]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
re PR c++/67980 (left shift count is negative [-Wshift-count-negative] generated...
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
818ab71a 2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5
AM
31#include "tm_p.h"
32#include "gimple-ssa.h"
957060b5 33#include "emit-rtl.h"
40e23961 34#include "alias.h"
40e23961 35#include "fold-const.h"
d8a2d370 36#include "varasm.h"
eab5c70a 37#include "cselib.h"
d23c55c2 38#include "langhooks.h"
60393bbc 39#include "cfganal.h"
403837b4 40#include "rtl-iter.h"
54363f8a 41#include "cgraph.h"
ea900239
DB
42
43/* The aliasing API provided here solves related but different problems:
44
c22cacf3 45 Say there exists (in c)
ea900239
DB
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
308a3fe2 56 py = &x1.y1;
ea900239
DB
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
ea900239
DB
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
073a8998 70 a store through a pointer to an X can overwrite any field that is
ea900239
DB
71 contained (recursively) in an X (unless we know that px1 != px2).
72
308a3fe2
DS
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
ea900239
DB
80
81 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 82 instances do not escape across the compilation boundary.
ea900239
DB
83
84 Historically in GCC, these two problems were combined and a single
308a3fe2 85 data structure that was used to represent the solution to these
ea900239 86 problems. We now have two similar but different data structures,
308a3fe2
DS
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
ea900239 91*/
3932261a
MM
92
93/* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
3932261a 97
01d28c3f 98 struct S { int i; double d; };
3932261a
MM
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
c22cacf3
MS
104 struct S
105 / \
3932261a 106 / \
c22cacf3
MS
107 |/_ _\|
108 int double
3932261a 109
ac3d9668
RK
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
3bdf5ad1
RK
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
95bd1dd7 116 past immediate descendants, however, since we propagate all
3bdf5ad1 117 grandchildren up one level.
3932261a
MM
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
e0702244 123struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 124
02ced957 125struct GTY(()) alias_set_entry {
3932261a 126 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 127 alias_set_type alias_set;
3932261a
MM
128
129 /* The children of the alias set. These are not just the immediate
95bd1dd7 130 children, but, in fact, all descendants. So, if we have:
3932261a 131
ca7fd9cd 132 struct T { struct S s; float f; }
3932261a
MM
133
134 continuing our example above, the children here will be all of
135 `int', `double', `float', and `struct S'. */
fb5c464a 136 hash_map<alias_set_hash, int> *children;
6e042ef4
JH
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 bool has_zero_child;
141 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
142 aggregate contaiing pointer.
143 This is used for a special case where we need an universal pointer type
144 compatible with all other pointer types. */
145 bool is_pointer;
146 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
147 bool has_pointer;
b604074c 148};
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
ef4bddc2
RS
153static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
4682ae04 155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
02ced957 157static alias_set_entry *get_alias_set_entry (alias_set_type);
4682ae04 158static tree decl_for_component_ref (tree);
bd280792 159static int write_dependence_p (const_rtx,
ef4bddc2 160 const_rtx, machine_mode, rtx,
bd280792 161 bool, bool, bool);
73e48cb3 162static int compare_base_symbol_refs (const_rtx, const_rtx);
4682ae04 163
aa317c97 164static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7 165
3ecf9d13
JH
166/* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
6e042ef4 175 unsigned long long num_universal;
3ecf9d13
JH
176 unsigned long long num_disambiguated;
177} alias_stats;
178
179
9ae8ffe7
JL
180/* Set up all info needed to perform alias analysis on memory references. */
181
d4b60170 182/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
183#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
ea64ef27 185/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
ea64ef27 190#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 191
9ae8ffe7
JL
192/* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 199 expressions represent three types of base:
b3b5ad95 200
9fc37b2b
RS
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 204
9fc37b2b
RS
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
2a2c8203 224
9771b263 225static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 226static rtx *new_reg_base_value;
c582d54a 227
9fc37b2b
RS
228/* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230static GTY(()) rtx arg_base_value;
231
232/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233static int unique_id;
234
c582d54a
JH
235/* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
9771b263 238static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 239
9e412ca3
RS
240/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242#define UNIQUE_BASE_VALUE_SP -1
243#define UNIQUE_BASE_VALUE_ARGP -2
244#define UNIQUE_BASE_VALUE_FP -3
245#define UNIQUE_BASE_VALUE_HFP -4
246
7bf84454
RS
247#define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
bf1660a6 249
9771b263
DN
250#define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 253
c13e8210 254/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 255 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 256 and does not change until end_alias_analysis is called. */
9771b263 257static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
258
259/* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
9ff3c7ca 271static sbitmap reg_known_equiv_p;
9ae8ffe7 272
2a2c8203
JC
273/* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 275static bool copying_arguments;
9ae8ffe7 276
1a5640b4 277
3932261a 278/* The splay-tree used to store the various alias set entries. */
02ced957 279static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 280\f
55b34b5f
RG
281/* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285static bool
286ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287{
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
ef7a9fb8
RB
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 309 return false;
55b34b5f
RG
310
311 /* If this is a reference based on a partitioned decl replace the
ef7a9fb8 312 base with a MEM_REF of the pointer representative we
55b34b5f 313 created during stack slot partitioning. */
8813a647 314 if (VAR_P (base)
ef7a9fb8 315 && ! is_global_var (base)
55b34b5f
RG
316 && cfun->gimple_df->decls_to_pointers != NULL)
317 {
39c8aaa4 318 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
55b34b5f 319 if (namep)
39c8aaa4 320 ref->base = build_simple_mem_ref (*namep);
d15adbeb 321 }
55b34b5f
RG
322
323 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324
f68396a1
RG
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
527210c4 327 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 328 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 329 return true;
366f945f 330
e8024441
RB
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 drop ref->ref. */
527210c4 333 if (MEM_OFFSET (mem) < 0
e8024441
RB
334 || (ref->max_size != -1
335 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 > ref->max_size)))
337 ref->ref = NULL_TREE;
b0e96404 338
e8024441
RB
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
f68396a1 341
527210c4 342 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 343 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
344
345 /* The MEM may extend into adjacent fields, so adjust max_size if
346 necessary. */
347 if (ref->max_size != -1
348 && ref->size > ref->max_size)
349 ref->max_size = ref->size;
350
351 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
353 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354 && (ref->offset < 0
355 || (DECL_P (ref->base)
807e902e
KZ
356 && (DECL_SIZE (ref->base) == NULL_TREE
357 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 ref->offset + ref->size)))))
b0e96404 360 return false;
55b34b5f
RG
361
362 return true;
363}
364
365/* Query the alias-oracle on whether the two memory rtx X and MEM may
366 alias. If TBAA_P is set also apply TBAA. Returns true if the
367 two rtxen may alias, false otherwise. */
368
369static bool
370rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
371{
372 ao_ref ref1, ref2;
373
374 if (!ao_ref_from_mem (&ref1, x)
375 || !ao_ref_from_mem (&ref2, mem))
376 return true;
377
55e3bc4c
RG
378 return refs_may_alias_p_1 (&ref1, &ref2,
379 tbaa_p
380 && MEM_ALIAS_SET (x) != 0
381 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
382}
383
3932261a
MM
384/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385 such an entry, or NULL otherwise. */
386
02ced957 387static inline alias_set_entry *
4862826d 388get_alias_set_entry (alias_set_type alias_set)
3932261a 389{
9771b263 390 return (*alias_sets)[alias_set];
3932261a
MM
391}
392
ac3d9668
RK
393/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394 the two MEMs cannot alias each other. */
3932261a 395
9ddb66ca 396static inline int
4f588890 397mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 398{
598f8eca
RB
399 return (flag_strict_aliasing
400 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 MEM_ALIAS_SET (mem2)));
1da68f56 402}
3932261a 403
c58936b6
DB
404/* Return true if the first alias set is a subset of the second. */
405
406bool
4862826d 407alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 408{
02ced957 409 alias_set_entry *ase2;
c58936b6 410
bd04cddf
JH
411 /* Disable TBAA oracle with !flag_strict_aliasing. */
412 if (!flag_strict_aliasing)
413 return true;
414
c58936b6
DB
415 /* Everything is a subset of the "aliases everything" set. */
416 if (set2 == 0)
417 return true;
418
6e042ef4
JH
419 /* Check if set1 is a subset of set2. */
420 ase2 = get_alias_set_entry (set2);
421 if (ase2 != 0
422 && (ase2->has_zero_child
423 || (ase2->children && ase2->children->get (set1))))
c58936b6 424 return true;
6e042ef4
JH
425
426 /* As a special case we consider alias set of "void *" to be both subset
427 and superset of every alias set of a pointer. This extra symmetry does
428 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429 to return true on the following testcase:
430
431 void *ptr;
432 char **ptr2=(char **)&ptr;
433 *ptr2 = ...
434
435 Additionally if a set contains universal pointer, we consider every pointer
436 to be a subset of it, but we do not represent this explicitely - doing so
437 would require us to update transitive closure each time we introduce new
438 pointer type. This makes aliasing_component_refs_p to return true
439 on the following testcase:
440
441 struct a {void *ptr;}
442 char **ptr = (char **)&a.ptr;
443 ptr = ...
444
445 This makes void * truly universal pointer type. See pointer handling in
446 get_alias_set for more details. */
447 if (ase2 && ase2->has_pointer)
448 {
02ced957 449 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
450
451 if (ase1 && ase1->is_pointer)
452 {
453 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 /* If one is ptr_type_node and other is pointer, then we consider
455 them subset of each other. */
456 if (set1 == voidptr_set || set2 == voidptr_set)
457 return true;
458 /* If SET2 contains universal pointer's alias set, then we consdier
459 every (non-universal) pointer. */
460 if (ase2->children && set1 != voidptr_set
461 && ase2->children->get (voidptr_set))
462 return true;
463 }
464 }
c58936b6
DB
465 return false;
466}
467
1da68f56
RK
468/* Return 1 if the two specified alias sets may conflict. */
469
470int
4862826d 471alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 472{
02ced957
TS
473 alias_set_entry *ase1;
474 alias_set_entry *ase2;
1da68f56 475
836f7794
EB
476 /* The easy case. */
477 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 478 return 1;
3932261a 479
3bdf5ad1 480 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
481 ase1 = get_alias_set_entry (set1);
482 if (ase1 != 0
483 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
484 {
485 ++alias_stats.num_dag;
486 return 1;
487 }
3932261a
MM
488
489 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
490 ase2 = get_alias_set_entry (set2);
491 if (ase2 != 0
492 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
493 {
494 ++alias_stats.num_dag;
495 return 1;
496 }
6e042ef4
JH
497
498 /* We want void * to be compatible with any other pointer without
499 really dropping it to alias set 0. Doing so would make it
500 compatible with all non-pointer types too.
501
502 This is not strictly necessary by the C/C++ language
503 standards, but avoids common type punning mistakes. In
504 addition to that, we need the existence of such universal
505 pointer to implement Fortran's C_PTR type (which is defined as
506 type compatible with all C pointers). */
507 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
508 {
509 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
510
511 /* If one of the sets corresponds to universal pointer,
512 we consider it to conflict with anything that is
513 or contains pointer. */
514 if (set1 == voidptr_set || set2 == voidptr_set)
515 {
516 ++alias_stats.num_universal;
517 return true;
518 }
519 /* If one of sets is (non-universal) pointer and the other
520 contains universal pointer, we also get conflict. */
521 if (ase1->is_pointer && set2 != voidptr_set
522 && ase2->children && ase2->children->get (voidptr_set))
523 {
524 ++alias_stats.num_universal;
525 return true;
526 }
527 if (ase2->is_pointer && set1 != voidptr_set
528 && ase1->children && ase1->children->get (voidptr_set))
529 {
530 ++alias_stats.num_universal;
531 return true;
532 }
533 }
534
3ecf9d13 535 ++alias_stats.num_disambiguated;
3932261a 536
1da68f56 537 /* The two alias sets are distinct and neither one is the
836f7794 538 child of the other. Therefore, they cannot conflict. */
1da68f56 539 return 0;
3932261a 540}
5399d643 541
836f7794 542/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
543
544int
4862826d 545alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 546{
bd04cddf
JH
547 /* Disable TBAA oracle with !flag_strict_aliasing. */
548 if (!flag_strict_aliasing)
549 return 1;
3ecf9d13
JH
550 if (set1 == 0 || set2 == 0)
551 {
552 ++alias_stats.num_alias_zero;
553 return 1;
554 }
555 if (set1 == set2)
556 {
557 ++alias_stats.num_same_alias_set;
558 return 1;
559 }
5399d643
JW
560
561 return 0;
562}
563
1da68f56
RK
564/* Return 1 if any MEM object of type T1 will always conflict (using the
565 dependency routines in this file) with any MEM object of type T2.
