raises CE, then don't try to fold
2195
2196 elsif not Is_OK_Static_Range (Right) then
2197 Check_Non_Static_Context (Left);
2198 return;
2199 end if;
2200
2201 else
2202 Check_Non_Static_Context (Left);
2203 return;
2204 end if;
2205
2206 -- Here we know range is an OK static range
2207
2208 Lo := Low_Bound (Right);
2209 Hi := High_Bound (Right);
2210 end if;
2211
2212 -- For strings we check that the length of the string expression is
2213 -- compatible with the string subtype if the subtype is constrained,
2214 -- or if unconstrained then the test is always true.
2215
2216 if Is_String_Type (Etype (Right)) then
2217 if not Is_Constrained (Etype (Right)) then
2218 Result := True;
2219
2220 else
2221 declare
2222 Typlen : constant Uint := String_Type_Len (Etype (Right));
2223 Strlen : constant Uint :=
2224 UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
2225 begin
2226 Result := (Typlen = Strlen);
2227 end;
2228 end if;
2229
1d1bd8ad
AC
2230 -- Fold the membership test. We know we have a static range and Lo and
2231 -- Hi are set to the expressions for the end points of this range.
996ae0b0
RK
2232
2233 elsif Is_Real_Type (Etype (Right)) then
2234 declare
2235 Leftval : constant Ureal := Expr_Value_R (Left);
2236
2237 begin
2238 Result := Expr_Value_R (Lo) <= Leftval
2239 and then Leftval <= Expr_Value_R (Hi);
2240 end;
2241
2242 else
2243 declare
2244 Leftval : constant Uint := Expr_Value (Left);
2245
2246 begin
2247 Result := Expr_Value (Lo) <= Leftval
2248 and then Leftval <= Expr_Value (Hi);
2249 end;
2250 end if;
2251
2252 if Nkind (N) = N_Not_In then
2253 Result := not Result;
2254 end if;
2255
fbf5a39b 2256 Fold_Uint (N, Test (Result), True);
996ae0b0 2257 Warn_On_Known_Condition (N);
996ae0b0
RK
2258 end Eval_Membership_Op;
2259
2260 ------------------------
2261 -- Eval_Named_Integer --
2262 ------------------------
2263
2264 procedure Eval_Named_Integer (N : Node_Id) is
2265 begin
2266 Fold_Uint (N,
fbf5a39b 2267 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2268 end Eval_Named_Integer;
2269
2270 ---------------------
2271 -- Eval_Named_Real --
2272 ---------------------
2273
2274 procedure Eval_Named_Real (N : Node_Id) is
2275 begin
2276 Fold_Ureal (N,
fbf5a39b 2277 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2278 end Eval_Named_Real;
2279
2280 -------------------
2281 -- Eval_Op_Expon --
2282 -------------------
2283
2284 -- Exponentiation is a static functions, so the result is potentially
2285 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2286
2287 procedure Eval_Op_Expon (N : Node_Id) is
2288 Left : constant Node_Id := Left_Opnd (N);
2289 Right : constant Node_Id := Right_Opnd (N);
2290 Stat : Boolean;
2291 Fold : Boolean;
2292
2293 begin
2294 -- If not foldable we are done
2295
2296 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2297
2298 if not Fold then
2299 return;
2300 end if;
2301
2302 -- Fold exponentiation operation
2303
2304 declare
2305 Right_Int : constant Uint := Expr_Value (Right);
2306
2307 begin
2308 -- Integer case
2309
2310 if Is_Integer_Type (Etype (Left)) then
2311 declare
2312 Left_Int : constant Uint := Expr_Value (Left);
2313 Result : Uint;
2314
2315 begin
2316 -- Exponentiation of an integer raises the exception
2317 -- Constraint_Error for a negative exponent (RM 4.5.6)
2318
2319 if Right_Int < 0 then
2320 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2321 (N, "integer exponent negative",
2322 CE_Range_Check_Failed,
2323 Warn => not Stat);
996ae0b0
RK
2324 return;
2325
2326 else
2327 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2328 Result := Left_Int ** Right_Int;
2329 else
2330 Result := Left_Int;
2331 end if;
2332
2333 if Is_Modular_Integer_Type (Etype (N)) then
2334 Result := Result mod Modulus (Etype (N));
2335 end if;
2336
fbf5a39b 2337 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2338 end if;
2339 end;
2340
2341 -- Real case
2342
2343 else
2344 declare
2345 Left_Real : constant Ureal := Expr_Value_R (Left);
2346
2347 begin
2348 -- Cannot have a zero base with a negative exponent
2349
2350 if UR_Is_Zero (Left_Real) then
2351
2352 if Right_Int < 0 then
2353 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2354 (N, "zero ** negative integer",
2355 CE_Range_Check_Failed,
2356 Warn => not Stat);
996ae0b0
RK
2357 return;
2358 else
fbf5a39b 2359 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2360 end if;
2361
2362 else
fbf5a39b 2363 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2364 end if;
2365 end;
2366 end if;
996ae0b0
RK
2367 end;
2368 end Eval_Op_Expon;
2369
2370 -----------------
2371 -- Eval_Op_Not --
2372 -----------------
2373
2374 -- The not operation is a static functions, so the result is potentially
2375 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2376
2377 procedure Eval_Op_Not (N : Node_Id) is
2378 Right : constant Node_Id := Right_Opnd (N);
2379 Stat : Boolean;
2380 Fold : Boolean;
2381
2382 begin
2383 -- If not foldable we are done
2384
2385 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2386
2387 if not Fold then
2388 return;
2389 end if;
2390
2391 -- Fold not operation
2392
2393 declare
2394 Rint : constant Uint := Expr_Value (Right);
2395 Typ : constant Entity_Id := Etype (N);
2396
2397 begin
1d1bd8ad
AC
2398 -- Negation is equivalent to subtracting from the modulus minus one.
2399 -- For a binary modulus this is equivalent to the ones-complement of
2400 -- the original value. For non-binary modulus this is an arbitrary
2401 -- but consistent definition.
996ae0b0
RK
2402
2403 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2404 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2405
2406 else
2407 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2408 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2409 end if;
2410
2411 Set_Is_Static_Expression (N, Stat);
2412 end;
2413 end Eval_Op_Not;
2414
2415 -------------------------------
2416 -- Eval_Qualified_Expression --
2417 -------------------------------
2418
2419 -- A qualified expression is potentially static if its subtype mark denotes
2420 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2421
2422 procedure Eval_Qualified_Expression (N : Node_Id) is
2423 Operand : constant Node_Id := Expression (N);
2424 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2425
07fc65c4
GB
2426 Stat : Boolean;
2427 Fold : Boolean;
2428 Hex : Boolean;
996ae0b0
RK
2429
2430 begin
1d1bd8ad 2431 -- Can only fold if target is string or scalar and subtype is static.
996ae0b0
RK
2432 -- Also, do not fold if our parent is an allocator (this is because
2433 -- the qualified expression is really part of the syntactic structure
2434 -- of an allocator, and we do not want to end up with something that
2435 -- corresponds to "new 1" where the 1 is the result of folding a
2436 -- qualified expression).
2437
2438 if not Is_Static_Subtype (Target_Type)
2439 or else Nkind (Parent (N)) = N_Allocator
2440 then
2441 Check_Non_Static_Context (Operand);
af152989 2442
1d1bd8ad
AC
2443 -- If operand is known to raise constraint_error, set the flag on the
2444 -- expression so it does not get optimized away.
af152989
AC
2445
2446 if Nkind (Operand) = N_Raise_Constraint_Error then
2447 Set_Raises_Constraint_Error (N);
2448 end if;
7324bf49 2449
996ae0b0
RK
2450 return;
2451 end if;
2452
2453 -- If not foldable we are done
2454
2455 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2456
2457 if not Fold then
2458 return;
2459
2460 -- Don't try fold if target type has constraint error bounds
2461
2462 elsif not Is_OK_Static_Subtype (Target_Type) then
2463 Set_Raises_Constraint_Error (N);
2464 return;
2465 end if;
2466
07fc65c4
GB
2467 -- Here we will fold, save Print_In_Hex indication
2468
2469 Hex := Nkind (Operand) = N_Integer_Literal
2470 and then Print_In_Hex (Operand);
2471
996ae0b0
RK
2472 -- Fold the result of qualification
2473
2474 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2475 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2476
07fc65c4
GB
2477 -- Preserve Print_In_Hex indication
2478
2479 if Hex and then Nkind (N) = N_Integer_Literal then
2480 Set_Print_In_Hex (N);
2481 end if;
2482
996ae0b0 2483 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2484 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2485
2486 else
fbf5a39b 2487 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2488
2489 if not Stat then
2490 Set_Is_Static_Expression (N, False);
2491 else
2492 Check_String_Literal_Length (N, Target_Type);
2493 end if;
2494
2495 return;
2496 end if;
2497
fbf5a39b
AC
2498 -- The expression may be foldable but not static
2499
2500 Set_Is_Static_Expression (N, Stat);
2501
c800f862 2502 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
2503 Out_Of_Range (N);
2504 end if;
996ae0b0
RK
2505 end Eval_Qualified_Expression;
2506
2507 -----------------------
2508 -- Eval_Real_Literal --
2509 -----------------------
2510
2511 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2512 -- as static by the analyzer. The reason we did it that early is to allow
2513 -- the possibility of turning off the Is_Static_Expression flag after
2514 -- analysis, but before resolution, when integer literals are generated
2515 -- in the expander that do not correspond to static expressions.
2516
2517 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
2518 PK : constant Node_Kind := Nkind (Parent (N));
2519
996ae0b0 2520 begin
1d1bd8ad
AC
2521 -- If the literal appears in a non-expression context and not as part of
2522 -- a number declaration, then it is appearing in a non-static context,
2523 -- so check it.
996ae0b0 2524
a1980be8 2525 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
2526 Check_Non_Static_Context (N);
2527 end if;
996ae0b0
RK
2528 end Eval_Real_Literal;
2529
2530 ------------------------
2531 -- Eval_Relational_Op --
2532 ------------------------
2533
2534 -- Relational operations are static functions, so the result is static
93c3fca7
AC
2535 -- if both operands are static (RM 4.9(7), 4.9(20)), except that for
2536 -- strings, the result is never static, even if the operands are.
996ae0b0
RK
2537
2538 procedure Eval_Relational_Op (N : Node_Id) is
2539 Left : constant Node_Id := Left_Opnd (N);
2540 Right : constant Node_Id := Right_Opnd (N);
2541 Typ : constant Entity_Id := Etype (Left);
2542 Result : Boolean;
2543 Stat : Boolean;
2544 Fold : Boolean;
2545
2546 begin
45fc7ddb
HK
2547 -- One special case to deal with first. If we can tell that the result
2548 -- will be false because the lengths of one or more index subtypes are
2549 -- compile time known and different, then we can replace the entire
2550 -- result by False. We only do this for one dimensional arrays, because
2551 -- the case of multi-dimensional arrays is rare and too much trouble! If
2552 -- one of the operands is an illegal aggregate, its type might still be
2553 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
2554
2555 if Is_Array_Type (Typ)
13f34a3f 2556 and then Typ /= Any_Composite
996ae0b0 2557 and then Number_Dimensions (Typ) = 1
13f34a3f 2558 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2559 then
2560 if Raises_Constraint_Error (Left)
2561 or else Raises_Constraint_Error (Right)
2562 then
2563 return;
2564 end if;
2565
45fc7ddb
HK
2566 -- OK, we have the case where we may be able to do this fold
2567
2568 Length_Mismatch : declare
996ae0b0 2569 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
1d1bd8ad
AC
2570 -- If Op is an expression for a constrained array with a known at
2571 -- compile time length, then Len is set to this (non-negative
13f34a3f 2572 -- length). Otherwise Len is set to minus 1.
