]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_res.adb
exp_atag.ads, [...]: Replace headers with GPL v3 headers.
[thirdparty/gcc.git] / gcc / ada / sem_res.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ R E S --
6-- --
7-- B o d y --
8-- --
b7d1f17f 9-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Debug_A; use Debug_A;
30with Einfo; use Einfo;
b7d1f17f 31with Elists; use Elists;
996ae0b0
RK
32with Errout; use Errout;
33with Expander; use Expander;
758c442c 34with Exp_Disp; use Exp_Disp;
0669bebe 35with Exp_Ch6; use Exp_Ch6;
996ae0b0 36with Exp_Ch7; use Exp_Ch7;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
996ae0b0 38with Exp_Util; use Exp_Util;
dae2b8ea 39with Fname; use Fname;
996ae0b0
RK
40with Freeze; use Freeze;
41with Itypes; use Itypes;
42with Lib; use Lib;
43with Lib.Xref; use Lib.Xref;
44with Namet; use Namet;
45with Nmake; use Nmake;
46with Nlists; use Nlists;
47with Opt; use Opt;
48with Output; use Output;
49with Restrict; use Restrict;
6e937c1c 50with Rident; use Rident;
996ae0b0
RK
51with Rtsfind; use Rtsfind;
52with Sem; use Sem;
53with Sem_Aggr; use Sem_Aggr;
54with Sem_Attr; use Sem_Attr;
55with Sem_Cat; use Sem_Cat;
56with Sem_Ch4; use Sem_Ch4;
57with Sem_Ch6; use Sem_Ch6;
58with Sem_Ch8; use Sem_Ch8;
59with Sem_Disp; use Sem_Disp;
60with Sem_Dist; use Sem_Dist;
61with Sem_Elab; use Sem_Elab;
62with Sem_Eval; use Sem_Eval;
63with Sem_Intr; use Sem_Intr;
64with Sem_Util; use Sem_Util;
65with Sem_Type; use Sem_Type;
66with Sem_Warn; use Sem_Warn;
67with Sinfo; use Sinfo;
fbf5a39b 68with Snames; use Snames;
996ae0b0
RK
69with Stand; use Stand;
70with Stringt; use Stringt;
b7d1f17f 71with Targparm; use Targparm;
996ae0b0
RK
72with Tbuild; use Tbuild;
73with Uintp; use Uintp;
74with Urealp; use Urealp;
75
76package body Sem_Res is
77
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
81
82 -- Second pass (top-down) type checking and overload resolution procedures
83 -- Typ is the type required by context. These procedures propagate the
84 -- type information recursively to the descendants of N. If the node
85 -- is not overloaded, its Etype is established in the first pass. If
86 -- overloaded, the Resolve routines set the correct type. For arith.
87 -- operators, the Etype is the base type of the context.
88
89 -- Note that Resolve_Attribute is separated off in Sem_Attr
90
996ae0b0
RK
91 procedure Check_Discriminant_Use (N : Node_Id);
92 -- Enforce the restrictions on the use of discriminants when constraining
93 -- a component of a discriminated type (record or concurrent type).
94
95 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
96 -- Given a node for an operator associated with type T, check that
97 -- the operator is visible. Operators all of whose operands are
98 -- universal must be checked for visibility during resolution
99 -- because their type is not determinable based on their operands.
100
c8ef728f
ES
101 procedure Check_Fully_Declared_Prefix
102 (Typ : Entity_Id;
103 Pref : Node_Id);
104 -- Check that the type of the prefix of a dereference is not incomplete
105
996ae0b0
RK
106 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
107 -- Given a call node, N, which is known to occur immediately within the
108 -- subprogram being called, determines whether it is a detectable case of
109 -- an infinite recursion, and if so, outputs appropriate messages. Returns
110 -- True if an infinite recursion is detected, and False otherwise.
111
112 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
113 -- If the type of the object being initialized uses the secondary stack
114 -- directly or indirectly, create a transient scope for the call to the
fbf5a39b
AC
115 -- init proc. This is because we do not create transient scopes for the
116 -- initialization of individual components within the init proc itself.
996ae0b0
RK
117 -- Could be optimized away perhaps?
118
119 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
120 -- Utility to check whether the name in the call is a predefined
121 -- operator, in which case the call is made into an operator node.
122 -- An instance of an intrinsic conversion operation may be given
123 -- an operator name, but is not treated like an operator.
124
125 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
126 -- If a default expression in entry call N depends on the discriminants
127 -- of the task, it must be replaced with a reference to the discriminant
128 -- of the task being called.
129
130 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
131 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
132 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
133 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
134 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
135 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
136 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
137 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
138 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
139 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
140 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
141 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
142 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
143 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
144 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
145 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
146 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
147 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
148 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
149 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
150 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
151 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
152 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
153 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
154 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
155 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
156 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
157 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
158 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
159 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
160 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
161 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
162
163 function Operator_Kind
164 (Op_Name : Name_Id;
0ab80019 165 Is_Binary : Boolean) return Node_Kind;
996ae0b0
RK
166 -- Utility to map the name of an operator into the corresponding Node. Used
167 -- by other node rewriting procedures.
168
169 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
bc5f3720
RD
170 -- Resolve actuals of call, and add default expressions for missing ones.
171 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
172 -- called subprogram.
996ae0b0
RK
173
174 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
175 -- Called from Resolve_Call, when the prefix denotes an entry or element
176 -- of entry family. Actuals are resolved as for subprograms, and the node
177 -- is rebuilt as an entry call. Also called for protected operations. Typ
178 -- is the context type, which is used when the operation is a protected
179 -- function with no arguments, and the return value is indexed.
180
181 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
182 -- A call to a user-defined intrinsic operator is rewritten as a call
183 -- to the corresponding predefined operator, with suitable conversions.
184
fbf5a39b 185 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
a77842bd 186 -- Ditto, for unary operators (only arithmetic ones)
fbf5a39b 187
996ae0b0
RK
188 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
189 -- If an operator node resolves to a call to a user-defined operator,
190 -- rewrite the node as a function call.
191
192 procedure Make_Call_Into_Operator
193 (N : Node_Id;
194 Typ : Entity_Id;
195 Op_Id : Entity_Id);
196 -- Inverse transformation: if an operator is given in functional notation,
197 -- then after resolving the node, transform into an operator node, so
198 -- that operands are resolved properly. Recall that predefined operators
199 -- do not have a full signature and special resolution rules apply.
200
0ab80019
AC
201 procedure Rewrite_Renamed_Operator
202 (N : Node_Id;
203 Op : Entity_Id;
204 Typ : Entity_Id);
996ae0b0 205 -- An operator can rename another, e.g. in an instantiation. In that
0ab80019 206 -- case, the proper operator node must be constructed and resolved.
996ae0b0
RK
207
208 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
209 -- The String_Literal_Subtype is built for all strings that are not
07fc65c4
GB
210 -- operands of a static concatenation operation. If the argument is
211 -- not a N_String_Literal node, then the call has no effect.
996ae0b0
RK
212
213 procedure Set_Slice_Subtype (N : Node_Id);
fbf5a39b 214 -- Build subtype of array type, with the range specified by the slice
996ae0b0 215
0669bebe
GB
216 procedure Simplify_Type_Conversion (N : Node_Id);
217 -- Called after N has been resolved and evaluated, but before range checks
218 -- have been applied. Currently simplifies a combination of floating-point
219 -- to integer conversion and Truncation attribute.
220
996ae0b0 221 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
07fc65c4
GB
222 -- A universal_fixed expression in an universal context is unambiguous
223 -- if there is only one applicable fixed point type. Determining whether
996ae0b0
RK
224 -- there is only one requires a search over all visible entities, and
225 -- happens only in very pathological cases (see 6115-006).
226
227 function Valid_Conversion
228 (N : Node_Id;
229 Target : Entity_Id;
0ab80019 230 Operand : Node_Id) return Boolean;
996ae0b0
RK
231 -- Verify legality rules given in 4.6 (8-23). Target is the target
232 -- type of the conversion, which may be an implicit conversion of
233 -- an actual parameter to an anonymous access type (in which case
234 -- N denotes the actual parameter and N = Operand).
235
236 -------------------------
237 -- Ambiguous_Character --
238 -------------------------
239
240 procedure Ambiguous_Character (C : Node_Id) is
241 E : Entity_Id;
242
243 begin
244 if Nkind (C) = N_Character_Literal then
245 Error_Msg_N ("ambiguous character literal", C);
b7d1f17f
HK
246
247 -- First the ones in Standard
248
996ae0b0 249 Error_Msg_N
b7d1f17f
HK
250 ("\\possible interpretation: Character!", C);
251 Error_Msg_N
252 ("\\possible interpretation: Wide_Character!", C);
253
254 -- Include Wide_Wide_Character in Ada 2005 mode
255
256 if Ada_Version >= Ada_05 then
257 Error_Msg_N
258 ("\\possible interpretation: Wide_Wide_Character!", C);
259 end if;
260
261 -- Now any other types that match
996ae0b0
RK
262
263 E := Current_Entity (C);
1420b484 264 while Present (E) loop
aa180613 265 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
1420b484
JM
266 E := Homonym (E);
267 end loop;
996ae0b0
RK
268 end if;
269 end Ambiguous_Character;
270
271 -------------------------
272 -- Analyze_And_Resolve --
273 -------------------------
274
275 procedure Analyze_And_Resolve (N : Node_Id) is
276 begin
277 Analyze (N);
fbf5a39b 278 Resolve (N);
996ae0b0
RK
279 end Analyze_And_Resolve;
280
281 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
282 begin
283 Analyze (N);
284 Resolve (N, Typ);
285 end Analyze_And_Resolve;
286
287 -- Version withs check(s) suppressed
288
289 procedure Analyze_And_Resolve
290 (N : Node_Id;
291 Typ : Entity_Id;
292 Suppress : Check_Id)
293 is
fbf5a39b 294 Scop : constant Entity_Id := Current_Scope;
996ae0b0
RK
295
296 begin
297 if Suppress = All_Checks then
298 declare
fbf5a39b 299 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
300 begin
301 Scope_Suppress := (others => True);
302 Analyze_And_Resolve (N, Typ);
303 Scope_Suppress := Svg;
304 end;
305
306 else
307 declare
fbf5a39b 308 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0
RK
309
310 begin
fbf5a39b 311 Scope_Suppress (Suppress) := True;
996ae0b0 312 Analyze_And_Resolve (N, Typ);
fbf5a39b 313 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
314 end;
315 end if;
316
317 if Current_Scope /= Scop
318 and then Scope_Is_Transient
319 then
320 -- This can only happen if a transient scope was created
321 -- for an inner expression, which will be removed upon
322 -- completion of the analysis of an enclosing construct.
323 -- The transient scope must have the suppress status of
324 -- the enclosing environment, not of this Analyze call.
325
326 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
327 Scope_Suppress;
328 end if;
329 end Analyze_And_Resolve;
330
331 procedure Analyze_And_Resolve
332 (N : Node_Id;
333 Suppress : Check_Id)
334 is
fbf5a39b 335 Scop : constant Entity_Id := Current_Scope;
996ae0b0
RK
336
337 begin
338 if Suppress = All_Checks then
339 declare
fbf5a39b 340 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
341 begin
342 Scope_Suppress := (others => True);
343 Analyze_And_Resolve (N);
344 Scope_Suppress := Svg;
345 end;
346
347 else
348 declare
fbf5a39b 349 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0
RK
350
351 begin
fbf5a39b 352 Scope_Suppress (Suppress) := True;
996ae0b0 353 Analyze_And_Resolve (N);
fbf5a39b 354 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
355 end;
356 end if;
357
358 if Current_Scope /= Scop
359 and then Scope_Is_Transient
360 then
361 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
362 Scope_Suppress;
363 end if;
364 end Analyze_And_Resolve;
365
366 ----------------------------
367 -- Check_Discriminant_Use --
368 ----------------------------
369
370 procedure Check_Discriminant_Use (N : Node_Id) is
371 PN : constant Node_Id := Parent (N);
372 Disc : constant Entity_Id := Entity (N);
373 P : Node_Id;
374 D : Node_Id;
375
376 begin
a77842bd 377 -- Any use in a default expression is legal
996ae0b0
RK
378
379 if In_Default_Expression then
380 null;
381
382 elsif Nkind (PN) = N_Range then
383
a77842bd 384 -- Discriminant cannot be used to constrain a scalar type
996ae0b0
RK
385
386 P := Parent (PN);
387
388 if Nkind (P) = N_Range_Constraint
389 and then Nkind (Parent (P)) = N_Subtype_Indication
a397db96 390 and then Nkind (Parent (Parent (P))) = N_Component_Definition
996ae0b0
RK
391 then
392 Error_Msg_N ("discriminant cannot constrain scalar type", N);
393
394 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
395
396 -- The following check catches the unusual case where
397 -- a discriminant appears within an index constraint
398 -- that is part of a larger expression within a constraint
399 -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
400 -- For now we only check case of record components, and
401 -- note that a similar check should also apply in the
402 -- case of discriminant constraints below. ???
403
404 -- Note that the check for N_Subtype_Declaration below is to
405 -- detect the valid use of discriminants in the constraints of a
406 -- subtype declaration when this subtype declaration appears
407 -- inside the scope of a record type (which is syntactically
408 -- illegal, but which may be created as part of derived type
409 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
410 -- for more info.
411
412 if Ekind (Current_Scope) = E_Record_Type
413 and then Scope (Disc) = Current_Scope
414 and then not
415 (Nkind (Parent (P)) = N_Subtype_Indication
9bc43c53
AC
416 and then
417 (Nkind (Parent (Parent (P))) = N_Component_Definition
418 or else
419 Nkind (Parent (Parent (P))) = N_Subtype_Declaration)
996ae0b0
RK
420 and then Paren_Count (N) = 0)
421 then
422 Error_Msg_N
423 ("discriminant must appear alone in component constraint", N);
424 return;
425 end if;
426
427 -- Detect a common beginner error:
9bc43c53 428
996ae0b0 429 -- type R (D : Positive := 100) is record
9bc43c53 430 -- Name : String (1 .. D);
996ae0b0
RK
431 -- end record;
432
433 -- The default value causes an object of type R to be
434 -- allocated with room for Positive'Last characters.
435
436 declare
437 SI : Node_Id;
438 T : Entity_Id;
439 TB : Node_Id;
440 CB : Entity_Id;
441
442 function Large_Storage_Type (T : Entity_Id) return Boolean;
443 -- Return True if type T has a large enough range that
444 -- any array whose index type covered the whole range of
445 -- the type would likely raise Storage_Error.
446
fbf5a39b
AC
447 ------------------------
448 -- Large_Storage_Type --
449 ------------------------
450
996ae0b0
RK
451 function Large_Storage_Type (T : Entity_Id) return Boolean is
452 begin
453 return
454 T = Standard_Integer
455 or else
456 T = Standard_Positive
457 or else
458 T = Standard_Natural;
459 end Large_Storage_Type;
460
461 begin
462 -- Check that the Disc has a large range
463
464 if not Large_Storage_Type (Etype (Disc)) then
465 goto No_Danger;
466 end if;
467
468 -- If the enclosing type is limited, we allocate only the
469 -- default value, not the maximum, and there is no need for
470 -- a warning.
471
472 if Is_Limited_Type (Scope (Disc)) then
473 goto No_Danger;
474 end if;
475
476 -- Check that it is the high bound
477
478 if N /= High_Bound (PN)
c8ef728f 479 or else No (Discriminant_Default_Value (Disc))
996ae0b0
RK
480 then
481 goto No_Danger;
482 end if;
483
484 -- Check the array allows a large range at this bound.
485 -- First find the array
486
487 SI := Parent (P);
488
489 if Nkind (SI) /= N_Subtype_Indication then
490 goto No_Danger;
491 end if;
492
493 T := Entity (Subtype_Mark (SI));
494
495 if not Is_Array_Type (T) then
496 goto No_Danger;
497 end if;
498
499 -- Next, find the dimension
500
501 TB := First_Index (T);
502 CB := First (Constraints (P));
503 while True
504 and then Present (TB)
505 and then Present (CB)
506 and then CB /= PN
507 loop
508 Next_Index (TB);
509 Next (CB);
510 end loop;
511
512 if CB /= PN then
513 goto No_Danger;
514 end if;
515
516 -- Now, check the dimension has a large range
517
518 if not Large_Storage_Type (Etype (TB)) then
519 goto No_Danger;
520 end if;
521
522 -- Warn about the danger
523
524 Error_Msg_N
aa5147f0 525 ("?creation of & object may raise Storage_Error!",
fbf5a39b 526 Scope (Disc));
996ae0b0
RK
527
528 <<No_Danger>>
529 null;
530
531 end;
532 end if;
533
534 -- Legal case is in index or discriminant constraint
535
536 elsif Nkind (PN) = N_Index_Or_Discriminant_Constraint
537 or else Nkind (PN) = N_Discriminant_Association
538 then
539 if Paren_Count (N) > 0 then
540 Error_Msg_N
541 ("discriminant in constraint must appear alone", N);
758c442c
GD
542
543 elsif Nkind (N) = N_Expanded_Name
544 and then Comes_From_Source (N)
545 then
546 Error_Msg_N
547 ("discriminant must appear alone as a direct name", N);
996ae0b0
RK
548 end if;
549
550 return;
551
552 -- Otherwise, context is an expression. It should not be within
553 -- (i.e. a subexpression of) a constraint for a component.
554
555 else
556 D := PN;
557 P := Parent (PN);
996ae0b0
RK
558 while Nkind (P) /= N_Component_Declaration
559 and then Nkind (P) /= N_Subtype_Indication
560 and then Nkind (P) /= N_Entry_Declaration
561 loop
562 D := P;
563 P := Parent (P);
564 exit when No (P);
565 end loop;
566
567 -- If the discriminant is used in an expression that is a bound
568 -- of a scalar type, an Itype is created and the bounds are attached
569 -- to its range, not to the original subtype indication. Such use
570 -- is of course a double fault.
571
572 if (Nkind (P) = N_Subtype_Indication
573 and then
a397db96 574 (Nkind (Parent (P)) = N_Component_Definition
fbf5a39b
AC
575 or else
576 Nkind (Parent (P)) = N_Derived_Type_Definition)
996ae0b0
RK
577 and then D = Constraint (P))
578
579 -- The constraint itself may be given by a subtype indication,
580 -- rather than by a more common discrete range.
581
582 or else (Nkind (P) = N_Subtype_Indication
fbf5a39b
AC
583 and then
584 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
996ae0b0
RK
585 or else Nkind (P) = N_Entry_Declaration
586 or else Nkind (D) = N_Defining_Identifier
587 then
588 Error_Msg_N
589 ("discriminant in constraint must appear alone", N);
590 end if;
591 end if;
592 end Check_Discriminant_Use;
593
594 --------------------------------
595 -- Check_For_Visible_Operator --
596 --------------------------------
597
598 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
996ae0b0 599 begin
fbf5a39b 600 if Is_Invisible_Operator (N, T) then
996ae0b0
RK
601 Error_Msg_NE
602 ("operator for} is not directly visible!", N, First_Subtype (T));
603 Error_Msg_N ("use clause would make operation legal!", N);
604 end if;
605 end Check_For_Visible_Operator;
606
c8ef728f
ES
607 ----------------------------------
608 -- Check_Fully_Declared_Prefix --
609 ----------------------------------
610
611 procedure Check_Fully_Declared_Prefix
612 (Typ : Entity_Id;
613 Pref : Node_Id)
614 is
615 begin
616 -- Check that the designated type of the prefix of a dereference is
617 -- not an incomplete type. This cannot be done unconditionally, because
618 -- dereferences of private types are legal in default expressions. This
619 -- case is taken care of in Check_Fully_Declared, called below. There
620 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
621
622 -- This consideration also applies to similar checks for allocators,
623 -- qualified expressions, and type conversions.
624
625 -- An additional exception concerns other per-object expressions that
626 -- are not directly related to component declarations, in particular
627 -- representation pragmas for tasks. These will be per-object
628 -- expressions if they depend on discriminants or some global entity.
629 -- If the task has access discriminants, the designated type may be
630 -- incomplete at the point the expression is resolved. This resolution
631 -- takes place within the body of the initialization procedure, where
632 -- the discriminant is replaced by its discriminal.
633
634 if Is_Entity_Name (Pref)
635 and then Ekind (Entity (Pref)) = E_In_Parameter
636 then
637 null;
638
639 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
640 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
641 -- Analyze_Object_Renaming, and Freeze_Entity.
642
643 elsif Ada_Version >= Ada_05
644 and then Is_Entity_Name (Pref)
645 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
646 E_Incomplete_Type
647 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
648 then
649 null;
650 else
651 Check_Fully_Declared (Typ, Parent (Pref));
652 end if;
653 end Check_Fully_Declared_Prefix;
654
996ae0b0
RK
655 ------------------------------
656 -- Check_Infinite_Recursion --
657 ------------------------------
658
659 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
660 P : Node_Id;
661 C : Node_Id;
662
07fc65c4
GB
663 function Same_Argument_List return Boolean;
664 -- Check whether list of actuals is identical to list of formals
665 -- of called function (which is also the enclosing scope).
666
667 ------------------------
668 -- Same_Argument_List --
669 ------------------------
670
671 function Same_Argument_List return Boolean is
672 A : Node_Id;
673 F : Entity_Id;
674 Subp : Entity_Id;
675
676 begin
677 if not Is_Entity_Name (Name (N)) then
678 return False;
679 else
680 Subp := Entity (Name (N));
681 end if;
682
683 F := First_Formal (Subp);
684 A := First_Actual (N);
07fc65c4
GB
685 while Present (F) and then Present (A) loop
686 if not Is_Entity_Name (A)
687 or else Entity (A) /= F
688 then
689 return False;
690 end if;
691
692 Next_Actual (A);
693 Next_Formal (F);
694 end loop;
695
696 return True;
697 end Same_Argument_List;
698
699 -- Start of processing for Check_Infinite_Recursion
700
996ae0b0
RK
701 begin
702 -- Loop moving up tree, quitting if something tells us we are
703 -- definitely not in an infinite recursion situation.
704
705 C := N;
706 loop
707 P := Parent (C);
708 exit when Nkind (P) = N_Subprogram_Body;
709
710 if Nkind (P) = N_Or_Else or else
711 Nkind (P) = N_And_Then or else
712 Nkind (P) = N_If_Statement or else
713 Nkind (P) = N_Case_Statement
714 then
715 return False;
716
717 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
718 and then C /= First (Statements (P))
719 then
07fc65c4
GB
720 -- If the call is the expression of a return statement and
721 -- the actuals are identical to the formals, it's worth a
722 -- warning. However, we skip this if there is an immediately
723 -- preceding raise statement, since the call is never executed.
724
725 -- Furthermore, this corresponds to a common idiom:
726
727 -- function F (L : Thing) return Boolean is
728 -- begin
729 -- raise Program_Error;
730 -- return F (L);
731 -- end F;
732
733 -- for generating a stub function
734
aa5147f0 735 if Nkind (Parent (N)) = N_Simple_Return_Statement
07fc65c4
GB
736 and then Same_Argument_List
737 then
9ebe3743
HK
738 exit when not Is_List_Member (Parent (N));
739
740 -- OK, return statement is in a statement list, look for raise
741
742 declare
743 Nod : Node_Id;
744
745 begin
746 -- Skip past N_Freeze_Entity nodes generated by expansion
747
748 Nod := Prev (Parent (N));
749 while Present (Nod)
750 and then Nkind (Nod) = N_Freeze_Entity
751 loop
752 Prev (Nod);
753 end loop;
754
755 -- If no raise statement, give warning
756
757 exit when Nkind (Nod) /= N_Raise_Statement
758 and then
759 (Nkind (Nod) not in N_Raise_xxx_Error
760 or else Present (Condition (Nod)));
761 end;
07fc65c4
GB
762 end if;
763
996ae0b0
RK
764 return False;
765
766 else
767 C := P;
768 end if;
769 end loop;
770
aa5147f0
ES
771 Error_Msg_N ("!?possible infinite recursion", N);
772 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
996ae0b0
RK
773
774 return True;
775 end Check_Infinite_Recursion;
776
777 -------------------------------
778 -- Check_Initialization_Call --
779 -------------------------------
780
781 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
fbf5a39b 782 Typ : constant Entity_Id := Etype (First_Formal (Nam));
996ae0b0
RK
783
784 function Uses_SS (T : Entity_Id) return Boolean;
07fc65c4
GB
785 -- Check whether the creation of an object of the type will involve
786 -- use of the secondary stack. If T is a record type, this is true
787 -- if the expression for some component uses the secondary stack, eg.
788 -- through a call to a function that returns an unconstrained value.
789 -- False if T is controlled, because cleanups occur elsewhere.
790
791 -------------
792 -- Uses_SS --
793 -------------
996ae0b0
RK
794
795 function Uses_SS (T : Entity_Id) return Boolean is
aa5147f0
ES
796 Comp : Entity_Id;
797 Expr : Node_Id;
798 Full_Type : Entity_Id := Underlying_Type (T);
996ae0b0
RK
799
800 begin
aa5147f0
ES
801 -- Normally we want to use the underlying type, but if it's not set
802 -- then continue with T.
803
804 if not Present (Full_Type) then
805 Full_Type := T;
806 end if;
807
808 if Is_Controlled (Full_Type) then
996ae0b0
RK
809 return False;
810
aa5147f0
ES
811 elsif Is_Array_Type (Full_Type) then
812 return Uses_SS (Component_Type (Full_Type));
996ae0b0 813
aa5147f0
ES
814 elsif Is_Record_Type (Full_Type) then
815 Comp := First_Component (Full_Type);
996ae0b0 816 while Present (Comp) loop
996ae0b0
RK
817 if Ekind (Comp) = E_Component
818 and then Nkind (Parent (Comp)) = N_Component_Declaration
819 then
aa5147f0
ES
820 -- The expression for a dynamic component may be rewritten
821 -- as a dereference, so retrieve original node.
822
823 Expr := Original_Node (Expression (Parent (Comp)));
996ae0b0 824
aa5147f0
ES
825 -- Return True if the expression is a call to a function
826 -- (including an attribute function such as Image) with
827 -- a result that requires a transient scope.
fbf5a39b 828
aa5147f0
ES
829 if (Nkind (Expr) = N_Function_Call
830 or else (Nkind (Expr) = N_Attribute_Reference
831 and then Present (Expressions (Expr))))
996ae0b0
RK
832 and then Requires_Transient_Scope (Etype (Expr))
833 then
834 return True;
835
836 elsif Uses_SS (Etype (Comp)) then
837 return True;
838 end if;
839 end if;
840
841 Next_Component (Comp);
842 end loop;
843
844 return False;
845
846 else
847 return False;
848 end if;
849 end Uses_SS;
850
07fc65c4
GB
851 -- Start of processing for Check_Initialization_Call
852
996ae0b0 853 begin
0669bebe 854 -- Establish a transient scope if the type needs it
07fc65c4 855
0669bebe 856 if Uses_SS (Typ) then
996ae0b0
RK
857 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
858 end if;
859 end Check_Initialization_Call;
860
861 ------------------------------
862 -- Check_Parameterless_Call --
863 ------------------------------
864
865 procedure Check_Parameterless_Call (N : Node_Id) is
866 Nam : Node_Id;
867
bc5f3720
RD
868 function Prefix_Is_Access_Subp return Boolean;
869 -- If the prefix is of an access_to_subprogram type, the node must be
870 -- rewritten as a call. Ditto if the prefix is overloaded and all its
871 -- interpretations are access to subprograms.
872
873 ---------------------------
874 -- Prefix_Is_Access_Subp --
875 ---------------------------
876
877 function Prefix_Is_Access_Subp return Boolean is
878 I : Interp_Index;
879 It : Interp;
880
881 begin
882 if not Is_Overloaded (N) then
883 return
884 Ekind (Etype (N)) = E_Subprogram_Type
885 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
886 else
887 Get_First_Interp (N, I, It);
888 while Present (It.Typ) loop
889 if Ekind (It.Typ) /= E_Subprogram_Type
890 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
891 then
892 return False;
893 end if;
894
895 Get_Next_Interp (I, It);
896 end loop;
897
898 return True;
899 end if;
900 end Prefix_Is_Access_Subp;
901
902 -- Start of processing for Check_Parameterless_Call
903
996ae0b0 904 begin
07fc65c4
GB
905 -- Defend against junk stuff if errors already detected
906
907 if Total_Errors_Detected /= 0 then
908 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
909 return;
910 elsif Nkind (N) in N_Has_Chars
911 and then Chars (N) in Error_Name_Or_No_Name
912 then
913 return;
914 end if;
fbf5a39b
AC
915
916 Require_Entity (N);
996ae0b0
RK
917 end if;
918
18c0ecbe
AC
919 -- If the context expects a value, and the name is a procedure,
920 -- this is most likely a missing 'Access. Do not try to resolve
921 -- the parameterless call, error will be caught when the outer
922 -- call is analyzed.
923
924 if Is_Entity_Name (N)
925 and then Ekind (Entity (N)) = E_Procedure
926 and then not Is_Overloaded (N)
927 and then
928 (Nkind (Parent (N)) = N_Parameter_Association
929 or else Nkind (Parent (N)) = N_Function_Call
930 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
931 then
932 return;
933 end if;
934
996ae0b0
RK
935 -- Rewrite as call if overloadable entity that is (or could be, in
936 -- the overloaded case) a function call. If we know for sure that
937 -- the entity is an enumeration literal, we do not rewrite it.
938
939 if (Is_Entity_Name (N)
940 and then Is_Overloadable (Entity (N))
941 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
942 or else Is_Overloaded (N)))
943
944 -- Rewrite as call if it is an explicit deference of an expression of
945 -- a subprogram access type, and the suprogram type is not that of a
946 -- procedure or entry.
947
948 or else
bc5f3720 949 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
996ae0b0
RK
950
951 -- Rewrite as call if it is a selected component which is a function,
952 -- this is the case of a call to a protected function (which may be
953 -- overloaded with other protected operations).
954
955 or else
956 (Nkind (N) = N_Selected_Component
957 and then (Ekind (Entity (Selector_Name (N))) = E_Function
fbf5a39b
AC
958 or else
959 ((Ekind (Entity (Selector_Name (N))) = E_Entry
960 or else
961 Ekind (Entity (Selector_Name (N))) = E_Procedure)
962 and then Is_Overloaded (Selector_Name (N)))))
996ae0b0
RK
963
964 -- If one of the above three conditions is met, rewrite as call.
965 -- Apply the rewriting only once.
966
967 then
968 if Nkind (Parent (N)) /= N_Function_Call
969 or else N /= Name (Parent (N))
970 then
971 Nam := New_Copy (N);
972
bc5f3720 973 -- If overloaded, overload set belongs to new copy
996ae0b0
RK
974
975 Save_Interps (N, Nam);
976
977 -- Change node to parameterless function call (note that the
978 -- Parameter_Associations associations field is left set to Empty,
979 -- its normal default value since there are no parameters)
980
981 Change_Node (N, N_Function_Call);
982 Set_Name (N, Nam);
983 Set_Sloc (N, Sloc (Nam));
984 Analyze_Call (N);
985 end if;
986
987 elsif Nkind (N) = N_Parameter_Association then
988 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
989 end if;
990 end Check_Parameterless_Call;
991
992 ----------------------
993 -- Is_Predefined_Op --
994 ----------------------
995
996 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
997 begin
998 return Is_Intrinsic_Subprogram (Nam)
999 and then not Is_Generic_Instance (Nam)
1000 and then Chars (Nam) in Any_Operator_Name
1001 and then (No (Alias (Nam))
1002 or else Is_Predefined_Op (Alias (Nam)));
1003 end Is_Predefined_Op;
1004
1005 -----------------------------
1006 -- Make_Call_Into_Operator --
1007 -----------------------------
1008
1009 procedure Make_Call_Into_Operator
1010 (N : Node_Id;
1011 Typ : Entity_Id;
1012 Op_Id : Entity_Id)
1013 is
1014 Op_Name : constant Name_Id := Chars (Op_Id);
1015 Act1 : Node_Id := First_Actual (N);
1016 Act2 : Node_Id := Next_Actual (Act1);
1017 Error : Boolean := False;
2820d220
AC
1018 Func : constant Entity_Id := Entity (Name (N));
1019 Is_Binary : constant Boolean := Present (Act2);
996ae0b0
RK
1020 Op_Node : Node_Id;
1021 Opnd_Type : Entity_Id;
1022 Orig_Type : Entity_Id := Empty;
1023 Pack : Entity_Id;
1024
1025 type Kind_Test is access function (E : Entity_Id) return Boolean;
1026
1027 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
638e383e 1028 -- Determine whether E is an access type declared by an access decla-
996ae0b0
RK
1029 -- ration, and not an (anonymous) allocator type.
1030
1031 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1032 -- If the operand is not universal, and the operator is given by a
1033 -- expanded name, verify that the operand has an interpretation with
1034 -- a type defined in the given scope of the operator.
1035
1036 function Type_In_P (Test : Kind_Test) return Entity_Id;
1037 -- Find a type of the given class in the package Pack that contains
1038 -- the operator.
1039
1040 -----------------------------
1041 -- Is_Definite_Access_Type --
1042 -----------------------------
1043
1044 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1045 Btyp : constant Entity_Id := Base_Type (E);
1046 begin
1047 return Ekind (Btyp) = E_Access_Type
1048 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1049 and then Comes_From_Source (Btyp));
1050 end Is_Definite_Access_Type;
1051
1052 ---------------------------
1053 -- Operand_Type_In_Scope --
1054 ---------------------------
1055
1056 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1057 Nod : constant Node_Id := Right_Opnd (Op_Node);
1058 I : Interp_Index;
1059 It : Interp;
1060
1061 begin
1062 if not Is_Overloaded (Nod) then
1063 return Scope (Base_Type (Etype (Nod))) = S;
1064
1065 else
1066 Get_First_Interp (Nod, I, It);
996ae0b0 1067 while Present (It.Typ) loop
996ae0b0
RK
1068 if Scope (Base_Type (It.Typ)) = S then
1069 return True;
1070 end if;
1071
1072 Get_Next_Interp (I, It);
1073 end loop;
1074
1075 return False;
1076 end if;
1077 end Operand_Type_In_Scope;
1078
1079 ---------------
1080 -- Type_In_P --
1081 ---------------
1082
1083 function Type_In_P (Test : Kind_Test) return Entity_Id is
1084 E : Entity_Id;
1085
1086 function In_Decl return Boolean;
1087 -- Verify that node is not part of the type declaration for the
1088 -- candidate type, which would otherwise be invisible.
1089
1090 -------------
1091 -- In_Decl --
1092 -------------
1093
1094 function In_Decl return Boolean is
1095 Decl_Node : constant Node_Id := Parent (E);
1096 N2 : Node_Id;
1097
1098 begin
1099 N2 := N;
1100
1101 if Etype (E) = Any_Type then
1102 return True;
1103
1104 elsif No (Decl_Node) then
1105 return False;
1106
1107 else
1108 while Present (N2)
1109 and then Nkind (N2) /= N_Compilation_Unit
1110 loop
1111 if N2 = Decl_Node then
1112 return True;
1113 else
1114 N2 := Parent (N2);
1115 end if;
1116 end loop;
1117
1118 return False;
1119 end if;
1120 end In_Decl;
1121
1122 -- Start of processing for Type_In_P
1123
1124 begin
1125 -- If the context type is declared in the prefix package, this
1126 -- is the desired base type.
1127
1128 if Scope (Base_Type (Typ)) = Pack
1129 and then Test (Typ)
1130 then
1131 return Base_Type (Typ);
1132
1133 else
1134 E := First_Entity (Pack);
996ae0b0 1135 while Present (E) loop
996ae0b0
RK
1136 if Test (E)
1137 and then not In_Decl
1138 then
1139 return E;
1140 end if;
1141
1142 Next_Entity (E);
1143 end loop;
1144
1145 return Empty;
1146 end if;
1147 end Type_In_P;
1148
996ae0b0
RK
1149 -- Start of processing for Make_Call_Into_Operator
1150
1151 begin
1152 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1153
1154 -- Binary operator
1155
1156 if Is_Binary then
1157 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1158 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1159 Save_Interps (Act1, Left_Opnd (Op_Node));
1160 Save_Interps (Act2, Right_Opnd (Op_Node));
1161 Act1 := Left_Opnd (Op_Node);
1162 Act2 := Right_Opnd (Op_Node);
1163
1164 -- Unary operator
1165
1166 else
1167 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1168 Save_Interps (Act1, Right_Opnd (Op_Node));
1169 Act1 := Right_Opnd (Op_Node);
1170 end if;
1171
1172 -- If the operator is denoted by an expanded name, and the prefix is
1173 -- not Standard, but the operator is a predefined one whose scope is
1174 -- Standard, then this is an implicit_operator, inserted as an
1175 -- interpretation by the procedure of the same name. This procedure
1176 -- overestimates the presence of implicit operators, because it does
1177 -- not examine the type of the operands. Verify now that the operand
1178 -- type appears in the given scope. If right operand is universal,
1179 -- check the other operand. In the case of concatenation, either
1180 -- argument can be the component type, so check the type of the result.
1181 -- If both arguments are literals, look for a type of the right kind
1182 -- defined in the given scope. This elaborate nonsense is brought to
1183 -- you courtesy of b33302a. The type itself must be frozen, so we must
1184 -- find the type of the proper class in the given scope.
1185
1186 -- A final wrinkle is the multiplication operator for fixed point
1187 -- types, which is defined in Standard only, and not in the scope of
1188 -- the fixed_point type itself.
1189
1190 if Nkind (Name (N)) = N_Expanded_Name then
1191 Pack := Entity (Prefix (Name (N)));
1192
1193 -- If the entity being called is defined in the given package,
1194 -- it is a renaming of a predefined operator, and known to be
1195 -- legal.
1196
1197 if Scope (Entity (Name (N))) = Pack
1198 and then Pack /= Standard_Standard
1199 then
1200 null;
1201
9ebe3743
HK
1202 -- Visibility does not need to be checked in an instance: if the
1203 -- operator was not visible in the generic it has been diagnosed
1204 -- already, else there is an implicit copy of it in the instance.
1205
1206 elsif In_Instance then
1207 null;
1208
996ae0b0
RK
1209 elsif (Op_Name = Name_Op_Multiply
1210 or else Op_Name = Name_Op_Divide)
1211 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1212 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1213 then
1214 if Pack /= Standard_Standard then
1215 Error := True;
1216 end if;
1217
c8ef728f
ES
1218 -- Ada 2005, AI-420: Predefined equality on Universal_Access
1219 -- is available.
1220
1221 elsif Ada_Version >= Ada_05
1222 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1223 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1224 then
1225 null;
1226
996ae0b0
RK
1227 else
1228 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1229
1230 if Op_Name = Name_Op_Concat then
1231 Opnd_Type := Base_Type (Typ);
1232
1233 elsif (Scope (Opnd_Type) = Standard_Standard
1234 and then Is_Binary)
1235 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1236 and then Is_Binary
1237 and then not Comes_From_Source (Opnd_Type))
1238 then
1239 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1240 end if;
1241
1242 if Scope (Opnd_Type) = Standard_Standard then
1243
1244 -- Verify that the scope contains a type that corresponds to
1245 -- the given literal. Optimize the case where Pack is Standard.
1246
1247 if Pack /= Standard_Standard then
1248
1249 if Opnd_Type = Universal_Integer then
1250 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1251
1252 elsif Opnd_Type = Universal_Real then
1253 Orig_Type := Type_In_P (Is_Real_Type'Access);
1254
1255 elsif Opnd_Type = Any_String then
1256 Orig_Type := Type_In_P (Is_String_Type'Access);
1257
1258 elsif Opnd_Type = Any_Access then
1259 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1260
1261 elsif Opnd_Type = Any_Composite then
1262 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1263
1264 if Present (Orig_Type) then
1265 if Has_Private_Component (Orig_Type) then
1266 Orig_Type := Empty;
1267 else
1268 Set_Etype (Act1, Orig_Type);
1269
1270 if Is_Binary then
1271 Set_Etype (Act2, Orig_Type);
1272 end if;
1273 end if;
1274 end if;
1275
1276 else
1277 Orig_Type := Empty;
1278 end if;
1279
1280 Error := No (Orig_Type);
1281 end if;
1282
1283 elsif Ekind (Opnd_Type) = E_Allocator_Type
1284 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1285 then
1286 Error := True;
1287
1288 -- If the type is defined elsewhere, and the operator is not
1289 -- defined in the given scope (by a renaming declaration, e.g.)
