]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
re PR middle-end/41805 (possible LTO termination bug)
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
66647d44 3 2007, 2008, 2009 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
ef330312 46#include "tree-pass.h"
ea900239 47#include "ipa-type-escape.h"
6fb5fa3c 48#include "df.h"
55b34b5f
RG
49#include "tree-ssa-alias.h"
50#include "pointer-set.h"
51#include "tree-flow.h"
ea900239
DB
52
53/* The aliasing API provided here solves related but different problems:
54
c22cacf3 55 Say there exists (in c)
ea900239
DB
56
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
61
62 struct Y y2, *py;
63 struct Z z2, *pz;
64
65
66 py = &px1.y1;
67 px2 = &x1;
68
69 Consider the four questions:
70
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
76
77 The answer to these questions can be yes, yes, yes, and maybe.
78
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
83
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
91
92 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 93 instances do not escape across the compilation boundary.
ea900239
DB
94
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
102*/
3932261a
MM
103
104/* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
3932261a 108
01d28c3f 109 struct S { int i; double d; };
3932261a
MM
110
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
c22cacf3
MS
115 struct S
116 / \
3932261a 117 / \
c22cacf3
MS
118 |/_ _\|
119 int double
3932261a 120
ac3d9668
RK
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
124
3bdf5ad1
RK
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
95bd1dd7 127 past immediate descendants, however, since we propagate all
3bdf5ad1 128 grandchildren up one level.
3932261a
MM
129
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
133
7e5487a2 134struct GTY(()) alias_set_entry_d {
3932261a 135 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 136 alias_set_type alias_set;
3932261a 137
4c067742
RG
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
141
3932261a 142 /* The children of the alias set. These are not just the immediate
95bd1dd7 143 children, but, in fact, all descendants. So, if we have:
3932261a 144
ca7fd9cd 145 struct T { struct S s; float f; }
3932261a
MM
146
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
b604074c 149 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c 150};
7e5487a2 151typedef struct alias_set_entry_d *alias_set_entry;
9ae8ffe7 152
ed7a4b4b 153static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 154static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 155static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
156static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158static rtx find_base_value (rtx);
4f588890 159static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04 160static int insert_subset_children (splay_tree_node, void*);
4862826d 161static alias_set_entry get_alias_set_entry (alias_set_type);
4f588890
KG
162static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164static int aliases_everything_p (const_rtx);
165static bool nonoverlapping_component_refs_p (const_tree, const_tree);
4682ae04
AJ
166static tree decl_for_component_ref (tree);
167static rtx adjust_offset_for_component_ref (tree, rtx);
4f588890 168static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 169
aa317c97 170static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
171
172/* Set up all info needed to perform alias analysis on memory references. */
173
d4b60170 174/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
175#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
41472af8 177/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 183
ea64ef27 184/* Cap the number of passes we make over the insns propagating alias
ac3d9668 185 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 186#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 187
9ae8ffe7
JL
188/* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
ca7fd9cd 196 the stack, frame, and argument pointers.
b3b5ad95
JL
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
2a2c8203 206
08c79682 207static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 208static rtx *new_reg_base_value;
c582d54a
JH
209
210/* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
08c79682 213static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 214
bf1660a6
JL
215/* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
08c79682
KH
219#define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 222
c13e8210 223/* Vector indexed by N giving the initial (unchanging) value known for
bb1acb3e
RH
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
9ae8ffe7
JL
227
228/* Indicates number of valid entries in reg_known_value. */
bb1acb3e 229static GTY(()) unsigned int reg_known_value_size;
9ae8ffe7
JL
230
231/* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
bb1acb3e 243static bool *reg_known_equiv_p;
9ae8ffe7 244
2a2c8203
JC
245/* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 247static bool copying_arguments;
9ae8ffe7 248
1a5640b4
KH
249DEF_VEC_P(alias_set_entry);
250DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
3932261a 252/* The splay-tree used to store the various alias set entries. */
1a5640b4 253static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 254\f
55b34b5f
RG
255/* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
258
259static bool
260ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261{
262 tree expr = MEM_EXPR (mem);
263 tree base;
264
265 if (!expr)
266 return false;
267
b0e96404
RG
268 /* If MEM_OFFSET or MEM_SIZE are NULL punt. */
269 if (!MEM_OFFSET (mem)
270 || !MEM_SIZE (mem))
271 return false;
272
55b34b5f
RG
273 ao_ref_init (ref, expr);
274
275 /* Get the base of the reference and see if we have to reject or
276 adjust it. */
277 base = ao_ref_base (ref);
278 if (base == NULL_TREE)
279 return false;
280
281 /* If this is a pointer dereference of a non-SSA_NAME punt.
282 ??? We could replace it with a pointer to anything. */
283 if (INDIRECT_REF_P (base)
284 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285 return false;
286
c9b2f286
RG
287 /* The tree oracle doesn't like to have these. */
288 if (TREE_CODE (base) == FUNCTION_DECL
289 || TREE_CODE (base) == LABEL_DECL)
290 return false;
291
55b34b5f
RG
292 /* If this is a reference based on a partitioned decl replace the
293 base with an INDIRECT_REF of the pointer representative we
294 created during stack slot partitioning. */
295 if (TREE_CODE (base) == VAR_DECL
296 && ! TREE_STATIC (base)
297 && cfun->gimple_df->decls_to_pointers != NULL)
298 {
299 void *namep;
300 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
301 if (namep)
302 {
303 ref->base_alias_set = get_alias_set (base);
304 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
305 }
306 }
307
308 ref->ref_alias_set = MEM_ALIAS_SET (mem);
309
b0e96404
RG
310 /* If the base decl is a parameter we can have negative MEM_OFFSET in
311 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
312 here. */
313 if (INTVAL (MEM_OFFSET (mem)) < 0
314 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
315 * BITS_PER_UNIT) == ref->size)
316 return true;
317
318 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
319 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
320
321 /* The MEM may extend into adjacent fields, so adjust max_size if
322 necessary. */
323 if (ref->max_size != -1
324 && ref->size > ref->max_size)
325 ref->max_size = ref->size;
326
327 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
328 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
329 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
330 && (ref->offset < 0
331 || (DECL_P (ref->base)
332 && (!host_integerp (DECL_SIZE (ref->base), 1)
333 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
334 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
335 return false;
55b34b5f
RG
336
337 return true;
338}
339
340/* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
343
344static bool
345rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
346{
347 ao_ref ref1, ref2;
348
349 if (!ao_ref_from_mem (&ref1, x)
350 || !ao_ref_from_mem (&ref2, mem))
351 return true;
352
353 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
354}
355
3932261a
MM
356/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
357 such an entry, or NULL otherwise. */
358
9ddb66ca 359static inline alias_set_entry
4862826d 360get_alias_set_entry (alias_set_type alias_set)
3932261a 361{
1a5640b4 362 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
363}
364
ac3d9668
RK
365/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
366 the two MEMs cannot alias each other. */
3932261a 367
9ddb66ca 368static inline int
4f588890 369mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 370{
3932261a
MM
371/* Perform a basic sanity check. Namely, that there are no alias sets
372 if we're not using strict aliasing. This helps to catch bugs
373 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
374 where a MEM is allocated in some way other than by the use of
375 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
376 use alias sets to indicate that spilled registers cannot alias each
377 other, we might need to remove this check. */
298e6adc
NS
378 gcc_assert (flag_strict_aliasing
379 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 380
1da68f56
RK
381 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
382}
3932261a 383
1da68f56
RK
384/* Insert the NODE into the splay tree given by DATA. Used by
385 record_alias_subset via splay_tree_foreach. */
386
387static int
4682ae04 388insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
389{
390 splay_tree_insert ((splay_tree) data, node->key, node->value);
391
392 return 0;
393}
394
c58936b6
DB
395/* Return true if the first alias set is a subset of the second. */
396
397bool
4862826d 398alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
399{
400 alias_set_entry ase;
401
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
405
406 /* Otherwise, check if set1 is a subset of set2. */
407 ase = get_alias_set_entry (set2);
408 if (ase != 0
a7a512be
RG
409 && ((ase->has_zero_child && set1 == 0)
410 || splay_tree_lookup (ase->children,
411 (splay_tree_key) set1)))
c58936b6
DB
412 return true;
413 return false;
414}
415
1da68f56
RK
416/* Return 1 if the two specified alias sets may conflict. */
417
418int
4862826d 419alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
420{
421 alias_set_entry ase;
422
836f7794
EB
423 /* The easy case. */
424 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 425 return 1;
3932261a 426
3bdf5ad1 427 /* See if the first alias set is a subset of the second. */
1da68f56 428 ase = get_alias_set_entry (set1);
2bf105ab
RK
429 if (ase != 0
430 && (ase->has_zero_child
431 || splay_tree_lookup (ase->children,
1da68f56
RK
432 (splay_tree_key) set2)))
433 return 1;
3932261a
MM
434
435 /* Now do the same, but with the alias sets reversed. */
1da68f56 436 ase = get_alias_set_entry (set2);
2bf105ab
RK
437 if (ase != 0
438 && (ase->has_zero_child
439 || splay_tree_lookup (ase->children,
1da68f56
RK
440 (splay_tree_key) set1)))
441 return 1;
3932261a 442
1da68f56 443 /* The two alias sets are distinct and neither one is the
836f7794 444 child of the other. Therefore, they cannot conflict. */
1da68f56 445 return 0;
3932261a 446}
5399d643 447
71a6fe66
BM
448static int
449walk_mems_2 (rtx *x, rtx mem)
450{
451 if (MEM_P (*x))
452 {
453 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
454 return 1;
455
456 return -1;
457 }
458 return 0;
459}
460
461static int
462walk_mems_1 (rtx *x, rtx *pat)
463{
464 if (MEM_P (*x))
465 {
466 /* Visit all MEMs in *PAT and check indepedence. */
467 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
468 /* Indicate that dependence was determined and stop traversal. */
469 return 1;
470
471 return -1;
472 }
473 return 0;
474}
475
476/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
477bool
478insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
479{
480 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
481 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
482 &PATTERN (insn2));
483}
484
836f7794 485/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
486
487int
4862826d 488alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
489{
490 if (set1 == 0 || set2 == 0 || set1 == set2)
491 return 1;
492
493 return 0;
494}
495
1da68f56
RK
496/* Return 1 if any MEM object of type T1 will always conflict (using the
497 dependency routines in this file) with any MEM object of type T2.
