]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
2005-07-05 Paolo Bonzini <bonzini@gnu.org>
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
ea0cb7ae 1/* Alias analysis for GNU C
0975351b 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
a303ed8c 3 Free Software Foundation, Inc.
ea0cb7ae 4 Contributed by John Carr (jfc@mit.edu).
5
f12b58b3 6This file is part of GCC.
ea0cb7ae 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
ea0cb7ae 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
ea0cb7ae 17
18You should have received a copy of the GNU General Public License
f12b58b3 19along with GCC; see the file COPYING. If not, write to the Free
67ce556b 20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
ea0cb7ae 22
23#include "config.h"
405711de 24#include "system.h"
805e22b2 25#include "coretypes.h"
26#include "tm.h"
ea0cb7ae 27#include "rtl.h"
142131ed 28#include "tree.h"
7953c610 29#include "tm_p.h"
0a893c29 30#include "function.h"
4c74e6d9 31#include "alias.h"
32#include "emit-rtl.h"
ea0cb7ae 33#include "regs.h"
34#include "hard-reg-set.h"
080f162d 35#include "basic-block.h"
ea0cb7ae 36#include "flags.h"
a068b2a9 37#include "output.h"
ce1fd7fc 38#include "toplev.h"
1617c276 39#include "cselib.h"
a5b1863e 40#include "splay-tree.h"
c2e94b25 41#include "ggc.h"
b0278d39 42#include "langhooks.h"
376c21d1 43#include "timevar.h"
4f8e9d5c 44#include "target.h"
28992b23 45#include "cgraph.h"
56bbdce4 46#include "varray.h"
77fce4cd 47#include "tree-pass.h"
a5b1863e 48
49/* The alias sets assigned to MEMs assist the back-end in determining
50 which MEMs can alias which other MEMs. In general, two MEMs in
5badbbc0 51 different alias sets cannot alias each other, with one important
52 exception. Consider something like:
a5b1863e 53
8e2ef041 54 struct S { int i; double d; };
a5b1863e 55
56 a store to an `S' can alias something of either type `int' or type
57 `double'. (However, a store to an `int' cannot alias a `double'
58 and vice versa.) We indicate this via a tree structure that looks
59 like:
60 struct S
61 / \
62 / \
63 |/_ _\|
64 int double
65
5badbbc0 66 (The arrows are directed and point downwards.)
67 In this situation we say the alias set for `struct S' is the
68 `superset' and that those for `int' and `double' are `subsets'.
69
f7c44134 70 To see whether two alias sets can point to the same memory, we must
71 see if either alias set is a subset of the other. We need not trace
d716ce75 72 past immediate descendants, however, since we propagate all
f7c44134 73 grandchildren up one level.
a5b1863e 74
75 Alias set zero is implicitly a superset of all other alias sets.
76 However, this is no actual entry for alias set zero. It is an
77 error to attempt to explicitly construct a subset of zero. */
78
318dcdd8 79struct alias_set_entry GTY(())
083a2b5e 80{
a5b1863e 81 /* The alias set number, as stored in MEM_ALIAS_SET. */
f7c44134 82 HOST_WIDE_INT alias_set;
a5b1863e 83
84 /* The children of the alias set. These are not just the immediate
d716ce75 85 children, but, in fact, all descendants. So, if we have:
a5b1863e 86
9342ee68 87 struct T { struct S s; float f; }
a5b1863e 88
89 continuing our example above, the children here will be all of
90 `int', `double', `float', and `struct S'. */
318dcdd8 91 splay_tree GTY((param1_is (int), param2_is (int))) children;
851dfbff 92
93 /* Nonzero if would have a child of zero: this effectively makes this
94 alias set the same as alias set zero. */
95 int has_zero_child;
318dcdd8 96};
97typedef struct alias_set_entry *alias_set_entry;
ea0cb7ae 98
aecda0d6 99static int rtx_equal_for_memref_p (rtx, rtx);
100static rtx find_symbolic_term (rtx);
aecda0d6 101static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
102static void record_set (rtx, rtx, void *);
103static int base_alias_check (rtx, rtx, enum machine_mode,
104 enum machine_mode);
105static rtx find_base_value (rtx);
106static int mems_in_disjoint_alias_sets_p (rtx, rtx);
107static int insert_subset_children (splay_tree_node, void*);
108static tree find_base_decl (tree);
109static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
110static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
111 int (*) (rtx, int));
112static int aliases_everything_p (rtx);
113static bool nonoverlapping_component_refs_p (tree, tree);
114static tree decl_for_component_ref (tree);
115static rtx adjust_offset_for_component_ref (tree, rtx);
116static int nonoverlapping_memrefs_p (rtx, rtx);
b04fab2a 117static int write_dependence_p (rtx, rtx, int);
aecda0d6 118
119static int nonlocal_mentioned_p_1 (rtx *, void *);
120static int nonlocal_mentioned_p (rtx);
121static int nonlocal_referenced_p_1 (rtx *, void *);
122static int nonlocal_referenced_p (rtx);
123static int nonlocal_set_p_1 (rtx *, void *);
124static int nonlocal_set_p (rtx);
125static void memory_modified_1 (rtx, rtx, void *);
0aa9ffd4 126static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
ea0cb7ae 127
128/* Set up all info needed to perform alias analysis on memory references. */
129
083a2b5e 130/* Returns the size in bytes of the mode of X. */
ea0cb7ae 131#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
132
b5ba9f3a 133/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
a068b2a9 134 different alias sets. We ignore alias sets in functions making use
135 of variable arguments because the va_arg macros on some systems are
136 not legal ANSI C. */
137#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
a5b1863e 138 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
b5ba9f3a 139
37b864db 140/* Cap the number of passes we make over the insns propagating alias
5badbbc0 141 information through set chains. 10 is a completely arbitrary choice. */
37b864db 142#define MAX_ALIAS_LOOP_PASSES 10
9342ee68 143
ea0cb7ae 144/* reg_base_value[N] gives an address to which register N is related.
145 If all sets after the first add or subtract to the current value
146 or otherwise modify it so it does not point to a different top level
147 object, reg_base_value[N] is equal to the address part of the source
e7c893ba 148 of the first set.
149
150 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
151 expressions represent certain special values: function arguments and
9342ee68 152 the stack, frame, and argument pointers.
3a935f06 153
154 The contents of an ADDRESS is not normally used, the mode of the
155 ADDRESS determines whether the ADDRESS is a function argument or some
156 other special value. Pointer equality, not rtx_equal_p, determines whether
157 two ADDRESS expressions refer to the same base address.
158
159 The only use of the contents of an ADDRESS is for determining if the
160 current function performs nonlocal memory memory references for the
161 purposes of marking the function as a constant function. */
e7c893ba 162
e5b19a8c 163static GTY(()) varray_type reg_base_value;
c2e94b25 164static rtx *new_reg_base_value;
e5b19a8c 165
166/* We preserve the copy of old array around to avoid amount of garbage
167 produced. About 8% of garbage produced were attributed to this
168 array. */
7035b2ab 169static GTY((deletable)) varray_type old_reg_base_value;
083a2b5e 170
0c7f5242 171/* Static hunks of RTL used by the aliasing code; these are initialized
172 once per function to avoid unnecessary RTL allocations. */
173static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
174
ea0cb7ae 175#define REG_BASE_VALUE(X) \
e5b19a8c 176 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
177 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
ea0cb7ae 178
1a6c3add 179/* Vector of known invariant relationships between registers. Set in
180 loop unrolling. Indexed by register number, if nonzero the value
181 is an expression describing this register in terms of another.
182
183 The length of this array is REG_BASE_VALUE_SIZE.
184
185 Because this array contains only pseudo registers it has no effect
186 after reload. */
12cb06ad 187static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
8ca71ef2 188static GTY(()) unsigned int alias_invariant_size;
1a6c3add 189
73f5c1e3 190/* Vector indexed by N giving the initial (unchanging) value known for
12cb06ad 191 pseudo-register N. This array is initialized in init_alias_analysis,
192 and does not change until end_alias_analysis is called. */
193static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
ea0cb7ae 194
195/* Indicates number of valid entries in reg_known_value. */
12cb06ad 196static GTY(()) unsigned int reg_known_value_size;
ea0cb7ae 197
198/* Vector recording for each reg_known_value whether it is due to a
199 REG_EQUIV note. Future passes (viz., reload) may replace the
200 pseudo with the equivalent expression and so we account for the
5badbbc0 201 dependences that would be introduced if that happens.
202
203 The REG_EQUIV notes created in assign_parms may mention the arg
204 pointer, and there are explicit insns in the RTL that modify the
205 arg pointer. Thus we must ensure that such insns don't get
206 scheduled across each other because that would invalidate the
207 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
208 wrong, but solving the problem in the scheduler will likely give
209 better code, so we do it here. */
12cb06ad 210static bool *reg_known_equiv_p;
ea0cb7ae 211
e7c893ba 212/* True when scanning insns from the start of the rtl to the
213 NOTE_INSN_FUNCTION_BEG note. */
e5be0cc6 214static bool copying_arguments;
ea0cb7ae 215
a5b1863e 216/* The splay-tree used to store the various alias set entries. */
318dcdd8 217static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
5badbbc0 218\f
a5b1863e 219/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
220 such an entry, or NULL otherwise. */
221
56bbdce4 222static inline alias_set_entry
aecda0d6 223get_alias_set_entry (HOST_WIDE_INT alias_set)
a5b1863e 224{
56bbdce4 225 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
a5b1863e 226}
227
5badbbc0 228/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
229 the two MEMs cannot alias each other. */
a5b1863e 230
56bbdce4 231static inline int
aecda0d6 232mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
a5b1863e 233{
a5b1863e 234/* Perform a basic sanity check. Namely, that there are no alias sets
235 if we're not using strict aliasing. This helps to catch bugs
236 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
237 where a MEM is allocated in some way other than by the use of
238 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
239 use alias sets to indicate that spilled registers cannot alias each
240 other, we might need to remove this check. */
64db345d 241 gcc_assert (flag_strict_aliasing
242 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
a5b1863e 243
387bc205 244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
245}
a5b1863e 246
387bc205 247/* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
249
250static int
aecda0d6 251insert_subset_children (splay_tree_node node, void *data)
387bc205 252{
253 splay_tree_insert ((splay_tree) data, node->key, node->value);
254
255 return 0;
256}
257
258/* Return 1 if the two specified alias sets may conflict. */
259
260int
aecda0d6 261alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
387bc205 262{
263 alias_set_entry ase;
264
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1 == 0 || set2 == 0
268 /* If the two alias sets are the same, they may alias. */
269 || set1 == set2)
270 return 1;
a5b1863e 271
f7c44134 272 /* See if the first alias set is a subset of the second. */
387bc205 273 ase = get_alias_set_entry (set1);
851dfbff 274 if (ase != 0
275 && (ase->has_zero_child
276 || splay_tree_lookup (ase->children,
387bc205 277 (splay_tree_key) set2)))
278 return 1;
a5b1863e 279
280 /* Now do the same, but with the alias sets reversed. */
387bc205 281 ase = get_alias_set_entry (set2);
851dfbff 282 if (ase != 0
283 && (ase->has_zero_child
284 || splay_tree_lookup (ase->children,
387bc205 285 (splay_tree_key) set1)))
286 return 1;
a5b1863e 287
387bc205 288 /* The two alias sets are distinct and neither one is the
a5b1863e 289 child of the other. Therefore, they cannot alias. */
387bc205 290 return 0;
a5b1863e 291}
c1628b55 292
293/* Return 1 if the two specified alias sets might conflict, or if any subtype
294 of these alias sets might conflict. */
295
296int
297alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
298{
299 if (set1 == 0 || set2 == 0 || set1 == set2)
300 return 1;
301
302 return 0;
303}
304
f7c44134 305\f
387bc205 306/* Return 1 if any MEM object of type T1 will always conflict (using the
307 dependency routines in this file) with any MEM object of type T2.
308 This is used when allocating temporary storage. If T1 and/or T2 are
309 NULL_TREE, it means we know nothing about the storage. */
310
311int
aecda0d6 312objects_must_conflict_p (tree t1, tree t2)
387bc205 313{
2bedf233 314 HOST_WIDE_INT set1, set2;
315
218eb8d0 316 /* If neither has a type specified, we don't know if they'll conflict
317 because we may be using them to store objects of various types, for
318 example the argument and local variables areas of inlined functions. */
8f2ba9c9 319 if (t1 == 0 && t2 == 0)
218eb8d0 320 return 0;
321
387bc205 322 /* If they are the same type, they must conflict. */
323 if (t1 == t2
324 /* Likewise if both are volatile. */
325 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
326 return 1;
327
2bedf233 328 set1 = t1 ? get_alias_set (t1) : 0;
329 set2 = t2 ? get_alias_set (t2) : 0;
387bc205 330
2bedf233 331 /* Otherwise they conflict if they have no alias set or the same. We
332 can't simply use alias_sets_conflict_p here, because we must make
333 sure that every subtype of t1 will conflict with every subtype of
334 t2 for which a pair of subobjects of these respective subtypes
335 overlaps on the stack. */
336 return set1 == 0 || set2 == 0 || set1 == set2;
387bc205 337}
338\f
f7c44134 339/* T is an expression with pointer type. Find the DECL on which this
340 expression is based. (For example, in `a[i]' this would be `a'.)