1290 -- then this is an error as well. If an extension of System is
1291 -- present, and the type may be defined there, Pack must be
1292 -- System itself.
1293
1294 elsif Scope (Opnd_Type) /= Pack
1295 and then Scope (Op_Id) /= Pack
1296 and then (No (System_Aux_Id)
1297 or else Scope (Opnd_Type) /= System_Aux_Id
1298 or else Pack /= Scope (System_Aux_Id))
1299 then
244e5a2c
AC
1300 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1301 Error := True;
1302 else
1303 Error := not Operand_Type_In_Scope (Pack);
1304 end if;
996ae0b0
RK
1305
1306 elsif Pack = Standard_Standard
1307 and then not Operand_Type_In_Scope (Standard_Standard)
1308 then
1309 Error := True;
1310 end if;
1311 end if;
1312
1313 if Error then
1314 Error_Msg_Node_2 := Pack;
1315 Error_Msg_NE
1316 ("& not declared in&", N, Selector_Name (Name (N)));
1317 Set_Etype (N, Any_Type);
1318 return;
1319 end if;
1320 end if;
1321
1322 Set_Chars (Op_Node, Op_Name);
fbf5a39b
AC
1323
1324 if not Is_Private_Type (Etype (N)) then
1325 Set_Etype (Op_Node, Base_Type (Etype (N)));
1326 else
1327 Set_Etype (Op_Node, Etype (N));
1328 end if;
1329
2820d220
AC
1330 -- If this is a call to a function that renames a predefined equality,
1331 -- the renaming declaration provides a type that must be used to
1332 -- resolve the operands. This must be done now because resolution of
1333 -- the equality node will not resolve any remaining ambiguity, and it
1334 -- assumes that the first operand is not overloaded.
1335
1336 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1337 and then Ekind (Func) = E_Function
1338 and then Is_Overloaded (Act1)
1339 then
1340 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1341 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1342 end if;
1343
996ae0b0
RK
1344 Set_Entity (Op_Node, Op_Id);
1345 Generate_Reference (Op_Id, N, ' ');
1346 Rewrite (N, Op_Node);
fbf5a39b
AC
1347
1348 -- If this is an arithmetic operator and the result type is private,
1349 -- the operands and the result must be wrapped in conversion to
1350 -- expose the underlying numeric type and expand the proper checks,
1351 -- e.g. on division.
1352
1353 if Is_Private_Type (Typ) then
1354 case Nkind (N) is
1355 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1356 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1357 Resolve_Intrinsic_Operator (N, Typ);
1358
1359 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1360 Resolve_Intrinsic_Unary_Operator (N, Typ);
1361
1362 when others =>
1363 Resolve (N, Typ);
1364 end case;
1365 else
1366 Resolve (N, Typ);
1367 end if;
996ae0b0
RK
1368
1369 -- For predefined operators on literals, the operation freezes
1370 -- their type.
1371
1372 if Present (Orig_Type) then
1373 Set_Etype (Act1, Orig_Type);
1374 Freeze_Expression (Act1);
1375 end if;
1376 end Make_Call_Into_Operator;
1377
1378 -------------------
1379 -- Operator_Kind --
1380 -------------------
1381
1382 function Operator_Kind
1383 (Op_Name : Name_Id;
0ab80019 1384 Is_Binary : Boolean) return Node_Kind
996ae0b0
RK
1385 is
1386 Kind : Node_Kind;
1387
1388 begin
1389 if Is_Binary then
aa5147f0
ES
1390 if Op_Name = Name_Op_And then
1391 Kind := N_Op_And;
1392 elsif Op_Name = Name_Op_Or then
1393 Kind := N_Op_Or;
1394 elsif Op_Name = Name_Op_Xor then
1395 Kind := N_Op_Xor;
1396 elsif Op_Name = Name_Op_Eq then
1397 Kind := N_Op_Eq;
1398 elsif Op_Name = Name_Op_Ne then
1399 Kind := N_Op_Ne;
1400 elsif Op_Name = Name_Op_Lt then
1401 Kind := N_Op_Lt;
1402 elsif Op_Name = Name_Op_Le then
1403 Kind := N_Op_Le;
1404 elsif Op_Name = Name_Op_Gt then
1405 Kind := N_Op_Gt;
1406 elsif Op_Name = Name_Op_Ge then
1407 Kind := N_Op_Ge;
1408 elsif Op_Name = Name_Op_Add then
1409 Kind := N_Op_Add;
1410 elsif Op_Name = Name_Op_Subtract then
1411 Kind := N_Op_Subtract;
1412 elsif Op_Name = Name_Op_Concat then
1413 Kind := N_Op_Concat;
1414 elsif Op_Name = Name_Op_Multiply then
1415 Kind := N_Op_Multiply;
1416 elsif Op_Name = Name_Op_Divide then
1417 Kind := N_Op_Divide;
1418 elsif Op_Name = Name_Op_Mod then
1419 Kind := N_Op_Mod;
1420 elsif Op_Name = Name_Op_Rem then
1421 Kind := N_Op_Rem;
1422 elsif Op_Name = Name_Op_Expon then
1423 Kind := N_Op_Expon;
996ae0b0
RK
1424 else
1425 raise Program_Error;
1426 end if;
1427
1428 -- Unary operators
1429
1430 else
aa5147f0
ES
1431 if Op_Name = Name_Op_Add then
1432 Kind := N_Op_Plus;
1433 elsif Op_Name = Name_Op_Subtract then
1434 Kind := N_Op_Minus;
1435 elsif Op_Name = Name_Op_Abs then
1436 Kind := N_Op_Abs;
1437 elsif Op_Name = Name_Op_Not then
1438 Kind := N_Op_Not;
996ae0b0
RK
1439 else
1440 raise Program_Error;
1441 end if;
1442 end if;
1443
1444 return Kind;
1445 end Operator_Kind;
1446
1447 -----------------------------
1448 -- Pre_Analyze_And_Resolve --
1449 -----------------------------
1450
1451 procedure Pre_Analyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1452 Save_Full_Analysis : constant Boolean := Full_Analysis;
1453
1454 begin
1455 Full_Analysis := False;
1456 Expander_Mode_Save_And_Set (False);
1457
1458 -- We suppress all checks for this analysis, since the checks will
1459 -- be applied properly, and in the right location, when the default
1460 -- expression is reanalyzed and reexpanded later on.
1461
1462 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1463
1464 Expander_Mode_Restore;
1465 Full_Analysis := Save_Full_Analysis;
1466 end Pre_Analyze_And_Resolve;
1467
a77842bd 1468 -- Version without context type
996ae0b0
RK
1469
1470 procedure Pre_Analyze_And_Resolve (N : Node_Id) is
1471 Save_Full_Analysis : constant Boolean := Full_Analysis;
1472
1473 begin
1474 Full_Analysis := False;
1475 Expander_Mode_Save_And_Set (False);
1476
1477 Analyze (N);
1478 Resolve (N, Etype (N), Suppress => All_Checks);
1479
1480 Expander_Mode_Restore;
1481 Full_Analysis := Save_Full_Analysis;
1482 end Pre_Analyze_And_Resolve;
1483
1484 ----------------------------------
1485 -- Replace_Actual_Discriminants --
1486 ----------------------------------
1487
1488 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1489 Loc : constant Source_Ptr := Sloc (N);
1490 Tsk : Node_Id := Empty;
1491
1492 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1493
1494 -------------------
1495 -- Process_Discr --
1496 -------------------
1497
1498 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1499 Ent : Entity_Id;
1500
1501 begin
1502 if Nkind (Nod) = N_Identifier then
1503 Ent := Entity (Nod);
1504
1505 if Present (Ent)
1506 and then Ekind (Ent) = E_Discriminant
1507 then
1508 Rewrite (Nod,
1509 Make_Selected_Component (Loc,
1510 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1511 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1512
1513 Set_Etype (Nod, Etype (Ent));
1514 end if;
1515
1516 end if;
1517
1518 return OK;
1519 end Process_Discr;
1520
1521 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1522
1523 -- Start of processing for Replace_Actual_Discriminants
1524
1525 begin
1526 if not Expander_Active then
1527 return;
1528 end if;
1529
1530 if Nkind (Name (N)) = N_Selected_Component then
1531 Tsk := Prefix (Name (N));
1532
1533 elsif Nkind (Name (N)) = N_Indexed_Component then
1534 Tsk := Prefix (Prefix (Name (N)));
1535 end if;
1536
1537 if No (Tsk) then
1538 return;
1539 else
1540 Replace_Discrs (Default);
1541 end if;
1542 end Replace_Actual_Discriminants;
1543
1544 -------------
1545 -- Resolve --
1546 -------------
1547
1548 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
dae2b8ea
HK
1549 Ambiguous : Boolean := False;
1550 Ctx_Type : Entity_Id := Typ;
1551 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1552 Err_Type : Entity_Id := Empty;
1553 Found : Boolean := False;
1554 From_Lib : Boolean;
996ae0b0 1555 I : Interp_Index;
dae2b8ea 1556 I1 : Interp_Index := 0; -- prevent junk warning
996ae0b0
RK
1557 It : Interp;
1558 It1 : Interp;
996ae0b0 1559 Seen : Entity_Id := Empty; -- prevent junk warning
dae2b8ea
HK
1560
1561 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1562 -- Determine whether a node comes from a predefined library unit or
1563 -- Standard.
996ae0b0
RK
1564
1565 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1566 -- Try and fix up a literal so that it matches its expected type. New
1567 -- literals are manufactured if necessary to avoid cascaded errors.
1568
1569 procedure Resolution_Failed;
1570 -- Called when attempt at resolving current expression fails
1571
dae2b8ea
HK
1572 ------------------------------------
1573 -- Comes_From_Predefined_Lib_Unit --
1574 -------------------------------------
1575
1576 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1577 begin
1578 return
1579 Sloc (Nod) = Standard_Location
1580 or else Is_Predefined_File_Name (Unit_File_Name (
1581 Get_Source_Unit (Sloc (Nod))));
1582 end Comes_From_Predefined_Lib_Unit;
1583
996ae0b0
RK
1584 --------------------
1585 -- Patch_Up_Value --
1586 --------------------
1587
1588 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1589 begin
1590 if Nkind (N) = N_Integer_Literal
1591 and then Is_Real_Type (Typ)
1592 then
1593 Rewrite (N,
1594 Make_Real_Literal (Sloc (N),
1595 Realval => UR_From_Uint (Intval (N))));
1596 Set_Etype (N, Universal_Real);
1597 Set_Is_Static_Expression (N);
1598
1599 elsif Nkind (N) = N_Real_Literal
1600 and then Is_Integer_Type (Typ)
1601 then
1602 Rewrite (N,
1603 Make_Integer_Literal (Sloc (N),
1604 Intval => UR_To_Uint (Realval (N))));
1605 Set_Etype (N, Universal_Integer);
1606 Set_Is_Static_Expression (N);
1607 elsif Nkind (N) = N_String_Literal
1608 and then Is_Character_Type (Typ)
1609 then
1610 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1611 Rewrite (N,
1612 Make_Character_Literal (Sloc (N),
1613 Chars => Name_Find,
82c80734
RD
1614 Char_Literal_Value =>
1615 UI_From_Int (Character'Pos ('A'))));
996ae0b0
RK
1616 Set_Etype (N, Any_Character);
1617 Set_Is_Static_Expression (N);
1618
1619 elsif Nkind (N) /= N_String_Literal
1620 and then Is_String_Type (Typ)
1621 then
1622 Rewrite (N,
1623 Make_String_Literal (Sloc (N),
1624 Strval => End_String));
1625
1626 elsif Nkind (N) = N_Range then
1627 Patch_Up_Value (Low_Bound (N), Typ);
1628 Patch_Up_Value (High_Bound (N), Typ);
1629 end if;
1630 end Patch_Up_Value;
1631
1632 -----------------------
1633 -- Resolution_Failed --
1634 -----------------------
1635
1636 procedure Resolution_Failed is
1637 begin
1638 Patch_Up_Value (N, Typ);
1639 Set_Etype (N, Typ);
1640 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1641 Set_Is_Overloaded (N, False);
1642
1643 -- The caller will return without calling the expander, so we need
1644 -- to set the analyzed flag. Note that it is fine to set Analyzed
1645 -- to True even if we are in the middle of a shallow analysis,
1646 -- (see the spec of sem for more details) since this is an error
1647 -- situation anyway, and there is no point in repeating the
1648 -- analysis later (indeed it won't work to repeat it later, since
1649 -- we haven't got a clear resolution of which entity is being
1650 -- referenced.)
1651
1652 Set_Analyzed (N, True);
1653 return;
1654 end Resolution_Failed;
1655
1656 -- Start of processing for Resolve
1657
1658 begin
5c736541
RD
1659 if N = Error then
1660 return;
1661 end if;
1662
996ae0b0
RK
1663 -- Access attribute on remote subprogram cannot be used for
1664 -- a non-remote access-to-subprogram type.
1665
1666 if Nkind (N) = N_Attribute_Reference
1667 and then (Attribute_Name (N) = Name_Access
ea985d95
RD
1668 or else Attribute_Name (N) = Name_Unrestricted_Access
1669 or else Attribute_Name (N) = Name_Unchecked_Access)
996ae0b0
RK
1670 and then Comes_From_Source (N)
1671 and then Is_Entity_Name (Prefix (N))
1672 and then Is_Subprogram (Entity (Prefix (N)))
1673 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1674 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1675 then
1676 Error_Msg_N
1677 ("prefix must statically denote a non-remote subprogram", N);
1678 end if;
1679
dae2b8ea
HK
1680 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1681
996ae0b0
RK
1682 -- If the context is a Remote_Access_To_Subprogram, access attributes
1683 -- must be resolved with the corresponding fat pointer. There is no need
1684 -- to check for the attribute name since the return type of an
1685 -- attribute is never a remote type.
1686
1687 if Nkind (N) = N_Attribute_Reference
1688 and then Comes_From_Source (N)
1689 and then (Is_Remote_Call_Interface (Typ)
1690 or else Is_Remote_Types (Typ))
1691 then
1692 declare
1693 Attr : constant Attribute_Id :=
1694 Get_Attribute_Id (Attribute_Name (N));
1695 Pref : constant Node_Id := Prefix (N);
1696 Decl : Node_Id;
1697 Spec : Node_Id;
1698 Is_Remote : Boolean := True;
1699
1700 begin
a77842bd 1701 -- Check that Typ is a remote access-to-subprogram type
996ae0b0 1702
a77842bd 1703 if Is_Remote_Access_To_Subprogram_Type (Typ) then
996ae0b0
RK
1704 -- Prefix (N) must statically denote a remote subprogram
1705 -- declared in a package specification.
1706
1707 if Attr = Attribute_Access then
1708 Decl := Unit_Declaration_Node (Entity (Pref));
1709
1710 if Nkind (Decl) = N_Subprogram_Body then
1711 Spec := Corresponding_Spec (Decl);
1712
1713 if not No (Spec) then
1714 Decl := Unit_Declaration_Node (Spec);
1715 end if;
1716 end if;
1717
1718 Spec := Parent (Decl);
1719
1720 if not Is_Entity_Name (Prefix (N))
1721 or else Nkind (Spec) /= N_Package_Specification
1722 or else
1723 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1724 then
1725 Is_Remote := False;
1726 Error_Msg_N
1727 ("prefix must statically denote a remote subprogram ",
1728 N);
1729 end if;
1730 end if;
1731
fbf5a39b
AC
1732 -- If we are generating code for a distributed program.
1733 -- perform semantic checks against the corresponding
1734 -- remote entities.
1735
1736 if (Attr = Attribute_Access
1737 or else Attr = Attribute_Unchecked_Access
1738 or else Attr = Attribute_Unrestricted_Access)
1739 and then Expander_Active
a77842bd 1740 and then Get_PCS_Name /= Name_No_DSA
996ae0b0
RK
1741 then
1742 Check_Subtype_Conformant
1743 (New_Id => Entity (Prefix (N)),
1744 Old_Id => Designated_Type
1745 (Corresponding_Remote_Type (Typ)),
1746 Err_Loc => N);
b7d1f17f 1747
996ae0b0
RK
1748 if Is_Remote then
1749 Process_Remote_AST_Attribute (N, Typ);
1750 end if;
1751 end if;
1752 end if;
1753 end;
1754 end if;
1755
1756 Debug_A_Entry ("resolving ", N);
1757
07fc65c4
GB
1758 if Comes_From_Source (N) then
1759 if Is_Fixed_Point_Type (Typ) then
1760 Check_Restriction (No_Fixed_Point, N);
996ae0b0 1761
07fc65c4
GB
1762 elsif Is_Floating_Point_Type (Typ)
1763 and then Typ /= Universal_Real
1764 and then Typ /= Any_Real
1765 then
1766 Check_Restriction (No_Floating_Point, N);
1767 end if;
996ae0b0
RK
1768 end if;
1769
1770 -- Return if already analyzed
1771
1772 if Analyzed (N) then
1773 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
1774 return;
1775
1776 -- Return if type = Any_Type (previous error encountered)
1777
1778 elsif Etype (N) = Any_Type then
1779 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
1780 return;
1781 end if;
1782
1783 Check_Parameterless_Call (N);
1784
1785 -- If not overloaded, then we know the type, and all that needs doing
1786 -- is to check that this type is compatible with the context.
1787
1788 if not Is_Overloaded (N) then
1789 Found := Covers (Typ, Etype (N));
1790 Expr_Type := Etype (N);
1791
1792 -- In the overloaded case, we must select the interpretation that
1793 -- is compatible with the context (i.e. the type passed to Resolve)
1794
1795 else
996ae0b0
RK
1796 -- Loop through possible interpretations
1797
1420b484 1798 Get_First_Interp (N, I, It);
996ae0b0
RK
1799 Interp_Loop : while Present (It.Typ) loop
1800
1801 -- We are only interested in interpretations that are compatible
aa5147f0 1802 -- with the expected type, any other interpretations are ignored.
996ae0b0 1803
fbf5a39b
AC
1804 if not Covers (Typ, It.Typ) then
1805 if Debug_Flag_V then
1806 Write_Str (" interpretation incompatible with context");
1807 Write_Eol;
1808 end if;
996ae0b0 1809
fbf5a39b 1810 else
aa5147f0
ES
1811 -- Skip the current interpretation if it is disabled by an
1812 -- abstract operator. This action is performed only when the
1813 -- type against which we are resolving is the same as the
1814 -- type of the interpretation.
1815
1816 if Ada_Version >= Ada_05
1817 and then It.Typ = Typ
1818 and then Typ /= Universal_Integer
1819 and then Typ /= Universal_Real
1820 and then Present (It.Abstract_Op)
1821 then
1822 goto Continue;
1823 end if;
1824
996ae0b0
RK
1825 -- First matching interpretation
1826
1827 if not Found then
1828 Found := True;
1829 I1 := I;
1830 Seen := It.Nam;
1831 Expr_Type := It.Typ;
1832
fbf5a39b 1833 -- Matching interpretation that is not the first, maybe an
996ae0b0
RK
1834 -- error, but there are some cases where preference rules are
1835 -- used to choose between the two possibilities. These and
1836 -- some more obscure cases are handled in Disambiguate.
1837
1838 else
dae2b8ea
HK
1839 -- If the current statement is part of a predefined library
1840 -- unit, then all interpretations which come from user level
1841 -- packages should not be considered.
1842
1843 if From_Lib
1844 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
1845 then
1846 goto Continue;
1847 end if;
1848
996ae0b0
RK
1849 Error_Msg_Sloc := Sloc (Seen);
1850 It1 := Disambiguate (N, I1, I, Typ);
1851
fbf5a39b
AC
1852 -- Disambiguation has succeeded. Skip the remaining
1853 -- interpretations.
996ae0b0 1854
fbf5a39b
AC
1855 if It1 /= No_Interp then
1856 Seen := It1.Nam;
1857 Expr_Type := It1.Typ;
1858
1859 while Present (It.Typ) loop
1860 Get_Next_Interp (I, It);
1861 end loop;
1862
1863 else
996ae0b0
RK
1864 -- Before we issue an ambiguity complaint, check for
1865 -- the case of a subprogram call where at least one
1866 -- of the arguments is Any_Type, and if so, suppress
1867 -- the message, since it is a cascaded error.
1868
1869 if Nkind (N) = N_Function_Call
1870 or else Nkind (N) = N_Procedure_Call_Statement
1871 then
1872 declare
1420b484 1873 A : Node_Id;
996ae0b0
RK
1874 E : Node_Id;
1875
1876 begin
1420b484 1877 A := First_Actual (N);
996ae0b0
RK
1878 while Present (A) loop
1879 E := A;
1880
1881 if Nkind (E) = N_Parameter_Association then
1882 E := Explicit_Actual_Parameter (E);
1883 end if;
1884
1885 if Etype (E) = Any_Type then
1886 if Debug_Flag_V then
1887 Write_Str ("Any_Type in call");
1888 Write_Eol;
1889 end if;
1890
1891 exit Interp_Loop;
1892 end if;
1893
1894 Next_Actual (A);
1895 end loop;
1896 end;
1897
aa5147f0 1898 elsif Nkind (N) in N_Binary_Op
996ae0b0
RK
1899 and then (Etype (Left_Opnd (N)) = Any_Type
1900 or else Etype (Right_Opnd (N)) = Any_Type)
1901 then
1902 exit Interp_Loop;
1903
1904 elsif Nkind (N) in N_Unary_Op
1905 and then Etype (Right_Opnd (N)) = Any_Type
1906 then
1907 exit Interp_Loop;
1908 end if;
1909
1910 -- Not that special case, so issue message using the
1911 -- flag Ambiguous to control printing of the header
1912 -- message only at the start of an ambiguous set.
1913
1914 if not Ambiguous then
aa180613
RD
1915 if Nkind (N) = N_Function_Call
1916 and then Nkind (Name (N)) = N_Explicit_Dereference
1917 then
1918 Error_Msg_N
1919 ("ambiguous expression "
1920 & "(cannot resolve indirect call)!", N);
1921 else
1922 Error_Msg_NE
1923 ("ambiguous expression (cannot resolve&)!",
1924 N, It.Nam);
1925 end if;
fbf5a39b 1926
996ae0b0 1927 Ambiguous := True;
0669bebe
GB
1928
1929 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
1930 Error_Msg_N
1931 ("\\possible interpretation (inherited)#!", N);
1932 else
1933 Error_Msg_N ("\\possible interpretation#!", N);
1934 end if;
996ae0b0
RK
1935 end if;
1936
1937 Error_Msg_Sloc := Sloc (It.Nam);
996ae0b0 1938
fbf5a39b 1939 -- By default, the error message refers to the candidate
0669bebe
GB
1940 -- interpretation. But if it is a predefined operator, it
1941 -- is implicitly declared at the declaration of the type
1942 -- of the operand. Recover the sloc of that declaration
1943 -- for the error message.
fbf5a39b
AC
1944
1945 if Nkind (N) in N_Op
1946 and then Scope (It.Nam) = Standard_Standard
1947 and then not Is_Overloaded (Right_Opnd (N))
0669bebe
GB
1948 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
1949 Standard_Standard
fbf5a39b
AC
1950 then
1951 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
1952
1953 if Comes_From_Source (Err_Type)
1954 and then Present (Parent (Err_Type))
1955 then
1956 Error_Msg_Sloc := Sloc (Parent (Err_Type));
1957 end if;
1958
1959 elsif Nkind (N) in N_Binary_Op
1960 and then Scope (It.Nam) = Standard_Standard
1961 and then not Is_Overloaded (Left_Opnd (N))
0669bebe
GB
1962 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
1963 Standard_Standard
fbf5a39b
AC
1964 then
1965 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
1966
1967 if Comes_From_Source (Err_Type)
1968 and then Present (Parent (Err_Type))
1969 then
1970 Error_Msg_Sloc := Sloc (Parent (Err_Type));
1971 end if;
aa180613
RD
1972
1973 -- If this is an indirect call, use the subprogram_type
1974 -- in the message, to have a meaningful location.
1975 -- Indicate as well if this is an inherited operation,
1976 -- created by a type declaration.
1977
1978 elsif Nkind (N) = N_Function_Call
1979 and then Nkind (Name (N)) = N_Explicit_Dereference
1980 and then Is_Type (It.Nam)
1981 then
1982 Err_Type := It.Nam;
1983 Error_Msg_Sloc :=
1984 Sloc (Associated_Node_For_Itype (Err_Type));
fbf5a39b
AC
1985 else
1986 Err_Type := Empty;
1987 end if;
1988
1989 if Nkind (N) in N_Op
1990 and then Scope (It.Nam) = Standard_Standard
1991 and then Present (Err_Type)
1992 then
aa5147f0
ES
1993 -- Special-case the message for universal_fixed
1994 -- operators, which are not declared with the type
1995 -- of the operand, but appear forever in Standard.
1996
1997 if It.Typ = Universal_Fixed
1998 and then Scope (It.Nam) = Standard_Standard
1999 then
2000 Error_Msg_N
2001 ("\\possible interpretation as " &
2002 "universal_fixed operation " &
2003 "(RM 4.5.5 (19))", N);
2004 else
2005 Error_Msg_N
2006 ("\\possible interpretation (predefined)#!", N);
2007 end if;
aa180613
RD
2008
2009 elsif
2010 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2011 then
2012 Error_Msg_N
2013 ("\\possible interpretation (inherited)#!", N);
fbf5a39b 2014 else
aa180613 2015 Error_Msg_N ("\\possible interpretation#!", N);
fbf5a39b 2016 end if;
996ae0b0 2017
996ae0b0
RK
2018 end if;
2019 end if;
2020
0669bebe
GB
2021 -- We have a matching interpretation, Expr_Type is the type
2022 -- from this interpretation, and Seen is the entity.
996ae0b0 2023
0669bebe
GB
2024 -- For an operator, just set the entity name. The type will be
2025 -- set by the specific operator resolution routine.
996ae0b0
RK
2026
2027 if Nkind (N) in N_Op then
2028 Set_Entity (N, Seen);
2029 Generate_Reference (Seen, N);
2030
2031 elsif Nkind (N) = N_Character_Literal then
2032 Set_Etype (N, Expr_Type);
2033
2034 -- For an explicit dereference, attribute reference, range,
0669bebe
GB
2035 -- short-circuit form (which is not an operator node), or call
2036 -- with a name that is an explicit dereference, there is
2037 -- nothing to be done at this point.
996ae0b0
RK
2038
2039 elsif Nkind (N) = N_Explicit_Dereference
2040 or else Nkind (N) = N_Attribute_Reference
2041 or else Nkind (N) = N_And_Then
2042 or else Nkind (N) = N_Indexed_Component
2043 or else Nkind (N) = N_Or_Else
2044 or else Nkind (N) = N_Range
2045 or else Nkind (N) = N_Selected_Component
2046 or else Nkind (N) = N_Slice
2047 or else Nkind (Name (N)) = N_Explicit_Dereference
2048 then
2049 null;
2050
0669bebe
GB
2051 -- For procedure or function calls, set the type of the name,
2052 -- and also the entity pointer for the prefix
996ae0b0
RK
2053
2054 elsif (Nkind (N) = N_Procedure_Call_Statement
2055 or else Nkind (N) = N_Function_Call)
2056 and then (Is_Entity_Name (Name (N))
2057 or else Nkind (Name (N)) = N_Operator_Symbol)
2058 then
2059 Set_Etype (Name (N), Expr_Type);
2060 Set_Entity (Name (N), Seen);
2061 Generate_Reference (Seen, Name (N));
2062
2063 elsif Nkind (N) = N_Function_Call
2064 and then Nkind (Name (N)) = N_Selected_Component
2065 then
2066 Set_Etype (Name (N), Expr_Type);
2067 Set_Entity (Selector_Name (Name (N)), Seen);
2068 Generate_Reference (Seen, Selector_Name (Name (N)));
2069
2070 -- For all other cases, just set the type of the Name
2071
2072 else
2073 Set_Etype (Name (N), Expr_Type);
2074 end if;
2075
996ae0b0
RK
2076 end if;
2077
aa5147f0
ES
2078 <<Continue>>
2079
996ae0b0
RK
2080 -- Move to next interpretation
2081
c8ef728f 2082 exit Interp_Loop when No (It.Typ);
996ae0b0
RK
2083
2084 Get_Next_Interp (I, It);
2085 end loop Interp_Loop;
2086 end if;
2087
2088 -- At this stage Found indicates whether or not an acceptable
2089 -- interpretation exists. If not, then we have an error, except
2090 -- that if the context is Any_Type as a result of some other error,
2091 -- then we suppress the error report.
2092
2093 if not Found then
2094 if Typ /= Any_Type then
2095
0669bebe
GB
2096 -- If type we are looking for is Void, then this is the procedure
2097 -- call case, and the error is simply that what we gave is not a
2098 -- procedure name (we think of procedure calls as expressions with
2099 -- types internally, but the user doesn't think of them this way!)
996ae0b0
RK
2100
2101 if Typ = Standard_Void_Type then
91b1417d
AC
2102
2103 -- Special case message if function used as a procedure
2104
2105 if Nkind (N) = N_Procedure_Call_Statement
2106 and then Is_Entity_Name (Name (N))
2107 and then Ekind (Entity (Name (N))) = E_Function
2108 then
2109 Error_Msg_NE
2110 ("cannot use function & in a procedure call",
2111 Name (N), Entity (Name (N)));
2112
0669bebe
GB
2113 -- Otherwise give general message (not clear what cases this
2114 -- covers, but no harm in providing for them!)
91b1417d
AC
2115
2116 else
2117 Error_Msg_N ("expect procedure name in procedure call", N);
2118 end if;
2119
996ae0b0
RK
2120 Found := True;
2121
2122 -- Otherwise we do have a subexpression with the wrong type
2123
0669bebe
GB
2124 -- Check for the case of an allocator which uses an access type
2125 -- instead of the designated type. This is a common error and we
2126 -- specialize the message, posting an error on the operand of the
2127 -- allocator, complaining that we expected the designated type of
2128 -- the allocator.
996ae0b0
RK
2129
2130 elsif Nkind (N) = N_Allocator
2131 and then Ekind (Typ) in Access_Kind
2132 and then Ekind (Etype (N)) in Access_Kind
2133 and then Designated_Type (Etype (N)) = Typ
2134 then
2135 Wrong_Type (Expression (N), Designated_Type (Typ));
2136 Found := True;
2137
0669bebe
GB
2138 -- Check for view mismatch on Null in instances, for which the
2139 -- view-swapping mechanism has no identifier.
17be0cdf
ES
2140
2141 elsif (In_Instance or else In_Inlined_Body)
2142 and then (Nkind (N) = N_Null)
2143 and then Is_Private_Type (Typ)
2144 and then Is_Access_Type (Full_View (Typ))
2145 then
2146 Resolve (N, Full_View (Typ));
2147 Set_Etype (N, Typ);
2148 return;
2149
aa180613
RD
2150 -- Check for an aggregate. Sometimes we can get bogus aggregates
2151 -- from misuse of parentheses, and we are about to complain about
2152 -- the aggregate without even looking inside it.
996ae0b0 2153
aa180613
RD
2154 -- Instead, if we have an aggregate of type Any_Composite, then
2155 -- analyze and resolve the component fields, and then only issue
2156 -- another message if we get no errors doing this (otherwise
2157 -- assume that the errors in the aggregate caused the problem).
996ae0b0
RK
2158
2159 elsif Nkind (N) = N_Aggregate
2160 and then Etype (N) = Any_Composite
2161 then
996ae0b0
RK
2162 -- Disable expansion in any case. If there is a type mismatch
2163 -- it may be fatal to try to expand the aggregate. The flag
2164 -- would otherwise be set to false when the error is posted.
2165
2166 Expander_Active := False;
2167
2168 declare
2169 procedure Check_Aggr (Aggr : Node_Id);
aa180613
RD
2170 -- Check one aggregate, and set Found to True if we have a
2171 -- definite error in any of its elements
996ae0b0
RK
2172
2173 procedure Check_Elmt (Aelmt : Node_Id);
aa180613
RD
2174 -- Check one element of aggregate and set Found to True if
2175 -- we definitely have an error in the element.
2176
2177 ----------------
2178 -- Check_Aggr --
2179 ----------------
996ae0b0
RK
2180
2181 procedure Check_Aggr (Aggr : Node_Id) is
2182 Elmt : Node_Id;
2183
2184 begin
2185 if Present (Expressions (Aggr)) then
2186 Elmt := First (Expressions (Aggr));
2187 while Present (Elmt) loop
2188 Check_Elmt (Elmt);
2189 Next (Elmt);
2190 end loop;
2191 end if;
2192
2193 if Present (Component_Associations (Aggr)) then
2194 Elmt := First (Component_Associations (Aggr));
2195 while Present (Elmt) loop
aa180613 2196
0669bebe
GB
2197 -- If this is a default-initialized component, then
2198 -- there is nothing to check. The box will be
2199 -- replaced by the appropriate call during late
2200 -- expansion.
aa180613
RD
2201
2202 if not Box_Present (Elmt) then
2203 Check_Elmt (Expression (Elmt));
2204 end if;
2205
996ae0b0
RK
2206 Next (Elmt);
2207 end loop;
2208 end if;
2209 end Check_Aggr;
2210
fbf5a39b
AC
2211 ----------------
2212 -- Check_Elmt --
2213 ----------------
2214
996ae0b0
RK
2215 procedure Check_Elmt (Aelmt : Node_Id) is
2216 begin
2217 -- If we have a nested aggregate, go inside it (to
2218 -- attempt a naked analyze-resolve of the aggregate
2219 -- can cause undesirable cascaded errors). Do not
2220 -- resolve expression if it needs a type from context,
2221 -- as for integer * fixed expression.
2222
2223 if Nkind (Aelmt) = N_Aggregate then
2224 Check_Aggr (Aelmt);
2225
2226 else
2227 Analyze (Aelmt);
2228
2229 if not Is_Overloaded (Aelmt)
2230 and then Etype (Aelmt) /= Any_Fixed
2231 then
fbf5a39b 2232 Resolve (Aelmt);
996ae0b0
RK
2233 end if;
2234
2235 if Etype (Aelmt) = Any_Type then
2236 Found := True;
2237 end if;
2238 end if;
2239 end Check_Elmt;
2240
2241 begin
2242 Check_Aggr (N);
2243 end;
2244 end if;
2245
2246 -- If an error message was issued already, Found got reset
2247 -- to True, so if it is still False, issue the standard
2248 -- Wrong_Type message.
2249
2250 if not Found then
2251 if Is_Overloaded (N)
2252 and then Nkind (N) = N_Function_Call
2253 then
65356e64
AC
2254 declare
2255 Subp_Name : Node_Id;
2256 begin
2257 if Is_Entity_Name (Name (N)) then
2258 Subp_Name := Name (N);
2259
2260 elsif Nkind (Name (N)) = N_Selected_Component then
2261
a77842bd 2262 -- Protected operation: retrieve operation name
65356e64
AC
2263
2264 Subp_Name := Selector_Name (Name (N));
2265 else
2266 raise Program_Error;
2267 end if;
2268
2269 Error_Msg_Node_2 := Typ;
2270 Error_Msg_NE ("no visible interpretation of&" &
2271 " matches expected type&", N, Subp_Name);
2272 end;
996ae0b0
RK
2273
2274 if All_Errors_Mode then
2275 declare
2276 Index : Interp_Index;
2277 It : Interp;
2278
2279 begin
aa180613 2280 Error_Msg_N ("\\possible interpretations:", N);
996ae0b0 2281
1420b484 2282 Get_First_Interp (Name (N), Index, It);
996ae0b0 2283 while Present (It.Nam) loop
ea985d95 2284 Error_Msg_Sloc := Sloc (It.Nam);
aa5147f0
ES
2285 Error_Msg_Node_2 := It.Nam;
2286 Error_Msg_NE
2287 ("\\ type& for & declared#", N, It.Typ);
996ae0b0
RK
2288 Get_Next_Interp (Index, It);
2289 end loop;
2290 end;
aa5147f0 2291
996ae0b0
RK
2292 else
2293 Error_Msg_N ("\use -gnatf for details", N);
2294 end if;
2295 else
2296 Wrong_Type (N, Typ);
2297 end if;
2298 end if;
2299 end if;
2300
2301 Resolution_Failed;
2302 return;
2303
2304 -- Test if we have more than one interpretation for the context
2305
2306 elsif Ambiguous then
2307 Resolution_Failed;
2308 return;
2309
2310 -- Here we have an acceptable interpretation for the context
2311
2312 else
996ae0b0
RK
2313 -- Propagate type information and normalize tree for various
2314 -- predefined operations. If the context only imposes a class of
2315 -- types, rather than a specific type, propagate the actual type
2316 -- downward.
2317
2318 if Typ = Any_Integer
2319 or else Typ = Any_Boolean
2320 or else Typ = Any_Modular
2321 or else Typ = Any_Real
2322 or else Typ = Any_Discrete
2323 then
2324 Ctx_Type := Expr_Type;
2325
2326 -- Any_Fixed is legal in a real context only if a specific
2327 -- fixed point type is imposed. If Norman Cohen can be
2328 -- confused by this, it deserves a separate message.
2329
2330 if Typ = Any_Real
2331 and then Expr_Type = Any_Fixed
2332 then
758c442c 2333 Error_Msg_N ("illegal context for mixed mode operation", N);
996ae0b0
RK
2334 Set_Etype (N, Universal_Real);
2335 Ctx_Type := Universal_Real;
2336 end if;
2337 end if;
2338
0ab80019
AC
2339 -- A user-defined operator is tranformed into a function call at
2340 -- this point, so that further processing knows that operators are
2341 -- really operators (i.e. are predefined operators). User-defined
2342 -- operators that are intrinsic are just renamings of the predefined
2343 -- ones, and need not be turned into calls either, but if they rename
2344 -- a different operator, we must transform the node accordingly.
2345 -- Instantiations of Unchecked_Conversion are intrinsic but are
2346 -- treated as functions, even if given an operator designator.
2347
2348 if Nkind (N) in N_Op
2349 and then Present (Entity (N))
2350 and then Ekind (Entity (N)) /= E_Operator
2351 then
2352
2353 if not Is_Predefined_Op (Entity (N)) then
2354 Rewrite_Operator_As_Call (N, Entity (N));
2355
615cbd95
AC
2356 elsif Present (Alias (Entity (N)))
2357 and then
2358 Nkind (Parent (Parent (Entity (N))))
2359 = N_Subprogram_Renaming_Declaration
2360 then
0ab80019
AC
2361 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2362
2363 -- If the node is rewritten, it will be fully resolved in
2364 -- Rewrite_Renamed_Operator.