498 This is used when allocating temporary storage. If T1 and/or T2 are
499 NULL_TREE, it means we know nothing about the storage. */
500
501int
4682ae04 502objects_must_conflict_p (tree t1, tree t2)
1da68f56 503{
4862826d 504 alias_set_type set1, set2;
82d610ec 505
e8ea2809
RK
506 /* If neither has a type specified, we don't know if they'll conflict
507 because we may be using them to store objects of various types, for
508 example the argument and local variables areas of inlined functions. */
981a4c34 509 if (t1 == 0 && t2 == 0)
e8ea2809
RK
510 return 0;
511
1da68f56
RK
512 /* If they are the same type, they must conflict. */
513 if (t1 == t2
514 /* Likewise if both are volatile. */
515 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
516 return 1;
517
82d610ec
RK
518 set1 = t1 ? get_alias_set (t1) : 0;
519 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 520
836f7794
EB
521 /* We can't use alias_sets_conflict_p because we must make sure
522 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
523 t2 for which a pair of subobjects of these respective subtypes
524 overlaps on the stack. */
836f7794 525 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
526}
527\f
2039d7aa
RH
528/* Return true if all nested component references handled by
529 get_inner_reference in T are such that we should use the alias set
530 provided by the object at the heart of T.
531
532 This is true for non-addressable components (which don't have their
533 own alias set), as well as components of objects in alias set zero.
534 This later point is a special case wherein we wish to override the
535 alias set used by the component, but we don't have per-FIELD_DECL
536 assignable alias sets. */
537
538bool
22ea9ec0 539component_uses_parent_alias_set (const_tree t)
6e24b709 540{
afe84921
RH
541 while (1)
542 {
2039d7aa 543 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 544 if (!handled_component_p (t))
2039d7aa 545 return false;
afe84921
RH
546
547 switch (TREE_CODE (t))
548 {
549 case COMPONENT_REF:
550 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 551 return true;
afe84921
RH
552 break;
553
554 case ARRAY_REF:
555 case ARRAY_RANGE_REF:
556 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 557 return true;
afe84921
RH
558 break;
559
560 case REALPART_EXPR:
561 case IMAGPART_EXPR:
562 break;
563
564 default:
565 /* Bitfields and casts are never addressable. */
2039d7aa 566 return true;
afe84921
RH
567 }
568
569 t = TREE_OPERAND (t, 0);
2039d7aa
RH
570 if (get_alias_set (TREE_TYPE (t)) == 0)
571 return true;
afe84921 572 }
6e24b709
RK
573}
574
5006671f
RG
575/* Return the alias set for the memory pointed to by T, which may be
576 either a type or an expression. Return -1 if there is nothing
577 special about dereferencing T. */
578
579static alias_set_type
580get_deref_alias_set_1 (tree t)
581{
582 /* If we're not doing any alias analysis, just assume everything
583 aliases everything else. */
584 if (!flag_strict_aliasing)
585 return 0;
586
5b21f0f3 587 /* All we care about is the type. */
5006671f 588 if (! TYPE_P (t))
5b21f0f3 589 t = TREE_TYPE (t);
5006671f
RG
590
591 /* If we have an INDIRECT_REF via a void pointer, we don't
592 know anything about what that might alias. Likewise if the
593 pointer is marked that way. */
594 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
595 || TYPE_REF_CAN_ALIAS_ALL (t))
596 return 0;
597
598 return -1;
599}
600
601/* Return the alias set for the memory pointed to by T, which may be
602 either a type or an expression. */
603
604alias_set_type
605get_deref_alias_set (tree t)
606{
607 alias_set_type set = get_deref_alias_set_1 (t);
608
609 /* Fall back to the alias-set of the pointed-to type. */
610 if (set == -1)
611 {
612 if (! TYPE_P (t))
613 t = TREE_TYPE (t);
614 set = get_alias_set (TREE_TYPE (t));
615 }
616
617 return set;
618}
619
3bdf5ad1
RK
620/* Return the alias set for T, which may be either a type or an
621 expression. Call language-specific routine for help, if needed. */
622
4862826d 623alias_set_type
4682ae04 624get_alias_set (tree t)
3bdf5ad1 625{
4862826d 626 alias_set_type set;
3bdf5ad1
RK
627
628 /* If we're not doing any alias analysis, just assume everything
629 aliases everything else. Also return 0 if this or its type is
630 an error. */
631 if (! flag_strict_aliasing || t == error_mark_node
632 || (! TYPE_P (t)
633 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
634 return 0;
635
636 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
637 language-specific routine may make mutually-recursive calls to each other
638 to figure out what to do. At each juncture, we see if this is a tree
639 that the language may need to handle specially. First handle things that
738cc472 640 aren't types. */
f824e5c3 641 if (! TYPE_P (t))
3bdf5ad1 642 {
738cc472 643 tree inner = t;
738cc472 644
8ac61af7
RK
645 /* Remove any nops, then give the language a chance to do
646 something with this tree before we look at it. */
647 STRIP_NOPS (t);
ae2bcd98 648 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
649 if (set != -1)
650 return set;
651
738cc472 652 /* First see if the actual object referenced is an INDIRECT_REF from a
6fce44af
RK
653 restrict-qualified pointer or a "void *". */
654 while (handled_component_p (inner))
738cc472 655 {
6fce44af 656 inner = TREE_OPERAND (inner, 0);
8ac61af7 657 STRIP_NOPS (inner);
738cc472
RK
658 }
659
1b096a0a 660 if (INDIRECT_REF_P (inner))
738cc472 661 {
5006671f
RG
662 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
663 if (set != -1)
664 return set;
738cc472
RK
665 }
666
667 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 668 to, processing conversions as above. */
2039d7aa 669 while (component_uses_parent_alias_set (t))
f47e9b4e 670 {
6fce44af 671 t = TREE_OPERAND (t, 0);
8ac61af7
RK
672 STRIP_NOPS (t);
673 }
f824e5c3 674
738cc472
RK
675 /* If we've already determined the alias set for a decl, just return
676 it. This is necessary for C++ anonymous unions, whose component
677 variables don't look like union members (boo!). */
5755cd38 678 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 679 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
680 return MEM_ALIAS_SET (DECL_RTL (t));
681
f824e5c3
RK
682 /* Now all we care about is the type. */
683 t = TREE_TYPE (t);
3bdf5ad1
RK
684 }
685
3bdf5ad1 686 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 687 variant. */
3bdf5ad1 688 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
689
690 /* Always use the canonical type as well. If this is a type that
691 requires structural comparisons to identify compatible types
692 use alias set zero. */
693 if (TYPE_STRUCTURAL_EQUALITY_P (t))
694 return 0;
695 t = TYPE_CANONICAL (t);
696 /* Canonical types shouldn't form a tree nor should the canonical
697 type require structural equality checks. */
698 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
699
700 /* If this is a type with a known alias set, return it. */
738cc472 701 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
702 return TYPE_ALIAS_SET (t);
703
36784d0e
RG
704 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
705 if (!COMPLETE_TYPE_P (t))
706 {
707 /* For arrays with unknown size the conservative answer is the
708 alias set of the element type. */
709 if (TREE_CODE (t) == ARRAY_TYPE)
710 return get_alias_set (TREE_TYPE (t));
711
712 /* But return zero as a conservative answer for incomplete types. */
713 return 0;
714 }
715
3bdf5ad1 716 /* See if the language has special handling for this type. */
ae2bcd98 717 set = lang_hooks.get_alias_set (t);
8ac61af7 718 if (set != -1)
738cc472 719 return set;
2bf105ab 720
3bdf5ad1
RK
721 /* There are no objects of FUNCTION_TYPE, so there's no point in
722 using up an alias set for them. (There are, of course, pointers
723 and references to functions, but that's different.) */
e11e491d
RG
724 else if (TREE_CODE (t) == FUNCTION_TYPE
725 || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 726 set = 0;
74d86f4f
RH
727
728 /* Unless the language specifies otherwise, let vector types alias
729 their components. This avoids some nasty type punning issues in
730 normal usage. And indeed lets vectors be treated more like an
731 array slice. */
732 else if (TREE_CODE (t) == VECTOR_TYPE)
733 set = get_alias_set (TREE_TYPE (t));
734
4653cae5
RG
735 /* Unless the language specifies otherwise, treat array types the
736 same as their components. This avoids the asymmetry we get
737 through recording the components. Consider accessing a
738 character(kind=1) through a reference to a character(kind=1)[1:1].
739 Or consider if we want to assign integer(kind=4)[0:D.1387] and
740 integer(kind=4)[4] the same alias set or not.
741 Just be pragmatic here and make sure the array and its element
742 type get the same alias set assigned. */
743 else if (TREE_CODE (t) == ARRAY_TYPE
744 && !TYPE_NONALIASED_COMPONENT (t))
745 set = get_alias_set (TREE_TYPE (t));
746
3bdf5ad1
RK
747 else
748 /* Otherwise make a new alias set for this type. */
749 set = new_alias_set ();
750
751 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
752
753 /* If this is an aggregate type, we must record any component aliasing
754 information. */
1d79fd2c 755 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
756 record_component_aliases (t);
757
3bdf5ad1
RK
758 return set;
759}
760
761/* Return a brand-new alias set. */
762
4862826d 763alias_set_type
4682ae04 764new_alias_set (void)
3bdf5ad1 765{
3bdf5ad1 766 if (flag_strict_aliasing)
9ddb66ca 767 {
1a5640b4
KH
768 if (alias_sets == 0)
769 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
770 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
771 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 772 }
3bdf5ad1
RK
773 else
774 return 0;
775}
3932261a 776
01d28c3f
JM
777/* Indicate that things in SUBSET can alias things in SUPERSET, but that
778 not everything that aliases SUPERSET also aliases SUBSET. For example,
779 in C, a store to an `int' can alias a load of a structure containing an
780 `int', and vice versa. But it can't alias a load of a 'double' member
781 of the same structure. Here, the structure would be the SUPERSET and
782 `int' the SUBSET. This relationship is also described in the comment at
783 the beginning of this file.
