]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
basic_ios.h: Remove *_iter typedefs, change num* typedefs to num_*.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
1afdf91c
RH
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
3932261a
MM
45
46/* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
3932261a
MM
50
51 struct S {int i; double d; };
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
ac3d9668
RK
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
3bdf5ad1
RK
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
95bd1dd7 69 past immediate descendants, however, since we propagate all
3bdf5ad1 70 grandchildren up one level.
3932261a
MM
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
d4b60170
RK
76typedef struct alias_set_entry
77{
3932261a 78 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 79 HOST_WIDE_INT alias_set;
3932261a
MM
80
81 /* The children of the alias set. These are not just the immediate
95bd1dd7 82 children, but, in fact, all descendants. So, if we have:
3932261a 83
ca7fd9cd 84 struct T { struct S s; float f; }
3932261a
MM
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
2bf105ab
RK
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
d4b60170 93} *alias_set_entry;
9ae8ffe7 94
4682ae04
AJ
95static int rtx_equal_for_memref_p (rtx, rtx);
96static rtx find_symbolic_term (rtx);
4682ae04
AJ
97static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
98static void record_set (rtx, rtx, void *);
99static int base_alias_check (rtx, rtx, enum machine_mode,
100 enum machine_mode);
101static rtx find_base_value (rtx);
102static int mems_in_disjoint_alias_sets_p (rtx, rtx);
103static int insert_subset_children (splay_tree_node, void*);
104static tree find_base_decl (tree);
105static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
106static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
107 int (*) (rtx, int));
108static int aliases_everything_p (rtx);
109static bool nonoverlapping_component_refs_p (tree, tree);
110static tree decl_for_component_ref (tree);
111static rtx adjust_offset_for_component_ref (tree, rtx);
112static int nonoverlapping_memrefs_p (rtx, rtx);
113static int write_dependence_p (rtx, rtx, int);
114
115static int nonlocal_mentioned_p_1 (rtx *, void *);
116static int nonlocal_mentioned_p (rtx);
117static int nonlocal_referenced_p_1 (rtx *, void *);
118static int nonlocal_referenced_p (rtx);
119static int nonlocal_set_p_1 (rtx *, void *);
120static int nonlocal_set_p (rtx);
121static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
122
123/* Set up all info needed to perform alias analysis on memory references. */
124
d4b60170 125/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
126#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
41472af8 128/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 134
ea64ef27 135/* Cap the number of passes we make over the insns propagating alias
ac3d9668 136 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 137#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 138
9ae8ffe7
JL
139/* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
ca7fd9cd 147 the stack, frame, and argument pointers.
b3b5ad95
JL
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
2a2c8203 157
e2500fed 158static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
ac606739 159static rtx *new_reg_base_value;
d4b60170
RK
160static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
bf1660a6
JL
162/* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
9ae8ffe7 166#define REG_BASE_VALUE(X) \
fb6754f0
BS
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
9ae8ffe7 169
de12be17
JC
170/* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178static rtx *alias_invariant;
179
c13e8210
MM
180/* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
9ae8ffe7
JL
184rtx *reg_known_value;
185
186/* Indicates number of valid entries in reg_known_value. */
770ae6cc 187static unsigned int reg_known_value_size;
9ae8ffe7
JL
188
189/* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
9ae8ffe7
JL
201char *reg_known_equiv_p;
202
2a2c8203
JC
203/* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 205static bool copying_arguments;
9ae8ffe7 206
3932261a 207/* The splay-tree used to store the various alias set entries. */
3932261a 208static splay_tree alias_sets;
ac3d9668 209\f
3932261a
MM
210/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213static alias_set_entry
4682ae04 214get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 215{
d4b60170
RK
216 splay_tree_node sn
217 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
3932261a 218
d4b60170 219 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
3932261a
MM
220}
221
ac3d9668
RK
222/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
223 the two MEMs cannot alias each other. */
3932261a 224
ca7fd9cd 225static int
4682ae04 226mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 227{
ca7fd9cd 228#ifdef ENABLE_CHECKING
3932261a
MM
229/* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
d4b60170
RK
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
238 abort ();
239#endif
240
1da68f56
RK
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
242}
3932261a 243
1da68f56
RK
244/* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
246
247static int
4682ae04 248insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
249{
250 splay_tree_insert ((splay_tree) data, node->key, node->value);
251
252 return 0;
253}
254
255/* Return 1 if the two specified alias sets may conflict. */
256
257int
4682ae04 258alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
259{
260 alias_set_entry ase;
261
262 /* If have no alias set information for one of the operands, we have
263 to assume it can alias anything. */
264 if (set1 == 0 || set2 == 0
265 /* If the two alias sets are the same, they may alias. */
266 || set1 == set2)
267 return 1;
3932261a 268
3bdf5ad1 269 /* See if the first alias set is a subset of the second. */
1da68f56 270 ase = get_alias_set_entry (set1);
2bf105ab
RK
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
1da68f56
RK
274 (splay_tree_key) set2)))
275 return 1;
3932261a
MM
276
277 /* Now do the same, but with the alias sets reversed. */
1da68f56 278 ase = get_alias_set_entry (set2);
2bf105ab
RK
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
1da68f56
RK
282 (splay_tree_key) set1)))
283 return 1;
3932261a 284
1da68f56 285 /* The two alias sets are distinct and neither one is the
3932261a 286 child of the other. Therefore, they cannot alias. */
1da68f56 287 return 0;
3932261a 288}
1da68f56
RK
289\f
290/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
291 has any readonly fields. If any of the fields have types that
292 contain readonly fields, return true as well. */
3932261a 293
1da68f56 294int
4682ae04 295readonly_fields_p (tree type)
3932261a 296{
1da68f56
RK
297 tree field;
298
299 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
300 && TREE_CODE (type) != QUAL_UNION_TYPE)
301 return 0;
302
303 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
304 if (TREE_CODE (field) == FIELD_DECL
305 && (TREE_READONLY (field)
306 || readonly_fields_p (TREE_TYPE (field))))
307 return 1;
3932261a
MM
308
309 return 0;
310}
3bdf5ad1 311\f
1da68f56
RK
312/* Return 1 if any MEM object of type T1 will always conflict (using the
313 dependency routines in this file) with any MEM object of type T2.
314 This is used when allocating temporary storage. If T1 and/or T2 are
315 NULL_TREE, it means we know nothing about the storage. */
316
317int
4682ae04 318objects_must_conflict_p (tree t1, tree t2)
1da68f56 319{
82d610ec
RK
320 HOST_WIDE_INT set1, set2;
321
e8ea2809
RK
322 /* If neither has a type specified, we don't know if they'll conflict
323 because we may be using them to store objects of various types, for
324 example the argument and local variables areas of inlined functions. */
981a4c34 325 if (t1 == 0 && t2 == 0)
e8ea2809
RK
326 return 0;
327
66cce54d
RH
328 /* If one or the other has readonly fields or is readonly,
329 then they may not conflict. */
330 if ((t1 != 0 && readonly_fields_p (t1))
331 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
332 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
333 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
334 return 0;
335
1da68f56
RK
336 /* If they are the same type, they must conflict. */
337 if (t1 == t2
338 /* Likewise if both are volatile. */
339 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
340 return 1;
341
82d610ec
RK
342 set1 = t1 ? get_alias_set (t1) : 0;
343 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 344
82d610ec
RK
345 /* Otherwise they conflict if they have no alias set or the same. We
346 can't simply use alias_sets_conflict_p here, because we must make
347 sure that every subtype of t1 will conflict with every subtype of
348 t2 for which a pair of subobjects of these respective subtypes
349 overlaps on the stack. */
350 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
351}
352\f
3bdf5ad1
RK
353/* T is an expression with pointer type. Find the DECL on which this
354 expression is based. (For example, in `a[i]' this would be `a'.)
355 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 356 NULL_TREE is returned. */
3bdf5ad1
RK
357
358static tree
4682ae04 359find_base_decl (tree t)
3bdf5ad1
RK
360{
361 tree d0, d1, d2;
362
363 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
364 return 0;
365
366 /* If this is a declaration, return it. */
367 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
368 return t;
369
370 /* Handle general expressions. It would be nice to deal with
371 COMPONENT_REFs here. If we could tell that `a' and `b' were the
372 same, then `a->f' and `b->f' are also the same. */
373 switch (TREE_CODE_CLASS (TREE_CODE (t)))
374 {
375 case '1':
376 return find_base_decl (TREE_OPERAND (t, 0));
377
378 case '2':
379 /* Return 0 if found in neither or both are the same. */
380 d0 = find_base_decl (TREE_OPERAND (t, 0));
381 d1 = find_base_decl (TREE_OPERAND (t, 1));
382 if (d0 == d1)
383 return d0;
384 else if (d0 == 0)
385 return d1;
386 else if (d1 == 0)
387 return d0;
388 else
389 return 0;
390
391 case '3':
392 d0 = find_base_decl (TREE_OPERAND (t, 0));
393 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
394 d2 = find_base_decl (TREE_OPERAND (t, 2));
395
396 /* Set any nonzero values from the last, then from the first. */
397 if (d1 == 0) d1 = d2;
398 if (d0 == 0) d0 = d1;
399 if (d1 == 0) d1 = d0;
400 if (d2 == 0) d2 = d1;
401
402 /* At this point all are nonzero or all are zero. If all three are the
403 same, return it. Otherwise, return zero. */
404 return (d0 == d1 && d1 == d2) ? d0 : 0;
405
406 default:
407 return 0;
408 }
409}
410
6e24b709
RK
411/* Return 1 if all the nested component references handled by
412 get_inner_reference in T are such that we can address the object in T. */
413
10b76d73 414int
4682ae04 415can_address_p (tree t)
6e24b709
RK
416{
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t))
419 return 1;
420
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t) == BIT_FIELD_REF)
423 return 0;
424
8ac61af7
RK
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
6e24b709
RK
427 else if (TREE_CODE (t) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
430 && can_address_p (TREE_OPERAND (t, 0)))
431 return 1;
432
8ac61af7 433 /* Likewise for arrays. */
b4e3fabb 434 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
437 && can_address_p (TREE_OPERAND (t, 0)))
438 return 1;
439
440 return 0;
441}
442
3bdf5ad1
RK
443/* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
445
446HOST_WIDE_INT
4682ae04 447get_alias_set (tree t)
3bdf5ad1
RK
448{
449 HOST_WIDE_INT set;
3bdf5ad1
RK
450
451 /* If we're not doing any alias analysis, just assume everything
452 aliases everything else. Also return 0 if this or its type is
453 an error. */
454 if (! flag_strict_aliasing || t == error_mark_node
455 || (! TYPE_P (t)
456 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
457 return 0;
458
459 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
460 language-specific routine may make mutually-recursive calls to each other
461 to figure out what to do. At each juncture, we see if this is a tree
462 that the language may need to handle specially. First handle things that
738cc472 463 aren't types. */
f824e5c3 464 if (! TYPE_P (t))
3bdf5ad1 465 {
738cc472
RK
466 tree inner = t;
467 tree placeholder_ptr = 0;
468
8ac61af7
RK
469 /* Remove any nops, then give the language a chance to do
470 something with this tree before we look at it. */
471 STRIP_NOPS (t);
472 set = (*lang_hooks.get_alias_set) (t);
473 if (set != -1)
474 return set;
475
738cc472 476 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 477 restrict-qualified pointer or a "void *". Replace
738cc472 478 PLACEHOLDER_EXPRs. */
8ac61af7 479 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
480 || handled_component_p (inner))
481 {
482 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
483 inner = find_placeholder (inner, &placeholder_ptr);
484 else
485 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
486
487 STRIP_NOPS (inner);
738cc472
RK
488 }
489
490 /* Check for accesses through restrict-qualified pointers. */
491 if (TREE_CODE (inner) == INDIRECT_REF)
492 {
493 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
494
495 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
496 {
e5837c07 497 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
498 if (DECL_POINTER_ALIAS_SET (decl) == -2)
499 {
500 /* No two restricted pointers can point at the same thing.