341 If there is no such DECL, or a unique decl cannot be determined,
35a3065a 342 NULL_TREE is returned. */
f7c44134 343
344static tree
aecda0d6 345find_base_decl (tree t)
f7c44134 346{
ce45a448 347 tree d0, d1;
f7c44134 348
349 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
350 return 0;
351
352 /* If this is a declaration, return it. */
ce45a448 353 if (DECL_P (t))
f7c44134 354 return t;
355
356 /* Handle general expressions. It would be nice to deal with
357 COMPONENT_REFs here. If we could tell that `a' and `b' were the
358 same, then `a->f' and `b->f' are also the same. */
359 switch (TREE_CODE_CLASS (TREE_CODE (t)))
360 {
ce45a448 361 case tcc_unary:
f7c44134 362 return find_base_decl (TREE_OPERAND (t, 0));
363
ce45a448 364 case tcc_binary:
f7c44134 365 /* Return 0 if found in neither or both are the same. */
366 d0 = find_base_decl (TREE_OPERAND (t, 0));
367 d1 = find_base_decl (TREE_OPERAND (t, 1));
368 if (d0 == d1)
369 return d0;
370 else if (d0 == 0)
371 return d1;
372 else if (d1 == 0)
373 return d0;
374 else
375 return 0;
376
f7c44134 377 default:
378 return 0;
379 }
380}
381
2b02580f 382/* Return true if all nested component references handled by
383 get_inner_reference in T are such that we should use the alias set
384 provided by the object at the heart of T.
385
386 This is true for non-addressable components (which don't have their
387 own alias set), as well as components of objects in alias set zero.
388 This later point is a special case wherein we wish to override the
389 alias set used by the component, but we don't have per-FIELD_DECL
390 assignable alias sets. */
391
392bool
393component_uses_parent_alias_set (tree t)
bd32979f 394{
1f9b622b 395 while (1)
396 {
2b02580f 397 /* If we're at the end, it vacuously uses its own alias set. */
1f9b622b 398 if (!handled_component_p (t))
2b02580f 399 return false;
1f9b622b 400
401 switch (TREE_CODE (t))
402 {
403 case COMPONENT_REF:
404 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2b02580f 405 return true;
1f9b622b 406 break;
407
408 case ARRAY_REF:
409 case ARRAY_RANGE_REF:
410 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2b02580f 411 return true;
1f9b622b 412 break;
413
414 case REALPART_EXPR:
415 case IMAGPART_EXPR:
416 break;
417
418 default:
419 /* Bitfields and casts are never addressable. */
2b02580f 420 return true;
1f9b622b 421 }
422
423 t = TREE_OPERAND (t, 0);
2b02580f 424 if (get_alias_set (TREE_TYPE (t)) == 0)
425 return true;
1f9b622b 426 }
bd32979f 427}
428
f7c44134 429/* Return the alias set for T, which may be either a type or an
430 expression. Call language-specific routine for help, if needed. */
431
432HOST_WIDE_INT
aecda0d6 433get_alias_set (tree t)
f7c44134 434{
435 HOST_WIDE_INT set;
f7c44134 436
437 /* If we're not doing any alias analysis, just assume everything
438 aliases everything else. Also return 0 if this or its type is
439 an error. */
440 if (! flag_strict_aliasing || t == error_mark_node
441 || (! TYPE_P (t)
442 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
443 return 0;
444
445 /* We can be passed either an expression or a type. This and the
c3a9c149 446 language-specific routine may make mutually-recursive calls to each other
447 to figure out what to do. At each juncture, we see if this is a tree
448 that the language may need to handle specially. First handle things that
96216d37 449 aren't types. */
1607663f 450 if (! TYPE_P (t))
f7c44134 451 {
96216d37 452 tree inner = t;
96216d37 453
2a631e19 454 /* Remove any nops, then give the language a chance to do
455 something with this tree before we look at it. */
456 STRIP_NOPS (t);
dc24ddbd 457 set = lang_hooks.get_alias_set (t);
2a631e19 458 if (set != -1)
459 return set;
460
96216d37 461 /* First see if the actual object referenced is an INDIRECT_REF from a
55f9d7dc 462 restrict-qualified pointer or a "void *". */
463 while (handled_component_p (inner))
96216d37 464 {
55f9d7dc 465 inner = TREE_OPERAND (inner, 0);
2a631e19 466 STRIP_NOPS (inner);
96216d37 467 }
468
469 /* Check for accesses through restrict-qualified pointers. */
2a448a75 470 if (INDIRECT_REF_P (inner))
96216d37 471 {
472 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
473
474 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
475 {
4e69477b 476 /* If we haven't computed the actual alias set, do it now. */
96216d37 477 if (DECL_POINTER_ALIAS_SET (decl) == -2)
478 {
a2ff5234 479 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
480
96216d37 481 /* No two restricted pointers can point at the same thing.
482 However, a restricted pointer can point at the same thing
483 as an unrestricted pointer, if that unrestricted pointer
484 is based on the restricted pointer. So, we make the
485 alias set for the restricted pointer a subset of the
486 alias set for the type pointed to by the type of the
487 decl. */
488 HOST_WIDE_INT pointed_to_alias_set
a2ff5234 489 = get_alias_set (pointed_to_type);
96216d37 490
491 if (pointed_to_alias_set == 0)
492 /* It's not legal to make a subset of alias set zero. */
bcbf7cf4 493 DECL_POINTER_ALIAS_SET (decl) = 0;
a2ff5234 494 else if (AGGREGATE_TYPE_P (pointed_to_type))
495 /* For an aggregate, we must treat the restricted
496 pointer the same as an ordinary pointer. If we
497 were to make the type pointed to by the
498 restricted pointer a subset of the pointed-to
499 type, then we would believe that other subsets
500 of the pointed-to type (such as fields of that
501 type) do not conflict with the type pointed to
dac49aa5 502 by the restricted pointer. */
a2ff5234 503 DECL_POINTER_ALIAS_SET (decl)
504 = pointed_to_alias_set;
96216d37 505 else
506 {
507 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
9342ee68 508 record_alias_subset (pointed_to_alias_set,
509 DECL_POINTER_ALIAS_SET (decl));
96216d37 510 }
511 }
512
513 /* We use the alias set indicated in the declaration. */
514 return DECL_POINTER_ALIAS_SET (decl);
515 }
516
517 /* If we have an INDIRECT_REF via a void pointer, we don't
b24423db 518 know anything about what that might alias. Likewise if the
519 pointer is marked that way. */
520 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
521 || (TYPE_REF_CAN_ALIAS_ALL
522 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
96216d37 523 return 0;
524 }
525
526 /* Otherwise, pick up the outermost object that we could have a pointer
55f9d7dc 527 to, processing conversions as above. */
2b02580f 528 while (component_uses_parent_alias_set (t))
c3a9c149 529 {
55f9d7dc 530 t = TREE_OPERAND (t, 0);
2a631e19 531 STRIP_NOPS (t);
532 }
1607663f 533
96216d37 534 /* If we've already determined the alias set for a decl, just return
535 it. This is necessary for C++ anonymous unions, whose component
536 variables don't look like union members (boo!). */
afce1f57 537 if (TREE_CODE (t) == VAR_DECL
e16ceb8e 538 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
afce1f57 539 return MEM_ALIAS_SET (DECL_RTL (t));
540
1607663f 541 /* Now all we care about is the type. */
542 t = TREE_TYPE (t);
f7c44134 543 }
544
f7c44134 545 /* Variant qualifiers don't affect the alias set, so get the main
546 variant. If this is a type with a known alias set, return it. */
547 t = TYPE_MAIN_VARIANT (t);
96216d37 548 if (TYPE_ALIAS_SET_KNOWN_P (t))
f7c44134 549 return TYPE_ALIAS_SET (t);
550
551 /* See if the language has special handling for this type. */
dc24ddbd 552 set = lang_hooks.get_alias_set (t);
2a631e19 553 if (set != -1)
96216d37 554 return set;
851dfbff 555
f7c44134 556 /* There are no objects of FUNCTION_TYPE, so there's no point in
557 using up an alias set for them. (There are, of course, pointers
558 and references to functions, but that's different.) */
559 else if (TREE_CODE (t) == FUNCTION_TYPE)
560 set = 0;
9fcc3e54 561
562 /* Unless the language specifies otherwise, let vector types alias
563 their components. This avoids some nasty type punning issues in
564 normal usage. And indeed lets vectors be treated more like an
565 array slice. */
566 else if (TREE_CODE (t) == VECTOR_TYPE)
567 set = get_alias_set (TREE_TYPE (t));
568
f7c44134 569 else
570 /* Otherwise make a new alias set for this type. */
571 set = new_alias_set ();
572
573 TYPE_ALIAS_SET (t) = set;
851dfbff 574
575 /* If this is an aggregate type, we must record any component aliasing
576 information. */
680210f2 577 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
851dfbff 578 record_component_aliases (t);
579
f7c44134 580 return set;
581}
582
583/* Return a brand-new alias set. */
584
4ec9406e 585static GTY(()) HOST_WIDE_INT last_alias_set;
586
f7c44134 587HOST_WIDE_INT
aecda0d6 588new_alias_set (void)
f7c44134 589{
f7c44134 590 if (flag_strict_aliasing)
56bbdce4 591 {
243ec9ec 592 if (!alias_sets)
593 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
594 else
595 VARRAY_GROW (alias_sets, last_alias_set + 2);
56bbdce4 596 return ++last_alias_set;
597 }
f7c44134 598 else
599 return 0;
600}
a5b1863e 601
8e2ef041 602/* Indicate that things in SUBSET can alias things in SUPERSET, but that
603 not everything that aliases SUPERSET also aliases SUBSET. For example,
604 in C, a store to an `int' can alias a load of a structure containing an
605 `int', and vice versa. But it can't alias a load of a 'double' member
606 of the same structure. Here, the structure would be the SUPERSET and
607 `int' the SUBSET. This relationship is also described in the comment at
608 the beginning of this file.
609
610 This function should be called only once per SUPERSET/SUBSET pair.
a5b1863e 611
612 It is illegal for SUPERSET to be zero; everything is implicitly a
613 subset of alias set zero. */
614
0aa9ffd4 615static void
aecda0d6 616record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
a5b1863e 617{
618 alias_set_entry superset_entry;
619 alias_set_entry subset_entry;
620
c3a9c149 621 /* It is possible in complex type situations for both sets to be the same,
622 in which case we can ignore this operation. */
623 if (superset == subset)
624 return;
625
64db345d 626 gcc_assert (superset);
a5b1863e 627
628 superset_entry = get_alias_set_entry (superset);
9342ee68 629 if (superset_entry == 0)
a5b1863e 630 {
631 /* Create an entry for the SUPERSET, so that we have a place to
632 attach the SUBSET. */
318dcdd8 633 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
a5b1863e 634 superset_entry->alias_set = superset;
9342ee68 635 superset_entry->children
318dcdd8 636 = splay_tree_new_ggc (splay_tree_compare_ints);
f2e5de80 637 superset_entry->has_zero_child = 0;
56bbdce4 638 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
a5b1863e 639 }
640
851dfbff 641 if (subset == 0)
642 superset_entry->has_zero_child = 1;
643 else
644 {
645 subset_entry = get_alias_set_entry (subset);
646 /* If there is an entry for the subset, enter all of its children
647 (if they are not already present) as children of the SUPERSET. */
9342ee68 648 if (subset_entry)
851dfbff 649 {
650 if (subset_entry->has_zero_child)
651 superset_entry->has_zero_child = 1;
083a2b5e 652
851dfbff 653 splay_tree_foreach (subset_entry->children, insert_subset_children,
654 superset_entry->children);
655 }
a5b1863e 656
851dfbff 657 /* Enter the SUBSET itself as a child of the SUPERSET. */
9342ee68 658 splay_tree_insert (superset_entry->children,
851dfbff 659 (splay_tree_key) subset, 0);
660 }
a5b1863e 661}
662
9501a338 663/* Record that component types of TYPE, if any, are part of that type for
664 aliasing purposes. For record types, we only record component types
665 for fields that are marked addressable. For array types, we always
666 record the component types, so the front end should not call this
667 function if the individual component aren't addressable. */
668
669void
aecda0d6 670record_component_aliases (tree type)
9501a338 671{
f7c44134 672 HOST_WIDE_INT superset = get_alias_set (type);
9501a338 673 tree field;
674
675 if (superset == 0)
676 return;
677
678 switch (TREE_CODE (type))
679 {
680 case ARRAY_TYPE:
851dfbff 681 if (! TYPE_NONALIASED_COMPONENT (type))
682 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
9501a338 683 break;
684
685 case RECORD_TYPE:
686 case UNION_TYPE:
687 case QUAL_UNION_TYPE:
8b332087 688 /* Recursively record aliases for the base classes, if there are any. */
f6cc6a08 689 if (TYPE_BINFO (type))
9342ee68 690 {
691 int i;
f6cc6a08 692 tree binfo, base_binfo;
693
694 for (binfo = TYPE_BINFO (type), i = 0;
695 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
696 record_alias_subset (superset,
697 get_alias_set (BINFO_TYPE (base_binfo)));
9342ee68 698 }
9501a338 699 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
e7bfabe2 700 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
851dfbff 701 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
9501a338 702 break;
703
680210f2 704 case COMPLEX_TYPE:
705 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
706 break;
707
9501a338 708 default:
709 break;
710 }
711}
712
f7c44134 713/* Allocate an alias set for use in storing and reading from the varargs
714 spill area. */
715
4ec9406e 716static GTY(()) HOST_WIDE_INT varargs_set = -1;
717
f7c44134 718HOST_WIDE_INT
aecda0d6 719get_varargs_alias_set (void)
f7c44134 720{
fcdd3ab3 721#if 1
722 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
723 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
724 consistently use the varargs alias set for loads from the varargs
725 area. So don't use it anywhere. */
726 return 0;
727#else
4ec9406e 728 if (varargs_set == -1)
729 varargs_set = new_alias_set ();
f7c44134 730
4ec9406e 731 return varargs_set;
fcdd3ab3 732#endif
f7c44134 733}
734
735/* Likewise, but used for the fixed portions of the frame, e.g., register
736 save areas. */
737
4ec9406e 738static GTY(()) HOST_WIDE_INT frame_set = -1;
739
f7c44134 740HOST_WIDE_INT
aecda0d6 741get_frame_alias_set (void)
f7c44134 742{
4ec9406e 743 if (frame_set == -1)
744 frame_set = new_alias_set ();
f7c44134 745
4ec9406e 746 return frame_set;
f7c44134 747}
748
e7c893ba 749/* Inside SRC, the source of a SET, find a base address. */
750
ea0cb7ae 751static rtx
aecda0d6 752find_base_value (rtx src)
ea0cb7ae 753{
970c0c06 754 unsigned int regno;
d01410d3 755
ea0cb7ae 756 switch (GET_CODE (src))
757 {
758 case SYMBOL_REF:
759 case LABEL_REF:
760 return src;
761
762 case REG:
9db10305 763 regno = REGNO (src);
083a2b5e 764 /* At the start of a function, argument registers have known base
e7c893ba 765 values which may be lost later. Returning an ADDRESS
766 expression here allows optimization based on argument values
767 even when the argument registers are used for other purposes. */
970c0c06 768 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
769 return new_reg_base_value[regno];
1a538f67 770
ebd13eec 771 /* If a pseudo has a known base value, return it. Do not do this
9464d436 772 for non-fixed hard regs since it can result in a circular
773 dependency chain for registers which have values at function entry.