996ae0b0 2573
fbf5a39b
AC
2574 -----------------------
2575 -- Get_Static_Length --
2576 -----------------------
2577
996ae0b0
RK
2578 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2579 T : Entity_Id;
2580
2581 begin
45fc7ddb
HK
2582 -- First easy case string literal
2583
996ae0b0
RK
2584 if Nkind (Op) = N_String_Literal then
2585 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
2586 return;
2587 end if;
2588
2589 -- Second easy case, not constrained subtype, so no length
996ae0b0 2590
45fc7ddb 2591 if not Is_Constrained (Etype (Op)) then
996ae0b0 2592 Len := Uint_Minus_1;
45fc7ddb
HK
2593 return;
2594 end if;
996ae0b0 2595
45fc7ddb
HK
2596 -- General case
2597
2598 T := Etype (First_Index (Etype (Op)));
2599
2600 -- The simple case, both bounds are known at compile time
2601
2602 if Is_Discrete_Type (T)
2603 and then
2604 Compile_Time_Known_Value (Type_Low_Bound (T))
2605 and then
2606 Compile_Time_Known_Value (Type_High_Bound (T))
2607 then
2608 Len := UI_Max (Uint_0,
2609 Expr_Value (Type_High_Bound (T)) -
2610 Expr_Value (Type_Low_Bound (T)) + 1);
2611 return;
2612 end if;
2613
2614 -- A more complex case, where the bounds are of the form
2615 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2616 -- either A'First or A'Last (with A an entity name), or X is an
2617 -- entity name, and the two X's are the same and K1 and K2 are
2618 -- known at compile time, in this case, the length can also be
2619 -- computed at compile time, even though the bounds are not
2620 -- known. A common case of this is e.g. (X'First..X'First+5).
2621
2622 Extract_Length : declare
2623 procedure Decompose_Expr
2624 (Expr : Node_Id;
2625 Ent : out Entity_Id;
2626 Kind : out Character;
2627 Cons : out Uint);
2628 -- Given an expression, see if is of the form above,
2629 -- X [+/- K]. If so Ent is set to the entity in X,
2630 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2631 -- and Cons is the value of K. If the expression is
2632 -- not of the required form, Ent is set to Empty.
2633
2634 --------------------
2635 -- Decompose_Expr --
2636 --------------------
2637
2638 procedure Decompose_Expr
2639 (Expr : Node_Id;
2640 Ent : out Entity_Id;
2641 Kind : out Character;
2642 Cons : out Uint)
2643 is
2644 Exp : Node_Id;
2645
2646 begin
2647 if Nkind (Expr) = N_Op_Add
2648 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2649 then
2650 Exp := Left_Opnd (Expr);
2651 Cons := Expr_Value (Right_Opnd (Expr));
2652
2653 elsif Nkind (Expr) = N_Op_Subtract
2654 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2655 then
2656 Exp := Left_Opnd (Expr);
2657 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 2658
45fc7ddb
HK
2659 else
2660 Exp := Expr;
2661 Cons := Uint_0;
2662 end if;
2663
2664 -- At this stage Exp is set to the potential X
2665
2666 if Nkind (Exp) = N_Attribute_Reference then
2667 if Attribute_Name (Exp) = Name_First then
2668 Kind := 'F';
2669 elsif Attribute_Name (Exp) = Name_Last then
2670 Kind := 'L';
2671 else
2672 Ent := Empty;
2673 return;
2674 end if;
2675
2676 Exp := Prefix (Exp);
2677
2678 else
2679 Kind := 'E';
2680 end if;
2681
2682 if Is_Entity_Name (Exp)
2683 and then Present (Entity (Exp))
2684 then
2685 Ent := Entity (Exp);
2686 else
2687 Ent := Empty;
2688 end if;
2689 end Decompose_Expr;
2690
2691 -- Local Variables
2692
2693 Ent1, Ent2 : Entity_Id;
2694 Kind1, Kind2 : Character;
2695 Cons1, Cons2 : Uint;
2696
2697 -- Start of processing for Extract_Length
2698
2699 begin
bafc9e1d
AC
2700 Decompose_Expr
2701 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2702 Decompose_Expr
2703 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
45fc7ddb
HK
2704
2705 if Present (Ent1)
2706 and then Kind1 = Kind2
2707 and then Ent1 = Ent2
996ae0b0 2708 then
45fc7ddb 2709 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
2710 else
2711 Len := Uint_Minus_1;
2712 end if;
45fc7ddb 2713 end Extract_Length;
996ae0b0
RK
2714 end Get_Static_Length;
2715
45fc7ddb
HK
2716 -- Local Variables
2717
996ae0b0
RK
2718 Len_L : Uint;
2719 Len_R : Uint;
2720
45fc7ddb
HK
2721 -- Start of processing for Length_Mismatch
2722
996ae0b0
RK
2723 begin
2724 Get_Static_Length (Left, Len_L);
2725 Get_Static_Length (Right, Len_R);
2726
2727 if Len_L /= Uint_Minus_1
2728 and then Len_R /= Uint_Minus_1
2729 and then Len_L /= Len_R
2730 then
fbf5a39b 2731 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
2732 Warn_On_Known_Condition (N);
2733 return;
2734 end if;
45fc7ddb
HK
2735 end Length_Mismatch;
2736 end if;
6eaf4095 2737
93c3fca7 2738 -- Test for expression being foldable
7a3f77d2 2739
93c3fca7 2740 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
996ae0b0 2741
93c3fca7
AC
2742 -- Only comparisons of scalars can give static results. In particular,
2743 -- comparisons of strings never yield a static result, even if both
2744 -- operands are static strings.
996ae0b0
RK
2745
2746 if not Is_Scalar_Type (Typ) then
93c3fca7
AC
2747 Stat := False;
2748 Set_Is_Static_Expression (N, False);
996ae0b0
RK
2749 end if;
2750
93c3fca7
AC
2751 -- For static real type expressions, we cannot use Compile_Time_Compare
2752 -- since it worries about run-time results which are not exact.
996ae0b0 2753
93c3fca7 2754 if Stat and then Is_Real_Type (Typ) then
996ae0b0 2755 declare
93c3fca7
AC
2756 Left_Real : constant Ureal := Expr_Value_R (Left);
2757 Right_Real : constant Ureal := Expr_Value_R (Right);
996ae0b0
RK
2758
2759 begin
2760 case Nkind (N) is
93c3fca7
AC
2761 when N_Op_Eq => Result := (Left_Real = Right_Real);
2762 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2763 when N_Op_Lt => Result := (Left_Real < Right_Real);
2764 when N_Op_Le => Result := (Left_Real <= Right_Real);
2765 when N_Op_Gt => Result := (Left_Real > Right_Real);
2766 when N_Op_Ge => Result := (Left_Real >= Right_Real);
996ae0b0
RK
2767
2768 when others =>
2769 raise Program_Error;
2770 end case;
2771
93c3fca7 2772 Fold_Uint (N, Test (Result), True);
996ae0b0
RK
2773 end;
2774
93c3fca7 2775 -- For all other cases, we use Compile_Time_Compare to do the compare
996ae0b0
RK
2776
2777 else
996ae0b0 2778 declare
93c3fca7
AC
2779 CR : constant Compare_Result :=
2780 Compile_Time_Compare (Left, Right, Assume_Valid => False);
996ae0b0
RK
2781
2782 begin
93c3fca7
AC
2783 if CR = Unknown then
2784 return;
2785 end if;
2786
996ae0b0 2787 case Nkind (N) is
93c3fca7
AC
2788 when N_Op_Eq =>
2789 if CR = EQ then
2790 Result := True;
2791 elsif CR = NE or else CR = GT or else CR = LT then
2792 Result := False;
2793 else
2794 return;
2795 end if;
2796
2797 when N_Op_Ne =>
2798 if CR = NE or else CR = GT or else CR = LT then
2799 Result := True;
2800 elsif CR = EQ then
2801 Result := False;
2802 else
2803 return;
2804 end if;
2805
2806 when N_Op_Lt =>
2807 if CR = LT then
2808 Result := True;
2809 elsif CR = EQ or else CR = GT or else CR = GE then
2810 Result := False;
2811 else
2812 return;
2813 end if;
2814
2815 when N_Op_Le =>
2816 if CR = LT or else CR = EQ or else CR = LE then
2817 Result := True;
2818 elsif CR = GT then
2819 Result := False;
2820 else
2821 return;
2822 end if;
2823
2824 when N_Op_Gt =>
2825 if CR = GT then
2826 Result := True;
2827 elsif CR = EQ or else CR = LT or else CR = LE then
2828 Result := False;
2829 else
2830 return;
2831 end if;
2832
2833 when N_Op_Ge =>
2834 if CR = GT or else CR = EQ or else CR = GE then
2835 Result := True;
2836 elsif CR = LT then
2837 Result := False;
2838 else
2839 return;
2840 end if;
996ae0b0
RK
2841
2842 when others =>
2843 raise Program_Error;
2844 end case;
996ae0b0 2845 end;
93c3fca7
AC
2846
2847 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
2848 end if;
2849
996ae0b0
RK
2850 Warn_On_Known_Condition (N);
2851 end Eval_Relational_Op;
2852
2853 ----------------
2854 -- Eval_Shift --
2855 ----------------
2856
2857 -- Shift operations are intrinsic operations that can never be static,
2858 -- so the only processing required is to perform the required check for
2859 -- a non static context for the two operands.
2860
2861 -- Actually we could do some compile time evaluation here some time ???
2862
2863 procedure Eval_Shift (N : Node_Id) is
2864 begin
2865 Check_Non_Static_Context (Left_Opnd (N));
2866 Check_Non_Static_Context (Right_Opnd (N));
2867 end Eval_Shift;
2868
2869 ------------------------
2870 -- Eval_Short_Circuit --
2871 ------------------------
2872
2873 -- A short circuit operation is potentially static if both operands
2874 -- are potentially static (RM 4.9 (13))
2875
2876 procedure Eval_Short_Circuit (N : Node_Id) is
2877 Kind : constant Node_Kind := Nkind (N);
2878 Left : constant Node_Id := Left_Opnd (N);
2879 Right : constant Node_Id := Right_Opnd (N);
2880 Left_Int : Uint;
2881 Rstat : constant Boolean :=
2882 Is_Static_Expression (Left)
2883 and then Is_Static_Expression (Right);
2884
2885 begin
2886 -- Short circuit operations are never static in Ada 83
2887
0ab80019 2888 if Ada_Version = Ada_83
996ae0b0
RK
2889 and then Comes_From_Source (N)
2890 then
2891 Check_Non_Static_Context (Left);
2892 Check_Non_Static_Context (Right);
2893 return;
2894 end if;
2895
2896 -- Now look at the operands, we can't quite use the normal call to
2897 -- Test_Expression_Is_Foldable here because short circuit operations
2898 -- are a special case, they can still be foldable, even if the right
2899 -- operand raises constraint error.
2900
2901 -- If either operand is Any_Type, just propagate to result and
2902 -- do not try to fold, this prevents cascaded errors.
2903
2904 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2905 Set_Etype (N, Any_Type);
2906 return;
2907
2908 -- If left operand raises constraint error, then replace node N with
2909 -- the raise constraint error node, and we are obviously not foldable.
2910 -- Is_Static_Expression is set from the two operands in the normal way,
2911 -- and we check the right operand if it is in a non-static context.