566 This is used when allocating temporary storage. If T1 and/or T2 are
567 NULL_TREE, it means we know nothing about the storage. */
568
569int
4682ae04 570objects_must_conflict_p (tree t1, tree t2)
1da68f56 571{
4862826d 572 alias_set_type set1, set2;
82d610ec 573
e8ea2809
RK
574 /* If neither has a type specified, we don't know if they'll conflict
575 because we may be using them to store objects of various types, for
576 example the argument and local variables areas of inlined functions. */
981a4c34 577 if (t1 == 0 && t2 == 0)
e8ea2809
RK
578 return 0;
579
1da68f56 580 /* If they are the same type, they must conflict. */
3ecf9d13
JH
581 if (t1 == t2)
582 {
583 ++alias_stats.num_same_objects;
584 return 1;
585 }
586 /* Likewise if both are volatile. */
587 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
588 {
589 ++alias_stats.num_volatile;
590 return 1;
591 }
1da68f56 592
82d610ec
RK
593 set1 = t1 ? get_alias_set (t1) : 0;
594 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 595
836f7794
EB
596 /* We can't use alias_sets_conflict_p because we must make sure
597 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
598 t2 for which a pair of subobjects of these respective subtypes
599 overlaps on the stack. */
836f7794 600 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
601}
602\f
b4ada065
RB
603/* Return the outermost parent of component present in the chain of
604 component references handled by get_inner_reference in T with the
605 following property:
606 - the component is non-addressable, or
607 - the parent has alias set zero,
608 or NULL_TREE if no such parent exists. In the former cases, the alias
609 set of this parent is the alias set that must be used for T itself. */
610
611tree
612component_uses_parent_alias_set_from (const_tree t)
6e24b709 613{
b4ada065 614 const_tree found = NULL_TREE;
afe84921 615
b4ada065
RB
616 while (handled_component_p (t))
617 {
afe84921
RH
618 switch (TREE_CODE (t))
619 {
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
b4ada065 622 found = t;
4aa83879
RB
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 found = t;
afe84921
RH
631 break;
632
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
b4ada065 636 found = t;
afe84921
RH
637 break;
638
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
642
b4ada065
RB
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
afe84921 645 /* Bitfields and casts are never addressable. */
b4ada065
RB
646 found = t;
647 break;
648
649 default:
650 gcc_unreachable ();
afe84921
RH
651 }
652
b4ada065
RB
653 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
654 found = t;
655
afe84921
RH
656 t = TREE_OPERAND (t, 0);
657 }
b4ada065
RB
658
659 if (found)
660 return TREE_OPERAND (found, 0);
661
662 return NULL_TREE;
6e24b709
RK
663}
664
f40333af
RB
665
666/* Return whether the pointer-type T effective for aliasing may
667 access everything and thus the reference has to be assigned
668 alias-set zero. */
669
670static bool
671ref_all_alias_ptr_type_p (const_tree t)
672{
673 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
674 || TYPE_REF_CAN_ALIAS_ALL (t));
675}
676
5006671f
RG
677/* Return the alias set for the memory pointed to by T, which may be
678 either a type or an expression. Return -1 if there is nothing
679 special about dereferencing T. */
680
681static alias_set_type
682get_deref_alias_set_1 (tree t)
683{
5b21f0f3 684 /* All we care about is the type. */
5006671f 685 if (! TYPE_P (t))
5b21f0f3 686 t = TREE_TYPE (t);
5006671f
RG
687
688 /* If we have an INDIRECT_REF via a void pointer, we don't
689 know anything about what that might alias. Likewise if the
690 pointer is marked that way. */
f40333af 691 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
692 return 0;
693
694 return -1;
695}
696
697/* Return the alias set for the memory pointed to by T, which may be
698 either a type or an expression. */
699
700alias_set_type
701get_deref_alias_set (tree t)
702{
f40333af
RB
703 /* If we're not doing any alias analysis, just assume everything
704 aliases everything else. */
705 if (!flag_strict_aliasing)
706 return 0;
707
5006671f
RG
708 alias_set_type set = get_deref_alias_set_1 (t);
709
710 /* Fall back to the alias-set of the pointed-to type. */
711 if (set == -1)
712 {
713 if (! TYPE_P (t))
714 t = TREE_TYPE (t);
715 set = get_alias_set (TREE_TYPE (t));
716 }
717
718 return set;
719}
720
f40333af
RB
721/* Return the pointer-type relevant for TBAA purposes from the
722 memory reference tree *T or NULL_TREE in which case *T is
723 adjusted to point to the outermost component reference that
724 can be used for assigning an alias set. */
725
726static tree
727reference_alias_ptr_type_1 (tree *t)
728{
729 tree inner;
730
731 /* Get the base object of the reference. */
732 inner = *t;
733 while (handled_component_p (inner))
734 {
735 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
736 the type of any component references that wrap it to
737 determine the alias-set. */
738 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
739 *t = TREE_OPERAND (inner, 0);
740 inner = TREE_OPERAND (inner, 0);
741 }
742
743 /* Handle pointer dereferences here, they can override the
744 alias-set. */
745 if (INDIRECT_REF_P (inner)
746 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
747 return TREE_TYPE (TREE_OPERAND (inner, 0));
748 else if (TREE_CODE (inner) == TARGET_MEM_REF)
749 return TREE_TYPE (TMR_OFFSET (inner));
750 else if (TREE_CODE (inner) == MEM_REF
751 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
752 return TREE_TYPE (TREE_OPERAND (inner, 1));
753
754 /* If the innermost reference is a MEM_REF that has a
755 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
756 using the memory access type for determining the alias-set. */
757 if (TREE_CODE (inner) == MEM_REF
758 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
759 != TYPE_MAIN_VARIANT
760 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
761 return TREE_TYPE (TREE_OPERAND (inner, 1));
762
b4ada065
RB
763 /* Otherwise, pick up the outermost object that we could have
764 a pointer to. */
765 tree tem = component_uses_parent_alias_set_from (*t);
766 if (tem)
767 *t = tem;
f40333af
RB
768
769 return NULL_TREE;
770}
771
772/* Return the pointer-type relevant for TBAA purposes from the
773 gimple memory reference tree T. This is the type to be used for
774 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
775 and guarantees that get_alias_set will return the same alias
776 set for T and the replacement. */
777
778tree
779reference_alias_ptr_type (tree t)
780{
ebc1b29e
RB
781 /* If the frontend assigns this alias-set zero, preserve that. */
782 if (lang_hooks.get_alias_set (t) == 0)
783 return ptr_type_node;
784
f40333af
RB
785 tree ptype = reference_alias_ptr_type_1 (&t);
786 /* If there is a given pointer type for aliasing purposes, return it. */
787 if (ptype != NULL_TREE)
788 return ptype;
789
790 /* Otherwise build one from the outermost component reference we
791 may use. */
792 if (TREE_CODE (t) == MEM_REF
793 || TREE_CODE (t) == TARGET_MEM_REF)
794 return TREE_TYPE (TREE_OPERAND (t, 1));
795 else
796 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
797}
798
799/* Return whether the pointer-types T1 and T2 used to determine
800 two alias sets of two references will yield the same answer
801 from get_deref_alias_set. */
802
803bool
804alias_ptr_types_compatible_p (tree t1, tree t2)
805{
806 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
807 return true;
808
809 if (ref_all_alias_ptr_type_p (t1)
810 || ref_all_alias_ptr_type_p (t2))
811 return false;
812
813 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
814 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
815}
816
6e042ef4
JH
817/* Create emptry alias set entry. */
818
02ced957 819alias_set_entry *
6e042ef4
JH
820init_alias_set_entry (alias_set_type set)
821{
02ced957 822 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
823 ase->alias_set = set;
824 ase->children = NULL;
825 ase->has_zero_child = false;
826 ase->is_pointer = false;
827 ase->has_pointer = false;
828 gcc_checking_assert (!get_alias_set_entry (set));
829 (*alias_sets)[set] = ase;
830 return ase;
831}
832
3bdf5ad1
RK
833/* Return the alias set for T, which may be either a type or an
834 expression. Call language-specific routine for help, if needed. */
835
4862826d 836alias_set_type
4682ae04 837get_alias_set (tree t)
3bdf5ad1 838{
4862826d 839 alias_set_type set;
3bdf5ad1 840
bd04cddf
JH
841 /* We can not give up with -fno-strict-aliasing because we need to build
842 proper type representation for possible functions which are build with
e8444ca6 843 -fstrict-aliasing. */
bd04cddf
JH
844
845 /* return 0 if this or its type is an error. */
846 if (t == error_mark_node
3bdf5ad1
RK
847 || (! TYPE_P (t)
848 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
849 return 0;
850
851 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
852 language-specific routine may make mutually-recursive calls to each other
853 to figure out what to do. At each juncture, we see if this is a tree
854 that the language may need to handle specially. First handle things that
738cc472 855 aren't types. */
f824e5c3 856 if (! TYPE_P (t))
3bdf5ad1 857 {
70f34814
RG
858 /* Give the language a chance to do something with this tree
859 before we look at it. */
8ac61af7 860 STRIP_NOPS (t);
ae2bcd98 861 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
862 if (set != -1)
863 return set;
864
f40333af
RB
865 /* Get the alias pointer-type to use or the outermost object
866 that we could have a pointer to. */
867 tree ptype = reference_alias_ptr_type_1 (&t);
868 if (ptype != NULL)
869 return get_deref_alias_set (ptype);
f824e5c3 870
738cc472
RK
871 /* If we've already determined the alias set for a decl, just return
872 it. This is necessary for C++ anonymous unions, whose component
873 variables don't look like union members (boo!). */
8813a647 874 if (VAR_P (t)
3c0cb5de 875 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
876 return MEM_ALIAS_SET (DECL_RTL (t));
877
f824e5c3
RK
878 /* Now all we care about is the type. */
879 t = TREE_TYPE (t);
3bdf5ad1
RK
880 }
881
3bdf5ad1 882 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 883 variant. */
3bdf5ad1 884 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
885
886 /* Always use the canonical type as well. If this is a type that
887 requires structural comparisons to identify compatible types
888 use alias set zero. */
889 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
890 {
891 /* Allow the language to specify another alias set for this
892 type. */
893 set = lang_hooks.get_alias_set (t);
894 if (set != -1)
895 return set;
aea50b45
JH
896 /* Handle structure type equality for pointer types, arrays and vectors.
897 This is easy to do, because the code bellow ignore canonical types on
898 these anyway. This is important for LTO, where TYPE_CANONICAL for
899 pointers can not be meaningfuly computed by the frotnend. */
900 if (canonical_type_used_p (t))
f85d2487
JH
901 {
902 /* In LTO we set canonical types for all types where it makes
903 sense to do so. Double check we did not miss some type. */
904 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
905 return 0;
906 }
907 }
908 else
909 {
910 t = TYPE_CANONICAL (t);
911 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 912 }
daad0278
RG
913
914 /* If this is a type with a known alias set, return it. */
ba6a6a1d 915 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 916 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
917 return TYPE_ALIAS_SET (t);
918
36784d0e
RG
919 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
920 if (!COMPLETE_TYPE_P (t))
921 {
922 /* For arrays with unknown size the conservative answer is the
923 alias set of the element type. */
924 if (TREE_CODE (t) == ARRAY_TYPE)
925 return get_alias_set (TREE_TYPE (t));
926
927 /* But return zero as a conservative answer for incomplete types. */
928 return 0;
929 }
930
3bdf5ad1 931 /* See if the language has special handling for this type. */
ae2bcd98 932 set = lang_hooks.get_alias_set (t);
8ac61af7 933 if (set != -1)
738cc472 934 return set;
2bf105ab 935
3bdf5ad1
RK
936 /* There are no objects of FUNCTION_TYPE, so there's no point in
937 using up an alias set for them. (There are, of course, pointers
938 and references to functions, but that's different.) */
7be7d292 939 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 940 set = 0;
74d86f4f
RH
941
942 /* Unless the language specifies otherwise, let vector types alias
943 their components. This avoids some nasty type punning issues in
944 normal usage. And indeed lets vectors be treated more like an
945 array slice. */
946 else if (TREE_CODE (t) == VECTOR_TYPE)
947 set = get_alias_set (TREE_TYPE (t));
948
4653cae5
RG
949 /* Unless the language specifies otherwise, treat array types the
950 same as their components. This avoids the asymmetry we get
951 through recording the components. Consider accessing a
952 character(kind=1) through a reference to a character(kind=1)[1:1].
953 Or consider if we want to assign integer(kind=4)[0:D.1387] and
954 integer(kind=4)[4] the same alias set or not.
955 Just be pragmatic here and make sure the array and its element
956 type get the same alias set assigned. */
aea50b45
JH
957 else if (TREE_CODE (t) == ARRAY_TYPE
958 && (!TYPE_NONALIASED_COMPONENT (t)
959 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
960 set = get_alias_set (TREE_TYPE (t));
961
0ceb0201
RG
962 /* From the former common C and C++ langhook implementation:
963
964 Unfortunately, there is no canonical form of a pointer type.
965 In particular, if we have `typedef int I', then `int *', and
966 `I *' are different types. So, we have to pick a canonical
967 representative. We do this below.
968
969 Technically, this approach is actually more conservative that
970 it needs to be. In particular, `const int *' and `int *'
971 should be in different alias sets, according to the C and C++
972 standard, since their types are not the same, and so,
973 technically, an `int **' and `const int **' cannot point at
974 the same thing.