ebd13eec 774
775 The test above is not sufficient because the scheduler may move
776 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9464d436 777 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
e5b19a8c 778 && regno < VARRAY_SIZE (reg_base_value))
e5be0cc6 779 {
780 /* If we're inside init_alias_analysis, use new_reg_base_value
781 to reduce the number of relaxation iterations. */
a303ed8c 782 if (new_reg_base_value && new_reg_base_value[regno]
783 && REG_N_SETS (regno) == 1)
e5be0cc6 784 return new_reg_base_value[regno];
785
e5b19a8c 786 if (VARRAY_RTX (reg_base_value, regno))
787 return VARRAY_RTX (reg_base_value, regno);
e5be0cc6 788 }
1a538f67 789
1c5cb56c 790 return 0;
ea0cb7ae 791
792 case MEM:
793 /* Check for an argument passed in memory. Only record in the
794 copying-arguments block; it is too hard to track changes
795 otherwise. */
796 if (copying_arguments
797 && (XEXP (src, 0) == arg_pointer_rtx
798 || (GET_CODE (XEXP (src, 0)) == PLUS
799 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
941522d6 800 return gen_rtx_ADDRESS (VOIDmode, src);
ea0cb7ae 801 return 0;
802
803 case CONST:
804 src = XEXP (src, 0);
805 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
806 break;
083a2b5e 807
2c0e001b 808 /* ... fall through ... */
e7c893ba 809
ea0cb7ae 810 case PLUS:
811 case MINUS:
e7c893ba 812 {
06c5c535 813 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
814
560de2f8 815 /* If either operand is a REG that is a known pointer, then it
816 is the base. */
817 if (REG_P (src_0) && REG_POINTER (src_0))
818 return find_base_value (src_0);
819 if (REG_P (src_1) && REG_POINTER (src_1))
820 return find_base_value (src_1);
821
06c5c535 822 /* If either operand is a REG, then see if we already have
823 a known value for it. */
560de2f8 824 if (REG_P (src_0))
06c5c535 825 {
826 temp = find_base_value (src_0);
083a2b5e 827 if (temp != 0)
06c5c535 828 src_0 = temp;
829 }
830
560de2f8 831 if (REG_P (src_1))
06c5c535 832 {
833 temp = find_base_value (src_1);
083a2b5e 834 if (temp!= 0)
06c5c535 835 src_1 = temp;
836 }
e7c893ba 837
560de2f8 838 /* If either base is named object or a special address
839 (like an argument or stack reference), then use it for the
840 base term. */
841 if (src_0 != 0
842 && (GET_CODE (src_0) == SYMBOL_REF
843 || GET_CODE (src_0) == LABEL_REF
844 || (GET_CODE (src_0) == ADDRESS
845 && GET_MODE (src_0) != VOIDmode)))
846 return src_0;
847
848 if (src_1 != 0
849 && (GET_CODE (src_1) == SYMBOL_REF
850 || GET_CODE (src_1) == LABEL_REF
851 || (GET_CODE (src_1) == ADDRESS
852 && GET_MODE (src_1) != VOIDmode)))
853 return src_1;
854
083a2b5e 855 /* Guess which operand is the base address:
06c5c535 856 If either operand is a symbol, then it is the base. If
857 either operand is a CONST_INT, then the other is the base. */
083a2b5e 858 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
e7c893ba 859 return find_base_value (src_0);
083a2b5e 860 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
06c5c535 861 return find_base_value (src_1);
862
ea0cb7ae 863 return 0;
e7c893ba 864 }
865
866 case LO_SUM:
867 /* The standard form is (lo_sum reg sym) so look only at the
868 second operand. */
869 return find_base_value (XEXP (src, 1));
ea0cb7ae 870
871 case AND:
872 /* If the second operand is constant set the base
2c0e001b 873 address to the first operand. */
e7c893ba 874 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
875 return find_base_value (XEXP (src, 0));
ea0cb7ae 876 return 0;
877
43d45282 878 case TRUNCATE:
879 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
880 break;
881 /* Fall through. */
ea0cb7ae 882 case HIGH:
2be64ef0 883 case PRE_INC:
884 case PRE_DEC:
885 case POST_INC:
886 case POST_DEC:
887 case PRE_MODIFY:
888 case POST_MODIFY:
e7c893ba 889 return find_base_value (XEXP (src, 0));
99c14947 890
d01410d3 891 case ZERO_EXTEND:
892 case SIGN_EXTEND: /* used for NT/Alpha pointers */
893 {
894 rtx temp = find_base_value (XEXP (src, 0));
895
85d654dd 896 if (temp != 0 && CONSTANT_P (temp))
d01410d3 897 temp = convert_memory_address (Pmode, temp);
d01410d3 898
899 return temp;
900 }
901
99c14947 902 default:
903 break;
ea0cb7ae 904 }
905
906 return 0;
907}
908
909/* Called from init_alias_analysis indirectly through note_stores. */
910
083a2b5e 911/* While scanning insns to find base values, reg_seen[N] is nonzero if
ea0cb7ae 912 register N has been set in this function. */
913static char *reg_seen;
914
10882800 915/* Addresses which are known not to alias anything else are identified
916 by a unique integer. */
06c5c535 917static int unique_id;
918
e7c893ba 919static void
aecda0d6 920record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
ea0cb7ae 921{
19cb6b50 922 unsigned regno;
ea0cb7ae 923 rtx src;
3721f260 924 int n;
ea0cb7ae 925
8ad4c111 926 if (!REG_P (dest))
ea0cb7ae 927 return;
928
9db10305 929 regno = REGNO (dest);
ea0cb7ae 930
64db345d 931 gcc_assert (regno < VARRAY_SIZE (reg_base_value));
c2e94b25 932
3721f260 933 /* If this spans multiple hard registers, then we must indicate that every
934 register has an unusable value. */
935 if (regno < FIRST_PSEUDO_REGISTER)
67d6c12b 936 n = hard_regno_nregs[regno][GET_MODE (dest)];
3721f260 937 else
938 n = 1;
939 if (n != 1)
940 {
941 while (--n >= 0)
942 {
943 reg_seen[regno + n] = 1;
944 new_reg_base_value[regno + n] = 0;
945 }
946 return;
947 }
948
ea0cb7ae 949 if (set)
950 {
951 /* A CLOBBER wipes out any old value but does not prevent a previously
952 unset register from acquiring a base address (i.e. reg_seen is not
953 set). */
954 if (GET_CODE (set) == CLOBBER)
955 {
06c5c535 956 new_reg_base_value[regno] = 0;
ea0cb7ae 957 return;
958 }
959 src = SET_SRC (set);
960 }
961 else
962 {
ea0cb7ae 963 if (reg_seen[regno])
964 {
06c5c535 965 new_reg_base_value[regno] = 0;
ea0cb7ae 966 return;
967 }
968 reg_seen[regno] = 1;
941522d6 969 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
970 GEN_INT (unique_id++));
ea0cb7ae 971 return;
972 }
973
ad6b1fe1 974 /* If this is not the first set of REGNO, see whether the new value
975 is related to the old one. There are two cases of interest:
976
977 (1) The register might be assigned an entirely new value
978 that has the same base term as the original set.
979
980 (2) The set might be a simple self-modification that
981 cannot change REGNO's base value.
982
983 If neither case holds, reject the original base value as invalid.
984 Note that the following situation is not detected:
985
986 extern int x, y; int *p = &x; p += (&y-&x);
987
ea0cb7ae 988 ANSI C does not allow computing the difference of addresses
989 of distinct top level objects. */
ad6b1fe1 990 if (new_reg_base_value[regno] != 0
991 && find_base_value (src) != new_reg_base_value[regno])
ea0cb7ae 992 switch (GET_CODE (src))
993 {
e7c893ba 994 case LO_SUM:
ea0cb7ae 995 case MINUS:
996 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
06c5c535 997 new_reg_base_value[regno] = 0;
ea0cb7ae 998 break;
43d45282 999 case PLUS:
1000 /* If the value we add in the PLUS is also a valid base value,
1001 this might be the actual base value, and the original value
1002 an index. */
1003 {
1004 rtx other = NULL_RTX;
1005
1006 if (XEXP (src, 0) == dest)
1007 other = XEXP (src, 1);
1008 else if (XEXP (src, 1) == dest)
1009 other = XEXP (src, 0);
1010
1011 if (! other || find_base_value (other))
1012 new_reg_base_value[regno] = 0;
1013 break;
1014 }
ea0cb7ae 1015 case AND:
1016 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
06c5c535 1017 new_reg_base_value[regno] = 0;
ea0cb7ae 1018 break;
ea0cb7ae 1019 default:
06c5c535 1020 new_reg_base_value[regno] = 0;
ea0cb7ae 1021 break;
1022 }
1023 /* If this is the first set of a register, record the value. */
1024 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
06c5c535 1025 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1026 new_reg_base_value[regno] = find_base_value (src);
ea0cb7ae 1027
1028 reg_seen[regno] = 1;
1029}
1030
5badbbc0 1031/* Called from loop optimization when a new pseudo-register is
1032 created. It indicates that REGNO is being set to VAL. f INVARIANT
1033 is true then this value also describes an invariant relationship
1034 which can be used to deduce that two registers with unknown values
1035 are different. */
083a2b5e 1036
ea0cb7ae 1037void
aecda0d6 1038record_base_value (unsigned int regno, rtx val, int invariant)
ea0cb7ae 1039{
e5b19a8c 1040 if (invariant && alias_invariant && regno < alias_invariant_size)
1a6c3add 1041 alias_invariant[regno] = val;
1042
e5b19a8c 1043 if (regno >= VARRAY_SIZE (reg_base_value))
1044 VARRAY_GROW (reg_base_value, max_reg_num ());
1045
8ad4c111 1046 if (REG_P (val))
ea0cb7ae 1047 {
e5b19a8c 1048 VARRAY_RTX (reg_base_value, regno)
1049 = REG_BASE_VALUE (val);
ea0cb7ae 1050 return;
1051 }
e5b19a8c 1052 VARRAY_RTX (reg_base_value, regno)
1053 = find_base_value (val);
ea0cb7ae 1054}
1055
9f5e1a5a 1056/* Clear alias info for a register. This is used if an RTL transformation
1057 changes the value of a register. This is used in flow by AUTO_INC_DEC
1058 optimizations. We don't need to clear reg_base_value, since flow only
1059 changes the offset. */
1060
1061void
aecda0d6 1062clear_reg_alias_info (rtx reg)
9f5e1a5a 1063{
26c8b134 1064 unsigned int regno = REGNO (reg);
1065
12cb06ad 1066 if (regno >= FIRST_PSEUDO_REGISTER)
1067 {
1068 regno -= FIRST_PSEUDO_REGISTER;
1069 if (regno < reg_known_value_size)
1070 {
1071 reg_known_value[regno] = reg;
1072 reg_known_equiv_p[regno] = false;
1073 }
1074 }
1075}
1076
1077/* If a value is known for REGNO, return it. */
1078
1079rtx
1080get_reg_known_value (unsigned int regno)
1081{
1082 if (regno >= FIRST_PSEUDO_REGISTER)
1083 {
1084 regno -= FIRST_PSEUDO_REGISTER;
1085 if (regno < reg_known_value_size)
1086 return reg_known_value[regno];
1087 }
1088 return NULL;
9f5e1a5a 1089}
1090
12cb06ad 1091/* Set it. */
1092
1093static void
1094set_reg_known_value (unsigned int regno, rtx val)
1095{
1096 if (regno >= FIRST_PSEUDO_REGISTER)
1097 {
1098 regno -= FIRST_PSEUDO_REGISTER;
1099 if (regno < reg_known_value_size)
1100 reg_known_value[regno] = val;
1101 }
1102}
1103
1104/* Similarly for reg_known_equiv_p. */
1105
1106bool
1107get_reg_known_equiv_p (unsigned int regno)
1108{
1109 if (regno >= FIRST_PSEUDO_REGISTER)
1110 {
1111 regno -= FIRST_PSEUDO_REGISTER;
1112 if (regno < reg_known_value_size)
1113 return reg_known_equiv_p[regno];
1114 }
1115 return false;
1116}
1117
1118static void
1119set_reg_known_equiv_p (unsigned int regno, bool val)
1120{
1121 if (regno >= FIRST_PSEUDO_REGISTER)
1122 {
1123 regno -= FIRST_PSEUDO_REGISTER;
1124 if (regno < reg_known_value_size)
1125 reg_known_equiv_p[regno] = val;
1126 }
1127}
1128
1129
7cfb9bcf 1130/* Returns a canonical version of X, from the point of view alias
1131 analysis. (For example, if X is a MEM whose address is a register,
1132 and the register has a known value (say a SYMBOL_REF), then a MEM
1133 whose address is the SYMBOL_REF is returned.) */
1134
1135rtx
aecda0d6 1136canon_rtx (rtx x)
ea0cb7ae 1137{
1138 /* Recursively look for equivalences. */
8ad4c111 1139 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
12cb06ad 1140 {
1141 rtx t = get_reg_known_value (REGNO (x));
1142 if (t == x)
1143 return x;
1144 if (t)
1145 return canon_rtx (t);
1146 }
1147
1148 if (GET_CODE (x) == PLUS)
ea0cb7ae 1149 {
1150 rtx x0 = canon_rtx (XEXP (x, 0));
1151 rtx x1 = canon_rtx (XEXP (x, 1));
1152
1153 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1154 {
ea0cb7ae 1155 if (GET_CODE (x0) == CONST_INT)
b244d4c7 1156 return plus_constant (x1, INTVAL (x0));
ea0cb7ae 1157 else if (GET_CODE (x1) == CONST_INT)
b244d4c7 1158 return plus_constant (x0, INTVAL (x1));
941522d6 1159 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
ea0cb7ae 1160 }
1161 }
083a2b5e 1162
ea0cb7ae 1163 /* This gives us much better alias analysis when called from
1164 the loop optimizer. Note we want to leave the original
1165 MEM alone, but need to return the canonicalized MEM with
1166 all the flags with their original values. */
e16ceb8e 1167 else if (MEM_P (x))
e4e86ec5 1168 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
083a2b5e 1169
ea0cb7ae 1170 return x;
1171}
1172
1173/* Return 1 if X and Y are identical-looking rtx's.