2912
2913 elsif Raises_Constraint_Error (Left) then
2914 if not Rstat then
2915 Check_Non_Static_Context (Right);
2916 end if;
2917
2918 Rewrite_In_Raise_CE (N, Left);
2919 Set_Is_Static_Expression (N, Rstat);
2920 return;
2921
2922 -- If the result is not static, then we won't in any case fold
2923
2924 elsif not Rstat then
2925 Check_Non_Static_Context (Left);
2926 Check_Non_Static_Context (Right);
2927 return;
2928 end if;
2929
2930 -- Here the result is static, note that, unlike the normal processing
2931 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2932 -- the right operand raises constraint error, that's because it is not
2933 -- significant if the left operand is decisive.
2934
2935 Set_Is_Static_Expression (N);
2936
2937 -- It does not matter if the right operand raises constraint error if
2938 -- it will not be evaluated. So deal specially with the cases where
2939 -- the right operand is not evaluated. Note that we will fold these
2940 -- cases even if the right operand is non-static, which is fine, but
2941 -- of course in these cases the result is not potentially static.
2942
2943 Left_Int := Expr_Value (Left);
2944
2945 if (Kind = N_And_Then and then Is_False (Left_Int))
514d0fc5
AC
2946 or else
2947 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 2948 then
fbf5a39b 2949 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
2950 return;
2951 end if;
2952
2953 -- If first operand not decisive, then it does matter if the right
2954 -- operand raises constraint error, since it will be evaluated, so
2955 -- we simply replace the node with the right operand. Note that this
2956 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2957 -- (both are set to True in Right).
2958
2959 if Raises_Constraint_Error (Right) then
2960 Rewrite_In_Raise_CE (N, Right);
2961 Check_Non_Static_Context (Left);
2962 return;
2963 end if;
2964
2965 -- Otherwise the result depends on the right operand
2966
fbf5a39b 2967 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 2968 return;
996ae0b0
RK
2969 end Eval_Short_Circuit;
2970
2971 ----------------
2972 -- Eval_Slice --
2973 ----------------
2974
2975 -- Slices can never be static, so the only processing required is to
2976 -- check for non-static context if an explicit range is given.
2977
2978 procedure Eval_Slice (N : Node_Id) is
2979 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
2980 begin
2981 if Nkind (Drange) = N_Range then
2982 Check_Non_Static_Context (Low_Bound (Drange));
2983 Check_Non_Static_Context (High_Bound (Drange));
2984 end if;
cd2fb920
ES
2985
2986 -- A slice of the form A (subtype), when the subtype is the index of
2987 -- the type of A, is redundant, the slice can be replaced with A, and
2988 -- this is worth a warning.
2989
2990 if Is_Entity_Name (Prefix (N)) then
2991 declare
2992 E : constant Entity_Id := Entity (Prefix (N));
2993 T : constant Entity_Id := Etype (E);
2994 begin
2995 if Ekind (E) = E_Constant
2996 and then Is_Array_Type (T)
2997 and then Is_Entity_Name (Drange)
2998 then
2999 if Is_Entity_Name (Original_Node (First_Index (T)))
3000 and then Entity (Original_Node (First_Index (T)))
3001 = Entity (Drange)
3002 then
3003 if Warn_On_Redundant_Constructs then
3004 Error_Msg_N ("redundant slice denotes whole array?", N);
3005 end if;
3006
3007 -- The following might be a useful optimization ????
3008
3009 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3010 end if;
3011 end if;
3012 end;
3013 end if;
996ae0b0
RK
3014 end Eval_Slice;
3015
3016 -------------------------
3017 -- Eval_String_Literal --
3018 -------------------------
3019
3020 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3021 Typ : constant Entity_Id := Etype (N);
3022 Bas : constant Entity_Id := Base_Type (Typ);
3023 Xtp : Entity_Id;
3024 Len : Nat;
3025 Lo : Node_Id;
996ae0b0
RK
3026
3027 begin
3028 -- Nothing to do if error type (handles cases like default expressions
3029 -- or generics where we have not yet fully resolved the type)
3030
91b1417d 3031 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3032 return;
91b1417d 3033 end if;
996ae0b0
RK
3034
3035 -- String literals are static if the subtype is static (RM 4.9(2)), so
3036 -- reset the static expression flag (it was set unconditionally in
3037 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3038 -- the subtype is static by looking at the lower bound.
3039
91b1417d
AC
3040 if Ekind (Typ) = E_String_Literal_Subtype then
3041 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3042 Set_Is_Static_Expression (N, False);
3043 return;
3044 end if;
3045
3046 -- Here if Etype of string literal is normal Etype (not yet possible,
3047 -- but may be possible in future!)
3048
3049 elsif not Is_OK_Static_Expression
3050 (Type_Low_Bound (Etype (First_Index (Typ))))
3051 then
996ae0b0 3052 Set_Is_Static_Expression (N, False);
91b1417d
AC
3053 return;
3054 end if;
996ae0b0 3055
91b1417d
AC
3056 -- If original node was a type conversion, then result if non-static
3057
3058 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3059 Set_Is_Static_Expression (N, False);
91b1417d
AC
3060 return;
3061 end if;
996ae0b0
RK
3062
3063 -- Test for illegal Ada 95 cases. A string literal is illegal in
3064 -- Ada 95 if its bounds are outside the index base type and this
91b1417d 3065 -- index type is static. This can happen in only two ways. Either
996ae0b0
RK
3066 -- the string literal is too long, or it is null, and the lower
3067 -- bound is type'First. In either case it is the upper bound that
3068 -- is out of range of the index type.
3069
0ab80019 3070 if Ada_Version >= Ada_95 then
91b1417d
AC
3071 if Root_Type (Bas) = Standard_String
3072 or else
3073 Root_Type (Bas) = Standard_Wide_String
996ae0b0 3074 then
91b1417d 3075 Xtp := Standard_Positive;
996ae0b0 3076 else
91b1417d 3077 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3078 end if;
3079
91b1417d
AC
3080 if Ekind (Typ) = E_String_Literal_Subtype then
3081 Lo := String_Literal_Low_Bound (Typ);
3082 else
3083 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3084 end if;
3085
3086 Len := String_Length (Strval (N));
3087
3088 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 3089 Apply_Compile_Time_Constraint_Error
07fc65c4 3090 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
3091 Ent => Bas,
3092 Typ => First_Subtype (Bas));
996ae0b0 3093
91b1417d
AC
3094 elsif Len = 0
3095 and then not Is_Generic_Type (Xtp)
3096 and then
3097 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
3098 then
3099 Apply_Compile_Time_Constraint_Error
3100 (N, "null string literal not allowed for}",
07fc65c4 3101 CE_Length_Check_Failed,
91b1417d
AC
3102 Ent => Bas,
3103 Typ => First_Subtype (Bas));
996ae0b0
RK
3104 end if;
3105 end if;
996ae0b0
RK
3106 end Eval_String_Literal;
3107
3108 --------------------------
3109 -- Eval_Type_Conversion --
3110 --------------------------
3111
3112 -- A type conversion is potentially static if its subtype mark is for a
3113 -- static scalar subtype, and its operand expression is potentially static
3114 -- (RM 4.9 (10))
3115
3116 procedure Eval_Type_Conversion (N : Node_Id) is
3117 Operand : constant Node_Id := Expression (N);
3118 Source_Type : constant Entity_Id := Etype (Operand);
3119 Target_Type : constant Entity_Id := Etype (N);
3120
3121 Stat : Boolean;
3122 Fold : Boolean;
3123
3124 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3125 -- Returns true if type T is an integer type, or if it is a
3126 -- fixed-point type to be treated as an integer (i.e. the flag
3127 -- Conversion_OK is set on the conversion node).
3128
3129 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3130 -- Returns true if type T is a floating-point type, or if it is a
3131 -- fixed-point type that is not to be treated as an integer (i.e. the
3132 -- flag Conversion_OK is not set on the conversion node).
3133
fbf5a39b
AC
3134 ------------------------------
3135 -- To_Be_Treated_As_Integer --
3136 ------------------------------
3137
996ae0b0
RK
3138 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3139 begin
3140 return
3141 Is_Integer_Type (T)
3142 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3143 end To_Be_Treated_As_Integer;
3144
fbf5a39b
AC
3145 ---------------------------
3146 -- To_Be_Treated_As_Real --
3147 ---------------------------
3148
996ae0b0
RK
3149 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3150 begin
3151 return
3152 Is_Floating_Point_Type (T)
3153 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3154 end To_Be_Treated_As_Real;
3155
3156 -- Start of processing for Eval_Type_Conversion
3157
3158 begin
82c80734 3159 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3160
3161 if not Is_Static_Subtype (Target_Type) then
3162 Check_Non_Static_Context (Operand);
3163 return;
3164
3165 elsif Error_Posted (N) then
3166 return;
3167 end if;
3168
3169 -- If not foldable we are done
3170
3171 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3172
3173 if not Fold then
3174 return;
3175
3176 -- Don't try fold if target type has constraint error bounds
3177
3178 elsif not Is_OK_Static_Subtype (Target_Type) then
3179 Set_Raises_Constraint_Error (N);
3180 return;
3181 end if;
3182
3183 -- Remaining processing depends on operand types. Note that in the
3184 -- following type test, fixed-point counts as real unless the flag
3185 -- Conversion_OK is set, in which case it counts as integer.
3186
82c80734 3187 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3188
3189 if Is_String_Type (Target_Type) then
b11e8d6f 3190 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3191
3192 return;
3193
3194 -- Fold conversion, case of integer target type
3195
3196 elsif To_Be_Treated_As_Integer (Target_Type) then
3197 declare
3198 Result : Uint;
3199
3200 begin
3201 -- Integer to integer conversion
3202
3203 if To_Be_Treated_As_Integer (Source_Type) then
3204 Result := Expr_Value (Operand);
3205
3206 -- Real to integer conversion
3207
3208 else
3209 Result := UR_To_Uint (Expr_Value_R (Operand));
3210 end if;
3211
3212 -- If fixed-point type (Conversion_OK must be set), then the
3213 -- result is logically an integer, but we must replace the
3214 -- conversion with the corresponding real literal, since the
3215 -- type from a semantic point of view is still fixed-point.
3216
3217 if Is_Fixed_Point_Type (Target_Type) then
3218 Fold_Ureal
fbf5a39b 3219 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3220
3221 -- Otherwise result is integer literal
3222
3223 else
fbf5a39b 3224 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3225 end if;
3226 end;
3227
3228 -- Fold conversion, case of real target type
3229
3230 elsif To_Be_Treated_As_Real (Target_Type) then
3231 declare
3232 Result : Ureal;
3233
3234 begin
3235 if To_Be_Treated_As_Real (Source_Type) then
3236 Result := Expr_Value_R (Operand);
3237 else
3238 Result := UR_From_Uint (Expr_Value (Operand));
3239 end if;
3240
fbf5a39b 3241 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3242 end;
3243
3244 -- Enumeration types
3245
3246 else
fbf5a39b 3247 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3248 end if;
3249
c800f862 3250 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3251 Out_Of_Range (N);
3252 end if;
3253
3254 end Eval_Type_Conversion;
3255
3256 -------------------
3257 -- Eval_Unary_Op --
3258 -------------------
3259
3260 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3261 -- are potentially static if the operand is potentially static (RM 4.9(7))
3262
3263 procedure Eval_Unary_Op (N : Node_Id) is
3264 Right : constant Node_Id := Right_Opnd (N);
3265 Stat : Boolean;
3266 Fold : Boolean;
3267
3268 begin
3269 -- If not foldable we are done
3270
3271 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3272
3273 if not Fold then
3274 return;
3275 end if;
3276
3277 -- Fold for integer case
3278
3279 if Is_Integer_Type (Etype (N)) then
3280 declare
3281 Rint : constant Uint := Expr_Value (Right);
3282 Result : Uint;
3283
3284 begin
3285 -- In the case of modular unary plus and abs there is no need
3286 -- to adjust the result of the operation since if the original
3287 -- operand was in bounds the result will be in the bounds of the
3288 -- modular type. However, in the case of modular unary minus the
3289 -- result may go out of the bounds of the modular type and needs
3290 -- adjustment.