2365
2366 if Analyzed (N) then
2367 return;
2368 end if;
2369 end if;
2370 end if;
2371
996ae0b0
RK
2372 case N_Subexpr'(Nkind (N)) is
2373
2374 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2375
2376 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2377
2378 when N_And_Then | N_Or_Else
2379 => Resolve_Short_Circuit (N, Ctx_Type);
2380
2381 when N_Attribute_Reference
2382 => Resolve_Attribute (N, Ctx_Type);
2383
2384 when N_Character_Literal
2385 => Resolve_Character_Literal (N, Ctx_Type);
2386
2387 when N_Conditional_Expression
2388 => Resolve_Conditional_Expression (N, Ctx_Type);
2389
2390 when N_Expanded_Name
2391 => Resolve_Entity_Name (N, Ctx_Type);
2392
2393 when N_Extension_Aggregate
2394 => Resolve_Extension_Aggregate (N, Ctx_Type);
2395
2396 when N_Explicit_Dereference
2397 => Resolve_Explicit_Dereference (N, Ctx_Type);
2398
2399 when N_Function_Call
2400 => Resolve_Call (N, Ctx_Type);
2401
2402 when N_Identifier
2403 => Resolve_Entity_Name (N, Ctx_Type);
2404
996ae0b0
RK
2405 when N_Indexed_Component
2406 => Resolve_Indexed_Component (N, Ctx_Type);
2407
2408 when N_Integer_Literal
2409 => Resolve_Integer_Literal (N, Ctx_Type);
2410
0669bebe
GB
2411 when N_Membership_Test
2412 => Resolve_Membership_Op (N, Ctx_Type);
2413
996ae0b0
RK
2414 when N_Null => Resolve_Null (N, Ctx_Type);
2415
2416 when N_Op_And | N_Op_Or | N_Op_Xor
2417 => Resolve_Logical_Op (N, Ctx_Type);
2418
2419 when N_Op_Eq | N_Op_Ne
2420 => Resolve_Equality_Op (N, Ctx_Type);
2421
2422 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2423 => Resolve_Comparison_Op (N, Ctx_Type);
2424
2425 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2426
2427 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2428 N_Op_Divide | N_Op_Mod | N_Op_Rem
2429
2430 => Resolve_Arithmetic_Op (N, Ctx_Type);
2431
2432 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2433
2434 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2435
2436 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2437 => Resolve_Unary_Op (N, Ctx_Type);
2438
2439 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2440
2441 when N_Procedure_Call_Statement
2442 => Resolve_Call (N, Ctx_Type);
2443
2444 when N_Operator_Symbol
2445 => Resolve_Operator_Symbol (N, Ctx_Type);
2446
2447 when N_Qualified_Expression
2448 => Resolve_Qualified_Expression (N, Ctx_Type);
2449
2450 when N_Raise_xxx_Error
2451 => Set_Etype (N, Ctx_Type);
2452
2453 when N_Range => Resolve_Range (N, Ctx_Type);
2454
2455 when N_Real_Literal
2456 => Resolve_Real_Literal (N, Ctx_Type);
2457
2458 when N_Reference => Resolve_Reference (N, Ctx_Type);
2459
2460 when N_Selected_Component
2461 => Resolve_Selected_Component (N, Ctx_Type);
2462
2463 when N_Slice => Resolve_Slice (N, Ctx_Type);
2464
2465 when N_String_Literal
2466 => Resolve_String_Literal (N, Ctx_Type);
2467
2468 when N_Subprogram_Info
2469 => Resolve_Subprogram_Info (N, Ctx_Type);
2470
2471 when N_Type_Conversion
2472 => Resolve_Type_Conversion (N, Ctx_Type);
2473
2474 when N_Unchecked_Expression =>
2475 Resolve_Unchecked_Expression (N, Ctx_Type);
2476
2477 when N_Unchecked_Type_Conversion =>
2478 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2479
2480 end case;
2481
2482 -- If the subexpression was replaced by a non-subexpression, then
2483 -- all we do is to expand it. The only legitimate case we know of
2484 -- is converting procedure call statement to entry call statements,
2485 -- but there may be others, so we are making this test general.
2486
2487 if Nkind (N) not in N_Subexpr then
2488 Debug_A_Exit ("resolving ", N, " (done)");
2489 Expand (N);
2490 return;
2491 end if;
2492
2493 -- The expression is definitely NOT overloaded at this point, so
2494 -- we reset the Is_Overloaded flag to avoid any confusion when
2495 -- reanalyzing the node.
2496
2497 Set_Is_Overloaded (N, False);
2498
2499 -- Freeze expression type, entity if it is a name, and designated
fbf5a39b 2500 -- type if it is an allocator (RM 13.14(10,11,13)).
996ae0b0
RK
2501
2502 -- Now that the resolution of the type of the node is complete,
2503 -- and we did not detect an error, we can expand this node. We
2504 -- skip the expand call if we are in a default expression, see
2505 -- section "Handling of Default Expressions" in Sem spec.
2506
2507 Debug_A_Exit ("resolving ", N, " (done)");
2508
2509 -- We unconditionally freeze the expression, even if we are in
2510 -- default expression mode (the Freeze_Expression routine tests
2511 -- this flag and only freezes static types if it is set).
2512
2513 Freeze_Expression (N);
2514
2515 -- Now we can do the expansion
2516
2517 Expand (N);
2518 end if;
996ae0b0
RK
2519 end Resolve;
2520
fbf5a39b
AC
2521 -------------
2522 -- Resolve --
2523 -------------
2524
996ae0b0
RK
2525 -- Version with check(s) suppressed
2526
2527 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2528 begin
2529 if Suppress = All_Checks then
2530 declare
fbf5a39b 2531 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
2532 begin
2533 Scope_Suppress := (others => True);
2534 Resolve (N, Typ);
2535 Scope_Suppress := Svg;
2536 end;
2537
2538 else
2539 declare
fbf5a39b 2540 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0 2541 begin
fbf5a39b 2542 Scope_Suppress (Suppress) := True;
996ae0b0 2543 Resolve (N, Typ);
fbf5a39b 2544 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
2545 end;
2546 end if;
2547 end Resolve;
2548
fbf5a39b
AC
2549 -------------
2550 -- Resolve --
2551 -------------
2552
2553 -- Version with implicit type
2554
2555 procedure Resolve (N : Node_Id) is
2556 begin
2557 Resolve (N, Etype (N));
2558 end Resolve;
2559
996ae0b0
RK
2560 ---------------------
2561 -- Resolve_Actuals --
2562 ---------------------
2563
2564 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2565 Loc : constant Source_Ptr := Sloc (N);
2566 A : Node_Id;
2567 F : Entity_Id;
2568 A_Typ : Entity_Id;
2569 F_Typ : Entity_Id;
2570 Prev : Node_Id := Empty;
2571
b7d1f17f
HK
2572 procedure Check_Prefixed_Call;
2573 -- If the original node is an overloaded call in prefix notation,
2574 -- insert an 'Access or a dereference as needed over the first actual.
2575 -- Try_Object_Operation has already verified that there is a valid
2576 -- interpretation, but the form of the actual can only be determined
2577 -- once the primitive operation is identified.
2578
996ae0b0
RK
2579 procedure Insert_Default;
2580 -- If the actual is missing in a call, insert in the actuals list
2581 -- an instance of the default expression. The insertion is always
2582 -- a named association.
2583
fbf5a39b
AC
2584 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2585 -- Check whether T1 and T2, or their full views, are derived from a
2586 -- common type. Used to enforce the restrictions on array conversions
2587 -- of AI95-00246.
2588
b7d1f17f
HK
2589 -------------------------
2590 -- Check_Prefixed_Call --
2591 -------------------------
2592
2593 procedure Check_Prefixed_Call is
2594 Act : constant Node_Id := First_Actual (N);
2595 A_Type : constant Entity_Id := Etype (Act);
2596 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
2597 Orig : constant Node_Id := Original_Node (N);
2598 New_A : Node_Id;
2599
2600 begin
2601 -- Check whether the call is a prefixed call, with or without
2602 -- additional actuals.
2603
2604 if Nkind (Orig) = N_Selected_Component
2605 or else
2606 (Nkind (Orig) = N_Indexed_Component
2607 and then Nkind (Prefix (Orig)) = N_Selected_Component
2608 and then Is_Entity_Name (Prefix (Prefix (Orig)))
2609 and then Is_Entity_Name (Act)
2610 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
2611 then
2612 if Is_Access_Type (A_Type)
2613 and then not Is_Access_Type (F_Type)
2614 then
2615 -- Introduce dereference on object in prefix
2616
2617 New_A :=
2618 Make_Explicit_Dereference (Sloc (Act),
2619 Prefix => Relocate_Node (Act));
2620 Rewrite (Act, New_A);
2621 Analyze (Act);
2622
2623 elsif Is_Access_Type (F_Type)
2624 and then not Is_Access_Type (A_Type)
2625 then
2626 -- Introduce an implicit 'Access in prefix
2627
2628 if not Is_Aliased_View (Act) then
2629 Error_Msg_NE
2630 ("object in prefixed call to& must be aliased"
aa5147f0 2631 & " (RM-2005 4.3.1 (13))",
b7d1f17f
HK
2632 Prefix (Act), Nam);
2633 end if;
2634
2635 Rewrite (Act,
2636 Make_Attribute_Reference (Loc,
2637 Attribute_Name => Name_Access,
2638 Prefix => Relocate_Node (Act)));
2639 end if;
2640
2641 Analyze (Act);
2642 end if;
2643 end Check_Prefixed_Call;
2644
996ae0b0
RK
2645 --------------------
2646 -- Insert_Default --
2647 --------------------
2648
2649 procedure Insert_Default is
2650 Actval : Node_Id;
2651 Assoc : Node_Id;
2652
2653 begin
fbf5a39b 2654 -- Missing argument in call, nothing to insert
996ae0b0 2655
fbf5a39b
AC
2656 if No (Default_Value (F)) then
2657 return;
2658
2659 else
2660 -- Note that we do a full New_Copy_Tree, so that any associated
2661 -- Itypes are properly copied. This may not be needed any more,
2662 -- but it does no harm as a safety measure! Defaults of a generic
2663 -- formal may be out of bounds of the corresponding actual (see
2664 -- cc1311b) and an additional check may be required.
996ae0b0 2665
b7d1f17f
HK
2666 Actval :=
2667 New_Copy_Tree
2668 (Default_Value (F),
2669 New_Scope => Current_Scope,
2670 New_Sloc => Loc);
996ae0b0
RK
2671
2672 if Is_Concurrent_Type (Scope (Nam))
2673 and then Has_Discriminants (Scope (Nam))
2674 then
2675 Replace_Actual_Discriminants (N, Actval);
2676 end if;
2677
2678 if Is_Overloadable (Nam)
2679 and then Present (Alias (Nam))
2680 then
2681 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
2682 and then not Is_Tagged_Type (Etype (F))
2683 then
2684 -- If default is a real literal, do not introduce a
2685 -- conversion whose effect may depend on the run-time
2686 -- size of universal real.
2687
2688 if Nkind (Actval) = N_Real_Literal then
2689 Set_Etype (Actval, Base_Type (Etype (F)));
2690 else
2691 Actval := Unchecked_Convert_To (Etype (F), Actval);
2692 end if;
2693 end if;
2694
2695 if Is_Scalar_Type (Etype (F)) then
2696 Enable_Range_Check (Actval);
2697 end if;
2698
996ae0b0
RK
2699 Set_Parent (Actval, N);
2700
2701 -- Resolve aggregates with their base type, to avoid scope
2702 -- anomalies: the subtype was first built in the suprogram
2703 -- declaration, and the current call may be nested.
2704
2705 if Nkind (Actval) = N_Aggregate
2706 and then Has_Discriminants (Etype (Actval))
2707 then
2708 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2709 else
2710 Analyze_And_Resolve (Actval, Etype (Actval));
2711 end if;
fbf5a39b
AC
2712
2713 else
2714 Set_Parent (Actval, N);
2715
a77842bd 2716 -- See note above concerning aggregates
fbf5a39b
AC
2717
2718 if Nkind (Actval) = N_Aggregate
2719 and then Has_Discriminants (Etype (Actval))
2720 then
2721 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2722
2723 -- Resolve entities with their own type, which may differ
2724 -- from the type of a reference in a generic context (the
2725 -- view swapping mechanism did not anticipate the re-analysis
2726 -- of default values in calls).
2727
2728 elsif Is_Entity_Name (Actval) then
2729 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
2730
2731 else
2732 Analyze_And_Resolve (Actval, Etype (Actval));
2733 end if;
996ae0b0
RK
2734 end if;
2735
2736 -- If default is a tag indeterminate function call, propagate
2737 -- tag to obtain proper dispatching.
2738
2739 if Is_Controlling_Formal (F)
2740 and then Nkind (Default_Value (F)) = N_Function_Call
2741 then
2742 Set_Is_Controlling_Actual (Actval);
2743 end if;
2744
996ae0b0
RK
2745 end if;
2746
2747 -- If the default expression raises constraint error, then just
2748 -- silently replace it with an N_Raise_Constraint_Error node,
2749 -- since we already gave the warning on the subprogram spec.
2750
2751 if Raises_Constraint_Error (Actval) then
2752 Rewrite (Actval,
07fc65c4
GB
2753 Make_Raise_Constraint_Error (Loc,
2754 Reason => CE_Range_Check_Failed));
996ae0b0
RK
2755 Set_Raises_Constraint_Error (Actval);
2756 Set_Etype (Actval, Etype (F));
2757 end if;
2758
2759 Assoc :=
2760 Make_Parameter_Association (Loc,
2761 Explicit_Actual_Parameter => Actval,
2762 Selector_Name => Make_Identifier (Loc, Chars (F)));
2763
2764 -- Case of insertion is first named actual
2765
2766 if No (Prev) or else
2767 Nkind (Parent (Prev)) /= N_Parameter_Association
2768 then
2769 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
2770 Set_First_Named_Actual (N, Actval);
2771
2772 if No (Prev) then
c8ef728f 2773 if No (Parameter_Associations (N)) then
996ae0b0
RK
2774 Set_Parameter_Associations (N, New_List (Assoc));
2775 else
2776 Append (Assoc, Parameter_Associations (N));
2777 end if;
2778
2779 else
2780 Insert_After (Prev, Assoc);
2781 end if;
2782
2783 -- Case of insertion is not first named actual
2784
2785 else
2786 Set_Next_Named_Actual
2787 (Assoc, Next_Named_Actual (Parent (Prev)));
2788 Set_Next_Named_Actual (Parent (Prev), Actval);
2789 Append (Assoc, Parameter_Associations (N));
2790 end if;
2791
2792 Mark_Rewrite_Insertion (Assoc);
2793 Mark_Rewrite_Insertion (Actval);
2794
2795 Prev := Actval;
2796 end Insert_Default;
2797
fbf5a39b
AC
2798 -------------------
2799 -- Same_Ancestor --
2800 -------------------
2801
2802 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
2803 FT1 : Entity_Id := T1;
2804 FT2 : Entity_Id := T2;
2805
2806 begin
2807 if Is_Private_Type (T1)
2808 and then Present (Full_View (T1))
2809 then
2810 FT1 := Full_View (T1);
2811 end if;
2812
2813 if Is_Private_Type (T2)
2814 and then Present (Full_View (T2))
2815 then
2816 FT2 := Full_View (T2);
2817 end if;
2818
2819 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
2820 end Same_Ancestor;
2821
996ae0b0
RK
2822 -- Start of processing for Resolve_Actuals
2823
2824 begin
b7d1f17f
HK
2825 if Present (First_Actual (N)) then
2826 Check_Prefixed_Call;
2827 end if;
2828
996ae0b0
RK
2829 A := First_Actual (N);
2830 F := First_Formal (Nam);
996ae0b0 2831 while Present (F) loop
fbf5a39b
AC
2832 if No (A) and then Needs_No_Actuals (Nam) then
2833 null;
996ae0b0 2834
07fc65c4
GB
2835 -- If we have an error in any actual or formal, indicated by
2836 -- a type of Any_Type, then abandon resolution attempt, and
2837 -- set result type to Any_Type.
2838
fbf5a39b
AC
2839 elsif (Present (A) and then Etype (A) = Any_Type)
2840 or else Etype (F) = Any_Type
07fc65c4
GB
2841 then
2842 Set_Etype (N, Any_Type);
2843 return;
2844 end if;
2845
996ae0b0
RK
2846 if Present (A)
2847 and then (Nkind (Parent (A)) /= N_Parameter_Association
2848 or else
2849 Chars (Selector_Name (Parent (A))) = Chars (F))
2850 then
2851 -- If the formal is Out or In_Out, do not resolve and expand the
2852 -- conversion, because it is subsequently expanded into explicit
2853 -- temporaries and assignments. However, the object of the
ea985d95
RD
2854 -- conversion can be resolved. An exception is the case of tagged
2855 -- type conversion with a class-wide actual. In that case we want
2856 -- the tag check to occur and no temporary will be needed (no
2857 -- representation change can occur) and the parameter is passed by
2858 -- reference, so we go ahead and resolve the type conversion.
c8ef728f 2859 -- Another exception is the case of reference to component or
ea985d95
RD
2860 -- subcomponent of a bit-packed array, in which case we want to
2861 -- defer expansion to the point the in and out assignments are
2862 -- performed.
996ae0b0
RK
2863
2864 if Ekind (F) /= E_In_Parameter
2865 and then Nkind (A) = N_Type_Conversion
2866 and then not Is_Class_Wide_Type (Etype (Expression (A)))
2867 then
07fc65c4
GB
2868 if Ekind (F) = E_In_Out_Parameter
2869 and then Is_Array_Type (Etype (F))
07fc65c4 2870 then
fbf5a39b
AC
2871 if Has_Aliased_Components (Etype (Expression (A)))
2872 /= Has_Aliased_Components (Etype (F))
2873 then
758c442c
GD
2874 if Ada_Version < Ada_05 then
2875 Error_Msg_N
2876 ("both component types in a view conversion must be"
2877 & " aliased, or neither", A);
2878
2879 -- Ada 2005: rule is relaxed (see AI-363)
2880
2881 elsif Has_Aliased_Components (Etype (F))
2882 and then
2883 not Has_Aliased_Components (Etype (Expression (A)))
2884 then
2885 Error_Msg_N
2886 ("view conversion operand must have aliased " &
2887 "components", N);
2888 Error_Msg_N
2889 ("\since target type has aliased components", N);
2890 end if;
fbf5a39b
AC
2891
2892 elsif not Same_Ancestor (Etype (F), Etype (Expression (A)))
2893 and then
2894 (Is_By_Reference_Type (Etype (F))
2895 or else Is_By_Reference_Type (Etype (Expression (A))))
2896 then
2897 Error_Msg_N
758c442c
GD
2898 ("view conversion between unrelated by reference " &
2899 "array types not allowed (\'A'I-00246)", A);
fbf5a39b 2900 end if;
07fc65c4
GB
2901 end if;
2902
16397eff
TQ
2903 if (Conversion_OK (A)
2904 or else Valid_Conversion (A, Etype (A), Expression (A)))
2905 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
996ae0b0 2906 then
fbf5a39b 2907 Resolve (Expression (A));
996ae0b0
RK
2908 end if;
2909
b7d1f17f
HK
2910 -- If the actual is a function call that returns a limited
2911 -- unconstrained object that needs finalization, create a
2912 -- transient scope for it, so that it can receive the proper
2913 -- finalization list.
2914
2915 elsif Nkind (A) = N_Function_Call
2916 and then Is_Limited_Record (Etype (F))
2917 and then not Is_Constrained (Etype (F))
2918 and then Expander_Active
2919 and then
2920 (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
2921 then
2922 Establish_Transient_Scope (A, False);
2923
996ae0b0 2924 else
fbf5a39b
AC
2925 if Nkind (A) = N_Type_Conversion
2926 and then Is_Array_Type (Etype (F))
2927 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
2928 and then
2929 (Is_Limited_Type (Etype (F))
2930 or else Is_Limited_Type (Etype (Expression (A))))
2931 then
2932 Error_Msg_N
758c442c
GD
2933 ("conversion between unrelated limited array types " &
2934 "not allowed (\A\I-00246)", A);
fbf5a39b 2935
758c442c
GD
2936 if Is_Limited_Type (Etype (F)) then
2937 Explain_Limited_Type (Etype (F), A);
2938 end if;
fbf5a39b 2939
758c442c
GD
2940 if Is_Limited_Type (Etype (Expression (A))) then
2941 Explain_Limited_Type (Etype (Expression (A)), A);
2942 end if;
fbf5a39b
AC
2943 end if;
2944
c8ef728f
ES
2945 -- (Ada 2005: AI-251): If the actual is an allocator whose
2946 -- directly designated type is a class-wide interface, we build
2947 -- an anonymous access type to use it as the type of the
2948 -- allocator. Later, when the subprogram call is expanded, if
2949 -- the interface has a secondary dispatch table the expander
2950 -- will add a type conversion to force the correct displacement
2951 -- of the pointer.
2952
2953 if Nkind (A) = N_Allocator then
2954 declare
2955 DDT : constant Entity_Id :=
2956 Directly_Designated_Type (Base_Type (Etype (F)));
2957 New_Itype : Entity_Id;
2958 begin
2959 if Is_Class_Wide_Type (DDT)
2960 and then Is_Interface (DDT)
2961 then
2962 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
2963 Set_Etype (New_Itype, Etype (A));
2964 Init_Size_Align (New_Itype);
2965 Set_Directly_Designated_Type (New_Itype,
2966 Directly_Designated_Type (Etype (A)));
2967 Set_Etype (A, New_Itype);
2968 end if;
0669bebe
GB
2969
2970 -- Ada 2005, AI-162:If the actual is an allocator, the
2971 -- innermost enclosing statement is the master of the
b7d1f17f
HK
2972 -- created object. This needs to be done with expansion
2973 -- enabled only, otherwise the transient scope will not
2974 -- be removed in the expansion of the wrapped construct.
0669bebe 2975
b7d1f17f
HK
2976 if (Is_Controlled (DDT)
2977 or else Has_Task (DDT))
2978 and then Expander_Active
0669bebe
GB
2979 then
2980 Establish_Transient_Scope (A, False);
2981 end if;
c8ef728f
ES
2982 end;
2983 end if;
2984
b7d1f17f
HK
2985 -- (Ada 2005): The call may be to a primitive operation of
2986 -- a tagged synchronized type, declared outside of the type.
2987 -- In this case the controlling actual must be converted to
2988 -- its corresponding record type, which is the formal type.
2989
2990 if Is_Concurrent_Type (Etype (A))
2991 and then Etype (F) = Corresponding_Record_Type (Etype (A))
2992 then
2993 Rewrite (A,
2994 Unchecked_Convert_To
2995 (Corresponding_Record_Type (Etype (A)), A));
2996 end if;
2997
996ae0b0
RK
2998 Resolve (A, Etype (F));
2999 end if;
3000
3001 A_Typ := Etype (A);
3002 F_Typ := Etype (F);
3003
fbf5a39b
AC
3004 -- Perform error checks for IN and IN OUT parameters
3005
3006 if Ekind (F) /= E_Out_Parameter then
3007
3008 -- Check unset reference. For scalar parameters, it is clearly
3009 -- wrong to pass an uninitialized value as either an IN or
3010 -- IN-OUT parameter. For composites, it is also clearly an
3011 -- error to pass a completely uninitialized value as an IN
3012 -- parameter, but the case of IN OUT is trickier. We prefer
3013 -- not to give a warning here. For example, suppose there is
3014 -- a routine that sets some component of a record to False.
3015 -- It is perfectly reasonable to make this IN-OUT and allow
3016 -- either initialized or uninitialized records to be passed
3017 -- in this case.
3018
3019 -- For partially initialized composite values, we also avoid
3020 -- warnings, since it is quite likely that we are passing a
3021 -- partially initialized value and only the initialized fields
3022 -- will in fact be read in the subprogram.
3023
3024 if Is_Scalar_Type (A_Typ)
3025 or else (Ekind (F) = E_In_Parameter
3026 and then not Is_Partially_Initialized_Type (A_Typ))
996ae0b0 3027 then
fbf5a39b 3028 Check_Unset_Reference (A);
996ae0b0 3029 end if;
996ae0b0 3030
758c442c
GD
3031 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3032 -- actual to a nested call, since this is case of reading an
3033 -- out parameter, which is not allowed.
996ae0b0 3034
0ab80019 3035 if Ada_Version = Ada_83
996ae0b0
RK
3036 and then Is_Entity_Name (A)
3037 and then Ekind (Entity (A)) = E_Out_Parameter
3038 then
3039 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3040 end if;
3041 end if;
3042
fbf5a39b
AC
3043 if Ekind (F) /= E_In_Parameter
3044 and then not Is_OK_Variable_For_Out_Formal (A)
3045 then
3046 Error_Msg_NE ("actual for& must be a variable", A, F);
3047
3048 if Is_Entity_Name (A) then
3049 Kill_Checks (Entity (A));
3050 else
3051 Kill_All_Checks;
3052 end if;
3053 end if;
3054
3055 if Etype (A) = Any_Type then
3056 Set_Etype (N, Any_Type);
3057 return;
3058 end if;
3059
996ae0b0
RK
3060 -- Apply appropriate range checks for in, out, and in-out
3061 -- parameters. Out and in-out parameters also need a separate
3062 -- check, if there is a type conversion, to make sure the return
3063 -- value meets the constraints of the variable before the
3064 -- conversion.
3065
3066 -- Gigi looks at the check flag and uses the appropriate types.
3067 -- For now since one flag is used there is an optimization which
3068 -- might not be done in the In Out case since Gigi does not do
3069 -- any analysis. More thought required about this ???
3070
3071 if Ekind (F) = E_In_Parameter
3072 or else Ekind (F) = E_In_Out_Parameter
3073 then
3074 if Is_Scalar_Type (Etype (A)) then
3075 Apply_Scalar_Range_Check (A, F_Typ);
3076
3077 elsif Is_Array_Type (Etype (A)) then
3078 Apply_Length_Check (A, F_Typ);
3079
3080 elsif Is_Record_Type (F_Typ)
3081 and then Has_Discriminants (F_Typ)
3082 and then Is_Constrained (F_Typ)
3083 and then (not Is_Derived_Type (F_Typ)
3084 or else Comes_From_Source (Nam))
3085 then
3086 Apply_Discriminant_Check (A, F_Typ);
3087
3088 elsif Is_Access_Type (F_Typ)
3089 and then Is_Array_Type (Designated_Type (F_Typ))
3090 and then Is_Constrained (Designated_Type (F_Typ))
3091 then
3092 Apply_Length_Check (A, F_Typ);
3093
3094 elsif Is_Access_Type (F_Typ)
3095 and then Has_Discriminants (Designated_Type (F_Typ))
3096 and then Is_Constrained (Designated_Type (F_Typ))
3097 then
3098 Apply_Discriminant_Check (A, F_Typ);
3099
3100 else
3101 Apply_Range_Check (A, F_Typ);
3102 end if;
2820d220 3103
0ab80019 3104 -- Ada 2005 (AI-231)
2820d220 3105
0ab80019 3106 if Ada_Version >= Ada_05
2820d220 3107 and then Is_Access_Type (F_Typ)
1420b484 3108 and then Can_Never_Be_Null (F_Typ)
aa5147f0 3109 and then Known_Null (A)
2820d220 3110 then
1420b484
JM
3111 Apply_Compile_Time_Constraint_Error
3112 (N => A,
aa5147f0 3113 Msg => "(Ada 2005) null not allowed in "
1420b484
JM
3114 & "null-excluding formal?",
3115 Reason => CE_Null_Not_Allowed);
2820d220 3116 end if;
996ae0b0
RK
3117 end if;
3118
3119 if Ekind (F) = E_Out_Parameter
3120 or else Ekind (F) = E_In_Out_Parameter
3121 then
996ae0b0
RK
3122 if Nkind (A) = N_Type_Conversion then
3123 if Is_Scalar_Type (A_Typ) then
3124 Apply_Scalar_Range_Check
3125 (Expression (A), Etype (Expression (A)), A_Typ);
3126 else
3127 Apply_Range_Check
3128 (Expression (A), Etype (Expression (A)), A_Typ);
3129 end if;
3130
3131 else
3132 if Is_Scalar_Type (F_Typ) then
3133 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3134
3135 elsif Is_Array_Type (F_Typ)
3136 and then Ekind (F) = E_Out_Parameter
3137 then
3138 Apply_Length_Check (A, F_Typ);
3139
3140 else
3141 Apply_Range_Check (A, A_Typ, F_Typ);
3142 end if;
3143 end if;
3144 end if;
3145
3146 -- An actual associated with an access parameter is implicitly
3147 -- converted to the anonymous access type of the formal and
3148 -- must satisfy the legality checks for access conversions.
3149
3150 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3151 if not Valid_Conversion (A, F_Typ, A) then
3152 Error_Msg_N
3153 ("invalid implicit conversion for access parameter", A);
3154 end if;
3155 end if;
3156
3157 -- Check bad case of atomic/volatile argument (RM C.6(12))
3158
3159 if Is_By_Reference_Type (Etype (F))
3160 and then Comes_From_Source (N)
3161 then
3162 if Is_Atomic_Object (A)
3163 and then not Is_Atomic (Etype (F))
3164 then
3165 Error_Msg_N
3166 ("cannot pass atomic argument to non-atomic formal",
3167 N);
3168
3169 elsif Is_Volatile_Object (A)
3170 and then not Is_Volatile (Etype (F))
3171 then
3172 Error_Msg_N
3173 ("cannot pass volatile argument to non-volatile formal",
3174 N);
3175 end if;
3176 end if;
3177
3178 -- Check that subprograms don't have improper controlling
3179 -- arguments (RM 3.9.2 (9))
3180
0669bebe
GB
3181 -- A primitive operation may have an access parameter of an
3182 -- incomplete tagged type, but a dispatching call is illegal
3183 -- if the type is still incomplete.
3184
996ae0b0
RK
3185 if Is_Controlling_Formal (F) then
3186 Set_Is_Controlling_Actual (A);
0669bebe
GB
3187
3188 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3189 declare
3190 Desig : constant Entity_Id := Designated_Type (Etype (F));
3191 begin
3192 if Ekind (Desig) = E_Incomplete_Type
3193 and then No (Full_View (Desig))
3194 and then No (Non_Limited_View (Desig))
3195 then
3196 Error_Msg_NE
3197 ("premature use of incomplete type& " &
3198 "in dispatching call", A, Desig);
3199 end if;
3200 end;
3201 end if;
3202
996ae0b0
RK
3203 elsif Nkind (A) = N_Explicit_Dereference then
3204 Validate_Remote_Access_To_Class_Wide_Type (A);
3205 end if;
3206
3207 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3208 and then not Is_Class_Wide_Type (F_Typ)
3209 and then not Is_Controlling_Formal (F)
3210 then
3211 Error_Msg_N ("class-wide argument not allowed here!", A);
07fc65c4
GB
3212
3213 if Is_Subprogram (Nam)
3214 and then Comes_From_Source (Nam)
3215 then
996ae0b0
RK
3216 Error_Msg_Node_2 := F_Typ;
3217 Error_Msg_NE
82c80734 3218 ("& is not a dispatching operation of &!", A, Nam);
996ae0b0
RK
3219 end if;
3220
3221 elsif Is_Access_Type (A_Typ)
3222 and then Is_Access_Type (F_Typ)
3223 and then Ekind (F_Typ) /= E_Access_Subprogram_Type
aa5147f0 3224 and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
996ae0b0 3225 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
07fc65c4
GB
3226 or else (Nkind (A) = N_Attribute_Reference
3227 and then
3228 Is_Class_Wide_Type (Etype (Prefix (A)))))
996ae0b0
RK
3229 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3230 and then not Is_Controlling_Formal (F)
3231 then
3232 Error_Msg_N
3233 ("access to class-wide argument not allowed here!", A);
07fc65c4
GB
3234
3235 if Is_Subprogram (Nam)
3236 and then Comes_From_Source (Nam)
3237 then
996ae0b0
RK
3238 Error_Msg_Node_2 := Designated_Type (F_Typ);
3239 Error_Msg_NE
82c80734 3240 ("& is not a dispatching operation of &!", A, Nam);
996ae0b0
RK
3241 end if;
3242 end if;
3243
3244 Eval_Actual (A);
3245
3246 -- If it is a named association, treat the selector_name as
3247 -- a proper identifier, and mark the corresponding entity.
3248
3249 if Nkind (Parent (A)) = N_Parameter_Association then
3250 Set_Entity (Selector_Name (Parent (A)), F);
3251 Generate_Reference (F, Selector_Name (Parent (A)));
3252 Set_Etype (Selector_Name (Parent (A)), F_Typ);
3253 Generate_Reference (F_Typ, N, ' ');
3254 end if;
3255
3256 Prev := A;
fbf5a39b
AC
3257
3258 if Ekind (F) /= E_Out_Parameter then
3259 Check_Unset_Reference (A);
3260 end if;
3261
996ae0b0
RK
3262 Next_Actual (A);
3263
fbf5a39b
AC
3264 -- Case where actual is not present
3265
996ae0b0
RK
3266 else
3267 Insert_Default;
3268 end if;
3269
3270 Next_Formal (F);
3271 end loop;
996ae0b0
RK
3272 end Resolve_Actuals;
3273
3274 -----------------------
3275 -- Resolve_Allocator --
3276 -----------------------
3277
3278 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
3279 E : constant Node_Id := Expression (N);
3280 Subtyp : Entity_Id;
3281 Discrim : Entity_Id;
3282 Constr : Node_Id;
b7d1f17f
HK
3283 Aggr : Node_Id;
3284 Assoc : Node_Id := Empty;
996ae0b0
RK
3285 Disc_Exp : Node_Id;
3286
b7d1f17f
HK
3287 procedure Check_Allocator_Discrim_Accessibility
3288 (Disc_Exp : Node_Id;
3289 Alloc_Typ : Entity_Id);
3290 -- Check that accessibility level associated with an access discriminant
3291 -- initialized in an allocator by the expression Disc_Exp is not deeper
3292 -- than the level of the allocator type Alloc_Typ. An error message is
3293 -- issued if this condition is violated. Specialized checks are done for
3294 -- the cases of a constraint expression which is an access attribute or
3295 -- an access discriminant.
3296
07fc65c4 3297 function In_Dispatching_Context return Boolean;
b7d1f17f
HK
3298 -- If the allocator is an actual in a call, it is allowed to be class-
3299 -- wide when the context is not because it is a controlling actual.
3300
3301 procedure Propagate_Coextensions (Root : Node_Id);
3302 -- Propagate all nested coextensions which are located one nesting
3303 -- level down the tree to the node Root. Example:
3304 --
3305 -- Top_Record
3306 -- Level_1_Coextension
3307 -- Level_2_Coextension
3308 --
3309 -- The algorithm is paired with delay actions done by the Expander. In
3310 -- the above example, assume all coextensions are controlled types.
3311 -- The cycle of analysis, resolution and expansion will yield:
3312 --
3313 -- 1) Analyze Top_Record
3314 -- 2) Analyze Level_1_Coextension
3315 -- 3) Analyze Level_2_Coextension
3316 -- 4) Resolve Level_2_Coextnesion. The allocator is marked as a
3317 -- coextension.
3318 -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
3319 -- generated to capture the allocated object. Temp_1 is attached
3320 -- to the coextension chain of Level_2_Coextension.
3321 -- 6) Resolve Level_1_Coextension. The allocator is marked as a
3322 -- coextension. A forward tree traversal is performed which finds
3323 -- Level_2_Coextension's list and copies its contents into its
3324 -- own list.
3325 -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
3326 -- generated to capture the allocated object. Temp_2 is attached
3327 -- to the coextension chain of Level_1_Coextension. Currently, the
3328 -- contents of the list are [Temp_2, Temp_1].
3329 -- 8) Resolve Top_Record. A forward tree traversal is performed which
3330 -- finds Level_1_Coextension's list and copies its contents into
3331 -- its own list.
3332 -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
3333 -- Temp_2 and attach them to Top_Record's finalization list.
3334
3335 -------------------------------------------
3336 -- Check_Allocator_Discrim_Accessibility --
3337 -------------------------------------------
3338
3339 procedure Check_Allocator_Discrim_Accessibility
3340 (Disc_Exp : Node_Id;
3341 Alloc_Typ : Entity_Id)
3342 is
3343 begin
3344 if Type_Access_Level (Etype (Disc_Exp)) >
3345 Type_Access_Level (Alloc_Typ)
3346 then
3347 Error_Msg_N
3348 ("operand type has deeper level than allocator type", Disc_Exp);
3349
3350 -- When the expression is an Access attribute the level of the prefix
3351 -- object must not be deeper than that of the allocator's type.
3352
3353 elsif Nkind (Disc_Exp) = N_Attribute_Reference
3354 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
3355 = Attribute_Access
3356 and then Object_Access_Level (Prefix (Disc_Exp))
3357 > Type_Access_Level (Alloc_Typ)
3358 then
3359 Error_Msg_N
3360 ("prefix of attribute has deeper level than allocator type",
3361 Disc_Exp);
3362
3363 -- When the expression is an access discriminant the check is against
3364 -- the level of the prefix object.
3365
3366 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
3367 and then Nkind (Disc_Exp) = N_Selected_Component
3368 and then Object_Access_Level (Prefix (Disc_Exp))
3369 > Type_Access_Level (Alloc_Typ)
3370 then
3371 Error_Msg_N
3372 ("access discriminant has deeper level than allocator type",
3373 Disc_Exp);
3374
3375 -- All other cases are legal
3376
3377 else
3378 null;
3379 end if;
3380 end Check_Allocator_Discrim_Accessibility;
07fc65c4
GB
3381
3382 ----------------------------
3383 -- In_Dispatching_Context --
3384 ----------------------------
3385
3386 function In_Dispatching_Context return Boolean is
3387 Par : constant Node_Id := Parent (N);
07fc65c4
GB
3388 begin
3389 return (Nkind (Par) = N_Function_Call
3390 or else Nkind (Par) = N_Procedure_Call_Statement)
3391 and then Is_Entity_Name (Name (Par))
3392 and then Is_Dispatching_Operation (Entity (Name (Par)));
3393 end In_Dispatching_Context;
3394
b7d1f17f
HK
3395 ----------------------------
3396 -- Propagate_Coextensions --
3397 ----------------------------
3398
3399 procedure Propagate_Coextensions (Root : Node_Id) is
3400
3401 procedure Copy_List (From : Elist_Id; To : Elist_Id);
3402 -- Copy the contents of list From into list To, preserving the
3403 -- order of elements.
3404
3405 function Process_Allocator (Nod : Node_Id) return Traverse_Result;
3406 -- Recognize an allocator or a rewritten allocator node and add it
3407 -- allong with its nested coextensions to the list of Root.
3408
3409 ---------------
3410 -- Copy_List --
3411 ---------------
3412
3413 procedure Copy_List (From : Elist_Id; To : Elist_Id) is
3414 From_Elmt : Elmt_Id;
3415 begin
3416 From_Elmt := First_Elmt (From);
3417 while Present (From_Elmt) loop
3418 Append_Elmt (Node (From_Elmt), To);
3419 Next_Elmt (From_Elmt);
3420 end loop;
3421 end Copy_List;
3422
3423 -----------------------
3424 -- Process_Allocator --
3425 -----------------------
3426
3427 function Process_Allocator (Nod : Node_Id) return Traverse_Result is
3428 Orig_Nod : Node_Id := Nod;
3429
3430 begin
3431 -- This is a possible rewritten subtype indication allocator. Any
3432 -- nested coextensions will appear as discriminant constraints.
3433
3434 if Nkind (Nod) = N_Identifier
3435 and then Present (Original_Node (Nod))
3436 and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
3437 then
3438 declare
3439 Discr : Node_Id;
3440 Discr_Elmt : Elmt_Id;
3441
3442 begin
3443 if Is_Record_Type (Entity (Nod)) then
3444 Discr_Elmt :=
3445 First_Elmt (Discriminant_Constraint (Entity (Nod)));
3446 while Present (Discr_Elmt) loop
3447 Discr := Node (Discr_Elmt);
3448
3449 if Nkind (Discr) = N_Identifier
3450 and then Present (Original_Node (Discr))
3451 and then Nkind (Original_Node (Discr)) = N_Allocator
3452 and then Present (Coextensions (
3453 Original_Node (Discr)))
3454 then
3455 if No (Coextensions (Root)) then
3456 Set_Coextensions (Root, New_Elmt_List);
3457 end if;
3458
3459 Copy_List
3460 (From => Coextensions (Original_Node (Discr)),
3461 To => Coextensions (Root));
3462 end if;
3463
3464 Next_Elmt (Discr_Elmt);
3465 end loop;
3466
3467 -- There is no need to continue the traversal of this
3468 -- subtree since all the information has already been
3469 -- propagated.
3470
3471 return Skip;
3472 end if;
3473 end;
3474
3475 -- Case of either a stand alone allocator or a rewritten allocator
3476 -- with an aggregate.
3477
3478 else
3479 if Present (Original_Node (Nod)) then
3480 Orig_Nod := Original_Node (Nod);
3481 end if;
3482
3483 if Nkind (Orig_Nod) = N_Allocator then
3484
3485 -- Propagate the list of nested coextensions to the Root
3486 -- allocator. This is done through list copy since a single
3487 -- allocator may have multiple coextensions. Do not touch
3488 -- coextensions roots.
3489
3490 if not Is_Coextension_Root (Orig_Nod)
3491 and then Present (Coextensions (Orig_Nod))
3492 then
3493 if No (Coextensions (Root)) then
3494 Set_Coextensions (Root, New_Elmt_List);
3495 end if;
3496
3497 Copy_List
3498 (From => Coextensions (Orig_Nod),
3499 To => Coextensions (Root));
3500 end if;
3501
3502 -- There is no need to continue the traversal of this
3503 -- subtree since all the information has already been
3504 -- propagated.