6285298a 1174 Expect that X and Y has been already canonicalized.
ea0cb7ae 1175
1176 We use the data in reg_known_value above to see if two registers with
1177 different numbers are, in fact, equivalent. */
1178
1179static int
aecda0d6 1180rtx_equal_for_memref_p (rtx x, rtx y)
ea0cb7ae 1181{
19cb6b50 1182 int i;
1183 int j;
1184 enum rtx_code code;
1185 const char *fmt;
ea0cb7ae 1186
1187 if (x == 0 && y == 0)
1188 return 1;
1189 if (x == 0 || y == 0)
1190 return 0;
083a2b5e 1191
ea0cb7ae 1192 if (x == y)
1193 return 1;
1194
1195 code = GET_CODE (x);
1196 /* Rtx's of different codes cannot be equal. */
1197 if (code != GET_CODE (y))
1198 return 0;
1199
1200 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1201 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1202
1203 if (GET_MODE (x) != GET_MODE (y))
1204 return 0;
1205
7cfb9bcf 1206 /* Some RTL can be compared without a recursive examination. */
1207 switch (code)
1208 {
1209 case REG:
1210 return REGNO (x) == REGNO (y);
1211
1212 case LABEL_REF:
1213 return XEXP (x, 0) == XEXP (y, 0);
9342ee68 1214
7cfb9bcf 1215 case SYMBOL_REF:
1216 return XSTR (x, 0) == XSTR (y, 0);
1217
a2e238f7 1218 case VALUE:
7cfb9bcf 1219 case CONST_INT:
1220 case CONST_DOUBLE:
1221 /* There's no need to compare the contents of CONST_DOUBLEs or
1222 CONST_INTs because pointer equality is a good enough
1223 comparison for these nodes. */
1224 return 0;
1225
7cfb9bcf 1226 default:
1227 break;
1228 }
ea0cb7ae 1229
6285298a 1230 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1231 if (code == PLUS)
ea0cb7ae 1232 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1233 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1234 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1235 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
6285298a 1236 /* For commutative operations, the RTX match if the operand match in any
1237 order. Also handle the simple binary and unary cases without a loop. */
6720e96c 1238 if (COMMUTATIVE_P (x))
6285298a 1239 {
1240 rtx xop0 = canon_rtx (XEXP (x, 0));
1241 rtx yop0 = canon_rtx (XEXP (y, 0));
1242 rtx yop1 = canon_rtx (XEXP (y, 1));
1243
1244 return ((rtx_equal_for_memref_p (xop0, yop0)
1245 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1246 || (rtx_equal_for_memref_p (xop0, yop1)
1247 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1248 }
6720e96c 1249 else if (NON_COMMUTATIVE_P (x))
6285298a 1250 {
1251 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
aecda0d6 1252 canon_rtx (XEXP (y, 0)))
6285298a 1253 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1254 canon_rtx (XEXP (y, 1))));
1255 }
6720e96c 1256 else if (UNARY_P (x))
6285298a 1257 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
aecda0d6 1258 canon_rtx (XEXP (y, 0)));
ea0cb7ae 1259
1260 /* Compare the elements. If any pair of corresponding elements
1a6c3add 1261 fail to match, return 0 for the whole things.
1262
1263 Limit cases to types which actually appear in addresses. */
ea0cb7ae 1264
1265 fmt = GET_RTX_FORMAT (code);
1266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 {
1268 switch (fmt[i])
1269 {
ea0cb7ae 1270 case 'i':
1271 if (XINT (x, i) != XINT (y, i))
1272 return 0;
1273 break;
1274
ea0cb7ae 1275 case 'E':
1276 /* Two vectors must have the same length. */
1277 if (XVECLEN (x, i) != XVECLEN (y, i))
1278 return 0;
1279
1280 /* And the corresponding elements must match. */
1281 for (j = 0; j < XVECLEN (x, i); j++)
6285298a 1282 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1283 canon_rtx (XVECEXP (y, i, j))) == 0)
ea0cb7ae 1284 return 0;
1285 break;
1286
1287 case 'e':
6285298a 1288 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1289 canon_rtx (XEXP (y, i))) == 0)
ea0cb7ae 1290 return 0;
1291 break;
1292
83ec925c 1293 /* This can happen for asm operands. */
1294 case 's':
1295 if (strcmp (XSTR (x, i), XSTR (y, i)))
1296 return 0;
1297 break;
1298
23c04f6b 1299 /* This can happen for an asm which clobbers memory. */
1300 case '0':
1301 break;
1302
ea0cb7ae 1303 /* It is believed that rtx's at this level will never
1304 contain anything but integers and other rtx's,
1305 except for within LABEL_REFs and SYMBOL_REFs. */
1306 default:
64db345d 1307 gcc_unreachable ();
ea0cb7ae 1308 }
1309 }
1310 return 1;
1311}
1312
1313/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1314 X and return it, or return 0 if none found. */
1315
1316static rtx
aecda0d6 1317find_symbolic_term (rtx x)
ea0cb7ae 1318{
19cb6b50 1319 int i;
1320 enum rtx_code code;
1321 const char *fmt;
ea0cb7ae 1322
1323 code = GET_CODE (x);
1324 if (code == SYMBOL_REF || code == LABEL_REF)
1325 return x;
6720e96c 1326 if (OBJECT_P (x))
ea0cb7ae 1327 return 0;
1328
1329 fmt = GET_RTX_FORMAT (code);
1330 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1331 {
1332 rtx t;
1333
1334 if (fmt[i] == 'e')
1335 {
1336 t = find_symbolic_term (XEXP (x, i));
1337 if (t != 0)
1338 return t;
1339 }
1340 else if (fmt[i] == 'E')
1341 break;
1342 }
1343 return 0;
1344}
1345
5a37abfd 1346rtx
aecda0d6 1347find_base_term (rtx x)
ea0cb7ae 1348{
1617c276 1349 cselib_val *val;
1350 struct elt_loc_list *l;
1351
15750b1e 1352#if defined (FIND_BASE_TERM)
1353 /* Try machine-dependent ways to find the base term. */
1354 x = FIND_BASE_TERM (x);
1355#endif
1356
ea0cb7ae 1357 switch (GET_CODE (x))
1358 {
1359 case REG:
1360 return REG_BASE_VALUE (x);
1361
2be64ef0 1362 case TRUNCATE:
1363 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
9342ee68 1364 return 0;
2be64ef0 1365 /* Fall through. */
ea0cb7ae 1366 case HIGH:
22dfec7d 1367 case PRE_INC:
1368 case PRE_DEC:
1369 case POST_INC:
1370 case POST_DEC:
2be64ef0 1371 case PRE_MODIFY:
1372 case POST_MODIFY:
22dfec7d 1373 return find_base_term (XEXP (x, 0));
1374
5104ef69 1375 case ZERO_EXTEND:
1376 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1377 {
1378 rtx temp = find_base_term (XEXP (x, 0));
1379
85d654dd 1380 if (temp != 0 && CONSTANT_P (temp))
5104ef69 1381 temp = convert_memory_address (Pmode, temp);
5104ef69 1382
1383 return temp;
1384 }
1385
1617c276 1386 case VALUE:
1387 val = CSELIB_VAL_PTR (x);
a2e238f7 1388 if (!val)
1389 return 0;
1617c276 1390 for (l = val->locs; l; l = l->next)
1391 if ((x = find_base_term (l->loc)) != 0)
1392 return x;
1393 return 0;
1394
ea0cb7ae 1395 case CONST:
1396 x = XEXP (x, 0);
1397 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1398 return 0;
b4b174c3 1399 /* Fall through. */
ea0cb7ae 1400 case LO_SUM:
1401 case PLUS:
1402 case MINUS:
1403 {
1b5bbc4c 1404 rtx tmp1 = XEXP (x, 0);
1405 rtx tmp2 = XEXP (x, 1);
1406
35a3065a 1407 /* This is a little bit tricky since we have to determine which of
1b5bbc4c 1408 the two operands represents the real base address. Otherwise this
1409 routine may return the index register instead of the base register.
1410
1411 That may cause us to believe no aliasing was possible, when in
1412 fact aliasing is possible.
1413
1414 We use a few simple tests to guess the base register. Additional
1415 tests can certainly be added. For example, if one of the operands
1416 is a shift or multiply, then it must be the index register and the
1417 other operand is the base register. */
9342ee68 1418
15750b1e 1419 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1420 return find_base_term (tmp2);
1421
1b5bbc4c 1422 /* If either operand is known to be a pointer, then use it
1423 to determine the base term. */
e61a0a7f 1424 if (REG_P (tmp1) && REG_POINTER (tmp1))
1b5bbc4c 1425 return find_base_term (tmp1);
1426
e61a0a7f 1427 if (REG_P (tmp2) && REG_POINTER (tmp2))
1b5bbc4c 1428 return find_base_term (tmp2);
1429
1430 /* Neither operand was known to be a pointer. Go ahead and find the
1431 base term for both operands. */
1432 tmp1 = find_base_term (tmp1);
1433 tmp2 = find_base_term (tmp2);
1434
1435 /* If either base term is named object or a special address
1436 (like an argument or stack reference), then use it for the
1437 base term. */
083a2b5e 1438 if (tmp1 != 0
1b5bbc4c 1439 && (GET_CODE (tmp1) == SYMBOL_REF
1440 || GET_CODE (tmp1) == LABEL_REF
1441 || (GET_CODE (tmp1) == ADDRESS
1442 && GET_MODE (tmp1) != VOIDmode)))
1443 return tmp1;
1444
083a2b5e 1445 if (tmp2 != 0
1b5bbc4c 1446 && (GET_CODE (tmp2) == SYMBOL_REF
1447 || GET_CODE (tmp2) == LABEL_REF
1448 || (GET_CODE (tmp2) == ADDRESS
1449 && GET_MODE (tmp2) != VOIDmode)))
1450 return tmp2;
1451
1452 /* We could not determine which of the two operands was the
1453 base register and which was the index. So we can determine
1454 nothing from the base alias check. */
1455 return 0;
ea0cb7ae 1456 }
1457
1458 case AND:
2be64ef0 1459 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1460 return find_base_term (XEXP (x, 0));
ea0cb7ae 1461 return 0;
1462
1463 case SYMBOL_REF:
1464 case LABEL_REF:
1465 return x;
1466
1467 default:
1468 return 0;
1469 }
1470}
1471
1472/* Return 0 if the addresses X and Y are known to point to different
1473 objects, 1 if they might be pointers to the same object. */
1474
1475static int
aecda0d6 1476base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1477 enum machine_mode y_mode)
ea0cb7ae 1478{
1479 rtx x_base = find_base_term (x);
1480 rtx y_base = find_base_term (y);
1481
3ad3a0ed 1482 /* If the address itself has no known base see if a known equivalent
1483 value has one. If either address still has no known base, nothing
1484 is known about aliasing. */
1485 if (x_base == 0)
1486 {
1487 rtx x_c;
083a2b5e 1488
3ad3a0ed 1489 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1490 return 1;
083a2b5e 1491
3ad3a0ed 1492 x_base = find_base_term (x_c);
1493 if (x_base == 0)
1494 return 1;
1495 }
ea0cb7ae 1496
3ad3a0ed 1497 if (y_base == 0)
1498 {
1499 rtx y_c;
1500 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1501 return 1;
083a2b5e 1502
3ad3a0ed 1503 y_base = find_base_term (y_c);
1504 if (y_base == 0)
1505 return 1;
1506 }
1507
1508 /* If the base addresses are equal nothing is known about aliasing. */
1509 if (rtx_equal_p (x_base, y_base))
ea0cb7ae 1510 return 1;
1511
9342ee68 1512 /* The base addresses of the read and write are different expressions.