3291
3292 if Nkind (N) = N_Op_Plus then
3293 Result := Rint;
3294
3295 elsif Nkind (N) = N_Op_Minus then
3296 if Is_Modular_Integer_Type (Etype (N)) then
3297 Result := (-Rint) mod Modulus (Etype (N));
3298 else
3299 Result := (-Rint);
3300 end if;
3301
3302 else
3303 pragma Assert (Nkind (N) = N_Op_Abs);
3304 Result := abs Rint;
3305 end if;
3306
fbf5a39b 3307 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3308 end;
3309
3310 -- Fold for real case
3311
3312 elsif Is_Real_Type (Etype (N)) then
3313 declare
3314 Rreal : constant Ureal := Expr_Value_R (Right);
3315 Result : Ureal;
3316
3317 begin
3318 if Nkind (N) = N_Op_Plus then
3319 Result := Rreal;
3320
3321 elsif Nkind (N) = N_Op_Minus then
3322 Result := UR_Negate (Rreal);
3323
3324 else
3325 pragma Assert (Nkind (N) = N_Op_Abs);
3326 Result := abs Rreal;
3327 end if;
3328
fbf5a39b 3329 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3330 end;
3331 end if;
996ae0b0
RK
3332 end Eval_Unary_Op;
3333
3334 -------------------------------
3335 -- Eval_Unchecked_Conversion --
3336 -------------------------------
3337
3338 -- Unchecked conversions can never be static, so the only required
3339 -- processing is to check for a non-static context for the operand.
3340
3341 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3342 begin
3343 Check_Non_Static_Context (Expression (N));
3344 end Eval_Unchecked_Conversion;
3345
3346 --------------------
3347 -- Expr_Rep_Value --
3348 --------------------
3349
3350 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3351 Kind : constant Node_Kind := Nkind (N);
3352 Ent : Entity_Id;
996ae0b0
RK
3353
3354 begin
3355 if Is_Entity_Name (N) then
3356 Ent := Entity (N);
3357
3358 -- An enumeration literal that was either in the source or
3359 -- created as a result of static evaluation.
3360
3361 if Ekind (Ent) = E_Enumeration_Literal then
3362 return Enumeration_Rep (Ent);
3363
3364 -- A user defined static constant
3365
3366 else
3367 pragma Assert (Ekind (Ent) = E_Constant);
3368 return Expr_Rep_Value (Constant_Value (Ent));
3369 end if;
3370
3371 -- An integer literal that was either in the source or created
3372 -- as a result of static evaluation.
3373
3374 elsif Kind = N_Integer_Literal then
3375 return Intval (N);
3376
3377 -- A real literal for a fixed-point type. This must be the fixed-point
3378 -- case, either the literal is of a fixed-point type, or it is a bound
3379 -- of a fixed-point type, with type universal real. In either case we
3380 -- obtain the desired value from Corresponding_Integer_Value.
3381
3382 elsif Kind = N_Real_Literal then
996ae0b0
RK
3383 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3384 return Corresponding_Integer_Value (N);
3385
07fc65c4
GB
3386 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3387
3388 elsif Kind = N_Attribute_Reference
3389 and then Attribute_Name (N) = Name_Null_Parameter
3390 then
3391 return Uint_0;
3392
07fc65c4 3393 -- Otherwise must be character literal
8cbb664e 3394
996ae0b0
RK
3395 else
3396 pragma Assert (Kind = N_Character_Literal);
3397 Ent := Entity (N);
3398
3399 -- Since Character literals of type Standard.Character don't
3400 -- have any defining character literals built for them, they
3401 -- do not have their Entity set, so just use their Char
3402 -- code. Otherwise for user-defined character literals use
3403 -- their Pos value as usual which is the same as the Rep value.
3404
3405 if No (Ent) then
82c80734 3406 return Char_Literal_Value (N);
996ae0b0
RK
3407 else
3408 return Enumeration_Rep (Ent);
3409 end if;
3410 end if;
3411 end Expr_Rep_Value;
3412
3413 ----------------
3414 -- Expr_Value --
3415 ----------------
3416
3417 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
3418 Kind : constant Node_Kind := Nkind (N);
3419 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3420 Ent : Entity_Id;
3421 Val : Uint;
996ae0b0
RK
3422
3423 begin
13f34a3f
RD
3424 -- If already in cache, then we know it's compile time known and we can
3425 -- return the value that was previously stored in the cache since
3426 -- compile time known values cannot change.
07fc65c4
GB
3427
3428 if CV_Ent.N = N then
3429 return CV_Ent.V;
3430 end if;
3431
3432 -- Otherwise proceed to test value
3433
996ae0b0
RK
3434 if Is_Entity_Name (N) then
3435 Ent := Entity (N);
3436
3437 -- An enumeration literal that was either in the source or
3438 -- created as a result of static evaluation.
3439
3440 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 3441 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3442
3443 -- A user defined static constant
3444
3445 else
3446 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 3447 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
3448 end if;
3449
3450 -- An integer literal that was either in the source or created
3451 -- as a result of static evaluation.
3452
3453 elsif Kind = N_Integer_Literal then
07fc65c4 3454 Val := Intval (N);
996ae0b0
RK
3455
3456 -- A real literal for a fixed-point type. This must be the fixed-point
3457 -- case, either the literal is of a fixed-point type, or it is a bound
3458 -- of a fixed-point type, with type universal real. In either case we
3459 -- obtain the desired value from Corresponding_Integer_Value.
3460
3461 elsif Kind = N_Real_Literal then
3462
996ae0b0 3463 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3464 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3465
3466 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3467
3468 elsif Kind = N_Attribute_Reference
3469 and then Attribute_Name (N) = Name_Null_Parameter
3470 then
07fc65c4
GB
3471 Val := Uint_0;
3472
996ae0b0
RK
3473 -- Otherwise must be character literal
3474
3475 else
3476 pragma Assert (Kind = N_Character_Literal);
3477 Ent := Entity (N);
3478
3479 -- Since Character literals of type Standard.Character don't
3480 -- have any defining character literals built for them, they
3481 -- do not have their Entity set, so just use their Char
3482 -- code. Otherwise for user-defined character literals use
3483 -- their Pos value as usual.
3484
3485 if No (Ent) then
82c80734 3486 Val := Char_Literal_Value (N);
996ae0b0 3487 else
07fc65c4 3488 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3489 end if;
3490 end if;
3491
07fc65c4
GB
3492 -- Come here with Val set to value to be returned, set cache
3493
3494 CV_Ent.N := N;
3495 CV_Ent.V := Val;
3496 return Val;
996ae0b0
RK
3497 end Expr_Value;
3498
3499 ------------------
3500 -- Expr_Value_E --
3501 ------------------
3502
3503 function Expr_Value_E (N : Node_Id) return Entity_Id is
3504 Ent : constant Entity_Id := Entity (N);
3505
3506 begin
3507 if Ekind (Ent) = E_Enumeration_Literal then
3508 return Ent;
3509 else
3510 pragma Assert (Ekind (Ent) = E_Constant);
3511 return Expr_Value_E (Constant_Value (Ent));
3512 end if;
3513 end Expr_Value_E;
3514
3515 ------------------
3516 -- Expr_Value_R --
3517 ------------------
3518
3519 function Expr_Value_R (N : Node_Id) return Ureal is
3520 Kind : constant Node_Kind := Nkind (N);
3521 Ent : Entity_Id;
3522 Expr : Node_Id;
3523
3524 begin
3525 if Kind = N_Real_Literal then
3526 return Realval (N);
3527
3528 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3529 Ent := Entity (N);
3530 pragma Assert (Ekind (Ent) = E_Constant);
3531 return Expr_Value_R (Constant_Value (Ent));
3532
3533 elsif Kind = N_Integer_Literal then
3534 return UR_From_Uint (Expr_Value (N));
3535
3536 -- Strange case of VAX literals, which are at this stage transformed
3537 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3538 -- Exp_Vfpt for further details.
3539
3540 elsif Vax_Float (Etype (N))
3541 and then Nkind (N) = N_Unchecked_Type_Conversion
3542 then
3543 Expr := Expression (N);
3544
3545 if Nkind (Expr) = N_Function_Call
3546 and then Present (Parameter_Associations (Expr))
3547 then
3548 Expr := First (Parameter_Associations (Expr));
3549
3550 if Nkind (Expr) = N_Real_Literal then
3551 return Realval (Expr);
3552 end if;
3553 end if;
3554
3555 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3556
3557 elsif Kind = N_Attribute_Reference
3558 and then Attribute_Name (N) = Name_Null_Parameter
3559 then
3560 return Ureal_0;
3561 end if;
3562
f3d57416 3563 -- If we fall through, we have a node that cannot be interpreted
996ae0b0
RK
3564 -- as a compile time constant. That is definitely an error.
3565
3566 raise Program_Error;
3567 end Expr_Value_R;
3568
3569 ------------------
3570 -- Expr_Value_S --
3571 ------------------
3572
3573 function Expr_Value_S (N : Node_Id) return Node_Id is
3574 begin
3575 if Nkind (N) = N_String_Literal then
3576 return N;
3577 else
3578 pragma Assert (Ekind (Entity (N)) = E_Constant);
3579 return Expr_Value_S (Constant_Value (Entity (N)));
3580 end if;
3581 end Expr_Value_S;
3582
fbf5a39b
AC
3583 --------------------------
3584 -- Flag_Non_Static_Expr --
3585 --------------------------
3586
3587 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3588 begin
3589 if Error_Posted (Expr) and then not All_Errors_Mode then
3590 return;
3591 else
3592 Error_Msg_F (Msg, Expr);
3593 Why_Not_Static (Expr);
3594 end if;
3595 end Flag_Non_Static_Expr;
3596
996ae0b0
RK
3597 --------------
3598 -- Fold_Str --
3599 --------------
3600
fbf5a39b 3601 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
3602 Loc : constant Source_Ptr := Sloc (N);
3603 Typ : constant Entity_Id := Etype (N);
3604
3605 begin
3606 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
3607
3608 -- We now have the literal with the right value, both the actual type
3609 -- and the expected type of this literal are taken from the expression
3610 -- that was evaluated.
3611
3612 Analyze (N);
3613 Set_Is_Static_Expression (N, Static);
3614 Set_Etype (N, Typ);
3615 Resolve (N);
996ae0b0
RK
3616 end Fold_Str;
3617
3618 ---------------
3619 -- Fold_Uint --
3620 ---------------
3621
fbf5a39b 3622 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 3623 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
3624 Typ : Entity_Id := Etype (N);
3625 Ent : Entity_Id;
996ae0b0
RK
3626
3627 begin
fbf5a39b
AC
3628 -- If we are folding a named number, retain the entity in the
3629 -- literal, for ASIS use.
3630
3631 if Is_Entity_Name (N)
3632 and then Ekind (Entity (N)) = E_Named_Integer
3633 then
3634 Ent := Entity (N);
3635 else
3636 Ent := Empty;
3637 end if;
3638
3639 if Is_Private_Type (Typ) then
3640 Typ := Full_View (Typ);
3641 end if;
3642
f3d57416 3643 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 3644 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
3645 -- For ASIS use, set a link to the original named number when not in
3646 -- a generic context.