975
976 But, the standard is wrong. In particular, this code is
977 legal C++:
978
979 int *ip;
980 int **ipp = &ip;
981 const int* const* cipp = ipp;
982 And, it doesn't make sense for that to be legal unless you
983 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
984 the pointed-to types. This issue has been reported to the
985 C++ committee.
986
6e042ef4
JH
987 For this reason go to canonical type of the unqalified pointer type.
988 Until GCC 6 this code set all pointers sets to have alias set of
989 ptr_type_node but that is a bad idea, because it prevents disabiguations
990 in between pointers. For Firefox this accounts about 20% of all
991 disambiguations in the program. */
f85d2487 992 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
993 {
994 tree p;
995 auto_vec <bool, 8> reference;
996
997 /* Unnest all pointers and references.
f85d2487
JH
998 We also want to make pointer to array/vector equivalent to pointer to
999 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 1000 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
1001 || (TREE_CODE (p) == ARRAY_TYPE
1002 && (!TYPE_NONALIASED_COMPONENT (p)
1003 || !COMPLETE_TYPE_P (p)
1004 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 1005 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
1006 p = TREE_TYPE (p))
1007 {
54363f8a
JH
1008 /* Ada supports recusive pointers. Instead of doing recrusion check
1009 just give up once the preallocated space of 8 elements is up.
1010 In this case just punt to void * alias set. */
1011 if (reference.length () == 8)
1012 {
1013 p = ptr_type_node;
1014 break;
1015 }
6e042ef4 1016 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1017 /* In LTO we want languages that use references to be compatible
1018 with languages that use pointers. */
1019 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1020 if (TREE_CODE (p) == POINTER_TYPE)
1021 reference.safe_push (false);
1022 }
1023 p = TYPE_MAIN_VARIANT (p);
1024
1025 /* Make void * compatible with char * and also void **.
1026 Programs are commonly violating TBAA by this.
1027
1028 We also make void * to conflict with every pointer
1029 (see record_component_aliases) and thus it is safe it to use it for
1030 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1031 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1032 set = get_alias_set (ptr_type_node);
1033 else
1034 {
f85d2487 1035 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1036 unqualified pointers and references only. This way all such
1037 pointers will have the same alias set and will conflict with
1038 each other.
1039
1040 Most of time we already have pointers or references of a given type.
1041 If not we build new one just to be sure that if someone later
1042 (probably only middle-end can, as we should assign all alias
1043 classes only after finishing translation unit) builds the pointer
1044 type, the canonical type will match. */
1045 p = TYPE_CANONICAL (p);
1046 while (!reference.is_empty ())
1047 {
1048 if (reference.pop ())
1049 p = build_reference_type (p);
1050 else
1051 p = build_pointer_type (p);
f85d2487
JH
1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1053 /* build_pointer_type should always return the canonical type.
1054 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1055 them. Be sure that frontends do not glob canonical types of
1056 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1057 in all other cases. */
1058 gcc_checking_assert (!TYPE_CANONICAL (p)
1059 || p == TYPE_CANONICAL (p));
6e042ef4 1060 }
6e042ef4
JH
1061
1062 /* Assign the alias set to both p and t.
1063 We can not call get_alias_set (p) here as that would trigger
1064 infinite recursion when p == t. In other cases it would just
1065 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1066 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1067 if (TYPE_ALIAS_SET_KNOWN_P (p))
1068 set = TYPE_ALIAS_SET (p);
1069 else
1070 {
1071 set = new_alias_set ();
1072 TYPE_ALIAS_SET (p) = set;
1073 }
1074 }
1075 }
f85d2487
JH
1076 /* Alias set of ptr_type_node is special and serve as universal pointer which
1077 is TBAA compatible with every other pointer type. Be sure we have the
1078 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1079 of pointer types NULL. */
1080 else if (t == ptr_type_node)
1081 set = new_alias_set ();
0ceb0201 1082
7be7d292 1083 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1084 else
96d91dcf
RG
1085 {
1086 /* Each canonical type gets its own alias set, so canonical types
1087 shouldn't form a tree. It doesn't really matter for types
1088 we handle specially above, so only check it where it possibly
1089 would result in a bogus alias set. */
1090 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1091
1092 set = new_alias_set ();
1093 }
3bdf5ad1
RK
1094
1095 TYPE_ALIAS_SET (t) = set;
2bf105ab 1096
7be7d292
EB
1097 /* If this is an aggregate type or a complex type, we must record any
1098 component aliasing information. */
1d79fd2c 1099 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1100 record_component_aliases (t);
1101
6e042ef4
JH
1102 /* We treat pointer types specially in alias_set_subset_of. */
1103 if (POINTER_TYPE_P (t) && set)
1104 {
02ced957 1105 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1106 if (!ase)
1107 ase = init_alias_set_entry (set);
1108 ase->is_pointer = true;
1109 ase->has_pointer = true;
1110 }
1111
3bdf5ad1
RK
1112 return set;
1113}
1114
1115/* Return a brand-new alias set. */
1116
4862826d 1117alias_set_type
4682ae04 1118new_alias_set (void)
3bdf5ad1 1119{
bd04cddf
JH
1120 if (alias_sets == 0)
1121 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1122 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1123 return alias_sets->length () - 1;
3bdf5ad1 1124}
3932261a 1125
01d28c3f
JM
1126/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1127 not everything that aliases SUPERSET also aliases SUBSET. For example,
1128 in C, a store to an `int' can alias a load of a structure containing an
1129 `int', and vice versa. But it can't alias a load of a 'double' member
1130 of the same structure. Here, the structure would be the SUPERSET and
1131 `int' the SUBSET. This relationship is also described in the comment at
1132 the beginning of this file.
1133
1134 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1135
1136 It is illegal for SUPERSET to be zero; everything is implicitly a
1137 subset of alias set zero. */
1138
794511d2 1139void
4862826d 1140record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1141{
02ced957
TS
1142 alias_set_entry *superset_entry;
1143 alias_set_entry *subset_entry;
3932261a 1144
f47e9b4e
RK
1145 /* It is possible in complex type situations for both sets to be the same,
1146 in which case we can ignore this operation. */
1147 if (superset == subset)
1148 return;
1149
298e6adc 1150 gcc_assert (superset);
3932261a
MM
1151
1152 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1153 if (superset_entry == 0)
3932261a
MM
1154 {
1155 /* Create an entry for the SUPERSET, so that we have a place to
1156 attach the SUBSET. */
6e042ef4 1157 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1158 }
1159
2bf105ab
RK
1160 if (subset == 0)
1161 superset_entry->has_zero_child = 1;
1162 else
1163 {
1164 subset_entry = get_alias_set_entry (subset);
6e042ef4
JH
1165 if (!superset_entry->children)
1166 superset_entry->children
fb5c464a 1167 = hash_map<alias_set_hash, int>::create_ggc (64);
2bf105ab
RK
1168 /* If there is an entry for the subset, enter all of its children
1169 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1170 if (subset_entry)
2bf105ab
RK
1171 {
1172 if (subset_entry->has_zero_child)
6e042ef4
JH
1173 superset_entry->has_zero_child = true;
1174 if (subset_entry->has_pointer)
1175 superset_entry->has_pointer = true;
d4b60170 1176
6e042ef4
JH
1177 if (subset_entry->children)
1178 {
fb5c464a 1179 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1180 = subset_entry->children->begin ();
1181 for (; iter != subset_entry->children->end (); ++iter)
1182 superset_entry->children->put ((*iter).first, (*iter).second);
1183 }
2bf105ab 1184 }
3932261a 1185
2bf105ab 1186 /* Enter the SUBSET itself as a child of the SUPERSET. */
de144fb2 1187 superset_entry->children->put (subset, 0);
2bf105ab 1188 }
3932261a
MM
1189}
1190
a0c33338
RK
1191/* Record that component types of TYPE, if any, are part of that type for
1192 aliasing purposes. For record types, we only record component types
b5487346
EB
1193 for fields that are not marked non-addressable. For array types, we
1194 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1195
1196void
4682ae04 1197record_component_aliases (tree type)
a0c33338 1198{
4862826d 1199 alias_set_type superset = get_alias_set (type);
a0c33338
RK
1200 tree field;
1201
1202 if (superset == 0)
1203 return;
1204
1205 switch (TREE_CODE (type))
1206 {
a0c33338
RK
1207 case RECORD_TYPE:
1208 case UNION_TYPE:
1209 case QUAL_UNION_TYPE:
910ad8de 1210 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 1211 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
f85d2487
JH
1212 {
1213 /* LTO type merging does not make any difference between
1214 component pointer types. We may have
1215
1216 struct foo {int *a;};
1217
1218 as TYPE_CANONICAL of
1219
1220 struct bar {float *a;};
1221
1222 Because accesses to int * and float * do not alias, we would get
1223 false negative when accessing the same memory location by
1224 float ** and bar *. We thus record the canonical type as:
1225
1226 struct {void *a;};
1227
1228 void * is special cased and works as a universal pointer type.
1229 Accesses to it conflicts with accesses to any other pointer
1230 type. */
1231 tree t = TREE_TYPE (field);
1232 if (in_lto_p)
1233 {
1234 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1235 element type and that type has to be normalized to void *,
1236 too, in the case it is a pointer. */
aea50b45
JH
1237 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1238 {
1239 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1240 t = TREE_TYPE (t);
1241 }
f85d2487
JH
1242 if (POINTER_TYPE_P (t))
1243 t = ptr_type_node;
aea50b45
JH
1244 else if (flag_checking)
1245 gcc_checking_assert (get_alias_set (t)
1246 == get_alias_set (TREE_TYPE (field)));
f85d2487 1247 }
aea50b45 1248
f85d2487
JH
1249 record_alias_subset (superset, get_alias_set (t));
1250 }
a0c33338
RK
1251 break;
1252
1d79fd2c
JW
1253 case COMPLEX_TYPE:
1254 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1255 break;
1256
4653cae5
RG
1257 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1258 element type. */
1259
a0c33338
RK
1260 default:
1261 break;
1262 }
1263}
1264
3bdf5ad1
RK
1265/* Allocate an alias set for use in storing and reading from the varargs
1266 spill area. */
1267
4862826d 1268static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1269
4862826d 1270alias_set_type
4682ae04 1271get_varargs_alias_set (void)
3bdf5ad1 1272{
cd3ce9b4
JM
1273#if 1
1274 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1275 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1276 consistently use the varargs alias set for loads from the varargs
1277 area. So don't use it anywhere. */
1278 return 0;
1279#else
f103e34d
GK
1280 if (varargs_set == -1)
1281 varargs_set = new_alias_set ();
3bdf5ad1 1282
f103e34d 1283 return varargs_set;
cd3ce9b4 1284#endif
3bdf5ad1
RK
1285}
1286
1287/* Likewise, but used for the fixed portions of the frame, e.g., register
1288 save areas. */
1289
4862826d 1290static GTY(()) alias_set_type frame_set = -1;
f103e34d 1291
4862826d 1292alias_set_type
4682ae04 1293get_frame_alias_set (void)
3bdf5ad1 1294{
f103e34d
GK
1295 if (frame_set == -1)
1296 frame_set = new_alias_set ();
3bdf5ad1 1297
f103e34d 1298 return frame_set;
3bdf5ad1
RK
1299}
1300
9fc37b2b
RS
1301/* Create a new, unique base with id ID. */
1302
1303static rtx
1304unique_base_value (HOST_WIDE_INT id)
1305{
1306 return gen_rtx_ADDRESS (Pmode, id);
1307}
1308
1309/* Return true if accesses based on any other base value cannot alias
1310 those based on X. */
1311
1312static bool
1313unique_base_value_p (rtx x)
1314{
1315 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1316}
1317
1318/* Return true if X is known to be a base value. */
1319
1320static bool
1321known_base_value_p (rtx x)
1322{
1323 switch (GET_CODE (x))
1324 {
1325 case LABEL_REF:
1326 case SYMBOL_REF:
1327 return true;
1328
1329 case ADDRESS:
1330 /* Arguments may or may not be bases; we don't know for sure. */
1331 return GET_MODE (x) != VOIDmode;
1332
1333 default:
1334 return false;
1335 }
1336}
1337
2a2c8203
JC
1338/* Inside SRC, the source of a SET, find a base address. */
1339
9ae8ffe7 1340static rtx
4682ae04 1341find_base_value (rtx src)
9ae8ffe7 1342{
713f41f9 1343 unsigned int regno;
0aacc8ed 1344
53451050
RS
1345#if defined (FIND_BASE_TERM)
1346 /* Try machine-dependent ways to find the base term. */
1347 src = FIND_BASE_TERM (src);
1348#endif
1349
9ae8ffe7
JL
1350 switch (GET_CODE (src))
1351 {
1352 case SYMBOL_REF:
1353 case LABEL_REF:
1354 return src;
1355
1356 case REG:
fb6754f0 1357 regno = REGNO (src);
d4b60170 1358 /* At the start of a function, argument registers have known base
2a2c8203
JC
1359 values which may be lost later. Returning an ADDRESS
1360 expression here allows optimization based on argument values
1361 even when the argument registers are used for other purposes. */
713f41f9
BS
1362 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1363 return new_reg_base_value[regno];
73774bc7 1364
eaf407a5 1365 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1366 for non-fixed hard regs since it can result in a circular
1367 dependency chain for registers which have values at function entry.