3505
3506 return Skip;
3507 end if;
3508 end if;
3509
3510 -- Keep on traversing, looking for the next allocator
3511
3512 return OK;
3513 end Process_Allocator;
3514
3515 procedure Process_Allocators is
3516 new Traverse_Proc (Process_Allocator);
3517
3518 -- Start of processing for Propagate_Coextensions
3519
3520 begin
3521 Process_Allocators (Expression (Root));
3522 end Propagate_Coextensions;
3523
07fc65c4
GB
3524 -- Start of processing for Resolve_Allocator
3525
996ae0b0
RK
3526 begin
3527 -- Replace general access with specific type
3528
3529 if Ekind (Etype (N)) = E_Allocator_Type then
3530 Set_Etype (N, Base_Type (Typ));
3531 end if;
3532
0669bebe 3533 if Is_Abstract_Type (Typ) then
996ae0b0
RK
3534 Error_Msg_N ("type of allocator cannot be abstract", N);
3535 end if;
3536
3537 -- For qualified expression, resolve the expression using the
3538 -- given subtype (nothing to do for type mark, subtype indication)
3539
3540 if Nkind (E) = N_Qualified_Expression then
3541 if Is_Class_Wide_Type (Etype (E))
3542 and then not Is_Class_Wide_Type (Designated_Type (Typ))
07fc65c4 3543 and then not In_Dispatching_Context
996ae0b0
RK
3544 then
3545 Error_Msg_N
3546 ("class-wide allocator not allowed for this access type", N);
3547 end if;
3548
3549 Resolve (Expression (E), Etype (E));
3550 Check_Unset_Reference (Expression (E));
3551
fbf5a39b
AC
3552 -- A qualified expression requires an exact match of the type,
3553 -- class-wide matching is not allowed.
3554
3555 if (Is_Class_Wide_Type (Etype (Expression (E)))
3556 or else Is_Class_Wide_Type (Etype (E)))
3557 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
3558 then
3559 Wrong_Type (Expression (E), Etype (E));
3560 end if;
3561
b7d1f17f
HK
3562 -- A special accessibility check is needed for allocators that
3563 -- constrain access discriminants. The level of the type of the
3564 -- expression used to constrain an access discriminant cannot be
3565 -- deeper than the type of the allocator (in constrast to access
3566 -- parameters, where the level of the actual can be arbitrary).
3567
3568 -- We can't use Valid_Conversion to perform this check because
3569 -- in general the type of the allocator is unrelated to the type
3570 -- of the access discriminant.
3571
3572 if Ekind (Typ) /= E_Anonymous_Access_Type
3573 or else Is_Local_Anonymous_Access (Typ)
3574 then
3575 Subtyp := Entity (Subtype_Mark (E));
3576
3577 Aggr := Original_Node (Expression (E));
3578
3579 if Has_Discriminants (Subtyp)
3580 and then
3581 (Nkind (Aggr) = N_Aggregate
3582 or else
3583 Nkind (Aggr) = N_Extension_Aggregate)
3584 then
3585 Discrim := First_Discriminant (Base_Type (Subtyp));
3586
3587 -- Get the first component expression of the aggregate
3588
3589 if Present (Expressions (Aggr)) then
3590 Disc_Exp := First (Expressions (Aggr));
3591
3592 elsif Present (Component_Associations (Aggr)) then
3593 Assoc := First (Component_Associations (Aggr));
3594
3595 if Present (Assoc) then
3596 Disc_Exp := Expression (Assoc);
3597 else
3598 Disc_Exp := Empty;
3599 end if;
3600
3601 else
3602 Disc_Exp := Empty;
3603 end if;
3604
3605 while Present (Discrim) and then Present (Disc_Exp) loop
3606 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
3607 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
3608 end if;
3609
3610 Next_Discriminant (Discrim);
3611
3612 if Present (Discrim) then
3613 if Present (Assoc) then
3614 Next (Assoc);
3615 Disc_Exp := Expression (Assoc);
3616
3617 elsif Present (Next (Disc_Exp)) then
3618 Next (Disc_Exp);
3619
3620 else
3621 Assoc := First (Component_Associations (Aggr));
3622
3623 if Present (Assoc) then
3624 Disc_Exp := Expression (Assoc);
3625 else
3626 Disc_Exp := Empty;
3627 end if;
3628 end if;
3629 end if;
3630 end loop;
3631 end if;
3632 end if;
3633
996ae0b0
RK
3634 -- For a subtype mark or subtype indication, freeze the subtype
3635
3636 else
3637 Freeze_Expression (E);
3638
3639 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
3640 Error_Msg_N
3641 ("initialization required for access-to-constant allocator", N);
3642 end if;
3643
3644 -- A special accessibility check is needed for allocators that
3645 -- constrain access discriminants. The level of the type of the
b7d1f17f 3646 -- expression used to constrain an access discriminant cannot be
996ae0b0
RK
3647 -- deeper than the type of the allocator (in constrast to access
3648 -- parameters, where the level of the actual can be arbitrary).
3649 -- We can't use Valid_Conversion to perform this check because
3650 -- in general the type of the allocator is unrelated to the type
b7d1f17f 3651 -- of the access discriminant.
996ae0b0
RK
3652
3653 if Nkind (Original_Node (E)) = N_Subtype_Indication
b7d1f17f
HK
3654 and then (Ekind (Typ) /= E_Anonymous_Access_Type
3655 or else Is_Local_Anonymous_Access (Typ))
996ae0b0
RK
3656 then
3657 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
3658
3659 if Has_Discriminants (Subtyp) then
3660 Discrim := First_Discriminant (Base_Type (Subtyp));
3661 Constr := First (Constraints (Constraint (Original_Node (E))));
996ae0b0
RK
3662 while Present (Discrim) and then Present (Constr) loop
3663 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
3664 if Nkind (Constr) = N_Discriminant_Association then
3665 Disc_Exp := Original_Node (Expression (Constr));
3666 else
3667 Disc_Exp := Original_Node (Constr);
3668 end if;
3669
b7d1f17f 3670 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
996ae0b0 3671 end if;
b7d1f17f 3672
996ae0b0
RK
3673 Next_Discriminant (Discrim);
3674 Next (Constr);
3675 end loop;
3676 end if;
3677 end if;
3678 end if;
3679
758c442c
GD
3680 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
3681 -- check that the level of the type of the created object is not deeper
3682 -- than the level of the allocator's access type, since extensions can
3683 -- now occur at deeper levels than their ancestor types. This is a
3684 -- static accessibility level check; a run-time check is also needed in
3685 -- the case of an initialized allocator with a class-wide argument (see
3686 -- Expand_Allocator_Expression).
3687
3688 if Ada_Version >= Ada_05
3689 and then Is_Class_Wide_Type (Designated_Type (Typ))
3690 then
3691 declare
b7d1f17f 3692 Exp_Typ : Entity_Id;
758c442c
GD
3693
3694 begin
3695 if Nkind (E) = N_Qualified_Expression then
3696 Exp_Typ := Etype (E);
3697 elsif Nkind (E) = N_Subtype_Indication then
3698 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
3699 else
3700 Exp_Typ := Entity (E);
3701 end if;
3702
3703 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
3704 if In_Instance_Body then
3705 Error_Msg_N ("?type in allocator has deeper level than" &
3706 " designated class-wide type", E);
c8ef728f
ES
3707 Error_Msg_N ("\?Program_Error will be raised at run time",
3708 E);
758c442c
GD
3709 Rewrite (N,
3710 Make_Raise_Program_Error (Sloc (N),
3711 Reason => PE_Accessibility_Check_Failed));
3712 Set_Etype (N, Typ);
aa180613
RD
3713
3714 -- Do not apply Ada 2005 accessibility checks on a class-wide
3715 -- allocator if the type given in the allocator is a formal
3716 -- type. A run-time check will be performed in the instance.
3717
3718 elsif not Is_Generic_Type (Exp_Typ) then
758c442c
GD
3719 Error_Msg_N ("type in allocator has deeper level than" &
3720 " designated class-wide type", E);
3721 end if;
3722 end if;
3723 end;
3724 end if;
3725
996ae0b0
RK
3726 -- Check for allocation from an empty storage pool
3727
3728 if No_Pool_Assigned (Typ) then
3729 declare
3730 Loc : constant Source_Ptr := Sloc (N);
996ae0b0 3731 begin
aa5147f0
ES
3732 Error_Msg_N ("?allocation from empty storage pool!", N);
3733 Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
996ae0b0 3734 Insert_Action (N,
07fc65c4
GB
3735 Make_Raise_Storage_Error (Loc,
3736 Reason => SE_Empty_Storage_Pool));
996ae0b0 3737 end;
1420b484
JM
3738
3739 -- If the context is an unchecked conversion, as may happen within
3740 -- an inlined subprogram, the allocator is being resolved with its
3741 -- own anonymous type. In that case, if the target type has a specific
3742 -- storage pool, it must be inherited explicitly by the allocator type.
3743
3744 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
3745 and then No (Associated_Storage_Pool (Typ))
3746 then
3747 Set_Associated_Storage_Pool
3748 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
996ae0b0 3749 end if;
b7d1f17f
HK
3750
3751 -- An erroneous allocator may be rewritten as a raise Program_Error
3752 -- statement.
3753
3754 if Nkind (N) = N_Allocator then
3755
3756 -- An anonymous access discriminant is the definition of a
aa5147f0 3757 -- coextension.
b7d1f17f
HK
3758
3759 if Ekind (Typ) = E_Anonymous_Access_Type
3760 and then Nkind (Associated_Node_For_Itype (Typ)) =
3761 N_Discriminant_Specification
3762 then
3763 -- Avoid marking an allocator as a dynamic coextension if it is
aa5147f0 3764 -- within a static construct.
b7d1f17f
HK
3765
3766 if not Is_Static_Coextension (N) then
aa5147f0 3767 Set_Is_Dynamic_Coextension (N);
b7d1f17f
HK
3768 end if;
3769
3770 -- Cleanup for potential static coextensions
3771
3772 else
aa5147f0
ES
3773 Set_Is_Dynamic_Coextension (N, False);
3774 Set_Is_Static_Coextension (N, False);
b7d1f17f
HK
3775 end if;
3776
aa5147f0
ES
3777 -- There is no need to propagate any nested coextensions if they
3778 -- are marked as static since they will be rewritten on the spot.
3779
3780 if not Is_Static_Coextension (N) then
3781 Propagate_Coextensions (N);
3782 end if;
b7d1f17f 3783 end if;
996ae0b0
RK
3784 end Resolve_Allocator;
3785
3786 ---------------------------
3787 -- Resolve_Arithmetic_Op --
3788 ---------------------------
3789
3790 -- Used for resolving all arithmetic operators except exponentiation
3791
3792 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
3793 L : constant Node_Id := Left_Opnd (N);
3794 R : constant Node_Id := Right_Opnd (N);
3795 TL : constant Entity_Id := Base_Type (Etype (L));
3796 TR : constant Entity_Id := Base_Type (Etype (R));
3797 T : Entity_Id;
3798 Rop : Node_Id;
996ae0b0
RK
3799
3800 B_Typ : constant Entity_Id := Base_Type (Typ);
3801 -- We do the resolution using the base type, because intermediate values
3802 -- in expressions always are of the base type, not a subtype of it.
3803
aa180613
RD
3804 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
3805 -- Returns True if N is in a context that expects "any real type"
3806
996ae0b0
RK
3807 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
3808 -- Return True iff given type is Integer or universal real/integer
3809
3810 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
3811 -- Choose type of integer literal in fixed-point operation to conform
3812 -- to available fixed-point type. T is the type of the other operand,
3813 -- which is needed to determine the expected type of N.
3814
3815 procedure Set_Operand_Type (N : Node_Id);
3816 -- Set operand type to T if universal
3817
aa180613
RD
3818 -------------------------------
3819 -- Expected_Type_Is_Any_Real --
3820 -------------------------------
3821
3822 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
3823 begin
3824 -- N is the expression after "delta" in a fixed_point_definition;
3825 -- see RM-3.5.9(6):
3826
3827 return Nkind (Parent (N)) = N_Ordinary_Fixed_Point_Definition
3828 or else Nkind (Parent (N)) = N_Decimal_Fixed_Point_Definition
3829
3830 -- N is one of the bounds in a real_range_specification;
3831 -- see RM-3.5.7(5):
3832
3833 or else Nkind (Parent (N)) = N_Real_Range_Specification
3834
3835 -- N is the expression of a delta_constraint;
3836 -- see RM-J.3(3):
3837
3838 or else Nkind (Parent (N)) = N_Delta_Constraint;
3839 end Expected_Type_Is_Any_Real;
3840
996ae0b0
RK
3841 -----------------------------
3842 -- Is_Integer_Or_Universal --
3843 -----------------------------
3844
3845 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
3846 T : Entity_Id;
3847 Index : Interp_Index;
3848 It : Interp;
3849
3850 begin
3851 if not Is_Overloaded (N) then
3852 T := Etype (N);
3853 return Base_Type (T) = Base_Type (Standard_Integer)
3854 or else T = Universal_Integer
3855 or else T = Universal_Real;
3856 else
3857 Get_First_Interp (N, Index, It);
996ae0b0 3858 while Present (It.Typ) loop
996ae0b0
RK
3859 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
3860 or else It.Typ = Universal_Integer
3861 or else It.Typ = Universal_Real
3862 then
3863 return True;
3864 end if;
3865
3866 Get_Next_Interp (Index, It);
3867 end loop;
3868 end if;
3869
3870 return False;
3871 end Is_Integer_Or_Universal;
3872
3873 ----------------------------
3874 -- Set_Mixed_Mode_Operand --
3875 ----------------------------
3876
3877 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
3878 Index : Interp_Index;
3879 It : Interp;
3880
3881 begin
3882 if Universal_Interpretation (N) = Universal_Integer then
3883
3884 -- A universal integer literal is resolved as standard integer
758c442c
GD
3885 -- except in the case of a fixed-point result, where we leave it
3886 -- as universal (to be handled by Exp_Fixd later on)
996ae0b0
RK
3887
3888 if Is_Fixed_Point_Type (T) then
3889 Resolve (N, Universal_Integer);
3890 else
3891 Resolve (N, Standard_Integer);
3892 end if;
3893
3894 elsif Universal_Interpretation (N) = Universal_Real
3895 and then (T = Base_Type (Standard_Integer)
3896 or else T = Universal_Integer
3897 or else T = Universal_Real)
3898 then
3899 -- A universal real can appear in a fixed-type context. We resolve
3900 -- the literal with that context, even though this might raise an
3901 -- exception prematurely (the other operand may be zero).
3902
3903 Resolve (N, B_Typ);
3904
3905 elsif Etype (N) = Base_Type (Standard_Integer)
3906 and then T = Universal_Real
3907 and then Is_Overloaded (N)
3908 then
3909 -- Integer arg in mixed-mode operation. Resolve with universal
3910 -- type, in case preference rule must be applied.
3911
3912 Resolve (N, Universal_Integer);
3913
3914 elsif Etype (N) = T
3915 and then B_Typ /= Universal_Fixed
3916 then
a77842bd 3917 -- Not a mixed-mode operation, resolve with context
996ae0b0
RK
3918
3919 Resolve (N, B_Typ);
3920
3921 elsif Etype (N) = Any_Fixed then
3922
a77842bd 3923 -- N may itself be a mixed-mode operation, so use context type
996ae0b0
RK
3924
3925 Resolve (N, B_Typ);
3926
3927 elsif Is_Fixed_Point_Type (T)
3928 and then B_Typ = Universal_Fixed
3929 and then Is_Overloaded (N)
3930 then
3931 -- Must be (fixed * fixed) operation, operand must have one
3932 -- compatible interpretation.
3933
3934 Resolve (N, Any_Fixed);
3935
3936 elsif Is_Fixed_Point_Type (B_Typ)
3937 and then (T = Universal_Real
3938 or else Is_Fixed_Point_Type (T))
3939 and then Is_Overloaded (N)
3940 then
3941 -- C * F(X) in a fixed context, where C is a real literal or a
3942 -- fixed-point expression. F must have either a fixed type
3943 -- interpretation or an integer interpretation, but not both.
3944
3945 Get_First_Interp (N, Index, It);
996ae0b0 3946 while Present (It.Typ) loop
996ae0b0
RK
3947 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
3948
3949 if Analyzed (N) then
3950 Error_Msg_N ("ambiguous operand in fixed operation", N);
3951 else
3952 Resolve (N, Standard_Integer);
3953 end if;
3954
3955 elsif Is_Fixed_Point_Type (It.Typ) then
3956
3957 if Analyzed (N) then
3958 Error_Msg_N ("ambiguous operand in fixed operation", N);
3959 else
3960 Resolve (N, It.Typ);
3961 end if;
3962 end if;
3963
3964 Get_Next_Interp (Index, It);
3965 end loop;
3966
758c442c
GD
3967 -- Reanalyze the literal with the fixed type of the context. If
3968 -- context is Universal_Fixed, we are within a conversion, leave
3969 -- the literal as a universal real because there is no usable
3970 -- fixed type, and the target of the conversion plays no role in
3971 -- the resolution.
996ae0b0 3972
0ab80019
AC
3973 declare
3974 Op2 : Node_Id;
3975 T2 : Entity_Id;
3976
3977 begin
3978 if N = L then
3979 Op2 := R;
3980 else
3981 Op2 := L;
3982 end if;
3983
3984 if B_Typ = Universal_Fixed
3985 and then Nkind (Op2) = N_Real_Literal
3986 then
3987 T2 := Universal_Real;
3988 else
3989 T2 := B_Typ;
3990 end if;
3991
3992 Set_Analyzed (Op2, False);
3993 Resolve (Op2, T2);
3994 end;
996ae0b0
RK
3995
3996 else
fbf5a39b 3997 Resolve (N);
996ae0b0
RK
3998 end if;
3999 end Set_Mixed_Mode_Operand;
4000
4001 ----------------------
4002 -- Set_Operand_Type --
4003 ----------------------
4004
4005 procedure Set_Operand_Type (N : Node_Id) is
4006 begin
4007 if Etype (N) = Universal_Integer
4008 or else Etype (N) = Universal_Real
4009 then
4010 Set_Etype (N, T);
4011 end if;
4012 end Set_Operand_Type;
4013
996ae0b0
RK
4014 -- Start of processing for Resolve_Arithmetic_Op
4015
4016 begin
4017 if Comes_From_Source (N)
4018 and then Ekind (Entity (N)) = E_Function
4019 and then Is_Imported (Entity (N))
fbf5a39b 4020 and then Is_Intrinsic_Subprogram (Entity (N))
996ae0b0
RK
4021 then
4022 Resolve_Intrinsic_Operator (N, Typ);
4023 return;
4024
4025 -- Special-case for mixed-mode universal expressions or fixed point
4026 -- type operation: each argument is resolved separately. The same
4027 -- treatment is required if one of the operands of a fixed point
4028 -- operation is universal real, since in this case we don't do a
4029 -- conversion to a specific fixed-point type (instead the expander
4030 -- takes care of the case).
4031
4032 elsif (B_Typ = Universal_Integer
4033 or else B_Typ = Universal_Real)
4034 and then Present (Universal_Interpretation (L))
4035 and then Present (Universal_Interpretation (R))
4036 then
4037 Resolve (L, Universal_Interpretation (L));
4038 Resolve (R, Universal_Interpretation (R));
4039 Set_Etype (N, B_Typ);
4040
4041 elsif (B_Typ = Universal_Real
4042 or else Etype (N) = Universal_Fixed
4043 or else (Etype (N) = Any_Fixed
4044 and then Is_Fixed_Point_Type (B_Typ))
4045 or else (Is_Fixed_Point_Type (B_Typ)
4046 and then (Is_Integer_Or_Universal (L)
4047 or else
4048 Is_Integer_Or_Universal (R))))
4049 and then (Nkind (N) = N_Op_Multiply or else
4050 Nkind (N) = N_Op_Divide)
4051 then
4052 if TL = Universal_Integer or else TR = Universal_Integer then
4053 Check_For_Visible_Operator (N, B_Typ);
4054 end if;
4055
4056 -- If context is a fixed type and one operand is integer, the
4057 -- other is resolved with the type of the context.
4058
4059 if Is_Fixed_Point_Type (B_Typ)
4060 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4061 or else TL = Universal_Integer)
4062 then
4063 Resolve (R, B_Typ);
4064 Resolve (L, TL);
4065
4066 elsif Is_Fixed_Point_Type (B_Typ)
4067 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4068 or else TR = Universal_Integer)
4069 then
4070 Resolve (L, B_Typ);
4071 Resolve (R, TR);
4072
4073 else
4074 Set_Mixed_Mode_Operand (L, TR);
4075 Set_Mixed_Mode_Operand (R, TL);
4076 end if;
4077
aa180613
RD
4078 -- Check the rule in RM05-4.5.5(19.1/2) disallowing the
4079 -- universal_fixed multiplying operators from being used when the
4080 -- expected type is also universal_fixed. Note that B_Typ will be
4081 -- Universal_Fixed in some cases where the expected type is actually
4082 -- Any_Real; Expected_Type_Is_Any_Real takes care of that case.
4083
996ae0b0
RK
4084 if Etype (N) = Universal_Fixed
4085 or else Etype (N) = Any_Fixed
4086 then
4087 if B_Typ = Universal_Fixed
aa180613 4088 and then not Expected_Type_Is_Any_Real (N)
996ae0b0
RK
4089 and then Nkind (Parent (N)) /= N_Type_Conversion
4090 and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
4091 then
4092 Error_Msg_N
4093 ("type cannot be determined from context!", N);
4094 Error_Msg_N
4095 ("\explicit conversion to result type required", N);
4096
4097 Set_Etype (L, Any_Type);
4098 Set_Etype (R, Any_Type);
4099
4100 else
0ab80019 4101 if Ada_Version = Ada_83
996ae0b0
RK
4102 and then Etype (N) = Universal_Fixed
4103 and then Nkind (Parent (N)) /= N_Type_Conversion
4104 and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
4105 then
4106 Error_Msg_N
4107 ("(Ada 83) fixed-point operation " &
4108 "needs explicit conversion",
4109 N);
4110 end if;
4111
aa180613
RD
4112 -- The expected type is "any real type" in contexts like
4113 -- type T is delta <universal_fixed-expression> ...
4114 -- in which case we need to set the type to Universal_Real
4115 -- so that static expression evaluation will work properly.
4116
4117 if Expected_Type_Is_Any_Real (N) then
4118 Set_Etype (N, Universal_Real);
4119 else
4120 Set_Etype (N, B_Typ);
4121 end if;
996ae0b0
RK
4122 end if;
4123
4124 elsif Is_Fixed_Point_Type (B_Typ)
4125 and then (Is_Integer_Or_Universal (L)
4126 or else Nkind (L) = N_Real_Literal
4127 or else Nkind (R) = N_Real_Literal
4128 or else
4129 Is_Integer_Or_Universal (R))
4130 then
4131 Set_Etype (N, B_Typ);
4132
4133 elsif Etype (N) = Any_Fixed then
4134
4135 -- If no previous errors, this is only possible if one operand
4136 -- is overloaded and the context is universal. Resolve as such.
4137
4138 Set_Etype (N, B_Typ);
4139 end if;
4140
4141 else
4142 if (TL = Universal_Integer or else TL = Universal_Real)
4143 and then (TR = Universal_Integer or else TR = Universal_Real)
4144 then
4145 Check_For_Visible_Operator (N, B_Typ);
4146 end if;
4147
4148 -- If the context is Universal_Fixed and the operands are also
4149 -- universal fixed, this is an error, unless there is only one
4150 -- applicable fixed_point type (usually duration).
4151
4152 if B_Typ = Universal_Fixed
4153 and then Etype (L) = Universal_Fixed
4154 then
4155 T := Unique_Fixed_Point_Type (N);
4156
4157 if T = Any_Type then
4158 Set_Etype (N, T);
4159 return;
4160 else
4161 Resolve (L, T);
4162 Resolve (R, T);
4163 end if;
4164
4165 else
4166 Resolve (L, B_Typ);
4167 Resolve (R, B_Typ);
4168 end if;
4169
4170 -- If one of the arguments was resolved to a non-universal type.
4171 -- label the result of the operation itself with the same type.
4172 -- Do the same for the universal argument, if any.
4173
4174 T := Intersect_Types (L, R);
4175 Set_Etype (N, Base_Type (T));
4176 Set_Operand_Type (L);
4177 Set_Operand_Type (R);
4178 end if;
4179
fbf5a39b 4180 Generate_Operator_Reference (N, Typ);
996ae0b0
RK
4181 Eval_Arithmetic_Op (N);
4182
4183 -- Set overflow and division checking bit. Much cleverer code needed
4184 -- here eventually and perhaps the Resolve routines should be separated
4185 -- for the various arithmetic operations, since they will need
4186 -- different processing. ???
4187
4188 if Nkind (N) in N_Op then
4189 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 4190 Enable_Overflow_Check (N);
996ae0b0
RK
4191 end if;
4192
fbf5a39b
AC
4193 -- Give warning if explicit division by zero
4194
996ae0b0
RK
4195 if (Nkind (N) = N_Op_Divide
4196 or else Nkind (N) = N_Op_Rem
4197 or else Nkind (N) = N_Op_Mod)
4198 and then not Division_Checks_Suppressed (Etype (N))
4199 then
fbf5a39b
AC
4200 Rop := Right_Opnd (N);
4201
4202 if Compile_Time_Known_Value (Rop)
4203 and then ((Is_Integer_Type (Etype (Rop))
4204 and then Expr_Value (Rop) = Uint_0)
4205 or else
4206 (Is_Real_Type (Etype (Rop))
4207 and then Expr_Value_R (Rop) = Ureal_0))
4208 then
aa180613
RD
4209 -- Specialize the warning message according to the operation
4210
4211 case Nkind (N) is
4212 when N_Op_Divide =>
4213 Apply_Compile_Time_Constraint_Error
4214 (N, "division by zero?", CE_Divide_By_Zero,
4215 Loc => Sloc (Right_Opnd (N)));
4216
4217 when N_Op_Rem =>
4218 Apply_Compile_Time_Constraint_Error
4219 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4220 Loc => Sloc (Right_Opnd (N)));
4221
4222 when N_Op_Mod =>
4223 Apply_Compile_Time_Constraint_Error
4224 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4225 Loc => Sloc (Right_Opnd (N)));
4226
4227 -- Division by zero can only happen with division, rem,
4228 -- and mod operations.
4229
4230 when others =>
4231 raise Program_Error;
4232 end case;
fbf5a39b
AC
4233
4234 -- Otherwise just set the flag to check at run time
4235
4236 else
b7d1f17f 4237 Activate_Division_Check (N);
fbf5a39b 4238 end if;
996ae0b0
RK
4239 end if;
4240 end if;
4241
4242 Check_Unset_Reference (L);
4243 Check_Unset_Reference (R);
996ae0b0
RK
4244 end Resolve_Arithmetic_Op;
4245
4246 ------------------
4247 -- Resolve_Call --
4248 ------------------
4249
4250 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4251 Loc : constant Source_Ptr := Sloc (N);
4252 Subp : constant Node_Id := Name (N);
4253 Nam : Entity_Id;
4254 I : Interp_Index;
4255 It : Interp;
4256 Norm_OK : Boolean;
4257 Scop : Entity_Id;
aa180613 4258 Rtype : Entity_Id;
996ae0b0
RK
4259
4260 begin
758c442c
GD
4261 -- The context imposes a unique interpretation with type Typ on a
4262 -- procedure or function call. Find the entity of the subprogram that
4263 -- yields the expected type, and propagate the corresponding formal
4264 -- constraints on the actuals. The caller has established that an
4265 -- interpretation exists, and emitted an error if not unique.
996ae0b0
RK
4266
4267 -- First deal with the case of a call to an access-to-subprogram,
4268 -- dereference made explicit in Analyze_Call.
4269
4270 if Ekind (Etype (Subp)) = E_Subprogram_Type then
996ae0b0
RK
4271 if not Is_Overloaded (Subp) then
4272 Nam := Etype (Subp);
4273
4274 else
758c442c
GD
4275 -- Find the interpretation whose type (a subprogram type) has a
4276 -- return type that is compatible with the context. Analysis of
4277 -- the node has established that one exists.
996ae0b0 4278
996ae0b0
RK
4279 Nam := Empty;
4280
1420b484 4281 Get_First_Interp (Subp, I, It);
996ae0b0 4282 while Present (It.Typ) loop
996ae0b0
RK
4283 if Covers (Typ, Etype (It.Typ)) then
4284 Nam := It.Typ;
4285 exit;
4286 end if;
4287
4288 Get_Next_Interp (I, It);
4289 end loop;
4290
4291 if No (Nam) then
4292 raise Program_Error;
4293 end if;
4294 end if;
4295
4296 -- If the prefix is not an entity, then resolve it
4297
4298 if not Is_Entity_Name (Subp) then
4299 Resolve (Subp, Nam);
4300 end if;
4301
758c442c
GD
4302 -- For an indirect call, we always invalidate checks, since we do not
4303 -- know whether the subprogram is local or global. Yes we could do
4304 -- better here, e.g. by knowing that there are no local subprograms,
aa180613 4305 -- but it does not seem worth the effort. Similarly, we kill all
758c442c 4306 -- knowledge of current constant values.
fbf5a39b
AC
4307
4308 Kill_Current_Values;
4309
b7d1f17f
HK
4310 -- If this is a procedure call which is really an entry call, do
4311 -- the conversion of the procedure call to an entry call. Protected
4312 -- operations use the same circuitry because the name in the call
4313 -- can be an arbitrary expression with special resolution rules.
996ae0b0
RK
4314
4315 elsif Nkind (Subp) = N_Selected_Component
4316 or else Nkind (Subp) = N_Indexed_Component
4317 or else (Is_Entity_Name (Subp)
4318 and then Ekind (Entity (Subp)) = E_Entry)
4319 then
4320 Resolve_Entry_Call (N, Typ);
4321 Check_Elab_Call (N);
fbf5a39b
AC
4322
4323 -- Kill checks and constant values, as above for indirect case
4324 -- Who knows what happens when another task is activated?
4325
4326 Kill_Current_Values;
996ae0b0
RK
4327 return;
4328
4329 -- Normal subprogram call with name established in Resolve
4330
4331 elsif not (Is_Type (Entity (Subp))) then
4332 Nam := Entity (Subp);
4333 Set_Entity_With_Style_Check (Subp, Nam);
4334 Generate_Reference (Nam, Subp);
4335
4336 -- Otherwise we must have the case of an overloaded call
4337
4338 else
4339 pragma Assert (Is_Overloaded (Subp));
1420b484 4340 Nam := Empty; -- We know that it will be assigned in loop below
996ae0b0
RK
4341
4342 Get_First_Interp (Subp, I, It);
996ae0b0
RK
4343 while Present (It.Typ) loop
4344 if Covers (Typ, It.Typ) then
4345 Nam := It.Nam;
4346 Set_Entity_With_Style_Check (Subp, Nam);
4347 Generate_Reference (Nam, Subp);
4348 exit;
4349 end if;
4350
4351 Get_Next_Interp (I, It);
4352 end loop;
4353 end if;
4354
4355 -- Check that a call to Current_Task does not occur in an entry body
4356
4357 if Is_RTE (Nam, RE_Current_Task) then
4358 declare
4359 P : Node_Id;
4360
4361 begin
4362 P := N;
4363 loop
4364 P := Parent (P);
4365 exit when No (P);
4366
aa180613
RD
4367 if Nkind (P) = N_Entry_Body
4368 or else (Nkind (P) = N_Subprogram_Body
4369 and then Is_Entry_Barrier_Function (P))
4370 then
4371 Rtype := Etype (N);
996ae0b0 4372 Error_Msg_NE
aa5147f0 4373 ("?& should not be used in entry body (RM C.7(17))",
996ae0b0 4374 N, Nam);
aa180613
RD
4375 Error_Msg_NE
4376 ("\Program_Error will be raised at run time?", N, Nam);
4377 Rewrite (N,
4378 Make_Raise_Program_Error (Loc,
4379 Reason => PE_Current_Task_In_Entry_Body));
4380 Set_Etype (N, Rtype);
996ae0b0
RK
4381 exit;
4382 end if;
4383 end loop;
4384 end;
4385 end if;
4386
758c442c
GD
4387 -- Check that a procedure call does not occur in the context of the
4388 -- entry call statement of a conditional or timed entry call. Note that
4389 -- the case of a call to a subprogram renaming of an entry will also be
4390 -- rejected. The test for N not being an N_Entry_Call_Statement is
4391 -- defensive, covering the possibility that the processing of entry
4392 -- calls might reach this point due to later modifications of the code
4393 -- above.
996ae0b0
RK
4394
4395 if Nkind (Parent (N)) = N_Entry_Call_Alternative
4396 and then Nkind (N) /= N_Entry_Call_Statement
4397 and then Entry_Call_Statement (Parent (N)) = N
4398 then
1420b484
JM
4399 if Ada_Version < Ada_05 then
4400 Error_Msg_N ("entry call required in select statement", N);
4401
4402 -- Ada 2005 (AI-345): If a procedure_call_statement is used
4403 -- for a procedure_or_entry_call, the procedure_name or pro-
4404 -- cedure_prefix of the procedure_call_statement shall denote
4405 -- an entry renamed by a procedure, or (a view of) a primitive
4406 -- subprogram of a limited interface whose first parameter is
4407 -- a controlling parameter.
4408
4409 elsif Nkind (N) = N_Procedure_Call_Statement
4410 and then not Is_Renamed_Entry (Nam)
4411 and then not Is_Controlling_Limited_Procedure (Nam)
4412 then
4413 Error_Msg_N
c8ef728f 4414 ("entry call or dispatching primitive of interface required", N);
1420b484 4415 end if;
996ae0b0
RK
4416 end if;
4417
fbf5a39b
AC
4418 -- Check that this is not a call to a protected procedure or
4419 -- entry from within a protected function.
4420
4421 if Ekind (Current_Scope) = E_Function
4422 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
4423 and then Ekind (Nam) /= E_Function
4424 and then Scope (Nam) = Scope (Current_Scope)
4425 then
4426 Error_Msg_N ("within protected function, protected " &
4427 "object is constant", N);
4428 Error_Msg_N ("\cannot call operation that may modify it", N);
4429 end if;
4430
758c442c
GD
4431 -- Freeze the subprogram name if not in default expression. Note that we
4432 -- freeze procedure calls as well as function calls. Procedure calls are
4433 -- not frozen according to the rules (RM 13.14(14)) because it is
4434 -- impossible to have a procedure call to a non-frozen procedure in pure
4435 -- Ada, but in the code that we generate in the expander, this rule
4436 -- needs extending because we can generate procedure calls that need
4437 -- freezing.
996ae0b0
RK
4438
4439 if Is_Entity_Name (Subp) and then not In_Default_Expression then
4440 Freeze_Expression (Subp);
4441 end if;
4442
758c442c
GD
4443 -- For a predefined operator, the type of the result is the type imposed
4444 -- by context, except for a predefined operation on universal fixed.
4445 -- Otherwise The type of the call is the type returned by the subprogram
4446 -- being called.
996ae0b0
RK
4447
4448 if Is_Predefined_Op (Nam) then
996ae0b0
RK
4449 if Etype (N) /= Universal_Fixed then
4450 Set_Etype (N, Typ);
4451 end if;
4452
758c442c
GD
4453 -- If the subprogram returns an array type, and the context requires the
4454 -- component type of that array type, the node is really an indexing of
4455 -- the parameterless call. Resolve as such. A pathological case occurs
4456 -- when the type of the component is an access to the array type. In
4457 -- this case the call is truly ambiguous.
996ae0b0 4458
0669bebe 4459 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
996ae0b0
RK
4460 and then
4461 ((Is_Array_Type (Etype (Nam))
4462 and then Covers (Typ, Component_Type (Etype (Nam))))
4463 or else (Is_Access_Type (Etype (Nam))
4464 and then Is_Array_Type (Designated_Type (Etype (Nam)))
4465 and then
4466 Covers (Typ,
4467 Component_Type (Designated_Type (Etype (Nam))))))
4468 then
4469 declare
4470 Index_Node : Node_Id;
fbf5a39b
AC
4471 New_Subp : Node_Id;
4472 Ret_Type : constant Entity_Id := Etype (Nam);
996ae0b0
RK
4473
4474 begin
fbf5a39b
AC
4475 if Is_Access_Type (Ret_Type)
4476 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
4477 then
4478 Error_Msg_N
4479 ("cannot disambiguate function call and indexing", N);
4480 else
4481 New_Subp := Relocate_Node (Subp);
4482 Set_Entity (Subp, Nam);
4483
4484 if Component_Type (Ret_Type) /= Any_Type then
0669bebe
GB
4485 if Needs_No_Actuals (Nam) then
4486
4487 -- Indexed call to a parameterless function
4488
4489 Index_Node :=
4490 Make_Indexed_Component (Loc,
4491 Prefix =>
4492 Make_Function_Call (Loc,
4493 Name => New_Subp),
4494 Expressions => Parameter_Associations (N));
4495 else
4496 -- An Ada 2005 prefixed call to a primitive operation
4497 -- whose first parameter is the prefix. This prefix was
4498 -- prepended to the parameter list, which is actually a
4499 -- list of indices. Remove the prefix in order to build
4500 -- the proper indexed component.
4501
4502 Index_Node :=
4503 Make_Indexed_Component (Loc,
4504 Prefix =>
4505 Make_Function_Call (Loc,
4506 Name => New_Subp,
4507 Parameter_Associations =>
4508 New_List
4509 (Remove_Head (Parameter_Associations (N)))),
4510 Expressions => Parameter_Associations (N));
4511 end if;
fbf5a39b
AC
4512
4513 -- Since we are correcting a node classification error made
4514 -- by the parser, we call Replace rather than Rewrite.
4515
4516 Replace (N, Index_Node);
4517 Set_Etype (Prefix (N), Ret_Type);
4518 Set_Etype (N, Typ);
4519 Resolve_Indexed_Component (N, Typ);
4520 Check_Elab_Call (Prefix (N));
4521 end if;
996ae0b0
RK
4522 end if;
4523
4524 return;
4525 end;
4526
4527 else
4528 Set_Etype (N, Etype (Nam));
4529 end if;
4530
4531 -- In the case where the call is to an overloaded subprogram, Analyze
4532 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
4533 -- such a case Normalize_Actuals needs to be called once more to order
4534 -- the actuals correctly. Otherwise the call will have the ordering
4535 -- given by the last overloaded subprogram whether this is the correct
4536 -- one being called or not.
4537
4538 if Is_Overloaded (Subp) then
4539 Normalize_Actuals (N, Nam, False, Norm_OK);
4540 pragma Assert (Norm_OK);
4541 end if;
4542
4543 -- In any case, call is fully resolved now. Reset Overload flag, to
4544 -- prevent subsequent overload resolution if node is analyzed again
4545
4546 Set_Is_Overloaded (Subp, False);
4547 Set_Is_Overloaded (N, False);
4548
758c442c
GD
4549 -- If we are calling the current subprogram from immediately within its
4550 -- body, then that is the case where we can sometimes detect cases of
4551 -- infinite recursion statically. Do not try this in case restriction
b7d1f17f 4552 -- No_Recursion is in effect anyway, and do it only for source calls.
996ae0b0 4553
b7d1f17f
HK
4554 if Comes_From_Source (N) then
4555 Scop := Current_Scope;
996ae0b0 4556
b7d1f17f
HK
4557 if Nam = Scop
4558 and then not Restriction_Active (No_Recursion)
4559 and then Check_Infinite_Recursion (N)
4560 then
4561 -- Here we detected and flagged an infinite recursion, so we do
4562 -- not need to test the case below for further warnings.
996ae0b0 4563
b7d1f17f 4564 null;
996ae0b0 4565
b7d1f17f
HK
4566 -- If call is to immediately containing subprogram, then check for
4567 -- the case of a possible run-time detectable infinite recursion.
996ae0b0 4568
b7d1f17f
HK
4569 else
4570 Scope_Loop : while Scop /= Standard_Standard loop
4571 if Nam = Scop then
4572
4573 -- Although in general case, recursion is not statically
4574 -- checkable, the case of calling an immediately containing
4575 -- subprogram is easy to catch.
4576
4577 Check_Restriction (No_Recursion, N);
4578
4579 -- If the recursive call is to a parameterless subprogram,
4580 -- then even if we can't statically detect infinite
4581 -- recursion, this is pretty suspicious, and we output a
4582 -- warning. Furthermore, we will try later to detect some
4583 -- cases here at run time by expanding checking code (see
4584 -- Detect_Infinite_Recursion in package Exp_Ch6).
4585
4586 -- If the recursive call is within a handler, do not emit a
4587 -- warning, because this is a common idiom: loop until input
4588 -- is correct, catch illegal input in handler and restart.
4589
4590 if No (First_Formal (Nam))
4591 and then Etype (Nam) = Standard_Void_Type
4592 and then not Error_Posted (N)
4593 and then Nkind (Parent (N)) /= N_Exception_Handler
aa180613 4594 then
b7d1f17f
HK
4595 -- For the case of a procedure call. We give the message
4596 -- only if the call is the first statement in a sequence
4597 -- of statements, or if all previous statements are
4598 -- simple assignments. This is simply a heuristic to
4599 -- decrease false positives, without losing too many good
4600 -- warnings. The idea is that these previous statements
4601 -- may affect global variables the procedure depends on.