996ae0b0 3647
fbf5a39b 3648 if Is_Integer_Type (Typ) then
996ae0b0 3649 Rewrite (N, Make_Integer_Literal (Loc, Val));
cd2fb920 3650
fbf5a39b 3651 Set_Original_Entity (N, Ent);
996ae0b0
RK
3652
3653 -- Otherwise we have an enumeration type, and we substitute either
3654 -- an N_Identifier or N_Character_Literal to represent the enumeration
3655 -- literal corresponding to the given value, which must always be in
3656 -- range, because appropriate tests have already been made for this.
3657
fbf5a39b 3658 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
3659 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3660 end if;
3661
3662 -- We now have the literal with the right value, both the actual type
3663 -- and the expected type of this literal are taken from the expression
3664 -- that was evaluated.
3665
3666 Analyze (N);
fbf5a39b 3667 Set_Is_Static_Expression (N, Static);
996ae0b0 3668 Set_Etype (N, Typ);
fbf5a39b 3669 Resolve (N);
996ae0b0
RK
3670 end Fold_Uint;
3671
3672 ----------------
3673 -- Fold_Ureal --
3674 ----------------
3675
fbf5a39b 3676 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
3677 Loc : constant Source_Ptr := Sloc (N);
3678 Typ : constant Entity_Id := Etype (N);
fbf5a39b 3679 Ent : Entity_Id;
996ae0b0
RK
3680
3681 begin
fbf5a39b
AC
3682 -- If we are folding a named number, retain the entity in the
3683 -- literal, for ASIS use.
3684
3685 if Is_Entity_Name (N)
3686 and then Ekind (Entity (N)) = E_Named_Real
3687 then
3688 Ent := Entity (N);
3689 else
3690 Ent := Empty;
3691 end if;
3692
996ae0b0 3693 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 3694
5a30024a 3695 -- Set link to original named number, for ASIS use
cd2fb920 3696
fbf5a39b 3697 Set_Original_Entity (N, Ent);
996ae0b0
RK
3698
3699 -- Both the actual and expected type comes from the original expression
3700
fbf5a39b
AC
3701 Analyze (N);
3702 Set_Is_Static_Expression (N, Static);
996ae0b0 3703 Set_Etype (N, Typ);
fbf5a39b 3704 Resolve (N);
996ae0b0
RK
3705 end Fold_Ureal;
3706
3707 ---------------
3708 -- From_Bits --
3709 ---------------
3710
3711 function From_Bits (B : Bits; T : Entity_Id) return Uint is
3712 V : Uint := Uint_0;
3713
3714 begin
3715 for J in 0 .. B'Last loop
3716 if B (J) then
3717 V := V + 2 ** J;
3718 end if;
3719 end loop;
3720
3721 if Non_Binary_Modulus (T) then
3722 V := V mod Modulus (T);
3723 end if;
3724
3725 return V;
3726 end From_Bits;
3727
3728 --------------------
3729 -- Get_String_Val --
3730 --------------------
3731
3732 function Get_String_Val (N : Node_Id) return Node_Id is
3733 begin
3734 if Nkind (N) = N_String_Literal then
3735 return N;
3736
3737 elsif Nkind (N) = N_Character_Literal then
3738 return N;
3739
3740 else
3741 pragma Assert (Is_Entity_Name (N));
3742 return Get_String_Val (Constant_Value (Entity (N)));
3743 end if;
3744 end Get_String_Val;
3745
fbf5a39b
AC
3746 ----------------
3747 -- Initialize --
3748 ----------------
3749
3750 procedure Initialize is
3751 begin
3752 CV_Cache := (others => (Node_High_Bound, Uint_0));
3753 end Initialize;
3754
996ae0b0
RK
3755 --------------------
3756 -- In_Subrange_Of --
3757 --------------------
3758
3759 function In_Subrange_Of
c27f2f15
RD
3760 (T1 : Entity_Id;
3761 T2 : Entity_Id;
3762 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
3763 is
3764 L1 : Node_Id;
3765 H1 : Node_Id;
3766
3767 L2 : Node_Id;
3768 H2 : Node_Id;
3769
3770 begin
3771 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
3772 return True;
3773
3774 -- Never in range if both types are not scalar. Don't know if this can
3775 -- actually happen, but just in case.
3776
3777 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
3778 return False;
3779
d79e621a
GD
3780 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
3781 -- definitely not compatible with T2.
3782
3783 elsif Is_Floating_Point_Type (T1)
3784 and then Has_Infinities (T1)
3785 and then Is_Floating_Point_Type (T2)
3786 and then not Has_Infinities (T2)
3787 then
3788 return False;
3789
996ae0b0
RK
3790 else
3791 L1 := Type_Low_Bound (T1);
3792 H1 := Type_High_Bound (T1);
3793
3794 L2 := Type_Low_Bound (T2);
3795 H2 := Type_High_Bound (T2);
3796
3797 -- Check bounds to see if comparison possible at compile time
3798
c27f2f15 3799 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 3800 and then
c27f2f15 3801 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
3802 then
3803 return True;
3804 end if;
3805
3806 -- If bounds not comparable at compile time, then the bounds of T2
3807 -- must be compile time known or we cannot answer the query.
3808
3809 if not Compile_Time_Known_Value (L2)
3810 or else not Compile_Time_Known_Value (H2)
3811 then
3812 return False;
3813 end if;
3814
3815 -- If the bounds of T1 are know at compile time then use these
3816 -- ones, otherwise use the bounds of the base type (which are of
3817 -- course always static).
3818
3819 if not Compile_Time_Known_Value (L1) then
3820 L1 := Type_Low_Bound (Base_Type (T1));
3821 end if;
3822
3823 if not Compile_Time_Known_Value (H1) then
3824 H1 := Type_High_Bound (Base_Type (T1));
3825 end if;
3826
3827 -- Fixed point types should be considered as such only if
3828 -- flag Fixed_Int is set to False.
3829
3830 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
3831 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
3832 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
3833 then
3834 return
3835 Expr_Value_R (L2) <= Expr_Value_R (L1)
3836 and then
3837 Expr_Value_R (H2) >= Expr_Value_R (H1);
3838
3839 else
3840 return
3841 Expr_Value (L2) <= Expr_Value (L1)
3842 and then
3843 Expr_Value (H2) >= Expr_Value (H1);
3844
3845 end if;
3846 end if;
3847
3848 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 3849 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
3850 -- occurrence. However, this is only an optimization attempt, so there is
3851 -- really no point in crashing the compiler. Instead we just decide, too
3852 -- bad, we can't figure out the answer in this case after all.
3853
3854 exception
3855 when others =>
3856
3857 -- Debug flag K disables this behavior (useful for debugging)
3858
3859 if Debug_Flag_K then
3860 raise;
3861 else
3862 return False;
3863 end if;
3864 end In_Subrange_Of;
3865
3866 -----------------
3867 -- Is_In_Range --
3868 -----------------
3869
3870 function Is_In_Range
c800f862
RD
3871 (N : Node_Id;
3872 Typ : Entity_Id;
3873 Assume_Valid : Boolean := False;
3874 Fixed_Int : Boolean := False;
3875 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
3876 is
3877 Val : Uint;
3878 Valr : Ureal;
3879
c27f2f15
RD
3880 pragma Warnings (Off, Assume_Valid);
3881 -- For now Assume_Valid is unreferenced since the current implementation
3882 -- always returns False if N is not a compile time known value, but we
3883 -- keep the parameter to allow for future enhancements in which we try
3884 -- to get the information in the variable case as well.
3885
996ae0b0 3886 begin
82c80734 3887 -- Universal types have no range limits, so always in range
996ae0b0
RK
3888
3889 if Typ = Universal_Integer or else Typ = Universal_Real then
3890 return True;
3891
3892 -- Never in range if not scalar type. Don't know if this can
3893 -- actually happen, but our spec allows it, so we must check!
3894
3895 elsif not Is_Scalar_Type (Typ) then
3896 return False;
3897
82c80734 3898 -- Never in range unless we have a compile time known value
996ae0b0
RK
3899
3900 elsif not Compile_Time_Known_Value (N) then
3901 return False;
3902
c800f862
RD
3903 -- General processing with a known compile time value
3904
996ae0b0
RK
3905 else
3906 declare
c800f862
RD
3907 Lo : Node_Id;
3908 Hi : Node_Id;
3909 LB_Known : Boolean;
3910 UB_Known : Boolean;
996ae0b0
RK
3911
3912 begin
c27f2f15
RD
3913 Lo := Type_Low_Bound (Typ);
3914 Hi := Type_High_Bound (Typ);
c800f862
RD
3915
3916 LB_Known := Compile_Time_Known_Value (Lo);
3917 UB_Known := Compile_Time_Known_Value (Hi);
3918
996ae0b0
RK
3919 -- Fixed point types should be considered as such only in
3920 -- flag Fixed_Int is set to False.
3921
c27f2f15
RD
3922 if Is_Floating_Point_Type (Typ)
3923 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
996ae0b0
RK
3924 or else Int_Real
3925 then
3926 Valr := Expr_Value_R (N);
3927
3928 if LB_Known and then Valr >= Expr_Value_R (Lo)
3929 and then UB_Known and then Valr <= Expr_Value_R (Hi)
3930 then
3931 return True;
3932 else
3933 return False;
3934 end if;
3935
3936 else
3937 Val := Expr_Value (N);
3938
3939 if LB_Known and then Val >= Expr_Value (Lo)
3940 and then UB_Known and then Val <= Expr_Value (Hi)
3941 then
3942 return True;
3943 else
3944 return False;
3945 end if;
3946 end if;
3947 end;
3948 end if;
3949 end Is_In_Range;
3950
3951 -------------------
3952 -- Is_Null_Range --
3953 -------------------
3954
3955 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3956 Typ : constant Entity_Id := Etype (Lo);
3957
3958 begin
3959 if not Compile_Time_Known_Value (Lo)
3960 or else not Compile_Time_Known_Value (Hi)
3961 then
3962 return False;
3963 end if;
3964
3965 if Is_Discrete_Type (Typ) then
3966 return Expr_Value (Lo) > Expr_Value (Hi);
3967
3968 else
3969 pragma Assert (Is_Real_Type (Typ));
3970 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
3971 end if;
3972 end Is_Null_Range;
3973
3974 -----------------------------
3975 -- Is_OK_Static_Expression --
3976 -----------------------------
3977
3978 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
3979 begin
3980 return Is_Static_Expression (N)
3981 and then not Raises_Constraint_Error (N);
3982 end Is_OK_Static_Expression;
3983
3984 ------------------------
3985 -- Is_OK_Static_Range --
3986 ------------------------
3987
3988 -- A static range is a range whose bounds are static expressions, or a
3989 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3990 -- We have already converted range attribute references, so we get the
3991 -- "or" part of this rule without needing a special test.
3992
3993 function Is_OK_Static_Range (N : Node_Id) return Boolean is
3994 begin
3995 return Is_OK_Static_Expression (Low_Bound (N))
3996 and then Is_OK_Static_Expression (High_Bound (N));
3997 end Is_OK_Static_Range;
3998
3999 --------------------------
4000 -- Is_OK_Static_Subtype --
4001 --------------------------
4002
4003 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4004 -- where neither bound raises constraint error when evaluated.
4005
4006 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4007 Base_T : constant Entity_Id := Base_Type (Typ);
4008 Anc_Subt : Entity_Id;
4009
4010 begin
4011 -- First a quick check on the non static subtype flag. As described
4012 -- in further detail in Einfo, this flag is not decisive in all cases,
4013 -- but if it is set, then the subtype is definitely non-static.