eaf407a5
JL
1368
1369 The test above is not sufficient because the scheduler may move
1370 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1371 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1372 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1373 {
1374 /* If we're inside init_alias_analysis, use new_reg_base_value
1375 to reduce the number of relaxation iterations. */
1afdf91c 1376 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1377 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1378 return new_reg_base_value[regno];
1379
9771b263
DN
1380 if ((*reg_base_value)[regno])
1381 return (*reg_base_value)[regno];
83bbd9b6 1382 }
73774bc7 1383
e3f049a8 1384 return 0;
9ae8ffe7
JL
1385
1386 case MEM:
1387 /* Check for an argument passed in memory. Only record in the
1388 copying-arguments block; it is too hard to track changes
1389 otherwise. */
1390 if (copying_arguments
1391 && (XEXP (src, 0) == arg_pointer_rtx
1392 || (GET_CODE (XEXP (src, 0)) == PLUS
1393 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1394 return arg_base_value;
9ae8ffe7
JL
1395 return 0;
1396
1397 case CONST:
1398 src = XEXP (src, 0);
1399 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1400 break;
d4b60170 1401
191816a3 1402 /* fall through */
2a2c8203 1403
9ae8ffe7
JL
1404 case PLUS:
1405 case MINUS:
2a2c8203 1406 {
ec907dd8
JL
1407 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1408
0134bf2d
DE
1409 /* If either operand is a REG that is a known pointer, then it
1410 is the base. */
1411 if (REG_P (src_0) && REG_POINTER (src_0))
1412 return find_base_value (src_0);
1413 if (REG_P (src_1) && REG_POINTER (src_1))
1414 return find_base_value (src_1);
1415
ec907dd8
JL
1416 /* If either operand is a REG, then see if we already have
1417 a known value for it. */
0134bf2d 1418 if (REG_P (src_0))
ec907dd8
JL
1419 {
1420 temp = find_base_value (src_0);
d4b60170 1421 if (temp != 0)
ec907dd8
JL
1422 src_0 = temp;
1423 }
1424
0134bf2d 1425 if (REG_P (src_1))
ec907dd8
JL
1426 {
1427 temp = find_base_value (src_1);
d4b60170 1428 if (temp!= 0)
ec907dd8
JL
1429 src_1 = temp;
1430 }
2a2c8203 1431
0134bf2d
DE
1432 /* If either base is named object or a special address
1433 (like an argument or stack reference), then use it for the
1434 base term. */
9fc37b2b 1435 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1436 return src_0;
1437
9fc37b2b 1438 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1439 return src_1;
1440
d4b60170 1441 /* Guess which operand is the base address:
ec907dd8
JL
1442 If either operand is a symbol, then it is the base. If
1443 either operand is a CONST_INT, then the other is the base. */
481683e1 1444 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1445 return find_base_value (src_0);
481683e1 1446 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1447 return find_base_value (src_1);
1448
9ae8ffe7 1449 return 0;
2a2c8203
JC
1450 }
1451
1452 case LO_SUM:
1453 /* The standard form is (lo_sum reg sym) so look only at the
1454 second operand. */
1455 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1456
1457 case AND:
1458 /* If the second operand is constant set the base
ec5c56db 1459 address to the first operand. */
481683e1 1460 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1461 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1462 return 0;
1463
61f0131c 1464 case TRUNCATE:
5932a4d4 1465 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1466 handle this only if the target does not support different pointer or
1467 address modes depending on the address space. */
1468 if (!target_default_pointer_address_modes_p ())
1469 break;
61f0131c
R
1470 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1471 break;
1472 /* Fall through. */
9ae8ffe7 1473 case HIGH:
d288e53d
DE
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
2a2c8203 1480 return find_base_value (XEXP (src, 0));
1d300e19 1481
0aacc8ed
RK
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1484 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1489
0aacc8ed
RK
1490 {
1491 rtx temp = find_base_value (XEXP (src, 0));
1492
5ae6cd0d 1493 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1494 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1495
1496 return temp;
1497 }
1498
1d300e19
KG
1499 default:
1500 break;
9ae8ffe7
JL
1501 }
1502
1503 return 0;
1504}
1505
9fc37b2b
RS
1506/* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
9ae8ffe7 1509
d4b60170 1510/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1511 register N has been set in this function. */
d630245f 1512static sbitmap reg_seen;
9ae8ffe7 1513
2a2c8203 1514static void
7bc980e1 1515record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1516{
b3694847 1517 unsigned regno;
9ae8ffe7 1518 rtx src;
c28b4e40 1519 int n;
9ae8ffe7 1520
f8cfc6aa 1521 if (!REG_P (dest))
9ae8ffe7
JL
1522 return;
1523
fb6754f0 1524 regno = REGNO (dest);
9ae8ffe7 1525
9771b263 1526 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1527
dc8afb70 1528 n = REG_NREGS (dest);
c28b4e40
JW
1529 if (n != 1)
1530 {
1531 while (--n >= 0)
1532 {
d7c028c0 1533 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1534 new_reg_base_value[regno + n] = 0;
1535 }
1536 return;
1537 }
1538
9ae8ffe7
JL
1539 if (set)
1540 {
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1545 {
ec907dd8 1546 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1547 return;
1548 }
1549 src = SET_SRC (set);
1550 }
1551 else
1552 {
9fc37b2b 1553 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1554 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1555 {
ec907dd8 1556 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1557 return;
1558 }
d7c028c0 1559 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1560 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1561 return;
1562 }
1563
5da6f168
RS
1564 /* If this is not the first set of REGNO, see whether the new value
1565 is related to the old one. There are two cases of interest:
1566
1567 (1) The register might be assigned an entirely new value
1568 that has the same base term as the original set.
1569
1570 (2) The set might be a simple self-modification that
1571 cannot change REGNO's base value.
1572
1573 If neither case holds, reject the original base value as invalid.
1574 Note that the following situation is not detected:
1575
c22cacf3 1576 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1577
9ae8ffe7
JL
1578 ANSI C does not allow computing the difference of addresses
1579 of distinct top level objects. */
5da6f168
RS
1580 if (new_reg_base_value[regno] != 0
1581 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1582 switch (GET_CODE (src))
1583 {
2a2c8203 1584 case LO_SUM:
9ae8ffe7
JL
1585 case MINUS:
1586 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1587 new_reg_base_value[regno] = 0;
9ae8ffe7 1588 break;
61f0131c
R
1589 case PLUS:
1590 /* If the value we add in the PLUS is also a valid base value,
1591 this might be the actual base value, and the original value
1592 an index. */
1593 {
1594 rtx other = NULL_RTX;
1595
1596 if (XEXP (src, 0) == dest)
1597 other = XEXP (src, 1);
1598 else if (XEXP (src, 1) == dest)
1599 other = XEXP (src, 0);
1600
1601 if (! other || find_base_value (other))
1602 new_reg_base_value[regno] = 0;
1603 break;
1604 }
9ae8ffe7 1605 case AND:
481683e1 1606 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1607 new_reg_base_value[regno] = 0;
9ae8ffe7 1608 break;
9ae8ffe7 1609 default:
ec907dd8 1610 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1611 break;
1612 }
1613 /* If this is the first set of a register, record the value. */
1614 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1615 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1616 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1617
d7c028c0 1618 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1619}
1620
8fd0a474
AM
1621/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1622 using hard registers with non-null REG_BASE_VALUE for renaming. */
1623rtx
1624get_reg_base_value (unsigned int regno)
1625{
9771b263 1626 return (*reg_base_value)[regno];
8fd0a474
AM
1627}
1628
bb1acb3e
RH
1629/* If a value is known for REGNO, return it. */
1630
c22cacf3 1631rtx
bb1acb3e
RH
1632get_reg_known_value (unsigned int regno)
1633{
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1635 {
1636 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1637 if (regno < vec_safe_length (reg_known_value))
1638 return (*reg_known_value)[regno];
bb1acb3e
RH
1639 }
1640 return NULL;
43fe47ca
JW
1641}
1642
bb1acb3e
RH
1643/* Set it. */
1644
1645static void
1646set_reg_known_value (unsigned int regno, rtx val)
1647{
1648 if (regno >= FIRST_PSEUDO_REGISTER)
1649 {
1650 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1651 if (regno < vec_safe_length (reg_known_value))
1652 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1653 }
1654}
1655
1656/* Similarly for reg_known_equiv_p. */
1657
1658bool
1659get_reg_known_equiv_p (unsigned int regno)
1660{
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1662 {
1663 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1664 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1665 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1666 }
1667 return false;
1668}
1669
1670static void
1671set_reg_known_equiv_p (unsigned int regno, bool val)
1672{
1673 if (regno >= FIRST_PSEUDO_REGISTER)
1674 {
1675 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1676 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1677 {
1678 if (val)
d7c028c0 1679 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1680 else
d7c028c0 1681 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1682 }
bb1acb3e
RH
1683 }
1684}
1685
1686
db048faf
MM
1687/* Returns a canonical version of X, from the point of view alias
1688 analysis. (For example, if X is a MEM whose address is a register,
1689 and the register has a known value (say a SYMBOL_REF), then a MEM
1690 whose address is the SYMBOL_REF is returned.) */
1691
1692rtx
4682ae04 1693canon_rtx (rtx x)
9ae8ffe7
JL
1694{
1695 /* Recursively look for equivalences. */
f8cfc6aa 1696 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1697 {
1698 rtx t = get_reg_known_value (REGNO (x));
1699 if (t == x)
1700 return x;
1701 if (t)
1702 return canon_rtx (t);
1703 }
1704
1705 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1706 {
1707 rtx x0 = canon_rtx (XEXP (x, 0));
1708 rtx x1 = canon_rtx (XEXP (x, 1));
1709
1710 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1711 {
481683e1 1712 if (CONST_INT_P (x0))
0a81f074 1713 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
481683e1 1714 else if (CONST_INT_P (x1))
0a81f074 1715 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
38a448ca 1716 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1717 }
1718 }
d4b60170 1719
9ae8ffe7
JL
1720 /* This gives us much better alias analysis when called from
1721 the loop optimizer. Note we want to leave the original
1722 MEM alone, but need to return the canonicalized MEM with
1723 all the flags with their original values. */
3c0cb5de 1724 else if (MEM_P (x))
f1ec5147 1725 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1726
9ae8ffe7
JL
1727 return x;
1728}
1729
1730/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1731 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1732
1733 We use the data in reg_known_value above to see if two registers with
1734 different numbers are, in fact, equivalent. */
1735
1736static int
ed7a4b4b 1737rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1738{
b3694847
SS
1739 int i;
1740 int j;
1741 enum rtx_code code;
1742 const char *fmt;
9ae8ffe7
JL
1743
1744 if (x == 0 && y == 0)
1745 return 1;
1746 if (x == 0 || y == 0)
1747 return 0;
d4b60170 1748
9ae8ffe7
JL
1749 if (x == y)
1750 return 1;
1751
1752 code = GET_CODE (x);
1753 /* Rtx's of different codes cannot be equal. */
1754 if (code != GET_CODE (y))
1755 return 0;
1756
1757 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1758 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1759
1760 if (GET_MODE (x) != GET_MODE (y))
1761 return 0;
1762
db048faf
MM
1763 /* Some RTL can be compared without a recursive examination. */
1764 switch (code)
1765 {
1766 case REG:
1767 return REGNO (x) == REGNO (y);
1768
1769 case LABEL_REF:
04a121a7 1770 return label_ref_label (x) == label_ref_label (y);
ca7fd9cd 1771
db048faf 1772 case SYMBOL_REF:
73e48cb3 1773 return compare_base_symbol_refs (x, y) == 1;
db048faf 1774
af6236c1
AO
1775 case ENTRY_VALUE:
1776 /* This is magic, don't go through canonicalization et al. */
1777 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1778
40e02b4a 1779 case VALUE:
d8116890 1780 CASE_CONST_UNIQUE:
807e902e 1781 /* Pointer equality guarantees equality for these nodes. */
db048faf
MM
1782 return 0;
1783
db048faf
MM
1784 default:
1785 break;
1786 }
9ae8ffe7 1787
45183e03
JH
1788 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1789 if (code == PLUS)
9ae8ffe7
JL
1790 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1791 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1792 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1793 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1794 /* For commutative operations, the RTX match if the operand match in any
1795 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1796 if (COMMUTATIVE_P (x))
45183e03
JH
1797 {
1798 rtx xop0 = canon_rtx (XEXP (x, 0));
1799 rtx yop0 = canon_rtx (XEXP (y, 0));
1800 rtx yop1 = canon_rtx (XEXP (y, 1));
1801
1802 return ((rtx_equal_for_memref_p (xop0, yop0)
1803 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1804 || (rtx_equal_for_memref_p (xop0, yop1)
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1806 }
ec8e098d 1807 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1808 {
1809 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1810 canon_rtx (XEXP (y, 0)))
45183e03
JH
1811 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1812 canon_rtx (XEXP (y, 1))));
1813 }
ec8e098d 1814 else if (UNARY_P (x))
45183e03 1815 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1816 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1817
1818 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1819 fail to match, return 0 for the whole things.