9fb1c31b 1513 If they are both symbols and they are not accessed via AND, there is
1514 no conflict. We can bring knowledge of object alignment into play
1515 here. For example, on alpha, "char a, b;" can alias one another,
1516 though "char a; long b;" cannot. */
ea0cb7ae 1517 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1e38bf49 1518 {
9fb1c31b 1519 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1520 return 1;
1521 if (GET_CODE (x) == AND
1522 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8e6c5eac 1523 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
9fb1c31b 1524 return 1;
1525 if (GET_CODE (y) == AND
1526 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8e6c5eac 1527 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
9fb1c31b 1528 return 1;
2b4e2cb9 1529 /* Differing symbols never alias. */
1530 return 0;
1e38bf49 1531 }
ea0cb7ae 1532
1533 /* If one address is a stack reference there can be no alias:
1534 stack references using different base registers do not alias,
1535 a stack reference can not alias a parameter, and a stack reference
1536 can not alias a global. */
1537 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1538 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1539 return 0;
1540
1541 if (! flag_argument_noalias)
1542 return 1;
1543
1544 if (flag_argument_noalias > 1)
1545 return 0;
1546
2c0e001b 1547 /* Weak noalias assertion (arguments are distinct, but may match globals). */
ea0cb7ae 1548 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1549}
1550
1617c276 1551/* Convert the address X into something we can use. This is done by returning
1552 it unchanged unless it is a value; in the latter case we call cselib to get
1553 a more useful rtx. */
f7c44134 1554
8e802be9 1555rtx
aecda0d6 1556get_addr (rtx x)
1617c276 1557{
1558 cselib_val *v;
1559 struct elt_loc_list *l;
1560
1561 if (GET_CODE (x) != VALUE)
1562 return x;
1563 v = CSELIB_VAL_PTR (x);
a2e238f7 1564 if (v)
1565 {
1566 for (l = v->locs; l; l = l->next)
1567 if (CONSTANT_P (l->loc))
1568 return l->loc;
1569 for (l = v->locs; l; l = l->next)
e16ceb8e 1570 if (!REG_P (l->loc) && !MEM_P (l->loc))
a2e238f7 1571 return l->loc;
1572 if (v->locs)
1573 return v->locs->loc;
1574 }
1617c276 1575 return x;
1576}
1577
b9f92976 1578/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1579 where SIZE is the size in bytes of the memory reference. If ADDR
1580 is not modified by the memory reference then ADDR is returned. */
1581
0aa9ffd4 1582static rtx
aecda0d6 1583addr_side_effect_eval (rtx addr, int size, int n_refs)
b9f92976 1584{
1585 int offset = 0;
9342ee68 1586
b9f92976 1587 switch (GET_CODE (addr))
1588 {
1589 case PRE_INC:
1590 offset = (n_refs + 1) * size;
1591 break;
1592 case PRE_DEC:
1593 offset = -(n_refs + 1) * size;
1594 break;
1595 case POST_INC:
1596 offset = n_refs * size;
1597 break;
1598 case POST_DEC:
1599 offset = -n_refs * size;
1600 break;
1601
1602 default:
1603 return addr;
1604 }
9342ee68 1605
b9f92976 1606 if (offset)
6285298a 1607 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1608 GEN_INT (offset));
b9f92976 1609 else
1610 addr = XEXP (addr, 0);
6285298a 1611 addr = canon_rtx (addr);
b9f92976 1612
1613 return addr;
1614}
1615
ea0cb7ae 1616/* Return nonzero if X and Y (memory addresses) could reference the
1617 same location in memory. C is an offset accumulator. When
1618 C is nonzero, we are testing aliases between X and Y + C.
1619 XSIZE is the size in bytes of the X reference,
1620 similarly YSIZE is the size in bytes for Y.
6285298a 1621 Expect that canon_rtx has been already called for X and Y.
ea0cb7ae 1622
1623 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1624 referenced (the reference was BLKmode), so make the most pessimistic
1625 assumptions.
1626
1e38bf49 1627 If XSIZE or YSIZE is negative, we may access memory outside the object
1628 being referenced as a side effect. This can happen when using AND to
1629 align memory references, as is done on the Alpha.
1630
ea0cb7ae 1631 Nice to notice that varying addresses cannot conflict with fp if no
4958fe6e 1632 local variables had their addresses taken, but that's too hard now. */
ea0cb7ae 1633
ea0cb7ae 1634static int
aecda0d6 1635memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
ea0cb7ae 1636{
1617c276 1637 if (GET_CODE (x) == VALUE)
1638 x = get_addr (x);
1639 if (GET_CODE (y) == VALUE)
1640 y = get_addr (y);
ea0cb7ae 1641 if (GET_CODE (x) == HIGH)
1642 x = XEXP (x, 0);
1643 else if (GET_CODE (x) == LO_SUM)
1644 x = XEXP (x, 1);
1645 else
6285298a 1646 x = addr_side_effect_eval (x, xsize, 0);
ea0cb7ae 1647 if (GET_CODE (y) == HIGH)
1648 y = XEXP (y, 0);
1649 else if (GET_CODE (y) == LO_SUM)
1650 y = XEXP (y, 1);
1651 else
6285298a 1652 y = addr_side_effect_eval (y, ysize, 0);
ea0cb7ae 1653
1654 if (rtx_equal_for_memref_p (x, y))
1655 {
1e38bf49 1656 if (xsize <= 0 || ysize <= 0)
ea0cb7ae 1657 return 1;
1658 if (c >= 0 && xsize > c)
1659 return 1;
1660 if (c < 0 && ysize+c > 0)
1661 return 1;
1662 return 0;
1663 }
1664
35d3eedd 1665 /* This code used to check for conflicts involving stack references and
1666 globals but the base address alias code now handles these cases. */
ea0cb7ae 1667
1668 if (GET_CODE (x) == PLUS)
1669 {
1670 /* The fact that X is canonicalized means that this
1671 PLUS rtx is canonicalized. */
1672 rtx x0 = XEXP (x, 0);
1673 rtx x1 = XEXP (x, 1);
1674
1675 if (GET_CODE (y) == PLUS)
1676 {
1677 /* The fact that Y is canonicalized means that this
1678 PLUS rtx is canonicalized. */
1679 rtx y0 = XEXP (y, 0);
1680 rtx y1 = XEXP (y, 1);
1681
1682 if (rtx_equal_for_memref_p (x1, y1))
1683 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1684 if (rtx_equal_for_memref_p (x0, y0))
1685 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1686 if (GET_CODE (x1) == CONST_INT)
5f59c49b 1687 {
1688 if (GET_CODE (y1) == CONST_INT)
1689 return memrefs_conflict_p (xsize, x0, ysize, y0,
1690 c - INTVAL (x1) + INTVAL (y1));
1691 else
1692 return memrefs_conflict_p (xsize, x0, ysize, y,
1693 c - INTVAL (x1));
1694 }
ea0cb7ae 1695 else if (GET_CODE (y1) == CONST_INT)
1696 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1697
35d3eedd 1698 return 1;
ea0cb7ae 1699 }
1700 else if (GET_CODE (x1) == CONST_INT)
1701 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1702 }
1703 else if (GET_CODE (y) == PLUS)
1704 {
1705 /* The fact that Y is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx y0 = XEXP (y, 0);
1708 rtx y1 = XEXP (y, 1);
1709
1710 if (GET_CODE (y1) == CONST_INT)
1711 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1712 else
1713 return 1;
1714 }
1715
1716 if (GET_CODE (x) == GET_CODE (y))
1717 switch (GET_CODE (x))
1718 {
1719 case MULT:
1720 {
1721 /* Handle cases where we expect the second operands to be the
1722 same, and check only whether the first operand would conflict
1723 or not. */
1724 rtx x0, y0;
1725 rtx x1 = canon_rtx (XEXP (x, 1));
1726 rtx y1 = canon_rtx (XEXP (y, 1));
1727 if (! rtx_equal_for_memref_p (x1, y1))
1728 return 1;
1729 x0 = canon_rtx (XEXP (x, 0));
1730 y0 = canon_rtx (XEXP (y, 0));
1731 if (rtx_equal_for_memref_p (x0, y0))
1732 return (xsize == 0 || ysize == 0
1733 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1734
1735 /* Can't properly adjust our sizes. */
1736 if (GET_CODE (x1) != CONST_INT)
1737 return 1;
1738 xsize /= INTVAL (x1);
1739 ysize /= INTVAL (x1);
1740 c /= INTVAL (x1);
1741 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1742 }
99c14947 1743
1a6c3add 1744 case REG:
1745 /* Are these registers known not to be equal? */
1746 if (alias_invariant)
1747 {
274c11d8 1748 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1a6c3add 1749 rtx i_x, i_y; /* invariant relationships of X and Y */
1750
e5b19a8c 1751 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1752 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1a6c3add 1753
1754 if (i_x == 0 && i_y == 0)
1755 break;
1756
1757 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1758 ysize, i_y ? i_y : y, c))
1759 return 0;
1760 }
1761 break;
1762
99c14947 1763 default:
1764 break;
ea0cb7ae 1765 }
1766
1767 /* Treat an access through an AND (e.g. a subword access on an Alpha)
9342ee68 1768 as an access with indeterminate size. Assume that references
9fb1c31b 1769 besides AND are aligned, so if the size of the other reference is
1770 at least as large as the alignment, assume no other overlap. */
ea0cb7ae 1771 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
9fb1c31b 1772 {
bcdb334e 1773 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
9fb1c31b 1774 xsize = -1;
6285298a 1775 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
9fb1c31b 1776 }
ea0cb7ae 1777 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1e38bf49 1778 {
9fb1c31b 1779 /* ??? If we are indexing far enough into the array/structure, we
9342ee68 1780 may yet be able to determine that we can not overlap. But we
1e38bf49 1781 also need to that we are far enough from the end not to overlap
9fb1c31b 1782 a following reference, so we do nothing with that for now. */
bcdb334e 1783 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
9fb1c31b 1784 ysize = -1;
6285298a 1785 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1e38bf49 1786 }
ea0cb7ae 1787
1788 if (CONSTANT_P (x))
1789 {
1790 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1791 {
1792 c += (INTVAL (y) - INTVAL (x));
1e38bf49 1793 return (xsize <= 0 || ysize <= 0
ea0cb7ae 1794 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1795 }
1796
1797 if (GET_CODE (x) == CONST)
1798 {
1799 if (GET_CODE (y) == CONST)
1800 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1801 ysize, canon_rtx (XEXP (y, 0)), c);
1802 else
1803 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1804 ysize, y, c);
1805 }
1806 if (GET_CODE (y) == CONST)
1807 return memrefs_conflict_p (xsize, x, ysize,
1808 canon_rtx (XEXP (y, 0)), c);
1809
1810 if (CONSTANT_P (y))
15750b1e 1811 return (xsize <= 0 || ysize <= 0
1e38bf49 1812 || (rtx_equal_for_memref_p (x, y)
15750b1e 1813 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
ea0cb7ae 1814
1815 return 1;
1816 }
1817 return 1;
1818}
1819
1820/* Functions to compute memory dependencies.
1821
1822 Since we process the insns in execution order, we can build tables
1823 to keep track of what registers are fixed (and not aliased), what registers
1824 are varying in known ways, and what registers are varying in unknown
1825 ways.
1826
1827 If both memory references are volatile, then there must always be a
1828 dependence between the two references, since their order can not be
1829 changed. A volatile and non-volatile reference can be interchanged
9342ee68 1830 though.
ea0cb7ae 1831
71d9e995 1832 A MEM_IN_STRUCT reference at a non-AND varying address can never
1833 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1834 also must allow AND addresses, because they may generate accesses
1835 outside the object being referenced. This is used to generate
1836 aligned addresses from unaligned addresses, for instance, the alpha
1837 storeqi_unaligned pattern. */
ea0cb7ae 1838
1839/* Read dependence: X is read after read in MEM takes place. There can
1840 only be a dependence here if both reads are volatile. */
1841
1842int
aecda0d6 1843read_dependence (rtx mem, rtx x)
ea0cb7ae 1844{
1845 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1846}
1847
6a0934dd 1848/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1849 MEM2 is a reference to a structure at a varying address, or returns
1850 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1851 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1852 to decide whether or not an address may vary; it should return
1617c276 1853 nonzero whenever variation is possible.