4014
4015 if Is_Non_Static_Subtype (Typ) then
4016 return False;
4017 end if;
4018
4019 Anc_Subt := Ancestor_Subtype (Typ);
4020
4021 if Anc_Subt = Empty then
4022 Anc_Subt := Base_T;
4023 end if;
4024
4025 if Is_Generic_Type (Root_Type (Base_T))
4026 or else Is_Generic_Actual_Type (Base_T)
4027 then
4028 return False;
4029
4030 -- String types
4031
4032 elsif Is_String_Type (Typ) then
4033 return
4034 Ekind (Typ) = E_String_Literal_Subtype
4035 or else
4036 (Is_OK_Static_Subtype (Component_Type (Typ))
4037 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4038
4039 -- Scalar types
4040
4041 elsif Is_Scalar_Type (Typ) then
4042 if Base_T = Typ then
4043 return True;
4044
4045 else
4046 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
4047 -- use Get_Type_Low,High_Bound.
4048
4049 return Is_OK_Static_Subtype (Anc_Subt)
4050 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4051 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4052 end if;
4053
4054 -- Types other than string and scalar types are never static
4055
4056 else
4057 return False;
4058 end if;
4059 end Is_OK_Static_Subtype;
4060
4061 ---------------------
4062 -- Is_Out_Of_Range --
4063 ---------------------
4064
4065 function Is_Out_Of_Range
1c7717c3
AC
4066 (N : Node_Id;
4067 Typ : Entity_Id;
c800f862 4068 Assume_Valid : Boolean := False;
1c7717c3
AC
4069 Fixed_Int : Boolean := False;
4070 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
4071 is
4072 Val : Uint;
4073 Valr : Ureal;
4074
c27f2f15
RD
4075 pragma Warnings (Off, Assume_Valid);
4076 -- For now Assume_Valid is unreferenced since the current implementation
4077 -- always returns False if N is not a compile time known value, but we
4078 -- keep the parameter to allow for future enhancements in which we try
4079 -- to get the information in the variable case as well.
4080
996ae0b0 4081 begin
82c80734 4082 -- Universal types have no range limits, so always in range
996ae0b0
RK
4083
4084 if Typ = Universal_Integer or else Typ = Universal_Real then
4085 return False;
4086
4087 -- Never out of range if not scalar type. Don't know if this can
4088 -- actually happen, but our spec allows it, so we must check!
4089
4090 elsif not Is_Scalar_Type (Typ) then
4091 return False;
4092
4093 -- Never out of range if this is a generic type, since the bounds
4094 -- of generic types are junk. Note that if we only checked for
4095 -- static expressions (instead of compile time known values) below,
4096 -- we would not need this check, because values of a generic type
4097 -- can never be static, but they can be known at compile time.
4098
4099 elsif Is_Generic_Type (Typ) then
4100 return False;
4101
fbf5a39b 4102 -- Never out of range unless we have a compile time known value
996ae0b0
RK
4103
4104 elsif not Compile_Time_Known_Value (N) then
4105 return False;
4106
4107 else
4108 declare
c800f862
RD
4109 Lo : Node_Id;
4110 Hi : Node_Id;
4111 LB_Known : Boolean;
4112 UB_Known : Boolean;
996ae0b0
RK
4113
4114 begin
c27f2f15
RD
4115 Lo := Type_Low_Bound (Typ);
4116 Hi := Type_High_Bound (Typ);
c800f862
RD
4117
4118 LB_Known := Compile_Time_Known_Value (Lo);
4119 UB_Known := Compile_Time_Known_Value (Hi);
4120
996ae0b0
RK
4121 -- Real types (note that fixed-point types are not treated
4122 -- as being of a real type if the flag Fixed_Int is set,
4123 -- since in that case they are regarded as integer types).
4124
c27f2f15
RD
4125 if Is_Floating_Point_Type (Typ)
4126 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
996ae0b0
RK
4127 or else Int_Real
4128 then
4129 Valr := Expr_Value_R (N);
4130
4131 if LB_Known and then Valr < Expr_Value_R (Lo) then
4132 return True;
4133
4134 elsif UB_Known and then Expr_Value_R (Hi) < Valr then
4135 return True;
4136
4137 else
4138 return False;
4139 end if;
4140
4141 else
4142 Val := Expr_Value (N);
4143
4144 if LB_Known and then Val < Expr_Value (Lo) then
4145 return True;
4146
4147 elsif UB_Known and then Expr_Value (Hi) < Val then
4148 return True;
4149
4150 else
4151 return False;
4152 end if;
4153 end if;
4154 end;
4155 end if;
4156 end Is_Out_Of_Range;
4157
4158 ---------------------
4159 -- Is_Static_Range --
4160 ---------------------
4161
4162 -- A static range is a range whose bounds are static expressions, or a
4163 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4164 -- We have already converted range attribute references, so we get the
4165 -- "or" part of this rule without needing a special test.
4166
4167 function Is_Static_Range (N : Node_Id) return Boolean is
4168 begin
4169 return Is_Static_Expression (Low_Bound (N))
4170 and then Is_Static_Expression (High_Bound (N));
4171 end Is_Static_Range;
4172
4173 -----------------------
4174 -- Is_Static_Subtype --
4175 -----------------------
4176
82c80734 4177 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4178
4179 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4180 Base_T : constant Entity_Id := Base_Type (Typ);
4181 Anc_Subt : Entity_Id;
4182
4183 begin
4184 -- First a quick check on the non static subtype flag. As described
4185 -- in further detail in Einfo, this flag is not decisive in all cases,
4186 -- but if it is set, then the subtype is definitely non-static.
4187
4188 if Is_Non_Static_Subtype (Typ) then
4189 return False;
4190 end if;
4191
4192 Anc_Subt := Ancestor_Subtype (Typ);
4193
4194 if Anc_Subt = Empty then
4195 Anc_Subt := Base_T;
4196 end if;
4197
4198 if Is_Generic_Type (Root_Type (Base_T))
4199 or else Is_Generic_Actual_Type (Base_T)
4200 then
4201 return False;
4202
4203 -- String types
4204
4205 elsif Is_String_Type (Typ) then
4206 return
4207 Ekind (Typ) = E_String_Literal_Subtype
4208 or else
4209 (Is_Static_Subtype (Component_Type (Typ))
4210 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4211
4212 -- Scalar types
4213
4214 elsif Is_Scalar_Type (Typ) then
4215 if Base_T = Typ then
4216 return True;
4217
4218 else
4219 return Is_Static_Subtype (Anc_Subt)
4220 and then Is_Static_Expression (Type_Low_Bound (Typ))
4221 and then Is_Static_Expression (Type_High_Bound (Typ));
4222 end if;
4223
4224 -- Types other than string and scalar types are never static
4225
4226 else
4227 return False;
4228 end if;
4229 end Is_Static_Subtype;
4230
4231 --------------------
4232 -- Not_Null_Range --
4233 --------------------
4234
4235 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4236 Typ : constant Entity_Id := Etype (Lo);
4237
4238 begin
4239 if not Compile_Time_Known_Value (Lo)
4240 or else not Compile_Time_Known_Value (Hi)
4241 then
4242 return False;
4243 end if;
4244
4245 if Is_Discrete_Type (Typ) then
4246 return Expr_Value (Lo) <= Expr_Value (Hi);
4247
4248 else
4249 pragma Assert (Is_Real_Type (Typ));
4250
4251 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4252 end if;
4253 end Not_Null_Range;
4254
4255 -------------
4256 -- OK_Bits --
4257 -------------
4258
4259 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4260 begin
4261 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4262
4263 if Bits < 500_000 then
4264 return True;
4265
4266 else
4267 Error_Msg_N ("static value too large, capacity exceeded", N);
4268 return False;
4269 end if;
4270 end OK_Bits;
4271
4272 ------------------
4273 -- Out_Of_Range --
4274 ------------------
4275
4276 procedure Out_Of_Range (N : Node_Id) is
4277 begin
4278 -- If we have the static expression case, then this is an illegality
4279 -- in Ada 95 mode, except that in an instance, we never generate an
4280 -- error (if the error is legitimate, it was already diagnosed in
4281 -- the template). The expression to compute the length of a packed
4282 -- array is attached to the array type itself, and deserves a separate
4283 -- message.
4284
4285 if Is_Static_Expression (N)
4286 and then not In_Instance
fbf5a39b 4287 and then not In_Inlined_Body
0ab80019 4288 and then Ada_Version >= Ada_95
996ae0b0 4289 then
996ae0b0
RK
4290 if Nkind (Parent (N)) = N_Defining_Identifier
4291 and then Is_Array_Type (Parent (N))
4292 and then Present (Packed_Array_Type (Parent (N)))
4293 and then Present (First_Rep_Item (Parent (N)))
4294 then
4295 Error_Msg_N
4296 ("length of packed array must not exceed Integer''Last",
4297 First_Rep_Item (Parent (N)));
4298 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4299
4300 else
4301 Apply_Compile_Time_Constraint_Error
07fc65c4 4302 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
4303 end if;
4304
4305 -- Here we generate a warning for the Ada 83 case, or when we are
4306 -- in an instance, or when we have a non-static expression case.
4307
4308 else
996ae0b0 4309 Apply_Compile_Time_Constraint_Error
07fc65c4 4310 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
4311 end if;
4312 end Out_Of_Range;
4313
4314 -------------------------
4315 -- Rewrite_In_Raise_CE --
4316 -------------------------
4317
4318 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4319 Typ : constant Entity_Id := Etype (N);
4320
4321 begin
4322 -- If we want to raise CE in the condition of a raise_CE node
4323 -- we may as well get rid of the condition
4324
4325 if Present (Parent (N))
4326 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4327 then
4328 Set_Condition (Parent (N), Empty);
4329
4330 -- If the expression raising CE is a N_Raise_CE node, we can use
4331 -- that one. We just preserve the type of the context
4332
4333 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4334 Rewrite (N, Exp);
4335 Set_Etype (N, Typ);
4336
4337 -- We have to build an explicit raise_ce node
4338
4339 else
07fc65c4
GB
4340 Rewrite (N,
4341 Make_Raise_Constraint_Error (Sloc (Exp),
4342 Reason => CE_Range_Check_Failed));
996ae0b0
RK
4343 Set_Raises_Constraint_Error (N);
4344 Set_Etype (N, Typ);
4345 end if;
4346 end Rewrite_In_Raise_CE;
4347
4348 ---------------------
4349 -- String_Type_Len --
4350 ---------------------
4351
4352 function String_Type_Len (Stype : Entity_Id) return Uint is
4353 NT : constant Entity_Id := Etype (First_Index (Stype));
4354 T : Entity_Id;
4355
4356 begin
4357 if Is_OK_Static_Subtype (NT) then
4358 T := NT;
4359 else
4360 T := Base_Type (NT);
4361 end if;
4362
4363 return Expr_Value (Type_High_Bound (T)) -
4364 Expr_Value (Type_Low_Bound (T)) + 1;
4365 end String_Type_Len;
4366
4367 ------------------------------------
4368 -- Subtypes_Statically_Compatible --
4369 ------------------------------------
4370
4371 function Subtypes_Statically_Compatible
f44fe430
RD
4372 (T1 : Entity_Id;
4373 T2 : Entity_Id) return Boolean
996ae0b0
RK
4374 is
4375 begin
4376 if Is_Scalar_Type (T1) then
4377
4378 -- Definitely compatible if we match
4379
4380 if Subtypes_Statically_Match (T1, T2) then
4381 return True;
4382
4383 -- If either subtype is nonstatic then they're not compatible
4384
4385 elsif not Is_Static_Subtype (T1)
4386 or else not Is_Static_Subtype (T2)
4387 then
4388 return False;
4389
4390 -- If either type has constraint error bounds, then consider that
4391 -- they match to avoid junk cascaded errors here.