4602
4603 if Nkind (N) = N_Procedure_Call_Statement
4604 and then Is_List_Member (N)
4605 then
4606 declare
4607 P : Node_Id;
4608 begin
4609 P := Prev (N);
4610 while Present (P) loop
4611 if Nkind (P) /= N_Assignment_Statement then
4612 exit Scope_Loop;
4613 end if;
4614
4615 Prev (P);
4616 end loop;
4617 end;
4618 end if;
4619
4620 -- Do not give warning if we are in a conditional context
4621
aa180613 4622 declare
b7d1f17f 4623 K : constant Node_Kind := Nkind (Parent (N));
aa180613 4624 begin
b7d1f17f
HK
4625 if (K = N_Loop_Statement
4626 and then Present (Iteration_Scheme (Parent (N))))
4627 or else K = N_If_Statement
4628 or else K = N_Elsif_Part
4629 or else K = N_Case_Statement_Alternative
4630 then
4631 exit Scope_Loop;
4632 end if;
aa180613 4633 end;
aa180613 4634
b7d1f17f 4635 -- Here warning is to be issued
aa180613 4636
b7d1f17f
HK
4637 Set_Has_Recursive_Call (Nam);
4638 Error_Msg_N
aa5147f0 4639 ("?possible infinite recursion!", N);
b7d1f17f 4640 Error_Msg_N
aa5147f0 4641 ("\?Storage_Error may be raised at run time!", N);
b7d1f17f 4642 end if;
aa180613 4643
b7d1f17f 4644 exit Scope_Loop;
996ae0b0
RK
4645 end if;
4646
b7d1f17f
HK
4647 Scop := Scope (Scop);
4648 end loop Scope_Loop;
4649 end if;
996ae0b0
RK
4650 end if;
4651
4652 -- If subprogram name is a predefined operator, it was given in
4653 -- functional notation. Replace call node with operator node, so
4654 -- that actuals can be resolved appropriately.
4655
4656 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
4657 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
4658 return;
4659
4660 elsif Present (Alias (Nam))
4661 and then Is_Predefined_Op (Alias (Nam))
4662 then
4663 Resolve_Actuals (N, Nam);
4664 Make_Call_Into_Operator (N, Typ, Alias (Nam));
4665 return;
4666 end if;
4667
fbf5a39b
AC
4668 -- Create a transient scope if the resulting type requires it
4669
0669bebe 4670 -- There are 4 notable exceptions: in init procs, the transient scope
996ae0b0 4671 -- overhead is not needed and even incorrect due to the actual expansion
0669bebe
GB
4672 -- of adjust calls; the second case is enumeration literal pseudo calls;
4673 -- the third case is intrinsic subprograms (Unchecked_Conversion and
996ae0b0 4674 -- source information functions) that do not use the secondary stack
0669bebe
GB
4675 -- even though the return type is unconstrained; the fourth case is a
4676 -- call to a build-in-place function, since such functions may allocate
4677 -- their result directly in a target object, and cases where the result
4678 -- does get allocated in the secondary stack are checked for within the
4679 -- specialized Exp_Ch6 procedures for expanding build-in-place calls.
996ae0b0
RK
4680
4681 -- If this is an initialization call for a type whose initialization
4682 -- uses the secondary stack, we also need to create a transient scope
fbf5a39b 4683 -- for it, precisely because we will not do it within the init proc
996ae0b0
RK
4684 -- itself.
4685
c8ef728f
ES
4686 -- If the subprogram is marked Inlined_Always, then even if it returns
4687 -- an unconstrained type the call does not require use of the secondary
4688 -- stack.
4689
4690 if Is_Inlined (Nam)
4691 and then Present (First_Rep_Item (Nam))
4692 and then Nkind (First_Rep_Item (Nam)) = N_Pragma
4693 and then Chars (First_Rep_Item (Nam)) = Name_Inline_Always
4694 then
4695 null;
4696
4697 elsif Expander_Active
996ae0b0
RK
4698 and then Is_Type (Etype (Nam))
4699 and then Requires_Transient_Scope (Etype (Nam))
0669bebe 4700 and then not Is_Build_In_Place_Function (Nam)
996ae0b0
RK
4701 and then Ekind (Nam) /= E_Enumeration_Literal
4702 and then not Within_Init_Proc
4703 and then not Is_Intrinsic_Subprogram (Nam)
4704 then
0669bebe 4705 Establish_Transient_Scope (N, Sec_Stack => True);
996ae0b0 4706
a9f4e3d2
AC
4707 -- If the call appears within the bounds of a loop, it will
4708 -- be rewritten and reanalyzed, nothing left to do here.
4709
4710 if Nkind (N) /= N_Function_Call then
4711 return;
4712 end if;
4713
fbf5a39b 4714 elsif Is_Init_Proc (Nam)
996ae0b0
RK
4715 and then not Within_Init_Proc
4716 then
4717 Check_Initialization_Call (N, Nam);
4718 end if;
4719
4720 -- A protected function cannot be called within the definition of the
4721 -- enclosing protected type.
4722
4723 if Is_Protected_Type (Scope (Nam))
4724 and then In_Open_Scopes (Scope (Nam))
4725 and then not Has_Completion (Scope (Nam))
4726 then
4727 Error_Msg_NE
4728 ("& cannot be called before end of protected definition", N, Nam);
4729 end if;
4730
4731 -- Propagate interpretation to actuals, and add default expressions
4732 -- where needed.
4733
4734 if Present (First_Formal (Nam)) then
4735 Resolve_Actuals (N, Nam);
4736
4737 -- Overloaded literals are rewritten as function calls, for
4738 -- purpose of resolution. After resolution, we can replace
4739 -- the call with the literal itself.
4740
4741 elsif Ekind (Nam) = E_Enumeration_Literal then
4742 Copy_Node (Subp, N);
4743 Resolve_Entity_Name (N, Typ);
4744
fbf5a39b 4745 -- Avoid validation, since it is a static function call
996ae0b0
RK
4746
4747 return;
4748 end if;
4749
b7d1f17f
HK
4750 -- If the subprogram is not global, then kill all saved values and
4751 -- checks. This is a bit conservative, since in many cases we could do
4752 -- better, but it is not worth the effort. Similarly, we kill constant
4753 -- values. However we do not need to do this for internal entities
4754 -- (unless they are inherited user-defined subprograms), since they
4755 -- are not in the business of molesting local values.
4756
4757 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
4758 -- kill all checks and values for calls to global subprograms. This
4759 -- takes care of the case where an access to a local subprogram is
4760 -- taken, and could be passed directly or indirectly and then called
4761 -- from almost any context.
aa180613
RD
4762
4763 -- Note: we do not do this step till after resolving the actuals. That
4764 -- way we still take advantage of the current value information while
4765 -- scanning the actuals.
4766
b7d1f17f
HK
4767 if (not Is_Library_Level_Entity (Nam)
4768 or else Suppress_Value_Tracking_On_Call (Current_Scope))
aa180613
RD
4769 and then (Comes_From_Source (Nam)
4770 or else (Present (Alias (Nam))
4771 and then Comes_From_Source (Alias (Nam))))
4772 then
4773 Kill_Current_Values;
4774 end if;
4775
996ae0b0
RK
4776 -- If the subprogram is a primitive operation, check whether or not
4777 -- it is a correct dispatching call.
4778
4779 if Is_Overloadable (Nam)
4780 and then Is_Dispatching_Operation (Nam)
4781 then
4782 Check_Dispatching_Call (N);
4783
0669bebe
GB
4784 elsif Ekind (Nam) /= E_Subprogram_Type
4785 and then Is_Abstract_Subprogram (Nam)
996ae0b0
RK
4786 and then not In_Instance
4787 then
4788 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
4789 end if;
4790
4791 if Is_Intrinsic_Subprogram (Nam) then
4792 Check_Intrinsic_Call (N);
4793 end if;
4794
c01a9391 4795 Eval_Call (N);
996ae0b0 4796 Check_Elab_Call (N);
996ae0b0
RK
4797 end Resolve_Call;
4798
4799 -------------------------------
4800 -- Resolve_Character_Literal --
4801 -------------------------------
4802
4803 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
4804 B_Typ : constant Entity_Id := Base_Type (Typ);
4805 C : Entity_Id;
4806
4807 begin
4808 -- Verify that the character does belong to the type of the context
4809
4810 Set_Etype (N, B_Typ);
4811 Eval_Character_Literal (N);
4812
82c80734
RD
4813 -- Wide_Wide_Character literals must always be defined, since the set
4814 -- of wide wide character literals is complete, i.e. if a character
4815 -- literal is accepted by the parser, then it is OK for wide wide
4816 -- character (out of range character literals are rejected).
996ae0b0 4817
82c80734 4818 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
996ae0b0
RK
4819 return;
4820
4821 -- Always accept character literal for type Any_Character, which
4822 -- occurs in error situations and in comparisons of literals, both
4823 -- of which should accept all literals.
4824
4825 elsif B_Typ = Any_Character then
4826 return;
4827
4828 -- For Standard.Character or a type derived from it, check that
4829 -- the literal is in range
4830
4831 elsif Root_Type (B_Typ) = Standard_Character then
82c80734
RD
4832 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
4833 return;
4834 end if;
4835
4836 -- For Standard.Wide_Character or a type derived from it, check
4837 -- that the literal is in range
4838
4839 elsif Root_Type (B_Typ) = Standard_Wide_Character then
4840 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
996ae0b0
RK
4841 return;
4842 end if;
4843
82c80734
RD
4844 -- For Standard.Wide_Wide_Character or a type derived from it, we
4845 -- know the literal is in range, since the parser checked!
4846
4847 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
4848 return;
4849
996ae0b0
RK
4850 -- If the entity is already set, this has already been resolved in
4851 -- a generic context, or comes from expansion. Nothing else to do.
4852
4853 elsif Present (Entity (N)) then
4854 return;
4855
4856 -- Otherwise we have a user defined character type, and we can use
4857 -- the standard visibility mechanisms to locate the referenced entity
4858
4859 else
4860 C := Current_Entity (N);
996ae0b0
RK
4861 while Present (C) loop
4862 if Etype (C) = B_Typ then
4863 Set_Entity_With_Style_Check (N, C);
4864 Generate_Reference (C, N);
4865 return;
4866 end if;
4867
4868 C := Homonym (C);
4869 end loop;
4870 end if;
4871
4872 -- If we fall through, then the literal does not match any of the
4873 -- entries of the enumeration type. This isn't just a constraint
4874 -- error situation, it is an illegality (see RM 4.2).
4875
4876 Error_Msg_NE
4877 ("character not defined for }", N, First_Subtype (B_Typ));
996ae0b0
RK
4878 end Resolve_Character_Literal;
4879
4880 ---------------------------
4881 -- Resolve_Comparison_Op --
4882 ---------------------------
4883
4884 -- Context requires a boolean type, and plays no role in resolution.
fbf5a39b
AC
4885 -- Processing identical to that for equality operators. The result
4886 -- type is the base type, which matters when pathological subtypes of
4887 -- booleans with limited ranges are used.
996ae0b0
RK
4888
4889 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
4890 L : constant Node_Id := Left_Opnd (N);
4891 R : constant Node_Id := Right_Opnd (N);
4892 T : Entity_Id;
4893
4894 begin
4895 -- If this is an intrinsic operation which is not predefined, use
4896 -- the types of its declared arguments to resolve the possibly
4897 -- overloaded operands. Otherwise the operands are unambiguous and
4898 -- specify the expected type.
4899
4900 if Scope (Entity (N)) /= Standard_Standard then
4901 T := Etype (First_Entity (Entity (N)));
1420b484 4902
996ae0b0
RK
4903 else
4904 T := Find_Unique_Type (L, R);
4905
4906 if T = Any_Fixed then
4907 T := Unique_Fixed_Point_Type (L);
4908 end if;
4909 end if;
4910
fbf5a39b 4911 Set_Etype (N, Base_Type (Typ));
996ae0b0
RK
4912 Generate_Reference (T, N, ' ');
4913
4914 if T /= Any_Type then
996ae0b0
RK
4915 if T = Any_String
4916 or else T = Any_Composite
4917 or else T = Any_Character
4918 then
4919 if T = Any_Character then
4920 Ambiguous_Character (L);
4921 else
4922 Error_Msg_N ("ambiguous operands for comparison", N);
4923 end if;
4924
4925 Set_Etype (N, Any_Type);
4926 return;
4927
4928 else
996ae0b0
RK
4929 Resolve (L, T);
4930 Resolve (R, T);
4931 Check_Unset_Reference (L);
4932 Check_Unset_Reference (R);
fbf5a39b 4933 Generate_Operator_Reference (N, T);
996ae0b0
RK
4934 Eval_Relational_Op (N);
4935 end if;
4936 end if;
996ae0b0
RK
4937 end Resolve_Comparison_Op;
4938
4939 ------------------------------------
4940 -- Resolve_Conditional_Expression --
4941 ------------------------------------
4942
4943 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
4944 Condition : constant Node_Id := First (Expressions (N));
4945 Then_Expr : constant Node_Id := Next (Condition);
4946 Else_Expr : constant Node_Id := Next (Then_Expr);
4947
4948 begin
4949 Resolve (Condition, Standard_Boolean);
4950 Resolve (Then_Expr, Typ);
4951 Resolve (Else_Expr, Typ);
4952
4953 Set_Etype (N, Typ);
4954 Eval_Conditional_Expression (N);
4955 end Resolve_Conditional_Expression;
4956
4957 -----------------------------------------
4958 -- Resolve_Discrete_Subtype_Indication --
4959 -----------------------------------------
4960
4961 procedure Resolve_Discrete_Subtype_Indication
4962 (N : Node_Id;
4963 Typ : Entity_Id)
4964 is
4965 R : Node_Id;
4966 S : Entity_Id;
4967
4968 begin
4969 Analyze (Subtype_Mark (N));
4970 S := Entity (Subtype_Mark (N));
4971
4972 if Nkind (Constraint (N)) /= N_Range_Constraint then
4973 Error_Msg_N ("expect range constraint for discrete type", N);
4974 Set_Etype (N, Any_Type);
4975
4976 else
4977 R := Range_Expression (Constraint (N));
5c736541
RD
4978
4979 if R = Error then
4980 return;
4981 end if;
4982
996ae0b0
RK
4983 Analyze (R);
4984
4985 if Base_Type (S) /= Base_Type (Typ) then
4986 Error_Msg_NE
4987 ("expect subtype of }", N, First_Subtype (Typ));
4988
4989 -- Rewrite the constraint as a range of Typ
4990 -- to allow compilation to proceed further.
4991
4992 Set_Etype (N, Typ);
4993 Rewrite (Low_Bound (R),
4994 Make_Attribute_Reference (Sloc (Low_Bound (R)),
4995 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
4996 Attribute_Name => Name_First));
4997 Rewrite (High_Bound (R),
4998 Make_Attribute_Reference (Sloc (High_Bound (R)),
4999 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5000 Attribute_Name => Name_First));
5001
5002 else
5003 Resolve (R, Typ);
5004 Set_Etype (N, Etype (R));
5005
5006 -- Additionally, we must check that the bounds are compatible
5007 -- with the given subtype, which might be different from the
5008 -- type of the context.
5009
5010 Apply_Range_Check (R, S);
5011
5012 -- ??? If the above check statically detects a Constraint_Error
5013 -- it replaces the offending bound(s) of the range R with a
5014 -- Constraint_Error node. When the itype which uses these bounds
5015 -- is frozen the resulting call to Duplicate_Subexpr generates
5016 -- a new temporary for the bounds.
5017
5018 -- Unfortunately there are other itypes that are also made depend
5019 -- on these bounds, so when Duplicate_Subexpr is called they get
5020 -- a forward reference to the newly created temporaries and Gigi
5021 -- aborts on such forward references. This is probably sign of a
5022 -- more fundamental problem somewhere else in either the order of
5023 -- itype freezing or the way certain itypes are constructed.
5024
5025 -- To get around this problem we call Remove_Side_Effects right
5026 -- away if either bounds of R are a Constraint_Error.
5027
5028 declare
fbf5a39b
AC
5029 L : constant Node_Id := Low_Bound (R);
5030 H : constant Node_Id := High_Bound (R);
996ae0b0
RK
5031
5032 begin
5033 if Nkind (L) = N_Raise_Constraint_Error then
5034 Remove_Side_Effects (L);
5035 end if;
5036
5037 if Nkind (H) = N_Raise_Constraint_Error then
5038 Remove_Side_Effects (H);
5039 end if;
5040 end;
5041
5042 Check_Unset_Reference (Low_Bound (R));
5043 Check_Unset_Reference (High_Bound (R));
5044 end if;
5045 end if;
5046 end Resolve_Discrete_Subtype_Indication;
5047
5048 -------------------------
5049 -- Resolve_Entity_Name --
5050 -------------------------
5051
5052 -- Used to resolve identifiers and expanded names
5053
5054 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
5055 E : constant Entity_Id := Entity (N);
5056
5057 begin
07fc65c4
GB
5058 -- If garbage from errors, set to Any_Type and return
5059
5060 if No (E) and then Total_Errors_Detected /= 0 then
5061 Set_Etype (N, Any_Type);
5062 return;
5063 end if;
5064
996ae0b0
RK
5065 -- Replace named numbers by corresponding literals. Note that this is
5066 -- the one case where Resolve_Entity_Name must reset the Etype, since
5067 -- it is currently marked as universal.
5068
5069 if Ekind (E) = E_Named_Integer then
5070 Set_Etype (N, Typ);
5071 Eval_Named_Integer (N);
5072
5073 elsif Ekind (E) = E_Named_Real then
5074 Set_Etype (N, Typ);
5075 Eval_Named_Real (N);
5076
5077 -- Allow use of subtype only if it is a concurrent type where we are
5078 -- currently inside the body. This will eventually be expanded
5079 -- into a call to Self (for tasks) or _object (for protected
5080 -- objects). Any other use of a subtype is invalid.
5081
5082 elsif Is_Type (E) then
5083 if Is_Concurrent_Type (E)
5084 and then In_Open_Scopes (E)
5085 then
5086 null;
5087 else
5088 Error_Msg_N
758c442c 5089 ("invalid use of subtype mark in expression or call", N);
996ae0b0
RK
5090 end if;
5091
5092 -- Check discriminant use if entity is discriminant in current scope,
5093 -- i.e. discriminant of record or concurrent type currently being
5094 -- analyzed. Uses in corresponding body are unrestricted.
5095
5096 elsif Ekind (E) = E_Discriminant
5097 and then Scope (E) = Current_Scope
5098 and then not Has_Completion (Current_Scope)
5099 then
5100 Check_Discriminant_Use (N);
5101
5102 -- A parameterless generic function cannot appear in a context that
5103 -- requires resolution.
5104
5105 elsif Ekind (E) = E_Generic_Function then
5106 Error_Msg_N ("illegal use of generic function", N);
5107
5108 elsif Ekind (E) = E_Out_Parameter
0ab80019 5109 and then Ada_Version = Ada_83
996ae0b0
RK
5110 and then (Nkind (Parent (N)) in N_Op
5111 or else (Nkind (Parent (N)) = N_Assignment_Statement
5112 and then N = Expression (Parent (N)))
5113 or else Nkind (Parent (N)) = N_Explicit_Dereference)
5114 then
5115 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
5116
5117 -- In all other cases, just do the possible static evaluation
5118
5119 else
5120 -- A deferred constant that appears in an expression must have
5121 -- a completion, unless it has been removed by in-place expansion
5122 -- of an aggregate.
5123
5124 if Ekind (E) = E_Constant
5125 and then Comes_From_Source (E)
5126 and then No (Constant_Value (E))
5127 and then Is_Frozen (Etype (E))
5128 and then not In_Default_Expression
5129 and then not Is_Imported (E)
5130 then
5131
5132 if No_Initialization (Parent (E))
5133 or else (Present (Full_View (E))
5134 and then No_Initialization (Parent (Full_View (E))))
5135 then
5136 null;
5137 else
5138 Error_Msg_N (
5139 "deferred constant is frozen before completion", N);
5140 end if;
5141 end if;
5142
5143 Eval_Entity_Name (N);
5144 end if;
5145 end Resolve_Entity_Name;
5146
5147 -------------------
5148 -- Resolve_Entry --
5149 -------------------
5150
5151 procedure Resolve_Entry (Entry_Name : Node_Id) is
5152 Loc : constant Source_Ptr := Sloc (Entry_Name);
5153 Nam : Entity_Id;
5154 New_N : Node_Id;
5155 S : Entity_Id;
5156 Tsk : Entity_Id;
5157 E_Name : Node_Id;
5158 Index : Node_Id;
5159
5160 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
5161 -- If the bounds of the entry family being called depend on task
5162 -- discriminants, build a new index subtype where a discriminant is
5163 -- replaced with the value of the discriminant of the target task.
5164 -- The target task is the prefix of the entry name in the call.
5165
5166 -----------------------
5167 -- Actual_Index_Type --
5168 -----------------------
5169
5170 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
fbf5a39b
AC
5171 Typ : constant Entity_Id := Entry_Index_Type (E);
5172 Tsk : constant Entity_Id := Scope (E);
5173 Lo : constant Node_Id := Type_Low_Bound (Typ);
5174 Hi : constant Node_Id := Type_High_Bound (Typ);
996ae0b0
RK
5175 New_T : Entity_Id;
5176
5177 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
5178 -- If the bound is given by a discriminant, replace with a reference
5179 -- to the discriminant of the same name in the target task.
5180 -- If the entry name is the target of a requeue statement and the
5181 -- entry is in the current protected object, the bound to be used
5182 -- is the discriminal of the object (see apply_range_checks for
5183 -- details of the transformation).
5184
5185 -----------------------------
5186 -- Actual_Discriminant_Ref --
5187 -----------------------------
5188
5189 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
fbf5a39b 5190 Typ : constant Entity_Id := Etype (Bound);
996ae0b0
RK
5191 Ref : Node_Id;
5192
5193 begin
5194 Remove_Side_Effects (Bound);
5195
5196 if not Is_Entity_Name (Bound)
5197 or else Ekind (Entity (Bound)) /= E_Discriminant
5198 then
5199 return Bound;
5200
5201 elsif Is_Protected_Type (Tsk)
5202 and then In_Open_Scopes (Tsk)
5203 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
5204 then
5205 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5206
5207 else
5208 Ref :=
5209 Make_Selected_Component (Loc,
5210 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
5211 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
5212 Analyze (Ref);
5213 Resolve (Ref, Typ);
5214 return Ref;
5215 end if;
5216 end Actual_Discriminant_Ref;
5217
5218 -- Start of processing for Actual_Index_Type
5219
5220 begin
5221 if not Has_Discriminants (Tsk)
5222 or else (not Is_Entity_Name (Lo)
5223 and then not Is_Entity_Name (Hi))
5224 then
5225 return Entry_Index_Type (E);
5226
5227 else
5228 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
5229 Set_Etype (New_T, Base_Type (Typ));
5230 Set_Size_Info (New_T, Typ);
5231 Set_RM_Size (New_T, RM_Size (Typ));
5232 Set_Scalar_Range (New_T,
5233 Make_Range (Sloc (Entry_Name),
5234 Low_Bound => Actual_Discriminant_Ref (Lo),
5235 High_Bound => Actual_Discriminant_Ref (Hi)));
5236
5237 return New_T;
5238 end if;
5239 end Actual_Index_Type;
5240
5241 -- Start of processing of Resolve_Entry
5242
5243 begin
5244 -- Find name of entry being called, and resolve prefix of name
5245 -- with its own type. The prefix can be overloaded, and the name
5246 -- and signature of the entry must be taken into account.
5247
5248 if Nkind (Entry_Name) = N_Indexed_Component then
5249
5250 -- Case of dealing with entry family within the current tasks
5251
5252 E_Name := Prefix (Entry_Name);
5253
5254 else
5255 E_Name := Entry_Name;
5256 end if;
5257
5258 if Is_Entity_Name (E_Name) then
5259 -- Entry call to an entry (or entry family) in the current task.
5260 -- This is legal even though the task will deadlock. Rewrite as
5261 -- call to current task.
5262
5263 -- This can also be a call to an entry in an enclosing task.
5264 -- If this is a single task, we have to retrieve its name,
5265 -- because the scope of the entry is the task type, not the
5266 -- object. If the enclosing task is a task type, the identity
5267 -- of the task is given by its own self variable.
5268
5269 -- Finally this can be a requeue on an entry of the same task
5270 -- or protected object.
5271
5272 S := Scope (Entity (E_Name));
5273
5274 for J in reverse 0 .. Scope_Stack.Last loop
5275
5276 if Is_Task_Type (Scope_Stack.Table (J).Entity)
5277 and then not Comes_From_Source (S)
5278 then
5279 -- S is an enclosing task or protected object. The concurrent
5280 -- declaration has been converted into a type declaration, and
5281 -- the object itself has an object declaration that follows
5282 -- the type in the same declarative part.
5283
5284 Tsk := Next_Entity (S);
996ae0b0
RK
5285 while Etype (Tsk) /= S loop
5286 Next_Entity (Tsk);
5287 end loop;
5288
5289 S := Tsk;
5290 exit;
5291
5292 elsif S = Scope_Stack.Table (J).Entity then
5293
5294 -- Call to current task. Will be transformed into call to Self
5295
5296 exit;
5297
5298 end if;
5299 end loop;
5300
5301 New_N :=
5302 Make_Selected_Component (Loc,
5303 Prefix => New_Occurrence_Of (S, Loc),
5304 Selector_Name =>
5305 New_Occurrence_Of (Entity (E_Name), Loc));
5306 Rewrite (E_Name, New_N);
5307 Analyze (E_Name);
5308
5309 elsif Nkind (Entry_Name) = N_Selected_Component
5310 and then Is_Overloaded (Prefix (Entry_Name))
5311 then
5312 -- Use the entry name (which must be unique at this point) to
5313 -- find the prefix that returns the corresponding task type or
5314 -- protected type.
5315
5316 declare
fbf5a39b
AC
5317 Pref : constant Node_Id := Prefix (Entry_Name);
5318 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
996ae0b0
RK
5319 I : Interp_Index;
5320 It : Interp;
996ae0b0
RK
5321
5322 begin
5323 Get_First_Interp (Pref, I, It);
996ae0b0 5324 while Present (It.Typ) loop
996ae0b0
RK
5325 if Scope (Ent) = It.Typ then
5326 Set_Etype (Pref, It.Typ);
5327 exit;
5328 end if;
5329
5330 Get_Next_Interp (I, It);
5331 end loop;
5332 end;
5333 end if;
5334
5335 if Nkind (Entry_Name) = N_Selected_Component then
fbf5a39b 5336 Resolve (Prefix (Entry_Name));
996ae0b0
RK
5337
5338 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5339 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
fbf5a39b 5340 Resolve (Prefix (Prefix (Entry_Name)));
996ae0b0
RK
5341 Index := First (Expressions (Entry_Name));
5342 Resolve (Index, Entry_Index_Type (Nam));
5343
5344 -- Up to this point the expression could have been the actual
5345 -- in a simple entry call, and be given by a named association.
5346
5347 if Nkind (Index) = N_Parameter_Association then
5348 Error_Msg_N ("expect expression for entry index", Index);
5349 else
5350 Apply_Range_Check (Index, Actual_Index_Type (Nam));
5351 end if;
5352 end if;
996ae0b0
RK
5353 end Resolve_Entry;
5354
5355 ------------------------
5356 -- Resolve_Entry_Call --
5357 ------------------------
5358
5359 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
5360 Entry_Name : constant Node_Id := Name (N);
5361 Loc : constant Source_Ptr := Sloc (Entry_Name);
5362 Actuals : List_Id;
5363 First_Named : Node_Id;
5364 Nam : Entity_Id;
5365 Norm_OK : Boolean;
5366 Obj : Node_Id;
5367 Was_Over : Boolean;
5368
5369 begin
fbf5a39b
AC
5370 -- We kill all checks here, because it does not seem worth the
5371 -- effort to do anything better, an entry call is a big operation.
5372
5373 Kill_All_Checks;
5374
996ae0b0
RK
5375 -- Processing of the name is similar for entry calls and protected
5376 -- operation calls. Once the entity is determined, we can complete
5377 -- the resolution of the actuals.
5378
5379 -- The selector may be overloaded, in the case of a protected object
5380 -- with overloaded functions. The type of the context is used for
5381 -- resolution.
5382
5383 if Nkind (Entry_Name) = N_Selected_Component
5384 and then Is_Overloaded (Selector_Name (Entry_Name))
5385 and then Typ /= Standard_Void_Type
5386 then
5387 declare
5388 I : Interp_Index;
5389 It : Interp;
5390
5391 begin
5392 Get_First_Interp (Selector_Name (Entry_Name), I, It);
996ae0b0 5393 while Present (It.Typ) loop
996ae0b0
RK
5394 if Covers (Typ, It.Typ) then
5395 Set_Entity (Selector_Name (Entry_Name), It.Nam);
5396 Set_Etype (Entry_Name, It.Typ);
5397
5398 Generate_Reference (It.Typ, N, ' ');
5399 end if;
5400
5401 Get_Next_Interp (I, It);
5402 end loop;
5403 end;
5404 end if;
5405
5406 Resolve_Entry (Entry_Name);
5407
5408 if Nkind (Entry_Name) = N_Selected_Component then
5409
a77842bd 5410 -- Simple entry call
996ae0b0
RK
5411
5412 Nam := Entity (Selector_Name (Entry_Name));
5413 Obj := Prefix (Entry_Name);
5414 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
5415
5416 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5417
a77842bd 5418 -- Call to member of entry family
996ae0b0
RK
5419
5420 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
5421 Obj := Prefix (Prefix (Entry_Name));
5422 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
5423 end if;
5424
fbf5a39b
AC
5425 -- We cannot in general check the maximum depth of protected entry
5426 -- calls at compile time. But we can tell that any protected entry
5427 -- call at all violates a specified nesting depth of zero.
5428
5429 if Is_Protected_Type (Scope (Nam)) then
9f4fd324 5430 Check_Restriction (Max_Entry_Queue_Length, N);
fbf5a39b
AC
5431 end if;
5432
996ae0b0
RK
5433 -- Use context type to disambiguate a protected function that can be
5434 -- called without actuals and that returns an array type, and where
5435 -- the argument list may be an indexing of the returned value.
5436
5437 if Ekind (Nam) = E_Function
5438 and then Needs_No_Actuals (Nam)
5439 and then Present (Parameter_Associations (N))
5440 and then
5441 ((Is_Array_Type (Etype (Nam))
5442 and then Covers (Typ, Component_Type (Etype (Nam))))
5443
5444 or else (Is_Access_Type (Etype (Nam))
5445 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5446 and then Covers (Typ,
5447 Component_Type (Designated_Type (Etype (Nam))))))
5448 then
5449 declare
5450 Index_Node : Node_Id;
5451
5452 begin
5453 Index_Node :=
5454 Make_Indexed_Component (Loc,
5455 Prefix =>
5456 Make_Function_Call (Loc,
5457 Name => Relocate_Node (Entry_Name)),
5458 Expressions => Parameter_Associations (N));
5459
5460 -- Since we are correcting a node classification error made by
5461 -- the parser, we call Replace rather than Rewrite.
5462
5463 Replace (N, Index_Node);
5464 Set_Etype (Prefix (N), Etype (Nam));
5465 Set_Etype (N, Typ);
5466 Resolve_Indexed_Component (N, Typ);
5467 return;
5468 end;
5469 end if;
5470
5471 -- The operation name may have been overloaded. Order the actuals
fbf5a39b
AC
5472 -- according to the formals of the resolved entity, and set the
5473 -- return type to that of the operation.
996ae0b0
RK
5474
5475 if Was_Over then
5476 Normalize_Actuals (N, Nam, False, Norm_OK);
5477 pragma Assert (Norm_OK);
fbf5a39b 5478 Set_Etype (N, Etype (Nam));
996ae0b0
RK
5479 end if;
5480
5481 Resolve_Actuals (N, Nam);
5482 Generate_Reference (Nam, Entry_Name);
5483
5484 if Ekind (Nam) = E_Entry
5485 or else Ekind (Nam) = E_Entry_Family
5486 then
5487 Check_Potentially_Blocking_Operation (N);
5488 end if;
5489
5490 -- Verify that a procedure call cannot masquerade as an entry
5491 -- call where an entry call is expected.
5492
5493 if Ekind (Nam) = E_Procedure then
996ae0b0
RK
5494 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5495 and then N = Entry_Call_Statement (Parent (N))
5496 then
5497 Error_Msg_N ("entry call required in select statement", N);
5498
5499 elsif Nkind (Parent (N)) = N_Triggering_Alternative
5500 and then N = Triggering_Statement (Parent (N))
5501 then
5502 Error_Msg_N ("triggering statement cannot be procedure call", N);
5503
5504 elsif Ekind (Scope (Nam)) = E_Task_Type
5505 and then not In_Open_Scopes (Scope (Nam))
5506 then
758c442c 5507 Error_Msg_N ("task has no entry with this name", Entry_Name);
996ae0b0
RK
5508 end if;
5509 end if;
5510
5511 -- After resolution, entry calls and protected procedure calls
5512 -- are changed into entry calls, for expansion. The structure
5513 -- of the node does not change, so it can safely be done in place.
5514 -- Protected function calls must keep their structure because they
5515 -- are subexpressions.
5516
5517 if Ekind (Nam) /= E_Function then
5518
5519 -- A protected operation that is not a function may modify the
5520 -- corresponding object, and cannot apply to a constant.
5521 -- If this is an internal call, the prefix is the type itself.
5522
5523 if Is_Protected_Type (Scope (Nam))
5524 and then not Is_Variable (Obj)
5525 and then (not Is_Entity_Name (Obj)
5526 or else not Is_Type (Entity (Obj)))
5527 then
5528 Error_Msg_N
5529 ("prefix of protected procedure or entry call must be variable",
5530 Entry_Name);
5531 end if;
5532
5533 Actuals := Parameter_Associations (N);
5534 First_Named := First_Named_Actual (N);
5535
5536 Rewrite (N,
5537 Make_Entry_Call_Statement (Loc,
5538 Name => Entry_Name,
5539 Parameter_Associations => Actuals));
5540
5541 Set_First_Named_Actual (N, First_Named);
5542 Set_Analyzed (N, True);
5543
5544 -- Protected functions can return on the secondary stack, in which
1420b484 5545 -- case we must trigger the transient scope mechanism.
996ae0b0
RK
5546
5547 elsif Expander_Active
5548 and then Requires_Transient_Scope (Etype (Nam))
5549 then
0669bebe 5550 Establish_Transient_Scope (N, Sec_Stack => True);
996ae0b0 5551 end if;
996ae0b0
RK
5552 end Resolve_Entry_Call;
5553
5554 -------------------------
5555 -- Resolve_Equality_Op --
5556 -------------------------
5557
5558 -- Both arguments must have the same type, and the boolean context
5559 -- does not participate in the resolution. The first pass verifies
5560 -- that the interpretation is not ambiguous, and the type of the left
5561 -- argument is correctly set, or is Any_Type in case of ambiguity.
5562 -- If both arguments are strings or aggregates, allocators, or Null,
5563 -- they are ambiguous even though they carry a single (universal) type.
5564 -- Diagnose this case here.
5565
5566 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
5567 L : constant Node_Id := Left_Opnd (N);
5568 R : constant Node_Id := Right_Opnd (N);
5569 T : Entity_Id := Find_Unique_Type (L, R);
5570
5571 function Find_Unique_Access_Type return Entity_Id;
5572 -- In the case of allocators, make a last-ditch attempt to find a single
5573 -- access type with the right designated type. This is semantically
5574 -- dubious, and of no interest to any real code, but c48008a makes it
5575 -- all worthwhile.
5576
5577 -----------------------------
5578 -- Find_Unique_Access_Type --
5579 -----------------------------
5580
5581 function Find_Unique_Access_Type return Entity_Id is
5582 Acc : Entity_Id;
5583 E : Entity_Id;
1420b484 5584 S : Entity_Id;
996ae0b0
RK
5585
5586 begin
5587 if Ekind (Etype (R)) = E_Allocator_Type then
5588 Acc := Designated_Type (Etype (R));
996ae0b0
RK
5589 elsif Ekind (Etype (L)) = E_Allocator_Type then
5590 Acc := Designated_Type (Etype (L));
996ae0b0
RK
5591 else
5592 return Empty;
5593 end if;
5594
1420b484 5595 S := Current_Scope;
996ae0b0
RK
5596 while S /= Standard_Standard loop
5597 E := First_Entity (S);
996ae0b0 5598 while Present (E) loop
996ae0b0
RK
5599 if Is_Type (E)
5600 and then Is_Access_Type (E)
5601 and then Ekind (E) /= E_Allocator_Type
5602 and then Designated_Type (E) = Base_Type (Acc)
5603 then
5604 return E;
5605 end if;
5606
5607 Next_Entity (E);
5608 end loop;
5609
5610 S := Scope (S);
5611 end loop;
5612
5613 return Empty;
5614 end Find_Unique_Access_Type;
5615
5616 -- Start of processing for Resolve_Equality_Op
5617
5618 begin
5619 Set_Etype (N, Base_Type (Typ));
5620 Generate_Reference (T, N, ' ');
5621
5622 if T = Any_Fixed then
5623 T := Unique_Fixed_Point_Type (L);
5624 end if;
5625
5626 if T /= Any_Type then
996ae0b0
RK
5627 if T = Any_String
5628 or else T = Any_Composite
5629 or else T = Any_Character
5630 then
996ae0b0
RK
5631 if T = Any_Character then
5632 Ambiguous_Character (L);
5633 else
5634 Error_Msg_N ("ambiguous operands for equality", N);
5635 end if;
5636
5637 Set_Etype (N, Any_Type);
5638 return;
5639
5640 elsif T = Any_Access
5641 or else Ekind (T) = E_Allocator_Type
0669bebe 5642 or else Ekind (T) = E_Access_Attribute_Type
996ae0b0
RK
5643 then
5644 T := Find_Unique_Access_Type;
5645
5646 if No (T) then
5647 Error_Msg_N ("ambiguous operands for equality", N);
5648 Set_Etype (N, Any_Type);
5649 return;
5650 end if;
5651 end if;
5652
996ae0b0
RK
5653 Resolve (L, T);
5654 Resolve (R, T);
fbf5a39b 5655
0669bebe
GB
5656 -- If the unique type is a class-wide type then it will be expanded
5657 -- into a dispatching call to the predefined primitive. Therefore we
5658 -- check here for potential violation of such restriction.
5659
5660 if Is_Class_Wide_Type (T) then
5661 Check_Restriction (No_Dispatching_Calls, N);
5662 end if;
5663
fbf5a39b
AC
5664 if Warn_On_Redundant_Constructs
5665 and then Comes_From_Source (N)
5666 and then Is_Entity_Name (R)
5667 and then Entity (R) = Standard_True
5668 and then Comes_From_Source (R)
5669 then
aa5147f0 5670 Error_Msg_N ("?comparison with True is redundant!", R);
fbf5a39b
AC
5671 end if;
5672
996ae0b0
RK
5673 Check_Unset_Reference (L);
5674 Check_Unset_Reference (R);
fbf5a39b 5675 Generate_Operator_Reference (N, T);
996ae0b0
RK
5676
5677 -- If this is an inequality, it may be the implicit inequality
5678 -- created for a user-defined operation, in which case the corres-
5679 -- ponding equality operation is not intrinsic, and the operation
5680 -- cannot be constant-folded. Else fold.
5681
5682 if Nkind (N) = N_Op_Eq
5683 or else Comes_From_Source (Entity (N))
5684 or else Ekind (Entity (N)) = E_Operator
5685 or else Is_Intrinsic_Subprogram
5686 (Corresponding_Equality (Entity (N)))
5687 then
5688 Eval_Relational_Op (N);
5689 elsif Nkind (N) = N_Op_Ne
0669bebe 5690 and then Is_Abstract_Subprogram (Entity (N))
996ae0b0
RK
5691 then
5692 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
5693 end if;
758c442c 5694
c8ef728f
ES
5695 -- Ada 2005: If one operand is an anonymous access type, convert
5696 -- the other operand to it, to ensure that the underlying types
b7d1f17f
HK
5697 -- match in the back-end. Same for access_to_subprogram, and the
5698 -- conversion verifies that the types are subtype conformant.