784
785 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
786
787 It is illegal for SUPERSET to be zero; everything is implicitly a
788 subset of alias set zero. */
789
794511d2 790void
4862826d 791record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
792{
793 alias_set_entry superset_entry;
794 alias_set_entry subset_entry;
795
f47e9b4e
RK
796 /* It is possible in complex type situations for both sets to be the same,
797 in which case we can ignore this operation. */
798 if (superset == subset)
799 return;
800
298e6adc 801 gcc_assert (superset);
3932261a
MM
802
803 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 804 if (superset_entry == 0)
3932261a
MM
805 {
806 /* Create an entry for the SUPERSET, so that we have a place to
807 attach the SUBSET. */
7e5487a2 808 superset_entry = GGC_NEW (struct alias_set_entry_d);
3932261a 809 superset_entry->alias_set = superset;
ca7fd9cd 810 superset_entry->children
b604074c 811 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 812 superset_entry->has_zero_child = 0;
1a5640b4 813 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
814 }
815
2bf105ab
RK
816 if (subset == 0)
817 superset_entry->has_zero_child = 1;
818 else
819 {
820 subset_entry = get_alias_set_entry (subset);
821 /* If there is an entry for the subset, enter all of its children
822 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 823 if (subset_entry)
2bf105ab
RK
824 {
825 if (subset_entry->has_zero_child)
826 superset_entry->has_zero_child = 1;
d4b60170 827
2bf105ab
RK
828 splay_tree_foreach (subset_entry->children, insert_subset_children,
829 superset_entry->children);
830 }
3932261a 831
2bf105ab 832 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 833 splay_tree_insert (superset_entry->children,
2bf105ab
RK
834 (splay_tree_key) subset, 0);
835 }
3932261a
MM
836}
837
a0c33338
RK
838/* Record that component types of TYPE, if any, are part of that type for
839 aliasing purposes. For record types, we only record component types
b5487346
EB
840 for fields that are not marked non-addressable. For array types, we
841 only record the component type if it is not marked non-aliased. */
a0c33338
RK
842
843void
4682ae04 844record_component_aliases (tree type)
a0c33338 845{
4862826d 846 alias_set_type superset = get_alias_set (type);
a0c33338
RK
847 tree field;
848
849 if (superset == 0)
850 return;
851
852 switch (TREE_CODE (type))
853 {
a0c33338
RK
854 case RECORD_TYPE:
855 case UNION_TYPE:
856 case QUAL_UNION_TYPE:
6614fd40 857 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 858 if (TYPE_BINFO (type))
ca7fd9cd
KH
859 {
860 int i;
fa743e8c 861 tree binfo, base_binfo;
c22cacf3 862
fa743e8c
NS
863 for (binfo = TYPE_BINFO (type), i = 0;
864 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
865 record_alias_subset (superset,
866 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 867 }
a0c33338 868 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b5487346 869 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 870 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
871 break;
872
1d79fd2c
JW
873 case COMPLEX_TYPE:
874 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
875 break;
876
4653cae5
RG
877 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
878 element type. */
879
a0c33338
RK
880 default:
881 break;
882 }
883}
884
3bdf5ad1
RK
885/* Allocate an alias set for use in storing and reading from the varargs
886 spill area. */
887
4862826d 888static GTY(()) alias_set_type varargs_set = -1;
f103e34d 889
4862826d 890alias_set_type
4682ae04 891get_varargs_alias_set (void)
3bdf5ad1 892{
cd3ce9b4
JM
893#if 1
894 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
895 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
896 consistently use the varargs alias set for loads from the varargs
897 area. So don't use it anywhere. */
898 return 0;
899#else
f103e34d
GK
900 if (varargs_set == -1)
901 varargs_set = new_alias_set ();
3bdf5ad1 902
f103e34d 903 return varargs_set;
cd3ce9b4 904#endif
3bdf5ad1
RK
905}
906
907/* Likewise, but used for the fixed portions of the frame, e.g., register
908 save areas. */
909
4862826d 910static GTY(()) alias_set_type frame_set = -1;
f103e34d 911
4862826d 912alias_set_type
4682ae04 913get_frame_alias_set (void)
3bdf5ad1 914{
f103e34d
GK
915 if (frame_set == -1)
916 frame_set = new_alias_set ();
3bdf5ad1 917
f103e34d 918 return frame_set;
3bdf5ad1
RK
919}
920
2a2c8203
JC
921/* Inside SRC, the source of a SET, find a base address. */
922
9ae8ffe7 923static rtx
4682ae04 924find_base_value (rtx src)
9ae8ffe7 925{
713f41f9 926 unsigned int regno;
0aacc8ed 927
53451050
RS
928#if defined (FIND_BASE_TERM)
929 /* Try machine-dependent ways to find the base term. */
930 src = FIND_BASE_TERM (src);
931#endif
932
9ae8ffe7
JL
933 switch (GET_CODE (src))
934 {
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return src;
938
939 case REG:
fb6754f0 940 regno = REGNO (src);
d4b60170 941 /* At the start of a function, argument registers have known base
2a2c8203
JC
942 values which may be lost later. Returning an ADDRESS
943 expression here allows optimization based on argument values
944 even when the argument registers are used for other purposes. */
713f41f9
BS
945 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
946 return new_reg_base_value[regno];
73774bc7 947
eaf407a5 948 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
949 for non-fixed hard regs since it can result in a circular
950 dependency chain for registers which have values at function entry.
eaf407a5
JL
951
952 The test above is not sufficient because the scheduler may move
953 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 954 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 955 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
956 {
957 /* If we're inside init_alias_analysis, use new_reg_base_value
958 to reduce the number of relaxation iterations. */
1afdf91c 959 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 960 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
961 return new_reg_base_value[regno];
962
08c79682
KH
963 if (VEC_index (rtx, reg_base_value, regno))
964 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 965 }
73774bc7 966
e3f049a8 967 return 0;
9ae8ffe7
JL
968
969 case MEM:
970 /* Check for an argument passed in memory. Only record in the
971 copying-arguments block; it is too hard to track changes
972 otherwise. */
973 if (copying_arguments
974 && (XEXP (src, 0) == arg_pointer_rtx
975 || (GET_CODE (XEXP (src, 0)) == PLUS
976 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 977 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
978 return 0;
979
980 case CONST:
981 src = XEXP (src, 0);
982 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
983 break;
d4b60170 984
ec5c56db 985 /* ... fall through ... */
2a2c8203 986
9ae8ffe7
JL
987 case PLUS:
988 case MINUS:
2a2c8203 989 {
ec907dd8
JL
990 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
991
0134bf2d
DE
992 /* If either operand is a REG that is a known pointer, then it
993 is the base. */
994 if (REG_P (src_0) && REG_POINTER (src_0))
995 return find_base_value (src_0);
996 if (REG_P (src_1) && REG_POINTER (src_1))
997 return find_base_value (src_1);
998
ec907dd8
JL
999 /* If either operand is a REG, then see if we already have
1000 a known value for it. */
0134bf2d 1001 if (REG_P (src_0))
ec907dd8
JL
1002 {
1003 temp = find_base_value (src_0);
d4b60170 1004 if (temp != 0)
ec907dd8
JL
1005 src_0 = temp;
1006 }
1007
0134bf2d 1008 if (REG_P (src_1))
ec907dd8
JL
1009 {
1010 temp = find_base_value (src_1);
d4b60170 1011 if (temp!= 0)
ec907dd8
JL
1012 src_1 = temp;
1013 }
2a2c8203 1014
0134bf2d
DE
1015 /* If either base is named object or a special address
1016 (like an argument or stack reference), then use it for the
1017 base term. */
1018 if (src_0 != 0
1019 && (GET_CODE (src_0) == SYMBOL_REF
1020 || GET_CODE (src_0) == LABEL_REF
1021 || (GET_CODE (src_0) == ADDRESS
1022 && GET_MODE (src_0) != VOIDmode)))
1023 return src_0;
1024
1025 if (src_1 != 0
1026 && (GET_CODE (src_1) == SYMBOL_REF
1027 || GET_CODE (src_1) == LABEL_REF
1028 || (GET_CODE (src_1) == ADDRESS
1029 && GET_MODE (src_1) != VOIDmode)))
1030 return src_1;
1031
d4b60170 1032 /* Guess which operand is the base address:
ec907dd8
JL
1033 If either operand is a symbol, then it is the base. If
1034 either operand is a CONST_INT, then the other is the base. */
481683e1 1035 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1036 return find_base_value (src_0);
481683e1 1037 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1038 return find_base_value (src_1);
1039
9ae8ffe7 1040 return 0;
2a2c8203
JC
1041 }
1042
1043 case LO_SUM:
1044 /* The standard form is (lo_sum reg sym) so look only at the
1045 second operand. */
1046 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1047
1048 case AND:
1049 /* If the second operand is constant set the base
ec5c56db 1050 address to the first operand. */
481683e1 1051 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1052 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1053 return 0;
1054
61f0131c
R
1055 case TRUNCATE:
1056 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1057 break;
1058 /* Fall through. */
9ae8ffe7 1059 case HIGH:
d288e53d
DE
1060 case PRE_INC:
1061 case PRE_DEC:
1062 case POST_INC:
1063 case POST_DEC:
1064 case PRE_MODIFY:
1065 case POST_MODIFY:
2a2c8203 1066 return find_base_value (XEXP (src, 0));
1d300e19 1067
0aacc8ed
RK
1068 case ZERO_EXTEND:
1069 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1070 {
1071 rtx temp = find_base_value (XEXP (src, 0));
1072
5ae6cd0d 1073 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1074 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1075
1076 return temp;
1077 }
1078
1d300e19
KG
1079 default:
1080 break;
9ae8ffe7
JL
1081 }
1082
1083 return 0;
1084}
1085
1086/* Called from init_alias_analysis indirectly through note_stores. */
1087
d4b60170 1088/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
1089 register N has been set in this function. */
1090static char *reg_seen;
1091
13309a5f
JC
1092/* Addresses which are known not to alias anything else are identified
1093 by a unique integer. */
ec907dd8
JL
1094static int unique_id;
1095
2a2c8203 1096static void
7bc980e1 1097record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1098{
b3694847 1099 unsigned regno;
9ae8ffe7 1100 rtx src;
c28b4e40 1101 int n;
9ae8ffe7 1102
f8cfc6aa 1103 if (!REG_P (dest))
9ae8ffe7
JL
1104 return;
1105
fb6754f0 1106 regno = REGNO (dest);
9ae8ffe7 1107
08c79682 1108 gcc_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1109
c28b4e40
JW
1110 /* If this spans multiple hard registers, then we must indicate that every
1111 register has an unusable value. */
1112 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1113 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1114 else
1115 n = 1;
1116 if (n != 1)
1117 {
1118 while (--n >= 0)
1119 {
1120 reg_seen[regno + n] = 1;
1121 new_reg_base_value[regno + n] = 0;
1122 }
1123 return;
1124 }
1125
9ae8ffe7
JL
1126 if (set)
1127 {
1128 /* A CLOBBER wipes out any old value but does not prevent a previously
1129 unset register from acquiring a base address (i.e. reg_seen is not
1130 set). */
1131 if (GET_CODE (set) == CLOBBER)
1132 {
ec907dd8 1133 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1134 return;
1135 }
1136 src = SET_SRC (set);
1137 }
1138 else
1139 {
9ae8ffe7
JL
1140 if (reg_seen[regno])
1141 {
ec907dd8 1142 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1143 return;
1144 }
1145 reg_seen[regno] = 1;
38a448ca
RH
1146 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1147 GEN_INT (unique_id++));
9ae8ffe7
JL
1148 return;
1149 }
1150
5da6f168
RS
1151 /* If this is not the first set of REGNO, see whether the new value
1152 is related to the old one. There are two cases of interest:
1153
1154 (1) The register might be assigned an entirely new value
1155 that has the same base term as the original set.