4392
4393 elsif not Is_OK_Static_Subtype (T1)
4394 or else not Is_OK_Static_Subtype (T2)
4395 then
4396 return True;
4397
4398 -- Base types must match, but we don't check that (should
4399 -- we???) but we do at least check that both types are
4400 -- real, or both types are not real.
4401
fbf5a39b 4402 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
4403 return False;
4404
4405 -- Here we check the bounds
4406
4407 else
4408 declare
4409 LB1 : constant Node_Id := Type_Low_Bound (T1);
4410 HB1 : constant Node_Id := Type_High_Bound (T1);
4411 LB2 : constant Node_Id := Type_Low_Bound (T2);
4412 HB2 : constant Node_Id := Type_High_Bound (T2);
4413
4414 begin
4415 if Is_Real_Type (T1) then
4416 return
4417 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4418 or else
4419 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4420 and then
4421 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4422
4423 else
4424 return
4425 (Expr_Value (LB1) > Expr_Value (HB1))
4426 or else
4427 (Expr_Value (LB2) <= Expr_Value (LB1)
4428 and then
4429 Expr_Value (HB1) <= Expr_Value (HB2));
4430 end if;
4431 end;
4432 end if;
4433
4434 elsif Is_Access_Type (T1) then
4435 return not Is_Constrained (T2)
4436 or else Subtypes_Statically_Match
4437 (Designated_Type (T1), Designated_Type (T2));
4438
4439 else
4440 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4441 or else Subtypes_Statically_Match (T1, T2);
4442 end if;
4443 end Subtypes_Statically_Compatible;
4444
4445 -------------------------------
4446 -- Subtypes_Statically_Match --
4447 -------------------------------
4448
4449 -- Subtypes statically match if they have statically matching constraints
4450 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4451 -- they are the same identical constraint, or if they are static and the
4452 -- values match (RM 4.9.1(1)).
4453
4454 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4455 begin
4456 -- A type always statically matches itself
4457
4458 if T1 = T2 then
4459 return True;
4460
4461 -- Scalar types
4462
4463 elsif Is_Scalar_Type (T1) then
4464
4465 -- Base types must be the same
4466
4467 if Base_Type (T1) /= Base_Type (T2) then
4468 return False;
4469 end if;
4470
4471 -- A constrained numeric subtype never matches an unconstrained
4472 -- subtype, i.e. both types must be constrained or unconstrained.
4473
4474 -- To understand the requirement for this test, see RM 4.9.1(1).
4475 -- As is made clear in RM 3.5.4(11), type Integer, for example
4476 -- is a constrained subtype with constraint bounds matching the
f3d57416 4477 -- bounds of its corresponding unconstrained base type. In this
996ae0b0
RK
4478 -- situation, Integer and Integer'Base do not statically match,
4479 -- even though they have the same bounds.
4480
4481 -- We only apply this test to types in Standard and types that
4482 -- appear in user programs. That way, we do not have to be
4483 -- too careful about setting Is_Constrained right for itypes.
4484
4485 if Is_Numeric_Type (T1)
4486 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4487 and then (Scope (T1) = Standard_Standard
4488 or else Comes_From_Source (T1))
4489 and then (Scope (T2) = Standard_Standard
4490 or else Comes_From_Source (T2))
4491 then
4492 return False;
82c80734
RD
4493
4494 -- A generic scalar type does not statically match its base
4495 -- type (AI-311). In this case we make sure that the formals,
4496 -- which are first subtypes of their bases, are constrained.
4497
4498 elsif Is_Generic_Type (T1)
4499 and then Is_Generic_Type (T2)
4500 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4501 then
4502 return False;
996ae0b0
RK
4503 end if;
4504
4505 -- If there was an error in either range, then just assume
4506 -- the types statically match to avoid further junk errors
4507
4508 if Error_Posted (Scalar_Range (T1))
4509 or else
4510 Error_Posted (Scalar_Range (T2))
4511 then
4512 return True;
4513 end if;
4514
4515 -- Otherwise both types have bound that can be compared
4516
4517 declare
4518 LB1 : constant Node_Id := Type_Low_Bound (T1);
4519 HB1 : constant Node_Id := Type_High_Bound (T1);
4520 LB2 : constant Node_Id := Type_Low_Bound (T2);
4521 HB2 : constant Node_Id := Type_High_Bound (T2);
4522
4523 begin
4524 -- If the bounds are the same tree node, then match
4525
4526 if LB1 = LB2 and then HB1 = HB2 then
4527 return True;
4528
4529 -- Otherwise bounds must be static and identical value
4530
4531 else
4532 if not Is_Static_Subtype (T1)
4533 or else not Is_Static_Subtype (T2)
4534 then
4535 return False;
4536
4537 -- If either type has constraint error bounds, then say
4538 -- that they match to avoid junk cascaded errors here.
4539
4540 elsif not Is_OK_Static_Subtype (T1)
4541 or else not Is_OK_Static_Subtype (T2)
4542 then
4543 return True;
4544
4545 elsif Is_Real_Type (T1) then
4546 return
4547 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4548 and then
4549 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4550
4551 else
4552 return
4553 Expr_Value (LB1) = Expr_Value (LB2)
4554 and then
4555 Expr_Value (HB1) = Expr_Value (HB2);
4556 end if;
4557 end if;
4558 end;
4559
4560 -- Type with discriminants
4561
4562 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4563
c2bf339e
GD
4564 -- Because of view exchanges in multiple instantiations, conformance
4565 -- checking might try to match a partial view of a type with no
4566 -- discriminants with a full view that has defaulted discriminants.
4567 -- In such a case, use the discriminant constraint of the full view,
4568 -- which must exist because we know that the two subtypes have the
4569 -- same base type.
6eaf4095 4570
996ae0b0 4571 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4572 if In_Instance then
4573 if Is_Private_Type (T2)
4574 and then Present (Full_View (T2))
4575 and then Has_Discriminants (Full_View (T2))
4576 then
4577 return Subtypes_Statically_Match (T1, Full_View (T2));
4578
4579 elsif Is_Private_Type (T1)
4580 and then Present (Full_View (T1))
4581 and then Has_Discriminants (Full_View (T1))
4582 then
4583 return Subtypes_Statically_Match (Full_View (T1), T2);
4584
4585 else
4586 return False;
4587 end if;
6eaf4095
ES
4588 else
4589 return False;
4590 end if;
996ae0b0
RK
4591 end if;
4592
4593 declare
4594 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4595 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4596
13f34a3f
RD
4597 DA1 : Elmt_Id;
4598 DA2 : Elmt_Id;
996ae0b0
RK
4599
4600 begin
4601 if DL1 = DL2 then
4602 return True;
996ae0b0
RK
4603 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4604 return False;
4605 end if;
4606
13f34a3f 4607 -- Now loop through the discriminant constraints
996ae0b0 4608
13f34a3f
RD
4609 -- Note: the guard here seems necessary, since it is possible at
4610 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 4611
13f34a3f
RD
4612 if Present (DL1) and then Present (DL2) then
4613 DA1 := First_Elmt (DL1);
4614 DA2 := First_Elmt (DL2);
4615 while Present (DA1) loop
4616 declare
4617 Expr1 : constant Node_Id := Node (DA1);
4618 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 4619
13f34a3f
RD
4620 begin
4621 if not Is_Static_Expression (Expr1)
4622 or else not Is_Static_Expression (Expr2)
4623 then
4624 return False;
996ae0b0 4625
13f34a3f
RD
4626 -- If either expression raised a constraint error,
4627 -- consider the expressions as matching, since this
4628 -- helps to prevent cascading errors.
4629
4630 elsif Raises_Constraint_Error (Expr1)
4631 or else Raises_Constraint_Error (Expr2)
4632 then
4633 null;
4634
4635 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4636 return False;
4637 end if;
4638 end;
996ae0b0 4639
13f34a3f
RD
4640 Next_Elmt (DA1);
4641 Next_Elmt (DA2);
4642 end loop;
4643 end if;
996ae0b0
RK
4644 end;
4645
4646 return True;
4647
82c80734 4648 -- A definite type does not match an indefinite or classwide type
0356699b
RD
4649 -- However, a generic type with unknown discriminants may be
4650 -- instantiated with a type with no discriminants, and conformance
4651 -- checking on an inherited operation may compare the actual with
4652 -- the subtype that renames it in the instance.
996ae0b0
RK
4653
4654 elsif
4655 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4656 then
7a3f77d2
AC
4657 return
4658 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
4659
4660 -- Array type
4661
4662 elsif Is_Array_Type (T1) then
4663
4664 -- If either subtype is unconstrained then both must be,
4665 -- and if both are unconstrained then no further checking
4666 -- is needed.
4667
4668 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4669 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4670 end if;
4671
4672 -- Both subtypes are constrained, so check that the index
4673 -- subtypes statically match.
4674
4675 declare
4676 Index1 : Node_Id := First_Index (T1);
4677 Index2 : Node_Id := First_Index (T2);
4678
4679 begin
4680 while Present (Index1) loop
4681 if not
4682 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4683 then
4684 return False;
4685 end if;
4686
4687 Next_Index (Index1);
4688 Next_Index (Index2);
4689 end loop;
4690
4691 return True;
4692 end;
4693
4694 elsif Is_Access_Type (T1) then
b5bd964f
ES
4695 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4696 return False;
4697
7a3f77d2
AC
4698 elsif Ekind (T1) = E_Access_Subprogram_Type
4699 or else Ekind (T1) = E_Anonymous_Access_Subprogram_Type
4700 then
b5bd964f
ES
4701 return
4702 Subtype_Conformant
4703 (Designated_Type (T1),
bb98fe75 4704 Designated_Type (T2));
b5bd964f
ES
4705 else
4706 return
4707 Subtypes_Statically_Match
4708 (Designated_Type (T1),
4709 Designated_Type (T2))
4710 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4711 end if;
996ae0b0
RK
4712
4713 -- All other types definitely match
4714
4715 else
4716 return True;
4717 end if;
4718 end Subtypes_Statically_Match;
4719
4720 ----------
4721 -- Test --
4722 ----------
4723
4724 function Test (Cond : Boolean) return Uint is
4725 begin
4726 if Cond then
4727 return Uint_1;
4728 else
4729 return Uint_0;
4730 end if;
4731 end Test;
4732
4733 ---------------------------------
4734 -- Test_Expression_Is_Foldable --
4735 ---------------------------------
4736
4737 -- One operand case
4738
4739 procedure Test_Expression_Is_Foldable
4740 (N : Node_Id;
4741 Op1 : Node_Id;
4742 Stat : out Boolean;
4743 Fold : out Boolean)
4744 is
4745 begin
4746 Stat := False;
0356699b
RD
4747 Fold := False;
4748
4749 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4750 return;
4751 end if;
996ae0b0
RK
4752
4753 -- If operand is Any_Type, just propagate to result and do not
4754 -- try to fold, this prevents cascaded errors.
4755
4756 if Etype (Op1) = Any_Type then
4757 Set_Etype (N, Any_Type);
996ae0b0
RK
4758 return;
4759
4760 -- If operand raises constraint error, then replace node N with the
4761 -- raise constraint error node, and we are obviously not foldable.
4762 -- Note that this replacement inherits the Is_Static_Expression flag
4763 -- from the operand.
4764
4765 elsif Raises_Constraint_Error (Op1) then
4766 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
4767 return;
4768
4769 -- If the operand is not static, then the result is not static, and
4770 -- all we have to do is to check the operand since it is now known
4771 -- to appear in a non-static context.