5699
c8ef728f
ES
5700 -- We apply the same conversion in the case one of the operands is
5701 -- a private subtype of the type of the other.
5702
b7d1f17f
HK
5703 -- Why the Expander_Active test here ???
5704
4197ae1e 5705 if Expander_Active
b7d1f17f
HK
5706 and then
5707 (Ekind (T) = E_Anonymous_Access_Type
5708 or else Ekind (T) = E_Anonymous_Access_Subprogram_Type
5709 or else Is_Private_Type (T))
c8ef728f
ES
5710 then
5711 if Etype (L) /= T then
5712 Rewrite (L,
5713 Make_Unchecked_Type_Conversion (Sloc (L),
5714 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
5715 Expression => Relocate_Node (L)));
5716 Analyze_And_Resolve (L, T);
5717 end if;
5718
5719 if (Etype (R)) /= T then
5720 Rewrite (R,
5721 Make_Unchecked_Type_Conversion (Sloc (R),
5722 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
5723 Expression => Relocate_Node (R)));
5724 Analyze_And_Resolve (R, T);
5725 end if;
5726 end if;
996ae0b0
RK
5727 end if;
5728 end Resolve_Equality_Op;
5729
5730 ----------------------------------
5731 -- Resolve_Explicit_Dereference --
5732 ----------------------------------
5733
5734 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
bc5f3720
RD
5735 Loc : constant Source_Ptr := Sloc (N);
5736 New_N : Node_Id;
5737 P : constant Node_Id := Prefix (N);
5738 I : Interp_Index;
5739 It : Interp;
996ae0b0
RK
5740
5741 begin
c8ef728f 5742 Check_Fully_Declared_Prefix (Typ, P);
996ae0b0
RK
5743
5744 if Is_Overloaded (P) then
5745
758c442c
GD
5746 -- Use the context type to select the prefix that has the correct
5747 -- designated type.
996ae0b0
RK
5748
5749 Get_First_Interp (P, I, It);
5750 while Present (It.Typ) loop
5751 exit when Is_Access_Type (It.Typ)
5752 and then Covers (Typ, Designated_Type (It.Typ));
996ae0b0
RK
5753 Get_Next_Interp (I, It);
5754 end loop;
5755
bc5f3720
RD
5756 if Present (It.Typ) then
5757 Resolve (P, It.Typ);
5758 else
758c442c
GD
5759 -- If no interpretation covers the designated type of the prefix,
5760 -- this is the pathological case where not all implementations of
5761 -- the prefix allow the interpretation of the node as a call. Now
5762 -- that the expected type is known, Remove other interpretations
5763 -- from prefix, rewrite it as a call, and resolve again, so that
5764 -- the proper call node is generated.
bc5f3720
RD
5765
5766 Get_First_Interp (P, I, It);
5767 while Present (It.Typ) loop
5768 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
5769 Remove_Interp (I);
5770 end if;
5771
5772 Get_Next_Interp (I, It);
5773 end loop;
5774
5775 New_N :=
5776 Make_Function_Call (Loc,
5777 Name =>
5778 Make_Explicit_Dereference (Loc,
5779 Prefix => P),
5780 Parameter_Associations => New_List);
5781
5782 Save_Interps (N, New_N);
5783 Rewrite (N, New_N);
5784 Analyze_And_Resolve (N, Typ);
5785 return;
5786 end if;
5787
996ae0b0
RK
5788 Set_Etype (N, Designated_Type (It.Typ));
5789
5790 else
fbf5a39b 5791 Resolve (P);
996ae0b0
RK
5792 end if;
5793
5794 if Is_Access_Type (Etype (P)) then
5795 Apply_Access_Check (N);
5796 end if;
5797
758c442c
GD
5798 -- If the designated type is a packed unconstrained array type, and the
5799 -- explicit dereference is not in the context of an attribute reference,
5800 -- then we must compute and set the actual subtype, since it is needed
5801 -- by Gigi. The reason we exclude the attribute case is that this is
5802 -- handled fine by Gigi, and in fact we use such attributes to build the
5803 -- actual subtype. We also exclude generated code (which builds actual
5804 -- subtypes directly if they are needed).
996ae0b0
RK
5805
5806 if Is_Array_Type (Etype (N))
5807 and then Is_Packed (Etype (N))
5808 and then not Is_Constrained (Etype (N))
5809 and then Nkind (Parent (N)) /= N_Attribute_Reference
5810 and then Comes_From_Source (N)
5811 then
5812 Set_Etype (N, Get_Actual_Subtype (N));
5813 end if;
5814
758c442c
GD
5815 -- Note: there is no Eval processing required for an explicit deference,
5816 -- because the type is known to be an allocators, and allocator
5817 -- expressions can never be static.
996ae0b0
RK
5818
5819 end Resolve_Explicit_Dereference;
5820
5821 -------------------------------
5822 -- Resolve_Indexed_Component --
5823 -------------------------------
5824
5825 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
5826 Name : constant Node_Id := Prefix (N);
5827 Expr : Node_Id;
5828 Array_Type : Entity_Id := Empty; -- to prevent junk warning
5829 Index : Node_Id;
5830
5831 begin
5832 if Is_Overloaded (Name) then
5833
758c442c
GD
5834 -- Use the context type to select the prefix that yields the correct
5835 -- component type.
996ae0b0
RK
5836
5837 declare
5838 I : Interp_Index;
5839 It : Interp;
5840 I1 : Interp_Index := 0;
5841 P : constant Node_Id := Prefix (N);
5842 Found : Boolean := False;
5843
5844 begin
5845 Get_First_Interp (P, I, It);
996ae0b0 5846 while Present (It.Typ) loop
996ae0b0
RK
5847 if (Is_Array_Type (It.Typ)
5848 and then Covers (Typ, Component_Type (It.Typ)))
5849 or else (Is_Access_Type (It.Typ)
5850 and then Is_Array_Type (Designated_Type (It.Typ))
5851 and then Covers
5852 (Typ, Component_Type (Designated_Type (It.Typ))))
5853 then
5854 if Found then
5855 It := Disambiguate (P, I1, I, Any_Type);
5856
5857 if It = No_Interp then
5858 Error_Msg_N ("ambiguous prefix for indexing", N);
5859 Set_Etype (N, Typ);
5860 return;
5861
5862 else
5863 Found := True;
5864 Array_Type := It.Typ;
5865 I1 := I;
5866 end if;
5867
5868 else
5869 Found := True;
5870 Array_Type := It.Typ;
5871 I1 := I;
5872 end if;
5873 end if;
5874
5875 Get_Next_Interp (I, It);
5876 end loop;
5877 end;
5878
5879 else
5880 Array_Type := Etype (Name);
5881 end if;
5882
5883 Resolve (Name, Array_Type);
5884 Array_Type := Get_Actual_Subtype_If_Available (Name);
5885
5886 -- If prefix is access type, dereference to get real array type.
5887 -- Note: we do not apply an access check because the expander always
5888 -- introduces an explicit dereference, and the check will happen there.
5889
5890 if Is_Access_Type (Array_Type) then
5891 Array_Type := Designated_Type (Array_Type);
5892 end if;
5893
a77842bd 5894 -- If name was overloaded, set component type correctly now
b7d1f17f
HK
5895 -- If a misplaced call to an entry family (which has no index typs)
5896 -- return. Error will be diagnosed from calling context.
996ae0b0 5897
b7d1f17f
HK
5898 if Is_Array_Type (Array_Type) then
5899 Set_Etype (N, Component_Type (Array_Type));
5900 else
5901 return;
5902 end if;
996ae0b0
RK
5903
5904 Index := First_Index (Array_Type);
5905 Expr := First (Expressions (N));
5906
758c442c
GD
5907 -- The prefix may have resolved to a string literal, in which case its
5908 -- etype has a special representation. This is only possible currently
5909 -- if the prefix is a static concatenation, written in functional
5910 -- notation.
996ae0b0
RK
5911
5912 if Ekind (Array_Type) = E_String_Literal_Subtype then
5913 Resolve (Expr, Standard_Positive);
5914
5915 else
5916 while Present (Index) and Present (Expr) loop
5917 Resolve (Expr, Etype (Index));
5918 Check_Unset_Reference (Expr);
5919
5920 if Is_Scalar_Type (Etype (Expr)) then
5921 Apply_Scalar_Range_Check (Expr, Etype (Index));
5922 else
5923 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
5924 end if;
5925
5926 Next_Index (Index);
5927 Next (Expr);
5928 end loop;
5929 end if;
5930
0669bebe
GB
5931 -- Do not generate the warning on suspicious index if we are analyzing
5932 -- package Ada.Tags; otherwise we will report the warning with the
5933 -- Prims_Ptr field of the dispatch table.
5934
5935 if Scope (Etype (Prefix (N))) = Standard_Standard
5936 or else not
5937 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
5938 Ada_Tags)
5939 then
5940 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
5941 Eval_Indexed_Component (N);
5942 end if;
996ae0b0
RK
5943 end Resolve_Indexed_Component;
5944
5945 -----------------------------
5946 -- Resolve_Integer_Literal --
5947 -----------------------------
5948
5949 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
5950 begin
5951 Set_Etype (N, Typ);
5952 Eval_Integer_Literal (N);
5953 end Resolve_Integer_Literal;
5954
15ce9ca2
AC
5955 --------------------------------
5956 -- Resolve_Intrinsic_Operator --
5957 --------------------------------
996ae0b0
RK
5958
5959 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
5960 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
5961 Op : Entity_Id;
5962 Arg1 : Node_Id;
5963 Arg2 : Node_Id;
996ae0b0
RK
5964
5965 begin
5966 Op := Entity (N);
996ae0b0
RK
5967 while Scope (Op) /= Standard_Standard loop
5968 Op := Homonym (Op);
5969 pragma Assert (Present (Op));
5970 end loop;
5971
5972 Set_Entity (N, Op);
af152989 5973 Set_Is_Overloaded (N, False);
996ae0b0 5974
758c442c
GD
5975 -- If the operand type is private, rewrite with suitable conversions on
5976 -- the operands and the result, to expose the proper underlying numeric
5977 -- type.
996ae0b0 5978
fbf5a39b
AC
5979 if Is_Private_Type (Typ) then
5980 Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
5981
5982 if Nkind (N) = N_Op_Expon then
5983 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
5984 else
5985 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
5986 end if;
5987
5988 Save_Interps (Left_Opnd (N), Expression (Arg1));
5989 Save_Interps (Right_Opnd (N), Expression (Arg2));
996ae0b0 5990
fbf5a39b
AC
5991 Set_Left_Opnd (N, Arg1);
5992 Set_Right_Opnd (N, Arg2);
5993
5994 Set_Etype (N, Btyp);
5995 Rewrite (N, Unchecked_Convert_To (Typ, N));
5996 Resolve (N, Typ);
5997
5998 elsif Typ /= Etype (Left_Opnd (N))
5999 or else Typ /= Etype (Right_Opnd (N))
6000 then
6001 -- Add explicit conversion where needed, and save interpretations
af152989 6002 -- in case operands are overloaded.
fbf5a39b 6003
af152989 6004 Arg1 := Convert_To (Typ, Left_Opnd (N));
fbf5a39b
AC
6005 Arg2 := Convert_To (Typ, Right_Opnd (N));
6006
6007 if Nkind (Arg1) = N_Type_Conversion then
6008 Save_Interps (Left_Opnd (N), Expression (Arg1));
af152989
AC
6009 else
6010 Save_Interps (Left_Opnd (N), Arg1);
fbf5a39b
AC
6011 end if;
6012
6013 if Nkind (Arg2) = N_Type_Conversion then
6014 Save_Interps (Right_Opnd (N), Expression (Arg2));
af152989 6015 else
0ab80019 6016 Save_Interps (Right_Opnd (N), Arg2);
fbf5a39b
AC
6017 end if;
6018
6019 Rewrite (Left_Opnd (N), Arg1);
6020 Rewrite (Right_Opnd (N), Arg2);
6021 Analyze (Arg1);
6022 Analyze (Arg2);
6023 Resolve_Arithmetic_Op (N, Typ);
6024
6025 else
6026 Resolve_Arithmetic_Op (N, Typ);
6027 end if;
996ae0b0
RK
6028 end Resolve_Intrinsic_Operator;
6029
fbf5a39b
AC
6030 --------------------------------------
6031 -- Resolve_Intrinsic_Unary_Operator --
6032 --------------------------------------
6033
6034 procedure Resolve_Intrinsic_Unary_Operator
6035 (N : Node_Id;
6036 Typ : Entity_Id)
6037 is
6038 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6039 Op : Entity_Id;
6040 Arg2 : Node_Id;
6041
6042 begin
6043 Op := Entity (N);
fbf5a39b
AC
6044 while Scope (Op) /= Standard_Standard loop
6045 Op := Homonym (Op);
6046 pragma Assert (Present (Op));
6047 end loop;
6048
6049 Set_Entity (N, Op);
6050
6051 if Is_Private_Type (Typ) then
6052 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6053 Save_Interps (Right_Opnd (N), Expression (Arg2));
6054
6055 Set_Right_Opnd (N, Arg2);
6056
6057 Set_Etype (N, Btyp);
6058 Rewrite (N, Unchecked_Convert_To (Typ, N));
6059 Resolve (N, Typ);
6060
6061 else
6062 Resolve_Unary_Op (N, Typ);
6063 end if;
6064 end Resolve_Intrinsic_Unary_Operator;
6065
996ae0b0
RK
6066 ------------------------
6067 -- Resolve_Logical_Op --
6068 ------------------------
6069
6070 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
6071 B_Typ : Entity_Id;
c8ef728f 6072 N_Opr : constant Node_Kind := Nkind (N);
996ae0b0
RK
6073
6074 begin
758c442c
GD
6075 -- Predefined operations on scalar types yield the base type. On the
6076 -- other hand, logical operations on arrays yield the type of the
6077 -- arguments (and the context).
996ae0b0
RK
6078
6079 if Is_Array_Type (Typ) then
6080 B_Typ := Typ;
6081 else
6082 B_Typ := Base_Type (Typ);
6083 end if;
6084
6085 -- The following test is required because the operands of the operation
6086 -- may be literals, in which case the resulting type appears to be
6087 -- compatible with a signed integer type, when in fact it is compatible
6088 -- only with modular types. If the context itself is universal, the
6089 -- operation is illegal.
6090
6091 if not Valid_Boolean_Arg (Typ) then
6092 Error_Msg_N ("invalid context for logical operation", N);
6093 Set_Etype (N, Any_Type);
6094 return;
6095
6096 elsif Typ = Any_Modular then
6097 Error_Msg_N
6098 ("no modular type available in this context", N);
6099 Set_Etype (N, Any_Type);
6100 return;
07fc65c4
GB
6101 elsif Is_Modular_Integer_Type (Typ)
6102 and then Etype (Left_Opnd (N)) = Universal_Integer
6103 and then Etype (Right_Opnd (N)) = Universal_Integer
6104 then
6105 Check_For_Visible_Operator (N, B_Typ);
996ae0b0
RK
6106 end if;
6107
6108 Resolve (Left_Opnd (N), B_Typ);
6109 Resolve (Right_Opnd (N), B_Typ);
6110
6111 Check_Unset_Reference (Left_Opnd (N));
6112 Check_Unset_Reference (Right_Opnd (N));
6113
6114 Set_Etype (N, B_Typ);
fbf5a39b 6115 Generate_Operator_Reference (N, B_Typ);
996ae0b0 6116 Eval_Logical_Op (N);
c8ef728f
ES
6117
6118 -- Check for violation of restriction No_Direct_Boolean_Operators
6119 -- if the operator was not eliminated by the Eval_Logical_Op call.
6120
6121 if Nkind (N) = N_Opr
6122 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
6123 then
6124 Check_Restriction (No_Direct_Boolean_Operators, N);
6125 end if;
996ae0b0
RK
6126 end Resolve_Logical_Op;
6127
6128 ---------------------------
6129 -- Resolve_Membership_Op --
6130 ---------------------------
6131
6132 -- The context can only be a boolean type, and does not determine
6133 -- the arguments. Arguments should be unambiguous, but the preference
6134 -- rule for universal types applies.
6135
6136 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
6137 pragma Warnings (Off, Typ);
6138
996ae0b0
RK
6139 L : constant Node_Id := Left_Opnd (N);
6140 R : constant Node_Id := Right_Opnd (N);
6141 T : Entity_Id;
6142
6143 begin
6144 if L = Error or else R = Error then
6145 return;
6146 end if;
6147
6148 if not Is_Overloaded (R)
6149 and then
6150 (Etype (R) = Universal_Integer or else
6151 Etype (R) = Universal_Real)
6152 and then Is_Overloaded (L)
6153 then
6154 T := Etype (R);
1420b484
JM
6155
6156 -- Ada 2005 (AI-251): Give support to the following case:
6157
6158 -- type I is interface;
6159 -- type T is tagged ...
6160
c8ef728f 6161 -- function Test (O : I'Class) is
1420b484
JM
6162 -- begin
6163 -- return O in T'Class.
6164 -- end Test;
6165
6166 -- In this case we have nothing else to do; the membership test will be
6167 -- done at run-time.
6168
6169 elsif Ada_Version >= Ada_05
6170 and then Is_Class_Wide_Type (Etype (L))
6171 and then Is_Interface (Etype (L))
6172 and then Is_Class_Wide_Type (Etype (R))
6173 and then not Is_Interface (Etype (R))
6174 then
6175 return;
6176
996ae0b0
RK
6177 else
6178 T := Intersect_Types (L, R);
6179 end if;
6180
6181 Resolve (L, T);
6182 Check_Unset_Reference (L);
6183
6184 if Nkind (R) = N_Range
6185 and then not Is_Scalar_Type (T)
6186 then
6187 Error_Msg_N ("scalar type required for range", R);
6188 end if;
6189
6190 if Is_Entity_Name (R) then
6191 Freeze_Expression (R);
6192 else
6193 Resolve (R, T);
6194 Check_Unset_Reference (R);
6195 end if;
6196
6197 Eval_Membership_Op (N);
6198 end Resolve_Membership_Op;
6199
6200 ------------------
6201 -- Resolve_Null --
6202 ------------------
6203
6204 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
6205 begin
758c442c
GD
6206 -- Handle restriction against anonymous null access values This
6207 -- restriction can be turned off using -gnatdh.
996ae0b0 6208
0ab80019 6209 -- Ada 2005 (AI-231): Remove restriction
2820d220 6210
0ab80019 6211 if Ada_Version < Ada_05
2820d220 6212 and then not Debug_Flag_J
996ae0b0
RK
6213 and then Ekind (Typ) = E_Anonymous_Access_Type
6214 and then Comes_From_Source (N)
6215 then
6216 -- In the common case of a call which uses an explicitly null
6217 -- value for an access parameter, give specialized error msg
6218
6219 if Nkind (Parent (N)) = N_Procedure_Call_Statement
6220 or else
6221 Nkind (Parent (N)) = N_Function_Call
6222 then
6223 Error_Msg_N
6224 ("null is not allowed as argument for an access parameter", N);
6225
6226 -- Standard message for all other cases (are there any?)
6227
6228 else
6229 Error_Msg_N
6230 ("null cannot be of an anonymous access type", N);
6231 end if;
6232 end if;
6233
6234 -- In a distributed context, null for a remote access to subprogram
6235 -- may need to be replaced with a special record aggregate. In this
6236 -- case, return after having done the transformation.
6237
6238 if (Ekind (Typ) = E_Record_Type
6239 or else Is_Remote_Access_To_Subprogram_Type (Typ))
6240 and then Remote_AST_Null_Value (N, Typ)
6241 then
6242 return;
6243 end if;
6244
a77842bd 6245 -- The null literal takes its type from the context
996ae0b0
RK
6246
6247 Set_Etype (N, Typ);
6248 end Resolve_Null;
6249
6250 -----------------------
6251 -- Resolve_Op_Concat --
6252 -----------------------
6253
6254 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
6255 Btyp : constant Entity_Id := Base_Type (Typ);
6256 Op1 : constant Node_Id := Left_Opnd (N);
6257 Op2 : constant Node_Id := Right_Opnd (N);
6258
6259 procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean);
6260 -- Internal procedure to resolve one operand of concatenation operator.
6261 -- The operand is either of the array type or of the component type.
6262 -- If the operand is an aggregate, and the component type is composite,
6263 -- this is ambiguous if component type has aggregates.
6264
6265 -------------------------------
6266 -- Resolve_Concatenation_Arg --
6267 -------------------------------
6268
6269 procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean) is
6270 begin
6271 if In_Instance then
6272 if Is_Comp
6273 or else (not Is_Overloaded (Arg)
6274 and then Etype (Arg) /= Any_Composite
6275 and then Covers (Component_Type (Typ), Etype (Arg)))
6276 then
6277 Resolve (Arg, Component_Type (Typ));
6278 else
6279 Resolve (Arg, Btyp);
6280 end if;
6281
6282 elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
6283
6284 if Nkind (Arg) = N_Aggregate
6285 and then Is_Composite_Type (Component_Type (Typ))
6286 then
6287 if Is_Private_Type (Component_Type (Typ)) then
6288 Resolve (Arg, Btyp);
6289
6290 else
6291 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
6292 Set_Etype (Arg, Any_Type);
6293 end if;
6294
6295 else
6296 if Is_Overloaded (Arg)
6297 and then Has_Compatible_Type (Arg, Typ)
6298 and then Etype (Arg) /= Any_Type
6299 then
996ae0b0
RK
6300
6301 declare
9ebe3743
HK
6302 I : Interp_Index;
6303 It : Interp;
6304 Func : Entity_Id;
996ae0b0
RK
6305
6306 begin
6307 Get_First_Interp (Arg, I, It);
9ebe3743
HK
6308 Func := It.Nam;
6309 Get_Next_Interp (I, It);
6310
6311 -- Special-case the error message when the overloading
6312 -- is caused by a function that yields and array and
6313 -- can be called without parameters.
6314
6315 if It.Nam = Func then
6316 Error_Msg_Sloc := Sloc (Func);
b7d1f17f 6317 Error_Msg_N ("ambiguous call to function#", Arg);
9ebe3743 6318 Error_Msg_NE
aa180613 6319 ("\\interpretation as call yields&", Arg, Typ);
9ebe3743 6320 Error_Msg_NE
aa180613 6321 ("\\interpretation as indexing of call yields&",
9ebe3743
HK
6322 Arg, Component_Type (Typ));
6323
6324 else
aa180613
RD
6325 Error_Msg_N
6326 ("ambiguous operand for concatenation!", Arg);
9ebe3743
HK
6327 Get_First_Interp (Arg, I, It);
6328 while Present (It.Nam) loop
996ae0b0 6329 Error_Msg_Sloc := Sloc (It.Nam);
996ae0b0 6330
9ebe3743
HK
6331 if Base_Type (It.Typ) = Base_Type (Typ)
6332 or else Base_Type (It.Typ) =
6333 Base_Type (Component_Type (Typ))
6334 then
aa180613 6335 Error_Msg_N ("\\possible interpretation#", Arg);
9ebe3743
HK
6336 end if;
6337
6338 Get_Next_Interp (I, It);
6339 end loop;
6340 end if;
996ae0b0
RK
6341 end;
6342 end if;
6343
6344 Resolve (Arg, Component_Type (Typ));
6345
fbf5a39b
AC
6346 if Nkind (Arg) = N_String_Literal then
6347 Set_Etype (Arg, Component_Type (Typ));
6348 end if;
6349
996ae0b0
RK
6350 if Arg = Left_Opnd (N) then
6351 Set_Is_Component_Left_Opnd (N);
6352 else
6353 Set_Is_Component_Right_Opnd (N);
6354 end if;
6355 end if;
6356
6357 else
6358 Resolve (Arg, Btyp);
6359 end if;
6360
6361 Check_Unset_Reference (Arg);
6362 end Resolve_Concatenation_Arg;
6363
6364 -- Start of processing for Resolve_Op_Concat
6365
6366 begin
dae2b8ea
HK
6367 -- The parser folds an enormous sequence of concatenations of string
6368 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
6369 -- in the right. If the expression resolves to a predefined "&"
6370 -- operator, all is well. Otherwise, the parser's folding is wrong, so
6371 -- we give an error. See P_Simple_Expression in Par.Ch4.
6372
6373 if Nkind (Op2) = N_String_Literal
6374 and then Is_Folded_In_Parser (Op2)
6375 and then Ekind (Entity (N)) = E_Function
6376 then
6377 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
6378 and then String_Length (Strval (Op1)) = 0);
6379 Error_Msg_N ("too many user-defined concatenations", N);
6380 return;
6381 end if;
6382
996ae0b0
RK
6383 Set_Etype (N, Btyp);
6384
6385 if Is_Limited_Composite (Btyp) then
6386 Error_Msg_N ("concatenation not available for limited array", N);
fbf5a39b 6387 Explain_Limited_Type (Btyp, N);
996ae0b0
RK
6388 end if;
6389
758c442c
GD
6390 -- If the operands are themselves concatenations, resolve them as such
6391 -- directly. This removes several layers of recursion and allows GNAT to
6392 -- handle larger multiple concatenations.
996ae0b0
RK
6393
6394 if Nkind (Op1) = N_Op_Concat
6395 and then not Is_Array_Type (Component_Type (Typ))
6396 and then Entity (Op1) = Entity (N)
6397 then
6398 Resolve_Op_Concat (Op1, Typ);
6399 else
6400 Resolve_Concatenation_Arg
6401 (Op1, Is_Component_Left_Opnd (N));
6402 end if;
6403
6404 if Nkind (Op2) = N_Op_Concat
6405 and then not Is_Array_Type (Component_Type (Typ))
6406 and then Entity (Op2) = Entity (N)
6407 then
6408 Resolve_Op_Concat (Op2, Typ);
6409 else
6410 Resolve_Concatenation_Arg
6411 (Op2, Is_Component_Right_Opnd (N));
6412 end if;
6413
fbf5a39b 6414 Generate_Operator_Reference (N, Typ);
996ae0b0
RK
6415
6416 if Is_String_Type (Typ) then
6417 Eval_Concatenation (N);
6418 end if;
6419
6420 -- If this is not a static concatenation, but the result is a
6421 -- string type (and not an array of strings) insure that static
6422 -- string operands have their subtypes properly constructed.
6423
6424 if Nkind (N) /= N_String_Literal
6425 and then Is_Character_Type (Component_Type (Typ))
6426 then
6427 Set_String_Literal_Subtype (Op1, Typ);
6428 Set_String_Literal_Subtype (Op2, Typ);
6429 end if;
6430 end Resolve_Op_Concat;
6431
6432 ----------------------
6433 -- Resolve_Op_Expon --
6434 ----------------------
6435
6436 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
6437 B_Typ : constant Entity_Id := Base_Type (Typ);
6438
6439 begin
6440 -- Catch attempts to do fixed-point exponentation with universal
758c442c
GD
6441 -- operands, which is a case where the illegality is not caught during
6442 -- normal operator analysis.
996ae0b0
RK
6443
6444 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
6445 Error_Msg_N ("exponentiation not available for fixed point", N);
6446 return;
6447 end if;
6448
fbf5a39b
AC
6449 if Comes_From_Source (N)
6450 and then Ekind (Entity (N)) = E_Function
6451 and then Is_Imported (Entity (N))
6452 and then Is_Intrinsic_Subprogram (Entity (N))
6453 then
6454 Resolve_Intrinsic_Operator (N, Typ);
6455 return;
6456 end if;
6457
996ae0b0
RK
6458 if Etype (Left_Opnd (N)) = Universal_Integer
6459 or else Etype (Left_Opnd (N)) = Universal_Real
6460 then
6461 Check_For_Visible_Operator (N, B_Typ);
6462 end if;
6463
6464 -- We do the resolution using the base type, because intermediate values
6465 -- in expressions always are of the base type, not a subtype of it.
6466
6467 Resolve (Left_Opnd (N), B_Typ);
6468 Resolve (Right_Opnd (N), Standard_Integer);
6469
6470 Check_Unset_Reference (Left_Opnd (N));
6471 Check_Unset_Reference (Right_Opnd (N));
6472
6473 Set_Etype (N, B_Typ);
fbf5a39b 6474 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
6475 Eval_Op_Expon (N);
6476
6477 -- Set overflow checking bit. Much cleverer code needed here eventually
6478 -- and perhaps the Resolve routines should be separated for the various
6479 -- arithmetic operations, since they will need different processing. ???
6480
6481 if Nkind (N) in N_Op then
6482 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 6483 Enable_Overflow_Check (N);
996ae0b0
RK
6484 end if;
6485 end if;
996ae0b0
RK
6486 end Resolve_Op_Expon;
6487
6488 --------------------
6489 -- Resolve_Op_Not --
6490 --------------------
6491
6492 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
6493 B_Typ : Entity_Id;
6494
6495 function Parent_Is_Boolean return Boolean;
6496 -- This function determines if the parent node is a boolean operator
6497 -- or operation (comparison op, membership test, or short circuit form)
6498 -- and the not in question is the left operand of this operation.
6499 -- Note that if the not is in parens, then false is returned.
6500
aa180613
RD
6501 -----------------------
6502 -- Parent_Is_Boolean --
6503 -----------------------
6504
996ae0b0
RK
6505 function Parent_Is_Boolean return Boolean is
6506 begin
6507 if Paren_Count (N) /= 0 then
6508 return False;
6509
6510 else
6511 case Nkind (Parent (N)) is
6512 when N_Op_And |
6513 N_Op_Eq |
6514 N_Op_Ge |
6515 N_Op_Gt |
6516 N_Op_Le |
6517 N_Op_Lt |
6518 N_Op_Ne |
6519 N_Op_Or |
6520 N_Op_Xor |
6521 N_In |
6522 N_Not_In |
6523 N_And_Then |
aa180613 6524 N_Or_Else =>
996ae0b0
RK
6525
6526 return Left_Opnd (Parent (N)) = N;
6527
6528 when others =>
6529 return False;
6530 end case;
6531 end if;
6532 end Parent_Is_Boolean;
6533
6534 -- Start of processing for Resolve_Op_Not
6535
6536 begin
758c442c
GD
6537 -- Predefined operations on scalar types yield the base type. On the
6538 -- other hand, logical operations on arrays yield the type of the
6539 -- arguments (and the context).
996ae0b0
RK
6540
6541 if Is_Array_Type (Typ) then
6542 B_Typ := Typ;
6543 else
6544 B_Typ := Base_Type (Typ);
6545 end if;
6546
aa180613
RD
6547 -- Straigtforward case of incorrect arguments
6548
996ae0b0
RK
6549 if not Valid_Boolean_Arg (Typ) then
6550 Error_Msg_N ("invalid operand type for operator&", N);
6551 Set_Etype (N, Any_Type);
6552 return;
6553
aa180613
RD
6554 -- Special case of probable missing parens
6555
fbf5a39b 6556 elsif Typ = Universal_Integer or else Typ = Any_Modular then
996ae0b0
RK
6557 if Parent_Is_Boolean then
6558 Error_Msg_N
6559 ("operand of not must be enclosed in parentheses",
6560 Right_Opnd (N));
6561 else
6562 Error_Msg_N
6563 ("no modular type available in this context", N);
6564 end if;
6565
6566 Set_Etype (N, Any_Type);
6567 return;
6568
aa180613
RD
6569 -- OK resolution of not
6570
996ae0b0 6571 else
aa180613
RD
6572 -- Warn if non-boolean types involved. This is a case like not a < b
6573 -- where a and b are modular, where we will get (not a) < b and most
6574 -- likely not (a < b) was intended.
6575
6576 if Warn_On_Questionable_Missing_Parens
6577 and then not Is_Boolean_Type (Typ)
996ae0b0
RK
6578 and then Parent_Is_Boolean
6579 then
aa5147f0 6580 Error_Msg_N ("?not expression should be parenthesized here!", N);
996ae0b0
RK
6581 end if;
6582
6583 Resolve (Right_Opnd (N), B_Typ);
6584 Check_Unset_Reference (Right_Opnd (N));
6585 Set_Etype (N, B_Typ);
fbf5a39b 6586 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
6587 Eval_Op_Not (N);
6588 end if;
6589 end Resolve_Op_Not;
6590
6591 -----------------------------
6592 -- Resolve_Operator_Symbol --
6593 -----------------------------
6594
6595 -- Nothing to be done, all resolved already
6596
6597 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
6598 pragma Warnings (Off, N);
6599 pragma Warnings (Off, Typ);
6600
996ae0b0
RK
6601 begin
6602 null;
6603 end Resolve_Operator_Symbol;
6604
6605 ----------------------------------
6606 -- Resolve_Qualified_Expression --
6607 ----------------------------------
6608
6609 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
6610 pragma Warnings (Off, Typ);
6611
996ae0b0
RK
6612 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
6613 Expr : constant Node_Id := Expression (N);
6614
6615 begin
6616 Resolve (Expr, Target_Typ);
6617
6618 -- A qualified expression requires an exact match of the type,
1420b484
JM
6619 -- class-wide matching is not allowed. However, if the qualifying
6620 -- type is specific and the expression has a class-wide type, it
6621 -- may still be okay, since it can be the result of the expansion
6622 -- of a call to a dispatching function, so we also have to check
6623 -- class-wideness of the type of the expression's original node.
6624
6625 if (Is_Class_Wide_Type (Target_Typ)
6626 or else
6627 (Is_Class_Wide_Type (Etype (Expr))
6628 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
996ae0b0
RK
6629 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
6630 then
6631 Wrong_Type (Expr, Target_Typ);
6632 end if;
6633
6634 -- If the target type is unconstrained, then we reset the type of
6635 -- the result from the type of the expression. For other cases, the
6636 -- actual subtype of the expression is the target type.
6637
6638 if Is_Composite_Type (Target_Typ)
6639 and then not Is_Constrained (Target_Typ)
6640 then
6641 Set_Etype (N, Etype (Expr));
6642 end if;
6643
6644 Eval_Qualified_Expression (N);
6645 end Resolve_Qualified_Expression;
6646
6647 -------------------
6648 -- Resolve_Range --
6649 -------------------
6650
6651 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
6652 L : constant Node_Id := Low_Bound (N);
6653 H : constant Node_Id := High_Bound (N);
6654
6655 begin
6656 Set_Etype (N, Typ);
6657 Resolve (L, Typ);
6658 Resolve (H, Typ);
6659
6660 Check_Unset_Reference (L);
6661 Check_Unset_Reference (H);
6662
6663 -- We have to check the bounds for being within the base range as
758c442c
GD
6664 -- required for a non-static context. Normally this is automatic and
6665 -- done as part of evaluating expressions, but the N_Range node is an
6666 -- exception, since in GNAT we consider this node to be a subexpression,
6667 -- even though in Ada it is not. The circuit in Sem_Eval could check for
6668 -- this, but that would put the test on the main evaluation path for
6669 -- expressions.
996ae0b0
RK
6670
6671 Check_Non_Static_Context (L);
6672 Check_Non_Static_Context (H);
6673
b7d1f17f
HK
6674 -- Check for an ambiguous range over character literals. This will
6675 -- happen with a membership test involving only literals.
6676
6677 if Typ = Any_Character then
6678 Ambiguous_Character (L);
6679 Set_Etype (N, Any_Type);
6680 return;
6681 end if;
6682
fbf5a39b
AC
6683 -- If bounds are static, constant-fold them, so size computations
6684 -- are identical between front-end and back-end. Do not perform this
6685 -- transformation while analyzing generic units, as type information
6686 -- would then be lost when reanalyzing the constant node in the
6687 -- instance.
6688
6689 if Is_Discrete_Type (Typ) and then Expander_Active then
6690 if Is_OK_Static_Expression (L) then
6691 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
6692 end if;
6693
6694 if Is_OK_Static_Expression (H) then
6695 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
6696 end if;
6697 end if;
996ae0b0
RK
6698 end Resolve_Range;
6699
6700 --------------------------
6701 -- Resolve_Real_Literal --
6702 --------------------------
6703
6704 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
6705 Actual_Typ : constant Entity_Id := Etype (N);
6706
6707 begin
6708 -- Special processing for fixed-point literals to make sure that the
6709 -- value is an exact multiple of small where this is required. We
6710 -- skip this for the universal real case, and also for generic types.
6711
6712 if Is_Fixed_Point_Type (Typ)
6713 and then Typ /= Universal_Fixed
6714 and then Typ /= Any_Fixed
6715 and then not Is_Generic_Type (Typ)
6716 then
6717 declare
6718 Val : constant Ureal := Realval (N);
6719 Cintr : constant Ureal := Val / Small_Value (Typ);
6720 Cint : constant Uint := UR_Trunc (Cintr);
6721 Den : constant Uint := Norm_Den (Cintr);
6722 Stat : Boolean;
6723
6724 begin
6725 -- Case of literal is not an exact multiple of the Small
6726
6727 if Den /= 1 then
6728
6729 -- For a source program literal for a decimal fixed-point
6730 -- type, this is statically illegal (RM 4.9(36)).
6731
6732 if Is_Decimal_Fixed_Point_Type (Typ)
6733 and then Actual_Typ = Universal_Real
6734 and then Comes_From_Source (N)
6735 then
6736 Error_Msg_N ("value has extraneous low order digits", N);
6737 end if;
6738
bc5f3720
RD
6739 -- Generate a warning if literal from source
6740
6741 if Is_Static_Expression (N)
6742 and then Warn_On_Bad_Fixed_Value
6743 then
6744 Error_Msg_N
aa5147f0 6745 ("?static fixed-point value is not a multiple of Small!",
bc5f3720
RD
6746 N);
6747 end if;
6748
996ae0b0
RK
6749 -- Replace literal by a value that is the exact representation
6750 -- of a value of the type, i.e. a multiple of the small value,
6751 -- by truncation, since Machine_Rounds is false for all GNAT
6752 -- fixed-point types (RM 4.9(38)).
6753
6754 Stat := Is_Static_Expression (N);
6755 Rewrite (N,
6756 Make_Real_Literal (Sloc (N),
6757 Realval => Small_Value (Typ) * Cint));
6758
6759 Set_Is_Static_Expression (N, Stat);
6760 end if;
6761
6762 -- In all cases, set the corresponding integer field
6763
6764 Set_Corresponding_Integer_Value (N, Cint);
6765 end;
6766 end if;
6767
6768 -- Now replace the actual type by the expected type as usual
6769
6770 Set_Etype (N, Typ);
6771 Eval_Real_Literal (N);
6772 end Resolve_Real_Literal;
6773
6774 -----------------------
6775 -- Resolve_Reference --
6776 -----------------------
6777
6778 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
6779 P : constant Node_Id := Prefix (N);
6780
6781 begin
6782 -- Replace general access with specific type
6783
6784 if Ekind (Etype (N)) = E_Allocator_Type then
6785 Set_Etype (N, Base_Type (Typ));
6786 end if;
6787
6788 Resolve (P, Designated_Type (Etype (N)));
6789
6790 -- If we are taking the reference of a volatile entity, then treat
6791 -- it as a potential modification of this entity. This is much too
638e383e 6792 -- conservative, but is necessary because remove side effects can
996ae0b0
RK
6793 -- result in transformations of normal assignments into reference
6794 -- sequences that otherwise fail to notice the modification.
6795
fbf5a39b 6796 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
996ae0b0
RK
6797 Note_Possible_Modification (P);
6798 end if;
6799 end Resolve_Reference;
6800
6801 --------------------------------
6802 -- Resolve_Selected_Component --
6803 --------------------------------
6804
6805 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
6806 Comp : Entity_Id;
6807 Comp1 : Entity_Id := Empty; -- prevent junk warning
6808 P : constant Node_Id := Prefix (N);
6809 S : constant Node_Id := Selector_Name (N);
6810 T : Entity_Id := Etype (P);
6811 I : Interp_Index;
6812 I1 : Interp_Index := 0; -- prevent junk warning
6813 It : Interp;
6814 It1 : Interp;
6815 Found : Boolean;
6816
6510f4c9
GB
6817 function Init_Component return Boolean;
6818 -- Check whether this is the initialization of a component within an
fbf5a39b 6819 -- init proc (by assignment or call to another init proc). If true,
6510f4c9
GB
6820 -- there is no need for a discriminant check.
6821
6822 --------------------
6823 -- Init_Component --
6824 --------------------
6825
6826 function Init_Component return Boolean is
6827 begin
6828 return Inside_Init_Proc
6829 and then Nkind (Prefix (N)) = N_Identifier
6830 and then Chars (Prefix (N)) = Name_uInit
6831 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
6832 end Init_Component;
6833
6834 -- Start of processing for Resolve_Selected_Component
6835
996ae0b0
RK
6836 begin
6837 if Is_Overloaded (P) then
6838
6839 -- Use the context type to select the prefix that has a selector
6840 -- of the correct name and type.