1156
1157 (2) The set might be a simple self-modification that
1158 cannot change REGNO's base value.
1159
1160 If neither case holds, reject the original base value as invalid.
1161 Note that the following situation is not detected:
1162
c22cacf3 1163 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1164
9ae8ffe7
JL
1165 ANSI C does not allow computing the difference of addresses
1166 of distinct top level objects. */
5da6f168
RS
1167 if (new_reg_base_value[regno] != 0
1168 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1169 switch (GET_CODE (src))
1170 {
2a2c8203 1171 case LO_SUM:
9ae8ffe7
JL
1172 case MINUS:
1173 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1174 new_reg_base_value[regno] = 0;
9ae8ffe7 1175 break;
61f0131c
R
1176 case PLUS:
1177 /* If the value we add in the PLUS is also a valid base value,
1178 this might be the actual base value, and the original value
1179 an index. */
1180 {
1181 rtx other = NULL_RTX;
1182
1183 if (XEXP (src, 0) == dest)
1184 other = XEXP (src, 1);
1185 else if (XEXP (src, 1) == dest)
1186 other = XEXP (src, 0);
1187
1188 if (! other || find_base_value (other))
1189 new_reg_base_value[regno] = 0;
1190 break;
1191 }
9ae8ffe7 1192 case AND:
481683e1 1193 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1194 new_reg_base_value[regno] = 0;
9ae8ffe7 1195 break;
9ae8ffe7 1196 default:
ec907dd8 1197 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1198 break;
1199 }
1200 /* If this is the first set of a register, record the value. */
1201 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1202 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1203 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1204
1205 reg_seen[regno] = 1;
1206}
1207
bb1acb3e
RH
1208/* If a value is known for REGNO, return it. */
1209
c22cacf3 1210rtx
bb1acb3e
RH
1211get_reg_known_value (unsigned int regno)
1212{
1213 if (regno >= FIRST_PSEUDO_REGISTER)
1214 {
1215 regno -= FIRST_PSEUDO_REGISTER;
1216 if (regno < reg_known_value_size)
1217 return reg_known_value[regno];
1218 }
1219 return NULL;
43fe47ca
JW
1220}
1221
bb1acb3e
RH
1222/* Set it. */
1223
1224static void
1225set_reg_known_value (unsigned int regno, rtx val)
1226{
1227 if (regno >= FIRST_PSEUDO_REGISTER)
1228 {
1229 regno -= FIRST_PSEUDO_REGISTER;
1230 if (regno < reg_known_value_size)
1231 reg_known_value[regno] = val;
1232 }
1233}
1234
1235/* Similarly for reg_known_equiv_p. */
1236
1237bool
1238get_reg_known_equiv_p (unsigned int regno)
1239{
1240 if (regno >= FIRST_PSEUDO_REGISTER)
1241 {
1242 regno -= FIRST_PSEUDO_REGISTER;
1243 if (regno < reg_known_value_size)
1244 return reg_known_equiv_p[regno];
1245 }
1246 return false;
1247}
1248
1249static void
1250set_reg_known_equiv_p (unsigned int regno, bool val)
1251{
1252 if (regno >= FIRST_PSEUDO_REGISTER)
1253 {
1254 regno -= FIRST_PSEUDO_REGISTER;
1255 if (regno < reg_known_value_size)
1256 reg_known_equiv_p[regno] = val;
1257 }
1258}
1259
1260
db048faf
MM
1261/* Returns a canonical version of X, from the point of view alias
1262 analysis. (For example, if X is a MEM whose address is a register,
1263 and the register has a known value (say a SYMBOL_REF), then a MEM
1264 whose address is the SYMBOL_REF is returned.) */
1265
1266rtx
4682ae04 1267canon_rtx (rtx x)
9ae8ffe7
JL
1268{
1269 /* Recursively look for equivalences. */
f8cfc6aa 1270 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1271 {
1272 rtx t = get_reg_known_value (REGNO (x));
1273 if (t == x)
1274 return x;
1275 if (t)
1276 return canon_rtx (t);
1277 }
1278
1279 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1280 {
1281 rtx x0 = canon_rtx (XEXP (x, 0));
1282 rtx x1 = canon_rtx (XEXP (x, 1));
1283
1284 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1285 {
481683e1 1286 if (CONST_INT_P (x0))
ed8908e7 1287 return plus_constant (x1, INTVAL (x0));
481683e1 1288 else if (CONST_INT_P (x1))
ed8908e7 1289 return plus_constant (x0, INTVAL (x1));
38a448ca 1290 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1291 }
1292 }
d4b60170 1293
9ae8ffe7
JL
1294 /* This gives us much better alias analysis when called from
1295 the loop optimizer. Note we want to leave the original
1296 MEM alone, but need to return the canonicalized MEM with
1297 all the flags with their original values. */
3c0cb5de 1298 else if (MEM_P (x))
f1ec5147 1299 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1300
9ae8ffe7
JL
1301 return x;
1302}
1303
1304/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1305 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1306
1307 We use the data in reg_known_value above to see if two registers with
1308 different numbers are, in fact, equivalent. */
1309
1310static int
ed7a4b4b 1311rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1312{
b3694847
SS
1313 int i;
1314 int j;
1315 enum rtx_code code;
1316 const char *fmt;
9ae8ffe7
JL
1317
1318 if (x == 0 && y == 0)
1319 return 1;
1320 if (x == 0 || y == 0)
1321 return 0;
d4b60170 1322
9ae8ffe7
JL
1323 if (x == y)
1324 return 1;
1325
1326 code = GET_CODE (x);
1327 /* Rtx's of different codes cannot be equal. */
1328 if (code != GET_CODE (y))
1329 return 0;
1330
1331 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1332 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1333
1334 if (GET_MODE (x) != GET_MODE (y))
1335 return 0;
1336
db048faf
MM
1337 /* Some RTL can be compared without a recursive examination. */
1338 switch (code)
1339 {
1340 case REG:
1341 return REGNO (x) == REGNO (y);
1342
1343 case LABEL_REF:
1344 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1345
db048faf
MM
1346 case SYMBOL_REF:
1347 return XSTR (x, 0) == XSTR (y, 0);
1348
40e02b4a 1349 case VALUE:
db048faf
MM
1350 case CONST_INT:
1351 case CONST_DOUBLE:
091a3ac7 1352 case CONST_FIXED:
db048faf
MM
1353 /* There's no need to compare the contents of CONST_DOUBLEs or
1354 CONST_INTs because pointer equality is a good enough
1355 comparison for these nodes. */
1356 return 0;
1357
db048faf
MM
1358 default:
1359 break;
1360 }
9ae8ffe7 1361
45183e03
JH
1362 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1363 if (code == PLUS)
9ae8ffe7
JL
1364 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1365 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1366 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1367 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1368 /* For commutative operations, the RTX match if the operand match in any
1369 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1370 if (COMMUTATIVE_P (x))
45183e03
JH
1371 {
1372 rtx xop0 = canon_rtx (XEXP (x, 0));
1373 rtx yop0 = canon_rtx (XEXP (y, 0));
1374 rtx yop1 = canon_rtx (XEXP (y, 1));
1375
1376 return ((rtx_equal_for_memref_p (xop0, yop0)
1377 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1378 || (rtx_equal_for_memref_p (xop0, yop1)
1379 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1380 }
ec8e098d 1381 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1382 {
1383 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1384 canon_rtx (XEXP (y, 0)))
45183e03
JH
1385 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1386 canon_rtx (XEXP (y, 1))));
1387 }
ec8e098d 1388 else if (UNARY_P (x))
45183e03 1389 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1390 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1391
1392 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1393 fail to match, return 0 for the whole things.