501 However, a restricted pointer can point at the same thing
502 as an unrestricted pointer, if that unrestricted pointer
503 is based on the restricted pointer. So, we make the
504 alias set for the restricted pointer a subset of the
505 alias set for the type pointed to by the type of the
506 decl. */
507 HOST_WIDE_INT pointed_to_alias_set
508 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
509
510 if (pointed_to_alias_set == 0)
511 /* It's not legal to make a subset of alias set zero. */
512 ;
513 else
514 {
515 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
516 record_alias_subset (pointed_to_alias_set,
517 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
518 }
519 }
520
521 /* We use the alias set indicated in the declaration. */
522 return DECL_POINTER_ALIAS_SET (decl);
523 }
524
525 /* If we have an INDIRECT_REF via a void pointer, we don't
526 know anything about what that might alias. */
527 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
528 return 0;
529 }
530
531 /* Otherwise, pick up the outermost object that we could have a pointer
532 to, processing conversion and PLACEHOLDER_EXPR as above. */
533 placeholder_ptr = 0;
8ac61af7 534 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
535 || (handled_component_p (t) && ! can_address_p (t)))
536 {
f47e9b4e 537 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 538 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
539 else
540 t = TREE_OPERAND (t, 0);
f824e5c3 541
8ac61af7
RK
542 STRIP_NOPS (t);
543 }
f824e5c3 544
738cc472
RK
545 /* If we've already determined the alias set for a decl, just return
546 it. This is necessary for C++ anonymous unions, whose component
547 variables don't look like union members (boo!). */
5755cd38
JM
548 if (TREE_CODE (t) == VAR_DECL
549 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
550 return MEM_ALIAS_SET (DECL_RTL (t));
551
f824e5c3
RK
552 /* Now all we care about is the type. */
553 t = TREE_TYPE (t);
3bdf5ad1
RK
554 }
555
3bdf5ad1
RK
556 /* Variant qualifiers don't affect the alias set, so get the main
557 variant. If this is a type with a known alias set, return it. */
558 t = TYPE_MAIN_VARIANT (t);
738cc472 559 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
560 return TYPE_ALIAS_SET (t);
561
562 /* See if the language has special handling for this type. */
8ac61af7
RK
563 set = (*lang_hooks.get_alias_set) (t);
564 if (set != -1)
738cc472 565 return set;
2bf105ab 566
3bdf5ad1
RK
567 /* There are no objects of FUNCTION_TYPE, so there's no point in
568 using up an alias set for them. (There are, of course, pointers
569 and references to functions, but that's different.) */
570 else if (TREE_CODE (t) == FUNCTION_TYPE)
571 set = 0;
74d86f4f
RH
572
573 /* Unless the language specifies otherwise, let vector types alias
574 their components. This avoids some nasty type punning issues in
575 normal usage. And indeed lets vectors be treated more like an
576 array slice. */
577 else if (TREE_CODE (t) == VECTOR_TYPE)
578 set = get_alias_set (TREE_TYPE (t));
579
3bdf5ad1
RK
580 else
581 /* Otherwise make a new alias set for this type. */
582 set = new_alias_set ();
583
584 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
585
586 /* If this is an aggregate type, we must record any component aliasing
587 information. */
1d79fd2c 588 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
589 record_component_aliases (t);
590
3bdf5ad1
RK
591 return set;
592}
593
594/* Return a brand-new alias set. */
595
596HOST_WIDE_INT
4682ae04 597new_alias_set (void)
3bdf5ad1
RK
598{
599 static HOST_WIDE_INT last_alias_set;
600
601 if (flag_strict_aliasing)
602 return ++last_alias_set;
603 else
604 return 0;
605}
3932261a
MM
606
607/* Indicate that things in SUBSET can alias things in SUPERSET, but
608 not vice versa. For example, in C, a store to an `int' can alias a
609 structure containing an `int', but not vice versa. Here, the
610 structure would be the SUPERSET and `int' the SUBSET. This
ca7fd9cd 611 function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
612
613 It is illegal for SUPERSET to be zero; everything is implicitly a
614 subset of alias set zero. */
615
616void
4682ae04 617record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
618{
619 alias_set_entry superset_entry;
620 alias_set_entry subset_entry;
621
f47e9b4e
RK
622 /* It is possible in complex type situations for both sets to be the same,
623 in which case we can ignore this operation. */
624 if (superset == subset)
625 return;
626
3932261a
MM
627 if (superset == 0)
628 abort ();
629
630 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 631 if (superset_entry == 0)
3932261a
MM
632 {
633 /* Create an entry for the SUPERSET, so that we have a place to
634 attach the SUBSET. */
703ad42b 635 superset_entry = xmalloc (sizeof (struct alias_set_entry));
3932261a 636 superset_entry->alias_set = superset;
ca7fd9cd 637 superset_entry->children
30f72379 638 = splay_tree_new (splay_tree_compare_ints, 0, 0);
570eb5c8 639 superset_entry->has_zero_child = 0;
d4b60170 640 splay_tree_insert (alias_sets, (splay_tree_key) superset,
3932261a 641 (splay_tree_value) superset_entry);
3932261a
MM
642 }
643
2bf105ab
RK
644 if (subset == 0)
645 superset_entry->has_zero_child = 1;
646 else
647 {
648 subset_entry = get_alias_set_entry (subset);
649 /* If there is an entry for the subset, enter all of its children
650 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 651 if (subset_entry)
2bf105ab
RK
652 {
653 if (subset_entry->has_zero_child)
654 superset_entry->has_zero_child = 1;
d4b60170 655
2bf105ab
RK
656 splay_tree_foreach (subset_entry->children, insert_subset_children,
657 superset_entry->children);
658 }
3932261a 659
2bf105ab 660 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 661 splay_tree_insert (superset_entry->children,
2bf105ab
RK
662 (splay_tree_key) subset, 0);
663 }
3932261a
MM
664}
665
a0c33338
RK
666/* Record that component types of TYPE, if any, are part of that type for
667 aliasing purposes. For record types, we only record component types
668 for fields that are marked addressable. For array types, we always
669 record the component types, so the front end should not call this
670 function if the individual component aren't addressable. */
671
672void
4682ae04 673record_component_aliases (tree type)
a0c33338 674{
3bdf5ad1 675 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
676 tree field;
677
678 if (superset == 0)
679 return;
680
681 switch (TREE_CODE (type))
682 {
683 case ARRAY_TYPE:
2bf105ab
RK
684 if (! TYPE_NONALIASED_COMPONENT (type))
685 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
686 break;
687
688 case RECORD_TYPE:
689 case UNION_TYPE:
690 case QUAL_UNION_TYPE:
61eece67
DN
691 /* Recursively record aliases for the base classes, if there are any */
692 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
693 {
694 int i;
695 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
696 {
697 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
698 record_alias_subset (superset,
61eece67 699 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
700 }
701 }
a0c33338 702 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 703 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 704 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
705 break;
706
1d79fd2c
JW
707 case COMPLEX_TYPE:
708 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
709 break;
710
a0c33338
RK
711 default:
712 break;
713 }
714}
715
3bdf5ad1
RK
716/* Allocate an alias set for use in storing and reading from the varargs
717 spill area. */
718
719HOST_WIDE_INT
4682ae04 720get_varargs_alias_set (void)
3bdf5ad1
RK
721{
722 static HOST_WIDE_INT set = -1;
723
724 if (set == -1)
725 set = new_alias_set ();
726
727 return set;
728}
729
730/* Likewise, but used for the fixed portions of the frame, e.g., register
731 save areas. */
732
733HOST_WIDE_INT
4682ae04 734get_frame_alias_set (void)
3bdf5ad1
RK
735{
736 static HOST_WIDE_INT set = -1;
737
738 if (set == -1)
739 set = new_alias_set ();
740
741 return set;
742}
743
2a2c8203
JC
744/* Inside SRC, the source of a SET, find a base address. */
745
9ae8ffe7 746static rtx
4682ae04 747find_base_value (rtx src)
9ae8ffe7 748{
713f41f9 749 unsigned int regno;
0aacc8ed 750
9ae8ffe7
JL
751 switch (GET_CODE (src))
752 {
753 case SYMBOL_REF:
754 case LABEL_REF:
755 return src;
756
757 case REG:
fb6754f0 758 regno = REGNO (src);
d4b60170 759 /* At the start of a function, argument registers have known base
2a2c8203
JC
760 values which may be lost later. Returning an ADDRESS
761 expression here allows optimization based on argument values
762 even when the argument registers are used for other purposes. */
713f41f9
BS
763 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
764 return new_reg_base_value[regno];
73774bc7 765
eaf407a5 766 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
767 for non-fixed hard regs since it can result in a circular
768 dependency chain for registers which have values at function entry.