1854 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
9342ee68 1855
fe69e4fe 1856static rtx
aecda0d6 1857fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1858 rtx mem2_addr,
1859 int (*varies_p) (rtx, int))
9342ee68 1860{
c7f6877a 1861 if (! flag_strict_aliasing)
1862 return NULL_RTX;
1863
9342ee68 1864 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
ea087693 1865 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
6a0934dd 1866 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1867 varying address. */
1868 return mem1;
1869
9342ee68 1870 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
ea087693 1871 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
6a0934dd 1872 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1873 varying address. */
1874 return mem2;
1875
1876 return NULL_RTX;
1877}
1878
1879/* Returns nonzero if something about the mode or address format MEM1
1880 indicates that it might well alias *anything*. */
1881
fe69e4fe 1882static int
aecda0d6 1883aliases_everything_p (rtx mem)
6a0934dd 1884{
6a0934dd 1885 if (GET_CODE (XEXP (mem, 0)) == AND)
0975351b 1886 /* If the address is an AND, it's very hard to know at what it is
6a0934dd 1887 actually pointing. */
1888 return 1;
9342ee68 1889
6a0934dd 1890 return 0;
1891}
1892
b10dbbca 1893/* Return true if we can determine that the fields referenced cannot
1894 overlap for any pair of objects. */
1895
1896static bool
aecda0d6 1897nonoverlapping_component_refs_p (tree x, tree y)
b10dbbca 1898{
1899 tree fieldx, fieldy, typex, typey, orig_y;
1900
1901 do
1902 {
1903 /* The comparison has to be done at a common type, since we don't
cb0ccc1e 1904 know how the inheritance hierarchy works. */
b10dbbca 1905 orig_y = y;
1906 do
1907 {
1908 fieldx = TREE_OPERAND (x, 1);
1909 typex = DECL_FIELD_CONTEXT (fieldx);
1910
1911 y = orig_y;
1912 do
1913 {
1914 fieldy = TREE_OPERAND (y, 1);
1915 typey = DECL_FIELD_CONTEXT (fieldy);
1916
1917 if (typex == typey)
1918 goto found;
1919
1920 y = TREE_OPERAND (y, 0);
1921 }
1922 while (y && TREE_CODE (y) == COMPONENT_REF);
1923
1924 x = TREE_OPERAND (x, 0);
1925 }
1926 while (x && TREE_CODE (x) == COMPONENT_REF);
1927
1928 /* Never found a common type. */
1929 return false;
1930
1931 found:
1932 /* If we're left with accessing different fields of a structure,
1933 then no overlap. */
1934 if (TREE_CODE (typex) == RECORD_TYPE
1935 && fieldx != fieldy)
1936 return true;
1937
1938 /* The comparison on the current field failed. If we're accessing
1939 a very nested structure, look at the next outer level. */
1940 x = TREE_OPERAND (x, 0);
1941 y = TREE_OPERAND (y, 0);
1942 }
1943 while (x && y
1944 && TREE_CODE (x) == COMPONENT_REF
1945 && TREE_CODE (y) == COMPONENT_REF);
9342ee68 1946
b10dbbca 1947 return false;
1948}
1949
1950/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1951
1952static tree
aecda0d6 1953decl_for_component_ref (tree x)
b10dbbca 1954{
1955 do
1956 {
1957 x = TREE_OPERAND (x, 0);
1958 }
1959 while (x && TREE_CODE (x) == COMPONENT_REF);
1960
1961 return x && DECL_P (x) ? x : NULL_TREE;
1962}
1963
1964/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1965 offset of the field reference. */
1966
1967static rtx
aecda0d6 1968adjust_offset_for_component_ref (tree x, rtx offset)
b10dbbca 1969{
1970 HOST_WIDE_INT ioffset;
1971
1972 if (! offset)
1973 return NULL_RTX;
1974
1975 ioffset = INTVAL (offset);
9342ee68 1976 do
b10dbbca 1977 {
6374121b 1978 tree offset = component_ref_field_offset (x);
b10dbbca 1979 tree field = TREE_OPERAND (x, 1);
1980
6374121b 1981 if (! host_integerp (offset, 1))
b10dbbca 1982 return NULL_RTX;
6374121b 1983 ioffset += (tree_low_cst (offset, 1)
b10dbbca 1984 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1985 / BITS_PER_UNIT));
1986
1987 x = TREE_OPERAND (x, 0);
1988 }
1989 while (x && TREE_CODE (x) == COMPONENT_REF);
1990
1991 return GEN_INT (ioffset);
1992}
1993
d716ce75 1994/* Return nonzero if we can determine the exprs corresponding to memrefs
ddb3d16f 1995 X and Y and they do not overlap. */
1996
1997static int
aecda0d6 1998nonoverlapping_memrefs_p (rtx x, rtx y)
ddb3d16f 1999{
b10dbbca 2000 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
ddb3d16f 2001 rtx rtlx, rtly;
2002 rtx basex, basey;
b10dbbca 2003 rtx moffsetx, moffsety;
ddb3d16f 2004 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2005
b10dbbca 2006 /* Unless both have exprs, we can't tell anything. */
2007 if (exprx == 0 || expry == 0)
2008 return 0;
2009
2010 /* If both are field references, we may be able to determine something. */
2011 if (TREE_CODE (exprx) == COMPONENT_REF
2012 && TREE_CODE (expry) == COMPONENT_REF
2013 && nonoverlapping_component_refs_p (exprx, expry))
2014 return 1;
2015
2016 /* If the field reference test failed, look at the DECLs involved. */
2017 moffsetx = MEM_OFFSET (x);
2018 if (TREE_CODE (exprx) == COMPONENT_REF)
2019 {
2020 tree t = decl_for_component_ref (exprx);
2021 if (! t)
2022 return 0;
2023 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2024 exprx = t;
2025 }
2a448a75 2026 else if (INDIRECT_REF_P (exprx))
2d8fe5d0 2027 {
2028 exprx = TREE_OPERAND (exprx, 0);
2029 if (flag_argument_noalias < 2
2030 || TREE_CODE (exprx) != PARM_DECL)
2031 return 0;
2032 }
2033
b10dbbca 2034 moffsety = MEM_OFFSET (y);
2035 if (TREE_CODE (expry) == COMPONENT_REF)
2036 {
2037 tree t = decl_for_component_ref (expry);
2038 if (! t)
2039 return 0;
2040 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2041 expry = t;
2042 }
2a448a75 2043 else if (INDIRECT_REF_P (expry))
2d8fe5d0 2044 {
2045 expry = TREE_OPERAND (expry, 0);
2046 if (flag_argument_noalias < 2
2047 || TREE_CODE (expry) != PARM_DECL)
2048 return 0;
2049 }
b10dbbca 2050
2051 if (! DECL_P (exprx) || ! DECL_P (expry))
ddb3d16f 2052 return 0;
2053
b10dbbca 2054 rtlx = DECL_RTL (exprx);
2055 rtly = DECL_RTL (expry);
ddb3d16f 2056
10e949c1 2057 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2058 can't overlap unless they are the same because we never reuse that part
2059 of the stack frame used for locals for spilled pseudos. */
e16ceb8e 2060 if ((!MEM_P (rtlx) || !MEM_P (rtly))
10e949c1 2061 && ! rtx_equal_p (rtlx, rtly))
ddb3d16f 2062 return 1;
2063
2064 /* Get the base and offsets of both decls. If either is a register, we
2065 know both are and are the same, so use that as the base. The only
2066 we can avoid overlap is if we can deduce that they are nonoverlapping
2067 pieces of that decl, which is very rare. */
e16ceb8e 2068 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
ddb3d16f 2069 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2070 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2071
e16ceb8e 2072 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
ddb3d16f 2073 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2074 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2075
c9c48480 2076 /* If the bases are different, we know they do not overlap if both
9342ee68 2077 are constants or if one is a constant and the other a pointer into the
c9c48480 2078 stack frame. Otherwise a different base means we can't tell if they
2079 overlap or not. */
2080 if (! rtx_equal_p (basex, basey))
9342ee68 2081 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2082 || (CONSTANT_P (basex) && REG_P (basey)
2083 && REGNO_PTR_FRAME_P (REGNO (basey)))
2084 || (CONSTANT_P (basey) && REG_P (basex)
2085 && REGNO_PTR_FRAME_P (REGNO (basex))));
ddb3d16f 2086
e16ceb8e 2087 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
ddb3d16f 2088 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2089 : -1);
e16ceb8e 2090 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
ddb3d16f 2091 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2092 -1);
2093
dc2dfdb6 2094 /* If we have an offset for either memref, it can update the values computed
2095 above. */
b10dbbca 2096 if (moffsetx)
2097 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2098 if (moffsety)
2099 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
ddb3d16f 2100
dc2dfdb6 2101 /* If a memref has both a size and an offset, we can use the smaller size.
203c9fee 2102 We can't do this if the offset isn't known because we must view this
dc2dfdb6 2103 memref as being anywhere inside the DECL's MEM. */
b10dbbca 2104 if (MEM_SIZE (x) && moffsetx)
ddb3d16f 2105 sizex = INTVAL (MEM_SIZE (x));
b10dbbca 2106 if (MEM_SIZE (y) && moffsety)
ddb3d16f 2107 sizey = INTVAL (MEM_SIZE (y));
2108
2109 /* Put the values of the memref with the lower offset in X's values. */
2110 if (offsetx > offsety)
2111 {
2112 tem = offsetx, offsetx = offsety, offsety = tem;
2113 tem = sizex, sizex = sizey, sizey = tem;
2114 }
2115
2116 /* If we don't know the size of the lower-offset value, we can't tell
2117 if they conflict. Otherwise, we do the test. */
906923ba 2118 return sizex >= 0 && offsety >= offsetx + sizex;
ddb3d16f 2119}
2120
ea0cb7ae 2121/* True dependence: X is read after store in MEM takes place. */
2122
2123int
aecda0d6 2124true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2125 int (*varies) (rtx, int))
ea0cb7ae 2126{
19cb6b50 2127 rtx x_addr, mem_addr;
9ee7cac5 2128 rtx base;
ea0cb7ae 2129
2130 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2131 return 1;
2132
a57f4c4d 2133 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2134 This is used in epilogue deallocation functions. */
2135 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2136 return 1;
2137 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2138 return 1;
2139
b5ba9f3a 2140 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2141 return 0;
2142
b04fab2a 2143 /* Read-only memory is by definition never modified, and therefore can't
2144 conflict with anything. We don't expect to find read-only set on MEM,
a53ff4c1 2145 but stupid user tricks can produce them, so don't die. */
b04fab2a 2146 if (MEM_READONLY_P (x))
ea0cb7ae 2147 return 0;
2148
ddb3d16f 2149 if (nonoverlapping_memrefs_p (mem, x))
2150 return 0;
2151
9fb1c31b 2152 if (mem_mode == VOIDmode)
2153 mem_mode = GET_MODE (mem);
2154
1617c276 2155 x_addr = get_addr (XEXP (x, 0));
2156 mem_addr = get_addr (XEXP (mem, 0));
2157
002fe3cb 2158 base = find_base_term (x_addr);
2159 if (base && (GET_CODE (base) == LABEL_REF
2160 || (GET_CODE (base) == SYMBOL_REF
2161 && CONSTANT_POOL_ADDRESS_P (base))))
2162 return 0;
2163
1617c276 2164 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
3ad3a0ed 2165 return 0;
2166
1617c276 2167 x_addr = canon_rtx (x_addr);
2168 mem_addr = canon_rtx (mem_addr);
35d3eedd 2169
4958fe6e 2170 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2171 SIZE_FOR_MODE (x), x_addr, 0))
2172 return 0;
2173
6a0934dd 2174 if (aliases_everything_p (x))
4958fe6e 2175 return 1;
2176
35a3065a 2177 /* We cannot use aliases_everything_p to test MEM, since we must look
6a0934dd 2178 at MEM_MODE, rather than GET_MODE (MEM). */
2179 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
8e802be9 2180 return 1;
2181
2182 /* In true_dependence we also allow BLKmode to alias anything. Why
2183 don't we do this in anti_dependence and output_dependence? */
2184 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2185 return 1;
2186
2187 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2188 varies);
2189}
2190
2191/* Canonical true dependence: X is read after store in MEM takes place.
9342ee68 2192 Variant of true_dependence which assumes MEM has already been
2193 canonicalized (hence we no longer do that here).