1394
1395 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1396
1397 fmt = GET_RTX_FORMAT (code);
1398 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1399 {
1400 switch (fmt[i])
1401 {
9ae8ffe7
JL
1402 case 'i':
1403 if (XINT (x, i) != XINT (y, i))
1404 return 0;
1405 break;
1406
9ae8ffe7
JL
1407 case 'E':
1408 /* Two vectors must have the same length. */
1409 if (XVECLEN (x, i) != XVECLEN (y, i))
1410 return 0;
1411
1412 /* And the corresponding elements must match. */
1413 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1414 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1415 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1416 return 0;
1417 break;
1418
1419 case 'e':
45183e03
JH
1420 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1421 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1422 return 0;
1423 break;
1424
3237ac18
AH
1425 /* This can happen for asm operands. */
1426 case 's':
1427 if (strcmp (XSTR (x, i), XSTR (y, i)))
1428 return 0;
1429 break;
1430
aee21ba9
JL
1431 /* This can happen for an asm which clobbers memory. */
1432 case '0':
1433 break;
1434
9ae8ffe7
JL
1435 /* It is believed that rtx's at this level will never
1436 contain anything but integers and other rtx's,
1437 except for within LABEL_REFs and SYMBOL_REFs. */
1438 default:
298e6adc 1439 gcc_unreachable ();
9ae8ffe7
JL
1440 }
1441 }
1442 return 1;
1443}
1444
94f24ddc 1445rtx
4682ae04 1446find_base_term (rtx x)
9ae8ffe7 1447{
eab5c70a
BS
1448 cselib_val *val;
1449 struct elt_loc_list *l;
1450
b949ea8b
JW
1451#if defined (FIND_BASE_TERM)
1452 /* Try machine-dependent ways to find the base term. */
1453 x = FIND_BASE_TERM (x);
1454#endif
1455
9ae8ffe7
JL
1456 switch (GET_CODE (x))
1457 {
1458 case REG:
1459 return REG_BASE_VALUE (x);
1460
d288e53d
DE
1461 case TRUNCATE:
1462 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1463 return 0;
d288e53d 1464 /* Fall through. */
9ae8ffe7 1465 case HIGH:
6d849a2a
JL
1466 case PRE_INC:
1467 case PRE_DEC:
1468 case POST_INC:
1469 case POST_DEC:
d288e53d
DE
1470 case PRE_MODIFY:
1471 case POST_MODIFY:
6d849a2a
JL
1472 return find_base_term (XEXP (x, 0));
1473
1abade85
RK
1474 case ZERO_EXTEND:
1475 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1476 {
1477 rtx temp = find_base_term (XEXP (x, 0));
1478
5ae6cd0d 1479 if (temp != 0 && CONSTANT_P (temp))
1abade85 1480 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1481
1482 return temp;
1483 }
1484
eab5c70a
BS
1485 case VALUE:
1486 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1487 if (!val)
1488 return 0;
eab5c70a
BS
1489 for (l = val->locs; l; l = l->next)
1490 if ((x = find_base_term (l->loc)) != 0)
1491 return x;
1492 return 0;
1493
023f059b
JJ
1494 case LO_SUM:
1495 /* The standard form is (lo_sum reg sym) so look only at the
1496 second operand. */
1497 return find_base_term (XEXP (x, 1));
1498
9ae8ffe7
JL
1499 case CONST:
1500 x = XEXP (x, 0);
1501 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1502 return 0;
938d968e 1503 /* Fall through. */
9ae8ffe7
JL
1504 case PLUS:
1505 case MINUS:
1506 {
3c567fae
JL
1507 rtx tmp1 = XEXP (x, 0);
1508 rtx tmp2 = XEXP (x, 1);
1509
f5143c46 1510 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1511 the two operands represents the real base address. Otherwise this
1512 routine may return the index register instead of the base register.
1513
1514 That may cause us to believe no aliasing was possible, when in
1515 fact aliasing is possible.
1516
1517 We use a few simple tests to guess the base register. Additional
1518 tests can certainly be added. For example, if one of the operands
1519 is a shift or multiply, then it must be the index register and the
1520 other operand is the base register. */
ca7fd9cd 1521
b949ea8b
JW
1522 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1523 return find_base_term (tmp2);
1524
3c567fae
JL
1525 /* If either operand is known to be a pointer, then use it
1526 to determine the base term. */
3502dc9c 1527 if (REG_P (tmp1) && REG_POINTER (tmp1))
7eba2d1f
LM
1528 {
1529 rtx base = find_base_term (tmp1);
1530 if (base)
1531 return base;
1532 }
3c567fae 1533
3502dc9c 1534 if (REG_P (tmp2) && REG_POINTER (tmp2))
7eba2d1f
LM
1535 {
1536 rtx base = find_base_term (tmp2);
1537 if (base)
1538 return base;
1539 }
3c567fae
JL
1540
1541 /* Neither operand was known to be a pointer. Go ahead and find the
1542 base term for both operands. */
1543 tmp1 = find_base_term (tmp1);
1544 tmp2 = find_base_term (tmp2);
1545
1546 /* If either base term is named object or a special address
1547 (like an argument or stack reference), then use it for the
1548 base term. */
d4b60170 1549 if (tmp1 != 0
3c567fae
JL
1550 && (GET_CODE (tmp1) == SYMBOL_REF
1551 || GET_CODE (tmp1) == LABEL_REF
1552 || (GET_CODE (tmp1) == ADDRESS
1553 && GET_MODE (tmp1) != VOIDmode)))
1554 return tmp1;
1555
d4b60170 1556 if (tmp2 != 0
3c567fae
JL
1557 && (GET_CODE (tmp2) == SYMBOL_REF
1558 || GET_CODE (tmp2) == LABEL_REF
1559 || (GET_CODE (tmp2) == ADDRESS
1560 && GET_MODE (tmp2) != VOIDmode)))
1561 return tmp2;
1562
1563 /* We could not determine which of the two operands was the
1564 base register and which was the index. So we can determine
1565 nothing from the base alias check. */
1566 return 0;
9ae8ffe7
JL
1567 }
1568
1569 case AND:
481683e1 1570 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 1571 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1572 return 0;
1573
1574 case SYMBOL_REF:
1575 case LABEL_REF:
1576 return x;
1577
1578 default:
1579 return 0;
1580 }
1581}
1582
1583/* Return 0 if the addresses X and Y are known to point to different
1584 objects, 1 if they might be pointers to the same object. */
1585
1586static int
4682ae04
AJ
1587base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1588 enum machine_mode y_mode)
9ae8ffe7
JL
1589{
1590 rtx x_base = find_base_term (x);
1591 rtx y_base = find_base_term (y);
1592
1c72c7f6
JC
1593 /* If the address itself has no known base see if a known equivalent
1594 value has one. If either address still has no known base, nothing
1595 is known about aliasing. */
1596 if (x_base == 0)
1597 {
1598 rtx x_c;
d4b60170 1599
1c72c7f6
JC
1600 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1601 return 1;
d4b60170 1602
1c72c7f6
JC
1603 x_base = find_base_term (x_c);
1604 if (x_base == 0)
1605 return 1;
1606 }
9ae8ffe7 1607
1c72c7f6
JC
1608 if (y_base == 0)
1609 {
1610 rtx y_c;
1611 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1612 return 1;
d4b60170 1613
1c72c7f6
JC
1614 y_base = find_base_term (y_c);
1615 if (y_base == 0)
1616 return 1;
1617 }
1618
1619 /* If the base addresses are equal nothing is known about aliasing. */
1620 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1621 return 1;
1622
435da628
UB
1623 /* The base addresses are different expressions. If they are not accessed
1624 via AND, there is no conflict. We can bring knowledge of object
1625 alignment into play here. For example, on alpha, "char a, b;" can
1626 alias one another, though "char a; long b;" cannot. AND addesses may
1627 implicitly alias surrounding objects; i.e. unaligned access in DImode
1628 via AND address can alias all surrounding object types except those
1629 with aligment 8 or higher. */
1630 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1631 return 1;
1632 if (GET_CODE (x) == AND
481683e1 1633 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
1634 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1635 return 1;
1636 if (GET_CODE (y) == AND
481683e1 1637 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
1638 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1639 return 1;
1640
1641 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1642 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1643 return 0;
9ae8ffe7
JL
1644
1645 /* If one address is a stack reference there can be no alias:
1646 stack references using different base registers do not alias,
1647 a stack reference can not alias a parameter, and a stack reference
1648 can not alias a global. */
1649 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1650 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1651 return 0;
1652
1653 if (! flag_argument_noalias)
1654 return 1;
1655
1656 if (flag_argument_noalias > 1)
1657 return 0;
1658
ec5c56db 1659 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1660 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1661}
1662
eab5c70a
BS
1663/* Convert the address X into something we can use. This is done by returning
1664 it unchanged unless it is a value; in the latter case we call cselib to get
1665 a more useful rtx. */
3bdf5ad1 1666
a13d4ebf 1667rtx
4682ae04 1668get_addr (rtx x)
eab5c70a
BS
1669{
1670 cselib_val *v;
1671 struct elt_loc_list *l;
1672
1673 if (GET_CODE (x) != VALUE)
1674 return x;
1675 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1676 if (v)
1677 {
1678 for (l = v->locs; l; l = l->next)
1679 if (CONSTANT_P (l->loc))
1680 return l->loc;
1681 for (l = v->locs; l; l = l->next)
3c0cb5de 1682 if (!REG_P (l->loc) && !MEM_P (l->loc))
40e02b4a
JH
1683 return l->loc;
1684 if (v->locs)
1685 return v->locs->loc;
1686 }
eab5c70a
BS
1687 return x;
1688}
1689
39cec1ac
MH
1690/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1691 where SIZE is the size in bytes of the memory reference. If ADDR
1692 is not modified by the memory reference then ADDR is returned. */
1693
04e2b4d3 1694static rtx
4682ae04 1695addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1696{
1697 int offset = 0;
ca7fd9cd 1698
39cec1ac
MH
1699 switch (GET_CODE (addr))
1700 {
1701 case PRE_INC:
1702 offset = (n_refs + 1) * size;
1703 break;
1704 case PRE_DEC:
1705 offset = -(n_refs + 1) * size;
1706 break;
1707 case POST_INC:
1708 offset = n_refs * size;
1709 break;
1710 case POST_DEC:
1711 offset = -n_refs * size;
1712 break;
1713
1714 default:
1715 return addr;
1716 }
ca7fd9cd 1717
39cec1ac 1718 if (offset)
45183e03 1719 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1720 GEN_INT (offset));
39cec1ac
MH
1721 else
1722 addr = XEXP (addr, 0);
45183e03 1723 addr = canon_rtx (addr);
39cec1ac
MH
1724
1725 return addr;
1726}
1727
9ae8ffe7
JL
1728/* Return nonzero if X and Y (memory addresses) could reference the
1729 same location in memory. C is an offset accumulator. When
1730 C is nonzero, we are testing aliases between X and Y + C.
1731 XSIZE is the size in bytes of the X reference,
1732 similarly YSIZE is the size in bytes for Y.
45183e03 1733 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1734
1735 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1736 referenced (the reference was BLKmode), so make the most pessimistic
1737 assumptions.
1738
c02f035f
RH
1739 If XSIZE or YSIZE is negative, we may access memory outside the object
1740 being referenced as a side effect. This can happen when using AND to
1741 align memory references, as is done on the Alpha.