eaf407a5
JL
769
770 The test above is not sufficient because the scheduler may move
771 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 772 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
83bbd9b6
RH
773 && regno < reg_base_value_size)
774 {
775 /* If we're inside init_alias_analysis, use new_reg_base_value
776 to reduce the number of relaxation iterations. */
1afdf91c
RH
777 if (new_reg_base_value && new_reg_base_value[regno]
778 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
779 return new_reg_base_value[regno];
780
781 if (reg_base_value[regno])
782 return reg_base_value[regno];
783 }
73774bc7 784
9ae8ffe7
JL
785 return src;
786
787 case MEM:
788 /* Check for an argument passed in memory. Only record in the
789 copying-arguments block; it is too hard to track changes
790 otherwise. */
791 if (copying_arguments
792 && (XEXP (src, 0) == arg_pointer_rtx
793 || (GET_CODE (XEXP (src, 0)) == PLUS
794 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 795 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
796 return 0;
797
798 case CONST:
799 src = XEXP (src, 0);
800 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
801 break;
d4b60170 802
ec5c56db 803 /* ... fall through ... */
2a2c8203 804
9ae8ffe7
JL
805 case PLUS:
806 case MINUS:
2a2c8203 807 {
ec907dd8
JL
808 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
809
0134bf2d
DE
810 /* If either operand is a REG that is a known pointer, then it
811 is the base. */
812 if (REG_P (src_0) && REG_POINTER (src_0))
813 return find_base_value (src_0);
814 if (REG_P (src_1) && REG_POINTER (src_1))
815 return find_base_value (src_1);
816
ec907dd8
JL
817 /* If either operand is a REG, then see if we already have
818 a known value for it. */
0134bf2d 819 if (REG_P (src_0))
ec907dd8
JL
820 {
821 temp = find_base_value (src_0);
d4b60170 822 if (temp != 0)
ec907dd8
JL
823 src_0 = temp;
824 }
825
0134bf2d 826 if (REG_P (src_1))
ec907dd8
JL
827 {
828 temp = find_base_value (src_1);
d4b60170 829 if (temp!= 0)
ec907dd8
JL
830 src_1 = temp;
831 }
2a2c8203 832
0134bf2d
DE
833 /* If either base is named object or a special address
834 (like an argument or stack reference), then use it for the
835 base term. */
836 if (src_0 != 0
837 && (GET_CODE (src_0) == SYMBOL_REF
838 || GET_CODE (src_0) == LABEL_REF
839 || (GET_CODE (src_0) == ADDRESS
840 && GET_MODE (src_0) != VOIDmode)))
841 return src_0;
842
843 if (src_1 != 0
844 && (GET_CODE (src_1) == SYMBOL_REF
845 || GET_CODE (src_1) == LABEL_REF
846 || (GET_CODE (src_1) == ADDRESS
847 && GET_MODE (src_1) != VOIDmode)))
848 return src_1;
849
d4b60170 850 /* Guess which operand is the base address:
ec907dd8
JL
851 If either operand is a symbol, then it is the base. If
852 either operand is a CONST_INT, then the other is the base. */
d4b60170 853 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 854 return find_base_value (src_0);
d4b60170 855 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
856 return find_base_value (src_1);
857
9ae8ffe7 858 return 0;
2a2c8203
JC
859 }
860
861 case LO_SUM:
862 /* The standard form is (lo_sum reg sym) so look only at the
863 second operand. */
864 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
865
866 case AND:
867 /* If the second operand is constant set the base
ec5c56db 868 address to the first operand. */
2a2c8203
JC
869 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
870 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
871 return 0;
872
61f0131c
R
873 case TRUNCATE:
874 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
875 break;
876 /* Fall through. */
9ae8ffe7 877 case HIGH:
d288e53d
DE
878 case PRE_INC:
879 case PRE_DEC:
880 case POST_INC:
881 case POST_DEC:
882 case PRE_MODIFY:
883 case POST_MODIFY:
2a2c8203 884 return find_base_value (XEXP (src, 0));
1d300e19 885
0aacc8ed
RK
886 case ZERO_EXTEND:
887 case SIGN_EXTEND: /* used for NT/Alpha pointers */
888 {
889 rtx temp = find_base_value (XEXP (src, 0));
890
891#ifdef POINTERS_EXTEND_UNSIGNED
892 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
893 temp = convert_memory_address (Pmode, temp);
894#endif
895
896 return temp;
897 }
898
1d300e19
KG
899 default:
900 break;
9ae8ffe7
JL
901 }
902
903 return 0;
904}
905
906/* Called from init_alias_analysis indirectly through note_stores. */
907
d4b60170 908/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
909 register N has been set in this function. */
910static char *reg_seen;
911
13309a5f
JC
912/* Addresses which are known not to alias anything else are identified
913 by a unique integer. */
ec907dd8
JL
914static int unique_id;
915
2a2c8203 916static void
4682ae04 917record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 918{
b3694847 919 unsigned regno;
9ae8ffe7 920 rtx src;
c28b4e40 921 int n;
9ae8ffe7
JL
922
923 if (GET_CODE (dest) != REG)
924 return;
925
fb6754f0 926 regno = REGNO (dest);
9ae8ffe7 927
ac606739
GS
928 if (regno >= reg_base_value_size)
929 abort ();
930
c28b4e40
JW
931 /* If this spans multiple hard registers, then we must indicate that every
932 register has an unusable value. */
933 if (regno < FIRST_PSEUDO_REGISTER)
934 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
935 else
936 n = 1;
937 if (n != 1)
938 {
939 while (--n >= 0)
940 {
941 reg_seen[regno + n] = 1;
942 new_reg_base_value[regno + n] = 0;
943 }
944 return;
945 }
946
9ae8ffe7
JL
947 if (set)
948 {
949 /* A CLOBBER wipes out any old value but does not prevent a previously
950 unset register from acquiring a base address (i.e. reg_seen is not
951 set). */
952 if (GET_CODE (set) == CLOBBER)
953 {
ec907dd8 954 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
955 return;
956 }
957 src = SET_SRC (set);
958 }
959 else
960 {
9ae8ffe7
JL
961 if (reg_seen[regno])
962 {
ec907dd8 963 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
964 return;
965 }
966 reg_seen[regno] = 1;
38a448ca
RH
967 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
968 GEN_INT (unique_id++));
9ae8ffe7
JL
969 return;
970 }
971
972 /* This is not the first set. If the new value is not related to the
973 old value, forget the base value. Note that the following code is
974 not detected:
975 extern int x, y; int *p = &x; p += (&y-&x);
976 ANSI C does not allow computing the difference of addresses
977 of distinct top level objects. */
ec907dd8 978 if (new_reg_base_value[regno])
9ae8ffe7
JL
979 switch (GET_CODE (src))
980 {
2a2c8203 981 case LO_SUM:
9ae8ffe7
JL
982 case MINUS:
983 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 984 new_reg_base_value[regno] = 0;
9ae8ffe7 985 break;
61f0131c
R
986 case PLUS:
987 /* If the value we add in the PLUS is also a valid base value,
988 this might be the actual base value, and the original value
989 an index. */
990 {
991 rtx other = NULL_RTX;
992
993 if (XEXP (src, 0) == dest)
994 other = XEXP (src, 1);
995 else if (XEXP (src, 1) == dest)
996 other = XEXP (src, 0);
997
998 if (! other || find_base_value (other))
999 new_reg_base_value[regno] = 0;
1000 break;
1001 }
9ae8ffe7
JL
1002 case AND:
1003 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1004 new_reg_base_value[regno] = 0;
9ae8ffe7 1005 break;
9ae8ffe7 1006 default:
ec907dd8 1007 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1008 break;
1009 }
1010 /* If this is the first set of a register, record the value. */
1011 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1012 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1013 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1014
1015 reg_seen[regno] = 1;
1016}
1017
ac3d9668
RK
1018/* Called from loop optimization when a new pseudo-register is
1019 created. It indicates that REGNO is being set to VAL. f INVARIANT
1020 is true then this value also describes an invariant relationship
1021 which can be used to deduce that two registers with unknown values
1022 are different. */
d4b60170 1023
9ae8ffe7 1024void
4682ae04 1025record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1026{
ac3d9668 1027 if (regno >= reg_base_value_size)
9ae8ffe7 1028 return;
de12be17 1029
de12be17
JC
1030 if (invariant && alias_invariant)
1031 alias_invariant[regno] = val;
1032
9ae8ffe7
JL
1033 if (GET_CODE (val) == REG)
1034 {
fb6754f0
BS
1035 if (REGNO (val) < reg_base_value_size)
1036 reg_base_value[regno] = reg_base_value[REGNO (val)];
d4b60170 1037
9ae8ffe7
JL
1038 return;
1039 }
d4b60170 1040
9ae8ffe7
JL
1041 reg_base_value[regno] = find_base_value (val);
1042}
1043
43fe47ca
JW
1044/* Clear alias info for a register. This is used if an RTL transformation
1045 changes the value of a register. This is used in flow by AUTO_INC_DEC
1046 optimizations. We don't need to clear reg_base_value, since flow only
1047 changes the offset. */
1048
1049void
4682ae04 1050clear_reg_alias_info (rtx reg)
43fe47ca 1051{
4e1a4144
JW
1052 unsigned int regno = REGNO (reg);
1053
1054 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1055 reg_known_value[regno] = reg;
43fe47ca
JW
1056}
1057
db048faf
MM
1058/* Returns a canonical version of X, from the point of view alias
1059 analysis. (For example, if X is a MEM whose address is a register,
1060 and the register has a known value (say a SYMBOL_REF), then a MEM
1061 whose address is the SYMBOL_REF is returned.) */
1062
1063rtx
4682ae04 1064canon_rtx (rtx x)
9ae8ffe7
JL
1065{
1066 /* Recursively look for equivalences. */
fb6754f0
BS
1067 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1068 && REGNO (x) < reg_known_value_size)
1069 return reg_known_value[REGNO (x)] == x
1070 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1071 else if (GET_CODE (x) == PLUS)
1072 {
1073 rtx x0 = canon_rtx (XEXP (x, 0));
1074 rtx x1 = canon_rtx (XEXP (x, 1));
1075
1076 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1077 {
9ae8ffe7 1078 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1079 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1080 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1081 return plus_constant (x0, INTVAL (x1));
38a448ca 1082 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1083 }
1084 }
d4b60170 1085
9ae8ffe7
JL
1086 /* This gives us much better alias analysis when called from
1087 the loop optimizer. Note we want to leave the original
1088 MEM alone, but need to return the canonicalized MEM with
1089 all the flags with their original values. */
1090 else if (GET_CODE (x) == MEM)
f1ec5147 1091 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1092
9ae8ffe7
JL
1093 return x;
1094}
1095
1096/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1097 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1098
1099 We use the data in reg_known_value above to see if two registers with
1100 different numbers are, in fact, equivalent. */
1101
1102static int
4682ae04 1103rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1104{
b3694847
SS
1105 int i;
1106 int j;
1107 enum rtx_code code;
1108 const char *fmt;
9ae8ffe7
JL
1109
1110 if (x == 0 && y == 0)
1111 return 1;
1112 if (x == 0 || y == 0)
1113 return 0;
d4b60170 1114
9ae8ffe7
JL
1115 if (x == y)
1116 return 1;
1117
1118 code = GET_CODE (x);
1119 /* Rtx's of different codes cannot be equal. */
1120 if (code != GET_CODE (y))
1121 return 0;
1122
1123 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1124 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1125
1126 if (GET_MODE (x) != GET_MODE (y))
1127 return 0;
1128
db048faf
MM
1129 /* Some RTL can be compared without a recursive examination. */
1130 switch (code)
1131 {
ab59db3c
BS
1132 case VALUE:
1133 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1134
db048faf
MM
1135 case REG:
1136 return REGNO (x) == REGNO (y);
1137
1138 case LABEL_REF:
1139 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1140
db048faf
MM
1141 case SYMBOL_REF:
1142 return XSTR (x, 0) == XSTR (y, 0);
1143
1144 case CONST_INT:
1145 case CONST_DOUBLE:
1146 /* There's no need to compare the contents of CONST_DOUBLEs or
1147 CONST_INTs because pointer equality is a good enough
1148 comparison for these nodes. */
1149 return 0;
1150
1151 case ADDRESSOF:
831ecbd4 1152 return (XINT (x, 1) == XINT (y, 1)
45183e03 1153 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1154 XEXP (y, 0)));
db048faf
MM
1155
1156 default:
1157 break;
1158 }
9ae8ffe7 1159
45183e03
JH
1160 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1161 if (code == PLUS)
9ae8ffe7
JL
1162 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1163 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1164 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1165 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1166 /* For commutative operations, the RTX match if the operand match in any
1167 order. Also handle the simple binary and unary cases without a loop. */
1168 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1169 {
1170 rtx xop0 = canon_rtx (XEXP (x, 0));
1171 rtx yop0 = canon_rtx (XEXP (y, 0));
1172 rtx yop1 = canon_rtx (XEXP (y, 1));
1173
1174 return ((rtx_equal_for_memref_p (xop0, yop0)
1175 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1176 || (rtx_equal_for_memref_p (xop0, yop1)
1177 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1178 }
9ae8ffe7 1179 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1180 {
1181 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1182 canon_rtx (XEXP (y, 0)))
45183e03
JH
1183 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1184 canon_rtx (XEXP (y, 1))));
1185 }
9ae8ffe7 1186 else if (GET_RTX_CLASS (code) == '1')
45183e03 1187 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1188 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1189
1190 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1191 fail to match, return 0 for the whole things.