6841
6842 Found := False;
6843 Get_First_Interp (P, I, It);
6844
6845 Search : while Present (It.Typ) loop
6846 if Is_Access_Type (It.Typ) then
6847 T := Designated_Type (It.Typ);
6848 else
6849 T := It.Typ;
6850 end if;
6851
6852 if Is_Record_Type (T) then
6853 Comp := First_Entity (T);
996ae0b0 6854 while Present (Comp) loop
996ae0b0
RK
6855 if Chars (Comp) = Chars (S)
6856 and then Covers (Etype (Comp), Typ)
6857 then
6858 if not Found then
6859 Found := True;
6860 I1 := I;
6861 It1 := It;
6862 Comp1 := Comp;
6863
6864 else
6865 It := Disambiguate (P, I1, I, Any_Type);
6866
6867 if It = No_Interp then
6868 Error_Msg_N
6869 ("ambiguous prefix for selected component", N);
6870 Set_Etype (N, Typ);
6871 return;
6872
6873 else
6874 It1 := It;
6875
c8ef728f
ES
6876 -- There may be an implicit dereference. Retrieve
6877 -- designated record type.
6878
6879 if Is_Access_Type (It1.Typ) then
6880 T := Designated_Type (It1.Typ);
6881 else
6882 T := It1.Typ;
6883 end if;
6884
6885 if Scope (Comp1) /= T then
996ae0b0
RK
6886
6887 -- Resolution chooses the new interpretation.
6888 -- Find the component with the right name.
6889
c8ef728f 6890 Comp1 := First_Entity (T);
996ae0b0
RK
6891 while Present (Comp1)
6892 and then Chars (Comp1) /= Chars (S)
6893 loop
6894 Comp1 := Next_Entity (Comp1);
6895 end loop;
6896 end if;
6897
6898 exit Search;
6899 end if;
6900 end if;
6901 end if;
6902
6903 Comp := Next_Entity (Comp);
6904 end loop;
6905
6906 end if;
6907
6908 Get_Next_Interp (I, It);
996ae0b0
RK
6909 end loop Search;
6910
6911 Resolve (P, It1.Typ);
6912 Set_Etype (N, Typ);
aa180613 6913 Set_Entity_With_Style_Check (S, Comp1);
996ae0b0
RK
6914
6915 else
fbf5a39b 6916 -- Resolve prefix with its type
996ae0b0
RK
6917
6918 Resolve (P, T);
6919 end if;
6920
aa180613
RD
6921 -- Generate cross-reference. We needed to wait until full overloading
6922 -- resolution was complete to do this, since otherwise we can't tell if
6923 -- we are an Lvalue of not.
6924
6925 if May_Be_Lvalue (N) then
6926 Generate_Reference (Entity (S), S, 'm');
6927 else
6928 Generate_Reference (Entity (S), S, 'r');
6929 end if;
6930
c8ef728f
ES
6931 -- If prefix is an access type, the node will be transformed into an
6932 -- explicit dereference during expansion. The type of the node is the
6933 -- designated type of that of the prefix.
996ae0b0
RK
6934
6935 if Is_Access_Type (Etype (P)) then
996ae0b0 6936 T := Designated_Type (Etype (P));
c8ef728f 6937 Check_Fully_Declared_Prefix (T, P);
996ae0b0
RK
6938 else
6939 T := Etype (P);
6940 end if;
6941
6942 if Has_Discriminants (T)
fbf5a39b
AC
6943 and then (Ekind (Entity (S)) = E_Component
6944 or else
6945 Ekind (Entity (S)) = E_Discriminant)
996ae0b0
RK
6946 and then Present (Original_Record_Component (Entity (S)))
6947 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
6948 and then Present (Discriminant_Checking_Func
6949 (Original_Record_Component (Entity (S))))
6950 and then not Discriminant_Checks_Suppressed (T)
6510f4c9 6951 and then not Init_Component
996ae0b0
RK
6952 then
6953 Set_Do_Discriminant_Check (N);
6954 end if;
6955
6956 if Ekind (Entity (S)) = E_Void then
6957 Error_Msg_N ("premature use of component", S);
6958 end if;
6959
6960 -- If the prefix is a record conversion, this may be a renamed
6961 -- discriminant whose bounds differ from those of the original
6962 -- one, so we must ensure that a range check is performed.
6963
6964 if Nkind (P) = N_Type_Conversion
6965 and then Ekind (Entity (S)) = E_Discriminant
fbf5a39b 6966 and then Is_Discrete_Type (Typ)
996ae0b0
RK
6967 then
6968 Set_Etype (N, Base_Type (Typ));
6969 end if;
6970
6971 -- Note: No Eval processing is required, because the prefix is of a
6972 -- record type, or protected type, and neither can possibly be static.
6973
6974 end Resolve_Selected_Component;
6975
6976 -------------------
6977 -- Resolve_Shift --
6978 -------------------
6979
6980 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
6981 B_Typ : constant Entity_Id := Base_Type (Typ);
6982 L : constant Node_Id := Left_Opnd (N);
6983 R : constant Node_Id := Right_Opnd (N);
6984
6985 begin
6986 -- We do the resolution using the base type, because intermediate values
6987 -- in expressions always are of the base type, not a subtype of it.
6988
6989 Resolve (L, B_Typ);
6990 Resolve (R, Standard_Natural);
6991
6992 Check_Unset_Reference (L);
6993 Check_Unset_Reference (R);
6994
6995 Set_Etype (N, B_Typ);
fbf5a39b 6996 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
6997 Eval_Shift (N);
6998 end Resolve_Shift;
6999
7000 ---------------------------
7001 -- Resolve_Short_Circuit --
7002 ---------------------------
7003
7004 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
7005 B_Typ : constant Entity_Id := Base_Type (Typ);
7006 L : constant Node_Id := Left_Opnd (N);
7007 R : constant Node_Id := Right_Opnd (N);
7008
7009 begin
7010 Resolve (L, B_Typ);
7011 Resolve (R, B_Typ);
7012
7013 Check_Unset_Reference (L);
7014 Check_Unset_Reference (R);
7015
7016 Set_Etype (N, B_Typ);
7017 Eval_Short_Circuit (N);
7018 end Resolve_Short_Circuit;
7019
7020 -------------------
7021 -- Resolve_Slice --
7022 -------------------
7023
7024 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
7025 Name : constant Node_Id := Prefix (N);
7026 Drange : constant Node_Id := Discrete_Range (N);
7027 Array_Type : Entity_Id := Empty;
7028 Index : Node_Id;
7029
7030 begin
7031 if Is_Overloaded (Name) then
7032
7033 -- Use the context type to select the prefix that yields the
7034 -- correct array type.
7035
7036 declare
7037 I : Interp_Index;
7038 I1 : Interp_Index := 0;
7039 It : Interp;
7040 P : constant Node_Id := Prefix (N);
7041 Found : Boolean := False;
7042
7043 begin
7044 Get_First_Interp (P, I, It);
996ae0b0 7045 while Present (It.Typ) loop
996ae0b0
RK
7046 if (Is_Array_Type (It.Typ)
7047 and then Covers (Typ, It.Typ))
7048 or else (Is_Access_Type (It.Typ)
7049 and then Is_Array_Type (Designated_Type (It.Typ))
7050 and then Covers (Typ, Designated_Type (It.Typ)))
7051 then
7052 if Found then
7053 It := Disambiguate (P, I1, I, Any_Type);
7054
7055 if It = No_Interp then
7056 Error_Msg_N ("ambiguous prefix for slicing", N);
7057 Set_Etype (N, Typ);
7058 return;
7059 else
7060 Found := True;
7061 Array_Type := It.Typ;
7062 I1 := I;
7063 end if;
7064 else
7065 Found := True;
7066 Array_Type := It.Typ;
7067 I1 := I;
7068 end if;
7069 end if;
7070
7071 Get_Next_Interp (I, It);
7072 end loop;
7073 end;
7074
7075 else
7076 Array_Type := Etype (Name);
7077 end if;
7078
7079 Resolve (Name, Array_Type);
7080
7081 if Is_Access_Type (Array_Type) then
7082 Apply_Access_Check (N);
7083 Array_Type := Designated_Type (Array_Type);
7084
c8ef728f
ES
7085 -- If the prefix is an access to an unconstrained array, we must use
7086 -- the actual subtype of the object to perform the index checks. The
7087 -- object denoted by the prefix is implicit in the node, so we build
7088 -- an explicit representation for it in order to compute the actual
7089 -- subtype.
82c80734
RD
7090
7091 if not Is_Constrained (Array_Type) then
7092 Remove_Side_Effects (Prefix (N));
7093
7094 declare
7095 Obj : constant Node_Id :=
7096 Make_Explicit_Dereference (Sloc (N),
7097 Prefix => New_Copy_Tree (Prefix (N)));
7098 begin
7099 Set_Etype (Obj, Array_Type);
7100 Set_Parent (Obj, Parent (N));
7101 Array_Type := Get_Actual_Subtype (Obj);
7102 end;
7103 end if;
7104
996ae0b0
RK
7105 elsif Is_Entity_Name (Name)
7106 or else (Nkind (Name) = N_Function_Call
7107 and then not Is_Constrained (Etype (Name)))
7108 then
7109 Array_Type := Get_Actual_Subtype (Name);
aa5147f0
ES
7110
7111 -- If the name is a selected component that depends on discriminants,
7112 -- build an actual subtype for it. This can happen only when the name
7113 -- itself is overloaded; otherwise the actual subtype is created when
7114 -- the selected component is analyzed.
7115
7116 elsif Nkind (Name) = N_Selected_Component
7117 and then Full_Analysis
7118 and then Depends_On_Discriminant (First_Index (Array_Type))
7119 then
7120 declare
7121 Act_Decl : constant Node_Id :=
7122 Build_Actual_Subtype_Of_Component (Array_Type, Name);
7123 begin
7124 Insert_Action (N, Act_Decl);
7125 Array_Type := Defining_Identifier (Act_Decl);
7126 end;
996ae0b0
RK
7127 end if;
7128
7129 -- If name was overloaded, set slice type correctly now
7130
7131 Set_Etype (N, Array_Type);
7132
c8ef728f
ES
7133 -- If the range is specified by a subtype mark, no resolution is
7134 -- necessary. Else resolve the bounds, and apply needed checks.
996ae0b0
RK
7135
7136 if not Is_Entity_Name (Drange) then
7137 Index := First_Index (Array_Type);
7138 Resolve (Drange, Base_Type (Etype (Index)));
7139
0669bebe
GB
7140 if Nkind (Drange) = N_Range
7141
7142 -- Do not apply the range check to nodes associated with the
7143 -- frontend expansion of the dispatch table. We first check
7144 -- if Ada.Tags is already loaded to void the addition of an
7145 -- undesired dependence on such run-time unit.
7146
b7d1f17f
HK
7147 and then
7148 (VM_Target /= No_VM
7149 or else not
7150 (RTU_Loaded (Ada_Tags)
7151 and then Nkind (Prefix (N)) = N_Selected_Component
7152 and then Present (Entity (Selector_Name (Prefix (N))))
7153 and then Entity (Selector_Name (Prefix (N))) =
7154 RTE_Record_Component (RE_Prims_Ptr)))
0669bebe 7155 then
996ae0b0
RK
7156 Apply_Range_Check (Drange, Etype (Index));
7157 end if;
7158 end if;
7159
7160 Set_Slice_Subtype (N);
aa180613
RD
7161
7162 if Nkind (Drange) = N_Range then
7163 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
7164 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
7165 end if;
7166
996ae0b0 7167 Eval_Slice (N);
996ae0b0
RK
7168 end Resolve_Slice;
7169
7170 ----------------------------
7171 -- Resolve_String_Literal --
7172 ----------------------------
7173
7174 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
7175 C_Typ : constant Entity_Id := Component_Type (Typ);
7176 R_Typ : constant Entity_Id := Root_Type (C_Typ);
7177 Loc : constant Source_Ptr := Sloc (N);
7178 Str : constant String_Id := Strval (N);
7179 Strlen : constant Nat := String_Length (Str);
7180 Subtype_Id : Entity_Id;
7181 Need_Check : Boolean;
7182
7183 begin
7184 -- For a string appearing in a concatenation, defer creation of the
7185 -- string_literal_subtype until the end of the resolution of the
c8ef728f
ES
7186 -- concatenation, because the literal may be constant-folded away. This
7187 -- is a useful optimization for long concatenation expressions.
996ae0b0 7188
c8ef728f 7189 -- If the string is an aggregate built for a single character (which
996ae0b0 7190 -- happens in a non-static context) or a is null string to which special
c8ef728f
ES
7191 -- checks may apply, we build the subtype. Wide strings must also get a
7192 -- string subtype if they come from a one character aggregate. Strings
996ae0b0
RK
7193 -- generated by attributes might be static, but it is often hard to
7194 -- determine whether the enclosing context is static, so we generate
7195 -- subtypes for them as well, thus losing some rarer optimizations ???
7196 -- Same for strings that come from a static conversion.
7197
7198 Need_Check :=
7199 (Strlen = 0 and then Typ /= Standard_String)
7200 or else Nkind (Parent (N)) /= N_Op_Concat
7201 or else (N /= Left_Opnd (Parent (N))
7202 and then N /= Right_Opnd (Parent (N)))
82c80734
RD
7203 or else ((Typ = Standard_Wide_String
7204 or else Typ = Standard_Wide_Wide_String)
996ae0b0
RK
7205 and then Nkind (Original_Node (N)) /= N_String_Literal);
7206
7207 -- If the resolving type is itself a string literal subtype, we
7208 -- can just reuse it, since there is no point in creating another.
7209
7210 if Ekind (Typ) = E_String_Literal_Subtype then
7211 Subtype_Id := Typ;
7212
7213 elsif Nkind (Parent (N)) = N_Op_Concat
7214 and then not Need_Check
7215 and then Nkind (Original_Node (N)) /= N_Character_Literal
7216 and then Nkind (Original_Node (N)) /= N_Attribute_Reference
7217 and then Nkind (Original_Node (N)) /= N_Qualified_Expression
7218 and then Nkind (Original_Node (N)) /= N_Type_Conversion
7219 then
7220 Subtype_Id := Typ;
7221
7222 -- Otherwise we must create a string literal subtype. Note that the
7223 -- whole idea of string literal subtypes is simply to avoid the need
7224 -- for building a full fledged array subtype for each literal.
7225 else
7226 Set_String_Literal_Subtype (N, Typ);
7227 Subtype_Id := Etype (N);
7228 end if;
7229
7230 if Nkind (Parent (N)) /= N_Op_Concat
7231 or else Need_Check
7232 then
7233 Set_Etype (N, Subtype_Id);
7234 Eval_String_Literal (N);
7235 end if;
7236
7237 if Is_Limited_Composite (Typ)
7238 or else Is_Private_Composite (Typ)
7239 then
7240 Error_Msg_N ("string literal not available for private array", N);
7241 Set_Etype (N, Any_Type);
7242 return;
7243 end if;
7244
7245 -- The validity of a null string has been checked in the
7246 -- call to Eval_String_Literal.
7247
7248 if Strlen = 0 then
7249 return;
7250
c8ef728f
ES
7251 -- Always accept string literal with component type Any_Character, which
7252 -- occurs in error situations and in comparisons of literals, both of
7253 -- which should accept all literals.
996ae0b0
RK
7254
7255 elsif R_Typ = Any_Character then
7256 return;
7257
c8ef728f
ES
7258 -- If the type is bit-packed, then we always tranform the string literal
7259 -- into a full fledged aggregate.
996ae0b0
RK
7260
7261 elsif Is_Bit_Packed_Array (Typ) then
7262 null;
7263
82c80734 7264 -- Deal with cases of Wide_Wide_String, Wide_String, and String
996ae0b0
RK
7265
7266 else
82c80734
RD
7267 -- For Standard.Wide_Wide_String, or any other type whose component
7268 -- type is Standard.Wide_Wide_Character, we know that all the
996ae0b0
RK
7269 -- characters in the string must be acceptable, since the parser
7270 -- accepted the characters as valid character literals.
7271
82c80734 7272 if R_Typ = Standard_Wide_Wide_Character then
996ae0b0
RK
7273 null;
7274
c8ef728f
ES
7275 -- For the case of Standard.String, or any other type whose component
7276 -- type is Standard.Character, we must make sure that there are no
7277 -- wide characters in the string, i.e. that it is entirely composed
7278 -- of characters in range of type Character.
996ae0b0 7279
c8ef728f
ES
7280 -- If the string literal is the result of a static concatenation, the
7281 -- test has already been performed on the components, and need not be
7282 -- repeated.
996ae0b0
RK
7283
7284 elsif R_Typ = Standard_Character
7285 and then Nkind (Original_Node (N)) /= N_Op_Concat
7286 then
7287 for J in 1 .. Strlen loop
7288 if not In_Character_Range (Get_String_Char (Str, J)) then
7289
7290 -- If we are out of range, post error. This is one of the
7291 -- very few places that we place the flag in the middle of
7292 -- a token, right under the offending wide character.
7293
7294 Error_Msg
82c80734
RD
7295 ("literal out of range of type Standard.Character",
7296 Source_Ptr (Int (Loc) + J));
7297 return;
7298 end if;
7299 end loop;
7300
7301 -- For the case of Standard.Wide_String, or any other type whose
7302 -- component type is Standard.Wide_Character, we must make sure that
7303 -- there are no wide characters in the string, i.e. that it is
7304 -- entirely composed of characters in range of type Wide_Character.
7305
7306 -- If the string literal is the result of a static concatenation,
7307 -- the test has already been performed on the components, and need
7308 -- not be repeated.
7309
7310 elsif R_Typ = Standard_Wide_Character
7311 and then Nkind (Original_Node (N)) /= N_Op_Concat
7312 then
7313 for J in 1 .. Strlen loop
7314 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
7315
7316 -- If we are out of range, post error. This is one of the
7317 -- very few places that we place the flag in the middle of
7318 -- a token, right under the offending wide character.
7319
7320 -- This is not quite right, because characters in general
7321 -- will take more than one character position ???
7322
7323 Error_Msg
7324 ("literal out of range of type Standard.Wide_Character",
996ae0b0
RK
7325 Source_Ptr (Int (Loc) + J));
7326 return;
7327 end if;
7328 end loop;
7329
7330 -- If the root type is not a standard character, then we will convert
7331 -- the string into an aggregate and will let the aggregate code do
82c80734 7332 -- the checking. Standard Wide_Wide_Character is also OK here.
996ae0b0
RK
7333
7334 else
7335 null;
996ae0b0
RK
7336 end if;
7337
c8ef728f
ES
7338 -- See if the component type of the array corresponding to the string
7339 -- has compile time known bounds. If yes we can directly check
7340 -- whether the evaluation of the string will raise constraint error.
7341 -- Otherwise we need to transform the string literal into the
7342 -- corresponding character aggregate and let the aggregate
996ae0b0
RK
7343 -- code do the checking.
7344
82c80734
RD
7345 if R_Typ = Standard_Character
7346 or else R_Typ = Standard_Wide_Character
7347 or else R_Typ = Standard_Wide_Wide_Character
996ae0b0
RK
7348 then
7349 -- Check for the case of full range, where we are definitely OK
7350
7351 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
7352 return;
7353 end if;
7354
7355 -- Here the range is not the complete base type range, so check
7356
7357 declare
7358 Comp_Typ_Lo : constant Node_Id :=
7359 Type_Low_Bound (Component_Type (Typ));
7360 Comp_Typ_Hi : constant Node_Id :=
7361 Type_High_Bound (Component_Type (Typ));
7362
7363 Char_Val : Uint;
7364
7365 begin
7366 if Compile_Time_Known_Value (Comp_Typ_Lo)
7367 and then Compile_Time_Known_Value (Comp_Typ_Hi)
7368 then
7369 for J in 1 .. Strlen loop
7370 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
7371
7372 if Char_Val < Expr_Value (Comp_Typ_Lo)
7373 or else Char_Val > Expr_Value (Comp_Typ_Hi)
7374 then
7375 Apply_Compile_Time_Constraint_Error
07fc65c4 7376 (N, "character out of range?", CE_Range_Check_Failed,
996ae0b0
RK
7377 Loc => Source_Ptr (Int (Loc) + J));
7378 end if;
7379 end loop;
7380
7381 return;
7382 end if;
7383 end;
7384 end if;
7385 end if;
7386
7387 -- If we got here we meed to transform the string literal into the
7388 -- equivalent qualified positional array aggregate. This is rather
7389 -- heavy artillery for this situation, but it is hard work to avoid.
7390
7391 declare
fbf5a39b 7392 Lits : constant List_Id := New_List;
996ae0b0
RK
7393 P : Source_Ptr := Loc + 1;
7394 C : Char_Code;
7395
7396 begin
c8ef728f
ES
7397 -- Build the character literals, we give them source locations that
7398 -- correspond to the string positions, which is a bit tricky given
7399 -- the possible presence of wide character escape sequences.
996ae0b0
RK
7400
7401 for J in 1 .. Strlen loop
7402 C := Get_String_Char (Str, J);
7403 Set_Character_Literal_Name (C);
7404
7405 Append_To (Lits,
82c80734
RD
7406 Make_Character_Literal (P,
7407 Chars => Name_Find,
7408 Char_Literal_Value => UI_From_CC (C)));
996ae0b0
RK
7409
7410 if In_Character_Range (C) then
7411 P := P + 1;
7412
7413 -- Should we have a call to Skip_Wide here ???
7414 -- ??? else
7415 -- Skip_Wide (P);
7416
7417 end if;
7418 end loop;
7419
7420 Rewrite (N,
7421 Make_Qualified_Expression (Loc,
7422 Subtype_Mark => New_Reference_To (Typ, Loc),
7423 Expression =>
7424 Make_Aggregate (Loc, Expressions => Lits)));
7425
7426 Analyze_And_Resolve (N, Typ);
7427 end;
7428 end Resolve_String_Literal;
7429
7430 -----------------------------
7431 -- Resolve_Subprogram_Info --
7432 -----------------------------
7433
7434 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
7435 begin
7436 Set_Etype (N, Typ);
7437 end Resolve_Subprogram_Info;
7438
7439 -----------------------------
7440 -- Resolve_Type_Conversion --
7441 -----------------------------
7442
7443 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
758c442c 7444 Conv_OK : constant Boolean := Conversion_OK (N);
b7d1f17f
HK
7445 Operand : constant Node_Id := Expression (N);
7446 Operand_Typ : constant Entity_Id := Etype (Operand);
7447 Target_Typ : constant Entity_Id := Etype (N);
996ae0b0 7448 Rop : Node_Id;
fbf5a39b
AC
7449 Orig_N : Node_Id;
7450 Orig_T : Node_Id;
996ae0b0
RK
7451
7452 begin
996ae0b0 7453 if not Conv_OK
b7d1f17f 7454 and then not Valid_Conversion (N, Target_Typ, Operand)
996ae0b0
RK
7455 then
7456 return;
7457 end if;
7458
7459 if Etype (Operand) = Any_Fixed then
7460
7461 -- Mixed-mode operation involving a literal. Context must be a fixed
7462 -- type which is applied to the literal subsequently.
7463
7464 if Is_Fixed_Point_Type (Typ) then
7465 Set_Etype (Operand, Universal_Real);
7466
7467 elsif Is_Numeric_Type (Typ)
7468 and then (Nkind (Operand) = N_Op_Multiply
7469 or else Nkind (Operand) = N_Op_Divide)
7470 and then (Etype (Right_Opnd (Operand)) = Universal_Real
7471 or else Etype (Left_Opnd (Operand)) = Universal_Real)
7472 then
a77842bd
TQ
7473 -- Return if expression is ambiguous
7474
996ae0b0 7475 if Unique_Fixed_Point_Type (N) = Any_Type then
a77842bd 7476 return;
82c80734 7477
a77842bd
TQ
7478 -- If nothing else, the available fixed type is Duration
7479
7480 else
996ae0b0
RK
7481 Set_Etype (Operand, Standard_Duration);
7482 end if;
7483
bc5f3720 7484 -- Resolve the real operand with largest available precision
9ebe3743 7485
996ae0b0
RK
7486 if Etype (Right_Opnd (Operand)) = Universal_Real then
7487 Rop := New_Copy_Tree (Right_Opnd (Operand));
7488 else
7489 Rop := New_Copy_Tree (Left_Opnd (Operand));
7490 end if;
7491
9ebe3743 7492 Resolve (Rop, Universal_Real);
996ae0b0 7493
82c80734
RD
7494 -- If the operand is a literal (it could be a non-static and
7495 -- illegal exponentiation) check whether the use of Duration
7496 -- is potentially inaccurate.
7497
7498 if Nkind (Rop) = N_Real_Literal
7499 and then Realval (Rop) /= Ureal_0
996ae0b0
RK
7500 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
7501 then
aa180613 7502 Error_Msg_N
aa5147f0
ES
7503 ("?universal real operand can only " &
7504 "be interpreted as Duration!",
aa180613
RD
7505 Rop);
7506 Error_Msg_N
aa5147f0 7507 ("\?precision will be lost in the conversion!", Rop);
996ae0b0
RK
7508 end if;
7509
891a6e79
AC
7510 elsif Is_Numeric_Type (Typ)
7511 and then Nkind (Operand) in N_Op
7512 and then Unique_Fixed_Point_Type (N) /= Any_Type
7513 then
7514 Set_Etype (Operand, Standard_Duration);
7515
996ae0b0
RK
7516 else
7517 Error_Msg_N ("invalid context for mixed mode operation", N);
7518 Set_Etype (Operand, Any_Type);
7519 return;
7520 end if;
7521 end if;
7522
fbf5a39b 7523 Resolve (Operand);
996ae0b0
RK
7524
7525 -- Note: we do the Eval_Type_Conversion call before applying the
7526 -- required checks for a subtype conversion. This is important,
7527 -- since both are prepared under certain circumstances to change
7528 -- the type conversion to a constraint error node, but in the case
7529 -- of Eval_Type_Conversion this may reflect an illegality in the
7530 -- static case, and we would miss the illegality (getting only a
7531 -- warning message), if we applied the type conversion checks first.
7532
7533 Eval_Type_Conversion (N);
7534
0669bebe
GB
7535 -- Even when evaluation is not possible, we may be able to simplify
7536 -- the conversion or its expression. This needs to be done before
7537 -- applying checks, since otherwise the checks may use the original
b7d1f17f 7538 -- expression and defeat the simplifications. This is specifically
0669bebe
GB
7539 -- the case for elimination of the floating-point Truncation
7540 -- attribute in float-to-int conversions.
7541
7542 Simplify_Type_Conversion (N);
7543
b7d1f17f 7544 -- If after evaluation we still have a type conversion, then we
996ae0b0
RK
7545 -- may need to apply checks required for a subtype conversion.
7546
7547 -- Skip these type conversion checks if universal fixed operands
7548 -- operands involved, since range checks are handled separately for
7549 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
7550
7551 if Nkind (N) = N_Type_Conversion
b7d1f17f
HK
7552 and then not Is_Generic_Type (Root_Type (Target_Typ))
7553 and then Target_Typ /= Universal_Fixed
7554 and then Operand_Typ /= Universal_Fixed
996ae0b0
RK
7555 then
7556 Apply_Type_Conversion_Checks (N);
7557 end if;
7558
7559 -- Issue warning for conversion of simple object to its own type
fbf5a39b
AC
7560 -- We have to test the original nodes, since they may have been
7561 -- rewritten by various optimizations.
7562
7563 Orig_N := Original_Node (N);
996ae0b0
RK
7564
7565 if Warn_On_Redundant_Constructs
fbf5a39b
AC
7566 and then Comes_From_Source (Orig_N)
7567 and then Nkind (Orig_N) = N_Type_Conversion
5453d5bd 7568 and then not In_Instance
996ae0b0 7569 then
fbf5a39b 7570 Orig_N := Original_Node (Expression (Orig_N));
b7d1f17f 7571 Orig_T := Target_Typ;
fbf5a39b
AC
7572
7573 -- If the node is part of a larger expression, the Target_Type
7574 -- may not be the original type of the node if the context is a
7575 -- condition. Recover original type to see if conversion is needed.
7576
7577 if Is_Boolean_Type (Orig_T)
7578 and then Nkind (Parent (N)) in N_Op
7579 then
7580 Orig_T := Etype (Parent (N));
7581 end if;
7582
7583 if Is_Entity_Name (Orig_N)
b90cfacd
HK
7584 and then
7585 (Etype (Entity (Orig_N)) = Orig_T
7586 or else
7587 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
7588 and then Covers (Orig_T, Etype (Entity (Orig_N)))))
fbf5a39b 7589 then
b90cfacd 7590 Error_Msg_Node_2 := Orig_T;
fbf5a39b 7591 Error_Msg_NE
b90cfacd 7592 ("?redundant conversion, & is of type &!", N, Entity (Orig_N));
fbf5a39b 7593 end if;
996ae0b0 7594 end if;
758c442c 7595
b7d1f17f 7596 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
0669bebe
GB
7597 -- No need to perform any interface conversion if the type of the
7598 -- expression coincides with the target type.
758c442c 7599
0669bebe
GB
7600 if Ada_Version >= Ada_05
7601 and then Expander_Active
b7d1f17f 7602 and then Operand_Typ /= Target_Typ
0669bebe 7603 then
b7d1f17f
HK
7604 declare
7605 Opnd : Entity_Id := Operand_Typ;
7606 Target : Entity_Id := Target_Typ;
758c442c 7607
b7d1f17f
HK
7608 begin
7609 if Is_Access_Type (Opnd) then
7610 Opnd := Directly_Designated_Type (Opnd);
1420b484
JM
7611 end if;
7612
b7d1f17f
HK
7613 if Is_Access_Type (Target_Typ) then
7614 Target := Directly_Designated_Type (Target);
4197ae1e 7615 end if;
c8ef728f 7616
b7d1f17f
HK
7617 if Opnd = Target then
7618 null;
c8ef728f 7619
b7d1f17f 7620 -- Conversion from interface type
ea985d95 7621
b7d1f17f 7622 elsif Is_Interface (Opnd) then
ea985d95 7623
b7d1f17f 7624 -- Ada 2005 (AI-217): Handle entities from limited views
aa180613 7625
b7d1f17f
HK
7626 if From_With_Type (Opnd) then
7627 Error_Msg_Qual_Level := 99;
7628 Error_Msg_NE ("missing with-clause on package &", N,
7629 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
7630 Error_Msg_N
7631 ("type conversions require visibility of the full view",
7632 N);
aa180613 7633
aa5147f0
ES
7634 elsif From_With_Type (Target)
7635 and then not
7636 (Is_Access_Type (Target_Typ)
7637 and then Present (Non_Limited_View (Etype (Target))))
7638 then
b7d1f17f
HK
7639 Error_Msg_Qual_Level := 99;
7640 Error_Msg_NE ("missing with-clause on package &", N,
7641 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
7642 Error_Msg_N
7643 ("type conversions require visibility of the full view",
7644 N);
aa180613 7645
b7d1f17f
HK
7646 else
7647 Expand_Interface_Conversion (N, Is_Static => False);
7648 end if;
7649
7650 -- Conversion to interface type
7651
7652 elsif Is_Interface (Target) then
7653
7654 -- Handle subtypes
7655
7656 if Ekind (Opnd) = E_Protected_Subtype
7657 or else Ekind (Opnd) = E_Task_Subtype
7658 then
7659 Opnd := Etype (Opnd);
7660 end if;
7661
7662 if not Interface_Present_In_Ancestor
7663 (Typ => Opnd,
7664 Iface => Target)
7665 then
7666 if Is_Class_Wide_Type (Opnd) then
7667
7668 -- The static analysis is not enough to know if the
7669 -- interface is implemented or not. Hence we must pass
7670 -- the work to the expander to generate code to evaluate
7671 -- the conversion at run-time.
7672
7673 Expand_Interface_Conversion (N, Is_Static => False);
7674
7675 else
7676 Error_Msg_Name_1 := Chars (Etype (Target));
7677 Error_Msg_Name_2 := Chars (Opnd);
7678 Error_Msg_N
7679 ("wrong interface conversion (% is not a progenitor " &
7680 "of %)", N);
7681 end if;
7682
7683 else
7684 Expand_Interface_Conversion (N);
7685 end if;
7686 end if;
7687 end;
758c442c 7688 end if;
996ae0b0
RK
7689 end Resolve_Type_Conversion;
7690
7691 ----------------------
7692 -- Resolve_Unary_Op --
7693 ----------------------
7694
7695 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
7696 B_Typ : constant Entity_Id := Base_Type (Typ);
7697 R : constant Node_Id := Right_Opnd (N);
7698 OK : Boolean;
7699 Lo : Uint;
7700 Hi : Uint;
996ae0b0
RK
7701
7702 begin
b7d1f17f 7703 -- Deal with intrinsic unary operators
996ae0b0 7704
fbf5a39b
AC
7705 if Comes_From_Source (N)
7706 and then Ekind (Entity (N)) = E_Function
7707 and then Is_Imported (Entity (N))
7708 and then Is_Intrinsic_Subprogram (Entity (N))
7709 then
7710 Resolve_Intrinsic_Unary_Operator (N, Typ);
7711 return;
7712 end if;
7713
0669bebe
GB
7714 -- Deal with universal cases
7715
996ae0b0 7716 if Etype (R) = Universal_Integer
0669bebe
GB
7717 or else
7718 Etype (R) = Universal_Real
996ae0b0
RK
7719 then
7720 Check_For_Visible_Operator (N, B_Typ);
7721 end if;
7722
7723 Set_Etype (N, B_Typ);
7724 Resolve (R, B_Typ);
fbf5a39b 7725
9ebe3743
HK
7726 -- Generate warning for expressions like abs (x mod 2)
7727
7728 if Warn_On_Redundant_Constructs
7729 and then Nkind (N) = N_Op_Abs
7730 then
7731 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
7732
7733 if OK and then Hi >= Lo and then Lo >= 0 then
7734 Error_Msg_N
7735 ("?abs applied to known non-negative value has no effect", N);
7736 end if;
7737 end if;
7738
0669bebe
GB
7739 -- Deal with reference generation
7740
996ae0b0 7741 Check_Unset_Reference (R);
fbf5a39b 7742 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
7743 Eval_Unary_Op (N);
7744
7745 -- Set overflow checking bit. Much cleverer code needed here eventually
7746 -- and perhaps the Resolve routines should be separated for the various
7747 -- arithmetic operations, since they will need different processing ???
7748
7749 if Nkind (N) in N_Op then
7750 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 7751 Enable_Overflow_Check (N);
996ae0b0
RK
7752 end if;
7753 end if;
0669bebe
GB
7754
7755 -- Generate warning for expressions like -5 mod 3 for integers. No
7756 -- need to worry in the floating-point case, since parens do not affect
7757 -- the result so there is no point in giving in a warning.
7758
7759 declare
7760 Norig : constant Node_Id := Original_Node (N);
7761 Rorig : Node_Id;
7762 Val : Uint;
7763 HB : Uint;
7764 LB : Uint;
7765 Lval : Uint;
7766 Opnd : Node_Id;
7767
7768 begin
7769 if Warn_On_Questionable_Missing_Parens
7770 and then Comes_From_Source (Norig)
7771 and then Is_Integer_Type (Typ)
7772 and then Nkind (Norig) = N_Op_Minus
7773 then
7774 Rorig := Original_Node (Right_Opnd (Norig));
7775
7776 -- We are looking for cases where the right operand is not
7777 -- parenthesized, and is a bianry operator, multiply, divide, or
7778 -- mod. These are the cases where the grouping can affect results.
7779
7780 if Paren_Count (Rorig) = 0
7781 and then (Nkind (Rorig) = N_Op_Mod
7782 or else
7783 Nkind (Rorig) = N_Op_Multiply
7784 or else
7785 Nkind (Rorig) = N_Op_Divide)
7786 then
7787 -- For mod, we always give the warning, since the value is
7788 -- affected by the parenthesization (e.g. (-5) mod 315 /=
7789 -- (5 mod 315)). But for the other cases, the only concern is
7790 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
7791 -- overflows, but (-2) * 64 does not). So we try to give the
7792 -- message only when overflow is possible.
7793
7794 if Nkind (Rorig) /= N_Op_Mod
7795 and then Compile_Time_Known_Value (R)
7796 then
7797 Val := Expr_Value (R);
7798
7799 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7800 HB := Expr_Value (Type_High_Bound (Typ));
7801 else
7802 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
7803 end if;
7804
7805 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7806 LB := Expr_Value (Type_Low_Bound (Typ));
7807 else
7808 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
7809 end if;
7810
7811 -- Note that the test below is deliberately excluding
7812 -- the largest negative number, since that is a potentially
7813 -- troublesome case (e.g. -2 * x, where the result is the
7814 -- largest negative integer has an overflow with 2 * x).
7815
7816 if Val > LB and then Val <= HB then
7817 return;
7818 end if;
7819 end if;
7820
7821 -- For the multiplication case, the only case we have to worry
7822 -- about is when (-a)*b is exactly the largest negative number
7823 -- so that -(a*b) can cause overflow. This can only happen if
7824 -- a is a power of 2, and more generally if any operand is a
7825 -- constant that is not a power of 2, then the parentheses
7826 -- cannot affect whether overflow occurs. We only bother to
7827 -- test the left most operand
7828
7829 -- Loop looking at left operands for one that has known value
7830
7831 Opnd := Rorig;
7832 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
7833 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
7834 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
7835
7836 -- Operand value of 0 or 1 skips warning
7837
7838 if Lval <= 1 then
7839 return;
7840
7841 -- Otherwise check power of 2, if power of 2, warn, if
7842 -- anything else, skip warning.
7843
7844 else
7845 while Lval /= 2 loop
7846 if Lval mod 2 = 1 then
7847 return;
7848 else
7849 Lval := Lval / 2;
7850 end if;
7851 end loop;
7852
7853 exit Opnd_Loop;
7854 end if;
7855 end if;
7856
7857 -- Keep looking at left operands
7858
7859 Opnd := Left_Opnd (Opnd);
7860 end loop Opnd_Loop;
7861
7862 -- For rem or "/" we can only have a problematic situation
7863 -- if the divisor has a value of minus one or one. Otherwise
7864 -- overflow is impossible (divisor > 1) or we have a case of
7865 -- division by zero in any case.
7866
7867 if (Nkind (Rorig) = N_Op_Divide
7868 or else
7869 Nkind (Rorig) = N_Op_Rem)
7870 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
7871 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
7872 then
7873 return;
7874 end if;
7875
7876 -- If we fall through warning should be issued
7877
7878 Error_Msg_N
aa5147f0 7879 ("?unary minus expression should be parenthesized here!", N);
0669bebe
GB
7880 end if;
7881 end if;
7882 end;
996ae0b0
RK
7883 end Resolve_Unary_Op;
7884
7885 ----------------------------------
7886 -- Resolve_Unchecked_Expression --
7887 ----------------------------------
7888
7889 procedure Resolve_Unchecked_Expression
7890 (N : Node_Id;
7891 Typ : Entity_Id)
7892 is
7893 begin
7894 Resolve (Expression (N), Typ, Suppress => All_Checks);
7895 Set_Etype (N, Typ);
7896 end Resolve_Unchecked_Expression;
7897
7898 ---------------------------------------
7899 -- Resolve_Unchecked_Type_Conversion --
7900 ---------------------------------------
7901
7902 procedure Resolve_Unchecked_Type_Conversion
7903 (N : Node_Id;
7904 Typ : Entity_Id)
7905 is
07fc65c4
GB
7906 pragma Warnings (Off, Typ);
7907
996ae0b0
RK
7908 Operand : constant Node_Id := Expression (N);
7909 Opnd_Type : constant Entity_Id := Etype (Operand);
7910
7911 begin
a77842bd 7912 -- Resolve operand using its own type
996ae0b0
RK
7913
7914 Resolve (Operand, Opnd_Type);
7915 Eval_Unchecked_Conversion (N);
7916
7917 end Resolve_Unchecked_Type_Conversion;
7918
7919 ------------------------------
7920 -- Rewrite_Operator_As_Call --
7921 ------------------------------
7922
7923 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
fbf5a39b
AC
7924 Loc : constant Source_Ptr := Sloc (N);
7925 Actuals : constant List_Id := New_List;
996ae0b0
RK
7926 New_N : Node_Id;
7927
7928 begin
7929 if Nkind (N) in N_Binary_Op then
7930 Append (Left_Opnd (N), Actuals);
7931 end if;
7932
7933 Append (Right_Opnd (N), Actuals);
7934
7935 New_N :=
7936 Make_Function_Call (Sloc => Loc,
7937 Name => New_Occurrence_Of (Nam, Loc),
7938 Parameter_Associations => Actuals);
7939
7940 Preserve_Comes_From_Source (New_N, N);
7941 Preserve_Comes_From_Source (Name (New_N), N);
7942 Rewrite (N, New_N);
7943 Set_Etype (N, Etype (Nam));
7944 end Rewrite_Operator_As_Call;
7945
7946 ------------------------------
7947 -- Rewrite_Renamed_Operator --
7948 ------------------------------
7949
0ab80019
AC
7950 procedure Rewrite_Renamed_Operator
7951 (N : Node_Id;
7952 Op : Entity_Id;
7953 Typ : Entity_Id)
7954 is
996ae0b0
RK
7955 Nam : constant Name_Id := Chars (Op);
7956 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
7957 Op_Node : Node_Id;
7958
7959 begin
fbf5a39b 7960 -- Rewrite the operator node using the real operator, not its
0ab80019
AC
7961 -- renaming. Exclude user-defined intrinsic operations of the same
7962 -- name, which are treated separately and rewritten as calls.