1742
9ae8ffe7 1743 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1744 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1745
9ae8ffe7 1746static int
4682ae04 1747memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1748{
eab5c70a
BS
1749 if (GET_CODE (x) == VALUE)
1750 x = get_addr (x);
1751 if (GET_CODE (y) == VALUE)
1752 y = get_addr (y);
9ae8ffe7
JL
1753 if (GET_CODE (x) == HIGH)
1754 x = XEXP (x, 0);
1755 else if (GET_CODE (x) == LO_SUM)
1756 x = XEXP (x, 1);
1757 else
45183e03 1758 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1759 if (GET_CODE (y) == HIGH)
1760 y = XEXP (y, 0);
1761 else if (GET_CODE (y) == LO_SUM)
1762 y = XEXP (y, 1);
1763 else
45183e03 1764 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1765
1766 if (rtx_equal_for_memref_p (x, y))
1767 {
c02f035f 1768 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1769 return 1;
1770 if (c >= 0 && xsize > c)
1771 return 1;
1772 if (c < 0 && ysize+c > 0)
1773 return 1;
1774 return 0;
1775 }
1776
6e73e666
JC
1777 /* This code used to check for conflicts involving stack references and
1778 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1779
1780 if (GET_CODE (x) == PLUS)
1781 {
1782 /* The fact that X is canonicalized means that this
1783 PLUS rtx is canonicalized. */
1784 rtx x0 = XEXP (x, 0);
1785 rtx x1 = XEXP (x, 1);
1786
1787 if (GET_CODE (y) == PLUS)
1788 {
1789 /* The fact that Y is canonicalized means that this
1790 PLUS rtx is canonicalized. */
1791 rtx y0 = XEXP (y, 0);
1792 rtx y1 = XEXP (y, 1);
1793
1794 if (rtx_equal_for_memref_p (x1, y1))
1795 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1796 if (rtx_equal_for_memref_p (x0, y0))
1797 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 1798 if (CONST_INT_P (x1))
63be02db 1799 {
481683e1 1800 if (CONST_INT_P (y1))
63be02db
JM
1801 return memrefs_conflict_p (xsize, x0, ysize, y0,
1802 c - INTVAL (x1) + INTVAL (y1));
1803 else
1804 return memrefs_conflict_p (xsize, x0, ysize, y,
1805 c - INTVAL (x1));
1806 }
481683e1 1807 else if (CONST_INT_P (y1))
9ae8ffe7
JL
1808 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1809
6e73e666 1810 return 1;
9ae8ffe7 1811 }
481683e1 1812 else if (CONST_INT_P (x1))
9ae8ffe7
JL
1813 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1814 }
1815 else if (GET_CODE (y) == PLUS)
1816 {
1817 /* The fact that Y is canonicalized means that this
1818 PLUS rtx is canonicalized. */
1819 rtx y0 = XEXP (y, 0);
1820 rtx y1 = XEXP (y, 1);
1821
481683e1 1822 if (CONST_INT_P (y1))
9ae8ffe7
JL
1823 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1824 else
1825 return 1;
1826 }
1827
1828 if (GET_CODE (x) == GET_CODE (y))
1829 switch (GET_CODE (x))
1830 {
1831 case MULT:
1832 {
1833 /* Handle cases where we expect the second operands to be the
1834 same, and check only whether the first operand would conflict
1835 or not. */
1836 rtx x0, y0;
1837 rtx x1 = canon_rtx (XEXP (x, 1));
1838 rtx y1 = canon_rtx (XEXP (y, 1));
1839 if (! rtx_equal_for_memref_p (x1, y1))
1840 return 1;
1841 x0 = canon_rtx (XEXP (x, 0));
1842 y0 = canon_rtx (XEXP (y, 0));
1843 if (rtx_equal_for_memref_p (x0, y0))
1844 return (xsize == 0 || ysize == 0
1845 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1846
1847 /* Can't properly adjust our sizes. */
481683e1 1848 if (!CONST_INT_P (x1))
9ae8ffe7
JL
1849 return 1;
1850 xsize /= INTVAL (x1);
1851 ysize /= INTVAL (x1);
1852 c /= INTVAL (x1);
1853 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1854 }
1d300e19
KG
1855
1856 default:
1857 break;
9ae8ffe7
JL
1858 }
1859
1860 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1861 as an access with indeterminate size. Assume that references
56ee9281
RH
1862 besides AND are aligned, so if the size of the other reference is
1863 at least as large as the alignment, assume no other overlap. */
481683e1 1864 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 1865 {
02e3377d 1866 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1867 xsize = -1;
45183e03 1868 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1869 }
481683e1 1870 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 1871 {
56ee9281 1872 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1873 may yet be able to determine that we can not overlap. But we
c02f035f 1874 also need to that we are far enough from the end not to overlap
56ee9281 1875 a following reference, so we do nothing with that for now. */
02e3377d 1876 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1877 ysize = -1;
45183e03 1878 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1879 }
9ae8ffe7
JL
1880
1881 if (CONSTANT_P (x))
1882 {
481683e1 1883 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
1884 {
1885 c += (INTVAL (y) - INTVAL (x));
c02f035f 1886 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1887 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1888 }
1889
1890 if (GET_CODE (x) == CONST)
1891 {
1892 if (GET_CODE (y) == CONST)
1893 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1894 ysize, canon_rtx (XEXP (y, 0)), c);
1895 else
1896 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1897 ysize, y, c);
1898 }
1899 if (GET_CODE (y) == CONST)
1900 return memrefs_conflict_p (xsize, x, ysize,
1901 canon_rtx (XEXP (y, 0)), c);
1902
1903 if (CONSTANT_P (y))
b949ea8b 1904 return (xsize <= 0 || ysize <= 0
c02f035f 1905 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1906 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1907
1908 return 1;
1909 }
1910 return 1;
1911}
1912
1913/* Functions to compute memory dependencies.
1914
1915 Since we process the insns in execution order, we can build tables
1916 to keep track of what registers are fixed (and not aliased), what registers
1917 are varying in known ways, and what registers are varying in unknown
1918 ways.
1919
1920 If both memory references are volatile, then there must always be a
1921 dependence between the two references, since their order can not be
1922 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1923 though.
9ae8ffe7 1924
dc1618bc
RK
1925 A MEM_IN_STRUCT reference at a non-AND varying address can never
1926 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1927 also must allow AND addresses, because they may generate accesses
1928 outside the object being referenced. This is used to generate
1929 aligned addresses from unaligned addresses, for instance, the alpha
1930 storeqi_unaligned pattern. */
9ae8ffe7
JL
1931
1932/* Read dependence: X is read after read in MEM takes place. There can
1933 only be a dependence here if both reads are volatile. */
1934
1935int
4f588890 1936read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7
JL
1937{
1938 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1939}
1940
c6df88cb
MM
1941/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1942 MEM2 is a reference to a structure at a varying address, or returns
1943 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1944 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1945 to decide whether or not an address may vary; it should return
eab5c70a
BS
1946 nonzero whenever variation is possible.
1947 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1948
4f588890
KG
1949static const_rtx
1950fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
4682ae04 1951 rtx mem2_addr,
4f588890 1952 bool (*varies_p) (const_rtx, bool))
ca7fd9cd 1953{
3e0abe15
GK
1954 if (! flag_strict_aliasing)
1955 return NULL_RTX;
1956
afa8f0fb
AP
1957 if (MEM_ALIAS_SET (mem2)
1958 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1959 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1960 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1961 varying address. */
1962 return mem1;
1963
afa8f0fb
AP
1964 if (MEM_ALIAS_SET (mem1)
1965 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1966 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1967 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1968 varying address. */
1969 return mem2;
1970
1971 return NULL_RTX;
1972}
1973
1974/* Returns nonzero if something about the mode or address format MEM1
1975 indicates that it might well alias *anything*. */
1976
2c72b78f 1977static int
4f588890 1978aliases_everything_p (const_rtx mem)
c6df88cb 1979{
c6df88cb 1980 if (GET_CODE (XEXP (mem, 0)) == AND)
35fd3193 1981 /* If the address is an AND, it's very hard to know at what it is
c6df88cb
MM
1982 actually pointing. */
1983 return 1;
ca7fd9cd 1984
c6df88cb
MM
1985 return 0;
1986}
1987
998d7deb
RH
1988/* Return true if we can determine that the fields referenced cannot
1989 overlap for any pair of objects. */
1990
1991static bool
4f588890 1992nonoverlapping_component_refs_p (const_tree x, const_tree y)
998d7deb 1993{
4f588890 1994 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb 1995
4c7af939
AB
1996 if (!flag_strict_aliasing)
1997 return false;
1998
998d7deb
RH
1999 do
2000 {
2001 /* The comparison has to be done at a common type, since we don't
d6a7951f 2002 know how the inheritance hierarchy works. */
998d7deb
RH
2003 orig_y = y;
2004 do
2005 {
2006 fieldx = TREE_OPERAND (x, 1);
c05a0766 2007 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
2008
2009 y = orig_y;
2010 do
2011 {
2012 fieldy = TREE_OPERAND (y, 1);
c05a0766 2013 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
2014
2015 if (typex == typey)
2016 goto found;
2017
2018 y = TREE_OPERAND (y, 0);
2019 }
2020 while (y && TREE_CODE (y) == COMPONENT_REF);
2021
2022 x = TREE_OPERAND (x, 0);
2023 }
2024 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 2025 /* Never found a common type. */
c05a0766 2026 return false;
998d7deb
RH
2027
2028 found:
2029 /* If we're left with accessing different fields of a structure,
2030 then no overlap. */
2031 if (TREE_CODE (typex) == RECORD_TYPE
2032 && fieldx != fieldy)
2033 return true;
2034
2035 /* The comparison on the current field failed. If we're accessing
2036 a very nested structure, look at the next outer level. */