1192
1193 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1194
1195 fmt = GET_RTX_FORMAT (code);
1196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1197 {
1198 switch (fmt[i])
1199 {
9ae8ffe7
JL
1200 case 'i':
1201 if (XINT (x, i) != XINT (y, i))
1202 return 0;
1203 break;
1204
9ae8ffe7
JL
1205 case 'E':
1206 /* Two vectors must have the same length. */
1207 if (XVECLEN (x, i) != XVECLEN (y, i))
1208 return 0;
1209
1210 /* And the corresponding elements must match. */
1211 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1212 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1213 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1214 return 0;
1215 break;
1216
1217 case 'e':
45183e03
JH
1218 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1219 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1220 return 0;
1221 break;
1222
3237ac18
AH
1223 /* This can happen for asm operands. */
1224 case 's':
1225 if (strcmp (XSTR (x, i), XSTR (y, i)))
1226 return 0;
1227 break;
1228
aee21ba9
JL
1229 /* This can happen for an asm which clobbers memory. */
1230 case '0':
1231 break;
1232
9ae8ffe7
JL
1233 /* It is believed that rtx's at this level will never
1234 contain anything but integers and other rtx's,
1235 except for within LABEL_REFs and SYMBOL_REFs. */
1236 default:
1237 abort ();
1238 }
1239 }
1240 return 1;
1241}
1242
1243/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1244 X and return it, or return 0 if none found. */
1245
1246static rtx
4682ae04 1247find_symbolic_term (rtx x)
9ae8ffe7 1248{
b3694847
SS
1249 int i;
1250 enum rtx_code code;
1251 const char *fmt;
9ae8ffe7
JL
1252
1253 code = GET_CODE (x);
1254 if (code == SYMBOL_REF || code == LABEL_REF)
1255 return x;
1256 if (GET_RTX_CLASS (code) == 'o')
1257 return 0;
1258
1259 fmt = GET_RTX_FORMAT (code);
1260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1261 {
1262 rtx t;
1263
1264 if (fmt[i] == 'e')
1265 {
1266 t = find_symbolic_term (XEXP (x, i));
1267 if (t != 0)
1268 return t;
1269 }
1270 else if (fmt[i] == 'E')
1271 break;
1272 }
1273 return 0;
1274}
1275
94f24ddc 1276rtx
4682ae04 1277find_base_term (rtx x)
9ae8ffe7 1278{
eab5c70a
BS
1279 cselib_val *val;
1280 struct elt_loc_list *l;
1281
b949ea8b
JW
1282#if defined (FIND_BASE_TERM)
1283 /* Try machine-dependent ways to find the base term. */
1284 x = FIND_BASE_TERM (x);
1285#endif
1286
9ae8ffe7
JL
1287 switch (GET_CODE (x))
1288 {
1289 case REG:
1290 return REG_BASE_VALUE (x);
1291
d288e53d
DE
1292 case TRUNCATE:
1293 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1294 return 0;
d288e53d 1295 /* Fall through. */
9ae8ffe7 1296 case HIGH:
6d849a2a
JL
1297 case PRE_INC:
1298 case PRE_DEC:
1299 case POST_INC:
1300 case POST_DEC:
d288e53d
DE
1301 case PRE_MODIFY:
1302 case POST_MODIFY:
6d849a2a
JL
1303 return find_base_term (XEXP (x, 0));
1304
1abade85
RK
1305 case ZERO_EXTEND:
1306 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1307 {
1308 rtx temp = find_base_term (XEXP (x, 0));
1309
1310#ifdef POINTERS_EXTEND_UNSIGNED
1311 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1312 temp = convert_memory_address (Pmode, temp);
1313#endif
1314
1315 return temp;
1316 }
1317
eab5c70a
BS
1318 case VALUE:
1319 val = CSELIB_VAL_PTR (x);
1320 for (l = val->locs; l; l = l->next)
1321 if ((x = find_base_term (l->loc)) != 0)
1322 return x;
1323 return 0;
1324
9ae8ffe7
JL
1325 case CONST:
1326 x = XEXP (x, 0);
1327 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1328 return 0;
938d968e 1329 /* Fall through. */
9ae8ffe7
JL
1330 case LO_SUM:
1331 case PLUS:
1332 case MINUS:
1333 {
3c567fae
JL
1334 rtx tmp1 = XEXP (x, 0);
1335 rtx tmp2 = XEXP (x, 1);
1336
f5143c46 1337 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1338 the two operands represents the real base address. Otherwise this
1339 routine may return the index register instead of the base register.
1340
1341 That may cause us to believe no aliasing was possible, when in
1342 fact aliasing is possible.
1343
1344 We use a few simple tests to guess the base register. Additional
1345 tests can certainly be added. For example, if one of the operands
1346 is a shift or multiply, then it must be the index register and the
1347 other operand is the base register. */
ca7fd9cd 1348
b949ea8b
JW
1349 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1350 return find_base_term (tmp2);
1351
3c567fae
JL
1352 /* If either operand is known to be a pointer, then use it
1353 to determine the base term. */
3502dc9c 1354 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1355 return find_base_term (tmp1);
1356
3502dc9c 1357 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1358 return find_base_term (tmp2);
1359
1360 /* Neither operand was known to be a pointer. Go ahead and find the
1361 base term for both operands. */
1362 tmp1 = find_base_term (tmp1);
1363 tmp2 = find_base_term (tmp2);
1364
1365 /* If either base term is named object or a special address
1366 (like an argument or stack reference), then use it for the
1367 base term. */
d4b60170 1368 if (tmp1 != 0
3c567fae
JL
1369 && (GET_CODE (tmp1) == SYMBOL_REF
1370 || GET_CODE (tmp1) == LABEL_REF
1371 || (GET_CODE (tmp1) == ADDRESS
1372 && GET_MODE (tmp1) != VOIDmode)))
1373 return tmp1;
1374
d4b60170 1375 if (tmp2 != 0
3c567fae
JL
1376 && (GET_CODE (tmp2) == SYMBOL_REF
1377 || GET_CODE (tmp2) == LABEL_REF
1378 || (GET_CODE (tmp2) == ADDRESS
1379 && GET_MODE (tmp2) != VOIDmode)))
1380 return tmp2;
1381
1382 /* We could not determine which of the two operands was the
1383 base register and which was the index. So we can determine
1384 nothing from the base alias check. */
1385 return 0;
9ae8ffe7
JL
1386 }
1387
1388 case AND:
d288e53d
DE
1389 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1390 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1391 return 0;
1392
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 return x;
1396
d982e46e 1397 case ADDRESSOF:
bb07060a 1398 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1399
9ae8ffe7
JL
1400 default:
1401 return 0;
1402 }
1403}
1404
1405/* Return 0 if the addresses X and Y are known to point to different
1406 objects, 1 if they might be pointers to the same object. */
1407
1408static int
4682ae04
AJ
1409base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1410 enum machine_mode y_mode)
9ae8ffe7
JL
1411{
1412 rtx x_base = find_base_term (x);
1413 rtx y_base = find_base_term (y);
1414
1c72c7f6
JC
1415 /* If the address itself has no known base see if a known equivalent
1416 value has one. If either address still has no known base, nothing
1417 is known about aliasing. */
1418 if (x_base == 0)
1419 {
1420 rtx x_c;
d4b60170 1421
1c72c7f6
JC
1422 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1423 return 1;
d4b60170 1424
1c72c7f6
JC
1425 x_base = find_base_term (x_c);
1426 if (x_base == 0)
1427 return 1;
1428 }
9ae8ffe7 1429
1c72c7f6
JC
1430 if (y_base == 0)
1431 {
1432 rtx y_c;
1433 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1434 return 1;
d4b60170 1435
1c72c7f6
JC
1436 y_base = find_base_term (y_c);
1437 if (y_base == 0)
1438 return 1;
1439 }
1440
1441 /* If the base addresses are equal nothing is known about aliasing. */
1442 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1443 return 1;
1444
ca7fd9cd 1445 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1446 If they are both symbols and they are not accessed via AND, there is
1447 no conflict. We can bring knowledge of object alignment into play
1448 here. For example, on alpha, "char a, b;" can alias one another,
1449 though "char a; long b;" cannot. */
9ae8ffe7 1450 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1451 {
56ee9281
RH
1452 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1453 return 1;
1454 if (GET_CODE (x) == AND
1455 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1456 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1457 return 1;
1458 if (GET_CODE (y) == AND
1459 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1460 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1461 return 1;
b2972551
JL
1462 /* Differing symbols never alias. */
1463 return 0;
c02f035f 1464 }
9ae8ffe7
JL
1465
1466 /* If one address is a stack reference there can be no alias:
1467 stack references using different base registers do not alias,
1468 a stack reference can not alias a parameter, and a stack reference
1469 can not alias a global. */
1470 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1471 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1472 return 0;
1473
1474 if (! flag_argument_noalias)
1475 return 1;
1476
1477 if (flag_argument_noalias > 1)
1478 return 0;
1479
ec5c56db 1480 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1481 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1482}
1483
eab5c70a
BS
1484/* Convert the address X into something we can use. This is done by returning
1485 it unchanged unless it is a value; in the latter case we call cselib to get
1486 a more useful rtx. */
3bdf5ad1 1487
a13d4ebf 1488rtx
4682ae04 1489get_addr (rtx x)
eab5c70a
BS
1490{
1491 cselib_val *v;
1492 struct elt_loc_list *l;
1493
1494 if (GET_CODE (x) != VALUE)
1495 return x;
1496 v = CSELIB_VAL_PTR (x);
1497 for (l = v->locs; l; l = l->next)
1498 if (CONSTANT_P (l->loc))
1499 return l->loc;
1500 for (l = v->locs; l; l = l->next)
1501 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1502 return l->loc;
1503 if (v->locs)
1504 return v->locs->loc;
1505 return x;
1506}
1507
39cec1ac
MH
1508/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1509 where SIZE is the size in bytes of the memory reference. If ADDR
1510 is not modified by the memory reference then ADDR is returned. */
1511
1512rtx
4682ae04 1513addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1514{
1515 int offset = 0;
ca7fd9cd 1516
39cec1ac
MH
1517 switch (GET_CODE (addr))
1518 {
1519 case PRE_INC:
1520 offset = (n_refs + 1) * size;
1521 break;
1522 case PRE_DEC:
1523 offset = -(n_refs + 1) * size;
1524 break;
1525 case POST_INC:
1526 offset = n_refs * size;
1527 break;
1528 case POST_DEC:
1529 offset = -n_refs * size;
1530 break;
1531
1532 default:
1533 return addr;
1534 }
ca7fd9cd 1535
39cec1ac 1536 if (offset)
45183e03
JH
1537 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1538 GEN_INT (offset));
39cec1ac
MH
1539 else
1540 addr = XEXP (addr, 0);
45183e03 1541 addr = canon_rtx (addr);
39cec1ac
MH
1542
1543 return addr;
1544}
1545
9ae8ffe7
JL
1546/* Return nonzero if X and Y (memory addresses) could reference the
1547 same location in memory. C is an offset accumulator. When
1548 C is nonzero, we are testing aliases between X and Y + C.
1549 XSIZE is the size in bytes of the X reference,
1550 similarly YSIZE is the size in bytes for Y.