1820
1821 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1822
1823 fmt = GET_RTX_FORMAT (code);
1824 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1825 {
1826 switch (fmt[i])
1827 {
9ae8ffe7
JL
1828 case 'i':
1829 if (XINT (x, i) != XINT (y, i))
1830 return 0;
1831 break;
1832
9ae8ffe7
JL
1833 case 'E':
1834 /* Two vectors must have the same length. */
1835 if (XVECLEN (x, i) != XVECLEN (y, i))
1836 return 0;
1837
1838 /* And the corresponding elements must match. */
1839 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1840 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1841 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1842 return 0;
1843 break;
1844
1845 case 'e':
45183e03
JH
1846 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1847 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1848 return 0;
1849 break;
1850
3237ac18
AH
1851 /* This can happen for asm operands. */
1852 case 's':
1853 if (strcmp (XSTR (x, i), XSTR (y, i)))
1854 return 0;
1855 break;
1856
aee21ba9
JL
1857 /* This can happen for an asm which clobbers memory. */
1858 case '0':
1859 break;
1860
9ae8ffe7
JL
1861 /* It is believed that rtx's at this level will never
1862 contain anything but integers and other rtx's,
1863 except for within LABEL_REFs and SYMBOL_REFs. */
1864 default:
298e6adc 1865 gcc_unreachable ();
9ae8ffe7
JL
1866 }
1867 }
1868 return 1;
1869}
1870
9e412ca3 1871static rtx
4682ae04 1872find_base_term (rtx x)
9ae8ffe7 1873{
eab5c70a 1874 cselib_val *val;
6f2ffb4b
AO
1875 struct elt_loc_list *l, *f;
1876 rtx ret;
eab5c70a 1877
b949ea8b
JW
1878#if defined (FIND_BASE_TERM)
1879 /* Try machine-dependent ways to find the base term. */
1880 x = FIND_BASE_TERM (x);
1881#endif
1882
9ae8ffe7
JL
1883 switch (GET_CODE (x))
1884 {
1885 case REG:
1886 return REG_BASE_VALUE (x);
1887
d288e53d 1888 case TRUNCATE:
5932a4d4 1889 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1890 handle this only if the target does not support different pointer or
1891 address modes depending on the address space. */
1892 if (!target_default_pointer_address_modes_p ())
1893 return 0;
d288e53d 1894 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1895 return 0;
d288e53d 1896 /* Fall through. */
9ae8ffe7 1897 case HIGH:
6d849a2a
JL
1898 case PRE_INC:
1899 case PRE_DEC:
1900 case POST_INC:
1901 case POST_DEC:
d288e53d
DE
1902 case PRE_MODIFY:
1903 case POST_MODIFY:
6d849a2a
JL
1904 return find_base_term (XEXP (x, 0));
1905
1abade85
RK
1906 case ZERO_EXTEND:
1907 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1908 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1909 handle this only if the target does not support different pointer or
1910 address modes depending on the address space. */
1911 if (!target_default_pointer_address_modes_p ())
1912 return 0;
1913
1abade85
RK
1914 {
1915 rtx temp = find_base_term (XEXP (x, 0));
1916
5ae6cd0d 1917 if (temp != 0 && CONSTANT_P (temp))
1abade85 1918 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1919
1920 return temp;
1921 }
1922
eab5c70a
BS
1923 case VALUE:
1924 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1925 ret = NULL_RTX;
1926
40e02b4a 1927 if (!val)
6f2ffb4b
AO
1928 return ret;
1929
0fe03ac3
JJ
1930 if (cselib_sp_based_value_p (val))
1931 return static_reg_base_value[STACK_POINTER_REGNUM];
1932
6f2ffb4b
AO
1933 f = val->locs;
1934 /* Temporarily reset val->locs to avoid infinite recursion. */
1935 val->locs = NULL;
1936
1937 for (l = f; l; l = l->next)
1938 if (GET_CODE (l->loc) == VALUE
1939 && CSELIB_VAL_PTR (l->loc)->locs
1940 && !CSELIB_VAL_PTR (l->loc)->locs->next
1941 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1942 continue;
1943 else if ((ret = find_base_term (l->loc)) != 0)
1944 break;
1945
1946 val->locs = f;
1947 return ret;
eab5c70a 1948
023f059b
JJ
1949 case LO_SUM:
1950 /* The standard form is (lo_sum reg sym) so look only at the
1951 second operand. */
1952 return find_base_term (XEXP (x, 1));
1953
9ae8ffe7
JL
1954 case CONST:
1955 x = XEXP (x, 0);
1956 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1957 return 0;
938d968e 1958 /* Fall through. */
9ae8ffe7
JL
1959 case PLUS:
1960 case MINUS:
1961 {
3c567fae
JL
1962 rtx tmp1 = XEXP (x, 0);
1963 rtx tmp2 = XEXP (x, 1);
1964
f5143c46 1965 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1966 the two operands represents the real base address. Otherwise this
1967 routine may return the index register instead of the base register.
1968
1969 That may cause us to believe no aliasing was possible, when in
1970 fact aliasing is possible.
1971
1972 We use a few simple tests to guess the base register. Additional
1973 tests can certainly be added. For example, if one of the operands
1974 is a shift or multiply, then it must be the index register and the
1975 other operand is the base register. */
ca7fd9cd 1976
b949ea8b
JW
1977 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1978 return find_base_term (tmp2);
1979
31b0a960 1980 /* If either operand is known to be a pointer, then prefer it
3c567fae 1981 to determine the base term. */
3502dc9c 1982 if (REG_P (tmp1) && REG_POINTER (tmp1))
31b0a960
RB
1983 ;
1984 else if (REG_P (tmp2) && REG_POINTER (tmp2))
a7c75343
JJ
1985 std::swap (tmp1, tmp2);
1986 /* If second argument is constant which has base term, prefer it
1987 over variable tmp1. See PR64025. */
1988 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1989 std::swap (tmp1, tmp2);
3c567fae 1990
31b0a960
RB
1991 /* Go ahead and find the base term for both operands. If either base
1992 term is from a pointer or is a named object or a special address
3c567fae
JL
1993 (like an argument or stack reference), then use it for the
1994 base term. */
481be1c4
RB
1995 rtx base = find_base_term (tmp1);
1996 if (base != NULL_RTX
31b0a960 1997 && ((REG_P (tmp1) && REG_POINTER (tmp1))
481be1c4
RB
1998 || known_base_value_p (base)))
1999 return base;
2000 base = find_base_term (tmp2);
2001 if (base != NULL_RTX
31b0a960 2002 && ((REG_P (tmp2) && REG_POINTER (tmp2))
481be1c4
RB
2003 || known_base_value_p (base)))
2004 return base;
3c567fae
JL
2005
2006 /* We could not determine which of the two operands was the
2007 base register and which was the index. So we can determine
2008 nothing from the base alias check. */
2009 return 0;
9ae8ffe7
JL
2010 }
2011
2012 case AND:
481683e1 2013 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 2014 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
2015 return 0;
2016
2017 case SYMBOL_REF:
2018 case LABEL_REF:
2019 return x;
2020
2021 default:
2022 return 0;
2023 }
2024}
2025
9e412ca3
RS
2026/* Return true if accesses to address X may alias accesses based
2027 on the stack pointer. */
2028
2029bool
2030may_be_sp_based_p (rtx x)
2031{
2032 rtx base = find_base_term (x);
2033 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2034}
2035
54363f8a
JH
2036/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2037 if they refer to different objects and -1 if we can not decide. */
2038
2039int
2040compare_base_decls (tree base1, tree base2)
2041{
2042 int ret;
2043 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2044 if (base1 == base2)
2045 return 1;
2046
54363f8a
JH
2047 /* Declarations of non-automatic variables may have aliases. All other
2048 decls are unique. */
7ec4f343
NS
2049 if (!decl_in_symtab_p (base1)
2050 || !decl_in_symtab_p (base2))
54363f8a 2051 return 0;
7ec4f343 2052
929710d9
NS
2053 /* Don't cause symbols to be inserted by the act of checking. */
2054 symtab_node *node1 = symtab_node::get (base1);
2055 if (!node1)
2056 return 0;
2057 symtab_node *node2 = symtab_node::get (base2);
2058 if (!node2)
2059 return 0;
2060
2061 ret = node1->equal_address_to (node2, true);
54363f8a
JH
2062 return ret;
2063}
2064
73e48cb3
JH
2065/* Same as compare_base_decls but for SYMBOL_REF. */
2066
2067static int
2068compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2069{
2070 tree x_decl = SYMBOL_REF_DECL (x_base);
2071 tree y_decl = SYMBOL_REF_DECL (y_base);
2072 bool binds_def = true;
2073
2074 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2075 return 1;
2076 if (x_decl && y_decl)
2077 return compare_base_decls (x_decl, y_decl);
2078 if (x_decl || y_decl)
2079 {
2080 if (!x_decl)
2081 {
2082 std::swap (x_decl, y_decl);
2083 std::swap (x_base, y_base);
2084 }
2085 /* We handle specially only section anchors and assume that other
2086 labels may overlap with user variables in an arbitrary way. */
2087 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2088 return -1;
2089 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2090 to ignore CONST_DECLs because they are readonly. */
8813a647 2091 if (!VAR_P (x_decl)
73e48cb3
JH
2092 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2093 return 0;
2094
2095 symtab_node *x_node = symtab_node::get_create (x_decl)
2096 ->ultimate_alias_target ();
2097 /* External variable can not be in section anchor. */
2098 if (!x_node->definition)
2099 return 0;
2100 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2101 /* If not in anchor, we can disambiguate. */
2102 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2103 return 0;
2104
2105 /* We have an alias of anchored variable. If it can be interposed;
2106 we must assume it may or may not alias its anchor. */
2107 binds_def = decl_binds_to_current_def_p (x_decl);
2108 }
2109 /* If we have variable in section anchor, we can compare by offset. */
2110 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2111 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2112 {
2113 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2114 return 0;
2115 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2116 return binds_def ? 1 : -1;
2117 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2118 return -1;
2119 return 0;
2120 }
2121 /* In general we assume that memory locations pointed to by different labels
2122 may overlap in undefined ways. */
2123 return -1;
2124}
2125
9ae8ffe7
JL
2126/* Return 0 if the addresses X and Y are known to point to different
2127 objects, 1 if they might be pointers to the same object. */
2128
2129static int
31b0a960 2130base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2131 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2132{
1c72c7f6
JC
2133 /* If the address itself has no known base see if a known equivalent
2134 value has one. If either address still has no known base, nothing
2135 is known about aliasing. */
2136 if (x_base == 0)
2137 {
2138 rtx x_c;
d4b60170 2139
1c72c7f6
JC
2140 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2141 return 1;
d4b60170 2142
1c72c7f6
JC
2143 x_base = find_base_term (x_c);
2144 if (x_base == 0)
2145 return 1;
2146 }
9ae8ffe7 2147
1c72c7f6
JC
2148 if (y_base == 0)
2149 {
2150 rtx y_c;
2151 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2152 return 1;
d4b60170 2153
1c72c7f6
JC
2154 y_base = find_base_term (y_c);
2155 if (y_base == 0)
2156 return 1;
2157 }
2158
2159 /* If the base addresses are equal nothing is known about aliasing. */
2160 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
2161 return 1;
2162
435da628
UB
2163 /* The base addresses are different expressions. If they are not accessed
2164 via AND, there is no conflict. We can bring knowledge of object
2165 alignment into play here. For example, on alpha, "char a, b;" can
2166 alias one another, though "char a; long b;" cannot. AND addesses may
2167 implicitly alias surrounding objects; i.e. unaligned access in DImode
2168 via AND address can alias all surrounding object types except those
2169 with aligment 8 or higher. */
2170 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2171 return 1;
2172 if (GET_CODE (x) == AND
481683e1 2173 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
2174 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2175 return 1;
2176 if (GET_CODE (y) == AND
481683e1 2177 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
2178 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2179 return 1;
2180
73e48cb3 2181 /* Differing symbols not accessed via AND never alias. */
3a28db46 2182 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
73e48cb3 2183 return compare_base_symbol_refs (x_base, y_base) != 0;
3a28db46 2184
9ae8ffe7 2185 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 2186 return 0;
9ae8ffe7 2187
9fc37b2b 2188 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
2189 return 0;
2190
0d3c82d6 2191 return 1;
9ae8ffe7
JL
2192}
2193
a5628378 2194/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2195 (or equal to) that of V. */
a5628378
AO
2196
2197static bool
403837b4 2198refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2199{
2200 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2201 subrtx_iterator::array_type array;
2202 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2203 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2204 return true;
2205 return false;
a5628378
AO
2206}
2207
eab5c70a 2208/* Convert the address X into something we can use. This is done by returning
569efc34
JJ
2209 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2210 we call cselib to get a more useful rtx. */
3bdf5ad1 2211
a13d4ebf 2212rtx
4682ae04 2213get_addr (rtx x)
eab5c70a
BS
2214{
2215 cselib_val *v;
2216 struct elt_loc_list *l;
2217
2218 if (GET_CODE (x) != VALUE)
569efc34
JJ
2219 {
2220 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2221 && GET_CODE (XEXP (x, 0)) == VALUE
2222 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2223 {
2224 rtx op0 = get_addr (XEXP (x, 0));
2225 if (op0 != XEXP (x, 0))
2226 {
2227 if (GET_CODE (x) == PLUS
2228 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2229 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2230 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2231 op0, XEXP (x, 1));
2232 }
2233 }
2234 return x;
2235 }
eab5c70a 2236 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2237 if (v)
2238 {
0f68ba3e
AO
2239 bool have_equivs = cselib_have_permanent_equivalences ();
2240 if (have_equivs)
2241 v = canonical_cselib_val (v);
40e02b4a
JH
2242 for (l = v->locs; l; l = l->next)
2243 if (CONSTANT_P (l->loc))
2244 return l->loc;
2245 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2246 if (!REG_P (l->loc) && !MEM_P (l->loc)
2247 /* Avoid infinite recursion when potentially dealing with
2248 var-tracking artificial equivalences, by skipping the
2249 equivalences themselves, and not choosing expressions
2250 that refer to newer VALUEs. */
2251 && (!have_equivs
2252 || (GET_CODE (l->loc) != VALUE
2253 && !refs_newer_value_p (l->loc, x))))
a5628378 2254 return l->loc;
0f68ba3e
AO
2255 if (have_equivs)
2256 {
2257 for (l = v->locs; l; l = l->next)
2258 if (REG_P (l->loc)
2259 || (GET_CODE (l->loc) != VALUE
2260 && !refs_newer_value_p (l->loc, x)))
2261 return l->loc;
2262 /* Return the canonical value. */
2263 return v->val_rtx;
2264 }
2265 if (v->locs)
2266 return v->locs->loc;
40e02b4a 2267 }
eab5c70a
BS
2268 return x;
2269}
2270
39cec1ac
MH
2271/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2272 where SIZE is the size in bytes of the memory reference. If ADDR
2273 is not modified by the memory reference then ADDR is returned. */
2274
04e2b4d3 2275static rtx
4682ae04 2276addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
2277{
2278 int offset = 0;
ca7fd9cd 2279
39cec1ac
MH
2280 switch (GET_CODE (addr))
2281 {
2282 case PRE_INC:
2283 offset = (n_refs + 1) * size;
2284 break;
2285 case PRE_DEC:
2286 offset = -(n_refs + 1) * size;
2287 break;
2288 case POST_INC:
2289 offset = n_refs * size;
2290 break;
2291 case POST_DEC:
2292 offset = -n_refs * size;
2293 break;
2294
2295 default:
2296 return addr;
2297 }
ca7fd9cd 2298
39cec1ac 2299 if (offset)
45183e03 2300 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
4789c0ce 2301 gen_int_mode (offset, GET_MODE (addr)));
39cec1ac
MH
2302 else
2303 addr = XEXP (addr, 0);
45183e03 2304 addr = canon_rtx (addr);
39cec1ac
MH
2305
2306 return addr;
2307}
2308
3aa03517
AO
2309/* Return TRUE if an object X sized at XSIZE bytes and another object
2310 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2311 any of the sizes is zero, assume an overlap, otherwise use the
2312 absolute value of the sizes as the actual sizes. */
2313
2314static inline bool
2315offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2316{
2317 return (xsize == 0 || ysize == 0
2318 || (c >= 0
2319 ? (abs (xsize) > c)
2320 : (abs (ysize) > -c)));
2321}
2322
f47e08d9
RG
2323/* Return one if X and Y (memory addresses) reference the
2324 same location in memory or if the references overlap.