2037 x = TREE_OPERAND (x, 0);
2038 y = TREE_OPERAND (y, 0);
2039 }
2040 while (x && y
2041 && TREE_CODE (x) == COMPONENT_REF
2042 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2043
998d7deb
RH
2044 return false;
2045}
2046
2047/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2048
2049static tree
4682ae04 2050decl_for_component_ref (tree x)
998d7deb
RH
2051{
2052 do
2053 {
2054 x = TREE_OPERAND (x, 0);
2055 }
2056 while (x && TREE_CODE (x) == COMPONENT_REF);
2057
2058 return x && DECL_P (x) ? x : NULL_TREE;
2059}
2060
2061/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2062 offset of the field reference. */
2063
2064static rtx
4682ae04 2065adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
2066{
2067 HOST_WIDE_INT ioffset;
2068
2069 if (! offset)
2070 return NULL_RTX;
2071
2072 ioffset = INTVAL (offset);
ca7fd9cd 2073 do
998d7deb 2074 {
44de5aeb 2075 tree offset = component_ref_field_offset (x);
998d7deb
RH
2076 tree field = TREE_OPERAND (x, 1);
2077
44de5aeb 2078 if (! host_integerp (offset, 1))
998d7deb 2079 return NULL_RTX;
44de5aeb 2080 ioffset += (tree_low_cst (offset, 1)
998d7deb
RH
2081 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2082 / BITS_PER_UNIT));
2083
2084 x = TREE_OPERAND (x, 0);
2085 }
2086 while (x && TREE_CODE (x) == COMPONENT_REF);
2087
2088 return GEN_INT (ioffset);
2089}
2090
95bd1dd7 2091/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
2092 X and Y and they do not overlap. */
2093
2e4e39f6 2094int
4f588890 2095nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
a4311dfe 2096{
998d7deb 2097 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2098 rtx rtlx, rtly;
2099 rtx basex, basey;
998d7deb 2100 rtx moffsetx, moffsety;
a4311dfe
RK
2101 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2102
998d7deb
RH
2103 /* Unless both have exprs, we can't tell anything. */
2104 if (exprx == 0 || expry == 0)
2105 return 0;
c22cacf3 2106
998d7deb
RH
2107 /* If both are field references, we may be able to determine something. */
2108 if (TREE_CODE (exprx) == COMPONENT_REF
2109 && TREE_CODE (expry) == COMPONENT_REF
2110 && nonoverlapping_component_refs_p (exprx, expry))
2111 return 1;
2112
c22cacf3 2113
998d7deb
RH
2114 /* If the field reference test failed, look at the DECLs involved. */
2115 moffsetx = MEM_OFFSET (x);
2116 if (TREE_CODE (exprx) == COMPONENT_REF)
2117 {
ea900239
DB
2118 if (TREE_CODE (expry) == VAR_DECL
2119 && POINTER_TYPE_P (TREE_TYPE (expry)))
2120 {
2121 tree field = TREE_OPERAND (exprx, 1);
2122 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2123 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2124 TREE_TYPE (field)))
c22cacf3 2125 return 1;
ea900239
DB
2126 }
2127 {
2128 tree t = decl_for_component_ref (exprx);
2129 if (! t)
2130 return 0;
2131 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2132 exprx = t;
2133 }
998d7deb 2134 }
1b096a0a 2135 else if (INDIRECT_REF_P (exprx))
c67a1cf6
RH
2136 {
2137 exprx = TREE_OPERAND (exprx, 0);
2138 if (flag_argument_noalias < 2
2139 || TREE_CODE (exprx) != PARM_DECL)
2140 return 0;
2141 }
2142
998d7deb
RH
2143 moffsety = MEM_OFFSET (y);
2144 if (TREE_CODE (expry) == COMPONENT_REF)
2145 {
ea900239
DB
2146 if (TREE_CODE (exprx) == VAR_DECL
2147 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2148 {
2149 tree field = TREE_OPERAND (expry, 1);
2150 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2151 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2152 TREE_TYPE (field)))
c22cacf3 2153 return 1;
ea900239
DB
2154 }
2155 {
2156 tree t = decl_for_component_ref (expry);
2157 if (! t)
2158 return 0;
2159 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2160 expry = t;
2161 }
998d7deb 2162 }
1b096a0a 2163 else if (INDIRECT_REF_P (expry))
c67a1cf6
RH
2164 {
2165 expry = TREE_OPERAND (expry, 0);
2166 if (flag_argument_noalias < 2
2167 || TREE_CODE (expry) != PARM_DECL)
2168 return 0;
2169 }
998d7deb
RH
2170
2171 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2172 return 0;
2173
998d7deb
RH
2174 rtlx = DECL_RTL (exprx);
2175 rtly = DECL_RTL (expry);
a4311dfe 2176
1edcd60b
RK
2177 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2178 can't overlap unless they are the same because we never reuse that part
2179 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2180 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2181 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2182 return 1;
2183
2184 /* Get the base and offsets of both decls. If either is a register, we
2185 know both are and are the same, so use that as the base. The only
2186 we can avoid overlap is if we can deduce that they are nonoverlapping
2187 pieces of that decl, which is very rare. */
3c0cb5de 2188 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2189 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2190 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2191
3c0cb5de 2192 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2193 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2194 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2195
d746694a 2196 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2197 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2198 stack frame. Otherwise a different base means we can't tell if they
2199 overlap or not. */
2200 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2201 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2202 || (CONSTANT_P (basex) && REG_P (basey)
2203 && REGNO_PTR_FRAME_P (REGNO (basey)))
2204 || (CONSTANT_P (basey) && REG_P (basex)
2205 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2206
3c0cb5de 2207 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2208 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2209 : -1);
3c0cb5de 2210 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2211 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2212 -1);
2213
0af5bc3e
RK
2214 /* If we have an offset for either memref, it can update the values computed
2215 above. */
998d7deb
RH
2216 if (moffsetx)
2217 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2218 if (moffsety)
2219 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2220
0af5bc3e 2221 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2222 We can't do this if the offset isn't known because we must view this
0af5bc3e 2223 memref as being anywhere inside the DECL's MEM. */
998d7deb 2224 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2225 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2226 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2227 sizey = INTVAL (MEM_SIZE (y));
2228
2229 /* Put the values of the memref with the lower offset in X's values. */
2230 if (offsetx > offsety)
2231 {
2232 tem = offsetx, offsetx = offsety, offsety = tem;
2233 tem = sizex, sizex = sizey, sizey = tem;
2234 }
2235
2236 /* If we don't know the size of the lower-offset value, we can't tell
2237 if they conflict. Otherwise, we do the test. */
a6f7c915 2238 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2239}
2240
9ae8ffe7
JL
2241/* True dependence: X is read after store in MEM takes place. */
2242
2243int
4f588890
KG
2244true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2245 bool (*varies) (const_rtx, bool))
9ae8ffe7 2246{
b3694847 2247 rtx x_addr, mem_addr;
49982682 2248 rtx base;
9ae8ffe7
JL
2249
2250 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2251 return 1;
2252
c4484b8f 2253 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2254 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2255 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2256 return 1;
2257 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2258 return 1;
9cd9e512
RH
2259 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2260 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2261 return 1;
c4484b8f 2262
41472af8
MM
2263 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2264 return 0;
2265
389fdba0
RH
2266 /* Read-only memory is by definition never modified, and therefore can't
2267 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2268 but stupid user tricks can produce them, so don't die. */
389fdba0 2269 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2270 return 0;
2271
a4311dfe
RK
2272 if (nonoverlapping_memrefs_p (mem, x))
2273 return 0;
2274
56ee9281
RH
2275 if (mem_mode == VOIDmode)
2276 mem_mode = GET_MODE (mem);
2277
eab5c70a
BS
2278 x_addr = get_addr (XEXP (x, 0));
2279 mem_addr = get_addr (XEXP (mem, 0));
2280
55efb413
JW
2281 base = find_base_term (x_addr);
2282 if (base && (GET_CODE (base) == LABEL_REF
2283 || (GET_CODE (base) == SYMBOL_REF
2284 && CONSTANT_POOL_ADDRESS_P (base))))
2285 return 0;
2286
eab5c70a 2287 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2288 return 0;
2289
eab5c70a
BS
2290 x_addr = canon_rtx (x_addr);
2291 mem_addr = canon_rtx (mem_addr);
6e73e666 2292
0211b6ab
JW
2293 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2294 SIZE_FOR_MODE (x), x_addr, 0))
2295 return 0;
2296
c6df88cb 2297 if (aliases_everything_p (x))
0211b6ab
JW
2298 return 1;
2299
f5143c46 2300 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2301 at MEM_MODE, rather than GET_MODE (MEM). */
2302 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2303 return 1;
2304
2305 /* In true_dependence we also allow BLKmode to alias anything. Why
2306 don't we do this in anti_dependence and output_dependence? */
2307 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2308 return 1;
2309
55b34b5f
RG
2310 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2311 return 0;
2312
2313 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2314}
2315
2316/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2317 Variant of true_dependence which assumes MEM has already been
2318 canonicalized (hence we no longer do that here).
2319 The mem_addr argument has been added, since true_dependence computed
6216f94e
JJ
2320 this value prior to canonicalizing.