45183e03 1551 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1552
1553 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1554 referenced (the reference was BLKmode), so make the most pessimistic
1555 assumptions.
1556
c02f035f
RH
1557 If XSIZE or YSIZE is negative, we may access memory outside the object
1558 being referenced as a side effect. This can happen when using AND to
1559 align memory references, as is done on the Alpha.
1560
9ae8ffe7 1561 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1562 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1563
9ae8ffe7 1564static int
4682ae04 1565memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1566{
eab5c70a
BS
1567 if (GET_CODE (x) == VALUE)
1568 x = get_addr (x);
1569 if (GET_CODE (y) == VALUE)
1570 y = get_addr (y);
9ae8ffe7
JL
1571 if (GET_CODE (x) == HIGH)
1572 x = XEXP (x, 0);
1573 else if (GET_CODE (x) == LO_SUM)
1574 x = XEXP (x, 1);
1575 else
45183e03 1576 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1577 if (GET_CODE (y) == HIGH)
1578 y = XEXP (y, 0);
1579 else if (GET_CODE (y) == LO_SUM)
1580 y = XEXP (y, 1);
1581 else
45183e03 1582 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1583
1584 if (rtx_equal_for_memref_p (x, y))
1585 {
c02f035f 1586 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1587 return 1;
1588 if (c >= 0 && xsize > c)
1589 return 1;
1590 if (c < 0 && ysize+c > 0)
1591 return 1;
1592 return 0;
1593 }
1594
6e73e666
JC
1595 /* This code used to check for conflicts involving stack references and
1596 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1597
1598 if (GET_CODE (x) == PLUS)
1599 {
1600 /* The fact that X is canonicalized means that this
1601 PLUS rtx is canonicalized. */
1602 rtx x0 = XEXP (x, 0);
1603 rtx x1 = XEXP (x, 1);
1604
1605 if (GET_CODE (y) == PLUS)
1606 {
1607 /* The fact that Y is canonicalized means that this
1608 PLUS rtx is canonicalized. */
1609 rtx y0 = XEXP (y, 0);
1610 rtx y1 = XEXP (y, 1);
1611
1612 if (rtx_equal_for_memref_p (x1, y1))
1613 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1614 if (rtx_equal_for_memref_p (x0, y0))
1615 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1616 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1617 {
1618 if (GET_CODE (y1) == CONST_INT)
1619 return memrefs_conflict_p (xsize, x0, ysize, y0,
1620 c - INTVAL (x1) + INTVAL (y1));
1621 else
1622 return memrefs_conflict_p (xsize, x0, ysize, y,
1623 c - INTVAL (x1));
1624 }
9ae8ffe7
JL
1625 else if (GET_CODE (y1) == CONST_INT)
1626 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1627
6e73e666 1628 return 1;
9ae8ffe7
JL
1629 }
1630 else if (GET_CODE (x1) == CONST_INT)
1631 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1632 }
1633 else if (GET_CODE (y) == PLUS)
1634 {
1635 /* The fact that Y is canonicalized means that this
1636 PLUS rtx is canonicalized. */
1637 rtx y0 = XEXP (y, 0);
1638 rtx y1 = XEXP (y, 1);
1639
1640 if (GET_CODE (y1) == CONST_INT)
1641 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1642 else
1643 return 1;
1644 }
1645
1646 if (GET_CODE (x) == GET_CODE (y))
1647 switch (GET_CODE (x))
1648 {
1649 case MULT:
1650 {
1651 /* Handle cases where we expect the second operands to be the
1652 same, and check only whether the first operand would conflict
1653 or not. */
1654 rtx x0, y0;
1655 rtx x1 = canon_rtx (XEXP (x, 1));
1656 rtx y1 = canon_rtx (XEXP (y, 1));
1657 if (! rtx_equal_for_memref_p (x1, y1))
1658 return 1;
1659 x0 = canon_rtx (XEXP (x, 0));
1660 y0 = canon_rtx (XEXP (y, 0));
1661 if (rtx_equal_for_memref_p (x0, y0))
1662 return (xsize == 0 || ysize == 0
1663 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1664
1665 /* Can't properly adjust our sizes. */
1666 if (GET_CODE (x1) != CONST_INT)
1667 return 1;
1668 xsize /= INTVAL (x1);
1669 ysize /= INTVAL (x1);
1670 c /= INTVAL (x1);
1671 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1672 }
1d300e19 1673
de12be17
JC
1674 case REG:
1675 /* Are these registers known not to be equal? */
1676 if (alias_invariant)
1677 {
e51712db 1678 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1679 rtx i_x, i_y; /* invariant relationships of X and Y */
1680
1681 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1682 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1683
1684 if (i_x == 0 && i_y == 0)
1685 break;
1686
1687 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1688 ysize, i_y ? i_y : y, c))
1689 return 0;
1690 }
1691 break;
1692
1d300e19
KG
1693 default:
1694 break;
9ae8ffe7
JL
1695 }
1696
1697 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1698 as an access with indeterminate size. Assume that references
56ee9281
RH
1699 besides AND are aligned, so if the size of the other reference is
1700 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1701 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1702 {
02e3377d 1703 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1704 xsize = -1;
45183e03 1705 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1706 }
9ae8ffe7 1707 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1708 {
56ee9281 1709 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1710 may yet be able to determine that we can not overlap. But we
c02f035f 1711 also need to that we are far enough from the end not to overlap
56ee9281 1712 a following reference, so we do nothing with that for now. */
02e3377d 1713 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1714 ysize = -1;
45183e03 1715 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1716 }
9ae8ffe7 1717
b24ea077
JW
1718 if (GET_CODE (x) == ADDRESSOF)
1719 {
1720 if (y == frame_pointer_rtx
1721 || GET_CODE (y) == ADDRESSOF)
1722 return xsize <= 0 || ysize <= 0;
1723 }
1724 if (GET_CODE (y) == ADDRESSOF)
1725 {
1726 if (x == frame_pointer_rtx)
1727 return xsize <= 0 || ysize <= 0;
1728 }
d982e46e 1729
9ae8ffe7
JL
1730 if (CONSTANT_P (x))
1731 {
1732 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1733 {
1734 c += (INTVAL (y) - INTVAL (x));
c02f035f 1735 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1736 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1737 }
1738
1739 if (GET_CODE (x) == CONST)
1740 {
1741 if (GET_CODE (y) == CONST)
1742 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1743 ysize, canon_rtx (XEXP (y, 0)), c);
1744 else
1745 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1746 ysize, y, c);
1747 }
1748 if (GET_CODE (y) == CONST)
1749 return memrefs_conflict_p (xsize, x, ysize,
1750 canon_rtx (XEXP (y, 0)), c);
1751
1752 if (CONSTANT_P (y))
b949ea8b 1753 return (xsize <= 0 || ysize <= 0
c02f035f 1754 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1755 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1756
1757 return 1;
1758 }
1759 return 1;
1760}
1761
1762/* Functions to compute memory dependencies.
1763
1764 Since we process the insns in execution order, we can build tables
1765 to keep track of what registers are fixed (and not aliased), what registers
1766 are varying in known ways, and what registers are varying in unknown
1767 ways.
1768
1769 If both memory references are volatile, then there must always be a
1770 dependence between the two references, since their order can not be
1771 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1772 though.
9ae8ffe7 1773
dc1618bc
RK
1774 A MEM_IN_STRUCT reference at a non-AND varying address can never
1775 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1776 also must allow AND addresses, because they may generate accesses
1777 outside the object being referenced. This is used to generate
1778 aligned addresses from unaligned addresses, for instance, the alpha
1779 storeqi_unaligned pattern. */
9ae8ffe7
JL
1780
1781/* Read dependence: X is read after read in MEM takes place. There can
1782 only be a dependence here if both reads are volatile. */
1783
1784int
4682ae04 1785read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1786{
1787 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1788}
1789
c6df88cb
MM
1790/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1791 MEM2 is a reference to a structure at a varying address, or returns
1792 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1793 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1794 to decide whether or not an address may vary; it should return
eab5c70a
BS
1795 nonzero whenever variation is possible.