2194 The mem_addr argument has been added, since true_dependence computed
8e802be9 2195 this value prior to canonicalizing. */
2196
2197int
aecda0d6 2198canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2199 rtx x, int (*varies) (rtx, int))
8e802be9 2200{
19cb6b50 2201 rtx x_addr;
8e802be9 2202
2203 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2204 return 1;
2205
d7b592b0 2206 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2207 This is used in epilogue deallocation functions. */
2208 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2209 return 1;
2210 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2211 return 1;
2212
8e802be9 2213 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2214 return 0;
2215
b04fab2a 2216 /* Read-only memory is by definition never modified, and therefore can't
2217 conflict with anything. We don't expect to find read-only set on MEM,
a53ff4c1 2218 but stupid user tricks can produce them, so don't die. */
b04fab2a 2219 if (MEM_READONLY_P (x))
8e802be9 2220 return 0;
2221
ddb3d16f 2222 if (nonoverlapping_memrefs_p (x, mem))
2223 return 0;
2224
8e802be9 2225 x_addr = get_addr (XEXP (x, 0));
2226
2227 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2228 return 0;
2229
2230 x_addr = canon_rtx (x_addr);
2231 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2232 SIZE_FOR_MODE (x), x_addr, 0))
2233 return 0;
2234
2235 if (aliases_everything_p (x))
2236 return 1;
2237
35a3065a 2238 /* We cannot use aliases_everything_p to test MEM, since we must look
8e802be9 2239 at MEM_MODE, rather than GET_MODE (MEM). */
2240 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
6a0934dd 2241 return 1;
4958fe6e 2242
6a0934dd 2243 /* In true_dependence we also allow BLKmode to alias anything. Why
2244 don't we do this in anti_dependence and output_dependence? */
2245 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2246 return 1;
4958fe6e 2247
1617c276 2248 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2249 varies);
ea0cb7ae 2250}
2251
d10cfa8d 2252/* Returns nonzero if a write to X might alias a previous read from
b04fab2a 2253 (or, if WRITEP is nonzero, a write to) MEM. */
ea0cb7ae 2254
fe69e4fe 2255static int
b04fab2a 2256write_dependence_p (rtx mem, rtx x, int writep)
ea0cb7ae 2257{
35d3eedd 2258 rtx x_addr, mem_addr;
6a0934dd 2259 rtx fixed_scalar;
9ee7cac5 2260 rtx base;
35d3eedd 2261
ea0cb7ae 2262 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2263 return 1;
2264
a57f4c4d 2265 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2266 This is used in epilogue deallocation functions. */
2267 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2268 return 1;
2269 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2270 return 1;
2271
1617c276 2272 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2273 return 0;
2274
b04fab2a 2275 /* A read from read-only memory can't conflict with read-write memory. */
2276 if (!writep && MEM_READONLY_P (mem))
2277 return 0;
002fe3cb 2278
ddb3d16f 2279 if (nonoverlapping_memrefs_p (x, mem))
2280 return 0;
2281
002fe3cb 2282 x_addr = get_addr (XEXP (x, 0));
2283 mem_addr = get_addr (XEXP (mem, 0));
2284
9ee7cac5 2285 if (! writep)
2286 {
002fe3cb 2287 base = find_base_term (mem_addr);
9ee7cac5 2288 if (base && (GET_CODE (base) == LABEL_REF
2289 || (GET_CODE (base) == SYMBOL_REF
2290 && CONSTANT_POOL_ADDRESS_P (base))))
2291 return 0;
2292 }
2293
1617c276 2294 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2295 GET_MODE (mem)))
b5ba9f3a 2296 return 0;
2297
1617c276 2298 x_addr = canon_rtx (x_addr);
2299 mem_addr = canon_rtx (mem_addr);
35d3eedd 2300
6a0934dd 2301 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2302 SIZE_FOR_MODE (x), x_addr, 0))
2303 return 0;
2304
9342ee68 2305 fixed_scalar
1617c276 2306 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2307 rtx_addr_varies_p);
2308
6a0934dd 2309 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2310 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2311}
2312
2313/* Anti dependence: X is written after read in MEM takes place. */
2314
2315int
aecda0d6 2316anti_dependence (rtx mem, rtx x)
6a0934dd 2317{
b04fab2a 2318 return write_dependence_p (mem, x, /*writep=*/0);
ea0cb7ae 2319}
2320
2321/* Output dependence: X is written after store in MEM takes place. */
2322
2323int
aecda0d6 2324output_dependence (rtx mem, rtx x)
ea0cb7ae 2325{
b04fab2a 2326 return write_dependence_p (mem, x, /*writep=*/1);
ea0cb7ae 2327}
c352cbc7 2328\f
2329/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2330 something which is not local to the function and is not constant. */
142131ed 2331
2332static int
aecda0d6 2333nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
142131ed 2334{
c352cbc7 2335 rtx x = *loc;
142131ed 2336 rtx base;
142131ed 2337 int regno;
2338
c352cbc7 2339 if (! x)
2340 return 0;
142131ed 2341
c352cbc7 2342 switch (GET_CODE (x))
142131ed 2343 {
2344 case SUBREG:
8ad4c111 2345 if (REG_P (SUBREG_REG (x)))
142131ed 2346 {
2347 /* Global registers are not local. */
2348 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
701e46d0 2349 && global_regs[subreg_regno (x)])
142131ed 2350 return 1;
2351 return 0;
2352 }
2353 break;
2354
2355 case REG:
2356 regno = REGNO (x);
2357 /* Global registers are not local. */
2358 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2359 return 1;
2360 return 0;
2361
2362 case SCRATCH:
2363 case PC:
2364 case CC0:
2365 case CONST_INT:
2366 case CONST_DOUBLE:
886cfd4f 2367 case CONST_VECTOR:
142131ed 2368 case CONST:
2369 case LABEL_REF:
2370 return 0;
2371
2372 case SYMBOL_REF:
2373 /* Constants in the function's constants pool are constant. */
2374 if (CONSTANT_POOL_ADDRESS_P (x))
2375 return 0;
2376 return 1;
2377
2378 case CALL:
1addbe73 2379 /* Non-constant calls and recursion are not local. */
142131ed 2380 return 1;
2381
2382 case MEM:
2383 /* Be overly conservative and consider any volatile memory
2384 reference as not local. */
2385 if (MEM_VOLATILE_P (x))
2386 return 1;
2387 base = find_base_term (XEXP (x, 0));
2388 if (base)
2389 {
3a935f06 2390 /* A Pmode ADDRESS could be a reference via the structure value
2391 address or static chain. Such memory references are nonlocal.
2392
2393 Thus, we have to examine the contents of the ADDRESS to find
2394 out if this is a local reference or not. */
2395 if (GET_CODE (base) == ADDRESS
2396 && GET_MODE (base) == Pmode
2397 && (XEXP (base, 0) == stack_pointer_rtx
2398 || XEXP (base, 0) == arg_pointer_rtx
2399#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2400 || XEXP (base, 0) == hard_frame_pointer_rtx
2401#endif
2402 || XEXP (base, 0) == frame_pointer_rtx))
142131ed 2403 return 0;
2404 /* Constants in the function's constant pool are constant. */
2405 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2406 return 0;
2407 }
2408 return 1;
2409
1addbe73 2410 case UNSPEC_VOLATILE:
142131ed 2411 case ASM_INPUT:
142131ed 2412 return 1;
2413
1addbe73 2414 case ASM_OPERANDS:
2415 if (MEM_VOLATILE_P (x))
2416 return 1;
2417
d632b59a 2418 /* Fall through. */
1addbe73 2419
142131ed 2420 default:
2421 break;
2422 }
2423
c352cbc7 2424 return 0;
2425}
2426
d10cfa8d 2427/* Returns nonzero if X might mention something which is not
c352cbc7 2428 local to the function and is not constant. */
142131ed 2429
c352cbc7 2430static int
aecda0d6 2431nonlocal_mentioned_p (rtx x)
c352cbc7 2432{
c352cbc7 2433 if (INSN_P (x))
2434 {
6d7dc5b9 2435 if (CALL_P (x))
c352cbc7 2436 {
2437 if (! CONST_OR_PURE_CALL_P (x))
2438 return 1;
2439 x = CALL_INSN_FUNCTION_USAGE (x);
2440 if (x == 0)
2441 return 0;
9342ee68 2442 }
c352cbc7 2443 else
9342ee68 2444 x = PATTERN (x);
c352cbc7 2445 }
2446
2447 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2448}
2449
2450/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2451 something which is not local to the function and is not constant. */
2452
2453static int
aecda0d6 2454nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c352cbc7 2455{
2456 rtx x = *loc;
2457
2458 if (! x)
2459 return 0;
2460
2461 switch (GET_CODE (x))
2462 {
2463 case MEM:
2464 case REG:
2465 case SYMBOL_REF:
2466 case SUBREG:
2467 return nonlocal_mentioned_p (x);
2468
2469 case CALL:
2470 /* Non-constant calls and recursion are not local. */
2471 return 1;
2472
2473 case SET:
2474 if (nonlocal_mentioned_p (SET_SRC (x)))
2475 return 1;
2476
e16ceb8e 2477 if (MEM_P (SET_DEST (x)))
c352cbc7 2478 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2479
2480 /* If the destination is anything other than a CC0, PC,
2481 MEM, REG, or a SUBREG of a REG that occupies all of
2482 the REG, then X references nonlocal memory if it is
2483 mentioned in the destination. */
2484 if (GET_CODE (SET_DEST (x)) != CC0
2485 && GET_CODE (SET_DEST (x)) != PC
8ad4c111 2486 && !REG_P (SET_DEST (x))
c352cbc7 2487 && ! (GET_CODE (SET_DEST (x)) == SUBREG
8ad4c111 2488 && REG_P (SUBREG_REG (SET_DEST (x)))
c352cbc7 2489 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2490 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2491 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2492 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2493 return nonlocal_mentioned_p (SET_DEST (x));
2494 return 0;
2495
2496 case CLOBBER:
e16ceb8e 2497 if (MEM_P (XEXP (x, 0)))
c352cbc7 2498 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2499 return 0;
2500
2501 case USE:
2502 return nonlocal_mentioned_p (XEXP (x, 0));
2503
2504 case ASM_INPUT:
2505 case UNSPEC_VOLATILE:
2506 return 1;
2507
2508 case ASM_OPERANDS:
2509 if (MEM_VOLATILE_P (x))
2510 return 1;
2511
d632b59a 2512 /* Fall through. */
c352cbc7 2513
2514 default:
2515 break;
2516 }
2517
2518 return 0;
2519}
2520
d10cfa8d 2521/* Returns nonzero if X might reference something which is not
c352cbc7 2522 local to the function and is not constant. */
2523
2524static int
aecda0d6 2525nonlocal_referenced_p (rtx x)
c352cbc7 2526{
c352cbc7 2527 if (INSN_P (x))
2528 {
6d7dc5b9 2529 if (CALL_P (x))
c352cbc7 2530 {
2531 if (! CONST_OR_PURE_CALL_P (x))
2532 return 1;
2533 x = CALL_INSN_FUNCTION_USAGE (x);
2534 if (x == 0)
2535 return 0;
9342ee68 2536 }
c352cbc7 2537 else
9342ee68 2538 x = PATTERN (x);
c352cbc7 2539 }
2540
2541 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2542}
2543
2544/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2545 something which is not local to the function and is not constant. */
2546
2547static int
aecda0d6 2548nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c352cbc7 2549{
2550 rtx x = *loc;
2551
2552 if (! x)
2553 return 0;
2554
2555 switch (GET_CODE (x))
2556 {
2557 case CALL:
2558 /* Non-constant calls and recursion are not local. */
2559 return 1;
2560
2561 case PRE_INC:
2562 case PRE_DEC:
2563 case POST_INC:
2564 case POST_DEC:
2565 case PRE_MODIFY:
2566 case POST_MODIFY:
2567 return nonlocal_mentioned_p (XEXP (x, 0));
2568
2569 case SET:
2570 if (nonlocal_mentioned_p (SET_DEST (x)))
2571 return 1;
2572 return nonlocal_set_p (SET_SRC (x));
2573
2574 case CLOBBER:
2575 return nonlocal_mentioned_p (XEXP (x, 0));
2576
2577 case USE:
2578 return 0;
2579
2580 case ASM_INPUT:
2581 case UNSPEC_VOLATILE:
2582 return 1;
2583
2584 case ASM_OPERANDS:
2585 if (MEM_VOLATILE_P (x))
2586 return 1;
2587
d632b59a 2588 /* Fall through. */
c352cbc7 2589
2590 default:
2591 break;
2592 }
142131ed 2593
2594 return 0;
2595}
2596
d10cfa8d 2597/* Returns nonzero if X might set something which is not
c352cbc7 2598 local to the function and is not constant. */
2599
2600static int
aecda0d6 2601nonlocal_set_p (rtx x)
c352cbc7 2602{
c352cbc7 2603 if (INSN_P (x))
2604 {
6d7dc5b9 2605 if (CALL_P (x))
c352cbc7 2606 {
2607 if (! CONST_OR_PURE_CALL_P (x))
2608 return 1;
2609 x = CALL_INSN_FUNCTION_USAGE (x);
2610 if (x == 0)
2611 return 0;
9342ee68 2612 }
c352cbc7 2613 else
9342ee68 2614 x = PATTERN (x);
c352cbc7 2615 }
2616
2617 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2618}
2619
01960f67 2620/* Mark the function if it is pure or constant. */
142131ed 2621
2622void
aecda0d6 2623mark_constant_function (void)
142131ed 2624{
2625 rtx insn;
c352cbc7 2626 int nonlocal_memory_referenced;
142131ed 2627
4f8e9d5c 2628 if (TREE_READONLY (current_function_decl)
1addbe73 2629 || DECL_IS_PURE (current_function_decl)
142131ed 2630 || TREE_THIS_VOLATILE (current_function_decl)
4f8e9d5c 2631 || current_function_has_nonlocal_goto
883b2e73 2632 || !targetm.binds_local_p (current_function_decl))
142131ed 2633 return;
2634
080f162d 2635 /* A loop might not return which counts as a side effect. */
ecb7b891 2636 if (mark_dfs_back_edges ())
080f162d 2637 return;
2638
c352cbc7 2639 nonlocal_memory_referenced = 0;
1addbe73 2640
2641 init_alias_analysis ();
2642
c352cbc7 2643 /* Determine if this is a constant or pure function. */
142131ed 2644
2645 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c352cbc7 2646 {
2647 if (! INSN_P (insn))
2648 continue;
1addbe73 2649
c352cbc7 2650 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2651 || volatile_refs_p (PATTERN (insn)))
9342ee68 2652 break;
142131ed 2653
c352cbc7 2654 if (! nonlocal_memory_referenced)
2655 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2656 }
9342ee68 2657
c352cbc7 2658 end_alias_analysis ();
9342ee68 2659
142131ed 2660 /* Mark the function. */
9342ee68 2661
c352cbc7 2662 if (insn)
2663 ;
2664 else if (nonlocal_memory_referenced)
01960f67 2665 {
2666 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2667 DECL_IS_PURE (current_function_decl) = 1;
2668 }
c352cbc7 2669 else
01960f67 2670 {
2671 cgraph_rtl_info (current_function_decl)->const_function = 1;
2672 TREE_READONLY (current_function_decl) = 1;
2673 }
142131ed 2674}
c352cbc7 2675\f
35d3eedd 2676
35d3eedd 2677void
aecda0d6 2678init_alias_once (void)
35d3eedd 2679{
19cb6b50 2680 int i;
35d3eedd 2681
35d3eedd 2682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2683 /* Check whether this register can hold an incoming pointer
2684 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2c0e001b 2685 numbers, so translate if necessary due to register windows. */
35d3eedd 2686 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2687 && HARD_REGNO_MODE_OK (i, Pmode))
0c7f5242 2688 static_reg_base_value[i]
2689 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2690
0c7f5242 2691 static_reg_base_value[STACK_POINTER_REGNUM]
2692 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2693 static_reg_base_value[ARG_POINTER_REGNUM]
2694 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2695 static_reg_base_value[FRAME_POINTER_REGNUM]
2696 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2697#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2698 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2699 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2700#endif
2701}
2702
c7bf7428 2703/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2704 to be memory reference. */
2705static bool memory_modified;
2706static void
aecda0d6 2707memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
c7bf7428 2708{
e16ceb8e 2709 if (MEM_P (x))
c7bf7428 2710 {
2711 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2712 memory_modified = true;
2713 }
2714}
2715
2716
2717/* Return true when INSN possibly modify memory contents of MEM
0c6d8c36 2718 (i.e. address can be modified). */
c7bf7428 2719bool
aecda0d6 2720memory_modified_in_insn_p (rtx mem, rtx insn)
c7bf7428 2721{
2722 if (!INSN_P (insn))
2723 return false;
2724 memory_modified = false;
2725 note_stores (PATTERN (insn), memory_modified_1, mem);
2726 return memory_modified;
2727}
2728
73f5c1e3 2729/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2730 array. */
2731
ea0cb7ae 2732void
aecda0d6 2733init_alias_analysis (void)
ea0cb7ae 2734{
e5b19a8c 2735 unsigned int maxreg = max_reg_num ();
37b864db 2736 int changed, pass;
19cb6b50 2737 int i;
2738 unsigned int ui;
2739 rtx insn;
ea0cb7ae 2740
376c21d1 2741 timevar_push (TV_ALIAS_ANALYSIS);
2742
12cb06ad 2743 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2744 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2745 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
ea0cb7ae 2746
35d3eedd 2747 /* Overallocate reg_base_value to allow some growth during loop
2748 optimization. Loop unrolling can create a large number of
2749 registers. */
e5b19a8c 2750 if (old_reg_base_value)
2751 {
2752 reg_base_value = old_reg_base_value;
2753 /* If varray gets large zeroing cost may get important. */
2754 if (VARRAY_SIZE (reg_base_value) > 256
2755 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2756 VARRAY_GROW (reg_base_value, maxreg);
2757 VARRAY_CLEAR (reg_base_value);
2758 if (VARRAY_SIZE (reg_base_value) < maxreg)
2759 VARRAY_GROW (reg_base_value, maxreg);
2760 }
2761 else
2762 {
2763 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2764 }
c2e94b25 2765
e5b19a8c 2766 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2767 reg_seen = xmalloc (maxreg);
06c5c535 2768
2769 /* The basic idea is that each pass through this loop will use the
2770 "constant" information from the previous pass to propagate alias
2771 information through another level of assignments.