996ae0b0 7963
0ab80019
AC
7964 if Ekind (Op) /= E_Function
7965 or else Chars (N) /= Nam
7966 then
996ae0b0
RK
7967 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
7968 Set_Chars (Op_Node, Nam);
7969 Set_Etype (Op_Node, Etype (N));
7970 Set_Entity (Op_Node, Op);
7971 Set_Right_Opnd (Op_Node, Right_Opnd (N));
7972
b7d1f17f
HK
7973 -- Indicate that both the original entity and its renaming are
7974 -- referenced at this point.
fbf5a39b
AC
7975
7976 Generate_Reference (Entity (N), N);
996ae0b0
RK
7977 Generate_Reference (Op, N);
7978
7979 if Is_Binary then
7980 Set_Left_Opnd (Op_Node, Left_Opnd (N));
7981 end if;
7982
7983 Rewrite (N, Op_Node);
0ab80019
AC
7984
7985 -- If the context type is private, add the appropriate conversions
7986 -- so that the operator is applied to the full view. This is done
7987 -- in the routines that resolve intrinsic operators,
7988
7989 if Is_Intrinsic_Subprogram (Op)
7990 and then Is_Private_Type (Typ)
7991 then
7992 case Nkind (N) is
7993 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
7994 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
7995 Resolve_Intrinsic_Operator (N, Typ);
7996
7997 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
7998 Resolve_Intrinsic_Unary_Operator (N, Typ);
7999
8000 when others =>
8001 Resolve (N, Typ);
8002 end case;
8003 end if;
8004
8005 elsif Ekind (Op) = E_Function
8006 and then Is_Intrinsic_Subprogram (Op)
8007 then
8008 -- Operator renames a user-defined operator of the same name. Use
b7d1f17f 8009 -- the original operator in the node, which is the one that Gigi
0ab80019
AC
8010 -- knows about.
8011
8012 Set_Entity (N, Op);
8013 Set_Is_Overloaded (N, False);
996ae0b0
RK
8014 end if;
8015 end Rewrite_Renamed_Operator;
8016
8017 -----------------------
8018 -- Set_Slice_Subtype --
8019 -----------------------
8020
8021 -- Build an implicit subtype declaration to represent the type delivered
8022 -- by the slice. This is an abbreviated version of an array subtype. We
b7d1f17f 8023 -- define an index subtype for the slice, using either the subtype name
996ae0b0
RK
8024 -- or the discrete range of the slice. To be consistent with index usage
8025 -- elsewhere, we create a list header to hold the single index. This list
8026 -- is not otherwise attached to the syntax tree.
8027
8028 procedure Set_Slice_Subtype (N : Node_Id) is
8029 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 8030 Index_List : constant List_Id := New_List;
996ae0b0 8031 Index : Node_Id;
996ae0b0
RK
8032 Index_Subtype : Entity_Id;
8033 Index_Type : Entity_Id;
8034 Slice_Subtype : Entity_Id;
8035 Drange : constant Node_Id := Discrete_Range (N);
8036
8037 begin
8038 if Is_Entity_Name (Drange) then
8039 Index_Subtype := Entity (Drange);
8040
8041 else
8042 -- We force the evaluation of a range. This is definitely needed in
8043 -- the renamed case, and seems safer to do unconditionally. Note in
8044 -- any case that since we will create and insert an Itype referring
8045 -- to this range, we must make sure any side effect removal actions
8046 -- are inserted before the Itype definition.
8047
8048 if Nkind (Drange) = N_Range then
8049 Force_Evaluation (Low_Bound (Drange));
8050 Force_Evaluation (High_Bound (Drange));
8051 end if;
8052
8053 Index_Type := Base_Type (Etype (Drange));
8054
8055 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8056
8057 Set_Scalar_Range (Index_Subtype, Drange);
8058 Set_Etype (Index_Subtype, Index_Type);
8059 Set_Size_Info (Index_Subtype, Index_Type);
8060 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8061 end if;
8062
8063 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
8064
8065 Index := New_Occurrence_Of (Index_Subtype, Loc);
8066 Set_Etype (Index, Index_Subtype);
8067 Append (Index, Index_List);
8068
996ae0b0
RK
8069 Set_First_Index (Slice_Subtype, Index);
8070 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
8071 Set_Is_Constrained (Slice_Subtype, True);
8072 Init_Size_Align (Slice_Subtype);
8073
8074 Check_Compile_Time_Size (Slice_Subtype);
8075
b7d1f17f
HK
8076 -- The Etype of the existing Slice node is reset to this slice subtype.
8077 -- Its bounds are obtained from its first index.
996ae0b0
RK
8078
8079 Set_Etype (N, Slice_Subtype);
8080
8081 -- In the packed case, this must be immediately frozen
8082
8083 -- Couldn't we always freeze here??? and if we did, then the above
8084 -- call to Check_Compile_Time_Size could be eliminated, which would
8085 -- be nice, because then that routine could be made private to Freeze.
8086
8087 if Is_Packed (Slice_Subtype) and not In_Default_Expression then
8088 Freeze_Itype (Slice_Subtype, N);
8089 end if;
8090
8091 end Set_Slice_Subtype;
8092
8093 --------------------------------
8094 -- Set_String_Literal_Subtype --
8095 --------------------------------
8096
8097 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
c8ef728f
ES
8098 Loc : constant Source_Ptr := Sloc (N);
8099 Low_Bound : constant Node_Id :=
8100 Type_Low_Bound (Etype (First_Index (Typ)));
996ae0b0
RK
8101 Subtype_Id : Entity_Id;
8102
8103 begin
8104 if Nkind (N) /= N_String_Literal then
8105 return;
996ae0b0
RK
8106 end if;
8107
c8ef728f 8108 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
91b1417d
AC
8109 Set_String_Literal_Length (Subtype_Id, UI_From_Int
8110 (String_Length (Strval (N))));
c8ef728f
ES
8111 Set_Etype (Subtype_Id, Base_Type (Typ));
8112 Set_Is_Constrained (Subtype_Id);
8113 Set_Etype (N, Subtype_Id);
8114
8115 if Is_OK_Static_Expression (Low_Bound) then
996ae0b0
RK
8116
8117 -- The low bound is set from the low bound of the corresponding
8118 -- index type. Note that we do not store the high bound in the
c8ef728f 8119 -- string literal subtype, but it can be deduced if necessary
996ae0b0
RK
8120 -- from the length and the low bound.
8121
c8ef728f 8122 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
996ae0b0 8123
c8ef728f
ES
8124 else
8125 Set_String_Literal_Low_Bound
8126 (Subtype_Id, Make_Integer_Literal (Loc, 1));
8127 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
8128
b7d1f17f
HK
8129 -- Build bona fide subtype for the string, and wrap it in an
8130 -- unchecked conversion, because the backend expects the
c8ef728f
ES
8131 -- String_Literal_Subtype to have a static lower bound.
8132
8133 declare
8134 Index_List : constant List_Id := New_List;
8135 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
8136 High_Bound : constant Node_Id :=
8137 Make_Op_Add (Loc,
8138 Left_Opnd => New_Copy_Tree (Low_Bound),
8139 Right_Opnd =>
8140 Make_Integer_Literal (Loc,
8141 String_Length (Strval (N)) - 1));
8142 Array_Subtype : Entity_Id;
8143 Index_Subtype : Entity_Id;
8144 Drange : Node_Id;
8145 Index : Node_Id;
8146
8147 begin
8148 Index_Subtype :=
8149 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
0669bebe 8150 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
c8ef728f
ES
8151 Set_Scalar_Range (Index_Subtype, Drange);
8152 Set_Parent (Drange, N);
8153 Analyze_And_Resolve (Drange, Index_Type);
8154
8155 Set_Etype (Index_Subtype, Index_Type);
8156 Set_Size_Info (Index_Subtype, Index_Type);
8157 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8158
8159 Array_Subtype := Create_Itype (E_Array_Subtype, N);
8160
8161 Index := New_Occurrence_Of (Index_Subtype, Loc);
8162 Set_Etype (Index, Index_Subtype);
8163 Append (Index, Index_List);
8164
8165 Set_First_Index (Array_Subtype, Index);
8166 Set_Etype (Array_Subtype, Base_Type (Typ));
8167 Set_Is_Constrained (Array_Subtype, True);
8168 Init_Size_Align (Array_Subtype);
8169
8170 Rewrite (N,
8171 Make_Unchecked_Type_Conversion (Loc,
8172 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
8173 Expression => Relocate_Node (N)));
8174 Set_Etype (N, Array_Subtype);
8175 end;
8176 end if;
996ae0b0
RK
8177 end Set_String_Literal_Subtype;
8178
0669bebe
GB
8179 ------------------------------
8180 -- Simplify_Type_Conversion --
8181 ------------------------------
8182
8183 procedure Simplify_Type_Conversion (N : Node_Id) is
8184 begin
8185 if Nkind (N) = N_Type_Conversion then
8186 declare
8187 Operand : constant Node_Id := Expression (N);
8188 Target_Typ : constant Entity_Id := Etype (N);
8189 Opnd_Typ : constant Entity_Id := Etype (Operand);
8190
8191 begin
8192 if Is_Floating_Point_Type (Opnd_Typ)
8193 and then
8194 (Is_Integer_Type (Target_Typ)
8195 or else (Is_Fixed_Point_Type (Target_Typ)
8196 and then Conversion_OK (N)))
8197 and then Nkind (Operand) = N_Attribute_Reference
8198 and then Attribute_Name (Operand) = Name_Truncation
8199
8200 -- Special processing required if the conversion is the expression
8201 -- of a Truncation attribute reference. In this case we replace:
8202
8203 -- ityp (ftyp'Truncation (x))
8204
8205 -- by
8206
8207 -- ityp (x)
8208
8209 -- with the Float_Truncate flag set, which is more efficient
8210
8211 then
8212 Rewrite (Operand,
8213 Relocate_Node (First (Expressions (Operand))));
8214 Set_Float_Truncate (N, True);
8215 end if;
8216 end;
8217 end if;
8218 end Simplify_Type_Conversion;
8219
996ae0b0
RK
8220 -----------------------------
8221 -- Unique_Fixed_Point_Type --
8222 -----------------------------
8223
8224 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
8225 T1 : Entity_Id := Empty;
8226 T2 : Entity_Id;
8227 Item : Node_Id;
8228 Scop : Entity_Id;
8229
8230 procedure Fixed_Point_Error;
a77842bd
TQ
8231 -- If true ambiguity, give details
8232
8233 -----------------------
8234 -- Fixed_Point_Error --
8235 -----------------------
996ae0b0
RK
8236
8237 procedure Fixed_Point_Error is
8238 begin
8239 Error_Msg_N ("ambiguous universal_fixed_expression", N);
aa180613
RD
8240 Error_Msg_NE ("\\possible interpretation as}", N, T1);
8241 Error_Msg_NE ("\\possible interpretation as}", N, T2);
996ae0b0
RK
8242 end Fixed_Point_Error;
8243
a77842bd
TQ
8244 -- Start of processing for Unique_Fixed_Point_Type
8245
996ae0b0
RK
8246 begin
8247 -- The operations on Duration are visible, so Duration is always a
8248 -- possible interpretation.
8249
8250 T1 := Standard_Duration;
8251
bc5f3720 8252 -- Look for fixed-point types in enclosing scopes
996ae0b0 8253
fbf5a39b 8254 Scop := Current_Scope;
996ae0b0
RK
8255 while Scop /= Standard_Standard loop
8256 T2 := First_Entity (Scop);
996ae0b0
RK
8257 while Present (T2) loop
8258 if Is_Fixed_Point_Type (T2)
8259 and then Current_Entity (T2) = T2
8260 and then Scope (Base_Type (T2)) = Scop
8261 then
8262 if Present (T1) then
8263 Fixed_Point_Error;
8264 return Any_Type;
8265 else
8266 T1 := T2;
8267 end if;
8268 end if;
8269
8270 Next_Entity (T2);
8271 end loop;
8272
8273 Scop := Scope (Scop);
8274 end loop;
8275
a77842bd 8276 -- Look for visible fixed type declarations in the context
996ae0b0
RK
8277
8278 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
996ae0b0 8279 while Present (Item) loop
996ae0b0
RK
8280 if Nkind (Item) = N_With_Clause then
8281 Scop := Entity (Name (Item));
8282 T2 := First_Entity (Scop);
996ae0b0
RK
8283 while Present (T2) loop
8284 if Is_Fixed_Point_Type (T2)
8285 and then Scope (Base_Type (T2)) = Scop
8286 and then (Is_Potentially_Use_Visible (T2)
8287 or else In_Use (T2))
8288 then
8289 if Present (T1) then
8290 Fixed_Point_Error;
8291 return Any_Type;
8292 else
8293 T1 := T2;
8294 end if;
8295 end if;
8296
8297 Next_Entity (T2);
8298 end loop;
8299 end if;
8300
8301 Next (Item);
8302 end loop;
8303
8304 if Nkind (N) = N_Real_Literal then
aa5147f0 8305 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
996ae0b0
RK
8306
8307 else
aa5147f0 8308 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
996ae0b0
RK
8309 end if;
8310
8311 return T1;
8312 end Unique_Fixed_Point_Type;
8313
8314 ----------------------
8315 -- Valid_Conversion --
8316 ----------------------
8317
8318 function Valid_Conversion
8319 (N : Node_Id;
8320 Target : Entity_Id;
0ab80019 8321 Operand : Node_Id) return Boolean
996ae0b0 8322 is
fbf5a39b 8323 Target_Type : constant Entity_Id := Base_Type (Target);
996ae0b0
RK
8324 Opnd_Type : Entity_Id := Etype (Operand);
8325
8326 function Conversion_Check
8327 (Valid : Boolean;
0ab80019 8328 Msg : String) return Boolean;
996ae0b0
RK
8329 -- Little routine to post Msg if Valid is False, returns Valid value
8330
8331 function Valid_Tagged_Conversion
8332 (Target_Type : Entity_Id;
0ab80019 8333 Opnd_Type : Entity_Id) return Boolean;
996ae0b0
RK
8334 -- Specifically test for validity of tagged conversions
8335
aa180613
RD
8336 function Valid_Array_Conversion return Boolean;
8337 -- Check index and component conformance, and accessibility levels
8338 -- if the component types are anonymous access types (Ada 2005)
8339
996ae0b0
RK
8340 ----------------------
8341 -- Conversion_Check --
8342 ----------------------
8343
8344 function Conversion_Check
8345 (Valid : Boolean;
0ab80019 8346 Msg : String) return Boolean
996ae0b0
RK
8347 is
8348 begin
8349 if not Valid then
8350 Error_Msg_N (Msg, Operand);
8351 end if;
8352
8353 return Valid;
8354 end Conversion_Check;
8355
aa180613
RD
8356 ----------------------------
8357 -- Valid_Array_Conversion --
8358 ----------------------------
8359
8360 function Valid_Array_Conversion return Boolean
8361 is
8362 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
8363 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
8364
8365 Opnd_Index : Node_Id;
8366 Opnd_Index_Type : Entity_Id;
8367
8368 Target_Comp_Type : constant Entity_Id :=
8369 Component_Type (Target_Type);
8370 Target_Comp_Base : constant Entity_Id :=
8371 Base_Type (Target_Comp_Type);
8372
8373 Target_Index : Node_Id;
8374 Target_Index_Type : Entity_Id;
8375
8376 begin
8377 -- Error if wrong number of dimensions
8378
8379 if
8380 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
8381 then
8382 Error_Msg_N
8383 ("incompatible number of dimensions for conversion", Operand);
8384 return False;
8385
8386 -- Number of dimensions matches
8387
8388 else
8389 -- Loop through indexes of the two arrays
8390
8391 Target_Index := First_Index (Target_Type);
8392 Opnd_Index := First_Index (Opnd_Type);
8393 while Present (Target_Index) and then Present (Opnd_Index) loop
8394 Target_Index_Type := Etype (Target_Index);
8395 Opnd_Index_Type := Etype (Opnd_Index);
8396
8397 -- Error if index types are incompatible
8398
8399 if not (Is_Integer_Type (Target_Index_Type)
8400 and then Is_Integer_Type (Opnd_Index_Type))
8401 and then (Root_Type (Target_Index_Type)
8402 /= Root_Type (Opnd_Index_Type))
8403 then
8404 Error_Msg_N
8405 ("incompatible index types for array conversion",
8406 Operand);
8407 return False;
8408 end if;
8409
8410 Next_Index (Target_Index);
8411 Next_Index (Opnd_Index);
8412 end loop;
8413
8414 -- If component types have same base type, all set
8415
8416 if Target_Comp_Base = Opnd_Comp_Base then
8417 null;
8418
8419 -- Here if base types of components are not the same. The only
8420 -- time this is allowed is if we have anonymous access types.
8421
8422 -- The conversion of arrays of anonymous access types can lead
8423 -- to dangling pointers. AI-392 formalizes the accessibility
8424 -- checks that must be applied to such conversions to prevent
8425 -- out-of-scope references.
8426
8427 elsif
8428 (Ekind (Target_Comp_Base) = E_Anonymous_Access_Type
8429 or else
8430 Ekind (Target_Comp_Base) = E_Anonymous_Access_Subprogram_Type)
8431 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
8432 and then
8433 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
8434 then
8435 if Type_Access_Level (Target_Type) <
8436 Type_Access_Level (Opnd_Type)
8437 then
8438 if In_Instance_Body then
8439 Error_Msg_N ("?source array type " &
8440 "has deeper accessibility level than target", Operand);
8441 Error_Msg_N ("\?Program_Error will be raised at run time",
8442 Operand);
8443 Rewrite (N,
8444 Make_Raise_Program_Error (Sloc (N),
8445 Reason => PE_Accessibility_Check_Failed));
8446 Set_Etype (N, Target_Type);
8447 return False;
8448
8449 -- Conversion not allowed because of accessibility levels
8450
8451 else
8452 Error_Msg_N ("source array type " &
8453 "has deeper accessibility level than target", Operand);
8454 return False;
8455 end if;
8456 else
8457 null;
8458 end if;
8459
8460 -- All other cases where component base types do not match
8461
8462 else
8463 Error_Msg_N
8464 ("incompatible component types for array conversion",
8465 Operand);
8466 return False;
8467 end if;
8468
8469 -- Check that component subtypes statically match
8470
8471 if Is_Constrained (Target_Comp_Type) /=
8472 Is_Constrained (Opnd_Comp_Type)
8473 or else not Subtypes_Statically_Match
8474 (Target_Comp_Type, Opnd_Comp_Type)
8475 then
8476 Error_Msg_N
8477 ("component subtypes must statically match", Operand);
8478 return False;
8479 end if;
8480 end if;
8481
8482 return True;
8483 end Valid_Array_Conversion;
8484
996ae0b0
RK
8485 -----------------------------
8486 -- Valid_Tagged_Conversion --
8487 -----------------------------
8488
8489 function Valid_Tagged_Conversion
8490 (Target_Type : Entity_Id;
0ab80019 8491 Opnd_Type : Entity_Id) return Boolean
996ae0b0
RK
8492 is
8493 begin
a77842bd 8494 -- Upward conversions are allowed (RM 4.6(22))
996ae0b0
RK
8495
8496 if Covers (Target_Type, Opnd_Type)
8497 or else Is_Ancestor (Target_Type, Opnd_Type)
8498 then
8499 return True;
8500
a77842bd
TQ
8501 -- Downward conversion are allowed if the operand is class-wide
8502 -- (RM 4.6(23)).
996ae0b0
RK
8503
8504 elsif Is_Class_Wide_Type (Opnd_Type)
b7d1f17f 8505 and then Covers (Opnd_Type, Target_Type)
996ae0b0
RK
8506 then
8507 return True;
8508
8509 elsif Covers (Opnd_Type, Target_Type)
8510 or else Is_Ancestor (Opnd_Type, Target_Type)
8511 then
8512 return
8513 Conversion_Check (False,
8514 "downward conversion of tagged objects not allowed");
758c442c 8515
0669bebe
GB
8516 -- Ada 2005 (AI-251): The conversion to/from interface types is
8517 -- always valid
758c442c 8518
0669bebe 8519 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
758c442c
GD
8520 return True;
8521
b7d1f17f
HK
8522 -- If the operand is a class-wide type obtained through a limited_
8523 -- with clause, and the context includes the non-limited view, use
8524 -- it to determine whether the conversion is legal.
8525
8526 elsif Is_Class_Wide_Type (Opnd_Type)
8527 and then From_With_Type (Opnd_Type)
8528 and then Present (Non_Limited_View (Etype (Opnd_Type)))
8529 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
8530 then
8531 return True;
8532
aa180613
RD
8533 elsif Is_Access_Type (Opnd_Type)
8534 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
8535 then
8536 return True;
8537
996ae0b0
RK
8538 else
8539 Error_Msg_NE
8540 ("invalid tagged conversion, not compatible with}",
8541 N, First_Subtype (Opnd_Type));
8542 return False;
8543 end if;
8544 end Valid_Tagged_Conversion;
8545
8546 -- Start of processing for Valid_Conversion
8547
8548 begin
8549 Check_Parameterless_Call (Operand);
8550
8551 if Is_Overloaded (Operand) then
8552 declare
8553 I : Interp_Index;
8554 I1 : Interp_Index;
8555 It : Interp;
8556 It1 : Interp;
8557 N1 : Entity_Id;
8558
8559 begin
8560 -- Remove procedure calls, which syntactically cannot appear
8561 -- in this context, but which cannot be removed by type checking,
8562 -- because the context does not impose a type.
8563
1420b484
JM
8564 -- When compiling for VMS, spurious ambiguities can be produced
8565 -- when arithmetic operations have a literal operand and return
8566 -- System.Address or a descendant of it. These ambiguities are
8567 -- otherwise resolved by the context, but for conversions there
8568 -- is no context type and the removal of the spurious operations
8569 -- must be done explicitly here.
8570
9ebe3743
HK
8571 -- The node may be labelled overloaded, but still contain only
8572 -- one interpretation because others were discarded in previous
8573 -- filters. If this is the case, retain the single interpretation
8574 -- if legal.
8575
996ae0b0 8576 Get_First_Interp (Operand, I, It);
9ebe3743
HK
8577 Opnd_Type := It.Typ;
8578 Get_Next_Interp (I, It);
996ae0b0 8579
9ebe3743
HK
8580 if Present (It.Typ)
8581 and then Opnd_Type /= Standard_Void_Type
8582 then
8583 -- More than one candidate interpretation is available
996ae0b0 8584
9ebe3743
HK
8585 Get_First_Interp (Operand, I, It);
8586 while Present (It.Typ) loop
8587 if It.Typ = Standard_Void_Type then
8588 Remove_Interp (I);
8589 end if;
1420b484 8590
9ebe3743
HK
8591 if Present (System_Aux_Id)
8592 and then Is_Descendent_Of_Address (It.Typ)
8593 then
8594 Remove_Interp (I);
8595 end if;
8596
8597 Get_Next_Interp (I, It);
8598 end loop;
8599 end if;
996ae0b0
RK
8600
8601 Get_First_Interp (Operand, I, It);
8602 I1 := I;
8603 It1 := It;
8604
8605 if No (It.Typ) then
8606 Error_Msg_N ("illegal operand in conversion", Operand);
8607 return False;
8608 end if;
8609
8610 Get_Next_Interp (I, It);
8611
8612 if Present (It.Typ) then
8613 N1 := It1.Nam;
8614 It1 := Disambiguate (Operand, I1, I, Any_Type);
8615
8616 if It1 = No_Interp then
8617 Error_Msg_N ("ambiguous operand in conversion", Operand);
8618
8619 Error_Msg_Sloc := Sloc (It.Nam);
aa180613 8620 Error_Msg_N ("\\possible interpretation#!", Operand);
996ae0b0
RK
8621
8622 Error_Msg_Sloc := Sloc (N1);
aa180613 8623 Error_Msg_N ("\\possible interpretation#!", Operand);
996ae0b0
RK
8624
8625 return False;
8626 end if;
8627 end if;
8628
8629 Set_Etype (Operand, It1.Typ);
8630 Opnd_Type := It1.Typ;
8631 end;
8632 end if;
8633
aa180613 8634 -- Numeric types
996ae0b0 8635
aa180613 8636 if Is_Numeric_Type (Target_Type) then
996ae0b0 8637
aa180613 8638 -- A universal fixed expression can be converted to any numeric type
996ae0b0 8639
996ae0b0
RK
8640 if Opnd_Type = Universal_Fixed then
8641 return True;
7324bf49 8642
aa180613
RD
8643 -- Also no need to check when in an instance or inlined body, because
8644 -- the legality has been established when the template was analyzed.
8645 -- Furthermore, numeric conversions may occur where only a private
8646 -- view of the operand type is visible at the instanciation point.
8647 -- This results in a spurious error if we check that the operand type
8648 -- is a numeric type.
8649
8650 -- Note: in a previous version of this unit, the following tests were
8651 -- applied only for generated code (Comes_From_Source set to False),
8652 -- but in fact the test is required for source code as well, since
8653 -- this situation can arise in source code.
8654
8655 elsif In_Instance or else In_Inlined_Body then
8656 return True;
8657
8658 -- Otherwise we need the conversion check
7324bf49 8659
996ae0b0 8660 else
aa180613
RD
8661 return Conversion_Check
8662 (Is_Numeric_Type (Opnd_Type),
8663 "illegal operand for numeric conversion");
996ae0b0
RK
8664 end if;
8665
aa180613
RD
8666 -- Array types
8667
996ae0b0
RK
8668 elsif Is_Array_Type (Target_Type) then
8669 if not Is_Array_Type (Opnd_Type)
8670 or else Opnd_Type = Any_Composite
8671 or else Opnd_Type = Any_String
8672 then
8673 Error_Msg_N
8674 ("illegal operand for array conversion", Operand);
8675 return False;
996ae0b0 8676 else
aa180613 8677 return Valid_Array_Conversion;
996ae0b0
RK
8678 end if;
8679
aa180613 8680 -- Anonymous access types where target references an interface
758c442c
GD
8681
8682 elsif (Ekind (Target_Type) = E_General_Access_Type
aa180613
RD
8683 or else
8684 Ekind (Target_Type) = E_Anonymous_Access_Type)
758c442c
GD
8685 and then Is_Interface (Directly_Designated_Type (Target_Type))
8686 then
8687 -- Check the static accessibility rule of 4.6(17). Note that the
8688 -- check is not enforced when within an instance body, since the RM
8689 -- requires such cases to be caught at run time.
8690
8691 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
8692 if Type_Access_Level (Opnd_Type) >
8693 Type_Access_Level (Target_Type)
8694 then
8695 -- In an instance, this is a run-time check, but one we know
8696 -- will fail, so generate an appropriate warning. The raise
8697 -- will be generated by Expand_N_Type_Conversion.
8698
8699 if In_Instance_Body then
8700 Error_Msg_N
8701 ("?cannot convert local pointer to non-local access type",
8702 Operand);
8703 Error_Msg_N
c8ef728f 8704 ("\?Program_Error will be raised at run time", Operand);
758c442c
GD
8705 else
8706 Error_Msg_N
8707 ("cannot convert local pointer to non-local access type",
8708 Operand);
8709 return False;
8710 end if;
8711
8712 -- Special accessibility checks are needed in the case of access
8713 -- discriminants declared for a limited type.
8714
8715 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
8716 and then not Is_Local_Anonymous_Access (Opnd_Type)
8717 then
8718 -- When the operand is a selected access discriminant the check
8719 -- needs to be made against the level of the object denoted by
8720 -- the prefix of the selected name. (Object_Access_Level
8721 -- handles checking the prefix of the operand for this case.)
8722
8723 if Nkind (Operand) = N_Selected_Component
c8ef728f
ES
8724 and then Object_Access_Level (Operand) >
8725 Type_Access_Level (Target_Type)
758c442c
GD
8726 then
8727 -- In an instance, this is a run-time check, but one we
8728 -- know will fail, so generate an appropriate warning.
8729 -- The raise will be generated by Expand_N_Type_Conversion.
8730
8731 if In_Instance_Body then
8732 Error_Msg_N
8733 ("?cannot convert access discriminant to non-local" &
8734 " access type", Operand);
8735 Error_Msg_N
c8ef728f 8736 ("\?Program_Error will be raised at run time", Operand);
758c442c
GD
8737 else
8738 Error_Msg_N
8739 ("cannot convert access discriminant to non-local" &
8740 " access type", Operand);
8741 return False;
8742 end if;
8743 end if;
8744
8745 -- The case of a reference to an access discriminant from
8746 -- within a limited type declaration (which will appear as
8747 -- a discriminal) is always illegal because the level of the
8748 -- discriminant is considered to be deeper than any (namable)
8749 -- access type.
8750
8751 if Is_Entity_Name (Operand)
8752 and then not Is_Local_Anonymous_Access (Opnd_Type)
8753 and then (Ekind (Entity (Operand)) = E_In_Parameter
8754 or else Ekind (Entity (Operand)) = E_Constant)
8755 and then Present (Discriminal_Link (Entity (Operand)))
8756 then
8757 Error_Msg_N
8758 ("discriminant has deeper accessibility level than target",
8759 Operand);
8760 return False;
8761 end if;
8762 end if;
8763 end if;
8764
8765 return True;
8766
aa180613
RD
8767 -- General and anonymous access types
8768
996ae0b0
RK
8769 elsif (Ekind (Target_Type) = E_General_Access_Type
8770 or else Ekind (Target_Type) = E_Anonymous_Access_Type)
8771 and then
8772 Conversion_Check
8773 (Is_Access_Type (Opnd_Type)
8774 and then Ekind (Opnd_Type) /=
8775 E_Access_Subprogram_Type
8776 and then Ekind (Opnd_Type) /=
8777 E_Access_Protected_Subprogram_Type,
8778 "must be an access-to-object type")
8779 then
8780 if Is_Access_Constant (Opnd_Type)
8781 and then not Is_Access_Constant (Target_Type)
8782 then
8783 Error_Msg_N
8784 ("access-to-constant operand type not allowed", Operand);
8785 return False;
8786 end if;
8787
758c442c
GD
8788 -- Check the static accessibility rule of 4.6(17). Note that the
8789 -- check is not enforced when within an instance body, since the RM
8790 -- requires such cases to be caught at run time.
996ae0b0 8791
758c442c
GD
8792 if Ekind (Target_Type) /= E_Anonymous_Access_Type
8793 or else Is_Local_Anonymous_Access (Target_Type)
8794 then
996ae0b0
RK
8795 if Type_Access_Level (Opnd_Type)
8796 > Type_Access_Level (Target_Type)
8797 then
8798 -- In an instance, this is a run-time check, but one we
8799 -- know will fail, so generate an appropriate warning.
8800 -- The raise will be generated by Expand_N_Type_Conversion.
8801
8802 if In_Instance_Body then
8803 Error_Msg_N
8804 ("?cannot convert local pointer to non-local access type",
8805 Operand);
8806 Error_Msg_N
c8ef728f 8807 ("\?Program_Error will be raised at run time", Operand);
996ae0b0
RK
8808
8809 else
b90cfacd
HK
8810 -- Avoid generation of spurious error message
8811
8812 if not Error_Posted (N) then
8813 Error_Msg_N
8814 ("cannot convert local pointer to non-local access type",
8815 Operand);
8816 end if;
8817
996ae0b0
RK
8818 return False;
8819 end if;
8820
758c442c
GD
8821 -- Special accessibility checks are needed in the case of access
8822 -- discriminants declared for a limited type.
8823
8824 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
8825 and then not Is_Local_Anonymous_Access (Opnd_Type)
8826 then
996ae0b0 8827
758c442c
GD
8828 -- When the operand is a selected access discriminant the check
8829 -- needs to be made against the level of the object denoted by
8830 -- the prefix of the selected name. (Object_Access_Level
8831 -- handles checking the prefix of the operand for this case.)
996ae0b0
RK
8832
8833 if Nkind (Operand) = N_Selected_Component
8834 and then Object_Access_Level (Operand)
8835 > Type_Access_Level (Target_Type)
8836 then
8837 -- In an instance, this is a run-time check, but one we
8838 -- know will fail, so generate an appropriate warning.
8839 -- The raise will be generated by Expand_N_Type_Conversion.
8840
8841 if In_Instance_Body then
8842 Error_Msg_N
8843 ("?cannot convert access discriminant to non-local" &
8844 " access type", Operand);
8845 Error_Msg_N
c8ef728f
ES
8846 ("\?Program_Error will be raised at run time",
8847 Operand);
996ae0b0
RK
8848
8849 else
8850 Error_Msg_N
8851 ("cannot convert access discriminant to non-local" &
8852 " access type", Operand);
8853 return False;
8854 end if;
8855 end if;
8856
758c442c
GD
8857 -- The case of a reference to an access discriminant from
8858 -- within a limited type declaration (which will appear as
8859 -- a discriminal) is always illegal because the level of the
8860 -- discriminant is considered to be deeper than any (namable)
8861 -- access type.
996ae0b0
RK
8862
8863 if Is_Entity_Name (Operand)
8864 and then (Ekind (Entity (Operand)) = E_In_Parameter
8865 or else Ekind (Entity (Operand)) = E_Constant)
8866 and then Present (Discriminal_Link (Entity (Operand)))
8867 then
8868 Error_Msg_N
8869 ("discriminant has deeper accessibility level than target",
8870 Operand);
8871 return False;
8872 end if;
8873 end if;
8874 end if;
8875
8876 declare
0669bebe
GB
8877 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
8878 -- Helper function to handle limited views
8879
8880 --------------------------
8881 -- Full_Designated_Type --
8882 --------------------------
8883
8884 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
8885 Desig : constant Entity_Id := Designated_Type (T);
8886 begin
8887 if From_With_Type (Desig)
8888 and then Is_Incomplete_Type (Desig)
8889 and then Present (Non_Limited_View (Desig))
8890 then
8891 return Non_Limited_View (Desig);
8892 else
8893 return Desig;
8894 end if;
8895 end Full_Designated_Type;
8896
8897 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
8898 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
8899
8900 Same_Base : constant Boolean :=
8901 Base_Type (Target) = Base_Type (Opnd);
996ae0b0
RK
8902
8903 begin
8904 if Is_Tagged_Type (Target) then
8905 return Valid_Tagged_Conversion (Target, Opnd);
8906
8907 else
0669bebe 8908 if not Same_Base then
996ae0b0
RK
8909 Error_Msg_NE
8910 ("target designated type not compatible with }",
8911 N, Base_Type (Opnd));
8912 return False;
8913
da709d08
AC
8914 -- Ada 2005 AI-384: legality rule is symmetric in both
8915 -- designated types. The conversion is legal (with possible
8916 -- constraint check) if either designated type is
8917 -- unconstrained.
8918
8919 elsif Subtypes_Statically_Match (Target, Opnd)
8920 or else
8921 (Has_Discriminants (Target)
8922 and then
8923 (not Is_Constrained (Opnd)
8924 or else not Is_Constrained (Target)))
996ae0b0 8925 then
da709d08
AC
8926 return True;
8927
8928 else
996ae0b0
RK
8929 Error_Msg_NE
8930 ("target designated subtype not compatible with }",
8931 N, Opnd);
8932 return False;
996ae0b0
RK
8933 end if;
8934 end if;
8935 end;
8936
aa180613
RD
8937 -- Subprogram access types
8938
af4b9434
AC
8939 elsif (Ekind (Target_Type) = E_Access_Subprogram_Type
8940 or else
8941 Ekind (Target_Type) = E_Anonymous_Access_Subprogram_Type)
bc5f3720 8942 and then No (Corresponding_Remote_Type (Opnd_Type))
996ae0b0 8943 then
0669bebe
GB
8944 if
8945 Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
8946 then
8947 Error_Msg_N
8948 ("illegal attempt to store anonymous access to subprogram",
8949 Operand);
8950 Error_Msg_N
8951 ("\value has deeper accessibility than any master " &
aa5147f0 8952 "(RM 3.10.2 (13))",
0669bebe
GB
8953 Operand);
8954
8955 if Is_Entity_Name (Operand)
8956 and then Ekind (Entity (Operand)) = E_In_Parameter
8957 then
8958 Error_Msg_NE
8959 ("\use named access type for& instead of access parameter",
8960 Operand, Entity (Operand));
8961 end if;
8962 end if;
8963
996ae0b0
RK
8964 -- Check that the designated types are subtype conformant
8965
bc5f3720
RD
8966 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
8967 Old_Id => Designated_Type (Opnd_Type),
8968 Err_Loc => N);
996ae0b0
RK
8969
8970 -- Check the static accessibility rule of 4.6(20)
8971
8972 if Type_Access_Level (Opnd_Type) >
8973 Type_Access_Level (Target_Type)
8974 then
8975 Error_Msg_N
8976 ("operand type has deeper accessibility level than target",
8977 Operand);
8978
8979 -- Check that if the operand type is declared in a generic body,
8980 -- then the target type must be declared within that same body
8981 -- (enforces last sentence of 4.6(20)).
8982
8983 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
8984 declare
8985 O_Gen : constant Node_Id :=
8986 Enclosing_Generic_Body (Opnd_Type);
8987
1420b484 8988 T_Gen : Node_Id;
996ae0b0
RK
8989
8990 begin
1420b484 8991 T_Gen := Enclosing_Generic_Body (Target_Type);
996ae0b0
RK
8992 while Present (T_Gen) and then T_Gen /= O_Gen loop
8993 T_Gen := Enclosing_Generic_Body (T_Gen);
8994 end loop;
8995
8996 if T_Gen /= O_Gen then
8997 Error_Msg_N
8998 ("target type must be declared in same generic body"
8999 & " as operand type", N);
9000 end if;
9001 end;
9002 end if;
9003
9004 return True;
9005
aa180613
RD
9006 -- Remote subprogram access types
9007
996ae0b0
RK
9008 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
9009 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
9010 then
9011 -- It is valid to convert from one RAS type to another provided
9012 -- that their specification statically match.
9013
9014 Check_Subtype_Conformant
9015 (New_Id =>
9016 Designated_Type (Corresponding_Remote_Type (Target_Type)),
9017 Old_Id =>
9018 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
9019 Err_Loc =>
9020 N);
9021 return True;
aa180613
RD
9022
9023 -- Tagged types
996ae0b0
RK
9024
9025 elsif Is_Tagged_Type (Target_Type) then
9026 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
9027
a77842bd 9028 -- Types derived from the same root type are convertible
996ae0b0
RK
9029
9030 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
9031 return True;
9032
aa5147f0
ES
9033 -- In an instance or an inlined body, there may be inconsistent
9034 -- views of the same type, or of types derived from a common root.
996ae0b0 9035
aa5147f0
ES
9036 elsif (In_Instance or In_Inlined_Body)
9037 and then
9038 Root_Type (Underlying_Type (Target_Type)) =
9039 Root_Type (Underlying_Type (Opnd_Type))
996ae0b0
RK
9040 then
9041 return True;
9042
9043 -- Special check for common access type error case
9044
9045 elsif Ekind (Target_Type) = E_Access_Type
9046 and then Is_Access_Type (Opnd_Type)
9047 then
9048 Error_Msg_N ("target type must be general access type!", N);
9049 Error_Msg_NE ("add ALL to }!", N, Target_Type);
9050
9051 return False;
9052
9053 else
9054 Error_Msg_NE ("invalid conversion, not compatible with }",
9055 N, Opnd_Type);
9056
9057 return False;
9058 end if;
9059 end Valid_Conversion;
9060
9061end Sem_Res;