1796 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1797
2c72b78f 1798static rtx
4682ae04
AJ
1799fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1800 rtx mem2_addr,
1801 int (*varies_p) (rtx, int))
ca7fd9cd 1802{
3e0abe15
GK
1803 if (! flag_strict_aliasing)
1804 return NULL_RTX;
1805
ca7fd9cd 1806 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1807 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1808 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1809 varying address. */
1810 return mem1;
1811
ca7fd9cd 1812 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1813 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1814 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1815 varying address. */
1816 return mem2;
1817
1818 return NULL_RTX;
1819}
1820
1821/* Returns nonzero if something about the mode or address format MEM1
1822 indicates that it might well alias *anything*. */
1823
2c72b78f 1824static int
4682ae04 1825aliases_everything_p (rtx mem)
c6df88cb 1826{
c6df88cb
MM
1827 if (GET_CODE (XEXP (mem, 0)) == AND)
1828 /* If the address is an AND, its very hard to know at what it is
1829 actually pointing. */
1830 return 1;
ca7fd9cd 1831
c6df88cb
MM
1832 return 0;
1833}
1834
998d7deb
RH
1835/* Return true if we can determine that the fields referenced cannot
1836 overlap for any pair of objects. */
1837
1838static bool
4682ae04 1839nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1840{
1841 tree fieldx, fieldy, typex, typey, orig_y;
1842
1843 do
1844 {
1845 /* The comparison has to be done at a common type, since we don't
d6a7951f 1846 know how the inheritance hierarchy works. */
998d7deb
RH
1847 orig_y = y;
1848 do
1849 {
1850 fieldx = TREE_OPERAND (x, 1);
1851 typex = DECL_FIELD_CONTEXT (fieldx);
1852
1853 y = orig_y;
1854 do
1855 {
1856 fieldy = TREE_OPERAND (y, 1);
1857 typey = DECL_FIELD_CONTEXT (fieldy);
1858
1859 if (typex == typey)
1860 goto found;
1861
1862 y = TREE_OPERAND (y, 0);
1863 }
1864 while (y && TREE_CODE (y) == COMPONENT_REF);
1865
1866 x = TREE_OPERAND (x, 0);
1867 }
1868 while (x && TREE_CODE (x) == COMPONENT_REF);
1869
1870 /* Never found a common type. */
1871 return false;
1872
1873 found:
1874 /* If we're left with accessing different fields of a structure,
1875 then no overlap. */
1876 if (TREE_CODE (typex) == RECORD_TYPE
1877 && fieldx != fieldy)
1878 return true;
1879
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x = TREE_OPERAND (x, 0);
1883 y = TREE_OPERAND (y, 0);
1884 }
1885 while (x && y
1886 && TREE_CODE (x) == COMPONENT_REF
1887 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1888
998d7deb
RH
1889 return false;
1890}
1891
1892/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1893
1894static tree
4682ae04 1895decl_for_component_ref (tree x)
998d7deb
RH
1896{
1897 do
1898 {
1899 x = TREE_OPERAND (x, 0);
1900 }
1901 while (x && TREE_CODE (x) == COMPONENT_REF);
1902
1903 return x && DECL_P (x) ? x : NULL_TREE;
1904}
1905
1906/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1907 offset of the field reference. */
1908
1909static rtx
4682ae04 1910adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1911{
1912 HOST_WIDE_INT ioffset;
1913
1914 if (! offset)
1915 return NULL_RTX;
1916
1917 ioffset = INTVAL (offset);
ca7fd9cd 1918 do
998d7deb
RH
1919 {
1920 tree field = TREE_OPERAND (x, 1);
1921
1922 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1923 return NULL_RTX;
1924 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1925 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1926 / BITS_PER_UNIT));
1927
1928 x = TREE_OPERAND (x, 0);
1929 }
1930 while (x && TREE_CODE (x) == COMPONENT_REF);
1931
1932 return GEN_INT (ioffset);
1933}
1934
95bd1dd7 1935/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1936 X and Y and they do not overlap. */
1937
1938static int
4682ae04 1939nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1940{
998d7deb 1941 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1942 rtx rtlx, rtly;
1943 rtx basex, basey;
998d7deb 1944 rtx moffsetx, moffsety;
a4311dfe
RK
1945 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1946
998d7deb
RH
1947 /* Unless both have exprs, we can't tell anything. */
1948 if (exprx == 0 || expry == 0)
1949 return 0;
1950
1951 /* If both are field references, we may be able to determine something. */
1952 if (TREE_CODE (exprx) == COMPONENT_REF
1953 && TREE_CODE (expry) == COMPONENT_REF
1954 && nonoverlapping_component_refs_p (exprx, expry))
1955 return 1;
1956
1957 /* If the field reference test failed, look at the DECLs involved. */
1958 moffsetx = MEM_OFFSET (x);
1959 if (TREE_CODE (exprx) == COMPONENT_REF)
1960 {
1961 tree t = decl_for_component_ref (exprx);
1962 if (! t)
1963 return 0;
1964 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1965 exprx = t;
1966 }
c67a1cf6
RH
1967 else if (TREE_CODE (exprx) == INDIRECT_REF)
1968 {
1969 exprx = TREE_OPERAND (exprx, 0);
1970 if (flag_argument_noalias < 2
1971 || TREE_CODE (exprx) != PARM_DECL)
1972 return 0;
1973 }
1974
998d7deb
RH
1975 moffsety = MEM_OFFSET (y);
1976 if (TREE_CODE (expry) == COMPONENT_REF)
1977 {
1978 tree t = decl_for_component_ref (expry);
1979 if (! t)
1980 return 0;
1981 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1982 expry = t;
1983 }
c67a1cf6
RH
1984 else if (TREE_CODE (expry) == INDIRECT_REF)
1985 {
1986 expry = TREE_OPERAND (expry, 0);
1987 if (flag_argument_noalias < 2
1988 || TREE_CODE (expry) != PARM_DECL)
1989 return 0;
1990 }
998d7deb
RH
1991
1992 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
1993 return 0;
1994
998d7deb
RH
1995 rtlx = DECL_RTL (exprx);
1996 rtly = DECL_RTL (expry);
a4311dfe 1997
1edcd60b
RK
1998 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1999 can't overlap unless they are the same because we never reuse that part
2000 of the stack frame used for locals for spilled pseudos. */
2001 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2002 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2003 return 1;
2004
2005 /* Get the base and offsets of both decls. If either is a register, we
2006 know both are and are the same, so use that as the base. The only
2007 we can avoid overlap is if we can deduce that they are nonoverlapping
2008 pieces of that decl, which is very rare. */
1edcd60b 2009 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2010 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2011 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2012
1edcd60b 2013 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2014 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2015 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2016
d746694a 2017 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2018 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2019 stack frame. Otherwise a different base means we can't tell if they
2020 overlap or not. */
2021 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2022 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2023 || (CONSTANT_P (basex) && REG_P (basey)
2024 && REGNO_PTR_FRAME_P (REGNO (basey)))
2025 || (CONSTANT_P (basey) && REG_P (basex)
2026 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2027
998d7deb 2028 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2029 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2030 : -1);
998d7deb 2031 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2032 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2033 -1);
2034
0af5bc3e
RK
2035 /* If we have an offset for either memref, it can update the values computed
2036 above. */
998d7deb
RH
2037 if (moffsetx)
2038 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2039 if (moffsety)
2040 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2041
0af5bc3e 2042 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2043 We can't do this if the offset isn't known because we must view this
0af5bc3e 2044 memref as being anywhere inside the DECL's MEM. */
998d7deb 2045 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2046 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2047 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2048 sizey = INTVAL (MEM_SIZE (y));
2049
2050 /* Put the values of the memref with the lower offset in X's values. */
2051 if (offsetx > offsety)
2052 {
2053 tem = offsetx, offsetx = offsety, offsety = tem;
2054 tem = sizex, sizex = sizey, sizey = tem;
2055 }
2056
2057 /* If we don't know the size of the lower-offset value, we can't tell
2058 if they conflict. Otherwise, we do the test. */
a6f7c915 2059 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2060}
2061
9ae8ffe7
JL
2062/* True dependence: X is read after store in MEM takes place. */
2063
2064int
4682ae04
AJ
2065true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2066 int (*varies) (rtx, int))
9ae8ffe7 2067{
b3694847 2068 rtx x_addr, mem_addr;
49982682 2069 rtx base;
9ae8ffe7
JL
2070
2071 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2072 return 1;
2073
c4484b8f
RH
2074 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2075 This is used in epilogue deallocation functions. */
2076 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2077 return 1;
2078 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2079 return 1;
2080
41472af8
MM
2081 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2082 return 0;
2083
b949ea8b
JW
2084 /* Unchanging memory can't conflict with non-unchanging memory.
2085 A non-unchanging read can conflict with a non-unchanging write.
2086 An unchanging read can conflict with an unchanging write since
2087 there may be a single store to this address to initialize it.
ec569656
RK
2088 Note that an unchanging store can conflict with a non-unchanging read
2089 since we have to make conservative assumptions when we have a
2090 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2091 Just fall through to the code below to resolve potential conflicts.
2092 This won't handle all cases optimally, but the possible performance
2093 loss should be negligible. */
ec569656 2094 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2095 return 0;
2096
a4311dfe
RK
2097 if (nonoverlapping_memrefs_p (mem, x))
2098 return 0;
2099
56ee9281
RH
2100 if (mem_mode == VOIDmode)
2101 mem_mode = GET_MODE (mem);
2102
eab5c70a
BS
2103 x_addr = get_addr (XEXP (x, 0));
2104 mem_addr = get_addr (XEXP (mem, 0));
2105
55efb413
JW
2106 base = find_base_term (x_addr);
2107 if (base && (GET_CODE (base) == LABEL_REF
2108 || (GET_CODE (base) == SYMBOL_REF
2109 && CONSTANT_POOL_ADDRESS_P (base))))
2110 return 0;
2111
eab5c70a 2112 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2113 return 0;
2114
eab5c70a
BS
2115 x_addr = canon_rtx (x_addr);
2116 mem_addr = canon_rtx (mem_addr);
6e73e666 2117
0211b6ab
JW
2118 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2119 SIZE_FOR_MODE (x), x_addr, 0))
2120 return 0;
2121
c6df88cb 2122 if (aliases_everything_p (x))
0211b6ab
JW
2123 return 1;
2124
f5143c46 2125 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2126 at MEM_MODE, rather than GET_MODE (MEM). */
2127 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2128 return 1;
2129
2130 /* In true_dependence we also allow BLKmode to alias anything. Why
2131 don't we do this in anti_dependence and output_dependence? */
2132 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2133 return 1;
2134
2135 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2136 varies);
2137}
2138
2139/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2140 Variant of true_dependence which assumes MEM has already been
2141 canonicalized (hence we no longer do that here).
2142 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2143 this value prior to canonicalizing. */
2144
2145int
4682ae04
AJ
2146canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2147 rtx x, int (*varies) (rtx, int))
a13d4ebf 2148{
b3694847 2149 rtx x_addr;
a13d4ebf
AM
2150
2151 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2152 return 1;
2153
0fe854a7
RH
2154 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2155 This is used in epilogue deallocation functions. */
2156 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2157 return 1;
2158 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2159 return 1;
2160
a13d4ebf
AM
2161 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2162 return 0;
2163
2164 /* If X is an unchanging read, then it can't possibly conflict with any
2165 non-unchanging store. It may conflict with an unchanging write though,
2166 because there may be a single store to this address to initialize it.