2325 Return zero if they do not overlap, else return
2326 minus one in which case they still might reference the same location.
2327
2328 C is an offset accumulator. When
9ae8ffe7
JL
2329 C is nonzero, we are testing aliases between X and Y + C.
2330 XSIZE is the size in bytes of the X reference,
2331 similarly YSIZE is the size in bytes for Y.
45183e03 2332 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2333
2334 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2335 referenced (the reference was BLKmode), so make the most pessimistic
2336 assumptions.
2337
c02f035f
RH
2338 If XSIZE or YSIZE is negative, we may access memory outside the object
2339 being referenced as a side effect. This can happen when using AND to
2340 align memory references, as is done on the Alpha.
2341
9ae8ffe7 2342 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2343 local variables had their addresses taken, but that's too hard now.
2344
2345 ??? Contrary to the tree alias oracle this does not return
2346 one for X + non-constant and Y + non-constant when X and Y are equal.
2347 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2348
9ae8ffe7 2349static int
4682ae04 2350memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 2351{
eab5c70a 2352 if (GET_CODE (x) == VALUE)
5312b066
JJ
2353 {
2354 if (REG_P (y))
2355 {
24f8d71e
JJ
2356 struct elt_loc_list *l = NULL;
2357 if (CSELIB_VAL_PTR (x))
a5628378
AO
2358 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2359 l; l = l->next)
24f8d71e
JJ
2360 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2361 break;
5312b066
JJ
2362 if (l)
2363 x = y;
2364 else
2365 x = get_addr (x);
2366 }
2367 /* Don't call get_addr if y is the same VALUE. */
2368 else if (x != y)
2369 x = get_addr (x);
2370 }
eab5c70a 2371 if (GET_CODE (y) == VALUE)
5312b066
JJ
2372 {
2373 if (REG_P (x))
2374 {
24f8d71e
JJ
2375 struct elt_loc_list *l = NULL;
2376 if (CSELIB_VAL_PTR (y))
a5628378
AO
2377 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2378 l; l = l->next)
24f8d71e
JJ
2379 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2380 break;
5312b066
JJ
2381 if (l)
2382 y = x;
2383 else
2384 y = get_addr (y);
2385 }
2386 /* Don't call get_addr if x is the same VALUE. */
2387 else if (y != x)
2388 y = get_addr (y);
2389 }
9ae8ffe7
JL
2390 if (GET_CODE (x) == HIGH)
2391 x = XEXP (x, 0);
2392 else if (GET_CODE (x) == LO_SUM)
2393 x = XEXP (x, 1);
2394 else
3aa03517 2395 x = addr_side_effect_eval (x, abs (xsize), 0);
9ae8ffe7
JL
2396 if (GET_CODE (y) == HIGH)
2397 y = XEXP (y, 0);
2398 else if (GET_CODE (y) == LO_SUM)
2399 y = XEXP (y, 1);
2400 else
3aa03517 2401 y = addr_side_effect_eval (y, abs (ysize), 0);
9ae8ffe7 2402
54363f8a
JH
2403 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2404 {
73e48cb3 2405 int cmp = compare_base_symbol_refs (x,y);
54363f8a
JH
2406
2407 /* If both decls are the same, decide by offsets. */
2408 if (cmp == 1)
2409 return offset_overlap_p (c, xsize, ysize);
3a28db46
UB
2410 /* Assume a potential overlap for symbolic addresses that went
2411 through alignment adjustments (i.e., that have negative
2412 sizes), because we can't know how far they are from each
2413 other. */
2414 if (xsize < 0 || ysize < 0)
2415 return -1;
54363f8a
JH
2416 /* If decls are different or we know by offsets that there is no overlap,
2417 we win. */
2418 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2419 return 0;
2420 /* Decls may or may not be different and offsets overlap....*/
2421 return -1;
2422 }
2423 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2424 {
3aa03517 2425 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2426 }
2427
6e73e666
JC
2428 /* This code used to check for conflicts involving stack references and
2429 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2430
2431 if (GET_CODE (x) == PLUS)
2432 {
2433 /* The fact that X is canonicalized means that this
2434 PLUS rtx is canonicalized. */
2435 rtx x0 = XEXP (x, 0);
2436 rtx x1 = XEXP (x, 1);
2437
2d88904a
AO
2438 /* However, VALUEs might end up in different positions even in
2439 canonical PLUSes. Comparing their addresses is enough. */
2440 if (x0 == y)
2441 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2442 else if (x1 == y)
2443 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2444
9ae8ffe7
JL
2445 if (GET_CODE (y) == PLUS)
2446 {
2447 /* The fact that Y is canonicalized means that this
2448 PLUS rtx is canonicalized. */
2449 rtx y0 = XEXP (y, 0);
2450 rtx y1 = XEXP (y, 1);
2451
2d88904a
AO
2452 if (x0 == y1)
2453 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2454 if (x1 == y0)
2455 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2456
9ae8ffe7
JL
2457 if (rtx_equal_for_memref_p (x1, y1))
2458 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2459 if (rtx_equal_for_memref_p (x0, y0))
2460 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2461 if (CONST_INT_P (x1))
63be02db 2462 {
481683e1 2463 if (CONST_INT_P (y1))
63be02db
JM
2464 return memrefs_conflict_p (xsize, x0, ysize, y0,
2465 c - INTVAL (x1) + INTVAL (y1));
2466 else
2467 return memrefs_conflict_p (xsize, x0, ysize, y,
2468 c - INTVAL (x1));
2469 }
481683e1 2470 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2471 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2472
f47e08d9 2473 return -1;
9ae8ffe7 2474 }
481683e1 2475 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2476 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2477 }
2478 else if (GET_CODE (y) == PLUS)
2479 {
2480 /* The fact that Y is canonicalized means that this
2481 PLUS rtx is canonicalized. */
2482 rtx y0 = XEXP (y, 0);
2483 rtx y1 = XEXP (y, 1);
2484
2d88904a
AO
2485 if (x == y0)
2486 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2487 if (x == y1)
2488 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2489
481683e1 2490 if (CONST_INT_P (y1))
9ae8ffe7
JL
2491 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2492 else
f47e08d9 2493 return -1;
9ae8ffe7
JL
2494 }
2495
2496 if (GET_CODE (x) == GET_CODE (y))
2497 switch (GET_CODE (x))
2498 {
2499 case MULT:
2500 {
2501 /* Handle cases where we expect the second operands to be the
2502 same, and check only whether the first operand would conflict
2503 or not. */
2504 rtx x0, y0;
2505 rtx x1 = canon_rtx (XEXP (x, 1));
2506 rtx y1 = canon_rtx (XEXP (y, 1));
2507 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2508 return -1;
9ae8ffe7
JL
2509 x0 = canon_rtx (XEXP (x, 0));
2510 y0 = canon_rtx (XEXP (y, 0));
2511 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2512 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2513
2514 /* Can't properly adjust our sizes. */
481683e1 2515 if (!CONST_INT_P (x1))
f47e08d9 2516 return -1;
9ae8ffe7
JL
2517 xsize /= INTVAL (x1);
2518 ysize /= INTVAL (x1);
2519 c /= INTVAL (x1);
2520 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2521 }
1d300e19
KG
2522
2523 default:
2524 break;
9ae8ffe7
JL
2525 }
2526
a9bf4fe2
AO
2527 /* Deal with alignment ANDs by adjusting offset and size so as to
2528 cover the maximum range, without taking any previously known
5147bf6a
AO
2529 alignment into account. Make a size negative after such an
2530 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2531 assume a potential overlap, because they may end up in contiguous
2532 memory locations and the stricter-alignment access may span over
2533 part of both. */
481683e1 2534 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2535 {
a9bf4fe2
AO
2536 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2537 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2538 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2539 {
5147bf6a
AO
2540 if (xsize > 0)
2541 xsize = -xsize;
3aa03517
AO
2542 if (xsize)
2543 xsize += sc + 1;
fe8fb1c4 2544 c -= sc + 1;
a9bf4fe2
AO
2545 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2546 ysize, y, c);
2547 }
56ee9281 2548 }
481683e1 2549 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2550 {
a9bf4fe2
AO
2551 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2552 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2553 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2554 {
5147bf6a
AO
2555 if (ysize > 0)
2556 ysize = -ysize;
3aa03517
AO
2557 if (ysize)
2558 ysize += sc + 1;
fe8fb1c4 2559 c += sc + 1;
a9bf4fe2
AO
2560 return memrefs_conflict_p (xsize, x,
2561 ysize, canon_rtx (XEXP (y, 0)), c);
2562 }
c02f035f 2563 }
9ae8ffe7
JL
2564
2565 if (CONSTANT_P (x))
2566 {
481683e1 2567 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2568 {
2569 c += (INTVAL (y) - INTVAL (x));
3aa03517 2570 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2571 }
2572
2573 if (GET_CODE (x) == CONST)
2574 {
2575 if (GET_CODE (y) == CONST)
2576 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2577 ysize, canon_rtx (XEXP (y, 0)), c);
2578 else
2579 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2580 ysize, y, c);
2581 }
2582 if (GET_CODE (y) == CONST)
2583 return memrefs_conflict_p (xsize, x, ysize,
2584 canon_rtx (XEXP (y, 0)), c);
2585
3aa03517
AO
2586 /* Assume a potential overlap for symbolic addresses that went
2587 through alignment adjustments (i.e., that have negative
2588 sizes), because we can't know how far they are from each
2589 other. */
9ae8ffe7 2590 if (CONSTANT_P (y))
3aa03517 2591 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2592
f47e08d9 2593 return -1;
9ae8ffe7 2594 }
f47e08d9
RG
2595
2596 return -1;
9ae8ffe7
JL
2597}
2598
2599/* Functions to compute memory dependencies.
2600
2601 Since we process the insns in execution order, we can build tables
2602 to keep track of what registers are fixed (and not aliased), what registers
2603 are varying in known ways, and what registers are varying in unknown
2604 ways.
2605
2606 If both memory references are volatile, then there must always be a
2607 dependence between the two references, since their order can not be
2608 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2609 though.