4772
4773 elsif not Is_Static_Expression (Op1) then
4774 Check_Non_Static_Context (Op1);
4775 Fold := Compile_Time_Known_Value (Op1);
4776 return;
4777
4778 -- An expression of a formal modular type is not foldable because
4779 -- the modulus is unknown.
4780
4781 elsif Is_Modular_Integer_Type (Etype (Op1))
4782 and then Is_Generic_Type (Etype (Op1))
4783 then
4784 Check_Non_Static_Context (Op1);
996ae0b0
RK
4785 return;
4786
4787 -- Here we have the case of an operand whose type is OK, which is
4788 -- static, and which does not raise constraint error, we can fold.
4789
4790 else
4791 Set_Is_Static_Expression (N);
4792 Fold := True;
4793 Stat := True;
4794 end if;
4795 end Test_Expression_Is_Foldable;
4796
4797 -- Two operand case
4798
4799 procedure Test_Expression_Is_Foldable
4800 (N : Node_Id;
4801 Op1 : Node_Id;
4802 Op2 : Node_Id;
4803 Stat : out Boolean;
4804 Fold : out Boolean)
4805 is
4806 Rstat : constant Boolean := Is_Static_Expression (Op1)
4807 and then Is_Static_Expression (Op2);
4808
4809 begin
4810 Stat := False;
0356699b
RD
4811 Fold := False;
4812
4813 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4814 return;
4815 end if;
996ae0b0
RK
4816
4817 -- If either operand is Any_Type, just propagate to result and
4818 -- do not try to fold, this prevents cascaded errors.
4819
4820 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
4821 Set_Etype (N, Any_Type);
996ae0b0
RK
4822 return;
4823
4824 -- If left operand raises constraint error, then replace node N with
4825 -- the raise constraint error node, and we are obviously not foldable.
4826 -- Is_Static_Expression is set from the two operands in the normal way,
4827 -- and we check the right operand if it is in a non-static context.
4828
4829 elsif Raises_Constraint_Error (Op1) then
4830 if not Rstat then
4831 Check_Non_Static_Context (Op2);
4832 end if;
4833
4834 Rewrite_In_Raise_CE (N, Op1);
4835 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4836 return;
4837
4838 -- Similar processing for the case of the right operand. Note that
4839 -- we don't use this routine for the short-circuit case, so we do
4840 -- not have to worry about that special case here.
4841
4842 elsif Raises_Constraint_Error (Op2) then
4843 if not Rstat then
4844 Check_Non_Static_Context (Op1);
4845 end if;
4846
4847 Rewrite_In_Raise_CE (N, Op2);
4848 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4849 return;
4850
82c80734 4851 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
4852
4853 elsif Is_Modular_Integer_Type (Etype (Op1))
4854 and then Is_Generic_Type (Etype (Op1))
4855 then
4856 Check_Non_Static_Context (Op1);
996ae0b0
RK
4857 return;
4858
4859 -- If result is not static, then check non-static contexts on operands
4860 -- since one of them may be static and the other one may not be static
4861
4862 elsif not Rstat then
4863 Check_Non_Static_Context (Op1);
4864 Check_Non_Static_Context (Op2);
4865 Fold := Compile_Time_Known_Value (Op1)
4866 and then Compile_Time_Known_Value (Op2);
4867 return;
4868
4869 -- Else result is static and foldable. Both operands are static,
4870 -- and neither raises constraint error, so we can definitely fold.
4871
4872 else
4873 Set_Is_Static_Expression (N);
4874 Fold := True;
4875 Stat := True;
4876 return;
4877 end if;
4878 end Test_Expression_Is_Foldable;
4879
4880 --------------
4881 -- To_Bits --
4882 --------------
4883
4884 procedure To_Bits (U : Uint; B : out Bits) is
4885 begin
4886 for J in 0 .. B'Last loop
4887 B (J) := (U / (2 ** J)) mod 2 /= 0;
4888 end loop;
4889 end To_Bits;
4890
fbf5a39b
AC
4891 --------------------
4892 -- Why_Not_Static --
4893 --------------------
4894
4895 procedure Why_Not_Static (Expr : Node_Id) is
4896 N : constant Node_Id := Original_Node (Expr);
4897 Typ : Entity_Id;
4898 E : Entity_Id;
4899
4900 procedure Why_Not_Static_List (L : List_Id);
4901 -- A version that can be called on a list of expressions. Finds
4902 -- all non-static violations in any element of the list.
4903
4904 -------------------------
4905 -- Why_Not_Static_List --
4906 -------------------------
4907
4908 procedure Why_Not_Static_List (L : List_Id) is
4909 N : Node_Id;
4910
4911 begin
4912 if Is_Non_Empty_List (L) then
4913 N := First (L);
4914 while Present (N) loop
4915 Why_Not_Static (N);
4916 Next (N);
4917 end loop;
4918 end if;
4919 end Why_Not_Static_List;
4920
4921 -- Start of processing for Why_Not_Static
4922
4923 begin
4924 -- If in ACATS mode (debug flag 2), then suppress all these
4925 -- messages, this avoids massive updates to the ACATS base line.
4926
4927 if Debug_Flag_2 then
4928 return;
4929 end if;
4930
4931 -- Ignore call on error or empty node
4932
4933 if No (Expr) or else Nkind (Expr) = N_Error then
4934 return;
4935 end if;
4936
4937 -- Preprocessing for sub expressions
4938
4939 if Nkind (Expr) in N_Subexpr then
4940
4941 -- Nothing to do if expression is static
4942
4943 if Is_OK_Static_Expression (Expr) then
4944 return;
4945 end if;
4946
4947 -- Test for constraint error raised
4948
4949 if Raises_Constraint_Error (Expr) then
4950 Error_Msg_N
4951 ("expression raises exception, cannot be static " &
b11e8d6f 4952 "(RM 4.9(34))!", N);
fbf5a39b
AC
4953 return;
4954 end if;
4955
4956 -- If no type, then something is pretty wrong, so ignore
4957
4958 Typ := Etype (Expr);
4959
4960 if No (Typ) then
4961 return;
4962 end if;
4963
4964 -- Type must be scalar or string type
4965
4966 if not Is_Scalar_Type (Typ)
4967 and then not Is_String_Type (Typ)
4968 then
4969 Error_Msg_N
4970 ("static expression must have scalar or string type " &
b11e8d6f 4971 "(RM 4.9(2))!", N);
fbf5a39b
AC
4972 return;
4973 end if;
4974 end if;
4975
4976 -- If we got through those checks, test particular node kind
4977
4978 case Nkind (N) is
4979 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
4980 E := Entity (N);
4981
4982 if Is_Named_Number (E) then
4983 null;
4984
4985 elsif Ekind (E) = E_Constant then
4986 if not Is_Static_Expression (Constant_Value (E)) then
4987 Error_Msg_NE
b11e8d6f 4988 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
4989 end if;
4990
4991 else
4992 Error_Msg_NE
4993 ("& is not static constant or named number " &
b11e8d6f 4994 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
4995 end if;
4996
514d0fc5 4997 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
fbf5a39b
AC
4998 if Nkind (N) in N_Op_Shift then
4999 Error_Msg_N
b11e8d6f 5000 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
5001
5002 else
5003 Why_Not_Static (Left_Opnd (N));
5004 Why_Not_Static (Right_Opnd (N));
5005 end if;
5006
5007 when N_Unary_Op =>
5008 Why_Not_Static (Right_Opnd (N));
5009
5010 when N_Attribute_Reference =>
5011 Why_Not_Static_List (Expressions (N));
5012
5013 E := Etype (Prefix (N));
5014
5015 if E = Standard_Void_Type then
5016 return;
5017 end if;
5018
5019 -- Special case non-scalar'Size since this is a common error
5020
5021 if Attribute_Name (N) = Name_Size then
5022 Error_Msg_N
fdfea49e 5023 ("size attribute is only static for static scalar type " &
b11e8d6f 5024 "(RM 4.9(7,8))", N);
fbf5a39b
AC
5025
5026 -- Flag array cases
5027
5028 elsif Is_Array_Type (E) then
5029 if Attribute_Name (N) /= Name_First
5030 and then
5031 Attribute_Name (N) /= Name_Last
5032 and then
5033 Attribute_Name (N) /= Name_Length
5034 then
5035 Error_Msg_N
5036 ("static array attribute must be Length, First, or Last " &
b11e8d6f 5037 "(RM 4.9(8))!", N);
fbf5a39b
AC
5038
5039 -- Since we know the expression is not-static (we already
5040 -- tested for this, must mean array is not static).
5041
5042 else
5043 Error_Msg_N
b11e8d6f 5044 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
5045 end if;
5046
5047 return;
5048
5049 -- Special case generic types, since again this is a common
5050 -- source of confusion.
5051
5052 elsif Is_Generic_Actual_Type (E)
5053 or else
5054 Is_Generic_Type (E)
5055 then
5056 Error_Msg_N
5057 ("attribute of generic type is never static " &
b11e8d6f 5058 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5059
5060 elsif Is_Static_Subtype (E) then
5061 null;
5062
5063 elsif Is_Scalar_Type (E) then
5064 Error_Msg_N
5065 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 5066 "(RM 4.9(7))!", N);
fbf5a39b
AC
5067
5068 else
5069 Error_Msg_N
5070 ("static attribute must apply to array/scalar type " &
b11e8d6f 5071 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5072 end if;
5073
5074 when N_String_Literal =>
5075 Error_Msg_N
b11e8d6f 5076 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
5077
5078 when N_Explicit_Dereference =>
5079 Error_Msg_N
b11e8d6f 5080 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
5081
5082 when N_Function_Call =>
5083 Why_Not_Static_List (Parameter_Associations (N));
b11e8d6f 5084 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
fbf5a39b
AC
5085
5086 when N_Parameter_Association =>
5087 Why_Not_Static (Explicit_Actual_Parameter (N));
5088
5089 when N_Indexed_Component =>
5090 Error_Msg_N
b11e8d6f 5091 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
5092
5093 when N_Procedure_Call_Statement =>
5094 Error_Msg_N
b11e8d6f 5095 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
5096
5097 when N_Qualified_Expression =>
5098 Why_Not_Static (Expression (N));
5099
5100 when N_Aggregate | N_Extension_Aggregate =>
5101 Error_Msg_N
b11e8d6f 5102 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
5103
5104 when N_Range =>
5105 Why_Not_Static (Low_Bound (N));
5106 Why_Not_Static (High_Bound (N));
5107
5108 when N_Range_Constraint =>
5109 Why_Not_Static (Range_Expression (N));
5110
5111 when N_Subtype_Indication =>
5112 Why_Not_Static (Constraint (N));
5113
5114 when N_Selected_Component =>
5115 Error_Msg_N
b11e8d6f 5116 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
5117
5118 when N_Slice =>
5119 Error_Msg_N
b11e8d6f 5120 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
5121
5122 when N_Type_Conversion =>
5123 Why_Not_Static (Expression (N));
5124
5125 if not Is_Scalar_Type (Etype (Prefix (N)))
5126 or else not Is_Static_Subtype (Etype (Prefix (N)))
5127 then
5128 Error_Msg_N
5129 ("static conversion requires static scalar subtype result " &
b11e8d6f 5130 "(RM 4.9(9))!", N);
fbf5a39b
AC
5131 end if;
5132
5133 when N_Unchecked_Type_Conversion =>
5134 Error_Msg_N
b11e8d6f 5135 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
5136
5137 when others =>
5138 null;
5139
5140 end case;
5141 end Why_Not_Static;
5142
996ae0b0 5143end Sem_Eval;