2772
2773 This could get expensive if the assignment chains are long. Maybe
2774 we should throttle the number of iterations, possibly based on
35d3eedd 2775 the optimization level or flag_expensive_optimizations.
06c5c535 2776
2777 We could propagate more information in the first pass by making use
2778 of REG_N_SETS to determine immediately that the alias information
37b864db 2779 for a pseudo is "constant".
2780
2781 A program with an uninitialized variable can cause an infinite loop
2782 here. Instead of doing a full dataflow analysis to detect such problems
2783 we just cap the number of iterations for the loop.
2784
2785 The state of the arrays for the set chain in question does not matter
2786 since the program has undefined behavior. */
35d3eedd 2787
37b864db 2788 pass = 0;
35d3eedd 2789 do
06c5c535 2790 {
2791 /* Assume nothing will change this iteration of the loop. */
2792 changed = 0;
2793
06c5c535 2794 /* We want to assign the same IDs each iteration of this loop, so
2795 start counting from zero each iteration of the loop. */
2796 unique_id = 0;
2797
35a3065a 2798 /* We're at the start of the function each iteration through the
06c5c535 2799 loop, so we're copying arguments. */
e5be0cc6 2800 copying_arguments = true;
ea0cb7ae 2801
35d3eedd 2802 /* Wipe the potential alias information clean for this pass. */
e5b19a8c 2803 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
f0ad0992 2804
35d3eedd 2805 /* Wipe the reg_seen array clean. */
e5b19a8c 2806 memset (reg_seen, 0, maxreg);
ea0cb7ae 2807
35d3eedd 2808 /* Mark all hard registers which may contain an address.
2809 The stack, frame and argument pointers may contain an address.
2810 An argument register which can hold a Pmode value may contain
2811 an address even if it is not in BASE_REGS.
f0ad0992 2812
35d3eedd 2813 The address expression is VOIDmode for an argument and
2814 Pmode for other registers. */
2815
e26fd9bc 2816 memcpy (new_reg_base_value, static_reg_base_value,
2817 FIRST_PSEUDO_REGISTER * sizeof (rtx));
35d3eedd 2818
06c5c535 2819 /* Walk the insns adding values to the new_reg_base_value array. */
2820 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
ea0cb7ae 2821 {
9204e736 2822 if (INSN_P (insn))
06c5c535 2823 {
35d3eedd 2824 rtx note, set;
d6cb6164 2825
2826#if defined (HAVE_prologue) || defined (HAVE_epilogue)
35a3065a 2827 /* The prologue/epilogue insns are not threaded onto the
fd037eda 2828 insn chain until after reload has completed. Thus,
2829 there is no sense wasting time checking if INSN is in
2830 the prologue/epilogue until after reload has completed. */
2831 if (reload_completed
2832 && prologue_epilogue_contains (insn))
d6cb6164 2833 continue;
2834#endif
2835
06c5c535 2836 /* If this insn has a noalias note, process it, Otherwise,
2837 scan for sets. A simple set will have no side effects
2c0e001b 2838 which could change the base value of any other register. */
35d3eedd 2839
06c5c535 2840 if (GET_CODE (PATTERN (insn)) == SET
d6cb6164 2841 && REG_NOTES (insn) != 0
2842 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
ec8895d7 2843 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
06c5c535 2844 else
ec8895d7 2845 note_stores (PATTERN (insn), record_set, NULL);
35d3eedd 2846
2847 set = single_set (insn);
2848
2849 if (set != 0
8ad4c111 2850 && REG_P (SET_DEST (set))
9db10305 2851 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
35d3eedd 2852 {
9db10305 2853 unsigned int regno = REGNO (SET_DEST (set));
970c0c06 2854 rtx src = SET_SRC (set);
12cb06ad 2855 rtx t;
970c0c06 2856
2857 if (REG_NOTES (insn) != 0
2858 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2859 && REG_N_SETS (regno) == 1)
2860 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
97fb4325 2862 && ! rtx_varies_p (XEXP (note, 0), 1)
12cb06ad 2863 && ! reg_overlap_mentioned_p (SET_DEST (set),
2864 XEXP (note, 0)))
970c0c06 2865 {
12cb06ad 2866 set_reg_known_value (regno, XEXP (note, 0));
2867 set_reg_known_equiv_p (regno,
2868 REG_NOTE_KIND (note) == REG_EQUIV);
970c0c06 2869 }
2870 else if (REG_N_SETS (regno) == 1
2871 && GET_CODE (src) == PLUS
8ad4c111 2872 && REG_P (XEXP (src, 0))
12cb06ad 2873 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
970c0c06 2874 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2875 {
12cb06ad 2876 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2877 set_reg_known_value (regno, t);
2878 set_reg_known_equiv_p (regno, 0);
970c0c06 2879 }
2880 else if (REG_N_SETS (regno) == 1
2881 && ! rtx_varies_p (src, 1))
2882 {
12cb06ad 2883 set_reg_known_value (regno, src);
2884 set_reg_known_equiv_p (regno, 0);
970c0c06 2885 }
35d3eedd 2886 }
06c5c535 2887 }
6d7dc5b9 2888 else if (NOTE_P (insn)
06c5c535 2889 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
e5be0cc6 2890 copying_arguments = false;
35d3eedd 2891 }
06c5c535 2892
35d3eedd 2893 /* Now propagate values from new_reg_base_value to reg_base_value. */
64db345d 2894 gcc_assert (maxreg == (unsigned int) max_reg_num());
2895
e5b19a8c 2896 for (ui = 0; ui < maxreg; ui++)
35d3eedd 2897 {
274c11d8 2898 if (new_reg_base_value[ui]
e5b19a8c 2899 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2900 && ! rtx_equal_p (new_reg_base_value[ui],
2901 VARRAY_RTX (reg_base_value, ui)))
06c5c535 2902 {
e5b19a8c 2903 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
35d3eedd 2904 changed = 1;
06c5c535 2905 }
ea0cb7ae 2906 }
ea0cb7ae 2907 }
35d3eedd 2908 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
ea0cb7ae 2909
2910 /* Fill in the remaining entries. */
12cb06ad 2911 for (i = 0; i < (int)reg_known_value_size; i++)
ea0cb7ae 2912 if (reg_known_value[i] == 0)
12cb06ad 2913 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
ea0cb7ae 2914
ea0cb7ae 2915 /* Simplify the reg_base_value array so that no register refers to
2916 another register, except to special registers indirectly through
2917 ADDRESS expressions.
2918
2919 In theory this loop can take as long as O(registers^2), but unless
2920 there are very long dependency chains it will run in close to linear
37b864db 2921 time.
2922
2923 This loop may not be needed any longer now that the main loop does
2924 a better job at propagating alias information. */
2925 pass = 0;
ea0cb7ae 2926 do
2927 {
2928 changed = 0;
37b864db 2929 pass++;
e5b19a8c 2930 for (ui = 0; ui < maxreg; ui++)
ea0cb7ae 2931 {
e5b19a8c 2932 rtx base = VARRAY_RTX (reg_base_value, ui);
8ad4c111 2933 if (base && REG_P (base))
ea0cb7ae 2934 {
9db10305 2935 unsigned int base_regno = REGNO (base);
274c11d8 2936 if (base_regno == ui) /* register set from itself */
e5b19a8c 2937 VARRAY_RTX (reg_base_value, ui) = 0;
ea0cb7ae 2938 else
e5b19a8c 2939 VARRAY_RTX (reg_base_value, ui)
2940 = VARRAY_RTX (reg_base_value, base_regno);
ea0cb7ae 2941 changed = 1;
2942 }
2943 }
2944 }
37b864db 2945 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
ea0cb7ae 2946
7098ef4a 2947 /* Clean up. */
2948 free (new_reg_base_value);
06c5c535 2949 new_reg_base_value = 0;
7098ef4a 2950 free (reg_seen);
ea0cb7ae 2951 reg_seen = 0;
376c21d1 2952 timevar_pop (TV_ALIAS_ANALYSIS);
ea0cb7ae 2953}
2954
2955void
aecda0d6 2956end_alias_analysis (void)
ea0cb7ae 2957{
e5b19a8c 2958 old_reg_base_value = reg_base_value;
12cb06ad 2959 ggc_free (reg_known_value);
ea0cb7ae 2960 reg_known_value = 0;
c2e94b25 2961 reg_known_value_size = 0;
12cb06ad 2962 free (reg_known_equiv_p);
7098ef4a 2963 reg_known_equiv_p = 0;
1a6c3add 2964 if (alias_invariant)
2965 {
0fde16b4 2966 ggc_free (alias_invariant);
1a6c3add 2967 alias_invariant = 0;
e5b19a8c 2968 alias_invariant_size = 0;
1a6c3add 2969 }
ea0cb7ae 2970}
77fce4cd 2971\f
2972/* Do control and data flow analysis; write some of the results to the
2973 dump file. */
2974static void
2975rest_of_handle_cfg (void)
2976{
2977 if (dump_file)
2978 dump_flow_info (dump_file);
2979 if (optimize)
2980 cleanup_cfg (CLEANUP_EXPENSIVE
2981 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2982
2983 /* It may make more sense to mark constant functions after dead code is
2984 eliminated by life_analysis, but we need to do it early, as -fprofile-arcs
2985 may insert code making function non-constant, but we still must consider
2986 it as constant, otherwise -fbranch-probabilities will not read data back.
2987
2988 life_analysis rarely eliminates modification of external memory.
2989
2990 FIXME: now with tree based profiling we are in the trap described above
2991 again. It seems to be easiest to disable the optimization for time
2992 being before the problem is either solved by moving the transformation
2993 to the IPA level (we need the CFG for this) or the very early optimization
2994 passes are made to ignore the const/pure flags so code does not change. */
2995 if (optimize
2996 && (!flag_tree_based_profiling
2997 || (!profile_arc_flag && !flag_branch_probabilities)))
2998 {
2999 /* Alias analysis depends on this information and mark_constant_function
3000 depends on alias analysis. */
3001 reg_scan (get_insns (), max_reg_num ());
3002 mark_constant_function ();
3003 }
3004}
3005
3006struct tree_opt_pass pass_cfg =
3007{
3008 "cfg", /* name */
3009 NULL, /* gate */
3010 rest_of_handle_cfg, /* execute */
3011 NULL, /* sub */
3012 NULL, /* next */
3013 0, /* static_pass_number */
3014 TV_FLOW, /* tv_id */
3015 0, /* properties_required */
3016 0, /* properties_provided */
3017 0, /* properties_destroyed */
3018 0, /* todo_flags_start */
3019 TODO_dump_func, /* todo_flags_finish */
3020 'f' /* letter */
3021};
3022
1f3233d1 3023
3024#include "gt-alias.h"