2167 Just fall through to the code below to resolve the case where we have
2168 both an unchanging read and an unchanging write. This won't handle all
2169 cases optimally, but the possible performance loss should be
2170 negligible. */
2171 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2172 return 0;
2173
a4311dfe
RK
2174 if (nonoverlapping_memrefs_p (x, mem))
2175 return 0;
2176
a13d4ebf
AM
2177 x_addr = get_addr (XEXP (x, 0));
2178
2179 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2180 return 0;
2181
2182 x_addr = canon_rtx (x_addr);
2183 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2184 SIZE_FOR_MODE (x), x_addr, 0))
2185 return 0;
2186
2187 if (aliases_everything_p (x))
2188 return 1;
2189
f5143c46 2190 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2191 at MEM_MODE, rather than GET_MODE (MEM). */
2192 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2193 return 1;
0211b6ab 2194
c6df88cb
MM
2195 /* In true_dependence we also allow BLKmode to alias anything. Why
2196 don't we do this in anti_dependence and output_dependence? */
2197 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2198 return 1;
0211b6ab 2199
eab5c70a
BS
2200 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2201 varies);
9ae8ffe7
JL
2202}
2203
da7d8304
KH
2204/* Returns nonzero if a write to X might alias a previous read from
2205 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2206
2c72b78f 2207static int
4682ae04 2208write_dependence_p (rtx mem, rtx x, int writep)
9ae8ffe7 2209{
6e73e666 2210 rtx x_addr, mem_addr;
c6df88cb 2211 rtx fixed_scalar;
49982682 2212 rtx base;
6e73e666 2213
9ae8ffe7
JL
2214 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2215 return 1;
2216
c4484b8f
RH
2217 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2218 This is used in epilogue deallocation functions. */
2219 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2220 return 1;
2221 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2222 return 1;
2223
eab5c70a
BS
2224 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2225 return 0;
2226
b949ea8b
JW
2227 /* Unchanging memory can't conflict with non-unchanging memory. */
2228 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2229 return 0;
2230
9ae8ffe7
JL
2231 /* If MEM is an unchanging read, then it can't possibly conflict with
2232 the store to X, because there is at most one store to MEM, and it must
2233 have occurred somewhere before MEM. */
55efb413
JW
2234 if (! writep && RTX_UNCHANGING_P (mem))
2235 return 0;
2236
a4311dfe
RK
2237 if (nonoverlapping_memrefs_p (x, mem))
2238 return 0;
2239
55efb413
JW
2240 x_addr = get_addr (XEXP (x, 0));
2241 mem_addr = get_addr (XEXP (mem, 0));
2242
49982682
JW
2243 if (! writep)
2244 {
55efb413 2245 base = find_base_term (mem_addr);
49982682
JW
2246 if (base && (GET_CODE (base) == LABEL_REF
2247 || (GET_CODE (base) == SYMBOL_REF
2248 && CONSTANT_POOL_ADDRESS_P (base))))
2249 return 0;
2250 }
2251
eab5c70a
BS
2252 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2253 GET_MODE (mem)))
41472af8
MM
2254 return 0;
2255
eab5c70a
BS
2256 x_addr = canon_rtx (x_addr);
2257 mem_addr = canon_rtx (mem_addr);
6e73e666 2258
c6df88cb
MM
2259 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2260 SIZE_FOR_MODE (x), x_addr, 0))
2261 return 0;
2262
ca7fd9cd 2263 fixed_scalar
eab5c70a
BS
2264 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2265 rtx_addr_varies_p);
2266
c6df88cb
MM
2267 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2268 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2269}
2270
2271/* Anti dependence: X is written after read in MEM takes place. */
2272
2273int
4682ae04 2274anti_dependence (rtx mem, rtx x)
c6df88cb
MM
2275{
2276 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2277}
2278
2279/* Output dependence: X is written after store in MEM takes place. */
2280
2281int
4682ae04 2282output_dependence (rtx mem, rtx x)
9ae8ffe7 2283{
c6df88cb 2284 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2285}
c14b9960
JW
2286\f
2287/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2288 something which is not local to the function and is not constant. */
7790df19
JW
2289
2290static int
4682ae04 2291nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2292{
c14b9960 2293 rtx x = *loc;
7790df19 2294 rtx base;
7790df19
JW
2295 int regno;
2296
c14b9960
JW
2297 if (! x)
2298 return 0;
7790df19 2299
c14b9960 2300 switch (GET_CODE (x))
7790df19
JW
2301 {
2302 case SUBREG:
2303 if (GET_CODE (SUBREG_REG (x)) == REG)
2304 {
2305 /* Global registers are not local. */
2306 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2307 && global_regs[subreg_regno (x)])
7790df19
JW
2308 return 1;
2309 return 0;
2310 }
2311 break;
2312
2313 case REG:
2314 regno = REGNO (x);
2315 /* Global registers are not local. */
2316 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2317 return 1;
2318 return 0;
2319
2320 case SCRATCH:
2321 case PC:
2322 case CC0:
2323 case CONST_INT:
2324 case CONST_DOUBLE:
69ef87e2 2325 case CONST_VECTOR:
7790df19
JW
2326 case CONST:
2327 case LABEL_REF:
2328 return 0;
2329
2330 case SYMBOL_REF:
2331 /* Constants in the function's constants pool are constant. */
2332 if (CONSTANT_POOL_ADDRESS_P (x))
2333 return 0;
2334 return 1;
2335
2336 case CALL:
bf6d9fd7 2337 /* Non-constant calls and recursion are not local. */
7790df19
JW
2338 return 1;
2339
2340 case MEM:
2341 /* Be overly conservative and consider any volatile memory
2342 reference as not local. */
2343 if (MEM_VOLATILE_P (x))
2344 return 1;
2345 base = find_base_term (XEXP (x, 0));
2346 if (base)
2347 {
b3b5ad95
JL
2348 /* A Pmode ADDRESS could be a reference via the structure value
2349 address or static chain. Such memory references are nonlocal.
2350
2351 Thus, we have to examine the contents of the ADDRESS to find
2352 out if this is a local reference or not. */
2353 if (GET_CODE (base) == ADDRESS
2354 && GET_MODE (base) == Pmode
2355 && (XEXP (base, 0) == stack_pointer_rtx
2356 || XEXP (base, 0) == arg_pointer_rtx
2357#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2358 || XEXP (base, 0) == hard_frame_pointer_rtx
2359#endif
2360 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2361 return 0;
2362 /* Constants in the function's constant pool are constant. */
2363 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2364 return 0;
2365 }
2366 return 1;
2367
bf6d9fd7 2368 case UNSPEC_VOLATILE:
7790df19 2369 case ASM_INPUT:
7790df19
JW
2370 return 1;
2371
bf6d9fd7
JW
2372 case ASM_OPERANDS:
2373 if (MEM_VOLATILE_P (x))
2374 return 1;
2375
2376 /* FALLTHROUGH */
2377
7790df19
JW
2378 default:
2379 break;
2380 }
2381
c14b9960
JW
2382 return 0;
2383}
2384
da7d8304 2385/* Returns nonzero if X might mention something which is not
c14b9960 2386 local to the function and is not constant. */
7790df19 2387
c14b9960 2388static int
4682ae04 2389nonlocal_mentioned_p (rtx x)
c14b9960 2390{
c14b9960
JW
2391 if (INSN_P (x))
2392 {
2393 if (GET_CODE (x) == CALL_INSN)
2394 {
2395 if (! CONST_OR_PURE_CALL_P (x))
2396 return 1;
2397 x = CALL_INSN_FUNCTION_USAGE (x);
2398 if (x == 0)
2399 return 0;
ca7fd9cd 2400 }
c14b9960 2401 else
ca7fd9cd 2402 x = PATTERN (x);
c14b9960
JW
2403 }
2404
2405 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2406}
2407
2408/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2409 something which is not local to the function and is not constant. */
2410
2411static int
4682ae04 2412nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2413{
2414 rtx x = *loc;
2415
2416 if (! x)
2417 return 0;
2418
2419 switch (GET_CODE (x))
2420 {
2421 case MEM:
2422 case REG:
2423 case SYMBOL_REF:
2424 case SUBREG:
2425 return nonlocal_mentioned_p (x);
2426
2427 case CALL:
2428 /* Non-constant calls and recursion are not local. */
2429 return 1;
2430
2431 case SET:
2432 if (nonlocal_mentioned_p (SET_SRC (x)))
2433 return 1;
2434
2435 if (GET_CODE (SET_DEST (x)) == MEM)
2436 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2437
2438 /* If the destination is anything other than a CC0, PC,
2439 MEM, REG, or a SUBREG of a REG that occupies all of
2440 the REG, then X references nonlocal memory if it is
2441 mentioned in the destination. */
2442 if (GET_CODE (SET_DEST (x)) != CC0
2443 && GET_CODE (SET_DEST (x)) != PC
2444 && GET_CODE (SET_DEST (x)) != REG
2445 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2446 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2447 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2448 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2449 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2450 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2451 return nonlocal_mentioned_p (SET_DEST (x));
2452 return 0;
2453
2454 case CLOBBER:
2455 if (GET_CODE (XEXP (x, 0)) == MEM)
2456 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2457 return 0;
2458
2459 case USE:
2460 return nonlocal_mentioned_p (XEXP (x, 0));
2461
2462 case ASM_INPUT:
2463 case UNSPEC_VOLATILE:
2464 return 1;
2465
2466 case ASM_OPERANDS:
2467 if (MEM_VOLATILE_P (x))
2468 return 1;
2469
2470 /* FALLTHROUGH */
2471
2472 default:
2473 break;
2474 }
2475
2476 return 0;
2477}
2478
da7d8304 2479/* Returns nonzero if X might reference something which is not
c14b9960
JW
2480 local to the function and is not constant. */
2481
2482static int
4682ae04 2483nonlocal_referenced_p (rtx x)
c14b9960 2484{
c14b9960
JW
2485 if (INSN_P (x))
2486 {
2487 if (GET_CODE (x) == CALL_INSN)
2488 {
2489 if (! CONST_OR_PURE_CALL_P (x))
2490 return 1;
2491 x = CALL_INSN_FUNCTION_USAGE (x);
2492 if (x == 0)
2493 return 0;
ca7fd9cd 2494 }
c14b9960 2495 else
ca7fd9cd 2496 x = PATTERN (x);
c14b9960
JW
2497 }
2498
2499 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2500}
2501
2502/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2503 something which is not local to the function and is not constant. */
2504
2505static int
4682ae04 2506nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2507{
2508 rtx x = *loc;
2509
2510 if (! x)
2511 return 0;
2512
2513 switch (GET_CODE (x))
2514 {
2515 case CALL:
2516 /* Non-constant calls and recursion are not local. */
2517 return 1;
2518
2519 case PRE_INC:
2520 case PRE_DEC:
2521 case POST_INC:
2522 case POST_DEC:
2523 case PRE_MODIFY:
2524 case POST_MODIFY:
2525 return nonlocal_mentioned_p (XEXP (x, 0));
2526
2527 case SET:
2528 if (nonlocal_mentioned_p (SET_DEST (x)))
2529 return 1;
2530 return nonlocal_set_p (SET_SRC (x));
2531
2532 case CLOBBER:
2533 return nonlocal_mentioned_p (XEXP (x, 0));
2534
2535 case USE:
2536 return 0;
2537
2538 case ASM_INPUT:
2539 case UNSPEC_VOLATILE:
2540 return 1;
2541
2542 case ASM_OPERANDS:
2543 if (MEM_VOLATILE_P (x))
2544 return 1;
2545
2546 /* FALLTHROUGH */
2547
2548 default:
2549 break;
2550 }
7790df19
JW
2551
2552 return 0;
2553}
2554
da7d8304 2555/* Returns nonzero if X might set something which is not
c14b9960
JW
2556 local to the function and is not constant. */
2557
2558static int
4682ae04 2559nonlocal_set_p (rtx x)
c14b9960 2560{
c14b9960
JW
2561 if (INSN_P (x))
2562 {
2563 if (GET_CODE (x) == CALL_INSN)
2564 {
2565 if (! CONST_OR_PURE_CALL_P (x))
2566 return 1;
2567 x = CALL_INSN_FUNCTION_USAGE (x);
2568 if (x == 0)
2569 return 0;
ca7fd9cd 2570 }
c14b9960 2571 else
ca7fd9cd 2572 x = PATTERN (x);
c14b9960
JW
2573 }
2574
2575 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2576}
2577
c57ddcf1 2578/* Mark the function if it is pure or constant. */
7790df19
JW
2579
2580void
4682ae04 2581mark_constant_function (void)
7790df19
JW
2582{
2583 rtx insn;
c14b9960 2584 int nonlocal_memory_referenced;
7790df19 2585
ab780373 2586 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2587 || DECL_IS_PURE (current_function_decl)
7790df19 2588 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2589 || current_function_has_nonlocal_goto
2590 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2591 return;
2592
e004f2f7 2593 /* A loop might not return which counts as a side effect. */
0ecf09f9 2594 if (mark_dfs_back_edges ())
e004f2f7
JW
2595 return;
2596
c14b9960 2597 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2598
2599 init_alias_analysis ();