2321 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
a13d4ebf
AM
2322
2323int
4f588890 2324canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
6216f94e 2325 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
a13d4ebf 2326{
a13d4ebf
AM
2327 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2328 return 1;
2329
0fe854a7
RH
2330 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2331 This is used in epilogue deallocation functions. */
2332 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2333 return 1;
2334 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2335 return 1;
9cd9e512
RH
2336 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2337 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2338 return 1;
0fe854a7 2339
a13d4ebf
AM
2340 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2341 return 0;
2342
389fdba0
RH
2343 /* Read-only memory is by definition never modified, and therefore can't
2344 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2345 but stupid user tricks can produce them, so don't die. */
389fdba0 2346 if (MEM_READONLY_P (x))
a13d4ebf
AM
2347 return 0;
2348
a4311dfe
RK
2349 if (nonoverlapping_memrefs_p (x, mem))
2350 return 0;
2351
6216f94e
JJ
2352 if (! x_addr)
2353 x_addr = get_addr (XEXP (x, 0));
a13d4ebf
AM
2354
2355 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2356 return 0;
2357
2358 x_addr = canon_rtx (x_addr);
2359 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2360 SIZE_FOR_MODE (x), x_addr, 0))
2361 return 0;
2362
2363 if (aliases_everything_p (x))
2364 return 1;
2365
f5143c46 2366 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2367 at MEM_MODE, rather than GET_MODE (MEM). */
2368 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2369 return 1;
0211b6ab 2370
c6df88cb
MM
2371 /* In true_dependence we also allow BLKmode to alias anything. Why
2372 don't we do this in anti_dependence and output_dependence? */
2373 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2374 return 1;
0211b6ab 2375
55b34b5f
RG
2376 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2377 return 0;
2378
2379 return rtx_refs_may_alias_p (x, mem, true);
9ae8ffe7
JL
2380}
2381
da7d8304 2382/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2383 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2384
2c72b78f 2385static int
4f588890 2386write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2387{
6e73e666 2388 rtx x_addr, mem_addr;
4f588890 2389 const_rtx fixed_scalar;
49982682 2390 rtx base;
6e73e666 2391
9ae8ffe7
JL
2392 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2393 return 1;
2394
c4484b8f
RH
2395 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2396 This is used in epilogue deallocation functions. */
2397 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2398 return 1;
2399 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2400 return 1;
9cd9e512
RH
2401 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2402 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2403 return 1;
c4484b8f 2404
389fdba0
RH
2405 /* A read from read-only memory can't conflict with read-write memory. */
2406 if (!writep && MEM_READONLY_P (mem))
2407 return 0;
55efb413 2408
a4311dfe
RK
2409 if (nonoverlapping_memrefs_p (x, mem))
2410 return 0;
2411
55efb413
JW
2412 x_addr = get_addr (XEXP (x, 0));
2413 mem_addr = get_addr (XEXP (mem, 0));
2414
49982682
JW
2415 if (! writep)
2416 {
55efb413 2417 base = find_base_term (mem_addr);
49982682
JW
2418 if (base && (GET_CODE (base) == LABEL_REF
2419 || (GET_CODE (base) == SYMBOL_REF
2420 && CONSTANT_POOL_ADDRESS_P (base))))
2421 return 0;
2422 }
2423
eab5c70a
BS
2424 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2425 GET_MODE (mem)))
41472af8
MM
2426 return 0;
2427
eab5c70a
BS
2428 x_addr = canon_rtx (x_addr);
2429 mem_addr = canon_rtx (mem_addr);
6e73e666 2430
c6df88cb
MM
2431 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2432 SIZE_FOR_MODE (x), x_addr, 0))
2433 return 0;
2434
ca7fd9cd 2435 fixed_scalar
eab5c70a
BS
2436 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2437 rtx_addr_varies_p);
2438
55b34b5f
RG
2439 if ((fixed_scalar == mem && !aliases_everything_p (x))
2440 || (fixed_scalar == x && !aliases_everything_p (mem)))
2441 return 0;
2442
2443 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
2444}
2445
2446/* Anti dependence: X is written after read in MEM takes place. */
2447
2448int
4f588890 2449anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2450{
389fdba0 2451 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2452}
2453
2454/* Output dependence: X is written after store in MEM takes place. */
2455
2456int
4f588890 2457output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2458{
389fdba0 2459 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2460}
c14b9960 2461\f
6e73e666 2462
6e73e666 2463void
b5deb7b6 2464init_alias_target (void)
6e73e666 2465{
b3694847 2466 int i;
6e73e666 2467
b5deb7b6
SL
2468 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2469
6e73e666
JC
2470 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2471 /* Check whether this register can hold an incoming pointer
2472 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2473 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2474 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2475 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2476 static_reg_base_value[i]
2477 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2478
bf1660a6
JL
2479 static_reg_base_value[STACK_POINTER_REGNUM]
2480 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2481 static_reg_base_value[ARG_POINTER_REGNUM]
2482 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2483 static_reg_base_value[FRAME_POINTER_REGNUM]
2484 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2485#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2486 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2487 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2488#endif
2489}
2490
7b52eede
JH
2491/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2492 to be memory reference. */
2493static bool memory_modified;
2494static void
aa317c97 2495memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2496{
3c0cb5de 2497 if (MEM_P (x))
7b52eede 2498 {
9678086d 2499 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2500 memory_modified = true;
2501 }
2502}
2503
2504
2505/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2506 (i.e. address can be modified). */
7b52eede 2507bool
9678086d 2508memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2509{
2510 if (!INSN_P (insn))
2511 return false;
2512 memory_modified = false;
aa317c97 2513 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2514 return memory_modified;
2515}
2516
c13e8210
MM
2517/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2518 array. */
2519
9ae8ffe7 2520void
4682ae04 2521init_alias_analysis (void)
9ae8ffe7 2522{
c582d54a 2523 unsigned int maxreg = max_reg_num ();
ea64ef27 2524 int changed, pass;
b3694847
SS
2525 int i;
2526 unsigned int ui;
2527 rtx insn;
9ae8ffe7 2528
0d446150
JH
2529 timevar_push (TV_ALIAS_ANALYSIS);
2530
bb1acb3e 2531 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
f883e0a7
KG
2532 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2533 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
9ae8ffe7 2534
08c79682 2535 /* If we have memory allocated from the previous run, use it. */
c582d54a 2536 if (old_reg_base_value)
08c79682
KH
2537 reg_base_value = old_reg_base_value;
2538
2539 if (reg_base_value)
2540 VEC_truncate (rtx, reg_base_value, 0);
2541
a590ac65 2542 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2543
5ed6ace5
MD
2544 new_reg_base_value = XNEWVEC (rtx, maxreg);
2545 reg_seen = XNEWVEC (char, maxreg);
ec907dd8
JL
2546
2547 /* The basic idea is that each pass through this loop will use the
2548 "constant" information from the previous pass to propagate alias
2549 information through another level of assignments.
2550
2551 This could get expensive if the assignment chains are long. Maybe
2552 we should throttle the number of iterations, possibly based on
6e73e666 2553 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2554
2555 We could propagate more information in the first pass by making use
6fb5fa3c 2556 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2557 for a pseudo is "constant".
2558
2559 A program with an uninitialized variable can cause an infinite loop
2560 here. Instead of doing a full dataflow analysis to detect such problems
2561 we just cap the number of iterations for the loop.
2562
2563 The state of the arrays for the set chain in question does not matter
2564 since the program has undefined behavior. */
6e73e666 2565
ea64ef27 2566 pass = 0;
6e73e666 2567 do
ec907dd8
JL
2568 {
2569 /* Assume nothing will change this iteration of the loop. */
2570 changed = 0;
2571
ec907dd8
JL
2572 /* We want to assign the same IDs each iteration of this loop, so
2573 start counting from zero each iteration of the loop. */
2574 unique_id = 0;
2575
f5143c46 2576 /* We're at the start of the function each iteration through the
ec907dd8 2577 loop, so we're copying arguments. */
83bbd9b6 2578 copying_arguments = true;
9ae8ffe7 2579
6e73e666 2580 /* Wipe the potential alias information clean for this pass. */
c582d54a 2581 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2582
6e73e666 2583 /* Wipe the reg_seen array clean. */
c582d54a 2584 memset (reg_seen, 0, maxreg);
9ae8ffe7 2585
6e73e666
JC
2586 /* Mark all hard registers which may contain an address.
2587 The stack, frame and argument pointers may contain an address.
2588 An argument register which can hold a Pmode value may contain
2589 an address even if it is not in BASE_REGS.
8072f69c 2590
6e73e666
JC
2591 The address expression is VOIDmode for an argument and
2592 Pmode for other registers. */
2593
7f243674
JL
2594 memcpy (new_reg_base_value, static_reg_base_value,
2595 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2596
ec907dd8
JL
2597 /* Walk the insns adding values to the new_reg_base_value array. */
2598 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2599 {
2c3c49de 2600 if (INSN_P (insn))
ec907dd8 2601 {
6e73e666 2602 rtx note, set;
efc9bd41
RK
2603
2604#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2605 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2606 insn chain until after reload has completed. Thus,
2607 there is no sense wasting time checking if INSN is in
2608 the prologue/epilogue until after reload has completed. */
2609 if (reload_completed
2610 && prologue_epilogue_contains (insn))
efc9bd41
RK
2611 continue;
2612#endif
2613
ec907dd8 2614 /* If this insn has a noalias note, process it, Otherwise,
c22cacf3
MS
2615 scan for sets. A simple set will have no side effects
2616 which could change the base value of any other register. */
6e73e666 2617
ec907dd8 2618 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2619 && REG_NOTES (insn) != 0
2620 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2621 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2622 else
84832317 2623 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2624
2625 set = single_set (insn);
2626
2627 if (set != 0
f8cfc6aa 2628 && REG_P (SET_DEST (set))
fb6754f0 2629 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2630 {
fb6754f0 2631 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2632 rtx src = SET_SRC (set);
bb1acb3e 2633 rtx t;
713f41f9 2634
a31830a7
SB
2635 note = find_reg_equal_equiv_note (insn);
2636 if (note && REG_NOTE_KIND (note) == REG_EQUAL
6fb5fa3c 2637 && DF_REG_DEF_COUNT (regno) != 1)
a31830a7
SB
2638 note = NULL_RTX;
2639
2640 if (note != NULL_RTX
713f41f9 2641 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2642 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2643 && ! reg_overlap_mentioned_p (SET_DEST (set),
2644 XEXP (note, 0)))
713f41f9 2645 {
bb1acb3e
RH
2646 set_reg_known_value (regno, XEXP (note, 0));
2647 set_reg_known_equiv_p (regno,
2648 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9 2649 }
6fb5fa3c 2650 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9 2651 && GET_CODE (src) == PLUS
f8cfc6aa 2652 && REG_P (XEXP (src, 0))
bb1acb3e 2653 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
481683e1 2654 && CONST_INT_P (XEXP (src, 1)))
713f41f9 2655 {
bb1acb3e
RH
2656 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2657 set_reg_known_value (regno, t);
2658 set_reg_known_equiv_p (regno, 0);
713f41f9 2659 }
6fb5fa3c 2660 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9
BS
2661 && ! rtx_varies_p (src, 1))
2662 {
bb1acb3e
RH
2663 set_reg_known_value (regno, src);
2664 set_reg_known_equiv_p (regno, 0);
713f41f9 2665 }
6e73e666 2666 }
ec907dd8 2667 }
4b4bf941 2668 else if (NOTE_P (insn)
a38e7aa5 2669 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2670 copying_arguments = false;
6e73e666 2671 }
ec907dd8 2672
6e73e666 2673 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2674 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2675
c582d54a 2676 for (ui = 0; ui < maxreg; ui++)
6e73e666 2677 {
e51712db 2678 if (new_reg_base_value[ui]
08c79682 2679 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2680 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2681 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2682 {
08c79682 2683 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2684 changed = 1;
ec907dd8 2685 }
9ae8ffe7 2686 }
9ae8ffe7 2687 }
6e73e666 2688 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2689
2690 /* Fill in the remaining entries. */
bb1acb3e 2691 for (i = 0; i < (int)reg_known_value_size; i++)
9ae8ffe7 2692 if (reg_known_value[i] == 0)
bb1acb3e 2693 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
9ae8ffe7 2694
e05e2395
MM
2695 /* Clean up. */
2696 free (new_reg_base_value);
ec907dd8 2697 new_reg_base_value = 0;
e05e2395 2698 free (reg_seen);
9ae8ffe7 2699 reg_seen = 0;
0d446150 2700 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2701}
2702
2703void
4682ae04 2704end_alias_analysis (void)
9ae8ffe7 2705{
c582d54a 2706 old_reg_base_value = reg_base_value;
bb1acb3e 2707 ggc_free (reg_known_value);
9ae8ffe7 2708 reg_known_value = 0;
ac606739 2709 reg_known_value_size = 0;
bb1acb3e 2710 free (reg_known_equiv_p);
e05e2395 2711 reg_known_equiv_p = 0;
9ae8ffe7 2712}
e2500fed
GK
2713
2714#include "gt-alias.h"