9ae8ffe7 2610
53d9622b
RS
2611 We also must allow AND addresses, because they may generate accesses
2612 outside the object being referenced. This is used to generate aligned
2613 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2614 storeqi_unaligned pattern. */
9ae8ffe7
JL
2615
2616/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2617 only be a dependence here if both reads are volatile, or if either is
2618 an explicit barrier. */
9ae8ffe7
JL
2619
2620int
4f588890 2621read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2622{
96672a3e
RH
2623 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2624 return true;
2625 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2626 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2627 return true;
2628 return false;
9ae8ffe7
JL
2629}
2630
998d7deb
RH
2631/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2632
2633static tree
4682ae04 2634decl_for_component_ref (tree x)
998d7deb
RH
2635{
2636 do
2637 {
2638 x = TREE_OPERAND (x, 0);
2639 }
2640 while (x && TREE_CODE (x) == COMPONENT_REF);
2641
2642 return x && DECL_P (x) ? x : NULL_TREE;
2643}
2644
527210c4
RS
2645/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2646 for the offset of the field reference. *KNOWN_P says whether the
2647 offset is known. */
998d7deb 2648
527210c4
RS
2649static void
2650adjust_offset_for_component_ref (tree x, bool *known_p,
2651 HOST_WIDE_INT *offset)
998d7deb 2652{
527210c4
RS
2653 if (!*known_p)
2654 return;
ca7fd9cd 2655 do
998d7deb 2656 {
527210c4 2657 tree xoffset = component_ref_field_offset (x);
998d7deb 2658 tree field = TREE_OPERAND (x, 1);
807e902e
KZ
2659 if (TREE_CODE (xoffset) != INTEGER_CST)
2660 {
2661 *known_p = false;
2662 return;
2663 }
998d7deb 2664
807e902e
KZ
2665 offset_int woffset
2666 = (wi::to_offset (xoffset)
8de73453
RS
2667 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2668 >> LOG2_BITS_PER_UNIT));
807e902e 2669 if (!wi::fits_uhwi_p (woffset))
527210c4
RS
2670 {
2671 *known_p = false;
2672 return;
2673 }
807e902e 2674 *offset += woffset.to_uhwi ();
998d7deb
RH
2675
2676 x = TREE_OPERAND (x, 0);
2677 }
2678 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2679}
2680
95bd1dd7 2681/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2682 X and Y and they do not overlap.
2683 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2684
2e4e39f6 2685int
c6ea834c 2686nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2687{
998d7deb 2688 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2689 rtx rtlx, rtly;
2690 rtx basex, basey;
527210c4
RS
2691 bool moffsetx_known_p, moffsety_known_p;
2692 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
4e1952ab 2693 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2694
998d7deb
RH
2695 /* Unless both have exprs, we can't tell anything. */
2696 if (exprx == 0 || expry == 0)
2697 return 0;
2b22e382
RG
2698
2699 /* For spill-slot accesses make sure we have valid offsets. */
2700 if ((exprx == get_spill_slot_decl (false)
527210c4 2701 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2702 || (expry == get_spill_slot_decl (false)
527210c4 2703 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2704 return 0;
c22cacf3 2705
998d7deb 2706 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2707 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2708 if (moffsetx_known_p)
2709 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2710 if (TREE_CODE (exprx) == COMPONENT_REF)
2711 {
2e0c984c
RG
2712 tree t = decl_for_component_ref (exprx);
2713 if (! t)
2714 return 0;
527210c4 2715 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2716 exprx = t;
998d7deb 2717 }
c67a1cf6 2718
527210c4
RS
2719 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2720 if (moffsety_known_p)
2721 moffsety = MEM_OFFSET (y);
998d7deb
RH
2722 if (TREE_CODE (expry) == COMPONENT_REF)
2723 {
2e0c984c
RG
2724 tree t = decl_for_component_ref (expry);
2725 if (! t)
2726 return 0;
527210c4 2727 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2728 expry = t;
998d7deb
RH
2729 }
2730
2731 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2732 return 0;
2733
1f9ceff1
AO
2734 /* If we refer to different gimple registers, or one gimple register
2735 and one non-gimple-register, we know they can't overlap. First,
2736 gimple registers don't have their addresses taken. Now, there
2737 could be more than one stack slot for (different versions of) the
2738 same gimple register, but we can presumably tell they don't
2739 overlap based on offsets from stack base addresses elsewhere.
2740 It's important that we don't proceed to DECL_RTL, because gimple
2741 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2742 able to do anything about them since no SSA information will have
2743 remained to guide it. */
2744 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2745 return exprx != expry
2746 || (moffsetx_known_p && moffsety_known_p
2747 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2748 && !offset_overlap_p (moffsety - moffsetx,
2749 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2750
1307c758
RG
2751 /* With invalid code we can end up storing into the constant pool.
2752 Bail out to avoid ICEing when creating RTL for this.
2753 See gfortran.dg/lto/20091028-2_0.f90. */
2754 if (TREE_CODE (exprx) == CONST_DECL
2755 || TREE_CODE (expry) == CONST_DECL)
2756 return 1;
2757
998d7deb
RH
2758 rtlx = DECL_RTL (exprx);
2759 rtly = DECL_RTL (expry);
a4311dfe 2760
1edcd60b
RK
2761 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2762 can't overlap unless they are the same because we never reuse that part
2763 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2764 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2765 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2766 return 1;
2767
5932a4d4 2768 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2769 potentially overlap), we cannot easily tell from the addresses
2770 whether the references overlap. */
2771 if (MEM_P (rtlx) && MEM_P (rtly)
2772 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2773 return 0;
2774
a4311dfe
RK
2775 /* Get the base and offsets of both decls. If either is a register, we
2776 know both are and are the same, so use that as the base. The only
2777 we can avoid overlap is if we can deduce that they are nonoverlapping
2778 pieces of that decl, which is very rare. */
3c0cb5de 2779 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2780 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2781 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2782
3c0cb5de 2783 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2784 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2785 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2786
d746694a 2787 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2788 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2789 stack frame. Otherwise a different base means we can't tell if they
2790 overlap or not. */
54363f8a 2791 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2792 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2793 || (CONSTANT_P (basex) && REG_P (basey)
2794 && REGNO_PTR_FRAME_P (REGNO (basey)))
2795 || (CONSTANT_P (basey) && REG_P (basex)
2796 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2797
c6ea834c
BM
2798 /* Offset based disambiguation not appropriate for loop invariant */
2799 if (loop_invariant)
2800 return 0;
2801
54363f8a
JH
2802 /* Offset based disambiguation is OK even if we do not know that the
2803 declarations are necessarily different
2804 (i.e. compare_base_decls (exprx, expry) == -1) */
2805
3c0cb5de 2806 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2807 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2808 : -1);
3c0cb5de 2809 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2810 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2811 : -1);
a4311dfe 2812
0af5bc3e
RK
2813 /* If we have an offset for either memref, it can update the values computed
2814 above. */
527210c4
RS
2815 if (moffsetx_known_p)
2816 offsetx += moffsetx, sizex -= moffsetx;
2817 if (moffsety_known_p)
2818 offsety += moffsety, sizey -= moffsety;
a4311dfe 2819
0af5bc3e 2820 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2821 We can't do this if the offset isn't known because we must view this
0af5bc3e 2822 memref as being anywhere inside the DECL's MEM. */
527210c4 2823 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2824 sizex = MEM_SIZE (x);
527210c4 2825 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2826 sizey = MEM_SIZE (y);
a4311dfe
RK
2827
2828 /* Put the values of the memref with the lower offset in X's values. */
2829 if (offsetx > offsety)
2830 {
4e1952ab
KT
2831 std::swap (offsetx, offsety);
2832 std::swap (sizex, sizey);
a4311dfe
RK
2833 }
2834
2835 /* If we don't know the size of the lower-offset value, we can't tell
2836 if they conflict. Otherwise, we do the test. */
a6f7c915 2837 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2838}
2839
9362286d
SB
2840/* Helper for true_dependence and canon_true_dependence.
2841 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2842
9362286d
SB
2843 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2844 NULL_RTX, and the canonical addresses of MEM and X are both computed
2845 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2846
2847 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2848
2849 Returns 1 if there is a true dependence, 0 otherwise. */
2850
2851static int
ef4bddc2 2852true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2853 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2854{
0777fc02 2855 rtx true_mem_addr;
49982682 2856 rtx base;
f47e08d9 2857 int ret;
9ae8ffe7 2858
9362286d
SB
2859 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2860 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2861
9ae8ffe7
JL
2862 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2863 return 1;
2864
c4484b8f 2865 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2866 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2867 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2868 return 1;
2869 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2870 return 1;
9cd9e512
RH
2871 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2872 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2873 return 1;
c4484b8f 2874
0777fc02
UB
2875 if (! x_addr)
2876 x_addr = XEXP (x, 0);
2877 x_addr = get_addr (x_addr);
2878
9362286d
SB
2879 if (! mem_addr)
2880 {
2881 mem_addr = XEXP (mem, 0);
2882 if (mem_mode == VOIDmode)
2883 mem_mode = GET_MODE (mem);
2884 }
0777fc02 2885 true_mem_addr = get_addr (mem_addr);
eab5c70a 2886
878f5596
UB
2887 /* Read-only memory is by definition never modified, and therefore can't
2888 conflict with anything. However, don't assume anything when AND
2889 addresses are involved and leave to the code below to determine
2890 dependence. We don't expect to find read-only set on MEM, but
2891 stupid user tricks can produce them, so don't die. */
2892 if (MEM_READONLY_P (x)
2893 && GET_CODE (x_addr) != AND
0777fc02 2894 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
2895 return 0;
2896
2897 /* If we have MEMs referring to different address spaces (which can
2898 potentially overlap), we cannot easily tell from the addresses
2899 whether the references overlap. */
2900 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2901 return 1;
2902
55efb413
JW
2903 base = find_base_term (x_addr);
2904 if (base && (GET_CODE (base) == LABEL_REF
2905 || (GET_CODE (base) == SYMBOL_REF
2906 && CONSTANT_POOL_ADDRESS_P (base))))
2907 return 0;
2908
0777fc02
UB
2909 rtx mem_base = find_base_term (true_mem_addr);
2910 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 2911 GET_MODE (x), mem_mode))
1c72c7f6
JC
2912 return 0;
2913
eab5c70a 2914 x_addr = canon_rtx (x_addr);
9362286d 2915 if (!mem_canonicalized)
0777fc02 2916 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2917
f47e08d9
RG
2918 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2919 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2920 return ret;
2921
a95b3cc7 2922 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2923 return 0;
2924
c6ea834c 2925 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2926 return 0;
175a7536 2927
55b34b5f 2928 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2929}
2930
9362286d
SB
2931/* True dependence: X is read after store in MEM takes place. */
2932
2933int
ef4bddc2 2934true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
2935{
2936 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2937 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2938}
2939
a13d4ebf 2940/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2941 Variant of true_dependence which assumes MEM has already been
2942 canonicalized (hence we no longer do that here).
9362286d
SB
2943 The mem_addr argument has been added, since true_dependence_1 computed
2944 this value prior to canonicalizing. */
a13d4ebf
AM
2945
2946int
ef4bddc2 2947canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2948 const_rtx x, rtx x_addr)
a13d4ebf 2949{
9362286d 2950 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2951 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2952}
2953
da7d8304 2954/* Returns nonzero if a write to X might alias a previous read from
393f9fed 2955 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
2956 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2957 and X_MODE the mode for that access.
2958 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 2959
2c72b78f 2960static int
bd280792 2961write_dependence_p (const_rtx mem,
ef4bddc2 2962 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 2963 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 2964{
bd280792 2965 rtx mem_addr;
0777fc02 2966 rtx true_mem_addr, true_x_addr;
49982682 2967 rtx base;
f47e08d9 2968 int ret;
6e73e666 2969
bd280792
JR
2970 gcc_checking_assert (x_canonicalized
2971 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2972 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 2973
9ae8ffe7
JL
2974 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2975 return 1;
2976
c4484b8f
RH
2977 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2978 This is used in epilogue deallocation functions. */
2979 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2980 return 1;
2981 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2982 return 1;
9cd9e512
RH
2983 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2984 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2985 return 1;
c4484b8f 2986
bd280792 2987 if (!x_addr)
0777fc02
UB
2988 x_addr = XEXP (x, 0);
2989 true_x_addr = get_addr (x_addr);
2990
2991 mem_addr = XEXP (mem, 0);
2992 true_mem_addr = get_addr (mem_addr);
55efb413 2993
878f5596
UB
2994 /* A read from read-only memory can't conflict with read-write memory.