2600
c14b9960 2601 /* Determine if this is a constant or pure function. */
7790df19
JW
2602
2603 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2604 {
2605 if (! INSN_P (insn))
2606 continue;
bf6d9fd7 2607
c14b9960
JW
2608 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2609 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2610 break;
7790df19 2611
c14b9960
JW
2612 if (! nonlocal_memory_referenced)
2613 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2614 }
ca7fd9cd 2615
c14b9960 2616 end_alias_analysis ();
ca7fd9cd 2617
7790df19 2618 /* Mark the function. */
ca7fd9cd 2619
c14b9960
JW
2620 if (insn)
2621 ;
2622 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2623 {
2624 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2625 DECL_IS_PURE (current_function_decl) = 1;
2626 }
c14b9960 2627 else
c57ddcf1
RS
2628 {
2629 cgraph_rtl_info (current_function_decl)->const_function = 1;
2630 TREE_READONLY (current_function_decl) = 1;
2631 }
7790df19 2632}
c14b9960 2633\f
6e73e666 2634
6e73e666 2635void
4682ae04 2636init_alias_once (void)
6e73e666 2637{
b3694847 2638 int i;
6e73e666
JC
2639
2640#ifndef OUTGOING_REGNO
2641#define OUTGOING_REGNO(N) N
2642#endif
2643 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644 /* Check whether this register can hold an incoming pointer
2645 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2646 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2647 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2648 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2649 static_reg_base_value[i]
2650 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2651
bf1660a6
JL
2652 static_reg_base_value[STACK_POINTER_REGNUM]
2653 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2654 static_reg_base_value[ARG_POINTER_REGNUM]
2655 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2656 static_reg_base_value[FRAME_POINTER_REGNUM]
2657 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2658#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2659 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2660 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2661#endif
7f243674
JL
2662
2663 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
bf1660a6
JL
2664}
2665
7b52eede
JH
2666/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2667 to be memory reference. */
2668static bool memory_modified;
2669static void
4682ae04 2670memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2671{
2672 if (GET_CODE (x) == MEM)
2673 {
2674 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2675 memory_modified = true;
2676 }
2677}
2678
2679
2680/* Return true when INSN possibly modify memory contents of MEM
2681 (ie address can be modified). */
2682bool
4682ae04 2683memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2684{
2685 if (!INSN_P (insn))
2686 return false;
2687 memory_modified = false;
2688 note_stores (PATTERN (insn), memory_modified_1, mem);
2689 return memory_modified;
2690}
2691
c13e8210
MM
2692/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2693 array. */
2694
9ae8ffe7 2695void
4682ae04 2696init_alias_analysis (void)
9ae8ffe7
JL
2697{
2698 int maxreg = max_reg_num ();
ea64ef27 2699 int changed, pass;
b3694847
SS
2700 int i;
2701 unsigned int ui;
2702 rtx insn;
9ae8ffe7 2703
0d446150
JH
2704 timevar_push (TV_ALIAS_ANALYSIS);
2705
9ae8ffe7
JL
2706 reg_known_value_size = maxreg;
2707
ca7fd9cd 2708 reg_known_value
e05e2395
MM
2709 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2710 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2711 reg_known_equiv_p
e05e2395 2712 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2713 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2714
6e73e666
JC
2715 /* Overallocate reg_base_value to allow some growth during loop
2716 optimization. Loop unrolling can create a large number of
2717 registers. */
2718 reg_base_value_size = maxreg * 2;
703ad42b 2719 reg_base_value = ggc_alloc_cleared (reg_base_value_size * sizeof (rtx));
ac606739 2720
703ad42b
KG
2721 new_reg_base_value = xmalloc (reg_base_value_size * sizeof (rtx));
2722 reg_seen = xmalloc (reg_base_value_size);
b17d5d7c 2723 if (! reload_completed && flag_old_unroll_loops)
de12be17 2724 {
ac606739 2725 /* ??? Why are we realloc'ing if we're just going to zero it? */
703ad42b
KG
2726 alias_invariant = xrealloc (alias_invariant,
2727 reg_base_value_size * sizeof (rtx));
2728 memset (alias_invariant, 0, reg_base_value_size * sizeof (rtx));
de12be17 2729 }
ec907dd8
JL
2730
2731 /* The basic idea is that each pass through this loop will use the
2732 "constant" information from the previous pass to propagate alias
2733 information through another level of assignments.
2734
2735 This could get expensive if the assignment chains are long. Maybe
2736 we should throttle the number of iterations, possibly based on
6e73e666 2737 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2738
2739 We could propagate more information in the first pass by making use
2740 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2741 for a pseudo is "constant".
2742
2743 A program with an uninitialized variable can cause an infinite loop
2744 here. Instead of doing a full dataflow analysis to detect such problems
2745 we just cap the number of iterations for the loop.
2746
2747 The state of the arrays for the set chain in question does not matter
2748 since the program has undefined behavior. */
6e73e666 2749
ea64ef27 2750 pass = 0;
6e73e666 2751 do
ec907dd8
JL
2752 {
2753 /* Assume nothing will change this iteration of the loop. */
2754 changed = 0;
2755
ec907dd8
JL
2756 /* We want to assign the same IDs each iteration of this loop, so
2757 start counting from zero each iteration of the loop. */
2758 unique_id = 0;
2759
f5143c46 2760 /* We're at the start of the function each iteration through the
ec907dd8 2761 loop, so we're copying arguments. */
83bbd9b6 2762 copying_arguments = true;
9ae8ffe7 2763
6e73e666 2764 /* Wipe the potential alias information clean for this pass. */
703ad42b 2765 memset (new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
8072f69c 2766
6e73e666 2767 /* Wipe the reg_seen array clean. */
703ad42b 2768 memset (reg_seen, 0, reg_base_value_size);
9ae8ffe7 2769
6e73e666
JC
2770 /* Mark all hard registers which may contain an address.
2771 The stack, frame and argument pointers may contain an address.
2772 An argument register which can hold a Pmode value may contain
2773 an address even if it is not in BASE_REGS.
8072f69c 2774
6e73e666
JC
2775 The address expression is VOIDmode for an argument and
2776 Pmode for other registers. */
2777
7f243674
JL
2778 memcpy (new_reg_base_value, static_reg_base_value,
2779 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2780
ec907dd8
JL
2781 /* Walk the insns adding values to the new_reg_base_value array. */
2782 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2783 {
2c3c49de 2784 if (INSN_P (insn))
ec907dd8 2785 {
6e73e666 2786 rtx note, set;
efc9bd41
RK
2787
2788#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2789 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2790 insn chain until after reload has completed. Thus,
2791 there is no sense wasting time checking if INSN is in
2792 the prologue/epilogue until after reload has completed. */
2793 if (reload_completed
2794 && prologue_epilogue_contains (insn))
efc9bd41
RK
2795 continue;
2796#endif
2797
ec907dd8
JL
2798 /* If this insn has a noalias note, process it, Otherwise,
2799 scan for sets. A simple set will have no side effects
ec5c56db 2800 which could change the base value of any other register. */
6e73e666 2801
ec907dd8 2802 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2803 && REG_NOTES (insn) != 0
2804 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2805 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2806 else
84832317 2807 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2808
2809 set = single_set (insn);
2810
2811 if (set != 0
2812 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2813 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2814 {
fb6754f0 2815 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2816 rtx src = SET_SRC (set);
2817
2818 if (REG_NOTES (insn) != 0
2819 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2820 && REG_N_SETS (regno) == 1)
2821 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2822 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2823 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2824 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2825 {
2826 reg_known_value[regno] = XEXP (note, 0);
2827 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2828 }
2829 else if (REG_N_SETS (regno) == 1
2830 && GET_CODE (src) == PLUS
2831 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2832 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2833 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2834 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2835 {
2836 rtx op0 = XEXP (src, 0);
bb2cf916 2837 op0 = reg_known_value[REGNO (op0)];
713f41f9 2838 reg_known_value[regno]
ed8908e7 2839 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2840 reg_known_equiv_p[regno] = 0;
2841 }
2842 else if (REG_N_SETS (regno) == 1
2843 && ! rtx_varies_p (src, 1))
2844 {
2845 reg_known_value[regno] = src;
2846 reg_known_equiv_p[regno] = 0;
2847 }
6e73e666 2848 }
ec907dd8
JL
2849 }
2850 else if (GET_CODE (insn) == NOTE
2851 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2852 copying_arguments = false;
6e73e666 2853 }
ec907dd8 2854
6e73e666 2855 /* Now propagate values from new_reg_base_value to reg_base_value. */
e51712db 2856 for (ui = 0; ui < reg_base_value_size; ui++)
6e73e666 2857 {
e51712db
KG
2858 if (new_reg_base_value[ui]
2859 && new_reg_base_value[ui] != reg_base_value[ui]
2860 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
ec907dd8 2861 {
e51712db 2862 reg_base_value[ui] = new_reg_base_value[ui];
6e73e666 2863 changed = 1;
ec907dd8 2864 }
9ae8ffe7 2865 }
9ae8ffe7 2866 }
6e73e666 2867 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2868
2869 /* Fill in the remaining entries. */
2870 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2871 if (reg_known_value[i] == 0)
2872 reg_known_value[i] = regno_reg_rtx[i];
2873
9ae8ffe7
JL
2874 /* Simplify the reg_base_value array so that no register refers to
2875 another register, except to special registers indirectly through
2876 ADDRESS expressions.
2877
2878 In theory this loop can take as long as O(registers^2), but unless
2879 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2880 time.
2881
2882 This loop may not be needed any longer now that the main loop does
2883 a better job at propagating alias information. */
2884 pass = 0;
9ae8ffe7
JL
2885 do
2886 {
2887 changed = 0;
ea64ef27 2888 pass++;
e51712db 2889 for (ui = 0; ui < reg_base_value_size; ui++)
9ae8ffe7 2890 {
e51712db 2891 rtx base = reg_base_value[ui];
9ae8ffe7
JL
2892 if (base && GET_CODE (base) == REG)
2893 {
fb6754f0 2894 unsigned int base_regno = REGNO (base);
e51712db
KG
2895 if (base_regno == ui) /* register set from itself */
2896 reg_base_value[ui] = 0;
9ae8ffe7 2897 else
e51712db 2898 reg_base_value[ui] = reg_base_value[base_regno];
9ae8ffe7
JL
2899 changed = 1;
2900 }
2901 }
2902 }
ea64ef27 2903 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2904
e05e2395
MM
2905 /* Clean up. */
2906 free (new_reg_base_value);
ec907dd8 2907 new_reg_base_value = 0;
e05e2395 2908 free (reg_seen);
9ae8ffe7 2909 reg_seen = 0;
0d446150 2910 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2911}
2912
2913void
4682ae04 2914end_alias_analysis (void)
9ae8ffe7 2915{
e05e2395 2916 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2917 reg_known_value = 0;
ac606739 2918 reg_known_value_size = 0;
e05e2395
MM
2919 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2920 reg_known_equiv_p = 0;
e2500fed 2921 reg_base_value = 0;
9ae8ffe7 2922 reg_base_value_size = 0;
de12be17
JC
2923 if (alias_invariant)
2924 {
ac606739 2925 free (alias_invariant);
de12be17
JC
2926 alias_invariant = 0;
2927 }
9ae8ffe7 2928}
e2500fed
GK
2929
2930#include "gt-alias.h"