2995 Don't assume anything when AND addresses are involved and leave to
2996 the code below to determine dependence. */
2997 if (!writep
2998 && MEM_READONLY_P (mem)
0777fc02
UB
2999 && GET_CODE (true_x_addr) != AND
3000 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
3001 return 0;
3002
3003 /* If we have MEMs referring to different address spaces (which can
3004 potentially overlap), we cannot easily tell from the addresses
3005 whether the references overlap. */
3006 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3007 return 1;
3008
0777fc02 3009 base = find_base_term (true_mem_addr);
31b0a960
RB
3010 if (! writep
3011 && base
3012 && (GET_CODE (base) == LABEL_REF
3013 || (GET_CODE (base) == SYMBOL_REF
3014 && CONSTANT_POOL_ADDRESS_P (base))))
3015 return 0;
49982682 3016
0777fc02
UB
3017 rtx x_base = find_base_term (true_x_addr);
3018 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3019 GET_MODE (x), GET_MODE (mem)))
41472af8
MM
3020 return 0;
3021
bd280792 3022 if (!x_canonicalized)
393f9fed 3023 {
0777fc02 3024 x_addr = canon_rtx (true_x_addr);
bd280792 3025 x_mode = GET_MODE (x);
393f9fed 3026 }
bd280792 3027 if (!mem_canonicalized)
0777fc02 3028 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3029
bd280792
JR
3030 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3031 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
f47e08d9
RG
3032 return ret;
3033
c6ea834c 3034 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
3035 return 0;
3036
55b34b5f 3037 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
3038}
3039
3040/* Anti dependence: X is written after read in MEM takes place. */
3041
3042int
4f588890 3043anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 3044{
bd280792
JR
3045 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3046 /*mem_canonicalized=*/false,
3047 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
3048}
3049
bd280792
JR
3050/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3051 Also, consider X in X_MODE (which might be from an enclosing
3052 STRICT_LOW_PART / ZERO_EXTRACT).
3053 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed
JR
3054
3055int
bd280792 3056canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 3057 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 3058{
bd280792
JR
3059 return write_dependence_p (mem, x, x_mode, x_addr,
3060 mem_canonicalized, /*x_canonicalized=*/true,
3061 /*writep=*/false);
9ae8ffe7
JL
3062}
3063
3064/* Output dependence: X is written after store in MEM takes place. */
3065
3066int
4f588890 3067output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 3068{
bd280792
JR
3069 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3070 /*mem_canonicalized=*/false,
3071 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 3072}
43b9f499
RB
3073
3074/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3075 Also, consider X in X_MODE (which might be from an enclosing
3076 STRICT_LOW_PART / ZERO_EXTRACT).
3077 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3078
3079int
3080canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3081 const_rtx x, machine_mode x_mode, rtx x_addr)
3082{
3083 return write_dependence_p (mem, x, x_mode, x_addr,
3084 mem_canonicalized, /*x_canonicalized=*/true,
3085 /*writep=*/true);
3086}
c14b9960 3087\f
6e73e666 3088
c6ea834c
BM
3089
3090/* Check whether X may be aliased with MEM. Don't do offset-based
3091 memory disambiguation & TBAA. */
3092int
3093may_alias_p (const_rtx mem, const_rtx x)
3094{
3095 rtx x_addr, mem_addr;
c6ea834c
BM
3096
3097 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3098 return 1;
3099
a95b3cc7
RG
3100 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3101 This is used in epilogue deallocation functions. */
3102 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3103 return 1;
3104 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 3105 return 1;
c6ea834c
BM
3106 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3107 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3108 return 1;
3109
c6ea834c 3110 x_addr = XEXP (x, 0);
0777fc02
UB
3111 x_addr = get_addr (x_addr);
3112
c6ea834c 3113 mem_addr = XEXP (mem, 0);
0777fc02 3114 mem_addr = get_addr (mem_addr);
c6ea834c 3115
878f5596
UB
3116 /* Read-only memory is by definition never modified, and therefore can't
3117 conflict with anything. However, don't assume anything when AND
3118 addresses are involved and leave to the code below to determine
3119 dependence. We don't expect to find read-only set on MEM, but
3120 stupid user tricks can produce them, so don't die. */
3121 if (MEM_READONLY_P (x)
3122 && GET_CODE (x_addr) != AND
3123 && GET_CODE (mem_addr) != AND)
3124 return 0;
3125
3126 /* If we have MEMs referring to different address spaces (which can
3127 potentially overlap), we cannot easily tell from the addresses
3128 whether the references overlap. */
3129 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3130 return 1;
3131
31b0a960
RB
3132 rtx x_base = find_base_term (x_addr);
3133 rtx mem_base = find_base_term (mem_addr);
3134 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3135 GET_MODE (x), GET_MODE (mem_addr)))
c6ea834c
BM
3136 return 0;
3137
c6ea834c
BM
3138 if (nonoverlapping_memrefs_p (mem, x, true))
3139 return 0;
3140
c6ea834c
BM
3141 /* TBAA not valid for loop_invarint */
3142 return rtx_refs_may_alias_p (x, mem, false);
3143}
3144
6e73e666 3145void
b5deb7b6 3146init_alias_target (void)
6e73e666 3147{
b3694847 3148 int i;
6e73e666 3149
9fc37b2b
RS
3150 if (!arg_base_value)
3151 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3152
b5deb7b6
SL
3153 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3154
6e73e666
JC
3155 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3156 /* Check whether this register can hold an incoming pointer
3157 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3158 numbers, so translate if necessary due to register windows. */
6e73e666
JC
3159 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3160 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
3161 static_reg_base_value[i] = arg_base_value;
3162
757e8ba2
JJ
3163 static_reg_base_value[STACK_POINTER_REGNUM]
3164 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3165 static_reg_base_value[ARG_POINTER_REGNUM]
3166 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3167 static_reg_base_value[FRAME_POINTER_REGNUM]
3168 = unique_base_value (UNIQUE_BASE_VALUE_FP);
c3e08036
TS
3169 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3170 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3171 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3172}
3173
7b52eede
JH
3174/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3175 to be memory reference. */
3176static bool memory_modified;
3177static void
aa317c97 3178memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3179{
3c0cb5de 3180 if (MEM_P (x))
7b52eede 3181 {
9678086d 3182 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3183 memory_modified = true;
3184 }
3185}
3186
3187
3188/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3189 (i.e. address can be modified). */
7b52eede 3190bool
9678086d 3191memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3192{
3193 if (!INSN_P (insn))
3194 return false;
3195 memory_modified = false;
aa317c97 3196 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
3197 return memory_modified;
3198}
3199
a7b159a4
AH
3200/* Return TRUE if the destination of a set is rtx identical to
3201 ITEM. */
3202static inline bool
3203set_dest_equal_p (const_rtx set, const_rtx item)
3204{
3205 rtx dest = SET_DEST (set);
3206 return rtx_equal_p (dest, item);
3207}
3208
c13e8210
MM
3209/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3210 array. */
3211
9ae8ffe7 3212void
4682ae04 3213init_alias_analysis (void)
9ae8ffe7 3214{
c582d54a 3215 unsigned int maxreg = max_reg_num ();
ea64ef27 3216 int changed, pass;
b3694847
SS
3217 int i;
3218 unsigned int ui;
d36a28b8
DM
3219 rtx_insn *insn;
3220 rtx val;
131db6b8
SB
3221 int rpo_cnt;
3222 int *rpo;
9ae8ffe7 3223
0d446150
JH
3224 timevar_push (TV_ALIAS_ANALYSIS);
3225
92390dd1 3226 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
9ff3c7ca 3227 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3228 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3229
08c79682 3230 /* If we have memory allocated from the previous run, use it. */
c582d54a 3231 if (old_reg_base_value)
08c79682
KH
3232 reg_base_value = old_reg_base_value;
3233
3234 if (reg_base_value)
9771b263 3235 reg_base_value->truncate (0);
08c79682 3236
9771b263 3237 vec_safe_grow_cleared (reg_base_value, maxreg);
ac606739 3238
5ed6ace5 3239 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3240 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3241
3242 /* The basic idea is that each pass through this loop will use the
3243 "constant" information from the previous pass to propagate alias
3244 information through another level of assignments.
3245
131db6b8
SB
3246 The propagation is done on the CFG in reverse post-order, to propagate
3247 things forward as far as possible in each iteration.
3248
ec907dd8
JL
3249 This could get expensive if the assignment chains are long. Maybe
3250 we should throttle the number of iterations, possibly based on
6e73e666 3251 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3252
3253 We could propagate more information in the first pass by making use
6fb5fa3c 3254 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3255 for a pseudo is "constant".
3256
3257 A program with an uninitialized variable can cause an infinite loop
3258 here. Instead of doing a full dataflow analysis to detect such problems
3259 we just cap the number of iterations for the loop.
3260
3261 The state of the arrays for the set chain in question does not matter
3262 since the program has undefined behavior. */
6e73e666 3263
0cae8d31 3264 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3265 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3266
e86a9946
RS
3267 /* The prologue/epilogue insns are not threaded onto the
3268 insn chain until after reload has completed. Thus,
3269 there is no sense wasting time checking if INSN is in
3270 the prologue/epilogue until after reload has completed. */
3271 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3272 || targetm.have_epilogue ())
3273 && reload_completed);
3274
ea64ef27 3275 pass = 0;
6e73e666 3276 do
ec907dd8
JL
3277 {
3278 /* Assume nothing will change this iteration of the loop. */
3279 changed = 0;
3280
ec907dd8 3281 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3282 start counting from one each iteration of the loop. */
3283 unique_id = 1;
ec907dd8 3284
f5143c46 3285 /* We're at the start of the function each iteration through the
ec907dd8 3286 loop, so we're copying arguments. */
83bbd9b6 3287 copying_arguments = true;
9ae8ffe7 3288
6e73e666 3289 /* Wipe the potential alias information clean for this pass. */
c582d54a 3290 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3291
6e73e666 3292 /* Wipe the reg_seen array clean. */
f61e445a 3293 bitmap_clear (reg_seen);
9ae8ffe7 3294
356610cb
EB
3295 /* Initialize the alias information for this pass. */
3296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3297 if (static_reg_base_value[i])
3298 {
3299 new_reg_base_value[i] = static_reg_base_value[i];
3300 bitmap_set_bit (reg_seen, i);
3301 }
6e73e666 3302
ec907dd8 3303 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3304 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3305 {
06e28de2 3306 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3307 FOR_BB_INSNS (bb, insn)
ec907dd8 3308 {
131db6b8
SB
3309 if (NONDEBUG_INSN_P (insn))
3310 {
3311 rtx note, set;
efc9bd41 3312
e86a9946 3313 if (could_be_prologue_epilogue
131db6b8
SB
3314 && prologue_epilogue_contains (insn))
3315 continue;
efc9bd41 3316
131db6b8
SB
3317 /* If this insn has a noalias note, process it, Otherwise,
3318 scan for sets. A simple set will have no side effects
3319 which could change the base value of any other register. */
6e73e666 3320
131db6b8
SB
3321 if (GET_CODE (PATTERN (insn)) == SET
3322 && REG_NOTES (insn) != 0
3323 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3324 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3325 else
3326 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 3327
131db6b8 3328 set = single_set (insn);
6e73e666 3329
131db6b8
SB
3330 if (set != 0
3331 && REG_P (SET_DEST (set))
3332 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3333 {
131db6b8
SB
3334 unsigned int regno = REGNO (SET_DEST (set));
3335 rtx src = SET_SRC (set);
3336 rtx t;
3337
3338 note = find_reg_equal_equiv_note (insn);
3339 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3340 && DF_REG_DEF_COUNT (regno) != 1)
3341 note = NULL_RTX;
3342
3343 if (note != NULL_RTX
3344 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3345 && ! rtx_varies_p (XEXP (note, 0), 1)
3346 && ! reg_overlap_mentioned_p (SET_DEST (set),
3347 XEXP (note, 0)))
3348 {
3349 set_reg_known_value (regno, XEXP (note, 0));
3350 set_reg_known_equiv_p (regno,
3351 REG_NOTE_KIND (note) == REG_EQUIV);
3352 }
3353 else if (DF_REG_DEF_COUNT (regno) == 1
3354 && GET_CODE (src) == PLUS
3355 && REG_P (XEXP (src, 0))
3356 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3357 && CONST_INT_P (XEXP (src, 1)))
3358 {
3359 t = plus_constant (GET_MODE (src), t,
3360 INTVAL (XEXP (src, 1)));
3361 set_reg_known_value (regno, t);
3362 set_reg_known_equiv_p (regno, false);
3363 }
3364 else if (DF_REG_DEF_COUNT (regno) == 1
3365 && ! rtx_varies_p (src, 1))
3366 {
3367 set_reg_known_value (regno, src);
3368 set_reg_known_equiv_p (regno, false);
3369 }
713f41f9 3370 }
6e73e666 3371 }
131db6b8
SB
3372 else if (NOTE_P (insn)
3373 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3374 copying_arguments = false;
ec907dd8 3375 }
6e73e666 3376 }
ec907dd8 3377
6e73e666 3378 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3379 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3380
c582d54a 3381 for (ui = 0; ui < maxreg; ui++)
6e73e666 3382 {
e51712db 3383 if (new_reg_base_value[ui]
9771b263
DN
3384 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3385 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3386 {
9771b263 3387 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 3388 changed = 1;
ec907dd8 3389 }
9ae8ffe7 3390 }
9ae8ffe7 3391 }
6e73e666 3392 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3393 XDELETEVEC (rpo);
9ae8ffe7
JL
3394
3395 /* Fill in the remaining entries. */
9771b263 3396 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3397 {
3398 int regno = i + FIRST_PSEUDO_REGISTER;
3399 if (! val)
3400 set_reg_known_value (regno, regno_reg_rtx[regno]);
3401 }
9ae8ffe7 3402
e05e2395
MM
3403 /* Clean up. */
3404 free (new_reg_base_value);
ec907dd8 3405 new_reg_base_value = 0;
d630245f 3406 sbitmap_free (reg_seen);
9ae8ffe7 3407 reg_seen = 0;
0d446150 3408 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3409}
3410
61630b27
JJ
3411/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3412 Special API for var-tracking pass purposes. */
3413
3414void
3415vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3416{
9771b263 3417 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3418}
3419
9ae8ffe7 3420void
4682ae04 3421end_alias_analysis (void)
9ae8ffe7 3422{
c582d54a 3423 old_reg_base_value = reg_base_value;
9771b263 3424 vec_free (reg_known_value);
9ff3c7ca 3425 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3426}
e2500fed 3427
3ecf9d13
JH
3428void
3429dump_alias_stats_in_alias_c (FILE *s)
3430{
3431 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3432 " %llu are in alias set 0\n"
3433 " %llu queries asked about the same object\n"
3434 " %llu queries asked about the same alias set\n"
3435 " %llu access volatile\n"
6e042ef4
JH
3436 " %llu are dependent in the DAG\n"
3437 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3438 alias_stats.num_disambiguated,
3439 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3440 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3441 + alias_stats.num_dag + alias_stats.num_disambiguated
3442 + alias_stats.num_universal,
3ecf9d13 3443 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3444 alias_stats.num_same_objects, alias_stats.num_volatile,
3445 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3446}
e2500fed 3447#include "gt-alias.h"